

Cover Design
The DECchip 21064, the first implementation

of Digital's Alpha AXP computer architecture,

is the world's fastest single-chip microprocessor.

Represented on our cover by tbe AXP logo, the

DECchip takes its place among symbols of other

devices from computing history, incltuting

the vacuum tube, a punch card, sketches of

Babbage's Analytical Engine, a wheel from the

Pascaline, and an abacus.

The cover was designed by Deborah Falck of

Digital's Corporate Human Factors Group with

the help of Kaza Design.

Editorial
Jane C. l.llake, Editor
Helen L. Parrerson, Associate Editor
Kathleen M. Stetson, Associate Editor

Circulation
Catherine M. Phillips, Administrator

Sherry L. Gonzalez

Production
Terri Autieri, Production Editor
AnneS. Karzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald z. Harbert
Richard]. Hollingsworth
Alan G. Nemeth

Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

The Digital Technical journal is published quarterly by Digital Equipment Corporation,
146 Main Street ML01-3/B68, Maynard, Massachusetts 01754-2571. Subscriptions to the

joumal are $40.00 for four issues and must be prepaid in U.S. funds. University and col
lege professors and Ph.D. students in the electrical engineering and computer science
f ields receive complimentary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital Technicatjoumal at the published-by addre�s.
Inquiries can also be sent electronically to DTJ@CRL.DEC.COM. Single copies and back
issues are available for $16.00 each f rom Digital Press of Digital Equipment Corporation,
I Burlington Woods Drive, Burlington, MA 01830-4597.

Digital employee� may send subscription orders on the ENET to ROVAX::JOURNAL
or by interoffice mail ro mailstop ML01-3/B68. Orders should include badge number,
sire location code, and address. All employees must advise of changes of address.

Comments on rhe content of any paper are welcomed and may be sent to the editor
at the published-by or network address.

Copyright © 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in thejouma/ is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.

ISSN 0898-901X

Documentation Number EY.J886E-DP

The following are trademarks of Digital Equipment Corporation: ACMS, ALL·IN·l, Alpha
AXP, the AXP logo, AXP, DEC, DEC 3000 AXP, DEC 4000 AXP, DEC 6000 AXP, DEC 7000 AXP,

DEC 10000 AXP, DEC DBMS for Open VMS, DEC Fortran, DEC OSF/ I A.-'(P, DEC Pascal,
DEC RALLY, DEC Rdb for Open VMS, DECchip 21064, DECnet, DECnet for Open VMS A.,'<P,
DEC net for OpenVMS VAX , DECnet/OSI, DECnet-VAX, DECstation, DECstation 5000,

DECwindows, DECWORLD, Digital, the Digital logo, DNA, OpenVMS, OpenVMS AXP,
Open VMS RMS, Open V MS VAX, PDP-II, Q-bus, ThinWire, TURBOchannel, lJLTRlX, VAX ,
VAX-11/780, VAX 4000, VA.,'(6000, VAX 7000, VAX 8700, VA.,'< 8800, VAX 10000, VAX Fortran,
VA.,'(Pascal, VMS, and VMScluster.

CRAY-1 is a registered trademark of Cray Research, Inc.

HP is a registered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines, Inc.

LSI Logic is a trademark of LSI Logic Corporation

Macintosh is a registered trademark of Apple Computer, Inc.

MIPS is a trademark of MIPS Computer Systems, Inc.

Motorola is a registered trademark of Motorola, Inc.

OSF/1 is a registered trademark of Open Software Foundation, Inc.
PAL is a registered trademark of Advanced Micro Devices, Inc.

SPEC, SPECfp, SPECint, and SPECmark are registered trademarks of the Standard
Performance Evaluation Cooperative.

SPICE is a trademark of the University of California at Berkeley

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Windows and Windows NT are trademarks of Microsoft Corporation.

Book production was done by Q uantic Communications, Inc.

I Contents
17 Foreword

Robert M. Supnik

19 Alpha AXP Architecture
Richard L. Sites

Alpha AXP Architecture and Systems

35 A 200-MHz 64-bit Dual-issue CMOS Microprocessor
Daniel W Dobberpuhl. RichardT. Witek, Randy Allmon. Robert Anglin,
David Bertucci, Sharon Britton, Linda Chao, Robert A. Conrad, Daniel E. Dever,
Bruce (;ieseke, Soh a M.N. Hassoun , Gregory W Hoeppner, Kathryn Kuchler,
Maureen Ladd, Burton M. Leary, Liam Madden, Edward J. McLellan, Derrick R. Meyer,

James Montanaro, Donald A. Priore, Vidya Rajagopalan, Sridhar Samudrala,
and Sribalan Sanrhanam

51 The Alpha Demonstration Unit: A High-peJ·:formance
Multiprocessor for Software and Chip Development
Charles P Thacker, David G. Conroy, and Lawrence C. Stewart

66 The Design of the DEC 3000 AXP Systems, Two High-performance Workstations
Todd A. Dutton, Daniel Eiref, Hugh R. Kurth, James.). Reisert, and Robin L. Stewart

82 Design and Performance of t he DEC 4000 AXP Departmental
Server Computing Systems
Barry A. Maskas. Stephen F. Shirron, and Nicholas A. Warchol

100 Technical Description of the DEC 7000 and DEC 10000 AXP Family
Brian R. Allison <'lncl Catharine van lngen

111 Porting Open VMS from VAX to Alpha AXP
Nancy I' Kronenberg , Thomas R. Benson, Wayne M. Cardoza, RavindranJagannathan,
and Benjamin .f. Thomas Ill

121 The GEM Optimizing Compiler System
David S. HI ickstein, Peter W Craig, Caro.line S. Davidson, R. Neil Faiman, Jr., Kent D. (; lossop.
Richard H. (;rove, Steven 0. H.obbs, and William H. Noyce

137 Binary Translation
Richard L. Sites, Anton Chernoff. Matthew B. Kirk, Maurice P Marks. and Scott G. Robinson

15:1 Porting Digital's Database Management Products to the Alpha AXP Platform
Jeffrey A. Coffler. Zia Mohamed. :md Peter M. Spiro

L65 DECnetfor OpenVMS AXP: A Case History
James V. Colombo, Pamela). Rickard, and Paul Benoit

181 Using Simulation to Develop and Port Soflt.vare
George A. Darcy lll, Honald F. Brender, Stephen J Morris. and Michael V lies

Alpha AXP Program Management

19 3 Enrollment Management, Managing tbe Alpha AXP Program
Peter F. Conklin

I Editor,s Introduction

Jane C. Blake
Editor

This special issue of the Digital Teclmicaljournal

presents the compu ter architecture that Digital
believes wil l become the universal p latform for
comp uting over the next 25 years. A significant
milestone in the company's h isto ry. the Alpha AXP
arch itecture arises out of Digital's extensive engi
neering experience and puts into place a cohesive,
flex ible framework for high-performance 64-bit
RlSC computing. This issue contains papers re pre
sentative of the scope of the p rogram across
D igital's Engineering organizati on, i n c l u d i ng hard
\vare system s , an operating s�·stem , compi lers,
binary translators, network ami database software,

and sim ulators.
The results of the engineering efforts d iscussed

in tl1ese papers reflect three primary goals for
the Alpha AXP archi tecture: high performance,
longevity, and easy m igration from the .12-bit VAX
V.\1S co mputer line. Dick Sites, one of the chief
Alpl1a AX!' architects, has written a definitive paper

that exp lains how key architectural decisions were
made relative to the goals. He reviews the simi lari
ties and d ifferences between the A.,'\P architecture
and other RJSC: architectures, ami then presents
details of the design, including data and instruction
f(>rmats. In his conclusion. h e projects evolutionary
changes in the architecture and the res u l ting per
formance i ncreases of a thousandfold over the next
2'; years.

The first i mplementation of the Alpha AXP archi
tecture is the DECchip 21064 microprocessor, which
can execute up to 400 m i l l ion operat ions per
second. Dan Dobberpuhl and members of the
Alpha chip team offer an overview of the CMOS pro
cess tec hnol ogy, the chip microarcllitecture, and
the external interface . They then deta i l the circ u it
imp lementation ami explai n t he design cho i ces
directed toward meeting architectural performance

2

requ irements and to al low appl ication flexibi lity.
The res u l t of their design efforts is a microproces
sor that operates at speeds up to 200 MHz-the
fastest com mercial l y avai lable chip in the i ndustry.

Early implementations of t his chip became part of
a prototyp e system, the Alpha Demonstration Unit.
As Chuck Thacker, Dave Conroy, and Larry Stewart
explain in their paper, the p rototy pe served the
overa l l Alpha AXP program by giving software clevel
opers early access (ten mon ths) to AXP-compl iant
hardware. Because of the arc h itectural emphasis on
multiple processors, prototype designers fo cused
on del ivering a robust multiprocessing system. The
au thors discuss the sign i ficance of the choice of a
backplane i nterco n nect for a mu ltiprocessor, com
pare ditferent approaches to cache coherence, ancl
describe the system modu les and packaging.

With constraints differen t from those of the pro
totype, the hardware product projects are repre
sented here by three different implementations:
desktop, departmenta l , and data center systems. I n
the des ktop area, the DEC 3000 A.,'\P family of work
stations are balanced u niprocessor systems. Todd
Dutton, Dan Eiref, Hugh Kurth, Jim Reisert, and
Robin Stewan review the decision to replace the
trad itional common system bus with a crossbar
system interconnect constru cted of r\SIC:s. This new
interconnect allowed the designers to meet the
goals of low memory latency, high mem ory hand
width, and minimal Cl'lJ-1/0 memory contention i n
a cost-competitive man ner.

The DEC 4000 AXP system is a departmental
server that imp lements the lEEE Futurebus+ stan
dard. Barry Maskas, Stephen Shirro n , and Nick
Warchol present the reasoning behind the system
architecture and technology decisions that resu lted
i n the achievement of op timized u niprocessor per
formance, dual-processor sym metric multiprocess
ing, ami balanced 1/0 throughput. Details of the
subsystems that make up this expandable m o d u lar
system are also provided .

The DEC 7000 and DEC 10000 systems are power
f u l m id-range and mainframe platforms i n tended
for large com mercial appl i cations and designed to

utilize multiple future generations of the DECcbip.
Described by Brian Al l ison and Catharine van
I ngen. the heart of these systems is a high-perfor
mance interconnect that allows comm u nications
bet ween m u l tiple pro cessors, memory arrays, and
110 subsystem s. The authors review each of the

modu les and the 1/0 su bsystem design, w hich
includes interfaces for X,\11 and Futurebus. Notably,
a 32-bit VAX CPU mod ule has been designed to the

requi rements of the h igh-performance system
interconnect. Users who wish to m igrate from the

VAX system to Alpha AXP need o n ly swap module

boards.

Migration to Alpha AXP from other architectures,

in particu lar from VAX VMS, is one of the major goals

set by the Alpha architects. Ex ist ing software

operating systems, languages, programs-must be

adapted to r u n effectively on 64-bir RISC systems. A

parer by Nancy Kronenberg, Tom Benson, Wayne

Cardoza, Rav indran .Jagannathan, ami Ben Thomas

addresses the chal lenges of porting the OpenVMS

operati ng system-original ly developed specifi

cal l y for 32-bit VAX systems-to A l. pha AXP systems.

To deal with the huge amount of code, the p roject

team developed a compi ler that treats VA)(assembly

l anguage (VAX ;\>IACR0-32) as a source language to be

compiled . The authors also d iscuss the major archi

tectural differences in the kernel, perf()rmance, and

some future d i rections for the system .

The GEM comp i ler system i s the technology

Digita l is us ing to bu ild state-of-the-art compi ler

rroducts. GEM is described here by David

B l ickstei n , Peter Craig, Carol ine Davidson, Nei l

Fa iman, Kent G lossop, Rich Grove, Steve Hobbs,

and Bi l l Noyce. A significant achievement in the

deve lopment of th is compiler is that a single opti
m izer is used fo r a l l languages and platforms.

Developers of compilers wil l find in-depth i nforma

tion in the authors' d iscussions of optimization

techniques, code generation, compiler engineer

ing, and future enhancements.

Binary transl at ion is another means of m ov i ng

complex software appl i cations from one archi tec

ture and operating system to another archi tecture
and operat ing system. Two bi nary translators are

the subject of a paper by D ick S ites, Amon Chernoff,

Matthew Kirk, Maurice Marks, and Scott Robinson .

The au thors discuss the alternatives to rran slawrs,

performance issues, and the development of the
translators, VEST and mx, ancl the complementary
run-t ime environments. VEST translates OpenVMS
VA.-X i mages to OpenV,viS AXP images. and mx trans

lates ULTRI X/MIPS im ages to DEC OSF/1 A.-XP i mages.
An easy migration path to Alpha AXP for two

database management systems used in large com
mercial applications is the subject of a paper by Jeff

Coffler, Zia Mohamed, and Peter Spiro. The authors

define the issues involved in porting the complex
VAX DBMS and Rdb/VMS products to the AXP plat

form . Add ing to the chal lenge but bal anced by its

advantages was the decision to have a common
source, or single code, base. The authors review

I
this design approach and prov ide details of the

individual port ing efforts.

The process of porting DECnet -VA"'\ to the

OpenVIviS A.-XP operat ing system is described by J im

Colombo, Pam Rickard, a nd Pau l Benoit. They dis

cuss the DECnet features supported i n the operat

ing system , the software techniques used, and the

importance of rhe decision to bu i ld common code

for the VAX and Alpha A.-XP systems. The authors

share detai Is of the port and lessons learn eel that

can be applied to future porting efforts.

Complemen tary to the previously mentioned

prototype hardware system are four software simu

lators that enabled engineers to develop software

for Alpha A.-X P concurrently with hardware develop

ment. Described by George Darcy, Ron Brender,

Steve Morris, and Mike l les, the Mannequ in simu

lator was used by the OpenVMS group to boot

the entire operating system and debug u t i l i ties;

the ISP s imulator was used by the DEC OSF/1 group

with s imi lar success. A major section of the paper

focuses on the A lpha User-mode Debugging Envi

ron ment in which user-mode code being devel

oped for Alpha AXP platforms can be compi led and

executed as Alpha AXP code.

The c losing paper is an unusual one for the

journal because it addresses engineering manage

ment, not strictly technical issues. Peter Conkl in

offers ins ights into the reasons for the success of

one of the largest engineering progra ms under

taken in the i ndustry. He defi nes the enrol lment

management model used for the Alpha A.-XP p ro

gram and explains key concepts, i nc lud ing the

program office and project "cusps."

The edi tors are very gratefu l fo r the help of Bob

Supnik, Vice President and Corporate Consu ltant.

in p lann ing this speci a l issue and for writ ing its
Foreword.

We are also pleased to note that fou r papers
in t h is issue are being copubl ished witll the

Communications of the ACIJ, inc luding those on
the Alpha AXP architectu re , the Alpha Demon

stration Unit , OpenVtv!SAXP, aml binary translat ion.
Barbara Wat terson from Digital's semiconducto r
organ ization; Diane Crawford, Execu tive Ed itor of
the CACM; the Dl:J editors; ami the authors cooper
ated so that these informative papers could be

macle avai I able to a broad tech nica l audience.

I Biographies

4

Brian R. Allison Brian Al l ison is a senior consultant engineer for D igital 's

mid-range VAX/Aipha AXP systems group ami is the system architect responsible

for the coord ination of the VAX and DEC 7000 and 10000 system definit ion and

design. Prior to this work , he served as system arch itect fo r the VAX oOOO

product. Brian holds a BSE.E . and a B.S.C.S from Worcester Polytech nic Institute

(1977)

Randy Allmon After receiving a B.S degree in electrical engineering from

the University of C i ncinnati, Randy Al lmon joined D igital in 19Hl. As a circu i t

designer i n the Semiconductor Engineering Group, h e has contributed t o the

development of numerous high-performance CMOS processors. Current ly,

Randy is responsible for the techn ical design and management of a next-genera

t ion processor based on the Alpha AXP arch i tecture. He is the coauthor of fou r

high-performance processor papers given a t ISSCC and has one patent pend i ng.

Robert Anglin Robert Angl i n received S.l3. and S.M. degrees in e lectrical engi

neering in 1989 from the Massachusetts Institute of Techn o logy. In the same

year, he j oined Digital 's Sem iconductor E nginee ring Group, \Vhere he has

worked on the design of high-performance microprocessors. Robert is a mem

ber of Sigma Xi. He is currently pursui ng an 1'<l.B .A . degree at Harvard University.

Paul Benoit Pa ul Benoit is a principal software engineer in the Networks and

Communications Group. He is the project/technica l leader for the DECner for

Open VMS AXP project; the team received an Alpha Achievement Award for early

completion of project commitments. Previous to this, Paul led the DECnet -VAX

Phase IV effort He holds an MSS.E. (1991) from Boston University and a B.SC:.S.

(198o) from the Univers ity of Lowel l. Pau l is a member of ACM and IEF.E

Computer Society.

Thomas R. Benson A consu l t ing engineer i n the OpenVMS AX!' Group, Ibm
Benson was the project leader and principal designer of the VAX MACR0-32 com

p i ler. Prior to his Al pha AXP contribu tions, he led the v.vts LJECwimlows F i le View

and Session Manager projects and brought the Xlib graphics l ibrary to the VMS

operating system . Earlier, he supported an opt imizing compi ler shel l used by

severa l VA X compi lers. Tom joined D igital 's VAX Llasic project i n 1979, after

receiving B.S. and .Yl .S. degrees in computer science from Syracuse University He

has applied for four patents related to h is Alpha AXP work.

David Bertucci David Bertucci received a BS E. E . degree in 1982 from Wayne

State U n iversity and an MSE.E . degree in 1988 from M ichigan State University.

He joined Digital 's Semiconductor Engineering Group in 1989 and worked o n

advanced CMOS microprocessor design. Currently, he i s employed at Sun

Microsystems, Inc.

DavidS. Blickstein Principal software engineer David Bl ickstei n has worked

on optimizations for the GE;vl compiler system since the project began in 198 5.

During that time, he designed various optimization techniques, includ ing induc

tion variables, loop unro l l i ng, code motions, common subexpressions, base

binding, and binary shadowing. Prior to th is, David worked on Digita l 's PDP- 1 1

and VAX AI'!. implementations and led the VAX-1 1 PL/1 project. He received a B A

(1980) in mathematics from Rutgers College, Rutgers University, and holds one

patent on side effects analysis and another on induction variable ana lysis.

Ronald F. Brender Ron Brender is a senior consu ltant software engineer,

contributing to the GEM compiler back-end p roject in the Software

Development Technologies Group. He has worked on compilers and program

m i ng language definition for Alpha AXP, VAX, PDP- 1 1 , and PDP·IO systems, includ

ing Ada, FORTRAN and BLISS. A member of various standards commit tees since

the mid· 1970s, Ron is now responsible for VAX and Alpha AXP cal l i ng standards.

He j o ined Digital i n 1970, after receiving a Ph . D. i n computer and communica

t ion sciences at the University of M ichigan.

Sharon Britton Sharon Britton received a BS.E.E. degree from Boston

University in 198 3 and an MS.E.E. degree from the Massachusetts Institute of

Technology in 1990. She jo ined Digital in 1983 to work on the design and devel

opment of 80186-based control lers for read-only and write-once optical d isk

clrives. Sharon's graduate research involved the development of an in tegrated

content addressable memory system with error detection capabi I ity Currently a

member of the Semiconductor Engineering Group, she is i nvolved in the design

and implementation of h igh-performance CMOS microprocessors.

Wayne M. Cardoza Wayne Cardoza is a senior consu ltant engineer in the

OpenVMS AXP Group. Since joining D igital in 1979, he has worked in various

areas of the Open VMS kerneL Wayne was also one of the architects of l'IUSM , an

earl ier Digital RJSC architecture; he holds several patents tor this work. More

recently, Wayne participated in the design of the Alpha AXP architecture and was

a member of the init ial design team for the OpenVMS port . Before coming to

D igital , Wayne was employed by Bel l Laboratories. Wayne received a BS.E.E. from

Southeastern Massachusetts University and an MS.E.E. from ,'vliT

I

Biographies

Linda Chao Linda Chao received a llSE. E. degree from the Massachusetts

Institute of Technology in 1987. Since joining Digital in the Semiconductor

Engineering Group/Advanced Development in 1987, Linda has been engaged in

the design of microprocessors based on the VAX ancl Alpha AXP architectu res.

She is currently pursu ing master's degrees in electrical engineering ancl manage

ment through the MIT Leaders for Manu factur i ng Program.

Anton Chernoff Anton Chernoff is a member of the technical staff at D igital

Equ ipment Corporat ion, working in the Alpha A XP M igration Tools Group. He

joined D igital in 1991, but also worked at Digital between 1973 a nd 1981 as proj

ect leader and developer of the IU-11 and RSTS/E operating systems. Anton spent

1982 through 1991 at Liant Software Corporat ion as a senior consul t ing engineer

in compiler and debugger development .

Jeffrey A. Coffler A principal software engineer in the Database Systems

Engineering Group. Jeff Coff ler led the effort to port DBMS to the Alpha AXP plat

form. Prior to th is, Jeff \vorked on the DB.VIS and Rdb backup/restore facility ami

on new DR.'v1S features and maintenance. He is currently working on the project

to port Rdb for OpenVMS to operating systems such as Windows NT a ncl OSF/1.

He has also contribu ted to the RSTS/E operating system, WPS-PLUS porting, and

workflow management p rojects. Jeff joined D igital in 1984 and holds a BSCS

(1983) from Cal ih>rnia State University at Northridge.

James V. Colombo Project/technical leader James Colombo is currently

responsible for the next release of DECnet/OSI for OrenVMS for the VAX a ncl
Alpha AXP comput ing environments. Prior to this, he led the port of DECnet-VAX

Phase IV to the OpenVMS AX!' operating system; the team received a n Alpha

Achievement Award for early completion of the project. Jim also !eel the DECnet

for OS/2 V 1.0 and various PATHWORKS product efforts. Before coming to Digital

in 1983, Jim worked at Prime Computer, Inc. and Computer Devices, Inc. He

holds a BSCS from Boston University and is a member ofJEEE.

Peter F. Conklin Peter Conkl i n is d i rector of Alpha AXP Systems Develop

ment . Si nce joining Digital in 1969, he has held engineering management posi

t ions in large and sma l l systems and terminals groups. direct hard·ware ami

software engineering, product management, base product marketing, qua l i ty

m anagement, and advanced development. Peter was the f irst software engineer

on the VMS project in 1975, ran the VA X architecture team, and was instrumental

in developing the key architectures and products for the VAX v:v1S l ayered prod

uct set. Peter received an All. in mathematics f rom Harvard University in 1963.

Robert A. Conrad Robert Conrad received J HS degree in e lectrical and com

puter engineering from the University of C i ncinnati in 1 984 and an M.S. degree in

electrical and computer engineering from the University of Massachusetts in

1 992. I n 1 981 he joined Digita l 's Semiconductor E ngineering Group, \vhere he

worked as a co-op student in the Architectural ly Focused Logic Group. Since

1 984 Rob has been engaged in the research and devel.opment of VLSI m icro

processors, including the .\1icroVA X CPU, a 50-:viHz RlSC CPU, and most recently

the DEC:chip 2 1064 microprocessor.

David G. Conroy Dave Conroy received a BA.Sc. degree in electrica l engi

neering from the University of Waterloo, Canada, in 1 977 After working briefly

in industrial automation , Dave moved to the United States in 1 980. He cofounded

the Mark Wil liams Company and bui l t a successfu l copy of the UNIX operating

system. In 1 983 he joined Digita l to work on the DECta lk speech synthesis

system and related products. In 1 987 he became a member of Digital 's

Semiconductor Engineering Group , where and has been i nvolved with system

level aspects of RlSC microprocessors.

Peter W. Craig Peter Craig is a p ri ncipa l software engineer in the Software

Development Technologies Group. He is currently responsible for the design

and i mplementation of a dependence analyzer for use in future compiler prod

ucts. Peter was a project leader tor the VAX Code Generator used in the VA)(C and

VAX PI./I compi lers, and prior to this, he developed CPlJ performance simu lation

software in the VAX Architecture Group. He rece ived a R.S.E.E. (m agna cum

l aude , 1982) from the University of Connecticut and jo ined Digital in 1 983.

George A. Darcy III As a senior sofnvare engineer in the Alpha Migration

Tools Group, George Darcy has worked on the Mannequin Alpha i\Xl' simulator,

the VEST binary translato r, and the Translated Image Environment (TIE) run-time

l ibrary. In his ten years at Digita l , he has also developed a virtua l disk driver for

t he Open V MS V'i.O Si'vlP operating system, sofrware behavioral models of a h igh

end VA X processor, and various simu lation and CAD software tools. George

received a fi.S.CE. (cum laude, 1 984) from Boston University, where he was an

Engineering Merit Scholar and a member of Tau Beta Pi .

Caroline S. Davidson Since joining Digital in 1981 , Carol i ne Davidson has

contribu ted to severa l software projects, primari ly related to code generation .

Currently a principal software engineer, she is working on the GE:VI compi ler

generator p roject and is responsible for the areas of I ifetimes, storage al locat ion,

and entry-exit ca l ls. Caro l ine is a lso a project leader for the Intel code generation

effort. Her prior work i nvolved the VAX FORTRAN for lHTRIX, VAX Code

Generator, and FORTRAN IV software products. Carol i n e has a H.S.C:.S. from the

State University of New York at Stony Brook.

I

7

Biogmpbies

8

Daniel E. Dever Dan Dever received a BSE .E . degree in 1988 from the

Universi ty of Cincinnat i . He joined Digital 's Semiconductor Engi neering Group

in 1988, where he worked on the design ancl logic verification of CMOS VAX

microprocessors. Since 1990 he has been involved i n the design of RISC architec

tu re microprocessors, inc luding the floating-point u n i t of the DECchip 2 10()4

microprocessor. Dan is currently involved in the design of integer arithmetic

logic for the next-generation processor based on the Alpha AXP arch i tecture .

Daniel W. Dobberpuhl Dan Dobberpu hl received a B.S. E . E . degree from the

Un iversity of Il l inois in 1967 Subsequent to positions with the Department of

Defense and General Electric Company, he joined Digita l 's Semiconducto r

Engineering Group i n 1 976. Since that t ime , b e has been act ive i n the design of

four generations of microprocessors, including t he fi rst single-chip PDP-1 1 and

the first single-ch ip VAX. Most recent ly, Dan was the project leader for the first

VL'il implementation of Digi ta l 's new 64-bit Alpha AXP computing arch itecture.

He is coauthor of the text, The Des(!{n and Analvsis of Vl.SI Circu its.

Todd A. Dutton A principal hardware engineer, Todd Dutton was responsible

for the overa l l design integrat ion and timing verification of the OEC 3000 AX I'

Model 500. Prior to this, he led a team in developi ng vector processor hardware

in the Advanced VAX Development G roup. Todd joined D igita l in 1987. Pre

vious ly, he was employed at Numerix Corporation and at Signal Processing

Systems, Inc. Todd has a l iS. degree in computer science from the Massachusetts

Institute of Technology and was elected to Tau Beta Pi . He holds a patent on vec

tor processor technology and has published two papers on vector p rocessors.

Daniel Eiref Dan Eiref j oined Digital i n 1987 after receiv ing BS and :.1s.
degrees in electrical engineer ing from Columbia University. At Colu mbia l1e was

elected to Tau Beta Pi and was awarded rhe Steven Abbey Ou tstanding Stu dent

athle te Award. He is curren t ly attendi ng Harvard Business School. A principal

hardware engineer, Dan was responsible for the design of the memory and clock

systems of the DEC 3000 AXP Model ')00. He a lso designed the workstation 's

SLICE and ADDR ASIC:s. Prior to this project , he worked as an ECl hardware

designer in the Advanced VAX Development Group.

R. Neil Faiman, Jr. Nei l Fa iman is a consultant software engineer in the

Software Development Technologies Group. He was the primary archi tect of the

C EM intermed iate language and a project leader for the c;EM compi ler optimizer.

Prior to this work. he led the BUSS compiler project. Nei l came to D igital in 198:�

from MDSI (now Sch lumberger/Appl icon). He has FlS. (1974) and :VI.S. (197'))

degrees in computer science, both from Michigan State University. Neil is a mem

ber of Tau Beta Pi and ACM, and an affi l i ate member of the IEEE Computer

Society.

Bruce Gieseke Bruce Gieseke received a H.S. degree i n electrical engineering

from the Un iversity of C i ncin nat i in 1984, a nd an .'vi .S. degree in electrical engi

neering from North Carol ina State Un iversity in 198'). I n 1986 he joined Digita l 's

Semiconductor Engineeri ng Group, where he has been engaged in the i mple

mentation and circuit design of RISC microprocessors.

Kent D. Glossop Ken t Glossop is a principal engineer in the Software

Development Technologies Group. Since 1987 he has worked on the GEM com

pi ler system, focusing o n code generation and instruct ion- level transformations.

Prior to this, Kent was the project leader for a release of the VAX PUI compi ler

and contri buted to version I of the VAX Performance and Coverage Ana lyzer.

Ken t jo ined D igital in 1983 after receiving a H.S. in computer science from the

University of Michigan . He is a member of IEEE.

Richard B. Grove Senior consu l tant software engineer Rich Grove j oined

Digital in 1971 and is currently in the Software Development Technologies

Group. He has led the G EM compiler project s ince the effort began in 1985. con

tributing to the code generation phases. Prior to this work, Rich was the project

leader for the PDP-1 1 and VAX FORTRAN compi lers, \vorked on VAX Ada V 1 , and

was a member of the ANSI X3.J3 FORTRAN Committee. He is presently a member

of the design team for Alpha AX!' ca ll ing standards and architecture. Rich has B.S.

and M.S. degrees in mathematics from Carnegie-Mellon University.

Soha M.N. Hassoun Soha Hassou n received a B.S E.£. degree from South

Dakota State University in 1986, and a n S.M . E.E . degree from the Massachusetts

I nstitute of Technology in 19H8. From August 1988 to August 1991 she was

employed at D igital as a custom design engineer i n the Semiconductor

Engi neering Group. She contributed to the uesign of the floating-point unit of

tbe DECchi p 21064 processor. Soha was the recipient of a D igital Minority and

Women 's Scholarsh ip in 1991 anc.l i s pursuing a Ph . D. degree at the University of

\'\fashingto n , Seattle. Computer Systems Engineering Department.

Steven 0. Hobbs A member of the Software Development Technol<igies

Group, Steven Hobbs is working on the GE.'vl compiler project. ln prior contribu

t ions at Digital , he was the project leader for VAX Pascal. the lead designer for the

global optim i zer in VAX FORTRAN, and a member of the Alpha AXP architecture

design team. Steve received his A .B . (1969) in mathematics at Dartmouth College

and while there, helped develop the origin a l BASIC t ime-sharing system. He has

an M .A. (1972) in m athematics from the University of Mich igan a nd has done

additional graduate work in computer science at Carnegie-Mel lon University.

9

Bioi<rafJhies

1 0

Gregory W. Hoeppner <�regory Hoeppner graduated with dist inct ion from

Purdue University i n 1979. His research topic was ion-implanted optical wave

gu ides. In 19HO he worked at General Telephone and Electron ics Research

Laboratory, where he performed basic properties research on GaAs for fabrica

tion of submicrometer FETs. From 19Hl to 1992 he held a number of positions at

D igital Equi pment Corporation's Hmlson, MA site, includ ing co-implementation

leader of Digitars DECchip 2 1064. He is currently employed as a sen ior engineer

at IB.vl , Advanced Workstation Division .

Michael V. Iles Michael l ies is a senior technology consu ltant at the l K Alpha

A.,'\V M igration Centre . S ince jo in ing D igital in 197'5, Mike has worked in various

field positions, in Advanced VA X development as a microcoder, and t<Jr VMS engi

neering as a software engineer. He worked on tl1e migrat ion of OpenV.VJS VAX to

the Alpha AXI' platform. design ing and implement ing a user-mode simu lation

environment that became AUD. Mike has a B.sc. in electrical engineeri ng (hon

ors, 1973) from C ity Un iversi ty, London, ancl holds a patent for digital speech

synthesis techniques. He has several parents pendi ng for Al i D.

Ravindran jagannathan Rav indran .Jagannathan is a principal software engi

neer in the Open VMS Performance Group current ly i nvestigating OpenV\<JS r\X I'

mult iprocessing performance. Since 1986, he has worked o n performance anal

ysis and characterizat ion, and algorithm design i n the areas of OpenV\'IS ser

vices, S:VIP, VAXcl uster systems, ami host-hasecl volume shadowing. Ravindran

received a R.E. (honors, 19H3) from the University of :YJadras, India , and M S
degrees (l9H6) i n operations research and statist ics ancl i n computer and sys

tems engineering from Rensselaer Polytechnic Institute.

Matthew B. Kirk Matthew Kirk is a senior software engineer in the sH;/A D
A)(! ' Migration Tools Gro u p , where he works on binary translator development.

testing, and support . He joi ned D igital i n 1986 and has a lso designed and devel

o ped automated arch i tectu ral test software for pipel i ned VAX hardware and the

CJ computer i nterconnect. Matthew bolus a B .S. in computer science (1986)

from the Un iversity of Mnssachusetts.

Nancy P. Kronenberg Nancy Kro nenberg joined Digital in 1978 and has

developed VMS support for several VAX systems. She designed and wrote the v,vts

CI port cl river a nd part of the V\<!Scluster System Commu nications Services. I n

19HH, Nancy joined the team that investigated a l ternatives t o the VA X archi tec

ture ami drafted the proposal for the Alpha AXP architecture and for porting the

OpenV\<IS operating system to i t. Nancy is a senior consult ing software e ngineer

and technical d irector for the Openv;vts AXP Group . She holds an A B . degree i n

physics from Cornell Un iversi ty.

Kathryn Kuchler Kathryn Kuchler received a B.S. degree in electrica.l engi

neering from Corne l l University i n 1990. Upon graduation. she jo ined D igita l 's

Semiconductor E ngineering Group, where she worked on the first implementa

tion of a ruse m icroprocessor based on the Alpha AXP architecture.

Hugh R. Kurth Hugh Kurth jo ined Digital in 1986 after receiving a B .S.

degree in electrical engineering, computer engineer i ng, and mathematics from

Carnegie-Mellon Un iversity. At Carnegie-Me l lon, he was elected to Eta Kappa Nu

and was awarded the David Tu ma Undergraduate Laboratory Project Award .

A senior hardware engineer, Hugh designed the TCDS ASIC and SCSI subsystem

for the DEC 3000 AXP Model 500. Prior to this work, he designee! floating-point

hardware for two projects in the Advanced VA X Development Group.

Maureen Ladd Maureen Ladcl received a B.S. degree in computer engineering

from the University of I l l inois in 1986. She then jo ined the Semiconductor

Engineering Group wit h i n Digital and worked on a 32-bit !USC microprocessor.

Mau reen received an M. S. E. degree in electrical engineering from the U niversity

of M ichigan in 1990 through D igital 's Graduate Engineering Education Program.

Upon her return to D igita l , she worked on the implementation of the first micro

processor based on the Alpha AXP architecture.

Burton M. Leary Mike Leary is current ly a consu l t i ng engineer in the

Semiconductor Engineering Group/Advanced Development Memory Group. He

designed the instruction and data caches for t he DECchip 21064 CPU and is cur

rent ly working on the design of advanced memory products. Mike joined Digital

in 1980 after receiving a tl.SE. E . degree from the University of Massachusetts.

Liam Madden Liam Madden joined Digita l in 1984 and has since designed

both CISC and ruse microprocessors and contributed in the area of CMOS process

development. He is currently a consu l tant engineer in Digita l 's CPU Advanced

Development Group and his interests i nclude circuit design and CMOS tech

nology deve lopment. Prior to jo in ing D igita l , Liam designed industrial. micro

contro l lers for Mahon and McPh i l l ips, I re land, and worked for Harris

Semiconductor. He received a B S. degree from U n iversity Col lege Dublin in 1979

and an M.E . degree from Cornel l University in 1990.

I

1 1

Biographies

1 2

Maurice P. Marks Maurice Marks i s a senior engineering manager i n the

Semiconductor Engineering Advanced Development Group . He current ly man

ages the AXP Migration Tools Group and contributed to the design and imple

mentation of rhe translators. In Mau rice 's twenty years w ith Digital , h e has led

compiler, operating system, hardware and software tools, CAD, system, and chip

projects. He holds !3.Sc. and B. E. degrees from the University of New South Wales

and has publ i shed papers on transaction processing, software portabi l ity, and

CAD technology. Maurice is a mem ber of the Australian Computer Soc iety.

Barry A. Maskas Barry Maskas is the project leader responsible for architec

ture, semiconductor technology, and development of the DEC 4000 AXP system

buses, processors, and memories. He is a consulti ng engineer with the Entry

Systems Business Group . In previous work, he was responsib le for the architec

ture and development of custom VLSI peripheral chips for VA X 4000 and M icro VAX

systems. Prior to that work, he was a codesigner of the Micro VAX I I CPU and mem

ory modules. He joined Digital in 1979, after receiving a B.S E.E. from Pennsylvania

State Un iversity. H e holds three patents and has eleven p atent applications.

Edward J. McLellan Ed McLel lan is a principal engineer in the Semi

conductor E ngineering Group. He has contributed to the design of several pro

cessor chips. Ed joi ned Digital i n 1980 after recei v i ng a B.S. degree i n computer

and systems engineering from Rensselaer Polytechnic Institute, where he was

elected to Eta Kappa N u . He holds three patents in compllter design and has one

application pending.

Derrick R. Meyer Dirk Meyer joined D igital 's Semiconductor Engineer ing

Group in 1986. He w::1s i niti::Jlly i nvolved i n the design of the cache and memory

systems for a chilled CMOS VA X p rocessor. He has since been involved in the

development of microprocessors based on the Alpha AXP arch itecture. Prior to

joini ng Digital, he was employed at I ntel Corporation, where he was involved in

the design of various CMOS m icrocontrollers, including the 80C51 and 80C l96

Dirk received a R.S. degree i n computer engineering from the University of

I l linois in 198:1.

Zia Mohamed Zia Mohamed has been a member of the Database Systems

Group s ince joining D igital in 1989. He works in the area of query optimization

for the DEC Rdb for OpenVMS products; h is contributions i nvolve cost-based

optimization of database queries and algorithms for execution of optim ized

query plans. He has developed dynamic OR optimi zation techniques, refinement

of cost-model, and algorithms for better access plans for views. Zia holds a B . S.

degree in e lectrical engineer ing from Bangalore University, India , and an M.S.

degree in computer science from Texas Tech University

james Montanaro James Montanaro received B . S.E.E. and M.S .E .E . degrees

from the Massac husetts Institute of Technology in 1980. He joined Digital

Equipment Corporation in 1982. He was a circuit designer on the floating-point

chip for the LSI 11/74 and a M icro VAX peripheral chip. He led the physical imple

mentation of the uPR ISM CPU, a 70-MHz prototype RISC CPU completed in 1988.

james also led the phys ical implementation of the first CPU chip based on the

Alpha AXP architecture and then contributed as a circuit designer for the

DECchip 21064 CPU. He is currently with Apple Computer, Inc .

Stephen J. Morris Stephen Morris is a consultant software engineer in the

Sem iconductor Engineering Advanced Development Group . In addition to writ

ing the Alpha ISP simulator, he wrote the OpenVMS and OSF PALcode for the

Alpha AXP program. In previous work, Stephen designed the control sections of

the instruction prefetch and translation look-aside bu ffer for an experimental

D igital RISe chip. He also worked on the Micro VAX chip team, doing console and

debug work, and in the RSTS/E operating system group. Stephen joined Digital

after receiving a B.A. in biology from the University of Rochester in 1977

William B. Noyce Senior consu l tant software engineer Will iam Noyce is a

member of the Software Development Tech nol ogies Group. He has developed

several GEM compiler optimiza tions, including those that elim inate branches. In

prior positions at D igital, Bi l l implemented support for new disks and proces

sors on the RSTS/E project, led the development of VAX DBMS Vl and VAX

Rdb/VMS Vl, and designed and implemented automatic paral lel processing for

VAX FORTRAN!HPO. Bi l l received a B.A (1976) i n mathematics from Dart mouth

Col lege, where he implemented enhancements to the time-sharing system.

Donald A. Priore After receiving an S.M. degree in electrical engineering and

compu ter science from the Massachusetts Institute of Technology, Donald

Priore joi ned Digital i n 1984. Initially, he worked on device characterization,

yield enhancement, and yield model ing of NMOS and CMOS processes in manu

facturing. Subsequently, he joined a CMOS design group, work i ng first with

low-temperature CMOS technology and later with conventional CMOS in high

performance microprocessor design. His interests include signal, clock, and

power integrity in the on-chip environment.

Vidya Rajagopalan Vidya Rajagopalan received a B.E. degree in electronics

engi neering from Visvesvaraya Regional Co l lege of Engineering, Nagpur, I ndia,

in 1986, and an M .S. degree in electrical engineering from the Un iversi ty of

Maryland in 1989. She was with Norsk Data India Ltd. from I986 to 1987 as a

systems design engi neer. I n 1989 she joined D igita l 's Semiconductor Engineer

ing Group and was a member of the design team of the DECchip 21064 RISC

microprocessor. Vidya is currently involved in the design of h igh-performance

microprocessors.

I

1 3

Biographies

James). Reisert A senior hardware engin eer, .J im Re isen designed the TC ASIC

fo r the DEC :)000 A XI' Model 500. Prior to this project work, he designed instruc

tion parsers/d ecoders for two VAX i m plemenuti ons. J i m holds a patent for his

design of a method for replayi ng i nstructions after a microtrap. Before joi n i ng

Digital in 1986, he received an S.B. i n electrical engi nee ring from the Massa

chusetts I nstitute of Technology. He is currently in ch arge of t iming ve rificat ion

for another AXP workst"a tion.

Pamela J. Rickard Pri ncip a l software engineer Pam R i ckard is a member of

the team port i ng DECnet/OSI for Open VMS to the Alpha AXP platform. As the i ni

t ia l member of the DECnet for Open V.\1S AXP porting team, Pam took res ponsi

bil ity for creat ing an effective team, ported NETDRIVER and other ''-'lACR0-:)2

code. and debugged major portions of the ported p roduct. S ince j o i n i ng D igital

in 1978, she has contribu ted to PATHWORKS for OS/2 and led the console,

microcode, and system test activi ties of the VAX-1 1/785 p roject. Pam received a

R.S. (1970) in mathematics and comp u ter science from the Un iversity of Denver.

Scott G. Robinson Scott Robinson is a software engineering m a nager in the

A XI' Migration Tools Grou p. He contribu ted to the design and i mplementation of

the bi nary translators, parti cularly the VAX translated i mage env i ron me nt . Scott

has a lso devel oped i mplementations of DECnet and CAD/Cr\.Vl systems to design

VAX processors. Prior to jo i n ing Digital in 1978. Scot t worked on a variety of

D igital hardware a ncl software implementations. He holds a BS in electrical engi

neering from the University of Arizona ai}(I is a member of l [T E .

Sridhar Samudrala Sridhar Samuclra la i s a consult ing hanlware engineer in

the Semiconductor Engineering Group, where he is currently working on a new
C : l ' l l chip. He joined Digital in 1977. Since that t ime. he has worked o n the design

and verificat ion of I'DP-1 1/2.3 chips, VAX 8200 m i crocode deve lopment, and on

the arch itectu re and des ign of floating-point chips. He holds two patents and has
three patent applications pending, a l l on float ing- point design. Sridhar received
an M .Sc . (Tech) degree from And h ra Un iversity, I nd ia, and an :Vl .S. E. E. degree from
the Un iversity of Wisconsin.

Sribalan Santhanam Sri Santhanam received a fl. E. degree in electrica l engi

neeri ng from Anna University, Madras, Ind i a , in 1987, and an M .S.E. dcgn.:c i n com

puter science and engineering from the U niversity of Mich igan in 19H9. Upon

graduation, he joined Digital as a design engi neer for the Semicondu ctor

En gineering Group, responsible for the fu l l -custom design and development of

high-performan ce CMOS VL'il processors. Sri worked on the design of t he float

ing-point unit of the DECchip 21064 CPU. He is currently in volved i n the design of

another h igh-pe rformance microprocessor.

Stephen F. Shirron Stephen Shirro n is a consu lt ing software engineer i n the

Entry Systems Business Grou p and is responsible for OpenVMS support of new

systems. He contribu ted to many areas of the DEC 4000, i ncluding PALcode, con

sole, and OpenV.VIS support. Stephen joi ned Digi tJ l in 1981 after comp leting HS
and M .S degrees (summa cum la ude) at Cathol ic Un iversity. In previous work, he

developed an in terpreter for VA X/Smalltal k-80 and wrote the firmware for the

RQDX3 disk control ler. Stephen has two patent appl ications and has written a

chapter i n Smalltalk-80: Bits of His tor)!, Wrn"ds of Aduice.

Richard L. Sites D ick Sites is a senior consu l ta n t engineer in the Sem icon

du ctor E ngineering Grou p . where he is working on bi nary trans lators and the

Alpha AXP architecture. He joi ned Digital in 1980 and bas contributed to various

VA X i mplementations. Previou sly, he was employed by JB:vl , Hewlett -Packard ,

and Burroughs, and ta ught at the Univers ity of Cal iforn ia . Dick received a B.S. in

mathematics from .VIIT a nd a Ph. D. in computer science from Stanford Un iversity.

He also stud ied computer arch i tecture at the University of North Carol ina . He

holds a nu mber of patents on computer hardware and software .

Peter M. Spiro Peter Spiro, a consu l t ing software engin eer, is presently the

technical d i rector for the Rd b and DBMS software products. Peter's current focus

is database performa nce for Alpha AXI' systems and very large database issues.

Peter joined D igital in 1985, after receiving M S. degrees in forest science and

computer science from the Un iversity of Wisconsi n-Madison. He has four

patents related to database journal i ng and recove ry, and he has authored two

papers for earlier issues of the Dip,ital Teclmicaljournal.

Lawrence C. Stewart Larry Stewart received an S.l.l. in electrical engineering

from ,v!!T i n 1976, foJ lowed by ,\1 \ (1977) anu Ph . D. (1981) degrees from Stanford

University, both in electrical engineering. His Ph.D. thesis work was on data com

pression of speech waveforms using tre l l is coding. Upo n grad uation, he joi ned

the Computer Science Lab at t he X< :rox Palo A l to Research Center. In 1984 he
jo ined D igita l's Systems Research Center to work on the Firefly multiprocessor

workstation. I n 1989 he moved to Digita l 's Cambridge Research Lab, where he is

currently involved with projects relating to mul timedia and AXP products.

Robin L. Stewart Robin Stewart joined Digital in 1986 after receiv i ng a l iS in

electrical engi neering from the U nive rsity of Ve rmont. She is in the process of

obtaining an M. B.A degree from Boston Col l ege. A senior technology (hardware)

engin eer, Robin had responsibi l i ty h>r the in tegrated circuit technology in the

DEC 3000 AX.P Model '500 workstat ion. Prior to this project work, she \Vas a com

ponent engineer in D igita l 's Semiconductor Busi ness Organization.

I

I ';

niogmphies

l 6

Charles P. Thacker Chuck Thacker has been with Digi t a l 's Systems Research

Center si nce 19H:) Before joining Digita l , lle was a senior research fel low at the

Xerox Palo Alto Research Center. His research interests include computer archi

tecture , comp u ter n etworking, a nd compu ter-aided design . He holds several

patents i n the area of compu ter organ izat ion and is coi nventor of the Et he rnet

loca l area network. !n 1984, Chuck was the rec ipient (wi th B. Lampson and R .

Tay lor) o f the i\C :M Software System Awa rd . H e n: ceived a n A . H . degree i n physics

from the U n ive rsity of Cal i fornia i n 1967. He is a member of ACVI anci i EEE.

Benjamin]. Thomas III Benjamin Thomas joi ned the OpenV:'I·!S AX P project

in 1989 as pro j ect leader for l/0 subsvstem design and port i ng. In t h is role. he has

a lso contr ibuted to the l/0 arch i tectu re of c urrent ami fu ture AXP syste ms. Ben

j o i ned Digital i n 1982 ami has worked i n the VMS gro u p s ince 1984. In prior

work, he was the d i rector of software engineering at a m icrocomputer fir m . Ben

is a consu l t i ng engineer and has a H.S. (197H) in p hys ics from the U n ivers i t y of

New Hampsh ire and a n J'vi .S C . S. (1990) from Worcester Polytechn ic Instit u t e .

Catharine van Ingen A cons u lting soft ware engineer, Catha r i ne v a n lngcn

was co- system archi tect for the VAX and DEC: 7000 prod ucts. Catha rine is cur

re ntly on leave from Digital and is worki ng on engi neering document m a n age

ment in large heterogeneou s systems. Before jo i n i ng Digital i n 1987. she worked

on data acqu is i t ion systems for t wo l a rge physi cs detectors at the Fer m i National

Accelerator La boratory and Stanford Linear Accel era tor Center. She holds sev

eral degrees i n civi l engineering, i nc l u d i ng a B.S. ami an iVIS from the Un ivers i ty

of Ca l i t(>rnia and a Ph.D. from the Cal ifornia Inst i tute of Tech no l ogy.

Nicholas A. Warchol Ni ck Wa rchol , a consu l t i ng engineer in the Entry

Systems Bus i ness (;roup. is t l1e rroj ec t leader responsible for 1/0 arch i tecture

and I/O mod u le development for the DEC 4000 AX I' system s . In prev io us work,

he contributed to the development of VAX 4000 system s . He was also a (lesigner

of t he ,\ll icroVAX 3300 and 3400 processor modu les :111 d the RQDX3 disk con

trol ler. Nick jo in ed Digital in 1977 after re ceivi ng a B.S. E. E. (cum l a u de) from the

New Jersey I n stitute of Technology. In 19H4 he received a n :VI.S. E . E. from

Worce ster Polytechnic Institute. He has h>ur patent appl ications.

Richard T. Witek Rich Witek j o ined Digital i n 1977 to work on DECnet

network architecture d u r i ng Phase II . l n 1982 he jo i ned D igital's Semico nd uctor

Engin eering (�roup w here he worked on C :r\D de velopm ent , MicroVAX VLSf

ch ips, and a variety of i nternal !USC projects. Rich was a cod esigner of the A lpha

.\XP architectu re and the princip a l m i croarc h i tect of the DECchip 2 1 064 CPU
chip. He rece ived a H A degree in com p u ter science from Au rora College. Rich is

currently employed by Apple Com puter, Inc.

I Foreword

Robert M. Supnik
Corporate Consultant,
Vice President

Technical Director;
Engineering

It a l l started with eight people in a conference
room. ·:·

The time was the summer of 1988. D igital
Equi pment Corpora tion had just closed the best
fiscal year in its history, with record revenues and
profits. Digital 's VA..'< systems were the most widely
usee! t imesharing systems i n the industry ancl were
the "b lue-ri bbon standard " for mid- range comput
ing. Digital was the second-l argest workstation ven
dor. The company had just in trodu ced the VAX 6000

system, its first expandable mu l t iprocessor, was
developing a true VAX mainfra me, and had decided
on a rapid thrust into ruse workstations to capital
ize on that growing market. What coul d possibly go
wrong'

Nonetheless, senior ma nagers and engineers saw
trouble ahead. Workstations had d isplaced VA.."\ VMS

from i ts original technical market. Networks of per
sonal compu ters were replacing ti mesharing.
Appl icat ion investment was moving to standard,
h igh-volume computers. Microprocessors had sur
p assed the performance of trad it ional mid-range
computers and were c losing in on mainframes. And
advances i n !USC technology threatened to aggra
vate a l l of these trends. Accordingl y, the Executive
Com mittee asked Engineering to develop a long
term strategy for keeping Digita l 's systems compet
i t ive . Engi neering convened a task force to study
the problem.

The task force looked at a wide range of potential
solutions, from the application of advanced pipe
l in ing techniques in Vt\.,'\ systems to the deployment
of a new architecture. A basic constraint was that

the proposed sol ution hac! to p rovide strong com
patibi l ity with current pro ducts. After several
months of study, the team concluded that only a
new RISC architectu re cou l d meet t he stated objec
tive of long-term com petitiveness, and that only the
exist ing V M S and UNIX environments cou.lcl meet
the stated constraint of strong compatibili ty. Thus,
the chal lenge posed by the task force was to design
the most competitive RISC systems that wou ld run
the current software environments.

Key groups in Engineering responded to this
chal lenge. A cross -fu nctional team from h ardware
a n d software defined the basic architecture.
Advanced development teams began work on the
k notty engineering problems: in the semico nduc
tor group , the specification and design of a fast
microprocessor, and the automatic translation of
executable binary im ages; in t he operating systems
groups, on the porting of ULTRI X and of VMS (which
was not portable !) ; and in the compiler group, on
superscalar code genera tion. ln the fall of 1989,

Alpha became an offic ia l ly sanc tioned advanced
development program t In the s u m me r of 1990, i t
transit ioned t o product development.

From the origi nal core in semiconductors, oper
at ing systems, and compilers, work expanded
throughou t Engineering. The server and work
station hardware groups specified and started
designing a family of systems, from clesktop to data
center. The networks group began porting OECnet,
TCP/I P , X 25, LA'"l', and the many other network
i ng products. The layered software group inven
toried the existing portfo l io of products and
prioritized the order and importance of del ivery.
The research group pitc hed in by Jesigning an
experimenta l multiprocessor as a software devel
opment testbecl .

In parallel with the engineering work, market
ing, sa les, and service teams worked closely with
business partners and customers to shape the del iv
erables and messages to meet external require
ments. These teams briefe d key cu stomers a n d
partners e a r l y i n the development process a n d

h e Corona flore a l is conference room in the LTN I bcility i n
Littleton, Mass. LT N l was cl10s e::n because i t was the geographic

epicenter of the arc of Digital engineering fac i l ities on ,vbssa

chusct t s Route 49'>, t ile Corona l3oreal is because it was the

only conference room with windows.

'After going rhrough more than one name change. The original
study ream was called the " "lliSCy VAX "L•sk Force.·· Tile
advanced development work was l aht:led ·· [VAX."" When the

prog•·am was approved, tile Executive Com m i nce demanded :1
neu tral code name. hence ""Alpha.'"

1 7

Foreu •md

incorporated their advice into the development

progra m. Ongo ing panner and customer advisory

boards provided regu lar feedback on a l l aspects

of the program ami helped shape two critica l

extensions of the original concept: the open l icens

ing of Alpha technology. and the port i ng of

Wi ndows NT.

Ta ken together. the scope of the E ngineeri ng

effon, the need for Marketi ng. Field , and Service

i nvo lvement, ami the h igh degree of customer and

business partner participat ion, posed unique man

agement chal lenges. Rather than organize a large

scale h ierarchica l project. the company chose to

manage AJpha as a d istributed program . A sm:t l l

program team used enro l lment management prac

t ices and strict operat ional discip l ine to coordinate

and i nspect activi t ies across the company. This net

worked approach to management gave the program

both flexib i l ity ami resi l iency i n the face of rapid l y

chang ing busi ness a n d organ ization a l condit ions.

l H

The ·work o f Engineering, Manufactur i n g , Mar

keti ng, Sales, a nd Service came together in Novem

ber 1992 with the annou ncement of the Alpha AX!'

systems fami ly : seven systems, three operat ing sys

tems, six l anguages, mu l t ip le networks, m igrat ion
tools, open l icensing of techno logy, hardware and

software partnersh ips. and more than 2000 com

mitted appl ications. Today, Alpha AXP embodies a

fundamental reposit ioning of Digi t a l Equ ipment

Corporation to be the technology and solutions

leader in twen ty-first century computing : a com

pany ded icated ro meeting customers· needs with

the best computing, busi ness, and service technol
ogy avai lable . The del ivery of Alpha r\XI' required

the largest engi neering program in Digita l ·s h istory,

spanning more than twenty Enginee ring groups

worldwide. This iss11e of the Digital Technical

journal documents just a tew of the hundreds of

projects involved in b ri nging Alpha to fru it ion;

future issues wi l l continue the story.

Richard L. Sites I

AlphaAXP Architecture

The Alpba AXP 64-bit computer arc!Jitecture is designed for higiJ pe!formance and

fongevi(V Because of the focus on multiple instruction issue, the architecture does

not containfacilities such as branch delay slots, byte writes, and precise arithmetic

exceptions. Because of the focus on multiple processors, the architecture does con

tain a careful shared- memo1y model, atomic- update primitive instructions, and

relaxed read/write ordering. Tbe first implementation of tbe Alpha AXP architec

ture is tbe world's fastest single-chip microprocessor: The DECchip 21064 runs multi

ple opemting systems and runs natiue-compiled programs that u·ere translated

from the E4 X and MIPS architectures.

Thus i n a l l these cases the Romans d id what a l l
wise pri nces ought to d o ; namely, n o t o n l y to look
to a l l present troubles, but a lso to those in the
future, against which t hey prov ided with the
utmost prudence.

-Niccolo iVbch iavdl i , T/Je Prince

Historical Context
The Alpha AXP architecture grew out of a small task

force chartered i n 1988 to explore ways to preserve

the VA X VMS customer base through the 1990s. This

group eventua l ly came to the conclusion that a new

reduced instruction set computer (RJSC) architec

ture woul d be needed before the turn of the cen

tury, primari ly because 32 -bit architectures wi l l run

out of address bits. Once we made the decision to

pursue a new arch i tecture, we shaped it to do

much more than j ust preserve the VMS customer

base.

This paper d iscusses the architecture from a

number of points of view. I t begins by making the
distinction between arch itecture and implementa
t ion. The paper then states the overrid ing archi

tectural goa ls a nd d iscusses a number of key

architectura l decisions that were derived d irectly
from these goals . The key decisions dist inguish the
Alpha AXP arch itecture from other architectures.
The remain ing sections of the paper d iscuss the
architecture in more deta i l , from data and i nstruc

tion formats through the detai led i nstruction set.

The paper concludes with a d iscussion of the
designed- in fu ture growth of the arch itecture. An
Appendix explai ns some of the key technical terms

used in this paper. These terms are h ighl ighted

with an asterisk i n the text.

Digital Teclmical journal Vol. 1 i\1(). 4 Special f,·we I'J'J.!

Architecture Distinct
from Implementations
From the beginning of the Alpha AX!' des ign, we

dist inguished the architecture from the i mplemen

tat ions, fol lowing the distinction made by the 113ivl
System/360 arch itects:

Computer arch itecture is defined as the attribu tes
and behav ior of a computer as seen by a machine
language progra mmer. This defin ition includes the
instruction set, instruction formats. operation
codes, addressing modes, and all registers and
memory locations that may be directly manipu
lated by a machine- l anguage programmer.

Implementation is defined as the actu:il hardware
structure, logic design. and data-path orga nization
of a part icu lar embodiment of the architecture . 1

Tbus, the architecture i s a document that

describes the behavior of a l l possible implementa

tions; an i mplementation is typica l ly a single com

p u ter chip. 2 The archi tecture and software written

to the architecture are i ntended to last several

decades, whi le individual implementations wi l l
have much shorter l ifetimes. The architecture m ust

therefore carefu l ly describe the behavior that a

m ach ine- l a nguage programmer sees, but must not
describe the means by which a particu lar i mple
mentation achieves that behavior.

A s imi lar approach has been used with much
success in specify ing the PDP-1 1 ancl VAX fami l ies of

computers. An al ternate approach is to design and

bui ld a fast RISe" ch ip , then wait to see if i t is suc

cessful in the marketplace. If so, successive imple

mentations are often forced to reproduce accidents
of the in i t ia l design, or to i ntrodu ce s l igbt software

i ncompatib i l i t ies. This approach works, but with

varyi ng success.

1 9

Alpha t\.,'1:]> Architecture and Systems

Architectural Goals

When we started the detai led design of the Alpha
AXP architecture, we had a short l ist of goa ls:

1 . H igh performance

2. Longevity

3. C1 pabi l ity to run both VMS and UNIX operating

systems

4. Easy migrat ion from VAX and ,\·l iPS arch i tectures

These goals d irectly influenced our key decisions

in designing the archi tecture.
In consideri n g performance and l ongevi ty, we

set a 1')- to 2'5 -year design horizon and tried to avoid

any design elements that we thought could become

.l imitat ions d u r ing th is L i me. In current arch itec
tures, a primary l i m i tat ion i s the 32-bit memory

address. Thus we adopted a fu i i 64-bit archi tecture,

with a minimal n u mber of 32 -bit operations for

backwarcl compatibi l i ty.

We a lso considered how i m plementation pe rfor

mance shou ld scale over 2') yea rs. D u ring the past

25 years, compu ters have become about I ,000

t imes faster. Therefore we focused our design deci

sions on a l l ow i ng Alpha AXP system i mplementa

tions to become 1 ,000 times faster over the com i ng

25 years. In our project ions of hnure performance,

we reasoned that raw clock rates wou l cl improve by

a factor of 10 over that t ime, and that other design

d i mensi ons wo u l d have to prov ide two more fac

tors of 10.

If the clock cannot be made faster, then more

work must be done per clock tick. We therefore
designed the Alpha A X P a rch itecture to encourage

mu I t ip le i nstruct ion issue'' i m p lementations that
wi l l eventua l ly sustai n about ten new instructions
starting every clock cycle. T h is aggressive tech
n i que of start i ng m u l tiple i nstructions dist in
gu ishes the Alpha A X I' arc h i tecture from many
other I{ISC: architectures.

The re m a i n i ng factor of 10 wil l come from m u lti
ple processors. A single system will cont a i n per
haps ten processors and share memory. We

therefore designed a m u l t i p rocessor memory

model and m a t c h i ng instructions from the begin

n i ng . This early accom modation for mu lt iple pro
cessors a lso di stingu ishes the Alpha AXP

arch i tectu rc from many other RlSC architecm res,
which try ro add the proper pr imit ives la ter.

To run the OpenVMS AXP a n d the OEC OSF/ 1

AXP-and now the Microsoft Windows NT-operat
ing systems, we adopted an idea from a previous

20

Digi t a l RISC: design cal led I'IUSM .' We placed the

u nderpinnings fo r i n terrupt del ivery and return,

except ions. co ntext switching, memory ma nage

ment , and erro r h an d l ing in a set of pr ivi leged
software subrou t i nes cal led l'ALcode. These s u b

rou ti nes have control led entry poinrs , run with

i n terrupts turned off, and have access to rea l h ard

ware (i mp lement ation) registers. By inc lud ing d if

ferent sets of PA!.code fo r different op erat ing

syste ms. neither the harclware nor the operating

system is b urdened with a bad interface match, and

the archi tecture i tsel f is not biased toward a p a rt ic

u l a r compu ting style.

To run exis t i ng VAX and M I PS binary images, we

ado pted the idea of binary translat ion, ' as described
in a compan ion paper. ' '1' The com bination of
PA!.code and b i nary t rans lat ion gave u s the l uxury
of designing a new architecture. Other than the fun

damental i nteger and floa t ing-p o i n t data types,

there are no sp ecific VAX or Mil'S features carried
d i rectly i nto the Alpha AXI' instructio n-set a rchi tec

t ure for compatibi lity reasons.

Key Design Decisions

This secr ion presents the design decisions that d is
t i ngui s h the Alpha AXP a rch i tecture from o thers.

RISC
The Al pha AXP a rchi tect ure is a trad it ional R I SC

load/store arc h i tect u re . Al l data is moved between

registers and mem ory without computation, and a l l
com purat ion is done between val ues i n registers.

L it tle-endian byte add ressing and both VAX and IEEE

floati ng-point operations''' arc carried over from the

VAX and ,'vl lPS architectures .- \Ve assu med that most
i mplementat ions wou ld pip el ine instruct ions, i .e . ,
they would starr execution o f a second, t h i rd , etc .
instruct ion befo re the execut ion o f a f irst i nsLTuc
tion completes. We assu med that the i m plementa
tion latency of many o perat ions wou ld be
important . Latency is the nu mber of cycles a pro
gram m u st wait to use the resul t of a p reced i ng
i nstruct ion . We assu med that the vast majority of

memory operands wo u ld be a l igned . A n a l igned

operand of s ize 2**N bytes'' has an addre , with N

l ow-o rder zeros. O ther memo ry oper:111ds are
termed u n a l igned.

Full 64-bit Design
The Alpha AX!' arch i tect ure uses a l i n ear''' 64-bir v i r

tual address space. Registers, add resses, in tegers,
floa t i ng-point nu mbers, and character stri ngs are

l in/. -1 .\'u. Special issue /')').! D(�ilal Tec/Ju ical jourual

a l l operated on as fu l l 64-bit quant i t ies. There are
no segmented addresses.''

Register File
In choosing the register fi le uesign, we consic.le recl

both a single combined register file and sp l i t integer

and floating-point register fi les. We chose a spl i t

register fi le to support aggressive mul tiple issue . A

combined file is somewhat more flexi ble, espe

cia l ly for programs that are heav i ly skewed toward
integer-only or floating-po int-only compu tation. A

combined file a lso makes it easier to pass a mixture

of in teger and floating-point subroutine parameters

in registers. However, spl i t fi les al low gracefu l two
chip implementations and smal ler integer-only

im plementations. They also need fewer read/write

ports per fi le to sustain a given amou nt of m u l t iple

instruction issue.
We also considered whether each file should con

tain 32 or 64 registers. We chose 32, l argely because

I. Th irty- two registers in each fi le are enough to

support at least eight-way mu lt iple issue .

2 . Two valuable instruction bits are bet ter useu to

make a 16-bit displacement fielcl in memory

format i nstructions.

More registers might seem better, bu t excess reg
isters consu me chip area and access time,

save/restore speed ac ross subroutines and context

switches, and i nstruction bits that might be put to

better use. Compi lers can del iver substantial per
formance ga ins when given .'12 registers instead of

16, but there is no clear ev idence of s imi lar gains

with 64 registers. Demand for registers is l i kely to
increase s lowly in the future, bu t a number of

im plementation techniques, such as short l atency

pipel ines and register renaming , shou ld satisfy this
demand.

Multiple Instruction Issue
Our design sought to e l im inate any mechan ism that

wou ld h inder aggressive m u ltiple instruction issue
implementations. Therefore we tried to avoid a ll
special or h idden processor resources 8 Thus, the
Alpha AXP architecture has no cond ition codes, no
globa l exception enables, no m u ltipl ier-quotient or

string registers, no branch uelay slots, no sup

pressed instructions or sk ips, no precise arithmetic
exceptions, anc.l no single-byte wri tes to memory.

Al l of these features, found in some !USC arch itec
tu res, have the effect of hinde ring mul tiple i nstruc
tion issue, or h i nderi ng pipe l i n ing of multiple

D igital Tech11icnl jourunl llr>l. 4 No. 4 Special Issue /'J'Jl

Alpha AX.P Architecture

instances of the same instruction. For example, a

ded icated string register makes it hard to have three

unrelated string operations in the pipel ine at once.

To i l l ustrate the performance loss associated

with speci a l or h idden processor resources, con

sider a dual- issue implementation with a four-cycle

deep pipel ine . At the beginning of each cycle, up to

six prior instructions are part ia l ly executed and

two more are about to be issued . Six pr ior instruc

tions can have six pending writes to resu l t regis

ters, plus six sets of s ide effects on specia l or

hidclen processor resources. The next two instruc

t ions can specify a total of four operant! registers,
two more resu lt registers, and two more sets of side
effects on special or h idden resources. The decision

to issue 0, I , or 2 of the next i nstructions involves

36 s imple comparisons of pairs of register numbers

and 12 complex comparisons of sets of side effects.

The nu mber of such comparisons increases as a
function of the issue width, the pipe l ine depth, and

the number of special or b idden processor

resources. The complexity of these comparisons

can l imit the c lock rate . The register-nu mber com

parisons are unavoidable, therefore we tried to

l i m it special or h iuden p rocessor resources.

Branch Delay Slots The Alpha AXP archi tecture

has no branch delay s lots. The branch delay slots
founcl in some !USC architectures require exactly

one fol lowing instruction to be executed after a
cond it ional branch. ln 19 88 this was, perhaps, a

goocl idea for overl apping branch l a tency i n a sin

gle-issue ch ip with a one-cycle instruction cache. In

1995, however, it wi l l not scale wel l to a fou r-way

issue chip with a two-cycle i nstruction cache.

Instead of one instruction, up to eight instructions

wou lcl be needed in the cle lay s lot. Branch delay

s lots also introduce a restart problem if the i nstruc

t ion in the delay slot fau l ts: one restart program
counter is needed for the delay slot and another one
for the actual branch target.

Suppressed Instructions The A lpha AXP a rchi tec
ture has no suppressed instructions, wl1ereby the
execution of one instruction condit ional ly sup
presses a fol lowing one. Supp ressed (or skipped)
instructions are found in other HISC architectu res.

The suppression bit(s) represent nonrepl icatecl

hidden state, so m u ltiple instruction issue is diffi

cu l t for more than one potentia l suppressor. If an
interrupt is taken between a suppressor and sup
pressee, or i f the suppressee takes a restartable

exception (e .g. , page fa u l t), the correct version of

2 1

AJpha AXP Architecture and Systems

the suppress ion state must be saved and restored .
There are also definit ional problems with this

approach: Are exceptions ever reported for sup
pressed instructions' What happens if the sup
pressed instruction suppresses a th i rd i nstruction'

13yte Load or Store Instructions The Alpha AXI'
architecture has no byte load or store i nstruct ions
and no impl icit unal igned accesses. There also are
no partial- register writes. The byte load/store
instructions and una l igned accesses t(nll1 d in some
!USC archi tectures can be a performance bott le
neck. They requ ire an extra byte sh ifter in the
speed-critical load and store paths, and they force a
hard choice in fast cache design . The partial- regis
ter writes found in other RISC arch itectures can also
he a performance bott leneck because they requ ire
masking and shifting in the fundamental operat ion
of accessing a register.

On a previous project i nvolving a M i l'S implemen
tat ion, we fou nd the sh ifter for the load- left/load
right instructions to be a d i rect cycle-t ime
bottleneck. Also, the VA X 8700 i m pl ementation
(circa 1986) removed the byte sh ifter in the
load/store hardware i n favor of a faster microcycle.
with 2 cycles for a byte load and 6 cycles for an
unal igned :)2-hit access. T h is decision achieved a
net performance gai n . Our experience encouraged

us to avoid byte load/store.
An additional problem with byte stores is that an

implementer may easi ly choose only two of t he
three design features: fast write-back cache, single

hit error correction code (ECC), or byte stores.

Byte stores are straightforward in simpLe byte

parity write-through cache imrlementations.
Except for the expensive design of fou r or five ECC
bits for every e ight bits of data, a byte store to a fast
FCC write-back cache involves

I . Reading an entire cache word" '

2 , Check ing the ECC bits and correcting any single
bit error

;'!. Modifying the byte

4. CaLculating the new ECC: bits

) . Wri ting the entire cache word

This read-modify-write sequence requires h idden
sequencer hardware and hidden state to hold the
cache word temporari ly. The sequen cer tends to
slow down ord inary fu l l-cache-word sto res. The
need for byte stores tends to ripple throughout
the memory subsystem design, making each p iece

22

a little more compl icated and a l i tt le slower. With
nonrepl icated hid den state, i t is d ifficul t to issue
anot her byte store u ntil the first one fi nishes.
Fina l ly, the existence of a byte store i nstruction has
Jed to programs and l i brary routines for other ruse
implementations with single-byte move and com
pare loops, String manipulatio;l on Alpha AXP
i mplementations is up to eight t i mes fastc:r by pro
cessing eight bytes at a time 9

Instead of including byte load/store, we fol lowed
the RISC phi losophy of exposing h idden computa
tion as a sequence of many simple, fast instructions.
In the Alpha A .. '<P architecture , a byte load is done as
an expl icit load/shift sequence; a byte store as an
expl icit load/modify/store sequence. We tuned the
instruction set to keep these sequences short. The

instructions in these sequences can be i ntermixed ,
schedu led , and issued as mult iples with other com
putation, as can the rest of the i nstructions i n the
architecture , Table l gives a summary of the Alpha
AXP i nstruction set

Arithmetic Exceptions The Alpha AXP architec
ture has no precise arithmetic exceptions.
Reporting an arithmetic exception (e ,g . , overflow,
u nderflow) precisely means that instructions
subsequent to the one causing the exception
must not be executed . This is straightforward
in a slow implementation that runs a single instruc
tion to completion before start i ng the next one,
but becomes substantia l l y more d ifficu lt to do
qu ickly in a p ip e l i ned four-way issue i mplemen
tat ion. There are standard techniques avai lable
for del ivering precise exceptions whi le run

n i ng quickly (checking exponents, suppressing
register writes, exception si los and backout), but
these techniques consume substantial design
t ime a mi can cost some performance. Thev appear
not to scale wel l with wider multiple issue or
faster clocks.

Exceptional cases are just that-exceptional , or
rare, events. Based partly on customer requests, we
decided to emphasize the p erformance of normal
operat ions at the expense of exceptiona l cases.
Rather than an impl icit exception ordering

between every pair of instructions, we adopted the
Crav-l model of ari rhmetic except ions- i n which
exceptions are reported eventual ly - plus an
expl icit trap barrier (TRAP B) instruction that can be
used to make exception reporting as precise as
desired . '" We also documented a code-generation
design that needs one trap barrier per branch (at
m ost) to give precise report ing, Using TRAPB

Vol. 1 .Vu. 4 Speciaf fssue f'J92 Digital Tee/mica/ journal

Alpha AXP Architecture

Table 1 Alpha AXP Architecture I nstruction Set Summa ry

Load/Store, Byte Manipu lation

LOA Load address
LDAH Load address high
LDL Load sign-extended longword
LDQ Load quadword
LDQ_U Load unal igned quadword
LDL_L Load sign-extended

longword, locked
LDQ_L Load quadword locked
STL_C Store longword, cond itional
STQ_C Store quadword, cond itional
STL Store longword
STQ Store quadword
STQ_U Store unaligned quadword
EXTBL Extract byte low
EXTWL Extract word low
EXTLL Extract longword low
EXTOL Extract quadword low
EXTWH Extract word h igh
EXTLH Extract longword h igh
EXTQH Extract quadword high
I NSBL I nsert byte low
INSWL I nsert word low
INSLL I nsert longword low
IN SOL I nsert quadword low
INSWH I nsert word high
INSLH I nsert longword high
IN SOH I nsert quadword high
MSKBL Mask byte low
MSKWL Mask word low
MSKLL Mask longword low
MSKQL Mask quadword low
MSKWH Mask word high
MSKLH Mask longword high
MSKQH Mask quadword high

Floating Point Load/Store

LDF Load F format 0/AX single)
LOG Load G format 0/AX double)
LOS Load S format (IEEE single)
LOT Load T format (I EEE double)
STF Store F format 0/AX single)
STG Store G format 0/AX double)
STS Store S format (IEEE single)
STT Store T format (IEEE double)

Address/Constant

LOA Load address
LDAH Load address high

I nteger Computation and Conditional Move

ADDL Add longword
S4ADDL Add longword, scale by 4
S8ADDL Add longword, scale by 8
ADDQ Add quadword
S4ADDQ Add quadword, scale by 4
S8ADDQ Add quadword, scale by 8
CMPEQ Compare signed quadword =

Digilal Technict�l journal Vol. 4 No. 4 Specictl /ssu£' / '}').!

CMPLT Compare signed quadword <
C MPLE Compare signed quadword :::;
CMPULT Compare unsigned quadword <
C M PULE Compare unsigned quadword :::;
MULL Multiply longword
M U LQ Mult ip ly quadword
U M ULH Mult iply quadword high, unsigned
SUBL Subtract longword
S4SUBL Subtract longword, scale by 4
S8SU BL Subtract longword, scale by 8
SUBQ Subtract quadword
S4SUBQ Subtract quadword, scale by 4
S8SUBQ Subtract quadword, scale by 8
AND AND logical
BIS OR log ical
XOR XOR log ical
BIC AND-NOT log ical
OR NOT OR-NOT logical
EQV XOR-NOT logical
SLL Shift left, logical
SAL Shift right, logical
SRA Sh ift right, arithmetic
C MOVEQ Cond itional move if reg = 0
C MOVNE Cond it ional move if reg ;t 0
CMOVLT Cond itional move if reg < 0
CMOVLE Cond itional move if reg :::; 0
CMOVGT Cond itional move if reg > 0
CMOVGE Cond it ional move if reg � 0
CMOVLBC Cond itional move if reg low

bit clear
CMOVLBS Cond itional move if reg low

bit set
C M PBGE Compare bytes, unsigned
ZAP Clear selected bytes
ZAPNOT Clear unselected bytes

I nteger Branch

BEQ Branch if reg = 0
B N E Branch if reg "F 0
BLT Branch if reg < 0
BLE Branch if reg :::; 0
BGT Branch if reg > 0
BGE Branch if reg � 0
BLBC Branch if low bit clear
BLBS Branch if low bit set
BR Branch
BSR Branch to subroutine
J M P Jump
JSR Jump to subroutine
R ET Return from subrout ine
JSR_COROUTIN E Jump to subroutine, return

Floating Point Branch

FBEQ FP branch if = 0
FBNE FP branch if ;t 0
FBLT FP branch if < 0
FBLE FP branch if ::; 0
FBGT FP branch if > 0
FBGE FP branch if � 0

continued on next page

23

Alpha A.,'XP Architecture and Systems

Table 1 Alpha AXP Arch itect u re I nstruction Set Sum mary (co ntin ued)

Floating Point Computation
and Conditional Move

CPYS Copy sign
CPYSN Copy sign, negate
CPYSE Copy sign and exponent
CVTQL Convert quadword to longword
CVTLQ Convert longword to quadword
FCMOVEQ FP cond itional move if reg = 0
FCMOVNE FP condit ional move if reg tc 0
FCMOVLT FP condit ional move if reg < 0
FCMOVLE FP cond it ional move if reg � 0
FCMOVGT FP cond itional move if reg > 0
FCMOVGE FP conditional move if reg 2 0
M F_FPCR Move from FP control register
MT_FPCR Move to FP control register
ADDF Add F format fYAX sing le)
ADDG Add G format 0/AX double)
ADDS Add S format (I EEE single)
ADDT Add T format (IEEE dou ble)
CMPGEQ Compare G format =

0/AX double)
C M PGLT Compare G format <

0/AX double}
C M PGLE Compare G format ::;

0/AX double}
CMPTEQ Compare T format =

(IEEE double)
CM PTLT Compare T format <

(IEEE double)
CMPTLE Compare T format ::;

(IEEE double)
CMPTUN Compare T format

unordered (IEEE doub le}
CVTGQ Convert G format to quadword

0/AX double}
CVTQF Convert quadword to F format

0/AX single)
CVTQG Convert quadword to G format

fYAX double}
CVTDG Convert D to G format

0/AX double/double)
CVTGD Convert G to D format

0/AX double/double)

instruct ions in the first A l ph a A XP imp leme n t a t ion

lowers performan ce ;) p erce n t ro 25 percent in real

float i n g- po in t programs ami k�s t han 1 pe rcen t in

i nteger programs, but i mrroves cycle t ime a pproxi

mately 1 0 percent.

In co n trast to arithmetic except ions , nH:m ory

managcmcnr excep t i o ns, such as page fa u l ts, are

repo rt ed preci se]\'. This is not as m u ch of a b u rden

o n i mp lemen te rs a s prec i se ar i thmetic exce p t i o n s

w o u l d b e , and l ack of precise memory management

fa u l ts wou ld be a severe b u rd e n on software

wri ters.

24

CVTGF Convert G to F format
0/AX double/single)

CVTTQ Convert T format to quadword
(IEEE dou ble}

CVTQS Convert quadword to S format
(IEEE sing le)

CVTQT Convert quadword to T format
(IEEE double)

CVTTS Convert T to S format
(IEEE double/single)

CVTST Convert S to T format
(IEEE si ngle/double)

D IVF D ivide F format fYAX sing le}
D IVG D ivide G format 0/AX double)
D IVS D ivide S format (IEEE single}
DIVT Divide T format (IEEE double}
M U LF Mu ltiply F format 0/AX single}
M ULG Mu ltiply G format 0/AX double}
M ULS M u ltiply S format (IEEE single}
MULT M u lt ip ly T format (IEEE double)
SUBF Subtract F format 0/AX single)
SUBG Subtract G format fYAX double)
SUBS Subtract S format (IEEE single)
SUBT Subtract T format (IEEE double)

System

CALL_PAL Cal l privi leged arch itect u re
l i brary

TRAPS Trap barrier (precise exception)
FETCH Prefetch (cache) date h int
FETCH_M Prefetch (cache) data,

mod ify h i nt
MB Memory barrier (ser ial i ze)
WMB Memory barrier (serial i ze) write
RPCC Read process cycle counter
RC Read and clear
RS Read and set

PALRESO PALcode reserved opcode 0
PALRES1 PALcode reserved opcode 1
PALRES2 PALcode reserved opcode 2
PALRES3 PALcode reserved opcode 3
PALRES4 PALcode reserved opcode 4

Sbared-JJWJJIOIJ' flllultiprocessing
The Alpha AXP arch i tectu re's sh ared-memory

m u l t i processing m od l· l is an i n tegral parr of the

design. I t is not the add - on found in other RISC

arch itcctu res.

TL1c u n d t>rl� ing p ri m i t i ve for safe updati ng of

a m u l t iprocessor-sh ared memory locat ion is a

sequ e nce of Rtl: i nstru ct io ns load- locked , i n - regis

tn modi h . store-co n d i t ion a L test . If th is sequence

complete� wi th no i nter r u p ts , n o exceptions, and

no i n t (.' r fcring \N ritc from an other processor, then

t he s to re- conditional ston:s the mod ified result ,

\ i ll. 1 \u. ·i \jwcictl lssll<' I 'J'J.! Dip,itnl Tecbnical journal

and the test ind icates su ccess: a n atomic up date
was in fact pert(>rmed.

If anything goes wrong, tbe store-conditional
does not store a resu lt . and the test i n d icates fa il

u re. The progra m must then retry the sequence

u nt i l it succeeds. We chose t h is pri m i t ive sequence
(qu ite s imi lar to the MIPS R4000 chip design5)
because it can be implem e nted in a way that scales

up wi th processor perf"()rmance. ln the absence of
an i nterfering write, the e n tire sequence can be

done in an on-chip write-back cache, and hundreds

of ch ips can do non interfering sequences simu lta

neous ly. The sequence can also be used to acl1ieve

byte granu larity'' of writes i n shared memory -'•
The Alpha A X P architectu re has no strict m u lt i

processor read/write o rderi ng, whereby the

sequence of reads ancl writes issue<l by one proces

sor in a m u lt iprocessor configurat ion is del ivered
to a l l other processors in exactly the order issued.

Strict order is s i mple, but has a problem simi lar to

that of byte stores. An implementer m ay easi ly
choose only t wo of the th ree design features:

pipel ined writes, bus retry, or strict read/write

ordering.

If one p rocessor starts a write to location A and a
\Vrite to loca tion B, then discovers that t he write to

A has failed (bus parity error. etc.) and retries it suc

cessfu l ly, then a second processor w i l l obse rve the

wri tes out of order : H, then A.

Before Alpha AX!' im plemen tations, many VAX
i mplementations avo ided pipel in ed wri tes to main

memory, m u l t ibank caches, write-bu ffer bypassing,

rou t i ng networks, crossbar memory i nterconnect ,

etc . , to p rese rve strict read/write o rdering. The

Alpha AXP arch itectu re's shared-memory model

in stead specifies no imp I icit orde r i ng between the

reads and writes issued o n one p rocessor, as v iewed
by a d ifferent processor. This programm i ng model

is an enabl ing techno logy fo r a wide variety of high
performance im plementation techniques. Strict
ordering can be specified \Vhen needed by insertion
of expl icit memory barrier (:VIR) inst ruct ions, qu ite
s imi lar to the JB,vl System/370 serialization design . 1 1

Data Representation
and Processor State

This section describes the fu ndamental Alpha AXP

data types and their representation in memory and

registers. It a lso describes the com plete hardware

register state for each p rocessor ami o u t l i nes
the addit ional state maint ai ned by operati ng

syste m-specific PA I.code rou tines. The A l p ha AXP

Digital Tee/mica/ jou rnal Vol. -i .\'u. -1 SjJecia/ lssue 1')'-)l

Alpha AXP Architecture

arc h i tecture cl iffers from other RlSC architectures

by carefu ll y spec ifying a canonical form for 32 -bit
data i n 64-bit registers. A canonical fo rm is a stan

dard ized choice of data representation for red u n

dant ly encoded val ues. Since 32 -bit operations

assume canon ical operands and give canonical

resu l ts, very few expl icit co nversi ons between :)2-

a nd 64-bit representations are needed.

The fu ndamenta l u n i t of data in the Alpha AXP

arch itecture is a 64-bit quadword . ' ' As show n in

figure l , quadwords may reside in memory or regis

ters. For backwards compat i b i l i ty, :)2-bi t long

wonl s':' may also be stored in memory
There are three fu ndamental clara types: integer,

IEEE floating point, and VAX floating poi n t; each

is avai lable in 32-bit and 64-bit for ms. 1 12 VAX floati ng

point values i n memory have 16-bit words swapped ,

for compat i b i l i ty with VAX (and PDP-11) for m ats.
The VA X floating-point load and store i nstruct ions

do word swapp i ng'' to give a com mon register

order. The 32 -bit load i nstructions expand values to
64-bit canonical for m , and the 32-bit store instruc

t ions contract 64-bit values back to 32. 1-1 All register

to- register operations are thus done on fu l l 64-bit

val ues in a common in teger or floating-p oint for
mat. No partial-register re:tds or writes are (lone.

The canonical fo rm of a 32 -bit value in a 64-bit

i nteger register has the most significant :):) bits a l l

equal to bit<3l >. I n essence, bit<31 > is kept as a

·'fat bit ." This allows signed i nteger values to be

used directly i n 64-bit ar ithmetic and bra nches.

This canonical for m is maintained as a closed

system (even for :32 -bit data considered to be

" u nsigned '') by using a combination of 64-bit oper

ates, :)2-bit add/subtract/m u ltiply, and two- in struc

tion sequences fo r shifts.

The canonical form of a 32-bit value in a

64-bit floati ng-po i n t register has the 8-bit exponent

field expanded to I I bits and tbe 23-bit mant issa
fie ld expanded to 52 bits. Except for IEEE denor
mals , ' ' this a l lows single-precisio n floating-point
va lues to be used di rect ly in double-precision arith
metic a nd branches. This canonical form is main
tai ned as a cl osed system by using si ngle-precision
i nstructions.

Bytes ami words (16-bit quanti ties) are not funda

mental data types. They may be t ra nsfe rred

between memory a nd registers with short

sequences of i nstructions a nd man ipu l ated in regis
ters using normal arithmetic and the byte-manipu
l a t ion i nstructions desc ribed i n the Operate
Instructions secti o n .

2 5

Alpha AXP Architecture and Systems

63

El
1

63

8 EXP
1 1 1

63

I M4

1 6

QUADWORD INTEGER (MEMORY)

63

IEEE T-FLOATING POINT (MEMORY)

MANTISSA

52

VAX G-FLOATING POINT (MEMORY)

M3 M2 �I
1 6 1 6 1

LONGWORD I NTEGER (MEMORY)

1�1
1 3 1

IEEE $-FLOATING POINT (MEMORY)

EXP
1 1

�I EXP MANTISSA

1 8 23

0

I
0

I
0

I
M1
1

4

0

I
0

I

63 QUADWORD INTEGER (REGISTER)

Fl
63

63 IEEE T-FLOATING POINT (REGISTER)

H EXP MANTISSA

1 1 52

63
VAX G-FLOATING POINT (REGISTER)

H EXP
I
M
11

M2 M3
1 1 1 52

63
LONGWORD INTEGER (REG ISTER) 1 sssssssssssssssssss s lsi
32 1 3 1

0
IRX

0 I FX

0
M4 I FX

0
IRX

I EEE $-FLOATING POINT (REGISTER)
6

��:+lx_x�I_
E_x_P+1----M-A_

N
_
T_Is_s_A

____ � __
oo_o_o_oo_o_o_oo_o_o_o_oo_o_o_ .. . _o�� Fx

1 1 1 52

VAX F-FLOATING POINT (MEMORY)

3 O 63
VAX F-FLOATING POINT (REGISTER)

��

1

--_M_2
____ _._I

s
�I_
E
x
P
_._I_

M_1 ..JI lsjxxl EXP I M1 I M2 ooooooooooooooooo .. o
1 6 8 7 1 1 1 52

Figure 1 Data Representation

The hardware processor st·ate, shown i n Figure 2,
i nc ludes :)2 integer registers RO .. R:)l of 64 hits eac h :
R:3l i s a lways zero. There a r e a l s o :)2 floating-point
regis ters FO . . f:)l of 64 b i t s each: F .31 is always zero.
Writes to R:)l and F3l are ignored .

A 64 -hit program cou n ter (PC) contains a long
word-aligned v irtual byte address (i . e . , tl1<.: low 2
bits of the PC are always zero). The VAX arch i tecture
keeps the PC i n general register 1 5, \V here i t is
d irect ly used for PC- relative memory ad dressi ng . In
the AJ pha r\XP a rchi tecture, however, code and data
pages are usu a l ly separated by 64 k i l obytes (K ll) or

more to a l low separate memory protection, but the

16 -hit d ispl acement i n load/store i nstructions can
not span more than 64KB.

The hardware processor state i ncludes a lock fbg
and a locked physical add ress for the load
locked/store- conditional sequence. It also has a
float i ng-p o i n t contro l register containing the I EEE

dynamic roun d i ng mode.'''

26

Hard wa re implementations may opt iona l ly
i n clude a p a ir of state registers for memory
prefetcll ing (F ETCH/FETCJ-I_;vl instru c tions), and an

optional i nterrup t flag for use o n ly by translated
VAX openV.viS AXP programs rhat repro d u c e com
plex i nstruct ion set computer (ClSc*) instruction
atomicity using a sequence of RISC i n structions.''

In a d d i t i o n to the above hardware state, the privi
Jegnl arch i tecture l ibrary ro u t ines fo r the various
operating svstems i mplement add i t i o n a l state. Th is
state may be maintai ned by hardware o r (I'AI.code)
soft ware, at the op t i o n of the i m plementer. ami i t

varies fro m o n e opera t i ng sys tem to another.

Typical PA I .code state incl udes a processor status
(PS) word , kernel and user stack poi nters, a process
cont ro l block base for context switchi ng, a process
u nique value for threads, a n d a p rocessor n u m be r
for mu l t i p rocessor d ispatching. Add it iona l PALcode
state may include a float ing-point enabl e bit, i n ter
mpt prior i ty l evel, and tran slation look-aside

\'of. 1 ,\ u. -1 .\f!C'cial lssue f'-)')J D igital Tecbnical journal

Alpha A XP Arcbitecture

HARDWARE STATE

� 0 � 0

1�-:-� ______..;,1 lr-------:�::--� --1
l�------------�F�3�1�,A�L�w�:�����zE�R�o�)�-------------I R30 (STACK POINTER)

R31 (ALWAYS ZERO)

PC 0 D I E E E FLOAT ING-POINT DYNAMIC R O U N D I N G MODE

63 2 0

LOCKED PHYSICAL A D D R ESS D LOCK_FLAG

OPTIONAL HARDWARE STATE

PREFETCH STATE A PREFETCH STATE B

D INTR_FLAG

TYPICAL PALCODE STATE

PS

K E R N E L STACK POINTER

PROCESS CONTROL BLOCK BASE

WHO AM I (PROCESSOR NUMBER)

D FLOATING-POINT ENABLE (FEN)

[§] INTER RUPT PR IORITY LEVEL

1 T I-STREAM TRANSLATION BUFFER
1 T 1 T

USER STACK POINTER

PROCES S-UNIQUE VALUE

D-STREAM TRAN SLATION BUFFER
1 T

Figure 2 Pe1'processor State

bu ffers for mapping instruction-stream and data
stream v i rtua l addresses. Al l of this state is soft in

the sense that i t is defined on ly in rel ationship to

the PA Lcode rou tines for a specific operating
system . I n a mu l t iprocessor implementation, a l l of

the above state is repl icated for each processor.

Memory Access
Alpha AXP memory is byte addressed , using the .low
est -numbered byte of a datu m . Only a l igned long
words or quadwon.ls may be accessed: an a l igned

longword is a fou r-byte datu m whose address is a

m u ltiple of four ; an a l igned quadword is an eight

byte datum whose address is a mu ltiple of eight.
Normal load or store instructions t hat specify an
una l igned address take a precise data a l ignment

trap to PALcode (which may clo the access using

Digitnl Tecbuicnl journnl Vul. 4 No. 4 Speciul lssue !'}').!

two a ligned accesses or report a fata l error, depend

ing on the operating system design).

Alpha AXP i m p lement ations a l low data to be

accessed using either :.t l i t tle-end ian' ' view (byte 0 is
the low byte of an in teger), or a big-endian''' v iew
(hyte 0 i s the h igh byte of an int eger). As described

i n the Load/Store Instructions section, there is a
one-instruction bias in the sequences for l ittle- and
big-endian byte manipu lat ion.

Virtual addresses are a fu l l 64 bits; i m p lementa
tions may restrict addresses to have some nu mber

of identical h igh-order bits, but must a lways distin

guish at least 43 bits. Virtual addresses a re mapped

in an operating-specific way to physical addresses,
using fixed-size pages. Mem ory protection is clone

on a per-page basis. Add ress mapping errors (e.g. ,
protecti o n , page fa u l ts) rake precise traps ro

27

Alpha AXP Architecture and Systems

I'ALcode . Each p age may a lso be marked to p rovide

a fLt ult on each read . write, or instruct ion-fetc h .

Virt u a l addresses m ay h e fu rther q u a l i f ied by

ad(lress space n umbers (AS.\. s). to a l low m ul t iple

d is jo int add resses spaces. The choice of d isjoinr or

common mapping across al l p rocesses is done on a

per-page basis.

The virt ua l - to physical-add ress mapp ing is done

on a per-page basis. Each implementation may have

a page s ize of 8KB, 16K K, :)2Kil . or o .:i KB . The (J 1 r.::K
upper bou n d al lows a l inker to a l locate blocks of

memory with d i ffering protection or ,\� '\ proper

ties far enough apart to work on a l l i m p lementa

tions. The virtual- to physical·a(iti rc·s� m a p p i ng can

be many to one, i .e . . synonyms arc a l hl\\·ed . I n a

mu l t iprocessor i mp lemen tation, shared main mem

ory l ocat ions have the same physica l address on a l l

processors. Per-processor u n.� l1a rctl l ocations a re

a l so a l lowed.

Memory has l ongword gra n u l :t r i ry two proces

sors may si m u l taneously access adjaccnl lo ngwords

without m u tua l interfe rence . 'file load- locked/

store-con d i t ional sequence d iscussed previously can

be used to ach ieve m u l t iprocessor byte gra nu larity.

I n p u t/o u tp u t is memory mapped: some phys

ical memor\· addresses m a\ refer to 1/0 device

registers whose access tr igge rs s i de effects (such

as the transfer of data). Side effects on rea ds a re

cl iscou raged .

Instruction Formats

Four fu ndamental instruction t< >rma ts-op erate ,

memo ry, branch, a nd CAI.I ._ J>A I .-are shown in

Pigure :). Al l instructions are)2 bits wide and reside

in mem ory at al igned longword address es. Each

in stru ct ion contain s a 6 -bit opcode field and zero
to th ree '5 -bit register-number fie kls. RA, Hll, and RC.

OPERATE FORMAT
31 26 21 1 3 1 2 5 0

The remain ing bits contain .funct ion (opcode

extension), l i tera l , or d isplaceme n t fields. To m i n i

m i ze register fi le ports i n fast implemen tations, Rll

is never wri t ten , and RC is never read .

AJ I the operate instruct ions are th ree-operand

register-to-register, ca lcu lat ing RC == RA operate R8.
In i nteger operates, the opcode and a 7- b i t function

field specify the exact operatio n . I nteger opera tes

may have an 8-bit zero-extended I i t era! in stead of

R B . In f loat i ng-point operates, the opcode and an

1 1 -bi t function field specify the exact operat ion .

There arc no floati ng-point l i terals .

.VlemorY fo rmat instruct ions a re u sed for loads,

stores. and a kw m isce l l aneous operations. Loads

and s to res a re two-operand instructions, spec ifying

a register RA and a base-d isplacement virtual byte

address. The effective address ca lcu lat ion sign

extcncls the 16-bit d isplacemen t to 64 bits am! adds

the 64-bit Rll base register (ignori ng overflow). The

resu lt ing virtua l byte address is mapped to a physi

cal address. The misce l l a neous instructions make

other uses of the RA. R K , and displacemen t fields.

Branch fo rmat i nstructions specify a single regis

ter R.A ami a signed t>c- relar ive Jongword d isplace

ment . The branch target calc u l ation sh ifts the 2 1 -bit

(i i splacemcnt left by 2 bits to m a ke i t a lo ngword

(not byte) d isplacement. then sign extends it and

adds i t to the u pdated i>C. Condi t iona l branch

instruct ions test regi ster RA .. and uncondit iona l

branc hes write the updated PC to RA for subrout ine

l i n kage. The l arge lo ngword d isplacemen t a l l ows a

range or ± 4Nlll , substantia l l y red ucing the need for

branches arou n d or to other b ranches.

The CALL_PAL in struction has on ly a 6 -bit opcode

and a 26 -bi t function field . The fu nction field is a

smal l i n teger speci fying one of a few dozen privi

leged arch itectu re l ibrary subrou tines.

BRANCH FORMAT
31 26 2 1 0

LITERAL 1 FUNC. INTEGER. LITERAL I OP I RA DISPLACEMENT I
OP RA RB I l l 0 FUNC. RC

RB FUNC.

6 5 5 1 1 5
MEMORY FORMAT

31 26 21 1 6 0 I OP I RA I RB I DISPLACEMENT I
6 5 5 1 6

INTEGER. REGISTER 6 5 2 1

FLOATING POINT CALL_PAL FORMAT
31 26 0

I OP I FUNCTION I
6 26

Figure .) Instruction l'or111als

2H I 'o/ . .j .\'o. . f .Sjwci{// /ss"'' !')<).! Digitn/ Tecbuicnl journal

Operate Instructions

There are five groups of register-to-register operate

i nstructions: i nteger arithmetic, logic a l , byte

m a n i p u l at ion, floati ng-point , and misce l l aneous.

All instructions operate on 64-hit quadwords

u n less othe rwise specified.

lnter,er A rithmetic Instructions The integer arith

metic i nstructions are add, subtract. m u l t iply, and

compare . Add , subtract, and m u ltiply have variants

that enable arithmetic overflow traps. They a l so

have lo ngword variants that c heck for :)2-bit over

flow (i nstead of 64) and force the h igh 33 bits of the

resu lt to a l l equal bit<31 > . Add and subt ract a l so

have scaled variants that shift the first o perand left

by 2 or 3 bits (with no overflow check i ng) to speed

up sim ple subscripted address arithmetic . The

l ! M l i LH in struction (from PRISM) gives the h igh 64

bits of an u nsigned 128-bit p roduct ami m ay be

used for d ivid i ng by a constant . There is no i n teger

divide i nstruction; a software subro u t i ne is used to

d iv ide by a nonconstant. The compare i nstructi ons

are signed o r unsigned and write a Boolean resu l t (0
or 1.) to the target register.

Loy,ical Instructions The logical i nstru ctions are

AND, OR , and XOR, with the second operand

optiona l l y com plemented (A I DNOT, OH NOT,

XOHNOT). The sh ifts are shift l eft logi cal , shift right

l ogical , and shift r ight a r i t h me t i c . The 6 -bit shift

count is given by RFl or a l i tera l . The cond i t ional

m ove i nstructions test RA (same tests as the branch

i ng i nstruct ions) and cond i t ion a l l y move Hll to RC.

These can be u s eel to e l i m i nate branches i n short

sequences such as M I N(a ,b).

Byte-numipulation Instructions The byte- m a n i p

ul ation instructions a re used with the load and
store u na l igned instructions to m ani p u bte short

una I igned st rings of bytes. Long strings shou.ld be

m a n i p u l ated in groups of eight (al igned quad

words) whenever poss i bl e . The byte- m a n ip u l ation

instructions are fu ndamental ly masked shifts. They

differ from normal s hifts by having a byte count
(0 . .7) instead of a bit cou nt (0 .6:1), and by zero i ng

some bytes of the resu lt, based on the data size

given in the h111ction field .

The extract (EXTxx) instruct ions ex t ract part

of a 1-, 2-, 4-, or 8-byte fiel d from a quadwonl

a n d rlace the resu l t i ng bytes in a fie ld of zeros. A

s ingle EXTxL instruction can perform byte or word

loads, p u l l i n g the datum out of a quallword and

Digital Tecbnica/ journal l'ri/. 4 No. 4 .SjJecio/ lss/11' /<)').!

Alpha AXP A rchitecture

p l a c i ng it in t he low end of a register with h igh

order zeros. A pair of EXTxL/EXTxl-1 instructions can

p erform u na l igned loads, p u l l ing the two parts of

an u na l igned datum out of two quadwords and

[) l acing the parts i n resu l t registers. A s i m p le OR

operation can then combine the two parts into the

fu ll dat u m .

T h e insert (fi \Sxx) and m as k (1\-lSKxx) instruc

t ions position new data and zero o u t old clara i n reg

isters for storing bytes. words, and u na l igned data.

I f the Alpha AXP a rch i tecture were a fou r-operand

one. i nserting and masking cou l d have been com

b i ned i nto a s i ngle i nst ruction .

The compare-byte i nstruction a l lows character

string search and com pare to be done eight bytes at

a t ime. The ZAP instructions a l low zeroing of arbi

trary patterns of bytes i n a register. These instruc

t ions al low very fast i mp le mentat ions of the C

language string rou t i nes, a mong other uses.

Floating-point Arithmetic Instructions The float

i ng-poi n t ari th metic instructions are acid , subtract,

m u l t ip l y, d i v id e . compare. ami convert. The first

fou r have variants for I E EE and VAX floa ting-point ,

and si ngle- and double-prec ision data types. They

a l so have variants that enable combinations of arith

metic traps and that specify the rou n d i ng mode.

The single- p recision instruc t i ons write canonical

64-bit resul t s , but do ex ponent checking and

rou nding to single-preci s i o n ranges. The compare

i nstruct ions write a Boolean res u l t (0 or nonzero)

to the target register. The convert i nstructions

transfe r between s i ngle and double, floating-point

and in teger, and t wo forms of VAX double (D-float

and G - float). A combination of har(i ware a nd soft

ware prov ides fu l l IE EJ: arith me t i c . Operations on

VA X reserved operands, ''' d i rty zeros, IEEE denor

m als, i n finities, '" and not -a-n u m bers" '' are d one i n

software.

There are a lso a few fl o a t i ng- point i ns t ruct ions

that move c lara without applying a n y i n terpretation

to it . These include a c o m p lete set of condit ional

move i nstructions s i m i lar to the i nteger condi t ional

m oves.

iHiscellc meous Instructions The m iscel laneous

i nstructions include: m emo ry p refet c h i ng i nst ruc

tio ns to help decrease memory latency, a read cycle

cou nter instru ction fo r performa nce measurement,

a trap barrier i nstruc t i o n for forcing precise ari th

metic traps, and memory harrier instructions for

forcing m u l t iprocessor read/write orderi ng.

29

Alpha AXP Architecture and Systems

Load/Store Instructions

Tile load and store instructions only move data.

Tiley never apply an in terpretation to the data ami

therefore never take any data-dependent traps. Th is

des ign a l lows mov i ng completely arbit rary hit pat

terns in and out of registers and al lows completely

transparent saving/restOr ing of registers.

The i nteger l oad ami store quad word una! igned

(LDQ_l l , STQ_U) instructions ignore the low three

bits of the byte address and always transfer an

al igned quadword . These instructions are used

with the in - register byte manip u lation i nstructions

to operate on byte, word. and unal igned clara by

short sequences of ruse instructions.

Example 1 i n Figure 4 shows a two-instruction

sequence for load ing a byte i n to the low end of a

regis ter, u s i ng l i t t le-endian byte n u m bering.

Example 2 shows a similar sequence for load ing a

byte i nto the high end of a register, using big-endian

byte nu mbering. Example 3 shows a sequence for

sroring a byte (the first two and last t wo instruc

t ions m ight issue simu l taneously on the first Alpha

AX I' i mplementation). Example 4 shm.vs a sequence

for an exp l icit u nal igned load quadwonl (no data

a l ignment trap).

The i n teger loacl-lockecl and store-condi t ional

(l .DQ_L, LDL_L, STQ_C, STL_C) instructions are

included in the arch itectu re to faci l i tate atomic

u pdates of m u l t iprocessor-shared data . As

described above, they can be used i n short

sequences of RISC instructions to do atomic read

modify-wri tes. Example 5 shows a sequence for

doing a m u l.t iprocessor test -and-set. Note that

changing the LDQ_U!STQ_l l in Exa m ple :) to

AND/ LDQ_L!STQ_C/BEQ gives a byte-store sequence

that is safe to use with m u l t iprocessor-shared data .
There are two rel ated load address i nstructi ons.

I.DA calculates the effective address and writes

i t into RC. LDAH first shifts the displacement

left 16 bits, then calcul ates the effective address

ami writes i t into RC . LDAH is incl uded to give a silu
ple way of creat ing most .�2 -bit constants i n a

pair of instructions. (Because LDA s ign-extends

the displacement, some values in the range

000000007FFF8000 . . 000000007FFFFFFF require

three instruct ions.) Constants of 64 bits are loaded

with l.DQ instructions.

Branching Instructions
The branch i nstructions incl ude cond itional

branches, uncond i t ional branches, and calculated

ju mps. In addit ion to the previously described

:)0

condit ional moves, the architecture contains h ints

to improve branching performance.

The i nteger cond itional branches test register RA
for an opcode-specified cond i t ion (>0 >=0 =0 ' =0

<=0 <0 even odd) and e i ther branch to the target

add ress or fa l l through to the u pdated PC address.

The floating-poi n t condit ional branches are the

same, except they do not inc lude even/odd tests.

Arbitrary testing (and fau l t ing on VAX or IEEE nonfi

n ite va l ues) can be clone by sequences of compare
instructions and branch instructions. Logical or

ar i thmetic instruct ions can combine compare

resu l ts without using branches.

nco ndit ional branches write the updated PC to

RA for subroutine l i nkage a mi branch to the target

address. RA = R:)l may be usecl if no l inkage is

needed .

Calcu lated jumps write the u pdated PC to RA and

j u mp to the target address in Illi. Calculated jumps

are used for subroutine cal l , return, CASE (or

SWITCH) statements, and coroutine l inkage.

The arch itecture specifies three kinds of branch

ing h ints in instructions. The h i nts need not he

correct, but to the extent that t hey are, i mplemen ta

t ions may perform faster.

The first fo rm of h in t is an archi tected static

branch pred iction ru le : forward condit ional

branches are pred icted not- taken, and backward

ones taken. 'T(J the extent that compilers and hard

ware i mplementers fol low this rule , programs can

run more quickly with l it t le hardware cost . This

h i n t does not e l imi nate the use of dynamic branch

prediction in an i m plementation, but it may red uce

the need to use it.

The second form describes com p u ted j u m p rar

gets. Unused instruct ion bits are defined to give the
low bits of the most I i kely target, u si ng the same tar

get ca lcu la t ion as u ncond it iona l branches. The 14

bits provided are enough to specify the instruction

offset within a page , which is often enough to start

a fastest- leve l instruction-cache read many cycles
before the actual target va lue is known .

The th ird form descri bes subroutine and corou

t ine returns. By marking each branch and jump as

cal l , return, or neither, the archi tecture p rovides

enough informat ion to mainta in a s nu l l stack of

l ikely subrout ine return addresses with in an imple

mentat ion . This implementation stack can be used

to prefetch subroutine returns quickly.

The condit ional move instructions (discussed

prev ious ly in the Logical Instructions section and

the Floating-point Arith metic Instructions section)

Vol. 4 Nu. 4 -Vieciol lssue I<J<J2 D igital Technical jou rual

Alpha AXP Architecture

EXAMPLE 1 . LOAD BYTE (UNSIGNED, LITTLE-ENDIAN)
7 6 ®_ 4 3 2 0

LDO_U R2,0(R 1) I I BYTE I I R2
7 6 5 4 3 2 0

EXTBL R2,R1 ,R2 I 0 IBYTEI R2

EXAMPLE 2: LOAD BYTE (SIGNED, B IG-ENDIAN)
0 ® 3 4 5 6 7

LDO_U R2,0(R 1) I I BYTE I I R2

S U BO R31 , R 1 ,R3 -2 R3
0 2 3 4 5 6 7

EXTOH R2,R3,R2 I BYTE I I R2

EXAMPLE 3 : STORE BYTE (LITTLE-ENDIAN)
7 6 ® 4 3 2 0

LDO_U R2,0(R 1) I OLD I l R2
7 6 5 4 3 2 0

INSBL RO, R 1 ,R3 I I NEW I I R 3
4 3 2 0

MSKBL R 2 , R 1 , R2 R2
7 6 5 4 3 2 0

OR R2,R3,R2 I N EW I I R2
7 6 5 4 3 2 0

STO_U R2,0(R 1) I I NEW I' l o<R 1)

EXAMPLE 4 EXPLICIT LOAD OUADWORD (U NALIGNED, LITTLE-ENDIAN)
7 6 ® 4 3 2 0

LDO_U R2,0(R 1) I LOW PART I R2
1 5 1 4 1 3 (12) 1 1 1 0 9 8

LDO_U R3,7(R 1) HIGH PART j R3
7 6 5 4 3 2 1 0

EXTOL R2,R 1 , R2 I LOW PART l R2
7 6 5 4 3 2 0

EXTQH R3, R 1 , R 3 I HIGH PART l R3
7 6 5 4 3 2 1 0

OR R2,R3 , R2 I HIGH PART LOW PART I R2

EXAMPLE 5 : MULTIPROCESSOR TEST-AND-SET

LDO_L R2,0(R 1) FLAG I R2

B N E R2,FLAG_SET FLAG I R 2

OR R2, # 1 ,R2 0 - > 1 R2

STQ_C R2,0 (R 1) 1 O(R 1)

BEO R2,CONTENTION I STORED? I R 2

Figure 4 Load/Store Instructions

Digilal Technicaljounwl Vol. 4 No. 4 5/Jecia/ Issue 1992 3 1

Alpha AXP Architecture and Systems

:1 11d the branch i ng h i nts eliminate some branches

and speed u p the re main ing ones without compro

m ising m u lt iple i nstruction issue.

Supervision
The act i o ns underp i n n i ng an operating system are

perfo rmed in PAJ.code subrout i nes and are a flexi
ble part of th e arch i tectu re. All async hronous

events, such as in terr u p ts, exceptions, and m achine
errors, are m e diated by PALco de routines. PALcode
esta blis hes the initial s tate of the machine before

execu tion of the first software instructio n . PALcode
ro u t in es mell iate a l l accesses to p hysical hardware

resources, including physical main memory and
me mory-mapped [/0 dev ice registers.

Tll i s design a l lows i m p lementers to craft a set of
PA Lcode rou tines that closely m a tcll an ope rat i ng
system design, not only for traditional operating

systems, bu t a l so for sp ecialized environments such

as rea l - t i m e or h igh l y secure comp u t i ng. As new
com p u t i ng parad igms are adopted and new operat
ing systems are created , the Alpha AXP architectu re
may wel l p rove f lex i ble enough to accommo(late
them effi c ient ly.

Future Changes

The Al pha AXP arch itecture wil l surely change
d u ring its l i fetime. In addition to the l'A Lcode
f lcxibi l ity discussed above, exp l i c i t perfor mance
flex i b i l i t y and instruction-set flex i b i l i ty exist in
the arc h itect ure .

A rc h i tec tura l fields that are too sm a l l can l imit

performance . The Alpha AXP arch i tecture there

fo re has manr fiel d s del iberately s ized fo r later

expansion.
Although in itial implementations use o n ly -H

bits of virtual add ress. t hey check the rem aining
21 b i ts, so that soft wa re can run unmod ified on
later i m plementations that use (up to) a l l ()4 bi ts .
Furt herm ore, although init ial i mplementations use
only 54 bits of ph ys ical address, the arch i tccted
page table entry (PTE) for m a t s and page-size

choices a l low growth to 48 b i ts. By expanding into

a 16 -bit PTE field that is not curren t ly used by map

p i ng hardware, another 16 bits of p hysical add ress
growth can be ach ieved, if ever n eeded .

I n i t ia l i m p lementations also use o n l y SKil pages,

but the design accom modates l i m i ted growth to
(J i KB pages . Beyo nd that , page ta b l e granu l a ri ty

h i n t s al low groups of 8, 64, or � 1 2 pages to be
trea tt:d as a si ngle la rge page , thus effect ively

c. · tend i ng tht: page- size range by a bctor of ovn

I ,000. Lach a rc h i tected vn-: for mat a lso has om· bit
rese rved t(> r f11ture expansion.

Sc\Tral o t her soft PA Lcocle regis ters, such as the

I'S or AS1 · . that need on ly a few hits todav are a l lo

cated a full 64 b it s for future expansion.
Exception processing can 1 i m it perform a nce .

PA I.code rou t ines del ive r except ions to an ope ra t

i ng system, so the llt:s ign can be grad ual ly

i m p rovnl In fact, PA Lcode rou tines h>r the data
al ign men t l1ave been i mproved i n the Open\ \·IS A XI'
and DEC OSF/1 AXP operating systems. Some c u r
ren t l y specified software exceptions (such as liTE
dcnormal arithmetic) could be moved i n to PA Lcodc
or hardware.

There a re a n u mber of areas of i n s t ruction-set
f lexi b i l i ty designed i n t o the architecture. Four ot
the 6 -b i t opcodes are nominaiJ�- reserved for

a dd i ng i nteger a n d fl oating-po int al igned octa
word (l2H-bir) load/store inst ructions. 1 ' N i ne more

() -bit opcodes rem a i n for other expansion. Within
each opc od e , the function fie ld contains room fo r
fu rther expansion . Fo r e,'ample. the sca led all d/sub

t ran funct ions were added between p rototy t)C

chip and p roduct chi p . The fact that the fu nction

f ie lds arc not fu l ly pol iced i s a mi stake .
\\li tbin t l1e IEEE floati ng-point fun · t ion field ,

code points are nominal ly reserved for dou ble
exten ded '' prec ision (128-bi t) arithmetic . W i t h i n
t h e memory barrier instru ction gro u p , t h ree code
points were reserved for subset barriers. One of
t hese has a .l ready been redefined as a write-write
barrier.

Not a l l changes invo lve growth . There are su bse t

ring ru les defined for remov ing either one or both
(I ITL ami \I,\ X) float ing-p o i n t dau t�-p es . If both are

removed, the f lo at ing-po i nt regi�tcrs ca n a l so be
re move(! . The r\\lOVx:· Pr\Lcode ro u tines a n cl !{S/RC:

i ns t r uc tions are defined as o p t i onal and can be
d eleted when the transition of t ran sl ated VA X code
i s completed. Ot her unneeded l'AI .code ro u t ines

can a l so be removed eventual ly.

StttlliiUIIJ!

The goals t ha t shaped t he A lpha AX!' arc hi tecture

design have l arge ly been realized . For high perf(>r

mancc , the fi rst i mplementation (the DU chi p

2 1 064 m icroprocessor) is l isted in the October 1992

Guill l l l..'ss nook of Records as the wo rld 's fastest s in

gle-ch i p m i crop rocessor. It is too c:trly to measu re
longevity, h u t t he fact that we h:�d d esig ned- in fkxi
hi l i t �· in places that changed during cl cvelopment is

a t least encouraging. OpenV.Vl� ,\X I', DEC : OSI / 1 A X !'.

l id. 1 .\"n. i .\jJecial lsslll! 1')92 Digital TeciJIIical .founwf

and Windows NT operating systems a l l run on

Alpha A X P i m plementations today. Programs from

the VAX and MIPS architectures transport easily to

Alpha AXP i mplementations and run quickly. Many

of the ideas in the Alpha AXP design are now bei ng

adopted by other architectures in the industry.

Appendix
Binary translation-A software techniqlle to

change an execu table program written for one

architecture/operati ng-system pair into an equ iva

lent program for a d ifferent architecture/operati ng

system pair.

Big-endian memory addressing-A view of mem

ory i n wh ich byte 0 of an operand conta ins the

most significa nt (sign) bit of an i nteger. Compare l i t

tle-end ian memory addressing.

Byte-An 8-bit datu m.

Byte granularity-The appearance that two pro

cessors can update adjacent bytes in memory with

out in terfering with each other.

C/SC- Complex i nstruction set compu ter, charac

terized by variable-length i nstructions, a wide vari

ety of mem ory addressing modes, and instructions

that combine one or more memory accesses with

ari thmetic . CISC designs express computation as a

few complex steps.

IEEE denormalized number (denormal)-A float

ing-point number with magnitude between zero

ami the smal lest representable normalized number.

Nu mbers i n this range are typically not rep re

sentable in other floating-point arithmetic systems;

such systems might signal an underflow exception

or force a resu l t to zero instead .

IEEE double-extended format-A loosely specifed

floating-point format with at least 64 significant
bits of precision and at least 15 bits of exponent

width; typicall y i mplemented usi ng a total of 80 or
128 bits.

IEEE dynamic rounding mode-One of fou r d iffer

ent rounding rules.

lEJ::J:." floutingpoint-A fo rm of compu ter arith

metic specified by IEEE standard 754 J 2 IEEE arith

metic i ncludes ru les for denormal i zed numbers,

i nfinities, and not-a-numbers. It also specifies four

d ifferent modes fo r rounding resu lts.

IEEE infini�J'-All operand with an arbitrarily large
magnitude.

D igital Technical journal Vol. 4 No. 4 Special Issue 1')92

Alpha AXP Architecture

IEEE not-a-number (Na.N)-A symbo lic entity

encoded in a floating-point format. The IEEE stan

dard specifies some exceptional results (e . g . , 0/0)

to be NaNs.

Linear addressing-A memory addressing tech

n ique in wh ich a l l add resses fo rm a single range,

from 0 to the largest possible address. Subscript cal

culations can create any address in the entire range.

Little-endian mem01:y addressing-A v iew of

memory in which byte 0 of an operand contains the

least significant bit of an i nteger. The terms little
endian and big-endian are borrowed from

Gulliver's Tmvels in which religious wars were

waged over which end of an egg to break.

Longword-A 32-bit datu m.

Multiple instruction issue-A h igh-p erformance

computer i mplementation techn ique of starting

more than one instruction at once. An implementa

tion that starts (up to) two instructions at once is

cal led dual-issue; four i nstructions, quad-issue or

four-way issue; etc.

Octaword-A 1 28-bit datu m .

Quadword-A 64-bit datu m.

RISC- Reduced instruction set computer, charac

terized by fixed- length i nstructions, simple mem

ory addressing modes, and a strict clecoupl ing of

load/store memory access instructions from regis

ter-to-register arithmetic i nstructions. ruse designs

express computation as many simple steps.

Segmented addressing-A memory addressing

tech nique in which addresses are broken into two

or mo re parts (segments) . Subscript calculations

can only be done within a si ngle segment, and elab

orate software techniques are needed to extend

addressing beyond a single segment.

VA X dirty zero-A zero value represented with a

non-zero faction; m ust be converted to a true zero

resu lt .

VA X jloating-point-A form of computer arith

metic specified by the VAX architecture manual . '
VAX arithmetic includes ru les for reserved

operands and d irty zeros.

VA X rese·rved operand-A non-number that signals

an exception when used as an operand in VAX float

ing-point arithmetic.

VA X word swapping-The rearrangement needed
for the 16-bit p ieces of a VAX floating-point number

33

Alpha AXP Architecture and Systems

to put the fields in a more usual order; th is is an arti

fact of t he I'DI'-.ll 16-bit architecture.

Word-A 16 -bit datum.

Acknawledgments

Hundreds of p eople have worke(l on the Al pha AX I'

arch itecture, h a rdware, ancl software. Many Al rha

AXl' archi tectura l ideas came from the PRISM

design, most notably the PALco de idea . 1 The archi

tecture work was done in t h e r ich environment of
dozens and later hundreds of bright, thoughtfu l ,

a n d outspoken p ro fessional p eers. E l len Batbou ta,

Di leep Bhamlarkar, Richard Brunner, Wayne

Cardoza, Dave Cutler, Daniel Dobberpuh l , Robert

(riggi . Henry Grieb, Richard Grove , Robert

H a l stead, Jr. , M ichael Harvey, Nancy Kronenberg,

Raymond Lanza . S tephen Morris, Will iam Noyce,

Charles Nylander, Dave Orbits, Mary Payne , Audrey

Reith , Robert Supnik , Benjamin Thomas, Catharine

van l ngen , and Rich Witek a l l contributed directly

to the writ ten specificat ion. Rich Witek is co-archi

tect and is the other half of the term "we" used in

th is pap er.

References and Notes

1 . G. Amdahl , G. B l aauw, and E Brooks, Jr. ,

"Architecture of the IBM System/360," lf),Jd
journal ofResearch and Det.1elopment, vol . 8,

no. 2 (April !967): 87- 10 1 .

2 . R . S ites, ed . , Alpha Architectu re Reference

J;Janual (B ur l ingro n, �1A : Digita l Press, 1992) .

3 R. Conra(l et a l . , "A 50 MIPS (Peak) 32/6 4b
M i croprocessor," ISSCC Digest of Technical

Papers (February 1989): 76 -77

4. R. Brunner, ed . , l'l!X Architecture Reference

1l1an ual Second Edit ion (Bedford, MA: Digita l

Press, 1991) .

'5 G. Kane and J Heinrich , MIPS RISC Architec

ture (Englewood Cl iffs, N J : Prentice-Ha I I ,
1992).

(>. R. Sites, A. Chernoff, M . Kirk, M . Marks, and
S Rob inso n, " B i nary Translat ion,'' Digital

Technical joumal, vol . 4, no. 4 (1992, this

issue): 137- 1 52.

7. The l it t le-endian bias is very s l ight ; both big

and l it t le-e ndian Alpha AXP systems and soft

ware are in fact being bu i l t .

R There are two specia l - resou rce anomal ies i n

t h e architecture t h a t we were unable to avoid :

the ded icated state for the load-locked

i nstruction and the dynamic round ing-mode

register required fo r ful l I EEE conformance.

9. Th is is borne out i n a l arge customer's recent

C string manip u lation benchmark resu l t , run

ning 3 to 6 ti mes faster than the customer's

expectation (which was based solely on clock
rate ratios).

10. Cn�p-1 Computer System Reference Manual,

Form 2 240004 (Min neapol is : Cr:�y Research,

Inc . , 1977).

1. 1. !lUI !>:vstem/370 Principles of Operation,

Form GA22-7000-4 (Ar monk, NY: IB.Vl Corpo

ratio n, 1974): 28.

1 2 . Institute of E lectrical a n d E lectronics Engi

neers, "B inary Floating-point Arithmetic t<>r

Microprocessor Systems," Standard Number

IEEE -754 (New York, 1985).

1 .3. The carefu l reader wi l l notice that Alpha A XI'

imp lementations requ i re a l ongword sh ifter

in the lo ad/store path for :)2-bit operands.

Al though we briefly considered a design with

no 32 -bir operands, we decided to keep .12 -bir

load/store support for good business reasons.

S imilar ly, Alpha AXP i mplementations require

a word swap per in the load/store path fo r VAX
floating-point operands. We decided to keep

VAX floa t i ng-point support for good business

reasons. Depend i ng on ma rket needs, VAX

floati ng-point support can be removed in the

future .

14. M a n y commercially successfu l a rchi tec
tures have grown to dou ble-width memory
implementations i n m i d- l ife: the lB.'vl 709
series from 36 to 72 bits : the 1 11�·1 System/:)(>()

series from 32 to 64 bits : the Digita l I 'Dl'- 1 1
series from 16 to 32 bits: and the Digita l
VAX series from 32 to 64 bits . This trend is

l ikely to continue.

\ 'tJI. -i .\'o. 4 .SjNcir�l lsslle 7')')2 Digital TeciJuical journal

Daniel W. Dobberpuhl
Richard T. Witek

Randy Allmon
Robert Anglin

David Bertucci
Sharon Britton

Linda Chao

Robert A. Conrad
Daniel E. Dever
Bruce Gieseke

Soha M.N Hassoun
Gregory W. Hoeppner

Kathryn Kuchler
Maureen Ladd

Burton M. Leary

A 200-MHz 64-bit Dual-issue
CMOS Microprocessor

Limn Madden
Edward) McLellan

Derrick R. Meyer
james Montanaro

DonaldA. Priore
Vidya Rajagopalan

Sridhar Samudrala
Sribalan Santhanam

A 400-mips/200-MFLOPS (peak) custom 64-bit VLSI CPU chip is described. The chip is

fabricated in a 0. 75-f.Lm Cil!fOS technology utilizing three levels of metalization and

optimized for 3.3-V opemtion. The die size is 16 8 mm x I3.9 mm and contains I. 68

million transistors. The chip includes sepamte 8KB instruction and data caches and

a fully pipelined floating-point unit that can handle both IEEE and VAX standard

floating-point data types. It is designed to execute two instructions per cycle among

scoreboarded integer, floating-point, address, and branch execution units. Power

dissipation is 30 W at 200-L'r!Hz operation.

A reduced instruction set computer (RJSC)-style
m icroprocessor has been designed and tested that
operates up to 200 megahertz (MHZ). The chip
implements a new 64-bit arch itecture, designed to
provide a h uge l inear address space and to be devoid
of bottlenecks that would impede h ighly concur
rent implementations. Fu lly pipelined and capable
of issu ing two instructions per clock cycle, this
implementation can execute up to 400 mil l ion oper
ations per second. The chip includes an 8-ki lobyte
(KB) 1-cache, 8KB D-cache and two associated trans
lation buffers, a four- entry, 32-byte-per-entry write
buffer, a pipel ined 64-bit integer execution unit
with a 32-entry register file, and a pipelined floating
point unit (FPU) with an additional 32 registers. The
pin interface includes i ntegral support for an exter
nal secondary cache. The package is a 431-p i n pin
grid array (PGA) with 140 pins dedicated to v[wl\.55
(power supply vol tage/ground). The ch ip is fabri
cated in a 0.75 -micrometer (J.I.m) n-wel l comple
mentary metal-oxide semiconductor (CMOS)
process with three layers of metalization. The clie
measures 16.8 millimeters (mm) X 13.9 m m and con
tains 1 .68 mill ion transistors. Power dissipation is
30 watts (W) from a 3.3-vol t (V) supply at 200 MHz.

© IEEE. Reprinted, with permission, from the IEEE journal of
Solid-State Circuits, vol u me 27, number I I , page� 1555 to 1567,
November 1992.

Digital Techuical journal Vol. 4 No. 4 Special Issue 1992

CMOS Process Technology

The chip is fabricated in a 0.75 -J.I.m, 3.3 -V, n-wel l
CMOS process optim ized for h igh-performa nce
microprocessor design. Process characteristics are
shown in Table 1 . The thin gate oxide and short
transistor lengths resu l t in the fast transistors
required to operate at 200 MHz. There are no
explicit bipolar devices in the process as the i ncre
mental p rocess complexity and cost were deemed

Table 1 Process Description

Feature size

Channel length

Gate oxide

V,/V,p
Power supply

Substrate

Sal icide

Bu ried contact

Metal 1

Meta1 2

Metal 3

0.75 �-tm

0.5 1.�.m

1 0.5 nm

0.5 V/- 0.5 V

3.3 v
P-epitaxial with n-wel l

Cobalt-disi l icide in diffusions
and gates

Titanium nitride

0.75-�-tm AICu, 2.25-/l.m pitch
(contacted)

0.75-/l.m AICu, 2.625-/l.m
pitch (contacted)

2.0-/l.m AICu, 7.5-/l.m pitch
(contacted}

35

Alpha AXP Architecture and Systems

too large in comparison to the benefits provided

principal ly more area-efficient large drivers such as

clock a nd 1/0.

The metal structure is designed to support

the h igh operating frequency of the chip. M etal 3

is very thick and has a rel a t ively large pitcl1 . I t

is important at these speeds t o have a low-resis

t a nce metal layer ava i l able for power and clock

d istribu tion . I t is also used for a s m a l l set of special

signal wires such as t he data bu ses to the pins

and the control wires for the two shifters . . M etal I
and metal 2 are main tai ned at c lose to their maxi

mum th ickness by planarization and by fil l ing metal

1 a nd metal 2 contacts with tungsten plugs. This

removes a p otential weak spot i n the electromi

gration characteristics of the process and a l lows

more freedom i n the design without compromising
rei iabili ty.

Alpha AXP Architecture

The computer architecture i mplemented is a 64 -bit

load/store RJSC archi tecture with 168 instructions,

a l l 32 bits wide. 1 Supported data types include

8 -, 16-, 32-, and 64-bit in tegers ancl both D igital and

IEEE 32- and 64-bit f loating-point formats. E ach o f

t h e two register files, i nteger a n d floating point,

contains 32 entries of 64 bits with one entry in each

being a hardwired zero. The program cou n ter and

virtu a l add ress are 64 bits. I mplementations can

subset the virtual address size, but are requ ired to

check the fu l l 64-bit address for sign extension.

This ensures that when later i mplementations

c hoose to support a larger v i rtual address, pro

grams wil l stil l run and not find addresses that have

dirty bits i n the previously " u nused " bits.

The architecture is designed to support high
speed multi- issue implementations. To this encl the
arch i tecture does not include condition codes,

i nstructions wi th fixed source or destination regis
ters, or byte writes of any kind (byte operations are
supported by extract and merge instructions

within the CPU itsel f) . A lso there are no first -gener
at ion artifacts that are optimized arou nd today's

technology, which woul d represent a long-term l ia

bil ity to t he architecture.

Chip Microarchitecture
The block diagram (Figure 1) sh ows the major func
tional blocks and t heir interconnecting buses, most

of which are 64 bits wide. The chip i m plements
four fu nctional units: the i nteger u ni t (IRF plus

36

r---

BIU

'-----

--I I -CACHE

�
E-BOX - - F-BOX

� t I -BOX i
IRF - -

t l
T

I A-BOX
I

� WRITE BUFFER 1-
�, D-CACHE

Figure 1 CPU Chtp 13loclz Diagrmn

�
FRF

I

E -box), the floating-point u nit (fRf p l us F-box), the

load/store u n i t (A-box), and the branch unit (dis

tributed). The bus interface unit (UIU), described in
the next section, hand les a l l communication

between the chip and externa l components. The

m icrophotograph (Figure 2) shows the boundaries

of the major fu nctional u ni ts. The dual-issue ru les

are a direct co nsequence of the register file ports,

the fu nctional u n its, and the !-cache i nt erface. The

in teger register fi le (I RF) bas two read ports and one

write porr dedicated to the in teger u nit , and two
read and one write port shared between the branch

unit and t he load/store uni t . The floating-poin t reg

ister fi le (FRF) has two read ports and one write
port dedicated to the floating u nit, and one read
and one write port shared between the branch unit
and the load/s tore unit . This leads to dual-issue
ru les that are quite general :

• Any load/store in para l lel with any operate

• An i n teger operate in paral lel with a floating

operate

• A floating operate ancl a f loating branch

• An in teger operate and an i nteger branch

except that integer store and floating operate and

floating store and i nteger operate are disal lowed as
p airs.

lk>l. 4 No. 4 Special Issue 1992 D igital Technical jounw/

A 200-Jli/Hz 64-bit Dual-issue CMOS Microprocessor

Figure 2 Micropbotograp!J of Chip

As shown in Figure 3a, the integer pipeline is

7 stages deep, where each stage is a 5 -nanosecond

(ns) clock cycle. The first fou r stages are associated

with instruction fetching, decod ing , and score
board checking of operands. Pipel ine stages 0
through 3 can be stallecl . Beyond 3, however, a l l

pipeJine stages advance every cycle. Most arith
metic and logic uni t (ALU) operations complete in
cycle 4, allowing s ingle-cycle latency, with the

shifter being the exception. Primary cache accesses
complete in cycle 6, so cache latency is three cycles.

The chip wi l l do hits under m isses to the prim ary
D-cache.

The !-stream is based on a u tonomous prefetch
ing in cycles 0 and 1 with the f ina l reso lut ion of
1-cache hit n o t occurring u n til cycle 5. The

prefetcher i ncludes a branch history table and a

D igital Technical jounutl Vr>l. 4 No. 4 .\jH!cial /ss11e 1992

subrou tine return stack. The archi tecture provides

a convention for compi lers to predict branch deci

sions and destination aclclresses, including those for

register indirect j u mps. The pena l ty for branch m is
predict is four cycles.

The float ing-point u ni t is a fu l ly pipelined 64-bit

float ing-poi n t processor that su pports both VAX
standard and lEEE standard data types and rou nd i ng

modes. I t can generate a 64-bit resu l t every cycle
for a l l operations except d ivide. As shown in Figure
3b, the floating-point pipel ine is identical and

m ostly shared with the i nteger pipeline in stages 0

through 3; however, the execution phase is three

cycles longer. A l l operations, 32- and 64-bit (except
divide) have the same timing. Divide is handled by a
nonpipelined , single bit per cycle, ded icated divide

unit .

37

Alpha AXP Architecture and Systems

0 1 2 3 4 5 6
I F SW 1 0 1 1 A1 A2 WR

CACHE DECODE ALU 1 WRITE
ACCESS }BYPASS

SWAP ISSUE ALU2
PREDICT RF READ

PC GEN ITB I-CACHE
H IT/MISS

VA GEN DTB D-CACHE
HIT/MISS

(a) lnteger Unit Pipeline Tirning

0
IF

1
sw

2
1 0

3
1 1 ' �·�F-�--�--F-�--�---:3

__ -r ___ ;4 __ -t ___ :_s __ +-_
F
_0 __

R�! BYPASS
CACHE DECODE
ACCESS

SWAP ISSUE I
PREDICT RF READ

ADD

3X

L1 D

MUL1

SHIFT ADD/AND

MUL2 ADD/AND

FRF WRITE

FRF WRITE

(b) Floating-point Unit PijJe!ine Timing

KEY:
PC GEN GENERATE NEW PROGRAM COUNTER VALUE
VA GEN GENERATE NEW VIRTUAL ADDRESS
ITB I NSTRUCTION TRANSLATION BUFFER
OTB DATA TRANSLATION BUFFER

Figure .) Pipeline Timing

In cycle 4, the register file data is fo rma tted ro

fraction, exp onent, and sign. In the first -stage

add er, exponent d ifference is calcu lated and a :1 x
m u l tipl i cand is generated for m u l tipl ies. In addi

t ion , a predictive lead i ng 1 or 0 uetector using

the i n put operands i s i nitiated fo r use i n resu l t nor

mal izat ion . In cycles 5 and 6, fo r add/su btract,

a t ignment or normalization sh ift and st icky-bit cal

culation are performed . For both si ngle- a ncl dou

ble-precision multipl icat ion , the mul t iply is done i n

a radix-8 pipe l ined array m u l tipl ier. I n cycles 7 and

8, the final addition and rounding are performed i n

para] Jel and the fin a l resu lt i s selected a n d dr iven

back to the register file in cycle 9. With an a l lowed

bypass of the register write data, float i ng-po int

latency is six cycles.

The CPU contains all the hardware necessary to

support a demand paged virtu a l memory system. It

incl udes two translation bu ffers to cache virtual-to

physical ;�ddress tra nsl;�tion . The instruction tra ns

lation bu ffer contains 1 2 entries, 8 that m;�p 8KB

pages and 4 tbat map 4 -megabyte (MB) pages. ·rhe

data transl ation bu ffer contains 32 entries that can

m;�p 8 K.ll, 64 KB, 512KB, or 4 M B pages.

The CPU supports performance measurement

with two counters that accu m u l ate system events

on the chip such as dual-issue cycles and cache

m isses or external events through two ded icated

pins that a re sampled at the selected system clock

speed .

Externallnter:face
The external i nterface (Figure 4) is designed to

directly support a n off-chip backu p cache that can

range in size from 1 28KB to 8MB and can be

constructed from ordinary SRA Ms. For most opera

t ions, the CPU c h ip accesses the cache directly

in a combinatorial loop by presenting an address

and w;�it ing N CPU cycles for contro l , wg, and data

to appear, where N is a mode-progra mmable num

ber between :) and 16 set at power-up t ime. For

wri tes, both the total n umber of cycles and the

VrJ/. 4 ,\'o. .:f Special issue 1992 Digital Tecbuical journal

A 200-MHz 64-bit Dual- issue CMOS LViicroprocessor

adr h<33:5>

RAM ell sys RAM ctl

� - - -r- - r- - r- - - -

I B-CACHE
I
I I

SYSTEM DEPENDENT LOGIC I I

I � � � l l � � I
@] I TAG DATN

1 CTL CHECK
I

CPU
I RAM RAM I

MEMORY

tagctiV.:.D� i - - - 1- - - - - - I

SYSTEM CH IP I NTERFACE

tag h<33:n>

data h < 1 27:0>, check h<27:0>

mise out
mise in

OSC<2> sysCik
(400 MHz)

1Adr h< 1 2:5>

Figure 4 CPU External Interface

duration and posit ion of the write signal are

program mable in u n i ts of CPU cycles. This a l lows
the mod u le designer to select the size and access

t ime of the SRt\..\1s to match the desired price/

performance point.

The in terface i s designed to a l low a l l cache pol

icy decisions to be con trol led by logic external to

the CPU chip. There are th ree contro l bits associ
ated with each backup cache (B-cacl1e) l i ne: val id ,

shared , a n u u i rty. The c h i p comp letes a B-cad1e

reau as long as valid is t rue. A write is processed by

the CPU only i f val id is true and shared is fa lse.

When a write is performed, the u irty bit is set to

true. In a l l other cases, the chip defers to an exter

nal state machine to complete the transaction. This

state machine operates synchronously with the
SYS_CI.K output of the ch ip, which is a mode-con
t rol led submu ltiple of t he CPU clock rate ranging
from d iv ide by 2 to divide by 8. I t is also possible to
operate without a backup cache.

As shown i n the d iagra m , the extern al cache
is con nected between the CPU chip and the sys
tem memory interface. The combinatorial cache

access beg ins with the desired address del ivered
on the ad r_h l i nes and resu l ts in ct l , tag, data,

and check bits appearing at the chip receivers
within the prescribed access time. In 128-b i t
mode. B-cache accesses requ ire two external data

cycll's to transfer tbe 32-byte cache I ine across

Digitn/ 1eclmicnljournal Vol. "' .Yo. 4 Special issue 1')92

the 16-byte p i n bus. Tn 64-bit mode, i t is four cycles.

This yields a maximum backup cache read band

width of 1 .2 gigabytes per second (GB/s) and a write

bandwidth of 7 1 1 M fl/s Internal cache l ines can

be i nval idated at the rate of o ne l in e per cycle
us ing the ded icated inval idate address pi ns,

iAdr_h< l2 :5> .

In the event external intervent i o n i s required , a
request code is presented by the CPU chip to the

external state machine in the time domain of the

SYS_CLK as descri bed previously. F igure 5 shows

t he read m iss t i m i ng where each cycle is a SYS_CL K

cycle. T h e externa l transaction starts with t h e

address, t h e quadword w i t h i n block and i nstruc

tion/data ind ication suppl ied on the cWMask_h

pins, and READ_BLOCK fu nct ion suppl ied on the
cReq_h pins. The external logic returns the first
16 bytes of data on the data_h and error correct
i ng code (ECC) or parity on the check_h p ins. The

CPU latches the data based on recei v i ng acknowl
edgment on rdAck_H . The d iagram shows a sta l l

cycle (cycle 4) between the request and the ret urn
data; this depends o n the external logic and could

range from zero to many cycles. The second 10

bytes of data are returned in the same way with

rdAck_h signa l i ng the return of the data and cAck_h

signal ing the completion of the transaction. cReq_h

returns to id le and a new tra nsaction can start a t

th is t ime.

:39

Alpha AXP Architecture and Systems

sysCLKOut_h

adr_h � VALI D c
cWMask_h � VALID X
cReq_h

data h I X VALID � X VALID X ecc '
check_h

rdAck h I \ I \
cAck_h

J·(c;ure 5 CPU Extemal Timing

The c h ip i m plements a novel set of features sup
port i ng chip a n d m o d u l e test. When the ch i [J is
reset. the first ac t i on is to reaLI from a ser ia l read
only me m ory (SHO�I) i nto the 1-cacbe via a private
th ree-wire port. The CPU i s then enabled and the
program counter (PC) i s forced to 0. Thus with o n l y
three fu nctional components (CPU c h i p , SROJvl , a nc.l

clock i n p u t) , a sys tem is able to begin execu ting
instructi ons. This i n itial set of i nstructions i s used

to write the bus con tro l registers i nside the CPU

chip to s et the cache timing and to test the ch ip and
mod u le from the CPl o u t . After the SIZOM loads t h e

!-cache. the pins u sed for th e Sl{O,vl interface arc
enabled as serial in and out ports. Tlu:se pons can
be used to load more data or to retu rn status of test
ing and setu r .

Circuit Implementation
Many novel circ u i t structures ami d etai led ana lysis
tech niques were d eveloped to s u p p o rt the clock
rate in conj u n ction with the com p lex i ty demanded

by the concu rrence ami wide data raths. The clock

ing method is s i ngle wire level sensit ive . The bus
i nterface u n i t op erates fro m a b u ffered version of
the main c l o c k . Signals that cross t h is i nterface are
des kewed to el i m inate races. T h is clocking method
e l i m i n ates dead t i me between p h ases ami requ i res
only a single clock signal to be rou ted t h rougho u t
the chip .

40

One d i ffic u lt y i n herent in this clo c k i ng method

is the substantia l load o n the cl ock node, :).25
nanofaracl (nf) i n o u r design. This load and the
requ irement for a fast c l o c k edge led us to t a ke p ar

t i c u lar care ·w i t h clock rou ting and to do extensive
analysis on th e result in g grid . Figure 6 shows the

d istri b u t io n of c lock load am ong the m ajor func
t i o n a l u n i ts . The clock d rives i n to a grid of vert ica l
meta l 3 and horizo n t a l metal 2. M o s t of the l oading
occurs in the integer and floa t i ng-p o i n t u n its that
are fed from the m ore robust metal 3 l i nes. To

ensure the i n tegrity of the c lock grid across the
chip, the grid was ext racted from the l ayo ut and the
resu l t i ng network, w h ic h conta ined 630,000 RC ele
ments, was s imul ated using a c i rc u i t s i m u l ation
program based o n the AWEsim simu lato r from
Ca rnegie-Mel lon l ! n iversiq'. Figure 7 shows a t h ree
dimensional rep resentat ion of the o u t p u t of this
s i m u lation and shows the clock delay from the
d river to each of the 6),000 transistor gates con
necteLI to the clock grid .

The 200-MI-Iz clock signal is fed to the driver

t h rough a bi nary fa n n ing tree with five levels of
b u ffering. There i s a horizontal short i ng bar at the
input to the clock driver to h e l p s moot h ou t poss i

ble asymmetry in the i ncom i ng wave front. The
d river i tself consists of 145 separate e lements. each
of which contains fou r levels of prescal i ng i n t o a
f inal output stage that drivl's the clock grid .

l'o/ . . j No . .. j .ljJeciol Issue I'.J'.Jl Digital TeciJIIical jou runl

A 200-MHz 64-bit Dual-issue Clv/05 Micmprocessor

I NT UNIT
1 1 29 pF

WRITE
BUFFER
82 pF

I-CACHE
373 pF

FPU
803 pF

D-CACHE
208 pF

TOTAL BYPASS CAPACITANCE = 1 28 nF

Note: Total ellective switching capacitance = 12 .5 nF

Figure 6 Clock Load Distribution

• < 2.93E+01

• 5.86E+01

300 • 8.79 E+01
(j)
c... 200

D >- 1 . 1 7 E+02 "'
a; Cl 1 00

1 .47E+02
0

1 .76 E+02

2.05 E+02

6' 2.34E+02
· o

<"� '?9 <9 2.64E+02 � ·o
� � -qo <0� • < 2.93E+02

�'
�<:> \...�

�'
"0e'�

Figure 7 CPU Clock Skew

The clock driver and p red rive r represent about

40 percent of the total effect ive switching capaci

tance determined by power measu rement to be

l2 .5 nF (worst case including ou tput pi ns). To

manage the problem of di/dt on the chip power

pins, explicit decoupl ing capacitance is provided

Digital Techu icnl jourua/ Vul. ·1 ,\u. 1 .\jJ('cial lssue /1;)').2

on-chip. Th is consists of thin oxide capacita nce

that is distribu ted around the chip, primarily under

the data buses. In addition, there are horizonta l

metal 2 power and clock short ing straps adjacent

to the clock generator, and the thin oxide decoup

l i ng cap under these l i nes suppl ies charge to

4 1

Alpha AXP Architecture and Systems

the clock driver. di/dt for the driver alone is about

2 x 10n amp eres per second. The total decoupl ing

capacitance as extracted from the layout measures

128 nF Thus the ratio of decoupl ing capacitance

to switching cap is about 10: l . With this capacitance

ratio, the decoupl ing cap could supply a l l the charge

associated with a complete CPU cycle with only a 10

percent reduction i n the on-chip supply vo l tage.

Latches
As previously described, the chip employs a single

p hase approach , with nearly a l l latches in the core

of the chip receiv ing the clock node, CLK, directly.
A representative example is i l l ustrated in Figure 8.
No tice that L1 and L2 are transparent la tches

separated by random logic and are not simu ltane

ously active; L1 is active when CLK is high and L2
is active when CLK is low. The minimum numbe r of

delays between latches is zero and the maximum

nu mber of delays is constrained only by the cyc le
time and the deta i ls of an y releva nt critica l paths.

The bus i nterface unit, many da ta-p ath structures,

and some critical paths deviate from t his approach

and use bu ffered versions ancl/or cond itio naJ ly buf-

CLK

42

(a) Latching Schema

L1 OPAQUE

TR TF
- -

..1--------!..

L2 OPAQUE
L2 TRANSPARENT l1 TRANSPARENT

(b) Latch Timing

Figure 8 Chip Latches

fe red versions of CLK. The resu lt ing clock skew is

managed or el iminated with special latch structures.

The latches used in the chip can be classified into

two categories: custOm and standard. The custom
la tches were used to meet the u n ique needs of data

path structures and the special constraints of criti

ca l p aths. The standard latches were used in the
design of noncritical control and i n some data-path

appl ications. These latches were designed prior to
the start of im plementation and were i n cluded in

the I ibrary of usable elements for logic synthesis. All
synthesized logic used only this set of latches.

The stand ard latches are extensions of previously

published wo rk, and examples are shown in Fig
ures 9 to 1 J . 2 To understand the operation of
these latches, refer to Figure 9a. When CLK is h igh,

P1, Nl, and N3 function as an inverter complement

ing IN l to produce X P2, N2, and N4 fu nction as a
second inverter and comp lement X to produce

OUT. Therefore, the structure passes IN 1 to OUT.

When CLK is low, N3 and N4 are cut off. If !N l , X,

and OUT are in i tially high, low, and h igh respec

t ively, a transition of !N l falling pul ls X high

th rough Pl causing P2 to cut off, which tristates

OUT h igh. I f IN l , X, and OUT are init ia l ly low, high ,

and low respective ly, a transition of IN 1 rising

causes PI to cut off, which t rista tes X h igh leaving

out tristated low. In both cases, addit ional transi

t ions of IN1 leave X tristated or driven h igh with

OUT tristated to its i ni t ia l va lue . Therefore, the

structure implements a latch that is transpare n t

when CLK i s h igh a n d opaque when CLK i s low.

Figure 9c shows the dual circu it of the latch just d is

cussed ; this struc ture i mplements a latch that is

transparent when CLK is low and opaque when

CLK is high. Figures 9b and 9d depict latches with
an output buffer used to protect the sometimes
dynamic node OUT and to drive large loads.

The design of the stand ard l a tches stressed three
primary goals: flex i bi l i ty, immunity to noise, and
immunity to race- through . To achi eve the desired
flexibi l i ty, a variety of latches l ike those in F igures 9
to 1 1 in a variety of sizes were characterized for the

implemen tors. Thus the designer could select a

latch with an optional output buffer and an embed

ded l ogic fu nction that was sized appropriately to

drive various loads. Fu rthermore, it was decided to

allow zero delay between latches, completely free

ing the designer from race-through considerations

when designing static logic wi t h these latches.

In the circu i t methodology adopted for the imple
mentation, o n ly one node, X (Figure 9a). poses

vbl. 4 No. 4 Special issue 1992 Digital Tecbnical journal

CLK

I N 1 --c}-- OUT

OUT

(a) Nonin verting A ctive-high Latch

CLK

I N 1 + 0UT

(c) Noninverting Actiue-low Latch

OUT

Figure 9

inordinate noise margin risk . As noted above, X
may be tristated high with OUT tristated low when
the latch is opaque. This maps into a dynamic node
driving in to a dynamic gate that is very sensitive to
noise that reduces the voltage o n X, causing leakage
through P2, thereby destroying OlJT. This problem
was addressed by the addition of P5. This weak
feedback device is sized to source enough current
to cou nter reasonable noise and hold P2 in cu toff.
N5 plays an analogous role in Figure 9c.

Race- through was t he major fu nctiona l concern
with the la tch design. It is aggrava ted by clock skew,

Digital Technical journal Vol. 4 Nu. 4 Special Issue 1992

A 200-MHz 64-bit Dual- issue CMOS Microprocessor

I N 1

CLK

I N 1 � 0UT

(b) Inverting A ctiue-high Latch

CLK

I N 1 � OUT

CLK ---r�sr--------r-��-----

(d) In vertin/!, A ctive-low Latch

Basic Latches

the variety of avai l able la tches, and the zero delay
goal between latches. The clock skew concern
was actual ly the easiest to address. If data propa
gates in a direction that opposes the propaga tion of
the clock wave front, clock skew is functional. ly
harmless ancl tends only to redu ce the effect ive
cycle t ime local ly. Mini mizing this effect is of con
cern when designing the clock generator. If data
propagates in a direction simi lar to the propagation
of the clock wave front, clock ske"v is a functional
concern. This was addressed by rad ial ly distrib
uting the clock from the center of the chip. Since

Alpha AXP Arc hitecture and Systems

CLK

I N 1 � 0 UT I N2 �

OUT

(o) Tll 'o-input AND Actiue-higb Latch

I N 1

CLK

I N 1 � 0UT I N 2 �

CLK ---t-----!e------t-----lf----9----.--

OUT

CLK

I N 1 � 0UT I N 2 �

(IJ) Tzl 'o-input NAND Actiue-b(f!,b Latch

I N 1

CLK

I N 1 �

I N2 � OUT

CLK ---t-----!e-----+�f---{:l----.--

N2

(c) Tu ·o-injmt A ND Actir•e-lo u· Latch (d) Tu·o-input NAND Actiue-lo u · Latch

Figure 10 A NO/NA N!) latc!Jes

tile clock wave front moves o u t radi ally from the

clock driver toward the periphery of the d ie, i t is

not possible for the data to overtake the clock i f the

clock network is p roperly designed .

11> ve rify the remaining race-through co ncerns, a

mix-ami-march approach was taken . Al l reasonable

combinations of l a r c hes were cascaded together

and s i m u lated . The s i m u lations were stressed by

e l i m i n a t i ng a l l i nterconnect ancl diffu sion capaci

tance a nd by pushing each device i nto a corn e r

of t h e p rocess that emphasized race- t h rough.

,,. ,

Then m a ny simulations with varying CLK rise and

fa l l t i mes, temperatures, and p ower supply vol t

ages were performed . T h e results showed n o

appreciable evide nce of race- through for CLK rise

and fa l l t i mes at or below 0.8 ns. With 1 .0-ns rise

and fa l l t i mes, the latches showed signs of fai l ure.

'11> guarantee fu nctiona l i ty, CLK was spec i fied and

designed to have a n edge rate of Jess than 0.5 ns.

This was nor a seri ous constra i n t s i nce other

circu its in the chip required s i m i l a r edge rates of

the clock.

l l1/. ··I .Vo. -1 .\j;ecial !ss11e 1992 Digilal TeciJ nical jo urnal

CLK

I N 1 ---fL OUT IN2 -LY

(a) Two-illput OR A ctive-high Latch

CLK

I N 1 __,-'j\,__ OUT I N2 �

OUT

(c) Ttuo-input OR A ctiue-low Latch

Figure 11

A last design issue worth not ing is t he feedback

dev ices, N'; and P5, in F igures lOc, lOci, l l a , and

11 b. Notice that t hese dev ices have their g<�tes tied

to CI.K i nstead of OUT I ike the or her l a tches. This

difference i s requi red to account for <�n etfect not

present i n t he other latch es. In these latches, a

StKk of dev ices is connected to node X, without

pass i ng t hrough the clocked t ransistors P3 o r N3.
Referring to F igure l l a , <�ssume CLK i s l ow, X is

high, <�nd OUT is low. If m u lt iple random transitions

are a l lowed by IN I with JN2 h igh , then coupl ing

Digital Tecbuical journal 1-rJI. 4 No. 4 Special Issue 1')91

A 200-JI!/Hz 64-bit Dual-issue CMOS ililicroprocessor

CLK

I N 1 �0UT IN2 �

({;) Two-input NOR Actiue-bigb Latch

CLK

I N 1 --1LOUT IN2 �

(d) Two-input NOR A ctil'e-low Latch

OR/NOR l.a tc!Jes

t h rough P I can d rive X dow n by more than a

t h reshold even with weak feed back, thereby

destroying Ol IT. l() counter t h i s phen omenon, P';

cannot be a weak feedback device and therefore

cannot be t ied to OUT if the latch is to fu nction

pro p e rl y when CLK is h igh. Note that tal ler stacks

aggravate t h is problem because the dev ices

become larger and there are more devices to part i c

ipate in cou p l i ng. For this reason, stacks in these

l atches were l i m ited to t h ree h ig h . Also, note that

cl ocking P'; intro duces another race- through path

Alpha A.XP Architecture and Systems

si nce X wi l l unconditio n a l l y go h igh with CLK

fa l l ing, ami O l !T must be able to reta in a stored ONE.

So th ere is a two-sided constraint : P5 must be large

enough to counter cou pl i ng and sma l l e nough not

to cause race- through. These trade-offs were an a

lyzed by s i m u l ation i n a man ner s i m ilar to the one

outl i ned above.

64-bi t Adder

A d i fficult circ u it problem was the 64-bit adder por

t ion of rhe i n teger and floati ng-point ALUs. Unl ike a

previous high-speed design, we set a goal to

achieve single-cycle latency i n this u n it .\ Figure 12

has an organizational diagram of its structure. Every

path through the adder includes two latches, a l low

i ng fu l ly p ipelined operat ion. The resul t l atches are

shown ex pl icit ly in the d iag.r<J m ; however, the i n p u t

larches a r e somewhat i m p l icit, t a k i ng advantage o f

the preu isc harge ch:uacteristics o f t he carry chains.

The complete adder is a combination of t hree meth

ods for prod ucing a bi nary add: a byte long carry

ch a i n , a longword (32-bit) carry select, and local

logarithmic carry selecv The carry select is bu i lt as

a set of n-channel metal-oxide semiconductor

(N MOS) switches that d irect the data from byte

carry chains. The 32-bit l o ngword lookahead i s

implemented a s a distributed d i fferential c ircu it

control l i ng the fi nal stage of the upper longword

swi tches. The carry chains are orga n ized i n groups

of eight hits.

Carry chain width was chosen to i mplement a

byte compare function specified by the arch itec

t ure. The carry chain implemented with NMOS tran

sistors is shown in Figure !:) a . Operation begins

with the chain pred ischarged to �s· with the con
tro l l ing signa l an OR of CLK and the k i l l functi o n .

Evaluation hegins a l ong t h e chai n l e ngth without
the delay associated with the l;;;s- � threshold found

in a cha i n prechargecl to VD0 An alterna tive to a pre
d ischarged state \Vas to precharge to �Jo- 1-j, bu t the

resu lt ing low noise margins were deemed u nac
ceptable. From the least significant bit to the most

signifi cant bit, the width of the NMOS gates for each

carry cha i n stage is tapere d down, reducing the

load i ng presen ted by the remainder of the chain .

The local carry nodes are received by rati oed i nvert

ers. Each set of propagate, k i l l , and generate signals

con trols two carry chai ns, one that assumes a carry
in and one that assumes no carry i n . The resu lts

feed the bit-wise data switches as wel l as the carry

selects.

The longword carry select is built as a d istributed

cascode stru cture used to combine the byte gen

erate, k i l l , and propagate sign als across the lower

32 -bit longworcl . It controls the f inal data s e lection

i n to the upper longworcl output latch and is out of

the c r i t ical path.

The NMOS byte carry select switches are con

t rol led by a cascade of closest ne ighbor byte carry

outs. Data i n the most significant byte of the upper

longwonl is swi tched first by the carry-out data of

the nex t lower byte , byte 6, then by byte 5, and

f inal ly byte 4. The switches d irect the sum data

from either the carry- i n channel or the no-carry

channel (Figure 13b). Sign exte nsion is accom

p l ished by d isabl ing the upper lo ngworcl switch

controls on longword operations and forci ng the

sign of the result i n t o both data channels.

l/0 Circuitry

To prov ide maxi m u m flexibi l i ty i n app.lications, the

external i n terface a llows for several d i fferent

modes of operation all us ing com mon o n-ch ip cir

c u i try. This inclu des choice of logic fa m i ly (GviOS/

t r a nsisto r- transistor .logic [TTL) or e m i t ter-coupled

logic rECL]) as wel l as bus width (64/128 b its), exter

nal cache size and access time, and BIU c l ock rate .

These parameters are set into mode registers dur

i n g chip power-up. The logic fa m i ly choice pro

vided an i n teresti ng circ u i t chal lenge. The i n p u t

receivers a r e d i fferential a mp lifiers t h a t u t i l i ze an

external reference level which is set to the swi tch

ing midpoint of the externa l logic fam i l y. To m a i n

ta in signal i n tegrity of t his reference voltage, it i s

res istive ly isolated a n d Re- fi l tered at each receiver.

The output driver presented a more d iffic u lt
problem due to the 3.3-V V0D chip power supply. To

provide a good i n terface to ECL, i t i s i m portant that

the output driver pul l to the V,JD ra i l (for ECL opera
tion V,Jo = 0 V, "Ss = - 3 3 V). This precludes using
NMOS p u l l -ups. P-channel meta l-oxide semicon

ductor (PMOS) pul l-ups have the problem of we l l

junction forward bias a nd PMOS turn-on when

bid irect i o n a l o u tp u ts are c o n nected to 5 -V logic

in CMOS/TTL mode. The solut ion, as shown i n Fig

ure 14, is a u nique floa t i ng-wel l d river circuit that

avoids the cost of series PMOS pu 1 1 -ups i n the final

stage, wh i l e prov i d i ng direct i nterface to <; -V
CMOS/TI'L as wel l as ECL. 5

Transistors Q l , Q2, and Q6 are the actual output

dev ices. Q l and Q2 are NMOS dev ices arranged i n

cascode fash ion t o l i m it t h e voltages across a s i ngle

hJ/. -i Su . .:f .\j;ecial lssuf! 1992 Digital Teclmicaf jo unwf

c
�:
�
� "
�
�·
E..
'§'
J
§.
"" "'-
""
< �
">-

� "'
�.
�
:;;--"·
!:: "'
\,::
'o '"

�
--J

RESULT

I N PUT OPERANDS

BYTE 7

RESULT

INPUT OPERANDS

BYTE 6

RESULT

I N PUT OPERANDS

BYTE 5

RESULT

I N PUT OPERANDS

BYTE 4

RESULT

I N P U T OPERANDS

BYTE 3

RESULT

M U X

I N P UT OPERANDS

BYTE 2

Figure 12 64-bit Adder Block Diagram

RESULT

LOOK
AHEAD

I N PUT OPERANDS

BYT E 1

RESULT

I N P UT OPERANDS

BYTE 0

�
1\.)
a
a K_
.::::
:J:: N
�
9:
\:::1 ;:: !::) ";'< -. "' "' ;::
(1)

�
�
S;;
�-
"
.g
2
� v,
0
"

Alpha AXP Architecture and Systems

VDD

48

VDD VDD VDD VDD VDD

(a) A dder Can)' Chain

SUM_ OUT _ASS UMIN G_NO_CAR RY

C 1 GETS C 1

C 1 GETS C 1 L

CO G ETS CO L

CO GETS CO

VDD

'

PREDISCHARGE
AND KILL DEVICE

GENERATE
DEVICE

CARRY
IN

PR OPAGATE
DEVICE

SU M_I N_ASSU M I NG_NO_CARRY
SUM_.I N_ASS UMING_CARRY

(b) Adder Carry-select Switches

Figw·e 13 Adder Carry

transistor to no more than 4 V Q6 is a PMOS p u l l-up

dev ice that shares a common n-we l l with Q7

through QIO, which have responsib i l i ty for supply

ing the we l l with a positive bias voltage of either

�Jo or the l/0 pin potential , wh ichever is h igher. Q3

through Q5 control the source of voltage for the

gate of Q6-either the output of the i nverter or the

110 pacl if it moves above �Jo · Rl and R2 provide

50-ohm series termination in either operating mode.

Caches

Figure 14 Floating-well Driver

The two i nternal caches are almost identi cal in con

stru ction. Each stores up to 8K.B of data (D-cache)

or instruction (!-cache) with a cache block size of

32 b)rtes. The caches are d i rect mapped to real ize

a single cycle access, and can be accessed using

Vr!l. 4 No. 4 Special Issue 1')92 Digital Technical journal

untranslated bits of the virtual address since the
page size is also 8KB. For a read, the address stored
in the tag and a 64-bit quadword of data are
accessed from the caches and sent to either the
memory management unit fo r the 0-cache or the
instruction u n it fo r the I-cache. A write-through
protocol is used for the 0-cache.

The 0-cache incorporates a pending fill latch
that accumu l ates fi l l data for a cache block while
the 0-cache services other load/store requests.
Once the pend ing fi l l latch i s fu l l , an entire cache
block can be written into the cache on the next
avai lable cyc le. The !-cache has a s imilar faci l ity
called the stream bu ffer. On an [-cache miss, the
1-box fetches the required cache block from mem
ory and loads i t i nto the 1-cache. In addition , t he
I-box will preterch the next cache block and place i t
in t h e stream buffer. T h e data is held in t he stream
buffer and is written into the l-cache only if the data
is requested by the 1-box.

Each cache is organized into four banks to reduce
power consu mption and current transients during
precharge. Each array is approxi mately 1 ,024 cel l s
wide by 6 6 cel ls t a l l w i t h t h e top t w o rows used
as red undant elements. A six-transistor, 98-p,m2
static RAt\1 cell is used. The cel l uti l izes a local in ter
connect layer that connects between polysi l icon
and active area, resu lting in a 20-percen t reduction
in cel l area compared to a conventional six- transis-

3 4
CLK

A 200-MHz 64-bit Dual-issue CMOS Microprocesso1·

tor cel l . A segmented word l ine is used to accom
modate the banked design, with a global word l ine
implemented in third-level metal and a local word
l ine i mplemented in first-metal layer. The global
word l ine feeds into local decoders that decode the
lower two bits of the address to generate the local
word l i nes. As shown in Figure 15, the word J i nes
are enabled while the clock is h igh, and the sense
ampl ifiers are fired on the fal I ing edge of the clock.

Summary

A single chip m icroprocessor that implements a
new 64-bit high-performance architecture has been
described . By using a h ighly optimized design style
i n conj unction with a high-performance 0.75 -p,m
technology, operating speeds up to 200 MHz have
been achieved.

The chip is superscalar degree 2 and has 7- and
10-stage p ipel ines for i nteger and floating-point
instructions. The chip includes primary instruction
and data caches, each 8KB in size. In each 5-ns
cycle, the chip can issue two instructions to two of
fou r u nits, yielding a peak execution rate of 400
m ips and 200 MFLOPS.

The chip is designed with a flexible external
interface providing i ntegral support for a sec
ondary cache constructed of ordinary SRAt\1s. The
interface is fu lly compatible with virtua l ly any
multiprocessor write cache coherence scheme,

P I PE L I N E STAGE
5 6 7 8

DISPLACEMENT
ADD ---------�----------------------

CACHE
WORD-LI NE

SENSE A M P
ENABLE

CACH E DATN
TAGS OUT

REGISTE R FILE
WRITE PORT

ALU BYPASS I N

--------�fl�----------------
---------�1\�----------
----------------���------------
----------------------���-------
----------------------���-----

Figure 15 D-cache Timing Diagram

Digital Technical journal Vol. No. 4 Special Issue 1992 49

Alpha AXP Architecture and Systems

and can accom modate a wide range of t iming
parameters. It can i nterface d irectly to standard TIL

and CMOS as well as lOOK ECL teclmology.

References

1 . Alpba An.:hitecture Handbook (Maynard: Digital
Equ ipment Corporation, Order No. EC-H1689-10,
1992) .

2.). Yuan and C. Svensson, " High-Speed CMOS
C i rcuit Techniques," IEEE journal of Solid-State

Circuits, vol. 24, no. 1 (February 1989).

50

3. R. Conrad et a l . , "A 50 MIPS (peak) 32/64b
Microprocessor," JSSCC Digest of Technical

Papers (February 1989): 76-77.

4. J. Sklans ky, "Conditional-Sum Addition Logic,"
IRE Transactions on Electronic Computing,

vol . EC-9 (1960): 226-231 .

5. H. Lee et a!. , "An Experimental 1 M b CMOS SIV\.J\1
with Configurable Organization and Operation,''
JSSCC Digest of Technical Papers (February

1988): 180-181 .

Vol. 4 No. 4 Special Issue 1992 Digital Teclmical journal

Charles P. Thacker
David G. Conroy

Lawrence C. Stewart

The Alpha Demonstration Unit:
A Highpeiformance Multiprocessor
for Software and Chip Development

Digital's first RJSC S)'stem built using the 64-bit Alpha AXP architecture is the

prototype known as the Alpba dem onstration unit or ADU It consists of a backplane

containing 14 slots, each of w!Jich can hold a CPU module, a 64MB storage module,

or a module containing two 50MB/s l/0 channels. A new cache coherence protocol

provides each processor and l/0 channel with a consistent view of shared memory

Tbirzvjive ADU systems were built within Digital to accelerate software develop

ment and early chip testing.

There is noth ing more d ifficul t to take in hand.
more perilous to conduct, or more uncertain in irs
success, than to rake the lead in t he introduction of
a new order of th ings.

-Niccolo Nlachiavel l i , The Pri11ce

Introducing a new, 64-bit computer archi tecture

posed a nu mber of chal lenges for Digital . In

addition to deve lop ing the archi tecture and the

first i ntegrated imple mentations, an enormous
amount of software had to be moved from the VAX

and MIPS (MIPS Computer Systems, Inc.) architec

tures to the AJpha AXP arch itecture. Some software
was original ly written i n h igher-level languages and

cou ld be recompi led with a few changes. Some

could be converted using binary translat ion tools. 1
AJ J software, however, was subject to testing and

debugging.
It became clear in the early stages of the program

that bui ld ing an AJpha demonstration un i t (ADU)

wou ld be of great benefit to software developers.

Having a funct ioning hardware system would moti

vate software developers and reduce the overa l l
time to market considerably. Software develop
ment, even in the most d iscipl ined organizat ions,
proceeds much more rapid ly when rea l hardware is

avai lable f(>r programmers. In addi tion, hardware
engineers could exercise early implementations of

the processor on the ADU, since a part as complex

as the DECch i p 2 1064 CPU is difficult to test using

conve ntional in tegrated circu i t testers.
For these reasons, a project was started in early

1989 to bu ild a number of p rototype systems as

Digital Tecbuical journal Vol. 4 No. 4 SfJecial lssue I'J92

rap id ly as possible . These systems d id not require
the h igh levels of rel iabi l i ty and ava i lab i l i t y typical

of D igital products, nor did they need to have low
cost, since only a few would be bui l t . They did need

to be ready at the same time as the first chips, and

they had to be sufficient ly robust that their pres

ence woul d accelerate the overa l l program.

D igital 's Systems Research Center (SRC) in Palo
Alto, CA had had experience in bui ld ing s imi lar pro

totype systems. SRC had designed and bui l t much of

its computing equ ipment.1 Being l ocated in Sil icon

Val ley, SRC cou l d employ the services of a nu mber
of local medi u m -vo lume fabrication and assembly

companies without impeding the mainstream

Digital engineering and manufactur ing groups,
which were developing AXP product systems.

The project team was del iberate ly kept s ma l l .

Two designers were located at SRC. one was with the

Semiconducto r Engineering Group's Advanced

Development Group in Hudson, MA , and one

was a member of Digita l 's Cambr idge Research
Laboratory in Cambridge, ,viA. Although the project
team was separated both geographically and organ
zational l y, com m u nication flowed smoothly
because the individuals had co l laborated on s imi lar

projects i n the past . The team used a common set of
design tools, and Digita l 's global network made i t

possible to exchange design information between

s i tes eas i ly. As the project moved from the design

phase to production of the systems, the group
grew, but at no point d id the entire team exceed ten

people.

5 1

Alpha AXP Architecture and Systems

Since multiprocessing capabil ity is central to the
Alpha AX P architecture, we decided that the ADU

had to be a multiprocessor. We chose to implement
a bus-based memory coherence protoco l . A h igh
speed bus connects three types of modu les: The
CPU modu le contains one microprocessor chip, its
external cache, and an interface to t he bus. A stor
age module contains two 32-megabyte (M B) inter
leaved banks of dynamic random-access memory
(DRAM). The 1/0 modu le contains t wo 50MB per
second (MB/s) 110 channels that are connected to
one or two DECstation 5000 workstations, which
provide disk and network 1/0 as wel l as a h igh
performance debugging environment. Most of the
logic, with the exception of the CPU chip, is emit
ter-coupled logic (ECL), wh ich we selected for its
high speed and predictable electrical characteris
tics. Mod u les plug into a 14 -s lot card cage. The card
cage and power suppl ies are housed in a 0.5 -meter
(m) by 1 .1-m cabinet. A fu lly loaded cabinet dissi
pates approximately 4,000 watts and is cooled by
forced air. Figures 1 and 2 are photographs of the
system and the modu les.

In the remaining sections of this paper, we dis
cuss the backplane interconnect and cache co her
ence protoco l used in the ADU. We then describe
the system modules and discuss the design choices.
We a lso present some of the uses we have found for
the ADU in addition to its original purpose as a soft
ware development vehicle. We conclude with an
assessment of the project and its im pact on the
overall Alpha A.'\P program .

52

Figure 1 The Alpha Demonstration Unit

(a) CPU Module

(b) Storage 1�fodule

(<-) l/0 Module

F(�ure 2 ADUModules

V!JI. 4 No. 4 .\jH!Cilll lssue 1.992 Dip,itnl Tecbuicaf jou nwl

Backplane Interconnect
The choice of a backplane interconnect has more
impact on the overal l design of a mu l t iprocessor

than any other decis ion. Complexity, cost, and per

formance are the factors that must be ba lanced to

produce a design that is adequate for the in tended

use. Given the overa l l purpose of the project, we

chose to minim ize complexity and maximize per

formance. System cost is important in a h igh-vol
ume product, but is not i mportant when only a few

systems are produced .

To min im ize complex ity, we chose a p ipe l ined
bus design in which a l l operations take p lace at

fixed t imes relative to the t ime at which a request is
issued . To maximize performance, we defined the

operations so that two independent transactions
can be in progress at once, which fu l ly ut i l izes the

bus.

We designed the bus to provide high bandwidth,

wh ich is su i table for a mult iprocessor system, and

to offer min imal latency. As the CPU cycle t ime
becomes very sma l l , 5 nanoseconds (ns) for the

DECchip 21064 ch i p, the main memory latency

becomes an i mportant component of system per

formance. The ADU bus can supply 320MB/s of user

data, but sti ll is able to sat isfy a cache read m iss i n

just 200 ns.

Bus Signals
The ADU backplane bus uses ECL lOOK voltage lev
els . Fifty-ohm control led-impedance traces, termi

nated at both ends, provide a well-characterized

e lectrical environment, free from the reflections

and noise often present in h igh-speed systems.

Table 1 l ists the signals that make up the bus. The

data portion consists of 64 data signa ls, 14 error

correction code (ECC) signals. and 2 parity bits. The

ECC signals are stored in the memory modu les, but
no checking or correction is done by the memories.
I nstead. the ECC bits are generated and checked
only by the u lt imate producers and consumers of

data, the I/0 system and the CPU chip. Secondary
caches, the bus, and main memory treat the ECC as
u ninterpreted data. This arrangement increases
performance, since the memories do not have to
check data before del ivering i t . The memory mod
u les wou ld have been less expensive had we used

an ECC code that protected a larger block. Since the

CPU caches are l arge enough to require ECC and

s ince the CPU requ ires EC:C over 32-bit words, we

chose to combine the two correction mechanisms
into one. This decision was consistent with our goa l

Digit aT Technical journal Viii. 4 No. 4 .\jJeciaf Issue 1')'}2

The Alpha Demonstration Unit

Table 1 Bus Signals

Sig nal Name P i ns Use

-Data[63 .. 00] 64 Data
-ECC0[6 . . 0] 7 ECC on Data[31 .. 00]
- ECC1 [6 . . 0] 7 ECC on Data[63 .. 32]
-P[O] 1 Even Parity over

Data[31 . . 00], ECC0[6 . . 0]
-P[1] Even Parity over

Data[63 . . 32], ECC1 [6 . . 0]

8-shared 1 Cache coherence
8-di rty 1 Cache coherence

Retry 1 Storage module busy
Error 1 Data or address parity error

Arb Request 8 Arbitration for the bus

Clock 2 1 00 MHz d ifferential clock
Phase 1 50 MHz Reset 1

nTypeCik 1 Module identification
nType 1 Module identification
nld 4 Module slot number (0 .. 1 3)

set by backplane wiring

of s impl ifying the design and improvi ng perfor

mance at the expense of i ncreased cost. The parity
bits are provided to detect bus errors duri ng

address and data transfers. A l l modu les generate

and check bus pari ty.

The module identification signals are used only

dur ing system init ia l ization. Each module type is
assigned an 8-bit type code, and each backplane slot

is wired to prov ide the s lot number to the modu le i t
contains. Each module i n the system reports its
type code seria l l y on the nType line during the 8 X
slot number nTypeCik cycles after the deassertion

of system reset. A configuration process running

on the console processor toggles nTypeClk cycles
and observes the nType l ine to determine the type

of module in each backplane slot .

The 100 -megahertz (MHz) system clock is d is-

tributed rad ia l ly to each module from a clock gen
erator on the backplane. Constant - length wiri ng

and a strictly specified fan-out path on each mod
u le controls clock skew. S i nce a bus cycl e takes two
clocks, the phase signal is used to identify the first

clock period .

Addressing
The bus supports a physical address space of 64

gigabytes (2Y' bytes). The resolution of a bus address

is a 32-byte cache block, which is the o n ly unit

of trans fer supported; consequently, 31 address
bits suffice. One-quarter of the address space is

reserved for control registers rather than storage.

53

AJpha AXP Architecture and Systems

Accesses to this region are treated speci a l ly : CI'Us
do not store data from this region in their caches,

and the target need not supply correct ECC bits.

'The method used to select the target module of

a bus operation is geographic. The in i t iator sends

the target module's slot number with the address

during a request cycle. Jn addition to the 4-bit s lot

number. the ini tiator suppl ies a 3-bit sufJnode iden

tifier with the address. Subnodes are the unit of

memory interleaving. The 64Mll storage module ,

for example, contains two independent 32MB sub

nodes that can operate concurrent l y.
The geographic selection of the target means that

a particu lar subnode only needs to compare the
requested s lot and subnode bits with its own slot

and subnode numbers to decide whether i t is the

target. This reduces the t ime requ i red hlr the deci

sion compared to a scheme in which the target

inspects the address fielcl, but it means that each ini

tiator must ma intain a mapping between physical

addresses and s lot and subnocle numbers. This map

ping is performed by a RA.tv1 i n each in i t iator. For

CPll modules, the RAM lookup does not redllce per

formance, since the access is done in paral le l with
the access of the modu le 's secondary cache. The

slot-mapping RAMs in each in i tiator are loaded at

system in i t ia l ization time by the configurat ion pro

cess described previously.

Bus Operation
The timing of addresses and data is shown in Figure 3.

A l l data transfers take place at fixed t imes relative

to the start of an operation. E ight of the backplane

slots can contain modu les capable of in i tiating

requests. These slots are numbered from 0 to 7, but

are located at the center of the backplane to reduce
the transit time between init iators and targets.

A bus cycle starts when one of the init iators arbi

t t·ates for the bus. The arbitration method guaran
tl'es that no init iator can be starved. Each ini t iator

CYCLE 0 1 2 3 4 5 6 7 8

ARB REQUEST R 1 R2

9

monitors a l l bus operations and must request only

those cycles that i t knows the target can accept .

In i t iators are a l lowed to arbitrate for a particu lar
target n ine or more cycles after that target has
started a read, or ten or more cycles after the target
has started a write. To arbitrate, an in i tiator asserts

the ArbRequest l ine corresponding to its current

priority. Priorities range from 0 (lowest) to 7 (high

est) If a modu le is the h ighest priority requester

(i .e . . no h igher priority ArbRequest l ine than its
own is asserted). that module wins the arbitrat ion,

and i t transmits an add ress ami a commancl in the

next cycle . The winning module sets its priority to
zero, and a l l in it iators with priority less than the in i

t i a l priority of the winner i ncrement their priority

regardless of wbether tbey made a request during

the arbitration cycle. Init ia l ly, each in i ti ator's prior
i ty i s set to its slot nu mber. Priorit ies are thus

d istinct in i t ia l ly and remain so over time. This a lgo

rithm favors in it iators that have not made a recent

request, s ince the priority of such an i n it iator
i ncreases even if it does not make requests. If a l l ini

tiators m a ke conti nuous requests, the algori thm

prov ides rou nd-rob i n servicing, but the i mplemen
tation is simpler than round robin.

An arbitration cycle is fol lowed by a request

cycle. The in i t iator places an address, nocle and
subnode nu mbers, and a command on the bus.
There are only three com mands. A read com mand

requests a 32-byte cache block from memory. The

target memory or a cache that contains a more

recent copy supplies the data after a five-cycle

delay. A write com mand transm its a 32-byte block
to memory, us ing the same cycles for the data trans

fer as the read com mand . Other caches may a lso

take the block and update their contents. A victim
write is issued by a CPU module when a block is
evicted from the secondary cache. \Vhen such an

eviction occurs, any other caches that contain the

block are guaranteed to contain the same value, so

10 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20 21 2 2 23 24 25

DATA A 1 A 2 0 1 01
R3 I R4

0 1 01 A3 02 02 02 D2 j A4 03 03 03 03 04 04 04 1 04

'54

B-SHA R E D . B-DI RTY 81 S2 S3 S4

ERROR E1 E2 E3 E4

This f igure shows the contents of the bus during four read cycles. I f requests are made at full rate, the bus is fully occupied
with addresses and data. B-shared and B-diny are sent in the fifth cycle after the arbitration request. If any module detects a
parity error during an address cycle, it assens error two cycles later.

Figure 3 Bus Timing

Vol. 4 No. 4 .)fH!Cial lssu" 199.! Digital Tecbuical jounwl

they need not part icipate in the transfer at a l l. The
block is stored in memory, as in a normal write.

Cache Coherence
Tn a m u l tiprocessor system with caches, it is essen
tial that writes done by one processor be made
avai lable to the other processors in the system in
a timely fas hion. A number of approaches to the
cache coherence problem have appeared in the lit
erature. These approaches fa l l into two categories,
depending on the way in which they hand le proces
sor writes. Invalidation or ownership protocols
require that a processor's cache must acqu ire an
exclusive copy of the block before the write can be
done ..' If another cache contains a copy of t he
block, that copy is inval idated. On the other hand,
update protocol s maintain coherence by perform
ing write-through operations to other caches that
share the block . 2 Each cache maintains enough
state to determine whether any other cache shares
the block. If the data is not p resent in another
cache, then write through is un necessary and is
not done.

The two protocols have quite different pe rfor
mances, depending on system activity. ' An update
protocol pe rforms better than an invalidation pro
tocol in an application in which data is shared (and
written) by mult iple processors (e .g. , a paral lel
a lgo rithm executing on severa l processors). In an
invalidation protocol, each time a processor writes
a location , the block is inval idated in a l l other
caches that share it . A l l caches require an expensive
miss to retrieve the block when it is nex t refer
e nced. On the other hand, an up date protocol per
fo rms poorly in a system in which processes can
m igrate between processors. With m igration, data
appears i n both caches, and each time a processor
writes a location, a write- through operation
updates the other cache, even though its CPU is no
longer interested in the bloc k. Larger caches with
long block lifetimes exacerbate this problem.

Coherence Protocol
The coherence protocol used in the ADU is a hybrid
of an update and an invalidation protocol, and l ike
many hybrids, it combines the good features of
both parents. The protocol depends on the fact that
the CPU chips contain an on-chip cache backed by
a m u ch larger secondary cache that monitors a l l
bus operations. Init ia l ly, the secondary caches use
an update protocol . Caches that contain shared
data perform a write-through operation to update

D-igital Teclmical journal Vol. 4 No. 4 Sjlel'ial /ssue 19?2

Tbe Alpha Demonstration Unit

the blocks in other caches whenever the associated
CPU pe rforms a write. I f no other cache shares
a block, this write through is unnecessary and is
not done. When a secondary cache receives an
update (i.e . , it observes a write on the bus d irected
to a block it contains), it has two options. It can
invalidate the block and report to the writer that
i t has clone so. If it is the only cache sharing the
block, subsequent write-through operations will
not occu r. Alternatively, i t can accept the update
and report that it did so, i n wh ich case the cache
that performed the write-through operation con
tinues to send updates whenever its CPU writes the
bloc k .

The actions taken by a cache that receives an
update are determi ned by whether the block is in
tbe CPU's on-chip cache. The secondary cache con
tains a table that a l lows i t to determine this without
interfering with the CPU. If the block is in the on
chip cache, the secondary cache accepts the
update and i nval idates the block in the on-chip
cache. lf the block is not in the on-chip cache, the
secondary cache block is i nval idated. If the block is
being actively shared , it wi ll be reloaclecl by the CPU

before the next update arrives, and the block wi l l
continue to be shared . If not, the block wi l l be inval
idated when the second update arrives.

Implementation of the Protocol
The implementation of the coherence protocol is
not complex. The five possible states of a secondary
cache block are shown in Figure 4. Init ial ly, a l l
blocks i n t h e cache are marked inval id . Misses i n
t h e CPU's on-ch ip cache cause a bus read to be
issued if the block is not in the secondary cache. If
the cache block is assigned to another memory loca
t ion and is di rty (i .e . , has been written since it was
read from memory), a v ictim write is issued to evict
the block, then a read is issued. Other caches moni
tor operations on the bus and assert the block
shared (B- shared) signal if they contain the block.
If a cache contains a d irty block and it observes
a bus read, it asserts 8- shared and B-dirty, and
suppl ies the data . B-dirty i n h ibits rhe memory's
delivery of data.

The CPU's on-chip cache uses a write- through
strategy. A CPU write to a shared block in the sec
ondary cache i n itiates a bus write to update the
contents of other caches that share the block.
Memory is written, so the block becomes clean. If
a nother cache takes the update, it asserts B-shared,
and the initiator's state becomes Sharecl not (-)

5 5

Alpha AXP Architecture and Systems

C-READ
C-READ
C-WRITE

-SHARED r-----------����-----------. - S HARED
D I RTY - D I RTY

C-WRITE
(-B-SHARED)

C-READ
(-B-SHARED)

B-WRITE,
- I N C

B-WRITE, I N C ;
B-READ

C-READ
(B-SHARED)

B-WRITE,
- I N C

B-WRITE,
- I N C

B-READ

SHARED
- D I RTY

B-WRITE, I N C
B-WRITE, I N C; C-WRITE (B-SHARED) SHARED

DI RTY

C-WRITE (B-SHARED)
C-READ
B-WRITE, I N C
B-READ

C-READ
B-READ

Transitions occur as a result of CPU reads and writes (C-read, C-wrile) and bus operations
initiated by other caches o r 1/0 controllers (B-read, B-write). A C-read or C-write to an invalid
block causes a B-read; a C-write to a shared block causes a 8-write. The B-shared response
indicates that some other cache contains the block. I N C indicates that the block is in the CPU's
on-chip cache.

Figure 4 Secondary Cache Line States

Dirty. If no other cache takes the update, either
because i t does not contain the block or because it

decides to inval idate it, then the B-shared signal is
not asserted , and the in it iator's state becomes
-Shared -Dirty. The B-shared and B-d irty sign a ls
may be asserted by several modu les dur ing cycle

five of bus operations. The responses are ORed by
the open-emitter ECL backplane drivers. More than
one cache can conta in a block with Shared = true,
but only one cache at a time can contain a block

with Dirty = true.

Designi ng the bus interconnect and coherence

protocol was an experiment in specification. The
informal description required approximately 15
pages of prose to describe the bus. The real specifi

cation was a mu lt i threaded program that repre
sented the various interfaces at a level of derai l

su fficient to describe every signa l , but, when exe

cuted, simu lated the components at a higher .leve l .

56

By running this program with sequences of simu
lated memory requests, we were able to refine the

design rapid ly and measure the performance of the
system before designing any logic. Most design
errors were discovered at this time, and prototype
system debugging took much Jess time than usua l .

System Modules
In this section, we describe the system modules
and the packaging of the ADU. We d iscuss the

design choices made to produce the CPU modu le,

storage modu les, and I/O module on schedu le . We

also d iscuss appl ications of the ADU beyond its
intended use as a vehicle for software development.

CPU Module
The ADU CPU module consists of a single CPU chip ,

a 256 -ki lobrte (KB) secondary cache, and an i nter

face to the system bus. Al l CPU modu les in the

Vu/. 4 No. 4 .\fJecial lssue 1992 Digital Technical journnl

system are identica l . The C:Pll modu les are not sel f
sufficient; t hey m ust be i n it ia l ized by t he console
workstation before the CPU can he enabled.

The CPU module contains extensive test access
logic that a l lows other bus agents to read and write
most of the mod u le 's in ternal state. We imple
mented this logic because we knew these mod ules

would be used to debug CPU ch ips . Test access logic
wou ld help us determine the cause of a CPU chip
mal fu nction and wou ld make i t possible for us to
introduce errors inro the secondary cache to test

the error detection and correction capabil ities of
the CPU chip. This logic was used to perform almost
a l l init ial ization of the CPU module and was a lso
used to troubleshoot CPU modules after they were
fabricated.

The centra l feature of the CPli module (shown
in Figure '5) is the secondary cache, bui lt using 16K

by 4 BiCMOS static RAMs. Each of the 16K half
blocks in the data store is 1'56 bits wide (4 long
words of data, each protected by 7 ECC bits). Each

of the 8K entries in the tag store is an 1 8 -bit address
(protected by parity) and a :'1-bit control field
(va lid/shared/d irty, also protected by p arity) . In
addition, a secondary cache dupl icate tag store,
consist ing of an 1 8 -bit address and a val id bit
(protected by parity), is used as a hint to speed pro
cessing of reads ami writes encountered on the
system bus. Finally, a CPU chip data cache dupl icate
tag store (protected by parity) fu nctions as an

BYPASS

The Alpha Demonstration Unit

inval idation fi lter and selects between u pdate and
inval idation strategies.

The system bus i nterface watches for reads and
writes on the bus, and looks up each address in the
secondary cache. On read hi ts, i t asserts B -shared
on the bus, and, if the block is d irty in the sec
o ndary cache, it asserts B-dirty and suppl ies read

d:.�ta to the bus. On write hits, it selects between the
inva l idate and update strategies, modifies the con
trol field in the secondary cache tag store appropri
ately, and, if the update strategy is selected, it

accepts data from the system bus .
Unl ike most bus devices , the CPU modu le 's

system bus interface must accept a new address
every five cycles. To do this, it is implemen ted as
two independent finite state machines connected
together i n a pi pe l i ned fashion.

The tag stare machine, which operates d uring
bus cycles I through 5. watches for addresses, per
forms a l l tag store reads (in bus cycle 4. just i n time
to assert B-shared and 8-dirt y in bus cycle 5) , and
performs any needed rag store wri tes (in bus cycle
';) . If the tag state machine determines that bus data
must be suppl ied or accepted, it enables the data
state machine, and, a t the same time, begins p ro
cessing the next bus request.

The data state machine, which operates during
bus cycles 6 through 10. moves data to a mi from
the bus and handles the read ing and writing of the
secondary cache data store. The h ig h l y pipe l i ned

Figure 5 CP 1\1/odule

Digital Tee/mica/ journal Vr>l. 4 No. 4 .\jJecial fssue 1')91 57

Alpha AXP Architecture and Systems

nature of the system bus makes reading and writi ng

the data store somewhat trich-y. Figure 6a shows

a write h i t that has selected the update strategy

immediately fo l lowed by a read hit that must supply

data to the bus. High performance m a ndates

the use of c locked transceivers, which means the

secondary cache data store m ust read one cycle

ahead of the bus ancl must write one cycle behind

the bus, resu lt ing in a conflict in bus cycle 1 1 .
However, the bus transfers data i n a fixed order,

so the read wil l always access quadword 0 of

the block, and the write wil l a lways access quad

word 3 of the block. By implementing the data

store as two 64-bit-wide banks, i t i s possible to han

d le these back-to-back transactions without creat

ing any special cases, as shown in F igure 6b. This

example is typ ica l of the style of design used in the

ADl l , which e l im inates extra mechanisms wherever

possible.

The CPU inte rface hand les the arbitration for the

secondary cache and generates the necessary reads

and wri tes on the system bus when the CPl . sec

ond ary cache misses.

The CPU chip is supplied with a clock that is not

rel ated to the system c lock i n frequency or phase.

This factor made i t easier to use both the 100-MHz

frequency of the DC227 proto type chip and the

200 -MHz frequency of the DECch ip 21064 CPU. It

also al lowed us to vary the operating frequency

dur i ng CPU chip debugging. However, the data

buses connecting the CPU chip to the rest of the

CPl l modu le must cross a clock-domain boundary.

Pe rhaps more sign ificant, the secondary cache tag

and data stores have two asynchronous sources of

contro l , s ince the CPU ch ip contains an integrated

secondary cache control ler.

CYCLE 0 2 3 4 5 6 7 8 9

WRITE CYCLE WO Vl/ 1 W2 Vl/3 Vl/4 W5 W6 W7 W8 Vl/9
READ CYCLE RO R 1 R 2 R3 R4
CAC HE Vl/7 W8

CYCLE 0 2 3 4 5 6 7 8 9

WRITE CYCLE wo W1 W2 W3 Vl/4 W5 W6 W7 W8 W9
READ CYCLE RO R 1 R2 R3 R4
CACHE EVEN Vl/7
CACHE ODD Vl/8

Figure o

'58

1 0

Vl/ 1 0
R5

W9

10

Vl/ 1 0
R 5
Vl/9

The bidirectional data bus of the CPU chip is con

verted into the unidirectional data buses used by

the rest of the CPU modu le by transparent cu toff

l atches. These latches, which are located in a ring

surround i ng the CPU , also convert the quasi-ECL lev

e ls generated by the CPU chip into true EC L levels

for the rest of the CPU module. These la tches are

norma l ly held open, so the CPU chip is, in effect,

connected d i rectly to the secondary cache tag and

data RA...VIs. Cont ro l s ignals from the CPU chip's in te

grated secondary cache con trol ler are simply ORed

i nto the ap propriate secondary cache RAM drivers.

These latches are also used to pass data across

the two-clock-domain boundary. Norma l ly a l l

latches are open. On reads, logic in the CPll chip

clock domain c l oses a l l the latches and sends a read

request into the bus clock domain. Logic in the bus

clock domain obta ins the data, writes both the sec

ondary cache and the read latches, and sends an

acknowleJgment back into the CPU chip cl ock

doma i n . Logic i n the CP\ J chip clock domain

accepts the f irst ha l f-block of the data, opens the

f irst read latch, accepts the second ha l t� l ine of the

data, and opens a l l remain ing latches. \'hires are

s imilar. Logic in the CPU chi p clock domain writes

the first h a l f- l i ne into the write latch, ma kes the

second half- I ine valid (beh ind the latch), and sends

a write request in to the bus clock dom a i n . Logic in

the bus clock dom ain accepts the first hal f-l ine of

data, opens the write latch, accepts the secoml ha l f

block of data, and sends an acknowledgment back

i nto the CPl J chip clock domain .

Logic i n the CPlJ chip clock domain controls a l l

l atches. Only two signals pass through synchroniz

ers: a si ngle request signal passes from the CPU chip

clock domain to the bus c lock domain, and a s ingle

1 1 1 2 1 3 1 4 1 5 Figure 6 a shows a conflict for access
to the secondary cache RAMs caused
by back-to-back cycles. In the marked

R6 R7 R8 R9 R 1 0 cycle. the cache writes the bus data
W 1 0 R 8 R 9 R 1 0

that arrived i n cycle Vl/ 1 0 . but i t also
R7 needs to read data to supply it during

t cycle R7.

1 1 1 2 1 3 1 4 1 5 Figure 6b shows how this conflict can
be resolved by treating the cache as
two independent banks (even and odd).

R6 R7 R8 R9
R7 R9 R 1 0

Vl/ 1 0 R 8 R 1 0

CPU Timing

Vol. 4 No. 4 .\jJeCi(f/ /sm e I'J'Jl Digital Tecbuicaljourual

acknowledge signal passes from the bus c lock
domain to the CPU chip c lock domain.

The secondary cache arbitration scheme is

unconventional because the system bus has no sta l l

mechan ism . I f a read o r a write appears o n the

system bus, the bus interface must have u ncondi

tional access to the secondary cache; i t cannot wait

for the CPU to finish its current cycle . In fact, the

bus interface cannot detect if a cycle is i n progress

in the CPU chip's integrated cache controUer.

Nevertheless, a l l events in the system bus inter

face occur at fixed times with respect to bus arbi

tration cycles. As a resul t, the system bus interface

can supply a busy signal to the CPU interface, which

al lows i t to predict the bus interface 's use of the

secondary cache in the im med iate future. The CPU
inte rface . therefore, wa its unt i l the secondary

cache can be accessed without conflict ami then

performs its cycle without add it ional checking.

This waiting is performed by the CPU ch ip 's i nte
grated secondary cache control ler for some cycles,

and by logic in the CPU in terface running in the bus

clock domain for other cycles. To reduce l atency,

the CPU reads the secondary cache while wa i t ing.

and ignores the data if it i s not yet val id .

Al l operations use ownersh ip of the system bus

as an interlock . For example, if the CPU writes to a

location i n the secondary cache that is marked as

shared, the CPU interface acquires the system bus,

ancl t hen updates the secondary cache at the same

time as it broadcasts the write. This cloes not e l imi

nate al l race conditions; i n particu lar, it a l lows a

dirty secondary cache block to be inval idated by

a system bus write wh ile the CPU interface is wait

ing to acquire the bus to write the block to memory.

This is easi ly hand led, however, by having the CPU

i nterface generate a signal (always_update) that

insists that the system bus interface select the

U [)date Strategy.
The combination of arbitration by predicting

future events and the use of the system bus as an

interlock makes the CPU module's control logic
extremely s imple. The bus interface and the CPU
interface have no knowledge of one another
beyond the busy and always_update s ignals . Since

no compl icated i nteractions between the CPU and

the bus exist, no t ime-consum ing simulations of the

i nteractions needed to be performed, and we had

none of the difficu l t - to- track-down bugs that are

usua l ly associated with m u ltiprocessor systems.

The CPU module contains a nu mber of control
registers. The bus cycles that read and write these

Digital Techuical]ounwl VrJI. 4 No. 4 Special Issue 1 ')')2

The Alpha Dernonstration l!nit

registers are processed by the sysrem bus inter

face as ord inary, but somewhat degenerate, cases.

The local CPU accesses its local registers over the

system bus, using ord i nary system bus reads ami

writes, so no special logic is needed to resolve race

conditions.

To keep pace with our schedule. we arranged ti.> r

most of the system to be debugged befon: the CPU

chip arrived . By using a suitably wired in tegrated

c ircu it test c l ip, we could place com mantis onto

the CPU chip's com mand bus and ver ify the control

signa ls with an osci l loscope. The results of tiH:se

rests left us fa irly confident that the system worked

before the first chip arrived.

We resu med test ing the CPU modu le :t ft<:r the

CPU chip was instal led . We placed short (thre<: to

five instructi ons) programs into main memory,

enabled the CPU chip for a short t ime, then

i nspected the secondary cache (using the Cl' l l mod

u le's test access logic) to examine the results.

Eventua l ly we con nected an external pu i s<: gen

erator to the CPU chip's clock and an external

power supply to the CPU chip. These modifications

permitted us to vary both the operating frequencv

and the operating vol tage of the CPU chip. By using
a p ulse generator a nd a power supply that cou ld be

remotely control led by another computer, we were

able to write simple programs that could run CPU

chip diagnostics, without manual intcrvention,

over a wide range of operating cond it ions. This

greatly simplified the task of col leering the raw data

needed by the chip designers to ver ify the critical

paths in the chip.

Storage Modules
The ADU's storage modules must prov ide high

bandwidth , both to service cache misses and to

support demanding 1 /0 devices. More important ,

they must prov ide low l atency, since in the case of a
cache m iss, the processor is stal led unt i l the miss is
satisfied. It is a lso im portant to provide a modest
amount of memory interleaving. Although the bus

protocol a l lows only two memory suhnodcs ro be
active at once, higher interleave increases rhe prob

abil i ty that a mod u le wiJJ be free when a memory
request is issued.

Each storage module is organized as two

independent bus subnodes, so that even in a sys

tem with one modu le , memory is two-way in ter

leaved. Each of the subnodes consists of four banks,

each of which stores two longwords of data

and their associated error correction bits. \'1/ith

59

AJpha AXP Architecture and Systems

!-megabit (Mb) RAM chips, the capacity of each

module is 64,VIB. Figure 7 shows the organ ization

of the storage module. The modu le consists of

two independent subnodes, each with fou r banks

of storage. Control signals are pi pel inetl through

the banks so that the module can del iver or accept

a 64-bit data word (plus ECC) every 20 ns. With

the exception of the DRAM i nterface signa ls, a l l

signals are ECL levels. The G014 gall ium arse

n ide (GaAs) driver chip improves performance

by a l lowing para l lel termination of the DRAM
address I ines.

A memory cycle consists of a five-bus -cycle

access period fol lowed by four bus cycles of data

transfer. Each data transfer cycle m oves two 39-bit

longwords between the modu le and the backplane

bus, for a total of 32 data bytes per memory cycle.

This is the size of a CPU module cache block. A read

operation takes 10 bus cycles to complete, but a

write requires 1 1 cycles.

Since a data rate of I word every 20 ns is beyond

the capabil ities of even the fastest nibble-mode

RAMs, we needed an approach that did not require

each RAM to prov ide more than 1 bit per access.

- , I B
�
A_N_K_

3 ______ �
I 1 M BY 39-BIT G 0 1 4 1 M BY 39-BIT

I

I
STORAGE CARD C H I P STORAGE CARD I

I
I

I

DATA +
ECC (39)

1 M BY 39-BIT
STORAGE CARD

BANK 1
1 M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

BACKPLANE

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1 M BY 39-BIT I
STORAGE CARD J

_ _ _ _ _ _ _ _ _ _ _ _ j

CONTROL

ADDRESS
BANK ENABLES

DATA + ECC,
ADDRESS (39)

Figure 7 ADU Storage /11/odu/e

60 HJI. 4 No. 4 Special issue 1992 Digital Tecbnica/ journal

We chose to pipel ine the four banks of each sub

node. Each of the fou r banks contributes only one
78-bit word to the block . The banks are started
sequential ly, with a o ne-cycle delay between each
bank.

The high performance of the storage module
is ach ieved by maintain ing ECL levels and using
ECL lOOK components wherever possible. The

RAM I/O pin levels are converted to ECL levels by
la tch ing transceivers associated with each bank.
Fortunately, the tim ing of accesses to the t wo sub

nodes of a modu le makes it possible to share these
transceivers between the same banks of the mod

u le's two subnodes.

The DRAM ch ips are packaged on small daughter

cards that plug into connectors on both sides of the
main array module. There are 2 daughter cards for

each bank within a subnode, for a total of 16 daugh

ter cards per module. The DRAM address and co n
trol l ines are carried on control led i mpedance
traces. Since each of the 39 DRAMs on an address
l i ne represents a capacit ive load of approximately 8

picofarads, the loaded impedance of the l i ne is
about 30 ohms.

The usual approach to driving the address and
control l i nes of a RAM array uses series termination,

as shown in Figure 8a. This arrangement has the

advantage that the driver cu rrent is reduced, si nce
the load i mpedance seen by the driver (Rs + Z0 is

twice that of the loaded transmission l in e (Z).
UnJortunately, the RANI access time is increased,
because the signal from the driver (�,) m ust propa

gate to the far end of the l ine, be reflected, and

return to the driver before the first RAM on the I ine
sees a fu l l-ampl itude signal . Since the capacitive

loading added by the RAM pins lowers the signal
propagation ve locity in addition to reducing the
impedance, the added delay can be a significant

fraction of the overa l l cycle time.
Since low latency was a prim ary design goa l , we

chose paral lel termination of the HA.�\1 address and

control l i nes, as shown i n Figure 8b. Each address
I ine is termi nated to +3 volts with a series resistor
(R) of 33 ohms, sl ightly higher than the l i ne
im pedance. In this configurat ion, each line's driver
must sink a cu rrent of almost 0.1 ampere. Since no
com mercial chip cou ld meet this requirement at
the needed speed, we comm issioned a semicustom

GaAs chip.'
As shown in Figure 9, each GaAs ch ip contains a

register for eight address bits, row/col u m n address
m u l tiplexing and h igh cu rrent drivers for the RAM

Digital Technical Journal 11)/. 4 No. 4 Special Issue 1992

The Alpha Demonstration Unit

VA:

Vh
VA

0

Vh1, _______r----
VB Vhs----

0

VC:
Vh__j

0
-1 l- 2t

Series termination resul1s in a half-amplitude signal at the first
RAM on the line until the signal reflects from point C

(a) Series Termination

Vh
0

v
0
h__j

vc

Parallel termination saves one l ine transit t ime, but increases
driver current.

(b) Parallel Termination

Figure 8 Address Line Termination

address l i nes, and a driver for one of the three RAM

control signa ls (RAS, CAS, Write). To reduce the cur

rent switched by each chip, each address bit drives
two output pins. One pin carries true data, and the
other is complemented. The total current is there
fore constant. Each pin drives one of the two RAM
modu les of a bank. A total of three GaAs chips
is required per bank. In the present module, with
I M- by 1 -bit RAM chips, only 10 of the 12 address
drivers are used, so the system can be easily

expanded to make use of 16M RAMs.
The storage module contains only a sma l l

amount of control logic. This logic generates the
control signa ls for the RANis and the various

transceivers that route data from the backpla ne to

each ban k. This logic also generates the signals

6 1

AJpha A.XP Architecture and Systems

A31

A20

A2 1 :

I
I A 1 0 I
I

A3
-A3

I
I
I
I
A2
-A2

r-.::-----l.AO
LA5----+-AO

I
I
I
I
I

SELOUT

I CTRLA
CTRLB
CTRLOUT

-CLK
L _ _ _ _ _ _ _ _ _ _ _ _ _ l

h�C{ure 9 Address and Control Driver

ncl:lied to refresh the RAMs and to assert the retry

s i gnal if another node attempts to access the m od

u le whi le it is refreshing itself.

1/0 ,Hodule
The 1/0 module for the ADll cont <�ins two 50Mfl/s

1/0 channels ami a loc a l Cl'U subsystem . The 1/0

channels connect to one or t wo DECstation 5000

workstations, w h ich act as 1/0 front-end proces

sors and also provide console and diagnostic func

tions. The local CPU su bsystem is used to provide

interval timer and time-ofday clock services to ADU

processors.

The origi nal specification for the ADU 110 system

requ ired support only for serial l i n e , small com

puter systems in terface (SCSI) disk, and Ethernet

1/0 devices. We k new that the AD wou ld be used

62

to exercise new CPU chips and u n tested software.

With this in m i n d , we orga ni zed the 110 system

around a DECstation 5000 \vorkstation as a front

end ;�nd console processor. This reduced our work

considerably, as a lJ I/O is done by the workstation. A

TLI RBOchannel module connects the DECstation

5000 over a 50M B/s cable to the 1/0 m o d u le in the

ADU. \Ve selected 50:vil:l/s in order to support the

simu lta neous, peak-bandwidth operat ion of two

SCSI disk strings, an Ethernet, and a fiber d is

tributed data interface (F DDl) n et work adapter. The

I/O modu le contains t wo of these channels, which

al lows t wo DECs tation 5000 workstations to be

attache d .

A t the hardware leve l , t h e l/0 system supp orts

block tra nsfers of data from the main mem ory of

the workstati o n to and from ADl J memory. In add i

t ion, the l/0 module includes com mand and door

bel l registers, which are used by ADU processors to

attract the attention of the l/0 syste m.

I n software, 1/0 requests are pl aced by ADU pro

cessors into com mand ri ngs in A D U memory. The

memory add ress of a com mand ring is placed into

an l/0 control register, and the associated doorbell

is rung. The doorbell causes a ha rdware interrupt

on the front-end DECstation 5000, which alerts the

l/0 server process that action is needed. The 1/0

server reads the command ring from A D U memory

and pe rforms the requested l/0. 1/0 completion sta

tus is stored i nto ADU memory, and an i n terrupt is

sent to the requesting ADU processor.

ln addit ion to its role as an l/0 front-end proces

sor, the DECstation 5000 workstat ion acts as a d iag

nostic and console processor. When an ADU is

powered on, d i agnostic software is run from the

workstation. First, the correct fu nctioning of the

1/0 mod u le is tested . Then the ADIJ module iden tifi

cation process determines the types and locati ons

of a l l CPU and storage modu les in the system .

Diagnostics are then run for each module.

Once d iagnostic software has run, the console

software is given con trol . This software is responsi

ble t(>r loading privileged architecture I ib rary (PAL)

and operating system software. Once the operating

system is running, the workstation becomes an 1/0

server.

The presence of the DECstation 5000 gave the

chip team and operating system developers a stable

place to stand wh ile checking out their own com

ponents. In addit ion, the complete d i agnostic capa

bi l ity and error checking cove rage of the ADU

hardware helped to isolate fau I ts.

Vol. 4 No. 4 Special Issue I')')! Digital Technical journal

The central featu res of the 1/0 module, shown i n

Figure 10, are two l K- by 80 -bit register fi les b u i l t

from 5 -ns ECL RAMs. These memories a r e cycled

every 10 ns to s imula te dual -ported memories at the

20-ns bus cycle rate. One memory is used as a stag

ing RA.tvl for block transfers from the 1/0 processors

to ADU memory. The other memory is shared

between use as com mand register space for the 1/0

system and a staging RANI for transfers from ADU
memory to t he 1/0 system.

On the bus s ide, the register files are connected

direct ly to the backpl a ne bus tra nsceivers. On the

l/0 side, the register files are connected to a shared

40-ns bus that connects to the two 110 channels.

The buses are ti me-slotted to el i m i nate the

need for arbitration logi c. As a consequence, the

110 module control logi c is contai ned in a sma l l

nu mber of progra mmable array logic chips that

i mplement the l!O channel control lers ancl a

TO
DECSTATION

TO
DECSTATION

-

-

CHANNEL
I N TERFACE

I
LOCAL CPU
MC68020 +
RAM +
ROM

CHANNEL
I NTERFACE

r-

r----

..__.

1---r-

,_

The Alpha Demonstmtion Unit

block- transfer state machine that hand lt:s bus

transfers.

Each l/0 channel carries 32 bits of data p lu s 7 bits

of ECC i n parallel on a 50-pair cable. Each data word

also carries a 3-bit tag t hat specifies the destination

of the data. The cable is half-du plex , with t he (] irec

t ion of data flow under the control of software on

the DECstation. Data arriving from the DECstation is

bu ffered in 1 K F!FOs. These FIFOs carry data across

the clock-domain boundary between the 110

system and the ADU and permit both 110 channels

to run at fu l l speed simultaneously.

Each l/0 channel i nterface a l so has an address

counter and a slot -mapping IV\,\1 , which are loaded

from the workstat ion. The slot-mapping function

sets the correspondence between ADl l bus

add resses and the geographical ly addressed storage

and CPU modu les. The address <Jnd s l ot map for

each channel are con nected to a common address

ADDRESS t--DATA PATH

OUTGOING
REGISTER t--
FILE "' rl"
CONTROL L-.,

BUS AND r--,-- INTERFACE STATUS ,---

INCOMING ... ,..
REGISTER , FILE SYSTE

BUS
M

INT ERRUPT ,_ REGISTER

(a) ADU 1/0 Module

TU RBO
CHANNEL

TURBO
CHANNEL
I N TERFACE

OUTBOUND F I FO

INBOUND FIFO

CHANNEL
INTERFACE

(b) TURBOchannel 110 Jlllodule

Figure 10 1/0 Module

Digital Tecfmical jou rnal l'IJ/. 4 Nu. 4 Special Issue 1992

TO ADU

63

Alpha A.XP Architecture and Systems

bus. This bus bypasses the register fi les and d i rectly

drives the backplane t ransceivers during bus

address cycles.

The far end of the I/O cable connects to a single

width Tt RBOchannel module i n the DECsta tion

5000. This module contains ECC generat ion a nd

checking logic , and FIFO queues for buffering data

between the cable and the TURBOchannel . The FIFO

queues a l so carry data across the c lock-domain

boundary between the J/0 channel and the

HJRBOchannel mod ules.

The I/O modu le has a local CPU subsystem con

taining a 12-MHz Motorola 68302 processor, !2HKB

of erasable program mabJe read-only memory

(EPROM). ami l28KB of RA .. v!. The CPlJ subsystem
also includes an Ethernet i nterface, t wo serial

ports, an SCSI interface, an Integrated Services

Digital Network (ISDN) interface, and audio input

ami output ports. When in use , the local CPl 1 sub

system uses one of t he 1/0 channels otherwise avail

able for the connection of a DECstat ion 5000.

Although the local CPU on the 1/0 module is capable

of running the fu l l A D l l I/O system , in practice we

use i t for supplying interva l t imer and rea l - t ime

clock service for the A l) l J .

The VO module was somewhat overdesignecl h>r

its original purpose of supplying d isk, network , and

console 1/0 service for ADU processors. This capa

b i l i ty was put to use in mid-1991 when rhe demand

for ADUs became so inte nse that we consid ered

bui lding addi t ional systems. I nstead. by using the

excess 1/0 resources. the s lot-mapping features of

the hardware, and the capabi l i ties of PAI.code, we

were able to use a three-processor ADl i as three

i ndependent v irtua l compu ters. I ndependent

copies of the console program shared the l/0 bani
ware through software lock ing and were al located

one CPU and one storage modu le each .

M u l t iprocessor A Dl ls now routi nely r u n both
OpenV,VlS AXP and DEC: OSF/ l AXP operati ng S\'S

tems at the same t ime .

Packaging
Simpl icity was the primary goal in the clesign of the

ADU package . Our short schedule demanded that

we avoid innovat ion and use standard parts wher

ever possi ble.

The ADU's modules and card cage are standard 9U
(280 m i l l imeter by :)67 m i l l imeter) E urocard com

ponents, which are avai lable from a number of ven
dors. The cabinet is a standard Digital unit , usua l ly

64

used to hold d isks. Power suppl ies are off- the-shelf

u n i ts. Three suppl ies are requi red to provide the

4,000 wat ts consumed by a system conta i ning a ful l

complement of modules. A standard power condi

t ioner provides l ine fi l tering and d istribu tes pri

mary AC to the power supplies. This unit al lows the

system to operate on 1 10 -volt AC in the Uni ted

Sta tes, or 220-volt AC in Europe.

Cool ing was the most difficu l t part of the packag

i ng effort . The use of ECL throughout the system

meant t har ·we had to p rovide an a i rflow of at least

2 .5 m/s over the modules. After studying several

a lternatives. we selected a reverse impel ler blower

used on Digi tal's VAX 6000 series m achi nes. Two of

these blowers provide the requ ired airflow, while

gene rat ing m uch less acoustic noise than conven

t ional fans.

Since blower fai l ure wou ld resu l t in a catas

trophic mel tdown, a irflow and temperature sen

sors are provided . A s m a l l mod u le conta ining a

m icrocontrol ler moni tors these parameters as well

as all power supply volrages. In the event of fai lure,

the autonomous control ler can shut down the

power supplies. This module also generates the

system clock.

Conclusions

Sometimes it is berter to have twenty m i l l ion
instruerions by friday than twenty m i l l ion instruc
tions per second. -Wesley Clark

One h u n d red CPU ami storage modu les and 35 I/O

modules have been bui l t , packaged as :)'5 A D U sys

tems, ami del ivered to software development

groups throughou t D igital Not just l aboratory

curiosities, these systems have become part of the

mainstream AXP development environment. They
are in regular usc by compi ler development groups,

operating system developers, a nd appl ications

groups.

The ADll a l so prov ided a fu l l -speed , in-system

exerciser for the ch i ps. By using the A Dl l, the chip
developers were able to detect several subtle prob

lems in early chip implementations.
The ADl l project was quite successful ADU sys

tems were in the hands of developers approximately
ten mon ths before the first product pro totypes.

The systems exceeded our i ni t ia l expectations for

re l iabi l i ty, and provided a rugged, stable platform
for software development and ch ip test. The p roj

ect demonstrated that a small team, with focused

objectives. Gin produce systems of substantial com

plexity in a short t ime.

Vol. CJ 1\"o. 4 .\jJ('Cial lssue 1992 Digital Technical journal

Acknawledgments

.John D i l lon designed the power control su bsystem

and the package . Steve Morris wrote the ADU con
sole software. Andrew Payne contributed to ADU

diagnostics. Tom Levergood assisted with the physi

cal design of the 110 modules. Herb Yeary, Scott

Kreider, and Steve Lloyd d id mod u le debugging and
testing at Hudson and at SRC : . Ted Equ i hand led proj
ect logistics at Hudson, and Dick Parle was respon

sible for material acqu isit ion and supervision of
outside vendors at SRC.

References

l . R. Sites, A. Chernoff, M . Kirk, M . Marks, and

S. Robinson , " Binary Translat ion," Digital

Technical journal, val . 4, no. 4 (1 992, this issue):

1 37- 1 '52.

Digital Techt�ical jounwl Vol. 4 No. 4 Special Issue 1992

The Alpha Demonstration Unit

2. C. Thacker, L. Stewart, and E. Satterthwaite, Jr. ,

" Firefly : A M u l t iprocessor Workstation ,"
IEEE Transactions on Computers, val . 37,

no. 8 (August 1988) : 909-920.

3. R. Katz, S. Eggers, D. Wood, C. Perk ins, and

R. Sheldo n , "Implementing a Cache Consistency

Protocol," in Proceedings of the 12th Interna

tional Symposium on Computer Architecture

(IEEE, 1985).

4. J Archibald and L. Baer, "Cache Coherence Pro

tocols: Eva l uation Using a Mult iprocessor Simu

l ation Model ," ACM Transactions on Computer

.s:ystems, val. 4 (November 1986) 275-298.

5 . 1991 GaAs !C Data Book and Designe1·'s Guide

(GigaBit Logic, Newbury Park, CA, 1991): 2-39.

65

Todd A Dutton
Daniel Eiref

Hugb R. Kurth
james]. Re-isert
Robin L. Stewart

The Design of the DEC 3000 AXP
Systems, Two Highperformance
Workstations

A family of bigh-performance 64-bit R!SC workstations and servers based on tbe
new Digital Alpha AXP architecture is described. Tbe IJardware implementation
uses tbe powerful new DECchip 21064 CPU and employs a sophisticated new system
interconnect structure to acbieve the necessmy bigh bandwidth and low-latency
cache, memory, and l/0 buses. Tbe memory subsystem of tbe bigh-end DEC 3000
AXP Mode/ 500 provides a 512KB secondmy cacbe and up to 1GB of memory The l/0
subsystem of the Model 500 has integral two-dimensional graphics, SCSJ, ISDN, and
six TURBOchannel e::r.pansion slots.

The DEC 3000 AXP system family consists of both

workstations and servers that are based on Digi tal 's

Alpha AXP archi tecture. 1 The family incl udes the

desktop (DEC 3000 f\..'{P Model 400) and desk-side

and rack-mou nted (DEC 3000 AXP Model 500) sys

tems. The avai lable operating systems are the DEC

OSF/ 1 AXP and the Open VMS AXP systems. Al l sys

tems use the DECchip 21064 microprocessor.2

Table 1 gives the specifications for the three DEC

3000 AXP systems.

The DEC 3000 AXP systems are designed to be sig

nificantly faster than al l p revious Digital work

stations and to offer performance competitive with

that of other reduced i nstruction set computer

(RJSC) workstations currently available. In genera l ,
RJSC systems have larger code sizes and conse

quently require more instruction-stream band

width than complex i nstruction set computer
(CISC) systems. Further, 64- bit machines require

more data-stream bandwidth than 32-bit machines.

To complement the power of the DECchip 21064

microprocessor, the systems need a bala nced

system architecture, including a hi gh- bandwidth ,

low- latency memory system and an efficient, h igh

performance l/0 subsystem.

Tradit ional workstation designs that use a com

mon system bus exhibit increased memory latency

and reduced memory bandwidth due to system bus

contention. This is a special concern for designs

66

using a large nu mber of h igh-performance 110

devices. I ncreased latency can also result from the

additional levels of buffering and system bus load

ing common to traditional arch itectures. Many

system buses also exhibit m u ltiplexing between

address and data , leading ro fu rther perfo rmance

degradation .

To meet the goals of low memory l atency, high

memory bandwidth, and minimal CPU-I/O memory

contention in a cost -competitive manner, the

designers implemented the DEC 3000 AXP system

architectu re in an unusual way. They chose to build

the system interconnect from i n expensive applica

tion-specific integrated circuits (ASICs), as shown

in Figure 1. The ASICs act as a crossbar between the

CPU, memory, and 110 buses. Addresses and data are

switched i n dependently by the crossbar.

The system block diagram in Figu re 2 shows the

system architecture of the DEC 3000 AXP systems.

The system crossbar in the center of the diagram is

composed of six AS!Cs, consisting of the ADDR ASIC,

the TURBOchannel (TC) ASIC, and fou r SLICE AS!Cs.

The ADDR ASIC switches addresses between

the CPU, the memory, and the TC ASIC. The fo ur

SLICE ASICs switch data between the CPU, the mem

ory, and the TC ASIC. The TC ASIC switches 1!0

addresses and data between the ADDR and SLICE
ASICs and the TURHOchan nel bus. Connected to the

TURBOchan nel bus are the various l/0 con trol lers,

Vol. 4 No. 4 Special lssul! 1992 Digital Tecbnical journal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

Table 1 DEC 3000 AXP Fa m i ly Specifications

Desk-side

Specifications Model 500

Height, inches 24.7

Width, inches 1 2 .75

Depth, inches 29.7

Maximum DC power 480

output, watts

Memory
Standard, MB 32

Maximum, MB 1 024

I nternal hard d isk
Standard, M B 1 050

Maximum, M B 4200

Serial ports 2

ISDN port 1

SCSI ports* 2

Ethernet portst 2

TURBOchannel slots 6

Removable media* 2

Integral graphics accelerator Yes

Audio Yes

Notes:

• One internal and one external.

t AUI (thick wire) and 1 0Base-T (twisted pair).

• 5.25-inch half-height slots.

CPU MEMORY

I
CACHE SYSTEM

CROSSBAR '-- 110

Figure 1 Simple Crossbar

i ncluding the dual sm a l l computer systems inter
face (SCSI) control ler ASIC, the general l/0 con
trol ler ASIC, and the two-dimensional graphics

accelerator ASIC (not present in DEC 3000 AXP
Model 400 systems). In addit ion, six TURBOchannel
option slots are available for expansion (three slots
in DEC 3000 AXP Model 400 systems).

CPU Module

The DEC 3000 AXP systems are composed of two

primary modu les, the CPU module and the 1/0 mod
u le. The CPU module contains the processor,

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

Rack-mount Desktop

Model 500 Model 400

1 5.75 5

1 7 .5 20

27 1 6 .75

480 295

32 32

1 024 51 2

1 050 426

4200 21 00

2 2

1

2 2

2 2

6 3

2

Yes No

Yes Yes

secondary cache, control logic, TURBOchannel
interface and, in t he Model 500, the two-dimen

sional graphics subsystem. It has connectors for the
110 module, four memory mother boards, a l ights

and switches module (LSM), three TURBOchannel
options, and the power supply. Figure 3 shows the
layout of the module.

CPU

The DECchip 21064 microprocessor is the CPU of
the DEC 3000 AXP systems. On the Model 500, the
CPU runs at 150 megahertz (MHz), and on the Model
400, it runs at 133 MHz. The processor is a super
scalar, fu l ly pipel ined implementation of the AJ pha
AXP architecture.2 It conta ins two on-chip 8-ki lo
byte (KB) direct-mapped caches, one for use as an
instruction cache, the other as a data cache. Both

the integer and floating-point units are contai ned
on-chip.

B-cache Subsystem

The system employs a second-level cache (B- cache)
to help minimize the performance penalty of
misses and write throughs in the two relatively

67

� DECCHIP "" 21064
� CPU
""

{;' "' �
;;;
"· ::: "'
._
\o
'IS
tl

� ...
�
:;;! .., ;::-
::. ..,
::.
'C' ::: "! ::!
::.

FOUR M E MORY MOTHER BOARDS

BUS

M E MORY
DATA
B U S

EIGHT LONGWORDS
]�6��E

R
S
Y
S

�- - - - - - - - - - - - / - - - - - - - - - - - - - - - - 1

C P U ADDRESS, TAG, A N D : �� : �
CAC H E PROBE BUSES J I � � � ;., ��� _.

"
DMA I L 1/0 ADDR ESS BUS I �

CPU
DATA B U S

I
CACHE

ADDRESS I I
I
l l B U FFERING r I �

. . I � g; I
ADDR ASIC ECC, PARITY

_.
I t-- CD

CHECK AND
I

1/0 DATA I
I �� G E N E RATE "T

/ 1 C P U , 1/0, DMA BUS 1
FO U R / I -1 1 ��;�E R I N G 1 1 'II TC A S I C

I

LONG WORDS I I jJ I

I

I
SYSTEM CROSSBAR FOUR SLICE ASICS I

L - �

Figure 2 System Block Diagram

. c : : : : : : :
_ ._ _ _ - - - - - -

_.:: : : : : : : : : :
,-L - - - - - - - - - - ·

TC
OPTIONS

' ' , , " '

SCSI
TCDS ASIC I SCSI

SFB ASIC I GRAPH I C S (M O D E L 500 I ONLY)

ONE LONGWORD

ETHE R N ET

I LJ IOCTL ASIC I sERIAL L I N E S

--yl I TOY CLOCK

I ISDN AND AUDIO

The Design of the DEC 3000 AXP Systems, Two High-pe·Jformance Workstations

MEMORY
CONNECTORS

MEMORY CLOCK TC
CONNECTOR 0 CONNECTORS SUBSYSTEM

1/0 MODULE
CONNECTOR

TC TC

CONN ECTOR 1 CONNECTOR 2

Figure 3 CPU Module

sma l l 8KB primary caches of the DECchip 21064
processor. The 8-cacl1e is a 512KB, direct-mapped,
write-back cache . A direct-mapped cache el imi
nates the logic needed to choose among the mu l ti
ple sets of a set -associative cache, resu l t ing in a
faster cache cycle time. A write-back protocol was
selected because i t reduces the amount of write
traffic from the 8-cacl1e to main memory, leaving
more main memory bandwidth avai l able for other
memory transactions.

Digital Teclmical]ountal Vol. 4 No. 4 Special Issue 1992

The block size of the 8-cache i s 32 bytes, match
ing the block size of the prim ary caches. The cache
block a l location pol icy used is to a l locate on both
read miss and write miss. Hardware keeps the cache
coherent on direct memory access (DMA) trans
actions; DMA reads probe the cache and DMA writes
update the B-cache (and invalidate the primary data
cache).

The DEC 3000 AXP systems are designed to be
u niprocessor systems, which s impl ifies the cache

69

Alpha AXP Architecture and Systems

control ler design in a number of ways. For example,
since no other CPU 's cache can contain a copy of a
cache block , there is no need to i mp lement cache
coherency constructs such as a shared bit. Further,
by loading the B-cache during the power-up
sequence and keeping it coherent during DMA by
using an a lways-update protocol. cache blocks i n
the B -cache are a lways guaranteed t o b e val id . This
method e l iminates stale data problems without
needing to use a va l id bit.

In addit ion to the cache memory, the subsystem
consists of the cache controller, the main memory
control ler, and the protocol control logic for mem
ory access arbitrat ion. A block d iagram of the CPU
and B-cache subsystem is shown in F igure 4.

The B-cache is a lternately controlled by the CPU

and the external cache control ler. When control led
by the CPU , the cache m ay be read by the CPU in five
CPU cycles. The cache data bus width is 16 bytes;
therefo re two reads are necessary to fi l l a cache

CPU ADDRESS BUS

I I '_2 1 MUV
--r I

block. The Model 500 has a maximum cache read
bandwidth of 480 megabytes per second (MB/s).
The cache m ay be written by the CPU with an in i tial
tag probe latency of five CPU cycles fol lowed by up
to two write cycles of five CPU cycles each. The
Model 500 has a cache write bandwidth of 320 M B/s.

When a CPU probe m isses in the B-cache, or
when the CPU accesses the external lock register,
control of the cache is turned over to the external
cache control ler. This logic controls fi l l ing the
cache with the required data from main memory,
handing the data to the CPU during reads, merging
CPU write data into the cache on writes, and main·
raining the con tents of the external cache tag ancl
tag control store. In addit ion, this logic maintains
the architectura l ly defined lock flag and locked

physical address register, which can be used to
implement software semaphores and other con·
structs nor m a l ly requ iring atomic read-modify·
write memory transactions.

DMA CACHE INDEX

CACHE DATA/ECC CACHE TAG/PARITY CACHE TAG CONTROU

DECC H I P
2 1 064
M ICROPROCESSOR

STORE STORE PARITY STORE

5 1 2KB 1 6K X 1 1 -BIT TAGS 1 6K x 2-BIT CONTROL
1 6K x 32-BYTE BLOCKS TAGS

CPU DATA BUS I
CPU TAG BUS

CPU TAG CONTROL BUS

CPU/CACHE _j CONTROL LOGIC
AND MEMORY CONTROL
SEQUENCERS SIG NALS

CPU STATU S SIG NALS ~ CROSSBAR STATUS S I GNALS

CPU CONTROL S I G NALS CROSSBAR CONTROL SIGNALS
CYCLE DECODER

~
1/0 CONTROLLER STATUS
SIGNALS

1/0 CONTROLLER CONTROL
SIGNALS MAIN SEQUENCER

Figure 4 CPU and B-cache Block Diagram

SYSTEM
CROSSBAR

70 Vul. 4 No. 4 Special Issue /'}')2 D igital Teclmicaljournal

The Design of the DEC 3000 AXP Systems, Two H(r;h-perjormcmce Workstations

The control logic for the B-cacl1e consists of two
interlocking state machines. These state machines
control arbitration and decoding of processor and
110 subsystem requests. They also generate the con

trol signals needed to execute these requests to the
CPU . B-cache, anc.l main memory.

The state machines prioritize ami arbitrate
requests from various sources, including the CPU,

the 1/0 subsystem, and the memory refresh logic.
Arbitration is uone accorcJ ing to a fixed priority.

First priority goes to DMA requests from the I/0 sub
system. Second priority goes to memory refresh
requests. Lowest in priority are requests made by
the CPU. The one exception to this scheme occurs

at the conclusion of a DM.A transaction. In this case,
the first arbitration cycle fo l lowing the DMA

changes the priority to memory refresh first, CPU

request second, and DMA last. This guarantees that
requests for CPU and memory refreshes are granted
dur ing heavy DMA traffic.

The larger state machine, or main sequencer,

examines the command generated by the smaller
state machine, or cycle decoder, and i nitiates the

control flow necessary to perform that command.
Fifteen unique flows are i mplemented by the main
sequencer. They are

• Read cacheable memory with/without victim

block

• Write cacheable memory with/without victim

b lock

• Write noncacheable memory (diagnostic use
only)

• Full block write cacheable memory with/with

out victim block

• Tag space write (diagnostic use only)

• Programmed l/0 reacJ/write

• Load lock hit

• Store conditional h it

• Memory refresh

• DiVlA read/write

When a cache miss occurs and the new cache
block replaces a cache block that has been modi
fied, as indicated by the "d irty" status bit , the dis

placed data is referred to as a "victim block" or
"victim data."

The many variants of cacheable reads and writes
provide optimized flows that maximize the paral
lelism of cache accesses and memory accesses. For

Digital Techllical journal Vol. 4 No. 4 Special Issue 1992

example, during the "read cacheable memory with
victim block" flow, the main sequencer reads the

victim block from the B-cache and stores it in rhe
SLICE AS!Cs in parallel with reading the new block
from main memory. The same flow without a v ic

t im block makes use of the main memory access
t ime to update the tag store. The control flows for

writes to cacheable memory a lso take acJvantage of
th is paral lelism. A further write optimization is
used when the cycle decoder determines that the

entire cache block will be wri tten; in this case the

data from memory is completely overwritten, and
therefore it is never fetched from memory.

DMA flows are entered upon request of the DMA

controller in the 1/0 control section. DMA control
flows start by asserting a "hold request" to the CPU,
causing the CPU to cease B-cache operations within

a specified time, after which i t asserts a "hold
acknowledge" signal . It should be noted that the

CPU wil l continue to execute instructions inter

nally unti l such t ime as it experiences a miss in one

of its internal caches, or i t requires some other
external cycle.

Each DMA write to memory results in a probe of

the B-cache for the DMA target block, with a hit
resulting in the B-cache block being updated in par

al lel with main memory and the corresponding pri
mary data cache block being inval idated . DMA reads
cause main memory to be read in paral lel with

probes and reads of the B-cache. If a cache probe

h its, the B-cache data is used to fi l l the DMA read
buffer in the SLICE ASICs; otherwise the main mem

ory data is used. In this manner, cache coherence is
maintained.

Memory System and System Crossbar

The DEC 3000 A.,\:P Model 400 and Model 500 archi

tecture supplants the traditional system bus with a
system crossbar constructed from ASICs. Tight ly
coupled to the crossbar is the system memory. Three
types of ASICs-SLICE, ADDR, and TC-form the
crossbar. SLICE and ADDR are d iscussed next and TC
is d iscussed in the I/0 Subsystem Interface section.

SLICEAS/Cs

The four SLICE AS!Cs are used strictly for cJata path;

together they form a 32-byte bus to main memoq', a

16-byte bus to the CPU and cache, and a 4-byte bus
to the TC ASIC. I t is helpful to think of the SLICE
ASICs as a train station for data with the data buses
as train tracks. Data can come and go on any track,
d ifferent tracks have d ifferent speeds and widths,

7 1

Alpha AXP Architecture and Systems

and data can find temporary storage in the AS!Cs.
The SLICE ASICs provide the systems with a location

to buffer DMA, I/O read , 1/0 write, and victim data
while the data waits to travel the next leg of its jour

ney. The use of the SLICE AS!Cs also e l i minates one
to two levels of buffering between the dynamic ran

dom-access memories (DRAMs) and the CPU, thus

decreasing latency and improving bandwidth.

A key design decision was determining the width
of the memory data bus. A conventional design
wou ld have matched the width of the memory bus

to the width of the cache bus (16 bytes). However,

to reduce the memory latency of the second half of
the cache b lock (cache l i ne s ize is 32 bytes), the

system reads the entire cache block from memory
at once using a 32-byte memory bus. This technique

el iminates the additional latency from a second
page-mode read.

The DEC 3000 AXP Model 500 returns the entire
block to the cache and CPU with an average latency

of only 180 nanoseconds (ns) from the CPU memory
request. In contrast, a less aggressive preliminary

design us ing a system bus and 16-byte-wide mem
ory bus yielded an average memory latency of 320
ns. The 32-byte memory bus costs l i t t le more than a
16-byre bus-two low-cost ASIC:s, resistor packs,

and some address fan-out parts.

ADDR ASIC

The ADDR ASIC is a crossbar for addresses. ADDR

sends addresses from the CPU to memory (Cl'U
reads and writes), from the CPU to 110 (110 reads

and writes), and from the 1/0 to CPU and memory
(Dl'v!A reacls and wri tes). ADDR selects between CPIJ

� CRAM I
DRAM I

� CRAM I
DRAM I

SIMM SIMM

read , victim write, and DMA addresses to send to
memory. A counter that increments DM.A addresses

on long Tl RROchannel DMAs also resides in ADDR.

ADDR p rovides a home to the memory configura
t ion registers. At power-on t ime, the boot firmware
writes and reacls memory space, determines the
memory configuration, and writes the configura

tion registers. At run time, each memory address

maps into a unique bank, regardless of the type ancl
order of the single in- l ine memory modu les (SIM NIS)
instal led .

ADDR a lso prov ides a home for miscellaneous
functions such as tag parity checking, refresh
counter, ami the locked physica l address register. I t
generates the cache probe index to check the cache
tags for a h i t or a miss on (),VIA probes.

Memory Mother Board and SIMMs

The memory system is composed of memory
mother boards (.\1NI Ih) that rise from the system

card, and SIMMs. Th is arrangement is a good solu

tion to the p roblem of l imited space on the system

module. I t a l lows for a wide data bus and for good
signa l integr i ty for short propagation t imes on the
memory data bus.

As shown in Figure 'J, an :'11:'M3 modul.e supports
up to eight SIMMs at a time (four SIMMs in Model 400
systems). A minimum of two S IMMs is required for
each board . A system a lways contains four ,YJMUs.

The Mi'vi Rs act as a carrier for the SIMMs and also con
tain drivers for address and control signals.

A total of H, LG, 24, or :)2 SIMMs (maximum of 16 in
Model 400 systems) can be plugged into the system.
SIMMs may be single- or double-sided with LO DRAMs

1 TO 8 DRAMS I NSTALLED

� CRAM I
DRAM I

� CRAM I
DRAM I

SIMM S I M M

I jY' MEMORY MOTHER BOARD

72

I CAC H E RAM I
-'I CACHE DATA BUS .I MEMORY DATA BUS -
) .I

SLICE ASIC I CPU I

Figure 5 Memm)' and Cache Data Bus

l�J/. Nu. ') .\jJeciu/ lssue I'J'J.! Digital TeciJnical journal

The Design of the DEC 3000 AXP Systems, Two High-peiformance Workstations

per side. Each side of a S!MM constitutes one-eighth
of a bank. Eight SIMMs must be plugged in to com
plete a bank; hence the 320-bit-wide data bus (4 bits
per DRAJVI by 10 DRAMS per SIMM by 8 SIMMs). One
megabit (Mb), 4Mb, and 16Mb DRAMs are sup
ported , and users are al lowed to populate banks i n

any order. In this way, the DEC 3000 AXP Model 500
can support from 8MB to 1 gigabyte (GB) of mem

ory, and the DEC 3000 AXP Model 400 can support

8MB to 512MB of memory.
Main memory is protected by a single-bit-correct,

double-bit -detect error-correcting code (ECC). In
addition, the arrangement of data b i ts al lows the
detection of any number of errors restricted to a

single DRA.l'vl chip . ECC corrections for CPU trans
actions are performed by the CPU, and corrections

for 1/0 transactions are done in the TC ASIC.

Memory Transactions

When data is stored in the B-cache by the CPU, it is
not immediately sent to memory. Data is written to

main memory only when a dirty block in the cache

is replaced . Data destined for the cache is read from
main memory only on cache misses. Reads to main

memory, whether from the CPU or from DMA,
always return 32 bytes. On CPU reads of main

memory, data is returned to the cache and CPU in
two ha lves by the SLICE ASICs. Likewise when the
B-cache control writes victim data to main mem
ory, two reads are made of the cache, but only one
write is made to main memory.

On DMA writes, 4 bytes of data arrive from the

TURBOchannel interface ASIC each cycle and are

stored in the SLICE ASICs. The SLICE ASICS can buffer

up to 128 bytes of data prior to writing the data to
main memory using page-mode writes, 32 bytes at a
time. To maintain cache/memory coherence, data is

also provided to the cache RA.i\1s so that i t may be
written i n the case of a cache hit. On DMA reads, up
to 128 bytes of data are read page mode out of main
memory and butfered i n the SLICE ASICs. Data flows
out to the TC ASIC and the TURBOchannel bus at the
rate of 4 bytes per cycle (lOOMB/s). In the event of a
cache hit , data is taken preferential ly from the
cache.

The crossbar employs a technique that permits

simul taneous transactions from CPU to main mem

ory and DMA. The TURBOchannel bus supports DMA
transactions of up to 512 bytes in length . Once the
DMA starts, the system must be able to provide or
receive data without any gaps. However, while the
DMA buffer in the SLICE ASICs is sufficiently ful l (for

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

DMA reads) or empty (for D MA writes), the CPU is

al lowed to use memory. When the 1/0 controller
detects that the buffer is too ful l or too empty, it
requests memory time to service the DMA buffer.

At this time, further CPU requests are temporarily

ignored. This technique prevents the CPU from
being locked out of main memory, even during long

DMA transactions and even though DMA has priority

over CPU transactions.
The crossbar also permits simultaneous write

transactions from the CPU to main memory and

from the CPU to an I/0 device. SLICE and ADDR ASICs
can buffer one I/0 write transaction of up to 32

bytes in size. Once the ASICs have accepted the data
and address, the cache and crossbar are free to pro

cess other CPU transactions, which can include

cache and main memory reads and writes. If the
CPU issues an l/0 write while a previous write

is st i l l pending in the ASICs, the cache control ler
simply stal ls.

1/0 Subsystem Interface/
TURBOchannelASIC

The I/O system is based on the TURBOchannel, a 32-

bit high-performance, bid irectional, multiplexed

address and data bus developed by Digital for work

stations -" The DEC 3000 AXP supports up to six
plug-in options, as wel l as the integral smart frame
buffer (SFB) graphics ASIC, the 1/0 controller
(IOCTL) ASIC, and the TURBOchannel dual SCSI

(TCDS) ASIC. The TURBOchannel bus is synchronous

and requires only five control signals in each direc

tion between the system and the option cards.
The system interfaces to the TURBOchannel bus

by a data-path TC ASIC and control logic contained
in a number of programmable array logic devices

(PALs). The TC ASIC completes the system crossbar

by passing addresses between the TURBOchannel
bus and the address ASIC, and passing data between
the TURBOchannel bus and the SLICE ASICs.

Furthermore, the TC ASIC checks and generates par
ity on the TURBOchannel, and checks, corrects, and
generates ECC on the data bus to the SLICE ASICs.
Parity checking of TURBOchannel data is optional
and is enabled on a per-option basis through a con
figuration register in the TC ASIC. Final ly, the TC
ASIC contains a number of counters for tracking

DiVIA progress, as wel l as configuration and error

registers. A.!! control logic was implemented in PALs
to minimize the impact to the project schedule of
any design changes. The TURBOchannel interface
block d iagram in shown in Figure 6.

73

Alpha AXP Architecture and Systems

ADDR ASIC

l ADDRESSING I LOGIC
1/0 ADDRESS ! PHYSICAL PAGE
NUMBER rc (]-

��>-��=====
T
=U=R=

BO=C
�
H=A=N=N=E=L====�

�----r-�IISG RAMS I .--------+-.. I(32K ENTRIES)
SLICE ASICS r+-1 1/0 BUFFER I VIRTUAL

ADDRESS y /L_ ERRORS 6
� -� 1/0 DATA BUS I DMA BUFFER I 1-------------l

COUNTERS 6{jl

CONTROL REQUEST
STATUS I DMA I I I ARBITRATION ACKNOWLEDGE

SFB I
TCDS I
CORE 1/0 I

�\..--D::..:.M:.::.A:.::.Rc.=Ec-=Q..:.:UE::..:.S:.::.T__jl
'------_L__ ____ _L__ __ c_o_N_T_R_o_L -----1 A A)h--..§S:!T A�TQ;U!.§S�-r-----,�S.§IEL�E�c::r:T_..

I
I
I

b.__6 b.___c'> l CONTROL .1 1/0 CONTROL I READY I
I

STATE MACHINES
AND DECODE LOGIC TC

OPTIONS

Figure 6 TURBOchannel Interface Block Diagram

There are two types of TURBOchannel opera

tions: the system initiates l/0 reads and writes, and

the options init iate DMA reads and writes. On an

1/0 operation , the system sends the l/0 address

from the ADDH ASIC to the TC ASIC, and from there

to the TURBOchannel . For 110 reads, the option

returns data on the TIJRBOchannel. This data passes

through the TC ASIC and over the bus to the SLICE

ASICs. The system includes some special hardware

for byte masking of 110 read data. This hardware is

used to provide support for VMEbus adapters.

For 1/0 writes, the system sends data from

the SLICE AS!Cs across the data bus to the TC ASIC.
The TC ASIC then sends i t to the option over the

TURBOchannel. The DEC 3000 AXP workstation

supports a block write extension to the original

TURBOchannel protocol. In this mode, the system

suppl ies a single address fo llowed by multiple

consecut ive data transfers for improved 1/0 write

performance. This extension is also configurabJe

on a per-option basis through the TC configuration

register.

The TURBOchannel protocol specifies that before

any option can use the bus for DlVIA, it must issue a

74

request to the system. The DEC 3000 AXP architec

ture employs an arbitration scheme using rotating

priority that prevents any option from being locked

out. After being granted the bus, the option sup

plies a DlVIA address on the TURBOchanneJ bus. This

address routes through the TC ASIC and onto the

address ASIC. In the case of a D1\1A. write, data imme

d iately fol lows the address on the TURBOchannel .

This data passes through the TC ASIC and onto the

clara bus to the SLICE buffers.

DMA reads are more compl icated than writes

because the TURROchanneJ bus does not transmit

ahead of time the number of bytes of data to be read

from memory. Instead, it continues to assert its

read request signal for as long as i t is requesting

data. The SLICE buffers begin to fi l l up with DMA

data, and o nly when they can guarantee that there

wil l be no gaps in the DMA wil l the data transfer

start. The TC ASIC receives the read data from the

SLICE ASTCs and sends it onto the TURBOchannel to

the requesting option.

Virtual DiVIA al lows the system to map non

contiguous regions of physical address space into

contiguous regions of virtual address space. This

Vol. 4 No. 4 Special Issue 1')92 D igital Teclmicaljournal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

method al lows TURBOchannel options to transfer
large blocks of DMA data without knowledge of how

that data is mapped in the physical address space in
main memory. Virtual DMA enhances operating

system performance because the memory mapping
is performed before the transfer of DMA data.

The DEC 3000 AXP workstation supports virtual
DMA through the use of a scatter/gather (SG) map,

which acts as a translation buffer. SG m apping is

enabled on a per-option basis through the configura
tion register in the TC ASIC. The SG map is organized

as 32K 24-bit entries. Each entry contains a 17-bit
physical page number (PPN), parity, and valid bit .
Software sets up the map through l/0 space reads

and writes. DMA byte address bits [27: 13] index the
SG map, which produces a 17-bit PPN (bits [29: 13]) to

append to the virtual DMA byte address bits [12 : 0] .
The resulting 30-bit physical DMA byte address can
then address a l l 1 GB of the possible system address
space. An SG map is shown in Figure 7.

1/0 Subsystem

Most of the 110 subsystem is implemented on

its own module. This l/0 module, shown in Figure
8, contains the connectors for attachment unit

EXTERNAL SCSI COMMUNICATIONS

interface (AUI) Ethernet, lOBase-T Ethernet,
Integrated Services D igital Network (ISDN), alter

nate console/serial printer, mouse/keyboard, com
munications, internal and external SCSI , three

TURBOchannel options, and audio module port.
The various 1!0 control lers interface to the

TURBOchannel through one of three ASTCs. These
ASICs are the smart frame buffer (SFB) on the CPU

module and the TURBOchannel dual SCSI (TCDS)

ASIC and the I/0 controller (IOCTL) ASIC on the l/0

module.

VIRTUAL DMA BYTE A D D R ESS FROM TURBOCHANNEL

� v o
BYTE

29 0
BYTE

PHYSICAL DMA BYTE ADDRESS TO ME MORY SYSTEM

Figure 7 Scatter/Gather Mapping

MOUSE/

KEYBOARD ISDN AUI

TPIC

CONNECTOR

INTERNAL SCSI TC CPU MODULE TC REAL-TIME FLASH TC AUDIO

CONNECTOR 5 CONNECTOR CONNECTOR 4 CLOCK M E MORY CONNECTOR 3

Figure 8 I/0 Module

Digital Techtzicaljournal Vol. 4 No. 4 Special lssue 1992 75

Alpha AXP Architecture and Systems

I/0 Module-IOCTL ASIC
A key 1/0 subsystem design decision was to reduce

t ime-to-ma rket by e l im inating u n necessary new

hardware and software development. To support

most of the 1/0 functional i ty, the designers chose

the I OCTL ASIC developed for the DECsta tion 5000

Model 240.

The IOCTL ASIC provides an i nterface to a !6-bit ,

genera l -purpose 1!0 bus, which supports the fol

lowing devices: two Zi log Z85C30 serial com muni

cations contro l lers (SCCs), an A.MD 7t.>90 local area

network controller fo r Ethernet (L\NCE), a Dal las

semicond uctor DS 1287 real-time clock. an A.'viD

79C30A ISDN data controller (I DC), a SCSI con

troller. and an A..'viD 27C020 2'56KH erasable pro

gra m mable read-only memory (El'R0.\ 1) .

The sees i mplement t he keyboard. mouse, al ter

nate console/printer. and communications ports.

The mouse and keyboard do nor use D.'v!A. The a l ter

nate console/printer and the com munications port

do use D.'vlA.
The LANCE i m plements the E thernet interface,

which connects to the local area network (L)

through either tbe AUI (th ickwire) or IOHas e-T

(twisted-pair interconnect [TPIC]) connectors. Soft

ware con trols which one of these inte rfaces i s

enabled .

The rea l - time clock provides t ime-ot�year (TOY)
reference and 50 bytes of nonvolatile RANI. A
l ithium battery supplies powe r in the event of

system power-off or fai lure .

The I DC i mplements both an ISDN interface a n d

telephone-qual ity audi o. The audio connects t o the

audio imerface mod ule (AIM), which prov ides the

aud io 1/0 in the Model 500. Audio 1/0 in the Model

400 is on i ts 1/0 module.

The AIM on the Model 500 supports audio i nput

through either a Ys- inch mini jack for microphone

input, a 4-pin modu lar jack (MJ) connector for use

of a telephone handset, or an RCA- style phon ograph
jack used as a l ine-in input . Output is provided by

the MJ con nector as well as by a ��- inch stereo

phonic jack. The stereophonic jack accepts only a

stereopbon ic plug. If monopho nic headphones are

used, a mono-to-stereophonic adapter is requ i red .

On the Model 400, audio input and outpu t is i m ple

men ted using a 4 -pin ii'!J connector.

Ana lysis of the complete audio system in a Model

500 shows a frequency response of 145 H z to 3, 500

Hz, with typical d istortion i n the 0.8 percent to 1 .9

percent range for the microphone and 0.4 percent

to 1 . 5 percent for the telephone handset. The

76

signal-to-noise ratio ranged from 24 decibels with a

minimal signal input to 58 deci bels with a h igh

level signal input .

I/0 Module-TCDS ASIC

Al though the IOCTL ASIC contains an i n terface

to a SCSI contro l ler, the DEC 3000 AXP systems

i mplemen t their SCSI i n terface using the TCDS

ASIC. 'fhis design has several advantages. F irst, the

TCDS ASIC su pports t wo SCSI ports rather than

the one supported by the lOCfl. ASIC, permitt ing

separate internal and external SCSI chains. Secon d ,

t h is design e l i m inates contention between the

Ethernet controller and the SCSI con trol ler for the

!OCTL bus. 'fh ird , the TCDS ASIC supports m uch

longer TlJRBOchannel DM.A bursts (64-byte bursts

rather than 16 -byte bursts). Final l y, the resul ting

ASIC design is used to i mplement a dua l SCSI

TURBOchannel option module .

The TC:DS ASIC im plements two se parate SCSI

ports using two NCR 53C94 advanced SCSI con

tro l lers (ASCs). The TCDS al lows both control lers to

have DM.A transfers in progress s imu ltaneous ly.

TCDS TlJRBOchannel DMA transactions are

al igned 64-byte blocks. Starting DMA add resses that

are not al igned to these boundaries begin \Vith a

smal ler DMA transact ion. This techn ique a l igns t he

address so that succeed ing transactions are a l igned

64 -byte blocks. Large, a l igned transact ions i ncrease

both TlJRBOchannel and memory access efficiency.

The TCDS ASIC and the ASCs provide odd parity

protection on major data paths. This protect ion

includes 8-bit parity on the 16-bit bus between the

TCDS and the ASCs, 32 -bit parity on TCDS D M A buffer

e ntries, and 32-bit parity on TURBOchannel t rans

actions, both I/0 and DMA .

Graphics
The graphics su bsystem on the Model 500 sys
tem card prov ides integral 8-pl.ane graphics with

hardware en hancements for improved frame buf
fer performance. These enhancements increase

the perf(>rmance of st ip ple, l ine d rawi ng, and copy

operations . The graphics system consists of an SFB

ASIC, 2 M B video RAM, and the Brooktree Bt459

RAM DAC: cbip for sourcing the 8-plane RGB data.

The user can select either a 66-Hz o r a 72-1-Iz moni

tor refresh rate th rough a switch o n the back of the

workstation . The graphics su bsystem can d raw

615K two-dimensional vectors per second and can

perform copy operations at 3 1 BM B/s.

I (J!. ··I No . ..f SjJccial lssl/e 1')92 Digital Technical journal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

The graphics subsystem is available separately as
the TIJRBOchannel HX graphics op tion card . In addi
tion, high-performance two-dimensional and three
dimensional grap hics accelerators are available
through the TIJRBOchannel bus for all systems.

Clock System

The input clock circuitry to the DECchip 21064 CPU
contains a differential 300-MHz oscillator (266 MHz
for the Model 400), which drives an alternating cur
rent (AC) decoupl ing circui t and the CPU chip. The
CPU chip d ivides down the input clock frequency
by a factor of two and operates internally at 150
MHZ. The DEC 3000 A.XP Model 500 is capable of sup
porting a 200-MHz CPU with a 400-MHz oscil lator.

The ent ire system, with the excep tion of some
flO devices, runs synchronously. The master system
clock is generated by the CPU chip at a frequency of
25 MHz (22 MHz for the Model 400), resul ting in
system clock cycles of 40-ns duration. This master
system clock is duplicated and distribu ted with
differential pseudo-em i t ter coupled logic (PECI.)
to maintain minimum skew and to improve noise

CRYSTAL

I D
300 MHZ

3.3-V
.--------. CMOS TTL

CPU LEVELS LEVELS

25 MHZ DELAY
SYSCLK L I N E S

margin. The PECL clocks are converted to transistor
transistor logic (TTL) in the last stage of the clock
fan-out tree.

Two stages of system clock fan-out are used as
shown in Figure 9. Two MC lOOE l l l ECL cl ock bu ffe r
chips (PECL input and output) provide 18 low
skew differential copies of the clock. Seventeen
MC100H641 ECL-to-TTL converters (PECL input, TTL
outpu t) are distributed throughout the system and
1/0 boards to provide more than 100 clock l ines. All
clock l ines are length matched to reduce skew, and
PECL wires are separated from TTL Wo rst-case
SPlCE simulation in dicates a skew between typical
components such as PAls to be 1 .5 ns. Actual skews
mea5urecl in the lab are approximately 0.5 ns.

To give designers maximum flex ibili ty, four
phases of the system clock are generated, one every
10 ns. Delay l ines are used to generate an offset of 10
ns. By swapping the h igh and low differential inputs
to selected MC 100H641 converters, the 20- and 30-
ns delayed clocks are generated. The master system
clock is delayed using delay l ines so that the even
tual system clock is synchronous with the CPU chip.

PECL
LEVELS

1 0 -NS
DELAY
L INES

Figure 9 Clock Distribution

D igital Technical]OUt"11al Vol. 4 No. 4 Special Issue 1992 77

Alpha A.XP Architecture and Systems

Technology

The goal i n choosing semiconductor devices was to
select mature sil icon technologies and then push
those technologies to the l imit . Module- and chip
level signal integr ity was verified by correlating
silicon bench characterization data to device simu
lation modu les. CAD tools were used to perform
worst-case module timing and signal i ntegrity sim
ulation. This methodology minimized device costs,
reduced risks, and shortened time-to-market.

The nine AS!Cs in a DEC 3000 AXP workstation
use six u nique 1 .0-m icrometer complementary
metal-oxide semiconductor (CMOS) designs. (See
Ta ble 2.) Plastic quad flat packs (PQFP) are used as
the packaging technology to l imit device cost .
Because the ASICs are 110 l imited and the PQFPs do
not have ground planes, the effects of simultaneous
switching outputs (SSOs) were a concern. The
potential effects of ssos in CMOS output buffers
incl ude corrupted data and undesirable oscil
lations. Sim ulation and bench characterization
were used to quant ify the SSO effects, and in some
cases SSOs were reduced by staggering output
driver timing.

Although AS!Cs were chosen for the data path,
PALs were used for control logic due to their greater
flexibility and faster turnaround time. A total of 63
20X:X (5 ns) and 22Vl0 (10 ns) PALs with 57 different
codes was used. Exhaustive system-level simu la
tion and bench characterizations were pe rformed
to u nderstand device behavior in the many d iffer
ent load ing scenarios.

The CPU board technology proved moderately
difficult for system-level assembly due to the l arge
distance between the fine-pitch (25 mil) compo
nents. There are 19 fine-pitch components on the
14- by 16 -inch CPU board, with a maximum distance
of 14 inches between any two devices. With this
large distance, an aggressive, true positional diam
eter (TPD) tolerance requirement of 6 mils was

i m plemented. TPD is defined as the total d iameter
of permissible movement from a theoretical exact
location around the true position of the pads. This
TPD requirement ensures proper positio nal accu
racy between the solder paste stencil apertures and
the surface-mou nt features. In add ition, solder
mask between pads on the fine-pitch components
is used to reduce manufacturing defects.

To reduce power and cost, the slower DEC 3000
AXP Model 400 design substitutes CMOS technology
for the BiCMOS cache SRAMs and for many of the
bipolar PALs.

Pawer and Packaging

The fol lowing fixed disk drive options are currently
available.

• RZ25 3.5-inch half-height 426MB disk drive

• RZ26 3.5 -inch half-height 1050MB disk drive

The following removable media options are a lso
available.

• RRD42 5.25 -inch half-height 600MB CD-ROM drive

• RX26 3.5-inch half-height 2.8MB floppy disk drive

• TZKlO 5.25 -inch half-height 525MB QIC tape
drive

• TLZ06 5.25-inch half-height 4000MB OAT drive

The Model 500 has a 480-watt output, off-line,
swi tching regulated power supply, w hich includes
a capacitor-inpu t, automatic voltage-selecting cir
cuit to permit worldwide operation withou t a vol t
age-select jumper for 120 or 240 volt (V) input. The
power supply provides five ou tputs to the load :
+3.3 V, +5.1 V-CPU, +5.1 V- turbo, + 12.1 V, and - 12.1 V

The power supply also provides power fo r three
external fans. Temperature-sensing fan speed con
trol is provided to reduce system noise. The power

Table 2 ASICs Used on the DEC 3000 AXP Workstations

Total Number Number of Number of Used Avai lable
Chip of Pins Pins Used Signal Pins Gates Gates

SFB 1 84 1 84 1 50 21 .6K 54K

TC 1 84 1 82 1 44 1 2.1 K 44K

SLICE 1 84 1 84 1 53 1 1 .2K 44K

ADDR 1 84 1 83 1 48 5.7K 44K

TCDS 1 20 1 20 94 26.5K 68K

IOCTL 1 60 1 60 1 26 1 1 .2K 44K

78 Vol. 4 No. 4 Special issue 1992 Digital Technical jounral

The Design of the DEC 3000 AXP Systems, Two High-pe1fonnance Workstations

supply senses tachometer outputs from the fans,
and when a fan fa ils, it shuts down and i l luminates
an indicator.

Manufacturability/Testability
The designers prov ided several debugging features,
including test points on the module, tristate out
puts on ASICs and PA Ls, an on-board diagnostic
ROM, and program m able console ROM . Since the
mod u le is composed almost exclusively of surface
mou nt devices, the designers specified as many vias
as possible for use as test points. Consequently, all
wires on the board have test points, which allows
for 100 percent short -circ u it coverage and 94 per
cent open-circuit coverage.

The DEC 3000 AXP workstat ion takes ful l advan
tage of the serial ROM port on the DECchip 21064
CPU. This port al lows code to be direct ly loaded
into the instruction cache. Du ring prototype devel
opment, designers loaded special debug programs
into the CPU through this port. However, the real
innovation is in a lso wiring this port to the output
of a 64K by 8 EPROM on the module to provide 8
programs that are individually selectable by moving
a jumper on the module . On system reset, serial
program data from the selected EPROM output is

Table 3 System Performance

CPU speed
B-cache size
B-cache read bandwidth
B-cache write bandwidth

Maximum main memory
CPU memory latency (average)
CPU memory read bandwith
CPU read with victim write

memory bandwidth

TURBOchannel peak bandwidth
1/0 read bandwidth 8 bytes
1/0 write bandwidth 8 bytes
Block 1/0 write bandwidth 32 bytes
Block 1/0 write bandwidth 32 bytes with CPU

read and victim write memory bandwidth

DMA read bandwidth 51 2 bytes
64 bytes

DMA write bandwidth 51 2 bytes
64 bytes

64-byte DMA write bandwith with
CPU reads from memory

Digital Teclmicaljournal Vol. 4 No. 4 .Sjwcial lssue 1992

loaded into the i nstruction cache. These programs
include power-up code for loading the real console,
a miniconsole, and five diagnostic programs fo r
testing memory and the graphics subsystem . Other
tests are available by replacing the EPROM. These
programs are of great value in the manufacturing
debug environment.

Two flash EPROMs contain the console code fo r
the system . On power-up, code in the serial ROM
loads the console code into memory and begins
executing i t . Users can easily update the console
ROMs (for example, to provide PAL code en hance
ments) through a special uti l i ty booted off a CD
ROM connected to the system. Field service can
update the console code in the system remotely
through the Ethernet.

Conclusions

The primary goal of this project was to design a bal
anced system that exh ibited low memory latency,
high memory bandwidth, and m inimal CPU-I/O
mem ory contention in a cost-effective manner.
Table 3 gives the measured peformance numbers
for these characteristics. Except where noted, a l l
numbers are for sustained performance. Of particu
l ar note are the numbers showing that the CPU

DEC 3000 AXP
Model 500

1 50 MHz
51 2KB
480MB/s
320MB/s

1 GB
32 bytes/1 80 ns
1 1 4MB/s
1 60MB/s

1 00MB/s
1 3MB/s
33MB/s
67MB/s
I/0=53MB/s
M EM=1 07MB/s

91 MB/s
57M B/s
93MB/s
59M B/s
DMA=59M B/s
CPU=30MB/s

DEC 3000 AXP
Model 400

1 33 MHz
51 2KB
426MB/s
284MB/s

51 2MB
32 bytes/203 ns
1 01 MB/s
1 41 MB/s

89M B/s
1 2MB/s
29M B/s
59MB/s
1/0=47M B/s
M EM=95MB/s

81 MB/s
51 MB/s
82MB/s
52M B/s
DMA=52M B/s
CPU=27MB/s

79

Alpha AXP Arc hitecture and Systems

receives significant memory bandwidth even i n the

presence of heavy block l/0 and DMA traffic.

Another goal of the project was to offer per

formance that is competitive with RISC worksta

tions avai lable from other vendors. The benchmark

perfo rm ance of any system derives from the inter

dependent perform ance of the hardware, the oper

ating system , and the compilers that generate the

application code. The bench mark performance

should improve as each element matures. Table 4
shows the performance of the DEC 3000 AXP sys

tems on a selected set of benchma rks as of the

annou ncement elates of these products. Table 5

compares the perfo rmance of the DEC 3000 A..,'CP

Model 500 to the published performance of several

currently available competitive systems 4

Acknowledgments

The DEC 3000 AXP Model 500 design was a team

effort-more peop.le were involved than can be

acknowledged in this space. Recognit ion is due to

Table 4 Benchmark Performance

Clock (MHz)

SPECmark89

Dhrystones
V1 .1 (Dhrystones per second)
V2.1 (Dhrystones per second)

UNPACK 64-bit double precision
1 00 X 1 00 (MFLOPS)*
1 000 X 1 000 (MFLOPS)

X1 1 PERF
Two-dimensional vectors per second
Two-dimensional pixels per second

Note: "Mi l l ion floating-point operations per second

Table 5 Competitive Comparison

DEC 3000
Model SOO

SPECmark89 1 21 .5

Dhrystones
V1 .1 (Dhrystones per second) 257.7K
V2.1 (Dhrystones per second) 281 .2K

UNPACK 64-bit double precision
1 00 X 1 00 (MFLOPS) 26.4
1 000 X 1 000 (MFLOPS) 79.9

those who cont ribu ted to the design of original

hardware: D ave Archer, Mark Baxter, Joh n DeRosa,

Chris Gi anos, Leon Hesch, Dave Laurel lo, Bob

McNamara, Dick Mil ler, Rick Rudman , Dave

Senerchia, Petr Spacek, Bob Stewart, Ned Utzig,

Debbie Vogt, and John Zurawski . The tight sched u le

cou ld not have been met without the special efforts

of the Power and Packaging, Console, Qualifi

cation, Proto Management, a nd Technology and

Operating Systems Groups. The design team for the

DEC 3000 AXP Model 400 project is also recognized:
John Day, Jamie Pierce, Dennis Rainvil le, and Ken

Warcl. The thorough device eva l.uations by Rob

Zahora contributed significantly to the success of

the projects. We would also l i ke ro acknowledge

the contributions by FXO personnel. The Electronic

Sto rage Development Group was responsible for

the design of the DEC 3000 AXP Model 500 memory

module. Sign ificant efforts by the Maynard TrvL E,

AJbuquerque, and Ayr Manufacturing Plants should

be recognized for delivering quality hardware

DEC 3000 AXP DEC 3000 AXP
Model 400 Modei SOO

1 33 1 50

1 08.1 1 21 .5

228.3K 257.7K
249.6K 281 .2K

26.4 30.2
70.8 79.9

564.0K 636.0K
27.4M 31 .0M

IBM RS6000 H P9000
Model 580 Model 750

1 26.2 86.6

n/a 1 33.7K
n/a 1 22.3K

38.1 23.7
84.0 n/a

80 Vol. 4 No. 4 Special Issue 1992 Dtgttal Technical journal

The Design of the DEC 3000 AXP S)•stems, Two High-petformance Workstations

du ring the development and production phases; a
special thanks to J i m Ersfeld fo r his significant

efforts in this regard .

References

1 . R. Sites, ed . , Alpha Architectut'e Reference

Manual (Burl i ngtOn, MA: Digital Press, Order

No. EY-L520E-DP, 1992)

2. D. Dobberp uhl er a l . , "A 200-MHz 64-bit Dual

issue CMOS Microprocessor," IEEE journal of

Solid-State Circuits, vol . 27, no. 1 1 (November

Digital Teclmicaljounutl Vol. 4 No. 4 Spi'cial Issue 1992

1992) : 1555 -1567 and Digital Technicaljournal,

vol. 4, no. 4 (1992, this issue): 35-50.

3. Tt : RBOchanneJ Specifications, Version 2C (Palo

AltO, CA: Digital Equ ipment Corporation,

·nu;ADD Program , Order No. EK-TCDEV-DK-004,

September 1991)

4. Alpha AXP Workstation Family Performance

Brief-OpenVMS, Second Edition (Maynard :

D igital Equ ipment Corporation, Order No.

ER-N0102-51 , November 20, 1992).

81

Barry A. Maskas
Stephen F. Shin·on

Nicholas A. Warchol

Design and Performance oft he
DEC 4000 AXP Departmental
Server Computing Systems

DEC 4000 A)(P systems demonstrate the highest performance and functionality

for Digital 's 4000 series of departmental server systems. DEC 4000 AXP systems

are based on Digital's Alpha AXP architecture and the IEEE's Futurebus+ profile B
standm·d. They provide symmetric multiprocessing performance for Open V;I!JS AXP
and DEC OSF/1 AXP operating systems in em office environment. The DEC 4000
AXP systems were designed to optimize tbe cost-performance ratio and to include

upgradability and expandability Tbe systems combine the DECchip 21064 micro

processor; submicron CMOS sea-ofgates technolOg)J, CMOS memor:y and I/0 periph

erals technolog)J, a high-performance multiprocessing backplane interconnect, and

modular system design to supply the most advanced functionality for performance

driven applications.

The goal of the departmental server project was to

establish Digital's 4000 family as the industry's most

cost -effective and highest -performance depart

mental server computing systems. To achieve this

goal , two design objectives were proposed for the

DEC 4000 AXP server. First, migration was necessary

from the VA}(arch itecture, which is based on a com

plex instruction set computer (CISC), to the AJpha

AXP architecture, which is based on a reduced

instruction set computer (RJSC). Second, for expan

sion 110 in an upgradable office environment enclo

sure, migration was necessary from the Q-bus

to the Futurebus+ l/0 bus. ' In addition, the new

system had to provide balance between processor

performance and 110 performance. Maintaining

customer investments in VAX and MIPS applications

through support of OpenVMS AXP and DEC OSF/ 1

AXP operating systems was impl icit in the archi·

tecture migration objective. Migration, porting,

and upgrade paths of various appl ications were

defined.

This paper focuses on the design of the DEC 4000

AXP hardware and firmware. It begins with a discus

sion of the system architecture and the selection of

the system technology. The paper then details the

CPU, l/0, memory and power subsystems. It con

cludes with a performance summary.

82

SJ'Stem Overview

The DEC 4000 AXP system provides supercomputer

class performance at office system cost. 2 This com

bi nation was achieved through architecture and

technology selections that provide opti mized

uniprocessor performance, low additional cost

symmetric mult iprocessing (SMP), and balanced

I/0 throughput . High 1!0 throughput was accom

plished through a com bination of integrated con

trol lers and a bridge to Futurebus+ expansion 1/0.

The system uses a modular, expandable, and

portable enclosure, as shown in Figure 1. With

current technologies, the system supports up to

2 gigabytes (GB) of dynamic random-access mem

ory (DRAM), 24GB of fixed mass storage, and 16GB

of removable mass storage. The DEC 4000 A}\P

system is partitioned into the fo l lowing modular

subsystems:

• Enclosure (BA640 box)

• CPU module (DECchip 21064 processor)

• 1/0 module

• Memory modules

• Mass storage compartments and storage device

assembly (brick)

Vol. 4 No. 4 Special issue 1992 Digital Tech11ical]ozw11af

Design and Performance of the DEC 4000 AXP Departmental Seruer Computing Systems

� ---�

1 ------:

Figure 1 DEC 4000 AXP System Enclosure

• Futurebus+ Expansion 1/0, Futurebus+ con

troller module (FBE)

• Power supply modu les - un iversal l ine front-encl

unit (FEU)

- Power system con trol ler (PSC)

- DC-DC converter unit 5.0 volt (V) (DC5)

- DC-DC converter u n it 2.1 V, 3 3 \\ 12.0 V (DC3)

• Coo l i ng subsystem

• Centerplane module

• Operator contro l panel (OCP)

• Digital sto rage systems interface (DSSl) and sma l l

computer systems i nterface (SCSI) termi nation

voltage converter (VTERM)

Figure 2 shows these subsystems in a fu nctional

d iagram. The su bsystems are in tercon nected by a

serial control bus, which is based on Signetic 's FC
bus .-I

System Architecture

From the beginning of the project, i t was apparent

that the 1/0 subsystem had to be equal to the

Digital Techuical]ournal Vul. 4 Nu. 4 Special Issue 1992

increased processi ng power provided by the

DECchip 21064 CPU. Although processing power

was taking a revol.ut i onary jump in perfo rmance

with no cost increase, d isk and main memory tech

nology were sti l l on a n evolut io nary cost and per

formance curve . The metrics that had been used

for VAX systems were difficu l t, if not impossible, to

meet through l i near scal ing within a fixed cost

bracket. These metrics were based on VAX-1 1/780

units of performance (Vl / Ps); they give main mem

ory capacity in megabytes (MB)/VUP, disk-queued

110 (QIO) completions in Q[O/s(VU P, and disk data
rate in MB/sf\'1.1 1'. As an example , Table 1 gives

the metrics for a VAX 4000 Model 300 scaled l in

early to 1 2 5 VU I's and then nonl inearly scaled

for the DEC 4000 �'\P system implementat ion .

Performance mode l i ng of the DECchip 2 1064 CPU

suggested that 125 Yl. l l's was a reasonable goa l fo r

the DEC 4000 AXP.

Without an Alpha AXP arc h i tecture customer

base, we did not know if these metrics would scale

l i nearly with the processor performance. The

DECch i p 21064 processor technology has the poten

tiaL fo r attract ing new classes of compute-intensive

applications that may make these metrics obsolete.

We therefore chose a non I in ear extrapolation of the

metrics for our i n itial implementat ion. By trading

off disk and memory capacity for l/0 throughput

p erformance, we kept within establ ished cost and

performance goals. The i mplementation metrics

were not l i mited by the architecture: further scal

ing up of metrics was plan ned . Of the fou r metrics,

the d isk capacity metric has the most growth

potential .

To ensure compl iance with both the Alpha �'\ !'

architecture and the Futurebus+ spec ifications, the

system was partit ioned as shown in Figure 2. The

bri dge between the CPU subsystem a nd the

Futurebus+ subsystem afforded maximum design

flexibi l i ty to accom modate spec ification changes,

modu lari ty, ancl upgradabi l i ty. The 1/0 module was

organized to balance the requirements between

CPU pe rformance and l/0 throughput rates. The
DEC 4000 AXI' system implemen tation is based on

open standards, with a six-slot Fu turebus+ serving

as the expansion I/O bus and the system bus serving

to i n terconnect memory, crus, ancl the 110 module .

T h e modu larity o f the system enables mod u le swap

upgrades and configurabi l i ty of the l/0 subsystem

such that performance and fu nctional ity may be

tai lored to user requirements. The modu larity

aspects of the system design extend into the storage

8:)

Alpha AXP Architecture and Systems

CONNECTION

ASYNCHRONOUS SERIAL LINE
(AUXILIARY WITH MODEM CONTROL) I MODEM I

MODULE

I CPU SUBSYSTEM
I I
I
I
I

I
I
I

OPERATOR
CONTROL
PANEL

ASYNCHRONOUS SER IAL LINE
(CONSOLE LINE) CONSOLE

TERMINAL

I
I
I

I
I I
I
I

I
FUTUREBUS+

I
SERIAL CONTROL BUS I

_
-��� E��s��

_
_

_ _
_I

I MASS STORAGE COMPARTMENT - I
I

DSSI/SCSI 0 lft..l-1_---"

I

I I
I
I
I
I

I
I

SYSTEM BUS

MEMORY
MODULE 0

1 28-BIT AND LONGWORD PARITY

1/0
MODULE DSSI/SCSI 1

DSSI/SCSI 2

DSSI/SCSI 3

I ETHERNET PORT 1 I
I<:
:=:::::::::=:::===:::::=====)(] I

ETHERNET PORT 0 I 1<:)(]
L _

_
_ _ _ _ _ _ _ _ _ _ _ '--_-_-_-'j

r - - - - - - - l r - - - - - - - l
01 PO

D
WER S

D
UB

D
SYS

D
TEM

I
ll ___ : CO@)S@EM

D>--A-C_P_O_W_E_R_
I (§) (§) I

CABLE
I
- - - - - - - _I I - - - - - - - _j

KEY:

0' EXTERNAL PORT CONNECTION

TO ETHERNET

rigure 2 DEC 4000 AXP System Functional Partition

TO STORAGE
EXPANSION
DEVICES

84 Vol. 4 No. 4 :,pecial Issue 1992 D igital Technical journal

Design and Performance of the DEC 4000 AXP Depa1·tmental Server Computing Systems

Table 1 Extrapo lated VAX Metrics

Memory capacity

Disk capacity

Disk QIO rate

1/0 data transfer rate

VAX 4000
Model 300
Metrics

60 MB/VUP

1 .65 GB/VUP

49 QIO/s/VUP

1 .4 MB/s/VUP

compartment where each brick has a dedicated
controller and power converter. Support for DSSI,
SCSI, and high-speed lOMB/s SCSI provides m axi
mum flexibil ity in the storage compartment. The
modu lar m ass storage compartments enable user
optimization for bu l k storage, fast access, or both .

The cost of SMP was a key issue ini tial l y, s ince
Digital's SMP systems were considered high-end sys
tems. Pull ing h igh-end fu nctionality i nto lower
cost systems through arch itecture and technology
selection was managed by eval uation of perfor
mance and cost through trial designs and software
breadboard ing. Several designs of a CPU module
were proposed, i ncluding various organizations of
one or two DECchip 21064 CPUs per module inter
faced to 1/0 and memory subsystems. Optimization
of complexity, parts cost, perform ance, and power
density resulted in a CPU module with one proces
sor that could operate in either of two CPU slots on
the centerplane. Consequently, a system bus had to
be developed that could be interfaced by proces
sors, memory, ancl 110 subsystems in support of the
shared-memory architecture.

As development of the DECchip 21064 processor
progressed, hardware engineers and chip designers
establ ished a prioritized J ist of design goals for the
system bus as fol lows:

1. Provide a low- l atency response to the CPU's
second- level cache-miss transactions and 110
module read transactions without pending
transactions.

2 . Provide a low-cost shared-memory bus, based
on the cache coherence protocol, t hat wou ld
facil itate upgrades to faster CPU modu les. This
provision impl ied a simple protocol, synchro
nous timing, and the use of transistor-transistor
logic CfTL) levels rather than special e lectrical
interfaces.

3. Prov ide 110 bandwidt h enabl ing local 1!0 to
operate at 25 megabytes per second (M B/s) and
the Futurebus+ to operate at lOOM B/s.

Digital Teclmicaljournal Vol. 4 No. 4 Special Issue 1992

Scaled
Linearly
to 125 VUPs

7.5 GB

206 GB

6,1 25 QIO/s

1 75 MB/s

Scaled
Nonl inearly
for DEC 4000 AXP

2 GB

1 00 GB

>4,000 QIO/s

21 0 MB/s

4. Provide scalable memory bandwidth, based on
protocol t iming of 25 nanoseconds (ns) per
cycle, which scales with improvements in DRAM
and static memory (SRAJ\11) access times.

5. Use modu le and connector technology consis
tent with Futurebus+ sp ecifications.

The cache coherence protocol of the system bus
is designed to support the Alpha A.,'\P architecture
and provide each CPU and the 1/0 bus with a consis
tent view of shared memory. To satisfy the band
width and latency requirements of the processor's
instruction issue rate, the processor's second-level
cache size, 128-bit access width , and 32-byte block
size were optimized to avoid bandwidth l imits to
performance. The block size and access width were
made consistent with the system bus, wh ich satis
fied the 110 throughput metrics. Consideration was
given to support of a 64-byte block on the 128-bit
wide bus. Such support would have resul ted i n a 17
p ercent larger miss penalty and higher average
memory access t ime for the CPU and 1/0, more stor
age and control complexity, and hence h igher cost.

Simpl icity of the bus protocol was achieved by
l im iting the number and variations of transactions
to four types-read, write, exchange, and null. The
exchange transaction enables the second-level
cache of the CPU to exchange data, that is, to per
form a victim write to memory a t the same time as
the replacement read transaction. This avoided the
coherence complexity associated with a l ingering
victim block after the replacement read transaction
completed.

To address the issue of bandwidth requirements
over ti me as faster processors become available, an
estimate of 40 percent bus uti l ization for each pro
cessor with a 1 M B second- level cache was obtained
from trace-based perform a nce models. The ut i l iza
t ion was shown to be reduced by using a 4MB sec
ond-level cache or by using larger caches on the
DECchip 2 1064 chip. This approach was reserved as
a means to support future CPU upgrades.

85

Alpha A.XP Architecture and Systems

Figure 3 is a block diagram of the length- l imited
seven-slot synchronous system bus. To achieve
tight module-to-module clock skew control for this

single-phase clock scheme, clocks are radial ly dis
tributed from the CPU 1 module to the seven slots.

This avoided the added cost of a separate module
dedicated for rad ial clock d istribution, and enabled
the bus arbitration circu itry to be integrated onto
the CPU 1 module .

Arbitration of the two CPU modules and the I/O
mod ule for the system bus is central ized on the CPU
1 module. To satisfy the I/O module 's latency

requirements, the arbi tration priority al .lows the
l/0 module to interleave with each CPU module. In
the absence of other requests, a module may uti lize

the system bus continuously. Shared-memory state

eva l uations from the bus addresses during continu
ous bus utilization causes CPU "starvat ion" from
the second-level cache. To avoid CPU starvation
from the second-level cache, the arbitration coo

trol ler creates one free cycle after three consecu

tive bus transactions.

Technology Selection
The primary force behind technology selection was

to realize the ful l performance potential of the
DECchip 21064 microprocessor with a balanced I/O
subsystem, weighted by cost minimization, sched

ule goals, and operation in an office environment.
SPICE analysis was used to evaluate various module

and semiconductor technologies. A technology
demonstration module was designed and fabri
cated to correlate the SPICE models and to validate
possible technology. Based on demonstrations, the

project proceeded with analytical data supported
by empirical data.

The 25-watt DECchip 21064 CPU was designed in
a 3 .3-\� 0.75 -micrometer complementary metal
oxide semiconductor (CMOS) technology and was
packaged in a 431-pin pin grid array (PGA). The CPU
was the only given technology in the system. The
power supply, air cool ing , and logical and electrical
CPU chip interfacing aspects of the CPU module and

system bus designs evolved from the DECchip 21064

specifications. System design attention focused on

powering and cool ing the CPU chip. Compliance
with power and cool ing specifications was deter
mined to be achievable through conventional volt
age regulation and decoupli ng technology and
conventional fan technology.

To address system integrity and rel iability
requirements, all data transfer interconnects and

86

storage devices had to be protected. The DECcbip
21064 CPU's data bus and second-level cache are

longword error detection and correction (EDC) pro

tected. The system bus is longword parity pro
tected. The memory subsystem has 280-bit-wide
EDC-protected memory arrays. The Futurebus+ is

longword parity protected.

System Bus Clocking

To establ ish the 25 -ns bus cycle time, analog models

of the interconnect were developed and analyzed

for 5.0-V CMOS transceivers. Assuming an edge- to
edge data transfer scheme, the modelers evaluated

the timing from a driver transition to its settled sig

nal, including clock input to driver delay, receiver
setup time, and module-to-module clock skew. The
cycle time and the data transfer width were com
bined to determine compliance with l ow latency
and bandwidth. Further analysis revealed that the

second-level cache access timing was critical for
performing shared-memory state lookups from the
bus. One solution to this problem was to store

duplicate tag values of the second- level cache. This
was evaluated and found to be too expensive to
implement. However, the study d id show that a
duplicate tag store of the CPU's primary data cache
had a performance advantage and was affordable if
implemented in the CPU module's bus interface unit

(BIU) chips.
To evaluate second-level cache access t iming,

a survey of SRAM access times, density, availabil
ity, and cost was taken. Results showed that a I MB

cache using 12-ns access time SRAMs was optimal.
With a 12-ns access time SRAI\1 , the critical t iming

could be managed through the design of the BIU

chips. The SRA!vl survey also showed that a 4MB

second- level cache could be planned as a fol low-on
boost to performance, as SRAM prices decl ined .
Trace-based performance simulations proved that
these cache sizes satisfied performance goals of 125
VUPs. This clock rate required a bus stall mecha
nism to accommodate current DRAI\1 access t imes
in the memory subsystem, which wil l enable future

enhancements as access times are reduced .

The system bus clocks are d istributed as posit ive

emitter-coupled level (PECL) d ifferential signals;
four single-phase clocks are available to each slot.
Each module receives, terminates, and capacit ively
couples the clock signals into noninverting and
inverting PECL-to-CMOS level converters to provide
four edges per 25-ns clock cycle. System bus hand
shake and data transfers occur from clock edge to

Vol. 4 No. 4 Special Issue 1992 Digital Tecbnical Journal

1/0 MODULE

1'.1 "'"'" I
�f·l ��8��T SRAM

I
� 50'"""' I I ' ' c "'"" I

I TRANSCEIVER I� ---1 ���SOLE �
� ETHERNET

I 1- 32 I ���OM I
l ���g�E 1- I TOY CLOCK I

� I

f.l FUTUREBUS+ I - � BRIDGE

I I

BUFFER I I BUFFER

MAI LBOX I I MAILBOX

BIU

� I

CPU 2 MODULE

NVRAM I
MICROCONTROLLER

32KB
DECCH I P

S E RIAL
21 064 CPU

PROM

1 1 MB OR 4MB I BACKUP
CACHE

1 46

I BIU I

CPU 1 MODULE

NVRAM I
MICROCONTROLLER

32KB
DECC H I P

SERIAL
21 064 CPU

PROM

1 1 M B OR 4MB I BACKUP
CACHE

1 46

I Bus I CLOCKS

I BIU I

MEMORY
MODULE 1

DRAMS

280

DRAM
CONTROL

BIU

MEMORY
MODULE 2

DRAMS

280

DRAM
CONTROL

BIU

MEMORY
MODULE 3

DRAMS

280

DRAM
CONTROL

BIU

��--------4

-
0_

M

_

M

--------����-----4-
0
_

M

_

M

-----����--
--

2-0_M_M
----����

--

-2-0_M_M

--

-���L-

--

-20--M

-

M

--

���

Figure 3 DEC 4000 AXP System Bus

M E MORY
MODULE 4

DRAMS

280

DRAM
CONTROL

BIU

� ...J
20 MM ifJ

Alpha AXP Architecture and Systems

clock edge and uti l ize o ne of two system bus
clocks. A custom clock c h ip was implemented to
provide p rocess, voltage, temperature, and load
(PYTL) regulation to the pair of appl ication-specific
i ntegrated circu i t (ASJC) chips that compose each
Blli . The clock chip achieves module- to-module
skews of less than 1 ns.

Our search for a clock repeater chip that could

m inim ize module-to-module skew a n d c h ip - to
chip s kew on a module, and yet d irect l y drive high

fan-out ASIC chips w i th Ci\'lOS- level clocks, led us
to Digital 's Semiconductor Operations <_ ; roup. Such
a chip was in design ; however, it was tailored
for use at the DEC 6000 system bus frequency
The Semiconductor Operations Group agreed to
change the ch ip to accommodate the DEC 4000 AXP
system bus frequency

1/0 Bus TeclJnology

Because of technology obsolescen ce, l/0 b uses
have a 21-year l i fe cycle divided into 3 phases.
D u ring t he first 7 years of acceptance, p e ripherals
and appl ications are developed and supported.
Sustained acceptance takes hold i n the next 7 years
as peripherals and applications are enhanced . I n
t h e l ast 7 years, a phase out or migration of periph
erals and appl ications occurs. For the DEC 4000 AXP

systems, our first priority was selection of a n open
expansion 1/0 bus in the fi rst third of its l i fe cycle.
I n addition, we wanted to select an open I EEE stan
dard bus that wou ld attract third-party develope rs
to provide 1/0 solu tions to customers. The fol low
ing priorit ized criteria were established for the
selection of a new I/0 bus:

I . Open bus that is an accepted i ncJu ' try standard
in the beginning third of its l ife cycle

2. Compatibil ity with Alpha AXP architecture

3. Min i m u m data rate of l00Ml3/s

4. Sca lable features that are performance-e. ten
sible through arch i tecture (e. g . , bus width) ,
and/or through technology improvements
(e.g. , semico nductor device perfor m ance and

integration)

5. Minimum 64-bit data path

6. Support of bridges to other 1/0 buses

7. Minimal interoperabil i t y problems between
devices from d i fferent vendors

After examination of several I/0 buses that satis
fied these c r i teria, the Futurebus+ was selected . At
the time of our invest igation, however, the
Futurebus+ specification was in development by
the IEEE and a wide range of i n terest was evident
throughout the indust ry. By p roviding t he right sup
port to the Futurebus+ commit tee, Digital was in a
p osition to help stab i l i ze and bring the speci fica
tion to com plction.

A D igital team represented the project's i nterests
on the IEEE PH96.2 Specification Committee and
proposed standards as the DEC 4000 AXP system
design evolved. This team ach ieved its goa l by help
i ng the ! EE L Committee define a profile that
enabled th, Futurebus+ to operate as a high-perfor
mance I/0 expansion bus. To m itigate sched u le
i mpact due to instabi l i ty of the Fu turebus+ specifi
cations, t he I/O mod u l e ·s F u t u rebus+ interface was
archit cted to accommodate changes tl1rough a
more d iscrete, rather t han a highly i n tegrated
implementation. Compl i ance with the Futurebus+
specifications inf luenced most mechanical aspects
of the m o d u le compartment design, as is evident
from the centerplane, card cage, modu l e construc
tion and size, and po\vtr supply voltage specifica
tions and implementations.

Module Tecbnology

Mod u le technology was selected to maximize sig
nal density within the fewes t l ayers with m i n i m a l
crossta l k and to provide a u niform signal distribu
t ion i mp edanct: for any module layer. Physical-to
elec t rical model i ng tools were used to create S PICE

models of connectors, chip packages, power

plan�.:s, sig11 a l l ines of various lengths and
i mpedances (based on the module construction
technology), ancl m u ltiple signal I ines. Because the
placement of components affects signal perfor
mance and quality and system performance (e . g . , in
the second-len·' processor cache), module floor
p lans and trial layou ts \verc completed . A module

l ayout tool was used to ensu re prod ucibil ity com
p l iance w i t h manufactu ring stand ards as wel l as sig
nal rou t i ng constraints. The modu le l ayou t process
was iterative . As sections of the m od u le routing
·were completed. SPICE moclels of the etch were
extractecl. These e t racted models were connected
to SPICE models of ch ip d rivers and r u n . A na lysis
was completed a n d req u i red cha nges were imple
mented :md analyzed aga i n . The process continued
u n t i l the optimal specification conformance was
achieved for a l l signals.

Vr!l. .:j So. 4 .��)(!Cia/ Issue /'}'}2 Digital Technical journal

Design and Pe1jonnance of the DEC 4000 AXP Departmental Seruer Computing Systems

Module size was estimated based on system func

tional i ty requirements and a study of the size and

power requirements of that functiona l ity. To simp! i

fy the enclosure design , module size specifications

are consistent \Vith the Futurebus+ module specifi

cations. li.> ach ieve lower system costs, the proces

sor, memory, and 110 modu les arc based on the

same ten-layer control led impedance construction.

Chip engineers avoided the specification of fine

p itch surface-mount chips when possible. Compo

nent choices and modu le layou ts were completed

with a view toward manufacturabi l ity. Cost analysis

showed that mixed, double-sided su rface-mount

components and through-hole components had

insignificant added cost when fused tin-lead mod

u le technology ami wet -fi lm solder-mask technol

ogy were used . The required layer construction and

impedances of 45, 70, and 100 ohms could easi l y be

achieved within cost goals through this technology.

Solder-mask over bare copper technology was also

eva luated to determine if fi ne-pitch su rface-mount

components achieved h igher yield through the sol

der reflow process. This eva luation showed fused

tin- lead techno logy was better su ited , based on

defect densit ies, fo r the manufacturing process.

Consequently. a l l DEC 4000 fu'< P mod uks are i mple

mented with fused t in- lead module tech nology and

wet-fi lm solder-mask technology.

Semiconductor Technology

As a result of a performance, cost, power, and mod

ule rea l estate study, CMOS technology was used

extensively. The custom-designed PVTL clock chips

were developed in 1 .0-micrometer CMOS tech nol

ogy to supply C\!JOS-level signa l s for driving d i rectly

into the BIU chips. Each module's Bill used the same

0.8-micrometer ASIC technology and die size to

closely manage clock skews. Each system bus mod

u le's Bil l is implemented by two identical chips

operated in an even and an odd s l ice mode. Chip

designers invented a met hod for accepting 5.0-V

signals to be driven i nto their 3.3-V biased DECchip

2 1064 C:Pl l . Consequently, the selection and i mple

mentation of 5.0-V ASIC: technology were easier.
ASIC vendor selection was based on (I) p erfor

mance of tria l designs and timing analysis of parity

and EDC trees, (2) SPICE analysis of 1/0 drivers with

direct-d rive input clock cel ls, and (3) a layout abi l

i ty to support wide clock trunks and d istribu ted

clock buffering to effect low skews.

All memory chips on the CPU module. memory

module, and 1/0 module were i m plemented in

Digita/ 1echnical journal Vol. Nu. •1 Special Issue 1992

submicron CMOS or BiCMOS technology. Al l the 1/0
and power subsystem control ler ch ips such as the

SCSI and DSSI control lers. E thernet control lers,

serial l ine interfaces, and analog- to-d igital convert

ers were i mplemented in CMOS technology.

Speed or h igh drive is critical in radial clock dis

tribution, Futurebus+ interfacing, or memory mod

u le address and control signal fan-out. In these

special cases, lOOK ECL operated in positive mode

(PECL) or BIPOLAR technology was employed.

System Bus Protocol and Technology

The cache coherence protocol for the shared-mem

ory system bus is based on a scheme in which each

cache that has a copy of the data from memory a l so

has a copy of the information about i t . A l l cache

contro l lers monitor or snoop on the bus to deter

mine whether or not they have a copy of the shared

block. Hence the system bus protocol is referred to

as a snooping protocol, and the system bus is

referred to as a snooping bus:i

The 128-bit -wide synchronous system bus pro

vides a write u pdate 5 - state snooping protocol fo r

write-back cache-coherent 32-byte block read and

write transactions to system memory address space.

Each module uses a 192-pin signal connector-the

same connector used by Fu turebus+ modu les. Each

modu le interfaces between the system bus and its

back port with two 299-pin PGA packages contain

ing CMOS ASIC ch ips, wh ich implement the bus pro

tocol. A total of 157 signals and 35 reference

connections implement the system bus in the 192-

pin connector (6 interrupt and error, 8 clock and

in i t ia l izatio n , 128 command and address or data, 4

parity, I I protocol). Al l control/status registers

(CSRs) are visible from the bus to simplify the data

paths as wel l as to support SMP.

To s i mpl ify the snooping protocol, only fu l l

block transactions are su pported; masking or sub

block transacti ons occur in each modu le's Bl li .
Transactions are described from t h e p erspectives

of a com m ander, a responder, and a bystander. The
address space is part i t ioned into CSR space that can

not be cached , memory space that can be cached ,

and secondary l/0 space for the Futurebus+ and 1/0
module devices. Secondary 1!0 space is accessible

through an l/0 mod u le mai lbox transaction, which

pends or retries the system bus when access to very

slow 1/0 contro l ler registers confl icts with direct

memory access (DMA) t raffic. This software

assisted procedure also provides masked byte read

and write access to 1/0 devices as wel l as a standard

89

Alpha A_,"XJ> Architecture and Systems

software i nterface. The use of 32-bit peripheral

DiVI.A devices avo ided the need to implement hard

ware address translators. The software drivers pro

vide physical addresses; hence mapping registers

are not necessary.

The l/0 module drives two device-related in ter

rupt signals that are received by both CPl · modules

(lue to SM!' requirements. One interrupt is associ

ated with the Futurebus+, and the other is associated

with a l l the device control. lers local to the l/0 mocl

u le . The J/0 module provides a silo register of

Futurebus+ interrupt pointers and a device request

register of local device i nterrupt requests. CPU 1 o r

CPU 2 is the designated interrupt d ispatcher mod

u le . Privi leged arch itecture l i brary software sub

rou ti nes, known as l'ALcode, run on the primary

CPU module and read the device interrupt register

or Futurebus+ interrupt register to determine

which local devices or which Futurebus+ device

hand lers are to be d ispatched.

The e nclosure, power, and cool ing subsystems

are capable of interrupting both processors when

immediate attention i s requ ired. A CPl J can obtai n

information from subsystems shown in Figure 2

through the seria l control bus. The serial con trol

bus enables highly rel iable communications

between field replaceable subsystems. During

power-up, i t is used to obtai n configuration i n for

mation. It is a lso used as an error-logging channel

and as a means to communicate between the CPU
subsystem , power subsystem , and the OCP. The

nonvolati le RAM (NVRAM) chip implemen ted on

each module a l lowed the firmware to use software

swi tches to configu re the system. The software

swi tches avo ided the need for hardware switches

and jumpers, fie ld replaceable u n i t ident ification

tags, and handwritten error logs. As a resu lt , the

hardware system is fu l ly configured through

fi rmware , ami fau l t informat ion travels with the

field replaceable unit .

The five-state cache coherence protocol assumes

that the processor's primary write-through cache is

mainta ined as a subset of the second- level write

back cache. The 1m : on the CPU module enforces

this subset po licy to s impl ify the s imu lat ion verifi

cation p rocess. Without it, the number of verifica

tion cases wou kl have been excessive, d ifficul t

to express, and d i fficu l t to s imu late and check for

correctness. The 1/0 module implements an i nva l i

date-on-write pol icy, such that a block it has read

from memory wi l l be inva l idated and then re-read

if a CPU wri tes to the block . The l/0 module parti-

90

cipates in the coherency pol icy by signa l ing shared

status to a CPU read of a block it has buffered . The

five stares of the cache coherence protocol are

given in Table 2 .

The cache coherence protocol ensures that only

one CPU module can ret urn a d irty response. The

d irty response obl igates the responding CPU mod

ule to supply the rea(] data to the bus, s ince the

memory copy is stale and the memory control ler

aborts the return of the read data . Bus wri tes always

clear the dirty b i t of the referenced cache block i n

both t he commander module ami the module that

takes the update.

A CPU has two options when a bus transaction is

a write and the block is found to be val id in its

cache. A CPU either invalidates the block or accepts

the block and updates its copy, keeping the block

val icl . Th is decision is based on the state of the pri

mary cache's duplicate tag store and the state of the

second-level cache tag store. Acceptance of the

transaction i n to the second- l evel cache on a tag

Table 2 F ive States of the Cache
Coherence Protocol

State Rema rks

NOT VALID

2 VALID
NOT SHARED
NOT D I RTY

3 VALID
NOT SHARED
D I RTY

4 VALI D
SHARED
NOT D I RTY

5 VALID
SHARED
D I RTY

Block is inva l id .

Val id for read or write, this
cached block contains the only
copy of the block; the copy is
identical to the memory copy.

Val id for read or write, th is
cached b lock contains the
only cached copy of the block.
The cached copy has been
modified more recently than
the memory copy.

Block is val id for read or write,
but a write must broadcast to
the bus. This block may be in
another cache, but the memory
copy is identical .

Block is val id for read or write,
but a write must broadcast to
the bus. This block may be in
another cache, but the contents
have been modif ied more
recently than the memory copy.
This is a transit ional state that
occurs when arbitrati ng for the
bus to broadcast a write or
when an unshared d i rty block is
retu rned to a bus read
transaction.

V(J/. 4 No. 4 .\jJecial lssue /')')2 Digital Tec!Jnical journal

Design and Perfonncmce of the DEC 4000 AXP Departmental Server Computing Systems

match is called conditional update. When the com
mander is the 1/0 module, the write is accepted by a
CPU only if the block is val id . Depending on the
state of the prim ary data cache dupl icate tag store,
two types of hit responses can be sent to an 1!0
com mander- I/O update always and l/0 conditiona l
update. In the case of either l/0 or CPU com mander
writes, if the val id block is in the primary data
cache, the block is invalidated. The two acceptance
modes of I/O writes by a CPU are programmable
because accepting writes uses approximately 50
percent more second-level cache bandwid th than
inval idating writes.

To implement the cache coherence protoco l , the
CPU m odu le's second- level cache stores informa
tion as shown in Figure 4 for each 32-byte cache
block.

Figure 5 shows the cycle t im ing and transaction
sequences of the system bus. Write transactions
occur in six clock cycles. Read , nu l l , and exchange
transactions occur in seven clock cycles. A nu l l
transaction enables a commander to nu l l ify the
active transaction request or to acquire the bus and
avoid resource contention, without mod ifying
memory. The arbitration cont roller monitors the
bus transac tion type and fo llows the transactions,
cycle by cycle, to know when to rearbitrate and sig
nal a new address and command cycle. Addit ional
cycles can be added by stal ling in cycle 2 or cycle 4.

Transactions begin when the arbitration controller
grants the use of the CPU modu le's second-level

caches to a commander module. The control ler
then signals the start of the add ress and command
cycle 0 (CA). The commander drives a val id address,
command , and parity (CA D) in cycle l. A comman
der m ay sta l l in cycle 2 before supplying write data
(WD) in cycles 2 and 3.

Read data (RD) is received in cycles 5 and 6. The
addressed responder confirms the data cycles by
asserting the acknowledge signal two cycles later.
The commander checks for the acknowledgment
and, regardless of the presence or absence, com
pletes the nu mber of cycles specified for the trans
action. Snooping protocol resu lts are made
avai lable ha l f way through cycle 3. As shown in
Figure 5, the protocol t iming from val id address to
response of two cyc les is critical. A resp onder or
bystander may stall any transaction in cycle 4 by
asserting a stall signal in cycle 3. The bus stal ls as
long as the sta l l signal is asserted. Arbitration is
overlapped with the last cycle of a transaction, such
that tristate confl ict is avoided.

A 29-bit lock add ress register provides a lock
mechanism per cache block to assist with software
synchronization operations. The lock address regis
ter is managed by each CPU as it executes load from
memory to register locked longword or quadworcl
(LOx_L) and store register to memory conditional
longworcl or quadword (STx_C) instructions." The
lock address register holds an address and a valid
bit, wh ich are compared with a l l bus transaction
addresses. The val id bit is cleared by bus writes to a

• TAG consists of 9 physical address bits with a 4MB second-level cache, or 1 1 physical
address bits with a 1 M B second-level cache.

• TAG PARITY (TP) bit indicates even parity

• VALID (V) bil indicates whether or not this block can be considered for a response to the
snoop transaction.

• SHARED (S) bit indicates whether or not this block may also be resident in another
module's cache.

• DIRTY (D) bit indicates whether or not this block has been modified by this processor.

• CONTROL PARITY (CP) bit indicates even parity.

• DATA (LW) bits organized as two 1 28-bit-wide half blocks; each 1 28-bit block is composed
of four longwords.

• CHECK (CKO through CK7) bits detect errors for each longword.

Figure 4 Second-level Cache Structure

Digital Technical journal Vol. 'i No. 4 SjH!ciul /ssue }')')2 9 1

Alpha AXP Architecture and Systems

WRITE
CYCLE

ARBITRATE
COMMAND
ADDRESS
ACKNOWLEDGE
SHARED
DATA

READ, NULL,
EXCHANGE CYCLE

ARBITRATE
COMMAND
ADDRESS
ACKNOWLEDGE
SHARED/DIRTY
DATA

KEY:

CA COMMAND
CAD ADDRESS
WD WRITE DATA
RD READ DATA

6

GRANT

5

GRANT

0 1 2

CA
CAD CAD

WD1

0 1 2

CA
CAD CAD

WD1

3 4 5 0 1

GRANT
CA

CA WD1 WD2
CAD
WD2

3 4 5 6 0

GRANT
CA

CA WD1 WD2
CAD
WD2 RD1 RD2

Figure 5 System Bus Transaction Sequences

matching address or by CPU execution of STx_C
instructions. The register is loaded and validated by

a CPU 's LDx_L instruction. This hardware and soft

ware construct, as a means of memory synchroniza

tion, statistica lly avoids the known problems wi th

exclusionary locking schemes. Exclusionary lock

ing schemes create resource dead locks, transaction

ordering issues, and performance degradation as

side effects of the exclusion. This construct al lows
a processor to continue program execution while
hardware provides the branch condi tions. The lock

fa ils only when it loses the race on a writt col l i sion

to the locked block.

A bus transaction address that hits on a valid lock

address register must return a snooping protocol
shared response. even if the block is not val id in the

primary an d second- level caches. The shared

response forces writes to the block to be broadcast,

ami ST:x_c instructions to function correctly. The

N U LL transaction is issued when a ST -_c write is

aborted clue to the fai lure of the lock to avoid

system memory modification.

CPU Module Subsystems
Each CPU module consists of a number of subsys

tems as shown in Figure 3. The CPU module's sub

systems are

92

1 . DECcbip 21064 processor

2. 1 MB or 4MB physical ly addressed wri te-back

second-level cache

3. Bil l chips containing write merge buffers, a

duplicate tag store of the processor's 8-ki lobyte

(KB) data cache for inva lidate filtering and write

update policy decisions, an arbitration con

tro l ler, a system bus interface, an address Jock

register, and CSRs

4. System bus and processor clock genera

tors, clock and voltage detectors, and clock

d istri butors

'5 System bus reset control

6. 8KB serial ROM for power-up software loading

of the processor

7 Microcontroller (MC) with serial system bus

interface and serial line unit for com munication

with the processor's serial line interface

8. NVRAM chip on the serial control bus

Since a CPU module bas tO operate in either CPU 1

or CPU 2 mode, the CPU 2 connector was designed

to provide an identification code that enables or dis

ables the clock drivers and configures the CSRs'

Vu!. 4 No. 4 Special Issue 7.992 Digital Technical journal

Design and Pelfornumce of the DF:(. ·1000 AXP Dejxtrlmenta/ Sert ,er Comjm ting .�)'stems

address space and CPC identification code. As a

resu lt , arbitration and other slot-dependent lim c

tions are enabled or d isabled when power is appl ied .

A rel iabi l ity study of a parity-protected second
level cache showed that the S!ZAMs contribu ted 44.7

percent of the fai lure rate. By implemen ting ElK on
the data SRAM portion of the seconcl- level cache, a

tenfold improvement in per processor mean time to

fai lure was achieved. Consequen t l y, s ix SRAM chips

per processor were i mplemented to ensure h igh
rei iabil ity.

The mu ltiplexed interface to the second- level

cache of the CPU module a l l ows the processor chip

and the system bus equal and shared access to the

second-level cache. To achieve low-latency memory
access, both the m icroprocessor and the system

bus operate the second-level cache as fast as pos

sible based on their clocks. Hence the second

level cache is mult iplexed , and owners hip defa u l t s
to the microprocessor. When the system bus

requires access, ownership is transferred quickly

with data SRANl para l le l ism whi le the tag S lZAMs are

monitored.

Many of the CPU modu le subsystems are found i n

the interface gate array ca lled the 0 chip . Two of

these chips wo rking i n tandem impl ement the Bt L;
and the second- level cache contro ll er. \Vrite merge

bu ffers combine masked write data from the micro

processor with the cache block as part of an a l l o

cate-on-write pol i cy. S ince the microprocessor has

write bu ffers that perform packing, fu ll block write
around the second- level cache was implemented as

an exception to the a l locate-on-wr ite pol icy. To
meet sched u le and cost goa ls with few personnel ,
one comp lex gate array was designed rather than

severa l lower-complexity gate arrays. Hence the

data path and t he control limctions were parti

tioned such that the microprocessor could operate

as an even or odd member of a pair on the CPU I or
the CPU 2 mod u le .

The system bus c lock design is somewhat in de

pendent of the processor c lock, but the ra nge is
restricted due to the i mplementation of the snoop
i ng protocol t iming , the m u lt iplexed usage of the

second- level cach e , ancl the CPU inte rface ha nd
shake and data t iming. Therefore, the system bus

cyc le t ime is optimized to provide the maximum

performa nce regard less of the processor speed.

Likewise, the processor's cycle time is optimized to

provide maximum performance regard less of the

bus speed . Considerable effort resulted in a second

level cache access time that en abled the CPU's read

D igital Technicaljou r11al Vol. 4 No. 4 Special Issue 1992

or write accesses to complete in four i nternal clock

cycles, cal led the four-tick loop t iming of the sec

ond- leve l cache. To rea l ize both optimizations, the

CPU's synchronous i n terface is supported by an
asynchronous interface in the BllJ . Va rious t iming

relationsh ips between the processor and the

system bus are control led by programmable timing

controls in the Bi ll chips.

To achieve the tight, fou r-t ick t iming of the sec

o nd- level cache, double-sided surface-mount tech
no logy was used to place the SRAM chips physical ly

close together. This min imized address wire length

and the number of mo dule vias: hence the driver

was loaded effect ively. This careful p l acement was

combined with the design of a custom CMOS
add ress fan-out bu ffer and m ul tiplexer chip (CAB)

to achieve fast propagat ion delays. The CAB chip

was implemen ted in the same CMOS process as the

DECchip 2 1064 CPU to obtain the desired through
put delay. Combined with 12-ns SRAM chips, the CAB

chip enabled optimization of the CPU's second- level

cache timing as we l l as the system bus s nooping

protocol response t iming.

1/0 Module, Mass Storage, and
Expansion 1/0 Subsystems

The l/0 mod u le consists of a local 1/0 su bsystem

that i n terfaces to the common 1/0 core and a bridge

to the Fu turebus+ for l/0 options. By i ncorporati ng
modu larity i n to the design , a broad range of appl i

cations could be su pported . To satisfy the disk per
forma nce and b u l k storage metrics given i n Table 1 ,

mass storage was configured based o n appl ications

requirements. Fast access ti mes of 3 .5- inch disks

and m u ltiple spind les were se lected for appli ca
t ions with resu lts i n Q IO/s. The density of 5 .25-i nch

disks was selected for ap plications requ iring more

storage space. As ind icated in Ta ble I , tbe metrics of

greater than 4,000 QlO/s determined the perfor
mance requ irements of the storage compartment.

Each of the four disk storage compartments in the
system enclosure can hold a h1 l l - s ize 5.25 -inch 'l isk

i f cost-effective b u l k storage is needed. I f the need
is for the maximum number of l/Os per secon d ,

each compartme n t c a n hold up t o four 3.5- inch
disks in a mini array.

Configurations of 3:5 - inch disks i n a brick en able

optimization of through put through paral lel ism

techn iques such as stripe sets and redundant array

of i nexpensive d isks (li.AlD) sets. The brick con
figurat ion also enables fau l t tolerance, at the
expense of throughput, by using shadow sets. With

9.3

Alpha AXP Architecture and Systems

this techn ique, each storage compartment is inter
faced to the system through a separate bu ilt -in con
trol ler. The control ler is capable of running in
either DSSI mode for h igh availability sto rage in
cluster connections with other OpenVMS AXP or
VMS systems, or in SCSI mode for local d isk storage
available from many different vendors. For appl ica
tions in which a disk volume is striped across multi
ple drives that are in differen t storage cavities, tbe
benefit from the paral lel seek operations of t he
drives combines with the parallel data transfers
provided by the mul tiple bus interfaces. The main
memory capacity of the system al lows for disk
caching or RAM d isks to be created, and the process
ing power of the system can be applied to managing
the m u ltiple disk drives as a RAID array. With cur
rent technology, maximum fixed storage is 8GB
with 5.25- inch disks and 24GB with 3.5 -inch disks. I f
the built-in storage system is inadequate, connec
tion to an external solution can occur through the
Futurebu s+.

The Bru is i mplemented by two 299-pin ASIC
chips. The bridge to the Futu rebus+ and the inter
face to the local I/0 devices are provided with sepa
rate interfaces to the system bus. Each interface
contains two bu ffers that can each contain a hex
word of data. This al lows for double buffering of 1/0
writes to memory for both interfaces and for the
prefetching of read data by which the bridge
improves throughput. These bu ffers also serve to
merge byte and longword write transaction data
into a fu l l block fo r transfer over the system bus. In
this case, the write to main memory is preceded by
a read operation to merge modified and unmodi
fied bytes within the block.

The Ethernet controllers and SCSI and DSST
control lers can hand le block transfers for most
operations, thus avoiding unnecessary merge trans
actions. As shown i n Figure 3, the I/0 modu le i nte
grates the fol lowing:

1 . Four storage control lers that support SCSI,
high-speed SCSI , or DSSI for fi.xed disk drives
and one SCSI control ler fo r removable meclia
drives

2 . 128KB o f SRAIV1 for disk-control ler-loadable
microcode scripts

3. Two Ethernet con trollers and their station
address ROMs, with switch-selectable
Thin\Vire or thick-wire interfaces

4. 512KB flash erase programmable ROM
(F EPROM) for console firmware

94

5. Console serial line unit (SUJ) i nterface

6. Auxi l iary SLU i nterface with modem control
support

7. Time-of-year (TOY) clock, with battery backup

8. 8KB of e lectrically erasable memory (EEROM)
for console firmware support

9. Serial control bus control ler and 2 kilobits of
NVRA1vl

10. 64-bit-wide Futurebus+ bridge

1 1 . BIU, containing four hexwords of cache block
buffering, two mailbox registers, and the
system bus i nterface

The instabi l i ty of the Futurebus+ specifications
and the use of new, poorly specified controller
chips presented a high design risk for a highly inte
grated im plementation. Therefore the Futurebus+
bridge and local I/0 control logic were imple
mented in program mable logic to isolate the
high risk design areas from the ASIC development
process.

Memory Subsystem

As shown in Figure 3, up to four memory modules
can reside on the system bus. This modul arity of
the memory subsystem enabled maximum configu
ration flexibi lity. Based on the metrics l isted in
Table 1, 2GB of memory were expected to satisfy
most applications requirements. Given this 2GB
design goal, the available DRAM technology, and the
module size, the total memory size was configured
for various applications.

The memory connectors provide a unique slot
iden tification code to each BIU, which is used to
configure t he CSRs' address space based on the slot
position. Memory modu les are synchronous to the
system bus and provide high-bandwidth, low
latency dynamic storage. Each memory module
uses 4-bit-wide, 1- and 4-megabit-deep DRAI\1 tech
no logy in various configurations to provide 64MB,
128M B, 256MB, or 512MB of storage on each module.

To satisfy memory performance goals , each
memory mod ule is capable of operating alone or in
one of numerous cache block i n terleaving configu
rations with other memory modu les with a read
stream capabil ity. A performance study of stream
bu ffers revealed an increase in perform ance from
memory- resident read-stream buffers. The stream
buffers a l low each memory module to reduce the

Vol. 4 No. 4 Special Issue 1992 Digital Tecbnical journal

Design and Performance of tbe DEC 4000 AXP Departmental Server Computing 5)'stems

average read latency of a Cl'l or 1/0 module. Thus

more bandwidth is usable on a congested bus

because the ant icipated react data in a detected

access sequence is prefetched . The stream buffer

prefetch activity is statist ica l l y determined by bus

activity.

Overa l l memory bandwidth is also improved

through exchange transactions, which use victim

writes with replacement read paral lel ism . lntel-

1 igent me mory refresh is scheduled based on bus

activity and a nticir ated opportu nit ies. Write tra ns

actions are bu ffered from the bus before being writ

ten into the DRA.Ms to avoid stal l ing the bus.

Data integr i ty, memory rel iabi l i ty, and system

availabi l i ty are enhanced by the EDC circuitry. Each

memory mod u le consists of 2 or 4 banks with 70

DR.ANI chips each . This enables 256 data bits and 24

E lK bits to be accessed at o nce to provide low

latency for the system bus. A cost -benefit analysis

showed a savi ngs of DRAM chips when EDC is im ple

mented on each memory mod u le . The processor's

32-bit EDC requ ires 7 check bits as opposed to the

128-bit EDC, which requ ires 12 check bits and uses

fewer chips per bank. The selected EDC code also

prov ides better error detection capability of 4-bit

wide chips than the processor's 32-bit EDC.

To i mprove performance, separate EDC logic

is implemented on t he write path and read path

of each memory modu le's BIU. The EDC logic

performs detect ion and correction of a l l s i ngle

bit errors and most 2-bit , 3-bit , and 4-bit errors i n

the D RANI array. The EDC's generate function can

detect certain types of addressing fai l ures associ

ated with the DRAM row and col u m n address bits,

along with the bank's select address bits. Fai lures

associated with these addressing fields can be

detected, thus improvi ng data integrity. Software

errors can be scru bbed from memory by the CPU

when requested through use of PALcocle subrou

t ines, which use the LDx_l.. and STx_C synchron iza

tion construct withou t havi ng to suspend system

operations.

Enclosure and Power Subsystems

The DEC 4000 AXI' enclosure seen i n Figure 1 is

cal led the BA640 box and is 88.0 centimeters (em)
high, 50.6 em wide, and 76.2 em deep. It weighs 1 18

to 125 ki lograms fu l ly configured. The enclosu re is

designed to operate in an office env iro nment from

lO to 35 degrees Celsius. The power cord can con

nect to a conventional wa ll ou tlet which suppl ies

up to 20 amperes at either 120 v AC or 240 v AC .

Digital Techuical journal 1'<>1. 4 No. 4 Special issue I'J'J2

The DEC 4000 AXP system is a portable uni t that

provides rear access and simplified instal lation and

maintenance. The system is mou nted on casters

and fits easi ly into an open office env ironment.

Modular design a l lowed compliance with stan

dards, ease of manufactur i ng, and easy field servic

i ng . Constructed of molded pl astics, the chassis

is sectioned into a card cage, a storage compart

ment, a base contain ing four 6 -i nch vari able-speed

DC fans and casters, an air p lenu m and baffle assem

bly, front and rear doors, ancl s ide panels. The

mass storage compartment supports up to 16

fixed-storage devices and 4 removable storage

devices. Expansion to storage enclosu res is sup

ported for appl ications that requ i re special ized

storage subsystems.

Feedback from field service engi neers prompted

us to omit useless light-emi tt ing devices (LEDs) in

each subsystem, s ince access to most electron ics is

from the rear. As a resu lt , the OCP was made com

mon to a l l subsystems through the serial con trol

bus and made visible i nside the front door of the

enclosure. I t provides DC on/off, halt , and restart

switches, and eight LEOs, which indicate fau l ts of

CPU, 1/0, memory, and Fu turebus+ modu les. The

fault l ights are con trol led either by a microcon

trol ler on either CPU module or by an in terface o n

the 1/0 modu le.

Fu turebus+ slot spacing was provided by the IEEE

specification. The system bus slot spacing for each

modu le was determi ned by functional requ ire

ments. For example, the CPU module requ ires 300

l inear feet of air flow across the DECchip 2 1 064

microprocessor's 3 - i nch square heat sink, as seen in

F igure 1 , to ensu re the 25 -wat t chip could be

cooled rel iably. Since VAX 4000 systems provide this

same air flow across modu les, cool i ng was not a

major design obstacle. The modu le compartment's

Futurebus+, system bus, and power subsystems can

be seen i n the enclosure back view of Figu re 6.

Al l electronics i n the enclosu re, as shown in

Figure 7, are a ir cooled by four 6 -i nch fans i n the

base. Air is drawn i nto the enclosure gri l l at the top

front, gu ided along a plenu m and baffle assembly

and down through the module compartment and

power su pply compartment to the base. Air is also

drawn through front door louvers and across the

storage compartments a nd down to the base.

Electron ics connected to the power subsystem

monitor am bient and module compartment

exhaust temperatures. Thus the fa n speed can be

regu l ated based on temperature measurements,

95

Alpha AXP Architecture and Systems

FUTUREBUS+ SYSTEM BUS

POWER

Figure 6 DEC 4000 AXP Enclosure Rear View

reducing acoustic no ise in an air-conditioned office

environment.

The centerplane assembly consists of a storage

backplane, a module backplane, and an electromag

netic shield. This implementation avoids depen

dence on cable assembl ies, which are unreliable

and difficu l t to insta l l and repair. Defined connec

tors and module s izes a l lowed the enclosure devel

opment to proceed unencu mbered by module

specification changes. The shie lded modu le com

partment provides effective attenuat ion of s igna ls

up to 5 gigahertz. There are six Futu rebus+ s lots,

fou r memory slots, two CPU slots, one 1/0 slot, and

fou r central power module slots, which include the

FEU, PSC, DC5, and DC3 units.

The storage compartment contains six cavi t ies,

as seen in the enclosure front view of Figure 8.

Two cav i t ies are for removable media, and fou r

96

are f()r fixed storage bricks. A storage brick consists

of a base plate and mounting hardware, d isk drives,

local d isk converter (LDC), front bezel assembly,

and wir ing harnesses. The LDC converts a dis

tribu ted 48.0 V to 12 .0-V and 5.0-V supplies and a

5.0-V termination reference for the brick to ens ure

compl iance with vo ltage regu lation specifications

and termination vol tage levels of cu rrent and fu ture

disks.

The 20-ampere power subsystem can del iver

I ,400 watts of DC power d ivided across 2 . 1 V, 3.3 V,

5.0 V, 12.0 v: and 48.0 V The enclosure can cool

1 , 500 watrs of power and can be configured as a

master or a slave of AC power appl ication. Use of a

universal FEU el iminates the need for selecting

operat ing vol tages of 120 V or 240 V AC. The F Ll l

converts the input AC into 385 V DC which i s dis

tr ibuted to provide 48 V DC to two step-down DC

to-DC conveners, which work i n para l le l to share

the load current. The combined 48 V DC outrut

from these converters is del ivered w the rest of the

system.

Control of d istributed power electronics is d iffi

cu l t and expensive with dedicated electronics. A

cost-effective alternative was use of a one-chip

CMOS microcontroller, surrounded with an array of

sensor inputs through CMOS analog- to-d igital con

verters, to prov ide PSC intel l igence. Decision-mak

i ng abi l i ty in the power subsystem enabled

compl iance with voltage-sequencing specifications

and fai l-safe operation of the system. The micro

contro l le r can control each LDC and commun icate

with the CPU and ocr over the serial control bus. It

monitors over and under voltage, temperature, and

energy storage conditions in the mod u le and stor

age compartments. lt also reports status and fail ure

information either to the CPU or to a display on the

PSC: module, which is v isible inside the enclosure

back door.

Firmware
The primary goal of the console interface is to

bootstrap the operati ng system through a process

cal led boot-block booting. The console inter

face runs a minimal l/0 device hand ler rou tine

(boot primit ive) to read a boot block from a device

that has descriptors. The descriptors point to the

logical block numbers where the primary boot

strap p rogram can be found, and the console

i nterface loads it into system memo ry. To accom

pl ish this task, the firmware must configure and

Vol. 4 No. 4 Special Issue 1992 Digital Technical jour11al

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

OCP DC3 DC5 STORAGE BRICK CENTER PLANE STORAGE BRICK FBE

VTERM PSC MEMORY 1/0 CPU

Figure 7 DEC 4000 AXP Modular Electronics

test the whole system to ensure the boot process

can complete without fai lures. To minim ize t he
bootstrap time, a fast memory test execu tes i n the
time necessary to test the largest memory module ,

regardless of the number of memory modu les. I f

fai l u res are detected after configuration i s com
pleted, the firmware must p rovide a means for d iag
nosis, error isolation, and error logging to faci l itate
the repair process. The DEC 4000 AXP system pro

vides a new console command interface as wel l as
integrated d iagnostic exercisers in the loadable
firmware.

The firmware resides on two separate entities, a
block of serial ROM on the CPU m odule and a block
of FEPROM on the 110 module. The serial ROM con
tains software that is automatica l ly loaded into the
processor on power-up or reset. This software is
responsible for initial configu ration of the CPU

module, testing mini mal module fu nctional i ty, ini
t ial izing enough memory for the console, copying

the contents of the FEPROM into this initial ized

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

console memory, and then transferring control to

the console code.
The FEPROM firmware consists of halt dispatch,

entry/exit, diagnostics, system restart, system boot
strap, and console services fu nctional blocks.

PALcode subrou tines provide a layer of software
with com mon i nterfaces to upper levels of sofware.
PALcode serves as a bridge between the hardware

behavior and service requ irements and the require
ments of the operating system . The system takes
advantage of PALcode for harcJware-level interrupt
han d l ing and return, securi ty, implementat ion of
special operating system kernel procedures such as
queue management, dispatching to the operating
system's special cal ls, exception hand ling, DECchip
21064 virtual instruction cache management,

v irtual memory management, and secondary 1/0

operations. Through a combination of hardware

and software- dependent PALcocJe subrout i nes,
Open VMS AXP, DEC OSF/1 AXP, and future operating
systems can execute on this hardware architecture.

97

Alpha AXP Architecture and Systems

Figure 8 DEC 4000 AXP System

Enclosure Front View

Performance Summary

The DEC 4000 AXP Model 610 system's performance

nu mbers as of November 10, 1992 are given i n Ta ble

3. Its performance wil l continue to improve.

Summary

DEC 4000 AXP systems demonst rate the highest

performa nce and functional ity for Digital 's 4000
series of departmental server systems. Based on

Digital 's Alpha AXP architecture and the IEEE's

Fu turebus+ profile B standard, the systems provide

symmetric multiprocessing performa nce for

Open VMS AXP and DEC OSF/ 1 AXP operating systems

in an office environment. The DEC 4000 AXP systems

were designed to optim ize the cost-performance

ratio and to i nclude upgradabi l ity and expandabil

ity The systems combine Digita J 's GviOS technol

ogy, I/O peripheral s teclmology, ahigh-performance

m u l tiprocessing backplane interconnect, and mod

u lar system design to supply the most advanced

fu nctiona l ity for performance-driven appl ications .

98

Acknowledgments

Development of a new system requires contribu

tions from ind ividuals throughout the corporation.

The a uthors wish to acknowledge those who con

tributed to the key aspects of the DEC 4000 AXP

system . Centerp lanes: Henry Enman, Jim Padgett;

CPU: Nitin Godiwala, George Ha rris, Jeff Metzger,

Eugene Smith, Kurt Tha l ler; Firmware: Dave Baird ,

Harold Buckingham, Marco C iaffi, john DeNisco,

Char l ie Devane, Paul LaRochelle, Keven Peterson ;

Futurebus Exerciser: Ph il ippe Klei n , Kev i n Lud lam,

Dave Maruska; Futurebus+ : Barbara Archi nger,

Ernie Crocker, Jim Duval, Sam Du ncan, Bi l l

Samaras; 1/0: Randy Hinr ichs, To m Hunt, Sub Pal ,

Prasad Paranjape, Chet Pawlowsk i , Paul Rotker,

Russ Weaver; Man agement: Jesse Lipcon, Gary P
Lidington ; M a n u facturing: Mary Doddy, A l Lewis,

Al lan Lya l l , Cher Nicholas ; Marketing: Kami

Ajgaon kar, Charles Monk, Pam Reid ; Mechanical:

Jeff Lewis, Dave Moore, Bryan Porter, Dave Simms;

Memory: Paul Goodwin, Don Smelser, Dave

Tatosian; Operations: Jeff Kerrigan ; Operating

Systems: A] Beaverson, Peter Smith; Power : John

Ardu nio, Robert White; S imu lat ion: Paul

Ki nzelman; Systems: Vince Asbridge, M i ke Col l ins,

Dave Con roy, AJ De luca, Roger Gagne, Tom Orr,

Eric Piip; Thermal : Steve C ieluch, Sharad Shah.

References and Note

1 . IEEE Standard for Futurebus+-Physical Layer

and Profile Specification IEEE Standard P896 2-
1991 (New York: The I nstitute of Electrical and

E lectronics Engi neers, Apri l 24, 1992).

2. Supercompu ter performance as defi ned by the

composite theoretical performance (CTP) rating

of 397, with the DECchip 2 1064 operated at 6 25
ns, as establ ished by the U.S. export regu lations.

3. inter-integrated Circuit Serial Bus Speciji'

cation (PC Bus Specification), (S unnyvale, CA:
Sign etics Company, 1988).

4. J. Hennessy and D. Pat terson , Computer

Architecture: A Quantitative Approach (San

Mateo, CA: Morgan Kaufmann Publ ishers, I nc . ,

1990): 467-474.

5. R. Si tes, ed . , Alpha AXP System Reference

Manual, Ve rsion 5.0 (Maynard: Digita l

Equ ipment Corporation, 1992).

Vol. 4 No. 4 Special Jssut' I'J'J2 Digital Tecbnical journal

Design cmd Pe!formcmce of the DEC 4000 AXP Departmental Seruer Computing Systems

Table 3 CPU Performance Summary for the DEC 4000 AXP System

Futu rebus+ Performance

Peak
Read
Write

Local Bus Performance

Peak
Read
Write

System Bus Performance

Latency

1 6 bytes/1 00 ns
1 6 bytes/1 82 ns
1 6 bytes/1 33 ns

Latency

4 bytes/80 ns
4 bytes/1 60 ns
4 bytes/1 60 ns

Latency

Peak 1 6 bytes/25 ns
Read 32 bytes/1 75 ns
Write 32 bytes/1 50 ns
Exchange 64 bytes/1 75 ns

Internal Cache Miss, Second-level Cache H it (Four-tick) Performance

Latency

Read
Write

CPU Second-level Cache M iss Performance

Read
Write
Exchange

1 6 bytes/25 ns
1 6 bytes/25 ns

Latency

32 bytes/275 ns
32 bytes/200 ns
64 bytes/275 ns

DEC 4000 Model 6 1 0 SPECmark89 and SPECthruput89* Estimated CPU Performance Summary

Note:

I nteger (INT) Benchma rks Ratio

GCC 61 .58
ESPRESSO 82.91
u 93.05
EQNTOTT 1 03.46

Float ing-point (FP) Benchma rks

SPICE2G6 72.58
DODUC 1 1 3.81
NASA? 229.27
MATRIX300 1 01 9.1 7
FPPPP 1 80.32
TOM CATV 1 28.70

SPECmark > 1 36.23 SPECthruput >
SPECint > 83.73 SPECintthruput >
SPECfp > 1 88.45 SPECfpthruput >

UNPACK - double precision 1 00 x 1 00 36.8 MFLOPS
UNPACK - double precision 1 000 X 1 000 78.4 MFLOPS
Dhrystone 1 65.0 Ml PS

Ratio

1 @ 54.80
1 @ 81 .76
1 @ 92.1 9
1 @ 1 00.76

1 @ 68. 1 9
1 @ 1 1 3.53
1 @ 221 .56
1 @ 963.81
1 @ 1 77.89
1 @ 1 23.25

1 @ 1 31 .1 8
1 @ 80.32
1 @ 1 81 .92

Bandwidth

1 60MB/s
88M B/s

1 20MB/s

Bandwidth

50M B/s
25M B/s
25M B/s

Bandwidt h

640MB/s
1 82MB/s
21 3MB/s
365MB/s

Bandwid th

640MB/s
640MB/s

Bandwidth

1 1 6MB/s
1 60MB/s
232MB/s

Ratio

2@ 50.78
2@ 78.33
2@ 92.1 8
2@ 97.94

2@ 64.95
2@ 1 08.95
2@ 1 97.80
2@ 948.66
2@ 1 75.83
2@ 1 05.90

2@ 1 24.40
2@ 77.41
2@ 1 70.68

•version 1 .0 OpenVMS AXP operating system, 1 60-MHz clocked DECch i p 21 064 microprocessor, 1 M B second-level cache. Notice the 1 . 9
scaling of the second CPU.

Digital Technical journal Vol. 4 Nu. 4 Special Iss11e I<J<JJ 99

Brian R. Allison
Catharine van Ingen

Technical Description
of the DEC 7000 and
DEC 10000 AXP Family

The DEC 7000 and DEC 10000 products are mid-muge and mainframe Alpha AXP
system offerings ji'()Jn Digital Equipment Cc)lporation. These machines were

designed to meet the needs of lmge conunercial and scien tific applications and

therefore are bigh-jJeJjormance, expandable S)istems that can be easi(Ji upgmded.

The DEC 7000 and 10000 systems utilize the DFCchip 2J064 microprocessor operat

ing at speeds up to 200 MHz. Tbe bigb-speed chips, large cacbes, multiprocessor

system architecture. IJigiJ-jJeJformance bctckp!ane itztercomzect. and lmp,e lllC'IIWI)'
capaci(J' comiJiue to create mainjiwne-class pe1jormance with a cost and size pre

z•ious�)' attributed to mid-range systems.

The design of the D EC 7000 and 10000 systems pro

vides a h igh-end plat form and system environment
for multiple generations of Alpha A X P chips. This

platform, combined with a mu ltiprocessor archi

tecture. yields a m u ltidimensional u pgrade capabil

i ty that will a l low the system to meet u sers' needs

for several years. System upgrade can take place by

add i ng processors. re placing existing processors
witb next -generat ion processors, or both . This

u pgrade capab il ity ensures stabi l ity to the system

in terms of the physical and fiscal aspects of the emf

user's comp u ti ng environment.

The DEC 7000 a mi DEC 10000 systems are

the logical fol low- on p roducts of the high ly suc
cessfu l VAX 6000 fam i ly. 1 The new systems are capa

ble of supporting either VAX processors or Alpha
AXP processors. The capabi l ity to upgrade from

a VAX processor to a n Alpha A X!' processor with

out changes to the system is essentia l for mi ni
m a l d isruption of l a rge com mercial applications.
Most features of' t he VA X 6000 systems have

been carried forward to the DEC 7000 and DEC

10000 products, ami any defic iencies have been

corrected .

The DEC 7000 ami DEC 10000 products arc

derived from the same system desig n . The DEC:
10000 is a more fu l ly configu red system and

incl udes an 12+ l unin terru ptible power system.

additional 1/0 su bsystems. ami I/O expansion ca bi

nets. The DEC 7000 uses a IR2-megahertz (:'--! Hz)

100

DECchip 21 064 whereas the DEC 10000 uses a 200 -
M Hz DECchip 2 1064.

A very important goa l for the project that encom

p assed the development of the DEC 7000 and 10000
system s was to provide a similar pair of systems

based on a VAX microprocessor. A VAX microproces

sor, called i'\'VAX+, was designed to be pin com
p a t ible with the DECchip 2 1064 (the A lpha A X P

microprocessor). 2 ' The system \Vas designed t o be

somewhat microprocessor inuependent, and both

VA X and Alpha AXP versions of the systems were

implemented. The VAX prou ucts (VA X 7000 and VAX

10000) were introduced in July 1992 and can be

u pgraded to DEC 7000 and DEC 10000 systems by a
simple swap of CPU modules.

System Architecture

The DEC 7000 system consists of Cl'1 1(s), memory,
an 1/0 port controller. and 110 adapters, as shown i n
i ' igure I . The system is configured i n a variety of
ways, depending on the size and fu nction of the

system . A system backplane consists of n i ne s lots
a n d houses CPUs, mem ory, and an l/0 port con

troller. The 1/0 port cont ro l le r resides in a fixecJ

slot , and CPl fs and memories occupy the re maining
eight slots. The in i t ia l system offeri ngs a l low up tO 6
Cl'l ' s . (Arch itectura lly, the system may support up

to 16 C :PL 's.) Up to 14 gigalwtes (Ci ll) of memory can

he sup ported if only l CPl . module is present and

a l l remain ing slo ts contain memo ry.

1'<1/. 4 Nu. 4 Special lssue 1992 Digital Techtlica/journa/

Technical Description of the DEC 7000 and DEC 10000 AXP Fami(J!

ALPHA AXP OR VAX
PROCESSOR(S)

MEMORY ARRAY
64, 1 28, 256, 5 1 2 M B
2GB

� t � ��--------s_v_s_T_E_M __ su_s��---6_4o_M_B_i_s ________ ��
1/0 PORT CONTROLLER

XMI FUTUREBUS+
Note: Al l lour 1/0 ports are identical . Any comb ination of XMI,

Futurebus+, or "custom" interfaces may be configured.

Figure I DEC 7000 and DEC f()OOO

System A rchitecture

The 1/0 su bsystem co nsists of an I/O port con

trol ler and fou r I/O ports wh ich have been adapted

to the XiVI r or the Futttrebus+ . The 1/0 ports are

generic and may be adapted to other fo rms of i nter

connect in the future. The system backplane,

power syste m, and up to two 1/0 backpl anes are

housed in the system cabinet. Add it ion:.tl 1/0 back

planes (up to a system total of four) may be config

ured in expansion cabi nets.

Technology

The DEC 7000 system is built primari ly of G<lOS

(co mplementary metal-oxide semicondu ctor) com

ponents . The DECchip 2 1064 microprocessor is

bu i l t using Digital 's 0.75 - m icrometer CMOS-4 pro

cess. Al l modu les utilize LSI Logic LCA IOOK series

gate arrays fo r the system bus interface and for

on-board logic functions. The LSI Logic LCA lOOK

features up to 235K two- input NAND gates. Al l
modu les use the same custom l/0 driver circuit

within their respective gate arrays to d rive and

receive t he system bus . A custom 4 19-pin pin grid

array (PC;A) package was developed to bouse all bus

in te rface gate arrays. Unl ike the VAX 6000 series, a

com mon bus d river part is not used in order to min

im ize the nu mber of levels of buffering in the

system .

Mod u le technology i s standar(l 10 - layer construc

tion with 4 signal layers, 4 power layers, and top

and bottom cap layers. Dou ble-sid e, su rface-mount

constr uction is used extensively throu ghom the

Digital Tee/m ica/ jou rnal Vol. 4 No. ·I .�j;ecial Issue 1')')2

system . Etch width is 5 m i ls with 7.5-mi l m i nimum

spacing. Via sizes do\-"vn to 1'5 m i l s are used . A m ix

ture of physical component technologies is used

with a l l large Vl.Sl (very large-scale integration)

parts in 100-mil PGA packages. Most standard logic

u t i l izes 50-mi l surface-mount technology. Modu le

interconnect to the backplane is made through a

340/420 -connection, fou r- row, 100-mil- spaced pin

and socket type connector. Forty-eight-volt power

i s d istribu ted thro u ghout the system; local regula

t ion is prov ided on the modu le fo r specific voltages

requ ired .

System Interconnect

The heart of the DEC 7000 system is a h igh-perfor

mance system intercon nect, cal led the LSR, which

a l l ows com m u n ications between mult iple proces

sors, memory arrays, and 1!0 su bsystems. It pro

v ides a low- latency, h igh-ba ndwidth data path

among all components. A common shared view of

memory is ma inta ined by means of the system inter

connect and cache logic on processor mod ules.

Three types of modu les are defined fo r the LSJ3.

• Processor moc.l u les, which contain the CP chip,

cache subsystem, and console fu nctions. The ini

t ia l DEC 7000 design has the capacity for a maxi

mum of six processor modu les.

• Memory modu les, which contain dynamic ran

dom -access memory (DRANl) chips and a mem

ory contro l le r. A system can contain up to seven

memory modu les, each with a capacity of 64
megabytes (MB) to 2c;H.

• 1!0 interface mod ules, which prov ide access to

I/0 buses and 1/0 adapters . Only a single 1!0 port

contro l ler module may reside in the syste m . The

110 port control ler modu le can arbitrate at a

h igher priority than CPU nodes to improve 1!0

direct memory access (DMA) la tency and provide

atomic Oi\·IA writes of data less than a cache

block in size.

The LSB is a l i m i ted-length, non-pended, pipe

l ined, synchronous, 12H-bit -wicle bus with d istri b

uted arbitrat ion . All t ransactions occur i n a set of

fixed cycles rel ative to an arbitration cycle . Up to

t h ree transactions can be in the pipel ine at a given

t i me, enabl ing the fu l l capabi l i t y of the bus to be

real i zed . Arbitration oc c u rs on a dedicated set o f

control signals a n d may b e overla pped w i t h data

transfer. Data and add ress are mul tiplexed on the

same set of signals. The bus p rotocol su ppo rts

1 0 1

Alpha A.,'CP Architecture and Systems

wri te-back caches, ancl a l l memory transfers are 64

bytes in length . The cycle t ime of the bus is 20

nanoseconds (ns), provid ing an overal l data rate of

HOOMB per second ancl a u t i l ized system bandwidth

of 640MB per second.

The LSB transm i ts 40-bit physical addresses, pro

vid ing a physical address space of 1 terabyte. Given

the cu rrent rate of DRA.L\1 technology evolut ion, the

L'ill wil l have a useful l ife of 8 to 10 years before

physical address space is exhausted . A 40-bit physi
cal add ress was chosen to m i n imize the data path

width in the processor bus con trol gate array.

A non-pended p ipelined bus was chosen instead

of a tradi tional pended bus to a l low for simple node

i nterface designs. Transactions start and finish at

precisely defined ti mes. A "sta l l '' fu nction may be
used if a given transaction cannot be completed

within the system timing constra i n ts . The "sta ll"

fu nction freezes the bus pipe! ine , maint a i n i ng the

order of a l l transactions. Conseq uent ly, n odes can

be des igned with no queuing between the bus

i nterface and local storage (DRt\Jvls for main mem

ory or static RAM s [SRA.L\IIs] for cache memory). The

mai ntenance of strict bus transaction ordering also

a l leviates many poten tial lockout coml it ions expe

rienced on pended buses.

D igita l 's previous mainframe systems have used a

switch-based system i n terconnect i nstead of a bus.

This in terconnect was typica l ly required because

these systems were based on e m it ter cou pled logic

(ECL) with only a smal l , s ingle-level cache su b

syste m ; therefore, high bandwidth was requ ired

between main memory and the processor. The

CMOS design of the DEC 7000 a l lows a large (4MB)

second- level cache to complement the 1 6 - k i lobyte

(KB) on-chip cache. The l arge amount of cache

mi nimizes the need for memory ba ndwid t h . A
bus-based design was chosen over a switch-based

design to minimize memory late ncy, m i n imize

design complexity, and reduce system cost.

ARBITRATE
COMMAND
CONFIRMATION
SHARE/DIRTY
DATA

-1 1- BUS CYCLE T IME = 20 NS
1 2 3

1 2 3
1 2

1 2
1 1

4

3

1 1
1-+- BUS ACCESS TIME = 340 NS -1

Bus Dala Rate = 1 6 byles per 20 ns = 800MB/s

4

3

All LSB transact ions consist of a s ingle com mand

cycle and fou r data cycles. These five cycles appear

i n fi..'Ced cycles relative to the arbitration cycles. Up

to three transactions may be pipel ined, as shown in

Figure 2.

The LSB uses a d istribu ted arbitration scheme.

Ten request wires are driven by the CPUs or the 1/0

module that wishes to use the bus. Eight request

l ines are a l located to the eight potent ia l CPU mod

u les. The remain ing two request J i nes are used by

the 1/0 control ler module . Al l modules indepen

dently monitor the request wires to determ i ne

whether a transaction has been requested, and if so.

which module wins the right to send a command

cycle to start the transaction.

The arbitration scheme empl oys a least- recently

used rotating p riority algorithm for CPU modu les

and a fixed h igh/low scheme for the 1/0 port con

trol ler. The I/O port control ler arbitrates using the

h ighest and lowest priority levels, arbitrating high

six t i mes then low two t i mes. This arrangem ent

ensures that the 1/0 port contro l ler can ut i l ize

greater than '50 percent of the avai lable system bus

bandwidth whi le sti l l ensuring the CPUs some

access to the system bus. The I/O port contro l ler

a l so u ses its u n ique arbitration scheme to ensure

atomic read/mod i fy/write sequences on the bus

necessary for performing writes of less than a ful l
natura l ly a l igned 64-byte quanti ty. The I/O port

control ler does the read at its next schedu led pr ior

i ty ancl then im mediately fo l lows up with the wr ite

at h ighest priority. This scheme ensures that no

other node can access the data between the read

and the write.

All comm aml/acl dress and control/status register

(CSR) cycles are protected with parity Data cycles
to and from memory are protected with error cor

rect ion code (ECC). Transmit check is used by a l l

modu les to verify that what a given module is

asse rting on the bus is act u a l l y being seen on the

5 6
5 6

4 5 6
4 5 6

2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

Utilized Bus Bandwidlh = 16 bytes per 20 ns x 4 dala cycles per 5 bus cycles = 640MB/s

Figure 2 lSB Transaction Pipeline

l 02 H1/. 4 No. 4 .)j!l!ciol fss11e 1')<)2 DiRilal Teclmical journal

Technical Description of tbe DEC 7000 and DEC 10000 AXP Family

bus. Transmit check a l lows the detection of bus col

l isions and fau l ty bus drivers or receivers.

The system i nterconnect is physically i mple

mented as a centerplane which is 350 m i l li meters

(mm) wide and 500 m m high . There are four mod

u le connections on one side, and five on the other.

The centerplane-modu le connection is imple

mented using a four- row pin and socket connector

with connections on a 100-mil grid . Modules are

4 10 mm high ami 340 mm deep. This module sizf::

was chosen to a l low the maximum modu le size

within the constraints of an 865 -mm -deep cabinet

and of the centerplane tech nology. Modu les are

spaced on 65-mm centers and are contained within

a box that provides customized air flow for each dif

ferent module design.

The DEC 7000 was designed with a centerplane

interconnect to solve the problem of bus length

and to meet the need for wide module spacing

that a l lows for the anticipated heat-d issipation

requ irements of fu ture processor chips. With a

centerplane, the number of module slots avai lable

for a given length of bus increases by (n • 2) - 1

where n is the nu mber of slots ava i l able i n a con

ven tional backplane. A centerplane configuration

leaves l it t le space on the backpl ane for termination

DECC H I P CONTROL
2 1 064

networks. Designers solved this prob.lem by adopt

ing a distribu ted term ination scheme with bus ter

m inator networks p resent on a l l modules in the

backplane.

Processor Module

The primary pu rpose of the processor module is to

provide a large second- level cache to the processor

chip and to act as an interface to the system bus and

memory for missed cache references. The proces

sor module in the DEC 7000 system was designed to

use either VAX or AJpha AXP chips. As noted above,

a common design is used in the implementation of

the VAX and DEC 7000 and 10000 systems, with the

only significant differences being the processor

chip and the console/diagnostic code. Figure 3 is a

block diagram of the processor mod u le.

The processor modu le provides a 4MB external

cache, which is shared by the processor chip and

the bus interface chips. The cache is organized as a

single set (direct mapped), with a block and fi l l size

of 64 bytes. The external cache conforms to a write

back, conditional update, cache coherency proto

col. The processor on-chip clara cache is a proper

subset of the external cache and uses a write

through protocol.4

BUS I NTERFACE
GATE ARRAYS

PROCESSOR ADDRESS

! LSB ADDRESS

+ �
'\. LATCH/MUX / BACK MAP

I D C,CHE 1- I t t BACKMAP D-CACHE
I NVALIDATE B-CACHE

B-CACHE t TAG, VALID B-CACHE

I , C,CHE 1- DATA TAG AND
STATUS

t
WRITE

DATA, ECC B U FFER

• t I F646 I DATA. ECC
CPU

r<- t W-BUFFER
TAG, VALID, S HARED, DI RTY

VICTIM H I N IT I BU FFER
ROM

ROM WATCH FLASH UART L...-.-r--IIL..........,---1 1 ROM 11..........,....
I r

Figure 3 Block Diagram of the DEC 7000 Processor Module

Digital Technicaljourual Vol. 4 No. 4 Special Issue 1992

SYSTEM
BUS

1 03

Alpha AXP Architecture and Systems

The structure of the cache is shown in Figure 4.

Each cache l ine consists of '512 bits of data (with 1 12

bits of ECC) , 12 bits of rag (wi th 1 parity bit), and 3

status bits (with 1 parity bit). The 12 bits of tag data

appl ied to a 4MI:l cache size sets a processor physi

cal address capabi l i ty of 16GB. (This is a processor

l i mitation, and future processors will add ress larger

memory sizes.) The control bits contain informa

tion that a l lows the cache and memo ry systems to

mai ntain coherency. The control bits are defined as

fol lows:

• A val id bit, indicat ing whether or nor this l i ne

contains valid clara

• A shared bit, i nd icating whether or not this l i ne

m:�y al so be resident in another processor's

cache in the system

• A dirty bit, indicating whether or not this l i ne

h:1s been written to by this processor

Upon detection of a cache read m iss in the pro
cessor on-chip cache, the processor accesses the

external cache rag to see if the given block is resi

dent. The processor c h ip contains the tag compari

tor and status logic to determ ine a " hit." l f the block

is resident in the external cache, the processor then

cycles the external cache data store twice, each time

read ing in 128 bits of data and 28 bits of ECC fo r a
total of 32 bytes (internal processor cache block

size is 32 bytes). The external cache cycles at a rate

five times the processor chip c lock period (and at

two times the period for the VAX variant). Upon the

detection of a " miss," the processor chip informs
the bus interface chips by means of handshake sig

nals and waits u n t i l the miss is serviced on the LSH.
Upon a data write by the processor, the clara is

written through to the external cache. If the data

is a lready resident in the cache, it i s updated and

conditiona l ly broadcast onto the system bus if
marked as shared. If the se lected cache I ine contains

a different val id tag, the current (old) cache l i ne is
wri t ten to memory and replaced by the new tag and

data. To improve pe rformance d uring t h is opera-

tion, the current cache l i ne is stored in a local victim

buffer while the new data is read. After the new clara

has been pl aced in the cache, the old data is written

back to memory as a background operation.

A dupl icate set of cache tags (backmaps) are kept

by the bus interface logic for both the external

cache and the internal processor chip D-cache.

These back maps are accessed by the bus in terface
logic on a l l bus references to determine the action

necessary to maintain cache/memory coherency.

On bus read requests, the processor bus inter

face references its external cache backmap a nd sup

plies data from the on-board cache if a ·' d i rt)"' copy

of the data is present. On bus writes, a check is per

formed to see if the data is pres ent in the processor

on-ch ip D-cach e. If the data l i ne is present, the

upda ted data is accepted. If the data I ine is not pre

sent but is instead in the externa l cache, the l ine is

i nval idated. This cache update pol icy is an attempt

to mi nimize false sharing of data by only updating

on references to a cache l i n e in the processor on

chip cache, which is small and should contain only

freshly referenced data.

Fa lse sharing of data is a problem common to

m u l t ip rocessor systems running fu l ly sym metric

operating systems. \Xfhen a p rocess is m igrated

from one processor to another, d irty data often

remains in the cache of the previous rrocessor.
\Vhen the new processor requests that data , i t

becomes "shared," resu l t ing in t h e need t o update

all copies by means of bus transactions on all subse

quent mod ifications of the data . Since the process
has m igrated, there is no need to maintain the state

of t he data in the cache of the previous processor;

doing so slows down execution of the process due

to the bus transactions req ui red to up date. The

write-update pol icy described in the previous para

graph provides a means to estimate if "shared " data
is sti l l in use by the previous processor and pro
vides a means to flush it from the previous cache if
it has not been recently referenced .

T he external cache is 128 bits wide with lo ng

word ECC protec t ion. The ECC scheme used to

I pI vIs I D 1 1 2 - B I T TAG I p LONGWORD 3 ECC LONG WORD 2 ECC LONGWORD 1 ECC LONGWORD 0 ECC � DI RTY
SHARED
VALID
PARITY

1 04

LONG WORD 7 ECC LONG WORD 6 ECC LONGWORD 5
LONGWORD 1 1 ECC LONGWORD 10 ECC LONGWORD 9
LONGWORD 1 5 ECC LONGWORD 1 4 ECC LONGWORD 1 3

x 64K CACHE ENTRIES

Figure 4 External Cache Structure

ECC LONGWOR D 4 ECC
ECC LONGWOR D 8 ECC
ECC LONGWORD 1 2 ECC

"'''· 4 No 4 .SjJecial lssue I<J<Jl Digital Technical journal

Technical DescnjJtion of the DEC 7000 and DEC 10000 AXP Family

protect the external cache is identical to that used

on the LSB, which allows flow-through ECC. The

processor chip checks and corrects data for a l l pro

cessor refi l ls . The bus i nterface chips p erform

lookaside ECC checking for fau l t isolation p urposes

but do not perform ECC correction.

The processor module also provides system con

sole functions. The module includes u n iversal

asynchronous receiver/transmitters (UARTs) for

comm u nication with the console terminal and

power subsystems, a t ime-of-year dock, and 896KB

of flash read-only memories (ROMs) for console and

diagnostic code. Each processor contains a com

plete console subsystem, but only one module uses

this function in a m ultiprocessor system. This

approach al lows static reconfiguration of the

system in the event of a module fai lure .

A 4 M B modu le-level cache was chosen because

it was the largest natural i mplementation using

256K X 4 SRAMs driven by the 128-bit-wide cache

data path defined by the DECchip 21064 micropro

cessor. Denser SRA.M.s were not available at the nec

essary speed (10 to 12 ns), and a m u ltiway cache

architecture is not eas i ly implemented with the

DECchip 21064. The fi l l size of 64 bytes was

selected to efficiently use the 16 -byte-wide system

bus and provide 80 percent bus data efficiency.

Figure 5 shows a photograph of side 1 of a pro

cessor module. Additional cache RAMs and drivers

reside on side 2.

Memory Module

The memory subsystem of the DEC 7000 comprises

one to seven memory array modu les with a single

module capacity of 64 to 2048MB. The primary

fu nctions of the memory array modules are to

respond to bus read/write fu nctions, refresh the

memory RAivls, and maintain ECC data for the mem

ory. The design supports either 4MB or 16MB

DRANis, on-board interleav i ng on modu les with

greater than 64MB, and m u l timodule interleaving

u nder many conditions.

The DEC 7000 memory modu les run synchro

nous with the LSB. Memory transactions occur i n

fixed cycles relative to the system bus. Al l memory

space transfers consist of 64-byte blocks that are

transferred 16 bytes at a time over fou r contiguous

data cycles. Read and write data wrapping is done

on 32-byte naturally a! igned boundaries. The

DRA..'ils are 4-bit-wide parts, and an entire 64-byte

block is read or written in parallel and buffered for

bus transmission.

Digital Technical journal Vol. 4 No. 4 Special /ssw! 1992

Data wrapping is a method used to provide a

lower latency return of the data required by a read

com mand. The bus contains an extra address bit

that i ndicates in which half of a 64-byte block the

requested data l ies. The memory contro l ler returns

the half block containing the target data first, al low

ing faster resumption of processing. Data wrapping

has no benefit on write transactions but is done to

simplify the design of the system.

DEC 7000 memory modu les are protected with a

quadword ECC algorithm. The chosen ECC im ple

mentation al lows detection and correction of s i n

gle-bit failures, detection of a l l 2-bit failures, and

detection and correction of any error whol ly con

tained within a 4 -bit-wide DRAM. Memory modules

convert LSB longword (32-bit) ECC into quadword

(64-bit) ECC that is stored with LSB clara on writes.

During LSB reads, quadword ECC is converted to

longword ECC. Quadworcl ECC a l lows for higher

pack i ng densities on the memory module with

fewer D RAM components. Longword ECC is used on

the system bus because the DECchip 21064 m icro

processor dictates the use of longwor<l ECC in its

external caches, and the t iming of the external

cache wil l not a l low a conversion to a different ECC

for bus transactions.

The memory module contains a hardware-based

self-test t hat checks each bit on the module to be

sure it can be set to either a 0 or a 1 state and init ial

izes the memory to a known good ECC state. AJJ
memory modu les execute self-test in para l le l upon

system init ial ization at a rate of approximately

35MB per second. This approach results in substan

tial savings in boot time as compared to a system

that tests memory with init ial ization code executed

by the processor. Moreover, the self- test provides

excel lent error isolation i n the event of a fai lure .

DEC 7000 memory is designed i n 64MB, 128MB ,

256MB, 512MB, and 2 G B modu les. The 64MB, 128MB,

and 256MB modu les use 4MB D RAMs, double-side

surface mou nted . The 512MB modules use 4MB

DRAMs mounted on soldered-in single i n - l i ne mem

ory modules (SIMMs). (PC-style socketed SIMMs

p roved u nreliable for large configurations.) The

2GB modules use 16MB DRAMs moun ted on sol

dered-in SIMMs.

1/0 Subsystem

The DEC 7000 J/0 subsystem consists of an I/0 port

controller and four high-speed parallel ports. The

I/O control ler provides an i nterface between

the system bus and the paral lel ports. Additional

105

Alpha AXP Architecture and Systems

POWER SUPPLY SYSTEM BUS INTERFACE

Figure 5 Processor Module, Major Components Highlighted

modules provide the interface between the high

speed parallel ports and specific standard 110 buses.
To elate, interfaces have been designed for the XMI ,

wh ich is used as the 1/0 bus on the VAX 6000 and

VAX 9000 systems, and for the Fu turebus+ , which is

an IEEE standard high-performance bus definit ion.
The 110 port control ler and specific bus adapter

archi tecture was adopted to al low a flexible bus

strategy that can evolve over time, as wel l as to

accom modate the physical separation of processor
and I/0 subsystems necessary in an expandable

system with mu lt iple 1/0 channels. The 1/0 port

1 06

contro l ler cable(s) wi l l function to a maximum

cable length of 3 meters. This length al lows 1!0

expansion cabinets to he placed o n e ither side of

the main system cabinet.
The aggregate bandwidth of the l/0 port con

troller is 256M B per second . Each para l le l port is
capable of operating at a maximum of 135 MB per

second for data flowing from the I/O subsystem to

memory and a t 88MB per second for data flowing

from memory to the 110 subsystem .

The 110 port control ler module w i t h i t s fo ur

paral lel ports is a standard part of all DEC 7000

Vol. 4 No. 4 Special Issue I'J92 Digital Technical journal

Tecbnicttl Description of the DEC 7000 and DEC 10000 AXP Family

systems and resides i n a dedicated system back
plane slot. Va rious system configurations are avai 1-
able that contain between one and four Xi\H l/0

buses. 'fbe Futurebus+ su bsystems wil l be available
when Futurebus+ components become ava ilable in
the computer industry.

The 110 port contro l ler prov ides a " m a i l box"
in terface between the processor and 1/0 dev ices. A
processor i nstruction cannot directly access a regis
ter in an r;o device, as was possible on previous VA X

i mplementations. To use the " mai lbox" in terface, a
processor creates a work descriptor packet in mem
ory and t hen issues a co m mand to the 1/0 port con
tro l ler to execute the com mand. Command
completion is asynchronous and the processor may
choose to do other work whi le the com mand is exe
cu ted . The " m a i l box" in terface between proces
sors and I/O devices was created to a l low rel at ively
s low r;o devices to interface to a high-speed, non
pended system bus. If a processor were a l lowed to
access the 1/0 device directly, the system bus wou ld
be sta l l ed for large portions of t i me.

Clearly the mai l box com munications method is
more compli cated than trad it ional direct access.
Fortunately t he m a i l box is used only when a pro
cessor needs to directly access an 1/0 device. The
110 device can d irectly access main memory (or
possi b ly a CPU cache) with a l l necessary buffering
done by the I/O port con trol ler. Most modern h igh
performance l/0 adapters use h igh- l evel , packet
based protocols, wh ich requ ire very l i ttle d irect
access of the 110 adapter by the processor.

A typical CPU-init iated l/0 transaction to an intel
l igent disk control.ler on an XNI I bus to read from
the d isk would have the fol l owing steps.

• The CPU p l aces a disk control ler com mand
packet requesting a disk read into system
memory.

• The CPU sets up an 110 mai l box structu re with a
command to inform the d isk control ler that
there is a command packet i n memory, writes a
register in the I/O port contro l ler to inform i t
that there i s a mai lbox transaction to complete,
and then sp ins on a done bit in the mai lbox
structure.

• The l/0 port control ler fe tches the mai lbox
struct ure from memory, generates an XMI write
command to the disk contro l ler, and sets the
done bit in the m a i l box structure. The CPU sees
the assertion of the done bit and goes on to other
work.

Digital Techuicaljourua/ Vol . .,; No. 4 SfJecial lssue I'J'J2

• The disk contro l ler receives the mai lbox data
ami then ge nerates an XMI request to reatl its
com mand packet from memory.

• The 1/0 port control ler reads the specified com
mand packet from mem ory ()4 bytes at a time
and sends it back to the d isk control ler _12 bytes
at a time.

• The disk control ler decodes the com mand packet,
reads the requested data from d isk, and starts
writing to system memory in 32-byte segments.

• The 110 port control ler buffers the 32-byte
writes from the disk con tro l ler into 64-byte seg
ments and writes the data to system memory.

• The disk contro l ler signals an i n terrupt on the
XJ\'I l to ind icate that the requested operation is
complete, which is received by the 110 port con
trolJer. The 1/0 port contro l ler signa ls an inter
rupt to the CPU.

Console and Diagnostics

Like many previ ous VAX systems, the DEC 7000
system employs an embedded console. The console
fu nction is pe rformed by code run on the proces
sors within the system rather than by a dedicated,
detached front-end processor.

Un l i ke the strategy for previous VAX systems, a
unified console and diagnostic strategy was
adopted for the DEC 7000 and 10000, VAX 7000 and
10000, and DEC 4000 systems. A s ingle code base
not only provides the basic console fu nctions but
al so extends d iagnostic support fo r manufacturing
and field firmware upgrade support. This un ified
strategy has reduced the total development effort
and promoted a common " look and ted" across the
different systems.

The console development also diffe red from that
of previ ous VA X syste ms. The primary im plemen
tation language was C, with o n ly various architec
ture- specific code in Al pha AXP (or VAX) assembly
la nguage. The console and processor diagnostic
code was simu lated prior to the arrival of hardware.
This s imu lation greatly si mpl ified early hardware
debug; the conso le had basic functi onal i ty after a
si ngle debug session.

At power-up , each processor acts independently
to execute processor-specific diagnost ics and con
sole initia l izat ion. The processors then select a con
sole primary, which then proceeds to test a nd
configure the memory and 1/0 subsystems. The
console primary also re tains control of the console
term inal l i ne; console secondaries commun icate

107

Alpha A.XP Architecture and Systems

with the primary through memory-resident mes
sages. After initial i zat ion, d iagnostic or other con
sole tasks can be assigned to any processor in the
configuration. One benefit of th is arrangement is
that system d iagnostics and exercisers can be run in
parallel.

Like previous DECsystem consoles (that is, sys
tems based on MIPS Co. chips), the DEC 7000 con
sole provides a set of services, or callbacks, to the
operating system. These services can be used to
control automatic bootstrapping across operat ing
system crashes as well as primitive 1/0 service;;

used by the operating system during bootstrap and
system crash. The lat ter simpl ifies the operating
system device support by providi ng simple
read/write functions common to al l devices.

A feature of the power of the console is the field
firmware update uti l ity. Field upgrade of a l l system
firmware (console and I!O adapters) is ac -om
pl ishecl by the DEC 7000 firmware update ut i l i ty

(LFU). LFU i s rea l l y a dedicated console image which
is d istributed on CDROM. The system console is
used to boot LFU, which is then used to update all
system firmware.

System Packaging

The DEC 7000 system cabinet is 1700 mm high
by 800 mm wide by 865 mm deep. The cabi net

houses the system backplane, up to two 1/0 subsys
tems, and d isk arrays or batteries for the system bat
tery-backup function. Expansion is possible by
using one or t wo 1/0 expander cabinets, each of

which houses up to two aclcl it ional l/0 subsystems
and additional disk arrays. Further mass storage
expansion is possible with Digital's standard l i ne of
mass storage cabinets connected by CI, DSSI , or Sl
i nterconnects.

The DEC 7000 cabinetry has been designed for
easy system upgrade and servicing. The system
backplane assembly, power system, and I/0 subsys
tems are modular and easi ly replaced by field per
sonnel. The process of future upgrades can be
accompl ished more quickly and reliably t hrough
the use of modular subassemblies.

As shown i n Figure 6, the DEC 7000 main system
cabinet contains a central air mover with logic
assembl ies above and below it . The air mover is a
s ingle motor with a large molded vane assembly

and can pul l air through both the upper and the

lower logic assemblies. An air flow of approxi
mately 900 cubic feet per minu te with ve locities
up to 1800 l i near fee t per minute is m aintained
through the upper logic assemb.ly, which contains
the processor and memory subsystems. Although
not necessary for the DECchip 21064, this large
volume of air movement was designed i nto the
m achine to a l low upgrades through several genera
tions of processor chips. By using standard a ir-cool
ing techn iques and customized module "boxes"
that optimize local air flow, it is possible to cool
processor chips of up to 70 watts in the DEC 7000
system cabinet.

Above the air mover are the system backplane
and the modular power subsystem. Below the air

. [JG�JI
RE MOVABL E ME DIA

� � I � I . " I u I l l
� � I � I I

.._
8j'�_lill �l;lU

J

CPU OR ME MOR
MODU LES

N + 1 POWER
SYSTEM

Jlbl�
� I I !!!l!oo::

I ll�
l g l I I I

1/0 PORT
CONTROLLER
MODULE

COOLING SYSTE

1/0 SUBSYSTEM
(X M I)

MASS STORAGE

M � �
� •1[]00 1 1il;= ODD 1E: DOD

I
n c ODD

Figure G DEC 7000 ;vfain -�)stem Cabinet, Front (Left) and Rear (Right) Views

1 08 l'tJ/. 4 No. 1 5/Jecia/ Issue 1992 Digital Tee/mica/ journal

Technical Description of the DEC 7000 and DEC 10000 AXP Family

mover are four modular spaces for 110 bus back
planes, d isk drives, or batteries.

I/0, d isk, and battery subsystems occupy varyi ng
amounts of the four modular spaces. The XMI sub
system occupies two spaces and is oriented front to
back because of its rear-ex it cabling scheme. The

Futu rebus+ subsystem occupies a single rear space.
D isk subsystems consisting of up to six 5 .25- inch
(DSSI or SCSI [small computer system interface]) or
fourteen 3.5-inch (SCSI on ly) drives may occupy any
of the modular spaces. Batteries for the un inter
ruptible power system occupy two modu lar
spaces, which may be oriented either front to back
(for XMI-based systems) or side to side (for
Futurebus+ systems).

The expander cabinet is ident ical to the main
system cabinet, with two exceptions: d isks may be
packaged in the area occupied by the system back
plane, and there is no control panel . Up to two Xi\'11
or Futurebus+ subsystems may be placed in an
expander cabinet.

Pawer Subsystem

The power subsystem of the DEC 7000 family has
a highly modular, h ierarchical design. The basic

power system provides 48-volt direct current (VDC)
to all subassemblies which in turn further regulate
to necessary voltages. Each module i n the system
backp lane contains on-board regulat ion. This fea
ture wi l l al low the system to easily evolve with
changing voltage requirements as CMOS technology
moves to lower voltages to reduce power consump
tion. Voltage tolerances can be tightly control led
since transmission drops are negated; a precise
voltage level can be set at the time of module manu
facture. The voltage and tolerance to a h igh-per
formance CMOS processor tnliSt be veq' tightly
contro l led in order to extract maximum perfor
mance. The XMI, Futurebus+, and disk subsystems
all regulate the 48 VDC to lower voltages at a subsys
tem-wide level , not at the module level.

The 48-VDC modu lar power system consists of
one to three paraUel regu lators, each of which pro
duces 2400 watts of power. A maximally config
ured cabinet needs no more than two power
regulators. An additional regulator can be config
ured into the system to provide an n+ 1 capabil ity
for higher avai labil ity.

The power system also incl udes a bat tery
standby fu nction that provides 48 VDC throughout
the system in the event of an AC power fai lure.
Unl ike earlier VAX systems in which power was

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

maintained only to system memory, the DEC 7000

keeps the entire system powered , including in-cabi
net mass storage. Depending on the system config
urat ion, power is maintained for a minimum of 20

minutes in an n+ 1 power configuration . N+'l
power with fu l l battery backup is standard on al l

DEC 10000 systems.
The DEC 7000 system employs a high ly intelligent

power subsystem with microprocessors in all 48-
vol t regu lators, which report status to processor
modules by means of a serial i nterconnect. System
software can therefore monitor a wide range of
power system operating parameters, includ ing
voltage output, AC input, efficiency, and battery
charge state . In a large configuration with optional
expander cabinets, the expander cabinet power sys
tems also com municate with the system processors
to provide system-wide power status.

Performance
The DEC 7000 and DEC 10000 systems are the fastest

un iprocessor and mult iprocessor, microprocessor
based computer systems in the world as of their
i ntroduction date (10 November 1992) and as
defined by SPEC89 and SPEC92 benchmark data. For

compu te-intensive benchmarks, the DEC 10000 is
approximately 10 percent faster tban the DEC 7000,

hased entirely on the difference in processor clock
speed.

The base perform ance of the DEC 7000 and DEC
10000 systems is determined by the speed of the
processor chip and is heavily i nfluenced by cache,
memory, and I/0 subsystems. The design goal for
the DEC 7000 and DEC 10000 systems was to extract
the maximum possible performance from the
DECchip 21064 by providing an electrical and physi
cal environment capable of supporting 200 -l\'IHz

processor operation as well as large caches, a

large and fast memory subsystem, ami multiple 1/0
subsystems.

While fu ll system- level performance data is s t i l l
being col lected , the very h igh speed processor per
form ance measured on the SPEC bench marks com
bined with the very h igh performance cache,
memory, and l/0 subsystems of the DEC 7000 and
DEC 10000 systems should yield very impressive

overall system performance. See Ta ble l .

Design Process

The DEC 7000 system was specified , designed, and
tested by a group of approximately 200 people in
Boxboro, Massachusetts. The system design team

1 09

Alpha AXP Architecture and Systems

Table 1 DEC 7000 and DEC 1 0000 System
Performance Measurements

DEC 7000 DEC 1 0000

SPECmark89 1 67.4 1 84.1
SPECi nt89 95.1 1 04.5
SPECfp89 244.2 268.6
SPECi nt92 96.9 1 06.5
SPECfp92 1 82.1 200.4

SPECthroughput89
(4 CPUs) 604.4 654.6

U N PACK double- precision
1 00 x 1 00 (M FLOPS) 38.6 42.5
1 000X1 000 (M FLOPS) 1 02.1 1 1 1 .6

was responsible for a l l aspects of the design except

the DECchip 21064 microprocessor.
Conceptual work on a system to fol l ow the VAX

6000 fa mily was started in early 1989, although at
that time design work was focused on implementa·

t ions using VAX and MIPS R4000 processors. In the
latter part of 1989, the decision was m ade to pursue
the Alpha AXP strategy, and earl ier concepts were

reworked to incorporate much higher levels of per
formance to accommodate the proposed Alpha
.AXP chip.

In October-December 1989, a core team of

approximately 10 engineers was assembled to

firmly define system architecture and to produce
specifications for al l subasscmbl ies. By July 1990 a l l
specifications were com p lete, and i m plementation
was started. The first processor module was pow
ered up in June 1991 , fol lowed by a fu l l system
power-up in September 1991 . The VMS operating

system was booted on a DEC 7000 system on
September 9, 1991 , and OSF was booted i n
November 1991 .

A minimal DEC 7000 system includes 430,000
gates of logic contained in gate arrays, whereas a
minimal VAX 6000 Model 200 includes 94,000 gates.
Despite more than four times the gate count,
the design portion of the DEC 7000 program was
completed in approximately 9 months as com

pared to 12 months for the VAX 6000 program. This
reduction in design time was achievable in pan

because of the ma turing of the engineering pop

u lation (many of the DEC 7000 engineers had
worked on various VAX 6000 implementations),
as well as advances in design tool technology and
the avai labi l ity of sign ificantly more powerful
compu ters for design s imulation . At its peak, the

DEC 7000 program was consu ming 1 500 VAX units
of performance, or VUPs, of compute power

1 1 0

(primarily mul tiprocessor VAX 6000 Model 500 sys
tems) and used over 325,000 hours of CPU t ime

for sim u l ations.

Conclusion

The DEC 7000 and DEC 10000 systems are the sec
ond generation of h ighly configurable and expand
able systems produced by Digital Equ ipment
Corporation. These are th e first systems expressly
designed to accommodate multiple-processor archi
tecture types. As compu ter technology moves for
ward at an ever-increasing pace, this type of design
wil l be demanded by compu ter users and wil l be
necessary to ma nage engineering costs.

The DEC 7000 and DEC 10000 system platform
w i l l accom mod ate new VAX and Alpha AXP proces

sors for several years. Over that time, this platform
will span a performance range of greater than 50: 1 .

It wi l l provide computer users with a stable system

environment that should help minim ize the changes
caused by the continued development of new pro
cessor chips. While this level of flex i b i l i t y incurs
additional initial engineering and product costs, i t

does provide a very cost-effec tive way t o deal with

the i nexorable forward march of technology.

Acknowledgments

The fol lowing engineers formed the system archi
tecture team of the project that produced the DEC
7000 and DEC 10000 and VAX 7000 and VAX 10000

products: Frank Bomba, Reinhard Schumann, Mike
Callander, Steve Polzin, Kathy HarringtOn, Dave
Mayo, Catharine van Ingen, Vicky Triolo, Bob

Dickson, Dave O'Keefe, Jim Leahy, Hansel Col l ins,
Jim Stegeman, Darrel Donaldson, Dave Hartwel l ,

Charlie Barker, Mark Stefanski , Brian Al l ison.
Various parts of this text origina ted within engi
neering specifications written by this team.

References

1 . Digital Technical]ournal, vol. 2, no. 2, featuring
papers on the VA.-'\ 6000 Model 400 (Spring 1990).

2. G. Uhler et a! . , "The NVAX and NVAX + High-perfor
mance VAX Microprocessors," D igital Technical

journal, vol. 4, no. 3 (Su m mer 1992) 1 1 - 23.

3. D. Dobberpu hl et a l . , "A 200-MHz 64-bit Dual
issue CMOS Microprocessor," Digital Technical

Journal, vol. 4, no. 4 (1992, this issue): 35 - 50

4. A.J Smith, "Cache Memories," Computing
Surveys, vol. 14, no. 3 (September 1982).

H>l. 4 No. 4 Special Issue 1992 Digital Tecbnical journal

Nancy P. Kronenberg
Thomas R. Benson
Wayne M. Cardoza

Ravindran]agannathan
BenjaminJ. Thomas III

Porting OpenVMS
from utX to Alpha AXP

The Open ViliS operating system, developed IYy Digital for the VAX family of comput
ers, was recentzy moved from the VAX to the Alpha AXP architecture. The Alpha AXP
architecture is a new RISC architecture introduced IYy Digital in 1992. This paper
describes solutions to several problems in porting the operating system, in addition
to petformance benefits measured on one of the systetns that implements this new
architecture.

The VAX architecture is an example of complex

i nstruction set computing (CISC), whereas the

Alpha AXP architecture is based on reduced instruc

tion set computing (RISC). The two architectures

are very d ifferen t. 1 CISC archi tectures have perfor

mance d isadvantages as compared to ruse archi tec

tures 2 Digital ported the OpenVMS system to the

Alpha fu'<P architecture mainly to del iver the perfor

mance advantages of RJSC to OpenVMS appli

cations. This paper focuses on how D igital 's

OpenVMS AXP operating system group dealt with

the large volume of VAX assembly language and

with system kernel mod ifications that had VAX

architecture dependencies.

The OpenVMS AXP group had two impor

tant requ irements in aud ition to the primary goal

of increasing performance: first, to make it easy

to move existing users and applications from
Open VMS VAX to Open VMS AXP systems; second, to

deliver a h igh-quality first version of the product

as early as possi ble. These requirements led us to

adopt a fairly straightforward porting strategy with

minimal redesigns or rewrites. We view the first

version of the OpenVMS AXP product as a begin

ning, with other evolutionary steps to follow.

The Alpha AXP architecture was designed for

high performance but also with software migration
from the VAX to the Alpha AXP architecture i n mind.

Included i n the Alpha AXP architecture are some

VAX features that ease the migration without com

promising hardware performance. VAX features
in the Alpha AXP architecture that are i mportant

to OpenVMS system software are: four protec

tion modes, per-page protection, and 32 interrupt

Digital Technical journal Vol. 4 No. 4 Special issue 1992

priority levels. The Alpha AXP architecture also

defines a privileged architecture li brary (PAL) envi

ronment, which runs with interrupts disabled and

in the most privileged of the four modes (kernel).

PALcode is a set of Alpha AXP instructions that exe

cutes in the PAL environment, implementing such

basic system software functions as translation

bu ffer (TB) m iss service. On Open VMS AXP systems,

PALcode also i mplements some OpenVMS VAX fea

tures such as software interrupts and asynchronous

traps (ASTs). The combination of hardware archi

tecture assists and OpenVMS AXP PALcode made i t

easier t o port the operating system t o the Alpha

AXP architecture.

The VA X architecture is 32-bit; it has 32 bits

of virtual ad dress space, 16 32-bit registers, and a

comprehensive set of byte, word (16-bit), and long

word (32-bit) instructions. The Alpha AXP archi

tecture is 64-bit, with 64 bits of virtual address

space, 64-bit registers (32 i nteger and 32 floati ng

point), a nd instructions that load, store, and oper
ate on 64-bit quantit ies. There are also longword

load, store, and operate instructions, and a canoni

cal sign-extended form for a longword in a 64-bit

register.

The OpenVMS AXP system has anticipated evolu

tion from 32-bit address space size to 64-bit address

space by c hanging to a page table format that sup

ports large address space . However, the OpenVMS

software assumes that an address is the same size as

a longword integer. The same assumption can exist

in appl icat ions. Therefore, the first version of the

Open VMS AXP system supports 32-bit add ress space

only.

1 1 1

Alpha AXP Architecture and Systems

Most of the OpenW<IS kernel is i n VAX assembly
la nguage (VAX MACR0-32). Instead of rewriting the
VAX MACR0-32 code in another language, we deve l
oped a com p i ler. I n addit ion. we requ i red inspec
tion and manual modification of the VAX MACRO-32
code to deal with certain VAX arch i tectural dep en
dencies. Pa rts of the kernel that depended heav i ly
on the VAX architecture were rewritten , but this

was a smal l percentage of the tota l vol u me of VAX
MACR0-32 source code.

Compiling VAX MACR0-32 Code for the
Alpha AXP Architecture

Simply stated . the VAX :VIACJ�0- 32 comp i ler treats
VAX :.1ACR0-32 as a source la nguage to be compi led
ami creates nat ive Open V.vtS AXP object files just as
a FORTRAN compiler might. This task is far m ore
comp lex tha n a s i mple i nstructio n-by- inst ruction
translation because of fu ndamental d i fferences in
the arcl1 i tectures, and because source code fre

quen tly contains assu mptions about the VAX archi
tecture ami the OpenV,VI S Ca l l ing Standard on VAX

systems J ' The compi l er must ei ther transparently
convert these VAX dep endencies to their OpenVMS
AXP counterparts or infor m the user that the source
cocle has to be cha nge(! .

Source Code A nnotation

We extended the VAX MACR0-32 source l a nguage to
include entry-point declarations and other tl irec
tives for the compi ler's use, w h i c h provide m ore

i nformation about the i ntended behavior of the pro
gram. Entry-point declarations were in troduced to
al low d eclaration of: (I) the register semantics for
a routine when the defau lts are not appropriate and
(2) the speci a l i zed semantics of frameless subrou
ti nes and exception rout i nes to be declared .

The differing register s ize between the VA X and
the Alpha AXP architectures influe nced the design
of the comp i ler. On the VAX , ,\•lACR0-32 operates on
:)2-bit registers, and in ge neral , the compi led code
m a i ntains 32 -bit sign-extended values in Alpha AXP
64-bit registers. However, this code is now part
of a system that uses true 64-bit values. As a resu lt ,
we designed the com p i l er to generate 64-bit regis

ter saves of any registers modified in a routine,
as part of the " ro u t i ne prologue code." Automatic
register preservation has proven to be the safest
default but m u st be overridden for routines that
return val ues in registers, using a ppropriate en try
point declarations.

1 1 2

Other direct ives a l low the user to provide addi
t ional information about register sta te and code
flow to i m p rove generated code. Another cl ass of
d i rectives i nstructs the compiler to preserve the
VAX behav ior with respect to granu larity of mem
ory writes or ato micity of memory u pdates. The
Alpha AX!' arch itecture makes atomic updates and
guaranteed write granu larity suffic ien t l y costly to
performance that they shou ld be enabled only
when requ ired . These concepts are d iscussed i n
the section Major A rc h i tectural Diffe rences i n the
OpenVi'viS Ke rnel.

Identifying VAX A rchitecture
and Calling Standard Dependencies
As mentioned earl ier, the compi ler must either
transparently support VAX arch itecture-dependent
constructs o r i n form the user that a source change
is necessary. A good example of the latter case is
r e l iance o n VA X .JSfl/RSB (j u m p to subrout ine and
return) instruction return address seman tics. On
VAX systems, a .JSB i nstruction leaves the return
address on top of the stack, which is used by the
RSI3 i nstruction to retu rn . ' System subro u t i nes
often take advantage of this seman tic i n order to
change the return address. This level of stack con
trol is not ava i lable i n a com p iled la nguage. l n
porting t h e OpenVMS system t o t h e Al pha A,'\P
architecture, we developed al ternative coding prac
t ices for this and many other nontransportable
idioms.

The com pi ler must a lso account for the dif
fe re nces in the OpenVMS Cal l ing Standard on the
VAX and Alpha AX!' arch itectures. A l though trans
parent to h igh- l evel l anguage program mers, t hese
differe nces are very sign ificant in asse mbly l an
guage program ming . ' To operate correctly in a
mixed la nguage environment, the code generated

by the VA X MACR0-32 com p i ler must confo r m to
the OpenV.VIS Ca l l i ng Standard on the Alpha A,'{P
arch itecture.

On VAX systems, a rou tine refers ro its argu ments
by means of an argument pointer (AP) register,
which points to a n argum e n t l ist that was bu i l t in
memory by the rou t i n e 's cal ler. On Alpha AXP sys

tems. up to six routine arguments are passed to the
cal led routine in registers; any add it ional argu
m ents are passed in stack locations. Normal ly, the
VAX MAC:R0-.)2 compi ler transpare ntly converts
AP-based references to their correct Alpha AXP loca
t ions ami co nverts the cocle that bui lds the l i st to

Vol. 4 No. 4 Special Issue 1992 D igital Technical journal

init ial ize the arguments correctly. In some cases,

the compiler cannot convert a l l references to their

new locatio ns, so an emul ated VAX argu ment l ist

must be constructed from the argu ments received

in the registers. This so-ca l led "homing" of the argu

ment l ist is required if the routine contains indexed

references into the argument I ist or stores or passes

rhe address of an argu ment l ist element to ano ther

routine.

The compiler iden tifies these coding practices

duri ng its process of flow ana lysis, which is s imi lar

ro the analysis done by a standard h igh- l evel lan

guage optim izing compi ler. The compiler bu ilds a

flow graph for each rout ine and tracks stack depth,

register use, condition code use, and loop depth

through all paths i n rhe rou tine flow. This same

information is requ ired for generating correC£ and

efficient code.

Access to Alpha AXP
Instructions and Registers
In addition ro providing migrat i o n of existing VA X

code, the VAX MACR0-32 comp iler includes support

for a subset of Alpha AXP instructions and PA Lcode

ca l. ls and access to the 16 integer registers beyond

those that map to the VAX register set. The i nstruc

t ions supported either have no d i rect cou nterpart

in the VAX arch itecture or are required for efficient
operation o n a full 64-bit register value. These

" b uilt - ins" were required because the OpenVMS

AXP system uses fu l l 64-bit va lues for some opera

tions, such as manipulation of 64-bit page table

entries (PTEs).

Optimization
The compiler includes certain optim izations that

are particu larly important for the Alpha AXP archi

tecture. For example, on a VAX system, a reference
to an external symbol wou ld not be considered

expensive. On an Alpha AXP system, however, such

a reference requi res a load from the l inkage section

to obtain the address of the symbol prior to loading
the symbol's value. (The l inkage sect i o n is a data

region used for resolving externa l references.")
Mul t iple loads of this address from the l i n kage

section m ay be reduced to a single load, or the

load may be moved out of a loop to reduce memory

references.

Other optimi zations i nclude the el imi nation
of memory reads o n mult ip le safe references, regis

ter state tracking for optimal register-based mem
ory references, redundant register save/restore

Digital Techllical journal Vol. 4 No. 4 Special Issue 1992

Porting Open VMS from VAX to Alpha AXP

removal , and many local code generation optimiza

tions for part icu lar operand types. Peephole opti

m ization of .local code sequences and low-level

i nstruction sched ul ing are performed by the back

end of the compiler.

I n some i nstances, the program mer has knowl

edge of register state or other code behavior that
cannot be inferred from the source code a lone.

Compiler directives are provided fo r specifying reg

iste r a l ignment state, stru cture base add ress al ign

ment, and l i kely flow paths at branch points.

Certain types of opti mization typical ly per

formed by a high-level la nguage compiler cannot be

performed by the VAX MACR0-32 compi ler, because

assumptions made by the MACR0-32 programmer

cannot be bro ken . For example, the order of mem

ory reads may nor be changed.

Major Architectural Differences
in the OpenVMS Kernel

This section concentrates o n architectural changes

that affect synchron ization, memory management,

and I/0. These are not the only architectural d iffer

ences that cause sign ificant changes in the kernel .

However, they are the major differences and are

representative of the effort involved in porting the

OpenVMS system to the Alpha AXP archi tecture.

For the most part, i t was possible to isolate archi

tecture-dependent changes to a few major sub

systems. However, d ifferences in the memory

reference architecture had a pervasive impact o n

users of shared data and m a n y com mon synchro

n ization tech niques. Other d ifferences such as

those related to memory management, context

switch ing, or access to J/0 devices were confined

mostly to the relevant subsystems.

Effects of Architectural Differences
in Memory Subsystems
The fol lowing d ifferences between the VAX ancl

Alpha AXP memory reference architectures affected
synchron ization : u

• Load/store archi tectu re rather than atomic mod

ify instructions

• Longword and quadword writes with no byte

write instructions

• Read/write ordering not guaranteed

Load/store memory reference instructions are
characteristic of most ruse designs. However, the

other d ifferences are less typical. The reasons for al l

1 1 3

Alpha AXP Architecture and Systems

three differences were hardware simplification and

opportun i ties for i n creased hardware rerfor

m a nce. 1 These differences res ult i n significant

cha nges in system software and in many oprortuni

ties for su btle errors, which can be detected on ly

u nder heavy load. Ada r t i ng to these arch itectu ral

changes without greatly impacting performa nce

was one of the major cha l lenges that faced the

group in porting the OpenVMS system to the Al rha

AXP architecture.

A load/store architecture such as Alpha AXP can

not provide the atomic read-mod ify-write i nstruc

tions present i n the VAX arch itecture. Thus,

i nstruction sequences are necessary for many oper

ations performed by a si ngle, atomic VAX i nstr uc

tion , such as incrementing a memory locat ion. The

consequ ence is a need for i ncreased awareness of

synchronizat ion. I nstead of depending on hard

ware to rrevent in terference between mu ltirle

threads of execu t ion on a single processor, exp l icit

software synchronization may be requ ired .

Without this synchronizatio n , the i nterleaving of

i ndependent load-modify-store sequences to a sin

gle memory location m ay resu lt in overwritten

stores and other incorrect results.

The lack of byte writes imposes additional syn

chron ization burdens on software . U n l i ke VA X and

most ruse systems, an AJpha AXP system has instruc

tions to write only longwords and 64 -bit quad

words, not bytes or words. Thus to write bytes, the

software must i nclude a sequence of instructions

that reads the encompassing longword , merges in

the byte, and writes the longword to memory As

a consequence, software m ust be concerned not

only with shared access to the same memory cel l by

m u l tiple threads, but a lso with access to i ndepen

dent but adjacent variables. Synchronization aware

ness is now extended from shared data to data

items that are merely near each other.

The OpenVMS A.XP operating system group

avoided the above-mentioned problems in trod uced

by the architectu ral changes in one of three ways:

• Expl icit software synchron ization was added

bet ween threads.

• Data items were relocated to al igned longwords

or quadwords.

• Alpha AXP load locked and store cond it ional

in structions were used .

The obvious sol u ti o n of adding explicit synchro

n ization in the for m of a software Jock is not a lways

1 1 4

appropriate for several reasons. F irst, the problem

may be i n clerenclent data items that happen to
share a longword . Synchroniz i ng this sort of access

in u nrelated code paths is pro ne to error. Expl icit

synchron ization may also have an unacceptable

performance i mpact. Final ly, dead locks are a possi

bi li ty if one thread i n terrupts anot her.

Ensuring that data i tems are in al igned long words

or quadwords both improves performance and

eliminates in teractions between u n rela ted data.

This tech n ique is used wherever possi b le but can

not be used in two m ajor cases. One case occurs

when the rep l ication factor is too large. Expand ing

a n array of thousands of bytes to longwords m ay

si mply not be acceptable. The other major problem

case is data structures that cannot be changed

because of external constrai nts. For exa mple, data

may represent a protocol m essage or a structure

pri m a r i ly resident o n disk . Separate i nternal and

extern al forms of such data structures cou ld exist,

but the performance cost of continuous conver

sions may not be accertable.

Often the easiest and h ighest -performa nce way

to solve synchro nization problems is to use

sequences of load locked and store cond itional

i nstructions. The load locked i nstruction loads an

a l igned longword or quadwonl w h i le setting a

hardware flag that ind icates the physical add ress

that was l oaded . The hardware flag is cleared if any

other thread, processor, or r ; o device writes to the

locked memory locati o n . The store condit ional

i nstruction stores a n a l igned longword or qu ad

word if and only if the hardware lock flag is sti l l set.

Otherwise, the store retu rns a n error i ndication

without modifying the storage location . These

i nstructions al low the construction of atomic read

modify-write sequences to update any datum that is

con t a i ned within a single a l igned quadword. These

sequences of instructions are sign ificantly slower

than normal loads and stores due to the necessity of

wai t i ng for the write to reach a r o i n t in the mem

ory hierarchy where consistency can be guaran

teed . In add i tion , their use may inhibit many

comp i ler optim izations because of restrictions on

the instructions between the load ami store.

Although faster than most other synchron ization

methods, this mec han ism shou ld be u sed spari ngly.

The lack of guaranteed read/write orde ring

between m u l tiple processors is another compl.i ca

tion for the rrogra mmer trying to achieve proper

synchronization . AJthough not visible on a single

processor, this lack of ordering means that one

Vol. 4 ,Vo. 4 .\jNcial Issue !')<)..! Digital Technical jourual

processor w i l l not necessarily observe memory

operations in the order in which they were issued

by another processor. Thus, many obvious synchro

nization protocols wi l l not work when writes to

the synchron i zation variable and to the data being

protected are observed to occur out of order.

A memory barrier i nstruction is prov ided in the

architecture to ensure ordering. However, the nega

t ive im pact of this instruction on system perfor
ma nce requ i res that it be used only when
necessa ry.

As described i n the previous section, we used

various mechanisms to solve the synchronization

problems. Hav i ng mul tiple solut ions al lowed us to

choose the one with the least performance im pact

for each case. In some cases, explicit synchroniza

t ion was a l ready in place due to multiprocessor syn

chronization requ irements. In other cases, we

expanded data structures at a cost of modest

amounts of mem ory to avoid expensive synch ro

nization when referencing clara.

Privileged Architecture Changes
U n l i ke the pervasive architectural changes

described i n the previous section, the privi leged

architecture differences had a more l imited i mpact.
The primary remaining areas of change are the

new page table fo rmats and the details of process

context swi tching. This section describes mem

ory management as a representative example.

However, many l im i ted changes sti l l amount to

modify i ng virtua l ly every source modu le in the

OpenVMS kernel, even if only to add compiler

d irectives.

Memory i'vlanagement Not surprisingly, the mem

ory management subsystem required the most

change when moving from the VA X to the Alpha

AXP arch itecture. Aside from the obv ious 64-bit

address ing capabi l i ty, two significant differences

exist between the page table structures on the VAX
and the Alpha AX P arch itectures. First, Alpha A X P
does n o t have an arch itectural d iv ision between

shared and process private address space. Seco nd,

the A lpha AXP three- level page table structure
shown in Figure 1 al lows the sharing of arbi trary

subtrees of the page table structure and the effi

cient creation of large, sparse address spaces. I n

add ition, future Alpha AXP processors may have

larger page sizes.
To meet our sched u le goals, we decided i n i t ia l ly

to emu late the VAX architecture's 32-bit address

Digital Technical journal Vol 4 No. 4 Special Issue /'}'}.!

Porting Open VMS from VAX to Alpha AXP

space as closely as possible. This decision required
creating a 2-gigabyte (GB) process private address

region (i .e . , VAX PO and P l) a nd a 2GB shared

address region (i .e . , VA X SO and S l) for each pro

cess. This is easi ly accomplished by giving each

process a private level l page table (L l PT) that con

tains two entries for level 2 page tables (L21'Ts).

One of these L2PTs is shared and implements the

shared system region, w hereas the other is private

and implements the process private add ress

regions. AJ though the smallest a l lowed page size of

8 kilobytes (KB) results .in an 8GB region for each

level 2 page table, we use only 2GB of each region

to keep within our 4GB 32-bit l i mit . As shown

in Figure 1, t he L2PTs are chosen to place the

base address of the shared system region at

FFFF FFFF80000000 (hexadecimal), the same as the

sign-extended add ress of the top hal f of the VAX
architecture's 32-bit address space.

Al though changes were extensive in the mem ory

ma nagement subsystem, many were not conceptu

a l ly d ifficult . Once we dealt with the new page

table structure, most changes were merely for a l ter

native page sizes, new page table entry fo rmats, ancl

changes to associated data structures. \Ve d id

decide to keep the OpenVMS VA X concept of map
ping process page tables as a s ingle array in shared

system space for our in it ial implementat ion.

Although not v iable in the long term due to the

potential ly huge size of sparse process page tables,

this decision minimi zed changes to code that refer

ences process page tables. Having process page

tables visible i n shared system space tu rned out to

be a significant complication in paging and in

address space creat ion, but the schedule benefits

derived from avoiding changes to other subsystems

were considered worthwhile. \Ve expect to change

to a more general mechanism of sel f-mapping pro

cess page tables in process space for a subsequent
OpenVMS �'< P release.

Retaining the VAX appearance of process page
tables al lowed us to meet our goals of minimum

change outside of the memory management subsys

tem. Unprivi leged code is u n affected by the mem

ory management changes un less it is sensitive to the
new page size. Even p rivi leged code is genera l ly

unaffected u n less i t has knowledge of the length or

fo rmat of PTEs.

Optimized Translation Buffer Use Thus far, we

may have given the im press ion that architectural
changes always create problems for software. This

was not un iversa l l y t rue; some changes offered us

I I '5

Alpha AXP Architecture and Systems

PAGE TABLE
BASE
REGISTER

LEVEL 3
PAGE TABLES

PO SPACE
L3PT

LEVEL 2 r+ L3PTE
PAGE TABLES

PROCESS
PRIVATE
L2PT

L2PTE r-- P1 SPACE

CODE OR
DATA PAGES

ADDRESS 0 D� VIRTUAL

1..__---1�
LEVEL 1
PAGE TABLE
(L1 PT)

- L 1 PTE t--

U

L

N

2

U

P

S

T

E

E

D

f----+-�IL3PT

D � SOME P 1 SPACE
VIRTUAL ADDRESS

L3PTE

L 1 PTE r--
SHARED
L2PT

L-. UNUSED

L2PTE
L2PTE

-

t--

�

SYSTEM
SPACE
L3PT

L3PTE

SYSTEM
SPACE
L3PT

D� VI RTUAL ADDRESS
FFFFFFFFBOOOOOOO

L3PTE I-

,....DI� SO M E SYSTEM SPACE
VI RTUAL ADDRESS

Figure 1 Open VMS AXP Page Table Structure

opportumttes for significant gains. One such

change was an Alpha AXP translation buffe r feature

cal led granularity hi nts. TBs are key to performance

on any virtual memory system. Wi thout them, it

would be necessary to reference main memory

page tables to translate every virtual add ress to

a physical address. However, there never seems to

be enough TB entries. The Alpha AXP architecture

allows a single TB entry to optional ly map a v irtu

a l ly and physically contiguous block of properly

a l igned pages, all with identical protection

attribu tes. These pages are marked for the hard

ware by a flag in the PTE.

Given granu larity h ints, near-zero TB miss rates

for the kernel became attainable. To this end, we

enhanced the kernel loading mechanisms to create

and use granularity hint regions.

The OpenVMS AXP kernel is made up of many

separate images, each of which contains several

regions of memory with varying protections. For

1 1 6

example, there is read-only code, read-only data,

and read-write data. Normally, a kernel image is

loaded virtua l l y contiguously and relocated so that

it can execute at any address. To take advantage of

granu larity hints, kernel code and data are loaded in

pieces and relocated to execute from discont igu
ous regions of memory. Only a very few TB entries

are actually used to map the entire nonpaged ker

nel, and the goa l of near-zero TB misses was

reached.

The benefits of granularity hints became im med i
ately obvious, and the mechanism has since been

expanded. Now, t he Open VMS AXP system a lso uses

the code region for user images and l i braries. This

feature extends the benefits not only to images sup

pl ied by the OpenVMS system, but to customer

applications and layered products as wel l . Of
course, usage of this feature is only reasonable for

images and l i braries used so frequently that the

permanent a l location of physical memory is

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

warranted. However, most applications are l ikely to
have such images, and the performance advantage
can be impressive.

1/0
Unlike the architectural changes, the new 1!0 archi
tecture structures an area that previously was

rather u ncontrolled. The project goal was to al low

more flexibility in defining hardware 1/0 systems
while presenting software with a consistent inter
face. These seem l ike contradictory aims, but both
must be met to build a range of competitive, high
performance hardware that can be supported with

a reasonable software effort.
The Alpha AXP architecture presents a number of

differences and chal lenges that impacted the
OpenVMS AXP I/O system. These changes spanned
areas from longword granularity to device control

and status register (CSR) access to how adapters

may be built .

CSR Access A fundamental element of I/0 is the

access of CSRs. On VAX systems, CSR access is
accompl ished as simply another memory reference
that is subject to a few restrictions. Alpha AXP sys

tems present a variety of CSR access models.
Early in the project, the concept of l/0 mailboxes

was developed as an a l ternative CSR access model.
The l/0 mai lbox is basically an al igned piece of
memory that describes the intended CSR access.
Instead of referencing CSRs by means of instruc

tions, an 1!0 mai l box is constructed and used as
a command packet to an 1!0 processor. The mail
box solves three problems: the mai l box al lows

access to an I/O address space larger than the
address space of the system; byte and word refer

ences may be specified; and the system bus is sim
pl ified by not having to accommodate CSR
references that may stall the bus. As systems get
faster, these bus stal ls are increasingly larger imped
iments to performance.

Mailboxes are the 110 access mechanism on

some, but not a l l , systems. To preserve investment
in driver software, the OpenVMS AXP operating
system implemented a number of routines that
a l low al l drivers to be coded as if CSRs were
accessed by a mailbox. Systems that do not support

mailbox 1/0 have routines that emulate the access.

These routines provide insulation from hardware
implementation detai ls at the cost of a s l ight perfor

mance impact. Drivers may be writ ten once and
used on a number of differing systems.

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

Porting OpenVMSfrom VAX to A!pha AXP

Read/Write Ordering An I/O device is simply
another processor, and the sharing of data is a
multiprocessing issue . Since the Alpha AXP archi

tecture does not provide strict read/write ordering,

a number of rules must be fo l lowed to prevent

incorrect behavior. One of the easiest changes is to
use the memory barrier instructions to force order

ing. Driver code was modified to insert memory
barriers where appropriate.

The devices and adapters must also fol low these
rules and enforce proper ordering in their interac
tions with the host. An example is the requirement
that an interrupt also act l ike a memory barrier in

providing ordering. In addition, the device must
ensure proper ordering for access to shared data

and direct memory access.

Kernel Pmcesses Another important way i n

which the A lpha AXP architecture d iffers from the
VAX architecture is the lack of an interrupt stack.

On VAX systems, the interrupt stack is a separate
stack for system context. With the new Alpha AXP
design, any system code must use the kernel stack
of the current process. Therefore, a process kernel
stack must be large enough for the process and for

any nested system activity. This burden is unreason
able. A second problem is that the VAX 110 sub
system depends on absolute stack control to
implement threads. As a result, most of the I/O code
is in MACR0-32, which is a compiled language on the
OpenVMS AXP system that does not provide abso
lute stack control.

These facts resulted in the creation of a kernel
threading package for system code at elevated inter
rupt priority levels. This package, called kernel pro
cesses, provides a set of routines that support a
private stack for any given thread of execution. The
routines include support for starting, terminating,

suspending, and resuming a thread of execution.
The private stack is m anaged and preserved

across the suspension with no special measures on
the part of the execution thread. Removing require
ments for absolute stack control will faci l itate the
introduction of high- level languages into the l/0
system.

Peiformance

As stated earl ier, the main purpose of the project

was to del iver the performance advantages of RISC
to OpenVMS appl ications. We adopted several

methods, including simulation, trace analysis, and a
variety of measurements, to track ancl improve

1 1 7

Alpha AXP Architecture and Systems

operating system and application performance.
This section presents data on the performance of
OpenViYIS services and on the SPEC Release 1 bench
mark suite . ' Note that a l l Alpha A.'\P results are

preliminary.

Performance of Open VMS Services

To evaluate the performance of the OpenVMS

system, we used a set of tests that measure the CPU
processing t ime of a range of OpenVMS services.

These tests are neither exhaustive nor representa

tive of any particu lar workload. We use relative CPU
speed (i .e . , VAX CPU time divided by Alpha AXP CPU

time) as a metric to truly compare CPU perfor
mance. For I/O-related services, a RANI disk was
usee! to eliminate 1/0 latencies.

The tests were run on a VAX system and an Alpha

A.,\:P system that are the same except for the CPU .
Table 1 shows the configuration details of the two
systems. Figure 2 shows the distribution of the rela
tive CPU speed for the OpenVMS services measured .

Most tests ran between 0.9 and 1 .7 times faster on
the Alpha AXP system than on the VAX system. Table
2 contains the results for a representative subset of
the measured Open VMS services.

Application Performance

Applications vary in their use of operating system

services. Most appl ications spend the majority of

35

30

UJ 25
f-UJ w
f- 20 lL
0
a:
� 1 5
::;:
::J
z 1 0

5

0

29
,-

,2Q.

fu

F
�

�
Jl..-!2-

�
7 �. r- II 2 tl o

0.7 0.8 0 .9 1 .0 1 . 1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7 1 .8 1 .9 2 .0 >2.0
R E LATIVE CPU SPEED

Notes:
1 . The relative CPU speed equals the CPU time on a VAX system

divided by the CPU time on an Alpha AXP system.
2. A relative CPU speed greater than 1 .0 implies that the Alpha AXP

system is faster.
3. The total number of tests is 1 98.

Figure 2 Distribution of Relative CPU Speed

for Open VMS Services

their time performing appl ication-specific work
and a small fraction of their t ime using operating
system services. For these applications, perfor
mance depends mainly on the performance of

hardware, compilers, and run- time libraries. We

Table 1 Config u ration Deta ils for OpenVMS Services Test Environment

Model number

Clock rate

Memory size

On-chip cache size

Backup cache size

Translation buffer

Page size

Number of reg isters

OpenVMS version

Key:
I I n struction
D Data
ITB I n struction translation buffer

DTB Data translation buffer

GPR General-pu rpose register

VAX System

VAX 7000 Model 61 0

91 MHz

64MB

1 KB virtual l-cache
8KB physical I- and
D-caches

4MB 1- and D-caches

96 entries

51 2 bytes

1 6 32-bit GPRs

Pre-release V5.5-2

Alpha AXP System

DEC 7000 Model 61 0

1 82 MHz

64MB

8KB physical 1-cache
8KB physical D-cache

4MB 1 - and D-caches

1 2 ITB entries
32 DTB entries

8KB

32 64-bit integer
32 64-bit floating-point

Pre-release V1 .0

1 18 Vol. 4 No. 4 SjJecial lssue 1992 Digital Techuical journal

Table 2 Relat ive CPU Speed for a Subset
of OpenVMS System Services
and Pri mit ives

OpenVMS System Service
or Primitive

Memory Management Services
Create virtual address space
Delete virtual address space
Expand address region
Page fault without 1/0

(soft page fault)

Log ical Name Services
Translate a log ical name

Event Flag Services
Set an event flag
Clear an event flag

Process Control Services
Create a process and

activate an image

F i le System Services
(Fi le on a RAM Disk)

F i le open
Fi le close
F i le create
F i le delete

Record Management System (RMS)
Services (F i le on a RAM Disk)

Get record from a sequential file
Put record i nto a sequential f i le

Relative
CPU Speed

1 .03
1 .44
1 .58

1 .05

1 .75

1 .45
1 .35

1 .1 7

1 .34
1 .21
1 .24
1 .31

0.98
0.96

Note that the relative CPU speed equals the CPU time on a VAX

system divided by the CPU t ime on an Alpha AXP system. A

relative CPU speed greater than 1 .0 implies that the Alpha A X P

system is faster.

used the SPEC Release 1 benchm arks as representa

tive of such appl ications. Ta ble � shows the details

of the VAX and Al pha AXP systems on wh ich the

SPEC Release 1 suite was run, ancl Ta ble 4 contains

the res u l ts. The SP ECmark89 comparison shows

that the OpenWviS AXP system outperforms the
Open VMS VAX system by a factor of 3.59.

The performance of OpenVMS services and the
SPECmark results are consistent with other stud ies
of how operating system primi tives and SPECmark

resul ts scale between CJSC and RISC _r. Overa l l , the
resu lts are very encouraging for a first-version
prod uct in which redesigns were pu rposely l imited

to meet an aggressive sched u le.

Conclusions

Some OpenVMS VA X featu res such as symmetric

multiprocessing and VJV!Scl uster support were

Digital Technical journal Vol. 4 No 4 .SiJecial lssue 1992

Porting OpenVMS from VAX to Alpha AXP

deferred from the first version of the Open VMS AXP
system. Beyond this, we anticipate taking signifi
cant steps to better exploit the hardware architec

ture, including evolving to a true 64-bit operating

system in a staged fashion. Also, detai led analysis of

performance results shows the need to alter inter

nal designs to better match RISC archi tecture.
Fina l ly, a gradua l replacement of VAX MACR0-32

source with a h igh-level language is essential to sup

port a 64-bit virtual address space and is an im por

tant element fo r increasing performance.

The OpenVMS AXP system clearly demonstrates
the viabi l i ty of making dramatic cha nges in the

fu ndamental assumptions of a mature o perat

ing system whi le preserving the i nvestment
in software layered on the syste m. The future

chal lenge is to continue operating system evolu

tion in order to provide more capab i l ities to ap pl i

cations while maintaining that essentia l level of

compatibil ity.

Acknawledgments

The work described i n this paper was done by

mem bers of the OpenVMS AXP operating system

group. This work wou ld have been impossible with
out the help of many software and hardware engi

neering groups at Digital . Thanks to Brad ley

\Vaters, who measu red OpenVMS performance, and

to John Shakshober and Sandeep Desh mukh, who

obtai ned the SPEC Release 1 benchm ark results. We
a lso thank Barbara A . Heath and Kathleen D. Morse

for their comments, which helped in preparing this
paper.

References

1 . R . Sites, "Al pha AXP Arch itecture," Digital Tech

nical journal, vol. 4, no. 4 (1992, this issue):

19- 34 .

2. D. Bhandarkar and D. Clark, " Performance from
Archi tecture : Comparing a !USC and a CJSC with
Similar Hardware Organization," Proceedings nf

the Fourth Inte-rnational Conference on Archi

tecture Support for Prog-ramming Languages

and Opemting Systems (ASPLOS-!V) (New York,

NY: The Association for Com puting Machinery,

1991) : 310-319.

3. T Leonard , eel . , VA X Architecture Refe-rence

Manual (Bedford , MA: Digital Press, 1987).

1 1 9

Alpha AXP Architecture and Systems

Table 3 Configuration Details for the SPEC Release 1 Benchmark Test Environment

VAX System Alpha AXP System

Hardware

Model number

Clock rate

VAX 7000 Model 61 0

91 MHz

DEC 7000 Model 61 0

1 82 MHz

Backup cache size

Memory size

4MB 1 - and D-caches

1 28MB

4MB 1- and D-caches

256MB

Software

Operating system and version

Compi lers and version

OpenVMS V5.5-2 F ield Test

VAX C V3.2

OpenVMS V1 .0

Pre-release C compiler
Pre-release FORTRAN compi ler VAX FORTRAN V5.7

with HPO V1 .3
(h igh-performance option)

Other software KAP V1 .0 for VAX C KAPF/KAPC V1 .49 native
KAP for Alpha AXP systems

Key:

I I nstruction

D Data

and FORTRAN

Note that DECram, a memory-resident d isk device, was used to create and manage memory-resident disks.

Table 4 SPEC Release 1 Benchma rk Results

VAX 7000 DEC 7000
SPEC Benchmark Model 610 Model 61 0 Relative
Name and Number SPECratio SPECratio Performance

001 .gcc 34.9 67.5 1 .93
008.espresso 28.8 94.7 3.29
01 3.spice 2g6 30.9 87.7 2.84
01 5.doduc 42.1 1 26.3 3.00
020.nasa7 67.2 293.0 4.36
022. 1 i 34.7 1 00.2 2.89
023.eqntott 38.4 1 27.6 3.32
030.matrix300 1 38.8 1 21 9.7 8.79
042.fpppp 48.8 1 93.8 3.97
047.tomcatv 61 .6 276.5 4.49

SPECint89 34.0 95.1 2.80
SPECfp89 57.6 244.2 4.24
SPECmark89 46.6 1 67.4 3.59

Note that relative performance represents the ratio of DEC 7000 Model 6 1 0 performance to VAX 7000 Model 610 performance.

4. Open VlHS Calling Standard (Maynard, MA:

Digital. Equipment Corporation, OctOber 1992).

5. Spec Newsletter, vol. 4, no. 1 (March 1992).

6. T. Anderson, H. Levy, B. Bershad, and E.

Lazowska, "The Interaction of Architecture and
Operating System Design," Proceedings of the

Fourth International Conference on Architec

ture Support for Programming Languages and

Operating Systems (ASPLOS-IV) (New York, NY:
The Association for Computing Machinery,
1991): 108-120.

1 20

General References

R. Goldenberg and S. Saravanan, V1HS for Alpha Plat

forms Internals and Data Structures, Preliminary
edition of vols. 1 a nd 2 (Maynard, MA: D igital Press,

1993, forthcoming).

]. Hennessy and D. Patterson, Computer Architec

ture, A Quantitative Approach (San Mateo, CA:

Morgan Kaufmann Publ ishers, Inc . , 1990).

R. Sites, ed . , Alpha Architecture Reference Manual

(Bu rl ington, MA: Digital Press. 1992).

Vol. 4 No. 4 Special Jssue 1992 D igital Technical]ourlutl

The GEM optimizing
Compiler System

David S. Blickstein
Peter W. Craig

Caroline S. Davidson
R. Neil Faiman,]r.

Kent D. Glossop
Richard B. Grove

Steven 0. Hobbs
William B. Noyce

The G'Eiii compiler system is the technology Digital is using to build state-of the-art

compiler products for a variety of languages and hardware/software platforms.

Portable, modular sojtware components with careful�)' specified interfaces simplify

the engineering of diverse compilers. A single optimize1; independent of the lan

guage and the target platjonn, transforms the intermediate language generated by

the front end into a semantical�v equivalent form that executes faster on the target

machine. The G'EM system supports a range of languages and has been successjul�Ji

retargeted and rebosted for the Alpha AXP and i\lllPS architectures and for several

operating environments.

In the past, Digital has made major investments
in optimizing compi lers that were specifically
directed at one hardware platform , namely VAX
compu ters. When Digital began broadening its
hardware offerings to include reduced instruction
set computer (JUSC) architectures, it became clear
that new optimization technology was needed, as
wel l as a new strategy for leveraging investments in
compiler technology across an increasing number
of hardware platforms.

This paper presents a tech nical description of
the GEM compiler technology that Digital uses to
generate compiler products for a wide range of
hardware and software combinations. We begin
with an explanation of the GE!YI strategy of leverag
ing investments by using portable, modu lar soft
ware components to build compiler products. The
bulk of the paper describes the GEM optimizer and
code generator technologies, with a focus on how
they address challenges posed by the Alpha AXP
architecture.1 We then move to a discussion of com
pi ler engineering and conclude with an overview
of some planned enhancements to the software.

GEM Compiler Architecture

Because of the m any hardware platforms available ,
often with multiple operating systems and a variety

of languages offeree! on those platforms, bui lding a
compiler from scratch for each combination is no
longer feasible. To simpl ify the engineering of

Digital Tee/m ica/ journal Vol. 4 No. 4 Special Issue 19')2

diverse compilers, GE!'vl compiler products share a
basic architecture. The compiler is d ivided into sev
eral major components, in effect, the fundamental
build ing blocks from which a compiler is con
structed. The interfaces among these components
are carefu l ly specified. The maj or components of a
GEM compiler are the front end, the optimizer, the
code generator, and the compiler shell . The logical
division of GEM components and the range of GEM
support is shown i n Figure l . Note that the bast is
the computer on which the compiler runs, a nd the
target is the computer on which the generated
object runs.

The front end performs lexical ana lysis and pars
ing of the source program. The primary outputs are
intermediate language (IL) graphs and symbol
tables, which are both standardized. In an IL graph,
each node, referred to as a tuple, represents an
operation. Front ends for all source languages
translate to the single standard IL. All l anguage-spe
cific code is encapsu lated in the front end . All
knowledge of the source language is communi
cated in the IL or through callbacks to the front end .
Knowledge of the target hardware is represented in
tables and in a minimal amount of conditional code.

The optimizer transforms the !L generated by the

front end into a semantical ly equ ivalent form that

wil l execute faster on the target machine. A signifi
cant tech nical ach ievement is that a single opti
mizer is used for a l l languages and target platforms.

1 2 1

Alpha AXP Architecture and Systems

FRONT END SHELL CODE GENE RATOR

HOST TARGET
LANGUAGES
Ada

OPERATING SYSTEM HOST CPU OPERATING SYSTEM TARGET CPU
Open VMS Alpha AXP OpenVMS Alpha AXP

BLISS OSF/1 MIPS OSF/1 MIPS
c ULTRIX VAX ULTRIX Others
C++ Windows NT Windows NT
COBOL
Fortran
Pascal
PU1 OPTIMIZER
Opal

Figure 1 GEil!f Components and Supported CPUs, Operating Systems, and Languages

The code generator translates t he J L into a l ist of

code cells, each of wllich represents one m achine

instruction for the target hardware. Virtu al ly all the

target machine instruction-specific code is encap

su lated in the code generator.

The shell is a collection of common com pil er

fu nctions such as l isting generators, object fi le

emitters, and command l ine processors. Basically,
the shell is a portable in terface to the external envi

ronment in which the compi ler is used . This in ter

face a l lows the other components to remain

independent of the operati ng system.
There are nu merous benefits to th is modular

approach:

• Adding a new feature to a common component

enhances many products.

• Source language com patibi l ity is ensured among

a l l compi lers that use the same front end .

• Standard ized interfaces enable us to plug in a
new front end to bui ld a compiler for a new lan

guage, or a new shel l to a l low the comp i le r to
run on a new host.

• When a new language is added, it can be offered
quickly on many platforms.

• When a new target CP or operating system is

supported, many l anguages are im med iately

avai l able to that target.

Order of Processing
When compi l ing a program, the overa l l order of pro

cessing must be carefu l ly arranged so that each com

ponent of t he compiler can see a large portion of the

program at one time. When processing one portion

1 2 2

o f a program , certain information about other rele

vant parts of the source program can be useful .

Figure 2 i l l ustrates t he overa l l process of compil

i ng a progra m . Since G E.vl compi lers include i nter

procedural optim izations, as much of the program

as possible should be presented to the optim izer at

t he same t ime. For this reason, GE.vl compi lers

a l low the user to process mu lt iple sou rce files in a
single compi lat ion. The fro nt end parses these

source files and constructs the symbol table and a

compact fo rm of I L i n memory before i nvok ing the

G E.vl back end. The portion of the user's program

thus compi led is cal led a compilation unit .

The G EM back-end in terprocedu ral optim ization
phase is the first to operate on the program . This

phase a nalyzes the rou t i nes with in a compi lation

unit to develop a cal l graph that shows which

routines might call which other rou t ines.

lnterprocedural optimizations are appl ied to the

rou ti nes as a group.

Next, the global optim izer and the code genera

tor process each rout ine in a bottom-up order,

resul ting in a translation of the program to code

cel ls that represent operations at machine level .
This bottom-up order is conven ient fo r certa in opti

m izations, as discussed in the Optimization section.
The first action of the gl oba l optimizer is to trans
late the rou tine's II. from the compact form pro

vided by the front end to an expanded form used by

the optim izer and the code generato r. Since only

one rou tine at a t ime is stored in expanded fo rm, a

much larger data structu re can be used to store the

resu l ts of the opt imizer analysis. The expansion

from compact fo rm also expands certa in shorthand

forms, which are conven ient for a fro nt end, into

exp l icit operations in the expanded II . , much l i ke a

macro expansion faci l i ty in a source language.

ViJI. 4 No. -1 .\jJecial lssue 19')1 D igital Technical jo urnal

The GEM Optimizing Compiler System

SOURCE PROGRAM

•
FRONT E N D SCAN N E R

PARS ER
SEMANTIC PROCESSING 1 SYMBOL TABLE

COMPACT INTERM EDIATE LANGUAGE

INTER PROCEDURAL I N L I N I N G OPTIMIZATION

GLOBAL
OPTIMIZATION

CODE
GENERATION

I NSTRUCTION
PROCESSING

OBJECT MODULE
CONSTRUCTION

COMPI LATION ORDE RING 1 SYMBOL TABLE
COMPACT INTERM EDIATE LANGUAGE

INTERME DIATE LANGUAGE EXPANSION
FLOW GRAPH R E DUCTION
LOOP U N ROLLING
COMMON SUBEXP R ESSION
CODE MOTION
VALUE AND CONSTANT PROPAGATION
STRENGTH R EDUCTION
TEST REPLACEMENT
SPLIT LIFETIME ANALYSIS ! SYMBOL TABLE

EXPANDED INTERME �ATE LANGUAGE

CODE SELECTION
I NTERMEDIATE LANGUAGE SCHEDULING
REG ISTER HISTORY
REGISTER ALLOCATION
CODE E M I SSION
STORAGE ALLOCATION ! SYMBOL TABLE

CODE CELLS

PEEPHOLI NG
CODE SCHEDULING
BRANCH/JUMP R E SOLUTION ! SYMBOL TABLE

CODE C E LLS

�
OBJECT MODULE

COMPILER SHELL
A N D UTILITIES

FILE 1/0 SUPPORT
MESSAG I N G
CO MPILER DEBUGGING TOOLS
LOCATOR PACKAGE
COMMAND PROCESSING
LISTING GENERATION
MEMORY MANAGEMENT

Figure 2 GEM Compiler Order of Processing

Once a l l the routines have been p rocessed by
the global optimizer and the code generator, a
complete description of the program is available at
the machine instruction level. Certain machine
specific optimizations, such as peephole opti-

mizations and instruction sched u l ing, are per
formed on this program descript ion . Final ly, the
optimized machine instructions are converted to
the appropriate object l anguage for the target oper
ating system .

D igital Technical jounwl Vol. 4 No. 4 Special Issue 1992 1 23

Alpha AXP Architecture and Systems

Optimization

The GEM compiler system 's optimizer is state-of
the-art and independent of the language and the tar
get platform. The input to the optimizer is the I l
and symbol table for mult iple routines; the output
is the semantical ly equivaJent Il and symbol table,
both modified to run faster on the target platform.

GEM optimizations include i nterprocedural opti
mizations, modern optimizations for superscalar
!USC architectu res such as the Alpha A.XP archi
tecture, plus a robust implementation of the classi
cal global optimizations. In addition , GEM's code
generator includes a number of optimization fea
tures that help it produce extremely high local code
quality.

Design Principles
Certain general design approaches or principles
were appl ied throughout the optimizer. For
instance, choices had to be made in the design of
the TL; the front end cou ld either provide a higher
level descript ion of program features or rely on the
back end to derive the h igher-level description
from an analysis of a lower-level description. In
cases where accurate, wel l-definecl algorithms for
deriving those higher-level features exist, GEM

chooses to derive the descriptions.
Describing source code loops is a key example of

the implementation of this design principle. Most
source languages have expl icit syntax for writ ing
loops, and the front end could translate these lan
guages into a higher-level ll that designates those
loops. Instead, GEM uses a lower-level lL with primi
tives such as condi tional branch and label opera
tors. The advantage of this approach is that C�EM

recognizes all loops, even those constructed with
GOTO statements.

A general design approach that emerged from
experience gained during the GEM project is the
use of enabl ing or expanding transformations to
suppon fundamental optimizations. Often, repre
senting operations in the IL in a way that h ides cer
tain impl icit operations is a compact and efficient
approach. However at t imes, m aking these implici t
operations expl icit al lows a particular optimization
routine to operate on them . A good solution to this
problem is to in itial ly represent the operat ions in
the TL in the compact form. Then, before applying
optimizations that could benefit from seeing the
implicit operations, apply expanding transforma
tions to convert the !L into a longer form in which
all operations are explicit.

1 24

Out of concern for the t ime required to compile
large programs, GEM also establ ished the design
principle that the order of complexity as a function
of the number of IL operations should be as close to
linear as possible.

Data Access Model and
Side Effects Interface
Since GEM compilers translate al l source languages
to a common I L and symbol table format, the
semantics of these languages must be specified
precisely. Many optimizations require an exact
understanding of which symbols are being written
or read by operations in the IL, and which opera
tions might affect the results compu ted by other
operations.

The GEM team developed a detailed specification
known as the data access model, which defines
those operations that can write to memory and
those that can read from memory. Each of these
memory-accessing operations can exp l icitly desig
nate the symbol being accessed when it is known.
The model a lso requires the fron t end to specify
when symbols may be a l iased with parameters and
when they may be pointer aliased. A pointer
al iased symbol may be accessed through pointers
or other operations that do not specify the symbol
that they access.

The model can ind icate that the pointer-al iased
property is derivable, i . e . , a symbol is pointer
al iased only if an operation that stores its address is
present in the IL. A special !L operator marks such
operations. When the derivation of this property is
deferred , the optimizer can avoi d marking symbols
pointer a l iased.

The data access model provides a standard way
for a front end to indicate how ! L operations affect
or depend upon symbols. However, some front
ends can provide addit ional language-specific dis
crimination of operations that cannot be allowed to
interfere with one another. For example, a strongly
typed language l ike Pascal m ay stipulate that an
assignment to a floating-point target must refer to
different storage than an integer read, even when
the assignment target is accessed indirectly through
a pointer.

To represent language-specific rules while adher
ing to the philosophy that the back end should have
no knowledge of the source language, GEM compil
ers employ a unique interface with the fron t end,
cal led the side effects interface. The front end pro
vides a set of procedures that GEM can cal l during

Vol. 4 No. 4 Special Issue 19')2 Digital Technical journal

optimization to ask which IL operations have side
effects and which IL operations depend upon those
side effects.

Jnterprocedural Optimization

GEM's interprocedural optimization phase starts

by wal king over the IL for all rou tines to build

the call graph. The cal l graph is a directed multi

graph in which the nodes are rout ines, and the
edges are cal ls from one rout i ne to another. The
graph is not a tree because recursion is allowed .
A special virtual routine node represents a l l
unknown routines that m ight c a l l o r b e cal led by
a routine in this compilation.

GEM wa l ks the graph to determine which local

symbols that are potentia l targets of up- level access
are actua l ly referenced in a cal led routine. When
up- level references do occur, GEM can also deter

mine the most efficient way to pass that context
from the routine that declares the variable to the
rou tine that references it.

On the same wal k , GEM analyzes the use of sym
bols whose pointer-a l iased property is derivable. If
operations that store the address of such a symbol

are present, then the symbol is marked as pointer
a l iased . The front end's ind icat ion is also retained
so that this analysis can be repeated after address
storing operations are el iminated.

The most significant interprocedural optim iza

tion that GEM performs is procedu re i n l ining.

Inl i n ing is a we l l - known method for reducing
procedure call overhead and for increasing the
effectiveness of global optimizations by en larging
the scope of the operations seen at one time.

In l ining has add i tional benefits on superscalar
RISC architectures, l ike the Alpha AXP system,
because the optimization al lows the compiler to

schedule the instru ct ions of the two rout ines

together.
GEM's inl iner reviews a l l ca l ls in the cal l graph

and uses heuristic algorithms to determine which
cal ls should be in l ined for maximum speed withou t
unreasonable increases in code size or compilation
time. The heuristics consider the nu mber and kind
of IL operations, the number of symbols referenced,
and the kinds of optimization that wou ld l i kely be
enabled or disabled by in l ining.

When cal lers pass constants as actual parame
ters, better optimization is l i kely to resul t from

inlining because the corresponding formal parame
ter w i l l have a known constant value. On the other
hand, when two sections of the same array are

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

The GEM Optimizing Compiler System

passed as argu ments, and the corresponding for
mals are described as not al iased with one another,
el i minating the formal parameters through inl ining
discards valuable al ias information 2 '

Also. the order i n which inl ining decisions are
made can be important. In a chain of calls in which

A calls B and B calls C, the call from A to B might be

the most desirable i n l ining candidate. However, if

the call from B to C is inl ined first, the size of B may
increase, making it a less attractive cand idate for
inl ining into A. Consequent ly, GEM uses its heuris
tics to preevaluate all cal ls and then orders the calls
by desirabil ity. GEM inl ines the most desirable can

didate first, and then reeva luates the cal ler's prop

erties, possibly adjusting its position in the ordered
l ist .

I n many C programs, the address of a variable
(especially a struct) is passed to a called routine

that refers to the variable through a poi nter for
mal parameter. After i n l in ing, a symbol 's address

is stored in a pointer and ind irect references are
made through the pointer. Later, while optimizing

the rout ine, GEM's value propagation often eli m i
nates the pointer variable. Final ly, when one or
more poin ter-storing operations have been el imi-
11ated , GEM reeva luates the pointer-aliased prop

erty of derivable local symbols, and the variable that

was once passed by address is n o longer pointer
al iased.

After interproced ural analysis, the rou t ines of the

user's program pass through the optimizer and

code generator one at a time. GEM's interproced ural
phase chooses a bot tom-up rou ti ne order in the cal l
graph. Except for recursive cycles, this order causes
GEM to generate the code for a cal led rout ine before
generating the cal ler's code. GEM takes advan tage of
this property by recording the scratch registers that

were actual ly used in a called rou tine and adjusting

register usage at its cal l sites.� GEM also determines
whether or not the cal led routine requires an argu
ment count.

Jnte,rmediate Language Peepholes

GEM uses a peephole optim izer to improve the IL In
addition to perform ing the many obvious simplifi

cations such as mult iplyi ng by one or add i ng zero,

the optimizer performs other tra nsformations.

I n teger division by a constant i s expanded i nto a
mu ltiply by a reciprocal operation, which can be

efficiently implemented with a UMULH i nstruction.
String operations on short fi.:xed-length strings are
converted into integer operations, to benefit from

1 25

Alpha AXP Architecture and Systems

various optimizations performed only on scalars.

Also, integer m u ltiply operations by a constant are

converted i nto an equivalent set of shift and add or

subtract operations.

IL peepholes sometimes expose new optimiza

tion opportunities by expanding complex opera

tions into more expl icit components. Also, other

optimizations such as value propagation may create

new opportunities to apply peepholes. To take

advantage of these opportunities, GEM compi lers

apply these IL peepholes m ultiple t imes du ring the

optimization of a routine.

Dataflow Analysis

In previous Digital compilers, the use of d ata-flow

analysis was l imited largely to the el imination of

common subexpressions (CSEs), value propaga

tions, and code motions. We generalized the data

flow analysis technique to pe rform a wider variety

of optim izations includ ing field merging, i nduction

variable detection, dead store e limination, base

binding, and strength reduction.

The process of detecting CSEs is divided i nto the
tasks of

• Knowing when two expressions would com

pute the same results given i dentical inputs.

Within GEM compilers, such expressions are said

to be formally equivalent.

• Verifying that the inpu ts to formally equivalent

subexpressions are always identical. Such

expressions are said to be value equivalent. This

verification is accomplished by using the side

effects mechanism .

• Determining when an expression dominates a

value equivalent expression.5 This information

guarantees that GEM will have compu ted the
dominating expression whenever the dominated

expression is needed .

Code motions introd uce tbe add itiona.l task of

finding those places in the flow graph to which an
expression could be legal ly moved such that

• The moved expression would be value equiva

lent to the original expression, and

• The moved expression would execute less often

than the original expression.

The fol lowing sections describe how GEM

detects base-bind i ng and strength- reduction candi

dates by substituting sl ightly different equivalence
functions.

1 26

Base Binding

On RlSC macl1incs, a variable in memory is refer

enced by loading the address into a base register and

then using indirect addressing through the base reg

ister. To reduce the number of address loads, sets of

variables that are closely a l located share base regis

ters. GEM considers two add ress expressions for

mally equivalent if they d iffer by an amount less than

the range of the hardware instruction offset field.

The CSE detection algorithm determines which

address expressions are formal ly equivalent and

thus can share a base register, and the code motion

algori thm moves the base register loads out of loops.

Induction Variables
Some of GEM's most valuable optimizations require

the identification of inductive expressions and

induction variables, which is done during data-flow

analysis. An expression i n a loop is inductive iJ its

value on a particular iteration is a linear function of

the trip count. The si mplest forms of indu ctive

expressions are the control variables of counted
loops. Expressions that are l inear functions of

induction variables are also inductive.

GEM's implementation of data-flow analysis uses

a technique for determining what variables are

mod ified between basic blocks in the flow graph 6 7

The variables mod ified between a basic block ami

i ts domi nator are represented as a set cal led the
IDEF set. The mapping from variables to set ele

ments is clone using the side effects interface.

The algorithm for detecting induction variables

starts by presuming that a l l variables modified i n

the loop are induction variable cancliclates. I t then

d isqualifies variables not redefined as a l inear func

tion of themselves with a coefficient equal to one.

The loops that GEM chooses to analyze have a loop

top that dom i nates all nodes within the loop. The
IDEF set for a loop top is exactly those variables that

are mod ified withi n the loop and thus se rves as the

starting value for the induction variable candidate
set, aga in using the side effects mapping of vari

ables to set elements. During the wal k of the loop,

whenever a d isqual ifying store is encountered, the

contents of the candid ate set are updated. Thus, at

the encl of the wal k, the remaining variables in the

set are known to be true induction variabJes.

Strength Reduction of Induction Variables
Strength reduction is the process of replacing an

expensive operation with a less expensive opera

tion. The most basic example of strength reduction

on i nduction is as follows:

Vol. 4 No. 4 Special issue 1992 Digital Tecl:micaljounwl

If the original source program was

D O 2 0 I = 1 , 1 0
2 0 P R I N T I * 4

strength reduction would reduce the mult iply to an
acid as fol lows:

I ' = 4
D O 2 0 I = 1 , 1 0
P R I N T I ' 2 0
I ' = I ' + 4

Note that the most com mon array references are
of the form A(I), which impl ies a multipl ication of
I by the stride of the array. Thus, strength reduction
yields a significant performance improvement i n
array-intensive compu tations.

To detect strength-reduction candidates, we
redefine formal and value equivalence as fol lows:

• Two inductive expressions are formal ly equiva
lent if, given identical inputs, they d iffer only by
a constant.

• Two forma l ly equivalent inductive expressions

are va lue equivalent if their inputs are value
equivalent or are direct references to induction
variables.

Thus, strength-reduction candidates appear
loop i nvariant, and two expressions that are value
equ iva lent can share a single strength reduction .
Code motion yields the ini tial value of the strength
reduction.

Split Lifetime Analysis
The GEM optimizer analyzes the usage of certain
variables to determine if the stores and fetches of a
variable can be partitioned, i .e . , spli t , into disjoint
variables or lifetimes.

For example, consider the following program
segment:

1 : v
2 : z

3 : v
4 : T

X * y

z * v

R + S
T + V

The references to V can be d iv ided into two d is
joint l ifetimes V' and V" without changing the
semantics of the program as in:

1 : V '
2 : z

3 : V "
4 : T

X * y

Z * V '

R + S
T + V "

V ' and V" can be treated as two completely
independent variables. This has several usefu l
applications.

Digital Technicaljoumal Vol. 4 No. 4 Special Issue 1992

The GEM Optimizing Compiler System

• V' and V ' ' can be assigned to different registers,
each with shorter l ifetimes than the original vari
able V The al locator can thus pack registers and
memory more tightly.

• V' and V' ' can be scheduled independently. For

example, the compu tation of Z in l ine 2 could be
scheduled after the redefinition of V in I ine 3.

• A l ifetime that begins with a fetch is an uninitial
ized variable. GEM issues a diagnostic in such cases.

• Any l ifetime with only stores is effectively
"dead ," and thus, the stores can be eliminated .

• When a l ifetime of an induction variable con
tains an equal number of stores and fetches, the
variable is used only to compute itsel f. Thus, the
whole l ifetime can be eliminated. This is cal led
induction variable e l imi nation .

• GEM uses spl i t l ifet ime information to optimize
the flushing and reloading of register variables
around rou tine cal ls.

• GEM uses split l ifet ime information to determine
what variables are potential ly referenced by
exception handlers.

• Lifetimes often need to be extended around loop
tops and loop bottoms. Split lifetime analysis has
fu l l information in many cases in which the code
generator's l ifetime computation must make
pessimistic assumptions. Thus, analyzed vari
ables are al located more efficient ly inside loops.

The technique GEM uses for spli t l ifetime analysis
is based on the VAX Fortran SPLIT phase 8 The tech
nique includes several extensions in t he areas of
induction variables, unselected variables (the origi
nal algorithm analyzed only a fixed number of vari
ables), and exception hand ling.

Code Generation

The GEM code generator matches code templates to
sections of IL trees.9 The code generator has a set of
approximately 600 code patterns and uses dynamic
programming to guide the selection of a least-cost
covering for each statement tree in the IL graph pro
duced by the global optimizer.

Each code pattern specifies a set of interpretive
code-generation actions to be appl ied if the tem
plate is selected . The code-generation actions cre
ate temporaries, determine their l ifetimes, al locate
registers and stack locations, and actually emit
sequences of i nstructions. These actions are
appl ied during the fol lowing fou r separate code
generation passes over the IL graph for a procedure:

1 27

Alpha AXP Architecture and Systems

• Context . Dur i ng t he con text pass, the code gen

erator creates data stru ctures that describe each

temporary variable. The i n formation com p u ted

i n c l udes the l i fe time, usage cou n ts, a mi a weight

sca led by loop depth.

• Register history. During the register h istory pass,

the code generator does a d o m i nator-order

wa lk of the f low graph to ident ify potent ia l

red u ndant loads of val ues that cou ld be ava i lable

in registers.

• Te m p name. During the temp name pass. the

code ge nerato r performs register a l location

u s i ng the l i fet ime and weight i n formation com

pu ted d u ring the con text pass. Tile code genera

tor also uses register history to al locate

temporaries that hold tht· same va l ue in the same

register. I f su ccessfu l , t h is action e l i m in a tes load

and m ove i nstructions.

• Code. D ur i ng the code pass, the code generator

emits in structions a nd code labels. The resul ting

code cel l s are an i n ternal represe ntat ion at the

assembly code leve l . Each code cel l c o n tains a

s i ngle target machine i nstruction. The code cel ls

have srecific registers a nd bound offsets from

base registers. References to labels in the code

stream are in a symbol i c form, pending fur ther

o p t i mization and f inal offset assignment after

i nstruction peephole optim i zat ion and instruc

t ion sche(l u l i ng.

Template Matching and Result Modes
Code tem p l ate enu meration and select i o n occurs

d u ring the con text pass The enu meration phase

scans IL nodes i n exec u t ion order (bot to m - u p) and

labels each nod e with a lternative p:Hterns a n d

costs. W h e n a root node s u c h as a store or branch

tuple is reached, t h e lowest- cost t e m plate for that

n ode i s selected . The selec t ion process is then

appl ied rec ur sively to the leaves fo r the e n t i re

tree . 10

The lL t ree pat tern of a code-generation template

consists of t<m r pieces of i n forma t i o n :

• A pattern tree t h a t describes t h e a rrangement of

II. nodes that can be coded by this templa te. The

i n terior nodes of the pattern tree are I L opera

tors; the leaves a re either res u l t m o de sets or I L

operators w i t h no operands.

• A predicate on the tree nodes of the pat tern. The

predicate must be true in orde r fo r the pattern ro
be applicable.

1 2H

• A resu l t mode that e ncodes t h e representat ion

of a va l ue comp uted by the template's generated

code.

• An i n teger that represen t s tbe cost of the code

generated by t his template.

The resu l t modes are a n enu m e r a t i o n of the dif

fe rent ways the com pi ler can represe n t a va l u e i n

t he machin e . 1 1 GEM compilers use the fol lowi ng

result modes:

• Sca lar, for a value, negated va l u e . and comple

me nted value

• Boolea n, h>r low-bit, high-bit, and nonzero values

• Fl ow, for a Boolean re pres e nted as control flow

• Resu l t modes for different sizes of i nteger l i terals

• Res u l t modes for delaye(i generati o n of address

ing calculations

• Res u l t modes i n dica t i ng that only a part of a

va lue has been materia.l ized, i . e . , the low byte, or

that the material ized value has used a lower-cost

s o l u t i on

As templates a re matched to portions of the IL
tree, each node is l abeled with a vector of possible

solu t ions. The vector is i ndexed by resu l t mode,

and the lowest-cost s o l u t i o n for each resu l t m ode is

reconled on the forward bot t o m - u p walk. When a

root node is encou ntered, the lowest -cost template

in i ts vector of solutions is chosen. This choice then

determi nes the requi red resu l t m ode and sol u tion

for each leaf of the pattern, recursively.

GEM Code Generator Action Language
The <; E.VJ code generator uses and extends methods

developed i n the BUSS compi lers, the Carnegie

Mellon Un iversity Prod uction - Q u a l i t y Comp i l e r

Com p i ler Project, and D igital 's VAX Pascal

compiler. 1 ! 1' One key CEM i n nova t i o n i s the use of

a forma l i zed action language to give a u nified

descrip t ion of a l l actions performed in the fou r

code-ge nera tion passes. The s a m e for m a l action

descript ions are interpreted by four differen t i nter

preters For example, the Al locate_TN action is

used ro a l locate long- l ived temporaries that m ay be

in a register or i n memory. This action creates a data

structure desc ribing the tem porary in the con text

pass, a l locates a register d ur ing the temp n ame

pass. and provides the actual temporary loca t i o n

for code emissi o n .

\iJI. 1 •\'o. 4 .\jJeci(f/ Issue 19'Jl D igital Techwical]ou rual

Tree-matching code generators were originally
developed for complex instruction set computer
(CISC) machi nes, like the PDP-11 and VAX compu t
ers. The technique is also an effective way to build
a retargetable compiler system for current RISC
architectures. The overa l l code-generation struc
ture and many of the actions are target indepen
dent. Some IL trees use simple, general code
patterns, whereas special cases use more elaborate
patterns and resu lt modes.

Register Allocation
GEM comp ilers use a simple l i near model to charac
terize register l ifetimes. The context, temp name,
and code passes process the basic blocks and the IL
nodes of each block in execution order. Each code
pattern has a certain number of l ifetime ticks to
represent points at which a temporary value is cre
ated or used . The I ifetime of a temporary is then the
interval defined by its starting l ifetime tick and end
ing l ifetime tick.

Simple expression temporaries have a l inear life
time conta ined within a basic block. User variables
and CSEs may requ ire that lifetimes be extended to
cover loop tops and loop bottoms. The optim izer
inserts special begin and end m arkers to delimit the
precise l ifetimes of variables created by the spli t
l ifet i me phase.

The code generator uses a nu mber of heu ristics
to a l locate registers to avoid copying. If a new
l ifetime begins at exactly the same t ick as another
l ifetime ends, this may ind icate that they should
share a register. Otherwise, the al locator uses a
round-robin allocation to avoid packing registers
too tightly, w h ich would inhibit schedul ing. The
Move_ Value action is used to copy one register to
another and provides a hint that the source and des
t ination should be al located to the same register.

Actual a l locat ion of registers and stack tempo
raries occurs in the temp name pass. The allocator
u ses a bin-packing techn ique to al locate each com
pi ler and user variable to a register or to memory. 14
The al locator first at tempts to assign variables to
registers: l ifetimes that confl ict cannot be assigned
to the same register. The al locator uses a density
function to control the process. A new candidate
can displace a previous variable that has a conflict
ing l ifetime if this action increases the density mea
sure. After the al location of temporaries to registers
is completed , any u nallocated or spilled tempo
raries are allocated to stack locations.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

The GEM Optimizing Compiler System

Scheduling
To take advantage of h igh i nstructio n-issue rates in
Alpha AXP systems, compilers must carefully sched
u le the object cod e, inte rleaving instructions from
several parts of the program being compiled.
Performing instruction schedu l ing only once after
registers have been al located places artificial con
straints on the ordering, as ill ustrated in the fo llow
ing code example:

L d q
s t q
L d q
s t q

r O , a (s p)
r O , b (s p)
r O , c (s p)
r O , d (s p)

C o p y a t o b

C o p y c t o d

I f the load of c and store of d were to use some
other register, the code could be rescheduled to
save three cycles on the DECchip 21064 processor,
as shown in the following code:

L d q
L d q
s t q
s t q

r O , a (s p)
r 1 , c (s p)
r O , b (s p)
r 1 , d (s p)

C o p y a t o b
; C o p y c t o d

On the other hand, scheduling only before regis
ter al location does not incorporate decisions made
by the code generator. Therefore , instruction
schedul i ng in GEM compil.ers occurs twice, before
and after registers are a l located. This practice is
fairly common in contemporary RISC compiler sys
tems. In most other systems, schedul ing is per
formed only on machine code. GEM has two
d ifferent schedu lers-one that schedules machine
code and one that schedules JL.

Intermediate Language Scheduling
IL scheduling i s performed one basic block at a
time. First, a forward pass over the block gathers
i nformation needed to control the schedu l ing, and
then a backward pass bu ilds the new ordered l ist of
tup les. During the forward p ass, the compiler
builds dependence edges to represent the neces
sary ordering relationships between pairs of tuples.
Tuples that wou ld require an excessive nu mber of
edges, such as CALL tuples, are considered markers.
No tuples can be reordered across a marker.

The compiler uses the data access model to
determine whether two memory-access tuples con
flict. Also, if two tuples have address operands with
the same value (using data-flow information) but
d ifferent offset attributes, the tuples must access
different memory. Thus, no dependence edge is
needed, and more reschedul ing is possible.

1 29

Alpha AXP Architecture and Systems

The general code for an expression tuple places
the resu lt into a compi ler-generated temporary,
and the general code for a store into a register vari
able moves the value from a temporary into the
variable. Many GEM code patterns for expression
tuples al low targeting, where the expression is
computed directly into the variable instead of i n to
a temporary. These code pat terns are valid only if
there are no fetches of the variable between the
expression tuple and the store operation. Similarly,
a fetch tuple need not generate any code (ca l l ed
virtual) , if no stores exist between the fetch and i ts
consumer. For example,

T = A - 1 ; A = 8 + 1 ; C

might generate the GEM Il

1 $: F E T C H (A)
2 $: S U B (1 $, [1])
3 $: F E T C H (B)
4 $: A D D (3 $, [1])
5 $: S T O R E (A , 4 $)
6 $: S T O R E < C , 2 $)

T . ,

Jn this example, SUB operates directly on the reg
ister a l located for A , and ADD targets its resu lt to the
register al located for A. The obvious dependence
edge is from FETCH(A) to STORE(A, . .) . However, IL
scheduling must be careful not to invalidate the
code patterns, which wou ld happen if it moved
FETCH(A) between A DD and STORE(A) or STORE(A)
between FETCH(A) and SUB. To ensure valid code
patterns, the first pass moves the head of depen
dence edges backward from targeted stores to the
expression tuple that does the targeting. Similarly,
the first pass moves the tail of dependence edges
forward from v irtual fetches to their consumers. In
this example, the edge runs from 2$ to 4$ and pre
vents either of the i l legal reorderings.

In addition to build ing dependence edges, the
first pass computes heuristics for each tuple, to be
used by the second, i . e . , schedu l i ng, pass. One
heuristic, the anticipated execu tion time (A ET),
estimates the earl iest time at which the tuple could
execute. The AET fo r tuple T is either the maximum
AET of any tuple that must precede T, or the
maximum AET plus the latency of T's operands. If
some of the tuples that m us t p recede T require the
same hardware resources, the AET may be opti
m istic. Nevertheless, the AET is a useful guide to the
schedul ing pass.

The first pass also compu tes the minimum
number of registers (separately for integer and
float ing-point registers) needed to evaluate the
subexpression rooted at a particular tuple. The

1 30

value of this heuristic is the Sethi-Ul lman number,
i .e . , the number of registers needed to evaluate the
subexpressions in the optimal order, keeping their
i ntermediate values, p lus the additional registers to
evalu ate the tuple itself. 1 ' If the second pass sched
u les tuples with a lower count later in the program,
the register usage wil l be kept low. Without such a
mechanism , schedu l i ng before register a l location
tends to cause excessive register pressure.

CSEs can be treated simi larly to su bexpressions i n
this computation, but with two compl ications. The
first pass cannot pred ict the last use of the CSE and
therefore treats each use as the last one. The sched
u ler ignores any register usage associated with CSEs
that are not both created and used within the block
being scheduled . This action a l lows t he register
al locator to place the CSEs in memory, if the sched
u led code has better uses for registers.

The second pass of the IL schedu ler works back
ward over the basic block . The schedu ler removes
all the tuples up to the last marker and makes avail
able those that have no dependence edges to tuples
that must fol low. The scheduler then selects an
available tuple and places i t in the schedu led out
put, u pdates the state of each modeled functional
unit , and makes available new tuples whose depen
dences are now satisfied. \V'hen the marker is
schedu led, the schedu ler continues to remove the
preceding group of tuples from the block until the
entire block has been scheduled.

The scheduler keeps track of the nu mber of
schedu led cycles and the esti mated num ber of live
registers. \Vhen choosing among tuples, the sched
u ler prefers one whose subtree can be evaluated
within the available registers, or, fai l ing that, one
whose subtree can be evaluated with the fewest
registers. When several tuples qualify, the sched
u ler chooses the one with the greatest AET.

Limit ing register pressure, wh ile not i mportant
for all programs, is important in blocks with a lot of
ava i lable parallel ism . With this feature, IL schedu l
i ng is a significant contributor to the h igh perfor
mance of GEM-comp iled programs.

Instruction Peepholing
After cocle has been generated or code cel ls have
been created directly, the instruction processing
phases are run as a group . Instruction peephol ing
performs a variety of localized transformations, typ·
ically by matching patterns of adjacent instructions
and rep lacing them with bet ter pat terns. From the
perspective of instruction schedul ing, the most

Vu/. 4 No. 4 Special Issue 1992 Digital Techn icaljounwl

in teresting fu nction of the instruction peepholer
is to perform a set of branch reductions. The peep
holer also replicates short sequences of code to
faci l itate instruction schedul ing and to el im inate
the instruction p ipeline effects of branches.

A control flow processing phase fol l ows the
instruction peephol ing phase. Currently, this phase
determines labels that are backward branch targets
for al ignment purposes. This action occurs before
instruction schedul ing, because instruction a l ign
ment is importa nt fo r the DECchip 2 1064 Alpha AX!'
processor, in which instructions must be al igned
on quadword boundaries to exploit dual i nstruc
tion issue. In the near future, the control flow pro
cessing phase wi l l col lect register inform a t ion for
each basic block to al low additional schedul ing
t ransformations.

Instruction Scheduling
The instruction sched uler is the next phase. At this
point, al l register binding and code mod ifications
other than branch/j ump reso l u tion have occurred .
The scheduler docs a forward walk over the basic
b.locks in each code section to determine the al ign
ment of the first instruction in each block.

For each basic block, the instruction scheduler
does two passes that are effect ively the inverse of
the passes that the IL sched uler performs, namely a
backward walk to determine instruction-ordering
requirements and path length to the end of the
block, and a forward pass that actually sched u les
the code.

The backward ordering pass uses an AET compu
tation similar to the one used by the IL schedu ler.
The instruction scheduler knows the actual instruc
t ions to be schedu led and has a more detailed
mach ine model. For the DECchip 21064 processor,
for example. the instruction sched uler has detai led
asymmetric bypassing informat ion and information
about mult iple issue. For architectures that have
branch clelay slots, the AET computation is biased
so that instructions l i kely to be able to fi ll branch
delay slots will occur i m mediately before branch
operations.

The forward schedu l ing pass does a cycle-by
cycle model of the machine, includ ing modeling
multiple issue. The reasons for choosing this
approach rather than an approach that ju st selects
an ordering of the instructions are as fol lows:

• For machi nes with significant issue l imitat ions,
e .g. , nonpipel ined fu nctional units or m u l tiple
issue pairing rules, packing the l imiting resource

D igital Teclmical]ournal Vol. 4 Nu. 4 Special Issue I'J92

The GEM Optimizing Compiler System

wel l is often preferable to obtaining a good sched
ule. A cycle model allows other instructions to
"float" into the no-issue slots, while a l lowing the
crit ical resource to be scheduled wel l.

• Modeling the machine al lows easy determination
of where stal ls are occurring, which in turn al lows
instruct ions from the cu rrent block or from suc
cessor blocks to be moved i nto no-issue slots.

• Model ing the machine in a fo rward direction
captures the fact that processors are typically
"greedy" and issue all the instructions that they
can issue at a given time.

• The cycle model al lows a variety of dumps,
which can be useful both to users of the com
piler system and to developers who are trying to
improve the performance of generated code.

The fo rward pass does a topological sort of the
instructions. The sched uler moves instructions that
have either a d irect dependence or an antidepen
dence (e.g . , register reuse) to a data structure
cal led the issuing ring fo r future issue.

The scheduler represents the instructions avail
able fo r issuing as a l ist of data structures known as
heaps, which are priority queues. Each heap on the
l ist contains instructions with a simi lar "s ignatu re."
For example, a heap might contain al I store inst ruc
ti ons. When looking for the next instruction to
issue, the scheduler examines the top instruction in
each heap. Within each heap, instructions are typi
cally ordered by their AET values, with occasional
sma l l biases for different instruction properties,
such as loads that may have a variable exec ution
time longer than the projected time.

The heaps are, in turn, ordered in the l ist accord
ing to how desirable it is that a particu lar heap's top
instruction be issued . Al l nonpipel ined instruction
heaps are first on the l i st, fol lowed by al l semi
pipe l ined heaps and, last, all fully pipel ined ones.
A semipipel ined resource may prevent particular
instructions from issuing in certain future cycles
but can issue every cycle. For example, stores on
some machi nes interact with l ater loads.

Instructions that use mult i ple resources are rep
resented in the heap ordering. For example, float
ing-point m u lt iplies on the MIPS R3000 machine
use both the multiplier and some of the same
resources as additions. As a resul t , the heap that
holds multiplies is al ways kept ahead of the heap
that holds adds. This ordering scheme works well
fo r both mach ines with a significant number of
nonpipelined units, such as the MIPS processors,

1 3 I

Alpha AXP Architecture and Systems

and machines that have largely pipelined functional
uni ts with only particular combinations of mu ltiple
issue al lowed, l ike the DECchip 2 1064 processors.

Note that, other than the architectu re-specific
compu tation fo r AET and per-processor imple
mentation data tables, the scheduler is completely
target i ndependent. For example, currently, proces
sor i mplementation tables exist for the MIPS R3000
and R4000 processors, the DECchip 21064 pro
cessor, and Alpha AXP processors that are u nder
development.

Field Merging Example

Generating efficient code for the extraction and
insertion of fields within records is particu larly
cha l lenging on ruse architectures, l ike Alpha AXP,

that provide only 32-bit (longworcl) or 64-bit (quad
word) memory operations.

Often, a program will fetch or store several fields
that are contained in the same longword. Without
optimization, each fetch would load the longword
from memory, and each store would both load and
store the longword. However, i t is possible to per
form a col lection of field fetches and stores with a
single load and store to memory. As another exam
ple, two bit tests within the same longword could
be done in paral lel as a mask operation .

In the IL generated by the fron t end, each field
operation is generated as a separate IL operation.
Thus, the real task of optim izing field accesses is to
identify IL operations that can be combined .

In the init ia l IL, a field fetch or store is repre
sented as an IL operator. The u nderlying problem is
that the redu ndant loads and stores are not visible
in this represenration. The first part of the solu tion
involves expanding the field fetch or store into

1 $: F E T C H X (R E C O R D , [Q J , [1])

2 $: F E T C H X (R E C O R D , [1 J , [1])

(a) Pre-field merging JL

1 $:
2 $:

3 $:
4 $:

F E T C H (R E C O R D)
E X T V (1 $, [O J , [1 J) ;

F E T C H (R E C D R D)
E X T V (1 $, [1] , [1 J) ;

(b) Post-field merging IL

lower-level operators. The IL generated by the front
end for two field extractions as shown in (a) of
Figure 3 is expanded into the IL shown in (b)
of Figure 3. With the loads exposed as fetches, data
flow ana lysis is now capable of finding the common
subexpressions of 1 $ and 3 $.

Simil arly, each field store expands into a fetch of
the backgrou nd longword, an insertion of the new
data into the proper position, and a store back.
Given two field stores, value propagation can elimi
nate the second fetch, and then dead-store el imina
tion can eli minate the first store.

In some cases, a program operates on the field
and thus el imi nates the extract and ins ert opera
tions. For example, the fol lowing example gener
ates the m achine code shown in Figure 4.

t y p e d e f s t r u c t n o d e {
c h a r n_ k i n d ;
c h a r n _ f l a g s ;

} N O D E ;

s t r u c t n o d e * x l _ c a r ;
s t r u c t n o d e * x l _ c d r ;

d e f i n e M A R K 1
d e f i n e L E F T 2

v o i d d e m o (p t r)
N O D E * p t r ;

{

}

w h i l e (p t r) {

}

i f (p t r - > n_ k i n d = = Q) {
p t r - > n _ f l a g s I = M A R K ;
p t r - > n _ f l a g s & = - L E F T ;

}
p t r = p t r - > x l _ c d r ;

The unopti mized code wou ld contain a load and
an extract for each reference to n_kind or n_flags,
plus an insert and a store fo r the latter two
references. The optimizer has el iminated two of the

F e t c h t h e # 1 (L o w - o r d e r) b i t
f r o m m e m o r y
F e t c h t h e # 2 b i t f r o m m e m o r y

F e t c h t h e L o n g w o r d
E x t r a c t t h e # 1 f r o m t h e L o n g w o r d

F e t c h t h e l o n g w o r d
E x t r a c t t h e # 2 f r o m t h e L o n g w o r d

Figure 3 Field Merging Example

132 Vol. 4 No. 4 Specia/ Jssue 1992 Digital Technical journal

d e m o : :

L $ 7 :

L $ 9 :

B E Q
N O P

L D L
A N D
B N E
M O V
B I S
M O V
A N D
S T L

L D L
B N E

L $ 5 :
R E T

p t r , L $ 5

R O , C R 1 6)
R O , 2 5 5 , R 1
R 1 , L $ 9
2 5 6 , R 1 7
R O , R 1 7 , R 1 7
- 5 1 3 , R 1
R 1 7 , R 1 , R 1 7
R 1 7 , C R 1 6)

p t r , 8 C R 1 6)
p t r , L $ 7

R 2 6

The GEM Optimizing Compiler System

L o a d n k i n d a n d n _ f l a g s
E x t r a c t n _ k i n d

S e t M A R K C i n p l a c e)

C l e a r L E F T C i n p l a c e)
S t o r e b a c k

Figure 4 Machine Code with Field Merging

three loads, two of the three extracts, both inserts,
and one of the two stores.

Branch Optimization Examples

Branch instructions can hurt the performance
of high-performance systems in several ways. In

addition to consuming space and causing time to be
expended while issuing the instruction, branches

can disrupt the hardware pipel ine. Also, branches
can inhibit optimizations such as code schedul ing.

Therefore, the GEM compiler system uses several
strategies to avoid branches in the IL and generated

code or to e1 iminate some bad effects of branch

instructions.
Some branches appear as part of a wel l-defined

pattern that need not inhibit opt imizations. G EM

uses special operators for these cases. A simple

example is the MAX function. For Alpha AXP sys
tems, MAX can be implemented using the CMOVx.x

instructions, avoid ing branch instructions entirely.
For other architectures, the main benefit is that the
branch does not appear in the IL. A more compl i
cated example involves the so-cal led " flow
Boolean" operators. Consider the C code example,

x = (p && * p) ? * y : * z ;

which generates the fol lowing G EM J L:

1 $: F E T C H C P)
2 $: N O N Z E R 0 (1 $)
3 $: A N D S K I P C 2 $)
4 $: F E T C H C 1 $)
5 $: N O N Z E R O C 4 $)
6 $: L A N D C C 3 $, 5 $)
7 $: S E L T H E N C 6 $)
8 $: F E T C H (Y)
9 $: F E T C H C 8 $)

Digital Technical journal Vol. 4 No. 4 Special issue 1992

1 0 $: S E L E L S E C 9 $)
1 1 $: F E T C H C Z)
1 2 $: F E T C H C 1 1 $)
1 3 $: S E L C C 7 $, 1 0 $, 1 2 $)
1 4 $: S T O R E C X , 1 3 $)

The ANOSKIP and LANDC tuples implement the
conditional-AND operator. If tuple 2$ is false, tuples
4$ and 5$ are skipped, and the resu lt of the LANDC

is false. Otherwise , the LANDC uses the resu lt of

tuple 5 $.

Similarly, the SELTHEN, SELELSE, and SELC tuples
implement the select operator. If tup.le 6$ is true,
then tuples 8$ and 9$ compute the result , and
tuples 1 1 $ and 12$ are skipped. I f tuple 6$ is fa lse,
then tuples 8$ and 9$ are skipped, and tuples 1 1 $
and 12$ compute the result .

These operators al low programs to represent
branching code within the standard basic-block
framework but require branches in the generated
code, to avoid undesired side effects of the skipped

tuples. In some cases, though, G EM can determine
that the skipped tuples have no side effects and then
converts the operators to an unconditional form,
a l lowing the generated code to be free of branches.

GEM performs other transformations on the IL to
eliminate branches and thus enable further opti
mizations. For example, GEM transforms

i f C e x p r) v a r = 1 ; e l s e v a r = 0 ;

into

v a r = C C e x p r) ! = 0)

Alpha AXP implementations typica lly incl ude a
branch prediction mechanism. Correctly predicted

1 33

Alpha AXP Architecture and Systems

branches take several cycles less t ime than mispre
d ictecl branches. The fastest cond itional branch is
one that is correctly predicted not to be taken. GEM

uses several strategies to arrange branches for best
performance .

GEM se lects an order for the basic blocks of a pro
gram that may differ from the order in the source

program. For each basic block that ends with an

u ncond itional branch, G EM places the target block
next, u n l ess that block has a l ready been placed.
Similarly, if a basic block within a loop ends with an
uncond itional branch, a target block within that
loop is placed next, if possi ble. For example,

w h i L e (- - i > 0) {

}

i f (a [i J ! = b [i J) r e t u r n a [i J - b [i J ;
a [i J = 0 ;

To el imi nate the u nconditional branch when the
loop i terates, GEM transforms the pretested loop
i nto a posttested loop. Since the return statement is
outside the loop, the generated code looks l ike

i f (- - i > 0)
d o {

i f (a [i J ! = b [i J) g o t o l a b e l ;
a [i J = 0 ;

} w h i l e (- - i > 0) ;

l a b e l : r e t u r n a [i J - b [i J ;

GEM can a lso u n ro l l l o ops ancl thus red uce the
number of times rhe branch back must be exe
cuted . More i mportant, GEM often a l lows opera
tions from different iterations to be scheduled

together. Unrol l ing by four transforms the above
loop into a cleanup loop and the main loop into
code rhar resembles

d o {
i f (a [i J ! = b [i J) g o t o L a b e l ;
a [i J = 0 ;
i f (a [i - 1] ! = b [i - 1]) g o t o L a b e l ;
a [i - 1] = 0 ;
i f (a [i - 2] 1 = b [i - 2]) g o t o l a b e l ;
a [i - 2] = 0 ;
i f (a [i - 3] ! = b [i - 3 J) g o t o l a b e l ;
a [i - 3 J = 0 ;

} w h i l e (i - = 4) ;

This code executes four fa l l -through branches
and one taken branch, whereas the origin a l code
executed fou r fal l-th rough branches and fou r taken
branches.

Certain code patterns generate code that is l i kely
not to be execu ted. For example, when the com
piler bel ieves that a 16-bit value in memory is apr ro
be naturally a l igned, but may be u n a l igned, i t gen
e rates the i nstructions shown i n Figure 5 to load
the value, given the address in rO. The code runs
quickly for the a l igned case, because the branch is
correctly pred icted to fal l through , bur gets the cor
rect value for unal ignecl data , as wel l . A similar code
pattern hand les stores.

Compiler Engineering

E ngineering compilers for a large combination of
languages and platforms requ ired a considerable
nu mber of innovations in the area of project engi
neering. I n this sectio n we describe some of the
project methods and tools GEM uses.

Opal Intermediate Language Compiler

The task of a GEM compiler is to translate a pro
gram presented by the front end in the for m of a n
IL graph a n d symbol table i nto machine code. I n
t h e early stages of GEM deve lopment, no front

3 - i n s t r u c t i o n i n l i n e s e q u e n c e i f a l i g n e d

2 0 $:

L d q _ u
e x t w l
b l b s

r 1 , (r 0)
r 1 , r O , r 1
r O , 1 0 $

o u t - o f - l i n e s e q u e n c e t o l o a d a n d m e r g e

1 0 $: L d q _ u r 2 8 , 1 (r 0)
e x t w h r 2 8 , r O , r 2 8
o r r 1 , r 2 8 , r 1
b r r 3 1 , 2 0 $

Figure 5 Potential�y Unaligned Load Code

1 :)4 Vol. 4 No. 4 5jJecial lssue 1992 Digital Tech11icaljourual

ends existed to generate I L graphs ami symbol
tables. To fi l l this requirement, a syntactic speci
fic;Jtion of t he IL and sym bol table was designed
and an IL assembler cal led Opal was built to com
p i l e this syntax. Opal uses GEM components such
as the shel l and thus supports a robust set of fea
tures inc l u d i ng l isting generation, object fi les,
include files, debug support, a nd language editor
d iagnostics.

Even with the ava i l abi l ity of front ends, Opal
remains a v i t a l project tool : i t a l lows G EM devel op
ers to exercise new features before front-end sup
port is ava i l able; front-end developers use Opal to
experiment with d ifferent IL alternatives; and the
Opa l syntax serves as the output format of the JL

dum per.

Attribute and Operator Signature Tables

G EM tables give a complete description of a l l GEM
data structures, i ncluding I L operators and symbol
table nodes. The operator signature table contains
the operator type, resu lt type, number of operands,
and lega l operand types for I L operators. The
attribute tables describe each component in a node
includ ing location, abstract GEM data type, legal val
ues, node type for pointers, and specia l print for
mats. When a new attribute is added to the G EM

specification, the attribute is described once in the
tables and automati ca l ly the Opal compiler under
stands the syntax and semantics, the GEM dump
u t i l i ty is able to dump the attribute, and the G EM
integrity checker is able to verify the structure.

Automatic KFOLD Builder

The G EM compiler needs to evaluate constant
expressions at comp i le t i me , wh ich is referred to as
constant fol d i ng. G E M 's i ntermediate l a nguage has

m any IL operators and data types. A constant folder
is thus a compl icated routine with m a ny cases, and
the compile-time and ru n-time results must be
identical.

After writing our first, i ncomplete, handcrafted
constant folder, we searched for a method to au to
mate the process. No source language supported a l l
the operators and data types o f the GEM !L. The key
insight was that there is one l a nguage in which I L

programs c a n be written precisely a n d ters e l y: the
c; EM IL i tself. S ince GEM a l ready embodies knowl
edge of the code sequences to evaluate every JL
operator, no other encoding is needed.

The a u tomatic KFOLD bui lder is a special ized
G E.vl comp i ler that uses the standard GEM back end

Digital Technical journal Vol. 4 No. 4 S[Jecial lssue 1992

Tbe GEM Optilnizing Cmnpiler System

but has a fron t end that compi l es only one program.
The KFOLD bu i lder scans the GEM operator signa
ture table and constructs a procedure that contains
a m any-way conditional branch to select a case
based o n the IL operator specified in the argument
l ist . Each case fetches operand values from the
argument l ist, appl ies the operator, a nd returns the
resul t . S ince most G EM I L tuples operate o n several
data types, additional subcases may be based on the
operator type o r resu l t type. We have already recov
ered the investment in deve loping t he automatic
KFOLD bui lder, a nd i t significantly eases the task of
retargeting GEM.

Conclusion

This p aper describes the current G EM compiler
system. However, a portable, optimi zing compi ler
provides many opportu n i ties that we have not yet
exploited. Some enhancements planned for fu ture
versions are:

• Additional I L operators and data types, to sup
port more languages

• Support for additional architecture and operat
i ng system combinations

• Dependence analysis, to enable some of the
fol lowing enhancements

• Loop transformations, to improve the use of the
memory hierarchy

• Software pipel i n i ng, to i ncrease para l lel ism in
vectorizable loops

• Better reordering of memory references duri ng
instruction sched u ling

• The sched u l i ng of instructions into d ifferent
basic blocks

• The relaxing of the l i near restriction on the
l i fetime model, i . e . , a l lowing holes in register
l ifetimes

The GEM compiler system has met demand i ng
techn ical and time- to-market goa ls. The system has
been success fu l ly retargeted and rehosted for the
Alpha AXP and MIPS architectures and several oper
ating enviro n ments. GEM supports a wide range of
l anguages and prov ides h igh levels of optimization

for each. The current version of G EM generates effi
cient code for Alpha AXP systems, and the imple
mentation is robust and flexible enough to support
future improvements.

1 35

Alpha AXP Architecture and Systems

Acknowledgments

The authors wish to acknowledge the contribu
tions of the fol lowing individuals to the design and
implementation of the GEM compilers: Ron
Brender, Patsy Griffin , Lucy Hamnett , Brian
Koblenz, Dennis Murphy, Bob Peterson, Paul
Winalski , Stan Whit lock (Fortran), Bevin Brett
(Ada), and Farokh Morshed (C).

References

I . R . Sites, ed . , Alpha Architecture Reference

Manual (Bur l ington , iVlA: Digital Press, 1992).

2. K. Cooper, M. Ha l l , and L. Torczon, "The Per
ils of Interprocedural Knowledge," Rice COMP
TR90-132 (1990).

3. K. Cooper, M. H a l l , and L. Torczon , " Unex
pected Side E ffects of I n l ine Substitu tion : A
Case Study," TOPIAS (March 1992): 22-32 .

4 . F Chow, " Minimizing Register Usage Penalty
at Procedure Cal l s," S!GPIAN '88 Conference

on Programming Language Design and

Implementation (June 1988): 85-94.

5. T. Lengauer and R. Tarjan, "A Fast Algorithm
for F i nding Dominators in a F lowgraph,"
TOPIAS, voJ . 1 , no. 1 (July 1979) : 121-141 .

6 .). Reif, " Symbol ic Interpretation in Almost Lin
ear Time," Conference Records of the Fifth

ACIH Symposium on Principles of Program

ming Languages (1978): 76-83.

7.). Reif and R. Tarjan, "Symbolic Program Anal
ysis in Almost-Linear Time," SIAI'vl journal of

Computing, vol . 1 1 , no . 1 (February 1981) :
81-93.

8. K. Harris and S. Hobbs, " VAX Fortran,"
Optimization in Compilers, ed . , F Al len,
B . Rosen, and F Zadek (New York, NY: ACM
Press, forthcoming).

9. R. Cattel l , " Formalization and Automatic
Derivation of Code Generators,'' Ph .D. thesis,
CMU-CS-78 -1 15, Carnegie-Mel lon University,
April 1978.

10. A. Aho and S. Johnson, "Optimal Code Gener
ation for Expression Trees," journal of the

AC!H, vol . 23, no. 3 (July 1976): 488-501.

1 1 . B . Leverett, " Register Allocation in Optimiz
ing Compilers," Ph .D. thesis, CMU-CS-81-103,
Carnegie-Mel lon University, February 1981 .

12 . W Wul f et a l . , The Design of an Optimizing

Compiler (New York, l\1Y: American Elsevier
Publishing Co. , 1975).

13 . B . Leverett et a l . , "An Overview of the Pro
duction-Qual i ty Compi ler-Compi ler Project,"
Computer; vol . 13, no. 8 (August 1980): 38-49.

14. R. Johnsson , "An Approach to Global Register
Al location,'' Ph .D. thesis, Carnegie-Mel lon
University, December 1975.

15. R. Sethi a nd). U l lman, "The Generation of
Optimal Code for Arithmetic Expressions,"

journal of the ACM, vol . 17, no. 4 (October,
1970): 715-728.

General Reference •

P Anklam et a l . , Engineering a Compiler (Bedford,
MA: Digital Press, 1982).

1 36 Vol. 4 No. 4 SjJecial fssue 1')92 Digital Technical journal

Binary Translation

Richard L. Sites
Anton Chernoff

Matthew B. Kirk
Maurice P. Marks
Scott G. Robinson

Binary translation is a technique used to change an executable program for one

computer architecture and operating system into an executable program for a eli/

ferent computer architecture and operating system. Two binary translators are

among the migration tools available for Alpha A XP computers: VEST translates

Open VMS VAX binary images to Open VMS AXP images; mx translates ULTRIX MIPS
images to DEC OSF/1 AXP images. In both cases, translated code usual�)' runs on

Alpha AXP computers as fast or Jaster than the original code runs on the original
l:lrchitecture. In contrast to other migration efforts in the industr)J, the VAX transla

tor reproduces subtle CISC behavior on a RJSC machine, and both open-ended trans

lators provide good petformance on c�ynamically modified programs. Alpha AXP
binary translators are important migration tools-hundreds of translated

Open VMS VAX and ULTRJX MIPS images currently run on Alpha AXP systems.

When D igital started to design the Alpha AXP archi
tecture in the fal l of 1988, the Alpha A)\.P team was
concerned about how to run existing VAX code a nd
soon- to-exist MIPS code on the new Alpha AXP com
puters. u To take ful l advantage of the performance
capabil ity of a new computer architecture, an appl i
cation must be ported by rebui ld ing, us ing native
compilers. For a single program written in a stan
dard programming language, this is a matter of
recompile and run. A complex software appl ication,
however, can be bu i lt from hundreds of source
p ieces using dozens of tools. A native port of such
an appl ication is possible only when a l l parts of the
build path are runn i ng on the new architecture.

Therefore, devising a way to run an existi ng (old
archi tecture) binary version of a complex applica
tion on a new architecture is an important interim
measure. Such a technique a l lows a user to get
appl ications up and running immediately, with
minimal porting effort. Once a user's everyday envi
ron ment is establ ished , appl ications can be rebui lt
over t ime, using handwritten native code or par
tially native and partially old code.

Background

Several techniques are used in the industry to run
the binary code of an old archi tecture on a new
archi tecture. Figure 1 shows fou r common tech
n iques, from slowest to fastest:

Digital Techuicaljourua/ Vol. 4 No. 4 !>jJecial lssue 1992

• Software interpreter (e .g . , Insignia Solutions'
SoftPC)

• M icrocoded emulator (e.g . , PDP-11 compatibil ity
mode in early VA,\: computers)

• Binary translator (e.g . , Hunter System's XDOS)

• Native compi ler

A software i nterpreter is a program that reads
i nstructions of the o ld architecture one at a t i me,
performing each operation in turn on a soft
ware-maintained version of the old architecture's
state. Interpreters are not very fast, but they run
on a wide variety of machines and can faithfu l ly

SLOWER

SOFTWARE
I NTERPRETER

M I C ROCODED
EMULATOR

BINARY
TRANSLATOR

FASTER

NATIVE
COMPILER

Figure 1 Common Techniques for Running Old

Code on New Computers

1 37

Alpha AXP Architecture and Systems

reproduce the behavior of self-modi fy ing pro
grams, programs that branch to data, programs that
branch to a checksum of themselves, etc. Cachi ng
interpreters gain speed by retaining preclecocled
forms of previously in terpretecl instruct ions.

A microcoded emu lator operates similarly to a
software interpreter but usual ly with some key
hardware assists to decode the old i nstru ctions
qu ickly and to hold hardware state i nformation in
registers of the micromachine. An emulator is typi
ca l ly faster than an interpreter but can run only on
a specific microcoded new machine. This technique
cannot be used to run existing code on a reduced
instruction set computer (RJSC) machine, since ruse
architectures do not have a microcoded hardware
layer u nderly ing the visible machine archi tecture.

A translated binary program is a sequence of
new-architecture i nstructions that reproduce the
behavior of an o ld-architecture program. Typical ly,
much of the state information of the old machine is
kept i n registers i n the new mach i ne . Translated
code fai thfu l ly reproduces the cal l ing standard ,
implicit state, instruction side effects, branch i ng
flow, a nd other artiJacts of the old machine.
Translated programs can be much faster than
interpreters or emulators, but slower than native
compiled programs.

Translators can be classified as either (1)
bounded translation systems, i n which a l l the
i nstructions of the old program must exist at trans
l a te time and m ust be found and translated to new
i nstructions, 1 '5 or (2) open-ended translation sys
tems, in which code may also be d iscovered, cre
ated, or modified at execution t ime. Bounded
systems usual ly require manual intervention to find
100 percent of the code; open-ended systems can
be fu l ly automatic.

To run exist ing VAX and MIPS programs, an open
ended system is absolutely necessary For example,
some customer programs write l icense-check code
(VAX instructions) to memory, and branch to that
code. A bounded system fails on such programs.

A native-compiled program is a sequence of new
architecture instructions produced by recompil ing
the program. Native-compi led programs usu a l ly
use newer, faster cal l ing conventions than old p ro
grams. With a wel l - tuned optimizing compiler,
native-compiled programs can be substant ia l ly
faster than any of the other choices.

Most large programs are not self-contained; they
cal l l ibrary routines, windowing services, data
bases, and tool kits, for example. These programs

also d irectly or ind irectly i nvoke operat ing system
services. In simple environments with a single dom
inant l ibrary, it can be sufficient to rewrite that
I i brary in native code and to i nterpret user pro
grams, particular ly user p rograms that actua l ly
spend most of their t ime in the I ibrary. This strategy
is commonly used to ru n Windows and Macintosh
programs under the UNIX operat ing system.

In more robust environmen ts, i t is not practical
to rewrite all the shared J ibraries by hand ; col lec
tions of dozens or even hundreds of i mages (such as
typical VAX ALL-IN-1 systems) must be run i n the old
environment, with an occasional excursion i nto the
native operat ing system. Over time, it is desirable to
rebui ld some images using a native compiler while
retain ing other images as translated code, and to
achieve interoperabi l i ty between these old and
new images. The interface between an old environ
ment and a new one typical ly consists of " jacket''
rout ines that receive a ca l l using o ld conventions
and data structures, reformat the parameters, per
form a native cal l using new conventions and data
structures, reformat the resu lt , and return.

The Alpha ;\.,'\P Migration Tools team considered
running old VAX binary programs on Alpha AXP
computers using a s imple software i nterpreter, but
rejected this method because the p e rformance
would be too s low to be usefu l . We a lso rejected
the idea of using some form of m icrocoded emula
tor. This technique wou ld compromise the perfor
mance of a native Alpha AXP imp lementation, and
VAX compatibi l i ty would be nearly impossible to
achieve without m icrocode, which is inconsistent
with a high-speed ruse design.

We therefore turned to open-ended binary trans
lat ion. We were aware of the earl ier Hew lett
Packard binary translator, but i ts s ingle- image HP
3000 input code looked much simpler to translate
than large collections of hand-coded VAX assembly
l anguage p rograms .G One member of the team
(R. Sites) wrote a VAX-to-VAX binary translator in
October 1988 as proof-of-concept. The concept
looked feasible, so we set the fol lowing ambitious
product goals:

1 . Open-ended (completely au tomatic) translation
of a lmost all user-mode appl ications from the
OpenVMS VA)(system to the OpenVMS AXP
system

2. Open-ended translat ion of a lmost a l l user-mode
applications from the ULTRIX system to the DEC
OSF/1 system

Hi/. 4 No. 4 Special issue 1992 D igital Teclmical journal

3. Run-time performance of translated code on
Alpha AXP computers that meets or exceeds the
performance of the original code on the original
architecture

4. Optional reproduction of subtle old-architecture
details, at the cost of run-time performance, e .g . ,
complex instruction set computer (CISC)
instruction atomicity for mul ti threaded app l ica
t ions and exact arithmetic traps for sophist i
cated error handlers

5. If translation is not possible, generation of
expl icit messages that give reasons and specify
what source changes are necessary

While we were creating the VA.'(translator, we
d iscovered that the process of bui lding flow graphs
of the code and tracking data dependencies yielded
i nformation about source code bugs, performa nce
bottlenecks, and dependencies on features not avail
able in al l Alpha A.."XP operating systems. This analy
sis information could be valuable to a source code
maintainer. Thus, we added one more product goal :

6 . Optional source analysis information

O L D B I NARY OPTIONAL
IMAGE INTERFACE

DESCRIPTIONS

I
I

TRAN SLATOR
(VEST/MX)

I

I
N EW BINARY IMAGE OPTIONAL
• OLD DATA LISTING
• OLD CODE AND ERROR
• NEW CODE MESSAGES

RUN· TIME
SUPPORT
(TIE/MX)

I

I

PROGRAM
LOADER

Binary Translation

To achieve these goals, the Alpha AXP M igration
Tools team created two binary translators: VEST,
which translates OpenVMS VAX binary images to
OpenVMS AXP images, and mx, which translates
ULTRIX MIPS i mages to DEC OSF/1 A.."XP i mages.
However, binary translation is only half the migra

tion process. As shown in Figure 2, the other half is
to bui ld a run-time environment in which to exe
cute the translated code. This second half of the
process must bridge any differences between old
and new operating systems, cal l ing standards,
exception hand l ing, etc. For open-ended transla
tion, this part of the process must also include a
way to run old code that was not d iscovered (or cl id
not exist) at translate t ime. The translated image
environment (TIE) and mxr run-time environment
support the VEST and mx translators, respectively,
by reproducing the old operating environments.
Each environment supports open-ended transla
tion by including a fal l back interpreter of old code,
and extensive run-t ime feedback to avoid using the
interpreter except for dynamical ly created code.
Our design philosophy is to do everything feasible
to stay out of the i n terpreter, rather than to increase
the speed of the interpreter. This approach gives

I
I l

OPTIONAL OPTIONAL
INTERFACE FLOW
DESC R I PTION GRAPHS

OTHER OTHER
TRANSLATED NATIVE
IMAGES I MAGES

I I
I

Figure 2 Binary Translation ana Execution Process

D igital Technical journal Vol. 4 No. 4 Special lssue 1992 1 39

Alpha AXP Architecture and Systems

better performa nce over a wider range of programs
than using pure i nterpreters or bounded transla
tion systems.

The re ma inder of this paper d iscusses the two
b inary translato r/ru n-time env ironment pairs avail
able fo r Al pha A.,'(P computers: V ESl/T I E ami
mx/mxr. To establ ish a basis fo r the d iscussion, the
reader must understand the fo llowing terms:
datum, al ignment, instruction atomicity, granular
i ty, interlocked update, and word tearing.
Definitions of these terms appear in the References
and Note section.-

VEST: Translating a VAX Image

Tra nslating a VAX image involves two main steps:
ana lyzing VA.,'{ code and generating Alpha AXP code.
The tr:111slated i mages produced are OpenVMS AXP
images and may be run just l i ke native im ages .><
Translated i mages run with the assistance of the
translated i mage environ ment, ·wh ich is discussed
later in this paper. The V EST bi nary translator is
written in C++ and runs on VAX , M I PS , and Alpha
AX!' machi nes. The TIE is writ ten in the OpenVi'viS
system programming languages. HLISS and Alpha
assembler.

Analysis
To locate VAX code, V EST starts disassembl ing code
at known entry points and recursively traces the
progra m's flow of control . Entry points come from
main and global routi nes, debug symbol table
entries, and optional information files (including
run-time feedback from the TJ E) .

A s VEST traces the program, i t bu i lds a f low graph
that consists of basic blocks (i .e . , straight - l ine code
sequences) annotated with information derived
from parsing instructions. VEST then performs sev
eral analyses on the flow graph to propagate con
text information to each basic block and el iminate
unnecessary operations. Context information
includes condit ion code usage, register contents,
stack depth, and a variety of other informat ion that
al lows VEST to generate optimized code.

Analysis is importan t for achieving good perfor
mance. For example, no condition codes exist in
the Alpha AXP architecture. Without ana lysis it
would be necessary to compute condition codes
fo r each VAX instruction even if the codes were not
used . F urthermore, several fo rms of an alysis were
invented to al low correct translation. For example,

VEST automatical ly determ i nes if a subroutine does
a normal return .

1 4 0

Code analysis c a n detect m a n y problems, includ
ing some that indicate latent bugs in the source
image. VEST can detect, for example, un in itial ized
variables, i m properly formed VAX CASE instruc
tio ns, stack depth mismatches along two different
paths to the same code (the program expects data
to be at a certain stack depth), i m properly formed
returns from subrouti nes, and modifications to a
VAX call frame. A latent bug in the source image
should be fixed , si nce the translated image may
demonstrate i ncorrect behavior clue to that bug.

Analysis also detects the use of unsu pported
OpenVMS features including unsupported system
services. The source image m u st be mod ified to
eliminate the use of these features.

Some problems reported by VEST resul t from
code that is hackish in nature. For example, we
found code that expects a cal l mask at an entry
point to be executed as a no-op i nstruction so that
the code preceding the subrou tine can simply exe
cute the call mask, rather than go through the over
head of a VAX jump (J.MP) i nstruct ion. VEST
reproduces the behavior of the VAX progra m, even
if this behavior is a result of luck.

A VEST-generated flow graph is d isplayed in
F igure) . Dashed J ines represent code paths fol
lowed if a conditio nal branch is taken. Solid l i nes
ind icate fall- through paths. A problem is high
l ighted by a wide, dashed pointer whose bottom
end indicates the basic block in wh ich the problem
was uncovered . Fu ll blocks show the path that
reveals the error; empty blocks show basic blocks
that are not in the error path. I n Figure 3. a path
exists by which register 3 (R3) may be used without
being set if the VA.,'< BNEQ (branch if the register
does not equal zero) instruction in the second basic
block is true the first t ime through the code
sequence.

Code Generation
The VEST translator generates code by convert ing
each VA.,'{ instruction in to zero or more Alpha AXP
instructions. The architecture mapping is straight
forward because there are more Alpha AXP registers
than VAX registers. The VAX architecture has only 15

registers, wh ich are usec.l for both floating-point
and i nteger operations. The Alpha A.,'<P architecture
has separate in teger and float ing-point registers.
VAX RO through R l4 are mapped to Alpha AXP RO
through R l4 for a l l operations except floating
point . R 12, R 13 , and R 14 reta in their VA.,'{ desig
nations as argu ment pointer, frame poin ter, and

Vol. 4 No. 4 Special issue 1992 Digital Tecbtlical jou r11al

- - - - - ==r I ..) .. il -
I "�H YSTONE ?roc�\ !1 1 � I � 1 . l ! (C arlr.t ' A ' l
I a�:�g ��063;!;
I · 0 C l 0C' 4 • "- u
I (• c : oco ' : MOV
I rog; g;�: r.. T-L I · ono l Oct 4 •

•
•

I I
I
I I
I
I
I
1 '>-,�, ,�-------���-----
1 OH ': .STO�lE r: -c :· � : 8
I \ 'lh l 11 I E:-Jt.lf'.l.oc -- : IJ•"1' !)
I ;�.� h l B�.ge
I . � . : ��"" . ' : . e_·:r.
I -----

()
Figure 3 VEST-generated Flow Graph Showing

Uninitialized Variable

stack pointer, and R15 is used to resolve PC-relative
references. Floating-point operations are mapped
to FO through F 14.

The VAX architecture has condition codes that
may be referenced exp l icitly. I n transl ated images,
condition codes are mapped i nto R22 and R23.
Similar to the HP 3000 translator, R23 is used as a
fast condition code register for posit ive/negative/
zero resu lts f' R22 contains a l l four condition code
bits and is calcu l ated only when necessary. Al l

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

Binmy Translation

remain ing Alpha AXP registers are used as scratch
registers or for Open VMS t'-"'< P sta ndard cal ls.

VEST connects simple branches directly to their
trans lated targets. VEST performs backward sym
bol ic execution of VAX instruct ions to resolve as
many computed branch targets as feas ible. If more
than one possible compu ted target exists, a ru n
time lookup is done on the VAX target address. If the
lookup fai l s to find a translated target, a fal l back
VAX interpreter is used, as described in the TIE sec
tion Fa ilure to Find Al l Code during Tran slation.
Unlike bounded translation systems, which must
achieve 100 percent resolution of compu ted tar
gets, the VEST and mx binary t ranslators require no
manual intervention.

Translated Images
A translated image has the same fo rmat as an
OpenVMS AXP image and contains the original
OpenVMS VAX image as well as the Alpha AXP
instructions that were generated for the VAX code.
The run-time VAX interpreter TIE needs t he original
VA,'< instructions as a fal l back. (Also, some error
hand lers look up the cal l stack fo r pointers to spe
cific VAX instructions.) The addresses of statical ly
a l located data i n the translated i m age are identical
to their VAX addresses. The image contains a VA.,'<-to
AJpha AXP address mapping table for use during
lookups and may contain an instruction atomicity
table, described in the VAX Jnstruction Guarantees
section.

Translated images use the OpenVMS VA,'< caU ing
standard . Native im ages use different conven tions,
but translated im ages i nteroperate with native or
translated shareable i mages. Automatic jacketing
services are provided in the TIE to convert calls
using one set of conventions into the other. In
many cases, jacketing services permit substi tution
of a nat ive shareable im age fo r a translated share
able image without mod ification. However, a jacket
rout ine is sometimes required. For example, on
OpenVMS AXP systems, the translated FORTRAN

run-time l ibrary, FORRTL_ TV, invokes the native
Alpha AXP l i brary DEC$FORRTL for I/O-related sub
rou tine calls. D EC$FORRTL has a different interface
than FORRTL has on an Op enVJVIS VAX system. For
these cal ls, FORRTL_ TV contains handwri tten jacket
rou tines.

Files Used
Translating an image requires only one file-a VAX
executable image. Several optional files make trans
lation more effective.

1 4 1

Alpha AXP Architecture and Systems

1 . Im age information fi les (I I Fs). VEST au tomati

c:l l ly c reates JJFs to provide information about

shareable image interfaces. The information

includes the addresses of entry points, names of

routines, and resource ut i l ization.

2 . Symbol information files (SIFs). VEST automati

ca l ly generates SIFs to control the g lobal symbol

table in a transla ted shared l ibrary, faci l itat ing

interoperation between translated and nat ive

images.

3 Hand-edi ted information fi les (HIFs) . The ·rtE

automat ica l ly generates HIFs, which may be

hand-edited to supply information that VEST can

nor cleuuce. HJFs contain d irectives to tel l VEST

about undetected entry points, to force it to

change specific assumptions about an image (l ur

ing t ranslation, a nd to provide known interface

properties to be propagated into an IIF .

VEST Performance Considerations
In evaluating translated code performance, we rec

ognized that there was a significant trade-off

between rerform ance and the accuracy of emu lat

ing the VAX architecture. VEST permits users to

select severa l architectu ral assumptions and opti

m izations, i ncluding:

• D-float precision . The Alph a AXP architecture

p rovides hardware support for D-float with only

53-bit mantissas, whereas the VAX archi tecture

provides 56-bit mant issas. The user may select

translation with either 53-bit hardware support

(faster) or 56-bit software support (slower).

• AI ignment . Alpha A,'(P instructions support only

natura l ly a l igned l ongword (32-bit) and quad

word (64-bit) memory operations. Unal igned
memory operations cause a l ignment fau l ts ,
wh ich are handkd transparen tly by software at

significa nt run-t ime expense. The user may
direct VEST to assume that data references are
unal igned whenever a l ignment information is

unavailable.

• Instruction atomicity. Mu ltitasking and mu lt i

processing programs may depend on instruction

atomicity and memory operation characterist ics

s imi lar to those of the VAX architecture. VEST

uses specia l code sequences to produce exact
VAX memory characteristics. VEST and the TIE

cooperate tO ensure VAX instruction atomicity

when instructed to do so. This mechanism is

1 4 2

described i n deta i l in the section Special

Considerations for Instruction Atom icity.

Untranslatable Images

Some characteristics make OpenVMS VAX images

untranslatable, inc luding:

• Exception handler issues. Images that depend

on examining the VAX processor status longworcl

(I'SL) during exception hand l ing m ust be modi

fied , because the VAX PSL is not ava i lable within

exception hand lers.

• Direct reference to undocumented system ser

v ices. Some software contains refe rences to
unsupported and undocumen ted system ser

v ices. such as an internal-to-VJ'v!S service, which

parses i mage symbol tables. VEST high l ights

these references.

• Exact VA,'(memory management requirements.

Images that depend on exact VAX memory man

agement behavior do not fu nction properly and

must be modified. These images include those

that depend on VAX page s ize or that expect

certain objects to be m apped to part icular

addresses.

• Image format. Programs that use i m ages as data

are not able to read OpenVJVIS AXP i mages wi th

out modifications, because the image formats

are different.

TIE Design Overview

The run-t ime translated image environment TIE

assists in executing translated Open VMS \1,\X images

under the Open VMS AXP operating system. Figure 4

and Table I show the contents of the TIE.

Problems Solved at Run Time
CompJications may occur when translated
OpenVMS VAX images are ru n u nder the OpenVMS
AXP operating system. This section discusses the

fo l lowing related topics: the fa i lure to find a l l code

du ring translation, VA,'< instruction guarantees,

instruction atomici ty, memory update, and preserv

ing VAX exceptions.

Failure to Find All Code during Translation

\'Vhen the VEST binary translator encounters a

branch or subroutine cal l to an u nknown destina
tion, VEST generates code to cal l one of the TIE

lookup rou t ines. The lookup routines map a VAX

Vvl. 4 No. 4 Special lssuf! /'}')2 D igital Technical journal

instruction address to a translated Alpha A.'\P code

address. If an address mapping exists, then a trans

fe r to the translated code is performed. Otherwise,

the VAX interpreter execu tes the destination code.

When the VAX i nterpreter encounters a flow of con

trol change, it checks for returns to translated code.

TRANSLATED
MAIN A N D NATIVE
SHAREABLE IMAGES
IMAGES

t
OPENVMS AXP

JACKETING EXCEPTION SYSTEM
I NTERFACE HANDLING CALLBACKS

t t +

t t t

JACKETING EXCEPTION SYSTEM
INTERFACE HANDLING SERVICES

EMULATION

t
II VAX STATE

MANAGER

VAX .._j L COMPLEX
INTERPRETER INSTRUCTIONS

Figure 4 VEST Run-time Environm.ent

Table 1 TI E Contents

VAX-to-Aipha AXP Address Mapping
(VAX State Manager)

VAX I nstruction Atomicity Control ler
(VAX State Manager)

VAX Instruction I nterpreter

VAX Complex I nstructions

OpenVMS VAX Exception Processing

Routines for Differences between OpenVMS
VAX and Open VMS AXP System Services

TIE

Binary Translation

I f t he target of the flow change is translated code,
the interpreter ex its to this code. Otherwise, the

i nterpreter continues to in terpret the target.

Lookup operations that transfer control to the

interpreter a lso record the starti ng VA.'\ code

address in an HJF fi le. The VAX i mage can then be

retranslated with the HIF i nformation, resu l t ing i n

a n image that runs faster.

Lookup routi nes are also used to cal l nat ive

Alpha AXP (nontranslated) rou t ines. The TIE sup

plies the required special aurojacketing processing

that a l lows i nteroperation between translated and

native routines with no manual i ntervention. At
load time, each translated im age identifies itself to

the TIE and supplies a mapping table used by the

lookup routines. The TIE mai ntains a cache of trans

l. ations to speed up the actual lookup processing.

Every translated image contains both the origi nal

VAX code and the corresponding Alpha AXP code.

\Vhen a translated image identifies itself, the TIE

marks i ts original VAX add resses with the page pro

tection cal led fault on execute (FOE). An Alpha A.'\ P
processor that attempts to execute an instruction

on one of these pages generates an access violation
fau lt . This faul t is processed by a TIE condit ion han

d ler to convert the FOE page pro tection into an

appropriate destination address lookup operation.

For example, the FOE might occur when a trans

Jared rou t i ne returns to its cal ler. If the cal ler was

i n terpreted , then its return address is a VAX code

address instead of a trans lated VA.'\ (Alpha AXP
code) address. The Alpha A.'\P processor attempts

Used to find computed destinations and other cases
where VEST did not f ind the original VAX code. Each
translated i mage has a mapping table included.

Ach ieves VAX i nstruction atomicity for asynchronous
events. This allows data sharing between the single
asynchronous execution context (AST) provided by
OpenVMS and non-AST level routines.

Executes VAX instructions not found by VEST.

Some VAX instructions do not have code generated in- l ine
by VEST. Those instructions are processed i n the TIE.
Examples are MOVC3 and MOVC5 that move byte strings.

Certain aspects of OpenVMS AXP exception processing
are necessarily d ifferent from OpenVMS VAX. For
example, the VAX computers have two scratch registers,
but Alpha AXP computers have 1 5. Translated condit ion
handlers are passed the VAX equivalents.

Some operating system interfaces were rearch itected.
The TI E intervenes to make the d ifferences transparent.

Digital Tee/mica! journal Vol. 4 No. 4 Special Issue 1992 1 4 :)

Alpha AXP Architecture and Systems

to execute the VAX code and generates a FOE cond i

t ion. 'T'he TIE condition hand ler converts this into a

J.VI P lookup operation.

VAX Instruction Guarantees I nstruction guaran

tees arc characteristics of a compu ter arch itecture

that are inherent to instructions execu ted on that

archi tecture. For example, on a VAX compu ter, if

i nstruction l writes data to memory and t hen

instruction 2 writes data to memory, a second pro
cessor must not see the write from instruction 2

before the write from instruction l. This p roperty
is cal led strict read-write ordering.

The VES'I/TfE pair can provide the i l lus ion that a

single CISC instruction is executed in its entirety,

even though the unde rlying translation is a series

of ruse instructions. VEST/fi E ca n also prov ide t he

i J J usion of two processors updating adj acen t mem

ory hytcs without interference, even though the

Ta ble 2 Single Processor Guarantees

u nder lying ruse instructions manipulate fou r or

eight bytes at a t ime. Final ly, VEST/TIE can provide

exact memory read-write ordering and arithmetic

exceptions, e .g . , overflow. A l l these provisions are

optional and require extra execu tion t ime.

Tahles 2 and 3 show the visibi l i ty diffe rences

bet ween various guarantees on VAX and AJpha AXP

systems as wel l as for translated VA)(programs.

Special Considerations fur Instruction A tomicity

The VA X architectu re req ui res that in terrupted

instructions complete or appear never to have

started. Since translation is a process of converting

one VAX instru ction to potent i a l ly many Al pha AXP

instructions, run-time processing must achieve this

guarantee of inst ruction atomicity. Hence, a VAX
i nstruction atomicity control ler (lAC) was created

to manipulate AJpha AXP state to an equ ivalent

VAX state. \Vhen a translated asynchronous event

Single Processor Guarantees Cha racterized by What an Observer Sees
on the Same Processor That Executes the Data Change

Topic

I nstruction
Atomicity

VAX

An entire
VAX instruction

Table 3 Mu ltiple Processor Gua rantees

Translated VAX

An entire translated
VAX instruction with
/PRESERVE=INSTRUCTION
_ATOMICITY and TI E's
instruction atomicity
control ler, else a single
Alpha AXP instruction

N ative Alpha AXP

A single Alpha AXP
instruction

Multiple Processor Guarantees Characterized by What an Observer
on a Different Processor Sees versus the One Executing the Data Change

Topic VAX Tra nslated VAX Native Alpha AXP

Byte Granularity Yes, hardware Yes, with Yes, via LDx_L,
ensures this /PRESERVE=M EMORY merge, STx_C

-ATOMICITY sequence

I nterlocked Update Yes, for al igned Yes, for aligned datum Yes, v ia LDx_L,
datum using interlock using VAX interlock mod ify, STx_C
i nstructions instructions sequence

Word Tearing Aligned longword Aligned longword or Aligned longword or
writes change a l l quadword writes quadword writes
bytes at once change al l bytes change a l l bytes

at once at once
Other writes are
al lowed to change
one byte at a time

1 44 Vol. 4 No. 4 Special Issue 1992 Digital Teclmical jom"Tial

processing rou tine is called, the lAC is invoked. The
lAC examines the Alpha A,'(}' instruction stream and
either backs up the interrupted program counter to
restart at the equivalent VAX instruction boundary
or executes the remaining instructions to t he next
bou ndary. Many VAX programs do not require this
guarantee to operate correct ly, so VEST emits code
that is VA,'\ instruction atomic only if the qual ifier
/PRESERVE=INSTRUCTION_ATOMlCITY is specified
when translating an image.

VEST-generated code consists of four sections
that are detected by the lAC. These sections have
the following fu nctions:

• Get operands to temporary registers

• Operate on these temporary registers

• Atomica l ly update VAX resu lts that could gener
ate side effects (i.e . , an exception or interlocked
access)

• Perform any updates that cannot generate side
effects (e.g. , register updates)

The VAX i nterpreter achieves VA,'\ i nstruction
atomicity by using the atomic move, register to
memory (AMOVRM) instruction. The AMOVRM

instruction is implemented in privi leged archi
tecture l ibrary (PAL) subroutines and updates a
contiguous region of memory containing VAX
state without being i nterrupted. At the begin
ning of each interpreted VAX instruction, a read and
set flag (RS) instruction sets a flag that is c leared
when an interrupt occurs on the processor.
AMOVRM tests the flag, and if set, performs the
update and returns a success indication. If the flag
is clear, the A.J\10VR.M instruc tion ind icates failure,
and the interpreter reprocesses the interrupted
instruction.

Issues with Changing Memory VAX instruction
atomicity ensures that an arithmetic instru ction
does not have any partia l ly updated memory loca
tions, as viewed from the processor on which that
instruction is executed. In a mult iprocessing envi
ronment, inspection from another processor cou ld
resu lt in a perception of partial resu lts.

Since an Alpha AXP processor accesses mem
ory only in al igned longwords or quadwords, it
is therefore not byte granu lar. To achieve byte
granularity, VEST generates a load-locked/store
cond itional code sequence, which ensures that a
memory location is updated as if it were byte granu
lar. This sequence is also used to ensure interlocked

D igital Tech11ica/ journal Vol. 4 No. 4 Special Issue 1992

Binary Translation

access to shared memory. Lo ngword- size upd ates
to al igned locations are performed using nor
mal load/store instructions to ensure longword
granularity.

Many mu ltiprocessing VAX programs depend
on byte granularity for memory update. VEST

generates byte-granular code if the condition
/PR.ESERVE=MEMORY_ATOMlCITY i s specified when
translating an image. In addition, VEST generates
strict read-write ordering code if the qualifier
/PRESERVE= READ_ WRITE_OR.DERJNG is specified
when translating an image.

Preserving VAX Exceptions Alpha AXP i nstruc
tions do not have the same exception characteris
tics as VAX instruct ions. For instance, an arithmetic
faul t is imprecise, i .e . , not synchronous with the
instruction that caused it . The Alpha A.,'\.P hardware
generates an arithmetic fault that gets mapped
into an OpenVMS AXP high-performance arith
metic (HPARJTH) exception. To retain compati
bil ity with VA,'\ condition hand lers, the TIE maps
HPARJTH into a corresponding VA,'\ exception when
call ing a translated condition hand ler. Most VAX
languages do not requ ire precise exceptions.
For those that do, l ike BASIC, VEST generates
the necessary t rap barrier (TRAPB) instructions
if /PRESERVE=FLOATING_EXCEPTIONS is specified
when translating an image.

Open VMS AXP and
OpenVMS VAX Differences
Functional Dzffe1-ences Most OpenVMS AXP
system services are identical to their Open VMS VAX
cou nterparts . Services that depend on a VAX- spe
cific mechanism are changed fo r the Alpha AXP

architecture. The TIE intervenes in such system ser
vices to ensure the translated code sees the old
interface.

For example, the declare change mode hand ler
($DCLCMH) system service establ ishes a handler for
VAX change mode to user (CHMU) instructions. The
hand ler is invoked as if i t were an interrupt service
ro utine requ ired to use the VAX return from inter
rupt or exception (REI) instruction to return to the
invoker's context. On OpenVMS AXP systems, the
handler is called as a normal procedure. To ensure
compatibility, the TIE inserts its own hand ler when
call ing OpenVMS AXP $DCLCMH. When a CHMU is
invoked on Alpha A.XP computers, the TIE hand ler
cal l s the hand ler of the translated image, using the
same VAX-specific mechanisms that the hand ler
expects.

145

Alpha AXP Architecture and Systems

Exception Handling OpenVMS A..'(P exception

p rocessing is a lmost identical to that rerformed in

the OpenVMS VA..'< system. The major difference is

that the VAX mechanism array needs to hold the

value of only two temporary registers, RO and R I ,

whereas the Alpha A."'\P mechanism array needs to
hold the value of 15 temporary registers, RO, R l , ami

R 16 through R28.

Complex Instructions Translating some VAX

instructions would require many Alpha AXP

instructions. Instead, VEST generates code that cal ls
a TJE subroutine. Subrou tines are implemented in

two ways: (1) handwritten nat ive emulation rou

tines, e .g . , MOVC5, and (2) VEST- translated VAX emu

lation routines, e .g . , POLYH .
Together, VEST ami TIE can translate and run most

existing user-mode VAX binary images_ As shown in

Table 4, performance of translated VA.'\ programs

s l ightly exceeds the original goa l . Performance

depends heavily on the frequency of use of VAX fea
tures that are not present in Alpha AXP mach ines.

ULTRIX MIPS Translation

mx is the translator that converts lJITRIX M I PS pro

grams to DEC OSF/ 1 AXP programs. The mx project

started after VEST was functional , and we took

advantage of the VEST common code base for much

of the analysis and Alpha AXP code assembly phases

of the translator. In fact, abou t half of the code i n

mx is compiled from t h e same source fi les a s those
used for VEST, with some arch itectural specifics

supp l ied by differing include fil es_ The code-shar

i ng aspects of C++ have proven qu i te val uable in

this regard_

mxr is the ru n-time support system for translated

programs. I t provides services simi Jar to TIE, emu

lating the liLTRIX MIPS environment on a DEC OSF/ 1
AXP system. mxr is written i n C++, C , and Alpha
assembler.

Challenges
Creating a translator for the ;\·l i PS R2000/R3000

architecture presented us with a host of new oppor

tunit ies, along witb some significant cha l lenges.

The basic structure of the mx translator is much

simpler than that of VEST. Both the source and

the target architectures are !USC: machines; there

fore, the two instruction sets have a considerable

s imi larity. Many instructions translate one for one.

The ivll l'S architecture has very few instruction side

effects or su btle a rchitectural details , a l though

Table 4 Tra nslated VAX Performance, Norma l ized to Native-compiled OpenVMS AXP Code

VAX Time
on VAX 661 0

Program (83.3 MHz)

SPECmark89

gee 1 .9
expresso 3.1
spice2g6 2.8
dodue 2.9
nasa7 4.4
l i 2.7
eqntott 3.3
matrix300 8.8
fpppp 3.8
tom catv 5.3

Geometric Mean 3.8
(without gee)

Notes:

VEST
Translated Time
on DEC 7000 AXP
(167 MHz)*

_t

2.7
1 .8
3.0
6.2
4.2
2.2
4.2
2.7
2.9

3.1

Native Time
on DEC 7000 AXP
(1 67 M Hz)

1 .0
1 .0
1 .0
1 .0
1 .0
1 .0
1 .0
1 .0
1 .0

1 .0

The larger the number, the slower the performance. These performance numbers were measured on derated field test hardware a n d

software at various t i m e s d u ring 1992; production results wi l l v a r y somewhat. T h e S P E C benchmarks a r e written in FORTRAN a n d C ;

n o conclusions should b e drawn about other c l asses o f programs written i n other languages.

"The DEC 7000 system was ru nning at a derated speed compared to production DEC 7000 systems.

tTi m i ng information for t h i s run is not available.

1 46 ViJI. 4 .Yo. 4 -�Jwcil ll lsslle !<)'J.! Digital Tecb11ical journal

those that are present are particularly tricky.
Furthermore, the format of an executable program
under the ULTRIX system collects a l l code in a single
contiguous segment and makes it easy for mx to
rel iably find close to 100 percent of the code in the
MIPS application. The system interfaces to the
ULTRIX and DEC OSF/1 systems are similar enough
that most ULTRJX system ca l ls have fu nctional ly
identical counterparts under the DEC OSF/ l system.

The chal lenges in mx stem from the fact that the
source architecture is a RJSC machine. For example,
DEC OSF/1 A..'\P is a 64-bit compu ting environment,
i .e. , a l l pointers used to com mu n icate with the
operating system are 64 bits wide. This environ
ment does not present a problem when the pointer
is passed in a register. However, when a pointer (or
a long data item, such as a f i le s ize) is passed in
memory, i t m ust be converted between the 32-bit
representation, used by the ULTRIX system, and the
64-bit A..'\P representation , even when the seman
tics of the operating system call are the same on
both systems.

A significant challenge is the fact that our users'
expectations for performance of translated pro
grams are much higher than fo r VEST. Reasoning
that the source and target mach ines are sim ilar,
users also expect mx to achieve a translated pro
gram performance better than that of the source
program , since Alpha A..'\ P processors are faster.
Thus, as our performance goal , we set out to pro
duce a translated program that runs at about the
same speed as the origina l program wou ld run on a
MIPS R4000 machine with a 100-megahertz (MHz)
internal clock rate.

Mapping the Architectures
At first glance, it appears that we could simply
assign each MIPS register to a corresponding Alpha
AXP register, because each machine has 32 general
purpose registers. The translated code would t hen
have two scratch registers, s ince t he MIPS architec
ture does not a l low user-level programs to use reg
isters KO and Kl, wh ich are reserved for the
operating system kernel.

Unfortunately, translation requires more than
two scratch registers. The Alpha AXP architecture
does not have byte or halfword (16 -bit) loads or
stores, and the code sequences for perform
i ng these operations require fou r or five scratch
registers. Furthermore, mx requ ires a base register
to locate mxr without having to load a 64-bit
add ress constant at each call . Final ly, the MI PS

Digital Technical journal Vol. 4 No. 4 Special issue 19')2

Binary Translation

architecture bas more than 32 registers, includ ing
the HI and LO registers used by the mult iply and
d ivide instructions, and a floating-point cond ition
register, whose layout and contents do not corre
spond to the Alpha A..'\P floating-point cond it ion
register.

In mx, we assign registers using standard com
piler techniques. To assign registers to 33 M IPS
resources (the 32 general registers plus one 64-bit
register to hold both HI and LO), certain registers
are p ermanently mapped, and other M IPS registers
are kept in either AXP registers or memory. The
MIPS argu ment-passing registers AO through A3 are
permanently assigned to Alpha AXP registers R 16
through R 19, which are the argument registers in
the DEC OSF/ 1 AXP cal l ing standard. This correspon
dence simplifies the work needed when mxr must
take arguments for an UI.TRIX system cal l and pass
them to a DEC OSF/1 system ca l l . Simi larly, the argu
ment return registers VO and V 1 are mapped to the
Alpha A..""XP argument return registers RO and R 1 . The
return address registers and stack poi nter registers
of the two machines are also mapped . MIPS RO is
mapped to Alpha AXP R31 , where both registers
contain the same hard-wired zero value. We reserve
Alpha AXP registers R22 through R24 as scratch reg
isters and also use them when in terfacing to mxr.
We reserve Alpha A..'\P R 14 as a pointer to an mxr
com mu n ication area. F inal ly, we reserve three
more registers as scratch registers for use by the
code generator.

The rem aining 16 Alpha AXP registers are avail
able to be assigned to the remaining 23 tvi iPS
resources. After the code is analyzed and we have
register usage information, the 16 most frequently
used MIPS registers get mapped to the remai ning 16
Alpha AXP registers, and the remaining registers are
assigned to memory slots in the m..'(r com mu nica
tion area. When a M IPS basic block uses one of the
slotted registers, mx assigns it to one of the scratch
registers. If the first reference reads the old con
tents of the register, mx generates a load instruc
t ion from the com munications area. If the value of
the MIPS resource changes in the basic block, the
scratch register is stored in the com munication
area before the end of the block. As in most compil
ers, if we run out of registers, a spill a lgorithm
chooses a value to save in the com mun ication area
and frees up a register.

Alpha A..'{P integer registers are 64 bits wide,
whereas M I PS registers are only 32 bits wide. We
chose to keep al l 32-bit values in Alpha AXP integer

1 47

Alpha AXP Architecture and Systems

registers as sign-extended val ues, with the h igh 32
bits equal to bit 31 . This approach occasiona l ly
requ ires mx to generate additional code to create
canonical 32-bit integer resu lts, but the 64-bit com
pare operations do not need to change the val ues
that they are comparing.

The floating-point architecture is more complex.
Each of the 32 MIPS floating-point registers is 32 bits
wide. Only the even registers are used fo r single
precision , and a double-precision number is kept
in an even-odd register pair. We map each pair of
MIPS floating-point registers onto a single 64-bit
Alpha AXP floating-point register. Also, one Alpha
AXP floating-point register represents the condition
code bit of the MlPS floating-point control register.
Thus, the m x code generator can use 14 scratch
registers. nL'< goes to considerable effort to find
paired loads and stores in the MIPS code stream, and
to merge them into one Alpha AXP floating-point
operation .

M I PS single-precision operations cause problems
with floating-point correspondence. Since on MIPS
machines, the single-precision nu mber is kept in
only the even register of the register pair, the even
and odd registers in a pair are independent when
single-precision (or integer) operations are done in
the floating-point unit . On Alpha �'XP machines,
computation m ust be done on a value extended to
double format in the whole 64-bit register. We
defined two forms for values in Alpha AXP float ing
point registers: computational form, in which com
pu tation is done, and canonical for m , which
mimics the MIPS even and odd registers. If a M I PS
program loads an even register and uses this regis
ter as a single-precision value, mx loads the value
from memory to be used compu tationally. lf a MIPS
program loads only an even register but does not
use this register in the basic block, mx puts the 32-
bit value into half of the Alpha AXP floating-point
register. This permits correct behavior in the patho
logical case where half of a floating-point number is
loaded in one place, and the other ha lf is loaded in
some other basic block. If a register is used as a sin
gle-precision number in a basic block without first
being loaded , the code generator inserts code to
convert i t from canonical to compu tational float
ing-point fo rm. If a single-precision value has been
compu ted in a block and is l ive at the end of the
block, i t i s converted to canonical form.

mx inserts a register mapping table into the
translated program that indicates which MIPS
resources are statica l ly mapped to which Alpha

148

AXP registers, and which MIPS resources are nor
mal ly kept i n memory. This table allows mxr to find
the MIPS resources at run time.

Finding Code
As with the VEST t ranslator, OL'C finds code by
starting a t entry points and recursively tracing
down the flow of control . mx finds entry points
using the executable file header, the symbol table
(if present), and feedback from mxr (if present).
Finally, nn performs a l inear scan of the entire
text section for unexamined words. mx analyzes
any data that looks l ike plausible code but does not
connect this data into the main flow graph.
Plausible code consists of a series of va l id M IPS
instructions term inated by an u ncond itional trans
fer of control .

While finding code and connecting the basic
blocks into a flow graph, mx looks for the code
sequence that indicates a switch statement, i .e . , a
m u l t i-way branch, usually through an element of a
table. mx finds the branch table and connects each
of the possible targets as successors of the branch .

Code A nalysis
Our static analysis of hu ndreds of MIPS programs
i ndicates that only 10 instructions accoun t for
about 85 percent of al I code. These i nstructions are
LW, AD DIU, SW , NOP, ADDU, BEQ, ,JAL, BNE, LUI , and
SLL. The correspond ing sequences of Alpha AXP
code range from zero operation codes, or opcodes,
(for NOP, since the Alpha AXP architecture does not
require NOPs anywhere in the code stream) to two
opcodes (for SLL).

Code analysis for source programs is much more
i mportant in mx than in VEST, because the cod ing
idioms for many common operations d iffer
between the Alpha �'\ P and MIPS processors. The
simple technique of mapping each M I PS instruction
to a sequence of one or more Alpha AXP i nstruc
tions loses much of the context information in the
original program .

For example, the idiom used to load a 32-bit
constant i nto a register on MIPS machines is to gen
erate a load upper immed iate (LUI) opcode, placing
a 16-bit constant in the high-order 16 bits of a
register. This operation is fol lowed by an OR i m me
diate (ORJ) opcode, logical ly ORing a 16-bit
zero-extended value into the register. The LUI
corresponds exactly to the Alpha AXP load add ress
h igh (LDAH) opcode. However, the Alpha �'<P

Vol. 4 No. 4 Special Issue 1992 Digital Technicaljourual

architecture has no way of directly ORing a 16-bit
value into a register and cannot even load a zero
extended 16-bit constant into a register. When the
high-order bit of the 16-bit constant is 1, the short
est translation for the OR! is three instructions. The
mx translator scans the code looking for such
idioms, and generates the optimal two-instruction
sequence of Alpha AXP code that performs the 32-
bit load. No opcode exists that corresponds to the
ORI, but the resul ts in the registers are correct.

When we started writing the mx translator,
we l isted a number of code possibil ities that we

thought we would never see. In retrospect, this was

a misguided assumption. For example, we have
seen programs that branch into the delay slot of
other instructions, requiring us to indicate that the

delay slot instruction is a member of two d ifferent
basic blocks-the block it ends, and the one it
starts. We have observed programs that put soft

ware breakpoint (BREAK) instructions in the branch
delay slot, and thus BREAK ends a basic block with
out being the last instruction. Some compilers
schedule code so that half of a floating-point regis

ter is stored and then reused before the other half is
stored. The general principle that we intuit from
these observations is " if a code sequence is not
expressly prohibited by the architecture, some pro

gram somewhere will use it ."

Code Generation

After the program is parsed and ana lyzed and the

flow graph is built , the code generator is called. I t
builds the register mapping table and then, in turn,

processes each basic block, generating Alpha AXP

code that performs the same functions as the MIPS
code .

At each subroutine entry, mx scans the code
stream with a pattern-matching algorithm to see if
the code corresponds to any of a number of stan

dard MIPS l ibrary routines, such as strcpy. (Note that
the ULTRIX operating system has no shared
l ibraries, so l ibrary routines are bound into each
binary image.) If a correspondence exists, the
entire subroutine is recursively deleted from the
flow graph and replaced with a canned routine to

perform the subroutine's work on Alpha AXP pro
cessors. This technique contributes significantly to
the performance of translated programs.

For each remaining basic block, the instructions
are converted to a l inked list of intermediate
opcodes. At first, each opcode corresponds exactly
to a MIPS opcode. The l ist is then scanned by an

Digital Technical journal Vol. 4 No. 4 Special issue 1992

Binary Translation

optimization phase, which looks for MIPS coding
idioms and replaces them with abstract machine
instructions that better reflect the idiom. For exam
ple, mx changes loads of immediate values to a non
MIPS hardware load immediate (LI) instruction; shift

and add sequences to abstract operations that
reflect the Alpha AXP scaled add and subtract

sequences; and sequences that change the floating
point rounding mode (used to truncate a floating

point number to an i nteger) to a single opcode that
represents the Alpha �'CP convert operation with
the chopped mode (/C) modifier.

MIPS code contains a number of common code
sequences that cross basic block boundaries,
but which can be compressed into a single basic
block in Alpha AXP code. Examples of these are
the min and m ax functions, which map neatly
onto a single conditional move (CMOVxx) instruc
tion in Alpha AXP code. The code generator looks

for these sequences, merges the basic blocks,

and creates an extended basic block, which
includes pseudo-opcodes that indicate the MIPS
code idiom.

After the optimizer completes the l ist of instruc

tions, it translates each abstract opcode to zero or
more Alpha AXP opcodes, again bui ld ing a l inked
l ist of instructions. This process may permit further

improvements, so the optimizer makes a second
pass over the Alpha AXP code.

When processing a basic block, the code genera
tor assumes that it has an unlimited number of tem

porary resources. Since this is not actual ly true, the
code generator then calls a register assigner to al lo
cate the real Alpha AXP temporary resources to the
intermediate temporary registers. The register

assigner will load and spiU MIPS resources and gen
erated temporary registers as needed .

Finally, the list of Alpha AXP instructions is assem
bled into a binary stream, and the instruction

scheduler rearranges them to remove resource
latencies and use the chip's multiple issue capability.

Image Formats

The file format for input is the standard ULTRIX
extended common object fi le format (COFF). In
most ULTRIX MIPS programs, the text section starts

at 00400000 (hexadecimal) and the data at
10000000 (hexadecimal) . In virtual ly all programs,

a large gap exists between the virtual address for
the end of text and the start of the data section .
When mx creates the output image, it places the
generated Alpha AXP code after the MIPS code and

1 49

Alpha AXP Architecture and Systems

before the :\1 IPS data. T'h is a l lows the program to

have one l a rge text section . The Alpha AXP code

begins at an Alpha �'<P page boundary, so that we

can set the m e mo ry protection on the MIPS code

separately from the Alpha AXP code.

The translated i m age is not in DEC OSf/ 1 A)I:P exe

cutable format. I nstead, it looks l ike a M I PS C:OFF

file , b u t with the first few bytes changed to the

string "#'/usr/bin/mxr" .

Executing a Translated Program

When a translated i m age is run on DEC OSF/ 1 AX!',

i ts modified header i nvokes mxr first. mxr uses the

memory map (m map) system cal. l to loa(l the trans

lated progr a m at the same v i rtual address that it

would have had under the U L'TRlX operating

system . mxr resets t he protection of the :vi I PS code

to read/no-write/no-execute, the Alpha AX P code

to read/no-write/execute, and tbe data to read/

write/no-execute.

ITL'Xr a llocates a com m u n ication area and i n i

t ia l i zes Alpha A..'\ 1' R l4 to point to this area . The

com m u n ication area contains save areas fo r

:\'l i PS resources, i ni t ia l ized pointers to mxr ser

v ice rou t i nes, and other scratch space. mxr then

constructs new com m a n(l argu ment (argv) and

environment vectors as 32-bit wide pointers (as the

:'11 I PS progr a m expects). arranges to i ntercept cer

tain signals from the DEC OSf/ 1 A.XP system , and

transfers control to the t ransl ated start ad d ress of

the program .

When a system signa l is del ivered t o the progra m ,

control goes to tbe s ignal i ntercept code i n m x r.

This cocl e transforms the signa l context structure

from the D EC OSF/ 1 t\.)(1' system and constructs an

ULTRIX .\'l i PS style context, which i t then p asses to

the translated s ignal hand ler.

Certain signals are p rocessed specia l ly. For

instance, a program that atte m p ts to transfer con

trol to a location contai ning MIPS code rather than

translated code gets a segmentat ion v iolation, since

the MIPS code is not execu table. This situation

can occur i f a rou t i ne modifies its return address

to be a M IPS address constant. mxr w i l l examine

the target address and, if it corresponds to the start

of a pretranslatecl M IPS basic block, d ivert the flow

of control to the t ra nslated code for that block.

If not, mxr en ters the MIPS interpreter. The

i n terpreter p roceeds to emu late the M IPS code

u n t i l a translated point is reached . mxr then

resynchron izes its m achi ne state and reen ters the

translated code.

1 50

Translation Goals and Classes
of Programs Not Supported

Our goal was to tr:111s late most user- mode MIPS pro

gra ms com p i led for a M IPS R 2000 or R3000 machine

r u n n i ng l JLTRI X Release 4 .0 (or later) to run identi

c a l l y on the DEC OSF! l �'\P system with acceptable

performance. As shown i n Table '5, perform ance of

translated MIPS programs meets or exceeds t h e

origina l goa l .

Table 5 Translated M I PS
Relative Performance

M I PS Time on Translated Time
DECstation on DEC 3000
5000 Model 240 AXP Model 500

Program (40 M Hz) (1 50 M Hz)

SPECint92

espresso
l i
eqntott
compress
sc
gee

Geometric Mean
(without sc)

SPECfp92

spice2g6
doduc
mdljdp2
wave5
tomcatv
ora
alvinn
ear
mdljsp2
swm256
su2cor
hydro2d
nasa?

fpppp

Geometric Mean
(without
spice2g6)

Notes:

2.4 1 . 1 (1 .0)*
1 .6 1 .2 (1 .0)
1 .6 2.1 (1 .0)
2.7 1 .0 (1 .0)

_t
2.1 1 .2 (1 .0)

2.0 1 .3 (1 .0)

1 .7 1 .0
2.7 1 .0
1 .1 1 .0
3.0 1 .0
1 .5 1 .0
1 .6 1 .0
1 .7 1 .0
1 .4 1 .0
2.3 1 .0
2.7 1 .0
2.9 1 .0
2.6 1 .0
2.2 1 .0

2.0 1 .0

The larger the number, the slower t h e performance. These

performance numbers were measu red on derated field test

hardware and software at various t i mes d u ring 1 992; production

results will vary somewhat. The SPEC benchmarks are written

i n FORTRAN and C; no conclusions should be drawn about other

classes of programs written i n other languages.

'The values i n parentheses are from running once, then

retranslating with the run-time feedback from t h e fi rst ru n ;

this gave a significant performance difference o n l y f o r t h e

programs shown.

tTiming information for this run is not available.

Vi>!. 4 No. 1 .\j;eciol lssue I'J'Jl Digital Techuicaljournal

Due to extreme technica l obstacles, some classes
of p rograms wi l l never be supported by mx. We
decided not to translate programs that use pr ivi
leged opcodes or system cal ls or that need to run
with superuser privi leges. In cases where the fi le
system hierarchy d iffers between the ULTRIX and
DEC OSF/ 1 AX!' systems, programs that expect files
to be in particu lar p laces or i n a particu lar format
may fa i l . S imi lar ly, programs that read /dev/kmem
and expect to see an ULTRIX M I PS memory layout
fai l .

Certain other c lasses o f programs are not cur
rently supported , but are technica! Jy feasible.
These i nclude big endian MIPS programs from non
Digital MIPS environments, programs that use
R4000 or R6000 i nstructions that are not present
on the R3000 model , programs that need to be
mult iprocessor safe, and programs that require cer
tain categories of precise exception behavior.

Summary

Building successfu l turnkey binary translators
requires hard work but not magic. We bui l t two d if
ferent translators, VEST and mx . In both cases, the
ol(l a nd new environments are, by design, quite
simi l ar i n fundamental data types, memory address
ing, register and stack usage, and operat ing system
services. Translators between dissimilar arch itec
tures or operating systems are a d ifferent matter.
Translating the code m ight be a reasonably straight
forward task. However, emulat ing a run-t ime envi
ronment in which to execute the code m ight
1"�resent insurmountable technical and business
obstacles. Without capturing the environment, an
instruction translator would be of no use.

The idea of b inary translat ion is becoming more
common in the computer industry, as various other
companies start on their transitions to 64-bit
arch itectures.

Acknowledgments

Steve Hobbs origina l ly suggested the binary trans la
tion path in the architecture task force d iscussions.
Nancy Kronenberg and Bob Supnik added critical
early support and l ater coord i nat ion. Jud Leonard
set the engineering direction of doing carefu l static
translation once, instead of on-the-f ly dynamic
translation at each execution. Butler Lampson
boosted mora le at a critical t ime. Jim Gettys has
a l so been an important and vocal supporter.

The success of the translators wou ld not have
been possible without the enthusiastic support of
the OpenVMS t'-"'<P and DEC OSF/ 1 AXP operating

Digital Technical journal Vol. 4 No. 4 .�j;ecial ls.we 1992

Einar).' Translation

system groups, and the respective run-t ime l ibrary
groups, especial ly Matt LaPine, Larry Woodman,
Hai Huang, Dan Murphy, Nit in Karkhanis, Ray
Lanza, Anton Verhulst , and Terry G rieb.

The Port i ng ami Performance Engineeri ng
Group d id extensive porting and testing of cus
tomer appl ications. The group members, especial ly
Shamin Bhindarwala and Robi Al-Jaar, were sources
of extremely valuable customer feedback. The
Engineering System Group under M i ke Greenfield
also made extensive early use of the translators and
provided valuable feedback.

The Alpha ''-"'<P Migration Tools team is relat ively
smal l for the substant ia l amou n t of work accom
p l ished in the past two and one-h a l f years. Every
person h as made several key contributions. In add i
t ion to the authors of th is paper, the team members
are: Kate Burleson , Peigi Cleminshaw, George
Darcy, Catherine Frean , Bruce Gordon, Rick
Gorton, Kevi n Koch , Mark Herdeg, Giovanni Del la
Libera, Nikki Mirghafori, Srinivasan Murari , J im
Paradis, and Ashutosh Roy.

References and Note

1 . R . Sites, e(l . , Alpba Architecture Reference

Manual (Bur l i ngton , MA: D igital Press, 1992).

2. R . Sites, ·'Alpha tL'< I' Architecture," Digital

Tec!Jnical.fournal, vol . 4, no. 4 (1992, this issue):
19-34.

3. C. Hun ter and J Banning, " DOS at RISC," Byte

Magazine (November 1989): 361- 368.

4. Echo Logic, News Release (May 4, 1992).

5 . L. Wirbel , " DOS-to-UN I X Compi ler," Electronic

Engineering Times (March 14, 1988): 83.

G. A. Bergh , K. Kei lman , D. Magenheimer, and
J Mi l ler, · 'HP 3000 Emu lation on HP Precision
Architecture Computers," Hewlett-Packard .four
nat (December 19H7).

7 Datum is the term used to refer to a piece
of i nformation that has an address ancl a size.

Alignment is the property of a datum of size
2" bytes. This datum is a l igned i f its byte address
has n low-order zeros. A size or address not
meeting this constra int impl ies that the datum is
unal igned.

Instruction atomicity is the property of instruc
t ion execution on single p rocessor systems
such that an in terrupted instruction has been

I 5 1

Alpha AXP Architecture and Systems

completed or has never started , i .e . , partial exe
cution of an instruction is never observed.

Granularity is the property of memory writes on
mul tiprocessor systems such that i ndependent
writes to adjacent a l igned data produce consis
tent resu l ts. The terms byte, word , longword ,
quadword , and octaword granu larity refer to
writ ing 1 - , 2-, 4 - , 8- , and 16 -byte size adjacent
data.

I nterlocked update is the property of memory
updates (read-modify-write sequences) on mul ti
processor systems such that s imul taneous

1 52

i ndependent updates to the same a l igned datum
w i l l be consistent. This property causes serial
i zation of the independent read-modify-write
sequences and is not guaranteed for an
unal igned datu m .

Word tearing i s t h e property o f a] igned memory
writes on m u l t iprocessor systems such that a
reader i ndependent of the wri ter can see partial
results of the write.

8. N. Kronenberg et a l . , " Porting OpenVMS from
VAX to Alpha AXP,'' Digital Technical journal,

vol . 4, no. 4 (1992, this issue): 1 1 1 - 120.

Vol. 4 No. 4 .)pecial Issue f9'JJ Digital Tecbnical journal

jeffrey A. Cofller
Zia Mohamed
Peter M. Spiro

Porting Digital's Database
Management Products to the
AlphaAXP Platform

Tbe cornerstone software cornponent of bigb-end production systems is a database

management �)!Stem. Digital bas successfully ported the DEC Rdb for Open VMS rela

tional database management system and the DEC DBMS for Open VJJS 11etwork

database management system to the Alpha AXP platform. Rdb and DBMS were per

haps tbe most complex layered products to be ported Tbe tigbt coupling of tbese two

products to the Open VMS VAX system made tbe port a challenging task. To avoid tbe

future problem of integrating two source code bases, the porting team decided to

use a common code base and to overlap current VAX development with the Alpha

AXP port. The goal was to provide an easy migration path for software products to

the Alpha AXP platform.

D igital is one of a smal. l number of vemlors compet

i ng in the h igh-end, complex production systems

mar ker. App lications for this market support ind us

tries such as bank ing, stock exchanges, telecommu

nications, and information services. The Alpha A X I'

platform i s i deal ly su i ted t o meet the response

t ime, throughput, and ava ilabil ity requirements of

these appl i cat ions, since i t offers increased perfor

mance whi le maintaini ng the superb avai labi l i ty

characteristics of VMScl uster systems.

Although h igh-end production systems involve a

collection of software packages, the cornersto ne

software component is a database management

system. D igita l offers two database management

systems for high-end commercial systems: DEC Rdb

for OpenVMS, a relat ional database ma nagement
system, and DEC DBMS for OpenVMS, a network

(CODASYL) database m anagement system . Digital
had to port the DEC Rd b for OpenVMS VAX and D EC

DBMS for OpenVMS VAX database systems to the

Alpha AXP platform as early as possible to continue
to compete in this commercial arena. The result ing

products are the DEC Rd b for OpenVMS A X P and

DEC DHMS for OpenVi'viS AXP systems. (Since these

two prod ucts for the Alpha AXP system are the
same as those fo r the VAX system , hereafter, we

wil l refer to the products as Rclb and DBM S .)

Addit ional l y, both software products dr ive many

sales of Digita l 's OpenVMS operating system and

Digital Technical]oul'rwl Vol. 4 No. 4 .\j;ccial lssue 1')<)2

transaction processing and information manage

ment products such as CDD. ACMS, and DEC RALLY,
which i ntegrate with t he Rd b and DBMS systems.

Database m anagement systems are among the

most complex of all software produ cts. Appl ica

tions expect these systems to have 7 by 24 avai labil

i ty, soph isticated concurrency capabi l i ties, fast data

access, high-speed back up and restore mecha

nisms, and l arge bu ffer pools. To provide such func

tiona l i ty, the Rdb and DBMS products make

extensive use of the Open VMS VA X system, the VA X

run-time l ibraries, ami the HLI SS and VAX MACR0-32

programming l anguages. The cu rrent release of the

product set uses more than 100 system services or

run-time l ibrary cal l s. The two products u t i l ize
a lmost every BUSS BU I LTIN fu nct ion, i . e . , a mach ine

specific fu nction ca l l that generates in- l ine code.

Combined, Rdb and DBMS comprise more than 30

different images. The produ cts run in elevated pro

cessing modes, both executive and kernel , and

include user-written system services.

Further compound i ng the complexity of porti ng
the Rclb and DBMS software to the Alpha AXP plat

fo rm is the fact that they are mature products; DBMS

was released in 1981 , Rd b in 1984. Because various

system capabi l it ies did not exist in t he early 1980s,
the two database management systems include
code that is no lo nger requ ired. For exa mple. both

product s have code to move bytes from one clara

1 53

Alpha A.,XP Architecture and Systems

t ype to another. Also, d u ri ng i m age ru ndown , the

products rely o n undocumented, operating system

behavioral patterns such as the asynchronous

system trap (AST) d e l i very protocols. I n addition,

the Rd b software contains a modiJied version of the

Open VMS SORT rou tine.

Rdb and DBMS were i n it ia l ly designed to run

o n l y on the OpenVMS VAX operating system.

Consequent ly, both products heavi ly u t i l ize VAX

specific features for perfo rm ance gains. 1 F o r exam

ple, Rd b generates VAX machine code rou ti nes as

part of query execution plans; the machine code is

carefu l l y generated for maximum execu tion effi

ciency This t ight coupl ing of Rdb a nd DBMS to the

OpenV,viS VAX system made the port a cha l lengi ng

task.

S ince the OpenVMS and BLISS groups were b u sy

with their own porting projects, we in the Database

Systems Group had to accomplish our port with l it

t le outside help. The task was noteworthy beca use,

by necessity, the team had to port its product set to

the Al pha AXP platfo r m earl ier than most of the

other porting groups. At the same t ime, Rdb and

DBMS were p erhaps the most comp lex layered

products that \VOll id be ported. Our goal was to

port these two products in a t i m e l y fash ion, so that

Digital woul d truly succeed in provi ding an easy

m igration path for software products to the Alpha

AXP platform.

In this paper, we first present a brief descrip tion

of the archi tecture of the two database m anage

ment system products. We next describe the gu id

i ng pol i cies we fo rmu l a ted to al low the port to

proceed as efficiently as possib le . Then, we docu

ment porting issues that we resolved fo r the two

prod ucts. Final ly, we sum m a rize our experiences

related to this effort .

Product Architecture
Digi tal is u nique in the database industry in that we

prov ide two d ifferent types of database m anage

ment systems that layer on top of the same database

kernel, which is called KODA. The KODA kernel

provides journal i ng and recovery, locking, access

methods (e .g . , B- tree, hashing), record and page

management, and buffer pool management.

The Rdb software provides language prep roces

sors, an i n teractive query front end, a cal lable i n ter

face, catalogue ma nagement, query optim izatio n,

and rel.at ional operations such as join , select, a ncl

project. Rd b suppl ies a relational in terface to the

database.

! 54

The DB:V1S prod uct also p rovi des l a nguage pre

processors, an in teract ive query front end, a n d

o t h e r software necessary to defi n e , create, a n d

manage data in s imple or complex databases. I n

contrast to Rdb , DB,\>IS provi d es a CODASYL i n ter

face to the database.

Figure 1 shows the rel ationship of the Rclb ami

DBMS software products to the KODA database

kernel

Porting Policies
Init ia l ly, we developed pol icies to gu ide our port to
t h e Alpha AXL' pla tfo r m . These policies, which

app l ied to the KODA, Rcl b , and DB:VIS team s. were

designed to simplify the port and to ease long- term

m a intenance requ i rements.

Common Source Code Base
Our most i m portant decision was to have a com

mon source code base. That is, we wantecl to have

one set of source code that could be compiled and

r u n on either a VAX or an AJpha AXP system. A t the

t ime we began our port, the OpenVMS group was

the only other software group t hat had started their

port, and they had chosen to have two distinct code

bases. (The OpenV.\>lS A X P porting sched u le d ic

tated the choice.) So with respect to code base, the

path we chose was u ntested. We also decided to

maintain common command procedu res to com

pile, b u i l d , and l in k , and common regression tests

between the VAX and Alpha t\.'CP systems.

A prim ary reason for our code base decision was

that we d id not have the res ources to ma nage two

different code bases. Also, al though two d ivergent

code sou rces wou lcl have a l lowed for a stable code

ROB DBMS

KODA DATABASE KERNEL

OPENVMS O P E R ATI N G SYSTEM

Figure 1 Re/ationsbijJ uf Rdb and DBMS

to the KODA Da tabase Kemel

1'<11. 4 No. 4 .�jJecial lssue 1')')2 D igital Technical journal

Purting Digital's Database Nlcmagernent Products to the Alpha AXP Platform

base with which to begin the Alpha AXP port, the
group strongly wanted to avoid having to merge the
two code bases at a future date. Consequentl y,
since our rrcl iminary investigation indicated that a
single code base was feasible and that we could
hide most of the platform dependencies through
the superb macro capabi l i ty of the BLISS l anguage ,
we proceeded with the common source code
implementation . The single code base a l lowed us to
bui ld and release Alpha AXP and VAX versions of our
products at the same t ime.

Concurrent Releases

Our release schedu le compli cated the process of
adhering to the single code base pol.icy To meet the
schedule, we had to overlap some of the Alpha AXP

port with our current VAX releases. That is, the sce
nario we fol lowed was NOT: work on a VAX release;
complete a l l necessary code changes; stabi l ize the
release; and then create a newer set of sources for
the Alpha AXP port. Rather, for the beginning por
t ion of the Alpha AXP port, we a lso had to change
source code destined for a VAX release. Thus, if a
module had to be changed for the earl ier VAX

release and the same module had a l ready been
ported for the Alpha AXP release, the engineer had
to propagate the code change to the Alpha AXP

source code.
To minimize the effect of double code changes,

we first worked on those modules for the Alpha
AXP release that were reasonably stable in the cur
rent VAX code stream . For example, the BLISS
R EQUIRE files that we use for data defi nitions were
reasonably stable for the VAX release by the time the
Alpha AXP port began . The modu les that did not
change for the VA X release were also good candi
dates for helping us to avoid making double code
changes. When we fina l ly began to port the bu l k of
the modules, they were mostly stable ami , as a
resu lt , only bug fixes for the VAX release requ ired
that we manual ly mod ify the same module for the
Alpha AX I' release.

Furthermore , once we began work on t he Alpha
AXP release, we needed the capabil ity of being able
to compile, l ink , and test on both the A lpha AXP
and VAX plat forms. So we had to modify our devel
opment environment to a llow us to identify the
code change session as either an Alpha tL'\P or a VAX

session.

No New Functionality

The Alpha AX I' release of the database management
system product set contains no new functional ity.

Digital Tee/mica/ journal VfJ/. 4 No. 4 Special lss/le 1992

On t he first pass, we decided to port the VA X code
without designing any new a lgorithms. We d id
clean u p some code for style, convention, and per
formance, but basical ly, the Alpha AXP release
remains functional l y equ ivalent to the latest VAX

release.

Correct and Fast Code Execution

We did not priori t i ze our effort to first, be correct,
and second, be fast. We decided that we must be
correct and fast on certain key issues. For example,
on VAX systems, our argument -passing mechanism
ut i l i zed the argument pointer (AP). To minimize
code changes, we could have used the ARGPTR con
struct in the BLISS cross compiler. However, ARGPTR

is inefficient and, therefore, not appropriate for our
needs. Consequent ly, we ensured that our new
argument -passing design was efficient, even
though doing so was t ime-consuming.

Minimizing Platform-specific Modules

Code condit ional i zat ion, i .e . , producing separate
code for the VAX and the Alpha AXP platforms,
requires various levels of code dupl ication. For
example, the process may requ ire the dupl ication
of an entire module, routines within a module, or
certa in l ines of code within a routine. To minim ize
the amount of code dupl icated , we conditional ized
on the smal lest code segment possible, using a sen
sible approach. For example, when forced into
using condit ional code, we avo ided dupl icating
modules by choosing to keep within a single mod
u le. Ideal ly, we condit ional ized just a few l ines.
Wherever possible, BLISS macros were modified to
hide the code condition a l ization.

Rdb ls Rdb

\Ve wan ted our database management products to
" look and feel" the same on an Alpha AXP system as
they did on a VAX sy�tem. So, to paraphrase from the
Open VMS operati ng system maxim, we wanted Rdb
to be Rdb ' That is, the ported Rcl b should have the
same ut i l i t ies, the same data structures, the same
data defin it ion capabil i t ies, the same data manipu
lat ion constructs, etc . , as the DEC Rdb for Oren VMS

VAX product. Incorporated in this desire for same
ness was the fundamental point that we were not
going to change the on-disk structures. D llJYIS was
ported with the same goa l in m ind.

No Changes to On-disk Structures

The KODA kernel stores records on database pages.
Unfortunately, the database page is not natur a l l y

Alpha A,'(P Architecture and Systems

a l igned ; page header fields and fields w i t h i n the

records are not a l ign ed . Although a l ign i ng these

fields wou ld boost performance , to rea l ign all the

structu res on the dat:�hase page would require the

database ro be unloaded and then reloaded. Cu rrent

custom ers cannot afford the downtime needed to

pertc>rm t he conversion, so we decided to mainta i n

t h e same page/record structure. Furthermore, by

m a i n tai n i ng the same on-d isk structure for the VAX

and Alpha :\ XI' databases, we do not preclu de

fu ture concu rrent access to the database in a

m i xed-arc h i tecture VNIScluster. Th us, our p resen t

design does not requ i re an u nload/reload opera
t ion, si nce pe rform i ng that action wo u l d he too

m u ch ol an i mp ed imen t to m igrati ng to the Alpha

AXl' p l a t form . Hmvever, we do p la n to investigate

the p o tenti a l p erfo r mance boost from a l igned

pages/records and, if the gain i s substantial , to offer

some al ignment solu t i o n . Note that this sect ion

rekrs o n l y to data structur e s tied to on-d isk struc

t u res. We did a l ign a l l in-mem ory stru ctures, and

we elaborate on t h is topic in the next sect ion.

Porting Details

In t h i s sec t i o n we des cr i be a general set of issues

and sol u t i ons that ap plied to a ll the gro ups involved

in port ing rhe database managemen t system soft

ware to the Alpha AXP p latform . We th en exp l a in

some of t he more i nterest i ng issues and solutions

pertai ning to each group.

Com.mon Issues

A col lecrion of general porting issues a ppl ied to the

Rd h , DII\IS, ami KODA grou ps . For example , a l l

gro ups needed the capab i l i t y t o concl i t ional ize

cocle i n a mod ul e , so that the com pi ler o n an A l pha

AX!' svstl'm wou ld p rodu ce one set of objec t code,

a nd the c o m p i l e r on a VAX system woulcl prod uce

a nother set. Com m o n issues were:

$ P R O B E R (B A S E , L E N = 4 , M O D E = 0)
% I F K O D $ K _A L P H A
% T H E N (B U I L T I N P A L_ P R O B E R ;

• Varia n ted code

• Data a lignment and field resizing

• Argument -passing mechanism

• BUILTIN functions

• VAX testi ng

• The CALLG mechan ism and AP references

• VAX MACR0-32 modules

• Message fi le support

Varian ted Code To simpl ify condit iona l code, we
added a set of l itera ls , for exa mple KO D$K_ VAX or
KOD $ K_ALPHA, that can be used in :1 l l our BLISS

modu les. We cou ld then use these l i terals to cond i

t ional i ze code. The code example shown i n Figure

2 i l l ustrates the conditionalizing of the PROBE

instruct ion . The PROBE i nstruct i o n checks the

read/wri te access of a memory locat ion. On Al pha
AX I' systems, the instruction is qu ite d i.fferent from

the co rrespond ing instruction on VAX systems.

However, BLISS easi ly handles this d ifference i n a

macro, which a l lows us to change the name and the
order of the argu ments, pass argumen ts by value

i nstead of reference , and use an offset instead of a

length. By developing such a macro, t he actual
sou rce code d i d not have to change.

Data Alignment and Field Resizing On the first
pass, we im mediately modified a l l in -mem ory data

structures so that they were natu ra l ly a l igned . This

step avoi ded i ncurring a signifi ca n t perfo rmance

penalty on rile Alpha AXP pl atform . In add it i o n ,

s i n c e no single Alpha AXP instru ctions exist that

cou ld be used ro easi l y m a n ipulate bytes or words,

many of our i n-mem o ry byte (8-bit) and word

(! o -b i t) fields were changed to l o ngworcls (32 bits)

to reduce the object code size and improve
perti)rmance.

P A L _ P R O B E R (B A S E , L E N - 1 , M A X (M O D E , $ P R E V _ M O D E)))
% E L S E (B U I L T I N P R O B E R ;

% F I % ,
P R O B E R (% R E F (M O D E) , % R E F (L E N) , B A S E))

Figure 2 Conditionalized PROBE Instruction

I �6 lfJ!. 4 No. 4 SjJecinl lssue 1992 Digital Tecbllica/]our11al

Porting Digital's Database klanagement Products to the Alpha AXP Pia {form

Once we a l igned the in-memory data structures,

two groups of data structures remained u nal igned :

those t ied to the database root file, which records

database parameters such as associated files and

da tabase settings, and the d atabase pages that actu

a l ly contain the data records. Since the database

root file is relatively smal l (i.e . , less than 100 blocks

in size), it was a l igned also. Thus, the root file is

automatical l y re-created in a conversion that

occurs when upgrading a database prod uct to sup

port both the Alpha AXP and VA X architectures.

Since th is conversion i nvariably takes place when

converting t o a newer version of either the Rdb or

the DBMS product, the addit ional real ignment of

the root is a m inor addit ional expense.

Thus far, we have not pursued any poten tial mod

ifications of the page data structu res, such as a l ign

ing them once they are fetched into memory. Note

t ha t these structures d o not generate una I igned

fau l ts. I nstead, they force the compiler to generate

a few additional instructions to hand le the odd

al ignment.

Argument-passing klecbanism The VAX and

Alpha AXP argument-passing mechanisms are

entirely d ifferent. Rather than using the standard

BLISS mecha n ism, the existi ng code dep ended

stro ngly on the VAX argument -passing mecha nisms

by using BLISS macros to reference arguments from

the AP. This approach was not possible on Alpha

AXP systems due to the lack of an AP register. (You

cou ld force the AP to be generated, but that process

wou ld be slow and wou ld waste memory.)

Therefore , we changed our procedu re headings to

decl are a generic formal parameter l ist (e .g. , P I

through PN) for both the Alpha A.,'\P and the VAX

systems a nd then developed another set of BLISS
macros that al lowed us to bind to the argu ments

based on the generated fo rmal parameter l ist. Since

this process involved changing every rou tine decla

ration, we developed a text - p rocessing tool that

would automatica l ly change the rout i ne headings

and thereby avoid the expensive and error-prone

task of manually changing each routine.

BUILTIN Functions Together, the KODA, Rd b, and

DBMS code uses most of the BLISS Bli.I LTJ N func

tions. This fact presented a p roblem fo r the team

porting the software to the Alpha AXP platfo r m .

Some VAX BU !LT!Ns were not supported, some

behaved d i fferently, and some were e l i m ina ted as

BUILT!Ns but emu lated by Starlet, an Op enVi\i!S

Digital Techuicaljourllal Vol. 4 No. 4 Special Issue 19')2

support l i brary. Agai n , we used BLISS macros to

solve the proble m . Essential ly. our macros catego

rized the BUILT I Ns and then pe rformed the appro

p riate expansion , based on the category. For

exa mple, the PROBE BUILTIN d i ffered marked ly

betwee n the VA X and Alpha AXP i m p lementations,

as indicated by Figure 2.

VAX Testing Anothe r ge neral problem that we

had to guard against was the possibi l ity that the

Alpha AXP code cha nges wou ld i ntroduce bugs i nto

the VAX versions of the products. Consequently, we

adopted a pol icy whereby a l l Alpha AXP changes

had to be rested on a VAX system. This pol icy

ensured that we maintained a steady pattern of cor

rect VAX behavior. Also, since the VAX environment

was more stable than the Alpha AXP environment,

testing on a VA X system helped tremendou sly in

identifying and fixing bugs related to the port.

The CALLG Mecbanis111 and AP References Th e

Alpha AXP platform does not directly support

CALLG, a VAX proced ure cal l ing mechanism , and

references to the AP. The C\ Ll.G mechanism and A P

references are slow since they are s i m u lated a n d

automatical ly al locate stack space t o acco m modate

the largest possible argu ment l ist (i .e . , 255). In situ

ati ons where p e rfo rmance was not cri t ical, fo r

examp.le, in an error hand ler, we replaced CALL(; by

a standard rou tine cal l on both the VAX ancl the

Alpha AXP software versions. When perfo rmance

was an issue , we used conditional code to retain the

CALLG mechanism for the VAX code and to use a

standard rou tine ca l l in the Alpha AXP cod e. I n

i nstances where the CALLC mechanism is used t o

pass the argument l ist to the next ro utine, we con

structed an argument vector and replaced CALLG by

a special cal l l inkage . The new mechanism passed

the pointer to the argument vecto r by means of a
si ngle parameter or a global register. This solution

guara n teed good perfo rma nce on both VAX and

Alpha AXP systems yet avoided a ny cond itionalizing

of the code.

VAX MACR0-32 Modules For a variety of reasons,

we used VA X MACR0-32 to code some ro utines in

the Rdb, DBMS, and KO DA software. For example,

basic operations such as record compression, record

expansion, ami bu ffer init ia l ization are pe rformed

through ca l ls to VAX MACR0-32 routines that are

heavily optimized fo r efficient operati o n . Some

routines are coded in VAX MACR0-32 for ease

1)7

Alpha AXP Architecture and Systems

of character manipu lat ion. Al so, we used VAX

MACR0-32 to code m achine i nstructions that were

not ava i lable through a BLISS BUILTJ N function.

We adopted various sol utions for these VAX

MACR0-32 routines. For those routines where per

formance was not an issue ami BLISS generated

acceptable code, we converted to BUSS code. For

rou tines where performa nce was absolu tely criti

cal , we rewrote the rou tine i n Alpha AXP MACR0-64
to ut i l ize the addit ional registers. F ina l ly, in some

cases where we could n o t rew rite the routine in

B U SS code and did not have the resources ro con

vert to ,'v!ACR0-64 code, we employed the Alpha

:'I'IACRO cross compi ler.

Message File Support Due to the str ucture of the

database produc ts, as shown in Figure I , each com

ponent has separate message files. Both Rdb and

DBMS have a message file that is separate from the

KODA message fi le. Furthermore, the Rdb and DBMS

software share the KODA message file.

The message files are merged dur i ng the b u i l d

cycle. s o t hat customers are n o t required t o b e

aware o f the modu lar layo u t of t h e code. A s a result ,

KO DA messages, when appemlecl to Rd b's message

fi le, print as Rdb messages (e.g. , RD.'v!S-F-msgcode,

message text). However, the Rdb source code sti l l

references the KODA message codes with the

KODS_ message prefix .

Prior t o t h e i ntroduction o f t h e Alpha AXP archi

tecture, the KODA messages were defi ned with

. l .ITERAL declarations in the message files. Si nce we

occasiona l ly l ink i mages with m u l t iple message

files, we wrote a program that would read an .OB.J

f i le and write a new . OBJ fi le w i thout writing the

KODA l i teral declarations. This process wou ld no

longer work since AJpha AXP object files have a d if

ferent format than VAX object files. As a result , we

M O D U L E D B M K O D M S G
B E G I N

changed the mechanism to define the KOD$_ sym

bo l ic values to be compatible with both the VAX

and AJ pha AXP architectures.

First, we removed all . LITERAL declarations from

the KODA message fi le . As a result , a l l KODA mes

sages were defined strictly as RDMS or DBMS

messages. Then, after passing the m essage source

file through the message compi ler to get the mes

sage object fi le, we invoked the Al'\IALYZE/OBJECT

faci l ity to get a l isting of the message symbol codes

and va lues for each message. Final ly, we wrote a

sma l l u t i l i ty to read the ANALYZE/OBJECT output

and generate a BJJ SS .832 fi le , whicl1 is shown in

Figure 5.
Th is BLISS program, when compiled and i ncluded

in an exec utable i mage , defi nes the appropriate

KOO$_ message codes and their associa ted values.

This proced ure is used on both the OpenVMS VAX

and the OpenVMS AXP operat i ng systems to gener

ate the message fi les. Furthermore, since this group

no l onger writes programs that read object code,

the resu lt ing method is ea..<;ier to maintain.

The fo l l owing th ree sections d iscuss some prob

lems encountered by each of the porting teams.

Porting the KODA Database Kernel

Am o ng the issues that the KO DA group dealt with

were those re lated to cal l ing mechanisms, kernel

mode ru ndown hand Ins, and a bugcheck d u m p

mechanism .

Stacl�-switching/Stall Mechanism The KODA data

base kernel performs its own multithreading activi

ties. A single process can be actively attached to

m u ltiple databases i n the c ontext of a si ngle instan

t iation of the software. For example, in the DBMS

interactive query (OBQ) faci l ity, the user can per

form the fol lowing operation:

G L O B A L L I T E R A L K O D $ _A B O R T _ W A I T
G L O B A L L I T E R A L K O D $ _ A C C V I O
G L O B A L L I T E R A L K O D $ _A I J A C T I V E
G L O B A L L I T E R A L K O D $ A I J A L L D O N E

% X ' 0 0 2 8 8 0 0 C ' ;
% X ' 0 0 2 8 8 5 E C ' ;
% X ' 0 0 2 8 8 B A 3 ' ;
% X ' 0 0 2 8 8 B 3 3 ' ;

! '58

E N D
E L U D O M

Fi�ure 3 BLISS Code to Genemte KOD iV!essa�e Deji'n itions

Vof. -1 ,Vo. i .\jJt'ciaf Issue 19'Jl Digital TeciJIIical jourual

Porting Digital's Database Management Products to the Alpha AXP Platform

d b q > I A t t a c h t o f i r s t d a t a b a s e a s u s e r 1 .

d b q > B I N D D B 1 O N S T R E A M 1

d b q >

d b q > I A t t a c h t o s e c o n d d a t a b a s e a s u s e r 2 .

d b q > B I N D D B 2 O N S T R E A M 2

d b q >

d b q > I E s t a b l i s h u s e r 1 c o n t e x t .

d b q > S E T S T R E A M 1

This exnmple has the user at tached to two diffe r

ent chtabases, DB I and DB2. To issue queries agai nst

either database, the user enters the SET STREA."vl

command. In response, KODA establ ishes the cor

rect datn structu res and stream context for this

database sess ion . This process i nvolves switch ing

data structures and stack context. Consequ ently,

KODA manages its own stack for its executive mode

code nod data structures. This stack-switch i ng

mechan ism is complex, and this code is i ntimately

tied to the VAX procedu re c a l l i ng mechanism. For

exa mple, whenever a query must sta l l (e .g . , w h i le

wa i t i ng for a lock request), KODA saves the current

execut ive mode context and then swi tches back

through the stream code out to user mode. Thi s

action al lows the process t o receive user-mode

ASTs. This mecha nism essential ly saves a cal l frame

so that nfter the user-mode sta l l has completed,

KODA can set up the appropriate stack and retu rn to

the cal l ing rou tine by means of the saved call fra me.

The c a l l ing/return mechanism is ent irely differ

ent for the VAX nnd Alpha A X P arch i tectures. On

Alpha AXI' systems, for each rou t i n e , the compi ler

generates prologue cod e a nd epi logue code to man

age the rou t i n e ca l l i ng mechanism. Accord ingly,

the KODA stack mec hanism had to rely on this new

mechanism. In addit ion. for this level of support,

the routine that was coded i n BLISS for t he VAX plat

form had to be coded i n MACR0-64 on the Alpha

AXP platform.

Kernel- ntode Rundown Handlers Another exam

ple of KODA's close tie to OpenVi'vlS be hnvior

i nvolved the use of KODA 's kernel-mode ru ndown

handler. On VAX systems, in the event of an abnor

mal fai l u re , we mu st cl ean up certain clara struc

tu res and release resources s u c h as locks or

channels . Furthermore, da tabase recovery must

start before the im age ru ndown is completed, so

t hat survivi ng processes can not acqui re locks on

resources before the da tabases are recovered .

\XIe accompl ish t h is image cleanup through the

use of a user-defi ned system service (i . e . , a system

service not defined by the OpenVMS system),

wh ich acts as a kernel-mode ru ndown h a nd ler.

Jn addition to releas ing da tabase resou rces, the

Digital Teclmical journal Vol. 4 No 4 Special issue I'JI.J2

handler also c leaned up OpenVMS data st ructures

such as the pend i ng AST queue. These OpenVMS

data structu res changed significantly for the Alpha

AXP arch itecture. For example, an Alpha AXP

system has five pending AST queues instead of one.

In addit ion, this handler routine wou ld acq u i re the

OpenVMS sched u ler spinlock and perform · 'poor

ma n's lockdown,"' which effectively pages the entire

rou tine int o memory (s ince the code cannot incur n

page fau lt at elevated i n terrupt priority leve l , !PL).

For Alpha AXP, code and data cannot be located in

the same PSECT, so this trick was not possible.

Instead, we used the $ L KWSET macro to lock pages

i n memory and t hen to clean u p the OpenVMS data

structures.

After we completed ancl tested the code, the

database and OpenVMS engineering teams decided

that such i n t ricacy was need lessly complex, and

that the OpenVMS AXP software cou ld clean up

the data structu res based on irs i mage control

block and rel ated structures. This example shows

how the Open VMS A X P system offers d ifferent fu nc

tional ity than the OpenVMS VAX system , i . e . , the

port offered the opportunity to c lean up existing

mechanisms.

Bugcheck Dump Mechanism Complex, sophisti

cated software products are by nature difficu l t to

debug. Most of these products u t i l ize a data struc

ture cll1mping mechanism whenever a n i nternal

software o r hardware error is encountered. KODA

Ius a mecha n i s m called a bugcheck clu m p that per

forms this service . When an u nexpected exception

is generated, the bugcheck d u mp cocle prints nll rel

evant clara structu res into a fi le. In addit ion, the

clump i ncludes a stack dump. On VAX systems, the

bugcheck d u m p trnces bnck down the stack using

the saved c a l l frames and p r ints out a l l t he fields i n

each ca l l frame, the rou tine name, a n d t h e argu

ments passed .

In pnrticu l ar, the method for printing the sym

bol i c name of the rou t i nes is especi a l l y cl ever. After

l i nking an image, we u t i l i ze a progrnm that scnns

the symbol table (.STB file) prod uced by the l i nker.

Then the program creates its own object fi le , which

i ncl udes a relative offset of al l the rout ines and their

symb o l i c na mes. Final ly, the i mage is rel i n ked, and

t h is new object fi le is incl uded into the i m age in a

particu l a r PSECT. Wben tracing back down the call

frames, the bugcheck cl u m p also checks the special

PSECT to locate and print the correct routine name.

This dump is an i n valu able tool in dete rmining the

causes of unexpected errors. Figure 4 incl udes two

1 '59

AJpha AXP Architecture and Sysrems

S a v e d P C = 0 0 0 4 0 8 A F : D I O $ F E T C H _ D 8 K E Y + 0 0 0 0 0 0 4 F
A R G # A r g u m e n t [d a t a . . . J -

1 0 0 2 0 6 4 8 4 : 0 0 0 1 F C F C 0 0 2 0 6 4 F 4 0 0 2 0 6 5 0 C 2 0 7 C O O O O 0 0 0 2 7 7 C 7 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1
2 0 0 0 0 0 0 0 1

H a n d l e r = 0 0 0 0 0 0 0 0 , P S W = 0 0 0 0 , C A L L S = 1 , S T A C K O F F S = 0
S a v e d A P = 0 0 2 0 6 4 4 C , S a v e d F P = 0 0 2 0 6 4 3 0 , P C O p c o d e = E O

S R 2 0 0 2 6 4 6 D O : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 9 1 8 F F D A A 3 E 8 F F F 6 3 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S R 3 0 0 0 0 8 C 4 1 : 0 1 3 A 2 0 4 8 C 2 F F F F F F F F F F F 8 5 E E 0 0 0 9 5 8 7 D 5 1 2 A 4 E O 4 0 0 0 0 0 0 0 1 8 C 0 0 0 4 0
S R 4 0 0 2 6 4 6 8 0 : 0 0 0 0 0 0 0 8 0 0 2 0 6 4 5 C 0 0 2 6 4 6 A O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 b y t e s o f s t a c k d a t a f r o m 0 0 2 0 6 4 1 C t o 0 0 2 0 6 4 3 0 :
0 0 2 6 4 6 8 0 0 0 0 0 0 0 0 1 0 0 2 0 6 4 8 4 0 0 0 0 0 0 0 2 0 0 0 0 ' 4 d O F & . '

0 0 1 C 7 D 0 8 0 0 1 0 ' . } . . '

S a v e d P C = 0 0 0 5 5 2 4 1 : P S I $ M O D I F Y S T I T M + 0 0 0 0 0 0 3 3
A R G # A r g u m e n t [d a t a . . . J -

1 0 0 2 0 6 4 8 4 : 0 0 0 1 F C F C 0 0 2 0 6 4 F 4 0 0 2 0 6 5 0 C 2 0 7 C O O O O 0 0 0 2 7 7 C 7 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1
2 0 0 0 0 0 0 9 6
3 0 0 2 6 4 6 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 9 1 8 F F D A A 3 E 8 F F F 6 3 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H a n d l e r = 0 0 0 0 0 0 0 0 , P S W = 0 0 0 0 , C A L L S = 1 , S T A C K O F F S = 0
S a v e d A P = 0 0 2 0 6 4 9 0 , S a v e d F P = 0 0 2 0 6 4 6 4 , P C O p c o d e = D D

S R 2 = 0 0 2 5 6 0 4 2 : 0 0 0 2 0 0 9 6 0 0 0 0 0 0 5 F 0 0 0 0 0 0 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 2 E 2 A 1 3
S R 3 = 0 0 2 6 4 6 8 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8 0 0 2 6 4 6 A O 0 0 2 6 4 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 b y t e s o f s t a c k d a t a f r o m 0 0 2 0 6 4 4 C t o 0 0 2 0 6 4 6 4 :
0 0 2 6 4 6 D 0 0 0 0 0 0 0 9 6 0 0 2 0 6 4 8 4 0 0 0 0 0 0 0 3 0 0 0 0 ' 4 d P F & . '

0 0 1 C 7 C F 8 0 0 2 6 4 6 C O 0 0 1 0 ' @ F & . x l . . '

Figure 4

rou t i ne ca l l s from a stack trace, ind icated by the

l i nes of code that begi n with "Saved PC."

Alpha AX!' systems have no equivalent to the \ : \X

c a l l fra mes. s o i t is i mpossible t o u s e the c a l l frame

mechanism to trace cJown through the stack. As

mentio ned previously, A l pha AXP rou tines u t i l ize

prologue ami epi logue cocJe for returning from rou·

t ine cal l s. Procedu re descri ptors contain i nforma

tion such as entry address and register save

information.

On Alpha A X P systems, another Digital gro u p

supplied a s e t of rout i nes that a l l ows tracing the

cal l sequence. Th is set provided t he basic capabi l

ity to pri nt the routine ca l l ing sequence that led to

an abnormal exception. In add it ion. the A l p ha A X !'

l i n ker prod uced a symbol table fi le . However. we

decided to simpl ify our bugcheck mechanism .

Al though we sti l l search the symbol table file t(>r a l l

rou t ine addresses, rather t h a n create a n Al pha AX!'

object fi le , we create a VA X MACR0-32 fi le that

inc ludes the rou tine name ancJ add ress/offset.

Then, w e simply use the Alpha :\·lACRO cross com

pi ler to generate the Alpha AXP object, which gets

l inked i n to the i mage on t he second pass. In fact,

we changed our VAX bugcheck rou tine to produce a

MACR0-.'>2 file with rou tine name and offsets. Tbis

160

Bugcheck DumjJ

process is s i m p ler than d i rectly crea t i ng a n object

file, as we did p reviously.

Even though the routines provided this cal l trace

back capabi l i ty, we were m issi ng the argu ments

passecJ to the rou tines, perhaps the most im portant

parr of the stack trace . The VAX mechanism cap

tured this data, because very often a bugcheck

resu lts from one rou tine passing an i mproper argu

ment to another rou t ine . The Alpha A X P system

does not provide a way to capture this information,

because the rou ti ne cal l i ng sequence reuses regis

ters R 16 through R2l for passing argu ments.

Porting Rdb
Some issues hand led by the Rdb porting group

were associated with the d ispatch code, Al pha AXP

cock ge neration, Rd b precompilers, ancJ Rdb

system rel a tions.

Dispatch Code The d ispatch code is the topmost

layer of the Rdb software a n d is ca l led d irect ly by

the user appl ication by means of relational ca l l

i nterface (K.cl) ca l l s 2 The main h1 nction o f d ispatch

code is to d i rect the user request to the correct tar

get Rc.l b executive (local or remote) for processing.

On VAX systems, the dispatch code passes the user

Vol. 4 Nu. - 1 Special issue 1')')2 D igital Technical journal

Porting Dl��ft{l/'s Dota{)ase 1Hanagement Products to the Alpha AXP Platform

argu ments to the Rd b software using the CALLG

l i n kage. '• On Alpha AXP systems, CALLG l inka ge is
very ineffic ient . The refore , the d ispatch code was
cha nged to b u i ld a user arg u ment vector in the
same style as the VAX argu ment l ist, and the pointer
to the argument vector was passed as a single
para meter. The code in Rd b was c hanged to bind to
the user argu ments liSing the offset from the
poi nter to the argu ment vector.

Using two d i fferent cal l ing mec hanisms i n the
d ispatch to pass u ser arguments was a carefu l
design . On VAX systems, the existing CALL(; mecha
nism was retained to ensure backward compatibi l
i ty between different ve rsions of the Rd b d ispatch ,
Ru b layered products, and gateways. A new ca l l i ng
mechan ism was used on AJp h a AXI' systems ro
ensure good perform a nce, since every user request
to the Rdb execu tive goes through the d ispatch.

Code Generator Rdb uses compiled BLISS code
and generated machine code to execute user
requests. D u r i ng request com p i l at ion, Rdb gener
ates h ighly efficient rou tines using the target
mach i ne in structions. These ro ut ines perform
basic data o perations incl uding data co nvers ion,
data movement between bu ffers, aggregat i o n , and
express ion evaluat ion.

The design of the Rd b code generator to prod uce
Alpha A X I' machine code was undou bted ly the
most complex porting task. ljsl' of a mechan ism
other t han code ge neration wo u l d have reduced
the porting effort . However, at the time we began
porting Rdb, i t was not clear if an a lternate mecha
nism wou ld guarantee an acceptable level of perfor
ma nce. Good p erformance was considered critical
to the success of Rcl b on Alpha A X P systems.
Therefore, we decided ro add fu nctional i t y to the
Rd b code generator to produce Alpha A X P code. To
generate efficient Alpha A X P code sequences, we
obse rved specific gu idel ines. '

On Alpha AXP systems, code that references data
items with increas i ng memory add resses executes
more efficien t ly. Therefore, the algorithm was
c hanged to first o rder the data items by i ncreasi ng
memory addresses and then generate code to pro
cess the data.

In Rdb, each data item has a nu l l hit that ind icates
whether or not the value of the data i tem is k nown .
As shown i n Figure 5, to conserve s pace, the n u l l
bits of diffe rent data items are stored together l ike
a bit vecto r within a record . Loading/storing a
nu l I hit is an expens ive operation on Alpha A X P

Digital Teclmicaljourua/ Vol. 4 No. 4 .SjJecial Issue 19')2

I DATA ITEM1 ,DATA ITEM21 NULL BIT VECTOR

Figure 5 Rdb Record Layout

systems. ; Therefo re , the a lgorithm was modified to
fetch a batch of n u l l bits into a register. When a l l
n u l l bits in t he register are processed, t h e batch is
written and the next batch of n u l l bits is fetched.
This approach reduced the n u mber of load ami
store i nstructions and made the code seque nce
m u c h more efficient.

On Alpha AXP syste ms, the m ach ine code rou
ti nes generated by Rdb use fou r d i fferent address
ing modes to access data i tems: absolute add ress,
base register plus offset, in teger register content,
and floati ng-poi n t register content . Each of the
Alpha AXP registers R l2 through R l5 is used as a
base register. Th us, any data stored with i n 256K
(4 X 64K) of memory space can be accessed effi

c ient ly To maxi mize data access efficiency and
cachi ng, cha nges were made in the code generator
to allocate data densely. To improve performan ce
fu rther, data items were a llocated at quadworc1 or
longworcl al igned addresses.

An Alpha AX!' code sequence executes more
efficien tly w hen i nstructions can be m u l t i- issued
and executed in para l le l . This can be ach ieved
by reordering the sequence of i nstructions
while m a i ntai n i ng any chronological dependency
between i nstructions. To take advan tage of this
Alpha AXP feature, BUSS macros were deve loped
to reorder and in terleave the i nstructions in a gen
erated code sequence.

On Alpha AXP systems, backward branches in the
code slow down the execut ion because of i nstruc
tion stream inval iclat io n . ' Changes were m ade in
the Rdb code ge nerator to minimize backward
branches. T h is cha nge at times increased the size of
the generated code b u t i m proved the code execu
t ion effi cien cy. Further, Boolean code ge neration
algori t h ms were modified to i ncorporate branch
p rediction logic ; code sequences with a smal ler
p robab i l i t y of exec u t i o n were branched out of the
m a i n code stream. Th i s technique maximized t he
effect of i nstruction stream cach ing.

Rdb Precompilers An Rdb p recom piler prepro
cesses a user appl ication program that includ es
Rdb statements and replaces t hese statements by
standard RCI cal ls to the Rdb software 2 The Rdb

161

Alpha AXP Architecture and Systems

statements embedded in the app l icat ions can be
one of three types: stru ctured query language
(SQL), Rdb preprocessors la nguage (Rdb l'HE). or
relational data manipulation language (RDJ'v!L).
There are th ree differen t Rdb precompi lers to sup
port these languages.

The SQL precompi l er, an industry-standard l a n
guage interface to Ru b , is a strategic Rub com ro
nent. A long- term goa l of this precomriler is
flexibil ity in future developments and ease of main
tenance. To meet this goal , the SQL precompiler was
redesigned to use the GEM com piler o n Alpha AXP
systems to prerrocess SQL appl ication programs
and produce Alpha AXP object code.

The Rd bPRE precom piler is a proprietary lan
guage interface to Rd b. The long-term goal is no
new fu nctional ity and minimal maintena nce . So
the main objective was to red uce the effort
required to port this compi ler. This was ach ieved by
retaining the existing design and using the Alpha
MACRO cross comriler to produce Alpha AXP

objects from VAX MACR0-32 files.
The R.DML precompiler is a lso a proprietary la n

guage in terface to Rdb. Unl i ke rhe Rd bPRE precom
pi ler, this compi ler does nor produce VAX .'ltACR0-.12

files. So po rting it was an easy and straightforward
task .

Rclb .System Relations Rdb uses system re lations
to record information about the user re lations and
the database. The system re lations are stored on
disk and loaded into memory on demand. Since
they are frequently referenced duri ng user request
processing, efficient access to data in system rela
tions is crit ica l for performance. On Alpha AXP

systems, accessing data from memory is efficient if
it is located on either a Iongword or a quadword
address boundary. i Therefore, changes were made
ro the in-memory system data structures to al ign
each data field tO at least a longword address bou nd
ary. Further, data fields that were a byte or a word
were expanded to a longword.

The data in system re lations was accessed by
using RdbPRE statements embedded i n Rub source
modu les. Porting such Rdb modules posed a
dilemma. To compile these modu les, first the
RdbPRE compi ler had to be ported to the Alpha AXP

platform. Vice versa , to port and test the Rd bPRE
precompi ler, Rdb had to be ported and running on
the Alpha AXP platform . Moreover, Rd b!'RE was no
longer a strategic language in terface. Therefore,
n ew BLISS macros were designed t hat rep.! aced the
embedded Rd bPRE statemen ts.

162

Porting DBMS

This section d isc usses some experiences of the
ORMS port i ng group, namely those rel a ted to the
Database Con tro l System (DBCS) i n terface, the
H_FLOAT data type suppon, and the usc of the
AJpha User-mode Debugging Environ ment (AlJD).

DBivl$32. the Primary lnteJjace to the DBtv!S The
DBCS for the DBMS software uses a si ngle subrou
tine (DBM $.12) as i ts primary entry point. Th is entry
point is used by the DBMS precompi lers (FDML,
for Fortran, and DML, for other lang uages except
COBOL), as wel l as other layered p roducts, such as
COBOL and DATATR ! EVE.

After receiv i ng control , DBM S :)2 pe rforms some
processing and then, using the CAJ.Lc; mechanism ,
passes the ent ire argument l ist to lower-level rou
t ines t(>r further processing. These lower- leveJ rou
ti nes, in turn, often pass o n the argu ment l ist,
sometimes as deep as five or six levels .

Because we folll1(1 CALLG to be i neffic ient, we
decided to change the primary en try poi nt i n to the
DBCS. Rather than passing up to 26 separate argu
ments, Dll.VlS creates a vector of longwords; each
longword contains an argument that would have
been passed using a parameter. Once this vector is
created (often during the compil ation phase for the
precompi lers), DBM$32_ VEC (the VECTOR ve rsion
of DBM$32) is cal led with a s ingle parameter: the
address of the argument l ist. An example is shown
i n Figure 6.

Layered products usi ng DBi\·15 were advised of the
new i n te rface and were requested to use i r as soon
as possible. However, since the changed inte rface
was i ncompatible with some existing products, the
old i nterface was retained. DRMS 32_ VEC uses the
n ew i nterface, and DBM$32 homes the argument l ist
(thus crea ting the above vector) and then passes
that, by reference, to DBM$32_ VEC : .

Support of H_FLOAT Data TJ pes The H_FLOAT

data type is fu l ly supported o n the VAX processor,
but the Alpha AXP processor has no high-precision
floati ng-point formats. Al though fac il it ies exist o n
Alpha A X!' processors t o read an H_FLOAT data
type, n o such faci l i ty exists to write ; m I-I_FLOAT

data type .
As a resu lt , D B M S customers arc advised to el imi

nate any 1-l_fi .OAT data i n databases before moving
them to an Alpha AXP system. The DBMS Database
Restructure U t i l ity (DRU) can be us ecl to cha nge a l l
H_FLOAT data to another com m on floa ting-roint
format.

Vol. 4 No. 4 .\f!t!Cial lssue /'}9..! Digital Technical journal

Porting Digital's Database Management Products to t!Je Alpha AXP Platform

DBM$32 INTERFACE

ARG1 = FI RST PARAMETER
ARG2 = SECOND PARAMETER

ARGN = NTH PARAMETER

DBM$32_ VEC I NTERFACE
ARG 1 � �--------------�

LENGTH OF VECTOR

FIRST PARAMETER

SECOND PARAMETER

NTH PARAMETER

Figure 6 DBCS Routine-calling JnteJjace

In prepara tion for m ixed VAX ami A lpha A X P

VMScl uster systems, DBMS was modified such that

databases with H_FLOAT data can sti l l be accessed .

However, a run-t ime conversion error occurs if

H_FLOAT data is accessed from an Alpha AXP

system.

Use of AUD The Alpha User-mode Debugging

Environment is a set of faci l it ies that ai ds testing

and debugging of nat ive Alpha AXP code on any

OpenVMS VA X system. AUD a l lowed as much Alpha

AX!' user-mode code as possible to be ported im me

diately to the Alpha AXP system and to be subst a n

t ia l ly debugged before Alpha AXP hardware was

ava i lable. Early in the DBMS porting effo rt , we used

AUD to verify our port and to ensure that our code

was wo rking correctly.

However, several issues hampered the success of

using Al J D in porting the DBMS software:

I . DBMS makes frequent use of signaled excep

t ions. AUD had difficu lty in hand l i ng exceptions

that cross the boundary between the Alph a AX P

a nd VAX systems.

2. DBMS uses special stack manipu lat ion code

(stream code) to perform mult ithread ing func

t ions. AU D wou ld become co nfused if the stack

were to change u nexpected ly.

). At the t i me we were using AUD, the DBCS had

been ported, but KODA (i .e . , the low- level ser

vices used by the DBCS) had not. As a resu lt ,

many variables needed to be defined as crossing

the bou ndary between the Alpha AXP and VAX

systems. The setup t ime to define this i nforma

tion was significant.

4 . Since the code was sti l l running on a VAX proces

sor, many VA X dependencies were not caught by

Al i D . I n particu l a r, system services that changed

in subtle ways wou ld work as before because the

operating system was sti l l the OpenVMS system.

D igital Technical journal 11JI. 4 No. 4 SjJecial lssttl! I'J91

5. Most of the changes that we made i n DBMS were

not condit ional , that is, the changes wou ld affect

both VAX and Al pha AXP systems. As a result , we

were able to test our code on VA.,'{ systems with a

fairly h igh degree of certa inty that our code was

correct, barring a n y operating system or com

p i ler bugs.

We d id eventual ly get an AlJ D version of DBMS
working. However, s ince we spent a considerable

amount of time accompl ishing this, and we did not

actual ly find a ny bugs i n our code by using AUD, we

decided not to use AUD i n fu rther areas of DBMS.
Shortly after using AUD , we received our Alpha

Demonstrat ion U n it (ADl l) and could test our code

on actual Alpha AXP hardware . The o nly problems

we fou n d , wh ich were m issed d u ring our i n it ial

port, were VA X-st y le argu ment I ist assu m ptio ns.

Some of our code assu med that rou tine argu ments

were contiguous i n virtual memory; on Alpha AXP

systems, this is not the case.

Conclusion

To conclude the paper, we d iscuss our plans for per

formance testing and our reflections on the porting

process.

Petjormance
We have only begun o u r performance tests. Cur

rent ly, we are r u n n i ng the TPC-B performance

benchmark . We a lso plan to test aga i nst a l l TPC

benchmarks (A, B, and C) and other benchmarks

such as the Wisconsin benchmark. We are trying to

m i n imize the amou nt of time spent in PA Lcode,

decreasing the code path length, reducing the cycles

per instruction, and optimizing i n ternal algorithms.

Planned testing wil I a lso evaluate the effect of

add itional data al ignment. As men t ioned earl ier, the

ease-of-migration issue is paramou nt for our cu rrent

customers. Consequent ly, we have not rea l igned

the database pages because that action would

Alpha AXP Architecture and Systems

requ i re too much downtime. Nevertheless, we do

not want to preclude new customers, or current

customers who need the performance boost, from

ut i l i z i ng a properly al igned database page. To test

the potential performance improvement, we plan

to create a test database that is completely a l igned ,

in memory and on disk, and compare the TPC per

formance agai nst the standard database.

Reflections

At the beginning of the paper, we stated that our
goal was for Digital to provide an easy m igration

path to the Alpha AXP platform for software prod

ucts. Al though we encountered some d ifficult ies,

we bel ieve our Rdb and DBMS porting efforts attest

to Digital 's success in th is endeavor.

As one example of how the experience influ

enced our approach to porting, we had to learn

new methodologies. practices, and system behavior

on the Alpha AXP machines. For instance, when

stepping through a part icular code sequence with

the debugger, we would end up in an infinite loop;

if we just ran the code, t he sequence wou ld work.

Although this behavior was documented , we

encountered the problem several t imes before we

ful ly understood the ramifications and appropri

ately changed our development methods.

Overal l , the porting effort had the fol lowing pos

it ive resu lts :

• The port allowed us to clean u p our cocle , even

though we tried to avoid a lgorithm changes.

Because we had to port and review every l i ne of

code, we managed to move the code to a more

consistent coding convention.

• The port acted as a learn ing experience for most

of the engineers . Most mature products contain
some code that has not been modified in years.

The port fo rced us to review ancl understand
such code sequences. As a resu lt , we ended up

with more knowledgeab.le engineers.

• The port al lowed us to transform the code into

a more portable state . As we moved away from

tight ties to VAX behavior, we s impl ified fu ture

tasks such as moving to the OSF/ 1 and Windows

NT operating systems.

• Although overlappi ng current VAX development
with the Alpha AXP port slowed down the port

ing process, the decision to use a common code
base el iminated the fu ture need to integrate two

<.1 ivergent sou rce codes.

1 64

• Surprisi ngly, the code dicl not grow appreciably

in size or complexity. One stre ngth of the Rdb

and DBMS software has been the abi l i ty to easi .ly

mod ify the code and to add new fu nctional ity.

Even after t he port, we find that the products

are as mal leable and as easy to modify as before .

• We fou nd unreported bugs in our VA X products.

Virtua l ly a l l the groups involved d id a masterful

job . The program team and various Alpha AXP com
mittees anricipated p otential issues and ensu red

that the program proceeded smoothly and pre

dictably. The cross compilers from the language

groups worked su perbly. The OpenV:.01S A X !' and

hardware groups del ivered their products on time,

and when a user logs i n to an Alpha AX P system, the
Open VMS AXP system is not on ly fami l iar but faster.

Acknowledgments

The successfu l port of the Rdb and DBMS software

to the OpenV1viS AXP operati ng system was a resu lt

of the contributions made by many of the engineers

in the Database Systems Group. The authors si n

cerely acknowledge the effort of each engineer i n

achieving the project goal , that is, t o b e able to

qu ickly offer correct versions of Rclb ancl D!:IMS on

the Alpha AXP platform. Finally, an unsung hero in

the company-wide effort was D igital 's VAX Notes

communications fac i l ity. VAX Notes hmctioned as

an excel lent medium for identifying and sharing
p roblems and solutions.

References

l . T Leonard , VA X Architecture Reference Manual

(Bedford . MA: Digital Press, Order No. EY-3459E

IW, 1987) .

2 . OS'Rl Handbook (M aynard, MA: Digital Equ ipment

Corporation, Order No. AA-GV71 A-TE, 1986)

3. Open VMS Calling Standard (Maynard, :.01A :

Digi tal Equipment Corporation, Order No. A A

I'QY2A-TK, 1992) .

4. R. Sites, eel . , Alpha Architecture Reference

Manual (13urlingto n, MA: D igital Press, Order

No. EY-L'S20E-OP, 1992)

Vol. ,Vo. 4 Special Issue 1992 D igital Techuical journal

james V. Colombo
Pamela]. Rickard

Paul Benoit

DECnetfor OpenVMSAXP:
A Case History

Tbe DECnet for Open VMS AXP networking software facilitates the integration of

Open VMS AXP systems into existing DECnet computing environments. This new soft

ware product supports application migration by providing the following net

working capabilities: support of compatible libraries, consistent application

programming inteifaces, and the assurance of a common semantic operation with

the Open VLHS VAX system. The team implemented a phased porting process and exe

cuted the project cooperatively The effort resulted in a solid knowledge base with

which to approach future porting undertakings. Using common code where possi

ble and avoiding architecture-specific code were lessons learned during the project.

The DECnet for Open VMS AXP networking software
product plays an important role in the integration
of Open VMS AXP systems into existing DECnet com
puting environments. The availability of DECnet
software on the AJpha JL'(P hardware platform facil

itates application migration. The networking capa
bil ities needed to support this migration activity

include support of compatible l ibraries, consistent
application programming interfaces (APis), and the
assurance of a common semantic operation with
the OpenVMS VAX system. The network features
such as network file transfer, remote file access,

remote login, downline load, and local and remote
network management allow the OpenVMS A,"(p
system to participate fu lly in a DECnet network.

The purpose of this paper is to describe the pro
cess of porting the DECnet-VAX product to the
OpenVMS IL'<P operating system . The DECnet-VAX
product consists of networking software written in
the MACR0-32 and BLISS-32 programming languages.
The software contains privi leged system code,
device drivers, and user-mode util ities.

This paper is divided into two major sections.
The first section presents an overview of the proj
ect, including discussions about the OECnet fea
tures supported i n the OpenVMS AXP operating
system, the project schedule, and the major DECnet
for OpenVMS AXP components. The second major

section details the process of porting DECnet-VAX
software to the OpenV1'<lS AXP operating system,

including testing and debugging. This section pro

vides information on nonportable coding practices

D igital Technical journal V.'JI. 4 No. 4 Special Issue 1992

and identifies specific problem areas. It concludes
with a summary of the lessons learned during the

course of the project.

Project Overview

In addition to presenting the DECnet for OpenVMS
AXP features, this section details how we derived a

project schedule and gives an overview of the soft
ware components.

Software Code Base

Prior to the formation of a team to port a DECnet
product from VAX to the AJpha AXP architecture,

the DECnet-VAX development group completed
a feasibility study of porting DECnet-VAX Phase JV

to the Alpha AXP architecture. This effort was nec
essary because the DECnet-VAX software was not

designed with porting in mind. The study con

cluded that it would take four engineers twelve
months (i .e . , 48 person-months) to port DECner

VAX tO the OpenVMS AXP operating system. After
examining the proposal and investigating the alter
natives, we decided that the best approach would
be to start by porting DECnet -VAX V5-4 .3, a Digital

Network Architecture (DNA) Phase IV implemenra
tion . 1 One of the most important factors in making

this decision was that this software version was

in external field test and was nearly ready for

shipment to customers. Another consideration was

that some very important fixes had been made in
that release, and we wanted to offer our customers

1 65

Alpha AXP Architecture and Systems

the h ighest quality possible in the first version of
DECnet for Open VMS A)\P software. Since that t ime,
we have continued to improve our DECnet software
for the OpenVMS AXP operating system and have
recently incorporated some fixes from DECnet for
OpenVtviS VAX Y5.5-2.

DEC net for Open VMS AXP Features

The first release of the DECnet for OpenVMS AXP
networking product i s packaged with the Open VMS
AXP operating system. The i n i t ial offering includes
the support of DECnet Phase IV protocols run n i ng
over Ethernet or fiber clistribu tecl clata in terface
(FDDI) local area networks. This release supports
d istributed task- to- task comm u nications using the
same set of documented programming interfaces
supported in the DECnet-VAX environment. At this
t ime, DECnet for OpenVMS A.,'CP software does not
support wide area communications devices and
host-based routing. Future releases of DECnet for
OpenVMS AXP m ay i nclude sym metric m u lti
processor (SMP) and cluster a l ias support.

Project Schedule

The DECnet for Open VMS A.,"XP project schedule was
primarily driven by the overal l Open VMS AX !' oper
ating system product schedule, with the DECnet com
ponent schedu led for del ivery i n November 199! .
The DECnet -VAX porting project official ly began i n
early January 1991, after the code base was selected .

Porting Estimates After a na lyzing the work
requ ired to achieve the port, we developed general
porting guidelines and est imates based on a num
ber of factors, including the language the software
was written in , the amount of software to port, and
the number of software component modules. \Ve
then combined these estimates to determine an
overa l l project schedule. Table 1 presents the
guidel ines we used for the porting estimates.

We used two methods to estimate the amoun t of
work required to complete the port. The Module
Size Method takes i nto account the number of l ines

Table 1 Gu idel ines for Porting Estimates

Language

BLISS

MACRO

1 66

Lines of Code
(Per week)

1 0,000

3,000

Module Count
(Per week)

1 0

5

of code per software module . The Module Coun t
Method uses the number of modu les per software
component to determine the workload. Both meth
ods take into considerat ion the program m i ng l a n
guage used in each m odule . Table 2 presents details
of the component module count and sizes. We fu r
ther categorized the software being ported into
three groups: privileged code, device driver, and
user-mode u t i l i ty The software type was used to
estimate the amount of t ime needed for l inking. I n
general , we a l located more t i m e for privi leged code
ancl device drivers.

The estimates were used to derive a first-pass

schedule and to determine resource a l location. A
number of other factors affected the final schedule.
A major factor that we could not quickly est imate
was the portabi l i ty of the software. The software
techniques encountered and described in this
paper such as coroutines, up- level stack references,
and condit ion code usage had a d irect i mpact on
the schedule. Also, during the first three months of
the project, significant time was spent learning
how to port code . D u ring this learning period, we
developed the ski l ls, knowledge, and techniques
used throughout the remainder of our p orting
work.

Once we established the estimation metrics, the
data was compi led and time estimates calcu l ated
for each component. Tables 3 and 4 show the aver
age amount of t ime required to port each DECnet
for Open VMS A.,'CP component.

Based on these calcu lat ions, we estimated that i t
would take 13 person-months just to port the
DECnet-VAX software. We then used project man
agement software to plan the schedule. The sched
ule shown in Table 5 ind icated that it wou ld take 48
person-months to meet the OpenVMS AXP sched
u led comp letion date of November 22, 1991 . We
m ade our first network connection on .Ju ly 25, 1991 ,
20 person-months into the project. Although much
work rem a ined, we were well ahead of the
November target date.

Since we were ahead of schedu le, we assisted in
the porting of other components, i nclud ing RTPAD,
CTDRTVER, RTIDRJVER, and REMACP, a l l d iscussed
la ter in the paper. In addit ion, we were able to add
support for FDDI .

Milestones The OpenVMS A.XP project schedule
consisted of a series of functional i n ternal base
levels numbered one to five. In terms of the whole
OpenVMS AXP project schedule, DECnet for

Vol. 4 No. q Special Issue 1992 Digital Technical journal

DECnetfor OpenV/VJS AXP: A Case Histmy

Table 2 Component Mod u le Count and Sizes

Average
Software Module Number Number

Component Type La nguage Count of Lines of Lines

DTR/DTS User MACRO 1 4 1 937 1 38.36
EVL Privi leged BLISS 1 0 3821 382.1 0
H LD Privileged MACRO 9 71 5 79.44
M IRROR Privi leged MACRO 1 1 31 1 31 .00

MOM Privi leged BLISS 1 5 5835 389.00
MACRO 7 1 1 82 1 68.86

Subtotal 22 701 7 31 8.95

NCP User BLISS 35 1 9371 553.46
MACRO 2 71 2 356.00

Subtotal 37 20083 542.78

NETACP Privi leged MACRO 24 20871 869.63
NETDRIVER* Driver MACRO 4 6891 1 722.75
N ICONFIG User BLISS 7 2078 296.86

NMLt Privi leged BLISS 31 1 9889 641 .58
MACRO 7 4997 71 3.86

Subtotal 38 24886 654.89

NETSERVER Privi leged BLISS 3 303 1 01 .00

Notes:

• I ncl udes estimates for NO DRIVER

t I ncl udes estimates for N M LS H R

Table 3 Module Size Method

Total Time
Component BLISS MACRO Link per Component

DTRIDTS 0.00 0.65 2.00 2.65
EVL 0.38 0.00 2.00 2.38
HLD 0.00 0.24 2.00 2.24
MIRROR 0.00 0.04 2.00 2.04
MOM 0.58 0.39 4.00 4.98
NCP 1 .94 0.24 4.00 6.1 7
N ETACP 0.00 6.96 6.00 1 2.96
NETDRIVER* 0.00 2.30 6.00 8.30
N ICON FIG 0.21 0.00 2.00 2.21
NMLt 1 .99 1 .67 4.00 7.65
NETSERVER 0.03 0.00 2.00 2.03

TOTAL
Weeks 5.1 3 1 2.48 36.00 53.61
Months 1 .1 8 2.88 8.31 1 2.37
Years 0.1 0 0.24 0.69 1 .03

Notes:

• I n cludes estimates for NDDRIVER

t I nc l udes estimates for N M LS H R

Note that the data presented is i n weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and

a year equals 1 2 months or 52 weeks.

Digital Teclmical journal Vol. 4 No. 4 .\jN.>cial lssue 1992 1 67

Alpha AXP Architecture and Systems

Table 4 Module Count Method

Total Ti me
Component BLISS MACRO Link per Component

DTRIDTS 0.00 2.80 2.00 4.80
EVL 1 .00 0.00 2.00 3.00
HLD 0.00 1 .80 2.00 3.80
MIRROR 0.00 0.20 2.00 2.20
MOM 1 .50 1 .40 4.00 6.90
NCP 3.50 0.40 4.00 7.90
N ETACP 0.00 4.80 6.00 1 0.80
N ETDRIVER* 0.00 0.80 6.00 6.80
N ICONFIG 0.70 0.00 2.00 2.70
N M Lt 3.1 0 1 .40 4.00 8.50
N ETSERVER 0.30 0.00 2.00 2.30
TOTALS
Weeks 1 0.1 0 1 3.60 36.00 59.70
Months 2.33 3.1 4 8.31 1 3. 78
Years 0.1 9 0.26 0.69 1 .1 5

Notes:

• I ncl udes estimates for N DDRIVER

t I ncl udes estimates for N M LS H R

Note that the data presented is i n weeks, unless otherwise specified. A week equals five working days, a month equals 4 .33 weeks, a n d

a y e a r equals 1 2 months or 52 weeks.

Table 5 Planned Project Schedule

Code Total Time
Component Port Debug Review Test per Component

DTRIDTS 4.80 4.00 2.00 6.00 1 6.80
EVL 3.00 4.00 2.00 6.00 1 5.00
HLD 3.80 4.00 2.00 6.00 1 5.80
M I RROR 2.20 4.00 2.00 6.00 1 4.20
MOM 6.90 4 .00 2.00 6.00 1 8.90
NCP 7.90 4.00 2.00 6.00 1 9.90
N ETACP 1 0.80 8.00 6.00 6.00 30.80
N ETDRIVER* 6.80 8.00 6.00 6.00 26.80
NICONFIG 2.70 4.00 2.00 6.00 1 4.70
N M Lt 8.50 4.00 2.00 6.00 20.50
N ETSERVER 2.30 4.00 2.00 6.00 1 4.30
TOTALS
Weeks 59.70 52.00 30.00 66.00 207.70
Months 1 3.78 1 2.00 6.92 1 5.23 47.93
Years 1 .1 5 1 .00 0.58 1 .27 3.99

Notes:

• I ncludes estimates for NDD RIVER

t I ncludes estimates for N M LS H R

Note t h a t the data presented is i n weeks, unless otherwise specified. A week equals f i v e work i ng days, a m o n t h equals 4.33 weeks, a n d

a year equals 1 2 months or 52 weeks.

I GR \ 'r ,f. -1 So. 1 .\jJC'Citil /ssul! I 'J'JJ Dip,ital Ti!clmical jounw/

OpenVMS AXP was targeted for base level five.
However, it was h ighly desirable to provide file
transfer and remote login capabi l i ty over DECnet as
early as possible. The project team worked closely
with the OpenVMS AXP group to del iver this sup
port prior to base level four.

Conunon Code
One of the most i mportant decisions that helped us
del iver our software ahead of schedule was bui ld
ing common code for the VAX and Alpha AXP
systems. Dur i ng the course of porting code, we dis
covered two advantages to building common code.
The first was having the abi l i ty to generate VAX and
Alpha AXP images from a s ingle set of source code.
The second was being able to debug our ported
changes in a stable OpenVtviS VAX environment. We
accompl ished this by rewrit ing code that required
change so that i t worked on both platforms. We

DEC net for Open VMS AXP: A Case History

made architecture-specific code conditional on the
platform on which it wou ld execute. Our long-term
goal is to incorporate common code into future
DECnet for Open VMS products.

DECnet for Open VMS AXP Components

This section describes the major DECnet for
OpenVMS AXP components and l ists the porting
issues relevant to each 2 F igure 1 shows the i nter
connection of the various components of the
DECnet for OpenVMS A..\:P software. Detai led infor
m at ion for each porting issue is further d iscussed i n
this paper u nder the Porting Issues headi ng.

NETDRIVER NETDRNER is a pseudo device
driver, i .e . , a device driver that does not d irectly
control any hardware devices. It implements the
routing, end communicat ion, and session control
layers of the Phase rv version of DNA. 1

I RTPAD I I REMACP I I DTS I I DTR I I USER I I RMS I EVL

I

I N I CONFIG I
I I I I I I l

$010

NETDRIVER

SESSION

I NCP J l APPLICATION

I I NICE MESSAGES

LOCAL I R E MOTE ! PERMAN ENT 1-1 N M LSH R 1 1 N M L I DATABASE I I I

I NETSERVER I
I

$010
NETACP I CTDRIVER IJ I RTTD R IVER I 1--E-N_D_C_O_M_M_U_N_I C_A_T-10-N----t

I ROUTING I DATABASE

I VOLATILE I DATABASE ROUTING

I
I DATA LINK DRIVER I

Figure 1 DECnet for OpenViHS AXP Components

Digital Tecbnical]ounwl !k1i. 4 No. 4 Special l:�sue 1992

$010

I MOM I
$010 I NDDRIVER I

1 69

Alpha AXP At·chitecture and Systems

The queue 1!0 request ($QIO) system service is

the interface into the session control layer. The

NETDRIVER rou ting layer communicates with other

device drivers that implement the data l ink layer of

DNA. NETDRIVER communicates with NETACP

(another component discussed later in this section)

to perform network management fu nctions, to

report state and network topology changes, and to

perform operations that require process context.

NETDRIVER is written in MACI�0-32 code and pre·

sented us with many porting issues, includ

ing device dr iver changes, coroutines, memory

management changes, page size dependencies,

atomicity and granu larity problems, OpenVMS AXP

operating system data structu re changes, unal igned

references, and up-level stack references.

MOM The maintenance operations module

(MOM) image processes service operations defined

by the maintenance operation protoco l (�lOP). One

such service operation is downline loading remote

systems. MOM uses NDDRTVER (d escribed i n the

next subsection) to commu nicate with the remote

system over a DECnet circuit. MOM communicates

with NETACP to gather i nformation about nodes

requesting to be down l ine loaded. NETACP creates a

process running the MOM im age when a request for

a service operation is received on a circu i t enabled

to perform service operations.

MOM is written primari ly in BUSS-32 code. Porting

issues i ncluded removing dependencies on the for

mat of a VAX argu ment J ist, condit ion hand l ing

changes, and Alpha 1L"XP image header changes.

NDDRIVER The pseudo device driver NDDRIVEH

implements an interface that a l lows MOM to use a

DECnet circuit to perform service operations using

DNA MOP . The MOM image uses the $QIO system

service interface to send lVlOP messages to and

receive MOP messages from NDDRIVER, which then

communicates with the data l ink device drivers to

transmit and receive these messages. ND DRIVER

communicates with NETACP to perform tasks

that requ ire process context and to receive notifica

tion of state changes to circu its enabled for service

operations.

NODRJVER is written in MACR0-32 code. Porting

issues included changes to device drivers, memory

management, and OpenVJVrs tL"XP operating system

data structures, as wel l as page size dependencies.

CTlJRJVER, RTTDRIVER, and REMACP CTDRIVER

is a pseudo device driver for remote terminals using

1 70

the DNA command terminal (CTERNl) protocol .

CTD RTVER and RTTDRJ.VER perform similar func

tions with the exception that RITDRIVE R is used for

interoperabi l ity with older i m plementations of

remote terminal support. REMACP is an ancil lary

control process (ACI') that receives incoming

requests for remote terminal support. After RbvJACP
establis hes a connection with the remote node,

either CTDRIVER or RTTDRJVER communicates

d irectly with NE'f'DRIVER to send and receive

remote terminal protocol messages.

CTDRIVER, RJTDRIVER, and REMACP are written in

MACR0-32 code and presentee! the fol lowing port

ing issues: device driver changes, u na ligned refer

ences, OpenVMS AXP operating system data

st ructure changes, and for REMACP, changes in the

interface with CTDRIVER.

NETACP 1\E1ACP runs as an ACP that assists

NETDRIVER i n perform ing network operations that

require process context. Examples include creating

processes for incoming logical links and assigning

channels to data l ink devices. NETDRIVER and

NETACP a lso wor.k together to maintain information

about the state of the network. Another major func

tion performed by NETACP is t l1e management of

the network configuration parameters residing in

virtual memory.

NETACP is written in MACR0-32 cod e. Port ing

issues included corou ti nes, usage of processor

status longword (PSL) condition codes, memory

management changes, page s ize dependencies,

atomicity and granularity problems, OpenVMS AXP

operating system data structure changes, and

unal igned references. In addition, the use of "poor

programmer's lockdown," a method of locking

pages into a working set, requ ired modification.

Nl:T.mRVER The NETSERVER image is run by

serve r processes created to hand le incoming logi

cal link requests. NETSERVER invokes the im age or

command procedure associated with the network

object specified by the incoming logical l ink. To

avoid the overhead of process creation, a server

process can be reused after the logical link it was

servicing is terminated. Idle server processes regis

ter themselves with NETACP so that they may be

reused for another logical l ink.

NETSERVER is written in BLISS-32 code. The

only porting change necessary was the addition

of the !3LISS VOLAT I LE attr ibute to several data

declarations.

Vol 4 No. 4 Special Issue 1 992 D igital Tecbnicaljournal

NCP The network conrrol program (NCP) is the

user in terface t<x network ma nagement. NCP com

m u nicates with other network m anagement com

ponents u s i ng the netwo r k i n formation and

control exchange (N ICE) protocol. NCP can be used

to manage the local node as wel l as remote nodes.

When ma naging the local node, NCP exchanges

NICE protoco l messages with the N ,\II LSHR shareable

im age . For remote ma nagement, NCJ> creates a logi

cal l i nk to the network management l istener (NML)

object on the remote node ami exchanges NICE pro

tocol messages over this logi cal l i nk.

NCP co nsists primari ly of Bl..ISS-32 modu les. The

major porting issue associated with NCP was cha ng

ing the code to use LIB$TABJ .E_I'ARSE rather than

LIB$TPARSE.

NMLSHR NlVILSHR is a shareable i mage that pro

cesses NICE protocol network m anagement mes

sages on an OpenVMS system. N M LS H R decodes

NICE messages received as input and p erforms the

requested management opera t i o n . N1YI LS H R builds

N ICE p rotocol messages as a response to requests

asking fo r network management information to be

retu rned. NCI' and NNIL both l i nk with the N M LSHR

i mage ro cal l the rou t i nes that process the N ICE pro

tocol messages.

NMLSHR is written in BL.ISS- 32 and MACR0-32.

Porr i ng issues incl uded depe ndencies on the for

mar of a VA X argu ment I ist and changes req u i red to

l i n k shareable images.

1 IVIL The network ma nagement l istener (NM I..)

im age is run when a re mote node requests a con

nection to the N M I.. object to perform remote

netwo rk management operations. NML sends N ICE

protocol messages to and receives them from the

remote node. N MI. passes NICE protocol messages

received from the remote node to N M LSHR for

decoding and receives messages from N M LSHR to

send to the remote node.

NML is writ ten in Bl..ISS-32 code. The o n ly porting

change made to NML code was ro add the BUSS

VOLATILE attribute to one data declaration.

EVL The event logger (EV I..) receives eve n t mes

sages from the vari ous DNA layers. EVL can also act

as an event s ink for m essages generated at a remote

node. EVI.. is started by N ETAC I' and declares i tse l f

a s a network object so t h a t re mote n o d e s c a n con

nect to the EVL object and send event messages. EVL

can log events to a fi le in bi nary fo rm or format the

Digital Tecbnical journal l'r!l. 4 Nu. 1 SjJecial lssue 1992

DECnetfor OpenVMS AXP: A Case 1-IistOJy

messages into something readable by a n etwork

m anager.

EVL is written in BLISS-32 code. Porting issues

i ncl uded adding t he BLISS VOLATILE a t t ribute to

some data structure defi n i tions and al ign ing data

structure fields on natural boundaries.

DTS and DTR The DECnet test sender (DTS) and

the DECnet test receiver (DTR) are cooperati ng pro

grams that can be used to test the network connec

tion between two nodes. DTS runs on the local node

and comm u n icates with DTR on the remote node.

DTS and DTR can be used to test the through put and

rel iabi l i t y of a l i n e over which DECnet is running.

DTS and DTR are written primari ly in M ACil0-32

code. The two major porting issues associated with

DTS and DTR were changing the code to use

LIB$TABLE_PARSE rather than U B$TPA RSE and add

i ng some BLISS-32 code to support floati ng- point

operations.

RTPAD RTPAD provides the connection between

a loca l terminal and the remote terminal services of

a remote node. RTPAD is invoked as the resu lt of

executing the SET HOST com mand of the Digital

Command La nguage (DCL) . RTPAD communicates

wit h RE:viACP and CTD RIVER or RlTDRI VER o n the

remote system to provide remote terminal support.

RTPAD accepts input from the local terminal (which

cou ld be another remote terminal) and sends t h i s

d a t a over the network t o the remote n o d e . Output

from the remote node is received by RTI'AD and d is

played on the local term i na l .

RTPAD i s written i n .YIACR0-32 code. Porting

issues inc lucled unal igned references and al igning

data structure fields on natural boundaries.

NJCONF!G N ICON FJG is the Ethernet configurato r

that l istens to the MOP system iden tification mes

sages broadcast on Ethernet circu its and mai ntains

a database of configurati o n i n forma tion t<>r al l sys

tems heard . NCP is used to man age and d isplay the

informa tion m a i n tai ned by N!CON FI(; . N ICONFIG

runs as a process created by N M L'ilm and co m m u ni

cates with NMLSHR over a DECnet logical l i n k using

the NICE protocol.

N ICONFIG is written in BLISS-32 code. The o n ly

p ort ing change was to remove the module switch

LANGUAGE.

HLD The host loader (HLD) com m u n icates with

the DECnet-RSX sate l l ite loader to down l ine load

I 7 1

Alpha AXP Architecture and Systems

tasks to an RSX-115 node. H l.D is written i n ,\•l ACR0-

.')2 code. The only porting change was to up date the

structu re defi n it i o n language used to c reate one

data structure.

MIRROR The loopback m i rror participates i n

network services protocol and ro ut i ng layer loop

back testing. MIRROR is written in MACH0- :)2 code.

No porting changes were requ i red though changes

were made ro t he li nk proce, lure .

DECnet-VAX Port to the Open VMS
AXP Operating System
This section d iscusses the development environ

ment, process, and i ssues re lated to porting the

D ECnet -VA X product to the OpenVJviS operating

system .

DEC net for Open VMS AXP
Development Environment
DECnet for OpenV.'vlS AXP is bu i l t with and i nte

grated i n to the OpenVMS A XI' opera t i ng syste m .

Many changes were being m a d e t o system data

struct ures that directly affected the DECnet soft

ware. These changes requ ired the DECnet fo r

OpenVMS AXP software to be bui lt with and tested

on many i n terim operating system base level s

before the combined OpenV,\·IS A X P operating

system and DECnet fo r OpenVMS AXP kit was

shipped for layered product development.

Because the development tools change'! througl1-

out the project, we used the same tools to port the

DECnet-\1,.\X software as were uset l to deve l op the

operating system base levels. When we copied ror

tions of an Open VM S AXP base leve l , we also cop ied

the too.! directories associated with the system

bu ild . We used cross com p i lers for .\·l AC : R0- .')2 and

1 \USS- .12 . wbicb a l lowed us to deve lop Alpha AXP

soft ware on an Ope nV\olS VAX system .< In add it ion,

we used the Op enVMS AXP l in ker, l i bra rian. and

system d u m p ana lyzer (SDA) c ross to ols on the VA X

system . '' We a lso used the OpenV,vlS AX!' debug

gi ng tools Delta and XDelra on the A l pha .\XI' proto

type hardware (,

I ni t ia l D EC:net for OpenVMS AX!' test i ng was

accompli shed on a VAX system. Such test ing was

possible because we designed a maj ority of the

DEC:net fo r Open VMS AXP code to run on both VAX

and Alpha A X P hardware platforms.

The Alpha A.,'\1' p rototype system used for testing

u t i l ized a shared d is k that conta i ned the OpenVMS

AXP operating system i m ages. The images and t es t

1 72

procedures were copied onto the d isk from a AX P

system. Each t ime new DECnet for OpenVM S AXP

i mages or test p rocedures had to be adclecl to the

shared d i s k during a test or debug session, the Alpha

AXP test system had to be stOpped, the disk

mou n ted on the VA X system, i m ages copied , the disk

d ismounted , a n d the Alpha A.,'\P system rebooted .

Provi d i ng fi le transfer support by means of t he

DECnet for OpenVMS AXP software early in the

Alpha AXP project provided i n c reased p roduct ivity

fo r anyo ne resting on A l r ha AXP prototype systems.

Porting Process
The process of porting the DECnet software from

the VAX hardware p latform to the Alpha AXP

platform consisted of t he fol lowing steps: code

preparation , comp i lat ion. l i n k ing, code review,

debug, and test i ng. We d i d nor start the task of port

ing DECnet -VAX w i t h a co mpletely clear vision of

the total process. As we progressed and lea rned

more abo u t the tools a nd p ort i ng process, we

i mp roved ou r porting tech n iques a n d , as a resu lt ,

ou r productivity.

Our strategy was ro begin by porting the dr ivers

and privileged code . These components were the

m ost complex: they were writte n completely in

.\olACR0-.')2 code and hat.! the greatest poten tia l for

cha nge. We started with NETDRIVER and NETACI',

assigning one engi neer to work on each com po

nent . As our porting group grew in number, we

began to port, in paral lel, the RUSS mod u les that

comprise NCP, N M l., N M I.S H R , EVL, and MO M .

The fol lowing is an overview of the process we

used to port the DECnet-VAX software to the Alpha

AXP platform. Later sections conta i n deta i l s of CO(i

i ng pract ices that had to change.

Code Prepamtion Our first task was to create

p rocedures that we cou ld use early i n the porting

process to comp i le s ingle m o d ules of a DEC:net for

Open VMS AX I' component . We also ported the com

ponent's b u i ld procedure to use the new Alpha AXP

cross tools.

Next, we began to prepare the code for i n it ial

comp i la t i o n . J'-•1.\ CR0- .')2 code must have each e n t ry

point i d e n tified prior to the in it ial comp ile . Entry

points are identified by a compiler directive such as

. J S Fl_ENTRY a nd .CALL_ENTRY. Each d i rective

accepts optional para meters that ident ify register

usage. However, t h is informa t i o n i s nor requ ired

at this point in the port i ng process. The Alpha

AX!' ,\lACR0-:12 compi ler w i l l prov ide register

l'ci/. 4 ,Vn . • f .\jJ<"cial Iss//<' /'J'Jl D igital Tecbuical journal

usage hints du ring the compilation, if so directed .

As the team became famil iar with the porting

process, we were able to combine these steps

and include the register usage information when

declaring entry points. Also, as our experience

i ncreased , we were able to make changes to non

portable coding practices prior to the initial com

p ile of a module.

Our experience proved, as we expected, that

BLISS code is far easier to port than MACR0-32 code.

For the DECnet-VAX components containing BLISS

modules, we began the port by running the compo

nent's build procedure. BUSS rou ti nes do not

require that enttl' points be identified. The com

piler can process each module, identify errors, and

provide warning and informational messages.

Compile Process After we completed the initial

code preparation and created customized build

procedures, the real iterative process of porting

began. At this point we compiled o ne or more

modules, made additional modifications based o n

the compi lation resu lts, and recompiled u nt i l we

were reasonably satisfied that a l l t he errors were

fixed .

The Alpha AXP cross compi lers, the iVLACR0-32

compiler in particular, have t he capabi l i ty of pro

vid ing a vast array of informational and warning

messages. When compil ing a modu le, we always

requested a l l informational messages. The infor

mation assisted us in identifying the input and out

put registers as wel l as the registers that the

compi ler automatical ly preserved . Using this infor

m ation, we verified the register usage i n each rou

tine and add ecl the i nformation to the entry-point

directives. Other i nformational and warning mes

sages directed us to cod i ng techniques that

required change. By working with one module at a

t i me, we avoided making repetitive porting errors

in multiple modu les prior to our complete und er
stand ing of how to solve the more complex porting

problems.

Some informational messages caution t hat cer

tain coding techniques such as data a l ignment
should be modified. We observed that attempting

to make changes to al ign a l l data structure ele

ments prior to comp leting prel iminary debug and

testi ng caused many debug problems. Therefore,

we decided to establish a porting pol icy to change

only as much code as was absolutely necessary

prior to the initial debug and test of a DECnet for

OpenVMS AXP software component. Adhering to

this pol icy required careful consideration, since

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

DECnet for Open VMS AXP: A Case History

some atomicity and granularity problems that are

not resolved/addressed m ight cause code fai lures

during debug. 1

NETDRJVER and N ETACP contained architecture

specific code, i ncluding memory management,

driver tables, a nd structure definitions, which had

to be made cond itional for the OpenV.MS AXP and

OpenVMS V A X systems. A prefix file was added to

each iVLACR0-32 module during the Alpha AXP com

pi lation step. This file contained an Alpha AXP dec

l aration that a l lowed us to include the d irectives

required for conditional compi lation. To compile

t he ported code on a VAX system, it was necessary

to provide a VAX declaration and macros for t he

various entry-point directives that when expanded

contained no instructions. These were p laced in a

common l ibrary file and conditional ly compiled.

The l ibrary file is included in each module. Figure 2

is an example of a l ibrary file that contains a VAX

declaration and macros.

BLISS architecture-specific code was made

conditional us ing the %if %bliss(bl iss32v) or %if

%bl iss(bl iss32e) constructs for OpenVMS VAX and

Open VMS AXP, respectively.

After porting a l l the modules within a compo

nent, the component's bui ld procedure was run to

ensure that each module had been ported without

error. This was typica l ly the first attempt to l i nk the

component. We also ran the OpenVMS VAX proce

dure to ensure that the code wou ld continue to

compile and l i nk on the OpenVMS VAX operating

system.

Linking The process of l inking was d ifficult at

times. The DECnet for Open VMS AXP software con

tains clrivers, system images, and shareable im ages.

Each component required changes to the l ink p ro

cedures. We made these procedu res cond itional for

both the Open VMS VAX and the Open VMS AXP oper

ating systems.
The process of l inking the ported modules

brought to l ight many u nresolved references. I n
general , these references were t o external rou ti nes

that had changed for the OpenVMS AXP operating
system. One of the most difficult aspects of the
porting project was determining which changes

to the OpenVMS operating system had an impact

on our project. Dete rmining these changes was

difficult because DECnet for OpenVMS AXP is

t ight ly integrated i nto the Open VMS AXP operating

system. The process of porting applications to

the OpenVMS A)\P environment shou ld not be as

d ifficult .

173

Alpha AXP Arc hitecture and Systems

. S U B T I T L E $ D E C N E T D E F

D e f i n e a l l t h o s e s y m b o l s t h a t s h o u l d p r e c e d e a l l D E C n e t
m a c r o m o d u l e s .

. M A C R O $ D E C N E T D E F

. I F N O T _ D E F I N E D A l p h a _A X P

T h e s e m a k e A l p h a A X P c o d e c o m p i l e o n V A X b u i l d s b y d o i n g
n o t h i n g w h e n e n c o u n t e r e d

V A X = 1
. J S B E N T R Y

. m a c r o . j s b _ e n t r y , i n p u t , o u t p u t , s c r a t c h , p r e s e r v e

. e n d m
. J S B 3 2 E N T R Y

. m a c r o . j s b 3 2 _ e n t r y , s c r a t c h , p r e s e r v e

. e n d m
. C A L L E N T R Y

. m a c r o . c a l l _ e n t r y , p r e s e r v e , m a x _ a r g s = O ,
h o m e _ a r g s = f a l s e , i n p u t , o u t p u t , s c r a t c h

. E N D C

. E N D M
I

. e n d m

Figure 2 Libmry File That Contains a VAX Declaration und Macros

Code Ret'ieu• When a l l the known por t i n g prob

lems t()lmd during the compile and l ink phases had

been corrected, we began our code review process.

The original VAX code, the ported code, and a d if

ference l ist ing were avai lable to the porting team.

One or more members of the team reviewed the

c hanges made and pointed out any problems that

were identified to the person responsible for the

mod u le being reviewe d . We a l l had r reviously

agreed that the reviews wou l d be friend ly and that

egos wou ld be left out of the process. We found that

our successfu l code rev iews were well worth the

effort .

Init ia l reviews turned up d i ffering p h i los

oph ies regarding the porting p rocess. We discussed

these d ifkre ncl·s ami reached a consensus. The

reviews u n covered errors in the porting process,

and correcting these problems reduced the amount

of debugging required. The review process also

a l lowed us to agree on and maintain coding stan

dards.

Debugging Our approach to debugging the

DECnet for Openv:vts A X I' software was to bui ld the

com m o n ported code for a VA X system and to

replace the OpenV.viS VAX i mages with our ported

version on one of our workst ations. We began by

1 74

load i ng the p orted N ETDRIVER and NETACI' compo

nents. Since many of the required cha nges were

com mon to both OpenV:\•IS AX!' ami OpenW•IS VAX

systems, we were able to debug much of this code

before we had access to Alpha A X !' hardware . We

found and fixed a nu m ber of problems using this

technique.

·when we were reasonably confident that the

ported code was working o n t h e OpenV,VIS VA X

opera t i ng system , we began testing on A l pha AX!'

prototype hardware , which fortunately had j ust

become avai lable. We completed the d r iver load

and ACP init ia l ization testi ng. The i n i tial test uncov

ered some problems that required srecial

workaroumls to a l low debug to cont inue . These

problems were corrected in l a ter ve rsions of the

tools. S i nce the user interface had not yet heen

ported, test code was written to start DECnet for

Open VMS AXP and begin debugging the $QIO inter

face to the driver.

Eventual ly NCP, NML, and NMLSHR were ported ,

and more comprehensive debugging bega n. We

used the OpenVMS AXP XDelta and Delta tools to

debug the DECnet for Open Vi'•1S AX!' code on our

Alpha AXP prototype hardware. System fa i l u res

were clebuggecl using the SOA cross tool on a VAX

system. \Ve learned how to trace cal l chains by

Vol. 4 No. 4 Special Jss11e /'J'Jl Digital Tecbuical jourual

studying the Open VMS ca l l i ng standard .

l ' nderstanding the format of l inkage p airs, proce

dure descrip tors, and register save areas made

debugging muc h easier prior to the ava i labil i ty of

these features in SDA. Debugging on an Alpha AXI'

system is more difficu l t than on a VA X system s ince

most VAX instructions generate m u ltiple Alpha AXJ>

in structions w hose positions are opt imized by the

compiler to take adva ntage of Alpha AXP archi tec

ture features. 'fhus, i t is not a lways easy to fol low

the Alpha AXI' code l i n e by l i ne because the gener

ated AJ pha AXP code from one l a nguage statement

is i nterspersed with Alpha AXP code generated

from another language statement.

Testing After solving the obv ious proble ms dur

ing the debug process, we began to test the DECnet

for OpenV,'VIS AXP code. Earl y ve rs ions of the

OpenVMS AXP fi le system , record management ser

vices (RMS), and the fil e access l istener (FAL) were

made avai lable to us. We in turn provided the

DECnet for Open VMS A.XP code to the group porting

OpenV.'viS RMS and FAL fo r their use io debugging.

We were then ab.le to run test scripts that used a

variety of DCL commands to pe rform loops of

remote copies, d ifferences, and d irec tory l isti ngs of

remote files. DECner network management scripts

tested the network m anagement interface. DTS and

DTR were used to perform data transfer resting.

Since the DECnet for OpenVMS AX!' software was

avai lable early, it was used by other Alpha �'\P port

i ng grou ps on Alpha AXP prototype hardware i n

various locations. As t h e code stab i l ized, a t imeshar

ing system was set u p , which prov ided the opportu

nity for more rest ing.

Porting Issues
When we began port i ng the DECnet -VAX software

to the Alpha AXP hardware platform, we found

many coding conventions cou ld not be used . Most

of these cod i ng p racti ces are cal led out by the cross

compilers, which significantly help e(l the porting

effort . :\

The fol lowing is a d iscussion of some p roblems

we encountered whi le porting and how we solved

them.

Entry Points Approxima tely four months i n to the

project, the porting team determ ined that us ing the

. .JS!3_ENTl{Y d irective in NETDR!VER was goi ng to

make porting difficult . The d ifficulty was clue to

the complexity of the code and the fact that some

code p aths conta ined more than a dozen l ayers of

Digital Technical journal Vol. .:; .\'o. · i .\ju.:ciaf !ssw: I'J'J2

/JJ£netfor Open VJ\1/S AX 1-'. A Case Histmy

su brout ine cal ls . \l(!e concl uded that the code,

wh ich had existed for a long time, a l ready saved and

restored the correct registers. \Ve decided that tr�'

i ng to com mu nicate the correct l ist of input, our

put , pass-through, and preserve registers to the

compiler cou ld be an i mpossible task, especia l ly

given our schedule . \'\1e investigated t he possib i l i ty

of us ing the JSB32_ENTRY d irective. This d irective

a l lows the specification of registers that must be

prese rved but does not take any inp ut, output, or

scratch parameters. The OpenVMS AXP MACI{0-3.2

cross com p i ler wi l l not automatica l ly p reserve any

registers when this d i rective is used. A great deal of

care must be taken when using t h is entry-point

directive.

Our decision to use .JSI332_ENlRY to declare entry

points led to an in teresting problem with asyn

chronously executing code that could i nterru p t

other threads o f execut ion . The DECnet-VA X code

that we ported used PUS H R and l'OPR ins tructions

to save a nd restore regi sters that were mod i fied

by DECnet-VAX code interrupting another thread of

execut ion . When add i ng the . .JS B32_E'(fRY d i rec

tives, we specified a register preserve parameter

only on ex ternal entry points, assuming that the

remainder of the original DEC:net-VAX code was sav

ing the proper registers. The preserve parameter

ensmes that all 64 bits of the registers specified are

saved at rout ine entry and restored at rou tine ex i t .

T h e PUSHR a n d l'OPR instructions preserve only

the low-order 32 b i ts of the specified registers.

However, if DECnet-VAX code in a ro uti ne without

the . JSB32_ENTRY preserve parameter interrupts

another thread of execution that makes use of t he

upper :)2 bits of a register, these upper 32 bits

wo uld not be properly restored when control

returned to the interrupted thread . The solution

was to specify the register preserve parameter on

the . .JSB32_ENTRY directives used to declare the

entry points of ro u tines i n DECnet for OpenVMS

AXP t ha t are capable of i n terrupting other th reads

of execution.

Whenever we changed the i nput or output

parameters to an internal subrout ine , we a lso

changed the name of that subroutine. This effort

helped identify all the internal cal ls made to sub

rou t ines whose i n terface had changed .

Coroutines A featu re of the Vi\ X architecture used

th roughout the NETAC:P and N ETDRJVER com

ponents is ca l led a corout ine . Coroutines usell

in MACR0-32 aJ low a subrout ine to call code frag

ments i n other subrout ines. This technique uses the

1 7')

Alpha �W Architecture and Systems

jump -to-subro u t i ne construct JSB @(SP)+ to j u mp

between corout ines. The code example shown in

Figure 3 demonstrates the use of the JSB construct.

The genera l flow of the exa mple is for MAI N to

cal l COROUTINE with RO equal to 0 and R I equal

to I . Usual ly, COROUTIN E changes the value of R 1 to

2 and cal ls back JVWN at address SAVE. If COROUTINE

is entered with R l not equal to 1 , then RO is set to 1

and the coroutine d i a logue terminates. MAI N at

address SAVE then tests RO and exi ts . Under normal

circumstances, MAI N at address SAVE continues,

storing the returned value of R 1 in DATA ancl cal l i ng

back the coroutine at address FINAL. COROUTI NE at

address FINAL then changes the value of R l to 3, sets

the return status in RO to I , and returns to MAI N at

add ress TERMI NATE. TERMINATE then exits J\IIAI N via

the RSB i nstruction.

Al l entry points in MACR0-32 code on an

Open VMS AXP operating system mu st have an entry

directive. Thus, it is not possible to use the JSB con

struct to j u mp to any random l ine of code, as the

previous example demonstrates. To do so, the code

shown in Figure 3 woulcl have to be split i n to sub

rou ti nes, each with a .JSB_ENTHY or .JSI332_ENTRY

entry directive. Also, we had to cha nge the i m p le

mentation of corouti nes. Rather than use the stack

to pass return add resses, we passed each return

add ress in a register.

Since some coroutines ported were more com

plex than the example shown in Figure 3, we devel

oped a technique to port VA X corouti nes to the

M A I N : M O V L 11 0 , R O
M O V L 11 1 , R 1
J S B C O R O U T I N E

S A V E : B L B S R O , T E R M I N A T E
M O V L R 1 , D A T A
J S B @ (S P) +

T E R M I N A T E : R S B

C O R O U T I N E : C M P L R 1 , II 1
B N E Q E X I T
M O V L 11 2 , R 1
J S B @ (S P) +

F I N A L : M O V L 11 3 , R 1

E X I T : M O V L II 1 , R O
R S B

Alpha AXP arch itecture. Wh en a coroutine is sp l i t

into mult iple rout ines, some code, such a s that test

ing returned values. may change re lat ive locat i on.

In our example, the error p rocessi ng at SAVE is no

l onger necessa ry. Instead. ccmoUT ! N E returns to

NWN if i t detects an erro r, and .'vi AIN simply returns

to its cal ler with the status in RO. The VA X code

example in Figure 3 was co nve rted to Alpha AX !'

code using our tech nique. The result ing code is

shown in Figure 4.

The use of corou ti nes on Al pha A X !' systems

shou ld be d iscouraged because of the overhead

associated with sroring the ret urn add ress i n regis

ters and the addit ional consu mption of stack space.

Rather than a simple return address on the stack,

there wi l l be a register save area on the stack for

each subroutine that makes u p the coroutine .

Recursive corout ines can cons u me large quanti ties

of stack space. We have since converted corout ines

used in m a i n code paths to straight i n - l ine subrou

t ine cal ls .

Stack Usage �IACH0-32 code uses a n u mber of

common cod ing tech n iques that req u i re knowl

edge of the state of the stack and rhat must be

changed for the OpenVMS AXl' operating syste m .

One such techn ique, referred t o a s an u p -l eve l stack

reference, occurs whenever a subroutine attem pts

to access information (ad dress or da ta) stored on

t he stack by its cal ler. Parameter pass ing sometimes

uses this techn ique. If a ro u tin e p u s hes a rguments

A s s u m e f a i L u r e
S e t i n i t i a L v a l u e
O p e n a c o r o u t i n e d i a l o g u e

N o c h a n g e i n v a l u e
S a v e t h e c h a n g e d v a l u e
C o n t i n u e c o r o u t i n e d i a l o g u e

E x i t w i t h s t a t u s i n R O

S h o u l d w e c h a n g e t h e v a l u e '
I f n o t , e x i t r o u t i n e
C h a n g e t h e v a l u e
C a L L b a c k t o c o r o u t i n e

F i n a L v a l u e

S i g n a L s u c c e s s
R e t u r n

Figure 3 VAX Code Example Showing the Use uf the Construct}SB @ (SP) + to}umjJ bettueen Comu tines

1 76 Vol. 4 No. 4 Special issue 1992 Digital Teclmical journal

DECnet for Open VMS AXP: A Case History

M A I N : . J S B E N T R Y O U T P U T = < R O , R 1 > ,
S C R A T C H = < R 2 >

M O V L
M O V L
M O V A B
B S B W
R S B

0 , R O
1 , R 1
S A V E , R Z
C O R O U T I N E

A s s u m e f a i L u r e
S e t i n i t i a l v a l u e
N e x t c o r o u t i n e a d d r e s s
O p e n a c o r o u t i n e d i a l o g u e
R e t u r n t o c a l l e r

C O R O U T I N E : . J S B E N T R Y I N P U T = < R 1 , R 2 > , -
0 U T P U T = < R O , R 1 , R 2 >

C M P L
B N E Q
P U S H L
M O V L
M O V A B
J S B

E X I T : M O V L
R S B

R 1 , # 1
E X I T
R Z
2 , R 1
F I N A L , R 2
@ (S P) +

1 , R O

S h o u l d w e c h a n g e t h e v a l u e ?
I f n o t , e x i t r o u t i n e
S a v e n e x t c o r o u t i n e a d d r e s s
C h a n g e t h e v a l u e
C o r o u t i n e a d d r e s s f o r S A V E t o u s e
C o n t i n u e a t S A V E

S e t s t a t u s
R e t u r n t o M A I N

S A V E : . J S B E N T R Y I N P U T = < R 1 , R 2 > , -
0 U T P U T = < R O , R 1 >

P U S H L
M O V L
J S B
R S B

R Z
R 1 , D A T A
@ (S P l +

S a v e n e x t c o r o u t i n e a d d r e s s - F I N A L
S a v e t h e c h a n g e d v a l u e
C o n t i n u e c o r o u t i n e d i a l o g u e a t F I N A L
T o C O R O U T I N E

F I N A L : . J S B E N T R Y O U T P U T = < R O , R 1 >
M O V L # 3 , R 1
R S B

; F i n a l v a l u e
; T o S A V E

Figure 4 Alpha AXP Code Example Showing the Use of the Construct

}SB @(SP)+ to jump between Coroutines

onto the stack prior to jumping to a subroutine, the

cal led subroutine does up- level stack references to

retrieve the argu ments. Other techniques i nclude

using the stack as a com mon data area or at tempt·

i ng to manipulate the caiJer's return address in

order to alter the program f low.

Al l these techniques require re-cod ing. When we

encoun tered code that passed parameters on the

stack, we modified the code to pass parameters i n

registers. I f a structure was being passed, separate

memory was a l l ocated and the add ress of the struc

ture passed in a register. In one case, NETACP used

corout ines to perform specific functions to update

a com mon data area a l located on the stack. This

code was redesigned to el i minate the corou tines

and up-level stack references. Another alternative

wo uld have been to pass the address of the data area

on the stack to the cal led rou tine.

Altering the program flow when error con d i

t ions were encountered was a lso a com mon tech

n ique used in the DECnet -VA X MACR0-32 code.

Digital Technical]ourllal Vol. 1 No. 4 5'pedal lssue 1992

Subroutines removed the return address from the

stack and retu rned to the cal ler's cal ler. We modi

fied the code to remove the up- level stack refer

ence (the cal ler's return address) and return a flag

in a register to signal the cal ler that a change in the

program flow was desired.

Condition Codes The Alpha A'"'XP arch itecture

does not sup port globa l condit ion codes in the pro

cessor status word . Some rou t i nes set condition

codes and returned to the cal ler, which proceeded

to perform a cond it ional branch on the results of

the called rou ti ne. A l l occurrences of this tech

nique were changed ; rou ti nes now pass the result

of a ny conditional test to the cal ler i n a register.

Granularity and Atomicity IssuesH The NETACP

and NETDRIVER components access shared data

structures. Since NETDRlVER can i nterrupt N ETACP,

the DECnet-VAX code rel ies on the atomicity of VAX

1 77

Alpha AXP Architecture and Systems

instructions to provide synchronized access to
shared fields i n the data structures. The DECnet -VAX

code also rel ies on byte (8-bit) a n d word (16 -bit)

granu larity for memory writes. S ince the granular

ity of Alpha AXP memory wri tes i s either longword

(:-)2-bit) or quadword (64 -bit) , DECnet -VAX code

that required atomic access to wore! fields had to
be modified to protect aga i nst writes to neighbor

ing byte ancl word fields sharing the same long

word or quadword . In D ECnet for OpenW,IS AXP,

word data structure fields shared by NETAC:l' and

NETDRJVER that required atomic access were

moved to their own al igned quadwords to p revent

interference from s i m u l ta neous writes to other

byte and word fields sharing the same quadword.

After the word fie lds were placed i n their own

a l igned quadwords, the code generated by the

M.ACR0-32 cross compiler for the ADAW! i nstruction

was sufficient to prov ide atomic access to the word

fields. We cou ld also have u sed comp i ler d i rectives

to specify that VAX granu la rity and atom icity rules

be preserved.

BL/55-32 Code The lll.ISS-32 code in the DECnet

VAX software was relatively s imple to port . We

made minor changes to acid the VOLATILE parameter

to data i tems that should not be cached i n registers,

to cond i t iona l l y com p i le the exception hand lers

for VA X or Alpha AXP, and to remove unsupported

bui l t -ins . Other modifications were more exten

sive , such as the changes to accommodate the new

Ufl$TABLE_PARSE.

% I F % B L I S S (B L I S S 3 2 V) % T H E N

L!B$TPARSE Changes Llfl$TPA RSE and LJB$TAFll.E_

PARSE are the i n terface routines to a general

purp ose, table-d riven parser for the OpenVMS

VAX ancl OpenVMS A..'\P operating systems, respec

tively. The cal l to these rou tines '''as made concli

t ional fo r the VA X and Alpha A X!' archi tectures.

Other changes were requ ired because Ull$TPARSE

ancl i . IH$'JABJ.E_PARSE d iffer in the way argument

l ists are passed . The method u s eel by UBSTPARSE to

pass arguments is incompatible with the OpenVMS

AXP caJ i i ng standard . The L! 13$TPARSE action rou

t ines requ ired mod ification as a result o f t he

required change to UBSTABLE_I'A RSE fo r the

OpenVYIS AX!' operating system . The LJB $TPARSE

action routines received all or a subset of the argu

ment block as parameters. LIBSTA.BLE_I'ARSE passes

the add ress of the argu men t block to t l1e action

rou t ines. The solut ion we used was to make the

rou tine declaration condit iona.l so that on the

OpenVNIS VA X operating system the action rout ines

continued to receive the argu ment block parame

ters, and on the Open VMS A..'\P operating system the

action ro ut ines received the add ress of the argu

ment block . Next, for the OpenV.viS A. X l' operating

syste m , the parameter n ames used by the common

code were bou n d to the argu ment block. These

changes are shown in Figure 5.
As a resu lt of this relatively s imple though repeti

tive change, no other changes had to be made in the

action rout ines. If at some fu ture time the Open VMS

VAX operat ing system uses L IB $TABLE_PARSE, there

wi l l be no need fo r conditionals .

G L O B A L R O U T I N E A C T $ I N V C O M M A N D (O P T , S T R C N T , S T R P T R , T K N C N T , T K N P T R , C H R ,
N U M , P A R A M) = I

% E L S E
G L O B A L R O U T I N E A C T $ I N V C O M M A N D (P A R S E S T A T E : R E F $ B B L O C K) I % F I

% I F % B L I S S (B L I S S 3 2 E) % T H E N
B I N D

% F I

O P T
S T R C N T
S T R P T R
T K N C N T
T K N P T R
C H R
N U M
P A R A M

P A R S E _ S T A T E C T P A $ L _O P T I O N S J ,
P A R S E _ S T A T E [T P A $ L_ S T R I N G C N T] ,
P A R S E _ S T A T E [T P A $ L_ S T R I N G P T R J ,
P A R S E _ S T A T E [T P A $ L _T O K E N C N T J ,
P A R S E _ S T A T E [T P A $ L_ T O K E N P T R J ,
P A R S E _ S T A T E [T P A $ B_ C H A R J ,
P A R S E _ S T A T E [T P A $ L_ N U M B E R J ,
P A R S E S T A T E [T P A $ L P A R A M]

Figure 5 L!B$TPAR5E Changes

178 Vol. 4 No. 4 .\jiecial ls.,ue 1992 D igila/ 1eclmical jou rual

Conclusion
This port ing effort not only provided a solid base of
knowledge with which to begi n the port of the

DECnet/OSI for OpenVMS VAX software and the

associated prod ucts, but a lso gave us an apprecia

t ion of common code and the avoidance of archi
tecture-specific code.

More and more software is being ported to new

hardware platforms. The porting process is often
carried our by individuals who d id not deve lop

the original software and who may not even be

fam i l iar with it . Our expe rience port ing the

DECnet-VAX code leads us to bel ieve that new soft

ware development shou ld take into account the
possi bil i ty that the code wi l l be ported to new

hardware platf<>rms at some future date. As we con

tinue to port the DECnet/051 for OpenVM5 VAX soft

ware, it is becoming increasingly obv ious that

certain coding practices are difficu l t to port. As a

general suggestion, if the code has knowledge of

the architecture but can be written using system
routines, system services, or run-t ime l i brary func

t ions, write the code in that manner. These system

routines wi l l be ported with the operat ing system,

and in a majority of the cases, the appl ication code

wil l not require modification .

Also, if archi tecture-specific functions are

requ ired , provide only a m in imum amount of code

to perform these required functions and segregate

the code. Document how the code works, why i t

had to be done that way, what the al ternatives were,

and why they were not taken . In addit ion to helping
maintain the code, this information may provide

valuable assistance to a person porting the code in

the future.

If a routine is written in assembly language for

the sole purpose of performance i mprovement,
consider rewriting it in a h igh-level language. I t is

possible that the assembly language coding conven

tions that may have been optimal for one hardware

platform wi l l be slower on a d ifferent hardware
platform . Using h igh- level l anguage compilers,

which generate optimized hardware-specific code,

will e l im inate addit ional porting effort and may
very l ikely be the best performance solution.

As we d iscovered during the process of porting

the DECnet -VA X software, MACf{0-32 code is signifi

cantly more d ifficul t to port than code writ ten in

higher- level languages. However, certain archi tec

ture-specific functions m ay have to be written in

assembly language. We recommend that these func

tions be isolated. In add it ion, we recommend that

D igital Technical journal Vol. 4 .Vo. 4 ,\j;ecial fssue 1991

DECnet for Open VMS AXP. A Case Histc)ly

any other code written i n MACR0-32 be rewri t ten ,

over rime, in a higher-level language.

We determined that the fastest approach to port

i ng was to make the minimum number of changes

required to get the DECnet fo r OpenVMS A..,'\ 1' soft

ware running. The porting process was accom

pl ished in phases. The first phase i ncluded the

in it ial port and addressed any errors th;�t occu rred

unt i l we successfully com pletnl l inking the image .

This phase a lso i ncluded the in it ia l debug, which
w;�s first performed on VAX systems because of our

common code approach and, subsequently, clone

on Alpha AXP prototype hardware. When the prod

uct was stable, we proceeded to the second phase
in which we beg;�n to method ically a l ign data struc

tures and fix granu larity and atomicity problems.

Small changes cou ld then be made and tested, ami

any new problems were genera l ly easy to identify.

Our team approach to the project worked

extremely wel l . Each team member was in it ia l ly

responsible for porting specific portions of the

code. As the project progressed, i ndividuals worked

on any part of the product that neetled attention.

This flexibi l i ty was a lso used when we began to

debug the ported code and again when we began

to respond to problem reports. Priorit ies were used

to assign resources in order to solve problems as

quickly as possible. Throughout the project, team

members worked together to share knowledge and

to solve problems efficiently. This effective ream

work al lowed us to del iver the DECnet for OpenVMS

AXP produ ct ahead of schedule .

Acknowledgments

The authors wou ld l ike to thank the other members

of the software development tea m , Ken Roberts,

Cathy Wright, our manager John Heron, and the

group engineering m anager Morea Manocchio,

whose hard work made this project a success. In

addit ion, we would l i ke to thank all the i ndividuals

of the Al pha AXP project who helped us along the
way. In particu lar, we would l ike to recognize cer

tain i ndividuals for their important contributions to
the success of this project: Pa u l Weiss, our porting
consu ltant ; Lenny Scubowitz, David Gagne, and
Ben Thomas of the I/0 team; Karen Noel and M i ke

Harvey of the execut ive group; and Steve Dipirro of

the XDelta team.

The DECnet for OpenV,\'15 AXP project was only

part of the Alpha AXP team effort. We fee l fortunate

to have experienced the synergy that th is team

created .

l 79

Alpha AXP Architecture and Systems

References
1 . A . Lauck, D. Oran, and R. Perlman, " D igital

Network Arch itect u re Overview," Digital

Technical jounzal, vol. 1 , no. 3 (September

1986) : 10 - 24.

2. P. Beck and) . Krycka, "The DECnet-VAX Prod

uct-An In tegrated Approach to Networking,"

Digital Tecbnicaljoumal, vol. I, no. 3 (Septem

ber 198o): 88- 99.

3. /11/igrating to an Open VMS Alpha System: Port

ing V,4 X MACRO Code (Maynard: Digital Equ ip

ment Corporation, Order No. A A-PQYEA-TE,

1992) .

4. Open V,lJS Linker tll/anual (Maynard : Digi t a l

Equ ipment Corporat ion, Order N o . AA-PQXYA

TK, 1992).

5. Open v,vts Alpha System Dump Analyzer Utility

Manual (M aynard: D igital Equ ipment Corpora

t ion, Order No. AA-PQYCA-TE, 1992).

6. Open VMS Delta/XDelta Utility Manual (May

nard : D igital Equipment Corporation, Order No.

A A-PQYPA-TK, 1992).

1 80

7 Open VMS Calling Standard (Maynard: D igital

Equ ipment Corporat ion, Order No. AA-PQY2A

TK, 1992).

8. N. Kronenberg et a l . , " Porting OpenVMS from

VA X to Alpha AXP," Digital Technical Journal,

vo l . 4, no. 4 (1992, th is issue): 1 1 1 - 120.

General References
DECnet for Open VMS Network Management Utili

ties (Maynard : D igital Equipment Corporatio n,

Order No. AA-PQYAA-TK, 1992).

DECn et j(Jr Open VMS Guide to Networking (May

nard : Digit a l Equ ipment Corporat ion, Order No.

AA-PQY8A-TK. 1992).

DECnet for Open V.MS Networking Manual (May

nard: Digi ta l Equipment Corpora tion, Orde r No.

A A-PQY9A-TK, 1992) .

Migmting to an Open VMS Alpha S)'sten-t: Pian n ing

for Migration (Maynard : Digital Equ ipment Corpo

rat ion, Order No. AA-PQY7 A-TE, 1992) .

Vol. 4 No. 4 Special Issue 1992 Digital Tech11ical journal

George A. Darcy III
Ronald F. Brender
Stephen]. Morris

Michael V. Iles

Using Simulation to Develop
and Port Software

Among the tools developed to support Digital's Alpha AXP program were four soft

ware simulators. The Mannequin and ISP instruction set simulators were used to

port the Open VMS and OSF!l operating systems to the Alpha AXP platform. The

Alpha User- mode Debugging Environment (AUD) allowed Alpha AXP user-mode

code to be debugged with support from tbe Open VMS VAX run-time environment

on VA X hardware. A UD was built from a combination of new and existing Digital

software components. The Alpha User-mode Debugging Environment for

Translated Images (AUDI) allowed translated images to be debugged on a simulator

running on a \1,4.X computer. With these debugging environments, user- mode

applications and code components could be tested before Alpha AXP hardware and

operating system software were available.

Digital developed severa l soft ware simu lators to
su pport i ts Alpha AXP program. 1 These tools
enabled engineers to develop and port software for
the 64-bit RISC Alpha AXP architecture concur
re ntly with hardware development. The simu lators
were used for a variety of purposes including port
ing, testing, verification, and performance analysis.
This paper d iscusses fou r Alpha AXP software simu
lators: Mannequin, ISP, AU D, and AUDI .

The Mannequin and ISP Simulators

Two Alpha AXP instruction set s imu lators,
Mannequi n and ISP, were used to port operating
systems to the Alpha AXP pla tform . The OpenYMS
group used the Man nequ in s imulator to rort the
OpenVMS VA X system to the Al pha AXP platform .
L ikewise, the OSF/ 1 group used the ISP s imu lator in
their port of the U LTRJX and OSF/1 operat ing sys
tems to the Alpha AXP platform. Both simu lators
were also used for architectural and design verifica
tion, and for performance modeling.

The .Mannequ in s imu lator grew out of a s imula
tor <.leveloped for an earlier RISC project at Digital .
The ISP s imulator was written anew by engineers
closely associated with the Alpha AXP architecture.

The two development groups were requested to
boot their respective operating systems on the sim
ul ators before attempting to boot on the Alpha
Demonstration Unit (A DU), the Alpha AXP proto
type hardware .L The simula tors were so successful

Digital Tee/mica I journal Vol. 4 No. 4 Special Issue /'}').2

in tracking the Alpha AXP arch itecture and in root
ing ou t software bugs that the OSF/1 group was able
to boot the ULTRlX operating system on the hard
ware on the first attempt. The Open VMS group had
similar success and booted the Open VMS AXP oper
ating system in a few hours.

Note that the Alpha Demonstration Unit (ADU) is
an Alpha A..,'\P prototype hardware system and
shou ld not be conh1sed with the Alpha User-mode
Debugging Environment (AUD) or the Alpha User
mode Debugging Environment fo r Trans lated
I m ages (AUDI) , two software simu lator faci l i ties d is
cussed later in the pap er.

Open VMS AXP Porting
The Open VMS group used Mannequ in as their Alpha
A X P instruction s imulator in porting the OpenVMS
VA X operating system to the Alpha AXP hardware.
Never before had an OpenVMS porting effort been
able to debug as much operating system code
in advance of hardware. Prior porting efforts
debugged only up to VNJB, a primary boot stage i n
the OpenVMS operating system . Using Mannequ in ,
operating system developers were able to boot the
entire operating system on the s imulator and actu
ally log in and debug ut i l ities.

Some developers used .Mannequ i n 's own win
dows interface an<.l debugging faci l i ties to debug
their code. Others ran the X De l ta util ity on top of
Mannequ in ._; X Delta is a low-level system debugger

1 8 1

AJpha AXP Architecture and Systems

useu ro debug t he OpenV:V!S VA X kernel anu drivers.

However, the Mannequin interface was usefu l in in i

t ia .l ly debugging XDel t a , since t he AJpha A X P con

sole al lows neither breakpoints nor single stepping.

To debug their code before the fu l l OpenV:VIS AXP

operat i ng system was avai l able, other developers

usn! Mannequin in conjunction with the AJpha

primary boot (AI'B) code and a test harn ess.

Mannequin was especial. l y usefu l in find ing a l ign

ment fau lts in the boot sequence. since the a l ign

ment tools are not operational unt i l the OpenVMS

AXJ' system i s completely booted. Alignment fau l ts

occur when an attempt is made to access a u n i t of

data located at an address that is not a mu l t iple of

tile size of the data.

Jl!Iicrocode Speedup
One main reason the OpenV,VtS ream was able to

uebug a large part of the operating system in real

t ime was the use of special ly written m icrocode to

speed up the s imu lator. Mannequ in is capable of

runn ing with special user-wr i t ten microcode on

the VAX 8800 fam i l y of machi nes. ' This microcode

is an addit ion to the normal VA X microcode for

the HHOO machines; the VAX m icrocode remains

un changed. With microcode support, a large subset

of Alpha AX P instructions is execu ted in microcode

and attains performan ce comparable to nat ive VA X

instructions. The Mannequin microcode occupies

95 percent of the total 1 ,024 words of the user

wri table control store.
Using m icrocode assistance greatly speeds up

Mannequin exec u t ion, yield i ng from 350 thousand

Alpha AXP instruct ions per CPU second (KI PS) to a

peak performance of 1 mil l ion Alpha AXP inst ruc

tions per CPl i second (M IPS) on a VAX H800.

Without microcode assistance. Mannequ in per for

mance is on the order of 10 K I PS . (For comp;Hison,

the !SP simu lator operates a t approximately 30

KIPS .) Code streams that execu te completely in

Mannequin microcode show much better perfor

mance than those that swi tch back and for th

between microcode ami the software simu lator.

With microcode assistance on an unloaded VAX

HHOO, i t takes from 20 to 30 minutes to boot the

Ope nV.\1S AXI' system and reach the D igital

Com mand Language (DCL) prompt after logi n .

Because o f t h is microcode speedup, software engi

neers were able to simulate and debug a much

larger part of the operating system and u ti ! it ies than

ever before.

182

OSF/ 1 AXP Porting
The OSF/1 operating system group used the ISP sim

u l a tor as an Al pha AXP instruction compute engine.

The strategy was to connect the ISP s imulator to

dbx . a standard UNIX sou rce-level debugger, via

dbx's remote interface. An interface was added to

the lSI' to su pport the fol lowing low-level debugger

com mands:

• Instruction stream examine and deposit

• Data stream examin e ami deposit

• Register examine and deposit

• Single step

• Con t i nu e

• f3oot

The dbx debugger was modified to work with the

64-bit Alpha AX P archi tecture. That is, addresses in

the debugger were extended to 64 bits, and an
Alpha A X I' disassem bler was provided. The ISP

simulator and d bx clebugger operated as separate

processes com mu nicat ing on t he same machine

by means of a socket. A socket is a protocol

independent connection point for interprocess

communications.
Historica l ly, the OSF/1 group used the JSP-dbx

combination to port the l . l .TRIX operat i ng system

to the AJpha AXP platform as an advanced develop

ment effort . When the group began to port the

OSF/ I system , Alpha AXP prototype hardware

(ADUs) and field- test compilers were avai lable .

Thus, the OSI/ 1 group used the !SP i n its ADU mode,

where the ISP simulator operated as a console to

the ADU hardware system . The ADO consists of an

Alpha AXI' D ECchip 21064 processor, memory,

d isks, Ethernet, and a DEC:station 5000 workstat ion,

which acted as the console i n terface. I nst ructions

that norm al ly execute on the s imulator were trans

ferred to the ADU fo r execut ion . However, the

e ntire symbol ic debugging envi ronment remainecl

u nchanged .

Simulator Specifics
The !SP s imu lator was written entirely in portable

C. The Man neq u i n simu la to r was a hybrid of the

C++ and C la nguages lSI' consisted of approxi
mate!\' 25,000 l i nes of code. Mannequin 31 ,800

l i nes .
.
The two simulators shared common code:

the JSP simu lator provided Mannequin with float

ing-point rou tines and a comprehensive instruction

Vol . . / No. 4 .\jJeciol lssue J')'JJ Digital Tecbuical journal

test program ; M annequin provided ISP with I/0
device rout ines. Thus, the s imulators verified the
Alpha AXP architecture as wel l as each other.

The Mannequin and ISP s imulators tracked and
supported changes in the evolving Alpha AXP archi
tecture and in PALcode. I'ALcode is special machine
dependent software that provides support for
many low-level operat ing system services such as
fau l ts and exceptions. PALcode also prov ides
i nstructions not in the base Alpha AXP hardware .

The two simu lators have features common to
many s imulators, including support for load i ng
and running p rograms, sett ing breakpoints and
watchpoints, accessing memory, and saving and
restoring machine state. Also supported are many

machine-specific features, such as I/O devices,
in terval t imers, and configurable translation look
aside bu ffers. Besides a com mand l ine i n terface,
the Manneq u i n s imu lator has a graphical windows
i nterface that a l lowed users to see most machine
resources in a windows-based format, as shown in
Figure I .

The Mannequin and lSI' s imulators support three
basic devices:

• A console device used for terminal I/O

• A disk device used to boot the operating system

• An interval r imer used for interrupts

The disk device on the simulators can be e ither
a file or a physical disk device. The OpenVMS
group used a shared disk so that developers cou ld
boot from a common disk while running on the
simulator.

The s imul ators prov ide 16 megabytes (MB) of
physica l memory with a defaul t page size of 8 k i l o
byres (kH). The physical memory of the simulators
may be i ncreased to t he practica l l i mit of ava i l ab le
virtual memory on a VAX system (minus a sma l l
amount for the actual s imulator code).

Both s imulators have configurable i nstruction
stream (1-stream) and data stream (D-strea m) trans

lation lookaside buffers (TLBs). A TLB is a sma l l
cache that holds recent virtual-to-physical address
translation and protection information. The s imula
tor TLlls can have a variable number of entries i n
each o f the fou r granu larity h int block sizes.
Granul arity hints indicate to the transla t ion buffer
im plementations that a block of pages can be
treated as a single, larger page. In essence, there are
four min itranslation buffers. The lSI' s imu lator sup
ports selectable TLB replacement a lgorithms,

Digital Teclmical journal Vr>l. 4 No. 4 .\j>I!Cial lssue 199.!

Using Simulation to Deuelop and Port Software

whereas Mannequin supports only the not- last
used (NLU) algorit h m . The configurable TLBs

a l lowed the operating system and chip design
groups to analyze and finely rune the translation
lookaside buffers for optimum performance.

Performance Anazysis and Benchmarking

The Mannequ in and !SP simu lators a l so support

execution of user-mode, stand-alone programs, i .e . ,
those with l i t t le or no operat ing system run-time
support, by providing program loaders for several
formats. These formats include two UNIX object for
mats (CO FF a nd a.out), an OpenV.MS AX!' image for
mat, and a system (raw data) image format.

Programs were compiled with early field-test
Alpha AXP compi lers. Program execution was espe
cia l ly usefu l for hardware designers anti compiler
wri ters for performance ana lys is and benchmark
ing purp oses. Note that a p pl icat ions requiri ng ful l
operat ing system support usecl rbe AL I D fac i l i ty,
described in a later section.

The s imulators can generate trace fi les i n a stan
dard trace file format. This commonal i ty enabled
the two faci l i t ies to share the same trace analysis
tools. The trace fi les generated by Mannequin

and ISP were also used as input to the Alpha
Performance Model, another s imulator that gener
ated detailed perform ance data.

EVIUST and ALPHA$ REPORT were two tools fre
quent ly used to analyze trace fi les and generate

statistics concerning machine resou rces used dur
ing program execution. The types of data generated
by ALPHA$ REPORT i nclude the fol lowing

• I nstruction d istribut ion by opcode, c lass, and
format

• I nstruction a nd floating-po in t register uti l iza
tion summary

• D istribution of code block run lengths

• Opcode pair d istribution by class

• Control/branch instruction flow sum mary

An actua l trace analysis report generated by
A LPH.A$REPORr is shown i n Figure 2. This example
comes from a scaled version of FPPPP (one of the 14
benchmarks in the SPECfp92 floati ng-point rest

suite), with the con stant NATOMS set equal to 2.
Figure 2 displays a report l ist ing instruction d istri
bution by opcode.

Alpha AX!' operating system developers ami com
p i ler writers rel ied heav i ly on the trace reports for

1 83

CfJ
.._,

�
"-

�
""'

(.r "'::::' �
�
;;::-
� "'
;c
'C '"

tl
�:
�
� "'
<:!"
::
;;·
!:.

�
�
!:.

m i c r o c o d e
u p d a t e

t r a c e

E V 1 : S T A T U S

U N A V A I L A B L E
0

M a n n e q u i n

u n a l i g n e d_ t r a p s O N
a r i t h m e t i c _ t r a p s O N

p a l _ d e b u g O N
h a l t _ p a l O N

A l p h a S i m u l a t o r V 3 . 1 0 - 0

c y c l e _ c o u n t 0 0 0 0 0 0 0 5 8 8
r u n s t a t u s S T O P P E D

s r m 4 O F F

t r a c e f i L e N O N E
c o n s o l e L o g N O N E

R O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
R 0 1 F F F F F F F F F F F F E 6 D F
R 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
R 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R O S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P O O O O O O O O 0 0 0 5 0 1 C O :
P O O O O O O O O 0 0 0 5 0 1 C 4 :
P O O O O O O O O 0 0 0 5 0 1 C 8 :
P O O O O O O O O 0 0 0 5 0 1 C C :
P O O O O O O O O 0 0 0 5 0 1 0 0 :
P O O O O O O O O 0 0 0 5 0 1 0 4 :

P - > P O O O O O O O O 0 0 0 5 0 1 0 8 :
P O O O O O O O O 0 0 0 5 0 1 D C :
P O O O O O O O O 0 0 0 5 0 1 E O :
P O O O O O O O O 0 0 0 5 0 1 E 4 :
P O O O O O O O O 0 0 0 5 0 1 E 8 :
P O O O O O O O O 0 0 0 5 0 1 E C :

E V 1 > L O A D S Q U A R E R O O T

E V 1 : G P R

d t b E V 3 / F I X = (4 , 0 , 0 , 3 2)
i t b / F I X = < 0 , 0 , 0 , 8)

R 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 1 9 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 8 R 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 1 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 R 2 0 F F F F F F F F F F F F F F C O R 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 R 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
R 1 4 0 0 0 0 0 0 0 0 O O F F 2 8 0 0 R 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
R 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 R 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E V 1 : I N S T E V 1 : M E M O R Y

A 2 C ? O O O O L D L R 2 2 , 0 (R 7) v o o o o o o o o 0 0 0 0 0 0 0 0 : 2 0 3 F O O O O 2 0 1 F O D 0 4
4 2 C 0 3 0 1 7 A D D L R 2 2 , # 1 , R 2 3 v o o o o o o o o 0 0 0 0 0 0 0 8 : 2 0 5 F E 0 0 0 2 4 2 1 0 0 0 1
B 2 E 7 0 0 0 0 S T L R 2 3 , 0 (R 7) v o o o o o o o o 0 0 0 0 0 0 1 0 : 2 0 9 F O O O O 2 4 4 2 0 0 0 1
9 5 1 E F F D 8 S T D R 8 , F F D 8 (R 3 0) v o o o o o o o o 0 0 0 0 0 0 1 8 : 4 0 2 0 1 4 0 3 2 4 8 4 0 0 0 0
A 1 1 E F F D 8 L D L R 8 , F F D 8 (R 3 0) v o o o o o o o o 0 0 0 0 0 0 2 0 : 0 0 0 0 0 0 0 0 6 B E 3 0 0 0 0
C 3 F F F F A C B R 1 F F F A C v o o o o o o o o 0 0 0 0 0 0 2 8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 C 0 7 0 1 9 A N D R 1 4 , # 3 , R 2 5 v o o o o o o o o 0 0 0 0 0 0 3 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 C 0 7 1 0 E B I C R 1 4 , # 3 , R 1 4 v o o o o o o o o 0 0 0 0 0 0 3 8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 C E F F D O L D A R 1 4 , F F D O (R 1 4) v o o o o o o o o 0 0 0 0 0 0 4 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 1 0 E 0 0 2 C S T L R 8 , 2 C (R 1 4) v o o o o o o o o 0 0 0 0 0 0 4 8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B O E E 0 0 2 8 S T L R 7 , 2 8 (R 1 4) v o o o o o o o o 0 0 0 0 0 0 5 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 C E 0 0 2 4 S T L R 6 , 2 4 (R 1 4) v o o o o o o o o 0 0 0 0 0 0 5 8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

% M Q N : l o a d e d v m s f i l e (E M T _ 0 0 : [D A R C Y J S Q U A R E _ R O O T . E X E ; 1)
% M Q N : 2 2 b l o c k s ; e n t r y a t 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 8

E V 1 > 1

Figure 1 Mannequin Simulator Windows

� '1;) :r Ill

�
� ,.,
2:
;; r"l
= .., (1) Ill ::l 0. [JJ � 'Jl (1)
3 'Jl

Using Simulation to Develop and Port Software

A L P H A I n s t r u c t i o n S t a t i s t i c s R e p o r t 6 - M A Y - 1 9 9 2
F P P P P - - Q u a n t u m c h e m i s t r y c a l c u l a t i o n o f a t w o - e l e c t r o n i n t e g r a l
d e r i v a t i v e

I n s t r u c t i o n D i s t r i b u t i o n b y O p c o d e
(R a n k e d f r o m h i g h e s t t o L o w e s t)

I n s t r u c t i o n
C l a s s M n e m o n i c
6 L D T
8 M U L l
8 A D D T
6 S T T
1 L D Q
1 L D L
1 S T L
4 B I S
3 A D D L
8 S U B T

O c c u r r e n c e
2 3 2 1 1 5 5
1 7 3 2 9 2 8
1 4 3 3 7 9 8

9 9 8 4 4 6
5 4 4 3 8 5
2 4 1 1 4 2
1 7 8 8 2 8
1 5 1 1 2 0
1 2 6 3 2 1

9 5 0 4 5

P e r c e n t
2 5 . 4 1
1 8 . 9 7
1 5 . 7 0
1 0 . 9 3

5 . 9 6
2 . 6 4
1 . 9 6
1 . 6 5
1 . 3 8
1 . 0 4

C u m u l a t i v e
P e r c e n t

2 0
4 0
6 0
7 0

8 0

Figure 2 Mmmequin/!SP Trace Output

help i n design ing crit ical sections of code. For

example, the register usage d istribution report

helped determine how many registers should be
preservnl by a ca l l and how many should be

scratch (usable by a cal led rout ine without being

preserved).

Tbe AUD Facility
Whereas the Mannequ i n and ISP s imulators were

su itable for i ni t ia l debugg i ng of low- level software

such as operating systems, d irect use of these too ls
for user-mode appl ications, i .e . , layered products, is
a d ifferent matter. Porting and debugging Alpha

AXP user-mode code is at best d ifficul t without the
fu l l run-t ime support of an operating system. User
mode appl ications typica l ly take advantage of a
wide variety of run-t ime l ibraries, i nc lud i ng com

piled code support (su ch as the Fortran run-t ime

l ibrary), mathematical rout ines, graphics r;o ser
v ices, and database software (such as Rdb for
OpenVMS). Even if a l l this software were i m medi
ately ava i l able t()r Alpha AXP systems, running i t

under simu lation would be proh ibitive ly slow.
Therefore, Digital developed a m i xed-execution

debugging environment. This Alpha User-mode

Debugging Environment (At JD) was bu i lt from a

combi nation of new and existing Digital software

components. In the AU D environment, user-mode
code being developed for or ported to the Alpha
AXP platform could be comp i led and execu ted as

Digital Technical]Our1w/ \I(Jf. 4 .Vu. 4 5/Jeci{l/ /ss//l! /')')2

Alpha AXP code using s imulat ion on VA X hardware.

At the same t ime, OpenVMS VA X run-t ime services

cal led by the code could be execu ted as native VAX

i nstructions. Thus, modules could be ported and
debugged one at a ti me, u n t i l a lmost the ent i re

application consisted of bug-free Alpha AXP code.

Dur ing the design of the AUD environment, two

key technical issues were

• How to efficiently detect cal ls made by execut

ing VAX code to a routine in Alpha AXP code that
could be " execu ted" only by s imu lat ion, and

conversely, how to detect cal ls made by Alpha
AXP code bei ng s imulated to native VAX code.

• How to effect the transformation of parameters,

both location and representation, from that pro

v ided by the cal ler i n one dom a i n into the loca

tions and representations expected by the ca I Jed

rout ine i n the other dom a i n . Al though there
existed wel l -defined and widely f(J I Iowed cal l ing
standards for both domains, a variety of spec ia l
purpose, h igh-performance cal l i ng conventions
were used in many situations.

Th is mixed-execution environment was expected

to have a relat ively short l i feti me, because it wou ld

become obsolete as soon as sign ificant nu mbers of

real Alpha A_,'\P l1ardware systems became avai l able.

Consequently, AUD itself hac! to be s imple and inex
pensive enough to he created quickly and put in to
use. The deve lopment effort met this requ irement

1 8'5

Alpha AXP Architecture and Systems

The el apsed time from i n i tial concept to first use

was about eight m o n ths; the total develop ment

effort for AlJD over its l i fe time was between three

and four man-years.

AUD Components
Desp ite the desire for si mp I ici ty, AU D co nsists of a

nu mber of cooperat ing components:

• Ca l l able Man nequ in Alpha Sim u l ator

• Al iD debugger

• Al !D i i nker

• Al pha AXP na tive serv ices

• VA X jacketing services

• Al iD Lin kage Analyzer (ALA)

• Selected VAX jackets

Callable Man nequin Alpha Simulator Cal lable

Ma n nequ i n , the Alpha AX!' i nstruct ion set s imula

tor, is essent ia l ly a subset of the Mannequin si mu

lator descri bed earl ier. In particu lar, Cal lable

Mannequin omits the user i n terface and Alpha fu'\ P

machine stare. I nstead , the AUD debugger suppl ies

the user interface. A lso, sto rage fo r the Alpha AXP

machine stare is separately l i n ked i n to the AUD
env ironment to make this information globa l ly

accessible. Cal lable Mannequin does reta in the

microcode-assist fea ture.

AUD Debugger The AllD debugger is a mod ified

version of DEBUG -32, the user-mode debug ut i l i ty

on the OpenVMS VAX operat ing system. The AUD
debugger provides most of the same features of

DEBUG-:)2 A co nfiguration option a l lows the

DEBl l(; -:)2 ut i l i ty to use an internal. low- level

remote debugger in terface to in te rface w i t h a fo r

eign target. (Th is capabi l i ty was origi na l ly devel
opecl for use in other products such as VA XELN

Ada.) We developed new code to join DEBlJG-:)2 ami

Ma nnequin using this interface. As a resu lt , the AlJD
debugger works d i rectly with VAX code, i n the

usual manner, and works with Alpha AXP code by

passing com m a nds to the Cal lable M a nnequin simu

l atOr to set brea kpoints, examine i nstructions, exe

cute code, etc.

A UD /Jnker The AliD l i nker is a variant of the

Alph a AXP cross l i n ker that reads A lpha AXP object

modu les as input and produces an OpenVtvlS VA X

1 86

fo rmat i mage as output . The standard VAX l i n ker

can therefore reference locations in the Alpha AXP

i mage i n the normal way, and the standard

OpenVMS im age activator can be used to load the

Alpha AXP image for execut ion . However, to m i n i

mize complexity, we cl id constra in the Alpha AXP

im age to be l i n ked as an absol ute im age (i .e . , a

based image, i n OpenV.V!S jargon) . This restricti on

e l i m inated the problem of how to relocate Alpha

AXP i nstructions using the OpenVMS i m age activa

tor. As mentioned previously, the Alpha AXP image

also in clude; a global storage area to hold the simu

lated Alpha A X P machine state.

Alpha AXP Natil'e Services Alpha AXP native ser

vices is a special operating system s he l l , part of
which executes as Alpha AXP code (under s imu la

tion) a nd part of which is included in the AU D jack

eting services. The nat ive services provide the

lowest - level support for hardware exception han

d l ing and the OpenVMS conditio n-han d l ing fac i l i ty.

While AlJD u l ti m ately supported frame-based con

d it ion hand l ing within the Alpha AXP im age, i nter

operation of appl icat ion exce ptions between the

Alpha AXP ami VA X domains was not suppo rted .

li,4X jacketing Serl 'ices VAX jacketing serv ices is

VAX code that supports the abi l it y to write jackets

that pass control back and fo rth between VAX and

Alpha AXP code. The mechanics for accompl ishing

this are discussed i n t he .Jac keting section.

AUf) Linkage A natvzer The AI .A is a speci a l i zed

compi ler that reads a special i zed jacket description

la nguage. This language describes how cal ls in

one domain are to be transformed i n to cal ls in the

other doma in on a rou tine-by-rou tine, parameter

by-parameter basis. The output from the ALA is

an Al pha A XP object modu le and a l i nker options
con trol fi le, both used to link the Alpha AXP i m age,

and a VAX object module . The Alpha AXP object

module provides a transfer vector i n to the Alpha

AXP procedures. The l i n k er options con trol fi le

provides symbol defi nit ions i n an encoded form to
manage cal ls from the Alpha AX!' im age to the main

VAX image, which i s l i n ked later. The VA X object

mod u le contains a table that encodes the j ac keting

description .

Selected VAX jackets Selected VAX jackets are A LA

jacket ing files (in both source and compi led fo rms)

h>r ca l l i ng common VA X fac i l. i t ies from Alpha AXI'

11!1. 4 No. 4 SjJecial /sslle 1')92 Digital Tee/m ica/ journal

coue . Jackets are provided for Open VMS system ser
vices, the C run-t ime library, anu some parts of the

general-purpose, run-time l ibrary (LIHRTL). The
DECwinuows group also suppl ied jacket defin i t ion

files for use by other groups. AUD users are able to

su pplement these files as needed by creating and

compi ling their own jacketing descriptions for
other VAX facil i ties.

Figure 3 shows the main steps in bui ld ing an AUD
envi ronment. The uppermost sequence shows the

compi la t ion and l inking of the Alpha AXP com po
nents, which results in the creation of the Alpha

AXP image. The central sequence shows the compi
lat ion of t he jacket descriptions, which results i n

the creation o f components that are incluued in

both the Alpha AXP and the VAX images. The lower
rows of Figure 3 show the compi lat ion of the VAX

ALPHA AXP
PART OF � ALPHA AXP

r-
ALPHA AXP

APPLICATION COMPILER OBJECTS
PROGRAM

Using Simulation to Deuelop and Port Software

part of an appl ication and its I inking with the AUD

manager to create the VAX main i mage. \Vhen the

mixed VAX and Alpha AXP appl ication is executed,
these images are combined in memory with

Cal l able Mannequ in , the AUD debugger, and other
shareable images. This relationship is i l lustrated in

Figure 4.

jacketing

�

Jacketing is the key feature that a l lows VAX and
Alpha AXP interoperabi l i ty, i . e . , gives a p rocessor

the appearance of being able to execute both VAX

and Alpha AJ(P instructions. Although the details of

jacketing are intricate, the resu lt is simple and e le

gant. Calls can be made freely back and forth

between VAX com pi led code and Alpha A X P com

piled code, without any special compi lation modes

ALPHA AXP
r-

ALPHA AXP 1-LINKER IMAGE

L1 ALPHA AXP
JACKET
OBJECTS

i JACKET
r-

JACKET
DESCR IPTIONS COMPILER l

VAX
JACKET n OBJECTS

VAX
r-

VAX
LINKER IMAGE

L1 VAX PART OF VAX VAX DEBUG APPLICATION r- COMPILER r- OBJECTS IMAGE PROGRAM

ENVIRONMENT VAX VAX CALLABLE
MANAGER r- COMPI LER r- OBJECTS r-- MANNEQUIN

IMAGE

Figure 3 Creating an AUD AjJjJlication

Digital Tecbuicaljourual Vul. 4 No. 4 Special issue]')<)2

VAX
LOADER

r-

f----

1-----

- VAX
MEMORY

1 87

Alpha AXP Architecture and Systems

ALPHA AXP
L INK

VAX
L INK

l
I
I

I
I

ALPHA AXP
COMPONENTS

ALPHA AXP
COMPONENT SERVICES

ALPHA AXP
MACHINE STATE

t
AUD AND JACKETING
TABLES

VAX COM PONENTS

MAIN I MAGE

I
I
I

--I CALLABLE MANNEQUIN I
I I AUD DEBUGGER I I

I --I OTH ER I MAGES I
SHAREABLE LIBR ARIES

Figure 4 AUD Process Components

on either side. The Al J D support is fu l ly recursive

ancl reentrant.

Static cal ls from VAX to Alpha AXP code are

directed to d u m my entry points in the object mod
ule procl uced by the ALA compi ler. Each entry point

is simply an in struction that loads a poin ter to the

jacket i ng description table for tbe target Alpha A XI'

procedure, fol lowed by a transfer into common

jacket i nterpretation code.

Cal l s from Alpha AXP code to VAX code use

the fact that the Cal lable Mannequin component

stops and returns control to the r\l ! D environment

when it detects an instruction that transfers control

out of the Alpha AXP image . In th is case., the appar

ent address is an encoded i nteger (created by the

ALA), wbose high four bi ts make i t look I ike a n i l le
gal address (in the VAX reserved S l space) and

w hose remaining hits are a two- level index (i . e . , 12

bits of faci l i ty code and 16 bits of offset) i nto the

jacket description table for t he target VA X proce
dure. This two- level scheme was chosen to allow

jacket descriptions for differen t shared l i brary fac i l

i t ies to be prerared and compi led i ndependent ly.

The facility code is a number normally a l ready asso

ciated with that facil i t y by software convent ion for

other pu rroses.

When a rou tine is called using a dynamica l ly

determined address. such as an address given in a

fu nction variable , a property of the VAX and Alpha

AXP arch i tectures is exploited to determi ne dynam

ically whether the target rou tine is a VAX routine or

1 88

an Alpha AXP rou tine . According to the VAX a rchi
tecture, the first 16 bits of a rou tine comprise a

mask that encodes the registers to be preserved as

part of the cal l . 13its 12 and 13 of this mask Jre

u nused and requ ired to be 0: if one of these bits is

set at t he t ime of a ca l l , then a hardware except ion

res u l ts. Accord ing to the OpenVMS A X P software

architecture, an Alpba A X P p rocedure address is

actua l ly the address of a procedure descriptor,

which is a data structure and not the actual Alpha

f\XP code. By design, hits 12 and 13 of this data

structure must be set to 1 .
VAX execution of J VA X CALL instruction that

attempts to transfer to an Alpha AXI' procedu re

results in an exception. A special AUD excertion

hand ler i n tercepts the exception, determines if the

i l legal entry mask is caused by a reference i n to an

Alpha AXP i mage, and if so, cal ls i nto the Al JD jac ket
ing routines to reformat the call frame. This mecha

nism a lso works for hand l ing asynchronous system
traps (ASTs) from the OpenVMS VAX operat ing

system to Alpha AXP code.

For computed ca l l s from Alpha AXP code, com

pi led code ca l l s an Alpha AXP run-time l ibrary rou

t ine to perform the comparable bi t 13 rest (u nder

simu lation). If hit 1 3 of the targe t location is set to 1 ,
then simu lated execu tion cont inues and an Alpha

ro-Aipha call is carried out. Otherwise, con tro l

transfers to a specia l VAX code entry point in AUD,

which terminates simu lation and performs jacket

ing back to the VAX target procedure.

l·r>l. Xo. 4 Special Issue 1'.!')2 Digital Tee/mica/ jou rnal

Basic Operation

To start exec u t i ng a m ixed appl icat i o n , the AUD

environment first pe rforms several in it ia l ization

steps. ln particu lar, Al J O scans al l the i mages loaded

in process memory to identify the Alpha A)(p i mage

(only one was a l l owed and supported).

Some AU D options are set thro u gh the use of

OrenVMS logical names, which are i nte rrogated

du r i ng i mage i n itial izat ion. These options i nclude

• Selecti ng Alpha A.XP stack size

• Enabli ng del ivery of ASTs to Alpha AXP rout i nes

• Disabl i ng the normal Alpha AXP stack consis-

tency checks

• Disabl ing unaligned memO!)' reference messages

• Enabling AlJD init ia l ization tracing

• D isabling i nteger overflow checking

Debugging combi ned VA X and Alpha AXP code

under the AlJ D env i ronment is s i m i l a r to debugging

normal VAX code under the DEBLIG-32 OpenVMS

debugger. Basical l y, if the add ress involved in a

debug command is w i t h i n an Alpha AX P i mage,

then the debugger cal l s the Manneq u i n s i m u lator to

pe rform the command for the Alpha AXP code.

Otherwise, the OEBUG-32 debugger itself performs

the com mand for the VAX code, as usual . Alpha AXP

mach i ne state is kept i n static global storage by

Mannequ in and t hu s is visible to the AUD debugger.

ln the DEBUG symbol table (DST) representation,

variables t hat are a l loca ted i n the Al pha AX P regis

ters are described as being a l located in the con-e

spond i ng global state locat ions. This " t rick"

al lowed AlJ D to hand le the 64 Alpha A..,'CP registers

using the VA X DST representati o n , wh ich can

encode only the 16 VA X registers.

Once si m u lation begins, Mannequ in conti nues to

s imulate Alpha A..,'CP instructions unti l it either

detects an instructi o n that wou ld transfer control

outside of the Alpha AXP i mage, completes a single

step request, or detects an error condition. Upon

return i ng to the AU D enviro nment, Mannequ i n sup

pl ies status information that i n d icates the reason

simu lation ended.

For a transfer of contro l from Alpha AXP to VAX

code, AU D must first determ ine whet her the tra ns

fer is a return from A.l rha A X P code as a resu lt of a

prior VAX ca l l or a new call from Alpha AXP code to

VAX code. Al JD is fu l ly ree ntrant, so AUD cannot

make this determination from global state. lf the

target address is a d istingu ished address that AUD

Digital Techntcal]ournal Vol. 4 No. 4 Special Issue 1992

Using Simulation to Deuelop and Port Sojtware

suppl ies when i t sets up a VAX- to-Alpha cal l (i .e . , an

address i n the reserved Sl part of the VA X address

space), the address is i n terpreted as a return trans

fer. Otherwise, AliD i ni t iates a new Al pha-to-VAX

cal l .

For a re turn operat ion, the ALID code copies the

retu rn value or val ues from the Alpha AXP registers

and passes them back to the VAX code. A VAX return

i nstruction is then executed to resu me execution

of the cal l ing VAX code.

For a cal l operation, the VAX cocle fetches the

Alpha AXP parameters and bui lds a VA X argu ment

J ist, which is t h en used to ca l l the target VA X rou

t ine. When the VAX rou tine returns, the contents of

t he resu lt registers are copied to the corresponding

Alpha AX!' machine state locations, and Man nequ in

is restarted to resume execu ting A l pha AXP code.

Despite some l imit at ions (e.g. , o n l y one Al pha

image and no exception hand l ing across the VAX to

Alpha AXP domains), AU D great ly a ided the

OpenV,VIS AXP porting effort. The si m u l ator p ro

vided software groups with a pseudo-Alpha AXP

environment i n wh ich to debug their Alpha AXP

code, wel l before ei ther Alpha AXP hardware or the

Ope nV,VIS AXP operating system was avai lable .

Many OpenVMS AXP groups successfu l ly used AU D

to fac i l itate their porting. i nclu ding the Record

Man agement Services (RMS), DECwindows. Forms

Management System (F;VIS), various OpenVMS com

mand u t i l ities, text processing uti l ity (TI'l l) , DEBUG ,

and G EM compiler back-end groups.

The AVDI Facility

The VAX Environment Software Tra nslator (VEST) is

an important part of the in i t ia l Open VMS AXP offe r

i ng.> VES'T' translates a n OpenVMS VAX exec utable or

shareable i m age i nto a n Ope nVM.S A.XP image that

can then be execu ted with sup port on an OpenV.viS

AXP syste m. As for other user-mode l ayer software

componen ts, it was desirable to test VEST and

i mages transl ated by VEST as early as possible in a

s imu lation environ ment such as Al! D. However,

AUD cou ld not be used d i rectly to test translated

i mages for t wo reasons:

• VEST d irectly creates an Alpha AXP i mage. In

effect, VEST is a combined compi ler and l i n ker.

Thus, the symbol mapping protocols used by

AUD were extraneous, and the l i nking protocol s

h a d t o b e completely re pl aced.

• Actual execution of a t ransl ated i mage on

an Op enVMS A XP system ma kes use of the

1 89

Alpha AXP Arc hitecture and Systems

Translated Image Environment (TI E) .' The TIE

is a shareable l ibrary that contains support rou

t in<:s for transla ted i m ages. I n particul ar, TIE

provides support for VAX complex i ns truction

processing, VAX- to-Alpha address mappi n g, and

OpenV,\15 VAX exception hand l i ng. Creating a

VAX version of the TIE to use with AUD requi red

i n t i mate interfaces with the Open VMS VAX oper

ating system as wel l as compatibi l i ty with AUD.

Thus, the need to debug translated i mages led to
the creat ion of the Alpha User-mode Debugging

Environment for Translated Images (AlJDJ). Just as

Cal lable Manneq u i n provided a key bui ld ing block

fo r AlJD, Al J D in turn provided a key b u i l di ng block

for AUD I . Alpha A X I' software teams and porting

centers used AU DI to port both Digital and third

party translated appl ications prior to the arrival

of Alpha AXP hardware. The porting process was

as fol lows: a VAX app l ication was translated to
Al pha AXP code by means of the VEST translator;

this code was then run on a VAX system using the

AUDI simu lator.

The AliDI process components shown in F igure 5

include the

• Cal lable Mannequ i n Alpha s i m u l ator

• AUD debugger

• VAX version of the TIE

• Translated VAX code (Alpha AXP code)

A UDJ Environment

Emu lated VAX state i n AUDI is maintainell i n a global

context block. E m u l ated VAX registers RO through

R 14 are used exactly as their VAX counterparts.

The correspondence between a translated and

ORIGINAL VAX CODE
AND
TRANSLATED VAX CODE
(ALPHA AXP CODE)

TRANSLATED IMAGE

equ ivalent VAX program counter (PC) is not di rect ly

avai lable dur ing execution, si nce translated code

occupi es different address space than the origin a l

VAX code. Thus, register R 1 '5 is used instead a s an

in- image i ndex register.

The user-mode VAX stack is spl i t into a VAX stack

a nd an Alpha and emul ated VAX stack. The VAX

stack services both the AU D I environment and any

VAX system services or run - t i me l i brary rou tines

that the translated i mage may cal l . The Alpha ami

emu l ated VAX stack serv ices Alpha AXP a n d trans

l ated code .

Tra nslated i mages co ntain cal ls to the TIE a s nec

essary to simu late VAX complex i nstructions and

p rocedure calls . Complex i nstruction routines are

used to s imu late VAX i nstructions that would other

wise expand into excessive Alpha AXP code.

However, s i nce AUDI is run ning on VAX hardware,

complex instructions can be executed native on the

VAX hardware .

To init ia l ize the AUDI environment , the translated

im age cal l s an i n i t i a l izati o n rout ine i n t he TIE by

means of an i n i t ia l ization program section (PSECT).

This routine determi nes the address range of the

Alpha AXP code and the location of the VAX-to

AJpha address mapping structure, saves t he current

Al pha AXP register state, and cal l s Mannequ i n to

begin exec u t i ng translated code at the appropriate

entry poi n t . Tra nslated code u ses the address map

p i ng structure to find compu ted branch dest ina

tions on t he fly. Ca l l able Mannequ i n then execute

translated cocle u n t i l it encounters some instruc

t i o n that wou l d transfer control out of translated

code. The cause o f this transfer wou ld be either a

TIE-based proced ure or complex instruction cal l , or

cal l s to native VAX routi nes.

l
TRANSLATED I MAGE

I ENVIRONMENT {TIE)

I CALLABLE MANNEQU I N I
I AUD DEBUGGER I
I OTHER IMAGES I

AUDI ENVIRON MEN T

Figure 5 AUDI Process Components

1 90 Vol. 4 No. 4. Spl!cial lssul! 19').! D igital Teclmicaljournal

Like AUD, AlJD! a llows in teroperation between

translated VAX code (Alpha AXP code) and VAX

code. Transla ted code can use existing VAX system

services and run-t ime l ibraries. AUDI does not use

the jacketing la nguage described in the section The

ALID Fac i l ity. I nstead, AUDl a u tomatica l l y jackets

procedu re cal ls between the translated VAX code

and the native VAX code. Au tojacketing i ncl udes

bu i ld ing proper para meter l ists and ca l l frames for

the destination cal l i ng standard.

The fact that AUDI does not use a jacketing lan

guage leads to some procedure cal I lim i tat ions.

However, note that these l i mitations do not appear

when r u n n i ng translated code on actual Alpha

AXP hardware . For i ncom i ng calls (VA X code to

translated VAX code), all AST del ivery and condition

hand lers execute as VAX code rather than as trans

lated VA X code. Thus, translated programs m ay

$ R U N H E L L O W O R L D T V
H e l l o W o r l d f r o m V A X B A S I C

A U D I V 3 . 0 R u n t i m e S t a t i s t i c s :

Using Simulation to Develop and Port Software

not fu nction properly. For outgo ing cal ls (trans

lated VA X code to VAX code), routines i n which

a cal lee modifies its cal ler's stack frame argument

l ist o r return add ress may produce unpredictable

resu lts. since the au tojacketing may be a l tered or

cl isconnected.

AUDI Example
Figure 6 shows the exec ution of a trans lated im age

under AU D I . Note that both the BASIC image

(HELLO_WORLD) and the BASIC: r u n- t ime l ibrary

(BASRTL) are translated . Run-t ime l ibraries that are

used by the AUDI environment cannot be translated

under AU D I . Translat ing run-time l ibraries that Al !DI

itself uses causes a "circularity in activat ion·· and

incorrect or no execution.

In the H ELLO_ WORLD example, there are 2H cal ls

to VA X ro ut ines, most l ikely those to LI BRTL and

8 0 8 5 A l p h a A X P i n s t r u c t i o n s w e r e e x e c u t e d .

T I E L o o k u p s :

S t a y e d i n A l p h a A X P r o u t i n e s :
W e n t t o V A X r o u t i n e s :

T o t a l :

C A L L x

4
2 8

3 2

J S B

5
0

5

J M P

0
0

0

2 8 V A X r e t u r n s u s e d (2 8 R E T , 0 R S B) t o r e s u m e A l p h a A X P c o d e .
T h e r e w e r e n o F a u l t - O n - E x e c u t e c o n d i t i o n s c o n v e r t e d t o L o o k u p s .
2 1 C A L L x C o n t e x t B l o c k s w e r e a l l o c a t e d - w h i c h w e r e r e u s e d 7 t i m e s .

T h e r e w e r e 1 9 T I E - b a s e d ' c o m p l e x i n s t r u c t i o n s ' e x e c u t e d .
I n s t r u c t i o n I N S Q U E C O E) 2
I n s t r u c t i o n M O V C 3 C 2 8) 8
I n s t r u c t i o n M O V C 5 C 2 C) 8
I n s t r u c t i o n M O V T U C C 2 F) 1

T h e r e w a s 1 V A X r o u t i n e c a l l t o A l p h a A X P c o d e .

T h e r e w e r e 2 i m a g e s c o n t a i n i n g A l p h a A X P c o d e :
H E L L O _W O R L D _T V X O . O f r o m B L 3 . 3 V E S T o f M a r 3 0 1 9 9 2 0 9 : 2 7 : 0 2
B A S R T L T V X O . O f r o m B L 3 . 3 V E S T o f M a r 3 0 1 9 9 2 0 9 : 1 4 : 1 0

E x e c u t i o n d e p e n d e d o n
L I B R T L_ T V
M T H R T L _ T V
T I E $ S H A R E
M Q N $ S H A R E
D E C W $ D W T L I B S H R
L B R S H R

t h e s e i m a g e s :
D E C W $ X L I B S H R
D E C W $ T R A N S P O R T C O M M O N
V A X C R T L
M T H R T L
C O N V S H R
S O R T S H R

L I B R T L 2
L I B R T L
D B G S S I S H R

Figure 6 AUDI Emm.pte- Translated Hello World Image

Digital Tee/mica/ journal Vu/. 4 ,,.(,. /t ,\jH!cial Issue !')')2 1 9 1

Alpha AXP Architecture and Systems

Op enVMS system services. There are 2 1 u n i que

CALLx contexts and 7 reused ones. In addit ion, the

example uses four different complex i nstructions.

Summary
The software s imu lators Mannequ i n , ISP, Al i i). ancl

A!JDI great ly a ided Al pha AXP software porting

ami development efforts. Substantia l parts of both

system and application software were s imu la ted

and verified concurrently with hardware develop

ment. When Alpha AXP hardware became avai lable,

most software cou ld be plugged in s imply and ran

exactly as expected. The use of these simulation

tools saved a year or more from the overa l l A lpha

AX!' schedu le .

Acknowledgments

Many people throughou t Digital contributed to the

success of the Alpha AXP s imu la tors. Hom:1yoon

Akh iani , Ray Lanza , Stephan Meier, Steve Morr is,

Andrew Payne, ancl Jon Reeves worked on the ISP

model . George Darcy. Mark Herdeg, Kevin Koch,

Eric Rasm ussen, and Scott Robinson contributed to

the Mannequin si m u lator. The All D effort incluclecl

several groups from across D igita l . Their primary

contribu tors were \Valrer Arbo, Ronald Brender,

Henry Grieb, Mark Herdeg, Michael l ies . .fames

Joh nson. Robert Landau , Maurice Marks. Dennis

1 9 2

Murphy, Scott Robi nson, Larry Woodman, and

James Woold ridge. Final ly, m u c h of the A DI
information i n this article is taken from work origi

na l ly clone by Scott Robinson. Other AliDI contribu

tors inc lude George Darcy, Mark Herdeg, Matthew

Kirk, Naghmeh Mirghafori , and Murar i Sr in ivasan .

References

I . R. Sites, eel . , Alp/Ja Architecture Reference

Manual (Burlington . :VIA: Digita l Press, 1992)

2. C Thacker, D. Conroy, and L Stewart, " The

Alpha Demonstration Unit: A High-performance

Mul t iprocessor fo r Software ami Chip Devel

opment." Digital TechnicaiJounwl, vol . 4, no. 4

(1992, th is issue) 'i l-6'i

:). Open VMS Delta/XDel ta Utility klanual

(Ylayn:ml Digita l Equ ipmen t Corporation,

Order No. A A-PQYPA-TK, 1992)

4. S. Mishra, ''The VAX H800 Microarchitecture,"

Digital Teclm icalJournal, vol . L no. 4 (February

1987): 20-:):)

'i R. Sites, A. Chernoff, M. Kirk, M. Marks, and

S. Robinson . " Bi nary Translat ion," D(!{ital

Tecbniutl.fournal, vol . 4, no. 4 (1992, this issue):

137- 1)2.

v£,1. 4 .\'n. 4 Special Issue JV92 Digital Tech11ical]ou nwl

Peter F. Conklin I

Enrollment Management,
Managing the
AlphaAXP Program

Digital's mult()'ear Alpha AXP program has involved more than two thousand

engineers across many disciplines. Innovative management styles and techniques

were required to deliver this high-quality program on an aggressit'e schedule.

The Alpha AXP Program Office used a four-point methodology for management:

(I) establisb an appropriately large shared vision, (2) delegate completely and

elicit specific commitments; (3) inspect rigorous�)� providing supportive feed

back; (4) acknowledge euery cu:lmnce, learning as the program progresses.

We consciously used each project event to propel progress and gain momentum.

Digital delivered the Alpha AXP program on schedule with industry-leadership

capabilities.

Introduction

The program to develop the Alpha A X P systems

has been the l argest in Digita l 's history and one

of the largest in the computer i ndustry. During

the course of the program, the Alpha JL'(P Pro
gram Office developed a model that provided the
tools necessary to manage the program . At t imes,
t h is paper may seem to imply that the program

team developed the tools and then used them in

a pure form. In practice, the team deve loped these
approaches based on many years of experience and

on the management theories of experts; we a lso
learned and a p r l ied these lessons as we managed

the program.

AI though the posi r ive effects of t imely del ivery

and high qual ity are particu lar ly noticeable resu lts

of such a l arge program , Digita l has al so used the
tools to good effect on smal ler projects. Moreover,
teams within the Alpha AXP program used the tools
recursively, project by project. The author's experi
ence is that this management model is applicable to

projects of nearly any size.
The d iscussion that fol lows briefly defines the

scope of the program and expla ins why tradi t iona l

methods were i nappropriate for managing the
development of such a complex product set in a

short t ime period. The Enro l l ment Management
Model and the concept of cusps-a key element of

the model-are then defined and c larified th rough

Digital Technical]our11al Vol. 4 No. 4 Special Issue 1992

discussion of the model 's evo lution during the
Alpha A.XP Program .

Size of the Alpha AX P Program
Digita l 's Alpha AXP program encompassed the

design of a world-leadership m icroprocessor ch ip,

a new 64-bit system architecture, m ultiple hard

ware systems (from p ersona l compu ters to m ain
frames), m u l t iple operating systems, and hundreds

of software products l ayered on these systems. The

development of the first-generation products

extended over several years and involved more than

two thousand hardware, software, and systems

engineers at its peak. D igital managed the overal l

development program from a Program Office

staffed by eight professionals.
Across Digital worldwide, the Alpha AXP pro

gram development spanned more than 22 software
engineer ing groups ami 10 hardware enginee ring
groups. The hardware effort i ncluded the semicon
ductor design group and groups for each of the
hardware systems platforms. The software efforts
encompassed four operat ing systems groups, and

groups design ing m igrat ion tools, network sys

tems, compilers, databases, integrat ion frame

works, and appl ications . Some groups peaked at

more than 150 development engineers plus sup

porting staff. Many also contracted with suppl iers
both within and outside DigitaL

1 93

Alpha AXP Program Management

Inappropriate Organizational Approaches
I m plementing such a broad , complex program pre

sented not only technological chal lenges b u t a man

agement chal lenge as wel l . The Program Office

the refore considered and re j ected a number of tra

d i t i onal organizational approaches. 1
In the classic organ izational model, a hierarchi

cal , or l ine, organ i zation is formed , conta i n i ng a l l

the primary implementers The problem with t h is

approach to large programs is that it ta kes too long

to form the organ ization . Staffing the rea ms and

establ ishing operational proced u res take longer

than the market win dow and available tecllllo logy

a l low. The resul t is gra nd visions and projects del iv

ered years behind sched ule . Further, " temporary"

organizations must be folded back i n to the main

stream at the end of the program. The management

goa l of the Alpha AXP p rogram was to keep exper

tise concentrated to ach ieve synergy across manv

projects within a part icular discipl ine z
-

An al ternative ap proach is to form sm a l l

ent repren eur i a l teams and chal lenge them t o wo rk

lo ng hours to achieve the goa ls. This works wel l in

sma l l projects suitable fo r " skun k works." The origi

nal design work was condu cted in t h is fash ion.

However, when th is approach is ap pl ied to large

programs, the res u l t is that team members burn o u t

without achieving t h e aggressive schedu les

demanded . Man agement then becomes frustrated

and tries again with diffe rent teams. but the resu lts

are no bet ter.

The Program Office established the Alpha AXP

program as an i n tegra tion o f project teams that

wou ld re main within the existing l ine orga ni za

tions. Thus, for example, each hardware and soft

ware project resided within its fu nction a l group

(semiconductors, servers, OpenV,viS , I JNIX. compil

ers, database, CPU d evelopment, networ ks, etc .) .

The Program Office integrated the work of the indi

v idual project teams, wh ich provided the addi

t ional advantage of program resi l ience i n the face of

fu nctional group reorgan izations.

The Enrollment Management Model

The Enro l l ment Management Model (Figure 1) for

the Alpha AXP program comprises four stages.

Vision-Enrol lment

Com m i t ment- Delegation

Inspection -Support

Acknm.vledgme nt-Learning

1 94

PE RSONAL
PUBLIC

I N S PECTION
SUPPORT

REVIEW
ENCOU RAGEMENT

TRUST
ACCOUNTABILITY
(TAS K-OWNER-DATE)

Figure I Enml!ment Jlllcmagement ;1!/ode/

The model in this form was developed by

the au thor. Some e lements are derived from man

agement semi nars and from consu ltants' recom

mendations. The partic u l a r fo rms used fo r vision.

commi tment, and acknowledgment emerged dur

i ng the Alpha AX!' progra m . The inspect ion

support stage was d e velo ped by the au thor d u r i ng

man y years of project management and reviews.

Two concepts are key to implementing this

model fo r l arge programs. First, the Program Office,

which has a l ready been mentioned, pro\' ides the

necessary cohesion, program vision, and in spec

tion structu res, w h i le a l l owing the s k i l l s and

resources to rem ain within their natu ra l o rgan iza

tions. Moreover, t he office lends consistency ac ross

the program and encou rages each contribut ing

group to hold to i ts commitments. The sma l l Alpha
AXP Program Office, made up of a di verse group of

product and operat ions managers. had no for m a l

au thority (not even budget authori ty); s o it exerted

i nfluence only through rigorous enrol lment and

delegation ou tl ined by t he ma nagement model .

The second key concept is the project "cusp,"

wh ich is a critical event that propels change. Cusps

are fu rther defined in the sections Inspection

Support and Using Project Cusps below.

Vision-Enrollment
The Program Office uses vision to e n ro l l the related

groups in the goals of the program. For exa m pl e ,

the v i s i o n can b e t h e top-leve l busi ness goals and

customer neecls. For subordi nate projects, the

vision can be the objectives of the larger project. I n

a l l cases, the enrol lment happens only w hen the

goals are set i n the context of the aud ience (the

project team). In part icu lar, the Program Office is

most effect ive when it expresses the program's

v'tl/. 1 .\'o. 4 .\j;ecial lssue !')'Jl Digital Tecbuical journal

Enrollment JV!anagem.ent, Managing the Alpha AXP Pmgram

vision in the terms and language of the group being
enrol led . The vision has to be large enough to
encompass a l l the required com mitments and the

u l t im ate resu lts.

Commitment-Delegation
As the manager of a project develops plans, he or
she delegates t he tasks to sub-groups and sol icits
specific comm itments to content and schedule _;
Since these commitments are made within the con

text of the larger vision, the subordi nate commit
ments become qui te strong for sub-project
members. A key e lement of the delegation process
is the expl icit specification of the resu l ts such that

they are measurable and identified with an individ
ual owner. The owner is a single individual empow
ered by the committing group and held
accountable for the del iverable. ' An important

point here is that the term "owner" does not neces
sari ly refer to the person who actua l l y does the

work . The owner is responsible and therefore

accountable for getting the work done on rime. In

our particular program, the Program Office had to

clarify and reinforce this d istinction carefu l ly as
part of the enrollment stage.

Inspection-Support
The project m anager trusts in the commitments

made and continual ly inspects the p roject to ensure

del ivery on schedu le . This inspection strictly takes

the form of supportive feedback, thereby encourag
ing people to disclose risks before they become

problems. Whenever the projected resu l ts are at

risk of fal l ing short of the commitment, the project

manager declares a project "cusp."

The term "cusp'' is adapted here from Gleick to

describe the potential turning points, or critical
events, in a project . > (Other terms in conventional

parlance include "gotchas," setbacks, crises, turning
points, project breakdowns, and "ca l ls to action."

The managers used these terms during the p rogram.
For our ru rposes, we adopt the term cusp as an
emotiona l ly neutral term. I t i s important that at any
point in the project the term used be one that gives
an opening for the possibi l ity of making a difference
and for moving the project forward .) At the point of

a cusp, everyone is ready to embrace change

because it fu rthers the overa l l program objectives.
The management team col Ia borated to take

advantage of cusps to propel project momentum
toward the establ ished goa l . Examples of cusps in

the Alpha AXP program are presented throughout

this paper to demonstrate their integral value in the

Digital Technical jounwl Vul. 4 No. 4 .vJecial lssue 1991

appl ication of the Enrol l ment Management Model
ami t l1e role they played in the creation of the
model itself.

Acknowledgment-Learning
At each step of the project, the Program Office

acknowledges progress both personally and pub-
1 ic ly. For each event, the management team repeat

ed ly asks what was learned and how managers and

the team can do even better next t ime. Teams are

frequently coached to improve their methods for
better resu lts.

Using the Model

I n principle, the Program Office used the E nr o l l
ment Management Model in each component proj

ect. Of course in practice, not a l l groups used this

methodology. Early in the program , only a few

groups signed up. As the Alpha A..'\P Program Office

began organizing the overall program, we started

formal izing the methodology. As noted above, we

learned extensively as events progressed . \Ve found

few useful manuals applicable to running such a

large program effective ly. Instead , the Program

Office deve loped many of the tools "on the job,'
.

learning as the project unfolded .'' This paper exag

gerates a pure model rather than presenting its

incremental development. To balance the picture,
we show some of the pitfa l ls and side paths.

Most project managers followed the Enrol lment

Management Model either by instinct (experience)

or by example. In several instances, they forma l ly
reached outside for training i n running p rojects
of this complexity. Depending on the size of the

project or sub-project, managers used the model
with varying degrees of rigor. For example , the

l arger projects and the program overal l used formal

inspection meeti ngs and reviews. Subordi nate
projects were free to usc formal or i nformal inspec

tion processes. The program ream inspected

each group's inspection processes to ensure that
there would not be any u nfortu nate management
surprises.

Using Project Cusps
As described earl ier, cusps are critical project
events, or crises. Conventional project manage

ment concentrates on rigorous planning to avoid

such crises. The Program Office took the opposite
approach: We strove to understand the critical

events and milestones and used these cusps to
increase project momentum, as Figure 2 i l lu strates.
As the project approached each cusp, the Program

1 9')

Alpha A.XP Program Management

*

BUSINESS AS USUAL

CUSP

Figu-re 2 Cusps as a Way to Change Directions

Office dealt with the event promptly to ensure that

the project continued to move toward the overarch

ing goal. In other words, the managers did not
develop a plan j ust to fol low the plan. Instead, they

developed a plan to u nderstand the overall project

flow and used the m ilestones and other events as

opportun ities to adjust the project velocity to keep

moving toward the goal . 7 In m any cases, we gener

ated a cusp to propel the necessary change (for
example, by creating a scl1edu le crisis) . In other
cases, we took advantage of a cusp to make a neces

sary change.
As the management team became comfortable

with using project cusps constructively, the

Program Office actively sol icited more of them.

These increased the velocity and resulting momen
tum of the program, thereby achieving a "s l ingshot"

effect. The Program Office used each cusp to

acknowledge progress. As the team acknowledged

more and more progress, the program's momentum

moved from very low to break-even, and final ly i nto
high gear.

Vision-Enrollment Stage:
Magnitude of the Program's Vision
The visi on for a program or project becomes the
ult imate goa l or del iverable. Thus, the Alpha AXP

Program Manager's first task was to establ ish a
vision shared by a l l groups that would contribute to
the program . This vision had to be large enough to
encompass al l the work.

Alpha AXP Systems as
Fifth-generation Computing
The Alpha AXP fam i ly is at the confluence of five

major trends in computing.

1 . N ineteen ninety-two is the first year in which

it is feasible to achieve 64-bit computing on a
s ingle microprocessor.

1 96

2. N ineteen ninety-two i s the first year in w h ich

m icroprocessors have achieved over 100 MIPS

(mil l ion instructions per second) of computing.

3. It is now cost-effective to place more than 4 giga
bytes of main memory on a system; hence 32-bi t

addressing i s insufficient.

4 . Network i ng technology now al lows the con

struction of networks with over 100-megabit

throughput.

5. Cost-effective storage systems now exceed

the many-gigabyte range and are approach ing
terabytes.

These comput ing systems wil l include large
amounts of parallel ism as compared with classical

designs. The levels of performance and connec

tivity finally al low comput ing to rea l ize greater

h u m an productiv ity: mobile, highly inte-ractive

computing that suppo-rts group wo-rk with algo

-rithms that intelligently analyze, simulate, and

synthesize in support of a wide variety of human

endeavors. The application of this technology qual

ifies as the fifth generation of computing 8 9
The program vis ion for Alpha AXP systems, as

shown in Figure 3, is to be the first fam ily of systems
to implement the technology and appl ications for

the fifth generation of comput ing. This fam ily is

fully compatible across a l l members now and wi l l

be i n to future generations, ensuring that appl ica
t ion binaqr programs wil l ru n unchanged . With no

comprom ise to future performance, the i nit ia l fam

i ly members also maintain a h igh degree of com
patib i l ity with current systems to a l low easy

m igrat ion for customers as they begin to require

this technology. Delivering a fam ily of h igh-qual i ty

systems in a t imely fashion reestablishes D igital 's

reputation for technology and systems leadership.

UJ
(.)
z
<x:
:2
a:
0 lL
a: UJ a_

• 64-BIT MEMORY
• TERABYTES STORAGE

1 992
TIME

SAME ARCH ITECTURE.
COMPATIBLE SYSTEMS

Figu-re 3 Alpba AXP Vision

Vol. 4 No. 4 Special Issue 1992 D igital Technical journal

Enrollment 1\tlanagement, Managing the Alpha AXP Program

Getting Started

The Alpha AXP program grew out of research
on computing, specifica l ly the technology and
benefits of different RJSC (reduced i nstruction set
computing) arch i tectures, and from advanced
development in compiler designs, VLSI (very large
scale i n tegration) design , and semiconductor fab
rication. In 1988, D igital 's Execu tive Committee
chal lenged Engineer ing to develop a system that

would meet the customers· needs for competi tive
performance in a l l of D igital's comput ing envi
ronments. Engineering formed a cross-discipl inary

task force that developed the requ isite systems
architecture and designs and produced the above
vision and hence the Alpha AXP program. Digital 's
Executive Com m ittee approved the Alpha A)CP pro
gram in October 1989. 10

First Cusp: Executive Challenge
to Accelerate Schedule

By the end of 1989, Digital had completed the
advanced developments and s igned off on the archi
tecture and primary design documents. In a m ajor
review dur ing January 1990, upper management
chal lenged the program to improve the schedu les
to capture the market window for this new tech
nology. The project managers understood the
rationa le for this demand but could see no way to
meet the aggressive schedule . The result was a loss
of rapport bet ween management and the technical
staff, with comments such as " Don' t ta lk to me
about crazy schedules" and "This is just goi ng to be
a lot of hard work.''

The Program Office v iewed this cusp as an
opportunity rather than the crisis that it appeared
to be. The office enro l led key project managers in
the overa l l vision, i . e . , in the business value of a
t imely execution. For some projects, it was su ffi
cient to focus o n the classic " t i me-to-market."
However, for many, the ship date proved an insu ffi
cient mot ivator. Therefore the Program Office
framed the vision d ifferently, as fol lows. A program
becomes profitable when it reaches break-even
(i .e . , cumulative revenues meet and then exceed
cumulative expenses).

The time taken to achieve this point is known as
the "t ime-to-profit ." 1 1 The Program Office estimated
that the program's schedu le would affect D ig i tal 's
revenue at the rate of S 1 mi l l ion per hour. That is,
for each hour that the project cou ld improve
(lower) the t ime-to-profit, D igital wou ld achieve an
add it ional $ 1 m i l l ion of revenue. The Program

Digital Tee/mica/ journal Vol. 4 No. 4 Special ISS/II! I'J91

Office pointed out to the project managers that th is
revenue could t ranslate to approximately $0.01 on
the stock price for each hour of sched u le improve
ment. With this concrete business metric i n mind,
the key project managers were wil l i ng to consider
new ways to tackle the program's chal lenge.

Once the Alpha AXP program was approved, the
Program Office began holding Alpha AXP quarterly
review meetings. At these forums, groups reported
plans and progress to a wide, cross-discipl inary
aud ience. In it ia l l y, the aud ience was composed of
engineering, manufacturing, and service groups. As
the program gained momentum, other d iscipl ines
such as marketing and sales jo ined and began to
report on their own progress. These forums helped
generate bel ief and sol id ify enrol lment. They also
helped the Program Office identify problem areas
before they became crises.

First Cusp Result

We establ ished a program-wide u nderstanding of
the importance of vol ume deliveries in 1992.

Commitment-Delegation Stage:
Delegating and Eliciting Commitment

With the key project managers sharing a common
vision , the next step was to establish a work plan
and to ensure that each group committed to del iver
on its parts.

It had been 15 years since D igital attempted to
change simu ltaneously its architecture, hardware,
operating systems, compilers, and other layered
products. Since the introduction of the V�'< systems
in the fa l l of 1977, each component had progressed
relat ively i ndependent of the development sched
u les of the others. Fewer than ha lf a dozen project
team members had part icipated in the VAX design .
For most participants, the system had a lways been

in existence, and hence the developer of each sub
system could i nvoke and depend on the existence
of a l l the other subsystems.

The need for the simultaneous development of
m u lt iple hardware and software systems compl i
cated the coord ination task. The Program Office
addressed this complex coord i nat ion i n two dimen
s ions: technical and project management. In the
technical d imension, the office formed a team of
technical leaders from the core engineering groups,
known as the EJST, shown in Figure 4. (EJST is an
acronym for EVAX Joi n t Systems Team. EVAX was an
early name for the Alpha AXP program . An earlier
forum, the EVAX Technical Team, merged into the

1 97

Alpha AXP Program Management

AS BOD 1 - ,

I I
I I
I I
I I
I I
._ - _I

ASPM I" - - -

PROJECT
MANAG ERS

I
I
I

_ _ _j

I" - - - - - - EJST
I I

TECHN ICAL I I DIRECTORS I I
_ _ _ _ _ _ _ _j

ALPHA PROGRAM
OFFICE

Figure 4 The Alpha AXP Virtual Organization

E.JST' process over t ime.) This group met weekly to
set d irect ions for i mportant cross-group techn ical
design and strategy issues. Since the group's charter
was to resolve problems and ensure that solut ions
"stuck," the EJST became a group to which others
brought technical problems for resolut ion.

I n the project management dimension, the pro
gram manager formed a team of project m anagers.
Members of this team were empowered by their
contributing engineering development groups to
make commitments and to be accountable for
del iverables. This team was known as the ASPM

(Alpha AXP System Project Managers} Given the
magnitude of the overal l task and the complexity of
fu l ly understanding the in terdependencies, the
project managers tended to view the project as
impossibly complex . At the program level , the chal
lenge then became to establish the Alpha AX!' mas
ter plan. A master plan , however, evolved much
more slowly than expected.

Second Cu�p: Can not Choose
the Order of the Work

Management's inabi l ity to provide an overa l l
plan induced a crisis o f disbel ief The project
managers threatened to revolt (or move to other
projects). The technical leaders were generating
ever- larger design documents. The engineering
development group managers declared that the
Program Office had a crisis on its hands: We had to

l 9H

establ ish a program-wide work plan that showed
the order in which each sub-project must del iver its
contribution.

How does one coordi nate without a plan' The
Alpha A X P program manager kept asking the i nd i
vidual groups for their plans. What do you depend
on' How long will i t take' What resources do you
need? \Xlhat are your mi lestones or metrics of
progress' The repeated answer was "I don't know
because I don't know what everyone else is doing
and when they will be done with their p iece." At
this t ime, we had a l ready establ ished the cross
functional ASPM team of experienced project man
agers representing most of the development
groups. This team was u nable to develop the com
ponent plans because they lacked a master plan.

Choosing the Strategy
The engineering development group managers
met in a fu l l -day meet ing to establi sh the over
a l l parameters of the Alpha A X P program's plan .
F irst, they establ ished the business goals and exam
ined the various technical constraints. The group
tested the inclusion of each component with
the question " Is this component critical to the over
a l l business success of the Alpha AXP program? "
This process establ ished sol id reasons for the
contents of the master plan and kept the respon
sibi l ity for the inclusion or exclusion of a compo
nent with the responsible development group. The

\'r;/. 4 No. 4 .�jJccial lssue I 'J'Jl Digital Tecbuicaljournal

Enrollment Management, Managing the Alpha AXP Program

group then determined the organizat ional i m pl i
cations of such a work plan . Members of the group
balanced the d imensions of business, technology,
and organization to establish the priorit ies and
work order. We i nstitutional ized this group i nto the
Alpha AXP System Board of Directors (ASBOD).

Representing the Plan

With the major program priorit ies and constraints
establ ished, the Alpha AXP program manager then
set off to establ ish the master plan. For al l groups to
see their contributions, he held the master plan to a
single page. He establ ished the content during an
in tense period in which he asked contri bu tors to
describe their assumptions and tasks and to show
where on the overa l l plan their pieces would fa l l .
The single-page format forced the management
team to keep the pl an to a high-level view ancl
al lowed contributors to see their pieces without
adding the complexity of their own group's detai ls .
Further, in review meetings i t was easy for everyone
in the room to view the same picture so that the
resu lts could be seen, debated, and agreed upon.

Once the management team had outl ined the
plan, i t was recommended by the project managers
(ASPM) and approved by the engi neering develop
ment group managers (ASROD). Thus te<Jm mem
bers knew their goa ls wou ld not change without
c learly stared reasons. Further, others could starr
bui ld ing their plans based on a consistent set of
assumptions. The resu lting single page also became
a reference, which we cal. led the "straw horse," to
establish ami reinforce constancy of purpose.
Figure 5 is an example of the Straw Horse Plan . (We
later urgraded the name to be the " t i n horse" to
connote the i ncreasi ng degree of sol id i ty of the
underlying plans and com mitments.)

Second Cusp Result

We agreed on the overal l single-page plan upon
which teams could bui ld their own plans.

Enrollment and Delegation:
Value of Each Contribution

With the master plan out l ined (the straw horse
reviewed and arproved), the next step was to
obtain the commitment of each contribut i ng
group. To alldress continuing skepticism about the
necessity of each component and its sched u le , the
program manager walked each group through the
overall program and the economic value of its
urgency. The group was then asked to contribute to

Digital Tecbuical journal Vu/. 4 No. 4 Special Issue /91)2

the overa l l system's value . A key rrerequisite to this
conversation was to establ ish a fu ll- t ime project
manager for each component grou[) , who became
the coord ination point and who was held accou n t
able for each deliverable.

Decide What to Do before How to Do It

The Program Office found that each group went
through a d isbelief process s imi lar to the one seen
earl ier for the program . The program manager
u rged each grour to first focus on the ' 'what" of
their del iverable, before trying to decide the "how."
The program manager ensured that the group
grounded its overall estimates in rea l ity. For exam
ple , a software group m ight count the number of
modu les to port and estimate the rerson-days per
module . This kind of h igh-level , quantifiable esti
mate a l lowed the project manager to make an over
a l l estimate without need i ng to understand the
order of the specific tasks.

Third Cusp: Need for Project
Management Expertise

Members of several of the larger p rojects deter
mined that they d id not have sufficient project man
agement experience. Previously, this real ization
wou ld have resul ted in replanning to move out
the target schedule , perhaps repeated ly. Instead,
given the group's commitment to the larger resu lt,
we fou nd a much more aggressive behav ior. For
example, the OpenVMS AXP group publ icly com
mitted to their target schedu le and stated , ··we
don ' t know how to achieve th is, but we commit to
find ing a way." The next day they went ro a project
m anagement consultant for tra i ning on hmv to
bui ld an aggressive, atta inable schedule . This con
sul tant conducted the seminar many r imes through
out the project for various groups. 12

Third Cusp Result

Groups introduced education and rigor i nto project
management.

Inspection-Support Stage:
Inspection with Supportive Feedback

One of our vice presidents in the early 1980s had a n
aphorism: You get what you inspect. not what you
expect. In other words, a common fai li ng is that
managers obta in someone 's promise and expect
that the resu Its w i l l be what they expected.
Unfortunately, despite everyone's best intentions,
circumstances and unexpected requests can easily

1 99

Alpha AXP Program Management

s age 1 : -;'ec. · .led_ Deve�op:·:en· :oys � ··-
;. :g ::. � 0

:'ort l an & c ,Jerfonn nr:< . �"y .; r �>m ; S .n .le J::ard;·!ctre ?lat .ore

Eng] i1<h only

Foru:un . C , Bl iss , Ao.s0.mblct· , Debuq , L i c:cose M9mt Faci ! i " y ,

Ci1SE �oo l s (TPu , COOF· MLHnt Syste.� . . Modt-1 0 �uml Sys t�· ,

Per o·lr.ance Code M.iJa lyzc t , L.-J ·Jguac::e. Ser.sir iv•- Editot ,

Vigita Tes:: :·1gr) , Compn-.�1!c Document '\rcr� · "" ect:t.!"e ,

!.WCne Phase r r ask o • ·- �· < , OF"C.-��nc:o\·:,; c · .,..,': via !..;';
Sot···-:et·ge

S�age 2 : Commercial :Jevelopmen Sy: tern
Second h · rdware pla ft•J1T' ;

In e rnu c ional vers ions lol lo•.-1 3 monrh>-) ,1 e1

COBOC., , P.'-. G-.!.. , C+ + , AD.'\ , CDD :l.epcs _ t:w; , !-Ji, ,
Lhre>ads-rt::. , R?C , GKS , 'hiCS , !'orrs :-:qrrt S·;.·r�:r . QECfon�::o ,
F ' !t= Cache , r.z..Jxset . D� :..: _ :c-� V-!"S (t:. �· . � .0 , �: =.c . q�e�in) ,
?emoL� S'/S� em �·�ar�aqc.r , ;-\L· i! _ ba:r .,., , CDA i:e ,
DECr:et IV end node GE;..;� a : to DEC'f nco·.�.- .
TCP / 1 r . p;.,TH\·.'ORKS , Li,Tm ster, i<.BS. •'.X' 'ls . om;

Stage 3 : Technical ?obusl Syst<·rJ
Open Sys• em ; Symrnet rir Nu l t ... - t'rocess ' nq

Lb.c ,
;:)' '·:S ,
X . 2 �

l--u .&. , JSer- '.•tr ·
:=-.Ci·�. , !J: • .:..s O!:" eq : .• :.�aler: .. , : :::. • ,,:.._. .J�Cnet '.J er:d r:ocie ,
c e.=;s , .:..LL-IP.-1 � 1.�. �·:/ :,�opor::L.lQ

sc,,ge (: Co:T�lle!t Clal RODt.iSL Syc· • '1'1
."'-1 ha Cl us te-rs ; I cernc�L i<•· al vers .on.; t E e.�sed
,: imrt l t aneously

;:e.-: &I c:1 Pr:n� , al : Sy .• ..,� int egrated . rOO:cJCt .; ,

'JECr.et. V !'ot..:: _ng �ode , ;,;· .; ac�ess

S�age 5 : T CJ'1. act on Sys te:•.

Tra nsi:lct i on r,:onitor . E'>cPC t!'1rcads

Figure 5 Tbe Single-page Plan: All E.xtmct ji·om the Straw Horse Plan

d ivert the promiser away from ful fi l l ing the
promise. Thus, managers Jearn to inspect regu l a rly
the progress of groups on whose commitments
they depend .

program and shared our sense of schedule u rgency.
Sudden ly, we were shocked by a memo stating
that a critical project's schedule had sl ipped sev
eral months. Since virtua l ly every other project
depended upon it, this schedule sl ip could easi ly
have led ro a program disaster. Instead, we used the
event to i nstitute a regu lar operational inspect ion .
Often, instituting such regu lar reviews is d ifficult
and genera l ly resisted by the reviewees. In this
case, every group could see the danger of continu
ing without regular inspections and readi ly agreed
to this new process.

The model, therefore, incorporates this tradi
tional, essential project m anagement practice. Its
inclusion was prompted by another project crisis,
described below.

Fourth Cusp: Project Slips Motivate
Formal Operational Inspection

The Program Office knew that i t was working with
h ighly motivated reams. On the basis of the earlier
planning work, we assumed that they were a l l
t ightly focused on t h e objectives o f the Alpha A XI'

200

The Program Office adopted the term " inspec
t ion," rather than " review," because we have found
this term to be neutral or positive. In the past.

Vol. 4 ,\u. -i .\jl�cirrl lssue !')').! D(�ital Tecbnica/ journal

Enrollment Management, }J!fanaging the Alpha AXP Program

reviews had been imposed by l ine management ami
tended to encourage the reviewees to cover up
issues unt i l i t was too late to recover. In contrast,
the program manager, operating u nder the Program
Office model. had no l i ne authori ty and set up the
monthly operational i nspections i n an open and
supportive environment. The presenters were the
designated project managers from each develop
ment group. The Program Office encouraged a l l
presenters to bring i n t heir risks and problems
before i t was too late to address them effectively.

We used the single-page format again , as shown i n
F igure 6 . Note that the simple, visual h istory of a l l

milestones i s at the top, s o o n e c a n readi ly see any
repetitive slips. The emphasis is on crit ical path
events completed last month and those coming up
next month. A t the bottom are l isted those issues
that have been resolved and issues being opened ,
with clearly indicated ownership and due elates.

Operational Excellence

To ensure t hat every project implemented the
strategies, the Program Office establ ished the prin
ciple of operat ional excellence across the AJ p ha

AXP program. The office consistent ly recognized
teams that accomplished their resu I ts on time and

PROUE T :

D!\�P. :

SCHEDULE :
04 : g_

ALPHA/VMS
n.prL 8 , 1992

Ql 1992 Q2 992 3 1 9 92 Q4 1 992

Oct Nov De' Jan Feb r·lar J Apr :-�c.y Jun J Ju L i'.ug Sep i Oct Nov Dec
r - r -- - r - - - r - - - r - - - r - - - 1 - -- --- r - r - - - 1 --- ! --- r - - - r - - - r - - -
s 4 5 I E

8 4 5 6 I E

B 4 5 6 I E S
B

B

4
lj

l�i lestones

6 I
6 l

u
u

E
E

s
s

8 Base Leve� 38 (Ed ' or , debugger , TIE , base DEC. �t l
4 BasE: Leve_ 4 ()'tore DECnel , ut il i t ies , and IJII cLent sl
5 Base Leve: 5 (8 4 s• 1pport , TFf, performance)

6 Base Levc: 6 (Perfonrcnce & Tapes)
I Interr:.al fiel . test & Pi lot Port ing !,c::. iv� t y - F'I'l
;: Internal Lel test u;;x'late - FT2
F. E:< emal field test Early Suppo!'t ProgrilJl', F1'3
S Vl . O suhmi :o SSB

CRITICAL PATH EVENTS PAST �iONTH :

I Sep 9 1

I Nov 91
! Jan 9?
llolar �2
! Apr 92

OONE
OONE
OONE
!XlNE

Shi pped 3L6 on March 12 - stable on A!X} , Ruby , Cobra , Fla.ra� :1go
Sh . pped BL6 .:l,'lC pm Lnq LoolLt
A hiev 1 FTl (PPA I code freeze

Rece ived ?. flamingo systems in Varese , ltaly , tor ros-x development

l·J� th SPE (CSSE) , del i vered viOl ldw '"de field est support tra ining
F'I'l stctbi l ization cont. nu i r.g

ACTIVITIES AUJNG THE CRI'l'ICAL PATH (NEXT MQ}ITHJ :

Sh�p FTl ; revised ta� eL is Apr 10
Ship FTl ANC por:;; ing tool k it
Comp lete PPA Read�nes Revieo."
Begin FT2 stabi l i za t ion

ISSUES ! DEPEN ENCIES RESOLVED :

Lamin o SF:l g1 aplucs suppo1 l tor111rllly accelerated J nto ,,.. . 0

ISSUES ! 9EPE.."l0EJ>JCIES :-JOT RESOLVED :
GE!·� BL24 comp: lers needed f01 ESP inLegra t i on : o . :, . . May .5
Rol:ouL support stat ing is not �n anyone ' s plar: : J . S . , May)9

Figure 6 The Single-Page Review

D igital Techuical jounwl Vol 4 No. 4 Special Issue 1<)92 201

Alpha AXP Program Management

pred ictably. We also usec.J the monthly program
wide inspections to maintain a publ ished record of
progress. Thus, each project was encouraged to
excel operationally and to Jearn from the experi
ences and presentations of the others.

Fourth Cusp Result

The Program Office establ ished monthly inspec
tions using a consistent s ingle-page document to
record pertinent information.

Acknowledgment-Learning Stage:
Building Momentum

Developi ng the vision and plan resul ted in a gen
era l sense of euphoria. Short ly afterwards, the rea l
ity of the work ahead descended l ike a cloud
of despair. At this point, the primary chal lenge
was to start bui ld ing momentum in the program .
I n the Enrol lment Management M()(le l , bui l.d ing
momentum-the acknowledgment-learning stage
is tight ly i ntertwined with the i nspection stage;
char is, events reported d u ri ng inspections were
usecl to bui ld momentu m . The Program Office rein
forced the vision and used momentum bu ilding to
m in imize the t ime period d ur ing which the ream

felt despair about rhe \VOrk ahead.

Fifth Cusp: De:,jJair

Since the overa l l program had such a formidable
goa l , many of the contributing reams became
stal led with the m agnitude of the task ahead of
them. This mani fested itself in the form of com
ments about the large amount of work, the resu lt
ing potential for sched ule clel ays, and a fear of
overtime demands. This syndrome is com mon in
any large project, especial ly when comm itments
are made that involve raking large risks. The
approach the program team took was to start recog
n izing each element of progress. As we d istributed
announcements of p rogress widely (using Digi ta l 's
worldwide electronic mai l network), we began to
build momentu m around the Alpha A X !' program .
Other groups p icked up on this momentum and
contributed to it t hemselves. 'T'his effect cascaded
throughou t the ent ire program - more groups per
ceived their tasks ahead as achievable; rapid ly each
group wanted irs own progress acknowledged; and
momentum increased .

The Program Office t<nmd that the members of
a project apprec iate'! ami were mot ivated by the
simple " thank yo u " represented by the pub! ic

202

acknowledgment of their work . This contrasts with
the conventional management wisdom that it is
necessary to give frequent monetary rewards to
motivate people. Although everyone appreciates
the fi nancial rewards, the biggest motivator is the
professional recognit ion that the contributor did a

good and necessary job'
The second benefit of the acknmvledgment was

its effect in creating a sense of momentum through
out a l l the project teams. Repeated ly, peer man
agers wou ld comment that the Alpha AXP team was
making significant progress. This in turn gave us a
sense of accompl. ishment as wel l . So t he p rogram
real i zed a double benefit from the original acknmvl
edgment and a further s l ingshot effect with recog
nit ion coming back to the Program Office.

Fifth Cusp Result

Program-wide, managers establ ished the norm of
frequent acknowledgment of progress.

As the Alpha A X P program m acle further prog
ress, the Program Office actively sol icited third
party and customer involvement. This i nvolvement
provided good feedback on progress and had the
effect of reint<>rcing the fact that the program was

on track to meet customer needs. ln some cases, the
project teams al tered the Alpha AX P plans ro better
help ou r customers aclclress thei r business needs.
This further contributed to the cred ibi l iq· and
momentum of the p rogram as well as the sense of
accompl ishment.

Sixth Cu�jJ: Broken Dependencies
and Replanning

Like any p roject, not every assumption and depen
dency proves to be correct or tota l ly accurate. At
one point , one of the major Alpha A X P hardware
systems sl ipped its schedule for del ivery of p roto
types to software. After consideri ng a number of
a l ternatives, the operating system group proposed
an a lternate plan using a d ifferent hardware system
and a changed order of events. They said in their
management presentation at the t ime, "The ques
t ion is not one of blame. Instead our goal is to p re
serve the u l t imate schedule goal of tbe program ,
specifica l ly its volu me ava i labi l i ty date ."

Sixth Cusp Result

Program -wide, te<�m members establ ished the prin
ciple of focusing on the desired state of t i me-to
profit rather than on blaming others for fai lures.

\ i'>l. ·i No. ·1 .\jii!Ciul ls.wl! I'J'J2 Digital Technical journal

Enrollment Management, Managing the Alpha AXP Program

At another point , one group was at r isk because i t
needed a crit ical skil l for a week. A (his torical l y)

competing hardware group responded by asking
what sort of resource, and then freely suppl ied the
resource despite its own very tight schedule . In the

past, these groups wou ld compete for the same
resource without col l aborating for the common
good.

Seventh Cusp: Incomplete Assumptions
and the Need for the Performance Team
Less than ha l f way through the Alpha A X P program ,

the program team rea l ized that some projects'
assumptions were incomplete. R ISC systems are

notorious for requiring careful design and tuning to
meet aggressive performance goa ls . Evidence from

a related program at Digital suggested that some

of our system performance homework was weak.
The Program Office quiet ly asked the approp riate
teams to assign some resources to measure key

components and subsystems of the design. This
confi rmed the program team 's concerns that the

current plans were incomplete. Quickly, we pul led

together a cross-d iscipl inary task force to analyze

the information rigorously and to make recommen
dations . These analyses resul ted in changes i n the

arch itecture, the ch ip design, the systems designs,
and the software. The changes have proved to

i ncrease performance substantia l ly.

Seventh Cusp Result
The program establ ished a performance team to

change the design and plans as needed.

Eighth Cusp: Prototype Allocation Process
As manufactu ring started to del iver prototypes, the
Program Office found that the early manufactur i ng

bui ld rate was lower than planned. This \Vas the

resu l t of normal start-up problems. At the same
t ime, i n it ia l demand had increased substan t ia l ly.
Neverthe less, the project administrators continued
to ship the systems to engi neering and applications
groups in the original order. If this had continued,
dependent software wou ld have been del ivered

progressively later because of i nadequate testing

cycles. Our i mpact analysis indicated that the Alpha

AXP vol u me ava i labi l i ty wou ld slip by three
monrhs.

The review ream h ighl ighted this problem in a n

early program read i ness review. Trad i t ional ly,
Digital uses read iness reviews to establ ish manufac-

Digital Tecbn ical journal Vol. 4 No. 4 .\jJecial lssue 1')92

turing's readi ness to bu i ld systems. The Alpha AXP

Program Office broadened this process and asked
for a program -wide readiness rev iew to identify

the "showstopper" risks. As a resu lt , the Program
Office central ized the al location process so that we
cou ld mai nta in the p rototype a l locations i n real

time. The result was to reestabl ish su fficient soft

ware test t ime and maint ain momentum with m ini

mal p rogram i mpact.

Eighth Cusp Result
The program teams decided that prototypes would
be delivered based on program priorit ies, not solely

on exist ing plans.

Ninth Cusp: Need for Quality Metrics
Each group i n the Alpha A..'\P program adopted very
h igh standards for the qua l ity of its work. The man

age ment team repeated ly found re inforcement

of Phil Crosby's d ictu m : "Qua l i ty is free." 1.1 Resu lts

in group after group showed that early and con
t i nuous attent ion to qua l i ty resulted in held or

improved schedu les.

However, the program team noticed that we

were not i nspecti ng and measu ring progress in

qual ity at the total systems l evel ; customers care
about only the qual ity of the total resu lt . As the

projects started integrat ing into a total system , the
Program Office establ ished an i ndependent group

to measure overa l l qual i ty levels. The classic retc
tion to such independently derived qual i ty metrics

is that they are meaningless. Instead, since the

program establ ished the metrics at the moment

when everyone saw the n eed , the reaction has
been to focus on the total system's qua l i ty without
droppi ng attention on the ind ividua l component
metrics.

Ninth Cusp Result
The program formal ized system-wide qual ity
metrics.

Results and Lessons Learned
Digital met exactly the program's overa l l schedu le

to the m onth (i .e . , date for high-vol u me shi pments),

despi te numerous setbacks along the vvay. The

Alpha AXP system is meeting the origi na l per
formance goa ls, and qua l ity is excel lent . Digital 's
Board of Directors bas approved the fu l l Alpha AXP

program business plan and the investments neces
sary to capita l ize on the Alpha A..-'<1' fam i ly's early

203

Alpha AXP Program Management

successes. In it ial reactions from customers have
been favorable . Third parties have com mit ted

Alpha AXP support for their products in record
numbers.

What Worked Well
The Program Office in conjunction with the

Enro l lment Management Model has worked wel l . If

the management team h ad fol lowed trad itional

approaches, we wou ld stil l be getting organized.
Using the m odel, each group has been able to bring

its fu l l capabi l ities to bear as problems have ar isen .

The project teams have accepted the introduction
of mult iple leve ls of inspection , ancl other programs

within D igital are copying this aspect of the modeL
Further, the notion of using project cusps creatively

has been an effective tool tO build momentum .

Final ly., a common schedule and inspecti o n d isci

p l ine a l lowed the schedule to become an opportu

n ity to reinforce a shared vision. Th is posit ive view

contrasts with the conventional interpretation of

a schedule as a burden.
As a resu lt, most groups met very aggressive goa ls

on sched ule. Several groups accelerated their clel iv-

ALPHA / VM SCH EDULE RE ' ULTS

M I LLoi'ONE

hase 0 c l os re
Alpha VMS minima l login
B L 1 s n i p - min ima l l og i n
BL2 ' hip - RTLs , w (1) & :.AT
BL3A s h i r - : SAM , l i n k e. r
BL3B shi - pro d e e l & T I E (2) ,
8 L4 s h i p

erables despite having the most complex tasks. For

example, the OpenYMS AXP system group not only
met i ts origina l schedule but also accelerated num
erous deliverables into earlier base levels or releases.

Figure 7 shows the OpenYMS schedule and actual

elates of ava i labi l ity; footnotes indicate functional
accelerations. The networks group clel iverecl DECnet

on the AXP system an entire base level early. The
database systems group accelerated i ts schedule by
several months and demonstrated p roducts four

months early a t D igita l 's DECWORLD '92 trade show.

Clearly one of the major lessons was to establish

a constancy of purpose and hold to it while cont in

ually learning and updating the detailed plans. The

si ngJe-page representat ion of the goals and master
plan is a key element in maintaining this constancy.

What We Would Do Differently
Looking back, we wou ld have approached the
program differently in two areas. F irst, project

teams would have benefited from broader early

education on project methodology. Several projects
had significant sl ips, causing undue hardship on
other groups. The Program Office should have

ORIGINAL ACTUAL

Aug 3 0 , 1 9 9 0 A u 3 0
Jun 1 7 ' 1 9 9 1 M r 2 0

Jcl 1 5 , 1 9 9 1 Ma y - l
Aug 2 6 , 1 9 9 1 Jul 1 2

P i a Aug 2 3
DEC ee l)) O c c 7 ' 1 9 () 1 Ct: 1 0

N o v 1 8 , 1 9 9 1 Nov 1 5
BLS s h ip - funct ionu. l l y c omp l e t e { 4) Dec 30 , 1 9 9 1 Jan 1 0
B L 6 s h i p - Ru y compler e (5) Feb 2 1 ' 1 9 9 2 Mar

F T l / P PA Ap r .3 , 1 9 92 Apr
P h a s e l May 1 9 9 2 fvlay
FT2 / P PA n / a 1 9 9 2 M y
F T 3 / E SD (6) Jul 2 , 1 9 92 Ju 1
FT4 / F'.SP n / a l 9 'l 2 Aug
v- . 0 SSB s u bm1 s:s i on (LRS) ') c- t 2 , 1 9 '? 2 O c t

Notes :

(:) D E C · . .,r i n m.• s
(2) T r a n s l a t ed I mage Env,;, ronmenc (i U - fat: ' r a s a ed .im es)
(3 1 ECne a c c e l e r a:_c d f r om BL4 t o BL3B

.. o
2 0
2 2

8
1 4
2 6

(4) F !. 1 graph i c s su p o r- a c c e l e ra t ed [rom next ve r s io n to V1 . 0
(5) pporL for J t : p - e hardwar� l t fo rms . c ce l� ta t• d f r om next

ve rs i on t o Vl . O
1 6 1 FDDI suppo rt a c�E e r ated f r om n e x t ve rs1on & VL . O

Figure 7 Original Open VMS i'vlilestone and Delivery Dates

204 Vol. 4 No. 4 :,pecial lssue 1991 D igital Teclmicaljournal

Enrollment Management, Managing the Alpha AXP Program

i ntroduced Ron LaFleur's project methodology
sooner and pervas ively. Instead , we waited unt i l

each group saw the need and then tr ied to intro
duce i t . For groups such as the OpenVMS AXP

system group, the methodology was in troduced

early. However, other groups needed (and sti l l
need) this discipl ine.

Second , the office wou ld have conducted more

pervasive project inspecti o ns. Several groups were
very late in producing schedu les and plans that the

Program Office could understand. The office was

unable to obta in their cooperation to hold deta i led
and frequent inspections. Eventu a l ly, the Program

Office was invited to set up and participate i n

appropriate inspections o f schedule , process, etc.
However, we should have insisted on these much

sooner.

Summary

The Alpha AXP program is the most complex pro
gram in Digita l 's history and has been del ivered on

schedule with h igh quality. The Alpha A X P Program
Office used a rigorous management methodology

to bui ld the program-level teamwork necessary to

accompl ish this breakthrough . The office proved

the effectiveness of the Enrol lment Management

Model: vis ion-enrol lment, commitment-delega

tion, inspection-support, and acknowledgment
learning. Integral to this model and empowering to

the team is to take each cusp head-on and to use

them to increase momentum. The management

team has been learning as the program progressed

and has identified areas needing strengthening for

future programs.

Acknawledgments

The author thanks the fo l lowing senior managers

for demonstrating the importance of good manage
ment: Gordon Bel l for architecture and a clear strat

egy; Ken Olsen for demanding s imple, single-page
plans; .Jeff Kalb for operational excel lence; David

Stone for the model of focusing on the desired

state; Bob Supnik for the paradigm of the Program

Office.
The author also thanks key members of the Alpha

AX P Program Office for their contributions in man
aging the program and developing the Enro l lment

Management Methodology : AJ Avery for systems
integration and significant help preparing this

paper; Scott Gordon for competitive benchmark

i ng; E l len Salisbury for planning; and Ken Schultz
for operations and inspection.

D-igital Technical jow·nal Vol. 4 No. 4 Special Issue 1992

References and Note

1 . R . Waterman, T. Peters, and J Phil l ips, "Struc
ture is Not Organization," Business Horizons.

no. 80302 (.June 1980).

2. C. Savage, Fifth Generation Management

(Bur l i ngton, MA: Digital Press, 1990).

} W Oncken and D. Wass, ·' Management Time:

Who's got the monkey," Haruard Business

Review, vol . 18, no. 6 (November 1974): 7'5-79.

4. M . McMaster ancl J. Grinder, PREOSION:

A New AjJproach to Communication (Bonny
Doon, CA: Precision Moclels, 1980).

5.). Gleick, CHAOS: Making a New Science

(New York: Penguin Books, 1987).

6. P Senge, Tbe Fifth Discipline: The Art and

Practice of the Learning Organization (New
York : Doubleday, 1990) .

7. A. Sche rr, "Managing for Breakthroughs in

Productivity;· Human Resource ,uanage
ment, vo l . 28, no. 3 (Fa l l 1989): 403-424

8. L. Tesler, "Networked Computing in the

1990s:· Scientific American (September

1991) 86-93.

9. The five generations of computing are as fol

lows: 1950s, standa lone; 1 960s, batch; 1970s,
timesharing; 1980s, personal: 1990s, mobile

distributed.

10 . R. Comerford , "How DEC Developed Alpha,"

IEEE Spectntm (. July 1992): 26-31 .

1 1 . C . House ami R . Price, "The Return Map:

Tracking Product Teams," Haruard Business

Reuiew, vol . 69, no. 1 (January 1991) : 92-100.

12 . R. LaFleur, "A Seminar in Project Manage

ment'' (Scituate, ,\1A : Project Management

Assistance Co. , 1990).

13. P Crosby, Quali(v ls Free: The Art of Making

Quality Certain (New York McGraw-Hi l. l ,

1979).

General References

F. Brooks, Tbe Mythical 1l1C11z -month: Essay s on

Software Engineering (Read ing. .viA: Addison

Wesley, 1975) .

R . Neustadt and E . May, Thinking In Time: Tbe uses

of history for decision makers (New York: Tbe
Free Press, 1986).

205

I Further Readings

Tbe D igital Technica l _lournal
publishes papers that explore

tbe technological foundations

ofDigital's majorproducts. Each

.Journal j(>cuses Oil at least one

product area and presents a
compilation of papers written

by the engineers u:ho deueloped

the product. The content for
the Journal is selected by the

journal Aduisoty Board.

Digital engineers ll 'bo would

like to contribute o paper

to the Journal should contact

the editor at RDVAX:.RLAKE.

Topics covered i n previous issues of the

D(({ital Technicaljounwl are as fol lows:

NV AX-microprocessor VAX Systems
Vol. 4. No. 3 , Summer 191)2, EY-.1884E-Dl'

Semiconductor Technologies
v(>f. 4, No 2, .Sj>ring 1992. EY-L521 E-DP

PATHWORKS: PC Integration Software
lir>l. 4, No. I, Winter 1992, EY-J825E-Dl'

Image Processing, Video Terminals,
and Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
vb/. 3, No. 3, Summer 11)91, EY-H890E-DP

Fiber Distributed Data I nterface
Vol. 3, No. 2, Spring 1991. E1'-H876£-DP

Transaction Processing, Databases,
and Fau l t -tolerant Systems
Vr>l. 3, No. I, Winter 1991, EY-F588E-DI'

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vr>l. 2, No. 3. Summer 1990. EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2 . .SjJring 1990. EY-C197E-Dl'

206

Compound Docu ment Architecture
Vol. 2, No. 1 , Winter 1990, EY-C196E-DP

Distribu ted Systems
Vol. I, No. 9,june 1989, EY-C 179E-DP

Stor-age Technology
Vol. I, No. 8, FebnUI1J' 1989, EY-C:l66E-DP

CVAX-based Systems
Vol. 1, No. 7, August 1988, EY-6742£-DP

Software Productivity Tools
Vol. I, No. G, Februtii:J' 1988, EY-8259E-DP

VAXcluster Systems
Vol. 1, No. 5, September 1987, EY-R258E-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-6711 E-DP

Networking Products
Vol. I, No. 3, September 1986, EY-6715E-DP

MicroVAX II System
Vol. I, No. 2, March 1986, EY-:H.'4 E-DP

VAX 8600 Processor
Vol. 1, No. 1, August 1985, EY-:)4:35E-DP

Subscriptions to the Digital Technicaljoumol are

ava i lable on a prepaid basis. The subscription rate
is $ 40.00 for four issues ami $75.00 for eight issues.
Orders should be sent to Cathy Phi l Ups, Digital

Equ ipment Corporat ion. NI L0 1 -VI:l68, 146 Main
Street, Maynard , MA 01754-2571 , U.S.A. , Telephone:
(508) 49.3-2894, FAX: (508) 493-0637 Inqu iries

can be sent electro n ical l y to DTJ@ CRL DEC C:OM.

Subscriptions must be paid in US. dol lars, and
checks should be made payable to Digita l
Equipment Corporation.

S ingle copies and past issues of the Digital

Technicul journal are avai lable for $ 16.00 each
from D igital Press, Department EER, 1 Bur l i ngton
Woods Drive, Burlington, MA 01830-4597 Single
issues can also be ordered by ca l l ing DECdirect
at J -800-DIGITAL (1 -800-344-4825).

Vul. 4 Nu. 4 Special issue 1992 Digital Technical journal

I Recent Digital US. Patent s

The following patents were recently issued to Digital Equipment Corporation Titles and names supplied
to us by the U.S. Patent and Tradenzark Office are reproduced exactly as they appear on the original
published patent.

1):)27,261

[):)27,477

5,092,631

'5,093,628

),093,77'5

),094,980

),095,441

5,095,460

'5,095,471

'5,095,613

'5,097,370

';,097,387

),097,41 1

'5,097,436

').()97,468

),099, 367

),099,484

'), ()99,48')

),099,517

), l01, l06

'5, 101 ,362

'5. 101 ,402

), 101 ,485

5, 101 ,493

), 103,352

K. L. Kore l l is and R. T. Faranda

K. L. Kore l l is

M . G. M. Masnik and
R. C. Martel

I . T. Chan

W R. Grumlmann, R. F
Boucher, and T. Fossum

A . Shepela

D. F Hopper, E. G. Fortm i l ler,
S. Kundu, and D. F. Wal l

T. L. Rodeh<::ffer

M . D. Sidman

K. R. Hussinger and
M. L . Mal lary

Y. Hsia

). L . Griffith

P L. Doy le,). P E l lenberger,
E. 0. jones, D. C Carver,
S. D. Dipirro, B.]. Gerovac,
W P Armstrong, E. S. Gibson,
R. E. Shapiro, K . C . Rushforth,
and W C. Roach

]. H. Zurawski

E. Earl ie

M . D. Sidman

D. W Smelser

W F. Bruckert, T. D. Bissett,
D. Mazur,]. Munzer, F lkrnaby,
and). H . Bhatia

A. Gupta, W R. Hawe,
M. F. Kem pf, a nd C S. Lee

E. E. Cox , .J r. and M. P Rol la

E. Simoudis

D. Chiu and R. Suclama

F L. Perazzol i , Jr.

R. L. Travis and W R. Laurune

W Y. Moon and R . Y. Noguchi

Front Face Panel Portion for Enclosure Doors for a Computer

Front Panel for an Integrated Storage Assembly fo r Computer
Storage Units

Safety Enclosure for Gas Line Fitt ings

Current-Pu lse Integrating C ircu i t and Phase-Locked Loop

Microcode Control System for Digital Data Processing System

Method for Providing a Metal-Sem iconductor Contact

Rule Inference and Local ization d uring Synthesis of Logic
C ircu it Designs

Rotat ing Priority Encoder Operating by Selectively Masking
Input Signals to a F ixed Priority Encoder

Velocity EstimatOr in a Disk Drive Posit ioning System

Thi n F i lm Head S l ider Fabrication Process

Subambient Pressure Air Bearing Slider t()r D isk Drive

C ircu it Chip Package E mploy ing Low Melting Point Sol.der for
Heat Transfer

Graphics Workstat ion for Creating Graphics Data Structure
\X'hich Are Srored Retrieved and Displ3yed by a Graph ics
Subsystem for Competing Programs

H igh Performance Adder Using Carry Pred iction

Test i ng Asynchronous Processes

Method of Automatic Gain Contro l Basis Selection and Method
of Ha lf-Track Servoing

Mult iple Bit Error Detection and Correction System Employing
a ModiJied Reed-Solomon Code Incorporating Address Parity
and Catastrophic fai lure Detection

Fau l t To lerant Computer Systems with Fau lt Isolation
and Repair

Frame Status Encoding for Com munication Networl<s

Resonant Technique and Apparatus for Thermal Capacitor
Screen ing

Modu lar B lackboard-Based Expert System

Apparatus and Method for Realt ime Monitori ng of Network
Sessions in a Local Area Network

Virtual Memoq' Page Table Paging Apparatus and Method

Digital Computer Using Data Structure Includ ing External
Reference Arrangement

Phased Series Tuned Equa l ize r

Digital Tecbnical journal Vol. 4 No. 4 Special Issue 1992 207

Recent Digital US. Patents

'5, 10:),393 J P Harris. D. Leihholz,
and B . M iller

'), 10),'553 M. Mal lary

Method of Dynamical ly AI locat i ng Processors i n a Massively
Para l lel Processing System

i'vlethod of Making a Magnetic Recording Head

5. 105.0'55 W C. Mooney, J R . Santandreu , Tunnelled M u l t iconducto r System and Method
and K . Kshonze

5, [()'), 183

5, l0'i,')22

'), 10').408

'), 107,398

5, 107,462

'), 107,503

'), 1 07,')06

), 108.837

), 109,307

'), 109.495

), 1 1 1 ,')52

), l l l.424

'), 1 J l ,465

'), 1 1 2. 142

'), 1 1 2,662

'), 1 13,)52

), l l :) ,'; J 5

"· 1 1:) ,)21

), 1 1'5 , :))9

K. 0. Beckman

E . L. Steltzer

N. K . S. Lee ,] . W Howard.
P K. Tan , and W Hrytsay

D. A. Bai ley

W R. Grundmann, V R. Hay,
L. 0. Herman, and
D. M . L i t winetz

C M. Riggle, L Weng,
and P N. H u i

L J \Ve ng a nd H . A . Leshay

.\1 L M a llary

M. Sidman

D. B . Fite, T Foss u m , \Xf R.
()rundmann, D. P Man ley,
F X . McKeen, J E. Mu rray,
R. M . Salett, £ . Samberg,
and D. P Stir l ing

S. C. Das and M . L. Mal lary

D. D. Donaldson and
R. H. Gi l!ett, Jr.

B. C Edem, R. P Hel l iwe l l ,
] . T. Joh nstOn, a n d R. F Lary

F Titcomb and]. Cordova

Q. y Ng

.J. L. Finnerty

D. H. Fite , R. C . Het heringto n ,
M. M . McKeo n, D P ,vJanley,
anu .J . E. Murray

F X. McKeen, T. Fossum,
D. P Bhandarkar. ami
C A. Wiecek

M. D. Sidman

System for D isplaying Video from a P l u ra l i t y of Sources on
a D isplay

Transverse Posit ioner for lkad/\'Vrite Head

Optical Head with Flying Lens

Cool ing System for Comp uters

SeJf Timed Register F i le Having Bit Srorage Cel l s with
Emit ter- Coupled Output Selectors for Com m o n Bits Sharing
a Co m m o n P u l l-Up ResistO r and a Com mon Cu rrent S i n k

High Bandwidth Reed-Solomon Encod i ng. Decoding and Error
Correcting C i rcu it

Error Trapping Decoding Method and Apparatus

Lam inated Poles for Record ing Heads

Continuous-Plus-Embedded Servo Data Posit ion Co ntro l

System for Magnetic D i s k Device

Method and Apparatus Using a Source Operand List and
a Source Operand Pointer Queue between the Execution Unit
and the I nstructi o n Decoding ami Operand Processing t · n i ts
of a Pi pel i ned Data Processor

Three-Pole Magnetic Head with Reduced Flux Leakage

Lookahead Bus Arbitration System with Override of
Cond itional Access Grants by Bus Cycle Extensions fo r
M u l t icycle Data Transfer

Data Integrity Features fo r a Sort Accelerator

Hydrodynam ic Bearing

Method fo r Providi ng a Lubricant Coat ing on the Surface of
a i:VIagneto- Optical Disk and Resu l t ing Optical Disk

In tegrating t he Logical and Physical Design of Electronical ly
Li nked Objects

Virtual I nstruction Cache System l ·sing Length Respo nsive
Decodeu I nstruction Shifting ancl Merging with Prefetch

Buffer O u t p u ts to F i l l Instruction Buffer

Method and Apparatus t()r Han d l i ng Faults of Vector
Instructions Causing l.Vlemory Management Exceptions

Fau lt Toleran t Frame. G ua rdband and lmlex
Detection Methods

'5, 1 1'5, :)60 M . D. Sidman Embedded Burst Demod u l ation ami Tracking
E rror Generation

), 1 1), 4')5 W A. Samaras, D. T Va ugha n , Method and Apparatus for Stabi l ized Data Tra nsmiss ion
and A. D . Ingraham

'1, 1 15,R'58 J S. Fitch and W It Hamburgen Micro-Channel Wafer Cooling Chuck

), 1 17 .)'51 S. M i l ler Object Identifier Gene rator fo r Distributed Computer System

208 Vol. 4 No. 4 SpeciCII Issue 1992 Digital Techuical]oU1"'1lal

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Alpha AXP Architecture
	A 200-MHz 64-bit Dual-issue CMOS Microprocessor
	The Alpha Demonstration Unit: A High-performance Multiprocessor for Software and Chip Development
	The Design of the DEC3000 AXP Systems, Two High-performance Workstations
	Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems
	Technical Description of the DEC 7000 and DEC 10000 AXP Family
	Porting OpenVMS from VAX to Alpha AXP
	The GEM Optimizing Compiler System
	Binary Translation
	Porting Digital's Database Management Products to the Alpha AXP Platform
	DECnet for OpenVMS AXP: A Case History
	Using Simulation to Develop and Port Software
	Enrollment Management; Managing the Alpha AXP Program
	Further Readings
	Recent Digital U.S. Patents
	Back cover

