Product Internationalization

Digital Technical Journal

Digital Equipment Corporation

"IlfilﬂmEE!ID """""""""""""""

DO C

L B e o L e o T Y ol
1
; ! WRITTEN LANGUAGE g = H ,U
/‘\ ! m T T |
S ’/5 ! CHARACTER PLACEMENT m » m ;
7728 ASS) o A
“ [DIACRITICS m o O 1
: 1 = 7z O !
PRESENTATION VARIANTS 1
in | ~o I &
e PeTEXT INPUT 5 - H i
ZA 1
1
, BI-DIRECTIONAL TEXT :o: ey
I
I
i1 NATIONAL CONVENTIONS S !
1 = o * 'y
i DATE FORMATS > o !
1 - > | I
i TIME OF DAY FORMATS AN :
| O g o PU
I NUMBER FORMATS — Z)
1 . .
I CURRENCY FORMATS o Nes|
1 g @ I
! USER INTERFACE ST ,
I i ~
Mmoo, .
"Not chaos-like, together crushed and bruided, @)
But as the world harmoniously confusedt GEOMETRY MANAGEMENT z z 4 'Z
Where order in variety we see, 1 @) [®) I
And where, though all chings differ, all agree’ | M A G E S m N I
» I
»w 0O
| SYMBOLS 0 0
: - [
e e L
1 SO N D S ki
1 - !
irectionality Control 1 FUNCTIONAL DIFFERENCES] :m

*C O R REERGEE

ISO/IEC 10646
Soms Moo 9 BUEESREER

Volume 5 Number 3
Summer 1993

Cover Design

Scripts, symbols, and writing directions

are elements of written communication
that are addressed by product international-
ization, the featured topic in this issue. Like
engineering designs and standards for inter-
nationalization, the graphic design on the
cover provides a framework that accommo-
dates a rich diversity of the world’s written
languages.

The cover was designed by Joe Pozerycki, Jr., of
Digital’s Corporate Design Grou).

Editorial

Jane C. Blake, Managing Editor

Helen L. Patterson, Editor

Kathleen M. Stetson, Editor

Circulation

Catherine M. Phillips, Administrator

Dorothea B. Cassady, Secretary

Production

Terri Autieri, Production Editor

Anne S. Katzeff, Typographer

Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman

Richard W. Beane

Donald Z. Harbert

Richard J. Hollingsworth

Alan G. Nemeth

Jeffrey H. Rudy

Stan Smits

Michael C. Thurk

Gayn B. Winters

The Digital Technical Journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJO2/DI0, Littleton, Massachusetts 01460.
Subscriptions to the Journal are $40.00 (non-US. $60) for four issues and $75.00 (non-
US. $115) for eight issues and must be prepaid in U.S. funds. University and college
professors and Ph.D. students in the electrical engineering and computer science
fields receive complimentary subscriptions upon request. Orders, inquiries, and
address changes should be sent to the Digital Technical Journal at the published-by
address. Inquiries can also be sent electronically to DTJ@CRL.DEC.COM. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the Journal are also available on the Internet
at gatekeeper.dec.com in the directory /pub/DEC/DECinfo/DT].

Digital employees may send subscription orders on the ENET to RDVAX:: JOURNAL.
Orders should include badge number, site location code, and address.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem-
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation’s authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EY-P98GE-DP

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP,
CDD/Plus, CDD/Repository, DEC, DEC OSF/1 AXP, DEC Rdb, DECwindows, DECwrite,
Digital, the Digital logo, EDT, OpenVMS, OpenVMS AXP, OpenVMS VAX, TeamRoute,
ULTRIX, VAX, VMS, and VT.

Apple is a registered trademark of Apple Computer, Inc.

AT&T is a registered trademark of American Telephone and Telegraph Company.
Hewlett-Packard is a trademark of Hewlett-Packard Corporation.

[BM is a registered trademark of International Business Machines Corporation.
Intel is a trademark of Intel Corporation.

Lotus 1-2-3 is a registered trademark of Lotus Development Corporation.

Microsoft, MS-DOS, and MS Windows are registered trademarks and Win32 and
Windows NT are trademarks of Microsoft Corporation.

Motif, OSF/Motif, and OSF/1 are registered trademarks and Open Software Foundation
is a trademark of Open Software Foundation, Inc.

Motorola is a registered trademark of Motorola, Inc.

PIC is a trademark of Wang Laboratories, Inc.

PostScriptis a registered trademark of Adobe SystemsInc.

Unicode is a trademark of Unicode, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.
X/0pen is a trademark of X/Open Company Limited.

Book production was done by Quantic Communications, Inc.

Contents

6 Foreword

Claude Henri Pesquet
Product Internationalization
8 International Cultural Differences in Software

Timothy G. Greenwood

21 Unmicode: A Universal Character Code
Juirgen Bettels and E Avery Bishop

32 The X/Open Internationalization Model
Wendy Rannenberg and Jurgen Bettels

43 The Ordering of Universal Character Strings
Renc¢ Haentjens

53 International Distributed Systems—
Architectural and Practical Issues
Gayn B. Winters

63 Supporting the Chinese, Japanese, and Korean
Languages in the OpenVMS Operating System
Michael M. T. Yau

80 Character Internationalization in Databases:
A Case Study
Hirotaka Yoshioka and Jim Melton

97 Japanese Input Metbod Independent of Applications

Takahide Honma, Hiroyoshi Baba, and Kuniaki Takizawa

Editor’s Introduction

Jane C. Blake
Managing Editor

Engineering products for international markets is a
multifaceted undertaking, as it entails the adaptation
of computer technology to the unique and varied
ways cultures communicate in written languages.
Papers in this issue describe some of the cultural
and technological challenges to software engineers
and their responses. Topics include conventions of
culture and language, internationalization stan-
dards, and design of products for local markets.

Product internationalization begins with identi-
fying the cultural elements and user expectations
that the software must accommodate. Tim
Greenwood has written a tutorial that provides
insight into the cultural differences and the com-
plexities of written languages as they relate to prod-
uct development. Among the topics he discusses
are scripts and orthography, writing directions, key-
board input methods, conventions for values such
as time, and user interfaces.

As a counterpoint to the complexity of languages
and cultures, industry engineers and organizations
have developed standards that lend simplicity and
uniformity. Unicode, described here by Jirgen
Bettels and Avery Bishop, is a significant interna-
tionalization standard that accommodates many
more complex character sets than does 8-bit ASCIL;
software produced using Unicode character encod-
ing can be localized for any language. The authors
discuss the principles behind the 16-bit encoding
scheme and considerations for application pro-
cessing of Unicode text. They conclude with
approaches for the support of Unicode and refer-
ence the Microsoft Windows NT implementation.

Wendy Rannenberg and Jiirgen Bettels have writ-
ten a paper on another important standard, the
X/Open internationalization model. X/Open sup-
ports multibyte code sets and provides a compre-
hensive set of application interfaces. The authors

o

examine benefits and limitations of the standard,
referencing Digital’s DEC OSF/1 AXP implementation,
and close with proposed changes to the modcl.

René Haentjens’ paper is not about a standard per
se but about the ways in which various culturces
order words and names and the methods used in
computers to emulate this ordering. He examines
the table-driven multilcvel method torordering uni-
versal character strings, its variations and its draw-
backs. The implications of Unicode relative to
ordering are also considered.

The development and adaptation of software for
use in local markets is the common theme of three
papers. Gayn Winters identifies several program-
ming practices for the development of distributed
systems and discusses the benefits of modularity in
systems and in run-time libraries to reduce reengi-
neering effort and costs. However, as Michael Yau
notes in his paper, reengineering is necessary for
systems designed when English was the only lan-
guage supported in computer systems. Michael pre-
sents an overview of the enginecering challenges
encountered and resolved in the creation of local
variants of the OpenVMS operating system to sup-
port the Japanese, Chinese, and Korean languages.
A third paper, written by Hiro Yoshioka and Jim
Mclton, provides a case study of a coengineering
project, i.e., a project in which engineers from the
local environment (or market) join in the product
development. The case references the internation-
alization of the DEC Rdb database (specifically for
Asian markets) utilizing an SQL standard.

The concluding paper focuses on software
designed to facilitate Japanese keyboard input and to
reduce reengineering/localization effort. Takahide
Honma, Hiroyoshi Baba, and Kuniaki Takizawa
review the methods of Japanese keyboard input
and then describe a three-layer, application-
independent software implementation that is
embedded in the operating system and offers users
flexibility in the choice of an input operation.

The editors are grateful to Tim Greenwood, an
architect of Unicode currently working in the
Software Development Tools Group, for his help in
coordinating the development of papers and to
Gayn Wintcrs, Corporate Consulting Engineer.

Note to Internet Users: Recent back issues of
the DT) are now available in ASCII and PostScript for-
mats on gatekeeperdec.com in the /pub/DEC/
DECinfo/DT] directory.

Qmﬂ/&w

Biograpbhies

Hiroyoshi Baba Hiroyoshi Baba is an engineer in the Japanese Input Method
Group in Digital Japan, Research and Development Center. He is currently devel-
oping the Japanese front-end input system on OpenVMS VAX and OpenVMS AXP
and the Japanese language conversion server system. He received a B.S.
(1989) and an M.S. (199)) in electronics engineering from Muroran Institute of
Technology, Japan. He joined Digital in April 1991.

Jurgen Bettels Jiirgen Bettels is an internationalization architect and the stan-
dards manager for the International Systems Engineering Group. Sincc¢ 1986, he
has worked on many internationalization architectures starting with DECwindows.
He participated in the Unicode consortium, ECMA, and X/Open on internation-
alization. He contributed to the ISO/IEC WG2/SC2, whose work merged Unicode
and 150 10646 into a single universal character encoding. Prior to joining Digital,
he was a physicist at the European particle laboratory, CERN. Jiirgen has the
degree of Diplom Physiker (physicist) from the University of Aachen.

F. Avery Bishop Avery Bishop is the program manager for Windows NT/Alpha
internationalization. Prior to this position, he worked in ISE as Digital’s represen-
tative to the Unicode consortium and the ANSI X3L2 technical advisory group on
character encoding. He worked with ISO/IEC WG2/SC2, Unicode, and others in
Digital to merge Unicode and 1SO 10646 into a single universal character encod-
ing. Prior to that, he managed projects at DECwest and worked as the product
management manager for ISE in Japan. Avery has a Ph.D. in electrical engineering
from the University of Utah.

Timothy G. Greenwood Since 1981, Tim Greenwood has held various posi-
tions related to internationalization at Digital. He was the architect for the
Japancse and Chinese versions of DECwindows. This software introduced the
compound string technology that was incorporated into Motif. Tim conceived
of, managed, and wrote much of the software section of the internal version of
the handbook on Producing International Products. He also participated in the
design of international support on the X Window System. Tim is currently
responsible for guiding the introduction of Unicode into Digital.

Biographies

René Haentjens René Haentjens is a software consultant working for both
Digital Consulting Belgium and Corporate Standards and Consortia. He was the
Belgian local engincering manager for two years. Today, René is a member of the
Belgian, the European (CEN), and the 1SO committees on characterscts and inter-
nationalization. He contributed significantly to the ISO/IEC 10646-1:1993 stan-
dard. He has a civil engincering degree (chemistry) from the University of Ghent
and has contributed to publications on compiler portability, on software engi-
neering, and on developing international software and user information.

Takahide Honma A senior software engineer, Takahide Honma leads the
Japancse Input Method Group. He joined Digital in 1985 as a soft ware service
engineer. He has worked on systems such as real-time drivers, nctwork system
(PS.1), and database on VMS and was a consultant to customers. At the same time,
he also took the role of a sales advisory support engineer. Since 1990, he has
been with Research and Development in Japan and has worked on the Japanese
input method. He has an M.S (1983) in high-energy physics from Kyoto
University and is a member of the Physics Society of Japan.

Jim Melton A consulting engineer with Databasc Systems, Jim Melton repre-
sents Digital to the ANSI X3H2 Technical Committee for Database. He represents
the United States to the ISO/IECJTC1/SC21/WG 3 Working Group for Database. He
edited the SQL-92 standard and continues to edit the emerging SQL3 standard.
Jim also represents Digital to the X/Open Data Management Working Group and
to the SQL Access Group. Jim is the author of Understanding the New SQL:
A Complete Guide, published in 1992, and is a regular columnist (SQL Update)
for Database Prograinining & Design.

Wendy Rannenberg Principal software engineer Wendy Rannenberg man-
ages the UNIX Software Group's internationalization tcam. She is responsible for
the delivery of Digital’s internationalization technology on both the ULTRIX and
the DEC OSE/1 AXP platforms. Prior to joining Digital in 1988, she held engineer-
ing positions with Lockheed Sanders Associates and the Naval Underwater
Systems Center. Wendy holds a B.S. (1980) in engineering from the University of
Connecticut at Storrs and is a member of 1EEE, SWE, and ACM. She has written
or contributed to numerous technical publications.

Kuniaki Takizawa Kuniaki Takizawa is an engineer with Digital Japan,
Research and Development Center and is a member of the Japanese Input
Method Group. lle joined Digital in April 1991 and is currently developing and
porting the henkan module and the input method library (IMLIB) on OpenVvMS,
ULTRIX, and OSF/1. e graduated from the University of Electronic Communi-
cations (Denki-Tsushin University) in Japan in 1991. His spcciality arca was the
structure of operating systems.

Gayn B. Winters Corporate consulting engineer Gayn Winters has 25 years’
experience developing compilers, operating systems, distributed systems, and
PCsoftware and hardware. He joined Digital in 1984 and managcd the DECmate,
Rainbow, VAXmate, and PCintegration architecture. He was appointed Technical
Director for Software in 1989 and contributes to the Corporate software strat-
egy. From 1990 to 1992, Gayn led the internationalization systems architecture
effort and is on the Board of Directors for Unicode, Inc. He has a BS. from the
University of California at Berkeley and a Ph.D. from MIT.

Michael M. T. Yau Michael Yau is a principal software engineer in the
International Systems Engineering Group. Since 1984, he has worked on Asian
language support in the OpenVMS operating system. He led and managed the
development team in Hong Kong from 1986 to 1991. Currently, he provides archi-
tecture and product internationalization support to US. engineering groups.
Prior to joining Digital, Michael worked for GEC Marconi Avionics (U.K.). Michael
holds a B.Sc. (Hons) in mathematics and an M.Sc. in communication engineering
from the Imperial College of Science and Technology, University of London.

Hirotaka Yoshioka A senior software enginecr in the International Softwarc¢
Engineering Group, Hiro Yoshioka is the project leader of the CDD/Repository/
Japancse. He is a member of the internationalization special committee of I'1'SC:)
(Information Technology Standards Commission of Japan) and ISO/IEC JTCl
SC22/W 20 internationalization. During the past nine years, he has designed and
implemented the Japanese COBOL, the Japanese COBOL generator, and the inter-
nationalized DEC Rdb. Hiro joined Digital in 1984, after receiving an M.S. in engi-
neering from Keio University, Yokohama.

Foreword

Claude Henri Pesquet
Engineering Group Manager,
International Systems
Enginceering

In the late 1970s, Digital began to ship its first office
products outside the U.S. We realized then that it
was no longer an option to provide users with the
ability to input, view, edit, and print foreign lan-
guage text; it was instead a necessity, as well as a
passport for Digital into world markets.

The foreign-language requirement came as a
shock to the application developers who had been
trained in the late 1960s, at a time when the U.S.
English-speaking market represented more than 70
percent of the total worldwide information tech-
nology market. Today’s reality is quite different.
The English-speaking IT market is below 40 per-
cent, and trends indicate that it will continue to
decline. This is not surprising, because only 841
percent of the world’s population is native English
speaking. Moreover, eachyear the commoditization
of computers lowers the entry point for the acquisi-
tion of computer products; consequently the mar-
ket is expanding to encompass a much broader
socioeconomic community. Further, starting in the
1980s, the creation of global markets—for labor,
materials, intellectual talent, financing, and distri-
bution channels—has forced businesses to continu-
ally reach outside their domestic markets.
Government mandates also have an impact, requir-
ing that products sold within country boundaries
have local-language capability. Together these fac-
tors will increase the demand for and requirements
of international products—products that will pro-
vide users with linguistic choices.

In recent years, Digital has broadened its market
focus to include not only the scientific/technical,
mainly English-speaking markets, but also com-
mercial markets—a large market comprising many

languages. To serve these markets well, we are com-
pelled to adopt a strategy for the internationaliza-
tion” of our products.

The strategy, i.e., to devclop products that
“speak” the local language, has evolved from a fas-
tidious reengineering of a product after the fact Lo
an architectural definition that ensures products
arc designed originally to meet local-language
requirements. Digital had three goals:

= Reduce development costs.
= Shorten thetime to market.
= Increase product quality.

The cost of reengineering products that were
designed based upon a North American paradigm is
similar to the cost of maintaining an application
that was designed without regard to future main-
tenance. Such costs could meet, if not exceed, the
original product development cost. This was dis-
couraging, because the markets outside the U.S.
were smaller and emerging; producing the local
product compared in cost to producing the original
US. product. It became obvious that it was too
expensive to continually rebuild products that sold
only to a small market.

Local-language products were late to market
when compared with availability of the same prod-
ucts in the U.S. This prescnted a twofold problem. It
denied our multinational customers the capability
of installing products and applications simul-
taneously in their worldwide operations. Further,
product launches, training, selling, support, and
retirement had to be addressed one country at a
time because specific local-language components
were not available simultaneously.

In addressing short-term “surface” issues, we had
utilized the brute force of reengineering to pro-
duce one language version at a time. As a result, we
delayed addressing the “deep” quality issue of origi-
nally designing and building into our products the
internationalization features that would allow for
easy adaptation to any language without modifica-
tion of a product’s core.

A vision on how to address the internationaliza-
tion of products was developed by a worldwide
team of architects led by Gayn Winters. The major-
ity of this team was located outside the (.S, and had

“The term internationalization as itis uscd within the context
of this Journal includes both the technologics and the pro-
cesses applied to enable a product to meet the need of any
local-linguage market without requiring modification of the
base functionality of the product.

been closely involved in Digital’s reengineering
efforts for many years. The team'’s prime motivation
was to eliminate the need for reengineering. The
vision they developed is one in which all Digital
integrated systems can process electronic informa-
tion containing multiple languages and character
sets, and can satisfy end-user linguistic preferences.
An inherent part of this vision is to make all systems
available simultaneously worldwide.

One of the major difficulties in implementing the
vision was that internationalization was not aimed
at specific products, rather it was a pervasive
attribute required across systems. For product
development groups trained to develop compo-
nents, this represented a difficult change in mind-
set. The implementation also required a huge
paradigm shift—

From one character To one character

and... and. ..
One input method Many input methods
One cell Multiple cells
One collation point Several collation points
Onc geometry Many geometries
Alphabet Ideograms
“Frozen” alphabet User-defined characters

The paradigm shift led to a redefinition of the
elements to be incorporated in the basic design
of new products. The strategy from a product
perspective was to start with the base system
(CPU, peripherals, network, and operating system),
and then move to the application side. From an

engineering-resource perspective, we would start
with parallel internationalization development,
and then inject internationalization expertise into
the original product development group. The strat-
egy from a process perspective was to customize
code for specific countrics, and then roll back the
country-specific code into the original product
code base and continue future development from
this unique code base. The implementation has
resulted in major achievements, for example, the
simultaneous shipment of products to which this
approach was applied.

To illustrate our progress, the latest version of
Rdb (relational database application) was devel-
oped with the injection of internationalization
expertise. The approach resulted in one common
code base and achieved worldwide simultaneous
shipment.

Many challenges remain. Standards have to be
defined and implemented in areas such as naming
conventions, user profiles, and character attributes.
Emerging tecchnologicssuch as object-oriented soft-
ware and multimedia nced to be addressed. And
real-time multilinguality (the simultaneous transla-
tion from one language to another) must be tackled.

This issue of the Journal provides a broad sam-
pling of our product internationalization efforts—
from the concept of cultural differences to the
specific internationalization of our Rdb product.
The papers herein represent only a few of the hun-
dreds of projects dedicated to the internationaliza-
tion of Digital’s products.

International Cultural

Timothy G. Greenwood |

Differences in Software

Throughout the world, computer users approach a computer system with a specific
setof cultural requirements. In all cultures, they expect computer systems to accom-
modate their needs. A major part of interaction with computers occurs through
written language. Cultural requirements, particularly written languages, influ-
ence the way computer systems must operate. Cultural differences concerning
national conventions for the presentation of date, time, and number and user inter-
Sface design for the components of images, color, sound, and the overall layout of
the screen also affect the development of computer technology. Successful computer
systems must respond to the multicultural needs of users.

Not chaos-like, together crushed and bruised,
But, as the world harmoniously confuscd:
Where order in variety we sce,
And where, though all things ditter, all agree.
— Alexander Pope

In the first years of the computer age, users adapted
themselves to the requirements of the computer.
They had to learn the language of the machine to
interact with it. Now thc¢ computer is part of daily
life, a tool to complete a task. Computer systems
must be adapted to the needs of their users.
Computer users approach a computer system with
a specific set of cultural requirements. Successful
systems respond to these requirements.

International Adaptation of

Computer Systems

Each nation has developed its own culture, and
some areas of the world share a cultural back-
ground. Adaptation of computer systems to differ-
ent cultures uses processes known as localization
and internationalization.

Localization is the process of changing products
to suit users from different cultural backgrounds.
Localization is achieved by taking the source code
for a product developed for one country and modify-
ing the source code and product to satisfy the needs
of other countries. Often teams of developers in dif-
ferent countries are needed to adapt products. If
the original product is not built with a view toward
being localized, this can be a very expensive and
time-consuming process. There is the direct cost of

multiple development teams modifying the source
code of the original product. This process also pro-
duces multiple code bases, which makes future
development and maintenance more complex.

Building software that can be localized with min-
imal software changes is called internationaliza-
tion, often abbreviated to T18N (the letter I followed
by 18 letters and the letter N). The basis of interna-
tionalization is to identify those cultural elements
that the software must accommodate and to sim-
plify the task of adapting the product. This paper
describes a set of these cultural elements. The
remainder of this issue of the Digital Technical
Journal details specific aspects of building interna-
tional software.

Cultural Differences

Language is the most obvious cultural difference
among people. Written language is an important
method of communication with computers. This
paper examines written languages and their repre-
sentation in computer systems. It also presents cul-
tural differences concerning national conventions
for the presentation of date, time, and number and
user interface design for the components ofimages,
color, sound, and the overall layout of the screen.
The base functions of a product may change in
response to different needs around the world, and
some examples of these differences are illustrated.
Finally, with a look to the future, the paper presents
deeper cultural differences that are only beginning
to be represented in software.

Vol.5 No.3 Swmmer 1993 Digital Technical Journal

International Cultural Differences in Software

Written Language

The written representation of spoken language
requires a script and an orthography. ‘The script is
the set of symbols that represents the sound or
meaning of components of the language. The
orthography consists of the rules of spelling and
pronunciation. Specific spelling and pronunciation
rules may differ among locations or communities;
for example, the American English orthography dif-
fers from the British English orthography. A script
may be tied to a specific language, for example,
Korean Hangul, but frequently a script can repre-
sent several languages. French and Italian both use
the Latin script.

A written language may be broadly categorized
into either an ideographic, a syllabic, or an alpha-
betic writing system. The category is determined
by examining the relation between the symbols
in the script and the unit of sound or meaning
represented.

In writing systems based on ideograms, every
symbol has a specific meaning that is not related to
its pronunciation. The ideograms imported from
Chinese, and used in Chinese, Japanese, and South
Korean writing provide examples in current use.!
Thus A represents a man or person, even though
it is pronounced ren in Chinese, zin in Japanese,
and 7n in Korean.? “3” represents “three” even
though it is pronounced tatu in Swahili and ¢rwa in
French. Ideographic writing systems typically con-
tain several thousand discrete symbols with a sub-
set of approximately 2,000 symbols in frequent use.
The users of this writing system continue to
develop new symbols.

In the syllabic writing systems, each symbol
represents a syllable. X in Japanese katakana
denotes the ma sound. There is a wide variation in
the number of discrete symbols in a syllabic sys-
tem. Japanese kana uses some 47 symbols; the
writing of the Yi people (a minority nationality
scattered through provinces in Southwest China)
uses a standardized syllabary of 819 symbols.?

In alphabetic systems, each symbol or letter
approximately matches a phoneme (the smallest
unit of speech distinguishing meaning). Thus M
in Latin script, ?3 in Hebrew, and U'in Armenian
denote the m sound. Most alphabets have from 30
to 50 discrete letters.® The match between
phonemes and letters is not exact, especially in
English, which has about 40 phoncmes.> Some
phonemes are represented by letter sequences,
such as the ¢h in thank.

No written language uses a pure set of either
alphabetic, syllabic, or ideographic symbols; each
does use one set of symbols predominantly. The
Latin script is primarily alphabetic, but numerals
and certain signs such as & are ideograms.® Other
languages use a more ¢ven mix. South Korean com-
bines the native Hangul alphabet with Hanja, the
Korcan name for their ideographic characters.
Japancsc combines the Ratakana and biragana syl-
labaries (collectively called kana) with the ideo-
graphic characters called kanji in Japanese. Written
Japanese, especially technical and advertising mate-
rial, also often uses the Latin alphabct, called romaji.

Character Placement In most European lan-
guages, basic symbols are written in a linear stream
with each character placed on a baseline. In other
writing systems, for example, Korean Hangul, the
elements do not follow this linear layout. Rather
than evolving piecemeal like most writing systems,
Hangul is the result of deliberate, linguistically
informed planning. It has been callcd “...probably
the most remarkable writing system ever invented."”
Korean uses an alphabet of 14 consonants and 10
vowels. These letters, called jamo, are blocked into
syllable clusters. If the same technique werce applied
to English, cat might be written ;. Figure 1 shows
the Korean Hangul alphabet, and Figure 2 shows
the jamo blocked into syllable clusters.

Thai also uses an alphabet and is written with the
symbols arranged in a nonlinear fashion. Thai is a
tonal language; different tones distinguish words
that would otherwis¢ be homonyms. Thai words
consist of consonants, vowcls, and tone marks.
Each component is an atomic unit of the language.
A vowel is written in front of, above, below, or
behind the consonant to which it refers. A tone
mark, if present, is usually placed above the conso-
nant or above the upper vowel. Thai potentially has
symbols at four levels, as shown in Figure 3. Level

7ZLLCZ0HA
0O XA RXRIJFEILS

CONSONANTS

VOWELS]_ }:
T —

1 4+
l

Figure 1 Korean Hangul Consonant and

Vowel Signs

Digital Tecbnical Journal Vol. 5 No. 3 Sununer 1993

9

Product Internationalization

of e nF by M4, ARE ol abdtch o] Axle Y AR AR oo, 2Fa) e

utz) k7| 9ja MAsl FCC Rules, Part 15, Subpart Jo} 423si Class A #FE Ao ik A3

AbebE Fdehs sl AZsch 3 Alodold o A F AHgsi,

Ash wbsl7h Salg 4 glo

o, 228 7ol AHEake A3t el AAskE o 3F zaF FH#of gt

Figure 2 Korean Ilangul Text Showing Blocking of Jamo

LEVEL 1. TONE MARK

e

LEVEL 2. VOWEL

|
= ,

LEVEL 3. CONSONANT OR VOWEL

LEVEL 4. VOWEL

Figure 3

one is an optional tone mark. Level two is an
optional vowel. Level three is either a consonant or
a vowel preceding or following a consonant. Level
four is another optional vowel. A consonant never
has a vowel at both level two and level four.

Some level-three consonants have part of their
glyph images rendered in another level. They either
dip into level four or rise into level two. The last let-
ter (yo ying) in Figure 3 is a level-three consonant,
butit has a small (separate) portion written below
the baseline. When this letter is written, this small
portion is written at level four. When this letter is
followed by a true level-four vowel, the vowel is
shown instead of this portion.

In Figure 3, both tone marks are shown at level
one to aid understanding of the script. In high-
quality printing of Thai, if a cell does not have a
level-two vowel, then the tone mark falls down to

PP 2% 103N T"’D}_{U D"-!Un

9Py LR EIYEY

2

Thai Script

be positioned directly above the consonant; how-
ever, it is also currently acceptable for all tone
marks to be physically positioned atlevel one. Thai
mechanical typewriters position all tone marks at
level one.

Diacritics and Vowels In Arabic and Hebrew
alphabets, vowels are indicated by placing vowel
points above, below, or beside the letter. (Arabic
also uses the consonant letters alif, ya, and waw to
represent the long vowels a, i, and u.) Vowels are
normally used only in religious text and in teaching
materials for people learning to read the language;
in other texts, vowels are inferred by the reader.
Since vowel points are used, written Hebrew with
vowels is called pointed. Figure 4 shows pointed
Hebrew from a children’s comic and the same text
with the vowels removed.

o5UN

yon ox 3,0 ono &Y .5rvh nryYy pwnnn vpirs?
V0T T QY YWY T
VT2 K¥: R

pv xacon PIART DT DDLU

yon ox " ,%rv ane XM 5ub nrsh ponnn vps’
JIOVAN DY QY PY M R
7177 ’¥* X7 P

Figure 4 Pointed and Unpointed Hebrew

10 Vol. 5 No.3 Swmmmer 1993 Digital Technical Journal

International Cultural Differences in Software

Other Symnbols Most languages written with Latin
letters have diacritical marks on some letters. In
some cases, the use of a diacritic provides a stress
or pronunciation guideline, as in the English word
cobperate. Removing the diacritic docs not change
the meaning of the word. In other languages, a mark
that appears to be a diacritic is a fundamental part
of the letter. The Danish letter 4 is a separate letter
in the alphabet and is not a variant of . In German,
three vowels have umlauts and are separate letters
in the alphabet. The deletion of an umlaut can
change the definition of a word; for example,
schweil means hot or humid, and schwul means
homosexual.

Presentation Variants The characters in the
Arabic writing systems change form, depending on
whether they are the first, last, or middle character
of a word, or if they stand alone. Note that the
abstract characters themselves do not change, only
the glyph image. Figure 5, adapted from Nakanishi,
shows the presentation variants of Arabic letters.®

Writing Direction

In English and many other writing systems, the let-
ters are written from left to right, with lines pro-
gressing from top to bottom. Japanese, Chinese,
and Korean may also be written in this form but are
traditionally written vertically. The characters flow
from the top of the page to the bottom, with lines
advancing from right to left. The pages are ordered
in the opposite direction to that used for English.
Mongolian is also written vertically, but the
columns of text advance from left to right.
Consequently, pages of Mongolian text are ordered
in the same direction as in English.

Figure 6 shows a portion of a newspaper printed
in Taiwan. The newspaper exhibits many styles of
format. Headlincs may run horizontally from right
to left, or left to right; the textof the article may run
vertically; and advertisements and tables may run
horizontally from left to right.

In Japanese writing, Latin characters (romaji)
are interspersed with vertical kanji (Han script)
characters. Romaji may be presented with each
character in a horizontal orientation running verti-
cally down, or they may be presented vertically,
with each character rotated by 90 degrees. In addi-
tion, if one, two, or three Latin characters are
mixed with vertical Han script characters, they may
be presented horizontally in the vertical stream.
Figure 7 shows mixed characters in a Japanese text.

INDEPEN-
DENT
FORM

¢ -C

(-

Naa R

v C =G L. b tr(g(\ G Q@ o o

(Y

S

INITIAL MEDIAL FINAL PHONETIC

FORM VALUE

L

L

e

(S VN ST SR T R O ol R

v

Jd

J

FORM

T

N

LA |

F kbbb

= N B b s

¥

-~

FORM

{

(.

P e Lo FRFSE S GG vy ek

G

¢

b

kh

dh

rl

> D S

~—

NUMERALS Arabic figures are written from right
to left, but the figure written to the left shows the

higher value:

Figure 5 Arabic Presentation Forms

v

Digital Technical Journal Vol. 5 No.3 Swmmer 1993

11

TEXT READS RIGHTTO LEFT

NUMBER AND PERCENT READ LEFT TO RIGHT

Product Internationalization

B

RITBES

=]
B

IITBES . 9.38%

)

&

5.43%

L0) CRGEes OQEEE:
HKOFEUDRERE S8 .- s
B+ e SRRNEE | WM< i
T - BREOETRER BE - e
BB - SR - B e
WNEBE - ERCE<H BRECM <M
EFROEDEE-R - W

RAEMRJoRF .
OB A R R I
COFFI I R -
RS RGN
1= - mmE kN
Hi--Ei - mn s
CHUEEe S - K F
VIR T SR
o %

MR - wEREEEE

HEFROE - o -2Em S

N
LEe) e R

BEFABAETIRAM-NE

///;UCLA?ﬁM&#G&N%.v:/

VERTICALLY IN LINE

LATIN TEXT

MAIN CONTENTS TEXT READS VERTICALLY
TOP TO BOTTOM, COLUMNS ADVANCING

RIGHT TO LEFT

LATIN TEXT ROTATED
90 DEGREES CLOCKWISE

Figure 6 Tuiwdanese News paper

TEXT READS LEFT TO RIGHT
PRESENTED VERTICALLY

ARABIC NUMBERS

2° SOV RY URTK—
NN
MO o Ny -N—

Ko

AMME R0 KANKAIN - [D
DR AINN L3R KR
2) DEE SN~ &~ T The
Smothers Brothers Comedy Hour;
H o —~ PO R R
L RO O L o m
ERR=N L O b R—Y
NE—KIWR NN -2 OERMR
ENSPANIN TP 4y

THREERUIRPHOR—~o
ol A Y NYKE D KOL
MAMNE o0 | BORMIEve-u
Hie0® Lon R HR-uNs O o Lo
LME DT RE 2 SER A®
- S NL - - SRR SIS SN SV
S oLl | BURLH
YORRKRTRE O IOPRRT PR
KOS O INT-R
—doooBEHNY wERVPHK

A NONO - SR SRR N
— R LRSI e

R &Y | EERLoNeTENT

WERQSHEN R OKE L HED
2 SOHE L 0 W

a~owool KINT =T+ P —
INT N KN NN - 1 D
9 KECREUK O L WO

UANR - R NN T QLM
0% NXAR<EY N
LErowmpu 05

B Tr~ e NR— N (R
(=N oK) BER IS RENG
mEY RN KLU LR
d—m—A e Ny d —2 QgL
HACKL SiLhiskkAOE &Awm
Lo o RO S RREERRBEN W
OF A RWDEE T WOKE
2 O w2 N u e B AN R0
OB L 3O UEI Qe

PRESENTED HORIZONTALLY

ARABIC NUMBERS

T N~ NN, 2y
2R QO IIUN - KR R
LRG0 EOw O Y QR
QR S S AT AN - —
KOS 3 DK O
SPHBL RS
KIRY =N p—h¥ N (FenZ)
RO (N KAT AT ARV C

PARENTHESIS ROTATED IN

VERTICAL TEXT

Sununer 1993 Digital Technical Journal

N 3

35

Vol.

Figure 7 Japanese Text Showing Latin Characters Mixed with Kanji

International Cultural Differences in Software

Semitic language scripts (e.g., Hebrew and
Arabic) are written horizontally from right to left,
with lines advancing from top to bottom, but any
numbers using Arabic numerals are written left to
right? Any fragments of text written in the Latin
script are also presented left to right. This method
leads to nesting segments of reversed writing direc-
tion as shown in Figure 8 The text in this figure
reads “Attention: Kalanit (1984) Tel-Aviv, ISRAEL;”
where “Kalanit (1984)” isa company name. Figure 9
is another example of combining left-to-right and
right-to-left text. It shows a portion of the contents
page from the EL AL airline magazine.

Text Input

The following section discusses techniques for
addressing cultural differences in computer key-
board input.

Alphabetic writing systems typically have no
more than 50 discrete symbols. Computer key-
boards contain approximately 48 keys with sym-
bols from the writing system inscribed. The
depression of a key produces a code from the key-
board that is translated into a character coding
according to some predefined coding. Input of a
character not represented directly on the keyboard
requires depression of several keys. For example, in
terminals from Digital, the @ character is input on
non-German keyboards by pressing “Compose ss”.

Latin keyboards typically have two possible charac-
ters available from each alphabetic key: lowercase
letters are displayed by depressing the key alone,
and uppercase letters are produced by depressing a
shift modifier or a locking shift and the letter key.

Some keyboards have four levels, with three or
four characters available from each key. Figure 10
shows the Arabic keyboard from Digital and the
Khmer keyboard from Apple Computer. The user
switches into the additional two groups of charac-
ters with an additional modifier or shift key. Note
that the Arabic keyboard uses the additional group
to support Latin characters as well as Arabic, but
the Khmer keyboard uses all four groups for the
Khmer characters only.® A four-group keyboard is
now a national standard in Germany."

The katakana and hiragana syllabaries have
approximately 5@ characters each. These can be
input either directly from the kcyboard or through
a mapping of the syllable typed with the phoneti-
cally equivalent Latin characters. For example, the
character X (mma) can be input either by typing
the ~ keyon a Japanese keyboard, or by typing
m and a and using an input method to convert to
.

Although some early keyboards had many ranks
of individual keys, input of ideographic characters
from modern keyboards always requires a multiple-
stroke input method, with some user interaction.

Attention; 2°IN-57 (1984) 1393 ISRAEL

LEFTTO RIGHT

RIGHT-TO-LEFT SEGMENT

>
LEFTTORIGHT

—
(1984) IS A LEFT-TO-RIGHT
SEGMENT NESTED IN A

RIGHT-TO-LEFT SEGMENT

Figure 8 Nested Bidirectional Text

» EL AL News
» EL AL Route Maps
» EL AL Services

. 86
. 48
. S0

46 Y YN mYIn <«
48 o 5y YN - o Mo «
52 L Yy AN MW«

Figure 9 Combined Direction Text

Digital Technical Journal Vol .5 No.3 Sunumer [993

13

Product Internationalization

| =
1

Py sy gr—, (s ~— — [— =l - -,_ATF_\/_/,
nEEEEEEREEEEE
=[] . 3l [F2l0 1 [3 i Antun
=] e [] ol E [[L]
— — T — _‘ g : A e _‘
A EEREEREE BleREU
T*T———,—A]’_, €51 ik = T< 7?73 L
(1]))
. sl el

[w 9 | bjm—-mmb qa ¢ ¢l[e (|flo)][- TI[- +|[Backspace
wlioe|2 olf3 o|[4 1|5 o6 7{Ve‘q°ox+_&
Tab ﬁl::c?s*ﬁsm“ "::%j']ﬂﬁQJE']WJJ
wJ EAIL fla oL . oA E e 3
Copslock 117 Aoy T he afs wlfs #flw sam|r sflaegf; : Retura
A P P S P PR O P]]
Shift ¥ wifs wle gl offv affs mffs Y ERPY (VAR BN
o e Jual. Md afla mfa [#9 D"
Option)| Command Eater Option

Figure 10 Arabic Keyboard (above) and Kbmmer Keyboard

Both Japanese and Korean have phonetic writing
systems. Users of these languages primarily use
phonetic methods to input ideographic characters.
The Chinese-language user has many different
input methods; these are based on phonetic input
or on strokes orshapes in the character. Almost all
of these methods display a list of possible candi-
dates as a result of the string input, and the user
selects the appropriate candidate. The implementa-
tion of Japanese input methods is detailcd in a sepa-
rate paper in this issue of the Journal.'?

Bidirectional Text

Hebrew and Arabic user interfaces have an addi-
tional level of difficulty. As discussed earlicr, the
text is bidirectional; the primary writing direction

PARKING NO

progresses from right to left and includes left-
to-right segments of numbers and non-Hebrew or
non-Arabic text. As shown in Figure 8, these scg-
ments can nest. The order in which to read bidirec-
tional text can be ambiguous and can depend on
the semantics of the text. Figure 11 duplicates the
information on a pair of signs displayed at parking
lots in Tel-Aviv. Urban lcgend has it that at least one
parking ticket was dismissed by the court on the
argument that the sign indicated that parking was
not allowed from 5:00 p.m. to 9:00 a.m.

To some extent the correct direction can be
assigned automatically. Hebrew and Arabic charac-
ters have an implicit direction of right to left, and
Latin text has an implicit left-to-right direction. Thus
an output method can Jay out simple combinations

1IN PR

1790-09% mywn 3

N PR

090170 MyWwn 3

(THE HOURS)

Figure 11

BETWEEN

“No Parking” Signs in Tel-Aviv

14

Vol. 5 No.3 Swmmer 1993 Digital Technical Journal

International Cultural Differences in Software

of bidirectional text correctly. Beyond these char-
acters, direction can be ambiguous. Punctuation
marks are common to both Hebrew and Latin text.
Thus a period or comma or space has no implicit
direction; the software must wait for the next char-
acter to determine the direction of the segment. In
more complex cases such as the nested directions
shown in Figure 8, direction attributes must be
explicitly assigned to the segments.8 As discussed
in the paper on Unicode in this issue, the Unicode
and ISO 10646 characters sets do include a rich set
of directional markers. "

Insertion of text should be performed in the way
the user finds most convenient, which is not neces-
sarily in accordance with the “correct” directional
order of a segment. If entering a two-digit number
in the “common” direction requires too many oper-
ations, or if the user was trained on a manual type-
writer, most users would use the easiest typing
order, i.e., entering the least-significant digit first
and the most-significant digit second. “Smart” soft-
ware, which puts the digits in the supposedly cor-
rect order, is not doing this user a service.

National Conventions

Various entities such as date, time, and numeric val-
ues can be presented differently. Such presentation
differences develop both from national and from
personal or company styles. These presentation
differences are not only tied to different writing sys-
tems. For example, dates are presented differently
in the United States and in England.

Date Formats

The ninth day of October 1990 is written 9/10/90 in
Europe but 10/9/90 in the United States. The order
of the day and month numerals is well defined fora
particular culture, but there are no overall formats
for the separator used, or indeed for the general
style. The separator may be a slash, hyphen, colon,
space, or another symbol, according to policy or
personal preference. The style may be numeric
date as shown or the name of the month may be
spelled out, and the year may be two or four digits.

In Japan, dates are based on the reign of the
emperor. As shown in Figure 12, 1990 was the sec-
ond year of Heisei, the reign of the current
emperor. (The first and last years of two eras may
coincide. Showa, the previous era, ended January 7,
1989, and Heisei started on January 8, 1989.) This
date format is routinely used in business in Japan.
The Western date formats are also used, so a date

FR_F+ANLE
SN N

HEISEI 2 YEAR 10 MONTH 9 DAY

Figure 12 Japanese Date Format

parsing program should be able to process both
formats.

Time-of-day Formats

Similarly, time-of-day formats vary according to per-
sonal and, to some extent, national preference.
Possible time formats include

915am 09:15 0915 09:15:36 09 15 09h15

Time-zone abbreviations also change around the
world. Two or more different abbreviations may
indicate the same time zone. Eastern Standard Time
(EST) is a US-specific time-zone indicator. This
zone is called HNE (Heure Normale de I'Est) in
French-speaking Canada. Central European Time is
known as HEC by the French-speaking populations
and as MEZ by German speakers. The same time-
zone abbreviation may stand for different time
zones. AST is used for both Alaska Standard Time
and Atlantic Standard Time, which are five hours
apart. Time-zone abbreviations are not standardized
and may change. Time zones are not all at one-hour
intervals. Some countries have time zones at a
30-minute difference from a neighboring zone.
Certain towns in Islamic countries use solar time
and thus can have time differences of several min-
utes between towns within one time zone.

Number Formats

The separators used with numerals to express
quantities vary as part of national and personal
preferences. In the United Kingdom and the United
States, the comma is a thousands separator, and the
period is a decimal separator. In continental
Europe, the opposite is true. Separators include

1,23456 1.234,56 123456 123456
1’23456 1,23456

Numbers written in Japanese or Chinese using
Chinese ideograms sometimes include the unit indi-
cator, as in the number 28 —_t+AN (“two”,“ten”,
“eight”) and sometimes omit it — /\ .

Positive and negative indicators differ. The plus
and minus signs may be used before or after the
number. In accounting, negative numbers are usu-

ally enclosed in parentheses.

Digital Technical Journal Vol.5 No.3 Summer 1993

15

Product Internationalization

Currency Formats

In currency formats, the currency symbol may be
one or several characters and may be placed before
or at the end of the number, or used instcad of the
decimal point. Some examples are: OS 2,50
(Austria); 2,50 $ (French-speaking Canada); 2$50
(Portugal); and $2.50 (United States).

User Interface

As the point of contact between the user and the
machine, the user interface is an obvious area for
potential clashes of culture between the designer
and therecipient. The interface must be localized to
fit the cultural expectations of the end user." The
interface designer must be aware of issues of geome-
try management, images, symbols, color, and sound.

Geomeltry Management
Graphical interfaces in English use menu bars
aligned at the left, with cascading menus falling
from left to right. Menus in Hcbrew and Arabic cas-
cade from right to left. Figure 13 shows a menu
from the Hebrew version of DECwindows XUI.
Although Japanese and Chinese are traditionally
read from top to bottom with columns advancing
from right to left, most technical material is pre-
sented with the same flow as English has. Conse-
quently, user interfaces have the same left-to-right
flow as English. This may be considered an aspect
of new technology setting new cultural norms.
Japanese and Chinese do present some geometry
management challenges. A word processor for
English uses the right scroll bar to advance from

page to page. The analogy is from writing on a long
scroll of paper, which is cut into pages. For a
Japanese word processor, which enables the uscr to
type in the traditional top-to-bottom orientation,
does the bottom scroll bar control page advance by
sliding the selection to the left? There is no one cor-
rect answer. A designer can keep consistent with
the traditional horizontal scroll or with word pro-
cessors for Latin-based writing systems.

Images

Some designers may consider that using images
instead of text creates an international, culturally
neutral product that requires no localization. This
is only the case if the image is entirely abstract and
chosen to be equally foreign to all cultures. This
may meet the requirements of internationalization,
but at the expense of good user interface design.

Most images are chosen to provide a cultural
mnemonic to the action. This link may have little
meaning in another culture. The rural mailbox
image @ chosen for certain electronic mail sys-
tems is a good example. This i mage is unknown out-
side the United States, and some American city
dwellers are unfamiliar with it as well. The conven-
tion of raising the flag on the mailbox to indicate
that new mail has arrived is not common through-
out American rural communities. It can instead
indicate the presence of outgoing mail.

In addition, a graphic may be a play on words that
will not translate. One personal computer product
uses a musical note to indicate that a written note is
associated with anitem in its database.

NDRNN EeALE NI'YDIX N3y Y7

P
ar

S

<1 nnswp
| '7T1A

no'zan
NV71N-"1V)

7 o I

Figure 13 Hebrew DECwindows XUI

16

Vol.5 No.3 Summer 1993 Digital Techuical Journal

International Cultural Differences in Software

Symbols

Symbols commonly used in one culture may be mis-
interpreted by someone from another culture. For
example, the cross is often used to indicate
prohibition. However, in Egypt it does not have
this connotation.® Designers should allow for
the replacement of selection symbols such as
ticks (checkmarks) and crosses found in many user
interfaces.

[talic Bold

Color

The significance of color varies greatly across
cultures. Table 1, taken from Russo and Boor, gives
the ideas associated with colors in six cultures.!”
Forexample,red meansdangerin the United States,
but it has the connotation of life and creativity in
India. Garland found that using a red “X" as a pro-
hibitive symbol in Egyptian pictures was not effec-
tive because the color red is not associated with
forbiddance, and the “X” is not understood as
prohibitive.'¢

Sound

In the book Global Software, Dave Taylor relates
that when Lotus localized its 1-2-3 spreadsheet
for use in Japan, the developers had to remove
all beeps from the program.'® Japanese users, typi-
cally seated much closer together than their
Western counterparts, did not appreciate the
computer broadcasting to their colleagues every
time they made an error. Since beeps can be irritat-

Table 1 Significance of Color across Cultures

ing in open offices in all cultures, well-designed
systems allow users to eliminate them or modify
the volume.

Functional Differences in Software

Much of this paper has covered areas where the
form of the information must change for different
cultures. The software may also require functional
changes for different cultures. Applications that
manipulate text provide a set of operations linked
to the nature of both the writing system and the
code set. We have seen that typing Japanese and
Chinese requires an indirect input method.
Applications using the Latin script provide a user
interface to an operation to change the case of
a character. This operation is not applicable to
Japanese, but a Japanese word processor has an
operation to convert from Ratakana to hiragana.

A delete operation on a Latin letter deletes both
the letter and the rectangular cell, a piece of the
screen real estate, causing the adjacent text to close
up. With the cursor to the right of a Korean syllable
cluster or Thai consonant/vowel/tone combina-
tion, the user presses the delete key. What should
be deleted? Thai and Korean do not have the union
between a letter and its linear space that the Latin
alphabet has. Two separate operations with differ-
ent user interfaces may be required, whereas one
suffices in English. The code set used also plays a
part in determining the nature of the operation.
The Thai code set independently codes every letter
and tone, so deleting a single letter or tone is practi-
cal. The national Korean code set codes syllable

Red Blue Green Yellow White
u.S. Danger Masculinity Safety Cowardice Purity
France Aristocracy Freedom Criminality Temporary Neutrality
Peace
Egypt Death Virtue Fertility Happiness Joy
Faith Strength Prosperity
Truth
India Life Prosperity Success Death
Creativity Fertility Purity
Japan Anger Villainy Future Grace Death
Danger Youth Nobility
Energy
China Happiness Heavens Ming Dynasty Birth Death
Clouds Heavens Wealth Purity
Clouds Power

Digital 1echnical Journal Vol. 5 No.3 Summer 1993

17

Product Internationalization

clusters.® Deleting one letter from a cluster may
produce a combination with no code. In Digital’s
Thaiand Korean products, the action of the delete
operation is as suggested by the code set. Thai
deletes one letter or tone mark; Korean deletes the
syllable cluster.

In unidirectional writing systems, the right arrow
key navigates the cursor over the logical reading
order of the text as it moves smoothly over the
screen. The operation of logical movement ancl geo-
metrical movement across the screen is identical
within one line. This is not the case with bidirec-
tional text. The following fragmentis from a Hebrew
application one two[wl'iw D’NY TNX . Pressing the
left arrow key moves the cursor to the left of the
word “one” if the action means to follow reading
order, or to the left of the “0” in “two” if the action
is one of navigating screen real estate.

Functional differences may come from regula-
tory constraints. The United States has export pro-
hibitions on certain encryption techniques.
Non-U.S. versions of products may need to remove
them or use different techniques. Standards and
regulations for connection to external devices such
as modems vary around the world.

Product features may also need to vary based on
less tangible aspects of a culture. LYRE s a hypertext
product developed in France. The product allows
students to analyze a poem from various viewpoints
selected by the teacher. Students are not allowed to
add their own viewpoints. This is acceptable in
France but not in Scandinavian countries, where
independent discovery is highly valued.’

Correct and Incorrect Actions

Learning the rules concerning cultural sensitivity
does not guarantee that a software developer from
outside, or even inside, that culture will not make
errors. Two examples illustrate this.

When Lotus localized its 1-2-3 product into
Japanese, the developers were aware that the
Japanese date counts the year from the ascension of
the emperor to the throne. In their initial test of the
product under development in Japan, they included
the ability to reset the counter and to modify the
field naming the reign. This appears to be admirable
planning, sensitive to the needs of the local date
format; however, the Japanese users strenuously
requested that this feature be removed since it
anticipated the demise of the emperor.?

In Arabic and Hebrew bidirectional text, deletion
of one segment of text can cause the surrounding

segments to be rearranged under certain circum-
stances. This follows from a logical analysis of
ordering of the segments and was implemented in
an early version of Hebrew DECwrite. Studics with
users revealed that they found this rearrangement
of text disconcerting and preferred to manually
rearrange segments. The program was changed in a
subsequent version. Note that this resolution is
dependent on the specific product. One should not
conclude that automatic reordering of text is
always incorrect. Other bidirectional text systems
perform this reordering.

Responding to and Setting Culture

New technology in computer applications must
reflect the prevalent existing culture, but it also
plays a part in creating new cultural norms. An ear-
lier section described how users of a Hebrew word
processor might enter digits into a stream of
Hebrew by reversing the order of the digits. This
cultural behavior was introduced during the days of
manual typewriters or older computer systems,
which required additional keystrokes to change
writing direction. An older technology introduced
a cultural expectation. As users in Israel grow more
accustomed to word processors that enter the cor-
rect order automatically, and as the base of users
exposed to older technology shrinks, we can antici-
pate that the standard expectation of the order in
which to enter digits will change.

The Arabic and Khmer writing systems modify
the shape of the written glyph based on surround-
ing characters. The Khmer keyboard (Figure 10)
shows separate glyphs for each variation (implying
separate codes). This design follows the lead of ear-
lier typewriters and is familiar to users trained on
such typewriters. It adds complexity to the key-
board and requires the user to manually enter the
correct glyph. The Arabic keyboard is from a sys-
tem that codes each character independently of
glyph; the renderer selects the correct glyph to dis-
play based on context. This system may require
a longer transition for users trained on manual
typewriters, but it is the preferred use of a more
advanced technology.

As described previously, written Thai and Korean
both use syllable clusters, but the delete operation
on each script differs clue to the different methods
by which the code set represents the script. Which
is the correct action? The question does not havean
easy answer. From a formal analysis of the language,
one might argue that deleting the individual letter

18

Vol. 5 No.3 Sumimer 1993 Digital Technical Journal

International Cultural Differences in Software

is correct; but as we have seen, formal analysis
need not yield an appropriate answer. Ultimately
the correct answer is a delicate balance between
users’ expectations based on the past and the
requirements of innovation. The users’ expecta-
tions are set by previous implementations, which
were derived from limitations in the technology of
the time. We have a cycle of computers adapting to
people adapting to computers.

Deeper Cultural Differences

Some of the cultural differences discussed in this
paper such as the presentation of dates and cur-
rency are obvious even on a superficial examina-
tion of the culture. Others such as the cultural
reaction to color are learned from deeper study.

We can expect the future development of soft-
ware to consider as yet unexplored cultural differ-
ences. New features in user interfaces, the use of
sound, voice, pen-based computers, and anima-
tion, will tie into aspects of cultural behavior that
are currently little explored by researchers. Higher-
resolution screens and the prevalence of color
bring the ability to design applications that relate
more directly to the user’s sense of beauty.

The personal computer revolutionized personal
productivity. Applications such as spreadsheets
succeeded because they modeled individual user’s
existing work practices and extended their capabil-
ity. A current trend is toward applications for
the work group or collaborative computing. This
style attempts to revolutionize the way groups
work. Jeffrey Hsu reports that “Collaborative sys-
tems can meet stubborn resistance when they are
introduced in a company, because they challenge
the organizational culture with a new means of
communication.”? The difference in the business
decision-making process between Japan and the
United States is well documented, with Japanese
groups valuing group decision and harmony or wa
highly. We can expect the emerging “groupware”
applications both to model existing styles of group
work and to change those styles.

The future will also bring software agents.?? This
software will act as a collaborator with the user to
process information in much the same way as a
human personal assistant. As with a human assis-
tant, we can anticipate that software agents will
adapt to the specific requirements and habits of the
user, a culture of one. We can imagine an agent rec-
ommending circulation lists for memos and aiding
in correctly phrasing the mail. The forms of address

will vary not only across national boundaries, but
across companies. As the set of cultural differences
to be addressed goes deeper, the circles of people
sharing those cultures will shrink.

Techniques exist to build products with a high
level of internationalization. These are described in
other papers in this issue. These techniques will
continue to develop and improve, but internation-
alization will never be a fully resolved considera-
tion. The term may fall from use as the cultural
differences being addressed have a decreasing
relationship to national boundaries. International-
ization is simply making software easy to localize,
and the essence of localization is meeting the indi-
vidual needs of the customers. As computer sys-
tems become more powerful and software more
sophisticated, adaptation to the individual will con-
tinue. Techniques to adjustsoftware to fit personal
preferences will continue to develop.

Acknowledgments

This paper is adapted from an earlier unpublished
work, circulated within Digital Equipment Corpo-
ration. The author would like to thank Gayn
Winters for initiating and driving the paper and
for many valuable comments on early drafts. This
paper took shape as reviews from colleagues
around the world corrected errors and contributed
many examples, some of which are seen in this
paper. The author would like to acknowledge the
input from John McConnell and Michael Yau in
the United States; Jiurgen Bettels in Switzerland,
K. H. Chan and Fred Li in Hong Kong; Trin
Tantsetthi in Thailand; Mike Feldman, Moti
Huberman, and Moshe Loterman in Israel; Hirotaka
Yoshioka in Japan; and Nai-peng Kuang in Taiwan.

References and Notes

1. South Korean writing uses two scripts.
Hangul is an alphabetic system. Hanja is the
set of ideograms imported from China and
used as the sole script until the invention of
Hangul There exists a widespread miscon-
ception that Hangul is ideographic. The
author wishes to stress that only the Hanja
scriptuses ideograms.

2. The example shown contains no phonetic ele-
ment. Many, more complex characters do
have phonetic components. Some scholars
disparage the use of the term ideograph to
describe Japanese and Chinese writing,

Digital Technical Journal Vol. 5 No. 3 Sununer 1993

19

Product Internationalization

10.

11.

12.

13.

asserting that the phonetic element is pri-
mary. (Sce references 3 and 5.) This paper
uses the termideograph since it is in common
use.

J. DeFrancis, The Chinese Language L'act and
Fantasy, Second Paperback Edition (Hon-
olulu: University of Hawaii Press, 1989): 91.

M. Stubbs, Language and Literacy. The Soci-
olinguistics of Reading (London, Boston, and
Henley: Routledge and Kegan Paul, 1980): 48.

J. DeFrancis, Visible Speech: The Diverse One-
ness of Writing Systems (Honolulu: Univer-
sity of Hawaii Press, 1989).

& is an interesting character. It was originally
formed asa ligature of e and £ and is now used
as an idcogram in many European written
languagcs.

E Coulmas, The Writing Systems of the World
(Oxford: Basil Blackwell, 1989): 118.

A. Nakanishi, Writing Systems of the World,
third printing (Rutland. VT, and Tokyo: Charles
E. Tuttle Company, 1988): 112.

The numerals 1, 2, 3, etc., are¢ generally known
as, and referred to, as Arabic numerals; how-
ever, by one of those quirks of language, the
Arabic script uses a different scet of symbols for
numerals, sometimes called Indic numerals.

Note that the Khmer keyboard has four regis-
ters becausc it is based on a glyph ¢ncoding of
Khmer rather than a character encoding,
which would use two registers at most. Also,
the subscript Khmer glyphs on the kevcaps,
which are uscd in conjuncts, are not neces-
sary if more sophisticated display software is
used.

DIN 2137, German keyboard for typewriters,
Allocation of Characters to Keys, Parts 1, 2, 6,
and 11 (Deutsch Institut fuir Normung, 1988).

T. Honma, H. Baba, and K. Takizawa,
“Japanese Input Method Independent of
Applications,” Digital Technical Journal, vol.
5, no. 3 (Summer 1993, thisissue): 97-107.

There is some dispute in the industry on the
need for explicit direction markers. Under
certain circumstances, correct rendition of
nested direction text can be computed. For
example, a renderer could show the structure

15.

10.

17

19.

20.

21.

22.

of the textin Figure 8 correctly without direc-
tional attributes. The Unicode and 1SO 10646
character scts do include a rich set of direc-
tional markers.

1. Bettels and E Bishop, “Unicode: A Universal
Character Code," Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 21-31.

J. Nielsen, “Usability Testing of International
Interfaces,” in Designing User Interfaces for
International Use, cdited by J. Nielsen (New
York: Elsevier, 1990).

K. Garland, “The Use of Short Term Feedback
in the Preparation of Technical and Instruc-
tional Illustration,” in Research in Illustra-
tion: Conference Proceedings Part 11 (1982).

P Russo and S. Boor, “How Fluent Is Your
Interface? Designing for International Users,”
paper presented at INTERCHI, Amsterdam,
April 1993.

D. Taylor, Global Software: Developing Appli-
cations for the [nternational Market (New
York, Berlin, Heidelberg, London, Paris,
Tokyo, Hong Kong, Barcelona, Budapest:
Springer-Verlag, 1992): 54.

The design of the Korean code set reflects
compromises made among cultural, eco-
nomic, and technological requirements. The
structure of the writing system leads to inde-
pendent coding of each jamo, with the dis-
play device rendering them into syllable
clusters. Coding as syllable clusters greatly
simplified the prevalent technology of the
time and reduced the cost of the display
device.

E Hapgood, “A Journey Last—The Making of
1-2-3 Relcase 2).” Lotus: Computing for Man-
agers and Professionals (Cambridge, MA:
Lotus Development Corporation, 1987).

J. Hsu and T. Lockwood, “Collaborative Com-
puting,” BYTE Magazine (March 1993): 120.

L. Tesler, "Networked Computing in the
1990s,” Scientific American (September
1991).

20

Vol. 5 No. 3

Sunumer 1993 Digital Technical Journal

Unicode: A Universal
Character Code

Jiirgen Bettels
E Avery Bisbop

A universal character encoding is required fo produce software that can be local-
ized for any language or that can process and communicate data in any language.
The Unicode standard is the product of a joint effort of information technology
companies and individual experts; its encoding bas been accepted by I1SO as
the international standard 1SO/IEC 10640. Unicode defines 10-bit codes for the char-
acters of most scripts used in the world’s languages. Encoding for some missing
scripts will be added over time. The Unicode standard defines a set of rules that belp
implementors build text-processing and rendering engines. For Digital, Unicode
represents a strategic direction in internationalization technology. Many software-
producing companies have also announced future support for Unicode.

A universal character encoding—the Unicode stan-
dard—has been developed to produce interna-
tional software and to process and render data in
most of the world’s languages. In this paper, w e pre-
sent the background of the development of this
standard among vendors and by the International
Organization for Standardization (ISO). We describe
the character encoding’s design goals and princi-
ples. We also discuss the issues an application han-
dles when processing Unicode text. We conclude
with a description of some approaches that can be
taken to support Unicode and a discussion of
Microsoft’s implementation. Microsoft’s decision
to use Unicode as the native text encoding in its
Windows NT (New Technology) operating system
is of particular significance for the success of
Unicode.

Background

In the 1980s, software markets grew throughout
the world, and the need for a means to represent
text in many languages became apparent. The com-
plexity of writing software to represent text hin-
dered the development of global software.

The obstacles to writing international software
were the following.

1. Stateful encoding. The character represented by
a particular value in a text stream depended on
values earlicr in the stream, for example, the
cscape sequences of the ISO/IEC 2022 standard.’

2. Variable-length encoding. The character width
varied from one to four bytes, making it impossi-
ble to know how many characters were in a
string of a known number of bytes, without first
parsing the string.

3. Overloaded character codes and font systems.
Character codes tended to encode glyph variants
such as ligatures; font architectures often
included characters to enable display of charac-
ters from various languages simply by varying
the font.

In the 1980s, character code experts from around
the world began work on two initially parallel proj-
ects to eliminate these obstacles. In 1984, the ISO
started work on a universal character encoding.
This effort placed heavy emphasis on compatibility
with existing standards. The 1SO/IEC committee
published a Draft International Standard (DIS) in
spring 1991.2 By that time, the work on Unicode
(described in the next section) was also nearing
completion, and many experts were alarmed by the
potential for confusion from two competing stan-
dards. Several of the I1SO national bodies therefore
opposed adoption of the DIS and asked that ISO and
Unicode work together to design a universal char-
acter code standard.

The Origins of Unicode

In some sense Unicode is an offshoot of the ISO/IEC
10646 work. Peter Fenwick, one of the early

Digital Technical Journal Vol.5 No.3 Sununer 1993

21

Product Internationalization

conveners of the ISO working group responsible for
10646, developed a proposal called “Alternative B,
based on a 16-bit code with no restriction on the
use of control octets. He presented his ideas to
Joseph Becker of Xerox, who had also been work-
ing in this area.3

In early 1988, Becker met with other experts in
linguistics and international software design from
Apple Computer (notably Lee Collins and Mark
Davis) to design a new character encoding. As one
ofthe original designers, Becker gave this code the
name Unicode, to signify the three important ele-
ments of its design philosophy:

1. Universal. The code was to cover all major mod-
ern written languages.

2. Unique. Each character was to have exactly one
encoding.

3. Uniform. Each character was to be represented
by a fixed width in bits.

The Unicode design effort was eventually joined
by other vendors, and in 1991 it was incorporated as
a nonprofit consortium to design, promote, and
maintain the Unicode standard. Today member
companies include Aldus, Apple Computer,
Borland, Digital, Hewlett-Packard, International
Business Machines, Lotus, Microsoft, NeXT, Novell,
The Research Libraries Group, Sun Microsystems,
Symantec, Taligent, Unisys, WordPerfect, and
Xerox. Version 1.0, volume 1 of the 16-bit Unicode
standard was published in October 1991, followed
by volume 2 in June 1992.45

It was sometimes necessary to sacrifice the three
design principles outlined above to meet conflict-
ing needs, such as compatibility with existing char-
acter code standards. Nevertheless, the Unicode
designers have made much progress toward solving
the problems faced in the past decade by designers
ofinternational software.

The Merger of 10646 and Unicode

Urged by public pressure from user groups such as
IBM’s SHARE, as well as by industry representatives
from Digital, Hewlett-Packard, IBM, and Xerox,
the I1SO 10646 and Unicode design groups met in
August 1991; together they began to create a single
universal character encoding. Both groups compro-
mised to create a draft standard that is often
referred to as Unicode/10646. This draft standard
was accepted as an international character code
standard by the votes of the ISO/IEC national bodies
in the spring of 1992.6

As a result of the merger with ISO 10646, the
Unicode standard now includes an errata insert
called Unicode 1.0.1 in both volumes of version 1.0
to reflect the changes to character codes in
Unicode 1.0.7 The Unicode Consortium has also
committed to publish a technical report called
Unicode 1.1 that will align the Unicode standard
completely with the ISO/IEC 10646 two-octet com-
paction form (the 16-bit form) also called UCS-2.

Relationship between Unicode and
ISO/IEC 10646

Unicode is a 16-bit code, and ISO/IEC 10646 defines
a two-octet (UCS-2) and a four-octet (UCS-4) encod-
ing form. The repertoire and code values of UCS-2,
also called the base multilingual plane (BMP), are
identical to Unicode 1.1. No characters are cur-
rently encoded beyond the BMP; the UCS-4 codes
defined are the two UCS-2 octets padded with two
zero octets. Although UCS-2 and Unicode are very
close in definition, certain differences remain.

By its scope, ISO/IEC 10646 is limited to the
coding aspects of the standards. Unicode includes
additional specifications that help aspects of
implementation. Unicode defines the semantics
of characters more explicitly than 10646 does.
For example, it defines the default display order
of a stream of bidirectional text. (Hebrew text
with numbers or embedded text in Latin script
is described in the section Display of Bidirectional
Strings.) Unicode also provides tables of character
attributes and conversion to other character
sets.

In contrast with the Unicode standard, ISO 10646
defines the following three compliance levels of
support of combining characters:

= Level 1. Combining characters are not allowed
(recognized) by the software.

= Level 2. This level is intended to avoid duplicate
coded representations of text for some scripts,
e.g., Latin, Greek, and Hiragana.

= Level 3. All combining characters are allowed.

Therefore, Unicode 1.1 can be considered a
superset of UCS-2, level 3.

Throughout the remainder of this paper, we refer
to this jointly developed standard as Unicode.
Where differences exist between ISO 10646 and
Unicode standards, we describe the Unicode func-
tionality. We also point out the fact that Unicode
and ISO sometimes use different terms to denote
the same concept. When identifying characters, we

22

Vol.5 No 3 Summer 1993 Digital Technical Journal

Unicode: A Universal Character Code

use the hexadecimal code identification and the ISO
character names.

General Design of Unicode

This section discusses the design goals of Unicode
and its adherence to or variance from the principles
of universality, uniqueness, and uniformity.

Design Goals and Principles

The fundamental design goal of Unicode is to create
a unique encoding for the characters of all scripts
used by living languages. In addition, the intention
is to encode scripts of historic languages and
symbols or other characters whose use justifies
encoding.

An important design principle is to encode each
character with equal width, i.e., with the same
number of bits. The Unicode designers deliberately
resisted any calls for variable-length or stateful
encodings. Preserving the simplicity and unifor-
mity of the encoding was considered more impor-
tant than considerations of optimization for storage
requirements.

A Unicode character is therefore a 16-bit entity,
and the complete code space of over 65,000 code
positions is available to encode characters. A text
encoded in Unicode consists of a stream of 16-bit
Unicode characters without any other embedded
controls. Such a text is sometimes referred to as
Unicode plain text. The section Processing Unicode
Text discusses these concepts in more detail.

Another departure from the traditional design of
code sets is Unicode’s inclusion of combining char-
acters, i.e., characters that are rendered above,
below, or otherwise in close association with the
preceding character in the text stream. Examples
are the accents used in the Latin scripts, as well as
the vowel marks of the Arabic script. Combining
characters are allowed to combine with any other
character, so it is possible to create new text ele-
ments out of such combinations.® This technique
can be used in bibliographic applications, or by lin-
guists to create a script for a language that does not
yet have a written representation, or to transliter-
ate one language using the script of another. An
example in recent times is the conversion of some
Central Asian writing systems from the Arabic to
the Latin script, following Turkey’s example in the
1920s (Kazakhstan).

An additional design principle is to avoid duplica-
tion of characters. Any character that is nearly iden-
tical in shape across languages and is used in an

equivalent way in these languages is assigned a
single code position. This principle led to the uni-
fication of the ideographs used in the Chinese,
Japanese, and Korean written languages. This
so-called CJK unification was achieved with the
cooperation of official representatives from the
countries involved.

The principle of uniqueness was also applied to
decide that certain characters should not be
encoded separately. In general, the principle states
that Unicode encodes characters and not glyphs or
glyph variations. A character in Unicode represents
an abstract concept rather than the manifestation
as a particular form or glyph. Asshown in Figure 1,
the glyphs of many fonts that render the Latin
character A all correspond to the same abstract
character “a”

Abstract
Letter Glyph Style
a Century Schoolbook
% a Helvetica
a a Century Gothic
§ a Script
a Book Antiqua

Figure 1 Abstract Latin Letter “a” and
Style Variants

Another example is the Arabic presentation
form. An Arabic character may be written in up to
four different shapes. Figure 2 shows an Arabic
character written in its isolated form, and at the
beginning, in the middle, and at the end of a word.
According to the design principle of encoding
abstract characters, these presentation variants are
all represented by one Unicode character.”

Since much existing text data is encoded using
historic character set standards, a means was pro-
vided to ensure the integrity of characters upon
conversion to Unicode. Great care was taken to
create a Unicode character corresponding to each

e

oo o &
Y J Y

Figure 2 Isolated, Final, Initial, and Middle Forms
of the Arabic Character Sheen

Digital Technical jJournal Vol. 5 No. 3 Summer 1993

Product Internationalization

character in cxisting standards. Characters identical
in shape appearing in different standards are identi-
fied and mapped to a single Unicode character. For
characters appearing twice in the same standard, a
compatibility zone was created. These characters
arc encoded as required to make round-trip conver-
sion possible between other standards and
Unicode. The Unicode Consortium has agrced to
create mapping tables for this purpose.

Text Elements and Combining Characters

When a computer application processes a text doc-
ument, it typically breaks down text into smaller
elements that correspond to the smallest unit of
data for that process. These unitsare called text ele-
ments. The composition of a text element is depen-
dent on the particular process it undergoes. The
Arabic ligature lam-alef is a text element for the
rendering process but not for other character oper-
ations, such as sorting,.

In addition, the same process applied to the same
string of text requires different text ¢clements depend-
ing on the language associated with the string.
Figure 3 shows sorting applied to the string “ch.” If
this string is part of English text, the text elements
for the process of sorting are “c” and “h.” In Spanish
text, however, the text element for sorting is “ch”
because it is sorted as if it wcre a single character.

For other text-processing operations, text ele-
ments might constitute units smaller than those
traditionally called characters. Examples are the
accents and diacritical marks of the Latin script.
These small textelements interact graphically with
a noncombining character called a base character.
The acute accent interacts with the base character
A to form the character A acute. If a given font does
not have the character A acute, but it docs have A
and acute accent as separate glyphs, the character
A acute has to be divided into smaller units for the
rendering process.

In Thai script, vowels and consonants combine
graphically so that the vowel mark can be cither

Spanish English
curra charm
chasquido current
dano digit

Figure 3 Text Elemments and Collation

before, above, below, or after a consonant, thus
forming one display unit. This unit becomes the text
element for purposes of rendering. For a process
such as advance to next character, however, the indi-
vidual vowels and consonants are the natural units
of operation and are therefore the text elements.

There is no simple relationship between text cle-
ments and code elements. As we have shown, this
relationship varies both with the language of the
text and with the operation to be performed by the
application. In earlier encoding systems such as
ASCII or others with a strong relationship to a lan-
guage, this problem was not apparent. When
designing a universal character code, the Unicode
designers acknowledged the issue and analyzed
which character elements have to be encoded as
code elements to represent the scripts of Unicode
across multiple languages. Rather than burden the
character code with the complexity of encoding
a rich set of text elements, the Unicode Technical
Committee decided that the mapping of code ele-
ments to more complex text elements should be
performed at the application level.

Code Space Structure

The Unicode code space is the full 16-bit space,
allowing for 65,536 different character codes. As
shown in Figure 4, approximately 50 percent of this
space is allocated. This code space is logically
divided into four different regions or zones.

The A-zone, or alphabetic zone, contains the
alphabetic scripts. The first 256 positions in the
A-zone are occupied by the SO 8859-1, or 8-bit ANSI
codes, in such a way that an 8-bit ASCIl code maps
to the corresponding 16-bit Unicode character
through padding it with one null byte. The posi-
tions corresponding to the 32 ASCII control codes
0 to 31 are empty, as well as the positions 0x0080
to Ox009F

The characters of other alphabetic scripts
occupy code space in the range from 0x0000 to
0x2000. Not all of the space is currently occupied,
leaving room to encode more alphabetic scripts.

The remainder of the A-zone up to 0x4000 is allo-
cated for general symbols and the phonetic (i.e.,
nonideographic) characters in use in the Chinese,
Japanese, and Korean languages.

The second zone up to 0xA000 is the ideograph,
or l-zone, which contains the unified Han charac-
ters. Currently about 21,000 positions have been
filled, leaving virtually no room for expansion in
the I-zone.

24

Vol. 5 No.3 Sunmmer 1993 Digital Technical Journal

Unicode: A Universal Character Code

| A-ZONE | I-ZONE

l+— 0-ZONE ——{ R-ZONE |+—

PRIVATE USE
COMPATIBILITY ZONE
UNIFIED CHINESE, JAPANESE, AND KOREAN

CHINESE, JAPANESE, AND KOREAN NONIDEOGRAPHIC
SYMBOLS

EXTENDED LATIN AND GREEK

INDIC SCRIPTS

HEBREW AND ARABIC

LATIN, GREEK, CYRILLIC, AND ARMENIAN

1ISO-646 INTERNATIONAL REFERENCE VERSION

Figure 4 Code Space Allocation for Scripts

The third zone, or O-zone, is a currently unallo-
cated space of 16K. Although several uses for this
space have been proposed, its most natural use
seems to be for more ideographic characters.
However, even 16K can hold only a subset of the
ideographic characters.

The fourth zone, the restricted or R-zone, has
some space reserved for user-defined characters. It
also contains the area of codes that are defined for
compatibility with other standards and are not allo-
cated elsewhere.

Processing Unicode Text

The simplest form of Unicode text is often called
plain Unicode. It is a text stream of pure Unicode
characters without additional formatting or
attribute data embedded in the text stream. In this
section, we discuss the issues any application faces
when processing such text. Processing in this con-
text applies to the steps such as parsing, analyzing,
and transforming that an application performs to
execute its required task. In most cases, the text
processing can be divided into a number of primi-
tive processing operations that are typically offered
as a toolkit service on a system. In describing
Unicode text processing, we discuss some of these
primitives.

Code Conversion

One of the goals of Unicode is to make it possible to
write applications that are capable of handling the
text of many writing systems. Such an application
would typically apply a model that uses Unicode as
its native process code. The application could then
be written in terms of text operations on Unicode

data, which does not vary across the different writ-
ing systems.

Today, and for some time to come, however, the
data that the application has to process is typically
encoded in some code other than Unicode. A fre-
quent operation to be performed is therefore the
conversion from the code (file code) in which data
is presented to Unicode and back.

One of the design goals of Unicode was to allow
compatibility with existing data through round-trip
conversion without loss of information. It was not
a goal to be able to convert the codes of other char-
acter sets to Unicode by simply adding an offset.
This would violate the principle of uniqueness,
since many characters are duplicated in the various
character sets. Most cxisting character sets there-
fore have to be mapped through a table lookup.
These mapping tablesare currently being collected
by the Unicode Consortium and will be made avail-
able to the public.

It was, however, decided that the 8-bit ASCII, or
1SO 8859-1 character set, was tobe mapped into the
first 256 positions of Unicode. Other character sets
(or subsets), such as the Thai standard TIS 620-2529,
could also be mapped directly, since character
uniqueness was preserved. Also, one of the blocks
of Korean syllables is a direct mapping from the
Korean standard KSC 5601.

Some character sets contain characters that can-
not be assigned code values under the Unicode
design rules. Often these characters are different
shapes of encoded characters, and encoding them
would violate the principle of uniqueness. To
allow round-trip conversion for these characters,
a special code area, the compatibility zone, was sct
aside in the R-zone to ¢ncode them and to allow

Digital Technical Journal Vol.5 No.3 Summer 1993

Product Internationalization

interoperation with Unicode. For example, the
wide forms of the Latin letters in the Japanese JIS
208 standard were invented to simplify rendering
on monospacing terminals and printers.

Character Transformations

A frequently used operation in text processing is
the transformation of one character into another
character. For example, Latin lowercase characters
are often transformed into uppercase characters to
execute a case-insensitive search. In most tradi-
tional character sets, this operation would translate
one code value to another. Thus, the output string
of the operation would have the same number of
code values as the input string, and both strings
would have the same length. This assumption is no
longer true in the case of Unicode strings.

Consider the Unicode characters, Latin small
letter a + combining grave accent, i.e., a string of
two Unicode characters. If this string were part of
a French text (in France), transforming a to A would
resultin one Unicode character, Latin capital letter
A. If the same string were part of a French Canadian
text, the accent would be retained on the upper-
case character. We can therefore make two observa-
tions: (1) The string rcsulting from a character
transformation may contain a different number of
characters than the original string and (2) The
result depends on other attributes of the string, in
this case the language/region attribute.

Another important character transformation
operation is a normalization transformation. This
operation transforms a string into either the most
uncomposed or the most precomposed form of
Unicode characters. As an example, we consider
the different spellings of the combination:

U
Latin capital letter U
with diaeresis and grave accent

This letter has been encoded in precomposed form
in the Additional Extended Latin part of Unicode.
There are two additional spellings possible to
encode the same character shape:

U+

Latin capital letter U with diaeresis
+ combining grave accent

and

U + /\\/ + /\\/
Latin capital letter U
+ combining diaeresis
+ combining grave accent

The most uncomposed and the most precomposed
forms of these spellings can be considered normal-
ized forms. When processing Unicode text, an
application would typically transform the charac-
ter strings into either of these two forms for further
processing.

Note that the spellings:

I =55
Latin capital letter U
with grave accent + combining diaeresis

and

U+ +
Latin capital letter U

+ combining grave accent
+ combining diaeresis

would result in a different character:

-~

U

This result is due to the rule that diacritical marks,
which stack, must be ordered from the base charac-
ter outwards.

Byte Ordering

Traditional character set encodings, which are con-
formant to ISO 2022 and the C language multibyte
model, consider characters to be a stream of bytes,
including cases in which a character consists of
more than one byte. Unicode characters are 16-bit
entities; the standard does not make any explicit
statement about the order in which the two bytes of
the 16-bit characters are transmitted when the data
is serialized as a stream of bytes.

The orclering of bytes becomes an issue when
machines with different internal byte-order archi-
tecture communicate. The two possible byte
orders are often called little endian and big endian.
In a little-endian machine, a 16-bit word is
addressed as two consecutive bytes, with the low-
order byte being the first byte; in a big-endian
machine, the high-order byte is first. Today all com-
puters based on the Intel 80x86 chips, as well as
Digital’s VAX and Alpha AXP systems, implement a

26

Vol.5 No. 3 Swminer 1993 Digital Technical Journal

Unicode: A Universal Character Code

little-endian architecture, whereas machines built
on Motorola’s 680xx, as well as the reduced instruc-
tion set computers (RISC) of Sun, Hewlett-Packard,
and IBM, implement a big-endian architecture. In
blind interchange between systems of possibly dif-
ferent byte ordcr, Unicode-encoded text may be
read incorrectly. To avoid such a situation, Unicode
has implemented a byte-order mark that behaves as
a signature. As shown in Figure 5, the byte-order
mark has the code value OXFEFF. It is defined as a
zerG-width, no-break space character with no
semantic meaning other than byte-order mark.

The code value corresponding to the byte-
inverted form of this character, namely OXFFFE, is an
illegal Unicode value. If the byte-order mark is
inserted into a serialized data stream and is read by
amachine with a different byte-order architecture,
itappears as OXFFFE. This fact signals to the applica-
tion that the bytes of the data stream have been read
in reverse order from that in which they were
written and should be inverted. Applications are
encouraged to use the byte-order mark as the first
character of any data written to a storage medium
or transmitted over a network.

Display of Bidirectional Strings

To facilitate internal text processing, a Unicode-
compliant application always stores characters in
logical order, thatis, in the order a human being
would type or write them. This causes complica-
tions in rendering when text normally displayed
right to left (RL) is mixed with text displayed left to
right (LR). Hebrew or Arabic is written right to left,
but may contain characters written left to right, if
either language is mixed with Latin characters.
Numerals or punctuation mixed with Hebrew or
Arabic can be written in either order.

The Default Bidirectional Algorithm

Unicode defines a default algorithm for displaying
such text based on the direction attributes of char-
acters. We outline the algorithm in this paper; for
details, see both volumes of the Unicode stan-

LITTLE-ENDIAN BYTE-STREAM BIG-ENDIAN
MACHINE TRANSFER MACHINE
|70xFEFF |—>| OXFE | * | OXFF |——> | OXFFFE |
BYTE-ORDER FIRST SECOND ILLEGAL
MARK BYTE BYTE CHARACTER

Figure 5 Byte-order Mark

dard.*> (It is important to consult the second
volume because it contains corrections to the algo-
rithm given in the first volume.)

All printing characters are classified as strongly
LR, weakly LR, strongly RL, weakly RL, or neutral. In
addition, Unicode defines the concept of a global
direction associated with a block of text. A block is
approximately equivalent to a paragraph. The first
task of the rendering software is to determine
the global direction, which becomes the default.
Embedded strings of characters from other scripts
arerenderedaccording to their direction attribute.
Neutral characters take on the attribute of sur-
rounding characters and are rendered accordingly.

Directionality Control

Although the default algorithm gives correct ren-
dering in most realistic cases, extra information
occasionally is needed to indicate the correct ren-
dering order. Therefore, Unicode includes a num-
ber of implicit and explicit formatting codes to
allow for the embedding of bidirectional text:

Left-to-right mark (LRM)
Right-to-left mark (RLM)
Right-to-left embedding (RLE)
Left-to-right embedding (LRE)
Left-to-right override (LRO)
Right-to-left override (RLO)
Pop directional formatting (PDF)

It must be pointed out that the directional codes
are to be interpreted only in the case of horizontal
text and ignored for any opecration other than bidi-
rectional processing. In particular, they must not
be included in compare string operations.

The LRM and RLM characters are nondisplayable
characters with strong directionality attributes.
Since characters with weak or neutral directionality
take their rendition directionality from the sur-
rounding characters, LRM and RLM are used to influ-
ence the directionality of neighboring characters.

The RLE and LRE embedding characters and the
LRO and RLO override characters introduce sub-
strings with respect to directionality. The override
characters enforce a directionality and are used to
enforce rendering of, for instance, Latin letters or
numbers from right to left. Substrings can be
nested, and conforming applications must support
15 levels of nesting. Each RLE, LRE, LRO, or RLO char-
acter introduces a new sublcvel, and the next fol-
lowing PDF character returns to the previous level.
The directionality of the uppermost levelis implicit
or determined by the application.

Digital Tecbnical Journal Vol. 5 No.3 Sunvner 19093

27

Product Internationalization

Only correct resolution of directionality nesting
gives the correct result. In general it cannot be
assumed that a string of text that is inserted into
other bidirectional text will have the correct direc-
tionality attributes without special processing.
This may result in the removal of directional codes
in the text or in the addition of further controls. As
shown in Figure 6. particular care nceds to be taken
for cut-and-paste operations of bidirectional text,

Transmission over 8-bit Channels

Existing communication systems often require that
data adheres to the rutes of 1SO/IEC 2022, which
rescrve the 8-bit code values between 0x00 and
Ox1F (the CO space), between 0X80 and Ox9F (the
C1 spacce), and the code position DELETE.! Since
Unicode uses these values to encode characters,
direct transmission of Unicode data over such trans-
mission systems is not possible.

The Unicode designers. in collaboration with
150, have therefore proposed an algorithm that
transforms Unicode characters so that the CO and
C1 characters and DELETE are avoided. This algo-
rithm, the UCS transformation format (UTFE), is part
of the 150 10640 standard as an informative annex.
It is expected that it will be included in the revised
Unicode standard.

The transformation algorithm has been con-
ceived in such a way that the characters corre-
sponding to the 7-bit ASCI codes and the €1 codes
are represented by one byte (see Figure 4). Code
positions OXxO0AO through 0x:4015 (which include
the remainder of the extended Latin alphabet) are

DESTINATION TEXT IN LOGICAL ORDER:
DIRECTIONALITY NESTING: (
DESTINATION TEXT IN DISPLAY ORDER:

TEXT TO BE PASTED IN LOGICAL ORDER: mr.

DIRECTIONALITY NESTING: (
TEXT TOBE PASTED IN DISPLAY ORDER:

PASTED TEXT IN LOGICAL ORDER:

DIRECTIONALITY NESTING: (
PASTED TEXT IN DISPLAY ORDER WITHOUT NESTING:
PASTED TEXT IN DISPLAY ORDER WITH NESTING:

j.

rts eod nhoj 12

PLEASE SEND TO:_ mr. J.

PLEASE SEND TO:__ htims .j
PLEASE SEND TO:_ rts eod nhoj 12 ,htims .j .rm

represented by two bytes cach, and three bytes
cach are used for the remaining code valuces.

Originally, UTF had been proposed for use in data
transmission and to avoid the problem that embed-
ded zero bytes represent for C language character
strings in the char data type. Subscquently, it has
been proposed to use UTE in historical operating
systems (c.g., UNIX) to store Unicode-encoded sys-
tem resources such as file names. "

Modifications of UTF have therefore been pro-
posed to address other special requirements such
as preservation of the slash (/) character It
remains to be seen which of these various transfor-
mation methods will be widely adopted.

Handling of Combining Characters

In some of the operations discussed above, we have
indicated that the presence of combining charac-
ters requires processing Unicode text differently
from text encoded in a character set without com-
bining characters. Normalization or transformation
of the characters into a normalized form is usually
a first helpful step for further processing. For exam-
ple, to prepare a text for a comparison operation,
onc may wish to decompose any precomposed
characters. In this way, multiple-pass comparison
and sorting algorithms, which typically pass
through a level that ignores diacritical marks, can
be applied almost unchanged.'?

For simple comparison operations, the applica-
tion must decide on a policy of what constitutes
equality of two strings. If the string contains char-
acters with a single diacritical mark, it can choose

PLEASE SEND TO:_

)

PLEASE SEND TO:_
A

insertion point

smith, 12 john doe str
«))
,htims .j .rm

smith, 12 john doe str
((G))
12 rts eod nhoj

.rm, incorrect!

Note: Caputal letters signify left-to-right writing. Small letters signify right-to-left writing.

Figure 6

Cut and Faste of Bidirectional Text

28

Vol. 5 No. 3 Sunumer 1993 Digital Technical Journal

either strong matching, which requires the diacriti-
cal marks in both strings, or weak matching, which
ignores diacritical marks. If the text includes char-
acters with more than one diacritical mark for a
medium-strong match, the presence of certain
marks might be required but not of others. Strong
matching is rcquired for the Greek word for micro-
material pwwkpoVvAkd and the Greek diminuitive
form of small pikpovAka. Without the diacritical
marks, the words would be identical.

Unicode requires that combining characters fol-
low the base character. This solution was chosen
over the alternatives of (1) precede and (2) precede
and follow, for various reasons.'* Text-editing oper-
ations must take into account the presence and
ordering of diacritical marks. A user-friendly appli-
cation should be consistent in its choice of text ele-
ment on which opcrations such as next character
or delete character operate. This choice should feel
natural to the user. For example, in Latin, Greek,
and Cyrillic, the expectation would be that
accented characters are the unit of operation,
whereas in Dcvanagari and Thai, where several
combining characters and a base character com-
bine into a cell, the natural unit is the individual
character.

Implementation Issues

In this section we describe some of the approaches
that can be taken to support Unicode. As a concrete
example, we describe how the Microsoft Windows
N'T operating system uscs Unicode as the native text
encoding and maintains compatibility with existing
applications based on a different encoding.

General Considerations in Adding

Unicode Support

Informal discussions with vendors planning to sup-
port Unicode indicate that the following data types
and data access are being considered when using
the C programming language.

L. A new data type would be designated for
Unicode only. It would be directly accessible by
the application, e¢.g., typedef unsigned short
UNICHAR.

The Unicode-only data type has the advantage
of being unencumbered with preconceptions
about semantics or usage. Also, since the appli-
cation knows that the contents are in Unicode, it
can write code-set-dependent applications.

Digital Tecbhnical Journal Vol. 5 No.3 Summer 1993

Unicode: A Universal Cheracter Code

The major disadvantage is that the data type
would vary from one vendor or platform to
another and would thercfore have no standard
string-processing librarics.

2. An existing data type, such as wchar_t in C
would be used. (Note that the char data type is
appropriate only if char is defined as 16 bits, or
if the string is given some further structure
to define its length by mcans other than null
termination. Similar issues may c¢xist in other
languages.)

The use of an existing data type has the advantage
of being widely known and implemented: how-
ever, it also has the disadvantage of precxisting
assumptions about behavior and/or semantics.

3. An opaque object would be used. Since the data
in these objects is not visible to the calling pro-
gram, it can only be processed by routines or by
invoking its member functions (e.g.. in C++).

Use of an opaque object has the advantage of hid-
ing much of the complexity inhcrent in the world's
writing svstems from the application writer. It has
the disadvantages common to object-oriented sys-
tems, such as the need for software engineers to
learn a new programming paradigm and a set of
class libraries forthe Unicode objects.

How Windows NT Implements Unicode
The Windows NT design team started with several
goals to make an operating system that would pre-
serve the investment of customers and developers.
These goals affected their decisions regarding the
data types and migration strategics describedin the
previous section.
The goals related to text processing were to

1. Provide backward compatibility
) Support existing MS-DOS and 16-bit - MS
Windows applications, including those based
on 8-bit and double-byte character set (DBCS)
code pages.
b) Support the DOS file allocation table fil¢
system.
2. Provide worldwide character supportin
a) File names
b) File contents
¢) User names
As described later in this scction. these conflict-
ing goals werce met under a single Windows NT

Product Internationalization

architecture, if not simultaneously in the same
application and file system, then by clever segrega-
tion of Windows NT into multitasking subsystems.
Thesc goals also affect the way Microsoft recom-
mends developers migrate their existing applica-
tions to Windows NT.

The Basic Approach Microsoft's overall approach
is close to that of using a standard data typc that
accesses data mainly through string-processing
functions. In addition, Microsoft defined a special
set of symbols and macros for application develop-
ers who wish to continue to develop applications
based on DOS (e.g., to scll to those with 286 and
386X systems), while they migrate their products
to run as native Win32 applications on Windows
NT. The developer can then compile the appli-
cation with or without the compiler switch
-DUNICODE to produce an object module compiled
for a native Windows NT or a DOS operating envi-
ronment, respectively.

Dual-path Data Types To select the appropriate
compilation path, Microsoft provides C language
header files that conditionally define data types,
macros, and function names for either Unicode or
traditional 8-bit (and DBCS) support, depending on
whether or not the symbol UNICODE has been
defined. An example of a data type that illustrates
this approach is TCHAR. If UNICODE is defined,
TCHAR is equivalent to wcehar_t. Otherwise, it is the
same as char. The application writer is asked to con-
vert all instances of char to TCHAR to implement the
dual development strategy.

String-bandling Functions Similarly, the macro
TEXT is defined to indicate that string constants are
wide string constants when UNICODE is defined, or
ordinary string constants otherwise. Application
writers should surround all instances of a string
or character constant with this macro. Thus,
“Filename” becomes TEXT(“Filename”), and ‘Z’
becomes TEXT('Z’). The compiler treats these as a
wide string or character constant if UNICODE is
defined, and as a standard char based string or char-
acter otherwise.

Finally, there are symbol names for each of the
various string-processing functions. For example, if
UNICODE is defined, the function symbol name
_tcsemp is replaced by wesemp by the C prepro-
cessor, indicating that the wide character function
of that name is to be called. Otherwise, _tcscmp
is replaced with the standard C library function

strcmp. Details of this procedure can be found in
Win32 Application Programming Interface."!

Procedures for Developing/Migrating Applications
in the Dual Path In his paper “Program Migration
to Unicode,” Asmus Freytag of Microsoft ¢xplains
the steps used to convert an ¢xisting application to
work in Unicode and retain the ability to compile it
as a DOS or 16-bit Windows application.’s The basic
idea is to remove the assumptions about how a
string is represented or processed. All references to
string-related objects (e.g., char data types), string
constants, and string-processing functions are
replaced with their dual-path equivalents. The fol-
lowing steps are then taken.

1. Replace all instances of char with TCHAR, char*®
with LPSTR, etc. (For a complete listing, see
“Program Migration to Unicode.”)

2. Replace all instances of string or character con-
stants with the equivalent using the TEXT
macro.'® For example,

char filemessagell = "Filename';
char yeschar = 'Y';
becomes

TCHAR filemessagell = TEXT("Filename');
TCHAR yeschar = TEXT('Y"');

3. Replace standard char based string-processing
functions with the Win32 functions. (See page
221 of Win32 Application Programming Inter-
face for a complete listing.)"}

4. Normalize string-length computations using
sizeof() where appropriate. For example, direct
computation using address arithmetic should
take the form: string_length = (last_address —
first_address) size of (TCHAR);

S. Mark all files with the byte-order mark.!””
6. Make othcer, more substantial changes.

Most character-code-dependent processing
should be taken care of by step 3, assuming the
developer has used standard functions. If the
source code makes assumptions about the encod-
ing, it will have to be replaced with a neutral func-
tion call. For example, the well-known uppercasing
sequence

char_upper = char_lower + 'a' -- 'A';

implicitly assumes the language and the uppercas-
ing rules are English. These must be replaced with a
function call that accesses the Windows NT Natural
Language Services.

30

Vol.5 No. 3 Summer 1993 Digital Technical Journal

Unicode: A Universal Character Code

Summary

A universal character encoding—the Unicode stan-
dard—has been developed to produce interna-
tional software and to process and render data in
most of the world’s languagcs. The standard, often
referred to as Unicode/10646, was jointly devel-
oped by vendors and individual experts and by
the International Organization for Standardization
and International Electrotechnical Commission
(ISO/IEC). Unicode breaks the (incorrect) principle
that one character equals one byte equals one
glyph. It stipulates the use of text elements that
are dependent on the particular text operation.
A number of software vendors are now moving to
support Unicode. Microsoft’s implementation sup-
ports Unicode as the native text encoding in its
Windows NT operating system. At the same time, it
maintains compatibility with existing applications
based on 8-bit encoding.

Acknowledgments

The authors would like to express their thanks to
Asmus Freytag of Microsoft Corporation and
Masami llasegawa (ISO/IEC 10646 edlitor) for their
efforts in reviewing this paper.

References and Notes

I. Information Processing—ISO 7-bit and 8-bit
Coded Character Sets— Code Extension Tech-
niques, 1SO 2022: 1986 (Geneva: International
Organization for Standardization, 1986).

2. Information Technology—Multiple-Octet
Coded Charcicter Set, ISO/IEC DIS 10646:
1990 (Geneva: International Organization for
Standardization/International Electrotechni-
cal Commission, 1990).

3. J. Becker, “Multilingual Word Processing,
Scientific American, vol. 251 (July 1984):
96-107.

4. The Unicode Standard, Version 1.0, Volume
1 (Reading, MA: Addison-Wesley Publishing
Company, 1991).

5. The Unicode Standard, Version 1.0, Volume
2 (Reading, MA: Addison-Wesley Publishing
Company, 1992).

6. Information Technology— Universal Multiple-
Octet Coded Character Set (UCS), 1SO/IEC
DIS 10646-1.2:1991 (Geneva: International

10.

11.

12.

13.

14.

15.

16.

17.

Organization for Standardization/Interna-
tional Electrotechnical Commission, 1991).

Unicode 1.0.1 Errata Insert for The Unicode
Standard, Version 1.0, Volume 1 and Volume
2 (Reading, MA: Addison-Wesley Publishing
Company, 1992).

ISO/IEC 10646 restricts the use of combining
characters. See the definitions of level 2 and
level 3 in the section Relationship between
Unicode and ISO/IEC 10646.

Some of the presentation variants are
encoded for compatibility with existing stan-
dards. For a discussion, see the section Code
Conversion.

R. Pike and K. Thompson, “Hello World,
Usenix Conference, 1993.

File System Safe—UCS Transformation For-
mat (Reading: X/Open Company Limited,
1993).

A. LaBonté, “Multiscript Ordering for Uni-
code,” Proceedings of the Fourth Unicode
Implementors Workshop, Sulzbach (Unicode
Inc., 1992).

Private communication, Joseph D. Becker,
1993.

Win32 Application Programming [nterface
(Redmond, WA: Microsoft Press, 1992).

A. Freytag, “Program Migration to Unicode,”
Proceedings of the Second Unicode Imple-
mentors Workshop, Merrimack (Unicode
Inc., 1992).

String constants in source code should be
avoided in all cases. They violate one of the
fundamental design rules of software interna-
tionalization, i.e., that objects dependent on
language and/or culture should be isolated
into easily accessible modules for the purpose
of localization.

Unicode defined the code value OXFEFF to
have the semantic byte-order mark (BOM) and
encourages software developers to place it as
the first character in a Unicode file. (For
details, see the section Byte Ordering.)

Digital Technical Journal Vol. 5 No.3 Summer 1993

31

The X/Open

Wendy Rannenberg
Jiirgen Bettels

Internationalization Model

Software internationalization standards allow developers to create applications
that are neutral with respect to language and cultural information. X/Open
adopted a model for internationalization and bas revised the model several times
to expand the range of support. The latest version of the X/@pen internationaliza-
tion model, which supports multibyte code sets, provides a set of interfaces that
enables users in most of Europe and Asia to develop portable applications indepen-
dent of the language and code set. One impleinentation of this inodel, the interna-
tionalized DEC OSF/1 AXP version 1.2 (based on OSF/1 release 1.2) supports complex
Asian languages such as Chinese and Japanese.

Software internationalization standards initiatives
began in the late 1980s. This paper provides a brief
history of internationalization standards activities
followed by a description and an analysis of the
X/0Open model for internationalization. The Open
Software Foundation's OSF/1 releasce 1.2 and Digital’s
DEC OSF/1 AXP version 1.2 internationalization imple-
mentations serve as reference software for the
description. The analysis covers both the strengths
and the limitations of the model. The paper con-
cludes with a discussion of current and future rela-
tionships betwcen this model and other work in
the field.

Internationalization Standards

The International Organization for Standardization
(1SO) is the primary group that is currently publish-
ing or developing internationalization specifica-
tions, including code sets, programming languages,
and frameworks. Before the 1SO adopts emerging
specifications, much work is done by other groups.
In the case of interfaces that support the develop-
ment of international applications, the Uniforum
Internationalization Technical Work Group, the
X/Open Internationalization Work Group, the
Unicode Consortium, and the X Consortium have
been instrumental.

Internationalization is generally considered to be
the processes and tools applied to create software
that is neutral with respect to language and cultural
information. This neutrality can be accomplished
by providing a set of application interfaces designed

to isolate sensitivity to language and culture-
specific information. Such interfaces include func-
tionality to

= Attain character attributes independent of coded
character sets, i.e., code sets

= Order relationships of characters and strings

» Process culturally sensitive format conversion
(e.g., clate, time, and numbers)

= Maintain user messages for multiple languages

Standardization of internationalization interfaces
began predominantly in the UNIX environment.
Companies such as Hewlett-Packard and AT&T pro-
vided early proprietary solutions.!

When X/Open announced its intention to
include support for internationalization in Issue 2
of its X/Open Portability Guide (XPG2), Hewlett-
Packard submitted its Natural Language Support
System as a proposal for an internationalization
model. X/Open further developed this proposal
and published the guide in 19872 Some principles
developed for these solutions found their way into
the emerging C programming language standard
(ISO/IEC 9899) and the POSIX operating system
interface specification (ISO/IEC 9945-1). 3

The subsequent version of the X/Open
Portability Guide, XPG3, published in 1989, demon-
strated further improvement in internationalization
support.’ The guide was aligned with the 1SO/IEC C
standard and the ISO/IEC POSIX specification, both
of which meanwhile had been finalized.

‘R
88

Yol 5 No. 3 Swmnmmer 1993 Digital Technical Journal

The X/Open [nternationalization Model

A major drawback of the XPG3 specification is
that it is limited to single-byte code sets. Such code
sets are used primarily for western European lan-
guages and preclude use of the X/Open internation-
alization model for Asian and eastern European
languages.

The Japanese UNIX Advisory Group developed
specifications to extend support to character sets
that are encoded in more than one byte. These code
sets are generally known as multibyte code sets.
The Multibyte Support Extensions developed by
this group are now included in an addendum to the
ISO/IEC C programming language standard.® This
work was also adopted by X/Open for inclusion in
Issue 4 of the X/Open Portability Guide (XPG4),
which was published in 1992.789

However, the underlying model used by X/Open
and POSIX does not fully meet the needs of dis-
tributed and multilingual computing environ-
ments. Therefore, in 1992 X/Open and Uniforum
created a joint internationalization work group,
commonly referred to as the XoJIG. This group
investigated internationalization requirements for
distributed and multilingual environments and, in
November 1992, published a revised model for
internationalization."

The X/Open Internationalization Model

When X/Open first investigated the need for
internationalization services, several needs were
identified:

= Meet the market requirements of the X/Open
member companies. (Many of these require-
ments were based on the needs of the European
Economic Community [EEC].)

= Support more than one language and cultural
environment, including messages and date/time.

= Provide for data transparency, i.e., remove 7-bit,
U.S. ASCII restrictions from the environment.

As discussed previously, X/Open adopted a
model for internationalization and has updated and
revised the model many times. The next section
describes the current X/Open model.

Overview of the X/Open Portability
Model, Issue 4
There are five components to the current X/Open

internationalization model, X/Open Portability
Guide, Issue 4 (XPG4):

1. Locale announcement mechanism
2. Locale databases
3. Internationalization-specific library routines

4. Internationalized interface definitions for stan-
dard Clanguage library routines

5. Message catalog subsystem

The locale announcement mechanism provides a
way for an application to load, at run time, a spe-
cific set of data that describes a user’s native lan-
guageand cultural information. An application user
can specify a language, a territory, and a code set
by means of environment variables. The locale
announcement mechanism checks the environ-
ment variables. If the variables are set, the applica-
tion attempts to load the locale-specific data. If the
environment variables are not set, most applica-
tions default to the use of the POSIX (i.e., C lan-
guage) locale or an implementation-defined locale.
The POSIX locale definition is based on the U.S. ASCII
code set and the U.S. English language.

In conjunction with locale databases, the
announcement mechanism provides access to code
set specification data, character collation informa-
tion, date/time/numerical/monetary formatting
information, negative/affirmative responses, and
application-specific message catalogs.

Figure 1 shows the relationships among the com-
ponents of the X/Open internationalization
model."" Refer to Figure 1 throughout this section,
as the various elements of the figure are described.

The locale announcement mechanism is based
on the setlocale() function

char *setlocale(int category,
const char *locale)

The categories correspond to components of the
locale database and have a set of corresponding
user environment variables. The announcement
mechanism supports an order of precedence when
querying the user's environment to establish the
preferred locale. Table 1 shows the environment
variables specified by XPG4.

The LC_ALL environment variable has prece-
dence over all others, whereas the LANG environ-
ment variable has no precedence. The other /C_*
environment variables are of equal weight.

Although it does not provide a naming conven-
tion for locales, the X/Open model doces specify the
locale argument as a pointer to a string in the form

Digital Technical Journal Vol. 5 No. 3 Swnmer 1993

33

ProductInternationalization

I DEVELOPMENT SYSTEM 1| INTERNATIONALIZED SYSTEM | DEVELOPMENT !
| (XPG4 ONLY) | | SYSTEM |
| I
I LOCALE || cHARMAP I L APPLICATION] : MESSAGE I
I FORMAT || FORMAT 1 TEXT FORMAT |
1 T L | | : T 1
|] INTERNATIONALIZATION AP '
| LOCALE ek I MESSAGE :
| FILE FILE | FILE
| I INTERNATIONALIZATION SERVICES I I
| | |) |
|
: I CLANGAND || LocaLE MESSAGE I ! I
ocalede
; _ : HANDLING HANDLING LSS | :
I : I 4] [! | i
1] I I | | | "
oo v i : R rite i S i
LOCALE MESSAGE
DATABASE CATALOG

Figure 1~ Components of the X/Open Internationalization Model

Table 1 Locale-specific Environment

Variables
Variable Use
LC_ALL For all categories
LC_COLLATE For collation
LC_CTYPE For character classification
LC_MESSAGES For responses and message

catalogs

LC_MONETARY For monetary information
LC_NUMERIC For numeric information
LC_TIME For date/time information
LANG If no others are set
XPG3:
languagel_territoryl.codesetlIlamodifier]
XPG4:

languagel_territoryll.codeset]Lamodifier]
Examples of environment variable settings are

LANG = ¢n_US.ISO8859-1

and

LC_COLLATE = ja_JP jpEUC

The modifier is sometimes used to specify a partic-
ular instance of a language or cultural information
for a locale. Forinstance, if support for a particular
sortorder is necessary, in a German locale the user
might specify

LC_COLLATE = de_DEISO8859-1@phone

to sort alphabetically according to the telephone
directory rather than the dictionary.

Locale databases can be provided by either
the system vendor or an application developer. A
description of utilities that convert a source format
specification of a locale to a binary file follows.

The setlocale() function accesses the binary
locale databases and provides a global locale within
a given application. The global locale is similar to
a global variable in that it is shared by all of an appli-
cation’s procedures. Locale switching can be done
within an application, but within the scope of the
XPG4 model such locale switching is unnecessarily
complex and costly, in terms of performance. A
later section discusses additional limitations of this
mechanism.

The set of interfaces shown in Table 2 supports
international application development and was
first introduced as part of the ISO/IEC C and the
XPG2 and XPG3 specifications. These interfaces are
used primarily to access data in the locale databases
or to manipulate locale-sensitive data.

The XPG3 specification is based on the use of
ISO/IEC 8859-1 as the transmission code set.'? Some
implementations use this as an internal code set,
instead of the ASCIT code set.

A limited set of functions that support multibyte
characters is also available: mblen(), mbtowc(),
mbtowcs(). wctomb(), and wcstombs(). Each
of these functions is based on the ISO/IEC C wide
character (wchar_t) data type. The size of the data
type is not specified by the standard and can vary

34

Vol.5 No. 3 Summer 1993 Digital Technical Journal

The X/Open Internationalization Model

Table 2 Interfaces for International
Application Development

Interface Use

localeconv() For retrieving locale-dependent

formatting parameters

For extracting information from
the locale database

For locale announcement
For locale-based string collation

For converting date/time formats
based on locale

For transforming a string for
collation in current locale

nl_langinfo()

setlocale()
strcoll()
strftime()

strxfrm()

from one implementation to the next, depending
on the code set support offered by a particular ven-
dor. This multibyte function set does not provide
adequate support for Asian language application
development.

In addition to the mb* and wc* functions, the
X/0pen internationalization model specifies a set
of extensions for many library functions and com-
mands. These extensions enable the support of
8-bit characters as well as provide the functionality
required to meet the original goal of ensuring data
transparency. For example, changes to the printf()
and scanf() families of functions allow the order-
ing of arguments to be specified in translated mes-
sage catalogs. In addition, about 80 commands,
including sort and date, were modified to support
the locale categories.

The XPG specifications include a message catalog
subsystem. Although not very sophisticated, this
subsystem provides much needed functionality.
Minor updates have been made with each new issue
of the Portability Guide. The subsystem comprises
only three functions: catopen(), catclose(), and
catgets(). A command, gencat, is used to converta
message source file into a binary message catalog
that is accessed at run time by an application. The
behavior of the catopen() function is dependent
on the user’s chosen locale allowing selection of
translated messages.

XPG4 Specification and the OSF/1 Release
1.2 Implementation

This section discusses the XPG4 model in terms
of the OSI/1 release 1.2 implementation. Topics
include code sct support, the locale definition
utility (the utility for handling data in mixed code

sets), worldwide portability interfaces, and local
language support.

Code Set Support As mentioned in the previous
section, the XPG3 specification primarily supports
code sets based on the ISO/IEC 8859-1 specification.
The XPG4 model goes beyond this by including
additional interface specifications to support multi-
byte locales and internationalized commands.

The XPG4 model is a superset of the five basic
components of the XPG3 model. The use of the
wchar_t data type is a key feature of the new inter-
face specifications, because this data type supports
multibyte code sets. In the internationalized DEC
OSF/1 AXP version 1.2 system, the size of wchar_t
is 32 bits, which enables the support of complex
Asian languages such as Chinese. Thisimplementa-
tion is based on the OSF/1 release 1.2, which is itself
designed to support 8-, 16-, or 32-bit wchar_t defini-
tions. The X/Open internationalization model is
based on the concept of process and file codes. In
the internationalized DEC OSF/1 version 1.2 imple-
mentation, the wchar_t data type is used as process
code. That is, internal to an application, characters
are converted to the wchar_t data type before use.
File code, i.e., on-disk data, is always stored as
multibyte characters. An application converts all
internal process code (i.e., wchar_t data type) char-
acter to multibyte character prior to storing it on
disk. This enables file compression and enforces
the use of a constant width for the processing of
character information. The mb* and wc* functions
convert between the two types of data. The size of
the wchar_t data type combined with the capability
to support multiple encoding schemes provides the
flexibility required to have a code set-independent
implementation.

Restrictions exist on the use of certain characters
in the second and subsequent bytes of a multibyte
character so that full code set independence is diffi-
cult to achieve. An example of such a restriction is
the slash character /. The UNIX file system uses this
character as a delimiter in absolute and relative
pathname specifications. Implementations based
on OSI71 release 1.2 restrict the use of characters
in the range 0x00-0x3F to the ASCIl code set.
However, even with this restriction, it is possible to
build robust systems that support a wide range of
multibyte code sets.

To gain the necessary flexibility, the Open Soft-
ware Foundation introduced an object-oriented
architecture for the internationalization subsystem.

Digital lechnical Journal Vol. 5 No.3 Summer 1993

35

Product Internationalization

‘This architecture specifies the various components
of the X/Open model as subclasses. At run time,
an application instantiates objects built from these
subclasses by means of the sctlocale() function
call.

localedef, iconv, and Code Set I[ndependence
XPG3 doces not provide a utility for describing
locales. Thercfore, the number of different
approaches to the problem matched the number of
vendors. Introduced in the POSIX specification
ISO/IEC DIS 9945-2 and hence adopted by X/Open,
the localedcf utility provides a mechanism for spec-
ifying a locale in a portable manner.'s For cach code
set supported in the internationalized DEC OSF/1
AXP system, there is a corresponding charmap file
and one or morc corresponding locale definition
files that adherc to the POSIX specifications.
Combined with a set of locale-specific methodsand
code set converter modules, these subclasses pro-
vide the foundation for the OSF internationalization
architecture.

Locale-specific methods provide a way for the
ISO/IEC C language mbtowc(), wctomb() family of
functions to work in a multiple code set environ-
ment. The wchar_t encoding of a multibyte charac-
ter in the Japanesc SJIS code sct is diffcrent from
that for a character in the Super DEC Kanji code set.
At execution time, the correct method is instanti-
ated bascd on the user’s choice of locale. An exam-
ple of such an instantiation is shown in Figure 2.

A uscr-level utility (iconv) and several library func-
tions (iconv(), iconv_open(), and iconv_close())
provide a way to handle data that may be in mixed
code sets. Internationalized DEC OSF/1 version 1.2
provides an extensive sct of code set conversion
modules. New conversion mcthods are casily added
to the system.

Worldwide Portability Interfuces The XPG4 inter-
nationalization architecture parallels the XPG 3/1SO
C model. For example, XPG4 specifies a family of
isw* functions similar in design to the is” functions

LANG =ja_JP.SdIS
mbtowc() —= sjis_mbtowc()
or
LANG =zh_TW.eucTW
mbtowc() — eucTW_mbtowc()

Figure 2 Instantiation of mbtowc()

(e.g., isalpha) specified in the ISO/IEC C standard. As
mentioned previously, the XPG3 model does not
include all the interfaces necessary forapplication
developers to handle multibyte code sets. A new
sct of interfaces, which parallels the set of ISO/IEC C
8-bit interfaces, was developed and integrated into
the XPG4 specification. The final version of the
interface specification was proposed to the ISO/IEC
C committece as the Multibyte Support Extensions.

Cultural Data/Local Language Support Local
language support is achieved through the use of
locale databases and message catalogs. The catalogs
enable translation of user messages. Locale data-
bases have two components: the charmap file and
the locale definition file. These databases are cre-
ated by means of the localedef command.

The charmap file contains a POSIX-compliant
specification of the code set, i.e., a one-to-one
mapping from character to code point. The locale
definition file contains the cultural information.
Various sections of the definition file correspond
to the categories referenced by the setlocale()
function. The definition file contains collation
specifications, numeric and monetary formatting
information, date/time formats, affirmative/
negative responsc specifications, and character
classification information. In the OS¥/1 release 1.2
implementation, these definition files are indepen-
dent of the code set. For example, the definition for
Japanese (ja_JP) can be combined with multiple
charmap files such as SIS or eucJp.

Strengtbs of the X/Open Model

The greatest strength of the X/Open international-
ization model is that it is in place today and enables
the development of portable, language- and code
set-independent applications. The international-
ized DEC OSF/1 AXP version 1.2 system provides sup-
port throughout the commands and utilities for 20
code sets that represent major European and Asian
languages. All this is accomplished using XPG4
application programming interfaces (APIs). In addi-
tion, the programming paradigm is consistent with
ANSI C, making it easier for application developers
to modify existing applications for international
support.

Limitations of the X/Open Model

As described previously, the X/Open model for
internationalization provides a comprehensive
set of application interfaces, thus enabling the

36

Vol. 5 No. 3 Swmmer 193 Digital Technical Journal

The X/Open Internationalization Model

development of applications that can be used
worldwide. Yet, as with many standards, there are
limits to what can be accomplished. In this case,
limitations manifest themselves in several areas:

= Clanguage APl

= Distributed computing environments
= Multithreaded applications

= Multilingual applications*

= Unicode and ISO/IEC 10646 support!316

Because the X/Open and POSIX specifications are
based on UNIX implementations, the APIs are speci-
fied only for the C programming language. For pro-
gramming languages such as COBOL, FORTRAN, and
Ada. it is not nccessarily possible to match the syn-
tax and scmantics of the API. The remainder of this
section explores generic problems with the global
locale model and addresses specific issues in more
detail.

Global Locale Issues

The X/Open model is based on the concept of a
global locale. This aspect of the model is achieved
through the use of locale data that is maintained in
a private, process-wide global structure. The use of
a global locale is one of the more severe drawbacks
to using the overall model.

When working with this model, application
developers typically assume that a single language-
territory-code set combination is in use at a given
time and will remain constant on a per-process
basis. Although it is possible to use the announce-
ment mechanism to determine the run-time locale
of a process, this mechanism is cumbersome. The
application must both save and restore the locale
information.

Another drawback of the X/Open model is that
existing APIs do not include a way to share locale-
specitic information betwccen processes. This, com-
bined with the difficulty of locale switching, limits
the ability to support multilingual and distributed
applications.

Distributed Processing Issues

In a client-server environment, the problem of sup-
porting multiple locales becomes a serious issue.
Consider the following examples:

= A scrver gets requests from various clients, cach
running their own locale. These requests are
processed using the locale of the client. The

process includes returning locale-specific user
messages to the client and processing user-
locale-sensitive date/time formats, collation
information, and string manipulation.

= A window manager that supports multiple
clients displays menus for a client based on the
client’s locale. The user error messages displayed
are based on the locale of the server.

When a client sends a request to a server, the
request parameters that are passed between the
client and the server imply an associated locale.
Since the global locale is not an explicitargument in
any of the XPG4 functions, this locale is difficult to
pass to the server. Consider the specific case of
remote procedure calls (RPCs), where an interface
definition language (IDL) might be used to generate
client stubs. Becausc of the global nature of the
locale, insufficient information is available to the
IDL to determine if the locale information needs to
be used as an argument to any generated functions.
Thus, the server may need to change its locale for
each client request, which may be unacceptable in
terms of system performance.

Using the current XPG model, synchronizing the
use of a specific locale between a client and server
may not be possible. Even if a client could specify
a locale as part of the request, the locale may not
be available at the server side or may be repli-
cated incorrectly on the server side. This situation
exists because locale names and content are not
standardized.

Although the XPG4 specification includes the
localedef command for specifying the content of a
locale clatabase, there is no provision for standardiz-
ing the content. The only locale for which an
X/Open specification exists is the POSIX or C locale.
In addition, there is no specification for explicitly
naming a locale. Locale namesare composed of lan-
guage, territory, and code set components. Many
vendors use ISO/IEC 639 and ISO/IEC 31606 for the lan-
guage and territory components, but there is little
agreement on code set naming conventions.'* '8
This naming scheme is not sufficient for uniquely
identifying locales, as is required in a client-server
model.

Another problem with the X/Open mocdlel that
impacts application performance and the ease with
which an application can be internationalized is
related to the process code. The representation of
the process code, i.c., wchar_t, is implementation
defined, and the mapping of multibyte characters
to wide character codes may be locale sensitive.

Digital Technical Journal Vol. 5 No. 3 Summer 1993

37

Product Internationalization

Therefore, wchar_t-encoded data cannot be
exchanged freely between the client-server pair.
The only exception would be if the end user guar-
anteed that the process code was identical for a
given locale for each part of the client-server pair.
The XPG4 specification does not include function-
ality to identify or to interrogate the wchar_t
encoding scheme used.

Multithreaded Applications

The problems encountered in a distributed process-
ing environment become more complex if the
application is also multithreaded. Using POSIX
threads, commonly referred to as pthreads, more
than one thread is in the execution phase at the
same time.'” Again, a problem with the global, pro-
cess-wide locale is evident. The application cannot
maintain the state of the global locale, accom-
plished by a save/restore process, without blocking
all other threads. Likewise, execution of locale-sen-
sitive functions requires locking all threads to
ensure that the global state is not altered prior
to completion. The need to continually lock and
unlock threads, in addition to being undesirable,
results in a performance problem for international-
ized applications. Another approach is to make
locale data thread-specific.

Multilingual Applications

The X/Open internationalization model is oriented
toward the development of monolingual applica-
tions. Therefore, the model does not provide func-
tions to handle data that consists of an arbitrary
mixture of languages and code sets.

The following are some examples of applications
that may require multilingual services:

= Applications that simultaneously interact with
a number of users (e¢.g., transaction processing
systems), where each user can choose alanguage

= A word processing application for multilingual
texts that need language-sensitive formatting,
hyphenation, etc.

Unicode Support

With the arrival of the Unicode universal character
code and the adoption of ISO/IEC 10646 as its form,
both POSIX and X/Open have to address the issues
of support.’s© The X/Open Internationalization
Working Group is preparing a paper on Unicode

support within the existing specifications; this
publication should be available in late 1993. Some
of the issues that the C language, POSIX, and XPG4
are facing to support Unicode or ISO/IEC 10646 are
character compatibility, code restrictions, and valid
character strings.

Unicode characters are incompatible with the
C language char” data type used in the POSIX and
X/Open models. Unicode characters are 16-bit enti-
ties, whereas the POSIX and X/Open characters are
in practice 8-bit bytes, even though theoretically
the byte size is implementation dependent. Most
APIs defined in the POSIX and X/Open models
implicitly assume 8-bit characters. This principle
is extended to cover Asian multibyte characters
by considering each character to be a sequence of
8-bit char data elements. Unicode characters, how-
ever, cannot be broken down into sequences of
valid 8-bit char” data elements.

The POSIX character model requires that the
code values for char” data protect the code ranges
for control characters between 0x00-Ox1F and
0x80-0x9F, the code position DELETE, and the slash
character /. No such restrictions exist in Unicode.

The C language postulates that a null character
terminates a char® string. Since the Unicode string
most likely contains zero bytes, these bytes would
be interpreted as string terminators. In principle,
the C language would allow a compiler to define
the char* data type to be of 16-bit width. However,
given the prevailing assumption in POSIX and XPG4
that one character equals one 8-bit byte, a Unicode
character string cannot be a valid char™ string.

For these reasons, Unicode cannot be a valid file
codeas defined by the POSIX and X/Open specifica-
tions. Unicode is not usable as an XPG4 process
code either. Unicode and ISO/IEC 10646 allow the
combining of 16-bit characters.'s However, in many
operations the combining character (e.g., in the
French character set, the grave accent) and the base
character (e.g., the letter e) have to be processed
together. This situation contradicts the XPG4
model, where each character of the process code is
individually addressed and processed.

Using a well-defined encoding as XPG4 process
code would also violate the principle that the pro-
cess code is opaque, implementation defined, and
not valid outside the current process. For all these
reasons, the X/Open Joint Internationalization
Group decided to propose using Unicode in a mod-
ified form of the universal multiple-octet coded
character set (UCS) transformation format (UTF).':20

Vol. 5 No. 3 Summer 1993 Digital Technical Journal

The X/Open Internationalization Model

Proposed Changes to the Model

The XPG4 model limitations described in the previ-
ous sections are well understood in the internation-
alization community. X/Open has published a
Snapshot specification for a set of distributed inter-
nationalization services.’® This specification does
not solve all the problems identified in this paper. It
does, however, address the problems associated
with the use of the global locale mechanism, locale
identification, and text object manipulation. Note
that these are proposed changes and have not been
adopted by any standards organization.
The proposed changes include

= A locale naming specification that ecnables the
identification of a given locale in a distributed
environment

= Definition and support of a locale registry
= A new set of APIs that enables application soft-
ware to

- Concurrently manage and use many different
locales

- Manipulate opaque text objects?!

- Support stateful and nonstateful encodings
and file codes that are excluded by the cur-
rent standards (c¢.g., nonzero byte terminators
used in the Unicode code set)

Locale Naming and the Locale Registry

In an internationalized environment, the server
must replicate the client’s locale. If the client’s

Table 3 Network Locale Naming Specifications

locale can be uniquely identified, the remote code
can replicate the locale by obtaining it and specify-
ing this information as part of the operation. To
solve the locale replication problem, the XoJIG
developed a locale naming scheme, referred to as
the locale specification.

The locale specification is a character string that
contains the locale name for each category that
exists within the locale. The syntax for locale
names is a list of keyword-value pairs, where each
pair defines a locale category. Certain keywords,
such as code set name, encoding name, and owner
or vendor name, are standardized as part of the reg-
istration process. Table 3 shows two examples of
locale specifications.

Although this naming scheme provides for
unique identification of locales, the names are long.
The specification calls for the use of ASCII charac-
ters to name locales. The American English locale
specification is over 200 bytes in length. A short-
hand notation called network locale specification
token has been proposed.

The network locale specification token is an
unsigned integer value that can be represented
within four bytes. The two most significant bytes
represent the registration authority. Under the pro-
posal, national and international standards bodies,
companies, and consortia, etc., that wish to use net-
work locale specification tokens will receive
unique identifiers. A block of values will be
reserved for private use between consenting sys-
tems. A set of new functions will allow conversion

American English Locale Using the ISO/IEC Latin-1 Code Set

CTYPE=ANSI;en_US;01_00;ISO-88591-1987;;/
COLLATE=ANSI;en_US;01_00;ISO-88591-1987;;/
MESSAGES=ANSI;en_US;01_00;ISO-88591-1987;;/
MONETARY=ANSI;en_US;01_00;1SO-88591-1987;;/
NUMERIC=ANSI;en_US;01_00;ISO-88591-1987;;/
TIME=ANSI;en_US;01_00;1SO-88591-1987;;/

Japanese Locale Using Japanese Extended UNIX Code (EUC) Encoding

CTYPE=ISO;ja_dJP;01_00;.11IS-X0208-1987,JI1S-X0201-1987,11S-X0212-1991;EUC;/
COLLATE=ISO;ja_JP;01_00;J1S-X0208-1987,JIS-X0201-1987,JI1S-X0212-1991;EUC;/
MESSAGES=ISO;ja_JP;01_00;JIS-X0208-1987,J1S-X0201-1987,J1S-X0212-1991;EUC;/
MONETARY=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JI1S-X0212-1991;EUC;/
NUMERIC=ISO;ja_JP;01_00;J1S-X0208-1987,J1S-X0201-1987,J1S-X0212-1991;EUC;/
TIME=ISO;ja_JP;