
o MicroVAX II System 

Digital Technical Journal 
ofDigital Equipment Corporation 

Number 2 
March 1986 



Cover Design 
Hardware, software, and peripheral devices for the 

Micro VAX 11 system are featured in this issue. Two VLSI 
devices, the 78032 CPU chip and the 78132 FPU chip, 

form the core of this system. Our cover shows the input 

programmable logic array for the FPU chip. 

The cover was designed by Deborah Falck of the Graphic 

Design Department. 

Editorial Staff 
Editor - Richard W. Beane 

Production Staff 
Production Editor- M. Terri Autieri 

Designer - Charlotte Bell 

Typesetting Programmer -James K. Scarsdale 

Advisory Board 
Samuel H. Fuller, Chairman 

Robert M. Glorioso 

John W .  McCredie 

John F. Mucci 

Mahendra R. Patel 

Grant F. Saviers 

William D. Strecker 

Maurice V. Wilkes 

The Digital Technical journal is published by Digital 
Equipment Corporation, 77 Reed Road, Hudson, 
Massachusetts 01749. 

Comments on the content of any paper are welcomed. 
Write to the editor at Mail Stop HL02-3/KI1 at the 
published-by address. 

Comments can also be sent on the ENET to 
RDVAX::BEANE or on the ARPANET to 
BEANE%RDVAX.DEC@DECWRL. 

Copyright © 1986 Digital Equipment Corporation. 
Copying without fee is permitted provided that such 
copies are made for use in educational institutions by 
faculty members and are not distributed for commer
cial advantage. Abstracting with credit of Digital 
Equipment Corporation's authorship is permitted. 
Requests for other copies for a fee may be made to the 
Digital Press of Digital Equipment Corporation. All 
rights reserved. 

The information in this journal is subject to change 
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital 
Equipment Corporation assumes no responsibility for 
any errors that may appear in this document. 

ISBN 932376-89-4 

Documentation Number EY-3474E-DP 

The following are trademarks of Digital Equipment 
Corporation: CompacTape, DEC, the Digital logo, 
MicroVAX, MicroVAX I, MicroVAX II, MicroVMS, 
PDP-7, PDP-I I ,  Q-BUS, RSTS, TK50, ULTRIX, 
ULTRIX-32, UN113US, VAX, VAX-ll/730, VAX-ll/750, 
VAX-ll/780, VAX 8600, VAX 8200, VAXELN, 
VAXstation, VMS, VT. 

Apple II is a trademark of Apple Computer, Inc. 

AT&T is a trademark of American Telephone & Tele
graph Company. 

IBM is a registered trademark of International Business 
Machines, Inc. 

Mylar is a trademark of E. I. duPont deNemours & 
Company. 

Tek is a registered trademark of Tektronix, Inc. 

UNIX and System V are trademarks of AT&T Bell 
Laboratories. 

Xerox is a registered trademark of Xerox Corporation. 

68000 is a trademark of Motorola, Inc. 

8086 and Intel are trademarks of Intel Corporation. 

The manuscript for this book was created using 
generic coding and, via a translation program, was 
automatically typeset. Book production was done by 
Educational Services Media Communications Group in 
Bedford, MA. 



Contents 

8 Foreword 
jeffrey C. Kalb 

12 The MicroVAX 78032 Chip, A 32-Bit Microprocessor 
Daniel W. Dobberpuhl. Robert M. Supnik, Richard T. Witek 

24 The MicroVAX 78132 Floating Point Chip 
William R. Bidermann, Amnon Fisher, Burton M. Leary, 
Robert J Simcoe, William R. Wheeler 

3 7 Developing the Micro VAX II CPU Board 
Barry A. Maskas 

48 The Evolution of the Custom CAD Suite Used on the 
Micro VAX II System 
Anthony F. Hutchings 

56 The Making of a Micro VAX Workstation 
Rick Spitz, Peter George. Stephen Zalewski 

66 The RQDX3 Design Project 
Nicholas A. Warchol, Stephen F. Shirron 

76 The Evolution of Instruction Emulation for the 
MicroVAX Systems 
Kathleen D. Morse, Lawrence). Kenah 

86 The TK50 Cartridge Tape Drive 
Steven E. Doone, Guemer E. Schneider 

99 Porting ULTRIX Software to the Micro VAX System 
Raymond J. Lanza 

New Products 



Editor,s Introduction 

Richard W. Beane 
F.ditor 

This issue of the journal is the second pub
lished by Digital's engineering organization. 
Our first issue ( August 198 5 )  fe atured 
papers about the technologies  us ed i n  
designing the VAX 8600 processor. The jour
nal presents papers written by the technical 
contributors who design Digital's products . 
The informat ion is directed at engineering 
faculty members, Digita l's own engi neers, 
and customers. 

This issue features the M icroV AX ll system ,  
which imp lements the VAX architecture o n  a 
single CPU chip, the 780 3 2 .  Another chip, 
the 7813 2 ,  executes fast floating point oper
ations ; a si ngle board holds both those chips, 
plus one m egabyte of memory. New per
i pherals have been designed, and the VMS 
a n d  ULTRIX s o ftware a d a p ted to the  
MicroVAX II  syste m .  This  col l ect i o n  of  
papers, by  authors from different  engineer
ing groups, presents a wide spectrum of the 
MicroVAX II hardware and software . 

The first paper, by Dan Dobberpuhl ,  Bob 
Supnik ,  and Rich Witek, is  a description of 
the 780 3 2  CPU chip,  which imp le ments a 
subset of the full  VAX i nstruction set. The 
decis ions  a bout w hi c h  i n s truc t i o n s  to  
microcode are discussed ,  along with hard
ware simplifications needed to fit functions 
on one chi p .  The chip's various operations 
are explained,  with emphasis on paral le l  
execution . 

The CPU chip can use a coprocessor, the 
78 1 3 2 FPU chip , to perform fast floating 
p oint o p e ra t i o n s .  T h e  p a p e r  by B i ll 
Bidermann, Amnon Fisher, Mike Leary, Bob 
S imcoe , and Bill Wheeler relates t he 7813 2's 
arch itecture and algori thms.  The protocol 
between the two chips is discussed and a 

description is given of the wiring and signal 
i n t e g r i ty i s sues  a n d  how t h e y  were  
addressed. 

Both chips are mounted on a single board 
conta ining one megabyte of me mory . Barry 
Maskas' paper exp lains how the CPU board 
had to be designed as a linked sequential 
machine with dual ports . The development 
process is interesting because the board and 
the chips were designed in para l lel. 

The paper on CAD tools , by Tony Hutch
i ngs , relates the large role they played in the 
chi p  and board designs . The various levels of 
CAD support , from be havioral modeling,  
t hrough logic and circuit  s imulat ion, to 
wire list  generation is  described. 

The software gra p hics t hat  turn t he 
MicroVAX II system into a single-user work
station are reported in the paper by Rick 
Spitz , Peter George, and Steve Zalewski . The 
control of windowing software and virtual 
displays is discussed,  as are the implementa
tion details .  

The RQDX3 disk controller provides fast 
data transfers between a CPU and disk stor
age devices. Nick Warc hol and Stephen Shir
ron explain the top-down development pro
cess that lead to unique solutions to difficult 
problems .  Their descri ption of the fi nal 
archi tecture shows how the original goa ls 
were met in the eventual design. 

With a subset architecture , those instruc
t ions not in the set have to be executed 
another way. The paper by Kathy Morse and 
Larry Kenah describes the macrocode emula
tion of the VMS changes required to do that . 
The test i ng techniques are i nterest ing s ince 
they were done without M icroVAX hardware . 

The paper by Steve Boone and Guenter 
Schne ider describes the TKSO, a streaming 
cartridge tape drive providing fast data trans
fer .  The authors d iscuss the unique cartridge, 
tape transport , and controller designs,  high
Iighting the self-thread i ng technique and the 
serpentine readjwrite process . 

The fi nal paper, by Ray Lanza , describes 
port ing the ULTRIX- 3 2  software to the 
MicroVAX processor. Ray explains the cross
development environment and the mapping 
techniques that allowed the heart of the 
ULTRIX software to fit on a small system . 

3 



Biographies 

4 

William R. Bidermann Bil l  Bidermann is the engineering manager of 
the Advanced Development Memory Group.  He consu lted on the float
ing point chips for both the VAX 8 2 0 0  and MicroVAX II processors . 
Before joining Digital in 198 4,  he was a consultant for Tenex and 
Rampower.  Previously, he worked as a project manager at Hewlett 
Packard LaboratOries in Palo Alto, Cal ifornia ,  and as a design engineer at  
Texas Instru ments Central Research Labs . B i l l  received his S .B .  and S .M .  
degrees in  electrical engineering and computer science from M . I .T. in  
1978 

Steven E. Boone Steve Boone graduated from Michigan State Univer
sity (B .S . E . E . ,  1974) and the University of Mich igan (M.S . E .C .E . , 197 5). 
He has a lso done advanced graduate work at Southern Methodist Un iver
sity. Before joining Digital in 1984, Steve worked as a principal hard
ware engineer for Sequoia Systems, and as a senior design engineer at 
Prime and Raytheon.  For two years, he was an engineering supervisor 
working on the TK 50 controller design . Steve is currently the technical 
�ngineering manager for TK Cartridge Tape Su bsystem Engineering. 

Daniel W. Dobberpuhl Dan Dobberpu hl  is a senior consulting engi
neer and manager of the Processor Advanced Deve lopment Group. On 
the MicroVAX II project, he led the implementation of the 78032 CPU 
chip. Previously, he consulted on CMOS, ZMOS, and TIPI technology 
development, and worked on the Til and F l l projects . Dan joined 
Digital in 1976 from General Electric Company. He received a B .S . E . E .  
degree from the University o f  I l linois in 1967. A member o f  IEEE ,  he 
holds four  patents and is the coauthor of The Design and Analysis of 
VLS! Circuits. 

Amnon Fisher Ed ucated at Israel Institute of Techno logy (B .S . E . E . ,  
1973) and City College o f  New York (M.S .E . E . ,  1975), Amnon Fisher 
worked as both a contribu tor and project leader on the 3 20 16 CPU at 
National Semiconductor. join ing Digital in 1983, he was a project 
leader of the Vl l jSCORPIO floating point chip (VAX 8 2 0 0  system) , 
and a contributOr tO the MicroVAX I I  78132 chip. Amnon is currently 
an engineering manager in the SemiconductOr Engineering Grou p ,  
working on the  design and deve lopment of a fou r-chip se t  VAX 
implementation . 

Peter C. George Earning h is bachelors and masters degrees in com
puter science and engineering from M. I  .T .  in 1980, Peter George joined 
the VMS Development Group in that year .  He first worked on VMS user 
interfaces, then on the workstation software as a principal engineer on 
the VAXstation project. Peter is currently a project leader, working on 
advanced workstation software projects . Peter is a member of ACM, and 
the nationa l honor societies Tau Beta Pi, and Eta Kappa Nu .  



Anthony F. Hutchings Tony Hutchings received his B .S .  degree 
from the University of Newcastle On Tyne in 19 6 5 .  At ICL in the U.K.  
for 16 years, he designed operating systems and was one of the VME· 
system architects on the 2900 series . He later became corporate man· 
ager of CAD . Tony joined Digital in 1 982 as the project manager for the 
proprietary DECSIM software and then became manager of the VLSI CAD 
Group.  Tony, a member of IEEE and the British Computer Society, is 
currently chairman of the CAD section of the ICCD. 

Lawrence J. Kenah Larry Kenah , a consulting software engineer in 
the VMS Development Group, wrote the decimaljstring emu lator for 
the MicroVA.X project .  Since joining engineering i n  1 980,  Larry has 
worked on the VMS nucleus in the areas of memory management, pro· 
cess schedul ing, and image activation. He came to Digital in 1 9 7 5  as an 
instructor and course deve loper in Educational Services . Larry received 
his B .S .  degree ( 1 968) from Boston Col lege and his M . S .  ( 1 970) and 
Ph . D .  ( 1 977) degrees in high-energy physics from Northwestern Uni· 
versity. He is coauthor of VAXjVMS Internals and Data Structures. 

Raymond J. Lanza Ray Lanza is currently the project leader for the 
ULTRIX-3 2  system. After joining Digital in  1 98 3 ,  he ported the ULTRIX 
system to t he MicroVA.X I processor. As project leader, he ported the 
system to the Micro VAX I I  processor in 1 9 8 4 .  Ray received h is 
B . S .E .E .jC.E .  degree from the University of New Hampshire in 1 980,  
then became the lead engineer in a UNIX group a t  AT&T. Later he was a 
senior software engineer a t  Wa ng Laboratories, Inc . ,  researc hing 
wi ndowing systems and UNIX distribu ted systems. 

Burton M. Leary In  1 980 ,  M ike Leary joined Digital after receiving 
his B .S .  degree in  electrical engineering from the University of Massa· 
chusetts . In semiconductor engineering, he worked on chip designs and 
helped to develop the floating point chip for the MicroVA.X II system . 
Mike did behavioral model ing, wrote microcode , and designed the 
main sequencer for that chip.  He is now a senior engineer in the 
Advanced Development Memory Group, designing the internal cache 
for an advanced chip project . 

Barry A. Maskas Barry Maskas is a principal engineer cu rrently speci
fying and designing an integrated circuit ,  and fiber-optic boards for 
future systems . As a senior engineer on the MicroVA.X I I  project , he was 
co-designer of the CPU board and the memory boards. Barry came to 
Digital in 1 9 79 after receiving his B . S .E.E.  degree from Pennsylvania 
State University. He also holds an  associate's degree from the Commu· 
nity Col lege of Allegheny Cou nty and did u ndergraduate work at LSU .  
Barry is  a member of Eta Kappa Nu ; he has a patent pending for a seJf. 
configurable memory su bsystem.  

5 



------------�---- Biographies 

6 

Kathleen D. Morse As a consulting software engineer, Kathy Morse is 
responsible for VMS support on a l l  low-end CPUs and peripherals .  Ear
lier, she did the VMS support for both MicroVAX systems , the VAX 
1 1 /782 system ,  and the MA780 multiport memory. Kathy joined Digital 
in 1 9 76 after receiving her B .S .C .S .  degree from Worcester Polytechnic 
Institute, where she also earned her M . S . C .S .  degree in 1 98 5 .  Kathy is a 
member of IEEE, the Professional Council, and ACM, as wel l  as Tau Beta 
Pi and Upsilon Phi Epsilon . She has published in the Computer Mea
surement Group 's  1 985 Conference Proceedings , and Datamation. 

Guenter E. Schneider Guenter Schneider joined the Mass Storage 
Group in 1 97 0 ,  when it had only about 2 5  people . He has worked on 
the designs for the RX0 5 ,  RL0 1 , RX0 2 ,  TU5 8 ,  RX5 0 ,  and RD50j5 1 
storage devices . As a consulting engineer, he helped to design the TK50 
cartridge tape drive . Guenter received a Diplom lngenieur from the 
Technische Hochschu le Aachen in West Germany and his M . S . M . E .  
degree from M . I .T .  in 1 969 . H e  holds two patents , with a third pending, 
and is a member of the engineering society Verein Deutscher 
I ngenieure . 

Stephen F. Shirron Educated at Catholic University of America (13 . S ., 
1 980 and M . S . ,  1 98 1 ) ,  Stephen Shirron came to Digita l  after graduating 
Summa Cum Laude . As a senior software engineer, he developed an 
interpreter for VAXjSmal ltalk-80 and designed the V�Xstation 1 00 
firmware . Currently a principal software engineer, Stephen designed 
and implemented the firmware for the RQDX3 disk controller .  He is a 
member of Phi Beta Kappa and has written a chapter in Sma/ltalk-80: 
Bits of History, Words of Advice. 

Robert J. Simcoe 13ob Simcoe is a technical manager currently work· 
ing on serial interconnect products . He was the technical manager for 
the floating point chips in both the MicroVAX I I  and VAX 8200  systems. 
Before joining Digital in 1 98 2 ,  Bob worked for the Department of 
Defense and General  Electric Company. His du ties involved MOS 
design , process deve lopment, and product design using custom res. 
Bob holds seven patents on IC circuitry and systems.  He graduated from 
the University of l l l i nois (B .S . E . E . ,  1 966) . 

Rick Spitz Rick Spitz manages VAXjVMS software deve lopment for 
CPUs and peripherals .  As a consu lting software engineer, he was a 
primary member of the architectural  design team on the MicroVAX 
workstation project. Rick designed the VMS graphics hardware interface 
architecture and, for six years , has specialized in VAXjVMS hardware
software interfaces . He jo ined Digital in 1 977 as a senior software 
specialist and received Digita l 's  Software Excel lence Award. Previously, 
Rick developed m icroprocessor software for Inco , Inc .  He earned a 
B . S . E . E .  degree from Clemson University in  1 974 and his M . S . C . E .  
degree from the U niversity o f  Lowel l  in 19 83 . 



) 

Robert M. Supnik Bob Supnik is a corporate consultant and group 
manager in semiconductor engineering . On the MicroVAX CPU chip 
project, he was project leader and lead microprogrammer. Bob was the 
project manager for the J 11, a contributor to the F11, and supervised 
advanced development on the HSC50 and UDA5 0 .  Before joining 
Digital in 1977, he worked at Applied Data Research .  Bob received his 
S . B .  degrees (1967) in math and history from M . I .T. and his M .A .  degree 
(1972) in history from Brandeis University.  He received Science 
Digest's" 1 00 Top I nnovators of 1985" award. 

Nicholas A. Warchol In 1977, Nick Warchol joined Digital after 
receiving his B . S . E . E .  degree (cum laude) from the New Jersey I nstitute 
of Technology. Later he earned his M . S . E . E .  degree from Worcester 
Polytechnic I nstitute in 1984. He is a member of Tau Beta Pi and Eta 
Kappa Nu . Nick has worked on the advanced development of charged
couple device memories , bubble memories, and laser video disks . I n  
his present position a s  a principal engineer, h e  worked on the design of 
the RQDX3 disk controller .  

William R. Wheeler After earning his B .S . E . E .  degree in 1982 and his 
M . S . E . E .  degree i n  1983 from Cornel l  Univers ity, Bi l l  Wheeler came to 
Digital as a junior engineer. On the Micro VAX I I  project, he designed 
the exponent datapath and control for the 78132 floating point chip.  
Later he designed the exponent section of the floating point chip in  the 
VAX 8200  system .  Bi l l  is currently working on the instruction box 
and bus interface unit for a new m icroprocessor chip.  

RichardT. Witek Rich Witek is a consulti ng engineer working on the 
architecture and implementation of new microprocessors . He helped to 
develop and debug the MicroVAX 78032 CPU chip .  Rich a lso worked 
on implementing DECnetjE and on the DECnet Architecture Review 
Group during Phases 2 and 3. He also worked in the VLSI CAD group .  
Before joining Digital  i n  1977, Rich was a senior technical associate at 
AT&T Bell Laboratories and an engineering assistant at Argonne National 
Laboratory . He received his B .A .  degree in  computer science from 
Aurora College , and is a member of ACM and IEEE .  

Stephen H. Zalewski Steve Zalewski i s  a senior software engineer 
working on the graphics execution routines for the VAXstation I IjGPX 
system . He joined Digital i n  1981 after receiving his B . S .  degree in 
computer engineering from \Vorcester Polytechnic I nstitute . Steve 
developed the graphics device driver for the VAXstation I and II sys
tems. His earlier work involved writing RMS file-sharing internals and 
impl ementing RMS fi le  sharing and global buffers for VAXcluster 
software . 

7 



---------- Foreword 

8 

Jeffrey C. Kalb 
Vice President 
and Group Manager 
Large Scale Integration 

The roots of the MicroV AX program go back to 
the summer of 1 98 1 . To understand why this 
program was initiated and the thinking behind 
it ,  one has to look at the events of that t ime.  
Many developments were taking place ,  sug
gesting that a whole new class of systems capa
bi li ties could emerge before long . 

The VAX-I 1 /780 system was in i ts heyday. It  
was recognized as the standard against which 
a l l  other  computers were c o mpared and 
benchmarked . And true to  fashion , everyone 
seemed to find some way to benchmark his 
machine in some particu lar niche against the 
l l j780's  capabi l i ties . That was particu larly 
t r u e  of t h e  u p c o m i n g  g e n e r a t i o n  o f  
microprocessors and microprocessor-based sys
tems. The universities were busily benchmark
ing Intel Corporation's latest generations of 
8086s, 80 1 86s, and the early 80286s on spe
cific  jobs . The same was true of the 68000-
based system .  Many companies were start ing tO 
come to market with engineering workstations 
a n d  s i m i l a r  p ro d u c t s  b a s e d o n  t h e s e  
microprocessor chips . I n  fact i f  one bel ieved 
the trade press , the VAX - l lj780 system had 
actua l ly been ecl ipsed i n  performance and 
capabil ities by these "upstarts . "  

Needless to say, these events caused some 
degree of consternation and soul -searc h i ng 
within Digital Equipment Corporation.  More
over, another factor was becom ing painful ly 
obvious :  the emergence of the independent 
software vendors . Hoards of small companies 
were springing up everywhere to generate 
software for various personal computers that 
e ither had already been i ntroduced to the mar
ketplace, l ike the Apple I I ,  or shortly wou ld be , 
l ike the IBM PC . These small  vendors wanted to 
write software for the systems that had the high
est market volume .  Their reasoning was clear. 
To sell  as many of their software packages as 
possible required implementing their ideas on 
the highest volume hardware . I t  was also clear 
that the highest volume hardware was going to 
b e  m i c r o p r o c e s s o r  b a s e d  a n d q u i t e  
inexpensive . 



Meanwhile , within Digital, the Semiconduc
tor Engineering Group (SEG) was busy devel 
oping a multichi p  implementation of  the VAX 
archi tecture . Built with a midrange , mult iuser, 
h igh-performance system in m ind ,  this chip set 
and its attendant system implementations were 
aimed at the marketplace for systems above SSO 
thousand. CAD tools were being developed and 
ma nufactu r i n g  p rocesses de velo p e d  a n d  
refined . The module and system concepts were 
then i n  the defin ition stage . 

Discussi ons began a t  this  t i me , centered 
around what was later known as the MicroVAX 
system . There was a perceived need to counter 
the rising tide of encroachment on our systems 
business by microprocessors. We wanted tO cre 
ate systems with volumes high enough to war
rant the attention of the i ndependent software 
vendors. I n  general, we wanted to establish the 
VAX archi tecture as one of the preferred archi
tectures at all potential price levels in the 
entire i ndustry. 

These discussions and strategic thinking con
verged after receiving an unsolicited proposal 
from a semiconductor manufacturer. This firm 
had approached us during that summer, want
i ng tO implement the VAX archi tecture in one 
or two high-performance chips .  This set of 
chips could be used in our systems and sold as 
standalone products. The firm wanted tO use 
the VAXjVMS archi tecture (and primarily the 
software associated with i t) to get a jump in the 
marketplace by establi sh ing  a h i g h-volume 
archi tectural standard at the 3 2 -bit level. We 
were concerned from the beginning that the 
capabi l i ties and resources of this smaller firm 
would not be sufficient tO execute such a for
midable program.  But the notion t hat building a 
single-chip VAX implementation and using it to 
counter-attack the emerging m icroprocessor
based systems had struck a responsive chord . 
Until that t ime,  our thinking had been in terms 
of our traditional pricejperformance learning 
curves . Our strategies did not i nclude extraor
dinarily low-priced VAX systems. 

As indicated above , the Semiconductor Engi 
neeri ng Group i n  Hudson, Massachusetts , was 
already heavily com m itted to the multichip 

VAX syste m .  A number of other major chip 
projects were i n  development as wel l .  There
fore , we searched for a larger semiconductOr 
vendor who could bring additional design and 
manufacturing resources to bear on this con
cept .  Such a vendor could also make available 
addi tional distribut ion channels for sales of 
high-volume chips tO the general marketplace . 
This line of thinking was pursued with various 
vendors throughout the fall and winter of 1981, 
until April 1982 

Interestingly enough , there was less than 
wholehearted enthusiasm on the part of the 
various vendors who were approached.  Each of 
them had already decided on an approach tO 
the problem and were unwilling to make the 
development of the MicroVAX chip a priority 
i t e m. That  com m itment  was an extremely 
i mportant issue tO us . Experience had shown 
that complex projects of this nature always 
exceeded the schedules and the budgets antici
pated when they received second-class atten
tion within the merchant semiconductOr indus
try . Thus one criteria for working with a vendor 
was that he commit  to the M icroVAX architec
ture as a pri mary market thrust.  No one was 
willing tO do that . 

At the same t ime,  other issues had to be 
worked.  I t  was clear that the full VAX architec
ture as implemented in the multichip set could 
not easily be put on a single chip. That would 
have taken over 1 million transistOrs , a capabi l 
i ty t hat would not  be avai lable until the end of 
the decade .  Therefore , early in the project , we 
recognized that there was a need to subset the 
architecture to make it implementable on a sin
gle chip.  By December 1981, the idea of devel
oping a single-chip VAX implementation was 
begi nning to get some posit ive re -enforcement 
wi th in  Digital .  As a result , in that month , 
Gordon Bell, then vice-president of Engineer
ing, chartered a subcommittee tO investigate 
what  s hould be i ncluded in a M icroVAX 
architecture . 

The key people involved were Roy Moffa , 
who had been leading the strategic th inking 
about a single-chip VAX system; Bob Supnik ,  
representing semiconductor technology; Dick 

9 



Foreword 

H u s tvedt and Dave C u t l e r ,  represe n t i ng 
software technology; and Bi l l  Strecker, repre
senting VAX architectu re technology. After a 
few intensive meetings , they proposed a subset 
of the VAX architecture in January 198 2 .  Bob 
Supnik and the sem iconductor technologists 
thought that this subset could be implemented 
i n  a single chip. This new archi tecture would 
be modified slightly later in the year ,  but it is 
essentia l ly the architecture that exists today. 
The only sign ificant modification was in the 
memory management capabi l i ty, and in some 
sense , this change actual ly simpl ified the devel 
opment o f  the chip.  

I n  para l le l  with these other activities, Bob 
Supnik and other members of SEG had been 
studying ways to get the chip developed inter
na l ly .  They were hopi ng to l everage t h e  
existing investments in process technology, 
chip mode l ing, CAD tools ,  and the various 
other e lements that were necessary. Further
more, and highly signi ficant to the whole pro
gram, they developed ways of re-using some of 
the investments be ing made in the multichip 
VAX i m p l e me n tat ion and o t h e r  p rograms 
a lready in progress . As a res u l t  the fl oating 
point ch ip being developed for a PDP - 1 1 
microprocessor was used as the bui lding block 
for the MicroVA.X implementat ion.  Not only 
that but the chip was a lso retrofitted back into 
the exist ing m u ltichip set to minimize the 
workload . Moreover, the datapath was l ifted 
from the instructionjexecution un i t  of the mul 
t ichip s e t  to fo rm t h e  backbone of  the 
MicroVA.X CPU. Tools and techniques were bor
rowed whenever it was possible . 

I n  this  sense the Mi croVA.X program was 
u n ique .  There were a l most n i ne months of 
strategy discussion and evaluations of various 
ways of implementing and executing before any 
rea l  design actua l ly started. While many of the 
p roposed bus i ness s trategies  were never 
adopted, they a t  least received a hearing. In any 
case the die was cast .  

The real  i mplementation of the MicroVA.X 
chip did not get started unt i l  June 198 2, the 
official start date being July 6, 1982 .  (Some 
work had been done prior to that for recru iting 

10 

and staffing.) It was soon evident that there 
were some key e l e m e n ts tha t  had to be 
addressed. The first was CAD tools .  There was 
no question that this device had to be simulated 
extensively at a l l  leve ls of implementa tion . 
There was no other way ro get the quality of 
design and performance l evels being planned . 
At the time the program started, these tools 
were mostly experi menta l .  Some techn iques 
had been tested, but the real i ty was that CAD 
rools "broke" on numerous occasions during 
the deve lopment of the system . Crisis-ori ented 
SWAT teams had to be put in place to bridge 
over or break through barriers that threatened 
to bring the entire program to a halt. 

There was another equa l ly important e le 
ment .  The entire program was an extremely 
complicated one, with many elements on para l
le l  paths . Process technology had to be devel 
oped, CAD tools deve loped and refined, chip 
designs done,  systems imple mentations exe
cuted, and test tech niques and equ ip ment 
deve loped. Each of t hose e lements was int i 
mately entwined with the others . Therefore the 
possibi l i ty clearly existed that ,  upon reaching 
the end of the design, we wou ld be faced with 
debugging a new process technology, a new 
manufactu ring l ine, new testers , a new chip 
design, new packages, and a new system ,  a l l  
s imul taneously. A real possibil ity existed that 
we cou ldn ' t  separate the variables in a suffi
c iently clear and timely manner to a l low the 
chip debugging and system eva luation to take 
place . This phase could last for months or per
haps even years , something that has happened 
before on many such programs in  the merchant 
industry. 

To avoid that ,  we segmented the major risks 
in the program and put plans in place to mini 
mize as many of those as  possi ble in paral le l  
before the new chip arrived. For  instance , 
rather than debugging an entirely new manufac
tu ring line while trying to build th is new chip, 
we combined the existing two wafer fabrication 
l ines in to one . The sma l ler  l i ne was then  

retrofitted ro  provide a p i lot l ine capabil i ty. 
That gave us a trai ned staff, a debugged faci l i ty, 
and a l l  the other e lements necessary to mi ni-



mize the interaction of the process and faci lity .  
Additional ly, a test vehicle was designed s o  that 
manufacturing cou ld run wafers, debug process 
steps, and i mprove the basic yields of the pro
cess wel l  before the new chip arrived. In the 
test area, test programs were implemented on 
older, proven testers on which the engineers 
had experience . That worked even though we 
knew that, for the eventual production, an 
entire ly new generation of testers wou ld be 
necessary tO precisely test such a complicated 
device at i ts ful l  speed . 

Simi larly, other areas , such as packaging, 
CAD cool development, and parts of the system 
evaluation , were examined and improved i n  
parallel long before they had tO work together. 
A major program was put in  place to uncouple 
risks and tO hire and train the workforce wel l  in 
advance of the completion of the MicroVAX 
chip design . This effort was quite expensive; 
some people thought that much of the money 
was being thrown out with the materials that 
were made experimentally. But the end result 
was one of the smoothest debugs and introduc
tions i ntO chip manufacturing that I have ever 
witnessed for a complex device . While there 
were problems and a lthough thi ngs didn ' t  
always work right, there were almost always 
independent ways of separating the variables in  
the problem.  In that way it cou ld be properly 
analyzed and corrections put in place . This 
example should serve us wel l  with comp lex 
development programs in the future . 

One other thing done tO enhance the debug 
and ensure the qual ity at the system level was 
to co-locate the CPU modu le designers with the 
chip designers . I n  that way their interaction 
was enhanced and the rate of problem resolu
tion greatly accelerated. The module team itself 
was exceptionally sma ll for such a major pro
gram ,  consisting of only three primary engi 
neering people .  But this unique program envi
ronment featured a high degree of simu lation , 
close proximity of the engineers (the Micro VAX 
chip team had only 20 people) , and heavy rel i 
ance on thorough evaluation at every step .  

The end result  was very, very few bugs in 
either the chip or the system. In  fact there were 

fewer than 20 bugs that had tO be corrected 
before the integrated chip and system were able 
tO boot the operating system .  It  should be noted 
that this qual ity has continued tO manifest itself 
in the rapid manufacturing ramp-up and the 
qual ity of the systems that have been generated . 
There were more engineering changes to the 
parts and the system tO enhance our margin and 
ease of manufacture than there were tO make 
the system functional in the first p lace . That is 
evidence of a fundamentally different approach 
to bui lding systems .  

As noted above , the MicroVAX program is  
quite u nique, from its initial conception to the 
continuing efforts to enhance quality and pro
ductivity. From the initial conception of the 
strategy, through the organization of the people 
and problems ,  to the ongoing e ngineering 
activity around quality and ease of manufac
ture , this program has provided a new paradigm 
for program execution and management.  Our 
hope is that ,  with this knowledge, people can 
emulate the success of this program while el im
i nating the errors . I n  so doing,  Digita l can 
greatly enhance its abil ity to bui ld and manu
factu re high-quality systems in increasingly 
shorter periods of t ime.  

1 1  



Daniel W. Dobberpuhl 

I Robert M. Supnik 
Richard T. Witek 

The Micro VAX 78032 Chip, 
A 32-Bit Microprocessor 

The Micro VAX 78032 implements the VAX architecture on one chip. To do 
that, the instruction set was repartitioned to reduce the number of tran
sistors. The instructions used most frequently are in microcode; others, 
notably floating point, are emulated in macrocode. Hardware was sim
plified by having a small address translation cache and no memory 
cache; however, full VAX memory management is supported. Afast 200-
nanosecond microcycle allows instructions to execute in parallel. The 
CPU chip is made using a 3-micron, double-metal NMOS process. The 
control store ROM has X-shaped cells, which help to reduce its size. 

The MicroVAX 780 3 2  chip is the latest exten
sion of the VAX architecture and the first in  the 
form of a single-chip microprocessor. As the 
CP of the MicroVAX II computer system ,  the 
7 8 0 3 2  p e rfo r m s  n e a r l y  as fa s t  as t h e  
VAX- 1 1 /780  superminicomputer ,  b u t  i n  a 
microcomputer package . 

Origins and Goals 

Digita l  began the MicroVAX CPU chip project 
in late 1981 in anticipation of increasing com
p e t i t i ve pressu res from industry-standa rd 
microprocessors . The original intent of the pro
gram was to l icense a semiconductor vendor to 
design and manufacture a MicroVAX single-chip 
microprocessor. However, the leading semicon
ductor companies were unable tO meet the 
h igh -performance req u irements  and  t ight  
schedules that the project requi red . I n  May 
1 98 2 ,  an i nternal development project was 
chartered tO design the MicroVAX CPU chip . 

From a designer's viewpoint, the develop
ment of this CPU was a challenging exercise i n  
shrinking the VAX computer architecture with
out changing i ts function .  There were five 
major goals that governed the design . 

1 2  

1 .  The kernel architecture was tO be imple
mented on a s ingle chip . Other chips or 
hardware could be used to improve per
formance or to provide additional func-

tional ity, but the basic VAX functions 
had to be i ncorporated in  the base CPU 
design . 

2 .  The chip had to be compatible with a l l  
VAX application programs . I t  had to  exe
cute any application program, whatever 
its size or complexity, written for any 
computer in the VAX fam ily .  And it had 
tO execute without alterations to the pro
gram code . That meant that the chip had 
to run the MicroVMS and ULTRIX- 3 2 m  
( D igita l ' s  e n h a n c e d  U N I X  software) 
operating systems, and the VAXE LN real
time kernel . 

3 .  The chip had tO perform at or near the 
speed of the VAX - 1 1 /780 processor . This 
goal implied that the chip had to have a 
highly parallel internal implementation,  
a high-performance external interface , 
and a fast microcycle .  Accordingly, the 
internal microcycle of the chip was set at 
the same 200 nanoseconds (ns) as the 
l l j780's microcycle . 

4 .  The price of the chip had to be competi
t i v e  w i t h  c o m m e r c i a l  3 2 -b i t  
m icroprocessors of comparable com
plexity. This required a relatively con
servative d ie  size and an i nexpensive 
package . I t  also required the i mplemen-

Digital Technical journal 
No. 2 March 1986 



tation of an external interface that was 
compatible with standard VLSI periph
eral chips and demanded minimal sup
port from the hardware on the C PU 
board . 

5 .  The chip had to be designed and buil t  
quickly. T o  meet or beat competitive 
products, the chip had to be in produc
tion less than 2 Yz years after the start of 
development. 

With these goals gu iding the chip design 
team,  the major problem was quickly identi
fied:  to reduce the number of transistors. That ,  
in turn, re q u ired reparti t i o n i n g  the VAX 
instruction set and simplifying hardware func
tions wherever possible . 

Reducing the Number of Transistors 

The pri ncipal problem in designing the 78032  
was how to  implement the complexity of  the 
VAX architecture on a s ingle chip .  There are 
304  instructions in the ful l  instruction set, wi th 
1 4  data types and 2 1  addressing modes. I nstruc
tions vary in length from 1 byte to 54 bytes. 1 
Demand-paged virtu a l  memory s u pport is  
requ ired to guarantee compatibility with the 
operating system software . To accommodate 
this complexity in a ful l-scale VLSI VAX imple
mentation requ ires about 1 . 2 5  mil lion transis
tor sites2 However, the semiconductor tech
nologies avai lable at the t ime of design could 
support only about one-tenth that number in a 
single-chip microprocessor.3 

The architectural functions i n  all VAX sys
t e m s  a r e  p a r t i t i o n e d  a m o n g  h a r d w a r e ,  
microcode, and the operating system .  Al l previ
ous VAX implementations have similar bounda
ries between these three.  The hardware pro
vides the registers and memory, the microcode 
provides the instruction set, and the operating 
system provides the program services . A large 
contro l store-a minimum of 4 00 kilobits (Kb)
is requ i re d  to c o n t a i n  the i ns t r u c t i o n  
microcode . The console function is  handled in 
either microcode or a support processor. More
over, the control logic needed to support mem
ory manage ment and the variable instruc
tion format is quite complex4 

Two d ifferent approaches were taken to 
reduce the transistor count in  the microproces
sor chip .  First ,  the VAX instruction set was 
repartitioned to cut the size of the control store 

Digital Technical journal 
No. 2 Mm·cb 1986 

to 62Kb .  Second , the amount of on-chip hard
ware was reduced by simplifying some func
tions, placing others elsewhere, or omi tting 
some altogether. 

Repartitio ning the Instructio n Set 

As the first repartitioning step, the design team 
assumed that all VAX instructions had to be 
implemented in order to execute all VAX appli
cation software . However ,  there are several 
classes of i nstructions that involve a good deal 
of m ic rocode and yet are infrequently exe
cuted.  For example, a typical timesharing work
load is handled by base instructions, scientifi
cally oriented i nstructions , and commercially 
oriented i nstructions . Analyses of more than 70 
mill ion executed i nstructions showed that the 
commercia l ly oriented ones represented less 
than 0 . 2  percent of the total executed5·6 Stud
ies of scientific and engineering workloads 
showed even lower percentages .  Even in  com
mercia l  applications,  the commercia l ly  ori
ented instructions represented less than 4 per
cent of the total executed , the majority being 
base instructions .  Therefore ,  emu lating the 
commercia l ly oriented instructions in the oper
at ing syste m rather than u s i ng microcode 
wou ld significantly reduce the size of the con
trol store, but would have l ittle effect on over
a l l  performance because these i nstruct ions 
were seldom executed . 

On the other hand, floating point instructions 
require a good deal of microcode and are exe
cuted more frequently. Even with microcode, 
i nstruction execution is relatively slow unless a 
separate floating point accelerator (FPA) is 
used . Therefore , a l though existing VAX imple
mentations offered both microcoded (warm) 
a nd hardware (hot) floating point , the design 
team decided not to implement these instruc
t ions in microcode .  I nstead, floating point 
instructions wou ld be executed in  an optional 
floating point chip, or by e m u lat ion using 
macrocode . 

I n  tota l ,  1 75 of the 304 VAX instructions and 
6 of the 14 data types are implemented in on
chi p  microcode . Those include integer and log
ical instructions, variable-bit  fie ld ,  contro l ,  
queue, procedure calls ,  character string moves, 
and operating system support . This microcoded 
subset  comprises over 9 8  percent of the 
instructions that are used to execute a typical 
program . However, the required microcode 

1 3  

New Products 



.
------- The Micro VAX 78032 Chip, A 32- Bit Microprocessor 

occupies only one-fifth the control store space 
of a fu l l  VAX impl ementation. Seventy t1oating 
point instructions and three data types (F. D,  
and G t1oating) are implemented in the t1oating 
poinr chip ,  when it is present. If that chip is 
absent, the instru ctions are  emu l ated in  
macrocode .  The  remaining 59 instruct ions and 
5 data types are a lways emu lated in macrocode. 
Those are main ly decima l  string, character 
string, and H floating point operations . The 
CPU chip provides some microcode support for 
the emu lated instructions . Table 1 summarizes 
the instruction set arch itecture of the 78032 
chip. 

The decis ion to emu late instructions in 
macrocode has an effect on speed because emu
lated instructions take three to ten times longer 
to execute than microcoded instructions . How
ever,  the instructions in this group of 59 a re 

Table 1 Instruction Set Architecture 

normally used so infreq uently that the execu
tion speed of a typical program is reduced by 
no more than four percent. Tab le 2 i l lustrates 
the division of instructions between the CPU 
chip , the FPU chip , and the macrocode . All in 
a l l , the fivefold reduction in the size of the 
control srore ha lved what wou ld have been the 
active area of the chip . 

Simplifying the Hardware Functions 

The principal hardware simp l ifications in the 
78032 are the reduced size of the address trans
lation cache (translation buffer) , and the e limi
nation of a memory cache in favor of tightly 
coupled local memory. 

As mentioned earlier ,  demand-paged virtual  
memory management was requ i red for compati
bi lity with the VAX architecture .  Consequently, 
the design team decided that the 78032 would  

I mplemented i n  
CPU Chip 

Im plemented i n  
Floating Point Chip 

Implemented in 
Macrocode 

I n structions: 

I nteger and 
Logical 

Address 

Va riable Bit 
Field 

Control 

Procedure Call 

M iscellaneous 

Queue 

Operati ng System 
Support 

Character Move 

Total 

Data Types: 

Byte I nteger 

Word Integer 

Longword I nteger 

Quadword Integer 

Variable Bit Fie ld 

Variable Character 
String 

14 

89 

8 

7 

39 

3 

10 

6 

11 

2 

175 

F floati ng 

D floating 

G floating 

F floating 

D floating 

G floati ng 

24 

23 

23 

70 

H floati ng 

Octaword 

Character 
Str ing 

Decimal String 

Edit 

CRC 

H floating 

Octaword 

Leading Separate 
Numeric String 

Trai l ing N u meric String 

Packed Decimal 

28 

4 

9 

16 

59 

Digital Technical journal 
No. 2 March /')86 



Table 2 Division of I nstructions 

Percent by I n struction 
Count 
Percent by M icroword 
Count 
Percent by Typical 
Execution Frequency 

Instructions 
Implemented in 
CPU Chip 

57.6% 

20.0% 

98. 1 %  

be the first s ingle-chip CPU with fu l l  demand
paged virtual  me mory support right on the 
chip.  At first the design team proposed to use a 
s imp lified version of  VAX memory manage
ment .  During the course of the design , how
ever, the software engineers reported that not 
providing fu l l  memory management was quite 
expensive in terms of the use of p hysical mem
ory . Therefore, the design team i mplemented 
fu l l  VAX double-mapped compatibi l i ty in the 
chip.  As the design progressed ,  it became evi 
dent that the incrementa l cost of providing this 
capabi l i ty was much lower than orig ina l ly  
anticipated . 

Al l existing VAX processors implement mem
ory management with a large address transla
tion cache (at least 1 2 8 entries) , with system 
and process addresses in separate halves. A 
translation cache must have a high hit  rate to be 
effective . Si nce most caches are direct mapped, 
many entries are requ ired to achieve a high 
cache rate 7 ·H Implementing a comparable num
ber of translation cache entries in the 780 3 2  
was out o f  the question,  due to die size con
stra ints .  However, the VLSI technology in the 
780 3 2  is very amenable to using a fu l ly associa
tive translation cache with least-recently-used 
(LRU) replacement.  

Such a cache needs many fewer entries to 
achieve the same hit  rate as the d irect-mapped 
version .  In add ition,  the tight coupling to loca l 
memory, as explained in  the next paragraph,  
made i t  poss ib le  to reduce drast ica l l y  the 
amount of t ime requ ired to process a transla
tion cache miss . Thus the translation cache in 
the chip has only eight entr ies , but the cache is 
fu l ly associative ,  uses true LRU replacement, 
a nd is su p p o r t e d  by  h i g h l y  o p t i m i z e d  
microcode for fast processing o f  misses. More-

Digital Tecbni<:al jourual 
No. 2 /lfarch 1 ')86 

I n structions 
I m plemented in  
Floating Point Chip 

23.0% 

20.0% 

1 .7% 

Instructions 
Implemented in 
Macrocode 

1 9 .4% 

60.0% 

0.2% 

over , s imu lation studies showed that the best 
use of the eight entries was with a homogene
ous structure . Therefore, the system and pro
cess addresses are cached together . 

The team also decided to forgo the use of an 
external memory cache, which requ ired a com
plex external interface . Use of an internal mem
ory cache had already been ruled out due to die 
size constraints .  Accordi ngly,  the speed of 
memory access is 400 ns , or two m icrocycles, 
which is the speed of local memory. Thus the 
chip encounters no wait states, and its average 
t ime to access memory is approximately the 
same as the 1 1 j780's .  In a typical program , 
there is little difference between the integer 
instruction performance of the two CPUs . 

Addit ional s impl ificat ions included the el im
ination of warm (microcoded) floating point  in 
favor of a floating point accelerator , e l imina
t ion of wri table control store capabi l ity, and 
e l imination of on-chip console su pport .  

Design Narrative 

The starting point for the chip design was the 
i nstruction execution chip of a multichip VLSI 
VAX processor a lready in des ign . This chip 
would provide a general floorplan and a base 
microarchi tecture , and might  even provide 
complete des ign sections that cou ld be used for 
t h e  M i c r o VAX 7 8 0 3 2 .  As t h e  p r o j e c t  
progressed ,  the designs o f  the VLSI VAX proces
sor and the MicroVAX 780 3 2  tended to d iverge 
under the pressure of differing constraints : chip 
set and system functionality for the former ;  die 
s ize ,  power, and t ime to market for the latter . 
Ult imately, only part of the main datapath was 
s hared between the two ; the rest of  the 
M icroVAX 780 3 2  design and i ts microcode 
were unique .  

l 5 

New Products 



------- The Micro VA X 78032 Chip, A 32-Bit Microprocessor 

The MicroVAX 780 3 2  project took 20 momhs 
from start to fi rs t -pass mask generat i o n :  6 
months for specification and general design,  
and 1 4  months for physical implementat ion . 
E ighteen people worked on the des ign ream . 

Project Design Tools 

The design ream was aided by a h ierarchica l  
CAD rool su i te that ran on a VAX system. The 
use of these tools was one of the primary rea 
sons that the project was completed on sched
u le .  The principal  components of th is rool su ite 
are as fo l lows : 

1 .  A proprietary chi p-database manager and 
tool i nterface called the CHAS system 

2 .  A schematic capture program,  QUICK
D RAW, that uses s imple term inals 

3 .  A proprietary h i e rarch ica l  s i m u lator 
ca l l e d  the  DECS I M  system , used for 
behavioral s imulation 

4 .  A swi tch - leve l MOS logic  s i m ulator ,  
RSI M ,  used for un i t-delay l ogic s imula
t ion 

5 .  A modified vers ion of the standard SPICE 
circu i t  s imu lator that incorporates new 
ana lytica l, rather than empi rica l ,  MOS 
transistOr mode Is  

6 .  Des ign-rule checking programs,  DRC and 
DRACULA I I  

7 .  A n  i n tercon nect verifica t ion  program 
cal led the IV system , which performs 
both layout extraction and wiring verifi
cation9 

8 .  A cross-reference program,  XREF,  that 
ana lyzes  c o u p l i ng ,  boots trap ra t i os ,  
dynamic node stabi l i ty, and other c i rcuit 
problems 

The chip layout was done on Calma GDS n 
systems .  Three dedicated VAX- 1 1 /780 systems 
and five Ca lma stations were used throughout 
the project. The back-end verificat ion of cir· 
cu i ts and the layout required as many as eight 
VAX systems . 

Final Chip Design 

The fina l product of this design process is a 
microprocessor that conta ins 1 2 5 , 000 transis
tOr s i tes in a 3 - micron , double-metal  NMOS 
chip that measures 8 .7 by 8 . 6  m m .  It requires 

1 6  

only 5 Vdc and a maxi mum o f  3 watts of power; 
it is pac kaged in a 68-p in ,  su rface-mounted 
leaded chip carrier .  The chip operates at 2 0  
MHz and has fu l l  3 2 -bit  in terna l and external 
datapaths .  The 780 3 2  is mounted on a s i ngle
board , quad-si zed (8 . 5  by I 0 .  5 i n . )  CPU mod
u le having a Q 2 2  1/0 bus and 1 megabyte (MB) 
o f  loca l m e m o r y .  An o p t i o n a l  FPA,  t h e  
MicroVAX 78 1 3 2 chip ,  can also be mou nred o n  
the CPU board . 

The measu red speeds of integer and floating 
point  operat ions of the 780 3 2  represent a 
breakthrough in 3 2-bit m icroprocessors . System 
evaluations of MicroVAX 780 3 2  modu les ind i 
cate that the i r  performance in  process i ng i nte
gers is approxi mately equal  to that of the 
VAX- 1 1 /780 system .  With the float ing point 
ch ip ,  the performance is  between those of the 
VAX- 1 1 /750 and VAX- 1 1 /780 systems w i t h  
FPAs . 

The remainder of th is  paper expla ins the 
fu nctional organization of the chip and i ts phys
ical i mplementation in s i l icon . 

Functional Organization 

The diagram i n  Figure 1 and the photomicro
graph in Figure 2 out l i ne the various subsec
t ions ,  or fu nctional boxes, of the MicroV AX 
780 3 2  chip.  They are organi zed in to three sec
t ions . At the left of Figure 2 are the darapaths 
for decod ing and execut ing i nstructions and for 
memory management .  At the center is the con
trol logic for i nternal operations and the proto
col s ignal logic for external operations.  At the 
right  is the sequencing l ogic for both internal 
and external operations .  

The left sect ion  in  the  p hotom icrograph 
( Figure 2 ) ,  comprising the data paths,  consists 
of the I Box, the E Box, and the M Box. 

• The l Box prefetches and decodes instruc
t ions .  I ts main function is to parse the cur
re nt  macro i nstruct ion  in the i nstruct i o n  
stream and work in  conjunction with the 
mi crosequencer to generate the  m icroad
dress for the next mi cro instruct ion . This 
microaddress is a function of the current 
macroinstru ct ion . A prefetcher, which works 
i n  para l l e l  w i t h  other  c h i p  opera t ions ,  
accesses and  s tores instruct ion data i n  an  
eight-byte prefetch queue .  The prefetcher 
acts autonomously by atte mpting to keep 
that queue fu l l  at all ti mes, us ing any free 
I/O-bus cyc les to access the i nstru ct ion 

Digital Technical journal 
No. 2 March 1 986 



INTERRUPT M I CROSEOUENCER 

I BOX
.....,_ 

•r \ _j "" - - - - - - - - � -
J I N

;,;
R
�-� � - - - - �- - - -r--8-l ----, 

r+------,------.---1 PRIORITY I 

• I I I LEVEL I 

rl J Lr INTERRuPT 1 .. pc L___.. READ ROTATOR ,... r- TEST I SYNCHRON I ZER E:REOU ES�S 
DATAPATH 

. l AND HALT 
I 

L ,uADDRESS 
TOP BUS I INTERRUPT PRIOA1T1ZE R  POWER FAI L JtAOO RESS Lr------H REAO OATA LATC H  I L CONTROL - - - - - - - .-l STACK I 

t _j INSTRUCTION (ENTAY·POINT .uADDAESSES) �UX � ALIGNMENT Mux 1 n oecooe LOGIC (�-tBRANCH oFFsET) 
t I ! , L...1 PREFETCH STACK I '  I 1,--L-----'.__,L... r-1 �INSTRUCTI ON ADDER �-1 INSTRUCTION !BOX ,----'-....1...-, ��

ODE I ,I p OOR s STREAM ROTATOR CONTROL I 
(JUM p.A E 51 

I INSTRUCTION I MICROSEOUENCER I I 
DATA REGISTER CONTROL I I 1-'TRAP/OR BOX I 

• I I � 
L � EBOX INPUT MUX _;- j I MUX 

I - - n�· - - - - - - - - -r - - 1 I I ,---pA-:-:0:-::D':::R:-:E S:-:S---,J I � GPRS AND J- LATCH 
B BUS SCRATCH PADS I I I I p.ADDRESS BUS 

E BOX I � I L----y�-;.,-..-===-=� --''N \ ALU ,;;;ITH I I 
LATCH AND EBOX I : I BIT S H I FT CONTROL I 

rw-::R:::,T::-E---, I � I 
ROTATOR • I AND � I I BARREL SHIFTER I I g��e�� I wtTH INPUT lATCHES Aw MtCROtNSTAUCTtON 

EXTERNAL 
DATA AND 
ADDRESS BUS 

I ------, 
l Bus 14---Bu_s_____.l._ ___ '--1 

I -----. t .--- CONTROL I INTE RNAL \ MUX I I DATA AND B ADDRESS � I B� DRIVER l�J_, · - - - - _ ...J 
r r--- - - -, 

INPUT L.. I ---1 LENGTH REGISTERS J I DRIVERS [ - I • I I I LENGTH COMPARATOR J I t I ..___.j ADDRESS REGISTERS I MBOX I I I WITH INCREM ENTER CONT ROL I 
TB/AW BUS I VIRTUAL 

M sox, I • ADDRESS BUS II f...J I TRANSLATION I I �I BUFFER,  TAGS I PAGE TABLE I I ENTRIES I I JPHYS!CAL _J ADDRESS B U S  r - 1---- -
1 ....--J \ .__M_U_X/-"D-R I-VE-R--,/ I 
L.. _ _  -.- _ _  J I EXTERNAL CONTROLS t AND STROBES 

Figure 1 Block Diagram of the CPU Chip 

CONTROL STORE 

CLOCK G E N ERATOR 

strea m .  Even i f  the  queue  is fu l l ,  the 
prefetcher wi l l  start to read data if the queue 
will  be at  least half-empty after the current 
microcycle .  

The l Box a lso decodes instructions and vari
able-length operand specifiers in  para l lel  
with other chip operati ons . That avoids 
requ iring explicit decode cycles to execu te 
successive macroinstructions . Due to the 
constraints on the size of the control store, 
most of the address-specific microcode had 
to be shared among a l l  instructions. The 

i nstruction-decode PLA (lPLA) generates 1 9  
bits of opcode-specific data for control l ing 
other chip operations related to a given 
instruct ion . That a l lows many microcode 
sequences to be table driven and shared. 

DigiUll Technical journal 
No. 2 March 1986 

• The E Box is the instruction execu tion unit  
and contains the main datapath of the chip.  
This box holds 1 6  VAX-specified genera l  
pu rpose registers (GPRs) , 20 microcode reg
isters, a 3 2-bit arithmetic logic unit (ALU) , 
and a 32 -b i t  barrel shifter .  The E Box a lso 
maintains condition codes for t he process 

1 7  

New Products 



The Micro VAX 78032 Chip, A 3 2-Bit Microp1·ocessor 

1 8  

t. -:... -�.,.:-- - - .. -

I 

t I . . 

- � .' .. .. .  · t., · J  · I 

I 

--- '"� .J ., ,_ . 
I "' - t • • .: :  � • I I .. I 

Figure 2 Photomicrograph of the CPU Chip 

status longword (PSL) and determi nes VAX 
branch conditions at the macrocode level . In 
a 200-ns cycle , the E I3ox can read two regis
ters , perform an ALU operation or shift, and 
write the result into a register. Si nce reading 
a n d  writing to regis ters are performed 
sequent ia l ly ,  the ALU result bus is  mul
tiplexed with an i nput bus. thus saving vert i
cal interconnect . The ALU employs a 4 -bit  
lookahead carry sche me, with r ipple carries 
across the n ibbles . The carry chain uses dual 
ra il logic for maxi mum speed . The barre l 
shifter is a pass -transistor network, which is 
very compact and fast enough for this task. 

• The M I3ox serves as the memory ma nage 
ment unit  and translates vi rtual addresses to 
physical addresses . The address translation 
cache , which is ful ly associative ,  stores t he 
most rece ntly referenced address transla
t ions .  The M I3ox maintains three virtual 
address registers , one for instruction data and 
two for program data. This unit also detects 
cross-page accesses and includes a separate 
compararor for length checking.  A dedicated 
adder generates the next vi rtual address for 
seque ntial  data and instruction addresses . 
The time to perform an add ress translation is 
less than 2 5  ns when the virtua l address is i n  

Digital Technical journal 
No. 2 March 1 986 



the translation cache .  This short translation 
time a l lows memory management to be trans
parent to the external chip timing. 

The center section of the photom icrograph is 
composed mostly of random control logic .  That 
logic translates the highly vertical  (39 - bit) 
microcode into the many discrete control sig
na ls requ ired to operate the datapath . 

The right section of the photomicrograph,  
comprising the sequencing and clock ing logic ,  
consists of the inte rrupt logic,  the control 
store , the  DAL interfa c e ,  and the  c l ock  
generatOr.  

• The interrupt logic accepts , synchronizes, 
and prioritizes external interrupt requ ests , 
compares them with the current interrupt 
priority leve l (IPL) , and determines if the 
request w i l l  be serv i ced . The interrupt 
requ ests are c hecked at the beginning of 
each microcycle and the interrupt update is 
forwarded to the I Box . That a l l  happens 
through the central control logic before the 
next microcycle begins . 

Exte rna l interrupt processing has  been 
implemented on-chip in the 78032 to avo id 
the complex ity that results from having the 
interrupt priorities arbitrated outside the 
chip. Since these priorities are an integral 
part of the processor state, an off-chip design 
wou ld invo lve broadcasting the interrupt 
priority level eac h time it changed . More
over ,  off-chip interrupt processing wou ld  
a lso require additional hardware on the  CPU 
board . 

• The microsequencer accepts inputs from 
various points on the chip and generates the 
next microaddress to access the contro l 
store . The microsequencer logic pe rforms 
such operations as microsubroutine calls and 
returns, microcode traps, n-way (or case) 
branches , and s igned offset cond it ional 
branc hes . I m pl emented in the microse
quencer is  an e ight- level  microprogram 
stack .  

• The control store is a 39 -bit ROM with 1 6 00 
entries . It receives microaddresses and status 
s ignals and generates the next set of microin
structions . The control store transfers those 
microinstructions to the control section in 
the center area . That section , in turn, gener-

Di�ital Tecbnica/ journal 
No. 2 Manb I ')8() 

ates control signa ls for the three principal 
functions in the main datapath : the I Box , the 
E Box , and the M Box. The access time of the 
control store is less than I 00 ns . 

• The DAL interface handles a l l  control signals 
and transfers data and addresses between the 
chip and local memory , peri pherals ,  and 
other devices outside the ch ip .  The DAL 
interface transparently processes variable
length operands and al igns data references 
that cross natural 3 2 -bit memory boundaries. 
It also causes the microprocessor to sta l l  dur
ing r;o referenc es ,  so that add it iona l 
microcode is not needed tO test for I/0 com
pletion. The DAL interface contro ls transac
tions involving the CPU chip,  the FPU chip ,  
and externa l devices. I t  also a rbitrates d irect 
memory access (DMA) requests . 

• The clock generatOr receives an externa l 40 -
MHz c lock reference and produces the eight 
25 -ns clock phases that time functions on the 
chip . The control logic of the chip makes 
extensive use of bootstrapped drivers . For 
that reason, certain clock phases have to 
drive very high capac itances, as much as 2 5 0  
picofarads . To assist in that task,  a special 
driver c ircu it with cu rrent- l im iting resistors 
is used to provide fast edges without us ing 
excessive power or s i l icon area. These resis
tors control the overlap cu rrent drawn dur
ing bootstrapping and provide a voltage drop 
during the overlap. 

External Interface 

A principal goa l  in des igning the chip's exter
nal interface (Figure 3) was to demand as few 
support functions as possible from the CPU 
board . The 78032 chip provides seven hard
ware interrupt inputs . Fou r of these inp uts 
(IRQ<3 : 0> L) correspond to standard VAX I/0 
interru pts and resu l t in vectored interrupt 
transacti ons . Three others (I NTTIM L, PWRFL L, 
HALT L) have preassigned interpretations and 
the corresponding vectors are generated inside 
the chip. The 7 8 0 3 2  takes in a double-fre
qu ency clock input from a standard oscil lator. 
The chip produces a normal-frequ ency clock 
output, which can be used to drive or synchro
nize external logic .  The functions between the 
chip and the Q-bus can be implemented in off
the-shelf discrete logic . 

1 9  

New Products 



------- The Micro VAX 78032 Chip, A 32-Bit Microprocessor 

I N T E R R U P T 

C O N T R O L  

DMA 

C O N T R O L  

{ 
{ 

H A LT 

PWR F L  
--
I N T T I M 

I R Q < 3  0> 

--
D M R  
--
D M G  

-
E R R  

E R R  

- R O Y  
R OY 

B M <3 :0> 
B M < 3  O> 

- D S  
D S  
-

AS 
AS 

� 
/" � A D D R E S S  

D A L < 3 100> 

Y-- r-V 
LAT C H  

BA<3 1 : 00> 

Micro V A X  78032 
C E N T R A L  P R O C E S S I N G  

� � 8 0 < 3 1 : 00> 
U N I T  DATA 

r-V 
T R A N S C E I VE R S  

- D B E  
O B E  -
- W R  
W R  -

� 

� M 1 cr0VAX 7 8 1 3 2 

FLOATI N G  
-

PO I N T  
EPS 

U N I T  --
R E S E T C S < 2  0> 

C L K I  C L K O  r--

E P S  

C S < 2 : 0 >  

C L K O  

Figure 3 External Interface 

E xcept for the 3 2 -bit DAL bus , the external 
interface closely resembles t hose for existing 
1 6-bit microprocessors . Specifica l ly,  its t iming 
and signal complement are quite s imilar tO 
those in current machines . The addresses and 
data on the DAL are time division multi plexed, 
with separate t iming strobes (AS and DS, respec
tively, in Figure 3) . The data direction and the 
data buffer signals (WR and DBE in Figure 3) 
are used to control exte rnal transcei ve rs 
directly. The cycle status signals differentiate 
among the various types of bus transactions . 
Four-byte mask signals , one for each group 
of eight bits on the DAL bus , allow straightfor
ward manipulation of bytes within longwords 
(four bytes) . 

2 0  

The ROY s ignal a l l ows slower peri p heral 
devices on the I/0 bus to stretch the me mory 
access time beyond 4 0 0  ns until they are ready 
tO respond . 

Parallel Opera tio n 
Besides giving the 780 3 2  opti mized microcode 
and a fast microcycle t ime,  the design team 
en hanced the chip's performance by allowing 
parallel operations between and within func
ti onal subsections . This parallel flow is actually 
a form of pipel in ing in which the operations 
happen independently a nd concurre ntly. For 
e xa m p l e ,  w h i l e  the E Box is execut i n g  a 
datapath operation, the control store can access 
the next microinstruction . At the same time , the 

Digital Technical journal 
No. 2 March 1 ')8() 



microsequencer can be calculating the add ress 
of the microinstruction after that one, and the 
M Box can be trans lating a virtual ad dress . 
Meanwhi le ,  the I Box can be decoding an 
instruction or  operand specifier and prefetch
ing more instruction data . And the DAL inter
fa ce can be i n i t i a t ing  or c o m p l e t i n g  a n  
external bus operation . 

For example, assume that the chip is tO exe
cute the fo l l owing two three -m icro cyc l e  
macroinstructions i n  sequence : 

ADDL3 RO, R l , R2 

SUI3L3 R4 , RS ,  R6 

Withi n  the thi rd 20 0-ns microcyc!e ,  some 
operations associated with these two macroin
structions are performed in paral le l  by several 
subsections . The E Box will  write the resul t  of 
ADDL3 into R2 in the register fi le ,  set the PSL 
condition codes, and check for ar i thmetic 
exceptions, such as an overflow trap .  Mean
while, the I Box wi l l  decode the next macroi n
struction , SUBL3 , and its first specifier ,  R4 . 
Concurrently, the prefe tcher in the I Box wi l l  
determine i f  the  decode of the instruction and 
specif ier  w i l l  c lear  enough space i n  the  
prefetch stack tO  warrant  another longword 
transfer. If so, the I Box wil l  then ini tiate the 
transfer and fetch another macroinstruction, 
which also involves the DAL interface . 

Within each subsection, there are a lso a num
ber of paral lel  operations that  reduce the over
a l l  execution speed significantly. In addition tO 
s imultaneous prefetch and decode actions in 
the I Box (as described above) , the microcode 
access in the control stare is pipelined :  The 
next microaddress is accessed while the current 
microinstruction at the current microaddress is 
being executed . In the M Box, length checks 
against referenced addresses take place simulta
neously with the translation cache lookups . If a 
lookup misses , therefore , the length check wil l  
have already determined whether or not the ref
erenced page is within range . In the E Box, a 
separate program counter (PC) adder maintains 
the PC so that the ALU can be dedicated to its 
primary tas k. 

Some typical  execution times for instructions 
u nder normal operating conditions (a l igned 
operands, no memory management exceptions) 
are as fol lows : 

Digital Technical journal 
No. 2 March 1986 

Typical 
Execution Time 

In struction Operands (Nanoseconds) 

MOVL Reg , Reg 400 

ADDL2 Reg , Reg 400 

MOVL Mem, Reg 800 

A D D L2 Mem,  Reg 800 

MOVL Reg , Mem 600 

A D D L2 Reg , Mem 1200 

Condit ional 200 
Branch , 
not taken 

Condit ional 800 
Bra nch, 
taken 

Physical Implementation 

The MicroVAX 780 3 2  chip is made using a 
3 -micron,  double -meta l  NMOS process that 
a llows power savings and superior circuit flexi
bil i ty .  Until  the MicroVAX 78032 chip design, 
s ingle metal was a standard for NMOS technol
ogy . The use of a second layer on the 78032 
chip was a significant departure for NMOS 
design . There are two main advantages of a 
double-metal implementation . First ,  it is easier 
to place logic circu its in the interconnect layer,  
where there are more circuits per u ni t  area of 
s i l icon . Second, the metal interconnect has 
lower resistance than polysi l icon,  thus avoiding 
wire delays that are difficu l t  to el im inate in 
design . 

The double-metal process provided the chip 
design team with two layers of a lu minum inter
connect and fou r types of devices (N, E ,  L, and 
D) . The four types al low some savings in power 
and a substantial i ncrease in circuit flexibil ity. 
However ,  the E device ( l ight enhancement) is 
typical ly  used only in source-fol lower circuits, 
and the L device ( l ight depletion) only in 
latches and static  memories . The second layer 
of aluminum interconnect manages the com
plexity associated with 3 2 -bit microprocessors . 
That  permi ts  g loba l  com m u n icat ions and 
a l lows local control or routing to share the 
same chip area .  However, second metal can 
only contact first meta l ,  and then only through 
an offset ,  or staggered, contact .  

2 1  

New Products 



The Micro VAX 7803 2 Chip, A 3 2-Bit Microprocessor 

Figure 4 X-shaped Cells 

The control store is a 1 600-entry by 39-bit  
RO M .  Although its size was decreased mostly 
t h r o u g h r e p a r t i t i o n i n g a n d  o p t i m i z e d  
microcode ,  abou t ten percent of the reduction 
was gai ned through the cell  structure chose n .  
X-shaped ce l ls w i t h  a virtual -ground design 
were used (Figure 4 ) .  This ROM has no physi 
cal  grou n d ,  whereas standard ROMs with 
H-sha ped ce lls have one ground l i ne for every 
two data l ines.  The X-shaped cel l ,  which is 9 5  
microns square , is also more dense t han the 
standard ce l l .  Moreover, in the X-shaped ce l ls ,  
second metal is  stra pped across the top of the 
array to min imize the row propagation time . 
The cell access time is 1 00 ns . 

The ROM bit l i nes are precharged tO Vee 
using depletion pull ups.  Sensing is done with a 
cross -cou ple d s tage u s i ng local  deplet ion  
divider vol tage references set  at 0 .6  X V00 . Col
umn access occurs in 2 5  ns .  

The control  c i rcu i ts ( at the  center  i n  
Figure 1 )  are imp lemented in dynamic logic so 
that the total power dissipation is kept be low 
three watts.  That also al lows a low-cost packag
ing design . The eight clock p hases provi de 
refresh t iming references to the dynamic logic . 

2 2  

Due to tight si l icon constraints, the test fea
tu res bui l t  i nto the design had to be l imited in 
scope . The principal ones used are as fol lows : 

• Ser ia l  sh ift registers wi th  fe edback for 
observing the control srore , I PLA, and mi cro
sequencer outputs 

• Specia l  test mode for overr id ing normal 
sequencing with external microaddresses 

• Dedicated mi crocode for opti miz ing state 
observations in the special test mode 

Summary 

The M icroVA.,"'{ 7803 2 represents a major break
through both in semiconductor technology and 
in the VAX fam i ly. From a technology perspec
tive, it is the first imple mentation of a success
fu l 3 2 -bit superm inicomputer on a s ingle chip .  
I t  is the first chip to provide integral demand
paged virtual memory management. And it is 
the first chip to provide system performance 
comparable tO the l l j780 . From a VAX per
spective , the 78032  is the key tO the downward 
extension of the industry-standard VAX family 
i nto the realm of small systems and worksta
tions . 

Acknowledgements 

The authors acknowledge the technical contri
but ions of John Beck, Sandy Carrol l ,  Gerry Che
ney, Mary )o Doherty, John Glynn, J im Gorr, 
Bob Grondalski , Dave Grondalsk i ,  Pat Hart , 
Ernie Hohengasser, Taan Lee , Steve Morris ,  
Tony Pasqui to,  Steve Thierauf, Tim Thrush,  
Janet Vitel lo ,  and Barry Worster. 

References 

1 .  VAX A rchitecture Handbook (Maynard : 
Digital  Equi pment Corporat ion,  Order 
No. EB- 1 9 5 8 0 ,  1 98 1 ) .  

2 .  W . N .  Johnson, " A  V LSI Superminicom
puter CPU," IEEE In ternatio nal Solid

State Circuits Co nference Digest of 

Technical Papers ( 1 984) : 1 7 4 - 1 75 .  

3 .  J .  Slager et a ! . ,  "A 1 6 -bit M icroprocessor 
w i t h  O n - c h i p  Memory Protec t i o n , "  
International Solid- State Circuits Con

fe re nce Digest of Techn ical Pape1·s 

( 1 983) : 2 4 - 2 5  

Digital Technical ]out-nat 
No. 2 March 1986 



4 .  H . M .  Levy and R . H .  Eckhouse, Computer 

Programming and A rchitecture: The 

VAX- 1  1 (Bedford : Digital Press, 1 9 80) . 

5 .  D .W. Clark and ] .S .  Emer,  "Measurement 
and Analysis of I nstruction Use in  the 
VAX- 1 1 /78 0 , "  IEEE Proceedings of the 

9th A nn ual Symposium on Computer 

A rchitecture ( 1 982) : 9- 1 7 . 

6 .  j .S .  Emer and D .W.  Clark, "A Characteri
zation of Processor Performance in the 
VAX- 1 1 /780," IEEE Proceedings of the 

l i th A n n ual Symposium on Computer 

A rchitecture ( 1 984) : 3 0 1 - 3 1 0 .  

7 .  W . O .  Strecker, "Transient Behavior of 
Cache Memories , "  A CM Transactions 

on Computer Systems, val . 1 ,  no . 4 
(November 1 983) : 2 8 1 -2 9 3 . 

8 .  D .W. Clark, "Cache Performance on the 
VAX- 1 1 /7 80 , "  A CM T1-ansactions on 

Computer Systems, val .  1 ,  no. 1 (Febru
ary 1 983)  2 4 - 3 7 .  

9 .  G .M .  Tarol l i  and W.j .  Herman ,  "Hierar
chical Circuit  Extraction with Detai led 
Parasitic Capacitances ,"  A CM IEEE 20th 

Design A u tomation Conference Pro

ceedings ( 1 98 3 ) :  3 3 7-34 5 .  

Digital Tecbnical]ournal 
No. 2 March 1 986 

New Products 

2 3  



William R. Bidermann 
Amnon Fisher 

Burton M. Leary 
Robert]. Simcoe 

William R. Wheeler 

The Micro VAX 78132 
Floating Point Chip 

A separate chip, the 78132, in the Micro VAX II system petforms fast 
floating point calculations. Three datapaths, each controlled by 
microcode, work in parallel to yield a 1 00-nanosecond microcycle. The 
wide datapaths accommodate a large variety of instructions, using 
microwords of only 35 bits for control. The 78132 is a 3-micron NMOS 
chip connecting to the CPU chip of the Micro VAX II system via a general
purpose protocol and a limited set of lines. Crosstalk and resistivity 
posed particular design problems, as did the routing of signals and 
power. The 78132's electrical integrity was carefully checked to ensure 
high reliability. 

Scientific and engi neering applications req uire 
strong floating point su pport from their com· 
puters .  All VAX i m plementations offer both 
microcoded (warm) and hardware ( hot) capa
bi l i ties to execute the 95 floating point instruc
t ions in  the fu l l  VAX i nstruction set .  The 
MicroVAX II processor also supports floating 
point instructions, but  in a s l ightly different 
fas h i o n .  S i n c e  t h e  con tro l s tore i n  t h e  
mi croprocessor, the CPU chip, has a l im ited 
size ,  these instructions are not execu ted in 
m i crocode ; instead they are e m u lated i n  
macrocode . 1 · 2 Emulation i s  relatively slow and 
does not provide the fast speeds requ ired for 
i ntensive mathemat ical applications . Therefore , 
a separate floating point acceleratOr (FPA) , the 
MicroVAX 78 1 3 2 chip,  has been deve loped as a 
companion tO the CPU chip ,  the MicroVA.,'{ 
7803 2 chip.  

The 78 1 3 2 ,  or FPU chip,  i s  designed tO pro
vide fast float ing point  calcu lations on a single 
chip. It executes 6 1  of the 70 floating point 
instructions i n  the MicroVAX i nstruction set. 
Nine of the 70 i nstructions simply move data, 
and the CPU chip does not need the FPU chip tO 
handle them. The FPU chip also accel erates ca l 
culations for 9 integer i nstructions,  which are 
associated with integer m u lt iplies and divides . 
The FPU chip executes i nstructions about 1 00 
ti mes faster than macrocoded emulation . 

24 

The FPU chip (Figure 1 )  contains 3 2 , 1 4 1 
transistors i n  a 3 -m icron, double-metal NMOS 
chip,  which req u i res just  un der 2 watts of 
power at 5 Vdc .  It measures 8.4 by 6 .6  mm and 
is packaged in  a 68-pin leaded chip carrier. The 
chip has a 1 DO -nanosecond (ns) microcycle ,  
d ivided i nto four 2 5 -ns c lock phases generated 
from a 4 0-MHz i nput clock.  The CPU chip ,  
which also operates on a 4 0-MHz input clock, 
has a microcycle  of 200 ns . The faster m icro
cyc le and wide datapaths enable the FPU chip 
tO perform fl oating point operations much 
faster than the CPU chip with i ts general 
data path.  

This paper discusses the implementation of 
floating point i n  the MicroVAX II 's  FPU chip 
and the unique constrai nts of a s i ngle-chip 
floating point accelerator. These constra ints are 
not l i m ited only to archi tecture but include 
interface design, wir ing, and signa l integrity, all  
areas where design trade-otis are important .  

At the highest leve l ,  the FPU chip imple
ments the F, D,  and G fl oating point instruc
t ions in the VAX instruction set . The chip is 
constra ined by the requ i rements of the VA.,'\ 
architecture-data formats, accu racy require
ments, and i nstruction vaga ries-and by the 
characteristics of the technology-l im ited num
ber of pins, l im ited die size , and l im ited in ter-

Digital Technical Journal 
No. 2 March J 986 



Figure 1 Photom icrograph of the FPU chip 

Digital Technical journal 2 5 
No. 2 March 1 986 

New Products 



The Micro VAX 781 3 2  Floating Po int Chip 

connect .  These constraints di ctated many of the 
design considerations in the FPU chip.  

FPU Chip Architecture 

The mai n  el ements of the FPU chip,  shown in 
the block diagram i n  Figure 2 ,  are s imi lar to 
those in most floating point devices . � Three 
separate processors-a 67-bit fraction processor, 
a 1 3 -bi t exponent processor, and a sing le-bit  
sign processor-operate in para l le l . The bus 
interface unit  handles data transfers over the 
external bus to the CPU chip and data move
ment into a nd out of the three datapaths . The 
mi crosequencer controls the paral le l  opera
t ions of the processors . 

Each e lement i n  the FPU chip operates i n  
parallel  t o  speed u p  instruction process ing. The 
microsequencer steps through the m icrocode 
for an i nstruction and determines which opera
tion is to be performed by each processor for 
the current cycle .  The m icrosequencer also 
ta kes inputs from each of the processors to 
determine which microword is to be executed 
next. The datapath of the fraction processor 
performs a l l  the arithmetic computations on 
the mantissa of a floating point number. This 
datapath is  designed to be flexible enough to 
handle the many different operations required 
in  a general-purpose FPA. The datapath is also 
segmented to hand le the F, D, and G data types, 
and is optimized to provide the maximum pos
sible performance from the N-channel MOS 
technology. 

The datapath of the exponent processor han
dles only the exponent portion of a floating 
point nu mber. The exponent datapath is a lso 
used as a counter during certa in operat ions 
such as m u ltiply and divide.  This datapath does 
a l l  the exception and bounds checking for 
operations l i ke addition and subtraction. The 
sign processor is incorporated into the expo-

SIGN EXPONENT FRACTION 
PROCESSOR PROCESSOR PROCESSOR 

I I I 

I BUS 
INTERFACE MICROSEQUENCER 
U N IT 

Figure 2 Block Diagram of the FPU chip 

2 6  

nent datapath and handles a l l  operations per
taining to the sign bit .  During an addi tion or 
subtraction, the sign bit determi nes which case 
is performed by checking the signs of the two 
operands and the opcode of the i nstruction . 

The bus i nterface unit (BIU) is responsible 
for handl ing al l  the FPU portions of the bus 
traffic between the FPU and CPU chips. The BIU 
decodes the opcode sent to the FPU chip and 
tells the m icrosequencer which instruction to 
execute . That allows the FPU and CPU chips to 
coordinate their actions without a lot of proto
col or pins .  Since many different data types are 
processed,  the BJU is responsible for u npacking 
the operands and steering them to the appropri 
ate datapath . O nce the instruction is com
plete d , the BIU takes the u npacked result  from 
each datapath and formats the result  i nto the 
specified data type . Figure 3 contains a more 
detai led block d iagram for the entire floating 
point uni t .  

Algorithms 
To keep the FPU chip at a size that cou ld be 
produced,  we decided not to use special -pur
pose hardware to implement instructions l ike 
a d d i t i o n  or m u l ti p l i c a t i o n . I n s t e a d ,  t h e  
datapaths are designed t o  b e  general -purpose 
ones to accommodate the needs of a wide vari
ety of instructions. 

Addition and Subtraction 
The datapaths are u nder microcode control and 
work in para l l e l .  Wit h i n  eac h ,  the steps 
requ ired for either addition or su btraction are 
done seria lly .  First, the exponents of the two 
operands are compared to see if they are of 
equal magnitude . If not, the larger exponent is  
stored in  a register, and the exponent differ
ence is used to control  the a l ignment .  The 
shifter on the output of the fraction arithmetic 
logic unit  (ALU shifter) al lows the fraction with 
the smaller exponent to be aligned five bits at a 
t i me . During each al ignment step, the exponent 
difference is reduced by u p  tO a magnitude of 
five unti l  the exponents are equal . Once equal ,  
the  fractions are added .  ( In  subtraction , the 
fraction tO be al igned is complemented before 
al ignment . )  

The resu l t ing fraction i s  then normal ized .  
The normal ize s hift is  accomp lished by  a single 
left shift i n  the fraction ALU and two left shifts 
i n  the ALU shifter .  I f  the addit ion of the 

Digital Technical Journal 
No. 2 March 1986 



CLKI RTs'('l 
I I 

CLOCKS 

1 0  8UF-H R 

CS2 CSI CSO [P'S Wi'i 

1J 

�·AIN SE;QUF;�CE R  
CZOO X 351 

13 

Figure 3 Block Diagram of the FPU Processor 

fractions results in an overflow i nto the top 
guard bit ,  a single right shift i n  the ALU shifter 
is requi red to normalize the result .  During nor
mal ization , a 3-bit  code is sent to the exponent 
datapath,  which determi nes the amount the 
exponent must be adjusted .  

After normalization , the fraction i s  rounded 
using a rou nding constant appropriate for the 
data type of the floating point operation being 
performed. If the round resu lts i n  an overflow 
in the  fract ion datapath ,  the exponent is 
incremented by one and the fraction is normal
ized .  The exponent datapath then checks the 
resulting exponent for any error condi tions . If 
no errors are found,  the final fraction and expo
nent values are loaded into the output register 
and the sequencer signals the BIU that the oper
ation is complete . 

Digital Tecbntcaljournal 
No. 2 Mm·ch 1986 

Multzply 
The mu ltiply operation in the FPU chip is based 
on a 3-bit  ret irement algori thm .  The 3 -bi t  
reti rement, or octal multiply, m ust generate the 
requ ired mu ltiple , 0-7, of the multiplicand to 
be added into the partial product for each step . 
The multipl es must be generated by simply 
shifting the multipl icand and adding or sub
tracting them from t he partial product. The 
multiples 0,  2, 4 ,  and 8 are easy to generate in 
this way. The multiple 6 can be formed by tak
ing three-quarters of the multipl icand and stor
ing that in a register at the beginning of the 
mu ltiply (� X 8 = 6) . As shown in Table 1 ,  al l  
the even multiples can be generated .  To gener
ate all the odd m u ltiples, a -1 multiple is 
added to achieve the final exact multiple for 
each retired group of three bi ts .  

2 7  

New Products 



The Micro VAX 78132 Floating Point Chip 

Table 1 Multiply Operation - Booth Encodings 

Multiplier Required Data 
Group M ultiple Used 

000 0 0 

001 1 mult  
01 0 2 mult  
01 1 3 mult  
1 00 4 mult  
1 0 1 5 3.4 mult  
1 1 0  6 3/4 mult 
1 1 1  7 mult  

The key to making this scheme work is that 
this - 1  mult iple must be generated from the 
previous group of three bits .  To that group, the 
- 1  mult iple for the next group is equ ivalent to 
a -8 mu ltip l e .  To know whether or not the next 
group wil l  need the - 1  multiple,  it is sufficient 
to examine the least significant bit ( lsb) of the 
next group of bits . If the lsb is a 1 ,  then the 
gro u p  w i l l  be odd a n d  wi l l  n e e d  t h e 
- 1  multiple .  This process is started by examin
ing the lsb of the multiplier and initializing the 
partial product register to either zero or minus 
the mul tipl icand . If the lsb is a 0, the - 1  mult i 
p le  wil l  not  be needed .  The operation always 
term inates i n  the case not requiring compensa
tion because the numbers are a l l  norma l ized.  
Table I shows the Booth encodi ngs for each 
multiplier group. 

These Booth encodi ngs translate into the frac
tion data path controls depicted in Table 2 .  

A multipl ication in  the FPU chip is begun by 
load ing the mu ltiplier into the Q Register (quo
tient register) and loading the mul t ip l icand 
into register  0 in  the scratch RAM . Three
quarters of the mult iplicand i s  then calculated 
during two ALU cycles and is stored in register 
I of the scratch RAM . Subseq u e n t l y ,  the 
A Register is  initia l ized to store the partial 
products. 

During each cycle of the multiply loop, the 
four least significant bits of the Q Register are 
latched to control each multiply step. Based on 
these fou r  b i ts ,  the m u lt ip ly control loads 
either the mu ltipl icand or three-quarters of the 
multipl icand from the scratch RAM into the 
8 Register .  The control then adds or subtracts 
the 8 Register from the A Register. The resu lting 
new partial product is  shifted right by the ALU 

28 

Multiple Mu ltiple Mu ltiple 
Shift Added Owed 

0 0 0 

2 - 1  

2 0 

2 4 -1 

2 4 0 

3 6 -1 

3 6 0 

3 8 -1 

shifter and relatched in the A Register. The 
Q Register is then shifted three bits to the right 
to retire the current set of mul tiplier bits and to 
set up for the next iterat ion . 

The exponent datapath i s  used to control the 
nu mber of iterations that should occur for each 
multiply operation and to calcu late the resu lt
ing exponent .  The number of iterations that 
take place for a multiply depends on the length 
of the mantissa . For example,  an F format num
ber with a 2 3 - b i t  mantissa req u i res eight 
iterations . 

Dit •ision 
The floating point  unit  performs a I .  5 - bit ,  non
restoring division . This algorithm is simi lar to a 
1 -bit, non-restoring d ivisio n ,  but  takes advan
tage of the fact that long strings of zeros or ones 
in the partial remainder can be skipped over 
without doing an addition or subtraction .  The 
FPU chip handles double precision through i ts 
normal datapath .  

Within the FPU chip, the part ia l  remaind ers 
will  always be < + Y2 and > -Yz because both 
floating point nu mbers are norma lized . If  the 
partial  remainder is smal l  relative to the nor
mal ized d ivisor, a 1 wi l l  not be shifted into the 
quotient over the next few cycles (The oppo
site is true if an addition is performed . )  Know
ing this fact and whether the previous opera
tion was an addition,  subtraction,  or a shift wi I I  
determine how the quotient b its are deve loped .  
If the previous operation was a shift ,  the pro
cess is in the middle of a long string of zeros or 
ones and no addition or subtraction has to be 
performed. If the partial remainder is not small  
re lative to the normalized divisor, the quotient 
bits are deve loped as they wou ld be in a 1 -bit 

Digital Technical journal 
No. 2 March I 'J86 



Table 2 Mu ltiply Operation - Fraction Datapath Controls 

Next Group Actual Present Group 

Look Ahead Multiple Group Multiple 

0 0 000 0 

0 1 001 2 

0 2 01 0 2 

0 3 01 1 4 

0 4 1 00 4 

0 5 1 0 1 6 

0 6 1 1 0  6 

0 7 1 1 1  8 

0 000 0 

1 001 2 

2 01 0 2 

3 01 1 4 

4 1 00 4 

5 1 0 1 6 

6 1 1 0  6 

7 1 1 1  8 

division algorithm . Tabl e  3 summarizes the 
1 . 5 -bit ,  non-restoring division .  

The implementation of this  algorithm in  the 
FPU chip is straightforward . To start, the divisor 
is loaded into the B Register and the dividend 
into the A Register. The Q Register i s  init ial ized 
to 0 and will  become the location where the 
quotient is deve loped . 

During each step of the d ivision , quotient 
bits are inserted at the least significant end of 
the Q Register. The register contents are then 
shifted left either 1 or 2 as required to develop 
the new quotient for that step. If necessary, the 
divisor is added to or subtracted from the par
tial remainder. The result is then shifted left by 
the appropriate number of places. 

When bit 65 in the Q Register becomes a 1 ,  
the division is stopped . S ince these numbers are 
normalized, the resu l t  wi l l  fal l  in the range of 
greater than Yz but less t han 2 .  The contents of 
the Q Register, already normal ized, are then 
read back into the A Register. However, i f  the 
in itial subtraction resul ted in a positive partial 
remainder, then one must be added to the expo
nent to accou nt for the fact that the result  has a 
whole part ( i . e . ,  � 1 ) .  

Digital Technical journal 
No. 2 March 1 986 

Group Multiple ALU 

Multiple Generated Operation 

0 0 A - A  

0 2 A - A+B; B=RO 

0 2 A ,_  A+B; B=RO 

0 4 A ,_  A+B; B=RO 

0 4 A ,_  A+B; B=RO 

0 6 A - A+B; B= R 1  

0 6 A ,_  A+B; B= R 1  

0 8 A <---- A+B; B=RO 

-8 -8 A - A-B; B=RO 

-8 -6 A <---- A-B; B=R 1 

-8 -6 A <---- A-B; B=R1 

-8 -4 A - A-B; B=RO 

-8 -4 A ,_  A-B; B=RO 

-8 -2 A - A-B; B=RO 

-8 -2 A - A-B;  B=RO 

-8 0 A <- A  

where: RO contains the multiplicand 
R 1 contai ns 314 mult iplicand 

Integer Division 

The FPU chip a lso performs a 1 -bit ,  non-restor
ing divide algorithm , which is used to acceler
ate the execution of the DIVL and EDIV instruc
t ions . I n  a l l  case s ,  the integer  divide is 
accomplished with a 3 2 -bit d ivisor and a 64-bi t  
d ividend .  

Polynomial Calculations 

The polynomial evaluation a lgorithm , POLY, 
uses Horner's Method to calculate a l l  trigono
metric functions . Because execution time can 
be so long, POLY is the only VAX floating point 
instruction that can be interru pted by the CPU 
chip.  The algorithm performs a series of ax+ b 
operations once dur ing each cycle .  In  each 
operation , x is treated as a constant, the value 
of b is provided by the CPU chip,  and the value 
of ax+ b in the current cycle becomes a in the 
next cycle.  

The FPU chip first m u ltipl ies a by x with the 
MUL algorithm and then adds b with the ADD 
algorithm.  The main sequencer tel ls the I/0 
control ler that the first POLY cycle has been 
completed and that the result  is ready in the 

29  

New Products 



The Micro VAX 78132 Floating Point Chip 

Table 3 1 .5-Bit Division Operation 

Most Significant Bits 
of Partial Remainder Value of 

66 65 64 63 bits 66-63 

0 0 0 0 0 
0 0 0 1 '/e 
0 0 0 1f4 
0 0 1 1 3fe 

0 0 >-'12 
0 1 _J/a 

0 -% 
-1/a 

Shift 

Left 

2 
2 

1 
2 
2 

ALU 

Operation 

none 

subt 

subt 

subt 

add 

add 

add 

none 

Add/Sub Shift 

Quotient Quotient 

1 0  00 
1 0  00 

0 
1 0 
0 
0 

0 1  1 1  
01  1 1  

Add/Sub Quotient: Bits sh ifted into the quotient if previous operation was an addition or subtraction. 

S h i ft Quotient: Bits sh i fted into the qu otient if the previous operation was a pure shift (no ALU 
operation) .  

ljO registers for transfer to the CPU chip. The 
s e q u e n c e r  e x e c u t e s  t h e  s e c o n d  M U L ,  
(ax + b )x, during the time that the CPU chip is  
reading the first resu lt ,  storing i t  in a register ,  
and transferring the next value of b tO  the FPU 
c h i p .  T h e  s e c o n d  A D D  o p e r a t i o n ,  
(ax + b)x + b, then takes place to complete the 
second cycle ,  and the process continues . The 
CPU chip's register is updated with the new 
resul t  at the end of each cycle .  This pipel ining 
a llows fast generation of trigonometric and 
transcendental functions.  Both the CPU and 
F P U  chips are working to i m p lement  the 
instruction ,  and t he actual  mu l tiply t ime is 
overlapped by the operand fetch time. 

The Microsequencer 

The microcode for the FPU chip is contained in 
a large programmable logic array (PLA) , which 
is the heart of the microsequencer. I nputs to 
the PLA are received from all major sections of 
the FPU chip. A microword of 35 bits is all that 
i s  needed to control the two main datapaths 
(the sign processor is part of the exponent 
datapath) and to communicate with the bus 
interface unit. Each field in the microword is 
encoded to reduce the number of wires routed 
to the other sections. Two hundred microwords 
are required to implement the sixty-one float
ing point and n ine accelerated integer instru c
tions executed by the FPU chip. The block dia
gram for the microseq uencer is  shown in 
Figure 4 .  

30 

Inputs to the PLA are comprised of five next
address bits ,  three ded icated inputs, and forty 
signal s  from the three major processors on the 
chip .  Three bits from the next-address field are 
used tO select five of the forty signals for the 
next FPU cycle .  These five multiplexed inputs, 
in conjunction with the e ight d irect inputs, are 
used to address the next microword . The thi rty
five outputs, or signa ls, from the PLA are used 
to com municate with the rest of the fl oating 
point u ni t .  These signals determine which 
operation is  to be performed by each of the 
three data paths (exponent, fraction and sign 
processor) . 

Interface Between Chips 

Inte1jace Lines 

The communication between the CPU and FPU 
chips is done through a very l imited set of 
l ines: a write (W) strobe , three cycle status 
(CS) l ines , an external processor strobe (EPS) , 
and the 3 2-bit  data and address li nes (DAL) . 
( Th i s  approach was used t o  reduce  the  
pincount on both chips .)  

In  t he MicroVAX II processor, the chip proto
col is designed as a genera l-purpose one so that 
other coprocessors cou ld take the place of the 
FPU chip. Each interface l ine has a specific pur
pose, as explained below. 

• The W strobe sends a signal from the CPU 
chip to indicate the direction of data flow 
over the DAL. For the FPU chip, the write 

Digital Technical journal 
No 2 March 1986 



DATAPATH 
STATUS 

40 1 N PUTS 

+ 
40 :5  
M U X  

l3 BITS is BITS 3 BITS 

AND PLA N E  
(200 TERMS) 

30 ADDITIONAL 
OUTPUTS 

NEXT ADDR<9:7> 

NEXT ADDR<6:5> 

i2 BITS I 
OR PLA N E  
(200 T E R M S) 

M I CROCODE PLA 

Figure 4 Block Diagram of the Microsequencer 

signal indicates that data is being transferred 
from the CPU chip .  

• The EPS is  used by the CPU chip to qualify 
a l l  communication between itself  and the 
FPU chip or other non-memory devi ce. 

• The three CS l ines provide status about the 
current bus cycle .  Two of the l ines indicate 
the type of information be ing transferred;  
they are "val id" when the external processor 
strobe is asserted. The third l ine is an open
drain output (fu nctionally simi lar to an open 
collector in TTL) , which wil l  be active when 
the bus cycle is a response enable and the 
FPU chip has completed the current com
manded operation. 

• The DAL is a 3 2 -bit ,  bidirectional bus that 
exchanges data between the CPU and FPU 
chips .  The CPU chip is always the bus master 
and controls the transfer of operands to the 
FPU chip and results back to itself. 

The information exchanged between the CPU 
and FPU chips could be of different types : write 
external processor command, read or wri te 
external processor data,  command to other 
external processors (not the FPU chip) , and 
externa l processor response enable. The exter
nal processor strobe (EPS) is used by the CPU 
chip to qualify a l l  commu nication between 
itself and the FPU chip.  

Figure 5 i l l ustrates al l  the interface l ines 
between the two chips. 

Co mmunicatio ns Protocol 

The commun ications protocol permi ts the FPU 
and CPU chips to communica te efficiently.  

Digital Technical journal 
No. 2 March J 986 

Every interchip operation will  be assoc iated 
with the fol lowing sequence of bus activities : 

1 .  The CPU chip ini tiates an interaction by 
placing a command onto the DAL bus, a 
status code on two CS l ines, a write sig
nal of " low , "  and an EPS of " low . "  The 
FPU chip recognizes this sequence as a 
command-write cyc le and aborts any 
instruction being executed .  The FPU 
chip then decomposes the command to 
determine the req uired operation and 
the nu mber and size of the operands . 

2 .  The CPU chip fetches the required oper
ands and executes one or more data
write cycles to transfer them to the FPU 
chip.  

3 .  After transferring the last operand , the 
CPU chip asserts a response-enable sig
nal on the CS l ines and pulses the EPS 
"low . "  The chip does that once for each 
microcycle  that i t  has control of the bus 
in  order to determine if the FPU chip has 
finished processing the data . 

4 .  To signal the completion of operations, 
the FPU chip asserts the CS<2 >  l ine 
" low" when the response-enable signal 
is on the two CS lines and the EPS is 
" low . "  At the same t ime,  the FPU chip 
asserts the status of the just-completed 
operation. 

5 .  The CPU chip recognizes the "low" sig
nal from the FPU chip and reads the sta
tus i n formation . The CPU ch ip  w i l l  
repeat this transaction t o  compensate for 

3 1  

New Products 



The Micro VAX 78132 Floating Point Chip 

CLKI  

Vss � ! IGNO,  Vee 

AS L 

+ IR0<3:0> L AS L 

I NTTI M  L 

OAL<31 :00> 
LATCH BA<29:00> 

OMR L 

OMG L 

MICROVAX 
CPU C H I P  - TRANSCEIVER 

BM<3:0> L 
80<31 :00> 

OS L 

PWRFL L 
WR L 

WR L 

OBE L 
HALT L OBE L 

ERR L '- CLKI  

EPS L 
FLOATI NG 
POINT 
C H I P  

R O Y  L Vss 

CS<2:0> 

I t 
R ESET L GNO,  Vee 

CS<2:0> 

Figure 5 Interfaces Between the CPU and FPU Chips 

its microcoded pipeline,  capturing the 
status information the second time.  

6 .  The CPU chip executes zero or more 
data-read cycles to read the results, if 
there are any, from the FPU chip. Both 
chips are now free to perform the next 
transaction in the instruction stream . 

(The FPU chip wi l l  respond unpredictably to 
other nonstandard protocols and rel ies on the 
sequence of interactions described above for 
proper operation . )  

Performance A nalysis 

The performance of the FPU chip is very sensi
tive to the 1/0 bandwidth .  Every floating point 
opera t i o n  i s  assoc iated w i t h  a spec ified 
sequence of events that must  occur berween 
the chips before the execution can start .  There 
is another sequence of events that must take 
place when the computation is completed. 
These sequences happen without any paral le l 
ism or pipelining. 

3 2  

The protocol affects the performance o f  the 
FPU chip because cycles must be expended for 
sending and reading status signals ,  and transfer
ring data . Table 4 i l lustrates the i nd ividual 
steps that occur for three types of operations : 
ADDF,  MULF, and MULD . For these examples, 
assume that no time is spent on i nstruction 
fetch and decode , and that the memory subsys
tem has an unl imited bandwidth and buffering 
capabil ity for reads and outstanding wri tes.  The 
performance is measured from the completion 
of the initial instruction decode to the final 
result store in the memory (or a register) . 

The total execution time for other instruc
tions can be derived in the same manner using 
the fol lowing internal execution t imes : 

Add in D format - 700 ns 

Division in F format - 2200 ns 

Division in  D format - 4 4 0 0  ns 

Digital Technica/Journal 
No. 2 March 1 986 



Table 4 Steps for Add and Multiply Operations 

Instruction: ADDF 

Specifier decode and data 
transfer for first operand 

Specifier decode and d ata 
transfer for second operand 

Internal transfer (first operand) 

Execution 
Status read 
Status read 
Result transfer on DAL bus 

Total 

Total Execution Time: 

Instruction: MULF 

Specifier decode and data 
transfer for first operand 

Specifier decode and data 
transfer for second operand 

Internal transfer (first operand) 

Execution 
Status read 
Status read 
Result transfer on DAL bus 

Total 

Total Execution Time: 

Instruction: MULD 

Specifier decode and data 
transfer for first operand 

Specifier decode and data 
transfer for second operand 

Internal transfer (first operand) 

Execution 
Status read 
Status read 
Result transfer on DAL bus 

Total 

Total Execution Time: 

Digital Technical journal 
No. 2 March I ')86 

Register Mode 

Protocol Execute 
Time Time 

(nanoseconds) 

300 

200 
1 00 

600 
200 
200 
200 

1 1 00 700 

1 . 8 microseconds 

Register Mode 

Protocol Execute 
Time Time 

(nanoseconds) 

300 

200 

200 
200 
200 

1 1 00 

1 00 

1 900 

2000 

3.1 microseconds 

Register Mode 

Protocol Execute 
Time Time 

(nanoseconds) 

400 

300 

200 
200 
400 

1 500 

1 00 

2700 

2800 

4.3 mi croseconds 

Byte Displacement 

Protocol Execute 
Time Time 

(nanoseconds) 

500 

500 
1 00 

600 
200 
200 
400 

1 800 700 

2.5 microseconds 

Byte Displacement 

Protocol Execute 
Time Time 

(nanoseconds) 

500 

500 

200 
200 
400 

1 800 

1 00 

1 900 

2000 

3.8 microseconds 

Byte Displacement 

Protocol Execute 
Time Time 

(nanoseconds) 

600 

600 

200 
200 
800 

2400 

1 00 

2700 

2800 

5.2 microseconds 

New Products 

3 3  



The Micro VAX 78132 Floating Point Chip 

Wiring and Signal Integrity in the 
FPU 

Signal integrity in a large VLSI chip such as 
the 78 1 3 2 is fundamental to ensure correct 
functionality and good yield,  given the varia
tions in manufacturing. The one- to two-micron 
proximity of signal l ines on an integrated cir
c u i t  ( IC)  can cause s ign ificant cou p l i ng 
problems . Moreover ,  there are p roblems i n  
terms o f  clock distribution and power-supply 
noise . The design of the logic must a llow suffi
cient noise margin to permit correct operation 
in spite of the noise present in the system .  The 
use of charge as the signal (used in many cir
cuits in an NMOS design) , rather than voltage 
or  cu rre n t ,  created some s p e c i a l  des ign  
problems for the FPU chip team.  

IC Wiring Characteristics 

The FPU chip has four layers-two of metal ,  one 
of polysilicon, and one of diffusion-that are 
used to interconnect and form devices . The wir
i ng in  an IC is conceptually similar to the wir
ing on a printed circuit  board . Although the 
total wiring length on the FPU chip is only 
about four meters, the interconnected nodes 
and elements number in the tens of thousands. 
Placing and routing the logic functions i nevita
bly affects the estimates of loading and system 
performance . Thus an iterative process of first 
rout ing a design , then simulating the subse
quent performance is  needed to identify a 
workable routing plan . Once this workable 
routing-performance trade-off is  identified,  the 
final routing and loadings can be made . 

The wiring considerations for a VLSI design 
are different from those for conventional sys
tems in several ways. First, the dimensions are 
smaller.  In the NMOS process the horizontal 
metal separation is about three microns and the 
vertical separation is from one to two microns . 
Even with the smaller size of the wiring in the 
MicroVAX II chips, crosstal k  can become a seri
ous prob l e m . On a MOS c h i p ,  c ross t a l k  
between poorly designed nodes can approach 
fifty percent. The capacitance on many of the 
critical nodes in the FPU chip is only about 1 00 
femtofarads (0 . 1  picofarad) . Any cou piing at al l  
on these nodes becomes quite significant .  The 
largest capacitance on the chip is the clock 
l ines at around 1 1 0 picofarads. On dynamic 
nodes , which rely on a charge stored on a 

34  

capacitor to  represent a logic leve l ,  this coup
l ing is particularly troublesome . 

To eliminate this problem on the FPU chip, 
the design team checked each of the over 
1 2, 5 0 0  nodes for crosstalk from all other nodes 
in the chip .  This data was then used to change 
the layout ,  where appropriate , to minimize or 
in some critical cases ,  el iminate intolerable 
levels of crosstalk .  These checks took about 
three man-months to complete . 

Another difference in the wiring of a VLSI 
chip is the resistivity of the wiring. The metal 
layers in the FPU chip have res istivities on the 
order of 1 00 mi ll iohms per square . However, 
the resistivities of the polysilicon and diffusion 
interconnect layers are about 40 ohms per 
square , or 4 00 times that of the metal layers . 
The interaction of this parasitic resistance with 
the on-chip capacitive loads can cause serious 
per formance l i m itat i ons  if not carefu l ly 
monitored. 

I n  fact, these two layers are so resistive that 
they were unusable for unconditional routing 
of either signals or power; they could be used 
only for very local routing. As a special precau
tion , a hand-check of those layers was made at 
pattern generation time to verify that no long, 
speed-critical paths util ized these layers as part 
of the routing network. 

Power and Signal Routing 

A minimum-width wire routed the length of the 
FPU chip has a resistance of about 2 0 0  ohms . 
The use of metal layers with noticeable resis
tance therefore begins to set system perform
ance limits through RC delays as wel l  as IR  
drops , which happens in larger systems.  The 
clock distribution introduces a delay of about 
one nanosecond across the FPU chip,  due solely 
to the resistance of the metal interconnect and 
the distributed load capacitance . This de lay 
amounts to about four  percent of the length of a 
single phase in the chi p .  A well -monitored 
clock distribution system is a requ irement in 
any semiconductor chip.  The problem is that 
the performance of the underlying semiconduc
tor device is beginning to outstrip the capabil 
i ty of the chip wiring to distribute the clock. 
RC delays become the l imiting speed factor of 
the wiring in an IC, while the speed of l ight 
across transmission J ines is  the l imiting factor 
in a larger system .  These resistances can a lso 

Digital Technical Journal 
No. 2 March 1986 



seriously affect the power and ground supply as 
it is distribu ted throughout the FPU chip .  

We used several techniques to keep the sup
ply noise under 200 mV as power is distributed 
throughout the chip. First, the tota l de current 
was calcu lated by summ ing the current used in 
each power and ground line as it joined other 
branches on the route to the actual su pply pad . 
At this point in the net , rwo factors had tO be 
analyzed so that the width of the power bus 
cou ld be sized correctly. That sizing kept the 
equ ivalent resistance low enough so that the 
overal l  drop from a pad to the most remote 
logic cou ld be kept under 200 mV. Unfortu
nately, that sometimes requ ired large (on an IC 
scale) power buses in  which a significant frac
tion of an ampere must be provided by one 
supply l ine.  

The second prob lem, and the more difficult  
one , associated with the power and ground wir
ing is the large ac voltage transients that can 
occur when large portions of the system switch 
at the same time. That problem is  especial ly 
significant with the V55 l ines. And i t  is particu
larly difficu l t  when driving wide buses or large 
datapaths as wide as the 8 1  bits in the FPU chip.  
In these cases , large transients (one ampere or 
more) flow in ground and power l ines for a few 
nanoseconds.  In a large system environment, 
decoupl ing capacitors can be used to supply 
these currents local ly .  Unfortunately, that is not 
possible in an IC environment where such large 
capacitors are not practical . As a resul t  certain  
ground l i nes in the FPU chip are a l lowed to 
have significant noise on the m .  In some cases 
this noise spike can be as much as rwo volts. 
This noise is handled by r� mn ing these "dirty" 
grounds in a separate metal l ine all the way 
back to the pad on the chip.  

However, even when the li ne is taken back to 
the pad to prevent local IR drops from upset
ting the logic, parasitic inductance in the pack
aging can st i l l  cause problems . The most strik
ing exam ple is that of off-chip bus drivers . Here 
a typica l 3 2-bit bus is driven over 4- or 5 -volt 
swings in as l itt le as four  or five nanoseconds.  
With each bus load being on the order of 1 00 
pf, the large dijdt that the chip imposes on the 
power pins causes inductive ringing. Solving 
this problem by placing a decoupl ing capacitor 
on the externa l pins is of l ittle value s ince the 
package inductance effect ively isolates t he 
capac i tor  from the  act u a l  nodes i t  m u s t  

Digital Technical journal 
No. 2 March 1 986 

decouple inside the chip. Therefore , the FPU 
chip, l ike most chips that drive wide buses, has 
separate power pins going only to the output 
transistors. The subsequ ent ringing is tOlerated 
since it does not affect any internal logic .  (The 
ringing can become even more of a prob lem on 
chips with several buses with different t imings, 
s ince separate suppl i es  must  be used fo r 
each bus . That drastically increases the number 
of supply pins required on the chip.) The FPU 
chip devotes 1 9  of its 68 pins to V55 and V00 
distribution. 

Electromigration 

A final wiring consideration in design ing the 
FPU chip was e lectrom igration. Electromigra
tion is a re liabil ity issue in IC wiring because 
high current density in the metal interconnect 
can cause the metal to migrate , thinning sec
t ions of wiring unti l  they fi nally fa i l .  Current 
densities much higher than 1 05 amperes per 
square centimeter can cause increases in wiring 
res istance and eventual ly, open c i rcu its or 
increased interlevel leakage , and short circu its. 
Clock lines, power and ground buses , as well as 
some global  wiring, are susceptible to this fai l 
ure mechanism.  As a resu lt ,  al l  l ines on the  FPU 
chip have an addi t iona l  cu rrent constra int  
imposed by electromigration . When the chip 
was designed,  these l ines al l  had to be checked 
to el iminate the problem . 

Wiring Integrity 

Considerable t ime was spent checking the elec
trical integrity of the wiring in the FPU chip. 
The fol lowing l ist contains the most important 
wiring integrity checks made of the intercon
nect on the chip :  

1 .  Transistor SourcejDrain Integrity - This 
check assured that the s i licon intercon
nect resistance caused less than five per
cent degradation . 

2 .  RC Delays - Al l RC de lays greater than 
one nanosecond were analyzed .  

3 .  Cou p l i n g  - Al l i nternodal  cou p l i ng 
capacitors were checked to verify that 
there would be less than 200  mV of noise 
injected into the node.  

4 .  V00 and V55 Nets - Three checks were 
performed. First ,  al l IR drops were mea
su red tO ensure that ac and de voltage 

3 5  

New Products 



The Micro VAX 78 132 Floating Po in t Chip 

sources were kept under 200 mV. Sec
ond, all buses were sized to verify their 
re l iab i l i ty for el ectromigrat ion res is 
tance . This check included contact elec
trom igration . Th ird ,  a check ensured that 
sufficient isola ted power pins existed to 
guarantee that clean and dirty grounds 
were isolated. 

5 .  Clock - An analysis identical to that for 
V 00 and V55 nets was done on all  eight 
clock l ines. 

Although there were significant CAD tools to 
perform most of the checking, this task atone 
required approximately ten percent of the total 
engineering time for the entire project .  

Summary 

The VLSI chips we are now designing are as 
complex as several boards of TTL used in past 
implementations of the VAX architecture . The 
FPU chip performs the same functions at about 
the same speed as five boards conta in ing ICs in 
the VAX- 1 1 /780 system.  The designs of these 
complex systems on chips present a set of con
stra ints and considerations simi lar to and yet 
d ifferent from those encou ntered by board
level system designers . We hope that this paper 
captu res t h e  com plexi ty a n d  u n i q u e ness 
i nvolved in the MicroVAX FPU chip. 

Acknowledgements 

The FPU chip team completed the design of 
two VAX floating point chips, the MicroVAX 
FPU and the 8200 chip, in e ighteen months . 
That was possible only because another design 
team working on the J - 1 1 FPA had established 
the basic arch itecture and took the time to he lp 
our team to understand that work . This c lose 
worki ng relationship a llowed us to complete 
the MicroVAX FPU design in step with the CPU 
chip team,  which was our major challenge . 

36  

References 

1 .  D .W. Dobberpu h l  et a ! ,  "The MicroVAX 
78032 Chip,  A 3 2 -bit Microprocessor," 
Digital Technicaljournal (March 1 986, 
this issue) : 1 2 - 2 3 .  

2 .  R.J .  Simcoe e t  a l ,  "A Floating Point Un it 
for a 3 2 -bi t  Mi croprocessor Syste m , "  
Proceedings of the 1984 IEEE Custom 

Integrated Circuit Co nference ( May 
1 98 4 ) : 4 78 -4 8 1 . 

3 .  G .  Wolrich et a l ,  "A H igh Performance 
Floating Point Coprocessor ,"  IEEE jour

nal of Solid State Circuits, vol .  SC- 1 9 ,  
no. 5 (October 1 98 4 ) : 690-696 

Digital Technical jounlal 
No. 2 March 1 986 



Developing the 
MicroVAX II 
CPU Board 

Barry A. Maskas I 

Within the Micro VAX II system, the CPU board provides an environment 
to optimize the performance of the CPU and floating point processor 
chips. The board is designed as a linked sequential machine to accom
modate the sequential control of the CPU chip. A Q-bus handles I ;o for 
the system. The memory access path is dual ported, allowing the memory 
and the CPU chip to run synchronously without wait states. A scatter
gather map provides Q-bus address translations. To minimize p1·oduct 
delivery time, the CPU board was developed in parallel with the chips. 
Using CAD tools helped to go from first-pass chips to running the 
Micro VMS system in only two weeks. 

The CPU board i n  the MicroVA.X I I  system 
(Figu re 1)  holds two chips :  a microprocessor, 
ca l led the CPU c h i p ,  and a fl oating point  
coprocessor, cal led the FPU chip .  The board 
also integrates a synchronous memory su bsys
tem,  a synchronous I/O-bus control ler, and a 
synchronous on-board 1/0 subsystem.  The pro
ject tO develop the CPU board was governed 
primari ly by t ime-tO-market consi derations .  

Figure I The Micro VAX II CPU Board 

Digital Technical journal 
No . 2 March I ')8(i 

Other factOrs, such as VMS and ULTRIX compat
ib i l i ty ,  performance , re l iability ,  cost, and ease 
of high-volume production were a lso important 
criteria .  The end resu l t  is a su ccessfu l  balance 
between a l l  these factors .  

Development Goals 

The im portance of the primary goal governed 
how the project team orga nized itself to make 
decisions and tO execu te tasks. Rapid decision
making, and paral le l  and overlapping act ivi ties 
were the norms for this deve lopment effort . 
Unfortu nate ly ,  para l le l  activi ties can cause 
communication problems, thus increasing the 
r i sk s  of prod u c t  fa i l u re .  Howeve r ,  these 
problems were anticipated and mechanisms put 
in place tO reduce the risks to an acceptable 
leve l .  

The CPU board was designed around the 
specifications of the CPU and FPU chips, which 
were being developed at the same time . There
fore, one deve lopment goal was to min imize 
the dependency of the board design and layout 
on the first-pass designs for these chips. The 
team aimed at provid ing a fu l ly fu nctional sys
tem environment into which the first-pass chips 
cou ld drop. This aggressive approach lead the 
team to leap-frog over events rather than to take 
a conventional steppi ng-stone progress ion. The 
overa l l  project manager encou raged the taking 

37 



of pru dent risks because he was respons ible for 
m e e t i n g  t h e  deve l o p m e n t  sch e d u l e .  The  
acceptance of these risks eventually paid off in  
an on-time del ivery of the  CPU-board design . 

Single-board Design 

Deve loping the CPU board aro u nd the two 
chips required us to provide a specific system 
environment .  That environment had to ba lance 
the memory bandwidth of the CPU chip against 
its I/0 bandwidth requirements . The real iza
tion of that balance is the key to the board 's 
success. Having either a slower memory or a 
s lower ljO subsystem would degrade system 
performance by at l east twenty-five percent .  
The environment  also had to su pport the 
Mi croVMS , ULTRIX,  and VAXE L N  operat ing 
systems. 

Our goal was to provide the hardware speci
fied by the three operat ing systems on one 
Digital-standard quad-sized board (8-!12 by I O -Y2 
inch) . The single-board goal was a consequence 
of technology improvements balanced by the 
costs of replacing the unit  in the fie l d .  In this 
case , needing fewer pieces to  build the system 
wou ld reduce manufacturing costs, i mprove 
re liabi l i ty, and ease maintainabil ity costs . The 
objective of operating at the ful l  bandwidths of 
the chip and the IjO bus was especially chal
lenging when so l i tt le board space was avai la
ble for the necessary functions . 

Most new chips do not run at their fu l l  speed 
immediately; they take some t ime to debug. 
Our design objective was to run the CPU chip at 
an operating frequency lower than i ts maxi
mum during the first-pass debug . Of course , 
ru nning at a s lower clock rate was never an 
acceptable compromise for the fi nal product.  
(Two versions of the CPU board were devel
oped with minimal component differences, one 
running at the ful l  2 0 0-nanosecond (ns) micro
cycle speed and the other at a slower 24 2 -ns 
microcycle speed.) However, if the first-pass 
chip had missed its performance target ,  the 
deve lopment of the CPU board could st i l l  have 
continued.  It is a tribute to the chip designers 
that the first-pass chips did run at fu l l  speed , 
which was quite unusual in so compl icated a 
product .  

The bus c hosen to meet the 1/0 needs of the 
system was the Q2 2-bus .  This 2 2 -bit bus has 
sufficient bandwidth to hand le traffic from the 
system disk, the Ethernet LAN, and other ljO 

3 8  

sources, such as other processors. The risk of 
using this bus was low due to its proven design, 
and the deve lopment cost for this application 
was reasonable.  The Q22-bus is also supported 
by many disk, tape ,  and other ljO products 
from both D i g i ta l  and t h i rd-party add-on 
manufacturers . 

CPU Board Functions 

We ruled out  using the Q 2 2 -bus for access ing 
memory directly,  since the bus cou l d  not meet 
the memory cycle time of 400 nanoseconds for 
the CPU chip . 1 Therefore , a new memory archi 
tecture had to be devel oped . We i nvestigated 
rwo alternative schemes, the first being the 
widely used d irect me mory access (DMA) with 
a s i n g l e  port .  Unfort u natel y ,  DMA forces 
addresses and data to cross the microproces
sor bus on their  way to memory. The usual pro
cedure is to halt  the microprocessor with a 
D MA request or grant while the DMA device 
uses the m icroprocessor's data and address 
paths . In  this case the CPU chip ,  having no 
cache ,  wou l d  waste time by exercis ing the 
memory request and memory grant s ignals .  
Therefore, we chose the second sche me, a dual
ported memory contro l ler .  Figure 2 depicts the 
single- and dual-ported memory control lers that 
were considered . 

This dual -ported control ler requires that the 
CPU chip have different address and datapaths 
for the Q2 2-bus and the memory control ler. 
While a DMA access is taki ng place , the CPU 
chip can continue operating on i ts 3 2 -bit exter
nal datapath ,  primarily comm unicating with 
memory and the FPU chip.  I n  this context, 
memory cycles can be pictured as strings of 
4 00-ns time s lots controlled by a central arbi 
ter .  This memory contro l ler m i n imizes the 
i mpact on the CPU chip's performance by DMA 
accesses to  memory on the Q 2 2 -bus .  This 
organization is not locked u p  by asynchronous 
Q2 2 -bus cycles, whose transactions are three to 
four times slower than the CPU chip's memory 
cycles. It also al lows the Q 2 2 -bus protocol to 
operate autonomously with the CPU chip and 
memory, except when the buffered bus proto
col and the memory system exchange buffered 
data . 

The memory controller also serves as an alter
native to one based on a cache . The CPU chip 
does not implement an i nternal cache due to 
power and chip-size constraints .  1 Cycles for 

Digital Technical Journal 
No. 2 March 1986 



CPU '----
C H I P  

SCATTER/ 
- GATHER r--132 LATCH +24 LATCH MAP 

FPU f--CHIP 
M U LTIPLEXER 

+10 
(f) :::> 

M EMORY (lJ 
ARRAY 

- 1 6  0J N 
0 

+32 DATA 
TRANSCEIVER 

SING LE-PORTED ORGANI ZATION 

,---

CPU r--CHIP 

f----12--
FPU 
CHIP f--

'-----

LATCH 

DATA 
TRANSCEIVER 

f24 
MULTIPLEXER 

+o 
MEMORY 
ARRAY 

+2 

SCATTER/ 
GATHER 

LATCH MAP 

DATA 
TRANSCEIVER 

-

(f) :::> 

� (lJ 0J N 
0 

DUAL-PORTED ORGA N I ZATION 

Figure 2 Block Diagrams of the Proposed Controllers 

DMA, refresh ing memory, and CPU-chip access 
are interleaved in time . 

The MicroVAX I I  system is designed to be 
used in a multicomputing environment.  There
fore , the bus interface logic has to accommo
date the role of e i ther bus arb i ter or auxil iary 
processor. To that end , a doorbel l  register fac i l 
itates an interprocessor i nterrupt mechanism.  
The datapath of the Q 2 2 -bus interface has to 
provide the address translations from the virtual 

Digital Technical journal 
No. 2 March I 986 

memory space of the bus to the address space of 
memory. 

We defi ned several other elements as being 
essential for supporting an operating system on 
a s ingle board . Those are the t i me-of-year 
(TOY) clock, the console serial l ine, the VAX 
console  command program ,  and the console
i nterface-boot and self-test ROM . These e le 
ments, a long with  some status and error regis
ters, comprise the on-board 1/0 subsystem . 

39 

N e w  Products 



The fu nctional organization of the CPU board 
is depicted in Figure 3 

Linked Sequential Machines 

Optimiz ing the overa l l  computer performance 
means that data transfers between the CPU chip 
and memory have tO be as fast as the chip can 
operate . Withou t a cache me mory , the CPU 
chip has a relatively long memory cycle time of 
400 ns (two m icrocycJes) . Thus CPU chip-tO
memory data transfers can take place without 
wai t  states . 

The 4 00-ns 1/0 cycle is nevertheless fast 
enough that the CPU board had tO be designed 
as a l inked sequential machine rather than as 
flow-through logic .  The control function in the 
MicroVAX II system receives signals, interprets 
them,  and generates control outputs ,  a l l  in a 
defined sequence . This mode of contro l cannot 
be satisfied using a combinational logic syste m .  

In  addit ion t O  perm itt ing 4 00 -ns memory 
cycles without wait states, sequential machine 
design requi res less random logic and board 

1 M B O R  
2 5 6  K B  D R A M  

C / D  INTERCONNECT 
EXPANSION MEMORY 
CONTROL PATH 

D 

EXPANSION MEMORY 
DATAPATH 

c 

GATE 
ARRAY 

GATE 
ARRAY 

space than a flow-through design . The des ign 
process is s i mpl ifi ed because the machines are 
implemented in eas i ly  changeable FPLS (fuse 
progra mmable logic sequencer) l ogi c .  Moreo
ver, design changes can be read i ly documented 
and less time is needed for de bugging and trac
ing events. Sequential c ircuitry is more easi ly 
s imu l ated than random logi c ,  i n  which a l l  
events must b e  sampled. And ,  s ince the CPU 
board 's logic compone nts run on the same 
clock, i t  is possible tO debug them at faster or 
slower operating speeds . 

When the C PU-board project started ,  this 
sequentia l  mach ine approach had nor been 
widely used in microcomputer design . Off-the
shelf  hardware and adequate CAD tools were 
not ava i lable . This project shows that designing 
with commerc ia l  PALs and FPLS l ogic can 
reduce the chip cou nt ,  as well as cost and 
deve lopment time . 

The overa l l  control logic of th i s  l i nked 
sequ entia l machine is d ivided into partitions . 
The events inside individual parti tions are gov-

022-BUS 
INTER FACE 

M ICROVAX 78032 
INTERFACE 

MICROVAX 78032 
M I CROPROCESSOR 

MI CROVAX 78132 
FLOATING POINT U N I T  

B 

II CONSOLE � SERIAL L I N E  

CONN ECTOR/ 
DISTRIBUTION PANEL 

BOOT/ 
DIAGNOSTIC ROMS 

A 

SCATTER-GATHER MAP 

Figure 3 Functional Partitions of the CPU Board 

4 0  Digital Technical journal 
No. 2 March I Y86 



erned by i ndependent sequential  mach ines,  
called contro llers .  The logic within a partition 
goes through a fixed, repetitive sequence of 
operations , or states, duri ng the fou r  quarters , 
or phases , of a microcycle .  The operations of 
the various partitions are coordinated i n  two 
ways . First, a l l  sequential machines run from 
the same clock so that their t iming is based on 
the same stream of c lock edges . Second, the 
sequential machines are constantly exchanging 
signals, providing each other with the protocol 
i nformation needed for coordi nating their flow 
sequences . 

The sequential machines can be classified as 
modified Mealy mach ines 2 The outputs are 
determined by the present input condi tions and 
the present state of the machine.  However, the 
state register is separated from the output regis
ter, with the AND programmable logic array fed 
by both the state register and the i np uts tO gen
erate OR p l a ne terms for the c l ocked S R  
latches . The advantage o f  clocked S R  latches is 
that the past state need not be regenerated by 
every c lock edge; only changes need activate an 
OR term. Using D-type latches would require 
that regeneration .  

The block diagram i n  Figure 4 depicts a 
sequential machi ne representation of the CPU 
board's functional configuration in Figure 3 .  
Under the on-board control partition at the left, 
the control function for t he memory su bsystem 
is distributed among three sequential devices : 
the memory sequencer, the memory arbiter, 
and the auxil iary device controller.  Under Q 2 2 -
bus control ,  there are also three sequential 
devices : the s l ave, arbitra t ion ,  and master 
machines . These machines exchange request, 
acknowledge , and status signals to control 
operations . 

Memory Subsystem 
Our market research data suggested that the on
board memory should be either 2 5 6 kilobytes 
(KB) or 1 megabyte (MB) . The amount depends 
on whether 6 4 K  DRAMs or 2 5 6K DRAMs are 
used . At the time the design was started, 2 5 6 K  
parts were i n  short supply. Therefore, using 
64 K D RAMs was a strategy to cou nter that 
s hortage . 

The function of the memory control ler is to 
carry out 4 00-ns read and write operations and 
to refresh its RAM chips. This control ler con-

f-.----- ON-BOARD CONTROL --------to>------- 022-BUS CONTROL ------

a: 0 <f) rJ) 
UJ () >-o w <  a; U CI: 
a. < CI:  o "- <  a: CI: w  
o w >-- >- <(  ::;: � (9  

I 
I 

1 
MEMORY 
SEQUENCER 

i 

I AUXILIARY DEVICE 
CONTROLLER 

I 
I 
I 
I SLAVE 

MACHINE lu--

I ARBITRATION 
MEMORY I MACHINE 
ARBITER 

I 

� MASTER 

I MACHINE 

I 
I 
I 
I 

<f) a: w N 
z 0 a: I u z >-rJ) 

Fig ure 4 Block Diagram of the Control A rchitecture 

BUS 
INTERFACE 
GATE ARRAY 

Digital Tecbnicaljournal 4 1 No. 2 March 1 986 

New Products 



.
------- Developing the Micro VA X II CPU Board 

tains a Q 2 2 -bus scatter-gather map that handles 
transfers between the Q2 2 -bus virtual me mory 
and on-board physical memory. 

Mem ory access is controlled by the memory 
arbiter.  This arbi ter checks for outstanding 
me mory ac cess requests i n  a fi xed-priority 
sequence at the ends of 200-ns idle  cycles and 
4 0 0 -ns memory cycl es . It also c h e cks for 
requests from the Q22 -bus slave machine , the 
memory-refresh counter, and the CPU chip, in  
that order. The fixed-priority seque nce resolves 
col l ision requests for memory usage . If the arbi
ter requires exclusive control of the m emory 
su bsystem ,  a locking mechanism built  into the 
subsystem prevents contention . 

When the CPU chip requ ires a memory-read 
lock, the memory arbiter wi ll stall  the chip and 
direct the Q 2 2 -bus arbitration machine to sus
pend other bus activity. Those actions wi l l  hap
pen only after any pending m emory cycles of 
the slave machine have been complete d .  The 
arbitration machine will retai n  Q 2 2 -bus master
ship until the writeju nlock cycle of the CPU 
c h i p  fre es t h e  b u s .  U n t i l t h e  arbi tra t i o n  
machine becomes Q 2 2 -bus master and while 
the C PU chip i s  stalled,  the memory arbiter w i l l  
perform the demand-driven refresh cycles and 
resolve slave-deadlock cycles from the Q 2 2 -
bus . As eac h memory cycle is completed, the 
memory arbiter c hecks t hese requests aga i n ,  
and ei ther t h e  Q 2 2-bus o r  t h e  refresh-mem ory 
cycle can begin at the next clock edge . If no 
Q 2 2 -bus or refresh requests are pending, the 
arbiter anticipates that a C PU-chip cycle will  be 
next. 

That anticipat ion and the fix e d - priori ty 
sequence save a lot of program execution time . 
The C PU chip makes about seventy percent of 
all  memory references . Slave machine accesses 
by the 1/0 bus devices occur twenty percent of 
the time (a maximum burst rate , not the aver
age rate) , and those by the refresh cou nter, two 
perce n t .  (The remainder are i d l e  cycles . )  
The refore the controller, b y  anticipating that 
the CPU chi p-rather than the I/0 bus or the 
me mory-refresh counter-wi l l  make the next 
memory access , allows a m emory cycle of 4 0 0  
ns, instead o f  6 0 0  ns. (The 600 -ns cyc le wou l d  
b e  necessary because t h e  address strobe of the 
CPU chip wou ld have to assert before the mem· 
ory cyc l e  c o u l d  start , t h u s  was t i n g o n e  
mi crocycle . )  

When timing microcycles, t h e  memory arbi
ter enables the memory sequencer at phases 

4 2  

coincident with the CPU chip's entry to a new 
microcycle . This enabl ing happens even though 
the sequencer does not yet know whether or 
not there will actually be a memory access by 
the C PU chip.  Not until three phases later can 
the sequencer determine whether or not the 
address strobe has been asserted for a mem ory 
reference . If so, the sequencer enables the con
tinuation of the anticipated memory access . 
After that cycle completes, the next memory 
access wi ll  be enabl ed , and the p rocedure 
repeated. If not, the sequencer " k i l l s "  the 
cycle and ru ns another poll  loop after checking 
for Q 2 2 -bus slave or refresh requests. Not antic
ipating a memory access would reduce per
fo r m a n c e  by a p p r o x i m a t e l y  t h i rty - t h re e  
percent.  

The memory sequencer generates the row 
and column address strobes,  sets up reads and 
writes on each byte , and handles pariry genera
tion and detection . The auxiliary device con
troller can "stretch "  the me mory cycle of the 
C PU chip to synchronize its timing with slower 
devices, such as the TOY clock and the boot 
ROM . 

The scatter-gather map converts between the 
2 2 -bit virtual addresses of the Q 2 2 -bus ( 4 MB 
addressable) and the 2 4 -bit physical addresses 
of the memory (up tO 1 6MB addressabl e) . As 

defined by VAX mem ory management, the 4 M B  
is divided into 8 1 9 2 pages o f  5 1 2  bytes eac h .  
The 2 2 -bit virtual address consists of a 1 3 -bit 
page number and a 9-bit  offset to the addressed 
byte in that page . The 24 -bit physi cal address 
consists of a 1 5 -bit page number and a 9-bit 
offset .  An entry in the map for each 5 1 2 -byte 
page and offset points to a location in physical 
memory. Each physical address has four byte 
masks that select which bytes are inactive on 
any memory reference . 

There are , of course,  other ways tO map 
addresses ber�'l'een the 1/0 bus and memory. 
One way is on e-ro-one address trans la tion,  
which in this  case wou ld have restricted physi
cal memory to 4 MB .  Another way is first tO map 
one-ro-one into the lowest 4 M B  of m emory. 
Then, the C PU chip can perform the transla
ti ons and data transfers to the proper pages in 
the address space of the remaining memory. 
Unfortunately, this approach is unacceptable 
due to its effect on performance .  A third way is 
to have fewer than 8 1 9 2 mapped pages. In this 
case , programmers m i ght have tO provide the ir  
own mapping software for many real-time IjO 

Digital Technical journal 
No. 2 March 1986 



app l i cat ions . That  typ ica l ly  i nvo lves DMA 
access to large numbers of RAM locat ions . None 
of these methods proved as satisfactory as the 
use of the scatter-gather map. 

Interface Co ntrol Signals 

The interface control signals to the CPU chip 
include the fol lowing:  

• Cloc k- i n  (40 MHz) , clock-out (20 MHz; used 
to time the sequential machines) , and reset 
signals 

• Address , data , externa l -processor, and tim
ing-strobes-out s ignals 

• Three chip-status ,  four  byte -mask, and the 
readjwrite signals 

• DMA-request and DMA-gran t  s ignals 

• Four interrupt - l ine  signals and one HALT 
s ignal 

• Ready and error signals 

The pu lse of the design is a four-state grey
code bi nary counter, which is c locked from the 
synchronous clock-out signal of the CPU chip.  
The first edge assertion of the clock-out signal 
after power-up puts the CPU chip in  the first 
50-ns phase of the four-phase m icrocycle . The 
grey code a l lows the memory arbi ter and auxil 
iary device control ler to track the state of the 
microcycles .  The 28-bi t  address of the CPU 
chip is decoded to select the accessed device 
and then encoded into a series of 3 -bit cycle 
cod es . The aux il iary device controller ,  the 
me mory arb i ter ,  and the master mach ine  
decode those cycle  codes to  identify what type 
of t iming cyc les to sequence through . The two 
key signa ls ,  apart from the cycle codes, are 
those for the address strobe and the readjwrite . 
They direct the auxi l iary device control ler ,  the 
memory sequencer, and the master machine to 
perform the read or write operations with the 
device specified  in the cycle  codes . 

Those three e lements control the CPU chip's 
cycles and any system exceptions via the ready 
and error s ignals.  The DMA request s ignal is 
used only during a reset operation to delay the 
CPU chip unt i l  the system has fin ished reset
t ing .  The byte-mask signals si mply direct the 
control logic to perform certa i n  operat ions .  
Those i nc lude  masked ( byte or word) or 
unmasked ( longword) memory cycles and data 

Digital Technical journal 
No. 2 March 1986 

fu nnel ing operations on the Q 2 2 -bus. (Data 
fu nne l ing converts 3 2-b i t  Iongwords tO 1 6-bit 
words and v ice-versa . )  The unmasked cycles are 
required since the Q22 -bus is  1 6  bits wide, 
whereas the me mory and CPU-chip buses are 

32  bi ts wide . The on-board ljO t ime can be 
extended tO accommodate s l ower external  
devices .  The memory control ler  a l l ows t he 
memory cycle  to end only when a device has 
asserted a ready (ROY) signal ,  indicating the 
completion of i ts task. 

Add- on Memory 

The syste m's memory can be expanded with 
one or two memory boards, each containing 
e ither 1 ,  2 ,  4 or 8 megabytes . Thus total mem
ory can be as large as 1 6MB and stil l  offer a 
fixed 4 00-ns access t ime with no wait-states . 
Each board is l inked to the CPU board by means 
of a local  i nterconnect . This interconnect con
s ists of special control signals on the C and D 
rows of the Q22  backplane and a 50-pin mod
u le -header and ribbon cab le for data . Each 
i nterconnect l inks a board d irectly to the one 
just below i t  in the board cage of the system 
enclosure . Thus control signals and addresses 
can pass directly between the chips and mem
ory without using the Q 2 2 -bus .  The diagram in 
Figure 5 shows the functional organization of 
the memory boards. 

For ease of instal lation and maintainabil ity, 
the  a d d - o n  m e m o ry boards  are s e l f- c o n 
figurab le ;  there are n o  user-settable switches or 
j umpers on the CPU board or memory boards .  
This design requires a logic fu nction that com
bines active addresses with static configuration 
data tO generate the proper control strobes 
accord ing to the configu rat i o n .  Therefore , 
a lthough the add-on memory boards are posi 
t ion i ndependent ,  they "recogn ize" which 
expansion slots they occupy. (To get  the fu l l  
1 6MB configuration ,  t h e  memory control ler 
design su pports 1 MB-by- 1 DRAM chips . )  

On- board IjO Subsystem 

The serial l ine interface in the on-board ljO 
su bsystem provides the CPU board with a fu 1 1 -
duplex, RS-4 2 3  EIA conso le terminal  interface . 
The console interface program is imp lemented 
in  macrocode in  the boot ROM . The console
mode functions include general booting, user
computer interface , se l f- test and HALT. The 
boot ROM also includes special  su pport fu nc-

4 3  

New Products 



C/D INTERCONNECT 

MEMORY OATAPATH 
( 1 0  MB/S) 

A 

PR IVATE MEMORY 1 

022-BUS 

1/0 MASS 
STORAGE 

BLOCKMODE DMA 
(3.3 MB/S) 

Figure 5 Fu nctional Partitions of Memory Modules 

tions for the software i n  the MicroVMS, ULTRIX 
and VAXELN systems . 

As the boot ROM goes t hrough a self- test 
sequence , programmable LEDs display the test 
status, identifying any board subsystem that 
conta ins a fa i l ure.  By analyzing this sequence 
for effect iveness , we found that it provided a 
confidence level of eighty-six percent in the 
functional integrity of the CPU board and add
on memory boards .  Although some Q2 2-bus 
l ogic functions cou ld not be tested with this 
method , i t  he lped to reduce significantly the 
ti mes to do manufacturing and fie ld  service 
tests . 

To emulate a CPU-halted condition, the CPU 
chip can be directed by either software or hard
ware switches to transfer program control to a 
firmware routine at a fixed PROM address.  The 
HALT function retains the board state . The CPU 
chip traps to the boot ROM when there is a 
HALT, masking it u nt i l  there is an i nstruction 
fetch outside the ROM .  While i n  this emu lated 
HALT, the firmware will perform the specified 
operations only after receiving either console 
commands or a signal from the AUTO-REBOOT 
switch . 

The CPU chip does not have a RESET i nstruc
tion; t he chip simply sets a RESET request flag. 
The UNJAM command in the console mode in i -

44  

tial izes the bus  by forcing the CPU chip to the 
D MA grant state . UNJAM then transfers control 
to RESET in the interface gate array of the CPU 
chip . After that, the logic resets the board's  
functions and the arbitration machine resets the 
Q 2 2 -bus .  Any auxi l iary processors are reset 
from the Q 2 2 -bus reset signal . 

Exceptions , which may originate in the con
sole, the on-board 1/0, the Q 2 2 -bus,  or the 
memory subsystem ,  are reported to the CPU 
chip for a machine check .  This process invo lves 
setting an error-register flag i n  the i nterface 
gate array of the CPU chip .  The chip then treats 
the exception as either fatal (HALT or AUTO
REBOOT) or non-fata l (abort the process) . 

Board Components 
Logic hardware for the CPU board was selected 
by balancing the need for minimum power and 
board space against the use of low-cost, off-the
shelf components . The gate arrays for the CPU 
board and the bus in terface, for i nstance, are 
more expensive than discrete logic;  however, 
they are necessary to fit a l l  support functions 
on one quad-sized board . Due to a conductivity 
connectivity l i m i tat ion through the board's  
edge fi ngers , the maximum al lowable power 
consumption is 45 watts for a 1 MB on-board 
memory configu rat ion . We were also con-

Digital Tecbnicaljournal 
No. 2 March 1986 



strained by the watts per square inch that had to 
be conducted from the board surface to the 
environment. That was important given that the 
enclosure is cooled by the flow of forced air .  

The gate array for the CPU-chip i nterface 
decodes add resses a n d  latches boot-ROM 
words. This  gate array also contains registers for 
booti ng, diagnostics, and memory subsystem 
errors; the on-board 1/0 datapath ;  and the in ter
rupt-acknowledge decode and control . 

The gate array for the bus interface includes 
such components as the doorbe l l  register, the 
memory-refresh cou nter, the holding latches 
for byte and word packing and u npacking, and 
timeout counters . This gate array also generates 
the bus addresses. 

The memory subsystem i ncludes a number of 
discrete components . The memory arbiter and 
auxil iary device controller are both commer
cial programmable sequencers . The memory 
sequencer consists of 1 2  d iscrete l ogic chips.  
However, we had to design our own memory 
control lers . The ava i lable commercial  ones 
cou l d not handle both the speed and the 
higher- level arbitration fu nction requ ired to 
anticipate memory accesses. 

Previous board designs used an eight- layer 
construction tech nology (two power, fou r  sig
nal ,  two covers, and top and bottOm solder 
masks) . However, to reduce the board 's cost, a 
six-layer technology had tO be developed (two 
power, fou r  s ignal ,  and top and bottom dry-film 
solder masks) . Six- layer construction costs less 
than eight- layer due to alignment and dri l l ing 
problems with the stacked layers of the latter. 
We used a CAD system to evaluate the chip 
interconnects on the board layout .  The system 
showed that the signals could  not be routed on 
two signal layers, but could on four .  The two 
additional layers provide the 5V power and 
gro u n d  p l anes . D i g i ta l ' s  C o m p u te r -A i d e d  
Design (CAD) Group in Maynard , Massachu
setts, designed a custom software tool to he lp 
i n  developing the board layout. With this tool ,  
i t  was possible to fit al l  functions on the board 
with 8-mi l  l ines and spaces, and 60-mil  pads. 
Having the l ines and pads as wide as poss ible 
offers satisfactory yield in production and good 
signal qual ity due to strip - l ine characteristics. 

Enclosures 

Two enclosures were considered to house the 
boards, the BA2 3  and the BA1 2 3 boxes . At the 
time, the BA2 3 box was an active product;  only 

Digital Tecbnical]ountal 
No. 2 March 1986 

minor modifications were needed to accommo
date it to the MicroVAX II  system , a nice, l ow
risk plan . In contrast, the BA1 2 3 box was stil l  
being developed . Using it represented a greater 
risk; however, it cou l d  support more mass stor
age . The backplane cages of ei ther box could 
accept add-on memory and peripheral device 
interfaces on eit her quad-sized or dual-sized 
( 5 - ll.; by 8-Y2 inch) boards. However, the BA1 23 
box accepted more quad-sized and dual-sized 
boards .  That was a distinct advantage because 
there would be different n umbers of board s lots 
in the board cages i n  different packages of the 
MicroVA.X I I  system .  Moreover, each enclosure 
had a different thermal environment that had to 
be considered in the layout of the CPU and 
memory boards . Based on these considerations, 
we chose to use both the BA2 3 and BA 1 2 3 
boxes as the enclosures for the boards. 

CAD Tools 

The tight schedule dictated that separate design 
teams had to develop each of the chips and the 
CPU board as paral lel projects . These separate 
efforts were made possible by the extensive use 
of CAD tools and computer s imulation. Simu la
tion was used extensively to design the CPU 
and FPU chips ,  the on-board memory and ljO 
subsyste ms, the gate arrays , the sequential  
machine controllers, and the Q 2 2 -bus.  A board
development tool set was selected from CAD 
packages avai lable i n  the industry .  S ince these 
packages were genera l ly i ncompatible , we 
developed a process that transported wire lists 
between these various CAD tools.  The process 
linked inp uts and outputs between the sche
matic-capture work stations, the PC-board lay
out system, the simulator, the gate -array ven
dor, and the documentation control group. One 
key to the rapid development of schematics was 
to let the designers reta in control by perform 
ing their own drawings and edits .  

We planned to use gate arrays right from the 
start of the project.  Therefore, a hierarchical 
schematic-capture system was needed to fac il i 
tate the representation of devices at a number 
of levels .  To verify the schematics, we selected 
a mixed-mode logic s imulator that had l ibrary 
support for most of the off-the-shelf devices 
used in PC-board design . That minimized the 
develop ment time to construct the simulat ion 
l ibraries . A complete simu lation model of the 
CPU board was also constructed to expedite the 

4 5  

New Products 



------- Developing the Micro VAX ll CPU Board 

design veri fication process . This mode l pro
vided a "soft" test bed for design changes 
before they were committed tO hardwa re . 
Behavioral mode ls were used to simulate the 
signals from the CPU chip, as wel l  as any device 
attached to the Q22 -bus . No attempt was made 
to emu late the VAX i nstruction set. I nstead, the 
goal was to verify the sequences for reads ,  

USER 

WIRE LISTS: 
• sac 

writes, interrupt acknowledgements , and the 
cycle flows for the block and non-block modes 
of the Q22 -bus .  

Several CAD packages developed by Digital 
were a lso employed to expedite the board 
design process. Figure 6 shows the CAD flow 
process that was asse mbled. (For more deta i ls 
on the CAD tool suite,  see reference 3 . )  

HAN D·DRAWN 
CONTROL FLOW 
DIAGRAMS 

• 2 GATE ARRAYS 

46 

MICROPROCESSOR 
HARDWARE 
SIMULATORS 

Figure 6 

• 2 MEM BOARDS 

PROTOTYPE 
SINGLE BOARD 
COMPUTER 

SEQUENCER DESIGN 
(FPLS) 

LOGIC 
ANALYZER 

CAD Tools Used in the CPU Board Development Process 

Digital Technical journal 
No. 2 March 1 986 



Two CAD tools were used to help in the deci
sion process for selecting re liable components . 
The CPU board was mode led with the reliabil
ity prediction program PREDI C, which is based 
on MIL STD 2 1 7 . PREDIC uti lizes component 
thermal data from the second tool ,  the THUDS 
analysis program.  Using these tools helped us to 
avoid the creation of hot spots on the board 
layout and the use of low-rel iabil ity compo
nents . 

These CAD tools were so successful that the 
CPU board was ready by the time the first-pass 
CPU and FPU chips were ready. It then took 
only two weeks of debug to go from the func
tional chips to running the MicroVMS operating 
system . In a l l ,  the deve lopment of the CPU 
board took less than one year from init ial  speci
fication to operational prototypes .  

Summary 

The CPU board was designed as part of a larger 
project with formidable time constra ints . Such 
an environment demanded that the design of 
any one component rely on the proposed speci
fications for other, interlocking components, 
rather than on actual pieces of deve loped hard
ware . That environment requ ired a cooperative 
team spirit that was goal oriented and fostered 
the assumption of rational risks . Both inter
group and intra-group communication became 
extremely i mportant . The achievement of these 
factors was largely responsible for the su ccess 
of the MicroVAX II project. 

Especia l ly important was the fact that com
munication was aided by the CAD tool suite 
used to support the overa l l  project . In the case 
of the MicroVAX If system , we started from a 
wel l  organized datapath and employed sequen
tial machine architectures for control l ing it. In 
that way, the design documentation, s imula
tion, verificat ion, and su pport were a l l  made 
more manageabl e .  In fu ture projects these tool 
suites wi l l  mature and be haviora l component 
models wil l  begin to serve as design specifica
tions. The abi lity to solid ify the design early in 
a project means that board designers can fash
ion sil icon systems on boards that are func
tional on the first pass . 

Digital Technical JounJal 
No. 2 March 1986 

References 
1 .  D.W Dobberpuhl et a l ,  "The MicroVAX 

78032 Chip, A 3 2 -Bit  Microprocessor , "  
Digital Technical journal (March 1 986, 
this issue) : 1 2 - 2 3 .  

2 .  W . I .  Fletcher, An Engineering Approach 

to Digital Design (Englewood Cliffs : 
Prentice-Ha l l ,  Inc . ,  1 980) . 

3 .  A .F .  Hutchings, "The Evolution of the 
C u s t o m  CAD S u i t e  U s e d  on t h e  
MicroVAX I I  Syste m,"  Digital Technical 

jo urnal (March 1 986,  this issu e) :  48- 5 5 .  

47  

New Products 



Anthony F. Hutchings I 

The Evolution of the 
Custom CAD Suite Used 
on the Micro VAX II System 

The Micro VAX II chips were designed in only 20 months, due in part to 
simulation on CAD systems. Digital has a long history of using CAD. 

Much of the Micro VAX If's CAD suite evolved from tools used on an 
earlier VLSI VAX design. The higher-level chip junctions were debugged 
using behavioral simulation, after which the circuits were modeled using 
the reliable SPICE and GRAPES systems. The IV system verified all inter
connects and extracted wirelists, while other tools controlled the 
databases and checked design rules. The next generation of CAD tools 
must deal with a threefold increase in chip complexity. 

The factors that must be considered when init i ·  
ating and committing to a new VLSI design are 
qu ite complex . They are related in the fol low
i ng way: 

Market Requirements/Chip Definition 
+ 

Technology Status 
+ 

CAD Status 
+ 

Engineering Talent Avai lable 

Products w i th long lead - t imes can accept 
h igher risks in the process chosen for chip 
fabrication and CAD technology .  However ,  
products with short lead-ti mes , such  as  the 
M icroVAX 7803 2  chip, can tolerate virtual ly no 
risk in this domain .  

One way to reduce these r isks i s  to test the 
chip designs by simu lating their performance 
before fabrication; another way is to check for 
a l l  possible,  known fabrication process viola
tions before submitt ing the mask data for manu
facture . CAD systems and tools have been devel
oped for this purpose : to discover prob lems so 
they can be corrected at min imal cost, both in 
time and resources. Digita l  Equipment Corpora
tion was an early user of CAD to decrease the 
t ime-to-market for its VLSI products . 

4 8  

The M icroVAX I I  project needed tO re ly o n  a 
stab le CAD system and set of too ls while design
ing the 780 3 2  CPU chip (and i ts companion 
float ing point coprocessor ,  the 78 1 3 2  FPU 
chip) . Much of the stab i l ity of the CAD system 
was derived from work done to develop a mul
t ichip set for another VAX m icroprocessor. 1 We 
were able to both rational ize and simpl ify the 
resu lts of this  p ioneering effort to su i t  the 
needs of the MicroVAX project. Let's begin by 
discussing this earlier CAD system to see how 
its use affected decisions made on the 78032 
and 7 8 1 3 2  projects . 

CAD System for Earlier VLSI VAX 
Design 

In many ways, the design process for the earlier 
VLSI VAX microcomputer set the tone for all 
subsequent VLSI designs at Digital Equ ipment 
Corporation . This process was characterized by 
the extensive use of simul ation, espec ially high 
leve l ,  or behavioral ,  s i mulation . The commit
ment to high-level s imu lation was particu larly 
innovative at that t ime.  

Two types of s imulation models were used 
for this earlier microcomputer. The first rype 
was d e s i g n e d  as  a h i g h - l e v e l  s o ftware  
breadboard used to develop and  check out the 

Digital Technical journal 
No. 2 March 1986 



microcode before the chip hardware was avai la
b le .  The second type was developed as a rela
tively deta i led register transfer level ( RTL) 
model of the actual physical partitions and 
design concepts of the chips themselves .  This 
model was used directly by the logic and cir
cuit designers to develop the switch and cir
cuit- level representations of the des ign . 

One problem with using two models is that 
the output test vectors have to be checked con
tinually to ensure compatibil ity between the 
microcode and chip designs . Thus , a lthough 
each was optimized to a specific task, the mod
els proved to be somewhat cumbersome to use. 

The hub, or kernel ,  of the data management 
system was called CHAS 2·3 This proprietary sys
tem was developed at D igital 's semiconductor 
faci li ty in Hudson ,  Massachusetts, expressly to 
form the nucleus of an integrated MOS custom
design suite. The CHAS system performs the 
necessary data management functions on chip 
design databases and was originally intended to 
control a l l  the design activities of a chip pro
ject. The system embodies many of the "struc
tured top-down design" principles of Carver 
Mead. 4 

The C HAS system manages the data collected 
from c i rcu i t  and l ogic s imula t ions, layout 
designs and syntheses , layout verifications, and 
schematics entry. This central system also pro
vides data protection and conversion functions, 
as well as generating s imulation wire l ists. 

Decisions Derived from the Earlier 
Project 

From the outset ,  the CPU and FPU design teams 
made a number of important decisions based on 
the experience gained from the earlier project. 
One driving factor in these decisions was the 
short time-to-market ,  which dictated that sim
pl ifying the design process was a primary goa l .  

• The first decision was that there would be 
only one behaviora l ,  or functional ,  h igh
level simulation model of the chip rather 
than the two used earlier .  Thus the func
tional model was more compl icated than the 
earlier one, but avoided the very time-con
suming task of checking the output test vec
tors . Using one model guaranteed that the 
microcode deve lopment would be in step 
with the chip design , s ince both teams had to 
use the same model .  

Digital Tecbnicaljournal 
No. 2 March 1986 

• The next decision was to carefu lly control 
the evolution of the CAD system that was 
used . Any experimentation with enhance
ments to existing CAD tools or with brand
new CAD tools would be done only in a con
trolled environment .  One project engineer, 
trained in  software and with CAD experi
ence, was to be responsible for re-verifying 
the new functional ity and "robustness" of all 
new CAD releases. This approach enabled 
the team to acquire a vastly superior design 
ru le checker (DRC) , which considerably 
enhanced productivity during the physical 
design phase of the project. 

This approach also differed greatly from that 
of the earlier project, a l though the lessons 
learned fro m  that  project conside rably  
shaped the team's attitudes. For example ,  the 
earl ier project suffered-for a while-from 
attempting to use a first-generation layout 
editor that had too many bugs . (This tool was 
not in fact used on any part of the final 
design .)  It a lso experimented with early ver
sions of the CHAS system .  These versions did 
not perform as wel l  as desired for some func
tions (e .g . ,  the Assembled Block Wire l ister) . 
I n  contrast, the M icroVAX design teams 
decided to perform al l  layout on the indus
try-standard CALMA GDSI I  layout system,  a 
robust and proven too l .  

• The third decision involved the data manage
ment of the design database .  Rather than use 
a l l  the features of the C HAS system, we 
decided to manipulate the design data using 
the s i mpler VMS fi le-management system 
with i ts loose but adequate version-control 
mechanisms . The CHAS system was used, but 
in the role of tool integrator, l inking, for 
example, the QUICKDRAW schematic editor 
to the SPICE circuit  simulator.5 The CHAS 
system a lso provided a variety of val u 
able format conversion ut i l ities . 

• The final decision was to use one proven tool 
for interconnection verification . This layout 
extraction; verification tool ,  called IV, per
formed all the e lectrical connectivity check
ing in a very efficient manner.6 The earlier 
project had used a combination of bought
out tools and although that verification was 
very thorough, it was more costly than the 
s i ng l e - t o o l  p rocess  ( IV)  used  on t h e  
MicroVAX project .  

49 

New Products 



The Evolution of the Custom CAD Suite Used on the Micro VAX II System 

The Design Methodology and CAD 
Tool System 

A nu mber of  very i m portant paradigms 
should be noted . 

Having made these simpl ifications, the design 
team establ ished a fixed defin i tion of the ir  
design methodology and CAD tool mapping. 
This definition was fol lowed faithfu l ly through
out the l i fe of the project.  

Figure I shows all the activities i n  the design 
phase that were su pported by CAD tools . The 
middle column l ists each activity; the left col 
umn shows the type of data used in th is  activity 
and manipulated by the CAD tools which are 
shown in the right-hand column alongside the 
actual activity and data they supportjuse.  

The arrows indicate i teration paths where 
feedback is sent to a h igher leve l .  That is, where 
results are obtained from a checking or verifica
tion activity, it may be necessary to go back and 
modi fy an earlier set of assumptions and design 
decisions. For example,  in ru nning the DRC, i t  
i s  h ighly l ikely that we wil l  find design rule 
violations that require us to correct the physi
cal chip layout .  

DESIGN REPRESENTATION USED DESIGN PHASE 

1 .  The behavioral model of the design was 
kept current with the logic design of the 
chip to guarantee the accuracy of the 
microcode with the chip design . 

2 .  The crit ica l  hurdle for the functiona l  
correctness of the design was the correct 
execution of a certa in number of VAX 
macroinstructions under an automated 
checking process . (The tool used for this 
process was cal led AXE, an architectura l  
test-case generator and execution too l ,  
working in  conjunction with the DECSIM 
system ,  Digita l ' s  proprietary multi- leve l ,  
m ixed-mode s imu lat ion system) . The 
minimum number of cases was 1 00 ,000 
tests for each VAX instruction group . ln 
al l ,  more than 1 m i l l ion tests were exe
cuted before the chip was fabricated . 

3 .  The nu mber o f  iterations during the lay
o u t - d e s i g n  p h a s e  was m i n i m i z e d .  

CAD TOOL USED 

OECSIM Behavioral Modeling 
Language )BOS) 

Schematics 

Switch Level C1rcuit Wirelist 

FunciiOnal resignfVeril�·cation 

Logic Design Capture 

+ 
Logic Design Verification 

DECSIM-Behavior/AXE/HCORE 

OUICKORAW 

R S I M  

50 

Output Test Vectors 

Circuit Netlist 

Chop Floorplan 

Sized Chip Schematocf 
CALMA GOSII  
Stream Format 

CCF )Layout· Format) 

CCF )Layout Format) 

CCF )Layout Format) 

Fairchild Sentry/Tektronix 
Tester fnpul Formal 

CALMA GOSII·E Beam Format 
)MEBES] 

Fig uTe 1 

• 
Verification of Functional Equivalence 

� 
Circuit Design Verification 

' 
Layout Floorplanning 

' 
Chip Celt Layout/Assembly ---.---. 

� 
Electrical Con nectivity Checking/ 
Parasitic Capacitance Extraction 
lor Celts 

• 
Design Rule Checking for Celts 

t 
Electrical Connectivity Checking/ 
ParasitiC Capacitance Extraction for 
Sub Chips and Full Chij 
Test Vector 

'
Preparation 

Mask Data Preparat1on 

)output panern comparison] 

SPICE-GRAPES 

CALMA GOSII 

CALMA GOSII  

IV/XREF 

DRC 

IVfX R E F  

Ad h o c  Project Tools P l u s  OECSIM 

M O P  

CAD Tools Used in tbe Design Phase 

Digital Technical journal 
No. 2 March 1 986 



C hanges d u ri n g  th is  phase are very 
expensive and the number was kept 
sma l l  by having the design team submit 
only sized schematics ( i . e . ,  ones with 
transistor width and length specifica
tions that were verified using the logic 
and circu it  s imulators) to the layout 
design team.  

4 .  The mask data was not submitted to the 
mask shop (or even generated) until  a11 
sections on the whole chip were free of 
design-ru le  and e lectrical -connectivity 
errors . 

The Value of the NMOS CAD Suite on 
the Micro VAX II Project 

Figure 2 i l lustrates the entire CAD suite used on 
the 78032 and 78 1 3 2 chip designs . 

Use of the CHAS System 

As mentioned earlier,  the final  use of the CHAS 
system was pared down considerably by the 

ROM/PLA 

MicroVAX project as compared with i ts use in 
the earl ier project .  The functions used most fre
quently were 

• Schematic wirel isting 

• Layout format conversion 

• Copying files out  of the CHAS database 

• Plotting 

• I nvoking the SPICE circuit simulator and the 
GRAPES graphical post-processor 

Behavioral Modeling and Simulation 

A simulation system cal led DECSIM was used tO 
simulate the behavioral definition of the chip 
design . 3 ·7 •8 The DECSIM system works interac
tive ly and was used to debug the high- level 
functional design . This system is very reliable 
and proved to be a vital i ngredient in  achieving 
the high degree of accuracy of the microcode . 

LAYOUT ASSEMBLY 

SPICE 

GRAPES 

� 

H I ERARCH ICAL BEHAVIORAL/ 
LOGIC SIMU LATION 

a 
GATE SIMULATION 

c::J 
Figure 2 CAD Suite Used on the Micro VAX /1 VLSI Design 

QUICKDRAW 

Digital Technical]ournal 5 1  
No. 2 March 1986 

New Products 



Schematic Capture 

A drawing system called QUICKDRAW was used 
as a schematic editor. QUICKDRAW's greatest 
assets were its architectural simplic ity ,  reliabil
ity, and ease of use. The system permitted sche
matic entry on low-performance graphics ter
minals (VT 1 2 5s) . Of course, keyboard entry is 
not always totally practical for bulk schematics 
entry ,  or even good for smal l  schemat ic  
changes . However ,  QUIC KDRAW cou ld  be 
accessed from any terminal ,  was easy to learn in  
a few hours, and could be used by  the  whole 
chip team.  

Logic Simulation 

As in the earlier project, the MicroVAX team 
decided that they needed the accu racy of 
switch-level logic s imulation . At this level of 
representation ,  the transistors are l i terally 
treated as "switches ,"  but with resistance and 
capacitance attributes . The models can also 
represent both bidirectionali ty and charge shar
ing. At the time, the MOS (switch-level) capa
bi lity of the DECSIM software was still matur
ing;  therefore , the team decided to use a 
switch-level simulator called RSI M ,  developed 
at the Massachusetts Institute of Technology. 
RSIM was sufficiently accurate to enable the 
complete design to be simulated at this level ,  
although its timing aspects could not be used. 
RSIM's usage , therefore, resembled that of a 
logic simulation system.  The prime role of this 
stage of the process was to prove equivalence 
with the higher-level behavioral model ,  thus 
gaining functional completeness at a l ower, 
more accurate level of representation . That 
equivalence was achieved by supplying the 
same test vectors used in the behavioral phase 
to the RSIM runs. 

Circuit Simulation 

An industry-standard system ,  SPICE, was used 
for c ircuit simulation. SPICE was the most accu
rate mechanism of its kind available for simu lat· 
ing the electrical performance of c ircuits on 
the chips. This simulator was used extensively 
for circui ts containing up to 1 000 transistors . 
There were two major advantages of Digital 's  
version of the SPICE system .  

5 2  

1 .  The device models encoded into SPICE 
were a very accurate representation of 
the devices made in  Digital's NMOS pro
cess . The device equations built  in to 

these models were derived in two ways: 
first, by extracting the operating charac
t e r i s t i c s  o f  N M O S  d e v i c e s  f r o m  
fabricated test chips; and second, from 
the results of experi ments performed by 
another team at Digita l .  That team cre
ated models for devices and processes by 
using a battery of sophisticated simula
tors , such as MINIMOS, SUPREM,  and 
SEDAN . 

2 .  Throughout the pre- and post-processing 
stages, all voltage values over time from 
a SPICE run could be saved and later 
graphically analyzed by the designers in 
a proprietary graphical post-processing 
system called GRAPES. Using this system 
avoided having to make multiple runs of 
SPICE and permitted much easier inter
pretat ion of the output  waveforms . 
Figure 3 is a sample circuit  simulation 
waveform from the GRAPES system .  

Interconnect Verification and 
Wirelist Extraction 

The IV syste m ,  partially proven on previous 
chip design projects ,  was a major boon to this 
design team . The system performed several 
functions . 

1 .  I t  extracted a wirelist (in SPICE format) 
from the actual layout database . 

2 .  I t  calculated the parasitic capacitances 
for devices and nodes and fed those into 
the extracted wirelist .  That automatic 
input permitted the final simulations in 
SPICE to be very accurate . 

3 .  I t  detected any open and short circuits in 
the electrical network of the wirelist. 

4 .  I t  compared the extracted wire l is t  with 
the original wire l ist  ( created via the 
schematics editor, QUICKDRAW) and 
reported any m ismatches in signal or 
node names, device sizes, and other ele
ments . 

This verification and extraction tool per
formed all  these fu nctions much faster and 
more accurately than any of the connectivity 
checkers or extractors that were avai lable com· 
mercially. The IV system is generally recog
nized as one of the best in the industry for this 
purpose . 

Digital Tecbnical]ournal 
No. 2 March 1986 



F OO 5 5 1  1 - > A : V ( J )  ? - >  R : V ( J ) 3 - >  ( : V ( 5 )  

1 - >  1 . 2 5 . ������ � � � �� · � 1 - � 7 5 .��·• ·�- ���-- - 2 · 5 � ��---��--- - - J . I 25�--� - - - -- - 3 .  7 5  ( V )  
2 - >  z . · - ·· - � � � · � ·�•• • • • • z .  3 1 � • •••••• • ••••· - - - ••z . 7 5 �-·�·�·�- · · •·-� 3 , 1 2 5 .� � - - � - -� 3 . 5  ( V )  

( n s )  3 - >  p���A� � � �����A � � A � A � A t . 2 5 £ A���A£AA4£��4A�4A� 2 - � 4 4AAA .. � �� .. � ���A � . 7 5��A������A� .. A5 ( V )  
� - ���•'0 I � X I I 

1 . �-��� I C I I 

? . ��M� I I I 

3 . � ·� "0 C I A B 
• • ••��� C I 

S . A��\'" I C I 

b , 0M0P I C I X 

7 , 00 0 U 0  I C I A 8 

e . o��·� I ' I 

Q .  0 0 0 0 0  I I C A I 

l � . � � 0 A  t - - - - - - - - - - - - - - - - - - - - - - - - • - - - - - - - B - - - - - - - - - - - - - - - - X • • • • • • • • • • • • • • • • • • • • • • • • + · · · · · · · · · - - - - - - - - - · - · - - -
1 1  • � � � �  I 8 I A C I I 

1 2 . � 0 0 0  B I I I 

1 J .  0 0 0 0 8 A I C I I 

1 0 ,  0 0 0 �  X I C I I 
1 5 , 0 0 0 0  X I C I I 

I b .  A 0 0 0  X I c I I 

1 7 .  0 0 � 0  B A I C I I 

1 8 , 0 0 � 0  B I I I 

1 q , 0 0 00 I 8 I I I 

Figure 3 Sample Output from the GRAPES System 

The system has some u nique data structures 
and a lgorithms. 

1 .  I t  simpl ifies circuit extraction by con
verting al l  shapes into trapezoids . These 
are very convenient representations that 
permi t  IV to thoroughly analyze lateral
node and vertical-device connections . 

on non-prime shifts . Then the team activated 
AXE on those systems,  which generated a tre
mendous number of test cases .  This same 
approach was used (and continues to be used 
today on subsequent projects) for running CPU
intensive SPICE circuit  simu lations on many 
processors in  remote locations. 

2 .  I t  calculates the parasitic capaci tances 
for both area and periphery, taking into 
account cel l-capacitance effects coming 
from ever-shrinking device geometries. 
The system also calcu lates coupling 
capacitances . 

3 .  It performs very fast wirelist compari
sons ( layout to logical) , using a u nique 
graph-isomorphism algorithm that iso
lates e rrors rather  than propagat ing 
them. 

System Verification 

The fi nal  syste m - l ev e l  verificat ion  of the 
MicroVAX chips was performed using the AXE 
test-case generator in  conjunction wi th  the 
DECSIM behavioral models. In this way, test 
cases (which were in fact VAX macroinstruc
tions generated by AXE) were passed to the sim
u lation model for execution.  The execution 
resu lts were then compared automatically with 
those obtained from running the same test cases 
on an operational VAX system . The MicroVAX 
team used AXE in a particularly novel way . Via 
Digital 's  Ethernet network, they searched for in 
house VAX- 1 1 /780 systems with spare capacity 

Digital Technical journal 
No. 2 March 1986 

VLSI CAD Beyond the Micro VAX II 
Project 

Digita l ' s  use of  t he NMOS VLSI CAD su ite 
reached a peak of maturity with the 78032 and 
78 1 3 2 projects . We have been able to make a 
major process-technology step to CMOS 1 with 
l ittle cost by exploiting the same basic set of 
tools . That has enabled us to develop a whole 
new set of VLSI chip products in  very quick 
succession .  

However, fol lowing Moore 's Law, it is time to 
face the chal lenge of a two- to threefo ld  
increase in  complexity for the next generation 
of chip designs . This complexity means that 
design teams for new custom chips must be 
able to design parts with twice the transistor 
count as the 7 8 0 3 2 ,  yet take the same or less 
time to do it. Figure 4 i l lustrates the complex
i ty that wi l l  be experienced in future chip 
design projects . 

Major productivity improvements in CAD sys
tems must be made to accomplish this doubling 
of the transistor coun t .  Digita l 's VLSI CAD 
Group is now making the fol lowing improve
ments in its custom tool suite:  

5 3 

New Products 



The Evolution of the Custom CAD Suite Used on  the Micro VAX II System 

1 280K 

_ 640K 
Q) co 
u 

� 320K 
0 :::!.-
fJJ 0 1 60K 1 25K 

MicroVAX I I  chip 
• Ui 

Ui 
c "' 80K .:: • 70K 
0 
a; 

n E :::> z 

(V1 1 IE chip) 
• 35K 

(B I IC chip) 
40K 

20K • 1 7 K 
(F1 1 chip) 

• 1 0.5K 
1 0K (T1 1 chip) 

1 979 1 980 1 98 1 1 9821 983 1 984 1 985 1 9861 987 1 988 
Year 

Figure 4 Chip Complexity Projections 

• A new system for tool integration and data 
base management,  ca l led KATI E ,  is being 
developed to replace the CHAS system .  The 
KATIE system has a simpler, more modular 
CAD kernel than has the CHAS system ,  but 
with much higher performance . 

• The DECSIM software is being improved to 
provide true mixed-mode model ing and sim
u lat ion ( b e havioral -gate-switch) . I n i t i a l  
results i ndicate a doubling o f  simulation pro
ductivity, and our aim is to gai n  equivalent 
performance in the separate switch and 
behavioral areas.  

• A variety of techniques is now providing up 
to ten times the performance of  the tradi
tional SPICE system for circuit  simulation. 
For example: 

54 

1 .  An event-driven c ircuit  simu lation sys
tem called SAMSON,9 which exploits the 
temporal sparseness of d igital networks, 
has been developed . SAMSON offers from 
five to fifty times the performance of 
SPICE for d irect current and transient 
analyses . 

2 .  SPICE can be made to run much faster on 
vector processors and multiprocessors. 

3 .  A timing verification system called TV 
can analyze critical paths at the rate of 
I 0 0 0  trans istors per  m i n u te of CPU 

t ime. 1 0  TV performs within fifteen per
cent of the accuracy of SPICE, but its 
speed is several orders of magnitude 
faster. 

• Schematic entry can be improved by running 
QUICKDRAW on high-performance , high
resolution graphics workstations . The system 
will  support multiwindowing, menus ,  and 
pointing devices, as wel l  as provide high
performa nce wirel ist ing ,  with at least a 
doubling of speed over the version used on 
the 780 3 2  chip design . 

• High-resolution, VAX-based graphics work
stations will  also be used for custom layout 
editing, using the in-house developed editor, 
MEGAN. 

Summary and Conclusions 

The MicroVAX I I  project demonstrated a num
ber of valuable lessons about CAD in  general 
and VLSI CAD in particu lar.  

1 .  The second and subsequent projects that 
use a particular CAD technology benefit 
enormously from the experience gained 
during the first use.  

2 .  As a corol lary to the point above, i t  is  
imperative that CAD tools and systems be 
built  to endure at least two generations 
of projects . Otherwise , the cost and diffi
culties of using these tools wi l l  far Out· 
weigh the benefits . 

3 .  The CAD teams should use the period of 
stabi l i ty during these later uses of the 
tools to develop the next generation of 
more powerful tools .  

4 .  Much conservat ism exists in  the IC 
industry around the need to archive com
plete images of all too ls ( layered prod
ucts, operating systems, etc . )  used in  the 
design of an I C ,  along with its final mask 
database . Future ch ip  teams p lan  tO 
migrate their mask databases to contem
porary CAD systems .  This process wil l  
use the same exhaustive checks and tools 
used on the original design to ensure that 
the conversion is thorough . In this way, 
there wi l l  be no need to revert tO old 
copies of outdated systems and rools 
when making engineering change orders 
late in the product's l ife cycle . 

Digital Technical jounull 
No. 2 March 1986 



5 .  The close coupl i ng between chip design 
teams and CAD developers is an invalua
ble ingredient in the successfu l  comple
t ion of chip projects . 

References 

1 .  W.N .  Johnson ,  "A VLSI Superminicom
puter CPU , "  IEEE International Solid

State Circu its Conference Digest of 

Technical Papers ( 1 984) : 1 74 - 1 7 5 .  

2 .  J . C .  Mudge , C .  Peters, and G . M .  Taro l l i ,  
"A VLSI Chip  Assembler , "  in  Desig n  

Methodologies for VLSI Circuits, ed . 
P G .  Jespers ( Rockvi l l e :  S i j thoff a nd 
Noordhoff, 1 982) , 3 29 - 3 5 6 .  

3 .  A .F .  Hutchings , R J .  Bonneau , and W . M .  
Fisher, " Integrated VLSI CAD Systems At 
Digital Equipment Corporation , "  Pro

ceedings of the 22nd A CMjiEEE Design 

A u to mation Conference ( 1 985) : 5 4 3-
5 4 8 .  

4 .  C .  Mead and L .  Conway, Introduction To 

VLSI Systems (Readi ng:  Addison-Wesley, 
1 980) . 

5 .  SPICE was developed by Lawrence Nage l 
and El l is Cohen of the Department of 
Electrical Engineering and Computer Sci 
ences, University of California, Berkeley. 

6. W.J .  Herman and G . M .  Tarol l i ,  " Hierar
chical Circuit Extraction With Detai led 
Parasitic Capacitance , "  A CM IEEE 20th 

Design A u tomation Co nference Pro

ceedings ( 1 983) : 3 3 7-34 5 .  

7 .  M.A .  Kearney, " DECSIM:  A Multi - level 
Simulation System For Digital Design , "  
Proceedings of the ICCD Conference o n  

Computer Design ( 1 984 ) :  206-209 . 

8 .  R . R. Rezac and LT. Smith, " Methodology 
for and Results from the Use of a Hard
ware Logic Simu lation E ngine , "  Proceed

ings of the ICCD Conference on Com

puter Design ( 1 984) : 4 5 7-46 1 .  

9 .  K .A .  Sakallah and S .W.  Director, "SAM
SON :  An Event Driven VLSI Circuit  Simu
lator ,"  Proceedings of the Custom Inte

grated Circuits Conference ( 1 9 8 4 ) : 
2 26-23 1 .  

Digital Technical journal 
No. 2 March 1986 

1 0 . N . P .  )ouppi , "TV: An NMOS Timing Veri
fi e r , "  (Thes i s ,  S tanford U n ivers i ty ,  
1 982) . 

Other References 

Panel Discussion , R .J .  Camoin ,  Moder
ator, " Central DA and its Role :  An Execu
tive View , "  A CM IEEE 20th Design 

A uto matio n  Conference Proceedings 

( 1 983) : 3 - 1 1 .  

R . H .  Katz , " Managing the Chip Design 
Database , "  IEEE Computer, vo! .  1 6 ,  no. 
1 2  (December 1 983) : 26-3 5 .  

W . M .  vanClee m p u t  a n d  H .  O fe k ,  
" Design Automation for Systems," IEEE 

Co mpu ter, vol .  1 7 ,  no .  1 0  (October 
1 984) : 1 1 4 - 1 2 2 .  

J . C .  Foster ,  "A Unified CAD System for 
E lectronic Design , "  A CM IEEE 2 1 st 

Design A uto matio n  Conference Pro

ceedings ( 1 984) :  365 -369 .  

K .  Sherhart, M .  Vershel ,  and  J .  Owen,  
"The Engineering Design E nvironment , "  
A CM IEEE 2 1 st Design A u to mation 

Conference Proceedings ( 1 9 84 ) :  4 66-
4 7 2 .  

B .W. Lampson , " Hints for Computer 
System Design , "  IEEE Software, vol .  1 ,  
no.  1 Qanuary 1 984) : 1 1 -2 8 .  

5 5  

New Products 



Rick Spitz 

I Peter George 
Stephen Zalewski 

The Making of a 
Micro VAX Workstation 

Developing a Micro VAX workstation required that graphics hardware 
and software be designed. The pmject team kept the hardware simple by 
using VAX instructions for most of the work. Extensive graphics software 
bridges the hardware and the graphics applications. The graphics and 
windowing software, UIS, is the key to that process. UJS supports trans
parent multitasking with a distributed method for managing regions on 
the screen. A video device driver manages lists of region descriptors, 
keeping track of keyboard and mouse changes. The UIS system normally 
executes in user mode, thus minimizing overhead and utilizing the full 
performance of the VMS system. 

When Digital decided to develop the MicroVAX 
series, we a lso began to consider how to build 
them into a fami ly of low-cost VAX engineering 
workstations . Experience with the VAXstation 
1 00 provided us with a great deal of knowledge 
related to workstation requ irements . However, 
its architecture required extensive grap hics 
hardware . This architectural approach was not 
considered viable for a low-cost, h igh-volume 
engineering workstation intended for a single 
user. Another approach placing greater empha
sis on software was i l lustrated by Xerox's Star 
workstations, which were in use within Digita l .  

We decided that combining the  MicroVAX 
processor with a low-cost graphics control ler ,  
the VMS operating system,  and a good human 
interface would resul t  in  a powerfu l worksta
t i o n . The VAX/VMS e nviron m e n t  a l ready 
allowed any VMS appl ication program to ru n on 
every member of the VAX family .  The Micro VAX 
system woul d  extend the family to include 
lower-cost VAX systems . A MicroVAX worksta
tion, in addition to running a l l  existing VMS 
software , would now provide a base for graph
ics appl ications . 

In  the spring of 1 98 3 ,  a joint task force of 
hardware and software engineers was formed to 
determine how this workstat ion shou ld  be 
bui l t .  Our strategy was to design a product 
based on the MicroVAX I system and evolve i t  to 

56 

a mature workstation using the MicroVAX I I  
system . 

The task force 's objective was to set the over
a l l  goals of the project and tO make sure that the 
graphics hardware and software were wel l  inte
grated . Guided by a strong focus on t ime to 
market ,  the workstation hardware group had 
the responsibi l i ty of building an in itial graph ics 
control ler. They were also chartered to in itiate 
design work on future hardware graphics con
trollers with more features and h igher perform
ance . The VMS software group took on the role 
of developing the sofn:vare components . This 
paper is written by members of the VMS Devel 
opment Group; therefore , i ts primary emphasis 
is on the software aspects of this proj ect . 

Our first task was to make sure that the graph
i cs hardware being defined was su i table for effi 
cient use by the software . Having l im ited expe
rience with low-cost graphics contro llers and 
workstations , we proposed a strategy of using a 
very basic Q-bus control ler and doing most of 
the work with VAX instructions . This approach 
was viable because the VAX instruction set is 
rich and versati le in the area of character and 
bit  manipu lation . It also min i mized the risk i n  
developing hardware and provided maximum 
flexibi lity for the graphics capab il i ties . With 
greater freedom in the software design, we 
could ga in experience and provide better d i rec-

Digital Technical journal 
No. 2 March 1986 



tion for hardware features needed in future 
graphics controllers . 

Since no MicroVAX CPU had yet been devel
oped, we built a breadboard hardware configur
ation to do hardware and software evaluations . 
MicroVAX systems execute a subset of the fu l l  
VAX instruction set  i n  hardware ; however, 
software emulation of the other instruct ions 
allows a l l  VAX software to run transparently. 
For cost and space reasons, MicroVAX systems 
were targeted to use the Q-bus for ljO , while 
most existing VAX systems used the UNIBUS for 
most peripherals . 

The breadboard configuration consisted of a 
VAX- 1 1 /750 system with a UNIBUS-to-Q-bus 
adapter. We obtained some experimental Q-bus 
graphics controllers used in the development 
of the graphics interface for the PR0350 hard
ware . Using this configuration,  we evaluated 
the performance of text and graphics by imple
menting a number of software algorithms . 1 This 
technique treated display memory as standard 
VAX program memory, and VAX character and 
bit instructions were used to generate text and 
graphics . Evaluation of our results showed that 
this approach was reasonable and the basic per
formance was acce p tabl e ;  however ,  some 
assists were sti l l  needed in  hardware. 

The VCBOl Hardware Graphics 
Controller 

Taking our resu l ts back to the the joint task 
force, we settled , after several iterat ions , on a 
hardware design . The hardware graphics con
troller was named the VCBO 1 ,  known internal ly 
as the Q-bus video subsystem ,  or QVSS. Due to 
space and power constraints in MicroVAX pack-

BITMAP SCAN MAP 

1 024 

ages, the controller had to fit on a single-quad 
Q-bus modu le .  It contained 2 5 6K of bitmap 
memory that was ful ly addressable by any VAX 
instruction. That amount of memory was more 
than was needed to fi l l  a ful l -screen v ideo mon
i tor. The extra memory would al low software 
gra p h i cs ro u t ines  to operate d i re ct l y o n  
occluded areas o f  windows in  the video display 
memory. 

Based on inputs from the software eval uation, 
the hardware would a lso contain a scan-line 
map to a l low mapping any scan l ine in d isplay 
memory onto the physical screen .  This tech
nique allows much better scroll ing perform
ance , facil i tates the management of occ.luded 
window areas, and al lows the s imul taneous 
su pport of  d i ffe rent  w i ndowing sys tems .  
A 1 6  X 1 6 -pixel cursor plane , a separate hard
ware com p o ne n t ,  great ly  s i m p l i fied  t h e 
software logic required to manage the mouse 
cursor. The pattern is programmable to allow 
dynamic changes to the cursor pattern , depend
ing on its screen location and the state of the 
workstation . In  addition, a mouse interface and 
dual UART are provided to connect to a mouse , 
a keyboard and an optional tablet .  The inherent 
s implicity of the hardware allowed the hard
ware team to produce the first protOtype by the 
early summer of 1 983 . 

Figure 1 shows a block diagram of the VCBO 1 
configuration.  

Software Architecture 

The software team was chartered to develop a 
general software workstation architecture . Our 
goal was to al low the evo lut ion of future 
Mi croVAX workstations that would address 

PHYSICAL SCREEN 

2048 
LINES 

ENTRIES 
864 
LINES 

1 024 
BITS 

16 BITS 

1 6  

CURSOR 

Figure 1 Block Diagram of the VCBO 1 

960 
BITS 

Digital Technical journal 57 
No. 2 March 1986 

New Products 



cost-sensltlve markets with basic ,  inexpensive 
hardware . We a lso wanted to improve perform
ance and take advantage of features to be pro
vided by more- intell igent hardware graphics 
controllers in the future . 

Our performance evaluation of the VA.Xsta
tion 1 00 architecture pointed out that the cen
tra l dispatcher needed to manage the window
i ng activities on the physical screen was a real 
bottleneck .  Therefore , we elected to pursue an 
approach that used a distributed method to 
manage regions on the physical screen .  In  most 
cases this approach wou ld a l low an individual 
job, called a process in  the VMS system, to oper
ate directly on bitmap memory. There is much 
less overhead than context switching between 
processes, as requ ired in a central ized screen
manager design . 

The software architecture that we defined 
was implemented by a loadable set of VMS sys
tem services know as the User Interface Ser
vices , or UIS 2 UIS provides fundamental graph
ics services and d i sp lay l i s t  capa b i l i t i es .  
App l i cat ion programs , h igh - level  gra phics 
packages , and VMS's  VT 1 00 and TEK4 0 1 4  emu
lation drivers a l l  ut i l ize UIS to construct indi
vidual windows, as wel l  as for text and graphics 
functions. 3 A VCBO 1 device driver is used to 
manage the physical hardware 4 The driver is 
responsible for control ling the keyboard , the 
mouse (pointer) , and the scan-l ine map . 

VCBO 1 Video Device Driver 

The video device-driver software has one pri
mary fu nct io n :  to ma nage l i sts of region 
descriptors . I n  particular ,  it keeps three main 
lists; one each for keyboard input ,  button tran
sitions, and pointer (mouse) movement . 

To be notified about a particular event,  an 
appl ication p rogram posts a request to the 
driver.  The request specifies the type of  event 
desired and the region on the screen .  The driver 
then places this request on the appropriate l ist .  
For example,  if pointer movement requests are 
active and mouse movement occurs, the driver 
wi l l  search the l is t  for the entry that has speci
fied a region that the pointer is current ly 
within .  The driver then notifies the application 
that was the last one to specify this area.  The 
notification mechanism used is a software inter
rupt, known in the VMS system as an asynchro
nous system trap . This trap interrupts the flow 
of the specified user process and invokes a user-

58  

defined action routine.  This technique provides 
a low-cos t ,  res ponsive not ificat ion to the 
appl ication . 

The keyboard is connected to the device 
driver by a dual UART on the video control ler.  A 
hardware interrupt is del ivered to the driver 
each time a key is pressed . The driver then 
searches the keyboard l ist and del ivers the char
acter to the process associated with  the top 
entry on the l ist .  Al l keys are "soft , "  which 
means that any key on the main keypad can be 
defined as any of the possible ASCI I  character 
codes . I t  is a lso poss ib le  to defi ne m u l 
ticharacter sequences for a given key. The sec
ond half of the dual UART is used to support a 
bit tablet or a serial mouse . These devices need 
to send several bytes of data for each pointer or 
button transition . The driver buffers this data 
u nti l  it receives enough to decode an event .  
Then i t  searches the appropriate event l ist and, 
if necessary, del ivers a software interrupt  to the 
appl ication . 

The driver su pports the capability to specify 
cursor patterns for a region .  When cursor move
ment is detected , the driver searches a l ist to 
determine what the cursor pattern should be 
for the current location of the pointing device . 
Once located , the pattern is loaded into the 
hardware . The video controller hardware then 
superimposes the pattern onto the appropriate 
screen area by merging the pattern with the 
video signal from the bitmap memory. This pro
cedu re e l iminates the need for a save-and
restore operation in the physical bitmap each 
time the cursor moves or a write to bitmap 
memory occurs . The hardware also has the abil 
i ty to specify two logical operations, NAND and 
XOR, on the cursor pattern . This abil ity pre
vents a white cursor from being lost on a white 
screen ,  or a b lack cursor on a black screen.  The 
driver tests the physical bi tmap location that is 
overlaid by the cursor to determine which logi 
cal operation shou ld be used to maxim ize the 
cursor's vis ibi l i ty. 

A p r o p o rt i o n a l - a c c e l e r a t i o n  m ove m e n t  
a lgori thm i s  used t o  minimize the desktop area 
required for a mouse pointer. The driver accel
erates the cursor's movement if the mouse 's 
rate of movement exceeds any of a series of 
thresholds in a given screen refresh interva l .  If 
no acce leration were to occur, it woul d  take a 
desktop space of approximately 1 3  by 1 1  
inches to move the mouse both horizonta l ly 

Digital Tecbnicaijournal 
No. 2 March 1986 



and vertica lly respectively across the screen .  
With acceleration,  a mouse movement of only 2 
inches is needed to move across . The accelera
tion values used are as fol lows : 1 to 2 pixels of 
l inear mouse movement per screen refresh 
interva l ,  no acceleration needed; 3 to 4 pixels,  
accelerate by a factor of 2; 5 to 8 pixels, accel 
erate by a factor of  4 ;  greater than 8 pixels, 
accelerate by a factor of 6 .  

The driver provides an optional console win
dow to a l low system- level debugging .  The 
MicroVAX CPU can communicate directly with 
the video control ler during booting and debug
ging. If this feature is enabled , the top 2 4 0  scan 
l ines of video memory wil l  be al located for the 
console window. When the CPU wants to com
municate with the console ,  the VMS console 
driver will map directly to those 2 4 0  scan l ines .  
Thus ,  the console driver emu lates a "dumb" 
terminal in this region . When a function key is 
pressed on the keyboard, the video driver wil l  
map this  special console memory onto the top 
240 entries of the physical scan- l ine map, and 
the operator console wi l l  appear. When the key 
toggles aga in ,  the top 2 4 0  entries of the scan
line map will be restored.  

UIS Graphics and Windowing 
Software 

The decision to use simple hardware meant that 
software had to be developed to bridge the gap 
between that hardware and the app lications . 
This  software was of cr i t ica l  i m po rtance 
because the hardware designers assumed that  a 
software layer would be needed to su pport 
even the most basic graphics functions . 

Early in the design process, we decided that 
this software would provide more than just 
basic IjO support through the video control ler .  
Like the VMS operating system i t  was bui l t  on,  
the worksta t i o n  gra p h i cs and wi ndowing 
software , UIS ,  wou ld support transparent  mul
ti tasking .  That meant being able to handle 
simultaneous demands by m u l tiple  indepen
dent appl ications on the shared VCBO 1 hard
ware resou rces .  Therefore , U I S  shoul.d be 
designed to provide two capabil ities . First ,  i t  
should have a l ibrary o f  genera l -purpose proce
dures that app l i cations could use to easily 
access the hardware resources . Second , UIS  
should contain transparent management and 
synchronizat ion mechanisms . I n  that way, 
independent appl ications cou ld share both 

Digital Technical Journal 
No. 2 March 1 986 

screen space and the use of the system's input 
devices .  This  design wou ld a lso a l low the 
development of UIS appl ication programs on 
any VAX system,  whether it was a workstation 
or not .  

For the initial release of the MicroVMS work
station on the VAXstation I ,  these object ives 
were broken down i nto the fol lowing specific 
design goals : 

• Provide routines for creating and manipulat
ing viewports on the video display. 

• Su pport multiple overlappi ng viewports and 
manage viewport occlusion transparently for 
appl ications . 

• Allow simultaneous graphics operations into 
al l  viewports . 

• Prov ide  a u s e r  i n terfa ce fo r viewport  
manipu lations . 

• Provide ro u t i nes  for crea t i ng gra p hi cs 
objects . 

• Provide d isplay- l i s t  backup for graph ics 
operations so that appl ications can easi ly 
perform operations like " pan" and "zoom . "  

• Support shared access t o  the mouse and key
board and provide routines to notify applica
tions of i nput  even ts occurring on these 
devices . 

The fo l lowing sections describe the architec
ture of UIS and the mechanisms that were used 
to rea l ize these goals .  Figure 2 i s  a block dia
gram showing the functions of UIS .  

Virtual Displays 

The fundamental presentation object manipu
lated by applications to construct images is the 
virtual display. All UIS output functions are per
formed within a virtual display. 

The coordinate system of a virtual disp lay is 
defined in "world coordinates . "  The world
coordinate system uses the coordinate system of 
an application as a means of expressing d isplay 
locat ions . For example ,  an applicat ion that 
draws a graph s howing popu lation growth 
versus t ime may find it convenient  to use 
"Time" and " Number of People" as x and y 

coordinates . The range of world-coordi nate val
ues is specified to the graphics subsystem when 
the virtual d isplay is created . The coord inates 
are specified as signed F-floating VAX data types 

59 

New Products 



The Making of a Micro VAX Workstation 

USER APPLICATION PROGRAM 

U IS  SHAREABLE IMAGE I 
UIS 
GRAPHICS/WINDOWI NG f----
SYSTEM SERVICES 

(BINARY E�CODING) 

I 
ENCODING DISPATC H E R  

GRAPH ICS EXECUTION ROUTI N ES & 
ROUTINES TO UPDATE DISPLAY LIST 

I I 
BITMAP DISPLAY VI EWPORT r---

- GRAPHICS ROUTINES SERVICES 
(GER) (VPS) 

'l I I 
VCB01 

DISPLAY MEMORY (VCB01 OR VAX) DEVICE 
D R I VER 

Figure 2 VIS Functional Block Diagram 

for reasons of precision and ease of calcu lation 
in high-level languages . 

A display l ist is an encoding of the exact con
tents of a virtual display, independent of the 
device . Display l ists are maintained and used by 
UIS to achieve the fo l lowing short- and long
term goals :  

• Al low the automatic management of pan
n ing,  zooming, res iz ing,  and duplicating dis
p lay windows 

• Al low high-resolut ion print ing of virtual 
displays 

• Allow the structuring and manipu lation of 
virtual-display objects 

• Al low an appl ication to select an arbitrary 
output from a virtual  display, give it to an 
" i ntel l igent" cooperat ing appl icat ion ,  or 
simply store i t  in a fi le as generic encod ing, 
and then later replay the generic encoding 
into a new virtual display 

60  

Display lists consist of  the fol lowing basic 
objects : 

• Output primit ives 

• Attribute primitives 

• Structural primitives 

Output primit ives map directly onto the U lS  
output operations (e .g . ,  plot some l ines , write a 
text, draw a circle) and the modifications that 
they make to a virtual display. 

Attri bute primitives change the current value 
of an attri bute in an attribute block in  order to 
affect subsequent output primitives . Attribute 
blocks are used by UIS to specify a set of attri
bute values for a l l  UIS graphics objects ( l ines , 
text. c ircles) . Typical  attribu tes include the 
writing mode ( replace , complement,  erase) , 
l ine style (sol id ,  dashed) , and font to use when 
writ ing text. 

There may be up to 2 5 6 attribute blocks 
addressable  a t  one ti m e .  Att r i b u te b lock  

Digital Technical journal 
No. 2 March I <JB(, 



nu mbers are used and assigned only by the 
application, except for attribute block 0 .  This 
block is a special one that cannot be modified . 
It provides a set of attributes used as a standard 
default  for text and graph ics. Block 0 also pro
vides a template for creating alternate attribute 
blocks . 

Structural prim itives a l low the hierarchical 
grouping of attribute and output pri mitives into 
graph ical begin and end blocks, called seg
ments . Segments a l low appl ications to have 
access to many more than 2 5 6  attribute blocks . 
While segments inherit current attribute blocks 
from higher- level segments , modifications to 
attribute blocks from within a segment cause 
local copies of the modified attribute blocks to 
be created . For example, if  a particu lar attri
bute block is referenced within a segment, then 
that segment is first searched for the b lock. If 
the block isn ' t  found,  the search is made in 
successive outer segments. 

The coord inate system,  cal led normalized 
coordinates,  is  used both within the d isplay l ist 
and when creating generic encoding. Normal
ized coordinates are used to defer the mapping 
of a set of world coord inates to specific device 
coord inates until  the actual output device is 
known. As described in the fol lowing section, 
this mapping tO the physical device does not 
occur u nt i l  a display viewport is created .  This 
delay is important since output devices have 
different resolu tions . For example ,  printers typ
ically have much higher resolutions than video 
moni tors. 

Since floating point calcu lations are typically 
slower than integer ones , normal ized coordi
n a t e s  a r e  e x p r e s s e d  i n  u n i t s c a l l e d  
"Gutenbergs , "  which are stored as 3 2 -bit  inte
gers . A Gutenberg, the same un i t  used in UIS 
font definitions, is defined to be 1 /7200 inch 
( .0 1 points) Their use as normal ized coordi
nates is we ll  suited because they minimize the 
nu mber of coordinate transformations that must 
be performed when wri ting text. Gutenbergs 
have the desirabl e  characteristics of being both 
reasonably smal l-and therefore amenable to 
good graphics resolution-and very efficient for 
text operations . 

The conversion between world and normal 
ized coord inates is based on the desired physi
cal size and world-coordinate size of the virtual 
display as specified by the appl ication . When a 
virtual  d isplay is create d ,  the appl ication 

Digital Technical joun1al 
No. 2 March 1 986 

expresses the desired size of the virtual display 
in both physical and virtual uni ts .  That estab
l ishes the relationship between the physical 
size of the fonts and the arbi trary size of a vir
tual display 's world-coordinate system. 

Display Windows and Viewports 

A display window is the object used by app lica
tions to control how much of a virtual disp lay i s  
avai lable for viewing by the user. This control 
is accomplished by defining a rectangle speci
fying the v iewable port ion of the virtua l  
display. 

A display viewport is the area of the physical 
screen into which a display wi ndow is mapped.  
Display v iewports vary in s ize  and may be 
placed anywhere in the physical screen area . 
Display viewports a lways occlude when they 
over lap .  The order  of o c c l u s i o n  u s u a l l y  
depends o n  the order i n  which t h e  display 
viewports were created . However, the order 
may be a ltered by t he user through the UIS user 
interface or by applications using the UIS  
windowing services. 

A display window is created ,  mapped,  and 
automatically sca led to a display viewport 
when the application makes a single ,  routine 
call  tO UIS.  Note that at the time of the cal l ,  the 
output of the UIS app li cation is directed to a 
specific physical output device , usual ly the 
screen.  Scal ing can be avoided if the appl ica
tion directs UIS to use the physical size sup
plied by the application when the virtua l  dis
play was created . That al lows text and graphics 
to appear in exactly the size and aspect ratio 
that an appl ication considers ideal . 

The amount  and s ize  of the i mage t hat  
appears in a display viewport can be controJ led 
by altering the size and position of the display 
window or the size of the display viewport .  The 
image can be managed by either the applica
tion, through UIS,  or the user, through the user
interface functions. The fo l lowing rules govern 
the image : 

• To magnify the image , either the size of the 
window is decreased without a ltering the 
viewport , or the size of the v iewport is 
increased without altering the window . 

• To reduce the image , either the size of the 
wi ndow is increased without a ltering the 
viewport , or the size of the viewport is 
decreased without altering the window .  

6 1  

New Products 



The Making of a Micro VAX Workstation 

• To change the amount of the virtual display 
being viewed without scaling, both the win
dow and the viewport size are expanded or 
contracted by the same amou nt. 

• To pan the image , the window around the 
virtual display is moved without altering the 
viewport size or location. 

Figure 3 i l lustrates the mapping that takes 
place when going directly from a virtual display 
to a physical display.  The left column shows the 
transformations between the coordinate spaces. 
The two colu mns on the right show the way the 
virtua l  d isplay is scaled to the final output 
device . 

Virtual Keyboards 

Appl ications use a concept ca lled virtual key
boards to share and individua l ly manipulate the 
physical workstation keyboard . Virtual key
boards allow an application to get input from 
the physical keyboard and to modify its charac
teristics , both in  a synchronized manner. I nput  

can be received in  either of two forms. First ,  
applications can specify that they be del ivered 
a software interrupt whenever keyboard input 
occurs . Second , they can periodically pol l  the 
v i rtua l  keyboard to see if  new i n p u t  has 
occurred . Certa in  characteristics can be man
aged for each virtual keyboard , such as keyc lick 
volumes and keyboard key mappings. 

The connection between the physical key
board and the various virtual keyboards availa
ble on the workstation is general ly managed by 
the user. An appl ication could force the physi
cal keyboard to be bound to a virtual keyboard. 
Typica l ly, however,  the appl ication wil l  associ
are the keyboard with some d isplay viewport 
and al low the user to manage that connection 
through the user interface.  

Mouse Input 

Applications can both sol ici t  and manage input 
from a mouse with respect to rectangles within 
display viewpons . To do that,  an app lication 
must specify a world-coordi nate rectangle and 

(WORLD COORDINATES) 
(WO RLD COORDI NATES) WO RLD COORDI NATES 

6 2  

( DISPLAY LIST ENCODING I N\ 
NORMALIZED COORDI NATES) 

OUTPUT 
P R I M ITIVE 
EXECUTION 
ROUTI NES 

I 
(DEVICE SPECIFIC COORDINATES) 

I 
(S IZED TO . . .  ) 

I 
VIRTUAL DISPLAY 

I 
(CLIPPED TO .. ) 

I 
DISPLAY WINDOW 

I 
(S IZED TO .. ) 

I 
DIS PLAY V I EWPORT 

� 
(WRITTEN TO .. ) 

� 

VI RTUAL DISPLAY 

DISPLAY WIN DOW 

Dl7 V I EWPORT 

(7EN TO . . .  ) 

PHYSICAL DISPLAY 

Figure 3 Mapping from Virtual- to-Physical Display 

Digital Technical]ountaJ 
No. 2 March 1986 



the disp lay viewport to which the rectangle 
applies .  The application then directs the UIS to 

• Change the cursor pattern or pos ition when 
the cursor moves within the rectangle 

• Send a software interrupt whenever the cur
sor moves within or out of the rectangle 

• Send a software interrupt whenever a mouse 
button is depressed or released within the 
rectangle 

App l ications can a lso check the cu rre nt 
mouse position or button state at any time . 

Implementation Details 

UIS was designed with two primary implemen
tation goals in mind. Of course, the first goal 
was to implement the architecture described in 
the previous sections. just as important was the 
belief that the cost of using UIS had to be as 
small as possible. The overhead associated with 
a routine call had to be minimized , and the 
algorithms and architecture employed by UJS 
had tO be as efficient as possible .  UIS also had 
to be fast because the simple graphics hardware 
relied upon UIS software to take the place of 
sophisticated grap hics hardware . To meet these 
goals ,  the  software team made some basic 
design decisions right at the start . The effect of 
these decisions on how the design operates are 
discussed in the following section . 

UIS operates in the caller's mode (usually 
user mode) because the cost involved in  chang
ing tO kernel mode wou ld be prohib i tive . 
Because UIS operates in user mode, a l l  data 
structures used by UIS  are given user-write pro
tect ion . This  des ign  dec is ion means that  
timesharing use of the graphics package is pos
sible,  but without any security considerations . 

Most of the UIS code res ides in system space , 
and UIS rou tines exist as system services within 
the VMS operating system .  That gives UIS al l  the 
desirable performance characteristics of oper
ating system code ( i . e . ,  minimal image activa
tion cost, maximum shareabil ity , separately 
managed paging, etc . ) . 

Fonts are stored in files and treated as system 
resources. Since several applications are l ikely 
to use the same fonts at the same time, UIS font 
management was designed to optimize font  
sharing. Fonts currently in use are kept i n  a font 
pool in system memory. Upon beginning a text
drawing operation, a process accesses the sys
tem font pool to find the required font .  If not 
found in the pool ,  a font can be loaded into the 

Digital Technical journal 
No. 2 March 1 986 

font pool by searching the disk for the proper 
font file and then reading it into system mem
ory. Similarly, fonts can be removed from the 
font pool because they can always be retrieved 
from disk . 

Each virtual  display is managed by only one 
process . That synchronizes the access to virtual 
displays and disp lay l ists and minimizes the 
effect that graphics applications have on each 
other.  I f  a second process wants to manipu late 
the virtual display of another process, then the 
applications running in the two processes must 
communicate . The process that created the vir
tual display must then make modifications to it. 
This concept is enforced by the fact that the 
contexts for a l l  virtual d isplays reside in  pro
cess address space. 

Data structures for display viewports, on the 
other han d ,  are kept in  system space .  That 
a.llows a process to change the topology of the 
viewpons on the video display. For example,  a 
viewport bound to a display window that i t  
owns c a n  be "popped" without  having to 
notify every other process of the necessary 
screen changes. The storage for viewport data 
structures is allocated from paged pool .  How
ever, the storage protection must be changed to 
user write to a llow access by the process-based 
graphics routines .  

Access tO those data structures by UIS rou 
tines i s  synchronized using the  VMS lock man
ager. Mult iple processes are granted shared 
readjwrite access to the physica l  display as 
long as they are simply reading from or writing 
tO their own viewports . I f  a process needs to 
change the re lationships between the display 
view ports on the screen (e .g . ,  create a new 
viewport or pop an existing viewport) , it must 
request exclusive readjwrite access to the phys
ical display. Thus, no synchronization overhead 
is incu rred in the steady state. 

Figure 4 depicts the basic use of storage by 
UIS .  

As shown in  Figure 4 ,  UIS software i s  organ
ized into five basic parts. 

The first piece of U I S  that  app! i'cations 
encounter is the UIS shareable image . UIS rou 
tines are  accessed by  appl ica t ions through 
transfer vectors in a VMS-protected shareable 
image . That a llows UIS code to increase in size 
and tO change location within the operating sys
tem without affecting the appl ications that use 
the code . Also , UIS application development 
can occur on machines where UIS has not been 

63  

New Products 



The Making of a Micro VAX Workstation 

SYSTEM 
SPACE 

PROCESS ( P 1 )  
SPACE 

PROCESS (PO) 
SPACE 

• 

• 

MAPPED VCB01 M EM O R Y  
I N C L U D I N G  PHYSICAL B I T M A P  

• 

• 

PAGED POOL 
• BACKUP VIEWPORT BITMAPS 
• VIEWPORT DATA STRUCTU R E S  
• FONTS 

• 

• 

• 

• 

PROCESS-PERMAN ENT 
D I S PLAY CONTEXT 
(DELETED AT PROCESS R U N DOWN) 

• 

• 

• 

• 

NON-PROCESS-PERMANENT 
DIS PLAY CONTEXT 
( D E LETE D  AT I MAGE R U N DOWN) 

• 

• 

Figure 4 VIS Storage 

instal led.  The UIS shareable image can be used 
to resolve UIS references at link and image acti
vation time, even if the UIS system services are 
not present on the system .  Finally, because the 
shareable image is protected,  UIS can get con
tro l during image rundown and perform some 
necessary clean-up activities . 

The shareable image performs the requested 
operation by cal l ing the :�ppropriate UIS system 
service . At this point,  user requests are trans
lated into calls tO internal UIS routines, and the 
relevant internal data structures are located . For 
example ,  for a typical keyboard operation , UIS 
would locate the right virtual keyboard and 
make the appropriate calls to the VCBO 1 device 
driver.  

64 

For a typical output operation,  such as draw
i ng a l ine ,  UIS first creates a d isplay l ist entry. 
UIS then calls the display list management rou
tines to update the display list and a l l  windows 
i nto the virtual display. These routines, in turn , 
wil l  check with the viewport service routines 
(VPS) to find the right area of the physical 
screen in which to draw. Finally, the manage
ment rou tines direct the bitmap graphics exe
cution rou ti nes (GER) to draw to those areas . 

VPS is more than a simple screen rectangle 
manager. Its tasks are 

• To present the rest of UIS with the " i l lusion" 
that viewports are always unoccluded and 
are contiguous pieces of hardware video 
controller memory 

• To take advantage of VCBO 1 scan- l ine scrol l 
ing whenever possible 

• To provide bitmap backup for occluded win
dows so that app lications are free from the 
complex ities of occl usion management 

VPS does this by judiciously using and mixing 
three different types of video memory :  on
screen VCBO 1 memory, off-screen VCBO 1 mem
ory, and off-screen VAX memory .  VPS a lso 
manipu lares the entries in the VCBO 1 video 
scan-line map to present UIS with a virtual scan
l ine map, or virtual viewport , for each physica l 
display viewport . 

If the physical d isplay has only one viewport, 
VPS will simply a l locate a set of p hysical  VCBO 1 
scan lines and set up the viewport data struc
tures to direct GER tO that set. In this case,  the 
physical and virtual viewports wi l l  be the same.  
H o w e v e r ,  i f  t h e  d i s p l ay has  oc c l u d i n g  
viewports , VPS w i l l  create a virtual viewport i n  
off-screen memory for each physical viewport . 
The n ,  at 80 -mi .l l isecond i nterva l s ,  VPS wi l l  
copy the mod ified contents o f  the virtua l  
viewports to  the physical viewports . 

I f  changes must be made to the VCBO 1 video 
scan- l ine m a p ,  then VPS wi l l  update the m .  
These changes could be caused b y  ei ther a 
viewport that needs to be hardware scrolled or 
a change in the layout of the viewports on the 
physica l  screen .  VPS then merges all the virtua l  
scan- l ine maps and requests an update of the 
physical scan-line map.  Those actions are done 
in synchronization with the 60-Hz video vert i
cal -retrace interva l . 

Digital Technical ]out·nal 
No. 2 March l 'JB(i 



Summary 

Our initial  goals were to design a workstation 
product with the MicroVAX I system,  thus pro
vid ing a stable ,  mature product available for the 
MicroVAX II syste m .  The joint engineering task 
force was in itiated in the spring of 1 98 3 ;  proto
type graphics hardware was available in  the 
early summer. Once that prel iminary hardware 
was ready, the VMS team entered into fu ll -scale 
development .  The VAXjVMS workstation (VWS) 
product was developed during the fal l  and win
ter of 1 983, and into the spring of 1 984 . VWS 
underwent customer field test with the VCBO 1 
graphics controller,  the MicroVMS system , and 
the MicroVAX I system in the summer and early 
fa l l  of  1 9 8 4 . T h e  f i r s t  r e l e ase  of  t h e  
VA.Xstation I was available i n  late 1 984 . This 
i n i t i a l  pro d u ct a l l owed t h i r d -pa rty VAX 
software vendors to take advantage of the VWS 
architecture . 

La t e r ,  the  VAXsta t ion  I I  rep l a ced the  
MicroVAX I CPU with a MicroVAX I I  engine, 
thus gaining much higher performance . The 
MicroVAX I I  processor entered customer field 
test in the early spring of 1 98 5 ,  with shipments 
to customers by early summer. A new VWS 
so ftware r e l e a s e  t h a t  s u p p o r t e d  t h e  
VA.Xstation I I  was made avai lable short ly after
wards . That VMS software was the fu lfi l lment of 
this project's long-term goal . 

Acknowledgements 

We would  l ike to acknowledge the contribu
tion made by Dick Hustvedt to the MicroVAX 
workstation effort. Dick was instru mental  in 
spearhead ing this undertaking .  The contr ibu
tions of Cathy Learoyd , Tom Furlong, Rob Scott ,  
john DiMack, Mike Rosenblu m ,  jake Vannoy, 
and the rest of the VMS workstation team were 
also invaluable .  

Digital Technical journal 
No. 2 March 1986 

References 

1 .  J . D .  Foley and A .  van Dam , Fundamen

tals of Interactive Computer Graphics 

(Reading:  Addison-Wesley, 1 9 82) . 

2 .  Micro VMS Workstation Graphics Pro

gra m ming Guide ( Maynard : D ig ital  
Equipment Corporation , Order No.  AA
G 1 1 0B-TN, 1 9 85) . 

3 .  Micro VMS Workstation User's Guide 

(Maynard : Digital Equ ipment Corpora
tion, Order No. AA-EZ24 C-TN , 1 9 8 5 ) . 

4 .  Micro VMS Workstation Video Device 

Driver Manual (Maynard : Digital Equip
ment Corporation ,  Order No . AA-DY65C
TE , 1 9 85) . 

6 5  

New Products 



The RQDX3 
Design Project 

Nicholas A. Warchol I Stephen F. Shirron 

The RQDX3 is a Winchester and floppy disk controller aimed specifically 
for use on Micro VAX II systems. The designers foUowed a top-down 
development process to meet their goals. Trade-o.ffs, some requiring 
hardware and firmware to be built and tested for reliability, were identi

fied and evaluated early in the project. The RQDX3 bas a three-port data 
buffer to smooth data transfers between the host processor, the control
ler's microprocessor, and the disks. Four internal subsystems work in 
parallel to allow maximum system performance. 

Design Goals 

The project team set a nu mber of specific  goals 
at the start of the RQDX3 design. The greatest 
need was to improve the performance of the 
MicroVAX I I  system over that available with 
existing controllers ,  yet greatly reduce the man
ufacturing costs of the disk subsystem.  The fol
lowing list contains the goals that governed the 
design of the module:  

• Cost-Obtain a manufactur ing cost less than 
half of the best current disk controller .  t he 
RQDX2 .  

• Performance-The contro l ler  s hou ld not  
force an interleave of  data sectors on the  sur
face of the hard disk drives or limit the per· 
formance of the Winchester disk drives. The 
controller should also avoid wasting system
bus bandwidth on the Q-bus . The controller 
architecture had therefore to be chosen to 
al low the highest performance poss ible  
while meeting the other design goals. 

• Dual Mod u le-The control ler  shou ld be 
designed so that it will  f it  on one Q-bus dual 
module.  This form factor wil l  allow the most 
flexible system configurations . 

• Schedule-First customer shipment would be 
approximately one yea r  from the project 
start . Meeting this goal would a! low the 

66 

phase-out of the higher cost and lower per
formance RQDX l and RQDX2 modules . 

• Testable Design-A high percentage of this 
module would be testable by providing extra 
hardware , m icroprocessor code , and test 
strategies . This design would help to reduce 
both manufactu ri ng and maintenance costs . 

The Design Philosophy 

The team members decided that a top-down 
approach to the problem was the only way that 
the design goals could be met .  A wel l  struc
tured , well docu mented design would al low 
the maximum communication between team 
members ,  and it would al low trade-offs to be 
made early in the design cycle.  

The design process u sed in  the project 
adhered to the following form : 

• Set the goals and assign priorities to deter· 
mine how flexible each one i s ;  that wil l  
al low tradeoffs to be made if a goal is  not 
attainable . 

• ColleCt and study any overall system specifi
cations and requirements that apply. This is 
the time to write the prel iminary engineer
ing specifi cation and define the interfaces 
(both hardware and software) that must be 
adhered to.  Any impu lse to go back and 
change these specifications shou ld be vehe· 
mently resisted.  

Digital Technical Journal 
No. 2 March I 986 



• Analyze the problem and determine the sys
tem architecture based on the flow of infor
mation and the complexity of the required 
control functions. If  the problem appears too 
large or is not easy to document or describe , 
then it should be divided into smaller, more 
manageable functions. During this phase , 
operational descriptions are created . Those 
can be flow diagrams, timing diagrams, state
transition diagrams, or anything that wi l l  
help to  explain how the controller should 
work . These descriptions should be included 
as part of the documentation package . 

• Look for the solution to each problem while 
weighing it against the design goals .  I tera
tions between this step and the previous one 
can be expected in order to meet the goals . 

This part of the process involves looking at 
the avai lable technologies and other designs 
to determine what is or is not usable .  If  other 
designs have fol lowed the same documenta
tion strategy, then this task is much easier; if 
they have not, then do not waste too much 
time tryi ng to " reverse engineer" those 
designs . The risk of using new technologies 
must be assessed tO determine what impact 
they would have on the design 's cost and 
schedule . 

The hardware design is documented using 
drawings called functional partitions . These 
drawings are a hierarchy showing the inter
connection of fu nct ional , not  physical ,  
p ieces of the design. Al l datapaths and con
trol signals are named at this time. The draw
i ngs wil l  be the reference point of the design 
team and make up a major portion of the 
design package . Because of the functional 
nature of these drawings, simulation of the 
design can be accomplished in a structured 
form. 

At this time, a technical description docu
ment is written to a l low others outside the 
design team to u nderstand the operation of 
the design . This document is especially use
ful in training new groups about the design 
as it progresses from the design phase to the 
manufacturing phase . 

• " Paper debug" the design . This is an in
depth review by the design team before any 
hardware is built .  The process begins with 
the operational descriptions and fol lows the 

Digital Technical journal 
No. 2 March 1 986 

documentation hierarchy down to the lowest 
level of the design. Normal operations and 
error conditions are checked , and each ele
ment is  analyzed for test and diagnostic 
coverage . 

M istakes found at this stage are much easier 
to fix on paper than in circuit boards, gate 
arrays , or software debugging. 

• Build a prototype . This process includes the 
drawing of schematics to show the i ntercon
nection of the physical pieces , the layout of 
circuit  boards ,  the development of gate 
arrays , and the writing of software routines 
that interface to the hardware. 

• Debug the protOtype.  If  the paper debug was 
done correctly, this stage shou ld not uncover 
any disasters . The individual  fu nctional  
p ieces of the design can be tested and 
checked off using the functional partitions as 
a guide . That systematic method will ensure 
that the entire design is tested .  

The design process is  the solution to a mul
t idi mensional p roblem . Therefore , there is  
probably more than one design that  wil l  meet 
the goals .  There is a lso the probabil ity that it 
may be impossible to meet al l  the goals .  In this 
case , some compromise in the goals must be 
made in order to make a solution possible .  

This design problem is like those encoun
tered in most other designs:  Make it  fast,  cheap, 
smal l ,  reliable ,  and don't take too much time . 
With each goal being constrained by others , the 
need for a structured method of finding a solu
tion becomes more important .  The way to solve 
a set of simultaneous equations is not to try a 
solution and see if it fits , but to use some 
proven techniques tO determine the correct 
solut ion . Dividing the overal l  problem into 
smaller ones and then determining a solution is 
probably the most powerful technique that can 
be appl ied . 

Design Implementation and Testing 

A ttacking the Goals 

Each goal placed some unique restrictions on 
the design . Thus, it was important to u nder
stand the effect of each goal and how flexible 
the achievement of that goal was . By keeping a 
constam watch on how the goals were being 
met, trade-offs cou ld be made very quickly . 

67 

New Products 



The RQDX3 Design Project 

The fol lowing discussion details each goal and 
how it was handled: 

• Cost-This was the original goal that caused 
the creation of the RQDX3 project .  The 
cost/performance relationship was higher 
than desirable for the current disk control
lers .  A project l i ke the MicroVAX II system, 
in order to obta in  a good market share , 
needed to i mprove this  relat ionship by 
reducing the cost of the disk subsystem . 
Therefore ,  i t  was very important for us to 
atta in  our cost goa l .  To do that we placed a 
restriction on which components or technol
ogies could be used, and what the assembly 
cost of the module cou ld be. Maximizing the 
number of machine-insertable parts there
fore became an important consideration .  

• Performance-The MicroVAX I f  system wou ld 
support the ful l  VAXjVMS operating system . 
Since i t  supports virtual memory, the VMS 
system uses large data transfers in the d isk 
subsystem.  We therefore chose to optimize 
the performance of the controller around 
these large transfers to improve total system 
performance . By making the physical disk 
drive the l imiting factor, we evolved an 
architecture that would a l low simu ltaneous 
operations in the controller.  In contrast ,  the 
curren t  RQDX I and RQDX2 disk controllers 
l imi t  the data transfer rate between the host 
memory and the disk drive because of their 
archi tecture . The single thread of control in  
these modules, though adequate for PDP- 1 1  
systems, forced an interleave of logical data 
blocks on the disk surface. That interleaving 
wou l d  h i nder  the  p e rformance of the  
MicroVAX I I  system . 

There are also many techniques for reducing 
the average seek time of the disk drives . 
These methods include overlapped seeking 
on multiple drives, rotational optimi zations, 
improved seek algorithms , and various data 
buffering techniques . We wanted to include 
as many of these optimizations as possible 
and , since the goals were driven by the 
design team , the trade-offs were a l i ttle more 
flexible . 

• Dual module-This goal more than any other 
caused the most problems in the design of 
the hardware . Many t imes a solution seemed 
to meet all the goals but, when a detai led 

68  

parts count and  mock-up were created , there 
were a few components that just didn't  fit on 
the board . Meeting this goal led to the exten
sive use of CMOS gate-array technology to 
meet this size restriction .  

• Schedule-We did not have the luxury of set
ting the date for the project's completion .  
Because the disk controller was so important 
tO the overa l l  MicroVAX I I  project, we were 
given a completion date based on the availa
b i l i ty of the Mi croVAX II hardware . Of 
course,  this procedure i nvolved a manage
ment factor that certainly kept the design 
team on i ts roes by being cold to see if we 
could do it. In response,  we developed a 
schedule that wou ld maximize the work that 
could be done in parallel  while keeping the 
risks at an acceptable leve l .  

• Testable Design-T h i s  goal became more 
important as the details  of the design were 
completed . The module ,  being driven by an 
onboard microprocessor, would be capable 
of self-diagnosis.  Therefore ,  where possible , 
a l l  i nternal ly addressable registers were 
made to be writejread registers and extra 
datapaths were added to maximize  the 
a m o u n t  o f  l o g i c  a va i l a b l e  to  t h e  
microprocessor for testing. This goal had to 
be weighed against the need for l imiting the 
design complexity, cost ,  and size .  

Task Partition ing 

The short project schedu le forced us to adopt a 
development strategy that would maximize par
alle lism in the deve lopment of the RQDX3 . The 
first division was made between the hardware 
development and the microprocessor firmware 
development .  Each major task was fu rther 
reduced tO smaller design functions . In  many 
cases we had to create a model or emu latOr of 
some other undeveloped part of the design in 
order to a l low tasks to continue .  

Hardware Developmen t 

Once the functional partition drawings were 
created ,  we had a solution that met the per
formance and functionality that were required . 
However, we still  did not know if the cost and 
board area requ irements would be met. The 
design team quickly determined that some cus
tom in tegrated circuits would be needed tO 
help us meet these goals .  Previous experience , 

Digital Tecbnical]out-nal 
No. 2 March 1 986 



a known process , and qu ick  tu rnarou nd made 
CMOS gate array technology the key to our 
solution . 

Two gate-array devices would be needed , but 
we had only one gate-array design team on our 
project . We decided that one gate array would 
be developed first and a TTL emulator of  the 
second device would be created and used for 
the module- level testi ng .  In that way, the inte
gration of the firmware under development 
with the hardware cou ld begin early in the 
schedu le .  

The key area in  al most any disk control ler 
ce nters around the design of the phase locked 
loop and the data separator logic used in recov
ering the encoded data from the disk surface . 
We knew at the beginning of this project that 
our team did not have the experience to design 
this section. Therefore, we employed the ser
vices of outside consultants to this proj ect. 
They contributed not only their previous expe
rience in data separator design , but also re in
forcement and management of the design phi
losophy taught to us in  the past . 

Firmware Development 

To meet our schedule  goal , it was necessary to 
begin development and testing of the firmware 
for the onboard m icroprocessor wel l  before any 
hardware was ready . The firmware consisted of 
many modu les,  the majori ty of which were 
independent of the hardware . These modules 
cou ld be des igned , cod e d ,  debugge d ,  and 
tested in paral le l  with the design, implementa
tion , and debugging of the hardware . Then at a 
later date , the few remain ing hardware-depen
dent modules cou ld be developed and inte
grated tO form the complete RQDX3 firmware . 

Thus, the target system first used for develop
ing the firmware was not the prototype RQDX3 
wi th  i ts o n board m i crop rocesso r ,  b u t  a 
VA.XfVMS system with two software emu latOrs 
(one for the Q-bus subsystem and one for the 
disk subsystem) . The VMS system was chosen 
for several reasons : first, it has an extremely 
nice set of program development tools; second, 
the VMS d isk driver could be adapted to pro
duce a ste ady stream of stimu l i  ( d isk 1/0 
requ ests) to ver i fy the correctn ess of the 
firmware's responses . With only a smal l  amount 
of " trickery," the VMS system cou ld be "con
vinced" to use a disk controller built not out of 
hardware , but out of software ; the two emula-

Digital Technical Journal 
No. 2 March I 'J86 

tors mentioned above provided the necessary 
glue . The emerging RQDX3 firmware coul d  be 
deve loped in the context of a normal VMS 
process, taking ful l  advantage of VMS compil
ers, l inkers ,  and debuggers . Although it took a 
lot of time (and many system crashes) to get 
this technique to work ,  it greatly speeded up 
the job of building all the hardware-indepen
dent modu les . This stage took about fifty per
cent of the total t ime spent to deve lop the 
firmware . 

The next target system was the actual proto
type RQDX3 with an in-circu i t  emulatOr (ICE) 
for the microprocessor and a TTL emu lator for 
one of the gate arrays . Hardware debugging was 
accompl ished first by special code written to 
perform repetitive actions on particu lar por
t ions  of t h e  hardware . T h e n ,  the  ac tua l  
fi rmware , which had  been previously devel 
oped and was, in a sense , known to work, was 
loaded into the hardware . The ICE was a great 
help here since it al lowed RAM to be substi
tuted for ROM; that al lowed a level of symbol i c  
debugging. A t  this point in t h e  process , the 
hardware-dependent modu les were built .  This 
stage took about  th irty percent  of the total 
firmware development time . 

The fi nal  target system was the " bare" 
RQDX 3 ,  with no emulators and real ROM . This 
configuration proved to be identical tO the pre
vious one ( i . e . ,  no problems were fou nd in 
replacing the emulators with real devices) , but 
al lowed prototype boards to be shipped i nter
nally. The firmware of the RQDX3 could now 
be tested by different operating system groups , 
and bugs appropriately  located and fixed.  This 
stage took about twenty percent of the tOta l 
firmware devel opment time . 

Design Verification Testing 

The purpose of design ver ification test ing 
(DVT) i s  to  assess at an early stage whether a 
des ign has any part icu lar  i m p l e mentat ion 
problems . To do that , the board i s  tested agai nst 
a l l  Digita l ' s  applicable standards.  First ,  the lay
out of the board (the etch) is checked by look
ing for noise radiat ion and pickup ,  and for 
undershoot or overshoot on clock l ines.  Then, 
the board is checked thermal ly to see if it can 
withstand both operat ing and nonoperating 
environmental stresses .  Next ,  FCC testing is 
done  to m easure the rad ia ted fre q u e ncy 
spectru m .  Finally, the module is shaken and 

69 

New Products 



dropped tO ensure that no chip fa l ls out of i ts 
socket under normal hand ling conditions . Feed
back from DVT can resu l t  in physical changes tO 
the module ,  perhaps as severe as a new etch 
layout .  

In the case of the RQDX3 , a recommendation 
was made to add resistors to a pair of clock 
l ines in order to dampen undershoot . Fortu
nately, this a l teration did not have much impact 
on the schedul e .  

Reliability a n d  Quality Testing 

The purpose of reliabil ity and qual ity testing 
(RQT) is to demonstrate that the product meets 
ce rta in  m i nimum re l iab i l ity standards , mea
su red as mean time between fa ilures (MTBF) . 
The design team specifies the MTBF and also 
other measures of quality, such as hard and soft 
error rates, both of which affect the perceived 
quality of a disk control ler product .  Then ,  the 
RQT team designs a test that wi l l  demonstrate 
whether or not the product meets or exceeds 
these measura b l e  quant i t i es . Usu a l l y that  
involves bu i ld ing a system (CPU , memory , 
serial l ine interface) t hat includes the product 
under test .  The system runs some level of host 
software that exercises the product for a large 
number of hours under  various temperature 
and humidity extremes.  Designing these tests is 
not an easy task, and indeed the RQDX3 had 
major problems during RQT because of this dif
ficu lty. Feedback from RQT can result  in hard
ware changes,  or firmware changes, or both. 
Ideally, if the product is changed, RQT should 
start again from the beginning.  However, sched
u les will often not al low that and compromises 
must be made .  

A decision affecting a l l  of RQT must be  made 
near the beginning: whether to test the product 
at the system level or at  the module leve l .  Test
ing at the system level impl ies that the system 
MTBF and error rates must be met, and a l l  fai l 
ures, whether related to  the  product under test 
or not, shou ld be counted . Testing at the mod
u le leve l impl ies that the module MTBF and 
error rates must be met, and only fa i lures that 
can be attribu ted to components under test 
should be counted . Clearly, module- level test
ing is preferred since i t  gives the most informa
tion about the new product .  However, modu le
l evel testing is  more difficu l t  because each 
error has to be investigated tO determ ine its 
cause and whether or not it shou ld be cou nted . 
Furthermore, the burden of proof is on the 

70 

design team to verify that the error was not 
caused by their module .  (Gui l ty unti l proven 
innocent ')  

Weighing al l  these factOrs, we decided to test 
the RQDX3 at the mod ule leve l ;  that caused 
most of our RQT problems . A sealed chamber 
was used to control the tests of cycl ing over 
temperature a n d  h u m i di ty extremes . The 
RQDX3 modu les were placed in  this chamber, 
along with the systems into which the modu les 
were plugged .  Part of the testing included read
ing and writing from both floppy disks and 
Winchester d isks .  S ince these disks cou ld not 
withstand the environmental extremes inside 
the chamber, they were p laced outs ide .  Early 
test ing showed that th is setup did not work, 
since the disk drives had to be connected to the 
control lers with lengthy cables, which were 
suscept ible to noise pickup .  This configuration 
was modified to bring the disk drives inside the 
chamber where they were connected tO the 
controllers with normal cables. That e l im inated 
the noise problem, but now d ictated a reduced 
environmental stress on the RQDX3 module  
(from class C to  class A) . 

At first, we encou ntered a higher-than-normal 
rate of soft errors on the floppy disks .  A search 
for the cause of this problem showed that a 
com bination of two separate but  contributing 
problems were responsible .  First, a rare combi
nat ion of events could  cause the data separator 
for the floppy disk to temporarily fa i l  to lock to 
the data stream. Second , most if not a l l  the 
floppy disk drives themselves were not per
forming correctly.  The former problem was 
fixed by a component c ha nge to the data 
separator; the latter, by testing and repairing 
those drives that showed the greatest nu mber of 
soft errors . These two changes reduced the soft 
error rate for the floppy disks to a level we l l  
with in  the range specified by the design team.  

The extensive , and lengthy, RQT also uncov
ered one bug in the error handl i ng of the 
RQDX3 firmware that had never been seen in 
our development lab. The problem cou ld only 
have been experienced by running many, many 
modules in para l leL Of course , the pu rpose of 
RQT is tO catch such problems then instead of 
at custOmers' sites. 

The RQDX3 Architecture 

The mass storage control ler protocol (MSCP) 
defines the commu nication between the host 
processor and the d isk  controller .  Communica-

Digital Technical journal 
No. 2 Mm·ch 1986 



tion occurs using sequences of command pack
ets, generated by the host , and response pack
e t s ,  g e n e r a t e d  by t h e  c o n t ro l l e r .  T h e  
transmission o f  the packets and logical data 
blocks that are to move between the host and 
the controller is defined in the U/Q Storage 
Systems Port (UQSSP) specification .  These two 
spec i fications place the fo l low i ng req u i re 
ments on the contro l ler :  

• Two sequential -word register locations on 
the Q-bus are required . Those are referred to 
as the status and address (SA) register and the 
initialization and pol l  ( IP) register. These 
registers must be able to be assigned at any 
longword boundary within the Q-bus 1/0 
page . 

• The control ler must have the abi l ity to inter
rupt the host processor using a previously 
loaded vector address . 

MICROPROCESSOR 

REVECTOR/FORMAT 
TABLES 

• The control ler must contain enough inte l l i 
gence to  in itialize itself, perform i nternal 
diagnostics, decode command packets , per
form all disk control functions, transfer data, 
and encode response packets . These tasks are 
accomplished on the RQDX3 through the 
use of a DCT l l microprocessor. 

• The control ler must be able to perform DMA 
data transfers on the Q-bus. These transfers 
wil l  be for command and response packets , 
as we i l  as for d isk data. 

The diagram in  Figure 1 shows the flow of 
information in an MSCP control.ler .  MSCP com
mand and response packets flow between the 
memory in the host processor and the on-board 
microprocessor. Disk data flows between the 
memory of the host processor and the disk sur
face . Information dealing with the format of 

HOST 
CPU 

DISK DRIVE 

HOST 
MEMORY 

DATA 

Figure I Information Flow in the RQDX3 

Digital Technical journal 7 1  
No. 2 March 1986 

New Products 



The RQDX3 Design Project 

data on the disk surface (revector tables, format 
tables, etc . )  must be transferred between the 
disk surface and the m icroprocessor. 

Figure 1 shows a centra l ized data buffer ele
ment . I t  is used for temporary storage and as a 
means for smoothing the differences in  data 
transfer rates between the host memory, the 
mi croprocessor, and the disk surface . 

It was decided to implement this centra l ized 
data bu ffer as a three-port memory system .  
Three control elements are provided for the 
transfer of data between each memory port and 
the appropriate source or dest inat ion.  These 
e lements are the Q-bus DMA control ler ,  the 
microprocessor wi th i ts internal bus- interface 
control ler ,  and a VlSI d isk controller with an 

A 
0-BUS 

� 4� 
v 

0 - B U S  � I NT E R FACE 
SU BSYSTEM "'I 

t /)>. 
DATA 

� v 

internal DMA interface . The interconnection of 
these subsystems is shown in Figure 2.  Each 
control e lement assumes that it has the memory 
system for its own dedicated use . The arbitra
tion between these e lements for access to the 
memory devices is handled within the memory 
subsystem .  

The Memory Subsystem 

The memory s u bsys tem con t a i ns a fi n i t e  
sequential -state machine that receives requests 
for memory cycles from the three ports and per
forms the memory cycle for the h ighest-priority 
requesting port . It is required that any port 
reques t i ng a me mory cycle must  have i ts 
address and any required data avai lable before 

t 
CONTROL 
I N FO R M ATION 

� 
MULTIPORT 
M EM O R Y  
SU BSYSTEM 

'-----'� MICR O PROCESSOR ....----------, ----,v// SUBSYSTEM � 

72  

t ,(). ,( 
MSCP PACKETS 

t 
A N D  WORKSPACE 

t 
A D D R ESS 

I 
DATA 

v �  
D I S K  I .11 
I NTERFACE K �'---------' 
S U BSYSTEM I �r---------' 

CONTROL 
I N FO R M ATION 

� 

�ll--------::=-:��--' FRONT P A N E L  B U S  

/ TO DISTR I B UTION BOA R D  
'-

Figure 2 RQDX3 Subsystems 

Digital Technical journal 
No. 2 March 1 986 



posting the request to the memory control ler 
state machine . The principle function of the 
memory system is twofold : fi rst, it a l lows the 
controller attached to a specific port to deposit 
data to be wri tten to the memory in a ho lding 
register; second,  it a l lows the me mory control
ler ro write that data to the RAL\1 devices some
time later. For most read requests, the me mory 
control ler performs a prefetch operation when 
there is an empty output register in one of the 
ports. This operation is possible because the 
accesses by both the d isk and Q-bus controllers 
are known to be sequential , with the next 
address a lways ava i l a b l e  to t h e m e mory 
controller .  

The port of the microprocessor is  an excep
tion to this prefetch operation.  The memory 
controller cannot prefetch the data si nce mem
ory accesses by a microprocessor are not a lways 
sequential . When requesting a cycle from the 
memory, the microprocessor will be "cycle
slipped" (i . e . ,  wait states added to i ts micro
cycle) unti l  the memory controtler determines 
that the microprocessor is the highest-priority 
requesting device . 

The h ighest priority for memory cyc les is 
given to the d isk controller port . Fa i lure to ser
vice this port first wi l l  cause overrun or under
run errors in the disk controller chip,  which 
has l i tt le  buffering.  These error cond i t ions 
wou ld cause serious degradation of system per
formance , since full disk revolutions would be 
wasted retrying the operations. 

The midd le priority is given to the Q-bus 
DMA con trol ler port . This port requires the 
h ighest service rate from the system (approxi
mately 700 nanoseconds per request) . How
ever, the port is capable of slowing itself if it 
cannot be serviced in time by the memory con
trol ler .  Of cou rse , to ach ieve the highest system 
performance and most effic ient  use of the 
Q-bus, i t  is desirable that the Q-bus contro l ler 
never slow down.  

The microprocessor is given the lowest prior
ity for memory cycles . That al lows the normal 
.operation of data transfer between the d is k  and 
host (both disk control ler and Q-bus DMA con
troller active) to be completed as fast as possi
b le .  The microprocessor can use any remaining 
memory bandwidth  for i ts  operation . The 
microprocessor uses the shared memory for 
both temporary storage and its  operational 

Digital Technical }ow-n a/ 
No. 2 Marcb I ')8(j 

stack. Since its use of that memory will be infre
quent,  the microprocessor will not be affected 
by any loss in memory response . 

A prototype of the memory subsystem was 
bui l t  to measure the amount of bandwidth 
available tO the individual ports and tO deter
m ine the effect of arbitration between the 
ports . A worst-case condition of requests from 
a l l  ports was created and the bandwidth used by 
each was measured .  With any two ports oper
ating at their fu l l  speed , there was no measura
ble reduction in service rate from that of the 
ports running independently . When all  three 
ports were operating, the disk port lost no 
memory bandwidth, the Q-bus port lost only 
one percent of its requested bandwidth, and the 
microp rocessor lost  e ig h t  percent  of i ts 
requested bandwidth.  

These observations dur i ng worst-case condi 
tions indicated that all three ports are capable 
of operating at fu ll speed with their normal 
request patterns. This feature of the RQ DX3 
allows it ro overlap disk data transfers, Q-bus 
DMA transfers, and microprocessor operat ions 
to achieve maximu m performance . 

The memory controller is implemented using 
a field programmable logic sequencer (FPLS) 
and an external input  sychronizer. Even though 
gate-array technology was used for the majority 
of the datapath on this module ,  it was felt that 
bu i lding the state mach ine in the gate array was 
too risky for the project schedule.  The state 
machine was therefore placed outside the gate 
array. Only a few gate array pins connect it to 
the datapath elements that it controls . 

The memory control le r  also incorporates 
some features to aid in the test and repair of the 
module .  After module init ia li zation , an input 
signal is asserted to force the memory control
ler tO honor only those requests coming from 
the microprocessor. Without that,  a hardware 
fai lure in e ither the disk controller or the Q-bus 
DMA control ler could constantly requ est mem
ory cycles and cause the microprocessor to 
" hang" on its first access to memory. With this 
signal asserted , the microprocessor can initiate 
the module d iagnostics in a small ,  isolated envi
ronment that enables the microprocessor, ROM 
and RAM devices, and I/0 page registers to be 
tested . The microprocessor can then clear the 
signal later in its diagnostics, thus completing 
the module testing. 

73 

New Products 



The RQDX3 Design Project 

The Microprocessor Subsystem 

The microprocessor subsystem of the RQDX3 
module is made up of a DCT l l m icroprocessor, 
1 6K words of EPROM memory, a front-panel 
interface , and a prioritizing interrupt circu it .  

Although many d i fferent m icroprocessors 
could have been used, the choice of the DCT1 1 
was made with the fol lowing criteria in mind : 

• A 1 6-bit microprocessor cou ld handle the 
MSC P requ irements adequately, while an 
8-bit microprocessor would be strained and a 
3 2 -bit microprocessor might be an overki l l .  

• A multiplexed address-and-data bus would 
reduce the  n u m ber of gate array pins  
requ ired . 

• A rich, orthogonal instruction set (PDP- 1 1 
system) that cou ld be easily understood 
should be used . 

• The m icroprocessor should be able to be 
programmed in  a high-level language . Much 
of  the code for this  modul e  wou ld be written 
in the C programming language . 

• Relatively fast execution speed is desired .  

• Avai lable hardware and software develop
ment tools shou ld be used . 

• Our past design experience shou l d  be  
exploited to  improve the product's time to 
market.  

The Q- bus Subsystem 

The Q-bus subsystem of this module is made up 
of the programmed 1/0 section ,  the Q-bus D MA 
controller section and the Q-bus interrupt sec
tion . The Q-bus DMA controller i s  composed of 
a finite sequential-state machine and associated 
datapath elements that are used to perform both 
block-mode and nonblock-mode Q-bus cycles .  
The state machine is implemented in  a fie ld
programmable logic sequencer rather than a 
gate array to el iminate the risk of schedu le 
delays due to coding errors . Howeve r, the 
datapath elements needed to support the state 
machine are contained within the gate array 
devices. Some of the features of this controller 
are 

• Ful l  2 2 -bit Q-bus addressing 

• A 1 6-bit DMA word counter 

• Q-bus memory parity detection 

74 

• Ful l ,  effic ient  i mp le mentat ion of Q-bus 
block-mode transfers 

• A programmable holdoff timer to regu late 
the Q-bus activity 

The Disk Controller Subsystem 

The disk controller su bsystem had to provide 
the control and datapath fu nctions for both 
floppy and hard d isk drives in  the smal lest 
space and for the least cost. This requirement 
was satisfied by using a VlSI disk controller 
device . 

The RQDX3 data separator is designed to 
receive the encoded data stream from the disk 
and convert it  into a binary data stream and 
clock, both of which are then fed to the disk 
controller chip .  The data separator is designed 
to operate at three different data frequencies tO 
be compatible with the avai lable range of 
Winchester and floppy disk drives. The fre
quencies for each type of drive are as fol lows : 

• 5 -MHz MFM encoded data recovery from 
ST4 1 2  Winchester disks (RDSX type) 

• 5 0 0-KHz M FM encoded data from high
speed , h igh-dens i ty floppy d isks ( RX 3 3  
type) 

• 2 50 -KHz MFM encoded data from standard 
double-density floppy disks ( RX50 type) 

The data recovery system for the RQDX3 is a 
unique MFM data recovery circuit that is very 
close to ideal .  In  short , with proper matching 
of the device delays, the recovery window is 
+50 nanoseconds, or one hundred percent of 
the window .  This a lmost ideal data recovery is 
made possible by the fol lowing conditions : 

• A solid and precise phase locked loop is 
used .  

• The MFM encoding rules specify a 1 00 -
nanosecond "nul l"  period after each flux 
transi tion . This period is used to reset the 
edge store and compensation flip-flops of the 
circuit .  

• The VCO output has a fifty percent duty 
cycle .  

• The logic delay paths in the  data separatOr 
circu its are carefu l ly matched.  This matching 
was accom p l i s h e d  by device match in g  
within the gate array that implements this 
function. Carefu l simulation of this logic was 
carried out to prove this operation . 

Digital Tecbnicaljournal 
No. 2 March 1986 



The Structure of the Firmware 

The firmware had to be designed to take fu l l  
advantage of  the paral lelism provided by the 
chosen hardware architectu re . Therefore, the 
RQDX3 firmware consists of a set of cooperat
ing routines, or jobs, each of which performs a 
dedicated fu nction . Each job has its own stack 
and thus i ts own context and state informat ion . 
Any operations that could possibly run in para l
lel have been separated and are control led by 
separate jobs . A small  operating system kernel 
provides facil ities for creating new jobs, sus
pending and resu ming execution of a given job, 
acqu iring exclusive access to shared resources 
and later re leasing those resources, and sched
u l ing jobs tO ru n based upon priority and 
resource contention cri teria . This kernel pro
vides a controlled way of overlapping opera
tions . That effectively  means that the RQDX3 
can be simu ltaneously seeking on one or more 
drives, reading or writing from another drive, 
and transferring data to or from the host, a l l  
while perform ing calculations relat ing either ro 
the current transfer or tO a pending transfer. 

Performance Tests 

The main performance goal was to be able ro 
sustain a high data-transfer rate for large trans
fers . In a typical situation, the VMS system uses 
the disk to swap, page , and load images .  The 
RQDX3 is tuned so that these operat ions are 
completed as rapidly as poss ible .  Maximum sus
tained data transfer rates of 4 2 0 KB  per second 
have been measured, compared ro 1 7 0 KB  per 
second on the RQDX2 . Such workloads are 
atypical ,  though, and do not give a good indica
tion of overa l l  system performance . When 
tested with a workload of from one to fifteen 
users on a MicroVAX I I  syste m ,  the RQDX3 is 
faster than the RQDX2,  but sl ightly slower than 
the KDAS O .  This relationship is more in li ne 
with the performance based on theoretica l cal
culations. A user work load generates a lot of 
seeking, and the RD-class disks control led by 
the RQDX2 and RQDX3 seek more slowly than 
the RA-class disks control led by the KDASO .  

Higher performance can be ga ined by split
ting the disk activity among two, three , or even 
four disks .  The RQDX3 has the abili ty to keep 
a l l  four  drives seeking at the same time.  For 
smal l  transfers, seek time dom inates , and an 
increase in system throughput of thirty-five ro 

Digital Technical journal 
No. 2 March I ')86 

forty percent can be rea lized . For large trans · 
fers, seek time is sti l l  important but decreases 
in s i g n i fi c a n c e ; t h e  i n c rease in sys tem 
throughput may only be twenty percent . The 
RQ DX2 does not take advantage of separate sys
tem and user disks; however, the RQDX3 wil l .  

Higher performance o n  a single drive can be 
achieved by queuing mu ltiple requests to the 
RQDX 3 .  The MSCP prorocol al lows these m u lt i 
p le  requests to be automatically reordered by 
the control ler to reduce the average seek t ime.  
For  example , the contro l ler  cou ld always 
choose the request with the shortest seek time 
instead of the first request in its queue . An 
increase in system throughput of thirty to forty 
percent occurs when the nu mber of outstand
ing 1/0 requests increases from one tO twelve . 

Summary 

The RQDX3 design project carne close to meet
ing all its design goa ls. There were 40 working 
un its exactly one year after the project began . 
However, problems in the re liabili ty test setup, 
which de layed the manufacturing start u p ,  
caused our first customer shipment t o  s l i p .  The 
cost, performance , and module-size goa ls were 
a l l  met ro the satisfaction of the design tea m .  
The high yields i n  manufacturing can be attrib
uted to the quality of both the design and the 
manufacturing process . Without the structu red 
design process and the team's adherence to it ,  
this project wou ld not have been successfu l .  

References 

1 .  W. I .  Fletcher, An Engineering Approach 

to Digital Design ( Englewood C l i ffs : 
Prentice-Hal l ,  1 9 80 ) .  

7 5  

New Products 



Kathleen D. Morse I Lawrence ]. Kenah 

The Evolution of 
Instruction Emulation 
for the Micro VAX Systems 

The Micro VAX CPU, the 78032 chip, implements a subset of the VAX 
instruction set, yet the operating system must support the full set. To 
accomplish that, the Micro VMS developers decided to emulate the miss
ing instructions-floating point, packed decimal, and character string 
instructions-in software. Since hardware and software were developed 
in paraUel, a VAX-11/730 system, with its microcode rewritten to make it 
act like Micro VAX hardware, was used as a test vehicle. The perfonnance 
measurements indicated excessively long execution times. The hardware 
design was extended to assist the software emulation task. The final 
emulator was also used in the UL TRIX-32 and VAXELN systems. 

When Digital Equipment Corporation decided 
to implement the VAX architecture ' in s i l icon, 
i t  was clear that the entire instruction set coul d  
not b e  implemented o n  a single chip. To deter
mine what  could be implemented , a team of 
software and hardware engineers was formed to 
identify the best subset of the VAX instructi ons 
that woul d  fit .  As a consequence, the software 
engineers had to find ways to provide su pport 
in the operating system for those i nstructions 
removed from the base machine .  This paper dis
cusses  how t ha t  e m u l a t i o n  s u p port  was 
provided . 

Micro VAX A rchitecture 

The amount of microcode needed to implement 
an instruction is a good measure of the amount 
of space needed on a chip tO implement the 
same instruction. Microcode size thus became 
one measure used in determ i n i n g  w h i c h  
instructions t O  move off the chip.  A second cri
terion was the frequency with which particu lar 
instructions are used . For example , integer and 
logical instructions are used very heavily and 
their frequency of use is independent of the 
appl ication area . Floating point instructions 
appear most frequently in scientific  and engi
neering computations . Packed decimal instruc
tions are more common in certain commercial 
appl ications. Eventually,  by balancing these 

76 

considerations , the engineers i dentified a sub
set of the VAX instruction set that would fit on 
one chip .  That subset became the definition of 
the MicroVAX architecture . (The subset archi
tecture also differed from the ful l  VAX archi tec
ture in  such areas as the console subsystem . )  

Once the  MicroVAX architecture was com
p leted, the hardware and software teams began 
independent development efforts . Since a major 
project goal was tO minimize the time to mar
k e t ,  o n e  h a r dwa re tea m i nv e s t i ga t e d  a 
MicroVAX implementation (the MicroVAX I sys
tem) that used semicustom logic instead of a 
single chip .  A second hardware team started the 
design of the MicroVAX chip itself , and a th ird 
team in itiated the design of the implementation 
(the MicroVAX I I  system) that would incorpo
rate that chip .  At the same t ime,  the softv.rare 
teams began their  investigations of how to 
enhance the VMS, ULTRIX-3 2 ,  and VAXELN 
operating systems in order to ru n these new 
mach ines .  The software des igns were influ 
enced in part by the need to implement and test 
the missing- instruction software emu lat ion 
before any hardware was available .  

Operating System Support 

The major d iffe rence between the software 
architectures of the MicroVAX and the fu l l  VAX 
systems is the group of instructions that were 

Digital Technical journal 
No. 2 March I 986 



not implemented in  the chip hardware . This 
group consists of 

• Floating point instructions 

• Packed decimal instructions 

• Character string instructions 

(The MicroVAX architecture included the 
MOVC3 and MOVC5 instructions because they 
were heavily used in fu ndamental rout ines, 
such as copying or fi l l ing memory arrays . )  

Each of  the three operating systems was sup
ported by a d i ffe re nt design grou p .  These 
groups had to decide which course of action to 
take to accommodate the reduced number of 
instructions that would  be implemented in 
microcode.  The fol lowing alternatives were the 
most realistic courses to tak e :  

1 .  All compilers and assemblers could be 
changed to el iminate all uses of the miss
ing instructions . 

2 .  Emulation subrouti nes that appl ications 
could l ink into their programs could be 
suppl ied .  (VMS used this method on 
early VAX models that did not include 
h a rdware s u p p o r t  for t h e  G a n d  
H floating point data types.) 

3 .  The emulat ion subrout ines could be 
implemented so that their use would be 
invisible to application programs and 
even to most of the operating system.  

The VMS Decisio n Process 

The VMS design team began a study to deter
mine the extent to which the m issing instruc
tions were used in the operating system code ,  
including all  the various VMS ut i l ity programs. 
As expected, the character string i nstruct ions 
were used most frequently and, in fact ,  were 
more widely used than expected .  The CMPC 3 ,  
CMPC5 , and LOCC instructions were the most 
frequently used string i nstructions, occurring 
almost everywhere that ASCI I  text was manipu
lated ( for exam ple ,  in device names , fi le 
names, and DCL commands) . All software that 
included some kind of bi tmap (about six to ten 
different areas, ranging from the file system to 
memory management) used the SCANC and 
SPANC instructions. A large nu mber of table
lookup designs (including DCL and u til ity com
mand parsers) used the MATCHC,  MOVTC, and 
MOVTUC instructions . Finally, the CRC instru c-

Digital Technical journal 
No. 2 March 1986 

tion was used by the BACKUP uti l ity and by the 
DECnet code . 

Very few data types were used outside their 
realms and only a few unexpected sequences 
were found that used the missing instructions. 
One example was the use of the CVTLF instruc
t ion in the VMS kernel to determ ine the small
est power of 2 larger than a given integer. A 
second example was the use of the CVTLP 
instruction i n  the FORTRAN run-t ime support 
l ibrary as a quick method for converting binary 
representations to text .  

Once the extent of  the missing instruction 
usage was determined, the design team consid
ered the number of compilers that were sup
ported by the VMS operating system.  In  al l ,  over 
fifteen different languages are supported .3 The 
first alternative, changing t he compi lers and 
assemblers, would requi re that the code gener
ators for each product be changed. Moreover, 
new versions of the VMS operating system and 
al l  i ts layered products would have to be gener
a ted using these new compilers . That would 
involve a significant investment of manpower, 
not just  to enhance the compilers, but to pro
vide ongoing support to maintain each product .  
In addition, two variants of each new version of 
each product would have to be produced . A 
l ikely side effect was that these changes would  
probably cause other development groups to 
l imit most layered produ cts to the MicroVAX 
subset on all VAX machines . I n  that way, each 
group wou ld have to maintain only one version 
of their product .  

Another consideration was the effect that the 
first or second alternatives wou ld have on the 
marketing of MicroVAX systems . Customers and 
Digita l ' s  software engineers had become accus
tomed to developing software on one machine 
and executing it transparently on any other 
machine in  the VAX family. That wou ld not 
have been possible under ei ther of the first two 
alternatives. 

Through this reasoning process, it became 
obvious that the correct choice was the third 
alternative, to design for software emulation 
and make it  transparent to both appl ications 
and operating system code . While requ iring a 
concentrated effort to write the emulation sup
port , the overal l  effort for software emulation 
was much smal ler than removing the use of the 
missing instructions from existing software and 
com piler code generators . The effort was also 

77 

New Products 



isolated. While some new code was needed, the 
number of changes to existing components was 
minimized . These changes were confined to the 
exception handler and the startup routi nes for 
the operating system .  Finally, transparent emu
lation of all missing instructions would guaran
tee that systems implementing the MicroVAX 
architecture would be fully compatible with 
the VAX family of machines. 

Implementation 

As mentioned earlier, the MicroVAX program 
was geared to a tight time-to-market schedule . 
That made i t  highly desirable to develop the 
hardware and software in parallel as much as 
possible . The VMS design team decided to 
implement the emulation code and debug i t  
long before the hardware design specifications 
for a particular MicroVAX implementation were 
written .  In this way, the emu lation code would 
be finished and working by the time the first 
MicroVAX hardware was ready to be debugged .  

Design of the Emulator 

At this point in the project ,  several decisions 
were made relating to the design and imple
mentation of the MicroVMS instruction emula
tor . The emulation routines would be devel
oped and tested by the VMS Deve lopment 
Group.  These routines would attempt to avoid 
features or coding techniques specific to the 
VMS operating system .  Thus the same emulation 
source code for the instructions could be used 
later by the ULTRIX-32  and VAXELN Develop
ment Groups. 

The emu lation support was divided into two 
pieces. The first supported character string and 
packed decimal instructions (including CRC 
and EDITPC) ; the other, floating point data 
types .  From the beginning of the MicroVAX 
effort , system configurations would be offered 
that provided some sort of floating point sup
port in hardware . 4 That fact i nfluenced the 
design of the two pieces in the emulator. 

Software support for floating point  was 
viewed as a technique for ru nning programs 
that contained small amounts of floating point 
computation. Applications that depended heav
ily on floating point operations would likely be 
run on systems that had floating point support 
in the hardware . Conversely, applications that 
depended heavily on packed decimal or charac
ter operations did not have a hardware option at 
their disposal .  The decimaljstring emulator 

78 

reflects that in  several places where space is 
sacrificed i n  an effort to speed up the emula
tion subroutines . 

Struc ture of the Em ulator 

Once the two pieces were designed, the actual 
coding began .  Each of the two emulation com
ponents was further divided into an operand 
decode piece and an i nstruction execution 
piece . 

The operand decoder was a straightforward 
fini te-state machine .  It parsed the instruction 
stream one operand at a time , placing results 
into registers " appropriate" to each instruc
tion . The register assignments were usually 
made by examining the expected register con
tents after each instruction had completed its 
execution.  For example,  the final state of a 
CMPC5 instruction suggests that R 1 and R3 be 
used as pointers to the two character strings, 
while RO and R2 contain the in itial s izes of the 
strings . 

The instruction execution routines were sim
ple subroutines that accepted input parameters 
in registers and produced output conforming to 
the architectural specification of the instruc
tions. For example, after the execution of an 
ADDP4 instruction , RO and R2 contain zero, Rl 
and R3 locate the addend and sum strings , and 
the other registers are preserved .  

At  the  outset ,  several other decisions were 
made that simplified the design and implemen
tation of the emulator. 

• Emulation support was provided transpar
ently by being implemented at a very low 
level in the operating system. 

• Emulation subroutines were executed in the 
access mode of the missing instruction.  

• The existing emulation support for G and 
H floating point data types would  serve as a 
base for fu l l  fl oat ing p o i n t  e m u lat ion  
support. 

Tra nsparent Support 

To emu late the missing instructions transpar
ently, the emulators had to become an integral 
part of the operating sys tem.  They were loaded 
into system space during the system bootstrap 
and connected directly to the reserved-opcode 
exception vector in the system control block. 
Whe n e v e r  a r e s e rv e d - o p c o d e  e x c e p t i o n  
occurred,  t h e  emulator woul d  dist ingu ish the 

Digital TecbntcaJ ]ournm 
No. 2 March 1986 



execution of a mJssmg instruction from other 
i l l ega l opcodes.  Missing i nstructions would 
cause a control transfer tO the appropriate emu
lation subroutines. Other l l legal opcodes were 
passed on to the operating system as excep
tions. Since the host operating system provided 
support in a transparent fashion , existing pro
grams cou ld execute on a M icroVAX system 
without being changed.  

A ccess Mode of Execution 
The reserved-opcode exception handler had to 
begin its execution in kernel mode , as defined 
by the VAX architecture . However, if the emula
tOr routines cont inued in  that mod e ,  the 
address val idation rules demanded that not only 
each operand but also each byte in a character 
string be probed for read or write access before 
that operand could be used. Because of the 
excessive cost of these operations, we decided 
that the emulator routines would execute in the 
access mode in which the missing instruction 
was used . If an operand or string was not acces
s ible ,  an access violation exception would 
occur, which could be intercepted for special 
processing by the emulator. 

The Use of Existing Routines 
An emulator for G and H floating point data 
types already existed . I nstead of completely 
rewrit ing this emu lator to accommodate a l l  
four data types, it was restructured to separate 
its operand packi ng and u npacking routines 
from the arithmetic and conversion operations . 
Then ,  additional packing and u npacking rou 
tines were added for F and D floating point data 
types. Also, the overall structure of the floating 
point emu lator was changed from a condition 
handler to an in tegral piece of the operating 
system .  (A condition handler executes only 
within user programs, while an integral compo
nent wou ld receive control whenever a missing 
floating point i nstruction is executed .)  

In itial Testing 

I t  was obvious that a testbed was needed to 
enable the design team to debug the emu lation 
software. Some method was needed to force the 
emulation software to gain control in order to 
execu te the missing i nstructions. S ince the VMS 
macro assembler can substitute a macro for an 
instruction opcode , macros cou ld be used to 
cause the assembler to take speci a l  action 

Digital Technical journal 
No. 2 March 1 986 

whenever it encountered any of the missing 
instructions . 

A set of macros was written that caused spe
cial object code to be generated whenever any 
of the missing instructions was encountered.  
This special object code consisted of a byte 
containing the i l l egal opcode FE (hex) , the 
opcode for the i nstruction ,  and all the operand 
specifiers . When one of these i nstructions was 
executed,  a reserved-opcode exception was 
generated.  A special exception handler wou ld 
then advance the PC from the byte containing 
the FE opcode to the actual opcode . Control 
was then passed to the instruction emulator. 
One of these macros is  l isted in Figure l .  

Using these macros, programs written i n  
assembly language coul d  be reassembled and 
executed using software emu lation for the miss
ing instructions . Thus any existing VAX proces
sor, such as a VAX- 1 1 /7 3 0  system, could be 
used as a testbed for the software emulation .  

Results of In itial Tests 

One key factor to determine was the i ncrease in  
execution t ime requ ired by software emulation 
for different parts of the operating system and 
for appl ication programs. To determine these 
differences, the VMS Performance Grou p at 
D igital ran standard i nstruction-timing tests 
against the emulation code . Because these tests 
were run on an existing VAX processor, the exe
cution times for emulated instructions could be 
compared to those done in hardware on the 
same VAX processor. These test results showed 
that it took about ten times longer to emulate 
character string i nstructions than to execute 
them in hardware . 

To determine the reasons for this disparity, 
the design team performed a close i nspection 
of the emu lation code . Quite quickly it became 
obvious that, for the simpler string i nstructions, 
the operand decode required as much time as 
the i nstruction execution . To speed up the 
emulated instructions, hardware support was 
requested by the MicroVMS team.  

To support this request , we made a l ist of  the 
operand types for the missing character string 
and packed decimal instructions. There were 
only 5 operand types in a l l  27 i nstructions . 
These operand types were already being used 
by i ns t ruct ions  that  were a part  of the  
MicroVAX subset, such as  M OVC3 and MOVC5 . 
A meeting of the hardware and software teams 

79 

New Products 



The Evolution of Instruction Emulation for the Micro VAX Systems 

. t i t l e  l o c c t s t  
$ o p d e f  

R e d e f i n e t h e  L O C C  o p c o d e  w i t h  a n e w L O C C  ma c r o  

. o p d e f  l o c c _ f e  < < o p $ _ l o c c @ 8 > ! A x f e > , r b , r w , a b 

. m a c r o  l a c e  
l o c c _ f e  

c h a r . r b , l e n . r w , a d d r . a b 
c h a r . r b , l e n . r w , a d d r . a b 

d e s c : 

. e n d m  l a c e  

. a s c i d  " T h i s  i s  a t e s t "  ; T e s t d a t a  f o r  L O C C  

; T e s t  p r o g r a m t o  t r y a L O C C  i n s t r u c t i o n . 

. e n t r y  s t a r t _ h e r e , O  
l a c e  < H A a "  " > , d e s c , @ d e s c + 4  
m o v z w l  H 1 , r 0 
r e t  
. e n d  s t a r t _ h e r e  

E n t r y p o i n t  f o r  t e s t  p r o g r a m 
G e n e r a t e  a n  e m u l a t e d  L O C C  
S t a n d a r d  e x i t  s t a t u s  c o d e  
E x i t f r o m  p r o g r a m 
E n d  o f  t e s t  p r o g r a m 

Figure 1 Test Program with Macro for L OCC Instruction 

concluded that there would  be l i ttle cost to the 
underlying hardware if  these operands were 
decoded before a missing instruction exception 
was signaled . 

Design of New Emulation Exceptions 

The result of that meeting was that two new 
exceptions were added to the MicroVAX archi
tecture as emulation assists. Since the hardware 
cou ld easily decode the operands for the char
acter string and decimal stri ng instructions, 
they were defined as the ones that the new 
exceptions woul d  support . Thus,  two of the 
three i nstruction types not implemented in 
hardware cou ld  now be handled effective ly. 
The third type , floating point instructions ,  
woul d  cont inue to cause reserved-opcode 
exceptions, s ince their operands cou ld not be 
decoded without significant additional hard
ware support . (A separate floating point unit ,  
the MicroVAX 78 1 3 2 chip, provides this hard
ware support for three of the four floating point 
data types.) 4 

The first exception is generated whenever a 
character string or decimal string instruction 
that is not in the hardware subset is executed .  
The process causes the hardware to decode the 
operands and push the exception parameters 
onto the current stack .  The exception parame
ters are depicted in Figure 2 .  

The second exception occurs only when one 
of the emulated instructions is  executed and 
the first-part-done (FPD) bit is set in the pro-

80 

gram status longword (PSL) . The VAX architec
ture allows many instructions (including a l l  the 
decimal and character string instructions) to be 
interrupted after partial execution. The original 
operand specifiers cannot be decoded again 
because the register contentS may have been 
altered to store the intermediate results .  When 
this second exception occurs, the exception 
handler unpacks the intermediate resu lts and 
resumes execution at the point where the 
i nstruction was interrupted.  

1---

� 

OPCODE 

PC OF INSTRUCTION 

DECO DED FI RST OPERAND 

OTH ER 
DECODED 
OPERANDS 

U P DATED PC 

PSL OF EXCEPTION 

-

'"' 

-

Figure 2 Exception Parameters for 

Emulation Assist Exception 

Digital Technical journal 
No. 2 March I 986 



Note that this second exception can occur 
only when an access violation has a l ready 
occurred during instruction emulation . I n  that 
case , the operating system's  access violation 
handler  transfers control to the emu lator .  
Enough intermediate state is  stored i n  the regis
ters to al low restarting the instruction,  at which 
time the stack is restored to its state when the 
instruction began execution . Then the excep
tion PC is changed from a PC i nside the emula
tor to the PC of the original instruction that 
triggered emulation.  Final ly ,  control is  passed 
back to the operat ing system's  exception 
report ing mechanism . ( Page fau lts ,  device 
interrupts, and the l ike are i nvisible to the user 
and require no special handling.  That is ,  there 
is no need to pack the state i nto the registers 
and a lter the saved PC.)  

Final Design of the Instruction 
Emulators 

The final design produced emulation support 
in two pieces: one for the missing floating point 
i nstructions; the other for packed decimal and 
character string i nstructions. Although the two 
emulatOr programs supported different data 
types, their overall design contained many com
mon threads . This section describes the com
mon design philosophy, as well as the step-by
step operation of each emulator. 

Common Design Philosophy 
Nearly a l l  the emulation code executes in the 
access mode in which each missing i nstruction 
was origina l ly executed. The stack associated 
with that access mode is used as a working stor
age area for the emulation routines . 

The emulation of m issing instructions is 
nearly invisible to programs in  the sense that 
memory and register contents are identical co 
those obtained on ful l  VAX implementations . 
The only difference between the emu lated and 
hardware i m p l e m e ntat ions i s  in the t ime 
requ ired to  complete an instruction and i n  the 
stack remnants from the emulator's temporary 
storage area.  (Memory locations at small nega
tive offsets from the top of the stack are speci
fi e d  as U N P R E D I CTAB L E  i n  t h e  VAX 
architecture . )  

The two emulator p ieces share a common 
phi losophy, if not common code , in regards to 
the two memory management faults .  One fault  

Digital Technical Journal 
No. 2 March 1 986 

is made in response to an inva lid page and the 
other when a reference is made to a page that is 
not readable or writable as requ ired . 

No special treatment is requ ired for page 
faults (trans lation-not-valid faults) . If  an invalid 
page is referenced by the emulator, a page-fault 
exception is reported to the operating system.  
The PC in  the page-fault frame points at the 
instruction within the emu lator that referenced 
the inval id page . After the operating system 
makes the page val id ,  execution resumes with 
the faulting instruction . 

References to pages that are not accessible 
(access-violation fau lts) are more complicated 
than the page fau l ts .  Access-vio lation fau Its ,  
unlike references to i nvalid pages, are visible at 
t h e  p r ogram l ev e l . W h e n  t h e  e m u l a t o r  
intercepts the exception,  the fau lting P C  points 
at the emulator instruction that references the 
inaccessible page . The stack contains working 
storage that must be removed and saved regis
ters that must be restored.  I n  that way, the 
exception looks l ike an access violation gener
ated on a fu l l  VAX implementation . For most 
floating point instructions, an access violation 
implies that the state of the machine wi l l  be 
reset to its state when the instruction began .  For 
the decimal ,  string, and POLYx i nstructions, 
the i nstruction can be left in a partially com
pleted state . The intermediate context is scored 
in the registers and the FPD bit  is set in the 
saved PSL .  This bi t  a l lows the emu lator to 
resu me these instructions at  the point where 
they left off, rather than restarting them from 
the beginning (assuming that the access viola
tion can be resolved) . 

Floating Point Emulation Support 
The program that emulates the missing floati ng 
point instructions in software differs in several 
details from the decimaljstring emulation rou
tines . In floating point emulation , the functions 
are performed in  the fol lowing order: 

1 .  Execution begins i n  kernel mode as a 
resu lt of a reserved-opcode exception . 

2 .  I f  the exception occurs i n  a mode other 
than kernel ,  the exception parameters 
are copied to the stack of that access 
mode . Further emulation takes place in 
that access mode. 

3 .  Each operand i s  decoded . 

8 1  

New Products 



The Evolution of Instruction Emulation for the Micro VAX .�ystems 

4 .  Floating point operands are u npacked 
into exponent and mantissa . 

5 .  The operation (ar i thmetic or conver
sion) is  performed . 

6 .  I f  the result is a floating point nu mber, 
the resulting exponent and mantissa are 
packed into a single number. 

7 .  The resu It is stored and the exception 
dism issed . 

Before the exception is dism issed , the float
ing point emulatOr exami nes the opcode of the 
next instruction . If  it is also a floating point 
instruction, then control is passed back co the 
beginning of the emu lator tO begin the operand 
decode for the next instruction . This technique 
saves the overhead of dismissing one exception 
and i m m ediate ly  generat i ng an ident ica l 
reserved-opcode exception . 

The nature of floating point  operations 
al lows many instructions to accomplish their 
resu lts by sharing different routines. There are 
routines that can u npack and pack each of the 
four floating point data types. There are also 
routines that perform the various arith metic 
and conversion operations . Because these rou
tines operate on unpacked numbers, the rou
tines are independent of the initial data type. 

The floating point emu lation routines sup
port all four floating point data types . Thus the 
routines can be used with all MicroVAX systems 
and other VAX systems that do not implement 
all four  floating point data types in  firmware or 
hardware . 

Decimal/String Emulation Support 

The emulation of a character string or packed 
decimal instruction proceeds as fol lows : 

82 

1 .  Execution begins in the access mode in  
which the missing instruction was origi
naily used . 

2 .  Operands are moved from the stack into 
registers and control is passed to a n  
instruction-specific routine_  

3 .  Some instruction results (for example, 
from MOVTC, MOVTUC,  and packed 
decimal arithmetic and conversions) are 
s t o r e d  w h i l e  t h e s e  r o u t i n e s  a r e  
executing. 

4 .  The rou tine executes until an input or 
ou tpu t string is used up, at which time it 
completes the storage of resu lts .  Execu
t i o n  i s  r e s u m e d  w i t h  t h e  n e x t  
instruction . 

Because the decimal/string emulator rel ies 
on hardware for its operand decode stage , the 
lookahead technique used by the floating point 
emu lator cannot be used for decimal  and string 
instructions . I f  the i nstruction fol l owing an 
emulated instruction also requ ires emulation 
support, the fo l lowing sequence takes place : 

1 .  The first exception is dismissed .  

2 .  The next instruction is execu ted . 

3 .  The operands of t hat i nstruction are 
decoded and stored on the stac k. 

4 .  The decimal/string e m ulatOr  regains  
contro l . 

Since these instructions perform many unre 
lated operations, t here is l i ttle code that can be 
shared between their emulation rou tines. 

Testing and Debugging 

The main problem i n  testing the emu lation 
software i n i t ia l ly was tha t  t h e re was no 
MicroVAX hardware avai lable du ring most of 
the implementation cyc le .  Thus we had to 
deve lop techniques to simu late the hardware in 
order to begin the tests . There were two chief 
techniques used to test and debug the emula
tor .  First ,  instru ction-specific routines were 
tested as user-mode programs in a normal pro
gram development environ ment . Second ,  the 
exception handler front-end was tested on a 
VAX - 1 1 /7 3 0  system that was m od ified ,  by 
rewriting some of the 1 1 /730 mi crocode,  to act 
l ike a MicroVAX system .  

Instruction-Specific Testing 

Microcode written for a particular implementa
tion (both VAX and MicroVAX systems) can be 
used only on that particu lar machine or a simu
lation of that machine . However, macro-level 
code can be executed on any VAX processor. 
Therefore , since the emu lation routines were 
written in macro-level code that executes on 
any VAX p rocessor ,  " normal " deb ugging 

Digital Tecl:mical journal 
No. 2 March 1986 



techniques could be used for part of the debug 
effort . 

A set of test programs was constructed that 
would run on other VAX processors ( 1 1 /7 3 0 ,  
1 1 /7 5 0 ,  a n d  1 1 /780) . These test programs 
would call each instruction-specific subroutine 
and compare the resu lts (memory contents, reg
ister contents , and settings of the condition 
codes) with the output from the corresponding 
instru c tions executed on those processors . 
These tests a llowed the basic a lgorithms to be 
debugged even before they were plugged i nto 
the emulator . The set of tests was l imited only 
by the choice of input data for each instruction .  

The first  set  o f  tests  u nc overed m o s t  
algorithmic problems b u t  d i d  not exercise the 
error paths (such as inaccessible source or des
t ination strings) . The code to handle these error 
conditions was written later in the develop
ment cycle .  Neither the absence of these error 
paths nor errors in edge conditions (such as 
zero-length strings) prevented the VMS system 
from executing. 

Another benefit of a macrocode implementa
tion was seen during the debug of the edge
condition problems. Since the instruction emu
lation routines were just an extension of the 
operating system,  the debugging tools used for 
other operating system code cou ld be used to 
debug the emulator. 

Testing the VAX- 1 1/73 0  Breadboard 
Implementation 

The avai lab i l i ty of the two new emu lation 
exceptions changed the strategy for debugging 
the emulation code . The software solution used 
to obtain prel iminary resu lts was u nable to 
mimic the new exceptions invented to assist 
the emulation .  Therefore , a new testbed was 
needed to accommodate the debugging pro
cess . The testbed had to decode the operands 
and generate the appropriate exceptions to pass 
control to the software emulation code . One 
way to perform these functions was to alter an 
existing VAX system, such as the VAX- 1 1 /7 3 0  
processor. 

The 1 1 /730 is an entirely "soft" machine; 
that is ,  all its microcode is  loaded at powerup 
rather than being resident in ROM. By altering 
that microcode, the design team could make 
the 1 1 / 7 3 0  look l ike the architecture in  a 
M icroVAX system .  The required changes were 
simply a matter of removing the microcode for 

Digital Technical journal 
No. 2 March 1 986 

instruction execution while leaving that for 
operand decode . To finish the alterations, the 
design team had to write a new "exception gen
erator" to create the emulation exceptions . 

At this t ime in the project, the first real 
MicroVAX hardware wou ld stil l  not be avai lable 
for nine months. Therefore , the VMS design 
team decided to undertake the modifications to 
the 1 1 /7 3 0 's microcode and to b u i l d  t he 
testbed.  We estimated that this effort would 
take one to two months, since the VMS devel 
oper had to learn to write microcode . That 
meant that the software emulation code would 
s t i l l  be c o m p l eted l ong  before t h e  first 
MicroVAX hardware was ready. 

The m i crocode s o u rce  programs w e re 
acquired from the 1 1 /730 microcode team and 
assembled us ing the la test  vers i o n  of  the 
microcode assembler. The 1 1 /7 3 0  microcode 
was structured as separate modu les for different 
functions (for example , floating point,  compat
ibi lity mode, exceptions, memory management, 
and so on) . Due to the lack of a " linker ,"  label 
files that a llowed routines to be called across 
modules had to be created. To speed the devel
opment ,  the design team wrote several FOR
TRAN tools that automatical ly generated new 
label files . In addition ,  command files were 
built  that correctly created a new set of binary 
microcode files from a set of modified sources . 

The next step was to change the 1 1 j730's  
microcode . Since i t  had to exist in  a l imited 
amount of RAM space, the new code could not 
be added without removing some existing 
code . Therefore , we decided to replace the 
compatibi lity mode microcode with a new rou
tine to generate the emulation exception . Some 
new flags were added that, at the developer's 
cho ice , would  a l low d i fferen t  c l asses of 
instructions to be emu lated ( i . e . ,  decimal 
s tring,  c haracter string,  or floating point) . 
F ina l ly ,  to boot  the VMS syst e m  o n  t h is 
MicroVAX version of an 1 1 /730 ,  we had to 
enhance the VMS bootstrap code to load the 
emu lation exception hand lers and connect 
them to the appropriate exception vectors. 

Now the software emulation code , from the 
exception handler all the way down to instruc
tion execution, could be debugged . The best 
measure of the success of this venture was 
made when M icroVAX hardware was finally 
available.  The customized VAX- 1 1 /7 3 0  system 
was such a good testbed , not on ly for the 

8 3  

New Products 



instruction emulator but also the rest of the 
MicroVAX I support, that it took a mere four 
days to get the VMS system running. 

Other Test Mechanisms 

The initial testing of the instruction emulator 
consisted of a set of programs and sample input 
data for each of the missing instructions. Whi le  
providing routines that worked in almost a l l  
cases, these tests d id  not exercise some of  the 
more exotic edge conditions . Those inclu ded 
very long or very short strings, i l legal operands, 
or strings that were not readable or writabl e .  
Once MicroVAX hardware was available, several 
new testing techniques cou ld be used to exer
cise the emulator. 

Operating System Code 

More testing was provided by running the oper
ating system code with the emulator providing 
character-string and packed-decimal support . 
The VMS Development Group has a large set of 
regression tests that exercise most success and 
error paths within the operating system .  These 
tests plus normal dai ly use by the VMS develop
ment community ensured that extensive testing 
of the instructions used by the VMS operating 
system was performed .  

Once t h e  VMS system was running ,  the 
ULTRIX- 3 2  and VAXELN Deve lopment Groups 
requested the source code for incorporation 
into their systems .  These systems exercised 
parts of the emulator that the VMS system did 
not use.  The ULTRIX kernel uses a smal l  num
ber of  packed decimal i nstructions (ASHP ,  
ADDP4 , SUBP4 , and EDITPC) for some of  its 
arithmetic and formatting support. When the 
ULTRIX-32  operating system first exercised the 
emulator ,  several bugs were detected and  
corrected . 

Compiler-Gen erated Code and Associated 
Tests 

The base operating systems used packed-deci
mal and floating point instructions in a smal l  
number of cases . These instructions received 
better testing using programs written in COBOL 
and FORTRAN . The compilers and their valida
tion tests were used to test the emulator rou
tines from the time they were first written u ntil 
they finally shippe d .  

8 4  

Architectural Conformance 

Even such continual testing is no guarantee that 
each instruction executes according to the VAX 
archi tecture specification . Most of the testing 
described so far exercised the su ccess paths of 
the emu lation subrouti nes . The error paths, 
especially the code that intercepted and modi
fied access violations, required a different set of 
tests . 

CPU Diagnostics 

For each CPU designed by Digita l ,  a set of CPU 
diagnostics is written that exercises as much of 
the central processor as possible .  Included in 
these diagnostics is an instruction-set exerciser 
that tests for proper behavior in at l east some of 
the interesting error cases. The CPU diagnostics 
for the MicroVAX I served as the primary test 
for the access violation handler in the deci
maljstring emulator. 

AXE Ve rification Program 

All new VAX computers at Digital are tested 
with an architectural verification tool known as 
AX E .  AXE programs are used to determ i ne 
whether or not the machine conforms to the 
VAX architectural specification . AXE accom
pl ishes this testing by subjecting each VAX 
instruction, with many combinations of oper
ands, to a variety of error conditions . These 
condit ions inc lude i naccess ib le  operands , 
instructions or operands that cross page bound
aries , and u nusual operands. 

When the MicroVAX instruction emulator 
was subjected to AXE testing, the only bugs that 
remained involved an instruction restart fol low
ing an access violat ion . 

Results 

As a result  of this strategy, the software emula
tion code was completed and ful ly debugged 
before the first real MicroVAX hardware was 
finished .  The ULTRIX- 3 2  and VAXELN oper
ating system groups were able to take the VMS 
emulation code and convert it  to work under 
their operating systems. That took much less 
effort than was requ ired for the VMS develop
ment team to implement that code . With this 
technique ,  bugs found in the instruction-execu
tion logic in one system cou ld be corrected i n  
a l l  three operating systems. 

Digital Technical journal 
No. 2 March 1986 



A second benefit  of this engineering effort 
was seen by the hardware designers .  The 
revised VAX- 1 1 /730  m icrocode sources and 
microcode tools were further modified to cre
ate a MicroVAX CPU chip simu lator. The simu
lator a llowed the MicroVAX CPU boards to be 
tested before any MicroVAX chips were actually 
available .  

The biggest gain of a l l  was that no applica
tion software, compilers ,  or operating system 
code had to be rewritten to avoid the use of the 
m issing instructions . 

References 

1 .  VAX A rchitecture Reference Man ual 

(Bedford : Digital Equ ipment Corpora
t ion , Order N o .  EK-VAXAR- RM- 0 0 2 ,  
1 983) . 

2 .  D .W.  Dobberpuhl et a! ,  "The MicroVAX 
78032 Chip: A 32 -bit Microprocessor," 
Digital Technical journal (March 1 986, 
this issue) : 1 2 - 2 3 .  

3 .  VAX Software, Languages and Tools 

Handbook (Maynard : Digital Equ ipment 
Corporation ,  Order No . EB- 2 7 24 0- 4 8 ,  
1 985) . 

4 .  W.R . Bidermann et a ! ,  "The MicroVAX 
7 8 1 3 2 Floating Point Ch ip ,"  Digital 

Technical journal (March 1 986 ,  this 
issue) : 24 -36 .  

Digital Tecbnicaljournal 
No. 2 March 1 986 

New Products 

85 



Steven E. Boone I Guenter E. Schneider 

The TK50 Cartridge 
Tape Drive 

A streaming tape drive, the TK50 subsystem, provides fast backup and 
data transfer for small computers like the Micro VAX II system. A single
reel cartridge, using half-inch magnetic tape, stores 100 megabytes of 
data. A unique tape transport system automatically threads the tape 
when the cartridge is inserted. The drive reads and writes data in a 
serpentine manner, going the entire tape length first on one track, then 
another. For high data integrity, the TK50 subsystem employs a sophisti
cated error-recovery algorithm, reading data after writing it and rewrit
ing any corrected data farther down on the tape. The Q-bus controller, 
the TQK50, contains complex firmware conforming to Digital's Storage 
Architecture and controlling data transfers between the CPU and the 
tape. 

As the performance of computer  systems 
expands whi le their size shrinks, many factors 
demand special attention.  One major factor i s  
storage systems. Over the past few years , disk 
drives have made dramatic advances, providing 
storage capacity of hundreds of megabytes i n  
very small and relatively inexpensive packages . 
Since the predomi nant technology for today's 
disk drive is based on the fixed-media concept,  
some means of providing system backup and 
data transfer capabi l ities is required . Magnetic 
tape systems are stil l  the most viable way of 
providing these capabil ities . 

Ease-of-use considerations require that a 
backup/transfer device be matched in capacity 
to the supported disk systems. It should also be 
extremely rel iable , fast ,  and very cost effective . 
This paper describes a peripheral subsystem ,  
t h e  TK5 0  magnet ic  cartr idge tape dr ive 
(Figure 1 ) ,  that meets a l l  these requirements. 

Design Goals of the TK50 Subsystem 

The TK5 0  cartridge tape subsystem was con
ceived to meet the needs of the MicroVAX I I  
and similar computer systems.  A study o f  tape 
products then available indicated that existing 
quarter- inch cartridge drives did not provide 

86 

either the performance or the capacity required 
to back up the large capacity disk drives sup
ported by these systems. Existing drives also 
l a c ked t h e  re l ia b i l i ty and data i n tegr i ty 
required to complement the designs of our new 
microsystems. Therefore , Digital designed the 
TK5 0  cartridge tape subsystem to meet the 
needs of the MicroVAX II system and other 
smal l  to mid-range computers . 

A wide variety of factors defined the design 
goals of the TK5 0  subsystem . It  had to fit into a 
standard 5 l;.:i -inch form factor and provide high 
capaci ty with high data i ntegrity. The desire for 
mechanical simplici ty ,  rel iability, and low cost, 
while maintain ing good performance, dictated 
a streaming tape design . The TK50 subsystem 
had to be compatible with the Q-bus , and the 
TK50 controller had to support the Tape Mass 
Storage Control  Protocol (TMSCP) of t he 
Digital Storage Architecture . 

Our i nvestigations led to the concept of an 
automatic-threading, s ingle-reel cartridge that 
uti l ized the established medium of i nstrumen
tation tape .  This tape supports high bit densi
ties and fast tape speeds, al lowing great latitude 
in specifying the performance and capacity of 
the TK50 subsystem .  We also decided to use 

Digital Tecbnicaljournal 
No. 2 March 1986 



Figure 1 The TK50 Tape Drive 

half-inch tape , rather than quarter-inch , to max
imize capacity. 

The requirement of the MicroVAX II system,  
as  wel l  as  our desire to minimize risks i n  a first
generat ion product,  d ictated that the tape 
capacity should be 1 00 megabytes (MB) . 

System Design 

The TK50 cartridge tape subsystem was devel
oped with three major components: 

• A tape cartridge , cal led the CompacTape Car
tridge , that houses 600 feet of half-inch tape 
and supports the auto-threading feature of 
the transport mechanism 

• A unique streaming tape transport featuring 
auto-threading  and a microprocessor-con
trolled servo-system 

• An i ntel l igent, microprocessor-based Q-bus 
controller that supports TMSCP 

Compac Tape Cartridge 

The CompacTape Cartridge is unique in  many 
ways . First, it provides a large amount of data 

Digital Tecbnical journal 
No. 2 March 1 986 

recording surface for its volume.  The cartridge 
has approximately two hundred and fifty times 
the recordi ng surface area of a single-sided 
5 � -inch floppy disk. Moreover ,  compared to 
the only commercial tape product then availa
ble to fit the 5 � - inch form factor, the Com
pacTape Cartridge is four  times as efficient in 
util izing tape volume i n  relation to cartridge 
volume . The cartridge is designed to maximize 
the volume of tape in  the standard form factor 
of the 5 � - inch drive . The cartridge , shown i n  
Figure 2 ,  contains a s ingle reel with the tape 
occupying forty percent of the cartridge's vol
ume . The tape is Y2 inch wide,  .00 1 inch thick, 
and 600 feet long. 

Second,  the CompacTape Cartridge is a com
p letely enclosed device that never exposes the 
media to the environment, thus greatly enhanc
i ng the data reliabil ity of the entire subsystem .  

Third , the CompacTape Cartridge a l lows 
automatic tape threading once it is inserted into 
the TK50 tape drive . This auto-threading func
tion is a key feature of the mechanical design of 
the tape transport. 

87 

New Products 



The TK50 Cartridge Tape Drive 

D R I V E H U B  

Figure 2 The TK50 Tape Cartridge 

The auto-threading works in  the fol lowing 
way. When a cartridge is inserted into the drive, 
the tape must be threaded around the tape 
guides, over the readjwri te head, around the 
take-up reel ,  and then fastened to the reel hub. 
Two leaders are used ro accomplish the thread
ing, as shown in Figure 3 .  One, made of .007-
i nch Mylar, i s  attached ro  the BOT end of  the 
tape in the cartridge ; the second is attached to 
the hub of the take-up reel i n  the drive . This 
second leader has an arrow-shaped tip that 
reaches from the reel ,  through the tape path , 
and into the area that wi l l  be occupied by the 
tip of the first leader when the cartridge is 
inserted . During the insertion process , the 
arrow-shaped t ip is moved by a cam into the 
opening of the cartridge leader. Tension is then 
appl ied to lock the leaders together.  This 
"buckle " is now ready to be pul led through the 
tape path and wound onto the take-up ree l .  

OPENING 

0 

STEP 1 

CARTRIDGE 

LEADER 

ARROW 

SHAPED 

TIP 

R E TAINING 

NOTCH 

TAPE DRIVE 

LEADER 

0 0 

BUCKLE 

0 
RELATIVE 

MOTION 

STEP 2 STEP 3 

This buckl ing process is accompl ished by 
two l inks in the drive , in conjunction with a 
constant tension applied by the motor to the 
take-up leader. One l ink uses a cam to move the 
two leader t ips into each other. The other l i nk 
holds the take-up leader in the correct pos ition 
and retreats at the right instant, al lowing the 
motor to cinch the buckle . The entire process 

Figure 3 Engagement of Drive Leader 

to Cartridge Leader 

88 Digital Technical journal 
No. 2 March 1986 



happens du ring the last half-inch of insertion as 
the cartridge enters the drive . (See Figure 4 . ) 
This l inking takes place withou t any tape being 
spool ed out of the cartridge . 

When the tape is rewound into the cartridge 
for removal from the drive, the two ears on the 
cartridge leader come to rest in a pocket in the 
cartridge shell . When the cartridge is removed 
from the drive , two opposing locks hold the 
reel in this position. The toothed locks engage 
with rhe teeth on the outer diameter of the reel 
flange . Thus locked,  the tape stays t ightly 
wound and the leader t ip is  kept in the correct 
position for a subsequent buckling process. 

Tape Transport 

The TK50 tape transport (Figure 5) consists of 
two major components: the tape drive and a 
single printed circu it board assembly. 

The tape drive encom passes the mechanical 
and electromechanical components to read data 
from and write data to the magnetic tape . The 
drive 's major components incl ude 

• The magnetic readjwrite head and i ts linear 
positioner 

LEADER. TAKE-UP 

EXTERNAL 

SHIELD 

ASSEMBLY 

TACHOMETER 

ASSEMBLY 

BRACKET & 
HEAD ASSEMBLY 

SPRINGS 

LINEAR 

ACTUATOR 

INSULATOR 

ASSEMBLY 

New Products 

PROPER LOCATION OF LEADER 

LEADER UNHOOKED 

LEADER HIDDEN 

LEADER DISPLACED ABOVE LINK 

Figw·e 4 View of Leader Shown in Four 

Positio ns 

REEL. TAKE-UP 

CONSTRAINT, TAPE 

I LEADER 

ASSEMBLY 

/ LATCH 

LINK. BUCKLING 

BEZEL 

ASSEMBLY 

Figure 5 TK50 Tape Drive Transport 

Digital Teclmical]ournal 89 
No. 2 March I 986 



W R ITE READ 

TAPE 
ISLA N DS 

READ W R I TE 

Figure 6 TK50 ReadjWrite Head (Top View) 

• The cartridge threading mechanism 

• The take-up reel and i ts motor 

• The drive hub mechanism,  which interfaces 
tO the CompacTape Cartridge, and i ts motor 

• The tachometer, which provides feedback to 
a microprocessor, the 805 1 ,  for tape speed 
control 

• Various sensing devices that monitor and 
control the hand ling of the tape as it passes 
over the readjwrite head 

HEAD 

Read/Write Head 

The readjwrite head is designed with four  
islands that  are  in  contact with the tape 
(Figure 6) . The tape forms a polygon as it con
tacts these four areas . Each island bends the 
tape by an angle of six degrees . Over i ts width, 
each island is curved by an amount correspond
ing to the radius of the natural curvature of the 
tape under working tension, thus assuring good 
surface contact (Figure 7) . The narrow islands 
l imit  any temporary liftoff (due to contam ina
tion) to very short sections of tape , and they 
clean the tape as wel l .  

---1--
1 /2" TAPE 

Figure 7 

90 

I I 1�1 
I SLAN DS 

TK50 ReadjWrite Head (Side View) 

Digital Technicaljournal 
No. 2 March 1986 



Except for the ferrite cores, the entire head 
b lock is made of ceramic material to ensu re 
long l i fe. The two inner islands contain the 
readjwrite cores; the two outer ones direct the 
tape to the inner ones so that uniform contact 
between the tape and the head is provided . On 
the upper part of the head assembly are two 
gaps, a write gap ( .0 1 8  inch wide) fol lowed by 
a read gap ( . 008 inch wide) , that read and 
write data when the tape is moving forward . 
Two corresponding lower gaps read and write 
data during reverse tape motion. The lower 
gaps cover the odd tracks and the upper gaps 
cover the even tracks ; thus ,  the head has to 
traverse only half  the tape width , he lp ing 
greatly to  keep the height of the drive within 
l imits . The track spaci ng is .0 1 9  inch .  

A uta- Threading 

As the cartridge i s  inserted,  its door opens, 
expos i n g  t h e  cartr i dge l e a d e r . T h e n ,  as 

described earlier, two plastic arms i n  the drive 
act to buckle the cartridge's supply leader to 
the drive 's take-up leader. The rest of the auto
threadi ng process is  handled by the drive's 
motOrs, sensors and m icroprocessor. 

Tape motion and tension control is accom
plished through two microprocessor-control led 
brushless direct-current motors. One of these 
motors is connected directly to the take-up 
hub; the other to a drive hub designed tO inter
face to the CompacTape Cartridge . 

The engagement of the cartridge hub with 
the drive motor shaft is accomplished by a pair 
of gears that transmit torque and simul tane
ously center the reel (Figure 8) . A plastic hub 
with one set of teeth is attached to the spindle;  
another set of teeth is molded on the underside 
of the cartridge reel hub.  A clutch gear engages 
both sets of teeth to drive the reel .  To faci l i tate 
the insertion or removal of the cartridge, the 
clutch gear is axially retracted out of engage-

Figure 8 TK50 Door Assembly 

Digital Technical journal 9 1  No. 2 March 1 986 

New Products 



The TK50 Cartridge Tape Drive 

ment. The clutch gear is activated by the opera
tor's lowering or ra is ing the hand le .  When the 
handle is lowered, the spring-loaded lower gear 
engages the reel and l ifts it s l ightly into the 
cartr i dge to e l i m i nate contact between the 
rotating reel and the stationary she l l  ( Figure 8) . 

This clutching arrangement has a big advan
tage because it a llows mechan ical s impl ic i ty 
and easy operation of the drive . The cartridge is  
i nse rted by the  operator  i n to a ch a n n e l  
( receiver) that puts t h e  two leaders i n to a 
coplanar relationship .  The entire l inking pro
cess is thus accomplished by merely sl id ing the 
cartridge i nto the receiver slot .  A solenoid-acti
vated interposer locks the cartri dge in place 
when i t  reac hes the end pos i t i o n  i n  the 
receiver .  When the front handle is then low
ered, the drive gear rises to mate with the car
tridge ree l .  A set of fingers s imu l taneously 
enters the bottom of the cartridge to release the 
reel locks, thus al lowing the tape to move . The 
operator accompl ishes a l l  these actions with 
one hand . 

After a tape cartridge is i nserted i nto the 
TKSO drive, the operatOr presses a buttOn and 
the 80 5 1  m icroprocessor on the printed circuit 
assembly in it iates the thread ing process . The 
ree l  motors , under microprocessor contro l ,  
slowly p u t  tension o n  t h e  tape t o  accomplish 
the process . The buckled leaders and a length 
of tape are pul led through the drive and onto 
the ta ke-up ree l .  Auto-threading is  complete 
when the BOT hole in the tape is detected by a 
photo-transistor. When the auto-threading oper
a t ion  ends ,  the m i c roprocessor w i l l  have 
received pulses from a tachometer attached to 
one of the rotating tape gu ides. Through the 
information derived from the tachometer, the 
microprocessor can mai ntain proper tens ion 
and tape speed . 

After the tape is posit ioned at BOT, the con
trol ler requests a cal ibration procedure. This 
procedure sets up the dr ive to ensure that 
proper va lues for the read circu itry gai n  and 
head stepper alignment are obtained.  This cal i 
bration provides one  of  the key features of  the 
TKSO su bsyste m :  the ab i l i ty  of a user  to 
exchange media between different TKSO tape 
drives without the need for adjustments . 

Once cal ibrated and at BOT, the TKS O drive 
is ready to read or write data . The drive writes 
data i n  a serpentine fas hion over the entire 
length of the tape . The upper part of the 

9 2  

readjwrite head wri tes data o n  one track down 
the entire length of tape unti l  it reaches a logi
cal EOT marker .  (The logical EOT marker is a 
preset tachometer count ;  the phys ical  EOT 
marker i s  a hole in the tape .)  The tape d i rection 
i s  then reversed and the other lower write core 
wi l l  write data i n  the other d i rect ion for the 
entire length of the tape u nt il a logical I30T is 
reached . The d i rection of the tape is then 
changed to forward , the head is stepped u p  by 
1 9  mils,  and the upper wri te core is again used 
to write data . Figure 9 i l l ustrates the physical 
tape configuration . 

Dri1 ·e Circu il!J> 
The printed c i rcuit  board assembly is bu i l t 
around an 805 1 microprocessor. The 805 1 and 
associated circui try provide the intel l igence to 
i nterpret commands, provide servo control for 
the ree l  motors , perform tape cal ibration proce
du res, and monitor various status inputs .  The 
readjwrite c i rcuits necessary to translate data to 
and from the tape ' s  MFM format a lso res ide on 
the board . F igure 1 0  i l lustrates a simpl ified 
b lock d iagram of the TKSO drive board . 

Write data comes into the drive ' s  logic board 
via the d ifferential s igna l cable from the con
troller board . The data enters the shift register, 
which accepts the serial data and outputs a 
five-bit paral le l  data pattern into a program
mable array logic (PAL) devi ce . The data i s  
c locked through the shift register by a 500-KHz 
clock. (500 KHz is the write pu lse rate , or data 
rate .)  

The PAL first accepts the five paral lel  bits 
from the shift register. Then the PAL generates 
the pre-compensation , as requ ired, and trans 
lates the data i nto the MFM format recorded on 
the tape . A constant current sou rce of 1 5  m i l 
l iamps i s  applied a lternately to  each core of  the 
active write head , resu lting in the flux trans i 
t ions necessary t o  write data on the tape . 

To enhance data re l iabil i ty ,  the TKSO subsys
tem reads data just after writing i t .  This tech
nique uses the read head (pos i t ioned i mmedi
ately behind the write head) to read the data 
from the tape as soon as it has been written . 
(See Figure 7 . )  

The read data i s  sent back t o  the controller ,  
where the com munications interface performs 
CRC process ing. If an error is detected,  the con
trol ler rewrites the block that conta ined the 
error. The rewri tten block is placed farther 

Digital Technical journal 
No. 2 March / 986 



LO G I C A L  
B E G I N N I N G 
O F  T R A C K  DATA A R E A ( F O RWA R D ) 

I 9 1 4  I 9 1 4  I 6 1 0  1 83 M ET E R S  
I M M  M M  1 600 F E ET )  I M M  I 
1 1 3 FT )  1 2 FT)  N O M I N A L I 1 3 F T )  I 
I 

M I N  M I N  1 M I N  I 

1 305 I I I 
I I M M  I I 

I 1 1 1  F T ) I  I 
I I M I N  I 

E I c G G G 
A u u x l  u 
L A A T l A 
I R R E I R 
B D D N D 
R s l  
A B B I I B 
T A A 0 1 A 
I N N N l N 0 D D D 
N I 

BOT EOT 
H O L E  H O L E  

I G  E 
l u X 
l

A T 
R E 

l o N 
I s 
I B I 

A 0 
I N N 
I D 
I 
I 
I 

I 
L E A D E R  1 305 I R E F E R E N C E  E D G E  1 2 1 9  H UB 
E N D  j M M I MM E N D  

1 1 1 F T l  1 ( 4 FT )  
I
M I N  I M I N  

LOG I CA L  
B E G I N N I N G  
O F  T R A C K  
( R E V E R S E )  

Figure 9 Physical Tape Configuration 

Digital Technical journal 
No. 2 March 1986 

New Products 

T 
R 
A 
c 
K 
N 
u 
M 
B 
E 
R 

20 
1 8  
1 6  
1 4  
1 2  
1 0  
8 
6 
4 
2 
2 1  
1 9  
1 7  
1 5  
1 3  
1 1  
9 
7 
5 
3 

93 



The TK50 Cartridge Tape Drive 

M 
SE 
co 

ISCELLANEOUS ¢:> 
NSE 
NTROL 

TACHOMETER 

PLS-L 

SERIAL COMMAND 

GAP 

-L 

WRITE GATE 

WRITE DATA (NRZ) 

ERASE GAP 

VCO ENABLE 
vco --

8 7 5 1 + 

READ ENABLE DATA 
SEPARATOR 

INTO t 
MICROPROCESSOR SENSE 

... (AMPLITUDE. TRACKING) 

ENABLE 

� 
DUAL 
DAC --

INTI 

":h � BUS V 
8 1 5 5 --

MICRO- 8X256 
PROCESSOR ENABLE RAM 

WRITE/ERASE ENABLE 
SERVO 
TIMER 

f 
)-- ENCODER 

WRITE 
COM PEN-
SATION 
(PAL'S) 

24 MHZ __j 

NRZ READ DATA 

READ CLOCK 

R E A D  

K:J FIL TEA'S 
GAIN 
CONTROL 

� 
SERIAL 

STATUS 
(ECHO) 

MA 

I--r- - FORWARD 

I HEAD + 

L[>-8' 
-- BACKWARD 

CHANNEL 

1--
600+ FEET 
OF TAPE 

Vt MISCELLANEOUS 

['r (22) SENSE 
CONTROL 

WRITE CLOCK 

Figure 1 0  Block Diagram of the Drive Board 

94 Digital Tecbnical]ournal 
No. 2 March 1986 



down on the tape tO avoid the performance loss 
resu lting from the drive ' s  having to move the 
tape back and rewrite over the data block con
taining the error. The controller firmware is 
able to detect these rewritten blocks duri ng a 
subsequent read pass for data recovery proce
dures, thereby enhancing system integrity. 

Read data signals from the read head are fed 
tO the differential preamplifier circuit and in  
turn to the read amplifier.  The gain of  the 
preamplifier is automatically set during cal ibra
tion to maintain an optimum signal level . The 
signal from the read ampl ifier is then passed to 
a differentiated , l inear-phase , low-pass fi lter. A 
zero-crossing detection c ircu i t  produces a 
digital signal ,  consisting of a single pulse for 
each detected zero crossing,  that represents 
data read from the tape . 

The digital data is then sent to the phase lock 
loop (PLL) circuit where the clock signal is 
recovered and the MFM data is decoded . The 
PLL consists of two PALs , a voltage-controlled 
oscillator, and some analog circuitry. 

0- B U S  

M 7 546 0-BUS C O N T R O L L E R 

I 
-

I 0- B U S 

,.----- I N T E R F A C E  

The read-data pu lse from the read amplifier 
circuit is used in conjunction with the 500-KHz 
write clock to optimize the " lock time" for the 
PLL. Whenever there is a gap (no signal) going 
i nto the PLL, it will lock onto the 50 0-KHz 
clock signal . This locking is done so that the 
loop-fi l ter integrating capacitor is kept at  a con
stant voltage . This process minimizes the phase
lock time duri ng the preamble . 

When the READ ENABLE signal is asserted ,  the 
PLL waits for the synchronization (sync) b i t .  
When the PLL detects the transition, it clocks 
the sync bi t  and data onto the serial line to the 
controller and starts sending back the read 
clock. The sync bit signals the communications 
processor on the controJler to start processing 
the following data and the CRC c heck-word , 
and to check for a matching CRC. 

Q- bus Co n troller 

The inte l l igent interface between the TK50 
tape transport and the Q-bus is  designated as 
the TQK5 0 .  Figure 1 1  is a block diagram of the 

!" R I V E  I N T E R F A C E  I I 
I I 

U A R T 

T I .4 � I p�F-;;- --- - --

l �, 1 ... I I 
I 

I 
I 

M I C R O P R O C E SSO R R A M  R O M  
D R I V E  I I ... T R A N SCE I V E R S 

... � 
I I I I I 

l__ _ _  j 
Figm·e 1 1  Block Diagram of the TQK50 

T O  

D R I V E  

F R O M  

D R I V E  

Digital Technical journal 9 5 
No. 2 March 1986 

New Products 



The TK50 Cartridge Tape Drive 

TQK50 .  The interface is a Q-bus-compatible 
dual board based on the 80 1 86 microprocessor. 
In conjunction with 32 kilobytes ( KB) of highly 
complex firmware , the 80 1 86 and its associ
ated hardware perform the following functions : 

• Interface the controller to the Q-bus (via sin
gle-word and DMA transfers) 

• Translate and process TMSCP command 
packets and responses 

• Provide  data format and error recovery 
processing 

• Control the general operation of the tape 
transport mechanism 

• Support the serial data link between the con
troller and drive 

Hardware 

The Q-bus interface is controlled primarily by 
an 80 1 86 microprocessor and an 8 2 S I 0 5  field 
programmed logic sequencer (FPLS) , which is a 
high-performance LSI device capable of per
forming complex logic functions . Using the 
82S 1 05 FPLS sequencer allowed us to create an 
efficient, flexible design in a very smal l space .  
The FPLS and microprocessor are responsible 
for maintaining the strict Q-bus protocol du ring 
DMA transfers to and from the controller. The 
DMA transfe rs and interface interrupts are 
processed very qu ickly due to the high per
formance of the microprocessor and FPLS . This 
h igh performance makes possible the data rates 
needed to su pport tape streaming and lessens 
the critical i ty of the DMA latencies in the host 
system. 

Assisting the FPLS is an 80 1 86 m icroproces
sor operating at 6 MHz.  The 80 1 86 is a highly 
complex , 1 6-bit  microprocessor; it is responsi
ble for all the command, control , and data 
processing for the TQK50 .  A microprocessor 
with the 80 1 86's performance is required due 
to the large number of complex tasks that must 
be performed within very short time frames 
(e .g . ,  ECC process ing during inter-block gaps 
on tape) . The high level of integration avai lable 
with the 80 1 86 was a key factor in  i ts selection . 
I n  addition to the CPU, the 80 1 86 contains 
three onboard timers, an interrupt controller, 
address decoding, and two DMA channels. Also 
important in the selection of the 80 1 86 was the 
availability of sophisticated development tools 
and efficient software su pport packages. 

96 

The 80 1 86 microprocessor is su pported by 
nu merous components that include SSI , MSI 
and PAL devices . Furthermore , the program 
store and the workspacejdata buffers are pro
vided by 1 2 8-kilobit (Kb) EPROMs and 64Kb 
static RAMS . A total of 3 2 KB of program store 
and 1 6KB of bu ffer is avai lable to the 80 1 86 .  

Communications between the  TQK50 con
troller and the TK50 tape transport take place 
over a pa ir  of fu ll -duplex, differential, serial 
l ines . A multiprotocol commu nications proces
sor (NEC 7 2 0 1 )  is used to process the serial-to
parallel and paralle l-to-seria l  conversions. One 
fu l l - d u pl e x  c h a n ne l ,  opera t i n g  a t  1 8 7 . 5  
kilobaud ,  communicates the commandjstatus 
information between the controller and the 
transport. The other channel provides the data 
communications path ,  su pported by data-l ink 
error checking via CRC- 1 6 . This second chan
nel operates synchronously at 500Kb per sec
ond . The NEC 720 1 communications chip sup
ports DMA transfers to and from the 80 1 86 and 
operates in a priority-interrupt mode. 

Firmware 

The most complex component of the TK50 sub
system is i ts firmware . The 32KB of firmware 
contained in EPROM are partitioned into five 
major functions: 

• The PORTjQ 2 2  (Q-bus) for data transfer  
control 

• The SERVER for TMSCP command processing 

• The TOS fo r t a p e  t r a n s p o r t  c o n t r o l  
and formatting 

• The ECC for error detection and correction 

• The ROD for resident onboard diagnostics 

The PORTjQ 2 2  firmware controls data trans
fers between the controller and CPU, and a lso 
maintains t he command queue processing. Up 
tO four  TMSCP commands can be queued ,  
al lowing the  host to  se t  up  a series of  opera
tions for execution whi le  it continues with 
other processing. DMA transfers of up to 64K- 1 
bytes can be made, allowing an effective, low
overhead data transfer between the subsystem 
and CPU memory space. 

The SERVER firmware is responsible for trans
lating and execu ting the wide variety of TMSCP 
commands . These commands provide a very 
structured environment within which control ,  

Digital Technical]ournal 
No. 2 March 1986 



status, and data transfers are accomplished . 
TMSCP is a packet protocol that uses a com
mand-response sequence . Each pair of com
mand-response packets conta ins information 
pertain ing to the internal command as wel l  as 
various command modifiers , status fields, and 
subsystem parameters . All levels of information , 
from the command sequence number to com
mand status to hardware and firmware revision 
levels ,  are provided in TMSCP.  In addition to 
assembling and processing this information,  the 
SERVER firmware uses values , such as physical 
and logical record numbers, to val idate infor
mation being processed from the tape . 

SERVER has an additional mode that supports 
the Diagnostic Uti l ity Protocol (DUP) . DUP 
provides a set of commands that a l low detailed 
tests of the subsystem to be performed . DUP 
operates in conjunction with the resident on
board diagnostic modu le . 

The TOS (tape operation support) firmware 
controls the transfer of data between the tape 
transport and the buffers al located by SERVER. 
This control is accomplished through format
ting operations and through physical control of 
the tape transport mechanism. 

The TK50 subsystem is a streaming tape drive 
that was designed to operate in an efficient 
block-mode environment.  The TK50 subsystem 
relies on logical information written on the 
tape to determine the tape 's physical and logi
cal positions . The physical and logical contexts 
are maintained by the TOS firmware and writ
ten into special control fields embedded in the 
TK5 0  tape format. I nformation contained i n  
these fields includes physical object number, 
logical object number, tape-mark number, byte 
count, sequence control number, track num
ber,  and block typ e .  This  i nformat ion is  
processed by TOS to maintain the physical and 
logical contexts between the subsystem and the 
data on the tape . 

D u r i n g  s t re a m i n g  o p e ra t i o n s , c o n t e x t  
processing i s  the primary function o f  TOS .  
However, when the host system i s  unable to 
process data at a sufficient rate to maintain the 
streaming operation ( 4 5KB per second) , TOS 
must provide complex posit ioning contro l .  
Whenever t h e  host system fal ls below the 
required data transfer rate , TOS must stop the 
tape .  Since the TK50 subsystem was mechani
cally optimized for streaming, any stoppi ng and 
starting of the tape is a time-consuming and 
imprecise operation.  Moreover ,  the TK5 0 sub-

Digital Technicaljournal 
No. 2 March 1 986 

system lacks the inter-record gaps that are used 
for positional information in traditional 9-track 
tape drives. The TK5 0  subsystem must rely on 
data read from the tape to locate its position .  

When the host system resumes data process
i n g ,  TOS m u st  repos i t i o n  the tape by a 
sequence of reverse, stop,  forward , and read.  
After locating the last data block processed on 
the tape , TOS continues with the host 's request . 
The host's fai lure to process data at a sufficient 
rate is costly in terms of system throughput.  
This situation requires i ncreased complexity in  
the subsystem design . 

TOS provides a padding function to help 
compensate for insufficient host processi ng 
power. With padding, TOS a l lows data latencies 
of up to 63 mil l iseconds before reverting to the 
repositioning mode . During this data latency 
period, pad blocks are written to the tape in  
9-mil lisecond increments . That al lows the tape 
to c o n t i n u e  s trea m i n g .  The  t rade - off i s  
improved performance a t  t h e  expe nse of 
slightly reduced tape capacity (5 1 2  bytes per 
pad block) . If  the 6 3 -mi l l isecond period is 
exceeded, TOS stops and performs a reposition 
to the point of the last data block. When addi
tional data arrives, TOS overwrites any previ
ously written pad blocks . In practice, this pad 
function enhances performance and seldom 
reduces tape capacity by more than ten percent .  

The ECC firmware provides the means to 
detect and correct errors . To provide a high 
level of rel iabil i ty ,  the TK50 subsystem is 
designed to allow only one unrecoverable error 
in every 1 X 1 0 1 1 b i ts read . This is equivalent to 
one unrecoverable error i n  every 1 2 5 cartridge 
reads . To achieve this goal ,  ECC implements 
error-detection and error-correction schemes. 
Error detection is  based on the CRC- 1 6  method , 
which is supported by the hardware commun i
cations device . This i ndustry-standard method 
has been proven to be very efficient in this 
environment . 

To implement the error-correction function, 
ECC processes seria l-formatted data to and from 
the tape . Data is written to and read from the 
tape in 5 1 2 -byte blocks. Each block is grouped 
into 8-block units, called data entities . Within 
an entity, the four even-numbered data blocks 
(0 , 2 ,4 ,6)  and the four odd-numbered blocks 
( 1  , 3 , 5 , 7) are protected by longitudinal check
sum blocks . An entity ,  therefore , consists of ten 
blocks :  data blocks 0 through 7 and ECC blocks 

97 

New Products 



·------- The TK50 Cartridge Tape Drive 

(5 1 2  BYTE BLOCKS) 

Figure 1 2  Entity of Ten Blocks 

8 and 9 .  Figure 1 2 shows the arrangement of 
the ten blocks . 

This technique,  coupled with record-level 
checking by SERVER and the host operating sys
tem, i nsures the complete i ntegrity of the user's 
data . 

The ROD ( resident on board diagnostics) 
firmware provides additional support for the 
TQK5 0 .  When the subsystem is in itialized , the 
firmware executes a series of gojno-go tests 
that validate the functionality of the controller .  
Ninety-eight percent of the TQK50's  function
ality is covered by these tests, excluding the 
Q-bus and drive-interface logic circu its .  More 
extensive diagnostics that ful ly test the TK5 0 
subsystem are available under the DUP.  Having 
the diagnostics resident in  firmware allows the 
running of i ntegrated tests that i nteract at levels 
not permitted from the system interface .  That 
avoids the difficulties in  supporting down-line 
l o a d a b l e  c o d e  i n  v a r i o u s  r u n - t i m e  
environments .  

Summary 

Designing the TK5 0  cartridge tape subsystem 
and turning it i nto a product was a significant 
challenge . The effort proves that good perform
ance , h i g h  r e l i a b i l i t y ,  ease of u s e , and  
extraordinary data integrity can be  achieved in  
a cost-effective manner. These qualities wil l  
continue to be required as  computer systems 
increase in performance and capacity. 

To that end, the TK5 0 cartridge tape subsys
tem is but the first of a family of cartridge tape 
products . Work is  continu i ng on the develop
ment of subsystems with h igher performance 
and greater capacities. Interfaces to computer 
systems other than those based on the Q-bus 
have been or are being developed to meet the 
expanding needs for greater storage capacity. 

98 

Acknowledgements 

Designing the TK5 0  cartridge tape subsystem 
required a multitude of disciplines involving 
scores of individuals .  Each member of the TK5 0  
program team contributed time, energy, and 
personal commitment to yield a successfu l 
product .  The authors wish to acknowledge 
those contributions here . 

Digital Technicaljournal 
No. 2 March 1 986 



Raymond]. Lanza I 

Porting UL TRIX 
Software to the 
MicroVAX System 

The ULTRIX system, written in the C programming language, was ported 
to the Micro VAX II processor by a multistep process. This involved estab
lishing a cross-development environment, building a bootpath, porting 
the ULTRIX kernel, and writing special device drivers. The remaining 
software was ported after those steps were completed. To minimize 
ULTRIX design changes, the system's IjO architecture was mapped into 
the Micro VAX physical address space so as to mirror the equivalent 
mapping on larger VAX systems. Some Micro VAX instructions must be 
emulated in macrocode. The emulator used in the Micro VMS software 
was adapted for use in this ULTRIX software. 

The UNIX system came i nto existence in 1 969 
at the AT&T Bell Laboratories in Murray Hi l l ,  
New Jersey. The initial system was written in  
assembler and ran on a PDP· 7 system that was 
loaded from paper tapes. From late 1 970 to 
early 1 9 7 1 ,  the UNIX software was reimple
mented for the PDP- 1 1  system using a cross
assembler running on the original PDP- 7 sys
tem. In 1 9 7 3 ,  the kernel was rewritten in the C 
programming language . Since that time the sys
tem has undergone many changes and is stil l  
the subject of much research . 1 Today, there are 
two major 3 2 -bi t  variants of the or ig ina l  
software : 4BSD, developed at the University of  
Cal ifornia a t  Berkeley;  and System V ,  from 
AT&T Corporation . Digita l  Equipment Corpora
tion's original ULTRIX-3 2 product is a direct 
descendant of 4 . 2BSD. 

In 1 9 83 ,  Digital decided to develop and dis
tribute a UNIX software product .  At that time, 
4 . 2 BSD was the only virtual -me mory UNIX 
operating system ru nning on VAX processors. I t  
i s  Sti l l  the only UNIX software derivative to pro
vide network support. These features were the 
key factors in  deciding to use 4 . 2BSD as the 
basis of the ULTRIX- 3 2  system.  

Deve lopment started in the fa l l  of 1 9 83 on 
one of  the first 4 . 2 BSD distributions, and the 

Digital Technical }ourn.al 
No. 2 March 1986 

final product was re leased in April 1 9 84 as 
ULTRIX- 3 2  V l . O .  In the current version of the 
product, we have combined the two UNIX sys
tem derivatives by adding the system services of 
the AT&T version to the original ULTRIX-32  sys
tem .  To that base we have added reliability and 
maintainabil ity features , as wel l  as new-proces
sor support . The resu lting system,  one of the 
industry's most powerful and versati le UNIX 
software versions, spans the ful l  VAX system 
pricejperformance range . 

Porting the UNIX System 

"Porting" is the process of implementing an 
operating system on a new processor. The UNIX 
system has been ported to more processors than 
any other system in existence . It runs on a l l  
c lasses of machines , from 8086 microproces
sors to the CRAY- 2 .  For VMS and RSX systems 
and the like ,  port ing normal ly means a major 
rewrite because significant parts of them are 
written in low-level languages, usually macro 
assembler. Rewriting one of these systems is so 
expensive that ei ther the effort wou ld not be 
undertaken or the new system would be written 
from scratch .  

The UNIX system is different. I t  i s  written in 
a single high-level language, C , 2 and has been 

99 



structured to be as processor independent as 
possible .  However, vestiges of i ts PDP- 1 1  heri
tage are still apparent. 

Al l 3 2 -bit versions of the ULTRI X- 3 2  system 
are built  from a common set of sou rce fi les.  The 
kernel fi les are organized into machine-depen
dent and mac hine-independent parts. The dif
ferences between the VAX and MicroVAX ver
sions of the system are resolved through the use 
of conditional compilation and l inking.  The 
present kernel sources for the MicroVAX ver
sion are as fol lows : 

Files 

209 

31 5 

Language 

C headers 

C source 

21 Assembler source 

The 2 1  assembler source fi les can be further 
broken down as follows: 

Files 

1 4  

Purpose 

Mi croVAX su bset and 

f loating point emu lator 

3 Te mplates for 

rpb,scb, spt 

3 Macro defin itions 

I n itial startup code 

(locore .s) 

The l ast and most significant fi le is locore .s ,  
which contains the i nit ial startup code and a 
few cr i t ica l  rou t i n e s  needed for process 
management. 

Bri nging the UNIX system up on a new 
processor is normally done i n  multiple steps by 
a sma l l  team . The difficulty and extent of the 
work i nvolved is directly related to the archi
tectural differences between the vers ions for 
the existing and target processors. Our team 
consisted of three people ,  later joined by a 
fourth . The first was responsible for the com
piler and subset emulator. The second did the 
software i nstallation and verification for the 
first  version of the product .  Later ,  he  was 
responsible for some device drivers. The author 
of this paper d id the kernel port and other 
device drivers . The fou rt h  person assumed 
responsibil ity for installation. 

Bringing the ULTRIX - 3 2  system up on a 
processor involves the following steps : 

1 00 

1 .  E s t a b l i s h  a c r o s s - d eve 1 o p m e n  t 
environment.  

• C language 

• Native assembler 

• Linker 

• Debugger 

2 .  Bu i ld a boot path . 

3 .  Port t he kernel and a few key programs . 

4 .  Write special device drivers . 

5 .  Port the rest of the system .  

The Cross Develop ment Enviro nment 
When porting to a new architecture , it is neces
sary to develop a set of tools that produces code 
for the target system .  These tools constitute a 
cross-development system for software genera
tion and often become the basis for the even
tual native environment. Their construction is 
normally the first step in the porting process . In 
the M i croVAX case,  the cross-deve lopment 
tools were not necessary, for reasons explained 
below. 

The MicroVAX system is a subset architecture 
with the majority of the string manipu lation 
i nstructions missing.  3 MicroV AX systems can 
also be configured without floating point sup
port in the hardware . Our c hallenge , which was 
a lso shared by the VMS and VA.XELN Develop
ment Groups,  was tO provide an execu tion 
environment for user programs that was com
p letely compatible with larger VAX systems . 

By closely examining the instructions pro
duced by our C compiler, we found that, with 
the exception of the floating point i nstructions, 
not one missing string instruction was created.  
Further examinations revealed that the only 
place where any of the missing i nstructions 
were used was in a handful of output formatting 
routines.  As an i nterim solution,  the affected 
routi nes were rewritten to el im inate the mi ss
i ng instructions.4 

The Boot Path 
MicroVAX systems contain the virtual memory 
boot (VMB) program in ROM .  Normally this 
program loads the VMS system but has been 
enhanced to perform an alternate i nitial pro
gram load operation,  called a boot-block boot. 

Digital Technical ]oun�al 
No. 2 March 1986 



This operation is the mechanism used to boot 
the ULTRIX system and is based on block num
ber 0 of the boot disk being in  a special format. 
Booting is a multistage process. 

1 .  VMB first checks for an ODS- I I  fi le struc
ture s In the default  case, VMB wil l  per
form a "sniffer boot ,"  which consists of 
first checking the removable media, then 
the fixed disks, and finally the Ethernet. 
The system can also be booted from the 
TKSO cartridge tape drive and a special 
PROM board . 

2 .  I f  an ODS-I I  fi le structure is not present, 
VMB looks for a valid boot-block image 
in the first block on the disk . This block 
contains a table that specifies the size 
and location of  the secondary boot 
image . If  the table is val id ,  VMB reads the 
secondary boot image i ntO memory and 
transfers control to the image . (If the 
table is inval id ,  control is transferred 
back to step 1 above .) 

3 .  The secondary boot image on ULTRIX 
systems is a program that locates, reads, 
and executes the tertiary boot program 
from an ULTRIX file  system. The func
t i o n a l i ty of the secondary boot  i s  
severely constrained because i t  resides 
outside the file system in a fixed-size 
(7 .SKB) area adjacent to the boot block. 

4 .  The tertiary boot is capable of loading 
and running other programs . Unl ike the 
secondary boot program ,  it su pports 
interactive terminal I/0 and can prompt 
the user for an alternate program to load . 
As a default ,  the tertiary boot loads the 
operating system kernel ,  called vmunix,6 

from the boot disk. 

S .  After the steps above have been com
pleted , the kernel i s  in  memory and 
ready to run .  

The two boot programs are part o f  the stand
a lone system ,  which in itse lf constitutes a port
ing problem that is not very different from port
ing the kernel .  The problems encountered are 
s imilar ,  although simpl ified, because the stand
alone system runs with the interrupts and mem
ory management d isabled . The stand -alone sys
tem is not nearly as flexible as the kerne l .  

Digital TecbnicaljoUJ-nal 
No. 2 March 1986 

Porting The Kernel 

The VAX Architecture Standard (Digital Stan
dard 0 3 2) specifies the VAX instruction set, 
memory management,  and process environ
ment. However, the standard leaves many other 
areas open for change . These areas are typically 
ones that need to be supported on each new 
processor. For the MicroVAX system,  it was 
necessary to address problems in the fol lowing 
areas : 

• Startup code 

• I/0 architecture 

• Console su pport 

• System clock 

• Missing instruction emulation 

Initial Startup Code 

After the kernel is loaded into memory, control 
is transferred tO the initial startup code. This is 
entered with the processor interrupt priority 
"raised " to disable the interrupts, and with 
memory management tu rned off. The code sets 
up the memory management system and then 
"handcrafts" the processor to run the first VAX 
process. The majority of this code is  located in 
a single assembly language file ,  called locore .s .  
In the case of  the MicroVAX system ,  the instruc
tion emu latOr and several changes tO the I/0 
system requ ired special mapping support dur
ing startup.  (This su pport is discussed in  the 
l ast section of this paper . )  

In addition to the startup code,  locore .s con
tains time-critical routines that use the VAX 
process-management i nstru ct ions . Some of 
them contain a easel instruction based on the 
processor type for processor-specific opera
tions . Those routines had to be extended to 
include the MicroVAX processors . 

1/0 A rchitecture 

VAX processors do not contain I/0 instructions; 
instead , device and device adapters exist in 
various sections of the physical address space of 
the processor .  The control and data registers for 
these adapters appear as memory locations and 
are accessed using normal instructions . A key 
e lement of system software for any new proces
sor is support for these devices and their associ
ated address spaces. As an example, the physi
cal address space of the VAX - 1 1 /780 system is 
pictu red in Figure l .  

1 0 1  

New Products 



------ Porting UL TRIX Software to the Micro VAX System 

PHYSICAL ADDRESS 

0000 0000 

1 FFF FFFF 

2000 0000 

2000 2000 

2000 4000 

2000 6000 

2001 cooo 

2001 EOOO 

2010 0000 

2014 0000 

20 1 8  0000 

201 C  0000 

TRACKO 8KB 

TRACK! 8KB 

TRACK2 8KB 

TRACK3 8KB 

TRACK 14 8KB 

TRACK I S  8KB 

UNIBUSO ADDRESS SPACE 

UNIBUS! ADDRESS SPACE 

UNIBUS2 ADDRESS SPACE 

UNIBUS3 ADDRESS SPACE 

FUNCTION 

MEMORY 

ADAPTER OR 
NEXUS REGISTER 
ADDRESS SPACE 

1 28K RESERVED 

256K EACH 

Figure 1 VAX- l lj780 Physical Address 

Space 

Each of the UNIBUS spaces can be further 
broken down as shown in Figure 2 .  

T h e  p h ys i c a l  a d d r e s s  s p a c e  o f  t h e  
MicroVAX I I  system i s  somewhat si mpler, as 
depicted in Figure 3 .  

With the exception of the memory sections , 
the address spaces of the two processors appear 
to be very different .  I n  fact there are a su rpris
i ng number of simi larities, as shown in Table 1 .  

The NEXUS space is where the adapter con
trol and status registers reside. In the case of a 
UNIBUS adapter, the registers that control the 

UNIBUS MEMORY 
(248K) 

UNIBUS 1/0 8KB DEVICE REGISTERS 

1 02 

Figure 2 VAX- 1 1/780 UNIBUS Space 

mapping from the bus to main memory are 
located in the NEXUS space.  The equivalent 
MicroVAX area, cal led local register space , a lso 
contains the mapping registers for the Q-bus to 
main memory. 

These physical address spaces are eventually 
mapped into virtual addresses through entries 
in the VAX Page Table .  The result  is pictured in  
Figure 4 .  

One development goal that we set for each 
new processor support project is to minimize 
the changes necessary in the operating system .  
I n  the case of the MicroVAX I I  system,  we 
exa m i ned the d i fferences i n  the physical  
address spaces between that system and larger 
VAX systems. Although the names , sizes, and 
posit ions were different,  they are functional ly 
equivalent on both the small and larger sys
tems. As a result ,  we "coerced" the local regis
ter space i nto the NEXUS map , and the Q-bus 
memory and I/0 spaces were arranged to look 
l ike a large UNIBUS adapter. Wi th this approach 
we were not forced to drasti ca l ly  a l ter the ker
nel 's  view of the machine, thus mini mizing 
changes to other portions of the kerne l .  

A similar s i tuation existed with respect to the 
Q-bus map . A device installed in  a UNIBUS 
adapter sees an 1 8-bit  address for a 2 5 6KB 

PHYSICAL ADDRESS 

0000 0000 

IFFF FFFF 

2000 0000 

2008 0000 

2008 FFFF 

3000 0000 

303F FFFF 

0-BUS 1/0 BKB 

FUNCTION 

MEMORY 

DEVICE REGISTERS 

LOCAL REGISTER SPACE 
(256KB) 

O·BUS MEMOAY SPACE 
(4MB) 

Figure 3 Micro VAX II Physical Address 

Space 

Digital Tecb11ical Journal 
No. 2 March 1986 



Table 1 Comparison of Physical Add ress Spaces for the VAX- 1 1 /780 System 
and the MicroVAX I I  System 

Physical Address Spaces 

MicroVAX I I  
VAX Function Size Function Size Purpose of Function 

Memory 2 M B-64MB Memory 1 6M B  Execute Programs 

N EX U S  8K each Local Register 256K CPU and Bus Control 
Registers 

U N I B U S  Memory 248K 0-bus Memory 4 M B  Device Memory 

U N I B U S  1/0 8K each 0-bus 1/0 

PHYSICAL ADDRESS FUNCTION 

8000 0000 

KERNEL 

NEXUS SPACE 

UNIBUS SPACE 

Figure 4 Result of Physical- to- Virtual 

Mapping 

address space . The adapter has a set of registers 
that maps this 2 5 6KB space onto the much 
larger VAX memory space . These registers per
form the equ ivalent function that is provided 
by VAX Page Table entries . In effect, they "vir
tua l i ze" the memory that devices access . 
Figure 5 depicts this mapping. 

The MicroVAX II system contains a s imilar set 
of registers with the principal difference being 
that it has enough to map all  four megabytes of 
main memory. Al though that  appears advanta
geous ,  it in fact posed a serious proble m .  The 
ULTRIX system dynamically al locates the bus
mappi ng registers from a central routine . It 
wou ld have been easy to modify this rou tine to 
" know" about the extra registers. The problem 
encountered here was that these al location rou -

Digital Tech-nical ]01n-nal 
No. 2 March I 'J86 

3 1  

8K Device Reg isters 

I 0-BUS / 
/ MEMORY 

VAX MEMORY I 
I I I BUS I 

M AP I 
I 

� 
I I 

I 
II 

Fig ure 5 Q- bus Memory Mapping 

BUFFERED DATAPATH 
NUMBER 

BIT POSITION 

BUS VIRTUAL ADDRESS 

Figure 6 Coding of Allocation Routine 

Word 

tines retu rn a word that i s  encoded as shown in 
Figure 6 .  

The upper part contai ns the nu mber of the 
buffered datapath al located , the middle is the 
nu mber of registers use d ,  and the lower is 

1 03 

New Products 



the bus virtual address . The format of this 
3 2 -bit word is  known by all device drivers that 
do DMA transfers .  To change the word to use a l l  
the map registers avai lable meant that the vir
tual address portion would need 2 2  bits instead 
of 1 8 .  That wou ld have required correspond ing 
changes in each of the device drivers . To deter
mine the severity of these problems, we did 
some tests to see if the 1 8 -bit format would be a 
l imit ing factor.  Fortu nately ,  we fou nd that 
there were always registers availabl e .  

The end resu lt  of  the mapping and map-regis
ter al location scheme was that UNIBUS device 
drivers could be left unchanged as long as the 
Q-bus  hardware was compat ib le  wi th  the 
UNIJ3US versions . We took advantage of that fact 
and thus were able to su pport the TSVO S ,  
DHV1 1 ,  and RL02 disk su bsystems without any 
impact on the development schedu le 7 

Console Port 

Trad itional VAX systems have a separate proces
sor that perfo rms console funct ions .  This 
processor is used to control the main CPU and 
replaces the older-style front panel .  Instead of 
having switches for ha lt or ru n ,  the console 
ru ns a program that  prov ides h a l t ,  r u n , 
examine ,  and initial program load capabil ities . 
Programs running in a VAX system can commu
nicate with the console through an internal 
processor register. Com mands sent in  this regis
ter are used by the operating system to reboot 
and restart the machine . 

The MicroVAX system is different: the con
sole functions are handled by the microproces
sor, the MicroVAX 78032  chip, which runs a 
program resident in ROM . like the larger VAX 
systems, a register is used to communicate with 
the console . A code can be placed in this regis
ter. When a subsequent HALT instru ction is exe
cuted, execution switches to the console pro
gram in ROM,  which then examines the code in 
the register 8 In fact  the register is  actually a 
memory location in RAM that is backed up by 
batteries . 

The UL  TRIX system contains a reboot and 
halt routine that is accessed by a privileged sys
tem cal l .  That routine was modified to commu
nicate with the console program. 

System Clock 

The ULTRlX system keeps track of the cu rrent 
time by coun ting c lock  i nterru pts from the 
1 0 ms interval timer. The time is kept in mem-

1 04 

ory as an unsigned integer; it is init ialized from 
the time-of-year (TOY) register during system 
boot . The time is set by a privileged program 
through standard system calls and can be read 
by normal user programs . That set procedure i s  
normal ly done b y  the system manager using the 
DATE command . DATE converts the time from 
a format of year, month, day, hour, m i nute,  and 
second to the integer format needed by the sys
tem cal l .  

User enters : 

yymmddhhmmss 

System converts to : 
- set __, 

Integer 
<-- read -

where yymmddhhmmss = Year, Month, Day, 
Hour,  M inute ,  Second 

The MicroVAX system does not have a TOY 
register; instead , it has a watch chip backed up 
by a battery. The chip contains a n umber of 
counters that correspond to the year, month , 
day, hour, minute,  and second . We could have 
modified the system cal l  or added a new one to 
explicitly set the MicroVAX TOY clock .  That 
wou l d  have avoid e d  t h e  c o nvers i o n  to  
integer format, given that the user has to  enter 
date and time information in the format needed 
by the watch chip.  However, it would have 
meant that we needed two versions of the DATE 
command, one for existing systems and the 
other for the MicroVAX system , to use the 
new format . To avoid that ,  we borrowed the 
conversion routines from the DATE command 
and used them in MicroVAX versions of the sys
tem time-setting routine. The irony here is that 
t h e  d a t e  is n ow co n v e r t e d  twi c e .  The 
i nteger format is present on either side of the 
system ca l l .  

User enters : System reads :  

yymmddhhmmss integer yymmddhhmmss 

Missing Instru ction Emula tion 

As mentioned previously, the MicroVAX hard 
ware i mplements a subset of the ful l  VAX 
instructi on set .  Most stri ng i nstruct ions are 
missing and are emulated i n  macrocode instead 
of implemented in hardware . The emu lation 
code could have been p laced in l i bra ries , 
where it could be l inked with user-level code . 
To do that, however, wou ld mean that l inked 

Digital Technical journal 
No. 2 March 1 986 



i mages from other VAX systems wou ld not run 
on a MicroVAX system,  thus violating one of its 
bas ic objectives . 

Rather than using l ibraries , we chose to use 
an emu lator designed by the VMS Development 
Grou p and ported that emulator to the ULTRIX 
system 9 The emu lator l i nks with the kernel and 
is a lmost completely invisible to user programs . 
It is supported by new traps in the hardware 
that help to decode each missing i nstruction . 
When the kernel or a user program executes 
one of the missing i nstruct ions , a trap occurs 
and the emulation code takes over. That hap
pens without changing mode;  in other words, if 
an emu lation trap occurs in a user program, the 
emu lator is entered in user mode,  not kernel 
mode l ike other traps . The resu lt is user-mode 
execution of code in the kernel address space . 
(Unlike the VMS system,  the entire ULTRIX ker
nel is normal ly unreadable by user programs . )  
The startup code now in i tializes the pages con
ta ining the emulatOr so that they can be read 
and execu ted by user- level code . 

As stated earlier,  the end result  is a combina
tion of hardware and software that is a lmost 
completely compatible with systems running 
the fu l l  VAX i nstruction set .  I n  fact, executable 
images from other VAX systems can run without 
re linking. The only point of i ncompatibi l i ty is 
that the emu lation code runs on the user stack 
when one of the m iss ing i nstructions is exe
cuted by user code . (We have seen one cus
tomer appl ication that was affected by this situ
ation.  The application used knowledge of its 
past usage of the stack to do "garbage collec
tion" and was confused by the intermediate 
resul ts of the emulation code . That is norma l ly 
not a problem; the ULTRIX- 3 2  and ULTRIX-
3 2 m  kits have over 500 user-level programs . 
They are compiled and l inked once on a fu l l  
VAX system and then ru n without modification 
on the MicroVAX syste m .) 

Summary 

In porting the ULTRIX system to the MicroVAX 
processor, we opted to maintain compatibi l i ty 
with other versions of the system , wherever 
possible .  We choose not tO su pport hardware 
features if  they violated internal or external 
interfaces . The refore , we were able ro del iver a 
broader range of peripheral support with a min
i m u m  of developme n t .  The end res u l t-the 
M i croVAX syste m - com b i nes ha rdware and 

Di_v,ital Technical ]OIII"Illll 
Nv . .! Marcb I 'J86 

software to provide customers, including devel
opers of software device-d rivers, with a product 
that runs all VAX programs for a fraction of the 
cost of a larger VAX system.  

References 

1 .  A detailed h istory of and supplemental 
information about the UNIX system can 
be found in the A T& T  Bell Laboratories 

Te chn ical j o u rnal, v o l . 5 7 ,  n o .  6 
Ou lyjAugust 1 9 78) and vol .  6 3 ,  No.  8 
(October 1 984) . 

2 .  Some programmers consider C to be a 
low-level language ; i n  fact ,  i t  has proven 
ro be more than adequate for program
m i ng an operati ng system l ike the UNIX 
syste m .  

3 .  D .W .  Dobberpu hl  et  a l ,  "The MicroVAX 
7 8 0 3 2  Chip ,  A 32 -Bit  Microprocessor ,"  
Digital Technical journal (March I 986 , 
this issue) : 1 2 -23  

4 .  This work was done long before the first 
hardware protOtype was developed . 

5 .  ODS-U is t he VMS on-disk fi le structure. 

6 .  The AT&T versions call this fi le "u nix ,"  
w h i l e the  Be rke le y vers ions ca l l  i t  
"vmunix , "  denoting "virtual un ix ."  

7 .  However, we did have tO expend time 
and energy tO do addit ional configura
tion testing. 

8 .  The MicroVAX 7 8 0 3 2  chip never ha l ts ;  it  
is ru nning ei ther ROM console code or 
programs in RA.t\1 . 

9 .  K . D .  Morse and L .] .  Kenah, "The Evolu
tion of I nstruction Emu lation for the 
Mi croV AX Systems , "  Digital Technical 

journal (March 1 986, this  issue ) :  76-8 5 .  

1 05 

New Products 




	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	The MicroVAX 78032 Chip, A 32-Bit Microprocessor
	The MicroVAX 78132 Floating Point Chip
	Developing the MicroVAX II CPU Board
	The Evolution of the Custom CAD Suite Used on the MicroVAX II System
	The Making of a MicroVAX Workstation
	The RQDX3 Design Project
	The Evolution of Instruction Emulation for the MicroVAX Systems
	The TK5O Cartridge Tape Drive
	Porting ULTRIX software to the MicroVAX System
	Back cover



