
Digital TechnicalJournal

515 Number 4
February 1987

Cover Design
This issue .features the VAX 8800 .family. Our couer depicts

the growth of a chambered nautilus as a metapbor .for the

grotl'tb of the VAX famiiJ'. As those chambers spiral from

the center, so the power of the VAX family grows .from the

Micro VAX systems, through the VAX 8200 and 8.300 CPl!s,

to the neuJ VA X 8800 multiprocessor. The image was cre

ated using the Lightspeed system.

The co11er was designed by Deborah Falck, Eddie Lee and

Tsuneo Taniuchi of the Graphic Design Department.

Editorial Staff
Editor- Richard W 13eane

Production Staff
Production Editor- jane C. 13lakc

Designer- Charlotte 13eJJ

Interactive Page Makeup- Leslie K. Schoemaker

Advisory Board
Samuel H. Fuller. Chairman

Robert M. Glorioso

john W. McCredie

Mahendra R. Patel

F. Grant Savicrs

William D. Strecker

The Digital Technical journal is published by
Digital Equipment Corporation. 77 Reed Road,
Hudson. Massachusetts 01749.

Changes of address should be sent to Digital
Equipment Corporation. attention: Media Response
Manager, 200 13aker Ave .. CFO l-l/M94. Concord,
i'>lA 01742

Comments on the content of any paper arc wel
comed Write to the editor at Mail Stop HL02-.3/K ll
at the published-by addrcss. Comments can also be
sent on the ENET to RDVAX::I3EANE or on the
ARPANET to llEANE'!;,RDVAX DEC@DECWRL

Copyright © 1987 Digital Equipment Corporation
Copying without fee is permitted provided that such
copies are made for use in educational institutions
by faculty members and arc not distributed for com
mercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted.
Requests for other copies for a fee may be made to
the Digital Press of Digital Equipment Corporation.
All rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digi
tal Equipment Corporation assumes no responsibility
for any errors that may appcar in this document.

!SUN l-55558-001-7

Documentation Numbcr EY-671 I E-DP

The following are trademarks of Digital Equipment
Corporation DEC, DECnet. the Digital logo. LNO.)
Plus. MicroVAX I. MicroVAX IJ. NMI, PDP-J I .
PDP-I lj2�t. PDI'-l lj-44, RSX, RSX-IlM,
RSX-1 I M-PUIS. Sill. UNJilllS, VAX. VAX-I l/750.
VA)>-LI/780. VAX-11/782. VAX 8200. VAX 8.)00,
VAX 8500 VAX 8550. VAX 8600, VAX 8650.
VAX 8700. VAX 8800. VAXBI, VAXIII 787.32.
VAXclustcr, VAX.station. VAXstation Jl, VMS

ADA is a registered trademark of the U.S. Government

Data General is a registered trademark of Data
General Corporation

Harris is a trademark of Harris Corporation

IBM is a registered trademark of I ntcrnational
Business Machines Corporation

l.ightspecd is a trademark of Lightspeed Computers,
Inc.

Motorola is a registered tradcmark of Motorola. Inc

SCAI.OSystcm and ValidGED ar� trademarks of Valid
Logic. Inc

TK1Solver is a trademark of Software Arts. Inc

CNIX is a trademark of American Telephone &
Telegraph Company llell LaboratOries

Book production was clone by Educational Services
Media Communications Group in 13cdford, MA.

Contents

8 Foreword
Donald]. Mcinnis

10 An Overview of the Four Systems in the VAX 8800 Family
Robert M. Burley

20 The VAX 8800 Microarchitecture
Sudhindra N. Mishra

34 The CPU Clock System in the VAX 8800 Family
William A. Samaras

4 1 Aspects of the VAX 8800 C Box Design
john Fu, james 13. Keller, and Kenneth j. Haduch

52 The Memory System in the VAX 8800 Family
Paul]. Natusch, David C. Senerchia, and Eugene L.. Yu

6 2 Floating Point in the VAX 8800 Family
john H.P. Zurawski, Kathleen L. Pratt, and Tracey L. jones

72 The VAX 8800 lnputjOutput System
james P. _lanetos

81 The V AXBI Bus -A Randomly Configurable Design
Paul C. Wade

88 A Logical Grounding Scheme for the VAX 8800 Processor
Michael W. Kement and Gerald]. Brand

New Products

100 The Simulation of Processor Performance for the VAX 8800 Family
Cheryl A. Wiecek

1 1 1 VMS Multiprocessing on the VAX 8800 System
Stuart]. Farnham, Michael S. Harvey, and Kathleen D. Morse

12 0 A Parallel Implementation of the Circuit Simulator SPICE on

the VAX 8800 System
Gabriel P. Bischoff and Steven S. Greenberg

129 The Impact of VAX 8800 Design Methodology on CAD Development
Dennis T. Bak

136 On-line Manufacturing Data Access on the VAX 8800 Project
Andrew J. Matthews

Editor's Introduction

Richard W. Beane

Editor

This issue features papers a bo u t t h e design o f
t h e V AX 8 8 0 0 fa mily of CPUs, written b y mem
bers of the design team. The tech nology used i n
Digi ta l 's la test h igh-end mac h i ne , t h e VAX 8800
m u I t i pro cessor, a !so for m s the ba s i s for t h e
ot her t h ree fa m i l y members: the 870 0 , 8 5 5 0 .
and 8 5 0 0 CPUs.

Bob Burl ey's overv i ew re la tes t h e processes
used in the 8800 design and the fu ncti ons of the
memory i n t e r c o n n e c t (N M I) , t h e VAX B I I /0
bus, and t he four l ogic boxes formi n g t he fi ve
stage p i pel i ne . The e a r l y d iscovery of design
flaws and the use of automa ted too ls hel ped to
achieve an aggressive complet i on sched u l e .

The m i crom ach i n e implements t h e m i c roar
c h itecmre and contains four of the five p i pel ine
stages . S u d h i n Mishra desc r i bes how m i croin·
stru ctions are handl ed, emphasi zing the use o f
m i c r o b ra n c h e s a n d m i c r o t r a p s t o e n s u r e
co heren cy .

The VAX 8800 clock syste m , d iscussed bv B i ll
Samaras. was designed using an automated t i m·
ing verifier. H e describes the trade-off between
using the ver ifier and maxim i z ing the accuracv
of t i ming s ignals by m i n i mizing their s kew.

'

The C Box and the M Rox are two parts of the
pipe l i ne . joh n Fu , Jim Ke l ler, and Ken Had u c h
describe t h e C Box's no-wri te a l locate cache and
the delayed-wri te a lgorithm that ensures correct
wri te-t h ro u gh . T h e C Box m u s t a l s o h a n d l e
p i p e l i n e s ta l l c o n d i t i o n s a n d m a i n ta i n d a t a
co heren cy between processors . The M Box han
dles read and w r i te req u e s ts for the m c m orv
arrays . Pau l Natusch, Dave Senerc h i a , and Gen�
Yu expla in how the Cllesigns of the N MI and the

2

cache affected their design, a n d why they used
TTL i n the m emory control ler .

The V �"X 8800 fa mily does not have a separate
f loa t i n g po i n t acce l erator . As jo h n Zuraws k i ,
Kathy Pratt, and Tracey jo nes po i nt out , how
ever, a custom ECL u n i t a c h i eves h i gh perfor·
mance through the norma l datapaths . Thus l ess
hardware is needed, and opera nds are fetched
faster .

1/0 d e v i c es are l i n k ed t o t h e CPU by t h e
VAXBI bus. I n h i s paper, Ji m jan etos d iscusses
the NBI adapter, which conta ins l ogic to handle
CPU references and DMA re q u ests . Then Paul
Wade descri bes how the V AXBI design team had
to abandon the tra d i t i o nal approac h and use a
variety of tec h n i q u es to specify the bus. So me
chip probl ems were resolved only after a thor
ough ana lysis of the p hysical configurat ion .

jerry Bra n d a n d M i ke K e m e n t d i s c u ss t h e
i m portance of u s i ng gro u nd correctly a s a s igna l
conductor to ach i eve h i gh performance. They
describe the sources of groun d-related noise in
the CPU, and what they did to isol ate and con
trol t hose sources.

Many VMS features support m u l t i process in g.
Stu Fa rnham, M i ke Harvey, and Kathy Morse first
describe the hardware that sup ports m u l t i pro
ces si ng, t h e n t h e i n t e r l o c k e d i n s t ru c t i on s ,
exce pt ion hand lers, a n d traps t h a t i mplemenr
VMS m u l ti process i n g . To show how m u l ti pro
c e s s i n g d e c re a s e s e x e c u t i o n t i m e , G a b r i e l
B i sch o ff a n d Steve G reen berg c o nverted t h e
SPICE circ u i t s i m u l ator into CAYENNE, a paral
l e l progra m . They created master and slave pro
cesses that ra n CAYENNE 1.7 t i mes faster than
SP ICE.

The fi nal two papers re late some of the autO·
mated tools and te chniques used on the 8800
project . Denn is Bak first descri bes bu i ld i n g the
CAD s u i te from exist ing tools, n ewly develo ped
ones, and mod i ficat ions . The methodol ogy was
tru l y i n nova t ive, serv i n g as a fra m ework for
fu ture projects . Then Andy Matthews d iscusses
the on - l i ne system that tra nsformed CAD d a ta
intO spec i fications used by Manufacturing. This
system m i n i m i zed the prod uct stan-up ti me by
eli m i nati ng pape!Work .

Biographies

Denn is T. Bak D e n n i s Bak is a p r i n c i p a l software eng ineer i n t h e
Advanced VAX Development Group. As a project leader, h e is current ly
deve loping new CAD too ls w im prove designer prod uct ivi ty on fu ture
design projects . In other posit ions, Dennis performed configuration testing
for PDP- 1 1 and VAX systems. Prior to join ing Digital in 19 80, he worked as
a research engineer at Ford Motor Company, doing advanced deve lopment
on electronic engine-control systems. Dennis earned a B.S . degree in elec
trical engineering from the University of Michigan in 1 9 7 4 .

Gabriel P. Bischoff I n 198 5 , Gabriel Bischoff joined Digi ta l after receiv
ing a D ip loma of Engineer and a D iploma of Advanced Studies in device
physics from the Ecole Centra le de Lyon (1980) and a Ph . D . degree in E .E .
from Cornel l University (198 5) . As a senior software engi neer i n the Semi
conductOr Engi neering Group, he is investigating the appl ication of paral
le l computing architectures for VLSI CAD cools , part icularly c i rcui t s imula
tors . Gabriel developed a paral le l version of t he circuit s imu lator SPICE for
shared -memory m u l t iprocessors . A m ember of I E EE , he has pub l ished
papers on device model ing and circui t s imu lation .

Gerald J. Brand jerry Brand is a principal engineer currently deve loping
high-densi ty , h igh-ava i l ab i l i ty power systems . Prior to work i ng on the
power and packaging team for the VAX 8800 fam i ly, he designed two MPS
power modu les that are widely used in Digita l 's products . Before joining
Digital i n 1 980 , Jerry worked for over 1 4 years in d iscipl ines ranging from
oceanography to gas- turbine instrumentation . He holds a B . S . E . E . degree
from the University of I l l inois and part ic ipated in the M .S .E .E . program at
the Un iversity of New Hampshire. Jerry teaches circuit analysis and elec
tronics in the cont inuing education program at the Un iversity of Lowel l .

Robert M. Burley As a senior product management manager, Bob Burley
was the engineering product manager for the four systems in the VAX 8800
fami ly. As a program manager in the LSI Acquis i t ion and Test Group, he was
responsible for re lations with externa l vendors and acquir ing technologies
for the advanced gate arrays used in new CPU designs. Prior ro jo in ing D ig
i tal in 1 9 80, Bob was a product and business development manager at Colt
Industries, Inc . , and a prod uct and manufacturing manager at Scott Paper
Company. He earned h is B .S . degree in mathematics and econom ics from
Hobart Col lege in 1 96 5 .

3

Biographies

4

Stuart J. Farnham As a principal software engi neer in the Vi\JIS Develop·
ment Group, Stu Farnham is current ly working on future directions in mul·
tiprocessing. Earl ier, h e provided VMS su pport at the corporate level for
Software Services . Stu was a deve loper and instructor for the VAXjVMS Sys
tems Seminar. He joined Digital i n 19 8 2 after working as a software engi
neer at Pitney Bowes , Inc.

John Fu Curre n t l y earning his M.S. degree in compu ter science at the
University of I l linois , John Fu was a prin cipal engineer on the VAX H800
project . He worked o n the design of the C Box and configurations for the
VAX 8800 fam i ly . Formerly, he worked on large-systems designs at I nterna

t i ona l Compu ters Lim ited and on m i c roprocessor c o n t r o l systems for
Siemens Li mited . John was also a project manager at Systems and Software ,
I n c . He received a 1 3.Sc . (Hons) in compu ter scie nce (1 977) from the Uni
versity of Manc hester in England . John is a m e mber of the British Compu ter
Society and t he lEE in England.

Steven S. Greenberg As a team leader i n the CAD Departme nt o f the
Semicon d u c to r En gi n eeri n g Gro u p , Steve Gre e n berg cod eve l oped the
CAYENNE program . An early provider of circuit and process s i m u l ators at
Digita l , h e did research in timing veri fi cation and c i rcuit simu latOrs. A<; a
Digital i ndustrial fel low at the Un iversity of Cal ifornia at Berke ley, Steve
performed research on iterated timing analysis . Before j o i n i n g Digital in
1 976 , he was a member of the technical staff at RCA and a CAD engineer at
Texas I nstru ments . Steve received a B.S .E .E. degree (1 966) from M.l . T. and
an M . S . E. E. degree (1979) from Northeastern Universi ty. He is a member of
IEEE and Tau Beta Pi.

Kenneth J. Haduch In 1 974. Ken Haduch joi n e d D i gital after earn i ng
h i s Associate in Electronic and Computer Te chnol ogy degree from the Elec·
tronic I nsti tu tes, Pittsburgh . H e worked a s a technician in Manufacturing
on t h e P DP- 1 1 /70 and VAX- 1 lj780 CPUs a n d in Engine ering on t h e
D R7'50 and FP7 '50 designs . Ken helped to develop the C B o x as a hardware
designer on the VAX 8800 project. He is current ly a hardware engineer i n
the Advanced VA,'(Development Group, working o n the hardware design
for a new VAX processor. Ken is also pursuing a B .S . degree from Northeast
ern University.

MichaelS. Harvey Mike Han'ey joined Di gital in 1 978 after receiving
h i s B .S . d e gree i n compu ter scie nce from the University of Vermon t . He
worked on developi ng the RSX- 1 1 M and RSX- 1 l M-PLUS operat i n g systems
and then led the team that deve loped the VAX-I 1 RSX layered prod uct for
rhe VMS system . S i nce joining the VMS Developmen t Group, M i k e has par
ticipated in new processor support for the VAX 8 3 0 0 and 8800 systems ,
specializ i ng i n mult i processin g. As a principal software engi neer, he is c ur
rent ly working o n future directions for VMS m u l ti processi n g a n d su pport
for high-end VA,'(CPUs .

James P. Janetos Jim Janetos is current ly studying computer architec
ture as a graduate student at Purdue Univers i ty . He joined Digital in 1 980
after receiving his B .S .E .E . degree (Su mma Cum Laude) from the University
of Michigan , where he was elected to Tau Beta Pi . As a design engineer, Jim
worked o n memory upgrades for the PDP- 1 1 /2 4 and 1 1 /44 systems, on
memory system designs, and on dynam i c RAM eval uat ions . On the VAX
8800 project, he i ni t ia l ly worked on the d iagnost ic software for the 1/0
adapter, t he NBJ . Later, he designed the NBIB module, one of the two mod
u les in the NBI .

Tracey L . Jones Earning her B . S. degree in computer engineering from
Boston University, Tracey Jones joined D igital after graduation in 1 98 2 . As
a firmware engineer i n the Advanced VAX Engineering G,roup , she wrote a
major portion of the m icrocode that performs floating point operations i n
the VAX 8800 family of processors . After promotion to senior engi neer,
Tracey enro lled in Digita l's Graduate Engineering Education Program and is
now pursu i ng a n M .S. degree in electrica l engineering at Brown University .

James B. Keller J im Keller i s the project leader for the instruction-fetch
and execution un i ts , the I and E Boxes, and the console for a new VAX pro
cessor. On the VAX 8800 project, he worked on the design of the C Box .
Prior to joi n ing D igital in 1 98 2 , J im worked on fiber optics and the designs
of several microprocessor boards at Harris Corporation . He earned a B .S .
degree in electrical engineering in 1 9 80 from Pennsylvania State Univer
s i ty , where he was elected to Eta Kappa N u . J im has appl ied for t hree
patents on the techno logy in the VAX 8800 design .

Michael W. Kement M i ke Kement is a senior design engi neer i n the
Power System Technology Group, cu rrently working on EMf and EMC. He
was the design engineer for the power system on the VAX 8800 project .
M i ke has worked on the power systems of many products since joi n i ng Dig
ital i n 1 9 7 4 , incl u d i ng the LA3 6 and LA1 8 0 term inals , the PDP- 1 1 / 4 4 ,
VAX- 1 1 /780 and 1 1 /750 systems , and the VAX 8600 CPU.

Andrew J. Matthews As a senior software manager in the Advanced VAX
Systems CAD Group, Andy Matthews is curren t ly automating the CAD to
CAM transi tion . He has managed the development of surface-mou nt CAD
processes and a pi lot program of advanced CAD to CAM data met hods. Andy
designed the prototype and first release of VLS, the VAX layout software
Digital uses for module design . He worked for Adage, I nc . , as the manager
of appl ications programming before coming to Digi ta l i n 1 9 77 . Andy holds
a B .S . degree in C .S . and M . E . (1968) from Boston Universi ty . He has pre
sented two papers at the Design Automation Conference.

5

Biographies

6

Sudhindra N. Mishra Sudhin Mishra is a project leader i n the Advanced
VAX Development Group , currently developing a design verification CAD
too l . As a pri nc ipa l engi neer on the VAX 8800 project, he designed and
i mplemented most of the I Box and originated t he system-level s imulation
of the CPU . Before joining Digital i n 1 98 2 , he was a senior research engi·
neer at Prime Computers, Inc. Sudhin has worked on projects ranging from
radar a nd heat-seeking missi les to computers. He earned a B .Sc . degree in
engineering from Ranchi University and an S .M . in E .E . and C .S . from M . I .T.
Sudh in has appl ied for a patent on the technol ogy in the VAX 8800 design .

Kathleen D. Morse As a consu l t ing software engi neer, Kathy Morse is
responsible for a l l low-end CPUs and peri pherals . She is also one of the
designers for fu ture d i rect ions i n VMS mul t iprocess ing . Kat hy provided
VMS support for the VAX- 1 1 /782 and M icroVAX I and II systems, and the
MA7 80 m e mory. She jo ined D ig i ta l after rece ivi ng her B . S . C . S . degree
(1 976) from Worcester Polytechni c I nst i tute, where she a lso earned her
M .S .C .S . degree (1 985) . Kathy is a member of IEEE , the Professional Coun
ci l , ACM , Tau Beta Pi , a nd Upsi lon Phi Epsi lon . She has published i n the
Compu ter Measurement Grou p ' s Conference Proceed ings, the Digital

Technical journal, and DA TA MATION.

Paul J. Natusch As a principa l hardware engineer, Paul Natusch is cur
rently managing the hardware deve lopment for a new VAX processor in the
Advanced VAX Deve lopment Group . On the VAX 8800 project , he was a
member of the memory system team and later rook over as i ts leader. Ear
l ier, he worked on an upgrade to the VAX- 1 1 / 7 5 0 memory control ler ,
which expanded i t from 2 MB to 8MB . Pau l jo ined Dig i ta l in 1 980 from
Storage Technology Corporation , where he was a d iagnostic engineer. He
received his B .S . E . E . degree from Cornel l Un iversity in 1 979 and an M . B .A.
degree from Northeastern Univers i ty i n 1 98 5 .

Kathleen L. Pratt Educated at Rensselaer Polytechn ic I ns t i tu te , Kathy
Pratt came to Digita l after receiving her B . S . degree in computer and sys
tems engineering in 1 980 . She worked on hardware designs for networks i n
t he Local Area Networks Group, then o n the design o f the floating point
hardware for the VAX 8800 centra l processor i n the Advanced VAX Devel
opment Group. Kathy is currently a senior engineer working on the fl oat
i ng point design for a new VAX processor.

William A. Samaras B i l l Samaras is a pri nc ipa l engineer working to
design a new VAX processor. He joined Digital in 1 982 to design the clock
system on t he VAX 8800 project . Formerly, at Accutest Corporat ion , B i l l
designed VLSI testers and t i m i ng syste ms . H e holds a n Associa tes degree
(1 97 3) from Northern Essex Commun i ty Col lege , and B .S. degrees i n engi
neering technology (1 97 5) and electrical engineering (I 976) , both from
Southeastern Massac husetts Univers i ty . B i l 1 teaches d igital electronics for
cont inuing education at the University of Lowel l . He has applied jointly for
a patent on the technology i n the 8800 clock system .

David C. Senerchia Dave Scnerchia is currently a sen ior e ngineer i n the
Electronic Srorage Deve lopment Group. He is a member of the design team
worki ng on rhe ma in memory for a new mid-range VAX system . On the VAX
8800 ream, Dave designed the i n i t ia l array module for main memory and
part i c i pated in the archi tectu re and design of the memory system , the
M Box. He joined Digi ta l i n 1 982 after earn i ng a B .S . degree in e lectrical
engineering from Washington Univers i ty .

Paul C. Wade As a principal engi neer, Pau l Wade is working on advanced
development for future VAX CPUs. He was responsible for the e lectri ca l
design , verification , and resting for the VAXBI bus . Pau l a lso designed pans
of the VAX 8200 system . Before jo in ing Digital in 1 98 0 , he worked as a
project engineer ar M icrowave Semiconductor Corporation, RCA, and Lock
heed Electron ics . Paul earned a B .S . E . E . degree (1 97 3) from Newark Col
l ege of Engineering. He holds a patent on ga l l ium arsen ide technology and
has written nine papers on that ropic . One paper won the Beatrice Winner
Award a t the 1980 ISSCC .

Cheryl A. Wiecek Cheryl Wiecek is the engineering manager of the Sys
tems Archi tecture Group and is responsible for the VAX architecture and a
number of Digi tal's in terconnect archi tectures. She worked on VAX i nstruc
t ion-set characteri zat ion and performance s imu l.at ion for the VAX 8800
CPU. Cheryl a lso worked on PDP- 1 1 performance si mulation after comi ng
to D igital i n 1 978 . She was a programmerjanalyst at the Connecticut Edu
cation Association and taught mathematics in Connecticut . Cheryl holds a
B.A. degree in mathematics (1 974) and a n M .S . degree i n computer science
(1 979) from the Univers i ty of Connecticut . She has publ ished five papers
on computer performance in ACM and IEEE journals .

Eugene L. Yu Gene Yu is a sen ior design engineer i n the Workstation
Engineering Group ar Palo Alto . On the VAX 8800 project, he des igned the
memory system in terface to the memory i nterconnect, the N M I . Before
jo in i ng D igi ta l in 1 98 2 , Gene worked at Prime Computer as a hardware
designer on the i r 4 00 and 9900 systems , and at Data General Corporation
on Nova products . He earned a B.S . degree in e lectrical engineering from
rhe Univers i ty of Massachusetts. Gene has applied for a patent as coi nventor
of the NMI and memory design for the VAX 8800 CPU.

John H.P. Zurawski John Zurawski is a consu lt ing engineer working as
the project leader for computer arithmetic in the Advanced VAX Develop
ment Group. He led the team that designed the floating point strategy and
hardware for t he VAX 8800 family. John joined Digital in 1 98 2 from the
Univers i ty of Manchester, where he was a post-doctoral research associate .
He holds a B .Sc . degree i n physics (1 976) , and M . Sc . (1 977) and Ph .D .
(1 9 8 0) d e g re e s i n c o m p u t e r s c i e n c e , a l l fro m t h e U n i ve rs i t y o f
Manchester. A member of IEEE , John has publ ished four papers o n com
puter technology .

7

Foreword

Donald J. Mcinnis
Group Manap,er,
Aduanced VA.X Enginel'rin[!.

Since the announcement of the VAX-I t j7HO sys·

rem i n November 1 977. Digita l Equipment Cor
poration has steadi ly expanded the VAX fami ly
with new VAX products : the VAX-I l/7'50 . VA,'(.
llj7:)0, MicroVAX I , VAX·llj72'5, VAX-II/
7H'5, VAX 8600 , MicroVAX ll, VAX H6'50. VAX
8200. and VAX 8300 systems The marker accep·

ranee of the VAX fam i ly has been excel l ent across
a l most a l l computing applications. This remark
ab le and steady i ncrease in the usc of VAX sys·
tcms creates a continuous demand by the VAX
customer base for enhanced prod ucts across a .! I
segments of the computing i ndustry. I n the fa l l
o f 198 2. t h e deve lopm ent tea m for t h e H 8 0 0
project (known i n terna l ly a s " Naut i l us") was
assigned the responsib ility of design ing nL'\v sys
tems to enhance the mid-to-high end of the VA.-'(
fam i ly .

This issue of the Digital Technical journol
represents a sampling of the types of design engi·
nccri ng rhar went i nto t he VAX HHOO fam i ly . It
takes an a m a z i ng ly l arge n u m ber of d i fferent
engi necring d isci pi i nes to design and manufac
ture a product of this complexi ty. A-; t ime moves
on , each successive development project seems
to require a bigger investment in a larger number
of discipl i nes to produce a product attractive to
the marketplace . It is u n fortu nate that neither
time nor space rerm its US tO give proper visibil
ity to all the design. manufacruri ng. ancl cus
tomer-service engi neering efforts that Icc! to rhe

shipment of the VAX 8800 fa mi ly .

The VAX 8SOO fam i ly consists of four new pro·
cessors: the VAX 8800 , VAX 8700 , VAX 8'55 0 ,
and VAX 8'500 CPUs . The VAX 8800 family and
the VAX 8200 system introduced a major new
IjO bus. the VAX!3I. We also i ntroduced a com
pi ete ly new set of ljO adapters for the V AXBI
bus. which wil l be the new foundation IjO chan
nel for many fut ur e mid· to h igh-end VAX sys·
terns . The VAXI31 bus wi l. l rep lace the UNIBUS on
this class of system . The VAXlll offers a six-fold
i ncrease i n performance and substantia l ly better
rel iabi l ity and mainta i nabi l i ty features in com
parison to the L Nll3US.

The 8800 represents a s ign i ficant advance into
new areas of h igh -performance comput ing for
the VAX fam i ly . A customer can replace a VA,'(.
ll/780 CPU with a VAX 8800 CPU i n the same
foo t p r i n t a n d e ffect an order of m agni t u d e
i ncrease i n t h e a mount of work done . The VA.-'(
8 5 0 0 CPU is rea l ly a replacement product for the
VAX - 1 1/78'5 CPU kernel . However, the 8500 has
the same price. twice the performance , and one
t hird the footpri nt .

To produce a product that has a good price;
performance ratio in the marketplace , you have
to push hard on some di mensions of technology.
A n u m ber of new p i eces of technology were
introduced on the VA. -'(8800 project, such as the
2 2 - layer backp lane and a 4 80-pi n , zero i nsertion
force connecto r. In the VLSI technology area,
one 8800 i nc l udes a total of 1 86 emi tter-cou·
plecl logic (ECL) gate arrays and a tota l of 28 cus·
rom-designed LCL parts.

The cycle t ime of a VAX CPU is a l arge determi·
nant in i ts performance . The chall enge of meet·
ing a 4 ';-na nosecond cycle r i me (versus 200

nanoseconds for the 1 1 /7 8 0) requ i red s ign i fi
cant advancements i n technology implementa·
tion and i n CAD tools for ana lysis .

Enhancements were made to the base operat·
ing system software for the VAX 8800 processor.
These software enhancements represent a basic
technological change that is avail able to our CliS·

romers . The VMS operat ing system was improved
significant ly to provide much better throughput
for cusromers using the VAX 8800 dual proces·
sor as a genera l -purpose system. The ULTRIX-32

operat i n g sys t e m was e n h a n c ed tO s u pport
t i g h t l y cou p l e d m ult i p rocessin g . Software

library structures were also developed for cus

tomers who might want to improve the through

put of a single job by decomposing it to run in

parallel on the tightly coupled dual processors

of an 8800.

To meet the performance goals, the overall

design of the VAX 8800 system is necessarily

quite complex and was potentially difficult to

implement quickly and correctly. We under

stood this from the beginning of the project,

based on our understanding of the experiences

of previous projects (e.g., the VAX-11/750, VAX

8600, and Jl1 VLSf CPU chip projects). To

manage that complexity in a timely manner, we

selected some key strategies and stuck with

them through the completion of the project.

They proved to be very successful since the

hardware prototypes were relacively error free,

and the manufacturing start-up was very smooth

and rapid. Some of these strategies are as fol

lows:

• The project followed a structured design

methodology that ensured the completion of

comprehensive specifications before any

detailed design was done.

• We made a large investment in our CAD team

and in CAD tools to automate the design pro

cess.

• The basic design was managed by a chief

architect.

• The system was simulated extensively before

we built any hardware. (We finished the pro

ject with 14 VAX-11/780 and 11/785 sys
tems in our. cluster. During our peak simula

tion effort, however, over 30 dedicated VA,'(

systems were used for a period of several
months.)

• Since many different engineering and manu

facturing locations were involved, we made

extensive use of Digital's worldwide network

for electronic mail and data exchange.

A more important factor than any of the above

ex ampl es, h o wev e r, was the people w h o

worked on the project. We attempted ro build

an excellent team that worked well together.

The attribute of teamwork and the willingness

of people to have a broad engineering focus

proved to be invaluable, especially in the simu

lation and prototyping phases. The core manage

ment ream started with very experienced peo

p l e, m o s t o f w h o m h a d V AX-llj78 0 or

VAX-11/750 development experience: Sas Dur·

vasula, VAX 8500 project manager; John Hittell,

manufacturing manager; Steve Jenkins, engineer·

ing manager; Nancy Kronenberg, VMS engineer·

ing; Bob Kusik, CAD manager; Steve Omand,

customer service engineering; and Bob Stewart,

chief architect. Many contributors at the next

level also had similar backgrounds, and all

remained in place for the duration of the pro

ject. This continuity was a major factor in com

pleting a very successful project and a very suc

cessful family of products.

9

Robert M. Burley I

An Overview of the Four Systems
in the VAX 8800 Family

The VAX 8800 multiprocessor and the VAX 8700, 8550, and 8500 systems
all derive from the same fundamental design. Their sustained appli
cations throughput ranges from 3.0 to 12 times that of the VAX-1 1/780
system. In the design process, automated tools helped to correct design
bugs early. ECL technology and a two-phase clock system achieve a
45-nanosecond cycle time. Microinstructions are processed simulta
neously through Jour logic boxes that implement a five-stage pipeline. A
high-speed memory interconnect, the NMI bus, links CPUs to memory and
the ljO subsystem, which connects to VAXBI buses. Many reliability fea
tures, including extensive diagnostics, are implemented.

Design work on the VA,'\ 8800 system began i n
September 1 982 and concentrated o n develop
ing a balanced, high-performance system based
upon the use of ECL components and mu l tipro
cessing. Although performance was the primary
product goal , many technology, packagi ng, and
implementation decisions reflected the equal ly
pressing business requirements for reliabi l i ty
and ease of manufacwring.

The flexib i l i ty of the design u l t imately
spawned four CPU systems: the VAX 8800 . VAX
8700, VAX 8 5 5 0, and VAX 8500 models . These
systems share many common functiona l and
design attri butes yet maintain noticeable i mple
mentation d ifferences in the areas of perfor
mance, mu l tiprocess ing, expansion capabi l ity
(memory and ljO). and packaging. As a result of
these impl ementation variations . the sustai ned
appl ications throughput (SAT) rates for these
systems range from approximately 3 . 0 to 1 2
t imes the rate for a VAX- 1 1 /780 system . Sus
tained applicat ions throughput is more ind ica
tive of usable performance for a given system
than the more frequently reported peak num
bers that can be derived from ideal or biased
cond i tions . Table I compares the physical and
performance anributes of these four VAX pro
cessor systems.

Design Environment

Trad i t iona l design environ ments have p laced
the greatest emphasis on d iscovering and e l im i -

1 0

nat ing design errors i n the physical hardware.
The complexi ty of the VAX 8800 design cou
p led with the new technologies i nvolved would
have created cost ly delays i n the development
schedule had tradi tional approaches been used .
Early i n the project. goa ls were defi ned to iden
t ify logic design problems and to solve all t im
ing p ro b l e m s t h rough the use of extens ive
design verification tools .

A hierarchical design and s imu lat ion environ
m e n t a l lowed the e n g i n ee rs to m ove free ly
throughout the design a t any level from gates ,
l ayou ts , and behavioral models through com
plete system s imulation and t im ing verification .
ConsiderJble comput ing resources were required
to a l low that freedom . This envi ron ment , with
i t s carefu l ly managed l i brar ies and databases ,
al lowed this work to be done before any hard
ware was actual ly assembled .1 A.; a resu l t , the
design matured within our VAXcl uster systems,
evo lv ing ro hardware protOtypes on ly after i t
was essentia l ly complete and stable . I n addition
to the expected savings in prototype costs and a
red uction in overal l development r ime, the per
vasive use of software tools sign i ficantly shifted
the tradi tional debug effort to an ear l ier poi n t i n
t h e des ign process . Cumulat ive bug-detect ion
p lots were used extensively to provide i ns ight
in to the srabi I ity of the design .

The effect of this shift was ro provide stable ,
early prorotypes for extensive system characteri
z a t ion and rest i ng , l e a d i n g to ear l i e r des ign

Digital Technical journal
No. 4 February 1987

Table 1 CPU and Memory Attri butes of the VAX 8800 Fa mily

VAX 8500 VAX 8550 VAX 8700 VAX 8800

CPU Attributes

SAT (com pared 3.5 6.0 6 .0 1 0 . 0 to 1 2.0
to VAX - 1 1 /780)

Cycle Time 45 ns 45 n s 45 n s 45 n s

Number o f 2
Processors

U pgrade
Potential

To 8550 None To 8800 None

Writable Control 1 5K 1 5K 1 5K 1 5K i n each C P U
Store (Words)

U ser Control 1 K 1 K 1 K 1 K i n each CPU
Store (Word s)

Microword Size 1 43 Bits 1 43 Bits 1 43 Bits 1 43 Bits

CACHE Size 64KB 64KB 64KB 64KB (i n each CPU)

I nternal Datapath 32 Bits 32 Bits 32 Bits 32 Bits

Instruction Buffer 1 6 Byte 1 6 Byte 1 6 Byte 1 6 Byte Look Ahead
Type Look Ahead Look Ahead Look Ahead in each CPU

Maximum Total 1 6 M B/s 1 6M B/s Over 30M B/s Over 30M B/s
1/0 Data Rate

Maximum 1/0 2 2 4 4
Channels

Memory Attributes

Maximum Physical 8 0 M B 8 0 M B 1 28 M B 1 28 M B
Memory Size

Cycle Times:

Hexword Read 495 ns m i n . 495 ns min . 495 ns m i n . 4 9 5 n s m i n .
(256 bits) 1 260 ns max. 1 260 ns max. 1 260 ns max. 1 260 n s max.

Octaword Write 270 ns min . 270 ns min. 270 ns min. 270 ns min.
(1 28 bits) 540 ns max. 540 n s max. 540 ns max. 540 ns max.

Longword Write 1 35 ns m i n. 1 35 ns m i n . 1 35 n s m i n . 1 35 n s m i n .
(32 bits) 495 ns max. 495 ns max. 495 ns max. 495 n s max.

acceptance . This strict ly controll ed design envi
ron ment al lowed us to complete physical debug
along with the req u i red system eva luat ion and
testing in only eight months.

I n a software- i ntensive design environment ,
the product ion of actual hardware is deferred
somewhat in favor of des ign stabi l i ty , resu lting
i n a s l ight ly longer soft-design period . The delay
in hardware avai lab i l ity, however, is more than
balanced by the stab i l i ty of the hardware proto
types, which can then be acce lerated through
the eva luation and qual ificat ion-test ing phases .

Digital Technical Journal
No. 4 Februmy 1987

The design schedule recovers during these later
phases , and substant ia l cost savings are rea l ized
beca use fewer engineer ing changes are made
and stable manufactu ring can begin quickly.

CPU Design Overview

The VAX 8800 fam i ly of designs were structured
around the fu nctional elements, or "boxes , " of
the system . The CPU , m e mory, ljO, a n d bus
subsystems were al l matched to provide the nec
essary system ba lance . One s imple model is to
treat performance as a fu nction of two variables:

1 1

New Products

A n Overview of the Fou r Systems in the VAX 8800 Fami�y

the i nstruction execution rate , and the amount
of "work" each i nstruct ion can perform . The
design of the VAX 8800 fami ly focused on what
we call the "short tick" approach to achieve the
necessary, sustained performance .

I n t h i s a pp roa c h , the i ns truct ion a n d data
s t r e a m s a re kept s i m p l e and a re e x e c u ted
qu ickly . Any design trade-offs were resolved i n
favor o f speed and s i m p l ic i ty, t h u s red u c i n g
design complexity . The use of h igh-speed cus
tom and semi c ustom VLSI components com
bined with severa l new i n ternal bus a rch i tec
tures resul ted in a fam i ly of processors with a
4 5 - na n osecond (ns) cyc l e t i m e . A l l mod e l s
e m p l oy a f ive - s t age i n s t r u c t i o n e x e c u t i o n
pipel ine , integral float ing poi nt acceleration (F,
D, G, H formats) , and the VAXBI bus as the pri
m a ry I / 0 s u bsyste m . T h e e x te n s ive use o f
m i crocode contro ls w i th m i n i ma l h a rdware
ass i s t a u gm e n ts c u rrent performance w h i l e
provid ing flexibi l ity for fu rure enha ncements .
The b lock d iagram in Figure 1 (us ing the VAX

ECC
MEMORY

8700 and VAX 8800 systems) i l l ustrates t he key
functional e lements common to the VAX 8800
family design .

Technology

The raw speed , off-chip drive capabi l ities, and
ava i l a bil i ty of b ipo lar e m i t te r-cou p led log ic
(EC L) log ic com po n e n ts provi d e d the m ost
straightforward means of ach ieving the desi red
performance of the VAX 8800 fami ly . Most logic
i s implement e d in 1 2 0 0-gate ECL arrays . Cus
tom l ogic chips designed by Digital provide fur
ther performance ga i ns for float ing point opera
tions and genera l -purpose registers . The cache is
i m p l e m ented in 1 0 - ns a n d 1 5 - n s ECL RAMs .
N i ne - layer , contro l l e d - i mpedance CPU l og i c
modu l es a n d a 2 2 - layer, contro l led- impedance
CPU backpl ane were deve loped to meet the sig
n a l - i ntegri ty a n d s igna l -propaga t ion req u i re
ments cruc i a l to an ECL desi gn . Other m u l t i
layer backplanes were designed for the private
memory array bus and 1/0 subsystems .

VAX
PROCESSOR
(STA N DARD
VAX 8700)

CONSOLE

1-v;;----� I PROCESSOR I -i (U PGRADE I
I VAX 8800) l
L. - - - --r - - - .J

I
I

H IGH SPEED M EMORY I NTERCONN ECT BUS (N M I)

1 2

BUS I NTERFACE

VAXBI
1/0 BUS
STD 8700/8800

- -, I I I I I
r---__1 _ _ _ .., I I I VAXBI I I 1/0 BUS I I STD 8800 I I I
L - - - "7...----J

/ '
", I� I 2 I
� '-7 ' /

v

I I
r---..1----· I I
I BUS I NTERFACE I r--1 (OPTIONAL) L-,

1 I I I I I I I I L - - - - - - - -' I
I I
I I

r ----1--- -, _ _ _ _ _ L _ _ _ ,

I VAXBI I I VAXB I I I 1/0 BUS I I 1/0 BUS I I (OPTIONAL I I (OPTIONAL I 1 8700/8800) 1 � 8700/8800) �
L----;o::- - - -...J '----7------J

/ ' / '

., r ., �
I 3 1 I 4 I � � � 7 ' / ' / v v

Figure 1 VAX 8 700/8800 Rlock Diagram

Digital Technical journal
No. 4 FeiJrumy I 987

An in novative scheme of bus bars and ribbon
straps routes the appropriate power tO each of
the backplanes, min i miz ing cable management
problems for system power. The eight CPU logic
modules , a l l memory arrays , a n d a l l IjO con
trol lers attach to the i r respective backplanes by
means of zero insert ion force (ZIF) connectors .
which im prove our abi l i ty to manufacture and
service the system . Figure 2 shows the two d i f
ferent modu le types (CPU and VAXBI) usL"cl in
the VAX 8800 fami ly .

Figure 2 Typical CPU and f/0 Modules

An L"XtensivL" L"nvironmental mon itoring sub
system , ca l led the EMM, has been implcmL"ntL"d
throughout t h e syste m . The E M M consta n t l y
moni tors curre nt fl u c tu a t i ons , a i r fl ows , and
te mperature va riat ions , prov i d i ng warn i ngs at
the system console . ThL" EMM can automat ica l ly
power down the system in thL" L"venr that safe
operat ing l i mits a rc violated .

CPU Subsystems

The des igns of the CPUs i n the VAX 8800 fa m i l y
are part it ionL"d along the logica l functions pn-

Di�ital Technical jourmtf
No. -1 l'<!bl'twr)' I ')87

formed wi th in each processor. There a re four
logica.l boxes: the instruction un i t (I Box) , the
cache (C Box) , the execut ion unit (E Box) , and
the memory su bsystem (M Box) . Each processor
contains these functional un i ts and their rela ted
buses. Five buses are implemented with in each
CPU : the cachejALU bypass bus, the cache data
bus. the i nstruction- buffer data bus, the vi rtua l
address bus, and the write data bus . F igure 3 is a
bl ock d iagram of the processor configuration .

I
BOX IBD BUS

CONSOLE
SUBSYSTEM
INTERFACE

VISIBI LITY BUS

E
BOX

CACHE DATA BUS

c
BOX

HIGH SPEED MEMORY INTERCONN ECT BUS (NMI)

NBIA
ADAPTER

TO NBIB ADAPTERS

CjA BUS - CACHEjALU BYPASS BUS
IBD BUS - INSTRUCTION BUFFER DATA BUS
VA BUS - VIRTUAL ADDRESS BUS
WD BUS - WRITE DATA BUS

M EMORY
CONTROLLER

Figure 3 Processor Block Diagra m

A short overv iew of each functional box fol
lows. Other papers i n this i ssue of the Digital
Techn ical jo u rnal a n d t h e VA X Ha rdware
Handbook conta in substant ia l ly more dera i l . 2

1 3

New Products

A n Overview of the Four Systems in the VAX 8800 Fami�J'

Pipelining the VAX 8800 Family

P ipe l i n i ng , wh ich fu n c t i o n a l l y i nvolves the
E Box, the C Box , and the M Box, i s pr imar i ly
control led by the I Box . P ipel i n i ng is a proven
method to i mprove performance . The i ncorpo
ration of p ipel i n ing, in conjunction with faster
microcode i nstruction execution rates , or cycle
t imes, i ncreases aggregate throughput more than
can be achieved by i mprovements of the cycle
t ime a lone . The concept of pipe l in ing is based
u pon part i t i o n i n g i n s t r u c t i o n e x e c u t i o n to
a l low s imu l taneous operat ions u pon mul t ip le
m i c ro i n s t ru c t i o n s . The VAX 8 8 0 0 fa m i l y
employs a five -stage p ipe l ine . I n th is design a
n ew m i croinstruct ion execu tes every 4 5 ns ,
w i th five m icroinstructions execut ing s imul ta
neous l y . A s i m p l i fi ed schemat i c of the VAX

8800 fam i ly p ipe line is represented i n Figu re 4 .

I DNA I cs R A W,C

I DNA cs R A W,C

DNA cs R A W,C

DNA cs R A W,C l
DNA cs R A I W,C I

DNA - DECODE/NEXT ADDRESS
CS - CONTROL STORE LOOK-U P (M ICROCODE INSTRUCTION)
R - REGISTER READ
A - ALU OPERATION
W,C - REGISTER WRITE, CACH E OPERATION

Figure 4 The Pipeline in the VAX 8800

Fam ily

The I Box
The I Box conta ins the m icrocode store and con
trol center and performs five pri mary functions.

• Buffer ing the p refetched VAX i nstruct ion
stream data received from the cache

• Decod ing and control l i ng the execut ion of
m icroinstructions

• Mon i tor ing and serv ic ing mi crotraps, i nter
rupts, and exceptions

• Supplying i nstruction-stream embedded data

• I nt e rfac ing be tween the conso l e i n terface
module and the processor

For each processor, a writab le control srore of
I 6K words by 1 4 3 bits is loaded d i rectly from
the inte l l igent console subsyste m upon system

1 4

start. A segment o f control store wi th I K words
by 1 4 3 b i ts , the user-writab le control store, is
provided for the system user to opt imize appl i
c a t i o n s . T h e l o g i c a l fu n c t i o n o f t h e I Box
incl udes the fol lowing:

• 'fhe i nstruction buffer

• The i nstruction decoder

• The m i crosequencer

• The condition code and m icrobranch logic

• The i nterrupt and processor-register logic

• The fi le-address generator

F igu re S depicts the i mplementat ion of the
I 13ox .

The C Box

Tbe C Box for each processor is bu i l t around a
(i 4 - k i l o byte (KB) wr i te - th rough da ta cache
memory that i s p hys ica l l y i ndexed and d i rect
mapped . Functional ly, the C Box provides very
h i g h - s p e e d p h ys i c a l m e m o ry , h i g h - s p e e d
address translations, and a communication path
for the processor to the N M I bus . The compara
tive ly large cache s ize was specifical ly selected
ro a l l ow large appl ications to remain fu l ly res i
dent in the cache, substant ia l l y reducing mem
ory traffic and processor wa i t sta tes . The com
p l e t e C B o x i m p l e m e n t a t i o n i n c l u d e s a
I KB trans lation buffer , a 64 KB cache data store ,
and an NMI i n terface . The transl a t ion buffer
consists of a 1 K-entry cache of virtu a 1 - to-physica I
addn:ss translations. This translat ion buffer con
rains a tag store and a data store organized into
') I 2 process-trans la t ion s lots and 5 1 2 system
region-translat ion slots . Us i ng a portion of the
v i rtua l address ro compare the tag-store a n d
data-store addresses, the trans la tion buffer con
catenates the page frame nu mber with the low
order virtual -address bits to form the physica l
address for the data store cache .

Data reacl from the cache data store (a cache
" h i t ") requ i res no m e m o ry re q u es t . I f t h e
requ i red cla ra i s n o t i n t he cache data store (a
cache " m i ss ") , l og ic e m bedded in the N M I
in terface uses the cache-m iss address tO spawn a
commandjacldress transaction that is sent to the
memory subsystem . Upon return , the requested
data from memory is passed to the req uesting
CPU and then pl aced in the cache data store for
subseq uent use . This design a l lows the translation

Di)!.ilal Technical journal
No. 1 Februmy I 987

CAC H E DATA BUS ./

WRITE

INSTRUCTION R EAD
B UFFER
MANAGER ALIGN

i OPCODE

SPECIFIER

CONSOLE
r

_
DATA/CONTROL

.I

I GATEWAY I CONTROL

CONDITION BRANCH
CODE &
BRANCH

I NTERRUPT
LOGIC f--

I INTERRUPT PENDING

Figure 5

VIRTUAL ADDRESS •

t t
MICROWORD t I TAG I I DATA I STORE STORE

TRANSLATION B U FFER

� PHYSICAL ADDRESS �
CACH E

M EMORY

TO CONSOLE I NTERFACE

� .I

INSTRUCTION TO I N STRUCT! ON
B U S BUFFER BUFFER DATA

BUS
WATCHER

CONTROL

t
INSTRUCTION FILE
DECODER ADDRESS

l DECODER CONTROL

MUX
M ICROWORD

t t
M I CRO-

WRITABLE
CONTROL

SEQUENCER STORE

I TO

SEQUENCING C BOX

CONTROL
TO
E BOX

I Box Block Diagram

buffer and the cache data store to be free to
process other processor requests unt i I the
requested data arrives from memory .

A block d iagram of the C Box is shown in
Figu re 6 .

The E Box

The E Box receives data from the I Box and the
C Box. processes that data , and returns i t ro rhe
C Box . The E Box performs five pri mary func
t ions required by the processor.

I CACHE DATA I REFILL DATA INTERCONNECT • Hand les a l l arithmetic , logica l and bi t-shift
operations

STORE INTERFACE

< t > t
CACH E DATA BUS N M I

• F R O M EXECUTION BOX
t FROM INSTRUCTION BOX

Figure 6 C Box Block Diagram

Dip,ital Technical jounwl
No. 1 Ft!hruary I 'J87

• Mai ntains the program counter and general
registers

• Mai nra ins the processor registers

• Control s data transfers between the C Box ,
the I Box , and the c lock-module registers

• Provides condi tion-code i nformation to the
l Box m icrosequencer

1 5

New Products

A n Oven,iew of the Four s:vsterns in the Vt1X 8800 Fa mil) •

T O C BOX FROM I BOX

t
WRITE DATA BUS

I LATCH

SLOW
DATA
F ILE

STRUCTION BUFFER DATA BUS � t r-

FROM c BO; I
+ r-

CAC H E DATA BUS
v

FROM C BOX

+ < VIRTUAL ADDRESS BUS

I
t

REGISTER PROGRAM
F ILE COUNTER

t •
1--

r--- ARITHMETIC AND LOGIC U N IT

I--

PARITY
CHECK

FROM
C BOX

I t t l
MU LTI PLIER SH IFTER FLOATING

POINT

t t r-.. < CACHE(ALU BYPASS BUS
v

Figure 7 /;' No.1.· Block Diagram

The major dements of rhc E Dox, located phys·
ica l ly on rhe d a ta-sl ice mod u les and rhe sh i fter
modu 1<: . consist of a register fi l e , a data fi k , t h e

program - c o u n t er log i c , the m a i n A L U , a n d a
sh ifter . The logic of the E Box i ncludes in tegra l
float i ng point operations that are opt imi zed and
a 6 4 - b i r m u l t i p l i e r (i m p l e m e n ted i n cus tom
designed VLSI chi ps) rha r augments t h e speed of
borh i nreger and float ing po in t m u l t i pl ica t ion .
Figure 7 is a block d iagram of the E Box .

1 6

The M Box
The M Box . the memory subsyste m , consists of

m e m o r y con trol log i c , me mory a rray s , and a

ded i cated me mory a r ray b u s r h a t p rov i des a
usable data rare of over '50MB per second to rhe
me mory subsystem. The contro l logic opt imizes
m u l t i p le memory read a n d wr i te opera t ions ,
i m p l e m e nts three-way i nt er leav ing, and buffers
memory transact ions for opt i m u m dara move
ment . The dedi cated me mory array bus, coupled

Digital Technical journal
No. 4 Februmy I ')87

wi th the memory cont rol logic , effect ively off
loads the N M l bus , provi d i n g ba lanced bus
access and loads . The i nt erleaving a lgori t h ms
are based u pon a rray boundar ies . mak i ng t he
memory control logic technology i ndependent .
The resu lt is that as increasingly dense memory
arrays become ava i lable , few if any cont ro lle r
mod i ficat ions wi l l be requ i red .

The error checking and contro l (ECC) is bu i l t
around 7 check b i ts for every 32 b i ts of data .
This protocol provides automatic s ingle-bit cor
rection and doubk-bit detect ion .

I n the VAX 8800 mult iprocessor, a l l memory is
ful ly sharable . Current systems in the VAX 8800
fami ly are offered wi th 1 6 MB per memory array ,
g iv ing the VA..'{ 8700 a nd VA..'{ 8800 systems a
max imum memory capac i ty of 1 2 8MB, and t he
VAX 8500 and VAX 8 5 5 0 systems a maximum of
80MB. Figure 8 is a block d iagram of the M Box.

INSTRUCTION
BOX

HIGH SPEED M EMORY INTERCONNECT BUS (NMI)

POWER SUBSYSTEM

r
I
I
I
I
I
I
I
L _ _

- - - - - - ...,
M EMORY CONTROL I

I
I
I
I
I
I
I
I

_ _ _ ..J

Figure 8 M Box Block Diagram

Di[!Jtal Technical journal
No. 4 February J 'J87

The Clock Subsystem

The c lock subsystem generates , contro ls , and
distributes t iming signals to a l l the components
of the processor system . The clock su bsystem
conta i ns the consol e i nt e rface , an osc i ll a tor , a
phase generaror, clock-control logic c i rcui ts , and
the logic c i rcui ts for clock signa l d istri but ion .

The VAX 8 8 0 0 fa m i l y i m pl e m e n ts a two
phase. nonoverlapped c lock su bsystem operating
at a cycle t ime of 4 5 ns . A stable, high-frequency
osc i l lator (1 20 MHz nominal with variable out
put) . coupled with a phase generator, provides
the signa l . The implementation of a two-p hase
design wi t h m atched signa l - length d istribut ion
t h roughout the CPU is most effi c i en t for the
p ipe l i ned, latch-based design of the VAX 8800
fa m i ly . This design avoids the i n effi c i enc ies
associated wi th the compressed signal -assertion
t i mes resu l t i n g from approac hes tha t spec i fy
m i n i mum delays for given logic ckments .

A-clock and B-clock signals arc cl istributcd to
a l ternate latches in a given logic stream . Al l data
transfers occur between latches clocked by d if
ferent p hases ro assure a race - free design . The
essence of fast-processor design is managing and
contro l l ing skew. In this regard , signal propaga
t ion and d istribut ion presented sign ificant chal
l enges in the areas of contro l led etch lengths.
control led impedance , rout ing, and p l acement.
To assure a stab le , re l i ab le des ign . a l l des ign
ac t iv i ty was pred icated on worst - case des i gn
m lcs rather than using the typical -case l imits .

The NMI Bus

I n tegral to the design of th is fami ly of proces
sors was the development of a h igh-speed mem
ory in terconnect bus called t he N M I bus . Th is
bus , ana logous to t he sync hronous backplane
interconnect (SB I bus) in the VAX- 1 1 /780 CPU .
l i nks t h e su bsyste ms for C PU log i c , cen t ra l
memory , and 1/0. The N M I bus i s a 3 2 -bi t syn
chronous bus , p hys ical ly i mplemented wi th in
the 2 2 - layer backp lane . This bus provi des the
control and datapath fu nct i ons as we l l as the
d istri but i on of clock signals for the VA.,'(8800
fami ly .

One fu ndamenta l prob lem i n the des ign of
h igh-performance systems revolves around ba l
a n c i n g t h e bus access n e e d e d at any g i v e n
i nstan t w i t h the raw bandw i d t h ava i lab le . To
provide the correct balance, the N Ml bus was
implemented as a pendecl (vs. in terlocked) bus ,
resu lt ing i n very h igh bus-access ava i labi l i ty .

1 7

New Products

An Overview of the Four Systems in the VAX 8800 Fami�J!

Since memory is the critical resource in sus
ta ined operations, the NMI bus uses a modi fied
round-robin arbitration that gives the memory a
higher priori ty when there is contention for the
bus . Th is a rb i tra t io n pr ior i ty e l i m i n ates any
lock-step conditions and a lso provides for recov
ery of states and data i n the event of preemp
t ion . This h igh bus-access capab i l i ty , coupled
wi th usable data rates of u p to 60MB per sec
ond, provides the necessary balance to support
CPU. memory, and l/0 transactions. The inclu
s ion of write buffers with in each CPU, coupled
with the large cache s ize , effectively redu ces
the number of transactions presented to the bus.
Measurements on a VAX 8 8 0 0 system in ou r
Engi neer ing VAXcluster environment have ind i
cated that the N.MI bus i s rarely busy more than
50 percent of the t ime ; the CPUs usc approxi
mately 2 5 percent of the ava i lable access t ime
and bandwi d t h . Other a p p l ica t ions may see
somewhat d i fferent ratios.

VAXBI Bus

The VAX 8800 fa m i ly u ses the VAX bus in ter
connect , cal led the VAXBI bus, for the 1/0 sub
system in order to provide adequate balance for
the CPU performance. The VA.,'{J3I bus, a 3 2 -bi t
c locked bus with distributed arbitrat ion, is capa
ble of usable data rates i n the VAX 8800 fam i ly
up to 8MB per second , depend ing upon word
s i ze and a p p l i c a ti o n . Custom log i c on each
interface module provides a l l bus protocols , as
weJI as integral data-in tegrity features, inc lud i ng
master transmit and command acknowledge .

The VAX 8800 and VAX 8700 systems can be
configured wi th up to fou r VAX B I channc l s .
whereas the VAX 8550 and VAX 8500 systems
accept up to two . Therefore , fu l ly configured
VAX 8800 and VAX 8700 systems can su pport
aggregate IjO bandwidths up to 3 0 MB per sec
ond . Si m i larly , fu l ly configured VAX 8 5 5 0 and
VAX 8500 systems can support aggregate band
widths up to 1 6MB per second . Each VAXBl bus
c a n s u p p o r t u p to 1 6 n o d e s , o r l o g i c a l
acldrcsscs, which connect to any combi nation of
n e t wo r k s , i n t e l l i g e n t a n d n o n i n t e l l i g e n t
devices, DMA devices, and VAXcluster systems.
as well as provi d ing for connection to exist ing
UNIBUS-based devices .

Al l of D ig i ta l ' s network protocols i n terface
d i rectly to the VAXBI on the VA,'{ 8800 fam i ly .
Thus , VAXcl uster . E therne t , DECnet and DSA

1 8

(D i gi tal Storage Arch i tectu re) devi ces are a l l
ported d i rectly to th i s h igh -performance I/0
subsystem .

Reliability

Rel iabi l i ty was one of the pri mary goa ls of the
VAX 8 8 0 0 d es i g n . N u m e rous fea t u res were
implemented that more than doubled the basic
compming kerne l ava i labi l i ty compared to the
VAX- 1 1 /780 system . Some of the key functions
inc lude

• E n v i ron m e n t a l a n d power m o n i tors t h a t
qu ery t h e system a n d m a i n t a i n safe system
operating levels

• Automatic verification of hardware , fi rmware ,
and software revision compatib i l i ty

• Electrical ly keyed modu les and module slots
that prevent i mproper i nsta l la t ion and dam
age to the modu les or the system

• Automatic e l ectrostatic d ischarge (ESD) pro
tect ion of modu les dur ing i nsta l l a t ion and
removal

• ECC on main memory

• Parity checki ng on in ternal RAL\1.s

• Bus protocol checking for the memory in ter-
connect

• Timing and voltage margin ing

• Remote d iagnostics capabi l i ty

• D u a l - t o - s i n g l e p rocessor reconfi gu ra t i o n
(VAX 8800 system only)

Diagnostic Development

S i m i l a r to the h a rdware d e ve l o p m e n t , the
d e s i g n m e t h o d o l o gy fo r t h e d i a g n o s t i c s
depended very heavi ly on s imulation . Almost a l l
the d i agnost ic tests were debugged on behav
ioral and stru ctural models of the design before
the i n i t i a l prototype was powered u p . There
were three major benefi ts of this methodology .

1 . M ic rod i a gnost ic a n d macrod iagnos t ic
tests were usefu l for design verificat ion
testing .

2 . Test vectors for automatic test equ ipment
(module test) were extracted from the
s imul ation database .

3 . A comprehensive diagnostic package was
ava i lab le short ly after the prototype was
powered up .

Digital Technical journal
No. 4 February 1987

The diagnostic for the VAX 8800 fami ly con
s i s ts of tests s p e c i fi c to t h i s processor a n d
generic to the VAX archi tecture. The processor
is tested pri mari ly with microd iagnostics. These
rests execute from the processor 's wri table con
trol store and are governed by the console .

VAX generic d iagnostics are incl uded to test
the UNIBUS and VAXBI adapters and options . Al l
t h e d i a g n os t i c c o d e fi ts o n t h e c o n s o l e ' s
Winchester d i sk . When the system i s powered
u p . a su bset of the m i c rod i agn ost ic tests are
executed .

Balanced Systems

The VAX 8800 design effort del ivered fou r dif
ferent systems, the 8800 , the 8700 , the 8 5 5 0 ,
and the 8500 , a l l reflecting the overrid ing con
cept of balanced system design . Whi le the CPUs
themselves demonstrate excel lent i n ternal bal
ance between their logical and functional sub
systems, they are also balanced members of the
extended system t h a t can span m u c h l a rger
physical distances. Monol i thic or isolated com
p u t i n g resou rces a re no l o n ge r c a p a b l e o f
access ing , man ipu la t ing , and d i str i but ing the
volu mes of i nformation needed for complex or
extended solu tions . In this l ight, the VAX 8800
fami ly shou ld be viewed in the context of a bal
anced network. The move ment of data is gov
erned by speed a nd d i stance . An i nverse re la
t ionsh ip exists as shown i n F igure 9 . The VAX
8800 fami ly fits on the rop bound of the band
width range throughout the distance function .

w
;;}_ COM PLE X ----'T-=E-=-C'-'H'-'N O"--"-LO"-G"-Y ____ S I M PLE
� 1 00
<' 0 :::!.
0 z 8 1 0
LJ.J
(!!_ CIJ �

I
I to

� z <{ CIJ 1 0 1 00

DISTANCE - METERS (LOG SCALE)

Fz��ure 9 Bandwidth versus Distance

Digital Technical journal
No. 4 Februar)' I 'J87

1 000

Summary

The VAX 8800 fa m i ly of products merges fast
instruct ion-execut ion rates, large physi cal mem
ories, large high-speed data caches, VAXBI 1/0
channels , pipel i n ing, and balanced internal-bus
architectures to prov ide h igh system-appl ica
t ions t h roughput . Spa n n i n g a n a p p l i c a t i ons
throughput range that is from 3 to 1 2 r i mes that
of the VAX- 1 1 /780 system , the VAX 8500 , VAX
8 5 5 0 , VAX 8 7 0 0 , and VAX 8 8 0 0 systems are
matched ro the network and appl ications strate
gies offered by Digital Equi pment Corporation .

References

1 . D. Bak , "The I mpact of VAX 8800 Design
Methodol ogy on CAD Deve l o p m e nt , "
Digital Techn ical jo urnal (February
1 98 7 , th is issue) : 1 29- 1 3 5

2 . VA X Hardwa re Ha ndbook (Maynard :
D ig i t a l Equ i pment Corpora t ion , Order
No. EB- 2 1 7 1 0 -20 , 1 982) .

1 9

New Products

Sudhindra N. Mishra I

The VAX 8800 Microarchitecture

The VAX 8800 processor has a simple but efficient microarchitecture. Its
pipelined micromachine has a one-cycle next-address loop and four-cycle
latencies for both microbranches and microtraps. Instruction prefetch
and decode are done in parallel with microcode execution. The instruc
tion buffer is a bit-sliced, four-longword circular queue. The decoder is
primarily a RAM-based table. For special events, hardwired logic is used
for decoding. A bit-sliced microsequencer provides up to 32-way condi
tional microbranching, using a collection of about 80 branch conditions.
A hardware micros tack provides up to 15 levels of nested subroutine calls
and returns. Microtrap conditions are prioritized over 1 6 levels, and
microtraps are chained, not nested.

The term " microarchi tecture" means the speci
fication or descri ption of the interre lationships
between the pans of the mi cromach i ne tha t
i m p leme nts the ins t ruc t ion se t processor . I n
terms of this defin i t ion , the microarchitecturc of
the VAX 8800 processor wi l l be described by
e lucidat ing the organ ization of its micromachine
and the interaction between its componenrs .

F i gu re I shows a s i m p l e t hree-stage state
mach i n e model of an abstract m i c romac h i n e
appropriate for implement i ng t h e control u n i t
o f a typ ical von Neumann processor . F igun.: 2
shows a block d iagram depict ing the essen tia l
e l ements of such a micromach ine . This stare
machine is capable of executing m icrocode rou
tines to implement an instruction set processor.
I n such a sys te m , every macro i nstru c t i o n i s
decoded b y the hardware to produce the starr
ing addresses of a smal l set of microprograms ,
w h i c h execute seq u e n t i a l l y to produc e the
des i red e ffe c t . B a r r i n g some exce p t i o n s . a
m i croprogram or m icrocode rou t i ne can exe
cute ra ther i ndependently in the sense that eac h
mi croi nstruct i on produces the add ress of the
next microinstruction . The last microinstruction
causes the se lection of an external address . such
as one produced by the de cod er , ro starr the
execution of another routine .

In Digita l ' s vernacular , the I Box is the logical
part i t ion cont a i n i ng the i nstru ction-processing
hardware . Figure 3 shows a b lock d iagram of the
VAX 8800 I Box with the basic elements of its
micromachine .

20

INTERPRET
MICROINSTRUCTION

FETCH
MI CROI NSTRUCTION

Figure 1 State- machine Model of an
A bstract Micromachine

From the early LBM and CDC computers to the
modern CRAY mac h i n es , computer designers
have used a tec hnique cal l ed "p ipel i n i ng" to
obta in h igher performance . P ipel i n i ng overlaps
the execut ion of i nstructi ons i n r ime ; that is ,
severa l i ns t ruct ions can be execut i ng at the
same r i m e . Th i s tec h n i q u e provides a h i gher
throughput when the p ipe l i ne is fu l ly loaded ,
but tlwre i s a cost involved . I f the p i pe l i n e is
broken , extra process ing is requ i red to refi l l i t .
Moreover, if any act ive i nstructions have par
tial l y execu ted . i nformation about their stares
may have to be saved to con t i n u e process ing
after an abrupt in terru ption .

The de gree of p i p e l i n i n g v a r i es from one
mach ine to another depending upon the design
choices and trade-offs made by the system archi
tects . A metaphor often used to i n d icate the
degree of pipe l in ing is the length of the pipel ine

Digital Technical journal
I .& • 1 (7

MICRO- MICRO- MICRO- r--� MI CRO- r- -ADDRESS
ADDRESS

CONTROL
DATA DATA

I-- LATCH r--- - LATCH f--- INTERPRE-
CONTROL

GENERATION STORE -OR OR TATION EXTERNAL SIGNALS
-ADDRESSES

AND CONTRO LS
LOGIC REGISTER R EGISTER LOGIC -

Figure 2 Block Diagram of an Abstract Micromachine

BRANCH CONDITIONS,
TRAPS, INTERRUPTS

MICRO
SEQUENCER

CAC HE

�
INSTRUCTION
BUFFER

I B DATA

OPCODE,
SPECIF IER,

CONTROL SPECIFIER ,..---L----'--N_,U M BER

PC
DECODER INCREM ENT

TO E BOX

DECODER CONTROL

CONTROL
STORE

MICROWORD

MICROSEOUENCER CONTROL

CONTROL TO E BOX

CONTROL TO C BOX

Figure 3 VAX 8800 I Box

stated as the n u m be r of stages, for example , a
three-stage p ipe l i ne or a fou r-stage p ipe l i n e .
The number of stages conveys the extent of t ime
overlap for typ ica l opera t ions in a compu ter .
I n a machi ne wi th a p ipe l i ned m icroarcbi tec
tu re, these operations are executions of microin -

CL - COMBINATORIAL LOGIC

structions. A higher degree of pipe li n ing makes
short cyc le t i mes poss i b l e , thus lead i ng to a
h i gher th roughput when the p i pe l i ne is ful ly
loaded . But longer p ipe l in es e n ta i l i ncreased
overhead in terms of their ab i l i ty tO resume oper
ations after a break in the pipel ine caused by any
abnormal event. Therefore , an arch i tect's goal is
to design the system so that the pipe l i ne re mai ns
loaded most of the t ime and recovery from a bro
ken pipel ine is not roo ineffic ient . The VAX 8800
CPU i s a prime example of a processor with a
pipe l ined microarchitecture.

System Considerations

The design phi losophy of the VAX 8800 proces
sor was to o p t i m ize the h a rdware so t h a t i t
wou l d execute the m i crocode effi c i e n t ly . A
large control store (1 44 bi ts by 1 6,000 entries)
holds the entire m icrocode. Using fa i rly general
i zed d a tapa ths , t he m icroco d e executes t he
logic of the i nstructions . However, special hard
ware is used to speed up performance in cri t ica l
areas . The processor logic is primar i ly designed
with l atches, which are clocked with a globa l ly
d istr ibu ted , two-phase , nonoverlapping c lock
i ng scheme. The two clock phases are cal led the
A-clock and the B-clock. A typica l example of
logic design, based on the above approach , i s
shown in Figure 4 .

OUTPUT

Figure 4 A Typical Section of the VAX 8800

Digital Technical journal 2 1
No. 4 Febrttai:Y 1 987

New Products

The VAX 8800 Microarchitecture

It is apparent from Figure 4 that the data flow
in such a logic system occurs through rhe per
petual data transfers between the la tches con
nected to the A-clock and those con nected to
the B-clock . Each data transfer may be cons id
ered atom ic i n the sense of hardware operation .
A m icrooperation may be e nvisioned as a logical
operation that i s atomic in terms of the execu
tion of a m icro instru ct ion . such as a register
read , a register write or an AIU function . Hence
a microoperat ion const i tutes one or more data
transfers . and the m i croi nstruct ion execut ion
s i m p l y cons t i tu tes a t ime seq uence of mi cro
operations. as shown in Figure '5.

CLOCK

A

I
B

I

READ REGISTERS ALU FUNCTION
ADD

TIME

A

I

STORE RESULT
IN REGISTER

Figure 5 Example of a klicroinstruction

B

I

In high-performance machi nes, l i ke those i n
the VAX fa m i l y , there i s usua l ly a m i smatch
between CPU cycle t i mes and memory-access
t i mes. For example , cons ider an ADD i nstruc
t ion . I f the operands are i n registers, t he ADD
can be done rather qu ick ly . But if one of the
operands has to be read our of memory, the ADD
cannot be performed u n t i l t he d es i red <..l a ta
arrives from memory. Most VAX processors have
a fast cache memory, t ight ly bound to the pro
cessor's arithmetic un its , w al leviate the mem
ory- latency problem . In the case of a cache miss
on a requ i red datum . however. the only al terna
tive for a von Neu mann processor is tO wai t A
processor i n such a state is sa id to be · ' stal led . "
Under such condi t ions, the state o f the proces
sor must be " frozen" unti l the cause of the sta l l
no longer persists and the sta l l is bro ken . The
two-phase clocking scheme provides a conve
nient way to i mplement sta l ls , in which one of
the clock phases (the A-clock in the 8800) may
be blocked . Stal l s a re contro l l ed by rhe cache
through a spec i a l hardware s ignal d i str ibuted
global ly to block the A-clock . Thus, the proces
sor logic conta ins two flavors of A- latches :

• Sta l l ed A- latches, which are affected by a staJJ

2 2

• Unsta l led A-latches, which are not affected by
a stal l

The m icromachine is i mplemented only with
sta l l ed A- latches . Hence the effect of s ta l ls on
the execut ion of the m icromachine i s l argely
transparent .

A mecha n i sm i s a l so req u i red to dea l w i th
hardware except ions when the res u l ts of the
execu t i o n of a m i c ro in stru c t i o n h a ve to be
undone . I n a p ipe l i ned m icroarch i tecture , sev
era l m icroi nstructions may have part i a l ly exe
cuted when an exception condi tion i s detected .
In that case i t is necessary to undo the effects of
a l l those microi nstructions. The most common
techn ique used to deal wi th such si tuat ions is
ca l l e d a m i c rotra p . S i nce m i crotraps re l a te
closely to the m icromachine execution , every
p rocessor has i ts own scheme ro i m p l e m e n t
them. I n every case . however, m icrotraps must
perm i t the " ro l l ba c k " o f s o m e n u mber of
m i croi nstruct ions because the detect ion of a
trap cond i t ion usua l l y occurs q u i te la te wi th
respect tO mi croi nstruction execution .

I n the VAX 8800 processor , m icrotraps a re
i m p l e m e nted so t h a t t h e o ffe n d i n g m i c ro
i nstruction is a l lowed to complete , but subse
q u e n t m i cro i nstru c t ions i n t he p i p e l i n e a re
blocked . S i nce the offending m icro instruction
may have caused some undesirable resu lts, the
trap-hand ler m icrocode must fix the problem .
Depend ing on the parti cu lar s i tuat ion , e i ther
the m icroinstruction execut ion flow is resum
ed fro m the b l o c ked s ta te or a new f l ow is
origi nated .

System Buses and Datapath

Figure 6 i s a block d i agram of the VAX 8800
CPU datapath, showing a l l the major buses. The
hardware orga n i za t ion of the CPU provides a
two-cycle operation between the cache and the
AIU, as shown . The processor has several func
t ional un i ts in addit ion to the main AIU. These
add i t i ona l u n i ts perform h igh-speed mu l t i ply
and d iv ide , sh i ft i ng , and floa t ing-po in t ari th
metic operations .

There are severa l poss ib i l i t i es for se lect ing
i nputs ro these functional un i ts . For operations
i nvo lv ing two i n puts , both can be presented
s imu l ta neously onto the two l egs of the ma in
AIU as wel l a s most other functional un i ts . The
resu l ts from these fu nct ional u n i ts a re sent on
the W bus for wri t ing to e i ther the m u l t i part

Digital Technical journal
No. 4 February I 987

BYPASS BUS VIRTUAL ADDRESS BUS

BACKUP PC

r-----.. �"" � 7
A

MULTI- :t lrllil In PLIER
& 2._ \ I DIVIDER � PC

� � M U X TB
B l1C BUS r

l

Uf� I \ A

I L__
B

R A

PC INC

:Jf A

:= B � 0,

"-..,
CACHE

A A , __ por-

em I I \ A-PORT B-PORT
MUX MUX

'> •< •• ..

<� J CACHE DATA BYPASS BUS

w I B I DATA � � SHIFTER

1\ f---'-- ALU

r-- B

,--X
.------ R t--

.--- E r---
G

�

�·I::""'" I� �� 1 '---- B V'--
EXPONEN T['<--- f-

�� � f-V<--
SHIFT I PC

INCREMENT

COUNT /\ ...---BUS L _\ r;:=:: A • � {r fJ .___
1.- SLOW

1\ MPR DATA IB
FILE

B B

MICRODATA � L_ I F CACHE • "!" DATA � IMA
DELAY � VA 1 :0� WRITE

I BUFFER

9J WRITE BUS MD BUS

Bl=-
A, B - A AND B PHASES OF TWO-PHASE CLOCK

Digital Technical]om-nat
No. 4 February 1987

Figure 6 VAX 8800 Datapath

--- v�

2 3

New Products

The VAX 8800 Microarchitecture

registn fi le (MPR) or the cache . However, s ince
rhe write actua l ly occurs in the fol lowing cycle .
the bypass bus provides a shortcut (sav ing a
cycle) i n case t he wri te darum is read hy r h c
very next microi nstructi on .

The v i rtua l address bus carr ies the vi r tua l
add ress of any cla ra - s t re a m (cl -s trea m) refer
ences. whereas the program-counter bus has the
current program counter (PC) The i nstruction
buffer data bus provides th<.: instrucrion -strcun
(i -strca m) data . The instructi ons and data fro m
the cache are returnee! on the cache data bus .
However, a cache data bypass bus provides a
d i rect path to the functional un i ts for the data
remrncd by the cache, in case the processor i s
or wil l be sta l led for that data .

Microinstruction Pipeline

The top part of Figure 7 shows the execution of
m icroinstructions as a fu nction of t ime in a non
pipel i necl mi croarchi tectun: ; the bottom depicts
that i n a pipc l i ncd m icroarchitecture.

The basic data flow i n a processor occurs in
the fol lowing sequence :

1 . Read t he register operands i n to a fu nc
t ional uni t , such as the ALU .

2 . Perform some ALU funct ion .

3 . Wr i te the resu l ts i n to the dest i n a t ion
register.

4 . I f there is a cache , start a cache operation
at approxi mately the same time as a regis
ter write s i nce memory refere nces a rc
bu ffered through speci a l -purpose mem
ory data registers (MDRs or MDs) in most
high-performance processors .

F i g u re '5 s h ows t h a t t h e seq u e n c e a bove
occurs i n a na tu ra l order i n t ime as a conse
quence of the m icroi nstruction execut ion . With
p ipc l inecl microarchi tccrures , a t ime reference
is needed to correla te the m icrooperations per
fo r m e d by v a r i o u s m i c r o i n s t r u c t i o n s w i t h
respect to each other. The notion of canon ical
ri mes is veil' conven ient for this purpose . The
clock t i cks of the reference m icro i nstruct ion
may be labeled with a monotOnical ly i ncreasing
set of T n u m be rs s t a rt i n g at T0 as s hown i n
Figure H . These T numbers are ca l l ed the canon
ical t i mes of a particu lar microinstruction . The
mi crooperation labe led T0 marks the start of a
m i cro ins t ruc t ion e x e c u t i o n cyc l e . F igure H
shows the basic microopcrat ions of a VA.-'{ 8800
m icroinstruction with their canonica l ti mes .

\Ve sha l l use the s i mple model of a microma
chine in Figure 1 to describe the VAX 8800 micro-

-------------------------- CYCLES -------------------------.

CLOCK - A 8 A 8 A 8 A 8 A 8 A B A

M ICROI NSTRUCTION 1

M ICROINSTRUCTION 2

M ICROI NSTRUCTION EXECUTION I N
A NONPI PELI N E D M ICROMACHI N E MICROI NSTRUCTION 3

MICROINSTRUCTION 1

MICROINSTRUCTION 2

M ICROI NSTRUCTION 3

M ICROI NSTRUCTION EXECUTION I N M ICROI NSTRUCTION 4
A PIPELINED M ICROMACH I N E

Figure 7 Microinstruction Execution

24 Digital Technical journal
No. 4 Februarp I 'J8 7

CYCLE - To

CLOCK - A

To

B A
r - - - - - - -
1 I I DECODER
I OPERATION
I
I
L.. - - - - - - - -

B

T, Ts

A B

Q o o.. 0 -- � -' N a_ 0 ::::> a: w =? a: w . a: w . >- a: o.: >- a: '-' >- a: '-' z o o z o o z o o o r- o o r- o O r- O U Ul -' O Ul -' O Ul -'

Ts Tg

A B A B

REGISTER
WRITE

ALU
OPERATION

CACHE
OPERATION

Too

A B

CACHE MISS
ACTION

Tn

A B

Figure 8 Canonical Times of a VAX 8800 Microinstruction

i nstruct ion format as a sequence of basic m icro
operations I ike those in Figure 8. The first stage
in the microinstruct ion execut ion cycle is the
m icroaddress fetch . The microinstruction execu
tion cycle begi ns with a decoder operation . The
decoder prod uces the start ing microaddress for
every new m icro i nstruct ion seq uence and pre
sents it to t h e m i c rosequencer . The decoder
determines that address on the basis of the con
tents and current state of t he i nstruction buffer
(l B) . Each m i c ro i ns t ruc t ion spec i fi e s to the
m i croseque ncer whether or not to accept t he
decoder's m icroaddress. I f not, the m icroinstruc
t ion must ei ther speci fy the add ress of the next
m i c ro i n s t r u c t i o n d i re c t l y , as a p a r t of t h e
m icroword , or i nd i cate a n a l ternate source for
the address within the microsequencer. Since the
decod e r ' s opera t i o n is c o n c u r re n t w i t h t h e
microsequencer's , the decoder a lways has a start
i ng m icroadd ress for the m icrosequencer. It i s
convenient to th ink of th is IB -decoder concur
rency as a " h idden decoder cycle . "

CLOCK - A B A B A B

I I I I I I
CYCLE - 0 1 2 3 5

,---------
MICROINSTRUCTION A: : DECODER I LUK I xos I RD L------

A

I
6

The next stage i n the m icroinstruction execu
tion sequence is the fetch of the microinstruc
t ion , performed by a look -up i n the control
srore . In the VAX 8800 system , the m icroaddress
is p ipel ined, not the m icrodata . Consequent ly,
the m i crodata from a segmented control store
appears ar the appropriate t i m e for the three
basic operat ions ro occur in the i nd icated order.

The m icrodata looked up causes a sequence
i n which the register read occurs between the
t i mes T5 and T6 , the ALU funct ion between T6
and T1 b and the register wri te between T8 and
T 1 0 . The cache operations a lso occur between
the t i mes TH and T1 0 . The secti on beyond T 1 0
denotes cache activity with respect to the mem
ory i f t here i s a cache miss. (The cachejmemory
in terface is controlled by an i ndependent m icro
machine .) During every cyc le , a m icroinstruc
t ion produces the address of the next m icroin
s tru c t i o n , w h i c h i s then executed . F i g u re 9
depicts the generic m icroinstruction p ipe l ine of
the VAX 8800 processor.

B A B A B A B A B

I I I I I I I I I
7 8 9 10 1 1 1 2 1 3 1 4 1 5

ALU WR.CACH

B [��������] L U K xos I R D ALU WR,CACH

c [��������'-�
_
Lu

_
K
___._
I

_
x
_
o

_
s

....�...._
R
_

D
___._ _

_
A

_
L
_

u _ _J__
w
_

R
_

.
_
c

_
Ac

_
H
.......J

ALU WR, D [����
-
�E� LUK I xos I R D

�-�--L-�----�---

DECODER - DECODER OPERATION
LUK - CONTROL STORE LOOK-UP (CONTROL STORE 0 SEGMENT)

E:

XOS - BOARD CROSSING SEGMENT (OVERLAPS CONTROL STORE 1 LOOK-UP)
RD - REGISTER READ (OVERLAPS CONTROL STORE 2 SEGMENT LOOK-UP)
ALU - ALU FUNCTION
WR - REGISTER WRITE
CACH - CACHE OPERATION

[�����_:� _._L
_

u_K_._I
_
xo

_
s
_J_I

_
R
_

D--''-A-Lu
_

Figure 9 Microinstruction Pipeline of the VAX 8800 CPU

Digital Technicaljournal 25 No. 4 Febmarv 1 98 7

New Products

The VA X 8800 Microarchitecture

Microbranch Latency

One consequence of p ipe li n i ng is that any inter
ve n i ng m i c r o i n s t r u c t i on s m u s t be s p a c e d
between t he i nstruction that produces a branch
condition and the i nstruction that can branch on
i t d ue tO l a tency in the deve lopment of the
branch cond i t ion . Obviously, the execution of
the i ntervening m icro instructions must be i nde
pendent of the branch . Usually , microcoders are
able to code some usefu l operations dur ing the
i nev i tab le wa i t . O t herwise , the i n te rve n i n g
i nstru c t i ons must b e N O Ps (no opera t i on) .
Figure 1 0 s hows the microbranch latency i n the
VAX 8800 CPU.

Microtrap Latency

A hardware exception causes a m icrotrap . How
ever, the trap condi t ions, l i ke the branch condi
tions, may develop after some execut ion cycles
have been completed . Once again there must be
some i ntervening m icroinstructions between the
trap-caus ing m icroinstruction and the trap-han
d l ing rout ine . Moreover, the state of the micro
machi ne must be saved so that the current exe
cution can be resumed i n such a way that t he
i n te rve n i ng e x e c u t i o n o f t h e t r a p rou t i ne
appears to be transparent . This state consists pri
mari l y of m i crobranch cond i t ions that resu l t
from the execution of microi nstruct ions i n the
p i pe l i n e s i nce those coul d i n fl u e nce subse
quent microaddresses and hence the execut ion
sequence . Therefore , on i n terruption of the cur
rent sequence by the trap rout ine , the branch

CLOCK - A 8

I I
CYCLE - 0

I
MICROINSTRUCTION C: I

I
L

A

I
2

DECODER

D:

8 A 8

I I I
3 4 5

I LUK I xos I RD

[��������] LUK

A

I
6

condi tions from the earl ier execution are essen
t ia l to reproduce the same sequence .

To s i m p l i fy the hardware des i g n , aU ear ly
traps a re d e l ayed to a fi xed c a n o n i c a l t i me
(T t 0) . Some trap cond it ions, however, develop
l a ter than t he canon ica l t i me wi th the conse
quence t h a t those traps cannot be returned
from . In such cases t he m i crocode must ro l l
back the state to the beginn ing, which causes a
reexecution of the ent ire macroinstruct ion .

F i g u re 1 1 s h ow s a seq u e n c e i n w h i c h a
m icroi nstruction at address T provokes a m icro
trap . At t he earl iest , the trap-handl i ng rou t i ne
can beg i n a t m i cro i nstruct ion X . Meanwhi l e ,
micro i nstructions U , V , and W fol low T , qu i te
unaware of the i mpendi ng trap . I n fact , they are
in part ia l execut ion when the trap condition i s
detected . These microinstructions are sai d t o be
i n the trap shadow, and they must be blocked
from writ ing any registers , thus making i t appear
as if t hey had never executed . When control is
returned from the trap-han d l i ng rout ine , these
trap shadow micro i nstruct ions a re reexecuted ,
cont inu i ng the sequence that would have arisen
had t he trap not occurred .

Instruction Buffer and Decoder

The I B bu ffe rs the prefetc hed VAX i - s t ream
del ivered by the cache and i n turn del ivers the
opcode and speci fier to the decoder. The IB a lso
delivers the i -stream data to the execution un i t ,
the E Box . The decoder expects to receive the
current opcode a nd the current specifier byte .

8 A 8

I I I
7 8 9

ALU WR,CACH

xos 1 RD ALU

A 8 A 8

I I I I
1 0 1 1 1 2 1 3

1 ----- GENERATES

, BRANCH CONDITION

A 8

I I
1 4 1 5

WR,CACH 1 - POTENTIAL NOP

POTENTIAL E: [�������] LUK 1 xos I R D ALU WR.CACH
NOP

BRANCH F: [�������] I XOS MICROINSTRUCTION LUK R D A L U W R .

TARGET O F
r------ I XOS I CONDITIONAL G : I DECODER L U K R D ALU I

M ICROBRANCH
I ----

Figure 1 0 Microbranch Latency

2 6 Digital Technical journal
No. 4 February 1987

CLOCK - A B A B A B A B

I I I I I I I I
CYCLE - 0 2 3 4 5 6 7

A

I
8

B

I
9

B

I
1 1

B

I
1 5

A

I
1 2

B

I
1 3

A

I
1 4

A

I
1 0

-----------I
M ICROINSTRUCTION T : I DECODER RD ALU I

L-----------
I LUK I xos I WR,CACH 1- CAUSES A MICROTRAP
�--�--�--�------�------�

,----------

U:
I DECODER I
L---------

I LUK xos 1 RD ALU WR,CACH

TRAP
SHADOW

v: [�������� I.__L_uK__.I_x_o_s__,__R_D_...___A_L_u _ __._w_R_,c_A_c_H__,

w [�����=R ..__L_u_K-'--I_xo_s__.I_R_D__,_ __ A
_
L
_

u _ __._w_R_.

Figure 1 1 Microtrap Latency

Hence the lB saves the opcode for the duration
of t he i ns t r u c t i o n exec u t i o n a n d s h i fts t h e
buffered i -stream a long t o send each specifier i n
turn to the decoder. The goal of the VAX 8800
decoder is to produce a start ing m icroaddress
correspond i ng to the opcode and the specifiers.
The sequence of m i crocode execution caused
by the decoder is first to process a l l the specifi
ers , maki ng all the operands ava i lable, and then
to e x e c u t e t h e o p e r a t i o n s p e c i fi e d by t h e
opcode. I f an i nstruction has n o specifiers , the
execution microcode is i n it iated d i rectly. In any
case the decoder a l ways has a m i croaddress
a head of t i m e for the m i c rosequencer . Th i s
m icroaddress is the start ing address of e ither a
spec i f ie r rou t i n e o r t h e execu t i o n rou t i n e ,
based o n the contents and the state o f the IB .

If a t any t ime the IB does not conta i n enough
i - s t rea m d a t a for a s u c c essfu l d e c o d e , t h e
decoder w i l l produce a specia l m icroaddress .
The microinstruction at that address is s imply a
N O P that aga i n requ ests the se lect ion of the
decoder's address . The m icromachi ne thus wai ts
i n a loop for sufficient i -stream data tO arrive i n
the I B so that the decoder can aga in d ispatch a
useful microaddress . This wai t- loop state of the
micromachine is commonly referred to as the IB
sta l l , which i s d i fferent from the stal l described
earlier . Note that clocks tO sta lled A- latches are
not blocked for an IB sta l l . On the contrary, the
micromachine runs normal ly as does the rest of
the processor ha rdware . I B sta l l s may occur
when the i nstruction prefetch pi peli ne i s bro-

Digital Technical journal
No. 4 Febmm:y J 987

ken due to macroinstruction branches. This con
d i tion requ ires the current contents of the IB to
be d i s c a r d e d a n d n e w i - s t re a m d a t a to be
prefetched in to the lB .

The VAX 8800 IB is a four-longword c ircular
queue, which is usual ly long enough tO hold an
ent ire i nstruction . The data is consumed out of
the I B from the posit ion pointed tO by the read
poin ter . However , new data cou ld be written
c o n c u rren t l y by the c a c h e at the p os i t i o n
pointed to by the write pointer. Whenever i t has
room , the IB is loaded by the cache if the cache
has no other h igher priority job to do. Occasion
a l ly , the IB becomes fu l l (the wr i te p o in te r
catches u p w i t h t h e read poin ter) , and then i t
does not accept the datum from the cache . I f a
da tu m i s not accepted by the I B , t h e cache
keeps repeat ing the transfer unt i l the datum i s
accepted . Occasional ly , the I B becomes empty
if the cache is busy doing other th ings and the
decoder has consu med a l l the data from the IB
(the read pointer and the wri te pointer point tO
the same location) .

The I B i n the VAX 8800 fami ly is i mplemented
with four i dent ica l gate a rrays with 8-bit s l i ces
desi gned to use a rather c lever b i t-scatteri ng/
gathering scheme. The IB a lso contains logic to
extract and format i -stream data , mak ing i t ava i l
ab le to the E Box . A com mon s i lo ho lds the
opcode h i story for the d u ra t ion of a macro
i nstruction 's execution, as wel l as for recov
ery from m icrotraps. The VAX 8800 decoder is
a RAM-based l o o k - u p t a b l e for g e n e ra t i n g

2 7

New Products

The VAX 8800 Microarchitecture

NOP --------------------------�

THINGS THAT MAKE
SPECIAL ADDR ESSES ---------,..j

SPECIAL
ADDR ESS
ENCODER

SPECIAL �------�L-____ M
_

I
_

C
-
.ROA DDRESS

MICROADDRESS
-----------------------------------, ENABLE

1 4
)----,i'-----._ MICROADDRESS

OPCODE --------•1

SPECI F I E R BITS
AND STATE

DECODER
RAM

OPCODE
A D D RESS

1 0

SPECI F I E R
ADDRESS

USE
OPCODE
A D D R ESS

18 STATE
CONTROL

1---------------------- SPECIFIER R E LATED
ASSISTS

S P E C I F I E R
STATE FLAGS

1 8 DATA
L_-----------------------. FORMAT

CONTROL

Figure 1 2 VAX 8800 JJecoder

microaddresses . In the case of special ev<:nts ,
however, hardware logic is provided for gener
at ing specia l m icroaddresses, as s hown in Fig
ure 1 2 , thus bypass i n g the RAM J ook-u p . The
decoder a lso provides controls for the I B state
machine as well as some other hardware assists .

Microsequencer

Th<: state - machi ne respons ible for genera r ing rhe
ncxr m i c roaddress for a m i cro i nstruct ion se
qut:ncc is commonly caUed the microscquencer.
As s h o w n in F i gu re 1 3 , t h i s stare -mach ine is
real ized collectively by rhe control store. rhc ncxr

28

EXTERNAL _
CONTROLS

MICROTRAP
CONDITIONS

NEXT M I C ROADDRESS GEN ERATION LOGIC r-------------------- - - - - - - - - - - - - - - - -
1 I I
I I I I I I
I I I I I I I I I I I I I I

MICROTRAP
LOGIC

TRAP

TRAP
ADDR ESS

��
,.--.. v/

MICRO-
ADDRESS CONTROL
LATCH f-- STORE OR
REGISTER EXTERNAL

ADDR ESSES _______)� I

M I CRO-
BRANCHING

MI CROBRAN
CONDITIONS

CH
I AND
I ADDR ESS I--
I I I SELECTION I

LOGIC I I I I I I I I I I I L-----------------------------------1

NEXT ADDR ESS. ADDR ESS SELECTION CONTROLS

Figure 1 3 A n A fJstroct Microsequencer

M I CRO-
DATA

f---. LATCH f..--
O R
REGISTER

Digital Technical journal
No. 4 FeiJruar)' I 987

m icroaddress generation logic, and the microad
drcss and microdata latches (or registers) _

The goal of the VAX 8800 m icrosequencer is
to produce the address of the next m icroinstruc
tion dur i ng every cycle . Figure 1 4 depicts how
the mi crosequencer achieves th is goa l .

Each mi croinstru ct ion may mod i fy i ts next
microaddress field through a m icrobranch com
mand to prod u c e t h e ad d ress of t h e t a rge t
microi nstruct ion . M icrobranch cond i t ions are
del ivered by other sections of the machine , such
as t h e ALU . T h es e con d i t i o n s a re g r o u p e d
tOgether in ways conven ient for m icroprogram
ming so that mu l t iway branches can be take n .
M i crosu brout i nes can b e ca l l ed a n d returned
from by m eans of a hardware mi croPC stack.

Sta l ls cause the m icrosequencer state to be
frozen on a cycle boundary (i . e . , the clocks on
microad dress and m icrod ata latches are effec
t ive ly blocked) . M icrotraps a l low the m icrocode
to deal with unusual events that wou ld he too
slow or in conven ient to check norma l ly wit h
microbranc hes , such a s T l3 m isses a n d address
mi sal ignments . The VAX 8800 processor does
not permit traps to be nested . Instead , traps are
"chained ," mean ing that trap rout ines and hard
ware trap prior i t ies are carefu l l y a rranged so
that a second trap is taken only when the first
trap rout ine fi nishes . (Machine check traps can
not be control led in th is way .)

Sources of Microaddresses
There are five sources for mi croaddresses :

• The decoder

• The next-address fie ld i n the microword

• The m i crostack upon return i ng from a sub
routine

• The microPC silo for a saved microtrap

• The micromatch register for an address from
the conso le

A n address from the conso le i s se lected in
response to an ex p l i c i t conso le request and
t a k e s p r e c e d e n c e o v e r e v e ry t h i n g e l s e .
A d d r e s s e s fro m t h e s i l o a r e r e q u e u e d i n
response to a trap-return com mand . Addresses
from the m i crostack are se lected in response to
a subroutine-return command . A decoder-gener
ated add ress is sel ected whenever the current
sequence ends and a new specifier or execution

DiRilal Technica/Journal
No. 4 Febnwr)' I 'J87

rout ine shoul d begi n . Normal ly, this selection is
ca used by t he assertion of a microword b i t i n
t h e very last m icroi nstruct ion of the curre nt
seq uence . The next-add ress field is selected as
the defau l t for normal sequenci ng. This field is
a lso used to provide an offset in case of subrou
t ine returns.

Micro branching
In normal cases, part of the se lected m i croad
dress can be modified accord ing to the branch
condi t ions, t hat is , whenever t he next-address
f i e l d i s s e l e c t e d . A c o m b i n a t i o n o f t w o
m icroword fields . branch type and branch mask,
se lects the branch condi t ions , which are then
ORed i nto part of the target m i croaddress . In
the VAX 8800 system, the m icrobranch logic is
i m p l e mented with five iden t i ca l gate arrays ,
each of w h i c h gen erates a 3 - b i t s l i c e of the
m icroaddress . One m icroadd ress b i t is branch
sensitive i n each s l ice . This organi zation permi ts
up to 32 -way branching. Branchi ngs of 2 , 4 , 8 ,
and 1 6 ways are a lso made poss ible by a sepa
rate mask b i t , cal led the branch mask, to every
s l ice. Th is bit i s used to turn off the sensi t ivity
to branch condit ions in a particu lar sl ice.

There are 1 6 bas i c reci pes for condi tiona l
bra n c h i n g i n each s l ice . T h is arrangement of
s l ic ing, masking, and branch-condition selection
in every s l ice requi res that a l l the m icrobranch
co n d i t i o n s be o r ga n i z e d i n to 5 g r o u p s of
1 6 condi t ions each . The branch cond i t ions are
classi fied as e i ther static or dynamic . Stati c con
d itions, once captured , are avai lable for branch
ing in any later cycle as long as those cond i t ions
re m a i n u n c ha nged . Dyn a m i c cond i t i ons are
asserted for just one cycle and must be branched
on in that cyc le .

Some speci a l t rap-rel ated branch cond i tions
are saved at the t ime of the trap so that the trap
routine may use them . For speed reasons , the
basic hardware m echanism for m u l tiway branch
ing is that the selected condi tion is ORed rather
than added to the branch-sensitive m icroaddress
b i t . The OR i m p l i es that the branch-sens i t ive
bits of a microaddress must be "zeros" by con
ven t i o n . I f branch ing i s masked i n any s l i c e ,
however , o n l y unmasked branch-sensi t ive bi ts
n eed to be z e ros . Thu s t h e bra n c h - mask i ng
scheme l eads to a substa nt i a l i ncrease in the
number of condit ional branch-target addresses ,
cons tra i n e d by t h e requ i r e m e n t fo r z e ros .

2 9

New Products

The VAX 8800 Microarchitecture

M I CROBRANCH
CONDITIONS

.. . . ! u
I A I

BRANCH
CONDITION
LOGIC

DECODER'S
MI CROADDRESS

I

/

DECODER -\
SELECT

I

30

MICROWORD NEXT A D DRESS

I

1 5

TOP-OF-MICROSTACK

SILO ADDRESSES

CONSOLE ADDR ESS

I
M I CRO·
ADDRESS
SOURCE
SELECTION
LOGIC

t t t

TRAP VECTOR
I

I
MICRO
MATCH
REGISTER

M A

I 13
c -A
R p El 0 c r-:-

A

5 8
I r-;
L A

0 '----8

A

PUSH -; �
.....,.. ___

�--'-?f l
\/TRAe

,..-- 1 4

B

A

B

/ 1-) 5

/

v-14

j I
)4 I

/4 I

114 I

MICROSTACK POI NTER
M I C ROSTACK
POINTER
AND
MIC ROTRAP
LOGIC

�----------------------�MICROSTACK

t t . . . t
M I CROTRAP
CONDITION

r-r--T"'""

B A B

�

CONTROL
STORE 0

CONTROL
STORE 1

CONTROL
STORE 2

1 1 5 I

r-

A f.-- CONTROL STORE 0

M I CRODATA

'--

r-

B f--- CONTROL STORE 1
M I C RODATA

......

r-

f----- CONTROL STORE 2
A

MI CRODATA

'--

Figure 1 4 VA X 8800 1Hicrosequencer

Digital Technical journal
No. /f Februarv I 987

Table 1 Microbranch Conditions

Slice
Number Microbranch Conditions

1 State flags

2 WBUS low-order bits

3 W B U S hig h-order bits

4 SALU condition codes

5 PSL condition codes

6 XALU condition codes

7 Priority encoder condition codes

8 ALU condition codes

9 TB-status

1 0 Cache command

1 1 M D number

1 2 AC low

1 3 Digit val id

1 4 N M I I D

1 5 I nterrupt pending

1 6 I nterval t imer carry

1 7 Halt pending

1 8 Console mode

1 9 I nterrupt I D

20 Non_Retry flag

Table 1 s hows an exa m p l e of severa l m ic ro
branch conditions.

Microsubroutine Call and Return

As in the normal case just discussed, the defaul t
microaddress, the next-address fie ld , i s selected
as the start i n g add ress of a m i crosubrout i n e .
However, a subroutine-ca l l ing m icroinstruction
pushes i ts own add ress onto the m i crostac k .
During the subroutine return , the microstack i s
se lected a s the source and then popped . Thus
the address of the cal l i ng instruction is used as a
base for the return . T he return ing i nstruct ion
may OR an offset from the next-address field to
t h a t ba s e , t h u s y i e l d i n g t h e t a r g e t r e t u r n
address . The fact that bits are ORed rather than
added constra ins the ca l l ing addresses to have
zeros in the low-order bit positions.

The write path ro the m icrostack (PUSH) is
pipel ined by a cycl e for t im ing reasons. How
ever, a bypass path saves what would be the top
entry of the microstack in the read latch (POP)
so that PUSHs and POPs occur in a fai rly unre
s t r ic ted m a n n e r . There are , h oweve r , some
minor cod ing restrictions wi th respect to traps
and decoder-made addresses.

Digital Technical]om-nat
No. 4 February 1 987

Subroutine calls and returns are u naffected by
sta l l s . I n the VAX 8800 CPU, t he m icrostack is
1 6 entries deep and i s used exclusively for sub
routine cal ls and returns (i .e . , m icrotraps do not
use the stack) . Subroutine calls may be nested up
to 1 5 entries deep, beyond which the m icrostack
wraps a r o u n d a n d overwr i t e s p r e v i ous c a l l
addresses . S ince the next-address fie ld is condi
t iona l ly ORed in to the ca l l i ng address to make
the return address, a cond itional mul tiway return
becomes feasible .

Microtrap and Return

A m i c r o t r a p i s c a u s e d w h e n t h e h a rdware
detects a cond i t ion that wou l d not a l low the
current microinstruction to complete i ts execu
tion successfu l ly . The hardware forces the next
m icroaddress to a fixed location that depends
on the particular condit ion, thus overrid ing the
address that woul d otherwise be selected . This
speci a l l ocat ion i s the starting address of the
trap-hand l i ng m icrocode routine specific to that
trap condit ion . M icrotraps are used extensively
by the memory management system tO i m p le
ment the v i rtua l memory architectu re . M i c ro
traps are a lso caused by ser ious system fau l ts
(i . e . , machine checks) , such as control -store or
bus par i ty e rrors . Tab le 2 l i sts the m icrotrap
conditions and their priorities . The priorities are
arran ged so tha t i f m o re than one m icrotrap
occurs during a cycle , the one with the h ighest
priority w i l l be serviced and the others ignored .

Table 2 Microtrap Conditions and Priorities

Microtrap Condition

Microbreak
M achine check
VA parity error
TB tag parity error
Reserved for ECO
Reserved float operand
Add rounding
M ultiply rounding
Integer overflow
T B miss
Access violation

Modify bit
Page cross
U nal igned page cross
U nal igned trap
Conditional VAX branch

Priority

Highest

Lowest

3 1

New Products

The VAX 8800 Microarchitecture

Figure 1 1 shows the m icrotrap latency and i ts
consequences o n p ipe l in i ng . As descr ibed ear
lier, a trap-causing m icroinstruct ion, even i f it
wri tes the wrong resu l ts , is a l lowed to complete
because i t is too la te to block i t a nyway. (The
canonical t ime of register wri te is T 9, whereas
the microtrap s ignal occurs at canonical t i m e
T , o) - The on ly recourse i s t o let t h e trap-han
d l ing m i crocode correct any problems caused
by the trapping m icroinstruction . The microtrap
s ignal occurs in t ime to block a l l three microin
stru ct ions i n the trap shadow. Therefore , the
microtrap logic generates two global signals, the
global microtrap (one-cyc le l ong) and the block
writes (three-cycles long) , at t ime T, 0 . The pur
pose of the global-m icrotrap signa l is to trigger
any necessary trap-contingent actions in various
pa rts of t h e processor . T h e p u rpose of r h e
block-wri tes signal is ro block register writes a t
canonica l t imes T 1 1 , T 1 3 , and T 1 s , thus rendering
ineffectua l microinstructions U , V, and W i n Fig
ure 1 1 . In other words the blocki ng of wri tes by
hardware i s i n effect u n t i l the trap -hand l i ng
m icrocode ta kes control of the micromachine .

A s i lo is genera l ly used to save the stare of the
machi ne across a m icrotrap . I n most cases the
l e ng t h o f t h e s i l o is e q u a l to t h e d e p t h of
pipe l in ing . Si nce there are many more branch
condi t ion b i ts than m icroaddress bits , i t is more
economica l to save m icroaddresses in the trap
s i lo than to save the condit ions causing those
addresses. M icroaddresses U, V, and W must be
saved i n t h e s i l o s i n ce they m a y be bra n c h
targets o f some previous m icroinstructions . For
the same reason , however, the address X (over
ridden by X', the start ing address of the trap rou
tine) must be saved as wel l . During the execu
t i o n of t h e t r ap rou t i n e , t h e t r ap s i l os a r c
" frozen " (bl ocked from loading) , thus saving
t he state o f the micromach i ne a t the t i m e of
trap .

After the trap routine has completed , two con
d i tions are possible :

3 2

1 . The recovery from the trap is impossible ,
and hence the m icroinstruction sequence
c a n n o t be co n t i n u e d . T h e n t h e o n l y
recourse i s to roll back and reexecute the
macroinstruction . That is , the macroPC is
backed up from its s i lo , the IB is fl ushed ,
and if necessary, any register changes are
u n d o n e . I n t h i s ca se t h e l a s t m i c ro -

instruction o f the trap rout ine performs a
trap release , which u nblocks the silos so
they can resume loading the new states .

2 . M i crocode can remedy rhe cause o f the
t r a p s o t h a t t h e m i c r o i n s t r u c t i o n
seq uence can be con ti nued. I n this case
the l ast microinstruction of the trap rou
t ine performs a trap return , caus ing the
hardware to recycle microaddresses U , V ,
W, ancl X t hrough the microaddress p ipe .
This action results in the reexecution of
aborted m icroi nstruct ions from the trap
shadow.

I n the case of a tra p retu r n , t h e hardware
selects the microPC si lo as the microadclress for
the next fou r cyc les . As shown i n F igure 1 4 ,
however, the mi croPC s i lo does not conta in the
microatldrcsses m ade by the decoder. Therefore,
it is necessary tO resynchron i ze the m icro i n
struction execution sequence with the decoder,
wh i l e req ucu ing the t rapped m i c roadd resses
from the s i lo . This is made possible by keeping
a tag bit in the s i lo to ident ify the posi tions of
the microaddresses made by the decoder in the
sequ ence . If a m i c roaddress from the s i l o i s
found to be tagged, the requeu ing is terminated
immediately and the m icroaddress generated by
the decoder is se lec ted . A comp lete recovery
thus occurs since the state of the IB has by this
t i m e b e e n b a c k e d u p , a n d t h e r e fo re t h e
decoder-generated microaddress can be used for
the cont inuation .

Chaining of Microtraps

By convent ion , m icrotraps a re not a l lowed to
nest ; instead , they a re chained . In other words
the trap-handl ing m icrocode must ensure that it
w i I I not cause any m icrotraps i tself. The sole
except ion i s i ts last m i cro instruct ion , whi c h
may cause a secon d microtrap t o fol low i mme
d iately, even as the saved microaddresses from
the s i lo are be i ng requeued to resume the origi
nal flow . Note that this second microtrap does
not take effect u n t i l four cycles later , whereas
i nterven ing m icro i nstru ct ions a re bl ocked by
the ha rdware as a resu l t of th i s second m icro·
trap . Consequent ly , the sam e m i c roaddresses
end up in the m icroPC si lo once aga i n during
the execu t ion of the second trap rout ine . The
original sequence may fina l ly resume after the
last of such chained traps has been serviced .

Digital Technical journal
No. 4 Februar)' J 987

Acknowledgments

The specification and design of the VAX 8800
1 Box was a team effort . Dave Laurdlo con
tributed to the lB desi gn , the i-srream data for
matter, and the i nterrupt logic . Bei Pong Wang
was responsible for the decoder, the PC i ncre
ment logic , and the 18-state manager. Jack Ward
looked after the physical construction of the
sequencer and the control store . The ent ire
deve lopment was carried out under the excel
lent leadership of Doug Clark . Many thanks a lso
go to both Doug Clark and Bob Stewart for their
suggestions and guidance during the course of
th is development.

Digital Technical journal
No. 4 Febmarv I ')8 7

New Products

3 3

William A. Samaras I

The CPU Cl ock System in the
VAX 8800 Family

The clock system in the VAX 8800 CPU sends timing signals to every state
device every 45 nanoseconds. The lack of accuracy of these timing signals
is called skew, which must be minimized. Two skews exist: global, between
modules; and local, within a module (the lower of the two). The design
complexity of the overall system dictated the use of an automated timing
verifier. Although advantages accrue from designing for local skew, the
verifier could not segregate between skew types. To gain the benefit of the
verifier, a unique hardware trade-off was made to minimize total skew:
local was made equal to global. The result was that 83 percent of the cycle
time is used productively.

Al l synchronous computers must provide some
means of generat ing and d istri but ing accurate
t iming signals . The goa l of the t iming sysrem in
the VAX 8800 fa m i ly is to provi de l ow-skew
(therefore , accurate) t im ing signa ls to a l. l pans
of the processor wi thout any m a n u factu r i n g
ad jus tme nts . F u rt h ermo re , t he d e s i g n t eam
wanted to automate the verification of the r im
ing dur ing the design phase . Therefore , design
trade-offs in the clocking system were necessary
ro accompl ish that auromar.ion . Thi s paper d is
cusses how the hardware designs of the clocking
system were influenced to provide a good envi
ronment for r.he automatic t im ing verification .

Clocking System Requirements

The design of the clocking system requi red us to
address many interrelated problems that had w
cu l m i nate i n a common so lu t ion . This design
depended on certa in fundamental specificat ions
that were estab l ished for t he VAX 8800 CPU by
the system archi tects . The two pri mary requ i re
ments are descri bed be low.

Cycle Time

The cycle time of the VAX 8800 fam ily of pro
cessors i s 4 5 nanoseconds (ns) , which means
t h a t a CPU can acco m p l i s h some a m o u n t of
work during that period . Looking at i t. another
way, t h ese processors can do 2 2 . 5 m i l l i o n
actions every second . Usua l ly, a number o f these
4 5 -ns cyc les are req u ired by a processor to pro-

34

duce just one VAX i nstruction . The c locking sys
tem m ust keep the thousands of c ircu i ts in the
processo r " t i c k i ng " in pe rfect step together
every 4 5 ns .

The 8800 was designed ro conta in two com
p l e t e C PUs in the same cab i n e t . S i n ce both
CPUs share a common memory, i t is beneficial
to make the m emory system and both CPUs syn
chronous wi t h each ocher . The c lock syste m
must keep a l l three i tems runn ing together, pre
cisely locked in t ime .

Modules

A l l t h e c i rc u i t ry for both processors a n d the
memory control l er is conta ined on 20 1 6- inch
by 1 2 - i nch modules , or pr inted c i rcu i t boards.
These modules occupy slots i n a 2 1 - i nc h-wi de
backplane . Each modu le conta i ns up w 20 ECL
gate arrays and m isce l la neous ECL log ic . The
state devices , ca l led latches, reside both in the
gate arrays and the m iscel laneous logic of each
modu le .

The Clocking Problem

The basic d i fficul ty for th is (and a ny) clocking
system is to get the t iming signals ro every scare
device i n t he mac h i ne at p rec ise ly the same
t i m e . Every synchronous mach i n e fa ces t h i s
probl em . However, i n faster comput ers, l ike the
VA.-'{ 8800 system , the to lerances placed on the
t i m i n g s igna ls are more severe . In a physical
sense , i r i s s imp ly not possible to send a I I the

Digital Technical journal
No. 4 Februar)• I ')87

t iming signa ls to every part of each module at the
same i nstant . There is some precision, however,
that should and can be achieved . We now discuss
how important this tolerance is tO the VAX 8800
systems, and what we did to minimize i t .

The t o l e rance , or t i me d i fference , t h a t we
encounter i n attempting to provide t iming signals
to every state device at the same time is cal led the
clock skew. Clock skew is the u ncertain ty in the
t ime of a particular event. As an analogy, consider
an a ir l i ne fl ight that is scheduled to arrive at a n
a irport a t precisely 5 : 0 2 P .M . Now, w e know this
fl ight wi l l not arrive at 5 :0 2 P.M. on the dot; it
w i l l probably arrive wi th in a m inute or two of
that pub l ished arrival t ime . This uncerta inty i n
the t ime o f arrival i s the skew o f that t ime. I f the
uncertai nty of a rr iva l is 30 seconds, th is skew
wou ld probably be a very acceptable value and
we wou ld say the f l i g h t i s r i g h t o n t i m e : i t
arrived with low skew.

On the other hand , if the uncerta inty of arrival
is large, say 30 m inutes, we would probably try
another air l ine . Why? Not simply because we are
i m pat ient but for a more fundamenta l reaso n .
When the uncerta inty is large, we have less t ime
to do other th ings that are valuable to us. Usually,
we are committed to the entire t ime of the uncer
tainty . Put another way, this u ncertai nty, or skew,
is wasted t ime . Enough of th is ana logy - h ow
does th is skew affect the operat ion of a d ig i ta l
computer?

As mentioned earlier, since the cycle t ime of
each CPU is 4 5 ns, all state devices are "sched
uled " to c lock at the start of that period . Any
u ncer ta i n t y i n t h i s t i m e fro m o n e l a t c h t o
another i s ca l led clock skew. As i n o u r a i rl i ne
example, c lock skew is wasted t ime. There are
many factors that increase the clock skew; let us
consider one of the most i mportant ones.

Since the backplane width is 2 I inches, aJI the
CPU hardware modules are separated by no more
than that distance . Since a l l the wiring in the sys
tem is composed of controlled-impedance trans
mission l ines, the logic signals can travel at c lose
to the speed of l ight. At that speed a logic signal
cou ld circle the earth about 4 . 5 t imes in 1 sec
ond , or i t takes about 4 nanoseconds tO travel the
2 I inches across the processor backplane. Now
we can begin tO understand the skew problem.
The min imum uncerta inty of a ny signa l travel ing
through the ent ire processor would be at .least
4 ns, which is a l most 1 0 percent of the 4 5-ns
cycle. And that is only one source of skew.

Digital Technical journal
No. 4 February 1 98 7

Since skew can be wasted t ime , our goal was tO
make it as small as possible . In the 8800 system,
there are three major contributors to c lock skew:
var ia t ions i n t h e sem i conductor components ,
variations in the wiring lengths (described above) ,
and d i fferent manufactu ri n g tolerances of the
modules. One common way to remove skew from
a system is to make some type of adjustment dur
ing the assembly of the hardware. Theoretical ly,
at least , al l the skew could be removed through
this method of adjustment . To keep the cost of
manufacturing low, however, another of our goals
was to requi re no adjustments of any k ind . That
goal p laced an extra burden on the clock system
to de l iver accurate s igna l s wi t hou t excess i ve
skew. By carefu l ly design ing the c ircu i ts of the
c locking system and control l ing the skew sources
mentioned above, we held the overal l c lock skew
in the VAX 8800 fami ly to 7 . 5 ns . Thus, on aver
age , 83 percent of our 4 5-ns cycle is uti l i zed. The
remainder of the paper explains some of the trade
offs we made to achieve this figure .

Clock Hardware Overview

Figure 1 depicts the hardware i n the clock sys
tem of the VAX 8800 fami ly .

The osc i l lator section is the t ime base of the
whole machine. The implementation is a custOm
phase-locked- loop design that a l lows the clock
period to be varied for test purposes during the
manufactur ing process . Us ing a p hase- locked
loop makes it possible tO have a very accurate
t im ing source at many specific clock periods .

The output of the oscil l ator section connects
to a phase generator that provi des two c loc k
p hases wi t h t h e proper t i m i n g re l a t i o ns h i p
between them. The outputs (cal l ed the A-Clock
and the B-Clock) of the phase generator are the
a c t u a l c l ock s i g n a l s d is t r i b u ted to a l l s t a te
devices i n the machine . The phase generator is
implemented digital ly by high-speed , 1 OOK ECL
shift registers. This technology creates very accu
rate t imi ng without requir ing any manufacturing
adjustments .

S ince there is only one p hase generator and
thousands of state devices requ i ring the clocks,
or timing signals, a method is needed to get the
output of t he p hase generator tO every state
device wi thout add i ng very much skew. That is
the purpose of the d istribution stage of the clock
system. The actua l c ircui try used for the distribu
tion consists of I O O K ECL d i fferent ia l devices
and 1 OKH ECL devices . The d istr i but ion was

3 5

New Products

The CPU Clock System in the VAX 8800 Family

CLOCK MODULE

CPU
BACKPLANE
INTERCONNECT

A CLOCK
DISTRI BUTION A

I IPROGRAMMABLE A B CONTROL CLOCK LOGIC
A A

OSCI LLATOR f-- A
' B

A
A PHASE

DIGI TAL

I
A

T
CLOCK ---,
PHASE '------
GEN ERATOR r-t;r

,--- B

22.25 ML 1 33.5 MHz "-----
B

NOMINAL B
A
B

B B ,A PHASE
B ,B

'-----
B CLOCK
DISTRIBUTION

/
---,

--,
--,

20 A,B CLOCK
PAIRS, ONE TO
EACH CPU
MODULE, ONE
TO THE MEMORY
CONTROLLER,
AND ONE
TO EACH
1/0 CONTROLLER

Figure 1 Clock System in VAX 8800 Family

36

CPU 1 (8 MODULES)

TYPICAL MODULE
A

B I GATE l
A ARRAYS

B]A B r CLOCK l DISTRIBUTION

+
A I
B

CPU 2 (8 MODULES)

TYPICAL MODULE
A

B I GATE I A ARRAYS
B tA B

I CLOCK Jl DISTR IBUTION

�
A l
B

MEMORY

MEMORY CONTROLLER
MODULE

A

8

A

8

� GATE l ARRAYS

TA TB �CLOCK l
DISTRIBUTION

+ 1
I I

1/0 CONTROLLER (UP TO 2)

I GATE l ARRAYS

lA 8

I CLOCK I DISTRIBUTION

t
I

Digital Technical journal
No. 4 February I 987

heavily influenced by our desire to use an auto
matic t im ing verifier. The fol lowing d iscussion
of the t im ing veri ficat ion environment g i ves a
clearer view of the reasoning behind the c lock
d istri bution scheme .

Clock System and the Timing

Verification Environment

Trad i t iona l ly , t i m i ng veri ficat ion was accom
pl i shed by hand calcu lations usi ng com ponen t
specifi cations. A designer wou ld si mply add a l l
the component propagation delays in a part icu
lar path and determ ine if a l l t i m ing criteria were
met. In the past, this method worked fairly wel l
for several reasons . F i rst , the designer usu a l ly
knew which paths in a c ircui t were cri tica l and
cou l d g ive spec ia l attent i on to them. Secon d ,
components genera lly behaved better than their
worst-case vendor specificati ons .

Marginal t im ing problems, or ones that were
simply overlooked , would often be less serious
than the d i ffe rence between t h e worst -c ase
specificat ions and how the components actually
worked . Finally, t iming errors were expected to
appear d ur ing the hardware debug phase of a
project . Therefore , t im ing errors that were bla
tantly m issed during the design could be cor
rected (w i th a l o t of hard work) d u r i n g tha t
phase . That was possib le because the overa l l
complex i ty of t h e des ign cou ld be compre
hended by the designers .

From the beginning of the VAX 8800 design
effort , we knew tha t the t i mi ng of the des ign
wou ld be d i ffi c u l t to ana lyze manual ly . F irst ,
the sheer complexi ty of the mach ine created
over four mi l l ion d ifferent t im ing paths. It was
impossible to analyze every path manual ly or to
discover every "crit ica l " one with e i ther man
ual or i ntu i tive analysis methods.

Se cond , hardware c i rcu i t loops a re wide ly
used i n the design ; these are circui ts that feed
s i gn a l s b a c k to t h e m s e lves d u r i n g a l a t e r
machine cyc le . These c ircu i ts are very d ifficu l t
to analyze, espec ial ly when loops cross physica l
boundaries or are nested with i n other loops . just
t h i n k i n g a b o u t t h e t i m i n g ra m i fi ca t i ons o f
nested loops taxes the mind . Manual ly analyz ing
thousands of these cases would be impossible .

Final ly, the hardware design made heavy use
of gate arrays, which conta in most of the logic .
Our ambi tious deve lopment schedu le and the
large nu mber of gate array designs s imply could

Digital Technical jom-rtal
No. 4 Febn.tctrJ' 1 987

not tolerate unantic ipated t iming errors. A t im
ing error in a gate array meant that a new gate
array must be produced to fix the problem. The
fabrication overhead for another semiconductor
device, usua l ly taking months, was not consis
tent with our deve lopment schedule . Moreover,
while that new gate array was be ing fabricated,
the debugg i ng of the e n t i re system could be
jeopard i zed s ince i t was just not poss i b l e tO
"fix" an LSI chip.

Therefore , the hardware design group wanted
to design the processor with the a id of an auto
matic CAD tool for t im ing verification . Such an
automatic method for verifying the t im ing was
essential to the success of the project. Since the
entire des ign was to be "soft" (the schematics
were c o n t a i n e d i n co m p u t e r d a tabases) , i t
seemed logical that some type o f software tool
fo r a u t o m a t i c t i m i n g v e r i fi ca t i o n cou l d be
applied .

We decided that the most appropriate t im ing
ve rifier for this project was produced by Val i d
Logic, I n c . Although th is automatic tool solved
the problems caused by manual t iming verifica
t i o n , it a l so created some v e ry spec i a l new
restrictions.

I t was apparent from the beg i n n i ng of the
design effort that some restr ic t ions had ro be
placed on the design styles of individual engi
neers to reduce the t iming-ana lysis problem to a
manageable leve l . CPU hardware designers , l ike
any other creative persons, often assume large
degrees of freedom i n the i r work . Usua l ly , no
two designers wil l arrive at the same sol ution tO
a pro b l e m , a l t h o u g h a l l s o l u t i o n s m a y be
acceptable . When ten or more designers work
independently , as happened on th is project, it is
l i kely that ten unique design styles wil l emerge .

Therefore, we placed restrictions on the t im
i ng envi ronment for the fol lowing two reasons:

• Some standardizat ion of t i m i ng had to take
place for e lectrical s igna ls to com m u n i ca te
properly between designs generated by d i f
feren t people.

• S ince the automatic t im ing verification soft
ware was new, seve ra l i m portant fea tu res
were lacking.

The usefu lness of an automatic t imi ng verifier
depends largely on how wel l t im ing-ru le v iola
t ions are reported . Knowing that a design con
tains t i m i ng errors i s usefu l only i f it i s easy to

37

New Products

The CPU Clock System in the VA X 8800 Family

fi nd them. One way to a id the reporti ng of t i ming
errors is to create an environ ment that clocks a l l
state devices i n the processor the same way . This
means that a l l logic des igns in the processor must
follow consistent and strict rules for the clocking
of state devices . That was the method we decided
to pursue in this design project .

The Timing Environment

The clock system needed strict constra in ts on i ts
ci rcu i t design and physical layout ro guarantee

CLOCK
SOURCE

J
I
I
I
I
I

I I

I I
• _ _ _ _ j
LEVEL 1

I
I
I
I
I
I
I
I
I
I

_ _ _ _.I
LEVEL 2

L - - -J
LEVEL 3

accuracy. Therefore , the generat ion and use of
c lock ing signals were tightly control led to min i ·
m i ze the d ifferent ways i n which the c ircui ts
cou ld commun icate . The t iming control of state
devices had to be cons is tent throughout the
design . Moreover , any arb itrary t i m i ng contro l
of the state devices wou ld have been an i mpossi
ble task for the t im ing verification software .

The t im ing signals i n the VAX 8800 processor
were careful ly distributed to every state devi ce.
This d istribution was accompl ished by carefu l ly

LEVEL 4
L - - --J
LEVEL 5

LATCHES

LATCHES

Figure 2 Clock Expansion Groups

38 Digital Technical]om...,•al
No. 4 Februar)' 1987

I
I I
I
I

CLOCK MODULE BACKPLANE
- - - - - - - - - - - - - - - - - - 1 r - - - -- -

1 I

A

A

A

B
B
B

I I I
l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l L _ _ _ _ _ _

'-.r------)
FANOUT FANOUT
LEVEL 1 LEVEL 2

TYPICAL CPU MODULE r - -- l
I
I
I
I

GATE ARRAY I �-- - - - - - -- -, I
1 I I
I I I
I I I
I I I
1 I I

LJ------1--I-t_J-- I I
I I
I I
I I
I I
I I
I I
I I
I I

I I I
I L _ _ _ _ _ _ _ _ _ l I
I I
I TO GATE I
I ARRAYS I
I I
I I
I I
L - - - - - -- �

FANOUT
LEVEL 3

FANOUT
LEVEL 4

FANOUT
LEVEL 5

Figure 3 Minimized Global Skew Distribution

expandi ng the c lock signals at strategic physical
pos i t ions in the processor. A simple example of
this expansion , or fan-out , is s hown in Figure 2 .

Each t ime the clock signals are expanded ,
more t iming uncertain ty is i n troduced into the
resu l t ing signals. The 8800 design required up
to five levels of expansion to produce enough
clock signals for every state device. A<> shown i n
Figure 2 , some signals are i n common d istribu
tion groups. Signals existing in the same group
wil l have l ow t im i ng u ncerta inty between them ,
a characteristic called skew correlation . The
t iming uncerta in ty between signals in d i fferent
d istribution groups has no correlat ion; there
fore , these s ignals have the h ighest skew. Signa ls
from the same group have a skew, ca l led local
skew, lower than the overa l l group-to-group
skew, cal led global skew.

I t is very tempting for designers to take advan
tage of the lower local skew, which is often only
half that of the global skew. Each clock d istribu
tion group is usual ly conta i ned entirely on one
logic module due to the natural physical parti
t ion ing of the hardware . Therefore, com munica
tion between circuits on any particu lar module
can take advantage of the lower local skew. If a l l
signal communication occurs wi th in the loca l -

Digital Technical journal
No. 4 February 1987

skew environment, the t im ing ana lysis can be
consistent and eas i ly managed. However, com
pl ications arise when trying to ana lyze signals
that cross from the local -skew environment to
the global-skew env ironment . Signal communi
cation between logic modules wi l l have to pay
the pena l ty of using the higher global skew
because the t iming signals at each end of the
communication are derived from d i fferent d is
tribution groups. Managing the t iming i nterface
across th is partit ion between loca l and global
skews was beyond the capabi l i t ies of the t iming
verification software.

As d iscussed earl ier , a t im ing analysis of the
entire processor was beyond human capacity ;
therefore, i t had to be performed with t iming
verification software. The t im ing verification
tool chosen for the 8800 development had no
faci l i ty for d ist ingu ishing between local and
global skews. Moreover, we wanted to use the
t imi ng verifier to ana lyze the t im ing of t he entire
CPU as one entity. This decision forced us to d is
a l low the use of any local-skew computations i n

our t iming analysis . Now, from a design point of
view this decision made the environment very
easy to work wi th . A l l t i m i ng transactions any
where in the CPU could be ana lyzed the same

3 9

New Products

The CPU Clock S)'Siern in the VAX 8800 Fami�V

I
I
I I
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

I
L _ _ _ _ _ _

TYPICAL CPU MODULE r - - - - - - - - - - -- - - --- - - - - - - - -- - - - - - - - �

I
I
I
I
I
I
I
I
I
I

GATE AR RAY r--- - - - - - -,

I
I
I
I
I
I
I
I

_ _ _ _ _ _ _ _ _ j

TO GATE
AR RAYS

I
I
I

I I
L -- - - - - - - - -- - - - - - - - - - - - - - - - - - -- - �

Figure 4 Minim ized Local Skew Distribu tio n

way w i t h the same set of spec i ficat ions . Every
thing comes at a p rice , however . and the obvious

negat ive side of t his decision was the l oss of the
a b i l i ty ro a p p l y r h c l ower loca l s k ew . At r h a r
po i n t . s o m e p e r fo r m a n c e o f t h e p r o c e s s o r
seemed ro b e comprom ised j u st r o s i m p l i fy the
t i m i n g a n a l ys i s . T h e fo l l o w i n g d i s c u ss i o n

exp lains how this p roblem was solved .

The Clock Distribution Solution

Si nce we wanred to r i m e the CPU as one entity.
we had ro make the global skew as small as possi
ble ro maxi m i ze CPU performance . In the acru a l
implementat ion. the global skew was lowered by
remov i ng one gat i n g leve l from the clock d istri

butio n . The gat i ng level removed was necessary
for produ c i ng low local skew. Figure 3 i l l ustrates
the five leve l s of fa n - o u r that were req u ired ro
prod u ce enough s i gn a l s when the global -skew
d istri bution was m i n i m i zed . Figu re 4 s hows the

sa me fan-ou r ro prod uce enough s i gnals i n th e

case i n which the loca l -skew d istribution wou ld
be m i n i m i zed . Table I i l l ustrates the i m pact of

this opti m i zation for gl oba l skew.

Table 1 Distribution Changes

Global Skew Local Skew

Optimized Local Skew

Optim ized G lobal S kew

4 0

9 ns
7 .5 n s

2 ns
7 . 5 ns

Although u s i n g t he l ower loca l s kew wou l d
have been va l ua b l e . i t was sacr ificed by mak i ng i t
equal ro the g l obal skew.

In short. the hardware of the clock sysrem was
desi gnee! to a l low the max i m u m exp l o i tat ion of
the r i m i n g verificat ion software . Of course. hard
wa re a n d s o f t w a r e r r a d e - o ffs a r e a c o m m o n

occu rrence i n a n y d e s i gn p rojec t . I n t h i s case .
h o wever. t h e va l u e o f t h e h a rd w a r e i n v o l v e d

w i th operat ing the mac h i n e w a s ba lanced aga i nst
the softwa re a n a l ys i s needed d u ring the design
p hase of rhe mach i n e .

Summary

Pro d u cing the c l ock i ng system for a h i gh-speed
computer is best descri bed as an exercise in m i n
i m i z i ng a nd m a n a g i n g s k ew . I n t h e VAX 8 R O O
p roject. w e avoided exoti c hardware tec h n i ques

so t h a t we cou l d ga i n t he be n e fi t o f u s i n g a n
a utomatic t i m i n g ver i fi e r . The resu l ti n g skew o f
1 7 p e r c e n r o f t h e cyc l e r i m e was a f i g u re t h a t
cou l d be to lerated . This balance was a fai r trade
off si nce the s i m p l i c i ty of the r i m i n g e n v i ro n

m e n t a l l owed us t o decrease the r i m e ro design
and b u i l d t h e VAX 8800 fa m i ly of systems.

Digital Technical journal
No. ·1 Februmy I ')8 7

john Fu
james B. Keller

Kenneth j. Haduch

Aspects of the VAX 8800
C Box Design

In each processor in the VAX 8800 family, instructions and data are sup
plied to the execution units by the C Box. Employing a simple structure
with a translation buffer, cache, and address and data buffers, this logic
unit is an integral part of the processor's five-stage pipeline. The no
write allocate cache uses a write-through scheme featuring a unique
delayed-write algorithm. The C Box bas control logic to accommodate
pipeline stall conditions caused by memory accesses. The C Box also
maintains data coherency within a processor and between processors. A
dynamic priority-arbitration scheme solves the lock-out problem between
IjO and processor requests.

The performance of a h i gh - speed co m p u t e r
depends to a large extent o n how fast data can be
passed from its memory to i ts execution un i ts . If
the computer is pipe l ined, the un i t responsible
fo r m e m o r y a c c e s s e s m a y h a v e to h a n d l e
pipel ine sta l l cond itions. And i f the computer i s
a mult iprocessor, that un i t i n each processor may
also have to handle data coherency problems. I n
processors w i t h t h e VAX a r c h i t e c t u re , d a t a
accesses are further complicated by t h e fact that
virtu a l addresses are normal l y speci fied . These
a d d r e s s e s r e q u i r e t ra n s l a t i o n to p h ys i c a l
a d d resses befo re a d a t a ac cess c a n eve n be
attempted .

In the VAX 8800 system, which is a mul t ipro
cessor with p ipel ined CPUs , the u n i t that per
forms add ress translations and data accesses i s
the C Box.

C Box Description

The C Box consists of three subuni ts: the transla
t ion buffer (TB) , the cache, a nd the NMI i n ter
face . Figure 1 is a schematic d iagram of this un i t .

The translation of a VAX virtual address to a
ph ys i c a l address i s a com p l i ca ted process . 1

Accesses to system and process page tables are
requ ired , and shift ing and adding must be done
to obta in the final physical address . Performi ng
th is add ress translat ion process for every data
reference significantly increases the data access
t ime and red uces the read bandwidth . One way

Digital Technical journal
No. 4 Febn�ary 1987

to avoid that is to stare the resul t of this address
ca lcu l a t ion i n a s m a l l , fas t memory c a l l e d a
trans lat ion buffer . S i nce each trans la t ion can
access a page of data (5 1 2 bytes in the VAX
archi tecture) , it is l ikely that the translat ion wi l l
b e used aga i n i n t h e program being executed .
Rather than recalculat ing the phys ical address
(PA) on those subsequent accesses, it can be
retrieved from the TB.

The translation buffer in the VAX 8800 pro
cessor h o l ds 5 1 2 s ys t e m a n d 5 1 2 p rocess
ad dress translat ions. The fo l lowing sum marizes
the characteristics of the TB .

Characteristics of the Translation Buffer

• Direct M a pped

• 1 024 Lines
- 51 2 System Li nes
- 5 1 2 Process Li nes

• Al location on Translation B uffer M i ss

A common approach to the problem of data
access l atency for h igh-speed processors , and
the one used in the VAX 8800 CPU, i s tO use a
cache 2 A cache is a smal l , fast memory located
between the processor and the ma in memory
system. If the data requested by the CPU is not
conta ined i n the cache , tha t data is accessed
from main memory and loaded i nto the cache.

4 1

Aspects of the VAX 8800 C Box Design

.....-

- A

'--

-

'--- A r---� r-

-
B r-- A

v-/ 'VA

-

TB
DATA

TB
TAG

TRANSLATION BUFFER

TB - TRANSLATION BUFFER
VA - VIRTUAL ADDRESS
PA - PHYSICAL ADDRESS
A, B - A AND B PHASES OF TWO PHASE CLOCK

r-

B

'--

r--

r--

Pii

TB
� HIT

DATA
CACHE
DATA f--

.--- ADDRESS

CACHE
TAG � CACHE ADDRESS

HIT

READ STREAM
- ADDRESS r--

B U FFERING

WRITE STREAM
'- OAT A 1-------l

-

BUFFERING

WRITE
BUFFER

NMI INTERFACE

...,

CACHE

N M I

¢:::)

Figure 1 Block Diagram of C Box

Thus . i n the majori ty of cases , the cache w i l l
conta i n rece n t l y referenced d a t a i te m s , a n d
future referen ces t o those data i tems w i l l be
fetched from the cache. The i ntent is to m i n i
mize the number o f longer la tency accesses to
the main memory su bsystem . The success of a
cache me mory re l i es on the l oca l i ty of refer·
enccs in both t ime and space .

The data cache i n each VAX 8800 CPU holds
64 k i lobytes (KB) of both data and instructions .
The l is t on the right summarizes the characteris
t ics of the cache .

The TB and the cache are very s im i lar i n con
cept and structure , except that the TB is used to
accelerate address trans lations and the cache tO
accelerate data accesses. Eac h consists of a tag
section and a data section . The tag section holds
the unique ident ifi e r , or tag , for the data item
held in the corresponding data section . The TB
and the cache are d irect mapped , meaning that

4 2

Characteristics of the Cache

• Direct M apped with Physical Address

• Read Al locate Only

• Delayed-Write Cache U pdate

• Write-through Memory U pdate with Write Buffe ring

• 1 024 Blocks

• 64-byte Block Size

• 4-byte (one l ongword) Line Size

• 32-byte (one hexword) Cache Refi l l Size

each address can poi n t to on ly o n e loca tion ;
however, each location can potent ia l ly be a l lo
cated to one of many addresses. A tag perm its
the identification of a data item i n either the TB
or a cache locat ion . The tag in the VAX 8800
processor is an unmodified selection of bits

Digital Technical]ournal
No. 4 February 1 987

VA(30-1 8)

VA(31 -0)

TB TB
TAG DATA

PA(29-0)

TB HIT

VA - VIRTUAL ADDRESS
PA - PHYSICAL ADDRESS
TB - TRANSLATION B U FFER

PA(29,0)

PA(28-16)

1---�
CACHE

PA(1 5-6) DATA

CACHE H IT

Figure 2 Translation Buffer and Cache
Address Mapping

f rom t h e a d d r e s s of t h e d a t a i t e m b e i n g
accessed . This concept is depicted in F igure 2 .

As ment ioned ear l i e r , a m e m o ry access i s
re q u i r e d i f the c a c h e does n o t c o n t a i n a
requested data item. In the 8800, both proces
sors are connected to the memory and the 1/0
subsystems t hrou g h the NMI bus . Al l read and
write references that go to these subsystems are
processed by the N M I i nterface. This i nterface
mainta ins a set of buffers for both read and wri te
reference streams. For the read stream there are
actually two sets of address buffers : one for data
reads , the other for instruction reads.

C Box Operations

A C Box reference consists of a function code,
an address, and i n the case of writes, 32 b i ts of
data . I n genera l , that address i s a 3 2 -bit virtual
address (VA) . The VA trans lation process begins
with a check to see i f the PA is ava i lable in the
TB If the PA is ava i lab le , called a TB h i t , the
data is read out and concatenated with the lower
n ine bits of the VA to form the PA. As part of the
translat ion process , the TB also performs page
access checking. I f the PA that perta ins to the VA
i s n o t i n t h e T B , c a l l e d a T B m i s s , t h e n
m icrocode must perform the transl at ion . The
microcode then writes the data in to the TB for

Digital Technical journal
No. 4 February 1987

subse q u e n t use . (I f t h e a d d ress s u p p l i ed is
already a PA, then the TB is not used .)

On ly phys ica l addresses access the cache . I f
the data referenced is conta ined in the cache,
cal led a cache hit , then the data can be accessed
from there . If the cache does not contain the
data, cal led a cache m iss, then the data must be
accessed from memory.

Read Operations
Cache-miss addresses for reads are passed to the
NMI interface , where they are held in the read
a d d ress b u ffe rs . A h e x w o r d r e a d r e q u e s t
(3 2 bytes) , with the address of the missed loca
t ion , is then made to memory. The memory data
is passed to the requesting unit , and the address
held in the read address buffer is used to update
the missed cache locat io n . A read miss is the
only occasion upon which a cache location is
a l located .

There arc two read streams in the C Box for
requests to memory: t he data stream, ca l led the
d-stream, and the i nstruction stream, ca l led the
i-stream. The i-stream requests the memory to
send da ta d e s t i n ed for t h e i n s t r u c t i o n u n i t
(I Box) , which interp re ts that data as macroin
s t ru c t i o n s . I - s t ream fe tches are i n i t i a ted by
microcode , which loads a C Box register ca l led
the phys ical i nstruction buffer add ress (PIBA) .
The P IBA holds the add ress of the next long
word of the i-stream tO be fetched . If the execu
t ion of macroinstruct ions is seq uent i a l (i . e . ,
there are no branches, page crosses, etc .) , the
C Box can increment the PIBA contents automat
ical ly after each fetch . However, should the pro
gram branch or a page cross occur , microcode
m u s t be used to r e l o a d t h e P I BA . 0 -s t ream
fetches are made on ly by the microcode , which
must specify one of e igh t memory data (MD)
regi sters as i ts des t i n a t i o n . 0-s t ream data i s
always returned to the execu tion unit .

Write Operations
In genera l , the performance of a cache is mea
sured by i ts h i t rate when read i n g da ta . The
select ion of the update mechan isms for both
cache and memory, however, can have a major
i nfluence on the design of the cache . There are
two wel l known strategies for u pdating a cache:
write a l locate , and no-write a l locate . A wri te
a l l o c a t e s c h e m e u p d a tes a c a c h e loc a t i o n
whether o r not the write i s a h i t o r a miss. This
scheme is general ly implemented with a write-

4 3

New Products

Aspects of the VAX 8800 C Box Design

back memory arrangement (d iscussed later) . I n
a no-write a l locate scheme, the cache i s updated
only if the wri te was a h i t . The VAX 8800 pro
cessor uses a no-wri te al locate scheme.

The no-write a l locate scheme does , however ,
presen t a prob l e m . S i nce only writes that h i t
wi l l update the cache , cache updates take two
p i p e l i n e cycl es i n t h e C Box - t h e fi rst to
check for h i t or m iss, the second to update the
cache for a h i t . The C Box was des igned to
enable one read reference to complete in each
cycle . I f two consecutive cycl es are needed to
update the cac he, the second cycle coul d block
a read reference, thus causing a p ipe l i ne sta l l .

To solve this problem, the C Box implements
a d e l ayed -wr i te a lgor i t h m . T h i s mech a n i s m
delays writes that must update t h e cache from
doing so u n t i l the first cycl e of the next write
reference . The second cyc l e of the de l ayed
write does not need to be the next consecutive
cycle .

The de l ayed-wr i te a l go r i thm in the C Box
takes advantage of the fact tha t the first cycle of
a wri te ut i l i zes only the tag section of the cache
to d e t e r m i n e w h e t h e r a h i t or a m i ss h a s
occurred . The second cycle uses on ly the data
section. A write that must update the cache has
i ts add ress and data p laced i nto the de layed
wri te address and data buffers respectively. On
the next write access , dur ing the cache-tag look
up cycle , the data section of the cache wi l l be
updated from the address and data contained i n
t hose buffers , b u t o n l y i f t h e p rev ious wri te
access was a h i t . Since reading a data item after
one has been wri tten is common, this design sig
n i ficantly reduces the potential for sta l l s .

Write Buffer
Al l write references, whether or not they hi t i n
the cache, must eventua l ly go t o memory. There
are two genera l strategies in cache design with
respect to memory updat ing: wri te-through , and
wr i te - ba c k . In t h e wr i t e - t h rough approa c h ,
write references are sent tO the memory system
i m me d i a t e l y . Convers e l y , i n t h e wr i t e -back
approach , writes are he ld unti l t he cache b lock
i s deal located (made ready to rece ive d ifferent
data) .

There are seve r a l m a j o r p r o b l e m s w i t h a
wr i te -back strategy . F i rs t , i t req uires e i t he r
m icrocode o r hardware to accompl i sh a l l t h e

4 4

write-back fu nctions. Add ing that cod e o r hard
ware to t h e C Box wou l d have cons iderab ly
increased i ts complexity.

Secon d , if t h ere is a w r i t e m iss w i t h t h i s
sche m e . a cache b lock tha t m i gh t be fu l l of
val id data cou ld be displaced by a block whose
o n l y va l i d d ata was t ha t ju st w r i t t e n to t h e
cache . For a cache having a large block size, l i ke
the 8800 has, th i s action is undesirable . More
over, in most cases m icrocode reads data before
it is wri tten ; therefore , wri tes wi l l genera lly h i t
in t h e cache .

F i n a l ly , t h e wri te -ba c k strategy req u i res a
c o m p l e x a lgo r i t h m t o m a i n ta i n c o he r e n cy
between caches within a mul tiprocessor syste m .
Therefore , for a l l those reasons, we chose to use
the write- through approach in the cache .

One d i sadvan tage of write-through i s that i t
tends to generate a J o t of write traffi c t o the
memory. In a shared-bus system l i ke the 8800 ,
th i s traffi c can l i m i t perform ance . To red uce
memory-wri te traffic , wri tes in the VAX 8800
processor a re buffered in a wr i te b u ffer con
tained i n the NMI interface. This write buffer is
rea l ly a one - l i n e , oct aword , w r i te - a l l oc a te
cache . A write going out tO the NMI bus is held
in the wri te buffe r . Subsequent writes to the
same octaword update only the write buffer so
that n o mem ory requests are sent on the N M I
bus. A write that i s outs ide the octaword cur
rently in the write buffer dea l locates i t ; that is ,
the contents of the write buffer are sent to mem
ory, and the next wri te rep laces those contents
i n the buffer.

Like the cac he , the success of the write buffer
i n reducing bus traffic re l ies on the loca l i ty of
p rograms i n space a n d t i m e . F o r e x a m p l e ,
sequent ia l wri tes , such as pushes t o the stack,
wil l get co llected in the write buffer even if the
wri tes occurred i n different macroi nstructions.
This col lected "package " of writes can then be
sent to the me mory more effic ie nt ly than can
i nd ividual wri tes.

Another advantage of the write buffer is that i t
decou ples the processor from memory activity .
When the memory is busy process ing transac
tions from the other processor or from the IjO
su bsystem , a processor w i I I n o t sta II d u e to
writes. The write buffer is actua l ly i mplemented
as a two-deep buffer, which further reduces the
potent ia l for s ta l l s .

Digital Technical journal
No. 4 februarv I Y87

Pipeline Stalls

Jn a p ipe l i ned i mplementat ion , how wel l rhe
p ipe l i ne performs is determi ned both by how
often i t i s f lushed c l ear and how often i t i s
sta l led . Sta l l conditions are general ly related to
rhe lack of some physical resource or data .

I n some i m p l e m e n t a t i o n s , some p i pe l i n e
stages can take more cycles to complete than
others for certa i n fu nctions . I f a shorter s tage
precedes a longer one , the longer one w i l l be
unable either to accept fresh data or to pass i ts
resu l t ro the next stage u nt i l fin i shed wi th i ts
cycle . I n turn , other port ions of rhe p i pe l i ne
cannot proceed with their operations ; therefore,
the pipel ine wi l l stal l . I n this sta l led condit ion ,
a l l stages preceding the "bottl eneck" ma in ta in
the i r i nput and output conditions unt i l the stage
responsible for the sta l l compl etes i ts funct ion.
Some i mplementations have a combinati on of
stages that may exhib i t these character i s t ics ,
lead ing t o complex pipel ine stal l cond i tions.

In the VAX 8800 CPU, the design s impl ic i ty
of t h e p i p e ! i nc e n s u res t h a t e a c h p i pe l i ne
stage - except the C Box - always completes
i rs function in one cyc Je ..l S ince the C Box a lso
control s data accesses, a l l sta l ls in t he 8800 are
r e l a t e d to t h e o p e ra t i o n of t h i s u n i t . T h e
p ipe l i ne wi l l experience two types o f sta ll s : the
MD stal l , and the VA sta ll .

(
MD
ACCESS
FOR
DATA

INSTRUCTION R

INSTRUCTION S

MD - M EMORY DATA REGISTER
TB - TRANSLATION BUFFER

(

CYCLES

ALU TB

'
M D
ACCESS
FOR
DATA

�

MD Stalls

When making a read reference , a microi nstruc
tion must specify one of eight MD registers to be
used as i ts desti nation . When data is made ava i l
able , e i ther from the cache or from memory, i t
is written in to the specified MD register. Subse
quent m icroinstructions then use the data from
th is register . If a m i cro i nstruction attempts to
use an MD register that is nor "va l id" (i . e . , the
data has not yet been fetched by the C Box) , the
p ipel ine wi l l experience an MD sta l l .

The MD sta l l condi t ion is a data-dependency
type of sta l l that is genera l ly seen i n pipel i ned
mach ines . On the VAX 8800 processor, certa in
steps a re t aken to e i t her avo id such sta l l s or
reduce their effects. For example, consider two
consecutive m icro instructions, R and S, as i l lus
trated in Figure 3. R is a m icro instruct ion that
performs a read and puts data i nto an MD regis
ter . S then accesses and uses the data fetched by
R . I f R and S are adjacent , the p ipel ine wi l l sta l l
i n the 880 0 . The reason for the sta l l is that the
p i pel i n e stage access ing the MD data and the
stage fetc h ing that data (the C Box) a re sepa
rated by one other stage, rhe a r i thmet ic a n d
logic u n i t (ALU) . When S tr ies t o u s e t h e M D
data , R i s just start ing t o make the read reference
in the C Box. S must therefore stal l the p ipel i ne,
wai ting for data to be suppl ied by R.

CACHE

ALU TB CACHE

R STARTS READ REFERENCE

S REQUIRES DATA READ BY R .
MUST STALL AT LEAST ONE
CYCLE FOR THE DATA.

Figure 3 Instructions R and S A re Adjacent

Digital Technical journal 4 5
No. 4 Februarv J 987

New Products

Aspects of the VAX 8800 C Box Design

INSTRUCTION R �
MD
ACCESS
FOR
DATA

INTERVENING
INSTRUCTION

ALU

�
M D
ACCESS
FOR
DATA

INSTRUCTION S

TB

(

CYCLES

CACHE

I

ALU

MD
ACCESS
FOR
DATA

TB CACH E

ALU TB

R HAS COMPLETED READ
REFERENCE, DATA J UST
AVAILABLE

CACHE

"'
S REQUIRES DATA. � DATA SENT D I RECTLY INTO
ALU , BYPASSED M D
U P DATE. NO STALL.

Figure 4 Instructions R and S Separated hy Another Instruction

On the other hand . if R and S are separated by
one other i nstruct ion , then when S a ttempts to
use the data read by R , that data is just be ing
made ava i l a b l e by the C Box (assu m i n g . of
course , a read h i t in the cache) . I f S were to wait
for the MD registers to be updated before using
the data , the p ipe l i ne would sta l l . To e l im inate
that type of stal l , a path has been designed from
the C Box d i rect ly i n to the i nput of the AUJ .
bypassi ng the MD registers . 'T'herdore , the data
coming from the cache is sent both to the MD
registers for u pdat i ng and directly to the A U J ,

where S can use the data . 'T'he net effect i s that
th is bypass path removes the one-cycle la tency
that S wou ld have experienced had it waited for
the data to come out of the MD registers . Figure 4
i l lustrates these concepts .

Had R caused a read miss , S would st i l l cause
an MD sta l l s ince the C Box must make a memory
fetch for the data . Notice that an M D sta l l hap
pens only when S a ttempts to use an MD register .
Therefore, a general rule for making m icrocode
accesses to the C Box is to make read references
early and to usc the MD registers late . Should the
read reference m iss , some part of the memory
fetch latency wil l be h idden by the microi nstruc
t i o n s be tween the read a n d t h e MD r e g i s t e r

4 6

access . When data returns from a read m iss and
the p i pe l i n e i s e i ther undergo i n g or about to
u ndergo an MD sta l l , the bypass path can be used
to reduce the effects of the sell I or even prevent i r .

VA Stalls

A VA sta l l condition occurs when the C Box can
not process a requested reference . This can be
clue to e i ther an i nva l idation cycle in the C Box
(discussed in the fina l section of this paper) or
the capabi l i t ies of the address and data buffers
i n the NMI in terface being exceeded .

A� mentioned earlier , for reads t here is a set of
buffers for d-strcam and i -stream references. The
d-strea m buffering is one deep, mean ing there
can only be one read m iss outstand i ng i n t he
C Box . However, the i mplementat ion wi l l not
a l low the p ipe l i ne to stall should subsequent
reads b i t in the cache . !-stream reads never sta l l
t he pipel ine a s do VA and MD sta l ls , wh ich stop
the clock . The i nstruction buffer can "sta l l " if i t
does not have enough data for the decoder to
complete the decode of the current VAX instruc
tion operand . This condit ion causes the CPU to
perform a no-operat ion m icroword . That docs
not stop the c lock, however , and thus is not a
p ipel ine sta l l .

Digital Technical journal
No. 4 Febmarv I 'J87

The C Box can s t i l l receive com mands even if
it contains one read m iss. Of course, there i s the
potential that the command bei ng received wi l l
m iss in the cache . That w i l l requ i re the N M I
interface to request t he data from memory, thus
resul t ing in a VA stal l . That sta l l l asts from the
t ime the command i s received until the time the
previous read-miss data returns from memory. If
the second command is a read that h i ts in the
cache, a VA stal l wi l l be generated for t he one
cycle t hat i t takes to determ i ne whether or not
there i s a cache h i t . The read data w i l l then be
taken from the cache and returned to the M D ,
after which the sta l l w i l l b e re leased .

S ince wri tes go to memory more than reads ,
the buffering for wri tes is more extensive . The
delay-wri te buffer and t he double buffer ing i n
the write buffer are used t o reduce the possibi l i ty
of write sta l ls . These buffers enable the C Box to
ho ld a m ax i m u m of n i ne longwords o f d a ta
before the p ipel ine wi l l experience a VA sta l l on
a wri te .

Stalled and Unstalled Logic in

the C Box

If an i nstruction is sta l led , the C Box has e ither
not returned the data or cannot take another ref
erence. Therefore , a l l stages prior to the C Box
(the I Box and the E Box) must be sta l led . The
TB is part of the last stage of the pipe line ; there
fore, it m ust be capable of bei ng sta l led . When
the p ipe l i ne sta l ls , the TB holds the address of
the sta l led reference . O n ly the N M I i nterface
can resolve a sta l l , e ither by supplying the read
miss data or by freeing up i ts buffers . Thus th is
i n terface can never be s ta l l ed . However , the
c a c h e , b e i n g p a r t o f t h e l a s t s t age of t h e
p ipel i ne, i s a lso the path for supplying data to

DATA

� �
PHYSICAL

TRANSLA- ADDRESS
I BOX E BOX TION

BUFFER

STALLED

the stal led i nstruction . This situation leads to an
i nterest ing control characterist i c of the C Box .
O n e of i ts sec t i o n s , t h e T B , c a n be s t a l l e d ;
another. the NMI i nterface , m ust never stal l ; and
t h e t h i rd s e c t i o n , t h e c a c h e , m u s t re m a i n
unstal led but mainta in stal led inpu t and output
cond i t ions i n i t s l og i c . F i gure 5 dep i cts the
logic for sta l led and unstal led cond i t ions i n the
C Box.

Coherency Problems in the C Box

J n genera l , data coherency means tha t a read
should a lways get correctly modi fied data when
a ser i es of reads a n d w r i tes is m a d e i n a n y
sequence . One way tO ma in ta i n coherency i s to
perform a l l reads and writes to completion in a
purely sequent i a l manner , thus s tr ic t ly m a i n
tai n i ng their sequence of reference . However, i n
a p ipe l ined machine , not only can t here b e sev
era l sources of read and write references, but
there can a lso be more than one copy of t he data
item . This dupl icat ion often leads to very com
plex solutions to ach ieve coherency.

Th is complex i ty has been s i m p l i fied some
what in t he VAX 8800 p ipe l i ne by having the
C B o x b o t h c o n t ro l a n d s e q u e n c e a l l d a t a
accesses. The C Box i tse lf, however, i s p ipel i ned,
having a d-stream and an i -stream for reads , and a
stream for wr i tes . Th is fact a l so presen ts some
coherency problems . Coherency for t he C Box
means that two condit ions must be met.

I

1 . After a sequence of reads and wri tes has
completed , any va l id blocks i n the cache
must match the data i n the memory.

2 . Whenever the processor wri tes to a loca
tion in memory a nd then reads that loca
t ion , the data has tO be what was written .

PHYSICAL
ADDRESS

� N M I CACHE INTERFACE N M I

STALLED/
UNSTALLED

DATA

UNSTALLED

Figure 5 Stalled and Unstalled Logic in C Box

Digital Technical jom-nal 4 7
No. 4 February 1 98 7

New Products

Aspects of the VAX 8800 C Box Design

Two types of coherency problems exist in the
VAX 8800 system : coherency wi th in a proces
sor, and coherency between processors.

The first type of problem in the C Box arises
fro m the i m p l e m entat ion of t h e d e l ay-w r i te
algori thm d iscussed earl i e r . A problem occurs
when a read i s attempted to the cache location
wait ing to be updated by the wri te held in the
delay-wri te buffers . The read wi l l h i t , but the
cache data wi l l be sta l e . One solut ion to th is
problem i s to stal l the p ipe l ine whi le the cache
is updated , perform ing the read for the correct
data . The trou ble here is that the sequence of
writing to and reading from the sa me location is
a common occurrence . Thus to sta l l wou ld sig
n i ficantly reduce the read bandwidth .

The C Box solves this problem by comparing
selected b i ts of the read and wri te addresses i n
the delay-write buffer . I f t h e bits match , then
the data content of that buffer is used as the read
data . This solution works because, to the read .
the delay-write buffer ap pears tO be an exten
s i o n o f t he c a c h e . S i n ce t h e r e a d a d d ress
matched the address i n th i s buffer , the data can
be taken d irect .ly from i t . Cohere ncy is rhus
assured , and no sta l l penal ty is i ncurred .

The second type of coherency problem occurs
when the read is a m iss and thus goes to the N M I
interface . To assure h igh performance, the N M I
i nterface mainta i ns two streams o f data requests ,
the read and write strea ms . The buffer ing and
the control of these two strea ms operate i nde
pendently. If made to d ifferent data i tems, read
and write requests can be processed to me mory
as qu ick ly as poss i b l e , even out of seq u ence .
The coherency pro b l e m i s to make sure t ha t
subsequent reads and wri tes to the same data
i tem resul t i n i ts correct state.

I f a read request occurs that was a m iss, the
cache wil l send i t to the NMI interface upon d is
cover ing that fact . Once in the N M I in terface ,
the read address i s compared to the add ress of
t h e octaword i n t h e w r i t e b u ffe r . I f t h ose
addresses are d ifferent, the cache wi l l send the
read d i rect ly to memory . Thus the data in the
write buffer wi l l be unaffected . I f the addresses
matc h, however, the write data wi l l be sent tO
memory, fol lowed by the read request. Si nce rhe
me mory su bsystem p rocesses references i n a
sequential manner, the read wi l l a lways access
the correct data . (Of course, this case is fa i rl y
simple . A more compl icated one is that i n which

48

a read is sent to memory, and the processor per
forms a write whi le wa iting for that read .)

I f the addresses of the read and write match ,
the cache can give the processor t he requested
data but cannot mark the returned data val id i n
the cac he . This s i tua t ion occurs because t h e
read -miss data being fetched from memory has
been made sta le for subsequent reads .

The m i crocode i s d es i gned so t h a t i t wi l l
never read a data item and then wri te to i t with
our first accessing the MD registers . However, a
cache block is 64 bytes long. The m i c rocode
cou ld write to any other data i tem in the b lock
before com ing to the m issed data i te m . There
can be as many as three wri tes and two reads
(one each for the d- a n d i - streams) buffered
s imu ltaneously in the C Box, al l referenci ng the
same cache block. Even worse , the C Box can
send an arbitrary nu mber of writes to memory
while wa it ing for the data returned by the read
to memory. To maintai n coherency. the C Box
performs a set of address matches between the
read and wri te streams . Then i t " remem bers"
whether or not any wri te addresses matched the
outsta n d i n g reads and ma rks them i nva l id as
appropriate .

C Box Design for a

Multiprocessor System

The VAX 8800 system consists of two identical
VAX 8800 processors on the NMI bus connected
to the m e mory and I jO su bsystems With in a
processor, on ly the design of the C Box bas been
affected by the requ i rements of a mul t iproces
sor arrangement . That is because the C box is
the CPU's interface to the N M I bus and contai ns
the centra l arbitrat ion logi c for that bus .

There a re th ree key i ss u e s i n de si g n i n g a
memory interconnect for a mu l t iprocessor sys
tem : bus arbitra t ion , bus bandwidth , and data
coherency between processors.

Bus Arbitration on the NM I Bus
Two major problems were encou ntered in the
design of an arb i tration scheme for the NMI bus.
The first was the fact that between the CPUs and
the 1/0 su bsystems, called the NBfs, there was a
possibi l ity that a h igh-priority device cou ld lock
our a low-priority device from the bus. This is
certa i n ly poss ib le with a fixed priority-arbitra
tion sche me. To address this problem, the C Box
imp lements a dynam i c pr ior i ty- a l locat ion

Digital Technical journal
No. 4 Februar)• 1 987

s c h e m e t h a t causes p r i o r i ty to be a s s igned
between two groups: the 1 /0 devices , and rhc
CPUs . Wi th in these grou ps, t he priority sh i fts
between rhe rwo CPUs and the two 1/0 devi ces .
For exa mple . i f a l l four devices wanted to usc
the bus a l l the t ime , the order in which the bus
wou ld be granted to the devi ces wou ld be

first CPU , first l/0 , second CPU, second 1/0 .

first CPU. first ljO, second CPU, second ljO ,
etc.

This scheme guarantees that al l devices on the
bus wi I I have near ly eq ua I access to rhe bus ,
rhus so lving rhe lock-our problem .

The second prob lem i nvo lves the " memory
busy" s i tuation . Whenever rhe memory subsys
tem cannot process m ore requests , it sends a
" me mory busy" s ign a l . I t cou l d happe n , for
i n s t a n ce . r h a r a CPU a c c esses t h e bus a n d
attempts ro wri te ro memory . Upon receiv ing a
mem ory-b usy s i gna l , t h e C PU w i l l abort t h e
wri te . W h e n memory i s released , some other
device wi l l access the bus and perform a write.
rhus fi l l ing the write queue in memory . Once
aga i n , the fi rst CPU re -arb i t rares, accesses the
bus , and tries to wr i te . Once aga i n , that CPU
n:cc ives a memory busy s igna l . And so on .

The NMI arbi tration scheme mentioned above
so lves th is problem in which a device might get
l ocked-our of me mory . As i m p l e m e nted , the
arbi tration scheme saves rhe priori ty state at the
r i m e b e fo r e t h e m e m o r y - b u s y s i g n a l w a s
asserred. The arbitration logic then restores that
stare so that rhe device that received the signa l
wi l l get the bus when the memory-busy signa I is
deasscrted .

Bus Bandwidth

For rhe processors on the i n terconnect , bus
bandwidth i nvolves two components: read band
wid t h . and wr i te bandw i d t h . The prob lem of
inadequate read bandwidth is addressed by hav
ing a high h i t- ra te cache . The h igher t he hit rate ,
the fewer the requests tO memory. The problem
of inadequate write bandwidth can be treated in
rwo ways . The first way is to have a wri te-back
cache l ike rhc one on the VAX 8650 processor. '
Such a cache wri tes a b lock ro memory on ly
when rhe cache b lock is dea l located. This tech
n ique can s ignificant ly reduce the write band
width requirements.

Di!!,ilal Tecbnical journal
No. ·1 Februcny 1 1)87

I n m u l t i processor sys tems l i ke t h e 8 8 0 0 ,
however, i n which each processor has a n i nter
na l cache . this technique becomes complicated .
In these systems, a data i tem can exist not on ly
in memory bur a lso i n a l l rhe caches. To main
ra in coherency. each write-back cache wou ld
have to not ify rhe other cache when the first
cache writes . This technique usua l ly leads ro a
complex protocol and design i mplementation.

Another approach in a mul t iprocessor system,
rhe one used in the 8 8 0 0 , i s ro i m p l e m e n t
write - through cac hes . I n such a n approach, a l l
write references go d i rectly t o memory s o that
each cache on rhe bus can "sec" al l write activ
ity. The caches can then be inva l idated . Such an
approach grea t l y s i m p l i fies the prorocol for
cache coherency but , as d iscussed earl ier, gen
erates a high degree of write traffi c . The unique
design of rhe write buffer helps ro reduce th is
traffic , a l t hough not as much as a wr i te -back
cache wou ld . In the 8800 processor , however,
rhe wri te buffer reduces traffic enough so rhar
the rwo VAX 8800 processors can write a t their
max imum banclwicl rhs on rhe NMI bus.

Coherency in a Multiprocessor System

A m u l t iprocessor system , with in terna l caches,
presents a n u mber of i n teres t i n g cohere n cy
issues when sharing data. Ideal ly, i f one proces
sor wri tes ro a location and rhe other processor
reads rhar locat ion, the read wi l l a lways get the
data rhar was written . In practice, achieving this
cond i t ion is d i fficu l t . Severa l major questions
arise : Did the read happen before the write or
afrer i r ' What happens if both processors write
ro the same location at rhe same r ime' Un less
controlled , t hese s i ruat ions can produce unpre
dictable resu l ts .

I f programs on the processors wan t to share
clara . they must usc rhe interlock instructions in
the VAX archi tecture . " On ly after a n interl ock
i nstruction is processed wi l l the memory loca
t ion be guaranteed ro have the correct clara . The
general method is as fo l lows . Processes must
decide to share a b lock of memory. One mem
ory location is cal led the software lock, and only
one process ar a rime is a l lowed ro write to (or
lock) tha t locat ion . This is accessed wi t h an
i n ter lock i nstruct ion , for examp le , t he branch
on b i t ser and set in terlocked (BBSSI) or the add
al igned word interl ocked (ADAWI) instructions.

4 9

New Products

Aspects of the VAX 8800 C Bo.x Design

Upon ga i n ing the software lock. a given process
can proceed to write any location in the shared
bloc k . Read·wr i te coherency wi l l be assu red
o n l y if t he other processes shar ing that da ta
observe the protocol of obta in ing the software
lock before modi fying the data structure .

The VAX i nter lock i nstru c t i o ns a rc i m p l e ·
m e n ted u s i n g i nte r lock m i c ro i ns t r u c t i o n s .
These enable a processor to lock and unlock the
memory su bsystem . Once locked . this su bsys·
tem excludes further attempts to lock i t unt i l an
un lock has occurred . Thus only one processor
or 1/0 system can lock the memory subsystem at
any one t ime.

When each processor has an in tern a I cache.
there is one more mechanism that keeps the two
processors coheren t . Wh i l e one processor i s
perform i ng a wr i te to me mory and wh i le the
wri te command i s on the NMI bus , the other
processor w i l l exam ine i ts cache store to see i f
i t conta in s a copy of that da ta . I f the data is
there, i t is marked inva l id . The next req uest for

LEFT
PROCESSOR

�
I WRITE I BUFFER

WRITE I NTERLOCK
FORCES WRITE B U FFER
CONTENTS TO M EMORY

N M I

this data '"'' i I I then resu lt in a cache miss and a
s u b se q u e n t fe t c h to m e m o r y . T h i s s i m p l e
ap proa ch i s poss i b l e because t he VAX 8 8 0 0
cac hes a re wri te - through . Alt hough a l l wri tes
arc seen on t h e b u s , the wr i te b u ffer packs
together consecutive wri tes wi th in an octaword .
Therefore , the nu mber of i nva l ida t ion cycles
pe rformed by a pro cessor w i l l be red uced .
When a n i nterlock write is performed , the con
tents of the wri te bu ffer are sent to memory .
Thus the interlock mechanism ensures that data
coherency wi l l work under a l l cond i tions . Fig
u r e 6 i l l u s t r a t e s t h e e v e n t s t h a t a c h i e v e
coherency in the 8800 .

Summary

The genera l concepts used in the design of the
C Box arc we l l known to computer designers .
Our goal was to achieve a s imple yet high-per
for m a n ce des ign tha t avo ided u n ne cessa r i l y
complex solutions that d id not g ive comparable
i ncreases in performance . The choices made

I
OTHER PROCESSOR
SEES WRITE ON
NMI AND LOOKS
I N CACHE FOR
I NVALIDATION

RIGHT
PROCESSOR

CACH E

WRITE
BUFFER

I
I

I SOFTWARE J LOCK

Figure G

5 0

MEMORY

Multiprocessor Coherencv

Digital Technical journal
No. 4 Februar)' J ')87

have y i e l d ed a des ign tha t fu l ly supports th t:
m u ltiproct:ssor concept . The VAX 8800 system
can translate add resses and access data faster
than any previous VAX processor.

Acknowledgments

Al l those who worked on the VAX 8800 system
cont ributed to the th ink ing that went i n to the
C Box design . Specia l thanks go to Dave Sager
for keep i ng th ings going .

References

l . VAX Architecture Handbook , (Maynard :
D ig i t a l Equ i p ment Corpora t i o n , Order
No . EB- 2 6 1 1 5 -4 6 , 1 986) : 7- 1 1 to 7- 1 9 .

2 . A . Smi th , "Cache Memories , " Computing
Surveys , vo l . 1 4 , n o . 3 , (S e p t e m b e r
1 982) : 4 7 3 - 5 3 0 .

3 . S. Mishra , · 'The VAX 8800 M icroarchitec
ture . " Digital Technical journal (Febru
ary 1 9 87 , th is issue) : 2 0- 3 3 .

4 . T . Foss u m , J . M c E l roy, and W. E ng l i s h ,
"An Overview of the VAX 8600 System , "
D ig it a l Te c h n ical jo u r n a l (A u g u s t
J 9 8 5) : 8-23

5 . S . Farn h a m , M . Harve y , and K . Mo rse .
"VMS M u l t iprocessi ng on the VAX 8800
Syst e m , ' ' Dig ital Techn ical jo u r nal
(Ft:bruary 1 98 7 , th is i ssue) : 1 1 1 - 1 1 9

Digital Technical journal
No. 4 Fe/Jmmy 1 98 7

New Products

5 1

Paul]. Natusch
David C. Senerchia

Eugene L. Yu

The Memory System in the
VAX 8800 Family

The memory system in the VAX 8800 family can send data at 71MB per sec
ond and receive it at 59MB per second. The 8800 and 8700 CPUs can con
tain up to 128MB of memory, the 8550 and 8500 up to BOMB. Commands,
addresses, and data flow between the memory interconnect (NMI bus)
and the memory controller, array bus, and array modules. Read, write,
and masked-write commands are executed. The designs of the NMI bus
and write-through cache affected the memory system design. Although
ECL is used in the controller, TTL is used in the array bus. The array
modules of 4MB and 16MB contain 256K MOS dynamic RAM chips.

Al i members of the VAX 8800 fam i ly of proces
sors (the 8800, 8700 , 8 5 5 0 , and 85 00) usc the
s a m e t y p e o f m e m o r y s y s t e m . S i n c e t h e
VAX 8800 system is a mul t iprocessor, that mem
ory system must connect co both CPUs and both
I/0 adapters , cal led the NBlAs. The bus connect
i ng these devices is called the NMI bus, and each
connect ion on the N M I bus is ca l led a nexus .
These con nect ions a re i l l ustrated i n F igure 1 ,

which shows five nexuses : one for each CPU, one
for each NBLA, and one for the memory system .

Figure 1 Memory Interconnect Structure

The memory system i tse l f consists of t h ree
major parts , as depicted in F igure 2 :

• A memory controll e r based o n ECL technology

• A high-speed TTL bus connecting that mem
ory contro l l e r co a max imum of e ight array
modules

• The array modu les themselves

5 2

The memory system can del iver 7 1 megabytes
(MB) per second of read bandwi dth and 59MB
per second of write bandwidth .

S ince the VAX arch i tecture has a 3 2 -b i t for
ma r , a l l datapa t hs i n the memory system must
a lso handle 32 b i ts . These datapatbs are com
b ined by p i pe l i ned and para l le l operat ions to
prod uce t he read a n d w r i te ba ndwi dths . The
most sign ificant occurrence of parallel operations
is two-d imensiona l i nterleaving. The first d i men
sion in terleaves between longwords (3 2 b i ts) of
data on a s ingle array module; the second i n ter
l eaves between octawords (4 longwords) on d if
fe re n t a rray modu les . As many as t h ree a rray
mod u l es can be a c t i ve s i m u l ta neous ly w i t h
ei ther a read o r a write . There are three cases:

• Eac h modu le can do one read .

• One modu le can do a read w h i le t he other
two can do as many as four writes.

• Two mod u l es can each do a read wh i le the
th i rd can do as many as fou r wri tes .

The se lect ion of the a rray m od u l es can be
progra mmed from the console when the system
is powered u p . Thus the memory system can
su pport a va r i e ty of a rray modu l e s i zes a n d
speeds without the need t o mod ify the hardware
in the memory control ler . M oreover, the mem
ory cont ro l l e r can add ress 5 1 2MB of phys ica l
memory , the l i m i t of the VAX architectu re . The
8 8 0 0 i s t h e fi rs t VAX sys t e m to be a b l e to
address th i s much p hysical memory .

Digital Technical journal
No 4 Febmmy 1 <)8 7

COMMAND BUS-INPUT COMMAND AND CLOCK

NMI
MEMORY
CONTROLLER

ARRAY
MODULE
8

Figure 2 Plan of MemOI:J! System

Owing to the l i m i ts of the <:xist ing technol
ogy, howeve r , the i n i t i a l mach ine was i n tro
duced with 3 2 MB for the 8800 and 8700 sys
tems, and 20MB for the 8500 and 8 5 5 0 systems.
The 3 2 M B c o n f i g u r a t i o n c o n s i s ts of e i g h t
4 MB modu les wi th 2 5 6K MOS dynamic RAMs
packaged in DIPs . To increase the dens i ty of the
machi ne without using a d i fferent semiconduc
tor technol ogy , a 2 MB daughter module was
developed after the in i t ia l announcement. This
module uses double-sided surface-mount tech
nology and p last ic leadless ch ip carriers. Eight
of these daughter modu l es are mou n ted o n a
mother module to produce a 1 6MB array mod
u l e . T h i s n e w m o d u l e h a s i n c re a s e d t h e
machine's memory to 1 28MB for the 8800 and
8700 systems, and to 80MB for the 8 5 5 0 and
8500 systems.

Memory System Architecture

As shown in Figures 1 and 2 , the memory con
trol l e r commun ica tes w i t h the CPUs and the
NBIAs over the memory interconnect , cal led the
N M I b u s . C o m m a n d s , a d d re s s e s , a n d d a ta
requests are a l l first received by the NMI i nter
face and then passed to other sect ions of th<:
m e m ory c o n t ro l l e r . Add resses and d a ta a rc
srored i n custom m u l ti part RAMs, where eight
locations arc reserved for addresses and e ight for
da ta . The N M I i n te rfa ce e n codes c o m m a n d
information , passing i t t o the command-control
portion of the memory control ler.

S i nce the memory contro l ler communicates
with the N M I bus and the a rray bus, the N M I

Digital Technical journal
No. 4 Febntary 1 ')87

protOcol has to be changed to that of the array
bus. Reads and wri tes of data fi elds with various
sizes are received by the NMI interface . The NMI
bus su pports a very robust se t of commands .
Reads and i n terlocked reads are su pported for
longwords (4 bytes) , octawords (4 longwords) ,
and hexworcls (2 octawords) . Masked wri tes and
masked-write un locks are supported for long
words , quadwords (8 bytes) , and octawords .
Wri tes a re supported for longwords and acta
words.

The r e a d - i n t e r l o c ked a n d m a s k e d - w r i t e
u n lock commands are used r o i mplement VAX
i ns t ru c t i o n s i n w h i c h m u t u a l e x c l u s i o n i s
requ i red . For exa m p l e , t h e VAX i nstru c t ions
A D AW J , B B C C I , B B S S J , I N S Q H I , I N SQ T I ,
I NSQUE, REMQHI , and REMQTI a l l need these
commands . S i nce a n i n ter locked i n struct i o n
locks t h e ent ire memory system , t h e i nterlock
bit must reside in the memory controller . This
bit restricts the execution of subsequent i n ter
lock commands unti l the lock has been released
by a masked-write un lock i nstruction.

Afte r re c e i v i n g a m e m o ry requ est fro m a
nexus, the memory control ler must transfer that
req uest to the appropriate array modu le . This
transfer i s accompl ished using the a rray bus .
This bus consists of

• A unid irectiona l set of command and address
l ines from the memory control ler ro the array
modu les

• Another un id irectional set of data l ines from
the memory control ler to the array modules

5 3

New Products

The Memory System in the VAX 8800 Fam ily

• A set of data l ines (capable of assum i ng three
states) that can be driven by any one of the
array modules and recei ved by the memory
control ler

• Various status and control l i nes that commu
n icate in both d irections

The a rray bus has a m i n i ma l reperto i re of
commands, consist ing of longword reads , acta
word reads , and longword writes, but not hex
word reads . S i nce the N M I su pports hexword
reads, the memory control ler must convert t hem
i nto two octaword reads and then send them to
the array modu les. Thus the two octawords of a
hexword read can reside on d ifferent array mod
u les. That fact i ncreases the memory bandwi dth
because para lle l accesses can be executed . The
array bus supports only longword writes ; t here
fore, octaword writes must a lso be converted . As
mentioned earl ier , the array bus has one l ine for
commands and addresses and another for data .
Therefore, an octaword write , which takes five
cycles to transfer on the N M I (one for the com
mand , four for the data) , can be transm i tted i n
five cycles o n the array bus to an array modu le .
F igure 3 shows the corresponding act ions dur
ing each cycle on the NMI and on the array bus.

In addit ion to commands, the memory system
must a lso execute maintenance tasks, i ncluding
m emory refresh , error report i n g , a nd battery
backup .

S ince physical memory is implemented wi th
MOS dynam ic RAMs , every array row m ust be

NMI

ARRAY BUS

COMMAND/
ADDRESS
L INE

DATA
L I N E

COMMAND
OR
ADDRESS

CYCLE

2 3

DATA DATA

COMMAND
OR
ADDRESS

refreshed once every 4 m i l l iseconds . This func
t ion can be done by refreshi ng one row every
1 4 m icroseconds . To faci l i tate this activity , the
memory control ler sends s ignals to each array
module from a 1 4 -m icrosecond osc i l lator . Upon
receiving a refresh signa l , an array module wi l l
hand le the refresh arbitration and execute the
operation .

Occasional ly , a b i t w i l l be lost due to e ither
a lpha part icles or a device fai lu re . In that case
the memory control ler must handle those errors
and other types i n a gracefu l manner . To do
that , the memory system uses a 7 -b i t modified
h a m m i n g code to gen erate the ECC , w h i c h
a l lows a l l s ingle-bit errors to be corrected and
a l l dou ble -b i t errors to be detected . After cor
rect ing each error the memory system logs the
error's physica l page add ress and the b i t . The
memory system then in terrupts the CPU to cal l
a n error serv i ce rout ine , which l ogs i n a VMS
fi le the necessary information to i solate the fai l
ure . The memory system can a lso i nterrupt the
CPU to handle i nternal parity errors and i n ter
locked t ime-outs. An i nterlocked t i me-out hap
pens when a nexus executes a read i nterlock but
never issues a masked-wri te un lock . The system
software can enable or d isable these i nterrupts.

Battery backup , standard equipment on both
the 8 8 0 0 a n d 8 7 0 0 syste m s , c a n power the
refresh operation when the system is down . That
power a l lows the memory system to cont inue to
refresh the RAMs so that data w i l l not be lost .
Note that the entire system is not backed up;

4 5 6 7

DATA DATA

COMMAND COMMAND COMMAND
OR OR OR
ADDRESS ADDRESS ADDRESS

DATA DATA DATA DATA

Figure 3 Cycles on NM! Bus and A rray Bus

54 Digital Technical Journal
No. 4 February 198 7

BUS ENABLE

ERROR
CORRECTION 1-T---1
LOGIC

T
A
A

M U LTIPORT
RAM

N
M
I

MEMORY CONTROLLER

ECC
GEN ERATION
LOGIC

ARRAY MODULE

Figure 4 Datapaths in Memory Controller and Array Modules

therefore, a l l components must be in qu iescent
states before the memory system enters battery
mode. Upon sensing that power is erodi ng, the
8800 wi I I write a l l i ts data to the memory sys·
tern . The memory control ler wi l l then complete
a l l commands and send signals w the array mod·
u les i n forming them to enter battery mode. I n
th is mode on ly five MSI ch ips on the memory
control ler and approx i mately ha lf the control
logic on the array module will be active .

Com mand Execution

The execution of any command received by the
mem ory system is a jo in t effor t between the
memory control ler and the array modules. Fig·
ure 4 depicts the datapath in each memory com
ponent . After a nexus places a command on the
NMJ bus, the interface in the memory control ler
ascertains i f the command is a va l id memory ref·
erence and, i f so, decodes i t . The in terface then
pl aces the command in a queue of commands
wai t ing to be executed .

Si nce one array modu le can execute mul t iple
write commands s imul taneously, and since mul
t ip le array modu les can a lso execute commands,
the memory control ler must ma inta i n the status
of the array modu les . The status control logic to

Digital Technical journal
No. 4 February 1 98 7

monitor actiV I ty must " remember" which par·
t ions of w h i c h a rrays a re " bu sy . " Th is statll s
control logic can best be described by showing
how the three basic operat ions , writes , reads ,
and masked writes, are executed .

Write Com mands

For a write command , the contro l port ion of t he
memory control ler performs only three actions:
i t determines the capabi l ity of the array module
to accept the command, i t sends the command ,
and it wa i ts for the array module to s ignal i ts
readiness to receive a nother command .

The write datapath is that portion of the logic
responsible for the flow of data from the NMI bus
tO the array modules . This path comprises both
e lectrical interconnects (buses and cables) and a
considerable amount of logic . The major storage
element for the data path is a 9-bit by 3 2 -location
custom mul tipart RAM (MPR) with two ports for
reads and two for writes. Data received from the
NMI bus is p laced in the next avai lable location
of the MPR. Upon determin i ng that the requ ired
array module is ava i lable , the control logic sends
the data from the M P R to that array module over
t he array bus. Each array modu le ho lds the data
u n t i l i t is s t r o b e d i n t o t h e d y n a m i c R A M s

5 5

New Products

The Memory Svstem in the VAX 8800 Fam ily

(DRAMs) . The array module can load four long
words of data with their associated ECC bits on
four consecutive cycles.

Some wri tes are cal led masked because there
is a 4 -bi t byte mask associated with each data
word . The byte mask informs the memory sys
tem as to whi c h bytes arc to be wri t ten . The
memory system executes this command by first
doing a read and correcting a ny s ingle-bi t errors
that may exist . It then merges the memory data
with the data received from the N M I bus , and
fi na l ly does a wri te command . This sequence
easi l y a l lows t he i mp lementation of longword
and octaword masked writes. Masked writes for
quadwords (8 bytes) are executed by perform
ing an octaword masked wri te i n which the data
of two of the longwords remains u ncha nged .

Read Commands

For read commands , the memory controJler per
forms fou r actions: it determi nes i f the selected
array m od u l e is ready to accept the rea d , i t
sends the com m a nd , i t wa i ts for a data -ready
response, and i t transfers the data from the array
module . I mbedded in the command field of the
read are address b i ts that select the longword of
the octaword that is requ i red first . This action
a l l ows wrapped r e a d s to be i m p l e m e n ted .
(Wrapped reads are described later i n the sec
tion " Impact of the Cache . ")

The react cla tapath or ig i na tes a t the D RAM,
wh ich sends the requested data . As in the case of
wri te commands, each array module stores an
octaworcl of read data. Once the data has been
loaded i n to the l atches, the array module signals
to the memory contro l ler that the data is ready.
As mentioned earl ier, the read datapath between
the array module and the memory controller is
tr istatabl e . Therefore , the memory control ler
must ensure that o n ly one array modu l e a t a
t ime dr ives th i s da tapa t h . Once the da ta has
been requested by t he memory contro l ler, the
array module must send the longwords sequen
t ia l ly , beg inning with the start ing aclclress t hat
was sent with the command. This action a l lows
the memory controller to request any one of the
four longwords as the first to be read . The array
module portion of the read data path can transfer
one longword of data during every cycle .

The error-correction logic in the memory con
troller receives each longworcl of data plus the
seven ECC b i ts . This logic detects s i ngle - and
double-bit errors, but only single-bit errors can

56

be corrected . A s ign i ficant feature of this pro
cess is that error detection and correction is per
formed as the read data is p ipel ined through the
memory control J er . Thus no aclcl i t iona l cycles
are needed to correct read data .

Masked-write Com mands

The execution of a masked wri te i nvolves both a
react and a wri te sequence . The memory con
trol ler executes a masked-wr i te com mand by
first issu ing a react to the selected array module .
Assuming that there were no memory errors, the
data returnee! is sent to the M P R , where the
bytes arc merged wi th those sent to the memory
controller over the N M I bus . The memory con
tro l l e r must ensure that no commands to the
same array come between the read and wri te
portions of a m asked wri te . After a l l the bytes
have been m e rged i n to t h e da t a b u ffe r , t he
memory contro l l er w i l l wri te the d a ta to the
array modu le. The array module then generates
new ECC data , adds i t to the other data , and
strobes the composite data i nto the D RAMs .

If a s ingle-bit error is detected , the process is
qu ite s imi lar to the one with no errors, except
that the data must be corrected . Since corrected
data and N M I traffic both share the same data
path on the memory control ler , the N M I in ter
face must be free to correct errors found during
masked wr i t e s . T h i s free d o m i s e n s u red by
asserting a s ignal that stops a l l act iv i ty on the
N M I bus . O nce act ivi ty has stopped , t he data
can be routed through the N M I i n terface, cor
rected , a nd then merged w i th the N MI data i n
the data buffer. The process then continues a s i t
would have i f there were n o errors.

If a double-bit error is detected, the process is
s imi lar to the case in which no error occurred,
except that the wri te is prevented from happen
i ng . When the array location is read the second
t ime , the double-bit error w i l l sti l l be present ,
thus alert ing the system that the data i s unusable .

Memory Address Path

The memory contro l ler conti nuously latches a l l
addresses from the N M I bus . Once an aclclress i s
latched , the memory control ler m ust verify i t as
a va l i d mem ory address . That ver i fi ca t i o n i s
d o n e b y c o m p a r i n g t h e a d d r e s s t o v a l i d
aclclresses of both the con trol s tatus regi sters
(CSRs) and physical memory .

The CSR addresses are hardwired i nto the NMI
interface logic ; therefore, on ly a s imp le compare

Digital Technical journal
· No. 4 February 1 9 8 7

of the addn:sscs is requ i red . The compare for a

va l i d mem ory address requ ires a reference to a
"decode" RAM . This RAM is loaded by console
software when the system is powered up and i s
used to confi g u re memory . Load i n g t h e RAM
from software al lows the memory contro l ler to
support several d i fferent si zes of array modu les
wi thou t m od i fying any hardwa re .

Once the add ress has been veri fied as be i n g
va l i d . i t i s p laced in one of eight storage loca
tions a llocated to address buffering in the M P R .
The address rema i ns in that buffer u ntil i ts com
mand i s sent to an array module .

Even though e ight locat ions a re a l l ocated to
address buffering, only seven of them can be used
for rem porary storage . One locat ion is reserved
for the error 's page address , a poi nter to a phys i
cal page of memory conta i n i ng a n error . Since
the locat io n of the e rror page-add ress buffer is
not fixed , the control l ogic for the address-buffer
contro l must look ahead and not a l low a new
address ro overwrite that error page address .

The contro l of the address bu ffe r i s fu r ther
compli cated by masked wri tes and error l oggi ng _
S ince a masked write i s i m plemented a s a read
fo l lo wed by a wr i te , the address in the bu ffer
cannot be overwri tten u n t i l the write has com
p leted . A s im i lar si tuation ex ists for error logging
o n read t r a n s a c t i o n s . S i n c e a n e rr o r is n o t
d e t e c t e d u n t i l t h e r e a d h a s c o m p l e t e d , t h e
address cannot be overwri tten unt i l the data has
been checked .

Design Requirements of the

VAX 8800 System

Impact of the NMI Bus
As stated earl ier, the VAX 8800 memory system
i n t e r fa c es w i t h t h e C P Us a n d I / 0 s y s t e m s
through a sync hronous bus cal led t h e N M l bus .
Th is bus i s h i g h l y effi c i e n t a n d operates i n a
pcnded fashion s im i lar to the synchronous back
plane in tercon nect (SBl bus) in the VA.X- 1 1 /780
processor. The NMI bus a l lows several transfers
to be i n progress s imu ltaneously.

There arc fou r nexu ses in the 8 8 0 0 system
that can require memo ry : the two CPUs, and the
two NBIA<> . Each nexus i s al lowed to have rwo
co mmands oursta n d i ng at any t i m e . The proto
col supports this arrangement by a l locati n g two
codes i n a 4 -bit 10 fie ld ro each nexus.

The CPUs use one of their references for pro
gram data , ca l led the d -stream, and the other for

Digital Technical journal
No. 4 Fe/Jruar)' I 'J87

i n s t r u c t i o n s , ca l le d t h e i - s t rca m . T h e C PUs
always req uest a hexword of data ; the NBIAs may
req uest e i t h e r longwords or ocraword s . Thus
t h e r e can be as m a n y as e i g h t s i mu l t a n e o u s
requesters of memory data . These s imul taneous
events req u i re that the mem ory system b u ffer
several commands w h i l e execut ing . I n the 8800
i mp l e mentat ion , the memory system can access
t h ree array m o d u l e s i n p a ra l l e l a n d store rwo
com mands.

M o r e o v e r , s i n c e t h e m e m o ry s ys t e m c a n
accept m u l t i p l e read commands, i t m ust store
t h e i d e n t i fi c a t i o n o f t h e r e q u e s t e r a n d t h e
le ngth of the transac t i o n . T h e N M I i n te rface
does the actual srori ng and returns the ident ifi
cation with t h e correct data . T h i s action i s poss i
b le because a l l com ma n d s a re processed i n
sequence ; there fo re , the read retu rned f i rst is
the one stored the longest. However, hexword
reads are returned to the NMI i nterface as two
separate octaword reads; there fore , that i n ter
face must ensure that borh ocrawords have been
returned before d iscard i ng the i dent ificat ion.

To preven t a deadlock cond i t ion , the memory
system is give n the h ighest priority dur ing arbi
trat ion . This priority guarantees that the memory
system wi l l be able to return data to a requester.
When fu l l , the memory system not i fies any poten
t i a l req uesters that i t cannot process any more
commands and to try aga i n later, thus p reventing
the memory system from overfi l l ing .

Impact of the Cache
The design of the cache affected the design of
the memory syste m . The wri te-through des ign of
the cache guarantees there wi II be a large num
ber of longword writes d i rected a t memory. 1 A
write buffer was i nsta l led to bundle a series of
longword wri tes i n to octaword writes; however,
the w r i te bu ffe r i s o n l y effe c t i ve if m u l t i p l e
longwords a rc written i n t h e same ocraword .

Extra logic is always req u i red to increase per
forma n c e . The extra write ba ndwidth for t h i s
memory syste m , however , requ i red more logic
than w hat would have been req u i red to i mple
ment extra read bandwid t h . The added com
plex i ty was needed r o fac i l i tate in terleaving o n
longword boundaries for write operations.

When the 8800 p roject was first in i t i ated , the
goa l of the m e mo ry sys t e m was to m ax i m i z e
read bandwidth, thus producing a re lat ively s im
p l e a rray- mod u l e d e s i g n . I n that des ign , any
operation , regard l ess of i ts s i ze , kept an ent i re

5 7

New Products

The Jl1emor)' .�ystem in the VA X 8800 Fa mi(J'

a rray mo d u l e busy u n t i l t h e opera t i o n co m
p lerecl . The control logic o n the array mod u k
was si mple a n d req u i red a reasonable amount of
board s p a c e a n d powe r . W h e n t h e d e s i g n
cha nged to the wri te-through concept, however.
h i g her wri te bandwi d t h was requ i red . Therc
fore , the control logic in each array module had
to be rep l i cated for each ba n k (lon gworcl) of
mcmory to al low i ndependent write operat ions .
This repl icat ion perm i tted four longwords to be
wri tten on fo ur consecut ive cycles to the same
array module .

Th is i ncrease in desi gn com p l e x i ty was nor
l i m i t ed to t h e a r r a y m o d u l e . l n the i n i t i a l
des i g n , when maxi m u m read bandw i d t h was
crit ica l , the me mory control logic was n: lat ivcly
s imple . It had only to track the state of an array
module as being busy or not. However, wi th the
i n t e r l e a v i n g c a p a b i l i t y r e q u i r e d fo r t h e
i ncreased wri te bandwidth , the memory control
logic now has to track s i m u l taneously the status
of as many as eight write operations in progress
on two array modu les .

A l t h o u g h ma x i m i z i n g the lon gwo rcl w r i t e
bandwidth was i m portant , m i n i m i z ing t h e read
latency to the fi rst longword req u i red was cr i t i
ca l . W r a p p c d r e a d s w e r e i m p l e m e n t ed to
red uce this l a tency. A wrapped read is a hex
word or o c taword command t h a t req u ests a
spec i fi c l on gword tO be re t u rned fi rs t , w i t h
o t h e r l o n gwords i n t h a t b l o c k to fo l low i n
"wrapped " fash ion .

Other Design Trade-offs and Options

As i n a l l design processes, we considered many
trade-offs and opt ions before com m i tt i ng to a
part icu lar des ign arc h i tectu re . One area w i t h
seve r a l a l t e r n a t i v es w a s t h e i n t e r co n n e c t
between the memory contro l le r and the array
modu les . The array modu les and the controller
reside in phys ica l ly separate backplanes i n ter
connected by a cab le . We had to deci de whether
tO make this in terconnect with ECL or 1TL.

The overa l l p roject go a l was to m a k e t h e
8800 a n a l l -ECL mach i n e . Therefore , our first
cho ice for t h i s i n te rco n n ect was ECL, w h i c h
prov ides e n h a nced s i g n a l i n tegr i ty , re d uced
skews, and overa l l speed advan tages over TTL
As rhe system and me mory des ign progressed ,
however, some real problems arose thar al tered
our opi n ion . The fi rst problem became apparent
as the array- module design coal esced enough to

58

a l low s o m e a c c u ra t e power est i m a tes ro be
made . We found that. with an ECL bus, the array
mod u l e wou l d requ i re - 5 . 2 V i n excess of i ts
a l l o c a t i o n . T h e n e x t p ro b l e m s u r fa c e d i n
response tO an arc h i tectura l req u i re ment that
the memory system function with less t han e ight
a rray mod u l t:s a n d , prefe ra b l y . w i thout load
cards . T h i s req u i re m e n t made ir d i ffi c u l t to
i m p l e m e n t a term i n a t i o n s c h e m e for a n E C L
in terconnect.

Wirh these problems in m i nd , we i nvest igated
a TTL i n terconnect , which clearly offered some
d e s i gn c h a l l e n ges . the l e ast o f w h i c h were
spccd and skew. Us ing the SPICE s i mu lator, we:
const ructed an acc u rate mod e l to verify that a
TTL e lectr ica l i ntercon nect could indeed meet
our s igna l i n tegr i ty , speed, and skew re q u i re
ments .

2
Whi le t h e s i m u l a t i on res u l ts s howed

that a TTL i n tercon nect could work , the associ
ated skews certa i nly i ncreased rhe complexi ty of
the me mory desi gn . Whi le al levi at i ng rhe prob
lems of l im ited - 5 . 2 V power on the array mod
u le and the term in at ion of var ied load i ng, th is
TTL scheme req u i red ECL- ro-TTL trans lators in
the memory control ler ro d r ive the array bus .
We: fi na l ly d e c i ded ro accept the added com
plex i ty and use TTL for the i n tercon nect . The
sole except ion was the clocks, which were d i f
fe re n t i a l ECL , re c e i ved and transl ated on the
array module .

There were logical rrade-offs as we l l as elec
tr ical ones . The or i g i n a l spec i fi c a t i o n for the
N M I clicl nor su pport quadword masked writes .
They were added after the i mp l ementat ion of
the m e m ory system had progressed cons ider
ab ly . S i nce rhe array bus su pported on ly long
word a n d oc rawo rd reads . t h ere were t h ree
options to support rh is change :

• The first was tO change the array bus proto
col . rhe command generatOr on rhe memory
control ler , and rhe array modu le.

• The second was 1 0 execute rhe command by
perform i n g two l ongword masked w r i t es .
This option wou ld take a lmost twice a s long
as a quadword masked write if imp lemented
l i kc the firsr opt ion , yet sti l l requ i re changes
ro the command generaror i n the me mory
control ler .

• The th i rd was to execute an octaword masked
wri te i n w h i c h the data of two of the long
words remains unchanged.

Digital Technical]o11r11al
No. 4 February 1 987

Since the design was wel l adva nced, we chose
the last method tO ease the problems of imple
m e n t a t i o n ; t h i s d e c i s i o n a c t u a l l y has l i t t l e
i m pact o n system performa nce . T h e log ic to
accomplish this addit ion a l ready ex isted on the
array module . Only small changes were requ ired
to the com mand generator of the memory con
tro l ler and the datapath control . In practice , the
fre q u e n cy o f q u a d w o r d m a s k e d w r i t e s i s
extremely low si nce they are executed only by
the NBlAs.

Technology Description

A nu mber of d ifferent module and component
technologies were used for the memory con
trol ler, backplane, and two array modules.

Memory Controller

The me mory control ler is a 9 - layer, control led
impedance , extended hex modu le (1 5 i nches by
1 1 inches) . The lay-up consists of 6 rout ing layers,
2 power layers (- 5 . 2 V and - 2 Y), and a ground
plane . Si nce there is a m i nimal amount of TTL ,

r - - - - - - - - - - - - - - - - - �
1 MEMORY I

both the + 5 V power and the + 5 V battery are run
on the su rface with 50 -m i l etch . With the m ixed
technology on the modu le , we took specia l care
tO keep the TTL signals properly spaced from the
ECL signals tO avoid signal i ntegrity problems.

The l o g i c o n t h i s mod u l e i s i m p l e men ted
using nine unique macrocel l - array des igns from
Motoro la , I nc . . and one custom ECL mu lti ported
RA M . There are 1 6 cus tom and sem i cusrom
devices on the mod u l e . I t a lso conta ins some
I O K H MSI logic , some ECL-ro -TTL converters,
and som e CMOS logic used for operat ing with
battery back up.

Array Module Backplane
The array modu le backplane in the VA.'(8800
and 8700 CPUs is a 1 2 -layer , 8-slot pressed-pin
backplane. The one in the VAX 8 5 5 0 and 8500
CPUs is a 5 -s lot backplane. S ince a TTL bus was
chosen to com municate between the memory
controller and the array modu les, a good termi
nation strategy had tO be deve loped . Us ing the
SPICE s imu la tor, we evo l ved the term inat ion
strategies shown in Figure 5 .

I CONTROLLER I ARRAY MODULES I 8480 I
ECL TO TIL

I
I �

- Dl DO '--'
c cs tr' - HLD

-

OHMS F374
DO

'-- Dl - CLK

c EN

NAB COMMAND/ADDRESS-WRITE DATA BUS

F374 F374
DO DO

'-- Dl .._ Dl - CLK - CLK

c EN c EN

. .
F374

DO

I
I
I
I (TO 8 MODULES)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8481
TIL TO ECL

(DO Dl

cs
HLD

f-
f-

F374
� DO

+5 VOLT Dl

>4700 CLK

EN (>OHMS

;. i

F374 F374
� DO � DO

D l D l

r- CLK r- CLK

0 EN 0 EN

NAB READ DATA BUS

Dl - DATA I N HLD - HOLD (CLOCK)
DO- DATA OUT EN - ENABLE

. .
f-
p

(

L - - - - - - - - _ _ _ _ _ _ _ _ _ _ _j CS - CHIP SELECT CLK - CLOCK

Figure 5 Termination Strategies in Memory Controller and Array Modules

F374
DO

Dl

CLK

EN

Digital Technical journal 59 No. 4 February 1 987

New Products

The Memory System in the VAX 8800 Family

Figure 6 Sixteen Megabyte A rray Module

Four Megabyte A rray Module Summary

The 4 MB array module was des igned us ing an
8- layer, control led- i mpedance, pr in ted c ircu i t
board . The lay-up cons ists of 4 rou t ing layers ,
2 power layers, and 2 ground layers . To support
battery backup, the modu le has separate power
planes for + 5 V power and the + 5 V battery .
S i nce o n l y a l i m i ted a m o u n t of - 5 . 2 V a n d
- 2 V power i s needed , t hese v o l rages share
space on the other power planes. To el i m i nate
d i sc o n t i n u i t i es t h a t cou l d cause u nw a n te d
reflections, we ensured that signals d i d not cross
the power-p l a n e s p l i ts by s u rro u n d i ng t h e
power planes with sol i d ground planes .

Approximately half of the logic technology on
the array module consists MOS dynamic RAMS;
the other ha lf is FAST MSI logic . The clock system
is implemented in ECL to m i n i mi ze the skew.

Sixteen Megabyte Array Module

A 1 6MB array module was developed tO increase
the ava i l ab le memory to 1 2 8MB for the 8800
and 8700 systems and 80MB for the 8 5 5 0 and
8 5 00 systems. This array mod u le consists of an
8-layer mother board (si m i la r to the 4 MB mod
ule) and ei ght 2 MB surface-mounted daughter
boards . The 1 6MB array modu le is pictured i n
Figure 6 .

6 0

The VAX 8800 memory system was designed to
provide 7 1 MB per second of read bandwidth
and 59 MB per second of write bandwidth to the
mu l t iprocessor system . The system archi tecture,
processor performance need s , a n d h i g h I/0
activity combined to make a h igh-performance
memory a requirement .

S ince the 8800 conta i ns ECL components, the
memory system has to provide a high-speed path
between the ECL logic i n the CPUs and the high
dens i ty dynamic RAMs u sed for m a i n s torage .
Al though the memory system does no t play a
d i rect role i n the execut ion of a VAX i nstruc
tion, i ts performance has ro match closely that
of the mu l ti processor system . I f the memory sys
tem were under designed , the processors would
sta l l frequent ly , thus reducing their usable per
fo r m a n c e . I f the m e m ory system were over
designed , i t wou ld conta i n extra complex i ty ,
w i th the attendant extra cost , that could not be
used by the system . Thus the memory strategy
played an i m portan t role in the pr i ce/perfor
mance trade-offs that had to be made .

Acknowledgments

Although done by a smal l group of engi neers ,
the design of the me mory system was great ly

Digital Technical Journal
No. 4 February 1 98 7

i n fl uen ced hy the e fforts of many people from

the E lectron i c Storage Devel opment G roup and

t h e A d v a n c e d VAX E n g i n e e r i n g G r o u p . We
wou l d especia l l y l ike ro acknowl edge the cre
a t i v i ty, leaders h i p , and energy level of t h e late

.John Henry . Jr .

References

I .] . Fu. J . Ke l l e r , and K . Hadu c h , "Ao;; pects

of the VAX 8800 C J3ox Des ign , " Digital
Techn ical journal (Febru a ry 1 9 87, t h i s

i ssue: 4 1 - 5 1 .

2 . SPICE ·was devel oped by Lawrence Nagel

a n d E l l i s C o h e n of t h e D e p a r t m e n t o f

El ectrical Eng i neeri ng and Co mputer Sc i

e n c e , U n i versity o f Ca l i fornia, Berke ley.

Digital Technical journal
No. 4 Febmmy I 'J87

New Products

6 t

John H.P. Zurawski
Kathleen L. Pratt

Tracey L. Jones

Fl o ating Point in the
VAX 8800 Family

The processors in the VAX 8800 family were designed with particular
emphasis on cost-effectiveness. These CPUs do not contain separate float
ing point accelerators. Their performance is not compromised, however,
especially for the double-precision instructions. High performance is
achieved, in part, by a custom ECL multiplier and divider unit and by
specific hardware for exponent manipulation and normalization. The
main advantages of this integrated approach are less hardware to repli
cate and a tightly coupled interface to each CPU, thus less time is wasted

fetching the operands. Microcode branch problems are minimized by
using a prediction strategy and extensive hardware assistance.

Unl ike other VAX fami l ies , the processors i n the
VAX 8800 fami ly do not conta in separate float
ing point accelerators (FPAs) . I nstead , their FPA
is i n tegrated i nto each processor' s m a i n data
path . Therefore, no disti nction is made between
instructions that are execu ted i n t he FPA and
those that are not : the hardware is avai I able to
be used for a l l fu n c t i on s . For exa m p l e , t h e
extended ar i thmetic l ogic u n i t (XALU) i s a lso
used as a counter for the move character i nstruc
tion (MOVC) . This usage d i ffers from that in the
VAX 8600 and VAX- 1 1 /780 systems, where the
XALU i s used only for floa t ing poi n t i nstruc
t i o n s . F u r t h e rmore , a l l t h e f l oa t i n g p o i n t
instruct ions, from the most compl icated (POLY
a n d E M O D) to t h e s i m p l es t (M OV F) , have
access to the FPA hardware .

There a re a n u m ber of advan tages to t h i s
approach . F i rs t , logic i s no t dupl ica ted ; on ly
one arithmetic logic un i t (ALU) and one shifter
un i t is shared between the float i ng poi nt and the
normal arithmetic. Second , the design is t ightly
i ntegrated with the rest of the computer; there
is no overhead involved in starting the float ing
point computation .

Clearly, since a l l other VAX fami l ies use FPA-; ,
there arc a lso d isadvantages with our approach.
Shared logic is more complex than specia l ized
logi c . Performance may also su ffer s i nce the
design cannot be opt imized toward one class of
problem . Those disadvantages can be overcome ,
however, as we sha l l relate i n th is paper. The

6 2

problem of opt im iza t ion was amel i orated by
provid i ng ded i ca ted h ardwa re for the m ai n
operations of mult ip l ica t ion and addi t ion . A cus
tom m u l t ip l i e r a n d d iv ider c h i p is provided
together with exponent manipulat ion l ogic and
a sh ifter un i t optimized for floating poin t . These
logic elements handle those float i ng point oper
ations that take the longest t imes to execute .

The float ing point logic resi des i n the execu
t ion uni t , the E Box, of the V�'C 8800 CPU. That
logic is controlled by microcode in the i nstruc
t ion uni t , the I Box. 1

VAX Formats and Instructions

The VAX arc h i tecture supports fou r fl oa t ing
point formats: F , D , G , and H . These formats are
d iscussed at lengt h i n references 2 and 3 . The
F format is 32 bi ts wide, the D and G formats are
both 64 b i ts wide, and the H format is 1 2 8 b i ts
wide . A l though the D and G formats have the
same width, the exponent field is larger in the
G format, and i ts fractional field is commensu
rately smaller . This format a l lows a larger range
but with s l ightly lower precision. The fractions
are a lways normal i zed and the leading b i t - the
h i dden b i t - is not stored .

E Box Operation
Phys ica l ly , float i ng po in t opera t ions are per
formed on three modu les : two s l i ce mod u l es
and a shifter module . The sl i ce modules contai n
the cache, the main ALU, and a register fi le . The

Digital Technicaljournal
No. 4 February 1 ')8 7

shifter module comains the custom mul t ip l i er .
the s h i fter u n i t . t h e exponent m a n i pu l a t ion
logic (the two AlUs) , and the priori ty encoder.
Fi gure 1 s h ows t h i s part i t i o n i n g . To a l a rge
extent , the shifter module strongly resembles an
FPA bm wi thout the AlU and register fi l e .

The source operands are fetched from e i ther
the 64 ki lobyte (KB) cache or a genera l-purpose
regi ster (G PR) . The operands are sent on the
A and B ports to the AlU on the sl ice modu les
and to the shifter modu le . Al l the components
on the shifter modu le are driven in para l le l by
the A and B ports .

From Figure I i t i s clear that the datapath is
h ighly para l l e l ; the sh ifter , XALU . m ul t i p l i er ,
and ALU can a l l operate s i m u l taneously . Th is
para l l e l i sm is used extensively to gai n pe rfor
mance and to save cost . For exa mple , in m u lt i
pl icat ion operat ions, the XALU determines the
exponent of the res u l t , the m u l t i p l i e r mu l t i
pl ies . a n d the sh i fter absorbs the low-order bytes

BYPASS BUS<31 :0>

SHIFT COUNT BUS · 5:0>

of the product that are discarded each cycle by
the mu lt ipl ier .

The m a i n prob lem with des i g n i ng a n i n t e
grated FPA i s that t h e VAX formats for in teger
and float ing poim numbers must a l l be handled
by the same shared un i ts . figure 2 shows the dif
fere nt b i t order ings for two VAX formats , the
F float ing poim and the i nteger. I n the i nteger
format, the b i t ordering is from right to left . In
the F format, the mant issa begins at bit 16 and in
creases in significance to bit 3 1 , then cont inues
from bits 0 through 6. The remain ing bit posit ions
are used to hold the exponent and the s ign .

This req uirement for shared hand l i ng compli
cates the carry path of the AlU . The carries om
of t h e ! 6 - b i t word b o u n d a r i es have to b e
switched into the appropriate places, a s shown
in F igure 3 . The problem with shift ing is s im i lar
to t he carry problem, except that now the carry
path of F i g u re 3 represents t h e fl ow of the
shifted bi ts.

SHIFTER MODULE SLICE MODULES

A PORT
8 PORT CACHE DATA

REGISTER FILE

Figure I Block Diagram of the E Box

Digital Tecbnical journal 6 5 No. 4 February I 'J87

New Products

Floating Point in the VAX 8800 Family

F FORMAT:

31

MANTISSA
(LEAST SIGNIFICANT PART)

BIT POSITION

16 1 5

EXPONENT

7 6 0

MANTISSA

LEAST SIGNIF ICANT BIT_j MOST SIGNIFICANT BIT _j
INTEGER FORMAT:

31

LMOST S IGNIFICANT BIT

S - SIGN BIT

0

LEAST SIGNIFICANT BIT _j

Figure 2 Two VAX Formats

T h e A L U a n d t h e s h i ft e r u n i t a r e b o t h
designed to hand le a l l integer and floating point
formats . The m u l t i p l ie r expects opera nds to
come only i n a floati ng po int format . Therefore,
for i nteger mul t ip l icat ions, the data must fi rst
be converted i nto a pseudo-float ing point format
by swappi ng the places of 1 6 -b i t words with in
the i nteger format . This operation is performed
by the shifter un i t .

Table 1 gives the execution t imes for the most
common floating poin t i nstructions. These t i mes
include the overhead for fetching the operands.

0 FORMAT:

The VAX 8800 processor i s des igned so tha t
there is l i tt le , i f any, d i fference i n performance
between reg ister and memory operands . The
execution t i mes vary from 2 . 2 5 to over 5 t i mes
the performance of the VAX- 1 1 /780 CPU with
an FPA for the F and D formats . For m u lt ip l ies,
one 8800 CPU i s 2 . 5 t imes faster in F format
and 4 . 8 t i mes faster in D format ; d i v ides are
3 .0 ti mes faster. The ga i n is even more substan
t ia l for the G and H formats s ince they are not
accelerated on the 1 1 j780 .

(MOST SIGNIFICANT PART) BIT POSITION

31 16 15 7 6

�.__ _______

M

_

A

_

N

_

T

_

Is

_

s
_

A
______ ____.r- Is I EXPONENT I MANTISSA

MOST S IGNIFICANT BIT__j

0 FORMAT:

(LEAST SIGNIFICANT PART)

__j MANTISSA I IL.....--------.-' MANTISSA

S - SIGN BIT

LEAST SIGNIFICANT BIT _j CARRY IN

Figure 3 Floating Point Carry for D Format

0

r-

64 Digital Technical journal
No. 4 Februarv 1 98 7

Table 1 Execution Times

Instruction Execution Time (Na noseconds)
Register to
Register F D G H

A D D 31 5 495 540 33 1 4

M U L 450 675 842 6306

DIV 1 607 3 1 97 3 1 07 2 1 649

In the 8800 the D format is sl ightly faster than
the G for m a t w i t h i ts longer opcod e , w h i c h
requires an extra cycle i n the decoder. The s ingle
precision F format executes the fastest , and t he
larger 1 2 8 -b i t H format executes the s l owest .
However, the H format i s in tended as a backup
fo r i n t e r m e d i a t e c a l c u l a t i o n s in t h e D a n d
G formats. Used thus, the H format ensures that
the fi na l calculat ion resu l t has sufficient preci
s ion and avo ids overfl ow or u n de rflow prob
lems. Litt le hardware assistance is provided for
the H format; it is driven mostly by m icrocode .

Technology

Component tec hnology used i n the VAX 8800
processor i s an enhanced version of the macro
cel l array (M CA) used in t he VAX 8600 CPU . 2
T h i s tec h n o l o gy p ro v i d e s a bo u t 1 , 2 0 0 gate
e q u i va l e n t s w i t h a t y p i c a l g a t e s p e e d o f
1 nanosecon d (ns) . MCAs ut i l i ze e mi tter -cou
pled logic (ECL) i n a 7 2 - p i n pac kage that is
1 square inch with a max i m u m power d issipa
t ion of 5 . '5 watts . The G PR and the m u l t i p l i er
are made with custom technol ogy, wh ich uses
the same package as t h e MCA b u t c o n t a i n s a
more advan ced process . A r o u n d 1 , 8 0 0 gate
equ iva lents are provided , and the gate speed is
50 perce n t faster than t h e MCA. T h i s h igher
performance is achieved by us ing the fol lowing
features:

• Smal ler trans i s tors and meta l -ox ide -wa l l ed
resistOrs

• Cu rrent mode l ogic i nstead of the s lower ECL

• Four-level logic i nstead of the two- level logic
of the MCA

At 3 0 0 by 2 6 0 m i l s , the s i ze of the custom
c h i p is l a rger than the d i mens ions of 2 2 1 by
2 '5 2 m i ls for the MCA.

Digital Technical journal
No. 4 Februarv I Y8 7

T h e s h i fter modu l e con ta i ns J 2 MCAs a n d
8 custOm m u l t ip l ier parts . Some l OKH parts arc
used for c lock d ist r ibut ion and for dr iving the
bid i rect ional bypass bus .

Arithmetic Algorithm Processing

Addition and Subtractio n
For an addition operat ion , �he 3 2 -bit words con
ta i n i ng the exponents are sent to the main ALU .
There t hey a rc passed to t h e A a n d B port s ,
w h i c h fee d t h e s h i fter m o d u l e . These ports
drive a l l the gate arrays i n para l l e l .

The exponents are then loaded i nto the XALU
and th e sh ift-a mou nt ALU (SALU) , which com
p u te s t he a l ign m e n t s h i ft a m o u n t sent to t h e
shifter . T h e SALU a lso generates some 2 0 branch
condit ions for the m icrocode . These condit ions
i n d i ca te t h e s i ze o f t h e a l i g n m e n t s h i ft a n d
w h e t h e r a n y s o u r c e o p e r a n d i s z e r o o r a
rese rved opera n d . They a lso he l p to opt i m ize
the microcode tlow.

The XAllJ , which selects the larger exponent
and saves i t for later use , has a 1 2 -b i t datapath
and a register to hold the exponent. The size of
this datapath is sufficient for the F, D , and G for
mats plus a guard bit for overtlow or undertlow
detect ion . An ALl! is provided to perform arith
metic opera t ions o n the exponen t . The SAUl ,
with a n l l -b i t datapath, su btracts the exponents
to determ ine the a l ignment shift amount , which
is a lways posi t ive . The s ign man ipu lation logic
also resi des in the SALU.

Next, the fract iona l part of the smaller operand
is a l igned hy the shifter . This operati o n i nvolves
e i t her one CPU cyc le for F format o perands or
two CPU cyc les for the D a n d G formats . The
shifter unit sh ifts i n the tloat ing point format and
can do a fu l l 6 4 -b i t sh i ft . The l og ic that deter
m i n es the rou nd bits i s related to the a l ign ment
s h i ft operat ion but i s phys ica l ly l ocated in the
pr ior i ty encoder gate array . This gate array a lso
conta ins some of the shifter fu nctional i ty .

N i ne gate arrays are used for the shifter un i t .
Of those , eight make u p the datapath, the n i nth
is t he contro l d ev i c e . The s h i fter c a n accept
ei ther a 64 -bi t operand o n the A and B ports or a
3 2 -b i r operand on ei ther port . The sh ifter gener
ates a 3 2 -b i t resu l t that can be ei ther the h igh
order or the low-order part of the answer. The

65

New Products

Floating Point in the VAX 8800 Familv

s h i fter datapath gate a rrays a rc i d e n t i ca l : each

e ffectively const i tu tes a byte s l i ce of the des ign

an d performs a b i t s h i ft of u p to seven p l aces
Byte sh ifti n g is t h e n performed by send i n g t h e
correct s h i fter omput to the correc t byte pos i

t ion . T h i s opera t i on is fac i l i ta ted by hav i ng a l l
the outp ut s w i red t o the OR ga tes a t a l l poss ible

byte pos i t i ons and by enab l i ng t h e con·ecr output .

The s h i ft e r performs fl oa t i n g po i n t . i n te ge r .
and logical sh i fts , as we l l as a n umber of m i sce l

laneous fu nctions . These i n c l u d e conve rts from
deci m a l - format data i n to i n teger format and \ ' icc

versa . T h e ma s k i n g of the expo n e n t f i e l d a n d

the i nsertion o f t h e h i dden b i t are a lso done by
the sh i fter .

After t h e a l i g n m e n t s h i ft . the o u t p u t of t he
s h i fter is d i rected to t he m a i n ALU on the lwpass
bus . There. the output is add ed to or su btracted
from the fract ion of the larger operand . The out

put of the ALU operation is now ready to be n or

mal i zed i n the sh i fter . I n most cases a sma l l nor

m a l i ze s h i ft of at most one b i t pos i t i o n l eft or
r i g h t w i l l be s u ffic ien t . The sp ec i a l i ze d hard

ware i n t h e s h i fter ha n d l es t h i s c a s e a n d t h e n

ro u n d s t h e r e s u l t . S h o u l d a l a r g e r s h i ft b e

req u i red , t he n m i c rocode w i l l fi rst d irect the
ALU res u l t to t h e p r i or i ty e n co d e r g a t e a rray .
There , the p osi t ion of the lead i ng l is fou n d a n d
used t o determ i ne the norma l i ze a m o u n t for t he

subsequ e n t cyc l e .

The rou n d i ng operat i on i n the V�'(8 8 0 0 CPU
i s unus u a l i n that i t is l i mi ted to t he low-order

e i ght b i ts . Therefore . a small 8-bit adder can be

used for this opera t i on . This adder is both faster
an d c heap e r t h a n the u s u a l met hod of u s i n g a

fu l l 64 - b i t adder . The 8 - b i t adder is a I so s u ffi

c i e n t to ca l c u l a te t h e correct a n swer i n over

\)\). 5 percen t of the add i t ion operat ions . Shou l d
a carry-out b e generated b y t h i s 8 -b i t rou nd i ng
add , then c learly t he resu lt created i s i ncorrect .
l n t h a t c a s e t h e c o m p u t e r i s t r a p p e d a n d

m i crocode i nvoked to correct the resu l t .

Multiplication

A-; men t ioned earl ier , the 8BOO con ta i ns a h i gh

pe rforma n c e . custom-designed m u l t i pl i e r a n d

d i v i der u n i t . A nu mber of factors i mpel l e d u s to

usc such a u n i t . F i rs t . m u l t i p l i ca t i o n i s a very
frequent opera t io n t h a t i s used ex te nsi vely i n

matr i x man i p u lat i on . For exa mpl e , i n the LIN
PACK bench ma rk , the t i m e-cr i t ica l rou t i n e con
ta i ns an even mix of addi t ion and m u l t i p l icat ion
operat ions. '

66

Second . it was not poss i b le to su ccu m b tO t lw
te m ptat ion of u s i n g the m a i n AUJ to provide t he

d i v i s i on o pe rat ion . This desi re was n a t u ra l s i n ce

cl i ,· i s ion is an i n freq uen t opera t i o n . and the usc
of an AUJ i n a repeated su btract and sh i ft mode

was a ppea l i ng . For exam p l e . the VAX 8 6 0 0 uses
the ALU for j u s t t h at pu rpose . In t he 8 8 0 0 t h e

m a i n AUJ a l so c o m p u t e s t he v i r t u a l a d d ress .
S i nce this clatapa th is very t i me-cr i t i c a l (i n t he

8 8 0 0 a s w e l l a s i n m o s t o t h e r c o m p u t e r
designs) . i t can not be a l lowed to go any slower.

I n c l u d i ng a n extra path to a c c o m modate d i v i

s i o n wou ld have s lowed down t h i s c r i t i ca l path

by around '5 ns , resu l t ing i n a 1 0 perce n t perfor

manc e degrada t i on for a l l operat ions .
J\tl o rcovc r , t h e ava i I a b l e spa ce for the m u l t i

p l i c r and d i vider u n i t was l i m i ted s i nce fl oati ng

poi n t opera t i ons a rc i n t egrated with t he rest of

the mach i n e . Approx i mately one-t h i rd of a mod

u l e (1 2 i nc hes by 1 6 i nc hes) was ava i la ble . I n
contrast , t h e VAX 8 6 '5 0 C P U d ed i c a tes a fu l l
m o d u l e to m u l t i pl i ca t i o n .

T h e c u s t o m d e s i gn o f t h e m u l t i p l i e r a n d
d i v i d e r u n i t is basi ca l l y a byte s l i c e o f a l a rge
w o rd - s i z e d m u l t i p l i e r a n d d i v i d e r u n i t . T h e
m u lt ip l i er handles 8 b i ts p e r cyc l e , the d ivider

h a n d l es I h i t . F i gu re 4 s h ows t h e c o m p l e t e
5 6 - b i t by H - b i t m u l t i p l i e r w i t h i ts e i g h t by te

s l i ce custom ch i ps . Eight c h i ps arc used tO form
the req u i red word size of 64 b i ts (5 6 data b i ts

p l u s 8 g u a rd b i ts) . T h i s a r r a n ge m e n t is s u ffi
c i e n t to h a n d l e F. 0 , and G format ope rat i ons .

H format operat ions arc performed by pa rt i t ion
i n g t h e p ro b l e m i n t o ma ny s m a l l e r '5 6 - b i t m u l t i

pl i cat ions u nder m i crocode con tro l .
The m u l t i pl i cand i s loaded i n to the MD latch

a ft e r pass i n g t h ro u g h r h c m a s k l o g i c . w h i c h
c l e a r s t h e s i g n a n d t h e e x p o n e n t f i e l d a n d
i n s e rt s t h e h i d d e n b i t . T h e P R l a t c h a n d t h e
P R G B a rc c l eared a t the s t a r t of the m u l ti p l y .
The P R G B c o n t a i n s t h e g u a rd b i ts for t h e P R
latc h . A t t h e e n d of a m u l t i p l y . t h i s l a t c h w i l l
hold the b i ts requ i red for a poss i b l e norma l i za
t i on s h i ft a nd a lso for a rou n d i ng operat ion . The

l east s i gn i fi can t e i ght b i ts of the mu l t i p l i er arc

loaded i n to t he m u l t i pl i e r la rc h . The fi rst m u l t i

p l y cyc l e is now ready to be performed .

A '5 6 - b i t by 8-bi t mu l ti p l i ca t i on is performed
between the con tents of the MD a nd mu l ti p l ier
latches. The resu l t is then added to the contents

of the PR latch (w h i c h i s i n i t ia l. l y zero) and then
written back i n to i t with a r i ght s h i ft of 8 b i ts .
The P R latch is t h us an accu m u lat i ng l atch and

Digital Technical journal
1Vo. 4 FehruaJ:J' l lJ8 7

MULTIPLICAND INPUT MULTIPLIER INPUT

S·BIT SHIFT

PRGB

64 BITS

BOOTH RECODE

MULTIPLIER OUTPUT

Figure 4 Multiplier and Divider Unit

conta ins the 64·b i t partial product of each m u l ·
t i p l i c a r i on opera t ion . T h e next 8 b i ts o f t h e
m u l t i p l ier are loaded i nto the mul tipl ier larc h ,
ready for the next cycle . This cycl ing cont inues
unt i l the m u l t i p l icand has been mul t ip l ied by
a l l the mu l t ip l ier byres. This algorithm is si m i lar
to the one u s e d in t h e VAX R 6 5 0 s c h e m e ,
except that that processor has a narrower data·
path of 32 bits .

Notice that the least s ign i fi ca n t byte of t h e
part ial product is discarded after each cyc le and
absorbed by the s h i ft e r u n i t . These bytes are
requ i red only for the H format mul t i ply.

O n c e c o m p l e t e d , t h e re s u l t i s s e n t o u r
through the resu l t latch , t hen normal ized a n d
rou nded . The rounding carry i s on ly propagated
i nto the least s ignificant byte of the resu l t . This
proced u re u ses less l og ic s i n ce only an 8 · b i t
instead o f a 64 ·bit incrementer i s required . The
8 · b i t incrementer wi l l be s u ffi c i e n t fo r most

Digital Technical journal
o. 4 Februarl' I <)87

m u l t i p l i e s . S h o u l d a gre a t e r i nc r e m e n t be
req u i red, then the m u l t ip l ier wi l l trap the rest
of the machine , and t he correct ion wi l l be per·
formed by the main ALU . This scheme is s i m i lar
ro the one used for addit ion .

The prov i s i o n of a 6 4 · b i t adder i ns i d e the
m a i n mul t ip ly path i s u nusual i n a h igh·perfor·
nunce machi ne . H i gh ·speed mul t ip l ier designs
typ i c a l l y use ca rry·save adders , w h i c h do nor
propagate the carry signal bur save them so they
can be absorbed by the subseq uent cyc le . This
form of adder is indeed used in the cusrom mul ·
r ip l ier ro perform the 5 6 ·b i t by 8·bit m u l t ip ly
fu nction i l l ustrated i n F i gu re 4 . However, the
8800 a lso uses a fu l l 64 ·bi t adder for the fo l l ow·
i ng reasons:

• A 64 ·bi t adder has ro be provided somewhere
to propagate the carries from rhe carry·save
adders.

67

New Products

Floating Point in the VAX 8800 Family

• With the 4 5 -ns cycle t ime , the 6 4 -b i t adder
fi ts i n the main datapath . A faster c lock for
the mu l t ip l ier wou ld have com p l i cated the
clock d istriburion and heen d i fficu l t to gener
ate with low skew.

• A fu l l adder in the darap;ah a l l ows the usc of
a simple nonresroring division a lgori thm.

The m u l t i p l i e r and d iv ider ch ip conta ins a
1 2 - b i t by 8 -b i t m u l t i pl i e r , two 8 - b i t adders ,
six latches with a rota! size of 7 2 bits , as wel l as
the rounding , normal iz ing, and control logic . A
comparable MCA design wou ld requ i re between
three and four of these elements.

A lternative Designs for the Multiplier

An MCA design was certa in ly poss ible and coul d
have been m a d e ro fi r i n r h e specified space .
The performa n ce of such a d es i gn , however ,
wou ld nor be as good as the custom design for
mul t ip l icat ion but comparable for d ivision . An
MCA design wou ld be I . 7 ri mes better than an
l l j780 with an FPA for a mul t iply in F forma t ,
whereas the custom logic chosen i s 2 . ') t i mes
bette r . The performance wou l d be 2 ') t imes
better fo r t he D for m a t , w hereas t he custom
design is 4 . 8 t i mes better .

Another alternative was to use a commercia l ly
ava i lable mult ip l ier . That was tempting because
such a product has the advantage of being read
i ly ava ilable and tested . Using i t would have c i r
cu mvented the h i gh r isk of a custom des ign .
However, there are a number of d isadvantages to
using genera l -purpose mul t ip l iers :
• Extra logic i s requ i red ro mask out the s ign

and exponent of the data and to i nsert the
h i d d e n b i t . The o u t p u t of t h e m u l t i p l i e r
would have to be masked.

• Most avai lable produ cts cannot handle d iv i
s ion . Thus a separa te d iv i d e r wo ul d have
been req u i red , which was expensive . Even
d i v i s i o n a l go r i t h ms us i n g m u l t i p l i c a t i o n
requ i re a large amount of ROM r o conta in rhe
approximation constants .

• Many of the ava i lab le designs arc int ended for
in teger applications, such as HI butterfl ies
a n d d i g i t a l s i g n a l proc essors . H e n c e , t h e
designs are opt imized for those appl icati ons .
Exte nd i ng these 8- or 1 6-b i t mul t i p l iers ro a
larger word length , as requ i red for the Vfu'{
archi tecmre , was neither straightforward nor
cost effective . M oreover , the normal iza t ion

68

and round ing of resu l ts enta i ls e i t her extra
logi c or addi t ional cycles i f the floating poin t
hardware i n the E Box is used .

• Most designs have a c lock system not consis
tent wi th the rest of the machi n e . This fact
i n t roduces t h e co m p l i ca t i o n of a spec i a l
c lock d istribution and d i ffi cult ies in veri fying
rhc design .

• Very few designs a rc based on ECL technol
ogy . Other technologies . such as TT L , wou ld
req u i re a d i ffe re nt power ra i l and thus an
extra power supply.

The c losest ava i lable mu l t ip l ier to rhe 8800
req u i rements is the I 090 I made by Motoro l a ,
I nc . This MCA implementation conta ins an 8-bir
by H-bit mul t ip l ier together with a 1 6-bit adder .
However . no latc hes a re i nc luded ; they m ust
therefore be provi ded externa l ly , thus i ncreas
i ng rhc cost substan t i a l ly . On the other hand ,
d i vision cou ld be provided by repeatedly using
the 1 (J-b i r adder of the I 090 I .

Division

The mult ip l ier performs a nonresroring d ivision
a lgor i t h m , 1 b i t per cyc le . fo r the F, D. a n d
G formats . The d iv ider c a n accept a n e w d iv i
dend b i t dur ing every cyc le . thus permi tt i ng a
1 28-bit by ') (J -b i r d ivide . A d ivide of this s ize is
used in the H format a lgorithm to form the start
ing approxi mation .

The booth recodc of the mul t ip l i e r i s mod i
fi e d s l i g h t l y r o a c c o m m o d a t e the d i v i s i o n
deeode z l n the case o f mu l t ip l i cat ion , the mul
t ip l i e r recod e sel ects the correct mu l t ip les of
the mul t ip l i cand to add to the part i a l product
d u ring each m u l t i p l i ca t ion opera t ion . ln the
case of d ivis ion , rhe d iv isor i s loaded i nto the
M D latc h , and the booth recode se lects e i ther
+ 1 or - l t i mes the d iv isor for each d iv is ion
step.

In the nonresto r i ng d i v i s ion a lgor i t h m , the
sign b i t of the previous resu I t selects the correct
d ivisor mul t ip le for the next cycle . This selec
tion is faci I i ta ted by feeding the sign signal i n to
the mod i fi e d booth recod c so that i t w i l l se
lect the mu l t iples of e i ther + I or - 1 t imes the
d ivisor.

The quotient bit generated every cycle is sent
to the sh ifter un i t to be absorbed . The first quo
tient bit generated corresponds to the most sig
n i fi cant b i t of the answer . That bit is then nor
ma l i zed and rounded by the shifter.

Digital Technical journal
No. 4 Februan• J 'J8 7

Microcode Design

Be i n g i n t egra ted i n t o t h e l og i c i n t h e m a i n
mach ine , the floa t i ng po in t l ogic i s a lso con
trol led by the ma in m icrocode . The VAX 8800
C P U i s an e x t e n s i v e l y p i p e l i ne d d e s i gn . s

Al though pipe l in ing is a wel l known techn ique
for i mprovi ng performance (for examp le , the
VAX 8600 CPU) , i t comes at a price : the m icro
code branch l a tency wi l l i ncrease . By tha t we
mean that t he m i crocode cannot branch on a
con d i tion or flag i n the very next i nstruct ion ;
i nstead , i t m us t wai t a num ber of cyc les . This
delay is a consequence of the overlapping of the
m i c ro i n s t ru c t i o n s ; e a c h su ccess ive m i cro
i ns t ru c t i o n starts before i ts p redecessor has
completed .

F igure 5 shows a typi ca l p ipel ine s im i l a r to
that used in the VAX 8800 system. The m icroin
struction is subdivided in to five components:

• In NEXT ADDRESS, the address for the next
m i cro i ns t ru c t i o n i s compu ted , as we l l as
those for a ny se lected branch condit ions.

• In LOOK-UP, the m icrocode RAM is accessed
to fetch the micro instruction speci fied by the
current NEXT ADDRESS .

• In READ, the register fi l e is read to fetch the
specified operands (e .g . , fetch RO and R l) .

• l n ALU, the operation i n the arithmetic logic
unit is performed (e .g . , RO + R l) .

• In WRITE , the resu l t of the ALU operation is
wri tten back to the register fi le .

Thus when the next-address cyc le has com
pleted for t he first m icroinstruction, A, the next
address cycle for t he m icroinstruct ion , B, in the
su bseq u e n t cyc l e is s tarted . Th i s cycle now
over laps with the look-up cycle for A. As many
as five operations can proceed s imul taneously in
th i s manner.

The branch l a tency of th i s p i pe l i ne i s gov
erned by t h e f irst m i croi ns t ruct ion tha t can
"see" a branch condi tion set in an earl ier cycle .
For example , i f the ALU cycle of A sets a carry
con d i t ion , then t he fi rs t ins t ruct ion t hat can
possibly use th is s ignal in i ts next-address cycle
is E . Thus the branch latency is three m icroin
structions, as shown i n Figure 5 .

Natura l ly , this branch latency influenced the
way in which we designed the logic to perform
floa t i ng poi n t operat ions . C l ear ly , we had to
avo i d bra n c h i n g w h e n ever poss i b l e as t h i s
wou l d resu l t i n a n excessive ly s low a lgor i thm.
I nstea d , we had to adopt a strategy based on
pred i ct i o n and p rov i de ex tens ive h a rdware
assistance .

Prediction is based on the fact that the speed
of algori thms for floating point adds are usua l ly
data dependent . For example , for cert a in data
va lues , the resu l t of a floa t ing p o i n t add wi l l
re q u i re c o n s i d e ra b l e n o r m a l i z a t i o n . T h a t
requirement i s a lways present when two values

INSTRUCTION A :

r-CONDITION CODE SET (E.G . . CARRY OUT)

�-
N
-

A
---r---

LU
__ -r_

R
_

E
_

A
_

D
__ r-_

A
_

L
_

u
--rl-

w
-

R
-

IT
-

E
��

B: NA

c :

N A - NEXT ADDRESS
LU - MICROCODE INSTRUCTION LOOKUP

LU READ

NA LU

D: I NA

E :

ALU I WRITE

READ ALU

LU READ

WRITE

ALU WRITE

BRANCH
LATENCY

NA LU READ ALU WRITE I
L EARLIEST I N STRUCTION THAT CAN BRANCH

ON CONDITION CODE OF I N STRUCTION A.

Figure 5 Five-stage Pipeline

Digital Technical journal
.
69 No. 4 February 1 !)87

New Products

floating Point in the VAX 8800 Family

of s imi lar magnitude and large cancel lation are
subtracted . In other cases l i tt le or no normal iza
t ion is requ ired . It is c l early preferable not to
pay the penalty of unnecessary normal i zations.

The approach we took in the 8800 i s to pro
ceed down the most l i kely path, assum i ng that a
sma l l normal ization wi l l be required while wait
ing for the result of the branch signals . The add
and subtract a lgori thms i n part icular are struc
tured that way. The SALU exa mi nes the expo
nents of the operands and other signals; then i t
sets approx imately 2 0 branch condi tions i n the
first two cycles of the add/subtract datapath .

I n certa in s ituations a l l paths may be equa l ly
probable. I n these cases the m icrocode enables
hardware signals to control the datapath . A good
example of th i s process ing is the selection of
operands . For a float ing point add, i t is natural
to th ink in terms of the larger and the smal ler
operands . For example , the smal ler operand is
the one tha t is a lways a l igned . However , the
microcode does not know which register loca
t ion ho lds the sma l le r va l ue , and it does not
wa n t to wa i t fo r t h e w h o l e b ra n c h - l a te n cy
period to find out .

Therefore, the microcode wi l l assume that the
larger operand is in a particular register. Shou ld
this assumption be i ncorrect, then the SALU wi l l
swap the register fi le read addresses (thus sort
ing the operands) . Not a l l locat ions have their
add resses m od i fied i n t h i s m a n ner s i nce the
m i crocode st i l l needs tO be able to read and
write to specific locations.

S i m i lar ly , the SALU determi nes if the m a i n
ALU i s t o d o an add o r subtract operation . At this
po i n t in the com p u ta t i o n the m i crocode is
u naware of which operat ion wi l l be requ ired .
The p i p e l i n e i s st i l l w i t h i n the long bra n c h
latency o f the 8800 and cannot branch unt i l this
latency delay has elapsed . Note that one of the
most frequently performed instructions i s ADDF.
That i nstruction wi l l have just completed by the
t ime the microcode can fina l ly branch . There
fore , the ADDF cannot execute any faster s i nce it
is l i mi ted by the bra nch- la tency delay. Conse
quent ly , those i nstruct ions t ha t are the most
probable cases are completely hardware driven .

To a l low fast paths in the add algori thms, i t i s
necessary to know that the result cannot poss i
b ly overflow s i n ce overflowed resu l ts mus t
never be writ ten . To prevent overflow the SALU
examines the exponents of the operands . I t then

70

determi nes i f the exponent of the resul t could
poss i b ly overflow or u n d erflow, t a k i n g i ntO
account a ny possible normal i zation shift . There
is a l so the added complexity of a rounding oper
a t ion provok i ng an extra norm a l i za t ion step .
That woul d happen when the roun d i ng i ncre
ment caused a carry to p ropagate throughout
the whole fraction .

Conseq uently, the use of a smal l 8-bit i ncre
menter for the round operation is possible only
i f i t i s k nown that an overflow cannot happen .
The reason for th is i s that ha l t ing (trapping) the
machine is not instantaneous (for the same rea
son that branch latency exists) ; therefore , the
result wi l l always be written . Thus, a l though the
mi crocode can eventual ly correct the resu l t , it
cannot prevent that resu lt from wri t ing .

Performance Issues

W h e n a p rogr a m w i t h m a n y f l o a t i n g p o i n t
i nstructions - such a s U N PACK - is run , i ts
performance is not tota l ly d icta ted by the raw
floating point speed of the CPU . Having a more
profound effect are other factors , such as

• The size and organ ization of the cache - This
factor is part icularly important for programs
w i t h l a rge a m o u n t s of d a t a b e c a u s e t h e
operands w i l l res i d e i n m e m o ry . H a v i n g
superior register-to-register performance wi l l
not help i n this type of program . Clearly, the
larger the cache, the greater the chance that
the requ i red data wi l l be qu ick ly ava i lable ,
t h u s avo i d i ng a l e ng thy tra nsa c t i o n w i t h
memory.

• The performance of the in teger and control
i nstruct i o ns - Even program s performing
extensive float ing point operat ions sti l l have
s ign i ficant a m ou nts of i n teger and control
i nstruct ions . Doing these qu ick ly can con
tribute substant ia l ly ro the program's perfor
mance .

To i l lustrate the effect of these factors, com
pare the performance of the VAX 8800 system
w i t h t h a t of t h e VAX 8 6 5 0 w h e n b o t h r u n
UNPACK, a s shown i n Table 2 . � The 8 6 5 0 has
faster raw float i ng poin t speed , especia l ly for
the F format (over twice as fast) . Yet the two
systems r u n t h i s be nchmark w i t h a l most the
s ame performance . C learly, i n progra ms with
t hese character is t i c s , facrors other than raw

Digital TechnicalJournal
No. 4 February 1987

speed wi l l have a greater infl uence on perfor
mance . Of course . in app l i cations without them.
the raw speed advantage of the 8650 wi l l be
more pronounced .

Table 2 U N PACK Performance

Performance (M FLOPS)

Computer

VAX 8800
VAX 8650

Summary

F Format

1 .35
1 .30

0 Format

0.99
0.70

The arch i tecture of a p rocessor l i ke the VAX
8800 CPU is a l l a matter of trade-offs . Where
does the performance make a d i fference 1 For
exa m p l e , we cou l d have sup pl i ed the 8 8 0 0
wi th a separate float ing po in t u n i t t O ach ieve
faster performance . Doing that, however, wou ld
have req u i red a t l east one extra mod u l e . To
keep the cost of the system constant . this extra
modu le wou ld have enta i led removing a module
of logic from some other part of the computer .
Perhaps remov ing t h a t m od u l e wo u ld have
resu l ted in a sma l ler cache or a s i mpler decoder
with no opti m i zat ions for the frequent instruc
t ions . In any case the net effec t wou l d have
been w sacrifice the performance of the com
puter in some other area . All thi ngs considered .
we feel that the design is well balanced for the
mult i tude of d ifferent computing tasks that CLts
tomers wi l l perform with the VAX 8800 system .

Acknowledgments

The authors wou ld l i ke to thank Ron Me lanson
and his team for the c i rcu i t design of the custom
mult ip l ier . In add it ion, we wou ld l i ke w thank
Dave Sager for his help and gu idance.

References

1 . R. 13urley, "An Overview of the Four Sys
tems i n the VAX 8800 Fa m i l y , " Digital

Technical journal (February 1 98 7 , th is
issue) : 1 0- 1 9 .

2 . T . Fossu m , W . Grundmann, and V . Blaha.
"The F Box, F loa t ing Po in t i n the VAX
8600 System , " Digital Techn ical jo ur

nul (August 1 98 5) : 4 3 - 5 3 .

Digital Technical journal
No. 4 Fe/Jruarp I <)87

.'1 . VA X A rchitecture Ma n ual (Maynard :
D ig i t a l E q u i p m e n t Corpora t ion . Order
No. EB- 1 9 580 , 1 98 1) .

4 . j . Donga rra , " Pe rformance of Va r ious
Computers Us ing Standard Li near Equa
t ions Software in a FORTRAN Env i ron
ment . " Argonne National Laboratory (May
l 9H6) .

5 . S . Mishra, "The VfuV. 8HOO ,\f icroarchitec
tUIT , " Digital Technical jou rna! (Febru
a ry 1 987 , this issue) : 20-3 3 .

7 1

New Products

james P. janetos I

The VAX 8800 Input/Output System

The VAXBI bus links the processors in the VAX 8800family to ljO devices,
including clusters and networks. The VAX 8800 multiprocessor can sup

port four of these 32-bit synchronous buses, each of which connects up to
16 /jO devices. Each VAXBI bus connects to the memory interconnect, the
NMI bus, by an l\'Bl adapter, which contains an interface chip to imple
ment the VAXBI protocol. The NB/ adapter logic handles CPU references
and direct memory accesses to and from the ljO devices. The adapter has
its own 200-nanosecond clock, which is completely asynchronous with
the 45-ns CPU clock.

T h t: VAX 8 8 0 0 fa m i l y o f systt: m s i s a n o t h e r
major stt: p for D i gi ta I E q u i pmenr Corpora t i o n
i n t o t h t: rt:a l m of h i gh -perform ance computi ng .
\Vh i l c: i n creas i n g the com p u t i n g capa b i l i ty o f
tilL VAX l i ne for scient if ic and tec h n i cal app l i
cat ions. these systems w i l l u n doubtedly play a n
i m portant ro l e i n c o m m e rc i a l a n d offi u: mar
kets . I n thest: markets , the abi l i ty ro connt:cr ro a
com p u t i n g c l u s t e r . s e rv i c e m a n y u s e r s . a n d

fu nction i n a network arc a s i m portant a s a fast
CPU. I n dt:ed , i n a m u l ti user. m u l t i progra m m i ng
system , the effi c i ency of " housekeep i ng " opera
t i ons affects the perceived system performance
as m u c h a s raw p rocessor c o m p u t i n g speed .
T h e se o p e ra t i o n s i n c l u d t: s h a r i n g m e m o ry
between m a n y progra m s , swapp i n g processes
i n to and out of memory. raging , and respon d i n g
to i nteractive user requests .

Al l me mbers of the VAX 8800 fa m i ly usc D i g i
ta l ' s new VAX B I bus as t h e i r c o m m u n i c a t i o n
l i n k t o c l usters. networks , a n d i n teract ive users .
W i t h i rs a b i l i ty t o c o n n e c t t o fo u r st: p a r a t c
VA,'CB! channels , t h e VAX 8 8 0 0 system i n rarr ic
u l a r o ffe rs g r e a t f l e x i b i l i t y in c o n fi g u r i n g
peri p h e ra l devi ces a n d i n terfaces . T h i s paper
first d i sc usses the c haracte r ist ics of the system
com m u n i cat ion buses i n the VAX 8800 system .
Fol lowing that i s a d i scuss i o n o f the i n terface ,
cal led the NBJ adapter, l i n ki ng the pri mary sys
tem bus to the VAXlll i n putjou tput (1 /0) bus .
Fi gure I i I lustra res the various components of a
VAX f\ 8 0 0 syste m .

The Processor-to-Memory Bus

The two C PUs. the IjO subsystem . a n d mem ory
a l l share the pri mary system bus, ca l l ed the N 1\<I I

7 2

b u s . T h i s b u s i s a l i m i te d - l e ng t h , h i g h - speed
synch ronous com m u n i cations path that provi des
t h e data l i n k between t h ese fo u r devices. The
N M I bus is comp l e t e l y c o n t a i n ed i n t h e m a i n
system cabinet ; i ts cyc l e t i m e is 4 5 nanoseconds
(ns) , the sa m e as the C P U ' s . The bus protoco l
hand les seve ra l outsta n d i n g transac t i ons a t one
t i m e . t h us e ffect i ve l y i n creas i ng the bus's u t i
l i za t i o n . T h a t i s , o n c e a d e v i c e h a s i s s u e d a
t r a n s a c t i o n (e . g . , a rea d) , t h a t d e v i c e rel i n
qui shes the usc of the bus u n t i l the respond i ng
device is ready w i t h the data . Other devi ces arc
t h e n free to start other transactions.

I n t h i s fas h i o n , t h e b u s u s a g e i s g r e a t l y
i n creased . The two C PUs comm u n i ca te d i rectly
with memory over t he N M I bus; the 1/0 devi ces
connected ro t h e V AXBI b uses access m e mo ry
via t he NIH ada pters. A device on the NMI bus is
c a l l ed a ' ' n exus . ' ' Arb i tra t i o n among n e x u ses
occu rs i n para l le l w i t h data transfers and is han
d l e d by one C P U in a nearly rou nd-robi n fas h
i o n . T h i s guara n tees t h a t each n e x u s ga i n s i rs
fa i r share of the bus resou rce . Data transfers on
the NM I bus occur i n J ongword , octaword , and
hexaword l engths (4 , 1 6 , and 3 2 bytes respec
t i v e l y) . Fo u r l eve l s o f d ev i c e i n t e r r u p t s a r e
s u pportcd .

The V AXBI Backplane Interconnect

The VAXB I b u s i s u s e d as t h e IjO bus for t h e
VAX 8 8 0 0 system . As s hown i n F i gure I , fro m
one t o fou r VAXI31 buses can b e i nterfaced t o the
NMI bus . depe n d i ng on a customer's needs and
h i s d e s i red m i x of p e r i p h e r a l d e v i c e s . E a c h
VAX131 bus is a 3 2 -bi t-wide synchronous bus that
can con nect u p to t 6 VAXBI devices . Each VAXBI

Digital Technical Journal
No. 4 February I 987

device , ca l led a " node , " uses a ch ip cal led the
VA.X Bl I nterface Chip as i ts bus in terface. This
chip provi des a cons istent logical and e lectrical
in terface to the bus. The VAXB I I nterface Ch ip
i m p l <: me n ts mos t o f t h e bus protocol for i t s
node, i nc l uding bus arbi trat ion and error check
i ng . The VA.XBI cyc le t i me is 2 00 ns , contro l led
by an osc i l l ator on the NBIB .

The NBI adapter acts as both a processor and a
mem o ry on the VAXB I bus . The adapter pro
vides t h e fol lowi ng three i m portant fu nct ions:

1 . A means for the master CPU to read and
write device registers

2 . A w i n d o w i n t o m e m o ry fo r V A X B l
devi ces

3 . The fac i l i ty for VA.XB I devices t o i nter
rupt the processsor

Con trol of Peripheral Devices
To g a i n a n a p p re c i a t i o n of t h e N I31 ada pter
architectu re , i t i s worthwhi le to d iscuss the con
trol of perip hera l devices . 1 To move data from a
d isk i nto memory or to send program output to
a peri p hera l device , a programmer must specify
the operation to be carried out (read or write) ,
a m e mory address to receive t h e da ta o r that
contai ns data to be output to a device, and the
amount of data to be moved. In early mach i nes,
the processor was requ i red to control the ent i re
operation - execut ing i nstructi ons to move the
data , wait ing for the s lower device to complete
the operat ion , and then conti n u i ng in th i s fash
ion unt i l a l l the data had been moved . This pro
cess wasted a great deal of processor t ime s ince
many i n struct i ons cou ld have been executed
whi le wa i t i ng for an l/0 operation to complete.

TO
OTHER

COMPUTERS

Figure 1 VA X 8800 Configuration

Digital Technical Journal
No. 4 Februarv 1 98 7 73

New Products

The VAX 8800 !nputjOutput S J •stem

Modnn machi nes have ljO contro l l e rs. w h i c h
arc s p e c i a l h a r d w a r e i n t e r fa c e s t h a t h a n d l e
device operat ions . A progra m mer m u s t spec i fy
to the contro l ler the attri butes of t he operat ion
t o b e c a r r i e d o u t . O n c e t h e o p e r a t i o n i s
a c c e p t e d by t h e c o n t ro l l e r , t h (' JHO C ('ssor i s
freed fro m t h e d e ta i ls of a c t u a l l y moving t h e
data . I n t h i s way process i ng a n d r;o operations
c a n b (' o v e r l a p p e d , i n c r e a s i n g p ro c e s s i n g
u t i l i z a t i o n .

For s low devices. s u c h a s termina ls , tlw coo
trol ler usu a l ly has a sma l l buffer to hold th(' data
to be transferred to or received from th(' proces
sor. This buffer is loaded by the processor when
i t has data to be transmi tted to the devi ce . The
device accepts the data , then signals wh('n ready
for more . When having data to b(' transm i tted to
the processor, the device loads that data i n to the
b u ffe r a n d t h e n s i g n a l s to t h (' p r o c e s s o r t o
re m ove t h e data . T h i s process i s ca l l ed pro
gram med r;o .

For high-speed devices, such as d isks. t h(' IjO
co n t ro l l e r n or m a l ly performs d i r(' C t 111 (' !11 0 ry
access (D MA) operat i ions . Th(' proc('ssor l oads
sp('c ia l registers in the contro l ler with i n forma
tion about the transfer - th(' amout of data to
b(' moved and i ts location and dest i nation . The
proc('ssor is then freed w h i l e the control l e r per
forms the transfer. I n this way large amounts of
data c a n be m oved w i t h m i i n i m a l processor
i nt('rvent ion .

Addressing in the VAX 8800 CPU

Th(' master CPU m a n i p u lates the l/0 contro l krs
with reads and wri tes of s ingle lonwords to the ir
control and status registers. These registers have
add resses i n p hys ic a l add ress space and can be
man i pu lated by standard VAX i nstructions . This
technique contrasts with that used i n many com
p u ters i n w h i c h spec i a l i n stru c t i o ns c o n tro l
ljO . The address range of the VA,'(arch i tectu re
is shown i n F i g u re 2 , i n w h i c h a d d resses are
given i n hexadecimal notation .

Physical me mory occupi es the first ') 1 2 mega
bytes of the d e fi n e d a d d ress ra nge . T h e I j O
a d a p t e r a n d t h e I j O c o n t r o l l e r r e g i s t e r s
arc l o c a t e d i n t h e range fro m 2 0 0 0 0 0 0 0 to
5FFF FFFF . I n t he 1/0 space. t he add ress range
a l l ocat('d for each VAXB I bus is fu rthn s u bd i
vided i nto space for each device on the bus.

74

BYTE ADDRESS

0000 0000

1 FFF FFFF

2000 0000

3FFF FFFF

5 1 2 MEGABYTE PHYSICAL
M EMORY SPACE

5 1 2 MEGABYTE 1/0 SPACE

Figure 2 VAX A ddress Space

The NBI Adapter

An adapter prov i des an i n te rface between two
e x i s t i n g bu ses , (' a c h w i t h i t s own a d d ress i n g
protocol a n d data-transfer protocol . The adapter
is responsib le for a ll com m u n i cat i ons between
the two buses. I t is a datapath for the processor
to acc ess d (' v i c c reg i s ters a n d fo r d e v i ces to
a ccess m e m o r y . T h i s d a ta p a t h is a ls o u e d t o
i n te r r u p t t h e processor a n d for i n i t i a l i za t i o n
fu nct ions .

The N Bl adapter . consist ing of an N B IA mod
ule and e i ther one or two N B I B mod u les , i nter
faces the VAX 8800 system to the V AXB I buses.
which arc 1 /0 buses i n th is app l i cat ion . That i s ,
t h e N B J ad apter issues reads and wri tes on the
VAXB l buses i n response to reads and wri tes that
are i n th(' N B I add ress range i n i t i a ted by the pro
c e s s o r on t h e N M I b u s . L i k ew i s e , t h e N B I
adapter issues reads and wires to memory o n the
N M I b u s i n response to rea d s and writes i n i
t i a ted by VAX B I d ev i c es o n t h e VAX B I buses .
The N B I adapter i n the VAX 8800 system sup
ports a new genera t i on o f h i g h - perfo r m a n c e .
nat ive VAXI3 1 devi ces .

F i g u r e 3 c o n t a i n s a b l o c k d i a g r a m o f t h e
N B IAj N B I B adapter syste m . Bas i c a l l y , t h e data
path of the NB!A m od u le conta i ns an NMI i nter
face . which provides bufferi ng for addresses and
data transmi tted and rece i ved d u ring NMI trans
a c t i o n s . T h e N M I i n terfac e is c o n n e cted to a
transaction buffer, which is a 1 6-loca t ion , d ua l
ported E C LjTTL RAM . T h e transa c t i o n b u ffe r
provi des five l ocat ions to buffer commands and
a d d resses a n d up to fo u r l ongwords of readj
w r i t e d a ta fo r d i re c t m e m ory a c c ess (D M A)

Digital Technical journal
No. 4 Februmy I ')87

transfers by devices on the VAXBI-0 bus. A sec
ond group of five locations is provided for DMA
tra nsfers by devices on the VAXB I - 1 bus . Two
loca t i ons a re used for the c o m m a n djadd ress
packet and the s i ngle lo ngword of readjwri te
data transferred when the processor accesses the
VAX B I device registe rs . The N BI A/ N B I B TTL
data path i nd icat i ng the layout of the transaction
buffer is shown in Figure 4. The TTL port of the
transaction bu ffer connects to a set of two b i
d i rect ional la tches used t o buffer commands ,
addresses, and data for transmission across the
data-bus cable ro and from an NBIB modu l e .

The data path of the N B I B module consists of a
set of fou r b id i rect ional la tches used to buffer
both D MA com mands and add resses and CPU
com mands and addresses , as wel l as data . These
latches connect to another set of la tches known
as the BCI cla ra buffer (one l ongword deep) ,
wh ich con nects to the YAX B I I nterface C h i p .
(The module s ide o f the i nterface chip i s known
as the BC I .) The i n terface c h i p con trots t h e
enab l ing o f data onto t h e BC I for data transmis
sion onto the VAXBI bus .

Data f l ows between t h e N M I bus a n d t h e
VAXB l bus by moving i t between t hese two sets
of larches . Control logic moves data from stage
to stage, pass ing contro l successively to the next
stage as each part of the transfer completes. The
VAX B I b u s r u n s a p p r o x i m a t e l y fo u r t i m e s
s lower than the VAX 8800 processor and is asyn
c h ro n o u s w i t h i t . Therefore , t h e add i t i o n a l
pro b l e m e x is ts o f syn c h ro n i z i n g c o n r r o l be -

N

N M I
IN TERFACE
BUFFERS

N B I
TRANSACTION
B U FFERS

tween the NBIA and NBIB mod u les. Fac i l i t i es are
provided for de laying data transfer u n t i l a buffer
is free, thus prevent ing data corruption . Another
synchronization problem occurs when the mas
ter processor wants to read fro m or write to a
VAXBI device when that dev ice wants to make a
mem ory access . The cont ro l log ic i n the NBIA
and NBJB modules i s carefu l ly designed ro ref
eree such contention problems.

DMA Transfers

From VAXBI Devices to Memory
A DMA transfer to memory by a VAXBI device is
shown in Figure 5 .

After wi n n i ng the VAXBI bus, the device want
ing to make a transfer i n i t i ates a com mand and
address cyc le . I n Figure 5, that device is a disk
contro l ler . The VAXBI I n terface Chip in an NBIB
is program med to recognize memory add resses
o n t h e VAX B I b u s . T h e c h i p " a wakens" the
NBIB control l ogic , decodes the command , and
stores the commandjaddress packet, as shown i n
Figure 4 . Contro l logic o n the NBIB t hen sends a
" DMA request" signal to the N BIA. After a syn
ch ron izat ion delay on the N B IA , the N B IA TTL
control ler begins to transfer the command and
address from the N B I B to the NBIA.

Meanwh i l e , the NBIB takes the l ongwords of
data as they appear on the VAXBI bus and stores
them in the NBIB 's data buffers . The NBIA stays
a p pro x i m a t e l y o n e cyc l e b eh i n d t h e N B I B ,
remov i ng data from the NBIB buffers and storing

Figure 3 Block Diagram of NBI Adapter

Digital Technical jounwl 7 5 No. 4 Februmy 1 <)87

New Products

The VAX 8800 lnputjOutput System

i t i n the DMA locations i n the transacti on buffcr .
After successfu l ly transferring a l l data i n to the
tran sact i o n buffer , the NBIA a l e rts the N £3 1 8 ,
w h i c h , after a synchron ization delay, ends the
transaction on the VAXBI bus . At th is t i m e the
NBIA TTL contro l ler passes the Dl'viA req uest to
the NMI in terface in the NBIA, which then per
forms the write to memory on the NM.I bus .

- - - - - - - - - - - - - - - - - -,
I I I
I
I
I

NB I I
TRANSACTION I DATA BUS 0
BUFFERS

0 (40 BITS) I
I
I
I
I I
I I I

lr should be noted that a DMA write transac
tion i s considered to be complete on the VAXBI
bus before the data is actual ly written to mem
ory . A V�'(I31 device is r h us free ro stan another
tra n sa c t i o n i m m e d i a t e l y . T h i s p e r fo r m a n c e
e n h a nc e m e n t i s k n o w n a s a " d i s c o n n e c t e d
wri te . " in which rhe write operation is consid
ered ro be c o m p l eted on one bus before that

VAXBI
INTERFACE
C H I P

0

I NBIB

BUS 1
DATA
B U FFERS

I
I I I
I
I I

NBIA I
- - - - - - - - - - --- - - - - - - �

TRANSACTION BUFFER ORGANI ZATION

"--..--/
DMA 0

76

DMA 1

Figure 4

L - - -- -- ---- - - - - - - -

NHJAjNBIB TTL LJatapath

Digital Technical journal
No. 4 Tebruar)' /'}87

I ARB I �g�� I !�: I DATA I DATA I DATA I DATA I · . · l �li li li li l
VAXBI CYCLES

C/A - COMMAND/ADDRESS
ARB - ARBITRATION
EMB ARB - EMBEDDED ARBITRATION

NMI CYCLES

Figure 5 DMA Transfer to Memory

operation has actual ly taken place on the target
bus. The NBI adapter is designed in such a way
that a write transact.ion cou ld be wa i t ing in the
transaction buffer (e .g . , w h i le the NMI i nterface
control ler services the other VAXBI bus) while a
s e c o n d t r a n s a c t i o n wa i t s i n t h e d a t a b u s
transceivers . Using two levels of buffering and
the d i sconnected wr i te tec h n i q u e a l lows the
NBI ada pter to su pport a wri te ba ndwidth of
8 megabytes per second.

I t is i nterest ing to note that dur ing t he data
transfer from the NBIB tO the NBIA , the NBIB
no t i fies the N I3 IA TTL con tro l l e r of the D MA
request immediately after storing the command/
address packe r . However , the NBIA TTL con
tro l le r does not pass the DMA request tO t he
NBIA NMI i nterface contro l ler u n t i l the com
mancljaddress packet and a l l the wri te data have
been loaded into the transaction buffer . The rea
son for this delay is that the NMI i n terface con
troller runs at the same speed as the NMI bus, or
4 '5 ns per cyc le .

The NB IA TTL cont ro l l er r u ns fo u r t i m es
s lower, or I 80 ns per cyc le , tO c losely match
the VAXBI cycle t ime of 200 ns per cycle. Thus

Digital Technical journal
No. 4 February I ')87

if the NI31A TTL control ler were to s igna l the
DMA request after load ing on ly the command/
address packet i n to the transaction buffer, the
N BIA NMI interface wou ld attempt to read data
from the transaction buffer before that data had
been load ed . That is obviously a bad th ing to do.
I nd e e d . t h e N M I i n te rfa ce of the N B I A c a n
empty t h e transact ion buffer i n approxi mately
the time i t takes for the NBIA TIL contro l ler to
load one longword .

From Memory to a VAXBI Device
A write request from a VAX B I device is s im i lar
to the DMA operat ion just descri bed . After win
n i ng the VAXBI bus, the device want ing to read
da ta fro m memory on the N M I bus transm i ts
a c o m m a n d a n d a d d ress o n t h e VAX B I b u s .
Figure 6 depicts this transfer.

The interface ch ip awakens the NBIB control
log ic , which then decodes the command and
stares the command and address in a data-bus
buffer location . The N B I B then passes t he DMA
request to the NBIA i m mediately after the com
mandjaddress packet is loaded . Aga in s im i lar to
the write operat ion , the command or address i s

77

New Products

The VAX 8800 lnputjOutput System

tra nsferred to the appropriate locat ion in the
transaction buffer by the NBIA TTL contro l ler .
However , a DMA read is u n l i ke a write opera
tion, in which the data is ready for transmission ,
in that the data must be fetched from memory.
The DMA request is first passed ro the NBIA NMI
i n terface contro l le r , w h i c h arbitrates for t h e
NMI b u s . Upon winn ing t h e b u s , t h e i n terface
contro l ler i n i t ia tes a read request ro memory .
When the the data is ready, the memory returns
i t on the NMI bus to the NBIA. Thence the data
i s t ransferred i n to t h e D MA locat ions i n t h e
transaction buffer , a n d t h e NBIA TTL control ler
is not ified by the N B IA NMI i nterface that t he
data is ready . The con t ro l l e r then beg ins to
transfer data to the NBIB, loading it into succes
sive locat ions i n the NBIB buffers . This process
is illustrated in Figu re 4 . A " DMA Done" not ifi
cat ion i s sent t o t h e N B I B a fter t h e first l on g
word of data , rather than a l l the data , has been

MEMORY

transferred . That maximizes the read bandwi dth
on the VA.XBI bus. The NBI adapter has a max i
mum DMA read bandwidth of fou r megabytes
per second .

The DMA read transfer i l l ustrates one funda
menta l d ifference between the Nl\11 bus and the
VA.X BI bus . Referring to F igure 6, one can see
that the VA.XBI bus is un usabl e whi le the NBIA
and memory complete the read operat ion. (The
NBTB issues sta l l s ignals to the requesting device
during this t ime .) The N M I is a pended bus, but
the VA.XBJ bus is nonpended , or i n ter locked .
That is , the N M I bus is i m mediately ava i lable for
usc once a command has been transm itted and
acknowledge d , whereas t h e VAX B I bus must
wai t . Thus " pending" transactions are a l lowed
on the N M I bus. Indeed , the NBIA NMI interface
can respond to requests from the other VA.XBI
bus wh i le a lso hav ing a n ou tstan d i n g read to
me mory on behalf of t he first VA.XBI bus .

VAXBI DISK
CONTROLLER

I C/A I i�: I"A"I•"" Is""l'"'' l"'"ls""I"
A
" l"'"l""' l""' I""' Is; Ace I ""'I "'" I om I om I om I

VAXBI CYCLES

C/A - COMMAND/ADDRESS
EMB ARB - EMBEDDED ARBITRATION

78

.
.

Figure 6

MEMORY
READ

----- LATENCY

NMI CYCLES

(NOT TO SCALE)

D D D D
A A A A
T T T T
A A A A

DMA Transfer from Memory

Digital Technical Journal
No. 4 Febmarv 1 987

MEMORY

NMI CYCLES

(NOT TO SCALE)

C/A - COMMAND/ADDRESS
ARB - ARBITRATION
EMB ARB - EMBEDDED ARBITRATION

VAXBI DISK
CONTROLLER

VAXBI CYCLES

0
A
T
A I l l

NMI CYCLES

Figure 7 CPU Transfer from VAXBI Device

CPU Transfers to andjrom VAXBI device control ler to cause i t to transfer

VAXBI Devices large amounts of data .

CPU transfers to and from VAX B I devi ces are
simi lar to VAXBI transfers to and from memory,
the obvious d i fference being that the transact ion
is i n i t i ated on the N M I bus . CPU transfers are
shown in Figure 7 .

An other d i ffe rence i s tha t CPU transact ions
are l im i ted to longword length when access ing
V A.,'(BI devices. Since there is only one location
for a commancljacldress packet for CPU transfers
and one location for readjwrite data in the trans
action buffer, the NB I adapter can handle only
one CPU transaction at one t ime. These l i m ita
t ions lowe r the CPU- to - VAX BI b a nd w i d t h as
compared to the DlVlA bandwidt h . An analysis of
b u s t raffi c , howeve r , has s hown t h a t C P U
in i t iated transact ions accoun t for u nder 1 0 per
cem of the VAXB I traffic i n a VAX 8800 system.
This fi nding could be ant ic ipated s ince the CPU
must make on ly a smal l nu mber of accesses to a

Digital Technical journal
No. ,; Februmy I 'J8 7

Synchronization

I n t he earl ier d i scussions of data t ransfers , t he
term "synchronization delay" was introduced. In
g e n e ra l , s o m e type o f s y n c h r o n i z a t i o n i s
requ ired whenever more than one i n dependent
clock exists in a system . This i s the case in the
VAX 8800 syste m . T i m i ng for the processors ,
memory control ler, and NBIAs i s derived from a
sophis t icated clock mod u l e that provi des two
p ha s e , n o nover l a p p i n g c l o cks w i t h a bas i c
period of 4 5 ns and t ight ly control led skew 2
The VAXBI t iming , on the other hand, is derived
from an osc i llator and a clock-driver c i rcui t on
the NBIB. This t iming has a basic period of 2 0 0 ns,
completely asynchronous to the VAX 8800 ker
nel . The synchron i za t ion of control s igna ls is
t hus ne cessary for data transfer between the
NBIA and N B I B modules . A DMA read transfer

79

New Products

The VAX 8800 lnputjOutput System

i n v o l v es t h e s y n c h ro n i za t i o n of a ' ' D M A
request" and a "DMA complete" signa l . There
fore , the synchronizat ion overhead can account
for approximately 5 to 1 5 percent of the t ime it
takes tO complete the operation .

Summary

The performance of the 1/0 subystem is crit ica l
tO the operat i on of h igh -performance systems
l i ke t hose in the VAX 8800 fa m i ly . The 1/0
adapter provides a communication l ink between
the each processor , the memory, and th e l/0
devices. The N B I ada pter is th i s l i nk for these
systems, provid i ng access to a new generation of
VAX BI devices and h igh-performance ljO opera
tion for these importa nt new machines .

References

1 .

2 .

80

H. Levy a n d R . E c k h ou sc , Co mp u te r
Prog ra m m ing a n d A rchitecture : The
VAX- 1 1 , (Bedford : Digital Press, 1 9 RO) .

W. Sa maras, "The CPU C lock System in
t he VAX 8800 Fa m i ly , " Digital Techni
caljournal (February 1 987 , th is issue) :
34-4 0 .

Digital Technical journal
No. 4 February 1 987

Paul C. Wade I

The VAXBI Bus - A Randomly
Configurable Design

The VAXBI bus provides a high-performance altemative to the UNIBUS
system as Digital's general-purpose bus. The VAXBI design was completely
specified before any hardware was built and is independent from any
physical configuration. The designers had to discard the traditional
small-perturbation approach and instead used many techniques to
specify the bus characteristics. Two custom chips, a differential driver
and receiver, are used to clock the bus. The bus designs were tested exten
sively with SPICE, but tests on the physical chips led to some unantici
pated problems. Further analysis of waveforms, crosstalk, and switching
noise led to changes that met all the original goals.

The V�'\BI bus i s a new, h igh-performance , gen
era l-purpose bus that provides a com mon inter
face to a l l of Digita l 's new VAX products, fro m
the VAX 8 2 0 0 CPU to the VAX 8800 syste m .
This bus can a lso be used for fu ture VAX sys
tems . The VAX BI bus is a hi gher-performance
re placement for the U N IBUS system and should
have a s imi larly long and prod uctive l i fet i me.

The UN !l3US system was enhanced many t imes
duri ng i ts long history . Si nce t here was no for
mal specification for this bus unt i l I 986 , these
many de facto enha ncements led to numerous
compatib i l i ty and confi guration problems . Hav
ing learned fro m t hose prob lems , t h e VAX BI
design team decided to make a complete design
speci fication of the VAXBI bus before any hard
wa re was bu i l t . Thus compa t i bi l i ty p robl ems
shoul d not occur i f al l future designs comply
with that specification.

One of the most i m portant aspects of tha t
speci fication - and the most d i fficu l t to imple
ment - is that the VAXBI bus operates i ndepen
dently from any part icular physi cal configura
t i o n . T h a t i s , t h e b u s m u s t be r a n d o m l y
configurable . The ach ievement of that specificl
t ion was the most d i fficu l t part of the e lectrical
des ign . The techniques and solut ions involved
in solving this problem should be i nstructive to
future bus desi gners.

Digital Technical journal
No. 4 Februar)' / ')8 7

VAXBI Bus Description

There are seve ra l e xce l l e n t refe r e n ces t h a t
descr ibe in deta i l t h e opera t ion of the VAXB I
bus a n d t h e VL'II c h i p that i m plements t h e bus
logic and arbitration _ u .� Therefore, only a short
description of the bus wi l l be given here . The
VAX BI bus i s a genera l -purpose bus w i th data
transfer rates h i gh enough (up to 1 3 . 3 mega
bytes per second) to serve as a memory bus i n
mid-range VAX systems, such as the VAX 8200
CPU. All machines in the new generation of VAX
systems use the VAXBI bus for a l l 1/0, com mu
nications, networks , and connect ing adapters for
mass storage . Those h igh rates a lso a l low it to
serve as an ljO bus in a l l si zes of VAX systems by
us ing m u l t i p l e VAX BI channe ls i n the l a rgest
syste ms, such as the VAX 8800 mul t iprocessor,
shown in F igure 1 .

Al l t he mach i nes i n t he new genera t ion of
VAX systems use the VAXBI bus for a l l IjO, con
nect i ng adapters for mass stOrage , commun ica
t ions . and networks . A VAXBl subsyste m , con
s i s t i n g o f t w o s i x - s l o t c a rd c a g e s a n d t h e
backplanes , i s s hown i n F igure 2 . The back
p lanes are connected wi th f lex ib le i nterback
plane jumpers with terminators at each end.

The key to genera l -pu rpose operat ion i s the
d istr ibuted natu re of the VAX BI bus. Al l nodes
on it contain identical interface hardware , and a

8 1

Tbe VA XRJ Hus - A R{(nr/om/J • Conf(c;umhle Oesign

82

VAXBI BUS

COMMUNI
CATIONS
I NTERFACE

TO STAR
COUPLER

CPU 1

DISK
ADAPTER

N B I
ADAPTER

LDISKS

CPU 2

N M I

M EMORY.

U N I BUS
ADAPTER

UNIBUS

ETHE R N ET
ADAPTER

ETH E R N ET

Figure 1 VAX 8800 System witb Four VAXBI Ruses

Figure 2 VAXlU Su bsystem

d istr ibuted arb i t ra t ion scheme prec ludes the
need for a processor to act as a dedicated bus
master. The YAXBl bus can support both mul t i
ple and networked processors. thus implement
ing Digita l 's strategy of d istributed comput ing .
The synchronous operat ion o f the bus achieves
h i gh perfo rm a n ce by p rovi d i n g pred i ctab le
com municat ion delays . The d istributed arbitra
tion is embedded within each bus transaction so
that fu rt her data transactions may fo l low with
our de lay.

The VAX B I bus a rc h i te ct u re is r i gorous l y
specified . and a l l designs that a re verified to i ts
specificat ion w i l l be fu l ly compat ib le wi th the
bus . The task of system designers has been greatly
eased by the i ncorporat ion of a l l data- hand l i ng
and a rbi trat ion logic in one YLSI e lement , the
7 8 7 :� 2 ch ip , ca l led the VAXB I I nte rface Chi p .

Digital Technical jountal
No. 4 February 1 ')87

That ch ip a lso performs self-rest funct ions and
bus error deteoion and hand l i ng to i mprove sys
tem rel iab i l i ty and robustness. The physical bus
interfaces are a lso rigorously spec ified , and the
bus c lock ing i s contro l l ed by c ustom c lock
driver and rece i ver c hips . F igu re 3 shows the
VAXBI corner of a modu le , with al l the compo
nents requ i red for the bus i n terface conta ined in
a sta n dard i zed l a you t . These fe a t u res free a
designer to concentrate on h i s un i q ue design
rather than on the bus deta i l s .

Figure 3 VAXBI Corner of a Module

VAXBI Electrical Design

A random ly configurable bus has many advan
tages as a data bus in general -purpose computers
s i n c e t h e i r p h ys i c a l c o n fi g u ra t i o n s a re n o t
known a priori and are subject t o change during
repair or u pgrad i n g . The previous state of the
art within Digita l was to use an art i fic ia l i nte l l i
gence progra m , c a l l e d XCO N , ro ca lcu la te a
confi gurat ion for each u n i q ue set of U N I BUS
options . XCON is based on a n extensive set of
bus configuration ru les. Al though i t is a tri u mph
of appl ied art ific i a l in te l l igence, the necessi ty
ro use i t for bus configurations was a bottleneck
we hoped to avoid by better bus design wi th the
VAXBI bus.

The design of a random l y configu rab le bus
involves essent ia l ly the design of a group of ape
riod ically loaded transmission l i nes. The cha rac
terist i cs of regularl y loaded transmiss ion l i nes
are wel l defi ned , b u t those of ran do m ly and
u npredictably loaded l i nes are less wel l under
stood . The design team evolved a design proce-

Digital Technical journal
No. 4 February 1 ')87

d u r e fro m t h e i r w o r k on t h e VAX B I b u s .
Although this procedure was derived from the
dev e l o p m e n t r a t h e r t ha n b e i n g p l a n n e d i n
advance, i t may he lp bus designers wi th the i r
projects i n t h e future . Therefore , the remai nder
of t h i s paper describes that proced ure , espe
c ia l ly the activ i ties and resu lts that proved mosr
sign i ficant to the project .

The fi rst step i n des ig n i ng t h i s bus was the
real ization that the problem was not comp lete ly
random but may be bounded . A bus is physical ly
i mplemented as a group of transmission l ines in
a backplane . These l ines are pertu rbed by the
load ing of con nectors for modu les a n d by the
modules themselves . Each connector, or slot , in
which a module may be i nserted causes a sma l l
perturbat ion i f empty a n d a larger one if popu
l a ted . A tra n s m i ss ion l i ne c a n a l so con t i n ue
through cab l i ng and connectors onto another
backp lane . ln e i ther case the transmission l ine is
term i nated in some manner .

The classic method of deal ing with transm is
s ion l ine loadi n g is to make the characterist ic
i mpedance so low t ha t pertu rbat ions w i l l be
trivi a l . In tha t case a n y reflect ions from these
perturbations wi l l be sma l l , and the l ine can be
end term inated i n its characterist ic i mpedance
so that there is no reflection . The load ing is then
con s i d e red ro be predo m i n a n t l y capac i t ive .
Thus the loaded i mpedance can be calculated as

Zo ' = Z" j y1 + Cd / Cc,

Our fi rst approach was to determ i n e i f the
c lassic met hod cou ld be used to dea l wi th trans
m i ss ion - l i n e loa d i ng fo r t he m odu les on the
VAXB I bus . Z, , the character is t ic i m pedance ,
ranges from 3 5 ro 1 00 ohms for the standard
d i mens ions of orga n i c pr in ted c i rcu i t boards
made by Dig i ta l . Corresponding values of C, ,
the in tr insic l ine capaci tance , range from 1 . 8 tO
0 . 6 p icofarads per centi m eter (pfjcm) . How
ever, Cd , the d istr ibuted load ing capac i tance ,
can be as much as 5 pfjcm for modules in th is
i mp l ementat ion . That capac i tance means that
Z0 ' , t h e loaded i mpedance , wo u l d be in the
range of 1 8 to 3 3 ohms, clearly a major pertur
bat ion . Therefore , for modules with these char
ac ter i s t i c s , t h e sm a l l - perturba t i on ap proach
could nor be used .

I n the case of the VAXBI bus, even i f i t were
poss ible ro produce l i nes whose characteris t ic
i mpedances were low enough (Zo < 1 5 ohms) ,
massive drivers would be req u i red to supply the

83

New Products

The VAXR/ Bus - A Randomly Con(igurable Dest�f{n

necessary cu rrent . Therefore . bus power wou l d
b e c o m e a s i g n i fi c a n t p o r t i o n o f t h e sys t e m
power d iss ipa t i o n , a n u n d es i ra b l e s i t u a t i o n .
C o n s e q u e n t l y , w e h a d to c o n s i d e r a d es i g n
approach d i ffe rent from the class ic one .

Our a l te r n a t i v e d e s i g n a pp ro a c h was more
prag matic . Sign ificant deve lopment i nvestme nts
had a lready been made i n severa l key co m po
nents , part i cu lar ly t h e m o d u l e connector and
t he 7 8 7 3 2 c h i p . T h e re fo r e , the r e s t o f t h e
design had tO be as compat ib le as possible with
the c h a ra c t e ri s t i cs o f t hose key c o m po n e n t s .
Part icular attention was pa i cl w three a reas : the
physical l ayou t , to keep capaci tance w i t h i n t he
d ri ve capabi l i ty of t he 7 8 7 3 2 c h i p ; t he cloc k .
since i t i s t h e crit ical clement i n b u s t i m i n g; and
ground i ng, which i s cr i t ica l for signal i n tegri ty .

The VAX BI data l i n es arc d r iven d i rec t l y by
the 7 8 7 � 2 c h i p , w h i c h is fa b r i ca ted u s i ng
advanced MOS technol ogy MOS devices. how
ever, are l i m i ted in t h e i r a b i l i ty ro drive current .
With in the constra i n ts of ch ip area a n d power
d issi pat ion , open-dra i n drivers of about 2 1 mi l
l i amperes (m a) are the o n l y ones avai lable . The
data cyc l e of t h e VAX B I is 2 0 0 nan oseconds .
T h e r e fo r e , t h e m a x i m u m b u s l c n g t h o f
1 . 5 m e ters (VAX BI speci fi cation) i s short com
pared to a wave leng t h , and a l u m ped-consta n t
approxi mation could be uscd for ca l c u l a t i ng the
delays . An RC t i me-constant mod e l was used for
this approximat ion , a n d the voltage swing was
l i m ited to 3 V to accommodate a sma l l er term i
nating res istor for faster switching . T h c res u l ting
resistance was 2 � 8 ohms ('5 Vj2 1 ma) .

After calculat ing t h e tol eran ces and worst-case
a l lowances . we chose a standard val u e for this
resi stancc of 2 7 0 ohms. By choosi ng an RC t ime
consta nt equal to the maxi m u m ava i la b l e propa
gation delay (and after subtracting device del:-tys
and a l l owi ng for compo n e n t to l eran ces a n d a
1 0 percent t i m i n g marg i n) , we ca lcu l ated the
capacitance as 4 1 0 pf This figure beca me the
m a x i m u m c a p a c i t a n c e fo r e a c h cl a r a l i n e .
inc luding backplanes. i nt erbackp lane j u m pe rs ,
conn ecto rs . modules , and bus t ransc e i vers on
the c h ips . Obviously , t h e RC t i me constant i s
a pp l icab l e only o n the l ow - to - h i g h transi t ion .
w h e n t h e o p e n - d r a i n d e v i c e i s t u r n i n g o ff .
Dev ice turn -on , which is norma l l y much faster,
is i n ternal ly co mpensated for by con tro l l ing the
rise t i m e ro m i n i m i z e t h c t r a n s m i s s i o n - J i n c
reflections.

84

For rhe clock l i nes , the t i m i n g re q u i re m e n ts
arc cr i t ica l enough to just ify thc use of very large
drivers s i nce only two s ignals a re i n vo l ve d . We
selected a d iffc ren t i a l configu ra t i o n for c l o c k
s i gn a l s i n order t o m i n i m i z e t h c s k e w , w h i c h
cou l d degrade t i m i ng accuracy. This configura
t ion a l so prov i d es no ise i m mu n i ty by common
mode r e j e c t i o n . S i n c e the c l o c k fre q u e n cy is
much h i g h e r than t lw d ata frequency. ECL was
ch osen for the l ogic tcchnology . The maxi mum
d r i v e c a p a b i l i t y o f s t a n d a r d d e v i c c s i s
2 '5 -ohm im peda nce, however, so a custom driver
is re qu ired We a lso chose ro usc a custom di ffe r
ent ia l rece iver. for the fo l l owing reasons:

• B o t h p arts ca n o p e r a t e from t h e ava i t a b l e
+ 5 V supply ra ther t h a n the - 5 . 2 V supply

norma l ly re q u i red for ECL.

• The recei ver sen s i t i v i t y and common-m ode
range can be opt im ized for the driver.

• The receiver i n pu t can be designed for m i n i
ma l bus l oad i ng capaci tance .

• The rece i ve r o u t p u t l c veJs can be stand ard
TTL ! cvc.l s . t h u s e l i m i n a ti ng the need for a
se p a r a t e i n t c g ra t c d c i rc u i t (! C) fo r l e v e l
trans lat ion .

Al together , th cse two custOm c l ock c h i ps do
the work of five standard res . t h us savi n g power
and mod u l e real estate whi le · i mproving pc rfor
mance.

S i n c e the c h aracter i s t i cs of ECL d r i v ers are
we l l u nderstood. we req u i re the c l ock driver to
use an ou tput dr iver made from t hree standard
'5 0 -ohm ECL drivers in para l l e l . Thus the effec
t ive d rive capa h i .l i ty is 1 7 ohms (5 0 ohms/.�) .
The design term i nat ion i s i nt ended to match the
est i m a ted i m pedance of a maxi m a l ly loaded sys
t e m . a p p r o x i m a t e l y 2 '5 o h m s d i ffe r e n t i a l
i m pe dance . This i m pe dance i s com posed of a
res is tor to ground from each l i ne and a resistOr
between l i n es. c h osen to s i n k t he appropriate
h i g h - and l o w-state c u r re n t s . The design was
e x t c ns i v c ly mod e l ed u s i n g the S P J C E c i rc u i t
s i m u l ator. wh i c h i n d icated that the driver had
adeq uate current capabi lity for rh is load . ' The
ch:tractcrist ic i m pedance of the c loc k l i n es was
made as low as poss i b l e by maximiz ing the l i ne
width with in the space constra i nts of a 0 . l - i n c h
via-ho l e (p l a tcd-through hole in a pri nrcd c i rc u i t
boa rd) g r i d To i m p r ove t h e co m m o n - m o d e

Digital Techllical jom·nal
Nv. 1 F1!br11my 1 ')8 �

rej ecti on , the two l i nes of each d i ffere n t i a l pa i r
are located o n e above t he orher o n adjacent lay
ers w i t h g ro u nd p l a n es above a n d bel o w t h e
pa i rs .

F i na l l y , c a re fu l a t t e n t i o n was g i v e n t o t h e
g r o u n d r e t u r n p a t h fo r a l l VA X ll l s i g n a l s .
G ro u n d p l a n es . to m i n i m i z e i n d u c t a n c e . a rc
prov id ed on the mod u les . ba c k p lanes . and i nt e r
backpla ne ju m pers for data l i n<.:s as wel l as the
c l o c k l i n e s d e s c r i b e d a b o v e . The d a ta - l i n e
ca pac i tanc e was constra i n ed w i t h i n the 4 1 0 - p f
l i m i t desc ri be d above by con tro l l i ng t he l i ne

width and the ground -pl an e spac i ng . A parti cu
lar ly d i ffic u l t problem is the ground i nd uctance
of the 7H7 :) 2 ch i p . The 7R7 .'1 2 c h i p can switch
as many as 4 R data l i nes s im u l ta neously . with a
total sw i tc h i ng c u rrent of over one am pere . The
i n duced vo l tage , V, from s i m u l ta neou s swi t c h

ing is ca l cu lated as

V = I. X (dijdt)

in w h i c h L is t h e i n d u c ta n ce ancl dijdt i s the
ra r e o f c u rr e n t c ha n ge . F o r ex a m p l e , i f t h e
grou nd i n d uctance were I 0 na no hen ri es a n d the
c h i p swi tched i n I 0 n a n ose c o n d s . 1 vo l t o f
swi tc h i ng n o i se wo u l d resu l t . Based o n t h ese
n o i s e c a l c u l a t i o ns . we d es i gn ed t h e p a ck age
w i t h an i n ternal g rou nd p l a ne an d 1 5 grou n d
p i n s to m i n i m i z e i n d u c t a n c e a n d sw i t c h i n g
no i se .

Test Results

When t he custom c l o c k devi ces beca m e ava i l
a b l e , m e a s u r e m e n ts s h o w e d t h a t t h e d r i v e r
cou l d nor power a 2 5 -ohm d i ffere n t i a l load and
st i l l m a i n ta i n t he d es i red 7 0 0 - m V a m p l i t ud e

over a l l c o n d i t i o n s . T h e re fo re , we ca re fu l l y
measured the output c haracte rist i cs i n both t he
hi gh and low stares ro calc ul ate an opt i m u m ter

m i n at ion . The TK 1 Solve r software was used ro
so l v e i t era t ive l y r h e d r i v e r e q u a t i o n s fo r t h e

pi ec em ea l l i near approx i m a t i o n s o f r h e d r i ver
c h aract e r i st i c s . wh i c h d i d not fi t any s i m p l e
c u rve . \XIe r he n calcu la ted t h e opt i m u m resis
ta nces and c hose r h e nea rest sta ndard resistor
values. We a lso reca l c u l ated the output vol tages
for norm a l to leran ces of resi stan ce , vol tage . and
tem perature, and a + ; - 5 0 percent variation in

the i nt e rn a l res i stan ce of rhe d ri ve r . The m i n i

m u m ca l c u l a t e d a m p l i tu de was 6 9 5 m V . g i v
i n g us a very h i gh confi dence of h av i ng at l<:asr
700 mV for any actual hardwa re .

Digital Technical Journal
No. 1 Febnuny I 'Jlil

The op t i m i zed termi na t i o n has a d i fferen t i a l
i mpedance of ;17 . 6 ohms. w h i c h rurns o u r to be
a better marc h for t h e measured i m pedances of
rhe rest of the hardware . An e m pty ba ckplane
h a s a d i ffere n t i a l i mpeda nce of a pproximate ly
60 ohms. d ropping to as low as 28 ohms when
fu l ly po pu l ated ; a j u mper cable between back

p l a n e s t y p i c a l l y h a s a 4 5 - o h m d i ffe r e n t i a l
i mpedanc e . The various possi b l e VAXBI con figu
ra t i ons yi e ld a m ax i m u m retl ecr ion coeffic ient

a r a n y p o i n t of 0 . 2 8 ; probable c on fi gurat i o ns

w i l l have even smal ler reflect i ons .
Reflecti ons of t h i s magn i tu de cou l d cause sig

n i fi c a n t t i m i ng var i a t i o n s in s i ng l e - e nd e d sys
tems clue to a fixed receiver threshold vo l tage .
H owe ver. they have no e ffec t on a d i ffere n t i a l
l i ne since t h e reflection is t h e sa me on both l i nes
of t h e d i fferen t i a l p a i r . The on ly varia tion we

found was caused by the d i fferences i n i m ped

ances on d i fferent pr i n ted c i rc u i t layers . Subse

q ue n t e xper i men ts ind i cated that i mp rovi ng rhe
m atc h i ng of i mpedan ces by putt in g rhe d i fferen
t i a l pa i r on t h e same l aye r r e d u c e s t he skew

more rhan rhe common-mode noise reduction cl ue

to rhe rn uma l cou p l i n g of adjacent layers . Fu rth er
exper i ments showed that rhe cl ock system oper
a tes ar freq u en c i es at least 25 perc e n t h i gh e r
t h a n t he d es i gn goa l over a l l combinat ions of
bus confi gu rat i on . vo l tage , and temperamre .

T h e data l i n es ex h i b i t e d m ore su b t l e p rob
l e m s . Our i n i t i a l t e s t i n g y i e l d e d re su l t s very
s i m i lar to our desi gn p re d i ct ions . As suffi c i e n t

hardware was assemb l ed for a maxi mum config
u ra t i on wi t h heavy bus t ra ffic , howeve r , u n ex
pec ted waveforms were d iscovered . The wave

fo r m s no l o n g e r e x h i b i t ed t h e e xp o n e n t i a l
s h a pe of a n RC t i m e c o n s t a n t ; i ns t e a d , t h e y

resem bl ed step fun ct io ns w i t h ex pone nt i a l ris

ers. Aft e r d u e d e l i be ra t i o n , we rea l i z ed t h a t ,

a l though t h e fu l l t i me constant was fa i r ly s low,

the i n i t i a l s lope, dVjdt , was much faster. There
fore . i rs hi gh er -freq ue ncy com ponents trave led
down rhe l i n e and were refl ected several r i mes

d u r i ng rhe d u ra t i on o f an RC t i m e consta n t ,
resu l t i ng i n t h e staircase e ffect . SPICE s i m u la
t i ons y i e l d e d a n i de n t i ca l wavefo r m w h e n a
t rans mi ss i on l i n e , or i gi na l l y cons i d e red u nnec

essary, was i n c l uded i n rhe mode l . The overa l l
r i ming was n o t affected by t h e reflect ions . Fig
u re 4 s h ows t h i s wav e form w i t h i ts s t a i rcase

effect caused by i ncomplete term i nat ion of t he
transm ission l i n e .

8 5

New Products

The VA XIU Rus - A Randomly Conjigumhle /Jesign

VOLTS

NANOSECONDS

Figure 4 Simulated Waveform from SPICE

A second , more s i g n i ficant, e ffect was due to
c rossta l k , or cou p l i n g between t h e I i n cs To
meet the capa c i tance budget, the original phys i

c a l design a i med t O m i n i m i ze t h e capa c i tance ro
ground. An undes i red result was that the m u tual
capaci tance from l i ne tO l i n e , while sti l l s m a l l .
beca me proporti o n a l ly la rge r, t h u s i n creas i n g
the cou pl ing from l i n e to l i n e . The vol tage on
o n e l i n e was a ffec t e d by vo l tages on n e a rby
l i nes : transit i ons were aided by l i ke transi t i ons
and slowed by oppos i ng trans i t ions . In the worst
cas e . the m a gn i t u d e of t h i s v a r i a t i on was as
much as 24 nanoseconds.

This worst case occu rred on a group of l i n es
i n c l ose p rox i m i ty to a " spare " l i n e , nor con
nected or term i nated , w h i c h con tributed add i

t ional mutual cap a c i tance , thus enhancing the
cou p l i n g . This spare l i n e , i n c l ude d to red uce
the need for e ngi neering change orders to the
b a c k p l a n e , n e a r l y n e e d e d a n E C O fo r i r s
remova l , which could have d e layed several new
p rod u c ts . H oweve r , a t i m i ng a n a l ys i s sh owed
that i ts re mova l was u n n ecessary . lt shou l d be
emphas i zed that t hi s efkn was nor visi ble u nr i l
actual bus tra ffi c , consist ing of random data par
terns, was being transferred on a l a rge bus con
figuration . Test patterns were too smal l and roo

regu lar to show t hese sign i ficant e ffects

S i m u l t a n e o u s s w i tc h i n g n o i s e , d e s c r i b e d

above , was a l so i nves t i ga ted lw cause i ts effect
was s i m i lar ro the effect of crossta l k . Al l VAX I31

data s igna ls except one were swi tched s i m u lta
neous ly, and the i n d u ced vo ltage was mon i tored
on th e rema i n i ng l i ne , w h i c h was fi xed i n the

high (i nactive driver) state . G round pins were
then broken off one at a t i m e , the vol tage be ing

86

m e asured a ft e r t h e remova l o f e a c h p i n . As a
resu l t the i n d u c e d vol tage i n c reased from a n
insign ificant level with L .:; ground p i ns r o more
than one volt w i t h on ly .1 ground p i ns re m a i n
i n g . W i t h o n e m o re p i n remove d , t h e c h i p n o
lo nger passed s e l f- test . These resu lts s h owe d

t hat only a few ground pins a re necessary for the
c h i p to operate . but 1 5 a re needed to preven t

t he ad d i t ion o f noise t o t h e hus .
The t i m i ng analysis i nvolved fabricat ing spe

c i a l l o ts of 7 87 3 2 i n t e r fa c e c h i p s w i t h t h e
fastest and s lowest poss i b l e process var iat ions .

Fro m these lots c h i ps were se l ected at the abso
l u te specification l i m its . These chips were care
fu l l y m e asu red i n a ra n ge of c o n fi g u ra t i ons .
i nc l u d i ng one beyond the speci fi ed l i m its . 'fhen
r h e t i m i n g m a rg i ns were c a l c u l a ted over t h e
speci fi ed range of opera t i ng condit ions . W h e n
a l l p o ss i b l e w o r s t - c a s e c o n d i t i o n s a n d t h e
effects descri bed a bove had been i nc l u d e d , the

c a l c u l a t e d t i m i n g m a rg i n was r e d u c e d to
0 . 5 na nosl'conds . Design verificati o n resting on
this worst-casl' system showed that it cou l d sti l l

operate a t a frequ ency I 0 percent h igher than
t h at spe c i fi e d over t h e fu l l opera t i n g range o f
temperature a n d voltage .

Summary

The VAXBI bus was desi gned to a rigorous bus
a r c h i tectu re speci f icat i o n . After m i no r adjust
me nts d u r i ng design veri fication testi ng, the hus
met a I I rhe req ui rem enrs of t hat spe c i fi ca t i on .

I n part i c u l ar, th is testing proved that the YAXI3l
bus can operate i nde pendently of system config
u rat ion .

Severa l other poi nts should be noted by bus
designers for fu ture products :

1 . Design i ng a prod uct to a r igorous spec i fi
cation, c a l led top-down design , can rea l l y
work .

2 . D i ffe rent ia l signals arc recomme nded for
cri t ical t i m in g . They a rc best l ocated on
t h e s a m e p r i n t e d - c i r c u i t l a y e r o n a
mod u l e .

3 . T e s t i n g s h o u l d be p e r for m e d o n r e a l

h a rd wa re w i t h rea l data , a s close ly a s i t
can be a pp roxi m a ted d u r i n g the desig n

process . Too ofte n . the test patte rns run
on test structu res y i e l d n o t h i ng but rhe
e x p ec t e d resu l ts . Test i n g s h o u l d a l s o

reveal unexpected problems, n o t s i m p l y
corroborate t h e design .

Digital Technical journal
No. ·i Februarv 1 ')8 7

4 . Ground rerum paths requ i re carefu l con
sideration , part icularly u nder cond i tions
of s imu ltaneous switc h ing .

Acknowledgments
The fol lowing peopl e were i nva l u able i n the
su ccessful and t imely conclusion of the VA.XBI
proj ect : Dana B l a n c ha rd . Fra n k B o m b a . Bob
C h e n , Norm C o m m o , Ron Desha r n a i s , R i c k
Gi l lett, Glenn Herdeg, B i l l L i n , B i l l Schmidt , J im
S tap l e s , B e r r y A n n Tyso n . Bob W i l l a r d . Of
cou rse , the VA.XBI bus wou ld not have been pos
s ib le withour the contributions of the VLSI team
respons i b l e for t h e 7 8 7 3 2 VAX B I I n te rface
Chip .

References

1 . F . Bomba . R. Chen, and R . G i l l ett , "Gen
eral Purpose Bus Eases In teract ion of Dis
tributed Resources, " Computer Technol
o gy Revie w , v o l . V I , n o . 2 (S p r i n g
1 986) : 4 7 - 5 3 .

2 . VA XBJ Op tio ns Ha ndbook (M aynard ,
D ig i t a l Equ i p ment Corporat i o n , Order
No . EB- 2 7 27 1 -4 6 , 1 986) .

3 . R . Sch u ma n n and W . Parker, " A 3 2 - b i t
B u s In terface C h i p . " JSSCC Digest of
Technical Papers . vol . XXVI I (February
1 984) : 1 4 7- 1 4 8 .

4 . SPICE was developed by Lawrence Nagel
a n d E l l i s Cohen of the Depar tment of
E lectrical Engineering and Computer Sci
ence , University of Cal iforn ia , Berkeley.

Digital Technical journal
No. 4 February I '/87

New Products

87

Michael W. Kement I
Gerald]. Brand

A Logical Grounding Scheme for
the VAX 8800 Processor

The treatment of ground as a signal conductor is crucial in achieving
high-perfonnance computer systems. The impact of system grounding on
signal integrity becomes even more important as systems are connected
into networks. For the VAX 8800 CPU design, the authors first identified
the sources of ground-conducted noise from the jour ground systems: the
power and logic systems, and the safety and RF grounds. They then iso
lated and defined the ground elements in order to specify an intercon
nection strategy to guarantee the CPU's performance. Then the 1/0
subsystem grounding was established and finally a system-to-system
grounding scheme was completed.

The des ign o f t he grou nd i n terconnect ion is
often given l i t t le attent ion i n system design , at
least unt i l i t becomes crucial to system perfor·
nu nce and program deve l op m e n t schedu les .
The treatmenr of th i s i nterconnection as a si gnal
condu ctor grea t l y affects the e l ectr ica l noi se
levels. Ultimately, these noise l evels arc a cri t i ·
ca l factor i n l im i ting the maximum c lock speeds
and thus machine performance .

Field service personnel have long recogn i zed
that many i nstal lation problems result from the
subtle ties of grou nding when cab l i ng together
CPUs , mass sto rage dev i ces , a nd peri phera l s .
Part icu la r ly d i ffi c u l t p rob l e ms occu r when
equ i pment comes from d i fferent vendors . The
trad it ional approach ro so lving these problems
has been ro d i spatch a seasoned fi e l d servi ce
representative to the s i te with an assortment of
ground straps and other parts. Given the i n junc
tion ro "make i t work , " he cou ld , with enough
ingenu i ty and custo mer pat ience , bring about
satisfactOry resu lts .

As a consequence, early in the development
cycle the VAX H800 project team set a h igh pri
ority on the logica l design of the ground system .
We knew that the H800 would be used in large
networks . thus inrens i fyi ng any problems with
grou nd-conducted noise. I n fact , the inc lusion
of the backp lane interconnect. cal led the VAXRI
bus , ensured tha t m a ny IjO po rts w i t h h i g h
bandwidths wou ld exist i n close electrica l prox
im i ty to the logic backplane . Moreover, many of

88

t he appl icati ons targeted for the product would
prec l ude i ts insta llat ion in the control led envi
ronment of a computer room, with i ts trad i t ional
massive copper grou nding grid beneath a raised
f loor . The system componenrs wo u ld be con
nected for the fi rst t ime at a custo mer's s i te . Our
goai was to requ i re m i n i m um s i te preparat ion
efforts; sysrem components were designed to be
cab l ed together i n a " p lug-and-p lay" manner.

These product goals , coupled with the EMf/
RFI and sysrcm safety requi rements of the i nter·
nati ona I regu la tory agencies , requ i red an i nte·
grated system p h i losophy for grou n d i n g and
s h i e l d i n g . The approach that we fo l l owed on
the VAX 8800 project i nvolved t hree separate
but i nterre lated steps:

F i rst , we i d e n r i fi e d the sou rces of grou n d
c o n d u c t e d n o i s e w i t h i n t h e VAX 8 8 0 0 a n d
devised ways to reduce that noise t o the iowest
pracr ic; : lev<: ! . Next. we ident i fied the in tercon
necti ons w i th in the groun d networks and con
nected them in ways that conrrolkd the ground
noise. There arc four ground networks :

l . Power return

2 . Logic return

3 . Safety. or ac power-fau lt ground

4 . R a d i o f re q u e n c y s h i e l d a n d c h as s i s
grou nd

F ina l ly . we extended the concept of system
grou nd in the VAX 8800 to large-system app l i ca-

Digital Technical journal
No. 4 fehruar]' 1 987

t i ons and com puter ne tworks i n a n effort to
ensure opt i mal overa l l system performance . I n
t h e ma jor i ty of cases , t hese n etworks i nvolve
mature products for which i t is d i fficu lt to make
any interna l confi gu rat ion changes.

Ground Conducted Noise

Power System

The VAX 8800 power system consists of modu
lar un i ts of switching power regulators operat
i ng at 5 0 k i lohertz (KHz) . The tota l three-phase
ac power required for a typical appl ication con
figuration is about 5 k i lowatts (KW) . The hard
ware implementation uses un i ts from a fam i ly of
products cal led the Modu lar Power System , or
MPS, designed by Digita l . These un i ts yield low
a n d t i gh t l y c o n t ro l l e d d i ffe ren t i a l (n o r m a l
mode) noise l eve ls for the d e power that sup
pl ies voltages to run logic.

Through t h e i r h igh e l ectr ica l effic iency of
power convers ion , such swi tc h i ng power sys
tems have made possible the sma l l sizes and l ow
weights of present computers . This power c i r
cu i try, however, has current spikes (dijdt) as
high as 1 000 amperes per m icrosecond (!is) and
voltage slew rates (dVjdt) as high as 2000 volts
(V) p e r 11s . These h i g h s l e w ra tes , a conse
quence of the pursu i t of h igh effic iencies , can
produce s ign i ficant noise problems . The rest of
this section d iscusses five of the most i mportan t
noise sources that we identified and resolved i n
the power system .

Noise Currents

When high-voltage s lew rates are present across
parasit ic capacitances (i . e . , u n intentional capac
i ta nce tha t is presen t as a conseq uence of a
physical metal lic structure) , a noise current Ill
wi l l be generated :

Ill = C" dVjdt

in which Cp is the parasit ic capacitance .
O n e s i g n i f i c a n t sou rce of com m on - m od e

n o i s e i n t h e MPS reg u l a to rs i s t h e p a ras i t i c
capac i tance between the pr imary wind i ngs i n
the high-frequency power transformer and the
sol id -fo i l safety shield between the primary and
secondary windings . The use of th is shield , con
nected to a sheet-metal "safety ground ," is one
way of complying with the i nternational safety
regulations. 1

Digital Technical journal
No. 4 Februtn:y I 'J8 7

During normal switch ing-converter operation ,
vol tage pulses with rise t imes of approximately
1 000 V per 11s are applied to the pri mary. These
pu lses cause capac i t ive ly cou p led n o ise cur
rents with peak a m p l i tu des of approxi mate ly
200 m i l l i a m peres to be sen t i n to the system
chassis , or safety ground . Figure 1 shows a sche
matic representation of th is process . The para
s i t ic l eakage inductance associated with the pri
m a ry w i n d i n g c o m p r i s e s a s e r i e s - reso n a n t
c i rcu i t with the shie ld capacitance. This noise
cur ren t has a decay ing exponent ia l waveform
with a frequency in t he range of 5 to 1 0 mega
hertz (MHz) and a repet i t ion rate of twice the
swi tch i ng frequency . S ince many power con
verters are u sed in the VAX 8800 system and
they are a l l synchro ni zed to a common clock ,
t he noise currents tend to add . Current ampl i
tudes as h igh as 2 amperes were observed .

The most pract ica l way to reduce th is noise
sou rce was to i nsert a damping resistance, Rd ,

that would redu ce the Q of this resonant circu i t
a t the specific frequency range . Q is trad i t ion
a l ly defi ned as the rat io of reactive i mpedance
to resistance, and represents a measure of reso
nant efficiency. The in ternational safety regula
t ions, however , str ictly l i m i t the fau l t-current
impedance in th is path . To meet both requi re
ments, we i nserted a ferri te bead on the shield
ground lead . This bead is made of ceramic ferro
magnet ic m ater ia l that is e lectr ica l ly l ossy . I t
acts a s a sma l l i nductance a t low frequencies
and as a nearly pure resistance a t h igh frequen
cies. The bead does not block the fau l t currents
from a short c i rcu i t but does redu ce the noise
current to the des i red leve l . The noise ampl i
tude i s reduced by two t o fou r t i mes a n d the
r ing frequency reduced to about 1 MHz . Thus a
pote n t i a l ly se r ious cause of com m o n - mode
noise current i n the system is redu ced a t the
source to acceptable l evels.

I n n ew d e s i g n s , more e ffe c t i ve s c h e m e s
i nvolv ing d ifferent s h i e l d confi gu rat ions a n d
interconnections could b e employed .

Power L ine Filter

One of the more subtle (and i ronic) sources of
com mon- mode noise curren t or ig ina tes i n t he
power fi I ter designed to reduce the e lectrical
noise emanating from the power l i ne . Figure 2
d e p i cts a sc h e m a t i c of a typ i c a l l i n e fi l te r ,

89

New Products

A Logical Grounding Scheme for the VAX 8800 Processor

PRIMARY
0 -----L------t-----��------�----- CURRENT

I
I I
L_

T1

(lp)

PRIMARY
VOLTAGE
(Vp)

NOISE
CURRENT
(In)

PRIMARY I SECONDARY 01 Ls

•

L1p � 1 .2 x 1 06H primary leakage inductance

l i _c �·
I� I

I
I

l _ _ l E--J
I

--1.-
"'T'

I
L - - - -

I I

l_ __ i E--__j
c1

Cp � C, � 200 x 1 0-12 picofarads primary and secondary parasitic capacitance to shield

Ro is the damping resistance provided by a lossy ferrite bead

Resonant frequency of In is Fo � [2,.- (L1p x C0)
11\1 = 1 0.3 MHz

Resonant impedance Ro � (L10/C0)
112

= 775 ohms

With Ro = 0, In (peak) = V0 (peak)/Ro � 200 milliamps

Wilh Ro = 500 ohms @ 10 MHz, In (peak) = 1 1 8 milliamps

Figure 1 Parasitic Capacitance of the Power Transformer

i ncluding the parasi t ic , or l eakage , i nductance
of the common-mode choke, L 1 • The "Y" capac
i tors, C1, are connected from e i ther side of the
power l i ne tO the chassis , forming a high-Q res
onant c i rcu i t with this leakage inductance. The
load current for th is power fi l ter is domi nated
by t h e d i sco n t i n u o u s c u r re nt p u lses of t h e
swi tchi ng power converte rs , w h i c h provid e

9 0

excitation for th is resonant c i rcu i t . The result is
a resonanr current pulse i n to the chassis wi th
each ha lf-cyle of curren t in the power l ine .

O t h e r c o n s i d e ra t i o n s of s i g n a l i n t e g r i t y
de mand that an i n d u c tOr be p l aced i n ser ies
with the power ground wire in the fi l ter before
that wire is connected to the chassis. The result ing
ground i mpedance forces the resonant common-

Digital Technical journal
No. 4 Februmy 1 987

POWER LINE FILTER r ---,
I I

LINE I :
I � PHASE

GROUND

GROUND
INDUCTOR

0.05 11F I
200 V I

I
O.OS I'F I
200 V 1

AC/DC
SWITCHING
POWER
CONVERTER

LOW VOLTAGE
DC LOAD
(LOGIC)

1 11H I
- - -- - - - - - - - - - - --- - - - - - - - - �

A

Figure 2 Power Line Filter

mode cu rrent to flow through the chassis of the
system, probably through the logic returns . lf
the fi l ter design has taken th i s parasi t ic reso
nance in to accou nt , a series resistOr or ferri te
bead, Rv , may be added to lower the circuit Q .
That reduces the common-mode current at the
expense of fi lter attenuation .

In the case of the 8800, many of the system
components had been des igned and re leased
before t h i s p ro b l e m was fu l ly a p p rec i a t e d .
Therefore, our only viable strategy was to segre
gate th is noisy ground by separating the logic
returns a n d c h ass i s gro u n d s to the greates t
degree possible .

Noise Voltages

The e l e ctr i ca l d u a l of t h e n o i se sou rce j u s t
descr i bed i s t h e generat ion of noise vol tages

Digital Tecbnicaljournal
No. 4 Februarv 1<)87

across both real and pa ras i t iC c i rcu i t i n du c
tances when rap i d l y c h a n g i n g currents f low
through them. This noise vol tage is expressed as

Vn = Lp dl jdt

in which Lp is the value of i nductance .
The most common source of noise vol tage in

swi tching power converters is paras i t ic i nduc
tances excited by the rapid rise a nd fal l of cur
rent in the transistor power switch and by the
reverse charge recovery in the rectifier d iodes.
These abrupt transitions between the conduct
ing and nonconduct ing states gen erate a very
h igh dljclt . For exam p l e , t h e p r i ma ry reset
diodes (D1 and JJ2 i n Figure 3) i n the MPS con
veners have very fast switch i ng t imes of 30 ro
50 nano secon ds (n s) . As t h e d i ode current
rapid ly goes to zero when the switch is turned

9 1

New Products

A L ogical Grounding Scheme for the VA X 8800 Processor

+
300 v

Ls

Ls

Ls 300 x 1 0-9H. Stray Inductance

- 12 Cos - t OO x 1 0 F. Collector - Base Capacitance of a , and az

NOTE: The screened components are not active:
a, and az are off. The magnetizing current (1M) from T, is
resetting to zero through D, and Dz to the 300 V source.

High-Frequency Equivalent Model

+ rnls
Vno•se t 1"

_ Cos
2

Figure 3 Parasitic Inductance of the Power
Switching Stage

off, t ht: c i rc u i t paras i t i c i n d u ctance w i l l r i ng
w i t h t h e c a p a c i t O r i n t h e sw i t c h - p ro t t: c t i vt:
snubb<:r, C . The frequency range w i l l. bt: from
1 0 to :) 0 M H z for typ i ca l c i rc u i t va l u t:s . Tht:
resu l t i s a cl i fferenr ia l noise vo ltage at the con
vener outpu t .

O u r so l ur i o n t o t h i s noise vo ltage source was
to i n sta l l an a p p ro p r i a t e ft: rr i t e b e a d on t h e
d i ode l ead to cl a m p the osc i l l at i ons i n t h is fre
q uency range .

Radiated Magnetic Flux

A su bsta n tially more d i fficu l t problem is caused
by ra pidly changing magnet i c fi e l ds that rad iate
from t he h ig h-current secon dary c i rc u i ts in the
power conve rters. The output rect i fi ers can be
cond ucting as much as 200 a m peres when t hey

9 2

s w i t c h o ff ; t h e r e s u l t i n g dlj dt c a n e a s i l y
ap proa c h 1 0 00 a m peres per m ic roseco n d _ As
the c urrent d i es, the magnet ic fie ld su rrou n d i ng
the secon d a ry w i n d i n gs of these h i g h - c u rrent
cond uctors wi I I col lapse . That i n d u ces a vol tage
in other cond uctors enc losed by t h is magne t i c
fl u x . Accord i ng t O f a ra d a y ' s La w , t h i s n o i s e
vol tag<: is

VII - N d0Jdt

i n w h i c h N is the n u m lxr of tu rns i n the ot h<:r
condu ctors , a n d d 0jdt , w h i c h is p roport i ona l
to ell j cit , is the rate of c hange of magnetic fl ux .
I t i s q u i t e poss i b l e to cl<:v e l op vo l ts o f n o is<:
across 2 i nches of c i rc u i t hoard etch or a s heet
meed pa nel through t h i s cff<:ct .

T h e o r i g i n a l d es i g n s o f the MPS c o n v e r t e r
t r i e d t o m i n i m i ze t h i s nois<: probl e m b y making
the h ig h-current l oop ar<:as as sma l l as possi ble ,
thus m i n i m i z i n g the rad i a t<:d magn<: t i c fl u x . I n
ad d i t i on . copper Faraday s h i e l d s a n d g ro u n d
plane ci rcu i t boards wer<: us<:d . I n spite of this
care . we encoun tered pro b l ems w i th c i rcu lat ing
c u nT tHs i n d u c e d in th<: m <: c h a n i c a l s u p p o r t
s t r u c t u re i n t h e VAX R H O O sys t e m d <: s i g n . As
w i t h the power- l i n e fi l ter, we could not rnl uc<:
t h <: n o i s <: at i ts s o u rc e . T h e re fore , t h <: o n l y
v iable so l u t i o n was to tak<: great care w i t h the
chass is gro u n d connection o f these structures so
t ha t the noise cu rrents arc d i rected away from
sens i t i v<: c i rc u i ts .

The Logic System

A s i g n i fi ca n t source o f n o i se w i t h i n t h e l og i c
sys t e m i s t h e e n e rgy ra d i ated f r o m t h e i n t<:r
c o n n <: c t c a b l es fro m the I JO b u s to the d i s k
contro l l <:r . T h i s noise rad iates a t a fu ndarn<:nta l
freq uency of abo u t 47 M H z The b u s i tse l f is a
h i gh-s rc<:cl , mass-storage para l le l i nterface. The
i n te rc o n n e c t c a b l e i s c o m posed o f i n d i v i d u a l
coax i a l s ignal pairs t h a t a rc transformer coupled
a n d d r i v e n d i f fe r e n t i a l l y . H o w e v <: r , t h e
i m pedance from t h e coax i a l cente r conductor
to the outer overa l l s h i e l d i s s l i gh t l y d i ff<: r<:nt
fro m th<: i m pedance from the coax i a l s h i e l d to
the outer s h i e l d . That is, both signal cond uctors
do n o t h a v e e q u a l i m p e d a n c e s to t h <: o u t e r
s h i d d . w h i c h is grouncl <:d t o t h e chassis at l'ach
e n d . Th<: resu l t is a n<:t noise c u rrent that flows
on the outer s h i e l d . Wi t h i n the VAX 8 8 0 0 pro
cess o r , t h is c u rr e n t c a n cou p !<: i n to a d jacen t
cab les .

Di?,ilal Technical journal
No. 4 Ff!brucuy I ')87

The only pract ical method to mmrmize th is
noise coupl ing was carefu l rout i ng and dressing
of the in terconnect cables rela tive to other com
munication and power cables.

VAX 8800 System Grounding

This section describes the types of ground struc
t li res prese n t i n a l a rge system l i ke the VAX
8800 mul t iprocessor . A-; such a computer sys
tem expands in size and complexity , i ts ground
connections a lso expand and their i nterrelation
s h i ps grow in complex i ty . To appreciate the
ground ing scheme as a total system , the various
components must be isolated by funct ion and
location. I n that way the ground system can be
broken i n to i ts constituent elements . The i ncl i
vidual components can then be viewed a s func
tional blocks that requ i re i nterconnection .

Although a designer can choose how to i nter
connect the ground clements, he is a lways con
stra ined by the existing i nternational regu lations
in the i mplementation of the grounds .

Types of Ground Topologies

There are three choices of ground interconnec
t ion topo logy : s i ng le poi n t , m u l ti p o i n t , and
hybri d . The s i ng le -po i nt ground l ooks l i ke a
wagon wheel with the ground i n the center and
the other devices connected rad ia l ly around the
hub. That center becomes the absolu te ground
poi n t , ca l led the zero-vol tage potent i a l refer
ence , for a l l devices . Mult ipo int grounding has
each device i nd ividua l ly connected to a s ingle
ground plane, al l of which is a t the same zero
vol tage potential . The hybrid is some m ixture of
the s i ngle-poi n t and m u l t ipo int topologies i n
which i n terconnections are made based o n the
characterist ic needs of the subsystem functional
el ements .

The s i ngle-po int topology is not practical to
implement on a large system l i ke the VAX 880 0 .
The p hys i ca l d is t a n c es a n d assoc i a t e d i m
peda nces of the i n terconnects beg i n to domi
nate so much that an absolute ground point docs
not rea l ly exist. The mu lt ipoint ground requ ires
a grou nd plane, or grid , to be effect ive . Aga i n ,
i n a large system , i t is n o t pract ical t o i mple
ment a ground plane i nto the physical layout .
The hybr id scheme has advan ta ges over the
other two, bu t i t requires a deta i led eva luat ion
of the characteristics of each subsystem element
before an in terconnection can be designed . That
was the approach we fo.l lowed in design ing the

Digital Technical journal
No. 4 Februar)l 1 987

i n terconnection for the d i fferen t ground types
in the VAX 8800 system .

D C Power Return

The de-to-de converters in the system requ i red a
d e c u r r e n t r e t u r n t h a t p r e s e n t e d a l o w
i mpedance through the frequency range of de to
2 0 0 K H z . O u r p r i mary cons i d e ra t i o n was to
spec i fy a conductor with a s u ffi c ient ly large
cross-sect ional area to keep the I R losses and
heat ing effects to a m in imum . A secondary con
s ideration - often overlooked - was to m i n i
m i ze the phys ica l d istance between t h e current
feed and the return . In a l a rge system the cur
rents i nvolved can exceed 4 0 0 a mperes . The
res u l t i ng flu x can produce a l arge magnet i c
fie ld . This field i s determi ned by t he re lat ion
ship

Magnetic Flux = I X /.I X A jl

i n which I is the current , /.I i s the permeabi l i ty
of a ir , and A the area and l the length of the con
d u ctor . These lea kage f ie lds can coup l e i ntO
adjacent devices, sheet meta l , and cables. I f the
flu x has an ac compon e n t , a c u rrent may be
i nduced i n ad jacent conductors, as descr ibed
earlier .

A power supply in the MPS series used in the
8800 has a s i lver-plated bus as its main output .
That bus i s mated to a large connector that i s
mechanica l ly mounted on the power backplane.
This connector i s soldered to mu l t ip le epoxy
coated copper strips t ha t are 0 . 0 5 0 i nc h th ick
by 2 i nches wide . These strips are fusion welded
to a horizontal bar that is bolted to the inner lay
ers of the CPU backp l a n e s . The s u p p l y a n d
return straps are overlapped t o m i n i mize para
s i t i c i n d uctance and i ts consequen t radiated
magnetic fl ux . The flat , wide geometry of the
connection is essent i a l to m i n i m ize that flu x .
(See Figure 4 .) M in im iz ing this stray i nductance
is a lso essential to obta ini ng rapid power-system
response to l oad transients wi th adequate stabil
i ty (phase m argins) .

Logic Return

The logic return provides a common signal ref
erence for the logic with in the system. To min i
m i ze noise th i s reference must be designed wi th
a low i mpedance at the frequency correspond
i n g to the log ic switch ing speed . Wi th log ic
operat ing at rise t imes of 1 V per ns, or 300 MHz ,
t h i s r e fe r e n c e i s c o n s i d e re d t o be a ra d i o

93

New Products

A Logical Grounding Scheme for the VAX 8800 Processor

frequency (RF) ground and thus can be mod
eled as a frequency-dependent i mpedance . The
ground impedance at these frequencies is domi
nated by the depth of penetrat ion of current
i n to the conductor . The magnet ic fi e l d s u r
rounding the current forces the dens i ty of cur
rent tO decrease from the surface va l ue as the
depth into the conductor increases . In the l imit
ing case , as frequency becomes very high, the
current wi l l flow as a sheet of charge at the sur
face . The resu l t is a steadi ly increasing rea l com
ponent o f i mpedance (resistance) with increas
ing frequency. The point at which the current
dens i ty decreases to 1 /f of the surface magni
tude (approx i mately 3 7 percen t) i s one "skin
depth . "

Therefore , the first step i n calc u l a t i ng the
ground i m pedance is to derive the skin dept h ,
i n meters, a s fol lows:

Skin Depth = l j yn- X F X 11

in which F is the frequency i n Hz and 11 is the per-

VAXBI POWER
FLEX-CIRCUIT POWER BUS

CD HORIZONTAL
LAMINATED CPU
POWER DISTRIBUTION
BUS

VAXBI - 1/0
BACKPLANES

CPU BACKPLANE

NOTES:

-5.2 V @ 200 A
POWER BUS

meabi l i ry of air in siemens per meter. For exam
ple . for copper . the skin depth is 0 . 0666/ Vf: in
meters . Aft e r the skin depth has been d e ter
m i ned , · t he i mpedance at the frequency of con
cern can be found using the sheet resistance of
the materia l . The specific resistance , R, is equal
to p X L 1 A , in which p is the speci fic resistance
of the conductOr, L is the inductance, and A the
area . For copper, p equals 1 . 673 microohms per
cent imeter.

Another major factor in design ing a ground
plane is the voltage drop across the ground layer
at low frequencies (de to 1 KHz) as the total
load current i s sent fro m t he logic mod u les .
This voltage drop produces an offset in the logic
threshold from module ro module that affects
t he noise marg i n s , or tolerance . The vol tage
drop is a function of the sheet resistance of the
ground layer (directly proportional to the thick
ness) and the m et h od of term i nat ion of the
ground layers to the return buses. The connec
tion geometry must be chosen to ensure a safe

-2.0 V @ 1 00 A
POWER BUS

+5.2 V @ 1 00 A
POWER BUS

@ MPS
POWER SYSTEM
BACKPLANE

M EMORY BACKPLANE

1 The return, or logic ground rai l , is con nected along its entire length to the system chassis and
represents the system single-point connection of R F (chassis) power and logic ground.

94

2. M P S regulator rack is electrically isolated from chassis ground a n d con nected through lossy
R F chokes.

Figure 4 Logic Power Distribution System

Digital Technicaljournal
No. 4 February 1 98 7

maxi mum current density through the grou n d
layers . Cu rre n t c rowd i n g, part i c u l a rl y at t h e
connection points a n d plated through-holes, can
turn the backplane into a toaster ove n .

W e used t h e i n ner l ayers o f the C PU back
plane as the logic reference for the VAX 8800
C P U . T h e r e a r e fo u r g r o u n d l a y e r s , e a c h
0 . 0 0 3 i nc h t h i c k . F igure 5 i l l ustrates the de
voltage-potential drop as a function of geometry
across the CPU backplane. The return current is
approximately 5 0 0 amperes; therefore , this CPU
backplane was the most challenging part of the
design .

-5.2000 v
- - - - --.- ---- - -

-7.0 mV

-5 .193o-J---·Z:.:.�qt::::?""'A/�b�r-;r--;tJA

NOTE: Measurements were made from corresponding local points
on the ground plane. It demonstrates the excellent control
over voltage drops provided by the internal ground and
power planes of the multilayer CPU backplane. Maximum
current available to these -5.2 V inner layers is 400 amps.

Figure 5 Distribution of the Backplane

Voltage for the - 5 . 2 V Power

Plane

A C Safety Ground

T h e primary fu nction of a safety ground i s to
provid e a l ow i m pedance at 6 0/ 5 0 H z , thus
a l lowing fau l t currents to fol low a path wit h a
low IR drop. The design and implementation of
this path is strictly contro l l ed by the i nterna
tional regulations, to which all other uses of this
ground must comply . The safe ty ground a lso
acts as a signal ground in that i t connects prod
ucts to the ground grid of the building housing
the system . This connection can be detrimental
to the system ' s I/0 signa ls . Thus it is advanta
geous to add an i mpedance whose magnitude is
frequency and current dependent i n series with
the safety ground . A saturating i nductor meets
those requirements.

For a fault condition, Digita l 's internal design
stand ards req u ire t hat a c u rrent of twi ce the

Digital Technical]ou1-nal
No. 4 February 1987

product's receptacle rat ing flowing through the
safety ground system must not resu lt in a voltage
rise of more than 4 . 0 V, and this level must be
sustai n ed for 1 0 m i nutes. With these req u i re
ments in mind, we used a 1 . 2 -m i l l i henry c hoke
to isolate the VAX 8800 CPU from the building
g r o u n d a t h i g h fre q u e n c y . T h i s c h o k e was
designed to saturate as described above if a fault
occurs.

Chassis Ground

T h e RF shield comprises the chassis ground and
the outer panels of the cabinet. The federal reg
u l atory agencies (FCC and VDE) set and enforce
the al lowable l i mits of radiated emissions fro m
computer equipment. Since the i ntegrated cir
cuits within the system are switching at high fre
quencies, they can be modeled as RF sources .
The interconnecti ng etches between integrated
circu its that are not tightly coupled to a ground
l ayer can be modeled as a ntennas .

The faster t h e c l ock a n d edge speed s , t h e
shorter the antenna needed t o act a s an effective
radiator . The length, in meters, of a ful l wave
length is defined as 3 X 1 08 j F.

Once t h i s wave l e ngth has been fo u n d , the
outer panels of the cabi net can be modeled as
an a ttenuator, which decreases the amount of
rad i a ted e n ergy that can be transmi tted from
w i th i n the cab i ne t . To m a i n ta i n t h i s l evel of
attenuation, a l l openings , such as doors, must be
bridged w i t h conduc tive gasketing or fi nger
stock . The openi ngs for air flow must be treated
as a wave guide . The attenuation, in decibels, of
the opening is related to its size by the fol low
ing formula:

. 0 046 X l X F X V5 900 X Fjgap2 - 1

i n which F is the frequency i n MHz, and I is the
l ength and gap the width of the openi ng, both
in centi meters.

Ground Interconnections

within the System

Once the separate ground e lements had been
defi ned, we began to formu late a n orderly inter
connection strategy for the main computer that
would n o t compromise the syst e m ' s pe rfor
mance . We used the same return path for bot h
the logic and the de power because there was
no d i c h otomy i n t he re q u i r e m e n ts for b o t h
returns. In the VAX 8800, t h e ju nction o f these
returns comes at the point where the hori zontal

95

New Products

A Logical Gro unding Scheme fo r the VA X 8800 Processor

bus bar (remrn) is bol ted to the in ner layers of
the logic backplane. (Sec F igure ') .)

D i g i tal 's i nternal sta ndards , wh ich meet a l I
the appl icable i n ternat i ona l regu la t ions . man
dates that the de power return be con1H:cted to
the safety ground . Th is connection must he able
to wi thstand the short-c i rcu i t cu rrem of the de
regu la tOr outpu t . (I n certa i n cases it may be
d es i r a b le to i n ser t a fre q u c n c y - d e pe n d c n t
i m pedance i n seri e s w i t h t h is con n e c t i o n t o
" isolate a t frequency ' ' a n e lement of the syste m .
That coul d b e clone when creat ing a si ng!<.:- po i n t
gro u n d system - di rect ly referenced to t h e
c h as s i s - o r a c o n t r o l l e d h y b r i d - g r o u n d
system .)

I n the VA,'(8800 C PU , the de output cou l d .
under fau lt con d i tions, producc approxi matl' l y
4 0 0 amperes . Thus the i n terconnect ion must
han d le th i s h igh fau l t currem This i n terconnec
t ion was accompl ished by bol t i ng the j u nct ion
n o d e of t h e co m b i n e d d e - p o w e r a n d l o g i c
rl'turn ro the chassis for the ent i re length o f the
horizontal bus bar. This porr ion of the c hassis
was choscn as the connection poin t becausc i t
was nor used as a conductor for any other h igh
frequency currents .

I n summary, the ground i ng approach we used
for the 8 8 0 0 fe a t u red t h e fo l l o w i n g dc s i g n
points:

• The l o g i c a n d de r e t u r n a n d t h c c h a s s i s
gro u n d a r e connected together a t t h e hori
zontal power-return bus.

• 'T'hc power-system o u t p u ts and the c ha�s is
gro u nd arc i sola ted fro m gro u nd at R F fre
quencies by high i mpedances using lossy fer
r i t e i n d u c t ors . DC c u r re n t s a n d l i n e - frc
quency ('; Oj60 Hz) fa u l t curren ts may thus
flow un i mpeded .

• Part i cu l ar care was taken to m i n i m ize t hc
now of logi c-rem rn currents through the sys
t e m chass i s , t h u s isol a t i n g the p e r i p h era l
boxes (C I 7 5 0 , BA l l AW , e re .) from t h e sys
tem chassis grou n d . I nsu lated chass is sl ides.
s h u n ted by l ossy ferr i te i n d u cto rs , acco m
p l i shed that isolation . Although there arc st i l l
c o m m o n - m o d e c u r re n ts w i t h t h e fer r i t e
i ndu ctors , t hey reduce unwanted common
mode n oise voltages that can couple int o cir
c u i ts through paras i t ic inductances . That is a
far worse problem , as we demonstrated to our
own c hagrin .

• T h e l j O pa ne l b u l k head a n d t h e log ic and
power returns for the VAXBI bus and memory
backpl anes are t ightly bonded tO the s i ngle
point ground at the CPU power-return bus.

• The e l i mi nat ion of c ircula t i ng noi se and l ogic
curren ts through the c hass is wil l max i m i ze
the effectiveness of the sh ielded cabinet as an
atren uaror of rad i ated energy.

T h e i m p l e m e n t a t i o n of t h i s a p p r o a c h i s
shown i n Figure 6 .

ljO and Expansion of Grounding

O nce the m a i n processor's grou nding had been
defi ned, we had to deal w ith grounds between
the externa l c l ements , such as the 1/0 s ubsys
tem . The VAX 8800 system can accommodate a
large array of r;o devi ces by ut i l iz ing the VA.,'<:Bl
archi tecture . The H96 5 2 EC- ED cab has provi
si ons for two expansion boxes , the C I 7 5 0 and
the BA I l AW. These boxes arc self contai ned and
have i ntegra l power suppl ies, logi c backplanes,
and int ercon nects . In keeping wi th our ground
i ng arc h i tcctur e . we isolated these boxes from
the chass is ground by using low-Q i nductances .
The si gnaljlogic ground was then established by
means of cables ro the VA.XBI -to-CPU backplane .
This scheme ensures that the chass is is not used
as a signaljlogic return .

System to System Grounding

Grouping systems togcther or netwo rk i ng them
has a large impact on systcm noise and the sub
sequent grounding techniques tO e l i m i nate i t . I n
terms of t h e signa l-to -noise ra t i o a n d from the
aspect of grounding. a networked system can be
div ided into two cases : the dense network, and
t ill' dispersed nctwork.

Dense Network
A dense nc t\vork is a group of compu ters or sys
tems w i t h associa ted su pport hardware rhat i s
l ocated w i t h i n one area , e i t her an offi ce or a
computer roo m . This area i s l ike ly tO conta i n
systems fro m d ifferent vendors as well as phone
swi tc h i ng networks , cxperi me n ta l equ i pmen t ,
o r i ndustrial control lers and moni tors. Al l these
devices sbarc a common ground that could be a
grid or s imply a bra nch ground as part of the i r
safety ground . This connect ion also provides a
s i g n a l refe r e n c e b e t w e e n i n t e r c o n n e c t i n g
d e v i c es i n t h e a rea t h ro u g h t h e c hass i s a n d

Digital Technical journal
No. 4 Februarp I 'J87

AC FRONT -END CABINET

r - - - -r-- - -,
I Cl750 I
I I
I I I I
I I

I
I
I
I

I I I
L - - ---L _ _ _ _ ...J

AC
CORD
GROUNDS

- - ,
+5 V +5 V I

MAIN CABINET

:�� �E-;;�;--r----_'.;_1 ------+---------L------1----,
L_----�-------������77��T7�����T.T77�T.T777?�_,�_,-4 VAX81

IBACKUP I
I II I 1 "-

� ! �
L __ _ _ _ L _ _ _ _ J

8

8

w - MPS CHASSIS (ISOLATED)

w - CABINET FRAME

w - ISOLATED BOX FRAME

\!f - PERIPHERAL FRAME

w - H7170 FRAME

w - CSP FRAME

Figure 6

MEMORY

876
POWER CONTROL

(PRO 380)
CONSOLE

1 /0

LASO
PRINTER

I
I
I
I
I

1 .

I I L--------------------------------J

r - -
1
I
I I
I I I I I "
l o , a
I
I
I I
L--

------,
I
I
I
I
I
I I
I I I
I I
I
I

_ _ J

MPS AC/DC CONVERTERS

,- --- - - --, ,-------l
I t 1 I
: : : :
: : I : I 1 o I l_ __ _ _ _ f_j i7 L_t ____ j

NOTES: 1 . The return of the power bus lor the CPU backplane is the common connection (single
POint ground) for the logic. power. and chassis (RF) grounds.

2. The 1 200-pF capacitance is the typical parasitic capacitance between the isolated MPS
power-supply rack and the main chassis.

3. The indicated common-mode indicators. or baluns, are composed of lossy ferrite cores
surrounding the bus supply and return conductors.

4. The inductors shown between the · ·e· · ground or chassis and the subassemblies are
lossy inductors designed to increase the RF impedance and to prevent the circulalion of
noise currents in the chassis.

5. The indicated inductance is the stray. or leakage. inductance in the power cord isolating
the cabinets from ac. or utility. ground.

System Gro und Schematic

A L ogical Grounding Scheme for the VA X 8800 Processor

power l ine ground in a complex way . Al l these
devices can generate h i gh-frequency cur rents
that flow into the groun d . These currents must
fl ow through the complex i m peda nce o f t h e
g r i d w h e r e , c o n s e q u e n t l y , R F vo l t a ges c a n
deve l o p . U n d e r those c o n d i t i o n s t h e gro u n d
wou l d act a s a noise i njection poi nt rather than
a stable reference.

Dispersed Network

The d i spersed network i s a n interconnection of
computers or systems spread over a wide are a ,
perhaps resid i ng on different floors o f a b u i l d
i ng o r i n d i fferent build i ngs a ltogether. Commu
n i c a t i o n on t h i s s c a l e c a n n o t d e p e nd on a

mutual RF ground because i t cannot be reason
abl y esta b l ished . In t h i s case , com m u n i cat ion
must be accompl ished by means of either trans
former-cou pled circ u i ts, opti cal l i nks , or d i ffe r
ential driver/receiver log i c .

Both types of networks i l l ustrate the fact that
system network i n g c a n n o t , and i n some cases
shoul d not, be accom plished by attempting ro
create an absolute ground reference to the net
work .

System to Peripheral Grounding

As a system expands with the addition of periph
era l devices , s u c h as disk drives, pri nters , and
LANs, the ground system must be vi ewed as a
large hybrid arrange ment. Intercon necting these
devices must be predicated on the groun d- cur
rent characteristics (si gnatu re) and the I/0 con
nections of these devices to the syste m .

This s ignature i s particularly i m portant when
conn e c t i n g devices that were designe d co be
used as sm a l l , sta n d a l o n e appl i c a t i ons . T h e i r
designs may have i n volved decreased l i ne-fi l ter
ing capa bi l i ti es and m i n i ma l ly sized chokes for
grou n d is o l a t i on or perh aps n o n e a t a U . I t i s
i mperative that such factors b e consi dered when
connecti n g peri pheral devices to a large syste m .

Summary

We now offe r some conclusions based on our
re c e n t e xp e r i e n c e s w i t h the VAX 8 8 0 0 a n d
ot her new syste m s . These concl usions rake the
for m of recommendations for m i ni mizing noise
related problems in any compurer syste m .

Ground Noise Current Signature

I t is i m p o r t a n t to i d e n t i fy t h e s p e c t r u m o f
ground -conducted noise for each subsystem ele-

98

ment . This noise depends on paras it ic ele ments
i n the circu i ts and el ectromechanica l structure .
Th erefo r e , t h i s i nfo r m a t i o n is b e s t obta i n ed
e m p i ri c a l l y b y m e a s u re m e n ts on t h e a c t u a l
ha rdwa re . T h e n o i s e c u r r e n t a m p l i t u d e s a n d
fu n d a m e n ta l frequenc i es s h o u l d b e m easure d
on c a b l e s h i e l ds , c h assis grou n d s , 1 / 0 l o g i c
returns, a n d power i n p u t s .

Segregation of System

Gro u nd Networks

A ground system schematic shoul d be deve loped
for each particu l ar su bsystem. The in tercon nec
t i o n of g r o u n d t y p e s w i I I b e b a s e d on t h e
i ntended system applicat i o n . As a general r u l e ,
t h e g ro u n d t y p e s s h o u l d b e s e g r e g a t e d t o
a c c o u n t fo r t h e f i n i t e a m p l i t u d e s a n d o ft e n
u npredi c table paths o f t h e noise curre n ts . This
segrega t i o n of gro u n d s (e . g . , powe r , chass i s ,
a n d safety grounds) c a n be acc o m p l i s h e d by
carefu l l y c hoos i n g t h e freq u en cy - d e p e n d e n t
impedances. These i m pedan ces are lossy ferrite
inductors p l aced in series with the appropriate
ground connecti o n .

Appropriate Signal and

Power In terco n n ect

T h e o p t i m a l s i g n a l i n t e r c o n n e c t i o n s a r e
designed a s contro l l e d - i mpedance tra nsmission
l i nes with each signal and its return path closely
cou p l ed a n d havi n g e q u a l i m p e d a n c e co t h e
chassis ground . Depen d i ng o n t h e noise sensitiv
i t y , d a t a r a t e , a n d i n t e rc o n n e c t l e n g t h , t h e
i mp l e m e ntation c a n ran ge from coaxi a l cables
w i t h o vera l l s h i e l d s co grou n d - p l a n e r i b b o n
cables c o r i bbon cab l es w i t h a l ternate gro u nd/
signa l p a i rs . Even t h e cru dest , s l owest s i gn a l
J i n e that re l i cs o n chassis grou n d for a s ignal
return i s doomed co fa i l ure if i t is sensitive co
noise .

H igh- performance data l ines shoul d certainly
b e d es i gn ed w i th l ow - i m pe d a nce d i ffe ren t i a l
l i ne d rivers a nd rece ivers , e i ther d i rectly cou
pled or transformer cou pled. Single-ended l i ne
drivers and receivers may be acceptable with i n a
subsystem i n which the noise between grounds
is low and control l e d . Communication through
u n b u ffe red TTL o u t p u ts a n d i n p u ts are never
a c c e p t a b l e w h e n l e a v i n g a s u b s y s t e m b a c k
plan e .

The i n it ial cost o f a n d board space needed for
proper l i ne drivers a n d receivers are more than
justified in today's distributed comput i ng envi -

Digital TecbnicalJournal
No. 4 February 1987

ron m e n t . The i r use i ncreases re l i a b i l i ty a n d
decreases start-up probl ems. T h e power i nter
connects shou ld be des igned w i t h m i n i mu m
inductance and the lowest h igh-frequency char
acteristic impedance that is reasonable . The c ir
culat ing path of supply and return power cur
ren ts should be kept as low as poss ib le . Th is
design al lows better power-system transient per
formance and ensures the existence of min imal
rad iated magnetic fields .

Notes

1 . A short c i rcuit between the h igh-voltage
pr imary and t he low-vo ltage secondary
could produce lethal voltages referenced
to the chassis ground at accessible poi nts
w i t h i n the computer . Wi th th i s s h i e l d ,
however , t he short wi l l produce a h i gh
faul t current to the chassis . That current
w i l l open va r i ous p rotect i ve dev ices ,
such as fuses and c i rcu i t breakers , tha t
render the system safe in the event of a
fau l t .

Appendix

Determining Skin Depth

To calcu late the i mpedance of a given conduc
tor, the depth of current penetration - or skin
depth - in a con duc tor m u st be ca l c u l a ted
fi rst . To do tha t , a designer must perform the
fol lowing steps:

1 . Determine the type of metal of which the
condu ctor is made (i . e . , copper, z i n c ,
etc .) .

2 . Look up i n a reference table the magnetic
suscepti b i l i ty of the materia l . (The CRC

Han dbook of Chemistry a n d Physics

conta ins tab les of this nature .) Two types
of l isti ngs of suscept ibi l i ty are commonly
u s e d . T h e f i rst type g i ve s v a l u e s o f
speci fic suscept ib i l i ty t hat must b e con
verted by mult iplying the value by 4 X 1r
X density of mater ia l , called P . For cop

per, th is va lue would be - 0 .086 X I Q -(,
X 4 X 1r X 8 . 89, which equals - 0 .960
X 1 0 - s .

T h e second type uses suscepti b i l i ty i n
one gram fo r m u l a w e i g h t . T h i s va l u e
m ust be converted by mu lt iplying i t by 4
X 1r X dens i ty of material or molecular

Digital Technical journal
No. 4 February J 'J87

we i g h t , w h i c h fo r c o p p e r w ou l d be
- 5 .4 6 X 1 0 - 6 X 4 X 1r X 8 . 89/63 . 5 4 ,

which equals - 0 . 960 X 1 0 - s.

3 . The resu l t i ng figure mus t now be con
verted to re l a tive permeab i l i ty by add·
i ng 1 . 0 to the suscepti b i l i ty factor. For
copper, th is value would be 1 . 0 - 0 . 960
X 1 0 - ' , which equals 0 . 9999904 .

4 . The relat ive permeabi l i ty must be con
verted to permeabi l i ty by mul t iplying the
value from step 3 a bove by t he perme
abi l i ty of a i r (4 X 1r X 1 0 - 7) . For cop
p e r , t h i s v a l u e wou l d be 0 . 9 9 9 9 9 0 4
X 1 2 5 6 6 3 X 1 0 - 6 , w h i c h e q u a l s
1 . 2 5662 X 1 0 -6 .

5 . The next piece o f information needed is
the conduct i v i ty of the mater i a l used .
Th is value must be in the form of s iemens
per meter, a l though most l ist ings wi l l be
i n ohms per cent imeter. To convert , mul
t ip ly the table en try by l X 1 0 - 2 a n d
then take the reci proca l . For a n nealed
copper, th i s value is 1 / 1 . 7 2 4 1 X 1 0 - 6

X 1 X l 0 - 2 , w h i c h e q u a l s 5 . 8 0 0 1
X 1 07 .

6 . The sk in depth can then be determi ned
by the re lat ionshi p l j(1r X frequency of
concern X conduct iv i ty X permeab i l
i ty J ' 1 ' . The resu l t can be man ipu lated to
the form of 1 j (1r X conductivity X per
meab i l i ty) ' 1'/ (frequency of concern) ' t'
For copper , th is va lue i s l j(1r X 5 .800 1
X 1 07 X 1 . 2 5 6 6 2 X 1 0 - 6) ' " . w h i c h

equals 0 .06608/(frequency o f concern) ' 1 ' .
For example, i f the frequency of concern
were 1 KHz, then the sk in depth would
be 2 . 089 X 1 o - 3 meters , or 2 . 089 m i l ·
l i meters, deep .

I f the frequency of concern were 5 0 KHz ,
then the skin depth wou ld be 295 m icro
meters .

99

New Products

Cheryl A. Wiecek I

The Simulation of Processor
Performance for the VAX 8800 Family

An effort was initiated in the fall of 1981 to simulate the performance of
the processor design for the VAX 8800 family of computer systems. That
simulation stayed current with the changing design and continues to be
used today for studies associated with developing VAX processors. This
paper discusses why this simulation was done, how it was structured, and
what was simulated. Since the results generated are quite extensive and
detailed, only the conclusions from these studies are presented here.
What was learned from the model and how it affected the processor
design are particularly emphasized.

Many levels of s imu lation are done with in pro
cessor deve lopment projects we l l before any
ac tua l h a rdware i s b u i l t . Structura l models a t
the c i rcu i t and gate levels are used in tasks such
as ver ify ing t i m i ng and developing d iagnost ic
tests . Behavioral mode ls at the fu nct ion l evel are
u s e fu l fo r v e r i fy i n g p r o c e s s o r i ns t r u c t i o n
m icrocode . Another usefu l c lass o f models s imu
la tes performance at the m icrocyclc level . Such
models look at a processor's design as a collec
tion of hardware resou rces that must be m a n
aged. These models are most usefu l for gather
ing des ign trade-off i nformat ion and verify i n g
the design performance esti mates . By emphasiz
ing the key hardware resources a n d how they
i n teract, performance s imu la tors can

• Focus on how those resources arc being used

• Indicate how wel l they support the req u i red
activ i t ies

• Provide a h igh- level view of the i n teractions
in the processor syste m

This paper descri bes the performan ce s i m u
la tor u s e d on t h e project tha t deve l o ped t h e
VAX 8 8 0 0 fa m i l y of co m p u te r syst e m s . T h i s
model ing project began in the fa l l of I 98 1 , and
the s i m ul at O r c on t i n ues to b e used today to
s t u d y a l t e r n a t i ves fo r n e w VAX p ro c e s s o r
designs . The fol lowi ng two sections discuss how
the s i mu lator was designed and what was s imu
lated . The t h i rd section h i g h l ights the resul ts
and discusses what was l earned from them.

1 00

Methodology

The overa ll structure of the performance model
m i rrors the str u c t u re used prev i o u s l y fo r t h e
performance s imu lat ion o f a PDP- I I processor
des ign . 1 The mod e l cont a i n s t hree parts . a l l
developed as separate enti t ies :

• The instruction stream that is acted on by the
processor resources

• The microcode that d i rects i nstruction execu
t i on

• The s i m u l a t ion of t h e. processor resou rces
and t i m i ng

These three parts are then combi ned to gener
ate s imu la t ion resu l ts . The tasks performed to
develop each parr are d iscussed in the fol lowing
sect ion .

Workload Model
The most appropriate m odel for the workload
fed to t h e s i m u l a t o r is t h e s t r e a m s of VAX
i nstru ct ions from typ ica l programs be i ng exe
cuted . I n formation about each executed i nstruc
rion is req u i red w obta i n performance data at
the m icrocycle leve l about the processor and i rs
resou rces . The software used w extract t h ese
execut ion strea ms had a lready been developed
from a previous project . That software i s essen
t ia l ly a debugger that uses the VAX T-bit to gen
erate a software trap after the execution of each
i nstruct ion in the traced program 2 That t racing
perm its the co l lect ion of the next instru ction 's

Digital Technical journal
No. 4 Februmy 1987

operation code, the addressing modes and regis
ters of the operand specifiers, the read and write
references, and the operand val ues .

The task of choosing which programs to trace
was bounded by a number of requ i rements and
constra i nts . One req u i rement was to prov i de
some i n i t i a l p e rfo r m a n ce es t i m a tes for t h e
VAX 8800 fam i l y processor . Those est i mates
emphasized i nteger, logica l , and float ing-point
operations in CPU-intensive programs. Another
requ i rement was to select programs that exer
c ised the processor resources that we wanted to
model , espec ia l ly the cache subsystem , where
capturing best-case , typical , and worst-case sce
narios was important .

A l l the constra i nts i nvolved the progra m s
from which i nstructions were traced . A reason
able length for these programs was about one
ha l f m i l l ion VAX macroi nstru ct ions , thus per
m i tt i n g t h e s i m u l a tor to process t h e m i n a
reaso n a b l e t i m e . We avo ided programs t h a t
requ i red extensive microcode characteri zation
for instructions that were e i ther Jess frequently
executed or too complex, such as those i n the
packed decimal group. Moreover, the trace soft
ware was l imited to process ing execut ing pro
grams that ran in nonprivi leged user mode . Thus
we had to avoid programs, such as editors , hav
ing extens ive operat i ng-system servi ce ca l ls ,
which cou ld only b e part ia l ly traced .

We chose s ix programs ro drive t he model .
These i ncluded four benchmarks and two popu
lar ut i l i ti es for creat ing execu table i mages on
VAX system s . The n u mber of i t erat ions in the
four benchmarks was shortened proportional ly ,
keeping the mix of i nstru c t ions constant to
reta i n thei r representat ive ness. Three bench
marks were wri tten in FORTRAN : Towers of
Hano i , a pri me-nu mber generatOr, and s ingle
prec is ion W he tstone ; one , ca l led Puz z l e , was
wri t ten i n PASCA L . The o t h e r two progra ms
were a FORTRAN compi le and a VAXjVMS l ink ,
both written in BLISS. For a l l the i r constra ints,
these programs exercised the model wel l . The
accuracy of the performance estimates was con
fi rmed later by measu re men ts on a prototype
machine .

Microcode Model
How m icrocoded i nstruction control i s charac
ter ized has a sig n i fi can t i m pact on both t h e
speed and resu l ts o f a processor performance
s imul ator. For exa mple , creat ing a model a t a

Digital Technicaljournal
No. 4 Februm:y 1987

very detai led leve.l perm its a fi ner ana lys is of the
resu l ts , but takes a long t i m e ro develop and
ru n . Therefore , we had to decide what the trade
off should be between t ime and deta i l . We a lso
wa nted to stay current wi th the latest develop
m ents in the processor microcode , which we
knew wou ld change s i g n if icant ly d u r i ng the
project. With a l l that i n m ind , we decided to use
t h e l a tes t vers i o n of t he a c t u a l m i crocode
sources as the i nput ro a u n i que process , par
t ia l ly automated, that extracted the information
needed by the s imu lator . This strategy a l lowed
us ro i gnore deta i l s that were not req u i red by
t h e s i m u l a tor , a s we l l as to k e e p u p w i t h
m icrocode revi s ions as t hey were released . A
useful by-product of this approach was the abi l
ity to prod uce m icroPC h istograms with the s im
u lator. This i nformation helped to explain how
the m icrocode was being used .

One step i n mode l i ng the m i crocode i s to
determine the control fie lds t hat are key to the
processor's performance. Only a sma l l nu mber
of the defined fields are actua l ly needed . Many
m icrowords are effectively no-operation instruc
t i o n s fo r the s i m u la ted p roce ssor p i pe l i n e .
Table I conta ins the microword key for the per
formance s imulator. Each m icroword has three
fie lds : SRC, ALU , and DST. In a n y mi croword,
each fie ld has a command su bfie ld and up to
three operand subfields . (The address operands
genera ted by the trace software are ac tua l ly
extracted a s bo th the traced program and the
s imulator are being ru n . The other operands and
co m m a nds are extracted from the m icrocode
prior to s imu lation execution .)

Before a ny actual m icrocode had been devel
oped, s imul ated m icrowords were written man
u a l l y fro m m icrocode fl ows provided by the
group developing the firmware . Once the actual
mi crocode was ava i lable , a significant portion of
the performance s imulation m icrocode was gen
erated autOmat ica l l y by mapping rea l fie lds to
the sma l l n u mber of fi e l ds that the s i m u lator
requ i red . This automatic mapping of processor
m icrocode to that used i n the s i m u l atOr was
complicated by several issues .

One prob lem was that the m i crobranch ing
logic requ i red addit ional information a t s imula
tion run t ime ro dec ide which branch path to
take . To solve that problem, the firmware group
flagged m icrobranches by i nsert ing commen ts
in their microcode . Those comments were then
ca ught by the microcode translat ion software ,

1 0 1

New Products

The Simulation of Processor Performance for the VAX 8800 Family

Table 1 Microword Key to the Performance
Simulator

Field Command Description Operands

Any No operation performed. None

S A C Stall if t h e memory data ASRC,
registers (M D R s) specified B S R C
b y A S R C a n d B S R C a r e not
yet val id for i nput to the
arithmetic logic unit (ALU).

ALU Send a cache arbitration None
signal and stal l the pi pe-
l ine if i t is not the winner.

DST Send the cache a read M D R
request for x Bytes starting n u m ber,
at Address, and set M D R Bytes ,
nu mber t o val id when the Address
data is avai lable.

DST S e n d t h e c a c h e a w r i t e S i g n a l ,
request with x Bytes o f data Bytes ,
starting at Address. The Address
value of Signal dete rmines
whether hardware or mi cro-
code control sends the write
buffer data to memory.

DST Conditional ly flush the I B Address
and provide the cache
with a new Address for
prefetching IB data.

DST Send the cache notification No ne
of a new address for pre-
fetching IB data once the
decoder handles the
I S-address page cross.

DST Send the cache a read/ None
write probe request.

which marked them for processing at ru nt ime .
Another problem was that some VAX macro in
structions had no t been coded yet, and others
were more complicated than requi red for s imu
lat ion . (Many of the VAX floating-point i nstruc
t i o n s were in t h i s ca tegory .) I n those cases
sequences of handwritten microcode were used .

Processor Simulation Model
The structure of the processor s imu lation model
was d r i v e n by t h e n e e d to prov i d e t i m e l y
answe rs to quest i ons asked by the designers .
The resu l ts had to be generated , ver ified , and
d istr i buted as qu ick ly as poss i b l e to be mos t
useful in design trade-off decisions. The require
ments we considered most i mportant were the
fol lowing

1 0 2

• The s imulator must have a modular structure
that fac i l i tates replacing, reconfiguring, a nd
re u s i n g r o u t i n e s w h i l e m i n i m i z i n g t h e
rumime overhead .

• A g e n e ra l - pu rpose c o n t r o l m e c h a n i s m i s
needed to manage commun icat ion and syn
chroniza t ion between a number of i ndepen
dent tasks running i n para l le l .

• E x t e n s i ve a n d f l e x i b l e ljO fe a t u res a r e
needed t o generate cycle-by-cycle traces and
reports with s imulated performance sta tistics.

• The ratio of s imu lated time to real time must
not be a bottleneck to obta in ing resu lts.

We chose a structure that favored changing
and reus ing parts of the s imulator , but which
ra n s lower , over one that ran faster , but was
hard to change . We d id this knowing that the
s i m u l a tor wo u l d be used to try m a ny design
ideas that woul d eventua l ly be d iscarded . The
simu l ator a lso had many parameters bu i l t in so
that d ifferent confi gurat ions and t imings cou ld
be tried . The structure we chose cou ld be used
to evaluate many design alternatives. Since this
was the first VAX processor to be modeled this
way , we had to design and build all the software
for the s imulator; none of it could be borrowed
fro m other projects . Therefore , we knew that
producing results quick ly woul d be difficu l t .

The structure chosen required that the simu
lated processor be part i tioned into a number of
i ndependent components , each mode led by a
d e t er m i n i s t i c s t a te - m ac h i n e . T h a t m a c h i n e
defined the actions to be done when each state
was emered, and the conditions to be eva luated
for d ec i d i n g t h e n e x t s ta t e t ra n s i t i on . T h i s
approach had several advantages. The hardware
designers cou ld re l a te easily to state -machine
models of the i r part icu lar designs, even t hough
the states i n the s imu lator sometimes marked
performance-related events , not real hardware
states . Th is structure a lso made it poss ib le to
repl icate components and reconfigure the origi
n a l s i ng le -processor vers ion of the s imula tor
in to a dual -processor vers ion .

A monitor i s needed to control the communi
cation , synchronization , execution , and status of
these i ndependent state -machi ne components.
For com munication between components, only
certa i n types of send and receive operations are

Digital Technicatjournat
No. 4 Febmary 1987

used . Th i s restr ic t ion a l lows the compone n t
interfaces t o be s imple and wel l defined. There
are three types of send operations:

1 . A targeted send d i rects source i n forma
t ion w a s i ng le dest i na t i o n w i t h i n the
current cycle .

2 . A broadcasted send d i rects source infor
m a t i o n to z e ro or m o re des t i n a t i o n s
within the current cycle .

3 . An arbi trated send d i rects source informa
tion to a s ingle destinat ion , sta l l i ng exe
cut ion of the sen d i ng component u n t i l
the information i s del ivered .

There are two types of receive operations:

1 . A targeted receive resul ts i n the del ivery of
source information from a send operat ion .

2 . A collection receive i s l i m ited tO probing
sou rce i n format ion from a send opera
t i o n ; t h i s i n fo r m a t i o n is u se d by t h e
model to make decisions .

The moni tor keeps two queues for the com
ponents: one for component send requests, the
other for component receive requests. The mon
i tor a lso synchronizes send and receive requests
on behalf of the components and reports errors
w h e n u nd e l i ve re d s e n d or rece i ve e n t r i e s
remain i n the queues .

Syn c h ro n i z a t i o n be tween c o m p o n e n t s i s
ach ieved us ing t h e sen d , receive , a n d t i m i n g
services b u i l t i n to the mon itor . The send and
receive operations a l low the spec ifi cat ion of a
phase number so that components can send and
rece ive i n format ion o n ly a t ce rta i n i n terva l s
wi th in the basic m icrocycle clock recognized by
the mon i tor . The moni tor b locks components
fro m execu t i n g w h i l e they w a i t for send o r
receive requests t o be serviced . States within a
component can be designated as t ime sensit ive .
When the next state to be executed wi th in a
component is so designated , that component is
blocked from execut ing unt i l the moni tOr i ncre
ments the clock .

Exe c u t i o n p ro c e e d s on t h e bas i s o f o n e
mach ine cyc le . State - machine components a re
chosen to execute, one at a t ime , starti ng at the
state at wh ich each was last l eft . Component
execut ion con t i n ues u n t i l the req u i red send ,
receive, or t iming service returns control to the
mon i tor . When a l l components have reached

Digital Technical journal
No. 4 Febn1m:1' I 'J8 7

states i n which no more activity is possi ble for
the cycle, the mon itOr wi l l i ncrement the mas
ter c lock and the execution of components can
resume . End-of-s i m u l at ion and detected-error
con d i t i ons cause the m o n i tor to generate a
report of resu l ts by cal l i ng each component to
execute i ts report code .

The complete model for the VAX 8800 fami ly
processor ran on a VAX- 1 1 /780 system and exe
cuted about six VAX macroinstruct ions per CPU
second . That translates to a rat io of s imu Ia ted
t ime to real t ime of about 90 ,000 tO 1 . The con
trol moni tor was written in PLj l ; the processor
state -machine components were written us ing
VA,'{ assembler macros . Once the ADA language
had been added ro the l ist of VA.X-supported lan
guages , we translated the ent ire processor per
formance s imulat ion model i nto that language .
This new s imu latOr is be i ng used for fol low-on
processor performance s tud ies . The ADA l an
guage was chosen because i ts mul t i tasking fea
tures provide excel lent support for the control
moniror functions that we defined .

Verification of the Simulation Model

An i mportant and often over loo ked aspect of
developing a performance s imu lat ion model is
the effort re q u i red to ver i fy t h a t the mode l
reflects the actual design . In the early stages of a
project , the deta i ls of the proposed design are
usually communicated by word-of-mouth . Con
t i nuous changes to that original design enlarge
great ly the marg i n for error wi t h i n a perfor
mance s imu lator . S ince wrong performance data
is counterproductive, a great deal of our effort
went i nto verify ing that the s imula t ion opera
t ion and resu l ts accurately reflected the current
state of the design .

Once the performance s i m u l ator prod uced
resu l ts , the designers reviewed cycl e-by-cycle
traces of s imu lator act iv i ty to confi rm t hat the
s i m u l ator 's opera t i o n matched the processor
design . In add i tion , we developed a set of short
tests that exercised certa i n key functions. These
tests were rerun for each new version of the s im
u l ator , and the test resu lts were exhaust ively
compared to those from the previous version .
This procedure was effect ive in reveal ing u nan
t icipated interactions and errors due to changes
made i n both the s imulator and the design . As
the design progressed , we were able to compare
our s imulation resul ts with those from a behav
iora l model used for debuggi ng m i c rocode .

1 03

New Products

The Simulation of Processor Performance for the VAX 8800 Family

Eventua l ly , we could com pare our resu l ts with
those from a worki ng prototype system . Because
t h e m o d e l t ra c k e d t h e d e s i g n ' s evo l u t i o n
closely, these compar isons showed the perfor·
mance model to be an accurate representation
of the design.

Performance Model for the

VAX 8800 Family Processor

This section descr ibes the processor ha rdware
resources that were modeled. For each modeled
component, there i s a short summary descri b ing
i ts fu nct i o n , the i n form a t i on com m u n i cated
with other co mponents, and the parameters that
can be specified at runt ime to control s imu la
t ion configu rat ion and t i m i ng . Al though some
information about the VAX 8800 fami l y proces
sor design is i nc l uded , reference 3 shou ld be
consu l ted for more deta i l .

Figure 1 i s a n overview o f t h e processor per·
formance simu lator used for the VAX 8800 fam·
i ly . The various components are represented by
circles , the com munication paths by arrows . As
described earl ier , each component is an i nde·
pendent state- machine that communicates with
o t h e r c o m p o n e n ts u s i n g d e fi n e d s e n d a n d
receive operations.

MICROINSTRUCTION

Figure I Performance Model for the
VAX 8800 Family

I 04

Decoder
The decoder state-mach ine sends the pipel ine a
m icro i nstruct ion dur ing every unsta l l ed cyc le
and detects the end -of-s imu lation condi t ion . To
do those act ions , the decoder requests bytes
from the instruction buffer (I B) , using informa
t ion prov ided in the i nstruction trace . When the
I B ind icates that the requested bytes a re ava i l ·
able, the appropriate m icrocode flow is chosen
tO start execut ion . If the IB cannot d e l iver the
req uested byres , t h e n no-opera t i o n m i croi n ·
structions are fed to the decod er. The decoder
must a lso commun icate with the cache contro l .
For example , the decoder m ust reso lve any lB·
address page crosses detected by the I B prefetch
hardware in the cache . Also kept by the decoder
is a parameter that contro ls the nu mber of VAX
i nstruct ions execu ted between cache f l ushes
due to context swi tching.

Pzpeline
T h e p i p e l i n e s t a t e - m a c h i n e s i m u l a tes how
micro instructions prov ided by the decoder are
to be execu ted . During any one cycle , parts of
three consecut ively queued m i cro i nstruct ions
arc processed :

• The DST fi e ld of the oldest micro instruction

• The ALU fie ld of the next m icroi nstruction

• The SRC fie ld of the m i cro instruction most
recent ly queued

For e v e ry cyc l e t h a t t h e p i p e l i n e is n o t
sta l l ed , t h e o l dest m i croin struct ion i s ret i red
after the command i n i ts DST f i e ld has com·
pleted . The actions performed by the pipe l i ne
are described in Tabl e I . The pipe l ine can send
fl ush requests to the IB, and processor read and
write requests to the cache (after arbi trati ng and
winn ing i t) . The pipel ine a lso manages the val i ·
dat ion o f t h e memo ry clara regis ters (M DRs) .
Pipe I i ne stal l s that resu lt from those actions are
made known to the decoder. The only pipel ine
parameter the user must enter i s the cycle t ime
in na nosecon d s , used fo r c a l c u l a t i n g perfor·
mance data at the end of s imu lat ion .

Instruction Buffer
The I B state- machine s imu lates a fi rst - in , fi rst·
out (F IFO) cache for VAX instruc t ion stream
data . The IB accepts requests for bytes from the

Digital Technical jountal
No. 4 February I ')87

decoder and notifies it whether or nor the byres
are ava i l ab le . The IB mode l does nor actua l ly
srore any stream data ; however, i r does manage
the counr of va l id byres within IB longwords as
that data is shifted i n and out . The cache-control
component prefetches data for t he IB and a l so
notifies the I B of prefetched data whenever no
other activity is schedu led for the cache during
a cyc l e . When fu l l , the I B no t i fies the cache
control of that cond ition . l n turn , the I B is noti
fied by the pipe l ine m odel when i t needs to be
fl u s h e d d u e to a c h a nge i n t h e i n s t r u c t i o n
stream sequence .

The configu ration of the I B is control led by
two para meters : rhe number of b locks, and the
number of bytes per b l ock . For the VAX 8800
fa mi ly processor , t he IB has four b locks, each
four bytes long.

Cache Arbiter, Con trol, and Queues
From the viewpoint of performance , the cache
subsystem in t h e VAX 8800 fam i l y processor
conta i ns an i m portant set of reso u rces . T h i s
cache design was modeled i n t h e s imulator by
t h ree stare - m a c hi n e compon e n t s : t h e cache
arbiter, the cache contro l , and the cache mem
OI·y-request queues. From the viewpoin t of per
formance s i m u lation , these fu nctions were the
most i nd e pendent ones that cou ld be segre
gated .

T h e cache a r b i t e r s t a te - m ac h i n e co l l e c t s
requests from the three components that require
cache service . The fi rst , t h e p ipe l i ne mod e l ,
sends readjwrite arb i tration signals for the pro
cesso r . The secon d , the cache-contro l model ,
sends read arbitration s ignals for a sta l led-pro
cessor cond i tion . The th ird , the me mory i nter·
connect mod e l , sends memory arbitrat ion sig
na ls . During every cycle , the arbiter sends to the
cache contro l the arbi trat ion winner that wi l l
have the cache during the next cycle . There i s a
fixed priority for choos ing an arbitration win
ner . Memory has the highest priority , fo l lowed
by processor reads and wri tes of various types;
cache I B prefetching (the defau l t) has the low
est pr ior i ty . The cache -contro l and m e mory
request queues models a lso provide status infor
mation used in decid ing an arbitration winner.
Certa in types of sta l l s resu lt in no winner. The
a r b i t e r mod e l req u i res no para m e te rs to be
specified by a user at runt ime .

Digital Technical journal
No. 4 February 1')87

The cache-control state-machine is the center
of the performance s i m u la t ion mod e l i n the
sense that i t communicates with a l l but one of
the other state-mach ine components. The hard·
ware resources managed include the combined
in struct io n-strea m-and-data cac he , and a long·
word de layed-write buffer used ro hold write-hit
data unti l it can be written into the cache . Like
the 1 8 , the cache control model keeps contro l
and status information only for the cache and
the write buffer. Dur ing every cyc le , the cache
contro l acts on the request chosen during the
last cycle by the arb i ter. That request can be a
refi l l fro m m e m o ry, a read l o o k u p a n d t h e
appropriate cache h i t o r miss activity, or a write
to the delayed-write buffer and memory . For a
cache-write requ est , the data in the d e l ayed
write buffer i s written to the cache when the
next wri te request is processed , and then only if
the address of the buffered write actual ly h i t in
the cache . I f there are no me mory or processor
requests , data is prefetched for the IB automati·
cal ly . by defau l t .

A number of para meters can be specified at
runti me within the cache contro l , most of them
specifying the configuration of the cache. Such
configuration parameters i nclude

• Switching the cache on or off

• The cache s ize in bytes

• The set size

• The b lock size in byres

• The b lock fi l l s ize in bytes

• The b lock re placement a lgo rithm (random ,
least recently used , or F IFO)

• The memory updating a lgorithm (write back
or write through)

• Al location for write misses

C o n t r o l d o e s n o t e x i s t f o r a l l pos s i b l e
cache options i n the processor model for the
VAX 8800 fa m i ly , but the cache ro ut ines do
su pport them . The i mplemented cache configu
ra t ion is 6 4 KB , d i rect mapped wi th 6 4 - byte
blocks and a 3 2 -byre block fi l l (done as rwo sep
arate 1 6 -byte refi l l sequences) . It features write
through me mory upda t i ng and no a l locat i on
for write m isses . For study pu rposes, a nother

1 0 5

New Products

The Simulation of Processor Performance for the VAX 8800 Fmn il)'

parameter was i ncluded that a l l ows ei ther one
or two-cyc l e read h i ts to the cache . The VAX
8800 fam i ly processor d<:sign impk m<:nts onl"
cyc lc cache read h i ts .

The cache m e m ory- reques t q u e u e s s t a r e
mac h i ne manages t h e I B read-m iss queue , the
processor read -miss queu e , and th<: writ<: -huffer
q u e u e . The I B read - m i ss q u e u e has two e le
ments, thus a l lowi ng two outstanding misses for
I B data . A th i rd outsta nd i ng mi ss w i l l re p l ace
the second one. thus avoi d i ng a p ipe l i ne sta l l .
The processor read-m iss queue has one c l ement :
therefore, two outstanding read mi sses wil l sta l l
the p ipe l i ne . However , processor read h i ts arc
a l lowed to con tinue with one outstanding read
mi ss . The wri te -buffer queue consists of rwo
octaword (1 6 - byte) e l e m e n ts . Conse c u t i ve
wri tes with i n the same octaword arc buffered
unti l an event forces data in the wri t<: buffer to
be sent to memory. That event can be encoun
tering either a write that i s nor in the same octa
word or a mi crocod e control command . The
c a c h e c o n t r o l s e n d s re a d - m i s s a n d w r i t e
requests to the appropriate queue. I f a queue is
fu l l , a s i gn a l te l l s the cache control tha t no
more req uesrs can be accepted .

From the cache queues, req uests to memory
arc generated and sent w the memory intercon
nect after the arbi trat ion for that i n terconnect
has been won . These requests are priori t ized to
fac i l i ta t e c hoos i n g w h i c h of t h re e poss i b l e
req uests wi l l be sent to the m<:mory i ntercon
nect at any point i n t ime . To mainta in the rank
ing, a two-bit cou nter w i l .l i n crement on ly on
th<: appearance of a write fo l lowing a read . The
request chosen i s the one with the lowest ra nk
co unt . If two requests have the same ra nk ing .
priority wi l l be given first ro the write . then w
the processor read , and fi n a l l y to the I B read .
The cache queues component has one parame
t<:r that can be specified at ru nt ime : the n u mber
of cycles that a request ready to be se nt tO the
memory i nterconnect must remain queued The
fina l processor i m p le me n tat ion req u i red on ly
one cycle , a l though th is t iming was nor known
when the model was bu i l t .

Memory In tercon nect
The memory i n tercon nect state-mac h ine hand ks
requests between the cache queues and mem
ory. Tra nsactions req u iring one or more cycles
on the bus i nc lude cache-refi l l data , i n octa
word packets , from me mory; processo r-write

1 0 6

requests of up to an octaword i n size; and pro
cessor da ta - or i ns t ruc t ion- read re q u ests for
3 2 bytes (returned from memory as rwo ocra
word pac kets) . Unt i l transmi tted . each transac
tion · · owns" the bus. A one-cycle settle t ime is
requ i red between transactions as wel l . Arbi tra
t ion for the bus occurs dur ing every cyc l e to
choose a wi nner for the next cyc l e . Priority i s
given first tO the current transaction holding the
bus. t hen tO the one-cycle settle rime, then to
memory. a n d fi na l ly to a ny pend i ng write or
read from the cac he . A cache request to memory
is que ued dur ing the cycl e after the request was
transm i tted on the bus . The tim ing of subse
quent cache requests for memory is contro l led
by t h e s u m of two p a r a m <: r e rs s p e c i f i e d a t
ru nt ime. Thes<: para meters arc

• The n u mber of cyc les between the t i m e a
cache requ est transm its on the i n terconnect
and the r ime the cache rcc<:ives an acknowl
edgmen t from th<: bus

• The nu mber of cyc les between the t ime the
cache receives the bus acknowledgm ent and
the rime the next cache request can transm it
on the bus

The VAX 8800 fa mi ly processor i m plementa
t i on h a s a va l u e of two fo r e a c h p a r a m e t e r ,
a l though t h i s t i m i n g had n o t b e e n determi ned
when the m o d e l was c r e a te d . Seve r a l o t h e r
parameters were inc luded i n the memory in ter
connect state- mac h ine for study pu rposes . The
one-cyc le settle time can be enabled or d isabled.
and the i n terconnect can acknowledge configu
ra t i ons with e i t her one or two processors . We
a lso included the capabi l i ty tO slow the memory
s u b syst e m . re l a t i v<: to t h e processorj c a c h e
requ est t im ing . by ei ther two or three r imes .

Mem ory
We h a d c o n s i d e r e d m o d e l i n g i n d e t a i l t h e
designs for both the memory control ler and the
array module . The effort required was so substan
t i a l , however, that we first mod e l ed o n l y the
best - and worst - case sce n a r i o s . The e n s u i n g
resu lts ind icated that ex tra deta i l in the model
wou ld nor y i e l d correspond i ngly en l ighte n i n g
i n fo r m a t i o n ; t h e re fore , t h e m e m o ry s t a t e
machine models only best- and worst-case mem
ory performance . The choice of best- or worst
case i s a para m e t e r spe c i fi e d by t h e u s e r a t
runt ime.

Digital Technical journal
No 4 Februarv 1 ')87

The best-case memory mode l assumes memory
is never busy and can take requests from the mem
ory interconnect w henever they are generated .
Thus instead of the eight memory-array modules
the processor is l i m i ted to , th is mode l effec
t ively s imulates an infin i te number of modules
with no contention for specific ones . The only
parameter the user must specify is the number
of cycles betwee n the r i me the read request
reaches memory and the t ime memory arbi trates
for the me mory i nterconnect to return requested
read data to the cach e . The i mplementation has a
va lue of approxi mately 1 4 cycles, which reflects
the me mory read l a tency . Write requ ests for
memory are simply del ivered; no fu rther action
has to be taken .

The worst-case me mory mode l assumes on ly
one array module is ava i lable to hand le read and
write requests . Requests for memory are queued
in a buffer for processing by the array modu l e .
When a l l queue elements have requests, a mem
ory-busy signa l wi l l in h ib i t the memory i ntercon
nect from send i ng a d d i t i o n a l requ ests u n t i l a

queue e lement is avai lable . A nu mber of parame
ters can be specified by the user at ru nt ime tO
control the t im ing of requests within the mem
o ry c o n t ro ll e r a n d t h e a rr a y m o d u l e . O n e
parameter i s the length o f t h e memory-request
queue, a va lue from one to eight. The processor
d e s i g n used a va l u e of t h re e for t h i s q u e u e
length . The other parameters are the numbers of
c yc l e s re q u i r e d for v a r i o u s o p e r a t i o n s , a s
described below. The actual va lue specified for
the processor design is conta i ned between the
parentheses fo l lowing each parameter's descrip
tion . These parameters are

• The t ime a request must be q ueued before
processing in the array module (2 cycles)

• The r i me requ i red by the a rray modu l e to
process a read (1 2 cyc les)

• The r i m e re qu ired by t h e array modu le to
process a write (9 cycles)

• The r i m e req u i red by t h e a rray modu le to
process read d a ta for a m a s k e d w r i t e (2
cycles)

• The t ime requ ired for a refresh of the array
module (I 2 cyc l es)

• The t ime between array refresh signals (300
cycles)

Digital Technical jow·nal
No. 4 Febru.ar)' 1 987

Processor Resources Not Modeled
In addition ro some of the m icrocode and parts
of rhe memory su bsystem, severa l other parts of
t h e design a re n o t s i m u la ted . The trans l at ion
buffer that conta ins virtua l - to -phys ica l address
mappi ngs is nor mod e l ed . (The des ign has a
1 0 2 4 -entry, d i rect -mapped trans lat ion buffer ,
ha lf of i t for system-space addresses, the other
ha l f for process-space add resses .) 3 The logic
and microcode that handle a l ignment traps are
nor modeled . Any u n a l i gned addresses assoc i
ated wi th processor read and write requests for
rhe cache are automatica l ly a l igned by the s imu
lator. FinaiJy. no r;o traffic i s generated on the
memory interconnect to compete with proces
sor and memory traffic . These omissions coul d
impact the s imu lated performance o f some pro
cessor designs for some workloads . H owever,
their exclusion from this model d id nor impact
t h e performance est i mates generated fo r rhe
processor wi th rhe ser of work load progra ms
used .

Evolution of the Model
Before presenting studies done with the proces
sor performance simulator, we shou ld examine
how the model evolve d . Our most sign if icant
a c h i evement was ro cont i n ue deve lop i ng the
model even as project goa ls changed and as the
des ign materia l i zed ove r t i m e . This cont inua l
adjustment resu l ted i n a mode l tha t reflected
t h e l a test d es i g n and c o u l d be used i n new
design studies.

The fi rst vers ion of t h e s i m u l ator was n o r
v e ry d e t a i l e d . I t i n c l u d e d t h e p i p e l i n e ,
the instruction buffer, the cache arbiter, a cache
s h e l l , a nd s o m e ha n d - coded m i c rocode fo r
eva luat ing operand specifiers and for a l i m i ted
nu mber of VAX i nstruct ions . N o lookup was
done in the cache shel l . A parameter specified
t h e h i t a n d m i ss percen tages d e s i red , a n d
random nu mber generation was used to decide
t h e l o o k u p r e s u l t s . R u n s w e re m a d e w i t h
both t wo and four I B longword s , a n d 9 0 a n d
1 0 0 percent h i t rates i n t h e cache; the workload
was t h e Towers of H a n o i benc h m a rk . Two
i mportant resu l ts were ind icated : first , the per
formance was in l i ne with the stared goals ; sec
ond, i t was desirable tO have more than two I B
longwords .

1 0 7

New Products

The Simulation of Processor Performance for the VAX 8800 Fami�y

At that point, a more aggressive set of design
goa ls was s e t by e n g i n e e r i n g m a n a ge m e n t .
Therefore , the next ve rsion of t h e s i m u l atOr
modeled more of the detai led implementation
tha t was e vo l v i n g . T h i s deta i l i n c l uded t h e
decoder, the cache-control and memory-request
q u e u e s , a n d t h e m e m o ry i n terco n n e c t . We
deve loped microcode translat ion software and
used the first base-l eve l mi crocode rel eased to
contro l the mod e l . Some custOm cod i ng was
done to accommodate single-precision fl oating
point instructions that were needed . Both hard
ware and microcode bugs were uncovered clllf
ing the design and verification of this s imu lator
version , thus increasing its va lue to the designers.

Performance Simulation

Results and Studies

Using the s imulatOr just described , we carried
out a nu mber of studies to verify the processor's
performance and to exam i ne design alternatives.
Si nce the detai led resu l ts are very extensive , this
concluding section outli nes the ki nds of perfor
mance i n formation gathered and h igh l i ghts a
nu mber of studies that were done.

Performance Information Gathered
Information provided by a performance simu la
tor fal l s in to four areas :

1 . Measu ring the performance of a program
on an existing processor and then tracing
that same program to dr ive a processor
s imulator are used to prod uce a re lat ive
performance est imate for t h e proposed
processor. (Of course , this comparison is
reasonab le o n l y i f both processors are
im pleme ntat ions of t h e sa me arch i tec
ture .) The i n formation needed to make
the comparison i nc lud es the fol l owing:
the tota l n u m b e r of in stru c t i o ns e x e
cuted , t h e execution t ime required, and
the cycl e t ime on the measured system , as
wel l as the total num ber of i nstructions
simulated , the total cyc les req uired , and
the proposed cycl e ti me on the simu lated
system . The VAX- 1 1 /780 processor was
used as the comparison machine for gen
erating performance estimates re lar ivc tO
the VAX 8800 fa mi ly processor design .

2 . S imul a t i ng the use o f resources wi th in
processor system com ponents produces
i n format ion about h ow effi c i e n t e a c h

1 0 8

com ponent is in processing requests and
ho w we l l t h e c o m p o n e n ts i n t e r a c t .
Knowing what requests are received and
w h a t perce n t of t h e t i m e com pon e n t
resources arc sta l led o r busy (and why)
provides ins ight i n to the overa l l system
pe rformance . We found that present ing
rh is deta i led information in terms of aver
ages-per-instruction was an effective way
of summarizing the activit ies . This infor
mation he lped rhe designers in making
hardware design decisi ons at a low .leve l .

3 Varying the parameter va lues i n a s imu la
tor and comparing the resu l ts produces
useful information to eval uate high- Leve L
design and configuration decisions . Since
the VAX 8800 fam i ly processor des ign
was modeled , a num ber of studies have
been done to eva l uate schemes that cou ld
be used in new processor designs .

4 . Analyzing the instruction stream data from
t h e trace tha t dr ives the s i m u l a tor pro
du ces i n formation about how the archi
tectu re's instruction set i s used . This type
of i n fo r m a t i o n h e l ps des igners dec ide
which optim izations are most beneficia l ,
especia l ly in the microcode flows . Gath
ering th is information genera l ly does not
requ ire processor-sp e c i fi c fu nctions in
the si mu Ia tor . Therefore , the s imu la tor
docs not produce that i nformat ion . For
our pu rpose, the i n format ion was gath
ered from a nor her package of analysis soft
ware . ' On ly i nd iv idua l VAX ins truction
r i mes that were specific to the VAX 8800
fami ly processor came from the simularor.

Highlights from Simulation Studies
ln i r i a l ly we used rhc Towers of Hanoi , the prime
n u m b e r genera to r , a n d rhe s i n g l e - prec i s ion
Whctsrone benc hmark to drive the model . From
it we derived resu l ts indicating that the perfor
mance of the VAX 8800 fam i ly processor was
between 4 . '5 and '5 .6 t imes that of a VAX- 1 1 j780
processor. The designers made one change based
on the resource ut i l i zation statistics the simula
tor generated. Cache read h i ts had requ ired two
cycles, rather than rhc usual one cycle , when the
read address a lso matched a valid delayed -write
buffer address . This number was changed to one
cycle whL:n the simul ator showed the frequency
of this event was higher than antic ipated .

Digital Technical journal
No. 4 February I ')87

Once t h e bas ic processor des ign had been
successfu l ly modeled , work focused on broad
en ing the m icrocode coverage and s imu lat ing
various a lternatives. Better microcode coverage
a l lowed more programs to be t raced and ru n
through the s imulator. We wanted to use more
d iverse progra ms, l i ke the FO RTRAN com p i l e
a n d the VAXjVMS l i n k , t o exercise the des ign
using the s imulator. Alternat ives such as cache
f l u s h i n g to s i m u l at e context swi t c h i ng , t h e
worst-case memory mode l , and the dual -proces
sor v e rs i o n were a l so a d d e d . To s t u d y t h e
mode l ' s behavior , w e ran m a ny s i mu l a t ions ,
varying the basic processor configurat ion a n d
comparing resu l ts t O detect the e ffects . Even
today, this work continues as new design ideas
surface .

The fol lowing l ist shows the VAX 8800 fam ily
processor s imu lation parameters and configura
t ions tha t were most se n s i t ive from a perfor
mance point of view:

• Context swi tch ing, s imu lated by i nva l idat ing
a l l cache entr ies every n VAX i nstru ct i o n s ,
sh owed a perfor m a n c e d e grad a t i o n fro m
8 percent when done every I 0 , 000 i nstruc
t ions, to 2 3 percent when done every 2 , 000 in
structions. We chose an int erval of 5 , 000 i n
s t r u c t i o n s fo r the s i m u l a t o r , w h i c h i s a
conservative est imate . (The degradation was
1 3 percent for 5 , 000 i nstructions.)

• A t im ing requirement of two cycles for read
h i ts i n the cach e , ra t her than one cycl e as
implemented in the VAX 8800 fami ly proces
sor desi g n , degraded the s imu l a ted perfor
mance by 9 percent .

• The latency t ime for memory reads decreased
performance by about 0. 75 percent for each
add it ional cycle of latency.

• The worst-case model for memory, using only
one array module , requ i red 1 4 percent more
cycles than the best-case mode l . (This resu l t
contributed tO our decision to use only the
best and worst cases.)

• A s low memory i nterconnect and contro l ler
re lat ive to the processor degrades the perfor
mance gains when a faster processor is used .
Dou bl ing the processor speed by cutting the
cycle time in half i ncreased performance by
only I . 5 t imes over that of the slower proces-

Digital Technical jountal
No. 4 February 1 987

sor w i t h t h e s a m e me m o ry . T r i p l i ng t h e
speed increased performance b y o n l y I . 7
ti mes .

• Enhancements made in the FO RTRAN com
pi ler for genera ti ng code had a great impact
on rhe i nstruction stream traced, as wel l as on
the performance est imates derived using the
FO RTRAN benchmarks . Th i s i m provement
was particu larly noticeab le for the FORTRAN
compiler released with VMS Version 4 .

Summary

The deve l opment of the VAX 8800 processor
performance s i m u lator continued throughout
the entire project . The s imu lator helped to ver
ify the atta inment of performance goal s and pro
vided performance trade-off i nformation to the
designers . The model 's resu lts fostered discus
sions about i nterfaces, helped the designers to
fi nd prob lems , and u n covered u na n t i ci pated
i n teract ions . The s imu latOr cont i n ues to con
t r i b u te to c u r r e n t processor des ign e fforts
th rou gh i ts use in s tudying the performance
impact of a l ternatives.

ln addi t ion , we learned a n umber of i m por
tant l esso ns tha t wi l l be usefu l in des i g n i n g
fu t u re s i m u l a tors . F i rs t , i t i s i m p o r t a n t to
deve l op the bas i c processor s i m u la t ion fu nc
t ions as ear ly as poss ib le in a des ign project .
Having a genera l-purpose cache model that can
be cal led and control led from d i fferent proces
sor i m plementat ion models is one of the most
i mportant functions .

Second , defi n i ng and developing a mon i tor to
con trol the various parts of a s i m u la tor , apart
from i mplement ing the part icu lar des ign , has
significant impl ications for designers of perfor
mance simu lators . Having separate control func
ti ons a l lows the implementor to concentrate on
u nderstanding the design to be modeled , as wel l
a s t o take advantage o f features provided b y the
control monitor tO debug the mode l . Separat ing
control fro m t h e s i m u l a ted desi gn , however ,
does not resu l t in a s i m u l a tor wi th the most
opt imized runt ime performance.

Acknowledgments

I had the su pport of many people in developing
the performance s i m u la tor for the VAX 8800
fa m i ly processor. The processor hardware and
firmware reams explained the design , reviewed

I 09

New Products

The Simulation of Processor Pe1jormance for the VAX 8800 Family

the resul ts , and encou raged the effon. S i mon
Steely and Mark F i rsten berg hel ped to design
and implement the or ig in a l s i mu lat ion rool s .
Peter Cra ig developed the microcode characteri
zat ion process a nd software . Eric Rasmussen cre
a ted the dual-processor vers ion of the s imu lator
and the ADA performance s imulat ion mode l .

References

1 . C . Wiccek and S . Stee ly , " Performance
S imulat ion as a Tool in Central Process
i ng Un i t Design , " Performance Evalua

t i o n Review, vol . 1 1 , n o . 1 (Au g u s r
1 979) : 4 1 -4 7

2 . T . Leonard , ed . VAX A rchitecture Refer

ence Ma n ual (Bedford : D i g i t a l Press ,
Order No. EY- 3 4 5 9E-DP, 1 986) .

3 S. Mishra , "The VAX 8800 Microarchi tec
ture , " Digital Technical journal (Febru
ary 1 987 , this issue) : 20-3 3 .

4 .

1 1 0

C . W i e c e k , "A Case S t u d y o f VAX - 1 1
I nstruct ion Set Usage for Compi ler Exe
cut ion , " A CM Proceedings of the Sym ·

posiu m o n A rchitectural Support fo r

Programming Languages and Operat

ing Systems (Marc h 1 98 2) : 1 77- 1 84 .

Digital Technicaljournal
Nn F hr t v 7

Stuart]. Farnham
Michael S. Harvey

Kathleen D. Morse

VMS Multiprocessing on the
VAX 8800 System

Some features of the VAX 8800 architecture are particularly relevant to
multiprocessor operation. Special hardware, not included in the VAX
architecture, allows the VMS operating system to use both CPUs in an
asymmetric, tightly controlled fashion. The processors operate in a
master-slave relationship with one CPU handling all IjO. The hardware
handles interprocessor interrupts, cache coherency, and shared mem
ory. VMS uses the interprocessor interrupt in managing operations
between the master and slave CPUs. The VMS system also uses interlocked
instructions, exception handlers, and traps to handle multiprocessing.
These instructions allow events to be scheduled and executed efficiently
on both processors.

Every computer system is a combination of hard
ware and software archi tectures. the operat ing
system being a d i rect resul t of their merger. The
same operat ing system can be implemented on
different hard\.vare systems with the same archi
tectu re, but a user can access only those features
that each set of hardware can support. The most
effective merger is the one a l lowing users of the
resu l t i ng operat ing system ro make max i m u m
use o f a l l t h e features designed i nto b o t h t h e
hardware and softwa re arc h i tec tures . ' T h e
VAX 8800 mu l ti processor is an example o f the
resu l t of such an effective merger.

The VAX Architecture and

Multiprocessing

Many of the VAX 8800 hardware features i mpor
tant ro VMS mult iprocessing are defined by the
VAX architecture for single-processor and mul t i
processor systems a l i ke 2 These features i ncl ude
the processor modes, ljO a n d software i n ter
rupts, exception handl ing, asynchronous system
traps (ASTs) , and interlocked instructions . This
section briefly describes t hese features , which
are d iscussed i n more deta i l later .

Processor Modes
The VAX arc h i tecture defi nes fou r modes i n
wh ich a processor may exec u te . I n order of
decreasing l evels of privi lege, t hese modes are

Digital Technical journal
No. 4 Februmy 1 ')87

kernel , executive, supervisor, and user. Most of
the cr i t ica l resou rce management code i n the
VMS system is executed in kernel mode ; in fact ,
some instructions can be executed only whi le in
that mode . Two examples of such instructions
are LDPCTX and MTPR (move to processor reg
ister) . LD PCTX loads the context (stacks, page
tables. and so on) of a process into a CPU so that
the process can execute . MTPR is used , among
other th ings, ro enable , d isab le , or trigger cer
ta in interrupts du ring resource management.

Interrupt and Exception Handling
The VAX archi tecture supports the i m med iate
serv i c i ng of i m portant events by means of a
mechanism that can transfer control away from
the currently executing process. Events that are
primar i ly re levant to and norma l ly invoke soft
ware in the context of the currently executing
process are cal led exceptions . Eve nts that are
relevant ro other processes , or tO the system as a
whole , are cal led interrupts, which are serviced
in a system-wide context . 2 The VMS operat ing
sys tem prov i d es a hand ler ro u t i n e for e a c h
except ion and in terrupt defi n e d b y t h e VAX
architecture .

Upon system startu p , the VMS operat ing sys
tem i n i t i a l i zes a system control b lock (SCB) ,
which defines the locations of the various event
handlers , as shown in Figure I . The SCB conta ins

1 1 1

VMS Multiprocessing on the VAX 8800 System

TRANSLATION NOT VALID (PAGE FAULT) EXCEPTION

CHANGE MODE TO KERNEL EXCEPTION

CHANGE MODE TO EXECUTIVE EXCEPTION

CHANGE MODE TO SUPERVISOR EXCEPTION

INTERPROCESSOR INTERRUPT

SOFTWARE INTERRUPT LEVEL 1 (UNUSED)

FT N ASYNCHRONOUS SO WARE I TERRUPT LEVEL 2 - SYSTEM TRAP DELIVERY
SOFTWARE INTERRUPT LEVEL 3 - RESCHEDULING

.

.

.

SOFTWARE INTERRUPT LEVEL 15 - XDEL TA

1 0 MILLISECOND INTERVAL TIMER INTERRUPT

Figure 1 System Control Block

an assi gned longword that holds the address of
the hand ler for each i nterrupt and except ion
serviced by the operat ing system .

I n t e r r u p t s a n d e x c e p t i o n s h a v e vary i n g
degrees of u rgency. Each even t has a specific
i nterrupt priority level (I PL) that des ignates the
relat ive priority of that event . The VAX arch i tec
ture includes 3 1 I PLs, d iv ided into 1 5 software
leve ls (nu mbered , in hexadeci mal , 0 1 ro OF) ,
and 1 6 hardware l evels (1 0 to 1 F) . User app l i
cations and system serv i ces r u n a t the process
l eve l , which may be thought of as IPL 0. I nter
rupt levels w i t h h i gher n u mbers have h i gher
pr ior i t i es . That is to say , a request a t an J P L
h igher than the processor 's c u rrent I PL w i l l
in terrupt i m mediately ; requests a t the same or
lower levels w i l l be deferred 2 The i nterproces
sor i nterrupt and the 1 0 -m i l l isecond (ms) in ter
va l - t i mer i n terrupt are exa mples of hardware
i n terru pts . The reschedu l ing in terru pt and the
AST-del ivery interrupt are examples of software
interrupts.

Software exec u t i ng in kernel mode posts a
software interrupt by setting the appropriate bit
i n t h e software i n t e r r u p t r e q u e s t r e g i s t e r

1 1 2

(SIRR) . A bit exists i n the SIRR for each software
in terrupt leve l . An interrupt can take place only
when the l PL level of the CPU has been lowered
below that of the pendi ng i n terru pt . For exam
p le , the handler for the in terprocessor i nterrupt
(execu t i n g at I PL 2 0) can post a resc hedu l e
event (a software in terru pt a t IPL 3) b y setting
the appropriate bit in the SIRR. When the CPU's
IPL drops below I PL 3, the IPL 3 in terrupt han
dler i s invoked , which is the VMS code that in i
t ia tes process reschedul i ng.

This techni que a l lows h igh I PL code threads
ro sched u l e lower I PL fu nct ions in a way that
a l lows a l l potent ia l ly i n terrupted code threads
at in termediate IPLs ro complete first . Should a
higher I PL code thread merely lower the I P L by
force ro execute the lower I P L fu nct i o n , any
i n term e d i a te JPL code t h reads that had been
i nterrupted wou ld complete out of order, thus
brea king the software synchronization .

AST Delivery Mechanism

In any mode , the VAXjVMS system can in terrupt
a code thread execut ing a t l PL 0, beg in a new
code thread (a lso at I PL 0) , and then con tinue
t he prev i ous ly i n terrupted code t hrea d . This
mechan i sm is ca l led "del ivering" an AST . The
hardware not i fies the operat ing system that an
AST is de l iverab le ro the current ly execu t ing
process by means of an interrupt at IPL 2 . (Note
that th is is the only i nstance of the VAX hard
ware posting a software in terrupt) . Any process
context code thread that must execute wi thout
i n terrupt ion by an AST has to be executed a t
I PL 2 or h igher . I f a del iverable AST is queued to
t h e cu rrent process and t h e I PL of the CPU
drops below 2 , then an I PL 2 interru pt wi l l be
generated . To execute that i nterrupt, the IPL 2
i n rerru pt handler first verifies that the AST can
be del ivered and then del ivers it to the process,
after which the new code thread associated with
the particular AST is execu ted .

An AST code thread is associated by a process
with events that are expected to complete asyn
chronously tO the main thread of the process. An
example of such an event i s an JjO req uest that,
once issu ed, is handled by the system i n para l le l
wi th the main thread of the process . Upon ljO
co m p l e t i on , t h e assoc i a ted AST is de l ivere d ,
which causes t h e main thread o f the process to
be in terrupted in favor of the AST's code thread .

When an AST i s speci fi ed for an asynchronous
event, it is assigned a particu lar processor mode.

Digital Technical journal
No. 4 February I ')87

When the AST is queued to a process, its delivery is
deferred -..vhilc that process is executing in a more
privi leged mode than that of the queued AST. For
exa m p l e , when an AST i n supe rv i sor mode is
queued to a process executing in kernel mode, the
AST w i l l n o r be d e l i ve red u n t i l t h e con tex t
changes from kernel mode to a t least supervisor
mode.

In terlocked Instructions
The VAX architecture includes a few instructions
that a l low synchro nous access tO locat ions i n
memory. Only those i nstructions wi l l guarantee
cons istent resu l ts i f m u l t i p l e processors want
s imultaneous access to the same memory location .

For b i t ma n i p u l a t i on s , t h ese i n t e r l o c k e d
instructions arc

• BBCCl - Branch on bit clear and clear inter
locked

• BBSSI - Branch on bit set and set interlocked

F o r a r i t h m e t i c m a n i p u l a t i o n s . t h e r e i s
ADA WI - Add al igned word interlocked .

For queue manipulation , the instructions are

• I NSQH I - Insert at head of queue i nterlocked

• J NSQTI - Insert at tai l of queue interlocked

• REMQHI - Remove from head of queue inter
locked

• REMQTI - Remove from ta i l of queue inter
locked

These instructions are used extensively i n the
operat ing system to provide mult i processor syn
chronizat ion. They are a lso avai lable to user pro
cesses to synchronize access to shared application
data.

The VAX 8800 System
The spec i fi c i m p l ementa t ion featu res of the
VAuV:. 8800 multiprocessing system are described
in this section . Remember that the 8800 is only
one of many i mplementations of the VAX archi
tecture. Several i mportant hardware features pro
vided by the 8800 are not specified i n the VAX
archi tecture but are requi red for VMS multipro
cessing. These hardware features are

• Primary processor access to a l l peripherals

• Imerprocessor interrupts

• Shared main memory

• Cache coherency

VAX 8800 Implementation
The VAX 8800 system consists of two VAX 8800
processors that share main memory by means of a
fast memory-system interconnect ca l led the NMI
bus . . :; The processor hardware is completely sym
metric; that is, e ither processor can fu lfi l l the role
of primary processor for any boored i nstance of
the operating system. Figure 2 is a block diagram
of the VAX 8800 system.

I CONSOLE I
I

LEFT H CLOCK � RIGHT
CPU CPU

I I
NMI

l I I
NBI NBI

MEMORY ADAPTER AOAPTER

VAXBI
BUS

1/0 t--
CONTROLLER

7

VAXBI
B U S

7

VAXBI VAXBI
BUS BUS

1/0 I�
CONTROLLER 7 -.._)

Figure 2 Block Diagram of VAX 8800 System

Digital Technical journal 1 1 3 No. 4 Februarv I 'J8 7

New Products

VMS Multiprocessing on the VA X 8800 .�vstem

There is one consol e subsystem in t he 880 0 .
w h i c h i s shared b y t h e two C PUs . T h e consol e
command language . i mplemented i n software i n
the console subsystem. i s a su perset o f the con
sole fu nctiona l i ty specified by the VAX arc h i tec
ture 2 Both C PUs can be contro l l e d from t h e
s i n g l e c o n s o l e t e r m i n a l . Aft e r t h e s y s t e m i s
booted , the console term i n a l c a n b e used l i ke
any other ter m i n a l connected to the syst<:m .

Al l 1/0 devi ces a rc connected ro the system
t hrough VAXB I buses. The SHOO can accommo
date u p to four VAX 131 buses, each of w h i c h can
acco m m odate up to 1 6 nodes . ge nera l l y l j O
contro l lers. 'fhe buses are connected to t h e N M I
by means o f t h e N M I - to-VAX B I adapters, ca l l<:cl
t h e N B ! s . E a c h N B I cons i sts of e i t h e r two or
t hree parts : an N B IA, which is t h e i n terface to
the NMI ; and one or two N BI Bs . which are i nter
faces tO the VAXBI buses. An NBIB i s one of the
1 6 nodes on i ts respective VAXBI bus.

Under VMS m u l t i p rocess i n g . a l l p e r i p herals
a r e con tro I I ed by t h e fi r s t p r o c e s s o r t o be
booted . designated the pri mary processor . The
other processor , the secondary , i s p revented
from acc<:ss i ng any peri p h era l d ev i ces (d i s ks ,
term i nals , and so on) because t h e code com m u ·
n i cH i n g w i t h t h ose d e v i c e s r u n s i n ke r n e l
mode . a n access mode that VMS u t i l i zes only on
the p r i m ary . Thus , a l l ljO peri p hera l s wi l l be
accessed only by the p r i m a ry processor . Typ i ·
ca l l y , t h e left C P U i n t h e VAX 8800 system i s
c hosen a s the pri mary processor. However, con·
sole commands are ava i lable w des ignate e i ther
CPU as the pri mary one. A change in that desig·
11ar ion takes effect after the next I N IT command
is received by the console .

']'he VAX: 8800 hardware provides the capab i l
i ty for one processor t o i nterru pt t h e other. This
i n terru ption is accompl ished by wri t i ng a va lue
o f I tO a n i n t e rn a l processor regis ter o n t h e
i n terru p t i n g C P U b y m e a n s o f t h e p r i v i l e ged
MTPR i nstruct ion (from kern e l mode o n l y) . ·nw
VMS system uses th is mechanism to synchron i ze
the CPUs as d i fferent system events occur .

The main m emory conta i ns one copy of t h e
VMS software. w h i c h depends u pon the m emory
s u bsys t e m a n d i n t e r l o c k e d i n s t r u c t i o n s fo r
cache cohere ncy and the consistency of memory
c o n t e n t s . T h e VAX H H O O m e m ory s u bsys t e m
auro matica l l y handles a l l cache u pdates: n o soft
ware l o g i c is needed to ma i n t a i n consistency
between the cache conten ts i n each processor.
T h e 8800 docs i m p l e m e n t a wri t e b u ffe r to

1 1 4

opt i m i ze transfe rs across the N M I to the m emory
su bsyste m . Therefore , the i n terlockcd i nstruc
t i ons must be issued to flush the necessary write
data a l l the way out ro mem ory. If o ne processor
mod i fi es shared data , the other needs to see the
c hange in a synchron ized and t i mely fashion .

Multiprocessor hnplementation

Improvements

The VAX 8800 system i nclud es features t hat arc
i m prove m e n ts over previ o us m u l t i process i n g
VAX h a rd wa re i m p l e m e n t a t i o n s , s u c h as t h e
VAX:- t l j7 H 2 system . Larger amounts o f p hysi cal
memory can be used . a l l of w h i c h is ava i l a b l e to
the VMS syste m or the system d iagnost ics . More·
over. the 8 8 0 0 cache p ro v i d e s better pe rfor
mance. a nd t h e system has a sma l ler footpr i n t
and a better pr i cejperformance ra t i o . Perhaps
the most s ign i fi cant fact from a syst e m - manage
ment v i ewpo i n t is that only one consol e subsys
tem with one term i nal is needed to control the
ent ire m u l t i processor . This s i n g l e control poi nt
bas ram i fi cations for sett i n g u p the system and
running i t as a m u l ti processor .

The conso l e subsystem has access to the mem·
ory confi g u ra t i o n of t h e 8 8 0 0 . W i t h p revious
m u l t i processors , t he system manager had to con·
f i gu re m e m ory by m a nu a l l y d e t e r m i n i n g t h e
a p p r o p r i a t e d a ta , t h e n e n te r i n g i t i n to c u s
tomi zed command procedures o n spec i a l ly b u i l t
floppy d isks i n the console. '

The console su bsystem of the 8800 a lso e l i m i
nates t h e need for operator i n tervent ion r o boot
or restart the secondary processor. The VMS sys·
rem is i n i t i a l l y booted on the pri mary processor
and subsequen t l y d i rects the console su bsystem
ro boot t h e seco n d a r y . S i m i l a r ly , t h e conso le
subsystem restarts the VMS system on the p r i
mary processor after a power fa i lure . T h e opcr·
a t ing syste m then d i rects the conso le to restart
t h e secondary ar the a pprop r i a t e poi n t in t h e
power- recovery sequ ence . A t no t i m e m ust the
operator be i nvolved i n bri nging the secondary
on l i ne . '

The VMS Operating System

The m u l ti process ing aspects of t h e VAX arc h i
t e c t u re a n d t h e VA X 8 8 0 0 i m p l e m e n t a t i o n
provide t he underlying hardware support for a
tota l ly i n tegrated m u l t iprocessi n g computer sys
te m . This sect i on d i scusses aspects of t h e VMS
software that are spe c i fi ca ll y re lated tO m u l t i ·
processi n g a s i m p lemented for t h e 880 0 . (Sec

Digital Technical journal
No. 4 Fehruar)• I 'J87

reference 5 for additional mul t iprocessi ng infor
mat ion and reco mmended programming tec h
niques .)

Classification

I n mult i processing terminology , VMS mult ipro
cess i ng is c l as s i f i e d as " a sy m m e t r i c " a n d
"t ightly coupled . " An asymmetric system i s one
in which one CPU, ca l led the primary, has crit i
ca l system-wide responsib i l i t ies, includ i ng the
management of a l l the CPU resources. The other
CPU, called the secondary , has more restricted
responsib i l ities that exclude the management of
cri tical system resources (i ncluding itself) . This
type of mul t iprocessing system i s a lso referred
to as a " master-slave" arrangement . The other
classi fication, t ightly coupled, means that both
processors operate i n a c losely synchron i zed
fashion; i f they fai l , they fai l together.

On a VMS mul t iprocess ing system, both pro
cessors share the same copy of the operat ing sys
tem, a l though some code is executed oniy by
one or the other CPU. Most of the kernel logic
in the VMS operating system is executed only by
the primary processor. That e l im inates the need
for the complex synchronizat ion and loc k i ng
mechanisms that would otherwise be requ i red
to protect the sys tem ' s data s t ructu res fro m
access by mul tip le CPUs.

History of VMS Multiprocessing

VMS mult iprocess ing was introduced during the
development of VMS Version 3 .0 . At that t ime ,
the power of a s i ngle VAX- 1 1 /7 8 0 processor
was i nsufficient to build the VMS executive in a
reasonable a mount of t ime . Several constra i nts
were p laced on the m u l t ip rocess ing devel op
ment effort . I t had to involve m i n i ma l changes
to VMS kernel mode routines, use existing hard
ware, and have m in imal performance i mpact on
single-processor VMS systems 6

The first constra i n t above had the greatest
i m p a c t on t h e c h o s e n d e s i g n of V M S V e r
sion 3 . 0 . To achieve fu l ly symmetric mul tipro
cessing, changes would be requ ired throughout
the whole operat ing system to extend IPL syn
chronization as a lready i mplemented by VMS for
s ingle-processor operat ion . Since those changes
were too extensive to make , we chose an asym
metric design in which the synchroni zation of
critica l code was achieved by l im i ting that activ
ity to the primary CPU. In this context , exist i ng

Digital Tecbnical]ournal
No. 4 February I <)87

I PL-based techniques were suffic ient to synchro
nize the code threads in kernel mode.

The second constra i n t led u s to configure a
system with two VAX- 1 1 /780 CPUs coupled by
an MA780 shared memory . I n th is configurat ion,
each CPU has a separate, i ndependent console
subsystem ; neither has access to the other's con
sole . Booting th is mul t i processor requ ires spe
cial console command files and operator inter
v e n t i o n for b o t h C PU s . S i m i l a r l y , t h e I / 0
devices configured o n one CPU are i naccessible
on the other . Since most of the IJO subsystem
code executes i n kernel mode , this constra in t
has the effect of l im it ing the I jO devices usable
by the mult iprocessor to those connected to the
primary CPU.

The final constra int led to a design that a l lows
mul t iprocess ing code to be inserted dynamical ly
into the running executive . No mul t iprocessing
code is present in a s ingle-processor configura
tion of VAXJVMS.

The m u l ti process i n g c a pa b i l i t i es i n V M S
Version 3 . 0 were extended t o support the new
VAX 8800 system . These extensions take advan
tage of new functions a l lowed by the new VAX
design. For example , as mentioned earl ier , the
shared console subsystem a l lows the secondary
processor to be booted from the primary under
program contro l ; no operator i ntervent ion is
requ i red .

Division of Work between Processors

As mentioned earl ier , the VMS mul t iprocessing
code is a master-slave i mplementation . The sec
ondary CPU is required to do whatever work is
assigned to i t by the pr i mary . The secondary
CPU can execute appl ication code only, whi le
the pr imary CPU handles the IjO , paging, and
all resource management, as well as the execu
t ion of appl ication code . S ince a l l system ser
vices that manage system resources are executed
i n k e r n e l m o d e , o n l y t h e p r i m a ry C P U i s
a l l owed t o execute t hose serv ices . The sec
ondary CPU can execu te code that i s in any
o ther m od e : use r , su perv isor , or exec u t i ve .
Thus , t o b e techn ica l ly accurate i n m u l t ipro
cess ing termi nology , t he VMS mult iprocessing
system is symmetric for code i n the user, super
visor, and executive modes, but asymmetric for
code i n kernel mode .

The VMS boot code creates a SCB for each pro
cessor . As described earl ier , the SCB conta i ns

1 1 5

New Products

VMS Multiprocessing on the VA X 8800 ,S),stem

vectors to rou t ines that handle various i nt erru pt
and except ion events . Many VMS i n terru pt and
except ion hand lers are i de n t i cal for both the
pri mary a nd secondary p rocessors . H owever .
there arc cases i n whi c h exceptions o r i n ter
rupts m ust be handled d i fferent ly , depend i n g
u pon which processor receives t h e even t . The
i nterprocessor i n terrupt and the software i n ter
rupt used for resched u l i ng arc both examples of
system-wide events . Both arc vectored t h rough
the SCB but req u i re different handlers for each
processor. (Figure 1 shows the var ious in terrupt
levels i n t h e SC B .) The AST-delivery software
i n te rrup t and t he q u a n t u m end , a sched u l in g
eve nt (desc r i bed later) , a r e exa m ples o f pro
cess - rel a ted eve n ts that a lso req u i re d i fferen t
exception handlers i n the SCB of each CPU. By
separat i ng the hand lers i n to processor-spec ific
SCBs, the more costly and d i fficu l t task of run
t ime separat ion with in a n ot herwi se commonly
executed handler is avoided.

Typi cal l y , when a n except ion occu rs on the
s e c o n d a ry , t h a t C P U ' s e x c e p t i o n h a n d l e r
" reflects " that except ion back ro the pr imary .
To do that , the except ion hand ler stores both
the address of the pri mary's excepti on hand ler
and an appropri ate processor status longword
(PSL) on rhc stack of the current process . The
secondary 's except i on hand ler rhen saves the
context of the c u rrent process and passes the
process bac k to t h e p r i m a ry by reques t i ng a
reschedu l i ng event . The process eventua l ly exe
cutes on rhc pri mary, whose except ion handler
will i mmediately get control as if the except ion
had occurred there or ig ina l ly . Exception pro
cess ing i s therefore synchro n i zed on a system
wide basi s by virtue of ru n n i ng on the primary
processor only .

The SCB for the primary CPU consists of m u l
t i p i e pages of i nt e rrupt and excepti o n vectors.
The format of the fi rst page i s dcfi ned by the
VAX archi tecture . This page contai ns vectors for
al l i mplcmenrar ion- independenr exceptions and
i nterrupts, and for a few i m p lementat ion -depen
dent ones. Add i t ional pages of vectors a re pro
v ided for !jO i n terrupt hand .lcrs . Under VMS
m u l t i process ing , the length of the SCB for the
secondary CPU i s one page . The pages tha t make
u p the l/0 subsystem portion of the SCB are nor
needed on the secondary, which wi I I not i n i t iate
ljO requests nor recei ve I/0 i n rerru pts .

1 1 6

lnterprocessor Interrupts
The VA.-'<. 8800 hardware provides a key feature
for opt i m i z i ng t he VMS m u l t i process i ng soft
ware : the ab i l i ty of one processor ro i nt e rrup t
t h e other . This i n terprocessor i n terru pt mecha
n i s m i s used extens ively o n eac h CPU by r h e
VMS operating system .

T h e p r i m a r y p rocessor i n t e r r u p ts t b e sec
ondary for several reasons . F i rst , the pri mary can
req u est an i nva l i da t i o n of a trans lat ion bu ffe r
ent ry correspo nd i ng to a system -space add ress
that is about to be i n va l idated on the pri mary.
This event forces coherency between the trans
lation buffers of both processors with respect to
mapping changes in the shared system v i rtual
address space . Second, the pri mary can i n terrupt
because it has queued an AST, typ ical ly for I/0
complet ion , for the process currently execut ing
on t he secondary. This event u l t imately resul ts
in the process being resc heduled onto rhe pri
mary. where the actua l d e l i ve ry of the AST to
the process can be accompl ished . F i na l ly , the
pr imary can in i t i a tc and synchron i z e a syste m
wide shutdown or a crash .

The secondary p rocessor wi l l i nt e rrupt i f i t
wants the pri mary to take back the current pro
cess and find another process for the secondary
to execute. The secondary wi l l also i nterru pt i f
i t detects a hardware error o r i f i t wa n ts t o i n i
t i ate a system-wide crash .

Secondary State Transitions
A st:ne variable i s ma i ntained to record the cur
re n t state of the secondary processo r . The pri
m a ry p ro c essor uses t h i s s tate to d e t e rm i n e
whether o r not t o sched u l e work for the sec
o nd;uy \X'hen the secondary i s booted , the state
variable is a l ready set to ! N IT. After booti ng, the
secondary changes the state var iab le to I DL E .
Dur in g i ts next reschedule operat ion , t h e pr i
mary w i I I not i ce the I OLE state and attempt to
schedule a process for the secondary to execute .
After fi n d i ng a process for the secondary, the
pri mary sets the state variable to BUSY. The sec
ond ary, which has been conr i n ua I l y check i n g
t h e state variable for t h i s tran s i t ion , t h e n loads
the process 's context from memory and sets the
state to EXECUTE .

The secondary w i l l execute i rs cu rrent pro
cess u n ti l the process e i ther rece ives i rs quan
rum of CPU t ime or is blocked by some request

DiJ!,ilaf Technical journal
No. 4 FebmnrJ' 1 ')87

that must be synchron ized i n a system-wide con
text . (That request must be executed in kernel
mode on the pr imary .) At th is po in t , the sec
ondary saves the process 's context in m emory
and sets the state to DROP. Using the VAX 8800
i nterprocessor i n terrupt mechan i sm , the sec
ondary then i nterrupts the primary and requests
another process to execute . The pr imary takes
the saved process back from the secondary, set
t i ng that CPU's state to I DLE . Thus , t he state
transition has made an entire c i rcui t .

Figure 3 shows the state transit ion d iagram for
the secondary CPU . The pr i m a ry ' s paths are
marked P and the secondary's paths are marked
S to indicate which processor controls each tran
si tion from one state to another. The only state
not explained above is the STOP state, used only
when the secondary is shut down.

p

s p s

s

p

Figure 3 Secondary CPU State Transitions

Process Scheduling under the VMS

Operating System

Some aspects of process sched u l i ng were dis
cussed i n the p revious sec t ion . Th i s sect i o n
describes in greater deta i l how process schedul
ing i s i m p l e m e n te d in t h e V M S sys t e m a n d
which o f i ts aspects are d ifferent in a mult ipro
cessing envi ronment 6

Single-Processor Scheduling

The VMS schedu l ing a lgori thm i mplemented on
a s ingle processor is round-rob in and preemp
t ive, with the h ighest priority process being exe
cuted first . There are 3 1 levels of process pr ior-

Digital Technical journal
No. 4 February 1 987

i ty (which are not the same as i nterrupt priority
levels) . Thirty-one is the highest priority, one
the l owest ; p rocess pr ior i t i es are subdiv i ded
i nto rea l - t ime (priori t ies 1 6 to 3 1) and " nor
mal " (priorities 0 to 1 5) ranges . The rea l - time
priorit ies are used by t ime-crit ica l appl ications,
such as h i gh-speed da ta acq u is i t ion . When a
process is created , i t is assigned a base prior i ty .
I ts priority dur ing execution is guaranteed never
to d rop below that base pr iori ty u n less e i ther
t h a t p rocess or a no ther , p r i v i l eged p rocess
requests i t to .

Each process i s a l l owed a q uantum of CPU
t ime (usual ly 200 ms , equ iva lent to 2 0 i n ter
rupts of t he 1 O-ms i nterva l t imer ; however , a
system manager can change the defau lt) . Each
t ime the in terval t imer i nterrup ts , the interrupt
handler checks to see if the current process has
used up i ts quantu m . I f so , quantum-end p ro
cessing is in i t iated .

For a process with a priority i n the rea l - t ime
r ange , q u a n tu m - e n d p rocess i n g c o n s i sts o f
award i ng a n e w quan tum to t h e p rocess a n d
a l lowing i t t o continue execut ion . A reschedule
event wi l l occur when a normal -priority process
has used up i ts quantu m . In the l atter case , the
cu rre n t p rocess i s p l aced a t the e n d of t h e
schedul ing queue maintained for that process's
priority (there is one such queue for each pro
cess priori ty) , and the process at the head of the
queue is chosen to execute .

The p r i o r i ty o f a n o r m a l - ra nge p rocess i s
r a i s e d a ft e r c e r t a i n b l o c k i n g e v e n t s h a v e
cleared . For example , t o provide good response
t ime to i nteractive users, a p rocess ' s pr ior i ty
wi l l be temporari ly boosted a fter t he comple
t ion of termi na l input . This arrangement results
in a tendency for compute-bou nd processes to
remain a t their i ni tia l priorities (ca l led the base
priori ty) . However, I/O-bound and i nteractive
processes, which are blocked more frequently,
usua l ly attain priori t ies somewhat h igher than
their base ones. A process's priori ty i s lowered one
point when the process is sched uled to execute,
un less i t is a lready running at its base priori ty .

Multiprocessor Scheduling

The pr i mary processor schedu les a l l work on
the system , for both i tsel f and the secondary
processor . The sched u l i ng a lgori t h m used for
the primary processor is basical ly the same one
used in a single-processor system (an i mportan t

1 1 7

New Products

VMS Multiprocessing on the VAX 8800 .�pstem

goal i n this implementation) . For the mul ti pro
cessor schedu l i ng a lgori thm, however. certa i n
modificati ons were made to extend the effec
t iveness of process sc hedu l i n g to u t i l ize the
additional CPU resources that arc ava ilable . The
execution environment of the secondary proces
sor is more constra ined than that of the primary.
Most notably, the kernel -mode code is restricted
to t h e p r i m a ry C P U . T h e m u l t i p r o c e s s o r
schedul ing algorithm attempts to keep that sec
ondary CPU as fu l l y u t i l i zed as possi b le with
mi nimal schedu ling overhead in the fol lowing
ways:

• The pr imary processor a l ways sched u les a
proc ess to r u n o n t h e sec o n d a ry b e fore
schedul ing a process for i tself to execute .

• The primary processor w i l l schedu le a pro
cess to run on the secondary only if that pro
cess does not require im med iate execution in
k e r n e l m o d e a n d d o es not h a ve an AST
(wh i c h requ i res kerne l - mode exec u t i o n)
ready t o b e del ivered . This schedul ing helps
preve n t s i tuat ions in w h i c h a process can
fl ip - fl o p between processors , somet imes
ca l l ed scheduler thrash ing .

• Schedu l ing is preemptive on the primary pro
cessor, bur nor on the secondary. Thus, if the
secon dary processor is exec u t i n g o n e j o b
w h e n a n o t h e r j o b w i t h h i g h e r p r i o r i t y
becomes computable , the primary processor
wiLl not interrupt the secondary to give it the
higher priority job . Therefore, processes exe
cuting on the secondary processor are more
l i kely to run for their entire quantum than are
processes execu ting on the primary.

T h i s a p p roach g u a r a n t ees o n l y t h a t t h e
highest priority process w i l l b e execut ing ,
not the two h i ghest pri ori ty processes . To
guarantee the l atter wo u l d req u i re s ign i fi
ca ntly more i nterprocessor interru pt traffic
and is l i k e ly to i n c rease t hrash ing on t h e
ent ire syste m, and wi.l l especia l ly a ffec t t h e
pri mary's abi l i ty to devote processing t ime to
irs own selected process.

• If a l l computab le processes requ ire execu
tion in kernel mode , then the primary proces
sor cannot sched u l e a process for the sec
ondary and wi l l execute a p roc ess i ts e l f .
Shou ld that happen, an AST-del ivery in terrupt
will be generated automaticaLly after the pri
mary processor stops executing the process

1 1 8

in kernel mode. The pri mary processor han
d les this in terrupt by performing a reschedu l
ing operation. As a resu l t , the primaqr proces
sor sends the process it was just execu t ing ,
which is no l onger i n kernel mode , ro the
secondaqr processor i n a t imely fashion . The
pri mary is then free to execute another pro
cess itse lf.

When then: is only one computable process,
one of the CPUs wi l l remain id le . In this case
the pri mary processor executes the process
i tself even it may be perfectly e l igible to exe
c u te on the secondary. Thus the overhead
processi ng associ a ted with the post -kernel
mode AST and the subsequent resched u l i ng
of the secon dary can be avoi ded . This case
a l so has t h e e ffe c t of p reve n t i ng fu t u re
thrashing i f the process needs access to ker
n e l - mode resou rces , at least u n t i l enough
computab le processes become ava i lab le to
keep both processors busy.

• The system servi ces7 tha t requ est event-flag
wai ts (SWAJTFR , SWFLAN D , and SWFLOR)
arc among the most commonly execu ted ker
ne l -mode services. 1 If a process runn ing on
the secondary processor requ ests an event
f lag w a i t , the VMS opera t i n g sys tem wi l l
a r rempr ro avo i d resc hed u l ing the process
onto the pr imary C PU . The system-serv ice
d ispa tcher on the secondary CPU first checks
to see if the requested flags are al ready set. If
so, the process is a l lowed to conti nue execut
ing on the secondaq' without reschedu l ing.

I f the flags a re not set, a n i n terprocessor
i n t er r u p t req u e s t i n g t h a t the process be
placed i nro an eve nt -flag wai t state (ei ther
LEF or CEF) wil l be sent to the pri mary CPU .
When that processor services the interrupt , it
aga i n c h ecks to see if the wa i t req uest has
been satisfied (the flags have been set) . If so,
the process is a l lowed to continue execu ting
on the secondaq'. If the flags are sti l l not set,
the process is t aken o u r of execu t ion and
p laced inro the appropriate wai t state . The
secondaqr processor then becomes ava i lab le
for schedul ing.

Al though a process may currently be el igible
for schedu l i ng o n to the secondary, the VMS
operating system cannot predict whether or nor
that process wi l l require kernel -mode services
in the ncar future . If those services are needed ,

Digital Technical journal
No. 4 Februmy J Y87

the process would have to be rescheduled onto
the pri mary . For example , ut i l i t ies that perform
interactive tasks (such as editors or the mai l sys
tem) req u i re n u merous I/0 req u ests . Ot her
types of programs incur many page faults . These
processes are therefore poor candidates for exe
cut ion on the secondary . Somet imes a system
manager can predict that certa in processes wi l l
have t hose character is t ics , and h e or she can
take preventive measures to avoid process ing on
the secondary.

The fol lowing VMS mul t iprocess ing schedu l
ing fea tu res g ive the system manager manua l
contro l over the sched u l ing of processes onto
the secondary CPU:

• A SYSGEN parameter exists to l imi t the maxi
mum priority of processes a l lowed to execute
on the secondary. s Recal l that priority boosts
are granted to processes after certai n events,
such as I/0 completion . These I/O-i n tensive
processes tend to stay at pr ior i t i es above
those of com pute-i n tensive ones . Therefore ,
setting the SYSGEN parameter a poin t or two
above the defa u l t base -process priority may
effect ive ly screen o u t many " u nsu i t ab le"
processes from the secondary processor. The
system manager can set the SYSGEN para me
ter to 0 (i ndicat ing no priority screening i s to
occur) or to any value from 1 tO 3 1 , which
sets the priority l imit to the specified value .

• A process can be made i n e lig ib le from exe
cut ing on the secondary processor by means
of the SET P ROCESSjCPU = N OATTACHED
command. This command prevents user pro
cesses that execute only i n teract ive or I/O
bound u t i l i t i e s from ru n n i n g on t h e sec
ondary . This fixed-process attribute remains
i n force unt i l i t has been changed wi th a SET
PROCESS/CPU =ATTACHED com mand . '

Summary

The VAX 8800 system running the asymmetric
VJVIS operat ing system prov ides the most com
put ing power curre nt ly ava i l a b l e i n the VAX
fa m i l y to execute compu te- i n tens ive appl ica
t ions . The 8800 represen ts a merger of a new
hardware implementation of the VAX archi tec
ture with preexist ing m u l tiprocessi ng capabi l i
t ies i n the VMS operat ing system . This software
uses features of the VAX arch i tecture and the
hardware for whi c h it was origina l ly i n tended .
With the advent of new m u l t i processi ng hard-

Digital Technical jow·nal
No. 4 February 1 '}87

wa re , the software design co u ld be modified
to rake advantage of a d d i t i o n a l capa b i l i t i es
offered by the advanced hardware design i n the
VAX 8800 CPU.

Acknowledgments

The authors thank J i l l Angel of Digita l 's Corpo
rate User Publications Group for excel lent assis
tance i n organiz ing th i s material and for serving
as wri t ing coach , and Lawrence Kena h of the
VAX/VMS Deve l opment G roup for tec h n i c a l
assistance i n planning this paper. Thanks a lso to
a l l others who reviewed th i s paper and made
technica l and editOri a l suggesti ons and improve
ments .

References

1 . K . Morse and R . Kinicki , "A Performance
S t u d y of M u l t i p rocessor S c h e d u l i n g
Algori thms o n a VAX- 1 1 / 7 8 2 , ' ' Co nfer
ence Proceedings of the International
Conference on the Manage m e n t and
Perfo rm a n c e of C o mp u ter Sys t e m s
(1 9 8 5) : 280-289 .

2 . VAX I 1 Architecture Reference Man ual
(B e d fo r d : D i g i t a l P r e s s , O r d e r N o .
EY-3459E-DP, 1 9 87) .

3 . J Fu,) . Kel ler , and K. Haduch, "Aspects
of the VAX 8800 C Box Design , " Digital
Techn ical journal (February I 987, th i s
issue) : 4 1 -5 1 .

4 . VAX 1 1 /782 User 's Guide (Maynard :
D i g i ta l Equ i pment Corpora t ion , Order
No. AA-M54 3A-TE, 1 9 82) .

5 . Guide t o Multiprocessing on VAX/VMS

(Mayna rd : D i g i t a l Equ i p ment Corpora
tion, Order No. AA-HP6 9A-TE, 1 986) .

6 . L . Kenah and S . Bate , VAX/VMS Internals
and Data Structu res (Bedford : D ig i ta l
Press, 1 984) .

7 . VA X/VMS System Services Refere n ce
Manual (M ay nard : D i g i t a l E q u i p m e n t
Corpora t i o n , Order N o . AA- Z 5 0 I B-TE ,
1 986) .

1 1 9

New Products

Gabriel P. Bischoff I
Steven S. Greenberg

A Parallel Implementation of the
Circuit Simul ator SPICE on
the VAX 8800 System

Multiprocessors are efficient only if the added computing power can be
used to solve specific applications. To demonstrate the VAX 8800 multi
processor's advantages, the authors converted the circuit simulator
SPICE into the parallel program CA YENNE. Their methodology involved
using VAX instructions and VMS system services to create and control a
series of master and slave processes. Other VMS instructions were used to
synchronize these processes and to manage the critical sections. Modifi
cations for parallel processsing were made in SPICE's load, LV factoriza
tion, and local truncation error phases. The result was that CA YENNE,
with two slave processes, ran 1. 7 time Jaster than SPICE.

The rea l i za t i on t h a t two p rocessors m i g h t be
better t h a n one is not new. I nd e e d , p a ra l l e l
compu t i ng can b e traced back to the n i neteenth
century . 1 The advent of very large sca le i ntegra
t i o n opened a var iety of new opport u n i t i es i n
t h e f i e l d o f p a ra l l e l process i n g fo r s p e c i fi c
applications such as i mage processi n g and signal
process i n g . Design i ng a n d effi c ie n t l y u s i n g a
mult iprocessor for genera l -pur pose , h igh-speed
computi ng , however, is more complex .

T h e major i ty of today's appl i cat ion programs
are wri tten for s i ngle-processor m ac h i n es . To
convert t hese programs to run on m u l t i proces
sor m a c h i n e s a n d a c h i e v e c l ose t o t h e i d e a l
speed u p , l i near w i th the n umber o f processors.
is n o t a n e a s y t a s k . Two a p p roa c h e s c a n b e
adopted t o accompl ish t h i s conversion task . The
f irst i s to design spec i fi c comp i l e rs t ha t a u to
m a t i c a l l y convert progra ms wr i t t e n for s i ngle
processors i n to programs t hat run effi ciently on
m u l t i processors. The second is to l ea ve to the
app l i cat ion programmer t he task of wri t i n g code
t h a t m a kes effi c i e n t use of t h e m u l t i p l e pro
cessors.

The f irst approach is t h e best from a user 's
po i n t of v i ew ; h oweve r , good m u l t i processor
compi lers have yet to be des igned . The second
approach l e aves more f le x i b i l i ty to t h e p ro
g r a m m e r , w h o c a n m o d i f y s o m e o f t h e
a lgor i t hms i n the p rogram to have more concur-

1 2 0

rcncy. I ndeed , the two approaches should not
be mutua l ly exclusive: the comp i l er can detect
para l l e l i sm at the i nstruct i on l evel whereas the
p ro g r a m m e r c a n d e fi n e p a r a l l e l i s m at t h e
a lgor i t h m i c leve l . Para l le l i s m on the VAX 8 8 0 0
s y s t e m i s a c h i e v e d t h r o u g h t h e s e c o n d
approac h .

W e w i l l describe i n t h i s paper t h e featu res of
the VAX arc h i tecture and the VMS operating sys
tem t hat we used to i mplement our m e t hod o l
ogy for para l l e l p rocess i ng . W e w i l l prese n t a
set o f F O RTRAN rou t i nes we wrote to re l i eve
t h e a p p l i ca t i o n p rogra m m e r fro m h a v i n g t o
k now t h e i n n e r work i n gs of the VAX a rc h i tec
ture and the VMS operat ing system . We w i l l then
descr i be the mod i ficat i ons made to the c i rcu i t
s i m u lator SPICE2 to develop a para l l e l process
i n g i m p l e mentat ion , ca l l ed CAYENN E . F i n a l l y ,
w e w i l l give comparative t i m i n g res u l ts on two
s i m u lat ion examp les .

VAX/VMS Primitives for Parallel

Processing

The VA'"'(8 8 0 0 system is a s hared - memory m u l t i
processor; a U communicat ions between proces
sors arc performed t h rough sect i o ns of shared
me mory rather t han t hrou g h m essage pass i ng .
When wri t i ng para l lel code o n a shared-me mory
m u l ti processor, a program mer must be aware of

Digital Technical journal
No. 1 Februarv 1 98 7

two concepts : crit ical section and processor syn
chron izat ion . A crit ica l section i s a sect ion of
shared me mory that coul d be accessed by sev
era l processors at the same t ime if no precau
t i o ns were t a k e n to preven t t h a t . Al l o w i n g
s i m u l ta neous access t o shared m e m ory co u ld
resu lt i n i ncorrect data. Processor synchron iza
tion i s the means by which processors proceed
in an orderly fashion . It consists of mechanisms
al lowing processors to broadcast the beg inn ing
or the completion of a task or to wai t unt i l a s ig
nal is rece ived .

Some VAX instructions and some VMS system
routines support the management of critical sec
tions and processor synchronization 5 4 We usc
three V�'(instructions to control access to crit i
cal sections:

• BBSSI - Branch on bit set and set i nterlocked

• BBCC I - Branch on b i t c lear and clear in ter
locked

• ADA WI - Add al igned word interlocked

The i nstructions BBSSI and BBCCI are the VAX
i m p l e me n t a t i o n o f t h e a t o m i c - t es t a n d se t
instru ctions that a l low the control of access to
cri t ical sections to one process at a t i m e . The
i nstru c t i o n ADAWI performs an i n te r locked
in teger addi t ion and returns a cond i tion status
depend ing on whet h e r t h e resu l t i s zero or
nonzero .

We use three system rout ines of the VMS oper
at ing system to support processor sync hroniza
tion:

• SETEF - Set event flag

• CLREF - Clear event flag

• WAITFR - Wai t for event flag

Th ese rout ines are services provided by the
VMS operating system to synchron ize processes.
Indeed , the signi ficant ent i ty in the VMS mult i
processor environment is not the processor but
the process . A processor is a physical process ing
uni t , whereas a process is a software entity cre
ated by the VMS operat ing system . Mult iprocess
ing is ach i eved by c reat i n g seve ra l processes
that VMS w i l l assign to ava i l a b l e processors .
Only the opera t i n g syste m , not the user , can
ass i g n a g iven process to a g iven processor .
Event flags are b i ts maintai ned by VMS. Several
different processes can have access to the same
event flag, and signa l ing between processes can

Digilaf Technical journal
No. 4 Februmy / ')87

be achieved by setting or clearing an event flag.
For example, the system service WAITFR places
a process i n a wait state pend i ng the setting of
an event flag.

Addit ional VMS system routines a l low the cre
ation of processes, the creation and mapping of
sect ions of sha red memory , and the i n i t i a l i za
t ion of event flags . These system rout ines are :

• CREPRC - Create process

• CRMPSC - Create and map sect ion of shared
memory

• MG LBSC - Map g l oba l sec t io n of shared
memory

• ASCEFC - Associate common event flag cluster

More i nformation on t hese rou t i nes can be
fou nd i n the VAX/VMS System Services Man
ual . 5 W e used t h e VAX i nstru ct ions a n d t h e
VMS system rout ines l isted above t o write a set
of rou t i nes t hat e mbeds o u r m ethodol ogy for
para l l e l processing.

Parallel Processing Methodology

I n the next section we outl ine the m ethodol ogy
we use to achieve para l le l ism and i n the process
define some i mportant terminology . A program
we wish to convert for para l l e l processi ng i s
d ivided into serial phases. Each phase i s d ivided
in to tasks tha t are executed e i ther seria l l y or
concurrently . A phase whose tasks are executed
serial ly is ca l led a si ngle-stream phase , whereas
a phase whose tasks are executed concurrently
i s cal led a m u l ti p le-stream phase . The s ingle
stream phases are executed by a master process,
whereas the m u l t i p le -stream phases a re exe
cu ted by s lave processes. The sl ave processes
are id le when the master process is act ive and
v i ce vers a . F igure 1 shows this re l a t ions h i p .
Master a n d s l ave processes r u n t h e same exe
c u ta b l e fi l e , t hus l ead i n g to eas i e r p rogra m
maintenance . As ment ioned ear l i e r , processes
are dyna m ica l ly assigned to processors by the
VMS operating system .

W e d e s i g n e d a g e n e r a l s e t o f FO RTRAN
routi nes for this environment . This set now has
seven e n t r i es a n d i m p l e m e n ts t h e cr i t i c a l
sect ion and process-synchron izat ion concepts
defined earl ier . I t a lso performs the necessary
i n i t ia l izat ion and provides fac i l i ties for debug
ging a mul t iprocess execution. The rem a inder
of this section describes the functions ava i lable
in this set .

1 2 1

New Products

A Parallel Implementatio n of the Circuit Simulator SPICE on the VA X 8800 -�vstern

SLAVE 1

FORK

MASTER

FORK JOIN

SLAVE 2

REAL TIME--------------------------------�

KEY:
- ACTIVE

IDLE
� SIGNAL TO PROCEED

Figure I Synchronization of Processes

In itialization

I n i t i a l izat ion is pnformed by a logical fu nct ion
ca l led MASTER_PR OCESS, w h i c h i s set to TRUE
if a master process runs the exccma ble f i le and
FALSE if a s lave process runs i t . The s lave p ro
cesses ha ve s p e c i a l n a m es t h a t d i ffe r e m i a t e

t h e m fro m t h e mastt:r process . An argu mem J ist
perm i ts t h e spec i fi cat ion of the n u m ber of s lave
p roct:sses ro creatt: a n d t h e i n p u t a n d o ut p u t
f i l es to use for t hose s l ave processes . Through
t h i s a rgu m e n t l i st a u n i q u e process n u mber i s
rerurned to each ca l l i ng process .

A user can a l so spec i fy the n u m b er of s l ave
p rocesses to create by u s i n g a c o m m a n d - l i n e
opt ion when the program i s ru n . For exam p l e ,
t h e p r o g r a m CAYE N N E w o u l d be r u n w i t h
N s lave processes i f i nvoked with the command
CAYE N N EjS LAV ES = N at t h e S p r o mp t . If t h e
ca l l i ng p rocess i s a maste r , MASTE R_PROCESS
w i l l create the sections of sh ared memory , i n i
t i a l ize the event flags used for synchro n i za t i o n ,
a n d create t h e req u i red n u m be r o f s l ave pro
cesses. I f the ca l l ing process is a slave, the fu nc
tion wi ll map the shared virtua 1 -address space to
the existi ng sect i ons of shared mem ory. The sec
tions of shared me mory a rc FO RTRAN common
b l ocks defi n ed as shared w h en the p rogra m i s
l i n ked w i t h a n a p p ro p r i a te l i n k e r c o m m and .
During th is i n i t i a l i zat ion phase, CREPRC creates
s lave p rocesses, C R M PSC a n d MG LBSC create
a n d m a p s e c t i o n s o f s h a r ed me m o ry r e s p e c
tive l y , a n d ASCEFC i n i t i a l iz es t h e event flags .

1 2 2

Synchronization
Syn c h r o n i z a t i o n is pe rfo r m e d by fo u r of o u r
seven s u b r o u t i n e s : F O R K , J O I N . J O I N _EX ! T .
a n d .J O I N_FO RK. These subrout i ncs use t h e VMS
system ro u t i nes SETE F , C L R E F , and WA ITFR ro
per form t h e necessa ry i nt e rprocess s i gn a l i n g .
E a c h su brou t i n e a c c o m p l i s h e s r h c fo l l ow i n g
fu nct io ns:

• F O R K -- T h i s s u b r o u t i n e is c a l l e d by t h e
master process to s ignal r h c sl ave processes ro
proceed . T h e master p rocess t h e n wa i ts i n
t h i s su brout i n e for the s l aves to s ignal ba c k .

• JOIN - This su brou t i n e is cal led by the s lave
p rocesses ro sign al rhc master process to pro
ceed . T h e s l ave processes then wa i t in t h i s
subro u t i n e for the master to signal bac k .

O n l y t h e l ast cal l i ng slave process signa ls the
master p rocess . The VAX i nstruct ion AOAW I
i s used to i d entify th is last ca l l i ng sl ave pro
cess .

• J O I N_EXlT - T h i s s u b ro u t i n e is ca l l e d by
the s l ave processes ro s i gna l the master pro
cess to procee d . However . rhe s lave proccsst:s
then exit instead of wa i t i n g for a s igna l . That
is t h e way the s l a ve p ro c esses a rc sto pped
when they are no longer needed .

• JOT N_FO R K - T h i s s u b ro u t i n e is ca l l ed by
the slave processes to synchron izc two m u l ti
ple stream p hases wi th no i nt erve n i ng single
s t r e a m p h as e . Th e u s c o f t h i s s u b r o u t i n e
a l l ows s l ave p rocesses ro be s y n c h ron i z ed
wi thout having to s i g n a l the master process.

These synchro n i za t i on ro u t i nes put a process
t hat n eeds to wa i t for a s ign a l i nro a wait stare.
Processes in a wa i t state cl o n o t use any C P U
t i m e . Each ca l l ro one of these syn c h ro ni zat ion
rou t i n e s , h o w e v e r , r e q u i res m a n y ma c h i n e
i nstru c t i ons ro be executed . I f the app l i ca t i o n
progra m m e r a n t i c i pa t e s a v e r y s h o r t wa i t i n g
t i m e , a n a l ternat ive t o t h e p rev i o u s method of
sync h ronization is synchroni zati o n th rough b u sy
wa i t . I n t h i s scheme a process wil l loop, execut
i n g a n i n s t r u c t i o n o f t h e fo r m D O W H I L E
(FLAG_IS_NOT_SET) ENDDO . The process wi l l
execu te the previous i nstruction u n t i l the l ogi
cal FLAG_JS_NOT_SET is set to FALS E .

The busy-wa i t form of syn c h ron i za t i o n n eeds
ro be used w i t h care . Jr can lead to l oss of over
a l l sys t e m p e r fo r m a n c e . I n d e e d , t h e process

Digital Technical journal
1\o . . j Febmrll)' I ')87

execut ing a busy-wai t i nstruction wi l l use CPU
t i m e t ha t m i g h t be m o re p rod u c t i ve ly u s e d
b y a n o t h e r process . I n add i t i o n , t h e l o g i c a l
F LAG_ I S_ N OT _S E T , w h i c h i s c o n s t a n t ! y
checked for , is shared by a l l processes . There
fore, access to this logical must be careful ly con
trolled. I f several processes change this logical at
the same t ime, i ts fi na l value w i l l be unknown . I f
n o process updates FLAG_IS_NOT_SET, a pro
cess may e x e c u t e t he busy-wa i t i n s t ru c t i o n
forever , t h u s l e ad i n g t o dead loc k . Deadlock
occurs when processes are wai ti n g to receive a
signal that w i l l never be sent .

Critical Section
Cri t ica l sect ions i n a para l l e l i m plementa t ion
shou ld be min i mi zed . They are the bottlenecks
of the multiple-stream phases because they can
be accessed by only one process at a t ime . If a
c r i t i c a l sect i o n cannot be avo i d e d , t h e t i me
spent to access this section shou ld be min im ize d .
Exc l us i ve a c c e s s to c r i t i ca l s e c t i o n s c a n b e
ach ieved b y u s i n g e i ther t h e VAX i n ter locked
instruct i ons or the VMS system services . ·; The
former method i mplements a busy-wai t form of
access syn chro n i za t i o n , the l a tt e r uses event
flags.

The two subrout ines LOCK and UNLOCK are
assembly l anguage rou t ines i m p l e m e n t i n g a
busy-wai t form of access synchron i za t ion . We
chose th is method because i t i s faster i n elapsed
t ime , and the t ime spent by a process wai ti ng is
expected to be sma l l when the access to cr i t ica l
sections has been m i n imized. These subroutines
are used i n the fo l l owing m a nner to access a
critical section :

CALL LOCK(SECTrON_ENTRY)
CALL ACCESS_CRITICALSECTION

CALL UNLOCK(SECTrON_ENTRY)

SECT I ON_E NTRY i s a n i n teger assoc i ated
with a given crit ica l section . Th i s i n teger is set
to 1 when a process is using the crit ical section
and to 0 when no process is using the crit ical
sec ti o n . The t wo c a l l s LOCK and UNLOCK
ensure that only one process a t a t ime executes
the code ACCESS_CRITrCAL_SECTION . We use
t h e s e r o u t i n e s o n l y o n c e i n CAYE N N E fo r
dynamic task a l locat ion .

Parallel Debugging
Debuggi ng para l l e l code i s somewhat more
complex than debugging sequent ia l code . We

Digital Technical journal
No. 4 Februmy I 'J87

debug o u r para ! J e l code us ing the fol l ow i ng
methodo logy. The funct ional i ty of our para l le l
code does not depend on the nu mber of slave
processes or on which specific process performs
a part icular task . Therefore , the whole code can
be executed by the same process. For example,
CAYE N NE ru ns w i t h o n l y one process i f the
nu mber of s lave processes i s spec i fied to be
zero . Th is a l lows most a lgor i thmic mod i fica
tions made in the code to be debugged with the
VMS debugging faci l i t i es provided for sequen
t ia l code .

After the first debuggi ng phase, a code sect ion
cou ld sti l l have errors when run with multiple
processes . Our rou t i nes a l low two fo rms of
debugging , requested e ither through a flag i n
t h e a rgu m e n t l i s t o f t h e l o g i c a l fu n c t i o n
MASTEILPROCESS or through a command- l i ne
option . The first form of debugging permits the
ass ignment of a d i fferent term i nal to each pro
cess and the sett ing of a debugg i ng sess ion for
each process on i ts assigned term inal . The sec
ond form of debugging is i ntended to be used
with a workstat ion . A d i fferent workstat ion win
dow is assigned to each process, and a debugg i ng
session is set up for each process i n i ts ass igned
wi ndow. The number of processes that can be
debugged concu rrently is l i m i ted to e i ther the
number of termi nals ava ilable or the number of
workstat ion windows that can be opened.

Example
The fol l owi n g exa m p l e , s hown i n F i gure 2 ,
i l l ustrates some of the functiona l i ty of our set of
rout ines. We want to compute the sum SUM of
all i ntegers from 1 to N' S. We assume that a mas
ter process wi th the he lp of N slave processes
does the task . Each s lave process is a ss igned a
un ique number PROCESS_NUM BER between 1
and N by the logical function MASTEILPROCESS.
The section of shared memory consists of an array
P A R T I A L _ S U M o f s i z e N. T h e s l a v e p r o
cesses work i n p a ra l l e l . Each s l ave process
adds S conse c u t i ve i n tegers a nd stores i ts re
s u l t i n t h e s h a r e d m e m o r y l o c a t i o n
PARTlAL_SUM (PROCES5_NUMBER) .

After the slave processes have completed their
task, the master process adds their partia l sums,
stored in the shared array PARTIALSUM , to pro
duce the final resu l t SUM . The code correspond
ing to this procedure fo l lows . (Remember that
master a n d s lave process run t h e exact same
executable fi le .)

1 2 3

New Products

A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System

P R O G R A M p a r a l l e l

E N D

L O G I C A L m a s t e r - p r o c e s s

I N T E G E R p r o c e s s _ n u m b e r

I N T E G E R n u m b e r _ o f _ s l a v e s , d e f a u l t _ n u m b e r _ o f _ s l a v e s

I N T E G E R d e b u g _ f l a g

P A R A M E T E R (d e f a u l t _ n u m b e r _ o f _ s l a v e s = S , d e b u g _ f l a g = O)

C O M M O N / s h a r e d / n u m b e r _ o f _ s l a v e s

C O M M O N / l o c a l / p r o c e s s _ n u m b e r

I F (m a s t e r _ p r o c e s s (p r o c e s s _ n u m b e r , n u m b e r _ o f _ s l a v e s ,

d e f a u 1 t _ n u m b e r _ o f _ s 1 a v e s , 1 i n p u t 1 , 1 o u t p u t 1 , d e b u 9 - f 1 a g)) T H E N

C A L L m a s t e r _ c o d e

E L S E

C A L L s l a v e _ c o d e

E N D I F

S U B R O U T I N E m a s t e r _ c o d e

E N D

I N T E G E R n u m b e r _ o f _ s l a v e s , m a x i m u m _ n u m b e r _ o f _ s l a v e s , i

P A R A M E T E R (ma x i m u m _ n u m b e r _ o f _ s l a v e s = 1 0)

I N T E G E R p a r t i a l _ s u m (ma x i m u m _ n u m b e r _ o f _ s l a v e s) , s u m

C O M M O N / s h a r e d / n u m b e r _ o f _ s l a v e s , p a r t i a l _ s u m

C A L L f o r k

s u m = 0

DO i = 1 , n u m b e r _ o f _ s l a v e s

s u m = s u m + p a r t i a l _ s u m (i)

E N DD O

S U B R O U T I N E s l a v e _ c o d e

E N D

1 24

I N T E G E R p r o c e s s _ n u m b e r , n u m b e r _ o f _ s l a v e s , s t a r t , s , i

I N T E G E R p a r t i a L s u m (1)

P A R A M E T E R (s = 2 0 0)

C O M M O N / l o c a l / p r o c e s s _ n u m b e r

C O M M O N / s h a r e d / n u m b e r _ o f _ s l a v e s , p a r t i a l _ s u m

p a r t i a l _ s u m (p r o c e s s _ n u m b e r) = 0

s t a r t = < p r o c e s s _ n u m b e r - 1) * s

DO i = s t a r t + 1 , s t a r t + s
p a r t i a l _ s u m (p r o c e s s _ n u m b e r) p a r t i a l _ s u m (p r o c e s s _ n u m b e r) + i

E N D D O

C A L L j o i n _ e x i t

Figure 2 PROGRAM Parallel

Digital Technical Journal
No. 1 Februar)• J Y87

In the next section we describe how we cre
ated para l le l process i ng in severa l phases of the
ci rcu i t s imulator SPICE to produce the program
CAYENN E.

Modifications Made in SPICE

B e fo re a d d r es s i n g e a c h p a r a l l e l p h a s e o f
CAYE NNE, we give a brief overview o f the cir
cuit s imulator SPICE.

Overview of SPICE
SPICE performs severa l types of c i rcuit analys is :
s teady-state ana l y s i s , t rans i e n t a n a lysi s , and
smal l-signal analys is . The most commonl y used
a na lysis for d igi ta l c i rcuits is the transient analy
s is , which becomes i ncreas i ngly t ime consu m
ing as the s ize of the simu lated c i rcuit increases .
F i g u r e :) g i v e s a g l o b a l d e s c r i p t i o n of t h e
algori thms used by SPICE for a transient analysis .

The c i rcu i t equations form a system of ord i
nary d i fferential equations. This system i s so lved
numerica l ly at su ccessi ve t ime poin ts t i , i = 1 ,
N. I t is reduced at a given t i me poin t ti i n to a
system of nonl inear equat ions by us ing a dis
cre t i za t ion met hod . A d iscre t i za t i o n m ethod
approxi mates the t ime derivat ive of a variable at
a given t ime point as a fu nction of the va lue of
the variable at that t ime poi n t and at previous
t i m e poi n t s . T h i s m e t hod i n t rodu ces a d i s
cret izat ion error that must be contro l l ed and

t i m e = 0
DO WH I L E < t i m e < f i n i s h t i m e >

d i s c r e t i z e d i f f e r e n t i a 1 e g u a t i o n s

D O W H I L E (n o t c o n v e r g e d }

l i n e a r i z e a l g e b r a i c e g u a t i o n s

s o l v e l i n e a r e g u a t i o n s

c h e c k c o n v e r g e n c e

E H DDO
I F (l o c a l t r u n c a t i o n e r r o r t o o b i g) T H E H

r e d u c e t i me

E L S E
s a v e r e s u l t s a t t h i s t i m e

a d va n c e t i m e

E H D I F
E H D DO

Figure 3 Transient A nalysis Algorithm jar
SPICE

Digital Technical journal
No. 1 February I <J87

m a inta i ne d be low a spec i fied t h reshol d . Th is
error i s ca l led the loca l tru ncat ion error . The
resu l t i n g sys t e m o f n o n l i n ea r e q u a t i o ns i s
reduced to a system of l inear equations by per
form i n g a fi rst-order Taylor expansion of the
nonUnear e lements of the c ircu i t . This l i neariza
t i on i n trodu ces another e rror ca l l ed the l i n
earizat ion error. The resul ting system of l i near
equat i ons i s then solved exactly, using an LU
factorizat ion of the system matrix .

Aft e r the so l u t i on o f t h e sys tem has b e e n
obta i n ed , t h e l inear iza t ion error can b e esti
mated . I f th i s error is too big, a new l i neariza
t ion is performed around the previously co m
puted so l ut ion , and t h e new l i n ear system i s
solved aga i n . Successive l i nearizat ions a re per
formed unt i l convergence is obta i ned , that i s ,
unt i l the li nearization error is be low a specified
t h resho l d . When convergence i s reached the
so lut ion of the non l i near system is obta ined , and
the local t runcat ion error is then checked . I f
th is error i s too big , the solution a t t ime poin t ti
is rejected and the system of d i fferen t ia l equa
t ions is so lved at a new t ime p o i n t f; so tha t
ti - 1 < t1 < ti . If the error is be low a specified
threshold , the so lut ion i s accepted , and the sys
tem is solved at a new t ime poin t ti + 1 so t ha t
t i < ti + 1 . This procedure i s repeated unti l the
ent ire transient analysis i s computed . During a
t ransient s imulation the circui t s imu lator SPICE
spends up ro 90 percent of i ts CPU time in three
phases of the previous a lgor i thm . These phases
arc as fol lows :

• Load Phase - This phase consists of loading
the matrix and the right-hand side of the sys
tem of l i near equat ions obta ined as described
above . Device-mode l equations and l i neariza
t ion errors are a lso computed i n th is phase .

• LU Factorization Phase - This phase consists
of facroring the matrix of the system of l inear
equati ons i n to the product of a lower tr iangu
lar matr ix a n d an u pper tr ia ngu l a r matr i x .
This factorization i s used t o solve the system
of l i near equations .

• Loca l Truncat ion Error Phase - This phase
consists of comput i ng the local truncat ion
error com mitted at each t ime step .

The modificati ons for para l le l processi ng made
in these three phases are descri bed next.

1 2 5

New P.-oducts

A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System

L oad Phase

In the l oa d phase each c i rc u i t e l e m e n t c o m
p u tes a n d l oa d s a l l i t s c o n t r i b u t i o ns to t h e
matrix a n d t h e right-hand s i d e o f t h e l i near sys
tem obta i ned from the circui t equations. Severa l
d i s t i n c t el e m e n ts may c o n t r i b u t e to t h e sa me
matrix or right-hand side entry. This means that
the matrix and right-hand side are cri t ical sec
t i o n s i n the l oad p h a s e , and a c c e ss t O t h e m
needs t o b e contro l l e d . O n e approach t o syn
chronize accesses to the matrix is to use a s i ng l e
l o c k o n t h e w h o l e matrix 6 I n this case o n l y one
processor can write i n to the matrix at a given
t i m e , lead i n g to contention for shared resources
a n d decreased effi c i ency.

In our approach l oc k i ng the e nt i re matrix is
avoided by creat i ng an addit i onal data structure
to store each i n d i v i d u a l e l e ment contri b u t i on .
This stru cture can be viewed as a three-d i m e n
sional m a t r i x whose t h i rd d i m ension is used to
store each individual element contri bmion to a
given c i rcuit-matrix e nt ry. Figure 4 depicts such
a matr i x . There i s n o u n us e d m e m ory in t h i s
structure because i t h a s a vari able depth i n i ts
third d i mension . Nevertheless , u s i ng this stru c
ture wil l i ncrease the memory requ i rements of
the s i m u lator. I n the design of CAYENNE it was
necessary o n many occasions to trade m e m ory
fo r s p e e d . O u r t e s t e x a m p l e s s h o w t h a t
CAYE N N E re q u i res a n average of 2 0 perce n t
m o re d a t a m e m o ry t h a n S P I C E vers i on 2 G 5

req u i res . T h e c o n t r i b u t i ons for e a c h m a t r i x
entry are su bseq u e n t l y s u m m e d and l oaded i n
para l lel i n to the c i rcu i t matrix . The matrix load
is the refore performed in two successive m u l t i
ple-stream phases.

I t is crucial that tasks arc eve n ly d istri buted
among s lave processes so that no slave process
s t a y s i d l e w h i l e o t h e r s a r e c o m p u t i n g . A
dynamic task a l location was chosen for the first
m u l t i p le-stream phase of the ma tri x l oad . That
al location was preferred to a stat ic task a l loca
tion because t he t i me needed to load each ele
ment cannot be es t imated a c c u rately. I ndeed ,
computation of device models may be bypassed
d ur i n g s i m u l a t i o n . T h e m o d e l e q u a t i o n s of a
device are not compu ted at a given iterat ion of
the analys is if the voltages applied to this devi ce
d i d not cha nge sign i ficantly compared to their
va l u e s a t the prev ious i terati o n . This strat egy
saves CPU t i m e .

Dynamic t a s k al location is ach i eved t h rough
a n a rray of tasks whose n u mb e r exceeds t h e

1 2 6

J K

J

K

G, - CONDUCTANCE OF FIRST RESISTOR
G2 - CON DUCTANCE OF SECOND RESISTOR

Figure 4 Three Dimensio nal Matrix

n u mber of s l ave processes. A task consists of a
l ist of c i rcu i t e l e me nts to be l oaded . Tasks are
defined so that each req u i res approx i mate ly the
sa me a m o u n t o f wor k . The a m o u n t o f work
needed tO load a ci rcu i t e l e m e n t i s est i mated
roughly by neglecting bypass a n d evaluating the
CPU t i me needed to load the e l e ment. Dynamic
task a l l o c a t i on i s e x p e c t e d to m i ni m i z e any
i m b a l a n c e t h a t may o c c u r d u ri n g s i m u l a t i o n
through device model computation bypass .

The task al locat i o n for the second m u l t i ple
s t re a m phase of the matrix load is done sta t i
ca l l y s i n c e t h e w o r k n e e d e d t o p er fo r m t h i s
phase c a n b e d i vi ded i n to tasks re q u ir i n g the
sa me a mount of CPU time. The only i nterlocked
access to shared me mory during the matrix load
is the one on the array index, w h i c h defi nes the
next task when dynam i c task a l loca t i o n is used .
This index is successively read and i n cre mented
by all slave processes .

Digital Technical journal
No. 4 Februmy 1 987

L U Factorization Phase
The t ime spent by a d irect-method circuit si mu
lator in the load phase i s l i near in the number of
c lements , whereas the t i me spent solv ing the
l i near system of equati ons is super l inear i n the
size of the matrix 7 For large c ircuits the matrix
so l u t i o n p a r t w i l l t h e re fore beco m e more
i m porta n t and wi l l d o m i na t e over the load
phase .

I n SPICE the matr ix-so l u t i o n p hase is done
us ing sparse matr ix LU factorizat ion . Although
fu l l matrices can be factorized effic iently in par
a l l e l . H t h e p a ra l l e l fa c to r i z a t i o n of s p a rse
matrices i s more difficu l t . The LU factorization
a lgorithm has a sequent ia l dependency, and the
amount of concurren t work that can be done at
each step in a sparse matrix i s sma l l .

I t is poss ible to design a lgorithms that detect
the maxi mum para l le l ism at each step of the LU
factoriza t ion . Such a lgor i thms have been used
for vecrorized circuit s imulat ion .'> In our envi
ronment synchroniza ti on is done through soft
ware and the fi ne-gra in para l l e l ism used for vec
torization may not be effic ient . Based on these
cons iderat ions . we have proposed and i m p le
mented an a l gor i thm i n which pa rt icular care
h a s b e e n t a k e n t o m i n i m i z e t h e o v e r h e a d
inc urred with para l le l processing. The deta i ls of
our a lgori thm can be found in reference 1 0 .

Local Truncation Error Phase
The para l le l computation of the t ime step does
not present major difficu l t ies s i nce the compu
ta t io n of t h e loca l t runca t ion er ror for each
energy s torage e l e ment is i ndepende n t . Each
slave process is ass igned a se t of energy storage
clements and com putes the t ime step required by
this sc.-t . The master process then computes the
mini mum time step among the time steps retu rned
by the sl ave processes . The en ergy storage c le
ments are stat i ca l ly assigned among s lave pro
cesses so that the work among them is balanced .

Results

The para l l e l algorithms descri bed in this paper
have been i mplemented to produce the program
CAYENNE . We now prese nt two examp l es to
compan.: the t iming performances of SPICE and
CAYENN E.

The first example is the s imu lation of a MOS
arith metic logic unit (AlU) on a VAX RHOO sys
te m . The c i rcu i t has 2 0 0 nodes and 1 3 50 e l c -

Digital Technical journal
No. 1 Februmy 1 987

menrs . Twelve hundred Ne""rton Raphson i tera
tions are requ i red for the transi ent si mulat ion .
The effic iency of our para l l e l impl ementation is
measu red in this example . If a mul t ip le-stream
phase runs seq uent i a l ly i n an e lapsed t i me Ts
and i n para l l e l w i t h N s l ave p rocesses i n a n
elapsed t ime T, , we define t h e efficiency, E , of
the para l le l execution hy

E = (T, - T,) / (T_, - Ts/N)

E represents t he rat io of the actual savings i n
elapsed t ime t o the potent ia l savings i n elapsed
t ime. Ta ble I gives t imi ngs and effic iencies for
the AlU exa mple . As a comparison , SPICE s imu
lates the same circu i t in an e lapsed t ime of 834
seconds.

Table 1 Timing Performances and Efficiencies

CAYE NNE CAYENNE
0 Slaves 2 Slaves Efficiency

Phase (Seconds) (Seconds) (Percent)

Load 694 97 86

LU 22 1 4 70
LTE 67 35 96

Total
S imulation 867 529

The second example is t h e s i m u la t ion of a
MOS contro l store . The c ircu i t has 1 6 0 nodes
and 5 30 clements , and the transient s imu lation
req u i res 1 4 0 4 N e wto n Ra p h son i t e ra t i o n s .
SPICE spends 9 1 percent of the s imul ation t ime
i n the three phases we modified for para l le l pro
cessi n g . CAYEN N E execu t i n g w i t h two s l ave
processes a c h i eves 9 0 - percen t effi c i ency i n
these phases and s imu lates the c ircu i t 1 .7 ti mes
faster than SPICE. For t h is s imulat ion, CAYENNE
on a VAX 8800 runs 9 ti mes faster than SPICE on
a VAX- I 1 /780 CPU. Tab l e 2 shows these com
parisons.

The effi c i enc ies of a para l l e l execu t i on of
CAYENNE depend on t h e s ize of t h e c i rc u i t .
In deed , there i s a fixed overhead i n cu rred by

Table 2 Comparison of SPICE and
CA VENNE Elapsed Run Times

Elapsed
Case Seconds Ratio

SPICE on VAX-1 1 /780 3990 9 . 1
SPICE on VAX 8800 750 1 .7
CAY E N N E on VAX 8800 440 1 .0

1 2 7

New Products

A Parallel Implementatio n of the Circuit Sim ulator SPICE on the VAX 8800 System

ca l l i n g t h e s y n c h r o n i za t i o n ro u t i n e s J O I N ,
FORK or J O I N_FORK . The bigger the task per
formed by the sl ave processes before a ca l l to a
synchro n i zat ion rou t i n e , the smal ler the relative
cost of synchron izat i o n . The s i m u l a t i ons of ou r
exam ples were a lso r u n on a l ightly loaded sys
te m . Loss of effi c iency occurs when processors
have to be shared w i t h n o n rc l ated p rocesses .
and busy-wa i t synchro n i z at i ons may waste s i g
n i ficant reso urces. A work load consist ing of sev
era I i ndcpendent s i m u l a t i o ns of eq ua I im por
tance i s a l ready deco mpos e d . and CAYE N N E
sh o u l d b e r u n i n s i ng l e - p rocess mode I f the
turnaround of a s ingle , large s i m u lat ion needs ro
be m i n i m i z e d , howeve r, CAYE N N E shou ld be
run with two s lave processes on a ded icated or
l ight ly l oaded 8800 .

Summary

We have descri bed a ge nera l methodol ogy for
para l l e l process ing on the VAX 8800 system and
a user-fr i e n d l y set o f rou t i nes that embed o u r
method o l ogy . \Ve have a l so presented the suc
cessfu l c o n v e rs i o n of the c i rc u i t s i m u l a to r
SPICE i nt o the para l l e l program CAYE N N E . New
schemes to m i n i m i ze the o ver iH.:ad of p a ra l l e l
process i ng a n d t o balance the load among pro
cesses con tribute to the overa l l efficiency of our
i m p l e mentatio n .

Acknowledgments

We wou ld l i k e to a c k n ow l edge Bob Ku s i k for
i n i t i at i ng t h i s pro j e c t , Cra i g Yanke s for i nt ro
d u c i n g us ro p a r a l l e l p r ocess i n g w i t h i n t h e
VA.,'(jYMS system and for pro v i d i n g us w i t h an
i n i t i a l l i b r a r y of ro u t i n e s from w h i c h o u r
methodology evolved , and John farice J J i , Nad i m
Kha l i l , Karem Saka l lah , and john Sopka for many
fru i t fu l d iscussions .

References

1 . R . H a c kney a nd C . Jess h o p e . " Pa ra l l e l
Com putt:rs , " (Bristo l : Adam Hi lger. Ltd . .
1 9H 1) .

2 . L. Nage l , "SPICE 2 . A Computer Program
to Si m u l a t e Se m i c o n d u c to r C i r cu i t s . "
Memo n o . ERL- M 5 2 0 . U n i vers i ty of Ca l i
fo rn ia . ne rkcl ey (May 1 9 7 '5) .

3 . Guide t o Jlllultiprocessing o n VAXjVMS
(M a y n a rd : D i g i ta l E q u i p m e n t Corpora
t ion , Order N o . AA-HP69A-TE, 1 9 H6) .

4 . S. Fa rn h a m , M . H a rve y . a n d K . Morse ,

"VMS M u l t ip rocess i n g on the VAX 8800
Sys t e m . " D ig i t a l Te ch n i cal jo u rn a l
(February 1 9 H 7 . t his issu e) : 1 1 1 - 1 1 9 .

'5 . VA XjVMS System Services Reference
Manual (M ay n a rd : D i g i t a l E q u i p m e n t
Corpora t i o n , O r d e r N o . AA- Z '5 0 I B - T E ,
1 9 86) .

6 . G . Jacob. A. N e wt o n , a n d D . Pederson ,
" D i rect Method C i rcu i t S i m u l a t i on Using
J\'l u l t i p r oc essors , " Proceedings of the
Internatio nal Sy mposiu m o n Circu its
and Systems (May 1 9 86) : 1 7 0 - 1 7 3

7 . A . Newto n , ' ' The S i m u l a t i o n o f La rge
Sca le I ntegrated C i rc u i ts . " IEEE Transac
tions on Circuits and Systems, vol . CAS-
26 (September 1 9 79) 74 1 - 7 4 9

8 . R . Thomas, " Us i ng t h e Butterfly to So l ve
S i m u l taneous Linear Equat ions , " La bora
tory M e m o rand u m , Bo l t , Bera n e k , a n d
Newman , l n c . (Ma rc h 1 9 8 '5) .

9 F . Yama moro a n d S. Takahas h i , "Vccror
i z cd LU Dec o m p os i t i o n Algor i t h m s fo r
Large Sca l e C i r c u i t S i m u l a t i o n . " IEEE
Tra n s a c t i o n s o n C o mp u t e r A i ded
Oesign , vo l . CAD- 4 , no. 3 (Ju ly 1 9 8 5) :
2 .1 2 - 2 3 9 .

1 0 . G . B i s c h o ff a n d S . G ree n b e r g , " C AY
E N N E : A Para l le l I m p lementat ion of the
Ci rcu it S i m u l ator SPICE . " Proceedings of
the IEEE Internatio nal Conference o n

C o mp u ter A ided Desig n (N o v e m b e r
1 9 86) : l H 2- 1 8 '5 .

1 2 8 Digital Tecbnit.:ul journal
No. 4 TI!!Jruar)' I ')8 7

Dennis T. Bak I

The Impact of VAX 8800 Design
Methodology on CAD Development

Contributing to the success of the VAX 8800 project was an integrated
CAD environment supporting the hardware design effort. A CAD group
dedicated to this single project was chartered to supply a smoothly oper
ating CAD process from initial design conception to final production.
The CAD environment evolved through a blending of existing tools avail
able in Digital with new tools developed outside the company. Gaps in the
environment were filled through extensive modification of existing tools
and new development efforts. The driving force behind the CAD process
was a design methodology, radical for its time but second nature now.

Past CAD Development Efforts

Pr ior to t h e m i d - 1 9 7 0 s , l o g i c deve l o p m e n t
efforts w i t h i n D ig i ta l Equ ipment Corporat ion
were largely done without the extensive use of
CAD tao l s . H a n d - d rawn schemat ic d i a gram s
were t h e pri m ary means o f express i n g l o g i c
designs .

A major advance i n design automat ion took
place in the mid- 1 970s when the Stanford Uni
ve rs i ty Des i gn Syste m , or SUDS, began to be
used within D ig i ta l . SUDS a llowed the entry of
schematics in to and the extraction of net l ists
from a graph ics databas e . A l t hough i t was a
major step forward i n the automation of design
processes, SUDS requ i red s ignificant user tra in
ing and experience to become an effective too l .

Bu i ld ing a SUDS database capable of b e i n g
used by a computer opened a new avenue for
the evo l v i n g CAD groups to au tomate t he i r
design processes. These groups soon developed
a large body of programs to su pport ne t - l i s t
extract ion , design analysis , placement and rout
i n g , and eve ntua l l y m a n u factu r ing parts - l i s ts
generation. S imu lation too ls were deve loped to
he l p verify the operat ions of a design before any
actu a l hardware was ava i l a b l e . The i n creased
complexity of design drove CAD developers tO
provide more powerfu l CAD tools . I n turn , logic
designers soon grew i ncreas ingly dependent on
CAD tools as their capab i l i t ies i ncreased .

The design methodologies and the CAD tool
su i te e vo lved to su pport l a rge-CPU desi gns ,

Digital Technical journal
No. 4 Februarv 1 987

such as the VAX 8600 fa m i l y . SUDS eased the
b u rd e n of e n t e r i n g and co p i n g w i t h des ign
c ha n ges ; however , the ac tua l contents of i t s
schemati cs d iffered l ittle from those of the ear
L ier hand-drawn ones. I n large pa n the schemat
ics entered by desi gners i nto SU DS corre la ted
d i rect ly with the p hysi c a l en t i ty being b u i l t ,
showing a l l components and their p i ns .

At the i nception of the VAX 8800 project in
the early 1 9 80s, a vast col lection of CAD tools ,
written by many interna l groups, had spru ng up .
Most of these roo l s req u i red large ASC I I data
fi les and sign ificant manual in tervention by CAD
experts. Although many a i ds were provided to
develop design processes, they lacked the cohe
siveness and s impl icity needed to put a process
d i rectly i nto the hands of the designers .

At about t h i s t i me , a nu mber of s ign i ficant
advances were made i n CAD techno logy . Engi
neering workstations were annou nced at prices
that made it practical to put them d irectly i nto
the hands of designers . Moreover, new design
methodologies , such as structured com puter
a ided logic design , or SCALD, were a l so deve l
oped . 1

Th ese m e t hodo lo g i es c o u l d s i gn i fi ca n t l y
im prove the qua l i ty of design while decreasi ng
the t ime to deve lop complex systems . There
fore , D ig i t a l made a commi tment tO use those
methodologies on the VAX 8800 project to pro
duce not only the product but a more produc
t ive way of developing i t .

1 29

The Impact of VAX 8800 Design Methodo logy on CA D Del 'elopmen t

Design Methodology

T h e d e v e l o p m e n t o f C A D t o o l s f o r t h e
VA,'(R R O O project was a cons idera ble c h a l l e nge
ro rhe CA D des i g n ns . 'f he co m p l ex i ty of t h e
VA.'(8800 desi gn . with i rs part icu iJr gate ar ra �·
i m p l e m e n ta t i o n , d e m a n d e d r h a r r h c des i g n
q u a l i ty be h i gh before anyt h i n g was co m m it ted
ro hardware . In fact . the project managers made
a rad ical (for i rs r i m e) commi t m e nt ro sim ul ate
t h e e n t i re des i gn a n d ver ify i ts r i m i n g before
any h a rdware was bu i I r . The rcfore . r h e CAD
process had ro be designed ro m e et nor o n l y that
goal bur also ro fac i l i tate t h e ra p i d prod u c t i o n
of hardware once t he design had prove n accept
a b l e . T h i s sect ion of t h e paper des c r i bes t h e
methodo logy w e fo l l owed t o make the best use
o f our CAD too l s . The n e xt sec t i on d escri bes
those rools and how t h ey were used .

The rool suite that evolved , p icmred i n Fi gu re 1 ,
su pported both logical and p hysical design pro
cesses with c hecks and bala nces ro ensure t h a t
the design topo logies re mai ned the same. Sche
ma t i c d i ag r a m s . ca p t u r ed at an e n g i n e e r i n g

workstati o n . were processed in ro a l o g i ca l n e r
l i st t h a t was used by r h e si mulat ion a n d veri fica
t i on too l s . Once a l og ica l design reached a cer
t a i n I nT I of m a ru r i r y . i t was m a p p ed i n to a

ph�·s ical design . At that poi nt a physica l a n a l ysis.

ro determ i n e d e l a ys and s i gna l i n t e g r i t y , was
perfo r m e d . Place m cnr and rou t i n g too ls were
then run to fu rther refi n e the design . The part of
the p lws i ca l design d a t a base t h a t represen ted
the l ogi ca l ropo logy was then passed back to the
logi cal side of the desi gn process Tbere , a com
p a r i so n was made tO ensure t h a t t h e phys i c a l
a n d logica l designs were congru e n t . Thc resu l ts
of s i m u l a t i o n s based o n t h e p h ys i c a l d e s i g n

were also passed r o th e l ogical process for com
parison wi t h t h e s i mu lat ions based on rhe logi
cal design . These mechan isms prov iclecl the pri
m a ry ch ec ks ro e n s u re rh a t t h e l o g i c a l des ign
marc hed t h e p hysical one.

We deci ded t h a t t h e best way to ass u re suc
cess was ro develop a com plete paper speci fica
tion of the mach i n e to be b u i l t . Once the ovcr
a l l goals for the machine had been esra b l i s hecl .

DESIGNER

MANUFACTURING

- LOGICAL TO PHYSICAL - REPORTS - PLACEMENT - INTERACTIVE CLEANUP
MAPPING - DELAYS - ROUTING

- WIRE RULE CHECK - SIGNAL INTEGRITY
- INTERFACE FILES

UNIX VAX/VMS

Fig u re 1 CAD Tool Su ite

1 :10

- MANUFACTURING RULES CHECK

Di,C!,ital Technical journal
,Yo. i Fe!Jnuny I ')8'

the designers developed the speci ficat ions for
each major logic section . This h igh- level logical
des ign was t h e n part i t i o n ed i n to fu n c t i o n s
required within modu les a nd gate arrays. These
pr i mary i n terfaces were spec i fi e d before a ny
deta i led logic was developed . As i t turned out ,
that par t i t i o n i n g re m a i n ed r e l a t ively i n t a c t
throughout the project.

The next step was to develop probe designs
and abstract models for the most complex parts
of t h e m a c h i ne . These d e s i gns a n d m o d e l s
tested whether o r not particular logic functi ons
coul d be developed and t iming constra in ts met .
I n so me cases the probe designs were carried
through to the actual fabrications of gate arrays
or modules . This conti nu i ty a l lowed us to test
the l i m i tations of the selected ECL technology as
we l l as the logic design .

The probe des i gns p roved u sefu l i n many
ways to both the designers and the CAD devel
opers . The des igners were able to veri fy tha t
the ir log ic i m plementations wou ld work . The
CAD developers were able to use the designs as
test cases tO de ve lop and d e b u g processes .
These test cases proved to be crit ical tO the pro
jec t ' s su ccess, espec i a l ly when the f in i shed
design was given to the manufacturing organ iza
t ion . The process was so smoot h , in fact , that
designs flowed through it with few problems.

The Influence of SCALD
At the onset of the VAX 8800 project, we i nves
t igated the too l s ava i l a b l e w i t h i n D ig i ta l for
b u i l d i n g a process to suppo r t t h e evo l v i n g
design methodology . This study l ead t h e CAD
team to explore several systems being devel
oped by other compa n ies . One system be i ng
developed by Val i d Logi c , I nc . , the SCALDSys
tem CAD system , was procured by Dig i tal . This
system put the power of dedicated engineering
workstat ions d i rect ly i nto the hands of logic
designers . Of eq ua l importance was the fact that
the SCALDSystem CAD tools were being devel
oped by the same people who conceived the
SCALD approach tO hardware des ign .

Logical schematics, requ ir ing almost no infor
mation about the physical design , were entered
i nro the SCALDSystem database . These schemat
i c s were e n te red i n a h i e ra r c h i c a l m a n n e r
through an easy- ro-l earn graphical system . Such
an a rrangement enco u raged the des igners to

Digital Technical journal
No. 1 February I Y87

avoid the creation of paper schematics by trans
ferr ing the i r concepts d i rectly to the worksta
tion screens.

The decomposi tion of the design was from the
top down, but the actual en try of design data
o c c u r r ed s i m u l t a n e o u s l y at m a n y l e v e l s .
A " design tree" evol ved i n which cel ls form
i n g gate a r rays were mer ged o n to m o d u l e s
that p lugged into t h e backplane to form a sys
tem . The log ica l des ign was entered v ia t he
SCALDSystem tools onto schematics. The physi
ca l i mplementat ion of that logical design was
left to the physica l design tOols .

Simulation a nd Tim ing Verification
S i m u l a t i o n o n t h e VAX 8 8 0 0 p r o j e c t w a s
approached from two differen t viewpoi nts. The
first a imed tO determi ne whether or not the per
formance goals of the proposed microarch i tec
ture were with in the necessary range , as speci
fi ed by the project ' s needs. 2 This s i m u la t ion
started early i n the project before any deta i led
logic des ign had been completed . Once those
performance goals had been verified , the second
level of s imu lation focused on the logic design
as i t evolved .

The designers could verify that each piece of
the design fu nctioned as spec ified wh i le that
piece was being developed . As the design tree
evol ved , the number of logic leve ls given to the
simulation tools i ncreased unt i l the entire logic
d e s i g n had been e n t e red . At t h i s poi n t t h e
designers actually h a d t h e equivalent of a soft
ware bread board of the entire VAX 8800 proces
sor. M icrocoded i nstructions were "running" on
this software bread board long before any hard
ware was ava i lable.

The abi l i ty to run i nstruction streams on the
breadboard gave the project several advantages.
Logic designers cou ld debug their l ogic concur
re n t w i th the m icrocode deve lopers ver i fying
t h e i r m i crocode . Moreover , the d i agnos t i cs
engineers cou ld wri te as wel l as debug s ignifi
cant numbers of m icrod iagnostics much earlier
than was usual i n a des ign project . The early
complet ion of t hose d iagnost ics a l l owed t he
fi rst ava i l ab le ha rdware to be checked t h or
oughly.

Making the des ign logica l ly correct through
s i m u l a t i o n d i d not ensure t h a t the m a c h i n e
wou l d work a t t h e desired cyc le t i me . In the

1 3 1

New Products

The Impact of VAX 8800 Design Methodology on CAD Development

ECL tech nology used in rhe VAX 8 8 0 0 , signal r i m
i ng was cri t i ca l . 'T'hercfore , a t i m i n g veri fier, parr
of the SCALDSys tem roo ls . was used to asce rta in
whether or not the t i m i ng goa ls were bei ng met .

I t was w i t h i n the t i m i ng ve r ifier that the i n tl u
ence of the phys ical i m p lementat ion on the l og
ica l des ign was first fe l t . The logic designns had
to c:nsure rhar the p l acement of gates and ro ut
ing of s igna ls was opt i m a l for al l c r i t i c a l c l e
m e n ts . D e l a y i n fo rma t i o n was t h e n extracted
fro m t h e phys i c a l des ign and fed back to the
t i m ing ver i fi e r .

Physical Design
As the l og i c a l design evolved , we deve l o ped a
CAD process to convert i r rapi d ly i nto a p h ys ica l
des ign . A set of automat ic p lacement and rou t
i ng too l s , rog e t h e r w i t h d e la y-esti m a t i o n a n d
s igna l - i n tegrity tools, was used r o give feedback
to the des i gners . The i m porta n t qu est ion here
was whether o r nor they cou l d bu i l d phys ica l
repres e n t a t i ons of t h e i r l o g i c d e s i g n s . These
t o o l s a l so passed data to the t i m i n g v e r i f i e r ,
which ana lyzed t h e effect o f r h e phys ical design
on c i rcu i t t i m i ngs.

S i nce a l l the logic had to be veri f ied bdore
any hardware was fa bri cated , a l l processes had
to be d e s i g n e d to h a n d le a l a rge n u m b e r of
designs in para l l e l . The re l evant D i g i t a l manu
fac t u r i n g fa c i l i t i c: s a n d o u t s i d e vend ors were
acquainted with the physical design through the
test cases ra r b er than t h rough an actua.l protO
type . Thus the fac i l i t ies and vend ors co uld con
figure and debug their own man u factu ring pro
cesses before any c o m p leted phys i c a l des igns
were sent ro them .

To ensure a smooth t ransi t ion i nto rhe fabrica
t i o n p h a s e , m a n u fa c t u r i n g e n g i n e e r s w e r e
ass igned ro work d i re c t l y w i t h r h e cks i g n e r s
e a r l y i n t h e dc:s i g n p rocess . Th us t h ese: e n g i
neers became: fa m i l ia r w i t h t h e VAX 8 8 0 0 tech
nology and the machine as it evolved . This was
an i m porta n t s tep because o u r m a n u factu r i n g
o r ga n i za t i o n w a s to bu i l d a l l r h e h a rd wa re ,
i nc l u d i n g the pro to types . T h i s ear l y acq u a i n
tance w i t h the: design a l l owed them ro deve l o p
m a n u fa c tu r i ng p rocesses ro support r h c r a p i d
change to fu l l vo lume sh i pments soon after rhe
VAX 8800 system was a n nou nced 1

Computatio nal Reso urces
One of the largc:sr VAX c lusrer systems ever b u i l t
was assembled w sup rorr r h c VAX 8800 projec t .

1 3 2

T h i s c l uster consisted of 1 4 VAX- 1 1 / 7 8 0 a n d
VAX:- 1 1 / 7 8 ') systems w i t h over 2 0 gigabytes of
mass storage . Even this large amount of storage
was i nadequate ar r i mes to support the demands
of the databases. Forecasting rhc: com pmati ona l
requ i re m e nt s of t h i s p ro j e c t p roved d i ffi c u l t .
The VAXcl uster sysrcm prov ided the computa
t i o n a l p o w e r and f l e x i bi l i t y ro gr ow as t h e
demands i n creased .

The ava i l a b i l i ty of suffi c i e n t co m p u ta t i ona l
resources was cr i t ical to rhe suc cess of our pro
jeer . The design methodology of extensive s i m u
l a t i o n w a s effect ive o n l y w i t h reason a b l e pro
gra m run r i mes. Once rhe design w a s veri fied .
l arge numbers of phys ical designs were rc: lcased
for fa bricat ion with i n a short pc:riocl , w h i c h con
su m e d si g n i fi c a n t c o m p u ta t i o n a l a n d s to rage
resources .

The Tool Suite

Design Data Management
A design d a t a manage m e n t (D D M) system was
deve l opeu to orga n i z e the many fi l es that con
tained the actual design data . At rhe heart of that
system was the concept of a " d es i gn object . "
T h i s object was some fu n c t i o n a l p i ece: of the
dc:sign . usual ly conform i n g ro rhe physical part i
t i on i ng. For exa m p l e . each gare array a n d mod
u l e i n r h e system was dcfi nc:d as a uesign obj ect .
For each object we d e v e l o p e d a h i e ra r c h y of
subd i rectories w i t h i n the VMS fi l e syste m . This
s e p a r a t i o n o f d a t a f i l e s i n t o s u b d i rc: c ro r i e s
a ll owed vari ous roots with i n the CAD process ro
know where ro f ind i n p u t filLs a n d ro write our
pur fi les .

The design da tabase was con t i n u a l ly ch u rn i ng
w i t h new informa tion . To g ive a stable p i cture
as rhe overa l l design evolved, a "snapshot" of a
design object cou l d be take n at any r i m e , rhus
gen erati ng a rev i s i o n of the design objec t . New
subd i re ctory fi l e trees were: t h e n cr eated fo r
e a c h rev i s i o n . U s i n g r h i s sc hc: m c a d e s i g n e r
cou l d create a " frozen" revis ion o f a des ign . H e
cou l d t h e n usc that revisi on for s i m u lat i o ns or
other activi t i es wh i l e chan ges were being made
ro another rc:v ision of r lw desi g n .

The re l a t i o n s h i p s benv e c: n d e s i g n o b j e c t s
were defined w i t h i n a rev is io n-matr ix fi l e kept
w i t h each fi le tree . This fi le dcfi n c:d the system
l ev e l h i erarchy of t h e ma c h i ne : w h i c h cks i g n
obje cts were s u b o r d i n a t e ro a g i ve n o b j e c t
Us i ng t h i s fi le a dcsignc:r working o n a mod u l e

Digital TeciJniutl journal
. No. -I 1-'l'hrllliiT I 'J87

design cou ld select frozen revisions of the gate
array designs on that module and be assured of
not having them changed as he worked on i t .

Another fac i l i ty provided by the DDM system
was a user in terface to the design env i ronment.
This i nt erface consisted of a s imple command
language for transvers i ng the design trees and
fo r r u n n i ng spec i fi c too l s . S i nce t hese too l s
requ ired a large number of input variables, we
estab l ished a system of defa u l t parameters to
m i n i m i ze user i nput . For cases i n which those
defaul ts proved i nadequate, users or CAD devel
opers cou l d change p a ra m eters to m e e t t he
design's needs.

Schematic Capture

Using the Va l i d G E D e d i tor , logic sche ma t i cs
were entered d i rectly i nto the workstations by
the designers . The extracted wire l ists were then
transferred from the SCAJ.DSystem UNIX-based
workstat ion through a communicat ions port to
the VAXcluster system . The workstat ions were
a lso i n terconnected in a network ing envi ron
ment , thus provid i ng com mun icat ion between
them. To ease the burden on designers to learn
mu lt iple operating systems, only graphica l data
entry was permitted on the workstations. All the
other CAD too ls were r u n i n the more nat ive
VA.i\cl uster environment.

S i nce the ma jor i ty of a des igner ' s t i m e was
s p e n t i n t e ra c t i n g w i t h C A D t o o l s on t h e
VAXcl uster system , t here was no need for each
designer to have a ded i cated worksta t ion for
sche m a t i c cap ture . The ra t io of des igners to
worksta t i ons of about two to one proved ade
quate . The eas i ly learned GED editor supported a
rapid increase in the number of nondesigners
managers , secretaries, and documentat ion writ
ers - in the user communi ty . All were drawn to
the system by the ease of graphical data creat ion .
E v e n t u a l l y , t h i s d o c u m e n t a t i o n a c t i v i ty
accounted for the m ajority of workstat ion usage .

Simulation and Tim ing Verification

Another proprietary too l , ca l led the DECSIM sys
tem , was the primary s imu lator used on the pro
ject. This system supported m ixed-level s imula
t ions, both structural and behaviora l . The logica l
design was transferred h ierarch ica l ly to the DEC
SIM system . This system allowed the designers to
deal with complex designs by viewing the s imu
lation in the same h ierarchica l form as the sche
matics . For complex devices , such as mu lt ipl ier

Digital Technical journal
No. 4 February 1 987

chips and R.AJ.\1 devices, behavioral models were
d e v e l o p e d . T h e s e m o r e e ff i c i e n t m o d e l s
increased the overa l l performance of the s imula
tions . In the case of RAM devices, abstracting to a
behavioral model also a l lowed the microcoded
i nstructions to be loaded efficiently.

Complement ing the fu nc t iona l s i m u la t ion
faci l i t ies of DECSI M system was the t imi ng veri
fier (TV) i n the SCALDSystem tools. TV ana lyzed
c ircu i t t im ings to ensure that the design would
work u nder worst-case condi tions at t he desired
clock rate.

Wire delays are a major factor to be taken in to
account by t i ming veri ficat ion . The placement
of the p hysica l gates was cr i t ical tO m i n i m i ze
the wire lengths and hence the delays . S ince the
placement was not avai lable in the in i t ia l design
phases, statist ical delays based on l oading were
used . As placement information became plenti
fu l , the l atest refined del ays were sent to the
t i m i ng verifi er . When the phys ica l design had
been completed , delays based on routed lengths
were used . I f the requ i red t iming was not met at
any point in the process, the offend i ng c ircu i ts
were redesigned or the l ayout was changed to
correct the problem .

Wirelisting and State Maintenance

The logic gates entered on schemat ics by the
designers were , i n genera l , ass igned ro p hysical
components by the CAD process. This mappi ng
occurred in i t i a l ly with in the SCALDSystem post
processor software using a random gate-to-com
ponent assignment. This random packagi ng was
then fed i n to a system ca l led YAWL (for Yet
Another WireLister) . YAWL acted as a genera l
p u rpose w i re l i s te r , genera t i ng i n t e rfaces to
many tool s and accept ing feedback fro m the
physical design tools .

As the physical design process refi ned the gate
ass i g n m e n t , YAWL e ns u red t ha t t h e l og ica l
design topology d id not change . By accepting
feedback data from the p lacement and rout ing
too l s and the p hys i c a l design sys tem , YAWL
caught any i llega l c h a nges tha t wou l d have
a l tered the logic functions.

Eventually, the complexity of maintaining t he
state became so large that YAWL a lone cou ld not
cope with it. Therefore, severa l other programs
were placed in the feedback loop from the phys
ical design tools to detect changes made in the
p rocess of manua l l y c lean ing up the p hysi cal
des ign . These p rograms were needed s i nce ,

1 3 3

New Products

The Impact of VAX 8800 Design Methodology on CAD Development

even a t that late stage , a designer coul d sti l l add
logic to the design . The CAD process therefore
had to h a n d l e t hese a d d i t ions as we l l as to
detect i l legal transformations ro the logic . The
reso l u t i o n of t h ese c h a n ge s t o o k a l o t o f
resources, both i n terms of t ime and computer
power.

I n a d d i t i on to be i n g t he s ta te m a i n t a i n e r ,
YAWL acted a s a pr imary sou rce of t h e design
data needed for the remainder of the CAD pro
cess . YAWL created many reports to i n form
designers of problems between the i r logica l and
p hysical des igns . Most of the i n terface fi les i n
t h e CAD process were either read , wri tten , or
both, from YAWL, which p layed a key role i n
the overa l l process.

Placement and Routing

Two processes were deve loped for the place
m e n t and rou t i n g o f ga te -a rray and m od u l e
designs . The gate array process was h ighly auto
mated , requ ir ing a min imum of i nteraction by
the des igners . The process was orga n i zed to
make severa l runs from which a designer could
se lec t t h e one t h a t best o p t i m i zed h i s log ic
design .

The bounded problem of placemenr and rout
ing within a gate array was easy to solve in com
parison to the module des igns . Here the con
stra ints p laced by designers, the l i mi tat ions of
tools , and the complexit ies of design requi red
extensive human i n tervention .

Ana lysis tools were used extensively tO assist
in determin ing the qual i ty of design a t the two
design leve ls : gate a rrays and m odu les . These
tools analyzed such factors as thermal d issi pa
t ion , s igna l i n tegri ty , and crossta l k . The con
strain ts defined i n these tools and in t he exten
s i v e d e s i g n - r u l e c h e c k e rs w e re m e t , t h u s
ensuri ng a h igh-qual i ty design .

Most of the tools used for the physica l design
were developed wi t h i n D i g i ta l . Those deve l
oped outside t h e VAX 8800 CAD group were
modi fi ed , somet imes extensively, to meet the
needs of the project.

Physical Design and

Man ufacturing Interface

A proprietary physical design system , cal led the
VAX layout system (VLS) , was used for the fina l
p hys ica l des ign tasks . VLS rook the phys i c a l
design , a s given b y t h e p lacement a n d rou t ing

1 34

tools . and added the data requ ired to manufac
ture the design. A l ayout designer, through the
VLS i nteract ive graphics system , could manual ly
complete the rou t ing that could not be hand.led
by the autOmat i c rools . Some add i t iona l parts
that were necessary for fabrication , such as han
d les for modules , were also added at th is t ime .
The net resu l t was a complete design , specified
so t ha t it cou l d be used to m a n u fa c tu re the
product .

The design data was then col lected ro form a
release package. To keep track of the formal
release of design data . a system cal led POST was
deve loped by the CAD group. POST provided an
on- l ine database , which any member of the pro
ject team cou ld query ro determine the release
status of a design .

Problems Imposed by the

Design Methodology

Up to this point , we have described the basics of
the design m ethodology used to develop the
VAX 8800 system and some h igh l i gh ts of the
CAD tools su pport i n g t h a t me thodo logy. As
mentioned earlier, the CAD process was p laced
d i rectly in to the hands of the designers . Thus a
t ight coupl ing was establ ished between the pro
cess of clesign and the design process. This cou
p l i n g posed several major probl e m s , as now
descri bed , for the CAD group .

Training

With direct control of a process or tool given to
t he desi gners, t hey a l l now needed extensive
t ra i n i n g . O n p rev ious pro jec ts , o n e h i g h l y
knowl edgeab le i n d iv id u a l cou l d r u n a roo l ;
now, there were 3 0 or so novice users a l l learn
ing to use that same too l . Extensive support for
those users , in terms of both trainers and docu
mentation , had to be provided .

In most cases the designers qu i ck ly learned
how to u t i l i ze the tools . In a few cases - the
placement of modules in particular - placement
experts were needed owing tO the spec i a l i zed
narure of the task . I n sum mary , the extent of the
su pport requ i red by users was greater t h a n
anti c ipated .

State Maintenance
The task o f s t a te m a i n tena nce proved to be
extremely complex owing to the freedom given
to designers to make changes a t almost any poin t

Digital Technical journal
No. 4 Februarl' 1 98 7

i n the des ign process . To ensure that the logical
and physica l designs matched , it was necessary
to do a complete isomorphic comparison of the
physical topology aga i nst the logical topol ogy of
the design.

Logical Prints

The schemat ics genera ted by the designers a t
t h e i r works ta t i o ns repre s e n t e d t h e l og i ca l
des ign , not the phys ica l one . Certa i n features
avai lable in the SCAlDSystem tools, such as vcc
torized signals and gates , aiJowed it to prod uce
a concise representation of the logic . This came,
however, at the expense of not putt ing physical
data back onto the print set . For reasons of state
ma intenance. we were a lso u nable to restruc
t u re a p r i n t set once m a pp e d to a p h ys i c a l
implementation . Both these factors contri buted
to a print set that appeared qu i te d i fferent from
those generated by previous projects .

Logical print sets, wh i l e i n i t i a l ly envisioned
as being benefi c i a l , later caused problems i n
documenting the designs . This was particula rly
true for module - l evel designs for which tra in ing
was needed so that groups outs ide the project
team cou ld in terpret the new symbology.

Cross References

U s i n g l og i c a l p r i n t sets a l o n e , a t e c h n i c i a n
cou ld not probe a p i n o f t he p hysica l boards .
Since an abstract mapping took place i n the CAD
process. i t was necessary to develop an exten
sive set of cross references showing the map
p ing of the logical to the physical design . These
cross references proved to be cumbersome and ,
when printed , consumed vast amounts of paper.

Libraries

CAD tools run on l ibraries, and each major tool
has i r s own fo r m a t for l i b r a ry d a t a . T h ese
l i brar ies must be consis tent across the e n t i re
process. Despite a l l the safeguards bui l t in to the
process , we fo u n d t h a t i ncons i s tenc ies s r i J J
crept back i n to t h e database . D iscover ing and
e l i m i n a t i n g those i n co n s i s te n c i e s , m a n y of
which were fou nd late in the project, consumed
a lor of t ime .

Summmy

Both the design methodology and the CAD pro
cess su pport i ng t he VAX 8 8 0 0 project were
qu i te successfu l . The fi rst protOtype hardware

Digital Technical journal
No. 1 Februar)' 1 <)8 7

delivered r o u s worked a s expected. We found
only a sma l l number of h ardware problems dur
i n g the prototype debug phase of the project .
Most of those problems were i n areas that had
not had extensive s imu lat ion or t im ing verifica
t ion .

Some genera l conclusi ons reached from the
VAX 8800 project can help future CAD design
ers to i mprove their tools .

• A close coup l ing from the start , both phys i
c a l l y and orga n i z a t i o n a l l y , b e t we e n a l l
groups associ ated w i th the project leads to
the development of a smooth process flow.

• The design methodology has a d i rect and far
reach i ng i m pact on the CAD p rocess . The
capabi l i t ies of CAD tools d i rectly affect the
design methodology .

• Extens ive s imulat ion and t i m i ng veri ficat ion
before fabrication can help to achieve a high
qua l i ty product .

• The i m pact of rad ica l changes (e . g . , in the
data content of schematics) must be appreci
ated and then taken in to account by a l l pro
ject members .

In future projects we w i l l focus on reducing
the process- loop ti mes and enhancing the capa
b i l ities of the s imu lat ion and t iming verification
too l s . I t w i l l be eas ier to fu nc t ion in fu t u re
design env ironments , and more tools w i l l be
p laced d i rectly in to the hands of the designers .
The des ign methodology w i l l be mod i fied to
make the reso lut ion of the des ign state easier
and therefore faster.

References

1 . Structured Computer Aided Logi c Design
was developed at Lawrence L ivermore
Labora tor ies a n d a p p l i ed there to the
design of the S l computer.

2 . C . Wiecek, "The Simu lation o f Processor
Performance for the VAX 8800 Fami ly , "
D igital Techn ical jo urnal (February
1 987 , th is issue) : 1 00- 1 1 0 .

3 . A . Mat t hews . " O n - l i ne M a n u fac tur i n g
Data Access on t h e VAX 8800 Project , "
Digital Techn ical jo u rnal (February
1 987 , th is issue) : 1 3 6- 1 4 1 .

1 3 5

New Products

Andrew]. Matthews I

On-line Manufacturing Data
Access on the VAX 8800 Project

Previously, the transition from design to manufacture involved transfer
ring significant amounts of data on paper. To minimize product start-up
time, the VAX 8800 project used an on-line system that eliminated much of
the paper. The key task was transforming the data from existing CAD
tools with different formats into manufacturing data. Two generic types
of VMS .files, DA TA and DRA WING, contained datafor each Part Number
and Revision Number. VMS's subdirectory and access-control capabilities
provided total revision control. Manufacturing engineers pulled files at
will using DA TA.files to drive their processes and viewing DRA WING .files

from V AXstation II workstations.

A key object ive for the VAX 8 8 0 0 project was ro
go from t h e c o m p l eted d e s i g n to fu l l - vo l u m e
man ufacture i n the shortest poss ib le t i m e . I n the
past, delays have often occurred in the tra n s i
t i o n from Design Engi neeri ng t o Man ufactu r ing .
Therefore , to achi eve our goa l , we had ro e l i m i
nate o r m i n i m ize t hose delays.

\Ve k n e w of a n u m be r of ways to speed u p
th is transi t i on p hase . S i nce there i s norm a l l y a
tre mend ous flow of data on paper between Engi
n e e r i n g and M a n u fa c t u r i n g , one way was to
e l i m i nate the paper i tself. A second way was to
accelerate the contro l led revis ion process when
changes were req u i re d . And a t h i rd way was to
accelerate the q u e ry-a nd-response process that
was necessary ro solve spec i fi cat ion problems .
O n e c a n see r i g h t away t h a t t h ese a c t i v i t i e s
i nvolve m a ny people a n d consu me s ign i fi ca n t
resources. Therefore , a formal p roject was estab-
1 i s heel tO determ ine how best to i mplement the
three ways ro m i n i m i ze delays .

The project team d eterm i n e d that a l t h o u g h
the data flowing between Engi neering and M a n
u fac t u r i ng was v i ta l , the paper i tself was n o r .
T h u s t h e te a m ' s g o a l was to fi n d o u t h ow to
e s t a b l i s h a p a p e r l e s s . b u t n o t d ra w i n g l cs s .
scheme t o pass t h a t i n form a t i on between t h e
two orga niza t ions. The tea m a l so set some con
strai n ts on t h i s sc heme . F irst , exist ing data tech
n i qu es s hou ld be used whenever poss i b le rat her
than developing new ones. Second , Man ufactu r
i ng s h ou l d be free to obta i n d a ta as req u i red

1 3 6

rather th<Jn h<Jvc E ngineering " push " i t tO them .
T h i r d , any i ntermediate dat<J process i n g fu n c
t i o ns a n d groups, w h i c h a l l have pri or i t i es a n d
q u e u e s o f t h e i r o w n , s h o u l d b e b y p a ss e d .
F ina l ly . the data had to be orga n i zed i n the way
Man u factur i ng needed i t , t ha t i s , by Part N u m
b e r a n d Re v i s i o n , a m o n g o t h e rs . T h e r e fore ,
s o m e t r a n s l a t i o n p r o c es s h a d ro t a k e p l a c e
between t h e data sources i n Engineering a n d the
data reposi tories used by M a n u facturing.

The d a ta sources i n Desi gn E n g i n e e r i n g are
many and var ied . Dig i ta l uses a large set of CAD
tools i n i ts des ign processes . 1 These tools use a
variety of methods to gather, srore , and m a n i p u
l a t e data . T h e databases associ ated w i t h t h ese
too ls arc the so urces for a lJ the spec i fi c<Jt i ons
conveyed to Man u facturing as p l a ns and d raw
i ngs . Manuf<lctu r i ng al so has i ts own set of CAM
tools used i n vari ous processes .

The pri mary CAD a nd CAM process tools did
not com m u n i cate s i nce t hey were a l l based on
d i ffere nt data formats and revis ion procedures .
The primary goal of the project was to take the
design data created by the CAD too ls and , with
as l i t t le paper as possi ble, turn i t i n to manufac
ru r i n g data t h a t cou l d be used by the var ious
m a n u factu ring groups . The d i rect way that goal
cou l d be accom p l ished was to create an i nt e
grated source of data as VMS fi les that wou l d be
avai l<Jb.lc on l i ne to e n g i neers in Manufacturi ng
This capab i l i ty of data transfer was cal led manu
facturing data access, or M DA .

Dip,ital Te<"hnical journal
No. ·1 Tebnwry 1 <)8 7

As typ i ca l ly happens i n a ra p i d l y evolv ing
technologica l environment , the standard data
transfer processes a l ready in place had rapidly
become outdated . The resu I t was that the stan
dard process was handl ing only part of the data ,
and i n formal systems evolved to d e l iver t h e
re mainder . M DA h a d t o ident ify a l l these data
processes, regard less of their sources. Then , i t
had to provide a l l the data needed t o bui ld and
test the prod uct through a consistent on - l i ne
p r o c e s s . T h a t t a s k w a s a c c o m p l i s h e d b y
" reverse engineering" the exist ing processes .
A l l the process ma nagers responsib le for t he
product i n Manufacturing were i nterviewed to
find out what data they were receiving by both
formal and informal means. They were asked , in
part icu lar , what add i t ion a l data they needed .
The resu l t was a lengthy l ist of data files, most
of which existed or coul d be eas i ly generated .

One key l i m i tation t o this type o f data-genera
tion process was the ava i labi l i ty of an appropri
ate engineering database . For example, a visual
i nspection process m igh t need the color of a
compone n t , bu t t h is data may not be i n a n y
engineering database . Therefore , some manufac
tur ing data processes wou l d have to cont inue
us ing other sources, typically I ibraries of addi
t ional i n formation , a s wel l a s t h e engineering
database .

The objective of M DA was to provide on l ine
al l the data needed for new produc t start - u p .
The problem, a s noted earl ier , was that this data
was derived from many d i fferent fi l es used by
the CAD tools . These separa te software tools ,
havi ng come fro m m a ny sou rces a t d i fferen t
t i mes, genera l ly operate o n i ndependent VMS
files and do not yet ut i l ize complex, i n tegrated
database capab i l i t i e s . Therefore , a nother pri
mary goa l of the M DA pro ject was to b r i n g
appropriate data management t o these exist ing
processes, but at the same t ime not to requ ire
significant changes within them .

G i ven t h i s VMS fi le e nv i ronment , t he team
made an ear ly dec i s ion that the VMS system
coul d provide the framework for comprehen
sive data management and organ ization capabil i
ties i f fu l l advantage were taken o f the poss ibi l i
t ies i n herent i n t he system . Tha t i s , fi l es and
d i rector ies , subd i rectory schemes, and access
control l i sts had to be u sed effect ive ly . The
advantages of us ing VMS features for these exist
ing fi les rather than i mplementing a specia l ized
data-management scheme were numerous. This

Digital Technical journal
No. 4 February I 987

procedu re meant that these capab i l i t ies would
be i m mediately accessible to a l l of Digi ta l 's VAX
users, cou ld be read i ly l i nked to exist ing read
and wri te p rocesses for CAD/CAM fi l es , and
wou ld requ i re no unique tra in ing, software, or
hardware .

The rem a i n der of t h i s paper descr ibes the
app roach tha t M DA takes to ach i eve a n i n te
grated source of manufacturing data. As a first
generation paperless process, M DA was used on
the VAX 8800 project with great success . We
anticipate that M DA coul d evolve at a later date
in to a second-generat ion paperless process . I n
th is process , users i n Manufacturi ng wou ld be
able to select ively compose and generate any
desired drawing from the databases. For the first
design of M DA, however, that was too sophist i
cated a solut ion to be appl ied to a broad manu
factu r ing comm u n i ty s t i l l in transi t i o n fro m
paper processes.

MDA Capabilities

We designated the fi les conta in ing the data that
drives the computer-aided processes in Manu
facturing as DATA fi les . Every drawing sheet i n
t h e fu l l d ra w i ng p a c kage i s e l e c t ro n i ca l l y
released as a p lot fi le . These on- l ine files, ca l led
DRAWING fi les, are effectively the master draw
i ngs , and any loca l ly generated paper prints are
temporary worki ng copies . D RAWING fi l es are
i ntended only for human i n terpretation (view
ing or plott ing) ; they do not have to be inter
preted as structured data by other fu nct ional
process software . DATA fi l es are used for that
purpose .

B o t h DATA a n d D RAWI NG fi l e s a re m a d e
available through a s ingle un i fied process avai l
able anywhere on Digita l 's world-wide i nternal
DECnet network . Data secur i ty is provided i n
the software by an access control l ist of specifi
ca l ly authorized users i n Manufacturing. A l ist
method rather than password control was c ho
sen s ince the VMS system has a l l the capab i l i ties
to i m pl e m e n t l i s t c o n t r o l (i d e n t i fy i n g re
mote u sers) . Con trol over a ccess to t h e o n
l i ne p rod uc t database rema i ns w i t h the data
managers .

The fi les are organized aroun d the Part Num
ber and Revision Number of the p hysical object .
A complete DATA and DRAWING file set is pro
vided for each revision, thus lead ing to a degree
of redundancy between fi les. We original ly con
sidered so lv ing th is redundant-data problem in

1 3 7

New Products

On-line Manufacturing Data Access on tbe VAX RROO Project

the tra d i t ional CAD/CAM way by defi n i ng sepa
rate u n iversal i n terface fi les and design i ng i n te
gra ted d a tabases fro m w h i c h a n v needed fi l c
could be extracted . To achi eve t h e pr i mary goa l
of m i n i m i z i n g a l l de lays i n pro d u c t data trans
fns . however , we con cluded that provi d i ng the
p rocess s r e c i fi c . bur red u n d a nt , fi l es needed
d i rectly i n Manufactu r i ng was worth the pri c e .

T h i s tec h n i q u e e l i m i nated a l l hand -off dclavs
a n d a l l o wed t h e a l ready proven p rocesses to
operate effi c i ent ly . Of course . the r isk was t hat
data in t h e red u n d a n t f i lcs could in some way
d i ve rge . The refore . En g i n e e r i n g assu m e d t h e
responsi b i l i ty o f veri fyi ng that t h e data was con
sistent between them . Engineering uses spec i a l
software t o verify t h a t a l l fi les i n a s e t . som e of
which come from d i fferen t CAD tools . represen t
the ident ical des ign object and revis ion state .

The DATA fi l es u t i l i zed arc those the starr -up
t e a m i d e n t i fi ed as b e i n g d i re c t l y needed for
each man ufacturi ng process . Our i deal target for
DATA files was the spec i fi c data set needed by a
" work c e l l " of t h e m a n u fa c t u r i n g p l a n t : t h i s
rypi caUy i n c ludes bot h a computer resource a nd
speci fic people that together rece ive and adapt
the generic data to the i m medi ate needs of t h e i r
parti c u l a r p l a nt a n d process . T o m i n i m i ze rhc
process s tarr - u p r i m e . e l i m i n a t e q u e u es . and
ass i g n respon s i b i l i t i es c l e a r l y , M DA a vo i d e d
usi ng i n termed i a te data formats. These formats
h is ro r i ca I I y re q u i re d prcproccss i n g b y s o m e
t h i rd p a r r y b e fore r h c y c o u l d be u s e d i n t h e
p l a n t . W e expected t h e plants t o adapt t h e DATA
fi l e s to t h e s r c c i fi c n e e d s o f t h e i r own pro
cesse s . For sop h is t i ca ted d a ta cons u m ers w i t h
comp l ex m a n u fact u r i n g needs, t he source-data
design fi l es a re a lso i n c l uded w i t h the o n - l i n e
data .

The pract ica l rea l i t i es of the many CAD/CAM
processes i n usc first req u i red a smooth ly oper
a t i n g fi le -ma nage ment process . A large n u mber
of fi l es are req u i red to su pport the b u i l d - a n d
test processes for o n e designed objec t . A typi c a l
Digi ta l parr (e .g . , a complex C P U logic module)
i s today completely speci fi ed by ') () to 70 DATA
fi les a nd 3 0 to ') () D RAW I N G fi l e s . W i t h t h a t
m a n y fi l es i nvo lved , a k e y to su ccess for t h i s
type o f fi l e m a nage m e n t i s tota l d a t a a c q u is i
t ion . Thus the process was made mandatory (not
vo l u ntary) ; rhat is. it cou ld not depend o n some
one's re memberi n g to d o someth i n g The o n l y
w a y to acco m p l i s h c o m p l et e d a t a acq u i s i t i o n

1:) 8

was t o i n tegrate t h e data - manage m e n t process
w i t h t h e CAD too ls t h a t generated the sou rce
fi les .

The p r i n c i pal JVI DA i m p le m entat ion concept
was to use the extensive VNIS subd i rectories that
' ' be l onged ' ' ro e a c h o b j e c t a n d rev i s i o n a n d
t h e n col lect a ll t h e a p rropr ia te fi les i n to t h e
appropriate d i recto r i es . T h i s tec h n i q u e m a kes
p o s s i b l e a u s e r d a t a - a c c e s s p r o c e s s b a s e d
d i rect ly o n t h e VMS system i n which a user can
a n swer seve ra l q u es t i ons a b o u t rhc object or
rev i s i o n fo r w h i c h d a t a i s n e e d ed . M DA t h e n
p ro vi d es h i m w i t h a d i rectory co n ta i n i n g t h e
fi les relevant r o t h e requested object o r revis ion .
This d i re c tory rep rese n t s t h e b o u n d e d set o f
data . W i t h i n t hat s e t e a c h DATA and D RAW I NG
fi l e is " na m e d " so that i t is complete ly i d e n t i
fi ed even i f moved later to o t h e r m a n u fact u r i ng
loca t i on s . The fi l e - n a m i n g sc h e m e i s a lso n o t
c rypti c so t ha t manufactur ing users can spec i fy
and recogn i ze the part i c u lar fi lcs they nee d .

An u n derlying object ive of the M DA progra m
was t o p r o v i d e a n e n v i ro n m e n t i n w h i c h a
released data fi l c was perce ived as be i n g as sta
ble as a n approved and re leased paper d rawi ng.
Whenever a set of DATA and DRAWING fi les for
a g iven revi s i o n of an object a rc re leased . t h a t
s e t of data becomes " read -only" and is placed
under strict contro l . The engineering gro u p w i l l
n o t mod i fy a n y fi l e w i t h i n t h e set be longi ng to
t h a t revi s i o n . and su bse q u e n t rev i s i on s o f rhat
object do not overwri te pr ior revis ions .

MDA a l lows users to pu l l data select ively as i t
is needed rather t ha n pus h i ng i r a u to m a t i ca l ly to
predetermi ned receivers . 'fhe strategy here i s to
d e l i ve r not d a t a , b u t a u to m a t i c a l l y genera ted
n o t i fi c a t i o n m e ssages o n D i g i t a l ' s e l ectro n i c
VAX mai 1 syste m . The generat ion of m a i l i s t ied
to the design-manage ment fu nct i ons of the hard
ware d es ign ers a n d the coord i na to rs for c n g i
nccri ng c h a nge o rders (EC:Os) . The m a i l mes
sages a re sent to designated re presen t a t i ves i n
a n y o f t h e m a n u f a c t u r i n g p l a n ts a ro u n d r h c
world r o i n form t h e m t o p u l l wha tever d ata t hey
req u i re fro m t h e o n - l i n e syste m . Data users i n
M a n u fac t u r i n g arc n o t i fi e d b y a u t o m a t i c mes
sages whenever new data is issued or when the
s t a tu s o f e x i s t i n g d a ta c h a nges . T h i s m e t h o d
takes a dvantage of t h e exis t i ng V M S Mai l fac i l i
t i es for iden t i fy i ng remote users . A user access
contro l l i s t has been i m p lemen ted , and a l l user
tra nsa c t i o ns a rc logge d . These tech n i q u es con-

Digital Technical journal
.Vo. /j Fehrt/{1/:J' 1 <)8 7

fi rm that new data has been received by users
and provide an audit tra i l of who accessed par
t icular data in case an error is d iscovered later.

Much of the data provided for the product is
i ntended for the specific assembly and test pro
cesses implemented by the start-up team . Provi
s ion of th is data is made poss ible by the close
coupl ing of the Engineering Design and start-up
team efforts and the sophistication of the data
dr iven fabricat ion and test processes . In other
words, the designs of high-technology products
are now a i med a t specific manufactur ing p ro
cesses for assembly and test . Except for s imple
d imensional data , much of this product data can
no longer be " post processed " (by software
means only) onto a different manufacturing pro
cess. A major process a l terat ion m ight requ i re
reconvening the start-up team and adapting the
design and data for the new process.

Revision Management

Each revision of a part means that that physica l
design object has changed i n some way . I n the
MDA process a complete set of DATA and DRAW
ING fi les is provided for every revision; there is
no imp l ied or referenced data . Al l active rev i
sions sti l l being bui lt rema in on l i ne , and subse
quent revis ions do not overwr i te earl i e r rev i
s ions . I f t h e same D RAWI N G fi l e a p p l ies to
d ifferent revisions, i t wi l l be provided wi th each
of those revisions. We were concerned i ni ti a l ly
that this s impl ified approach wou l d generate a
l a rge n u m ber of redundant f i les , part i cu l a rly
D RAW I N G fi les . H owever , a n a n a lys i s of the
comp l eted sets s h owed t h a t , w i t h t h e CAD
design processes i n use, only 1 0 to 2 0 percent
of the fi les were unchanged from one p hysical
revision to the next . Our conclusion now is that
having some redundant fi les is a cheap price for
the benefit and s i m p l i c i ty of having fu l l data
sets. Thus no data set has to reference data fro m
another set , a nd old rev i s ions can b e rea d i ly
archived .

The MDA process currently has one s ignificant
l i m i tat ion . Un l i ke the exist ing p rocedur es for
paper drawi ngs , there is no standard control
process for putting a formal revision on a DATA
fi le . On the other hand , i t is not clear that a con
trol process is sufficiently valuable in a product
environment that is tota l ly data dr ive n . Trad i
t iona l ly , when necessary , a paper drawing can
be changed separate from t he physical revision
of the object i tse lf . That can not cu rrent ly be

Digital Technical Journal
No. 4 Februm:v 1 987

done for DATA files s ince there are no standard
procedures that are equivalently recognized for
naming them or for control l i ng revisions. I f the
DATA fi les rea l ly defi ne the phys ica l product ,
then an erroneous data fi le defi nes t he wrong
physical product . In that case, i t can be argued,
the r ight way to sign ify the change is to update
the revision of the object i tself. At the present
t ime, i f an i ncorrect DATA file is i ncluded in the
released data set, the only unequ ivocal way to
correct that problem is to advance the p hysical
revision and generate a new set of data .

With in the MDA process, the status of any file
is specifica l ly marked . (The mere existence of
the fi l e within the process does not i mply any
part icular status .) Typica l categories of status
a re verifi e d , i ssued , released , and obsolete . A
status is i mplemented by using the fi le-owner
sh ip capab i l i ties wi th in the VMS system . As i ts
name i mpl ies , M DA provides on- l i ne access to
a l l needed data and drawi ngs for any a n d a l l
revis ions . However, t he formal status (pre l im i
nary , released , etc) of each part and revis ion
ava i lable on l ine is controlled and specified by
other exist ing standard procedures. That status
i s confi rmed by M DA but cannot be determ i ned
solely from the status information that MDA pro
vides on l ine with the data .

The M DA process i s not d i rectly cou pled to
the control procedures in Manufacturing, but is
l i nked d i rect ly wi th status-set t ing act iv i t ies i n
Engineer ing. For example , the issued status i s
se t by a p roced ure run by the prod uct 's ECO
coordi nator when he issues an ECO package to
h i s cou n terpart i n the m a nu fac tur ing p l a n t .
Therefore , the data users i n Manufactur ing are
advised to use the d isplayed status only as con
fi rmation of a change; they wi l l cont inue to be
notified first through the exist ing ECO control
procedures.

Thus , M DA has on - l i ne data ava i l ab le for a
manufactur i ng act iv i ty when Manufacturing i s
notified , by means externa l to the MDA process,
that they shoul d be bu i ld ing a part icular revi
sion . Also, M DA provides no on- l i ne information
about such th i ngs as the i n teractions and rela
t ionsh ips between revisions, which revis ions of
the modules go together, and which revis ions
go with which backplane revisions . Therefore,
although M DA is a comprehensive data-manage
ment and access process , i t is not a lso a true
configuration-control and revision-management
process.

1 39

New Products

On-line Manufacturing Data Access on the VA X 8800 Project

Directories and File Names
Within the M DA process, the DATA and DRAW
ING fi les are managed by grouping them i n VMS
subd i rector ies for the object that t hese f i les
specify. The subd irectories are t ied to a com
mon-root directory to fac i l i tate the management
of the overal l p hysica l data on t h e host (e . g . ,
moving vari ous d irectOry structures between
disk drives) . The di rectory fi les themselves are
owned by the data-management process . They
may not be read d i rectly over the network; the
access process provided must be used . In pi cto
rial form, the d irectOry structure is described i n
Figure I .

COMMON ROOT

I
. . . ,

PART PART PART PART
NUMBER NUMBER NUMBER NUMBER

I . I
VARIATION VARIATION VARIATION VARIATION

. ,
REV ISION REVISION REVISION REVISION

~
DATA FILES DRAWING FILES
(50 - 70) (30 - 50)

Figure I VMS Directory Structure

T h e n a m e of e a c h DRAW I N G f i l e is t i e d
d irectly tO the Digi tal drawing number p lotted
by that file . For mul tisheet drawings, a plot fi l e
i s made for every sheet in the complete drawing
package , so t here is a one - ro -one correspon
dence between DRAW I N G fi l es and d rawi ng
sheets. The fi l es are named ro match exactly the
t i t l e b l oc k of t h e dra w i ng s h e e t . A typ i ca l
DRAWING fi le name is depicted i n Figure 2 .

For DATA fi l es , a d i fferent s trategy for fi l e
na mes was necessary s ince , u n l i ke the DRAW
ING fi les, a one-ro-one l inkage does not exist . A
DATA fi l e r e l a t es to t h e p h ys i c a l o b j e c t i t
defi nes ; t herefore , the fi le name d ef ines the
exact part to which that fi le appl ies as wel l as

1 4 0

'""' "" -U�A _
F 2 o o 9 _ o

_
o -.1\.�-r�

o
""o'""

DRAWING CODE � SHEET 2

DRAWING NUMBER SHEET REVISION

Figure 2 Typical DRA WING File Name

t h e f i l e ' s spe c i fi c c o n t e n t a n d fo rm a t . F i l e
names must a lso comi nue ro com pletely iden
t ify the fi I es after they have been extracted from
t h e M DA man agement process and moved tO
Manufacturing. Therefore , part of the fi le name
i s ac tu a l ly red undant with the M DA d irectOry
name . These fi le names can become extre me ly
long, and a lthough readi ng them is not a prob
l e m , typing them i s . Thus t h e fi l e na mes are
autOmat ica l l y generated , and users can select
them from menus. The name of a rypical DATA
fi le is structured as in Figure 3 .

S i nce there were many DATA and DRAWING
fi les . the fi le -naming scheme a lso perm i ts the
creation of a typical VMS "wild card" directory
l i sting for specific types of DATA or DRAWING
fi les. For DATA fi les , the specific type of process
activity supported by that fi l e is i nc luded as a
u n ique f i e l d i n the fi le name . For DRAWING
fi les , the drawing code is inc lu ded i n the fi le
name, which a lso impl ies the l i kely uses . These
fi elds with in fi l e names arc then used in Manu
factur ing tO obta i n fi l e l is t i ngs specific to an
activ ity; wild-card directory l isting is by far t he
most common style of usc .

F 2 0 0 9_ Q Q _� - lfJ - M C A M O D E L _ Q X Y Z D 1 1 . N E T X

PART NUM�� 1 VAR IATION :j

REVIS ION

CATEGORY OF DATA
(IN_CIRCU IT TEST)

DETAILED TYPE OF DATA ___ __j
(MCA MODEL)

(FOR OXYZ MCA, LOGICAL REVISION 01 1)

DATA FORMAT----------------------------'

Figure 3 Typical DA TA File Name

Digital Technical journal
No. 4 February 1987

On-line Data Access

Si nce al l DATA and DRAWING fi les for each rev i
sion of a Part Number are accessible on l ine . i t
i s a s i m p l c process fo r a u t hor i z e d users to
a ccess t he m . A user first l ogs on to a capt ive
(l i m i ted fun ct ion) accou nt o n a spec i fi c host
CPU from any system on the D ig i ta l ' s DECoct
network . Si nce th is process is control led by a

J i st of authori zed users , no password is neces
sary. The user never sees the VMS prompt level
but is i mmed iately presented w i t h a menu of
MDA functions . He is then asked a short series of
questions about ei ther the Parr Number or Revi
sion Number and is provided with a d i rectory of
appl icable fi les.

Al l user transact ions with the data-access pro
cess arc automatical ly logged . This loggi ng pro
vides several important capabi l i t ies:

• An accurate summary of the acrua l on - l i ne
data usage (which has showed that our i n it ia l
assumpt ions were qu i te i ncorrect as to who
wou ld usc what data , and how much access
traffic there wou ld be)

• A degree of addit ional security by w1cking a l l
data accesses

• A means to not i fy a l l users who have uti l i zed
any file in which an error has been found

Electronic Drawing Access, Plotting,

and Management

At the present t ime , most DRAWING fi les arc i n
the VMS data format o f FI LE_NAME. PLO s ince
. PLO is the data forma t that can be re leased e lec
tron ica l ly to Digita l ' s on- l ine drawing-microfi lm
serv ice: . A varicty of software packages us ing th is
data format arc avai lable i n each manufacturing
plant . We expect to make a transi t ion to a new
i n dustry sranda rcl when it comes i n to general
usc .

Prov id ing each separa te drawing sheet as a
separate fi le was the first step tOward a paperless
process. ·rhc second step was to give Manufactur
ing the abi l i ty to view a drawing on a V�'<station
workstat ion , manage drawi ngs , annotate them,
send those annotations back to the engineer. and
ma k<: plots . These basic functions perm it Manu
factur ing to do on l i ne what they wou ld have
don<: prev ious ly w i t h paper draw i n g she<: ts .
Engineering provided some necessary softwa r<:
tools for these funct ions tO expedite the trans i
t ion to a paperless process in Manufacturing.

Dif!,iWI Technical journal
No. 1 f'ebrucny I ')87

The workstation used i s the VAXstation II sys
tem . The software provides th<: fol lowing capa
b i l i t ies :

• Access d rawi ngs d i r<:c t ly fro m the on - l i n e
data process

• Create windows for rhe drawing , and zoom
around i t

• Annotate a copy o f the drawing for use with
specific processes

• Return a copy with quest ions for the respon
s ible engi neer

• Submi t p l ot requests autOmat ica l ly for the
w h o l e d r a wi n g or any se l e c t e d w i n d ow
ro e i ther a large e lectrosta t ic p lotter or a n
LN03 Plus pri nt<:r , both accessible o n a local
Ethern<:t l ink

The p rocess of ma k i ng sna p - shot w i n dow
plots of specifi c areas of i n terest on the LN0 3
Plus pri otcr has proven r o b<: a very effective
ca pab i l i ry, and shows some of the poss ib i I i t ies
of rep laci ng large sheer paper plots with i n the
Manufacturing functi ons .

Summary

The M DA process has be<:n operat ional since the
fi rst protOtypes of the VAX 8800 system were
bui l t . MDA present ly ma i nta i ns approxi mate ly
three gigabytes of VAX 8800 prod uct data on
l i ne , i n c l u d i n g both p rototype a n d p rod u c
t ion rev i s ions . More t h a n one hundred users
from teo d ifferent locations i n both Manufactur
ing and field Service have logged an average of
rwo hu ndred transactions per week . A l though
MDA con ra ins significant amounts of control and
veri ficat ion software . rh<:re has been l i tt le for
mal user tra i n i n g . The s i m p l i c i ty of the M DA
process a l lows t he on- l i ne Help information to
be an effect ive sou rce of pr imary documenta
t ion .

References

1 . D. Bak, "The Impact of VAX 8800 Design
M e t h o d o logy on CAD Deve l o p me n t , ' '
Digital Techn ical jo u rnal (February
1 987 , this issue) : 1 2 9- 1 3 5 .

1 4 1

New Products

ISBN 1 -5 5 5 5 8-00 1 -7

Prinrcd in USA EY-67 1 1 E-DP Copyrighr© February 1 98 7 Digi"'1 Equipmem Corporation

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the Four Systems in the VAX 8800 Family
	The VAX 8800 Microarchitecture
	The CPU Clock System in the VAX 8800 Family
	Aspects of the VAX 8800 C Box Design
	The Memory System in the VAX 8800 Family
	Floating Point in the VAX 8800 Family
	The VAX 8800 Input / Output System
	The VAXBI Bus - A Randomly Configurable Design
	A Logical Grounding Scheme for the VAX 8800 Processor
	The Simulation of Processor Performance for the VAX 8800 Family
	VMS Multiprocessing on the VAX 8800 System
	A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System
	The Impact of VAX 8800 Design Methodology on CAD Development
	On-line Manufacturing Data Access on the VAX 8800 Project
	Back cover

