
Digital Technical Journal

<

Number 6

February 1988

Cover Design

The helix of the DNA molecule depicted on our cover is a

visual metaphor for software productivity tools, the theme of

this issue. just as the encoded DNA molecule serves as a tem

plate for the synthesis of new forms, so software productivity

languages and procedures serve as tools for the development

of new software programs. The image was created using the

Lightspeed System.

The cover was designed by Barbara Grzeslo and David Carroll

of the Graphic Design Department.

Managing Editor
Richard W. Beane

Editorial Staff
Editor -Jane C. Blake

Production Staff
Production Editor - Helen L. Patterson
Designer- Charlotte Bell
Interactive Page Makeup -jonathan M. Bohy

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
Mahendra R. Patel
F. Grant Saviers
William D. Strecker
Victor A. Vyssotsky

The Digital Technical journal is published by
Digital Equipment Corporation, 77 Reed Road,
Hudson, Massachusetts 0 I 7 4 9.

Changes of address should be sent to Digital
Equipment Corporation, attention: List Maintenance,
10 Forbes Road, Northboro, MA 01532. Please include
the address label with changes marked.

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02·3/KI I at the
published-by address. Comments can also be sent on
the ENET to RDVAX::BLAKE or on the ARPANET to
BLAKE%RDVAX.DEC@DECWRL.

Copyright© 1988 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for
commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is
permitted. Requests for other copies for a fee may be
made to the Digital Press of Digital Equipment
Corporation. All rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

ISBN 1·55558-005-X

Documentation Number EY-8259E-DP

The following are trademarks of Digital Equipment
Corporation: DATATRIEVE, DEC, DECjCMS, DEC/MMS,
DECnet, the Digital logo, EDT, FMS, PjOS, RALLY, Rdb,
ReGIS, RMS, RSTSjE, RSX, TEAMDATA, VAX, VAX COD,
VAX COBOL GENERATOR, VAX DECjTest Manager,
VAX GKS, VAX NOTES, VAX PHIGS, VAX SCAN, VAXset,
VAX SOFTWARE PROJECT MANAGER, VAXstation,
VAXstation lljGPX, VAXTPU, VAX VALU, VAX VTX,
VMS, VT, VT52,VT IOO, VT200

BASIC is a trademark of Dartmouth College.

BASIS is a registered trademark of Battelle
Development Corporation.

HPGL is a trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business
Machines Corporation.

Lightspeed is a trademark of Lightspeed Computers, Inc.

Macintosh is a trademark of Apple Computer, Inc.

Postscript is a trademark of Adobe Systems, Inc.

PowerHouse is a registered trademark of Cognos, Inc.

UNIX is a registered trademark of American Telephone &
Telegraph Company's Bell Laboratories.

Xerox is a registered trademark of Xerox Corporation.

X Window System is a trademark of the Massachusetts
Institute of Technology.

Book production was done by Digital's Educational
Services Media Communications Group in Bedford, MA.

Contents

9 Foreword
Wil l iam J . Heffner

1 0 VAX/VMS Software Development Environment
Bert Beander

20 Software Productivity Measurements
Anne Smith Duncan and Thomas J . Harris

28 Language-Sensitive Editor
G lenn Lupton

Software Productivity Tools

4 0 VAX SCAN: Rule-based Text Processing Software
Stephen R. Greenwood

51 Software Productivity Features Provided by the Ada Language and the
VAX Ada Compiler
Robert A. Conti

62 Programmer Productivity Aspects of the VAX GKS and VAX PRIGS
Products
Brian A. Axtell , Wi l l iam H . Cl i fford , Jr . , and Jeffrey S . Saltz

71 The VAX RALLY System - A Relational Fourth-Generation Language
Lewis Lasher

80 V7X and VALU- Software Productivity Tools for Distributed
Applications Development
Linda E . Benson , Michael Gianatassio, Jr., and Karen L McKeen

91 Pragmatics in the Development of VAX Ada
Ronald F . Brender , Bevin R . Brett, and Charles Z . Mitchell

I 0 1 Development of a Graphical Program Generator
Steven J . Grass

110 Project Management of the VAX DECjTest Manager Software
Version 2.0
Linda Ziman a nd Martin Dickau

117 Development of the VAX NOTES System
Peter D G ilbert

I 2 5 Software Usability Engineering
M ichael D . Good

Editor's Introduction

Jane C. Blake
Editor

This issue of the Digital Technical journal features
papers on software productivity tools that assist pro
grammers in the development of high-quality, reli
able software. In addition to papers about these
tools, we also present several papers that examine
innovative project practices developed by Digital
engineers to improve productivity.

Our first paper looks at the set of tools developed
to support all stages of the software life cycle, from
the requirements and specification 5tages through
the maintenance stage. Bert Deander gives an
overview of each of the tools and describes how their
strong integration provides for a rich development
environment.

Our second paper is not about a software tool, but
rather about a study to determine to what degree
software wols and new development methods are
contributing to reductions in project cost and to
increases in product quality. Anne Smith Duncan and
Tom Harris discuss the influences on sofrware pro
ductivity and present findings for three productivity
metrics.

The subject of the next paper is the VAX Language
Sensitive Editor, an imporrant component of the
VAXfVMS software development environment. Glenn
Lupton reviews the research on which the require
ments for this advanced text editor were founded and
then describes the design of various LSE features.

The next two papers are about languages that have
been integrated with the VMS environment and
provide programmers increased efficiency in the cre
ation of programs. First, Steve Greenwood describes

the VAX SCAN product and gives examples of how
this rule-based text processing language simplifies
the building of software, thereby reducing program
development time. Next, Bob Conti presents an infor
mative discussion of the inherent productivity fea-

2

tures of the Ada language and the additional features
provided by Digital's implementation.

High-level, functional interfaces for graphics pro
gramming, specifically the VAX GKS and VAX PHIGS
implementations, are the topics of our next paper.
13rian A..-xtell, Bill Clifford, and jeff Saltz relate how
these interfaces have made graphics programming
easier and describe the common architecture on
which both products are based.

The designer of a software tool is sometimes faced
with the dilemma of choosing between flexibility
and ease of use. Lew Lasher discusses how the
designers of VAX RALLY, a forms-based fourth-genera
tion language, resolved this issue through the design
of RAI.LY's application definition system and run-time
environment.

Also designed for application development, the
VAX VTX and VA.'(VALU tool set allows the develop
ment and integration of applicatons in distributed,
heterogeneous environments. Linda Benson, Mike
Gianatassio, and Karen McKeen describe the VTX and
VALU features and how these serve to enhance pro
ductivity.

The next four papers offer insights into some of
the tools and techniques used by Digital software
engineers to reduce project development time. In
the first paper, Ron Brender, Devin Brett, and Charlie
Mitchell describe how their use of automation,
instrumentation, self-checking, and self-description
not only saved development time but also con
tdbuted to the VAX Ada compiler's performance.
Next, Steve Grass discusses a new approach devised
to manage the development of a then unprecedented
graphical interface, the VAX COBOL GENERATOR
software. In the third paper, Linda Ziman and Martin
Dickau attribute significant time savings and product
improvements to an iterative approach and the soft
ware tools used to develop the VAX DECjTest Man
ager software. One of these tools was the VAX NOTES
computer conferencing system, which is the topic of
the fourth paper. Peter Gilbert reviews the innova
tive design and development strategies that led to the
success of NOTES and describes several key product
features.

In our final paper, Michael Good discusses the
three principal activities of software usability engi
neering. He also gives examples of how this user-ori
ented approach has contributed tO software product
design at Digital.

We thank John Henning for his help in preparing
this issue.

Biographies

Brian A. Axtell A principa l software engineer i n the Core Appl ications
Group, Brian Axtel l is the project leader and superv isor for the VAX PHIGS
product . Joi n i ng Digi ta l in 1 980 , Brian co-designed the Base Graphics Archi
tecture, the VAX PHIGS and VAX GKS products, and was also the project
leader i n the development of VAX GKS . He earned a B.S . in meteorology
(1 978) and a B .S . i n computer science (1 980) from the Pennsylvania State
Univers i ty . Brian is a member of the ACM , the SIGGRAPH Specia l Interest
Grou p , and the American Meteorological Society.

Bert Beander Bert Beander, a consult ing software engi neer, joined
Digital after receiv ing his Ph . D . and M .S . degrees in computer sciences
from the University of Wisconsin in Madison . Prior to his current work i n
the area of programming env ironments with the Technica l Languages and
Envi ronments Group, he superv ised the VAX Debugger and the VAX Perfor
mance and Coverage Analyzer (PCA) projects and also served as project
leader in the development of PCA version 1 and the Debugger versions 3
and 4. Bert is a member of the ACM, SIGPLAN , and SlGSOIT.

Linda E. Benson L inda Benson , a pri ncipal engineer, is the project leader
and supervisor for t he VAX VTX and VAX VALU products. Prev iously , she
was deve lopment engineer and project leader for the VAX Run-t ime Library
and has also been i nvolved in a project to produce terminal front-ends .
Prior to join ing Digital i n 1 979. Linda was a software engineer at Grumman
Aerospace Corporation where she contributed to the development of com
munication and nav igation software systems. She received her B .S .C .S . in
1977 from Rochester Institute of Technology, Rochester, N .Y., and is cur
rently worki ng toward an M . B.A. degree .

Ronald F. Brender As a senior consu ltant software engineer, Ron is
responsible for most static semantics processing i n the VAX Ada compiler.
Prior to this work, he superv ised development of the first opt imizi ng com
pi ler on the PDP- 1 1 and the development of the current generation of BLISS
language and i mplementat ions. He has been appointed by the Ada Joint Pro
gram Office to the Ada Board and was a member of X3)3 , t he ANSI commit
tee t hat developed the current FORTRAN '77 standard . Ron received his
B .S .E . in engineering science, M .S . i n appl ied mathematics, and Ph . D . i n
computer and communication sciences from the Un iversity of Michiga n .

3

Biographies

4

Bevin R. Brett Bevin Breu is a principal software engineer i n the Techni
cal Languages and Envi ronments Group, currently worki ng on the VAX Ada
project . Most recently, he has been involved in t he Integrated Programming
Support Environment task force and in the design and i mplementation of
shared generic instantiations in VAX Ada compi ler code . Before joining
Digital in 1 98 2 , Bevin received an M .Sc . in computer science (1 9 82) from
the Universi ty of Adela ide , a B.Sc. (Honors, 1977) in mathematics from the
University of Canterbury, and graduated as valedictorian from the Nelson
Boys Col lege (1 97 4) , New Zealand .

William H. Clifford Jr. Bi l l Cl ifford, a principal software engineer, is a
co-designer of Digita l 's Base Graphics Archi tecture and t he VAX PHIGS
product , and of the proposed three-dimensional extension of X 1 1 . B i II is a
representative from Digita l to the ANSI X3H3 . 1 (PHIGS) commit tee and to
the ad hoc PH IGS+ committee . Before jo ining Digital in 1 98 4 , he developed
real - t ime, distri buted control systems at Stable Technology, I nc . He received
a B .S . (1 9 68) and an M .S . (1 970) in systems engi neeri ng from Case Western
Reserve University and pursued doctoral work as an N DEA Fel low at the uni
versity.

Robert A. Conti A consult ing software engineer, Bob Cont i has con
tributed to t he VAX Ada project i n the area of tasking and debugging support .
He is currently pursuing advanced development work related to future
enhancements to VAX Ada. Before joining Digital in 1 98 1 , Bob developed
software for several radar systems, including AWACS, at Westi nghouse. He
received a B .S . in engineering (1 968) from Case Western Reserve University,
an M .S .E .E . (197 1) from johns Hopkins , and an M . S .C .S (1 9 8 1) from the Uni
versity of Maryland . Bob is a member of Tau Beta Pi , E ta Kappa Nu, I EEE , and
ACM .

Martin Dickau Mart in Dickau is a Senior Software Engineer i n t he Com
mercial Languages and Tools development group . Currently a developer with
the VAX Software Project Manager project , he worked on t he VAX DECjTest
Manager versions 2 .0 and 2 1 and was acting project leader on t he DEC/CMS
project . Mart in was a coop student at Digital for two years and joined the
company after receiving a B.S . i n com puter science from the Massachusetts
Institute of Technology in 1 985 .

Anne Smith Duncan Anne Smith Duncan , a software engineering manager
in the Commercia l Languages and Tools Development Group , is working in
the area of measuring and improvi ng the software development process. She
has also hel d various techniol and managerial positions in the Distributed
Information Systems Group and the Software Standards Group . Prior to join
ing Digita l in 1 978, Anne worked at the Department of the Navy as a Com
puter Special ist in applicat ion systems development and technical support .
She earned a Certificate of Management from the Smith Col lege Management
Program (1 9 84) and a B.A. from George Washington Un iversity (1969).

Michael Gianatassio Jr. Mike Gianatassio joined the VTX and VALU engi·
neering team i n 1983 and wi th that team has had responsib i l i ties in the areas
of development, consulting, and product architecture . As part of t he Video·
tex Technica l Partnership program, he worked with financial i nstitutions on
the design of home banking systems . Mike is currently a princ ipa l e ngineer
and project leader in the IBM I nterconnect Grou p . Prior to joining Digital in
1982, he worked at Polaroid Corporation. He earned a B . S . degree (1982) in
computer science from Northeastern University of Boston.

Peter D Gilbert After earning a B .S . in computer science (1976) and an
M .S . i n computer engineering (1979) from the University of I l linois, Peter
Gil bert joined Digita l in January 1979. He is a member of the Com mer·
cia! Languages and Tools Group and has been a deve l oper on the VAX
COBOL, VAX and PDP- I I sortjmergc, and VAX NOTES projects. and was a
deve loper responsi b le for the col lating sequences , para l le l processing, and
mathematics software for the VAX Run-ti me Library project. Currently work·
ing on the design of a configuration management tool , Peter is a principa l
software engineer .

Michael D . Good As a pri ncipal software engi neer i n the Software Usabi l·
i ty Engineering group , Michael Good is developing software usabi l i ty
engineering methodologies and contributing to the user-interface design
of severa l products. He has co:1ducted usability research since joining Digita I
in 1981 and has publ ished a n umber of papers on usabi l i ty engineering
and text edit ing. He designed a nd implemented t he Eve text editor for the
VAXjVMS operating system ve rsion 4 2. Michae l rece ived a B .S . (1979) and
an M .S . (1 98 1) in computer science from t he MassachusettS I nstitute of
Technology .

Steven J. Grass Steve Grass, a pri ncipal software engineer in the Commer·
cial Languages and Tools Group, is the project leader of a group respon·
s i ble for the deve lopment of common components for window-based applica
tions. Previous ly , he worked on the VAX COBOL GENERATOR project, first
as a member of the advanced deve l opment team and then as the project
leader for i mplementations of versions 1 . 0 and 1 . 1 . Steve was also a deve l·
opcr on the PDP-1 1 COBOL and COBOL-8 1 compiler projects. He joined
Digita l in 1978 after earning a B . S . E. in computer engineering from the Uni·
versity of Michigan .

Stephen R . Greenwood A consu ltil)g software engineer, Steve Green·
wood is current ly responsible for a tool for specifying the end-user interface
to window-based applications . Previously, he has been involved with the
design of run-time libraries for future architectures and the design and deve l
opment of the VAX SCA N language . Before joining Digi ta l i n 1981, Steve
worked at Sperry Univac Corporation as a member of the compi ler deve lop·
ment grou p . He recei ved his B . S . in physics (cu m laude, 1 973) from Buck
ne l l University and an M .S . in computer science (1975) from the University
of Wisconsin . He is a me mber of the ACM .

Biographies

6

Thomas J. Harris Since joi n i ng Digital i n 1978 , Tom Harris has been a
manager of the Commercial Languages and Tools Development Group and is
currently the group's senior manager. He chairs Digita l 's Sponsored Research
Board and is responsible for advanced development planning across the Sys
tems Software Development Group. Prior to join ing Digita l , he worked for
Sperry Univac Corporation i n software and hardware product development .
Tom is a member of the CO DASY L Executive Committee. He participated in
and chaired the CO DASYL Command Language Committee a nd was a member
of the FO RTRAN Data Manipulation Committee . Tom earned a B .S . in engi
neering at Case Western Reserve Univers i ty in 1 9 6 7 .

Lewis Lasher Lew Lasher is a sen ior software engineer i n the Software
Development Technologies Group. S ince joining D igital i n 1 98 5 , he has
worked on the VAX RAL LY project , primarily i n the area of user i nterface. He
earned an A.B. degree in appl ied mathematics in 1 97 8 at Harvard College ,
where he served as a teaching fe l l ow i n u ndergraduate courses i n computer
science. Whi le at Harvard he also worked on PPL, an i nterpreted language
used there in the i ntroductory programming course . Lew earned a J . D .
degree at Harvard in 1981 before return ing t o software engineering.

Glenn H. Lupton G lenn Lupton joi ned Digital in 1 975 after receiving a
B .S . E . E . (1973) and an M . E . E . E. (1974) from Rensselaer Polytechn ic I nsti
tute. A consu lting software engineer in the Techn ical Languages and E nviron
ments Group, he is the project leader of the VAX Language-Sensitive Editor
project . G l enn has been assoc iated with the BLISS compi ler projects as devel
oper, project leader, and supervisor. He has also supervised the development
of a n umber of software programming environment tools , i ncluding the pro
totypes for VAX SCA, DECJMMS and the DECjTest Manager software.

Karen L. McKeen Karen McKeen is a senior software engineer working
in the VAX VTXjVALU engineering group . She joined the VTX group in
1985 and has been responsible for designing and developing information
provider components. She is currently the architect for VTX and VALU . Previ
ously, Karen was project leader for the VAX DECgraph project . She has a lso
worked in the Commercial Systems Evaluation Group developi ng perfor
mance tools . Karen joined Digi tal in 1979 after earn i ng a B .S i n mathematics
wi th a computer science i nterdisc ip l inary option from the Un iversi ty of New
Hampshire .

Charles Z. Mitchell Charlie Mitchel l , a consu l ting software engineer i n
the Techn ical Languages a nd Environments Group, has been a member of the
VAX Ada development project since i ts i nception as an advanced develop
ment project in 1979 Current ly the project leader of the VAX Ada develop
ment project , he joined Digital in 1976 as a developer in the LCG Languages
Group. Char l ie received a B .S . from the University of New Mexico a nd an M .S .
in computer science from Rensselaer Polytechn ic I nstitute . He is a member
of the ACM and S IGAda .

JeffreyS. Saltz Jeff Sa ltz joined Digital a fter receiving a B.S. in computer
science (honors, 1 98 5) from Cornel l Un iversity. A sen ior software engineer
in the Core Appl ications Group, he is co-designer of Digi ta l 's Base Graphics
Architecture , and the VAX PHlGS and VAX GKS products . jeff is a representa
t ive from Digital to the ad hoc committee for the proposed three-dimensiona l
extension ro Xll and a co-archi tect of the X3D-PEX proposal . He is a mem
be r of Tau Beta Phi .

Linda Ziman Li nda Ziman is a development supervisor in the Commercial
Languages and Tools Grou p . She is currently responsi ble for severa l projects,
incl uding the VAX DEC/Test Manager, VAX DEC/CMS, VAX Software Project
Manager , and an advanced development project. Previously, Linda worked
with in tegrated software envi ron ments and was project leader of the DEC/
Test Manager project . Sbe bas worked in the area of software product ivity
tool s since joining Digi tal in 1978 She recei ved her B.S. degree from Union
Col lege and is a member of ACM and I E EE.

7

Foreword

William]. Heffner
Vice President,
Systems Software Group

What is a program mer' What does hejshe do1
Why does it rake so long' These are three of the
questions most often asked of those of us in the
software profession .

Augusta Ada Byron (1 8 1 5- 1 8 5 2) , the
Countess of Lovelace, has been accorded the
t i t le of t he world 's first programmer. Her notes
published in London in 1 84 3 regard ing Charles
Babbage's analytical engine incl uded a formula
for solving a problem on that machine . This
formu la is in effect the first example of a com
puter program , hence her recogni tion as a pro
grammer.

For roughly the century fol lowing Byron's
notes, the person who designed rhe computer
also bui lt and used the computer. There was se l
dom a separation of the bui lder and the user. I n
the middle of this century . however, computers
were being used by many people not involved
in ei ther designing or bui lding the computer.
These users transformed their problem state
ment intO a computat ional method understOod
by the computer. This computer representation
of t he problem was cal led a program, and the
person preparing i t was ca l led a programmer.

Now, what is a programmer' Simply pur, the
programmer is someone heretOfore unknown in
the profess ions. Programmers in t he 1 950s and
1 960s came from many disciplines . Many were
electrical engineers and mathematicians, but
others were musicians, I iberal arts majors, and
even dentists, hospital admin istratOrs and the
l ike . What was t he unique talent they possessed'
In his book The Mythical Man Month, Fred

Brooks l i kens a programmer ro a poet in that a
creative, intangible product is rhe result of a
programmer's work . Even though col leges and
universities have formal ized the t rain ing of pro

gram mers in a discip line cal led software engi
neering, we are certain on ly that program mers
write programs; that the discipl ine is unique;
and that because this discipl ine is unique, pro
gram mers require unique rools and products to
effectively complete their tasks .

The papers in this issue of the Digital Techni
cal journal address a parr of our continual effort
at Digital to produce the environment and
products that assist program mers in produc
ing timely, wel l -defined, efficient , and rel iable
programs . HistOrical ly , t here have been two
major breakthroughs i n reducing the elapsed
t ime to produce a working program. First were
compilers, which provide the programmer a
more concise and error-free technique for pro
ducing programs. Grace Hopper at UNIVAC and
john Backus at I BM were leaders in this break
t hrough. The second major breakt hrough , led
by Digital, was interactive t imesharing. Inter
active ti mesharing a l lowed the programmer
greater access ro rhe computer, thus reducing
the e lapsed t ime for program development .

I n add ition to the effort ro reduce e lapsed
time, equal effort is being expended tO add d is
c ip l ine and predictabi l i ty ro t he process of pro
ducing programs. Today, very few programs
are deve loped by a single program mer. Instead,
reams of programmers collaborate ro produce
larger and more comprehensive programs, for
example, t he FORTRAl'J project and the VMS
projecr . To accompl ish such projects, program
mer productivity rools and the Computer Aided
Software Environment (CASE) have been deve l
oped . The VAXjVMS system has been the indus
try standard for programming development and
the system of choice for programmers. The
papers here in demonstrate our continuing effort
tO be the leader. Our goal i s ro produce the best
environment for programmers - an environ
ment in which they can explo i t their creativity
as they participate in a predictabl e and disci
pl ined process.

9

Bert Beander I

VAX/VMS Software Development
Environment

The VAXjVMS software development environment comprises tools that
support all stages of the software life cycle. These tools include documenta
tion tools, a project management tool, code management and system build
ing facilities, a rich editing and browsing environment, a powerful debug
ger, static and dynamic analysis tools, test management facilities, and
project communications tools. Moreover, these tools are strongly inte
grated with each other: they share a common user interface philosophy,
they have numerous tool-to-too/links that allow them to pass substantial
amounts of program infonnation to each other, and they support multiple
programming languages. As a result, the environment has both richness
and internal cohesiveness.

Software development has become increasi ngl y
dependen t on programming environments that
provide a rich set of software deve lopme nt rools.
Such environ ments are a ttractive because they
can increase both program mer productivity and
software qua l ity, w h i l e reducing deve lopment
costs. The programming environmen t that Digital
has clcvel opecl for the VAXjVMS operat ing system
is an example of a commerc ia l ly avai lable envi
ronment that provides a particu larly rich set of
tools. 1 This environment has evolved from the
handfu l of comp i lers and tools that were ava i l ·
able when the origin a l VAX-llj780 system was
i ntroduced in 1 978 . A majority of the tools. how
ever, have been devel oped since the early 1980s .

A-; a resu l t of this deve lopment, the VAXjVMS
programming environ ment now provides a set of
tools that satisfies two goa ls . One is that the tOols
shou ld assist the software deve loper in a l l stages
of the softwa re l i fe cycle . AJI stages have tasks
that can be au tomated for greater programmer
productivity, and no stage shou ld become the
principal bottleneck i n the development process
The other goa l is that t he tools shou ld work well
together so that they provide an easy-ro-use. con
sistent, and tightly i ntegrated environment for
the user. Tight integration increases programmer
productivity because program clara col kctcd by
one tool can help automate the functions of other
tools. and cons istency between tools increases

10

productiv i ty by reducing deve loper l earning
rime . This paper describes how the separate tOols
of the VAX/VMS software deve lopme n t environ
ment su pporr the various stages of the software
l i fe cyck and expla ins how the many rool - ro-rool
links and informat ion flows make t he environ
ment so t ight ly in tegrated .

Supporting the Software Life Cycle
Digita l's program ming environment on the VA.,'</
VJ'viS operating system provides a rich set of tools
designed to support a l l stages of tbe software I ife
cyc le . The software l i fe cycle includes the fol·
lowi ng stages:

• The requ i rements and specification stages .
when documents a rc wri tten ro define the soft·
ware project

• The design stage , when data structures and
program components a rc designed

• The implementation stage . when code is writ
ten , debugged, and tested

• The test ing stage , when new software is rested
by users

• The maintenance stage. when bugs arc fixed
and minor enhancements a rc added

At each of these stages , software developers use
rools that arc speci fic to that stage . In addition,
they usc certa in rools i n al l stages of the
l ife cycle to mainta in project art ifacts, such as

Di�ital Technical jounwl
No. o Fl!bmnr)• I <JSR

REQUIREMENTS STAGE

SPECIFICATION STAGE

DESIGN STAGE

'MCCrNW,ON 5'

TESTING STAG

AGE

E

l MAINT ENANCE STAGE

RUNOFF. DOCUMENT

I I I I I

I I I I
I I I I

I I I I

I I I I

I I

I I

I I

I I

KEY

- PRIMARY TOOL USAGE

c:::J OCCASIONAL TOOL USAGE

I I
VAX NOTES. VMS MAIL

l J
LANGUAGE-SENSITIVE EDITOR

I I
CODE MANAGEMENT SYSTEM

_l J
I SOFTWARE PROJECT MANAGER

I I
MODULE MANAGEMENT SYSTEM

l
COMPILERS. LINKER

I I
SYMBOLIC DEBUGGER

_l J
PERFORMANCE AND COVERAGE ANALYZER

I I
SOURCE CODE ANALYZER

I I
DEC/Test Manager

figure I The Software Life Cycle

documents and source files, and to manage pro

ject activities. This section describes the stages of

the software life cycle and the tools that are used
at each stage.

Figure I summarizes the software develop

ment stages and the associated tools. In this dia

gram, the life-cycle stages are listed along the

top and selected tools are listed along the right

side. Solid bars mark the life-cycle stages where

tools have their primary uses; light bars mark the
stages where tools are occasionally used.

Requirements and Specification Stages
During the requirements stage. the customers

or developers identify the requirements of the
proposed software system. During the specifica
tion stage that follows, developers formulate

detailed specifications that define what the sys

tem will do and how it will be used. By com

paring the specifications tO the requirements,
the developers can show, at least informally,
that if the system is built as specified. it will meet

its requirements.

Digital Technical journal
No. 6 Februar)• I 'J88

Both requirements and specifications are usu

ally written in English or another natural lan
guage. The tools needed ar these two stages must

rhus faci I irate rhe production and organization

of documents. To produce documents, develop

ers first need one of the environment's text

editOrs, such as the VAX Texr Processing Utility

or the VAX Language-Sensitive Editor (described

further below), to compose the actual text.

They then need a rexr processing roo! ro format
their documents. Two such roots are available on

VAXfVMS. One is Runoff, which produces docu
ments as formatted ASCII text files. Runoff is sim

ple bur quite serviceable for documents that only

require typewriter quality. VAX DOCUMENT is a
newer tool, which has been used at Digital to
produce all VAXfVMS software documentation.

DOCUMENT converts text files written in a

marh.'Up language into typeset-quality, formatted

output. The output can be printed on a laser

printer or processed on a typesetting system for

final production. DOCUMENT is layered on top

of Donald Knuth's TeX text processing system,

1 I

Software
Productivity
Tools

VAXjVMS Software Development Environment

and thus supports multiple fonts, mathematical
typesetting, and extensive formatting capabili
ties. 2

Documents also need to be stored. Although
they can be stored as ordinary files in ordinary
VMS directories, it often makes more sense ro use
the VAX DECjCMS (Code Management System)
tool ro store documents. CMS can store multiple
versions of document sources efficiently, and it
a !lows old versions to be retrieved at any time.
CMS also provides check-outjcheck-in control
over document sources to prevent different
developers from inadvertently modifying the
same sources at the same time. A developer thus
checks our (or "reserves") a source file from a
CMS library into a private work area, works on it
in the private area until satisfied with it, and then
checks it back in (or "replaces" it) to the CMS
library. While the source module is reserved, no
other developer can modify it. (CMS allows mul
tiple concurrent reservations. but developers
who choose this option must be willing ro later
merge the independently made changes. CMS has
faci I ities that partially automate such merges.)

Another tool that is very useful when collect
ing requirements is the VAX NOTES electronic
conferencing system5 NOTES allows multiple
users ro share comments on a variety of topics.
Each NOTES conference is organized into "top
ics," where a written note starts the discussion of
each topic. Members of the conference can cr<:ate
new topics at any time, and they can reply to
existing notes and other people's replies. All
information is stored on line and is easily perused
from any node in the users' computer network.
VAX NOTES thus provides a very convenient and
expedient way to collect requirements and
reviewers' comments for a software project. and
is widely used within Digital during the require
ments and specification stages of the software
life cycle. The VMS Mail utility is also used exten
sively for project communications and for infor
mation exchange with other groups.

Design Stage

During the design stage. developers design the
data structures and program components that
will constitute the implementation of the pro
posed software system. Developers usually write
documents ro describe their designs; bur in addi
tion. they normally define selected data struc
tures and routine headers at this stage. These
components arc written in programming lan-

12

guages and arc thus created using editors. The
VAX Lmguagc-Sensirive EditOr (LSE) is usually
rhe editor of choice.·• In this section, we discuss
how LSE is used and also mention how designs
may be represented graphically. Once a design is
in piau:, the developers must formulate a plan
for building the desired software and create a
development schedule based on that plan. A dis
cussion of a tool that helps developers do such
planning concludes this section.

The design components written in program
ming languages are normally created using LSE.
LSE is a full-featured, programmable. full-screen
text editor. Jt is "language-sensitive·· in several
senses. First. it provides templates for the con
structs in each supported programming language
(about a dozen languages arc currently sup
ported and users can create templates for addi
tional languages). Second, it al.lows placeholders
in those templates to be expanded so that the
valid possibilities for each syntactic entity can be
displayed and selected. Third, it provides on-line
help for each supported language. And fourth, it
allows programs tO be com pi led directly from
tbe editor and compilation errors ro be reviewed
directly in the editor.

These capabilities are best explained by exam
ple. Suppose a user wants ro enter a WHILE loop
in a Pascal program. To do so, the user enters the
WHILE keyword and then expands that construct
by pressing an "expand" key. In response, LSE

produces the following text:

WHILE X{expression}X DO

X{statement}X

Within this template. there are two placeholders:
one for the Boolean expression. and one for the
statement that forms the loop body. Single
keystrokes move the editing cursor from place
holder to placeholder. Any placeholder can in
turn be expanded to display a list of valid alterna
tive expansions from which the user can choose
one. For example. pressing the expand key when
the cursor is on the X<statemenUX placeholder
displays a list of valid Pascal statement types. The
user can then choose the desired statement type
and expand it to get its template inserted into the
text buffer. Alternatively, the user can simply
type over the placeholder to replace it with the
desired program text.

The expansion of placeholders into templates
is by itseJf a powerful form of language help
because it enables programmers to produce syn-

Digital Tecbnical journal
No. () Februarv I 'JHR

tactica lly correct programs even if they do not
know the language very wel l . In addition , LSE
provides language help i n the form of help text
that explains the form and usage of each language

construct.
Finally , developers can compile programs from

LSE and review compilation errors in the editor.
To compile a program , LSE writes the contents of

the current buffer to a fi le , creates a subprocess,
and runs the compiler on that fi le in the subpro
cess. The compiler records any error messages i n
a "di agnostics file , " which i t passes back to the
editor. The ed itor displays these error messages
in one editing window whi le displaying source
code in another window. The user can select suc
cessive error messages and direct the editor to
automatica l ly position the source window on the
corresponding error locations. Errors are thus
qu ickly located and corrected . Some compi lers
wi l l also suggest error corrections, in which case
LSE automatical ly displays those corrections in
the source window for the user's approval or dis
approva l .

When designing data structures , developers
may choose to store their data definit ions in the
VAX CDD (Common Data Dictionary) database .
CDD serves as a repository for data defin itions
common to many separate programs, where the
programs access common databases and may be
written in many different languages. CDD is par
ticularly wel l su ited to commercial environments
where multiple applications programs access
large central databases.

Developers may also create graphical represen
tations of designs using techniques such as struc
tured analysis, structured design , or data model
ing. Digital does not i tsel f provide tools to
automate graphical software design , but suitable
tools are ava i lable for the VMS operat ing system
from other vendors such as Intech , Cadre , Nastec,
Tektronix, and Interactive Development Envi ron
ments.

Once a design is in place, the project leader
must formu late a plan for bui lding the desired
software . To do so, he creates a work break
down structure that identifies t he individual
tasks or work assignments needed to implement
the design . He associates t ime esti mates with
the individual tasks, identifies dependencies
between tasks, and determines which pro
grammers are avai lable . Given this information ,
the project leader then uses the VAX Software
Project Manager (PM) tool tO construct a project

Digital Technical journal
No. 6 February 1988

schedule that shows when each task wil l begin
and end . By later recording the actual start and
end dates of each task, t he project leader can
use PM to track actual progress and compare it to
the schedule . The va lue of PM is that it automates
much of the bookkeeping associated with
scheduling and control ling a software project,
thus helping to ensure that the project is com

pleted on schedu le This kind of bookkeeping
wou ld otherwise have to be done manually.

Implementation Stage

During the implementation stage, code is writ
ten , debugged, and tested. The environment
provides numerous cools for this stage . These
tools include editors, compi lers, a debugger,
code management faci l ities, a system bui lder,
and static and dynamic analysis tOols. This section
gives an overview of these tools.

When writing code, developers using the
VAXjVMS software development environment
can choose from among more than a dozen pro
gramming languages, and they may i nclude mod
u les written i n different languages in the same
program . The developers write most code using
LSE , but may also use speciali zed edi rors such as
a forms ed itor. Developers compi le programs
using both the standard language compi lers and
speciali zed compilers such as the message com
piler (for error messages) and the help l ibrarian
(for creating hierarchical help text) . They then
l ink and run the program.

To debug their code, programmers use the
VAXjVMS debugger 5 The debugger al lows the
programmer to set breakpoints in the code , to set
watch points (data breakpoints) on data loca
tions, to single-step the program by source l ine or
machine instruction , to examine variable values,
and to deposit new val ues into memory, among
many other things. The debugger is fu lly sym
bol ic, receiving its symbol information from the
compil ers via the l inker. The debugger uses mul
t iple windows on the user's screen to display
extensive program state information to the user.
This information allows the user tO find program
bugs rapidly and efficiently.

To organize and maintai n a l l program sources,
the developers use the VA.'<. DECJCMS code man
agement system, described earlier as a tool for
managi ng docu ment sources. To build the soft
ware system being deve loped , programmers use
the VAX DECJMMS (Module Management Sys
tem) system bui lder. Like the UNIX Make ut i l i ty ,

1 3

Software
Productivity
Tools

VAX/VMS Software Development Environment

MMS performs a m i n i mal system build based on
module dependency i n formation and knowledge
of which source modules have changed since the
last bui ld .

To fol low cross-references and perform static
analysis, developers use the VAX Source Code
Analyzer (SCA) . SCA receives cross-reference
information from the compi lers . This information
is incorporated i nto a database that al lows cross
reference queries over an entire software project
ro be answered quickly. SCA is rightly i ntegrated
with LSE so that LSE can d isplay cross-reference
information and cross-referenced source code i n
edi tor windows. SCA c a n a lso perform static anal
ysis by showing call trees and by checking proce
dure ca lls for consistency with the correspond ing
procedure declarations.

To perform dynamic program ana lysis , devel
opers use the VAX Performance and Coverage
Analyzer (PCA) . PCA can col lect several kinds of
performance data during program execution ,
includi ng program counter sampling data , page
fau l t recordi ng , 1/0 usage, and exact execution
counts at speci fied program locations . PCA can
later display all this data in a variety of his
tograms and tables. PCA can also show perfor
mance data at various resolu tions, from the pro
gram module level down to the i nd ividual source
l i ne or even i nstruction . By us ing PCA, pro
grammers can quickly locate performance bottle
necks , many of which usually turn out to be easy
to remove by reprogramming. PCA thus helps
programmers produce high-performance soft
ware, something that is hard to do without this
k ind of tool .

Testing Stage

There are typical ly two kinds of software resting.
F i rst , developers test the software during the
implementation stage to ensure that a l l i ndivid
ual functions work . Second , actual users test the
software to ensure that it works u nder normal
operating condi tions. Several components of the
VAXjYMS software development environment
were designed to he lp make programmers more
productive by automati ng certai n activi t ies of the
testing stage .

To test software duri ng i mplementation , devel
opers use the DECjTesr Manager (DTM) testi ng
tool . To use DTM , developers must first write test
scripts for their software , where each "script"
consists of i nput tO the software t hat wi l l test var-

14

ious software functions . The developers then
have DTM capture the software's out put when
the software is mn u nder each script , and they
manual ly certi fy that the software produces cor
rect output for each script . DTM then saves the
correct outputs as " benchmark fi les" and orga
n i zes the test scripts i nto user-defined categories .
Subsequently, the developers can use DTM
tO automatica l ly run various categories of tests
(or a l l tests) on later versions of the software.
When DTM runs a collection of rests, i t runs a set
of rest scripts through the software being tested ,
collects the outputs from the software , compares
the actual outputs to the expected outputs (the
benchmark fi les) , and reports any d i fferences
to the user. DTM al lows developers to bui ld
up large regression rest systems for their soft
ware . Experience indicates that such test systems
const itute the s ingle best guarantee of software
qual i ty .

The VAX Performance and Coverage Analyzer is
important during testi ng because i t can measure
rest coverage , that i s , ident ify the code paths
t hat are or are not executed by the regression
tests. (PCA measures what some people would
cal l "statement coverage" ; PCA determines what
i nstructions are executed , nor what branches are
taken .) The coverage is reported symbol ical ly i n
source code displays. Usi ng t h i s information ,
developers can wri te addi t iona l test scripts to
ensure that a l l code paths are tested at least once .

O nce the software is i mplemented and passes
a ll regression tests, i t is ready to be tested by
actual users in a field test . During field test, prob
lems must be reported to the deve lopers . Pro
vided the users and the developers are on the
same computer network, VAX NOTES has proven
to be an exce l lent problem reporti ng tool . A user
can report each new problem as a separate topic
and developers can reply to each topic. O ther
users can see the prob lem reports a l ong with
the ir responses, which alerts them to known
prob lems; they can also enter addi tional
responses to supply further information or to
a nswer questions.

Maintenance Stage
When a software system is rel eased tO its
users , it enters the maintenance stage of the
software l i fe cycle . At this stage, bugs are fixed
and minor enhancements are added. (Major
en hancements requi re a new pass through the

Digital Technical journal
No. 6 February 1988

whole software l i fe cyc le , and developers start

this process by defin ing the req uirements

for the next major version .) As during field test,

NOTES can be an effective roo! for record ing and

respond ing tO problem reports, provided the

users and developers are on the same com puter

network. As during implementation, the standard

coding tools - LSE, the compi lers, the l i n ker.

the debugger, and PCA - are used tO fix bugs

and add en hancements.

During the maintenance stage , CMS and

MMS remain essent ial . CMS's abil i ty to keep

track of multiple versions of the software sys

tem and to maintain multiple parallel develop

ment streams (variants) of the program sources

is particularly importa nt . For example, by using
CMS, developers can easi ly maintain a version

1 . 1 mai ntenance stream of the sources (for bug

fixes) wh i le also working on a version 2 . 0
development stream (for major en hancements) .

The Source Code Analyzer is also very useful

because it makes it easy tO browse through unfa

mi liar sources and quickly obtain the defi n itions

of procedures, variables, and other program
constmcts.

Finally, the Test Manager re mains very i m por

tant at this stage for maintaining software

qual ity as changes and bug fixes are made . A

well -designed set of regression tests can ensure

that a l l major functions of the software system

st i l l work correctly after changes have been

made . Test ing can never de monstrate the absence

of errors, but the successfu l execution of we l l

designed tests can demonstrate that a l l com mon

operations work correctly in typical ci rcu m

stances. Such tests can therefore give developers

a high degree of confidence in the integrity of the

softwa re .

Integration among Tools

To increase their usabi l i ty and to enhance the

smoothness with which they can be used

together, Digital 's rools are strongly integrated
with each other. This integration takes three
forms:

• Al l tools share a common com mand lan guage

phi losop hy. Consequently, commands have

the same syntactic form and general appear
ance in a l l tools.

• A great deal of program information fl ows

between tools. The comp il ers, in particular,

Digital Technical journal
No (, Febt'tlal)' I 988

generate a substantial amount of information

for tools such as the debugger, the pe rfor

mance analyze r, the editor, and the static

ana lysis and cross-reference tool . Other tools
can invoke each other, passing along enough

information to create a smooth transition from

tool to tool .

• Al l tools support the development of applica

tions written in mu ltiple programming lan

guages. Deve lopers are therefore free to pick

the language or languages they deem best for

their applications .

The strong integration between tools gives

the progra m m i ng environ ment a mature , cohe

sive fee l to the user. Because tools have been

developed together, they can a lso give a wea lt h

of capabil i ties which wou ld not otherwise be

possi ble . This section describes how the envi ron

ment is integrated across tools and i l lustrates

some of the capabi l it ies that this integration

makes possi ble .

Common Command Syntax

Al l tools i n the VMS environment have command

l angu ages that are based on t he same phi losophy
as the Digital Com mand Language (DCL) , the

top- l evel command language for VMS. In DCL,

each command consists of a com mand name,

fol l owed by zero or more "qualifiers ," followed

in turn by zero or more command parameters.

The following command , which invokes the

FORTRAN compi ler, is an exam ple:

F O R T R A N / D E B U G / N O O P T A , 8

Here F O R T R A N is the command keyword , / D E B U G

and / N O O P T are qualifiers, and A and 8 are

parameters. The command compiles files A . F O R

and 8 . F O R with debugging information enab led
and optimi zation d isabled .

A l l tools in the VMS environ ment have com

mands of the same syntactic form as DCL. Fur

thermore , when tools have common capab i l ities,

they use the same com mand syntax. For exa m

ple, t h e S P A WN command, which creates a new

subprocess, has the same syntax in DCL, the

debugger, the Mail u t i l i ty, the Language-Sensi

tive Ed itor, and many other tools. The help sys

t e m also works the same way in a l l tools. As a

resu l t , a l l tools share a com mon " feel ," and

users can frequently guess how to use a given
tool from their knowledge of other tools. Future

1 5

Software
Productivity
Tools

VAXjVMS Software Development Environment

workstation interfaces wil l mainta in this un ifor
m ity across tools by having a l l tools use a new
windowing i nterface conforming to the i ndustry
wide X Window standard .

Information Flow between Tools

The integration of the VMS programming envi
ronment stems i n large part from the i n forma
tion flow between tools . The compilers in
particular generate a substantial amount of infor
mation for other tools. They generate symbol
table information for the debugger and the Per
formance and Coverage Analyzer, diagnostic
information for the Language-Sensitive Editor,
and cross- reference and cal l ing-sequence infor
mation for the Source Code Analyzer. The com
pi lers are thus the sole sources of semantic pro
gram i n formation , but they make that i n format ion

SYMBOLIC
DEBUGGER

DEBUG
SYMBOL

ava i lable in su i table forms to a l l tools that need
i t . Th is section discusses these informat ion flows
and certain other connections between tools .

Figure 2 i l l ustrates the many connections and
information flows between tools that give the
VAX.jVMS programming environment i ts t ight
in tegration . The boxes represent tools, and the
arrows represent information flows, either via
fi les or through direct calls between tools.

The debug symbol table (DST) contains the
name , type. and address or va lue of every symbol
i n the user's program. This i n formation is passed
from the compi ler to the l inker, which performs
address relocation on the DST. The information is
then passed to the debugger. The DST contains
scope information so that the scope of each sym
bol is known to the debugger. The DST also con
tains the corre lation between program counter

PCA CALLS.
COLLECTION
I N FORMATION

PCA

TABLE EDIT COMMANDS

SOURCE FI LES.
COM P I L E
COMMANDS CMS COMMANDS

COMPILERS LANGUAGE-

AND LANGUAGE SENSITIVE CMS

DEFINITIONS EDITOR

DIAGNOSTICS. SOURCE FILES.
TEMPLATES. CMS OUTPUT
H E LP FILES

TEST SCRIPTS. CMS

SCA
COMMANDS

ANALYSIS
FILES

SCA

KEY:

CMS - CODE MANAGEMENT SYSTEM

PCA - PERFORMANCE AND COVERAGE ANALYZER

SCA - SOURCE CODE ANALYZER

SCA
BENCHMARKS

OUTPUT

Figure 2 Information Flows between Tools

CALLS

DEC/Test
f-Manager

1 6 Digital Technical journal
No. o February 1 ')88

values and source l i nes so that the debugger can

display the source code that corresponds to

specified ru n-time program addresses. PCA uses

the same information to d isplay performance and

coverage data symbol ically.

The diagnostic information is passed from com

pi lers to the LSE edi tor via a d iagnostics fi l e , as
described earlier. This i n formation i ncludes the
text of each error message along with the source

location of the error. If the compi l er suggests

error corrections, the suggested corrections are

included too.

Language syntax (templates and placeholders)

is passed to LSE through template fi les, and

language-specifi c help is passed to LSE via help
fi les. Although template and help files are not

generated by the compilers as suc h, they are
written by Digital's compiler developers. These

files thus represent information flow from the
compilers to LSE .

The compil ers create "analysis fi les" to hold

all cross-reference and static ana lysis informa

tion . These files can then be i nc l u ded in an SCA

l ibrary, from which SCA can quickly answer

cross-reference queries and perform call-tree and

call-sequence analyses. The analysis file contains

the name, type , and scope of each symbol in the

user's program; its information thus partially

overlaps the DST informat ion . However , the

analysis fi le also contains detailed information on

all symbol references, including the type of

each reference (read-reference, write-reference,

dec larat ion , etc .) , and deta il ed calling sequence

i n formation on all procedure symbols .

LSE and SCA are separate tools that can be

ru n separately. However , they are strongly inte

grated with each other so that any SCA com
mand can be entered directly tO LSE . Also,

LSE win -dows can be used to display cross

reference and static analysis information, and

cross-reference i n formation can be used to auto

matical ly position editor windows at specific

symbol references. This tight cou pling between
the two tools makes them look l i ke a single

tool to the user and gives the user a very rich edit

ing and browsi n g environment for program

sources. In fact , SCA is seldom used alone except

in batch runs.

Other connections between tools pass more

modest amounts of information , but sti l l help

provide a smooth , seamless feel to the environ
men t . The debugger can display the source code

Digital Tecbnical journal
No. 6 February 1 988

corresponding to the current program location . If

the user sees an error in that source code, he can

enter the EDIT command , which causes the

debugger to i nvoke LSE in a separate process and

to pass the current source location tO LSE. LSE

positions the editing wi ndow to that source loca

tion, and the user can correct the source code
i mmediately. PCA has the same connection to

LSE. After editing the code , LSE can invoke the

appropriate comp iler, a lso in a separate process,

and pass along the edited source .

I f the user wishes to browse through sources

stored in a CMS li brary, LSE is able tO read those

sources by calling CMS directly. There is also a

RESERVE command in LSE which allows source

modules to be checked out from a CMS l ibrary

directly via the editor. Aga i n , LSE calls CMS to do

this . The Test Manager can also store test scripts

and expected test resu lts in a CMS l i brary and

will call CMS directly to retrieve those fi les.

A test run managed by t he DECjTest Manager is

often a natural vehicle for collecting perfor

mance or coverage data . DTM therefore passes

i n formation to PCA (via VMS logical names) that

tells PCA the name of each separate test script

and the way the data should be collected. When

the deve loper later uses DTM tO review test

results, he can invoke PCA directly from DTM to

d isplay the performance or coverage data associ

ated with the current test execution .

I n a l l these cases, Digita l 's tool developers have

created connections between tools whenever

they have been able to identify useful connec

tions. Since most of these tools are developed in

the same organization and most tool groups

are physica lly close to each other, it is relatively

easy for the developers of di fferent tOols to work

together to develop the connections between

tools that give the VAXfVMS programming envi

ronment its cohesiveness .

Multilanguage Support
One of the strengths of the VAXfVMS program
ming environment is i ts support of multiple

programming languages. Software developers are
thus free to choose the programming languages

best su ited to their appl ications, and they can

i nc lude modules written in di fferent languages

in the same program. At present, the environment

supports about a dozen languages. Only com

p i l ed languages are supported ; i nterpreted lan
guages have execut ion and editing models

1 7

Software
Productivity
Tools

VAXjVMS Software Development Environment

that do not readily fit into a compiled- language
environment .

The programming environment supports mul
tiple languages in two ways . First, a l l Digita l
compi lers generate code that adheres to the
VAXjVMS Cal l ing Standard , which standard izes
how programs ca l l procedures and pass parame
ters . Because all compi led languages use th is
standard, modu les written in d i fferent languages
can always cal l each other, provided both
languages understand the data types of the
parameters.

Second , a l l the tools support multiple lan
guages. The debugger can debug modu les writ
ten in any language whose compi ler passes
symbol table i n formation to i t . LSE can support
templates and placeholders for any language for
which someone has constructed a template fi le ,
and i t can review error messages from any com
pi ler which passes diagnostics fi les to i t . SCA
can provide cross-reference services and stat ic
analysis for any language whose compi ler creates
analysi s fi les . The Common Data Dict ionary
(COD) can pass data defin it ions to any language
whose compiler accepts them . To ful ly partici
pate in the environment , each compi ler must
thus provide a l l the i n formation needed by the
various tools, and each compi ler must cal l cer
tai n tools , such as COD.

To support multiple languages, a l l tools use
essentia l ly the same i m plementation strategy .
They define a s ingle canonical representation for
the data they need so that the same data from two
different l anguages is always represented the
same way. LSE has only one template file format
and one d iagnostics fi le format . Al l compilers
describe a given data type or programming con
struct in the same way to the debugger. PCA uses
the same symbol information as the debugger.
SCA accepts only one format for its cross-refer
ence information . If two languages pass a given
p iece of information to a given tool , they must
always do it the same way.

However, al l tools must a lso support the un ion
of a l l constructs in a l l the programming lan
guages they support . The debugger must support
every data type that occurs in any language . I t
thus understands a numeric string type that
occurs only in RPG (a report generation lan
guage) and tasking constructs that occur only in
the Ada language . SCA must understand every
kind of cross-reference and every kind of caJl i ng

1 8

seq uence that may come up i n a multi language
program, even though no one language has them
a l l . PCA and the debugger must both understand
case-sensitivity, which occurs only in C .

Multi language support thus complicates the
design of most programming roots considerably.
The tools must be designed to cope with a wide
variety of language constructs. They must
understand subtle semantic d ifferences i n appar
ently s imi lar constructs in different languages.
They must a lso be very extensible s ince it is
impossible to predict what l anguages they may
have to support in the future . As a result , the
tools general ly are very table-driven , and they are
very dependen t on having wel l-defined i nterfaces
wi th the compi lers and the other tools .

However, there arc also substant ial savings in
solving a given problem once for I 2 languages
i nstead of solving it 1 2 t i mes. Furthermore, there
is a l ot of power in a multi language environment
because the programmer is free to choose the
programming language based on which language
is best for the appl ication , and he is free to use
exist ing program l ibraries regardless of what lan
guages they are written i n .

Future Directions

The VAXjVMS tools environment is st i l l evolving.
Some d i rections for future work i nclude improv
i ng the i ntegration between tools where sui table
opportunities are perceived, providi ng ful ler
support for program design, provid ing better
configuration management tools , and continuing
the trend to i ncreasingly distri buted software
development . The environment is l i kely to main
tain i ncreasing amounts of project data and tO
use that data for more kinds of project-control
and reporting functions. The i ncreasing use of
workstations and their capabil i ties is another
trend that wi l l affect practica l ly a l l tools i n
the VAXjVMS programming environment t o one
degree or another.

References

1 . C. Mitche!J, " Engineering VAX Ada for a
Mult i -Language Programming Environ
ment ," Proceedings of the A CM SIGSOFTj

SIC PLAN Software Engineering Symposium
on Practical Software Development Envi

ronments, SIGPLAN Notices, vol . 22, no. 1
Qanuary 1 987) : 49-58

Digital Technicaljournal
No. (, Februar)' I <)88

2 . D . Knuth , The TeXbook (Reading: Add ison
Wesley, 1 9 86) .

3 . P . Gi lbert, " Development of the VAX NOTES
Syste m," Digital Technical journal (Febru
ary 1 988, th is issue) : 1 17- 1 2 4 .

4 . G . Lupton , '' Language-Sensitive Editor ,"
Digital Technical journal (February 1988,
th is issue) : 28-39

'5 . B . Beander, "VAX DEBUG: An I nteractive,
Symbol ic, Mu l t i l ingual Debugger," Proceed
ings of the ACM SIGSOFTjSIGPLAN Soft
ware Engineering Symposium on High
Level Debugging, SIGPLAN Notices, vol . 1 8,
no . 8 (August 1983) 1 7 3 - 179 .

Digital Technical journal
No. o Febmarv 1 ')88

Software
Productivity
Tools

1 9

Anne Smith Duncan I
ThomasJ. Harris

Software Productivity Measurements

One objective of Digital Software Engineering is to build and maintain
high-quality software products at reduced costs. To determine to what
degree we are achieving this goal, Digital's Commercial Languages and
Tools (CLT) Group is studying software productivity in relation to their
software development cycle. In today's environment, engineers are build
ing tools that assist in writing code and that automate project tasks. Fur
ther, development teams share processes and reuse existing code. To mea
sure the effectiveness of these and other steps, this group has begun to
devise software product and project metrics and to collect project data. To
date, .findings have been made for three metrics: engineering productivity,
deject rate, and cost to build.

Digital 's CLT Group bui lds and supports high
volume software products, including commer
cial language compilers, software development
tools, and the VAXjVMS run-t ime l ibrary rou
t i nes. CLT has been shipping native-mode
VAXjVMS software products s ince 1 978 .
Approximately one hundred software engineers,
managers, release engineers, operational ana
lysts, and system managers work in this group .
User-documentation writers and editors. busi
ness product managers, and product market ing
special ists are also members of the project
teams.

The Importance of Productivity

Not long ago, compu ter users focused their
attention on increas ing the productivity of hard
ware because hardware was the component of
greatest overal l system cost . Although important ,
software development costs were smal l com
pared to the cost of runn ing the software. There
fore , software engineers stressed writing pro
grams that ran fast, used smal l amoun ts of
memory and disk, and m i n imized the number of
compiles and tests needed during the develop
ment process.

The Digital e ngineering culture a l lows each
software project team substantial freedom to
determine i ts own conventions, standards, and
i nfrastructure. I n this cul ture , moving a success
fu l "process" from one completed project to a

2 0

new one depended o n the people who moved
between projects. I n the 1 97 0s and early 1 980s
few supported rools were avai lable, and tool
deve lopmen t was done at the project l evel , if at
a l l . Some processes were automated , most were
not . Regression testing (testing that reveals
whether something that previously worked sti l l
does) was done by hand , bug l ists were com
piled on blackboards, and debugging major i nte
grations at base levels was difficult and t ime con
suming. The project members paid m i n i mal
attention to tracing how and when things hap
pened, and they docu mented this activity on
paper, if at a l l .

Another aspect of this culture was the sense
that each project team had ro write a l l the code
needed for that project. This attitude meant
that code to do common routines was dupl icated
from project to project . Each team believed that
i ts problem was unique, that it cou l d not share
code with any other tea m . The bel ief was perva
sive that each problem was different and that
each project team had found t he only appropri
ate techniques.

By the m id- I 980s, our customers, and our soft
ware engineers and managers started to pay much
more attention to software costs, as the costs of
software development and maintenance began to
exceed the cost of hardware. Concurrently, cer
tai n trends both inside and outside Digital were
forcing us to shift our focus from i mproving the

Digital Technical Journal
No. 6 FebruarJ' 1 988

hardware to i mproving the software development
process . These trends were as fol lows:

• Marketplace expectations - Software cus
tomers were becoming more sophisticated and
demanding. They needed software systems
that would provide them with a competitive
advantage in their marketplaces . They a lso
wanted software that could be used safely by
people of varied abi l ities and training.

• I ncreasing complexity - The complexity of
developing software systems was increasing,
and project management became more diffi
cult as projects became interrelated and some
t imes were located in different faci l ities,
states, or countries. Communications between
teams became increasingly difficult as the nor
mal communications paths became clogged.

• New technology - New technologies were
arriving at a faster rate and providing capabi l i
ties we had not considered feasible 5 , 1 0 , or
20 years earlier.

• Software maintenance - Various studies indi
cated that from 5 0 to 7 0 percent of the cost
of software is spent on maintenance . 1 '2 Mainte
nance includes defect correction , product
support, and feature and capabi l i ty evolution
and extension. Software maintenance , espe
cially defect correction and product support,
consumes the human and hardware resources
that should be used to b u i ld new products .

• Shortage of skilled software engineers - The
growing demand for highly skilled and trained
software developers, projected to continue for
the next 2 0 years , 3 meant that experienced
engineers had more pressure to increase their
output.

• High-qual i ty software - The demand for con
sistently high-qual i ty software was increasing
as more businesses bui l t their operations
around software systems. These businesses had
l ittle tolerance (nor should they have had) for
software systems with defects.

To address these trends, Digita l 's software engi
neering managers and engineers have identified
objectives for both the software product and the
software development process.

• We want to build and del iver high-qual i ty ,
dependable software products that meet
our customers' needs in predictable, cost
effective ways .

Digital Technical Journal
No. 6 February 1 988

• We want our engineers to solve new problems
in creative ways , and we want to solve each
problem only once.

• We want to reduce the costs of del ivering new
products.

• We want to reduce the costs of maintaining
and supporting the product set .

• We want a l l team members and their managers
to fee l more " i n control " of their own work.

And these objectives have to be accomplished
within the constraints of our budgets and the
avai labil ity of good software engineers.

In order to determine how to better accom
pl ish these objectives, we needed to understand
how we were doing at a point in t ime compared
with how we had done in the pas t . This compari
son is frequently described as measuring pro
grammer " productivity" or measuring software
engineering " productivity . "

In February 1 98 5 , a graph was publ ished
under the topic of programmer productivity.
The graph showed the actual and projected
rates of growth in l ines-of-code per programmer
from 1 980 through 1 99 0 .4 It indicated that by
1 990 the average software developer would pro
duce 1 , 0 7 5 l ines-of-code per month, up from
6 5 0 l ines-of-code i n 1 98 5 .

This graph re-emphasized to u s the need to
c larify how productivity should be defined and
measured . Productivity in software development
is more complex than simply increasing the
l ines-of-code produced by each programmer.
The productivity of people , regardless of how it
is measured, is only one part of the software
development process. In any case , that projection
caused us to seek answers to several i mportant
questions, such as the fol lowing:

• What exactly is programmer productivity or
software engineer productivity?

• How can we help our software project teams to
become more productive, and how can we
measure whether or not their efforts and
achievements are better?

• How do we know if our products and the ways
i n which we develop those products are better
now than in the past? What do we mean by
" better" ?

The remainder of this paper describes some
answers to these questions and how the answers
were derived . A major benefit of this work has

2 1

Software
Productivity
Tools

Software Productivity Measurements

been the increased and cont inuing contr ibu tion
by all members of the CLT group to more precise
defin i tions of qual i ty in our products and pro
cesses. O ur findings indicate t hat CLT's produc
t ivity has i mproved over t he last seven years. And
our findings justi fy the costs of coll ecting and
analyzing the data so that we can know whether
we are continuing to do better work.

Software Productivity

Software productivity encompasses more than
just the programming of software products . A
software system is completed only when the
functional and performance requirements have
been met and when i t is useful for t he intended
user . Therefore, the usual steps to reaching that
state i nclude analyzing t he requirements; design
ing, cod ing, and testing the code ; documenting
the system for both i ts users and maintenance
software engineers; and providing trai ning and
field support . The only way we can rea l ly exam
ine productivity is to consider the software sys
tem in t he context of the entire development
cycle .

Two major d imensions of software engineer ing
productivi ty are (l) the change in quant i ty of
software produced for a given period of t ime at a
given cost and (2) the qual i ty of the resul tant
software system.

Since a software system is bu i l t to solve a set of
problems, nor as an end i n i tself, we need to con
sider the product and the process in the context
of each other . Then we can measure productivity
and use the resul ts to help us focus on whether
our process is better , and what needs to be
changed in t he deve lopment process.

The qual i ty attributes t hat are i mportant to the
user of the software are important also to the
engineer who supports and extends the software.
For example, qual i ty attr ibutes i nclude the
usab i l i ty , usefulness, defect level and rate , and
performance of the software system . Also, we
must i nclude the qua l i ty attributes that affect
future costs; for example, the ease of modifying
ro enhance or correct the software and the ease of
porting the software to other hardware .

Influences on Productivity

A number of studies i ndicate that software pro
ductivity is influenced by mult iple factors . '

These factors include

• Personnel and ream capabi li ties and exper i
ence

2 2

• Requirements o n t h e resu l tant software sys
tem, including rel iabi l i ty , storage use , and
performance

• Characteristics of the development process,
including the use of disc ipl ined engineering
practices, the use of software rools, and the
avai labi l i ty of hardware for development and
testing

The major factors that have c hanged at Digital
during the last seven years are (1) increases in
s ize , complex i ty , and dependencies of products;
(2) i ncreased use of shared tools ; and (3) the
shar i ng (reuse) of design, code , and docu menta
tion between projects.

The first factor wou ld be expected to decrease
t he overal l productivity of the project teams. The
second two factors would be expected to
i ncrease productivi ty .

O ther papers in t h i s issue of t he Digital Tech

nicaljournal descr ibe specific tools used during
product development and give examples of
design and code reuse . 6 ·7

Tool Development and Use

In today's environment , each project team can
choose whether to use tools , define i ts project
infrastructure , and determine i ts own methods
for running t he project . With the avai lab i l i ty of
supported and usefu l tools , however , project
members usual ly choose to automate some pro
cesses , rhus avoiding t he redundant effort of rein
venting designs and code that a lready exist . The
paper "VAXjVMS Software Deve lopment Environ
ment" (this issue) describes t he tools and their
uses during the development process 8 The same
tools are used across mu lt iple development
phases . For example, t he VAX DECjCMS Code
Management System roo! , rhe version control sys
tem, can be used from rhe beginning through the
end of the process. At the beginning, this pro
gram manages versions of t he requirements docu
ments ; ar the end. it manages the versions of
code , rests , command files, and documents .

Here are some examples of CLT's use of these
tools :

• Previously, the procedures for bui lding and
control l ing source code were usual ly l isted on
a blackboard , in a notebook, or in someone's
head . Now, the VAX DECjCMS and VAX DEC/
MMS Module Management System tOols auto
mate the versioning of source code, the identi
fication of modules that belong tO a particular

Digital Tecbnical journal
No. o February I <J88

base level or version , and the bui ld processes.
The l ibrary structures and M MS bui ld proce
dures also serve as project documentation .

• Regression test ing is now s impl ified by the
VAX DEC/Test Manager software . By support
ing attribu te-based subset test selection, this
tool makes i t easier for software engineers
working on opt imizat ions or defect correc
t ions to quickly run subsets of a major test sys
tem. Being easier , test ing is done more often .
Many projects rout inely rebui ld the project
code (using CMS and MMS) and run either the
entire test system or a part of it every night .
The next morning, the software engineers
know i m mediately if their previous work
caused a new problem or regression . Projects
that have adopted th is process for bui lds and
tests have almost completely e l im inated the
many hours of integration at base leve l .

• The VAX NOTES system, a distributed confer
ence tool , helps in automating and tracking
project design d iscussions and decis ions . The
project members can open a separate topic
deal ing with an issue. Subsequent responses
from the project members, and perhaps field
support personnel (world-wide) , are avai lable
to all in terested parties on Digita l 's internal
network. AJ though the NOTES conference does
not replace meeti ngs of the project team for
design discussions and reviews, i t does
provide an easy-to-use mechanism for describ
ing the h istory of the discussions . NOTES helps
to inform new project members of the pro
ject's h istory and status .

Reduced Redundancy

O ur software engineers now search for code,
designs, addi t ional tools, and documentation
that can be reused. Both managers and engineers
consider reused code as an investment in
design, programming, and testing that has
already been paid for . Moreover, the support for
that code has been planned and is i n place .
Reusable run-t ime components have been used
and avai lable since the first version of the
VAXjVMS operating system in 1 9 7 7 . The VAX
Common R un-Time Library (RTL) is used by a l l
products. This l i brary i s a group of approxi
mately one thousand software routines used
by hundreds of software components and prod
ucts for run-t ime support of common functions.
Recently, major components outside the RTL

Digital Technical journal
No. o February I 'J88

have been planned and designed specifically to
provide functions that are needed in multiple
products .

Software Metrics

The best way to gauge improvements is to have
a set of measurements that compares how th ings
have changed over t ime. A software metric
is a quantitative way to characterize an attribute
of ei ther the software system or the software
development process . For a metric to be mean
ingfu l , there must be a way to measure these
attributes consistently and object ively. Then
various software systems and development
projects can be compared to themselves over
t ime and to each other . (That assumes other
variables remain constant; for example, s imi lar
types of organizations bui lding s imilar types of
software using s imi lar methods and processes .)
O nly when metrics have the same definit ion (and
therefore are measured in the same way) should
they be compared. ? . 1 0 . 1 1

Any metric process should guard against

• Measuring onl y one dimension ; for example,
quant i ty alone without considering qual i ty ;
t ime only without regard for the product
del ivered (For the resu l ts of a study on the
effects of measuring one dimension or crite
rion in favor of another, see Weinburg and
Schu l man's study on computer programming
goals and performance . 1 2)

• Measuring for the wrong reasons; for example,
using measurements to appraise an individua l

• Comparing measurements with too many vari
ables; for example, process control applica
t ions are different than payrol l applications;
the quantity of code per uni t of t ime is less for
high-level languages vis-a-vis assembly lan
guage code

In this paper, we d iscuss two sets of software
metrics: product metrics to describe the software
i tself, and process metrics to reflect the process
of software development.

Software Product Metrics

Product metrics (also called system metrics)
describe the attributes of the software system
or components of a system , and the related
documentation, tests, and system control infor
mation (for example, command language batch
streams) . Size , usabi li ty , maintainab i l i ty , number
of defects , and performance are a l l attribu tes of a

2 3

Software
Productivity
Tools

Software Productivity Measurements

software system. For this study, we used three
software product metrics: size, defects, and
defect rate .

• The size S of a software product i is defined as

5 = 5,. + 5,
I 1 000

in which Se equals the number of l ines of
code , including data declarations, and S,

equals the number of l ines of comments . Each
l ine is coun ted as one regardless of the number
of operators, operands, and com ments that the
l ine may include . Incl ude fi les are counted
once , and reused code shi pped with t he
product is counted . Blank l ines are not
counted . Project tools , tests , test data , and
control fi les are a lso not counted.

• The number of defects D for a product i is
defined as

D; = Db + Dd + D,

in which Db is the number of customer reports
answered as a "bug" or "correction given , " Dd
is t he number of customer reports answered as
"documentation error ," and D, is the number
of customer reports answered " restriction on
the use of t he software ."

• The defect rate DR1 , which also describes the
software product , is defined as

DR1 =
D1
S,

The defect rate provides a way to norma l ize
t he data associated with a particu lar product
such that the defect rates of mult iple products
may be compared without regard for variances
in product s ize .

Software Development Process Metrics

Process metrics describe t he a ttr ibutes of devel
oping the software system , product , or compo
nent. Attributes of the process incl ude the cost of
development (in human resources, hardware
resources, and calendar t ime) , t he predictabi l i ty
of t he schedule and delivered software capabi l
i ty, the number of design and code reviews, and
the length of t ime to respond to a customer
inqui ry or problem report. For t h is study we are
using the cost and engineering productivity met
rics.

• One defini tion for cost C of t he developmenr
of t he software product i is the length of t i me

2 4

i n months that the software engineers and pro
ject leader spent in the various phases of the
project . Thus cost C is defined as

C; = DM1p1 + DM1p2 + DM;P.J

in which DM equals the number of months
directly charged to the project by t he software
engineers and project leader, and P 1 , P 2 , and
P 3 are phases 1 , 2 , and 3 , respectively.

• The engineering productivity EP1 is defi ned as

EP· =
S;

I C;

This metric provides a means for comparing
various projects by norma l izing t he size and
the cost of each project .

Indicators of Improvement

To answer the question , Are we doing better now
than in the past 1 , we have tO gather data on older
projects and t hen compare it with data from more
recent projects.

Collecting the Data

For the produns in t his study, we present three
sets of data : size, nu mber of defects, and develop
ment cost . We chose version 1 products and other
major product versions in which more t han 5 0
percen t o f the del ivered code was new. Al l prod
ucts in th is study were developed on the VAX/
VMS system , and all but one were wri tten in t he
VAX BLISS- 3 2 language . Shi pment of t hese prod
ucts to custOmers began during t he period from
late 1 9 80 through summer 1 9 87 .

Col lecting data from older projects was some
what di fficul t : there were few common tools that
we cou ld use for data col lect ion , files were fre
quently lost, and memories of the project team
members were not a lways clear or accurate . Some
projects did keep data , and these are included in
t he comparisons. Many projects of t he la te 1 970s
and early 1 98 0s, however, d id not col lect or save
needed data ; so there are fewer data poi nts for
products shipped before 1 9 8 3 . Many of the early
products developed in CLT were not written for
t he VAXjVMS system and have not been incl uded
e ither.

Col lecting data from recent projects was
easie because most of them used the same tools
as part of the project i nfrastructure. We were
able to col lect product l ines-of-code data in a
consistent manner by using rout ines wriuen in
the VAX SCAN language to access the project

Digital Technical journal
No. 6 February 1 988

VAX DECjCMS l ibraries. Customer-reported
defect data has been col lected for many years
through a database that stores information from
Software Performance Reports. The data for t ime
and effort to build the products was col lected

from project phase review and accounting
records .

The Results

This paper presents the findings for two derived
metrics, the engineering productivity metric and
the defect-rate metric, and the change in cost-to
build as reflected by the relationship between
size and cost data .

The Engineering Productivity Metric

Engineering productivi ty indicates the rate of
code product ion for an investment of each
person-month . This metric i s helpful for under
standi ng whether programmer productivity is
improving. Figure 1 shows this metric for
1 4 products and the date of the first shipment.
The engineering productivity associated with the
products del ivered before January 1 9 85 and
those del ivered s ince are shown by the regression
l ines. Since 1 985 there has been a significant
increase in the quantity of code produced for
each developer-month. For the 1 980 through
1 984 period , the productivity rate ranged
from 220 l ines-of-code per developer-month to
1 , 487 l ines-of-code per developer-month , with a
mean of 79 2 . For products shi pped s ince January
1 98 5 , the productivity rate has ranged from
1 , 1 33 lines-of-code per developer-month tO
3 , 735 l ines-of-code per developer-month , with a
mean of 2 , 1 69 .

We attribute this i mprovement primari ly to the
increased reuse of code from other projects. Of
the four most recently shipped version 1 prod
ucts, reused components composed between
22 and 56 percent of the del ivered code . Addi
t ionally, we bel ieve that the use of common , sup
ported rools that became avai lable during the
development of products delivered since January
1 985 also contributed to this i mprovement .

The Defect Rate Metric

Defect rate is one measure of the qual i ty of the
software products that we ship to customers. Var
ious publ ished stud ies indicate that the " typica l "
defect rate for American industrial software is
1 0 defects per 1 ,000 l ines of code , 1 3 and that th :�
rate varies from 5 to 30 defects per KLOC .

Digital Technical journal
No. 6 February 1 988

I=
(fJ
0

>- 0
t= ,_
� z
t- UJ
0 ::2;
::> a_
D O 0 -'
C: UJ ll- >
(!) UJ
z Q_ - UJ
C: N UJ
UJ <fl
Z t--
(5 � Z D UJ O

a: �

4.00
3 50
3.00
2 .50
2.00
1 50
1 00
0.50

..
.. ..

� - - - - - - .- -;-

..

..

Q L_ __ L_�---L��������� 1980 1 981 1 982 1 983 1 984 1 985 1 986 1 987 1 988
DATE OF RELEASE TO CUSTOMERS. 1 4 PRODUCTS

KEY
- - - PRE- 1 985 TREND
-- POST-JANUARY 1 985 TREND

Figure 1 Engineering Productivity

To understand our own level of defects and to
compare our performance to t hose publ ished fig
ures, we examined t he post-release defect rate
for 1 3 products over the t ime period from the
date when it first shipped to customers unti l the
su mmer of 1 987. (One older product was e l imi
nated because the accuracy of the data was sus
pect.) This data is shown in Figure 2. Since Janu
ary 1 9 85 , the defect rate has decreased tO 0 . 066
and less . Of the 7 products in the 1 98 5 - 1 987
grouping, 4 had zero customer-reported defects
at the t ime of this study. Our pre- 1 985 defect
rate ranged from 0 . 07 to 1 . 5 1 defects per KLOC.

Although th i s defect rate i s advantageously
low, the most important findi ng from this data
concerns the trend of th is rate: it is decreasing.
That trend means that our software customers
have more reliable software , and that we can
reduce maintenance and support costs, and free
engi neers to work on new products as we l l as
support other products .

(jJ
t--
0
UJ u..
UJ
Cl
u..
0

� a: <{ UJ a: co
,__ :::!;
u => UJ Z
tt W o Sj

t
u
::>
Cl
0

1 . 55
1 .40
1 .20
1 00
0.80
0.60
0.40
0.20

0
1 980

..
..

..

..

1 98 1 1 982 1 983 1 984

[DATE OF RELEASE TO CUSTOMERS. 1 3 PRODUCTS

Figure 2 Product Defect Rate

2 5

Software
Productivity
Tools

Software Productivity Measurements

We attr ibute the im provcm<..:n t in qual ity to
an increase in the avai labi l i ty and use of roots,
especia l ly the VA)(DECjCMS, VAX DEC/MMS,
VA,'(DEC/Test Manager , VAX Language-Sens i t ive
Ed i tor , and VAX Source Code An alyzer tools. (The
last three tools first became ava i lable for in terna l
Digita l use duri ng the second half of 1 9H4 .) Dur
ing project qual i ty reviews, each project ream i s
qu estioned about the use of tools , which has led
to an increased usc of various tools during the
deve lopment process. An u npubl ished survey
taken of the current C LT project groups in the
summe r of 1 987 i nd icated that 1 00 percent of
the projects responding use the VA,'(DEC/CMS
tool , 80 percent of the projects use or plan to us<..:
the VAX DEC/MMS root , I 00 percent of th<..:
projects use or plan to use the VAX DECj'J'est
Manager tool , 1 00 percent use i nteracrive edi tors
with 86 percent using the VAX Language-Sensi
t ive Edi tor roo! , and 79 percent use or p lan to usc
t he VAX Sou rce Code Analyzer tool .

The Cost- to -Build Rate

We also examined the relat ionsh i p between the
size of the product and the cost to build i t . Fig
ure 3 shows t he data for the cost to del i ver tested
and debugged code for 1 4 products. The hori
zonta l axis ind icates the project cost C for deve l
oping the prod uct, t he vertica l axis represents
t he product size S , and the date at each data
point is the year that the product began shipping
to customers. Many studies show that the cost
of software has a d i rect relat ionsh ip to the size
of the software produc<..:d .

'
Figure 3 indicates

that CLT has del ivered products with l ower
cost s ince January 1 9 85 than for the period
1 9 80 ro 1 984 . For exa mple, in 1 9 80 , one project
cost C = 1 4 5 ro design, i mp lement , rest ancl
del iver a product wi th size S = 8 3 . In 1 987 , a
project del ivered a prod uct with a cost C = 1 3 1
with size S = 2 9 4 . That is a 2 5 4 percent i ncrease
in prod uct size with a reduction in cost of 1 0 per
cent . In other words, a product that is over
three-and-one-half t imes the size of another was
produc<..:d with less cost . We consider that as one
i ndicator of improved prod uctivity.

Co ntinuing Improvement in the Future
By col lecting project and process information .
we hav<..: the clara to compare past projects with
new proj<..:crs and to compare projects with them
selves over t ime . We can use that data to eval uate
the est imates and progress of current projects.

26

0 0 0

(jJ 1-z w ::2 ::2 0 u
� 0
iii �

300

250

200

1 50

w 1 00
0
8 50
"-0 (f) w z
:::!.

85 ..
85

86 86 .. 84
.. ..

84 83 -- 83 "- ----
20 40 60

-- --

80

87
..

85 -- �
.. __ -- --

80 -- ..

1 00 1 20 1 4 0 1 50

COST (DEVELOPER MONTHS), 1 4 PRODUCTS

K E Y :

-- - PRE-1 985 TREND

-- POST-JANUARY 1 985 TREND

Figure 3 Relationship of Product Size and Cost

This data he lps both the project team and their
managers to gauge how a project is doing. One
use of the clara in Figure 1 is to check the va l idi ty
of the esti mates of a new project . We can usc t h is
data to answer questions such as , Do the fore
casted costs appear to be rea l istic given the his
tory of past projects i n th is organization'

The data a lso provides a known base that can
be used for comparisons with newer clata when
there arc changes i n the methods, too ls , or train
i ng of engi neers and the i r managers . Using these
com parisons, we can determ i ne if our process
and products are getti ng " better" or not .

We arc defin ing additional metrics, searching
for those that add ro our knowledge about the
q u a l i ty of the product and the process. Acld i r iona l
software proclucr merrics inc lude the mean-r ime
to-fa i l u re , module and product complex i ty , and
mai ntainabi l i ty and extendabi l i ty of product
code . docu mentat ion . ancl test systems. Addi
t iona l development process metrics include the
ratios of defects founcl by i nspections. un i t rest
ing, pre-customer test ing , ancl customer rest ing,
t he mcan-ti me-ro-fix a proble m , the cost ancl
effort for the various development phases, and
the rare of successfu I test com pterion .

To col lect the data , we use the software deve l
opment tools that the project reams usc as part
of their project infrastructure . For example , the
VAX OEC/CMS program maintains a complete
history of the act iv i ty of a l ibrary, including add i
t ions and changes, when mack, by whom, and for
what reason . Using t he VAX DECjCMS h istory-fi I. e
data. we can ana lyze the reasons for changes to

Digital Technical jounwl
No. (i Fehrttar)' I 'JR8

modules and the rates of changes and deliveries
for code . documents. and tests . A<> another exam
ple, we can track test fa i lures and successes using
the VAX DECjTesr Manager software. The test
manager tool also provides a h istory of additions
and changes to tests , thus yielding data about the
arrival of tests in to the test system.

Summary

The metrics and data d iscussed in this paper
demonstrate that one group in Digita l is bui ld ing
higher qua l ity software products at lower costs .
Particu larly noteworthy is the increased qual i ty
of products , leading to reduced costs of mainte
nance . In several cases, one project ream is able
to su pport , mainta in , and enhance one product,
while providing su pport and maintenance for
another.

One central question we asked earl ier was ,
Do we understand what software development
"productivity" means' Our answer is . More tha n
we did i n the past, but we have more work t o do .
We look at software development " productivi ty"
to i ncl ude more than the productivity of individ
uals or the project tea m . Software development
productivity also i ncl udes the qual ity attributes
of the product .

Qua l i ty and productivity i mprovement arc
ongoing. They have become parr of our way
of doing business . The managers and software
development team members consider software
metrics and measurements as add itional tools that
help them ro manage projects . The abil ity ro col
lect data from the prod uctivity tools themse lves
has assisted in this process of change . Thus data
col lection has become a non int rusive by-product
of normal tool use . By using consistent col lect ion
methods, team members can compare the data
across projects in the organization . However, that
data is never us eel to measure an individual 's pro
ductivi ty; r he focus is always on the software
deve lopment process and software systems that
we del iver .

Acknowledgments
We wanr to express our appreciation to the
present and past CLT project team members and
managers for doing good work , for their um:ncl
i ng search for improvement, and for the i r efforts
with data col lect ion .

Digital Technicaljournal
No G Febma ry 1 988

References

1 . R . Knight , "COBOL Sti l l Strategic After Al l
These Years," Software News 7 (7) Oune
I 987) : 5 8-64 .

2 . R . H a l l , " Seven Ways to Cur Software Mai nte
nance Costs ," Datamation O u ly 1 5 , 1 987) :
8 1 -84 .

3 . " He lp Wanted ," Business Week (August 1 0 ,
1 98 7) : 5 0 .

4 . H . Davis, " Measuri ng the Programmer's Pro
ductivity , " Electronic Engineering Man·
ager (February 1 98 5) : 4 4 -4 8 .

5 . B . Boehm , Software Engineering Econom
ics (En glewood Cl i ffs : Prent ice-Hal l , 1 98 1)

6 . S . Greenwood , " VAX SCAN : Rule-Based Text
Processing Software , " Digital Technical

journal (February 1 988 , this issue) :
4 0 - '5 0 .

7 . S . Grass , " Deve lopment o f a Graphical Pro
gram Generator," Digital Technicaljournal

(February 1 988, this issue) : 1 0 1 - 1 09

8. B. Beander, "VAXjVMS Software Develop
ment Environment ," Digital Technicaljour

nal (February 1 988 . this issue) : 1 0- 1 9 .

9 . T. Capers Jones, Program m ing Productiv

ity (New York: McGraw- H i l l , 1 986) .

1 0 . S. Conte, H . Dunsmore , and V. Shen , Soft

ware Engineering Metrics and Models

(Menlo Park: Benjamin Cummings , 1 986) .

1 1 . R . Grady and D . Caswe l l , Software Metrics:
Establishing a Company- Wide Program

(Engl ewood C l i ffs : Prentice-Ha l l , 1 987) .

1 2 . G . Weinbu rg and E. Schu l man, " Goals and
Performance in Computer Programming,"
Human Factors , (1 6/ 1) (1 97 4) : 70-77 .

1 3 . B . Be izer, Software Systems Testing and
Quality A ssura nce (New York: Van Nos
trand , 1 984) .

1 4 . W. Myers, " Can Software for the Strategic
Defense I n i t iative Ever Be Error-Free'" Com

puter (November 1 986) : 6 1 -6 7 .

2 7

Software
Productivity
Tools

Glenn Lupton I

Language-Sensitive Editor

The VAX Language-Sensitive Editor, a component of the VAXjVMS program
development environment, is an advanced text editor specificaUy designed
to help programmers develop and maintain program code. Developers of
the product required that it include a simple interface that would be read
ily accepted by the VMS user community, language-sensitive features that
improve programmer productivity, support for multiple languages with
the same user interface, and support for user extensions. In addition, the
editor had to mesh well with the existing program development environ
ment offered by Digital. This paper provides the background of the devel
opment effort, a close look at the design of various features and some of the
insights gained, and a summary of the current status and future directions
for the environment provided by the editor.

Background

In late 1 98 2 , the Technical Languages and Envi
ronments Group started a project to specify a Pro
gramming Support Environment (PSE) . Several
Digital products related to supporting program
development were already ava ilable or under
development . The PSE project outl ined a nu mber
of components needed to complete Digita l 's PSE
offering. One component was an ed itor specia l
i zed for program development. The edi tors being
used to deve.lop software typical l y did not con
ta in any special featu res to support the program
ming process. The PSE project developers saw
this as an interesting opportunity, and the pro
gram edi tor became the first target of the PSE
development effort.

Research of Program Editors

At the t ime , various universit ies were research
i ng program editors, and a number of papers
appeared i n techn ical journals. The progra m
mi ng-related features the editors provided often

varied with the language they supported , but
they typically provided interactive syntax check
i ng and special com mands to insert language
statements. Most of these were tree edi tors,
which model a source fi le as a syntax tree , rather
than text edi tors, which model a fi le as a stream
of characters . An advantage of tree edi tOrs is that
syntax errors and some semantic errors are pre
cluded or diagnosed i mmediately. Tree edirors

28

can determine the syntactic context of the cur
rent edi t ing posi t ion and offer assistance on the
language constructs or the identifiers that are
va l id at that posit ion . There are also operations
that can be performed conven iently on a parse
tree, such as cursor movement by syntactic e le
ment and el ision , the suppression of selected
program deta i ls i n the display. Although tree
edi tors can offer some very useful programming
support , their disadvantages are significant.
Their main drawbacks relate to their user inter
face , their performance , and their specia l i zat ion
to a single programming language or subset of a
language .

Making mod ifications ro source fi les is often
awkward using a tree editor . Since tree editors
insist that the contents of the fi le must always
correspond ro a wel l - formed syntax tree , there
are serious constra ints on the intermed iate
forms that the contents of the fi le can assume.
In one tree edi tor, the language keywords are
not items that can be edited by the user. A
s imple change , such as replacing the keyword
WH I LE with UNTI L, requ ires a nu mber of
steps , including saving the loop-body, deleting
the WHILE- loop. and reconstructing it as an
UNTIL-Ioop.

1

Another tree editor copes with such difficu l ties
by integrating a simple text editOr with the edi·
tor . 2 Users may edit a portion of the source fi le as
text by c l ipping a syntax subtree in to the text
editor . Of course, thc benefits of the tree editor

Digital Technical journal
No. 6 February I ')88

are not ava i lable when using the text editor fac i l
ity. When returning the cl ipping tO the source
fi le , the tree editOr parses the c l ipp i ng to verify
that its syntax is va l id at the point where i t
i s be ing inserted . In both of the above editors,
there are constrai nts on how users make changes
to source code. Moreover, they must think i n
terms of changes to a syntax tree , even i f that i s
not the most natural way to th ink of a part icular
edi t ing task.

Tree editors rely on pretty-printers to convert
their internal parse tree representat ion of a
source fi le into text for display to users. When
the formatting style of the pretty-printer i s agree
able to the user, this is a ti me-saver. However,
every pretty-printing a lgorithm has l im i tations,
i ncluding cases that the user can format more
readably. Thus , another drawback of tree editors
is that users must accept the formatting style of
the pretty-printer even when they would prefer a
d i fferent style .

Tree edi tors a lso consume considerable com
puter resources, both processing power for
parsing and memory for storage of parse trees.
Only single-user systems or l ightly loaded , mu lti
user systems could accommodate the resource
requirements of these editors.

Tree editors have d i fficulty in supporting cer
tain language features, such as macros and
condi t ional compi lation . For example, the fol
lowing fragment of C code uses condi t ional
compilat ion ro cal l the function PROCESS with
an extra parameter when it is compiled for
TARGET2 :

p r o c e s s (

i n p u t

i f t a r g e t 2

, l e n g t h

e n d i f

> i
Such language features pose considerable prob
lems in both the construction of a parse tree and
pretty-print ing. Typically, tree editors place
restrictions on the usage of such constructs. 3

Another language feature that poses problems
for tree edi tors is fi le inclusion . This feature
inserts a specified source fi le i nto the compi ler's
input stream, temporari ly suspending i nput from
the original source fi le . The # include preproces
sor control l i ne in the C language is an example
of this. Although a fi le specified by # i nc lude typi
cal ly conta ins only declarations, the language

Digital Technical journal
No. 6 February 1 988

does not place such a restriction on the contents
of the fi le . Since the fi l e may conta in any frag
ment of a compilation, i t m ight be impossible to
construct a pa rse tree for the contents of the fi le,
and so, impossible to edit the fi le using a tree
editor. It may also be d i fficult to construct a
parse tree for a source fi le that conta ins # i nclude
statements.

Sti l l another drawback is that tree editors can
not be used for all edit ing needs. Most tree edi
tors are tai lored to a particular language . Users
have to use other editors for other languages and
for text files.

Product Requirements

The primary requirement of the program ed itor
is to improve programmer productivity by sup
porting program ed i t ing with language-sensitive
features. Based on the insights gained from the
above research , the PSE project assembled a l ist
of additional requirements and design consider
ations.

Ease of Use

Users must view the PSE editor as being easy to
learn . In particular, since most of our customer
base was using EDT, the progra m edi tor shou ld
have an interface that is compatible with EDT."

Given that they know how to use EDT or
another text editor, there should be very l ittle
that users have to learn i n order to begin using
the program edi tor productively.

Add itionally, the PSE editor must not compli
cate the users' programming environment by
forc ing them to use the PSE editor for edi t ing
source fil es and another editor for other text
fi les. They shou ld be able to use the PSE editor as
a replacement for their current text editor. The
PSE edi tOr must enhance the programming pro
cess with min imal changes to users' edit ing
styles.

Multiple Language Support

The editor must support a variety of program
ming languages. FORTRAN was the most widely
used programming language in our customer
base; but many customers were using other lan
guages, and a significant portion were using more

than one h igh- level language . Some customers
would soon start using the Ada language, and a
program editor that would help users make the
transi tion tO Ada wou ld be an important part of
Digita l 's Ada Programming Support Environment
(APSE) . The editor must also make i t easy for

29

Software
Productivity
Tools

language-Sensitive Editor

users to work on software written in more than
one language and ro work on multiple programs

wrirren in various languages. Therefore, the edi
tor must support a variety of languages with a

common user interface.

Flexibility

In addition to supporting a variety of l anguages ,

the editor must provide access to a l l the features
of each l anguage. The editor must not l imit users

to a subset of the l anguage nor restrict the way in

which language features are used. Users must be
able to construct any lega l program a nd format

the code as they wish.

Extensibility

Users must be able to modify and enhance rhe

editor to suit their preferences and their special

needs. The popularity of E MACS, a progra m mable

editor , was evidence of the need for this. 5 Also ,

many customers had tailored EDT for specia l

uses.

In addition to providi ng a malleable editing

interface , the editor would have to accom modate

user-defi ned languages and user modifications ro

the lan guages provided by Digital. Users should

not have to change their coding style or their pro

ject coding conventions when switching to the

PSE editor.

Pe1Jormance

Performance was an important design consider
ation. Some users complained that the perfor

mance of EDT was barely acceptable on a loaded

timesharing system , which was the expected

environment for the PSE ediror. Devel opers work

ing on a text editor for such a target system were

then wrestling with the problem of echoing char

acters as fast as the user typed the m . The PSE

edi tor must support program editing without

requiring significa ntly more system resources
than typical text editors needed .

The EDITH Prototype
Although program edirors that viewed a source

file as a pa rse tree showed promise and had

advantages over editors with a text view of a pro

gra m , their disadv antages were significant. An
alternate approach was ro add language-se nsitive

enhancements to a text editor. This approach had

been meeting with some success int ernally with

enhancements to the E DT editor."' and externallv
with EMACS. ' a nd rhe Z editor (' This is th�
approach that the PSE proj ect chose to prototype .

. 1 0

Given the above requirements, the PSE project

deve loped a prototype program editor called

EDITH. This was a text ediror with an E DT-style

interface. It maintained only a textual represe nta

tion of source code a nd could be used ro edit any
text file.

EDIT H supported program editing by supply

i n g templates for source constructs. A tem p late is

usually a skeleton for a language construct. Users

can in struct the editor tO insert a te m p late into a

source file. The foll owing is an exam ple of a tem

p.lare for an IF statement:

i f { c o n d i t i o n} t h e n

{s tatem ent} . . .

[e l si f _pa r t l . . .

[e l s e _ pa r t l

e n d i f ;

Tem plates provide several henefits:

• Correct keywords a nd punctuation

• Proper formatting a nd inde ntation

• Consistent case conve ntions

• Source entry using fewer keystrokes

Templates typically contain syntactic markers

indicating where other program elements can

or must appear. Templates also aid the user i n
e nt ering correct source code . Markers, such as

[else_part] and lsra re menrj , have tem plates or

menus of tem plates associated with them rhat the
user can select. The user i s free to use the text

ed i ting capa bilities of the editor to enter and

modify program rext. By providing language tem

plates, the editor helps the user develop syntacti

cally correct programs, without restricting the

contents of the source file , as docs a tree editor.
This design for syntax su pport also performed

we.ll and could easi I y accom modate a variery of

languages.

Additionally, E D I T H i n terfaced to a parser to

perform syntactic checking and to report errors.

An explicit PARSE command would pass the
source code ro a language-specific parser. As

errors were detected, the parser passed d i agnos

tic information back to the editor. The editOr dis

played this inform ation ro rhe user, who could

then step through the errors one at a rime. As

each error message was displayed , rhe editor
positioned the editing cursor at the point in the

source where the selected e rror was diagnosed.

The user could the n m a ke appropriate correc
tion s . This i nterface allowed users ro find syntax

errors without leavi ng the editor to run the com-

Dip,ita/ Technical journal
No. (j Fehmar1• 1 988

pi ler, and provided a convenienr interface for
reviewing the errors and locat ing the correspond
ing source code.

A number of ideas prototyped in EDITH
evolved into features of LSE.

Foundation for the Implementation

Coding for the VAX Language-Sensit ive Ed i tor
begin in January, 1 984 . At that t ime, a pre l i m i
nary version of t he VAX Text Processing Uti l ity,
VAXTPU, was avai lable. VAXTPU is a text ed i tor
users can program using a procedural language .
The language suppl ies a large nu mber of bui lt - in
functions that are used to manage fi les, windows
(portions of the term inal screen) . text , and even
subprocesses. VAXTPU provides compi lation and
execution fac i l i ties for programs written in the
VAXTPU language . To use the VAXTPU editor,
the user needs a user in terface wri tten in the
VAXTPU programm ing language . The first release
of VAXTPU provided rwo interfaces . One inter
face was an EDT emu lator; the other. cal led EVE,
was heavi ly oriented tO t he keyboard for VT 2 0 0 -
series terminals. VA."'\TPU was to replace EDT as
the VMS editor. Shortly after the re lease of
VAXTPU, LSE would have to address compatibi l
i ty w i t h VAXTPU and EVE . as we ll a s with EDT To
meet t h is new requirement , and the requirement
for the editing capabi l i t ies to be user-ta i lorablc ,
LSE wou ld be a su perset of VAXTPU. The high
performance design of VA.XTPU woul d also help
LSE meet its requ irement to perform well on
loaded t i mesharing systems. LSE wou ld also use
VAXTPU to provide EDT-com patible funct ions.

As a resul t , the LSE project used the VA.XTPU
sources as a base when implementing LSE .
Although a number of t he VA.XTPU source mod
u l es had to be changed to interface ro LSE func
tions, most of the VAXTPU code was used
unchanged. Thus, LSE used the VA.XTPU code as a
l ibrary of run-time rou ti nes for terminal in terac
tion and for support of the user-program mable
features . This gave the LSE developers access to

a powerfu l set of functions for text manipulat ion
and screen management . At this poin t , the code
for the EDITH prototype was abandoned.

Syntax Support

One obvious way an edi tor can support pro
gramm ing is ro ass ist in the construction of syn
tactica l ly correct programs. To provide such
assistance, LSE adopted the te mplate approach
prorotyped in EDITH.

Digital Technical journal
No. 6 February I 988

Templates for Language Constructs

To provide support for entering source code, LSE
adopted the template approach prototyped in
EDITH . In a very basic sense , a template is s imply
text that is inserted into the edit ing buffer a t the
user's request . Within that text may be places
where the user wi l l have to enter addit ional text
to complete t he mater i a l .

I n the context o f a programming language,
t he text of a template is usua l l y a sequence of
lexemes, such as keywords and punctuation ,
t hat form some piece of t he syntax of a program
m ing language . Places where t he user must fi l l
in more syntax to have va l id program text are
indicated hy syntactic markers ca l led placehold
ers. Templates are inserted inro a source fi le

by an EXPAN D operation . Text inserted as part
of a templ ate can be edi ted l i ke any other text in
the sou rce fi le .

Tokens

The keyword or text t hat a user types to ident i fy
the template he wants i nserted is cal led a roken .

An EXPAND operation replaces the token with
the corresponding template. For example, typing
IF into an Ada source fi le and t hen pressing the
EXPAND key inserts the fol lowing into t he fi le :

i f { c o n d i t i o n } t h e n

{ 5 t a t erne n t } . . .

[e l s i f _ p a r t J . . .

[e l s e - p a r t]

e n d i f ;

A token is usua l l y a keyword that introduces a

language construct or the name of a predefined
function cal l . Only one EXPAN D key is needed to
expand any token i nto a template . Users do not
have to type the ent ire token name before press

ing t he EXPAN D key, just enough ro uniquely
identify t he token . If the prefix that they enter
marches more than one token, the editor displays
a menu of poss ib i l i ties from which to choose .

This sty le of i nteraction has proved to be easy
and effective . Users have access to a large number
of rempbres , i nc luding templates for cal l s to
a l l the VAXjVMS system services and run-t ime
l ibrary rout ines , and can access any template
quickly and eas i ly .

Placeholders

As mentioned earlier, placehol ders are the syntac
tic markers that arc inserted into the edit ing
buffer as part of a templa te. Placeholders are

3 1

Software
Productivity
Tools

Language-Sensitive Editor

distinguished from program text by the brackets
([]) or braces (! }) that de l imi t them. They
are stored interna l ly as text, and fi les that contain
placeholders are simple text files that require
no special processing for operations such as
printing. Edi tor functions that operate on place
holders recognize them by the characters chosen
as del imi ters for the language . For languages
in wh ich braces or brackets arc va l id lexemes,
other del imi ters must be chosen . Typica l ly ,
the del imi ters in such cases are formed using
braces and brackets in conjunction with some
other character, such as a ti lde (for example,
! �statement�}) .

Optional and Required Placeholders

A placeholder may represent optional or requir
ed language syntax . The optional or required
nature of the placeholder is i nd icated by the
enclosing del im iters. In the IF example above,
the !condition} placeholder appears with braces,
del imiters that indicate tO the user and the edi
tor that i t is a placeholder for syntax that is
required at that point . The (else_pan] place
holder appears with brackets as del imi ters,
indicating that the e lse_pan is optional . The
placeholders term inating with e l l ipses (. . .) are
ca l led l ist placeholders. They ind icate where
users may enter more than one of the correspond
ing language constructs. Braces and brackets
indicate whether a l ist placeholder is for
required or optiona l syntax. Thus, !statement} . .

appears at a point where the user must enter
one or more statements, whereas [statement] .
appears where the user may optional ly enter
statements.

Expanding Placeholders

Li ke tokens, placeholders may be expanded .
There are three types of placeholders: nontermi
nal , menu, and termi na l .

Nonterminal placeholders expand into a tem
plate . For example , in the above IF template, the
(e lse_part] placeholder expands in to the fol low
ing simple template :

e l s e

{ s t a t e me n t } .

A menu placeholder expands to a d isplay of
a set of choices . The !statement} . . . placeholder
above is a menu placeholder. Expand ing this
placeholder results in the display of a menu of
statements, as shown in Figure 1 .

Expandi ng a terminal placeholder si mply dis
plays a description of the program syntax that
must be entered at that placeholder. A typical
example is the ! identifier} placeholder; the
expansion provides information such as the char
acters that are legal in an identifier and the maxi
mu m length of an identifier.

Filling in Placeholders

Once users have the level of detail they need from
the templates, they can fi l l in the m issing syntax

func t i on P R I HE < NUHBER : i n I NTEGER > l'etul'n BOOLEAN i s

3 2

b e g i n
for I in 2 . . NUHBER/2 l oop

i f (NUHBER - < < NUHBER I I > • !)) = 0 then
l ll!t a tel!lent l . . .

[e I s i f_pai' t l , . ,
[e I se _pa r t l

e n d i f ;
end l oop;
[s tate 111ent l . • .

return ! express i on ! ;
[exception_partl

•:n . .

> abort : Prevents an� ful'ther l'ende zvous w i t h the named tasks
accep t : Spec i f i e s the resu l t i n g action of a task entl'� ca l l
{ a s s i gnl!lent_statel!lent l : A s s i gns the va l u e of an expl'ess io n to a val' i ab l e
{ b l ock_statelll ent l : An opt i ona l] � named b l ock of dec l al'at i ons and state 111ents
CISI! : Chooses an a c t i on based on the v a l ue of an expression
de l a� : De l a�s exec u t i on fol' sp e c i f i e d a111 ount of t i m e
l e ntl'�_ca l l _state lll ent l : C a l l s a task entl'�

.. ; . , . .

1 3 l i nes read fro111 f i l e LSE S : [D EHO J PR I HES . ADA; I

Figure 1 Editor Display with Choices for < s t a t e rn e n t } . . .

Digital Technical journal
No. 6 Febmarv I ')88

by typing text on the placeholders. I n some
cases, such as an assignment statement, users wi l l
l ikely be sufficiently fami l iar with the syntax of
the language tO type the complete statement on a
statement placeholder, rather than to expand the
statement placeholder and select the assignment
template from the menu . In other cases there wi ll
be no more deta i l that can be supplied by the
template , ei ther because the template designer
did not provide the deta i l or because the user has
reached a true terminal in the l anguage syntax
such as {identifier} .

When text is typed on a placeholder, that
text i mmed iate ly replaces the placehol der.
In the case of l ist placeholders such as
{statement} . . . or {identifier} . . , typing text on
the placeholder causes a separator and a dupl i
cate of the original placeholder to be i nserted
after the text. For example, typing COUNT on
{identifier} . . . results in :

C O U N T , [i d e n t i f i e r] . . .

Note that the placeholder is now shown as
optional and that the edi tor inserted a comma
and a space as a separator. The defin i t ion of the
identifier placeholder specifies the separator that
should be used. The defin ition of a placeholder
also speci fies whether it shou ld be dupl icated
vertically or horizontally. { identifier} . . . is an
example of a placeholder that dupl icates hori
zontally, whereas {statement} . . . duplicates verti
cally.

Erasing Placeholders

Many templates present placeholders for optional
pieces of syntax that the user may not want .
These optional placeholders can be erased using
the ERASE PlACEHOLDER key. The algorithm for
erasing a placeholder is one of the most complex
algori thms i n the editor. This wou ld appear w be
a simple text deletion, but even i n the s imp lest
cases some special rules come into play . In the
fol lowing example , erasing the optional [expres
sion] p laceholder requires that a space be erased
to prevent leaving an extra space before the semi
colon .

r e t u r n [e x p r e s s i o n] ;

Usual ly, the editor erases the whitespace (blanks
and tabs) preceding a placeholder al ong with the
placeholder. But when a placeholder appears at
the beginning of a l ine, the ed itor must avo id
eras ing lead ing whitespace ; erasing the leading

Digital Technical journal
No. 6 February 1 988

whitespace wou ld change the indentation of the
l i ne . In this case , it erases the whitespace that fol
lows the placeholder.

I n a nu mber of cases, l ines must also be erased .
In the example of the IF statement shown earlier,
after erasing [else_part] the editor must a lso erase
the now blank l ine . This can be sl ightly more
compl icated , as in the fol lowing example of an IF
statement in Pascal :

I F { e x p r e s s i o n }

T H E N

< s t a t e m e n t }

[E L S E s t a t e m e n t] ;

Here, after eras ing the ELSE part of the IF state
ment, the edi tor must move the semicolon up to
the end of the preceding l ine and erase the l ine
that contained the ELSE statement. This example
becomes more compl icated when the preceding
l ine is terminated by a comment. In that case, the
sem icolon must be inserted at the end of the
statement placeholder but before the comment .

L ist placeholders, such as {identifier} . . . , re
qu ire special hand l ing as wel l . As mentioned
above, typing the identifier COUNT on this place
holder resu lts in :

C O U N T , [i d e n t i f i e r] . . .

When erasing the placeholder, the edi tor must
erase the comma and space .

When erasing placeholders, the editor must
maintain correct program syntax and proper
formatt ing. The editor does not have a parser
and pretty-printer for each language , but the
algorithm for erasing placeholders achieves
acceptable resu lts by examining text surround
ing the placeholder and using l imi ted informa
tion about the language and placeholders .

On-line Help

The VAXjVMS operating system provides a HELP
faci l ity for managing and d isplaying information
stored in a tree-structured text l ibrary. The infor
mation at a part icular node in this tree is accessed
by specifying a sequence of keywords . Each key
word selects a su btopic of the information for the
preceding keyword . For example, issuing the
VMS command HELP FORTRAN INTRINSIC COS
accesses the information on the FORTRAN in tri n
sic cosine function .

Before LSE was developed, HELP l ibraries were
ava i lable for a nu mber of languages. LSE pro
vides convenient access to this information by

3 3

Software
Productivity
Tools

Language-Sensitive Editor

a l lowing the keyword sequence for access ing a
particu lar node of the tree to he associated with a
token or placeholder. For example. the token for
the FORTRAl'J cosine funct ion , COS, has the
string " FORTRAN INTRI NSIC COS" assoc iated
with it. When the user presses the l anguage-help
key while the cursor is on the token COS, the
informat ion for COS wi l l d isplay. S imi larly. the
!statement} placeholder can have a string associ
ated with i t that accesses a node of the tree whose
suhnodes describe the d i fferent rypes of state

ments for a language . This a l lows users to get
he lp on language constructs without leaving the
edi tor and wi thout typing HELP commands .

Defining Language Support

The ed itor supports a speci al definit ion language
for describing a l anguage to the edi tor and speci
fying the tokens and placeholders. For each of
the languages supported by Digita l , the corre
sponding com piler project develops the lan
guage, token, and placeholder definit ions, and

the on- l ine HELP library. The defin i t ion language
is documented for customers so they can modify
the defini tions suppl ied by Digi ta l or add defin i
tions for other languages. The editor accesses
these definit ions when it is invoked. By conven
tion on the VAXjVMS operating system , source
fi les for d i fferent languages are distinguished by
a naming convention for the fi l e- type portion of
the fi le specification. The description of each lan
guage incl udes the fi le types that apply to
that language . The editOr uses this to determ ine
which set of language definitions ro associate
with a source fi le . Users may edit severa l source

fi les written in d i fferent languages in one ed it ing
session .

Templates Stray from BNF

A formal defin i t ion for the syntax of a language .
such as a BNF description , provides a good refer
ence when developing templates for a language .
However. strict adherence to such a description
can produce templates that are very tedious to
use .

The syntax for a language may be defined
using many intermed iate prod uctions. A stra ight
forward conversion of this grammar i nto tem
p la te definitions wi l l resu lt in a menu place
hol der for each production that has severa.l
a l ternatives as a right-hand side . Therefore many
menu placeholders wi.l l have e lements that are
a lso menus.

3 4

For example. to get from a placeholder for a
statement to a template for a while- loop might
req uire going from statement menu ro control
statement menu to loop-sta tement menu to
pn.:tested-loop menu ro while- loop . It wou ld be
much better to include the template for the
while- loop in the menu for the statement place
holder. In general , templ ates can be vastly
improved by e l iminating intermediate menus and
red ucing the number of expa nsions requi red to
access a template.

In some cases, the formal syntax defini t ion
for a language does not incl ude some simple
semantics that the templates should include. For
example , the syntax may define BEGIN and END
statements but not incl ude their rela tion . The
template for the BEGIN statement shou ld incl ude
the matching END statement , pl us p laceholders
for the syntax that may appear between them.
There arc a nu mber of cases l ike th is where com
mon sense and coding standards shou ld influence
the template definit ions . The template for a pro
cedure declarat ion is another good example.
Often a user site fol lows a coding standard that
requires a procedure to have a speci a l ly format
ted com ment associated with i t . Also, the coding
standard might require that the body of the pro
cedure be a BEG I N/END block. a l though the
language does not require this . The predefined
templates for a language can be a greater pro
ductivity aid if they are tai lored to the way in
which the language is typical ly used on a particu
lar project.

Flexibility in Detail of Templates

The level of deta i l that templates provide is
up to the au thor of the template definit ions .
For example, the p.laceholder !cond it ion } cou ld
be a term inal placeholder that expands into
a description of Boolean expressions in the lan
guage; or it cou l d expand into more detai led rem
plates and menus that provide the syntactic
elements of a Boolean expression , such as AND,
OR. and n:lational operators

H ighly deta i led templates are especia l ly useful
in declarat ions, for example:

{ i d e n t i f i e r } . . . :
[c o n s t a n t] [s u b t y p e - i n d i c a t i o n]

[i n i t i a l _ v a l u e l ;

Compared to a control construc t such as an IF
statement , the syntax of dec.larations is often
complex, and l i kely to have a l arge number of
options. Detai led templa tes help users with this

Digital Technical journal
No. 6 February 1 988

complexity by presenting menus of choices and
placeholders for various declaration options .

Observations on Using Templates

One of the s ignificant aspects of the edi tor's sup
port for entering source code is that i ts use does
not interfere with the use of the edi tor for arbi
trary text manipu lation . There are no restrictions
on the intermediate contents of the text buffer
when reorganizing or restructuring code. Text
man ipulat ion operations that users have coded
themselves in the VAXTPU language are also

ava i lable. The fi nal formatting of the source is up
to users. Templates supply formatted language
constructs, but users can reformat the program
text wit hout restrictions . This is not possible in
most language editOrs .

In practice , users frequently take advantage
of the source entry su pport afforded by tem
plates . There are two primary reasons to use
templates. One reason is for assistance with unfa
mi l iar language syntax. Users who are just
beginning to learn a new programming language
can use the templates to help them get detai ls
correct . Users who are genera lly knowledgeable
about the language can rely on the templates
when they have tO use a construct that they rarely
have occasion to use, or when they have to make a
ca ll to a system routine that takes many parame
ters . A second reason to use templates is that they
provide structured formatting and reduce typing.
Even the most experienced programmers can
benefit from using the editor to insert properly
indented control constru cts, matched BEG IN and
END statements, and comment blocks, such as
those used to describe the function , parameters ,
etc . , of a procedure.

By helping users with language syntax and by
insert ing some of the source code for the user.
the edi tor reduces errors and improves produc
tivity.

Beyond Syntax - Integration for
Programming Support

If assistance in entering syntactica l ly correct
source code were a l l that the editor offered
with respect to su pport for program deve lop
ment, i t wou ld be a very useful product ivity
a id . However some of i ts most important produc
tivi ty features do not deal with ed iting source
code . In fact if the editOr provided no support
at a l l for language syntax, LSE wou ld sti l l be
a valuable aid in program development because

Digital Technical journal
No. 6 February I 988

i t also provides tight integration with the fo llow
ing faci I i t ies :

• VMS language compi lers

• VA)(Source Code Analyzer7

• VAX DECjCMS (Code Management System)
8

Compiler Interface
The editOr provides users the means for diagnos
ing syntactic and semantic errors by interfac
ing with the language compi lers . Each compi ler
for the languages that support LSE has been
en hanced to generate diagnostic fi les that spec ify
the compi lation errors and the related source
locations. The editor creates VMS subprocesses co
perform the compi lations. This is a very different
design from the E D ITH protOtype that i nterfaced
by procedure calls d irectly ro a parser. This
design has the fol lowing benefits.

• Users need not run the language processor
from t he editor.

• Concurrent compilations are possib le .

• Al l compi lat ion errors are diagnosed, not just
syntax errors.

• No special parsers are needed .

• Implementation is straightforward .

Since the compil ers place the d iagnostic infor
mation in a fi le, the source processing does
not need to be done from within the editor.
Compi lations can even be done overnight by a
batch procedure, and the d iagnostics reviewed
later using the edi tor. Also, since the compi la
t ions are done in separate processes, the user
is free to conti nue editing one source fi le while
compi l ing others .

A drawback of using a parser, as in EDITH , is
that the parser does not catch semantic errors,
such as mismatched data types. These errors were
caught by the compiler in a separate compi lat ion
step . In LSE, a l l compi lat ion errors are caught by
a single mechanism and can often be fixed i n one
step.

Another drawback of using a parser within the
ed itor is the work required to develop the parser
and keep it consistent with the compi ler. Not a l l
compi lers are designed in a way that makes i t
easy to pick up the parser and use it as a separate ,
cal lable ut i l i ty . Consequently, considerable t ime
was saved by avoiding the implementation of a
cal lable parser for each of the many languages
LSE had to su pport .

3 5

Software
Prod uctivity
Tools

Language-Sensitive Editor

Once t he compi ler has wri tten the diagnostics
informat ion to a fi le , the ed i tor reads rhe fi le and
disp lays t he information in an edit ing wi ndow .
Conventional edit ing commands for scrol li ng
and searc hing can be used wi th in th is wi ndow .
Specia l keystrokes al low the user to select a
d iagnostic and bring the correspond i ng source
fi le intO a second edit ing wi ndow, as shown
in Figure 2 .

Each di agnostic consists of message text and
one or more I i nes of rel ated source code. The
message text may be one l i ne or many l ines .
Usual ly one l i ne of source re lated to the error
is presentee! . The soph isticat ion of the d iagnostic
information depends on t he capabi l i t ies of rhe
compi ler bei ng used . Most compi lers present
one- 1 inc error messages and rhe corresponding
source l ine . The most soph isticated presents
dera i led error messages that include references
tO sections of the language manual and mul t ip le
related source l i nes . One usc of mul tiple source
li nes is to display both the declaration and usc
of a variable with the error message . The user
may select e i ther source l i ne in the d iagnostic
d isplay, and t he edi tor wi l l posi t ion t he ed i ting
cursor on the corresponding l ine in the appro
priate source fi le. In some cases, such as a
miss ing semicolon or a misspel led keyword ,
the di agnostic information supplied by the com-

l i ne 39 : LOW : = 1

pi lcr wi l l include a suggested correction . The
edi tor wi l l make the correction , subject ro the
user's confi rmation .

Source Code Analyzer Interface

Perhaps the greatest productiv i ty aid in LSE i s
i ts i n terface r o the VAX Source Code Analyzer
(SCA) . SCA is a mu l t i l anguage , source code
cross -reference and static-ana lysis root . Com p i l
ers for su pported VAX l anguages col lect informa
t ion during the compila tion process and write
t h is i n format ion to a spec ial analysis fi l e . SCA
loads this information i n to a l i brary for a program
system . For each occurrence of an identifier in
rhe program syste m , the SCA l ibrary contains
i n formation such as the source fi le . l ine. and
col umn of rhe occu rrence; rhe type of occur
rence (read , write, declaration, cal l , etc .) ;
and the class o f identifier (procedure, variab le ,
e re .) . SCA can a lso d isplay ca l l s ro and from
a procedure , and can pe rform consistency checks
on cal ls and declarations between compi lat ion
uni rs .

Through its i ntegration with SCA, LSE becomes
a browsing ut i l i ty for a software system . By pos i
tioning the edi t ing cursor on a use of an ident i fier
in a source fi le and pressi ng a key that invokes rhe
GOTO DECLARATION command, the user can
bring the source correspond ing to the decl aration

XADAC-E- I NSSEM I , I nser·ted " ; " at end of I i ne

3 6

i n e 24 : L O W , H I G H : I N TEGER;
L 1ne 43 : HIGH : = 10000 . 0;
XADAC-E-ASSI GNNERESTYP , Resu l t t�pe I N TE GER in predef i n ed STANDARD of var i ab l e

H I G H a t l i ne 24 i s not the s a�e as an� r e a l t �pe of l i tera l 1 0000 . 0
[LRM 5 . 2 (1 > 1

Buffer SREVIEW Read-on l No�odif Forward
end i f ;

i f H I G H > 1 0 000 then
H I GH B= 1 0000 . 0 ;

end i f ;

i f H I G H > LOW then
PUT (I TE M => " I nput er·r·or· : L OW > H I G H ") ;
NEW_L I NE ;

-� ' I

60 l i nes read fro� f i l e LSES : [DEMO l P R I MES_ERROR . A D A ; l

Figure 2 Editor Display ll'ilh Source for Selected Diagnostic

Digital Technical journal
No. (, Febmm:r I ')88

of the identifier i nto an edit ing window . In this
way, the user can view both the use and declara
t ion on the terminal screen , as i n Figure 3 .

Users can perform more general queries using

the SCA FIND command . Using FIND, a user can
locate all the places where a variable is used.
LSE disp lays the li st of places and hi ghlights the
information for the first occurrence . Using single
keystrokes, the user can select an occurrence and
have the ed i tor access and d i splay the corre
spond ing source , as shown in Figure 4 .

LSE's i ntegration with SCA has tremendously
enhanced i ts va lue as a program development
tool . Together these tools make programming
tasks on a large software system much easier,
si nce users do not need to re ly on their memory
or large cross-reference l istings to locate declara
t ions and uses of identifiers . The editor accesses
the appropriate fi les and finds the source l ine of
interest wi thout the user even having to know the
fi le name . By making i t easier for developers to
understand a software system, LSE with SCA
speeds the development of new code and helps
developers make changes ro existing code more
re l iable.

VAX DECjCMS - Code Management
System

The VAX DECjCMS tool stares project source
fi les project , manages access to those files, and

code_vector _ l i � i t = 259;

TYPE
�ode_va l u e = � i n _code . . max_cod e ;

tracks changes to them. Source fiks are stOred in
a CMS l ibrary in a compressed format as changes
to the orig ina l version of the fi l e . Users reserve a
file from the CMS l ibrary ro make changes to i t .
After t hey are sat isfied with the ir changes , they
replace t he fi le i nto the CMS l ibrary. Users may
need tO get a fi le from CMS without intending to
change i t . This is called fetching the fi le; a fi le
that has been fetched bur nor reserved cannot not
be re placed . Two users may reserve the same fi le
at the same t ime . When the second replaces his
version, CMS wi l l assist in merging the two sets of
changes. CMS provides many features for organiz
i ng a l ibrary, grou ping sets of re lated fi les and
related versions of fi les, mai nta in ing variants of
fi les, and i nqu iri ng into the status and history of
fi les in the l ibrary .

CMS has become an i m portant pan of the daily
rout ine for many VMS users. LSE provides com
plete access to all CMS commands from with in
the edi tor. LSE can also invoke CMS for the user.
For example, when LSE needs to access a source
file as part of the SCA GOTO DECLARATION func
t ion described above, LSE can invoke CMS to
access the source fi le and bri ng it i nto the editor
to display the specified declaration . Special LSE
commands provide for reserving and replacing
fi les whi le performing appropriate edi ror win
dow and fi le management, e l im inating interme
diate steps for the user.

code_vector_ l ength = 0 . . code_vec tor_ l i � i t ;
code_vector = ARRAY [i . . code_vector_) i � i t] or code_va l ue ;

{ A trans l a t i on tab l e spec i f i e s , f o r e a c h i np u t character, what output
character i t shou l d be trans l a ted to l d e l _code �eans s i mp l � de l et e) .
When a s t r i ng of i nput codes a I I have t h e co�pr·ess f I a� set , on l 4 the . . I

VAR tab l e : tr·ans_tab I e I ;

VAR
code, rep l ace_code : code_ va l ue ;
i 1 . . code_vector_ l i � i t ;
co�press : BOOLEAN;

PROCEDURE s i �na Ldup I i cate (code : code_ va l ue I ;
VAR

. . · .t I

1 4 3 l i ne s read fro� f i l e SYS$COHHON : [SYSHLP . EXAHPLES . S C A J BUILDTABLE . P A S ; 1
59 l i n es read fro� f i l e SYS$COHHON : [SYSHLP . EXAHPLES . SCAJ TYPES . PA S ; 1

Figure 3 Editor Display with Declaration and Use of c o d e _ v a l u e

·-

I

Digital Technical journal 3 7
No. () Ft'bruarr• I ')88

Software
Product ivity
Tools

Language-Sensifil,e Editor

The in tegration of LSE and CMS is an added
convenience for LSE users that strea m l i nes t he
usage of the two tools, and so enhances produc
t ivi ty.

Summary

The combi nat ion of templates, on- l i ne he l p , and
interfaces with compi lers makes LSE an effective
and easy- ro-use program edi tor. Users can mne
the temp lates provided with LSE for their own
environ ment or define templates, hel p , and a
compi ler i nterface for languages that Digita l does
not support .

Through integration with SCA and CMS, LSE
expands i ts capabi l i ties from a source-code edi
tor 10 a h igh-productivity user i nterface to t he
source code for a software system .

Since May 1 9 8 5 when version 1 of t he editor
sh ipped , LSE has cont i nued to evolve as a compo
nent of the VAXset, a set of productivity rools
for software deve lopment . The VAX Language
Sensitive Ed i tor is now p laying an important role
both as an edi tor designed to support wri t ing
software and as a hub for t he i ntegration of soft
ware development wols .

This paper describes the current rel ease of
VA.'(LSE , version 2 . 1 7 LSE su pports 1 5 languages
inc lud ing Ada . BASIC, C, COBOL, FORTRAN,
Pasca l , PL/1 . I n add i t ion LSE supports some non-

S� 111bo l C l ass Ho du l e \L i n e

�·····l!nll-lr!•JD· .B U I L D _ TABL E \ -47

B U I L D_TABLE\74
B U I L D_TABLE\76
B U I L D_TABLE\77

programming l anguages. including OATATRIEVE,
a data management tool ; DOCU MENT, a docu
mentat ion markup language ; and COOL, a com
mon clara d ictionary language .

Future Directions

The hardware env i ronment for software develop
ment is sh i ft ing from t imesharing systems to
workstat ions. This sh ift w i l l open some opportu
n i t ies for L'iE, making i t possibk for L<;E design
ers tO consider inc l uding capabi l i t ies that requ i re
more hardware resources t han were typica l ly
ava i lable i n the past . The current text-editor
orientation does nor preclude enhancements t hat
req u i re parsing t he sou rce , such as pretty-pr int
i ng , cursor movement by syntactic el ement, and
elision . The d isplay capabi l i t ies of a workstation
could support pretty- prin t ing, using bold and
i ta l ic fonts to i mprove the readab i l i ty of source
code. The ava i l ab i l i ty of t he mouse , icons, graph
ics, etc . . a l lows for many en hancements to the
user interface.

The software that supports p rogram develop
ment wi l l a lso cont inue to evolve . Addit ional
lan -guages and tools can be expected to i nc l ude
LSE ancl SCA su pport , and there wi l l be opportu
n i ties for LSE t o grow through i ntegration with
other components of the progra mming su pport
environ ment .

T�pe o f Occurrence

VAR (v ar i ab l e) dec l a r a t i o n
wr· i te r· e f er·ence
r·ead r·efer·ence
r·ead r·e fer·ence

BUILD_ TABLE\96 write reference

38

B U I LD_TABLE\97
B U I LD_TABLE\99
B U I LD_TABLE\ 1 00

r·ead r·e fer·ence
r·ead r·efer·ence
read r·efer· ence

(;luear t r i ND CODE for•ard
rep l ace_code : = rep l _v ec to r [1 J ;

rOR i : = 1 TO o r i g _ l en D O
BEG I N
�ode : = o r i g_vector (i l ;
IF tab l e [code l . trans_va l ue <> undef_code
THEN

s i g na l _du p l i cate (code > ;
tab \ e [code l . trans_ va l u e . - code ;
END; . .

37 occurrences found 1 3 s�111 bo l s , 1 name)
1 4 3 l i ne s read fro111 f i l e SYS$COHHON : £ S YSHLP . EXA HPLES . SC A J B U I LD T A BL E . P AS ; 1

F(P,ure 4 Editor Display with Selected "write reference " to c o d e

Digital Technical journal
No. (i Fe bruarr• 1 988

References

I . T. Tei telbaum, T. Reps, "The Cornel l Pro
gram Synthesizer: A Syntax-Directed Pro
gramming E nvi ronment ," Communications
of the A CM, vol . 24 , no. 9 (September
1 98 1) : 563-5 7 3 .

2 . M . Zelkowitz , " A Small Contribution to Edit
ing with a Syntax Directed Editor," Proceed

ings of the A CM SJGSOFT SJGPLAN Sympo
sium for Practical Software Development

Environments (May 1 984) : 1 -6 .

3 . J . Horgan , D . Moore , "Techniques for
Improving Language-Based Edi rors ," Pro

ceedings of the A CM SJGSOFT SIGPLAN

Symposium for Practical Software Develop
ment Environments (May 1 984) : 7- 1 4 .

4 . VAX EDT Reference Manual (Maynard :
Digital Equ ipment Corporation , Order No.
AA-Z300A-TE , September 1 984) .

Digital Technical journal
No. 6 Februar)• I 'J88

5 . R . Sta l lman , " EMACS: The Extensible, Cus
tomizable , Self-Documenting Display Edi
tor ," Proceedings of the A CM SIGPLAN
SJGOA Symposium on Text Manipulation

Qune 1 98 1) : 1 4 7 - 1 56 .

6 . S . Wood , "Z-The 95% Program Editor , "
Proceedings of the ACM SJGPLAN-SIGOA

Symposium on Text Manipulation Qune
1 98 1) : 1 -7 .

7 . Guide to VAX Language-Sensitive Editor

and VAX Source Code Analyzer (Maynard :
Digital Equipment Corporation , Order No .
M-FY24 B-TK. Apri l 1 987) .

8 . VAX DECjCMS Reference Manual (May
nard : Digital Equ ipment Corporation , Order
No . M-L372B-TE, November 1 984) .

3 9

Software
Productivity
Tools

Stephen R. Greenwood I

VAX SCAN:
Rule-based Text Processing Software

The VAX SCAN product simplifies for programmers the building of sof tware
that recognizes complex text pattems. The product achieves this simplifi
cation by uniting powerful text-based pattem-matching capabilities with a
procedural language that integrates these capabilities into the VAX/VMS
environment. In typical applications of the product, programmer time to
design, code, debug, and maintain progmms is greatly reduced, contribut
ing to increased software productivity. The short development time, low
cost, and high reliability of the VAX SCAN product itself is attributable to
the procedures and tools available in Digital's engineering environment.

The text processing capabi l i t ies typica l ly pro
vided by high-level languages are qu i te pr imi
ti ve , espec ia l ly in contrast to the syntax d iagrams
used in describing programming languages .
High- level languages normal ly include opera
tions ro move , compare, concatenate, search, and
perhaps sort text strings of fixed lengt h . Syntax
diagrams. more formal ly known in computing
l i terarure as grammars, pn:sent a very n ice model
for very complex text patterns.

Programmers throughout t he computing indus
try u nderstand both primi t ive text operations
and the more complex patterns represented
by syntax diagrams. However, few programmers
use syntax d iagrams to express input to a pro
gram, because of the complexity i nvolved in
bu i l d ing the software needed to recognize such
patterns.

The VA,'(SCAN product solves the complex
ity of using syntax diagrams by making text
pauern recognizers avai lable to the general VAX
programming commun ity . The SCAN language
a l lows a user to express language grammars
in a form very similar to the BNF-l ike syntax
diag�ams that appear in VAXjVMS documenta
tion . The product bu i lds a recogn izer, i n the

form of an object module , that matches text
described by t he grammar. In add i t ion , t he
product supports t he VAX Common Language
Envi ronment , so that VAX SCAN recognizers
can be easi ly in tegrated into existing progra ms.

4 0

Principles of the Language

The text processing capabi l i ties of the SCAN. lan
guage are based on the s im p le subst i tut ion
parad igm of fi nd i ng a speci fied pauern and
replacing it with a string of text , much l i ke a sub
st itu tion command i n an edi tor. SCAN di ffers
from most edi tors, howevn, in that the search
pattern can be as complex as a gram mar for a pro
gramming language . The replacement text can be
generated by an a rbitrari l y complex sequence of
proced ura l statements. The actual SCAN lan
guage construct that supports th is subst i tution
parad igm is cal l ed a macro .

The syntax of a macro is given as fo l lows:

M A C R O m a c r o _ n a m e a t t r i b u t e . . .

{ p a t t e r n } ;
m a c r o _ b o d y

E N D M A C R O ;

J n a macro, t he p a t t e r n spec ifies the text that
the macro is ro search for and march . The rext
marc hed by t he pattern is then rep laced by text
generated by t he m a c r o _ b o d y . Figure 1 is an
example of a macro that searches for r ime values
and replaces them with a string.

In this example the pattern descri bes a t i me
va lue as an integer, fol lowed by a colon , fol lowed
by a second integer, fo l lowed optiona l ly by
another colon and a th i rd in teger . Whenever th is
pattern is marched . the VAX SCAN product
rep laces that occurrence of the pattern with the

Digital Technical journal
No. (j F<!bruan' I 'J88

text generated by the macro body. The a lgor ithm
for generating the replacement text increments a
static variable named c o u n t and specifies the
re placement text with a special SCAN statement
called the Al'\ISWER statement. The first t ime the
macro is i nvoked , the replacement text wi l l
be the string " t i m e : 1 " . The second invocation
of the macro prod uces the replacement text
" t i m e : 2 " . The TRIGGER keyword determines
the type of macro, descri bed later i n the section
I nvoking Macros .

The body of t he macro in this example is writ
ten using the procedu ral portion of the SCAN
language . This portion not oo.ly serves as a means
of creat ing replacement text , but a lso a l lows
t he language to ach ieve i nt egration with t he
VAXjVMS environ ment . In that respect , SCAN i s
s imi lar to PASCAL.

The procedura l portion of the SCAN lan
guage includes procedures, fu nctions, state
ments , and data structures that a programmer
can use ro interface with procedures wri tten
in other VAXjVMS languages. Procedures that
can eit her call or be ca l led by rout ines wri tten
in other languages can encapsu late SCAN's
text processing capabi l i t ies. This encapsu la
t ion perm its the VAXjVMS user ro conveniently
access the unique capabi l i t ies of the SCAN
language .

Macros are the central const ruct of t he SCAN
language . Some addi tional considerations must be
discussed , however , to fu l ly understand the lan
guage :

• The origin of the language

• The invocation of macros

• The specification of patterns

• The method by which text matched by the pat
tern can be viewed by the macro body

• The interplay between the procedural code
and text scanning

Origin of the Language

Few languages are designed from scratc h ; SCA..l'\1
is no exception . The text processing parad igm
employed by t he SCAN language is an outgrowth
of techniques developed for parsing computer
languages using context-free grammars. These
techniques permit the syntax of a language to be
described by a grammar . Efficient a lgori thms arc
then used to check that an input stream of char
aCters conforms to the syntax specified by the
grammar . '

The MACRO language deve loped at Sperry Uni
vac Corporation for their l l 00 Series computers
rook this concept and appl ied it to string subst i
tut ion and, in fact , developed the notion of
macros that are found i n the SCAN l anguage . 2 The
PASCAL language and the VA.XjVMS architecture
also infl uenced the design of the SCAN language .
SCAN's data structures and data types are based
on concepts in PASCAL. The desire for SCAN ro
integrate we ll with the rest of the VAXjVMS envi
ron ment mandated that it be convenient to cal l
SCAN programs from other VA.XjVMS languages .

Invoking Macros

Several princip les influenced the ru les used by
the SCAN language to invoke macros . Since a
pattern might appear nu merous t i mes i n a fi le of
text , t he first principle was to apply a macro each
t ime irs pattern is found so that the macro can
make mult i ple transformat ions, just l ike an editor
substi tut ion command . Second , i t was important

M A C R O f i n d _ t i m e T R I G G E R { i n t e g e r ' : ' i n t e g e r [' · ' i n t e g e r] } ;

D E C L A R E c o u n t : S T A T I C I N T E G E R ;

c o u n t = c o u n t + 1 ;

A N S W E R ' t i m e : ' , S T R I N G < c o u n t > ;

E N D M A C R O ;

Figure 1 Example of a Macro

Digital Technical journal 4 1
No. 6 Februarv 1988

Software
Product ivity
Tools

VAX SCAN: Rule-based Text Processing Software

to be able to specify many concurrent substitu
tions . Therefore, when a VAX SCAN program is
compi led, l in ked , and then run , it behaves much
l i ke a batch (rather than an in teractive) subst itu
tion command . The third principle in designing
macro invocation ru les was that patterns may
be of varying degrees of complexity. To manage
very complex patterns, the patterns have to be
separable i nto pans, much l ike a program can be
separated i nto multiple procedures.

Two types of macros are defined to support
these principles : syntax macros, and trigger
macros . These names reflect the two different
macros d istinguished by the attributes SYNTAX
and TRIGGER with i n a SCAN macro declaration .

Trigger macros provide search and replace
semantics. A program may contain any number
of trigger macros. Upon executing a START
SCAN statement, a program begins scann ing
the i nput stream of text specified by that state
ment for the patterns specified by the trigger
macros. Figure 2 i l lustrates a series of trigger
macros.

M A C R O f i n d _ p a t t e r n _ a T R I GG E R { a _ p a t t e r n } ;

A N S W E R r e p l a c e m e n t _ t e x t ;

E N D M A C R O ;

M A C R O f i n d _ p a t t e r n _ b T R I GG E R { b _ p a t t e r n } ;

A N S W E R r e p l a c em e n t _ t e x t ;

E N D M A C R O ;

M A C R O f i n d _ p a t t e r n _ c T R I GG E R { c _ p a t t e r n } ;

A N S W E R r e p l a c e m e n t _ t e x t ;

E N D M A C R O ;

P R O C E D U R E m a i n - p r o c e d u r e M A I N ;

S T A R T S C A N

The fi le f i l e _ t o _ b e _ s c a n n e d . d a t , i n this
example (specified in the START SCAN state
ment) is searched for a _ p a t t e r n , b _ p a t t e r n ,

and c _ p a t t e r n (speci fied in trigger macro pat
terns) . The file f i 1 e_ t o _ b e _ c r e a t e d . da t (also
specified in the START SCAN statement) is cre
ated by the program . Its contents wi l l be the orig
inal fi le , f i l e _ t o _ b e _ s c a n n e d . d a t , i nclud i ng
the substitutions performed by the macros.

Syntax macros permit patterns to be defined in
terms of other patterns. That i s , within one pat
tern a programmer can request that a pattern
described by a separate syntax macro be recog
n i zed. This concept of composing a pattern from
more elementary patterns is the basis of formal
language theory. 1 This topic is explored in
greater depth in the next section .

Specifying Patterns
The design of patterns is influenced by the fol
lowing three sources:

1 . The BNF-style syntax d iagrams customers
find i n Digita l 's manuals

I N P U T F I L E ' f i l e _ t o _ b e _ s c a n n e d . d a t '

O U T P U T F I L E ' f i l e _ t o _ b e _ c r e a t e d . d a t ' ;

E N D P R O C E D U R E ;

Figure 2 Trigger Macro Example

4 2 Digital Technical journal
No. 6 February 1 988

2 . Compi ler theory for context-free grammars

3 . The original MACRO language i mplemented
by Sperry Univac Corporation

All three sources recognize a two-level
approach for specifying patterns. The lower level
recognizes s imple constructs, such as numbers,
keywords, names, and punctu a tion . The h igher
level arranges the lower level constructs in to
statements and groups of statements.

This two-l evel approach has several advan
tages. Abstracting pri mi tives into lower level
patterns resu lts i n a more uniform use of primi
tives . That , i n turn , makes the overa l l pattern
easier tO remember, which is of great benefit
tO a programmer trying to design a language
that he is trying ro recognize using the VAX
SCAN product. Compiler theory also states that
lower level patterns can be recognized very
efficiently i f they conform tO a set of ru les, such
as regu lar expressions . 1

To take advantage of those features, the SCAN
language provides a two- level descri pt ion of a
pattern . The lower level pattern, called a token ,
groups characters. The higher level pattern that
appears in a macro is composed of tOkens.

Figure 3 i l l ustrates several SCAN rokens.
The syntax for the patterns comes largely from
the conventions used in Digita l 's software
manuals 5 Curly braces surround a sequence
that is required, and square brackets surround
an optional sequence. An e l l ipsis indicates
that the prior sequence can occur mul tiple
t imes, and a vertical bar separates alternative
choices. Thus in the Figure 3 example,
m o r s e _ c o d e _ l e t t e r describes a requ i red
sequence of " . " or "_" characters . This
required sequence can occur one or more t imes.

The token i d e n t i f i e r i l lustrates the pattern
for an identifier in the SCAN language . The
token defin i t ion uses two sets, a l p h a and o t h e r ,

to s impl ify the specification of its pattern .
The defini t ions of these sets appear i n the exam
ple as wel l .

I n macros, h igher level patterns are defined
using the same operators that are used in roken
declarations . Unl ike a lower level pattern,
however, the operands of a macro pattern are
rokens and other macros, rather than characters
and sets. Therefore , tokens are the bui ld ing
blocks of a macro pattern . Referencing a macro
within a macro pattern provides a subrout ine
l i ke capab i l i ty for patterns . The p lacement of a
macro name i n a macro pattern i nd icates that
the pattern of that macro should be recogni zed
at the point of reference .

Defin ing t he pattern of one macro i n terms
of other macros adds sign i ficant power ro
SCAN's patterns . This power, i l l ustrated in Fig
ure 4, shows the syntax for a SCAN token decla
ration . The pattern found in a roken declara
tion is equivalent to patterns that can be
described using regular expressions. Token
patterns need to express the precedence of
three operators: a lternation , concatenat ion , and
repeti t ion . In addition , a token pattern sup
ports nested subpatterns that are either requ ired
or opt iona l .

This example uti l izes macros t o provide

• Levels of abstraction

• Sharing of patterns

• Recursion

Levels of abstraction refers to the process of
bui lding a hierarchy of concepts in which each

T O K E N mo r s e _ c o d e _ l e t t e r { { ' _ ' : } . . . } ;

T O K E N b e g i n _ k ey w o r d { ' B E G I N ' } ;

S E T a l p h a < ' a ' . . ' z ' O R ' A ' . . ' Z ' > ;
S E T o t h e r < ' 0 ' . . ' 9 ' O R ' $ ' O R ' - ' > ;
TO K E N i d e n t i f i e r { a l p h a [a l p h a : o t h e r] . . . } ;

Figure 3 Token Examples

Digital Technical journal 4 3
No. (, Februarv I !)88

Software
Productivity
Tools

VAX SCAN: Rule-based Text Processing Software

leve l of the h ierarchy is bu i l t on the next lower
leve l . The SCAN language justifies two levels
of patterns, tokens and macros , based on this
principle . In Figure 4 , the principle is employed
further. T o k e n _ d e c l a r a t i o n i s defined in terms
of t o k e n _ p a t t e r n , which is defined i n terms of
t o k e n _ o p e r a n d . Each macro describes a level
of abstraction that makes a complex pattern
both s i mpler to write and to understand . In this
part icular example, the levels expose the prece
dence of the three token pattern operators.
T _ p a t 3 and t o k e n _ p a t t e r n are examples of

sharing patterns by means of macros . Much as a
subromine is a vehicle for sharing code i n a
FORTRAN program , macros are a vehicle for
sharing a pattern i n SCAN .

Recursion - defin ing a pattern i n terms of
i tse lf - is very useful i n the descript ion of many
patterns , especially when patterns can be nested
as in the case of a token pattern. In Figure 4 ,
t o k e n _ p a t t e r n i s defined i n terms of
t o k e n _ p a t t e r n because token patterns can be
arbitrarily nested using curly braces and square
brackets.

T O K E N t o k e n _ k e y w o r d

T O K E N i d e n t i f i e r

p a t t e r n s f o r t h e t o k e n s

h a v e b e e n om i t t e d

T O K E N

T O K E N

T O K E N

T O K E N

T O K E N

T O K E N

T O K E N

T O K E N

c h a r a c t e r _ s t r i n g
I • I ,
I I I • • • •

I [I • • • •

I) I • • • •

I { I • • • •

I } I 0 0 0 0

I • I
'

T O K E N ' . . . '

! s y n t a x f o r t o k e n d e c l a r a t i o n

M A C R O t o k e n _ d e c l a r a t i o n S Y N T A X

{ t o k e n _ k e y w o r d i d e n t i f i e r ' { ' t o k e n _ p a t t e r n ' } ' ' ; ' } ;

s y n t a x f o r a l t e r n a t i o n

M A C R O t o k e n _ p a t t e r n S Y N T A X { t _ p a t 3 [' I ' L p a t 3 l . . . } ;

! s y n t a x f o r c o n c a t e n a t i o n

M A C R O t _ p a t 3 S Y N T A X { t _ p a t 2 . . . } ;

! s y n t a x f o r r e p e t i t i o n

M A C R O t _ p a t 2 S Y N T A X { t _ p a t 1 [' . . . ' J } ;

! s y n t a x f o r o p t i o n a l a n d r e q u i r e d p a t t e r n s

M A C R O t _ p a t 1 S Y N T A X

! s y n t a x f o r o p e r a n d s

t o k e n _ o p e r a n d

' [' t o k e n _ p a t t e r n ' l '
' { ' t o k e n _ p a t t e r n ' } ' } ;

M A C R O t o k e n _ o p e r a n d S Y N T A X { c h a r a c t e r _ s t r i n g i d e n t i f i e r } ;

Figure 4 Syntax Macro Example

4 4 Digital Tecbnicaljournal
No. 6 February 1 988

Viewing Matched Text in the Macro
Body

Macro patterns provided a simple mechanism
for describing complex patterns . Macro bodies
provided a powerful mechanism for creating
replacement text . For a complete solut ion , the
SCAN language needed a robust means so that a
macro body cou ld view the text matched by the
pattern .

A solution to this problem was provided in
the original MACRO language . That solution
consisted of insert ing variables in the pattern tO
capture the text matched by a segment of the pat·
tern . See Figure 5 for an example.

H o u r , m i n u t e , and s e c o n d are variables
inserted to capture matched text . H o u r is
assigned the text matched by the first i nteger
token . M i n u t e is assigned the text matched
by the second in teger roke n . S e c o n d holds the
text matched by the third integer token , which
may be the nu l l string if the optional pattern
£ I : I i n t e g e r l is not matched.

A pattern can , in fact , contai n an arbitrary num
ber of variables, each of which can capture the
text. l i ne number, and column posi tion of one or
more tokens matched by the pattern .

Interplay between Procedural Code
and Text Scanning

The SCAN language is an i n teresting amalga
mation of a rule-based language and a proce
dural language . The text scanning capabi l ities of
the SCAN language are ru le-based. Tokens and
macros describe the rules for recognizing pat
terns . These descriptions have no concept of
flow of control . Macro bod ies, on the other hand ,
are algori thms with a very defin i te concept of
flow of control . The interaction of the ru le-based
and procedural parts of SCAN is a key princi pie of
the language .

A SCAN program starts executing in procedural
mode at the start of its main procedure. That
main procedure may be a SCAN main procedure
or one written in another VA.XfVMS language .
The rule-based technique of pattern matching
begins with the execution of a START SCAN state
ment. The START SCAN statement specifies the
input stream to be scanned by the macros and the
output stream to hold the transformed input
stream . The main procedure in Figure 6 is a SCAN
maio procedure named ma i n _ p r o c . The START
SCAN statement commences the search for the pat
tern described by the macro t r a n s l a t e _m o r s e .

C O N S T A N T h

C O N S T A N T m

C O N S T A N T s

1 h 1 j

1 mm 1 ;

1 s 1 ;

r e p l a c e a t i m e s u c h a s 5 : 4 5 : 0 1 w i t h h : mm : s s

w h e r e n u m b e r o f h 1 s , m 1 s a n d 5 1 5 c o r r e s p o n d s t o t h e n u m b e r

o f d i g i t s i n t h e t i m e

M A C R O f i n d _ t i m e T R I GG E R

h o u r : i n t e g e r 1 : 1 m i n u t e : i n t e g e r 1 : 1 s e c o n d : i n t e g e r l } ;

A N S W E R h [1 . . L E N GT H (h o u r)] , 1 : 1 ;

A N S W E R m [1 . . L E N GT H (m i n u t e)] ;
I F s e c o n d < > 1 1

T H E N

A N S W E R

E N D I F ;

E N D M A C R O ;

I , I
. ' h [1 . . L E N G T H (s e c o n d J l ;

Figure 5 Variables for Capturing Matched Text

DlgitaJ TechnicaJJournaJ 4 5
No. 6 February 1 988

Software
Productivity
Tools

VAX SCAN: Rule-based Text Processing Software

Each t i me a macro matc hes its speci fied pat

tern , procedure mode is entered for the durat ion
of the execution of the macro body. When the
macro body completes execu tion , the text
replacing t he matched text wdl have been gener
ated and can be substituted i n the ou tput stream
for the matched tex t .

Eventually, t he i nput stream w i l l bt· exhausted
and the output stream compl etes . At this point ,
execut ion cont inues with the statement fol l ow
ing the START SCAN t hat in i t ia ted pattern match
i ng, and the program retu rns to procedu ra l
mode.

Software Productivity Benefits of
Using VAX SCAN

Increas ing software prod uctivity depends on
reducing t he cost of implementi ng software
whi le mainta in ing a high degree of re l iabi l i ty .

M O D U L E m o r s e _ c o d e ;

With i n i ts problem doma i n , t he VAX SCAN
product increases progra mmer productivity
by dramatica l ly s impl i fy ing the solution to a
problem . Consider the fol lowing program frag
ment :

T O K E N s p a c e { { ' ' I s ' h t ' } . . . } ;

M A C R O c o m p r e s s T R I G G E R { s p a c e } ;
A N S W E R ' ' ;

E N D M A C R O ;

P R O C E D U R E m a i n _ p r o c M A I N ;

S T A R T S C A N

I N P U T F I L E ' i n p u t _ l o g i c a l '

O U T P U T F I L E ' o u t p u t _ l o g i c a l ' ;

E N D P R O C E D U R E ;

This short sequence expresses the concepts of
opening a fi le , scanning it for arbi trary- length

D E C L A R E l e t t e r _ c o u n t , e r r o r _ c o u n t : I N T E G E R ;

E X T E R N A L P R O C E D U R E

m o r s e _ t o _ a s c i i D Y N A M I C S T R I N G , F I X E D S T R I N G (1)) O F B O O L E A N ;

T O K E N mo r s e _ l e t t e r { , , . . . , - , } . . . } ;

M A C R O t r a n s l a t e _ m o r s e T R I G G E R { d o t s : m o r s e _ l e t t e r } ;
D E C L A R E c h a r : F I X E D S T R I N G < 1) ;

I F m o r s e _ t o _ a s c i i (d o t s , c h a r)

T H E N

A N S W E R c h a r ;

E L S E

e r r o r _ c o u n t � e r r o r _ c o u n t • 1 ;

E N D I F ;

l e t t e r _ c o u n t s l e t t e r _ c o u n t • 1 ;

E N D M A C R O ; • t r a n s l a t e _ m o r s e " / ;

P R O C E D U R E m a i n _ p r o c M A I N ;

l e t t e r _ c o u n t • 0 ; e r r o r _ c o u n t = 0 ;

S T A R T S C A N

I N P U T S T R I N G ' . . . _ . _ _ . . _ I
O U T P U T F I L E ' s y s S o u t p u t ' ;

W R I T E l e t t e r _ c o u n t , e r r o r _ c o u n t ;

E N D P R O C E D U R E ; • ma i n _ p r o c " / ;

E N D M O D U L E ; • m o r s e _ c o d e * / ;

46

Fig ure 6 A Complete SCAN Program

Digital Technical journal
No. 6 February I 988

sequences of contiguous blanks and tabs (s 'ht ' is
the SCAN notation for a horizontal tab) , replacing
the matched sequence with a s ingle blank. and
placing a copy of the modified input fi le in an
output file .

The sequence is a t least one order of magni
tude shorter than an equivalent algorithm in PAS
CAL. In genera l , using SCAN decreases the t imes
to design , code , debug, and maintain programs.

The domain of programs wel l suited for imple
mentation using the VAX SCAN product is some
what difficu l t to assess. In this section , several
types of appl ications are surveyed to give an idea
of the range of appl ications and the cost of imple
ment ing each.

A typica l use of the VAX SCAN product is to
create a tool that wil l extract i nformation from
a set of fi les. An example of an extractor is a
program to read a VAX SCAN source fi le and
report the numbers of blank l ines, the l i nes
containing just comments, and the l ines contain
ing code. A version of such an extractor was
written to gather statist ics for this paper . The
program prompts for a fi le specification , which
may contain wild-card characters, and then scans
a l l the fi les that match the fi le specification .
The program l ists the statist ics for each fi le
matched and the tota ls for a l l fi les scanned . The
extractor consists of 50 l ines of code, 2 5 blank
l ines, and 3 l ines of comments; the entire extrac
tor program took approximately 30 minutes to
create and debug.

I n p u t O u t p u t

Another typical use is to build translators.
Translators make mod ificat ions to parts of a fi le
and leave the rest of the fi l e unchanged. During
the deve lopment of the SCAN language , several
changes were made to its syntax . For example,
parentheses were changed to braces in token and
macro patterns, and fi les became expl icitly
declared rather than implicitly declared objects.
Rather than change a l l the programs in the test
system manually, we wrote a translator to do the
job . The program consists of 1 88 l ines of code,
60 blank l i nes, and 7 comment t ines. Li ke the
previous example, the program converts all fi les
that match a specified fi le specification and
reports which fi les were modified .

A third example that merges the concepts of an
extractor and a translator is a program that reads
BASIC source fi les that may contain record decla
rations. For each BASIC record declaration en
countered , the SCAN program outputs an equiva
lent VAX Common Data D ictionary declaration .
This program consists of 207 l ines of code and 7 1
l ines of comments and took approxi mately one
work day to write and debug. Sample input and out
put for this record translator is given in Figure 7 .

A language with a l imi ted problem domain has
the potential to decrease programmer productiv
ity, because such a language is un l ikely to be a
programmer's main i mplementation language .
Thus a programmer has a tendency to forget the
detai l s of the language , which in turn decreases
his effic iency.

2 0 0 R E C O R D e x am p l e

B Y T E a , b

e x a m p l e S T R U C T U R E .

I N T E GE R W O R D c C S >
G R O U P n e s t e d _ g r o u p

H F L O A T d (1 0 , 1 0)

S T R I N G e • S

R E A L f

E N D G R O U P

E N D R E C O R D

3 0 0 E H D

a D A T A T Y P E S I G N E D B Y T E .

b D A T A T Y P E S I G N E D B Y T E .

c D A T A T Y P E S I G N E D W O R D A R R A Y 0 : 5 .

n e s t e d _ g r o u p S T R U C T U R E .

d D A T A T Y P E H _ F L O A T I N G A R R A Y 0 : 1 0 0 : 1 0 .

e D A T A T Y P E T E X T S I ZE 5 .

f D A T A T Y P E F _ F L O A T I NG .

E N D n e s t e d _ g r o u p S T R U C T U R E .

E N D e x a m p l e S T R U C T U R E .

Figure 7 Sample Input and Output for Record Translator

Digital Technicaljournal
No. 6 February 1988

4 7

Software
Productivity
Tools

VAX SCAN: Rule- based Text Processing Software

VAX SCAN attempts to min i m ize this problem
by

• Basing pattern matching constructs on syntax
d iagrams used i n Digi ta l 's docu mentation

• Providing a VA,'(Language-Sensit ive Editor
interface for creating and comp i l i ng SCAN

programs

• Adding su pport for the VAXjVMS Debugger,
including featu res to moni tor pattern match
ing

• Providing simple i ntegration with procedures
written in other VAXjVMS languages

• Bas ing the syntax on a wel J -known language ,
PASCAL

• Providing a n extensive on- l ine help fac i l i ty

In summary , the benefits of using the VAX
SCAN product are twofold . F i rst , for a large class
of problems, SCAN drastical l y reduces t he cost of
designing, i mplementing, and maintain ing the
sol ut ion to those problems. Second, t he product
contains many ease-of-use features to min imize
the overa l l cost of software development.

Leveraging the VAX SCAN
Implementation

The in itial version of t he VAX SCAN product took
approxi mate ly three developer-years to prod uce .
This period includes t he t i me to design t he lan
guage , design and i m p lement t he VAX SCAN com
pi ler and the run- t ime l ibrary, and internal ly test
the product . The i n i t ia l version was ready tO be
field tested by customers at the end of t he t hree
developer-year effort .

Producing an opt imizing compi ler and run
t ime l ibrary in only three deve loper-years is a
sign ificant accom pl ishment . Three factors in
Digita l 's engineering envi ronment contributed
greatly to making th is level of software produc
tivity possible .

• Digital 's Software Development Pol icies and
Procedures

• The VAXjVMS software environment

• The VAXjVMS tool set

Digital 's Software Development
Policies and Procedures

Digita l 's Software Development Pol icies and Pro
cedures define the l i fe cycle of a standard Digita l
software product . 4 5 This l i fe cyc le is divided into
five phases .

48

• Phase 0 - Requirements gat hering

• Phase 1 - Design of the product

• P hase 2 - Implementation of the prod uct

• Phase 3 - Field test ing of the product

• Phase 4 - Maintenance of the product

Each phase has a set of i nputs and outputs . The
ou tput of P hase 0 i s a prod uct-requ irements doc
ument that becomes an i nput to Phase I . The out
put of P hase 1 inc ludes a descr ipt ion of t he
product at a level that can be documented , a
design of the product to a leve l at which the
implementat ion costs can be esti mated , and a
deve l opment plan describing Phase 2 as a set of
schedu led tasks.

These procedu res and pol icies greatly reduce
the effort required to manage a project by provid
ing a com mon model for describing a project .
The procedu res provide a com mon framework
and terminol ogy to address issues of sched u l i ng ,
cost , and task completion . A project manager ,
h is team members , and people from other sup
porti ng grou ps, such as field test admin istration ,
a l l measure their efforts in terms of these com
mon parameters . Si nce t he defi n it ions of tasks are
specified as standards, t ime is not wasted dis
cussing d ifferences of op i n ions about these defi
n i t ions. As a resul t , the d i fferent groups that
develop , field test , and manufacture the product
can work rather independently . The p hase pro
cess deta i ls at what t i mes those groups need to
coordinate their activi t ies and t he manner in
which they wi l l do so .

Many of the docu ments that are part of the
p hase process have markup language templates .
Eac h template out l i nes the contents of the docu
ment and i ncludes a series o f quest ions and
c heckl ists of the i tems to be considered during
the preparation of the docu ment . The ques tions
and c heckl ists are a dist i l lat ion of the successes
and fa i lu res of previous software prod ucts ; the
use of these quest ions and checkl ists helps tO
red uce the number of unantici pared problems
t hat often p lague software development .

Digita l 's Software Development Pol icies and
Procedures provided a platform on which the
VAX SCAN team buil t their prod uct . By fol low
ing these guide l ines, l ess t ime was spent man
aging the project , leaving more t i me for the
design and development of the fi nal product .

Digital Technicaljountal
No. 6 February 1988

VAX/VMS Software Environment
At Digita l , software engineers have always strived
to achieve a high degree of integration among
VAX:jVMS products . For example, command l ine
parsing for most products is provided by a com
mon command l ine ut i l i ty . The use of the VAX
RMS product as the standard IjO package is
another example. VAX languages foster integra
tion by supporting parts of an appl ication being
written in different languages . To meet this level
of integration , Digital has evolved standards that
describe

• Cal l ing sequence

• Format of data types

• Format of descri ptors

• Alignment of record fields

• Processi ng of exceptions

• I nterface to the debugger

• Management of dynam ic storage

• Structure of fi les

For a product l i ke VAX SCAN, each standard
represents a design problem that had already
been solved . The VAX SCAN product si mply had
to conform to each existing standard .

The desire for an integrated language environ
men t natura l ly results i n shared code among VMS
products . In i tia l ly , this sharing existed only at
run time in a common math l ibrary and a com
mon record management system. Eventua l ly,
however, engineers recognized that large sec
tions of code were being duplicated over and
over aga in in each compiler. Therefore, the next
logical step was to develop a common compi ler
with language-specific sections to handle lan
guage-specific tasks such as parsing. On the
VAXjVMS system, this common compiler is the
VAX Code Generator (VCG) .

At the time SCAN was being designed , the VCG
supported the VAX PL/I and the VAX C compil
ers . Moreover, work was underway to support the
VAX Ada compi ler. The VCG i ncluded

• A global and peephole optimizer

• A comprehensive code generator

• Object module generation

• Listing and error-message faci l i ties

Digital Technical journal
No. 6 February 1988

• Command l i ne i nterpretation

• Internal memory management

• Tools for debugging a compiler

During the design phase (Phase I) of the VAX
SCAN project, the team created a prototype for
the product using the VCG to generate code for
SCAN concepts that were new to the VCG . The
success of this prototype effort showed that using
the VCG concept was the correct solution to
reducing the development cost of the VAX SCAN
product.

The final results were impressive . By using the
VCG , the team cut the cost of implementing the
SCAN compiler by at least a factor of three. At the
same time, the VAX SCAN compiler generates
high-performance machine code to move strings
and perform arithmetic operations that rivals the
performance of any of the other VAX compi lers .

The productivity benefits gained by using the
common code generator are far reaching. Bug
rates in the code generator are remarkably low,
because the code generator is tested by four d if
ferent languages . I n addition , as new demands
are made for compilers to support tools such as
the VAX Language-Sensitive Editor, the work
needed to support the tool is d ivided in two:
the language-specific work, and the common
work needed by a l l the compi lers supported by
the VCG . Frequently, this duality reduces the
amount of work the VAX SCAN product must
do to support such tools . Fina l ly, each VCG
improvement is actual ly an improvement for four
languages. Thus, for example, a better register
al location algorithm benefits a l l four languages
because it wi l l be added to the common portion
of each compiler.

The original vision of VAXjVMS products being
wel l integrated had a handsome payback for the
VAX SCAN product . First, it resulted in a set of
standards that defined many of SCAN's external
and internal i nterfaces . Second , integration fos
tered code sharing, which greatly reduced the
cost of implementing the VAX SCAN software.

VAXjVMS Tool Set

Bui ld ing software systems without the proper
tools can be an i nefficient a nd difficult process .
Several of the tools avai lable i n the VAXJVMS
environment are topics of other articles in this
issue of the Digital Technical journal.

4 '6'7'11

4 9

Software
Productivity
Tools

VAX SCAN: Rule- based Text Processing Software

These tools, l i ke the standards mentioned in the
previous section , provided guidance to the VAX
SCAN team by suggesting ways of solving prob
lems. For example, the VAX Code Management
System software describes a method for coordi
nating changes to the source code of the com
p iler and the run-time system. The VAX DEC/Test
Manager software describes a means of testing the
product . In general , evaluating and choosing a
tool that exists is s imp ler and cheaper than
designing one for the specific needs of a project.

A l ist of the major tools used during the devel
opment of the VAX SCAN product fol lows :

• The VAX Code Generator

• An IALR(1) Parsing System developed by the
VAX Ada team

• The VAXjVMS Debugger

• The VAX RMS (Record Management System)
software

• The VMS Run-time Library

• The VAX Language-Sensitive Editor

• The VMS Message Uti l ity

• The VAX DECjTest Manager software

• The VAX DECjMMS (Module Management
System) software

• The VAX DECjCMS (Code Management
System) software

• The VAX Performance and Coverage Analyzer

• The VAX BLISS Compiler and MACRO
assembler

Of the three-developer-year effort requ i red
to implement the i nit ial version of the VAX
SCAN product , 8 developer-months were spent
in the design of the l anguage, compiler, and
run-time system . The remaining 28 developer
months were spent implementing and testing the
product . At the conclusion of the implementation
phase , the system consisted of 7 5 ,000 lines of
source : 60,000 in the compiler, and 1 5 ,000 in
the run-time l ibrary. Forty-four percen t of the
l i nes were actual code, 20 percent were blank
l i nes, and 36 percent were comments. The test
system exercised over 90 percent of the code
paths in the compiler .

50

Summary

The VAX SCAN project is regarded as a success at
D igital for two rather diverse reasons. First, the
product i tself is a good balance of text processi ng
features and integration with the VAXjVMS envi
ronment . The resu l t for a VAX SCAN user is much
greater programming productivity .

The second reason for success i s attributable
to the cost effectiveness of the project . The
engineering costs of the product were low, the
product was time ly, and the qual i ty was excel
lent.

The VAX SCAN product is a fine example of
good ideas implemented by using sound software
engineering principles and supported by effec
tive tools.

References

1 . A . Aho, R . Sethi , and]. Ul lman, Compilers,

Principles, Techniques and Tools (Read
ing: Addison-Wesley Publ ishing Co. , 1 986) .

2 . Sperry Univac Series 1 1 00 MACRO Pro

grammer Reference (Rosevi l le : Sperry
Univac Corporation , Issue: UP-8336 Revi
sion 3) .

3 . VAX SCAN V1. 1 Documentation Kit (May
nard : Digital Equipment Corporation, Order
No . QL4 95 -GZ- 1 . 1 , 1 986) .

4 . B. Beander, " VAXjVMS Software Develop
ment Environment ," Digital Technical jour

nal (February 1 988, this issue) : 1 0- 1 9 .

5 . Software Development Policies and Proce

dures (Maynard : Digital Equipment Corpo
ration , 1 98 1) .

6 . G . Lupton , "Language-Sensitive Editor,"
Digital Technical journal (February 1 988 ,
th is issue) : 28-39 .

7 . L. Ziman, M . Dickau , " Project Management
of the VAX DEC/Test Manager Software
Version 2 .0 , " Digital Technical journal

(February 1 988, this issue) : 1 1 0- 1 1 6 .

8 . P. Gi lbert , " Development of the VAX NOTES
System," Digital Technicaljournal (Febru
ary 1 988, this issue) : 1 1 7- 1 24 .

Digital Technical journal
No. 6 February 1988

Robert A. Conti I

Software Productivity Features
Provided by the Ada Language
and the VAX Ada Compiler

The Ada language provides a number of features that can increase soft·
ware development productivity. Many of these, such as packages, tasks,
and exceptions are not present in conventional programming languages
(such as C, FORTRAN, and Pascal). Others, such as strong typing ruks,
range-checking, and portability, are provided by some conventional lan
guages, but not all. Beyond the inherent Ada language features, Digital 's
Ada compiler for the VMS operating system provides additional features
that enhance productivity. Examples are automatic inlining, portability
checking, and a comprehensive program library manager. This paper
introduces the major productivity features of both the Ada language and
Digital's Ada compiler, and describes some of the benefits that result.

Ada -:s Contribution to Productivity

For the pu rposes of th is paper, software produc
tivi ty wi l l be defined tO be the tota l profit gener
ated by a software product div ided by the rota!
development costs (nowadays , mostly labor)
required to design , deve .lop, test , mainta in , and
en hance t he product over its entire l i fe cyc le .
Th is defin i t ion of software productivity i s one
that t he manager of a commercia l software busi
ness might use . By including both profit and
expense, this defin i t ion a lso includes the effects
of attributes that are associated with software
qual i ty, attributes such as

Compat ib i l i ty

Ease of i mplementat ion

Ease of use

Execution t ime

Future extensib i l i ty

Mainta inabi l i ty

Memory space

Portabi l i ty of applications

Rel iabi l i ty

Digital Technical journal
No. 6 February 1988

Response t ime

Reuse of software components

Tai lorabi l ity

Time to market

User expectat ions

lt shou l d be apparent that the t rad itional use of
" l ines of code per day" to define software pro
ductivity is incomplete in comparison with t he
defi ni t ion used i n t h is paper.

The U .S . Government developed t he Ada pro
gramming language to help decrease t he l i fe
cycle costs of i ts computer programs. (Profit
was not a factor .) Ada 's features are intended to
make software easier tO design , read , and mod
ify , as wel l as tO be more reliable and portable
between computer systems. In short , the fea
tures are i n tended e i ther tO reduce expenses or
increase the qual i ty of t he software . Both of
these effects make software development more
productive accordi ng to our defin i t ion of pro
ductivity. Commercial enterprises shou ld also be
able to achieve improved software productivity
by using Ada .

I n March 1 98 5 , Digital released i ts VAX Ada
compi ler product for computers running t he

5 1

Software Productivity Features Provided by the Ada Language

VMS operating system . This product includes a
nu mber of addi tional features that reduce costs
or improve software qual ity.

Although we have not made actual measure
ments of the productivity i ncreases that wou ld
result from using Ada in general , and VAX Ada in
particular, our experience in developing soft
ware in other languages indicates that certain
features are quite beneficia l . This paper intro
duces those features . We encourage the reader
to reflect upon their col lective impact .

Fami l iarity with a conventional program
ming language, such as FORTRAN , C, Pascal ,
or BLISS, i s assumed. (References 1 , 2 , and 3
are textbooks contai ning detai led information
on programm ing in the Ada language . Refer
ence 4 is the more formal and technical lan
guage standard .)

Inherent Productivity Features of the
Ada Language

The Ada language has inherent compiler- inde
pendent features that offer great promise for
improving productivity. These features can be
categorized as either " new" (those that wou ld
be novel tO a FORTRAN , C, or even a Pascal
programmer) or " i mproved" (those that may
exist in other languages but have been improved
in Ada) .

New Features a n d Their Benefits

The new features of the Ada language support
severa l modern software engineering concepts
that can i mprove productivity .

Formal Separation of Specification and Body

Many software interfaces are designed with too
much knowledge of the current implementation
deta i ls . In some cases, the interfaces are even
produced as a side-effect of doi ng the imple
mentation . This common error of blurring the
d istinction between interface and implementa
tion often results in haphazardly designed soft
ware with poor qual ity . The software is often
difficult to extend (because it depends unneces
sarily on some arbitrary deta i l of the first imple
mentation) , and i ts performance is hard to
i mprove (because the implementation cannot be
replaced by one with different arbitrary detai ls) .
Moreover, the software is often too closely cou
pled to functiona l ly unrelated software , is not
portable to other targets, and is i nconsistent i n

5 2

the view it presents tO i ts c l ients. The term
clients here refers tO a l l the software that relies
upon the features provided by the interface .

Good programmers have learned to informally
disci p l ine themselves to recognize the distinc
tion between interface and implementation , and
to design interfaces that are i ndependent of an
implementation . The Ada language formalizes
this design practice by al lowing a programmer
tO code the interface (the specification) sepa
rately from the i mplementat ion (the body) for
program un i ts such as procedures and functions.
The language requ ires this separation for other
program units such as packages and tasks (to be
described later) .

The fol lowing example i l lustrates this separa
tion : '

T h e s p e c i f i c a t i o n d e f i n e s

w h a t t h e c a l l e r c a n r e l y u p o n .

p r o c e d u r e S O R T (X : i n o u t W I DG E T S > ;

T h e b o d y c o n t a i n s t h e c u r r e n t

i m p l e m e n t a t i o n .

p r o c e d u r e S O R T < X : i n o u t W I DG E T S > i s

D e c l a r a t i o n s g o h e r e .

b e g i n

e n d ;

D e t a i l s o f t h e c u r r e n t s o r t

a l g o r i t h m g o h e r e .

The fol lowing benefits accrue from formaJ iz .
ing this separation of the specification from the
body:

• Improving the implementation is easier.
Cl ient software is less likely to depend on
detai ls of the first implementation ; instead, i t
depends on just the interface .

• The cl ient software is portable to other
targets, because changes in implementation
deta i ls are more l ikely to be hidden from
cl ients rather than entangled in the i nterfaces.

• Consistent user views are mai ntained . The
interfaces tend to be more logical because the
design can be done before the implementa·
tion deta i ls are considered.

• The software tends tO be more decoupled
from unrelated software . (I t tends tO be more
"modular .")

Digital Tecbnlcaljournal
No. 6 February I 988

Packages

Programmers often use the term "software pack
ages" informal ly to describe col lections of
related types, declarations, and operations. Con
ventional languages provide no way ro bind such
related software together.

The Ada language formal izes the concept of
package . An Ada package has a specification ,
which contains what the c l ient software sees,
and a body, which contains the package's cur
rent implementation . The speci fication contains
types, objects, and subprogram specifications
that define the interface for the package's
clients . The body suppl ies the bodies for the
subprogram specifications and anything e lse
needed to implement them. The specification
and the body can be compi led separately, so that
interfaces can be developed and checked long
before the implementation is coded .

The fol lowing example shows a package
specification and body for a window manager:

p a c k a g e W I H D O W _ M A H A G E R i s

e n d ;

T h i s s e c t i o n w o u l d c o n t a i n t h e

s p e c i f i c a t i o n o f d a t a ,

p r o c e d u r e � , e n d f u n c t i o n s t h a t

r e p r e s e n t o r o p e r a t e u p o n

w i n d ow s , e n d c a n b e u s e d b y

c l i e n t � o f t w e r e .

T h e s p e c i f i c a t i o n f o r a

p r o c e d u r e t h a t c r e a t e s

w i n d o w � .

p r o c e d u r e C R E A T E _ W J H D O W

C W : o u t W I H D O W > ;

p a c k a g e b o d y W I H D Q W _ M A H A G E R i s

e n d ;

T h i s s e c t i o n c o r r e � p o n d s t o t h e

c u r r e n t i m p l e m e n t a t i o n o f t h e

w i n d o w m a n a g e r .

T h e b o d y o f a p r o c e d u r e t h a t

c r e a t e s w i n d o w � .

p r o c e d u r e C R E A T E _ W I H D O W

C W : o u t W I H D O W > i s

b e g i n

e n d ;

Packages promise easier use and modification
of software . Related objects and operations tend
to be grouped in the same package, thus making

Digital Technical journal
No. () February I 988

them easier for a user to fi nd and comprehend .
The col location of related implementat ion soft
ware i n the package body a l lows a maintainer tO
better understand the ram ifications of a potential
change.

Support for A bstract Data Types

Abstract data types are a relative ly recent com
puter science concept . An abstract data type rep
resents a set of abstract objects having a wel l
defined set of applicable operations . A cl ient can
operate upon an object only with the operations
provided . Information about the internal struc
ture of the object is h idden from the c l ient .

The benefits of this informat ion h id ing are
that the programmer of the c l ient software is
presented with a simpler conceptual model ,
one conta ining only the information that is
essential for a c l ient to know. Furthermore ,
c l ient software cannot apply arbitrary opera
tions to the object and thereby become depen
dent on accidental internal deta i ls that might
need to change in a future i mplementation .
I nformation hid ing makes i mplementation of
the object easier, because hiding clarifies which
information current c l ients depend on and
which information can be changed without
affecting them.

Ada formal izes the concept of information hid
ing by al lowing an i mplementor to declare " pri
vate types" in a package speci fication . Although
cl ients can declare objects of a private type , only
the implementation code in the package body
can operate on the deta i led internals of such
objects. For example, if the object represents a
window on the terminal , the c l ient may only be
al lowed ro request that it be shrunk, etc . How
ever, the i mplementation may need to privately
associate the window with a fi le and can store
the file name within the window object, hidden
from the c l ient .

Figure 1 i l l ustrates the two views of an
abstract data type .

Ada's support of abstract data types shou ld
enhance an implementor's abil ity to extend
applications in the future , as wel l as to make
software more reliable .

Tasks

Most operating systems provide constructs to
support concurrent execution , even on u nipro
cessors. But these constructs are typica l ly very
low level and d i fficul t to use, and they are cer·

53

Software
Productivity
Tools

Software Productivity Features Provided by the A da Language

p a c k a g e W I N D O W_ M A N A G E R i s

-- T h e c l i e n t k n o w s t h e o b j e c t o n l y by t h e o p e r a t i o n s

- - t h a t a r e p r o v i d e d h e r e .

t y p e W I N D O W i s p r i v a t e ;

p r o c e d u r e S H R I N K _ W J N D O W C W W I N D O W ; P P E R C E N T A G E > ;

e n d ;

p a c k a g e b o d y W I N D O W _ M A N A G E R i s

-- T h e i m p l e me n t a t i o n k n o w s t h e o b j e c t b y i t s i n t e r n a l

-- 5 t r u c t u r e . I n t h i s c a s e t h e w i n d o w i s r e a l l y a r e c o r d .

e n d ;

t y p e W I N D O W _ I M P L E M E N T A T I O N i s

r e c o r d

F : F I L E _ T Y P E ;

e n d ;

Figure 1 Two Views of an Abstract Data Type

tainly not portable. The Ada language is one of
the few widely ava ilable programming languages
that has bui l t- in constructs for concurrency
(called tasks) . Ada's tasks are both easy to use and
portable; the language standard requires that a l l
implementations support tasks i n a specified
manner.

An Ada task is l i ke a procedure that executes in
paral le l with other parts of the program . A task
startS executing as soon as the first statement of
its declaring uni t executes; tasks need not be
started expl ic i tly. Like packages and subpro
grams, a task has a specification and a body.

The following example i l lustrates the essential
syntax of a task:

t a !l k T i !l

e n d ;

T h i 5 5 e c t i o n wou l d d e c l a r e

t h e e n t r i e !l t h a t c l i e n t
!l o f t wa r e c a n c a l l .

t a !l k b o dy T i !l

be g i n

e n d ;

Th i !l !l e c t i o n wou l d c o n t a i n t h e

5 t e p 5 t h a t t h e t a 5 k

e x e c u t e !! i n p a r a l l e l w i t h

o t h e r t a 5 k !l .

Although not requi red by the Ada language
specification , the Ada marketplace h ighly values
the abil i ty of an Ada compi ler to execute other
tasks while one task is waiting for an 1/0 comple-

54

tion. Implementations that support this feature
(such as VAX Ada) provide a powerful reason to
use tasks - even on a uniprocessor - to easi ly
obtain greater throughput and responsiveness
from an otherwise IjO bound program. On multi
processors, users expect that an Ada implementa
tion wil l assign different tasks to d ifferent pro
cessors for a program speedup. (VAX Ada does
not currently have this feature .)

Using tasks written i n Ada rather than the con
currency primitives provided by the operating
system can lead to better productivity because

• Tasks are portable (less rework)

• Tasks are easier to u nderstand (reduced
maintenance)

• Tasks are easier to code (faster t ime to market)

• Using tasks on a u n iprocessor results in free
performance improvements when multipro
cessor support becomes avai lable

Like other Ada constructs, tasks also i mprove
the overal l thought process (even on a uniproces
sor) . Programmers soon stop "thinking serial ly ."
With tasks able to do asynchronous IjO, i t
becomes unthi nkable to lock up the user's key
board while a program does work that cou ld be
done in the background. As a result , products
using tasks are more l i kely to be responsive to
user inputs. This benefit is important for any
product with a user i nterface .

Digital Technicaljournal
No. 6 February 1988

Separation of Representation from Type

In many programming languages, in teger vari
ables are inti mately bound tO the attributes of a
particular machine . For examp le, integer vari
ables are often bound tO the nu mber of bits
needed to represent some integer machine type .

The Ada l anguage separates the inherent prop
erties of a variable's type from the underlying
machine types. For example, the declaration

t y p e P L A N E T _ N U MBER i s r a n g e 1 . . 9 ;

S P A C E C R A F T _ L O C A T I O N : P L A N E T _ N U M B E R ;

says only that type PLANET_NUMBER needs a
range of I to 9 ; the corresponding machine type
is neither apparent nor important . The compiler,
not the programmer, chooses which hardware
data type wi l l actua l ly be used (for example,
8 , 1 6 , or 3 2 bits) . This general concept - in
which the most a programmer need specify are
the range and precision , and the implementation
chooses the detai led representation - is present
for a l l Ada types. For cases in which detai led
representations are important, the language pro-

-- T h e e r r o r c o n d i t i o n i s d e c l a r e d .

L D S T _ T H E _ L I N E : e x c e p t i o n ;

p r o c e d u r e G E T _ D A T A i s

b e g i n

i f S T A T U S / • N O RM A L

t h e n

vides a way tO force data representations and star
age layouts .

Separating the types from their representations
achieves portabi l i ty between machines (provid
ing of, of course, that a machine type can be
found that can satisfy the requi red range) . Error
checking is enhanced because the compi ler auto
matical ly checks that the value of the variable
stays within its declared range.

Exception Handling

I n the convent ional languages without bui l t- in
exception handl ing , a programmer must manage
status variables that indicate whether or not a cal l
to a procedure has fai led. In addition , those lan
guages provide no easy means for automatica l ly
passing error notifications to the ca l l ing routine
or for cleanly specifying recovery actions .

In contrast, the Ada l anguage has bui lt- in fea
tures for hand l ing exceptions. A programmer can
decide which error conditions should be defined,
when they should be signified , and how they are
to be hand led . Moreover, a l l these features are
portable. Figure 2 shows how this feature works .

r a i s e L O S T _ T H E _ L I N E ; -- T h i s s t a t e me n t s i g n i f i e s t h a t t h e e r r o r h a s o c c u r r e d .

e n d i f ;

e n d ;

p r o c e d u r e T E S T _ C OMM _ L I N E i s

b e g i n

T h i s s e c t i o n c a l l s r o u t i n e s t h a t c a n r a i s e e x c e p t i o n s .

G E T _ D A T A ;

e x c e p t i o n

e n d ;

-- T h i s s e c t i o n s p e c i f i e s a l l t h e e r r o r h a n d l i n g c o d e f o r t h i s p r o c e d u r e .

w h e n L D S T _ T H E _ L I N E = > N O T I F Y _ R E P A I R _ S T A T I O N ;

r a i s e ; T h i s s t a t em e n t p a s s e s t h e

- - c u r r e n t e r r o r t o t h e c a l l e r .

Figure 2 Example of Ada 's Features for Exception Handling

Digital Tecbnicaljourual
No. 6 February 1988

5 5

Software
Productivity
Tools

Software Productivity Features Provided by the Ada Language

Because error handl i ng is eas i ly program med
in the Ada language, error-handl ing code i s easier
to read , and the constructed software is l i kely tO
be more rel iable.

Dynamic Memory

Another feature often absent from conventiona l
languages i s the al location and deal location of
dynamic memory. Although many operating sys

tems provide this feature, most do not provide i t
i n a portable form .

Ada, however, has a bu i l t - in dynamic memory
feature that a l l Ada i mplementations support :
pointer variables can be declared, and they can
have dynamic objects assigned tO them. Figure 3
describes how pointer variables can be used.

Ada's dynamic memory feature increases
portabi l i ty . I n addition , because Ada's pointers
are typed (can on ly point tO objects of specified
type) , two other benefits accrue: It makes their
use less error-prone, and it enables a compi ler to
exploi t the add it ional knowledge it has about the
objects, such as their maximum and minimum
size , for opt imization .

The Program L ibrary

In most conventional languages, each procedure
is compi led independently of other procedures.
Thus it is possible to have a set of software rou
t ines that is i nconsistent . For example, callers
could assume certa in condi tions about the inter
face, yet those cond itions may have changed .

The Ada language addresses this problem by
requir ing a program l ibrary to hold a consistent
copy of all program uni ts. The program l ibrary
manager makes i t impossible to l ink a program
that has internal i nconsistencies caused by obso-

lete i nterface specifications. This feature saves

the t ime that wou ld otherwise be spent tracking
down obscure run-t ime errors.

The presence of a program l ibrary a lso creates
the opportunity for Ada implementations tO
provide many other addit ional features and bene
fits . Some features that become possible, many of
which are now common among i mplementat ions
in the industry, are

• A s impl ified means of compi l ing and l ink ing
the entire program

• A s implified means of recompil ing program
uni ts after another unit on which they depend
has changed

• Query functions to answer questions about the
program as a whole

• Ways of using multiple l ibraries together to
real istical ly match project needs

• Opt imizations that take into account more
than one procedure (in terprocedural opt i
m izations)

• Subsystems, that is , the abil i ty to restrict c l ient
software tO use only certai n al lowed i nterfaces

The more i mportant productivity benefits
l ikely tO accrue are faster development, and less
t ime spent tracking down obscure errors.

Overloading

Most programming languages require a unique
name for each program uni t declared. The Ada
language, however, allows any number of pro
gram units to have the same name, provided that
the uni ts have different interfaces , called signa
tures . This concept, cal led overload ing, al lows
procedures that have the same logical effect but

t y p e P T R i s a c c e s s H O DE ; T h i s s t a t e m e n t d e c l a r e s a p o i n t e r

t y p e .

X P T R ;

X n e w N O D E ;

56

T h i s s t a t e m e n t d e c l a r e s a p o i n t e r

v a r i a b l e .

- - T h i s s t a t e m e n t d y n a m i c a l l y

a l l o c a t e s an o b j e c t a n d a s s i g n s

- - a p o i n t e r t o i t .

Figure 3 Ada Pointer Variable

Digital Tecbnlca/]ournol
No. 6 February 1988

that operate on different data types to have the
same name . For example, a package defining
both vectors and matrices could have two proce
dures cal led CREATE and two cal led DELETE.
There is no need to construct artific ia l ly different
names to differentiate between the procedures.

Overloadi ng helps implement the principle of
orthogonal i ty , which means that each operation
applying to one object type can also apply to any
other object type, whenever that is mean ingfuL
Overloading is simply a general i zation of the
common language feature allowing arithmetic
operations to be applied to both i ntegers and real
numbers. Ada al lows a programmer to define the
meanings of most bui lt - in operators for any pro
grammer-defined data types; for example, one
can define an addition operation for one's own
matrix type.

Generics

Many languages force programmers to recode
ut i l ity operations for each type of data on which
they wi l l operate. For example, different proce-

g e n e r i c

dures are needed for sorting integers and one
di mensional arrays, even though a programmer
may want to use the same sorting algorithm for
both .

In contrast, the Ada language al lows the defi
ni tion of a generic form of package, procedure,
or function . A generic program unit is indepen
dent of the type of data on which the program
unit operates. This feature a l lows a lgorithms to
be coded in their purest abstract form .

After defining a generic program unit , a pro
grammer can then create an executable program
unit by specifying the actual types upon which
the generic unit is to operate . Creating an exe
cutable instance of a generic unit is cal led
" instantiating" the generic unit. When instantiat
ing the generic , one can a lso specify as parame
ters any procedures, functions, or tasks that need
to be ca l led by the unit . For example, a generic
sort package may need to pass the function " less
than" for the particular type to be sorted, such
as a matrix .

Figure 4 i l lustrates the use of generics.

D e c l a r e t h a t an a r b i t r a r y t y p e i s t o be s p e c i f i e d a s

t h e a c t u a l t y p e t o b e s o r t e d .

t y p e E L E M E H T _ T Y P E i s p r i va t e ;

-- S i n c e n o t h i n g i s a s s um e d a b o u t t h e t y p e , t h e

- - c om p a r i s o n f u n c t i o n m u s t b e p a s s e d i n a s a p a r am e t e r .

��o� i t h f u n c t i o n " < " C L : E L E M E N T _ T Y P E , R : E L E M E t H_TY P E >
r e t u r n B O O L E A N ;

p a c k a g e Q U I C K S O R T i s

-- T h e s o r t p a c k a g e i n t e r f a c e ��o� o u l d b e ��o� r i t t e n h e r e .

e n d ;

p a c k a g e b o d y Q U I C K S O R T i s

T h e g e n e r i c i m p l e m e n t a t i o n ��o� o u l d b e ��o� r i t t e n i n t h i s

s e c t i o n ; i t ��o� o u l d u s e t h e p a s s e d - i n f u n c t i o n " < " .

e n d ;

T h e f o l l o ��o� i n g s t a t em e n t s c r e a t e a n i n s t a n c e o f t h e Q U I C K S O R T p a c k a g e

f o r t h e t y p e B O X C A R ��o� h i c h i s d e f i n e d i n p a c k a g e T R A I N S . T h e g e n e r a t e d

p a c k a g e i s n o ��o� c a p a b l e o f s o r t i n g B O X C A R S u s i n g t h e g u i c k s o r t m e t h o d .

��o� i t h Q U I C K S O R T ;

p a c k a g e Q S _ B O X C A R i s n e ��o� Q U I C K S O R T C T R A I H S . BO X C A R , T R A I N S . " < " > ;

Figure 4 Example Use of Generics in Ada

Digital Technical journal 5 7
No. 6 February I 988

Software
Productivity
Tools

Software Productivity Features Provided by the Ada Language

Generics al low the easy reuse of software, thus
avoiding the inevitable errors caused by recoding
an algorithm . The promise of generics is that one
can truly code an algorithm just once .

Improved Features and Their Benefits

Ada improves u pon a number of features that are
commonly provided by other languages . I n gen
era l , these features increase the amount of
checking done at compile time, and thus save
debugging t ime and make modifications easier to
accomplish .

Strong Typing Rules

Like several other l anguages, Ada allows a pro
grammer to define not just variables but types of
variables. A type is simply a template for a set of
values that share some properties. For example,
the type named INTEGER describes a set of dis
crete, signed values with a certain range and per
m i ts certain well -defined operations, such as
addition and subtraction . (A type does not have a
size ; objects have that property.)

The Ada language also allows a programmer to
define a derived type, which is a new type whose
properties are derived from a parent type.
Although a derived type has the same properties
as its parent type, i ts va lues, l ike the values of any
other type, have different meanings and cannot
be mixed freely with the values of other types.

Ada also provides the subtype construct , a way
to name part of the ful l range of values of a type.

Ada's ru les for mixing variables of different
types within the same expression are stronger
than the rules in other typed languages, such as
Pascal . The only implicit type conversions
a l lowed in Ada are between numeric l iterals and
compatible numeric types. No implicit conver
sions are a l lowed between values of different
types. Type conversions can be done , but pro
grammers must explicitly write them. Every
comp iler is required to report an error if an
attempt is made to combi ne different types with
out conversion.

The main benefit of these typing rules is
that, when used properly, they help with error
detection . An Ada compiler wil l detect many
errors during compilation that might not even
be checked for i n other languages, or that
might not i m mediately manifest themselves even
at run-time . For example, typing can prevent
the accidental truncation of a real number to
an integer when rounding is required. Simi
larly, typing can prevent the accidental addition
of a variable in feet to one in yards, or the addi
tion of a n employee's I D number t o his or her
salary.

Figure 5 i l lustrates several forms of type defin i
tion and use .

-- De f i n e a m a c h i n e - i n d e p e n d e n t t y p e a n d a s u b t y p e .

t y p e P H Y S I C A L _ N U M B E R i 5 d i g i t s 8 r a n g e - 1 . 0 E 3 5 . . 1 . 0 E 3 5 ;

s u b t y p e P O S I T I V E _ P H Y S I C A L _ N U M B E R i s

P H Y S I C A L _ N U M B E R r a n g e 0 . 0 . . P H Y S I C A L _ N U M B E R ' L A S T ;

-- D e f i n e n e w t y p e s d e r i v e d f r o m t h e a b o v e .

t y p e F O R C E i s n e w P H Y S I C A L - N U M B E R ;

t y p e M A S S i s n e w P O S I T I V E _ P H Y S I C A L _ N U MB E R ;

t y p e A C C E L E R A T I O N i s n e w P H Y S I C A L _ N U M B E R ;

-- D e c l a r e v a r i a b l e s o f e a c h t y p e .

F : F O R C E ; M : M A S S ; A : A C C E L E R A T I O N ;

F O R C E a n d M A S S c a n n o t b e m i x e d i n t h e s a m e e x p r e s s i o n

w i t h o u t a n e x p l i c i t c o n ve r s i o n b a c k t o t h e b a s e t y p e ,

P H Y S I C A L _ N U M B E R . A d a c o m p i l e r s m u s t d i a g n o s e t h e f o l l o w i n g

i l l e g a l e x p r e s s i o n .

F : • M ;

-- T h e f o l l o w i n g s t a t em e n t i s l e g a l b e c a u s e t h e r e a r e

- - e x p l i c i t c o n v e r s i o n s .

F : • F O R C E < P H Y S I C A L _ N UM B E R < M > • P H Y S I C A L _ N U MBE R < A > > ;

5 8

Figure 5 Example of Forms of Type Definition

Digital Tecbnica/]ournal
No. 6 February 1988

The productivity benefits of Ada's typing ru les
are reduced error tracking (and, hence, more
productive use of development and maintenance
time) and more readable and reliable programs.

Range Checking

In addition to provid i ng strong typing rules, the
Ada language requires that range checking be a
default behavior (with most compi lers permit
ting its suppression) . Range checking involves
either compile-time or run-time checks for com
puted values that exceed the legal range for a
type .

In many languages, calculations can overflow
without being detected. Not only are such errors
often difficult to locate , but the erroneous results
could cause an unpredictable and possibly disas
trous outcome . For example, on one fateful day
for a bank in New York, a number of real -t ime
financial transactions overflowed the 1 6-bit vari
able ; m i l l ions of dol lars were lost as a conse
quence . If the program had been written in Ada ,
bui lt - in checking could have detected the error
the moment the first transaction overflowed.

Parameter-passing Checks

Many languages do not detect the passing of the
wrong number of actual arguments (either more
or fewer) , or the accidental i nterchange of argu
ments with different types. These k inds of prob
lems often lead to obscure run-time errors that
are very difficul t to track down .

Ada implementations, however, are required to
detect and report such errors the moment the
program unit is compi led . These checks i m medi
ately save debugging t ime and e l iminate the dele
terious effect that such errors have on product
qual ity.

Validation and Portability

Ada, unl ike many languages, has strict ru les on
what implementations are al lowed to do . An
implementation is a l lowed neither to extend the
language it compiles nor to compile only a part
of that language . As a result , a l l Ada compilers
translate the same language, yielding increased
portability between computer systems. Pro
grammers need not learn the specifics of an
implementation in addition to the language .

Before an Ada compiler can be called val i
dated , i t must pass a series of validation tests
(currently over 4 ,000 , but the number has
i ncreased with each release of the val idation test

Digital Technical Journal
No. 6 February I 988

suite) . These val idation tests not only ensure
portabi l i ty of Ada code but a lso force compi lers
to translate the whole language exactly as
required. (A compi ler must be validated once a
year and must pass a l l new val idation tests .)
These tests ensure that legal programs are trans
lated correctly and that a l l required error report
ing, both compi le-time and run-time , is accom
pl ished .

Productivity Features Provided by
VAX Ada

VAX Ada provides addi tional productivity fea
tures related to optimization , program l ibrary
support, and smooth interaction with other
VAX languages and the u nderlying VMS environ
ment . (Detai led product documentation is pro
vided in references 6, 7 , and 8. Reference 9
describes how VAX Ada fits i n with the VMS
environ ment , and reference 1 0 describes some of
the design decisions that were made in develop
i ng VAX Ada .)

Inlining

The VAX Ada compi ler implements the language
defined pragma INLINE . (In Ada, a pragma is a
compiler d irective .) The compiler thus replaces
ca l ls to subprograms with in l ine code expansions
(unless the subprogram uses a feature l ike
tasks that prevent these expansions) . I n addition
to honoring such explicit requests from the
programmer, the compi ler will automatica l ly
replace certain calls with in l i ne code; the com
piler uses a heuristic to decide if in lining results
in more efficient execution than the cal l . (The
heuristic considers both space and execution
time .)

In l in ing al lows programs to run faster, and i ts
use simplifies the conceptual design process.
Cal l overhead is no longer a concern , and pro
grammers can define the most logical interfaces.

ImportjExport Pragmas

The VAX Ada compiler defines several pragmas to
match the Ada language to the VAX Cal l ing Stan
dard in an optimum fashion . For example, the
pragma IMPORT_PROCEDURE allows a call
to a procedure written in any language . This
pragma permits a programmer to specify parame
ter-passing mechanisms (reference, value, and
descriptor) , the procedure's external name, and
other VAX-specific attributes that are not part of
the Ada language .

5 9

Software
Productivity
Tools

Software Productivity Features Provided by the Ada Language

These pragmas a llow the mixing of Ada sub
programs with existing programs written i n
other languages s o t h a t the benefits of Ada can
be obtai ned for new code, and the benefits of
reusing existing code can a lso be rea l ized.

Portability Checks

VAX Ada can perform portab i l i ty c hecks whi le
compi l ing a program. These checks inform a
programmer of the uses of potent ia l ly non
portable features. Such features include imple
mentation-defined pragmas and other features
that the Ada language permi ts to al low tai l ori ng
tO the speci fic computer system . These checks
a l l ow a programmer to manage the trade-off
between portabi l i ty and access to imp lementa
t ion-dependent features.

Program Library Functions

As mentioned earlier, Ada's u nique concept of a
program l ibrary provides many benefits . The
VAX Ada program library provides a l l of those
benefits, as wel l as some others .

• Any program u n i ts made obsolete by revising
a particular un i t can be automatica l ly recom
pi led.

• The compilat ion order for the program uni ts
of a program can be determi ned by simply
naming t he main program .

• An entire program can be bu i l t automatically
by specifying just the name of t he main pro
gra m .

• Ada program units can b e i mported from
ot her program l ibraries, or from other lan
guages .

Asynchronous IjO Operations
The VAX Ada run-t ime l ibrary performs asyn
chronous inputjoutput for aJI predefined Ada
ljO operations . As a resul t , a progra mmer can
use tasks ro do computation and I/0 in paral lel
and obtai n greater throughput and more respon
sive user in terfaces.

Support for Asynchronous Operatio ns

The VMS operating system defines the asyn
chronous system trap (AST) construct for dea l
ing with asynchronous events. An AST i s rea lly a
software in terrupt. Ada a l lows hardware inter
rupts to be mapped in to a cal l ro an entry point

60

in a task. To support VMS software i nterrupts
in a .l ike manner, t he VAX Ada com p iler pro
vides an i mplementation-defined attribute cal led
AST _ENTRY. This attribute causes a software
interrupt to generate a cal l ro a task entry point .
This feature simpl i fies the interfacing of Ada
programs to the VMS environment .

Summary

The Ada features we have d iscussed make this
language an exce l lent choice for general -pur
pose programming. Ada 's principal productivi ty
benefits are rea l i zed in software that is more
extens ible , portable, maintainable, rel iable, and
reusable. The VAX Ada compi ler adds further
features that enhance productivity. Whi le each
feature taken separately may not seem that sig
n ificant , the combined benefi t of a l l of t hem
should be quite significantly i mproved software
productivity (as defined earl ier i n terms of
profit and l i fe-cycle costs) relative to t he use of
other languages.

Acknowledgment

The author wishes to t hank Barbara Rising
Bishop for greatly i mproving t he content and
readabi l i ty of th is paper.

References

1 .]. Barnes, Programming in Ada (Reading:
Addison-Wesley Publ ishing Company,
1 98 4) .

2 . G . Booch, Software Components with
Ada: Structures, Tools and Subsystems
(Me n lo Park: The Benjamin/Cu mmi ngs
Publishing Company, I nc . , 1 987) .

3 . G . Booch , Software Engineering with Ada
(Menlo Park : The Benjamin/Cummi ngs
Publ ish i ng Company, I nc , 1 9 87) .

4 . Ada Programming Language , ANSijMIL
STD- 1 8 1 SA- 1 983 (Uni ted States Depart
ment of Defense, U.S. Government Print ing
Office, 1 7 February 1 983) .

5 . I n the examples throughout this paper,
lowercase is used to d istinguish Ada
reserved words from programmer-defi ned
ident i fiers (shown in uppercase) . Note t hat
a comment in t he language is identified by
using a lead ing double hyphen (--) .

Digital Tecb11ical journal
No. 6 February 1988

6 . Developing Ada Programs on VAX/VMS
(Maynard : Digital Equipment Corporation ,
Order No. M-EF86A-TE, 1 9 8 5) .

7 . VAX Ada Program mer's Run- Time Refer
ence Manual (Maynard : D igital Equipment
Corporation , Order No. M-EF88A-TE,
1 98 5) .

8 . VAX Ada Language Reference Man ual

(Maynard : Digital Equipment Corporation ,
Order No . M-EG29A-TE, 1 9 8 5) .

9 . C . M itche l l , " Engineering VAX Ada for a
Mult i -Language Programming Environ
ment , " Proceedings of the A CM SIGSOFT/
SIGPLAN Software Engineering Sympo

sium on Practical Software Development

Environ ments, A CM SIGPLAN Notices ,
vol . 2 2 , no. 1 oanuary 1 987) : 49 - 5 8 .

I 0 . R. Conti , "Critical Run-Time Design Trade
offs in an Ada Implementation ," Proceed

ings of the joint Ada Conference, Fifth

National Conference on A da Technology

and Washington Ada Symposium (March
1 987) : 486-49 5 .

Digilal Tecbnicaljournal
No. 6 FebrumJ' 1 988

6 1

Software
Productivity
Tools

Brian A. Axtell
William H. CliJford,]r.

jeffrey S. Saltz

Programmer Productivity Aspects
of the VAX GKS and
VAX PHIGS Products

The recent availability of high-level, device-independent standards for
computer graphics programming has made the graphics programmer's
task easier and Jar less time-consuming. Graphics programs, once major
undertakings, can now be produced quickly and once written can be easily
transported to other graphics devices and host systems. The VAX GKS and
VAX PHIGS products are implementations of two of the major graphics
standards. These products are based on a common architecture, the Base
Graphics Architecture, consisting of five layers. The architecture was
designed to incur minimum overhead in accessing high-petformance
devices, allow the reuse of many code modules, and provide easy extension
of the products.

Computer Graphics Standards

Interactive computer graphics is the synergistic
union of computer graphics output with an
assortment of input techniques to faci l i tate oper
ator feedback and controL Interactive graphics
has long been recognized as the most effective
ava i lable mechanism for manjmach i ne i nterac
t ion . The presentation of i nformation in a visual
form takes advantage of the superb pattern recog
n it ion capabil it ies of humans. Wel l designed
i nput techniques enable much more natural and
efficient i nteraction t han is possible through key
board input alone.

Throughout the early years of computing and
wel l in to the I 960s, the high cost of hardware and
t he even higher cost of sofrware production in
h ibi ted the widespread use of i n teract ive compu
ter graphics. The expense of wri t ing software was
due i n large part to the graphics i nterfaces of the
period, which were typical ly device dependent
and at a very low functional leve l . Because of the
low level of t hese i n terfaces, t he appl ication had
to do a lot of work to create even a s im pie i mage .
thus making graphics programming difficult and
t i me-consuming. The device-dependent nature of
these interfaces often meant that programs had to
be largely rewr itten for each differen t device on
which graphics output was to be produced .

6 2

B y the mid- 1 9 70s, however, fal l ing hardware
prices and the ava i l ab i l i ty of better proprietary
graphics in terfaces a l lowed computer graphics
use to become fai rly widespread. With this expan
s ion came the rea l iza tion that a standard graphics
i nterface was needed that was both high level and
device i ndependent . Enough experience existed
by then tO attempt to des ign such a system .

The Core Graphics System , developed under
the sponsorship of the Associat ion for Computing
Machinery, was the first significant device
i ndependent graph ics interface . 1 The concepts
embodied in Core profoundly influenced subse
quent graphics standards. Core never became an
official standard , however, because too many
nonconforming implementat ions became ava i l
able before standard ization cou ld be achieved .
Moreover, the experience gai ned from these early
implementations of Core showed that a better
in terface could be designed.

The Graphical Kernel System, or GKS , i s a ben
eficiary of the experience gained from Core and
was adopted both as an ANSI and ISO standard
in 1 985 2 It is the first offic ial ANSI/ISO graphics
standard. Digi tal 's i mplementation of GKS for
the VMS operat ing system, called VAX GKS.
has been ava i lable since I 984 and is now in i ts
third release .

Digital Technical journal
No. 6 February 1988

The Programmer's H ierarchical Interactive
Graph ics System, or PHIGS, is being developed as
both an ANSI and an ISO standard . 3 PHIGS has a
d ifferent archi tecture and d i fferent design goals
from GKS; it is compatible with GKS, however,
wherever this compatibi l ity is technically feasi ·
ble . The first release of VAX PHIGS became ava i l ·
able in January 1 988 .

The Role of VAX GKS and VAX PRIGS
Products in Software Productivity
The VAX GKS and VAX PH IGS products are h igh
leve l functional in terfaces that make graphics pro
gramming easier and more straightforward . A
competent programmer should be able to
develop graphics software after a short period of
study. Moreover, the use of these systems eases
the difficulty of finding trained graphics appl ica
tions programmers. Many col leges and universi
ties teach GKS as part of their computer-graphics
curricu la; there is evidence that they wi l l teach
PHIGS as wel l .

Each standard i s built on the model of a n
abstract graphics workstation with standardized
input and output capabi l it ies. That is , each stan
dard defines an idea l ized device for acqu iring
input from the operator and for generating graph
ics output . To a large extent, the job of the GKS or
PHIGS implementor is to provide a layer that
makes a particular real device behave l i ke an
idea l device . We call such a layer a "workstation
handler ." If the abstract workstation model of
GKS or PH IGS can be implemented quite d i rectly
on a rea l device, such a device is called GKS- I i ke
or PHIGS- l ike .

This device-i ndependent approach means
that a program written to the GKS or PH IGS
interface can, within l i m i ts, run unchanged on
any supported device . Moreover, i f an appl i
cation i s written to one of the standard language
bind ings (i . e . , uses standard function names and
parameterization) , then the appl ication can eas
i ly be ported to any other GKS or PHIGS host sys
tem supporting that language binding.

Although the basic functional i ty of both GKS
and PH JGS is strictly defined , Digita l 's implemen
tations fu rther increase program mer productivity
in several ways .

• Both VAX GKS and VAX PH IGS provide for very
easy support of additional devices. Any user
can add support for a new device by s imply
writing a few functions and bui ld ing a table
defi ning the capabi l i t ies of the device . (Refer

Digital Technical Journal
No. 6 February 1988

to the Workstation Manager section for more

detai ls .)

• VAX GKS or VAX PHIGS workstation handlers
are activated at run t ime, not d irectly li nked
with the appl ication . Therefore an appl icat ion

can operate any supported device without
re l inking , thus min imiz ing the l ink t ime and
executable program size of an appl ication.
This al lows the appl ication programmer to
spend more t ime doing productive debugging.

• Both VAX GKS and VAX PH IGS provide exten
ded input and output fu nctional i ty. Addit ional
output pri mi tives i mplement common objects
(for example, c ircles and el l ipses in VAX
G KS) , thus saving the programmer from hav
ing to bui ld them from lower level primi tives.
Extended output functional i ty (for example,
l ighting, shading, and depth cueing in VAX
PHIGS) provides services not easi ly layered on
top of t he basic mode I .

• Both VAX GKS and VAX PHIGS integrate
cleanly into a windowing environment. VAX

GKS and VAX PHIGS enable the creation of

applicat ions with the same "look and feel" as
other appl ications written using low-level
windowing com mands. The applicat ion pro
grammer is thus freed from concerns about the
windowing system, and the user sees a consis
tent wi ndowing i nterface .

• Support for many devices i s ava ilable through
both VAX GKS and VAX PHIGS. VAX GKS is
supported on VWS workstat ions

4
and on

ReGIS, HPGL, POSTSCRI PT, and Sixel devices.
PH IGS is supported on these devices as wel l
a s on the VAXstation 8000 high-performance
workstation .

VAX GKS and VAX PRIGS as
Complementary Graphics Standards

GKS and PHIGS are designed to sat isfy d ifferent
needs. GKS is a two-di mensional interactive view
ing system. That is, GKS provides a mechanism
by which images, described as collections of two
d imensional output primi t ives , can be displayed.
In addition, GKS provides a variety of operator
input methods. Although GKS can be used to
display graphs and charts and other two-dimen
sional informat ion , i t can also be used as the
imaging stage of a higher level system. Such a sys
tem first does the necessary processing to convert
i ts objects (for example, objects defined in three-

63

Software
Productivity
Tools

Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products

dimensional space) into GKS two-dimensional
output prim i tives for d isplay.

GKS commands for setting a ttributes of pri
m it ives a nd for generating output primitives can
be e i ther aggregated into coll ections called
"segments" or executed i m mediately without
being retained in a segment . The set of defined
segments can be used later to rebui ld the
image on a d isplay, thus t he appl ication docs not
need to reissue those commands . GKS segments
are not revisable; once defi ned, the contents of
a segment cannot be modified. However, each
segment has several attributes (for example, a
segment transformation and a segment visibi l i ty
control) that can be changed .

PH IGS is a three-dimensional in teract ive mod

e l ing system. L ike GKS, PHIGS offers operaror
input techniques; un l ike GKS, however, PHIGS
primi t ives are defined i n a three-dimensional
coord inate system rat her than a two-dimensional
system. PHIGS a lso does not have i m mediate exe
cution of output commands. I nstead, all com
mands that set attributes of output pri m it ives,
generate output primi tives, or define other
aspects of the graphics database are aggregated
into revisa ble col lections ca l led "structures."
This approach is motivated by two of the goals of

PHIGS: to be able to describe and implement the
appl ication model (the concept or system being
modeled by t he application) and to al low the effi
cient revision of that i mp lementation and its cor
responding i m age .

Since typical appl icat ion models are mult i
leve l , PH IGS structures can be organized hierar
chica l ly . The rel ationsh i p between levels of the
hierarchy may represent geometric relation
ships (for example, the positional relat ionship
between the components of an articulated arm)
or other logical relationships as d ictated by appli
cation requ irements. (One can th ink of GKS seg
ments as providing a s ingle level of h ierarchy.)

In PHIGS, for example, one can define a "wheel"
structure (a collect ion of commands that describes
someth ing having t he appearance of a wheel) and
a "body" structure . One can then define a "car"
structure as an assemblage consisting of four
i nstances (displayed images) of the wheel and
one i nstance of t he body structure. Each i nstance
has a geometric rel ationship to the car (that is, i t
has some posit ion with respect t o the car) . The
car can be moved around as a un i t , with t he rela
t ive posit ions of the wheels and body mai ntained
by virrue of t he geometric relat ionsh i ps imposed
on them. This concept is i l lustrated in Figure 1 .

Wheel and 11re data courtesy ol Bngham Young University. Car bOdy data copyright Evans and Sutherland Computer Corporation.

Figure 1 PHJGS Structure Hierarchy

64 Digital Technicaljourna/
No. 6 February 1 988

GKS and PH IGS share a common set of output
primit ives, a lthough GKS al lows their defin i t ion
only i n two dimensions, whereas PHIGS a llows it
in three. These primit ives are l i nes, symbols
("markers") , polygons, text , and pixel arrays.
GKS and PHIGS a lso share a common input
model . This model defines six input device types
that are abstractions of common physical input
devices, such as pointing devices, dials , button
boxes, and keyboards .

GKS was designed as a very general interface on
top of which many different classes of applica
tions can be built . In fact , it is possible to bu i ld a
layer on top of GKS that emulates PH IGS . PHIGS
is also a very general i nterface, and the range of
applicat ions t hat can make use of PHIGS' model
ing and three-dimensional capabi l i t ies is l arge
and diverse . However, PHIGS is a bit more spe
cialized t han GKS, and bui lding some styles of
graphics appl ications on top of PHlGS is d i fficult
if the application model cannot be made to fit
PHIGS' model ing fac i l it ies.

The benefits of i ncorporating model ing into
PH IGS are twofold. First, the appl ication writer
has a wel l developed, standard mode ling faci l i ty
avai lable. Second, i t becomes economical ly feasi
ble for hardware vendors to provide direct hard
ware support for PHIGS model i ng because the
model ing faci l i ty is standardized . Such devices
can provide very h igh performance .

The VAX PHIGS and VAX GKS products have a
common architecture cal led the Base Graphics
Architecture, described next .

Base Graphics Architecture

Digita l 's Base Graphics Archi tecture was
designed as a general framework for i mplement
ing graphics systems. I t takes a layered approach
and consists of five components:

• Appl ication layer

• Language binding layer

• Kernel layer

• Workstation handler layer

• Device layer

This approach is shown i n Figure 2 . Following
a discussion of the design goals of the Base
Graphics Architecture, each of these components
is described .

Design Goals

The design team set a nu mber of goals for the
design of the Base Graphics Architecture .

Digital Tecbnical]ournal
No. 6 Februmy 1 988

APPLICATION
LAYER

BINDING
LAYER

KERNEL
LAYER

WORKSTATION
HANDLER

WORKSTATION
LAYER

DEVICE
LAYER

APPLICATION

BINDING

KERNEL

WORKSTATION
MANAGER

Figure 2 Layers of the Base Graphics Architecture

• VAX GKS and VAX PH IGS products had to con
form to their respective standards.

• Since performance is critical in graphics sys
tems , the architecture had to al low access to
any high-performance hardware features of a
device . Moreover, the system had to incur min
i ma l overhead in using those performance fea
tures.

• Adding support for new devices had to be rela
t ively easy.

• Wherever possible, components of each
implementation of the architecture had to be
interchangeable and reusable.

• The archi tecture had to provide a mechanism
for customers and third-party vendors to write
graphics handlers for t heir own devices and tO
integrate them into the system .

65

Software
Productivity
Tools

Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products

• The architecture had to be extensible enough
to al low for changes i n both graphics hard·
ware technology and graph ics standards.

Each layer of the Base Graph ics Architecture is
described below.

The Application Layer

The application layer i s not a part of the graphics
system but i s , rather, a user of i ts services. The
application program mer defines and has total
control of the application layer. In rea l i ty, the
appl ication layer is typical ly another series of
layers of i ncreasing functional i ty, not the monol i ·
thic component depicted i n Figure 2 . The in ter·
face seen by the application layer is called a
language b inding and is supported by the bind·
ing layer.

The Binding Layer

A language b inding is a functional interface to the
capabil i ties of the graphics systems. A b i nd i ng
layer consists of several b indings, but a typical
appl ication uses only one language bind i ng. Each
binding is oriented toward some particular lan
guage or cal l i ng convention . The l anguage bind·
ings of the binding layer fal l i nto rwo categories:

• Standard b indings for single languages. These
are language b i nd ings developed by the same
organizations that developed the graphics
standards . For example, the VAX GKS bind ing
layer i ncludes a FORTRAN language bind·
ing that conforms to an ANSI/ISO standard.
Such a single-language binding is designed to
be consistent with the capabi l it ies of the par
ticular language . Programs written to such
standard ized bind i ngs are portable to any
i mplementation of the same binding for that
graphics standard .

• VAX call i ng convention bindings . Each b ind
ing layer provides a VAX run-t ime l ibrary
(RTL) bindi ng, called the G KS S and PHIGS S
b indings for VAX GKS and VAX PHIGS, respec
tively. These bindings conform not to inter
national standards but rather to the VAXfVMS
call ing standard . Therefore , VAX G KS and
VAX PHIGS can be accessed through these
bindings from any language that conforms to
this call ing standard .

The language binding layer is typical ly a very
thin shell over the kernel layer.

66

The Kernel Layer

The kernel is the portion of the archi tecture that
manages and controls the device-i ndependent
operations of the graphics system . I ts main func
tion is to act as a router, d i recti ng commands to
the appropriate workstation (multiple worksta·
tions can be simultaneously active in both GKS
and PHIGS) and to serve as a collection point for
input events generated by the input devices. The
kernel also maintains all i nformation about the
state of the system as a whole and is capable of
responding to inquiries about system state and
faci l i ties . For example, an application can
i nquire about the types of devices ava i lable or
the nu mber of active workstations. Furthermore,
the kernel is responsible for reporting errors back
to the appl ication .

Another responsib i l i ty of the kernel is to acti·
vate the workstation handlers. These components
of the workstation layer are not l inked d i rectly
with the higher levels of the system , but i nstead
are built as shareable images. When the services
of a handler are fi rst needed , the kernel activates
the handler through a VMS l ibrary routine .

The advantages of dynamical ly activating a
workstation handler, rather than l i nking some or
a l l handlers d i rectly with the application , are as
fol lows:

• A user-suppl ied handler can be i ncorporated
without the need to link it (that is, using the
VAX l inker) di rectly with the appl ication and
kernel . It is only necessary to define several
logical names that indicate the fi le name and
entry-point table symbol name for the particu
lar workstation type. (An entry poin t table is a
structure s imilar to a VMS transfer vector.)

• Link t ime i s substantial ly reduced because an
appl ication i s on ly l inked aga inst the language
b inding interface, which is i tsel f a shareable
i mage .

• The amounts required by the appl ication of
both disk space and virtual address space are
significantly reduced .

The VAX GKS and VAX PHIGS kernels are opti ·
mized for the most common functions . They
incorporate various caching schemes and " hot
paths" to accelerate performance for expected
configurations and call sequences . Therefore,
for many functions, the kernel merely has to per
form one or rwo tests and then call the next layer.

Digital Teclmical Journal
No. 6 February 1988

The Workstation Layer

The collection of workstation hand lers that con
stitutes the workstation layer is responsible for
implementing the workstation abstraction of its
particular graphics standard . For any graphics sys
tem based on the Base Graphics Architecture, the
workstation handler interface must be defined at
a very high level to al low access to the high-per
formance features of a device.

The functions of the workstation handler inter
face for VAX GKS, for example, are basica lly one
to-one with GKS functions that deal with the
input, output, and workstation state. The work
station handler i nterface for VAX PHIGS has a
s imilar relation to the PH IGS functions. Thus the
implementor of a workstation handler can take
advantage of the capabil i t ies of those devices
that closely match the workstation abstraction .
Although the workstation handler interface thus
i ncludes many entry points, the implementation
of each function should be re latively straightfor
ward for devices that closely match the worksta
tion abstraction .

However , most current devices do not have
an architecture that closely matches the work
station handler interface. Very few devices, for
example, cou ld be considered GKS-l ike or
PHIGS-l ike (though this s ituation is slowly
changing) . The job of writing a workstation
hand ler for a low-level device is indeed an
arduous one . To mini mize the effort needed to
interface such a device, an abstract graphics
device at a much lower level has been defined .
Therefore , each implementation of the Base
Graphics Architecture needs a workstation han
dler that implements that implementation's
high-level workstation abstraction for this low
level abstract graphics device.

VAX GKS, for example, has such a special
workstation handler that implements the GKS
workstation abstraction for the low-level device .
VAX PHIGS also has one for the PHIGS abstrac
tion . This special workstation handler is cal led a
workstation manager; an implementation of the
low-level abstraction is ca l led a device handler,
as shown in Figure 2 .

Workstation Manager

To the kernel , the workstation manager is just
another workstation hand ler. I t is activated the
same way and is accessed through the same inter
face as other workstation handlers. After activat
ing the workstation manager image, the kernel

Digital Tecbnicaljournal
No. 6 February 1988

calls the "open workstation " function of the
workstation manager. The workstation manager,
in turn , activates the appropriate device-handler
shareable image, aga in through a VMS library
routine .

The main job of the workstation manager is to
span the semantic distance between the worksta
tion handler and the device handler interfaces.

The exact nature of that job differs depending on
the abstract workstation implemented by the

workstat ion manager. However , a typical worksta
tion manager does the fol lowing tasks:

• Maintains state information on behalf of the
low-level device

• Performs necessary geometric transformations

• Simulates functionality not ava ilable through a
particular device handler

• Performs data management of aggregated out
put primitives and attributes (for example,
GKS segments or PH IGS structures)

• Responds to inquiries about workstation state
and ava i lable faci l ities

In real i ty , the design of the device handler
interface requires that each workstation manager
implement its particular workstation abstraction
for a range of abstract low-level devices. That is, a
device handler need not implement the entire
low-level abstraction. The workstation manager is
expected to simulate those functions not sup
plied by the device handler. I n fact , the only
mandatory output function for the device handler
is a function which draws a series of connected
l ines. If necessary, the workstation manager wil l
simulate all other output primitives i n terms of
that single primitive . S imi larly, most of the input
functionality of the device handler is optional ;
the workstation manager will simulate the miss
ing functionality .

For example, both VAX GKS and VAX PHIGS
can generate polygons whose interiors can
be fi l led with a solid color or with various
crosshatched patterns. The implementor of a
device handler may choose to support this primi
tive directly i f the device for which the device
handler is being written has this capabi l ity. If
the device does not provide this capabi l ity, the
device handler can have the workstation manager
simulate fi lled polygons using the l ine-drawing
pri mitive of the device handler.

67

Software
Productivity
Tools

Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products

Device Handler

A single device handler interface is common to
al l i mplementations of the Base Graphics Archi
tecture . As a result , PHIGS supported several
dozen devices immediately when the develop
ment of the PHIGS workstation manager was com
plete . Those supported devices were the ones for
which device handlers had previously been
developed in support of VAX GKS.

The device handler interface defines 27 func
tions, a device description table , and an entry
point table (a transfer vecror) . The workstation
manager consults both the device description
table and the entry-point table to determine what
functionality is available through the device han
dler and what must be simulated .

Because o f the adaptabi l i ty of the workstation
manager, a new device can be added by wri ting
just seven device handler functions and then
bui lding the device description and entry-point
tables . Such a minimal implementation wi l l not
provide optimal performance for most devices,
but wi II allow them to be put into service
quickly. Over time, the implementor of a device
handler can add more device handler functions
tO take advantage of the capabil ities of the dev
ice . As it becomes avai lable, each new version of
the handler is placed into service simply by in-

sta l l ing it in place of the previous version . Reli nk
ing the application program , kernel , and worksta
t ion manager is not required .

Device Layer

The device layer, the lowest layer in our architec
ture, marks the lower boundary of the Base
Graphics Architecture. This layer consists of the
various devices made available to the appl ication
by the higher levels of the architecture . The
interface to this layer is device dependent.

Integration with Windowing Systems
The Base Graphics Architecture was designed so
that a windowing system could be treated as just
another device type within the Base Graphics
Arc hitecture . The model for supporting window
ing systems rea lizes each instance of a "worksta
tion" (the abstract device, not a specific device ,
such as a VAXstation 1 1/GPX workstation) as a
separate window on the device's display. Thus
multiple GKS and P H IGS workstations can be
active on the same device under the control of
one or more applications . For example, "work
station" windows for both PHIGS and G KS and a
third window created through the graphics com
mands of the native windowing system can a l l co
exist on the same display, as shown in Figure 3 .

Figure 3 Three Workstation Windows in One Screen Display

68 Digital Technicaljournal
No. 6 February 1988

The method by which a windowing system is

supported (whether through a workstation han

dler or a device handler) logically depends upon

the level of graphics support provided by the

windowing system . For exampl e , the VMS Win

dowing System (VWS) is supported through a

device hand ler because VWS is neither PRIGS

l i ke nor GKS- l ike enough to warrant writing a fu l l

workstation handler.
4

However , i f three-dimen

sional and other h igher l evel capabil ities exist in

a windowing system (for exa mple, the proposed
X3 D- PEX extension5 to the X Wi ndow System

6
) ,

then it might best be su pported with a worksta

tion handler.

The implementor of the hand ler can use any
tool kit that the windowing system provides tO

create windows and tO perform certai n classes of

input operations. For example, typical tool kits

provide menuing capabil ities that can be used to

support the CHOICE i nput type defined by

PHIGS and GKS. When the tool kit is used for a l l

possible windowing operations, a l l w indows have

the same appearance to the user or application

programmer , even when they are generated by

different graphics standards. The net effect is a
graphics standard operating within the wi ndow

i ng environment.

Extensibility in the Base Graphics
Architecture

The Base Graphics Architecture i ncludes a mech

an ism that allows an i m plementation to provide

extensions in a manner conforming to standards.

Such extensions can define additional output

primitives and provide extended control capabi l

ities. The VAX PHIGS a n d VAX GKS products use
these mechanisms tO provide extensions sup

ported by Digita l . In addition, the design of the

Base Graphics Architecture enab l es the imple

mentors of workstation or device handlers to add

their own extensions. The special capabil ities of

a particular device, not otherwise accessible
through the standard functionality, can be made

avai lable in this way.

VAX GKS Extensions

VAX GKS has extended output primitives for gen
erating various unfi lled and fi l led circles, circu

lar arcs, ell i pses, ell iptical arcs, and rectangles .

These are frequently needed primitives which an

application programmmer would otherwise have

to generate using standard GKS primitives . The

Digital TecbnlcaiJournal
No. 6 February 1988

implementation of these primi tives as extensions
can also take advantage of any support provided

by the u nderlying device (for example, if the

device has a circle prim itive) . VAX GKS also pro

vides control over such t h ings as l ine join and cap

styles, as well as pri m itive "writing modes" (for

example, replace , complement, negate) .

VAX PHIGS Extensions

I n November 1 986, an ad hoc working group

representing some twenty companies and univer

sities, i ncluding Digita l , was formed tO propose

and develop extensions tO P HIGS in the area of

l ighting, shading, depth cueing, back-face sur

face processing, and curve and surface represen

tation . The set of functionality formulated by this

group is cal led PHlGS + .

While PHIGS+ is not an official standards

effort, a baseline document has been made ava il

able tO the members of the ANSI PHIGS commit

tee for comment.7 It is the intent of the ad hoc

PH IGS + worki ng group that a revised PHIGS +

draft be made ava ilable to the official standards

bodies when the document is complete.

VAX PHIGS includes extensions in most of the

areas being addressed by the PHIGS+ group.

VAX PHIGS supports depth cueing, back-face sur

face processing, several different types of l ights,

various surface rendering effects (methods for

simulating shiny or matte su rfaces) , and an

advanced output primitive .

These extensions are defined in the VAX PHIGS

workstation handler interface. Where possible ,

these extensions are also simu lated by the PHIGS

workstation manager. Therefore , within the l im

its of a particular device, these extensions are

available on all devices supported through the

device handler interface . Usi ng these extensions

effectively, however, is possible only on a device

that can simultaneously display a reasonably

large nu mber of colors or shades of gray. Cur

rently the PH IGS workstation manager requires

that a device be able to simultaneously display
64 colors in order tO simulate these extensions.

Summary

The VAX GKS and VAX PHIGS products are

extended i mplementations of the existing GKS

and proposed PHIGS computer graphics stan

dards, both of which are h igh level and device

independent. Both PHIGS and GKS make com
puter graphics programming far less complex

than in the past . Moreover, they al low program

69

Software
Productivity
Tools

Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products

portabil ity among differen t graphics devices and
different host systems. These qual i ties can lead to
greatly i ncreased application programmer pro
ductivity.

Both VAX GKS and VAX PHIGS are based on a
single architecture designed by Di gita l . This
archi tecture al lows the efficient uti l ization of
high-performance devices, the reuse of large por
tions of code during i mplementation , flexib i l i ty
i n the approach taken tO support a particular
device, and access tO the u n ique capabi l it ies of a
device . This approach has boosted the produc
tivity of the VAX GKS and VAX PHIGS implemen
tation teams , and is expected to minimize the
work required of third parties to add device sup
port .

Acknowledgments

The authors wish to acknowledge the tremendous
contributions made by the VAX GKS and VAX

PHIGS development teams: Dwight Brown,
George Chaltas, Kenney Chan, Ke ith Comeford ,
Glenn Davison , Jeff Ford, Garry Poege l , and Moh
Fung Shen. This effort cou ld not have been made
without continuing guidance from John
McConne l l . Finally, we wish to t hank Joy Ki n
near for her constant support of our efforts .

70

References

1 . Computer Graphics, vol . 1 3 , no . 3 (August
1 979) .

2 . Standard ISO 794 2 for I nformation Process
ing Systems, "Graphical Kernel System
(GKS) ," International Standards Organ iza
tion (1 985) .

3 Draft Standard ISO 9592 for Information
Process ing Systems, " Programmers Hierar
chical I nteractive Graphics System
(PH IGS) , " I nternational Standards Organi
zation (1 987) .

4 . Micro VMS Workstation Graphics Program

ming Guide (Maynard: D igital Equipment
Corporation, Order No. M-G 1 1 0B-TN,
1 985) .

5 . PEX Protocol Specification, Version 3 . 00
(Boston : Massachusetts I nstitute of Technol
ogy, 1 987) .

6 . X Window System Protocol, Version 1 1,

Project Athena (Boston: Massachusetts
Institute of Technology, 1 987) .

7. PHIGS + Functional Descri ption , Revision
2 .0 , report issued by the ad hoc PHIGS +
Comm ittee (1 987) .

Digital Tecbnical]ournal
No. 6 February 1988

Lewis Lasher I

The VAX RALLY System -
A Relational Fourth-generation
Language

1be VAX RALLY system, a fonns-based fourth-generation language, is
designed to simplify the production of interactive database applications.
1be designers of this system sought a balance between ease of use and flex
ibility in the development of the object-based definition system. The defini
tion system allows commonly anticipated features to be implemented by
nonprocedural means, and other features to be implemented by means of
escapes to other languages. The run-time environment allows many users
non-interfering, concurrent readjwrite access to the same data. The rep
resentation of an application by a set of objects allowed the definition sys
tem to be implemented as a RALLY application. This use of RALLY for its
own user interface gave the designers a fast and effective means to make
product improvements.

The VAX RALLY system is a forms-based , founh
generation language (4GL) , or application gener
ator, for database appl ications. Like other
founh-generation languages, i t i ncreases the pro
ductivity of appl ication definers by providing
them with high-level constructs that s implify
application development.

This paper discusses the design principles
that have contributed to RALLY's usabi l i ty by
application definers and to the efficient develop
ment of the RALLY definition system i tself. In
particular, attention is given to the design trade
offs inherent in 4GLs; the design of an object
based environment ; and the use of the same
data model for appl ication data as for the applica
tion itself.

Product Design Overview

Version 1 .0 of the VAX RALLY system was
developed over a three-year period (1 983-
1 986) as a combined effon by Digital Equip
ment Corporation and Foundation Compu
ter Systems, Inc . , the original authors of the
"ALLY" 4 G L product . Digi tal is currently
developing later versions of the VAX RALLY
system.

VAX RALLY is an application definition system
and run-time environ ment for applications using

Digital Technical journal
No. 6 February 1988

RdbjVMS databases. The definit ion system con
sists primari ly of the fol lowing:

• An object-based, nonprocedural set of tools

• A procedural language whose syntax is adap
ted from the Pascal language

• In terfaces to programs written in tradit ional ,
third-generation programming languages (3GL)

The run-time environment provides the follow
ing:

• Vinual multitasking in a single VMS process

• Flow control within and among tasks

• Screen painting

• Capture and validation of input from the user
of an appl ication

• Data manipulation operations to and from
databases

The users of VAX RALLY fal l into two classes
corresponding to its two major divisions: applica
tion definers who use the definition system to
build appl ications, and end users who use these
appl ications. However , because the definition
system i tself uses a RALLY application for its
forms and menus, both classes of users, and
indeed both of the major divisions of RALLY, are
affected by the same design decisions .

7 1

The VAX RALL Y System - A Relational Fourth-generation Language

Trade- offs between Ease of Use
and Power

A recurri ng trade-off i n the design of RALLY, as in
4GLs generally , involves the tension between the
goals of ease of use and power, or flexib i l ity . If
the 4GL is roo compl icated , then users may fi nd
it simpler to continue using tradit ional 3GL pro
gramming methods. If the 4GL is nor sufficiently
powerfu l to meet the users' needs, users may

have no choice but to resort to 3GL program
ming.

RALLY accommodates both these goals in sev
eral ways. F irst, RALLY is specifically optimized
for the development and execution of a part icular
class, al be it a large c lass, of appl ications, namely,
interact ive database applications. Second, RALLY
provides the application definer with a smal l set
of careful ly chosen objects and the abi l i ty to
combine these simple objects into complex com
binations. F ina l ly, RALLY provides four different ,
part ial ly overlapping approaches ro appl ication
development: the builder rools, the edit ing envi
ron ment , an integrated procedural language, and
the abi l i ty to interface with programs written in
trad itional programming languages. In effect, the
designers solved the problem of having ro trade
off ei ther ease of use or flexibi l i ty by resolvi ng
the problem i n , not one, but several aspects of
the RALLY sofrware .

The bui l der rools are a greatly simpl ified sub
set of the features avai lable in RALLY as a whol e.
Few choices are given to the application definer,
extensive defaulting is used, and many RALLY
concepts are simplified or omi tted a lroget her.
By using the bui lder tools, a novice can learn
the most important RALLY concepts immediate.ly ,
bui ld a usable appl ication in a short time , and
defer learn ing other RALLY concepts unti l
needed.

The editing environ ment is the largest part of
RALLY. I t is a lmost enti rely forms-based. An appl i
cation definer fi lls in blanks on forms to speci fy
rhe options to employ or rhe connections to make
between RALLY objects. Using these forms, the
definer has no need to learn or recal l a language
syntax . Al though the set of features RALLY offers
is nor s imple, the entire set is organized through
RALLY's menus, and each form is labeled . Because
each form presents a manageable amount of func
tiona l i ty , it can be documented using on-l ine
interactive help messages specific to each form
or to each field on a form.

72

RALLY includes an i ntegrated procedural lan
guage called ADL (Appl ication Development Lan
guage) . ADL can be used for appl ication features,
such as arithmetic formulae, that are easier to
describe using a language than by fi l l ing our
forms. A definer typically uses an ADL procedure
ro specify the formula for a computed field, ro
define the condi t ions for val idating data opera
t ions, to manipu late data outside of a form or
report, or to a lter flow control .

Lastly, a RALLY appl ication can be i ntegrated
wirh programs wrirren i n rradirional program
ming languages. AJrhough this does nor con
rribure d i rectly tO the productivi ty i mprove
ments real izable by using a 4GL, i r expands the
range of appl ications that can use RALLY

Kinds of Applications Generated

The word "appl ication " can refer to practica lly
any effect ach ievable by traditional, 3GL pro
gramming languages . The goal of RALLY is more
focused: ro simpl ify the production of i nterac
t ive database appl ications. With in the narrower
domain of these data process ing appl icat ions that
RALLY generates, i t i s possible ro pred ict what
features are most l ikely ro be usefu l . The concep
tua l basis for both the defin i t ion system and the
run-t ime system was largely governed by such
predictions about the types of appl ications RALLY
would generate .

The VAX RALLY product , l i ke other 4GLs, s im
plifies appl ication development by providing the
appl ication definer wi th a smal l set of h igh
l evel constructs and the tools with which to com
bine them. Because RALLY focuses on database
appl ications, many of RALLY's constructs are data
base operations: readi ng , i nsert ing, deleting, and
updating records; and com mitt ing and rol ling
back transactions. The major components of such
appl ications are forms through which end users
enter data to be written to the database , and
reports on which end users see data that has been
read from the database. Finally, a l though the pri
mary focus of RALLY i s on i nteractive appl ica
tions, RALLY is also designed to be able ro pro
cess records i n batc h .

The Object-based Definition System

RALLY conceives of an application as an i nter
connected network of objects . Each object has
attributes that represent characteristics of the
appl ication .

Digital Technical journal
No. 6 february 1988

Virtual ly an entire VAX RALLY application can
be defined by fil ling out forms to specify the
attributes of and connections between objects.

The appl ication definer gives each object a name
that is used when connecting i t to another object .
Because the appl ication defin ition system con
trols the storage and retrieval of objects, it always
makes available to the application definer a l ist of
a l l the objects at the definer's disposal . These
l ists, cal led l ists of values, i mprove productivity
because the definer need not rely on memory or
wri tten notes. Because the definer can specify
connections by moving the cursor to the l ist of
values and pointing at the appropriate name,
without having to type the name manual ly, the
definer is encouraged to give objects long,
descriptive names.

The major types of objects that may be defined
in a RALLY appl ication are tasks, menus , form/
reports, data source defini t ions, ADL procedures,
external program l inks, number formats , and
date formats . Formjreports and data source defi
n itions, which are discussed in more deta i l later
in this paper, conta in subobjects such as fields .

The design of these objects was governed by
principles of modularity. When a set of charac
teristics is l i ke ly to be used together, those char
acteristics belong in the same object. When a
subset of these characteristics is l i kely to be
changed whi le the other characteristics remain
unchanged, that subset may belong in a separate
object. These decisions are heavily dependent
upon knowledge of how the characteristics are
viewed and used by users, in this case , by appli
cation definers .

The most significant design decisions in the set
of RALLY object types were

• The separation of data source definit ions from
forms and reports

• The unification of forms and reports i nto a sin
gle object type

The fol lowing sections describe the data
source definit ion and formjreport objects, and
the data groups which are the basic structure of
formjreports .

Data Source Definitions

The data source defini tion (DSD) , un l ike the
formjreport or menu, is not an object with an
obvious justification for existence . Forms,
reports, and menus are visible components of

Digital Tecbnicaljournal
No. 6 February 1988

appl ications ; DSDs are invisible auxil iaries to
forms or reports . Yet there are two strong reasons
for the existence of the DSD as a separate object :
data independence, and reusabi l i ty .

Data i ndependence means the isolat ion of an
appl ication from unnecessary dependence upon
the detai ls of data storage . Most characteristics of
a database application , and most characteristics
of a form or report, are unconcerned with such
details . RALLY isolates these storage detai ls , such
as the type of database and the names of re lations
and databases, i n the DSD object . The form/
report object handles the user-visible features of
the application, such as how data is formatted
and, in the case of forms, val idated .

Reusabi l i ty refers ro the abi l i ty ro make several
uses out of information that is defined only once ,
thus avoiding redundant and time-consuming
work . The same DSD, describing the same source
of data , may connect to several different forms
and reports. Conversely, a formjreport can be
reconnected at different t imes to d ifferent DSDs,
a l lowing a form or report with the same features
to operate on a different set of data .

An additional reason to separate out DSDs as
objects in their own right is the design goal of
supporting both in teractive and batch process
i ng . Interactive data processing occurs in RALLY
i n form/reports; batch processing occurs in ADL
procedures. For both types of data processing, an
application definer must specify the source of
data , restrictions on record selection, and a lock
ing strategy. The information that must be speci
fied for both interactive and batch processing i s
contained in the common object , the DSD.

The existence of DSDs as separate objects con
tributes tO the goal of s impl ifying ADL syntax . A
small set of high-level primitive functions serves
for a l l access methods.

Form and Report Functions in a Single
Object
The VAX RALLY system treats both forms and
reports as a si ngle object, cal led a formjreport .
Despite the common practice, even in this paper,
of referring tO forms and reports as distinct phe
nomena , they share essential characteristics for
the display and formatting of data records with
accompanying text . Providing a s ingle construct
s impl ifies the concepts that a definer must learn .
Moreover the formjreport is an inclusive, not dis
junctive , genera l ization of the characteristics of
both forms and reports. Not only the conceptual

73

Software
Productivity
Tools

The VAX RALL Y ,�ystem - A Relational Fourth-generation Language

defi n i tion of the formjreport object bur a lso
each i nstance can i nclude the un ion of the sets of
form characteristics and report characteristics.
Because a single RAlLY formjreport object can
handle the ent i re set of in teractive data opera
tions, the definer can attain considerable produc
t ivity after mastering a sma I I set of concepts .

A formjreport by default reads records from
one or more data sources, disp lays them to the
user, and performs data manipulation operations
in accordance with the end user's actions, writ i ng
data out to the data source (s) . By defau l t , an
end user may browse through the records dis
played, modi fy or delete them, insert new
records, commit or roll back the database trans
actions, perform queries tO view a subset of the
data, and perform these same data operations on
the subset shown as a resu lt of the query.

Each capabi l i ty can be removed outright from a
given form/report or restricted conditional ly . For
example, to make a formjreport behave l i ke a tra
di t ional data entry form , the definer may e l imi
nate the capab i l i t ies of reading existing records
and querying .

Data Groups - Building Blocks of
RALLY Formjreport Structure

Tradi tional forms processing software confines i ts
function to the collection of data, leaving the pro
grammer to write the col lected data to a fi le or
database . The RAlLY designers recognized that,
once col lected , data is most commonly written
out to a data source . Consequently RALLY pro
vides as a standard option the combined function
a l i ty of col lecti ng data and writ ing it to a fi le .
RAlLY also a l lows for " pu re forms" that do not
automatical ly write out data .

The most s ignificant design feature withi n
RALLY form/reports i s the data group. This struc
ture is specifica l ly designed for forms or reports
connected to a data source, such as a database or
a fi le with normal i zed data.

The data group i tself does not conta in the defi
n i t ion of the fi le or the relation i n a database that
stores the data for the group. Rather, the DSD
object discussed earlier conta ins this informa
tion . Therefore aspects of the user's in teraction
with the data (formatting of out put and restric
t ions on i nput) are separated from deta i ls of how
and where data is stored, which may d i ffer i n
character between different types of data sources.

Severa l data groups can be combi ned within a
formjreport to support access to several data

74

sources, possi bly in d i fferent databases or in d if
ferent k inds of databases a nd fi les . More specifi
cally, groups i n a formjreport form a hierarchy
that reflects the re lationship between different
data streams. Each group can have one or more
ch i ldren groups . I n such a parentjchi ld relation
ship, the data in t he chi ld group is related to and
dependent on a record in the parent group; a
field or set of fields in each chi ld record must be
equal to the corresponding fic ld (s) i n the parent
record . In re lational database terms , this s i mu
lates a join between the data in the parent and
ch i ld groups . The appl ication definer, s imply by
defin i ng a parent/chi ld relationshi p , ach ieves the
foJlowing effects:

• When records are read for the chi ld group, an
impl ic i t restriction is added to read only
records for which the correspond i ng fields
match .

• When records are i nserted i nto the child
group, RALLY automatical ly fi l ls in the fields
to match those i n the parent record .

• When records are deleted i n the parent group,
RAlLY can , at the option of the defi ner , delete
all records in the chi ld group . preserving the
in tegrity of the database .

This abi l i ty tO organize related data is crucial
in the deve lopmen t of applicat ions that use
relational databases . Data normal ization forces
logically re lated data to be separated i nto mult i
ple relat ions to avoid repetit ion or excessive
functional dependencies within a s ingle record .
To display repeated data i n i ts proper context and
to display dependent descript ive data , a single
form or report often re l ies on data from several
relations . A r:ypical example is an order entry
form. Repeating data for rhe l i ne i tems i n the
order are stored in a relation separate from the
order header data . The order header data con ta i ns
a reference to the customer, but descriptive
information abour the customer (such as name
and address) must be looked up from a separate
relation . S imi larly, l ine i tems refer to products,
but the descriptive information (product name
and price) are looked up in yet another relation .
A hierarchy of data groups in a RALLY form;
report corresponds d irectly to the relationships
among these re lations.

At each level in the h ierarchy of groups. the
definer can al low or restrict i nsertion , dele
tion, and update of records. The defi ner can also

Digital Technical journal
No. 6 February I 'J88

define additional fields such as computed fields
and aggregates. RALLY produces an i nstance of
such fields for each record i n the data group . For
example, an aggregate field in a parent group
wil l produce a set of subtotals , one for each
record in that group.

Control break reports are a lso implemented i n
RALLY with data groups . The fields on whose val
ues the control break is based are placed into a
separate data group above the rest of the data . A'>
with form/reports based on simulated joins, each
level of control break can have aggregates and
formatting attributes defined in the data group .

Nonrepeat ing fields, such as grand totals, are
owned by a special group cal led the main group .
The main group sits atop the hierarchy, own ing
the top-level data groups. This group can also be
used for "pure forms" whose data is not automat i
cal ly written out to a data source.

A special kind of data group, called a l ist-of
values group, offers a simple, nonprocedural
method for ensuring referential integrity. From
the point of view of the end user, the l ist of
values assists i n supplying a value for a particular
field . The end user uses the RALLY command
LIST_OF_VALUES (typical ly using a function
key) to move the cursor from the fie ld to the l ist .
The user then moves the cursor to the desired
value and uses the RALLY command SELECT
VALUE to copy the value to the field . The appl ica
tion definer has the option to restrict the user to
selecting a value that appears in the l ist of values .
The implementation of a l ist of va lues i s s imple
and consistent with the definit ion of other
groups : a OSO describes the data that wi l l appear
in the list, and the data group describes the for
matting of the data on the screen. Because the
list-of-values data is independent of the other
data on the formjreport, the l i st-of-values group
is ne ither a parent nor a child of the other data
groups, but is real ized as an independent sibl ing
owned by the main group.

Escapes to Procedural Programming

RALLY tries to anticipate the features that wil l be
requ ired i n applications and to provide the
definer with the option to include those features .
Fields, data groups , and formjreports as a whole
are replete with options. But this is not enough .
No col lection of options wi l l meet the require
ments of a l l appl ications. Therefore , RALLY
al lows the appl ication definer to escape from the
nonprocedural confines we provide .

Digital Tecbnicaljourna/
No. 6 February 1988

The VAX RALLY system offers the definer two
levels of escape : an integrated procedural lan
guage, AOL, that runs within RALLY; and the abil
ity to cal l trad itional programs that run on the
VAX system , independent of RALLY Both ADL
procedures and calls to external programs latch
on to a RALLY appl ication at various " hooks , "
called action s ites.

Action Sites

A number of action s ites are avai lable at various
levels in the appl ication .

A simple example is a computed field that has
an action site for a procedure which suppl ies the
formula for the computation. In addition , action
sites can be i nvoked before and after the user
moves the cursor to each fiel d or changes the
value of each field ; before and after insertions,
deletions, and updates in each data group; before
and after commits, roll backs, queries, and invo
cation of the formjreport as a whole; and at the
expl icit request of the end user . Action s ites that
occur before an event genera l ly have the abi l i ty
to prevent that event from taking place . For
example , the before-deletion action site, under
conditions specified by the definer, can forbid
the user condi tional ly from deleting records in
a particular data group . By using external pro
grams or AOL procedures, the definer coul d
cal l upon a system service to determine a user's
login-identification , read records from an autho
rization fi le , andjor cal l a RALLY menu to al low
the user to reconfirm, before proceeding with
the deletion .

Because RALLY has d i rect control over the
"action stack" that governs the flow control ,
action s ites can be put to very powerful use. At
any action site, the definer can cal l another
RALLY action (for example, formjreport, menu ,
ADL procedure, or external program) , spawn a
RALLY task, return to an existing task, " unwind"
the action stack, or invoke a RALLY command
(for example, COMMIT) .

ADL Procedures

Although external programs can do things ADL
procedures cannot, their effect on the RALLY
appl ication is l imi ted to their abil ity to write
their output parameters into RALLY fields or
variables.

ADL provides a convenient way to define com
puted fields without having to l ink to an exter
nal program. Although there is some overlap

7 5

Software
Productivity
Tools

The VAX RALL Y System - A Relational Fourth-generation Language

between the abil i ties of external programs and
ADL procedures, certa in operations are better
su i ted to ADL procedures . An ADL procedure can
d irectly read and wri te fields and variables in the
application; i nd icate that a val idation has fa i led,
preventing a data operation from going fort h ;
invoke RALLY formjreports, menus, error mes
sages, or he lp messages; unwind t he RALLY exe
cution stack ro a speci fied point ; and manipulate
RALLY tasks . In addit ion , ADL can read, query ,
and write data through a set of bui l t - in functions

that closel y para l lel the operations permitted in
formjreports . As with formjreport groups, the
specific defin i t ion of the location of the data is
isolated i n the DSD object .

Moreover, given the choice of using e i ther an
ADL procedure or an externa l progra m , a definer
wil l find t he ADL procedure s ignificantly faster to
implement. To i ncorporate an external program
i nto a RALLY appl ication , the definer must leave
RALLY, edit the text of the program , compi le and
l i nk the program, and return to RALLY. To usc an
ADL procedure, the definer can invoke the ADL
ed itor and compi ler from within the defi n i t ion
system menus, and test the resu lts wi thout leav
ing RALLY

The syntax of ADL i s a good example of how
RALLY accommodates the defi ner's need for both
s impl ic i ty and power.

A.DL derives i ts syntax from Pascal in order to
provide local variables , parameters with cal l by
reference, cond i tionals, and loops. The syntax is
relaxed for cases that do not use a l l these fea
tures:

• I f an A.DL proced ure does not use para meters ,
the PROCEDURE statement may be omitted .

• I f an ADL procedure does not use local vari
ables , the BEGI N and END enclosing the pro
ced ure body may be omi tted .

As a resu l t , an ADL procedure that spec ifies the
formula for computed fields - t he most com
mon use of ADL - can be written as a single Pas
cal statement . For example:

F O R M _ R E P D R T . C O M P U T E D _ F I E L D

F O RM _ R E P O R T - I H P U T _ F I E L D _ 1

• F O R M _ R E P O R T • I H P U T _ F I E L D _ 2 ;

Implementation of the
Definition System
The defi ner of a RALLY appl icat ion man ipulates
objects such as formjreports, menus, DSDs,

76

external program l inks, and ADL procedures.
Most of these manipulations are done in terms of
data operat ions: creat ing, de leting, and modify
i ng informat ion in a " record" that represents
each object.

The imp lementation of the defin i t ion system
uses RALLY for i ts own forms, treating the
appl ication definer's objects as data . Thus the
defin i t ion system is si mply an example of an
appl ication bu i l t wi th RALLY, al though probably
much larger than the typical RALLY app l i
cation . However , the defi n ition system a lso
inc ludes tools, such as edi tors, and has an
access method specifica l l y designed for effi
c iently storing appl ication objects in fi les .
The code that su pports t h is access method
can a lso be called directly by the defin i t ion
system code, or by ADL procedures in the
defin i t ion system appl ication .

The defin i t ion system uses i ts data about the
appl ication to ass ist the appl ication definer.
Whenever the appl ication definer has the oppor
tunity to connect one RALLY object to another
(for example, at action s ires) , t he defin ition
syst<.:m d isplays a l ist of val ues showing a l l
the <.:xisting objects of the appropriate type .
Whenever the appl ication definer attempts
to del ete an object , the defin i t ion system
checks for references from other objects; if i t
finds any such references , i t warns the definer
and d isplays a report that l ists the referenc
i ng objects . Aga i n , standard formjreport features
are used in connection with the spec ia l i zed
access method .

An interest ing aspect of the way objects are
handled as data is the way object names are
hand led. The definer regards the object's name
as the primary key that un iquely identifies
the object. However, to encourage the devel
opment of mnemon ic names, RALLY al lows
the defi ner to rename objects . Therefore,
RALLY i nterna l ly ident ifies objects not by name
but by an i nterna l identifier nor displayed to the
definer. From RALLY's internal point of view,
the name is just another attri bute of each
object that can be changed at wi l l . From the
definer's point of view, renam ing an object
automatica l ly renames a l l references to that
object

The defi n it ion system uses a spec ia l i zed form
of escape to 3GL programs to su pport nonstan
dard formjreporrs. Cal led the 3GL access
method, th is technique al lows the defi n i t ion sys-

Digital Technical journal
No. 6 February 1 988

tern to present information in tabular form even
when the underlying data is not stored as a
sequence of records. For example, the definition
system uses the 3GL access method to d isplay an
RdbjVMS record selection expression on a series
of tabular formjreports: sorting, restrictions, and
projections. Each " 3G L DSD" is i mplemented by
a single routine that can be ca lled with one of
several function codes . These functions corre
spond tO t he data operations that are supported in
form;reports and i n ADL procedures: get first
record , get next record , insert, delete, update ,
com mit , and rollback. Each such routine, in
effect , implements its own access method , sup
plying data and effectuating data operations . The
definition system can use the "access method " as
any other data source, for example, to supply the
data for a l ist of values.

The Run-time Environment

Mapping User Actions
to Database Operations

The typical end user of a VAX RALLY application
is not skil led in database concepts. Therefore , to
aid this user, database operations should happen
in a natural correspondence to the end user's
actions.

The basic concepts that RALLY presents tO an
end user are very simi lar tO those presented by
the VAX TEAMDATA software, a data management
tool specifical ly designed for exclusive use by
unsophisticated end users. Speci fical ly , the " data
table" metaphor by which TEAMDATA operates is
very similar to the mechanisms that RALLY uses. A
data table evokes t he c lassical form of a table to
represent a relation . Rows in the table represent
records; columns represent fields in the relation .
The VAX RALLY run-time environment includes
bui lt - in commands with which the end user
manipulates records or navigates between fields
in a form/report. Function keys have been pre
defined for the commands most commonly used .

To delete a record, t he user moves the cursor to
a field in t he record and invokes the DELETE
RECORD command (typically by pressing the
Remove key) . To modify a record, the user moves
t he cursor to the desi red field in the desired
record and types the new value. However,
the update is not communicated to the data
source until the user moves the cursor off the
record. Besides minimizing the cost of repeated
updates, this al lows the user to change severa l

Digital Tecbnicaljournal
No. 6 February 1988

fields that are subject to cross-field val idation
i mposed either in the database or by the RALLY
application .

Transaction Management
in Formjreports
RALLY uses RdbjVMS transaction and locking
mechanisms tO extend TEAMDATA's straightfor
ward data table metaphor from a single-user tO a
multiuser environment . Moreover, the designers
wanted tO a l low many users to access t he same
data concurrently with minimal interference
between users, and to do so with reasonably effi
cient performance.

The following brief review of the RdbjVMS
transaction and locking mechanisms wi l l hel p in
explaini ng RALLY's implementation of shared
write access in form; reports.

RdbjVMS provides essentially two types of
transactions: read-only and readjwrite.

A read-only transaction, as its name implies,
permi ts only reading operations. I t gives a "snap
shot" of the state of the database as it was when
t he transaction started; later changes by other
users are not seen in a read-only transaction . A
read-only transaction does not take out any locks
on the database and is affected only by those rela
tion-level locks taken by other transactions with
"exclusive" access.

A readjwrite transaction must be used to write
to an RdbjVMS database. In addition to various
degrees of locking of relations, a readjwrite
transaction locks individual records as it operates
on t hem. If a readjwrite transaction reserves a
relation for shared-write access, many transac
t ions may read a given record, but only one trans
action may write to a particular record. The
mechanisms Rdb uses to ensure th is are ca l led
"read locks" and "write locks ." As a readjwrite
transaction reads a record , i t takes a read lock
on that record . For so long as t his transaction
holds that lock, no other transaction is a llowed
to delete or modify that record . However, other
readjwrite transactions may read the record,
taking their own read locks on the same record .
Read-only transactions are unaffected. When a
readjwrite transaction writes to a record , a write
lock is taken on that record . For so long as
this transaction holds that lock, no other read/
write transaction may read that record or write to
it . Both read locks and write locks are held until
the readjwrite transaction is terminated by a
comm i t or rol lback.

7 7

Software
Productivity
Tools

The VAX RALL Y System - A Relational Fourth-generation Language

RALLY's s imple, elegant "data table" mode l , if
implemented simply by using a single readjwritc
RdbjVMS transaction , wou ld thwart the goal of
non interfering, s imultaneous, mult iuser access .
Recal l that a readjwrite transaction takes a read
lock as a side effect of reading each record . The
mere d isplaying of a record i n the table, even
without the user attempting to mod ify i t , wou ld
immediately interfere with other users ' access to
that record . Although several users cou ld each
read the record , their read locks woul d prevent
any user from writ ing to the record . This would
make the shared-write access virtua l ly unusable .
To decrease contention among users , RALLY
implements shared-write access using two Rdb/
VMS transactions: a read-only transaction for d is
playing records in a data table fashion , and a
readjwri te transaction that is used sparingly as
needed when the user performs data update
operations .

Another difficulty is caused, however, by t he
use of the read-only transaction to d isplay exist
ing data for the user's perusa l . Because the read
on ly transaction suppl ies a "snapshot" of the data
as it was when the transaction started, it is possi
ble for the d isplayed data t o lag beh i nd the actual
state of the database. Other users may have wri t
ten and committed changes to the record i n the
meantime .

To al leviate this problem of stale data d isplay
while avoid i ng the overhead of repeatedl y read
ing from the database to check for updated
records, RALLY employs a compromise . RALLY
checks for and reports d iscrepancies only at the
point where a user attempts to modify or delete a
record . After RALLY warns the user that the
record has undergone changes since i t was read
from the read-only transaction , RALLY red isp lays
the record with i ts current data . RALLY does this
by reading the record from the readjwrite trans
action . This read operation , cal led a select for
update (SFU) , is done as soon as the end user
changes a single fie ld in a record . This action by
the user is the earl iest i nd ication RALLY has that a
user's interest in a record is more than that of pas
sive observation . Reading from the readjwrite
transaction serves two purposes: it a l lows RALLY
to a lert the current user to any i nteri m changes i n
the record , and by tak ing a read lock o n the
record , i t prevents other users from making any
further changes to the record . When the current
user moves the cursor off the current record ,
RALLY wri tes the changes tO the readjwrire trans-

78

act ion . taking a write lock on the record . Note
that RALLY can sti l l read and display rhe record
for other users despite the wri te lock , because
the other users are readi ng from their own read
only transactions. Final ly, when the current
user performs a commit , whether explicitly by
using the COMMIT command, impl icit ly by
means of a posi tive exit from a formjreport, or
as a resu lt of the appl icat ion definer's design ,
the read-write transaction is committed and a l l
Jocks are released .

Advantages of Using RALLY for Its
Own User Interface
The use of RALLY to i mplement the user interface
for the RALLY defin i t ion system has resu lted in
several advantages. Despite some early bootstrap
ping difficulties, the use of RALLY within itse lf
has noticeably improved the qual i ty of the
product. Any t ime we change the user interface
for the defin i t ion system , we s imultaneously
exercise the defi n ition system as wel l as the
run-t ime system . The defin i tion system has prof
i ted from the ease with which we have been able
to i ncorporate i nto i t the same features that
are easy to develop in appl ications, notably, va l i
dation , l ists of values of val id choices, and flex
ible flow control . As part of the ongoing develop
ment work on future versions of the VAX RALLY
product, we have been able to experiment
read i ly with the user in terface for the defin ition
system, for example :

• We have i mplemented prototypes of the menu
structure of the defin i t ion system in which
menus and forms have been changed to reflect
better the rela tionsh ip between the various
attri butes of each object . The t ime to i mple
ment these changes has been negl igible,
a l lowing the deve lopment group to spend
appropriate amounts of t ime eva luating design
al ternatives, rather than on implementat ion
deta i l s .

• We are studying a change i n the way an appl i
cation definer specifies the location of RALLY
objects. In the current version , an application
definer specifies for each object the start row,
end row, start column, and end column . Under
the proposal being studied, the definer wou ld
specify the start row and column , and the size
in rows and columns. This change was easi ly
prororyped without changing the way RALLY
stores the informat ion . We introduced com
puted fields for the size information and made

Digital Technical journal
No. 6 February 1 '}88

the end coord inates nondisplayed fields. Only
two ADL procedures were needed, despite the
fact that this change affected nu merous forms

• We are experi menting, by means of the 3 GL
access method, with formjrepons that display
data about the appl ication in a nonstandard
fashion . For example, we have designed a
formjreport that would l ist the location infor
mation about a l l the fields, groups, and text
objects in a formjreport . The 3GL routine to
su pply the data for t his formjreport adds
spaces to the begi nning of each object's name
so that indentat ion reflects the depth in the
hierarchy of formjreport groups.

• We have prototyped a way to streamline the
means by which an appl ication definer works
on related objects in a RALLY application . In
the current version , the application definer
works on one object at a t ime, returning to the
menu tree each time to se lec t a different
object. The prototype took advantage of
RALLY's " local function" feature , by which an
appl ication definer can give the user the abil
ity to ca l l a RALLY action at will by pressing a
key . This feature wou ld al low an appl ication
definer to press a key to edit an object named
on the current screen . For example, if an
appl ication definer were edit ing a men u and
were to move the cursor to the name of the
formjreport that is cal led as a choice from that
menu , RALLY wou ld suspend i ts editing of the
menu and al low editing of the formjreport .

The speed with which such changes can be
made has al lowed us to compress severa l cycles
of design, implementation , testing, and reaction
into the t ime ordinarily taken to complete a sin
gle cyc le . The abili ty to respond substantively to
user feedback is a major contribution to our
efforts to improve VAX RALLY's user interface .

Also , our experience with the definition sys
tem, one of the largest appl ications ever bui l t
using RALLY, has given us valuable insight in
eval uating RALLY and proposing new features .
Lists of va lues is an example of a feature i nflu
enced by the use of RALLY by the defin ition sys
tem . Several features were added to li sts of values
for the benefit of the definit ion system to make
the feature more useful for appl ications gener
a l ly. These fearures include the abi l i ty to val idate
the user's typed input against a l ist of values, the
abi l i ty for variables in the appl ication to affect
the set of records in the l ist of val ues, and the use

Digital Technical journal
No. 6 February 1988

of l ists of va lues to translate keywords into code

numbers.

Summary
To make application definers more productive,
the VAX RALLY system is designed to be at once
easy to use and powerful . VAX RALLY achieves
these goals in severa l ways . First , i t offers a smal l
set of concepts tha t address those applicat ion fea
tures common ly needed by appl ication definers.
Second, RALLY gives the definer ways to combine
smal l pieces and ways to move in and out of the
nonprocedural environment of t he defi ni tion sys
tem . Final ly , the designers of this object-based
system delineated objects based on knowledge of
how the objects are l ikely to be used .

The VAX RALLY product's unified form;
reports, comprising combinations of data groups
connected to data sources, provide application
definers the functional ity most needed for inter
active database applications.

The representation of an application by a set of
connected objects al lows programming to be
treated as a data processing appl ication that
manipu lates those objects. In particular, th is rep
resentation has al lowed RALLY to implement the
user i nterface for the appl ication definit ion sys
tem as a RALLY application .

The use of RALLY formjreports as the basis for
the RALLY definit ion system has resu lted in
several sign ificant advantages, both in anticipat
ing the needs of users and in increasing our own
productivity and flexibi l ity i n developing VAX
RALLY.

General References

E . Horowitz, A . Kemper, and B. Narasimhan, "A
Survey of Appl ication Generators," IEEE Soft
ware Qanuary 1 98 5) : 4 0-5 3 .

j . Martin , Fourth- Generation Languages (Engle
wood Cl iffs : Prentice-Hal l , 1 98 5) .

C . Date, A n Introduction to Database Systems ,
Third Ed i t ion (Reading: Addison-Wesley, 1 98 1) .

VAX RdbjVMS Guide to Data Mampulation
(Maynard: Digital Equipment Corporation ,
Order No . AA-N03 6B-TE , 1 985) .

VAX RALLY Dialog User 's Guide (Maynard: Dig
ital Equipment Corporation , Order No . AA
GX89A-TE, 1 986) .

VAX RALLY ADL User's Guide (Maynard : Digital
Equ ipment Corporation , Order No . AA-GX90A
TE, 1 986) .

79

Software
Productivity
Tools

Linda E. Benson
Michael Gianatassio,jr.

Karen L. McKeen

V1X and VAL U - Software
Productivity Tools for Distributed
Applications Development

Digital's VAX V1X product is a distributed infonnation-retrieval tool that
operates in conjunction with another tool, the VAX V1X Application Link
Utilities, or VALU. These products enhance software productivity by
providing components that work together to aUow the development and
integration of applications in distributed, heterogeneous environments.
V1X and VALU provide the means for creating information services,
providing network access to either centralized or distributed infonna
tion, and building external applications through basic tools and program
ming interfaces. The development of distributed applications with V1X
and VALU requires little or no knowledge of the underlying network.

The designs of VTX and VALU center on a dis
tributed open architecture using the c l ient/
server model . This open architecture al lows VfX
and VALU applications tO be integrated with oth
ers avai lable through Digi tal 's networking envi
ron ment . The architecture enables these two
products to provide a simpl i fied development
environment for appl ications . Within this envi
ronment , a developer can create d istribu red
appl ications that a llow geograph ica lly dispersed
users to access information stared in geographi
caJly d ispersed locations connected by a com
purer network. This flexi bi l i ty allows the base
services of a distributed information retrieval
system tO be extended i nto a more robust dis
tributed system. In such a system, a deve loper
can integrate applications with other software
products or external computer systems.

The V1X Project Goals
The designers of the VTX product had to address
a unique set of problems re lated to information
access through a computer network. The central
problem was how to efficiently distribute infor
mation on- l ine tO a large group of people . The
chief aspects of this problem were the fol lowing:

• There were nei ther means to access informa
tion stored in dispersed locations nor easy
ways tO alert potential users about i t .

80

• Even if information could be reached, i t was
not we ll organ ized for ease of access.

• At the decentra l ized locations , informat ion
was usua l ly maintained in different ways by
those people most fa mi l iar with i t .

These problems describe the information situ
arion in most corporate business environments.

Therefore , the cha l lenge for the VTX design
ers was ro determi ne how a corporation handles
information flowing between different locations .
Note that information i n this case could be any
thing from pol icies and procedures manuals, to
job postings and travel schedules, to CAD/CAM
drawings and technical docu mentation . A major
goal of the designers was that a m inimum of spe
cial learning should be required by people
accessing the information ; browsing through i t
should be as simple as using a te lephone .

This goal caused the VTX architects tO exam
i ne various systems with these characteris
tics, inc luding public videotex systems, that
addressed the problems li sted earlier. A main
feature of public videotex was that basic naviga
tion through the on- l ine informat ion system was
si mple for users . They cou ld easily locate infor
mation and then rely on the system to qu ickly
and easily access that information . Public video
tex systems were also distributed systems: users

Digital Technical journal
No. G February 1988

were geographically dispersed, and the informa
tion accessed was located in multiple i nforma
tion "stores" in a computer network.

Since public videotex was a well-accepted sys
tem that was also easy to use, the archi tects
chose i t as t he basic model on which to bui ld
the VTX product .

Figure 1 presents the architects' view of a sim
pl ified model of information flow with in a cor
poration. This model would be refined as project
goals were clarified .

Figure 1 Information Flow Model

Although ease-of-use was a primary goal for an
information retrieval system , other major goals
included t he following:

• I nformation access must be fast .

• The product must accommodate access from a
variety of desktop systems and termina ls from
different manufacturers.

• The product should be protOcol neutral so
that i nformation, regardless of i ts format or
presentation-level content, could be stored in
a single data store .

• The product must suppon a distributed envi
ronment in which the information , as wel l as
i ts users and information providers, might a l l
be geographically dispersed.

Guided by these goals, the designers bui l t a
prototype that was then tested by users within
Digital to determine its ease-of-use factors, per
formance, and general acceptabi l i ty. Based on its

Digital Tecbnical]ournal
No. 6 February 1988

success as a prototype, t he development of the
product began, following the goals described
above . Somewhat later in the development
phase , t he team added goals a imed at making the
product extensible, thus taking advantage of the
open architecture. Extensible in this case simply
meant the abi l i ty tO enlarge the tool-kit nature of
the product so that an application developer
could expand the system by i nterfacing with
other products and environments. As a resul t ,
designers identified some growth areas for t hese
products that took advantage of their flexible
open archi tecture .

These additional goals led to the concept
for the VALU product . Although VTX would
provide the base services for a distributed infor
mation retrieval system , those services had to
be expanded tO interact with other appl ica
tions. VALU was conceived as a tool kit that
would a llow application developers to enhance
applications bui l t with t he basic system pro
vided by VTX .

• Enhanced tools and environments for the
information providers

• Tools for acquiring and i ncorporating infor
mation into the VTX-based system

• Integration with non-VTX applications
through interfaces that require no knowledge
of t he underlying network by the application
developer

Building the Base V1X System

This section d iscusses the characteristics of a
distributed architecture , how it faci l i tates appli
cation development and integration, and the
methods for bui lding upon i t .

Characteristics of a Distributed
A rchitecture

Distributed connotes dispersion, spreading out
and placing things in different places . A dis
tributed appl ication comprises two or more
application components, separated from each
other, but working together tO form the applica
tion . An application component is a self-con
tained program that executes i ndependently of
other application components.

Appl ication components may reside on differ
ent CPUs or on the same CPU . In eit her case,
these components need some means to commu
nicate with each other. The communication

8 1

Software
Productivity
Tools

VTX and VAL U Tools for Distribu ted Applications Development

means chosen may vary depending on the local
ity of other application components. For exam
ple, components residing on the same CPU may
communicate through shared memory, whereas
those on different CPUs may communicate over
a network . The design of an application com
ponent is independent of the loca l i ty of other
components. At run time, the software support
ing the system can sense any difference in local i
ties and choose the appropriate communication
means.

Since the locations of application components
are transparent to the design of the application ,
these components may be d istributed across
heterogeneous, or mixed-vendor, environments.
For example, DECnet software extends its con
nectivity to heterogeneous environments through
SNA and X . 2 5 networks. Therefore , the compo
nents of a VTXjVALU system may also be d is
tributed across these environments.

ClientjServer Relationship

The components of a d istributed appl ication
have a clientjserver relationship. As consumers
of resources, clients initiate requests to servers;
as providers of resources, servers respond to
requests from cl ients.

Clients and servers generally i nteract accord
ing to a requestjresponse protocol . Since
requests and responses may be formulated over
multiple messages, a " token" is used to regulate
whose turn it is to communicate . The appl ica
tion component that possesses the token has the
right to com municate . The completion of com
munication is signaled by the passing of the
token, either expl icitly by flags within the mes
sage or i mpl icitly by the message type .

Servers may communicate with other servers.
The server that in i tiates the communication then
becomes a cl ient to the other server. If a server
communicates with another server on behalf of
its c l ient, that server is called a broker. Figure 2
i l lustrates this broker relationship. Brokering
facil itates application integration and al lows
clients transparent access to any appl ication
available throughout the network. How the VAX
VALU product integrates applications through
brokering services wil l be d iscussed later.

Regardless of which communication means is
used for appl ication components, a set of ru les
in the form of protocol messages must be
defined to specify how functions are d istributed .
These rules are called the application protocol .

82

CLIENT SERVER SERVER
COMPONENT r-- COMPONENT -

COMPONENT
(BROKER)

Figure 2 ClientjServerjBroker Relationships

Appl ication protocols define how functions
that are specific to the application are d istri
buted across its components and the rules for
component i nteraction . Although the appl ica
tion protocol is i ndependent of the communica
tion means, the protocol may require certain
characteristics, for example , ful l-duplex com
munications.

Appl ication protocols must be invisible to the
appl ication developer. In the VTX and VALU
products, cal lable application protocol l ibraries
are implemented to increase the productivity of
the appl ication developer by

• Creating a single l ibrary that supports the
application protocol and is shared by al l
appl ication components requiring support for
the protocol

• Having the appl ication developer learn a sim
p le , h igher level call interface rather than all
the details of the appl ication protocol

• Defin ing a clear interface for integrating
appl ications into a d istributed environment

• I nsulating the application from changes i n the
application protocol

• Resolving incompatibil ities between appl ica
tion protocol versions in appl ication compo
nents

• Insulating the application developer from the
communication means used between applica
tion components

• Faci l i tating the deve lopment of appl ications
that can be accessed by simul taneous users

How the A rchitecture Achieves the
Project Goals

Fast information access in a d istributed environ
ment is achieved by making VTX avai lable over
networks with the DECnet architecture . This
architecture extends connectivity to multiven
dor environments, thus achieving the goal of
accessing d ispersed information . For example,

Digital Tecbnicaljournal
No. 6 February 1988

the DECnetjSNA Gateway and the packet-switch
ing i nterface products (X . 2 5) provide access to
a great variety of non-Digita l environments.

The architecture al lows transparent access to
heterogeneous environments through the broker
ing capabi lity of servers . Users can navigate
transparently to other vrx servers or to applica
tions that have been integrated intO the vrx
environment. Applications i ntegrated into that
environment can be developed independently of
whatever input devices the users have . There
fore , appl ication deve lopers can make t heir
appl ications avai lable immediately to any user
on t he network having the standard vrx client .
No additional software needs to be insta l led on
the client systems.

The features mentioned above provide fu l l
support for processing and storing data in a truly
d istributed, heterogeneous fashion . By a l lowing
transparent navigation to servers and appl ica
t ions , the architecture can retrieve data stored in
any format from any point throughout the net
work.

Components of the V1XjVALU
Product Set

The vrx and VALU product set includes a col
lection of application components interacting

I TCP r 1 ,

---·
I TCP

VAP INFOR MATION

I SERVER
, ..

JA M S I TCP � I /_
•••• !'--.. _..,. ---·

IN FOBASE

'-- _..,.
1

RMS

I VISTA 1 VIP

CLIENT 1
f-- VISTA

SERVER

I VISTA 1 VIP

CLIENT 1
KEY

RMS - RECORD MANAGEMENT SERVICES

over the network . Their foundation is based on
the distributed architecture i l lustrated in Fig
ure 3 .

The store of information referred t o earlier is
contained in t he vrx information base, a hierar
chical system of pages ca l led an infobase . The
infobase contains presentat ion information that
users can navigate through using menus and key
words . On-l ine updates are a l lowed because the
infobase is shared among the infobase , update,
and VISTA servers.

The termina l control program (TCP) is
responsible for presentation management and
parsing users' requests according to the specific
input devices being used . The TCP maps t hose
requests w specific vrx function requests,
which are then sent to the information server.
The TCP and the information server communi
cate t hrough t he DECnet software using an
appl ication protocol cal led the videotex access
protocol (YAP) .

Infobase servers communicate with other
infobase servers or with appl ications on behalf
of t he TCPs. This communication is transparent
to the TCPs , t hereby providing transparent
access to t hem. All communication between
infobase servers and appl ications is through the
YAP appl ication protocol .

� I N FOR MATION l
SERVER

VAP I VAS I
APPLICATION f

�ELK,APPLICATIO�

R M S I UPDATE VUP
I CLIENT

UPDATE VUP I UPDATEl
SERVER l CLIENT

VUP I RUSL I I CLIENT

LU6.2 r l I APPLICATION

DECnet { APPLICATIONl
X.2S i APPLICATIONl

Figure 3 V7X and VALU Product Architecture

Digital Tecbnicaljournal 8 3
No. 6 February 1988

Software
Productivity
Tools

V7X and VAL U Tools for Distributed Applications Development

The external l ink kit (ELK) i nterface is an
appl ication protocol l ibrary used by pro
grammers to integrate applications into the VTX
environment through the VAP protOcol .

The VTX appl ication service (VAS) is a d is
tributed appl ication integration tool . VAS a l lows
access to appl ications on other computer sys
tems through both DECnet and non-Digital net
works. The productivity gai ns of developing and
i ntegrating appl ications into the distributed
environment of VTX using VAS is discussed later.

The VTX infobase structure tool and assistor
(VISTA) is a distributed application development
tool that displays a graphical view of an i nfobase
to assist a user in creating and managing an
infobase . VISTA clients are information providers
who interact with a VISTA server tO perform
those tasks. Al l communication between VISTA
cl ients and servers is by means of the DECnet
network using an application protocol cal led the
videotex information provider (VIP) . Using
VISTA yields productivity gains that are dis
cussed in the next section .

Update cl ients are information providers who
interact with an update server tO create and
maintain an infobase . The update server uses a
command-oriented i nterface . Al l communication
between update c lients and servers is through
the DECnet network by means of an appl ication
protocol called the videotex update protocol
(VUP) .

Application developers can also use RUSL
(remote update server link) , an application pro
tocol l ibrary used to create infobase manage
ment tools as wel l as to al low the updating or
populating of an infobase from a program. The
RUSL appl ication protocol l ibrary was bu i l t to
support the VUP protocol . The VTX update
cl ient was bui l t using this protOcol l ibrary.

Tools Provided for Application
Development

This section d iscusses two tOols provided by the
VTX and VALU product set to enhance the pro
ductivity of appl ication developers building dis
tributed information systems. VTX information
systems can be grouped into two c lasses: those
simply providing information tO users, and those
interfacing with other appl ications to enhance
and expand on the information itself. The first
tOol , VISTA, addresses the needs of appl ication
developers building the first type of information
system . The second tool , VAS , provides the nee-

84

essary capabil i t ies that a llow appl ication devel
opers to easily build i nterfaces to other applica
t ions.

VTX as an Application
Development Tool

The VAX VTX base product provides the tools
for quickly and easi ly building a distributed
i nformation application . The open architecture
al lows an application developer to easi ly extend
the application by adding new appl ications and
support for heterogeneous environments as the
requirements change . These extensions are dis
cussed later in the section Appl ication Integra
tion Using VAS .

The basic VTX components allow an i nforma
tion provider tO create an i nfobase . The infobase
is the appl ication ; the i nformation provider is
the application developer. Policies and proce
dures manuals, sales and competitive informa
tion articles, reference manuals, jobs books,
training schedules and course descriptions,
CAD/CAM drawings, and newswire stories are
examples of information that can be organized,
main tained , and delivered as VTX i nformation
applications.

With the simple information-based appl ica
tion , VTX rel ieves an information provider from
having to know speci fic detai ls of the underlying
communications and the terminals . Thus, the
information providers can direct their attention
to the content of the information and can more
easily design the structure by which an informa
tion user accesses the infobase .

VISTA

VISTA is a tool to increase the productivity of the
information provider when creating a d is
tributed information system using VTX. VISTA
helps a naive information provider to become
productive very quickly and a l lows an experi
enced i nformation provider to remain produc
tive. VISTA provides a simple graphical interface
for the naive user, yet also has a command-l ine
interface for the more experienced user. The
productivity of creating appl ications i ncreases
because VISTA is easy to use.

VISTA uses the cl ientjserver model to al low
one VISTA server tO mai ntain the actua l VTX
infobase fi les. One or more information pro
viders can access that VISTA server through
the VISTA user-i nterface program (VISTA client) .
Bui lding on the foundation of a distributed

Digital TechnicaiJournal
No. 6 February 1988

architecture al lows information providers to be
dispersed geographical ly . VISTA can coordinate
mult ip le informat ion providers working on an
infobase by al lowing them to reserve portions of
it for updating.

VISTA uses a simple graphical interface that
al lows an information provider to quickly design
the layout of a VfX infobase . The picture dis
played represents the hierarchical nature of the
infobase, much l i ke an information provider
wou ld i magine the infobase menu structure to
be . VISTA improves and enhances the infobase
deve lopment process by a l lowing the i nforma
tion provider to design the menu structure right
on the terminal instead of constructing i t first on
paper. Figure 4 shows a sample of a VISTA
screen with a menu structure .

An information provider using VISTA bui lds a
VTX infobase by select ing options from the stri p
menu appearing at the bottom of the screen . The
large work area above the options menu displays
the current state of the infobase as the informa
tion provider cont inues to work . The single box
at the top of the work area depicts a current
men u . Any number of boxes drawn j ust below
the current menu show the menu choices from
the main menu. Any of those menu choices may
themselves be menus. The menu structure of the
VTX infobase can be mod ified through simple
add, delete, and cut-and-paste operations.

Each box at the top and across the center of
the screen represents a part icular page i n the

E N G I N E E R I N G
M A N U F A C T U R I N G
M A R K E T I N G
S A L E S
F I N A N C E

J U L . 1 98 7
A U G . 1 98 7
S E P . 1 98 7

infobase . In an appl ication development envi
ronment , the VISTA options al low an i nformation
provider tO easily speci fy a l l the necessary infor
mation for each page . The information provider
can invoke an ed itor to supply the text for any
page without leaving the environment. VISTA
bui lds the text of menus according to a default
style and al lows that style to be mod ified for any
menu page . Its simple forms i nterface al lows the
information provider to specify addit ional infor
mation for any page . This page information is
grouped into categories of s imi lar i tems, each
with i ts own form . F igure 5 shows a VISTA form .

Once the information provider has created the
menu structure, VISTA handles the process of
building that infobase from the p icture . Each
page in the menu structure is converted from
graphical format to infobase format through the

VISTA server. VISTA handles the underlying com
plexities of page generation , such as page num
bering and the association between a menu page
and i ts choice pages.

Once the informat ion provider has in i t ia l ly
developed an information appl ication using
VISTA, the tool can continue to be used to
enhance , extend , and mainta in the appl ication .

Extending the VTX Application

Using the VAX VAI..U product, the i nformation
provider can extend the basic appl ication i nto a
more interactive one by using the VAI..U tools for
two-way access to the infobase. Not only can the

S C H E D U L E S
C O U R S E D E S C .
S E M I N A R S
V I D E O T A P E S

V A X V T X V I S T A V3 . 0

I ADD C H O I C E I I S E L E CT I I D E L C H D 1 c E I ._I G
_

u
_

I
_

T __ ___, I H E L P

U s e t h e a r r o w k e y s t o s e l e c t a n o p t i o n , t h e n p r e s s R E T U R N .

Figure 4 Sample VISTA Menu Structure

Digital Technical journal 8 5
No. o February I Y88

Software
Productivity
Tools

VTX and VAL U Tools for Distrihuted Applications Development

V3 . 0

G e n e r a l P a g e C o n t r o l I n f o r ma t i o n

G e n e r a l I n f o r m a t i o n F o r :

P a g e n u m b e r :
P a g e t y p e :
C l o s e d u s e r g r o u p :
C o d i n g :
C h a r g e v a l u e :
S c r ee n w i d t h :
C r e a t i o n d a t e :
E x p i r a t i o n d a t e :
C l e a r :
D i r e c t :
L o g :
S a v e :
M o r e :
U s e r d a t a :

M o r e B e l o w

M E N_U
__

_
2 5
A S C I I -
0

--

�
0 1 - J A N - 1 98 8
y
y
E
y
E

P r e s s F I N D o r P F 1 - L t o s e l e c t a v a l u e f r o m t h e I r s ! o f s u p p l i e d v a l u e s

Figure 5 Sample VISTA Form

appl ication d istribute informat ion to users, i t
can also col lect information from them, process
i t , and return the results . Using VALU al lows an
appl ication developer ro define the flow of con
trol for infobase access by a user. VALU a lso
a l lows simple connections to external appl ica
tions that can provide information to the system .
Some examples of externa l programs are on- l ine
orderi ng and registration systems .

The next section describes the VAS component
of VALU. VAS is a powerfu l application develop
ment and i ntegration tool that provides the fu nc
t ional i ty ro connect the VTX system with appl i
cations on DECnet, SNA (LU6 . 2) , and X . 2 '5
networks . VAS was bu i l t o n ELK, the application
protocol l ibrary that is provided with VALU .

Application Integration Using VAS

VAS is a flow-comrol and i ntegration layer be·
tween the VTXjVALU environment and external
appl icat ions . Figure 6 i l lustrates how appl ica
t ions are integrated using VAS .

VAS si mpl i fies appl ication development and
int egration by providing a fourth-generation lan
guage for using YAP. The VAS language is spe·
cializcd ro provide the functions of YAP and co
faci .l i tatc the integration of external appl ica
tions. VAS appl ications are organized i nto scripts
cal led transaction defin i tions. Appl ication flow
control can occur by transaction defin i t ions
transferr i ng processing ro other transaction defi
n it ions .

86

The VAS language consists of eight verbs used
[0

• Display informat ion from the infobase of the
server (optional ly merging data from VAS) ,
col lect user responses, and make flow-control
decisions based on user requests

• Declare local and global variables

• Manipulate the contents of variables

• Pass variables and srare i nformation to exter
nal appl ications (or to local user-written rou
t ines t hat have been dynamica l l y loaded in
the VAS image) and receive responses

• Make flow-control decisions based on
responses from user input , external appl ica
tions, and user-written rout ines

• Log the contents of variables

Interaction with External Applications

VAS i nteracts with external appl ications over
commun ication channels using i ts own request/
response protocol . A request contains current
stare information about a user, for example,
which transaction the request was made from ,
the contents of variables, what operation is
being requested, and t i me-stamp information . A
response contains updated variables from the
processi ng of the appl ication .

Digital Technical journal
No. 6 Februar)' 1 ')88

.._ IBM SNA- APPLICATION COMPONENT

TCP VAP VTX VAP
SERVER ELK VAS - ������ - APPLICATION COMPONENT

- X .25 -- APPLICATION COMPONENT

Figure 6 Application In tegration through VA S

VAS transact ion defin i t ions spec ify the na mes
of the communication channels over which
requests to appl icat ions are made. A single VAS
transact ion may interact wi th mu l t i pl e appl ica
tions over various communicat ion channels . The
VAS operator dynamica l ly assoc iates com munica
tion channel names to speci fic communicat ion
types and speci fic appl i cat ions. VAS has bu i l t - in
su pport for commun icat ing with appl ications
over the DECnet , SNA (LU6 . 2) , and X . 2 '5 net
works . The same request/response protocol is
used over a l l communicat ion types. Transaction
defin i t ions arc written i nd<:: pendent l y of the
communicat ion channel s used ; the appl icat ion
developer req u i res no knowledge about the net
work .

Com municat ion channels are shared by users
and may have mu l t iple outstand ing requests;
however, each user can have only one outstand
ing request . VAS manages the send i ng and
rece iving of a l l requests . These acttVI t tes
include suspending the execution of a transac
t ion defin i t ion , t im ing requests , receiving a
request and identi fying whic h user's transact ion
defin i tion ro resume, and extract ing the contents
of a request into loca l variables.

Using t he concepts of the request/response
protocol over commu n ication channe ls , a VAS
appl icat ion deve loper can bu i l d an appl icat ion
that uses a cons istent programming i nterface to
communicate wi th a variety of heterogeneous
envi ronments. Let us examine some of the
deta i l s that VAS hand l es for the appl ication
deve loper.

VA S and SNA (L U6. 2)

VAS uses the DECnetjSNA Gateway and the VMS
APPCjLU6 . 2 products to communicate wi rh rhe
SNA environmenr , as i l lustrated in Figure 7 .

The appl ication developer using VAS requ ires
no knowledge of the DECnerjSNA Gateway and

VMS APPCjLU 6 . 2 products, or of the II3M envi
ronment . The CICS transact ions on rhe 113M sys-

Digital Technical journal
No. o Fe/Jruarv I 988

tem need to con form on ly ro rhe request/
response protocol .

VA S and the X. 25 Environ ment

VAS can communicate wirh any packet -mode
dara term inal equi pment (DTE) that is connec
ted to a packer-sw i tching data network (PSDN)
by using the VAX PS I product . The PSDN pro
vides task-to-task commun ication between any
two computers connected to an X . 2 5 network .
Therefore , the environment is heterogeneous
in narure . The VAS deve loper needs no knowl
edge of t he PSDN, the VAX PSI product , or the
remote DTE being accessed . Appl ications writ
ten on the remote DTE need to conform on l y to
the rcquestjresponse protocol .

VA S and DECnet Applica tions

VAS can commun icate wi th other DECoct app l i
cations using e i ther transparent or nontranspar
ent task-tO-task communication . Once aga i n , t he
VAS appl icat ion developer needs no knowledge
of the DECnet software. External appl ications
wri tten on the remote system need to conform
only to the req uestjresponse protocol .

Handling Simultaneous Users

The VAS developer writes transact ion defi n i t ions
as i f t hey were synchronous and for a s ing le user.
After VAS compi les and loads t he transact ions,
t hey become ava i lable for s imultaneous users .
VAS interleaves user activity by suspend ing users
whose transactions arc current ly performing
asynchronous activit ies , for examp le , wai t ing for
t he TCP to respond to r he last page displayed , or

VAX IBM

CICS TRANSACTION
CICS TRANSACTION

Figure 7 VA S in tegration Using SNA (L U6. 2)

H7

Software
Productivity
Tools

VTX and VAL U Tools for Distribu ted Applications Development

wamng for an application to respond to a
request . I n other words, whi le one user is wait
ing for some sort of IjO to complete , VAS pro
cesses another user's request .

S ince VAS automatica l ly handles simul taneous
users, simultaneous requests may be generated
to the same appl ication . However, developing
appl ications tO service simul taneous users can
be complex. Therefore , VAS has bui l t - in fea
tures that a l low single-user , synchronous appli
cations to service simultaneous users. In that
way t he burden of developing a s imultaneous
user appl ication is removed from the app l i
cation developer. These activities are a l l accom
plished through the subchannel feature of the
communication channe l . The VAS operator can
start multiple copies of the same appl ication on
a single communication channe l . When requests
are made over t he channe l , VAS al locates a copy
of the appl ication that is not currently being
used . I f all subchannels are busy, VAS holds the
request unti l a subchannel becomes avai lable.
The subchannel feature creates a pool of identi
cal appl ications which can be distributed across
a l l communication types . From t he VAS transac
tion defini tion , this pool of appl ications acts l ike
a single communication channe l . Figure 8 i llus
trates these subchannel capabi l i ties.

Creating High A vailability Computing
Environments

VAS functions are managed without interrupting
any active users . Such functions include start ing
and stopping communication channels, opening
and closing log fi les. loading new transaction
defini t ions, modifying the contents of globa l
variables, and changing the association between
channel names and communication types.

The VAS appl ication developer can make
updates to transaction defin i t ions and load them
dynamica lly . Users accessing t he transactions
before they were modified wi l l continue to usc
the older version of t he transaction definit ions.
New users who connect ro VAS wi l l immediately

VAS

88

r---- APPLICATION A

1----- APPLICATION A
CHANNEL A t--=----'-'-=-:__-+---- APPLICATION A

1----- APPLICATION A

'----- APPLICATION A

Figure 8 VAS Suhchannels

start using the updated transaction definit ions.
When there arc no active users on the older
transaction defin i t ions, they are automatica l ly
u nloaded .

Sample VAS Application

This section conta ins a sample VA.'I application
that displays a form page to the user and t hen
sends a data b lock (using the REQUEST step) to
pass two fields with ini t ia l values (specified by
t he DFLD variables) to a CICS transaction for
processing. Upon return ing from the CICS trans
action , the VAS appl ication directs that page 1 0 2
be displayed from the VTX infobase to the user .
This sample VAS appl ication could be parr of an
interactive banking appl ication that gathers data
from the user and then va l idates i t (for example,
a user's bank account number and access code)
before al lowing access to the system .

T R A N S A C T I O N f i r s t _ t r a n s / E N T R Y

= ' a c c e s s c o d e '

B E G I N

D I S P L A Y ' 1 0 2 5 '

R E Q U E S T c h e c k c o d e s n a _ c h a n 1

B E G I N

R F L D - 1 D F L D 1 / L E N G T H = 6

R F L D - 2 D F L D 2 / L E N G T H = 1 5

E N D

E X I T / P A G E • ' 1 0 2 '

E N D

The channel t o the SNA gateway has been
established with a command of the fol lowing
format :

V A S > S T A R T C H A N N E L s n a _ c h a n 1 / S N A •

C GW Y = s n a _ g w y ,

A C C = c i c s _ a c c e s s ,

T P N = c i c s _ t r a n s 1)

G\X'Y is the name of a DECnctjSNA Gateway,
ACC is the access name on rhar gateway that
a l lows access to CICS, and TPN is the name of
the IBM host transaction tO be invoked .

Sample Distributed Application
Using V1XjVAL U

The fol lowi ng example i ll.ustraces an applica
t ion that was bui l t using the VAX VTX and VAX
VAL U products to handle document publ ishing
with an integrated free- cexc search product . This
example highl ights some capabi l i t ies of these

Digital Technical journal
No. 6 Februarv I ')88

distributed products and i l lustrates the benefits
of bui lding applications u t i l iz ing the distributed
base system.

The primary functions of this appl ication
provide

• A period ica l cal led Sales Update on- l ine for
corporate-wide distribution

• The capability ro supply users with a free-text
search feature using a third-parry application
ca l led BASIS

• The capabil i ty to supply users with a hard
copy formatted version of any article in the
periodical through an i ntegrated mail i nter
face

In this application the screens of i nformation
are formatted by a preprocessing appl ication
that creates the VTX infobase . This same appl i
cat ion also provides data to the BASIS database
and suppl ies fi les formatted for hardcopy out
put .

The information user is presented with a
menu of categories of Sales Update a rt icles,
along with an option ro search through them for
a part icu lar text string. I f the user selects a
search option, the VALU appl ication wil l pass the
string ro the BASIS applicat ion , which returns ro
VALU one or more article I Ds that match the
search cri teria . VALU then creates a menu
dyna mica lly with associated title stri ngs to help
identify the articles located . Subsequently, the
user chooses a menu selection and the resultant
article is displayed .

SEARCH
CRITERIA

VTX VALU
RESULTANT
MENU
OPTIONS

VTX
INFOBASE

FORMATTED SCREENS
OF ARTICLE INFORMATION

A fu rther extension to this appl ication gives
the user the option of mai l ing the current art icle
being viewed. Figure 9 gives a view of the com
ponents of this d istributed document publishing
system .

This example demonstrates some of the most
important productivity benefits to an applica
tion developer.

• A single application program uti l iz ing VTX
and VALU can be accessed by a network of
users without regard ro the asynchronous
environment and the need ro support a large
nu mber of users .

• An information retr ieva l -only appl ication can
easi ly be extended ro interface with external
_�:- roducts without changing the user interface
or disrupting the information retrieval " ser
vice . "

• The appl ications provide VTX-l ike access that
is consistent with the information retrieval
access to provide extended capabi lities to the
users . This extension a llows the application
to free the users of the system from having to
learn a new interface to the newly i ntegrated
product. In fact , the integration to another
product may be virtua l ly t ransparent to users.

• The application can support both softcopy
(on - l ine) and hardcopy distribut ion from a
single source fi le.

Summary
Working together, the VAX VTX and VAX VALU
products provide a rich set of software produc-

SEARCH
CRITERIA

RETURNED
ARTICLE
ID NUMBERS

BASIS

BASIS
DATABASE

TEXT PAGE NUMBERS
SUBJECTS
ARTICLES

-
-

..__ _ ____,,__
TEXT FILES
FOR HARDCOPY
DISTRIBUTION

Figure 9 Distributed Document Publishing Application

Digital Technical journal
No. 6 Februarv I YBB

89

Software
Product ivity
Tools

VTX and VAL U Tools for Distributed Applications Development

t ivity tools and programming inrerfaces. These
products enable an appl ication developer ro con
struct bmh centra l i zed and distributed appl i
cations used in both homogeneous and heteroge
neous envi ronments. Because of the range and
flexibi l i ty of these tools, the resu lt ing systems
can differ sign ificantly accord ing tO the function
sets uti l i zed and configurations selected . For
example , with these products, a s imple informa
t ion retrieval or transaction-based system can first
be bu i l t and then evolve inco a more complex sys
tem based on the concepts of the VTXfVAl.U open
distribmed archi tecture. The abi l i ty to expand a
system is essential ; with t he capabi l i ties provided
t hrough VTX and VAl.U, this evol ut ionary system
model is easi ly achieved.

Genera/ References

VAX VTX Documentation Kit (Maynard: Digital
Equipment Corporat ion , Order No . QL03 1 -GZ
V 3 . 0 , 1 987) .

90

VAX VAL U Documentation Kit (Digita l Equip
ment Corporation , Order No QL0 3 5 -GZ-V2 . 0 ,
1 986) .

J Morency, D. Porter, R. Pitk in , D. Oran, "The
DECnetjSNA Gateway Product - A Case Study in
Cross Vendor Networki ng," Digital Technical
journal (September 1 986) : 3 5 - 5 3 .

P Beck ,). Krycka , "The DECnet-VAX Product
An I ntegrated Approach ro Networking ," Digital
Technicaljournal (September 1 986) : 88-99.

Digital Technical journal
No. 6 Februarv I ')88

Ronald F. Brender
Bevin R. Brett

Charles Z. Mitchell

Pragmatics in the
Development of VAX Ada

The software tools and techniques (pragmatics) used daily by the VAX Ada
developers significantly contributed to increases in product performance
and developer productivity. Approximately 500,000 lines of code were
written for this project. Of particular interest in this project's development
is the automation of the coding process, instrumentation of the compiler,
built-in consistency checking within the compiler (selfchecking), and the
use of selfdescribing data structures. This paper gives examples of how
these tools and techniques were used in the development of the compiler.
However, these tools and techniques can be applied to a wide range of soft·
ware development efforts.

Software engineeri ng li terature to a great degree
focuses on design and implementation method
ologies, as well as on tools to go with them. Little
is said , however, about day-to-day tools and tech
niques that can also significantly impact the pro
ductivity and effectiveness of a development
team.

The development of VAX Ada involved writ ing
approximately 5 0 0 , 000 l ines of BLISS source
code . This paper discusses some of the tools
and techniques that have been important over
the course of that development . The tools and
techniques fal l roughly into the following
categories:

• Automation

• Instrumentation

• Self-checking

• Self-description

We would l ike to suggest that many of these
tools and techniques could be useful ro any soft
ware developer and could be appl ied to any pro
ject of sign ificant size .

Automation

During the development of VAX Ada , we wrote
support code ro automate various aspects of the
coding process and tO help with day-to-day devel
opment activities. Our interest was never in rools
or automation techniques for their own sake .
Instead , we were interested in tools and tech-

Digital Tecbnicaljournal
No. 6 February 1988

niques that would minimi ze t he t ime spent on
rout ine or duplicate activi ties and wou ld maxi
mize the amount of t ime avai lable for interesting
technica l problems . Thus, we balanced the va lue
of each tool and automation technique against
the t ime it would take to bui ld the tool or
develop the technique and use it. We wanted ro
spend most of our t ime developing VAX Ada .

These are some examples of activities we auto
mated :

• Production of error-message i nformation held
i n common between the compi ler and the user
documentation

• The task of creating and entering tests into the
VAX Ada test system

• Compiler bui lds and check-in procedures

• The process of managing mul tiple versions of
the compi ler

• Some debugging tasks

• Key algorithms within the compiler

The first two examples are described in more
detai l in the following sections . The last example
is described at the end of this paper in the section
Self-description .

Production of Error-Message
Information

VAX Ada has close to I ,000 distinct error mes
sages. One of the VAX Ada user manuals l ists a l l

9 1

Pragmatics in the Development of VAX Ada

the error messages i n an appendix. The usual
method for producing error messages and docu
menting them is to create two source files: one
source fi le to be maintained by the compi ler
developers and processed by the VMS message
compi ler, and one source fi le to be maintained by
the writer and processed by the documentation
processor.

This method quickly became difficult for us to
manage . Messages were continually added as the
VAX Ada compiler was being developed - even
during the final stages of the development cycle .
Because documentation is written and reviewed
concurrently with compiler development, the
writer and editor of the user manual needed to
have a matching set of messages in the documen
tation for draft reviews and final production . The
writer and editor also needed tO be able to sug
gest wording modifications as messages were
written, including wording modifications to the
messages added late in the development cycle.

To keep the two sets of sources synchronized ,
we chose to automate. We wrote a processor that
accepts a superset of the language accepted by
the VMS message compiler as input. The addi
tional language constructs al lowed us to write
one source fi le containing a l l the messages and
any descriptive text appropriate for the docu
mentation . Both the developers and the writer
were a llowed access to the file . We then used
the processor to produce two output files: one
fi le containing al l the messages and the coding
required for the message processor; and one fi le
contain ing all the messages, any descriptive text,
and the formatting constructs needed for the doc
umentation processor.

Our processor saved us from having tO review
two different sources at a lready busy t imes in the
development cycle . This approach also a l lowed
the user manual appendix to be generated imme
diately for each new version of the compi ler.

Creating and Entering Test- System
Tests

An important task tOo often neglected is the
preservation of tests written during development
for later use by developers and mai ntainers. We
observed during the development of VAX Ada that
the number of tests added to our test system
varied inversely with the difficulty of adding
them . Our objective in automating the tasks asso
ciated with adding tests to our test system was to

9 2

make sure that these complex, and i mportant,
tasks would be done routinely and accurately.

For example, we developed

• Command procedures tO help create a test that
fol lowed project conventions

• Command procedures to automatically insert a
rest in the test system

• The abi l i ty to mark comments within a test as
keywords, and then automatica lly read the key
words comments and enter them as attributes
of the test in the rest system

• Support for a l l major classes of tests (com
pi ler, project l ibrary manager, debugging sup
port, etc .) , so that no major areas of testing
were neglected

Instrumentation
The richness of the Ada language presents a num
ber of challenges tO compiler writers. One of
these chal lenges is tO achieve good compiler per
formance . We found that instrumenting the com
piler tO measure its use of resources was an
important factOr in developing a h igh-perfor
mance product .

We used general-purpose tools such as the VMS
Debugger and the VAX Performance and Cover
age Analyzer extensively during the development
of VAX Ada . These tools were also very useful in
improving performance . However, our special
ized instrumentation he! ped us analyze the
behavior of the compiler at a level relevant to the
development strategies we were using; we could
then better u nderstand how these strategies were
working. Many performance problems would
never have been identified had it not been for our
special ized instrumentat ion . As a result of our
positive experiences, virtually every component
in the compi ler that manages a resource is i nstru
mented to gather detai led performance statistics .

The following sections show how instrumenta
tion is used tO

• Provide data for design decisions affecting
compiler performance

• Regulate the behavior of the compiler

• Provide information on the behavior of the
compiler during maintenance and debugging

Although some of this instrumentation code is
present in the production version of the compiler

Digital Techntcaljournal
No. 6 Febmary 1988

that is shipped to customers, most of i t is condi
tionally compiled into only the debugging ver
sion of the compiler.

Instrumentation as a Performance
Design Aid

As the Ada language i tsel f was being developed ,
we began to research the novel aspects of imple
menting an Ada compiler and developed a bread
board compiler as a vehicle for our research .
Because the breadboard compiler had been
i nstrumented extensively, we used it to collect
data to guide the design of the eventual product.
A number of design decisions were made as a
resul t of the data collected during the research
period . The role of instrumentation with respect
to the compiler's use of virtual memory is exam
ined in particular in this section .

One major resource problem i n the breadboard
compiler was the vast amoun t of virtual memory
required to compile some representative Ada
programs. The amount was often an order of mag
nitude more than was acceptable to meet our
compiler performance goals . Our i nstrumenta
tion data revealed that the tree structure used tO
internally represent the Ada code occupied most
of the memory. Therefore , a finer analysis of the
data was performed based on frequency of occur
rence and size of the individual kinds of tree
nodes.

For example, we i nstrumented the tree node
creation routine to count the number of nodes of
each kind that were created. The counts and the
number of bytes occupied by each node of a par
ticular kind were d isplayed i n the compilation
l isting fi le .

An analysis of the data showed that re latively
few kinds of nodes occupied most of the space
and suggested a number of improvements in the
design of the tree tO reduce the frequency of such
nodes. The combined effect of these improve
ments halved the memory required for represent
ing the tree for typical Ada units.

Further instrumentation showed that the addi
tion of code-generation i nformation to the tree
representation substantial ly i ncreased the tree
size. These measurements suggested that memory
usage could be decreased by recycl ing memory as
soon as possible. An " inside-out" code-generation
scheme was devised for our version 1 . 0 compiler.
With this approach , object code is generated for
the most deeply nested subprograms in a compi-

Digital Technicaljournal
No. 6 February 1988

lation unit first . The entire tree representation
and code-generation information for a subpro
gram is no longer needed once the code has been
generated, and can be freed before the code is
generated for the next subprogram . Thus, the
memory is available for reuse by the next subpro
gram. This approach reduced the amount of
memory requi red to compile a typical Ada unit
by a factor of rwo or more. This improvement,
combined with the tree modifications mentioned
previously, made it possible for us tO meet our
compiler performance goals with respect to vir
tual memory usage.

Instrumentation to Regulate Compiler
Behavior

We also used instrumentation data gathered dur
ing a compilation to actual ly modify the overal l
flow of the compi ler, and thus improve the com
pi ler's performance . In particular, the compiler
uses instrumentation data to modify its behavior
accordi ng to the avai labil iry of memory. This
kind of optimization is often seen in computer
operating systems and in general manufacturing
processes, but rarely seen in software tools such
as compi lers. This section describes the use of
i nstrumentation data to d iagnose and solve a pag
ing-rate problem we detected during the devel
opment of the compiler.

The VAX Ada compi ler consists of a number of
phases that process the internal tree representa
tion of Ada source code in a series of tree traver
sals, or walks. Wal ks i n the semantics phase mod
ify the tree representation tO reflect the semantic
meaning of the Ada code . Later walks, prior to
optimization and code generation, add code-gen
eration information to the tree .

Each of these walks is instrumented to show
the amount of CPU time, elapsed time, page
faults, and 1/0 operations involved . An analysis
of this information during the development of
VAX Ada showed that a very large number of page
faul ts often occurred for typical program uni ts .
Even with larger than normal working sets, the
paging rate was high enough to significantly
increase the load on the system , thus affecting
overal l system performance and responsiveness
for a l l users. Comparison of the paging rates with
the same data for other parts of the compiler,
and against the totals for the whole compi lat ion ,
showed that a very large proportion of the page

9 3

Software
Productivity
Tools

Pragmatics in the Development of VAX Ada

faults occurred during the walks that added

code-generation information .
The trouble with any "static" solution to this

problem is that page faults are a property of the
amount of physical memory avai lable tO the com
p iler . The amount of physical memory varies
based on both the VAX hardware configuration
and the use of that hardware by other VMS pro
cesses ru nning concurrently with the process
executing the compiler .

I n an effort to solve this problem, we measured
the size of the tree for typical Ada subprograms.
We found the tree size to be significantly smal ler
than the size of the code doing the individual tree
wa lks. Furthermore, the code for the tree wal ks
was l arger than typical VMS working sets . Thus,
the code for each wal k was paged out by the sub
sequent walk and then paged back in again for
the next subprogram. We concluded that the high
paging rates were caused by our inside-out code
generation approach, which was designed to min
imize the use of virtual memory.

To reduce the paging of the code, we chained
together the trees for sets of subprograms and did
each walk across al l the elements of the set
before applying the subsequent walk to any of
them. This approach is contrary tO the earlier
goal of reducing memory usage by doing one sub
program completely before doing the next one .
However, in this context the earlier goal is more
accurately stated as " keep ing the memory usage
to withi n the amount of memory that is avai l
able . "

As a resul t of our observations, we also made
the compi l er "self-correcting" in a release fol
lowing version 1 . 0 . We instrumented the com
pi ler tO measure the amount of virtual memory
avai lable, the amount of physical memory avai l
able , and the pre-code-generation size of each
subprogram 's trees. In addition , very conserva
tive heuristics estimate the addi tional memory
requ ired for the code-generation informat ion for
each su bprogram . Together, the measurements
and heuristics are used by the compiler tO build
the largest possible set of subprograms that do
not present a danger of exceeding the ava ilable

virtual memory. Furthermore, the sets are chosen
so that the code for the largest phase plus the size
of a l l the trees for the subprograms in the set are
less than the size of the working set extent of the
VMS process.

This modification successful ly lowered the
paging rates of the compiler, hence improving

94

elapsed time and system performance . The exact
numbers vary according tO the actual VAX hard
ware configuration and Ada code being com
piled. However, figures for the code-generation
phases were often halved, resulting in 30 percent
or more overal l i mprovement for the whole com
pi lation .

This dynamic measurement of working set, vir
tual memory, and tree size and the subsequent
tuning of the selection of sets tO the process's
avai lable resources means that a l l resources -
large or smal l - were fu l ly exploited. This tech
nique is appl icable for enhancing the perfor
mance of any compute-bound programs that also
use significant amountS of virtual memory.

Instrumentation as a Debugging and
Maintenance A id

In addition tO using instrumentat ion to obtain
resource measurements, we have used i t to debug
the compiler . We have also found it to be a useful
maintenance aid .

Instrumentation data is read by cal l ing one of a
nu mber of routines e ither from the VMS Debug
ger or from code triggered by an event . (Events
are special places in the compiler code .) The
routine displays the instrumentation data on the
term inal (so the programmer can see i t right
away) and in the l isting fi le (for post-mortem
examination) . The debugger or event-driven rou
tines are capable of producing human-readable
l istings of large and complex data structu res.
The l istings hel p simplify the task of debugging
the compi ler , as it can be very t ime-consu ming
to exa mine directly a very complex data struc
ture, such as a tree, with a general -purpose
tool l ike the VMS Debugger. (An example li sting
appears at the end of this paper i n the section
Sel f-description .)

Each event i s specified i n the compi ler code by
a DEILEVENT macro. This macro takes one or
more parameters. The first parameter is the name
of the event , and subsequent parameters specify
additiona l code that causes instrumentation data
tO be displayed .

An event wi l l not occur unless its name has
been given ei ther on the command l ine that
invoked the compiler or via a simple interpreter
that is l i nked into the compiler . The interpreter
d isplays event names and a l l ows breakpoints to
be set or canceled on particular events . For exam
ple, the Ada compiler implements a sophisticated
syntax error recovery scheme that attempts a

Digital Technical]ournal
No. 6 February 1988

large variety of local corrections when an error is
detected. When the parser makes an unexpected
correction , events in the recovery code can be set
to gather the data to determine why. Events in the
recovery code are set by the setting of break
points on al l events whose names start with
PAILRECOVERY. The resul t is an informative dis
play at the start of error recovery, and another dis
play as each kind of recovery is attempted . The
displays can then be used to determ ine the reason
for the particular recovery chosen .

The information obtained by setting an event
gives precise i nformat ion that is needed to deter
mine why the compi ler code made a particular
decision , as opposed to the more general infor
mation given by the VMS Debugger. Often the
time saved in ana lyzing each problem exceeds
the amount of t ime required i nit ia l ly to put the
events into the code . Furthermore, such events
are sti l l in place for the benefit of future develop
ers who need to make en hancements or debug
other problems.

Self-checking

As mentioned previously, the VAX Ada product
contains approximately 500,000 l ines of BLISS
source code . Of these l ines, approximately 5 per
cent are concerned with consistency checking
(self-checking) of some kind. This is not very
much incremental code i n terms of overa l l devel
opment cost, yet the reliabil ity and productivity
benefits have been enormous.

The fol lowing sections examine some of the
consistency checks we incorporated in the VAX
Ada compi ler for use by developers and main
tainers. We look at the use of assertions in the
code, at the use of special macros to mark unim
plemented features, and also at how we used
self-checking to track down memory-manage
ment errors.

Assertions in the Source Code

An old idea in software engineering is to include
assertions i n the source code. In its s implest
form, an assertion is a simple expression whose
value should be true at a given point in the code.
If the assertion is false, then something is wrong
and execution shou ld be aborted . Although the
idea of assertions is not new, we believe that their
value is underestimated and that assertions are
too often neglected in developing large software
appl ications.

Digital Tecbnicaljournal
No. 6 February 1988

Detecting an internal error - often well
before the error leads to a compiler crash or,

worse , bad code is generated - is the primary
advantage of an assertion . Assertions often point
out errors that otherwise wou ld not be noticed
during internal testing.

Assertions a lso help in analyzing fai lures, as
they provide a very good point at which to start
a search for the cause of an error. In a com
plex, multi phase compiler, a bug i n an early
phase can resu l t in a compi ler crash in a much
later phase or in the generation of bad code.
In many cases, the re lationship between symp

toms reported by a user and the actual problem
can be very remote and obscure. For example,
approximately half of a l l performance fai lures
reported by users of the VAX Ada compiler trigger
some kind of assertion fai lure when compi led

using the debugging version of the compiler. As
a resul t , many problems that might have re
quired days to fix in the absence of assertion
checks have been fixed very quickly because we
knew where to look for the proble m . Although
we have no statistics, we have no doubt that asser
tions have saved an enormous number of mainte
nance hours.

Assertions a lso he lp in day-tO-day development,
debugging, and project management. Simple
inspection of the assertion fa i lure message is
enough to know who shou ld be the first to look at
the problem, and the person assigned to investi
gate the problem has a good idea of where to
look. Assertions are also useful when the code is
en hanced, as new code is checked against the
assumptions made by the origi nal programmer.

We implemented assertion checks using a
series of BLISS macros. (Although BLISS macros
were used to implement the checks, s imi lar
effects can be achieved with subprograms in
other languages, such as VAX Ada, if the compiler
evaluates stat ic , constant expressions at compile
t ime and su pportS inl ine expansion of subpro
gram cal ls .) These macros are l isted in Table 1 .

Each macro takes two or more parameters.
The first parameter is the assertion (expression)
tO be checked. The second is a text string to be
displayed in the diagnostic produced when the
assertion is false. By convention , this text string
includes the name of the rout ine in which the
fai lure occurred in order to simplify assigning
init ial responsi bili ty (blame) for the fai lure . Any
additional parameters are interpreted as addi
tional code to be executed if the assertion fai ls ;

95

Software
Productivity
Tools

Pragmatics in the Developmen t of VAX Ada

Table 1 Assertion Macros and Their Effects

Effect in Effect in
Macro Name Debugging Compiler Production Compiler

DEB__ASSERT I f assertion i s fa lse, then g ive a diagn ostic
message and enter VMS De bugger.

None

DEB_ WA R N I f assertion i s false, then give a d iagnostic
message and cont inue.

None

DIAG__ASSERT Same as DEB__ASSERT.

typica lly these parameters are used to d isp lay
additional information related to the fa i l ure.

Numerous assertions in the source code can
have a negative effect on performance. For exam
ple , the consistency checks in the Ada compi ler

increase compilat ion t ime by about 50 percent .
Thus , if assertions are tO be incl uded i n the final
product , developers wil l natura l ly hes i tate to use
them freely. We add ressed this problem by caus
ing the DEB-ASSERT and DEB_ WARN macros ro
be cond it ional ly compiled . The assertion checks
are made only in a debuggi ng version of the com
pi .ler that is used for interna l testing. The macros
are compiled as " no operations" in the produc
tion version of the Ada compi ler and thus have no
impact on performance .

On the other hand , i t is desi rable in some situa
tions to reta in the self-check in a production ver
sion but cause a fa i lure to be have differently than
it does in the debugging version of the compi ler.
The DlAG__ASSERT macro addresses this situa
tion . DlAG__ASSERT behaves in the same manner
as t he DEB-ASSERT macro in a debugging version
of the compi ler; however, DJAG--ASSERT aborts a
production version of the VAX Ada compi ler.
(The abort reports fai lure of an i nternal consis
tency check and requests that the user submit a
problem report .)

These three assertions DEB_ASSERT,
DEB_WAR:'\1 . and DJAG__ASSERT - are the most
com mon form of consistency checking used in
the VAX Ada compiler. More general ki nds of
checking are provided , for example, by specia l
ized analysis rout ines and even complete traver
sals over the in -memory tree .

96

If assertion is fa lse,
then abort compi ler .

Marking Code Paths for
Unimplemented Features

We adopted a ru le duri ng the development of
VAX Ada that the software at each intermed iate
base level had to be robust. We req u i red that the
compiler diagnose the use of an unimplemented
feature rather than cras h or generate bad code .

This form of se l f-checking was implemen
ted by the two macros called DJAG__N\'1 and
DJAG__]\ryLSTOP. These macros are ca lled with a
text string that ident ifies the particu lar feature
that has not been implemented . The execution of
e ither results in a " nor-yet- implemented " diag
nostic . DJAG_NY! is used in situations where
processing can continue after the diagnostic .
DJAG__Nl'LSTOP is used w indicate that the
compiler should be aborted after report ing the
problem si nce there i s no easy way tO recover
gracefu lly .

These macros proved to be a good clerica l
device for keeping track of work remain ing. I n
addi t ion , our approach - never leave a hole -
contributed greatly tO the re l iabil i ty of rhe
prod uct . Robustness was the norm throughout
development rather than a last- minute , clean-up
activity. Over a long development effort, i t i s easy
tO put off writing a particu lar code path for
another day and even easier to forget about i t as
the days and months pass .

Tracking Memory-Management Errors

The last approach to se lf-check ing we discuss in
th i s section i s the use of special consistency
checks ro he lp track down some obscure mem
ory-management errors in the compi ler . Memory-

Digital Technical journal
No. 6 February 1 988

management problems can be very difficult to
diagnose because , for example, large programs
often operate correctly for a long t ime after a rou
tine writes to the wrong location in memory.

The error-tracking progression that we
describe here occurred during the development
of the in itial version of the compi ler . I n each of
the three problems i n the progression, the in tro
duction of a new check led immediately to the
discovery of additional cases where the same
error was occurring but, for whatever reasons, no
negative consequences had yet been observed.
Each of these cases was a bug that wou ld eventu
ally have been triggered, requiring many hours of
a deve loper's t ime to debug. Finding the errors as
a resul t of one of these checks was far less expen
sive in terms of development t ime than finding
them one at a t ime as each situation arose .

The first problem we d iscovered in the pro
gression was that a block of memory was being
freed as expected, but the block size specified in
the tree was larger than the amou nt of memory
originally al located for the block . To guard
against this behavior, we allocated (in the debug
ging version of the compiler) an extra longword
for each request and used it to remember the
al located size . This procedure a l lowed us to
check the deal location requests .

Later, we discovered that a routine was
attempting to deallocate a block of storage back
to a zone (subheap) other than the zone from
which the block was allocated . We coped with
this behavior by changing the extra longword to
contain the Exclusive Or of the a llocation size
and the address of the zone control block .

St i l l later, we discovered that storage was being
read after i t had been deal located . To cope with
this behavior, we changed the deal location pro
cedure so that it overwrote the deal located stor
age with a l l one bits. The one b i ts a llowed us to
distinguish unallocated storage ones from newly
al located storage, which is genera lly init ia l ized
to all zero bits .

Self-description

The primary data structure used throughout the
com piler is a tree representation of the unit
being compiled . This representation was made
self-describing in order to

• Automate key a lgori thms in the compiler

• Simplify creation of internal consistency
checks (self-checking)

Digital Technicaljournal
No. G February 1 988

• Simplify creation of some kinds of instrumen
tation

• Provide sophisticated debugging aids

Each node i n the tree conta ins an e ight-bit fie ld
named the KIND fie ld. This field contains a value
indicati ng the kind of information represented in
that node . More than 2 3 0 kinds of nodes are used
throughout the compi ler. (There are many k inds
because the tree is used not only for statements
and expressions, as is common in many compil
ers, but a l so for declarations, in p lace of a more
traditional symbol table . I ndeed, except for com
ments, the entire uni t being com piled is repre
sented by a single tree .)

The KIND field is located at the same offset in
every node; given the address of a node , i t i s easy
to determine its k ind and thus the information
ava i lable in that node .

Moreover, the KIND field can be used to access
a " node property table" in the compi ler that con
tains a description of the fields in each kind of
node, including the fields' types, offsets, and so
on . Because each node describes i tself i n i ts
KIND field and because the KIND field can be
used to access the node property table , we refer
to the compiler tree as a "self-describing" data
structure .

The source-code definit ion of the tree repre
sentation can be thought of as essent i a l ly a vari
ant-record type, where the kind value is a tag
that discriminates a mong the variants . The actual
run-t ime descri ption of the tree representat ion
goes beyond the level of deta i l that can
be expressed even in a strongly typed language ,
such as Ada . For example, the description
d isti nguishes between four kinds of pointer
fields - all of which are simply pointers to other
nodes in the tree from a data-type point of view .
However, i t is the presence of the variant-record
definition itself as pan of the compiler that is
unusua l and leads to valuable im plementation
techniques.

Automation of Key Algorithms

Several parts of the compi ler use the node prop
erty table as a major part of their operation . For
example, the part of the compiler that reads and
writes the tree representation to disk, cal led the
compilation l ibrary component , is driven almost
completely from the node property table . As a
resul t , we can easily add , delete, or change a
fie ld, introduce new node kinds, and so on . After

9 7

Softwar:-e
Pr:-oductivity
Tools

Pragmatics in the Development of VAX A da

a change is made , a l l that is needed is to recom
pi le the few BLISS modules that create the node
property table , l i nk a new compiler , and con
t inue development . The compi l ation li brary code
docs not need to be recompi led , let alone modi
fied, to reflect the change; i t adapts automati
cally .

S imi lar considerations apply to other pans of
the compiler . I n part icular, the compi ler has an
algorithm for copying trees that is fundamental
to the implementation of generic i nstant iat ion ,
in l ine expansion of subprogram ca l ls , and default
parameter eva luation . This algorithm is also heav
i ly driven in part by t he node property table .

Many u t i l i ty rout ines also make good use of
the node property table , for example tO create a
node of a given kind - given the code for the
k ind - t he required size is obtai ned from t he
node property table , and each fie ld of the new
node is properly in it ia l i zed as appropriate for
that type of fie ld .

Self checking Based on the Node
Property Table

We have described some kinds of se lf-checking
earl ier in this paper; i t is also i nterest i ng to see
that some self-checking is based on the node
property table . F i rst , we must back up and be a
l i tt le more precise i n our vocabu lary.

Al though we talk of the " tree , " this is rea l ly
something of a misnomer. The tree is real ly a
general d i rected graph . However, there is a sub
set of the pointer fields that, in fact , does deter
mine a spann ing tree - a set of paths that
spreads from the root (the COMPILUNIT
k ind of node) and reaches every node exactly
once (and without cycles) . Pointer fie lds that
define the spanning tree are cal led "son
poi nters ," whereas a l l other pointer fields arc
cal led "attribute pointers . " (Son pointers are
one of the several k inds of pointers a l luded to
earlier; there are three k inds of attribute
pointers .)

Because the " tree-ness" o f t h e program repre
sentation is so i mportant ro the correct operation
of the compiler , one of the most important sel f
checks the compi ler makes is tO ensure that the
tree rea l ly is a tree . This self-check is accom
plished by a rout ine t hat starts at the root (the
COMPIL_UNIT node) and uses the node property
table to visit every node in the un i t . Every son
pointer is fol lowed. As each new node is encoun
tered , a b i t is set . (This b i t is reserved at the same

98

fixed posi t ion in every k ind of node .) I f a node is
encountered that a l ready has the bit set , then a
cycle has been detected (and a bug exposed) .
This check is performed at least twice, sometimes
three t imes, during a compi lat ion when the
debugging version of the VAX Ada compi ler is
used .

Instrumentation through the
Node Property Table

The node property table also provides a va luable
tool for implement ing certa in kinds of instru
mentation . Statist ics on kinds and amount of stor
age by k ind are readi ly calculated using s imple
tree wal ks l ike the one described for se lf-check
i ng in t he precedi ng seCLion .

Enhanced Debugging

Final ly , the node property table provides the
basis for the variety of debugging d isplay rout ines
that were written as part of the project . As
described i n the section I nstrumentation , t hese
rout ines go wel l beyond what cou ld be achieved
by even the best genera l -purpose debugger,
i nc luding t he VMS Debugger. Rather than show
the tree as a series of i ndependent nodes , we can
d isplay the tree as t he nested data structure it
rea l ly is. Extraneous informat ion , such as the
addresses of nodes that are not legit i mately
pointed to by attribute pointers, can be sup
pressed. Certa in k inds of nodes t hat are actual ly
"private" i n the Ada sense can be displayed i n
a natural manner by display rout ines created
as part of the implementat ion of these abstract
node k inds.

Figure I i l lustrates one such display for a s im
ple example program . I t is not necessary to
understand t his d isplay in deta i l ; rather, compare
the kind of d isplay one could get from node-by
node displays versus the h ighly annotated and
i nterpretive example shown . A d isplay tool such
as the one that produced th is example c learly is
appl ication specific and cou ld be produced only
as part of the project in which it is used . More
importantly, even a project-specific roo! such as
th is would not be practical wi thout the run-t ime
self-description of the data structures i n use .

Summary

During the development of VAX Ada , we relied on
establ ished design and implementat ion method
ologies, and we made extensive use of VMS tools

Digital Tecbnical]ournal
No. 6 February 1 988

1 p r o c e d u r e F O O i s
2 X : I H T E G E R : • 0 ;
3 b e g i n
4 i f X > 0 t h e n X : • X - 1 ; e n d i f ;
5 e n d ;

0 0 8 8 0 3 8 0 :
F O O - K _ P R O C _ B O D L D E C L < A H A _ U S E D @ 1 : 0

< < v o i d > > :
< < v o i d > > :
K _ 8 0 D Y <

0 0 8 A D9 F 4 : K _ D E C L S < @2 : 4

_ C O R R E S _ B L O C K

0 0 8 A D8 9 8 : ' X - K _ O B J _ V A R I A B L E < H O H _ C O H S T , A H A _ U S E D @2 : 4
I N T E G E R - K _ R E F E R < S T A T I C 0 0 0 0 0 2 3 0 : @ S T A H D A R D / 4 >
0 - K _ I H T E G E R _ V A L < C T C _ V A L , S T A T I C ®2 : 2 2

S L >
C O H F _ B E G _ S E Q
O C C U R S _ J H _ H A M E
0 0 8 A D D E O :
< n u l l l i s t >

_ 08 J _ F L A G 1
_ 0 8 J _ F L A G 2

< n o f l a g s s e t >
((v o i d)) :

_ S Y M T A B
_ P R A G _ R E P _ C C >
_ D E C L S J L A GS
_ C O H T I H U E

0 0 0 0 0 0 0 0 _ C L _ V I S >

K _ ! F _ S TMT < @ 4 : 4
K _ B I H A R Y _ O P < H O H _ C O H S T @ 4 : 9

GL I H T
X - K _ R E F E R < H O H _ C Q H S T 0 0 8 A D 8 9 8 : @ 2 : 4 >
0 - K _ I H T E G E R _ V A L < C T G _ V A L , S T A T I C @4 : 1 1

S L >
0 0 0 0 0 2 3 0 : I H T E G E R @ S T A H D A R D / 4 _ 8 1 H O I HG
0 0 0 0 0 1 4 0 : B O O L E A N @ S T A H D A R D / 2 _ R E S _ T Y P >

(
K _ A S S I G H _ STMT < @ 4 : 2 0

X - K _ R E F E R < H O H _ C O H S T 0 0 8 A D8 9 8 : ®2 : 4 >
K _ B I H A R Y _ O P < H O H _ C O H S T ® 4 : 2 5

B I H A R Y _ M I H U S _ I H T
X - K _ R E F E R < H O H _ C O H S T 0 0 8 A D898 : @ 2 : 4 >
1 - K _ I H T E G E R _ V A L < C T G _ V A L , S T A T I C @ 4 : 2 7

S L >
0 0 0 0 0 2 3 0 : I N T E G E R @ S T A H D A R D / 4 _ 8 I H D I H G
0 0 0 0 0 2 3 0 : I H T E G E R @ S T A HDA R D / 4 _ R E S _ T Y P >

< n o f l a g s s e t > _ A S S I G H _ F L A G S >
< v o i d I i s t >
< n u l l l o c a t o r > _ L A S T _ L O C A T O R

< n o f l a g s s e t >
(v o i d 1 i s t)
((v o i d)) :

_ I F _ F L A G S > >

H O _ E X C P _ P A R T _ B O D Y _ F L A GS
< n u l l l i s t > _ P R A G _ R E P _ C C

F F 7 5 2 9 88 : _ Z O H E
@3 : 0 _ B E G I H _ L O C A T O R
@ 5 : 0 _ L A S T _ L O C A T O R
0 0 8 8 C A 1 C : _ S I G A R G S
T I M E _ S A V E D _ O P T _ S T A T E
T I M E _ L O C A L _ O P T _ S T A T E
< n u l l l i s t > _ L O C A L _ S U P P _ C C >

DST _ H A S _ S E G , D S T _ H A S _ Z E M , E X I M _ A L L O W E D , I S _ E L A B O R A T E D , I S _ G B L _ V I 5 ,
I S _ L I B _ U H I T , ME C H _ F I X E D _ P R O C _ F L A G S

'

< n u l l l i s t > _ P R A G _ R E P _ C C
0 0 8 8 C A 1 C : _ S Y M T A B
< < v o i d > > : _ F U L F I L L S
< < v o i d > > : _ S T A T U S _ O B J > >

Figure I Example Tree Display in the VAX Ada Compiler

Digital Techtllcal]ournaJ 99 No. 6 Februmy 1988

Software
Productivity
Tools

Pragmatics in the Development of VAX Ada

(VMS Debugger, VAX Performance and Coverage
Analyzer, and so on) . However, we a lso used
some relatively s imple i nternal tools and accom
panying development philosophies to help us
increase our productivity, i mprove the re liabi l i ty
of our product, and decrease maintenance costs .

Automation, i nstrumentation , self-checking,
and internal self-description all played major

1 0 0

roles in our day-ro-day practices, from early
design phases through fie ld test . We continue to
use these tools and techniques i n the ongoing
maintenance and evolution of VAX Ada. We hope
t hat our successful experience with these prag
matics on the VPu"\. Ada project wil l help promote
wider i nterest in the use of such ideas on other
software projects .

Digital Tecbnicaljournal
No. 6 February 1 988

Steven]. Grass I

Development of a Graphical
Program Generator

To develop an unprecedented graphical-interface product for generation
of COBOL applications, project engineers explored a new development
approach. During the advanced development phase, types of generators
were researched, a prototype was built, and product goals were outlined.
In the product development phase, the major components of the
VAX COBOL GENERATOR software - the data dictionary, the work-file
system, and the graphical display - were designed and coded. In addi
tion, developers integrated existing components into the generator.
Testing, design documentation, and project review were also part of this
phase. This development approach, combined with the use of several
development tools, proved to be productive and resulted in a stable and
reliable product.

The VAX COBOL GENERATOR software is a
fourth-generation language approach to the cre
ation of commercial appl ications. Using this gen
erator, the program mer draws a picture resem
bling a flowchart of the final appl ication rather
than use an editor to write l ines of code . This
picture produces VAX COBOL code, which can
be compi led , l inked , run , and debugged . All
maint enance is performed at the graph ical level .

This paper describes the development of the
VAX COBOL GENERATOR software from ini t ia l
concept to product shipment, a process that
rook approxi mately three years. Because this
was the first product conta in ing a graphical
interface developed at Digi tal , many unique pro
ject development problems were encountered .
This paper d iscusses how the project team
solved these problems in the research , develop
ment, document, test , and project review stages.

The project can be divided i nto rwo major
phases . The first phase involved advanced devel
opment and lasted one year. During this phase , a
prototype was developed and demonstrated to
various management groups .

The second phase was product deve lopment
and lasted two years. This product development
phase was divided into two major base levels ,
t hat is , m i lestones at which specified capabi l i
ties are complete . A t the first base leve l , a

Digital Technical journal
No. o February 1988

skeleton was bui l t that contai ned most of the
core functional i ty of the generator. Once the
skeleton was completed , addit ional function
a l i ty cou ld easily be added . The skeleron con
sisted of the work-fi le system , some screen
interface rout ines, the driver for the main screen
editor, and t he driver for the code generator.
Each member of the ream was responsible for
one of these components of the ske leton . The
second base level marked the enhancements ro
the skeleton and t he defin i t ion of system func
tional i ty in design documents .

Advanced Development

A program generator was so unl ike other prod
ucts bei ng designed at Digital at that r ime that
i t was necessary to spend the first project
phase on advanced development work . During
this t ime , research could be performed, ideas
cou ld be exchanged between the deve lopers ,
and breadboards and prototypes cou ld be cre
ated . This advanced development phase indeed
proved ro be worthwhile and a significant step
toward the product's success . In particular, the
development of the prototype provided a way to
commun icate concepts to each other and to man
agement. Remarkably, the prototype , alt hough
crude, incorporated a l l the underlying concepts
contained in the final product.

1 0 1

Development of a Graphical Program Generator

From June 1 983 to June 1 98 4 , two developers
worked on the advanced development of the VAX
COBOL GENERATOR software. This section d is
cusses that work , including the creation and
demonstrations of the protOtype.

Defining Product Specifications and
Beginning Research

The specifications for the proposed product
were open ended. The one , general product
requirement was that the program generator
would generate VAX COBOL code . At that t ime,
the kind of generator ro build , the interface ro
use, and other aspects of the product were not
yet understOod or specified .

The first two tasks faci ng the developers,
therefore , were to determine what a program
generatOr was and what currently existed in the
marketplace. They learned that a l though much
had been accompl ished in the development of
fourth-generation languages, not a l l product
approaches had been fully explored . They saw
the advantage in creat ing a type of generator that
not only increased programming efficiency but
also was simple and i nteresting to use .

They learned there are two types of genera
tors: appl ication generators and program genera
tors. Each has i ts own advantages and serves a
d istinct market .

An appl ication generatOr processes commands
interpretively. It does not produce source code .
The application generatOr has a close relation
ship with i ts appl ication 's database and is used
mainly for relatively simple data retrieval and
report generation . Where execution speed is not
critical , programmers use appl ication genera
tors for quick development turnaround. DATA
TRIEVE, RALLY, and Cognos' PowerHouse are
examples of application generarors.

A program generator, on the other hand , pro
duces source code . Program generators can gen
erate anyth ing from BASIC to Ada program code.
Because the code produced can be compi led,
execution speed of the created application is
faster than the execution speed of a s imilar

appl ication produced by an application genera
tor. A program generator does, however, rake
longer tO develop the appl ication .

Most program generators produce about 70
percent of the fi nal appl ication. However, the
appl ications produced are skeletal and have to
be ed i ted after development. The generated pro
grams consist of the high- level structure, but

1 0 2

many of the lower level routines sti l l need to be
edited by hand . Once having edited the gener
ated program, the developer can no longer
en hance the product using the generator si nce
the hand-coded changes would be l ost . There
fore, after a program has been developed, al l
program maintenance must be performed at the
code level . The development t ime saved using
the program generator is only with reference to
the program development phase , nor the pro
gram maintenance phase .

The VAX COBOL GENERATOR team saw an
opportunity to close the gap between program
development and maintenance. They decided to

produce a program generator that wou ld create
the ent ire progra m . Software development gains

i n terms of developer t ime saved would then
extend beyond development phase to encompass
the maintenance phase as we l l .

The team also saw another opportunity . Most
exist ing generators are restricted in the types of
appl ications that can be generated . Although
generators cou ld relatively eas i ly create typical
commercial appl ications, complex applications
were more d i fficult to create . The generator
team decided to bu i ld an open-ended product
that stressed flexibi l i ty in the level of program
complexity .

Fina lly, most of the interfaces of the genera
tars we studied were menu-driven . Users were
requ ired to repeat continually the same steps i n
order to create the appl ication. The generatOr
team fe l t that a user-friendly human in terface
wou ld be a more expedient tOol and more
appeal ing to users as we l l .

The decision to produce a graphical interface
for the generatOr was one of the first the devel
opment team made. I n 1 9 83 the VT2 0 0-series
terminals were beginning to be shipped, and
graphics workstations were start ing to be devel
oped . It was evident to the generator team that
graphical terminals would become integral to
program development work.

Moreover, human-factors research and the
developers' own experience with graphical
workstations confirmed the decision . During
research, the developers spent a great deal of
t ime using the revolutionary Xerox Star worksta
tion , which had been introduced in the early
1 9 80s

This workstation demonstrated the power that
windowing and icons can give to software devel
opment. The developers fe lt that they could

Digital Tecbtlicaljournal
No. 6 February 1988

expand the concepts of the Xerox Star (later fu r
ther demonstrated in Apple 's Mac intosh com
puter) ro the area of program generation . The
icons cou ld represent the various data and pro
cedural entit ies in typical programs, and the
windows cou ld be used ro define these entities.
The flex ibi l i ty of a graphical workstation
a l lowed this to happen .

In su mmary, research into types of generators
and user interfaces helped to determine the fol
lowing product goa ls prior to the development
of the prototype:

• The generator wou ld produce an ent i re VAX
COBOL program, thus extending use of the
generator through the maintenance phase .

• The generator wou ld have the flexibi l i ty to
create complex as wel l as simple types of
applications .

• The generator interface woul d be a graphical
interface; it would be easier and faster to use
than conventional ediwrs.

Project Value of the Prototype

ln the early research stages, the product ideas
formu lated by developers were so un l ike any
previously developed products that the ideas
were difficult to explain and demonstrate. Icons,
for example, were not in general use at that
t ime; and the ideas of boxes and l i nes represent
ing operations and control flow were entirely
new concepts and were difficult to grasp.
Attempts to draw the ideas on paper fai led s ince
drawings cou ld not show the fac i le action of the
interface that the developers visua l ized . Devel
opers decided they needed to construct a proto
type .

Creating a prototype before specificat ions
were clearly defined was a risk the deve lopers
wanted to take . The simple prowtype proved
them right . It was inval uable for communicating
project concepts among the developers and to
management .

Their first task was to decide what fu nctions w
build i nto the prowtype . A prowtype is written
w demonstrate ideas, wi thout regard to mainte
nance or the performance of any programs pro
duced . Therefore, the developers knew that the
prOtotype code would have to be discarded
when the product development began . In order
to ensure that no code wou ld be reused , it was
decided that the ent ire prototype wou ld be writ-

Digital Technical journal
No. 6 February 1988

ten in t he VAX COBOL language. The fi nal
product wou ld be wri tten in the preferred
development language, VAX BLISS. Also, it was
decided that a grap hical software package such
as the Graphical Kernel System (GKS) would not
be used for t he protorype . The strengths of GKS
were terminal independence, easier mainte
nance, and better performance , none of which
were goals of the protorype . In addi tion , the
t ime taken to learn GKS wou ld cause a needless
slowdown in the protorype development.
I nstead, ReGIS escape sequences would be out
put . This decision w output ReGIS directly
instead of using GKS wou ld speed the effort to
obta in a working protorype .

As it turned out, many major functions of a
program generator were completely defined
within the prowrype . The method of form,
report , and fi le defini tion , as wel l as the con
cepts of procedural and data flow cou ld a l l be
visua l ized using the prororype , which even did
program generation. The prototype was so com
plete that a member of Digita l 's Management
I nformation Systems (MIS) department used it to
develop applications to be used within his
department . The prototype demonstrated how
these high-level graphical concepts coul d be

translated into the generation of source pro
grams.

Product Specification Approval

Demonstrations of the prototype were given wel l
over one hundred t i mes tO a l l levels of manage
ment, project leaders , some customers, and Digi
tal 's Research and Development Committee .
Reaction was posi tive . It was agreed that the
product was ready for development. Unfortu
nately, reviewers had l i ttle with which to com
pare the product and were therefore unable tO
offer the constructive criticism the developers
were seeking. Feedback on the product would
be gained through the more painfu l process of
experience .

Product Development
The product development phase of the VAX
COBOL GENERATOR software started in june
1 9 84 and ended in September 1 986 . This two
year period began with the first written design
specifications and closed with delivery of the
product. Product development included design ,
coding, and testing phases. No more than fou r
software engineers were assigned to the project

1 0 3

Software
Productivity
Tools

Development of a Graphical Program Generator

at any one t ime. An additional three engineers
were assigned to wri te the graphical package
(described later in this paper) . The final
product had over 1 4 0 ,000 l i nes of source code,
or nearly 3000 l i nes per developer per month
during t he coding phase . This ach ievement was
considerable when compared tO 198 '; , when
6 '5 0 l ines of code was the average nu mber wri t
ten per developer per month . 1 The productivi ty
of the VAX COBOL GENERATOR team was due in
large part to Digita l 's software development
environment tools 2 Some of these rools are
described later in this paper .

This section gives a brief overview of the
COBOL generatOr product . Fol lowi ng th is
overview are descript ions of the components and
systems selected for and designed in the
product's implementation . The major compo
nents of t he generator are the data dictionary,
the work-fi l e system, and the graphical display
system. Also described in this section is t he
reuse in the generatOr of previously developed
components .

Product Fun ctions Overview

Programs are graphical ly described within the
VAX COBOL GENERATOR product by a combina
tion of nodes and connect ions between these
nodes. After the nodes and connections arc cre
ated and defined, the V�'(COBOL GENERATOR
software can create a VAX COBOL source pro
gram which can be compi led.

•\' di:U l�l ·.li f ' · · · ·. r · •

A node graphically represents data and opera
tions to be performed on that data . There are
e ight node types, and t hey fa l l into two cate
gories: procedural and data . Procedural nodes
represent fu nctional tasks to be performed in t he
program or represcm strucmre in the program.
Examples of procedural nodes are those that
represent the movemem of data between two
data nodes, a sorting operation , or the manipu la
tion of a menu . Data nodes represent data to be
accessed in the program. Examples of data nodes
are forms, fi les , and reports.

The connections between the nodes represent
flow in the program . Procedural connect ions
show procedural flow; data connections show
data flow.

The programmer creates nodes on each level
of an appl ication and connects them to show
procedural and data flow. Edi tors , pop-up forms,
and pop-up menus prompt the programmer for
deta i l about the nodes and connections. From
this information , the VAX COBOL GENERATOR
software creates a VAX COBOL program .

Figure 1 shows an example of a VAX COBOL
GENERATOR screen . The procedural type nodes
READ- INFO and SHOW-ERROR are shown as are
the form node EMP-FORM and fi le node EMP
FILE. The data connections are shown as das hed
l i nes , and the d irection of the connections indi
cates that data is to be read from the form and
wri tten in to the file . The procedura l connection
is shown as a solid l ine that indicates control

I · ' '

[]

"

Figure I VAX COBOL GENERA TOR

I 04 Digital Technical journal
No. 6 February I '}88

flow is to go from the READ-INFO data move
ment node to the SHOW-ERROR procedure

node.
The generator helps the novice user via sev

eral functions. At any t ime, the programmer can

use the Help key to obtai n context-sensitive
i nformation about an operation . The pro
grammer can also use the H ELP command or
choose help from the menu . Easy-to-understand
error messages also guide the programmer
through the design process.

The VAX COBOL GENERATOR software
enforces top-down program ming. The pro
grammer begins program defi n i tion at the top
level of the program. Group nodes, which repre
sent much more complex operations at a lower
Level , create structure within the generated pro
gram . Edit ing a group node moves the pro
grammer down one level in t he program, thus
breaking the program i nto smaller, more modu
lar pieces .

Other VAX COBOL GENERATOR features
i nclude data dictionaries and l ibraries for the
storage and reuse of common data and proce
dures, an RdbjVMS interface, a complete jour
naling capabil ity, and a method to escape i nto
an editor where user-defined COBOL code can
be entered i nto the generated program. Also
avai lable are program documentation faci l i ties
that include a map with a breakdown structure
of the program . These faci l i ties also permit the
addition of user-written documentation to parts
of the program .

The Data Dictionary Asset

A main component of the VAX COBOL GENERA
TOR is i ts data d ictionary. Although this compo
nent was not i ncluded i n the prototype, the
developers found in later research that nearly al l
fourth-generation languages, no matter how
primitive, contain a data d ictionary. As Digita l 's
MIS department pointed out, a successful
product must contain a depository for reusable
programming. Developers therefore devised a
method by which users of the VAX COBOL GEN
ERATOR product could easily define data and
procedura l enti ties in a central location . Users
could then share these entities within one or
more programs developed using the generator.

The VAX Common Data Dict ionary (CDD) was
the current Digital standard for shari ng data
among the layered products. CDD is excellent as
a standard for sharing record-structure defin i -

Digital Technical journal
No. 6 February 1988

tions. Deve lopers. however, needed a method
that cou ld in addi tion understand entities

defined by the user within the generator, such as
reports and user-defined procedures. Therefore,
the COD was used within the generator so that
users cou ld optionally share record definit ions ;
another method, the generator l ibrary, was
devised so they could share other components of
the generator.

The generator l ibrary lets the user share any
form, fi le , report, local storage , procedu re , or
field defin i tions . If a user of the generator wants
to share a program component, this component
can be either defined d i rectly in the l ibrary or
stored in the l ibrary from an appl ication . Any
other program developer wishing to reuse that
component in another program can si mply refer
ence i t .

Each t ime a new node or field definit ion i s
created within an appl ication , the generator per
forms a search through al l known generator
li braries. If a match is fou nd, the user is given an
option of referencing the component from the

l ibrary. If he chooses to reference the compo
nent, the previously defined component is then
read i nto the appl ication and is thus reused. The
internal representation stored in a l ibrary fi le is
identical to i ts counterpart defined in the appl i
cation . Because of th is , no conversion is required
to be performed by the generator when a com
ponent is referenced, and the internals of the
generator do not need to know whether the com
ponent is referenced from a l ibrary or is defined
within the appl ication .

The data dictionary ut i l i ty proved to be one of
the strongest assets of the product for two main
reasons. First, because components can be
reused in many applications, users' programs
can , for example, a l l have the same interface.
Each user does not have to redefine the compo
nents for his particular appl ication . Second, mul
t iple users can simultaneously develop different
pieces of the same program. Each user can
define components in a different l ibrary, then
one user can integrate these components into
the appl ication .

The one restriction is that only the generatOr
can read from or write tO the l ibrary structure ,
because the l ibrary structure is defined by the

VAX COBOL GENERATOR software. Forms can
be shared among COBOL programs developed by
the generator, but not with any other language
or tool .

1 0 5

Software
Productivity
Tools

Development of a Graphical Program Generator

The Work-file System

Another key component in the VAX COBOL GEN

ERATOR software is the work-fi le system struc
ture, a key component in any software product . I t
was i mportant t o the product's success t o give
users the abi l i ty to quickly access the generator's
database on disk and to manipulate records i n
memory. The developers were looking for an
easy-to-use, efficient i nterface when they
decided on the format of the VAX COBOL GENER
ATOR database file and the associated manipula
tion rout ines . Instead of developing a new fil e
structure, the deve lopers decided that the data
base wou ld be an RMS indexed fi le . They cou ld
then use standard VAX RMS fi le manipulation rou
t ines rather than write new rout ines. Ti me saved
during development was considerable. Most
work-fi le systems take months to develop ; the
generator's system was performing within two
weeks. Run-time performance, thought at first to
be a possible problem , was acceptable.

After the work-fi le records were read into
memory, the routi nes used for manipulat ion were
patterned directly after their RMS fi le counter
parts. Each record conta ined a key, so records
were read by key and then read sequential ly .
Records defining a node were logica lly grouped
together since their keys were al ike.

The Graphical Display System

Another key component in the VAX COBOL GEN
ERATOR is the graphical d isplay system. The VAX
GKS program is Digita l 's implementation of the

ISO (IS 7942) and ANSI (ANS X 3 . 1 2 4 - 1 985)
GKS standard for two-dimensional , device- inde
pendent graphics. The VAX GKS program had j ust
been released when development of version 1 .0
of the VAX COBOL GENERATOR software began 3

Because i t appeared to conta in a l l the graphical
primi tives and terminal independence for which
the generator team had been looki ng, it was cho
sen to be the graphical system for the generator .

Early i n the development cycle, however, i t
became apparent that a higher level graphical
interface was needed. GKS provided the required
functional i ty, but the routines were too low level
for the deve lopers' purposes . By layering a higher
level interface above GKS, the generator's i n ter
nals wou ld be simpler and, therefore , easier ro
develop and mainta in .

Using GKS calls, a node representation on the
screen would be extremely complex to con
struct . The generator wou ld have to make mult i ·

1 06

pie caJ is to GKS routines to create the square
containing the node , draw the text, and draw the
icon representing the node type. In addition ,
ca l ls would have to be made to determi ne i f a l l or
part of the node would be visible, to determine
which font to use for the drawi ng of the text, to
determi ne the select area for the node , and others
as well . Instead, one h igher level rout ine per
forms a l l these functions.

Another prod uct being developed, the VAX
Software Project Manager program, also needed a
graphical interface with the same capabil i ties our
product required. Consequently, the group of
three engineers, mentioned earlier, developed
the high-level graphical manipulation rout ines
layered above the VAX GKS software . These rou
ti nes wou ld be completely term inal i ndepen
dent . Any product using these routines wou ld run
on a term inal , where the cursor is manipulated
by arrow keys , or on a workstation , where the cur
sor is manipu lated by a mouse . By sharing the
same hu man-i nterface rout ines, both the genera
tor and the VAX Software Project Manager pro
gram have the same appearance a nd interface .
Consequently, users who learn one product's
interface can more easily learn the other.

Because developers needed to focus only on
deve loping the high-level screen in terface. they
were able to spend more t ime writing the genera
tor internals as opposed to developing the graph
ical display system internals.

Use of Existing Components

As noted earlier, the i mplementation l anguage for
the VAX COBOL GENERATOR software is the VAX
BLISS language . Because Digita l 's software prod
ucts had been written in BLISS, any components
written for these existing products could eas i ly
be integrated into the generator. Time to market
was important, so the time-saving use of any
already written software was encouraged . Conse
quently, during the design stage, developers
decided to reuse some of these components.

In addition to saving schedule t ime , the use
of these existing components meant greater
producr stabil i ty . The components had been used
within D igita l 's products and therefore had been
tested by customers for years, and the compo
nents wou ld be tested aga in after integration i n
the generator. After the i n tegration had been
completed , the reused pieces contained fewer
errors than any other components within the
generator.

Digital Tecbnicaljournal
No. 6 February 1988

This section describes the components that
were used or adapted within the generator.

Forms Editor

The definition of a form node required the use of
a forms edi tor to define the layout of the form on
the screen. Digital had two forms products at that
t ime : VAX FMS (Forms Management System) and
VAX TOMS (Terminal Data Management System)
programs. Not only did each contain a forms edi
ror , but the key definitions within each were
identica l . The VAX COBOL GENERATOR develop
ers decided to use this established set of key
sequences.

The simi larity between the FMS and TOMS key
pads is not a coincidence . Developers of TOMS
modified the FMS sources for their TOMS
product. The generator developers also decided
to modify the FMS sources. Only two changes
were needed: one was to change the field
attri butes such that they were particular to the
generator, such as autoterminate; and the other
was to include an interface to the generator's data
dictionary. Routines were written to convert
between the forms editor's i nternal data struc
tures and those of the generator.

Within a very short t ime - one week - the
forms editor had been integrated and was work
ing within the generator. Writing a forms editor
from scratch wou ld have taken much longer, per
haps six to eight months.

File System

A set of routines was needed to access the
product's various fi les, such as the generator
database, generator l ibraries, journal fi le, and any
COBOL files that wou ld be generated .

To perform the standard set of operations on
these fi les, the generator deve lopers chose the
fi le I/0 system developed for the VAX TPU (Text
Processing Uti l i ty) software . It contained the
standard open , close, read, and write routines in
a modular, easy-to-integrate form . As with the
forms edi tor , integration was si mple and stabi l i ty
was h igh .

CDD Interface Routines

The VAX COBOL compi ler al ready contained rou
tines that read in records defined within the VAX
Common Data Dictionary software . The VAX
COBOL GENERATOR developers converted these
routines so that they recognize generator data
structures . Again , the use of previously written

Digitfd Technical jountal
No. 6 February I ')88

interface routines saved a great deal of develop
ment t ime .

Design Documents for Project Use

The developers wrote a design document for
each major piece of functional i ty needed for ver
sion 1 . 0 of the VAX COBOL GENERATOR soft
ware . These documents inc luded the fol lowing:

• The reason for the new functionality

• A high-level description of the functionality

• Deta i ls of the functional ity, including each
routine to be written or enhanced

• A test strategy

• Resource and time estimates for design, cod
ing, and testing of the new functionality

These documents had three purposes. The first
purpose was to have the team review the pro
posed implementation of the new functionality.
Any discrepancies in the graphical interface
design or in ternal implementation were found
early, before actual coding began. The second
purpose was to give the project leader a reliable
estimate of coding t ime for determ ining future
schedules. The third purpose was ro help the
individual wri ting the documentation keep cur
rent on a l l new features. With this information ,
the writer could al locate the appropriate t ime
needed to write about new features.

Product Testing - Internal and
External

Three different types of testing were performed
during development of the VAX COBOL GENERA
TOR software:

• Testing by the developers

• Human-factors testing, by the Software Usabi l
ity Engineering Group

• Field test ing, at Digita l 's internal si tes and at
external (customer) fie ld test sites

The standard internal test method for software
at Digital is the VAX DEC/Test Manager (DTM)
software .

•
DTM can test generated data and text

screens. DTM can test the generator database fi le ,
any libraries, and any generated COBOL source
code. A large DTM test set consisting of approxi
mately two hundred tests was run at period ic
intervals and at base levels. Tests were required
to be written for each new p iece of functional ity .

1 07

Software
Productivity
Tools

Development of a Graphical Program Generator

However , DTM has no capabil i ty for testing
graphical screens. In fact , the developers discov
ered that there was no product ava ilable that
could test graphical and asynchronous interfaces.
Any previous graphical product was tested inter
actively by the users, and this method was a lso
used for the generator.

At each base level , the VAX Performance and
Coverage Analyzer (PCA) software was run on the
entire test set to determine test coverage. If PCA
determ ined that a large piece of code was not
being tested by the test set , one of the developers
wrote a new test for the code .

The second type of testing was human-factors
testing, performed by the Software Usabil ity
Engineering Group. 5 Early in the development
effort , test subjects (programmers) unfami l iar
with the VAX COBOL GENERATOR software were
asked to perform si mple tasks using the product.
The test report l isted and priorit ized al l problems
the subjects encountered. As a resul t of this
report, changes were made to both the human
interface and to the documentation .

For example, one problem, which accounted
for the largest percentage - 1 9 percent - of
the total error time, involved field term ination
i n the editor used for the defin i tion of record
structures. In this editor, the Return key was
used to create a new field's defin i tion . Users
were mistakenly using this key when attempt
i ng tO move from one attribute to another for a
field 's defin i tion . As a result , new field defi ni
tions were being created inadvertently. The
generator team changed the definition of the
Return key as a result of the human-factors
testing, and selected another key for the creation
of new fields.

Other changes were implemented as a result of
th is testing. Better label ing was devised within
the generator, and better, easier-to-understand
documentation and context-sensi tive help mes
sages were written .

The third type of testing was field test . This
testing was divided i nto three phases . The first
phase began in September 1 985 and included an
unl imited number of Digita l sites and a l im i ted
number of customer sites. Practica lly al l func
tiona lity was i ncluded in this release except for
report and son nodes . Si tes were asked to test
how well the VAX COBOL GENERATOR software
fit in to their development environments. Unfor
tunately, feedback from external sites was very
l imited in this phase .

1 08

The second phase began i n February 1 986 and
marked the begi nning of serious fie ld test. The
VAX COBOL GENERATOR software, with nearly
all functional ity, was instal led in 1 4 customer
sites and 200 Digital sites. Excellent feedback

was given from a l l sites . One customer site was
able to generate a 1 00 ,000-l ine program during
this five-month period .

This s i te notified the developers immediately
whenever a problem occurred; developers could
then fix errors in the product before i t was
released to the public.

The third and fi nal phase of field test began in
July 1 986 . All bugs found in the earl ier tests had
been fixed, and a l l final fu nctional ity was
included in t he product . This phase was used to
ensure that no major bugs remained in the gener
ator .

In summa ry, a l l three types of testing con
tribu ted to the stabi l i ty of the final product.
Many bugs were found and corrected , the docu
mentation was simpl ified, and the human inter
face was improved as a result of t he various types
of testing.

Project Test Communications
The un ique and efficient communication
medium for internal test queries and responses
was VAX NOTES conferences 6 The VAX NOTES
network communications product functions as an
electronic blackboard and lets users conduct on
l ine conferences or meetings . Using t he VAX
NOTES program, a ny user on Digital 's engineer
i ng network coul d make suggestions a nd ask
questions during development, and report prob
lems during fie ld test . Because the developers
mon itored the NOTES conference conti nually,
users were given feedback quickly. Addit ionally,
the VAX NOTES program al lowed the nu mber of
test sites to expand . Developers had more time to
work with more than the usual number of s ites
because the program not only faci l i tated commu
nications between s ites but also maintained a
record of any communications.

For communicat ions outside the corporation
during field test, a hot l i ne was i nstal led . Devel
opers took turns answering the calls. The imme
diate feedback al lowed for quick prob lem resolu
tion, contributing to a successful field test. Also ,
an on-l ine Quality Assurance Report (QAR) sys
tem was avai lable to a l l field test sites. The sites
could log on to the machine conta in ing the sys
tem and comment on bugs or make suggestions.

Digital Technicaljournal
No. 6 February 1 988

Developers wou l d periodical l y scan the QAR
database.

Project Management Tools

During VAX COBOL GENERATOR development,
developers kept resource status and task records
on paper . Group meetings were the only formal
mechanism for the exchange of status informa
tion . A tool was used for schedul i ng , but
it did not provide the task tracking capabi l i
ties that were needed. Simultaneous with the
deve lopment of the generator, the VAX Software
Project Manager program was being developed.
Early versions of this tool were used at the
end of the generator's development cycle , and
ts benefits were readily apparent. Before the
tool was ava i lable, the schedul ing done on
paper contained errors. The VAX Software
Project Manager program automated the
process. The schedul ing estimates made with
this cool were fou nd to be much more rel iable
than those done manually. Moreover, tasks are
graphical ly d isplayed, making it easy to visual
i ze a schedule and tO test various schedu le
scenarios.

Project Review Meeting

Immediately upon release of the VAX COBOL
GENERATOR software, a project review meet
ing was held. Al l developers presented their
views on how tO improve the process for bui ld
ing this product . Al though the deve lopment
process had gone wel l , many valid points were
raised at this meeting. For example, the newer
mem-bers of the team had found much of the
code difficult tO understand . The code wou ld
therefore be harder tO mainta in . As a result of
this discussion , plans were put in place tO
develop coding standards for future versions of
the product . Another point concerned infor
mally made design decisions that went
unrecorded and were often lost . h was decided
at the meeting tO create a NOTES conference
where discussions and decisions internal tO
the group could be logged . Using this confer
ence, future developers of the generatOr
cou l d easi ly reference the earlier decision
making process.

Team members found the meeting to be an
extremely valuable exercise and wi l l hold such
meetings at the conclusion of a l l future product
releases.

Digital Technical journal
No. 6 February 1988

Conclusion

The development process of the VAX COBOL
GENERATOR software was successfu l . An enti rely
new process for the generation of programs was
devised, prototyped , written, and tested. More
over, the process was completed in an amazingly
short period of a l i tt le over three years .

Three main factors contributed to the high pro
ductivity of the VAX COBOL GENERATOR team
and stabi l i ty of the final product:

• An early prototype, through which ideas cou ld
be presented for debate

• The reuse of existing technology, so t ime was
not spent doing work that had already been
performed

• Various forms of testing, where the technologi
cal and human interface designs could be
tested

Acknowledgments

I woul d l i ke to thank the developers who worked
on the VAX COBOL GENERATOR software ,
including David Tarbay, Leo Treggiari , John
Ronan , Deb Bourquard , Andy D'Amore, Bi l l Foun
tas, and Rich Phi l l ips . Also , I would l ike to
acknowledge the contribution made by the mem
bers of the graphical display team, Vick Ben
nison ,)ay Bolgatz , and)eff Orthober.

References

1 . H . Davis , " Measuring the Programmer's Pro
ductivity," Electronic Engineering Man

ager (February 1 985) : 4 4 -48 .

2 . B . Beander, "VAXjVMS Software Develop
ment Environment," Digital Technicaljour
nal (February 1 988, this issue) : 1 0- 1 9 .

3 . B. Axte l l , W . Cl ifford , J . Saltz , " Programmer
Productivity Aspects of the VAX GKS and
VAX PHIGS Products," Digital Technical
journal (February I 988, this issue) : 62-70 .

4 . L. Ziman, M . D ickau , " Project Management
of the VAX DECjTest Manager Software
Version 2 . 0 , " Digital Technical journal
(February 1 988, this issue) : 1 1 0- 1 1 6 .

5 . M. Good, "Software Usabi l i ty Engi neering ,"
Digital Technical journal (February 1 988,
this issue) : 1 2 5- 1 3 3 .

6 . P . Gi lbert, " Development of the VAX NOTES
System," Digital Techn ical]ournal (Febru
ary 1 988, this issue) : I 1 7- 1 24 .

1 09

Software
Productivity
Tools

Linda Ziman I Martin Dickau

Project Management of the
VAX DEC/Test Manager
Software Version 2. 0

To produce a camp/ex, major software version in less than one-year's time,
the DEC jTest Manager team became the first at Digital to use all available
VMS productivity tools. As part of their strategy to meet a shortened sched
ule and at the same time maintain quality, the team chose an iterative
development approach. Throughout the phases of requirements analysis,
specification and design, and implementation, the team took advantage of
the many software tools available to streamline every aspect of the project
frmn source code management to performance analysis. The tools used
include VAX NOTES conjerencing, the VAX Language-Sensitive Editor, VAX
DECjCMS software, and the VAX Performance and Coverage Analyzer.

As software development has i ncreased i n com
plexity, software engineers have sought products
that help to i ncrease their productivity as wel l as
the qua l i ty of the software they produce . 1 At the
same time, market pressure to del iver more soft
ware products has i ncreased . Software productiv
i ty tools are essential elements in the engineering
effort to meet the market need for the same or
greater software functional ity del ivered in a
shorter amount of t ime . I t is not uncommon for
the development cycle of a major version of a soft
ware product to be longer than one year in dura
tion . The VAX DEC/Test Manager team was able
to del iver a major version to market in less than
seven months . This paper describes the develop
ment methodology and the productivity tools
used at various software l i fe-cycle stages to
achieve this shortened t ime to market .

VAX DECjTest Manager
Product Overview

The VAX DEC/Test Manager software is a produc
t ivity tool that automates the regression testi ng of
software during the development and mainte
nance phases . Regression testing ensures that
modifications made to the software do not affect
the previously tested execution of the program.

The DECjTest Manager a l lows users to describe
tests as a set of files, execution environmental
aspects, and processing options. These descri p-

1 1 0

tions are stored in a DEC/Test Manager-controlled
d irectory, called a " l i brary," and are eas i ly
accessed , tailored, and managed via DECjTest
Manager commands.

The core of a DECjTest Manager test descrip
t ion is a user-suppl ied script which the DECjTest
Manager executes when the test is run . Use of a
script and the environmental and processing con
trol specified in a test description ensures that
only changes in the software being tested can
alter the results of a test run .

After test execution is completed , the DEC/
Test Manager automatical ly compares the results
of the run with a set of benchmark results .
The comparison statistics are ava i lable through a
si mple command , and the DECjTest Manager
provides a set of functional i ty and commands
for locating and examin i ng t he results of those
tests that indicated some type of change from
expected behavior . All fi l e management is han
dled automatical ly .

The VAX DECjTest Manager software version I . 0
was mainly a batch testing system . Pressure came
both from the market and from in ternal Digi ta l
engineering groups t o produce a fol l ow-on ver
sion that wou ld do more, one that woul d test
graphical appl ications on character-ce l l termi
nals , such a s a VTS 2 or VT 1 00 termina l .

From the outset of the project, t he develop
ment team real ized the d ifficul ty of the design

Digital Tecbnicaljournal
No. 6 February 1988

problem. Adding to the d i fficul ties of develop
ment would be the lack of a commercially avai l
able product with which to compare functionality
for such a roo! .

Project Setup

The DEC/Test Manager version 2 . 0 develop ment
team consisted of three junior engineers, a princi
pal engineer, and a project l eader. This team was
to be responsible for producing the new func
tiona l i ty and for maintaining the previously
released versions of the software .

At the beginning of the project , the team mem
bers recognized they would need to i mprove
prod uctivity in order to deliver a product in the
t i me required. The work involved to produce ver
sion 2 .0 would be as complex as i t had been for
the major version 1 . 0 . Version 1 . 0 had taken
18 months tO produce , but market pressure dic
tated a second version be del i vered in 1 0 months
or Jess .

Consequently, the DEC/Test Manager team was
one of the first at Digital ro use a l l of the VMS pro
ductivi ty tools current ly ava i lable . The team's
use of these roots is d iscussed in the sections
below. The tools consisted of the following soft
ware:

• VAX Language-Sensi tive Editor

• VAX DECjCMS (Code Management System)

• VAX DECjTest Manager

• VAX DECjMMS (Module Management System)

• VAX Performance and Coverage Ana lyzer

• Problem Tracking or QAR system

• VAX NOTES

• Digi ta l Standard Runoff

The project team also decided to use an i tera
tive development approach. This approach d i f
fers from the development method of complet
ing all requirements of one stage , or phase, in the
software l ife cycle before proceeding to the
next . 2 Instead , an i terative process a l lows prob
lems to be detected , fixed , and quickly i ncorpo
rated at any stage . Consequently, errors made in
the design are caught and corrected long before
the field test . Add i tional ly, this approach a l lows
the corrected software tO be made avai lable to
the people who had detected the original prob
lems. These users can then further eva luate and
test the software .

Digital Technicaljournai
No. 6 February 1 988

The first phase in i terative development is
product requ irements analysis , which we discuss
next.

Requirements Analysis Phase

One of the most d i fficult tasks of software engi
neering is formi ng a c lear statement of t he prob
lems the software must solve .

Tradi tiona l ly, on smal l , less rigorously struc
tured projects, programmers may interview users
about their needs. On large-scale projects , such
as those done by Digital Software Engineering,
more formal requirements ana lysis is undertaken
early in the project's l ife cycle . However, no mat
ter how formal the analysis process, the qual i ty
of the resu lt ing problem statement strongly
depends on the i nformation gathered during that
process.

The DEC/Test Manager version 2 . 0 team
wanted to decrease the t ime normal ly taken to
gather this information without decreasing the
qual ity of the requirements analysis phase and
without reducing the number of target markets
contacted for i nformation .

Also to be considered i n gathering require
ments information is whether the proposed
product is new or a revised version of an exist
ing product . For a new product, requ i rements
are often based on the abi l i ties of s i m i lar prod
ucts or s imply on programmers' and potential
users' wishes. The requirements l ist for a new
version of an exist ing product, however, can
be an ex-panded and more precise l ist . Mem
bers of a user com muni ty can make suggestions
based on the ir judgments of the deficiencies
of a product. The problem facing developers
is finding a mechanism by which ro obtain
this feedback i n a short period of t i me from these
users .

The team chose not one but several ways to
obtai n responses from widely d ispersed and
varied groups of users. These methods are the
subject of the ba lance of this section .

VAX NOTES Conferencing

The DEC/Test Manager version 2 . 0 team used a
variety of methods to quickly gather feedback on
version 1 . 0 from groups in such diverse locat ions
as japan, England , and California . To obtain input
from groups i n s imi larly widespread locales, the
developers of version 1 . 0 of the DECjTest Man
ager had spent a great deal of t i me in the require
ments gathering stage .

1 1 1

Software
Productivity
Tools

Project Management of the VAX DECjTest Manager Software Versio n 2. 0

Significant t i me was saved t h rough rhe use of
VAX: NOTES software. NOTES is a compu ter
conferencing tool which rbc DEC/Test Mana
ger ream used to set u p a foru m for discussing
i ts producr 5 AJ rhough NOTES at that time
existed only as seve ra l prototype tools , i t pro
vided a workable forum for the entire internal
user base . Nor only was the team able to gather
requests and ideas from the i n ternal base, bur
i t a lso made ava i lable prel i m inary specifications
and gathered feedback before any prototyping
was starred .

NOTES a l one, howeve r , was i nadequate for
gatheri ng al l the feedback needed . At that
rime, only a small portion of the user com munity
act ively partic i pated i n t he NOTES conference .
Moreover, any feedback from just one source
m i ght be skewed . To correct for t h i s poss i b i l i ty,
a more d i rect form of input gathering was
also i mplemented . The DEC/Test Manager ver
sions I .0 and I . 1 in sta llat ion command proce
d u res had been made to send VAX M a i l notifi
cation of any Digital i nternal site insta l lat ion to
the DEC/Test Manager development accou n t .

These notifications provided t h e team with a
fa irly complete list of the version 1 . 0 instal led
base. The ream used the l ist as a distri bution and
interest l ist for sendi ng users questionnai res and
req u i rements-input requests . These requests
se rved to draw more users i n to the req ui rements
ana lysis process and to raise the q u a l i ty of the
requ i re me nts analysis i tself.

Quality Assurance Reports

Most D igital software engineering groups keep
track of a l l bug reports and suggestions i n
Qua l i ty Assurance Report (QAR) databases .
These databases are used ro record problems,
assign problems to spec ific developers , ana
lyze qual i ty statistics , a nd genera l l y ensure that
probl ems do not go u nnoticed . Many grou ps,
i nc l u d i ng the DEC/Test Manage r project tea m ,
a l l ow di rect access to t h e i r QAR databases by
aU users, both external field test sires and i n ter
nal users . Indeed, a QAR database had been
used to gather feedback about versions 1 .0 and
1 . 1 from external field test sites and was
a l ways ava i lable to i nternal users for report ing
bugs or submitting suggestions. Therefore, the
DEC/Test Manager team was able to cu ll
product req u i rements from the i n terna l QAR
system root .

1 1 2

Developer as User

The team itsdf rook advantage of the DEC/Test
Ma nager environment to gather require ments
input a nd to ana lyze the i nput . The ream fe lt that
software developers who use their own software
products produce h igher qualiry softwa re .
AJ rhough softwa re developers are al ready int i
mately fa m i l iar with the in ternal tec h n ical
derai ls of thei r prod ucts. if they are not al so the
users , they lack external perspective .

External perspecti ve i s the perspective of the
customer or software user . A software developer
who has this perspective can more easi ly under
stand a nd identi fy with customers ' feedback. The
DECjTest Manager had always been used ro rest
itself; therefore, the developers themselves were
users of the prod uct, were fa m i l iar with t he tool 's
i nadeq uacies, and k new where i m p rovements
cou l d be made. As users, they were a.lso able to
screen req u i re ments and specificat ion ideas for
usefu l ness before go ing to the user base for more
suggestions.

Software Quality Management

Quality assurance groups are nor common in
Digital Softwa re Engineering because Digita l 's
management believes each software devel oper
and each deve lopment grou p must be respon
sible for the qua l i ty of irs own product.
AJ though this is i ndeed the case , the Software
Quali ty M a nage ment (SQM) Group performs
a u n i que, cross-product q u a l i ty assurance fu nc
tion . The VMS SQ M Grou p, part of the VMS
Operating System Group , works with the various
product groups to ensure that all VMS pro
ducts follow certa in convent ions for i nstal
l abil i ty and i n ter-operabi l ity The SQM Grou p
therefore obta ins a set of tests suites for each
product and, on a frequent bas is, rests how
we l l products work with each other on the VMS
operating system .

Through this process, the SQ M Group pro
vided va luable i n put to t he requ i rements phase
of the DECjTesr Ma nager development cycle.
SQM requi red a l l product groups ro submit
regression rest subsets that coul d be executed
under the D EC/Test Manager software . This
request led nor just to req uirements from the
groups responsible for appl ications that run on
the VMS operat ing syste m , but also to req u i re
ments from the SQM rest a d m i n istrators who
needed test-control functional ity to make their
task easier .

Digital Technical journal
No. 6 February I Y88

In summary, through the combined use of
these tools and improved i nformation-gathering
processes , the DEC/Test Manager team was able
to move i nto the speci fication stage with in the
first weeks of the project. The t i me savings was
sign i ficant s ince several months was the general ly
expected t imeframe at this stage for a project of
this scope and complex i ty .

Specification and Design Phase

During the specification and design stage, devel
opers define what the system wil l do , how i t wi l l
b e used, and how i t wil l be implemented . 1 This
stage is often the longest in the development l i fe
cycle . Agai n the team sought ways to decrease the
t ime required to complete the phase . They
started by streaml in i ng how the specification
i tself would be documented .

Since the DECjTest Manager team did not know
what method they were going to use to test
graph ical applications on character cel l termi
nals, they wanted t o explore a number o f d iffer
ent design possibi l ities. They also wanted to
ensure that as they refined their ideas the product
speci fication document would be continually
updated to reflect current speci fications . They
d id not wan t to write the specification at the end
of the phase when t here woul d be a higher poss i
b i l i ty of i nadvertently leaving out deta i ls . As a
resul t , they developed procedures that woul d
a l low for continual update o f the speci fication
and also enable them to prototype a number of
a lternative implementat ions .

Next t he version 2 . 0 functional i ty was d ivided
i nto major components, and each component was
assigned to a developer for speci fication . A lan
guage-sensi t ive editor, VAX LSE , template was
wri tten both for specifications and designs to
enforce a convention for information . As first
drafts of speci fications were completed, the team
met to review the specifications and suggest
changes. The changes were i ncorporated i nto the
documents, and the next pass of the complete
specification was bui lt . (The mai n specification
document was a Digital Standard Runoff proce
dure with Include files for each of the compo
nent fi les the ind ividual developers wrote. I t was
a s imple matter of processing to generate t he l at
est specification , and as a result , processi ng was
done frequently during this stage .)

Fina l ly , each new specification was made ava i l
able i n a publ ic d irectory for internal review.
This ava i labi l i ty not only enabled the entire team

Digital Technical journal
No. 6 February 1988

to be up to date on the current thinking for a l l
version 2 .0 components but a lso assured the doc
ument was continually reviewed , which helped
the team complete the specification faster.

Concurrent Prototyping and
Maintenance

A conflict presented itself at this point i n the
development process . Each deve loper wanted to
test various creative solut ions, and each devel
oper needed to access any module in the system
to quickly bui ld prototypes. If such access were
a l lowed , i t was l i kely that too many people
woul d access the same module at the same time,
causing skew. This problem was solved by the
use of the VAX DECjCMS (Code Management Sys
tem) software .

The specifications were made ava i lable at the
same t ime as a prototype version, which acted as
a " l iving" specificat ion . The prototype i ncluded
some of the major i nterface changes, such as i nte
gration with DECjCMS. Users were able to try out
the proposed interfaces and comment on what
they l i ked or did not l ike . In some cases, the
developers made ava i lable mult iple solutions
that provided the same underlying functional ity
to determine which possible solution suited the
users best . This approach enabled the team to
make decisions on funct ional ity based on users'
feedback early in the deve lopment process. The
developers avoided the much longer process of
first developing one solution , wait ing for feed
back, issuing a modified solution , and continuing
t he steps unti l results are attained.

Compl icating the prototype effort was the
need to continue to maintain the released ver
sion 1 . 1 . DECjCMS met the developers' need to
control mult iple simultaneous development
threads. DECjCMS maintains " elements," which
are all of the versions of a s ingle file stored as
deltas from the original version . Each particular
version oft he element fi le is cal led a " generation . "

A generation from which another generation is
derived is called an " ancestor" generation . The
tra i l from a generation through a l l of i ts ancestors
back to the first generation of the element i s
cal led a " l i ne o f descent ." Al l e lements have a
main l i ne of descent , which consists of genera
t ion 1 , fol lowed by generation 2 , and so on . In
add i t ion, DECjCMS al lows l i nes of descent to
branch off from the main l i ne into what are
ca lled "variant" l i nes . These variant l ines of
descent exist i n para l lel to each other and to the

1 1 3

Software
Productivity
Tools

Project Management of the VAX DECjTest Manager Software Version 2. 0

main l ine . Changes made to one variant, for
example , are not reflected in the other l i nes of
descent unless the changes are expl icit ly merged
across l ines.

Before any prototype work was begu n, the
DECjTest Manager team agreed that all nonpro
duction code would be replaced into the group
code l ibrary as variants, leaving the main l i ne for
mai ntenance and production version 2 . 0 devel
opment.

CMS classes - sets con taining one specific
generation of each elemenr in the set - were
used to represent complete prototypes, such as
CMS_INTEGRATION and RESUBMIT. A deve loper
working on a particular prototype could then
retrieve modu les by te l l ing CMS that he wanted
the latest generation on the same l i ne of descent
as the generation in the particu lar c lass:

CMS F E T C H m o d u l e . b l i

/ G E N E R A T I O N • c m s _ i n t e g r a t i o n • I I I I

These classes were also used with DECjMMS
(Modul e Management System) software to per
form bu i l ds . DECjMMS works from a description
of objects to be bui l t and the ir dependencies on
other objects. The tOol searches CMS l i braries for
components and makes use of CMS classes if told
to do so.

AJI individual protarypes were a lso inc luded
in a more global class , PROTOTYPE, to a l low
the team to construct a single , executabl e proto
type version containing all current prototype
efforts. In some cases, the same module had
been mod ified d i fferently for several of the indi
vidua l prototypes, and these mod ifications had
to be reconci led for the combined prorotype .
DECjCMS RESERVE/MERGE fu nctional ity was of
major assistance. This procedure com bines two
generations from different l i nes of descent, auto
matical ly including independent changes and
flagging different changes to the same region of
the fi le (ca l led merge "confl icts") for human
resolut ion .

Once CMS performed its merge and the merge
conflicts were resolved, the team used CMS's abi l
ity tO compare a fi le against generations stored in
a CMS l ibrary. This comparison was made to
ensure the merged fi le contained code that made
sense and that was expected tO be there . This
step was crucia l to avoid accidental loss of code
during the confl ict-resolution process and tO
ensure that the automatical ly merged code sec
tions were sti l l val id BLISS .

1 1 4

A si ngle executable version was bui l t from the
merged protorypes and made avai lable through
ou t Digital on the DECnet network. Notification
of the ava i labi l i ry was posted in NOTES and was
sent by VAX Mail d irectly to a l l known i nstal led
sites.

A single executable i mage was used because
the team felt that a user was more l ikely to try the
various prototypes if on ly one image had to be
used .

Feedback on the protorypes was gathered from
NOTES and Mai I . The team d i rectly pol led
i nsta l led sites, asking about the specific ques
tions the protarypes had been designed tO
answer.

During the design phase, thousands of CMS
merges were completed without problem . With
out this merge capabi l ity, i t wou ld have been
impossible to al low the developers access to a l l
modu l es at the same t ime. Wi thout concurrent
access tO a l l modu les, the developers could not
have built as many prototypes as quickly as they
did . Further, without these early protorypes , the
participation of i nterna l users wou ld not have
been as high , and version 2 . 0 then would not
have been bu i l t in the required t imeframe .

DEC jTest Manager and Performance
and Coverage A nalyzer Integration

Testing was begun early in the devel opment cycle
to find and fix prob lems as early as possible .
The exist ing DEC/Test Manager test set was run
aga inst the prototype image to check for regres
sions i n nonprotatype areas of the code . Some
of the more comprehens ive protorypes tOuched
many modules; therefore , it was important
to ensure preexisting fu nctional i ry remained
unchanged . In addition, some new tests were
wri tten for the prototypes, the purpose of which
was not tO test the protarype for correctness.
Rather these tests cou ld be run with the VAX Per
formance and Coverage Analyzer (PCA) tO evalu
ate the re lative performance of different proto
types and also to he lp tune the design .

The DEC/Test Manager and the PCA can be
used together i n an integrated fash ion . This inte
gration a l lows programmers to use good-cover
age regression test suites as performance tests,
merely by changing PCA collection from cover
age informat ion tO performance statistics. For
the DEC/Test Manager version 2 . 0 development,
each developer was requi red not only tO create
and ru n the regression test suite but also to do

Digital Technical journal
No. 6 February 1988

code-path coverage analysis on his code before i t
was c hecked back into the master source l ibrary .
The team was striving t o have 90 percent o f the
code paths covered, and PCA a l lowed us to check
how we were doing throughout development .
The same tests were used t o gather data on the
poorly performing commands so developers
could identify which routinesjmodu les needed
to be looked into.

Whi le ana lyzing the prototype performance,
the developers ran PCA over the rest of the code
to identify t he sources of several known perfor
mance problems in version I . I . The resul ts from
this performance analysis led to the redesign of
several key modules . The redesign produced no
user-visible functional changes but sign ificant ly
i mproved the performance of the commands
most often used .

Implementation

Once t he feedback from the prototypes and
design reviews was incorporated into the designs
and the specification and design phase was
c losed , implementat ion of DECjTest Manager
version 2 . 0 was begun.

The effort was approached in three d i fferent
ways . First , some of the prototype code was good
enough to be kept , with only a l i ttle t ime spent to
make it production qual ity in the hand l ing of
error cases . Then , t he variant generations in t he
CMS l ibrary were merged back onto the main l ine
of descent - now the version 2 . 0 development
stream .

Second , t he deve lopers took as much relevant
exist ing code as possible from other Digita l
projects. This exist ing code was modified and
reused in the DECjTest Manager version 2 . 0 .
Modification of t he existing code for the Test
Manager environment proceeded far more
quickly than writ ing new code. Incl uded among
the code the team reused was the pseudoterminal
driver from an i nterna l tool cal led PTYCON - 3 2 .
Also adopted and upgraded t o handle VT200-
series terminals was the EDT group's term inal
s imulator for building in-memory screen pictures
for VTS 2 and VT I 00 terminals .

Third , new code was wri tten for a l l remain ing
functiona l i ty . No new code was considered
complete unti l a code review was hel d . The
DECjTest Manager team then adhered to the
software engineering princ ip le of frequent,
small integrations rather than one large integra
tion. Therefore , every even ing during act ive

Digital Technicaijournai
No. 6 February 1988

development , a procedure was run first to
determ ine if code was checked back into the
master CMS source l ibrary, and second to start
a system bui ld if i t was warranted . As a result
of this procedure , a l l recent code was a lways
avai lable to developers as they were writing
new modules . Problems were found early rather
than at a later, larger integration at the end of
a base lcve I .

Also, as part of the bui ld procedu re , a n auto
matic test set execution was done. Just as the
i ncrementa l integrations had done, these test sets
kept the team aware of problems with the system.
Moreover, t he test sets were always avai lable so
i mplementors could eas i ly schedule t i me for test
review.

We were able to detect and fix bugs early,
rather than have bugs mushroom into larger prob
lems as more code was added . Problems were
usual ly identified and solved while the code was
sti l l fresh in the developers' minds; therefore,
t ime for bug fixes was reduced .

The use of the DECjTest Manager to test i tself
during development was a lso beneficial as an
early problem-detection system. In addition , a
number of early versions of the software were
released to internal Digital users . These users
helped to ident ify problems early, during the
i mplementat ion phase , when problems are
often easiest and least expensive to fix and
have the least impact on the project schedule .
Because these early versions were used and
refined for weeks interna l ly , serious problems
never reached the customer fie ld test sites.
For example, internal user feedback i nd icated
that some changes would be required in the
new functional i ty . This va luable feedback caused
a complete interface change; however, the work
was completed before external field test was
begun.

During i mplementation , NOTES and a QAR sys
tem were used for problem reporting and track
ing. This report ing enabled the developers to
associate problems with sect ions of code, to
report progress, and to associate it with a test
in the DECjTest Manager l ibrary . A project
ru le req uired that a l l bug fixes have a test in
the l i brary and a PCA coverage ana lysis per
formed before t he bug was considered fixed . As
a resu l t of enforcing this procedu re , t he DEC/
Test Manager team achieved a code coverage of
87 percent , finding two th irds of t he problems
themselves.

l i S

Software
Productivity
Tools

Project Management of the VAX DECjTest Manager Software Version 2. 0

Conclusion

The DECjTest Manager team was able to produce
30 ,000 l ines of prototype code (thrown away)
and 60 , 000 l ines of tested , production-qua l ity
code in under seven months as a resul t of several
key factOrs: creative use of project procedures
and tools, team comm itment w these procedures,
and the use of the developing product by the
team as wel l as many internal users . It has been
two years since DECjTest Manager version 2 . 0
became available t o customers, and fewer than
six unique problems have been reported by the
customer base .

1 1 6

References

1 . B . Beandcr, "VAXjVMS Software Develop
ment Environment," Digital Technicaljour

nal (February l 988, this issue) : l 0- 1 9 .

2 . A. Duncan and T Harris, "Software Produc
tivi ty Measurements , " Digital Technical

journal (February 1 988, this issue) : 2 0 - 2 7 .

3 . P. G il bert, " Deve lopment of the VAX NOTES
System ," Digital Technicaljournal (Febru
ary 1 988, th is issue) : 1 1 7- 1 24 .

Digital Technical journal
No. 6 February 1988

Development of the
VAX NOTES System

Peter D Gilbert I

The VAX NOTES computer conferencing system is a communications tool
for on-line discussions. This paper discusses the innovative strategies
devised by the VAX NOTES team for the development of this system, includ
ing the decisions to build a prototype, to perfonn human factors engineer
ing, and to include a technical writer early in the development cycle. Also
described in this paper are several key product features, with emphasis on
their effect on product performance and extensibility: the multitasking,
multithreaded server; the user interface; the underlying storage medium;
and the callable interface.

Computer conferencing is a sofrware tool for
ongoing discussions among individuals. Users
can asynchronously read and write messages in
the conference at t imes suitable to themse lves.
The computer conference provides an organ ized
structure and a permanent record of users'
messages, or discussions. Computer conferenc
i ng is a viable substi tute for conventional meet
i ngs, offering conspicuous savings in space , t ime ,
and money.

The VAX NOTES system is a computer confer
encing tool designed for use on the VAXfVMS
operating system . The development effort was
successfu l , meeting i ts requirements and sched
ule and incorporating several innovations. The
VAX NOTES system is used by Digita l 's hardware
and sofrware engineers for structured project
com munication and has found s imilar favor with
customers.

The success of the VAX NOTES system is largely
due to the design and development strategies
used in i ts creation, and to the context in which i t
was developed . This paper discusses the rationale
behind these decisions and their effect on the
product . This retrospective may be useful to
other sofrware developers.

First, we briefly d iscuss the origins of com
puter conferencing at Digita l .

A Brief History of NOTES at Digital

Early in I 9 80, a Digital engineer wrote a com
puter conferencing program, K-NOTES, that had

Digital Technical jounull
No. 6 February I 988

i ts roots i n the PI.ATO system developed at the
University of I l l i nois . The K-NOTES program was
written as a test of the newly added i ndexed
fil e su pport in the VAX PL/1 language . VMS soft
ware engi neers also used K-NOTES to log VMS
design changes that might be of i nterest to oth
ers. K-NOTES was a crude but effective tool for
communication and became popular with other
engineering groups within Digita l . Indeed, it was
often m istaken for part of the VMS operating
system .

Sofrware developers using PDP- I I systems also
wanted access to computer conferences . A soft
ware deve loper wrote the NOTES- 1 1 program as
a "midnight project" - an unfu nded project
deve loped outside normal working hours. Origi
nally developed for the RSTS/E operating system,
NOTES- I I was later adapted to run on the RSX,
VMS, and P ;os operating systems. Many of the
enhancements suggested for K-NOTES were
i ncorporated in to NOTES- I I , i ncluding support
for mult iple t ime zones and a per-user record of
conferences (l ater called the "notebook") .

As Digita l 's engineering nerwork grew to hun
dreds of computers connected by DECnet soft
ware , the nu mber of computer conferences
abounded . Most products had a conference for
Digital users to ask questions, report possible
problems, and suggest enhancements. There
were also conferences on a divers ity of other sub
jects of general and personal i nterest , such as
security, smoking policy, and jobs.

1 1 7

Development of the VAX NOTES System

VAX NOTES Project Decisions

I n late I 984 , VAX NOTES became a funded pro
ject with two developers and a one-year develop
ment schedule .

We looked at severa l competi tive conferencing
systems. Nearly al l of these systems were oriented
toward hardcopy terminals . Most included an
in tegrated electronic mail system or personal
messaging capabil ity, and most had good basic

docu mentation. We found that in many of these

systems, navigation through the messages in a
conference was d ifficult .

None of the systems provided good support
over a computer network, none i ntegrated wel l
with the underlying system, and none offered a
callable set of routines for accessing conferences.

Based on our study, we decided our product
should offer users the fol lowing:

• A screen-oriented terminal interface

• An interface to the VMS Mail ut i l i ty

• An easi ly conceptualized structure with sim
ple navigation (A comb- l ike structure of topics
and replies was chosen .)

• A distribu ted conferencing system that makes
efficient use of DECnet capabi l it ies

1 ' 2

• Simple, introductory documentat ion for non
technical and novice users

A server-based technology layered on DECnet
software was clearly needed to efficiently sup
port distributed conferenci ng.

During the planning of the project, we also
determined that the product shou ld be extens i
ble, which is d iscussed in the section Extensible
Design through the Callable Interface . In add i
tion we decided to use the VAXTPU (Text Pro
cessing Uti l i ty) software to implement the user
interface, and VAX RMS (Record Management
Services) software for the underlying storage
mechanism. Discussion of the use of a server, the
user interface, the srorage features, and the
cal lable interface can be found in the section
Design of Main Featu res .

These product decisions were coupled with
decisions abom how tO structure the develop
ment process . We decided tO bui ld a protOtype .
Also, we worked with the Software Usabi l i ty
Engineering (SUE) Group to perform human-fac
tOrs testing. 3 Finally , we incl uded a techn ical
writer early in the developmem cycle. These
decisions are d iscussed in the next section .

1 1 8

Our development tools included VAX DEC/
CMS (Code .Management System) software for
source control and VAX DECjMMS (Modu le Man
agement System) software for doing incremental
bui lds . In addi tion , the NOTES u tHi ty i tself
became an important development tool .

Because of l i m i ted resources and t ime , we
made no systematic test suite . We correctly
assumed that an i nternal field test with thousands
of users wou ld provide an incredible amount of
testing. We discuss our test results in the section
Fie ld Test at the end of this paper.

Development Decisions

This section describes three elements of the deve
lopment strategy used for the VAX NOTES pro
ject . Each ofthese - the prototype, usabi l i ty test

ing, and early inclusion of a technical writer -

is a somewhat novel approach and led to the pro
ject's success .

Reasons for Building a Prototype

Several of our product decisions conspi red tO
make a protOtype very desirable . F irst , our un
tried uses of the new VAXTPU ut i l i ty imposed
some risks. Second , we had decided to perform
human-factors test ing; our short development
cycle required that some form of the product be
avai lable early for this testing. Finally, a proto
type wou ld give the deve lopers more experience
with server-based appl icat ions and with TPU .
In short, we expected to learn from the proto
type. (In addition to meeting our project needs,
the prototype cou ld be used wi thin Digital
to provide better access to remote conferences
while the VA.'(NOTES system was being devel
oped .)

We only required that the protOtype wou ld
support core features . The prototype wou ld use
the same conference srorage format as was used
by NOTES- I I . Therefore , features that required
changes in the storage format (such as keywords
and membership li sts) were necessarily absent
from the prototype . Also, some rarely used opera
tions were left un implemented in the prototype
since NOTES- I 1 could be used instead . I ndeed ,
the prototype was incapable of even creating a
new conference .

We decided to include i n the prototype one
additional feature cal led the notebook. The
notebook is a per-user record of the conferences
in whic h the user participates and of the notes

Digital Technical journal
No. (, February 1 988

that have been read i n those conferences. From
our experience with the notebook feature in
NOTES- 1 1 , we anticipated d i fficu lties in provid
ing a smooth integration berween the notebook
and the rest of the VAX NOTES interface . The
notebook feature was included in the prototype
so that human-factors tests cou ld help us resolve
any problems.

Usability Engineering of NOTES
We enl isted Digita l 's SUE Group tO help evaluate
and improve the VAX NOTES system's ease of use .

The first task was to create a measurable defin i
tion of usabil iry . This definit ion al lowed us to
measure and improve the VAX NOTES user inter
face. The SUE group helped us identify our goals
and offered guidance to help us reach them. The
usabi l ity engineering approach tO sofrware devel
opment is described in the paper " Software
Usabi l ity Engineering," this issue. 3

The VAX NOTES usabi l i ry defin ition included
measurements for 1 0 attributes. These are

• In itial use

• Learning rate

• Infrequent use

• Compatib i l i ry with NOTES- 1 1

• Compatibi l i ry with other competitive confer
encing systems

• I n i tial evaluation

• Casual evaluation

• Mastery evaluation

• Error recovery

• Fear of feel ing fool ish

The first three attributes were measured by user
performance on NOTES benchmark tasks. For
these, the metrics were the nu mber of errors and
the number of successful interactions made by
the users in 30 minu tes. The compatibil ity and
evaluation attri butes were measured with att i
tude questionnaires contain ing a semant ic d i ffer
entia l . The final rwo attributes were measured
with un ique questionnaires.

The testing centered on the init ial use, learn
i ng rate , and i n i tia l evaluation attributes.

For init ia l performance, the goal was for i nit ial
users to have three or four successfu l interactions

Digital Tecbnical]ourna/
No. 6 February 1988

on a benchmark task in their first 30 minutes of
using VAX NOTES; 8 to 1 0 successes was consid
ered the best case. The learn ing rate was mea
sured by comparing the performance on a second
benchmark with the first, where the performance
was measured as a work speed re lative to a prac
ticed expert performing the same tasks. The goal
for in i t ia l satisfaction was fairly positive, 1 .0 on a
sca le from - 3 . 0 to 3 . 0

In the first VAX NOTES tests, users exceeded
our best-case level for in i t ia l use , and so we

adjusted our goal . The learn ing rate was accept
able, but the evaluation score fe l l just short of our
goal . We then made changes tO the interface as a
resu lt of the SUE Group's i mpact analysis. With
these changes, VAX NOTES eventually met or
exceeded our usabi l i ty goals .

Inclusion of a Technical Writer

We were able to incl ude a technica l writer on the
development team shortly after the protorype
was completed, rather than after i mplementa
t ion as is often the case . The writer's review and
exposition of the planned interface was concur
rent with (and someti mes preceded) its imple
mentat ion . The writer's most important role and
one of our goals was to ensure that the system
cou ld be clearly docu mented for nontec hnical
users.

As a member of the deve lopment team, the
writer made technical changes tO s impl ify fea
tures that were d i fficu lt to explain , made the set
of commands more sel f-consistent, and suggested
other improvements to the implementors.

Because the techn ical writer was involved in
the process early, problems with either the code
or the documentation cou ld be resolved early,
and a combi na tion of both code and documenta
tion changes cou ld be used in the solution .
The early involvement of a technica l writer also
gave us high-q ual i ry documentation (and on- l ine
he lp) for field test and some of the human-factors
studies, thereby allowing the whole system to be
evaluated .

Design of Main Features

In this section we discuss the reasons for includ
ing a server, creating the user interface with
TPU, selecting the VAX RMS sofrware as a stor
age med ium, and designing a callable i nterface
that is extensible . We also d iscuss how these
features were implemented and what trade-offs
were made.

1 1 9

Software
Productivity
Tools

Development of the VAX NO TES System

Use of a Server

The K-NOTES and NOTES- 1 1 tools rel ied on RMS

and the DECnet software to transparently access
conferences on remote systems. Although the

VAX RMS software provides efficient access to
ind ividual records in a remote fi le, most NOTES
operations requ ire multiple RMS operations. For
example, to l i st a directory of the notes in a con
ference would require one RMS operation per
note. This performance is effic ient when the con
ference is stored on the same system that the user
is on . However, when the conference is severa l
slow network l inks away from the user, the
round -trip delays for every RMS record operation
are seen as frustrating delays at the user i nterface .
The advantages of using a NOTES server running
on the system that hosts the conference were
clear. The server would

• Perform many local RMS operations without a
network delay

• Support sophisticated requests more effi
ciently than RMS

• Send back only the information that the user
requested

• Allow DECnet software to send larger, hence ,
fewer network packets with fewer transmis
sions, resulting in a tenfold improvement in
the t ime taken to satisfy users' requests

A mult i tasking server can handle requests from
one or more users. Because more requests can be
handled, fewer server processes, hence fewer
resources, are needed on the system hosting con
ferences. Also, VAX RMS software pools buffers,
which offers another advantage when several
users are reading the same con ference: a user's
request may be satisfied from a buffer that had
been read for a different user's earlier request .

Multi tasking gives the server process some
thing to do between an individual user's requests.

For example, while a user is reading a note, the
server can process other requests. The multitask
ing usual ly does not have much effect on the
response t ime seen by the users.

The prototype server employed mult i tasking.
The VAX NOTES server used both mu ltitasking
and multithreading.

When the mult i tasking server receives a
request, i t builds a control block tO contain the
request and queues it onto a l ist . The syn
chronous code is in a loop that processes the

1 20

requests; the code removes a control block from
the queue, performs the operation , and sends
back the resul ts . [f there are more resu lts than
can be returned in a single packet , a continuation
control block is enqueued, and later activated by

receipt of a "send me more" request from the
user .

The prototype processed each request ei ther
to completion or unti l the results fil led the
server's response buffer. A disadvantage with this
approach is that some requests may take a consid
erable amount of t ime before returning any
results . For example, a request to search for a
string within a note cou ld cause significant
delays for other users of the server. This problem
was solved by making the server multi threaded.

The mu lti threaded VAX NOTES server can
switch from one task to another even before the
first task has completed . The i mplementation
proved to be far easier than we had anticipated,
and the multi threaded server simpl ified the han
dl ing of users' "send me more" requests. Each
" thread of execution" has a separate stack and set
of registers. Whenever the server does an I/0
operation , it does so without wait ing and tel ls the
"scheduler" to find and work on another request .

When the r;o completes, the correspond ing
request block is again enqueued for processing.
Because I/0 is invariably done for a request,
there is no need for a sophisticated scheduler.
The "schedu ler" saves the registers on that
thread 's stack , searches for a thread that can pro
ceed , restores irs registers, and continues the
execution of that new thread . Si nce the VAX
NOTES system does relatively l i ttle processing
between ljO operations, no user is able to signifi
cantly affect the response t ime seen by other
users.

The VAXTPU Programmable Editor

VAXTPU software is a programming language and
interpreter that is shipped with the VMS operat
ing system. TPU is especially sui ted for writ ing
text editOrs and has been used to write the
human-engineered EVE edi tOr, the ACL (Access
Control List) edi tor, and VAX LSE (Language-Sen
sitive Edi tOr) .

Although the VAX NOTES system is not an edi
tor, we wanted an interactive screen-oriented
user interface . We expected that VAXTPU would
provide a good language in which to write the
i nterface , s ince the functions for handling the
screen , key defin i t ions , strings, and text manipu-

Digital Technical journal
No. 6 Februmy 1988

lation are built i n to the TPU language. The
VAXTPU ut i l i ty also provides a cal lable i nterface ,
so that it can cal l and be called by programs writ
ten in other languages. By using these features of
the VAXTPU language, we cou ld economical ly
produce a des irable user interface .

However, TPU's callable nature had not yet
been used in anything as compl icated as the VAX
NOTES product, and we were unsure whether its
performance as an interpretive language wou ld
adversely affect the perceived performance . The
prototype helped resolve this issue early, and the
performance proved to be far better than we
needed.

The decision to use TPU had a considerable and
unexpected payoff: because of i ts interactive and
i nterpretive nature , it was possible to greatly
reduce the time spent in the compi le- l ink-run
cycle . After the in i tia l investment in getting
NOTES and TPU "talking" together, typical devel
opment of the TPU code followed this procedure:

• Run the VAX NOTES ut i lity .

• Read the TPU code i nto a text buffer (by a
command issued at the NOTES prompt) .

• Edit the code .

• Select and recompile the modified procedures
in the code . This was done with only a few
keystrokes . Developers had defined a key to
mean "compile the selected code ."

• Exi t the buffer; return to the NOTES prompt .

• Test the change .

This procedure continued until the developer
was happy with the changes. Then the buffer
conta in ing the TPU code wou ld be written out to
a fi le , and the developer could ei ther exi t the
NOTES ut i l ity or proceed with other changes .
The power of this approach resu lted i n an esti
mated development-t ime savings of four person
months.

We discovered, however, a disadvantage with
this evolutionary approach. The result ing TPU
code tended to be poorly commented because
the code wou ld be working before there was any
need for comments. We solved this problem with
an occasional " revolution" : we reviewed the
code as a whole, improved the organization ,
made it more systematic, and added the com
ments necessary to understand and maintain the
code.

Digital Technicaljournal
No. 6 February 1988

The use of the VAXTPU software was not with
out pitfalls . The VAX NOTES team made the most
sophisticated use of TPU software to date and dis
covered several interesting bugs in the TPU soft
ware. Because the development groups were i n
close proximity t o each other, l ittle t ime was lost
wai t ing for fixes or workarounds . But not a l l of
the problems were resolved; for example , TPU's
controi-C handl i ng was designed for simple edi
tors, not complex appl ications, and controi-C
handling remained a weak point in the first
release of VAX NOTES.

VAX RMS Software for Storage

We had several good reasons for choosing the
VAX RMS software for our underlying storage
medium.

• VAX RMS software is bundled with the VMS
operat i ng system .

• The code i s robust.

• VAX RMS performs wel l on large indexed fi les.
(We wanted an entire conference to be held
within a s ingle fi le .)

• RMS supportS concurrent , coordinated access
and updating of records.

• We were fami liar with the VAX RMS software,
therefore we wou ld not need to spend t ime
gai ning experience with i t .

Although these reasons were compel l ing, we
considered some a lternatives because of the fol
lowing issues. The NOTES software's view of the
information in a conference wou ld be more akin
to a true database than to an indexed fi le . There
fore , the use of indexed fi les would requ ire that
development time be spent i mplementing a
makeshift database atop indexed fi les. Also, the
VAX NOTES system would be enhanced if it and
other tools used a relational or object database .

Despite these considerations, we decided in
favor of RMS based on the benefits of using RMS
l isted above, our i nterest in not add ing l icensing
costs for customers, and a tight schedule.

We did, however, decide to insulate the h igher
functions in NOTES from RMS with a cal lable
in terface . This perm its a future release of the

VAX NOTES system tO use a different underly ing
storage medium without affecting code that uses
the callable interface.

The VAX NOTES system stOres data in the RMS
records with a type-length-value (TLV) encod-

1 2 1

Software
Productivity
Tools

Development of the VAX NOTES System

ing called Digital Data In terchange Syntax
(DDIS) . Each datum in a record identifies i tself
by a " type" code and is fol lowed by the length
and actual value of the datu m . For example, the
" header" information in each note in a confer
ence may i nclude the author's name , the date the
note was wri tten , a t i t le , and a l i st of keywords . A
sample note header with TLV encodi ng fol lows :

{ a u t h o r } 5 " B Y R N E "

{ d a t e } 8 " 2 2 - J A N - 1 9 7 9 1 0 : 3 0 : 2 7 "

{ t i t l e } 1 5 " C r y s t a l l o g r a p h y "

The {author}, {date}, and {title} are sui tably
encoded , and 8 bytes are used to represent the
date (as on VMS) .

The advantages of TLV encoding are that i t is
succinct and evolu tionary. Addi tional informa
tion (such as coauthors or an edit history) can
be added without changing the format or inva l i
dating any existing data. Changes are made by
si mply creati ng a new type code for the new
i nformation , making m i nor changes within the
callable rout ines, and provid i ng the new informa
tion to the callable i nterface.

Extensible Design through the Callable
Interface

Computer-conferencing has a practically u n l i m
i ted range of possible uses and usefu l exten
sions. 4 We could not foresee all possible future
enhancements, or provide even a tenth of the
many requested features because of our develop
ment schedule . Resi gn i ng ourselves to the fact
that we cou ld not know what our code would
eventually become, we resolved to provide
extensibi l i ty that could support a variety of
future directions .

One of the design decisions al lowing for this
extensibi l i ty is described i n this section .

The design of the callable i nterface was a sig
n i ficant aspect of the VAX NOTES system devel
opment . This i nterface provides al l the opera
tions that access conferences and notebooks . The
callable i nterface must meet several goals; i t
must

• Allow the u nderlying srorage medium to be
changed in a future i mplementation ; for exam
ple, from RMS fi les ro object databases

• Al low other user i nterfaces to be added with
out publ ishing (and compromising) the
underlying storage format

1 2 2

(Two in terfaces used within Digital show the
value of this approach. One is designed for off
l ine - batch - read ing and wri t ing of notes;
the other is an i nteract ive i nterface imple
mented with another programmable edi tor -
EMACS.)

• Have the flexibi l i ty to be extended to handle
a variety of possible (and now unforeseen)
future enhancements

• Provide a wel l-defi ned interface between the
two halves of VAX NOTES: the user i nterface
and the fi le access routines

• Map easi ly to remote procedure calls or net
work packet transfers

• Be reentrant , that is , the " context" of an opera
tion must be specified i n each call , and opera
tions done with d i fferent contexts should
be i ndependent of each other (This i ndepen
dence a lso proved to be an advantage for
implementation of the mult i threaded, mult i
tasking NOTES server .)

• Be capable of becomi ng a supported i nterface
for use by customers

The callable interface proved qui te successful i n
meeting these goals .

Al l the routines in the callable i nterface have
the same format:

5 t a t u s • N O T E S S o b j e c t _o p e r a t l o n

(c o n t e x t , i n p u t s , o u t p u t s)

The o b j e c t is e i ther NOTEFILE, CLASS,
ENTRY, KEYWORD, NOTE, PROFILE, or USER.
The o p e r a t i o n s BEG I N , END, ADD, DELETE,
GET, and MODIFY are common to most of these
objects. A few add i tional routines handle l ists
contained within an object, for example,
NOTES S NOTE_GET_TEXT gets the next l i ne of
text from the note most recently accessed (with
the specified c o n t e x t by NOTES SNOTE_GET.

The c o n t e x t parameter is an un inter
preted val ue defined by the NOTES faci l i ty . On
a NOTESSobjecLBEGI N ca l l , NOTES stores a
nonzero value i n the c o n t e x t parameter. That
c o n t e x t is passed to other rout ines for access
ro that kind of object. A ca l l to NOTES SobjecL.EN D
frees the resources used t o maintain t he context
and zeroes the va lue .

The i n p u t s and o u t p u t s are i tem l ists. An
item l ist is a l ist of one or more item descriptors,
each of which specifies an item code. The item

Digital Technical journal
No. 6 February I '.>88

l ist is terminated by an item code of 0 . Figure 1
depicts the structure of a single item descriptor.

ITEM CODE I BUFFER LENGTH

BUFFER ADDRESS

RETURN LENGTH ADDRESS

Figure 1 Structure of an Item Descriptor

The item code specifies the item of informa
tion that the cal ler is specifying (through the
i n p u t !I parameter) or requesting (via the
o u t p u t !I parameter) . The buffer length and
buffer address describe the buffer (for inputs or
outputs) , and the return length address is the
address of a location i nto which NOTES wi l l
write t he actual length of the requested informa
tion (for outputs) .

To see how this works, we consider the calls
needed to read notes 1 through 5 from a local
conference . The name of a fi le is specified
as an input to NOTESSNOTEFILLBEGIN,
which opens the fi le and init ia l izes the note
fi le context. The notefi le context is passed
as an input to NOTES S NOTE_BEGIN, and this
establishes the note context . A call to
NOTES SNOTE_GET requests notes 1 through 5 .
(The string " 1 -5 " is passed as an input .) Then
NOTES S NOTE_GET_TEXT is repeatedly called
until a "no more text" status is returned . The pro
cess repeats: another call to NOTES SNOTE_GET
is made (specifying a "continue" item code) .
Eventually NOTES SNOTE_GET returns the status
" no more notes . "

At any t ime , the same note context coul d
b e used t o read other notes b y omitting the
c o n t i n u e i tem code . This would cancel reading
of the current stream of notes (I through 5 ,
i n the example) before handl ing the new
request. This cancel lat ion can be avoided by cre
ating another note context, with another ca l l
t o NOTES S NOTLBEG IN . The resources used
to maintain the note context are freed by
a cal l to NOTES S NOTE_END, and simi larly
with NOTESS NOTEFILE_END, which deal locates
memory and closes t he fi le.

There is no separate cal l for opening a note
book. Al though conferences and notebooks
conta in different kinds of information (in our

Digital Technical journal
No. 6 Februmy 1988

interface) , the storage formats are actually the
same. Because the formats are the same, the vari
ety in the code is reduced, and the inner routines
can be reused (and stressed) in several differ
ent ways, making them more robust. This s imilar
ity offers another advantage . A future release
could easi ly a l low personal notes or annotations
to be stored in the user's notebook, through
the use of the existing NOTES S NOTE_operation
routines.

Access to remote conferences is easily effected.
An operation code (for the routine) , the context,
the inputs, and the requested outputs are " l in
earized " into a TLV format (DDIS) and sent to t he
NOTES server on the remote system . The routine
is cal led, and t he returned status and outputs are
" l inearized" and sent back. This can be viewed as
a set of special ized Remote Procedure Calls
(RPC) .

The inputs to NOTES SNOTE_GET may a lso
include " hi nts" to ind icate , for example,
whether t he text of the note is desired. (The
user may want to read the text or may simply
want a directory of the notes .) If the operation
is one that may be repeuuve (such as
NOTES SNOTE_GET) , the server makes multiple
cal ls to that routine so that i t can buffer and send
back larger packets of information . There are
some compl ications in the handl ing of signaled
exceptions and buffering, and in how the server
val idates the context , but they had l ittle effect on
the overa l l design.

Field Test

The internal field test was impressive . Within an
hour of making the VAX NOTES system avai lable
within Digita l , i t was installed on four conti
nents. Besides providing a popular tool on hun
dreds of systems on Digita l 's engineering net
work, we a lso provided the medi u m - a VAX
NOTES conference - by which users could eas
i l y report problems and make suggestions. We
were deluged.

These reports directly contributed to the qual
i ty and success of the VAX NOTES system .

Acknowledgments

Thanks are due the editors and reviewers of this
paper, and the many people whose i nterest
in computer conferencing influenced the VAX
NOTES system, especially Mark Goodrich , Len
Kawel l , Valerie Rogers, Benn Schreiber, and
Tom Spine .

1 2 3

Software
Productivity
Tools

Development of the VAX NO TES System

References

1 . DECnet Digital Network Architecture
(Phase IV) General Description (Bedford :
Digital Equipment Corporation , Order No .
AA- 1 4 9A-TC, 1 982) .

2 . P. Beck and] . Krycka, "The DECnet -VAX
Product - An Integrated Approach to Net
working," Digital Techn icaljournal (Sep
tember 1 986) : 88-9 9 .

3 . M . Good , "Software Usabi l i ty Engineeri ng ,"
Digital Technical joumal (February 1 988,
this issue) : 1 2 5- 1 3 3 .

4 . S . H i l tz , The Network Nation: Human
Com munication via Computer (Read ing:
Addison-Wesley, 1 9 78) .

1 2 4 Digital Tecbnicaljournal
No. 6 February I ')88

Michael D. Good I

Software Usability Engineering

Usability is an increasingly important competitive issue in the software
industry. Software usability engineering is a structured approach to
building software systems that meet the needs of users in various envi
ronments with varying levels of computer experience. This approach
emphasizes observation of people using software systems to learn what
people want and need from software systems. The three principal activi
ties of software usability engineering are on-site observations of and
interviews with system users, usability specification development, and
evolutionary delivery of the system. These activities are parallel steps in
the development cycle.

Computer system designers have not always
adopted a user-centered perspective on software
design . I nstead , many designers resolved design
questions about the human-computer interface
by using i ntrospective criteria such as personal
preference or conceptual appeal .

This introspective approach to user-interface
design might produce a usable system when
software engineers represent actual users. How
ever, computer systems today are being bui l t
for a wide range of people whose needs often
have l ittle i n common with the needs of system
designers.

In response to market demand for systems that
satisfy a growing and varied user community,
usabil ity is becoming an increasingly important
competitive issue. Designers are striving to cre
ate computer systems that people can use easi ly,
quickly, and enjoyably. Indicative of this trend is
i ncreased membership since 1 982 in profes
sional groups such as the Association for Comput
ing Machinery's Special Interest Group on Com
puter-Human Interaction (ACM SIGCHI) and the
Computer Systems Group of the Human Factors
Society.

Digita l 's Software Usabi l i ty Engineering G roup
believes that engineers must learn about the
needs and preferences of actual users and shou ld
bui ld systems to accommodate them . With an
understanding of customer environments, an
awareness of technological possibi l i t ies, and
imagination, we have produced many ideas for
products that meet users' needs.

Digital Tecbnlcal]ournal
No. 6 February 1988

The Software Usability Engineering
Process

The role of engineering is to apply scientific
knowledge to produce working systems that are
economically devised and fulfi l l specific needs.
Our software usabi l i ty group has adapted engi
neering techniques to the design of user inter
faces. To understand user needs, engineers must
observe people while they are actually using
computer systems and collect data from them on
system usabi l i ty . Observation and data col lection
can be approached in the fol l owing ways:

• Visit ing people while they use computers in
the workplace

• Inviting people to test prototypes or partici
pate in usabi l i ty eva l uations at the engineering
site

• Sol iciting feedback on early versions of sys
tems under development

• Providing users with instrumented systems
that record usage stat istics

Our group uses these methods to gather infor
mation directly from users, not through second
hand reports. We use these methods to study the
usabil i ty of current versions of our products,
competitive systems , prototypes of new systems,
and manual paper-based systems.

Our software usabi l i ty engineering process
evolves as we use it in product development. As

1 25

Software Usability Engineering

of 1 98 7 . the process consists of three principal
activi ties:

• Visiting customers to understand their needs.
By understanding a customer's current experi
ence with a system, we gain insight i nto our
opportunit ies to engineer new and better sys
tems. We col lect data on users' experiences
primarily t hrough contextual interviews, that
is , interviews conducted whi le users perform
their work.

• Developing an operationa l usabi l ity speci
fication for the system . We base the system
specification on our understanding of users'
needs , competitive analysis , and the resources
needed to produce the system . This speci fica
tion is a measurable definit ion of usabi l i ty that
is shared by a l l members of the project team.

• Adopting an evolutionary del ivery approach
to system development . Developers start by
bui lding a small subset of the system and then
"growing" the system throughout the develop
ment process. We continue to study users as
the system evolves. Evolu tionary delivery is an
effective method for copi ng with changing
requirements - a fundamental aspect of the
development process .

These three development activit ies are para l le l ,
not sequentia l . We do not view user-i nterface
design as a separate and init ial pan of the devel
opment process but as an ongoing process in sys
tem deve lopment.

These usabi l i ty engineering techniques apply
ro most software development environments and
are most effective in improving software usabi l ity
when appl ied together. However, designers who
use any single technique can i mprove a system's
usabi l i ty . Our group has used this process in the
development of several of Digita l 's software prod
ucts , including the EVE text editOr and VAXTPU
(Text Processing Uti l i ty) software , VAX NOTES
software , MicroVMS workstation , VAX Software
Project Manager, VAX COBOL Generator soft
ware, VAX Language-Sensitive Editor, and VAX
DEC/CMS (Code Management System) software .

Visiting Customers to Understand
Their Needs

Data colJected at the user's workplace provides
insight into what users need in both new and
modi fied systems. During i nterviews of users
actually working with their systems, we ask about

1 26

their work, about the detai ls of their system inter
faces, and about their perception of various
aspects of the system . The user and the engineer
work together to reveal how the user experiences
the system as it is being used. These visits with
users are the best way for engineers to learn
about users' experiences with the system .

Idea l ly , the number o f i nterviews conducted
per product depends on how much data is being
generated in each succeeding interview. The
interview process stops when new i nterviews no
longer reveal much new usabi l i ty data. In prac
tice, resource and t ime l i mitations may stop the
interview process before this point . I n any event,
our approach is to stan with a smal l number of
i nterviews (four or less) with people i n various
jobs. We use these i nterviews to determine how
many and what type of users wil l be most useful
for u ncovering new usabi l i ty data.

Information Gained in Field Studies

Contextual i nterviews reveal users ' ongoing
experience of a system . Other types of inter
views, which are not conducted whi le the user
works, reveal users' summary experience, that is ,
experience as perceived after the fact . Data on
ongoing experience provides a richer source of
ideas for interface design than data on summary
experience.

For example , data col lected from field stud ies
has revealed the i mportance of interface transpar
ency to users . A transparent interface a l lows the
user to focus on the task rather than on t he use of
the interface. Our understanding of transparency
as a fundamental usabi l i ty concept comes from an
analysis of data on ongoing experience .

Some interface techniques can help keep the
user i n the flow of work, thus increasing interface
transparency. One example can be drawn from a
workstation appl ication for desktop publ ishing.
Pop-up menus that appear at the curren t pointer
location create a flow of i nteraction that reduces
mouse movement and minimizes disruption to the
user's task. Users do not have to move their eyes
and hands to a static menu area to issue com
mands, making this an effective i nterface feature
for experienced users.

We wil l consider using pop-up menus in
new workstation software appl ications when we
bel ieve their use w i l l keep the user i n the flow of
work.

We have developed our u nderstandi ng of trans
parency by observing people using a variety of

Digital Tecbnicaljournal
No. 6 February 1988

appl ications in different jobs. Transparency is an
aspect of usabil ity that we find across many dif
ferent contexts. In developing new products, it is
also important to consider the diversity of envi
ronments in which people will use the system .
Different users in different contexts have differ
ent usability needs. Some i mportant aspects of
user's context are

• Type of work being performed

• Physical workplace environment

• Interaction with other software systems

• Social situation

• Organizational culture

All these aspects influence the usabil i ty of a
system for each i ndividual . As with other prod
ucts, software systems are used in the field in
ways not anticipated by the designers.

Because the context in which a system is
used is so important, we interview a variety of
users who use part icular productS to perform
different tasks. We look for common elements of
usability for groups of people, as wel l as the
distinct ive elements of usability for individual
users.

Conducting Contextual Interviews

Interviewers bring a focus, or background , 1 to
their visitS with users. The focus determi nes what

is revealed and what remains hidden during a
visi t . The engineer needs to enter an interview
with a focus appropriate to achieve his goa ls. For
example, in some visits an engineer may need to
look for new product ideas; in others, the e ngi
neer may need ideas to improve an existing
product.

To avoid losing data, interviewers should not
try to extensively ana lyze their data during the
session . We use two-person teams, where one
team member concentrates on the interview and
the second member records the data . Contextual
interviews rapidly generate large amounts of
data . The data derives from an understanding of a
user's experience of a system , as shared by a user
and an interviewer. To generate such data, i nter
viewers need tO concentrate on their relation
ships with users and understand what users do
during the session .

Digital Tecbnical]ournal
No. 6 February 1988

Whenever possible, we videotape interviews.
If users are unwi ll ing to have their work video
taped , we audiotape the session while the second
team member takes detai led notes to supplement
the taped information . The two team members
meet after the interview to reconstruct an accu
rate record of events.

Even without any taping or note-taking, engi
neers can learn a great deal from user visits.
Although the detai l from the interview may not
be remembered, the understanding gained dur
ing the interview is st i l l a valuable source of

insight .

Developing an Operational Usability
Specification
Studying users provides a rich, holistic under
stand ing of how people experience software
systems. However, each person will have h is
or her own interpretation of user experience
as it relates to usabi l i ty . S imilarly, a team of
people working on a project wi J I find that each
member has a different u nderstanding of what
"usabi lity" means for that product. Keeping
these understandings private and unarticu
lated can have two undesirable results . First,
team members work toward different and some
t imes mutual ly exclusive goals. Second, the
team does not have a shared cri terion for what
it means to succeed or fai l in meeti ng users'
needs. 2

Our group constructs shared, measurable
definit ions of usabi l ity in the form of operational
usabi li ty specifications. These specifications are
an extension of Deming's idea of operational defi
ni tions. 3 We based our usabil ity specifications on
the slstem auribute specifications described by
Gilb and Bennett.

5
A usabi l i ty specification ,

described in the fol lowing section , includes a l ist
of usabi l ity auributes crucial for product suc

cess. Each attribute is associated with a measur
ing method and a range of values that indicates
success and fai lure .

Constructing a Usability Specification

The development of the VAX NOTES conferenc
ing system provides an example of a usabi l i ty
specification 6 Table 1 is a summary of the usabil
i ty specification for the first version of the VAX
NOTES system . Five items are defined for each
attribute: the measuring technique, the metric ,
the worst-case leve l , the planned level , and the
best-case level .

1 27

Software
Productivity
Tools

Software Usability Engineering

Table 1 Summary Usabil ity Specification for VAX NOTES Version 1 .0

Worst- Best-
Usability Measuring Case Planned Case
AHribute Technique Metric Level Level Level

I n itial NOTES N umber of 1 -2 3-4 8- 1 0
use benchmark successful

task interactions
in 30 min utes

I nitial Attitude Evaluation 50 67 83
evaluation questionnaire score (0 to 1 00)

Error Critical- Percent 1 0% 50% 1 00%
recovery incident i ncidents

analysis "covered"

The measuring technique defines the method
used ro measure the attribute . Deta i ls of the
measuring technique (not shown in Table 1)
accompany the brief description i n the summary
table . There are many different techniques for
measuring usab i l ity attributes. We have usua l ly
measured usabil ity attributes by asking users to
perform a standardized task in a laborarory set
ting. We can then use this task as a benchmark for
comparing usabi l i ty attribute l evels of different
systems.

In the VAX NOTES case , we chose ro measure
initial use with a 1 4 -i tem benchmark task that an
expert VAX NOTES user could finish in three
minutes. Init ial users were Digita l employees
who had experience with the VMS operating sys
tem and the Digital Command Language but not
with conferencing systems. The users completed
their initial eval uations using 1 0- item Likert-style
questionnaires after they finished the benchmark
task. Error recovery was measured by a critica l
incident analysis . In the analysis, we used ques
tionnaires and interviews to col lect information
about costly errors (critical incidents) made by
users of the prorotype versions of the VAX NOTES
software .

The metric specifies how an attribute is
expressed as a measurable quantity . Table 1
shows the definitions of the metrics in the VAX
NOTES specification . For the initia l-use attri
bute , the metric was the number of successful
interactions in the first 30 minutes of the bench
mark task . For the init ial-evaluation attribute,
we scored the questionnaire on a scal e ranging
from 0 (strongly negative) ro 1 00 (strongly posi
tive) , with 5 0 representing a neutra l eva luation .

1 28

For error recovery, the metric was the percent
age of i ncidents reported with the prototype
systems that woul d be "covered" (i .e . , e l imi
nated) by changes made in version 1 . 0 of the VAX
NOTES system .

The worst-case and planned levels define a
range from failure to m eet m inim u m accept

able requirements to meeting the specification

in full . This range is an extension of Deming's
single criterion value , which determines success
or fai lure . It is easier to specify a range of va l ues
than a single va lue for success and fai lure .
Providing a range of values for several attributes
a l so makes it easier to manage trade-offs in l evels
of qual ity of different attributes.

The best-case leve l provides usefu I manage
ment information by est imating the state-of-the
art level for an attribute. The best case is an
esti mate of the best that could be achieved with
th is attribute, given enough resources.

For the init ial use of VAX NOTES software ,
we defined t he p lanned leve l as experiencing
3 or 4 successfu l interactions in the first half
hour of use . We considered 1 or 2 successfu l
interactions to be the minimum acceptable leve l ,
and 8 t o 1 0 successful interactions t o be the best
that cou ld be expected . In practice the actual
l eve l was 1 3 successful interactions, suggesting
that we set the l evels for this attribute too con
servatively.

The planned level for initial evaluat ion (67)
was fair ly positive . Users' neutra l feel i ngs were
acceptable but negative fee l ings were not , so we
set the worst case at 5 0 . We set the best case at
8 3 , which represented the h ighest scores we had
seen so far w hen using this questionnaire with

Digital Technical journal
No. 6 February 1 988

other products. The actual tested value was 67,
matching the planned leve l .

We planned an error-recovery level that could
cover 50 percent of the reported critical inci
dents. The worst-case level was set at a fairly low
1 0 percent , whereas the best case wou ld be to
cover all of the reported critical incidents. I n
practice, 7 2 percent of the critical incidents
were covered, exceeding the planned level .

Many usabi l ity specifications provide further
detai l by including " now" levels and references.
Now levels represent current levels for an attri
bute, either for the current version of the product
or for competitive products. References can be

used to add more deta i l , such as describ ing how
the levels were chosen, and to document the
usabi l i ty specification .

User needs and expectations are shaped in
part by the marketplace; therefore competitive
analyses can provide i mportant data for usabil
ity specifications. We have constructed usabi l ity
specifications that compare the system under
development to e ither the current market leader,
the product with the most highly acclaimed user
interface in the market, or both . We can also
compare the systems by measuring usabi l i ty on
appropriate benchmark tasks.

Limitations of Usability Specifications

Constructing a usabil ity specification helps bui ld
a shared understanding of usabi lity among the
diverse people worki ng on a development project .
However, to achieve a shared understanding, trade
offs have to be made . Usability specifications rep
resent a constricted and incomplete defin ition of
usabi l i ty . The analytic definit ion of usabi l i ty is
necessari lyless completetha n a n individua l 's holis
tic understanding based on observing people use
systems 7 Nonetheless, we deliberately trade off
the hol istic understanding for the analytic defini

tion because the latter economically focuses our
efforts on essential elements of product usabi l i ty .

I f engineers do not understand the needs of
users before creating a specification , they risk
developing a specification that does not reflect
users' needs. As a result , the product that meets
its specification might sti l l be unusable or com
mercially unsuccessfu l . Development teams must
cont inually evaluate usabil i ty speci fications dur
ing the development process and make the
changes necessary to reflect current information
on users' needs. This approach is part of evolu
tionary delivery, described next.

Digital Technical journal
No. 6 February 1988

Adopting Evolutionary Delivery
Changing requirements pose a challenge in user
interface design as they do elsewhere in software
development. Brooks refers to changeabil ity as

one of the essential difficult ies of software engi

neering - a problem that is part of the nature of
software engineering and that wi l l not go away.8

Evolutionary delivery exploits, · rather than
ignores, the changeable nature of software
requ irements.

4
This technique has been referred

to as incremental development
8

and as i terative
design .9 We believe that " iterative design" is usu
ally a redundant term in software design . Unless
otherwise mandated by external sources, most
software design is already an i terative process. 10

The waterfall model and s imi lar models of soft
ware design are useful for managing project
deliverables, but they do not describe what hap
pens i n software design and development. Evolu
tionary delivery takes for granted the iterative
nature of the design process, rather than treating
iteration as an aberration from textbook methods.

Evolutionary delivery is the process of del iver
ing software i n smal l , incremental stages. An ini
tial prototype subset of the software is built and
tested. New features are added and existing fea
tures refined with successive versions of the sys
tem . The prototype evolves into the finished
product.

Evolutionary delivery helps to bui ld the project
team's shared understanding of the system's user
interface design . Contemporary direct-manipula
tion user interfaces are too ric h, dynamic, and
complex to be understood from paper specifica
tions. Even simpler terminal-based i nterfaces are
too involved to be understood completely with
out being seen in action. Early del ivery of subset
systems helps everyone on the development team
understand the system being designed, making it
easier to build a shared vision of the final system .

Early, incremental del iveries also demonstrate
project progress i n a concrete form. Demonstrat
ing i mprovements to the system at the user
interface level can be an important factor in
maintain ing managerial support for a project and
continuing avai labil ity of resources.

The tec hniques used to improve system usa
bil i ty during the stages of evolutionary del ivery
i nclude the fol lowing:

• Bui lding and test ing early prototypes

• Collecting user feedback during early field test.

1 29

Software
Productivity
Tools

Software Usability Engineering

• Instru menting a system to collecr usage data

• Analyzing the impact of design sol utions

These general-purpose techniques can be used
independently of an overa ll usabi l i ty engineer
ing process. They are described in the following
sections, some with examples from the evolu
t ionary delivery of the EVE text ediwr 9 · ' '

Building and Testing Prototypes
The first step in an evolutionary del ivery pro
cess is build ing and resting protOtypes. These
prototypes effect ively test for ease of learn ing

1 2

and can provide the germinal product . Prowtyp·
ing also helps identify potential in terface prob·
lcms wh ile sti l l very early in the development
cycle .

From the point of view of usabi l i ty engineer
ing, the first protOtype subset produced should
fac i l i tate usabi l i ty testing. This typically means
that the system

• Includes only simple versions of the most
i mportant and most frequently used features
of the product

• Is able tO complete a simple benchmark
task that the designer wi l l use for a pre l imi
nary evaluation of t he system's usabi l i ty
atrri bu tes

• Is useful only for l imi ted testing, not for nor·
mal work

If the first prototype is actually useful for nor
mal work, it is probably a larger portion of the
project than needs to be delivered at this stage.

The first prototype of the EVE text editor
was avai lable three weeks after development
bc::gan . This prototype tested only the keypad
interface. At that point , we had neither im ple
mented nor fu lly designed rhe command- l ine
features. To rest ease of learning, seven new
compu ter users used EVE i n informal labora
tory sessions. They performed a standard text·
<:diring task. The rests showed that the keypad
interface was basical ly sound ; only minor
changes tO the basic EVE keypad commands
were requi red . This prototype was the first
of I 5 versions of EVE that users tested over
2 1 months .

Because prototypes are nor suitable for daily
use , they must be tested in control led condi·
t ions. For example, the test might involve asking

1 3 0

users tO complete a standardized task, where
that task is the only one that can be completed
using the prototype system . Special equipment
can make it eas ier to conduct these rests and to
col lect more complete data, but is not necessary.
For example, videOtaped records can help in
later analyses, but as with user visits, we can
learn much without them.

For many years we tested prototypes in spare
offices, developers' offices, or users' offices . Our
group now rests most prototypes in ou r usabi l i ty
engineeri ng laboratory, which is equi pped with
computer hardware and software, a one-way mir
ror, and videotaping equipment. The laboratory
resources provide greater opportuni ty for rou·
t ine testing and elaborate data col lection .

Collecting User Feedback during Early
Field Test

The earl ier a system can be delivered to a group
of users for field test, the sooner valuable infor
mation wi l l be avail able tO designers. User data
collected in the field is usual ly a richer source
of informat ion than laboratory data collected
under controlled condi tions. Field data takes
into account the context in which the system is
usetl.

We use "field rest " to describe any vers ion of
software d istributed to a group of people for use
in their work . This defini t ion includes the d istri
bution of early subset versions as well as the
later versions commonly referred tO as fie ld-test
software . Early field testing often begins by giv
ing a usable subset system to users who under
stand the status of the product and agree to use
and evaluate i t .

User visits, described previously, are a good
way tO collect field-test data. Another way to col
l ect user feedback is by electronic communica
tion . Digi ta l 's developers frequently use this
effective method by making early field-test ver·
sions avai lable on Digita l 's private world-wide
DECnet network and by encouraging user feed
back through el.ecrronic mai l or a VAX NOTES
conference .

Designers of t he EVE text editOr and VAXTPU
software rel ied on user feedback by means of
electronic communication throughout the devel
opment cycle. Pre l iminary versions of the EVE
ed itor were avai lable for dai ly work six mon t hs
before external field test began. Overa l l , we
received 3 6 2 suggestions from 75 different
users. We implemen ted 2 1 2 (or 59 percent) of

Digital Technical journal
No. 6 February I �88

these suggestions for t he version of EVE shipped
with the VAX/VMS operating system version 4 . 2 .
We received 2 2 5 (or 6 2 percent) of the sugges
tions before field test began. More of these sug
gestions were implemented than suggestions
received later: 65 percent of t he suggestions
received during i nternal field test were imple
mented compared to 48 percent of the sugges
tions received during external fiel d test .

Although contextual interviews provide more
information than users' reports of summary
experience, the summary experience data is sti l l
valuable . The two methods complement each
other. The on-site interviews provide details of
users' ongoing experiences in the context of sys
tem use; on the other hand, e lectronic mai l , con
ferencing, and problem reports provide sum
mary experience data from a wider range of
users than engineers could interview.

Early fie ld testing is especia l ly i mportant for
col lecting data on experienced users. Experi
enced users, as wel l as new or infrequent users,
must find systems easy to use. Early fiel d testing
is an excel lent way to develop a test popula
tion of experienced users before a product is
released. By the t ime later fiel d test versions
are avai lable, these experienced users wi l l be a
valuable source of data on longer-term usab i l i ty
issues.

Instrumenting the System to Collect
Usage Data

Knowing how frequently and in what order peo
ple use a system's functions helps engineers with
low- level design decisions. For exampl e , engi
neers can use usage data to order functions on
menus, putting less frequently used commands
on less accessible menus. Our group has col
lected and analyzed usage data for text editors
and operating systems, and compared this with
data collected by other groups. 1 3 · 1 4

We col lect usage data by asking people t o use
an i nstrumented version of a functioning system ,
either an existing product or a field-test version .
We collect the most complete data by recording
and time-stamping each i ndividual user action .
Keeping frequency counts of user actions also
provides useful usage data, but does not include
data on transitions between actions or t ime spent
with different functions.

For t he EVE editor, we used command fre
quency data from five different text editors to
guide the in it ial design of the keypad i nterface

Digital Technical journal
No. 6 Februmy I 988

and the command set . During internal field test,
we collected command frequency data from a
smal l set of EVE users to refine t he command set .
We a lso used command transi tion data as the
basis for the arrangement of the arrow keys on
the LK20 1 keyboard into an inverted-T shape.
Usage data from an experimental text editor
showed that the transition from the down-arrow
key to the left -arrow key occurred more than
twice as often as any other transition between
arrow keys. 1 1 " 1 3 The inverted-T arrangement a lso
al lows three fingers of t he user's hand to rest on
the three most frequently used arrow keys , with
an easy reach up to the up-arrow key .

Col lectors of usage data must be concerned
about user privacy and system performance .
Users shoul d know about the nature of the data
col lection and be informed when data is being
collected . They should also have t he option of
using a system that has not been i nstrumented
and does not col lect usage data .

To inform users that data is being col lected,
designers can modify t he i nstrumented version
of the system so that a not ification message is
displayed each t ime th is version is i nvoked.
Users are thus reminded that a l l actions are
being recorded . To minimize performance prob
lems on i nstrumented versions, engineers can
design the logging system so that any necessary
delays occur at t he start and fin ish of an applica
t ion , not at random i ntervals whi le the applica
tion is being used .

A nalyzing the Impact of Design
Solutions

Designers make an impact analysis of user data
col lected during evolutionary del ivery to esti
mate the effect iveness of design techniques i n
meeting product goals. 1 5 In usabil i ty engineer
ing, design techniques are usually ideas devel
oped after watching people use computer sys
tems. Estimating the effectiveness of a set of
design techniques for meeting a set of usabi lity
attributes helps to economica l ly focus engineer
ing effort on key issues.

I mpact ana lysis tables contain percentage est i
mates of the contribution of each technique to
the planned levels for each usabi l i ty attribute.
I mpact analysis tables l ist product attributes and
proposed design techniques in a matrix . Each
entry i n t he table estimates the percentage that
this technique will contribute toward meeting
the planned level of this attribute .

1 3 1

Software
Productivity
Tools

Software Usability Engineering

Our software usabi l i ty group creates impact
analysis estimates in several ways, such as ana
lyzing the videotapes made during user visits .
With laboratOry tests, we have derived estimates
from the t i me actua l ly spen r as a result of in ter
face problems encountered on a benchmark
task. ' Impact ana lysis data can also be pre
sented graphica l ly using Pareto charts. 1 7

Conclusion

Our group applies usabi l i ty engineering i n the
development of many new software products
within Digita l . Software usabi l i ty engineeri ng
techniques can be used by any group of engi
neers that designs interactive software . No spe
cial equipment or prior experience is necessary
to start applying these techniques, a lthough
equipment and experience can i mprove the
resu lts.

As we have gained experience with usabi l i ty
engineering, we have moved from laboratOry
tests tO fiel d visits as the main source of usabi l
i ty data . We find that field-test data provides a
richer source of ideas for user i nterface design .
laboratory testing is st i l l valuable, however,
especia l ly for testing early protOtypes. We are
now bringing some contextual interview tech
n iques tO our laboratory tests, interviewing users
as they perform a task rather than observing
them as they work on their own. For more ad
vanced prototypes, we may ask users tO use the
system with their own work, which they bring
with them to t he laboratory. Control led labora
tory experimentation techniques are sti l l usefu l
for deciding some important design issues, such
as choosing screen fonts for an application .

A user-oriented approach to software design
requ i res a commitment to u nderstanding and
meeting users' needs through observation of
people using systems. Software usabi l i ty engi
neering techn iques, appl ied i n whole or in part ,
can produce computer systems that enrich
human experience .

Acknowledgments

The techniques described here were deve loped
in a group effort by present and past members of
the Software Usabi l i ty Engineering Group,
i ncluding Mark Bramha l l , Alana Brassard, J im
Burrows, El isa del Galdo, Charles Frean ,
Kenneth Gay l in , Karen Holtzblatt, Sandy)ones,
Thomas Spine, E l iot Tarli n , John Whiteside,

1 3 2

Chauncey Wi lson, Dennis Wixon , and Bi l l Zim
mer . Dorey Olmer helped edit this paper.

References

I . T. Winograd and F. Flores, Understanding
Computers and Cognition: A New Foun

dation for Design (Norwood : Ablex,
1 986) .

2 .) . Whiteside, " Usabi l ity Engineering," Unix

Review , vol . 4 , no. 6 Qune 1 986) : 2 2 - 3 7 .

3 . W. Deming, Quality, Productivity, and
Competitive Position (Cambridge : MIT
Center for Advanced E ngineering Study,
1 982) .

4 . T. Gi lb , " Design By Objectives ," U npub
l ished manuscript avai .l able from the author
at Box 1 02 , N - 1 4 1 1 Kolbotn , Norway
(1 98 1) .

5 .) . Ben nett , " Managing to Meet Usabil i ty
Requirements : Establishing and Meeting
Software Develop ment Goals ," Visual Dis

play Terminals , eds.). Bennett, D. Case,] .
Sandel i n , and M. Smith (Englewood Cl iffs :
Prentice-Hal l , 1 984) : 1 6 1 - 1 84 .

6 . P. Gi lbert , " Development of the VAX
NOTES System," Digital Technical journal

(February 1 988, this issue) : 1 1 7- 1 24 .

7 . H . Dreyfus and S. Dreyfus, Mind over
Machine (New York: The Free Press,
1 986) .

8 . F. Brooks, Jr . , " No Si lver Bul let : Essence a nd
Accidents of Software Engineering," IEEE

Computer , 2 0 , no . 4 (April 1 987) : 1 0- 1 9

9 . M . Good , "The I terative Design of a New
Text Edi tor," Proceedings of the Human
Factors Society 29th A nn ual Meeting , vol .
1 (1 98 5) : 5 7 1 - 5 74 .

1 0 . B . Curtis, et al . , " On Bui ld ing Software Pro
cess Models Under the Lamppost ," Proceed

ings of the IEEE 9th International Confer

ence on Software Engineering (1 987) :
96- I 0 3 .

1 1 . M . Good, "The Use of Logging Data in the
Design of a New Text Editor," Proceedings

of the CHI '85 Human Factors in Comput

ing Systems (1 985) : 93-97 .

Digital Tecbnlcaljournal
No. 6 February 1988

1 2 . M. Good , J. Wh iteside , D . Wixon and S.
Jones, "Bu i lding a User-Derived Interface,"
Com munications of the A CM , 27 (OctO
ber 1 984) : 1 0 3 2 - 1 04 3 .

1 3 . J . Whiteside, et at . , "How Do People Real ly
Use Text Editors?" SIGOA Newsletter , 3
Oune 1 982) : 29 -4 0 .

1 4 . D. Wixon and M . Bramha l l , " How Operat
i ng Systems Are Used : A Comparison of VMS
and UNIX," Proceedings of the Human
Factors Society 29th An nual Meeting , vol .
I (1 98 5) : 2 4 5 - 2 4 9

1 5 . T . G i l b , "The ' Impact Analysis Table'
Applied tO Human Factors Design ,"
Human- Computer Interaction-INTER
A CT '84 , ed. B . Shackel (Amsterdam :
North-Holland, 1 98 5) : 65 5 - 6 5 9 .

1 6 . M. Good , et a l . , " User-Derived Impact
Analysis as a Tool for Usabi l i ty Engineer
ing," Proceedings of the CHI '86 Human
Factors in Computing Systems (1 986) :
2 4 1 - 2 4 6 .

1 7 . K. Ishikawa, Guide t o Quality Control ,
second revised ed . (Tokyo : Asian Productiv
i ty Organization , 1 9 8 2) .

Digital Technical journal
No. 6 February 1988

1 3 3

Software
Productivity
Tools

ISBN l-555 58-005-X

Printed in USA EY-8259E-DP Copyright © February 1988 Digital Equipment Corporation

r r• .

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	VAX/VMS Software Development Environment
	Sofiware Productivity Measurements
	Language-Sensitive Editor
	VAX SCAN: Rule-based Text Processing Software
	Software Productivity Features Provided by the Ada Language and the VAX Ada Compiler
	Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products
	The VAX RALLY System - A Relational Fourth-generation Language
	VTX and VALU - Software Productivity Tools for Distributed Applications Development
	Pragmatics in the Development of VAX Ada
	Development of a Graphical Program Generator
	Project Management of the VAX DEC/Test Manager Soflware Version 2.0
	Development of the VAX NOTES System
	Software Usability Engineering
	Back cover

