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Editor's Introduction 

Richard W. Beane 

Editor 

This issue features papers a bo u t  t h e  design o f  
t h e  V AX  8 8 0 0  fa mily of CPUs, written b y  mem
bers of the design team. The tech nology used i n  
Digi ta l 's la test h igh-end mac h i ne ,  t h e  VAX 8800 
m u I t i  pro cessor, a !so for m s  the ba s i s  for t h e 
ot her t h ree fa m i l y  members: the 870 0 ,  8 5 5 0 . 
and 8 5 0 0 CPUs. 

Bob Burl ey's overv i ew re la tes t h e  processes 
used in the 8800 design and the fu ncti ons of the 
memory i n t e r c o n n e c t  ( N M I ) , t h e  VAX B I  I /0 
bus, and t he four l ogic boxes formi n g  t he fi ve
stage p i pel i ne .  The e a r l y  d iscovery of design 
flaws and the use of automa ted too ls hel ped to 
achieve an aggressive complet i on sched u l e .  

The m i crom ach i n e  implements t h e  m i c roar
c h itecmre and contains four of the five p i pel ine 
stages . S u d h i n  Mishra desc r i bes how m i croin·  
stru ctions are handl ed, emphasi zing the use o f  
m i c r o b ra n c h e s  a n d  m i c r o t r a p s  t o  e n s u r e 
co heren cy . 

The VAX 8800 clock syste m ,  d iscussed bv B i ll 
Samaras. was designed using an automated t i m· 
ing verifier.  H e  describes the trade-off between 
using the ver ifier and maxim i z ing the accuracv 
of t i ming s ignals by m i n i mizing their  s kew. 

' 

The C Box and the M Rox are two parts of the 
pipe l i ne .  joh n  Fu , Jim Ke l ler, and Ken Had u c h  
describe t h e  C Box's no-wri te a l locate cache and 
the delayed-wri te a lgorithm that ensures correct 
wri te-t h ro u gh . T h e  C Box m u s t  a l s o  h a n d l e  
p i p e l i n e  s ta l l  c o n d i t i o n s  a n d  m a i n ta i n  d a t a  
co heren cy between processors . The M Box han
dles read and w r i te req u e s ts for the m c m orv 
arrays . Pau l  Natusch, Dave Senerc h i a ,  and Gen� 
Yu expla in  how the Cllesigns of the N MI and the 
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cache affected their  design, a n d  why they used 
TTL i n  the m emory control ler .  

The V �"X 8800 fa mily does not  have a separate 
f loa t i n g  po i n t  acce l erator .  As jo h n  Zuraws k i , 
Kathy Pratt,  and Tracey jo nes po i nt out , how
ever, a custom ECL u n i t  a c h i eves h i gh perfor· 
mance through the norma l  datapaths . Thus l ess 
hardware is needed, and opera nds are fetched 
faster .  

1/0 d e v i c es are l i n k ed t o  t h e  CPU by t h e  
VAXBI bus.  I n  h i s  paper, Ji m jan etos d iscusses 
the NBI adapter, which conta ins l ogic to handle 
CPU references and DMA re q u ests .  Then Paul  
Wade descri bes how the V AXBI design team had 
to abandon the tra d i t i o nal approac h  and use a 
variety of tec h n i q u es to specify the bus. So me 
chip probl ems were resolved only after a thor
ough ana lysis of the p hysical configurat ion . 

jerry Bra n d  a n d  M i ke K e m e n t  d i s c u ss t h e  
i m portance of u s i ng gro u nd correctly a s  a s igna l 
conductor to ach i eve h i gh performance. They 
describe the sources of groun d-related noise in  
the CPU, and what  they did to isol ate and con
trol t hose sources. 

Many VMS features support m u l t i process in g. 
Stu Fa rnham, M i ke Harvey, and Kathy Morse first 
describe the hardware that sup ports m u l t i pro
ces si ng,  t h e n  t h e  i n t e r l o c k e d  i n s t ru c t i on s ,  
exce pt ion hand lers, a n d  traps t h a t  i mplemenr  
VMS m u l ti process i n g .  To show how m u l ti pro
c e s s i n g d e c re a s e s  e x e c u t i o n t i m e ,  G a b r i e l  
B i sch o ff a n d  Steve G reen berg c o nverted t h e  
SPICE circ u i t  s i m u l ator into CAYENNE, a paral 
l e l  progra m .  They created master and slave pro
cesses that ra n CAYENNE 1.7 t i mes faster than 
SP ICE.  

The fi nal  two papers re late some of the autO· 
mated tools  and te chniques used on the 8800 
project . Denn is Bak first descri bes bu i ld i n g  the 
CAD s u i te from exist ing tools,  n ewly develo ped 
ones, and mod i ficat ions .  The methodol ogy was 
tru l y  i n nova t ive,  serv i n g as a fra m ework for 
fu ture projects . Then Andy Matthews d iscusses 
the on - l i ne system that tra nsformed CAD d a ta 
intO spec i fications used by Manufacturing.  This 
system m i n i m i zed the prod uct stan-up ti me by 
eli m i nati ng pape!Work . 
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Gerald J. Brand jerry Brand is a principal engineer currently deve loping 
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D R7'50 and FP7 '50 designs .  Ken helped to develop the C B o x  as a hardware 
designer on the VAX 8800 project. He is current ly a hardware engineer i n  
the Advanced VA,'( Development Group,  working o n  the hardware design 
for a new VAX processor. Ken is also pursuing a B .S .  degree from Northeast
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Foreword 

Donald J. Mcinnis 
Group Manap,er, 
Aduanced VA.X Enginel'rin[!. 

Since the announcement of the VAX-I t j7HO sys· 

rem i n  November 1 977. Digita l Equipment Cor
poration has steadi ly expanded the VAX fami ly  
with new VAX products : the VAX-I l/7'50 . VA,'(. 
llj7:)0, MicroVAX I ,  VAX·llj72'5, VAX-II/ 
7H'5, VAX 8600 ,  MicroVAX ll, VAX H6'50. VAX 
8200. and VAX 8300 systems The marker accep· 

ranee of the VAX fam i ly has been excel l ent across 
a l most a l l  computing applications. This remark
ab le  and steady i ncrease in  the usc of VAX sys· 
tcms creates a continuous demand by the VAX 
customer base for enhanced prod ucts across a .! I 
segments of the computing i ndustry. I n  the fa l l  
o f  198 2.  t h e  deve lopm ent tea m for t h e  H 8 0 0  
project (known i n terna l ly a s  " Naut i l us") was 
assigned the responsib ility of design ing nL'\v sys
tems to enhance the mid-to-high end of the VA.-'( 
fam i ly .  

This issue of the Digital Technical journol 
represents a sampling of the types of design engi· 
nccri ng rhar went i nto t he VAX HHOO fam i ly .  It 
takes an a m a z i ng ly  l arge n u m ber  of  d i fferent 
engi necring d isci pi i nes to design and manufac
ture a product of this complexi ty. A-; t ime moves 
on , each successive development project seems 
to require a bigger investment in  a larger number 
of discipl i nes to produce a product attractive to 
the marketplace . It is u n fortu nate that neither 
time nor space rerm its US tO give proper visibil
ity to all the design. manufacruri ng. ancl cus
tomer-service engi neering efforts that Icc! to rhe 

shipment of the VAX 8800 fa mi ly .  

The VAX 8SOO fam i ly consists of  four new pro· 
cessors: the VAX 8800 ,  VAX 8700 ,  VAX 8'55 0 ,  
and VAX 8'500 CPUs . The VAX 8800 family and 
the VAX 8200 system introduced a major new 
IjO bus. the VAX!3I. We also i ntroduced a com
pi ete ly new set of ljO adapters for the V AXBI  
bus. which wil l  be  the  new foundation IjO chan
nel for many fut ur e  mid· to h igh-end VAX sys· 
terns . The VAXI31 bus wi l. l rep lace the UNIBUS on 
this class of system .  The VAXlll offers a six-fold 
i ncrease i n  performance and substantia l ly better 
rel iabi l ity and mainta i nabi l i ty features in com
parison to the L Nll3US. 

The 8800 represents a s ign i ficant advance into 
new areas of h igh -performance comput ing for 
the VAX fam i ly .  A customer can replace a VA,'(. 
ll/780 CPU with a VAX 8800 CPU i n  the same 
foo t p r i n t  a n d  e ffect an order  of m agni t u d e  
i ncrease i n  t h e  a mount of work done .  The VA.-'( 
8 5 0 0  CPU is rea l ly a replacement product for the 
VAX - 1 1/78'5 CPU kernel .  However, the 8500 has 
the same price. twice the performance , and one
t hird the footpri nt .  

To produce a product that  has a good price; 
performance ratio in the marketplace , you have 
to push hard on some di mensions of technology. 
A n u m ber of new p i eces of technology were 
introduced on the VA. -'( 8800 project, such as the 
2 2 - layer backp lane and a 4 80-pi n ,  zero i nsertion 
force connecto r. In the VLSI technology area, 
one 8800 i nc l udes a total  of 1 86 emi tter-cou· 
plecl logic (ECL) gate arrays and a tota l of 28 cus· 
rom-designed LCL parts. 

The cycle t ime of a VAX CPU is a l arge determi· 
nant in i ts performance . The chall enge of meet· 
ing a 4 ';-na nosecond cycle r i me (versus 200 

nanoseconds for the 1 1 /7 8 0 )  requ i red s ign i fi 
cant advancements i n  technology implementa· 
tion and i n  CAD tools for ana lysis .  

Enhancements were made to the base operat· 
ing system software for the VAX 8800 processor. 
These software enhancements represent a basic 
technological change that is avail able to our CliS· 

romers . The VMS operat ing system was improved 
significant ly  to provide much better throughput 
for cusromers using the VAX 8800 dual proces· 
sor as a genera l -purpose system. The ULTRIX-32 

operat i n g sys t e m  was e n h a n c ed tO  s u pport 
t i g h t l y  cou p l e d m ult i p rocessin g .  Software 



library structures were also developed for cus

tomers who might want to improve the through

put of a single job by decomposing it to run in 

parallel on the tightly coupled dual processors 

of an 8800. 

To meet the performance goals, the overall 

design of the VAX 8800 system is necessarily 

quite complex and was potentially difficult to 

implement quickly and correctly. We under

stood this from the beginning of the project, 

based on our understanding of the experiences 

of previous projects (e.g., the VAX-11/750, VAX 

8600, and Jl1 VLSf CPU chip projects). To 

manage that complexity in a timely manner, we 

selected some key strategies and stuck with 

them through the completion of the project. 

They proved to be very successful since the 

hardware prototypes were relacively error free, 

and the manufacturing start-up was very smooth 

and rapid. Some of these strategies are as fol

lows: 

• The project followed a structured design 

methodology that ensured the completion of 

comprehensive specifications before any 

detailed design was done. 

• We made a large investment in our CAD team 

and in CAD tools to automate the design pro

cess. 

• The basic design was managed by a chief 

architect. 

• The system was simulated extensively before 

we built any hardware. (We finished the pro

ject with 14 VAX-11/780 and 11/785 sys
tems in our. cluster. During our peak simula

tion effort, however, over 30 dedicated VA,'( 

systems were used for a period of several 
months.) 

• Since many different engineering and manu

facturing locations were involved, we made 

extensive use of Digital's worldwide network 

for electronic mail and data exchange. 

A more important factor than any of the above 

ex ampl es, h o wev e r, was the people w h o 

worked on the project. We attempted ro build 

an excellent team that worked well together. 

The attribute of teamwork and the willingness 

of people to have a broad engineering focus 

proved to be invaluable, especially in the simu

lation and prototyping phases. The core manage

ment ream started with very experienced peo

p l e, m o s t  o f  w h o m  h a d  V AX-llj78 0 or 

VAX-11/750 development experience: Sas Dur· 

vasula, VAX 8500 project manager; John Hittell, 

manufacturing manager; Steve Jenkins, engineer· 

ing manager; Nancy Kronenberg, VMS engineer· 

ing; Bob Kusik, CAD manager; Steve Omand, 

customer service engineering; and Bob Stewart, 

chief architect. Many contributors at the next 

level also had similar backgrounds, and all 

remained in place for the duration of the pro

ject. This continuity was a major factor in com

pleting a very successful project and a very suc

cessful family of products. 
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Robert M. Burley I 

An Overview of the Four Systems 
in the VAX 8800 Family 

The VAX 8800 multiprocessor and the VAX 8700, 8550, and 8500 systems 
all derive from the same fundamental design. Their sustained appli
cations throughput ranges from 3.0 to 12 times that of the VAX-1 1/780 
system. In the design process, automated tools helped to correct design 
bugs early. ECL technology and a two-phase clock system achieve a 
45-nanosecond cycle time. Microinstructions are processed simulta
neously through Jour logic boxes that implement a five-stage pipeline. A 
high-speed memory interconnect, the NMI bus, links CPUs to memory and 
the ljO subsystem, which connects to VAXBI buses. Many reliability fea
tures, including extensive diagnostics, are implemented. 

Design work on the VA,'\ 8800 system began i n  
September 1 982  and concentrated o n  develop
ing a balanced, high-performance system based 
upon the use of ECL components and mu l tipro
cessing.  Although performance was the primary 
product goal ,  many technology, packagi ng, and 
implementation decisions reflected the equal ly 
pressing business requirements for reliabi l i ty 
and ease of manufacwring. 

The flexib i l i ty of the design u l t imately 
spawned four CPU systems: the VAX 8800 .  VAX 
8700,  VAX 8 5 5 0, and VAX 8500  models .  These 
systems share many common functiona l  and 
design attri butes yet maintain noticeable i mple
mentation d ifferences in  the areas of perfor
mance, mu l tiprocess ing, expansion capabi l ity 
(memory and ljO). and packaging. As a result  of 
these impl ementation variations . the sustai ned 
appl ications throughput (SAT) rates for these 
systems range from approximately 3 . 0  to 1 2  
t imes the rate for a VAX- 1 1 /780 system .  Sus
tained applicat ions throughput is  more ind ica
tive of usable performance for a given system 
than the more frequently reported peak num
bers that can be  derived from ideal or biased 
cond i tions . Table I compares the physical and 
performance anributes of these four VAX pro
cessor systems. 

Design Environment 

Trad i t iona l  design environ ments have p laced 
the greatest emphasis on d iscovering and e l im i -

1 0  

nat ing design errors i n  the physical  hardware.  
The complexi ty of the VAX 8800 design cou
p led with the new technologies i nvolved would  
have created cost ly delays i n  the  development 
schedule had tradi tional  approaches been used . 
Early i n  the project. goa ls were defi ned to iden
t ify logic design problems and to solve all t im
ing p ro b l e m s  t h rough the  use  of  extens ive  
design verification tools .  

A hierarchical design and s imu lat ion environ
m e n t  a l lowed the  e n g i n ee rs to m ove free ly  
throughout the  design a t  any  level from gates , 
l ayou ts ,  and behavioral  models through com
plete system s imulation and t im ing verification . 
ConsiderJble comput ing resources were required 
to a l low that freedom . This envi ron ment ,  with 
i t s  carefu l ly managed l i brar ies and databases , 
al lowed this work to be done before any hard
ware was actual ly  assembled .1 A.; a resu l t ,  the 
design matured within our VAXcl uster systems, 
evo lv ing ro hardware protOtypes on ly  after i t  
was essentia l ly  complete and stable . I n  addition 
to the expected savings in  prototype costs and a 
red uction in overal l  development r ime,  the per
vasive use of software tools sign i ficantly shifted 
the tradi tional debug effort to an ear l ier  poi n t  i n  
t h e  des ign process . Cumulat ive bug-detect ion 
p lots were used extensively to provide i ns ight 
in to the srabi I ity of the design . 

The effect of this shift was ro provide stable ,  
early prorotypes for extensive system characteri 
z a t ion  and rest i ng ,  l e a d i n g  to ear l i e r  des ign  
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Table 1 CPU and Memory Attri butes of the VAX 8800 Fa mily 

VAX 8500 VAX 8550 VAX 8700 VAX 8800 

CPU Attributes 

SAT (com pared 3.5 6.0 6 .0 1 0 . 0  to 1 2.0 
to VAX - 1 1 /780) 

Cycle Time 45 ns 45 n s  45 n s  45 n s  

Number o f  2 
Processors 

U pgrade 
Potential 

To 8550 None To 8800 None 

Writable Control 1 5K 1 5K 1 5K 1 5K i n  each C P U  
Store (Words) 

U ser Control 1 K  1 K  1 K  1 K i n  each CPU 
Store (Word s) 

Microword Size 1 43 Bits 1 43 Bits 1 43 Bits 1 43 Bits 

CACHE Size 64KB 64KB 64KB 64KB ( i n  each CPU)  

I nternal Datapath 32 Bits 32 Bits 32 Bits 32 Bits 

Instruction Buffer 1 6  Byte 1 6  Byte 1 6  Byte 1 6  Byte Look Ahead 
Type Look Ahead Look Ahead Look Ahead in each CPU 

Maximum Total 1 6 M B/s 1 6M B/s Over 30M B/s Over 30M B/s 
1/0 Data Rate 

Maximum 1/0 2 2 4 4 
Channels 

Memory Attributes 

Maximum Physical 8 0 M B  8 0 M B  1 28 M B  1 28 M B  
Memory Size 

Cycle Times: 

Hexword Read 495 ns m i n .  495 ns min .  495 ns m i n .  4 9 5  n s  m i n .  
(256 bits) 1 260 ns max.  1 260 ns max.  1 260 ns max.  1 260 n s  max.  

Octaword Write 270 ns min . 270 ns min.  270 ns min. 270 ns min. 
(1 28 bits) 540 ns max. 540 n s  max. 540 ns max. 540 ns max.  

Longword Write 1 35 ns m i n. 1 35 ns m i n .  1 35 n s  m i n .  1 35 n s  m i n .  
(32 bits) 495 ns max. 495 ns max. 495 ns max.  495 n s  max.  

acceptance . This strict ly controll ed design envi
ron ment al lowed us to complete physical debug 
along with the req u i red system eva luat ion and 
testing in  only eight months. 

I n  a software- i ntensive design environment , 
the product ion of actual  hardware is deferred 
somewhat in favor of des ign stabi l i ty ,  resu lting 
i n  a s l ight ly longer soft-design period . The delay 
in hardware avai lab i l ity, however, is more than 
balanced by the stab i l i ty of the hardware proto
types, which can then be acce lerated through 
the eva luation and qual ificat ion-test ing phases . 
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The design schedule recovers during these later 
phases , and substant ia l  cost savings are rea l ized 
beca use fewer engineer ing changes are made 
and stable manufactu ring can begin  quickly. 

CPU Design Overview 

The VAX 8800 fam i ly of designs were structured 
around the fu nctional elements, or "boxes , "  of 
the system .  The CPU , m e mory, ljO, a n d  bus 
subsystems were al l  matched to provide the nec
essary system ba lance . One s imple  model is to 
treat performance as a fu nction of two variables: 

1 1 
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A n  Overview of the Fou r  Systems in the VAX 8800 Fami�y 

the i nstruction execution rate , and the amount  
of "work" each  i nstruct ion can  perform . The 
design of the VAX 8800 fami ly focused on what 
we call the "short tick" approach to achieve the 
necessary, sustained performance . 

I n  t h i s  a pp roa c h ,  the  i ns truct ion a n d  data  
s t r e a m s  a re  kept s i m p l e  and a re e x e c u ted  
qu ickly .  Any design trade-offs were resolved i n  
favor o f  speed and  s i m p l ic i ty,  t h u s  red u c i n g  
design complexity .  The use of h igh-speed cus
tom and semi c ustom VLSI components  com
bined with severa l new i n ternal  bus  a rch i tec
tures resul ted in a fam i ly of processors with a 
4 5 - na n osecond ( ns )  cyc l e  t i m e .  A l l mod e l s  
e m p l oy a f ive - s t age  i n s t r u c t i o n  e x e c u t i o n  
pipel ine ,  integral float ing poi nt acceleration (F, 
D,  G, H formats) ,  and the VAXBI  bus as the pri
m a ry I / 0  s u bsyste m .  T h e  e x te n s ive  use  o f  
m i crocode contro ls  w i th m i n i ma l  h a rdware 
ass i s t  a u gm e n ts c u rrent  performance  w h i l e  
provid ing flexibi l ity for fu rure enha ncements .  
The b lock d iagram in Figure 1 (us ing the VAX 

ECC 
MEMORY 

8700 and VAX 8800 systems) i l l ustrates t he key 
functional e lements common to the VAX 8800 
family design . 

Technology 

The raw speed , off-chip drive capabi l ities, and 
ava i l a bil i ty of  b ipo lar  e m i t te r-cou p led  log ic  
( EC L) log ic  com po n e n ts provi d e d  the  m ost  
straightforward means of ach ieving the desi red 
performance of the VAX 8800 fami ly .  Most logic 
i s  implement e d  in 1 2 0 0-gate ECL arrays . Cus
tom l ogic chips designed by Digital provide fur
ther performance ga i ns for float ing point opera
tions and genera l -purpose registers . The cache is 
i m p l e m ented in 1 0 - ns a n d  1 5 - n s  ECL RAMs . 
N i ne - layer ,  contro l l e d - i mpedance CPU l og i c  
modu l es a n d  a 2 2 - layer, contro l led- impedance 
CPU backpl ane were deve loped to meet the sig
n a l - i ntegri ty a n d  s igna l -propaga t ion  req u i re 
ments cruc i a l  to  an ECL desi gn . Other  m u l t i 
layer backplanes were designed for the private 
memory array bus and 1/0 subsystems . 

VAX 
PROCESSOR 
(STA N DARD 
VAX 8700) 

CONSOLE 

1-v;;----� I PROCESSOR I -i (U PGRADE I 
I VAX 8800) l 
L. - - - --r - - - .J  

I 
I 

H IGH SPEED M EMORY I NTERCONN ECT BUS ( N M I) 

1 2  

BUS I NTERFACE 

VAXBI 
1/0 BUS 
STD 8700/8800 

- -, I I I I I 
r---__1 _ _ _  .., I I I VAXBI I I 1/0 BUS I I STD 8800 I I I 
L - - - "7...----J 

/ ' 
", I� I 2 I 
� '-7 ' / 

v 

I I 
r---..1----· I I 
I BUS I NTERFACE I r--1 (OPTIONAL) L-, 

1 I I I I I I I I L - - - - - - - -' I 
I I 
I I 

r ----1--- -, _ _ _ _ _  L _ _ _  , 

I VAXBI I I VAXB I  I I 1/0 BUS I I 1/0 BUS I I (OPTIONAL I I (OPTIONAL I 1 8700/8800) 1 � 8700/8800) � 
L----;o::- - - -...J '----7------ ....J 

/ ' / ' 

., r ., � 
I 3 1 I 4 I � � � 7 ' / ' / v v 

Figure 1 VAX 8 700/8800 Rlock Diagram 
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An in novative scheme of bus bars and ribbon 
straps routes the appropriate power tO each of 
the backplanes, min i miz ing cable management 
problems for system power. The eight CPU logic 
modules ,  a l l  memory arrays , a n d  a l l  IjO con
trol lers attach to the i r  respective backplanes by 
means of zero insert ion force (ZIF) connectors . 
which im prove our abi l i ty to manufacture and 
service the system .  Figure 2 shows the two d i f
ferent modu le  types (CPU and VAXBI)  usL"cl in  
the VAX 8800 fami ly .  

Figure 2 Typical CPU and f/0 Modules 

An L"XtensivL" L"nvironmental  mon itoring sub
system , ca l led the EMM, has been implcmL"ntL"d 
throughout  t h e  syste m .  The E M M  consta n t l y  
moni tors curre nt  fl u c tu a t i ons ,  a i r  fl ows , and 
te mperature va riat ions ,  prov i d i ng warn i ngs at  
the system console .  ThL" EMM can automat ica l ly 
power down the system in  thL" L"venr that safe 
operat ing l i mits a rc violated . 

CPU Subsystems 

The des igns of the CPUs i n  the VAX 8800 fa m i l y  
are part it ionL"d along the logica l functions pn-

Di�ital Technical jourmtf 
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formed wi th in  each processor. There a re four 
logica.l boxes: the instruction un i t  (I Box) , the 
cache (C Box) , the execut ion unit (E Box) , and 
the memory su bsystem (M Box) . Each processor 
contains these functional un i ts and their rela ted 
buses. Five buses are implemented with in  each 
CPU : the cachejALU bypass bus, the cache data 
bus. the i nstruction- buffer data bus, the vi rtua l
address bus, and the write data bus . F igure 3 is a 
bl ock d iagram of the processor configuration . 

I 
BOX IBD BUS 

CONSOLE 
SUBSYSTEM 
INTERFACE 

VISIBI LITY BUS 

E 
BOX 

CACHE DATA BUS 

c 
BOX 

HIGH SPEED MEMORY INTERCONN ECT BUS (NMI) 

NBIA 
ADAPTER 

TO NBIB ADAPTERS 

CjA BUS - CACHEjALU BYPASS BUS 
IBD BUS - INSTRUCTION BUFFER DATA BUS 
VA BUS - VIRTUAL ADDRESS BUS 
WD BUS - WRITE DATA BUS 

M EMORY 
CONTROLLER 

Figure 3 Processor Block Diagra m 

A short overv iew of each functional box fol 
lows. Other papers i n  this i ssue of the Digital 
Techn ical jo u rnal a n d  t h e  VA X Ha rdware 
Handbook conta in  substant ia l ly more dera i l .  2 

1 3  
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A n  Overview of the Four Systems in the VAX 8800 Fami�J' 

Pipelining the VAX 8800 Family 

P ipe l i n i ng ,  wh ich  fu n c t i o n a l l y  i nvolves the  
E Box, the  C Box ,  and the  M Box, i s  pr imar i ly  
control led by the I Box .  P ipel i n i ng is  a proven 
method to i mprove performance . The i ncorpo
ration of p ipel i n ing,  in  conjunction with faster 
microcode i nstruction execution rates , or cycle  
t imes, i ncreases aggregate throughput more than 
can be achieved by i mprovements of the cycle  
t ime a lone . The concept of pipe l in ing is  based 
u pon part i t i o n i n g  i n s t r u c t i o n  e x e c u t i o n  to  
a l low s imu l taneous operat ions u pon mul t ip le  
m i c ro i n s t ru c t i o n s .  The VAX 8 8 0 0  fa m i l y 
employs a five -stage p ipe l ine .  I n  th is  design a 
n ew m i croinstruct ion execu tes every 4 5 ns ,  
w i th  five m icroinstructions execut ing s imul ta 
neous l y .  A s i m p l i fi ed  schemat i c of  the  VAX 

8800 fam i ly p ipe line is represented i n  Figu re 4 . 

I DNA I cs R A W,C 

I DNA cs R A W,C 

DNA cs R A W,C 

DNA cs R A W,C l 
DNA cs R A I W,C I 

DNA - DECODE/NEXT ADDRESS 
CS - CONTROL STORE LOOK-U P  (M ICROCODE INSTRUCTION) 
R - REGISTER READ 
A - ALU OPERATION 
W,C - REGISTER WRITE, CACH E  OPERATION 

Figure 4 The Pipeline in the VAX 8800 

Fam ily 

The I Box 
The I Box conta ins the m icrocode store and con
trol center and performs five pri mary functions. 

• Buffer ing  the p refetched VAX i nstruct ion 
stream data received from the cache 

• Decod ing and control l i ng the execut ion of 
m icroinstructions 

• Mon i tor ing and serv ic ing  mi crotraps, i nter 
rupts, and exceptions 

• Supplying i nstruction-stream embedded data 

• I nt e rfac ing  be tween the conso l e  i n terface 
module and the processor 

For each processor, a writab le  control srore of 
I 6K words by 1 4  3 bits is loaded d i rectly from 
the inte l l igent console subsyste m upon system 

1 4  

start. A segment o f  control store wi th I K words 
by 1 4 3 b i ts ,  the user-writab le  control store, is  
provided for the system user to opt imize appl i 
c a t i o n s .  T h e  l o g i c a l fu n c t i o n  o f  t h e  I Box 
incl udes the  fol lowing:  

• 'fhe i nstruction buffer 

• The i nstruction decoder 

• The m i crosequencer 

• The condition code and m icrobranch logic 

• The i nterrupt and processor-register logic 

• The fi le-address generator 

F igu re S depicts the i mplementat ion of the 
I 13ox . 

The C Box 

Tbe C Box for each processor is bu i l t  around a 
(i 4 - k i l o byte ( KB)  wr i te - th rough  da ta  cache  
memory that  i s  p hys ica l l y  i ndexed and d i rect 
mapped . Functional ly, the C Box provides very 
h i g h - s p e e d  p h ys i c a l  m e m o ry ,  h i g h - s p e e d  
address translations, and a communication path 
for the processor to the N M I  bus . The compara 
tive ly  large cache s ize  was specifical ly selected 
ro a l l ow large appl ications to remain fu l ly res i 
dent  in  the cache, substant ia l l y  reducing mem
ory traffic and processor wa i t  sta tes . The com
p l e t e  C B o x  i m p l e m e n t a t i o n i n c l u d e s  a 
I KB trans lation buffer ,  a 64 KB cache data store , 
and an NMI i n terface . The transl a t ion  buffer 
consists of a 1 K-entry cache of virtu a 1 - to-physica I 
addn:ss translations. This translat ion buffer con
rains a tag store and a data store organized into 
') I  2 process-trans la t ion s lots and 5 1 2  system 
region-translat ion slots .  Us i ng a portion of the 
v i rtua l  address ro compare the tag-store a n d  
data-store addresses, the trans la tion buffer con
catenates the page frame nu mber with the low
order virtual -address bits to form the physica l  
address for the data store cache . 

Data reacl from the cache data store (a cache 
" h i t " )  requ i res  no m e m o ry re q u es t . I f  t h e  
requ i red cla ra i s  n o t  i n  t he cache data store (a 
cache " m i ss " ) ,  l og ic  e m bedded in the N M I  
in terface uses the cache-m iss address tO spawn a 
commandjacldress transaction that is sent to the 
memory subsystem . Upon return , the requested 
data from memory is passed to the req uesting 
CPU and then pl aced in  the cache data store for 
subseq uent use . This design a l lows the translation 
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buffer and the cache data store to be free to 
process other processor requests unt i  I the 
requested data arrives from memory .  

A block d iagram of  the C Box is shown in  
Figu re 6 .  

The E Box 

The E Box receives data from the I Box and the 
C Box. processes that data ,  and returns i t  ro rhe 
C Box . The E Box performs five pri mary func
t ions required by the processor. 

I CACHE DATA I REFILL DATA INTERCONNECT • Hand les a l l  arithmetic ,  logica l and bi t-shift 
operations 

STORE INTERFACE 

< t > t 
CACH E  DATA BUS N M I  

• F R O M  EXECUTION BOX 
t FROM INSTRUCTION BOX 

Figure 6 C Box Block Diagram 
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• Mai ntains the program counter and general 
registers 

• Mai nra ins the processor registers 

• Control s data transfers between the C Box , 
the I Box , and the c lock-module registers 

• Provides condi tion-code i nformation to the 
l Box m icrosequencer 
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A n  Oven,iew of the Four s:vsterns in the Vt1X 8800 Fa mil ) •  

T O  C BOX FROM I BOX 

t 
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CAC H E  DATA BUS 
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REGISTER PROGRAM 
F ILE COUNTER 
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r--- ARITHMETIC AND LOGIC U N IT 
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FROM 
C BOX 

I t t l 
MU LTI PLIER SH IFTER FLOATING 
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t t r-.. < CACHE(ALU BYPASS BUS 
v 

Figure 7 /;' No.1.· Block Diagram 

The major dements of rhc E Dox, located phys· 
ica l ly on rhe d a ta-sl ice mod u les and rhe sh i fter 
modu 1<: .  consist of a register fi l e ,  a data fi k ,  t h e 

program - c o u n t er log i c ,  the  m a i n  A L U ,  a n d  a 
sh ifter .  The logic of the E Box i ncludes in tegra l 
float i ng point operations that are opt imi zed and 
a 6 4 - b i r  m u l t i p l i e r  ( i m p l e m e n ted i n  cus tom
designed VLSI chi ps) rha r  augments t h e  speed of  
borh i nreger and float ing po in t  m u l t i pl ica t ion . 
Figure 7 is a block d iagram of the E Box .  

1 6  

The M Box 
The M Box . the memory subsyste m ,  consists of 

m e m o r y con trol log i c ,  me mory a rray s ,  and a 

ded i cated me mory a r ray b u s  r h a t  p rov i des  a 
usable data rare of over '50MB per second to rhe 
me mory subsystem.  The contro l logic opt imizes 
m u l t i p le  memory read a n d  wr i te  opera t ions ,  
i m p l e m e nts three-way i nt er leav ing, and  buffers 
memory transact ions for opt i m u m  dara move
ment . The dedi cated me mory array bus, coupled 
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wi th the memory cont rol logic , effect ively off
loads the  N M l  bus ,  provi d i n g  ba lanced bus 
access and loads . The i nt erleaving a lgori t h ms 
are based u pon a rray boundar ies .  mak i ng t he 
memory control logic technology i ndependent . 
The resu lt  is that as increasingly dense memory 
arrays become ava i lable ,  few if any cont ro lle r  
mod i ficat ions wi l l  be requ i red . 

The error checking and contro l  (ECC) is bu i l t  
around 7 check b i ts for every 32  b i ts of data . 
This protocol provides automatic s ingle-bit cor
rection and doubk-bit detect ion . 

I n  the VAX 8800 mult iprocessor, a l l  memory is 
ful ly sharable .  Current systems in the VAX 8800 
fami ly are offered wi th  1 6 MB per memory array , 
g iv ing the  VA..'{ 8700  a nd VA..'{ 8800 systems a 
max imum memory capac i ty of 1 2 8MB,  and t he 
VAX 8500  and VAX 8 5 5 0  systems a maximum of 
80MB.  Figure 8 is  a block d iagram of the M Box. 

INSTRUCTION 
BOX 

HIGH SPEED M EMORY INTERCONNECT BUS (NMI) 

POWER SUBSYSTEM 

r 
I 
I 
I 
I 
I 
I 
I 
L _ _  

- - - - - - ..., 
M EMORY CONTROL I 

I 
I 
I 
I 
I 
I 
I 
I 

_ _ _  ..J 

Figure 8 M Box Block Diagram 
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The Clock Subsystem 

The c lock subsystem generates , contro ls , and 
distributes t iming signals to a l l  the components 
of the  processor system . The clock su bsystem 
conta i ns the consol e i nt e rface , an osc i ll a tor , a 
phase generaror, clock-control logic c i rcui ts ,  and 
the logic c i rcui ts for clock signa l d istri but ion .  

The VAX 8 8 0 0  fa m i l y i m pl e m e n ts a two
phase. nonoverlapped c lock su bsystem operating 
at a cycle t ime of 4 5 ns . A stable,  high-frequency 
osc i l lator ( 1 20 MHz nominal with variable out
put ) . coupled with a phase generator, provides 
the signa l . The implementation of a two-p hase 
design wi t h  m atched signa l - length d istribut ion 
t h roughout  the CPU is most effi c i en t  for the  
p ipe l i ned,  latch-based design of  the  VAX 8800 
fa m i ly .  This design avoids the i n effi c i enc ies  
associated wi th  the  compressed signal -assertion 
t i mes resu l t i n g  from approac hes tha t  spec i fy 
m i n i mum delays for given logic ckments .  

A-clock and B-clock signals arc cl istributcd to 
a l ternate latches in  a given logic stream .  Al l data 
transfers occur between latches clocked by d if
ferent p hases ro assure a race - free design . The 
essence of fast-processor design is managing and 
contro l l ing skew. In this regard , signal propaga
t ion and d istribut ion presented sign ificant chal
l enges in  the areas of  contro l led etch lengths. 
control led impedance , rout ing, and p l acement.  
To assure a stab le ,  re l i ab le  des ign .  a l l  des ign 
ac t iv i ty was pred icated on worst - case des i gn 
m lcs rather than using the typical -case l imits .  

The NMI Bus 

I n tegral to the design of  th is  fami ly of proces
sors was the development of a h igh-speed mem
ory in terconnect bus called t he N M I  bus . Th is  
bus ,  ana logous to t he sync hronous backplane 
interconnect (SB I  bus) in  the  VAX- 1 1 /780 CPU . 
l i nks  t h e  su bsyste ms  for C PU log i c ,  cen t ra l  
memory ,  and 1/0. The N M I  bus i s  a 3 2 -bi t  syn
chronous bus ,  p hys ical ly i mplemented wi th in  
the  2 2 - layer backp lane .  This  bus  provi des the 
control and datapath fu nct i ons as we l l  as the  
d istri but i on of  clock signals for the VA.,'( 8800 
fami ly .  

One  fu ndamenta l  prob lem i n  the des ign of 
h igh-performance systems revolves around ba l
a n c i n g  t h e  bus access  n e e d e d  at any g i v e n  
i nstan t  w i t h  the  raw bandw i d t h  ava i lab le .  To 
provide the correct balance,  the N Ml bus was 
implemented as a pendecl (vs. in terlocked ) bus , 
resu lt ing i n  very h igh bus-access ava i labi l i ty .  
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An Overview of the Four Systems in the VAX 8800 Fami�J! 

Since memory is the critical resource in  sus
ta ined operations, the NMI bus uses a modi fied 
round-robin  arbitration that gives the memory a 
higher priori ty when there is contention for the 
bus .  Th is  a rb i tra t io n  pr ior i ty e l i m i n ates any 
lock-step conditions and a lso provides for recov
ery of states and data i n  the event  of preemp
t ion .  This h igh bus-access capab i l i ty ,  coupled 
wi th  usable data rates of u p  to 60MB per sec
ond, provides the necessary balance to support 
CPU. memory, and l/0 transactions. The inclu
s ion of write buffers with in each CPU, coupled 
with the large cache s ize ,  effectively redu ces 
the number of transactions presented to the bus. 
Measurements on a VAX 8 8 0 0  system in ou r 
Engi neer ing VAXcluster environment have ind i 
cated that the N.MI bus i s  rarely busy more than 
50 percent of the t ime ;  the CPUs usc approxi 
mately 2 5  percent of the ava i lable access t ime 
and  bandwi d t h .  Other  a p p l ica t ions  may see 
somewhat d i fferent ratios. 

VAXBI Bus 

The VAX 8800 fa m i ly u ses the VAX bus in ter
connect , cal led the VAXBI  bus, for the 1/0 sub
system in  order to provide adequate balance for 
the CPU performance. The VA.,'{J3I bus, a 3 2 -bi t  
c locked bus with distributed arbitrat ion,  is capa
ble of usable data rates i n  the VAX 8800 fam i ly 
up to 8MB per second , depend ing upon word 
s i ze and  a p p l i c a ti o n . Custom log i c on each  
interface module provides a l l  bus  protocols ,  as 
weJI as integral data-in tegrity features, inc lud i ng 
master transmit and command acknowledge . 

The VAX 8800 and VAX 8700 systems can be 
configured wi th  up  to fou r  VAX B I  channc l s .  
whereas the  VAX 8550  and VAX 8500  systems 
accept up to two . Therefore , fu l ly  configured 
VAX 8800 and VAX 8700 systems can su pport 
aggregate IjO bandwidths up to 3 0 MB per sec
ond . Si m i larly , fu l ly configured VAX 8 5 5 0  and 
VAX 8500 systems can support aggregate band
widths up to 1 6MB per second . Each VAXBl bus 
c a n  s u p p o r t  u p  to 1 6  n o d e s , o r  l o g i c a l  
acldrcsscs, which connect to any combi nation of 
n e t wo r k s , i n t e l l i g e n t  a n d  n o n i n t e l l i g e n t  
devices, DMA devices, and VAXcluster systems.  
as  well as  provi d ing for connection to exist ing 
UNIBUS-based devices . 

Al l of D ig i ta l ' s network protocols i n terface 
d i rectly to the VAXBI on the VA,'{ 8800 fam i ly .  
Thus , VAXcl uster .  E therne t ,  DECnet  and DSA 
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( D i gi tal Storage Arch i tectu re) devi ces are a l l  
ported d i rectly to th i s  h igh -performance I/0 
subsystem . 

Reliability 

Rel iabi l i ty was one of the pri mary goa ls  of the 
VAX 8 8 0 0  d es i g n .  N u m e rous  fea t u res  were 
implemented that more than doubled the basic  
compming kerne l ava i labi l i ty compared to the 
VAX- 1 1 /780 system .  Some of the key functions 
inc lude 

• E n v i ron m e n t a l  a n d  power m o n i tors  t h a t  
qu ery t h e  system a n d  m a i n t a i n  safe system 
operating levels 

• Automatic verification of hardware , fi rmware , 
and software revision compatib i l i ty 

• Electrical ly keyed modu les and module slots 
that prevent i mproper i nsta l la t ion and dam
age to the modu les or the system 

• Automatic e l ectrostatic d ischarge (ESD) pro
tect ion of modu les dur ing  i nsta l l a t ion  and  
removal 

• ECC on main memory 

• Parity checki ng on in ternal RAL\1.s 

• Bus protocol checking for the memory in ter-
connect 

• Timing and voltage margin ing 

• Remote d iagnostics capabi l i ty 

• D u a l - t o - s i n g l e  p rocessor reconfi gu ra t i o n  
(VAX 8800 system only) 

Diagnostic Development 

S i m i l a r  to the  h a rdware  d e ve l o p m e n t ,  the  
d e s i g n  m e t h o d o l o gy  fo r t h e d i a g n o s t i c s  
depended very heavi ly  on s imulation . Almost a l l  
the d i agnost ic  tests were debugged on behav
ioral and stru ctural models of the design before 
the i n i t i a l  prototype was powered u p .  There 
were three major benefi ts of this methodology . 

1 .  M ic rod i a gnost ic  a n d  macrod iagnos t ic  
tests were usefu l  for design verificat ion 
testing .  

2 .  Test vectors for automatic test equ ipment 
(module  test) were extracted from the 
s imul ation database . 

3 . A comprehensive diagnostic package was 
ava i lab le  short ly  after the prototype was 
powered up .  
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The diagnostic for the VAX 8800 fami ly con
s i s ts  of  tests  s p e c i fi c  to  t h i s  processor a n d  
generic to the VAX archi tecture. The processor 
is tested pri mari ly with microd iagnostics.  These 
rests execute from the processor 's  wri table con
trol store and are governed by the console .  

VAX generic d iagnostics are incl uded to test 
the UNIBUS and VAXBI adapters and options . Al l 
t h e  d i a g n os t i c  c o d e  fi ts  o n  t h e  c o n s o l e ' s  
Winchester d i sk .  When the system i s  powered 
u p .  a su bset of the m i c rod i agn ost ic  tests are  
executed . 

Balanced Systems 

The VAX 8800 design effort del ivered fou r  dif
ferent systems, the 8800 ,  the 8700 ,  the 8 5 5 0 ,  
and the 8500 ,  a l l  reflecting the overrid ing con
cept of balanced system design . Whi le the CPUs 
themselves demonstrate excel lent i n ternal bal 
ance between their  logical and functional sub
systems, they are also balanced members of the 
extended system t h a t  can span  m u c h  l a rger  
physical distances. Monol i thic or  isolated com
p u t i n g  resou rces  a re no l o n ge r  c a p a b l e  o f  
access ing ,  man ipu la t ing ,  and  d i str i but ing the 
volu mes of i nformation needed for complex or 
extended solu tions . In  this l ight, the VAX 8800 
fami ly shou ld be viewed in the context of a bal 
anced network.  The move ment of data  is  gov
erned by speed a nd d i stance .  An i nverse re la 
t ionsh ip exists as shown i n  F igure 9 .  The VAX 
8800 fami ly fits on the rop bound of the band
width range throughout the distance function . 

w 
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Fz��ure 9 Bandwidth versus Distance 
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Summary 

The VAX 8800 fa m i ly of products merges fast 
instruct ion-execut ion rates, large physi cal mem
ories, large high-speed data caches, VAXBI 1/0 
channels ,  pipel i n ing, and balanced internal-bus 
architectures to prov ide  h igh system-appl ica 
t ions  t h roughput . Spa n n i n g  a n  a p p l i c a t i ons  
throughput range that is from 3 to  1 2  r i mes that 
of the VAX- 1 1 /780 system ,  the VAX 8500 ,  VAX 
8 5 5 0 ,  VAX 8 7 0 0 ,  and  VAX 8 8 0 0  systems are 
matched ro the network and appl ications strate
gies offered by Digital Equi pment Corporation . 
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Sudhindra N. Mishra I 

The VAX 8800 Microarchitecture 

The VAX 8800 processor has a simple but efficient microarchitecture. Its 
pipelined micromachine has a one-cycle next-address loop and four-cycle 
latencies for both microbranches and microtraps. Instruction prefetch 
and decode are done in parallel with microcode execution. The instruc
tion buffer is a bit-sliced, four-longword circular queue. The decoder is 
primarily a RAM-based table. For special events, hardwired logic is used 
for decoding. A bit-sliced microsequencer provides up to 32-way condi
tional microbranching, using a collection of about 80 branch conditions. 
A hardware micros tack provides up to 15 levels of nested subroutine calls 
and returns. Microtrap conditions are prioritized over 1 6  levels, and 
microtraps are chained, not nested. 

The term " microarchi tecture" means the speci 
fication or descri ption of the interre lationships 
between the pans of the  mi cromach i ne tha t  
i m p leme nts the  ins t ruc t ion  se t  processor .  I n  
terms of  this defin i t ion ,  the microarchitecturc of 
the VAX 8800 processor wi l l  be described by 
e lucidat ing the organ ization of  its micromachine 
and the interaction between its componenrs . 

F i gu re I shows a s i m p l e  t hree-stage state
mach i n e  model  of  an abstract  m i c romac h i n e  
appropriate for implement i ng t h e  control u n i t  
o f  a typ ical von Neumann processor .  F igun.: 2 
shows a block d iagram depict ing the essen tia l  
e l ements of such a micromach ine .  This  stare
machine is capable of executing m icrocode rou
tines to implement an instruction set processor. 
I n  such  a sys te m ,  every macro i nstru c t i o n  i s  
decoded b y  the hardware to produce the starr
ing addresses of a smal l  set of microprograms , 
w h i c h  execute  seq u e n t i a l l y  to  produc e the  
des i red  e ffe c t .  B a r r i n g  some exce p t i o n s .  a 
m i croprogram or m icrocode rou t i ne can exe
cute ra ther i ndependently in the sense that eac h 
mi croi nstruct i on produces the add ress of the 
next microinstruction . The last microinstruction 
causes the se lection of an external address . such 
as one produced by the de cod er ,  ro starr the 
execution of another routine . 

In Digita l ' s vernacular ,  the I Box is the logical 
part i t ion cont a i n i ng the i nstru ction-processing 
hardware . Figure 3 shows a b lock d iagram of the 
VAX 8800 I Box with the basic elements of its 
micromachine .  

20 

INTERPRET 
MICROINSTRUCTION 

FETCH 
MI CROI NSTRUCTION 

Figure 1 State- machine Model of an 
A bstract Micromachine 

From the early LBM and CDC computers to the 
modern CRAY mac h i n es ,  computer designers 
have used a tec hnique cal l ed "p ipel i n i ng" to 
obta in  h igher performance . P ipel i n i ng overlaps 
the execut ion of i nstructi ons i n  r ime ;  that  is ,  
severa l i ns t ruct ions  can be  execut i ng at  the 
same r i m e .  Th i s  tec h n i q u e  provides a h i gher  
throughput when the p ipe l i ne is fu l ly loaded , 
but tlwre i s  a cost involved . I f  the p i pe l i n e is 
broken ,  extra process ing is requ i red to refi l l  i t .  
Moreover, if any act ive i nstructions have par
tial l y execu ted . i nformation about their  stares 
may have to be saved to con t i n u e  process ing  
after an  abrupt in terru ption . 

The  de gree of p i p e l i n i n g  v a r i es from one 
mach ine to another depending upon the design 
choices and trade-offs made by the system archi 
tects . A metaphor often  used to i n d icate  the 
degree of pipe l in ing is the length of the pipel ine  

Digital Technical journal 
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Figure 2 Block Diagram of an Abstract Micromachine 
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CONTROL TO E BOX 

CONTROL TO C BOX 

Figure 3 VAX 8800 I Box 

stated as the n u m be r  of stages, for example ,  a 
three-stage p ipe l i ne or a fou r-stage p ipe l i n e .  
The number of stages conveys the extent of t ime 
overlap for typ ica l  opera t ions in  a compu ter .  
I n  a machi ne wi th  a p ipe l i ned m icroarcbi tec
tu re, these operations are executions of microin -

CL - COMBINATORIAL LOGIC 

structions.  A higher degree of pipe li n ing makes 
short  cyc le  t i mes  poss i b l e ,  thus  lead i ng to a 
h i gher  th roughput  when the p i pe l i ne is ful ly 
loaded . But longer p ipe l in es e n ta i l  i ncreased 
overhead in terms of their ab i l i ty tO resume oper
ations after a break in the pipel ine caused by any 
abnormal event. Therefore , an arch i tect's goal is 
to design the system so that the pipe l i ne re mai ns 
loaded most of the t ime and recovery from a bro
ken pipel ine is not roo ineffic ient .  The VAX 8800 
CPU i s  a prime example of  a processor with a 
pipe l ined microarchitecture. 

System Considerations 

The design phi losophy of the VAX 8800 proces
sor was to o p t i m ize  the  h a rdware so t h a t  i t  
wou l d  execute the  m i crocode effi c i e n t ly .  A 
large control store ( 1 44 bi ts by 1 6,000 entries) 
holds the entire m icrocode. Using fa i rly general
i zed  d a tapa ths , t he m icroco d e  executes  t he 
logic of the i nstructions . However, special hard
ware is used to speed up performance in  cri t ica l 
areas . The processor logic is primar i ly  designed 
with l atches, which are clocked with a globa l ly 
d istr ibu ted , two-phase , nonoverlapping c lock
i ng scheme. The two clock phases are cal led the 
A-clock and the B-clock. A typica l  example of 
logic design,  based on the above approach , i s  
shown in  Figure 4 .  

OUTPUT 

Figure 4 A Typical Section of the VAX 8800 
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The VAX 8800 Microarchitecture 

It is apparent from Figure 4 that the data flow 
in such a logic system occurs through rhe per
petual data transfers between the la tches con
nected to the A-clock and those con nected to 
the B-clock .  Each data transfer may be cons id 
ered atom ic i n  the  sense of  hardware operation . 
A m icrooperation may be e nvisioned as a logical 
operation that i s  atomic in terms of the execu
tion of a m icro instru ct ion . such as a register 
read , a register write or an AIU function .  Hence 
a microoperat ion const i tutes one or more data 
transfers . and the m i croi nstruct ion execut ion 
s i m p l y  cons t i tu tes a t ime seq uence of mi cro
operations. as shown in  Figure '5. 

CLOCK 

A 

I 
B 

I 

READ REGISTERS ALU FUNCTION 
ADD 

TIME 

A 

I 

STORE RESULT 
IN REGISTER 

Figure 5 Example of a klicroinstruction 

B 

I 

In high-performance machi nes, l i ke those i n  
the VAX fa m i l y ,  there i s  usua l ly a m i smatch  
between CPU cycle t i mes and memory-access 
t i mes.  For example ,  cons ider  an ADD i nstruc 
t ion . I f  the  operands are i n  registers, t he  ADD 
can be done rather  qu ick ly .  But if one of the 
operands has  to be read our of memory,  the ADD 
cannot  be performed u n t i l  t he d es i red <..l a ta 
arrives from memory. Most VAX processors have 
a fast cache memory, t ight ly bound to the pro
cessor's arithmetic un its ,  w al leviate the mem
ory- latency problem . In  the case of a cache miss 
on a requ i red datum .  however. the only al terna
tive for a von Neu mann processor is tO wai t  A 
processor i n  such a state is sa id  to be · ' stal led . "  
Under such condi t ions, the state o f  the proces
sor must be " frozen" unti l the cause of the sta l l  
no longer persists and the sta l l  is bro ken . The 
two-phase clocking scheme provides a conve
nient way to i mplement sta l ls ,  in  which one of 
the clock phases ( the A-clock in the 8800) may 
be blocked .  Stal l s  a re contro l l ed by rhe cache 
through a spec i a l  hardware s ignal  d i str ibuted 
global ly to block the A-clock .  Thus, the proces
sor logic conta ins two flavors of A- latches : 

• Sta l l ed A- latches, which are affected by a staJJ 

2 2  

• Unsta l led A-latches, which are not affected by 
a stal l  

The m icromachine is i mplemented only with 
sta l l ed A- latches .  Hence the effect of s ta l ls on 
the execut ion  of the m icromachine i s  l argely 
transparent .  

A mecha n i sm i s  a l so req u i red to dea l  w i th  
hardware except ions when  the res u l ts of  the 
execu t i o n  of  a m i c ro in stru c t i o n  h a ve to be  
undone .  I n  a p ipe l i ned m icroarch i tecture ,  sev
era l m icroi nstructions may have part i a l ly exe
cuted when an exception condi tion i s  detected . 
In that case i t  is necessary to undo the effects of 
a l l  those microi nstructions.  The most common 
techn ique used to deal wi th  such si tuat ions is 
ca l l e d  a m i c rotra p .  S i nce  m i crotraps re l a te 
closely to the m icromachine  execution , every 
p rocessor has  i ts own scheme ro i m p l e m e n t  
them. I n  every case . however, m icrotraps must 
perm i t  the " ro l l  ba c k "  o f  s o m e  n u mber  of 
m i croi nstruct ions  because the detect ion  of a 
trap cond i t ion usua l l y  occurs q u i te  la te wi th  
respect tO mi croi nstruction execution . 

I n  the VAX 8800 processor ,  m icrotraps a re 
i m p l e m e nted  so t h a t  t h e  o ffe n d i n g  m i c ro 
i nstruction is  a l lowed to complete ,  but  subse
q u e n t  m i cro i nstru c t ions  i n  t he p i p e l i n e  a re 
blocked .  S i nce the offending m icro instruction 
may have caused some undesirable resu lts, the 
trap-hand ler m icrocode must fix the problem . 
Depend ing on the parti cu lar  s i tuat ion , e i ther 
the m icroinstruction execut ion flow is  resum
ed fro m the  b l o c ked s ta te  or  a new f l ow is  
origi nated . 

System Buses and Datapath 

Figure 6 i s  a block d i agram of the VAX 8800 
CPU datapath,  showing a l l  the  major buses. The 
hardware orga n i za t ion of  the CPU provides a 
two-cycle operation between the cache and the 
AIU, as shown . The processor has several func
t ional un i ts in addit ion to the main AIU. These 
add i t i ona l  u n i ts perform h igh-speed mu l t i ply 
and  d iv ide ,  sh i ft i ng ,  and floa t ing-po in t  ari th
metic operations . 

There are severa l poss ib i l i t i es for se lect ing 
i nputs ro these functional un i ts .  For operations 
i nvo lv ing  two i n puts ,  both can be  presented 
s imu l ta neously onto the two l egs of the ma in  
AIU as  wel l  a s  most other functional un i ts .  The 
resu l ts from these fu nct ional  u n i ts a re sent on 
the W bus for wri t ing  to e i ther the m u l t i part 
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The VAX 8800 Microarchitecture 

registn fi le (MPR) or the cache . However, s ince 
rhe write actua l ly occurs in the fol lowing cycle .  
the bypass bus provides a shortcut (sav ing  a 
cycle ) i n  case t he wri te darum is read hy r h c  
very next microi nstructi on . 

The v i rtua l  address bus carr ies the  vi r tua l 
add ress of any  cla ra - s t re a m  ( cl -s trea m )  refer 
ences. whereas the program-counter bus has the 
current program counter ( PC )  The i nstruction 
buffer data bus provides th<.: instrucrion -strcun 
( i -strca m )  data . The instructi ons and data fro m 
the cache are returnee! on the cache data bus . 
However,  a cache data bypass bus provides a 
d i rect path to the functional  un i ts for the data 
remrncd by the cache, in case the processor i s  
or  wil l be sta l led for that data . 

Microinstruction Pipeline 

The top part of Figure 7 shows the execution of 
m icroinstructions as a fu nction of t ime in  a non
pipel i necl mi croarchi tectun: ;  the bottom depicts 
that i n  a pipc l i ncd m icroarchitecture. 

The basic data flow i n  a processor occurs in 
the fol lowing sequence : 

1 .  Read t he register operands i n to a fu nc
t ional uni t ,  such as the ALU . 

2 .  Perform some ALU funct ion . 

3 .  Wr i te  the  resu l ts i n to the  dest i n a t ion  
register. 

4 .  I f  there is a cache , start a cache operation 
at approxi mately the same time as a regis
ter write s i nce memory refere nces a rc 
bu ffered through speci a l -purpose mem
ory data  registers (MDRs or MDs) in  most 
high-performance processors . 

F i g u re '5 s h ows t h a t  t h e seq u e n c e a bove 
occurs i n  a na tu ra l  order  i n  t ime  as a conse
quence of the m icroi nstruction execut ion .  With 
p ipc l inecl microarchi tccrures , a t ime reference 
is needed to correla te the m icrooperations per
fo r m e d  by v a r i o u s  m i c r o i n s t r u c t i o n s  w i t h  
respect to each other. The notion of canon ical  
ri mes is veil' conven ient  for this purpose . The 
clock t i cks of the reference m icro i nstruct ion 
may be labeled with a monotOnical ly i ncreasing 
set of T n u m be rs s t a rt i n g  at T0 as s hown i n  
Figure H .  These T numbers are ca l l ed the canon
ical t i mes of a particu lar  microinstruction . The 
mi crooperation labe led T0 marks the start of a 
m i cro ins t ruc t ion  e x e c u t i o n  cyc l e .  F igure H 
shows the basic microopcrat ions of a VA.-'{ 8800 
m icroinstruction with their canonica l  ti mes . 

\Ve sha l l  use the s i mple model of a microma
chine in Figure 1 to describe the VAX 8800 micro-

-------------------------- CYCLES -------------------------. 

CLOCK - A 8 A 8 A 8 A 8 A 8 A B A 

M ICROI NSTRUCTION 1 

M ICROINSTRUCTION 2 

M ICROI NSTRUCTION EXECUTION I N  
A NONPI PELI N E D  M ICROMACHI N E  MICROI NSTRUCTION 3 

MICROINSTRUCTION 1 

MICROINSTRUCTION 2 

M ICROI NSTRUCTION 3 

M ICROI NSTRUCTION EXECUTION I N  M ICROI NSTRUCTION 4 
A PIPELINED M ICROMACH I N E  

Figure 7 Microinstruction Execution 
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Figure 8 Canonical Times of a VAX 8800 Microinstruction 

i nstruct ion format as a sequence of basic m icro
operations I ike those in Figure 8. The first stage 
in the microinstruct ion execut ion cycle  is the  
m icroaddress fetch . The microinstruction execu
tion cycle begi ns with a decoder operation . The 
decoder prod uces the start ing microaddress for 
every new m icro i nstruct ion seq uence and pre
sents  it to t h e  m i c rosequencer .  The decoder  
determines that address on the  basis of  the  con
tents and current  state of t he i nstruction buffer 
( l B) . Each  m i c ro i ns t ruc t ion  spec i fi e s  to the  
m i croseque ncer whether  or not  to  accept t he 
decoder's m icroaddress. I f  not, the m icroinstruc
t ion must ei ther speci fy the add ress of the next 
m i c ro i n s t r u c t i o n d i re c t l y ,  as a p a r t  of t h e  
m icroword , or i nd i cate a n  a l ternate source for 
the address within the microsequencer. Since the 
decod e r ' s  opera t i o n  is c o n c u r re n t  w i t h  t h e  
microsequencer's ,  the decoder a lways has a start
i ng m icroadd ress for the m icrosequencer.  It i s  
convenient  to  th ink  of th is  IB -decoder concur
rency as a " h idden decoder cycle . "  

CLOCK - A B A B A B 

I I I I I I 
CYCLE - 0 1 2 3 5 

,---------
MICROINSTRUCTION A: : DECODER I LUK I xos I RD L------

A 

I 
6 

The next stage i n  the m icroinstruction execu
tion sequence is  the fetch of the microinstruc
t ion , performed by a look -up  i n  the control  
srore . In  the VAX 8800 system ,  the m icroaddress 
is p ipel ined,  not the m icrodata . Consequent ly, 
the m i crodata from a segmented control store 
appears ar the appropriate t i m e  for the  three 
basic operat ions ro occur in the i nd icated order. 

The m icrodata looked up causes a sequence 
i n  which  the register read occurs between the 
t i mes T5 and T6 , the ALU funct ion between T6 
and T1 b and the register wri te between T8 and 
T 1 0 . The cache operations a lso occur between 
the t i mes TH and T1 0 . The secti on beyond T 1 0 
denotes cache activity with respect to the mem
ory i f  t here i s  a cache miss. (The cachejmemory 
in terface is  controlled by an i ndependent m icro
machine . )  During every cyc le ,  a m icroinstruc
t ion produces the address of the next m icroin 
s tru c t i o n ,  w h i c h  i s  then executed . F i g u re 9 
depicts the generic m icroinstruction p ipe l ine of 
the VAX 8800 processor. 
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Microbranch Latency 

One consequence of p ipe li n i ng is that any inter
ve n i ng m i c r o i n s t r u c t i on s  m u s t  be s p a c e d  
between t he i nstruction that produces a branch 
condition and the i nstruction that can branch on 
i t  d ue tO l a tency in  the  deve lopment  of  the 
branch cond i t ion .  Obviously, the execution of  
the i ntervening m icro instructions must  be i nde
pendent of the branch .  Usually ,  microcoders are 
able to code some usefu l  operations dur ing the 
i nev i tab le  wa i t .  O t herwise ,  the  i n te rve n i n g  
i nstru c t i ons  must  b e  N O Ps ( no opera t i on ) . 
Figure 1 0  s hows the microbranch latency i n  the 
VAX 8800 CPU. 

Microtrap Latency 

A hardware exception causes a m icrotrap .  How
ever, the trap condi t ions,  l i ke the branch condi 
tions, may develop after some execut ion cycles 
have been completed . Once again there must be 
some i ntervening m icroinstructions between the 
trap-caus ing m icroinstruction and the trap-han
d l ing rout ine .  Moreover, the state of the micro
machi ne must be saved so that the current exe
cution can be resumed i n  such a way that t he 
i n te rve n i ng e x e c u t i o n o f  t h e  t r a p  rou t i ne 
appears to be transparent .  This state consists pri 
mari l y  of m i crobranch cond i t ions that  resu l t  
from the execution of  microi nstruct ions i n  the 
p i pe l i n e  s i nce those coul d  i n fl u e nce subse
quent microaddresses and hence the execut ion 
sequence . Therefore , on i n terruption of the cur
rent sequence by the trap rout ine ,  the branch 

CLOCK - A 8 

I I 
CYCLE - 0 

I 
MICROINSTRUCTION C: I 

I 
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A 

I 
2 

DECODER 

D:  

8 A 8 

I I I 
3 4 5 

I LUK I xos I RD 

[��������] LUK 

A 

I 
6 

condi tions from the earl ier execution are essen
t ia l  to reproduce the same sequence . 

To s i m p l i fy the hardware des i g n ,  aU ear ly 
traps a re d e l ayed to a fi xed  c a n o n i c a l  t i me 
(T t 0) . Some trap cond it ions,  however, develop 
l a ter than t he canon ica l  t i me wi th  the conse
quence t h a t  those traps cannot  be returned 
from . In  such cases  t he m i crocode must  ro l l  
back the state to the beginn ing, which causes a 
reexecution of the ent ire macroinstruct ion . 

F i g u re 1 1  s h ow s  a seq u e n c e i n  w h i c h  a 
m icroi nstruction at address T provokes a m icro
trap .  At t he earl iest ,  the trap-handl i ng  rou t i ne 
can beg i n  a t  m i cro i nstruct ion X .  Meanwhi l e ,  
micro i nstructions U ,  V ,  and W fol low T ,  qu i te 
unaware of the i mpendi ng trap .  I n  fact ,  they are 
in part ia l  execut ion when the trap condition i s  
detected .  These microinstructions are sai d  t o  be 
i n  the trap shadow, and they must be blocked 
from writ ing any registers , thus making i t  appear 
as if t hey had never executed . When control is 
returned from the trap-han d l i ng rout ine ,  these 
trap shadow micro i nstruct ions a re reexecuted , 
cont inu i ng the sequence that would have arisen 
had t he trap not occurred .  

Instruction Buffer and Decoder 

The I B  bu ffe rs the  prefetc hed  VAX i - s t ream 
del ivered by the cache and i n  turn del ivers the 
opcode and speci fier  to the decoder. The IB a lso 
delivers the i -stream data to the execution un i t ,  
the E Box . The decoder expects to  receive the 
current opcode a nd the current specifier byte . 
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Figure 1 1  Microtrap Latency 

Hence the lB  saves the opcode for the duration 
of  t he i ns t r u c t i o n  exec u t i o n  a n d  s h i fts t h e  
buffered i -stream a long t o  send each specifier i n  
turn to the decoder. The goal of the VAX 8800 
decoder is  to produce a start ing  m icroaddress 
correspond i ng to the opcode and the specifiers. 
The sequence of m i crocode execution caused 
by the decoder is  first to process a l l  the specifi
ers ,  maki ng all the operands ava i lable, and then 
to e x e c u t e  t h e  o p e r a t i o n  s p e c i fi e d  by t h e  
opcode. I f  an i nstruction has n o  specifiers , the 
execution microcode is  i n it iated d i rectly. In  any 
case the decoder a l ways has a m i croaddress 
a head of  t i m e for the m i c rosequencer .  Th i s  
m icroaddress is  the start ing address of  e ither a 
spec i f ie r  rou t i n e  o r  t h e  execu t i o n  rou t i n e ,  
based o n  the contents and the state o f  the IB .  

If a t  any t ime the IB  does not conta i n  enough 
i - s t rea m d a t a  for a s u c c essfu l d e c o d e ,  t h e  
decoder w i l l  produce a specia l  m icroaddress . 
The microinstruction at that address is s imply a 
N O P  that  aga i n  requ ests the se lect ion  of the 
decoder's address . The m icromachi ne thus wai ts 
i n  a loop for sufficient i -stream data tO arrive i n  
the I B  so that the decoder can aga in  d ispatch a 
useful microaddress . This wai t- loop state of the 
micromachine is commonly referred to as the IB 
sta l l ,  which i s  d i fferent from the stal l  described 
earlier .  Note that clocks tO sta lled A- latches are 
not blocked for an IB sta l l .  On the contrary, the 
micromachine runs normal ly as does the rest of 
the processor ha rdware . I B  sta l l s may  occur  
when the  i nstruction prefetch pi peli ne i s  bro-
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ken due to macroinstruction branches. This con
d i tion requ ires the current contents of the IB  to 
be d i s c a r d e d  a n d  n e w  i - s t re a m d a t a  to be 
prefetched in to the lB .  

The VAX 8800 IB is  a four-longword c ircular 
queue, which is  usual ly long enough tO hold an 
ent ire i nstruction . The data is  consumed out of 
the I B  from the posit ion pointed tO by the read 
poin ter .  However ,  new data cou ld be written 
c o n c u rren t l y  by the c a c h e  at  the p os i t i o n  
pointed to by the write pointer. Whenever i t  has 
room ,  the IB is  loaded by the cache if the cache 
has no other h igher priority job to do. Occasion
a l ly ,  the IB becomes fu l l  (the wr i te  p o in te r  
catches u p  w i t h  t h e  read poin ter) , and  then i t  
does not accept the datum from the cache . I f  a 
da tu m i s  not  accepted by the  I B ,  t h e  cache 
keeps repeat ing the  transfer unt i l  the  datum i s  
accepted . Occasional ly ,  the  I B  becomes empty 
if the cache is  busy doing other th ings and the 
decoder has consu med a l l  the data from the IB 
( the read pointer and the wri te pointer point  tO 
the same location) . 

The I B  i n  the VAX 8800 fami ly is i mplemented 
with four i dent ica l  gate a rrays with 8-bit s l i ces 
desi gned to use a rather c lever b i t-scatteri ng/ 
gathering scheme. The IB a lso contains logic to 
extract and format i -stream data , mak ing i t  ava i l 
ab le  to the E Box . A com mon s i lo ho lds  the  
opcode  h i story for the d u ra t ion  of  a macro
i nstruction 's execution,  as wel l  as for recov
ery from m icrotraps. The VAX 8800 decoder is  
a RAM-based  l o o k - u p  t a b l e  for g e n e ra t i n g  
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Figure 1 2  VAX 8800 JJecoder 

microaddresses . In the case of special  ev<:nts ,  
however, hardware logic is provided for gener
at ing specia l  m icroaddresses, as s hown in Fig
ure 1 2 , thus bypass i n g  the RAM J ook-u p .  The 
decoder a lso provides controls for the I B  state
machine as well as some other hardware assists . 

Microsequencer 

Th<: state - machi ne respons ible for genera r ing rhe 
ncxr m i c roaddress for a m i cro i nstruct ion se 
qut:ncc is  commonly caUed the microscquencer. 
As s h o w n  in F i gu re 1 3 , t h i s  stare -mach ine  is 
real ized collectively by rhe control store. rhc ncxr 
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m icroaddress generation logic, and the microad
drcss and microdata latches (or registers) _ 

The goal of the VAX 8800 m icrosequencer is  
to produce the address of the next m icroinstruc
tion dur i ng every cycle .  Figure 1 4  depicts how 
the mi crosequencer achieves th is  goa l .  

Each mi croinstru ct ion may mod i fy i ts next
microaddress field through a m icrobranch com
mand  to prod u c e  t h e  ad d ress of t h e  t a rge t 
microi nstruct ion . M icrobranch cond i t ions are 
del ivered by other sections of the machine ,  such 
as t h e  ALU . T h es e  con d i t i o n s  a re g r o u p e d  
tOgether in  ways conven ient for m icroprogram
ming so that mu l t iway branches can be take n .  
M i crosu brout i nes can b e  ca l l ed a n d  returned 
from by m eans of a hardware mi croPC stack. 

Sta l ls cause the m icrosequencer state to be 
frozen on a cycle boundary ( i . e . ,  the clocks on 
microad dress and m icrod ata latches are effec
t ive ly blocked) . M icrotraps a l low the m icrocode 
to deal with unusual  events that wou ld he too 
slow or in conven ient  to check norma l ly wit h  
microbranc hes , such a s  T l3  m isses a n d  address 
mi sal ignments .  The VAX 8800 processor does 
not permit traps to be nested . Instead , traps are 
"chained ,"  mean ing that trap rout ines and hard
ware trap prior i t ies are carefu l l y  a rranged so 
that a second trap is  taken only when the first 
trap rout ine fi nishes . ( Machine check traps can
not be control led in  th is way . )  

Sources of Microaddresses 
There are five sources for mi croaddresses : 

• The decoder 

• The next-address fie ld i n  the microword 

• The m i crostack upon return i ng from a sub
routine 

• The microPC silo for a saved microtrap 

• The micromatch register for an address from 
the conso le  

A n  address from the conso le  i s  se lected in  
response to an ex p l i c i t  conso le  request  and 
t a k e s  p r e c e d e n c e  o v e r  e v e ry t h i n g e l s e . 
A d d r e s s e s  fro m t h e  s i l o a r e  r e q u e u e d  i n  
response to a trap-return com mand . Addresses 
from the m i crostack are se lected in response to 
a subroutine-return command . A decoder-gener
ated add ress is sel ected whenever the current  
sequence ends and a new specifier or execution 
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rout ine shoul d  begi n .  Normal ly, this selection is 
ca used by t he assertion  of a microword b i t  i n  
t h e  very last  m icroi nstruct ion of the  curre nt  
seq uence . The next-add ress field is selected as 
the defau l t  for normal sequenci ng. This field is 
a lso used to provide an offset in case of subrou
t ine returns. 

Micro branching 
In normal cases, part of the se lected m i croad
dress can be modified accord ing to the branch 
condi t ions,  t hat is ,  whenever t he next-address 
f i e l d  i s  s e l e c t e d . A c o m b i n a t i o n o f  t w o  
m icroword fields .  branch type and branch mask, 
se lects the branch condi t ions ,  which are then 
ORed i nto part  of the target m i croaddress . In 
the VAX 8800 system, the m icrobranch logic is  
i m p l e mented with five iden t i ca l  gate arrays , 
each of w h i c h  gen erates a 3 - b i t  s l i c e  of the  
m icroaddress . One m icroadd ress b i t  is branch 
sensitive i n  each s l ice .  This organi zation permi ts 
up to 32 -way branching. Branchi ngs of 2 ,  4 ,  8 ,  
and 1 6  ways are  a lso made poss ible by a sepa
rate mask b i t ,  cal led the branch mask, to every 
s l ice. Th is bit i s  used to turn off the sensi t ivity 
to branch condit ions in a particu lar sl ice.  

There are 1 6  bas i c  reci pes for condi tiona l  
bra n c h i n g  i n  each  s l ice .  T h is arrangement  of  
s l ic ing, masking, and  branch-condition selection 
in every s l ice requi res that a l l  the m icrobranch 
co n d i t i o n s  be o r ga n i z e d  i n to  5 g r o u p s  of 
1 6  condi t ions each .  The branch cond i t ions are 
classi fied as e i ther static or dynamic .  Stati c  con
d itions, once captured , are avai lable for branch
ing in any later cycle  as long as those cond i t ions 
re m a i n  u n c ha nged . Dyn a m i c  cond i t i ons  are 
asserted for just one cycle and must be branched 
on in  that cyc le .  

Some speci a l  t rap-rel ated branch cond i tions 
are saved at the t ime of the trap so that the trap 
routine may use them . For speed reasons ,  the 
basic hardware m echanism for m u l tiway branch
ing is that the selected condi tion is ORed rather 
than added to the branch-sensitive m icroaddress 
b i t .  The OR i m p l i es that  the branch-sens i t ive 
bits of a microaddress must be "zeros" by con
ven t i o n .  I f  branch ing i s  masked i n  any s l i c e ,  
however , o n l y  unmasked branch-sensi t ive bi ts 
n eed to be z e ros .  Thu s  t h e  bra n c h - mask i ng 
scheme l eads  to a substa nt i a l  i ncrease in the 
number of condit ional  branch-target addresses , 
cons tra i n e d  by t h e  requ i r e m e n t  fo r z e ros . 
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Table 1 Microbranch Conditions 

Slice 
Number Microbranch Conditions 

1 State flags 

2 WBUS low-order bits 

3 W B U S  hig h-order bits 

4 SALU condition codes 

5 PSL condition codes 

6 XALU condition codes 

7 Priority encoder condition codes 

8 ALU condition codes 

9 TB-status 

1 0  Cache command 

1 1  M D  number 

1 2  AC low 

1 3  Digit val id 

1 4  N M I I D  

1 5  I nterrupt pending 

1 6  I nterval t imer carry 

1 7  Halt pending 

1 8  Console mode 

1 9  I nterrupt I D  

20 Non_Retry flag 

Table  1 s hows an exa m p l e  of severa l m ic ro 
branch conditions. 

Microsubroutine Call and Return 

As in the normal case just discussed, the defaul t  
microaddress, the next-address fie ld ,  i s  selected 
as the start i n g  add ress of a m i crosubrout i n e .  
However, a subroutine-ca l l ing m icroinstruction 
pushes i ts own add ress onto the m i crostac k .  
During the subroutine return ,  the microstack i s  
se lected a s  the source and then popped . Thus 
the address of the cal l i ng instruction is  used as a 
base for the return .  T he return ing i nstruct ion 
may OR an offset from the next-address field to 
t h a t  ba s e ,  t h u s  y i e l d i n g  t h e  t a r g e t  r e t u r n  
address . The fact that bits are ORed rather than 
added constra ins the ca l l ing  addresses to have 
zeros in the low-order bit  positions. 

The write path ro the m icrostack (PUSH) is 
pipel ined by a cycl e  for t im ing reasons.  How
ever, a bypass path saves what would be the top 
entry of the microstack in the read latch ( POP) 
so that PUSHs and POPs occur  in a fai rly unre
s t r ic ted  m a n n e r .  There are , h oweve r ,  some 
minor cod ing restrictions wi th  respect to  traps 
and decoder-made addresses. 
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Subroutine calls and returns are u naffected by 
sta l l s .  I n  the VAX 8800 CPU, t he m icrostack is 
1 6  entries deep and i s  used exclusively for sub
routine cal ls and returns ( i .e . ,  m icrotraps do not 
use the stack) . Subroutine calls may be nested up 
to 1 5 entries deep, beyond which the m icrostack 
wraps  a r o u n d  a n d  overwr i t e s  p r e v i ous  c a l l 
addresses . S ince the next-address fie ld is condi
t iona l ly ORed in to the ca l l i ng address to make 
the return address, a cond itional mul tiway return 
becomes feasible .  

Microtrap and Return 

A m i c r o t r a p  i s  c a u s e d  w h e n  t h e  h a rdware  
detects a cond i t ion  that  wou l d  not  a l low the  
current microinstruction to  complete i ts execu
tion successfu l ly .  The hardware forces the next 
m icroaddress to a fixed location that depends 
on the particular condit ion,  thus overrid ing the 
address that woul d  otherwise be selected . This 
speci a l  l ocat ion i s  the starting address of  the 
trap-hand l i ng m icrocode routine specific to that 
trap condit ion .  M icrotraps are used extensively 
by the memory management system tO i m p le 
ment  the  v i rtua l memory architectu re .  M i c ro
traps are a lso caused by ser ious system fau l ts 
( i . e . ,  machine checks) , such as control -store or 
bus par i ty e rrors .  Tab le  2 l i sts the  m icrotrap 
conditions and their priorities .  The priorities are 
arran ged so tha t  i f  m o re than  one m icrotrap 
occurs during a cycle ,  the one with the h ighest 
priority w i l l  be serviced and the others ignored . 

Table 2 Microtrap Conditions and Priorities 

Microtrap Condition 

Microbreak 
M achine check 
VA parity error 
TB tag parity error 
Reserved for ECO 
Reserved float operand 
Add rounding 
M ultiply rounding 
Integer overflow 
T B  miss 
Access violation 

Modify bit 
Page cross 
U nal igned page cross 
U nal igned trap 
Conditional VAX branch 

Priority 

Highest 

Lowest 
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Figure 1 1  shows the m icrotrap latency and i ts 
consequences o n  p ipe l in i ng .  As descr ibed ear
lier, a trap-causing m icroinstruct ion,  even i f  it 
wri tes the wrong resu l ts ,  is a l lowed to complete 
because i t  is too la te to block i t  a nyway. (The 
canonical t ime of register wri te is  T 9,  whereas 
the microtrap s ignal  occurs at canonical  t i m e  
T , o ) - The on ly recourse i s  t o  let t h e  trap-han
d l ing m i crocode correct any problems caused 
by the trapping m icroinstruction . The microtrap 
s ignal occurs in t ime to block a l l  three microin 
stru ct ions i n  the trap shadow. Therefore , the  
microtrap logic generates two global signals, the 
global microtrap (one-cyc le  l ong) and the block 
writes ( three-cycles long) , at t ime T, 0 . The pur
pose of the global-m icrotrap signa l  is to trigger 
any necessary trap-contingent actions in various 
pa rts of  t h e  processor .  T h e  p u rpose of  r h e  
block-wri tes signal is  ro block register writes a t  
canonica l t imes T 1 1 , T 1 3 ,  and T 1 s ,  thus rendering 
ineffectua l microinstructions U ,  V, and W i n  Fig
ure 1 1 . In  other words the blocki ng of wri tes by 
hardware i s  i n  effect  u n t i l  the  trap -hand l i ng 
m icrocode ta kes control of the micromachine .  

A s i lo is  genera l ly used to save the stare of the 
machi ne across a m icrotrap .  I n  most cases the 
l e ng t h  o f  t h e  s i l o  is e q u a l to  t h e  d e p t h  of 
pipe l in ing .  Si nce there are many more branch
condi t ion b i ts than m icroaddress bits ,  i t  is more 
economica l  to save m icroaddresses in the trap 
s i lo  than to save the condit ions causing those 
addresses. M icroaddresses U, V,  and W must be 
saved i n  t h e  s i l o  s i n ce they m a y  be bra n c h  
targets o f  some previous m icroinstructions . For 
the same reason , however, the address X (over
ridden by X', the start ing address of the trap rou
tine) must be saved as wel l .  During the execu
t i o n  of t h e  t r ap  rou t i n e ,  t h e  t r ap  s i l os a r c  
" frozen "  (bl ocked from loading) , thus saving 
t he state o f  the  micromach i ne a t  the t i m e  of 
trap . 

After the trap routine has completed , two con
d i tions are possible :  

3 2  

1 .  The recovery from the trap is impossible ,  
and hence the m icroinstruction sequence 
c a n n o t  be co n t i n u e d . T h e n  t h e  o n l y  
recourse i s  to roll  back and reexecute the 
macroinstruction . That is ,  the macroPC is 
backed up from its s i lo ,  the IB is fl ushed , 
and if necessary, any register changes are 
u n d o n e .  I n  t h i s  ca se  t h e  l a s t  m i c ro -

instruction o f  the trap rout ine performs a 
trap release , which u nblocks the silos so 
they can resume loading the new states . 

2 .  M i crocode can remedy rhe cause o f  the 
t r a p  s o  t h a t  t h e  m i c r o i n s t r u c t i o n  
seq uence can be con ti nued. I n  this case 
the l ast microinstruction of the trap rou
t ine performs a trap return ,  caus ing the 
hardware to recycle microaddresses U ,  V ,  
W,  ancl X t hrough the microaddress p ipe .  
This  action results in  the reexecution of 
aborted m icroi nstruct ions from the trap 
shadow. 

I n  the  case of  a tra p retu r n ,  t h e  hardware 
selects the microPC si lo as the microadclress for 
the next  fou r  cyc les .  As shown i n  F igure 1 4 ,  
however, the mi croPC s i lo does not conta in  the 
microatldrcsses m ade by the decoder.  Therefore, 
it is necessary tO resynchron i ze the  m icro i n 
struction execution sequence with the decoder, 
wh i l e  req ucu ing the  t rapped m i c roadd resses 
from the s i lo .  This is made possible by keeping 
a tag bit in  the s i lo  to ident ify the posi tions of 
the microaddresses made by the decoder in  the 
sequ ence . If  a m i c roaddress from the  s i l o  i s  
found to be tagged, the requeu ing is terminated 
immediately and the m icroaddress generated by 
the decoder is se lec ted . A comp lete recovery 
thus occurs since the state of the IB has by this  
t i m e  b e e n  b a c k e d  u p ,  a n d  t h e r e fo re t h e  
decoder-generated microaddress can be used for 
the cont inuation .  

Chaining of Microtraps 

By convent ion ,  m icrotraps a re not  a l lowed to 
nest ; instead , they a re chained . In  other words 
the trap-handl ing m icrocode must ensure that it 
w i  I I  not cause any m icrotraps i tself. The sole 
except ion i s  i ts last m i cro instruct ion , whi c h  
may cause a secon d  microtrap t o  fol low i mme
d iately, even as the saved microaddresses from 
the s i lo are be i ng requeued to resume the origi
nal  flow . Note that this second microtrap does 
not take effect u n t i l  four cycles later ,  whereas 
i nterven ing  m icro i nstru ct ions a re bl ocked by 
the ha rdware as a resu l t  of th i s  second m icro· 
trap .  Consequent ly ,  the sam e  m i c roaddresses 
end up in  the m icroPC si lo  once aga i n  during 
the execu t ion of the second trap rout ine .  The 
original sequence may fina l ly  resume after the 
last of such chained traps has been serviced . 
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William A. Samaras I 

The CPU Cl ock System in the 
VAX 8800 Family 

The clock system in the VAX 8800 CPU sends timing signals to every state 
device every 45 nanoseconds. The lack of accuracy of these timing signals 
is called skew, which must be minimized. Two skews exist: global, between 
modules; and local, within a module (the lower of the two). The design 
complexity of the overall system dictated the use of an automated timing 
verifier. Although advantages accrue from designing for local skew, the 
verifier could not segregate between skew types. To gain the benefit of the 
verifier, a unique hardware trade-off was made to minimize total skew: 
local was made equal to global. The result was that 83 percent of the cycle 
time is used productively. 

Al l synchronous computers must provide some 
means of generat ing  and d istri but ing accurate 
t iming signals .  The goa l of the t iming sysrem in 
the  VAX 8800  fa m i ly is  to provi de l ow-skew 
(therefore , accurate) t im ing signa ls to a l. l pans 
of the  processor wi thout  any m a n u factu r i n g  
ad jus tme nts . F u rt h ermo re , t he  d e s i g n  t eam 
wanted to automate the verification of  the r im
ing dur ing the design phase . Therefore , design 
trade-offs in the clocking system were necessary 
ro accompl ish that auromar.ion . Thi s  paper d is
cusses how the hardware designs of the clocking 
system were influenced to provide a good envi
ronment for r.he automatic t im ing verification . 

Clocking System Requirements 

The design of the clocking system requi red us  to 
address many interrelated problems that had w 
cu l m i nate i n  a common so lu t ion . This  design 
depended on certa in  fundamental specificat ions 
that were estab l ished for t he VAX 8800 CPU by 
the system archi tects . The two pri mary requ i re
ments are descri bed be low.  

Cycle Time 

The cycle time of the VAX 8800 fam ily of pro
cessors i s  4 5 nanoseconds ( ns) , which means 
t h a t  a CPU can acco m p l i s h  some a m o u n t  of 
work during that period . Looking at  i t.  another 
way, t h ese processors can do 2 2 . 5  m i l l i o n  
actions every second .  Usua l ly, a number o f  these 
4 5 -ns cyc les are req u ired by a processor to pro-

34 

duce just one VAX i nstruction . The c locking sys
tem m ust keep the thousands of c ircu i ts in the 
processo r " t i c k i ng "  in pe rfect step together  
every 4 5 ns .  

The 8800 was designed ro conta in  two com
p l e t e  C PUs in the  same cab i n e t .  S i n ce both  
CPUs share a common memory, i t  is beneficial  
to make the m emory system and both CPUs syn 
chronous wi t h  each ocher .  The c lock syste m 
must keep a l l  three i tems runn ing together, pre
cisely locked in  t ime .  

Modules 

A l l  t h e  c i rc u i t ry for both processors a n d  the 
memory control l er is conta ined on 20 1 6- inch 
by 1 2 - i nch modules ,  or  pr inted c i rcu i t  boards.  
These modules occupy slots i n  a 2 1 - i nc h-wi de 
backplane . Each modu le  conta i ns up w 20 ECL 
gate arrays and m isce l la neous ECL log ic . The 
state devices ,  ca l led latches, reside both in  the 
gate arrays and the m iscel laneous logic of each 
modu le .  

The Clocking Problem 

The basic d i fficul ty for th is (and a ny) clocking 
system is to get the t iming signals ro every scare 
device i n  t he mac h i ne at p rec ise ly  the  same 
t i m e .  Every synchronous  mach i n e  fa ces t h i s  
probl em .  However, i n  faster comput ers, l ike the 
VA.-'{ 8800 system ,  the to lerances placed on the 
t i m i n g  s igna ls  are more severe .  In a physical  
sense , i r i s  s imp ly not possible to send a I I  the 
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t iming signa ls to every part of each module at the 
same i nstant .  There is  some precision,  however, 
that should and can be achieved . We now discuss 
how important this tolerance is tO the VAX 8800 
systems, and what we did to minimize i t .  

The t o l e rance , or  t i me d i fference , t h a t  we 
encounter i n  attempting to provide t iming signals 
to every state device at the same time is cal led the 
clock skew. Clock skew is the u ncertain ty in  the 
t ime of a particular event. As an analogy, consider 
an a ir l i ne fl ight that is  scheduled to arrive at  a n  
a irport a t  precisely 5 : 0 2 P .M .  Now, w e  know this 
fl ight wi l l  not arrive at  5 :0 2  P.M. on the dot; it 
w i l l  probably arrive wi th in  a m inute or two of 
that pub l ished arrival t ime .  This uncerta inty i n  
the t ime o f  arrival i s  the skew o f  that t ime.  I f  the 
uncertai nty of a rr iva l is  30 seconds,  th is  skew 
wou ld probably be a very acceptable value and 
we wou ld say the f l i g h t  i s  r i g h t  o n  t i m e :  i t  
arrived with low skew. 

On the other hand , if the uncerta inty of arrival 
is large, say 30  m inutes, we would  probably try 
another air l ine .  Why? Not simply because we are 
i m pat ient  but for a more fundamenta l  reaso n .  
When the uncerta inty is  large, we have less t ime 
to do other th ings that are valuable to us. Usually, 
we are committed to the entire t ime of the uncer
tainty .  Put another way, this u ncertai nty, or skew, 
is  wasted t ime .  Enough of th is  ana logy - h ow 
does th is  skew affect  the operat ion of a d ig i ta l  
computer? 

As mentioned earlier, since the cycle t ime of 
each CPU is 4 5 ns, all state devices are "sched
uled " to c lock at  the start of that  period . Any 
u ncer ta i n t y  i n  t h i s  t i m e  fro m o n e  l a t c h  t o  
another i s  ca l led clock skew. As i n  o u r  a i rl i ne 
example,  c lock skew is wasted t ime.  There are 
many factors that increase the clock skew; let us 
consider one of the most i mportant ones. 

Since the backplane width is 2 I  inches, aJI the 
CPU hardware modules are separated by no more 
than that distance . Since a l l  the wiring in the sys
tem is composed of controlled-impedance trans
mission l ines, the logic signals can travel at c lose 
to the speed of l ight. At that speed a logic signal 
cou ld circle the earth about 4 .  5 t imes in 1 sec
ond , or i t  takes about 4 nanoseconds tO travel the 
2 I inches across the processor backplane.  Now 
we can begin tO understand the skew problem.  
The min imum uncerta inty of a ny signa l travel ing 
through the ent ire processor would be at  .least 
4 ns, which is a l most 1 0  percent of the 4 5-ns 
cycle. And that  is only one source of skew. 

Digital Technical journal 
No. 4 February 1 98 7  

Since skew can be wasted t ime ,  our  goal was tO 
make it as small as possible .  In the 8800 system,  
there are three major contributors to  c lock skew: 
var ia t ions  i n  t h e  sem i conductor components ,  
variations in the wiring lengths (described above) , 
and  d i fferent manufactu ri n g  tolerances of the 
modules. One common way to remove skew from 
a system is to make some type of adjustment dur
ing  the assembly of the hardware. Theoretical ly,  
at least ,  al l  the skew could be removed through 
this method of adjustment .  To keep the cost of 
manufacturing low, however, another of our goals 
was to requi re no adjustments of any k ind . That 
goal p laced an extra burden on the clock system 
to de l iver accurate  s igna l s  wi t hou t  excess i ve 
skew. By carefu l ly design ing the c ircu i ts of the 
c locking system and control l ing the skew sources 
mentioned above, we held the overal l  c lock skew 
in the VAX 8800 fami ly  to 7 . 5  ns . Thus, on aver
age , 83 percent of our 4 5-ns cycle is uti l i zed. The 
remainder of the paper explains some of the trade
offs we made to achieve this figure . 

Clock Hardware Overview 

Figure 1 depicts the hardware i n  the clock sys
tem of the VAX 8800 fami ly .  

The osc i l lator section is  the t ime base of the 
whole machine.  The implementation is a custOm 
phase-locked- loop design that a l lows the clock 
period to be varied for test purposes during the 
manufactur ing process . Us ing a p hase- locked 
loop makes it  possible tO have a very accurate 
t im ing source at  many specific clock periods . 

The output of the oscil l ator section connects 
to a phase generator that  provi des two c loc k  
p hases wi t h  t h e  proper  t i m i n g  re l a t i o ns h i p  
between them. The outputs (cal l ed the A-Clock 
and the B-Clock) of the phase generator are the 
a c t u a l  c l ock s i g n a l s  d is t r i b u ted  to a l l  s t a te 
devices i n  the machine .  The phase generator is  
implemented digital ly by high-speed , 1 OOK ECL 
shift registers. This technology creates very accu
rate t imi ng without requir ing any manufacturing 
adjustments .  

S ince there is only one p hase generator and 
thousands of state devices requ i ring  the clocks, 
or timing signals, a method is needed to get the 
output of  t he p hase generator tO every state 
device wi thout add i ng very much skew. That is  
the purpose of the d istribution stage of the clock 
system.  The actua l  c ircui try used for the distribu
tion consists of I O O K  ECL d i fferent ia l  devices 
and 1 OKH ECL devices . The d istr i but ion  was 
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heavily influenced by our desire to use an auto
matic  t im ing verifier. The fol lowing d iscussion 
of the t im ing veri ficat ion environment g i ves a 
clearer view of the reasoning behind the c lock 
d istri bution scheme . 

Clock System and the Timing 

Verification Environment 

Trad i t iona l ly ,  t i m i ng veri ficat ion was accom
pl i shed by hand calcu lations usi ng com ponen t  
specifi cations. A designer wou ld si mply add a l l  
the  component propagation delays in  a part icu
lar path and determ ine if a l l  t i m ing criteria were 
met. In the past, this method worked fairly wel l  
for several  reasons .  F i rst , the designer usu a l ly 
knew which paths in a c ircui t  were cri tica l and 
cou l d  g ive spec ia l  attent i on to them.  Secon d ,  
components genera lly behaved better than their  
worst-case vendor specificati ons . 

Marginal t im ing problems, or ones that were 
simply overlooked , would often be less serious 
than  the  d i ffe rence between t h e  worst -c ase 
specificat ions and how the components actually 
worked . Finally, t iming errors were expected to 
appear d ur ing the hardware debug phase of a 
project . Therefore , t im ing errors that were bla 
tantly m issed during the design could be cor
rected (w i th  a l o t  of hard work) d u r i n g  tha t  
phase . That was possib le  because the  overa l l  
complex i ty of t h e  des ign cou ld  be compre 
hended by the designers . 

From the beginning of the VAX 8800 design 
effort , we knew tha t  the  t i mi ng of the des ign 
wou ld be d i ffi c u l t  to ana lyze manual ly .  F irst ,  
the sheer complexi ty of the mach ine  created 
over four  mi l l ion d ifferent t im ing paths. It was 
impossible to analyze every path manual ly or to 
discover every "crit ica l "  one with e i ther man
ual or i ntu i tive analysis methods. 

Se cond , hardware c i rcu i t  loops a re wide ly  
used i n  the  design ; these are circui ts that feed 
s i gn a l s  b a c k  to t h e m s e lves  d u r i n g  a l a t e r  
machine cyc le .  These c ircu i ts are very d ifficu l t  
to analyze, espec ial ly when loops cross physica l 
boundaries or are nested with i n  other loops . just 
t h i n k i n g a b o u t  t h e  t i m i n g ra m i fi ca t i ons  o f  
nested loops taxes the mind .  Manual ly analyz ing 
thousands of these cases would be impossible .  

Final ly, the hardware design made heavy use 
of gate arrays, which conta in most of the logic .  
Our  ambi tious deve lopment schedu le and the 
large nu mber of  gate array designs s imply could 
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not tolerate unantic ipated t iming errors. A t im
ing error in a gate array meant  that a new gate 
array must be produced to fix the problem. The 
fabrication overhead for another semiconductor 
device,  usua l ly taking months,  was not consis
tent with our deve lopment schedule .  Moreover, 
while that new gate array was be ing fabricated, 
the debugg i ng of the  e n t i re system could  be 
jeopard i zed s ince i t  was just not  poss i b l e  tO 
"fix" an LSI chip. 

Therefore , the hardware design group wanted 
to design the processor with the a id  of an auto
matic CAD tool for t im ing verification . Such an 
automatic method for verifying the t im ing was 
essential  to the success of the project. Since the 
entire des ign was to be "soft" (the schematics 
were c o n t a i n e d  i n  co m p u t e r  d a tabases) , i t  
seemed logical that some type o f  software tool 
fo r a u t o m a t i c  t i m i n g  v e r i fi ca t i o n cou l d  be 
applied . 

We decided that the most appropriate t im ing 
ve rifier for this project was produced by Val i d  
Logic, I n c .  Although th is automatic tool solved 
the problems caused by manual t iming verifica
t i o n ,  it a l so created some v e ry spec i a l  new 
restrictions. 

I t  was apparent  from the beg i n n i ng of the 
design effort that  some restr ic t ions had ro be 
placed on the design styles of individual  engi
neers to reduce the t iming-ana lysis problem to a 
manageable leve l .  CPU hardware designers , l ike 
any other creative persons,  often assume large 
degrees of freedom i n  the i r  work . Usua l ly ,  no 
two designers wil l  arrive at the same sol ution tO 
a pro b l e m ,  a l t h o u g h  a l l  s o l u t i o n s  m a y  be 
acceptable .  When ten or more designers work 
independently ,  as happened on th is project, it is 
l i kely that ten unique design styles wil l emerge . 

Therefore, we placed restrictions on the t im
i ng envi ronment for the fol lowing two reasons: 

• Some standardizat ion of t i m i ng had to take 
place for e lectrical s igna ls to com m u n i ca te 
properly between designs generated by d i f
feren t  people. 

• S ince the automatic t im ing verification soft
ware was new,  seve ra l i m portant  fea tu res 
were lacking. 

The usefu lness of an automatic t imi ng verifier 
depends largely on how wel l t im ing-ru le v iola
t ions are reported . Knowing that a design con
tains t i m i ng errors i s  usefu l  only i f  it i s  easy to 
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fi nd them.  One way to a id  the reporti ng of t i ming 
errors is to create an environ ment that clocks a l l  
state devices i n  the processor the same way . This 
means that a l l  logic des igns in the processor must 
follow consistent  and strict rules for the clocking 
of state devices . That was the method we decided 
to pursue in this design project . 

The Timing Environment 

The clock system needed strict constra in ts on i ts 
ci rcu i t  design and physical layout ro guarantee 
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Figure 3 Minimized Global Skew Distribution 

expandi ng the c lock signals at strategic physical 
pos i t ions in the processor. A simple example of 
this expansion , or fan-out ,  is  s hown in Figure 2 .  

Each t ime the clock signals are expanded , 
more t iming uncertain ty is i n troduced into the 
resu l t ing signals. The 8800 design required up 
to five levels of expansion to produce enough 
clock signals for every state device. A<> shown i n  
Figure 2 ,  some signals are i n  common d istribu
tion groups. Signals existing in the same group 
wil l  have l ow t im i ng u ncerta inty between them , 
a characteristic called skew correlation .  The 
t iming uncerta in ty between signals in d i fferent  
d istribution groups has  no correlat ion; there
fore , these s ignals have the h ighest skew. Signa ls 
from the same group have a skew, ca l led local 
skew, lower than the overa l l  group-to-group 
skew, cal led global skew. 

I t  is very tempting for designers to take advan
tage of the lower local skew, which is  often only 
half that of the global skew. Each clock d istribu
tion group is usual ly conta i ned entirely on one 
logic module  due to the natural physical parti
t ion ing of the hardware .  Therefore, com munica
tion between circuits on any particu lar module 
can take advantage of the lower local skew. If a l l  
signal communication occurs wi th in  the  loca l -
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skew environment,  the t im ing ana lysis can be 
consistent  and eas i ly managed. However, com
pl ications arise when trying to ana lyze signals 
that cross from the local -skew environment to 
the global-skew env ironment .  Signal communi 
cation between logic modules wi l l have to  pay 
the pena l ty of using the higher global skew 
because the t iming signals at each end of the 
communication are derived from d i fferent d is
tribution groups.  Managing the t iming i nterface 
across th is  partit ion between loca l and global 
skews was beyond the capabi l i t ies of the t iming 
verification software. 

As d iscussed earl ier ,  a t im ing analysis of the 
entire processor was beyond human capacity ;  
therefore, i t  had to be performed with t iming 
verification software. The t im ing verification 
tool chosen for the 8800 development had no 
faci l i ty for d ist ingu ishing between local and 
global skews. Moreover, we wanted to use the 
t imi ng verifier to ana lyze the t im ing of t he entire 
CPU as one entity. This decision forced us to d is
a l low the use of any local-skew computations i n  

our t iming analysis .  Now, from a design point of 
view this  decision made the environment very 
easy to work wi th .  A l l  t i m i ng transactions any
where in the CPU could be ana lyzed the same 
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Figure 4 Minim ized Local Skew Distribu tio n 

way w i t h  the same set of spec i ficat ions .  Every
thing comes at a p rice , however . and the obvious 

negat ive side of  t his decision was the l oss of the 
a b i l i ty ro a p p l y  r h c  l ower loca l s k ew . At r h a r  
po i n t .  s o m e  p e r fo r m a n c e o f  t h e  p r o c e s s o r  
seemed ro b e  comprom ised j u st r o  s i m p l i fy the 
t i m i n g  a n a l ys i s .  T h e  fo l l o w i n g  d i s c u ss i o n  

exp lains how this  p roblem was solved . 

The Clock Distribution Solution 

Si nce we wanred to r i m e  the CPU as one entity. 
we had ro make the global skew as small  as possi 
ble ro maxi m i ze CPU performance . In the acru a l  
implementat ion.  the global skew was lowered by 
remov i ng one gat i n g  leve l from the clock d istri

butio n .  The gat i ng level removed was necessary 
for produ c i ng low local skew. Figure 3 i l l ustrates 
the five leve l s  of fa n - o u r  that  were req u ired ro 
prod u ce enough s i gn a l s  when the global -skew 
d istri bution was m i n i m i zed . Figu re 4 s hows the 

sa me fan-ou r ro prod uce enough s i gnals i n  th e 

case i n  which the loca l -skew d istribution wou ld 
be m i n i m i zed . Table I i l l ustrates the i m pact of  

this opti m i zation for gl oba l skew. 

Table 1 Distribution Changes 

Global Skew Local Skew 

Optimized Local Skew 

Optim ized G lobal S kew 

4 0  

9 ns  
7 .5  n s  

2 ns  
7 . 5  ns  

Although u s i n g  t he l ower loca l s kew wou l d  
have been va l ua b l e .  i t  was sacr ificed by mak i ng i t  
equal ro the g l obal skew. 

In short.  the hardware of the clock sysrem was 
desi gnee! to a l low the max i m u m  exp l o i tat ion of 
the r i m i n g  verificat ion software . Of course.  hard 
wa re a n d  s o f t w a r e  r r a d e - o ffs a r e  a c o m m o n  

occu rrence i n  a n y  d e s i gn p rojec t .  I n  t h i s  case . 
h o wever.  t h e  va l u e o f  t h e  h a rd w a r e  i n v o l v e d  

w i th operat ing the mac h i n e  w a s  ba lanced aga i nst 
the softwa re a n a l ys i s  needed d u ring the design 
p hase of rhe mach i n e .  

Summary 

Pro d u cing the c l ock i ng system for a h i gh-speed 
computer is best descri bed as an exercise in m i n 
i m i z i ng a nd m a n a g i n g  s k ew . I n  t h e  VAX 8 R O O  
p roject.  w e  avoided exoti c  hardware tec h n i ques 

so t h a t  we cou l d  ga i n  t he be n e fi t  o f  u s i n g  a n  
a utomatic t i m i n g  ver i fi e r .  The resu l ti n g  skew o f  
1 7  p e r c e n r  o f  t h e  cyc l e  r i m e  was a f i g u re t h a t  
cou l d  be to lerated . This balance was a fai r  trade
off si nce the s i m p l i c i ty of  the r i m i n g  e n v i ro n 

m e n t  a l l owed us t o  decrease the r i m e  ro design 
and b u i l d  t h e  VAX 8800 fa m i ly of systems.  
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Aspects of the VAX 8800 
C Box Design 

In each processor in the VAX 8800 family, instructions and data are sup
plied to the execution units by the C Box. Employing a simple structure 
with a translation buffer, cache, and address and data buffers, this logic 
unit is an integral part of the processor's five-stage pipeline. The no
write allocate cache uses a write-through scheme featuring a unique 
delayed-write algorithm. The C Box bas control logic to accommodate 
pipeline stall conditions caused by memory accesses. The C Box also 
maintains data coherency within a processor and between processors. A 
dynamic priority-arbitration scheme solves the lock-out problem between 
IjO and processor requests. 

The performance  of a h i gh - speed  co m p u t e r  
depends to a large extent o n  how fast data can be 
passed from its memory to i ts execution un i ts .  If 
the computer is pipe l ined, the un i t  responsible 
fo r m e m o r y  a c c e s s e s  m a y h a v e  to h a n d l e 
pipel ine sta l l  cond itions. And i f  the computer i s  
a mult iprocessor, that un i t  i n  each processor may 
also have to handle data coherency problems. I n  
processors w i t h  t h e  VAX a r c h i t e c t u re , d a t a  
accesses are further complicated by t h e  fact that 
virtu a l  addresses are normal l y  speci fied . These 
a d d r e s s e s  r e q u i r e t ra n s l a t i o n  to p h ys i c a l  
a d d resses  befo re a d a t a  ac cess c a n  eve n be  
attempted . 

In the VAX 8800 system,  which is a mul t ipro
cessor with p ipel ined CPUs , the u n i t  that per
forms add ress translations and data accesses i s  
the C Box. 

C Box Description 

The C Box consists of three subuni ts:  the transla
t ion buffer (TB) , the cache, a nd the NMI i n ter
face . Figure 1 is  a schematic d iagram of this un i t .  

The translation of  a VAX virtual address to  a 
ph ys i c a l  address i s  a com p l i ca ted  process . 1 

Accesses to system and process page tables are 
requ ired ,  and shift ing and adding must be done 
to obta in  the final physical address . Performi ng 
th is  add ress translat ion process for every data 
reference significantly increases the data access 
t ime and red uces the read bandwidth .  One way 
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to avoid that is  to stare the resul t  of this address 
ca lcu l a t ion  i n  a s m a l l ,  fas t  memory c a l l e d  a 
trans lat ion buffer .  S i nce each trans la t ion can 
access a page of data ( 5 1 2  bytes in the VAX 
archi tecture) , it is l ikely that the translat ion wi l l  
b e  used aga i n  i n  t h e  program being executed . 
Rather than recalculat ing the phys ical address 
( PA) on those subsequent  accesses, it can be 
retrieved from the TB.  

The translation buffer in the VAX 8800 pro
cessor  h o l ds 5 1 2  s ys t e m  a n d  5 1  2 p rocess  
ad dress translat ions.  The fo l lowing sum marizes 
the characteristics of the TB . 

Characteristics of the Translation Buffer 

• Direct M a pped 

• 1 024 Lines 
- 51 2 System Li nes 
- 5 1 2 Process Li nes 

• Al location on Translation B uffer M i ss 

A common approach  to the problem of data 
access l atency for h igh-speed processors , and 
the one used in  the VAX 8800 CPU, i s  tO use a 
cache 2 A cache is a smal l , fast memory located 
between the processor and the ma in  memory 
system.  If the data requested by the CPU is not 
conta ined i n  the cache , tha t  data is accessed 
from main  memory and loaded i nto the cache. 
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Figure 1 Block Diagram of C Box 

Thus .  i n  the majori ty of cases , the cache w i l l  
conta i n  rece n t l y  referenced d a t a  i te m s ,  a n d  
future referen ces t o  those data i tems w i l l  be 
fetched from the cache. The i ntent is to m i n i 
mize the number o f  longer la tency accesses to 
the main memory su bsystem .  The success of a 
cache me mory re l i es on the l oca l i ty of refer· 
enccs in both t ime and space . 

The data cache i n  each VAX 8800 CPU holds 
64 k i lobytes (KB) of both data and instructions . 
The l is t  on the right summarizes the characteris
t ics of the cache . 

The TB and the cache are very s im i lar i n  con
cept and structure , except that the TB is used to 
accelerate address trans lations and the cache tO 
accelerate data accesses. Eac h consists of a tag 
section and a data section . The tag section holds 
the unique ident ifi e r ,  or tag , for the data item 
held in  the corresponding data section . The TB 
and the cache are d irect mapped , meaning that 

4 2  

Characteristics of the Cache 

• Direct M apped with Physical Address 

• Read Al locate Only 

• Delayed-Write Cache U pdate 

• Write-through Memory U pdate with Write Buffe ring 

• 1 024 Blocks 

• 64-byte Block Size 

• 4-byte (one l ongword) Line Size 

• 32-byte (one hexword) Cache Refi l l  Size 

each address can poi n t  to on ly  o n e  loca tion ; 
however, each location can potent ia l ly be a l lo 
cated to  one of many addresses. A tag  perm its 
the identification of a data item i n  either the TB 
or a cache locat ion . The tag in the VAX 8800 
processor is an  unmodified selection of bits 
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Address Mapping 

f rom t h e  a d d r e s s  of t h e  d a t a  i t e m  b e i n g  
accessed .  This concept is depicted in F igure 2 .  

As ment ioned  ear l i e r ,  a m e m o ry access i s  
re q u i r e d  i f  the  c a c h e  does  n o t  c o n t a i n  a 
requested data item. In the 8800,  both proces
sors are connected to the memory and the 1/0 
subsystems t hrou g h  the NMI bus .  Al l read and 
write references that go to these subsystems are 
processed by the N M I  i nterface.  This i nterface 
mainta ins a set of buffers for both read and wri te 
reference streams. For the read stream there are 
actually two sets of address buffers :  one for data 
reads , the other for instruction reads. 

C Box Operations 

A C Box reference consists of a function code, 
an  address, and i n  the case of writes, 32 b i ts of 
data . I n  genera l ,  that address i s  a 3 2 -bit  virtual 
address (VA) . The VA trans lation process begins 
with a check to see i f  the PA is ava i lable in the 
TB If the PA is  ava i lab le ,  called a TB h i t ,  the 
data is read out and concatenated with the lower 
n ine bits of the VA to form the PA. As part of the 
translat ion process , the  TB also performs page 
access checking.  I f  the PA that perta ins to the VA 
i s  n o t  i n  t h e  T B , c a l l e d  a T B  m i s s ,  t h e n  
m icrocode must perform the  transl at ion . The 
microcode then writes the data in to the TB for 

Digital Technical journal 
No. 4 February 1987 

subse q u e n t  use . ( I f  t h e  a d d ress s u p p l i ed is 
already a PA, then the TB is not used . )  

On ly  phys ica l  addresses access the  cache . I f  
the data referenced is  conta ined in  the cache, 
cal led a cache hit ,  then the data can be accessed 
from there .  If the cache does not  contain the 
data, cal led a cache m iss, then the data must be 
accessed from memory. 

Read Operations 
Cache-miss addresses for reads are passed to the 
NMI  interface , where they are held in the read 
a d d ress  b u ffe rs . A h e x w o r d r e a d  r e q u e s t  
( 3  2 bytes) , with the address of the missed loca
t ion ,  is then made to memory. The memory data 
is passed to the requesting unit ,  and the address 
held in the read address buffer is used to update 
the  missed cache locat io n .  A read miss is the 
only occasion upon which a cache location is 
a l located . 

There arc two read streams in the C Box for 
requests to memory:  t he data stream,  ca l led the 
d-stream, and the i nstruction stream,  ca l led the 
i-stream.  The i-stream requests the memory to 
send da ta  d e s t i n ed for t h e  i n s t r u c t i o n  u n i t  
( I  Box) , which interp re ts that data as macroin
s t ru c t i o n s .  I - s t ream fe tches  are i n i t i a ted by 
microcode , which loads a C Box register ca l led 
the phys ical i nstruction buffer add ress (PIBA) . 
The P IBA holds  the add ress of the next long
word of the i-stream tO be fetched . If the execu
t ion of macroinstruct ions is seq uent i a l  ( i . e . , 
there are no branches, page crosses,  etc . ) , the 
C Box can increment the PIBA contents automat
ical ly after each fetch .  However, should the pro
gram branch or a page cross occur ,  microcode 
m u s t be used  to r e l o a d  t h e  P I BA .  0 -s t ream 
fetches are made on ly  by  the  microcode ,  which 
must specify one of e igh t  memory data (MD) 
regi sters as i ts des t i n a t i o n .  0-s t ream data  i s  
always returned to  the  execu tion unit .  

Write Operations 
In genera l ,  the performance of a cache is mea
sured by i ts h i t  rate when read i n g  da ta .  The 
select ion of the update mechan isms for both 
cache and memory, however, can have a major 
i nfluence on the design of the cache . There are 
two wel l  known strategies for u pdating a cache: 
write a l locate , and no-write a l locate .  A wri te
a l l o c a t e s c h e m e  u p d a tes  a c a c h e  loc a t i o n  
whether o r  not the write i s  a h i t  o r  a miss. This 
scheme is general ly implemented with a write-
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back memory arrangement (d iscussed later) . I n  
a no-write a l locate scheme, the cache i s  updated 
only if the wri te was a h i t .  The VAX 8800 pro
cessor uses a no-wri te al locate scheme.  

The no-write a l locate scheme does , however ,  
presen t  a prob l e m .  S i nce only  writes that  h i t  
wi l l  update the cache ,  cache updates take two 
p i p e l i n e  cycl es i n  t h e  C Box - t h e  fi rst  to  
check for h i t  or m iss, the second to  update the 
cache for a h i t .  The C Box was des igned to 
enable one read reference to complete in each 
cycle .  I f  two consecutive cycl es are needed to 
update the cac he, the second cycle coul d  block 
a read reference, thus causing a p ipe l i ne sta l l .  

To solve this problem,  the C Box implements 
a d e l ayed -wr i te a lgor i t h m . T h i s  mech a n i s m  
delays writes that must update t h e  cache from 
doing so u n t i l  the first cycl e  of the next write 
reference .  The second cyc l e  of  the de l ayed 
write does not need to be the next consecutive 
cycle .  

The de l ayed-wr i te a l go r i thm in  the C Box 
takes advantage of  the  fact tha t  the  first cycle  of  
a wri te ut i l i zes only the  tag section of  the  cache 
to  d e t e r m i n e  w h e t h e r  a h i t  or a m i ss  h a s  
occurred . The second cycle  uses on ly the data 
section. A write that must update the cache has 
i ts add ress and data p laced i nto  the de layed
wri te address and data buffers respectively. On 
the next  write access , dur ing the cache-tag look
up cycle ,  the data section of the cache wi l l  be 
updated from the address and data contained i n  
t hose buffers ,  b u t  o n l y  i f  t h e  p rev ious wri te  
access was a h i t .  Since reading a data item after 
one has been wri tten is common, this design sig
n i ficantly reduces the potential for sta l l s .  

Write Buffer 
Al l  write references, whether or not they hi t  i n  
the cache, must eventua l ly go t o  memory. There 
are two genera l strategies in  cache design with 
respect to memory updat ing:  wri te-through , and 
wr i te - ba c k .  In t h e  wr i t e - t h rough  approa c h ,  
write references are sent tO the memory system 
i m me d i a t e l y .  Convers e l y ,  i n  t h e  wr i t e -back  
approach ,  writes are he ld  unti l  t he  cache b lock 
i s  deal located (made ready to rece ive d ifferent 
data) . 

There  are seve r a l  m a j o r  p r o b l e m s  w i t h  a 
wr i te -back  strategy .  F i rs t ,  i t  req uires e i t he r  
m icrocode o r  hardware to accompl i sh  a l l  t h e  
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write-back fu nctions. Add ing that cod e o r  hard
ware to t h e  C Box wou l d  have cons iderab ly  
increased i ts complexity. 

Secon d ,  if t h ere is a w r i t e  m iss  w i t h  t h i s  
sche m e .  a cache b lock  tha t  m i gh t  be fu l l  of 
val id data cou ld be displaced by a block whose 
o n l y  va l i d  d ata  was t ha t  ju st  w r i t t e n  to t h e  
cache . For a cache having a large block size, l i ke 
the 8800 has, th i s  action is undesirable .  More
over, in most cases m icrocode reads data before 
it is wri tten ; therefore ,  wri tes wi l l  genera lly h i t  
in  t h e  cache . 

F i n a l ly ,  t h e  wri te -ba c k  strategy req u i res a 
c o m p l e x a lgo r i t h m  t o  m a i n ta i n  c o he r e n cy 
between caches within a mul tiprocessor syste m .  
Therefore , for a l l  those reasons, we  chose to  use 
the write- through approach in the cache . 

One d i sadvan tage of write-through i s  that i t  
tends to generate a J o t  of  write traffi c t o  the 
memory. In  a shared-bus system l i ke the 8800 , 
th i s  traffi c can l i m i t  perform ance . To red uce 
memory-wri te traffic ,  wri tes in the VAX 8800 
processor a re buffered in  a wr i te  b u ffer con 
tained i n  the NMI interface. This write buffer is 
rea l ly a one - l i n e ,  oct aword , w r i te - a l l oc a te 
cache . A write going out tO the NMI bus is held 
in the wri te buffe r .  Subsequent  writes to the 
same octaword update only the write buffer so 
that n o  mem ory requests are sent on the  N M I  
bus.  A write that i s  outs ide the octaword cur
rently in the write buffer dea l locates i t ;  that is ,  
the contents of the write buffer are sent to mem
ory, and the next wri te rep laces those contents 
i n  the buffer. 

Like the cac he , the success of the write buffer 
i n  reducing bus traffic re l ies on the loca l i ty of 
p rograms  i n  space  a n d  t i m e .  F o r  e x a m p l e ,  
sequent ia l  wri tes , such as pushes t o  the stack,  
wil l  get co llected in  the write buffer even if the 
wri tes occurred i n  different macroi nstructions.  
This col lected "package " of writes can then be 
sent to the me mory more effic ie nt ly  than can 
i nd ividual  wri tes. 

Another advantage of the write buffer is that i t  
decou ples the processor from memory activity .  
When the memory is  busy process ing transac
tions from the other processor or from the IjO 
su bsystem ,  a processor w i I I  n o t  sta II d u e  to 
writes. The write buffer is  actua l ly i mplemented 
as a two-deep buffer, which further reduces the 
potent ia l  for s ta l l s .  
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Pipeline Stalls 

Jn  a p ipe l i ned i mplementat ion , how wel l  rhe 
p ipe l i ne performs is determi ned both by how 
often i t  i s  f lushed c l ear  and  how often  i t  i s  
sta l led . Sta l l  conditions are general ly related to 
rhe lack of some physical resource or data . 

I n  some i m p l e m e n t a t i o n s ,  some p i pe l i n e 
stages can take more cycles to complete than 
others for certa i n  fu nctions . I f  a shorter s tage 
precedes a longer one , the longer one w i l l  be 
unable either to accept fresh data or to pass i ts 
resu l t  ro the next stage u nt i l  fin i shed wi th i ts 
cycle . I n  turn , other port ions of rhe p i pe l i ne 
cannot proceed with their operations ; therefore, 
the pipel ine wi l l  stal l .  I n  this sta l led condit ion ,  
a l l  stages preceding the "bottl eneck" ma in ta in  
the i r  i nput and  output conditions unt i l  the stage 
responsible for the sta l l  compl etes i ts funct ion.  
Some i mplementations have a combinati on of  
stages that  may exhib i t  these character i s t ics ,  
lead ing t o  complex pipel ine stal l  cond i tions.  

In  the VAX 8800 CPU, the design s impl ic i ty 
of t h e  p i p e !  i nc e n s u res  t h a t  e a c h  p i pe l i ne 
stage - except the C Box - always completes 
i rs function in one cyc Je ..l S ince the C Box a lso 
control s  data accesses, a l l  sta l ls in t he 8800 are 
r e l a t e d  to t h e  o p e ra t i o n  of t h i s  u n i t .  T h e  
p ipe l i ne wi l l  experience two types o f  sta ll s :  the 
MD stal l ,  and the VA sta ll .  

( 
MD 
ACCESS 
FOR 
DATA 

INSTRUCTION R 

INSTRUCTION S 

MD - M EMORY DATA REGISTER 
TB - TRANSLATION BUFFER 

( 

CYCLES 

ALU TB 

' 
M D  
ACCESS 
FOR 
DATA 

� 

MD Stalls 

When making a read reference , a microi nstruc
tion must specify one of eight MD registers to be 
used as i ts desti nation . When data is made ava i l 
able ,  e i ther from the cache or from memory, i t  
is written in to the specified MD register.  Subse
quent m icroinstructions then use the data from 
th is  register .  If a m i cro i nstruction attempts to 
use an MD register that is nor "va l id"  ( i . e . ,  the 
data has not yet been fetched by the C Box) , the 
p ipel ine wi l l  experience an MD sta l l .  

The MD sta l l  condi t ion is  a data-dependency 
type of sta l l  that is genera l ly seen i n  pipel i ned 
mach ines . On the VAX 8800 processor, certa in  
steps a re  t aken  to  e i t her  avo id  such sta l l s  or  
reduce their effects. For example, consider two 
consecutive m icro instructions, R and S, as i l lus
trated in Figure 3. R is a m icro instruct ion that 
performs a read and puts data i nto an MD regis
ter .  S then accesses and uses the data fetched by 
R .  I f  R and S are adjacent , the p ipel ine wi l l  sta l l  
i n  the  880 0 .  The reason for the sta l l  is  that the 
p i pel i n e  stage access ing  the MD data and the 
stage fetc h ing that  data ( the  C Box) a re sepa
rated by one other  stage,  rhe a r i thmet ic  a n d  
logic u n i t  (ALU ) .  When S tr ies t o  u s e  t h e  M D  
data , R i s  just start ing t o  make the read reference 
in the C Box. S must therefore stal l  the p ipel i ne,  
wai ting for data to be suppl ied by R.  

CACHE 

ALU TB CACHE 

R STARTS READ REFERENCE 

S REQUIRES DATA READ BY R .  
MUST STALL AT LEAST ONE 
CYCLE FOR THE DATA. 

Figure 3 Instructions R and S A re Adjacent 
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INSTRUCTION R � 
MD 
ACCESS 
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INTERVENING 
INSTRUCTION 

ALU 

� 
M D  
ACCESS 
FOR 
DATA 

INSTRUCTION S 

TB 

( 

CYCLES 

CACHE 

I 

ALU 

MD 
ACCESS 
FOR 
DATA 

TB CACH E  

ALU TB 

R HAS COMPLETED READ 
REFERENCE,  DATA J UST 
AVAILABLE 

CACHE 

"' 
S REQUIRES DATA. � DATA SENT D I RECTLY INTO 
ALU , BYPASSED M D  
U P DATE. NO STALL. 

Figure 4 Instructions R and S Separated hy Another Instruction 

On the other hand . if R and S are separated by 
one other i nstruct ion , then when S a ttempts to 
use the data read by R ,  that  data is just  be ing 
made ava i l a b l e  by the  C Box (assu m i n g .  of  
course , a read h i t  in  the  cache) . I f  S were to  wait  
for the MD registers to be updated before using 
the data , the p ipe l i ne would  sta l l .  To e l im inate 
that type of stal l ,  a path has been designed from 
the  C Box d i rect ly i n to the i nput of the AUJ . 
bypassi ng the MD registers . 'T'herdore , the data 
coming from the cache is  sent both to the MD 
registers for u pdat i ng and directly to the A U J ,  

where S can use the data . 'T'he net  effect i s  that  
th is  bypass path removes the one-cycle la tency 
that S wou ld have experienced had it waited for 
the data to come out of the MD registers . Figure 4 
i l lustrates these concepts .  

Had R caused a read miss ,  S would  st i l l  cause 
an MD sta l l  s ince the C Box must make a memory 
fetch for the data . Notice that  an M D  sta l l  hap
pens only when S a ttempts to use an MD register .  
Therefore, a general rule for making m icrocode 
accesses to the C Box is to make read references 
early and to usc the MD registers late .  Should the 
read reference m iss ,  some part of the memory
fetch latency wil l  be h idden by the microi nstruc
t i o n s  be tween  the  read  a n d  t h e  MD r e g i s t e r  
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access . When data returns from a read m iss and 
the p i pe l i n e  i s  e i ther  undergo i n g  or  about  to 
u ndergo an MD sta l l ,  the bypass path can be used 
to reduce the effects of the sell I or even prevent i r .  

VA Stalls 

A VA sta l l  condition occurs when the C Box can
not process a requested reference . This can be 
clue to e i ther an i nva l idation cycle in the C Box 
(discussed in the fina l  section of this paper) or 
the capabi l i t ies of the address and data buffers 
i n  the NMI  in terface being exceeded . 

A� mentioned earlier ,  for reads t here is a set of 
buffers for d-strcam and i -stream references. The 
d-strea m buffering is one deep,  mean ing there 
can only be one read m iss outstand i ng i n  t he 
C Box . However, the i mplementat ion wi l l  not 
a l low the p ipe l i ne to stall should subsequent  
reads b i t  in  the cache .  !-stream reads never sta l l  
t he  pipel ine a s  do  VA and MD sta l ls ,  wh ich  stop 
the clock .  The i nstruction buffer can "sta l l "  if i t  
does not have enough data  for the decoder to 
complete the decode of  the current VAX instruc
tion operand . This condit ion causes the CPU to 
perform a no-operat ion m icroword . That docs 
not stop the c lock,  however ,  and thus is not a 
p ipel ine sta l l .  
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The C Box can s t i l l  receive com mands even if 
it contains one read m iss. Of course, there i s  the 
potential  that  the command bei ng received wi l l  
m iss in  the  cache . That  w i l l  requ i re the N M I  
interface to request t he data from memory, thus 
resul t ing in a VA stal l .  That sta l l  l asts from the 
t ime the command i s  received until  the time the 
previous read-miss data returns from memory. If 
the second command is  a read that h i ts in the 
cache, a VA stal l  wi l l  be generated for t he one 
cycle  t hat i t  takes to determ i ne whether or not 
there i s  a cache h i t .  The read data w i l l  then be 
taken from the cache and returned to the M D ,  
after which the sta l l  w i l l  b e  re leased . 

S ince wri tes go to memory more than reads ,  
the  buffering for wri tes is  more extensive . The 
delay-wri te  buffer and t he double buffer ing i n  
the write buffer are used t o  reduce the possibi l i ty 
of write sta l ls .  These buffers enable the C Box to 
ho ld  a m ax i m u m  of n i ne longwords o f  d a ta 
before the p ipel ine wi l l  experience a VA sta l l  on 
a wri te .  

Stalled and Unstalled Logic in 

the C Box 

If an i nstruction is sta l led ,  the C Box has e ither 
not returned the data or cannot take another ref
erence. Therefore ,  a l l  stages prior to the C Box 
(the I Box and the E Box) must be sta l led .  The 
TB is  part of the last stage of the pipe line ;  there
fore, it m ust be capable of bei ng sta l led .  When 
the p ipe l i ne sta l ls ,  the TB holds the address of 
the sta l led reference .  O n ly the N M I  i nterface 
can resolve a sta l l ,  e ither by supplying the read
miss data or by freeing up  i ts buffers .  Thus th is  
i n terface can never be s ta l l ed .  However ,  the 
c a c h e ,  b e i n g  p a r t  o f  t h e  l a s t  s t age  of t h e  
p ipel i ne,  i s  a lso the path for supplying data to 

DATA 

� � 
PHYSICAL 

TRANSLA- ADDRESS 
I BOX E BOX TION 

BUFFER 

STALLED 

the stal led i nstruction . This situation leads to an 
i nterest ing control characterist i c  of the C Box . 
O n e  of i ts sec t i o n s ,  t h e  T B ,  c a n  be s t a l l e d ;  
another. the NMI  i nterface , m ust never stal l ;  and 
t h e  t h i rd s e c t i o n , t h e  c a c h e ,  m u s t  re m a i n  
unstal led but mainta in  stal led inpu t  and output 
cond i t ions  i n  i t s  l og i c .  F i gure 5 dep i cts the  
logic for sta l led and unstal led cond i t ions i n  the 
C Box. 

Coherency Problems in the C Box 

J n  genera l ,  data coherency means tha t  a read 
should a lways get correctly modi fied data when 
a ser i es of reads  a n d  w r i tes  is m a d e  i n  a n y  
sequence . One way tO ma in ta i n  coherency i s  to 
perform a l l  reads and writes to completion in a 
purely sequent i a l  manner ,  thus  s tr ic t ly  m a i n 
tai n i ng their  sequence of reference . However, i n  
a p ipe l ined machine ,  not only can t here b e  sev
era l  sources of read and write references, but 
there can a lso be more than one copy of t he data 
item . This dupl icat ion often leads to very com
plex solutions to ach ieve coherency. 

Th is  complex i ty has been s i m p l i fied some
what  in t he VAX 8800 p ipe l i ne  by having the 
C B o x  b o t h  c o n t ro l  a n d  s e q u e n c e a l l  d a t a  
accesses. The C Box i tse lf, however, i s  p ipel i ned, 
having a d-stream and an i -stream for reads , and a 
stream for wr i tes .  Th is  fact a l so presen ts some 
coherency problems . Coherency for t he C Box 
means that two condit ions must be met. 

I 

1 .  After a sequence of reads and wri tes has 
completed , any va l id blocks i n  the cache 
must match the data i n  the memory. 

2 .  Whenever the processor wri tes to a loca
tion in memory a nd then reads that  loca
t ion , the data has tO be what was written . 

PHYSICAL 
ADDRESS 

� N M I  CACHE INTERFACE N M I  

STALLED/ 
UNSTALLED 

DATA 

UNSTALLED 

Figure 5 Stalled and Unstalled Logic in C Box 
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Two types of coherency problems exist in the 
VAX 8800 system :  coherency wi th in  a proces
sor, and coherency between processors. 

The first type of problem in the C Box arises 
fro m the  i m p l e m entat ion  of t h e  d e l ay-w r i te 
algori thm d iscussed earl i e r .  A problem occurs 
when a read i s  attempted to the cache location 
wait ing to be updated by the wri te held in the 
delay-wri te buffers . The read wi l l  h i t ,  but the 
cache data wi l l  be sta l e .  One solut ion to th is  
problem i s  to  stal l  the p ipe l ine whi le  the cache 
is updated , perform ing the read for the correct 
data .  The trou ble here is that the sequence of 
writing to and reading from the sa me location is 
a common occurrence . Thus to sta l l  wou ld sig
n i ficantly reduce the read bandwidth . 

The C Box solves this problem by comparing 
selected b i ts of the read and wri te addresses i n  
the delay-write buffer .  I f  t h e  bits match , then 
the data content of that  buffer is used as the read 
data . This solution works because, to the read . 
the delay-write buffer ap pears tO be an exten
s i o n  o f  t he c a c h e . S i n ce  t h e  r e a d  a d d ress  
matched the  address i n  th i s  buffer ,  the  data can 
be taken d irect .ly from i t .  Cohere ncy is rhus  
assured , and  no  sta l l  penal ty is i ncurred . 

The second type of coherency problem occurs 
when the read is a m iss and thus goes to the N M I  
interface . To assure h igh performance, the N M I  
i nterface mainta i ns two streams o f  data requests , 
the read and write strea ms . The buffer ing and 
the control of these two strea ms operate i nde
pendently. If made to d ifferent data i tems, read 
and write requests can be processed to me mory 
as qu ick ly  as poss i b l e ,  even out  of seq u ence . 
The coherency pro b l e m  i s  to make sure t ha t  
subsequent reads and  wri tes to  the  same data 
i tem resul t  i n  i ts correct state. 

I f  a read request occurs that was a m iss, the 
cache wil l  send i t  to the NMI interface upon d is
cover ing that fact .  Once in the N M I  in terface , 
the read address i s  compared to the add ress of 
t h e  octaword i n  t h e  w r i t e b u ffe r .  I f  t h ose 
addresses are d ifferent, the cache wi l l  send the 
read d i rect ly to memory . Thus the data in  the 
write buffer wi l l  be unaffected . I f  the addresses 
matc h, however,  the write data wi l l  be sent tO 
memory, fol lowed by the read request. Si nce rhe 
me mory su bsystem p rocesses references i n  a 
sequential manner, the read wi l l  a lways access 
the correct data . (Of course,  this case is fa i rl y  
simple . A more compl icated one is  that i n  which 
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a read is  sent to memory, and the processor per
forms a write whi le  wa iting for that read . )  

I f  the  addresses of  the  read and write match , 
the cache can give the processor t he requested 
data but cannot mark the returned data val id i n  
the cac he . This  s i tua t ion occurs because t h e  
read -miss data being fetched from memory has 
been made sta le  for subsequent reads . 

The  m i crocode i s  d es i gned so t h a t  i t  wi l l  
never read a data item and then wri te to i t  with
our first accessing the MD registers . However, a 
cache block is 64 bytes long.  The m i c rocode 
cou ld  write to any other data i tem in  the b lock 
before com ing to the m issed data i te m .  There 
can be as many as three wri tes and two reads 
(one each for the d- a n d  i - streams) buffered 
s imu ltaneously in the C Box, al l  referenci ng the 
same cache block.  Even worse ,  the C Box can 
send an arbitrary nu mber of writes to memory 
while wa it ing for the data returned by the read 
to memory. To maintai n  coherency. the C Box 
performs a set of address matches between the 
read and wri te streams . Then i t  " remem bers" 
whether or not any wri te addresses matched the 
outsta n d i n g  reads and  ma rks them i nva l id  as 
appropriate . 

C Box Design for a 

Multiprocessor System 

The VAX 8800 system consists of two identical 
VAX 8800 processors on the NMI bus connected 
to the  m e mory and  I jO su bsystems With in  a 
processor, on ly the design of the C Box bas been 
affected by the requ i rements of a mul t iproces
sor arrangement .  That is  because the C box is 
the CPU's interface to the N M I  bus and contai ns 
the centra l  arbitrat ion logi c for that bus .  

There a re th ree key i ss u e s  i n  de si g n i n g  a 
memory interconnect for a mu l t iprocessor sys
tem : bus arbitra t ion ,  bus bandwidth ,  and data 
coherency between processors. 

Bus Arbitration on the NM I Bus 
Two major problems were encou ntered in the 
design of an arb i tration scheme for the NMI bus. 
The first was the fact that between the CPUs and 
the 1/0 su bsystems, called the NBfs, there was a 
possibi l ity that a h igh-priority device cou ld lock 
our a low-priority device from the bus. This is  
certa i n ly poss ib le  with a fixed priority-arbitra
tion sche me.  To address this problem, the C Box 
imp lements a dynam i c  pr ior i ty- a l locat ion 
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s c h e m e  t h a t  causes  p r i o r i ty to be a s s igned  
between two groups:  the 1 /0 devices , and  rhc 
CPUs . Wi th in  these grou ps, t he priority sh i fts 
between rhe rwo CPUs and the two 1/0 devi ces . 
For exa mple .  i f  a l l  four devices wanted to usc 
the bus a l l  the t ime ,  the order in  which the bus 
wou ld be granted to the devi ces wou ld be 

first CPU , first l/0 , second CPU, second 1/0 . 

first CPU. first ljO, second CPU, second ljO , 
etc.  

This scheme guarantees that al l  devices on the 
bus wi I I  have near ly  eq ua I access to rhe bus , 
rhus so lving rhe lock-our problem .  

The  second prob lem i nvo lves the " memory 
busy" s i tuation . Whenever rhe memory subsys
tem cannot  process m ore requests ,  it sends a 
" me mory busy" s ign a l .  I t  cou l d  happe n ,  for 
i n s t a n ce . r h a r  a CPU a c c esses  t h e bus  a n d  
attempts ro wri te ro memory .  Upon receiv ing a 
mem ory-b usy s i gna l ,  t h e C PU w i l l  abort  t h e  
wri te . W h e n  memory i s  released , some other  
device wi l l  access the  bus and perform a write.  
rhus fi l l ing the write queue in  memory .  Once 
aga i n ,  the fi rst CPU re -arb i t rares,  accesses the 
bus , and tries to wr i te .  Once aga i n ,  that CPU 
n:cc ives a memory busy s igna l .  And so on . 

The NMI arbi tration scheme mentioned above 
so lves th is problem in which a device might get 
l ocked-our  of me mory . As i m p l e m e nted , the  
arbi tration scheme saves rhe  priori ty state at the 
r i m e b e fo r e  t h e  m e m o r y - b u s y  s i g n a l w a s  
asserred.  The arbitration logic then restores that 
stare so that rhe device that received the signa l 
wi l l  get the bus when the memory-busy signa I is  
deasscrted . 

Bus Bandwidth 

For rhe  processors on the  i n terconnect , bus 
bandwidth i nvolves two components: read band
wid t h .  and wr i te bandw i d t h .  The prob lem of 
inadequate read bandwidth is addressed by hav
ing a high h i t- ra te cache . The h igher t he hit rate , 
the fewer the requests tO memory. The problem 
of inadequate write bandwidth can be treated in  
rwo ways . The first way is  to  have a wri te-back 
cache l ike rhc one on the VAX 8650 processor. ' 
Such a cache wri tes a b lock ro memory on ly  
when rhe  cache b lock is dea l located. This tech
n ique can s ignificant ly reduce the write band
width requirements. 
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I n  m u l t i processor sys tems l i ke t h e  8 8 0 0 ,  
however, i n  which each processor has a n  i nter
na l  cache . this technique becomes complicated . 
In these systems, a data i tem can exist not on ly 
in memory bur a lso i n  a l l  rhe caches. To main
ra in coherency.  each write-back cache wou ld 
have to not ify rhe other cache when the first  
cache writes .  This technique usua l ly leads ro a 
complex protocol and design i mplementation. 

Another approach in a mul t iprocessor system, 
rhe one  used in the 8 8 0 0 , i s  ro  i m p l e m e n t  
write - through cac hes . I n  such a n  approach,  a l l  
write references go d i rectly t o  memory s o  that 
each cache on rhe bus can "sec" al l  write activ
ity. The caches can then be inva l idated . Such an 
approach grea t l y  s i m p l i fies the prorocol for 
cache coherency but ,  as d iscussed earl ier, gen
erates a high degree of write traffi c .  The unique 
design of rhe write buffer helps ro reduce th is 
traffic ,  a l t hough not  as much  as a wr i te -back 
cache wou ld . In  the 8800 processor ,  however, 
rhe wri te buffer reduces traffic enough so rhar 
the rwo VAX 8800 processors can write a t  their 
max imum banclwicl rhs on rhe NMI bus. 

Coherency in a Multiprocessor System 

A m u l t iprocessor system ,  with in terna l caches, 
presents  a n u mber  of  i n teres t i n g  cohere n cy 
issues when sharing data. Ideal ly,  i f  one proces
sor wri tes ro a location and rhe other processor 
reads rhar locat ion,  the read wi l l  a lways get the 
data rhar was written . In practice,  achieving this 
cond i t ion is d i fficu l t .  Severa l  major questions 
arise : Did the read happen before the write or 
afrer i r '  What happens if both processors write 
ro the same location at rhe same r ime'  Un less 
controlled , t hese s i ruat ions can produce unpre
dictable resu l ts .  

I f  programs on the  processors wan t  to  share 
clara . they must usc rhe interlock instructions in  
the VAX archi tecture . "  On ly after a n  interl ock 
i nstruction is processed wi l l  the memory loca
t ion be guaranteed ro have the correct clara . The 
general  method is as fo l lows . Processes must  
decide to share a b lock of memory. One mem
ory location is  cal led the software lock, and only 
one process ar  a rime is  a l lowed ro write to (or 
lock)  tha t  locat ion . This  is accessed wi t h  an 
i n ter lock i nstruct ion ,  for examp le ,  t he branch 
on b i t  ser and set in terlocked (BBSSI )  or the add 
al igned word interl ocked (ADAWI) instructions. 
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Aspects of the VAX 8800 C Bo.x Design 

Upon ga i n ing the software lock. a given process 
can proceed to write any location in the shared 
bloc k .  Read·wr i te coherency wi l l  be assu red 
o n l y  if t he other  processes shar ing  that  da ta  
observe the  protocol of obta in ing the  software 
lock before modi fying the data structure . 

The VAX i nter lock  i nstru c t i o ns a rc i m p l e ·  
m e n ted u s i n g  i nte r lock  m i c ro i ns t r u c t i o n s .  
These enable a processor to lock and unlock the 
memory su bsystem .  Once locked . this su bsys· 
tem excludes further attempts to lock i t  unt i l  an 
un lock has occurred . Thus only one processor 
or 1/0 system can lock the memory subsystem at 
any one t ime.  

When each processor has an in  tern a I cache.  
there is one more mechanism that keeps the two 
processors coheren t .  Wh i l e  one processor i s  
perform i ng a wr i te  to me mory and wh i le the  
wri te command i s  on the NMI  bus ,  the other 
processor w i l l  exam ine i ts cache store to see i f  
i t  conta in s  a copy of  that  da ta . I f  the data  is  
there, i t  is marked inva l id .  The next req uest for 

LEFT 
PROCESSOR 

� 
I WRITE I BUFFER 

WRITE I NTERLOCK 
FORCES WRITE B U FFER 
CONTENTS TO M EMORY 

N M I  

this data '"'' i I I  then resu lt in  a cache miss and a 
s u b se q u e n t  fe t c h  to  m e m o r y .  T h i s  s i m p l e  
ap proa ch  i s  poss i b l e  because t he VAX 8 8 0 0  
cac hes a re wri te - through .  Alt hough a l l  wri tes 
arc seen  on t h e  b u s ,  the wr i te  b u ffer packs  
together consecutive wri tes wi th in  an octaword . 
Therefore , the nu mber of i nva l ida t ion  cycles  
pe rformed  by a pro cessor w i l l  be red uced . 
When a n  i nterlock write is performed , the con
tents of the wri te bu ffer are sent to memory .  
Thus the interlock mechanism ensures that data 
coherency wi l l  work under a l l  cond i tions . Fig
u r e 6 i l l u s t r a t e s  t h e  e v e n t s t h a t  a c h i e v e  
coherency in the 8800 . 

Summary 

The genera l concepts used in the design of the 
C Box arc we l l  known to computer designers . 
Our goal was to achieve a s imple yet high-per
for m a n ce des ign tha t  avo ided u n ne cessa r i l y  
complex solutions that d id  not g ive comparable 
i ncreases in performance . The choices made 
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have y i e l d ed a des ign tha t  fu l ly supports th t: 
m u ltiproct:ssor concept .  The VAX 8800 system 
can translate add resses and access data faster  
than any previous VAX processor. 
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Eugene L. Yu 

The Memory System in the 
VAX 8800 Family 

The memory system in the VAX 8800 family can send data at 71MB per sec
ond and receive it at 59MB per second. The 8800 and 8700 CPUs can con
tain up to 128MB of memory, the 8550 and 8500 up to BOMB. Commands, 
addresses, and data flow between the memory interconnect (NMI bus) 
and the memory controller, array bus, and array modules. Read, write, 
and masked-write commands are executed. The designs of the NMI bus 
and write-through cache affected the memory system design. Although 
ECL is used in the controller, TTL is used in the array bus. The array 
modules of 4MB and 16MB contain 256K MOS dynamic RAM chips. 

Al i  members of the VAX 8800 fam i ly of proces
sors ( the 8800,  8700 ,  8 5 5 0 ,  and 85 00) usc the 
s a m e  t y p e  o f  m e m o r y  s y s t e m . S i n c e  t h e  
VAX 8800 system is a mul t iprocessor, that mem
ory system must connect co both CPUs and both 
I/0 adapters , cal led the NBlAs. The bus connect
i ng these devices is  called the NMI bus, and each 
connect ion  on the  N M I  bus is ca l led a nexus .  
These con nect ions a re i l l ustrated i n  F igure 1 ,  

which shows five nexuses : one for each CPU, one 
for each NBLA, and one for the memory system .  

Figure 1 Memory Interconnect Structure 

The memory system i tse l f  consists of t h ree 
major parts ,  as depicted in F igure 2 :  

• A memory controll e r  based o n  ECL technology 

• A high-speed TTL bus connecting  that mem
ory contro l l e r  co a max imum of e ight  array 
modules 

• The array modu les themselves 

5 2  

The memory system can del iver 7 1  megabytes 
(MB) per second of read bandwi dth and 59MB 
per second of  write bandwidth .  

S ince the VAX arch i tecture has  a 3 2 -b i t  for
ma r ,  a l l  datapa t hs i n  the memory system must 
a lso handle 32 b i ts .  These datapatbs are com
b ined by p i pe l i ned and para l le l  operat ions to 
prod uce  t he read a n d  w r i te ba ndwi dths .  The 
most sign ificant occurrence of parallel operations 
is two-d imensiona l i nterleaving. The first d i men
sion in terleaves between longwords ( 3 2  b i ts) of 
data on a s ingle array module; the second i n ter
l eaves between octawords ( 4 longwords) on d if
fe re n t  a rray modu les .  As many as t h ree a rray 
mod u l es can  be a c t i ve s i m u l ta neous ly  w i t h  
ei ther a read o r  a write . There are three cases: 

• Eac h modu le can do one read .  

• One modu le  can  do a read w h i le t he other 
two can do as many as four writes. 

• Two mod u l es can each do a read wh i le the 
th i rd can do as many as fou r  wri tes . 

The se lect ion  of the  a rray m od u l es can be 
progra mmed from the console  when the system 
is powered u p .  Thus the  memory system can 
su pport  a va r i e ty of  a rray modu l e  s i zes a n d  
speeds without the need t o  mod ify the hardware 
in the memory control ler .  M oreover, the mem
ory cont ro l l e r  can add ress 5 1 2MB of phys ica l  
memory ,  the l i m i t  of the VAX architectu re . The 
8 8 0 0  i s  t h e  fi rs t VAX sys t e m  to be a b l e  to  
address th i s  much  p hysical  memory .  
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8 

Figure 2 Plan of MemOI:J! System 

Owing to the l i m i ts of the <:xist ing technol 
ogy, howeve r ,  the i n i t i a l  mach ine  was i n tro
duced with  3 2 MB for the 8800 and 8700 sys
tems, and 20MB for the 8500  and 8 5 5 0  systems. 
The 3 2 M B c o n f i g u r a t i o n  c o n s i s ts of e i g h t  
4 MB modu les wi th  2 5 6K MOS dynamic  RAMs 
packaged in DIPs .  To increase the dens i ty of the 
machi ne without using a d i fferent semiconduc
tor technol ogy , a 2 MB daughter  module  was 
developed after the in i t ia l  announcement. This 
module uses double-sided surface-mount tech 
nology and p last ic leadless ch ip carriers. Eight 
of these daughter modu l es are mou n ted o n  a 
mother module to produce a 1 6MB array mod
u l e .  T h i s  n e w m o d u l e  h a s  i n c re a s e d  t h e  
machine's memory to 1 28MB for the 8800 and 
8700 systems,  and to 80MB for the 8 5 5 0  and 
8500 systems. 

Memory System Architecture 

As shown in  Figures 1 and 2 ,  the memory con
trol l e r  commun ica tes w i t h  the CPUs and the 
NBIAs over the memory interconnect , cal led the 
N M I  b u s .  C o m m a n d s ,  a d d re s s e s ,  a n d  d a ta 
requests are a l l  first received by the NMI  i nter
face and then passed to other sect ions of th<: 
m e m ory c o n t ro l l e r .  Add resses and d a ta a rc 
srored i n  custom m u l ti part RAMs,  where eight 
locations arc reserved for addresses and e ight for 
da ta . The N M I  i n te rfa ce  e n codes c o m m a n d  
information ,  passing i t  t o  the command-control 
portion of the memory control ler. 

S i nce the memory contro l ler  communicates 
with the N M I  bus and the a rray bus, the N M I  
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protOcol has to be changed to that of the array 
bus. Reads and wri tes of data fi elds with various 
sizes are received by the NMI  interface . The NMI  
bus  su pports a very robust se t  of commands .  
Reads and i n terlocked reads are su pported for 
longwords (4  bytes) ,  octawords (4 longwords) , 
and hexworcls ( 2  octawords) . Masked wri tes and 
masked-write un locks are supported for long
words ,  quadwords (8  bytes) , and octawords .  
Wri tes a re supported for longwords and acta
words.  

The r e a d - i n t e r l o c ked a n d  m a s k e d - w r i t e  
u n lock commands are used r o  i mplement VAX 
i ns t ru c t i o n s  i n  w h i c h  m u t u a l  e x c l u s i o n  i s  
requ i red . For exa m p l e ,  t h e  VAX i nstru c t ions 
A D AW J , B B C C I ,  B B S S J , I N S Q H I ,  I N SQ T I , 
I NSQUE,  REMQHI ,  and REMQTI a l l  need these 
commands .  S i nce  a n  i n ter locked i n struct i o n  
locks t h e  ent ire memory system ,  t h e  i nterlock 
bit must reside in  the memory controller .  This 
bit restricts the execution of subsequent i n ter
lock commands unti l the lock has been released 
by a masked-write un lock i nstruction.  

Afte r  re c e i v i n g  a m e m o ry requ est  fro m  a 
nexus, the memory control ler must transfer that 
req uest  to the appropriate array modu le .  This 
transfer  i s  accompl ished using the a rray bus . 
This bus consists of 

• A unid irectiona l set of command and address 
l ines from the memory control ler ro the array 
modu les 

• Another un id irectional set of data l ines from 
the memory control ler to the array modules 
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The Memory System in the VAX 8800 Fam ily 

• A set of data l ines (capable of assum i ng three 
states) that can be driven by any one of the 
array modules and recei ved by the memory 
control ler 

• Various status and control l i nes that commu
n icate in  both d irections 

The a rray bus has  a m i n i ma l  reperto i re of 
commands, consist ing of longword reads ,  acta
word reads ,  and longword writes, but not hex
word reads .  S i nce the N M I  su pports hexword 
reads, the memory control ler must convert t hem 
i nto two octaword reads and then send them to 
the array modu les. Thus the two octawords of a 
hexword read can reside on d ifferent array mod
u les. That fact i ncreases the memory bandwi dth 
because para lle l  accesses can be executed . The 
array bus supports only longword writes ; t here
fore, octaword writes must a lso be converted . As 
mentioned earl ier ,  the array bus has one l ine for 
commands and addresses and another for data . 
Therefore, an octaword write , which takes five 
cycles to transfer on the N M I  (one for the com
mand , four for the data) , can be transm i tted i n  
five cycles o n  the array bus to an array modu le .  
F igure 3 shows the corresponding act ions dur
ing each cycle on the NMI  and on the array bus. 

In addit ion to commands, the memory system 
must a lso execute maintenance tasks, i ncluding 
m emory refresh ,  error report i n g ,  a nd battery 
backup .  

S ince physical  memory is  implemented wi th 
MOS dynam ic RAMs , every array row m ust  be 
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L I N E  

COMMAND 
OR 
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CYCLE 

2 3 

DATA DATA 

COMMAND 
OR 
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refreshed once every 4 m i l l iseconds . This func
t ion can be done by refreshi ng one row every 
1 4  m icroseconds . To faci l i tate this activity ,  the 
memory control ler sends s ignals to each array 
module from a 1 4 -m icrosecond osc i l lator . Upon 
receiving a refresh signa l ,  an  array module wi l l  
hand le  the  refresh arbitration and execute the 
operation . 

Occasional ly ,  a b i t  w i l l  be lost due to e ither 
a lpha part icles or a device fai lu re .  In that case 
the memory control ler must handle those errors 
and other types i n  a gracefu l manner .  To do 
that ,  the memory system uses a 7 -b i t  modified 
h a m m i n g  code to gen erate  the ECC , w h i c h  
a l lows a l l  s ingle-bit  errors to be corrected and 
a l l  dou ble -b i t  errors to be detected . After cor
rect ing each error the memory system logs the 
error's physica l page add ress and the b i t .  The 
memory system then in terrupts the CPU to cal l  
a n  error serv i ce rout ine ,  which l ogs i n  a VMS 
fi le the necessary information to i solate the fai l 
ure . The memory system can a lso i nterrupt the 
CPU to handle i nternal parity errors and i n ter
locked t ime-outs. An i nterlocked t i me-out hap
pens when a nexus executes a read i nterlock but 
never issues a masked-wri te un lock .  The system 
software can enable or d isable these i nterrupts. 

Battery backup ,  standard equipment on both 
the  8 8 0 0  a n d  8 7 0 0  syste m s ,  c a n  power the  
refresh operation when the  system is down . That 
power a l lows the memory system to cont inue to 
refresh the RAMs so that data w i l l  not be lost . 
Note that the entire system is not backed up;  
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Figure 3 Cycles on NM! Bus and A rray Bus 

54  Digital Technical Journal 
No. 4 February 198 7 



BUS ENABLE 

ERROR 
CORRECTION 1-T---1 
LOGIC 

T 
A 
A 

M U LTIPORT 
RAM 

N 
M 
I 

MEMORY CONTROLLER 

ECC 
GEN ERATION 
LOGIC 

ARRAY MODULE 

Figure 4 Datapaths in Memory Controller and Array Modules 

therefore, a l l  components must be in qu iescent 
states before the memory system enters battery 
mode. Upon sensing that power is erodi ng, the 
8800 wi I I  write a l l  i ts data to the memory sys· 
tern . The memory control ler wi l l  then complete 
a l l  commands and send signals w the array mod· 
u les i n forming them to enter battery mode. I n  
th is  mode on ly five MSI ch ips on the memory 
control ler and approx i mately ha lf  the control 
logic on the array module will  be active .  

Com mand Execution 

The execution of any command received by the 
mem ory system is  a jo in t  effor t  between the  
memory control ler and the  array modules.  Fig· 
ure 4 depicts the datapath in  each memory com
ponent .  After a nexus places a command on the 
NMJ bus, the interface in the memory control ler 
ascertains i f  the command is a va l id memory ref· 
erence and,  i f  so, decodes i t .  The in terface then 
pl aces the command in  a queue of commands 
wai t ing to be executed . 

Si nce one array modu le can execute mul t iple 
write commands s imul taneously, and since mul 
t ip le  array modu les can a lso execute commands, 
the memory control ler must ma inta i n  the status 
of the array modu les . The status control logic to 
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monitor actiV I ty must  " remember" which par· 
t ions of w h i c h  a rrays a re " bu sy . "  Th is  statll s  
control logic can best be  described by  showing 
how the three basic operat ions ,  writes ,  reads ,  
and masked writes, are executed . 

Write Com mands 

For a write command , the contro l port ion of t he 
memory control ler performs only three actions: 
i t  determines the capabi l ity of the array module 
to accept the command, i t  sends the command , 
and it wa i ts for the array module  to s ignal  i ts 
readiness to receive a nother command .  

The write datapath is that portion of  the  logic 
responsible for the flow of data from the NMI bus 
tO the array modules .  This path comprises both 
e lectrical interconnects (buses and cables) and a 
considerable amount of logic .  The major storage 
element for the data path is a 9-bit by 3 2 -location 
custom mul tipart RAM ( MPR) with two ports for 
reads and two for writes. Data received from the 
NMI bus is p laced in  the next avai lable location 
of the MPR.  Upon determin i ng that the requ ired 
array module is ava i lable ,  the control logic sends 
the data from the M P R  to that array module over 
t he array bus.  Each array modu le  ho lds the data 
u n t i l  i t  is s t r o b e d  i n t o  t h e  d y n a m i c  R A M s  
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(DRAMs) . The array module can load four long
words of data with their associated ECC bits on 
four consecutive cycles. 

Some wri tes are cal led masked because there 
is a 4 -bi t byte mask associated with each data 
word . The byte mask informs the memory sys
tem as to whi c h  bytes arc to be wri t ten . The 
memory system executes this command by first 
doing a read and correcting a ny s ingle-bi t errors 
that may exist . It then merges the memory data 
with the data received from the N M I  bus ,  and 
fi na l ly  does a wri te command . This  sequence 
easi l y  a l lows t he i mp lementation of longword 
and octaword masked writes. Masked writes for 
quadwords (8 bytes) are executed by perform
ing an octaword masked wri te i n  which  the data 
of two of the longwords remains u ncha nged . 

Read Commands 

For read commands , the memory controJler per
forms fou r  actions: it determi nes i f  the selected 
array m od u l e  is ready to accept  the  rea d ,  i t  
sends the com m a nd , i t  wa i ts for a data -ready 
response, and i t  transfers the data from the array 
module .  I mbedded in the command field of the 
read are address b i ts that select the longword of 
the octaword that is requ i red first . This action 
a l l ows wrapped r e a d s  to  be  i m p l e m e n ted . 
(Wrapped reads are described later i n  the sec
tion " Impact of the Cache . " )  

The react cla tapath or ig i na tes a t  the  D RAM,  
wh ich sends the requested data . As in  the case of 
wri te commands,  each array module  stores an 
octaworcl of read data.  Once the data has been 
loaded i n to the l atches, the array module signals 
to the memory contro l ler that the data is  ready. 
As mentioned earl ier, the read datapath between 
the array module and the memory controller is  
tr istatabl e .  Therefore , the memory control ler 
must ensure that  o n ly one array modu l e  a t  a 
t ime  dr ives th i s  da tapa t h .  Once the  da ta has  
been requested by t he memory contro l ler, the 
array module must send the longwords sequen
t ia l ly ,  beg inning  with the start ing aclclress t hat 
was sent with the command.  This action a l lows 
the memory controller to request any one of the 
four  longwords as the first to be read .  The array
module  portion of the read data path can transfer 
one longword of data during every cycle .  

The error-correction logic in  the memory con
troller receives each longworcl of data plus the 
seven ECC b i ts . This  logic detects s i ngle - and 
double-bit errors, but only single-bit errors can 
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be corrected .  A s ign i ficant feature of  this pro
cess is that error detection and correction is per
formed as the read data is  p ipel ined through the 
memory control J er .  Thus no aclcl i t iona l  cycles 
are needed to correct read data . 

Masked-write Com mands 

The execution of a masked wri te i nvolves both a 
react and a wri te sequence .  The memory con
trol ler executes a masked-wr i te com mand by 
first issu ing a react to the selected array module .  
Assuming that there were no memory errors, the 
data  returnee! is sent  to the M P R ,  where the  
bytes arc merged wi th  those sent to  the memory 
controller over the N M I  bus . The memory con
tro l l e r  must  ensure that  no commands to the 
same array come between the  read and wri te 
portions of a m asked wri te . After a l l  the bytes 
have been m e rged i n to t h e  da t a  b u ffe r ,  t he  
memory contro l l er w i l l  wri te the d a ta to  the  
array modu le.  The array module then generates 
new ECC data , adds i t  to the  other data ,  and 
strobes the composite data i nto the D RAMs . 

If a s ingle-bit error is detected , the process is 
qu ite s imi lar to the one with no errors, except 
that the data must be corrected . Since corrected 
data and N M I  traffic both share the same data
path on the memory control ler ,  the N M I  in ter
face must be free to correct errors found during 
masked wr i t e s .  T h i s  free d o m  i s  e n s u red by 
asserting a s ignal  that stops a l l  act iv i ty on  the 
N M I  bus .  O nce act ivi ty has stopped , t he data 
can be routed through the N M I  i n terface, cor
rected , a nd then merged w i th the N MI data i n  
the data buffer. The process then continues a s  i t  
would have i f  there were n o  errors. 

If a double-bit  error is  detected, the process is 
s imi lar to the case in which no error occurred, 
except that the wri te is  prevented from happen
i ng .  When the array location is  read the second 
t ime ,  the double-bit  error w i l l  sti l l  be present ,  
thus alert ing the system that  the data i s  unusable . 

Memory Address Path 

The memory contro l ler conti nuously latches a l l  
addresses from the N M I  bus . Once an aclclress i s  
latched , the  memory control ler m ust verify i t  as 
a va l i d  mem ory address . That  ver i fi ca t i o n  i s  
d o n e  b y  c o m p a r i n g  t h e  a d d r e s s  t o  v a l i d 
aclclresses of both the  con trol s tatus regi sters 
(CSRs) and physical memory . 

The CSR addresses are hardwired i nto the NMI  
interface logic ;  therefore, on ly  a s imp le  compare 
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of the addn:sscs is requ i red .  The compare for a 

va l i d  mem ory address requ ires a reference to a 
"decode"  RAM . This RAM is loaded by console 
software when the system is  powered up and i s  
used to confi g u re memory .  Load i n g t h e  RAM 
from software al lows the memory contro l ler to 
support several d i fferent si zes of array modu les 
wi thou t m od i fying any hardwa re . 

Once the add ress has been veri fied as be i n g  
va l i d .  i t  i s  p laced in  one of eight storage loca
tions a llocated to address buffering in the M P R .  
The address rema i ns in  that buffer u ntil  i ts com
mand i s  sent to an array module .  

Even though e ight  locat ions a re a l l ocated to  
address buffering,  only seven of  them can  be  used 
for rem porary storage . One locat ion is reserved 
for the error 's  page address , a poi nter to a phys i 
cal page of memory conta i n i ng a n  error .  Since 
the locat io n  of the e rror  page-add ress buffer is  
not fixed , the control  l ogic  for the address-buffer 
contro l  must  look  ahead and not  a l low a new 
address ro overwrite that error page address . 

The contro l  of the  address bu ffe r i s  fu r ther  
compli cated by masked wri tes and error l oggi ng _  
S ince a masked write i s  i m plemented a s  a read 
fo l lo wed by a wr i te ,  the address in the bu ffer 
cannot be overwri tten u n t i l  the write has com
p leted . A s im i lar si tuation ex ists for error logging 
o n  read t r a n s a c t i o n s .  S i n c e  a n  e rr o r  is  n o t  
d e t e c t e d  u n t i l t h e  r e a d  h a s  c o m p l e t e d , t h e  
address cannot be overwri tten unt i l  the data has 
been checked . 

Design Requirements of the 

VAX 8800 System 

Impact of the NMI Bus 
As stated earl ier,  the VAX 8800 memory system 
i n t e r fa c es w i t h  t h e  C P Us a n d  I / 0  s y s t e m s  
through a sync hronous bus cal led t h e  N M l  bus . 
Th is  bus i s  h i g h l y  effi c i e n t  a n d  operates i n  a 
pcnded fashion s im i lar to the synchronous back
plane in tercon nect (SBl bus) in the VA.X- 1 1 /780 
processor. The NMI bus a l lows several transfers 
to be i n  progress s imu ltaneously. 

There arc fou r  nexu ses in the 8 8 0 0  system 
that can require memo ry :  the two CPUs, and the 
two NBIA<> . Each nexus i s  al lowed to have rwo 
co mmands oursta n d i ng at any t i m e .  The proto
col supports this arrangement by a l locati n g  two 
codes i n  a 4 -bit  10 fie ld  ro each nexus. 

The CPUs use one of their references for pro
gram data , ca l led the d -stream,  and the other for 
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i n s t r u c t i o n s ,  ca l le d  t h e  i - s t rca m .  T h e  C PUs 
always req uest a hexword of data ;  the  NBIAs may 
req uest e i t h e r  longwords or ocraword s .  Thus 
t h e r e  can be as m a n y  as e i g h t  s i mu l t a n e o u s  
requesters of memory data .  These s imul taneous 
events req u i re that the mem ory system b u ffer 
several commands w h i l e  execut ing .  I n  the 8800 
i mp l e mentat ion ,  the memory system can access 
t h ree array m o d u l e s  i n  p a ra l l e l  a n d  store rwo 
com mands.  

M o r e o v e r ,  s i n c e  t h e  m e m o ry s ys t e m  c a n  
accept m u l t i p l e  read commands,  i t  m ust store 
t h e  i d e n t i fi c a t i o n  o f  t h e  r e q u e s t e r  a n d  t h e  
le ngth  of the transac t i o n .  T h e  N M I  i n te rface 
does the actual  srori ng and returns the ident ifi 
cation with t h e  correct data . T h i s  action i s  poss i 
b le  because  a l l  com ma n d s  a re processed i n  
sequence ;  there fo re ,  the read retu rned f i rst is 
the one stored the longest. However, hexword 
reads are returned to the NMI  i nterface as two 
separate octaword reads; there fore , that  i n ter
face must ensure that borh ocrawords have been 
returned before d iscard i ng the i dent ificat ion.  

To preven t  a deadlock cond i t ion ,  the memory 
system is give n  the h ighest  priority dur ing arbi 
trat ion . This  priority guarantees that the memory 
system wi l l  be able to return data to a requester. 
When fu l l ,  the memory system not i fies any poten
t i a l  req uesters that i t  cannot process any more 
commands and to try aga i n  later, thus p reventing 
the memory system from overfi l l ing .  

Impact of the Cache 
The design of the cache affected the design of 
the memory syste m .  The wri te-through des ign of 
the cache guarantees there wi II be a large num
ber of longword writes d i rected a t  memory. 1 A 
write buffer was i nsta l led to bundle a series of 
longword wri tes i n to octaword writes; however, 
the w r i te bu ffe r i s  o n l y  effe c t i ve if m u l t i p l e  
longwords a rc written i n  t h e  same ocraword . 

Extra logic is always req u i red to increase per
forma n c e .  The extra write ba ndwidth for t h i s  
memory syste m ,  however ,  requ i red more logic 
than w hat would have been req u i red to i mple
ment extra read bandwid t h .  The added com 
plex i ty was needed r o  fac i l i tate in terleaving o n  
longword boundaries for write operations.  

When the 8800 p roject was first in i t i ated ,  the 
goa l  of  the m e mo ry sys t e m  was to m ax i m i z e  
read bandwidth,  thus producing a re lat ively s im
p l e  a rray- mod u l e  d e s i g n . I n  that  des ign , any 
operation , regard l ess of i ts s i ze ,  kept  an ent i re 
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a rray mo d u l e  busy  u n t i l  t h e  opera t i o n  co m 
p lerecl . The control logic o n  the array mod u k  
was si mple a n d  req u i red a reasonable amount of 
board  s p a c e  a n d  powe r .  W h e n  t h e  d e s i g n  
cha nged to the wri te-through concept, however. 
h i g her  wri te bandwi d t h  was requ i red . Therc
fore , the control logic in each array module had 
to be rep l i cated for each ba n k  ( lon gworcl) of 
mcmory to al low i ndependent write operat ions .  
This repl icat ion perm i tted four  longwords to be 
wri tten on fo ur consecut ive cycles to the same 
array module .  

Th is  i ncrease in  desi gn com p l e x i ty was nor 
l i m i t ed to  t h e  a r r a y  m o d u l e .  l n  the i n i t i a l  
des i g n ,  when maxi m u m  read bandw i d t h  was 
crit ica l ,  the me mory control logic was n: lat ivcly 
s imple .  It had only to track the state of an array 
module as being  busy or not. However, wi th  the 
i n t e r l e a v i n g  c a p a b i l i t y r e q u i r e d  fo r t h e 
i ncreased wri te bandwidth ,  the memory control 
logic now has to track s i m u l taneously the status 
of as many as eight write operations in progress 
on two array modu les .  

A l t h o u g h  ma x i m i z i n g  the  lon gwo rcl w r i t e  
bandwidth was i m portant ,  m i n i m i z ing t h e  read 
latency to the fi rst longword req u i red was cr i t i 
ca l .  W r a p p c d  r e a d s  w e r e  i m p l e m e n t ed to 
red uce this  l a tency.  A wrapped read is a hex
word or o c taword command t h a t  req u ests a 
spec i fi c  l on gword tO be re t u rned fi rs t ,  w i t h  
o t h e r  l o n gwords i n  t h a t  b l o c k  to fo l low i n  
"wrapped " fash ion .  

Other Design Trade-offs and Options 

As i n  a l l  design processes, we considered many 
trade-offs and opt ions before com m i tt i ng to a 
part icu lar  des ign arc h i tectu re .  One area w i t h  
seve r a l  a l t e r n a t i v es w a s  t h e  i n t e r co n n e c t  
between the  memory contro l le r  and the array 
modu les .  The array modu les and the controller 
reside in phys ica l ly separate backplanes i n ter
connected by a cab le .  We had to deci de whether 
tO make this in terconnect with ECL or 1TL. 

The overa l l  p roject  go a l  was to m a k e  t h e  
8800 a n  a l l -ECL mach i n e .  Therefore , our  first 
cho ice  for t h i s  i n te rco n n ect was ECL, w h i c h  
prov ides e n h a nced s i g n a l  i n tegr i ty ,  re d uced 
skews, and overa l l  speed advan tages over TTL 
As rhe system and me mory des ign progressed , 
however, some real problems arose thar al tered 
our opi n ion .  The fi rst problem became apparent  
as  the array- module  design coal esced enough to 
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a l low s o m e  a c c u ra t e  power est i m a tes  ro be 
made . We found that. with an ECL bus, the array 
mod u l e  wou l d  requ i re - 5 . 2  V i n  excess of i ts 
a l l o c a t i o n . T h e  n e x t  p ro b l e m  s u r fa c e d  i n  
response tO an arc h i tectura l  req u i re ment that  
the  memory system function with less t han e ight 
a rray mod u l t:s a n d , prefe ra b l y .  w i thout  load 
cards .  T h i s  req u i re m e n t  made ir  d i ffi c u l t  to 
i m p l e m e n t  a term i n a t i o n  s c h e m e  for a n  E C L  
in terconnect.  

Wirh these problems in m i nd ,  we i nvest igated 
a TTL i n terconnect , which clearly offered some 
d e s i gn c h a l l e n ges . the l e ast  o f  w h i c h  were 
spccd and skew. Us ing the SPICE s i mu lator, we: 
const ructed an acc u rate mod e l  to verify that  a 
TTL e lectr ica l  i ntercon nect could indeed meet 
our s igna l  i n tegr i ty ,  speed, and skew re q u i re 
ments .

2 
Whi le  t h e  s i m u l a t i on res u l ts s howed 

that a TTL i n tercon nect could work ,  the associ 
ated skews certa i nly i ncreased rhe complexi ty of 
the me mory desi gn . Whi le  al levi at i ng rhe prob
lems of l im ited - 5 . 2  V power on the array mod
u le and the term in at ion of var ied load i ng, th is  
TTL scheme req u i red ECL- ro-TTL trans lators in  
the memory control ler  ro d r ive the array bus .  
We: fi na l ly  d e c i ded ro accept the  added com
plex i ty and use TTL for the i n tercon nect . The 
sole except ion was the clocks, which were d i f
fe re n t i a l  ECL ,  re c e i ved and transl ated on the  
array module .  

There were logical rrade-offs as we l l  as  elec
tr ical  ones . The or i g i n a l  spec i fi c a t i o n  for the 
N M I clicl nor su pport quadword masked writes .  
They were added after the i mp l ementat ion of 
the m e m ory system had progressed cons ider 
ab ly .  S i nce rhe  array bus  su pported on ly  long
word a n d  oc rawo rd reads .  t h ere were t h ree 
options to  support rh is  change : 

• The first was tO change the array bus proto
col .  rhe command generatOr on rhe memory 
control ler ,  and rhe array modu le.  

• The second was 1 0  execute rhe command by 
perform i n g  two l ongword masked w r i t es .  
This option wou ld take a lmost twice a s  long 
as a quadword masked write if imp lemented 
l i kc the firsr opt ion ,  yet sti l l  requ i re changes 
ro the  command generaror  i n  the  me mory 
control ler .  

• The th i rd was to execute an octaword masked 
wri te i n  w h i c h  the data of two of the long
words remains unchanged. 
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Since the design was wel l adva nced,  we chose 
the last method tO ease the problems of imple
m e n t a t i o n ;  t h i s  d e c i s i o n  a c t u a l l y  has l i t t l e  
i m pact  o n  system performa nce . T h e  log ic  to 
accomplish this addit ion a l ready ex isted on the 
array module .  Only small changes were requ ired 
to the com mand generator of the memory con
tro l ler and the datapath control . In practice , the 
fre q u e n cy o f  q u a d w o r d  m a s k e d  w r i t e s  i s  
extremely low si nce they are executed only by 
the NBlAs. 

Technology Description 

A nu mber of d ifferent module and component 
technologies were used for the memory con 
trol ler, backplane, and two array modules.  

Memory Controller 

The me mory control ler is a 9 - layer, control led
impedance , extended hex modu le  ( 1 5 i nches by 
1 1  inches) . The lay-up consists of 6 rout ing layers, 
2 power layers (- 5 . 2  V and - 2 Y), and a ground 
plane .  Si nce there is a m i nimal  amount  of TTL ,  

r - - - - - - - - - - - - - - - - - �  
1 MEMORY I 

both the + 5 V power and the + 5 V battery are run 
on the su rface with 50 -m i l  etch . With the m ixed 
technology on the modu le ,  we took specia l  care 
tO keep the TTL signals properly spaced from the 
ECL signals tO avoid signal i ntegrity problems. 

The l o g i c  o n  t h i s  mod u l e  i s  i m p l e men ted 
using nine unique macrocel l - array des igns from 
Motoro la ,  I nc . .  and one custom ECL mu lti  ported 
RA M .  There are 1 6  cus tom and  sem i cusrom 
devices on the  mod u l e .  I t  a lso conta ins some 
I O K H  MSI logic ,  some ECL-ro -TTL converters, 
and som e CMOS logic used for operat ing with 
battery back up.  

Array Module Backplane 
The array modu le  backplane in  the VA.'( 8800 
and 8700 CPUs is a 1 2 -layer ,  8-slot pressed-pin 
backplane. The one in the VAX 8 5 5 0  and 8500 
CPUs is a 5 -s lot backplane.  S ince a TTL bus was 
chosen to com municate between the memory 
controller and the array modu les, a good termi 
nation strategy had tO be deve loped . Us ing the 
SPICE s imu la tor,  we evo l ved the term inat ion 
strategies shown in  Figure 5 .  
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Figure 6 Sixteen Megabyte A rray Module 

Four Megabyte A rray Module Summary 

The 4 MB array module was des igned us ing an 
8- layer, control led- i mpedance, pr in ted c ircu i t  
board . The lay-up cons ists of 4 rou t ing layers , 
2 power layers, and 2 ground layers . To support 
battery backup, the modu le has separate power 
planes for + 5 V power and the + 5 V battery .  
S i nce o n l y  a l i m i ted a m o u n t  of  - 5 . 2  V a n d  
- 2 V power i s  needed , t hese v o l  rages share 
space on the other power planes.  To el i m i nate 
d i sc o n t i n u i t i es t h a t  cou l d  cause  u nw a n te d  
reflections, we ensured that signals d i d  not cross 
the  power-p l a n e  s p l i ts by s u rro u n d i ng t h e  
power planes with sol i d  ground planes . 

Approximately half of the logic technology on 
the array module consists MOS dynamic RAMS; 
the other ha lf  is FAST MSI logic .  The clock system 
is implemented in ECL to m i n i mi ze the skew. 

Sixteen Megabyte Array Module 

A 1 6MB array module was developed tO increase 
the ava i l ab le  memory to 1 2 8MB for the 8800 
and 8700 systems and 80MB for the 8 5 5 0  and 
8 5 00 systems. This array mod u le consists of an 
8-layer mother board (si m i la r  to the 4 MB mod
ule) and ei ght 2 MB surface-mounted daughter 
boards . The 1 6MB array modu le is  pictured i n  
Figure 6 .  

6 0  

The VAX 8800 memory system was designed to 
provide 7 1  MB per second of read bandwidth 
and 59  MB per second of write bandwidth to the 
mu l t iprocessor system .  The system archi tecture, 
processor performance need s ,  a n d  h i g h  I/0 
activity combined to make a h igh-performance 
memory a requirement .  

S ince the 8800 conta i ns ECL components, the 
memory system has to provide a high-speed path 
between the ECL logic i n  the CPUs and the high
dens i ty  dynamic  RAMs u sed for m a i n  s torage . 
Al though the  memory system does no t  play a 
d i rect role  i n  the execut ion of a VAX i nstruc
tion, i ts performance has ro match closely that 
of the mu l ti processor system .  I f  the memory sys
tem were under designed , the processors would 
sta l l  frequent ly ,  thus reducing their usable per
fo r m a n c e .  I f  the  m e m ory system were over 
designed , i t  wou ld conta i n  extra complex i ty ,  
w i th  the  attendant extra cost ,  that could not  be 
used by the system .  Thus the memory strategy 
played an i m portan t  role in the pr i ce/perfor
mance trade-offs that had to be made . 
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Fl o ating Point in the 
VAX 8800 Family 

The processors in the VAX 8800 family were designed with particular 
emphasis on cost-effectiveness. These CPUs do not contain separate float
ing point accelerators. Their performance is not compromised, however, 
especially for the double-precision instructions. High performance is 
achieved, in part, by a custom ECL multiplier and divider unit and by 
specific hardware for exponent manipulation and normalization. The 
main advantages of this integrated approach are less hardware to repli
cate and a tightly coupled interface to each CPU, thus less time is wasted 

fetching the operands. Microcode branch problems are minimized by 
using a prediction strategy and extensive hardware assistance. 

Unl ike other VAX fami l ies ,  the processors i n  the 
VAX 8800 fami ly do not conta in  separate float 
ing point accelerators (FPAs) . I nstead ,  their FPA 
is i n tegrated i nto each processor' s  m a i n  data
path . Therefore, no disti nction is  made between 
instructions that  are execu ted i n  t he FPA and 
those that are not : the hardware is avai  I able to 
be used for a l l  fu n c t i on s . For exa m p l e , t h e  
extended ar i thmetic l ogic u n i t  (XALU) i s  a lso 
used as a counter for the move character i nstruc
tion (MOVC) . This usage d i ffers from that in  the 
VAX 8600 and VAX- 1 1 /780 systems, where the 
XALU i s  used only  for floa t ing  poi n t  i nstruc
t i o n s .  F u r t h e rmore , a l l  t h e  f l oa t i n g  p o i n t  
instruct ions, from the most compl icated (POLY 
a n d  E M O D )  to  t h e  s i m p l es t  ( M OV F ) , have  
access to  the FPA hardware . 

There a re a n u m ber  of advan tages to t h i s  
approach .  F i rs t ,  logic i s  no t  dupl ica ted ; on ly 
one arithmetic logic un i t  (ALU) and one shifter 
un i t  is shared between the float i ng poi nt and the 
normal arithmetic. Second ,  the design is t ightly 
i ntegrated with the rest of the computer; there 
is no overhead involved in starting the float ing 
point computation . 

Clearly, since a l l  other VAX fami l ies use FPA-; ,  
there arc a lso d isadvantages with our approach. 
Shared logic is  more complex than specia l ized 
logi c .  Performance may also su ffer s i nce the  
design cannot be  opt imized toward one class of 
problem . Those disadvantages can be overcome , 
however, as we sha l l  relate i n  th is  paper. The 

6 2  

problem of opt im iza t ion  was amel i orated by 
provid i ng ded i ca ted  h ardwa re for the  m ai n  
operations of mult ip l ica t ion and addi t ion .  A cus
tom m u l t ip l i e r  a n d  d iv ider  c h i p  is provided  
together with  exponent manipulat ion l ogic and  
a sh ifter un i t  optimized for floating poin t .  These 
logic elements handle those float i ng point oper
ations that take the longest t imes to execute . 

The float ing point logic resi des i n  the execu
t ion uni t ,  the E Box, of the V�'C 8800 CPU. That 
logic is  controlled by microcode in the i nstruc
t ion uni t ,  the I Box. 1 

VAX Formats and Instructions 

The VAX arc h i tecture supports fou r  fl oa t ing  
point  formats: F ,  D ,  G ,  and H .  These formats are 
d iscussed at lengt h  i n  references 2 and 3 .  The 
F format is  32 bi ts wide,  the D and G formats are 
both 64 b i ts wide, and the H format is 1 2 8 b i ts 
wide .  A l though the D and G formats have the 
same width,  the exponent field is  larger in the 
G format, and i ts fractional field is  commensu
rately smaller .  This format  a l lows a larger range 
but with s l ightly lower precision.  The fractions 
are a lways normal i zed and the leading  b i t - the 
h i dden b i t - is not stored . 

E Box Operation 
Phys ica l ly ,  float i ng po in t  opera t ions are per
formed on three modu les :  two s l i ce mod u l es 
and a shifter module .  The sl i ce modules contai n  
the cache, the main ALU, and a register fi le .  The 

Digital Technicaljournal 
No. 4 February 1 ')8 7  



shifter module comains the custom mul t ip l i er .  
the  s h i fter u n i t .  t h e exponent m a n i pu l a t ion  
logic (the two AlUs) , and the priori ty encoder.  
Fi gure 1 s h ows t h i s  part i t i o n i n g .  To a l a rge 
extent ,  the shifter module  strongly resembles an 
FPA bm wi thout the AlU and register fi l e .  

The source operands are fetched from e i ther 
the 64 ki lobyte (KB) cache or a genera l-purpose 
regi ster (G PR) . The operands are sent  on the 
A and B ports to the AlU on the sl ice modu les 
and to the shifter modu le .  Al l the components 
on the shifter modu le  are driven in  para l le l  by 
the A and B ports . 

From Figure I i t  i s  clear that the datapath is  
h ighly para l l e l ;  the sh ifter ,  XALU . m ul t i p l i er ,  
and ALU can a l l  operate s i m u l taneously .  Th is  
para l l e l i sm is used extensively to gai n  pe rfor
mance and to save cost . For exa mple ,  in m u lt i 
pl icat ion operat ions,  the  XALU determines the 
exponent of the res u l t ,  the m u l t i p l i e r  mu l t i 
pl ies .  a n d  the sh i fter absorbs the low-order bytes 

BYPASS BUS<31 :0> 

SHIFT COUNT BUS · 5:0> 

of the product that are discarded each cycle by 
the mu lt ipl ier .  

The m a i n  prob lem with des i g n i ng a n  i n t e 
grated FPA i s  that t h e  VAX formats for in teger 
and float ing poim numbers must a l l  be handled 
by the same shared un i ts .  figure 2 shows the dif
fere nt  b i t  order ings for two VAX formats ,  the 
F float ing poim and the i nteger.  I n  the i nteger 
format, the b i t  ordering is from right to left .  In 
the F format, the mant issa begins at  bit 16 and in 
creases in significance to bit 3 1 ,  then cont inues 
from bits 0 through 6.  The remain ing bit posit ions 
are used to hold the exponent and the s ign . 

This req uirement for shared hand l i ng compli 
cates the carry path of the AlU . The carries om 
of t h e ! 6 - b i t  word b o u n d a r i es  have  to b e  
switched into the appropriate places, a s  shown 
in F igure 3 .  The problem with shift ing is  s im i lar 
to t he carry problem, except that now the carry 
path  of F i g u re 3 represents  t h e  fl ow of the  
shifted bi ts. 

SHIFTER MODULE SLICE MODULES 

A PORT 
8 PORT CACHE DATA 

REGISTER FILE 

Figure I Block Diagram of the E Box 
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Floating Point in the VAX 8800 Family 

F FORMAT: 

31 

MANTISSA 
(LEAST SIGNIFICANT PART) 

BIT POSITION 

16 1 5  

EXPONENT 

7 6 0 

MANTISSA 

LEAST SIGNIF ICANT BIT_j MOST SIGNIFICANT BIT _j 
INTEGER FORMAT: 

31 

LMOST S IGNIFICANT BIT 

S - SIGN BIT 

0 

LEAST SIGNIFICANT BIT _j 

Figure 2 Two VAX Formats 

T h e  A L U  a n d  t h e  s h i ft e r  u n i t  a r e  b o t h  
designed to hand le a l l  integer and floating point  
formats .  The m u l t i p l ie r  expects opera nds to  
come only  i n  a floati ng po int  format . Therefore, 
for i nteger mul t ip l icat ions,  the data must fi rst 
be converted i nto a pseudo-float ing point format 
by swappi ng the places of 1 6 -b i t  words with in  
the i nteger format .  This  operation is  performed 
by the shifter un i t .  

Table 1 gives the execution t imes for the most 
common floating poin t  i nstructions.  These t i mes 
include the overhead for fetching the operands. 

0 FORMAT: 

The VAX 8800  processor i s  des igned so tha t  
there is l i tt le ,  i f  any, d i fference i n  performance 
between reg ister and  memory operands .  The 
execution t i mes vary from 2 . 2 5 to over 5 t i mes 
the performance of the VAX- 1 1 /780 CPU with 
an FPA for the F and D formats .  For m u lt ip l ies, 
one 8800 CPU i s  2 . 5  t imes faster in F format 
and 4 . 8 t i mes faster in D format ;  d i v ides are 
3 .0 ti mes faster. The ga i n  is even more substan 
t ia l  for the G and H formats s ince they are not  
accelerated on the 1 1 j780 . 

(MOST SIGNIFICANT PART) BIT POSITION 

31 16 15 7 6 

�.__ _______ 

M

_

A

_

N

_

T

_

Is

_

s
_

A 
______ ____.r- Is I EXPONENT I MANTISSA 

MOST S IGNIFICANT BIT__j 

0 FORMAT: 

(LEAST SIGNIFICANT PART) 

__j MANTISSA I IL.....--------.-' MANTISSA 

S - SIGN BIT 

LEAST SIGNIFICANT BIT _j CARRY IN  

Figure 3 Floating Point Carry for D Format 

0 
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Table 1 Execution Times 

Instruction Execution Time (Na noseconds) 
Register to 
Register F D G H 

A D D  31 5 495 540 33 1 4  

M U L  450 675 842 6306 

DIV 1 607 3 1 97 3 1 07 2 1 649 

In the 8800 the D format is sl ightly faster than 
the G for m a t  w i t h  i ts longer  opcod e ,  w h i c h  
requires an extra cycle i n  the decoder. The s ingle
precision F format executes the fastest , and t he 
larger 1 2 8 -b i t  H format  executes the  s l owest .  
However, the H format i s  in tended as  a backup 
fo r i n t e r m e d i a t e  c a l c u l a t i o n s  in  t h e  D a n d  
G formats. Used thus,  the H format ensures that 
the fi na l  calculat ion resu l t  has sufficient preci 
s ion and avo ids  overfl ow or u n de rflow prob
lems.  Litt le hardware assistance is  provided for 
the H format; it is driven mostly by m icrocode .  

Technology 

Component tec hnology used i n  the VAX 8800 
processor i s  an enhanced version of the macro
cel l  array ( M CA )  used in t he VAX 8600 CPU . 2  
T h i s  tec h n o l o gy p ro v i d e s  a bo u t  1 , 2 0 0  gate 
e q u i va l e n t s w i t h  a t y p i c a l  g a t e  s p e e d  o f  
1 nanosecon d  (ns) . MCAs ut i l i ze  e mi tter -cou
pled logic  (ECL) i n  a 7 2 - p i n  pac kage that is  
1 square inch with a max i m u m  power d issipa
t ion  of 5 . '5  watts . The G PR and the m u l t i p l i er  
are made with custom technol ogy, wh ich uses 
the same package as t h e  MCA b u t  c o n t a i n s  a 
more advan ced process . A r o u n d  1 , 8 0 0  gate 
equ iva lents are provided , and the gate speed is 
50 perce n t  faster  than t h e  MCA. T h i s  h igher  
performance is  achieved by us ing  the  fol lowing 
features: 

• Smal ler  trans i s tors and meta l -ox ide -wa l l ed 
resistOrs 

• Cu rrent mode l ogic i nstead of the s lower ECL 

• Four-level logic i nstead of the two- level logic 
of the MCA 

At 3 0 0  by 2 6 0  m i l s ,  the s i ze  of the  custom 
c h i p  is l a rger than the  d i mens ions of 2 2 1  by 
2 '5 2  m i ls for the MCA. 
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T h e  s h i fter  modu l e  con ta i ns J 2 MCAs a n d  
8 custOm m u l t ip l ier  parts . Some l OKH parts arc 
used for c lock d ist r ibut ion and for dr iving the 
bid i rect ional  bypass bus . 

Arithmetic Algorithm Processing 

Addition and Subtractio n 
For an addition operat ion , �he 3 2 -bit  words con
ta i n i ng the exponents are sent to the main ALU .  
There t hey a rc passed to t h e  A a n d  B port s ,  
w h i c h  fee d  t h e  s h i fter  m o d u l e .  These  ports  
drive a l l  the gate arrays i n  para l l e l .  

The exponents are then loaded i nto the XALU 
and th e sh ift-a mou nt  ALU (SALU) , which com
p u te s  t he a l ign m e n t  s h i ft a m o u n t  sent  to t h e  
shifter .  T h e  SALU a lso generates some 2 0  branch 
condit ions for the m icrocode .  These condit ions 
i n d i ca te  t h e  s i ze o f  t h e  a l i g n m e n t  s h i ft a n d  
w h e t h e r  a n y  s o u r c e  o p e r a n d  i s  z e r o o r  a 
rese rved opera n d .  They a lso he l p  to opt i m ize 
the microcode tlow. 

The XAllJ , which selects the larger exponent 
and saves i t  for later use , has a 1 2 -b i t  datapath 
and a register to hold  the exponent.  The size of 
this datapath is sufficient for the F, D ,  and G for
mats plus a guard bit  for overtlow or undertlow 
detect ion . An ALl! is provided to perform arith
metic opera t ions o n  the exponen t .  The SAUl , 
with a n  l l -b i t  datapath,  su btracts the exponents 
to determ ine the a l ignment shift amount ,  which 
is a lways posi t ive . The s ign man ipu lation logic 
also resi des in the SALU. 

Next, the fract iona l part of the smaller operand 
is a l igned hy the shifter .  This operati o n  i nvolves 
e i t her one CPU cyc le  for F format o perands or 
two CPU cyc les  for the D a n d  G formats . The 
shifter unit  sh ifts i n  the tloat ing point  format and 
can do a fu l l  6 4 -b i t  sh i ft .  The l og ic  that  deter
m i n es the rou nd bits i s  related to  the a l ign ment 
s h i ft operat ion but i s  phys ica l ly l ocated in the 
pr ior i ty encoder gate array . This gate array a lso 
conta ins some of the shifter fu nctional i ty .  

N i ne gate arrays are used for the shifter un i t .  
Of those , eight make u p  the datapath,  the  n i nth  
is t he contro l  d ev i c e .  The s h i fter c a n  accept  
ei ther a 64 -bi t  operand o n  the  A and B ports or  a 
3 2 -b i r  operand on ei ther port . The sh ifter gener
ates a 3 2 -b i t  resu l t  that  can be ei ther the h igh
order or the low-order part of the answer. The 
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s h i fter datapath gate a rrays a rc i d e n t i ca l :  each 

e ffectively const i tu tes a byte s l i ce of the des ign 

an d performs a b i t s h i ft of u p  to seven p l aces 
Byte sh ifti n g is t h e n  performed by send i n g  t h e 
correct s h i fter omput to the correc t byte pos i 

t ion . T h i s  opera t i on is  fac i l i ta ted by hav i ng a l l  
the outp ut s  w i red t o  the OR ga tes a t  a l l  poss ible  

byte pos i t i ons and by enab l i ng t h e  con·ecr output .  

The s h i ft e r  performs fl oa t i n g po i n t . i n te ge r . 
and logical  sh i fts , as we l l  as a n umber of m i sce l 

laneous fu nctions . These i n c l u d e  conve rts from 
deci m a l - format data i n to i n teger format and \ ' icc 

versa . T h e ma s k i n g  of the expo n e n t  f i e l d  a n d  

the i nsertion o f  t h e  h i dden b i t  are a lso done by 
the sh i fter . 

After t h e  a l i g n m e n t  s h i ft .  the o u t p u t  of t he 
s h i fter is d i rected to t he m a i n  ALU on the lwpass 
bus . There. the output is  add ed to or su btracted 
from the fract ion of the larger operand . The out

put of the ALU operation is now ready to be n or

mal i zed i n  the sh i fter . I n  most cases a sma l l  nor

m a l i ze s h i ft of  at  most one b i t  pos i t i o n  l eft or 
r i g h t  w i l l  be s u ffic ien t .  The sp ec i a l i ze d hard

ware i n  t h e  s h i fter ha n d l es t h i s  c a s e  a n d  t h e n  

ro u n d s  t h e  r e s u l t .  S h o u l d  a l a r g e r  s h i ft b e  

req u i red , t he n m i c rocode w i l l  fi rst d irect the  
ALU res u l t  to t h e  p r i or i ty e n co d e r  g a t e  a rray . 
There ,  the p osi t ion of the lead i ng l is fou n d  a n d  
used t o  determ i ne the norma l i ze a m o u n t  for t he 

subsequ e n t  cyc l e .  

The rou n d i ng operat i on i n  the V�'( 8 8 0 0  CPU 
i s unus u a l  i n  that  i t  is l i mi ted to t he low-order 

e i ght b i ts .  Therefore . a small 8-bit adder can be 

used for this opera t i on .  This adder is both faster 
an d c heap e r  t h a n  the u s u a l  met hod of u s i n g  a 

fu l l  64 - b i t  adder .  The 8 - b i  t adder is a I so s u ffi 

c i e n t  to ca l c u l a te t h e  correct  a n swer i n  over 

\)\).  5 percen t  of the add i t ion operat ions . Shou l d  
a carry-out b e  generated b y  t h i s  8 -b i t rou nd i ng 
add , then c learly t he resu lt  created i s  i ncorrect . 
l n  t h a t  c a s e  t h e  c o m p u t e r  i s  t r a p p e d  a n d  

m i crocode i nvoked to correct the resu l t .  

Multiplication 

A-; men t ioned earl ier ,  the 8BOO con ta i ns a h i gh

pe rforma n c e . custom-designed m u l t i pl i e r a n d  

d i v i der u n i t .  A nu mber of factors i mpel l e d  u s  to 

usc such a u n i t . F i rs t .  m u l t i p l i ca t i o n  i s  a very 
frequent opera t io n  t h a t  i s  used ex te nsi vely i n 

matr i x man i p u lat i on . For exa mpl e , i n  the LIN
PACK bench ma rk ,  the t i m e-cr i t ica l  rou t i n e  con
ta i ns an even mix of addi t ion and m u l t i p l icat ion 
operat ions. ' 
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Second . it  was not poss i b le to su ccu m b tO t lw 
te m ptat ion of u s i n g  the m a i n  AUJ to provide t he 

d i v i s i on o pe rat ion . This desi re was n a t u ra l  s i n ce 

cl i ,· i s ion is an i n freq uen t opera t i o n .  and the usc 
of an AUJ i n  a repeated su btract and sh i ft mode 

was a ppea l i ng . For exam p l e . the VAX 8 6 0 0  uses 
the ALU for j u s t  t h at pu rpose . In t he 8 8 0 0  t h e  

m a i n  AUJ a l so c o m p u t e s  t he v i r t u a l  a d d ress . 
S i nce this clatapa th is very t i me-cr i t i c a l  ( i n  t he 

8 8 0 0  a s  w e l l  a s  i n  m o s t  o t h e r  c o m p u t e r  
designs) . i t  can not be a l lowed to go any slower.  

I n c l u d i ng a n  extra path to a c c o m modate d i v i 

s i o n  wou ld have s lowed down t h i s  c r i t i ca l  path 

by around '5 ns ,  resu l t ing i n  a 1 0  perce n t  perfor

manc e degrada t i on for a l l  operat ions . 
J\tl o rcovc r ,  t h e  ava i I a b l e  spa ce for the m u l t i 

p l i c r and d i vider u n i t was l i m i ted s i nce fl oati ng 

poi n t  opera t i ons a rc i n t egrated with t he rest of 

the mach i n e .  Approx i mately one-t h i rd of a mod 

u l e  ( 1 2  i nc hes by 1 6  i nc hes) was ava i la ble .  I n  
contrast ,  t h e  VAX 8 6 '5 0  C P U  d ed i c a tes a fu l l  
m o d u l e  to m u l t i pl i ca t i o n . 

T h e  c u s t o m  d e s i gn o f  t h e  m u l t i p l i e r a n d  
d i v i d e r  u n i t  is  basi ca l l y a byte s l i c e  o f  a l a rge 
w o rd - s i z e d  m u l t i p l i e r  a n d  d i v i d e r  u n i t .  T h e  
m u lt ip l i er handles 8 b i ts p e r  cyc l e ,  the d ivider 

h a n d l es I h i t .  F i gu re 4 s h ows t h e  c o m p l e t e  
5 6 - b i t  by H - b i t m u l t i p l i e r  w i t h  i ts e i g h t  by te 

s l i ce custom ch i ps . Eight c h i ps arc used tO form 
the req u i red word size of 64 b i ts ( 5 6  data b i ts 

p l u s 8 g u a rd b i ts ) . T h i s  a r r a n ge m e n t  is s u ffi 
c i e n t  to h a n d l e  F. 0 ,  and G format ope rat i ons . 

H format operat ions arc performed by pa rt i t ion 
i n g  t h e  p ro b l e m  i n t o  ma ny s m a l l e r  '5 6 - b i t  m u l t i 

pl i cat ions u nder m i crocode con tro l .  
The m u l t i pl i cand i s  loaded i n to the MD latch 

a ft e r  pass i n g  t h ro u g h  r h c  m a s k  l o g i c .  w h i c h  
c l e a r s  t h e s i g n a n d  t h e  e x p o n e n t  f i e l d  a n d  
i n s e rt s  t h e  h i d d e n  b i t .  T h e  P R  l a t c h a n d  t h e  
P R G B  a rc c l eared a t  the s t a r t  of  the m u l ti p l y .  
The P R G B  c o n t a i n s t h e  g u a rd b i ts for t h e  P R  
latc h .  A t  t h e  e n d  of a m u l t i p l y .  t h i s  l a t c h  w i l l  
hold the b i ts requ i red for a poss i b l e norma l i za
t i on s h i ft a nd a lso for a rou n d i ng operat ion . The 

l east s i gn i fi can t e i ght b i ts of the mu l t i p l i er arc 

loaded i n to t he m u l t i pl i e r  la rc h .  The fi rst m u l t i 

p l y  cyc l e  is now ready to be performed . 

A '5 6 - b i t  by 8-bi t mu l ti p l i ca t i on is performed 
between the con tents of the MD a nd mu l ti p l ier 
latches.  The resu l t is then added to the contents 

of the PR latch ( w h i c h  i s  i n i t ia l. l y  zero ) and then 
written back i n to i t  with a r i ght s h i ft of 8 b i ts .  
The P R  latch is t h us an accu m u lat i ng l atch and 
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MULTIPLICAND INPUT MULTIPLIER INPUT 

S·BIT SHIFT 

PRGB 

64 BITS 

BOOTH RECODE 

MULTIPLIER OUTPUT 

Figure 4 Multiplier and Divider Unit 

conta ins the 64·b i t  partial product of each m u l · 
t i p l i c a r i on opera t ion . T h e  next  8 b i ts o f  t h e  
m u l t i p l ier are loaded i nto the mul tipl ier larc h ,  
ready for the next cycle .  This cycl ing cont inues 
unt i l the m u l t i p l icand has been mul t ip l ied by 
a l l  the mu l t ip l ier byres. This algorithm is si m i lar  
to  the one u s e d  in t h e  VAX R 6 5 0  s c h e m e ,  
except that that processor has a narrower data· 
path of 32 bits .  

Notice that the least  s ign i fi ca n t  byte of t h e  
part ial  product is discarded after each cyc le  and 
absorbed by the  s h i ft e r  u n i t .  These bytes are 
requ i red only for the H format mul t i ply. 

O n c e  c o m p l e t e d , t h e re s u l t  i s  s e n t  o u r  
through the resu l t  latch ,  t hen normal ized a n d  
rou nded . The rounding carry i s  on ly propagated 
i nto the least s ignificant byte of the resu l t .  This 
proced u re u ses less l og ic s i n ce only an 8 · b i t  
instead o f  a 64 ·bit  incrementer i s  required . The 
8 · b i t  incrementer  wi l l  be s u ffi c i e n t  fo r most 
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m u l t i p l i e s .  S h o u l d  a gre a t e r  i nc r e m e n t  be 
req u i red, then the m u l t ip l ier  wi l l  trap the rest 
of the machine ,  and t he correct ion wi l l  be per· 
formed by the main ALU . This scheme is s i m i lar 
ro the one used for addit ion . 

The prov i s i o n  of a 6 4 · b i t  adder  i ns i d e  the  
m a i n  mul t ip ly  path i s  u nusual  i n  a h igh·perfor· 
nunce machi ne .  H i gh ·speed mul t ip l ier  designs 
typ i c a l l y  use ca rry·save adders ,  w h i c h  do nor 
propagate the carry signal bur save them so they 
can be absorbed by the subseq uent cyc le .  This 
form of adder is indeed used in  the cusrom mul ·  
r ip l ier  ro  perform the 5 6 ·b i t  by 8·bit m u l t ip ly 
fu nction i l l ustrated i n  F i gu re 4 .  However, the 
8800 a lso uses a fu l l  64 ·bi t adder for the fo l l ow· 
i ng reasons: 

• A 64 ·bi t  adder has ro be provided somewhere 
to propagate the carries from rhe carry·save 
adders. 
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• With the 4 5 -ns cycle t ime ,  the 6 4 -b i t  adder 
fi ts i n  the main datapath .  A faster c lock for 
the mu l t ip l ier  wou ld have com p l i cated the 
clock d istriburion and heen d i fficu l t  to gener
ate with low skew. 

• A fu l l  adder in the darap;ah a l l ows the usc of 
a simple nonresroring division a lgori thm.  

The m u l t i p l i e r  and  d iv ider  ch ip conta ins a 
1 2 - b i t  by 8 -b i t m u l t i pl i e r ,  two 8 - b i t  adders ,  
six latches with a rota! size of 7 2  bits ,  as wel l  as 
the rounding ,  normal iz ing,  and control logic . A 
comparable MCA design wou ld  requ i re between 
three and four of these elements. 

A lternative Designs for the Multiplier 

An MCA design was certa in ly  poss ible and coul d  
have been m a d e  ro fi r i n  r h e  specified space . 
The performa n ce of such a d es i gn , however ,  
wou ld nor be as good as the custom design for 
mul t ip l icat ion but comparable  for d ivision . An 
MCA design wou ld be I .  7 ri mes better than an 
l l j780 with an FPA for a mul t iply in  F forma t , 
whereas the custom logic chosen i s  2 .  ') t i mes 
bette r .  The performance wou l d  be 2 ') t imes 
better fo r t he D for m a t ,  w hereas t he custom 
design is  4 . 8 t i mes better .  

Another alternative was to use a commercia l ly  
ava i lable mult ip l ier .  That was tempting because 
such a product has the advantage of being read
i ly ava ilable and tested .  Using i t  would  have c i r
cu mvented the h i gh r isk of a custom des ign . 
However, there are a number of d isadvantages to 
using genera l -purpose mul t ip l iers : 
• Extra logic i s  requ i red ro mask out the s ign 

and exponent of  the data and to i nsert the 
h i d d e n  b i t . The o u t p u t  of  t h e  m u l t i p l i e r  
would have to be masked.  

• Most avai lable produ cts cannot handle d iv i 
s ion . Thus a separa te  d iv i d e r  wo ul d have 
been req u i red , which was expensive . Even 
d i v i s i o n  a l go r i t h ms us i n g  m u l t i p l i c a t i o n  
requ i re a large amount of ROM r o  conta in  rhe 
approximation constants .  

• Many of  the ava i lab le  designs arc int ended for 
in teger applications, such as HI butterfl ies 
a n d  d i g i t a l  s i g n a l  proc essors . H e n c e ,  t h e  
designs are opt imized for those appl icati ons . 
Exte nd i ng these 8- or 1 6-b i t  mul t i  p l iers ro a 
larger word length ,  as requ i red for the Vfu'{ 
archi tecmre , was neither straightforward nor 
cost effective . M oreover ,  the normal iza t ion 
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and round ing of resu l ts enta i ls e i t her  extra 
logi c or addi t ional cycles i f  the floating poin t  
hardware i n  the  E Box is used . 

• Most designs have a c lock system not consis
tent wi th  the rest of the machi n e .  This fact 
i n t roduces  t h e  co m p l i ca t i o n  of a spec i a l 
c lock d istribution and d i ffi cult ies in veri fying 
rhc design . 

• Very few designs a rc based on ECL technol 
ogy . Other technologies . such as TT L ,  wou ld  
req u i re a d i ffe re nt  power ra i l  and  thus an 
extra power supply. 

The c losest ava i lable mu l t ip l ier  to rhe 8800 
req u i rements is  the I 090 I made by Motoro l a ,  
I nc .  This MCA implementation conta ins an 8-bir  
by H-bit  mul t ip l ier together with a 1 6-bit adder .  
However .  no latc hes a re i nc luded ; they m ust  
therefore be provi ded externa l ly ,  thus i ncreas
i ng rhc cost substan t i a l ly .  On the other hand , 
d i vision cou ld be provided by repeatedly using 
the 1 (J-b i r  adder of the I 090 I .  

Division 

The mult ip l ier  performs a nonresroring d ivision 
a lgor i t h m ,  1 b i t  per cyc le . fo r the F, D. a n d  
G formats . The d iv ider  c a n  accept a n e w  d iv i 
dend b i t  dur ing  every cyc le .  thus  permi tt i ng a 
1 28-bit  by ') (J -b i r  d ivide .  A d ivide of this s ize is 
used in  the H format a lgorithm to form the start
ing approxi mation . 

The booth recodc of the mul t ip l i e r  i s  mod i 
fi e d  s l i g h t l y r o  a c c o m m o d a t e  the  d i v i s i o n  
deeode z l n  the case o f  mu l t ip l i cat ion , the mul 
t ip l i e r  recod e sel ects the correct mu l t ip les of 
the mul t ip l i cand to add to the part i a l  product 
d u ring  each m u l t i p l i ca t ion  opera t ion . ln  the 
case of d ivis ion ,  rhe d iv isor i s  loaded i nto the 
M D  latc h ,  and the booth recode se lects e i ther 
+ 1 or - l t i mes the d iv isor for each d iv is ion 
step. 

In the nonresto r i ng d i v i s ion  a lgor i t h m ,  the  
sign b i t  of  the  previous resu I t  selects the  correct 
d ivisor mul t ip le  for the next cycle .  This selec
tion is  faci I i ta ted by feeding the sign signal i n to 
the mod i fi e d  booth recod c so that  i t  w i l l  se
lect the mu l t iples of e i ther + I or - 1  t imes the 
d ivisor. 

The quotient bit generated every cycle is sent 
to the sh ifter un i t  to be absorbed . The first quo
tient bit generated corresponds to the most sig
n i fi cant b i t  of the answer .  That bit is then nor
ma l i zed and rounded by the shifter. 

Digital Technical journal 
No. 4 Februan• J 'J8 7 



Microcode Design 

Be i n g  i n t egra ted i n t o  t h e  l og i c  i n  t h e  m a i n 
mach ine ,  the floa t i ng po in t  l ogic  i s  a lso con
trol led by the ma in  m icrocode .  The VAX 8800 
C P U  i s  an e x t e n s i v e l y  p i p e l i ne d  d e s i gn . s 

Al though pipe l in ing is a wel l  known techn ique 
for i mprovi ng performance (for examp le ,  the 
VAX 8600 CPU) , i t  comes at a price : the m icro
code branch l a tency wi l l  i ncrease . By tha t  we 
mean that t he m i crocode cannot  branch on a 
con d i tion  or flag i n  the very next i nstruct ion ; 
i nstead , i t  m us t  wai t  a num ber of cyc les .  This  
delay is  a consequence of  the overlapping of the 
m i c ro i n s t ru c t i o n s ;  e a c h  su ccess ive  m i cro 
i ns t ru c t i o n  starts  before i ts p redecessor has  
completed . 

F igure 5 shows a typi ca l  p ipel ine s im i l a r  to 
that  used in  the VAX 8800 system.  The m icroin
struction is  subdivided in to five components: 

• In  NEXT ADDRESS, the address for the next 
m i cro i ns t ru c t i o n  i s  compu ted , as we l l  as 
those for a ny se lected branch condit ions.  

• In LOOK-UP,  the m icrocode RAM is accessed 
to fetch the micro instruction speci fied by the 
current NEXT ADDRESS . 

• In READ, the register fi l e  is read to fetch the 
specified operands (e .g . ,  fetch RO and R l ) .  

• l n  ALU, the operation i n  the arithmetic logic 
unit is  performed (e .g . ,  RO + R l ) .  

• In WRITE , the resu l t  of the ALU operation is 
wri tten back to the register fi le .  

Thus when the next-address cyc le  has com
pleted for t he first m icroinstruction, A, the next
address cycle  for t he m icroinstruct ion , B, in the 
su bseq u e n t  cyc l e  is s tarted . Th i s  cycle now 
over laps with the look-up cycle for A.  As many 
as five operations can proceed s imul taneously in  
th i s  manner. 

The branch l a tency of th i s  p i pe l i ne i s  gov
erned by t h e  f irst  m i croi ns t ruct ion  tha t  can  
"see" a branch condi tion set in  an earl ier cycle .  
For example ,  i f  the  ALU cycle of A sets a carry 
con d i t ion , then  t he fi rs t  ins t ruct ion t hat  can 
possibly use th is s ignal in  i ts next-address cycle 
is E .  Thus the branch latency is three m icroin 
structions, as  shown i n  Figure 5 .  

Natura l ly ,  this branch latency influenced the 
way in  which we designed the logic to perform 
floa t i ng  poi n t  operat ions .  C l ear ly ,  we had to 
avo i d bra n c h i n g  w h e n ever  poss i b l e  as t h i s  
wou l d  resu l t  i n  a n  excessive ly s low a lgor i thm.  
I nstea d ,  we had to adopt a strategy based on 
pred i ct i o n  and p rov i de ex tens ive h a rdware 
assistance . 

Prediction is based on the fact that the speed 
of algori thms for floating point adds are usua l ly 
data dependent .  For example ,  for cert a in  data 
va lues ,  the resu l t  of  a floa t ing p o i n t  add wi l l  
re q u i re c o n s i d e ra b l e  n o r m a l i z a t i o n . T h a t  
requirement i s  a lways present when two values 
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of s imi lar magnitude and large cancel lation are 
subtracted . In other cases l i tt le  or no normal iza
t ion is  requ ired .  It is c l early preferable not to 
pay the penalty of unnecessary normal i zations. 

The approach we took in the 8800 i s  to pro
ceed down the most l i kely path,  assum i ng that a 
sma l l  normal ization wi l l  be required while wait
ing for the result of the branch signals .  The add 
and subtract a lgori thms i n  part icular are struc
tured that way. The SALU exa mi nes the expo
nents of the operands and other signals; then i t  
sets approx imately 2 0  branch condi tions i n  the 
first two cycles of the add/subtract datapath . 

I n  certa in  s ituations a l l  paths may be equa l ly 
probable.  I n  these cases the m icrocode enables 
hardware signals to control  the datapath . A good 
example of th i s  process ing is the selection of 
operands . For a float ing point add,  i t  is natural 
to th ink  in terms of the larger and the smal ler 
operands . For example ,  the smal ler operand is 
the one tha t  is  a lways a l igned .  However ,  the  
microcode does not  know which  register loca
t ion  ho lds the sma l le r  va l ue ,  and it does not 
wa n t  to wa i t  fo r t h e  w h o l e  b ra n c h - l a te n cy 
period to find out .  

Therefore, the microcode wi l l  assume that the 
larger operand is in a particular register. Shou ld 
this assumption be i ncorrect, then the SALU wi l l  
swap the register fi le  read addresses ( thus sort
ing the operands) . Not a l l  locat ions have their  
add resses m od i fied  i n  t h i s  m a n ner s i nce the  
m i crocode st i l l  needs tO be able  to read and  
write to  specific locations. 

S i m i lar ly ,  the SALU determi nes if the m a i n  
ALU i s  t o  d o  an add o r  subtract operation . At this 
po i n t  in the com p u ta t i o n  the m i crocode is 
u naware of which operat ion wi l l  be requ ired . 
The p i p e l i n e  i s  st i l l  w i t h i n  the  long bra n c h  
latency o f  the 8800 and cannot branch unt i l  this 
latency delay has elapsed . Note that one of the 
most frequently performed instructions i s  ADDF. 
That i nstruction wi l l  have just completed by the 
t ime the microcode can fina l ly branch .  There
fore , the ADDF cannot execute any faster s i nce it 
is  l i mi ted by the bra nch- la tency delay. Conse
quent ly ,  those i nstruct ions t ha t  are the most 
probable cases are completely hardware driven .  

To a l low fast paths in  the  add algori thms, i t  i s  
necessary to  know that  the  result  cannot poss i 
b ly  overflow s i n ce overflowed resu l ts mus t  
never be writ ten .  To prevent overflow the SALU 
examines the exponents of the operands . I t  then 
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determi nes i f  the exponent of the resul t  could  
poss i b ly  overflow or u n d erflow,  t a k i n g  i ntO 
account a ny possible normal i zation shift .  There 
is a l so the added complexity of a rounding oper
a t ion provok i ng an extra norm a l i za t ion  step . 
That woul d  happen when the roun d i ng i ncre
ment  caused a carry to p ropagate throughout 
the whole fraction . 

Conseq uently, the use of a smal l  8-bit  i ncre
menter for the round operation is possible only 
i f  i t  i s  k nown that an overflow cannot happen .  
The reason for th is i s  that ha l t ing (trapping) the 
machine is not instantaneous ( for the same rea
son that  branch latency exists) ; therefore , the 
result  wi l l  always be written .  Thus, a l though the 
mi crocode can eventual ly correct the resu l t ,  it  
cannot prevent that resu lt  from wri t ing .  

Performance Issues 

W h e n  a p rogr a m  w i t h  m a n y  f l o a t i n g  p o i n t  
i nstructions - such a s  U N PACK - is  run ,  i ts 
performance is not tota l ly d icta ted by the raw 
floating point speed of the CPU .  Having a more 
profound effect are other factors ,  such as 

• The size and organ ization of the cache - This 
factor is  part icularly important for programs 
w i t h  l a rge a m o u n t s  of d a t a  b e c a u s e  t h e  
operands  w i l l  res i d e i n  m e m o ry . H a v i n g  
superior register-to-register performance wi l l  
not help i n  this type of program .  Clearly, the 
larger the cache, the greater the chance that 
the requ i red data wi l l  be qu ick ly ava i lable ,  
t h u s  avo i d i ng a l e ng thy  tra nsa c t i o n  w i t h  
memory. 

• The performance of the in teger and control 
i nstruct i o ns - Even program s  performing 
extensive float ing point  operat ions sti l l  have 
s ign i ficant  a m ou nts of i n teger and  control 
i nstruct ions .  Doing these qu ick ly  can con
tribute substant ia l ly ro the program's  perfor
mance . 

To i l lustrate the effect of these factors, com
pare the performance of the VAX 8800 system 
w i t h  t h a t  of t h e  VAX 8 6 5 0  w h e n  b o t h r u n  
UNPACK, a s  shown i n  Table 2 . � The 8 6 5 0  has 
faster raw float i ng poin t  speed , especia l ly  for 
the F format  (over twice as fast) . Yet the two 
systems r u n  t h i s  be nchmark  w i t h  a l most the  
s ame  performance . C learly, i n  progra ms  with 
t hese character is t i c s ,  facrors other  than raw 
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speed wi l l  have a greater infl uence on perfor
mance . Of course .  in app l i cations without them.  
the raw speed advantage of the 8650 wi l l  be  
more pronounced . 

Table 2 U N PACK Performance 

Performance (M FLOPS) 

Computer 

VAX 8800 
VAX 8650 

Summary 

F Format 

1 .35 
1 .30 

0 Format 

0.99 
0.70 

The arch i tecture of a p rocessor l i ke the VAX 
8800 CPU is a l l  a matter of trade-offs . Where 
does the performance make a d i fference 1 For 
exa m p l e ,  we cou l d  have sup pl i ed the  8 8 0 0  
wi th  a separate float ing po in t  u n i t  t O  ach ieve 
faster performance . Doing that, however, wou ld 
have req u i red a t  l east one extra mod u l e .  To 
keep the cost of the system constant .  this extra 
modu le  wou ld have enta i led removing a module 
of logic from some other part of the computer .  
Perhaps remov ing  t h a t  m od u l e  wo u ld have 
resu l ted in a sma l ler cache or a s i mpler decoder 
with no opti m i zat ions for the frequent instruc
t ions .  In any case the net effec t  wou l d  have 
been w sacrifice the performance of the com
puter in some other area . All thi ngs considered . 
we feel that the design is well balanced for the 
mult i tude of d ifferent computing tasks that CLts
tomers wi l l  perform with the VAX 8800 system .  
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The VAX 8800 Input/Output System 

The VAXBI bus links the processors in the VAX 8800family to ljO devices, 
including clusters and networks. The VAX 8800 multiprocessor can sup

port four of these 32-bit synchronous buses, each of which connects up to 
16 /jO devices. Each VAXBI bus connects to the memory interconnect, the 
NMI bus, by an l\'Bl adapter, which contains an interface chip to imple
ment the VAXBI protocol. The NB/ adapter logic handles CPU references 
and direct memory accesses to and from the ljO devices. The adapter has 
its own 200-nanosecond clock, which is completely asynchronous with 
the 45-ns CPU clock. 

T h t: VAX 8 8 0 0  fa m i l y o f  systt: m s  i s  a n o t h e r  
major stt: p  for D i gi ta I E q  u i pmenr  Corpora t i o n  
i n t o  t h t:  rt:a l m  of h i gh -perform ance computi ng .  
\Vh i l c:  i n creas i n g  the com p u t i n g  capa b i l i ty o f  
tilL VAX l i ne for scient if ic  and tec h n i cal  app l i 
cat ions.  these systems w i l l u n doubtedly play a n  
i m portant ro l e  i n  c o m m e rc i a l  a n d  offi u: mar
kets .  I n  thest: markets ,  the abi l i ty ro connt:cr ro a 
com p u t i n g  c l u s t e r .  s e rv i c e  m a n y  u s e r s .  a n d  

fu nction i n  a network arc a s  i m portant a s  a fast 
CPU.  I n dt:ed ,  i n  a m u l ti user. m u l t i progra m m i ng 
system , the effi c i ency of " housekeep i ng "  opera 
t i ons affects the  perceived system performance 
as m u c h  a s  raw p rocessor c o m p u t i n g speed . 
T h e se o p e ra t i o n s  i n c l u d t: s h a r i n g m e m o ry 
between m a n y  progra m s ,  swapp i n g processes 
i n to and out of memory. raging ,  and respon d i n g  
to i nteractive user requests . 

Al l me mbers of the VAX 8800 fa m i ly usc D i g i 
ta l ' s new VAX B I  bus as t h e i r  c o m m u n i c a t i o n  
l i n k  t o  c l usters. networks , a n d  i n teract ive users .  
W i t h  i rs a b i l i ty t o  c o n n e c t  t o  fo u r  st: p a r a t c  
VA,'CB! channels ,  t h e  VAX 8 8 0 0  system i n  rarr ic 
u l a r  o ffe rs g r e a t  f l e x i b i l i t y in  c o n fi g u r i n g  
peri p h e ra l devi ces a n d  i n terfaces . T h i s  paper 
first d i sc usses the c haracte r ist ics of the system 
com m u n i cat ion buses i n  the VAX 8800 system .  
Fol lowing that  i s  a d i scuss i o n  o f  the  i n terface , 
cal led the NBJ adapter, l i n ki ng the pri mary sys
tem bus to the VAXlll i n putjou tput ( 1 /0) bus .  
Fi gure I i I lustra res the various components of a 
VAX f\ 8 0 0  syste m .  

The Processor-to-Memory Bus 

The two C PUs. the IjO subsystem . a n d  mem ory 
a l l  share the pri mary system bus,  ca l l ed the N 1\<I I 

7 2  

b u s .  T h i s  b u s  i s  a l i m i te d - l e ng t h , h i g h - speed 
synch ronous com m u n i cations path that  provi des 
t h e  data l i n k  between t h ese fo u r  devices.  The 
N M I  bus is comp l e t e l y  c o n t a i n ed i n  t h e  m a i n  
system cabinet ;  i ts cyc l e  t i m e  is  4 5 nanoseconds 
(ns) , the sa m e  as the C P U ' s .  The bus protoco l 
hand les seve ra l outsta n d i n g  transac t i ons a t  one 
t i m e .  t h us e ffect i ve l y  i n creas i ng the bus's  u t i 
l i za t i o n .  T h a t  i s ,  o n c e  a d e v i c e  h a s  i s s u e d  a 
t r a n s a c t i o n  ( e . g . , a rea d ) ,  t h a t  d e v i c e  rel i n 
qui shes the usc of the bus u n t i l the respond i ng 
device is ready w i t h  the  data .  Other devi ces arc 
t h e n  free to start other transactions.  

I n  t h i s  fas h i o n , t h e  b u s  u s a g e  i s  g r e a t l y 
i n creased .  The two C PUs comm u n i ca te d i rectly 
with memory over t he N M I  bus;  the 1/0 devi ces 
connected ro t h e  V AXBI  b uses access m e mo ry 
via  t he NIH ada pters. A device on the NMI bus is 
c a l l ed a ' ' n exus . ' '  Arb i tra t i o n  among n e x u ses 
occu rs i n  para l le l  w i t h  data transfers and is han
d l e d  by one C P U  in  a nearly  rou nd-robi n  fas h 
i o n .  T h i s  guara n tees t h a t  each n e x u s  ga i n s  i rs 
fa i r  share of the bus resou rce . Data transfers on 
the NM I bus occur i n  J ongword , octaword , and 
hexaword l engths ( 4 ,  1 6 ,  and 3 2 bytes respec
t i v e l y) . Fo u r  l eve l s  o f  d ev i c e  i n t e r r u p t s  a r e  
s u  pportcd . 

The V AXBI Backplane Interconnect 

The VAXB I  b u s  i s  u s e d  as  t h e  IjO bus for t h e  
VAX 8 8 0 0  system . As s hown i n  F i gure I ,  fro m  
one t o  fou r  VAXI31 buses can b e  i nterfaced t o  the 
NMI bus .  depe n d i ng on a customer's needs and 
h i s d e s i red m i x  of p e r i p h e r a l  d e v i c e s . E a c h  
VAX131 bus is  a 3 2 -bi t-wide synchronous bus that  
can con nect u p  to t 6 VAXBI devices .  Each VAXBI 
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device , ca l led a " node , "  uses a ch ip  cal led the 
VA.X Bl I nterface Chip as i ts bus in terface. This 
chip provi des a cons istent logical and e lectrical 
in terface to the bus. The VAXB I  I nterface Ch ip  
i m p l <: me n ts mos t  o f  t h e  bus protocol  for i t s 
node,  i nc l uding bus arbi trat ion and error check
i ng .  The VA.XBI cyc le t i me is 2 00 ns ,  contro l led 
by an osc i l l ator on the NBIB .  

The NBI  adapter acts as  both a processor and a 
mem o ry on the VAXB I  bus .  The  adapter  pro 
vides t h e  fol lowi ng three i m portant fu nct ions: 

1 .  A means for the master CPU to read and 
write device registers 

2 .  A w i n d o w  i n t o m e m o ry fo r V A X B l  
devi ces 

3 .  The fac i l i ty for VA.XB I  devices t o  i nter
rupt the processsor 

Con trol of Peripheral Devices 
To g a i n  a n  a p p re c i a t i o n  of t h e  N I31  ada pter  
architectu re ,  i t  i s  worthwhi le to d iscuss the con
trol of perip hera l devices . 1  To move data from a 
d isk i nto memory or to send program output to 
a peri p hera l device , a programmer must specify 
the operation to be carried out (read or write) , 
a m e mory address to receive t h e  da ta o r  that  
contai ns data to  be output to a device,  and the 
amount of data to be moved.  In early mach i nes, 
the processor was requ i red to control  the ent i re 
operation - execut ing i nstructi ons to move the 
data , wait ing for the s lower device to complete 
the operat ion , and then conti n u i ng in th i s  fash
ion unt i l a l l  the data had been moved . This pro
cess wasted a great deal of processor t ime s ince 
many i n struct i ons cou ld  have been executed 
whi le  wa i t i ng for an l/0 operation to complete.  

TO 
OTHER 

COMPUTERS 

Figure 1 VA X 8800 Configuration 
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Modnn machi nes have ljO contro l l e rs. w h i c h  
arc  s p e c i a l  h a r d w a r e  i n t e r fa c e s  t h a t  h a n d l e  
device operat ions .  A progra m mer m u s t  spec i fy 
to the contro l ler the attri butes of t he operat ion 
t o  b e  c a r r i e d  o u t .  O n c e  t h e  o p e r a t i o n  i s  
a c c e p t e d  by t h e  c o n t ro l l e r ,  t h (' JHO C ('ssor i s  
freed fro m t h e  d e ta i ls of  a c t u a l l y moving t h e  
data . I n  t h i s  way process i ng a n d  r;o operations 
c a n  b (' o v e r l a p p e d , i n c r e a s i n g  p ro c e s s i n g  
u t i l i z a t i o n .  

For s low devices.  s u c h  a s  termina ls ,  tlw coo
trol ler usu a l ly has a sma l l  buffer to hold th(' data 
to be transferred to or received from th(' proces
sor. This buffer is loaded by the processor when 
i t  has data to be transmi tted to the devi ce .  The 
device accepts the data , then signals wh('n ready 
for more . When having data to b(' transm i tted to 
the processor, the device loads that data i n to the 
b u ffe r a n d  t h e n  s i g n a l s  to t h (' p r o c e s s o r  t o  
re m ove t h e  data . T h i s  process i s  ca l l ed pro
gram med r;o . 

For high-speed devices, such as d isks.  t h(' IjO 
co n t ro l l e r n or m a l ly performs d i r(' C t  111 (' !11 0 ry 
access ( D MA) operat i  ions .  Th(' proc('ssor l oads 
sp('c ia l  registers in the contro l ler  with i n forma
tion about the transfer - th(' amout  of data to 
b(' moved and i ts location and dest i nation . The 
proc('ssor is then freed w h i l e  the control l e r per
forms the transfer. I n  this way large amounts of 
data  c a n  be m oved w i t h  m i i n i m a l  processor 
i nt('rvent ion .  

Addressing in the VAX 8800 CPU 

Th(' master CPU m a n i p u lates the l/0 contro l krs 
with reads and wri tes of s ingle lonwords to the ir  
control and status registers. These registers have 
add resses i n  p hys ic a l  add ress space and can be 
man i pu lated by standard VAX i nstructions .  This 
technique contrasts with  that  used i n  many com
p u ters i n  w h i c h  spec i a l  i n stru c t i o ns c o n tro l 
ljO . The address range of the VA,'( arch i tectu re 
is shown i n  F i g u re 2 ,  i n  w h i c h  a d d resses are 
given i n  hexadecimal  notation . 

Physical  me mory occupi es the first ') 1 2  mega
bytes of the d e fi n e d  a d d ress ra nge . T h e  I j O  
a d a p t e r  a n d  t h e I j O  c o n t r o l l e r  r e g i s t e r s 
arc l o c a t e d  i n  t h e  range fro m 2 0 0 0  0 0 0 0  to 
5FFF FFFF . I n  t he 1/0 space.  t he add ress range 
a l l ocat('d for each VAXB I  bus is fu rthn s u bd i 
vided i nto space for each device on the bus.  

74 

BYTE ADDRESS 

0000 0000 

1 FFF FFFF 

2000 0000 

3FFF FFFF 

5 1 2  MEGABYTE PHYSICAL 
M EMORY SPACE 

5 1 2  MEGABYTE 1/0 SPACE 

Figure 2 VAX A ddress Space 

The NBI Adapter 

An adapter prov i des an i n te rface between two 
e x i s t i n g  bu ses , (' a c h  w i t h  i t s  own a d d ress i n g  
protocol a n d  data-transfer protocol .  The adapter 
is responsib le  for a ll com m u n i cat i ons between 
the two buses. I t  is  a datapath for the processor 
to acc ess d (' v i c c  reg i s ters a n d  fo r d e v i ces to 
a ccess m e m o r y .  T h i s  d a ta p a t h  is a ls o  u e d  t o  
i n te r r u p t  t h e  processor a n d  for i n i t i a l i za t i o n  
fu nct ions .  

The N Bl adapter .  consist ing of an N B IA mod
ule and e i ther one or two N B I B  mod u les ,  i nter
faces the VAX 8800 system to the V AXB I  buses. 
which arc 1 /0 buses i n  th is  app l i cat ion . That i s ,  
t h e  N B J  ad apter issues reads and wri tes on the 
VAXB l  buses i n  response to reads and wri tes that 
are i n  th(' N B I  add ress range i n i t i a ted by the pro
c e s s o r on t h e  N M I  b u s .  L i k ew i s e ,  t h e  N B I  
adapter issues reads and wires to memory o n  the 
N M I  b u s  i n  response to rea d s  and writes i n i 
t i a ted by VAX B I  d ev i c es o n  t h e  VAX B I  buses . 
The N B I  adapter i n  the  VAX 8800 system sup
ports a new genera t i on o f  h i g h - perfo r m a n c e . 
nat ive VAXI3 1  devi ces . 

F i g u r e  3 c o n t a i n s a b l o c k  d i a g r a m  o f  t h e  
N B IAj N B I B  adapter syste m .  Bas i c a l l y ,  t h e  data
path of the NB!A m od u le conta i ns an NMI i nter
face .  which provides bufferi ng for addresses and 
data  transmi tted and rece i ved d u ring NMI trans
a c t i o n s .  T h e  N M I  i n terfac e  is c o n n e cted to a 
transaction buffer, which is a 1 6-loca t ion , d ua l 
ported E C LjTTL RAM .  T h e  transa c t i o n  b u ffe r 
provi des five l ocat ions to buffer commands and 
a d d resses a n d  up to fo u r  l ongwords of readj 
w r i t e  d a ta fo r d i re c t  m e m ory a c c ess ( D M A )  
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transfers by devices on the VAXBI-0  bus. A sec
ond group of five locations is provided for DMA 
tra nsfers by devices on the  VAXB I - 1  bus .  Two 
loca t i ons a re used for the c o m m a n djadd ress 
packet and the s i ngle lo ngword of readjwri te  
data transferred when the processor accesses the 
VAX B I  device registe rs . The N BI A/ N B I B  TTL 
data path i nd icat i ng the layout of the transaction 
buffer is shown in Figure 4. The TTL port of the 
transaction bu ffer connects to a set of  two b i 
d i rect ional  la tches used t o  buffer commands ,  
addresses, and  data for transmission across the  
data-bus cable ro and from an  NBIB modu l e .  

The data path of the N B I B  module consists of a 
set of fou r  b id i rect ional  la tches used to buffer 
both D MA com mands and add resses and CPU 
com mands and addresses , as wel l  as data . These 
latches connect to another set of la tches known 
as the BCI cla ra  buffer (one  l ongword deep) , 
wh ich  con nects to the YAX B I  I nterface C h i p .  
(The module s ide o f  the i nterface chip i s  known 
as the BC I . )  The i n terface c h i p  con trots  t h e  
enab l ing o f  data onto t h e  BC I for data transmis
sion onto the VAXBI bus . 

Data f l ows between t h e  N M I  bus  a n d  t h e  
VAXB l  bus by moving i t  between t hese two sets 
of larches . Control logic moves data from stage 
to stage, pass ing contro l successively to the next 
stage as each part of the transfer completes. The 
VAX B I  b u s  r u n s  a p p r o x i m a t e l y  fo u r  t i m e s 
s lower than the VAX 8800 processor and is asyn
c h ro n o u s  w i t h  i t .  Therefore , t h e  add i t i o n a l  
pro b l e m  e x is ts  o f  syn c h ro n i z i n g  c o n r r o l  be -

N 

N M I  
IN TERFACE 
BUFFERS 

N B I  
TRANSACTION 
B U FFERS 

tween the NBIA and NBIB mod u les. Fac i l i t i es are 
provided for de laying data transfer u n t i l  a buffer 
is free,  thus prevent ing data corruption . Another 
synchronization problem occurs when the mas
ter processor wants to read fro m or write to a 
VAXBI  device when that dev ice wants to make a 
mem ory access . The cont ro l log ic  i n  the NBIA 
and NBJB modules i s  carefu l ly designed ro ref
eree such contention problems.  

DMA Transfers 

From VAXBI Devices to Memory 
A DMA transfer to memory by a VAXBI device is 
shown in Figure 5 .  

After wi n n i ng the VAXBI  bus, the device want
ing to make a transfer i n i t i ates a com mand and 
address cyc le .  I n  Figure 5, that device is  a disk 
contro l ler .  The VAXBI I n terface Chip  in an NBIB 
is program med to recognize memory add resses 
o n  t h e  VAX B I  b u s . T h e  c h i p  " a wakens" the  
NBIB  control l ogic ,  decodes the command , and 
stores the commandjaddress packet, as shown i n  
Figure 4 .  Contro l logic o n  the NBIB t hen sends a 
" DMA request" signal to the N BIA. After a syn
ch ron izat ion delay on the N B IA ,  the N B IA TTL 
control ler begins to transfer the command and 
address from the N B I B  to the NBIA. 

Meanwh i l e ,  the NBIB takes the l ongwords of 
data as they appear on the VAXBI bus and stores 
them in the NBIB 's  data buffers . The NBIA stays 
a p pro x i m a t e l y  o n e  cyc l e  b eh i n d  t h e  N B I B ,  
remov i ng data from the NBIB buffers and storing 

Figure 3 Block Diagram of NBI Adapter 
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i t  i n  the DMA locations i n  the transacti on buffcr .  
After successfu l ly transferring a l l  data i n to the  
tran sact i o n  buffer ,  the NBIA a l e rts the  N £3 1 8 ,  
w h i c h ,  after a synchron ization delay,  ends the 
transaction  on the VAXBI bus .  At th is  t i m e  the 
NBIA TTL contro l ler passes the Dl'viA req uest to 
the NMI in terface in the NBIA, which then per
forms the write to memory on the NM.I bus . 

- - - - - - - - - - - - - - - - - -, 
I I I 
I 
I 
I 

NB I  I 
TRANSACTION I DATA BUS 0 
BUFFERS 

0 (40 BITS) I 
I 
I 
I 
I I 
I I I 

lr should be noted that a DMA write transac
tion i s  considered to be complete on the VAXBI 
bus before the data is actual ly written to mem
ory . A V�'(I31 device is r h us free ro stan another 
tra n sa c t i o n  i m m e d i a t e l y .  T h i s  p e r fo r m a n c e  
e n h a nc e m e n t  i s  k n o w n  a s  a " d i s c o n n e c t e d  
wri te . "  in  which rhe write operation is consid
ered ro be c o m p l eted on one bus before that  

VAXBI 
INTERFACE 
C H I P  

0 

I NBIB 

BUS 1 
DATA 
B U FFERS 

I 
I I I 
I 
I I 

NBIA I 
- - - - - - - - - - --- - - - - - - �  

TRANSACTION BUFFER ORGANI ZATION 

"--..--/ 
DMA 0 
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DMA 1 

Figure 4 
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NHJAjNBIB TTL LJatapath 
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I ARB I �g�� I !�: I DATA I DATA I DATA I DATA I · .  · l �li li li li l 
VAXBI CYCLES 

C/A - COMMAND/ADDRESS 
ARB - ARBITRATION 
EMB ARB - EMBEDDED ARBITRATION 

NMI CYCLES 

Figure 5 DMA Transfer to Memory 

operation has actual ly taken place on the target 
bus.  The NBI  adapter is designed in such a way 
that a write transact.ion cou ld be wa i t ing in the 
transaction buffer (e .g . , w h i le the NMI i nterface 
control ler services the other VAXBI  bus) while a 
s e c o n d  t r a n s a c t i o n  wa i t s  i n  t h e  d a t a  b u s  
transceivers . Using two levels of buffering and 
the d i sconnected wr i te tec h n i q u e  a l lows the  
NBI  ada pter to su pport a wri te ba ndwidth  of  
8 megabytes per second. 

I t  is i nterest ing to note that dur ing t he data 
transfer from the NBIB tO the NBIA ,  the NBIB  
no t i fies  the N I3 IA TTL con tro l l e r  of the D MA 
request immediately after storing the command/ 
address packe r .  However ,  the NBIA TTL con
tro l le r  does not pass the  DMA request tO t he 
NBIA NMI  i nterface contro l ler  u n t i l  the com
mancljaddress packet and a l l  the wri te data have 
been loaded into the transaction buffer .  The rea
son for this delay is that the NMI  i n terface con
troller runs at the same speed as the NMI bus, or 
4 '5  ns per cyc le .  

The  NB IA  TTL  cont ro l l er r u ns  fo u r  t i m es 
s lower, or I 80 ns per cyc le ,  tO c losely match 
the VAXBI cycle t ime of 200 ns per cycle.  Thus 
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if the  NI31A TTL control ler  were to s igna l  the  
DMA request after load ing on ly  the command/ 
address packet i n to the transaction buffer, the 
N BIA NMI interface wou ld attempt to read data 
from the transaction buffer before that data had 
been load ed . That is obviously a bad th ing to do. 
I nd e e d .  t h e  N M I  i n te rfa ce of the N B I A  c a n  
empty t h e  transact ion buffer i n  approxi mately 
the time i t  takes for the NBIA TIL contro l ler to 
load one longword . 

From Memory to a VAXBI Device 
A write request from a VAX B I  device is s im i lar 
to the DMA operat ion just  descri bed . After win
n i ng the VAXBI bus, the device want ing to read 
da ta fro m  memory on the N M I  bus transm i ts 
a c o m m a n d  a n d  a d d ress o n  t h e VAX B I  b u s .  
Figure 6 depicts this transfer. 

The interface ch ip  awakens the NBIB control  
log ic ,  which then decodes the command and 
stares the command and address in a data-bus 
buffer location . The N B I B  then passes t he DMA 
request to the NBIA i m mediately after the com
mandjaddress packet is loaded . Aga in  s im i lar to 
the write operat ion ,  the command or address i s  
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tra nsferred to the appropriate locat ion in the  
transaction buffer by the  NBIA TTL contro l ler .  
However ,  a DMA read is  u n l i ke a write opera
tion, in which the data is  ready for transmission , 
in that the data must be fetched from memory. 
The DMA request is first passed ro the NBIA NMI  
i n terface contro l le r ,  w h i c h  arbitrates for t h e  
NMI  b u s .  Upon winn ing t h e  b u s ,  t h e  i n terface 
contro l ler i n i t ia tes a read request ro memory . 
When the the data is ready, the memory returns 
i t  on the NMI  bus to the NBIA. Thence the data 
i s  t ransferred i n to t h e  D MA locat ions  i n  t h e  
transaction buffer ,  a n d  t h e  NBIA TTL control ler 
is not ified by the N B IA NMI i nterface that t he 
data  is ready .  The con t ro l l e r  then  beg ins  to 
transfer data to the NBIB, loading it into succes
sive locat ions i n  the NBIB buffers . This process 
is illustrated in Figu re 4 .  A " DMA Done" not ifi 
cat ion i s  sent t o  t h e  N B I B  a fter t h e  first l on g
word of data , rather than a l l  the data , has been 

MEMORY 

transferred . That maximizes the read bandwi dth 
on the VA.XBI bus. The NBI adapter has a max i
mum DMA read bandwidth of fou r megabytes 
per second . 

The DMA read transfer i l l ustrates one funda
menta l  d ifference between the Nl\11 bus and the 
VA.X BI bus .  Referring to F igure 6, one can see 
that the VA.XBI bus is un usabl e  whi le the NBIA 
and memory complete the read operat ion.  (The 
NBTB issues sta l l  s ignals to the requesting device 
during this t ime . )  The N M I  is a pended bus, but 
the  VA.XBJ bus is  nonpended , or i n ter locked . 
That is ,  the N M I  bus is i m mediately ava i lable for 
usc once a command has been transm itted and 
acknowledge d ,  whereas t h e  VAX B I  bus must  
wai t .  Thus  " pending" transactions are a l lowed 
on the N M I  bus. Indeed , the NBIA NMI  interface 
can respond to requests from the other VA.XBI 
bus  wh i le a lso hav ing  a n  ou tstan d i n g  read to 
me mory on behalf of t he first VA.XBI bus . 

VAXBI DISK 
CONTROLLER 

I C/A I i�: I"A"I•"" Is""l'"'' l"'"ls""I"
A
" l"'"l""' l""' I""' Is; Ace I ""'I "'" I om I om I om I 

VAXBI CYCLES 

C/A - COMMAND/ADDRESS 
EMB ARB - EMBEDDED ARBITRATION 
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Figure 7 CPU Transfer from VAXBI Device 

CPU Transfers to andjrom VAXBI device control ler  to cause i t  to transfer 

VAXBI Devices large amounts  of data . 

CPU transfers to and from VAX B I  devi ces are 
simi lar to VAXBI transfers to and from memory, 
the obvious d i fference being that the transact ion 
is i n i t i ated on the N M I  bus .  CPU transfers are 
shown in Figure 7 .  

An other d i ffe rence i s  tha t  CPU transact ions 
are l im i ted to longword length when access ing 
V A.,'(BI devices. Since there is only one location 
for a commancljacldress packet for CPU transfers 
and one location for readjwrite data in the trans
action buffer, the NB I  adapter can handle only 
one CPU transaction at one t ime.  These l i m ita
t ions lowe r the CPU- to - VAX BI  b a nd w i d t h  as 
compared to the DlVlA bandwidt h .  An analysis of 
b u s  t raffi c ,  howeve r ,  has  s hown t h a t  C P U 
in i t iated transact ions accoun t  for u nder 1 0  per
cem of the VAXB I  traffic i n  a VAX 8800 system.  
This fi nding could be  ant ic ipated s ince the  CPU 
must make on ly a smal l  nu mber of accesses to a 
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Synchronization 

I n  t he earl ier  d i scussions of data t ransfers , t he 
term "synchronization delay" was introduced. In  
g e n e ra l ,  s o m e  type o f  s y n c h r o n i z a t i o n  i s  
requ ired whenever more than one i n dependent 
clock exists in a system .  This i s  the case in  the 
VAX 8800 syste m .  T i m i ng for the  processors ,  
memory control ler, and  NBIAs i s  derived from a 
sophis t icated clock mod u l e  that  provi des two
p ha s e ,  n o nover l a p p i n g  c l o cks  w i t h  a bas i c  
period of 4 5 ns and t ight ly  control led skew 2 
The VAXBI  t iming ,  on the other hand, is derived 
from an osc i llator and a clock-driver c i rcui t  on 
the NBIB. This t iming has a basic period of 2 0 0  ns, 
completely asynchronous to the VAX 8800 ker
nel . The synchron i za t ion of control s igna ls  is 
t hus ne cessary for data  transfer between the 
NBIA and N B I B  modules .  A DMA read transfer 
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i n v o l v es  t h e  s y n c h ro n i za t i o n  of a ' '  D M A  
request" and a "DMA complete" signa l . There
fore , the synchronizat ion overhead can account 
for approximately 5 to 1 5  percent of the t ime it 
takes tO complete the operation . 

Summary 

The performance of the 1/0 subystem is crit ica l  
tO the operat i on of h igh -performance systems 
l i ke t hose in  the  VAX 8800 fa m i ly .  The 1/0 
adapter provides a communication l ink between 
the each processor ,  the  memory, and  th e l/0 
devices. The N B I  ada pter is th i s  l i nk  for these 
systems, provid i ng access to a new generation of 
VAX BI devices and h igh-performance ljO opera
tion for these importa nt new machines . 
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Paul C. Wade I 

The VAXBI Bus - A  Randomly 
Configurable Design 

The VAXBI bus provides a high-performance altemative to the UNIBUS 
system as Digital's general-purpose bus. The VAXBI design was completely 
specified before any hardware was built and is independent from any 
physical configuration. The designers had to discard the traditional 
small-perturbation approach and instead used many techniques to 
specify the bus characteristics. Two custom chips, a differential driver 
and receiver, are used to clock the bus. The bus designs were tested exten
sively with SPICE, but tests on the physical chips led to some unantici
pated problems. Further analysis of waveforms, crosstalk, and switching 
noise led to changes that met all the original goals. 

The V�'\BI bus i s  a new, h igh-performance , gen
era l-purpose bus that provides a com mon inter
face to a l l  of Digita l 's new VAX products, fro m 
the VAX 8 2 0 0  CPU to the  VAX 8800 syste m .  
This  bus can a lso be used for fu ture VAX sys
tems . The VAX BI bus is a hi gher-performance 
re placement for the U N IBUS system and should 
have a s imi larly long and prod uctive l i fet i me.  

The UN !l3US system was enhanced many t imes 
duri ng i ts long history .  Si nce t here was no for
mal specification for this bus unt i l  I 986 , these 
many de facto enha ncements led to numerous 
compatib i l i ty and confi guration problems . Hav
ing learned fro m t hose prob lems , t h e  VAX BI  
design team decided to  make a complete design 
speci fication of the VAXBI  bus before any hard
wa re was bu i l t .  Thus compa t i bi l i ty p robl ems 
shoul d  not occur i f  al l  future designs comply 
with that specification. 

One of the most i m portant  aspects of  tha t  
speci fication - and the  most d i fficu l t  to imple
ment - is  that the VAXBI bus operates i ndepen
dently from any part icular  physi cal  configura
t i o n . T h a t  i s ,  t h e  b u s  m u s t  be r a n d o m l y  
configurable .  The ach ievement of that specificl
t ion was the most d i fficu l t  part of the e lectrical 
des ign .  The techniques and solut ions involved 
in solving this problem should be i nstructive to 
future bus desi gners. 
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VAXBI Bus Description 

There are seve ra l  e xce l l e n t  refe r e n ces  t h a t  
descr ibe in  deta i l  t h e  opera t ion  of  the VAXB I  
bus a n d  t h e  VL'II c h i p  that i m plements t h e  bus 
logic and arbitration _ u .� Therefore, only a short 
description of the bus wi l l  be given here .  The 
VAX BI bus i s  a genera l -purpose bus w i th  data 
transfer rates h i gh enough (up to 1 3 . 3  mega
bytes per second) to serve as a memory bus i n  
mid-range VAX systems, such as the VAX 8200 
CPU.  All machines in  the new generation of VAX 
systems use the VAXBI bus for a l l  1/0, com mu
nications, networks , and connect ing adapters for 
mass storage . Those h igh  rates a lso a l low it to 
serve as an ljO bus in  a l l  si zes of VAX systems by 
us ing  m u l t i p l e  VAX BI channe ls i n  the l a rgest 
syste ms, such as the VAX 8800 mul t iprocessor, 
shown in F igure 1 .  

Al l t he mach i nes i n  t he new genera t ion  of  
VAX systems use the VAXBI bus for a l l  IjO, con
nect i ng adapters for mass stOrage , commun ica 
t ions .  and  networks . A VAXBl subsyste m ,  con 
s i s t i n g o f  t w o  s i x - s l o t  c a rd c a g e s  a n d  t h e  
backplanes ,  i s  s hown i n  F igure 2 .  The back
p lanes are connected wi th  f lex ib le  i nterback
plane jumpers with terminators at each end. 

The key to genera l -pu rpose operat ion i s  the 
d istr ibuted natu re of  the VAX BI bus.  Al l nodes 
on it contain identical  interface hardware , and a 
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Figure 1 VAX 8800 System witb Four VAXBI Ruses 

Figure 2 VAXlU Su bsystem 

d istr ibuted arb i t ra t ion scheme prec ludes the 
need for a processor to act as a dedicated bus 
master. The YAXBl bus can support both mul t i 
ple and networked processors. thus implement
ing Digita l 's strategy of d istributed comput ing .  
The synchronous operat ion o f  the bus achieves 
h i gh perfo rm a n ce by p rovi d i n g  pred i ctab le  
com municat ion delays . The d istributed arbitra
tion is embedded within each bus transaction so 
that fu rt her data transactions may fo l low with 
our de lay. 

The VAX B I  bus a rc h i te ct u re is r i gorous l y  
specified . and a l l  designs that a re verified to i ts 
specificat ion w i l l  be fu l ly compat ib le  wi th  the 
bus . The task of system designers has been greatly 
eased by the i ncorporat ion of a l l  data- hand l i ng 
and a rbi trat ion logic in one YLSI e lement ,  the 
7 8 7 :� 2  ch ip ,  ca l led the VAXB I  I nte rface Chi p .  
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That ch ip  a lso performs self-rest funct ions and 
bus error deteoion and hand l i ng to i mprove sys
tem rel iab i l i ty and robustness. The physical bus 
interfaces are a lso rigorously spec ified , and the 
bus c lock ing  i s  contro l l ed by c ustom c lock 
driver and  rece i ver c hips .  F igu re 3 shows the 
VAXBI  corner of a modu le ,  with al l  the compo
nents requ i red for the bus i n terface conta ined in  
a sta n dard i zed l a you t .  These fe a t u res free a 
designer to concentrate on h i s  un i q ue design 
rather than on the bus deta i l s .  

Figure 3 VAXBI Corner of a Module 

VAXBI Electrical Design 

A random ly configurable bus has many advan
tages as a data bus in general -purpose computers 
s i n c e t h e i r  p h ys i c a l  c o n fi g u ra t i o n s  a re n o t  
known a priori and are subject t o  change during 
repair  or u pgrad i n g .  The previous state of the 
art within Digita l  was to use an art i fic ia l  i nte l l i 
gence progra m ,  c a l l e d  XCO N ,  ro  ca lcu la te  a 
confi gurat ion for each u n i q ue set of U N I BUS 
options .  XCON is based on a n  extensive set of 
bus configuration ru les. Al though i t  is a tri u mph 
of appl ied art ific i a l  in te l l igence, the necessi ty 
ro use i t  for bus configurations was a bottleneck 
we hoped to avoid by better bus design wi th the 
VAXBI bus. 

The design of a random l y  configu rab le  bus 
involves essent ia l ly the design of a group of ape
riod ically  loaded transmission l i nes. The cha rac
terist i cs of regularl y  loaded transmiss ion l i nes 
are wel l  defi ned , b u t  those of ran do m ly and 
u npredictably loaded l i nes are less wel l  under
stood . The design team evolved a design proce-
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d u r e fro m t h e i r  w o r k  on t h e  VAX B I  b u s .  
Although this  procedure was derived from the 
dev e l o p m e n t  r a t h e r  t ha n  b e i n g  p l a n n e d  i n  
advance, i t  may he lp  bus designers wi th  the i r  
projects i n  t h e  future . Therefore , the remai nder 
of t h i s  paper describes that  proced ure ,  espe
c ia l ly the activ i ties and resu lts that proved mosr 
sign i ficant to the project . 

The fi rst step i n  des ig n i ng t h i s  bus was the 
real ization that  the problem was not comp lete ly 
random but may be bounded . A bus is physical ly 
i mplemented as a group of transmission l ines in  
a backplane . These l ines are pertu rbed by  the  
load ing  of  con nectors for modu les a n d  by  the 
modules themselves . Each connector, or slot ,  in 
which a module  may be i nserted causes a sma l l  
perturbat ion i f  empty a n d  a larger one if  popu
l a ted . A tra n s m i ss ion  l i ne c a n  a l so con t i n ue 
through cab l i ng and connectors onto another 
backp lane . ln e i ther case the transmission l ine is  
term i nated in  some manner .  

The classic method of deal ing with transm is
s ion l ine  loadi n g  is to make the characterist ic  
i mpedance so low t ha t  pertu rbat ions w i l l  be 
trivi a l . In tha t  case a n y  reflect ions from these 
perturbations wi l l  be sma l l ,  and  the l ine can be 
end term inated i n  its characterist ic  i mpedance 
so that there is no reflection . The load ing is then 
con s i d e red ro be  predo m i n a n t l y  capac i t ive . 
Thus the loaded i mpedance can be calculated as 

Zo ' = Z" j y1 + Cd / Cc, 

Our fi rst approach was to determ i n e  i f  the  
c lassic met hod cou ld be used to  dea l  wi th  trans
m i ss ion - l i n e  loa d i ng fo r t he m odu les on the  
VAXB I  bus .  Z, , the character is t ic  i m pedance ,  
ranges from 3 5 ro 1 00 ohms for the  standard 
d i mens ions  of orga n i c  pr in ted c i rcu i t  boards 
made by Dig i ta l .  Corresponding values of C, , 
the in tr insic l ine  capaci tance , range from 1 . 8 tO 
0 . 6  p icofarads per centi m eter (pfjcm) . How
ever, Cd , the d istr ibuted load ing  capac i tance , 
can be as much as 5 pfjcm for modules in  th is  
i mp l ementat ion . That capac i tance means that  
Z0 ' ,  t h e  loaded i mpedance ,  wo u l d  be  in  the 
range of 1 8  to 3 3 ohms,  clearly a major pertur
bat ion . Therefore , for modules with these char
ac ter i s t i c s ,  t h e  sm a l l - perturba t i on ap proach 
could  nor  be used . 

I n  the case of the VAXBI bus, even i f  i t  were 
poss ible ro produce l i nes whose characteris t ic  
i mpedances were low enough (Zo < 1 5  ohms) , 
massive drivers would be req u i red to supply the 
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necessary cu rrent . Therefore . bus power wou l d  
b e c o m e  a s i g n i fi c a n t  p o r t i o n  o f  t h e  sys t e m  
power d iss ipa t i o n , a n  u n d es i ra b l e  s i t u a t i o n .  
C o n s e q u e n t l y ,  w e  h a d  to c o n s i d e r a d es i g n  
approach d i ffe rent from the class ic  one .  

Our a l te r n a t i v e d e s i g n  a pp ro a c h  was more 
prag matic .  Sign ificant  deve lopment i nvestme nts 
had a lready been made i n  severa l key co m po
nents ,  part i cu lar ly  t h e  m o d u l e  connector and 
t he 7 8 7 3 2  c h i p . T h e re fo r e ,  the r e s t  o f  t h e  
design had tO be as compat ib le as possible with 
the c h a ra c t e ri s t i cs o f  t hose key c o m po n e n t s .  
Part icular  attention was pa i cl w three a reas : the 
physical  l ayou t ,  to keep capaci tance w i t h i n  t he 
d ri ve capabi l i ty of t he 7 8 7 3 2  c h i p ;  t he cloc k .  
since i t  i s  t h e  crit ical  clement i n  b u s  t i m i n g; and 
ground i ng, which i s  cr i t ica l for signal i n tegri ty .  

The VAX BI data l i n es arc d r iven d i rec t l y  by 
the 7 8 7 � 2  c h i p ,  w h i c h  is fa b r i ca ted u s i ng 
advanced MOS technol ogy MOS devices.  how
ever, are l i m i ted in t h e i r  a b i l i ty ro drive current .  
With in  the constra i n ts of ch ip  area a n d  power 
d issi pat ion , open-dra i n  drivers of about 2 1  mi l 
l i amperes ( m a )  are the o n l y  ones avai lable .  The 
data  cyc l e  of t h e  VAX B I  is 2 0 0  nan oseconds . 
T h e r e fo r e , t h e  m a x i m u m  b u s  l c n g t h  o f  
1 .  5 m e ters (VAX BI speci fi cation) i s  short  com
pared to a wave leng t h ,  and a l u m ped-consta n t  
approxi mation could be uscd for ca l c u l a t i ng the 
delays . An RC t i me-constant mod e l  was used for 
this approximat ion , a n d  the voltage swing was 
l i m ited to 3 V to accommodate a sma l l er term i 
nating res istor for faster switching .  T h c  res u l ting 
resistance was 2 � 8  ohms ( '5  Vj2 1  ma ) .  

After calculat ing t h e  tol eran ces and worst-case 
a l lowances . we chose a standard val u e  for this  
resi stancc of 2 7 0  ohms. By choosi ng an RC t ime 
consta nt  equal  to the maxi m u m  ava i la b l e  propa
gation delay (and after subtracting device del:-tys 
and a l l owi ng for compo n e n t  to l eran ces a n d  a 
1 0  percent  t i m i n g marg i n ) , we ca lcu l ated the 
capacitance as 4 1 0  pf This figure beca me the 
m a x i m u m  c a p a c i t a n c e  fo r e a c h  cl a r a  l i n e .  
inc luding backplanes.  i nt erbackp lane j u m pe rs ,  
conn ecto rs . modules ,  and bus t ransc e i vers on 
the c h ips . Obviously ,  t h e  RC t i me constant i s  
a pp l icab l e  only o n  the l ow - to - h i g h  transi t ion . 
w h e n  t h e  o p e n - d r a i n  d e v i c e i s  t u r n i n g o ff .  
Dev ice turn -on , which is norma l l y  much faster, 
is i n ternal ly co mpensated for by con tro l l ing  the 
rise t i m e  ro m i n i m i z e  t h c  t r a n s m i s s i o n - J i n c 
reflections.  
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For rhe clock l i nes ,  the t i m i n g  re q u i re m e n ts 
arc cr i t ica l enough to just ify thc use of very large 
drivers s i nce only  two s ignals  a re i n vo l ve d .  We 
selected a d iffc ren t i a l  configu ra t i o n for c l o c k  
s i gn a l s  i n  order t o  m i n i m i z e t h c  s k e w ,  w h i c h  
cou l d  degrade t i m i ng accuracy. This  configura
t ion a l so prov i d es no ise i m mu n i ty by common
mode r e j e c t i o n .  S i n c e  the c l o c k  fre q u e n cy is 
much h i g h e r  than t lw d ata  frequency.  ECL was 
ch osen for the l ogic tcchnology . The maxi mum 
d r i v e  c a p a b i l i t y o f  s t a n d a r d d e v i c c s  i s  
2 '5 -ohm im peda nce,  however, so a custom driver 
is re qu ired We a lso chose ro usc a custom di ffe r
ent ia l rece iver.  for the fo l l owing reasons:  

• B o t h  p arts ca n o p e r a t e  from t h e ava i t a b l e  
+ 5 V supply ra ther t h a n  the - 5 . 2  V supply 

norma l ly  re q u i red for ECL. 

• The recei ver sen s i t i v i t y and common-m ode 
range can be opt im ized for the driver.  

• The receiver i n pu t  can be designed for m i n i 
ma l bus l oad i ng capaci tance .  

• The rece i ve r  o u t p u t  l c veJs can be stand ard 
TTL ! cvc.l s .  t h u s e l i m i n a ti ng the need for a 
se p a r a t e  i n t c g ra t c d  c i rc u i t  ( ! C )  fo r l e v e l  
trans lat ion . 

Al together ,  th cse two custOm c l ock c h i ps do 
the work of five standard res . t h us savi n g  power 
and mod u l e  real estate whi le · i mproving pc rfor
mance.  

S i n c e the c h aracter i s t i cs of ECL d r i v ers are 
we l l  u nderstood.  we req u i re the c l ock driver to 
use an ou tput dr iver made from t hree standard 
'5 0 -ohm ECL drivers in para l l e l . Thus the effec
t ive d rive capa h i .l i ty is 1 7  ohms ( 5 0  ohms/.� ) .  
The design term i nat ion i s  i nt ended to match the 
est i m a ted i m pedance of a maxi m a l ly loaded sys
t e m .  a p p r o x i m a t e l y  2 '5  o h m s  d i ffe r e n t i a l  
i m pe dance . This i m pe dance i s  com posed of a 
res is tor to ground from each l i ne and a resistOr 
between l i n es.  c h osen to s i n k  t he appropriate  
h i g h - and l o w-state c u r re n t s .  The design was 
e x t c ns i v c ly mod e l ed u s i n g  the S P J C E  c i rc u i t  
s i m u l ator.  wh i c h  i n d icated that the driver had 
adeq uate current capabi lity for rh is  load . '  The 
ch:tractcrist ic i m pedance of the c loc k  l i n es was 
made as low as poss i b l e  by maximiz ing the l i ne 
width with in  the space constra i nts of a 0 .  l - i n c h  
via-ho l e  ( p l a tcd-through hole in a pri nrcd c i rc u i t  
boa rd ) g r i d  To i m p r ove t h e  co m m o n - m o d e  
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rej ecti on , the two l i nes of each d i ffere n t i a l  pa i r  
are located o n e  above t he orher o n  adjacent lay 
ers w i t h  g ro u nd p l a n es above a n d  bel o w t h e  
pa i rs . 

F i na l l y ,  c a re fu l a t t e n t i o n  was g i v e n  t o  t h e  
g r o u n d r e t u r n p a t h fo r a l l  VA X ll l  s i g n a l s . 
G ro u n d p l a n es . to m i n i m i z e i n d u c t a n c e .  a rc 
prov id ed on the mod u les . ba c k p lanes . and i nt e r
backpla ne ju m pers for data l i n<.:s as wel l  as the 
c l o c k  l i n e s  d e s c r i b e d  a b o v e .  The d a ta - l i n e  
ca pac i tanc e was constra i n ed w i t h i n  the 4 1  0 - p f 
l i m i t desc ri be d  above by con tro l l i ng t he l i ne 

width and the ground -pl an e spac i ng . A parti cu 
lar ly d i ffic u l t problem is the ground i nd uctance 
of the 7H7 :) 2  ch i p . The 7R7 .'1 2  c h i p can switch 
as many as 4 R  data l i nes s im u l ta neously . with a 
total sw i tc h i ng c u rrent of over one am pere . The 
i n duced vo l tage , V, from s i m u l ta neou s swi t c h 

ing is  ca l cu lated as 

V = I. X (dijdt) 

in w h i c h  L is t h e  i n d u c ta n ce ancl dijdt i s the 
ra r e o f  c u rr e n t  c ha n ge . F o r  ex a m p l e , i f  t h e  
grou nd i n d uctance were I 0 na no hen ri es a n d  the 
c h i p swi tched  i n  I 0 n a n ose c o n d s . 1 vo l t  o f  
swi tc h i ng n o i se wo u l d  resu l t .  Based o n  t h ese 
n o i s e c a l c u l a t i o ns .  we d es i gn ed t h e  p a ck age 
w i t h  an i n ternal  g rou nd p l a ne an d 1 5  grou n d 
p i n s  to m i n i m i z e  i n d u c t a n c e  a n d  sw i t c h i n g  
no i se . 

Test Results 

When t he custom c l o c k  devi ces beca m e  ava i l 
a b l e ,  m e a s u r e m e n ts s h o w e d  t h a t  t h e  d r i v e r  
cou l d  nor power a 2 5 -ohm d i ffere n t i a l  load and 
st i l l  m a i n ta i n  t he d es i red 7 0 0 - m V  a m p l i t ud e  

over a l l  c o n d i t i o n s .  T h e re fo re ,  we ca re fu l l y 
measured the output c haracte rist i cs i n  both t he 
hi gh and low stares ro calc ul ate an opt i m u m ter

m i n at ion . The TK 1 Solve r  software was used ro 
so l v e i t era t ive l y  r h e  d r i v e r  e q u a t i o n s fo r t h e  

pi ec em ea l l i near approx i m a t i o n s  o f  r h e d r i ver 
c h aract e r i st i c s .  wh i c h  d i d  not fi t any s i m p l e 
c u rve . \XIe r he n calcu la ted t h e  opt i m u m resis
ta nces and c hose r h e  nea rest sta ndard resistor 
values.  We a lso reca l c u l ated the output  vol tages 
for norm a l  to leran ces of resi stan ce ,  vol tage . and 
tem perature, and a + ; - 5 0  percent variation in 

the i nt e rn a l  res i stan ce of rhe d ri ve r . The m i n i 

m u m  ca l c u l a t e d  a m p l i tu de was 6 9 5  m V .  g i v 
i n g  us a very h i gh confi dence of h av i ng at l<:asr 
700 mV for any actual hardwa re . 
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The op t i m i zed termi na t i o n  has a d i fferen t i a l 
i mpedance of ;17 . 6  ohms. w h i c h  rurns o u r  to be 
a better marc h for t h e  measured i m pedances of 
rhe rest of the hardware .  An e m pty ba ckplane 
h a s  a d i ffere n t i a l  i mpeda nce of a pproximate ly 
60 ohms.  d ropping to as low as 28 ohms when 
fu l ly po pu l ated ; a j u mper cable between back

p l a n e s t y p i c a l l y  h a s  a 4 5 - o h m  d i ffe r e n t i a l  
i mpedanc e . The various possi b l e VAXBI con figu
ra t i ons yi e ld a m ax i m u m retl ecr ion coeffic ient  

a r  a n y  p o i n t  of 0 . 2 8 ;  probable c on fi gurat i o ns 

w i l l have even smal ler reflect i ons . 
Reflecti ons of t h i s  magn i tu de cou l d  cause sig

n i fi c a n t  t i m i ng var i a t i o n s in s i ng l e - e nd e d sys
tems clue to a fixed receiver threshold vo l tage . 
H owe ver. they have no e ffec t on a d i ffere n t i a l  
l i ne since t h e  reflection is t h e  sa me on both l i nes 
of t h e  d i fferen t i a l  p a i r . The on ly varia tion we 

found was caused by the d i fferences i n  i m ped

ances on d i fferent pr i n ted c i rc u i t  layers . Subse

q ue n t  e xper i men ts ind i cated that i mp rovi ng rhe 
m atc h i ng of i mpedan ces by putt in g rhe d i fferen 
t i a l  pa i r  on t h e  same l aye r r e d u c e s  t he skew 

more rhan rhe common-mode noise reduction cl ue 

to rhe rn uma l  cou p l i n g  of adjacent layers . Fu rth er 
exper i ments showed that rhe cl ock system oper
a tes ar freq u en c i es at least 25 perc e n t  h i gh e r 
t h a n  t he d es i gn goa l over a l l  combinat ions  of 
bus confi gu rat i on . vo l tage , and temperamre . 

T h e  data l i n es ex h i b i t e d m ore su b t l e p rob 
l e m s .  Our i n i t i a l t e s t i n g  y i e l d e d re su l t s very 
s i m i lar to our desi gn p re d i ct ions . As suffi c i e n t  

hardware was assemb l ed for a maxi mum config
u ra t i on wi t h heavy bus t ra ffic , howeve r , u n ex
pec ted waveforms were d iscovered .  The wave

fo r m s  no l o n g e r e x h i b i t ed t h e e xp o n e n t i a l 
s h a pe of a n  RC t i m e c o n s t a n t ;  i ns t e a d , t h e y  

resem bl ed step fun ct io ns w i t h  ex pone nt i a l ris

ers.  Aft e r  d u e d e l i be ra t i o n , we rea l i z ed t h a t ,  

a l though t h e  fu l l  t i me constant was fa i r ly s low, 

the i n i t i a l  s lope,  dVjdt , was much faster. There
fore . i rs hi gh er -freq ue ncy com ponents trave led 
down rhe l i n e and were refl ected several r i mes 

d u r i ng rhe d u ra t i on o f  an RC t i m e consta n t ,  
resu l t i ng i n  t h e  staircase e ffect .  SPICE s i m u la 
t i ons y i e l d e d a n  i de n t i ca l  wavefo r m  w h e n  a 
t rans mi ss i on l i n e ,  or i gi na l l y cons i d e red u nnec

essary, was i n c l uded i n  rhe mode l .  The overa l l  
r i ming was n o t  affected by t h e  reflect ions .  Fig
u re 4 s h ows t h i s wav e form w i t h  i ts s t a i rcase 

effect caused by i ncomplete term i nat ion of t he 
transm ission l i n e .  
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The VA XIU Rus - A Randomly Conjigumhle /Jesign 

VOLTS 

NANOSECONDS 

Figure 4 Simulated Waveform from SPICE 

A second , more s i g n i ficant,  e ffect was due to 
c rossta l k ,  or cou p l i n g between t h e  I i n cs To 
meet the capa c i tance budget, the original phys i 

c a l  design a i med t O  m i n i m i ze t h e  capa c i tance ro 
ground.  An undes i red result  was that the m u tual 
capaci tance from l i ne tO l i n e ,  while sti l l  s m a l l .  
beca me proporti o n a l ly la rge r,  t h u s  i n creas i n g 
the cou pl ing from l i n e to l i n e .  The vol tage on 
o n e  l i n e  was a ffec t e d  by vo l tages on n e a rby 
l i nes :  transit i ons were aided by l i ke transi t i ons 
and slowed by oppos i ng trans i t ions .  In the worst 
cas e .  the m a gn i t u d e  of t h i s  v a r i a t i on was as 
much as 24 nanoseconds. 

This worst case occu rred on a group of l i n es 
i n  c l ose p rox i m i ty to a " spare " l i n e ,  nor con
nected or term i nated , w h i c h  con tributed add i 

t ional  mutual  cap a c i tance , thus enhancing the 
cou p l i n g .  This spare l i n e ,  i n c l ude d to red uce 
the need for e ngi neering change orders to the 
b a c k p l a n e ,  n e a r l y  n e e d e d  a n  E C O  fo r i r s 
remova l ,  which could have d e layed several new 
p rod u c ts .  H oweve r ,  a t i m i ng a n a l ys i s  sh owed 
that i ts re mova l was u n n ecessary .  lt shou l d  be 
emphas i zed that t hi s  efkn was nor visi ble u nr i  l 
actual bus tra ffi c ,  consist ing of random data par
terns, was being transferred on a l a rge bus con
figuration . Test patterns were too smal l and roo 

regu lar to show t hese sign i ficant e ffects 

S i m u l t a n e o u s  s w i tc h i n g n o i s e , d e s c r i b e d  

above , was a l so i nves t i ga ted lw cause i ts effect 
was s i m i lar  ro the effect of crossta l k .  Al l VAX I31 

data s igna ls except one were swi tched s i m u lta
neous ly, and the i n d u ced vo ltage was mon i tored 
on th e rema i n i ng l i ne ,  w h i c h  was fi xed i n  the 

high ( i nactive driver) state . G round pins were 
then broken off one at  a t i m e ,  the vol tage be ing 
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m e asured a ft e r  t h e  remova l o f  e a c h  p i n .  As a 
resu l t  the i n d u c e d  vol tage i n c reased from a n  
insign ificant level with  L .:;  ground p i ns r o  more 
than one volt w i t h  on ly .1 ground p i ns re m a i n 
i n g .  W i t h o n e  m o re p i n  remove d ,  t h e  c h i p  n o  
lo nger passed s e l f- test . These resu lts s h owe d 

t hat only a few ground pins a re necessary for the 
c h i p  to operate . but 1 5  a re needed to preven t  

t he ad d i t ion o f  noise t o  t h e  hus . 
The t i m i ng analysis i nvolved fabricat ing spe

c i a l  l o ts of 7 87 3 2  i n t e r fa c e  c h i p s w i t h  t h e  
fastest and s lowest poss i b l e process var iat ions . 

Fro m these lots c h i ps were se l ected at the abso
l u te specification l i m its .  These chips were care
fu l l y m e asu red i n  a ra n ge of c o n fi g u ra t i ons . 
i nc l u d i ng one beyond the speci fi ed l i m its .  'fhen 
r h e  t i m i n g  m a rg i ns were c a l c u l a ted over t h e  
speci fi ed range of opera t i ng condit ions .  W h e n  
a l l  p o ss i b l e  w o r s t - c a s e  c o n d i t i o n s  a n d t h e  
effects descri bed a bove had been i nc l u d e d ,  the 

c a l c u l a t e d  t i m i n g m a rg i n  was r e d u c e d  to 
0 .  5 na nosl'conds . Design verificati o n  resting on 
this worst-casl' system showed that it cou l d  sti l l  

operate a t  a frequ ency I 0 percent h igher  than 
t h at spe c i fi e d  over  t h e  fu l l  opera t i n g  range o f  
temperature a n d  voltage . 

Summary 

The VAXBI bus was desi gned to a rigorous bus
a r c h i tectu re speci f icat i o n .  After m i no r  adjust 
me nts d u r i ng design veri fication testi ng,  the hus 
met a I I  rhe req ui  rem enrs of t hat  spe c i fi ca t i on . 

I n  part i c u l ar, th is  testing proved that the YAXI3l 
bus can operate i nde pendently of system config
u rat ion . 

Severa l other  poi nts should be noted by bus 
designers for fu ture products : 

1 .  Design i ng a prod uct to a r igorous spec i fi 
cation,  c a l led top-down design , can rea l l y  
work . 

2 .  D i ffe rent ia l  signals  arc recomme nded for 
cri t ical  t i m in g .  They a rc best l ocated on 
t h e  s a m e  p r i n t e d - c i r c u i t  l a y e r  o n  a 
mod u l e .  

3 .  T e s t i n g  s h o u l d  be p e r for m e d  o n  r e a l  

h a rd wa re w i t h  rea l data ,  a s  close ly a s  i t  
can be a pp roxi m a ted d u r i n g the desig n 

process .  Too ofte n .  the test patte rns run 
on test structu res y i e l d  n o t h i ng but rhe 
e x p ec t e d  resu l ts .  Test i n g  s h o u l d  a l s o  

reveal unexpected problems,  n o t  s i m p l y  
corroborate t h e  design . 
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4 .  Ground rerum paths requ i re carefu l  con
sideration , part icularly u nder cond i tions 
of s imu ltaneous switc h ing .  
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Michael W. Kement I 
Gerald]. Brand 

A Logical Grounding Scheme for 
the VAX 8800 Processor 

The treatment of ground as a signal conductor is crucial in achieving 
high-perfonnance computer systems. The impact of system grounding on 
signal integrity becomes even more important as systems are connected 
into networks. For the VAX 8800 CPU design, the authors first identified 
the sources of ground-conducted noise from the jour ground systems: the 
power and logic systems, and the safety and RF grounds. They then iso
lated and defined the ground elements in order to specify an intercon
nection strategy to guarantee the CPU's performance. Then the 1/0 
subsystem grounding was established and finally a system-to-system 
grounding scheme was completed. 

The des ign o f  t he grou nd i n terconnect ion  is  
often given l i t t le attent ion i n  system design , at  
least unt i l  i t  becomes crucial  to system perfor· 
nu nce and program deve l op m e n t  schedu les .  
The treatmenr of th i s  i nterconnection as a si gnal 
condu ctor grea t l y affects the e l ectr ica l  noi se 
levels. Ultimately, these noise l evels arc a cri t i ·  
ca l factor i n  l im i ting the maximum c lock speeds 
and thus machine performance . 

Field service personnel have long recogn i zed 
that many i nstal lation problems result  from the 
subtle ties of grou nding when cab l i ng together 
CPUs ,  mass sto rage dev i ces , a nd peri phera l s .  
Part icu la r ly  d i ffi c u l t  p rob l e ms occu r when 
equ i pment comes from d i fferent vendors . The 
trad it ional  approach ro so lving these problems 
has been ro d i spatch a seasoned fi e l d  servi ce 
representative to the s i te with an assortment of 
ground straps and other parts. Given the i n junc
tion ro "make i t  work , "  he cou ld ,  with enough 
ingenu i ty and custo mer pat ience ,  bring about 
satisfactOry resu lts .  

As a consequence,  early in the development 
cycle the VAX H800 project team set a h igh pri 
ority on the logica l  design of the ground system . 
We knew that the H800 would  be used in  large 
networks . thus inrens i fyi ng any problems with 
grou nd-conducted noise.  I n  fact ,  the inc lusion 
of the backp lane interconnect. cal led the VAXRI 
bus ,  ensured tha t  m a ny IjO po rts w i t h  h i g h  
bandwidths wou ld exist i n  close electrica l prox
im i ty to the logic backplane .  Moreover, many of 
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t he appl icati ons targeted for the product would 
prec l ude i ts insta llat ion in the control led envi 
ronment of a computer room,  with i ts trad i t ional 
massive copper grou nding grid beneath a raised 
f loor .  The system componenrs wo u ld  be con 
nected for the fi rst t ime at  a custo mer's s i te .  Our 
goai was to requ i re m i n i m um s i te preparat ion 
efforts; sysrem components were designed to be 
cab l ed together i n  a " p lug-and-p lay" manner. 

These product goals ,  coupled with the EMf/ 
RFI and sysrcm safety requi rements of the i nter· 
nati ona I regu la tory agencies ,  requ i red an i nte·  
grated system p h i losophy for grou n d i n g  and 
s h i e l d i n g .  The approach that  we fo l l owed on 
the VAX 8800 project i nvolved t hree separate 
but i nterre lated steps: 

F i rst ,  we i d e n r i fi e d the sou rces of grou n d 
c o n d u c t e d  n o i s e  w i t h i n  t h e  VAX 8 8 0 0  a n d  
devised ways to reduce that noise t o  the iowest 
pracr ic; :  lev<: ! .  Next. we ident i fied the in tercon
necti ons w i th in  the groun d  networks and con 
nected them in ways that conrrolkd the ground 
noise.  There arc four ground networks : 

l .  Power return 

2 .  Logic return 

3 .  Safety. or ac power-fau lt ground 

4 .  R a d i o  f re q u e n c y  s h i e l d  a n d  c h as s i s  
grou nd 

F ina l ly .  we extended the concept of system 
grou nd in  the VAX 8800 to large-system app l i ca-
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t i ons and  com puter  ne tworks i n  a n  effort  to 
ensure opt i mal  overa l l  system performance . I n  
t h e  ma jor i ty of cases , t hese n etworks i nvolve 
mature products for which i t  is d i fficu lt to make 
any interna l  confi gu rat ion changes. 

Ground Conducted Noise 

Power System 

The VAX 8800 power system consists of modu
lar un i ts of switching power regulators operat 
i ng at  5 0  k i lohertz (KHz) . The tota l three-phase 
ac power required for a typical appl ication con
figuration is about 5 k i lowatts ( KW) . The hard
ware implementation uses un i ts from a fam i ly of 
products cal led the Modu lar Power System ,  or 
MPS, designed by Digita l .  These un i ts yield low 
a n d  t i gh t l y  c o n t ro l l e d  d i ffe ren t i a l  ( n o r m a l  
mode) noise l eve ls  for the d e  power that  sup
pl ies voltages to run logic.  

Through t h e i r  h igh  e l ectr ica l  effic iency of 
power convers ion , such swi tc h i ng power sys
tems have made possible the sma l l  sizes and l ow 
weights of present computers . This power c i r
cu i try, however, has current spikes (dijdt) as 
high as 1 000 amperes per m icrosecond (!is) and 
voltage slew rates (dVjdt) as high as 2000 volts 
(V)  p e r  11s . These h i g h  s l e w  ra tes ,  a conse 
quence of  the  pursu i t  of h igh  effic iencies ,  can 
produce s ign i ficant noise problems . The rest of 
this section d iscusses five of the most i mportan t  
noise sources that we identified and  resolved i n  
the power system .  

Noise Currents 

When high-voltage s lew rates are present across 
parasit ic capacitances ( i . e . ,  u n intentional capac
i ta nce tha t  is  presen t  as a conseq uence  of  a 
physical metal lic structure) , a noise current  Ill 
wi l l  be generated : 

Ill = C" dVjdt 

in which Cp is the parasit ic capacitance . 
O n e  s i g n i f i c a n t  sou rce of com m on - m od e  

n o i s e  i n  t h e  MPS  reg u l a to rs i s  t h e  p a ras i t i c  
capac i tance between the pr imary wind i ngs i n  
the high-frequency power transformer and the 
sol id -fo i l  safety shield between the primary and 
secondary windings . The use of th is shield , con
nected to a sheet-metal "safety ground ,"  is  one 
way of complying with the i nternational safety 
regulations. 1 
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During normal switch ing-converter operation , 
vol tage pulses with rise t imes of approximately 
1 000 V per 11s are applied to the pri mary. These 
pu lses cause capac i t ive ly  cou p led n o ise cur 
rents with peak a m p l i tu des of approxi mate ly  
200 m i l l i a m peres to be sen t  i n to the system 
chassis ,  or safety ground . Figure 1 shows a sche
matic representation of th is  process . The para
s i t ic l eakage inductance associated with the pri
m a ry w i n d i n g  c o m p r i s e s  a s e r i e s - reso n a n t  
c i rcu i t  with the shie ld capacitance.  This noise 
cur ren t  has a decay ing  exponent ia l  waveform 
with a frequency in t he range of 5 to 1 0  mega
hertz (MHz) and a repet i t ion rate of twice the 
swi tch i ng frequency .  S ince many power con
verters are u sed in the  VAX 8800 system and  
they are a l l  synchro ni zed to a common clock , 
t he noise currents tend to add . Current  ampl i 
tudes as  h igh as 2 amperes were observed . 

The most pract ica l  way to reduce th is  noise 
sou rce was to i nsert a damping resistance,  Rd , 

that would redu ce the Q of this resonant circu i t  
a t  the specific frequency range . Q is  trad i t ion
a l ly defi ned as the rat io of reactive i mpedance 
to resistance, and represents a measure of reso
nant efficiency. The in ternational  safety regula
t ions,  however ,  str ictly l i m i t  the fau l t-current 
impedance in th is  path .  To meet both requi re
ments, we i nserted a ferri te bead on the shield 
ground lead . This bead is  made of ceramic ferro
magnet ic m ater ia l  that  is e lectr ica l ly l ossy . I t  
acts a s  a sma l l  i nductance a t  low frequencies 
and as a nearly pure resistance a t  h igh frequen
cies. The bead does not block the fau l t  currents 
from a short c i rcu i t  but does redu ce the noise 
current to the des i red leve l .  The noise ampl i 
tude i s  reduced by two t o  fou r  t i mes a n d  the  
r ing  frequency reduced to  about 1 MHz .  Thus a 
pote n t i a l ly se r ious  cause  of com m o n - mode  
noise current  i n  the system is redu ced a t  the  
source to  acceptable l evels. 

I n  n ew d e s i g n s , more  e ffe c t i ve s c h e m e s  
i nvolv ing  d ifferent  s h i e l d  confi gu rat ions  a n d  
interconnections could b e  employed . 

Power L ine Filter 

One of the more subtle (and i ronic) sources of 
com mon- mode noise curren t  or ig ina tes i n  t he 
power fi I ter designed to reduce the e lectrical 
noise emanating from the power l i ne .  Figure 2 
d e p i cts a sc h e m a t i c  of a typ i c a l  l i n e  fi l te r ,  
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Cp � C, � 200 x 1 0-12 picofarads primary and secondary parasitic capacitance to shield 

Ro is the damping resistance provided by a lossy ferrite bead 

Resonant frequency of In is Fo � [2,.- (L1p x C0) 
11\1 = 1 0.3 MHz 

Resonant impedance Ro � (L10/C0) 
112 

= 775 ohms 

With Ro = 0, In (peak) = V0 (peak)/Ro � 200 milliamps 

Wilh Ro = 500 ohms @ 10 MHz, In (peak) = 1 1 8  milliamps 

Figure 1 Parasitic Capacitance of the Power Transformer 

i ncluding the parasi t ic ,  or l eakage , i nductance 
of the common-mode choke, L 1 •  The "Y" capac
i tors, C1, are connected from e i ther side of the 
power l i ne  tO the chassis ,  forming a high-Q res
onant c i rcu i t  with this leakage inductance. The 
load current for th is  power fi l ter is domi nated 
by t h e  d i sco n t i n u o u s  c u r re nt  p u lses of t h e  
swi tchi ng power converte rs ,  w h i c h  provid e  

9 0  

excitation for th is  resonant c i rcu i t .  The result  is  
a resonanr current pulse i n to the chassis  wi th 
each ha lf-cyle of curren t in  the power l ine .  

O t h e r  c o n s i d e ra t i o n s  of  s i g n a l  i n t e g r i t y  
de mand that  an i n d u c tOr be p l aced i n  ser ies  
with the power ground wire in  the fi l ter before 
that wire is connected to the chassis. The result ing 
ground i mpedance forces the resonant common-
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Figure 2 Power Line Filter 

mode cu rrent to flow through the chassis of the 
system,  probably through the logic returns . lf 
the fi l ter design has taken th i s  parasi t ic  reso
nance in to accou nt ,  a series resistOr or ferri te 
bead,  Rv , may be added to lower the circuit Q .  
That reduces the  common-mode current at the 
expense of fi lter attenuation . 

In the case of the 8800,  many of the system 
components had been des igned and  re leased 
before t h i s  p ro b l e m  was fu l ly a p p rec i a t e d . 
Therefore, our only viable strategy was to segre
gate th is  noisy ground by separating the logic 
returns  a n d  c h ass i s  gro u n d s  to  the greates t  
degree possible .  

Noise Voltages 

The e l e ctr i ca l d u a l  of  t h e  n o i se sou rce j u s t  
descr i bed i s  t h e  generat ion of noise vol tages 
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across both real and pa ras i t iC c i rcu i t  i n du c
tances when rap i d l y  c h a n g i n g  currents f low 
through them. This noise vol tage is expressed as 

Vn = Lp dl jdt 

in which Lp is the value of i nductance . 
The most common source of noise vol tage in  

swi tching power converters is  paras i t ic  i nduc
tances excited by the rapid rise a nd fal l  of cur
rent in the transistor power switch and by the 
reverse charge recovery in  the rectifier  d iodes. 
These abrupt transitions between the conduct
ing and nonconduct ing states gen erate a very 
h igh dljclt . For exam p l e ,  t h e  p r i ma ry reset 
diodes (D1 and JJ2 i n  Figure 3) i n  the MPS con
veners have very fast switch i ng t imes of 30 ro 
50 nano secon ds ( n s ) . As t h e  d i ode current  
rapid ly goes to  zero when the  switch is  turned 

9 1  
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A L ogical Grounding Scheme for the VA X 8800 Processor 

+ 
300 v 

Ls 

Ls 

Ls 300 x 1 0-9H. Stray Inductance 

- 12  Cos - t OO x 1 0  F.  Collector - Base Capacitance of a ,  and az 

NOTE: The screened components are not active: 
a, and az are off. The magnetizing current (1M) from T, is 
resetting to zero through D, and Dz to the 300 V source. 

High-Frequency Equivalent Model 

+ rnls 
Vno•se t 1" 

_ Cos 
2 

Figure 3 Parasitic Inductance of the Power 
Switching Stage 

off, t ht: c i rc u i t  paras i t i c  i n d u ctance w i l l  r i ng 
w i t h t h e  c a p a c i t O r  i n  t h e  sw i t c h - p ro t t: c t i vt: 
snubb<:r, C .  The frequency range w i l l. bt: from 
1 0  to :) 0  M H z  for typ i ca l  c i rc u i t  va l u t:s . Tht: 
resu l t  i s  a cl i fferenr ia l  noise vo ltage at the con
vener outpu t .  

O u r  so l ur i o n  t o  t h i s  noise vo ltage source was 
to i n sta l l  an a p p ro p r i a t e ft: rr i t e  b e a d  on t h e  
d i ode l ead to cl a m p  the osc i l l at i ons i n  t h is fre
q uency range . 

Radiated Magnetic Flux 

A su bsta n tially more d i fficu l t  problem is caused 
by ra pidly changing magnet i c  fi e l ds that rad iate 
from t he h ig h-current secon dary c i rc u i ts in the 
power conve rters. The output  rect i fi ers can be 
cond ucting as much as 200 a m peres when t hey 

9 2  

s w i t c h  o ff ;  t h e  r e s u l t i n g  dlj dt c a n  e a s i l y 
ap proa c h  1 0 00 a m peres per m ic roseco n d _  As 
the c urrent d i es, the magnet ic  fie ld su rrou n d i ng 
the secon d a ry w i n d i n gs of these h i g h - c u rrent  
cond uctors wi I I  col lapse . That  i n d u ces a vol tage 
in other cond uctors enc losed by t h is magne t i c  
fl u x .  Accord i ng t O  f a ra d a y ' s  La w ,  t h i s  n o i s e 
vol tag<: is  

VII - N d0Jdt 

i n  w h i c h  N is the n u m lxr of tu rns i n  the ot h<:r 
condu ctors ,  a n d  d 0jdt , w h i c h  is  p roport i ona l 
to ell j cit , is the rate of c hange of magnetic fl ux .  
I t  i s  q u i t e poss i b l e  to cl<:v e l op vo l ts o f  n o is<:  
across 2 i nches of c i rc u i t  hoard etch or a s heet
meed pa nel  through t h i s  cff<:ct .  

T h e  o r i g i n a l  d es i g n s  o f  the MPS c o n v e r t e r  
t r i e d  t o  m i n i m i ze t h i s  nois<: probl e m  b y  making 
the h ig h-current l oop ar<:as as sma l l  as possi ble , 
thus  m i n i m i z i n g  the rad i a t<:d magn<: t i c  fl u x .  I n  
ad d i t i on . copper Faraday s h i e l d s  a n d  g ro u n d 
plane ci rcu i t  boards wer<: us<:d . I n  spite of this  
care . we encoun tered pro b l ems w i th c i rcu lat ing 
c u nT tHs i n d u c e d  in  th<: m <: c h a n i c a l  s u p p o r t  
s t r u c t u re i n  t h e VAX R H O O  sys t e m  d <: s i g n .  As 
w i t h  the power- l i n e  fi l ter, we could not rnl uc<: 
t h <:  n o i s <: at i ts s o u rc e .  T h e re fore , t h <:  o n l y  
v iable  so l u t i o n  was to tak<: great care w i t h  the 
chass is gro u n d  connection o f  these structures so 
t ha t  the noise cu rrents arc d i rected away from 
sens i t i v<: c i rc u i ts .  

The Logic System 

A s i g n i fi ca n t  source o f  n o i se w i t h i n  t h e  l og i c  
sys t e m  i s  t h e  e n e rgy ra d i ated f r o m  t h e  i n t<:r 
c o n n <: c t  c a b l es fro m  the I JO b u s  to the d i s k  
contro l l <:r .  T h i s  noise rad iates a t  a fu ndarn<:nta l  
freq uency of abo u t  47 M H z  The b u s  i tse l f  is  a 
h i gh-s rc<:cl , mass-storage para l le l  i nterface.  The 
i n te rc o n n e c t  c a b l e  i s  c o m posed o f  i n d i v i d u a l  
coax i a l  s ignal  pairs t h a t  a rc transformer coupled 
a n d  d r i v e n  d i f fe r e n t i a l l y .  H o w e v <: r ,  t h e  
i m pedance from t h e  coax i a l  cente r  conductor 
to the  outer overa l l  s h i e l d  i s  s l i gh t l y  d i ff<: r<:nt 
fro m th<: i m pedance from the coax i a l  s h i e l d  to 
the outer s h i e l d .  That is,  both signal cond uctors 
do n o t  h a v e  e q u a l  i m p e d a n c e s to t h <:  o u t e r  
s h i d d .  w h i c h  is  grouncl <:d t o  t h e  chassis  at  l'ach 
e n d .  Th<: resu l t  is  a n<:t noise c u rrent that flows 
on the outer s h i e l d .  Wi t h i n  the VAX 8 8 0 0  pro
cess o r ,  t h is c u rr e n t  c a n  cou p !<:  i n to a d jacen t 
cab les . 
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The only pract ical  method to mmrmize th is  
noise coupl ing was carefu l rout i ng and dressing 
of the in terconnect cables rela tive to other com
munication and power cables. 

VAX 8800 System Grounding 

This section describes the types of ground struc
t li res prese n t  i n  a l a rge system l i ke the VAX 
8800 mul t iprocessor .  A-; such a computer sys
tem expands in size and complexity ,  i ts ground 
connections a lso expand and their i nterrelation
s h i ps grow in complex i ty .  To appreciate the 
ground ing scheme as a total system ,  the various 
components must be isolated by funct ion and 
location.  I n  that way the ground system can be 
broken i n to i ts constituent elements .  The i ncl i 
vidual components can then be viewed a s  func
tional blocks that requ i re i nterconnection . 

Although a designer can choose how to i nter
connect the ground clements, he is  a lways con
stra ined by the existing i nternational regu lations 
in the i mplementation of the grounds . 

Types of Ground Topologies 

There are three choices of ground interconnec
t ion  topo logy : s i ng le  poi n t ,  m u l ti p o i n t ,  and  
hybri d .  The  s i ng le -po i nt ground l ooks l i ke a 
wagon wheel with the ground i n  the center and 
the other devices connected rad ia l ly around the 
hub.  That center becomes the absolu te ground 
poi n t ,  ca l led the zero-vol tage potent i a l  refer
ence , for a l l  devices . Mult ipo int  grounding has 
each device i nd ividua l ly connected to a s ingle 
ground plane,  al l  of which is  a t  the same zero
vol tage potential . The hybrid is  some m ixture of 
the s i ngle-poi n t  and m u l t ipo int topologies i n  
which i n terconnections are made based o n  the 
characterist ic needs of the subsystem functional 
el ements .  

The s i ngle-po int  topology is  not  practical to 
implement on a large system l i ke the VAX 880 0 .  
The  p hys i ca l  d is t a n c es a n d  assoc i a t e d  i m 
peda nces of the i n terconnects beg i n  to domi 
nate so  much  that an absolute ground point  docs 
not rea l ly exist. The mu lt ipoint ground requ ires 
a grou nd plane, or grid ,  to be effect ive .  Aga i n ,  
i n  a large system , i t  is  n o t  pract ical  t o  i mple
ment a ground plane i nto the physical  layout .  
The hybr id  scheme has  advan ta ges over  the  
other two, bu t  i t  requires a deta i led eva luat ion 
of the characteristics of each subsystem element 
before an in terconnection can be designed . That 
was the approach we fo.l lowed in design ing the 
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i n terconnection for the d i fferen t  ground types 
in the VAX 8800 system .  

D C  Power Return 

The de-to-de converters in the system requ i red a 
d e  c u r r e n t r e t u r n  t h a t  p r e s e n t e d  a l o w 
i mpedance through the frequency range of de to 
2 0 0  K H z .  O u r  p r i mary cons i d e ra t i o n  was to 
spec i fy a conductor with a s u ffi c ient ly  large 
cross-sect ional  area to keep the I R  losses and 
heat ing effects to a m in imum .  A secondary con
s ideration - often overlooked - was to m i n i 
m i ze the phys ica l  d istance between t h e  current 
feed and the return . In a l a rge system the cur
rents i nvolved can exceed 4 0 0  a mperes .  The 
res u l t i ng flu x  can produce a l arge magnet i c  
fie ld .  This field i s  determi ned by t he re lat ion
ship 

Magnetic Flux = I X /.I X A jl 

i n  which I is the current ,  /.I i s  the permeabi l i ty 
of a ir ,  and A the area and l the length of the con
d u ctor .  These lea kage f ie lds  can  coup l e  i ntO 
adjacent devices, sheet meta l ,  and cables. I f  the 
flu x  has an ac compon e n t ,  a c u rrent  may be 
i nduced i n  ad jacent conductors, as descr ibed 
earlier .  

A power supply in the MPS series used in the 
8800 has a s i lver-plated bus as its main  output . 
That bus i s  mated to a large connector that  i s  
mechanica l ly mounted on the  power backplane. 
This connector i s  soldered to mu l t ip le  epoxy
coated copper strips t ha t  are 0 . 0 5 0  i nc h  th ick  
by  2 i nches wide .  These strips are  fusion welded 
to a horizontal bar that is bolted to the inner lay
ers of the  CPU backp l a n e s .  The  s u p p l y  a n d  
return straps are overlapped t o  m i n i mize para
s i t i c  i n d uctance and  i ts consequen t  radiated 
magnetic fl ux .  The flat ,  wide geometry of the 
connection is  essent i a l  to m i n i m ize that flu x .  
(See Figure 4 . )  M in im iz ing this stray i nductance 
is a lso essential to obta ini ng rapid power-system 
response to l oad transients wi th adequate stabil 
i ty (phase m argins) . 

Logic Return 

The logic return provides a common signal ref
erence for the logic with in the system.  To min i 
m i ze noise th i s  reference must be  designed wi th  
a low i mpedance at the  frequency correspond
i n g  to the log ic  switch ing  speed . Wi th  log ic  
operat ing at  rise t imes of  1 V per  ns,  or  300 MHz ,  
t h i s  r e fe r e n c e  i s  c o n s i d e re d  t o  be  a ra d i o  
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A Logical Grounding Scheme for the VAX 8800 Processor 

frequency (RF) ground and thus can be mod
eled as a frequency-dependent i mpedance . The 
ground impedance at  these frequencies is  domi
nated by the depth  of penetrat ion of current 
i n to the conductor .  The magnet ic  fi e l d  s u r 
rounding the current forces the dens i ty of cur
rent tO decrease from the surface va l ue as the 
depth into the conductor increases . In the l imit
ing case , as frequency becomes very high, the 
current wi l l  flow as a sheet of charge at  the sur
face . The resu l t  is  a steadi ly increasing rea l  com 
ponent o f  i mpedance (resistance) with increas
ing frequency. The point  at which the current 
dens i ty decreases to 1 /f of the surface magni 
tude (approx i mately 3 7  percen t) i s  one "skin 
depth . "  

Therefore , the first step i n  calc u l a t i ng the 
ground i m pedance is  to derive the skin dept h ,  
i n  meters, a s  fol lows: 

Skin Depth = l j yn- X F X 11 

in which F is the frequency i n  Hz and 11 is the per-

VAXBI POWER 
FLEX-CIRCUIT POWER BUS 

CD HORIZONTAL 
LAMINATED CPU 
POWER DISTRIBUTION 
BUS 

VAXBI - 1/0 
BACKPLANES 

CPU BACKPLANE 

NOTES: 

-5.2 V @  200 A 
POWER BUS 

meabi l i ry of air in siemens per meter. For exam
ple .  for copper . the skin depth is 0 . 0666/ Vf: in 
meters .  Aft e r  the skin depth has been d e ter
m i ned , ·  t he i mpedance at  the frequency of con
cern can be found using the sheet resistance of 
the materia l .  The specific  resistance , R, is equal  
to p  X L 1 A ,  in which p is the speci fic  resistance 
of the conductOr,  L is the inductance, and A the 
area .  For copper, p equals 1 . 673  microohms per 
cent imeter. 

Another major factor in design ing a ground 
plane is the voltage drop across the ground layer 
at low frequencies (de to 1 KHz) as the total 
load current i s  sent fro m t he logic mod u les .  
This voltage drop produces an  offset in the logic 
threshold from module  ro module that affects 
t he noise  marg i n s ,  or tolerance . The vol tage 
drop is a function of the sheet resistance of the 
ground layer (directly proportional to the thick
ness )  and  the  m et h od of term i nat ion of the  
ground layers to  the  return buses. The connec
tion geometry must be chosen to ensure a safe 

-2.0 V @  1 00 A 
POWER BUS 

+5.2 V @  1 00 A 
POWER BUS 

@ MPS 
POWER SYSTEM 
BACKPLANE 

M EMORY BACKPLANE 

1 The return, or logic ground rai l ,  is con nected along its entire length to the system chassis and 
represents the system single-point connection of R F  (chassis) power and logic ground.  
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2. M P S  regulator rack is electrically isolated from chassis ground a n d  con nected through lossy 
R F  chokes. 

Figure 4 Logic Power Distribution System 
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maxi mum current density through the grou n d  
layers . Cu rre n t  c rowd i n g, part i c u l a rl y  at t h e  
connection points a n d  plated through-holes, can 
turn the backplane into a toaster ove n .  

W e  used t h e  i n ner l ayers o f  the C PU back
plane as the logic reference for the VAX 8800 
C P U .  T h e r e a r e fo u r  g r o u n d  l a y e r s ,  e a c h  
0 . 0 0 3  i nc h  t h i c k .  F igure 5 i l l ustrates the de 
voltage-potential drop as a function of geometry 
across the CPU backplane.  The return current is 
approximately 5 0 0  amperes; therefore , this CPU 
backplane was the most challenging part of the 
design . 

-5.2000 v 
- - - - --.- ---- - -

-7.0 mV 

-5 .193o-J---·Z:.:.�qt::::?""'A/�b�r-;r--;tJA 

NOTE: Measurements were made from corresponding local points 
on the ground plane. It demonstrates the excellent control 
over voltage drops provided by the internal ground and 
power planes of the multilayer CPU backplane. Maximum 
current available to these -5.2 V inner layers is 400 amps. 

Figure 5 Distribution of the Backplane 

Voltage for the - 5 . 2 V Power 

Plane 

A C Safety Ground 

T h e  primary fu nction of a safety ground i s  to 
provid e  a l ow i m pedance at 6 0/ 5 0  H z ,  thus  
a l lowing fau l t  currents to  fol low a path wit h  a 
low IR drop. The design and implementation of 
this path is strictly contro l l ed by the i nterna
tional regulations, to which all other uses of this 
ground must comply .  The safe ty ground a lso 
acts as a signal ground in that i t  connects prod
ucts to the ground grid of the building housing 
the system .  This connection can be detrimental 
to the system ' s  I/0 signa ls .  Thus it is advanta
geous to add an i mpedance whose magnitude is 
frequency and current dependent i n  series with 
the safety ground . A saturating i nductor meets 
those requirements. 

For a fault condition, Digita l 's internal design 
stand ards req u ire t hat a c u rrent of twi ce the 
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product's receptacle rat ing flowing through the 
safety ground system must not resu lt in a voltage 
rise of more than 4 . 0 V, and this level must be 
sustai n ed for 1 0  m i nutes.  With these req u i re
ments in mind, we used a 1 . 2 -m i l l i henry c hoke 
to isolate the VAX 8800 CPU from the building 
g r o u n d  a t  h i g h fre q u e n c y .  T h i s  c h o k e  was 
designed to saturate as described above if a fault  
occurs. 

Chassis Ground 

T h e  RF shield comprises the chassis ground and 
the outer panels of the cabinet. The federal reg
u l atory agencies ( FCC and VDE) set and enforce 
the al lowable l i mits of radiated emissions fro m 
computer equipment.  Since the i ntegrated cir
cuits within the system are switching at high fre
quencies,  they can be modeled as RF sources . 
The interconnecti ng etches between integrated 
circu its that are not tightly coupled to a ground 
l ayer can be modeled as a ntennas . 

The faster t h e  c l ock a n d  edge speed s ,  t h e  
shorter the antenna needed t o  act a s  an effective 
radiator . The length, in meters, of a ful l  wave
length is defined as 3 X 1 08 j F. 

Once t h i s  wave l e ngth has been fo u n d ,  the 
outer panels of the cabi net can be modeled as 
an a ttenuator,  which decreases the amount of 
rad i a ted e n ergy that can be transmi tted from 
w i th i n  the cab i ne t .  To m a i n ta i n  t h i s  l evel  of 
attenuation, a l l  openings ,  such as doors, must be 
bridged w i t h  conduc tive gasketing or fi nger 
stock .  The openi ngs for air  flow must be treated 
as a wave guide . The attenuation, in decibels, of 
the opening is related to its size by the fol low
ing formula:  

. 0 046 X l X F X V5 900 X Fjgap2 - 1 

i n  which F is the frequency i n  MHz,  and I is the 
l ength and gap the width of the openi ng, both 
in centi meters. 

Ground Interconnections 

within the System 

Once the separate ground e lements had been 
defi ned, we began to formu late a n  orderly inter
connection strategy for the main computer that 
would n o t  compromise the syst e m ' s  pe rfor
mance . We used the same return path for bot h 
the logic and the de power because there was 
no d i c h otomy i n  t he re q u i r e m e n ts for b o t h  
returns. In the VAX 8800, t h e  ju nction o f  these 
returns comes at the point where the hori zontal 
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bus bar ( remrn) is bol ted to the in ner layers of 
the logic backplane.  (Sec F igure ') . ) 

D i g i tal 's  i nternal  sta ndards , wh ich  meet a l I  
the appl icable i n ternat i ona l regu la t ions .  man
dates that  the de power return be con1H:cted to  
the  safety ground .  Th is connection must he able 
to wi thstand the short-c i rcu i t  cu rrem of the de 
regu la tOr  outpu t .  ( I n  certa i n  cases it  may be 
d es i r a b le to i n ser t  a fre q u c n c y - d e pe n d c n t  
i m pedance i n  seri e s  w i t h  t h is con n e c t i o n  t o  
" isolate a t  frequency ' '  a n  e lement of the syste m .  
That coul d  b e  clone when creat ing a si ng!<.:- po i n t  
gro u n d  system - di rect ly  referenced to t h e  
c h as s i s - o r  a c o n t r o l l e d  h y b r i d - g r o u n d  
system . )  

I n  the VA,'( 8800 C PU ,  the de output cou l d .  
under fau lt con d i tions, producc approxi matl' l y  
4 0 0  amperes . Thus the  i n terconnect ion  must  
han d le  th i s  h igh fau l t  currem This  i n terconnec
t ion was accompl ished by bol t i ng the j u nct ion 
n o d e  of t h e  co m b i n e d d e - p o w e r  a n d  l o g i c  
rl'turn ro the chassis for the ent i re length o f  the 
horizontal bus bar. This  porr ion of the c hassis 
was choscn as the connection poin t  becausc i t  
was nor used as a conductor  for any other h igh
frequency currents . 

I n  summary, the ground i ng approach we used 
for the  8 8 0 0  fe a t u red t h e  fo l l o w i n g  dc s i g n  
points: 

• The l o g i c  a n d  de r e t u r n  a n d  t h c  c h a s s i s  
gro u n d  a r e  connected together a t  t h e  hori 
zontal power-return bus. 

• 'T'hc power-system o u t p u ts and the c ha�s is  
gro u nd arc i sola ted fro m  gro u nd at  R F  fre
quencies by high i mpedances using lossy fer
r i t e i n d u c t ors . DC c u r re n t s a n d  l i n e - frc 
quency ( '; Oj60 Hz)  fa u l t  curren ts may thus 
flow un i mpeded . 

• Part i cu l ar care was taken to m i n i m ize t hc 
now of logi c-rem rn currents through the sys
t e m  chass i s ,  t h u s  isol a t i n g  the  p e r i p h era l  
boxes ( C I 7 5 0 ,  BA l l AW ,  e re . )  from t h e  sys
tem chassis  grou n d .  I nsu lated chass is  sl ides. 
s h u n ted by l ossy ferr i te  i n d u cto rs , acco m 
p l i shed that isolation . Although there arc st i l l  
c o m m o n - m o d e  c u r re n ts w i t h  t h e  fer r i t e  
i ndu ctors ,  t hey reduce unwanted common
mode n oise voltages that  can couple int o  cir
c u i ts through paras i t ic  inductances . That is a 
far worse problem , as we demonstrated to our 
own c hagrin .  

• T h e  l j O  pa ne l  b u l k head a n d  t h e  log ic  and 
power returns for the VAXBI bus and memory 
backpl anes are t ightly bonded tO the s i ngle
point ground at the CPU power-return bus. 

• The e l i mi nat ion of c ircula t i ng noi se and l ogic 
curren ts through the c hass is  wil l max i m i ze 
the effectiveness of the sh ielded cabinet as an 
atren uaror of rad i ated energy. 

T h e  i m p l e m e n t a t i o n  of t h i s  a p p r o a c h  i s  
shown i n  Figure 6 .  

ljO and Expansion of Grounding 

O nce the m a i n  processor's grou nding had been 
defi ned,  we had to deal w ith grounds between 
the externa l c l ements ,  such as the 1/0 s ubsys
tem . The VAX 8800 system can accommodate a 
large array of r;o devi ces by ut i l iz ing the VA.,'<:Bl  
archi tecture . The H96 5 2  EC- ED cab has  provi 
si ons for two expansion boxes , the C I 7 5 0 and 
the BA I l AW. These boxes arc self contai ned and 
have i ntegra l power suppl ies, logi c backplanes, 
and int ercon nects . In keeping wi th  our ground
i ng arc h i tcctur e .  we isolated these boxes from 
the chass is ground by using low-Q i nductances . 
The si gnaljlogic ground was then established by 
means of cables ro the VA.XBI -to-CPU backplane . 
This scheme ensures that the chass is is not used 
as a signaljlogic return . 

System to System Grounding 

Grouping systems togcther or netwo rk i ng them 
has a large impact on systcm noise and the sub
sequent  grounding techniques tO e l i m i nate i t .  I n  
terms of t h e  signa l-to -noise ra t i o  a n d  from the 
aspect of grounding.  a networked system can be 
div ided into two cases : the dense network, and 
t ill' dispersed nctwork. 

Dense Network 
A dense nc t\vork is a group of compu ters or sys
tems w i t h  associa ted su pport hardware rhat  i s  
l ocated w i t h i n  one area , e i t her an offi ce or a 
computer  roo m .  This  area i s  l ike ly tO conta i n  
systems fro m d ifferent vendors as well as phone
swi tc h i ng networks , cxperi me n ta l  equ i pmen t ,  
o r  i ndustrial control lers and moni tors. Al l these 
devices sbarc a common ground that could be a 
grid or s imply a bra nch ground as part of the i r  
safety ground .  This  connect ion also provides a 
s i g n a l  refe r e n c e  b e t w e e n  i n t e r c o n n e c t i n g  
d e v i c es i n  t h e  a rea t h ro u g h  t h e c hass i s  a n d  
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A L ogical Grounding Scheme for the VA X 8800 Processor 

power l ine ground in a complex way . Al l these 
devices can generate h i gh-frequency cur rents 
that flow into the groun d .  These currents must 
fl ow through the complex i m peda nce o f  t h e 
g r i d  w h e r e , c o n s e q u e n t l y ,  R F  vo l t a ges c a n  
deve l o p .  U n d e r  those c o n d i t i o n s  t h e  gro u n d  
wou l d  act a s  a noise i njection poi nt rather than 
a stable reference.  

Dispersed Network 

The d i spersed network i s  a n  interconnection of 
computers or systems spread over a wide are a ,  
perhaps resid i ng on different floors o f  a b u i l d 
i ng o r  i n  d i fferent build i ngs a ltogether. Commu
n i c a t i o n on t h i s  s c a l e  c a n n o t  d e p e nd on a 

mutual RF ground because i t  cannot be reason
abl y esta b l ished . In t h i s  case , com m u n i cat ion 
must  be accompl ished by means of either trans
former-cou pled circ u i ts, opti cal l i nks , or d i ffe r
ential driver/receiver log i c .  

Both types of networks i l l ustrate the fact that 
system network i n g  c a n n o t ,  and i n  some cases 
shoul d  not, be accom plished by attempting ro 
create an absolute ground reference to the net
work . 

System to Peripheral Grounding 

As a system expands with the addition of periph
era l devices , s u c h  as disk drives, pri nters , and 
LANs,  the ground system must be vi ewed as a 
large hybrid arrange ment.  Intercon necting these 
devices must be predicated on the groun d- cur
rent characteristics (si gnatu re) and the I/0 con
nections of these devices to the syste m .  

This s ignature i s  particularly i m portant when 
conn e c t i n g  devices that  were designe d co be 
used as sm a l l ,  sta n d a l o n e  appl i c a t i ons . T h e i r  
designs may have i n volved decreased l i ne-fi l ter
ing capa bi l i ti es and m i n i ma l ly sized chokes for 
grou n d  is o l a t i on or perh aps n o n e  a t  a U .  I t  i s  
i mperative that such factors b e  consi dered when 
connecti n g  peri pheral devices to a large syste m .  

Summary 

We now offe r some conclusions based on our 
re c e n t  e xp e r i e n c e s w i t h  the VAX 8 8 0 0  a n d  
ot her new syste m s .  These concl usions rake the 
for m  of recommendations for m i ni mizing noise
related problems in any compurer syste m .  

Ground Noise Current Signature 

I t  is i m p o r t a n t  to i d e n t i fy t h e  s p e c t r u m o f  
ground -conducted noise for each subsystem ele-
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ment . This noise depends on paras it ic ele ments 
i n  the circu i ts and el ectromechanica l structure . 
Th erefo r e ,  t h i s  i nfo r m a t i o n  is b e s t  obta i n ed 
e m p i ri c a l l y  b y  m e a s u re m e n ts on t h e  a c t u a l  
ha rdwa re . T h e  n o i s e  c u r r e n t  a m p l i t u d e s  a n d  
fu n d a m e n ta l  frequenc i es s h o u l d  b e  m easure d  
on c a b l e  s h i e l ds ,  c h assis grou n d s ,  1 / 0  l o g i c  
returns, a n d  power i n p u t s .  

Segregation of System 

Gro u nd Networks 

A ground system schematic shoul d  be deve loped 
for each particu l ar su bsystem.  The in tercon nec
t i o n  of g r o u n d  t y p e s  w i  I I  b e  b a s e d  on t h e  
i ntended system applicat i o n . As a general r u l e ,  
t h e  g ro u n d  t y p e s  s h o u l d  b e  s e g r e g a t e d  t o  
a c c o u n t  fo r t h e  f i n i t e a m p l i t u d e s  a n d  o ft e n  
u npredi c table paths o f  t h e  noise curre n ts .  This 
segrega t i o n  of gro u n d s  (e . g . , powe r ,  chass i s ,  
a n d  safety grounds) c a n  be acc o m p l i s h e d  by 
carefu l l y  c hoos i n g  t h e  freq u en cy - d e p e n d e n t  
impedances. These i m pedan ces are lossy ferrite 
inductors p l aced in series with the appropriate 
ground connecti o n .  

Appropriate Signal and 

Power In terco n n ect 

T h e  o p t i m a l  s i g n a l i n t e r c o n n e c t i o n s  a r e  
designed a s  contro l l e d - i mpedance tra nsmission 
l i nes with each signal and its return path closely 
cou p l ed a n d  havi n g  e q u a l  i m p e d a n c e  co t h e  
chassis ground . Depen d i ng o n  t h e  noise sensitiv
i t y ,  d a t a r a t e , a n d  i n t e rc o n n e c t  l e n g t h ,  t h e  
i mp l e m e ntation c a n  ran ge from coaxi a l  cables 
w i t h  o vera l l  s h i e l d s co grou n d - p l a n e  r i b b o n  
cables c o  r i bbon cab l es w i t h  a l ternate gro u nd/ 
signa l p a i rs .  Even t h e  cru dest , s l owest s i gn a l  
J i n e  that re l i cs o n  chassis grou n d  for a s ignal  
return i s  doomed co fa i l ure if  i t  is sensitive co 
noise . 

H igh- performance data l ines shoul d  certainly 
b e  d es i gn ed w i th l ow - i m pe d a nce d i ffe ren t i a l  
l i ne d rivers a nd rece ivers , e i ther d i rectly cou
pled or transformer cou pled.  Single-ended l i ne 
drivers and receivers may be acceptable with i n  a 
subsystem i n  which the noise between grounds 
is low and control l e d .  Communication through 
u n b u ffe red TTL o u t p u ts a n d  i n p u ts are never 
a c c e p t a b l e  w h e n  l e a v i n g  a s u b s y s t e m  b a c k 
plan e .  

The i n it ial  cost o f  a n d  board space needed for 
proper l i ne drivers a n d  receivers are more than 
justified in today's distributed comput i ng envi -
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ron m e n t .  The i r  use i ncreases re l i a b i l i ty a n d  
decreases start-up probl ems.  T h e  power i nter
connects shou ld  be des igned w i t h  m i n i mu m  
inductance and the lowest h igh-frequency char
acteristic impedance that is reasonable .  The c ir
culat ing path of supply and return power cur 
ren ts should  be kept as low as  poss ib le . Th is  
design al lows better power-system transient per
formance and ensures the existence of min imal  
rad iated magnetic fields .  

Notes 

1 .  A short c i rcuit between the h igh-voltage 
pr imary and t he low-vo ltage secondary 
could produce lethal voltages referenced 
to the chassis ground at accessible poi nts 
w i t h i n  the computer .  Wi th  th i s  s h i e l d ,  
however ,  t he short wi l l  produce a h i gh 
faul t  current to the chassis .  That current 
w i l l  open va r i ous p rotect i ve dev ices ,  
such  as  fuses and  c i rcu i t  breakers , tha t  
render the  system safe in  the  event  of a 
fau l t .  

Appendix 

Determining Skin Depth 

To calcu late the i mpedance of a given conduc
tor, the depth of current  penetration - or skin 
depth - in a con duc tor m u st be ca l c u l a ted 
fi rst . To do tha t ,  a designer must perform the 
fol lowing steps: 

1 .  Determine the type of metal of which the 
condu ctor is made ( i . e . ,  copper, z i n c ,  
etc . ) . 

2 .  Look up i n  a reference table the magnetic 
suscepti b i l i ty of the materia l .  (The CRC 

Han dbook of Chemistry a n d  Physics 

conta ins tab les of this nature . )  Two types 
of l isti ngs of suscept ibi l i ty are commonly 
u s e d . T h e  f i rst  type  g i ve s  v a l u e s  o f  
speci fic  suscept ib i l i ty t hat must b e  con
verted by mult iplying the value by 4 X 1r 
X density of mater ia l ,  called P .  For cop

per, th is  va lue would  be - 0 .086 X I Q -(, 
X 4 X 1r X 8 . 89,  which equals - 0 .960 
X 1 0 - s .  

T h e  second type uses suscepti b i l i ty i n  
one gram fo r m u l a  w e i g h t .  T h i s  va l u e  
m ust be converted by mu lt iplying i t  by 4 
X 1r X dens i ty of material or molecular 
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we i g h t ,  w h i c h  fo r c o p p e r  w ou l d  be 
- 5 .4 6  X 1 0 - 6 X 4 X 1r X 8 . 89/63 . 5 4 ,  

which equals - 0 . 960 X 1 0 - s.  

3 .  The resu l t i ng figure mus t  now be con
verted to re l a tive permeab i l i ty by add· 
i ng 1 . 0 to the suscepti b i l i ty factor. For 
copper, th is  value would  be 1 . 0 - 0 . 960 
X 1 0 - ' ,  which equals 0 . 9999904 . 

4 .  The relat ive permeabi l i ty must  be con
verted to permeabi l i ty by mul t iplying the 
value from step 3 a bove by t he perme
abi l i ty of a i r  ( 4  X 1r X 1 0 - 7 ) .  For cop
p e r ,  t h i s v a l u e  wou l d  be 0 . 9 9 9 9 9 0 4  
X 1 2 5 6 6 3  X 1 0 - 6 , w h i c h e q u a l s  
1 . 2 5662  X 1 0 -6 . 

5 .  The next piece o f  information needed is  
the  conduct i v i ty of  the  mater i a l  used . 
Th is value must be in  the form of s iemens 
per meter, a l though most l ist ings wi l l  be 
i n  ohms per cent imeter. To convert , mul 
t ip ly the table  en try by l X 1 0 - 2  a n d  
then  take the reci proca l .  For a n nealed 
copper, th i s  value is  1 / 1 . 7 2 4 1 X 1 0 - 6 

X 1 X l 0 - 2 , w h i c h  e q u a l s  5 . 8 0 0 1 
X 1 07 .  

6 .  The sk in  depth can then be determi ned 
by the re lat ionshi p  l j(1r X frequency of 
concern X conduct iv i ty X permeab i l 
i ty J ' 1 ' . The  resu l t  can  be  man ipu lated to 
the form of 1 j ( 1r X conductivity X per
meab i l i ty) ' 1'/ ( frequency of concern) ' t'
For copper ,  th is va lue i s  l j(1r X 5 .800 1 
X 1 07 X 1 . 2 5 6 6 2  X 1 0 - 6) ' " .  w h i c h  

equals 0 .06608/(frequency o f  concern) ' 1 ' .  
For example,  i f  the frequency of concern 
were 1 KHz, then the sk in depth would 
be 2 . 089 X 1 o - 3  meters ,  or 2 . 089 m i l ·  
l i meters, deep .  

I f  the  frequency of concern were 5 0  KHz ,  
then the skin depth wou ld  be 295 m icro
meters . 
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Cheryl A. Wiecek I 

The Simulation of Processor 
Performance for the VAX 8800 Family 

An effort was initiated in the fall of 1981 to simulate the performance of 
the processor design for the VAX 8800 family of computer systems. That 
simulation stayed current with the changing design and continues to be 
used today for studies associated with developing VAX processors. This 
paper discusses why this simulation was done, how it was structured, and 
what was simulated. Since the results generated are quite extensive and 
detailed, only the conclusions from these studies are presented here. 
What was learned from the model and how it affected the processor 
design are particularly emphasized. 

Many levels of s imu lation are done with in  pro
cessor deve lopment  projects we l l  before any  
ac tua l  h a rdware i s  b u i l t .  Structura l  models  a t  
the  c i rcu i t  and  gate levels are used in  tasks such 
as ver ify ing t i m i ng and developing d iagnost ic  
tests . Behavioral mode ls at the  fu nct ion l evel are 
u s e fu l fo r v e r i fy i n g  p r o c e s s o r  i ns t r u c t i o n  
m icrocode . Another usefu l c lass o f  models s imu
la tes performance at the m icrocyclc level .  Such 
models look at  a processor's design as a collec
tion of  hardware resou rces that must be m a n 
aged.  These models are most usefu l  for gather
ing des ign trade-off i nformat ion  and verify i n g  
the design performance esti mates . By emphasiz 
ing  the  key hardware resources a n d  how they 
i n teract,  performance s imu la tors can 

• Focus on how those resources arc being used 

• Indicate how wel l  they support the req u i red 
activ i t ies 

• Provide a h igh- level view of the i n teractions 
in  the processor syste m 

This paper descri bes the performan ce s i m u 
la tor  u s e d  on t h e  project tha t  deve l o ped t h e  
VAX 8 8 0 0  fa m i l y  of  co m p u te r  syst e m s . T h i s  
model ing project began in the fa l l  of I 98 1 ,  and 
the s i m ul at O r  c on t i n ues to b e  used today to 
s t u d y  a l t e r n a t i ves fo r n e w  VAX p ro c e s s o r  
designs . The fol lowi ng two sections discuss how 
the s i mu lator was designed and what was s imu
lated . The t h i rd section h i g h l ights the resul ts 
and discusses what was l earned from them.  

1 00 

Methodology 

The overa ll structure of the performance model 
m i rrors the str u c t u re used prev i o u s l y  fo r t h e  
performance s imu lat ion o f  a PDP- I I processor 
des ign . 1  The mod e l  cont a i n s  t hree parts .  a l l  
developed as separate enti t ies : 

• The instruction stream that is acted on by the 
processor resources 

• The microcode that d i rects i nstruction execu
t i on 

• The s i m u l a t ion  of t h e. processor resou rces 
and t i m i ng 

These three parts are then combi ned to gener
ate s imu la t ion  resu l ts .  The tasks performed to 
develop each parr are d iscussed in  the fol lowing 
sect ion .  

Workload Model 
The most appropriate m odel for the workload 
fed to t h e  s i m u l a t o r  is t h e  s t r e a m s  of VAX 
i nstru ct ions from typ ica l  programs be i ng exe
cuted . I n formation about each executed i nstruc
rion is req u i red w obta i n  performance data at 
the m icrocycle leve l  about the processor and i rs 
resou rces . The software used w extract t h ese 
execut ion  strea ms had a lready been developed 
from a previous project .  That software i s  essen
t ia l ly  a debugger that uses the VAX T-bit to gen
erate a software trap after the execution of each 
i nstruct ion in  the traced program 2 That t racing 
perm its the co l lect ion of the next instru ction 's 

Digital Technical journal 
No. 4 Februmy 1987 



operation code,  the addressing modes and regis
ters of the operand specifiers, the read and write 
references, and the operand val ues . 

The task of choosing which programs to trace 
was bounded by a number of requ i rements and 
constra i nts .  One req u i rement  was to prov i de 
some i n i t i a l  p e rfo r m a n ce es t i m a tes for t h e  
VAX 8800 fam i l y processor . Those est i mates 
emphasized i nteger, logica l ,  and float ing-point  
operations in  CPU-intensive programs. Another 
requ i rement  was to select programs  that exer
c ised the processor resources that we wanted to 
model , espec ia l ly the cache subsystem ,  where 
capturing best-case , typical , and worst-case sce
narios was important .  

A l l the constra i nts  i nvolved the progra m s  
from which i nstructions were traced . A reason
able length for these programs was about one
ha l f  m i l l ion VAX macroi nstru ct ions ,  thus per
m i tt i n g  t h e  s i m u l a tor  to process t h e m  i n  a 
reaso n a b l e  t i m e .  We avo ided  programs t h a t  
requ i red extensive microcode characteri zation 
for instructions that were e i ther Jess frequently 
executed or too complex, such as those i n  the 
packed decimal  group.  Moreover, the trace soft
ware was l imited to process ing execut ing pro
grams that ran in nonprivi leged user mode . Thus 
we had to avoid programs, such as editors , hav
ing  extens ive operat i ng-system servi ce ca l ls ,  
which cou ld only b e  part ia l ly traced . 

We chose s ix  programs ro drive t he model .  
These i ncluded four  benchmarks and two popu
lar ut i l i ti es for creat ing execu table i mages on 
VAX system s .  The n u mber of i t erat ions in the  
four benchmarks was shortened proportional ly ,  
keeping the  mix of  i nstru c t ions  constant  to 
reta i n  thei r representat ive ness.  Three bench
marks were wri tten in  FORTRAN : Towers of  
Hano i , a pri me-nu mber generatOr, and s ingle 
prec is ion W he tstone ;  one ,  ca l led Puz z l e ,  was 
wri t ten  i n  PASCA L .  The o t h e r  two progra ms  
were a FORTRAN compi le  and  a VAXjVMS l ink ,  
both written in  BLISS. For a l l  the i r  constra ints,  
these programs exercised the model  wel l .  The 
accuracy of the performance estimates was con
fi rmed later by measu re men ts on a prototype 
machine .  

Microcode Model 
How m icrocoded i nstruction control i s  charac
ter ized has a sig n i fi can t  i m pact on both t h e  
speed and resu l ts o f  a processor performance 
s imul ator. For exa mple ,  creat ing a model a t  a 
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very detai led leve.l perm its a fi ner ana lys is of the 
resu l ts ,  but takes a long t i m e  ro develop and 
ru n .  Therefore , we had to decide what the trade
off should be between t ime and deta i l .  We a lso 
wa nted to stay current wi th  the latest develop
m ents in the  processor microcode ,  which  we 
knew wou ld change s i g n if icant ly  d u r i ng the 
project. With a l l  that i n  m ind ,  we decided to use 
t h e  l a tes t  vers i o n  of t he a c t u a l  m i crocode  
sources as  the i nput  ro a u n i que  process , par
t ia l ly automated, that extracted the information 
needed by the s imu lator . This strategy a l lowed 
us ro i gnore deta i l s  that were not  req u i red by 
t h e  s i m u l a tor , a s  we l l  as to k e e p  u p  w i t h  
m icrocode revi s ions  as t hey were released . A 
useful by-product of this approach was the abi l 
ity to prod uce m icroPC h istograms with the s im
u lator. This i nformation helped to explain how 
the m icrocode was being used . 

One step i n  mode l i ng the  m i crocode i s  to  
determine the control fie lds t hat  are key to the 
processor's performance. Only a sma l l  nu mber 
of the defined fields are actua l ly  needed . Many 
m icrowords are effectively no-operation instruc
t i o n s  fo r the  s i m u la ted  p roce ssor p i pe l i n e .  
Table I conta ins the microword key for the per
formance s imulator. Each m icroword has three 
fie lds :  SRC, ALU ,  and DST. In a n y  mi croword, 
each fie ld has a command su bfie ld  and up  to 
three operand subfields .  (The address operands 
genera ted by the  trace software are ac tua l ly  
extracted a s  bo th  the  traced program and  the 
s imulator are being ru n .  The other operands and 
co m m a nds are extracted from the m icrocode 
prior to s imu lation execution . )  

Before a ny actual m icrocode had been devel 
oped, s imul ated m icrowords were written man
u a l l y  fro m  m icrocode fl ows provided by the 
group developing the firmware . Once the actual 
mi crocode was ava i lable ,  a significant portion of 
the performance s imulation m icrocode was gen
erated autOmat ica l l y  by mapping rea l fie lds to 
the sma l l  n u mber of fi e l ds that the s i m u lator 
requ i red . This automatic mapping of processor 
m icrocode to that  used i n  the s i m u l atOr  was 
complicated by several issues . 

One prob lem was that  the m i crobranch ing  
logic requ i red addit ional  information a t  s imula
tion run t ime ro dec ide which branch path to 
take . To solve that problem, the firmware group 
flagged m icrobranches by i nsert ing  commen ts 
in their microcode .  Those comments were then 
ca ught by the microcode translat ion software , 
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Table 1 Microword Key to the Performance 
Simulator 

Field Command Description Operands 

Any No operation performed.  None 

S A C  Stall if t h e  memory data ASRC, 
registers ( M D R s) specified B S R C  
b y  A S R C  a n d  B S R C  a r e  not 
yet val id for i nput to the 
arithmetic logic unit (ALU). 

ALU Send a cache arbitration None 
signal and stal l  the pi pe-
l ine if i t  is not the winner.  

DST Send the cache a read M D R  
request for x Bytes starting n u m ber,  
at  Address,  and set M D R  Bytes ,  
nu mber t o  val id when the Address 
data is avai lable.  

DST S e n d  t h e  c a c h e  a w r i t e  S i g n a l ,  
request with x Bytes o f  data Bytes , 
starting at Address. The Address 
value of Signal dete rmines 
whether hardware or mi cro-
code control sends the write 
buffer data to memory. 

DST Conditional ly  flush the I B  Address 
and provide the cache 
with a new Address for 
prefetching IB data. 

DST Send the cache notification No ne 
of a new address for pre-
fetching IB data once the 
decoder handles the 
I S-address page cross. 

DST Send the cache a read/ None 
write probe request. 

which marked them for processing at  ru nt ime . 
Another problem was that some VAX macro in 
structions had  no t  been coded yet, and  others 
were more complicated than requi red for s imu
lat ion .  (Many of the VAX floating-point  i nstruc
t i o n s  were in t h i s  ca tegory . )  I n  those cases  
sequences of  handwritten microcode were used . 

Processor Simulation Model 
The structure of the processor s imu lation model 
was d r i v e n  by t h e  n e e d  to  prov i d e  t i m e l y  
answe rs to quest i ons asked by the designers . 
The resu l ts had to be generated , ver ified , and 
d istr i buted as  qu ick ly  as poss i b l e  to  be mos t  
useful in design trade-off decisions. The require 
ments we considered most i mportant  were the 
fol lowing 
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• The s imulator must have a modular structure 
that fac i l i tates replacing,  reconfiguring, a nd 
re u s i n g  r o u t i n e s w h i l e  m i n i m i z i n g t h e  
rumime overhead . 

• A g e n e ra l - pu rpose c o n t r o l  m e c h a n i s m  i s  
needed to manage commun icat ion and syn
chroniza t ion between a number of i ndepen
dent tasks running i n  para l le l . 

• E x t e n s i ve a n d  f l e x i b l e  ljO fe a t u res a r e  
needed t o  generate cycle-by-cycle traces and 
reports with s imulated performance sta tistics. 

• The ratio of s imu lated time to real time must 
not be a bottleneck to obta in ing resu lts. 

We chose a structure that favored changing 
and reus ing parts of  the s imulator ,  but  which 
ra n s lower ,  over one  that  ran faster ,  but was 
hard to change . We d id  this  knowing that the 
s i m u l a tor wo u l d  be used to try m a ny design 
ideas that woul d  eventua l ly be d iscarded . The 
simu l ator a lso had many parameters bu i l t  in so 
that d ifferent confi gurat ions and t imings cou ld 
be tried . The structure we chose cou ld be used 
to evaluate many design alternatives. Since this 
was the first VAX processor to be modeled this 
way , we had to design and build all  the software 
for the s imulator; none of it could  be borrowed 
fro m other projects . Therefore , we knew that 
producing results quick ly woul d  be difficu l t .  

The structure chosen required that the  simu
lated processor be part i tioned into a number of 
i ndependent components ,  each mode led by a 
d e t er m i n i s t i c  s t a te - m ac h i n e .  T h a t  m a c h i n e  
defined the actions to be done when each state 
was emered, and the conditions to be eva luated 
for d ec i d i n g  t h e  n e x t  s ta t e  t ra n s i t i on . T h i s  
approach had several advantages. The hardware 
designers cou ld  re l a te easily to state -machine  
models of  the i r  part icu lar designs, even t hough 
the states i n  the s imu lator sometimes marked 
performance-related events ,  not real hardware 
states .  Th is  structure a lso made it poss ib le  to 
repl icate components and reconfigure the origi
n a l  s i ng le -processor vers ion of the s imula tor 
in to a dual -processor vers ion .  

A monitor i s  needed to control the communi 
cation ,  synchronization , execution , and status of 
these i ndependent  state -machi ne components. 
For com munication between components, only 
certa i n  types of send and receive operations are 
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used .  Th i s  restr ic t ion  a l lows the  compone n t  
interfaces t o  be s imple and wel l  defined.  There 
are three types of send operations: 

1 .  A targeted send d i rects source i n forma
t ion w a s i ng le  dest i na t i o n  w i t h i n  the 
current cycle .  

2 .  A broadcasted send d i rects source infor
m a t i o n  to z e ro or m o re des t i n a t i o n s  
within the current cycle .  

3 .  An arbi trated send d i rects source informa
tion to a s ingle destinat ion , sta l l i ng exe
cut ion  of the sen d i ng component u n t i l  
the information i s  del ivered . 

There are two types of receive operations: 

1 .  A targeted receive resul ts i n  the del ivery of 
source information from a send operat ion . 

2 .  A collection receive i s  l i m ited tO probing 
sou rce i n format ion from a send opera
t i o n ;  t h i s  i n fo r m a t i o n  is u se d  by t h e 
model to make decisions . 

The moni tor keeps two queues for the com
ponents: one for component send requests, the 
other for component receive requests. The mon
i tor a lso synchronizes send and receive requests 
on behalf of the components and reports errors 
w h e n  u nd e l i ve re d  s e n d  or rece i ve e n t r i e s  
remain i n  the queues . 

Syn c h ro n i z a t i o n  be tween  c o m p o n e n t s  i s  
ach ieved us ing t h e  sen d ,  receive ,  a n d  t i m i n g 
services b u i l t  i n to the mon itor . The send and 
receive operations a l low the spec ifi cat ion of a 
phase number so that components can send and 
rece ive i n format ion o n ly a t  ce rta i n  i n terva l s  
wi th in  the  basic m icrocycle clock recognized by 
the mon i tor .  The moni tor b locks components 
fro m execu t i n g  w h i l e  they w a i t  for send o r  
receive requests t o  be serviced . States within a 
component can be designated as t ime sensit ive .  
When the next  state to be  executed wi th in  a 
component is so designated , that component is  
blocked from execut ing unt i l  the moni tOr i ncre
ments the clock .  

Exe c u t i o n  p ro c e e d s  on t h e  bas i s  o f  o n e  
mach ine cyc le .  State - machine components a re 
chosen to execute,  one at a t ime ,  starti ng at the 
state at wh ich  each was last l eft . Component 
execut ion con t i n ues u n t i l  the req u i red send , 
receive, or t iming service returns control to the 
mon i tor .  When a l l  components have reached 
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states i n  which no more activity is possi ble for 
the cycle, the mon itOr wi l l  i ncrement the mas
ter c lock and the execution of components can 
resume .  End-of-s i m u l at ion and detected-error 
con d i t i ons  cause  the  m o n i tor  to generate  a 
report of resu l ts by cal l i ng each component to 
execute i ts report code .  

The complete model for the VAX 8800 fami ly 
processor ran on a VAX- 1 1 /780 system and exe
cuted about six VAX macroinstruct ions per CPU 
second .  That translates to a rat io of s imu  Ia ted 
t ime to real t ime of about 90 ,000 tO 1 .  The con
trol moni tor was written in PLj l ;  the processor 
state -machine components were written us ing 
VA,'{ assembler macros . Once the ADA language 
had been added ro the l ist of VA.X-supported lan
guages , we translated the ent ire processor per
formance s imulat ion model i nto that language . 
This new s imu latOr is be i ng used for fol low-on 
processor performance s tud ies .  The ADA l an 
guage was chosen because i ts mul t i tasking fea
tures provide excel lent support for the control 
moniror functions that we defined . 

Verification of the Simulation Model 

An i mportant and  often over loo ked aspect of 
developing a performance s imu lat ion model is  
the effort re q u i red  to ver i fy t h a t  the mode l 
reflects the actual design . In the early stages of a 
project ,  the deta i ls of the proposed design are 
usually communicated by word-of-mouth .  Con
t i nuous changes to that original design enlarge 
great ly the marg i n  for error wi t h i n  a perfor
mance s imu lator . S ince wrong performance data 
is counterproductive, a great deal of our effort 
went  i nto verify ing that the s imula t ion  opera
t ion and resu l ts accurately reflected the current 
state of the design . 

Once the performance s i m u l ator prod uced 
resu l ts ,  the designers reviewed cycl e-by-cycle  
traces of s imu lator act iv i ty to confi rm t hat the 
s i m u l ator 's  opera t i o n  matched the processor 
design . In add i tion ,  we developed a set of short 
tests that exercised certa i n  key functions. These 
tests were rerun for each new version of the s im
u l ator ,  and the test resu lts were exhaust ively  
compared to those from the previous version . 
This procedure was effect ive in reveal ing u nan
t icipated interactions and errors due to changes 
made i n  both the s imulator and the design . As 
the design progressed ,  we were able to compare 
our s imulation resul ts with those from a behav
iora l  model  used for debuggi ng m i c rocode . 
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Eventua l ly ,  we could com pare our resu l ts with 
those from a worki ng prototype system . Because 
t h e  m o d e l  t ra c k e d  t h e  d e s i g n ' s  evo l u t i o n  
closely, these compar isons showed the perfor· 
mance model to be an accurate representation 
of the design. 

Performance Model for the 

VAX 8800 Family Processor 

This section descr ibes the processor ha rdware 
resources that were modeled.  For each modeled 
component, there i s  a short summary descri b ing 
i ts fu nct i o n ,  the i n form a t i on com m u n i cated 
with other co mponents, and the parameters that 
can be specified at  runt ime to control s imu la
t ion configu rat ion and t i m i ng .  Al though some 
information about the VAX 8800 fami l y  proces
sor design is i nc l uded , reference 3 shou ld  be 
consu l ted for more deta i l .  

Figure 1 i s  a n  overview o f  t h e  processor per· 
formance simu lator used for the VAX 8800 fam· 
i ly .  The various components are represented by 
circles ,  the com munication paths by arrows . As 
described earl ier ,  each component is an i nde· 
pendent state- machine  that communicates with 
o t h e r  c o m p o n e n ts u s i n g  d e fi n e d  s e n d  a n d  
receive operations. 

MICROINSTRUCTION 

Figure I Performance Model for the 
VAX 8800 Family 

I 04 

Decoder 
The decoder state-mach ine sends the pipel ine a 
m icro i nstruct ion dur ing every unsta l l ed cyc le 
and detects the end -of-s imu lation condi t ion . To 
do those act ions ,  the  decoder requests bytes 
from the instruction buffer ( I B ) ,  using informa
t ion prov ided in the i nstruction trace . When the 
I B  ind icates that the requested bytes a re ava i l ·  
able,  the appropriate m icrocode flow is chosen 
tO start execut ion . If the IB cannot d e l iver the 
req uested byres , t h e n  no-opera t i o n  m i croi n ·  
structions are fed to the decod er. The decoder 
must a lso commun icate with the cache contro l .  
For example ,  the  decoder m ust reso lve any  lB· 
address page crosses detected by the I B  prefetch 
hardware in the cache . Also kept by the decoder 
is a parameter that contro ls the nu mber of VAX 
i nstruct ions execu ted between cache f l ushes 
due to context swi tching. 

Pzpeline 
T h e  p i p e l i n e  s t a t e - m a c h i n e s i m u l a tes  how 
micro instructions prov ided by the decoder are 
to be execu ted . During any one cycle ,  parts of 
three consecut ively queued m i cro i nstruct ions 
arc processed : 

• The DST fi e ld of the oldest micro instruction 

• The ALU fie ld  of the next m icroi nstruction 

• The SRC fie ld of the m i cro instruction most 
recent ly queued 

For  e v e ry cyc l e  t h a t  t h e  p i p e l i n e  is n o t  
sta l l ed ,  t h e  o l dest m i croin struct ion i s  ret i red 
after the command i n  i ts DST f i e ld has com· 
pleted . The actions performed by the pipe l i ne 
are described in  Tabl e  I .  The pipe l ine can send 
fl ush requests to the IB, and processor read and 
write requests to the cache (after arbi trati ng and 
winn ing i t) .  The pipel ine a lso manages the val i ·  
dat ion o f  t h e  memo ry clara  regis ters ( M DRs) . 
Pipe I i ne stal l s  that resu lt from those actions are 
made known to the decoder. The only pipel ine  
parameter the user must enter i s  the cycle t ime 
in  na nosecon d s ,  used fo r c a l c u l a t i n g  perfor· 
mance data at the end of s imu lat ion .  

Instruction Buffer 
The I B  state- machine s imu lates a fi rst - in , fi rst· 
out (F IFO) cache for VAX instruc t ion  stream 
data . The IB accepts requests for bytes from the 
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decoder and notifies it whether or nor  the byres 
are ava i l ab le .  The IB  mode l  does nor actua l ly 
srore any stream data ; however, i r  does manage 
the counr of va l id byres within IB longwords as 
that data is shifted i n  and out .  The cache-control 
component prefetches data for t he IB and a l so 
notifies the I B  of prefetched data whenever no 
other activity is schedu led for the cache during 
a cyc l e .  When fu l l ,  the I B  no t i fies the cache 
control of that cond ition . l n  turn , the I B is noti
fied by the pipe l ine m odel when i t  needs to be 
fl u s h e d  d u e  to a c h a nge i n  t h e i n s t r u c t i o n  
stream sequence . 

The configu ration of the I B  is control led by 
two para meters : rhe number of b locks, and the 
number of bytes per b l ock . For the VAX 8800 
fa mi ly  processor ,  t he IB  has four  b locks, each 
four bytes long. 

Cache Arbiter, Con trol, and Queues 
From the viewpoint  of performance , the cache 
subsystem in t h e  VAX 8800 fam i l y  processor 
conta i ns an i m portant  set of  reso u rces . T h i s  
cache design was modeled i n  t h e  s imulator by 
t h ree stare - m a c hi n e  compon e n t s :  t h e  cache  
arbiter, the  cache contro l ,  and  the  cache mem
OI·y-request queues. From the viewpoin t  of per
formance s i m u lation , these fu nctions were the 
most i nd e pendent  ones that cou ld be  segre
gated . 

T h e  cache  a r b i t e r  s t a te - m ac h i n e co l l e c t s  
requests from the three components that require 
cache service . The fi rst , t h e  p ipe l i ne mod e l ,  
sends readjwrite arb i tration signals for the pro
cesso r .  The secon d ,  the cache-contro l  model , 
sends read arbitration s ignals for a sta l led-pro
cessor cond i tion . The th ird ,  the me mory i nter· 
connect mod e l ,  sends memory arbitrat ion sig
na ls .  During every cycle ,  the arbiter sends to the 
cache contro l the arbi trat ion winner that wi l l  
have the cache during the next cycle .  There i s  a 
fixed priority for choos ing  an arbitration win 
ner .  Memory has the highest priority ,  fo l lowed 
by processor reads and wri tes of various types;  
cache I B  prefetching (the defau l t) has the low
est pr ior i ty . The cache -contro l and  m e mory
request queues models a lso provide status infor
mation used in decid ing an arbitration winner. 
Certa in types of sta l l s  resu lt in  no winner.  The 
a r b i t e r  mod e l  req u i res no para m e te rs to be 
specified by a user at runt ime .  
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The cache-control state-machine is  the center 
of the performance s i m u la t ion  mod e l  i n  the 
sense that  i t  communicates with a l l  but one of 
the other state-mach ine components. The hard· 
ware resources managed include the combined 
in struct io n-strea m-and-data cac he , and a long· 
word de layed-write buffer used ro hold write-hit  
data unti l it can be written into the cache . Like 
the 1 8 ,  the cache control model keeps contro l  
and  status information only for the cache and 
the write buffer. Dur ing every cyc le ,  the cache 
contro l acts on the request chosen during the 
last cycle by the arb i ter. That request can be a 
refi l l  fro m  m e m o ry,  a read l o o k u p  a n d  t h e  
appropriate cache h i t  o r  miss activity, or a write 
to the delayed-write buffer and memory .  For a 
cache-write requ est , the data in the d e l ayed 
write buffer i s  written to the cache when the 
next wri te request is processed , and then only if 
the address of the buffered write actual ly  h i t  in 
the cache .  I f  there are no me mory or processor 
requests , data is prefetched for the IB automati· 
cal ly .  by defau l t .  

A number of  para meters can  be specified at 
runti me within the cache contro l ,  most of them 
specifying the configuration of the cache. Such 
configuration parameters i nclude 

• Switching the cache on or off 

• The cache s ize in bytes 

• The set size 

• The b lock size in  byres 

• The b lock fi l l  s ize in  bytes 

• The b lock re placement a lgo rithm (random , 
least recently used , or F IFO) 

• The memory updating a lgorithm (write back 
or write through) 

• Al location for write misses 

C o n t r o l  d o e s  n o t  e x i s t  f o r  a l l  pos s i b l e  
cache options i n  the processor model  for the 
VAX 8800 fa m i ly ,  but  the  cache ro ut ines do 
su pport them . The i mplemented cache configu
ra t ion  is 6 4 KB ,  d i rect  mapped wi th  6 4 - byte 
blocks and a 3 2 -byre block fi l l  (done as rwo sep
arate 1 6 -byte refi l l  sequences) . It features write
through me mory upda t i ng and  no a l locat i on 
for write m isses .  For study pu rposes, a nother 
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parameter was i ncluded that a l l ows ei ther one
or two-cyc l e  read h i ts to the cache . The VAX 
8800 fam i ly processor d<:sign impk m<:nts onl"
cyc lc cache read h i ts .  

The cache m e m ory- reques t  q u e u e s s t a r e 
mac h i ne manages t h e  I B  read-m iss queue ,  the 
processor read -miss queu e ,  and th<: writ<: -huffer 
q u e u e .  The I B  read - m i ss q u e u e  has two e le 
ments, thus a l lowi ng two outstanding misses for 
I B  data . A th i rd outsta nd i ng mi ss w i l l  re p l ace 
the second one. thus avoi d i ng a p ipe l i ne  sta l l .  
The processor read-m iss queue has one c l ement :  
therefore, two outstanding read mi sses wil l  sta l l  
the p ipe l i ne .  However ,  processor read h i ts arc 
a l lowed to con tinue with one outstanding read 
mi ss . The wri te -buffer queue  consists of rwo 
octaword ( 1 6 - byte)  e l e m e n ts . Conse c u t i ve 
wri tes with i n the same octaword arc buffered 
unti l an event forces data in the wri t<: buffer to 
be sent to memory. That event can be encoun 
tering either a write that i s  nor in the same octa
word or a mi crocod e control command . The  
c a c h e  c o n t r o l  s e n d s  re a d - m i s s a n d  w r i t e  
requests to the appropriate queue.  I f  a queue is  
fu l l ,  a s i gn a l  te l l s  the cache control  tha t  no  
more req uesrs can be accepted . 

From the cache queues,  req uests to memory 
arc generated and sent w the memory intercon
nect after the arbi trat ion for that  i n terconnect 
has been won .  These requests are priori t ized to 
fac i l i ta t e  c hoos i n g  w h i c h  of t h re e  poss i b l e  
req uests wi l l  be sent  to the m<:mory i ntercon
nect at any point i n  t ime .  To mainta in  the rank
ing,  a two-bit  cou nter w i l .l i n crement on ly on 
th<: appearance of a write fo l lowing a read . The 
request chosen i s  the one with the lowest ra nk 
co unt . If two requests have the same ra nk ing .  
priority wi l l  be  given first ro the  write . then w 
the processor read , and fi n a l l y  to the I B  read . 
The cache queues component has one parame
t<:r that can be specified at ru nt ime : the n u mber 
of cycles that a request ready to be se nt tO the 
memory i nterconnect must remain queued The 
fina l  processor i m p le me n tat ion req u i red on ly  
one cycle ,  a l though th is  t iming was nor known 
when the model was bu i l t .  

Memory In tercon nect 
The memory i n tercon nect state-mac h ine hand ks 
requests between the cache queues and mem
ory. Tra nsactions req u iring one or  more cycles 
on the bus i nc lude  cache-refi l l  data , i n  octa
word packets , from me mory; processo r-write 
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requests of up to an octaword i n  size;  and pro
cessor da ta - or i ns t ruc t ion- read re q u ests for 
3 2  bytes (returned from memory as rwo ocra
word pac kets ) . Unt i l  transmi tted . each transac
tion · · owns" the bus. A one-cycle settle t ime is 
requ i red between transactions as wel l .  Arbi tra
t ion for the bus occurs dur ing  every cyc l e  to 
choose a wi nner for the next cyc l e .  Priority i s  
given first tO  the  current  transaction holding the 
bus. t hen tO the one-cycle settle rime, then to 
memory. a n d  fi na l ly to a ny pend i ng write or 
read from the cac he .  A cache request to memory 
is que ued dur ing the cycl e  after the request was 
transm i tted on the  bus .  The tim ing of subse
quent  cache requests for memory is contro l led 
by t h e  s u m  of two p a r a m <: r e rs s p e c i f i e d a t  
ru nt ime.  Thes<: para meters arc 

• The n u mber of cyc les  between the  t i m e  a 
cache requ est transm its on the i n terconnect 
and the r ime the cache rcc<:ives an acknowl
edgmen t from th<: bus 

• The nu mber of cyc les between the t ime the 
cache receives the bus acknowledgm ent and 
the rime the next cache request can transm it 
on the bus 

The VAX 8800 fa mi ly  processor i m plementa
t i on  h a s  a va l u e  of  two fo r e a c h  p a r a m e t e r ,  
a l though t h i s  t i m i n g had n o t  b e e n  determi ned 
when  the m o d e l  was c r e a te d . Seve r a l  o t h e r  
parameters were inc luded i n  the memory in ter
connect state- mac h ine for study pu rposes . The 
one-cyc le settle time can be enabled or d isabled. 
and the i n terconnect can acknowledge configu
ra t i ons with e i t her one or two processors . We 
a lso included the capabi l i ty tO slow the memory 
s u b syst e m .  re l a t i v<: to t h e  processorj c a c h e  
requ est t im ing .  by ei ther two or three r imes .  

Mem ory 
We h a d  c o n s i d e r e d  m o d e l i n g  i n  d e t a i l  t h e  
designs for both the memory control ler  and the 
array module .  The effort required was so substan
t i a l , however, that we first  mod e l ed o n l y  the 
best - and worst - case  sce n a r i o s .  The e n s u i n g  
resu lts ind icated that ex tra deta i l  in the model  
wou ld nor  y i e l d  correspond i ngly en l ighte n i n g  
i n fo r m a t i o n ; t h e re fore , t h e m e m o ry s t a t e 
machine models only best- and worst-case mem
ory performance . The choice of best- or worst
case i s  a para m e t e r  spe c i fi e d by t h e  u s e r  a t  
runt ime.  
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The best-case memory mode l assumes memory 
is never busy and can take requests from the mem
ory interconnect w henever they are generated . 
Thus instead of the eight memory-array modules 
the processor is l i m i ted to ,  th is  mode l  effec
t ively s imulates an infin i te number of modules 
with no contention for specific ones . The only 
parameter the user must specify is the number 
of cycles betwee n  the  r i me the  read request  
reaches memory and the t ime memory arbi trates 
for the me mory i nterconnect to return requested 
read data to the cach e .  The i mplementation has a 
va lue of approxi mately 1 4  cycles, which reflects 
the me mory read l a tency .  Write requ ests for 
memory are simply del ivered;  no fu rther action 
has to be taken .  

The worst-case me mory mode l  assumes on ly  
one array module  is ava i lable to  hand le  read and 
write requests . Requests for memory are queued 
in  a buffer for processing  by the array modu l e .  
When a l l  queue elements have requests, a mem
ory-busy signa l wi l l  in h ib i t  the memory i ntercon
nect from send i ng a d d i t i o n a l  requ ests u n t i l  a 

queue e lement is avai lable .  A nu mber of parame
ters can be specified by the user at  ru nt ime tO 
control the t im ing of requests within the mem
o ry c o n t ro ll e r  a n d  t h e  a rr a y  m o d u l e .  O n e  
parameter i s  the length o f  t h e  memory-request 
queue, a va lue from one to eight.  The processor 
d e s i g n  used a va l u e  of t h re e  for t h i s  q u e u e  
length .  The other parameters are the numbers of 
c yc l e s re q u i r e d  for v a r i o u s  o p e r a t i o n s ,  a s  
described below. The actual va lue  specified for 
the processor design is conta i ned between the 
parentheses fo l lowing each parameter's descrip
tion . These parameters are 

• The t ime a request must  be q ueued before 
processing in the array module (2 cycles) 

• The r i me requ i red by the a rray modu l e  to 
process a read ( 1 2  cyc les) 

• The r i m e  re qu ired by t h e  array modu le  to 
process a write (9  cycles) 

• The r i m e  req u i red by t h e  a rray modu le  to 
process read d a ta for a m a s k e d  w r i t e  ( 2  
cycles) 

• The t ime requ ired for a refresh of the array 
module ( I  2 cyc l es) 

• The t ime between array refresh signals (300 
cycles) 
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Processor Resources Not Modeled 
In addition ro some of the m icrocode and parts 
of rhe memory su bsystem,  severa l other parts of 
t h e  design a re n o t  s i m u la ted .  The trans l at ion 
buffer that  conta ins  virtua l - to -phys ica l  address 
mappi ngs is nor mod e l ed . (The des ign has  a 
1 0 2 4 -entry,  d i rect -mapped trans lat ion buffer ,  
ha lf  of i t  for system-space addresses, the  other 
ha l f  for process-space add resses . ) 3 The logic 
and microcode that handle a l ignment traps are 
nor  modeled . Any u n a l i gned addresses assoc i 
ated wi th  processor read and write requests for 
rhe cache are automatica l ly a l igned by the s imu
lator. FinaiJy. no r;o traffic i s  generated on the  
memory interconnect to  compete with proces
sor and memory traffic .  These omissions coul d  
impact the s imu lated performance o f  some pro
cessor designs for some workloads .  H owever, 
their exclusion from this model d id nor impact 
t h e  performance  est i mates generated fo r rhe  
processor wi th  rhe  ser  of  work load progra ms 
used . 

Evolution of the Model 
Before presenting studies done with the proces
sor performance simulator, we shou ld examine 
how the model  evolve d .  Our most sign if icant 
a c h i evement  was ro cont i n ue deve lop i ng the 
model even as project goa ls  changed and as the 
des ign materia l i zed ove r t i m e .  This  cont inua l  
adjustment resu l ted i n  a mode l  tha t  reflected 
t h e  l a test  d es i g n  and c o u l d  be used i n  new 
design studies. 

The fi rst vers ion  of  t h e  s i m u l ator was n o r  
v e ry d e t a i l e d .  I t  i n c l u d e d  t h e  p i p e l i n e ,  
the instruction buffer, the cache arbiter, a cache 
s h e l l ,  a nd s o m e  ha n d - coded m i c rocode fo r 
eva luat ing operand specifiers and for a l i m i ted 
nu mber of  VAX i nstruct ions .  N o  lookup was 
done in the cache shel l .  A parameter specified 
t h e  h i t  a n d  m i ss percen tages  d e s i red , a n d  
random nu mber generation was used to decide 
t h e  l o o k u p  r e s u l t s .  R u n s  w e re m a d e  w i t h  
both t wo and four  I B  longword s ,  a n d  9 0  a n d  
1 0 0 percent h i t  rates i n  t h e  cache; the workload 
was t h e  Towers of H a n o i  benc h m a rk . Two 
i mportant resu l ts were ind icated : first , the per
formance was in l i ne with the stared goals ;  sec
ond, i t  was desirable tO have more than two I B  
longwords .  
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At that point, a more aggressive set of design 
goa ls  was s e t  by e n g i n e e r i n g  m a n a ge m e n t .  
Therefore , the next  ve rsion of  t h e  s i m u l atOr 
modeled more of the detai led implementation 
tha t  was e vo l v i n g .  T h i s  deta i l  i n c l uded t h e  
decoder,  the cache-control and memory-request 
q u e u e s ,  a n d  t h e  m e m o ry i n terco n n e c t .  We 
deve loped microcode translat ion software and 
used the first base-l eve l mi crocode rel eased to 
contro l the mod e l .  Some custOm cod i ng was 
done to accommodate single-precision fl oating 
point instructions that were needed . Both hard
ware and microcode bugs were uncovered clllf
ing the design and verification of this s imu lator 
version , thus increasing its va lue to the designers. 

Performance Simulation 

Results and Studies 

Using the s imulatOr just described , we carried 
out a nu mber of studies to verify the processor's 
performance and to exam i ne design alternatives. 
Si nce the detai led resu l ts are very extensive , this 
concluding section outli nes the ki nds of perfor
mance i n formation gathered and h igh l i ghts a 
nu mber of studies that were done.  

Performance Information Gathered 
Information provided by a performance simu la
tor fal l s  in to four  areas : 

1 .  Measu ring the performance of a program 
on an existing processor and then tracing 
that same program to dr ive a processor 
s imulator are used to prod uce a re lat ive 
performance est imate for t h e  proposed 
processor. (Of course ,  this comparison is 
reasonab le  o n l y  i f  both processors are 
im pleme ntat ions of t h e  sa me arch i tec
ture . )  The i n formation needed to make 
the comparison i nc lud es the fol l owing:  
the tota l  n u m b e r  of  in stru c t i o ns e x e 
cuted , t h e  execution t ime required, and 
the cycl e  t ime on the measured system ,  as 
wel l  as the total num ber of i nstructions 
simulated , the total cyc les req uired , and 
the proposed cycl e  ti me on the simu lated 
system .  The VAX- 1 1  /780 processor was 
used as the comparison machine for gen
erating performance estimates re lar ivc tO 
the VAX 8800 fa mi ly processor design . 

2 .  S imul a t i ng the use o f  resources wi th in  
processor system com ponents produces 
i n format ion  about  h ow effi c i e n t  e a c h  
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com ponent is in processing requests and 
ho w we l l  t h e  c o m p o n e n ts i n t e r a c t .  
Knowing what requests are received and 
w h a t  perce n t  of  t h e t i m e  com pon e n t  
resources arc sta l led o r  busy (and why) 
provides ins ight i n to the overa l l  system 
pe rformance . We found that  present ing 
rh is  deta i led information in  terms of  aver
ages-per-instruction was an effective way 
of summarizing the activit ies . This infor
mation he lped rhe  designers in making 
hardware design decisi ons at a low .leve l .  

3 Varying the parameter va lues i n  a s imu la
tor and comparing the  resu l ts produces 
useful  information to eval uate high- Leve L 
design and configuration decisions . Since 
the VAX 8800 fam i ly  processor des ign 
was modeled , a num ber of studies have 
been done to eva l uate schemes that cou ld 
be used in new processor designs . 

4 .  Analyzing the instruction stream data from 
t h e  trace tha t  dr ives the  s i m u l a tor pro
du ces i n formation about how the archi 
tectu re's instruction set  i s  used .  This type 
of i n fo r m a t i o n  h e l ps des igners dec ide  
which optim izations are most beneficia l , 
especia l ly in the microcode flows . Gath
ering th is information genera l ly does not 
requ ire processor-sp e c i fi c  fu nctions in 
the si mu Ia  tor .  Therefore , the s imu la tor 
docs not produce that  i nformat ion . For 
our  pu rpose, the  i n format ion was gath
ered from a nor her package of analysis soft
ware . '  On ly  i nd iv idua l  VAX ins truction 
r i mes that were specific  to the VAX 8800 
fami ly processor came from the simularor. 

Highlights from Simulation Studies 
ln i r i a l ly we used rhc Towers of Hanoi , the prime
n u m b e r  genera to r ,  a n d  rhe s i n g l e - prec i s ion  
Whctsrone benc hmark to drive the  model .  From 
it we derived resu l ts indicating that the perfor
mance of the VAX 8800 fam i ly processor was 
between 4 .  '5 and '5 .6  t imes that of a VAX- 1 1 j780 
processor. The designers made one change based 
on the resource ut i l i zation statistics the simula
tor generated.  Cache read h i ts had requ ired two 
cycles, rather than rhc usual one cycle ,  when the 
read address a lso matched a valid delayed -write 
buffer address . This number was changed to one 
cycle whL:n the simul ator showed the frequency 
of this event was higher than antic ipated . 
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Once t h e  bas ic  processor des ign had  been 
successfu l ly modeled , work focused on broad
en ing the m icrocode coverage and  s imu lat ing 
various a lternatives. Better microcode coverage 
a l lowed more programs to be t raced and ru n 
through the s imulator. We wanted to use more 
d iverse progra ms, l i ke the FO RTRAN com p i l e  
a n d  the  VAXjVMS l i n k ,  t o  exercise the  des ign 
using the s imulator. Alternat ives such as cache 
f l u s h i n g  to s i m u l at e  context  swi t c h i ng ,  t h e  
worst-case memory mode l ,  and the dual -proces
sor  v e rs i o n  were a l so a d d e d . To s t u d y  t h e  
mode l ' s behavior ,  w e  ran m a ny s i mu l a t ions ,  
varying the basic processor configurat ion a n d  
comparing resu l ts t O  detect the  e ffects . Even 
today, this work continues as new design ideas 
surface .  

The fol lowing l ist shows the VAX 8800 fam ily 
processor s imu lation parameters and configura
t ions tha t  were most se n s i t ive from a perfor
mance point of view: 

• Context swi tch ing, s imu lated by i nva l idat ing 
a l l  cache entr ies  every n VAX i nstru ct i o n s ,  
sh owed a perfor m a n c e d e grad a t i o n  fro m  
8 percent when done every I 0 , 000 i nstruc
t ions,  to 2 3  percent when done every 2 , 000 in
structions. We chose an int erval of 5 , 000 i n 
s t r u c t i o n s  fo r the  s i m u l a t o r ,  w h i c h  i s  a 
conservative est imate .  (The degradation was 
1 3  percent for 5 , 000 i nstructions.) 

• A t im ing requirement of two cycles for read 
h i ts i n  the cach e ,  ra t her than  one cycl e  as  
implemented in the  VAX 8800 fami ly proces
sor desi g n ,  degraded the s imu l a ted perfor
mance by 9 percent .  

• The latency t ime for memory reads decreased 
performance by about 0. 75 percent for each 
add it ional cycle of latency. 

• The worst-case model for memory, using only 
one array module ,  requ i red 1 4  percent more 
cycles than the best-case mode l .  (This resu l t  
contributed tO our decision to use only the 
best and worst cases.) 

• A s low memory i nterconnect  and contro l ler  
re lat ive to the processor degrades the perfor
mance gains when a faster processor is used .  
Dou bl ing the processor speed by cutting the 
cycle time in half i ncreased performance by 
only I .  5 t imes over that of the slower proces-
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sor w i t h  t h e  s a m e  me m o ry .  T r i p l i ng t h e  
speed increased performance b y  o n l y  I .  7 
ti mes . 

• Enhancements made in the FO RTRAN com
pi ler for genera ti ng code had a great impact 
on rhe i nstruction stream traced, as wel l  as on 
the performance est imates derived using the 
FO RTRAN benchmarks .  Th i s  i m provement  
was particu larly noticeab le for the FORTRAN 
compiler released with VMS Version 4 .  

Summary 

The deve l opment of the VAX 8800 processor 
performance s i m u lator continued throughout 
the entire project .  The s imu lator helped to ver
ify the atta inment of performance goal s  and pro
vided performance trade-off i nformation to the 
designers .  The model 's resu lts fostered discus
sions about i nterfaces, helped the designers to 
fi nd prob lems ,  and u n covered u na n t i ci pated 
i n teract ions .  The s imu latOr cont i n ues to con
t r i b u te to  c u r r e n t  processor  des ign  e fforts  
th rou gh i ts use in  s tudying the  performance 
impact of a l ternatives. 

ln addi t ion ,  we learned a n umber of i m por
tant  l esso ns  tha t  wi l l  be usefu l  in des i g n i n g  
fu t u re s i m u l a tors . F i rs t ,  i t  i s  i m p o r t a n t  to  
deve l op the bas i c  processor s i m u la t ion  fu nc
t ions as ear ly as poss ib le  in a des ign project . 
Having a genera l-purpose cache model that can 
be cal led and control led from d i fferent proces
sor i m plementat ion models is one of the most 
i mportant functions . 

Second , defi n i ng and developing a mon i tor to 
con trol the various parts of a s i m u la tor ,  apart 
from i mplement ing the part icu lar  des ign , has 
significant impl ications for designers of perfor
mance simu lators . Having separate control func
ti ons a l lows the implementor to concentrate on 
u nderstanding the design to be modeled , as wel l  
a s  t o  take advantage o f  features provided b y  the 
control monitor tO debug the mode l .  Separat ing 
control fro m t h e  s i m u l a ted desi gn , however ,  
does not resu l t  in  a s i m u l a tor wi th  the  most 
opt imized runt ime performance. 
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VMS Multiprocessing on the 
VAX 8800 System 

Some features of the VAX 8800 architecture are particularly relevant to 
multiprocessor operation. Special hardware, not included in the VAX 
architecture, allows the VMS operating system to use both CPUs in an 
asymmetric, tightly controlled fashion. The processors operate in a 
master-slave relationship with one CPU handling all IjO. The hardware 
handles interprocessor interrupts, cache coherency, and shared mem
ory. VMS uses the interprocessor interrupt in managing operations 
between the master and slave CPUs. The VMS system also uses interlocked 
instructions, exception handlers, and traps to handle multiprocessing. 
These instructions allow events to be scheduled and executed efficiently 
on both processors. 

Every computer system is a combination of hard
ware and software archi tectures. the operat ing 
system being a d i rect resul t  of their  merger. The 
same operat ing system can be implemented on 
different hard\.vare systems with the same archi 
tectu re, but a user can access only those features 
that each set of hardware can support. The most 
effective merger is the one a l lowing users of the 
resu l t i ng operat ing  system ro make max i m u m  
use o f  a l l  t h e  features designed i nto b o t h  t h e  
hardware and  softwa re arc h i tec tures . '  T h e  
VAX 8800 mu l ti processor is an  example o f  the 
resu l t  of such an effective merger. 

The VAX Architecture and 

Multiprocessing 

Many of the VAX 8800 hardware features i mpor
tant ro VMS mult iprocessing are defined by the 
VAX architecture for single-processor and mul t i 
processor systems a l i ke 2 These features i ncl ude 
the processor modes, ljO a n d  software i n ter
rupts, exception handl ing, asynchronous system 
traps (ASTs) , and interlocked instructions . This 
section briefly describes t hese features , which 
are d iscussed i n  more deta i l  later .  

Processor Modes 
The VAX arc h i tecture defi nes fou r  modes i n  
wh ich  a processor may exec u te . I n  order of  
decreasing l evels of privi lege,  t hese modes are 
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kernel , executive, supervisor, and user. Most of 
the cr i t ica l  resou rce management  code i n  the 
VMS system is  executed in kernel mode ; in fact ,  
some instructions can be executed only whi le in 
that mode .  Two examples of such instructions 
are LDPCTX and MTPR (move to processor reg
ister) . LD PCTX loads the context (stacks, page 
tables. and so on) of a process into a CPU so that 
the process can execute . MTPR is used ,  among 
other th ings, ro enable ,  d isab le ,  or trigger cer
ta in interrupts du ring resource management.  

Interrupt and Exception Handling 
The VAX archi tecture supports the i m med iate 
serv i c i ng of i m portant  events by  means  of a 
mechanism that can transfer control away from 
the currently executing process. Events that are 
primar i ly re levant to and norma l ly  invoke soft
ware in the context of the currently executing 
process are cal led exceptions .  Eve nts that are 
relevant ro other processes , or tO the system as a 
whole ,  are cal led interrupts, which are serviced 
in a system-wide context .  2 The VMS operat ing 
sys tem prov i d es a hand ler  ro u t i n e  for e a c h  
except ion  and in terrupt defi n e d  b y  t h e  VAX 
architecture . 

Upon system startu p ,  the VMS operat ing sys
tem i n i t i a l i zes a system control b lock (SCB) , 
which defines the locations of the various event 
handlers , as shown in Figure I .  The SCB conta ins 
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TRANSLATION NOT VALID (PAGE FAULT) EXCEPTION 

CHANGE MODE TO KERNEL EXCEPTION 

CHANGE MODE TO EXECUTIVE EXCEPTION 

CHANGE MODE TO SUPERVISOR EXCEPTION 

INTERPROCESSOR INTERRUPT 

SOFTWARE INTERRUPT LEVEL 1 (UNUSED) 

FT N ASYNCHRONOUS SO WARE I TERRUPT LEVEL 2 - SYSTEM TRAP DELIVERY 
SOFTWARE INTERRUPT LEVEL 3 - RESCHEDULING 

. 

. 

. 

SOFTWARE INTERRUPT LEVEL 15 - XDEL TA 

1 0  MILLISECOND INTERVAL TIMER INTERRUPT 

Figure 1 System Control Block 

an assi gned longword that holds the address of 
the hand ler  for each i nterrupt and except ion 
serviced by the operat ing system .  

I n t e r r u p t s a n d  e x c e p t i o n s h a v e  vary i n g  
degrees of u rgency. Each even t  has a specific 
i nterrupt priority level ( I PL) that des ignates the 
relat ive priority of that event .  The VAX arch i tec
ture includes 3 1  I PLs,  d iv ided into 1 5  software 
leve ls (nu mbered , in hexadeci mal , 0 1  ro OF) , 
and 1 6  hardware l evels ( 1 0  to 1 F) .  User app l i 
cations and system serv i ces r u n  a t  the process 
l eve l ,  which may be thought of as IPL 0. I nter
rupt levels w i t h  h i gher n u mbers have h i gher 
pr ior i t i es .  That  is to say ,  a request a t  an  J P L  
h igher  than  the processor 's  c u rrent  I PL w i l l  
in terrupt i m mediately ;  requests a t  the same or 
lower levels w i l l  be deferred 2 The i nterproces
sor i nterrupt and the 1 0 -m i l l isecond ( ms) in ter
va l - t i mer  i n terrupt are exa mples of hardware 
i n terru pts . The reschedu l ing in terru pt and the 
AST-del ivery interrupt are examples of software 
interrupts. 

Software exec u t i ng in kernel  mode posts a 
software interrupt by setting the appropriate bit 
i n  t h e  software i n t e r r u p t  r e q u e s t  r e g i s t e r  
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(SIRR) . A bit  exists i n  the SIRR for each software 
in terrupt leve l .  An interrupt can take place only 
when the l PL level of the CPU has been lowered 
below that of the pendi ng i n terru pt .  For exam
p le ,  the handler for the in terprocessor i nterrupt 
(execu t i n g  at I PL 2 0 )  can post a resc hedu l e  
event ( a  software in terru pt a t  IPL  3 )  b y  setting 
the appropriate bit in the SIRR. When the CPU's 
IPL drops below I PL 3, the IPL 3 in terrupt han
dler i s  invoked , which is  the VMS code that in i 
t ia tes process reschedul i ng. 

This techni que a l lows h igh I PL code threads 
ro sched u l e  lower I PL fu nct ions in a way that  
a l lows a l l  potent ia l ly  i n terrupted code threads 
at in termediate IPLs ro complete first . Should a 
higher I PL code thread merely lower the I P L  by 
force ro execute the lower I P L fu nct i o n ,  any 
i n term e d i a te JPL code t h reads that had been 
i nterrupted wou ld complete out  of order, thus 
brea king the software synchronization . 

AST Delivery Mechanism 

In  any mode ,  the VAXjVMS system can in terrupt 
a code thread execut ing a t  l PL 0, beg in  a new 
code thread (a lso at I PL 0) , and then con tinue 
t he prev i ous ly  i n terrupted code t hrea d .  This  
mechan i sm is  ca l led "del ivering" an AST . The 
hardware not i fies the operat ing system that an 
AST is de l iverab le  ro the current ly  execu t ing  
process by means of  an interrupt at IPL  2 .  (Note 
that th is  is the only i nstance of the VAX hard
ware posting a software in terrupt) . Any process
context code thread that must execute wi thout 
i n terrupt ion  by an AST has to be executed a t  
I PL 2 or h igher .  I f  a del iverable AST is  queued to 
t h e  cu rrent  process and  t h e  I PL of the  CPU 
drops below 2 ,  then an I PL 2 interru pt wi l l  be 
generated . To execute that  i nterrupt, the IPL 2 
i n rerru pt handler first verifies that  the AST can 
be del ivered and then del ivers it to the process, 
after which the new code thread associated with 
the particular AST is  execu ted . 

An AST code thread is associated by a process 
with events that are expected to complete asyn
chronously tO the main thread of the process. An 
example of such an event i s  an JjO req uest that, 
once issu ed, is handled by the system i n  para l le l  
wi th the main thread of the process . Upon ljO 
co m p l e t i on , t h e  assoc i a ted AST is de l ivere d ,  
which causes t h e  main thread o f  the process to 
be in terrupted in favor of the AST's code thread . 

When an AST i s  speci fi ed for an asynchronous 
event,  it  is assigned a particu lar processor mode.  
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When the AST is queued to a process, its delivery is 
deferred -..vhilc that process is executing in a more 
privi leged mode than that of the queued AST. For 
exa m p l e ,  when  an AST i n  supe rv i sor mode is  
queued to a process executing in kernel mode, the 
AST w i l l  n o r  be d e l i ve red u n t i l  t h e  con tex t  
changes from kernel mode to  a t  least supervisor 
mode. 

In terlocked Instructions 
The VAX architecture includes a few instructions 
that a l low synchro nous access tO locat ions i n  
memory. Only those i nstructions wi l l  guarantee 
cons istent  resu l ts i f  m u l t i p l e  processors want 
s imultaneous access to the same memory location . 

For b i t  ma n i p u l a t i on s ,  t h ese i n t e r l o c k e d  
instructions arc 

• BBCCl - Branch on bit clear and clear inter
locked 

• BBSSI - Branch on bit set and set interlocked 

F o r  a r i t h m e t i c  m a n i p u l a t i o n s .  t h e r e  i s  
ADA WI - Add al igned word interlocked . 

For queue manipulation , the instructions are 

• I NSQH I  - Insert at head of queue i nterlocked 

• J NSQTI - Insert at tai l  of queue interlocked 

• REMQHI - Remove from head of queue inter
locked 

• REMQTI - Remove from ta i l  of queue inter
locked 

These instructions are used extensively i n  the 
operat ing system to provide mult i processor syn
chronizat ion.  They are a lso avai lable to user pro
cesses to synchronize access to shared application 
data. 

The VAX 8800 System 
The spec i fi c  i m p l ementa t ion  featu res of the 
VAuV:. 8800 multiprocessing system are described 
in this section . Remember that the 8800 is only 
one of many i mplementations of the VAX archi
tecture. Several i mportant hardware features pro
vided by the 8800 are not specified i n  the VAX 
archi tecture but are requi red for VMS multipro
cessing. These hardware features are 

• Primary processor access to a l l  peripherals 

• Imerprocessor interrupts 

• Shared main memory 

• Cache coherency 

VAX 8800 Implementation 
The VAX 8800 system consists of two VAX 8800 
processors that share main memory by means of a 
fast memory-system interconnect ca l led the NMI 
bus . .  :; The processor hardware is completely sym
metric; that is, e ither processor can fu lfi l l  the role 
of primary processor for any boored i nstance of 
the operating system. Figure 2 is a block diagram 
of the VAX 8800 system. 

I CONSOLE I 
I 

LEFT H CLOCK � RIGHT 
CPU CPU 

I I 
NMI 

l I I 
NBI  NBI  

MEMORY ADAPTER AOAPTER 

VAXBI 
BUS 

1/0 t--
CONTROLLER 

7 

VAXBI 
B U S  

7 

VAXBI VAXBI 
BUS BUS 

1/0 I� 
CONTROLLER 7 -.._) 

Figure 2 Block Diagram of VAX 8800 System 
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VMS Multiprocessing on the VA X 8800 .�vstem 

There is one consol e  subsystem in t he 880 0 .  
w h i c h  i s  shared b y  t h e  two C PUs . T h e  consol e  
command language . i mplemented i n  software i n  
the console subsystem.  i s  a su perset o f  the con
sole fu nctiona l i ty specified by the VAX arc h i tec
ture 2 Both C PUs can be contro l l e d  from t h e  
s i n g l e  c o n s o l e  t e r m i n a l .  Aft e r  t h e  s y s t e m  i s  
booted , the console term i n a l  c a n  b e  used l i ke 
any other ter m i n a l  connected to the syst<:m . 

Al l 1/0 devi ces a rc connected ro the system 
t hrough VAXB I  buses. The SHOO can accommo
date u p  to four VAX 131 buses, each of w h i c h  can 
acco m m odate up to 1 6  nodes .  ge nera l l y  l j O  
contro l lers. 'fhe buses are connected to t h e  N M I  
by means o f  t h e  N M I - to-VAX B I  adapters, ca l l<:cl 
t h e  N B ! s .  E a c h  N B I  cons i sts of e i t h e r  two or 
t hree parts : an N B IA, which is  t h e  i n terface to 
the NMI ;  and one or two N BI Bs .  which are i nter
faces tO the VAXBI buses. An NBIB  i s  one of the 
1 6  nodes on i ts respective VAXBI bus. 

Under VMS m u l t i p rocess i n g .  a l l  p e r i p herals 
a r e con tro I I  ed by t h e  fi r s t  p r o c e s s o r  t o  be 
booted . designated the pri mary processor .  The 
other processor ,  the secondary ,  i s  p revented 
from acc<:ss i ng any peri  p h  era  l d ev i ces (d i s ks ,  
term i nals ,  and so on) because t h e  code com m u ·  
n i cH i n g w i t h  t h ose d e v i c e s  r u n s  i n  ke r n e l  
mode . a n  access mode that VMS u t i l i zes only  on 
the p r i m ary . Thus ,  a l l  ljO peri p hera l s  wi l l  be 
accessed only  by the  p r i m a ry processor .  Typ i ·  
ca l l y ,  t h e  left C P U  i n  t h e  VAX 8800 system i s  
c hosen a s  the pri mary processor. However, con· 
sole commands are ava i lable  w des ignate e i ther 
CPU as the pri mary one.  A change in that desig· 
11ar ion takes effect after the next I N IT command 
is  received by the console . 

']'he VAX: 8800 hardware provides the capab i l 
i ty for one processor t o  i nterru pt t h e  other.  This  
i n terru ption is  accompl ished by wri t i ng a va lue 
o f  I tO a n  i n t e rn a l  processor regis ter  o n  t h e  
i n terru p t i n g  C P U  b y  m e a n s  o f  t h e  p r i v i l e ged 
MTPR i nstruct ion (from kern e l  mode o n l y) . ·nw 
VMS system uses th is  mechanism to synchron i ze 
the CPUs as d i fferent system events occur .  

The main  m emory conta i ns one copy of t h e  
VMS software. w h i c h  depends u pon the m emory 
s u bsys t e m  a n d  i n t e r l o c k e d  i n s t r u c t i o n s  fo r 
cache cohere ncy and the  consistency of memory 
c o n t e n t s .  T h e  VAX H H O O  m e m ory s u bsys t e m  
auro matica l l y handles a l l  cache u pdates: n o  soft
ware l o g i c  is needed to ma i n t a i n  consistency 
between the cache conten ts i n  each processor.  
T h e  8800  docs i m p l e m e n t  a wri t e b u ffe r to 

1 1 4  

opt i m i ze transfe rs across the N M I  to the m emory 
su bsyste m .  Therefore , the i n terlockcd i nstruc
t i ons must be issued to flush the necessary write 
data a l l  the way out ro mem ory. If  o ne processor 
mod i fi es shared data , the other needs to see the 
c hange in a synchron ized and t i mely fashion . 

Multiprocessor hnplementation 

Improvements 

The VAX 8800 system i nclud es features t hat arc 
i m prove m e n ts over previ o us m u l t i process i n g 
VAX h a rd wa re i m p l e m e n t a t i o n s ,  s u c h  as t h e  
VAX:- t l j7 H 2  system . Larger amounts o f  p hysi cal 
memory can be used . a l l  of w h i c h  is ava i l a b l e  to 
the VMS syste m or the system d iagnost ics .  More· 
over.  the 8 8 0 0  cache p ro v i d e s  better pe rfor
mance.  a nd t h e  system has a sma l ler  footpr i n t  
and a better pr i cejperformance ra t i o .  Perhaps 
the most s ign i fi cant fact  from a syst e m - manage
ment v i ewpo i n t  is  that only  one consol e  subsys
tem with  one term i nal is needed to control the 
ent ire m u l t i processor .  This  s i n g l e  control poi nt 
bas ram i fi cations for sett i n g  u p  the system and 
running i t  as a m u l ti processor .  

The conso l e  subsystem has access to the mem· 
ory confi g u ra t i o n  of t h e  8 8 0 0 .  W i t h  p revious  
m u l t i processors , t he system manager had to con· 
f i gu re m e m ory by m a nu a l l y  d e t e r m i n i n g t h e  
a p p r o p r i a t e  d a ta , t h e n  e n te r i n g  i t  i n to c u s 
tomi zed command procedures o n  spec i a l ly b u i l t  
floppy d isks i n  the console. '  

The console su bsystem of the 8800 a lso e l i m i 
nates t h e  need for operator i n tervent ion r o  boot 
or restart the secondary processor. The VMS sys· 
rem is i n i t i a l l y  booted on the pri mary processor 
and subsequen t l y  d i rects the console su bsystem 
ro boot t h e  seco n d a r y .  S i m i l a r ly ,  t h e  conso le 
subsystem restarts the VMS system on the p r i 
mary processor after a power fa i lure .  T h e  opcr· 
a t ing syste m then d i rects the conso le to restart 
t h e  secondary ar the a pprop r i a t e  poi n t  in t h e  
power- recovery sequ ence . A t  no t i m e  m ust the  
operator be i nvolved i n  bri nging the  secondary 
on l i ne . '  

The VMS Operating System 

The m u l ti process ing aspects of t h e  VAX arc h i 
t e c t u re a n d  t h e VA X 8 8 0 0  i m p l e m e n t a t i o n  
provide t he underlying hardware support for a 
tota l ly i n tegrated m u l t iprocessi n g  computer sys
te m .  This  sect i on d i scusses aspects of t h e  VMS 
software that are spe c i fi ca ll y  re lated tO m u l t i ·  
processi n g  a s  i m p lemented for t h e  880 0 .  (Sec 
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reference 5 for additional mul t iprocessi ng infor
mat ion and reco mmended programming  tec h
niques .)  

Classification 

I n  mult i processing terminology , VMS mult ipro
cess i ng is c l as s i f i e d  as " a sy m m e t r i c "  a n d  
"t ightly coupled . "  An asymmetric system i s  one 
in which one CPU, ca l led the primary, has crit i 
ca l system-wide responsib i l i t ies, includ i ng the 
management of a l l  the CPU resources. The other 
CPU, called the secondary ,  has more restricted 
responsib i l ities that exclude the management of 
cri tical system resources ( i ncluding itself) . This 
type of mul t iprocessing system i s  a lso referred 
to as a " master-slave" arrangement .  The other 
classi fication, t ightly coupled,  means that  both 
processors operate i n  a c losely synchron i zed  
fashion; i f  they fai l ,  they fai l  together.  

On a VMS mul t iprocess ing system,  both pro
cessors share the same copy of the operat ing sys
tem,  a l though some code is executed oniy by 
one or the other CPU. Most of the kernel logic 
in  the VMS operating system is executed only by 
the primary processor. That e l im inates the need 
for the complex synchronizat ion and loc k i ng 
mechanisms that would otherwise be requ i red 
to protect the  sys tem ' s  data s t ructu res fro m 
access by mul tip le CPUs. 

History of VMS Multiprocessing 

VMS mult iprocess ing was introduced during the 
development of VMS Version 3 .0 .  At that t ime ,  
the power of a s i ngle  VAX- 1 1 /7 8 0  processor 
was i nsufficient to build the VMS executive in  a 
reasonable a mount of t ime .  Several constra i nts 
were p laced on the m u l t ip rocess ing devel op
ment effort . I t  had to involve m i n i ma l  changes 
to VMS kernel mode routines, use existing hard
ware, and have m in imal  performance i mpact on 
single-processor VMS systems 6 

The first constra i n t  above had the  greatest 
i m p a c t  on t h e  c h o s e n  d e s i g n  of V M S  V e r 
sion 3 . 0 .  To achieve fu l ly symmetric mul tipro
cessing, changes would be requ ired throughout 
the whole operat ing system to extend IPL syn
chronization as a lready i mplemented by VMS for 
s ingle-processor operat ion . Since those changes 
were too extensive to make , we chose an asym
metric design in which the synchroni zation of 
critica l  code was achieved by l im i ting that activ
ity to the primary CPU. In this context ,  exist i ng 
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I PL-based techniques were suffic ient to synchro
nize the code threads in kernel mode.  

The second constra i n t  led u s  to configure a 
system with two VAX- 1 1 /780 CPUs coupled by 
an MA780 shared memory . I n  th is  configurat ion,  
each CPU has a separate,  i ndependent console 
subsystem ; neither has access to the other's con
sole .  Booting th is  mul t i processor requ ires spe
cial console command files and operator inter
v e n t i o n  for b o t h  C PU s . S i m i l a r l y ,  t h e  I / 0  
devices configured o n  one CPU are i naccessible 
on the other .  Since most of the IJO subsystem 
code executes i n  kernel  mode , this constra in t  
has the effect of l im it ing the  I jO devices usable 
by the mult iprocessor to those connected to the 
primary CPU. 

The final constra int  led to a design that a l lows 
mul t iprocess ing code to be inserted dynamical ly 
into the running executive . No mul t iprocessing 
code is present in a s ingle-processor configura
tion of VAXJVMS. 

The m u l ti process i n g  c a pa b i l i t i es  i n  V M S  
Version 3 . 0  were extended t o  support the new 
VAX 8800 system .  These extensions take advan
tage of new functions a l lowed by the new VAX 
design.  For example ,  as mentioned earl ier ,  the 
shared console subsystem a l lows the secondary 
processor to be booted from the primary under 
program contro l ;  no operator i ntervent ion  is 
requ i red . 

Division of Work between Processors 

As mentioned earl ier ,  the VMS mul t iprocessing 
code is a master-slave i mplementation . The sec
ondary CPU is required to do whatever work is 
assigned to i t  by the  pr i mary . The secondary 
CPU can execute appl ication code only, whi le  
the pr imary CPU handles the IjO , paging,  and 
all resource management, as well  as the execu
t ion of appl ication code .  S ince a l l  system ser
vices that manage system resources are executed 
i n  k e r n e l  m o d e ,  o n l y  t h e  p r i m a ry C P U  i s  
a l l owed t o  execute t hose serv ices .  The sec
ondary CPU can  execu te code that  i s  in  any  
o ther  m od e :  use r ,  su perv isor ,  or exec u t i ve .  
Thus ,  t o  b e  techn ica l ly  accurate i n  m u l t ipro
cess ing termi nology , t he VMS mult iprocessing 
system is symmetric for code i n  the  user, super
visor, and executive modes, but asymmetric for 
code i n  kernel mode . 

The VMS boot code creates a SCB for each pro
cessor .  As described earl ier ,  the SCB conta i ns 
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VMS Multiprocessing on the VA X 8800 ,S),stem 

vectors to rou t ines that handle various i nt erru pt 
and except ion events .  Many VMS i n terru pt and 
except ion hand lers are i de n t i cal for both the 
pri mary a nd secondary p rocessors .  H owever .  
there arc  cases i n  whi c h  exceptions o r  i n ter 
rupts m ust be handled d i fferent ly ,  depend i n g  
u pon which processor receives t h e  even t .  The 
i nterprocessor i n terrupt and the software i n ter
rupt used for resched u l i ng arc both examples of 
system-wide events .  Both arc vectored t h rough 
the SCB but req u i re different handlers for each 
processor. (Figure 1 shows the var ious in terrupt 
levels  i n  t h e  SC B . )  The AST-delivery software 
i n te rrup t  and t he q u a n t u m  end , a sched u l in g  
eve nt  (desc r i bed later) , a r e  exa m ples o f  pro
cess - rel a ted eve n ts that a lso req u i re d i fferen t 
exception handlers i n  the SCB of each CPU.  By 
separat i ng the hand lers i n to processor-spec ific 
SCBs, the more costly and d i fficu l t  task of run
t ime separat ion with in  a n  ot herwi se commonly 
executed handler is avoided.  

Typi cal l y ,  when a n  except ion occu rs on the 
s e c o n d a ry , t h a t  C P U ' s  e x c e p t i o n  h a n d l e r  
" reflects " that  except ion  back ro the pr imary . 
To do that ,  the except ion hand ler  stores both 
the address of the pri mary's excepti on hand ler 
and an appropri ate processor status longword 
(PSL) on rhc stack of the current process .  The 
secondary 's  except i on hand ler  rhen  saves the  
context of the c u rrent  process and passes the  
process bac k  to t h e  p r i m a ry by reques t i ng a 
reschedu l i ng event .  The process eventua l ly exe
cutes on rhc pri mary, whose except ion handler 
will  i mmediately get control as if the except ion 
had occurred there or ig ina l ly .  Exception pro 
cess ing i s  therefore synchro n i zed on a system
wide  basi s  by  virtue of ru n n i ng on the  primary 
processor only .  

The SCB for the primary CPU consists of m u l 
t i  p i e  pages of i nt e rrupt and excepti o n  vectors. 
The format of the fi rst page i s  dcfi ned by the 
VAX archi tecture . This  page contai ns vectors for 
al l i mplcmenrar ion- independenr exceptions and 
i nterrupts, and for a few i m p lementat ion -depen 
dent ones. Add i t ional  pages of vectors a re pro 
v ided for !jO i n terrupt hand .lcrs .  Under  VMS 
m u l t i process ing ,  the  length of  the SCB for the  
secondary CPU i s  one  page . The  pages tha t  make 
u p  the l/0 subsystem portion of the SCB are nor 
needed on the secondary, which wi  I I  not i n i t iate 
ljO requests nor recei ve I/0 i n rerru pts . 
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lnterprocessor Interrupts 
The VA.-'<. 8800 hardware provides a key feature 
for opt i m i z i ng t he VMS m u l t i process i ng soft
ware : the ab i l i ty of one processor ro i nt e rrup t  
t h e  other .  This i n terprocessor i n terru pt mecha
n i s m  i s  used extens ively  o n  eac h CPU by r h e  
VMS operating system .  

T h e  p r i m a r y  p rocessor i n t e r r u p ts t b e  sec
ondary for several reasons .  F i rst ,  the pri mary can 
req u est an i nva l i da t i o n  of a trans lat ion bu ffe r 
ent ry correspo nd i ng to a system -space add ress 
that is about to be i n va l idated on the pri mary. 
This event forces coherency between the trans
lation buffers of both processors with respect to 
mapping changes in the shared system v i rtual  
address space . Second,  the  pri mary can i n terrupt 
because it has queued an AST, typ ical ly  for I/0 
complet ion ,  for the process currently execut ing 
on t he secondary. This event u l t imately resul ts 
in the  process being resc heduled onto rhe pri 
mary.  where the actua l d e l i ve ry of  the AST to 
the process can be accompl ished . F i na l ly ,  the 
pr imary can  in i  t i a tc and synchron i z e  a syste m 
wide shutdown or a crash .  

The  secondary p rocessor wi l l  i nt e rrupt i f  i t  
wants the pri mary to take back the current pro
cess and find another process for the secondary 
to execute. The secondary wi l l  also i nterru pt i f  
i t  detects a hardware error o r  i f  i t  wa n ts t o  i n i
t i ate a system-wide crash . 

Secondary State Transitions 
A st:ne variable i s  ma i ntained to record the cur
re n t  state of the secondary processo r .  The pri 
m a ry p ro c essor  uses t h i s  s tate  to d e t e rm i n e  
whether  o r  not t o  sched u l e  work for the  sec
o nd;uy \X'hen the secondary i s  booted ,  the state 
variable is  a l ready set to ! N IT. After booti ng,  the 
secondary changes the state var iab le  to I DL E .  
Dur in g i ts next reschedule  operat ion , t h e  pr i 
mary w i  I I  not i ce the  I OLE state and attempt to 
schedule a process for the secondary to execute . 
After fi n d i ng a process for the secondary,  the 
pri mary sets the state variable to BUSY. The sec
ond ary, which  has been conr i  n ua I l y check i n g  
t h e  state variable for t h i s  tran s i t ion , t h e n  loads 
the process 's context from memory and sets the 
state to EXECUTE . 

The secondary w i l l  execute i rs cu rrent pro
cess u n ti l  the process e i ther  rece ives i rs quan
rum of CPU t ime or is  blocked by some request 
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that must be synchron ized i n  a system-wide con
text .  (That request must be executed in  kernel 
mode on the pr imary . )  At th is  po in t ,  the sec
ondary saves the process 's  context in m emory 
and sets the state to DROP. Using the VAX 8800 
i nterprocessor i n terrupt mechan i sm , the sec
ondary then i nterrupts the primary and requests 
another process to execute . The pr imary takes 
the saved process back from the secondary, set
t i ng that  CPU's  state to I DLE . Thus ,  t he state 
transition has made an entire c i rcui t .  

Figure 3 shows the state transit ion d iagram for 
the secondary CPU . The pr i m a ry ' s  paths  are 
marked P and the secondary's paths are marked 
S to indicate which processor controls each tran
si tion from one state to another. The only state 
not explained above is the STOP state, used only 
when the secondary is shut down. 

p 

s p s 

s 

p 

Figure 3 Secondary CPU State Transitions 

Process Scheduling under the VMS 

Operating System 

Some aspects of process sched u l i ng were dis 
cussed i n  the  p revious sec t ion . Th i s  sect i o n  
describes in  greater deta i l  how process schedul 
ing  i s  i m p l e m e n te d  in  t h e  V M S  sys t e m  a n d  
which o f  i ts aspects are d ifferent in  a mult ipro
cessing envi ronment 6 

Single-Processor Scheduling 

The VMS schedu l ing a lgori thm i mplemented on 
a s ingle processor is round-rob in  and preemp
t ive, with the h ighest priority process being exe
cuted first . There are 3 1  levels of process pr ior-
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i ty (which are not the same as i nterrupt priority 
levels) . Thirty-one is the highest priority, one 
the l owest ;  p rocess pr ior i t i es are subdiv i ded 
i nto rea l - t ime (priori t ies 1 6  to 3 1 )  and " nor
mal "  (priorities 0 to 1 5) ranges .  The rea l - time 
priorit ies are used by t ime-crit ica l appl ications, 
such as h i gh-speed da ta  acq u is i t ion . When a 
process is created , i t  is assigned a base prior i ty .  
I ts priority dur ing execution is  guaranteed never 
to d rop below that  base pr iori ty u n less e i ther 
t h a t  p rocess or  a no ther ,  p r i v i l eged p rocess 
requests i t  to .  

Each process i s  a l l owed a q uantum of CPU 
t ime (usual ly 200 ms ,  equ iva lent  to 2 0  i n ter
rupts of t he 1 O-ms i nterva l t imer ;  however ,  a 
system manager can change the defau lt) . Each 
t ime the in terval t imer i nterrup ts ,  the interrupt 
handler checks to see if  the current process has 
used up i ts quantu m .  I f  so , quantum-end p ro
cessing is in i t iated . 

For a process with a priority i n  the rea l - t ime 
r ange , q u a n tu m - e n d  p rocess i n g  c o n s i sts  o f  
award i ng a n e w  quan tum to t h e  p rocess a n d  
a l lowing i t  t o  continue execut ion . A reschedule 
event wi l l  occur when a normal -priority process 
has used up i ts quantu m .  In the l atter case , the 
cu rre n t  p rocess i s  p l aced  a t  the  e n d  of  t h e  
schedul ing queue maintained for that process's  
priority ( there is  one such queue for each pro
cess priori ty) , and the process at the head of the 
queue is chosen to execute . 

The p r i o r i ty o f  a n o r m a l - ra nge p rocess i s  
r a i s e d  a ft e r  c e r t a i n  b l o c k i n g  e v e n t s  h a v e  
cleared . For example ,  t o  provide good response 
t ime  to i nteractive users,  a p rocess ' s  pr ior i ty 
wi l l  be temporari ly boosted a fter t he comple
t ion of termi na l  input .  This arrangement results 
in a tendency for compute-bou nd processes to 
remain a t  their i ni tia l  priorities (ca l led the base 
priori ty) . However,  I/O-bound and i nteractive 
processes, which are blocked more frequently, 
usua l ly attain priori t ies somewhat h igher than 
their base ones. A process's priori ty i s  lowered one 
point when the process is sched uled to execute,  
un less i t  is  a lready running at  its base priori ty .  

Multiprocessor Scheduling 

The pr i mary processor schedu les a l l  work on 
the system , for both i tsel f and  the  secondary 
processor .  The sched u l i ng a lgori t h m  used for 
the primary processor is basical ly the same one 
used in a single-processor system (an i mportan t  
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goal i n  this implementation) . For the mul ti pro
cessor schedu l i ng a lgori thm,  however.  certa i n  
modificati ons were made to extend the effec
t iveness of process sc hedu l i n g  to u t i l ize the 
additional CPU resources that arc ava ilable . The 
execution environment of the secondary proces
sor is more constra ined than that of the primary. 
Most notably, the kernel -mode code is restricted 
to t h e  p r i m a ry C P U .  T h e  m u l t i p r o c e s s o r  
schedul ing algorithm attempts to keep that sec
ondary CPU as fu l l y  u t i l i zed as possi b le  with 
mi nimal  schedu ling overhead in the  fol lowing 
ways: 

• The pr imary processor a l ways sched u les a 
proc ess  to r u n  o n  t h e  sec o n d a ry b e fore 
schedul ing a process for i tself to execute .  

• The primary processor w i l l  schedu le  a pro
cess to run on the secondary only  if that pro
cess does not require im med iate execution in  
k e r n e l  m o d e  a n d  d o es not  h a ve an AST 
(wh i c h  requ i res kerne l - mode exec u t i o n )  
ready t o  b e  del ivered . This schedul ing  helps 
preve n t  s i tuat ions  in w h i c h  a process can 
fl ip - fl o p  between processors , somet imes 
ca l l ed scheduler thrash ing .  

• Schedu l ing is  preemptive on the primary pro
cessor, bur nor on the secondary. Thus, if the 
secon dary processor is exec u t i n g  o n e  j o b  
w h e n  a n o t h e r  j o b  w i t h  h i g h e r  p r i o r i t y  
becomes computable ,  the primary processor 
wiLl not interrupt the secondary to give it the 
higher priority job . Therefore, processes exe
cuting on the secondary processor are more 
l i kely to run for their entire quantum than are 
processes execu ting on the primary. 

T h i s  a p p roach  g u a r a n t ees  o n l y  t h a t  t h e  
highest priority process w i l l  b e  execut ing ,  
not the two h i ghest pri ori ty processes .  To 
guarantee the  l atter wo u l d  req u i re s ign i fi 
ca ntly more i nterprocessor interru pt traffic 
and is l i k e ly  to i n c rease t hrash ing  on t h e  
ent ire syste m, and wi.l l  especia l ly  a ffec t  t h e  
pri mary's abi l i ty to devote processing t ime to 
irs own selected process. 

• If a l l  computab le  processes requ ire execu 
tion in kernel mode , then the primary proces
sor cannot  sched u l e  a process for the sec
ondary and  wi l l  execute a p roc ess i ts e l f . 
Shou ld that happen,  an AST-del ivery in terrupt 
will be generated automaticaLly after the pri
mary processor stops executing the process 
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in kernel mode.  The pri mary processor han
d les this in terrupt by performing a reschedu l 
ing operation.  As a resu l t ,  the primaqr proces
sor sends the process it was just execu t ing ,  
which is  no l onger i n  kernel  mode ,  ro  the  
secondaqr processor i n  a t imely fashion . The 
pri mary is  then free to execute another pro
cess itse lf. 

When then: is only one computable process, 
one of the CPUs wi l l  remain id le .  In this case 
the pri mary processor executes the process 
i tself even it may be perfectly e l igible to exe
c u te on the secondary.  Thus the overhead 
processi ng associ a ted with the post -kernel  
mode AST and the subsequent  resched u l i ng 
of the secon dary can be avoi ded . This  case 
a l so  has  t h e  e ffe c t  of p reve n t i ng fu t u re 
thrashing i f  the process needs access to ker
n e l - mode  resou rces , at least  u n t i l  enough 
computab le  processes become ava i lab le  to 
keep both processors busy. 

• The system servi ces7 tha t  requ est event-flag 
wai ts ( SWAJTFR ,  SWFLAN D ,  and SWFLOR) 
arc among the most commonly execu ted ker
ne l -mode services. 1 If a process runn ing on 
the secondary processor requ ests an event 
f lag w a i t ,  the VMS opera t i n g  sys tem wi l l  
a r rempr ro avo i d  resc hed u l ing the process 
onto the pr imary C PU .  The system-serv ice 
d ispa tcher on the secondary CPU first checks 
to see if the requested flags are al ready set. If 
so, the process is a l lowed to conti nue execut
ing on the secondaq' without reschedu l ing. 

I f the flags a re not set,  a n  i n terprocessor 
i n t er r u p t  req u e s t i n g t h a t  the  process be 
placed i nro an eve nt -flag wai t  state (ei ther 
LEF or CEF) wil l  be sent to the pri mary CPU . 
When that processor services the interrupt ,  it 
aga i n  c h ecks to see if the wa i t  req uest has 
been satisfied (the flags have been set) . If so, 
the process is a l lowed to continue execu ting 
on the secondaq'. If the flags are sti l l  not set, 
the process is t aken o u r  of execu t ion and 
p laced inro the appropriate wai t  state .  The 
secondaqr processor then becomes ava i lab le  
for schedul ing. 

Al though a process may currently be el igible 
for schedu l i ng o n to the  secondary,  the  VMS 
operating system cannot predict whether or nor 
that process wi l l  require kernel -mode services 
in the ncar future . If those services are needed , 
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the process would have to be rescheduled onto 
the pri mary .  For example ,  ut i l i t ies that perform 
interactive tasks (such as editors or the mai l  sys
tem) req u i re n u merous I/0 req u ests . Ot her 
types of programs incur many page faults .  These 
processes are therefore poor candidates for exe
cut ion on the secondary .  Somet imes a system 
manager can predict that certa in  processes wi l l  
have t hose character is t ics ,  and h e  or she  can  
take preventive measures to  avoid process ing on 
the secondary. 

The fol lowing VMS mul t iprocess ing schedu l 
ing fea tu res g ive the system manager manua l  
contro l over the  sched u l ing of  processes onto 
the secondary CPU: 

• A SYSGEN parameter exists to l imi t  the maxi
mum priority of processes a l lowed to execute 
on the secondary. s Recal l  that priority boosts 
are granted to processes after certai n  events, 
such as I/0 completion . These I/O-i n tensive 
processes tend  to stay at pr ior i t i es above 
those of com pute-i n tensive ones . Therefore , 
setting the SYSGEN parameter a poin t  or two 
above the defa u l t  base -process priority may 
effect ive ly  screen o u t  many " u nsu i t ab le"  
processes from the secondary processor. The 
system manager can set the SYSGEN para me
ter to 0 ( i ndicat ing no priority screening i s  to 
occur) or to any value  from 1 tO 3 1 ,  which 
sets the priority l imit  to the specified value .  

• A process can  be made  i n e lig ib le  from exe
cut ing on the secondary processor by means 
of the SET P ROCESSjCPU = N OATTACHED 
command. This command prevents user pro
cesses that execute only i n teract ive or I/O
bound u t i l i t i e s from ru n n i n g on t h e  sec
ondary .  This fixed-process attribute remains 
i n  force unt i l  i t  has been changed wi th a SET 
PROCESS/CPU =ATTACHED com mand . '  

Summary 

The VAX 8800 system running the asymmetric 
VJVIS operat ing system prov ides the most com
put ing  power curre nt ly  ava i l a b l e  i n  the VAX 
fa m i l y to execute compu te- i n tens ive appl ica
t ions .  The 8800 represen ts a merger of a new 
hardware implementation of the VAX archi tec
ture with preexist ing m u l tiprocessi ng capabi l i 
t ies i n  the VMS operat ing system .  This software 
uses features of the  VAX arch i tecture and the 
hardware for whi c h  it  was origina l ly i n tended . 
With the advent of new m u l t i processi ng hard-
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wa re , the software design co u ld  be modified 
to rake  advantage of a d d i t i o n a l  capa b i l i t i es 
offered by the advanced hardware design i n  the 
VAX 8800 CPU. 
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Gabriel P. Bischoff I 
Steven S. Greenberg 

A Parallel Implementation of the 
Circuit Simul ator SPICE on 
the VAX 8800 System 

Multiprocessors are efficient only if the added computing power can be 
used to solve specific applications. To demonstrate the VAX 8800 multi
processor's advantages, the authors converted the circuit simulator 
SPICE into the parallel program CA YENNE. Their methodology involved 
using VAX instructions and VMS system services to create and control a 
series of master and slave processes. Other VMS instructions were used to 
synchronize these processes and to manage the critical sections. Modifi
cations for parallel processsing were made in SPICE's load, LV factoriza
tion, and local truncation error phases. The result was that CA YENNE, 
with two slave processes, ran 1.  7 time Jaster than SPICE. 

The rea l i za t i on t h a t  two p rocessors m i g h t  be 
better  t h a n  one is  not  new.  I nd e e d ,  p a ra l l e l  
compu t i ng can b e  traced back to the n i neteenth  
century . 1 The advent of very large sca le i ntegra
t i o n  opened a var iety of new opport u n i t i es i n  
t h e  f i e l d  o f  p a ra l l e l  process i n g fo r s p e c i fi c  
applications such as i mage processi n g  and signal 
process i n g .  Design i ng a n d  effi c ie n t l y  u s i n g a 
mult iprocessor for genera l -pur pose ,  h igh-speed 
computi ng ,  however, is more complex .  

T h e  major i ty of today's appl i cat ion programs 
are wri tten for s i ngle-processor m ac h i n es . To 
convert t hese programs to run on m u l t i proces
sor m a c h i n e s  a n d  a c h i e v e  c l ose t o  t h e  i d e a l  
speed u p ,  l i near w i th the n umber o f  processors. 
is n o t  a n  e a s y  t a s k . Two a p p roa c h e s  c a n  b e  
adopted t o  accompl ish t h i s  conversion task .  The 
f irst i s  to design spec i fi c  comp i l e rs t ha t  a u to 
m a t i c a l l y  convert progra ms wr i t t e n  for s i ngle  
processors i n to programs t hat run effi ciently on 
m u l t i processors. The second is  to l ea ve to the 
app l i cat ion programmer t he task of wri t i n g  code 
t h a t  m a kes effi c i e n t  use of t h e  m u l t i p l e  pro
cessors. 

The f irst  approach is t h e  best from a user 's  
po i n t  of v i ew ;  h oweve r ,  good m u l t i processor 
compi lers have yet to be des igned . The second 
approach l e aves more f le x i b i l i ty to t h e  p ro 
g r a m m e r ,  w h o  c a n  m o d i f y s o m e  o f  t h e  
a lgor i t hms i n  the p rogram to have more concur-
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rcncy.  I ndeed , the  two approaches should not  
be mutua l ly  exclusive:  the comp i l er can detect 
para l l e l i sm at  the i nstruct i on l evel whereas the 
p ro g r a m m e r  c a n  d e fi n e  p a r a l l e l i s m  at t h e  
a lgor i t h m i c  leve l .  Para l le l i s m  on the VAX 8 8 0 0  
s y s t e m  i s  a c h i e v e d  t h r o u g h  t h e  s e c o n d  
approac h .  

W e  w i l l  describe i n  t h i s  paper t h e  featu res of 
the VAX arc h i tecture and the VMS operating sys
tem t hat  we used to i mplement  our m e t hod o l 
ogy for para l l e l  p rocess i ng .  W e  w i l l  prese n t  a 
set o f  F O RTRAN rou t i nes we wrote to re l i eve 
t h e  a p p l i ca t i o n  p rogra m m e r  fro m h a v i n g  t o  
k now t h e  i n n e r  work i n gs of the  VAX a rc h i tec
ture and the VMS operat ing system . We w i l l  then 
descr i be the mod i ficat i ons made to the c i rcu i t  
s i m u lator SPICE2 to develop a para l l e l  process
i n g  i m p l e mentat ion , ca l l ed CAYENN E .  F i n a l l y ,  
w e  w i l l  give comparative t i m i n g  res u l ts on two 
s i m u lat ion examp les . 

VAX/VMS Primitives for Parallel 

Processing 

The VA'"'( 8 8 0 0  system is a s hared - memory m u l t i 
processor; a U  communicat ions between proces
sors arc performed t h rough sect i o ns of shared 
me mory rather t han t hrou g h  m essage pass i ng .  
When wri t i ng para l lel  code o n  a shared-me mory 
m u l ti processor, a program mer must be aware of 
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two concepts : crit ical  section and processor syn
chron izat ion . A crit ica l section i s  a sect ion of 
shared me mory that coul d  be accessed by sev
era l processors at the same t ime  if no precau
t i o ns were t a k e n  to preven t  t h a t .  Al l o w i n g  
s i m u l ta neous access t o  shared m e m ory co u ld 
resu lt i n  i ncorrect data. Processor synchron iza
tion i s  the means by which processors proceed 
in an orderly fashion . It consists of mechanisms 
al lowing processors to broadcast the beg inn ing 
or the completion of a task or to wai t  unt i l  a s ig
nal is rece ived . 

Some VAX instructions and some VMS system 
routines support the management of critical sec
tions and processor synchronization 5 4 We usc 
three V�'( instructions to control access to crit i 
cal  sections: 

• BBSSI - Branch on bit  set and set i nterlocked 

• BBCC I - Branch  on b i t  c lear and clear in ter
locked 

• ADA WI - Add al igned word interlocked 

The i nstructions BBSSI and BBCCI are the VAX 
i m p l e me n t a t i o n  o f  t h e  a t o m i c - t es t  a n d  se t  
instru ctions that a l low the  control of  access to 
cri t ical  sections to one process at a t i m e .  The 
i nstru c t i o n  ADAWI performs an i n te r locked  
in teger addi t ion and returns a cond i tion status 
depend ing  on whet h e r  t h e  resu l t  i s  zero or 
nonzero . 

We use three system rout ines of the VMS oper
at ing system to support processor sync hroniza
tion: 

• SETEF - Set event flag 

• CLREF - Clear event  flag 

• WAITFR - Wai t  for event flag 

Th ese rout ines are services provided by the 
VMS operating system to synchron ize processes. 
Indeed , the signi ficant ent i ty in the VMS mult i 
processor environment is  not  the processor but  
the process . A processor is  a physical  process ing 
uni t ,  whereas a process is a software entity cre
ated by the VMS operat ing system .  Mult iprocess
ing is ach i eved by c reat i n g  seve ra l processes 
that  VMS w i l l  assign to  ava i l a b l e  processors . 
Only the  opera t i n g  syste m ,  not the  user ,  can  
ass i g n  a g iven process to a g iven  processor .  
Event flags are b i ts maintai ned by  VMS. Several 
different  processes can have access to the same 
event flag, and signa l ing between processes can 
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be achieved by setting or clearing an event flag. 
For example,  the system service WAITFR places 
a process i n  a wait  state pend i ng the setting of 
an event flag. 

Addit ional VMS system routines a l low the cre
ation of processes, the creation and mapping of 
sect ions of sha red memory ,  and the i n i t i a l i za 
t ion of  event flags . These system rout ines are : 

• CREPRC - Create process 

• CRMPSC - Create and map sect ion of shared 
memory 

• MG LBSC - Map g l oba l sec t io n  of shared 
memory 

• ASCEFC - Associate common event flag cluster 

More i nformation on t hese rou t i nes can be  
fou nd i n  the  VAX/VMS System Services Man 
ual . 5 W e  used t h e  VAX i nstru ct ions a n d  t h e  
VMS system rout ines l isted above t o  write a set 
of rou t i nes t hat e mbeds o u r  m ethodol ogy for 
para l l e l  processing.  

Parallel Processing Methodology 

I n  the next section we outl ine the m ethodol ogy 
we use to achieve para l le l ism and i n  the process 
define some i mportant terminology . A program 
we wish to convert for para l l e l  processi ng i s  
d ivided into serial phases. Each phase i s  d ivided 
in to  tasks tha t  are executed e i ther seria l l y  or 
concurrently .  A phase whose tasks are executed 
serial ly is ca l led a si ngle-stream phase , whereas 
a phase whose tasks are executed concurrently 
i s  cal led a m u l ti p le-stream phase . The s ingle
stream phases are executed by a master process, 
whereas the m u l t i p le -stream phases a re exe
cu ted by s lave processes.  The sl ave processes 
are id le  when the master process is  act ive and 
v i ce vers a .  F igure 1 shows this re l a t ions h i p .  
Master a n d  s l ave processes r u n  t h e  same exe
c u ta b l e  fi l e ,  t hus l ead i n g  to eas i e r  p rogra m 
maintenance . As ment ioned ear l i e r ,  processes 
are dyna m ica l ly  assigned to processors by the 
VMS operating system . 

W e  d e s i g n e d  a g e n e r a l  s e t  o f  FO RTRAN 
routi nes for this environment . This set now has 
seven  e n t r i es a n d  i m p l e m e n ts t h e  cr i t i c a l 
sect ion and process-synchron izat ion concepts 
defined earl ier .  I t  a lso performs the necessary 
i n i t ia l izat ion and provides fac i l i ties for debug
ging a mul t iprocess execution.  The rem a inder 
of this section describes the functions ava i lable 
in  this set .  
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Figure I Synchronization of Processes 

In itialization 

I n i t i a l izat ion is  pnformed by a logical  fu nct ion 
ca l led MASTER_PR OCESS, w h i c h  i s  set to TRUE 
if a master process runs the exccma ble f i le and 
FALSE if  a s lave process runs i t .  The s lave p ro
cesses ha ve s p e c i a l  n a m es t h a t  d i ffe r e m i a t e  

t h e m  fro m t h e  mastt:r process . An argu mem J ist  
perm i ts t h e  spec i fi cat ion of the n u m ber of s lave 
p roct:sses ro creatt: a n d  t h e  i n p u t  a n d  o ut p u t  
f i l es to use for t hose s l ave processes . Through 
t h i s  a rgu m e n t  l i st a u n i q u e  process n u mber i s  
rerurned to each ca l l i ng process . 

A user can a l so spec i fy the n u m b er of s l ave 
p rocesses to create by u s i n g  a c o m m a n d - l i n e  
opt ion when the program i s  ru n .  For exam p l e ,  
t h e  p r o g r a m CAYE N N E  w o u l d  be r u n w i t h  
N s lave processes i f  i nvoked with the command 
CAYE N N EjS LAV ES = N  at t h e  S p r o mp t .  If  t h e  
ca l l i ng p rocess i s  a maste r ,  MASTE R_PROCESS 
w i l l  create the sections of sh ared memory ,  i n i 
t i a l ize the event  flags used for synchro n i za t i o n ,  
a n d  create t h e  req u i red n u m be r  o f  s l ave pro
cesses. I f  the ca l l ing process is a slave,  the fu nc
tion wi ll map the shared virtua 1 -address space to 
the existi ng sect i ons of shared mem ory. The sec
tions of shared me mory a rc FO RTRAN common 
b l ocks defi n ed as shared w h en the p rogra m i s  
l i n ked w i t h  a n  a p p ro p r i a te l i n k e r  c o m m and . 
During th is  i n i t i a l i zat ion phase, CREPRC creates 
s lave p rocesses, C R M PSC a n d  MG LBSC create 
a n d  m a p  s e c t i o n s  o f  s h a r ed me m o ry r e s p e c 
tive l y ,  a n d  ASCEFC i n i t i a l iz es t h e  event flags . 

1 2 2  

Synchronization 
Syn c h r o n i z a t i o n  is pe rfo r m e d  by fo u r  of o u r  
seven s u b r o u t i n e s :  F O R K ,  J O I N .  J O I N _EX ! T .  
a n d  .J O I N_FO RK. These subrout i ncs use t h e  VMS 
system ro u t i nes SETE F ,  C L R E F ,  and WA ITFR ro 
per form t h e  necessa ry i nt e rprocess s i gn a l i n g .  
E a c h  su brou t i n e  a c c o m p l i s h e s  r h c  fo l l ow i n g  
fu nct io ns: 

• F O R K -- T h i s  s u b r o u t i n e  is c a l l e d  by t h e  
master process to s ignal  r h c  sl ave processes ro 
proceed . T h e  master  p rocess t h e n  wa i ts i n  
t h i s  su brout i n e  for the s l aves to s ignal  ba c k .  

• JOIN - This su brou t i n e  is cal led by the s lave 
p rocesses ro sign al rhc master process to pro
ceed . T h e  s l ave processes then wa i t  in t h i s  
subro u t i n e  for the master to signal bac k .  

O n l y  t h e  l ast cal l i ng slave process signa ls the 
master p rocess . The VAX i nstruct ion AOAW I 
i s  used to i d entify th is  last  ca l l i ng sl ave pro
cess . 

• J O I N_EXlT - T h i s  s u b ro u t i n e  is ca l l e d  by 
the s l ave processes ro s i gna l the master pro
cess to procee d .  However .  rhe s lave proccsst:s 
then exit  instead of wa i t i n g  for a s igna l .  That 
is t h e  way the s l a ve p ro c esses a rc sto pped 
when they are no longer needed . 

• JOT N_FO R K - T h i s  s u b ro u t i n e is ca l l ed by 
the slave processes to synchron izc two m u l ti
ple  stream p hases wi th no i nt erve n i ng single
s t r e a m  p h as e .  Th e u s c  o f  t h i s s u b r o u t i n e 
a l l ows s l ave p rocesses ro be s y n c h ron i z ed 
wi thout having to s i g n a l  the master process. 

These synchro n i za t i on ro u t i nes put a process 
t hat n eeds to wa i t  for a s ign a l  i nro a wait  stare.  
Processes in a wa i t  state cl o  n o t  use any C P U 
t i m e .  Each ca l l  ro one of these syn c h ro ni zat ion 
rou t i n e s ,  h o w e v e r ,  r e q u i res m a n y  ma c h i n e  
i nstru c t i ons ro be executed . I f  the app l i ca t i o n  
progra m m e r  a n t i c i pa t e s  a v e r y  s h o r t  wa i t i n g  
t i m e ,  a n  a l ternat ive t o  t h e  p rev i o u s  method of 
sync h ronization is synchroni zati o n  th rough b u sy 
wa i t .  I n  t h i s  scheme a process wil l loop, execut
i n g a n  i n s t r u c t i o n  o f  t h e fo r m  D O  W H I L E 
(FLAG_IS_NOT_SET) ENDDO . The process wi l l  
execu te the previous i nstruction u n t i l  the l ogi
cal FLAG_JS_NOT_SET is set to FALS E .  

The busy-wa i t  form of syn c h ron i za t i o n  n eeds 
ro be used w i t h  care . Jr can lead to l oss of over
a l l  sys t e m  p e r fo r m a n c e . I n d e e d ,  t h e  process 
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execut ing a busy-wai t  i nstruction wi l l  use CPU 
t i m e t ha t  m i g h t  be  m o re p rod u c t i ve ly  u s e d  
b y  a n o t h e r  process . I n  add i t i o n ,  t h e  l o g i c a l  
F LAG_ I S_ N  OT _S E T ,  w h i c h  i s  c o n s t a n t ! y 
checked for ,  is shared by a l l  processes .  There
fore, access to this logical must be careful ly  con
trolled.  I f  several processes change this logical at 
the same t ime,  i ts fi na l  value  w i l l  be unknown . I f  
n o  process updates FLAG_IS_NOT_SET, a pro
cess may e x e c u t e  t he busy-wa i t  i n s t ru c t i o n  
forever ,  t h u s  l e ad i n g  t o  dead loc k .  Deadlock  
occurs when processes are wai ti n g  to  receive a 
signal that w i l l  never be sent .  

Critical Section 
Cri t ica l  sect ions i n  a para l l e l  i m plementa t ion  
shou ld  be min i mi zed . They are  the bottlenecks 
of the multiple-stream phases because they can 
be accessed by only one process at  a t ime .  If a 
c r i t i c a l  sect i o n  cannot  be avo i d e d ,  t h e  t i me 
spent to access this section shou ld be min im ize d .  
Exc l us i ve a c c e s s  to  c r i t i ca l  s e c t i o n s  c a n  b e  
ach ieved b y  u s i n g  e i ther  t h e  VAX i n ter locked 
instruct i ons or the VMS system services . ·; The 
former method i mplements a busy-wai t  form of 
access syn chro n i za t i o n , the l a tt e r  uses event  
flags. 

The two subrout ines LOCK and  UNLOCK are 
assembly l anguage rou t ines  i m p l e m e n t i n g  a 
busy-wai t  form of access synchron i za t ion .  We 
chose th is  method because i t  i s  faster i n  elapsed 
t ime ,  and the t ime spent by a process wai ti ng is 
expected to be sma l l  when the access to cr i t ica l  
sections has  been m i n imized. These subroutines 
are used i n  the fo l l owing m a nner to access a 
critical section :  

CALL LOCK(SECTrON_ENTRY) 
CALL ACCESS_CRITICALSECTION 

CALL UNLOCK(SECTrON_ENTRY) 

SECT I ON_E NTRY i s  a n  i n teger  assoc i ated  
with a given crit ica l  section . Th i s  i n teger is  set 
to 1 when a process is using the crit ical section 
and to 0 when no process is using the crit ical 
sec ti o n .  The t wo c a l l s  LOCK and UNLOCK 
ensure that only one process a t  a t ime executes 
the code ACCESS_CRITrCAL_SECTION .  We use 
t h e s e  r o u t i n e s o n l y o n c e  i n  CAYE N N E  fo r 
dynamic task a l locat ion .  

Parallel Debugging 
Debuggi ng para l l e l  code i s  somewhat  more 
complex than debugging sequent ia l  code . We 
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debug o u r  para ! J e l  code us ing  the fol l ow i ng 
methodo logy. The funct ional i ty of our para l le l  
code does not depend on the nu mber of slave 
processes or on which specific process performs 
a part icular task . Therefore , the whole code can 
be executed by the same process. For example, 
CAYE N NE ru ns w i t h  o n l y  one process i f  the  
nu mber of s lave processes i s  spec i fied to be  
zero .  Th is  a l lows most a lgor i thmic  mod i fica 
tions made in  the code to be debugged with the 
VMS debugging faci l i t i es provided for sequen
t ia l  code .  

After the first debuggi ng phase, a code sect ion 
cou ld sti l l  have errors when run with multiple 
processes . Our rou t i nes a l low two fo rms of 
debugging ,  requested e ither  through a flag i n  
t h e  a rgu m e n t  l i s t o f  t h e  l o g i c a l  fu n c t i o n 
MASTEILPROCESS or through a command- l i ne  
option . The first form of  debugging permits the 
ass ignment of a d i fferent term i nal to each pro
cess and the sett ing of a debugg i ng sess ion for 
each process on i ts assigned term inal . The sec
ond form of debugging is i ntended to be used 
with a workstat ion .  A d i fferent workstat ion win
dow is assigned to each process, and a debugg i ng 
session is set up for each process i n  i ts ass igned 
wi ndow. The number of processes that can be 
debugged concu rrently is l i m i ted to e i ther the 
number of termi nals ava ilable or the number of 
workstat ion windows that can be opened.  

Example 
The fol l owi n g  exa m p l e ,  s hown i n  F i gure 2 ,  
i l l ustrates some of the functiona l i ty of our set of 
rout ines. We want to compute the sum SUM of 
all i ntegers from 1 to N' S. We assume that a mas
ter process wi th  the he lp  of N slave processes 
does the  task . Each s lave process is a ss igned a 
un ique number PROCESS_NUM BER between 1 
and N by the logical function MASTEILPROCESS. 
The section of shared memory consists of an array 
P A R T I A L _ S U M  o f  s i z e  N. T h e  s l a v e p r o 
cesses work  i n  p a ra l l e l . Each  s l ave process 
adds S conse c u t i ve i n tegers a nd stores i ts re
s u l t  i n  t h e  s h a r e d  m e m o r y l o c a t i o n  
PARTlAL_SUM (PROCES5_NUMBER) . 

After the slave processes have completed their 
task, the master process adds their partia l  sums, 
stored in the shared array PARTIALSUM ,  to pro
duce the final resu l t  SUM . The code correspond
ing to this  procedure fo l lows . ( Remember that 
master a n d  s lave process run t h e  exact same 
executable fi le .)  

1 2 3  
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A Parallel Implementation of the Circuit Simulator SPICE on  the VAX 8800 System 

P R O G R A M  p a r a l l e l  

E N D 

L O G I C A L  m a s t e r - p r o c e s s  

I N T E G E R  p r o c e s s _ n u m b e r  

I N T E G E R n u m b e r _ o f _ s l a v e s , d e f a u l t _ n u m b e r _ o f _ s l a v e s  

I N T E G E R  d e b u g _ f l a g 

P A R A M E T E R  ( d e f a u l t _ n u m b e r _ o f _ s l a v e s = S , d e b u g _ f l a g = O )  

C O M M O N  / s h a r e d /  n u m b e r _ o f _ s l a v e s  

C O M M O N  / l o c a l /  p r o c e s s _ n u m b e r  

I F  ( m a s t e r _ p r o c e s s ( p r o c e s s _ n u m b e r , n u m b e r _ o f _ s l a v e s , 

d e  f a  u 1 t _ n u m b e r  _ o f _  s 1 a v e s  , 1 i n p u t  1 , 1 o u t p u t 1 , d e b u  9 - f 1 a g ) )  T H E N  

C A L L  m a s t e r _ c o d e  

E L S E  

C A L L  s l a v e _ c o d e  

E N D  I F  

S U B R O U T I N E m a s t e r _ c o d e  

E N D  

I N T E G E R  n u m b e r _ o f _ s l a v e s , m a x i m u m _ n u m b e r _ o f _ s l a v e s , i  

P A R A M E T E R  ( ma x i m u m _ n u m b e r _ o f _ s l a v e s = 1 0 )  

I N T E G E R  p a r t i a l _ s u m ( ma x i m u m _ n u m b e r _ o f _ s l a v e s ) , s u m 

C O M M O N  / s h a r e d /  n u m b e r _ o f  _ s l a v e s , p a r t i a  l _ s u m  

C A L L  f o r k  

s u m = 0 

DO i = 1 , n u m b e r _ o f _ s l a v e s  

s u m = s u m + p a r t i a l _ s u m ( i )  

E N DD O  

S U B R O U T I N E s l  a v e _ c o d e  

E N D  

1 24 

I N T E G E R  p r o c e s s _ n u m b e r , n u m b e r _ o f _ s l a v e s , s t a r t , s , i  

I N T E G E R  p a r t i a L s u m ( 1 )  

P A R A M E T E R  ( s = 2 0 0 )  

C O M M O N  / l o c a l /  p r o c e s s _ n u m b e r  

C O M M O N  / s h a r e d /  n u m b e r _ o f _ s l a v e s , p a r t i a l _ s u m  

p a r t i a l _ s u m ( p r o c e s s _ n u m b e r )  = 0 

s t a r t = < p r o c e s s _ n u m b e r - 1 )  * s 

DO i = s t a r  t + 1 , s t a r  t + s 
p a r t  i a l _ s u m ( p r o c e s  s _ n u m b e r ) p a r t i a  l _ s u m (  p r o c e s s _  n u m b e r ) + i 

E N D D O  

C A L L  j o i n _ e x i t  

Figure 2 PROGRAM Parallel 
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In the next section we describe how we cre
ated para l le l  process i ng in severa l phases of the 
ci rcu i t  s imulator SPICE to produce the program 
CAYENN E.  

Modifications Made in SPICE 

B e fo re a d d r es s i n g e a c h  p a r a l l e l  p h a s e  o f  
CAYE NNE,  we give a brief overview o f  the cir
cuit  s imulator SPICE. 

Overview of SPICE 
SPICE performs severa l types of c i rcuit  analys is :  
s teady-state  ana l y s i s ,  t rans i e n t  a n a lysi s ,  and 
smal l-signal analys is .  The most commonl y  used 
a na lysis for d igi ta l  c i rcuits is the transient analy
s is ,  which becomes i ncreas i ngly t ime consu m
ing as the s ize  of the simu lated c i rcuit increases . 
F i g u r e :) g i v e s  a g l o b a l  d e s c r i p t i o n  of t h e  
algori thms used by SPICE for a transient analysis . 

The c i rcu i t  equations form a system of ord i 
nary d i fferential equations. This system i s  so lved 
numerica l ly at su ccessi ve t ime poin ts t i , i = 1 ,  
N.  I t  is reduced at a given t i me poin t  ti i n to a 
system of nonl inear  equat ions by us ing a dis 
cre t i za t ion  met hod . A d iscre t i za t i o n  m ethod 
approxi mates the t ime derivat ive of a variable at  
a given t ime point  as  a fu nction of the va lue of 
the variable at that t ime poi n t  and at previous 
t i m e  poi n t s .  T h i s  m e t hod i n t rodu ces a d i s 
cret izat ion error that  must be contro l l ed  and 

t i m e  = 0 
DO WH I L E < t i m e < f i n i s h t i m e > 

d i s c r e t  i z e d i f f e r  e n  t i a 1 e g u a t  i o n s  

D O  W H I L E ( n o t c o n v e r g e d } 

l i n e a r i z e a l g e b r a i c  e g u a t i o n s  

s o l v e l i n e a r  e g u a t i o n s  

c h e c k  c o n v e r g e n c e  

E H DDO 
I F  ( l o c a l  t r u n c a t i o n e r r o r  t o o  b i g ) T H E H  

r e d u c e  t i me 

E L S E  
s a v e  r e s u l t s  a t  t h i s t i m e  

a d va n c e  t i m e  

E H D I F  
E H D DO 

Figure 3 Transient A nalysis Algorithm jar 
SPICE 
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m a inta i ne d  be low a spec i fied t h reshol d .  Th is  
error i s  ca l led the  loca l  tru ncat ion error . The  
resu l t i n g sys t e m  o f  n o n l i n ea r  e q u a t i o ns  i s  
reduced to a system of l inear equations by per
form i n g a fi rst-order Taylor expansion of the 
nonUnear e lements of the c ircu i t .  This l i neariza
t i on i n trodu ces another  e rror ca l l ed the l i n 
earizat ion error. The resul ting system of l i near 
equat i ons i s  then solved exactly,  using an LU 
factorizat ion of the system matrix .  

Aft e r  the  so l u t i on o f  t h e  sys tem has b e e n  
obta i n ed , t h e  l inear iza t ion  error can b e  esti 
mated .  I f  th i s  error is too big, a new l i neariza
t ion is performed around the previously co m
puted  so l ut ion , and t h e  new l i n ear  system i s  
solved aga i n .  Successive l i nearizat ions a re per
formed unt i l  convergence is obta i ned ,  that i s ,  
unt i l  the  li nearization error is  be low a specified 
t h resho l d .  When  convergence i s  reached the 
so lut ion of the non l i near system is  obta ined , and 
the local  t runcat ion error is  then checked . I f  
th is  error i s  too big ,  the solution a t  t ime poin t  ti 
is rejected and the system of d i fferen t ia l  equa
t ions  is so lved at a new t ime p o i n t  f; so tha t  
ti - 1 < t1 < ti . If the  error is be low a specified 
threshold ,  the so lut ion i s  accepted , and the sys
tem is solved at a new t ime poin t  ti + 1 so t ha t  
t i  < ti + 1 .  This procedure i s  repeated unti l the 
ent ire transient analysis i s  computed . During a 
t ransient s imulation the circui t  s imu lator SPICE 
spends up ro 90 percent  of i ts CPU time in three 
phases of the previous a lgor i thm . These phases 
arc as fol lows : 

• Load Phase - This phase consists of loading 
the matrix and the right-hand side of the sys
tem of l i near equat ions obta ined as described 
above . Device-mode l equations and l i neariza 
t ion errors are  a lso computed i n  th is  phase . 

• LU Factorization Phase - This phase consists 
of facroring the matrix of the system of l inear 
equati ons i n to the product  of a lower tr iangu
lar matr ix  a n d  an u pper tr ia ngu l a r  matr i x .  
This factorization i s  used t o  solve the system 
of l i near equations . 

• Loca l Truncat ion Error Phase - This  phase 
consists of  comput i ng the local  truncat ion 
error com mitted at each t ime step . 

The modificati ons for para l le l  processi ng made 
in these three phases are descri bed next. 
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L oad Phase 

In the l oa d  phase each c i rc u i t  e l e m e n t  c o m 
p u tes a n d  l oa d s  a l l  i t s c o n t r i b u t i o ns to t h e  
matrix a n d  t h e  right-hand s i d e  o f  t h e  l i near sys
tem obta i ned from the circui t  equations.  Severa l 
d i s t i n c t  el e m e n ts may c o n t r i b u t e  to t h e  sa me 
matrix or right-hand side entry. This means that 
the matrix and right-hand side are cri t ical  sec
t i o n s  i n  the l oad p h a s e ,  and a c c e ss t O  t h e m  
needs t o  b e  contro l l e d .  O n e  approach t o  syn 
chronize accesses to the matrix is to use a s i ng l e  
l o c k  o n  t h e  w h o l e  matrix 6 I n  this case o n l y  one 
processor can write i n to the matrix at a given 
t i m e ,  lead i n g  to contention for shared resources 
a n d  decreased effi c i ency. 

In our approach l oc k i ng the e nt i re matrix is  
avoided by creat i ng an addit i onal data structure 
to store each i n d i v i d u a l  e l e ment contri b u t i on . 
This stru cture can be viewed as a three-d i m e n 
sional m a t r i x  whose t h i rd d i m ension is used to 
store each individual element contri bmion to a 
given c i rcuit-matrix e nt ry. Figure 4 depicts such 
a matr i x .  There i s  n o  u n us e d  m e m ory in t h i s  
structure because i t  h a s  a vari able depth i n  i ts 
third d i mension . Nevertheless , u s i ng this stru c
ture wil l  i ncrease the memory requ i rements of 
the s i m u lator. I n  the design of CAYENNE it was 
necessary o n  many occasions to trade m e m ory 
fo r s p e e d . O u r  t e s t  e x a m p l e s s h o w  t h a t  
CAYE N N E  re q u i res a n  average of 2 0  perce n t  
m o re d a t a  m e m o ry t h a n  S P I C E  vers i on 2 G  5 

req u i res . T h e  c o n t r i b u t i ons for e a c h  m a t r i x  
entry are su bseq u e n t l y  s u m m e d  and l oaded i n  
para l lel  i n to the c i rcu i t  matrix .  The matrix load 
is the refore performed in two successive m u l t i 
ple-stream phases. 

I t  is crucial  that tasks arc eve n ly d istri buted 
among s lave processes so that no slave process 
s t a y s  i d l e  w h i l e  o t h e r s a r e c o m p u t i n g .  A 
dynamic task a l location was chosen for the first 
m u l t i p le-stream phase of the ma tri x l oad . That 
al location was preferred to a stat ic  task a l loca
tion because t he t i me needed to load each ele
ment cannot be es t imated a c c u rately.  I ndeed , 
computation of device models may be bypassed 
d ur i n g  s i m u l a t i o n .  T h e  m o d e l  e q u a t i o n s  of a 
device are not compu ted at a given iterat ion of 
the analys is if the voltages applied to this devi ce 
d i d  not cha nge sign i ficantly compared to their 
va l u e s  a t  the prev ious i terati o n .  This  strat egy 
saves CPU t i m e .  

Dynamic t a s k  al location is ach i eved t h rough 
a n  a rray of tasks whose n u mb e r  exceeds t h e  
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G, - CONDUCTANCE OF FIRST RESISTOR 
G2 - CON DUCTANCE OF SECOND RESISTOR 

Figure 4 Three Dimensio nal Matrix 

n u mber of s l ave processes. A task consists of a 
l ist of c i rcu i t  e l e me nts to be l oaded . Tasks are 
defined so that each req u i res approx i mate ly the 
sa me a m o u n t  o f  wor k . The a m o u n t  o f  work 
needed tO load a ci rcu i t  e l e m e n t  i s  est i mated 
roughly by neglecting bypass a n d  evaluating the 
CPU t i me needed to load the e l e ment.  Dynamic 
task a l l o c a t i on i s  e x p e c t e d  to m i ni m i z e  any 
i m b a l a n c e  t h a t  may o c c u r  d u ri n g  s i m u l a t i o n  
through device model computation bypass . 

The task al locat i o n  for the second m u l t i ple
s t re a m  phase of the matrix load is  done sta t i 
ca l l y s i n c e  t h e  w o r k  n e e d e d  t o  p er fo r m  t h i s  
phase c a n  b e  d i vi ded i n to tasks re q u ir i n g  the 
sa me a mount of CPU time. The only i nterlocked 
access to shared me mory during the matrix load 
is the one on the array index,  w h i c h  defi nes the 
next task when dynam i c  task a l loca t i o n  is used . 
This index is successively read and i n cre mented 
by all slave processes . 
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L U Factorization Phase 
The t ime spent by a d irect-method circuit si mu
lator in the load phase i s  l i near in  the number of 
c lements ,  whereas the t i me spent solv ing the 
l i near system of equati ons is super l inear i n  the 
size of the matrix 7 For large c ircuits the matrix 
so l u t i o n  p a r t  w i l l  t h e re fore  beco m e  more  
i m porta n t  and  wi l l  d o m i na t e  over  the  load 
phase . 

I n  SPICE the matr ix-so l u t i o n  p hase is done 
us ing sparse matr ix LU factorizat ion . Although 
fu l l  matrices can be factorized effic iently in par
a l l e l . H  t h e  p a ra l l e l  fa c to r i z a t i o n  of s p a rse 
matrices i s  more difficu l t .  The LU factorization 
a lgorithm has a sequent ia l  dependency, and the 
amount of concurren t  work that can be done at 
each step in a sparse matrix i s  sma l l .  

I t  is  poss ible to design a lgorithms that detect 
the maxi mum para l le l ism at each step of the LU 
factoriza t ion .  Such a lgor i thms have been used 
for vecrorized circuit  s imulat ion .'>  In  our envi
ronment synchroniza ti on is done through soft
ware and the fi ne-gra in  para l l e l  ism used for vec
torization may not be effic ient .  Based on these 
cons iderat ions .  we have proposed and i m p le 
mented an a l gor i thm i n  which pa rt icular care 
h a s  b e e n  t a k e n  t o  m i n i m i z e  t h e  o v e r h e a d  
inc urred with para l le l  processing.  The deta i ls of 
our a lgori thm can be found in reference 1 0 .  

Local Truncation Error Phase 
The para l le l  computation of the t ime step does 
not present major difficu l t ies s i nce the compu
ta t io n of t h e  loca l  t runca t ion  er ror for each 
energy s torage e l e ment is  i ndepende n t .  Each 
slave process is ass igned a se t  of  energy storage 
clements and com putes the t ime step required by 
this sc.-t . The master process then computes the 
mini mum time step among the time steps retu rned 
by the sl ave processes .  The en ergy storage c le 
ments are stat i ca l ly  assigned among s lave pro
cesses so that the work among them is balanced . 

Results 

The para l l e l  algorithms descri bed in  this paper 
have been i mplemented to produce the program 
CAYENNE .  We now prese nt two examp l es to 
compan.: the t iming performances of SPICE and 
CAYENN E.  

The first example is the s imu lation of  a MOS 
arith metic logic unit (AlU) on a VAX RHOO sys
te m .  The c i rcu i t  has 2 0 0  nodes and 1 3 50 e l c -
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menrs . Twelve hundred Ne""rton Raphson i tera
tions are requ i red for the transi ent si mulat ion . 
The effic iency of our para l l e l impl ementation is 
measu red in this example .  If a mul t ip le-stream 
phase runs seq uent i a l ly i n  an e lapsed t i me Ts 
and  i n  para l l e l  w i t h  N s l ave p rocesses i n  a n  
elapsed t ime T, ,  we define  t h e  efficiency, E ,  of 
the para l le l  execution hy 

E = ( T, - T, ) / ( T_, - Ts/N) 

E represents t he rat io  of the actual  savings i n  
elapsed t ime t o  the potent ia l  savings i n  elapsed 
t ime.  Ta ble I gives t imi ngs and effic iencies for 
the AlU exa mple . As a comparison , SPICE s imu
lates the same circu i t  in  an e lapsed t ime of 834 
seconds. 

Table 1 Timing Performances and Efficiencies 

CAYE NNE CAYENNE 
0 Slaves 2 Slaves Efficiency 

Phase (Seconds) (Seconds) (Percent) 

Load 694 97 86 

LU 22 1 4  70 
LTE 67 35 96 

Total 
S imulation 867 529 

The second example  is t h e  s i m u la t ion  of a 
MOS contro l store . The c ircu i t  has 1 6 0 nodes 
and 5 30 clements , and the transient s imu lation 
req u i res 1 4 0 4  N e wto n Ra p h son i t e ra t i o n s .  
SPICE spends 9 1  percent of the s imul ation t ime 
i n  the three phases we modified for para l le l  pro
cessi n g .  CAYEN N E  execu t i n g  w i t h  two s l ave 
processes a c h i eves 9 0 - percen t  effi c i ency i n  
these phases and s imu lates the c ircu i t  1 .7 ti mes 
faster than SPICE. For t h is s imulat ion,  CAYENNE 
on a VAX 8800 runs 9 ti mes faster than SPICE on 
a VAX- I  1 /780 CPU. Tab l e  2 shows these com
parisons. 

The effi c i enc ies of a para l l e l  execu t i on of 
CAYENNE depend  on t h e  s ize  of t h e  c i rc u i t .  
In deed , there i s  a fixed overhead i n cu rred by 

Table 2 Comparison of SPICE and 
CA VENNE Elapsed Run Times 

Elapsed 
Case Seconds Ratio 

SPICE on VAX-1 1 /780 3990 9 . 1  
SPICE on VAX 8800 750 1 .7 
CAY E N N E  on VAX 8800 440 1 .0 
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ca l l i n g t h e  s y n c h r o n i za t i o n  ro u t i n e s  J O I N , 
FORK or J O I N_FORK . The bigger the task per
formed by the sl ave processes before a ca l l  to a 
synchro n i zat ion rou t i n e ,  the smal ler  the relative 
cost of synchron izat i o n .  The s i m u l a t i ons of ou r 
exam ples were a lso r u n  on a l ightly loaded sys
te m .  Loss of effi c iency occurs when processors 
have to be shared w i t h  n o n rc l ated p rocesses . 
and busy-wa i t  synchro n i z at i ons may waste s i g
n i ficant reso urces. A work load consist ing  of sev
era I i ndcpendent  s i m u l a t i o ns of eq ua I im por
tance i s  a l ready deco mpos e d .  and CAYE N N E  
sh o u l d  b e  r u n  i n  s i ng l e - p rocess mode I f  the 
turnaround of a s ingle ,  large s i m u lat ion needs ro 
be m i n i m i z e d ,  howeve r,  CAYE N N E  shou ld be 
run with two s lave processes on a ded icated or 
l ight ly l oaded 8800 . 

Summary 

We have descri bed a ge nera l methodol ogy for 
para l l e l  process ing on the VAX 8800 system and 
a user-fr i e n d l y  set  o f  rou t i nes that  embed o u r  
method o l ogy . \Ve have a l so presented the suc
cessfu l c o n v e rs i o n  of the c i rc u i t  s i m u l a to r 
SPICE i nt o  the para l l e l  program CAYE N N E .  New 
schemes to m i n i m i ze the o ver iH.:ad of p a ra l l e l  
process i ng a n d  t o  balance the load among pro
cesses con tribute to the overa l l  efficiency of our 
i m p l e mentatio n . 
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Dennis T. Bak I 

The Impact of VAX 8800 Design 
Methodology on CAD Development 

Contributing to the success of the VAX 8800 project was an integrated 
CAD environment supporting the hardware design effort. A CAD group 
dedicated to this single project was chartered to supply a smoothly oper
ating CAD process from initial design conception to final production. 
The CAD environment evolved through a blending of existing tools avail
able in Digital with new tools developed outside the company. Gaps in the 
environment were filled through extensive modification of existing tools 
and new development efforts. The driving force behind the CAD process 
was a design methodology, radical for its time but second nature now. 

Past CAD Development Efforts 

Pr ior  to t h e  m i d - 1 9 7 0 s ,  l o g i c  deve l o p m e n t  
efforts w i t h i n  D ig i ta l  Equ ipment  Corporat ion 
were largely done without the extensive use of 
CAD tao l s .  H a n d - d rawn schemat ic  d i a gram s  
were t h e  pri m ary means o f  express i n g  l o g i c  
designs . 

A major advance i n  design automat ion took 
place in the mid- 1 970s when the Stanford Uni
ve rs i ty Des i gn Syste m ,  or  SUDS, began to be 
used within D ig i ta l .  SUDS a llowed the entry of 
schematics in to and the extraction of net l ists 
from a graph ics databas e .  A l t hough  i t  was a 
major step forward i n  the automation of design 
processes, SUDS requ i red s ignificant user tra in 
ing and experience to become an effective too l .  

Bu i ld ing a SUDS database capable  of b e i n g  
used by a computer opened a new avenue for 
the evo l v i n g  CAD groups to au tomate  t he i r  
design processes. These groups soon developed 
a large body of programs to su pport ne t - l i s t  
extract ion ,  design analysis ,  placement and rout
i n g ,  and eve ntua l l y  m a n u factu r ing parts - l i s ts 
generation.  S imu lation too ls were deve loped to 
he l p  verify the operat ions of a design before any 
actu a l  hardware was ava i l a b l e .  The i n creased 
complexity of design drove CAD developers tO 
provide more powerfu l CAD tools .  I n  turn , logic 
designers soon grew i ncreas ingly dependent on 
CAD tools as their capab i l i t ies i ncreased . 

The design methodologies and the CAD tool 
su i te  e vo lved to su pport l a rge-CPU desi gns ,  
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such as the VAX 8600 fa m i l y .  SUDS eased the 
b u rd e n  of e n t e r i n g  and co p i n g  w i t h  des ign 
c ha n ges ;  however ,  the ac tua l  contents  of i t s  
schemati cs d iffered l ittle from those of  the  ear
L ier hand-drawn ones. I n  large pa n the schemat
ics entered by desi gners i nto SU DS corre la ted 
d i rect ly with the p hysi c a l  en t i ty being b u i l t ,  
showing a l l  components and their p i ns .  

At the i nception of the VAX 8800 project in 
the early 1 9 80s, a vast col lection of CAD tools ,  
written by many interna l groups, had spru ng up .  
Most of these roo l s  req u i red large ASC I I  data  
fi les and sign ificant manual  in tervention by CAD 
experts. Although many a i ds were provided to 
develop design processes, they lacked the cohe
siveness and s impl icity needed to put a process 
d i rectly i nto the hands of the designers . 

At about  t h i s  t i me ,  a nu mber of s ign i ficant  
advances were made i n  CAD techno logy . Engi
neering workstations were annou nced at prices 
that made it practical  to put them d irectly i nto 
the hands of designers . Moreover, new design 
methodologies ,  such as structured com puter
a ided logic design , or SCALD, were a l so deve l 
oped . 1  

Th ese m e t hodo lo g i es c o u l d  s i gn i fi ca n t l y  
im prove the qua l i ty of design while decreasi ng 
the t ime  to deve lop complex systems . There 
fore , D ig i t a l  made a commi tment tO  use  those 
methodologies on the VAX 8800 project to pro
duce not only  the product but  a more produc
t ive way of developing i t .  
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Design Methodology 

T h e  d e v e l o p m e n t  o f  C A D  t o o l s  f o r t h e 
VA,'( R R O O  project was a cons idera ble  c h a l l e nge 
ro rhe CA D des i g n ns .  'f he co m p l ex i ty of t h e  
VA.'( 8800 desi gn . with i rs part icu iJr  gate ar ra �· 
i m p l e m e n ta t i o n , d e m a n d e d  r h a r  r h c  des i g n 
q u a l i ty be h i gh before anyt h i n g  was co m m it ted 
ro hardware . In fact .  the project managers made 
a rad ical  (for i rs r i m e )  commi t m e nt ro sim ul ate 
t h e  e n t i re des i gn a n d  ver ify i ts r i m i n g  before 
any h a rdware was bu i I r .  The rcfore . r h e  CAD 
process had ro be designed ro m e et nor o n l y  that  
goal bur also ro fac i l i tate t h e  ra p i d  prod u c t i o n  
of hardware once t he design had prove n accept 
a b l e .  T h i s  sect ion of t h e  paper des c r i bes t h e  
methodo logy w e  fo l l owed t o  make the best use 
o f  our CAD too l s .  The n e xt sec t i on d escri bes 
those rools and how t h ey were used . 

The rool suite that evolved , p icmred i n Fi gu re 1 ,  
su pported both logical  and p hysical  design pro
cesses with  c hecks and bala nces ro ensure t h a t  
the design topo logies re mai ned the same.  Sche
ma t i c  d i ag r a m s .  ca p t u r ed at an e n g i n e e r i n g  

workstati o n .  were processed in ro a l o g i ca l n e r  
l i st t h a t  was used by r h e  si mulat ion a n d  veri fica
t i on too l s .  Once a l og ica l design reached a cer
t a i n I nT I  of m a ru r i r y .  i t  was m a p p ed i n to a 

ph�·s ical  design . At that  poi nt  a physica l a n a l ysis. 

ro determ i n e  d e l a ys and s i gna l i n t e g r i t y ,  was 
perfo r m e d . Place m cnr and rou t i n g  too ls were 
then run to fu rther refi n e  the design . The part of 
the p lws i ca l design d a t a base t h a t  represen ted 
the l ogi ca l ropo logy was then passed back to the 
logi cal  side of the desi gn process Tbere , a com
p a r i so n  was made tO ensure t h a t  t h e  phys i c a l  
a n d  logica l designs were congru e n t .  Thc resu l ts 
of s i m u l a t i o n s  based o n  t h e  p h ys i c a l  d e s i g n  

were also passed r o  th e l ogical  process for com
parison wi t h  t h e  s i mu lat ions based on rhe logi
cal  design . These mechan isms prov iclecl the pri 
m a ry ch ec ks ro e n s u re rh a t t h e  l o g i c a l  des ign 
marc hed t h e  p hysical  one.  

We deci ded t h a t  t h e  best way to ass u re suc
cess was ro develop a com plete paper speci fica
tion of the mach i n e  to be b u i l t .  Once the ovcr
a l l  goals for the machine had been esra b l i s hecl .  

DESIGNER 

MANUFACTURING 

- LOGICAL TO PHYSICAL - REPORTS - PLACEMENT - INTERACTIVE CLEANUP 
MAPPING - DELAYS - ROUTING 

- WIRE RULE CHECK - SIGNAL INTEGRITY 
- INTERFACE FILES 

UNIX VAX/VMS 

Fig u re 1 CAD Tool Su ite 
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the designers developed the speci ficat ions for 
each major logic section . This h igh- level logical 
des ign  was t h e n  part i t i o n ed  i n to fu n c t i o n s  
required within modu les a nd gate arrays. These 
pr i mary i n terfaces were spec i fi e d  before a ny 
deta i led logic was developed . As i t  turned out ,  
that  par t i t i o n i n g  re m a i n ed  r e l a t ively i n t a c t  
throughout  the project. 

The next  step was to develop probe designs 
and abstract models for the most complex parts 
of t h e  m a c h i ne .  These d e s i gns a n d  m o d e l s  
tested whether o r  not particular logic functi ons 
coul d  be developed and t iming constra in ts met . 
I n  so me cases the probe designs  were carried 
through to the actual fabrications of gate arrays 
or modules .  This conti nu i ty a l lowed us to test 
the l i m i tations of the selected ECL technology as 
we l l  as the logic design . 

The probe des i gns p roved u sefu l i n  many  
ways to both the  designers and the CAD devel 
opers . The des igners were able to veri fy tha t  
the ir  log ic  i m plementations wou ld work .  The 
CAD developers were able to use the designs as 
test  cases tO de ve lop and  d e b u g  processes . 
These test cases proved to be crit ical tO the pro
jec t ' s  su ccess,  espec i a l ly when  the  f in i shed 
design was given to  the manufacturing organ iza
t ion . The process was so smoot h ,  in fact ,  that 
designs flowed through it with few problems. 

The Influence of SCALD 
At the onset of the VAX 8800 project, we i nves
t igated the  too l s  ava i l a b l e  w i t h i n  D ig i ta l  for 
b u i l d i n g  a process to suppo r t  t h e  evo l v i n g  
design methodology . This study l ead t h e  CAD 
team to explore several systems being devel
oped by other compa n ies . One system be i ng 
developed by Val i d  Logi c ,  I nc . ,  the SCALDSys
tem CAD system ,  was procured by Dig i tal . This 
system put the power of dedicated engineering 
workstat ions d i rect ly  i nto the hands of logic 
designers .  Of eq ua l  importance was the fact  that 
the SCALDSystem CAD tools were being devel 
oped by  the  same people who conceived the  
SCALD approach tO  hardware des ign . 

Logical schematics, requ ir ing almost no infor
mation about the physical design , were entered 
i nro the SCALDSystem database . These schemat
i c s  were e n te red i n  a h i e ra r c h i c a l  m a n n e r  
through an easy- ro-l earn graphical system .  Such 
an a rrangement  enco u raged the des igners to 
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avoid the creation of paper schematics by trans
ferr ing the i r  concepts d i rectly to the worksta
tion screens. 

The decomposi tion of the design was from the 
top down, but  the actual  en try of design data 
o c c u r r ed  s i m u l t a n e o u s l y  at m a n y  l e v e l s .  
A " design tree" evol ved i n  which cel ls form
i n g  gate a r rays were mer ged o n to m o d u l e s  
that p lugged into t h e  backplane to form a sys
tem . The log ica l  des ign  was entered v ia  t he 
SCALDSystem tools  onto schematics. The physi
ca l i mplementat ion of that logical  design was 
left to the physica l  design tOols .  

Simulation a nd Tim ing Verification 
S i m u l a t i o n o n  t h e  VAX 8 8 0 0  p r o j e c t  w a s  
approached from two differen t  viewpoi nts. The 
first a imed tO determi ne whether or not the per
formance goals  of the proposed microarch i tec
ture were with in the necessary range ,  as speci
fi ed by the project ' s  needs. 2 This s i m u la t ion  
started early i n  the  project before any  deta i led 
logic des ign had been completed . Once those 
performance goals  had been verified , the second 
level of s imu lation focused on the logic design 
as i t  evolved . 

The designers could  verify that each piece of 
the design fu nctioned as spec ified wh i le  that 
piece was being developed . As the design tree 
evol ved , the number of logic leve ls given  to the 
simulation tools i ncreased unt i l  the entire logic 
d e s i g n  had been e n t e red . At t h i s  poi n t  t h e  
designers actually h a d  t h e  equivalent of a soft
ware bread board of the entire VAX 8800 proces
sor. M icrocoded i nstructions were "running" on 
this software bread board long before any hard
ware was ava i lable.  

The abi l i ty to run i nstruction streams on the 
breadboard gave the project several advantages. 
Logic designers cou ld debug their l ogic concur
re n t  w i th the m icrocode deve lopers ver i fying 
t h e i r  m i crocode . Moreover ,  the d i agnos t i cs 
engineers cou ld wri te as wel l as debug s ignifi 
cant numbers of m icrod iagnostics much earlier 
than  was usual i n  a des ign project .  The early 
complet ion of t hose d iagnost ics a l l owed t he 
fi rst ava i l ab le  ha rdware to  be checked t h or
oughly. 

Making the des ign logica l ly correct through 
s i m u l a t i o n  d i d  not ensure t h a t  the m a c h i n e  
wou l d  work a t  t h e  desired cyc le  t i me .  In  the 
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ECL tech nology used in rhe VAX 8 8 0 0 ,  signal r i m 
i ng was cri t i ca l .  'T'hercfore , a t i m i n g  veri fier, parr 
of the SCALDSys tem roo ls .  was used to asce rta in  
whether or not the t i m i ng goa ls  were bei ng met .  

I t  was w i t h i n  the t i m i ng ve r ifier that the i n tl u
ence of the phys ical  i m p lementat ion on the l og
ica l  des ign was first fe l t .  The logic designns had 
to c:nsure rhar the p l acement of gates and ro ut 
ing of s igna ls  was opt i m a l  for al l c r i t i c a l  c l e 
m e n ts .  D e l a y i n fo rma t i o n  was t h e n  extracted 
fro m  t h e  phys i c a l  des ign and fed back to the 
t i m ing ver i fi e r .  

Physical Design 
As the l og i c a l  design evolved , we deve l o ped a 
CAD process to convert i r  rapi d ly  i nto a p h ys ica l  
des ign .  A set  of automat ic  p lacement and rou t
i ng too l s ,  rog e t h e r  w i t h  d e la y-esti m a t i o n  a n d  
s igna l - i n tegrity tools,  was used r o  give feedback 
to the des i gners .  The i m porta n t  qu est ion here 
was whether  o r  nor they cou l d  bu i l d  phys ica l  
repres e n t a t i ons of t h e i r  l o g i c  d e s i g n s .  These 
t o o l s  a l so passed data  to the t i m i n g  v e r i f i e r ,  
which ana lyzed t h e  effect o f  r h e  phys ical design 
on c i rcu i t  t i m i ngs. 

S i nce a l l  the logic  had to be veri f ied bdore 
any hardware was fa bri cated , a l l  processes had 
to be d e s i g n e d  to h a n d le a l a rge n u m b e r  of 
designs in para l l e l .  The re l evant D i g i t a l  manu
fac t u r i n g  fa c i  l i t i c: s a n d  o u t s i d e  vend ors were 
acquainted with the physical  design through the 
test cases ra r b er than t h rough an actua.l protO
type . Thus the fac i l i t ies and vend ors co uld  con
figure and debug their  own man u factu ring pro 
cesses before any c o m p leted phys i c a l  des igns 
were sent  ro them . 

To ensure a smooth t ransi t ion i nto rhe fabrica
t i o n  p h a s e , m a n u fa c t u r i n g e n g i n e e r s  w e r e  
ass igned ro work d i re c t l y  w i t h  r h e  cks i g n e r s  
e a r l y  i n  t h e  dc:s i g n  p rocess . Th us t h ese: e n g i 
neers became: fa m i l ia r  w i t h  t h e  VAX 8 8 0 0  tech
nology and the machine as it  evolved . This  was 
an i m porta n t  s tep because o u r  m a n u factu r i n g  
o r ga n i za t i o n w a s  to bu i l d a l l  r h e  h a rd wa re , 
i nc l u d i n g  the pro to types . T h i s  ear l y  acq u a i n 
tance w i t h  the: design a l l owed them ro deve l o p  
m a n u fa c tu r i ng p rocesses ro support r h c  r a p i d  
change to fu l l  vo lume sh i pments soon after rhe  
VAX 8800 system was a n nou nced 1 

Computatio nal Reso urces 
One of the largc:sr VAX c lusrer systems ever b u i l t  
was assembled w sup rorr r h c  VAX 8800 projec t .  
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T h i s  c l uster consisted of 1 4  VAX- 1 1 / 7 8 0  a n d  
VAX:- 1 1 / 7 8 ')  systems w i t h  over 2 0  gigabytes of 
mass storage . Even this  large amount of storage 
was i nadequate ar r i mes to support the demands 
of the  databases. Forecasting rhc: com pmati ona l 
requ i re m e nt s  of t h i s  p ro j e c t  p roved d i ffi c u l t .  
The VAXcl uster sysrcm prov ided the computa
t i o n a l  p o w e r  and f l e x i bi l i t y ro gr ow as t h e  
demands i n creased . 

The ava i l a b i l i ty of suffi c i e n t  co m p u ta t i ona l 
resources was cr i t ical  to rhe suc cess of our pro
jeer . The design methodology of extensive s i m u 
l a t i o n  w a s  effect ive o n l y  w i t h  reason a b l e  pro 
gra m run r i mes.  Once rhe design w a s  veri fied . 
l arge numbers of phys ical  designs were rc: lcased 
for fa bricat ion with i n  a short pc:riocl , w h i c h  con 
su m e d  si g n i fi c a n t  c o m p u ta t i o n a l  a n d  s to rage 
resources .  

The Tool Suite 

Design Data Management 
A design d a t a  manage m e n t  ( D D M ) system was 
deve l opeu to orga n i z e  the many fi l es that  con
tained the actual design data . At rhe heart of that 
system was the concept of a " d es i gn object . "  
T h i s  object  was some fu n c t i o n a l  p i ece: of the  
dc:sign . usual ly conform i n g  ro rhe physical  part i 
t i on i ng. For exa m p l e .  each gare array a n d  mod 
u l e  i n  r h e system was dcfi nc:d as a uesign obj ect .  
For each object we d e v e l o p e d  a h i e ra r c h y  of 
subd i rectories w i t h i n  the VMS fi l e  syste m .  This 
s e p a r a t i o n  o f  d a t a  f i l e s i n t o s u b d i rc: c ro r i e s 
a ll owed vari ous roots with i n  the CAD process ro 
know where ro f ind i n p u t  filLs a n d  ro write our
pur fi les .  

The design da tabase was con t i n u a l ly ch u rn i ng 
w i t h  new informa tion . To g ive a stable p i cture 
as rhe overa l l  design evolved,  a "snapshot" of a 
design object cou l d  be take n at any r i m e ,  rhus 
gen erati ng a rev i s i o n  of the design objec t .  New 
subd i re ctory fi l e  trees were: t h e n  cr eated fo r 
e a c h  rev i s i o n . U s i n g  r h i s  sc hc: m c  a d e s i g n e r  
cou l d  create a " frozen" revis ion o f  a des ign . H e  
cou l d  t h e n  usc that revisi on for s i m u lat i o ns or 
other activi t i es wh i l e chan ges were being made 
ro another rc:v ision of r lw desi g n .  

The re l a t i o n s h i p s benv e c: n  d e s i g n  o b j e c t s  
were defined w i t h i n  a rev is io n-matr ix fi l e  kept 
w i t h  each fi le  tree . This fi le dcfi n c:d the system
l ev e l  h i erarchy of t h e  ma c h i ne :  w h i c h  cks i g n 
obje cts were s u b o r d i n a t e ro a g i ve n  o b j e c t  
Us i ng t h i s  fi le a dcsignc:r working o n  a mod u l e  
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design cou ld select frozen revisions of the gate 
array designs on that module and be assured of 
not having them changed as he worked on i t .  

Another fac i l i ty provided by the DDM system 
was a user in terface to the design env i ronment. 
This i nt erface consisted of a s imple  command 
language for transvers i ng the design trees and 
fo r r u n n i ng spec i fi c  too l s .  S i nce t hese too l s  
requ ired a large number of  input  variables, we 
estab l ished a system of defa u l t  parameters to 
m i n i m i ze user i nput . For cases i n  which those 
defaul ts proved i nadequate, users or CAD devel 
opers cou l d  change p a ra m eters to m e e t  t he 
design's needs.  

Schematic Capture 

Using the  Va l i d G E D  e d i tor ,  logic sche ma t i cs 
were entered d i rectly i nto the workstations by 
the designers . The extracted wire l ists were then 
transferred from the SCAJ.DSystem UNIX-based 
workstat ion through a communicat ions port to 
the VAXcluster system .  The workstat ions were 
a lso i n terconnected in a network ing envi ron
ment , thus provid i ng com mun icat ion between 
them. To ease the burden on designers to learn 
mu lt iple operating systems, only graphica l  data 
entry was permitted on the workstations. All the 
other CAD too ls were r u n  i n  the more nat ive 
VA.i\cl uster environment.  

S i nce the ma jor i ty of  a des igner ' s  t i m e  was 
s p e n t  i n t e ra c t i n g  w i t h  C A D  t o o l s  on t h e  
VAXcl uster system ,  t here was no need for each 
designer to have a ded i cated worksta t ion  for 
sche m a t i c  cap ture . The ra t io  of des igners to 
worksta t i ons of about  two to one proved ade
quate . The eas i ly learned GED editor supported a 
rapid increase in the number of nondesigners 
managers , secretaries, and documentat ion writ
ers - in  the user communi ty .  All were drawn to 
the system by the ease of graphical data creat ion . 
E v e n t u a l l y ,  t h i s  d o c u m e n t a t i o n a c t i v i ty 
accounted for the m ajority of workstat ion usage . 

Simulation and Tim ing Verification 

Another proprietary too l ,  ca l led the DECSIM sys
tem ,  was the primary s imu lator used on the pro
ject. This system supported m ixed-level s imula 
t ions, both structural and behaviora l .  The logica l 
design was transferred h ierarch ica l ly  to the DEC
SIM system .  This system allowed the designers to 
deal with complex designs by viewing the s imu
lation in  the same h ierarchica l  form as the sche
matics .  For complex devices , such as mu lt ipl ier 
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chips and R.AJ.\1 devices, behavioral models were 
d e v e l o p e d . T h e s e  m o r e  e ff i c i e n t  m o d e l s  
increased the overa l l  performance of the s imula
tions . In the case of RAM devices, abstracting to a 
behavioral model also a l lowed the microcoded 
i nstructions to be loaded efficiently. 

Complement ing  the fu nc t iona l  s i m u la t ion  
faci l i t ies of  DECSI M  system was the  t imi ng veri 
fier (TV) i n  the SCALDSystem tools. TV ana lyzed 
c ircu i t  t im ings to ensure that the design would 
work u nder worst-case condi tions at  t he desired 
clock rate. 

Wire delays are a major factor to be taken in to 
account by t i ming veri ficat ion . The placement 
of the p hysica l  gates was cr i t ical tO m i n i m i ze 
the wire lengths and hence the delays . S ince the 
placement was not avai lable in the in i t ia l  design 
phases, statist ical delays based on l oading were 
used . As placement information became plenti 
fu l ,  the l atest refined del ays were sent to the 
t i m i ng verifi er .  When the phys ica l  design had 
been completed , delays based on routed lengths 
were used . I f  the requ i red t iming was not met at 
any point in the process, the offend i ng c ircu i ts 
were redesigned or the l ayout was changed to 
correct the problem . 

Wirelisting and State Maintenance 

The logic gates entered on schemat ics by the  
designers were , i n  genera l ,  ass igned ro p hysical 
components by the CAD process. This mappi ng 
occurred in i t i a l ly  with in the SCALDSystem post
processor software using a random gate-to-com
ponent assignment. This random packagi ng was 
then  fed i n to a system ca l led YAWL ( for Yet 
Another WireLister) . YAWL acted as a genera l 
p u rpose w i re l i s te r ,  genera t i ng i n t e rfaces to  
many tool s  and accept ing feedback fro m the  
physical design tools .  

As the physical design process refi ned the gate 
ass i g n m e n t ,  YAWL e ns u red t ha t  t h e  l og ica l  
design topology d id  not change . By  accepting 
feedback data from the p lacement and rout ing 
too l s  and the p hys i c a l  design sys tem , YAWL 
caught  any  i llega l c h a nges tha t  wou l d have 
a l tered the logic functions. 

Eventually, the complexity of maintaining t he 
state became so large that YAWL a lone cou ld not 
cope with it. Therefore, severa l other programs 
were placed in the feedback loop from the phys
ical design tools to detect changes made in the 
p rocess of manua l l y  c lean ing up the p hysi cal  
des ign . These p rograms were needed s i nce ,  
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The Impact of VAX 8800 Design Methodology on CAD Development 

even a t  that late stage , a designer coul d  sti l l  add 
logic to the design . The CAD process therefore 
had  to h a n d l e  t hese a d d i t ions  as we l l  as to  
detect i l legal transformations ro the logic . The 
reso l u t i o n  of t h ese  c h a n ge s  t o o k  a l o t  o f  
resources, both i n  terms of t ime and computer 
power. 

I n  a d d i t i on to be i n g  t he s ta te  m a i n t a i n e r ,  
YAWL acted a s  a pr imary sou rce of t h e  design 
data needed for the remainder of the CAD pro
cess . YAWL created many  reports  to i n form 
designers of  problems between the i r  logica l and 
p hysical des igns .  Most of the i n terface fi les i n  
t h e  CAD process were either read , wri tten , or 
both, from YAWL,  which p layed a key role i n  
the overa l l  process. 

Placement and Routing 

Two processes were deve loped for the place
m e n t  and rou t i n g  o f  ga te -a rray and m od u l e  
designs . The gate array process was h ighly auto
mated , requ ir ing a min imum of i nteraction by 
the des igners . The process was orga n i zed to 
make severa l runs from which a designer could 
se lec t  t h e  one t h a t  best o p t i m i zed  h i s  log ic  
design . 

The bounded problem of placemenr and rout
ing within a gate array was easy to solve in com
parison to the module  des igns .  Here the con
stra ints p laced by designers, the l i mi tat ions of 
tools ,  and the complexit ies of design requi red 
extensive human i n tervention . 

Ana lysis tools were used extensively tO assist 
in determin ing the qual i ty of design a t  the two 
design leve ls :  gate a rrays and m odu les . These 
tools analyzed such factors as thermal d issi pa 
t ion ,  s igna l  i n tegri ty ,  and crossta l k .  The con
strain ts defined i n  these tools and in  t he exten
s i v e  d e s i g n - r u l e  c h e c k e rs w e re m e t ,  t h u s  
ensuri ng a h igh-qual i ty design . 

Most of the tools used for the physica l  design 
were developed wi t h i n  D i g i ta l .  Those deve l 
oped outside t h e  VAX 8800 CAD group were 
modi fi ed ,  somet imes extensively, to meet the 
needs of the project. 

Physical Design and 

Man ufacturing Interface 

A proprietary physical design system , cal led the 
VAX layout system (VLS) , was used for the fina l  
p hys ica l  des ign tasks . VLS rook the  phys i c a l  
design , a s  given b y  t h e  p lacement a n d  rou t ing 
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tools .  and added the data requ ired to manufac
ture the design. A l ayout  designer, through the 
VLS i nteract ive graphics system ,  could manual ly 
complete the rou t ing that could not be hand.led 
by the autOmat i c  rools .  Some add i t iona l  parts 
that were necessary for fabrication , such as han
d les for modules , were also added at  th is  t ime .  
The net  resu l t  was a complete design , specified 
so t ha t  it cou l d  be used to m a n u fa c tu re the  
product .  

The design data was then col lected ro form a 
release package.  To keep track of the formal  
release of design data .  a system cal led POST was 
deve loped by the CAD group.  POST provided an 
on- l ine database , which any member of the pro
ject team cou ld query ro determine the release 
status of a design .  

Problems Imposed by the 

Design Methodology 

Up to this point ,  we have described the basics of 
the design m ethodology used to develop the 
VAX 8800 system and  some h igh l i gh ts of the 
CAD tools  su pport i n g  t h a t  me thodo logy.  As 
mentioned earlier, the CAD process was p laced 
d i rectly in to the hands of the designers . Thus a 
t ight coupl ing was establ ished between the pro
cess of clesign and the design process. This cou
p l i n g  posed several major probl e m s ,  as now 
descri bed , for the CAD group .  

Training 

With direct control of a process or tool given to 
t he desi gners,  t hey a l l  now needed extensive 
t ra i n i n g .  O n  p rev ious  pro jec ts , o n e  h i g h l y  
knowl edgeab le  i n d iv id u a l  cou l d  r u n  a roo l ;  
now, there were 3 0  or so novice users a l l  learn
ing to use that same too l . Extensive support for 
those users , in  terms of both trainers and docu
mentation , had to be provided . 

In  most cases the  designers qu i ck ly learned 
how to u t i l i ze  the tools .  In a few cases - the 
placement of modules in particular - placement 
experts were needed owing tO the spec i a l i zed 
narure of the task .  I n  sum mary , the extent of the 
su pport  requ i red by users was  greater  t h a n  
anti c ipated . 

State Maintenance 
The task  o f  s t a te m a i n tena nce  proved to be 
extremely complex owing to the freedom given 
to designers to make changes a t  almost any poin t  
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i n  the des ign process . To ensure that the logical 
and physica l  designs matched , it was necessary 
to do a complete isomorphic comparison of the 
physical topology aga i nst the logical topol ogy of 
the design.  

Logical Prints 

The schemat ics genera ted by the designers a t  
t h e i r  works ta t i o ns  repre s e n t e d  t h e  l og i ca l 
des ign ,  not  the phys ica l  one . Certa i n  features 
avai lable in  the SCAlDSystem tools, such as vcc
torized signals and gates , aiJowed it to prod uce 
a concise representation of the logic .  This came, 
however, at  the expense of not putt ing physical 
data back onto the print set . For reasons of state 
ma intenance.  we were a lso u nable to restruc
t u re a p r i n t  set once  m a pp e d  to  a p h ys i c a l  
implementation . Both these factors contri buted 
to a print set that appeared qu i te d i fferent from 
those generated by previous projects . 

Logical  print sets, wh i l e  i n i t i a l ly  envisioned 
as being benefi c i a l ,  later caused problems i n  
documenting the designs .  This  was particula rly 
true for module - l evel designs for which tra in ing 
was needed so that groups outs ide the project 
team cou ld in terpret the new symbology. 

Cross References 

U s i n g  l og i c a l  p r i n t  sets  a l o n e ,  a t e c h n i c i a n  
cou ld not probe a p i n  o f  t he p hysica l boards .  
Since an abstract mapping took place i n  the CAD 
process. i t  was necessary to develop an exten
sive set of cross references showing the map
p ing of the logical to  the physical  design . These 
cross references proved to be cumbersome and , 
when printed , consumed vast amounts of paper. 

Libraries 

CAD tools run on l ibraries, and each major tool 
has  i r s own fo r m a t  for  l i b r a ry d a t a . T h ese 
l i brar ies must  be consis tent  across the e n t i re 
process. Despite a l l  the safeguards bui l t  in to the 
process , we fo u n d  t h a t  i ncons i s tenc ies  s r i J J  
crept back i n to t h e  database . D iscover ing and 
e l i m i n a t i n g  those i n co n s i s te n c i e s ,  m a n y  of  
which were fou nd late in  the project, consumed 
a lor of t ime .  

Summmy 

Both the design methodology and the CAD pro
cess su pport i ng t he VAX 8 8 0 0  project were 
qu i te successfu l .  The fi rst protOtype hardware 
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delivered r o  u s  worked a s  expected.  We found 
only a sma l l  number of  h ardware problems dur
i n g  the prototype debug phase of the project .  
Most of those problems  were i n  areas that had 
not had extensive s imu lat ion or t im ing verifica
t ion .  

Some genera l conclusi ons reached from the 
VAX 8800 project can help future CAD design
ers to i mprove their tools .  

• A close coup l ing from the start ,  both phys i 
c a l l y and  orga n i z a t i o n a l l y ,  b e t we e n a l l  
groups associ ated w i th  the project leads to 
the development of a smooth process flow. 

• The design methodology has a d i rect and far
reach i ng i m pact on the  CAD p rocess . The 
capabi l i t ies of  CAD tools d i rectly affect the  
design methodology . 

• Extens ive s imulat ion and t i m i ng veri ficat ion 
before fabrication can help to achieve a high
qua l i ty product .  

• The i m pact of rad ica l  changes ( e . g . ,  in the 
data content of schematics) must be appreci 
ated and then taken in to account by  a l l  pro
ject members .  

In  future projects we w i l l  focus on reducing 
the process- loop ti mes and enhancing the capa
b i l ities of the s imu lat ion and t iming verification 
too l s .  I t  w i l l  be eas ier  to fu nc t ion in fu t u re 
design env ironments ,  and more tools  w i l l  be 
p laced d i rectly in to the hands of the designers . 
The des ign methodology w i l l  be mod i fied  to 
make the reso lut ion of the des ign state easier 
and therefore faster. 
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Andrew]. Matthews I 

On-line Manufacturing Data 
Access on the VAX 8800 Project 

Previously, the transition from design to manufacture involved transfer
ring significant amounts of data on paper. To minimize product start-up 
time, the VAX 8800 project used an on-line system that eliminated much of 
the paper. The key task was transforming the data from existing CAD 
tools with different formats into manufacturing data. Two generic types 
of VMS .files, DA TA and DRA WING, contained datafor each Part Number 
and Revision Number. VMS's subdirectory and access-control capabilities 
provided total revision control. Manufacturing engineers pulled files at 
will using DA TA.files to drive their processes and viewing DRA WING .files 

from V AXstation II workstations. 

A key object ive for the VAX 8 8 0 0  project was ro 
go from t h e  c o m p l eted d e s i g n  to fu l l - vo l u m e 
man ufacture i n  the shortest poss ib le  t i m e .  I n  the 
past, delays have often occurred in the tra n s i 
t i o n  from Design Engi neeri ng t o  Man ufactu r ing .  
Therefore , to  achi eve our goa l ,  we had ro e l i m i 
nate o r  m i n i m ize t hose delays. 

\Ve k n e w  of a n u m be r  of ways to speed u p  
th is  transi t i on p hase . S i nce there i s  norm a l l y  a 
tre mend ous flow of data on paper between Engi 
n e e r i n g  and M a n u fa c t u r i n g ,  one way was to 
e l i m i nate the paper i tself.  A second way was to 
accelerate the contro l led revis ion process when 
changes were req u i re d .  And a t h i rd way was to 
accelerate the q u e ry-a nd-response process that  
was necessary ro solve spec i fi cat ion problems . 
O n e  c a n  see r i g h t  away t h a t  t h ese a c t i v i t i e s 
i nvolve m a ny people a n d  consu me s ign i fi ca n t  
resources. Therefore , a formal p roject was estab-
1 i s  heel tO determ ine how best to i mplement the 
three ways ro m i n i m i ze delays . 

The project team d eterm i n e d  that  a l t h o u g h  
the data flowing between Engi neering and M a n 
u fac t u r i ng was v i ta l ,  the paper i tself  was n o r .  
T h u s  t h e  te a m ' s  g o a l  was to fi n d  o u t  h ow to 
e s t a b l i s h  a p a p e r l e s s .  b u t  n o t  d ra w i n g l cs s .  
scheme t o  pass t h a t  i n form a t i on between t h e  
two orga niza t ions.  The tea m a l so set some con 
strai n ts on t h i s  sc heme . F irst ,  exist ing data tech
n i qu es s hou ld be used whenever poss i b le rat her 
than developing new ones. Second , Man ufactu r
i ng s h ou l d  be free to obta i n  d a ta as req u i red 
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rather th<Jn h<Jvc E ngineering " push " i t  tO them . 
T h i r d ,  any i ntermediate dat<J process i n g  fu n c 
t i o ns a n d  groups,  w h i c h  a l l  have pri or i t i es a n d  
q u e u e s o f  t h e i r  o w n ,  s h o u l d  b e  b y p a ss e d . 
F ina l ly .  the data had to be orga n i zed i n  the way 
Man u factur i ng needed i t ,  t ha t  i s ,  by Part N u m 
b e r  a n d  Re v i s i o n , a m o n g  o t h e rs .  T h e r e fore , 
s o m e  t r a n s l a t i o n p r o c es s  h a d  ro t a k e  p l a c e  
between t h e  data sources i n  Engineering a n d  the 
data reposi tories used by M a n u facturing.  

The d a ta sources i n  Desi gn E n g i n e e r i n g  are 
many and var ied .  Dig i ta l  uses a large set of CAD 
tools  i n  i ts des ign processes . 1 These tools use a 
variety of methods to gather, srore , and m a n i p u 
l a t e  data . T h e  databases associ ated w i t h  t h ese 
too ls arc the so urces for a lJ the spec i fi c<Jt i ons 
conveyed to Man u facturing as p l a ns and d raw
i ngs . Manuf<lctu r i ng al so has i ts own set of CAM 
tools used i n  vari ous processes . 

The pri mary CAD a nd CAM process tools did 
not com m u n i cate s i nce t hey were a l l  based on 
d i ffere nt  data formats and revis ion procedures . 
The primary goal of the  project was to take the 
design data created by the CAD too ls and , with 
as l i t t le paper as possi ble,  turn i t  i n to manufac
ru r i n g  data t h a t  cou l d  be used by the var ious 
m a n u factu ring groups . The d i rect way that goal 
cou l d  be accom p l ished was to create an i nt e 
grated source of data as VMS fi les that wou l d  be 
avai l<Jb.lc on l i ne to e n g i neers in Manufacturi ng 
This capab i l i ty of data transfer was cal led manu
facturing data access, or  M DA .  
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As typ i ca l ly  happens i n  a ra p i d l y  evolv ing 
technologica l  environment ,  the standard data
transfer processes a l ready in  place had rapidly 
become outdated . The resu I t  was that the stan
dard process was handl ing only part of the data , 
and i n formal  systems evolved to d e l iver t h e  
re mainder .  M DA h a d  t o  ident ify a l l  these data 
processes,  regard less of their sources. Then , i t  
had to provide a l l  the data needed t o  bui ld and 
test the prod uct through a consistent on - l i ne 
p r o c e s s . T h a t  t a s k  w a s  a c c o m p l i s h e d  b y  
" reverse engineering" the exist ing processes . 
A l l  the  process ma nagers responsib le  for t he 
product i n  Manufacturing were i nterviewed to 
find out what data they were receiving by both 
formal  and informal means. They were asked , in 
part icu lar ,  what add i t ion a l  data they needed .  
The resu l t  was a lengthy l ist of  data files, most 
of which existed or coul d  be eas i ly generated .  

One key l i m i tation t o  this type o f  data-genera
tion process was the ava i labi l i ty of an appropri
ate engineering database . For example,  a visual
i nspection process m igh t  need the color of  a 
compone n t ,  bu t  t h is data may not  be i n  a n y  
engineering database . Therefore , some manufac
tur ing data processes wou l d  have to cont inue  
us ing other sources, typically I ibraries of  addi 
t ional  i n formation ,  a s  wel l a s  t h e  engineering 
database . 

The objective of M DA was to provide on l ine 
al l  the data needed for new produc t  start - u p .  
The problem, a s  noted earl ier ,  was that this data 
was derived from many d i fferent  fi l es used by 
the CAD tools .  These separa te software tools ,  
havi ng come fro m m a ny sou rces a t  d i fferen t  
t i mes, genera l ly  operate o n  i ndependent VMS 
files and do not yet ut i l ize complex, i n tegrated 
database capab i l i t i e s .  Therefore , a nother pri 
mary goa l of  the M DA pro ject  was  to b r i n g  
appropriate data management t o  these exist ing 
processes, but at the same t ime not  to requ ire 
significant changes within them . 

G i ven t h i s  VMS fi le e nv i ronment ,  t he team 
made an  ear ly  dec i s ion  that  the  VMS system 
coul d  provide the framework for comprehen
sive data management and organ ization capabil i 
ties i f  fu l l  advantage were taken o f  the poss ibi l i 
t ies i n herent i n  t he  system . Tha t  i s ,  fi l es and  
d i rector ies ,  subd i rectory schemes,  and  access 
control  l i sts had to be u sed effect ive ly .  The 
advantages of us ing VMS features for these exist
ing fi les rather than i mplementing a specia l ized 
data-management scheme were numerous.  This 
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procedu re meant that these capab i l i t ies would  
be  i m mediately accessible to  a l l  of  Digi ta l 's VAX 
users, cou ld be read i ly l i nked to exist ing read 
and  wri te p rocesses for CAD/CAM fi l es ,  and 
wou ld requ i re no unique tra in ing, software, or  
hardware . 

The rem a i n der  of t h i s  paper descr ibes the  
app roach tha t  M DA takes to ach i eve a n  i n te
grated source of manufacturing data.  As a first
generation paperless process, M DA was used on 
the VAX 8800 project with great success . We 
anticipate that M DA coul d  evolve at a later date 
in to a second-generat ion paperless process . I n  
th is  process , users i n  Manufacturi ng wou ld be 
able to select ively compose and generate any 
desired drawing from the databases. For the first 
design of M DA, however, that was too sophist i 
cated a solut ion to be appl ied to a broad manu
factu r ing  comm u n i ty s t i l l  in transi t i o n  fro m 
paper processes. 

MDA Capabilities 

We designated the fi les conta in ing the data that 
drives the computer-aided processes in Manu
facturing as DATA fi les .  Every drawing sheet i n  
t h e  fu l l  d ra w i ng p a c kage i s  e l e c t ro n i ca l l y  
released as a p lot fi le .  These on- l ine files, ca l led 
DRAWING fi les, are effectively the master draw
i ngs , and any loca l ly generated paper prints are 
temporary worki ng copies . D RAWING fi l es are 
i ntended only for human i n terpretation (view
ing or plott ing) ; they do not have to be inter
preted as structured data by other fu nct ional 
process software . DATA fi l es are used for that  
purpose . 

B o t h  DATA a n d  D RAWI NG fi l e s  a re m a d e  
available through a s ingle un i fied process avai l 
able anywhere on Digita l 's world-wide i nternal 
DECnet network . Data secur i ty is  provided i n  
the software by an  access control l ist of specifi 
ca l ly authorized users i n  Manufacturing.  A l ist 
method rather than password control was c ho
sen s ince the VMS system has a l l  the capab i l i ties 
to i m pl e m e n t  l i s t  c o n t r o l  ( i d e n t i fy i n g  re 
mote u sers) . Con trol  over  a ccess to t h e  o n 
l i ne p rod uc t  database rema i ns w i t h  the  data 
managers . 

The fi les are organized aroun d  the Part Num
ber and Revision Number of the p hysical object .  
A complete DATA and  DRAWING file  set is pro
vided for each revision, thus lead ing to a degree 
of redundancy between fi les. We original ly con
sidered so lv ing th is  redundant-data problem in  
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the tra d i t ional  CAD/CAM way by defi n i ng sepa
rate u n iversal  i n terface fi les and design i ng i n te
gra ted d a tabases fro m  w h i c h  a n v  needed fi l c  
could be extracted . To achi eve t h e  pr i mary goa l 
of m i n i m i z i n g  a l l  de lays i n  pro d u c t  data trans
fns . however ,  we con cluded that  provi d i ng the 
p rocess s r e c i fi c .  bur red u n d a nt ,  fi l es needed 
d i rectly i n  Manufactu r i ng was worth the pri c e .  

T h i s  tec h n i q u e  e l i m i nated a l l  hand -off dclavs 
a n d  a l l o wed t h e a l ready proven p rocesses to 
operate effi c i ent ly . Of course . the r isk was t hat  
data in  t h e  red u n d a n t  f i  lcs could in  some way 
d i ve rge . The refore . En g i n e e r i n g  assu m e d  t h e  
responsi b i l i ty o f  veri fyi ng that  t h e  data was con 
sistent between them . Engineering uses spec i a l  
software t o  verify t h a t  a l l  fi les i n  a s e t .  som e of 
which come from d i fferen t  CAD tools .  represen t  
the ident ical  des ign object and revis ion  state . 

The DATA fi l es u t i l i zed arc those the starr -up 
t e a m  i d e n t i fi ed as b e i n g  d i re c t l y  needed for 
each man ufacturi ng process . Our  i deal target for 
DATA files was the spec i fi c  data set needed by a 
" work c e l l "  of t h e  m a n u fa c t u r i n g  p l a n t :  t h i s  
rypi caUy i n c ludes bot h a computer resource a nd 
speci fic people that together rece ive and adapt 
the generic data to the i m medi ate needs of t h e i r  
parti c u l a r  p l a nt a n d  process . T o  m i n i m i ze rhc 
process s tarr - u p  r i m e .  e l i m i n a t e  q u e u es . and 
ass i g n  respon s i b i l i t i es c l e a r l y ,  M DA a vo i d e d  
usi ng i n termed i a te data formats.  These formats 
h is ro r i  ca  I I  y re q u i re d  prcproccss i  n g  b y  s o m e  
t h i rd p a r r y  b e fore r h c y  c o u l d  be u s e d  i n  t h e  
p l a n t .  W e  expected t h e  plants t o  adapt t h e  DATA 
fi l e s to t h e  s r c c i fi c  n e e d s  o f  t h e i r  own pro
cesse s .  For  sop h is t i ca ted d a ta cons u m ers w i t h  
comp l ex m a n u fact u r i n g  needs,  t he source-data 
design fi l es a re a lso i n c l uded w i t h  the  o n - l i n e  
data .  

The pract ica l rea l i t i es of the many CAD/CAM 
processes i n  usc first req u i red a smooth ly oper
a t i n g  fi le -ma nage ment  process . A large n u mber 
of fi l es are req u i red to su pport the b u i l d - a n d 
test processes for o n e  designed objec t .  A typi c a l  
Digi ta l  parr (e .g . , a complex C P U  logic module)  
i s  today completely speci fi ed by ') () to 70 DATA 
fi les  a nd 3 0  to ') () D RAW I N G  fi l e s .  W i t h  t h a t  
m a n y  fi l es i nvo lved , a k e y  to su ccess for t h i s  
type o f  fi l e  m a nage m e n t  i s  tota l d a t a  a c q u is i 
t ion . Thus the process was made mandatory ( not 
vo l u ntary ) ;  rhat is.  it cou ld not depend o n  some
one's re memberi n g  to d o  someth i n g The o n l y  
w a y  to acco m p l i s h  c o m p l et e  d a t a  acq u i s i t i o n  
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was t o  i n tegrate t h e  data - manage m e n t  process 
w i t h  t h e  CAD too ls t h a t  generated the sou rce 
fi les .  

The p r i n c i pal  JVI DA i m p le m entat ion  concept 
was to use the extensive VNIS subd i rectories that 
' ' be l onged ' '  ro e a c h  o b j e c t  a n d  rev i s i o n  a n d  
t h e n  col lect  a ll t h e  a p rropr ia te  fi les i n to t h e  
appropriate  d i recto r i es .  T h i s  tec h n i q u e  m a kes 
p o s s i b l e  a u s e r  d a t a - a c c e s s  p r o c e s s  b a s e d  
d i rect ly o n  t h e  VMS system i n  which a user can 
a n swer seve ra l q u es t i ons  a b o u t  rhc object  or 
rev i s i o n  fo r w h i c h  d a t a  i s  n e e d ed . M DA t h e n  
p ro vi d es h i m  w i t h  a d i rectory co n ta i n i n g t h e  
fi les relevant r o  t h e  requested object o r  revis ion . 
This  d i re c tory rep rese n t s  t h e  b o u n d e d  set  o f  
data . W i t h i n  t hat  s e t  e a c h  DATA and D RAW I NG 
fi l e  is " na m e d "  so that  i t  is complete ly i d e n t i 
fi ed even i f  moved later to o t h e r  m a n u fact u r i ng 
loca t i on s .  The fi l e - n a m i n g  sc h e m e  i s  a lso n o t  
c rypti c  so t ha t  manufactur ing users can spec i fy 
and recogn i ze the part i c u lar fi lcs they nee d .  

An u n derlying object ive of the M DA progra m 
was t o  p r o v i d e  a n  e n v i ro n m e n t  i n  w h i c h  a 
released data fi l c  was perce ived as be i n g  as sta
ble as a n  approved and re leased paper d rawi ng.  
Whenever a set of DATA and DRAWING fi les for 
a g iven revi s i o n  of an object a rc re leased .  t h a t  
s e t  of data becomes " read -only" and is placed 
under strict contro l .  The engineering gro u p  w i l l  
n o t  mod i fy a n y  fi l e  w i t h i n  t h e  set be longi ng to 
t h a t  revi s i o n .  and su bse q u e n t  rev i s i on s  o f  rhat  
object do not overwri te pr ior  revis ions .  

MDA a l lows users to pu l l  data select ively as i t  
is  needed rather t ha n  pus h i ng i r  a u to m a t i ca l ly to 
predetermi ned receivers .  'fhe strategy here i s  to 
d e l i ve r  not d a t a , b u t  a u to m a t i c a l l y  genera ted 
n o t i fi c a t i o n  m e ssages o n  D i g i t a l ' s  e l ectro n i c  
VAX mai 1 syste m .  The generat ion of m a i l  i s  t ied  
to the design-manage ment  fu nct i ons of the  hard
ware d es ign ers a n d  the coord i na to rs for c n g i 
nccri ng c h a nge o rders (EC:Os ) .  The m a i l  mes
sages a re sent  to designated re presen t a t i ves i n  
a n y  o f  t h e  m a n u f a c t u r i n g  p l a n ts a ro u n d  r h c  
world r o  i n form t h e m  t o  p u l l  wha tever d ata t hey 
req u i re fro m  t h e  o n - l i n e  syste m .  Data users i n  
M a n u fac t u r i n g  arc n o t i fi e d  b y  a u t o m a t i c  mes
sages whenever new data is  issued or when the 
s t a tu s  o f  e x i s t i n g  d a ta c h a nges . T h i s  m e t h o d  
takes a dvantage of t h e  exis t i ng V M S  Mai l fac i l i 
t i es for iden t i fy i ng remote users . A user access
contro l l i s t  has been i m p lemen ted , and a l l  user 
tra nsa c t i o ns a rc logge d .  These tech n i q u es con-
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fi rm that new data has been received by users 
and provide an audit  tra i l  of who accessed par
t icular data in  case an error is d iscovered later. 

Much of the data provided for the product is  
i ntended for the specific assembly and test pro
cesses implemented by the start-up team .  Provi
s ion of th is  data is made poss ible by the close 
coupl ing of the Engineering Design and start-up 
team efforts and the sophistication of the data
dr iven fabricat ion and test processes . In other 
words, the designs of high-technology products 
are now a i med a t  specific manufactur ing p ro
cesses for assembly and test .  Except for s imple 
d imensional data ,  much of this product data can 
no longer  be " post processed " ( by software 
means only) onto a different manufacturing pro
cess. A major process a l terat ion m ight requ i re 
reconvening the start-up team and adapting the 
design and data for the new process. 

Revision Management 

Each revision of  a part means that that  physica l  
design object has changed i n  some way .  I n  the 
MDA process a complete set of DATA and DRAW
ING fi les is provided for every revision; there is  
no imp l ied or referenced data . Al l active rev i 
sions sti l l  being bui lt rema in  on  l i ne ,  and subse
quent  revis ions do not overwr i te earl i e r  rev i 
s ions . I f  t h e  same D RAWI N G  fi l e  a p p l ies  to  
d ifferent revisions, i t  wi l l  be  provided wi th  each 
of those revisions. We were concerned i ni ti a l ly 
that this s impl ified approach wou l d  generate a 
l a rge n u m ber of redundant  f i les ,  part i cu l a rly  
D RAW I N G  fi les .  H owever ,  a n  a n a lys i s  of  the  
comp l eted sets  s h owed t h a t ,  w i t h  t h e  CAD 
design processes i n  use, only 1 0  to  2 0  percent 
of the fi les were unchanged from one p hysical  
revision to the next . Our conclusion now is that 
having some redundant fi les is  a cheap price for 
the benefit and s i m p l i c i ty of having fu l l  data  
sets. Thus no data set  has to reference data fro m  
another set ,  a nd old rev i s ions  can  b e  rea d i ly 
archived . 

The MDA process currently has one s ignificant 
l i m i tat ion . Un l i ke the exist ing p rocedur es for 
paper drawi ngs , there is no standard  control  
process for putting a formal revision on a DATA 
fi le .  On the other hand , i t  is not clear that a con
trol process is  sufficiently valuable in a product 
environment that  is tota l ly data dr ive n .  Trad i 
t iona l ly ,  when necessary , a paper drawing can 
be changed separate from t he physical revision 
of the object i tse lf .  That can not cu rrent ly  be 
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done for DATA files s ince there are no standard 
procedures that are equivalently recognized for 
naming them or for control l i ng revisions. I f  the 
DATA fi les rea l ly defi ne  the phys ica l  product , 
then an erroneous data fi le defi nes t he wrong 
physical product . In that case, i t  can be argued, 
the r ight way to sign ify the change is  to update 
the revision of the object i tself. At the present 
t ime, i f  an i ncorrect DATA file is  i ncluded in the 
released data set, the only unequ ivocal way to 
correct that problem is to advance the p hysical 
revision and generate a new set of data . 

With in  the MDA process, the status of any file 
is  specifica l ly marked . (The mere existence of 
the fi l e  within the process does not i mply any 
part icular  status . )  Typica l  categories of status 
a re verifi e d ,  i ssued , released , and obsolete .  A 
status is i mplemented by using the fi le-owner
sh ip  capab i l i ties wi th in  the VMS system .  As i ts  
name i mpl ies ,  M DA provides on- l i ne access to 
a l l  needed data and drawi ngs for any  a n d  a l l  
revis ions .  However,  t he formal status (pre l im i 
nary ,  released , etc) of  each  part and  revis ion 
ava i lable on l ine  is  controlled and specified by 
other exist ing standard procedures. That status 
i s  confi rmed by M DA but cannot be determ i ned 
solely from the status information that MDA pro
vides on l ine with the data . 

The M DA process i s  not  d i rectly cou pled to 
the control procedures in Manufacturing, but is  
l i nked d i rect ly wi th  status-set t ing  act iv i t ies i n  
Engineer ing.  For example ,  the issued status i s  
se t  by  a p roced ure run by  the prod uct 's  ECO 
coordi nator when he issues an ECO package to  
h i s  cou n terpart  i n  the  m a nu fac tur ing  p l a n t .  
Therefore , the data users i n  Manufactur ing are 
advised to use the d isplayed status only as con
fi rmation of a change; they wi l l  cont inue to be 
notified first through the exist ing ECO control 
procedures. 

Thus ,  M DA has on - l i ne  data  ava i l ab le  for a 
manufactur i ng act iv i ty when Manufacturing i s  
notified , by means externa l  to the  MDA process, 
that  they shoul d  be bu i ld ing  a part icular  revi 
sion . Also, M DA provides no on- l i ne information 
about  such th i ngs as the i n teractions and rela
t ionsh ips between revisions, which revis ions of 
the modules go together, and which  revis ions 
go with which backplane revisions .  Therefore, 
although M DA is a comprehensive data-manage
ment  and access process , i t  is not a lso a true 
configuration-control and revision-management 
process. 
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Directories and File Names 
Within the M DA process, the DATA and DRAW
ING fi les are managed by grouping them i n  VMS 
subd i rector ies for the object that  t hese f i les 
specify. The subd irectories are t ied to a com
mon-root directory to fac i l i tate the management 
of the overal l  p hysica l data on t h e  host ( e . g . , 
moving vari ous d irectOry structures between 
disk drives) . The di rectory fi les themselves are 
owned by the data-management process . They 
may not be read d i rectly over the network; the 
access process provided must be used . In pi cto
rial form, the d irectOry structure is described i n  
Figure I .  

COMMON ROOT 

I 
. . .  , 

PART PART PART PART 
NUMBER NUMBER NUMBER NUMBER 

I . I  
VARIATION VARIATION VARIATION VARIATION 

. , 
REV ISION REVISION REVISION REVISION 

~ 
DATA FILES DRAWING FILES 
(50 - 70) (30 - 50) 

Figure I VMS Directory Structure 

T h e  n a m e  of e a c h  DRAW I N G  f i l e  is t i e d  
d irectly tO the Digi tal drawing number p lotted 
by that file .  For mul tisheet drawings, a plot fi l e  
i s  made for every sheet in  the complete drawing 
package , so t here is a one - ro -one correspon
dence between DRAW I N G  fi l es and d rawi ng 
sheets. The fi l es are named ro match exactly the 
t i t l e  b l oc k  of  t h e  dra w i ng s h e e t .  A typ i ca l  
DRAWING fi le name is depicted i n  Figure 2 .  

For  DATA fi l es ,  a d i fferent  s trategy for fi l e  
na mes was necessary s ince ,  u n l i ke the DRAW
ING fi les, a one-ro-one l inkage does not exist . A 
DATA fi l e  r e l a t es  to  t h e  p h ys i c a l  o b j e c t  i t  
defi nes ;  t herefore , the fi le name  d ef ines  the 
exact part to which that  fi le appl ies as  wel l  as  
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DRAWING CODE � SHEET 2 

DRAWING NUMBER SHEET REVISION 

Figure 2 Typical DRA WING File Name 

t h e  f i l e ' s  spe c i fi c  c o n t e n t  a n d fo rm a t .  F i l e  
names must a lso comi nue ro com pletely iden
t ify the fi I es after they have been extracted from 
t h e  M DA man agement  process and  moved tO 
Manufacturing. Therefore , part of the fi le name 
i s  ac tu a l ly red undant  with  the  M DA d irectOry 
name . These fi le  names can become extre me ly 
long, and a lthough readi ng them is  not a prob
l e m ,  typing them i s .  Thus  t h e  fi l e  na mes are 
autOmat ica l l y  generated ,  and users can select 
them from menus. The name of a rypical DATA 
fi le is structured as in Figure 3 .  

S i nce there were many DATA and DRAWING 
fi les .  the fi le -naming scheme a lso perm i ts the 
creation of a typical  VMS "wild card" directory 
l i sting for specific types of DATA or DRAWING 
fi les.  For DATA fi les ,  the specific  type of process 
activity supported by that fi l e  is i nc luded as a 
u n ique f i e l d  i n  the  fi le name . For DRAWING 
fi les ,  the  drawing code is inc lu ded i n  the fi le 
name, which a lso impl ies the l i kely uses . These 
fi elds with in fi l e  names arc then used in Manu
factur ing tO obta i n  fi l e  l is t i ngs specific to an 
activ ity; wild-card directory l isting is by far t he 
most common style of usc . 
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PART NUM�� 1 VAR IATION :j 

REVIS ION 

CATEGORY OF DATA 
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DATA FORMAT----------------------------' 

Figure 3 Typical DA TA File Name 
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On-line Data Access 

Si nce al l  DATA and DRAWING fi les for each rev i 
sion of  a Part Number are accessible on  l ine .  i t  
i s  a s i  m p l c  process fo r a u t hor i z e d  users to 
a ccess t he m .  A user first l ogs on to a capt ive 
( l i m i ted fun ct ion ) accou nt  o n  a spec i fi c  host 
CPU from any system on the D ig i ta l ' s  DECoct 
network . Si nce th is  process is  control led by a 

J i st of authori zed users , no password is neces
sary. The user never sees the VMS prompt level 
but is  i mmed iately presented w i t h  a menu of 
MDA functions . He is then asked a short series of 
questions about ei ther the Parr Number or Revi 
sion Number and is provided with a d i rectory of 
appl icable fi les. 

Al l user transact ions with the data-access pro
cess arc automatical ly logged . This loggi ng pro
vides several important capabi l i t ies: 

• An accurate summary of the acrua l  on - l i ne 
data usage (which has showed that our i n it ia l  
assumpt ions were qu i te i ncorrect as to who 
wou ld usc what data , and how much access 
traffic there wou ld be) 

• A degree of addit ional  security by w1cking a l l  
data accesses 

• A means to not i fy a l l  users who have uti l i zed 
any file in which an error has been found 

Electronic Drawing Access, Plotting, 

and Management 

At the present t ime ,  most DRAWING fi les arc i n  
the VMS data format o f  FI LE_NAME.  PLO s ince 
. PLO is the data forma t  that can be re leased e lec
tron ica l ly to Digita l ' s  on- l ine drawing-microfi lm 
serv ice: .  A varicty of software packages us ing th is 
data format arc avai lable i n  each manufacturing 
plant .  We expect to make a transi t ion to a new 
i n dustry sranda rcl when it comes i n to general 
usc . 

Prov id ing  each separa te drawing sheet  as a 
separate fi le was the first step tOward a paperless 
process. ·rhc second step was to give Manufactur
ing the abi l i ty to view a drawing on a V�'<station 
workstat ion , manage drawi ngs , annotate them,  
send those annotations back to  the engineer. and 
ma k<: plots .  These basic functions perm it  Manu
factur ing to do on l i ne what they wou ld  have 
don<: prev ious ly  w i t h  paper draw i n g  she<: ts . 
Engineering provided some necessary softwa r<: 
tools for these funct ions tO expedite the trans i 
t ion to a paperless process in  Manufacturing.  
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The workstation used i s  the VAXstation II sys
tem . The software provides th<: fol lowing capa
b i l i t ies :  

• Access d rawi ngs d i r<:c t ly  fro m  the on - l i n e  
data process 

• Create windows for rhe drawing ,  and zoom 
around i t  

• Annotate a copy o f  the drawing for use with 
specific processes 

• Return a copy with quest ions for the respon
s ible engi neer 

• Submi t  p l ot requests autOmat ica l ly for the  
w h o l e  d r a wi n g  or  any se l e c t e d  w i n d ow 
ro e i ther a large e lectrosta t ic  p lotter or a n  
LN03 Plus pri nt<:r ,  both accessible o n  a local 
Ethern<:t l ink  

The p rocess of  ma k i ng sna p - shot  w i n dow 
plots of specifi c  areas of i n terest on the LN0 3  
Plus pri  otcr has proven r o  b<: a very effective 
ca pab i l  i ry, and shows some of the poss ib i  I i t ies 
of rep laci ng large sheer paper plots with i n  the 
Manufacturing functi ons . 

Summary 

The M DA process has be<:n operat ional since the 
fi rst protOtypes of the VAX 8800 system were 
bui l t .  MDA present ly ma i nta i ns approxi mate ly 
three gigabytes of VAX 8800 prod uct data on 
l i ne ,  i n c l u d i n g  both  p rototype a n d  p rod u c 
t ion  rev i s ions . More t h a n  one hundred users 
from teo d ifferent locations i n  both Manufactur
ing and field Service have logged an average of 
rwo hu ndred transactions per week .  A l though 
MDA con ra ins significant amounts of control and 
veri ficat ion software . rh<:re has been l i tt le for
mal  user tra i n i n g .  The s i m p l i c i ty of the M DA 
process a l lows t he on- l i ne Help information to 
be an effect ive sou rce of pr imary documenta
t ion . 
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