DECnet Open Networking

Digital Technical Journal

Digital Equipment Corporation

Volume 5 Number 1
Winter 1993

Cover Design

@ur cover illustrates an image of the
simplicity of data sharing as experienced
by system users interconnected through a
global network; papers in this issue describe
the depth and complexity of technologies
and products that make the simplicity of
data exchange possible.

The cover design is by Deb Anderson of
Quantic Communications, Inc.

Editorial

Jane C. Blake, Editor

Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor

Circulation
Catherine M. Phillips, Administrator

Production

Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman
Richard W. Beane

Donald Z. Harbert

Richard J. Hollingsworth
Alan G. Nemeth

Jeffrey H. Rudy

Stan Smits

Michael C. Thurk

Gayn B. Winters

The Digital Technical Journal is a refereed journal published quarterly by Digital
Equipment Corporation, 146 Main Street MLO1-3/B68, Maynard, Massachusetts
01754-2571. Subscriptions to the Journal are $40.00 for four issues and must be pre-
paid in U.S. funds. University and college professors and Ph.D. students in the electrical
engineering and computer science fields receive complimentary subscriptions upon
request. Orders, inquiries, and address changes should be sent to the Digital Technical
Journal at the published-by address. Inquiries can also be sent electronically to
DTJ@CRL.DEC.COM. Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 129 Parker Street, Maynard, MA 01754.

Digital employees may send subscription orders on the ENET to RDVAX::JOURNAL
or by interoffice mail to mailstop MLO1-3/B68. Orders should include badge number,
site location code, and address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may be sent to the editor
at the published-by or network address.

Copyright © 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation’s authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as acommitment by Digital EQuipment Corporation. Digital EQuipment
Corporation assumes no responsibility for any errors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EY-M770E-DP

The following are trademarks of Digital Equipment Corporation: ADVANTAGE-
NETWORKS, Alpha AXP, the Alpha AXP logo, AXP, Bookreader, DEC, DEC 3000 AXP,
DEC FDDIcontroller, DEC OSF/1 AXP, DEC LANcontroller, DEC WANcontroller,
DECbridge, DECchip 21064, DECconcentrator, DEChub, DECmcc, DECnet, DECnet/SNA,
DECnet-VAX, DECnet/OSI for OpenVMS, DECnet/OSI for ULTRIX, DECNIS 500/600,
DECstation, DECthreads, DECUS, Digital, the Digital logo, DNA, LANbridge, LAT,
OpenVMS, OpenVMS on Alpha AXP, POLYCENTER, POLYCENTER Network Manager 200,
POLYCENTER Network Manager 400, POLYCENTER SNA Manager, RS232, ThinWire,
TURBOchannel, ULTRIX, VAX, VMS, and VMScluster.

Advanced System Management and SOLVE: Connect for EMA are trademarks of System
Center, Inc.

AppleTalk is a registered trademark of Apple Computer, Inc.
BSD is a trademark of the University of California at Berkeley.
FastPacket, StrataCom, and IPX are registered trademarks of StrataCom, Inc.

IBM and NetView are registered trademarks of International Business Machines
Corporation.

Motif, OSF, and OSF/1 are registered trademarks of Open Software Foundation, Inc.
NetWare and Novell are registered trademarks of Novell, Inc.

NFS is a registered trademark of Sun Microsystems, Inc.

Prestoserve is a trademark of Legato Systems, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark of X/Open Company Limited.

Book production was done by Quantic Communications, Inc.

| Contents

10

Foreword
Anthony G. Lauck

12

21

34

44

62

70

99

107

117

130

DECnet Open Networking

Overview of Digital’s Open Networking
John Harper

The DECnet/OSI for OpenVMS Version 5.5 Implementation
Lawrence Yetto, Dorothy Noren Millbrandt, Yanick Pouffary,
Daniel J. Ryan, Jr., and David J. Sullivan

The ULTRIX Implementation of DECnet/OSI
Kim A. Buxton, Edward J. Ferris, and Andrew K. Nash

High-performance TCP/IP and UDP/IP Networking
in DEC OSF/1 for Alpba AXP

Chran-Ham Chang, Richard Flower, John Forecast, Heather Gray,
William R. Hawe, K. K. Ramakrishnan, Ashok P Nadkar ni,
Uttam N. Shikarpur, and Kathleen M. Wilde

Routing Architecture
Radia J. Perlman, Ross W. Callon, andI. Michael C. Shand

Digital’s Multiprotocol Routing Software Design
Graham R. Cobb and Elliot C. Gerberg

The DECNIS 500/600 Multiprotocol Bridge/Router
and Gateway
Stewart FE Bryant and David L.A. Brash

Frame Relay Networks
Robert J. Roden and Deborah Tayler

An Implementation ofthe OSI Upper Layers
and Applications

David C. Robinson, Lawrence N. Friedman,

and Scott A. Wattum

Network Management
Mark W. Sylor, Francis Dolan, and David G. Shurtleff

Design of the DECmcc Management Director
Colin Strutt and James A. Swist

Editor’s Introduction

Jane C. Blake
Editor

Ten years ago, a network of 200 nodes was con-
sidered very large with uncertain manageability.
Today, Digital’s networks accommodate 100,000
nodes in open, distributed system environments
and resolve the complexities of incompatibility
among multivendor systems. Ten years from today,
network systems comprising a million-plus nodes
will be built based upon the Digital architectures
and technologiesdescribed in this issue.

John Harper provides an informative overview of
advances made with each phase of the Digital Net-
work Architecture, now in Phase V. He describes
the architectural layers and distinguishes Digital’s
approach to network services and management
from that of others in the industry. His paper offers
context for those that follow.

The Phase V architecture provides the migration
to open systems from previous phases of DECnet. In
implementing Phase V, designers of two DECnet
products for the OpenVvMS and ULTRIX operating
systems shared several goals: extend network access
in a multivendor environment, use standard proto-
cols, and protect customers’ software investments.
Larry Yetto, Dotsie Millbrandt, Yanick Pouffary, Dan
Ryan, and David Sullivan describe the DECnet/OSI
for OpenvMS implementation and give details of
the significantly different design of Phase V net-
work management. In their paper on DECnet/OSI
for ULTRIX, Kim Buxton, Ed Ferris, and Andrew
Nash stress the importance of the protocol switch
tables in a multiprotocol environment. DECnet/OSI
for ULTRIX incorporates OSI, TCP/IP, and X.25.

In the broadly accepted TCP/IP protocol area,
Digital has developed a high-performance TCP/IP
implementation that takes advantage of the full FDDI
bandwidth. K.K. Ramakrishnan and members of the
development team review the characteristics of the
Alpha AXP workstation, OSF/1 operating system, the

protocols, and the network interface. They then
detail the optimizations made for high performance.

Routing data through networks with thousands
ofnodes is a very difficult task. Radia Perlman, Ross
Callon, and Mike Shand describe how the Phase V
routing architecture addresses routing complexity:.
Focusing on the IS-IS protocol, they pose problems
a routing protocol could experience, present alter-
native solutions, and explain the IS-1S approach.

The challenges in developing multiprotocol rout-
ing software for internetworking across LANS, WANS,
and dial-up networks are presented in the paper by
Graham Cobb and Elliot Gerberg. They highlight
the importance of the stability of the routing algo-
rithms, using the DEC WANrouter and DECNIS prod-
ucts as a basis for discussing alternative designs.
Stewart Bryant and David Brash then focus on
details of the high-performance DECNIS 500/600
bridge/router and gateway. They discuss the archi-
tecture and the algorithm for distributed forward-
ing that increases scalable performance. Both the
hardware and the software are described.

In addition to routing, the subject of data transfer
of high-speed, bursty traffic using a simplified form
of packet switching is described. Robert Roden and
Deborah Tayler discuss frame relay networks, their
unique characteristics, and the care needed in pro-
tocol selection and congestion handling.

The above discussions of data transfer and rout-
ing occur at the lower layers of the network archi-
tecture. Dave Robinson, Larry Friedman, and Scott
Wattum present an overview of the upper layers
and describe implementations that maximize
throughput and minimize connection delays.

Network management is critical to the reliable
function of the network. As Mark Sylor, Frank
Dolan, and Dave Shurtleff tell us in their paper,
Phase V management is based on a new architec-
ture that encompasses management of the network
and systems. They explain the decision to move
management responsibility to the subsystem archi-
tecture, and also describe the entity model. The
next paper elaborates on the director portion of the
management architecture, called the DECmcc
Management Director. Colin Strutt and Jim Swist
review the design of this platform for developing
management capabilities, the modularity of which
allows future modules to be added dynamically.

The editors thank John Harper for his help in
selecting the content of this issue.

er/ﬁw

Biographies

David L.A. Brash David Brash, a consultant engineer, joined Digital's
Networks Engineering Group in 1985 to lead the hardware development of the
MicroServer communications server (DEMSA). As the technical leader for the
DECNIS 500/600 hardware platforms, David contributed to the architecture,
backplane specification, module and ASIC designs and monitored correctness.
He was an active member of the [EEE Futurebus+ working group. He is currently
leading a group supporting Alpha design wins in Europe. David holds a B.Sc. in
electrical and electronic engineering from the University of Strathclyde.

Stewart F. Bryant A consulting engineer with Networks and Commu-
nications in Reading, England, Stewart Bryant worked on the advanced develop-
ment program that developed the DECNIS 600 architecture. During the last six
months of the program, he was its technical leader, focusing on implementation
issues. Prior to this work, Stewart was the hardware and firmware architect for
the MicroServer hardware platform. He earned a Ph.D. in physics from Imperial
College in 1978. He is a member of the Institute of Electrical Engineers and has
been a Chartered Engineersince 1985.

Kim A. Buxton Kim Buxton is a principal software engineer in the Networks
and Communications Group. During the past seven years, Kim has been work-
ing on DECnet and OSI for UNIX operating systems. She is currently the project
leader of the DECnet/OSI for DEC OSF/1 AXP release. Prior to assuming the role of
project leader, Kim worked on network management, session control, and trans-
port protocols for DECnet-ULTRIX products. She has worked in the area of net-
works and communications since joining Digital in 1980. She earned her B.S.
degree in mathematics and secondary education from the University of Lowell.

Ross W. Callon As a member of Digital’s Network Architecture Group from
1988 to 1993, Ross Callon worked on routing algorithm and addressing issues.
He was a primary author of the Integrated 1S-IS protocol and of the guidelines for
using NSAP addresses in the Internet. Previously, he was employed by Bolt
Beranek and Newman as a senior scientist and helped develop the ISO CLNP pro-
tocol. Ross received a B.Sc. (1969) in mathematics from MIT and an M.Sc. (1977) in
operations research from Stanford University. He is currently employed asa con-
sulting engineer at Wellfleet Communications.

Chran-Ham Chang Chran-Ham Chang is a principal software engineer in the
UNIX System Engineering Group and a member of the FAST TCF/IP project team.
Since joining Digital in 1987 Chran has contributed to the development of vari-
ous Ethernet and FDDI device drivers on both the ULTRIX and DEC OSF/1 AXP
systems. He was also involved in the ULTRIX network performance analysis and
tools design. Prior to this, Chran worked as a software specialist in Taiwan for a
distributor of Digital’s products. He reccived an M.S. in computer science from
the New Jersey Institute of Technology.

Biographbies

Graham R. Cobb Graham Cobb is a consulting engineer in the Internet
Products Engineering Group and was software project leader for the DECNIS
500/600 router development. Graham holds an M.A. in mathematics from the
University of Cambridge and joined Digital as a communications software engi-
neer in 1982. He has worked on many Digital communications products, includ-
ing X.25 products and routers, and was a major contributor to the DEC WANrouter
1007500 software immediately prior to leading the DECNIS development. Most
recently, Graham has been working on new-generation routing software.

Francis Dolan Frank Dolanisa consultant engineer with Digital’s Telecommu-
nication Business Group Engineering in Valbonne, France. He is currently the
project manager and technical leader of the GDMO translator, a tool being devel-
oped to support the DECmcc/TeMIP OSI access module and OSI agent presenta-
tion module. Prior to this work, Frank was the architect of several Phase V DNA
specifications, including DDCMP network management, OSI transport, and
network routing accounting. He was also an active member of OSI management
standards committees. Frank has filed one European patent application.

Edward J. Ferris Ed Ferris is a principal engineer in the Networks and
Communications Group. During the past seven years, Ed has been working on
DECnet-ULTRIX. He is currently one of the technical leaders of the DECnet/OSI
for DEC OSF/1 AXP release. Ed has primarily worked at the data link and network
protocol layers. He has worked on networks and communication products since
joining Digital in 1982. Ed earned a B.A. in English from the University
of Massachusetts and a B.S. in computer engineering from Boston University.

Richard Flower Richard Flower works on system performance issues in
multiprocessors, networking, distributed systems, workstations, and memory
hierarchies. The need for accurate time-stamping events across multiple systems
led him to develop the QUIPU performance monitor. The use of this monitor led
to performance improvements in networking, drivers, and RPC. Richard earned
a BSEE. from Stanford University (with great distinction) and a Ph.D. in com-
puter science from MIT. Prior to joining Digital, he was a professor at the
University of [llinois. Richard is a member of Phi Beta Kappa and Tau Beta Pi.

John Forecast A software consultant enginecer with the Networks
Engineering Advanced Development Group, John Forecast addresses network
performance issues associated with the transmission of audio and video data
through existing networks. John joined Digital in the United Kingdom in 1974
and moved to the United States to help design DECnet-RSX Phase 2 products,
DECnet Phase IV, and DECnet implementations on ULTRIX and System V UNIX.
John also worked on file servers for VMS and a prototype public key authentica-
tion system. He holds a Ph.D. from the University of Essex.

Lawrence N. Friedman Principal engineer Lawrence Friedman is a technical
leader in the OSI Applications Group. He joined Digital in 1989 and is the project
leader for ULTRIX FTAM V1.0 and V1.1. In addition to his project responsibilities,
Larry is Digital’s representative to the National Institute of Standards and
Technologies (NIST) FTAM SIG and was the editor of the NIST FTAM SIG Phase 2
and Phase 3 documents from 1990 to 1992. He is currently the editor for the
FTAM File Store Management International Standard Profile. Larry holds a B.A.
(1978) in music from Boston University.

Elliot C. Gerberg Elliot Gerberg is a senior engineering manager in Digital’s
Networks Engineering Division, managing the Routing Engineering Group
(USA). Since joining Digital in 1977, he has worked on numerous projects includ-
ing the DEUNA, Digital’s first LAN adapter; the DECserver 100, Digital’s first low-
cost terminal server; the SGEC, a high-performance Ethernet semiconductor
interface; and various multiprotocol routers. Elliot has a B.S. in physics from
SUNY and an M.S. in computer science from Boston University. He holds profes-
sional memberships with the IEEE, the ACM, and the Internet Society.

Heather Gray A principal engineer in the UNIX Software Group (USG),
Heather Gray is the technical leader for networking performance on the DEC
OSF/1 AXP product family. Heather’s current focus is the development of 1P multi-
cast on DEC OSF/1 AXP. She has been involved with the development of Digital
networking software (TCP/IP, DECnet, and OSI) since 1986. Prior to joining USG,
Heather was project leader for the Internet Portal V1.2 product. She came to
Digital in 1984, after working on communication and process control systems at
Broken Hill Proprietary Co., Ltd. (BHP) in Australia.

John Harper As technical director of the Corporate Backbone Networks
Group in NAC, John Harper directed the development of the DECnet Phase V
architecture. Until last year John also chaired the 1SO Committee JTC1/SC6/WG2,
which deals with standards for the OSI network layer. He joined Digital in 1974
after receiving a degree in computer studies (1st class honors) from the
University of Lancaster. John has ten patents (filed or issued) on computer net-
works and has published several conference papers on that subject. He has made
numerous contributions to standards for computer networks.

William R. Hawe A senior consulting engineer, Bill Hawe manages the LAN
Architecture Group. He is involved in designing architectures for new net-
working technologies. Bill helped design the FDDI and extended LAN architec-
tures. While in the Corporate Research Group, he worked on the Ethernet
design with Xerox and Intel and analyzed the performance of new communica-
tions technologies. Before joining Digital in 1980, Bill taught electrical engineer-
ing and networking at the University of Massachusetts, where he carned a B.SE.E.
and an M.S.E.E. He has published numerous papers and holds several patents.

Biographbies

Dorothy Noren Millbrandt Dotsie Millbrandt is a principal software engi-
neer and a co-project leader for Common Network Management. Currently she
is developing management components that will work across all the DECnet/OSI
platforms: OpenVMS, OSF/1, and ULTRIX. Dotsie was the project leader for the
MOP component and the trace facility and has worked on OSI transport and con-
figuration software. Prior to this work, she was a project leader and microcode
developer for DSB32 and KMV11 synchronous communications controllers in the
CSS Network Systems Group.

Ashok P. Nadkarni A principal software engineer in the Windows NT
Systems Group, Ashok Nadkarniis working on a port of native Novell NetWare to
Alpha AXP systems. Prior to this, he was a member of the NaC Advanced
Development Group. He has contributed to projects dealing with IP and OSI pro-
tocol implementations, network performance improvement, a prototype of the
Digital distributed time service, and mobile networking. He holds a B. Tech. in
computer engineering from the Indian Institute of Technology, Bombay, and an
MS. from Rensselaer Polytechnic Institute. Ashok joined Digital in 1985.

Andrew K. Nash Andrew Nash is a principal software engineer with NaC
Australia and was the project leader for the ULTRIX Phase V X.25 products. He is
currently technical leader for NaC Australia and has been with the group since
1988. Since joining Digital in 1980, he has worked for Educational Services and
the Customer Support Centre and has been a consultant for Software Services.
Andrew received a B.Sc. (M.Sc.) from the University of Adelaide and a graduate
diploma in software engineering from the University of Technology, Sydney.

Radia J. Perlman As a member of the Network Architecture Group, Radia
Perlman has been designing protocols for bridges and routers since joining
Digital 13 years ago. She designed the spanning tree algorithm used by all stan-
dardized forms of bridges, as well as many of the protocols in IS-IS. Radia
authored the book Interconnections: Bridges and Routers and has more than 20
patents filed or pending in the areas of bricging, routing, and network security.
She holds S.B. and SM. degrees in mathematics and a Ph.D. in computer science,
all from the Massachusetts Institute of Technology.

Yanick Pouffary A principal software engineer, Yanick Pouffary is currently
the transport technical leader in the DECnet/OSI for OpenVMS Group. She was
the principaldesignerand developer of OSI transportand NSP transport protocol
engines. Prior to this work, she developed the presentation layer for the VTX20,
a videotext terminal. Before joining Digital in 1985, Yanick worked for the
CODEX Corporation on a statistical multiplexer. Yanick earned a B.S. in computer
science from the University of Nice, France, and an M.S. in computer science
from the State University of New York at Stony Brook.

K. K. Ramakrishnan A consulting engineer in the Distributed Systems
Architecture and Performance Group, K. K. Ramakrishnan joined Digital in 1983
after completing his Ph.D. in computerscience from the University of Maryland.
K. K’s research interests include performance analysis and design of algorithms
for computernetworks and distributed systems using queuing network models.
He has published more than 30 papers on load balancing, congestion control
and avoidance, algorithms for FDDI, distributed systems performance, and issues
relating to network 1/0. K. K. is a member of the IEEE and the ACM.

David C. Robinson David Robinson is a principal software engineer in
Network Engineering Europe. He was the architect for the OSI upper layers and
designed and prototyped Digital’s improved upper layer implementation. He
came to Digital in 1988 from the General Electric Co. (GEC) in Chelmsford,
Essex, UK., where he developed a remote procedure call and a distributed com-
puting environment. Dave holds a B.Sc. (Eng) in computing science (1982) and
aPh.D. in management of very large distributed computing systems (1988), both
from the Imperial College in London.

Robert J. Roden Robert Roden is a consulting engineer in Networks
Engineering. Recently, he has been working on new transmission technologies
such as frame relay and switched multimegabit data service. He has also worked
on computer integrated telephony and chaired a group developing related stan-
dards. Robert joined Digital in 1986 from Racal Milgo, where he was responsible
for local areanetworks and network management platforms. He received a B.Sc.
(197D in physics and a Ph.D. (1974) in materials science from the Imperial
College in London.

Daniel J. Ryan, Jr. A principal software engineer in the DECnet/OSI for
OpenVMS Group, Dan Ryan was responsible for the configuration and installa-
tion portion of the DECnet/OSI for OpenVMS product. Recently he was the team
leader for the transport development effort. Currently he is investigating
DECnet/OSI and TCP/IP integration as well as DECnet/OSI critical problems. Dan
has 14 years of experience in data communications and has been with Digital
since 1983. He was previously employed as a systems programmer and was a
free-lance consultant on computer communication solutions.

I. Michael C. Shand Consulting engineer Michael Shand of Networks
Engineering is responsible for the DNA Phase V network routing layer architec-
ture. Prior to this, he worked on the Phase V X.25 access and HDLC architectures.
He represents Digital on the ISO network layer committee and was a major con-
tributor to the standardization of the ISIS routing protocol (ISO/IEC 10589). Mike
came to Digital in 1985 from Kingston Polytechnic (U.K.). He has an M.A. (1971) in
natural sciences from the University o f Cambridge and a Ph.D. (1975) in surface
chemistry from Kingston Polytechnic.

Biographbies

Uttam N. Shikarpur Uttam Shikarpur joined Digital in 1988 after receiving
an M.S. in computer and systems engineering from Renssclaer Polytechnic
Institute. Uttam is a senior engineer and a member of the UNIX Systems Group
working on network drivers and data link issues. His current project involves
writing a token ring driver for the DEC OSF/1 AXP operating system. Prior to this
work, he contributed to the common agent project.

David G. Shurtleff A member of Digital’s Corporate Systems Engineering
Group, David Shurtleff consults in support of major systems integration projects
and participates in CSE initiatives to improve engineering processes. Previously,
he was a member of the EMA Architecture Group, where he worked on the spec-
ification of EMA director architectures and the development of systems manage-
ment standards. David has also worked in the DECmcc strategic vendor program
as a senior technical resource. Before joining Digital in 1988, David was on the
packet switch development staff at BBN Communications Corporation.

Colin Strutt Colin Strutt is the DECmcc technical director in Enterprise
Management Frameworks, part of the NAS Systems Management. Prior to that
position, Colin was the¢ project leader for the terminal server manager, various
terminal server products, Ethernet communications server, and DECnet-1AS. He
joined Digital in 1980 and is now a consulting engineer. Colin received a B.A.
(honors) and a Ph.D. both in computer science from the University of Essex, UK.
He is a member of BCS and ACM. Colin has several patents pending on DECmcc
technology and has published papers on integrated network management.

David J. Sullivan David Sullivan is a senior software engineer and was the
technical leader of the node agent and event dispatcher components for the
DECnet/OSI for OpenVMS product. David also worked as an individual contribu-
tor on the design and implementation of the session control layer. He is cur-
rently working on a development effort to allow the DECnet/OSI product to run
on Digital's AXP platforms. After joining Digital in 1987 he worked in the
VAX/RPC Group where he was responsible for writing tests for the pidgin com-
piler. David holds a B.S.C.S. (1988) from Merrimack College.

James A. Swist Jim Swist joined Digital in 1975. He is a consulting software
engineer and the technical leader for open systems in the Enterprise
Management Frameworks Group. Prior to this position, he was a system man-
agement architect for VMS development, technical leader and development man-
ager for TDMS/ACMS/CDD database systems, and a consultant in software services
for several large commercial TP projects. Jim earned a B.S. in electrical engineer-
ing from the Massachusetts Institute of Technology in 1970. He has one patent
pending on MCC distributed dispatch.

Mark W. Sylor Mark Sylor is the manager of Digital’s Enterprise Management
Architecture Group. He is the author of the £Aé.A Entity Model and the Phase V
DECnet Network Management Specification. Mark was a member of the [SO and
ANSI committees working on OSI system management and was the ANSIT5.4 ad
hoc group leader on the structure of management information. Prior to this
work, Mark was the principal designer and development supervisor for the
NMCC/DECnet monitor. Mark joined Digital in 1979. He holds an M.S. in mathe-
matics from the University of Notre Dame.

Deborah Tayler Deborah Tayler, a principal software engineer in Networks
Engineering Europe, is currently responsible for the design and implementation
of frame relay and point-to-point protocol functionality on multiprotocol
routers. She joined Digital in 1982 and has worked on DECtalk, ALL-IN-1, and com-
puter integrated telephony projects. Deborah received a B.sc. (1981) in eco-
nomics from University College in London and an M.Sc. (1982) in the theory and
applications of computation from Loughborough University of Technology in
Loughborough, Leicestershire.

Scott A. Wattum Senior software engineer Scott Wattum is a member of the
OSI Applications Engineering Group. He is responsible for the design and devel-
opment of OpenVMS Virtual Terminal V1.0 and is involved in the ULTRIX and
OSF/1 porting efforts. Previously, Scott worked at the Colorado Springs
Customer Support Center and provided network support, specializing in OSI
protocols and applications. Prior to joining Digital in 1987, he was employed by
the University of Alaska Computer Network in various software positions. He
received a B.A. (1985) in theatre from the University of Alaska, Fairbanks.

Kathleen M. Wilde As a member of the Networks Engineering Architecture
Group, Kathleen Wilde focuses on integration of new TCP/IP networking tech-
nologies into Digital’s products. For the past two years, she has been prototyping
high-performance network features on the OSF/1 operating system and coordi-
nating the standards strategy for Digital’s IETF participation. Previously, she was
the development manager of the ULTRIX Network Group. Her responsibilities
included product development of TC/IP enhancements, FDDI, and SNMP. She
has a B.S.in computer science and mathematics from Union College.

Lawrence Yetto Larry Yetto is currently a project and technical leader for the
DECnet/OS] for OpenVMS Group. He joined Digital in 1981 and has held various
positions in software engineering on development projects for VMS journaling,
VMS utilities, and DECnet-VAX Phase IV. He also worked in the Project Services
Center, Munich, and was the project leader for the OpenVvMS version 5.0 field
test. Prior to joining Digital, Larry worked as a systems programmer at
Burroughs Corporation. He earned a B.A. in both math and computer science
from the State University of New York at Potsdam.

| Foreword

Anthony G. Lauck
Corporate Consultant
Engineer and
Technical Director,
Networks Engineering

Digital’s fifth generation of computer networking
products enters the market as computer net-
working technology enters its third decade as a
practical technology. Digital’s first four generations
of DECnet products entered a marketplace that was
oriented toward proprietary computer solutions
and where networking grew slowly from a depart-
mental function to include a functional unit of an
enterprise and, eventually, an entire enterprise.
With networks confined to a department or func-
tion, there was little need for heterogeneity.
Engineering departments used Digital's mini-
computers linked by DECnet, while corporate busi-
ness applications ran on IBM mainframes accessed
by SNA networks. Eventually these heterogeneous
networks were linked by gateways which provided
the necessary protocol conversions; but inte-
gration was never transparent—especially to the
system and network managers. The number of
computers in a network was limited by the scope
of the department, function, or organization and
by the cost of individual computers. Timesharing
remained the dominant mode of computer use in
these networks; there were significantly fewer
computers in a network than users of the network.

When Digital began its initial architectural work
on DECnet Phase V, we realized that technological
and economic limitations on network size were
going away. Microprocessors were making it pos-
sible for each person to have a computer. Local
area networks were making it possible for each
computer to be conveniently and inexpensively
connected. Early experience with embedded

computers in manufacturing applications at Digital
and with some of our customers convinced us that
the number of computers in a network could easily
exceed the number of people using the network. A
few communities, such as the worldwide high-
energy physics community, had built networks that
extended beyond the bounds of a single enterprise.
We saw that networks would need to have great
scope and would need to support a great diversity
of management. An architecture such as our DECnet
Phase IV, which limited a single network to tens of
thousands of nodes, would become too confining.

Early computer networks were homogeneous in
architecture and implementation, reflecting the
proprietary nature of the computer industry at the
time and also the difficulty of getting heteroge-
neous networks to work. Digital learned the diffi-
culties of heterogeneous networking back in the
1970s when it developed DECnet Phase II and made
anetwork workacrossa range of computer systems
from a single vendor. By the early 1980s there were
already multiple competing network architectures,
some proprietary to organizations, some viewed as
proprietary to a single nation. Different enterprises
and different departments of a given enterprise had
chosen different computer vendors, operating sys-
tems, and network architectures. Linking these
together by gateways would be too cumbersome.
These factors prompted for us the vision of a com-
mon network architecture, standardized on an inter-
national scope and appropriate to Digital’s role as
an international corporation. Many of the papers in
this issue describe our realization of this vision.

Our vision of a common networking architec-
ture gave us the basic requirements for DECnet
Phase V—a scalable network architecture that is
open and standardized internationally. Like earlier
generations of DECnet, this architecture would be
backward compatible with its predecessor, preserv-
ing our customers’ investments in applications and
network infrastructure. Implementing this vision
of a homogeneous network architecture based on
internationally standardized protocols and back-
ward compatibility with DECnet Phase IV proved to
be a daunting task. It involved developing new net-
working technology, in particular new routing and
addressing technology, standardizing this technol-
ogy in the international community, and imple-
menting it across a full range of products.

While Digital continued to work on its vision,
networking expanded vigorously across the entire
computer industry. Protocols appeared in niches:
vendor based, operating system based, industry

based. Users needed connectivity between these
niches, providing market pull for expansion from
initial niches. The result is today’s world of multi-
protocol computer networks. Digital's next genera-
tion of networking products also reflects this
multiprotocol reality. Host networking products
support several protocol families and are con-
structed to isolate many of the differences between
network protocols from users. Network infrastruc-
ture products such as routers and network manage-
ment software support this diversity more fully,
reflecting the need for the infrastructure to support
all the types of network traffic. Many papers in this
issue relate to our participation in this complex
reality.

Computer networks have become an essential
part of many organizations. These networks must
be dependable and must not be bottlenecks. In its
fifth generation of networking products, Digital has
stressed robustness and performance. In designing
Digital’s router products, we placed great emphasis
on robustness and network stability, particularly
under conditions of traffic overload. These are not
qualities that our customers will necessarily appre-
ciate unless they have experienced their absence
in an overloaded network. New applications and
larger data storage mandate higher host networking

throughput. High-speed local area networks, such
as FDDI, together with high-speed RISC processors,
such as Alpha AXP, create the expectation of high-
performance host networking. Achieving this level
of performance takes more than fast hardware,
however. It requires careful attention to details
of protocol implementation and interaction with
network interface hardware, the processor and
memory system, and the operating system. Sev-
eral papers in this issue describe how Digital
has achieved leadership in network robustness and
performance.

Networking depends on a variety of underlying
communications technologies and services. This
issue of the Digital Technical Journal concentrates
on how these underlying technologies can be used
to build large-scale computer networks; earlier
issues described such underlying communications
technologies as Ethernet and FDDL This issue does,
however, include one paper on a new wide area
technology and service, Frame Relay, and how it
can be used by computer networks. Many other
new communications technologies and common
carrier services are in the process of being inte-
grated into Digital’s family of networking products.
These will be described in future issues of the
Journal.

Overview of Digital's
Open Networking

Jobn Harper |

The principal element of Digital's open networking family of products is the DECnet
computer network. In its latest form, DECnet supports very large networks of more
than 100,000 nodes and incorporates industry standards such as @8I and TCF/IP. To
meet the design goals of the Digital Network Architecture, the structure of DECnet is
divided into layers with defined relationships between layers. Since its introduction
in 1974, DECnet has evolved in parallel with the standards for open networking.
Digital bas contributed to the formation of networking standards, and the stan-
dards bave, in turn, influenced the design of DECnel.

In 1974, Digital shipped the industry’s first general-
purpose networking product for distributed com-
puting. The DECnet computer network was the
embodiment of the vision that small systems work-
ing together could become an alternative to main-
frame computing. Prior to that time, networking
products had been aimed at solving some specific
problem and had often been closely integrated
with a particular application. In contrast, DECnet
allowed any application to share data with all oth-
ers. Whereas previous networking products in the
industry had concentrated on connecting terminals
to hosts, DECnet provided peer-to-peer networking
for the first time. By doing this, it anticipated the
client-server computing style that is now common-
place and established client-server computing as a
viable approach.

DECnet built on work that had been done in the
research community. The internet protocol, funded
by the Advanced Rescarch Projects Agency (ARPA),
was of particular relevance.' This too was aimed at
providing general-purpose distributed computing
and later evolved into the well-known TCF/IP (trans-
mission control protocol/internet protocol) proto-
col suite. In 1974, however, it was still a research
topic.

In the same year, International Business Machines
Corporation announced its Systems Network
Architecture (SNA).2 The comparison between SNA
and DECnetisinteresting because SNA was designed,
not surprisingly, to support mainframe computing.
It focused principally on connecting many rela-
tively unintelligent devices, such as terminals and

remote job entry stations, into a single computer.
Only after several years did SNA allow more than
one mainframe to exist in the same network. Its
original goal was to address the proliferation of
application-specific protocols that allowed a termi-
nal connected to the network to use onc applica-
tion only.

This paper presents a short history of the DECnet
networking product, defining each phase ofits evo-
lution in terms of its contribution to distributed
computing. It explores the development of DECnet
Phase V, the current implementation, and discusses
the principles of Digital's layered architecture. The
paper then describes the layers of DECnet, the
importance of naming services, and the role of
network management.

A Short History of DECnet

The development of DECnet has proceeded by
phases. Each phase has represented a major step in
the evolution of the product family. The initial
products, later referred to as Phase |, revealed some
unexpected problems in building a range of prod-
ucts across different systems that would all work
together. One of the consequences was the creation
of a distinct Network Architecture Group. Their job
was to produce detailed specifications of the proto-
cols and interfaces to be used without constraining
the implementers to build products in some particu-
lar way. At that time, software portability was practi-
cally unheard of, and each different hardware or
software environment had its own completely sepa-
rate implementation. Phase 11 of DECnet, introduced

12

Vol.5 No. I Winter 1993 Digital Technical Journal

Overview of Digital’s Open Networking

in 1978, provided full interoperability between the
different implementations, thanks to adherence to
a rigorously specified architecture.

At this stage, systems still had to be directly con-
nected to each other if they were to communicate.
Phase 111, which appeared in 1981, introduced the
ability to route messages through any number
of links and intermediate systems to reach a desti-
nation. DECnet again used a technique from the
research networks, a dynamic adaptive routing
algorithm, which computed the best route to a des-
tination automatically as the physical connectivity
of the network changed. Competing products at
the time (such as SNA) required routes to be com-
puted and entered manually, including backup
routes for use in the event of failure of a link or
a system in the network.

Phase Il also included full remote management
and reflected the gradual emergence of standards
for computer networking by supporting X.25
packet switching networks as one means for con-
necting systems.* A Phase IIl network could contain
up to 255 nodes.

The invention of local area networks (LANS), and
in particular the Ethernet, was to have a huge
impact on the use of networking.* For the first time
it was cheap and simple to connect a system to the
network. Prior to LANs, only wide area network
technology was used, even when the systems were
physically next to each other. DECnet Phase [V,
which appeared in 1984, added support for the
Ethernet and allowed networks to contain up to
64,000 nodes.

The Evolution of Open Networking

When DECnet appeared in 1974, all its networking
protocols were “proprietary,” that is, they had been
developed by Digital and remained under Digital’s
control. At that time there were no standards or
publicly defined network protocols. Work on stan-
dards for this purpose began during the 1970s, and
in 1978 the Comité Consultatif Internationale de
Télégraphique et Téléphonique (CCITT) published
its Recommendation X.25.4 This document defined
a standard way of connecting a computer to a
network that would permit free communication
between all attached computers. X.25 networks
were typically expected to be provided by a public
carrier such as a telephone company.

The appearance of this standard prompted the
question, “Now that our computers can talk to each
other, what are they going to say?” Simply permit-

ting them to send data to each other was of no use
unless they could also understand it and make some
use of it. DECnet, for example, included protocols
for transferring files and for remote terminal access
as well as the base protocols for transferring data.

Thus the idea of open systems interconnection
(OSD was born. OSI was the most ambitious effort
in the history of standards. its goal was to develop a
complete set of standard protocols that would
allow computers not only to exchange data but also
to make meaningful use of it in their applications.
The work was undertaken by the International
Organization for Standardization (15O). This organi-
zation has representatives from all major countries
and is thus able to draw upon their extensive expe-
rience in research and commercial networking.

By 1984, when DECnet Phase IVbecame available,
the work on OSI had made substantial progress. The
architectural model had been published as an inter-
national standard, and standardization of many of
the protocols was at an advanced stage.> [t was also
becoming clear that the future of computer net-
works depended on the ability to communicate
without regard to who was the supplier of a system.
Ad hoc solutions, such as the DECnet/SNA gateway,
existed for communication between different net-
work architectures.® OSl, however, held the prom-
ise of being a general solution. It was feared that the
alternative to OSI would be the adoption of a ven-
dor-specific architecture as a de facto solution, and
that that architecture would inevitably be SNA. The
internet family of protocols, colloquially known as
TCP/IP, had not yet become the force it is today.”

Detailed examination of the OSI protocols
showed that they formed a suitable basis for the
evolution of DECnet. This was not surprising, since
the ISO had incorporated Digital's basic concepts
into OS], rather than the different ideas put forth by
the public network operators. A number of defi-
ciencies were identified, but these could be reme-
died by contributing more of Digital's technology
to the standards process. For example, all the
network-layer routing protocols used in OS] were
contributed by Digital. Thus the decision was made
that the next phase of DECnet, Phase V, would use
the OSI standards as much as possible. The existing
proprietary protocols would be retained only for
the purpose of backward compatibility.

During the development of the architecture and
products for Phase V, another event of great signifi-
cance took place. During the 1980s, TCP/IP emerged
as an alternative solution for open networking. This

Digital Technical Journal Vol. 5 No. I Winter 1993

13

DECnet Open Networking

development was prompted by the explosion in the
use of workstations based on the UNIX system style
of computing. The architectural model of Phase Vv
allowed a relatively straightforward integration of
these protocols into the products, although a great
deal of necessary software was written. Since OSI
and TCP/IP were never designed to work together,
allowing them to coexist in the same network
demanded considerable creativity.®

Goals of DECnet Phase V

The design of DECnet Phase V had three principal
goals:

= To allow networks to grow to be very large, with
one million systems as a practical target

= To use standard protocols to the maximum
extent possible

= To support a distributed-system mode of opera-
tion in which the systems cooperate more
closely than in traditional networking

The 64,000-node size limit of Phase IV was far
from posing a practical problem in 1984, but it was
then foreseen that computer networks in large
enterprises would approach this limit by the end of
the decade. Indeed, this happened with Digital’s
internal network, which grew to over 100,000
nodes on Phase IV with the use of innovative man-
agement techniques. The node size limitation was
imposed primarily by the size of the addresses
used, which was 16 bits. Addresses in OSI networks
can be as long as 20 bytes, which removes the
immediate limitation. Very large networks, how-
ever, need more than large addresses to support
100,000 nodes or more. For example, the Phase IV
routing algorithm has certain inherent weaknesses
that start to appear for networks at the Phase IV size
limit. For this reason, Phase vV employs a different
routing algorithm, which readily supports net-
works of millions of nodes.? This algorithm has
subsequently been adopted as the international
standard for routing in OSI networks and, with mod-
ifications, for TCF/IP networks.10:}}

Management of very large networks also requires
special attention. DECnet has always provided a
high degree of automated management compared
to other network architectures, but as a network
increases in size, the burden of tracking the config-
uration increases disproportionately. Assigning
addresses to nodes was a manual procedure in
Phase IV, and maintaining the correspondence
between node names and their addresses was

performed separately in each system. A goal for
Phase V was to provide a robust, distributed naming
service throughout the network. Furthermore,
nodes would be allowed to generate their own
addresses in a reliable and unambiguous way and to
register themselves in this naming service. Thus a
new system can be connected to the network with-
out any administrative procedure, if network secu-
rity policies permit.

At a more detailed level, the architecture has a set
of goals that have evolved over time to include the
following.

s Conceal network operation from the user. The
internal operation of a large network is inevitably
complex, but to the user it should appear simple.

= Support a wide range of applications.

» Support a wide range of communications facili-
ties: LANs, wide area leased lines, X.25 networks,
etc.

= Support a wide range of network topologies.

= Use standards wherever feasible rather than pro-
prietary protocols. For cases in which standards
are evolving but are not yet finished, ensure that
future migration is as smooth as possible.

® Require minimum management intervention.

= Be manageable. Not all functions can be auto-
mated; for example, some depend on the organi-
zational policy of the user. In such cases
management should be as simple as possible
and should not impose any particular style of
management.

= Permit growth without disruption.

= Permit migration between versions. Each phase
of DECnet is guaranteed to work with the next
and previous phases, so that the systems in the
network can be upgraded over a long period. It
would be inconceivable to upgrade thousands of
systems overnight.

= Be extensible to new developments in technology.

= Be highly available in the face of line or system
failure or even, to the extent possible, operator
error.

= Be highly distributed. The major functions of the
Digital Network Architecture (DNA), such as
routing and network management, are not cen-
tralized in a single system in the network. This in
turn increases availability.

14

Vol.5 No.1 Winter 1993 Digital Technical Journal

Overview of Digital’s Open Networking

= Allow for security functions, such as authentica-
tion of remote users and access control.

Architectural Principles

DNA is a layered architecture. The necessary func-
tions are divided into related and logically coherent
groups called layers. The layers are built on top of
one another, so that each layer makes use of services
provided by the one below it. To meet the goals of
DNA, particularly those relating to flexibility, the
structure of a layered architecture is essential.
Figure 1 illustrates the principles of a layer in the
terminology of the OSI reference model.> These
principles apply to any layer; in Figure 1 they are
shown applied to the transport layer. Each commu-
nicating system contains its own element of the
layer, called the transport entity. These entities
communicate with each other through the trans-
port protocol. This protocol is conveyed using the
services of the next lower layer, in this case, the
network layer. For this purpose the most important
service is the one that conveys data without regard
to its contents. Other services are also provided, for
example, connection management services. The
transport layer also provides a well-defined trans-
portservice to its user, in this case, the session layer.
The detailed mechanisms and protocols of the layer
are hidden from the layers above and below, so that
the layer above sees only a well-defined service.
This independence of the mechanisms used per-
mits substantial changes to be made to the mecha-
nisms and protocols of a layer without affecting the
adjacent layers. This very important property is
called layer independence. It has been extensively
exploited in the development of DECnet to allow

protocols ro be enhanced or even completely
replaced.

The principles of layered architecture were
defined in a rigorous way by the OSI reference
model, building on previous work such as DECnet
and the TCP/IP protocol family. The original layer
structure of DNA was defined in Phase I and has
changed only a little since then. It corresponds to
the lower layers of OSI as well as the layers of TCP/IP.

TI'be Layers of DECnet

Figure 2 shows the layers of DECnet Phase V. The
lower layers are the physical, data link, network,
and transport layers. They provide a universal, reli-
able service for moving data from one system to
another. Many different underlying means of physi-
cal communication can be used, with their associ-
ated protocols, including:

= Ethernet LANs and the equivalent standard (IEEE
802.3,1SO 8802-3)

= Token ring LANs (IEEE 802.5)

® Wide area links running over leased links at any
appropriate speed

s X.25 wide area networks

The network and transport layers unify the ser-
vice provided by these disparate physical networks
and allow communication across any mixture of
different facilities.

Protocols from different protocol suites may be
used, including OSI, TC/IP, and DECnet Phase IV,
but the structure of the layers is the same in
each case. This facilitates interworking in mixed-
protocol networks.

TRANSPORT [
SERVICE |
|
———— — === ——— = + __________
SYSTEM 1 | SYSTEM 2
|
TRANSPORT TRANSPORT PROTOCOL TRANSPORT TRANSPORT
ENTITY I ENTITY LAYER
I
______________ +_.__________
NETWORK |
SERVICE
! A

PHYSICAL COMMUNICATION PROVIDED

BY UNDERLYING LAYERS

Figure 1

Elements of a Layer of DECnet Architecture

Digital Technical Journal Vol.5 No. | Winter 1993

15

DECnet Open Networking

The upper layers of DECnet, the session, pre-
sentation, and application layers, make use of the
reliable transport service to provide application-
oriented functions, such as file transfer or elec-
tronic mail. Again, different protocol suites are
supported, although in this case there are historical
reasons for the different layer structures that exist.

The Physical Layer

The physical layer is concerned essentially with the
electrical or other physical aspects of communica-
tion. It converts electrical or other signaling into
binary data (i.e., bits) and vice versa.

In DECnet, this layer has always been viewed
as the province of standards for devices such as
modems and LANs. These standards may have an
extremely complicated internal structure, as is the
case for some of the emerging high-speed, wide
area network standards, but this complexity is not
visible to the layers above.

The Data Link Layer

The data link layer provides a reliable communi-
cation path between directly connected systems
in the network. Its protocols can detect errors
introduced by the physical layer (for example, from
electrical disturbance). For media k nown to exhibit
a high error rate, such as analog links, the data link
layer also provides error-correcting mechanisms.

DECnet supports a variety of protocols in the
datalink layer, depending on the nature of the phys-
ical link and the need to accommodate existing
technologies.

The Network Layer

The network layer provides the means to move data
from one system to another, without regard to the
nature of the connections between them. It finds a
route through multiple systems and physical paths

APPLICATION LAYER

PRESENTATION LAYER

SESSION LAYER

TRANSPORT LAYER

NETWORK LAYER

DATA LINK LAYER

PHYSICAL LAYER

Figure 2 The Layers of DECnet

as necessary for any particular pair of communicat-
ing systems. In DECnet, systems that move data
through the network without being involved in the
details of the communication are called routers.

A key element in this layer is the network
address. Every system in the network has a unique
address. Every system can communicate with every
other system in the network, whether it is adjacent
or located on the other side of the world. OSI pro-
vides an addressing scheme that allows every
system in the world to have a unique address.'? It
may also give some hints to find a route to the
system. Previous versions of DECnet (Phase IV and
before) used a different addressing scheme. Phase v
includes a way to map these addresses into the OS!
scheme.

In addition to protocols for carrying user data
between communicating systems. the network
layer also contains protocols for finding routes
between systems. The routing protocols used in
DECnet Phase V are international standards, but the
technology was developed by Digital and sub-
sequently submitted to the relevant standards
organizations.'0-1.14

The network layer has a complex internal struc-
ture that allows one network to use the connec-
tions provided by another. For example, some of
the links in a DECnet network may be provided by a
public X.25 network, which is also providing links
in other private networks.

The Transport Layer

The transport layer provides a reliable end-to-end
service between two communicating systems, con-
cealing from its users the detailed way in which this
is achieved. Unlike the layers below it, the transport
layer is present only in the end systems communi-
cating with each other. Thus it allows the end sys-
tems to take full responsibility for the quality of the
communications. The functions of the transport
layer include

® Recovery from data loss, for example, when
the network layer fails to deliver a packet due to
congestion

= Flow control, so that the transmitter does not
send data into the network faster than the
receiver can acceptit

= Segmentation and reassembly of user messages,
so that the necessary division of data into dis-
tinct messages sent through the network does
not limit the size of messages as seen by the user

16

Vol. 5 No. I Winter 1993 Digital Technical Journal

Overview of Digital’s Open Networking

= Congestion avoidance, so that data transmitters
can adjust their rate of transmission into the
network in reaction to congestion indications
from the network layer

DECnet supports three protocols in the transport
layer: the network services protocol (NSP), defined
for previous phases of DECnet; the OSI transport
protocol; and TCP from the internet protocol
suite.” !

Upper Layer Protocols

The @SI model defines three distinct layers above
the transport layer: the session, presentation, and
application layers.

® The session layer organizes the structure of mes-
sage exchanges. For example, it provides half-
duplex semantics and allows checkpoints to be
established for recovery from system failure.

= The presentation layer deals with the existence
of different data representations in different sys-
tems. It allows a mutually acceptable transfer
syntax to be established which each communi-
cating system will be able to convert to and from
its internal representation.

= Theapplicationlayer contains protocol elements
specific to a particular application, such as file
transfer. Tt also provides a structure that allows
applications to be built that use multiple proto-
cols in a coordinated fashion.

The DECnet Phase IV and TCF/IP protocol stacks,
which are also supported by DECnet Phase V, do not
have this structure. Rather, the functions of the ses-
sion and presentation layers are built into the appli-
cation protocols as needed.

All three protocol suites support a wide variety
of applications, in addition to allowing a user the
flexibility to develop custom applications. Typical
applications include

® File transfer and access
= Virtual terminal
s Electronic mail

= Remote procedure calls

Naming Services

The protocols in the lower layers operate in terms
of addresses which are, for practical purposes, sim-
ply bit strings. Their format is heavily constrained
by the protocols, and their value is constrained by

the network topology or hardware. These addresses
are not at all user friendly, nor are they intended to
be. The human users of a network need access in
terms of something which they can remember and
which makes sense to them, which is to say a name.
Computers in the network therefore need to be
able to take a name and change it to an address, and
vice versa for incoming traffic.

DECnet Phase IV had a very simple approach to
this problem. Since it was aimed at small- to
medium-sized networks, it was practical for each
system to store the complete set of names and
addresses. Administrative procedures, such as regu-
lar file transfers, could be used to ensure that all
systems were kept up-to-date.

DECnet Phase VvV was designed to allow much
larger networks to be built, while both OSI and
TCP/IP are designed to support networks on a
global scale. The administrative problems and stor-
age requirements of the Phase [V approach make it
unusable for very large networks. A further compli-
cation arises as networks span multiple organiza-
tions, since no single central site can have
management responsibility for the complete set of
names. Therefore, a different approach is needed.

The limitations of the Phase IV approach were
recognized when this version of DECnet was in the
design phase, and work was started on the Digital
Distributed Name Service (DECdns). DECdns has
been available as an optional component of DECnet
Phase [V for some time. It provides

= Distribution: All naming information does not
have to be stored at a single point in the
network.

= Replication: Information can be held in more
than one place, giving resilience in the face of
system or network failures.

® Dynamic updating: Information can be changed
at any time.

= Automatic updating: Changed or new informa-
tion is automatically propagated throughout the
network.

= Hierarchical naming: A name can have multiple
components to reflect an administrative or other
organizational structure.

The development of the DECnet and DECdns
products has been closely linked, and each is
designed to make maximum use of the other. When
they are used together, DECnet can provide com-
plete autoconfiguration of a new node in the

Digital Technical Journal Vol.5 No.l Winter 1993

17

DECnet Open Networking

network, such that no manager or user needs
explicit knowledge of the address of a node. Once
a name is assigned, the node can keep the naming
service up-to-date both with the initial assignment
of an address and any subsequent changes. It is also
possible for a DECnet system to operate without
DECdns.

The TCP/IP protocol suite also includes a naming
service, with similar properties to DECdns. It is
called the domain name system, or DNS. At the
highest level, names are assigned by a global author-
ity to countries and to other large groupings of
organizations. Within countries, they are assigned
to particular organizations such as companies.
These organizations can then assign names that may
have further components reflecting their internal
structure.

Work on a naming service for OSI has lagged
behind the other protocol suites, but the most
important elements have been available since 1988
in a standard generally called X.500 (after the first
of a series of CCITT recommendations that define
the OSI directory). The X.500 standard defines the
structure of names and the protocols to be used to
access the naming service, but it does not include
the mechanisms required for automatic updating
and maintenance of the service itself.'> Work on
standards for these functions is currently at an
advanced stage. Like the DNS system for TCF/IP, the
X.500 standard allocates the highest level of the
structure to countries and then to organizations
within countries. Its design pays particular atten-
tion to the needs of electronic mail (the X 400 pro-
tocol family). In contrast to DECdns and DNS, which
assign names to computer systems, the structure of
X.500 names extends to the level of naming individ-
uals within a coherent naming framework.

DECnet supports all these naming services, in
conjunction with their respective protocol stacks.

Distributed Network Management

In early computer networks, management was per-
formed “out of band.” This meant that if any com-
munication between sites was needed to keep the
network running, some means other than the
network (for example, the telephone) was used. It
was soon realized that much of the time, the
network itself provided the most effective way to
communicate management information, either to
investigate a problem or to modify the configura-
tion. DECnet has included the ability to manage
itself in this way since Phase I1I.

The most obvious requirement for such a scheme
is a protocol that can carry management informa-
tion through the network. Such a protocol fits natu-
rally into the application layer, where it can make
use of the services provided by the other layers.

A further requirement is a well-defined structure
for the information that is to be conveyed. A net-
work architecture is constantly evolving, and it
must be possible to add new information (for exam-
ple, for a new kind of data link) into the protocol.

Finally, the specific information elements, such
as the fault counters to use in conjunction with a
particular protocol, must be defined.

The management model and protocol used in
earlier versions of DECnet were unsuitable for the
needs of Phase V due to the many different protocol
combinations that were to be supported. Hence, a
new management model was defined. For a long
time, this was called the Entity Model and was
subsequently published as Digital's Enterprise
Management Architecture (EMA).!® This model takes
an object-oriented approach to modeling the infor-
mation needed for management. It is completely
flexible and is not restricted to the management of
the network itself; it has since been applied to man-
agement of the computer systems themselves.

At the same time, Digital adopted an early draft of
the protocol under development for OSI manage-
ment, the common management information pro-
tocol (CMIP). The structure of the CMIP protocol
accommodates the flexibility allowed in EMA.

The management information needed for each
protocol is defined in the same architecture docu-
ment as the protocol itself. The modular structure
of EMA allows this to be accomplished without con-
flict between management information defined for
different protocols. In addition to the information
specific to particular protocols (such as parameters
of the protocol operation or counters), there are
also representations of the relationship between
protocol elements, such as user to provider.

EMA provides a clear distinction between two
roles in the management of a network: the agent
and the manager. The agent corresponds to the
thing beingmanaged andis part of the same system.
The manager is typically elsewhere and communi-
cates with the agent using the network and the
management protocols. The manager role is taken
by user interface programs. These may be simple,
like the network control language (NCL), a basic
command line utility appropriate for simple
networks, or they may be extremely powerful.

18

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

Overview ofDigital's Open Networking

DECmcc, for example, is a Digital product that pro-
vides the facilities appropriate to the management
of networks throughout an enterprise.

If the network is being used to manage itself, the
possibility exists for a kind of “deadly embrace,” in
which the communication path needed to fix a
problem is itself unavailable due to that same prob-
lem. DECnet has been designed to minimize the like-
lihood and practical impact of this risk. The
operation of the network layer is of vital impor-
tance in this regard. As long as a physical communi-
cation path is working, it will virtually always be
able to correct a fault, even if the fault is due to a
previous incorrect management operation.

The TCP/IP protocolsuite also provides a manage-
ment capability through the simple network man-
agement protocol (SNMP).” Although both the
protocol and the information model underlying it
are considerably simpler than EMA, comparable
facilities exist for many purposes. To the extent
possible, DECnet implementations are designed to
be managed through SNMP as well as through using
the DECnet management protocol.

The standards for management associated with
OSI protocols are still under development. Digital
has made extensive contributions based on its own
architecture, and the resulting standards bear a
strong resemblance to EMA. Standards exist for the
CMIP protocol and for the management model, but
specification of the specific elements of manage-
ment information needed for particular protocols
have yet to be completed.

Conclusions and Future Capability

In 1974, DECnet was the first networking product to
provide general-purpose, peer-to-peer communi-
cations. With the availability of Phase V, DECnet has
become the first fully standards-based family of
network products. It incorporates all available stan-
dards from the OSI and TCP/IP protocol suites in a
way that provides the system integration and the
performance traditionally associated only with pro-
prietary network products. Achieving this migra-
tion to standards has involved a phenomenal effort,
but this price has now been paid. Technology and
the standards that reflectitare in a constant state of
development. The future of DECnet will consist of
relatively frequent and modest incremental
changes that incorporate these new developments.
Already major developments in areas such as nam-
ing (X.500), transaction processing, and manage-
ment are finding their way into the products.

At the same time, there is an increasing need
for Digital networking products to incorporate
widely used, nonstandard protocols, especially
for interconnection with personal computers and
other desktop devices. Fortunately, the modular
architecture developed for Phase VvV makes it
relatively easy to do this in the same incremental
fashion.

DECnet has changed out of all recognition from
its early versions, yet it can still support the same
application programs that were built in the 1970s,
as well as client/server applications that are still
emerging. The basic physical technology that sup-
ports networking has also undergone enormous
changes, from 2,400-bit-per-second modems to
Ethernet and fiber distributed data interface (FDDI),
yet DECnet makes this all transparent to the user. In
another 20 years we can expect these technologies
to have developed as much again, or more, and we
can expect too that DECnet will continue to adapt
to match them.

References

1. V. Cerf and R. Kahn, “A Protocol for Packet
Network Interconnection,” IEEE Transactions
on Communications, vol. COM-22 (May 1974).

2. R. Cypser, Communications Architecture for
Distributed Systems (Reading, MA: Addison-
Wesley Publishing Co., 1978).

3. CCITT Recommendation X.25, CCITT Yellow
Book, wvol. VIII.2 (Geneva: International
Telecommunications Union, 1981).

4. The Ethernet: A Local Area Network, Data
Link Layer and Physical Layer Specification,
Version 2.0 (Digital Equipment Corporation,
Intel Corporation, and Xerox Corporation,
Order No. AA-K759B-TK, November 1982).

S. Basic Reference Model for Open Systems
Interconnection, 1SO 7498:1983 (Geneva:
International Organization for Standardiza-
tion, 1983).

6. J.Morency, R. Pitkin, R. Jesuraj, and A. Kwong,
“Modeling and Analysis of the DECnet/SNA
Gateway,” Digital Technical Journal, vol. 1,
no. 9 (June 1989).

7. D. Comer, Internetworking with TCF/IP: Prin-
ciples, Protocols and Architecture (Engle-
wood Cliffs, NJ: Prentice-Hall, 1988).

Digital Technical Journal Vol.5 No.! Winter 1993

19

DECnet Open Networking

10.

11.

12.

G. Cobb and E. Gerberg, “Digital’s Multiproto-
col Routing Software Design,” Digital Techni-
cal Journal, vol. 5, no. 1 (Winter 1993, this
issue): 70-83.

R. Perlman, R. Callon, and M. Shand, “Routing
Architecture,” Digital Technical Journal,
vol. 5, no. 1 (Winter 1993, this issue): 62-69.

Information Technology: Intermediate
System to Intermediate System Intra-domain
Routeing Information Exchange Protocol
JSor Use in Conjunction with the Protocol
Sor Providing the Connectionless-Mode
Network Service, 1SO 10589 (Geneva: Inter-
national Organization for Standardization,
1992).

R. Callon, Use of OSI IS-IS for Routing in
TCP/IP and Multi-Protocol Environments,
Internet Activities Board, RFC 1195 (1991).

Information Processing Systems: Network
Service Definition, Addendum 2: Network
Layer Addressing, 1SO 8348 (Geneva: Interna-
tional Organization for Standardization, 1988).

13.

14.

15.

16.

Information Processing Systems: End system
to Intermediate System Routeing Informa-
tion Exchange Protocol for Use in Conjunc-
tion with the Protocol for Providing the
Connectionless-Mode Network Service, 1SO
9542 (Geneva: International Organization for
Standardization, 1988).

Information Processing Systems: Data
Communications Protocol for Providing the
Connectionless-Mode Network Service, 1SO
8473 (Geneva: International Organization for
Standardization, 1984).

CCITT IXth Plenary Assembly, “The Directory
—Overview of Concepts, Models and Ser-
vices,” Recommendation X.500 and ISO 9594-1,
Data Communication Networks Directory:
Recommendations X.500 to X.521, CCITT
Blue Book, vol. VIIL.8 (Geneva: International
Telecommunications Union, 1989).

Enterprise Management Architecture
General Description (Maynard, MA: Digital
Equipment Corporation, Order No. EK-
DEMAR-GD-001, 1989).

20

Vol. 5 No.1 Winter 1993 Digital Technical Journal

Lawrence Yetto

Dorothy Noren Millbrandt
Yanick Pouffary

Daniel J. Ryan, Jr.

David J. Sullivan

The DECnet/OSI for OpenVMS
Version 5.5 Implementation

The DECnet/OSI for OpenVMS version 5.5 product implements a functional Digital
Network Architecture Phase V networking product on the OpenVMS system. This
new software product ensures that all existing OpenVMS application programs uti-
lizing published interfaces to DECnet-VAX Phase IV operate without modification
over the new DECnet product. T he components of DECnet/OSI for OpenVMS version
5.5 include the new interprocess communication interface. The design goals and
implementation strategy were redefined for network management, the session con-
trol layer, and the transport layer: The configuration utility was structured into

several files that are easy to read.

The DECnet Phase V networking software presented
the DECnet-VAX development team with a major chal-
lenge. Although the Digital Network Architecture
(DNA) has always corresponded to the lower layers
of open systems interconnection (OSI), the Phase V
architecture has substantial differences from Phase
IV in many layers. For example, the session control
layer now contains a global name service.!

DECnet Phase V also added new network man-
agement requirements for all layers. In most cases,
the existing Phase IV code could not be adapted to
the new architecture; it had to be redesigned and
rewritten. This presented the engineers with the
opportunity to restructure and improve the older
pieces of code that have been continually modified
and enhanced since the first release of DECnet-VAX.
Due to the large installed customer base, however,
it also presented a huge compatibility problem. We
could not simply drop the old in favor of the new;
we needed to ensure that the customers’ DECnet-
VAX applications would continue to be supported.

This paper gives an overview of the design of
the base components in the new DECnet/OSI for
OpenVMS version 55 product. It then presents
details about the internals of the network manage-
ment, session control, and transport layers. Finally,
the new configuration tool designed for DECnet/
OsI for OpenVMS version 5.5 is discussed. Unless
otherwise noted in this paper, the term DECnet/OSI
for OpenVMS refers to version 5.5 of the product.

Higb-level Design

Numerous goals were identified during the design
phase of the base components for the DECnet/OSI
for OpenVvMS software. Foremost among these
goals was to conform to the DNA Phase V architec-
ture and to support image-level compatibility for
existing Phase IV applications. Care was also taken
in the design to allow the product to be extensible
to accommodate the ongoing work with industry
standards.

Design Overview

The queue I/0 request ($QIO) application program-
ming interfaces (APIs) for the VAX OSI transport ser-
vice and DECnet-VAX are already defined and widely
used by network applications. To ensure that exist-
ing applications would continue to work, these
interfaces were modified in a compatible fashion.
As a result, not all of the capabilities of Phase V
could be added to the existing APIs. A new API, the
interprocess communication interface ($1PC), was
developed to support all the functions defined in
the Phase V session control layer. In addition, the
$1PC interface was designed to allow for future
capabilities.

The $QIO and $1PC interfaces interpret the appli-
cation’s requests and communicate them to the
DNA session control layer through a kernel mode
system interface called session services. In the ini-
tial release of DECnet/OSI for OpenVMS, the VAX OSI

Digital Technical Journal Vol. 5 No. I Winter 1993

21

DECnet Open Networking

transport service joined its $QIO interface to the
stack at the network layer. The first follow-on
release will fully support this APIL It will be rewrit-
ten to interface directly to the common OSI trans-
port module.

DECnet/OSI for OpenvMS implements each layer
of the Phase V architecture in separate modules.
These modules require a well-defined interface to
communicate. This is supplied by the new inter-
rupt-driven VAX communication interface. This
interface defines the rules used by cooperating VAX
communication modules to exchange information.
The upper VAX communication modules consume
a set of services, and the lower modules provide
services. The lower VAX communication modules
define the explicit messages and commands that
are passed between the modules. This definition is
then referred to as the lower layer’s VAX communi-
cation interface. For example, the transport layer
provides a service to the session control layer.
Transport is the lower module, and session is the
upper. The rules for how the interface works are
defined by the VAX communication interface itself,
but the commands and services supplied by the
transport layer are defined by that layer. As a result,
the interface between the session and transport

layers is referred to as the transport VAX communi-
cation interface.

To comply with the new Enterprise Management
Architecture (EMA), each of the modules supplies
one or more manageable entities to network man-
agement. This is accomplished by the EMA agent
(EMAA) management facility. EMAA supplies both an
entity interface to the individual modules and an
EMAA interface to the network. This interface is dis-
cussed further in the Network Management section.

Figure 1 shows the components of the DECnet/
OslI for OpenVvMS product and their logical relation-
ship to each other.

Implementation of the Modules

Each DECnet/OSI for OpenVMS base component is
implemented in one of three ways. The most promi-
nent method is through OpenVMS executive load-
able images. These loadable images are all placed in
the SYSSLOADABLE_IMAGES system directory during
installation and loaded as part of the NET$STARTUP
procedure, which the OpenVMS system runs during
a system boot.

The two $QIO interfaces must operate within the
OpenVMS 170 subsystem. As a result, they are both
coded as device drivers and loaded during

osl!
TRANSPORT DNA APPLICATION
APPLICATION
VAX O8I | AP
T $iPC $Qi0 | USER
SERVICE $QI0 SESSION SERVICES
INTERFACE
DNA SESSION SESSION MODULE
CONTROL
TRANSPORT
| INTERFACE
NETWORK OsI
MANAGEMENT TRANSPORT NSP TRANSPORT IA%ADNUSLZ%RT
(TPO, TP2, TP4)
ROUTING INTERFACE
X.25 NETWORK 0S| NETWORK ROUTING MODULES
DATA LINK
EMAA | INTERFACE
ENTITY
INTERFACE | WIDE AREA FIBER DATA LINK
NETWORK | csMmA-CD | DISTRIBUTED MODULES
DEVICE DRIVER DATA INTERFACE
Figure 1 ~DECnet/OSI for OpenVMS Base Components

22

Vol.5 No. 1 Winter 1993 Digital Technical Journal

The DECnet/OSI for OpenVMS Version 5.5 Implementation

NET$STARTUP by the SYSGEN utility. Once started,
they can create a VAX communication interface
port to the appropriate modules to process their
network requests.

The third way a component can be implemented
is as a standard OpenVMS image or shareable image.
These images include NET$ACP.EXE, which is
started as a system process by NET$STARTUP, and
NCL.EXE, which is the utility that supplies the
network control language (NCL) interface to
users. Other images, such as NET$MIRROR.EXE, are
started by the network software in a separate pro-
cess when a network request is received for the
application.

Implementation of the Base Image

The base image, SYS$NETWORK_SERVICES.EXE, has
been present on all OpenVMS systems since version
5.4. The OpenVMS system loads this executive
image early in the boot cycle. The default file
shipped with OpenVMS is a stub that simply sets a
system cell during initialization to indicate that the
older Phase IV code is loaded. This system cell can
then be interrogated through an OpenVMS system
service or froma Digital Command Language (DCL)
command line to determine which version of the
DECnet software is loaded.

When the DECnet/OS] for OpenVMS product is
installed, the base image is replaced with the Phase
V version. The new image sets the system cell to
indicate that Phase V is loaded. It provides a host of
common services, including EMAA, to the remain-
ing system components. It also contains the code
used to implement the Phase V node agent required
by EMA on each node. Each of the remaining
DECnet/OSI for OpenVMS components makes use of
the base image by vectoring through a system cell
to the desired function.

Network [tem Lists

The DECnet/OSI for OpenVMS modules pass large
amounts of data between themselves. This
exchange requires an efficient means to encode and
move the data. Conversions are expensive opera-
tions; therefore a decision was made to use the
same structure for all the interfaces within the base
components. The structure chosen, a network item
list, is a simple length/tag/value arrangement in
which the tags are defined in a common area
between sharing modules. Network item lists are
very easily extended as new functions are added to
the software. Since they contain no absolute

addresses, they are also position independent. This
has the advantage of making it easy to copy or move
them when necessary.

Network item lists are used between all VAX com-
munication modules, by EMAA, and by the session
services interface. They are also presented to user-
written applications through the $IPC interface,
thus allowing the interface to be expanded as more
protocols and standards are implemented in the
DECnet network.

Network Management

This section discusses the DECnet/OSI for OpenVMS
network management design and network manage-
ment functions implemented in Phase V.

Network Management Design

The key to Phase V network management design is
the EMA Entity Model, which defines the standard
management structure, syntax, and interface to be
used by each manageable object. The DECnet/OSI
for OpenVMS EMA framework is built on this model
and defines the components required for a system
manager to perform actions on managed objects,
both locally and across a network. The EMA frame-
work consists of the following components.

= A director interface, through which user com-
mands called directives are issued

= A management protocol module that carries
directives to the node where the object to be
managedresides

= Anagent that decodes the directive into specific
actions and passes that information to the man-
aged object

= An entity, the object to be managed

For a full understanding of the DECnet/OSI for
OpenVMS network management implementation,
the reader should first understand the EMA model.
Details on the EMA model can be found in the paper
on management architecture in this issue.?

In the DECnet/OSI for OpenVMS network manage-
ment design, the components and their division of
function generally follow the EMA framework.
There are, however, a few exceptions. Figure 2
shows the DECnet/OSI for OpenVMS components
that implement the EMA model and other Phase V
management functions.

The NCL utility provides the EMA director func-
tion. The NCL image processes user commands into
management directives. It also displays the
responses that are returned.

Digital Technical Journal Vol.5 No. | Winter 1993

23

DECnet Open Netw

orking

COMMAND
DIRECTOR J EVENT
(NCL) _ RESPONSE =t EVENT SINK
CMIP CMIP CMIP
REQUESTER | PROTOCOLS | LISTENER
EVENT | oo E L T I] R
ornT N DIRECTIVE [
EVENT K LA DIRECTIVE
| DISPATCHER
DISPATCHER | : RESPONSE | yian)
] |
A 1)
EVENT : ! DIRECTIVE RESPONSE
DNA SESSION CONTROL DNA SESSION CONTROL
TRANSPORT TRANSPORT
ENTITIES NETWORK NETWORK ENTITIES
DATA LINK DATA LINK
PHYSICAL PHYSICAL
NODE A TRANSMISSION MEDIUM NODE B

Figure 2 Network Management Components

The common management information protocol
(CMIP) requester library routines provide part of
the management protocol module functions. These
include encoding a management directive into
CMIP, transmitting it to the designated node, and
receiving the response. The CMIP requester rou-
tines are implemented as part of NCL, not as a sepa-
rate management protocol module.

A CMIP listener server process, CML.EXE, pro-
vides the remainder of the management protocol
module function. It receives a management direc-
tive and passes it to the agent. When the agent
returns a response, CML transmits the response to
the originating node.

The DECnet/OSI for OpenVMS EMA agent, EMAA,
accepts management directives from CML, dis-
patches them to the requested entity, and returns
responses to CML. EMAA also extends this concept
by actually performing the management directives
in some cases.

Entities are not strictly a part of network manage-
ment. They do, however, receive management
directives from EMAA in DECnet/OSI for OpenVMS.
They must be able to carry out the directives and
return the results of the operation to EMAA.

In DECnet Phase V, an event is the occurrence of
an architecturally defined normal or abnormal con-
dition. Events detected by entities are posted to an
event dispatcher, which passes them to a local or
remote event sink. If remote, a CMIP event protocol
is used. In DECnet/OSI for OpenVvMS, the event
dispatcher image, NET$EVENT_ DISPATCHER.EXE,

implements the event dispatching and event sink
functions.

The data dictionary is a binary compilation
of architecturally defined codes for all known
Phase V muanagement entities, the manageable
attributes of each entity, and the actions that can be
performed. It also contains information necessary
to encode this information into Abstract Syntax
Notation Number 1 (ASN.1), required for the CMIP
protocol.

Finally, there is the maintenance operations
protocol (MOP). Although MOP is not an EMA com-
ponent, it is a component of DNA. It performs
low-level network operations such as down-line
loading and up-line dumping.

Network Management Implementation
The most visible differences between DECnet Phase
IV and DECnet Phase V arise from adherence to
the EMA architecture. This section discusses the
replacement functions implemented in Phase V.

The NCL Utility The network control program
has been replaced in Phase V with the NCL utility.
NCL provides a highly structured management syn-
tax that maps directly to the EMA specifications for
each compliant entity. In an NCL command, the
hierarchy of entities from the node entity to the
subentity being managed must be specified. For
example, the following command shows the local
area network (LAN) address attribute of a routing
circuitadjacency entity.

24

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

The DECnet/OSI for OpenVMS Version 5.5 Implementation

NCL> Show Node DEC:.zko.Ilium -
Routing Circuit lan-0 Adjacency -
rtg$0002 LAN Address

The command contains the node entity name,
DEC:.zko.Ilium; the module entity within the node,
routing; the name of the circuit subentity of rout-
ing, lan-0; the name of the adjacency subentity of
circuit, rtg$0002; and finally the attribute name.

To issue management commands from a DECnet/
OSI for OpenVMS system, a user invokes the NCL
utility. NCL parses commands into fragments called
tokens, containing ASCII strings. It uses the data dic-
tionary to translate these into management codes
for directives, entities, and attributes. NCL then con-
structs a network item list from this information
and invokes the CMIP requester send function.

CMIP requester functions are implemented as a
set of library routines that are linked with the NCL
utility. Underneath this caller interface, the CMIP
routines establish a connection over DNA session
control to the destination node’s CMIP listener. The
directive is then encoded into a CMIP message and
passed to the destination.

NCL now posts the first CMIP requester receive
call. More than one receive call may be needed to
obtain all the response data. As soon as a partial
response is available, the receive function decodes
the CMIP messages into network item lists and
passes them back to NCL. NCL translates these into
displayable text and values and directs the output
to the user’s terminal or a log file. If the partial
response is not complete, NCL then loops and
issues another call to the CMIP requester receive
function.

The CMIP requester functions are optimized for
the local node case. If the destination node is speci-
fied as “0" (the local node), the CMIP requester func-
tions interface directly to the EMAA interface,
skipping the CMIP encoding, decoding, and the
round trip across the network.

The CMIP Listener The CMIP listener is imple-
mented as a server process, similar to the Phase IV
network management listener. When an incoming
connection request for CML is received, a process is
created to run the CML image. The CML image uti-
lizes the DNA session control interface to accept
the connection and receive the CMIP encoded
directive. It then uses the data dictionary to decode
the message into a network item list. EMAA is then
invoked to process the directive and return any
required response from the entity. Once CML

has received all portions of the response from
EMAA, encoded them into CMIP, and transmitted
them back to the requesting node, the CML image
terminates.

EMAA, the EMA Agent The management struc-
ture imposed by EMA contains common directives
that must be supported by all entities. A design goal
for EMAA was to provide a common management
facility with support for common operations such
as show or set. EMAA can perform these functions
against an entity’'s management data structures,
thereby freeing each entity from separately imple-
menting them and simplifying the entity’s code
requirements. This approach was successfully
implemented, though at the cost of a more complex
agent implementation and a set of registration
macro instructions colloquially known as the
“macros from hell”

The above interface between EMAA and the enti-
ties is known as the full interface. Not all develop-
ment groups’ coding entities were interested in this
approach; thus, EMAA also provides a basic inter-
face. An entity specifies which interface to use dur-
ing its initialization when it registers with EMAA.
For an entity that uses the basic interface. EMAA
simply passes the directive information to the des-
ignated entity and expects response data returned.

The choice of interface must be made by the
module-level entity. If the entity uses the full inter-
face, it must register its management structure,
including all subentities and attributes, with EMAA.
For these entities, EMAA processes the network
item list passed by CML. It creates a data structure
for each subentity instance, specifying the
attributes, any values supplied, and the actions to
be performed. EMAA passes this to the designated
entity, which uses tables set up during initialization
to call the appropriate action routine for the direc-
tive. By default, these action routines are set up as
callbacks into EMAA itself, thereby allowing EMAA
to perform the task. With either the basic or the full
interface, a separate response is required for each
subentity instance specified by a directive. EMAA
calls CML iteratively through a coroutine call to
pass response data back to CML.

The Event Dispatcher Phase IV event logging
allowed events to be sent to a sink on one node. In
Phase V, the event dispatcher supports multiple
sinks that can be local or on any number of remote
nodes. Event filtering can be applied on the out-
bound streams of events, filtering events before

Digital Technical Journal Vol. 5 No. 1 Winter 1993

25

DECnet Open Networking

they are transmitted to a sink. This provides a mech-
anism to direct different types of events to different
sinks.

An event sink is the destination for an event mes-
sage. A node can have multiple sinks, each accept-
ing events from any number of remote nodes. Event
filtering can be applied to the inbound streams of
events at the event sink. An event message that
passes is sent to the sink, which uses the data dic-
tionary to format it into ASCII character strings. It is
then output to the sink client, which may be a con-
sole, printer, or file.

An optimization is used when an event is gener-
ated on a node and the destination sink is on the
same node. In this case, the event bypasses the out-
bound stream and is queued directly to the event
sink. The DECnet/Os] for OpenVvMS product, in the
default configuration for a local node, defines one
outbound stream directed to a sink on the local
node and defines the console as the sink client.

An event relay provides compatibility with Phase
IV nodes. This important function permits a Phase V
event sink to log messages from Phase IV or Phase V
DECnet systems. Event relay is a session control
application that listens for DECnet Phase IV event
messages. [t encapsulates eachPhaselVv event mes-
sage in a Phase V event message and posts it to the
event dispatcher, using the same service that other
DECnet/OS] for OpenVMS entities use to post events.

Maintenance Operations Protocol The NET$MOP
process is the DECnet/OSI for OpenVMS implemen-
tation of the DNA maintenance operations proto-
col. MOP uses the services of the local and wide
area data link device drivers to perform low-level
network operations. MOP can down-line load an
operating system image to a VMScluster satellite
node and respond to remote requests from a
network device to down-line load or up-line dump
an image. MOP also supports management direc-
tives that allow a system manager to load or boot a
remote device, monitor system identification mes-
sages, perform data link loopback tests, or open a
terminal /O communications channel to a device's
console program.

The primary design goal of the MOP implementa-
tion was to respond quickly and with low system
overhead to remote requests from devices to down-
line load an image. In some network configura-
tions, a power failure and restoration can cause
hundreds of devices to request a down-line load at
the same time. The Phase [V implementation was
known to have difficulty handling this, so the new

implementation of MOP was designed for multi-
threaded operation. This means there is only one
MOP process per node, and it processes multiple
concurrent operations by creating a separate
thread for each management directive, program
request, or dump request received. Moreover, all
management data required to service MOP requests
is contained in MOP-specific management data
structures, designed to be searched quickly. When a
request is received, MOP can promptly ascertain
whether the required information to service the
request is available and make a response.

Session Control Implementation

The design of the DECnet/OSI for OpenVMS session
control layer is based on goals defined by both the
session control architecture and the DECnet user
community. These goals include

= Compatibility. The DECnet-VAX product has a
large customer base with major investments in
DNA applications. The session control layer sup-
ports these applications without requiring a
relink of the object code.

= Performance. Transmit and receive operations
across the network must be as efficient as possi-
ble. Minimal overhead is introduced by the ses-
sion control layer in making each transport
protocolavailable to applications.

= Extensible. The session control layer design
allows for future additions to the architecture.

= New features. The session control layertakesfull
advantage of the new naming and addressing
capabilities of Phase V DNA.

= Improved management. The session control
layer complies with EMA, allowing it to be man-
aged from anywhere throughout the network.

Session Control Design

The session control layer is divided into several log-
ical components, $QIO, IPC, NETACP, common
services, and network management. $QIO and $1PC
provide the APIs required to communicate across
the network. $QIO is fully compatible with all
Phase [V DECnet-VAX applications; however, it does
not allow access to the full set of features available
in DECnet/OSI for OpenvMS. These new features,
and any future additions, are available only through
the new $IPC interface.

The two APIs are consumers of session con-
trol services provided by the common services

26

Vol.5 No. | Winter 1993 Digital Technical Journal

The DECnet/OSI for OpenVMS Version 5.5 lmplementation

component. This component provides all the
network functions defined in Phase V to the APIs
above it. In order to do this, the common services
component makes use of both the NET$ACP and
network management portions of the session con-
trol layer.

Figure 3 shows the session layer components and
their relationships to each other.

Session Control APIs

DECnet Phase 1V restricted node names to six char-
acters in length. In DECnet-VAX the $QIO interface
was the only means by which an application could
make calls to the session control layer. This inter-
face also enforced the six-character name limit.
With the advent of Phase V, this restriction no
longer applies. It is possible for a node running
Phase V to be unreachable by a Phase IV-style six-
character node name. As a consequence, the $QIO
interface was extended to allow full name repre-
sentations of a node.

The $IPC interface is a new interface that incor-
porates all the functions of the $QIO interface,
along with extensions made to the session control
architecture. This item-list-driven interface pro-
vides a cleaner, more extensible interface and
allows for easy conversion of $QIO applications.
The $QIO interface uses a network control block
(NCB) and a network function block (NFB) to hold
data. This data is easily mapped to items in a
network item list. Also, the function codes used
by $QIO can be easily mapped to $IPC function
codes. As new requirements arise, supported items
can be added to the list without impacting the exist-
ing values.

The $IPC interface also supplies some new fea-
tures not available in $QIO. Phase V DNA uses the
Digital Distributed Name Service (DECdns) to store
information about nodes and applications in a
global namespace. Once an application declares

| $QIO | | $IPC

3
Y

NETWORK >
MANAGEMENT

COMMON e
SERVICES NETSACP

1&
Y
TRANSPORT
LAYER

Figure 3 Session Design

itself in the global namespace, $IPC enables session
control to maintain its address attribute. This
address attribute contains all the information nec-
essary to define where the application resides on
the network. $IPC can then be used by the client
side of an application to connect to a server
through a single global name, instead of using a
node name and application name pair. This enables
the client side of an application to communicate
with its server without knowing where the server
currently resides.

$IPC supports a new means of accessing a node
by its address. In Phase 1V, addresses were limited
to 63 areas with 1,023 nodes in each area. The
address of each node could be represented with
a 16-bitinteger. The $QIO interface supports a form
of node name in which the 16-bit address is con-
verted into the ASCII representation of the decimal
equivalent. This is not sufficient to address all Phase
V nodes, so a new function called “connect-by-
address tower” is available through $IPC. The
address tower is discussed further in the Common
Services Component section.

Yet another feature of $IPC is the ability to trans-
late a node’s address into the name of the node as
registered in the global namespace. In Phase IV the
address-to-name translation was a management
function. Furthermore, the translation was local to
the node on which it was performed.

Session Control Network Management

The session control layer makes use of the full
EMAA entity interface to supportallentities defined
by the session control architecture. These include
the session control entity itself, as well as the appli-
cation, transport service, port, and tower mainte-
nance subentities. Each of these entities contains
timers, flags, and other control information used by
the session control layer during its operation. They
also contain counters for the events generated by
the session control layer.

The application subentity is of special interest.
This entity is the equivalent of the Phase IV object
database. It allows the system manager to register
an application with session control to make it avail-
able for incoming connections. This entity is also
used to control the operation of the application
and select the types of connections that can be sent
or received by it.

Common Services Component

The common services component is the hub for
session control. It is responsible for performing

Digital Technical Journal Vol.5 No. | Winter 1993

27

DECnet Open Networking

tasks that are not specific to the $IPC or $QIO
interfaces. These tasks include managing transport
connections on behalf of session control uscrs,
mapping from a DECdns object name to addresses,
selecting communication protocols supported by
both the local and remote end systems, maintaining
the protocol and address information correspond-
ing to local objects in the namespace, and activating
(or creating) processes to service incoming con-
nect requests.

The NET$ACP process is used to provide the com-
mon services component with process context.
The NET$ACP image itself is nothing more than a set
of queues and an idle loop. When the session con-
trol layer is loaded, it creates user-mode and kernel-
mode tasks. A queue is assigned for each task, and
the NET$ACP process attaches to the task when it is
started. When the session component needs to exe-
cute in the context of a process and not on the
interrupt stack, it builds a work queue entry,
queues it to the appropriate task queue, and wakes
up the NET$ACP. The NET$ACP finds the address of
the desired routine in the work queue entry and
executes it. This routine can be located anywhere
that is addressable by the process, but it is usually
contained within the session control loadable
image. The common services component makes
use of the NET$ACP for reading files, creating
network processes, and making calls to the DECdns
clerk. It also makes use of the process for functions
that require large amounts of memory. By perform-
ing these tasks in the NET$SACP process, session con-
trol is able to use process virtual memory even
though it is implemented as an executive loadable
image.

The tower set data structure plays a key role
in session control. A tower set consists of one or
more towers. Each tower represents a protocol
stack and is composed of three or more floors, as
shown in Figure 4. The lowest floors in the tower
correspond to the DNA routing, transport, and ses-
sion control layers; they are used to identify proto-
col and associated address information to be used

at that layer. When viewed as a whole, the tower set
describes a combination of protocols supported
on a node. The session control layer on every
DECnet/OSI for OpenVMS system not only uses this
information to communicate with remote nodes,
but is also responsible for building a tower set to
represent that local system. Once built, this tower
set is placed in the namespace as the attribute for
the node.

The session control interfaces allow the user to
specify a node in many ways. A node can be speci-
fied as a Phase IV-style node name, a Phase [V-style
address, a DECdns full name, or a tower set. The
three forms of name representations are mapped to
the corresponding tower set by making calls to the
DECdns clerk to obtain the node's tower set
attribute. Once the tower set is in hand, it can be
used to communicate with the session control layer
on the remote node.

The tower set for a remote node and the tower
set for the local node are used in conjunction
to determine if both nodes support a common
tower. If a common tower is found, session control
attempts to establish a connection to the remote
node using that tower. If the connection fails, the
comparison continues. If another matching tower
is found, the connection attempt is repeated. This
continues until the connection is established or the
tower sets are exhausted.

Use of DECdns

The scssion control layer uses DECdns objects for
all global naming. These objects are used in two dif-
ferent ways: they can represent a node or a global
application. A node object is a global representa-
tion of a node in a DECdns namespace. Each node
object contains attributes that identify the location
of a node. Foremost in this list of attributes is the
DNA$Towers attribute. The DNA$Towers attribute
contains the tower set for the node and is written
automatically by the session control layer when
DECnet/0SI for OpenVvMS is configured and started.
Once created, this attribute is updated by session

FLOORN APPLICATION-DEFINED FLOORS

FLOOR 3 SESSION PROTOCOL

SESSION ADDRESS INFORMATION

FLOOR 2 TRANSPORT PROTOCOL

TRANSPORT ADDRESS INFORMATION

FLOOR 1 ROUTING PROTOCOL

ROUTING ADDRESS INFORMATION

Figure 4 Tower Design

28

Vol. 5 No. | Winter 1993 Digital Technical Journal

The DECnet/OSI for OpenVMS Version 5.5 Implementation

control to reflect the current supported towers for
the node.

When the session control layer builds the tower
set for the DECdns node object, it creates a tower
for each combination of supported protocols and
network addresses on the node. If the node sup-
ports two transports and three network addresses,
the tower set is generated with six towers. It always
places the CML application protocol floor on top of
the session control floor. The address information
for the session control floor is then set to address
the CML application. The transport address infor-
mation is set to address DNA session control, and
the routing information of each tower in the set is
set to one of the supported network addresses for
the node.

The node object DNA$Towers attribute contains
data that completely describes the node. Since ses-
sion control supports node addresses and Phase
[V-style node names, soft links are created in the
namespace to map from a Phase V network service
access point (NSAP) or a Phase IV-style node name
(node synonym) to the node object. These links can
then be used by the session control layer as alter-
nate paths to the node object.

An application object is a global representation
of an application. The DNA$ Towers attribute of this
object contains a set of address towers used to
address the application. The routing and transport
floors for cachtowerin this set are used in the same
manner as for the node object. The address informa-
tion in the session floor, however, addresses the
application, not CML. Once set, the information in
this tower setis not maintained unless the applica-
tion issues a register object call through the $1PC
interface. If this is done, session control maintains
the tower in the same manner as it does for the
node object.

Transport Implementation

The DECnet/OSI for OpenVMS product supports
two transport protocols: the open systems inter-
connection transport protocol (OSl ITP) and the
network service protocol (NSP). Each transport
protocol, or group oflogically associated protocols,
is bundled as a separate but equivalent VAX commu-
nication module. This approach accomplishes
many goals. The more notable ones include

= [solating each module as a pure transport engine

= Defining and enforcing a common transport
user interface to all transports

= Providing extensible constructs for future trans-
port protocols, i.e., providing a set of transport
service libraries

= Eliminating previous duplication in adjacent
layers (session and network routing layers)

= Providing backward compatibility with exist-
ing Phase [V transport protocol engines
(NETDRIVER/NSP and VAX OSI transport service)

Transport Layer Design

A transport VAX communication module has two
components, a protocol engine and the transport
service libraries. The service libraries are common
code between modules and are linked together
with each engine to form an executive loadable
image. The three elements of DECnet/OSI for
OpenVMs transport, the NSP protocol engine, the
OSI protocol engine, and the transport service
libraries, are linked into two images. Figure S
shows the relationship of these elements.

The specific functions provided by a transport
engine depend on the protocol. The generic role of
NSP and the OSI transport layer is to provide a reli-
able, sequential, connection-oriented service for
use by a session control layer. The design provides a
common transport interface to both NSP and the
OSI transport layer. This enables NSP and OSI trans-
port (class 4) to be used interchangeably as a DNA
transport. As future transport protocols are devel-
oped, they can be easily added into this design.

The DECnet/OSI for OpenVMS transport design
places common functions in the service libraries
for use by any protocol engine that needs them.
Any functions that are not specific to a protocol are
performed in these libraries. Separating these func-
tions enables new protocols to be implemented
more quickly and allows operating-system-specific
details to be hidden from the engines.

| OSIVAX
COMMUNICATION |
| MODULE e |
| | |
| | os | | TRANSPORT NSP |
PROTOCOL SERVICE | PROTOCOL | |
I | ENGINE I | LIBRARIES | ENGINE
| | '
_____ - NSP VAX |
[COMMUNICATION |
L __ A I
Figure 5 Logical Transport Components

Digital Technical Journal Vol 5 No. I Winter 1993

29

DECnet Open Networking

The NSP transport VAX communication module
operates only in the DNA stack and supports
only DNA session control. Due to an essentially
unchanged wire protocol, NSP is completely com-
patible with Phase IV implementations.

The OSI transport VAX communication module
implements the International Organization for
Standardization (I1SO) 8073 classes 0, 2, and 4 proto-
cols. It can operate on a pure OSI stack in a multi-
vendor environment. The OSI transport is also
completely compatible with the Phase [V VAX OSI
transport service implementation and operates on
the DNA stack supporting DNA session control.

Transport Engines The transport VAX communi-
cation modules provide a transport connection
(logical link) service to the session layer. The con-
nection management is designed to ensure that
data on each logical link is handled independently
from data on other logical links. Data belonging to
different transport connections is never mixed, nor
does a blockage of data flow on one connection
prevent data from being handled on another.

The transport VAX communication modules are
state table driven. Each transport engine uses a
state/event matrix to determine the address of an
appropriate action routine to execute for any
state/event combination. As a transport connection
changes state, it keeps a histogram of state transi-
tions and events processed.

Service Libraries The following functions are
common to many protocols and are implemented
in the service libraries.

= Transfer of normal data and expedited data from
transmit buffers to receive buffers

= Fragmentation of large messages into smaller
messages for transmission and the reconstruc-
tion of the complete message from the received
fragments

= Detection and recovery from loss, duplication,
corruption, and misordering introduced by
lower layers

The key transport service library is the data
transfer library. This library gives a transport engine
the capability to perform data segmentation and
reassembly. Segmentation is the process of breaking
a large user data message into multiple, smaller
messages (segments) for transmission. Reassembly
is the process of reconstructing a complete user
data message from the received segments. To use
the data transfer library, a protocol engine must

provide a set of action routines. These action rou-
tines hold the protocol-specific logic to be applied
to the data handling process.

Network Services Phase V provides two types of
network services: connectionless (CLNS) and con-
nection-oriented (CONS). CLNS offers a datagram
facility, in which each message is routed to its desti-
nation independently of any other. CONS estab-
lishes logical connections in the network layer over
which transport messages are then transmitted.

Transport running over CLNS has a flexible inter-
face. It opens an association with the CLNS layer and
is then able to solicit the CLNS layer to enter a trans-
port protocol data unit (TPDU) into the network.
When admission is granted, transport sends as
many TPDUs as possible at that time. Incoming
TPDUSs are posted to transport as they are received
by the CLNS layer. Both NSP and OSI transports run
over the CLNS layer.

Transport running over CONS has a more rigid
interface. Once a network connection is estab-
lished with the CONS layer, each transport request
has to be completed by the CONS layer. Thus trans-
port, when running over CONS, is not able to trans-
mit all its TPDUs at once. Each transmit must be
completed back to transport before the next can
commence. Also, if transport is to receive incoming
TPDUS, a read must be posted to the CONS layer. The
OSI transport runs over the CONS layer, but the NSP
protocol was designed specifically for CLNS and
does not operate over CONS.

Differences between Phase IV and Phase V
Transport Protocol Engines

Flow control policy is an important difference
between the VAX OSI transport service and the
DECnet/OSI for OpenVMS implementation. The VAX
OSl transport service implements a pessimistic
policy that never allocates credit representing
resources it does not have. The OSI transport proto-
col, on the other hand, implements a more opti-
mistic policy that takes advantage of buffering
available in the pipeline and the variance in data
flow on different transport connections. It makes
the assumption that transport connections do not
consume all allocated credit at the same time.
Other enhancements to the OSI transport protocol
include conformance to EMA network manage-
ment, compliance with the most recent ISO specifi-
cations, and participation in DECnet/OSI for
OpenVMS VMScluster Alias.

30

Vol.5 No. ! Winter 1993 Digital Technical Journal

The DECnet/OSI for OpenVMS Version 5.5 Implementation

The two main differences between the Phase v
and Phase V NSP implementations are conformance
to the EMA management model, and, once again,
flow control. In Phase IV, NSP does not request flow
control and uses an XON/XOFF mechanism. This
results in large fluctuations in throughput. Phase V
NSP has been enhanced to request segment flow
control. This mechanism enables each side of a
transport to determine when it can send data seg-
ments. Due to this difference in flow control policy,
Phase V NSP throughput converges to a maximum
value.

Future Direction of Transports

The DECnet/OSI for OpenVMS transport design pro-
vides a common transport user interface to all
transports and places common functions in the
transport service libraries. This approach provides
extensibility; it allows future transports to be easily
incorporated as they emerge in the industry. This
common interface can also be used to provide an
API that interfaces directly to a transport. DECnet/
OsIfor OpenVMS engineering is currently looking at
providing such an APL

Configuration

Design on the new configuration tools was started
by collecting user comments about the Phase IV
tools and desirable features for the new tool. This
data was collected from customer communication
at DECUS, through internal notes files, and through
internet news groups.

The first goal agreed upon was to create configu-
ration files that are easy to read; inexperienced
Phase V network managers may be required to read
and understand these files. Next, the tool must be
structured. The configuration is divided into sev-
eral files with recognizable file names rather than
one potentially unmanageable one. Each file con-
tains the initialization commands needed to initial-
ize one network entity. Finally, the configuration
tool should be extensible. New commands, enti-
ties, or other information can easily be added to the
configuration.

Configuration Design

The main configuration tool is a DCL command pro-
cedure (NET$CONFIGURE.COM). This procedure
generates NCI. script files, which are executed dur-
ing network start-up, to initialize the network. In
general, each script file initializes one entity within
DECnet/OSI for OpenVMS. It is possible, however,

for scripts to contain information for numerous
entities. For example, the NSP transport initializa-
tion script contains commands to create an
instance of the session control transport service
provider entity, which enables the session layer to
use the protocol. The procedure can extract infor-
mation about the configuration by using the
NET$CONVERT_DATABASE utility to translate an
existing Phase IV configuration contained in the
Phase IV permanent databases. Alternatively, it can
prompt the user for the information needed to
allow basic operation of the node.

The first time NET$CONFIGURE is executed, all
the questions, except for the node’s full name and
its Phase 1V address, have default choices. If the
defaults are chosen, the node operates properly
once the network has started. When appropriate,
NET$CONFIGURE also calls other configuration
tools to configure the DECdns client and the Digital
Distributed Time Service (DECdts), and to perform
various network transition functions.

Once the initial configuration has been per-
formed, customization of components is available.
Subsequent execution of the NET$CONFIGURE pro-
cedure will present the user with a menu that
allows specific subsections of the configuration to
be done, for example, adding or deleting MOP
clients or session control applications, changing
the name of the node, or controlling the use of
communications devices.

General help is available while running
NET$CONFIGURE. If the user does not understand
any individual query, responding with a “?” (ques-
tion mark) provides a brief explanation.

The scripts created by NET$CONFIGURE
are computed. A checksum is computed by
NET$CONFIGURE for each script file, and it is stored
in a database along with the answers entered for all
other configuration questions. This allows the
NET$CONFIGURE procedure to detect whether a
script has been modified by an outside source. If
this condition is detected, NET$CONFIGURE warns
the user that user-specific changes made to the par-
ticular script may be lost.

If a user has modified the NCL scripts,
NET$CONFIGURE cannot guarantee that the infor-
mation will be retained after future executions of
the procedure. An attempt is made to maintain the
changes across new versions. In all cases, previous
scripts are renamed before the new scripts are gen-
erated. This allows the user to verify that cus-
tomized change was transferred to the new script.

Digital Technical Journal Vol.5 No.l Winter 1993

31

DECnet Open Networking

If not, the saved version can be used to manually
replace the change.

Node Configuration NET$CONFIGURE asks only
one question that is directly related to the node
entity. It asks for the node’s DECdns full name and
sets the node’s name. Since the namespace nick-
name is a required component of the full name
answer, it also allows the procedure to determine
the namespace in which to configure DECdns.

The node synonym default is generated by using
the firstsix characters of the last simple name of the
node’s full name. If the user entered the full name,
USN:.Norfolk.Destroyer.Spruance.DD125, the syn-
onym default would be DD125. The user is free to
change this information as long as the response is a
legal Phase IV-style name. If present, the transition
tools make use of this synonym when the node is
registeredin the DECdns namespace.

Data Link/Routing The NET$CONFIGURE proce-
dure contains a table of all valid data link devices
supported by DECnet/OSI for OpenvVMS. When the
data link/routing configuration module is called,
the system configuration is scanned. Any valid
devices found on the system are presented to the
user for addition to the configuration. The only
exceptions are asynchronous data link devices. The
user must specifically request asynchronous sup-
port for these devices to be configured.

Configuration is mandatory for broadcast data
link media since these devices are shareable and
users other than DECnet/OSI for OpenvVMS may
request the device. For synchronous devices, the
user has the choice to configure the device for use
by DECnet/OSI for OpenvMS. If a device is config-
ured, a choice between the Digital data communi-
cations message protocol (DDCMP) or high-level
data link control (HDLC) as data link protocol must
also be made.

Each data link device configured requires a name
for the device and a name for the corresponding
routing circuit. The defaults for these names
are generated by using the protocol name, e.g., car-
rier sense multiple access-collision detection
(CSMA-CD), HDLC, or DDCMP, along with a unit num-
ber. The user may override the default with any
valid simple name. This allows the user to set the
data link and routing circuit names to be more
descriptive in their environment; for example,
HDLC_SYNC_TO_BOSTON for a data link and
CONNECTION_TO_BOSTON_DR500 for a routing
circuit.

Transport/Session Control NET$CONFIGURE sup-
ports the NSP and OSI transports. The procedure
configures both transports by default, but allows
the user to select only one. Commands are gener-
ated in the start-up scripts to initialize both the
transports and the session control transport ser-
vice provider entity instances, which allow the secs-
sion control layer to use them.

If OSI transport is configured, default templates
are created to allow the installation verification
procedures for the OSI applications to operate suc-
cessfully. The user also has the option of creating
specific connection option templates for use with
OSI applications.

All default session control applications, e.g.,
file access listener (FAL), mail, or phone, are config-
ured in the same way as they are with the DECnet-
VAX Phase v configuration tool. The user has the
option to allow access to each application through
a default account or not. The only queries made by
the configuration tool are about the creation of the
user account for the application.

DECdts Configuration The DECdts configuration
is performed by a call to the DTSS$CONFIGURE
procedure. DTSS$CONFIGURE prompts the user
to choose between universal coordinated time
(UTC) or local time, which is UTC plus or minus
the time-zone differential factor (TDF). If local time
is chosen, then the procedure prompts for the
continent and time zone on that continent to use.
This information is needed to compute the TDF.
The DTSS$CONFIGURE tool creates its own NCL
scripts. These scripts are not maintained by
NET$CONFIGURE, and no checksums are computed
or stored for them.

Configuration To configure DECdns, the network
software must be in operation so that the DECdns
software may use it. The NET$CONFIGURE proce-
dure attempts to start the network once it has cre-
ated the necessary scripts. Once the network has
been started, the NET$CONFIGURE procedure calls
DNS$CONFIGURE, passing it the node full name that
was entered by the user. The full name contains the
namespace nickname that the user wishes to use.
DNS$CONFIGURE then uses the DECdns advertiser to
listen on the broadcast media for a name server that
is advertising the same namespace nickname. If a
match is made, DECdns creates an initialization NCL
script with the needed instructions to configure
the DECdns clerk at the next system boot. It then

$Y
%]

Vol. 5 No. | Winter 1993 Digital Technical Journal

The DECnet/OSI for OpenVMS Version 5.5 Implementation

tells the advertiser to configure against the same
namespace.

If the namespace nickname cannot be matched,
the user is given alternatives. First, a list of the
current namespaces advertised on the broadcast
media, along with the LOCAL: namespace is offered.
LOCAL: is a special case used in lieu of the standard
client-server configuration. The LOCAL namespace
makes use of the client cache to store a small num-
ber of nodes locally.

If a choice is not made from the list, the user is
queried to see if an attempt should be made to con-
figure to a name server that may be located on a
data link other than the broadcast media. If yes,
then a valid address must be provided to the
DNS$CONFIGURE tool so that it may connect to the
name server on the remote node.

If no options are chosen at this point, a final
choice of creating a name server on the local node
is presented. Since DECnet/OSI for OpenVMS must
configure the DECdns clerk, if the answer is still no,
the procedure returns to the original list of known
namespaces and starts again.

Transition Tools Once DECdns is configured, the
transition tools are used to create the correct
namespace directory configuration. If a new
namespace has been created and selected for use,
the tools populate the directories with the node
information from the Phase [V DECnet database
found on the system. Most often, the tools simply
register the node with the DECdns name server
along with the node synonym that was provided by
the user during the node configuration portion of
NET$CONFIGURE.

The transition tools also assist the user when
renaming the node or changing from one name-
space to another. They copy subdirectory informa-
tion from the node’s old DECdns directory to the
new directory structure on the new namespace or
within the same namespace, if the user only
changed the node’s name.

Summary

The DECnet/OSI for OpenVMS version 55 product
implements all layers of the DNA Phase V architec-
ture. This extends the OpenVMS system to a new
degree of network access by supplying standard OSI
protocols. The product also protects the large
investment in network software that OpenVMS
users currently hold. This is done by fully support-
ing the extensive selection of applications available

for Phase IV DECnet-VAX. In addition, the design of
DECnet/OSI for OpenVMS is structured in a way that
will ease the introduction of new standards as they
come available.

Acknowledgments

Throughout the course of this project, many peo-
ple have helped in the design, implementation, and
documentation of the product. We would like to
thank all those people for all their help. We would
also like to extend a special thanks to all members
of the bobsled team. Without them, this product
would neverhave come to be.

References

1. I Harper, “Overview of Digital's Open Net-
working,” Digital Technical Journal, vol. 5, no. 1
(Winter 1993, this issue): 12-21.

2. M. Sylor, E Dolan, and D. Shurtleff, “Network
Management,” Digital Technical Journal, vol. 5,
no. 1 (Winter 1993, this issue): 117-129.

Digital Technical Journal Vol. 5 No. | Winter 1993

33

Kim A. Buxton
Edward]. Ferris
Andrew K. Nash

The ULTRIX Implementation
of DECnet/OSI

The DECnet/OSI for ULTRIX software was developed to allow the ULTRIX operating
system and ULTRIX workstation software systems to operate in a multivendor, mul ti-
protocol network based on open standards. It operates in a complex networking
environment that includes OSI, DECnet Phase IV, X.25, and TCP/IP protocols. BSD
sockets and pretocol switch tables provide the entry points that define interfaces for
protocol modules. The DECnet/0SI for ULTRIX software incorporates Digital’s
Enterprise Management Architecture, which provides a framework on which to
consistently manage the various components of a distributed system. The DECnet/
OSI for ULTRIX software provides a set of powerful tools and a system that can be
extended to include new functions as they are incorporated in the OSI standard.

DECnet/OSI for ULTRIX is an end system imple-
mentation that supports the open systems inter-
connection (OSI) protocol through the Digital
Networking Architecture (DNA) Phase V software.
This implementation provides several features
and programming environments that are consistent
with the UNIX system philosophy of networking.
Ease of use, extensibility, and portability were key
design goals during product development. Opera-
tion of DECnet/OSI for ULTRIX software in a complex
networking environment provides coexistence and
interaction with the transmission control proto-
col/internet protocol (TCF/IP), DECnet Phase 1V,
X.25, and multivendor OSI networks.

The paper “Overview of Digital's Open
Networking” (in this issue) provides a suitable
introduction to DECnet/OSI concepts.! For more
details concerning standard Berkeley Software
Distribution (BSD) networking concepts, the
reader is referred to the general references listed at
the end of this paper.

This paper provides an overview of DECnet/OSI
for ULTRIX software. [t discusses some of the design
decisions made during product development,
including the use of protocol switch tables. It
describes the system's five communication
domains, emphasizing the X.25, data link, and OSi
domains. The paper continues with a discussion of
application programming interfaces, interfaces
into kernel modules, and a network management
interface established for extensibility. It concludes

with a description of network management and
network configuration.

System Overview
DECnet/OSI for ULTRIX is an e¢nd system implemen-
tation of the OSI network architecture and Digital's
DNA Phase V. The DNA Phase V architecture pro-
vides a framework for incorporating OSI protocols
as defined by the International Organization for
Standardization (ISO) into DECnet/OS] products.
DECnet/OSI for ULTRIX software is integrated into
the ULTRIX kernel and layered on existing ULTRIX
interfaces. This software allows the ULTRIX operat-
ing system and ULTRIX workstation software (UWS)
systems to operate in a multivendor, multiprotocol
network based on open standards.

The DECnet/OSI for ULTRIX software provides the
following network services:

= Base networking software, which includes trans-
port services, network layer services, X.25, and
local area and wide area device driver supportas
described in the ISO Reference Model and DNA.?

= Network management software, incorporating
the Digital Enterprise Management Architecture.

= Application programming interfaces to support
user development of distributed applications.

= DECnet application software. DNA session con-
trol bridges DECnet applications such as file
transfer (dcp,dls,drm), remote login (dlogin),
and mail to transportlayer services.

34

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

The ULTRIX Implementation of DECnet/OSI

®» DECdns, Digital's distributed name service,
which provides a location-independent naming
facility. This service is used by DNA session
control to provide node name-to-address
translations.’

s Digital’s distributed time service, DECdts. This
time synchronization service is required by many
distributed applications such as DECdns to main-
tain a consistent time base for their operations.

= OSlapplications software, including file transfer,
access, and management (FTAM) and virtual
terminal protocol (VTP) support.

System Goals and Development

A major goal of DECnet/OSI for ULTRIX was to sup-
port large multivendor, multiprotocol networks,
including coexistence of OSI and TCP/IP on an
ULTRIX UWS system. Coexistence includes the abil-
ity to share system resources and to provide a con-
sistent set of services to users of both the OSI and
internet protocols. Another goal was to provide
connectivity between OSI and TCI/IP networks
through the implementations of gateways and
hybrid stacks.

Interoperability between DECnet/OSI and DECnet
Phase IV products was required to maintain con-
nectivity during network transition to OSI. A frame-
work for the development of new OSI applications
such as FTAM was another requirement. As in the
DECnet-ULTRIX Phase 1V implementation, program-
ming and user interfaces needed to be consistent
with the ULTRIX and UNIX systems environment.

Wherever possible, code was to be shared with
other development projects. For this reason, soft-
ware development engineers used the C program-
ming language and aimed to produce a portable
implementation. This was particularly important
for the X.25 implementation, which would be used
in other products. The code was structured to mini-
mize system-specific references and dependencies.
Code that interfaced directly to the BSD system was
isolated in separate modules, and use of system-
specific devices such as timers and buffers was hid-
den behind generic macros or subroutines.

In addition, the software was designed to be
extensible so that future OSI protocols could be
added. To achieve extensibility, interfaces were
established between the various components.
These include application programming interfaces,
interfaces into each kernel module, and a network
management interface. New protocols could be
more easily added by supporting these interfaces.

DECnet/OSI for ULTRIX development began with a
collection of eight distinct projects, each with its
own goals, schedules, and priorities. These projects
were developed across engineering organizations,
and spanned three continents. They consisted of
X.25, wide area device drivers, FTAM, VTP, DECdts,
DECdns, OS] applications kernel (OSAK), and the
DECnet/OSI base components.

Early in development, it was realized that no indi-
vidual project could be successful without achiev-
ing success at a systems level for the DECnet/OSI for
ULTRIX product. This realization caused a change in
the way the DECnet/OSI for ULTRIX projects
approached engineering development. Our focus
switched to providing a common set of goals and
one integrated schedule. Priorities for individual
projects were reevaluated in the context of the
system goals and schedule. It was critical to have a
set of well-defined interfaces; any change to these
interfaces could have a major system impact.
Communication between all projects was essential.
A significant amount of time was built into the
schedule for system integration, as well as compo-
nent integration.

Kernel Networking Environment

The DECnet/OSI for ULTRIX kernel implementation
was designed to be consistent with other ULTRIX
networking implementations such as the TCF/IP and
Local Area Transport (LAT). The networking struc-
ture is based on the BSD networking subsystem.*

The ULTRIX networking environment allows pro-
tocol components to be insulated from each other.
One important aspect of this networking system is
the use of protocol switch tables. These tables con-
tain the entry points for various protocol modules
in the system, as shown in Figure 1. DECnet/OSI for
ULTRIX uses these entry points to define interfaces
for each protocol module. This means that there are
no direct calls from one protocol component into
another, an important consideration when new
layers must be integrated. Moreover, one protocol
module does not access another’s databases. Infor-
mation is accessed from a module only through the
defined interface.

Insulating protocol modules from each other is
advantageous for various reasons. Aslongas a pro-
tocol module supports a generic interface, it can
act as a service provider for multiple users, which
allows asystem to support multiple configurations.
For example, X.25 or high-level data link control
(HDLC) may be configured into the kernel only

Digital Technical Journal Vol.5 No. | Winter 1993

35

DECnet Open Networking

ELEMENT 0:
SOCKET TYPE
PROTOCOL FAMILY
PROTOCOL NUMBER
DOMAIN LIST
FUNCTION ENTRY
POINTS:
: pr_input()
pr_output()
DOMAIN FAMILY pr_ctiinput()
pr_ctloutput()
DOMAIN NAME pr_usrreq()
pr_init()
POINTERTO pr_fastimo()
BEGINNING OF pr_slowtimo()
DOMAIN PROTOCOL r_drain()
SWITCH TABLE P
POINTER TO [ooo
END OF
DOMAIN PROTOCOL ELEMENT N: SOCKET TYPE
SWITCH TABLE
PROTOCOL FAMILY
POINTER TONEXT
DOMAIN ENTRY PROTOCOL NUMBER

L XX

PROTOCOL SWITCH TABLE

cee

FUNCTION ENTRY

POINTS:
pr_input()
pr_output()
pr_ctlinput()
pr_ctloutput()
pr_usrreq()
pr_init()
pr_fastimo()
pr_slowtimo()
pr_drain()

Figure 1 Domains and Protocol Switch Tables

when those services are needed. New protocol
modules can be easily added. If token ring support
is added as one of the broadcast devices, using the
same interface as the carrier sense multiple access
with collision detection (CSMA/CD) and fiber dis-
tributed data interface (FDDI) modules, little or no
change will be required to the network layer.

Modularity is another advantage. Complexity can
be reduced and problems can be isolated more eas-
ily when interfaces between each protocol module
are carefully defined. For example, defining a
network management interface for each protocol
removes the requirement for network management
to access protocol module databases directly.
Network management code does not need to
understand the internal organization of a module or
the locking strategies that may be required to
accessthe data.

To make use of the protocol switch table entry
points, some minor enhancements were required.
An extension was made to the control output inter-
face to allow requests from kernel-level protocol
modules and network management. The interface
was further extended to allow protocol modules to
use a port option to identify themselves as clients
of the service provider, to acquire information
from the service provider, or to modify the service
provider’s behavior. Network management uses a
different option passed through the control output
interface to manage kernel entities.

The control input interface was also enhanced.
This interface provides two arguments: a request
and a pointer to one or more arguments to be inter-
preted as a function of the request. Originally, this
routine was used to notify IP of events, where each
event had its own unique request value. To allow

36

Vel.5 Ne. ! Winter 1993 Digital Technical Journal

The ULTRIX Implementation of DECnet/OSI

DECnet/OSI protocols to use this interface without
adding several new request values, a general-
purpose request was introduced. This request is
used by a service provider to interrupt one or more
of its clients to inform them of a change in service.
As part of the argument list, the service provider
passes a value indicating the exact nature of the
event being communicated. As an example, the
network layer uses this mechanism to inform the
transport layer modules of a change to the set
of network addresses. Similarly, X.25 uses this
interface to provide status about specific network
connections.

The ULTRIX/BSD networking system organizes
protocols into communication domains. The pur-
pose of a communication domain is to group
together common properties necessary for process-
to-process communication. As an example, the
X.25 domain was designed to provide a full set of
X.25 services that can be selected by client proto-
cols. It includes the socket and protocol switch
table interfaces necessary for user-level and kernel-
level clients, X.25 accounting, profile loading, and
trace utilities.

The components of DECnet/OSI for ULTRIX may
be combined in different ways depending on the
configuration requirements of individual cus-
tomers. A multiple domain approach was chosen to
allow the various products and their development
to be separated from one another. For example,
network management software was placed in a sep-
arate domain to allow the X.25 and wide area
network device driver (WANDD) products to be
managed without installing DECnet/OSI for ULTRIX.
Similarly, the OSI domain protocols may operate
without the X.25 or WANDD products configured
into the system.

Five domains were established:

1. The DECnet domain (AF_DECnet) is retained to
provide backward compatibility to existing
DECnet-ULTRIX Phase IV applications.

2. The data link domain (AF_DLI) contains all the
data link protocols, including Logical Link
Control (ISO 8802-2), CSMA/CD, FDDI, and HDLC.
For DECnet/OSI for ULTRIX, the AF_DLI domain
provides access to the drivers for kernel modules
as well as user applications.

3. The X.25 domain (AF_X25) contains the proto-
cols necessary to access X.25 networks.

4. The OSI domain (AF_OSI) contains the higher-
level DECnet/OSI protocols, i.e., DNA session

control, network services protocol (NSP), OSI
transport, DNA Phase V routing.

5. The network management domain (AF_NETMAN)
contains all the network management functions.
These functions can be used to manage any DNA
networking product.

Data Link Domain

Under DECnet-ULTRIX Phase [V, the routing proto-
col module accessed the drivers directly. In the OSI
implementation, data link interface (DLI) modules
interface to the device drivers and act as service
providers to network layer clients such as routing.
This decision was made to minimize specific
DECnet/OSI support needed in the ULTRIX operat-
ing system device drivers. This allows changes to be
made more easily, and it provides a central location
for common data link protocol code as well as
network management code.

The AF_DLI domain provides a common interface
to broadcast data links such as CSMA/CD and FDDI.
Modules implementing new broadcast data link
technologies canbe added at any time by conform-
ing to the DLI interface. DLI provides support for ISO
8022 class I, type 1 functions; these may be used by
any broadcast module. Other 802.2 classes are han-
dled by passing frames directly to the client module.

The point-to-point protocols consist of HDLC
and the Digital data communications message pro-
tocol (DDCMP). ULTRIX relies on the DDCMP sup-
port provided by hardware devices. However, a
DDCMP software module exists to interface these
devices to network management. HDLC, on the
other hand, is entirely implemented as a software
module operating over a device driver. Similar
interfaces are provided by each protocol.

X 25 Domain

To ensure consistency with the goals and require-
ments of DECnet/OSI for ULTRIX, several design
alternatives were considered for integrating X.25
into ULTRIX, including porting a previous Digital
implementation of X.25, the VAX Packet Switch
Interconnect. These alternatives were rejected
because they were not consistent with the DECnet/
OSl for ULTRIX implementation and BSD networking
in general. A new version of X.25 was implemented
in the C language using the protocol switch table
infrastructure. This approach provided enough
flexibility to allow the ULTRIX X.25 code to be easily
ported to other product environments such as the
WANrouter 250.

Digital Techbnical Journal Vol. 5 No. I Winter 1993

37

DECnet Open Networking

The X.25 components of DECnet/OSI for ULTRIX
are provided as part of a wider X.25 strategy that
can support multiple protocol suites, such as
DECnet/OS], TCF/IP, and International Business
Machine Corporation’s Systems Network Archi-
tecture (SNA). Under DECnet/OSI for ULTRIX, X.25 is
used in two configurations. It provides the connec-
tion oriented network services (CONS) support to
the OSI transport layer (ISO 8208, ISO 8878), and it
can be used as a subnetwork for the connectionless
network service (CLNS) layer. When used with
TCPKIP networks, X.25 can be used as a subnetwork
for the IP (Request for Comment [RFC] 877).

The interface to X.25 services was designed to be
accessed by other kernel components. The proto-
col switch table was used to implement this inter-
face. Components such as OSl connectionless
network protocol and OSI transport make direct
use of the kernel protocol switch interface with no
intervening software layer.

Access by user-level applications to X.25 occurs
through the BSD socket interface. The processing
requirements of the socket layer and the kernel
layer provided by the protocol switch are consider-
ably different. To reduce the complexity of the ker-
nel interface, an X.25 socket converter module was
provided. The socket converter module manages
issues such as queuing data at the socket interface
and converting between protocol switch table rou-
tines and socket-layer calls. The converter module
is treated as a client of the kernel interface.

Direct access to the X.25 kernel interface from
IP was not possible due to TCP/IP development
constraints. Instead, an IP device converter was
supplied with ULTRIX X.25. This X.25-IP interface
module appears as a device driver to IP. Further-
more, IP can be configured to use X.25 without
requiring changes to the TCP/IP software. The
pseudo-driver establishes an X.25 call when data is
sent to the X.25 device. After the IP data has been
transmitted, the X.25 connection is maintained to
reduce the overhead and cost of X.25 call setup
when the next [P data packet is sent. Configuration
of the X.25 IP device is performed using standard
ifconfig management commands.

OSI Domain

The AF_OSI domain contains the routing module,
the transport modules, and DNA session control.
The routing module is an end system implementa-
tion that adheres to the Digital Network
Architecture (Phase V) Network Routing Layer

Functional Specification, version 3.0.0. It provides
support for the ISO Connectionless Network
Service (ISO 8473), End System to Intermediate
System Routing Exchange Protocol (ISO 9542), and
Phase IV routing. “Ping,” a network loopback func-
tion specified in Amendment X. Addition of an
Echo Function to 1SO 8473 and in RFC 1139, is pro-
vided as a diagnostic tool to test network access to
a node.

Routing can be configured to operate over
the data link entities previously mentioned as well
as X.25. As an end system, DECnet/OSI for ULTRIX
does not route protocol data units (PDUSs). It can,
however, op