
Digital
Technical
Journal

I
SPIRALOG LOG-STRUCTURED FILE SYSTEM

OPENVMS FOR 64-BIT ADDRESSABLE
VIRTUAL MEMORY

HIGH-PERFORMANCE MESSAGE PASSING
FOR CLUSTERS

SPEECH RECOGNITION SOFTWARE

Vol u me 8 N umber 2

1996

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzdf, Typographer
Peter R.. Woodbury, Illustrator

Advisory Board
Samuel H. fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Pauline A. Nist
Robert M. Supnik

Cover Design
Digital's new Spiralog rile system, a featured
topic in the issue, supports rid! 64-bit system
capability and fast backup and is integrated
with the Open VMS 64-bit version 7.0 oper
ating system. The cover graphic captures the
inspired character of the Spiralog design
effort and illustrates a concept taken from
University of California research in which
the whole disk is treated as a single, sequen
tial log and all file system modifications arc
appended to the tail of the log.

The cover was designed by Lucinda O'Neill
of Digital's Design Group using images
fi·om Photo Disc, Inc., copyright 1996.

The Digital Teclmica/juumal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
L)02/DIO, Littleton, MA 0!460.

Subscriptions can be ordered by sending
a check in U.S. ti.mds (made payable to
Digital Equipment Corporation) to the
published-by address. General subscrip
tion rates arc $40.00 (non-U.S. $60) for
rour issues and $75.00 (non-U.S. $!15)
for eight issues. University and college pro
fessors and Ph.D. students in the electrical
engineering and computer science fields
receive complimentary subscriptions upon
request. Digital's customers may qualify
for gift subscriptions and arc encouraged
to contact their account representatives.

Single copies and back issues are available
ri:>r $16.00 (non-U.S. $18) each and can
be ordered by sending the requested issue's
volume and number and a check to the
published-by address. Sec the Further
Readings section in the back of this issue
ror a complete listing. Recent issues arc
also available on the Internet at
http:/ /www.digital.com/info/dtj.
Digital employees may order subscrip
tions through Readers Choice at UR.L
http:/ jwebrc.das.dec.com or by enter-
ing VTX PROfiLE at the system prompt.

Inquiries, address changes, and compli
mentary subscription orders can be sent
to the Digital Teclmical.fourna/ at the
published-by address or the electronic
mail address, dtj@digital.com. Inquiries
can also be made by calling the joumal
office at 508-486-2538.

Comments on the content of any paper
arc welcomed and may be sent to the
managing editor at the published-by or
electronic mail address.

Copyright© 1996 Digital Equipment
Corporation. Copying without fee is per
mitted provided that such copies are made
for usc in educational institutions by faculty
members and are not distributed for com
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's auth
orship is permitted.

The information in the journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa
nies herein represented. Digital Equipment
Corporation assumes no responsibility ror
any errors that may appear in the Journal.

!SSN 0898-90 I X

Documentation Number EC-N6992-18

Book production was done by Quantic
Communications, Inc.

The following arc trademarks of Digital
Equipment Corporation: AlphaScrver,
DEC, DECtalk, Digital, the DIGITAL
logo, HSC, Open VMS, PATH WORKS,
POLYCENTER, RZ, TruCiuster, VAX,
and VAXcluster.

BBN Hark is a trademark of Bolt Beranek
and Newman Inc.

Encore is a registered trademark and
MEMORY CHANNEL is a trademark
of Encore Computer Corporation.

FAScrver is a trademark of Network
Appliance Corporation.

Listen for Windows is a trademark of
Verbcx Voice Systems, Inc.

Microsoft and Win32 arc registered trade
marks and Windows and Windows NT arc
trademarks of Microsoft Corporation.

MIPSpro is trademark of MIPS Technol
ogies, 1 nc., a wholly owned subsidiary of
Silicon Graphics, Inc.

Netscape Navigator is a trademark of
Netscape Communications Corporation.

PAL is a rcgistcn:d trademark of Advanced
Micro Devices, Inc.

UNIX is a registered trademark in the
United States and in other countries,
licensed exclusively through X/Open
Company Ltd.

VoiceAssist is a trademark of Creative
Labs, Inc.

X Window System is a trademark of the
Massachusetts Institute ofTechnology.

Contents

Foreword

SPIRALOG LOG-STRUCTURED FILE SYSTEM

Overview of the Spira log File System

Design of the Server for the Spira log File System

Designing a Fast, On-line Backup System for

a Log-structured File System

Integrating the Spira log File System into the

OpenVMS Operating System

Rich Marcello

J ames E. Johnson and William A. Laing

Christopher Whitaker,). Stu<lrt Bayl ey, �HJd

Rod D. W. Widdo\\'son

Russel l J. Green, Alasdair· C. B aird, and

J. Christopher Davies

M ark A . Howell and Ju l ian M. Palmer

Open VMS FOR 64-BIT ADDRESSABLE VIRTUAL MEMORY

Extending Open VMS for 64-bit Addressable

Virtual Memory

The OpenVMS Mixed Pointer Size Environment

Michael S. H arvey and Leonard S. Szubo\\'icz

Thomas R . Benson, Kare n L. 'ocl, and

Rich ard E. Peterson

Adding 64-bit Pointer Support to a 32-bit Run-time Library Duane A. Smith

HIGH-PERFORMANCE MESSAGE PASSING FOR CLUSTERS

3

5

15

32

46

5 7

7 2

S3

Building a High-performance Message-passing System

for MEMORY CHANNEL Clusters

James V. Lawton, John). Brosnan, Morgan l'. Doyle, 96

SPEECH RECOGNITION SOFTWARE

The Design of User Interfaces for Digital Speech

Recognition Software

Seosamh D . 6 Riordain, and Timothy G . Reddin

Bernard A. Rozmovits 117

Digiral Technical journal Vol. 8 No.2 1996

2

Editor's
Introduction

This past spring when we sun·c\Td
.foun w/s ubscribcrs, readers rook the
rime ro commem on the parri cu la1·

,·aluc ofrhc issues fCawring Digital's

64-bir Alpha technology. The engi

neering described in those two issues
continu es, with ever higher levels of
pcrr(>rmance in Alpha microproces

sors, servers, clusters, and systems
software. This issue presents reccm

developments: a log-structured file
system, called Spiralog; the Open VMS
opcr�1ting system extended ro take full
a<hant�Jgc of64-bit addressing; high
pcrf(mnancc computing software f{>r
Alpha clusters; and speech recognition

sofn,arc for Alpha workstations.
Spir�1log is a whollv new clusterwidc

file svsrcm integrated with the new
64-bir Open VMS version 7 .0 opcrat·

ing system and is designed for hig h
d�1ra avaibbiliry and high pert(xman cc.

The tirst of four papers about Spira log
is writtcn by Jim Johnson and Bill
L1ing, wlw imroduce log -srru crured

file (LfS) concepts, the university
research behind the design, and design
innO\'�ltions.

The <1dvantages of LFS technologv

over com·emional "update-in-phcc"

rcchnolog\' JI'C explai ned lw Chris
Whir�1kcr, Stuart Baylcv, and Rod
vViddowson. In their paper about the
rile server design, they comp;m: rhc

Spir;1log implementation of the LFS
technology with others and describe
the novel combination of the tcchnoi

O!:,''Y with a R-trce mappi ng mechanism
to provide the S\'Stcm with needed
d�1t;1 recovery guarantees.

A third paper about Spiralog,
\\Tittcn by Russ Green, Alasdair
K1ird, �md Chris Davies, addresses
a criric1l customer rcquirement
hst, application-consistent, on-line

Digir:>l Technical journal

b�Kkup. Exploiting the fe atures of
log-structured storage, designers
\\'ere �1blc ro combine rhe rlexibilin·
of tile-based backup and the high
pcdrml1�11KC ot' pll\'sical h· oriented
lxKkup. Consistent copies of the file
svstcm arc created \\'bile applications
modi�' data.

The Spiralog integration into the
Opcn VMS file system required th�1t
existing <lpplications be able to run
u ncha nged . M<!rk Howell and Julian
P:�lmcr describe tbe integration of the
\\'rirc-b�1ck c:�ching used in Spira log
into the \\Tire-through em·ironmcnt
used in the existing Fi\cs-11 tile S�'Stcm.

The imporL1nce of comp:�tibilin'
h>r existing 32-bit applications in
�1 64-bir environment is stressed

:�g�1in in rhc set of three papers about
the i<ltesr step in rhe evolution of'rhe
Open VMS oper;1ting system. Digital
first ported the 32-bir Open VMS
opera ring system to the Alpha <1rchi

tecture in 1992. The extension of
rhe svsrcm ro exploit 64-bit \'irru:·tl
a ddressi ng is presented bv Mike
f-L!n·el' �md Lennv Szubowicz. . .
Their discussion includes the team's
solution to signi6cant scaling issues
rhat in\'(>h'cd �1 ne\\' approach to

p;Jgc-rablc residenc\'.
The Open VMS ream a nticipat ed

rh�1r app lications would mix 32- �1nd
64-lJit �1ddrcsscs, or pointers, in rhc

new environment. Tom Benson,
Karen Noel, and Rich Peterson
explain why this mixing ofj ointer
sizes is expected and the DEC C
compiler solution thev developed ro

sup port the practice. In a related dis
cussion, Du�me Smith's paper revic\\·s

ne\\' technique s the team used to
�malyzc and modifv the C run-time
librarv intc rtaces that accommochtc

Vol. 8 No.2 19':!6

:�pplicatiom using 32-bit, 64-bit, or
both �1dd rcss sizes.

Designed f(>r scicntitic users,
the p.!r;!llcl-programming tool
ncx t described does not run on the
Open VMS Alpha wstcm but instead
on UNIX clusters connected with
l'vlEMORY CHANNEL technologv.
jim Lawton, John Brosnan, Morgan
Doyle, Scosarnh () Riordain, and
Tim Reddin rc\'iew the challenges in
designing the TruCiu stcr ,vn-:,vlOJ�Y
CH ANNE1. SofTware product, which
is a ll!Cssagc-passing s�·stcm intended
t(>r builders of parallel software
libr�1rics and implcmenrers of fl�H�!Ilcl
compilers. The product reduces
communicuions latenc\' to Jess than

10 f.lS in shared mcmor\' S\'stc ms.
Fin�1lly, Bernie RozmO\·its prcscnrs

the design of user interfaces f(Jr the
Digital Speech Recognition Software
(J)SRS) product. Although DSRS
is r�ugct c d t(Jr Digital's Alpha work

stations running UNIX, the impk·
mcnt<1tion issues examined and the
tum\ eft{>rrs ro ensure the prod
uct's C�lsc-of-usc c1n be gcner<lllv
�1pplicd to speech recognition prod
uct dC\'Ciopmcnr.

Coming up arc p��pers on a ,·arictl'
of topics, including the internet
protocol, collaborati\·e SOIT\\':'ll'l: t(Jr
the internet, and high-perk>nn�mcc
servers. These topics rctlcct areas of
imcrcst.frJ/11'/W/ readers rated ncar
the rop in last spring's survcv. Our
sincere th�1nks go ro C\'t:r\'onc \\'ho

respo nded ro that sun·ev.

J anc C. Blak e
Mmwging Fditor

Foreword

Rich Marcello
Vice President. Open VMS ,\)stems
Sqfiu,are Group

The papers you will read in this issue

ofthe.fournal describe how we in the
Open VMS engineering community

set out to bring the Open VMS oper
ating system and our loyal customer
base i nto the rwcnty-first century.

The papers present both the develop
ment issues and the technical chal

lenges faced by the engineers who

delivered the Open VMS operating
system version 7.0 and the Spiralog
file system, a new log-structured file

system tor Open VMS.

We are extremely proud of the

results of these efforts. In December

1995 at U.S. Fall DECUS (Digital

Equipment Computer Users Society),

Digital announced Open VMS version

7.0 and the Spiralog tile system as part

of a first wave of product deliveries for
the Open VMS Windows NT Nllnity

Program. Open VMS version 7.0 pro

vides the "unlimited high end" on
which our customers can build their

distributed computing environments

and move toward the next millennium.

The release of Open VMS version

7.0 in January oftJ1is year represents
the most significant engi11eering

enhancement to the Open VMS oper
ating system since Digital released

the VAXcluster system in 1983.
Open VMS version 7.0 extends the
32-bit architecture of Open VMS
to a 64-bit <�rchitecture, allowing
Open VMS Alpha users to fully exploit
the 64-bit virtual address capacity of

the Alpha architecture. As you will
read in some of the papers in this

issue, however, our design goal for

Open VMS version 7.0 went beyond

just delivering 64-bit virtual address
capability to Open VMS users. It was

essential to us that Open VMS users
be able to upgrade to version 7.0

with full compatibility tor their exist
ing 32-bit applications.

In addition to achieving the sig
nificant goals of 64-bit addressing
and compatibility for 32-bit applica

tions, version 7.0 includes very large

memory (VLM), very large database
(VLDR), fast 1/0, fast path, and

symmetric multiprocessing (SMP)
enhancements. These new features
recently combined with the power

of the Alpha architecture to earn
Open VMS a world record tor perform

ance. ln May of this year, Open VMS

version 7.0 on an AlphaServer 8400
system configured with eight pro

cessors and 8 gigabytes of memory,

running Oracle's Rdb7 database

<llld using the ACMS transaction

processing monitor, set a new world

record tor TPC-C pertormance on
a single SMP system. Audited per
tormance was 14,227 tpmC at $269
per tpmC. Just this past August, the

combination of Open VMS version
7.0, Oracle's Rdb7 database, the

ACMS monitor, and the AlphaServer
4100 system achieved world -record
departmental server performance.
The new world record was set on
an AlphaServer 4100 5/400 system
configured with four processors and

4 gigabytes of memory. ln audited
benchmarks, the pertonnance results
were 7,985 tpmC at $173 per tpmC.

Such outstanding results are achiev

able in a ti.ill 64-bit environment

hardware architecture, operating

systems, and applications such as
Oracle's Rdb database. No other

vendor today can deliver this power.

Digital Technical journal Vol. 8 No.2 1996 3

4

In E1ct, Digit�l has two 64-bit oper

�uing s1·srems 1\'ith this po11·er: the
OpenV/vlS �1nci the Digital U:-.JIX

oper;ni ng SI'Stems.

As noted �1bm·e, Digit:ll inrrocluccd
the OpenV1v!S operating system with
SUflport f(lr full 64-bit l'irtual address

ing at the s:1mc time it introduced the

Spir;1log tile system, in Dt:cembcr
1995. The Spira log design is lmt:d
on rhe Sprite log-structllred tile svs
rem trom the University ofCalit(>rni;1,
Berkeley. Wirh irs usc of this log
structured ;1pproaeh, Spira log offers
Jll;1jor nell performance reatures,
including t�1st, applicnion-consistcnr,
on-line b;lckup. further, ir is fulk
comparibk 11·irh customers' oisting
hies-II rile SI'Stems, and applications
rh;H t·un 011 hles - 1 1 will run on

Spir;Jiog 11·ith no modification. To
ddiver �111 of the re;nures we kit ll't:rc
esscmd to mt:t:t the needs of our
loval utstomer base, the Spiralog tc1m
0;1mined ;1t1d resoked a number of
rechniul issues. The papers in this
issue desuibe some ofrhe clullcnges
rhe1· hcnl, including the decision to
design ;1 hlcs-11 tile SI'Stcm emubrion.

The dcli1·crv ofrhe OpenVMS
1 crsion 7.0 operating SI'Stem and
rhe Spir:1lug tile system are part of
DigiL1I's continued commitment ro

rhe Open VMS customer b:�se. These
products reptTsent the work of dedi

cated, t:demed engineering teams
that h;we deployed state-ot�the-arr

reehnology in products rhat ll'ill help
our customers remain competiti1·e
r(Jt- \'cars to come.

In the Open VMS group as else
ll'hcre in Digital, 11·e are committt:d

to excellence in the de,·clopmcnt and

Di1;ital Technical)ourn�l

delivnv o�· business computing solu
tions. 'vVt: ll ' i ll continue to maint;lin
;Jnd cnluncc a product porr�(,lio th;1t
meers our customers' need for true
24-hour bl' 365-dal' acct:ss ro theit-. .

d�1t;1, ti.tll imegration wirh Microsof-t
'vVindows :-.rr enl'ironmenrs, and the
full complement of network solutions
;1nd application software tor today
and well into tht: next millennium.

Vol. 8 No. 2 J 996

Overview of the Spira log
File System

The OpenVMS Alpha environment requi res a

fi le system that supports its ful l 64-bit capabi l i

ties. The Spiralog fi le system was developed to

increase the capabi l ities of Dig ita l 's Files-11 fi le

system for Open VMS. It incorporates ideas from

a log-structured file system and an ordered write

back model. The Spiralog file system provides

improvements in data avai labi l ity, sca l ing of the

amount of storage easily managed, support for

very large volume s izes, support for appl ications

that are either write-operation or fi le-system

operation intensive, and support for heteroge

neous file system client types. The Spi ra log

technology, which matches or exceeds the rel ia

bi l ity and device independence of the Files-11

system, was then integrated into the Open VMS

operating system.

I
James E. Johnson
William A. Laing

Digital's Spiralog product is a log-structured , duster
wide file system with i ntegrated , on -line backup and
restore capability and support tor multiple tile sys
tem personalities. It incorporates a number of recent
ideas ti·om the research com m u nity, i nclud ing the
log-structured tile system (LFS) from the S prite tile
system and the ordered write back ti-om the Echo
tile system.U

The Spiralog file system is fully integrated into the
Open VMS operati ng system , providin g compatibility
with the current Open VMS fi le system, Files-ll. It
supports a coherent, clusterwide write-beh ind cache
and provides h igb-pertonnance, on -line bac kup and
per-file and per-volume restore functions.

In this paper, we first d iscuss the evolution of tile
systems and the requirements tor many of the basic
designs in the Spiralog tile system . Next we descri be
the overall archi tecture of the Spiralog file system,
identit),ing its major components and outl ining their
designs. Then we discuss the project's results: what
worked well and what did not work so well. Finally, \Ve
present some conclusions and ideas tor future work.

Some of the major components, i . e . , the backup
and restore facil ity, the LFS server, and OpcnVMS
integration, are described i n greater detail in compan
ion papers in this issue .3-5

The Evolution of File Systems

File systems have existed throughout much of the h is
tory of computing. The need tor libraries or services
that help to manage the collection of data on long
term storage devices was recognized many years ago.
The early support libraries have evolved into the tile
systems of today. During their evolution, they have
responded to the industry's improved hardware capa
bilities and to users' increased expectations. Hardware
has contin ued to d ecrease i n price and im prove in its
price/performance ratio. Consequently, ever larger
amounts of data are stored and manipulated by users
i n ever more sophisticated ways. As more and more
data are stored on-line, the need to access that data 24

hours a day, 365 days a year has also escalated.

Digital Technical Jounul Vol. 8 No. 2 1996 5

6

Sign iticant i m provements to file systems h ave been
made in the t(> l lowing areas:

• Di recrorv stru ctures to ease locating data

• Device i ndependence of data access through the ri le
svstcm

• Accessi b i l ity of the data to users on other svstems

• Avail;1bility of the thta, despite either pla nned or
unplanned service outages

• Re l iab i l ity of the stored data and the pertc>rm:mn.:
of the datJ JCCCSS

Requirements of the Open VMS File System

Since l977, the OpenVMS operating system has
ofti..:rcd a stable, robust til e svstem known as Files-!!.

This ti le system is considered to be very successfu l in
the areas o f re l ia b i l ity and device independ ence .
Recent customer teed lxtck, however, indicated th;H
the areas of data avaibbility, scaling of the ::tmounr of
sror:�gc c:tsi lv managed, support tor \'Cry large vol u m e
sizes, and support tc>r heterogeneous file system client
types were in need of i m prove ment.

The Spiralog project was initiated in response to
customers' needs. We designed the Spiralog rile system
ro match or somewhat exceed the Fi les-1 1 system i n
its re l i ab ility and device independence. T h e focus of
the Sp ir::t log project was on those areas that were d u e
tor improveme nt , notably:

• DatJ ava i l ab i l i ty, especia l ly d uring pJanned opera
tions, such ::ts backup .

If the stor:tgc device needs to be taken offline
to pcrtcm11 J backup, even at a very high backup
rate of 20 mega bytes per second (Ml3/s), ;llmost
14 hours are needed to back up l tera byte . This
length of service outage is clearly unacceptable.
More typical backup rates of 1 to 2 M B/s can rake
several davs, which, of course, is not acceptable .

• Grc:nlv increased sca l ing in total amount of on-l ine
storage, without greatly increasing the cost to man
age rhar storage.

For exa mp l e, 1 terabyte of d isk storage cu tTcmly
costs approxi mately $250,000, which i s we l l with i n
t h e budget o f many large computing centers .

However, the cost in staff and rime to ma nage such
amounts of storage can be many times th::tt of the
storage.'' The cost of storage continues ro t�11I, whil e
the cost of managing it continues to rise .

• Efkc rivc scaling as more processing and storage
resources become avai l able .

For examp le, Open V M S Cluster systems aJlow pro
cess i ng power and storage capac ity to be added
incremental ly. Ir i s crucial that the software support-

Dig.it.tl Tcdtnic;tl jounul Vol. 8 No. 2 1996

ing the ri le system scale as the processing power,
bandwidth to storage, and storage capacity increase .

• Im proved performance tor appl ic:nions that arc
e ither \\'rite-operation or ti le- system -operation
i mcnsivc.

As ti le svsrem caches m main mcmor\' ha\'C
i ncreased in capacitv, data reads and file svsrcm read
opcr.nions h ave become satisf-ied more and more
tl-om the cache . At the same time, nL1nv applica
tions write large amounts of data or create and
manipulate large numbers of tiles . The usc of
red undant arrays of inexpensive disks (RAID) stor

age has increased the avai labl e bandwidth r(>r d:na
writes and rile system writes. Most tile system oper
ations, on the other hand, are small writes and �1rc
spread across the d isk at random, often ne gating
the bcndirs of RAID storage.

• lmpnl\'cd ;lbi l ity to transparently access the stored
d ata across several dissim ilar client types.

Computing e nvironments h ave become tncrcas
ingly heterogeneous . Different client S\'Stcms, such
as the W i n do\\'S or the UNIX opc cni ng S\'Stcm,
store their nics on and share the ir ti les with scn·cr
S\'Stcms such as the OpenVJ\1\S sen·cr. It Ius
become ncccssJry to support the svn tax ;md scmJn
rics ot- several ditkrcnr ti l e system personal it ies on
:1 common rile server.

These n eeds were centra l ro many design d ecis ions we
m::tdc t(lr the Spiralog tile system.

The mem bers of the Spiralog project eval uJtcd
much of the ongoing work in file systems, dat:tbascs,
:tnd storage architectures. RA.ID storage ma kes h igh
bandwidth av:tiLlble to disk storage, but it req u ires
large writes to be etiective. Dar:tbascs ha\'C exp lo ited
logs ;md the grouping of writes toget her to minimize
the n u m ber ot' disk f/Os and disk seeks req u i red .

Databases and transaction systems h ave a lso e xp loited
the tt:cbniquc of copving the tai l of the log to dkct
back ups or data replication. The Sprite project at
Berkeley had brought together a log-structured ri le
system and RA.I D storage to good eftccr.1

By d rawing rl·om the above ideas, parri cu l ::tr lv the
insight of how a log structure cou l d support on-l ine,
h igh- pcrr(mnance backup, we began our dcvc lopmcnr
cft(>rt. We designed and buil t a d i stributed tile system
rhar made extensive use of t he processor and me mory
ncar the appl ication and used log-stru ctured storage in
the server.

Spiralog File System Design

The m ai n cxccur i o n stack of the Spira log til e svstcm
consists of three d istinct lavers. Figure I sho\\'S the
o\·er:�ll structure. At the rop, nearest the user, is the ri le

F64 FSLIB

VPI SERVICES

Figure 1

FILE
SYSTEM
CLIENT

Spira log Structure Overview

BACKUP USER
I NTERFACE

system cl ient layer. It consists of a number of fi le
system personal ities and the underlying personality
independent services, which we call the V P I .

Two tile system personali ties dominate the Spiralog
design. The F64 personality is an emulation of the
Fi les-l l fi le system . The fi le system library (FSLIB)
personal ity i s an implementation of Microsoft's New
Technology Advanced Server (NTAS) fi l e services for
use by the PATHWORKS for Open VMS fi le server.

The next l ayer, present on all systems, is the clerk
layer. It supports a d istributed cache and ordered write
back to the LFS server, giving single -system semantics
in a cluster configuration .

The LFS server, the third layer, is present on a l l des
ignated server systems. This component is responsible
for maintain ing the on-d isk log structure; it inc ludes
the cleaner, and it is accessed by mul tiple clerks. D isks
can be connected to more than one LFS server, but
they are served only by one LFS server at a time. Trans
parent fail over, fi·om the point of view of the tl le sys
tem client layer, is achieved by cooperation between
the clerks and the surviving LFS servers.

The backup engine is present on a system with an
active LFS server. I t uses the LFS server to access the
on-d isk data , and it interfaces to the clerk to ensure
that the backup or restore operations are consistent
with the c lerk's cache.

Figure 2 shows a typical Spiralog cluster configura
tion. In this cl uster, the c lerks on nodes A and B are
accessing the Spira log volu mes. Normal ly, they use the
LFS server on node C to access their data. I f node C
should fai l , the LFS server on node D wou ld immedi
ately provide access to the vol u mes. The clerks on
nodes A and B would usc the LFS server on node D,
retrying a ll their outstanding operations. Neither user
appl ication would detect any f�1i lure. Once node C had
recovered , it would become the standby LFS server.

NODE A NODE B

USER APPLICATION USER APPLICATION

SPI RALOG CLERK SPI RALOG CLERK

ETHERNET

NODE C NODE D

SPI RALOG VOLUMES

Figure 2
Spiralog Cluster Configuration

File System Client Design

The fi le system client is responsible for the trad itional
fi l e system fimctions. This l ayer provides fi l es, directo
ries, access arbitration, and file naming rules . It a lso
provides the services that the user cal ls to access the fi le
system .

VPI Services Layer The VPI layer provides an underly
ing primitive fi le system i nterface, based on the UNIX
V FS switch . The VPI layer has two overall goals:

1 . To support mu ltiple file system personal ities

2. To effectively scale to very large volumes of data
and very large numbers ofti lcs

To meet the first goal , the VPI layer provides

• File names of 2 56 Unicode characters, with no
reserved characters

• No restriction on directory depth

• Up to 255 sparse data streams per ti le, each with
64-bit addressing

• Attributes with 255 Unicode character names, con
tain ing values of up to l ,024 bytes

• Files and d i rectories that are freely shared among
fi le system personality mod ules

To meet the second goal, the V Pl layer provides

• File identifiers stored as 64-bit integers

• Directories through a B - tree, rather than a simple
l inear structure, for log(n) fi le name lookup time

The VPI layer is only a base for fi le system personali
ties. Therefore it requires that such personalities are
trusted components of the operating system .
Moreover, it requ ires them to implement ti le access
security (a lthough there is a convention tor storing
access control l ist information) and to perform a l l nec
essary cleanup when a process or image terminates.

Digital Tech nical Journal Vol . 8 No. 2 1996 7

8

F64 Fi le System Personality As �m.:viously state d , the
Spi ra log prod uct i nc l udes t\VO ri l e system persona l ities ,

F64 :111d fS U B . The f64 pcrson �1 l i ry provides a sen·ice
that e m u l ates the Fi les-! ! ri le S\'Stc m . ' I ts fu nctions,
services, ava i lable ri l e attri b u tes, and execu tion
bch�wiors :lrc s imi lar to those in the Fi lcs-l l ri l e S\'S
tc m . i'vl i nor d i fkrcnccs �l i'C isobtcd i nt o areas that
receive l ittle usc ti·om most app l icuions .

F m i nstance , the Sp ira log ti le svstcm su pports rhe
\':lrious Fi les- ! ! q u eued l/0 ($QIO) parJmc ters for
reru m i n g ri l e attri b u te i n f(mn�uion, because they are
used i mpl icit�\' or exp l ic i t l y by most usn :1pp l ic:1tions .
On the other h a n d , the h lcs-1 1 method of read i ng
the ri l e hea<.kr i n r(mmtion d i rectly through �1 tile
cal led J N DEX f.SYS is nor com mon l v used by app l ica
tions �md is nor suppom . .:d .

The F64 ri le svstcm pcrson �1 l i ry demonstrates that
rhc V PI layer con ta i ns suffic ient tlC \ i bi l i ty ro su pport
a com p l ex ti le system inrnbcc. I n a n u m ber of cases,
however, several V P I ca l ls arc needed ro i mp lemen t
a s i ng l e , comp le x Fi les - [] ope ration . F o r instance, ro
do a h ie open operation, the F64 persona l ity pcrr(xms
the tasks l isted below. The i tems th:t t end with (V PI)

arc tasks that usc V P I serv ice u lls to com p l ete .

• Access rhc ti le's p�1rc n t d i rectory (V P I)

• Read the d i rectory's rile �mributcs (V P I)

• Veri !-\• authorization r o rc1d t h e d irectory

• Loop , search i ng r(>r the ti l e name, by
- Read i ng some d irccrorv e n tries (V PI)

- Search i ng the d i rccrorv b u ftl.:r r()r the h ie name
- Exiting the l oop , i f rhc 1mtch is tcll l l 1d

• Access the target ti le (V P l)

• Read rhc ri le 's attributes (V I' !)

• Audit the h i e open �Htempt

FSL IB Fi le System Personal ity The �S U B ti le sysre m
persona l itv is J spcc i �1 1 izcd ri le system to su pport the

PATHWORKS rc > r Open VMS ri l e server. I rs nvo major
goa l s arc to su pport the ti l e 11amcs, a ttri butes, and
bcha,·iors ti.n1 1 1d i n M icrosoft's NTAS ri le access proto
coJs , and ro prov ide low r u n - time cost rc > r processi n g
NTAS ti le svstcm req uests.

The PATHWO RKS server im p l ements �1 ri le service
t(Jr persona l compute r (!'C) c l ients bycrcd on rop of
the F i lcs-1 1 ti l e syste m services. When NTAS service
behaviors or ::�trri hu tcs do not match those of Fi l es - l l ,
the PATHWORKS serve r h:ts to e m u l ate the m . This
can lead to check ing secur ity access perm iss ions nvice ,

mapp i n g ri le na mes, and e m u l atin g ri l e Jttr iburcs.
Many of these pro blems can be avoided if the V PI

i nter bcc is used d i rect l y. for i nstance, because the
�SLI B pcrson:1 l i ry docs nor l aver on top of a F i les-1 1
persona l i n·, sccurin· access checks do nor need to be
pcrtcmm:d t\\'icc . fu rthermore, in a srraigh trc >rward
des ign , there is 110 need to map across d i ftl.:renr ti l e

Dig:ire1l Tcchn ic.d)ou m,d Vol . � No. 2 l <J96

n a m i ng or attri b u te ru les . For rc1sons II'C describe
l ater, in the V I' ! Resu l ts sectio n , we c hose nor ro p u r
sue this design to i ts conc l u sion .

Clerk Design

The c lerks arc respons i b l e tc>r m�mag i ng the caches,
determ i n i ng the order o f writes out of rhc cache to the
LFS scn·cr, and m a i n L1i n i n g c:tche cohet-cnc\· ,,·i th in
a c l uster. The caches arc write behind i n �1 111�1n ncr rhat
preserves the order of d epe nd ent operations.

The c l e rk-scn·c r protoco l controls the rr:-�nskr of
d:tta to and fro m stab le storage . Data G il l he scm �1s
a m u lti block :nomic \\Titc, �md oper�uions th�u ch �1 ngc
m u ltip l e data i tems su c h as a ri l e re name em be made
atom i ca l l y. I f a server tai ls d u ring ;� requ est, the c lerk
treats the req u est as i f i t were lost and retries r i t e
req uest.

The clerk-server protocol is i d e m potent . I d e m
potent operations cJn b e :tppl icd rc pcarcd l v with n o

effects other t h a n t h e d esired o n e . Thus, a fter a n y
n u m ber of server fai l u res or scn·cr tai l ovcrs, ir is a l wavs
sate to reissu e an operation . Clerk-to-se rver wri te
operations always !ewe the ri le system stare consistent .

The c lerk-clerk protocol protects the user data :1nd
ti.Jc svstcm mctadatJ cached lw the c l uks . C:�c hc . .
coherency i n r(Jrmarion, rather th�1 11 <.bra, is passed

d i rect!\' between c l erks .
The ti le svsrcm caches a 1-c kept in the c le rks . iVI u l

tip le clerks can have copies ot'sta bi l i t.cd data , i . e . , <.b ra
rhat has been ll'ritte n to the scn'Cr 11·ith the IIT i tc
acknowledged . Onlv one c l er k can h�li'C unsL1 b i l i zcd,
volati l e data. Data is cschangcd between c lerks b1·
stabi l i z i ng it. vVhcn a c lerk needs to \\Ti tc a block oF
d ata to the server ti·om i ts cache, it uses a rok.cn i mcr
f:1ce that is l ayered o n the c l e rk - c l e rk proto co l .

The ll'rites ti·om t h e c:�c hc to t h e SCI"\'CI" arc dete rred
as l on g as possi blc ,,.i th in the constra i n ts of the c�1c he
protocol a n d the d cpcndcncv gu:1r�m tccs.

Dirn· d ata remains i n the cache �1s l o ng as 30 sec
onds. D u ri n g th:n r ime, m·cr11Titcs �1 rc combined
within rhe constra ints of' the dcpcnd cncv g ua ra mecs.
Furthermore, operations that arc known to other one
a nother, such :�s ti-cc ing a ti le idcnt iricr and �1 l loca ting
a ti l e identitier, <l iT fu l l v combined with i n the c1chc .

Even tua l ly, some trigge r ca uses the d i r tv d �na ro be
written to the server. At this poi nt , scvcLll wri tes arc
grouped together. Wri te opcLltions ro :1d jacc nt, or
overlappi ng, fi l e locations arc combined to r(mn
a smal ler n u m ber of larger writes. The resu l t ing write
operations are then grouped i nr o messages ro the
LFS server.

The c lerks pertorm write beh i nd r(>r rcn 1r reasons :

• To spread t h e I /0 load over ti me

• To remove occ l uded data , wh ich c.m res u l t ti·om
repeated O\'crwritcs of :1 d:� t�l b l oc k , �i-om bei ng

tra nsterrcd to the scn·er

• To avoid wri ting data thJt is q uickly deleted such as
temporary tiles

• To com bine multiple smaU writes into larger transfers

The c lerks order dependent writes from t ile cac he
to the server; conseq uently, other c lerks never see
"im possib le" states, and rel ated wri tes never overtake
each oth er. For i nstance, the deletion of a ti le cannot
happen beti:>rc a ren:�me that was previously issued to
the same ti le. Related d:�ta writes arc caused by a partial
overwrite, or a n expl ic it l i nking of operations passed
i nto the clerk by the V PI layer, or an i m plicit l ink ing
due to the clerk-clerk coherency protoco l .

T h e ordering between writes i s kept a s a d irected
graph. As the c lerks trave rse these graphs, they issue
the writes in order or col lapse the graph when writes
can be sately combined or el im inated .

LFS Server Design

The Spira log ti le system uses a log-structured, on-disk
format tor storin g data wi thin a vol u me, yet prese nts
a trad ition a l , update- in- place ti le system to its users.

l USER 1/0s

FILE VI RTUAL BLOCKS

I I I I I I I I I I

Figure 3
Spira log Add ress M apping

Recen tly, log-structured ti l e systems, such as Sprite,
have been an area of active 1-escJrch . '

With i n the LFS server, su pport i s provided ti:x the
.log-structured, on-disk format and Jor mapping that
tormat to an update - i n -place model . Specitical ly, this
component is responsi ble tor

• Mappi ng the incom i n g read and write operations
from their s imple Jdd ress space to posi tions in an
open -e nded Jog

• Mapping the open -ended log onto a ti n ite amount
of disk spJce

• Reclaiming disk space by cleaning (gJrbage collect
ing) the obsolete (overwritte n) sections of the log

Figure 3 shows tllC various mapping layers in the
Spiralog ti l e syste m , i nc lud i ng those hJndled by the
LFS server.

fncoming read and write operations arc based on a
single, la rge address space. Initial ly, the LFS server trans
torms the address ranges in the incoming operations
into equivalent add ress ranges in an open-ended log.
This log supports a very large, write-once address space.

DISK

Digit.ll "kdmical Journal

FILE SYSTEM ADDRESS
SPACE j VPI

CLERK

FILE ADDRESS SPACE j LFS
B-TREE

LOG ADDRESS SPACE

LFS
LOG
DRIVER
LAYER

PHYSICAL ADDRESS
SPACE

Vol . S No. 2 1 996 9

1 0

A read operation l ooks u p its location i n the open
ended log and proceeds. O n the other hand, a write
operation m akes obsolete i ts c u rre n t address range
and appends its new val ue to the tai l of the log.

In turn, l ocations in the ope n -ended l og arc then
mapped i nto locations on the (fin i te - sized) disk. This
additional mapping a l l o\\'S d isk b locks to be reused
once their original contents h ave become obso lete .

Physical ly, t h e log is divided into Jog segments, each
of w h ich is 256 ki lobytes (KB) in lengrl1. The log seg
m e nt is used as the transfer u nit for the backu p engine .
I t is a lso used by the c leaner for recla iming obsolett
log space.

More int<xmation about the LFS server can be
t(Ju nd i n this iss u e :'

On-line Backup Design

The d esign goals tor the backup engine arost ti·om
h igher storage m anagement costs and greater data ava i l
abi l ity netds. I nves6garions with a n u m ber of customers
revealed their req uirements for a backup engint:

• Consisten t save optrations without stopping a 11V
appl ications or locking out data mod i fications

• Verv bst save operations

• Both fu l l and i ncremental save operations

• Restorts of a ful l volu me and of indivi d u a l ti les

Our response to these needs i n fl uenced many dtci
sions concern ing the Spira log ti l e system d esign . The
need for a h igh-performance, on-l ine backup led to
a search ten an on-dis k structure that cou ld su pport
it. Aga i n , we c hose the l og-structu red design as the
most suitable one.

A log-structured organ ization a l l ows the backup
bci l i ty to eas i ly demarcate snapshots of tht ti l e system
at any poi nt in t ime, s i m p l y by marking a point in the
log. Such a mark represents a version of the file system
and prevellts d isk bl ocks that compose that vers ion
ti·om being c ltancd . I n turn, this a l lows the backup to
r u n agai nst a low ln·el of the ti le syste m , that of tht
logical log, and thcrdorc to operate c lose to the spira l
tr�mskr rate of t h e u nderlying d isk.

The d i ffe rence between a parti a l , or i ncremtntal,
and a ti.d l save operation is o n ly the starting point in
the log. An i nc re mental save need not copy d a ta back
to the begi n n i ng of the log. Therefore, both i ncre
mental and hi l l save operations transfer d ata at very
high speed .

By i m plcmciHing these features i n t h e Spira log ti le
syste m , we fu l fi l l e d our customers' req u i rements f(>r
h igh- pcdcm11ancc, o n - l i n e backup save opcLltions .
We :: dso met their needs tor per- ti le and per-vo l u m e
restores a n d an ongoing need tor simpl icity and red uc
t ion in operating costs .

Digital Technical Joumal Vol . 8 No. 2 1 9')6

To provide per-ti l e restore capa b i l i ties, tht backup
ut i l itY and the LrS server ensure that the :1ppropriarc
ti l e header i n formation is stortd d ur ing the sa\ c opcr
:lti on . The Sa\·cd ri le svstem clara, i nc lud ing ri l e head
ers, log mapping i n formatio n , and user d ata, arc
stored in a ti le k.no\\'n as a SCI/ Y!SC'I . Each sa\·esc r,
regardless of the n u m ber of tapes it requires, repre
sents a s ingl e sa,·e operatio n .

'T'o red u ce the complcxitv o f fi l e restore opcr: nions,
the Spiralog fi l e system provides an on� l i nc SJ\'CSCt
merge featu re . This al lows tht systtm ma nager to
merge severa l savesets, either tl.d l or i ncre menta l , to
t(mn a new, single savcset . VVi th this katurc, system
managers can h ave a workable backup save p lan that
never cal ls fc>r :�n o n - l i n e fu ll backup, rhus h1 rthcr
red uc ing the l oad on their prod uction syste ms. Also,
this featurt can be used to ens u re that ti lt restore oper
ations can be acco m p l ished with a s m a l l , bou nded set
of S:l\'CSCtS .

The Spira log backup t:K i l i tv is dtscribcd in d c u i l in
th is issue . ;

Project Results

'l'he Spi r:t log tile svstem contai ns a n u mber of in nm·::t
tions in the areas of o n - l ine backup, log-structu red
storage, c lusttrwick ord e red \\'rite -beh ind cach ing,
and m u lt ip le- ti l e-system c l ient s upport.

The usc o f log structuring as an on-disk t(Jrmat is
very c ftCctivc in s upporting h igh-pcrf(mnancc, o n - l i n e
backup. The Spira log ti l e system reta i ns t h e previously
documented benefits of LfS, s uch as bst write pcrfc >r
mancc that scales with t h e d is k size and through put
that i ncreases as large read caches arc used to oftscr
disk rc:1d s . '

I t s h o u l d also b e noted that t h e Fi lcs- 1 1 ti l e svstcm
stts a h igh standard t(x d ata rel iab i l itY and robusmcss.
The Spi ra log tec h nologv met this c h a l le nge \'en· wel l :
a s a res u l t o f the idempote n t protoco l , the c l uster
Eli l over design, and the recover capa b i l i tv of the log,
\\'C cncoun tertd fC\\' d ata r c l i abi l itv p ro blems d u ri n g
d evelopment.

In any large, complex project, manv tec h n ical dec i
s ions arc necessary to convert research tec hnol ogy
i n to :1 prod uct . I n t h is sectio n , we d iscuss why certa i n
d ecisions were m a d e d u ring the devtlopmtnt of t h e
Spira log s u bsystems .

VPI Results

The V PI ti l e system was genera l ly s uccessfu l 1 11 pro

vid i ng the u nderly ing support necessary r<>r d i rkrcnr
ti le syste m personal it ies. We fou n d that i t was possi
b l e t o construct a set ot' pri m i tive operations that
cou l d be used to b u i l d complex, user- lC\·c l , ti le svstcm
operations.

By using these primitives, the Spir:�log project
members were able to successfu l ly design t\vo dis
ti nctly d ifterenr personal ity modules . Neither was a
fu nctiona l superset of the other, and neither was lay
ered on top of the other. However, there was an
imporrallt second -order problem .

The fS LI B t-i le system personal ity did not have a fu l l
mapping to the Fi les-1 1 file system . As a consequence,
ti le management was rather d ifficult , because all the
data management tools on the OpenVMS operating
system assumed compliance with a Fi les - 1 1 , rather
than a VPI, t-ile system.

This problem led to the decision not to proceed
with the origina l design for the FSLI B personal ity in
version 1 .0 of Spiralog. I nstead, we developed an
FSLI B !l i e svstem personality that was ndly compatible
with the F64 personal ity, even when that compatibi l ity
t(>rced us to accept an add i tional execution cost.

We also r()Li lld an execution cost to the primit ive
VPI operations. Genera lly, there was l i ttle overhead
t(x <.bta read and write operations. However, tor
operations such as opening a ti le , searching t(x a ti le
name, and deleting a ti le , we found too high an over
head fi·om the number of cal ls into the V PJ services
and the resu l ting cal ls into the cache manager. We
cal led this the "bn-out" problem: one h igh- level
operation would turn into several V PJ operations, each
of which would turn into several cache manager ca l ls .
Table l gives the detai ls of the E1n-out problem .

We bel ieve that it would be worthwhile to provide
sl ightly more complex V PI services in order to com
bine ca l ls that always appear in the same sequence.

Table 1
Ca l l Fan-out by Level

Revised
F64 VPI Clerk Clerk

Operation Calls Calls Calls Calls

Create f i le 4 1 8 29 24
Open f i le 1 6 1 8 1 4
Read block 1 1 3 3
Write block 2 4 7 6
C lose f i l e 1 4 1 3 1 0

Clerk Results

The c lerk met a number of our design goa ls. First, the
usc of idempotent operations a l lowed tai lover to
standby L�S servers to occur with no Joss of service to
the t-ile system cl ients , and with l i ttle add i tional com
plexiry within the clerk .

Second, the ordered write beh ind proved to be
efrective at ordering dependent, metadata file system

operations, rhus supporting the abi l ity to construct
complex file system operations out of simpler elements.

Third, the clerk was able to manage large physical
caches. I t is \'ery dlt:ctive at making use of unused
pages when the memory demand fro m the Open VMS
operating system is low, and at quickly shri n king the
cache when memory demands increase . Although
certa in parameters can be used ro l imit the size of a
clerk's cache, the caches are normally self tuning.

Fourth, the clerks red uce the number of operations
and messages sent to the LFS server, with a subsequent
reduction to the number of messages and operations
waiting to be processed . For the COPY command, the
number of operations sent to the server \vas typicall y
reduced by a tacror of 3 . By using transient fi les with
l i fetimes of tewer than 30 seconds, we saw a reduction
of operations by a r:1cror of 100 or more, as long as the
temporary ti le fir into the c lerk's cache.

In genera l , the code complexity and C PU path
length within the clerk were greater than we had origi
nally planned , and they wi l l need further work. Two
aspects of the services offered by the clerk com
pounded the cost in CPU path length. First, the clerk
has a simple in terface th::n su pports reads and writes
in to a single, large add ress space only. This i nterface
requ i res a num ber of clerk operations tor a number of
the VP I calls, further expanding the call Em-out issues.
Second , a concurrency control model al lows the clerk
to un i l atera l ly drop locks. This requ i res the V PI !ayer
to reval idate its i nternal state with each cal l .

Either a change to the derk and V PI service inter
faces to support notification of lock inval idation , or a
change to the concurrency contro l model ro d isal low
locks that cou ld be un i l ateral ly invalidated , wou ld
reduce the number of ca l ls made. We bel ieve such
changes would produce the resu lts given in the last
column of Table l .

LFS Server Results

The LFS server provides a h ighly avai lable , robust fi le
system server. Under heavy write .loads, it provides the
abi l ity to group together multiple requests and reduce
the number of d isk IjOs. In a d uster configuration,
it supports tai lover to a standby server.

In normal operJtion, the cleaner was successfu l i n
minimizing overhead, typical ly adding only a tew per
cent to the elapsed rime . The cleaner operated in a lazy
manner, c leaning only when there was an immediate
shortage ofspace . The cleaner operations were n1rther
lessened by the tendency t(>r norma.! fi.le overwrites to
free up recently ti lled Jog segments for reuse .

Although this produced a cleaner that operated
with l ittle overhead , it also brought about t\vo u nusual
i nteractions with the backup fac i l i ty. ln the t!rst place,
the log often contains a number of obsolete areas that

Digital Tcchnic1l Journal Vol . 8 No. 2 1 996 l l

1 2

arc el igible tor c leaning bur have nor yet been
processed . T hese obsolete a reas an: a lso saved by the
backup engine . Although they have no c fkct on the
logic:d state of the log, they do req u i re the b�1ckup
engine to move more data to b�Kkup storage t iL1n
m igh t othe rwise be necess:try.

Second, the des ign in i tia l ly proh ib ited the c leaner
tl:om r u nn ing ag:� i nst a l og w i th snapshots . Conse
quc nrlv, the cleaner was disabled during �1 save opera
tion, which had the fo l lowi ng d kcts: (1) The :�mount
of ava i lab le ti·ee space i n tht: l og was artiti cia l l v
depressed d u ri ng a backup. (2) Once the backup \\'JS
fi n ished, the activated cle:111cr wou ld d iscover that
a great n u m ber o f l og segments were now e l ig ib le for
c lean ing. As a resu lt , the c leaner underwent a sudden
surge in c lea n i ng acrivirv soon a fter th e back up h:td
completed .

vVc addressed this p rob l em bv n.:ducing the area of
th e l og that was off� l im irs to the c leaner ro on lv the
part that the backu p e ng ine \\'ou ld read . This l im i ted
snapshot window a l lowed more segme nts to rem ai n
el igi b le fix c l ean ing , rh us great!\' a l ln· i :t ting the short
age of cleanab le space during the backup and e l im inat
ing the postb::tcku p clean in g surge. for �1n 8 -gigabvte
rime -sh aring ,-ol ume, th is cha nge tvpical h· reduced the
period of high c leaner acti,·i rv ti·om 40 secon ds to less
than one-half of a second.

vVe have nor vet experi mented with d i fkrellt c lcm er
a lgori th ms. More work needs to be done in this a rc:J.
to sec i f the c lea ni ng eftic iencv, cost, and interactions
with backup can be improved .

The c urrent mapp ing transt(mnarion fi·om the
i ncom ing operation add ress space to l ocations in rhc
open -ended log is more ex pensive in CPU r ime rh;l11
we would l ike . More work is needed ro opt i m ize rhe
code path .

F i na l ly, rhe LfS server is gc ncra llv successfu l a t pro
vid ing the appearance of a trad i tion:� ! , u pcbrc- i n - pl ace
ti l e system . H owcvcr, as the unusecl space in a vol u mc
nears zero, the abili ty to behave with sem a ntics t h a t
meet users' expectations i n a log-structured fi le system
proved m o re difricu l t than we had a 11 ti c ip �ned and
required signi tican r cff(Jrt to correct.

The LfS server is d escribed in m uc h m ore deta i l i n
th is issue •

Table 2
Performance Compariso n of the Backup Save Ope ration

Backup Performance Results

vVc rook a new approach ro the b:tckup des ign in the
Spi ralog system , resu l ti ng i n a very t;1St and very low
impact backup that un be used ro cre�ne consistent
copies of the ti le system whi le applications :1 re ::tctively
mod i�' ing dat<1. We achieved th is d egree of s uccess
wi thout com promisi ng such fu nctional i ry as i ncrt:

menra l backup or fjst , selective restore .
The pcrt(mnance im prO\·cmcnts of the Spira log

save operation �1rc par ticu lar lv noticeabl e ,, ·i t h the
l::irgc numbers of rransie !H or acri,·c ti les that �11·e rvpi
ca l lv t(nmd on user volu mes or on ma i l serve r ,-o l u mes.
In rhe t(J ! lowi n g tables, we compare the Spi ra log
and rhc fi le - b�1sed h lcs -1 1 backup operat ions on a
DEC 3000 Model 500 workst:J tion with J 260- MB
,·o lume, conr�1 i n i ng 2 1 ,682 ti les in 40 1 d i rectori es and
a TZ877 rape .

Tab le 2 gi ,·es the resu l ts of two sa,·e opcr�uions,
which �11-c the �werage o f fi,-c ope ra tio ns . Al though i ts
s�wcser s ize is somewhat l arger, the Spi r:t log sa, ·e
opcr;n ion completes ncark t\vicc as fJst :1s the hks -1 1
sa,·c ope r:�r ion .

T1b lc 3 gives the resu l ts ti·om resto ri ng <1 si ngle ti l e

ro rhe target ,·ol u m e . I n rhis case, rhe Spi ra log fi l e
restore opera rion c.;ecu res more r ha n three rim es as
bst as the h lcs-1 1 svstem .

The perf(mnan ce �1d ,·am�1gc ot' rhe Sp ira log bac kup
and restore tac i l i t\' i n creases fu rther kH- l a rge , m u lt i
tape S�1\'Csc rs . I n these cases , the Sp i ra log S\'Stcm is a ble
to omit tapes that �11-c nor needed f(J r the fi le resro1·e ;
the Fi lcs-1 1 S\'stcm docs nor h<l\'C th is capab i l i t\'.

Observations and Conclusions

(),·cra l l , we bcl ie\ 'C that rhc s ign iti canr i tJnov�uion and
real success of the Spiralog project was the inrcgLlt ion
of h igh - pcr f(m11�l llcc , o n - l i ne bac kup with rhe l og
structured ti l e S\'Stem mod e l . The Spi ra log ti l e svsrem
del ivers an on- l ine bKku p engine that Glll run ncar
device speeds, wirh l i tt le i mpact on concu rrcnrlv run
n i n g Jppl icnions. Manv fi l e opcr:�r ions �1 rc sign i fi
c1ntly Elster i n e lapsed r ime as a resu l t ofrhc red uction
in 1 /0s d ue ro the c1chc �md the group ing of wri te
operations . A l though the code p�1ths for <1 n u mber
of operations �11-c longe r than we had p l �1 nncd, t h ei r

File System
Elapsed Time
(Mi nutes:Seconds) Saveset Size (MB) Throughput (MB/s)

S p i ra l og
F i l es-1 1

Dig:it,l l Technic.1l)ounnl

05:20
1 0 : 1 4

Vol . ::; No. 2 ! l)\!6

3 3 9
297

1 . 05
0.48

Table 3
Performance Comparison of the Ind iv idua l F i l e
Restore Operation

Elapsed Time
File System (M i n utes:Seconds)

Sp i ra log
F i les-1 1

0 1 :06
03 :35

length is m itigated by continuing improvements UJ

processor performance .
We learned a great deal during the Spiralog project

and made the fol lowing observations:

• Volume fu ll semantics and tine-tuning the c leaner
were more complex than we anticipated and wil l
require future reti nemenr.

• A heavi ly layered architecture extends the CPU
path l ength and the tan-out of procedure cal ls . We
focused too much attention on reducing JjOs and
not enough attention on reducing the resource
usage of some critical code paths.

• Although e legant, the memory abstraction for tbe
interface to the cache was not as good a fit to fi le
system operations as we had expected . Further
more, a block abstraction for the data space would
have been more suitable .

I n summary, the project team delivered a new
fi le system for the OpenVMS operatjng system. The
Spiralog file system offers single-system semantics in
a cluster, is compatible with the cu rrent OpcnVMS
fi le system , and supports on- l ine backup.

Future Work

During the Spira log version 1 .0 project, we pursued a
number of new technologies and found four areas that
warrant future work:

• Support is needed from storage and ti le
management tools tor multiple, d issimilar ti le
system personal ities.

• The c leaner represents another area of ongoing
innovation and complex dynamics. We believe a
better understanding of these dynamics is n eeded ,
and design alternatives shou ld be studied .

• The on- l ine backup engine, coupled with the log
structured fi le system technology, oHers many areas
for potential development . For i nstance, one area

tor investigation is continuous backup operation,
either to a local backup device or to a remote
repl ica.

• Final ly, we do not believe the h igher-than-expected
code path length is intrinsic to the basic fi le system

design . vVc expect to be working on this resource
usage in the near future .

Acknowledgments

We would l ike to take this opportunity to thank the
many ind ividuals who contributed to the Spiraiog
project. Don Harbert and Rich Marcel lo, OpenVMS
vice presidents , supported this work over the l i fetime
of the project. Dan Doherty and J ack Fal lon, the
Open VMS managers in Livingston, Scotland , had day
to-day management responsibi lity. CatJ1y Foley kept
the project moving toward the goal of shipping. Jan is
Horn and Clare Wel ls , the product managers who
helped us understand our customers' needs, were elo
quent in expla in ing our project and goa l to others.
Ncar the end of the project, Yehia Bcyh and Pau l
Mosteika gave us valuable testing support, without
which the product would certa in ly be Jess stable than it
is today. Fina l ly, and not least, we wou ld l ike to
acknowledge the members of the development team :

Alasdair Baird , Stuart Bayley, Rob Burke, Ian
Compton , Chris Davies, Stuart Deans, Alan Dewar,
Campbel l Fraser, Russ Green , Peter Hancock, Steve
Hirst, J im Hogg, Mark Howel l , Mike Johnson,
Robert Landau, Douglas McLaggan, Rudi Martin ,
Conor J\llorrison, Ju l ian Pa lmer, Judy Parsons, Ian
Pattison, Alan Paxton, Nancy Pban , Kevin Porter,
Alan Potter, Russel l Robles, Chris Whitaker, and Rod
Widdowson.

References

1 . M. Rosenblum and J . Ousterhout, "The Design and
Implememation of a Log Structured File System," A CM
Transactions on Computer S)'slems. vol. I 0, no. I
(February 1 992) : 26-52 .

2 . T . Mann, A . Birre l l , A. Hisgen , C. Jerian, a nd C . Swart,
"A Coherent Distribu ted F i l e Cache with Di recrory
Wri te -behind," Digital Systems Research Center,
Research Report 103 (June 1 993) .

3 . R . C reen, A. Baird, a n d J . Davies, "Design ing a Fast,
On- l i ne Backup System for :1 Log-structured File Sys
tem," D(v,ital Techrzica!Journal, vol . 8, no. 2 (1 996,
this issue) : 32-45.

4. C. Whitaker, } . Bayley, and R. Widdowson, "Design of the
Server lor the Spiralog Fi le System," Digital Tee/mica!
Journal, vol. 8, no. 2 (1996, this issue) : 1 5-3 1 .

5 . M . Howe l l and) . Palme r, " I ntegrating the Spiralog
File Svstem into the OpenVMS Operating System,"
Digital Technical .fou rnal, vol . 8, no. 2 (1 996, this
issue) : 46-56.

6 . R . Wrenn , "Why the Real Cost of Storage is More Than
$ 1 /MR," presented at U .S . DECUS Symposium,
St . Louis, Mo . , June 3-6, 1 996.

Digital ·ll:chn ic<li Journal Vol . 8 No. 2 1 996 1 3

1 4

Biog raphies

James E. Johnson
j i m Johnson, a consul ring software engi n eer, has been
working for Digital s ince 1 984. He was a n1e mber of the
Open VMS Engineering Group , where he contribu ted
in several at-cas, i nc l ud i ng RMS, transaction process i ng
services, the port of Open VMS to the Alpha arch i tecrl! l·e,
ti l e systems, and system management . Jim recent ly joi ned
rhc I nternet Software B usiness Unir and i s work ing on
rhe appl ication of X .SOO d irectory services. j i m holds rwo
patents on transaction commit protocol optimizations and
mainta ins a keen interest in rh is area.

William A. Laing
Bi l l Laing, a corporate consu l ting engineer, is rhe tech nical
d irector of the I nternet Software. Busi ness U n ir . B i l l joi ned
D igita l i n 1 91\ l ; he worked in the U nited Stares tcJr five
vears before transterring to Europe . During his oreer :tt
D igi ta l , B i l l has worked on VMS systems ped(mllarlce
:�nalysis , VAXclusrer design and development, oper;l ting
systems dc,·c lopmcnt, and transaction process ing. He
was the tech nical d i r·ector of Open VMS engi neeri ng, the
tt:chnica l d i rector for engineering i n Europe, and most
n:cenrk was focusing on software i n the ·rechnologv and
Arc h i tecture Group of the Computer Svsrc ms Divisio n .
Prior to join ing Digita l , Bi l l held rese.1rch and reaching
posts i n operat i ng svstems at rhe U n iversity of Ed i n bu rgh,
where he worked o n the EMAS operating syste m . H e \\·,1s
also parr of the starr-up of European S i l icon Structu res
(LS2) , an ambi tious pan - Enropean company. He holds
undergraduate and postgraduate degrees i n computer
sc ience from the University of Edinburgh .

DigitJI Tcchnic:1l journal Vol . 8 No. 2 1 996

Design of the Server for
the Spira log File System

The Spira log fi le system uses a log-structured,

on-disk format inspired by the Sprite log

structured fi le system (L FS) from the University

of Ca l ifornia, Berkeley. Log-structured fi le sys

tems promise a number of performance and

functional benefits over conventional, update

in-place file systems, such as the Fi les-11 fi le

system developed for the Open VMS operating

system or the FFS fi le system on the UNIX oper

ating system . The Spira log server combines log

structured technology with more traditional

B-tree technology to provide a general server

abstraction. The B-tree mapping mechanism

uses write-ahead logging to g ive stabi l ity and

recoverabi l ity g uarantees. By combining write

ahead logging with a log-structured , on-d isk

format, the Spira log server merges fi le system

data and recovery log records into a sing l e ,

sequential write stream.

I
Christopher Whitaker

J . Stuart Bayley

Rod D. W. Widdowson

The goal of the Spira log fi le system project team was
w produce a high-pedonnance, h ighly ava i l able, and
robust ti l e system with a high-performance, on- l ine
backup capabi l i ty for the OpenVMS Alpha operating
system . The server component of the Spira log fi le sys
tem is responsi ble tor reading data trom and writing
data w persistent storage . I t m ust provide fast write
performance, scalabi l ity, and rapid recovery from sys
tem fai l ures. In addition, the server must a l low an
on- l ine backup uti l ity to copy a consistent snapshot of
the ti le system to another location, whi le al lowing nor
mal fi l e system operations to continue in para l le l .

In this paper, \Ve describe the log-structured file sys
tem (LFS) technology and its particular implementation
in the Spiralog file system . We also describe the novel
way in which the Spiralog server maps the log to pro
vide a rich address space in which files and directo1ies are
constructed. Final ly, we review some of the opportuni
t ies and chal lenges presented by the design we chose.

Background

A l l ti le systems m ust trade off performance against
avai labi lity in d ifferent ways to provide the throughput
required duri ng normal operations and to protect data
from corruption d uring system fai lures. Traditionally,
fi le systems fal l i n to two categories, carefu l write and
check on recovery.

• Careful wri t ing policies are designed to provide a
fai l -safe n1cchanism tor the fi le system structures in
the event of a system fai lure; however, they sufter
fl·om the need to serial ize several ljOs during fi le
system operations.

• Some fi le systems forego the need to serial ize fi le
system updates. After a system fai lure, however,
they requ i re a complete d isk scan to reconstruct a
consistent fi le system. This requ irement becomes
a problem as d isk sizes i ncrease.

Modern fi l e systems such as Cedar, Episode ,
Microsoft's New Technology F i le System (NTFS) ,
and Digital 's POLYCENTER Advanced Fi le System
use Jogging to overcome the problems inherent in
these two approaches.' ·2 Logging file system metadata
removes the need to seria l ize IjOs and al lows a simple

Digiral Technical journal Vol . 8 No. 2 1 996 1 5

1 6

Jnd bounded mechanism f(>r reconstructing the ti le
system ah:cr a fai l ur e . Rcsc.1rchcrs at th e University of
Ca l i ti:m1 i a , Be rkeley, took this process one stage fi.Jr
ther and treated the ll' ho le disk as a s ingle, sequ entia l
log where al l ri le system modi fica tions arc appended to
tbe tai l of the log.'

Log-structured tile system tcc h nolot,'Y is p;1rticu larh'
appropriate to the Spira l og ti l e s\·stc m , because it is
tksigncd as a c lustcrwidc ti l e S\·stcm . The seJTcr must
support a large n u mber of ti le S\'Stcm c l e rks, each of
which may be rcJdi ng ;1 nd ll'riting lh ta to the disk. The
c lerks usc 1:-�rge ll'ri te- back caches to red uce the need to
read daL1 ti·om the server. The caches also a l low the
c lerks to bufkr write requests desti ned t(>r the server.
A log-structured design a l lows mu ltiple concurrent
writes to be grouped togcthn imo la rge , seq uential
ljOs to the disk. This 1 /0 pJttcrn red u ces disk head
movement d urin g writ ing and a l l ows the size of the
writes to be marched to characteristics of the underlyi ng
disk. This is Inrticu l •1rly bcncticial t(>r storage devices
with redundant arr.n·s of inexpensive d isks (RA I D) 4

The usc of a l og-structured , on-d isk f(>rmat great ly
simp l i fies the imp lementation of ;111 on- l ine backup
capabi l i ty. Here, the cha l lenge is ro provi de a con s is
tent snaps hot of thc ti l e system that can be cop ied to
the bac kup med ia wh i l e nor ma l opeLltions conti nue
to mod i t\• the ti l e svsrc m . BcG\ usc ;1n LrS appends J i l
data to rhc tai l o f a l og , a l l d:1 t�1 writes with i n the log
arc tc m pora l lv ordered . A com pl ete sn:-�pshot of the
ti le systcn1 correspo nds to the contcllts of the seq uen
tial log up ro th<.: point in r ime that the snapshot was
created . Bv extension, an i ncreme nta l backup col-re
sponds to the section of the scqucnr i a l log crc1tcd
since the l ast backup \\'aS u kc n . The Spir: d og backup
uti l i t\' uses these k:1tmcs to prm · id c a bst , o n - l i ne, fu l l
and i ncrcmen t : d backu p sc heme.;

vVc hJ\'C t:1kcn a n u m be r of Featu res ti·om the exist
in g log-structu red tile system i m plcmcmations, in par
ticu lar, the ide:\ o r· d i\· id ing the l og i n to ti xcd-sizcd
segments as the basis ti: >r space ;1 l locarion :1 nd clean
in g. '' Fu mbmcnL1 l ly, hm\'e\·cr, e xisting log-strucw rcd
ti l e syste ms h ave been b u i l t by using the main bodv of
an exi sting ti le svstcm and bycring on top oLm under
ly i ng, log-structmcd conL1i ncr. ' c This design has been
taken to the l ogic1 l extreme with the imp lc menration
of a log-stru ctu red d isk.'' for the Spira log ti le system ,
we have chosen to usc r h c seq uential l o g capability
provided by the log-structu red, on-disk format through
out the ril e system. The Spiralog server combines log
structured tech n ol ogy with more tradit iona l B - trec
tec hnol ogy to provi de a genera l server a bstraction .
The B-tree m app i ng mechanism uses write-ahead log
ging to give sta bi l ity and recovera bi l i ry guarantees." B y
com b ini ng write-a heJd logging with a loa-str uctured
on-disk fo rmat, the SpiraJog server merges ti le system
data and recovery l og records in to a single, seq u enti al
write stream .

Digital Tc chnic;ll)ournc1 l Vo l . il :-\o. 2 1996

The Spi ra log ti l e syste m d i fkrs ti·om nisri ng log
structu red imp l eme nt a tions in :1 n u m be r ot· other
i m portanr \\'ays, in parric u L 1r, the mecha nisms th;l t we
haYc chosen to usc t(>r the c lc mcr. I n su bsequent sec
tions of this paper, we compare these d i ffe rences \\·ith
e xisti ng i mp l emc nrarions ll'hcrc appropri •1tc .

Spiralog File System Server Architectu re

The Spiralog ti le S\ ·stcm cm p l o\'s ;1 c l ic m-scn·cr J J·c h i
recture . E:-�ch nod e i n rhc d uster thar 1nou ms ;l
Sp i ra l og \·ol u m e r u ns a ti le svstcm c lerk.. The term
clerk is used in this p;1pcr ro d istingu ish the c l ient com
ponent of the ri le system fi·om diems oft he ti le S\'Stem
as a whole. Clerks i m plement a l l the ti le h1 11crions asso
ciated \\'ith mainta i n i n g the tile svsrem sr�1rc wirh the
exception of p e rsistent storage of ti le S\'ste m :md user
d ata . This l atter respons i b il i ty Lli ls on the Spi r;1log
server. There is exactly o n e sc n·cr h>1· eac h vol u m e ,
which must r u n on a node t h a t l 1 ;1s ;1 d i rec t connection
to the d isk conta in ing the vol u m e . This d istri bution of
fu nct ion , w h e re the majori ty of ti l c system processing
takes p l ace on the c le rk, i s sim i L l r to that of the Echo
ti le system . '" The reasons t(n choosing rh is ;1 rc h itccrurc
arc described in more dct:-�il in the p;1pcr "O vcn'icw of
the Spira log hie Syste m , " elsewhere in this issue . "

Spiralog c l e rks b u i l d ti. lcs a n d d i rectories in a str u c
t ured add ress space ca l led the ti le ;1d d rcss s1x1cc . This
add ress space is i mcma l ro the ti le S\'Stcm and is onh·
l oose ly rel ated w tiLlt pcrcc i\ ·cd lw c l icms of rhc ti le
svsrc m . The server pro\· ides ;1 11 i mcr bcc that : d lm\·s
tbe clerks to pcrsistcnth· map to ti l c sp;Kc add rc�scs.

I ntern al h·, the scnn uses a l ogic:� l h· i n fin i te log struc
ture, b u i l t on top of a plwsic :� l d i sk , to store the ti le
S\'Stem datJ a nd the srructu res ncce ss:11·\· to locate
the datJ. Figure l shO\\·s the rc l ;Hionshifl hcn\·cc n t he
c lerks and the sc nu· a nd the rebtionships among
the major componcms \\· i th in the scrnT.

Figure 1
Sen·er Architectu re

The mapping layer is responsible for mai ntaining
the mapping between the fi l e address space used by
the clerks to the address space of the log. The server
directly supports the fi l e address space so that i t can
make use of information about the relative perfor
mance sensitivity of parts of the add ress space that is
implicit within i ts structure . Although this resu l ts i n
the mapping layer being relatively complex, i t reduces
the complexity of the clerks and aids performance.
The mapping layer is the primary point of contact with
the server. Here, read and write requests from clerks
are received and translated into operations on the log
address space .

The log driver (LD) creates the i l lusion of an i nfinite
log on top of the physical d isk . The LD transforms read
and write requests from the mapping layer that are cast
in terms of a location in the log address space into read
and write requests to physical addresses on the underly
ing disk. Hiding the implementation of the log from
the mapping layer a llows the organ ization of the log to
be altered transparently to the mapping layer. For
example, parts of the log can be migrated to other
physical devices without i nvolving the mapping layer.

1 USER 1/0s

FILE HEADER FILE VIRTUAL BLOCKS

I I I I I I I I I I

Figure 2
Add ress Translation

Although the log exported by the LD layer is con
ceptual ly infinite, d isks have a finite s ize . The cleaner
is responsi ble for garbage collecting or coa lescing free
space within the log.

Figure 2 shows the relationship between the various
address spaces making up the Spiralog file system . I n
the next three sections, we examine each o f the com
ponents of the server.

Mapping Layer

The mapping layer implements the mapping bet\veen
the file address space used by the fi le system clerks
and the log add ress space maintained by the LD.
I t exports an i nterface to the clerks that t hey use to
read data from locations in the fi le add ress space,
to write new data to the file address space , and to spec
if)' which previously written data is no longer requi red.
The interface also a l lows clerks to group sets of depen
dent writes i n to units that succeed or fai l as i f they
were a single write. In this section, we i ntroduce the
file address space and describe the data structure used
to map i t . Then we expla in the method used to handle
c lerk requests to modi f)' the add ress space.

DISK

Digital Technical Journal

FILE SYSTEM ADDRESS
SPACE

IVPI
CLERK

FILE ADDRESS SPACE

I LFS
B-TREE

LOG ADDRESS SPACE

LFS
LOG
DRIVER
LAYER

PHYSICAL ADDRESS
SPACE

Vol. S No. 2 1 996 1 7

1 8

File Address Space

Tht fi le address space is a structurtd address sp:1ce. At
its h ighest level it i s d ivided into objects , each of which
Ius a nu meric object ident ifier (O l D) . An object may
have any nu mber of named cells associated with it and
u p to 2 '"- 1 streams. A named cdl may contai n a vari
able amount of data, but it is read and written as a sin
gle u n it . A stream is a sequence of bytes that are
add ress�.:d by their offset from tiK start of the stream,
up to a maximum o f 2"' - l . Fund:Jm�.:nta l ly, there are
t\vo f(>rms of addresses defined by tiK ti k add ress
space : Named add resses of the form

< O l D , n a m e >

sp�.:ci�, a n ind ividual n amed cel l within an object, and
nu meric add resses o f t he f(mn

< O l D , s t r e a m - i d , s t r e a m - o f f s e t , L e n g t h >

spce i�' a sequence of lengtb con tiguous bytes i n an
indiv idua l stream belonging to an obj�.:et .

The ekrks use named cells and streams to bui ld tiks
and d i reerori�.:s. In the Spiralog fi l e system vers ion l .O ,

a ti le i s repr�.:scnted by an object, a named ed l cont�l in
ing its attributes, and a s ingk str�.:am that is used
to store the ti le's data . A d i r�.:ctory is represented by
an object that conta ins a nu mber of nanKd ct l ls .
Each 1wned ce l l represents a l ink in that d i r�.:cron· a n d
conr:.1ins what a tradi tional ti le svstcm rdcrs to as a
d i rectory entry. Figure 3 shows how data ti les and
d i rectories are bu i l t from named cells and str�.:ams.

The mapping layer prov id es thrc�.: principal opera
tions f(>r manipu lating the ti l e address space: read,
write, :1nd clear. The read operation a l lovvs a c lerk to
read rhc coments of a named cel l , a contiguous range
of bytes from a stream, or all the named ce l l s tC>r a par
ticu lar object that tal l into a speci fied search range. The
write opcr:ltion al lows a clerk to writ�.: ro a contiguous
range of bytes in a stream or an ind ividual named cel l .

DATA FILE

ATTRIBUTES

KEY

0 OBJECT

BYTE
STREAM

El BYTE STREAM

L:::. NAMED CELL

Figure 3
1-'i lc Svsrc 111

Digir,d T.:chnical Joun1.1\

DI RECTORY

ATTRI BUTES

FRED.TXT

FRED.C

J IM.H

CHRIS . TXT

STU.C

Vol . t:: No. 2 1 996

The dear operation a l lows a c lerk to remove a named
cell or a nu m ber of lwtes fi-om an object .

Mapping the File Address Space

We looked at a variety of indexing strucwres tor mapping
the file add ress spJcc onto the log add ress space -'"'1 We
chose a derivative of the B-trcc for the following reasons.
For a unif(>rm add ress space, B - trees provide pred ictab le
worst-ease access times because the tree is balanced
across a l l the keys it maps . A B-tree scales we l l as the
number of keys mapped increases. In other words, Js
more keys arc added, the B- tree grows in width and in
depth . Deep B-rrccs urry an obvious perf(>rm<lllcc
penalt\', particu larlv when the B -tree grows too la rge to
be held i n memorv. As described above, directory entries,
file attributes, and ti le data are all addresses, or kcvs, in
the fiJe add ress space. Treating these ke)'S as equals and
balanc ing the mapf1ing B-trec across al l these keys imro
duees the possibi l i ty that a single d irectory wi th many
entries, or a file with many extents, may have an impact
on the ace�.:ss times f(>r :1ll the tiles stored in the log.

To solve this p roblem, we l imited the keys t<>r an
object to a single B -trce leaf node . Wi th th is restric
t ion, several small ti les can be accommodated in a s in
gle l eaf node . fi les wi th a l a rge number of exrents (or
large d i rectories) arc su pported b�r a l lowi ng ind ividual
streams to be spawned into su btrees. The subtrees arc
balanced across the kevs within the su btree . An object
can never span more than a s ingle leaf node oF the
main B - trce; therefore, nonleaf nodes of the main
B -tree on ly need to con tJi n O I Ds. Th is a l lows the
main B- trcc to be very compact. F igure 4 shows the
relationship bet>.vccn the main B - tree and i ts su btrees.

Figure 4
Mapping B- rrcc Sn·ucrurc

To reduce the time required to open a file, data for
small extents and small named cells are stored directly in
the leaf node tl1at maps tl1em. For larger extents (greater
than one disk block in size in the current implementa
tion), the data item is written i nto tl1e log and a pointer
to it is stored in the node . This pointer is an address in
the log add ress space. Figure 5 illustrates how the B-tree
maps a small file and a file with several large extents.

Processing Read Requests

The clerks submit read req uests that may be for a
sequence of bytes from a stream (reading a data from a
fi le) , a single named cel l (read i ng a fi le's attributes) , or
a set of named cells (reading d irectory contents) . To
fulti l l a given read request, the server must consult the
B- tree to translate from the address in the file address
space suppl ied by the clerk to the position in the log
address space where the data is stored . The extents
making up a stream are created when the file data
is written . If an application writes 8 ki lobytes (KB)
o f data in 1 - KB chunks, the B-tree would contain
8 extents, one tor each 1 - KB write. The server may

need to col l ect data ti·om several d ifferent parts of the
log address space to fi.dtll l a single read request.

Read req uests s hare access to the B - t.ree in much
the same way as processes s hare access to the CPU of
a m ult iprocessing compute r system . Read requests

� _' 135, ATIRIBUTES I

KEY:

142 . 1 .0 .50 1

Figure 5
Mappi ng B-rree Derail

B-TREE INDEX RECORD
MAPPING OlD 35 ...

RECORD CONTAINING FILE
DATA: OlD 42, STREAM 1 ,
START OFFSET 0, LENGTH 50

arriving from c lerks are placed i n a tl rst in tl rst out
(F IFO) work q ueue and are started in order of their
arriva l . Al l operations on the B -tree arc performed by
a s ingle worker thread in each vol u m e . This avoids
the need tor heavyweight locking on i n d ividual
nodes in the B - tree, which signi ficantly red uces the
comp l exi ty o f the tree manipu lation al gorithms and
removes tbe potent ia l for deadlocks on tree nodes.
This red u ction in complexity comes at the cost of
the design not scal ing with the nu m ber of processors
in a symmetric m ul tiprocessing (S M P) system . So far
we h ave no evidence to show that this design deci
s ion represents a major performance l imi tation on
the server.

The worker thread takes a request from the head
of the work queue and traverses the B-tree unti l it
reaches a leaf node that m aps the add ress range of
the read req uest. Upon reaching a leaf node, i t m ay
discover that the node contains

• Records that map part or al l of the add ress of the
read request to locations i n the log, and/or

• Records that map part or al l of the address of the
read request to data stored directly in the node,
and/or

• No records mapping part or a l l of the add ress of the
read request

, , /'- ' ,
,

MAIN B-TREE

NODE A

SUBTREE FOR OlD 35,
_STREAM 1

B-TREE INDEX RECORD
MAPPING OlD 35, STREAM 1 ,
START OFFSET 0 . . .

RECORD CONTAINING POINTER
TO FILE DATA: OlD 42, STREAM 1 ,
START OFFSET 0, LENGTH 50

Digital Technical Journ<ll Vol . 8 No. 2 1 996 1 9

2 0

Data rh:n is stored i n the node is s implv copied
to rhc output b u fkr. When d ata is stored in the log ,

rhc worker thread issues req uests to the LD to read the
chra imo the output buffer. O n ce :.�ll the reads ha\T
been issu ed , the original request is placed on a pend
ing q ueue unti l they complete; then the results are
returned to the c lerk. When no dat:t is stored t(>r all or
part of the read request, the server zero-tills the corn:
sponding part of the output buftCr.

The process described above is compl icated by the
bet that the B- trcc is itself stored in the log. The map
ping layer contains a node cache rh:lt ensures thJt com
monly referenced nodes Jre nonna l lv tc>Lmd in memory.
vVhen the worker thread needs to traverse through a
tree node that is not i n mernono, it must atTJ.nge tc>r the
node to be read into the cache. The address ofrhe node
in the log is the vaJ ue of rhe pointer to it fl·om its pJ.rent
node. The worker thread uses th is to issue a request to
the LD to read the node into a cad1e butkr. While the
node reJ.d request is in progress, the origin::tl clerk oper
ation is placed on a pending q ueue and the worker
thread proceeds to the next request on the work queue.
When the node is resident i n memory, the pmd i ng read
request is p l aced back on the work queue to be
rest:� rred . In this way, m ultiple read req uests can be i n
progress :-t t any given time.

Processing Write Requests

Write requ ests received by the server arrive in groups
consisting of a n u m ber of data i tems correspondi ng to
upcbtes to noncontiguous addn:sses in the tile :-tddress
sp:1ce . Eac h group must be writt�n as :t s i ngle tJi lure
atom ic unit, which means rbat a l l the parts of the write
requ est must be made stable or none of th�m must
become stable . Such groups of writes arc u l kd wun
ners :tnd ar� used by the c lerk to cncapsubtc complex
til e system operations. "

B di:lre the server Glll complete a wun ncr, that
is, bd(>rc an acknowl edgment c:tn be sent b:1ck to
the clerk ind icating t hat the \\' l l llner w:1s successfu l ,
the scn·er must make two guar:1ntecs:

1 . A l l [Xl rts of the wun ner are stably stored in the log
so that the entire \\'Utmer is persistent in the e\·ent
of:� system b i l u re .

2. All cbtJ. items described by the wunner arc visi b le to
subseq uent read requests .

T h e wunncr is made persistent b y writing each data
i tem to the log. Each data i tem is tagged with a log
record that identi fies irs correspond i ng ti l e sp�Kc
ad d ress. This :1 l lows the data to be recovered i n the
e\'l'nt of a S\'Stcm tailurc. All i nd i,·id ual writes arc made
as p�1 rr ofa single compound atomic operation (C:AO) .
This method is prm·idcd by the LD bvcr to br:1ckct
a scr of wri tes rhar must be recm·ered as :1 11 :tto m ic
un ir. On ce a l l the writes for the \\ ' U tl ller have been

Vol . il No. 2 1 996

issued to the log, the mapping !Jvcr instructs the LD
l ayer to end (or com mit) the CAO.

The \\·u nncr c1n be made ,·isible to subsequent rc1d
operations by u pdat i ng the B- tree to rdkct the loca
tion of th� new dat::J. U n tc>r ntnJ.tely, this "·ould c:1usc
writes to i ncur :1 sign i ficant latency since updating the
B - tree invo l ves traversing the B -tree and potential ly
read ing B-tree nodes imo memory ti·om the log.
Instead , the server com pletes a writ� operation before
the B - tree is updated . By doing this, how�ver, it must
take addition:1l steps to ensure that the data is 1·isiblc to
subseq uent read requests.

Betorc completing the wun ner, the mapping Ll\n
q ueues the B - trce upd:ttes resulti ng t[·om \\Ti ri ng rhe
\l'ltt J I K r to the same F I FO work q ueue as read requests.
All i tems arc q ueued atomicallv, that is, no other read
or write oper:�rion can be ime rlcwed with t he i n d i, · id
ual wu nncr upd ates. In this wav, the ordering between
the wri tes making up the wuntler and su bsequellt read
or write oper:-ttions is maintained . vVork cannot begi n
on a su bsequent rc:td request u nti l work has started OJJ

the B - trce updates ahead ofit in the q ueue.
Once the B-trcc upd ates have been q ueued to the

server work queue and the m apping layer h:�s been
notified th:-tt the C :AO for th� writes has eomm irred ,

both of the gu:1ranrces rhar the sen-er gi ,·es on write
completion hol d . The data is pcrsiste m, and the writes
arc ,·is ible to su bseq uenr operations; therefore, the
sen·er can send an ac knowledgment back to the clerk.

Updating the 8-tree

The worker th read processes a B - trce update req uest
in much the s:�me way �1s a read req uest. The upd ate
req uest traverses the B - rrcc unti l either it reaches the
node that maps the appropri ate pan of the file add ress
space, or it tai ls to fi nd a node i n memory.

Once the lc:.1fnode is reach�d , it is updated to point at
the locarjon of the data in the log (if the clatJ is to be
stored d i rectlv i n the node, the chta is copied inr o the
nod e) . The node is tlOW d i m· i n memorY :md must
be written to the log at some point. Rather than \\Tiring
the node immediate�\-, the lll3pping la,·cr writes a log
record descri bing the ch:�nge, locks the node i nto rhe
cache, and places :1 fl ush operation ror the node to
tl1e mapping L1yer's Hush queue. The flush operation
describes the locltion of the node in the tree and
records the need to write it to the log at some poi nt
i n the future.

I t� on its \\·�1\· to the lc:tf node, the write operation
reaches a node that is not in memorv, the worker
th read arranges t(Jr it to be read h·om the log :.1nd the
write operation is pbced on a pe n d i ng queue J s "· i rh :1

read operation. Because the wri te has been ack no11·l
edged to the clerk, the nc,,· d<lta mu st be 1 · isiblc to su b
sequent read operations e\·e n though the B- trce has
nor been upcbted ful k This is ach in·ed lw attach i n g
a n in -mcmorv record ofrhc update to t he node that is

being read . I f a read operation reaches the node with
records of sta l l ed updates, i t must check whether any
of these records contains data that should be returned.
The record contains either a pointer to the data in the
Jog or the actua l data itself. If a read operation rinds
a record that can satist)r al l or part of the request, the
read request uses the information in the record to
retch the data. This preserves the guarantee that the
c lerk must see all data for which the write req uest has
been acknowledged .

Once the node is read i n ti-om the log, the stal led
updates are restarted. Each update removes i ts log
record fi·om the node and recommences traversing the
B-tree from that point.

Writing B-tree Nodes to the Log

Writing nodes consumes bandwidth to the disk that
might otherwise be used for writing or read ing user
data, so the server tries to avoid doing so unt i l
absol ute ly necessary. Two cond itions make i t neces
sary to begin wri ting nodes:

1 . There are a l arge nu mber of di rty nodes in the
cache .

2 . A checkpoint is i n progress.

In the fi rst cond ition , most of the memory avai lable
to rbe server bas been given over to nodes that are
locked in memory and waiting to be written to the
Jog. Read and update operations begin to back up,
waiting for ava i l able memory to store nodes. I n the
second cond ition , the LD has requested a checkpoint
in order to bound recovery time (see the section
Checkpointing later in this paper) .

When either of these conditions occurs, the mapping
layer switches into tlush mode, during which i t only
writes nodes, u nti l rhc condi tion is changed. In Hush
mode, the worker thread processes tlush operations
ti·om the mapping layer's flush queue in depth order,
that is, starting with the nodes ti.1 rthest from the root
of rhc B - rrcc . For each tl ush operation, it traverses the
B- trce until i t tinds the target node and its parent . The
target node is identified by the keys i t maps and its
leve l . The level of a node is its d istance ri·om the leaf of
the B- rn::e (or su btree) . Un l ike its depth, which is its
distance from the root of the B- tree, a node's level does
not change as the B- tree grows and shrinks.

Once it has reached i ts destination, the tlush opera
tion writes out the target node and updates the parent
with the new log address. The modi ti cnions made to
the p<lrcnt node by the tl ush operation are analogous
to those made to a leaf n ode by an update operation .
In this way, a modification to a leaf node eventually
works its way to the root of the B-tree, causing each
node in its path to be rewritten to the log over time.
Writing d irty nodes only when necessary and then i n
deepest tl rst order min imizes the nu mber o f nodes

written to the log and increases the average number of
c hanges that are rdlectcd in each node written .

Log Driver

The log driver is responsible tor creating the i l l usion of
a semi- infin ite seq uential log on top of a physical disk.
The enti re h istory of the ti le system is recorded in the
updates made to the log, but on ly those parts of
the log that descri be its current or l ive state need to
be persistently stored on the disk. As ti les are overwrit
ten or deleted, the parts of the log that contain the
previous contents become obsolete.

Segments and the Segment Array

To make the management of fi-ce space more straight
forward, the log is d ivided into sections cal led
segments. In the Spiralog rile system, segments are
256 KB . Segments in the log are identi fied by their seg
ment identiti.er (SEG I D) . SEG J Ds increase monotoni
cal ly and are never reused . Segments in the log that
contain l ive data are mapped to p hysical , segment-sized
locations or slots on the d isk that are identified by their
segment number (SEG N U M) as shown in Figure 6.

The mapping between SEG I D and SEGNUM is main
tained by the segment array. The segment array a lso
tracks which parts of each mapped segment contain live
data. This in formation is used by the cleaner.

The LD interface layer contains a segment switch
that a l lows segments to be retched from a location
other than the disk. 13 The backup function on the
Spira log file system uses this mechanism to restore fi les
contained in segments held on backup media . Figure 7
shows the LD layer.

LOG GROWS

SEQUENTIAL LOG

PHYSICAL DISK

Figure 6
M appi ng rhe Log onto the Disk

Dig:iral TcdmiC\1 Journal Vol . R No. 2 1 996 2 1

22

SEGMENT ARRAY I
SEGMENT WRITER I

DISK

ALTERNATE SOURCE
OF SEGMENTS
(SPI RALOG BACKUP)

0
TAPE

Figure 7
S u bcomponents of rhe LD LJI'er

The Segment Writer

The segment writer is responsible tor al l I/Os to the
log. It groups together writes it receives ti·om the map
ping layer in to large, sequentia l I/Os wiKre possib le .
This increases write throughput, but at the potential
cost of increas ing the latency of ind ivid ual operations
when the disk is l ightly loaded .

As shown in Figure 8, the segment writer is respon
sible for the i nternal organization of segments written
to the disk. Segments are divided in to two sections, a
data area �md a much smaller commit record area.
Writing a piece of data requires two operations to the
segment at the tail of the log. First the data item is
written to the data area of the segment. Once this I/0
has com pleted successfu l ly, a record describing that
data is written to the com mit record area. Only when
the write to the com mit record area is complete can
the original request be considered stable .

F igure 8

DATA AREA

J r-o-f- - - - - - - -, 1 �--�� I I

KEY:

L

- - - - - - - - - - J

USER DATA OR B-TREE NODE

[.=J COMMIT RECORD

r - - - - - - 1

l�o � ·� L____J SI NGLE 1/0 OPERATION
L _ ___ _ .J

Orgcm i zcltion of a Segment

Digir.1l Technical)omnal Vol. 8 No. 2 1 996

The need tor two writes to disk (potentia lly, with a
rotational delay berween) to commit a single data
write is clearly a d isadvantage. Normally, however, the
segment wri ter receives a set of related writes from
the mapping layer which are tagged as part of a single
CAO. Since the mapping layer is interested in the com
pletion of the whole CAO and not the writes within it,
the segment writer is able to bu ffer add itions to the
commit records area in memory and then write them
with a s ingle I/0. Under a normal write load , this
reduces the number ot' ljOs tor a single data write to
very close to om: .

The bou ndary between the commit record area and
the data arcJ is ti xed . I ne\'itably, this wastes space in
either the commit record area or data area when the
other ti l l s . C hoosing a size t(Jr the commit record area
that minim izes this waste req uires some care . After
analysis of segments that had been subj ected to a typi
cal OpenVMS load, we chose 24 KB as the value ti.>r
the commit record area .

This segment organ ization permits the segment
writer to have comp.letc control over the contents of
the commit record area, which a l lows the segment
writer to accomplish two important recovery tasks:

• Detect the end of the log

• Detect mu l tib lock wri te fai l u re

When physica l segme nts are reused to extend the
log, they arc not scrubbed and their commit record
areas contain stale (but compre hensible) records. The
recovery man<1gcr must d istinguish between records
belonging to the current and the previous incarnation
of the physical slot. To ach ieve this, the segment writer
writes a sequence number into a specific byte in every
block wri tten to the commit record area. The origina l
contents of the "stolen" bytes are stored with in the
record being written . The sequence number used t(Jr

COMMIT RECORD AREA

, - -

- - -
-

- - - - - ,

I I
I
I
I
I

a segment is an attribute of the physical slot that is
assigned to it . The sequence number tor a physical slot
is incremented each time the slot is reused, a l lowing
the recovery manager to detect blocks that do not
belong to the segment stored in the physical slot.
The cost of resubstituting the sto len bytes is incurred
only duri ng recovery and c leaning, because th is is
the only time that the commit record area is read.

I n h i ndsight, the partitioning of segments i nto data
and commit areas was probably a mistake. A layout
that i ntermingles the data and commit records and that
al lows them to be written in one ljO would offer bet
ter latency at low throughput. If combined with careful
writing, command tag queuing, and other optimiza
tions becoming more prevalent in d isk hardware and
control lers, such an on-disk structure could offer sig
nificant improvements in latency and throughput.

Cleaner

The cleaner's job is to turn free space in segments i n
the log into empty, unassigned physical slots that can
be used to extend the log. Areas offree space appear i n
segments when the corresponding data decays; that is,
it is e ither deleted or replaced .

The cleaner rewrites the live data contained in par
tially fu l l segments. Essential ly, the cleaner torces the
segments to decay completely. If the rate at which data
is written to the log matches the rate at which it is
de leted, segments eventual ly become empty of their
own accord . When the log is fu l l (fu l lness depends on
the d istri bution of ti le longevity) , it is necessary to
proactively clean segments. As the cleaner continues
to consu me more of the d isk bandwidth, performance
can be expected to dec l ine . Our design goal was that
performance should be maintained up to a point at
which the log is 8 5 percent fu l l . B eyond th is , it was
acceptable for performance to degrade significantly.

Bytes Die Young

Recently written data is more l ikely to decav than old
data . 1 " · 1 ' Segments that were writt�n a shor� time ago
are likely to decay further, after which the cost of
cleaning them will be less . In our design, the cleaner
selects cand idate segments that were written some
time ago and are more l i kely to have undergone this
initial decay.

Mixing data cleaned from older segments with data
trom the current stream or' new writes is l i kely to pro
duce a segment that wil l need to be cleaned again once
the new data has undergone its in itial decay. To avoid
mixing cleaned data and data hom the current write
stream, the cleaner bui lds its output segments sepa
rately a nd then passes them to the LD to be threaded i n
at the tai l of the log. This has two important benefits :

• The recovery in formation in the output segment is
min imal , consisting only of the selfdescribing tags
on the data . As a resu lt, the cleaner is un l ikely to
waste space i n the data area by virtue of having ti l led
the commit record area.

• By constructing the output segment offl ine , the
c leaner has as much time as i t needs to look for data
chunks that best ti l l the segment.

Remapping the Output Segment

The data items contained in the cleaner's output seg
ment receive new addresses. The cleaner informs the
mapping layer of the change of location by submitting
B - tree update operation for each piece of data it
copied . The mapping layer handles this update opera
tion in much the same way as i t would a normal over
write . This update does have one special property:
the c leaner writes are conditional . In other words, tbe
mapping layer wil l update the B -tree to point to
the copy created by the cleaner as long as no change
has been made to the data s ince the cleaner took its
copy. This al lows the cleaner to work asynchronously
to ti le system activity and avoids any locking protocol
between the cleaner and any other part of the Spira log
fi le system .

To avoid modifYing the mapping layer d irectly, the
cleaner does not copy B-tree nodes to its output seg
ment. I nstead , i t requests the mapping layer to flush
the nodes that occur in its i nput segments (i .e . , rewrite
them to the tai l of the log) . This also avoids wasting
space in the cleaner output segment on nodes that
map data in the c leaner's input segments. These nodes
are guaranteed to decay as soon as the cleaner's B-tree
updates are processed .

Figure 9 shows how the cleaner constructs an output
segment from a number of input segments. The cleaner
keeps selecting input segments until either the output
segment is fu l l , or there are no more input segments.
Figure 9 also shows the set of operations that are gener
ated by tl1e cleaner. In this example, tl1e output segment
is fil led with the contents oftvm fu ll segments and part
of a third segment. This wil l cause the third input seg
ment to decay still further, and the remaining data and
B-tree nodes will be cleaned when that segment is
selected to create another output segment.

Cleaner Policies

A set of heuristics governs the cleaner's operation .
One of our fundamental design decisions was to sepa
rate the cleaner policies from the mechanisms that
i mplement them.

When to clean ?

Our design expl icitly avoids cleaning until i t is
required . This design appears to be a good match tor

Digital Technical journal Vol . 8 No. 2 1 996 23

24

I CLEANER

KEY

I NODE A I B-TREE NODE

D LIVE DATA

; - - � SU PERSEDED DATA
• _ _ _ J

B-TREE UPDATE REQU EST

Fig u re 9
Cle,mcr OpcrJtioiJ

a workload on the OpenVMS system . On our rime
sharing system, the cleaner was en tirely inactive for the
tirst th ree months of 1 996; al though segments were
used : :md reused repeatedly, they always dec:1ycd
e nt i re ly to empty of their own accord . The trade-off
in avoiding cleaning is that although performance i s
improved (no cleaner activity), the size of riK fu l l
savcsnaps created by backup is increased . This is
because backup copies whole segments, regardless of
how much l ive data thev con tai n .

vVhcn the c leaner i s nor running, the live data in the
volume tends to be disnibuted across a large number of
partial ly hi l l segments. To avoid this problem, we have
added a conrrol to allow the system manager to nunu
a l ly surt and stop the c l eaner. Forcing the c leilner ro

run bd()re performing a fu l l backup compacts the l ive
cbta in the log and reduces the size ofthe savesnap.

I n normal operation, the cleaner wi l l Stilrt c leaning
\\' hen rhc number of tree segments avai lable ro extend
rhc log blls below a fi xed threshold (300 i n the cur
rent imp lcmentJtion) . I n making this ca lcu latio n , the
cleaner takes into accou n t the amount of space in

rhe log that wi l l be consumed by writing data currently
held in rhe c lerks' write-behind caches. Thus, accepting
data into the cache c1uses the cleaner to "clear the way"
tC:.>r the subseq uent write request fi-om the clerk.

When the c leaner starts, it is possible that rhc
amou11t of l ive data in the log is appro:�ching
the capacity of the underlying d isk, so the cleaner may
tind noth ing to do. It is more l ikely, however, that
there wi l l be free space it can recla im . Because the
cleaner works by torcing the data in its input segments

Vol . 8 No. 2 1 996

OPERATIONS SU BMITTED TO MAPPING LAYER

to dec1y by rewriting, it is im portant that it begins
work while ti-ee segments are avai lab le . Debying the
decision to start clean ing cou ld result in the cleaner
being u nable to proceed.

A tlxed number was chosen tor the c leaning thresh
old rather than one based on the s ize of the disk . The
size of the disk does not affect the urgency of cleaning
Jt any p:�rticu lar point in time. A more cftcctivc ind ic:�
tor of urgency is the time taken f()r the disk ro ti l l :1t the
maximum rate of writing. Writing to the log at lO M B
per second wi l l usc 300 segments i n about 8 seconds .
With h indsight, we real i ze that a threshold based on a
measuremc11t of the speed of the disk might have been
a more appropriate choice.

Input Segment Selection

The clc::mer divides segments into tou r d istinct groups:

l . Em pty. These segments con tain no live data :md arc
avai lab le to the LD to exte nd the Jog.

2 . Noncle:�nable . These segments arc not candichtes
t(w cleaning f()r one of t\vo reasons:

• The segmem contains i n formation that wou ld
be requ ired by the recovery manager in the event
of a system fl i lure . Segments in this grou p arc
a lways close to the tail of the log and therd(Jrc
l i ke ly to undergo t-l1 rther decay, making them
poor candidiltes tor cleaning.

• The segment is part of a snapshot.; The SILlpsllot
represents a rercrcnce to the segment, so it cm -

110t b e reused even though i t may n o longer C O i l

rain l ive data .

3 . Preferred noncleanable. These segments have
recently experienced some natura l d ecay. The sup
position is that they may decay fu rther in the near
ti.1 ture a nd so are not good candid ates tor cleani ng.

4. Cleanable. These segments have not decayed tor
some time. Their stability makes them good cami.i
dates tor cleaning.

The transitions between the groups are i l lustrated in
Figure 10 . It should be noted that the cleaner itse lf
does not have to execute to transfer segments into the
empty state .

The cleaner's job is to fi l l output segments, not to
empty input segments. Once i t has been started, the
cleaner works to entirely fi l l one segment. When that
segment h as been fil led, i t is th readed into the log;
if appropriate, the cleaner will then repeat the process
with a new o utput segment and a new set of input
segments. The cleaner wi l l commit a partial ly ful l
output segment only under circumstances of extreme
resource depletion .

The cleaner ti lls the output segment by copying
chunks of data forward fi·om segments taken ti-om the
cleanable group . The members of this group are held
on a l ist sorted in order of emptiness. Thus, the tlrst
cleaner cycle wil l a lways cause the greatest number of
segments to decay. As the output segment fills, the
smallest chunk of data i n the segment at the head of
the cleanabl e J ist may be larger than the space left in
the output segment. In this case, the cleaner performs
a l imited search down the cleana ble l ist tor segments
containing a suita ble chunk. The required information
is kept in memory, so this is a reasonably cheap opera
tion. As each input segment is processed, the c leaner

Figure 1 0
Segment States

DECAY
TO EMPTY

temporarily removes it from the cleanable list. This
a l lows the mapping l ayer to process the operations the
cleaner submitted to it and thereby cause decay
to occur before the cleaner again considers the seg
ment as a candidate for cleaning. As the volume fi l ls,
the ratio between the number of segments in the
cleanable and preferred noncleanable groups is
adj usted so that the size of the preferred non cleanable
group is reduced and segments are i nserted i nto the
c leanable J ist. If appropriate, a segment in the clean
able l ist that experiences decay wil l be moved to the
preferred noncleanable l ist. The preferred nonclean
able l ist is kept in order of least recently decayed.
Hence, as i t is emptied, the segments that are least
l ikely to experience further decay are moved to the
cleanable group.

Recovery

The goal of recovery of a ny fi l e system is to rebui ld the
ti le system state after a system fai lure. This section
describes how the server reconstructs state, both i n
memory a n d i n t h e log. It then describes checkpoi.nt
ing, the mechanism by which the server bounds the
a mount of time it takes to recover the file system state.

Recovery Process

In normal operation, a single u pdate to the server can
be viewed as several stages:

l . The user data is written to the log. It is tagged with
a sel f-identifYing record that describes its position i n
the fi l e address space . A B-tree u pdate operation i s
generated that drives stage 2 of the upd ate process.

CHECKPOINT/
SNAPSHOT
DELETION

CLEANER POLICY/
SEGMENT DECAY

Digital Tcchnicll journal Vol . 8 No. 2 1 996 25

26

2 . The leaf nodes of the B-tree are mod i tled i n mem
ory, and corresponding change records are written
to the log to reflect the position of the n ew data.
A flush operation is generated and queued and then
starts stage 3.

3. The B-tree is written out level by level unti l the root
node has been rewritten . As one node is written to
the log, the parent of that node must be modified ,
and a correspond ing change record is written to the
log. As a parent node is changed, a further Hush
operation is generated for the parent node and so
on up to the root node .

Stage 2 of this process, logging changes to the leaf
nodes of the B- tree, is actua l l y red undant. The self
ident i�' ing tags that are written with the user data are
sufficient to act as change records for the leaf nodes of
the B- tree. When we started to design the server, we
chose a simple implementation based on physiological

B-TREE

LOG
STAGE 1

LOG
STAGE 2:

LOG
STAGE 3:

Figure 1 1
St�gcs oLl Write Request

Digital Tcchn icJI Joum.1 l Vol . 8 No. 2 1 996

write-ahead logging." As time progressed, we moved
more toward operational loggi ng." The records writ
ten in stage 2 arc a holdover trom the earl ier imple
mentation, which we may remove in a fu ture release ot'
the Spiralog file system .

At each stage of the process, a change record is writ
ten to the log and an in-memory operation is generated
to d rive the update through the next stage . In drect,
the change record describes the set of changes mack
to an in-memory copy of a node and an in -memory
operation associated with that change .

Figure l l shows the log and the i n -memory work
queue at each stage of <1 write req uest. The B - trce
describing the fi le system state consists of three nodes:
A, B, and C. A wun ner, consisting of a single data
write is accepted by the server. The write request
requires that both leaf nodes A and B are modi tled .
Stage I starts with an empty log and a write request tor
Data l .

WORK OUEUE

WORK OUEUE

WORK QUEUE

WORK 0\JEUE

WRITE
REQUEST
DATA 1

B-TREE
UPDATE
DATA 1

.-----.,
RUSH
REOUESl
NODE C

After a system bi lure, the server's goal is to recon
struct the fi le system state to the point of the last write
that was written to the log at the time of the cras h .
This recovery process involves rebu i lding, in memory,
those B - tree nodes that were dirty and generating any
operations that were outstanding when the system
tai led. The outstanding operations can be scheduled in
the normal way to make the changes that they repre
sent permanent, thus avoiding the need to recover
them in the event of a future system fai l ure. The recov
ery process itself does not write to the log.

The m appi ng layer work queue and the flush l ists
are rebuilt, and the nodes are fetched into memory by
read ing the sequential log from the recovery start
position (see the section Checkpointing) to the end of
tl1e log in a single pass.

The B - tree update operations are regenerated using
the selfidentifYing tag that was written with each
piece of data. When the recovery process finds a node,
a copy of the node is stored in memory. As log records
for node changes are read, they are attached to the
nodes in memory and a Hush operation is generated
for the node. I fa log record is read for a node that has
not yet been seen, the log record is attached to a place
holder node that is marked as not-yet-seen . The recov
ery process does not pertorm reads to tetch in nodes
that are not part of the recovery scan. Changes to
B - tree nodes are a consequence of operations that
happened earlier in the log; therefore, a B- tree node

log record has the e t1ect of committing a prior modifi
cation . Recovery uses th is fact to throw away update
operations that have been committed; they no longer
need to be applied.

Figure 12 shows a log with change records and
B - tree nodes along with the in-memory state of the
B - tree node cache and the operations that are regener
ated. In this example, change record l for node A is
superseded or committed by the new version of node A
(node A') . The new copy of node C (node C ') super
sedes change records 3 and 5 . This example also shows
the effect of finding a Jog record without seeing a copy
of the node during recovery. The log record for node B
is attached to an in-memory version of the node that is
marked as not-yet-seen. The data record with self-iden
tifYing tag Data l generates a B - tree update record that
is p laced on the work queue for processing. As a fi nal
pass, the recovery process generates the set of flush
operations that was outstanding when the system tailed.
The set oftlush requests is defined as the set of nodes in
the B - tree node cache that has log records attached
when the recovery scan is complete. In this case, flush
operations for nodes A' and B are generated.

The server guarantees that a node is never written to
the log with u ncommitted changes, which means that
we only need to log redo records.9·16 In addition, when
we see a node d uring the recovery scan, any log
records that are attached to the previous version of the
node in memory can be d iscarded .

RECOVERY SCAN

t

CHANGE CHANGE � CHANGE
RECORD 1 RECORD 2 � RECORD 3
NODE A NODE B NODE C

RECOVERY
START POSITION

B-TREE NODE CACHE (AFTER RECOVERY SCAN)

NODE B

CHANGE CHANGE I NODE C' I
RECORD 4 RECORD 5
NODE A' NODE C

t
TAIL OF
LOG

NODE A' (NOT-YET-SEEN)
NODE C'

WORK QUEUE {AFTER RECOVERY)

Figure 1 2
Recovering a Log

I �

-
CHANGE
RECORD 4

NODE A'

B-TREE r-- FLUSH
UPDATE REQUEST

DATA 1 NODE A'

-
CHANGE
RECORD 2

NODE B

r- FLUSH
REQUEST

NODE B

Digital Technical Journal Vol . 8 No. 2 1 996 27

28

Operati ons generated d uring recovery arc posted to
the work queues as they would be in normal running.
Normal operation is nor a llowed to begin u ntil the
recovery pass has completed ; however, when recovery
reaches rhe end of the log, tJ1e server is :�blc to service
opcr:�rions fi·om clerks. Thus new requests from the clerk
can be scn�ced, potentially in paral le l with tJ1c operations
tJ1at were generated by rJ1e recove ry process.

Log records are not appl ied to nodes d u ring recov
ery t(x :1 nu mber of reasons:

• Less processing t ime is needed to scan the log and
therefore the server can start servici ng new user
requests sooner.

• Recover�' will not have seen copies of a l l nodes t(x
which i t has log records. To apply the log records,
the R - tree node must be read ti·om the log. This
would result in random read requests d u ring the
sequential scan ofthe log, and again wou ld result in a
longer period betore user requests cou ld be serviced .

• There may be a copy of rhe node L :ltcr in tiK recov
ery sca n . This would make the additional I/O oper
ation red undant .

Checkpointing

As we have shown, recovering an LfS log is i mplc
mcnred by a single-pass seq ucnr i:- 11 scan of �1 1 1 records
in rhc log ti·om the recovery start position ro the tai l of
the log. This section deti nes a recovery start position
and d escribes how i r can be moved t()l·ward to red uce
rhc �1 mount of log that Ius to be scan ned to recover
rhc ti l e system state.

To reconstruct the in- memory stare when a system
cr:�shcd , recovery mu st see someth ing in the log that
represents each operati on or clnngc of stare that was
represented in memory but nor yet made stable . T h is
means that at t ime t, the recovery st:�rr position is
ddincd as a poi nt i n the log afte r which a l l operations
rh :n arc not stably stored h ave a log record associated
with them . Operations obtain rhe :tssoci:t tion by sca n
ning the log seq uential ly from rhc begi nning ro the
end . The recovery position then becomes the start of
the log, which has two i mportant pro blems:

l . I n the worst case, it wou ld be necessary to sequen
tia l ly scan the enti re log ro pcr f(mn recovery. For
large d isks, a seq uentia l read of the enti re log con
sumes a great deal of time.

2. Recove ry must process every log record writte n
between the recovery start position and rhe end of
the Jog. As a consequence, segments bct\vccn the
start of recovery and the end of the log cannot be
c lc:�ned and reused.

To restrict the amount of r ime to recover the log
and to a l low segments to be re leased Lw cJca nin g, the

Digital Technical Jomn;J\ Vol . H No. 2 I ')96

recovery position mus t be mm·ed forward ti·om rime
to time, so that it is al w:�ys c lose to rhe tai l of rhc log.

Under <l llv worklo:td, a n u m ber ofoursrand ing oper
ations arc ar vJrious stages of compl etion . In other
words, there is no point in the log when a l l activ ity
has ceased . To overcome this problem, we usc a h!Zzy
checkpoint scheme.'' In version 1 . 0 of the Spiralog ti le
syste m, the server i nitiates a new chec kpoi nt when
20 M B of datJ has been written since the previous
c heckpoint St<1rtcd . The process cannot yet move rhc
recovery position r(>rward in the log to rhe starr of
rhe new c heckpoin t, because some outstand i ng opera
tions mav ha\'C priori t\'. The mappi ng laver keeps track
of rhe opeLHions that wnc started bdore rhc check
point \\'aS i n ir i:�tcd . When the last of these oper:�rions
has JllO\'Cd to rhc next stage (JS defi ned bv rhc recO\nv
process), the m:�pping layer declares that rhe check
point is complete. On l v then c1n the recovery position
be moved t(xw:�rd to rhc point in the log where the
checkpoint was starred .

'With th is scheme , the server docs not need to write
a l l the nodes i n a l l p:�rhs in the 13- rree bct\vcc n a dirty
node and the root nod e . All that is req ui red i n practice
is to write those nodes rhar have fl ush operations
q u e u ed t()r them �lt rh c rime that the checkpoint is
started . Flushing th ese nodes causes change records
ro be written t(n the i r paren t nodes after the starr of
the checkpo in t. As the recovery scan proceeds h·om
rhe start ot' rhc l ast completed c heckpoinr , i r is ab le to
regenerate the tl ush operation on the parent nodes
fi·om these ch:l llgc records .

VVe chose to base the c heckpoi n t i n tervJJ on the
amount of data wri tten ro the log rather than on
the amount ofrimc to recover rhe l og. We k i t th�\l this
wou ld be an acc urate measure of how long it wou ld
take ro recover a particul ar log. In ope ration , we ti nd
this works we l l on l ogs th�lt ex pe ri ence a rc:�sonablc
write load; however, t(>r Jogs rhar predominan tlv ser
vice read requests, rhe rccoverv ri me rends toward the
l imit. In these cases, ir mav be more appropriate to add
rj mer - b:�scd ch ec kpoi nts.

Managing Free Space

A tradit ional, updarc - i n - p! Jce tile system 0\H \\'ri rcs
superseded d a ta by writing to the same p h ysi cal loc:�
tion on disk. I t� t(>r example, <\ single b lock is comi n u
a l ly O\'crwritten by �1 ti le system c l i ent, no e xtra d i s k
space i s req u i red t o store t h e b lock. In contrast, :1 log
structu red ti le system :�ppcn ds a l l mod ifications to the
fi l e system to the r�1 i l of the log. Every update ro a si n
gle block req u i res log space , not o n l y for the data, but
also tor the log records and B - trce nodes req uired to
m a ke the B- rrcc consiste n t. AJrboug h old copies ot'rhc
data and B- rrec nodes :�rc marked as no longer l i\'<.: ,
this ti"Ce space is not im mediate l v a\·a i l able t(x reuse; ir
must be recl a i med lw the c leaner. The goal is ro ensure
rhar there i s suftic icnt spKe in the log to write the

parts of the B- tree that arc needed to make the til e
system structures consistent. This means that we can
never have dirty B-tree nodes in memory that cannot
be tlushed to the log.

The server must carefu l ly manage the amount of free
space in the log. It must provide 1:\vo guarantees:

l . A write wil l be accepted by the server only i f there is
sufficient free space in the log to hold the data and
rewrite tbe mapping B-trce to describe it. This guar
antee must hold regardless of how much space the
cleaner may subsequently reclaim .

2 . At the h igher levels of the ti le system, if an I/0 oper
ation is accepted, even i f that operation is stored i n
the write-behind cache, t h e data w i l l b e w1itten to
the Jog. This guarantee holds except in rbe event of
a system fai lure .

The server provides these guarantees using the same
mechanism . As shown in Figure 1 3 , the free space and
the reserved space in the log are mod eled using an
escrow function. 1 7

The total nu mber of blocks that contain l ive, valid
data is maint<li ned as the used space. When a write
operation is received, the server calculates the amount
of space in the log that is requi red to complete the
write and upd ate the B- tree, based on the size of
the write and the cu rrent topology of the B- tree. The
calcu lation is generous because the B- trec is a dynamic
structure and the outcome of a single update has
unpred ictable effects on i t . Each clerk reserves space
for di rty data that it has stored in the write -behind
cache using the same mechanism.

To accept an operation and provide the required
guarantees, the server checks the current state of the
escrow function . I f the guaranteed free space is suffi
cient, the server accepts the operation. As operations
proceed, reserved space is converted to used space as
writes are performed. A single write operation may
affect several leaf nodes. As it becomes clear bow the
B- tree is changing, we can convert any unrequired
reserved space back to guaranteed free space.

If the cost of an operation exceeds the free space
irrespective of how the reserved space is converted , the

GROWS 1

GROWS �
Figure 1 3
Model i ng Free Space

RESERVED SPACE

GUARANTEED FREE
SPACE

USED SPACE

TOTAL
DISK
SPACE

operation cannot be guaranteed to complete; there
fore i t is rejected . On the other hand, if the cost of the
operation is greater than the guaranteed tree space (yet it
may fit in the log, depending on the outcome of the out
standing operations), the server enters a "maybe" state.
For the server to leave the maybe state and renm1 defin.i
tive resu lts, the escrow cost fimction must be col lapsed .
This removes any uncertainty by decreasing the reserved
space figure, potentiaJ i y to zero. Operations and unused
clerk reservations are drained so that reserved space is
converted to either used space or guaranteed tree space.

This mechanism provides a fu zzy measure of how
much space is avai lable in the log. When it is clear that
operations can succeed, they are al lowed to continue.
If success is doubtfu l , the operation is held unti l a
definitive yes or no resu lt can be determined. This
scheme of free space management is s imi lar to the
method described in reference 7.

Future Directions

This section outlines some of the possibi l ities tor future
implementations of the Spira log file system.

Hierarchical Storage Management

The Spiralog server d istinguishes between the logical
position of a segment in the log and its physical location
on the media by means of the segment array. This map
ping can be extended to cover a h ierarchy of devices
with differing access characteristics, opening up the pos
sibil ity of transparent data shelving. Since the unit of
migration is the segment, even large, sparsely used fi les
can benefit. Segments containing sections of the file not
held on the primary media can be retrieved ti'om slower
storage as required. This is identical to the virtual mem
ory paging concept.

For applications that require a complete h istory of
the file system, segments can be saved to archive med ia
bdore being recycled by the cleaner. In principle, this
would make it possible to reconstruct the state of the
file system at any time .

Disk Mirroring (RAID 1) Improvements

vVhen a mirrored set of disks i s forceful ly dismounted
with outstanding updates, such as when a system
crashes, rebui lding a consistent disk state can be an
expensive operation . A complete scan of the members
may be necessary because I/Os may have been out
standing to any part of the mirrored set.

Because the data on an LFS disk is tempora l ly
ordered , maki ng the members consistent foll owing
a fai l ure is much more straightforward . In effect, an
LFS a l lows the equivalent of the minimergc function
al i t)' provided by Vol u me Shadowing tor OpenVMS,
without the need for hardware support such as ljO
control ler Jogging of operations . 1 "

Digital T�chnical)ourn<l i Vol . 8 No. 2 1996 29

Compression

Adding file compression to an update- in -place file
system presents a particular problem: what to do when
a data item is overwritten with a new version that does
not compress to the same size. Since all updates take
place at the tail of the log, an LFS avoids this problem
entirely. In adctition, the amount of space consumed
by a data item is determined by its size and is not influ
enced by the cl uster s ize of the disk. For this reason, an
LFS does not need to employ file compaction to make
efficient use of large disks or RAID sets . '9

Future Improvements

The existing i mplementation can be improved in a
number of areas, many of which involve resource con
sumption . The B - tree mapping mechanism, although
general and flexible, has h igh CPU overheads and
requires complex recovery algorithms. The segment
layout needs to be revisited to remove the need for seri
alized 1/0s when committing w1ite operations and thus
further reduce the write latency.

For the Spiralog file system version 1 .0 , we chose to
keep complete information about live data and data that
was no longer valid for every segment in the log. This
mechanism allows us to reduce the overhead of the
cleaner; however, it does so at the expense of memory
and disk space and consequently does not scale well to
multi-terabyte disks.

A Final Word

Log structuring is a relatively new and exciting tech
nology. Bu i lding Digital's first product using this
technology has been both a considerable challenge and
a great deal of fun. Our experience during the con
struction of the Spiralog product has led us to believe
that LFS technology has an important role to play in
the future of file systems and storage management.

Acknowledgments

We would l ike to take this opportunity to acknowl
edge the contributions of the many i ndividuals who
helped during the design of the Spiralog server. Alan
Paxton was responsi ble for in itial investigations into
LFS technology and laid the foundation tor our under
standing. Mike Johnson made a significant contribu
tion to the cleaner design and was a key member of the
team that built the final server. We are very grateful to
colleagues who reviewed the design at various stages,
in particular, Bill Laing, Dave Thiel, Andy Goldstein,
and Dave Lomet. Final ly, we wou ld l ike to than k Jim
Johnson and Cathy Foley for their conti nued loyalty,
enthusiasm, and direction d uring what has been a long
and sometimes hard journey.

30 Digiral Technical Journal Vol . 8 No. 2 1996

References

l . D . Gifford , R . Need ham, and M . Schroeder, "The
Cedar Fi le System," Commun ications of the ACJ\.1,
vol . 3 1 , oo. 3 (March 1 988) .

2 . S . Chutanai, 0. Anderson, M . Kazar, and B . Leverett,
"The Episode File System," Proceedings of the Winter
7 992 U!:J't!VJX Technical Conference (January I 992) .

3 . M . Rosenblu m, "The Design and Implementation of
a Log-Structured File System," Report No. UCB/CSD

92/696 , U niversity of Cal iforn ia, Berkeley (J u ne
1 992) .

4 . J . Ousterhout a n d F . Douglis, "Beating the IjO Bottle
neck: The Case for Log-Structu red Fi le Systems,"
Operating Systems Review (J anuary 1 989) .

5 . R . Green, A. Baird, and J . Davies, "Designing a Fast,
O n - l i ne Backup System for a Log-structured File Sys
tem," Digital Technicaljoumal, vol. 8, no. 2 (1 996,

this issue) : 32-45.

6.] . Ousterhout et al . , "A Comparison of Logging and
Cl ustering," Computer Science Department, Univer
sity of Cal ifornia, Berkeley (March 1 994) .

7 . M . Seltzer, K. Bostic, M . McKusick, and C. Stael in ,
"An I m p le mentation of a Log·Structured Fi le System
for UNIX," Proceedings of tbe Winter 1993 CSENIX
Techn ical Conference (January 1 993) .

8. M . Wiebren d e Jounge , F. Kaashoek, a n d W. -C. Hsieh,
"The Logical Disk: A New Approach to I mprovi ng
File Systems," ACIH SJGOPS '93 (December 1 993) .

9 . J . Gray a n d A . Reuter, Transaction Processing: Con
cepts and Techn iques (San i'vlateo, Calif. : Morgan
Kau fman Publishers, 1 993) , ISRN l -55860- 1 90-2 .

1 0 . A. Birrell, A. H isgen, C. Jerian, T. Mann, and G. Swarr,
"The Echo Distri buted File System," Digital Systems
Research Center, Research Repon 1 1 1 (September
1 99 3) .

1 1 . J . Johnson and W . Lai ng, "Overview o f the Spira log
File System," Digital Techn ical.fournal, vol . 8, no. 2

(1 996, th is issue): 5-14 .

12 . A . Sweeney et a l . , "Scalabi l ity in t h e XFS F i l e System,"
Proceedings of the Winter 1996 USENIX Tecbn ica/
Conference (January 1 996) .

1 3 . J . Kohl , " Highlight : Usi ng a Log-structured File
System for Tertiary Storage Ma nagement," USENIX

Associ ation Conference Proceedings (J an uary 1 99 3) .

14 . M . Baker et a l . , " Measurements of: 1 D istri buted File
System," Symposi um on Operating System Principles
(SOSP) 1 3 (October 1 99 1) .

1 5 . J . Ousterhour et a l . , "A Trace-driven Analysis of the
UNIX 4 .2 13SD File Syste m ," Symposiu m on Operat
ing System Pri nciples (SOSJ') 10 (December 1985) .

1 6. D. Lomet and B . Salzberg, "Concurrency and Recov
ery for I ndex Trees," Digi ta l Cambridge Research
Laboratory, Technical Report (August 1 99 1).

1 7 . P. O'Nei l, "The Escrow Transactional Mod el , "

A 0\11 Transactions on Distributed Systems, vol . 1 1
(December 1986) .

1 8 . Volume Shadowingfor Open VMS A.XP Version 6. 1
(Maynard, Mass . : Digital Equipment Corp. , 1 99 4) .

1 9 . M . Burrows et a l . , "On-l ine Data Compression i n a
Log-structured Fi le System," Digital Systems Research
Center, Research Report 85 (April 1 99 2) .

Biographies

Christopher Whitaker
Chris Whitaker joined Digital in 1 988 after receiving
a R .Sc. Eng. (honours, 1 SLcJass) in computer science
from the I mperial College of Science and Technology,
U niversity of London . He is a principal software engineer
with the Open VMS File System Development Group
located near Edin burgh , Scotland . Chris was the team
l eader for the LFS server component of the Spiralog file
system. Prior to this, Ch ris worked on the distributed
transaction management services (DECdtm) for Open VMS
and the port of the Open VMS record management services
(RMS and RMS journaling) to Al pha.

J. Stuart Bayl ey
Stuart Bayley is a member of the Open VMS File System
Deve lopment Group, .located near Edinburgh, Scotland.
He joined Digital in 1 990 and prior to becoming a member
oftl1e Spiralog LFS server team, worked on Open VMS
DECdtm services and the Open VMS XQP file system.
Stuart graduated fiom Ki ng's College, U niversity of
London, with a R .Sc. (honours) in physics in 1 986.

Rod D. W. Widdowson
Rod Widdowson received a B.Sc. (1 984) and a Ph .D. (1 987)
in computer science fi·om Edinburgh University. He joined
Digital in 1 990 and is a ptincipa.l software engineer ''�d1 the
Open VMS File System Development Group located ncar
Edinburgh, Scotland . Rod worked on me implementation
of LFS and c luster distribution components of the Spira.log
file system. Prior to d1is, Rod worked on the port of the
Open VMS XQP file system to Alpha. Rod is a charter mem
ber of me British Computer Society.

Digital Technical journ<1l Vol . 8 No. 2 1 996 3 1

32

Designing a Fast,
On-line Backup System
for a Log-structured
File System

The Spira log file system for the Open VMS

operating system incorporates a new tech

nical approach to backing up data. The fast,

low-impact backup can be used to create

consistent copies of the file system while

applications are actively modifying data.

The Spira log backup uses the log-structured

file system to solve the backup problem. The

physical on-disk structure allows data to be

saved at near-maximum device throughput

with little processing of data. The backup

system achieves this level of performance

without compromising functionality such as

incremental backup or fast, selective restore.

Digir.1l Tcchnical /ourn�l Vol . ll No. 2 1 996

I
Russell J. Green
Alasdair C. Baird
J. Christopher Davies

iVlost computer users want to be able to recover data
lost through user error, software or mcdi:1 E1i l u rc, or
site disaster but are u nwi l l ing to devote system
resources or downti m e to m�1ke backup copies of the
data. Fu rthermore, with the rapid growth in the usc of
data storage and the tendency to move systems toward
complete uti l ization (i . e . , 24-hour by 7 -day operation),
the practice of taking the system off l ine to back up
data i s no longer feasi ble.

The Spiralog tile system, an option:JI component of
the OpenVMS Al pha operating system, incorporates
a nevv approach to the backup process (cal led
s imply backup) , resulting in J nu mber of su bst:llltial
customer benefits. By exploiting the featu res of log
structured storage, t he backup system combi nes the
advantages o f two ditkrent tradition:t l approaches
to perf-ormi n g backup: the flex i b i l ity of ti le- based
backup and the h i gh pcrt(mnancc of p lwsica l l v ori
ented backup.

The design goal tor the Spi ralog b:1c kup system was
to provide customers \\'ith a last, applic:1tion -consistent,
on-l ine backup. In this paper, we exp la in rhc features
of t h e Spiralog ti le system that hel ped ach ieve th is goal
and outl ine the d esign of the n1:1jor backup hrnctions,
namelv vo l u m e save, vol ume restore, ti le restore, :md
i n c remental managemen t . \Ve then prese n t some per
formance results arrived at using Spira log version l . l .
The paper conc ludes with a d iscussion of other design
approac hes and areas for ti.1 ture work.

Backg round

File system data may be lost t(Jr many re:tsons, i n c l u d
mg
• U se r error-A user m:ty m istaken l y de lete tb t::l .

• Software fai l u re-An appl ication m:ty cxccure
i ncorrectly.

• Media fa i l ure-The computi ng c q u i r m enr may
m a l fu n ction because of poor design, o ld :1ge , etc .

• Site disaster-Computing fKil i tics m<1)' experience
failures in, for example, the e l ectric:1l su pply or cool
i n g systems. Also, envi ronmental catastrophes such
as electrical storms and floods mav damage faci l ities.

The abi l ity to save backup copies of al l or part of
a fi le system's i nformation in a form that a l lows it to be
restored is essential to most customers who usc com
puting resources. To understand the backup capabi lity
needed in the Spiralog file system, we spoke to a num
ber of customers-five directly and several hundred
through publ ic forums. Each ran a different type of sys
tem i n a distinct environment, ranging from research
and development to finance on OpenVMS and other
systems. Our survey revealed the fol lowing set of cus
tomer requirements tor the Spiralog backup system:

l . Backup copies of d:1ta must be consistent with
respect to the appl ications that use the data.

2. Data must be contin uously avai lable to applica
tions. Dowmime for the pu rpose of backup is unac
ceptab le . An application must copy a l l data of
i nterest as i t exists at an instant in t ime ; ho>vever,
the applicarjon should also be al lowed to modi t)'
the data du ring the copying process. Performing
backup in such a way as to satist)' t hese constraints is
often called hot backup or on- line backup . Figure l
i l lustrates how data inconsistency can occur during
an on-l ine backu p.

3. The backup operations, particularly tJ1c save opera
tion, must be fast. That is, copying data from the
system or restoring data to the system must be
accomplished in the time avai lab le .

4 . The backup system rnust al low an i ncremental
backup operation, i . e . , an operation that captures
on ly the changes made to data since the last backup .

The Spiralog backup team set out to design and
imp lement a backup system that woul d meet the four
customer req uirements. The fol lowing section dis
cusses the features of the implementation of a log
structured ti le system (LFS) that a l lowed us to use
a new approach to performing backup. Note that
throughout this paper we use disk to describe the

TIME

F ILE BACKUP EXPLANATION

The initial file contains two blocks.

Backup starts and copies 1he first
block.

The application rewrites the fi le.

Backup proceeds and copies the
second block. The resulting backup
copy is corrupt because the first
block is inconsistent with the latest
rewritten file.

Figure 1
ExJmplc of an O n - l i ne Backup ThJt Resu l ts i n I nconsiste nt
Data

physical media used to store data and uolume to
describe the abstraction of the disk as presented by the
Spiralog ti le system.

Spiralog Features

The Spiralog fi le system is an implementation of a log
structured fi le system . An LFS is characterized by the
use of d isk storage as a seq uentia l , never-ending repos
itory of data . We genera l ly reter to this organization of
data as a Jog. Johnson and Ll ing describe i n detai l the
design of the Spira log implementation of an LFS and
how ti les are maintained in this implementation . '
Some teatures un ique to a Jog-structured fi le system
are of particular i nterest i n the design of a backup
system.2-• These teatures are

• Segments, where a segment is the fu ndamental
unit of storage

• The no-overwrite nature of the system

• The temporal orderin g of on-d isk data structu res

• The means by which fi les are constructed

This section of the paper d iscusses the relevance of
these features; a later section explai ns how these fea
tures arc exploited in the backup design.

Segments

I n this paper, the term segment refers to a logiGd
entity that i s un ique ly identi fied and never overwrit
ten . This defi nition is distinct fi·om the physical stor
age of a segment. The only physical feature of in terest
to backup with regard to segments is that they are effi
cient to read i n their entirety.

Using Jog-structured storage in a ti le system a l lows
efficient writing irrespective of the write patterns or
load to the ti le system . A l l write operations arc
grouped in segment-sized chunks . The segment size is
chosen to be sufficiently la rge that the time required
to read or write the segment is significantly greater
than the time required to access the segment, i . e . , the
time required f()r a head seek and rotational dc!Jy on
a magnetic disk . AJ I data (except the LFS homeblock
and checkpoint i n formation used to l ocate the end of
the data log) is stored in segments, and a l l segments
are known to the ti le system. From a backup point of
view, this means that the entire contents of a volume
can be copied by readi ng the segments. The segments
are l a rge enough to a l low efficient reading, resulting in
a ncar- maximum transfer rate of thc device.

No Overwrite

In a log-structured file system, i n which the segments
are never overwritten , all data is written to new, empty
segments. Each new segment is given a segmen t iden
t i fier (segid) a l located i n a monoton ica l ly i ncreasing

Digital Technical)ourn31 Vol . 8 No. 2 1 996 33

34

manner. At any point i n t ime, the e n tire contcm.s and
state of a volume can be described in terms of a (check
poim position, sep,rnent list) pair. A t the physical leve l ,
a vol u m e consists o f a l ist or· segments and a position
within a segment that ddi nes the end of the l og.
Rosenblum describes the concept of t ime trave l , where
an old stare o f rhe fi le system can lx r�o:visitcd by cn:ar
ing and m a i nta in ing a snapshot of the J-i lc system r(>r
future access . ' Al l owing time travel in this \\'ay req uires
maintaining an old checkpoint :md disa b l i n g the r�.:use
of d isk space by the cleaner. The ckaner is a mecha
n ism used to rec l a i m d isk space occupied by obsol ete
data in a Jog, i . e . , disk space no longer rdcn::nc�.:d i n
t h e ti le syste m . The conte nts o f a snapshot :m..: ind e
pendent of operations u nd e rtaken o n the live version
of the ti le syste m . Modit)'ing or dt:leting a file a rkcts
onlv the l ive version of the rile system (sec figure 2) .
Because of the no-overwrite nature of the l.YS, prC\' i
ous lv written data re mains u ncha nged .

Other mechanisms specific to a particular backup
algorithm have been developed to achieve on-line CO!l
sistencv.' The snapshot model as described abm'C a l lo\\'s
a more general solution with respect to multiple con
currem backups and the choice of the s:-�,·c a lgori th m .

A re:1d -onl y version of the fi le svstem a t a n inst:lll t
in t ime is preciselv what is req u i red for appl ication
consistency in o n - l i ne backup. This snapshot approach
to attai ning consistency i n on - l i ne backup has been
used in other systems . 0·' As exp l ained in the fd lowing
sections, the Spira log ti le system combi nes the snap
shot tech nique with fi:::atu res of log-structurcd storage
to obtain both on- l ine backup consistency and perr(>r
mancc benefits r(>r bJckup.

Temporal Ordering

As mentioned earl ier, a l l data , i . e . , user d ata and fi le
system metadata (d ata that describes the user d:-�ta in
the fi le system) , is stored i n segments and there is no
overwrite of segments. All on-disk data structures that
rekr to physical placement of d ata usc poi mcrs,
namely (segid, ofJ.;,el) pairs , ro descri be tbc location of
the d ata. Each (segid, off-�el) pair speci fics the segment
and where wit h i n rhar segmcnr the d :-�ra is stor e d .
Together, these i mply the fol lowi ng two properties of
d ata structures, which are key rcatures oLln LrS:

This data is
visible to only
!he snapshot.

Figure 2

This dala is
shared by the
snapshot and the
live file system.

This is new live
dala written since
the snapshot was
laken.

Data Accessi ble to the Snapshot Jnd to the Live hie
Svstem

Digir�l TL'chnic1l lm1nL1I Vol . t:l No. 2 1 996

l . On-d isk structure poi nters , name ly (s(:r_: id. (!ff.\·et)

pai rs, arc re l atively ri me ordered . Specifically, d a ta
stored at (s2 , n2) was written more recentlv than
data stored at (sl , ol) i f and only if s2 is greater
than sl or s2 cqu::� ls sl and o2 is greater than ol .
Th us, new datJ wou ld appear to the right in the
dat:1 structure depicted in Figure 3 .

2 . Any daLl structure that uses on-disk poin ters stored
within the segments (the mapping d ata structure
implementing the LfS index) must be ri me
ordered ; that is, a l l poi mers must rekr ro data writ
ten prior ro the poi nter. Rckrri ng �1g�1 in to Figu re 3,
onlv d�na structu res rh:�r poi n r ro the left are val i d .

These properties of on-disk d ata structures are of
i n terest when designing backup syste ms. Such d ata
structu res can be traversed so rhat segments arc re:�d
in reverse time order. To u nderstand this concept, con
sider the root of some 011-disk darJ structu re . This root
m ust h ;wc been written after any of the d ata to '' hich
ir rekrs (p ropertY 2) . A d ata i tem that the root rd c r
cn ccs must h:J\·c been written bd()re the root and so
must ha,·e been stored in a segment with a scgid less
than or equal to that of the segment in ,,·hich the root
is stored (proper tv 1) . A s imi lar ind ucrivc :1rgumen t em

be used to show tll<l t a ll\' on-disk d ata structure can be
tra\·crsed using J si ngle p:�ss of segments in increasing
segme nt age, i . e . , decreasing scgi d . This is o f particular
i mcrest when considering how to rccm·cr se lective
pieces of data (e .g. , indiv idual fi les) ri·om an on-disk
structure rh:-�r has been stored in such a way that onk
scq ucnti::!l access is Y iablc . The storage of the segmcn�s
that com pose J \'Olumc on t�1 pc as parr of a backup is an
example ofsuch an on-disk d ata structu re .

File Construction

Whitaker, Bayley, and Widdowson describe the persis
tent add ress space as exported by the Spiralog LfS .'

Essc nria l l y, the intcrbtcc presented by the J og
structured server i s that oL1 memory (various re:1d and
write operat ions) indexed using a ri le ident i fier and an
address range. The e n ti re cont e n ts of a fi l e , rega rd less
of type or s ize, are d e fi n ed by the ri le idcnr i fier and a l l
possible addresses bu i l t using tb:1t ident ifier.

This means or· fi l e construction is import::�nt when
considering how to restore the contents of :1 ti l e . Al l

Al l pointers specify
previously writ1en segments.

�r---;::::=�' ; �: " S3

DIRECTION IN WHICH THE LOG IS WRITTEN

F igure 3
A V1 iid D�rc1 Strucrun: i n the Log

data contained in a fi le defined by a file identifier can be
recovered, independent of how the ti le was created ,
without any knowledge of the ti le system structure.
Conseq uently, together with the temporal ordering of
data in an LfS, fi les can be recovered using an ordered
l inear scan of the segments of a volume, provided the
on-disk data structures are traversed correctly. This
mecbanism al lows efficient tile restore ti·om a sequence
of segments. In particular, a set of fi les can be restored
in a single pass of a saved volume stored on tape .

Existing Approaches to Backup

The design of the Spiralog backup attempts to com
bine the advantages oHi le- based backup tools such as
Fi les- 1 1 backup, UNIX tar, and Windows NT backup,
and physical backup tools such as UN IX dd, Fi les- 1 1
backup/PHYSICAL, and HSC backup (a controller
based backup tor Open VMS volu mes) ."

File-based Backup

A file- based backup system has two main advantages:
(1) the system can expl icitly name fi les to be saved, and
(2) the system can restore individual fi les. In this paper,
the fi le or structure that contains the o utput data of
a backup save operation is cal led a saveset . Individual
fi l e restore is achieved by scanning a saveset for the file
and then recreati ng the ti le using t he saved contents.
Incremental fi le- based backup usua l ly entails keeping
a record of when the l ast backup was made (either on a
per- file basis or on a per-vol ume basis) and copyi ng
on ly those fi les a nd d irectories that h ave been created
or modified since a previous backup time.

The penalty associated with t hese featu res of a ti le
based backup system is that of save performance.
I n efkct, the backup system performs a considerable
amount of work to l ay out data in the saveset to a l low
simple restore. All fi les arc segregated to a much greater
extent than they are in the fi le system on-disk struc
ture. The l i m i ting factor in the performance of a fi le
based save operation is the rate at which data can be
read from the source disk . Although there are some
ways to improve performance , in the case of a volume
that has a l arge n u m ber of ti l es, read performance is
a lways costly. Figure 4 i l l ustrates the layouts of three
different types of savcscts.

Physical Backup

I n contrast to the fi le - based approach to backup, a
physical backup system copies the actual blocks of data
on the sou rce d isk to a saveset. The backup system is
able to read the disk opti mally, which al lows an imple
mentation to achieve data throughpu t near t be d isk's
maxi mum transfer rate . Physical backups typica l ly
a l low neither individ ua l file restore nor i ncremental

DIRECTION IN WHICH THE TAPE IS WRITTEN

1 1 1 2 1 3 1 4 1 s 1 6 1 7 1 s 1 9 l 1 o l 1 1 1 · · · 1
In a physical backup saveset, blocks are laid out contiguously on tape.
File restore is not possible without random access.

FILE 1 FILE 2 FILE 3

In a file backup saveset. files are laid out contiguously on tape.
To create this sort of saveset, lites need to be read individually
lrom diSk, wh1ch generally means suboptimal disk access.

DIR I SEGT I SEG SEG SEG I . . · I
In a Spiralog backup saveset, directory (DIR) and segment table
(SEGT) allow file restore from segments. Segments are large
enough to allow near-optimal disk access.

Figure 4
Layouts of Three Diftcrcnt Types ofSavcser

backup. The overhead required to include sufficient
i n formation for these featu res usual ly erodes the per
formance benefits oftered by the physical copy. In
addition , a physica l backup usual ly requires that the
entire volume be saved regardless of how much of the
volume is used to store data.

How Spira log Backup Exploits the LFS

Spiralog backup uses the snapshot mechanism to
achieve on- l ine consistency tor backup. This section
descri bes how Spira log atta i ns h igh- performance
backup with respect to the various save and restore
operations.

Volume Save Operation

The save operation of Spiralog creates a snapshot and
then p hysical ly copies it to a tape or disk structure
called a savesnap. (This term is chosen to be differen t
from saveset t o emphasize t h a t it holds a consisten t
snapshot o f the data .) This physical copy operation
allows high-performance data transfer with minimal
processing. 1 0 In addition, the temporal ord ering of
data stored by Spiralog means that this physical copy
operation can a lso be an i ncremental operation .

The savcsnap is a file that contains, a mong other
i n formation , a l ist of segments cxactlv as thcv exist
in the log. The structure of the savcs�ap a l lo�·VS the
efficient imple mentation of volume restore and ti le
restore (see Figure 5 and Figure 6) .

T h e steps of a fu l l save operation arc a s fol lows:

1 . Create a snapshot and mount i t . This mounted
snapshot looks l i ke a separate, read-on ly fi l e system .
Read i n formation about the snapshot.

Digi[al Technic�! jou rna l Vol . R No. 2 1 996 35

36

METADATA SEGMENTS (DECREASING SEGID)
.---------------------------------�

KEY

DIRECTORY
INFO

PHYSICAL SAVESNAP
RECORD (FIXED SIZE FOR
ENTIRE SAVESNAP)

� ZERO PADDING

Figure 5
SJ1·csn;1p Structure

DIRECTION IN WHICH THE LOG IS WRITTEN

SAVESNAP

l 1 os 1 1 04 l 1o2 l 1 o 1 1
DI RECTION I N WHICH
THE TAPE IS WRITTEN

KEY:

D U NUSED SEGMENT

D USED SEGMENT

Figure 6
Cor-respondence bctll'ecn Segments on Disk Jnd in the
SJI'CStl;lp

2. Write the he:�d er ro the s;ll'esnap, incl ud ing snap
shot i n f<:.m11:1tion such as the checkpoint pos i tion .

3 . Copy the contents o f t h e ri le system directories to
the savesn ap.

4 . Write the J ist of segids that compose the snapshot
to the savesnap as <1 segment table in decre:�sing
scgid order.

5. Copy these segments in d ccrc:�sing segid orde r
rrom the volume to the savcsnap (sec Figure 6) .

6 . Dismount :1nd delete t h e sn apshot, leaving o n l y the
contents oftbe Ji ve vo l u me accessib le . The cfkcr of
de leti ng the sn:1pshot is ro release :� I I the space used
to store segme nts tbJt contain onl y snapshot data .
A l l segments th:n conta in chtJ in the li1·c volu me
arc ldt i ntact.

Vol . 8 No. 2 1 996

SP SAVESNAP INFORMATION

ST SNAPSHOT I N FORMATION

The Spi ralog backup system is pri m ;lr i l y physical .
T h e system copies t h e vol u me (sn:�pshot) d:�ta in
segments that arc .i<u·ge enough to a l l ow cfticicnt
d isk reading, regardless of the n u m ber of riles in the
volu m e . To save a volume, the Spiral og backup sys
tem bas to read a l l the directories in the volume :�nd
then a l l the segments. I n comparison, J ri le- based
backup system must read J l l the d i rectories a n d then
al l the ti les. On I'O i u mes with L1rge ti le popul :�tions,
ri le- based bac k u p ped(Jrm:�nce s u fkrs greatly as a
resu lt of the number of read operations req u i red ro
save the volu me. Our measu rements showed th;n the
directory-gath eri ng phJsc o f' o ur copv opcr:nion was
insign i ficant in re l :nion to rh e dJ.ta transkr d u ring the
segment copv phase.

Incremental Save Operation

The i ncremcntJl S<ll'e oper:Jt ion in Spir<1log is I 'Cl'\'
differ,;: nt from tlut in a ti le- based b;K k u p . We usc the
tempora l ordering tCaturc of the LrS to ca ptu re on li
the ch anges i n a vol u me's dJtJ as p;:�rr of the incremen
tal sa,·e . The tcmpor;:�l order in g pr<ll· ides J simple \\'<1\'
of detnm ining the relati1 -c age o r· d<H<l . To be precise,
data in the segment with scgid s2 mu st ha1·e been writ
ten afi:cr d ata in the segment with segid sl i F :1nd on ly
if s2 is greater thJn s l .

Consider the l iktimc of a vol u me :1s Jn end less
seq u e nce of segments. A bJckup copy of a volu me ;lt
any time is a copy of a l l segments r h :l t contai n ch t<l
access i b le in that vol u me. Segm ents in the vo l u me 's
history that <H'C not included in rhe lxKkup copy a rc
those that no longe r contain J.ny usdid lhta or those
that have been c leaned . An incre ment a l backup con
tains the seq ue nce of segments contai ning :-�ccess ib lc
data written since a previous backu p.

This is d i fferent ri·om an inu-c mcntJl S<ll'e operation
in a ti le- based backup sche me. The Spi rJ !og incremen
tal save operation copies onlv the data ll'ritrcn since
the lasr backu p . ln comp:�r ison , J ri l e - based b:lckup

increnH.:ntJI SJIT comprises entire ti les that contain
new or modi tied data . for example, consider an incre
menta l save of a vol ume in which a large datJbasc ti le
h:1s h:1d only one n:cord updated in place since a fu l l
backup . Spiralog's i ncremental sa1·c copies the seg
ments written since the last fu I I backup that conta in
the mod i tied record with other updated tlk system
index data. A ti l e - based backup copies the entire data
base ti l c .

Thc t< > l lowing stcps t(>r the incremental S<lVe opera
tion augment the six process steps previously
described t(>r the save operation . Note that steps 3a ,
4a, and Sa tc> l low steps 3, 4, and 5 , respectively.

3a . Write dependen t savesnap information . This is a
l ist of the savesnaps requ i red to complete the
chain ofscgmcnts that constitutes the entirc snap
shot contcnts. The savesnap information i ncludes
a uniquc savcsnap identifier (uolu me id, segmeul

id. segmcnl ojj.i·cr) . This is the checkpoint position
of the sn;�pshot Jnd is uniquc across volumes.

4;1 . Determine thc segment range to be stored in this
s:t1·esnap. This range is calculated bv re:tding the
segment r:mgc of the l ast b:tckup from a tile stored
on the sourcc volume.

S:t . Record thc minimum seg id stored in this savc
snap with thc scgment table. The segment tab le
contains thc scgids of a l l segments in the saved
snapshot. The incremental savesnap contains
scgments ident i ticd by a subset of these segids.
The segid of the last segment stored in the save
SIUP is recorded as the min imum segid held in the
savesnap.

7 . Record on thc source volume the segment range
stored in the sJvcsnJp.

The implemcntation provides an i n terface that
a l lows thc user to speci �r the maximum num ber of
s�wesnaps rcquired t(>r 3 restore operation . This reature
is s imiL1r to speci�· ing the le1·els in the U N I X dump

Fig ure 7

TIME LIVE SEGMENTS I N VOLUME

Monday , 1 3

Wednesday

Friday 5 1 7

Snapshot Contents in I ncremcnta l Savesnaps

uti l ity, where J l evel 0 save is a fu l l backup (it requ i res
no other savesnaps tor a restore) , and a l evel I sa1·e
is :tn incremental backup since the fu l l bJCku p (i t
requ i res one additional savesnap t(>r :1 rcstorc, n�uncly
thc fu l l backup) .

Figure 7 shows the savesnaps produced trom
fu l l and incremental save operations. Notc that the
most rccent ly wri tten segment mav appear i n t11·o
d i frcrcnt savesnaps that supposed lv contain d isjoint
data. For example, segment 4, the youngest segmcnt
i n Monday's savesnap, appears in the sa1·esnaps madc
on both Monday and Wednesday. The you ngest seg
ment is not guaranteed to be fu ll at the time of a snap
shot creation, and therefore a later savesnap may
cont:t in data that was not in the ti rst savesnap.
Conseque nt ly, incremental savesnaps recapture thc
oldest segment in their segment range .

Note that with this design a slowly changing ti lc
c1n bc spread across manv incrementa l s:�vesnaps.
Restoring such a ti le accord i ngly m:1y req uire access
to many sa1·esnaps. The fi le restore section shows tl1:1t
the design of tile restore a l lows eftlc ient tJpe trJI'ersal
t(>r these ti l es .

Volume Restore Operation

The Spiralog backup volume restore operation takes a
ser ofsavesnaps and copies the segmcnts rhat make up
a sn:tpshot onto a disk. Together, this set of segments
and the location of the snapshot checkpoi nt dctine
:1 vo lume . The steps involved in a volume restore ti·om
a fu l l savesn:1p arc

1 . Open the savesnap, and read the snapshot check
poin t position fi-om the savesnap header.

2 . l n i ti �1 l ize the tJrgct disk to be a Spira log volume .

3 . Copy a l l segments ti·om the savesnap to the tar
gct disk. Note that the segments written to thc
target d isk do not depend in any 11·av on the t:Jr
gct disk geometry. This me�1ns thJt thc target disk
m:tv be completelv d itkrent ti·om the source

SAVESNAPS

Ful l save on
Monday

Wednesday
since Monday

9 Friday since
Wednesday

@
@
@

Vol . 8 :-Jo 2 1 996 37

38

disk from which the savcsnap was made, providing
the target container is l arge enough to hold the
restored segments .

4. Backup declares the vol ume restore as complete
(no more segments wi l l be written to the volume) .
Backup tel ls the fi le system how to mount the vol
tune by supplying the snapshot checkpoint location .

A Spira log restore operation treats an i ncremental
savesnap and all the preceding savesnaps upon which i t
depends a s a s ingle savesnap. For savesnaps other than
the most recent savesnap (the base savesnap) , the
sn apshot i n tcJrmation and d i rectory in tcmnation arc
ignored. The sole purpose of these saves naps is to pro
,·idc segments to the base savesnap.

To r�store a volume from a set of i ncrementa l save
snaps, the Spiralog backup system pcr tcmm steps 1
and 2 us ing the base savcsnap. I n step 3, the restore
cop ies a l l the segments in the snapshot ddincd by
the base savcsnap to the target d isk . (Note that there
is :-� one-to-one correspondence between snapshots
and savcsnaps .) The savcsnaps :�rc processed in reverse
chronological order. The conten ts of the segment
table i n the base savesnap define the l ist ofscgmcms i n
the snapshot to be restored . Al though the volume
restore operation copies a l l t h e segmen ts i n the base
savcsnap, nor :: ti l segments in the savcsnaps proc<.:ssed
mav be req u i red . Savcsnaps are inc luded in rhc restore
prc;ccss i f thcv contain some segments that arc needed.
Such savesnaps may a lso conta in s<.:gmcnts t lut \\'ere
cleaned bdore the base savesnap was created .

The structure of the savesnap a l lows the efficient
location and copying of specific scgmcms. The segment
table in the savcsnap describes exactly which segments
arc stored i n the savesnap. Since the segments are of
a fixed size, it is easy to calculate the position with in
the savcsnJp where a particu l ar segment is stored, pro
vided the scgm<.:nt table i s available ::md the position of
rhc tirst segment is known. This wi l l a lways be the case
lw the time rhc segment ta ble has bcm rc�1d because
tl�c scgmmts immediately fol low this tab le .

Most savcsnaps are stored on tape . This storage
medi u m lends i tsel f to the index ing just dcscrib<.:d . I n
particu lar, modern tape dri,·cs such :J S rhc D ig ital
LincJr Tape (D LT) series prov ide f1st, relative t::tpc
positioning that a l lows rape -based savesn:�ps to be
selective ly re:�d more q u ickl y than with a sequentia l
sca n . " S imilarl y, on random-acc<.:ss media such as
d isks, :1 particu lar segment can be read without strict
sequential scann ing of data.

The volu me restore operation is rhcrdc>rc a physical
opercltion . The sc:gments can be read :tnd written cft-i
cicnrlv (c\'Cll i n the case of i ncrcmcnt�1l savesn�1ps fro m
sequentia l mcd iJ) , resu lt ing in :1 high -pert(>rmancc
recovcn· ti·om volume bilurc or s ite d isaster.

Digita l Tcchtl ical)ound Vol . 8 No. 2 1 996

File Restore Operation

The purpose of :-� ti le restore operation is ro provide
a fast and effic ient wav to retrieve a smal l number of
ti les from a savesnap wi thout pc:rtorming a ful l vo lume
restore. Typical ly, ti le restore is used to recover f-i les
that have been i n:tdvertcnt ly de leted . To achieve h igh
performance ti l e restore , we imposed the fo l lowing
requirements on the design :

• A tile restore session must process as few savesnaps
as possible; it should skip savesnaps that do not
contain data needed by the session .

• vVhcn processi ng a savesnap, the fi l e restore must
scan the savcsnap l i ncarlv, i n a single pass .

Th<.: process of restor ing ti l es can be broken down
into three steps: (l) d iscover th<.: fi l e identifiers r(>r all
the tiles to be restored ; (2) usc the tile ident i fiers to
locate th<.: ti l e chta in the saved segments, and then
read that data; and (3) place the newly recovered data
back into tbc current Spiralog fi le system .

Discovering the Fi le Identifiers The user supp l ies the
names of the ti les to be restored . The mapp ing
between the ti le names and tb<.: til e identi tiers <lssoci
ated with these ll�lmes i s stored i n the segments, but
th i s i n t(mnation cc1nnot be d iscovered simplv bv
i nspecting the contents of the s:tved segments . A

corollarv of the te mpora l ordering of the segments
within a savesnap is tlut h ierarchical i n form atio n , such
as nested d i rectories, rends to be presen ted in precise l v
the wrong order tc >r scan n ing i n a single pass. To over
come this prob lem , the s:1ve operation writes the com
plete directory tree to the savcsnap before copying any
segments to the savcsnap. T l 1 is tree maps fi le nan1<:s to
identi fi e rs tc>r every ti le :l lld d irectory i n the savcsiLlp .
The ti l e restore session constructs a partial tree of the
names of the ti les to be restored . The parti a l ttTc is
then ma tched , i n a s ingle pass , �lg<l inst the complete
tree stored in the Sa\Tsnap . This process prod uces the
required til<: identifiers.

Locati ng and Read ing the File Data Aiter d i scovering
the ti le idcnt iticrs, the ti le restore session reads the J ist
of segments prese nt in the sa,·esnap; this l ist comes
after the d ircctorv tree and bdcJre any saved segments .
The ti le restore �hen switches focus to d iscover pre
cise ly which segments conta in the ti le data that corre-
spond to the ti le idcntiriers.

.
The tirsr segment read ti·om the savesnap comatns

the rai l ofrhe log. The log provides a mapping bctwem
file identifiers and locations of data with in segments.
The tai l of the lo•r contains the root of the map.

We developcd0J s impk i nterbcc for the tik restore
to usc to na, ig�ltc the m�1p . Esscntia l lv, this i n tcrbcc
permits tbc rcrric\·�11 of a l l mapping in t(m1lation

relevant to a particu lar ti le identifier that is held within
a given segment. The mapping i n formation returned
through this interface describes either mappi ng i nfor
mation he ld e lsewhere or real fi le data. One character
istic of the log is that anything to which such mapping
information poin ts must occur earlier in the log, that
is, in a subsequent saved segment . Recal l property 2 of
the LFS on-disk d ata structures. Conseq uently, rhe file
restore session will progress th rough the savesnaps in
the desired l inear fashion provided that requests are
presented to the interface in the correct order. The
correct order is determi ned by the a l location of segids.
Since segids increase monotonica l ly over time, it is
necessary only to ensure that req uests are presented in
a decreasing segid order.

The ti l e restore i n terface operates on an object
cal led a context. The context is a tuple that contains a
location in the log, namely (segid, ojf\·et), and a type
field. When suppl ied with a fi le identi fier and a con
text, the core function of the interface i nspects the seg
ment determined by the context and returns the set of
contexts that enu merate al l avai lable m apping i n for
mation for the file ide nti fier held at the location given
by the initial context.

The type of context returned ind icates one of the
fol lowi ng situations:

633

METADATA

SAVES NAP

555 478

EXTENT OF SAVESNAP TRAVERSAL SO FAR

• The location contains real fi le data .

• The location given by the context holds more
mapping i n formation . I n this case , the core fun c
tion can b e applied repeated ly to determine t h e
precise location of the fi l e's data.

A work l ist of contexts i n decreasing segid order
drives the fi l e restore process. The procedure tor
retrieving the data for a single fi le identifier is as fo l
lows. A t t h e outset of t h e fi l e restore operation, the
work l ist holds a single contex t that identifies the root
of the map (th e tai l of the log) . As items are taken from
the head of the list, the ti le restore m ust perform one
of two actions. If the context is a pointer to real file
data, then the tile restore reads the data at that location.
If the context holds the location of mapping informa
tion , then the core fimction must be appl ied to enu
merate a l l possible fimher mapping i n formation held
there. The tile restore operation places a l l retu rned
contexts in the work list in the correct order prior to
picking the next work item. This simple proced ure,
which is i l lustrated i n Figure 8, conti n ues u nti l the
work l ist is empty and al l the file's data has been read .

To cope with more than one ti le, the fi le restore
operation extends this procedure by converting the
work l ist so that it associates a particu lar fi l e identi fier

1 95 69 59

TARGET FILE SYSTEM FOR FILE RESTORE

Figure 8

D IRECTION IN WHICH THE LOG IS WRITIEN

KEY: r - - - , ... - - - �
•

FILE DATA

FILE SYSTEM MAP DATA

The shaded areas represent the file data to be restored and the file system metadata that
needs to be accessed to retrieve that data. The restore session has thus far processed
segment 478. Part A of the file has been recovered into the target file system. Parts B and C
are st1 l l to come. Aller processing segment 478, the file restore visits the next known parts of
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment
59 Will be on the work list. The next segment that the file restore will read is segment 69. so the
sess1on can sk1p the intervemng segment (segment 1 95).

Fi le Restore Session in Progress

Digital Technical journal Vol . S No. 2 1 996 39

40

with e:Kh context . F i le restore i n i ti a l i zes the work l ist
ro hol d a poi nrer ro the root of the map (rhe rail of the
log) t(lr each ti l e idemi tier ro be n:srored . The eftec r is
ro i merleave req uests ro read more than one ti l e whi le
mainta in ing the correct segid ordering.

A fu rther su btl etY occ u rs w hen rhc conrexr ar the
head of rhc work l ist is tc)U nd ro rckr ro a segmen t
outside the curre n t savesnap. The ordering imposed
on the work l ist i m pl ies that a l l su bseq uent i tems of

work m ust also Lx: outside the cu rrent S31'esnap. This
fcl l lows from the rc m por.1l orderi ng properties of LFS
on-d isk str u c tu res and the way in which incremental
savesnaps a rc ddi n e d . vVh e n this s itu:nion occurs, the
work list is sa1·cd . When the next s�wesn:tp is ready for
processing, the ti le restore st:ssion c:tn be restarted
using the saved work l ist �1s the start ing point .

D u ring this step, the fi le restore writes the pieces o f
fl ies t o the target vo l u me a s they arc read from the
savcsnap. Since the ti le restore p rocess a l locates fi l e
iden tifiers o n a per-vo l u me basis, restore m ust a l locate
n ew fi le identifiers in the target volu m<.: ro accept the
datJ. being read from the source savcsn:1p.

The new ti le idemi ticrs arc hidd<.:n tl-om users d ur
i n g the tik restore u n t i l the ti l e restore process has fi n
ished si nce th<.: ti les a1T nor compl ete and may be
m issi ng vira l parts such as access perm issi ons. Rather
than a l low access to rh<.:sc parri:�l ti les, the ti le restor<.:
h ides rhe new ti le ident i fiers u nt i l :: d l the data is pres
ent, �lt which rime the ti na! stage of the fi l e restore can
take place.

Making the Recovered Fi les Avai lable to the User In
rhe t h i rd step o f thc process, the ti le restore operation
makes the ncw]v recovered ri les �1ccess i b k . At the
begi n n i ng of the step, the ti les exist on l 1· as bits of data
associ�1ted 11·irh IKII' ti l e idmritiers-thc tiles do not vet
ILwc n ames. The n:1mes rh�1r :11-c now bou n d to these
ti le identifiers come tl·om the part ia l d i rectory tree that
was origi n a l l v used to match ag�1 i nst the d i rectory tree
in the s�wcsm p. This ti n J ! step restores the origi na l
names :.11 1 d conte n ts ro a l l the ri les that were origi n a l l v
req uested . T h e ti les reta in t h e new ti l e ident i fiers that
were a l l oc:Jtcd d u ring the ti le restore process.

Management of Incremental Saves

One design go:1l rclr the Spiralog backup was to red u ce
the cost of storage m:J n J.gcmcnt. The d esign i n c l udes
the means o f perr(m11i ng a n i n cremental vol ume save
that cop ies only data wri tten since the previous
back u p . To i m plement a backup strategy that never
req u i res more than one fl.d l backup but :� l l ows restores
using J. finite nu m ber of savcsnaps, we designed and
implemented the sav<.:snap merge fu nctio n .

S:�,·csnap merge operates s imi brlv t o vol u m e
restore, bur instead of copyi ng segments t o :1 d i s k as

Di!,!.it.ll Tcdmiul)ourn,li Vol . 8 No. 2 1 996

in a vol u me restore, savcsnap merge copies segments
to a n ew savesn:1p. As s hown in Figure 9, the cfkct
of mergi ng a base savcsn:1p and all the i ncrementa l
savesnaps upon which i r depends i s t o prod uce a tl.d l
savesnap. This savesnap is precisdy the one that wou l d
have been created had th<.: base SJI'CSnap been spccitied
as a full savesnap inst<.:ad of an i ncrcm<.:n t:t l SJI'eSn::lp .
Spira log merge copies the savcsnap i n t(lrmarion and
the d irecrorv i n r(mnation stored i n rbe b:tse sa1·esn:1p
to the merged sa1•esnap bdclrc it copies the segment
table and the segments.

Savesnap merge pr<ll'ilks :1 practicc l i ll'al' of mJ nag
ing very brge data volu mes. The merge operation can
be used to l i m i t the n u mber of savcsnaps req u i red to
restore a snapshot, even i f fu l l backu ps :1re IKI'Cr take n .
Merge i s independent o f t h e sou rce vo l u me a nd c a n be
u ndertaken on :1 d i fterw r system ro a l low fu rther sys
tem management fle x i b i l i ty.

Summary of Spira log Backup Features

A s u m mary of the features :�mi pcrt<.mnancc provi lkd
by the Spiralog backup system appcm i n T:t blc 3 at
the end of the Resu l ts secti o n . For com p:1riso n , the
table also cont:Jins correspon d i n g i n f(lrmJtion t(Jr the
ti le - based and physical appro:1chcs to backup .

Results

We m easu red vol u m e sav<.: �1 11d i n d i1·i d u a l ti l e r<.:storc
performanc<.: on both the Spi ralog backup system and
the backup svstcm for Fi les- I I , the origi na l Open VMS
file svste m . The hJrd11 �1 rc contigu r:nion consisted of
a DEC 3000 Model 500 and a s ingle RZ25 source disk
each tor Spira log and F i les - 1 J m l um cs, r<.:spccri' c l v.
The target dc\·ice tor the backup 11 �1s :t TZ�77 tape .
The SI'Stem was runn ing u nder the Open VMS \'crsion
7.0 operating system �md Sp i ra log 1·crsion 1 . 1 . The
volumes ll'ere popu btcd ll'i th ti le d istri b u tions th�H
refl ected typica l user acco u n ts in o u r dc,·c lopmcnt
environment . Each 1·o lume cont::t i ncd 260 meg�1bytcs
(MB) of user data, which inc l uded a total of 2 1 ,682
fi les in 40 I d i rectories.

Volume Save Performance

For both the Spira log backup a nd the Files- I I backup,
we saved the sou rce vol u m e to J. ti-csh ly i n it i �1 l i zed tape
on an otherwise id lc syste m . VVc mc:1su red the elapsed
time of the save opnation and recorded the size of the
output savesnap or savcsct. vVc ave raged the resu l ts
over five iterations of the bench mark. T :1 bk J presents
these meas u rements and the resu l ting throughput .

The thro u gh p u t represents th<.: �l l'cragc rate in
meg:�bvtes per second (MB/s) o f wri ti ng ro rap<.: m-er
the d urat ion of a save operation. In the case of
Spiralog, rape t h roughput varies grcarlv ll'i th tbc

Figure 9
Merging Savesnaps

Ta ble 1

BACKUPS

Monday - Full

Wednesday
Incremental

Friday
Incremental

Merge three savesets to produce one
new savesnap equivalent to a full
savesnap taken on Friday.

Performance Comparison of the Sp i ra log a n d F i les-1 1 Backup Save Operat ions

Elapsed Time
Backup System (Min utes:seconds)

Sp i ra log save 05:20

F i les- 1 1 backup 1 0: 1 4

phases o f the save operation. During the d irectory
scan phase (typically up to 20 percent of the total
elapsed save time) , the only tape output is a compact
representation of the volume directory graph. In com
parison, the segment writing phase is usually bound by
the tape throughput rate. In this configuration , the
tape is the throughput bott l eneck; i ts maximum raw
data throughput is 1 .25 M B/s (uncompressed) . 1 1

Overa l l , the Spira log vol ume save operation i s nearlv
twice as f:1st as the Fi les- 1 1 backup volume save opera

-

tion in this type of computing environment. Note that
the Spiralog savesnap is larger than the corresponding
F i les- 1 1 saveser . The Spiralog savesnap is less e fticient
at holding user data than the packed per- tile represen
tation of the Fi lcs- l l saveset. In many cases, though,
the higher pert(xmance of the Spira log save operation
more than outweighs this i nefficiency, particularly
when it is taken into account that the Spiralog save
operation can be performed on-l ine.

File Restore Performance

To determine ti le restore performance, we measured
how long i t took to restore a si ngle fi le from the
savesets created in the save benchmark tests. The hard
ware and software configurations were identical to
those used tor the save measurements. \Ve deleted
a s ingle 3 -ki lobyte (J(li) ti le ti·om the source volume
and then restored the ti le . We repeated this operation
n ine times, each time measuring the time it took to
restore the fi le . Table 2 shows the results .

Savesnap or
Saveset Size Th roug h put
(Megabytes) (Mega bytes/second)

339 1 .05

297 0.48

Table 2
Performa nce Comparison of the Sp i ra log and F i les-1 1
I nd iv idua l F i l e Restore Operations

Backup System

Sp i ra log f i l e restore

F i les- 1 1 backup

Elapsed Time
(Minutes:seconds)

0 1 :06

03 :35

The Spiralog backup system achieves such good
pertormance for tile restore by using its knowledge of
the way the segments are laid out on tape. The fi le
restore process needs to read on ly those segments
required to restore the tile; the restore skips the inter
vening segments using tape skip commands. In the
example presented in Figure 8, the restore can skip
segments 555 and 1 95 . I n contrast, a file-based backup
such as Fi lcs- l l usual ly does not have accurate index
ing information to min imize tape 1/0 . Spiralog's
tape-skipping benefi t is particularly noticeable when
restoring small numbers of fi les from very l arge save
snaps; however, as shown in Table 2, even with small
savesets, i ndividual fi le restore using Spira log backup is
three times as fast as using Fi les- l l .

Table 3 presents a comparison of rhe save per
formance and features of the Spiralog, ti le- based, and
physical backup systems.

Digital Technical Journal Vol. 8 No 2 1 996 4 1

42

Table 3
Comparison of Sp ira log, F i l e-based, a n d Phys ica l Backup Systems

Save performance
(the number of 1/0s
req u i red to save the
the sou rce vo l u me)

F i l e restore

Vo l u m e restore

I ncrementa l save

Spiralog Backup
System

The n u mber of 1/0s is
O(number of segments that
conta i n l ive data) p l us
O(number of d i rectories)

Yes

Yes, fast

Yes, physica l

Fi le-based Backup
System

The n u m ber of 1/0s is
O(nu mber of f i l es)
1/0s to read the f i le
data p lus O(nu mber
of d i rectories) I /Os

Yes

Yes

Yes, ent i re f i les that
have changed

Physical Back u p
System

The n u m ber of 1/0s
is O(size of the d isk)

No

Yes, fast but l i m ited
to d isks of the same size

No

Note that this table uses "big o h " notat ion to bound a va lue. O(n), which i s pro n o u nced "order of n, " means that t h e value represented is n o
greater t h a n Cn for some constant C, regardless of the va lue o f n. Informal ly, t h i s m e a n s t h a t O(n) c a n be t h o u g h t o f as s o m e constant m u lt i p l e
of n.

Other Approaches and Future Work

This section out l i nes some other d esign options
we considered for the Spiralog back u p syste m . O ur
approach o ncrs further possi b i l i ties in a n u m ber
of areas. \Ve describe some of the opportun i ties
avai l a b l e .

Backup and the Cleaner

The benefits of the write perf(xmancc g�1 i ns in an LFS
arc attai ned at the cost of having to c lean segments . "
An opportunity appears to exist i n com bining the
c leaner a n d bac kup functions to red uce the amount of
work done by either or both of these com ponents ;
however, the aims of backup and tbe cleaner are qu ite
diftcrmt. Backup needs to read a l l segments written
since a speci tlc time (in the case of a ti.J I I backu p , since
the birth of the vol u m e) . The cleaner needs to defrag
ment the tree space on the vol u m e . This is done most
efficimtly by relocating data held in certain segments.
These segments are those that arc suHicien t ly empty to
be worth scave nging tor ti-ee space . The dat�l in these
segments should a lso be stable in the sense that the
data is u nl ike ly to be deleted or ou tdated im med iately
after re location.

The on l y real benefit that can be exacted by looking
at thest fu nctions together is to c lean some segments
whi le performing back u p . For example, once a stg
mcnt has been read to copy to a savesnap, i t can be
cleaned . This approach is probably not a good one
because i t redu ces system pedorm::mce i n the fo l l ow
i n g ways: additional processing req u i red in c lc: : m ing
removes CPU and memory resources ava i lab le to
applications, and tht cleaner gtneratcs \\'rite opera
tions that rtd ucc t h e backup rtad rate .

Digital Tcclmical Journal Vol . 8 No . 2 1 996

There are two other areas in which backup and
the cleaner mechanism i n te ract that warrant fu rther
i nvestigatio n .

l . Th e save opcLltion copies stgments i n their
e nti rety. Th:1t is, the operation copies both "sta l e "
(ol d) cbtJ and l i\'c d ata to a s�1vesnap. T h e cost o f
ex tra storage m e d i a t(>r t h i s extra neous data is
traded otfagainst the performance penalty in trying
to copy only l ive data . It appears that the tile systtm
should run the c lemtr vigorously prior to a backup
to min irnizt the sta le data copied .

2 . I ncremental savesnaps conta in c l eaned data . This
means that an i ncremental savesnap contains a copy
of data that a lrtady exists in one of the savcsnaps on
which it depends. This is an apparent waste ofdhm
and storagt space.

It is best to undert:� kc a ful l backup a fter a thorough
cleaning of the vol u m t . A single strategy tor incremen
ta l backups is l ess easy to dctine . O n one hand, the s ize
of an i ncrcmcll t:t l backu p is incrtased if much c lemi ng
is pcd(m11td bd(l!-c the bac kup . On tht other h :m d ,
restore operations from a l a rgt i ncremental backup
(particu larly sclectivt ri l e rcstorts) are l i ke ly to be
more efticitnt. The larger tht incremental backu p, the
more data i t con tains . Conseq uent ly, the c h a nce of
restoring a s ingle ti l e trom just the base savesnap
i n c reases with the s ize of the incrcmemal backup .
Studying the i ntcLKtions bcrween the backup and the
cleaner may oft-Cr some i nsight i n to how to i mprove
either or both of thest components.

A conti nuous b�1ekup system can takt copies of seg
ments ti·om disk using pol icies s imi lar to the cle:mcr.
This is expl ored in Koh l 's paptr. 12

Separating the Backup Save Operation into a

Snapshot and a Copy

The (ksign of the save operation involves the creation
of a snapshot toll owed by the tast copy of the snapshot
to some separate storage . The Spiralog version 1 . 1
imp lementation of the save operation com bines these
steps. A snapshot can exist only during a backup save
operation .

System administrators and appl ications have signifi
cantly more flexibil ity if the sp l i t i n these two fu nctions
of backup is visi ble. The abi li ty to create snapshots that
can be mounted to look like read -on ly versions of a til e
system may eliminate the need for the large number of
backups performed today. I ndeed , some fi le systems
ofkr this kature 6·7 The additional advantage that
Spir:. dog otkrs is to al low the very efticient copying of
individual snapshots to off l ine medi:t.

Improving the Consistency and Availability

of On-line Backup

There :�re a nu mber of ways to improve appl ication
consistency <lnd avai labi l ity using the Spiralog backup
design . In addition, some of these fCJturcs further
reduce storage management costs.

lntervolume Snapshot Creation Spiralog al lows a
practical way of creating and managing large vol umes,
bur there wi l l be times when applications req u ire data
consistency tor backup across volumes. A coordi nated
snapshot across volumes wou ld provide this.

Appl ication Involvement The Spiralog version l . l

implemt.:ntation does not address appli cation involve
nKnt in tht.: creation of a snapshot. A snapshot's (On
tuns ::tre precisely the volume's contents that �1 re on
disk at tht.: time of snapshot creation . This mt.:ans that
appl ications acct.:ssi ng the vol ume have to (Ommit
indepe ndt.:ntly to the ti le system data they rt.:quire ro
be part of the snapshot.

Thert.: is an emerging trend to design systt.:m
lcvel intcrb(cs that a l low better app l ication interac
tion with the �i le system . For example, tht.: Windows
NT opt.:r::tting system providt.:s the oplock and
NtNotiR,ChangeDirectory intnfact.:s to ad\'ise an
i ntnestt.:d appl ication of changes to ti les and d ireno
rics. Simil ;1rly, an interface could al low appli(ations to
registt.:r an interest with the file system tor notification
of an impending snapshot creation . The appl ication
would tht.:n be able to commit the data it tKt.:ds as part
of a ba(kup and continue, thus improving appl ication
consistt.:ncy ::tnd ava i labi l ity and reducing work for sys
tem administrators.

Minimizing Disk Reads

The Spira log file restore retrieves the data that
constitutes a nu mber of �i les in a single pass of

segments read in a specific order. This design was
important to a l low the efficient restore of fi les from
sequential media .

More general ly, this way of traversing the file system
al lows specific, known parts of a set of fi les to be
obtained by reading the segments that conta in part of
this data only once. This tech nique is also i nteresting
for random-access media storage of volumes because
it describes an algorithm for m i n imizing the number
of d isk reads to get this data. Possible appl ications
of this technique art.: nu merous and are particul arly
interesting in the context of data management of very
large volu mes.

For example, su ppost.: an appl ication is required
to monitor an attri bute (e .g . , the time oflast access) of
a l l fi les on a massive volume. Su ppose also that the vol
ume is too big to al low the application to trawl the fi le
system dai ly tor this infcxmation ; th is process takes too
long. If the appl ication maintains a database of the
i n formation, it needs only to gather the (hanges that
h ave happened to this data on a daily basis. Therefore,
the application could obtain this i n formation by tra
versing only those segments written s ince the last time
i t updated its database and locating the relevan t data
withi n those segmt.:nts. Our mechanism for restoring
fi les provides exactly this capabi l ity. An investigation of
how appl ications might best use th is te(hnique cou ld
lead to the design of an i nter face that the file system
cou ld use tor tilSt scanning of data.

Conclusions

File systems use backup to protect against data loss.
A sign ificant portion of the cost associated with man
aging storage is d irectly related to the backup func
tion . ' 3- ' 7 Log-structured data storage provides some
features that red uce the costs associated with backup.

The Spira log log-structured ti le system version l . l
tor the OpenVMS Alp ha operati ng system includes
a new, h igh- performance, on- l ine backup system. The
approach that Spiralog takes to obtain data consis
tency tor on- l ine backup is simi lar to the snapshot
approach used in Network Appliance Corporation's
FAServer, the Digital UNIX Advanced File System, and
other systems."·7 The feature unique to the Spiralog
backup system i s i ts use of the physical attributes of
Jog-structured storage to obtain high-pertonnance
saving and restoring of data to and from tape . In par
ticu lar, the gain in savt.: performance is the resu l t of
a restore strategy that can efticiently retrieve data from
a sequence of segments stored on tape as they arc on
d isk. This design leads to a min imum of processing
and d iscrete 1/0 operations. The restore operation
uses improvements in tape hardware to red uce pro
cessing and 1/0 bandwidth consu mption; the opera
tion uses tape record skipping within savesnaps for fast

Digital Tech nical Journal Vol . 8 No. 2 1996 43

44

data indexing. The Spiralog backup implementation
provides an on- l int: backup save operation with signifi
cantly improved performance over existing offeri ngs.
Performance of individual file restore is also improved .

Acknowledgments

We would l ike to thank the fol lowing peopl e whose
efforts were vital in bringing the Spiralog backup sys
tem to fru i tion : Nancy Phan, who helped us develop
the product and worked relentlessly to get it right;
Judy Parsons, who helped us clari�r, describe, and doc
ument our work; Clare Wells, who helped us tocus on
the real customer problems; Alan Paxton, who was
involved in the early design ideas and .later specif-ica
tion of some of the implementation; and, final ly,
Cathy Foley, our engineering manager, who sup
ported us throughout the project.

References

I . J. Johnson and W. Laing, "Overview of the Spira log
Fi le Syste m , " Digital Technical journal. vol . 8 , no. 2
(1 996, this issue): 5-14 .

2 . M . Rose nblum and] . Ousterhout, "The Design and
Implementation of a Log-Structu red F i l e Syste m ,"
ACM Transactions on Computer Systems, vol . 1 0 ,
no. I (Februa ry 1 992) : 26-5 2 .

3 . M . Rosen b l u m , "The Design a n d Implemen tation of a
Log-Structu red File System," Report No. UCB/CSD
9 2/696 (Berke ley, Calif. : U niversity of Ca l i torn ia ,

Berkeley, 1 992) .

4 . M . Seltzer, K . Bostock , M . McKusick, a n d C . Stae l in ,
"An I mp lemen tat ion of a Log-Structu red Fi le System
for UN I X ," Proceedings of the USENJX Winter 1993
Technical Conference, San D iego, Cal if. (Ja n uJr)'
1 99 3) .

5 . K . W;J! ls, "Fi le Backup System tor Producin g a Backup
Copy of a Fi le Which May Be Updated during

B ackup," U .S . Patent No. 5 , 1 63, 1 48 .

6 . D . H itz,] . L J u , and M. Malcol m, "F i le System Design
for an N FS F i le Server Appliance," Proceedings of
the USENIX Winter 1994 Technical Con/erence,
San Francisco, Calif. (Januar y 1 994) .

7. S. C hu tan i, 0 . Anderson, M. \(azar, and B . Leverett,
"The Episode Fi le System," Proceedings of the
UStNIX Winter 1992 Technical Con/erence.
San Francisco, Calif (J a n u ary 199 2) .

8 . C:. Whitaker, T . Bayley, and R . Widdowson, " Design of
the Server for the Spira log F i le Syste m," Dig ilul

TechnicaL}oumal, vol . 8, no. 2 (1 996, this issue) : 1 5-31 .

9 . Open VMS System Management Utilities Reference
Manual A-L, Order No. M-PVSPC-TK (Mayn ard ,
Mass . : Digita l Eq u ipment Corporation , 1 995) .

DigirJI Technical)ourn<li Vol 8 No. 2 1996

1 0 . L. Dr izis, "A Me thod for Fast T;l pe B;Kkups and
Restores ," Sojill.'are-Pmctice and 1:.:-.perience.
vol . 23, nu. 7 (J u ly 1 99 3) : 8 1 3 -8 1 5 .

I I . " Digita l Linear Tape M eets CririCJ! Need t(n Dat:t
Backup," Qua ntu m Tec hnica l I n formation Paper,
h ttp:/ jwww. q u a n tu m .com/prod ucrs/w h i repapers/
d l tt ips . h tml (M i l p i tas, Calif. : Quantum Corpora tion ,
1 996) .

1 2 . T . Koh l , C. Stael in , a nd M . Stoneb ra ker, " H ighLight:
Using a Log-str uctured File Sysrem f(>r Tcrti;m•
Storage Ma nagement," Proceedings o/ !be USi:NIX
Winter 7 993 Technical Conference (Wimer 1 99 3) .

1 3 . R . Mason, "The Storage Man age mcnr Market Part I :
Pre l i m in ar y 1 994 Ma rker Sizi ng ," !DC N o . 9 S 3 R
(Fram i n gh;lfll, Mass . : I nternat ional Dara Corpor;nion ,
Dece m ber 1 994) .

1 4 . l . Stennurk, " I m p lementati on G u idel i nes t(>r Cl ienr/
Server B ackup" (Stamtot·d , Conn . : Gartner Croup,
March 1 4 , 1 994) .

1 5 . l . Stenmark, " Ma rker Size : Nen,·ork and Svstcms
t'vlanagemenr Software" (Stamford , Con n . : Gartner
G roup , June 30, 1 995).

1 6 . I . Stenmark, " C l i en t/Server 13acku p-Lc:ukrs ;l lld
Ch:1l len gc rs" (Stamt(:>rd , Con n . : Gartner C rou p ,

May 9 , 1 994)

1 7. R . Wre n n , "W h)' the Real Cost of Stot·age is More
Tlun $ 1 /M B," presented at the U.S . D LCUS Sy mpo
s ium, St. Louis, Mo. , June 3-6, 1 996 .

Biographies

Russell J. Green
Russel l Green is a pri ncipa l software engineer in Digi ta l 's
Open VMS Engi neeri ng grou p in Li vingsto n , Scorbnd .
He was responsi ble for rbc design and del ivery of the
bac kup component of rhe Spiralog ti le system for the
Open VMS oper:1ti ng system . Currentl y, Russ is the tech
nical. leader of Spira log follow-on work. Prior ro joining
Digital in 1 99 1 , he was a staff me mber in t he com purer
science depJ t"tment a t the Un ivers ity of Ed in burg h . Rus�
received a B .Sc. (H onours, 1st class, 1 9 8 3) in engi neeri ng
from the U niversirv of Cape Town ;l lld a n M .Sc. (1 986)
in engineeri ng from rhe Universirv of Ed in bu rgh . H e
hol ds two pat

L
ents ;md h a s ti led a patent appl ica�ion t()r

his Spir:t!og backu p S\'Stem work.

Alasdair C. Baird
Alasdair Baird joined Digital in 1 988 ro work for the
ULTIUX Engineering group in Reading, U . K. He is
a senior sofrware engineer and has been a member of
Digital's Open VMS Engineeri ng group since 1 9 9 1 .
He worked on the design of the Spi ralog fi l e system and
then contri buted ro the Spiralog backup syste m, particu
larly the ti le resrore component. Currently, he is involved
in Spir<llog development work. Alasdair received a B .Sc.
(Honours, 1 988) in computer science from the U niversity
of Edi nburgh .

J. Christopher Davies
Sofrware engineer Chri s Davies has worked for Digital
Equipment Corporation in Livingston, Scotland, since
September 1 99 1 . As a member of the Spira log team, he
in i tially designed and implemented the Spiralog on- l ine
backup system . In subseq uent work, he improved the
performance oft he file system. Chris is currently working
on further Spira log development. Prior to joining Digital,
Chris was employed by NRG Surveys as a software engi
neer while earning his degree. He holds a B.Sc. (Honours,
1 99 1) in art i ficial intel l ige nce and computer science from
the University of Edin burgh. He is coauthor of a fi led
parent application tor the Spiralog backup system .

Digital Technical journJI Vol. 8 No. 2 1996 45

46

Integrating the Spiralog
Fi le System into the
Open VMS Operating
System

Digital's Spira log file system is a log-structured

file system that makes extensive use of write

back caching. Its technology is substantially

different from that of the traditional Open VMS

file system, known as Files-1 1 . The integration

of the Spiralog file system into the Open VMS

environment had to ensure that existing appli

cations ran unchanged and at the same time had

to expose the benefits of the new file system.

Application compatibility was attained through

an emulation of the existing Fi les-1 1 file system

interface. The Spira log file system provides an

ordered write-behind cache that allows applica

tions to control write order through the barrier

primitive. This form of caching gives the benefits

of write-back caching and protects data integrity.

Digiral Technical)ou m,ll Vol . 8 No. 2 1 996

I
Mark A. Howell
J u1ian M. Palmer

The Spiral og file system is based 011 a log-stru cturing
met hod rll3t off-ers fast writes and a bst, on-l ine backup
capability. '- ' The i ntegration of the Srira log fi le system
into the Open VMS operati ng system prese nted many
cha l lenges. I ts progra mmi ng i ntnrace and its ex tensive
use of write-back cachi ng were su bst;1 1 lt ia l ly difkre n t
ti·om those o f the existing O p e n VMS fi le svstc m ,
known a s F i l es-1 1 .

To encou rage usc of the Sp ira log fi l e system , we had
to ensure that ex ist i ng appl i cations ran unchanged i n
t h e OpenVMS e nv i ronmen t . A ti l e system em u lati on
layer provided the necessary compati bi l ity by mapping
t he Fi les-1 1 file system i n terrace onto the Sp i ra log ri l e
syste m . Bdore w e cou ld b u i l d t h e emu Lnion layer, we
needed to understa nd how these applications used the
ri le system i n terrace. The approach taken to u nder
sta nding appl i cation rcq u ire ll1C I1tS led to a ri le SVStCl11

emu l ation layer t hat exceeded the origi na l compati b i l
i ty expectations.

The first part of th is paper dea ls with the approach

to i ntegrati ng a new ti le system into the OpenVMS
environment and prese rvi ng app l icat ion compatibi l itY.
I t describes the various levels at which the fi le system
could have been int egrated and the d ecision to em u
late the l ow- leve l tile system i n terbcc . Tec hn i ques
such as tracing, source code sca nn ing, a nd fu nctional
analysis of the Fi les-1 1 ri le svstcm he lped determine
which featu res should be suppo rted bv the emu lation .

The Spiralog fi l e system uses extensive write- back
cachi ng to gai n pe rtonnance over the write-through
cache on the Files-1 1 ri le syste m . Applications have
relied on the ordering of writes impl ied by wri te
through cac h i ng to mai nta in on -disk consistency in
the event of system rai l u rcs. The lack of orderi ng
guarantees preven ted the i mplementation of such
careful write po l ic i es in write- b::tck e nviron ments . The
Spi ralog ri le system uses a wri te -beh ind cache (int ro
d uced i n the Echo ti l e syste m) to a l l m.v applications to
take advantage of write-back cach ing pcrr(Jrmance
while preservi ng carefu l write pol i cies.' This f-eatu re is
unique in a comnH.:rcia l fi le syste m . The second parr of
this paper describes the d i rlicul tics of i ntcgr:�ting write
back cach ing i nto a write-th ro ugh environment and
how a write - behind cache addressed these probl ems.

Providing a Compatible File System Interface

Application compatibil ity can be described in two
ways : compatibi l ity at the fi le system interface and
compatib i l i ty of the on-disk structure. S ince only spe
cia l ized appl ications use knowledge of the on-d isk
structure and maintaining compat ib i l i ty a t the inter
face leve l is a teature of the Open VMS system, the
Spira log ti le system preserves compatib i l ity at the fil e
system interface level on ly. In the section Fi les-1 1 and
the Spiralog F i l e System On-disk Structures, we give
an overview of the major on-disk d ifferences bet\veen
the t\VO fi le systems.

The level of in terface compatib i l ity wou ld have a
large i mpact on how wel l users adopted the Spiralog
fi le system. If data and appl ications could be moved to
a Spiralog vol u me and r u n u nchanged, the fi le system
would be better accepted . The goal tor the Spiralog
file system was to ach ieve 100 percent i nterface com
patibi l i ty for the majority of existing appl ications. The
i mplementation of a log-structured ti le system , how
ever, meant that certain featu res and operations of the
Fi les-1 1 file system cou ld not be supported .

The Open VMS operating system provides a number
of ti l e system interfaces that are cal led by applications.
This section describes how we chose the most compat
ible tile system interface. The OpenVMS operating
system directly supports a system- leve l ca l l i nterface
(QIO) to the ti l e system, which is an extremely com
plex i nterface.' The QIO i nterface is very specific to
the OpenVMS system and is d ifficu l t to map directly
onto a modern ti le system intedace . This in terface is
used infrequently by appl ications but is used exten
sively by Open VMS uti l ities.

Open VMS File System Environment

This section gives an overview of the general
OpenVMS fi le system environ ment, and the ex isting

Open VMS and the new Spiralog fi le system i ntertaces .
To emulate the Fi les-1 1 fi le system, i t was important to
understand the way i t is used by appl ications i n the
OpenVMS environment . A brief description of the
Files-1 1 and the Spiralog file system i nterfaces gives an
indication of the problems in mapping one interface
onto the other. These problems are d iscussed later i n
the section Compatibi l ity Problems.

In the Open VMS environment, app l ications in ter
act with the ti le system through various interfaces,
ran ging from high- level l anguage interfaces to d irect
ti le system cal ls . Figure 1 shows the organ ization of
interfaces with in the Open VMS environ ment, inc lud
ing both tl1e Spira log and the Fi les-1 1 fi le systems.

The fol lowing brietly describes the l evels of interface
to the til e system.

• H igh- level language (H LL) l i braries. H LL l i braries
provide ti le system fu nctions tor high- level
l anguages such as the Standard C library and
FORTRAN I/0 fu nctions.

• OpenVMS language-specific l i braries . These
l i braries offer OpenVMS-spccific ti le system fu nc
t ions at a h igh level . For ex;�m ple, l ib$create_dir()
creates a new d irectory with specitic OpenVMS
security attributes such as ownership.

• Record Management Services. The OpenVMS
Record Management Services (RMS) are a set of
compl ex rou tines that form part of the Open VMS
kerne l . These routines <�re pri mari ly used to access
structured data within a fi l e . However, there are
also routines at the tile level , for example, open ,
c lose, delete, ;�nd rename. The RMS parsing rou
ti nes for ti le search <�nd open give the OpenVMS
operating system a consistent syntax for ti l e names.
These rou tines also provide file name parsing oper
ations tor h igher level l ibraries. RMS calls to the fi le
system are treated i n the same way as direct applica
tion cal ls to the file system .

APPLICATIONS

r-

Figure 1

n 1 HIGH-LEVEL LANGUAGE 1 1 OPENVMS LANGUAGE-
LIBRARIES, e.g. , C LIBRARY SPECIFIC LIBRARI ES

RECORD MANAGEMENT SERVICES - SYSTEM CALLS I I
OPENVMS FILE SYSTEM INTERFACE - SYSTEM CALLS (010)

FILES- 1 1 FILE SYSTEM I EMULATION LAYER

FILES 1 1 FILE SYSTEM

SPIRALOG FILE SYSTEM

The Open VMS Fi le System Environment

Digir:1l T�c hnical Journa l Vol. 8 No. 2 1996 47

48

• Fi les-1 1 file system interface. The Open VMS oper
ating system has traditional ly provided the Fi les-1 1
file system for appl ications. It provides a low- level
fil e system intert:ace so that applications can request
fue system operations from the kernel .

Each tile system cal l can be composed of multiple
subcal ls . These subcalls can be combi ned i n nu mer
ous permutations to form a complex file system
operation. The number of permutations of calls and
subcalls makes the fi le system interface extremely
d i fficult to understand and use.

• File system emulation layer. This layer provides
a compatible i nterface bet\¥een the Spiralog ti le
system and existing appl ications. Calls to export
the new features avai lable in the SpiraJog file system
are also inc luded in this layer. An important new
feature, the write -behind cache, is described in the
section Overview of Caching.

• The Spiralog file system interface. The Spira log
file system provides a generic fi le system interface.
This interface was designed to provide a s uperset
of the features that are typically avai lable in fi le sys
tems used in the UNIX operating system. File
system emu lation layers, such as the one written for
Fi les-1 1 , could also be written for many different
file systems." Features that cou ld not be provided
generical ly, for example, the implementation of
security pol icies, arc implemented in the fi le system
emu lation l ayer.

The Spiralog fi l e system's interface is based on the
Virtual File System (VFS) , which provides a fi le
system interface s imi lar to those found on UNIX
systems.7 Functions avai lable are at a higher level
than the Fi les-1 1 fi le system interface. For example,
an atomic rename fitnction is provided .

Files-1 1 and the Spira log File System

On-disk Structures

A major difference bet\'lecn the Fi lcs-1 1 and the
Spiralog fi le systems i s the way data is laid out on
the d isk. The Fi les-1 1 system is a conventional,
update- in-place fi le system -" Here, space is reserved for
file data, and updates to that data are written back to
the same location on the disk. Given this knowledge,
appl ications could pl ace data on Fi les-1 1 volu mes to
take advantage of the disk's geometry. For example,
the Files-l l fi le system a l lows applications to place files
on cylinder boundaries to reduce seck times.

The Spiralog file system is a log-structured fi le
system (LFS) . The entire volume is treated as a con
tinuous Jog with updates to files being appended to
the tail of the log. In efkct, fi les do not have a fixed
home location on a volume. Updates to fi les, or cleaner
activity, will change the location of data on a volume.
Applications do nor have to be concerned where their
data is placed on the disk; LFS provides this mapping.

DigirJI Tcchnie<ll journal Vol. 8 No. 2 1 996

With the advent of modern disks in the last decade,
the exact placement of data has become much less crit
ica l . Modern disks fi·cquently retu rn geometry i nfor
mation that does not reflect the exact geometry of
the d isk. This nu l l i ties any advantage that exact place
ment on the disk ofters to appl ications. Fortunately,
with the Files-l l fi le system, the use of exact fi le place
ment is considered a hint to the ti le system and can be
safe ly ignored .

Interface Decision

Many featu res of the Spiralog fi l e system and the
Fi les-l l fi le system are not directly compati ble. To
enable existing applications to use the Spira log tile
system, a suitable fi le system interface had to be
selected and emulated . The fi le system emulation layer
vvould need to hook into an existi ng kernel - level fil e
system interface to provide existing app l ications with
access to the Spira log fi le system .

Analysis o f existing applications showed that the
majority of ti le system ca l ls came through the R.J\.15
i nterface. This provides a functional ly simpler i nterbcc
onto the lower l evel Fi lcs-1 1 interface. Most applica
tions on the Open VMS operating system use the R.MS
interface, either di rectly or through H LL l i braries, to
access the file system.

Few appl ications make direct calls to the low- level
Fi les-l l interface. Cal l s to this intcrf1ce are typical ly
made by RMS and OpcnVMS util ities that provide
a simpl i fied interface to the ti l e system . lUviS supports
fi le access routines, and OpenVMS uti l ities support
modi fication of file mctadata, f(.>r example, security
information. Although few in number, those applica
tions that do cal l the Fi les-l l fi le system directly arc
significant ones. If tile only interface supported was
RMS, then these ut i l i ties, such as SET F I LE and
OpcnVMS Backup, would need signiticant modifica
tion. This class of uti l ities represents a large nu mber of
the OpcnVMS uti l i ties that maintain the file system .

To provide support tor the widest range of applica
tions, we selected the low- level Fi lcs-1 1 interface tor
usc by the file system emulation layer. By selecting this
interface, we decreased the amount of work needed
for its emulation . However, this gain was offset by the
increased compl exity in the interface emulation.

Problems caused by this i nterface selection are
described in the next section .

Interface Compatibility

Once the file system interface was selected, choices
bad to be made about the l evel of support provided by
the emulation layer. Due to the nature of tl1e log
structured ti le system, described in the section Fi lcs-1 1
and the Spiralog F i le System On -disk Structures, ful l
compati bi l ity of a l l features in the emu lation layer was
not possible . This section discusses some of the deci
sions made concerning interface compatibi l ity.

An i nit ia l decision w::�s made to support docu
mented low- level Fi les-l l cal ls through the emula
tion layer as ofi:en as possi b le . This would enable a l l
wel l - behaved appl ications to run unchanged on the
Spi ra log ti le system. Examples of wel l -behaved appli
cat ions are those that make use of H LL l ibrary ca l ls .
The tol lowi ng categories of access to the fi l e system
wou ld not be supported :

• Those d i rectly accessing the disk without goi ng
through the file system

• Those making usc of specitlc on-disk structure
information

• Those making use of u ndocumented ti l e system
katu res

A very smal l number of applications fel l into these
categories. Exampl es of appl ications that make use of
on-di sk structu re knowledge are the Open VMS boot
code, disk structure ana lyzers, and disk dcti·agmenters.

The majority of Open VMS applications make ti le
system calls through the 1'-LV\S interface. Using fi le sys
tem cal l - tracing tech niques, described i n the section
I nvestigation Techn iques, a fu l l set of ti l e system calls
made by RMS coul d be constructed . Afi:er analysis of
this trace data, it was cle::�r that IUv\S used a smal l set
of we l l -structu red cal l s to the l ow- level ti le system
i ntertace. Further, detailed analysis of these cal ls
showed that al l RMS operations could be fu l ly emu
lated on the Spiralog fi l e system .

The su pport o f Open VMS ti le system ut i l ities that
made direct cal ls to the low-level Fi lcs- 1 1 intertace was
important if we were to minimize the amount of code
change requ i red in the Open VMS code b::�se. Analysis
of these uti l i ties showed that the majority of them
could be supported through tJ1e emu lation layer.

Very rcw applications made use of katures of the
Filcs-1 1 ti le system that could not be emu lated . This
enabled a h igh number of applications to run
unchanged on the Spiralog file system.

Ta ble 1
Categorization of F i l e System Features

Category Examples

Compatibility Problems

This section describes some of the comp::�tibil ity prob
lems that we encountered in developing the emulation
layer and how we resolved them.

When considering the compati bi l i ty of the Spira log
ti le system with the Fi les-l l fi le system, we placed the
features of the file system into three categories: sup
ported, ignored, and not supported . Table 1 gives
examples and descriptions of these categories. A feature
was recategorized on ly if it cou ld be supported but was
not used, or if it could not be easi ly supported but
was used by a wide range ofapplieations.

The majority of Open VMS applications make sup
ported fi l e system ca l ls . These :�ppl ications wi l l run as
i ntended on the Spiralog ti le system . Few applications
make cal ls that could be safe ly ignored . These appl ica
tions would run successfu l ly but could not make use of
these features. Very few appl ications made calls that
were not supported . Untortunatcly, some of these
appl ications were very im portant to the success of the
Spiralog ti l e system, for example, system management
ut i l ities that were optimized for the Fi l es-1 1 syste m .

Analysis o f applications that made unsupported cal ls
showed the tol l owi ng categories of use:

• Those that accessed the ti l e header-a structu re
used to store a til e's attributes. This method was
used to return mul tiple fi le attributes in one cal l .
The supported mechanism i nvolved a n ind ividua l
ca l l for each attribute .

This was solved by returning an emu lated fi le
header to appl ications that contained the majority
of information interesting to appl ications.

• Those read ing d irectory fi les. This method was used
to perform fast d i rectory scans. The supported
mechanism involved a fil e system call for each nJme.

This was solved by provid ing a bulk di rectory
read ing interface cal l . This ca l l was similar to the
getd ircntries() ca l l on the U N IX system and was

Notes

Su pporte d . The operation requested
was completed, a n d a success status
was retu rned.

Requests to create a f i l e or open
a f i l e .

Most ca l ls made b y appl ications
belong in the supported category.

I gnored. The operation req uested
was i g n ored, a n d a success status
was retu rned.

Not supported. The operation
req uested was i gnored, a n d a
fai l u re status was returned.

A requ est to place a f i le i n a
specific pos it ion o n the disk to
i m p rove performance.

A request to d i rectly read the
on-disk structure.

This type of featu re is i n compatible
with a log-struct u red fi le syste m .
It is very infreq uently used a n d not
ava i lable through HLL l i braries. It
co u l d be safely i g nored .

This type of request is specific to
the F i les- 1 1 f i le system and could
be a l l owed to fai l because the
appl icat i o n would not work on the
Spira log f i l e system. It is used onl y
by a few spec i a l ized appl ications.

Vol . 8 No. 2 1 996 49

50

straigh tr(>rward to replace in appl ications that
directly read d i rectories.

The OpcnVMS Backup ut i l ity was an example of
:t system man:tgcmcm mil ity that d irectly read
d irectory ti les . The backup mi l i rv \\'aS cha nged to
usc the d i rcctorv rc:1ding ca l l on Spira l og volu mes.

• Tl10sc access ing rcscnni riles. The existing file sys
tem stores :ti l irs mctad:na in normal ti les that can be
read lw :1ppl ic:t tions. These ri les :tre cal led reserved
ri les and :11-e crc1tcd when a \ 'o lume is in iti�1 l i zed .

No reserved ti les arc cn:ated on a Spi ralog volume,
\\' ith the exception of the m:�ster t-i le d i rectory
(M FD). App l iutions that 1-e:1d reserved ti les make
spec i fi c usc of on-disk structu re i n fi:mnation and
are not supporrcd with the Spira log fi le system . The
M FD is used as the root d i rectory :�nd performs
d i rectory tr:tvcrsa ls. This ti le w:ts virtua l ly emulated .
It appears in directory l isti ngs of a Spi ralog volume
and can he used to sta rr :t di rectory traversa l , but i t
docs not exist o n the volu me :t s a real ri l e .

Investigation Techniques

This section describes the appro:tch taken to investi
gate the interhcc and compatib i l i ty problems
described <l bovc. Resu l ts ti·om these investigations
were used to determine which tCJtures of the Fi les-1 1
r! le system needed to be provided to prod uce J high
b-el of compati bi l ity.

The invcstigJtion t-(>euscd on understJnd ing how
applications c:d led the ti le wstcm and the sem:1ntics of
tbc c;�ll s . A number o f techn iques were used in l ieu
of design documcnt:ttion t<>r <l pplications <md the
Fi les- 1 1 ti le S\'Stcm . T hese techn iques were a lso used
to ;woid the d irect examination of source code .

T h e r(l l lo\\' ing techn iques \\'Crc used to understand
appl ication calls to the fi l e syste m:

• Tracing ri le S\'StClll opcrations

Tracing ri le system operations prm·idcd a large
;�mount of chtJ r(>r appl ications . A mod ified
Fi lcs-1 1 ti l e system was constructed that logged a l l
ti l c oper.nions o n J vo l u me. A fu l l set of regression
tests were then run t(H· the 25 Digital and th ird
party prod ucts most oti:cn l ayncd on the Fi les-1 1
t-i l e system . The d:lta was then reduced to detcr
minc the type o l-' ri l e system ca l l s made by the
layered produ cts. Analysis of log data showed
tlut most laycrcd prod ucts made t-i l e systcm c;� l ls
through H l .L l i braries or the IZJV!S interface. This
techn ique is usefu l where source code is not avail
Jblc, but t-i.d l code p:1th cover:tgc is <lVJi lable to con
struct <1 fu l l pictu rc of cal ls and argu ments.

• Smveying appl ication maintaincrs on fi le system use

Surveying applic:l tion maint:tincrs was a potential !)'
usefu l techn ique t(>r :� lc !·t ing the other maimainers

Vnl. R N o . 2 1 996

about the impact of the Spira log ti le system . J\l[orc
than 2,000 su rveys were sen t out , but rcwcr than
25 usefu l resu l ts were rctu mcd . S:tdly, most appl i
cation mainta iners were not aw:�t-c o f how their
product used the fi le s\·stcm.

• Automated appl ic:�tion source code sc:�rch ing

Autom:1tcd source code search ing qu ickly checks
a la rge amount ofsourcc code . This technique 1vas
most usdi.d when :tn:� lyzing lil c svstcm ca l l s m:�de bv
the OpenYt'viS opcDting system or uti l it ies. How
ever, this does not 1\'0rk we l l \\'hen :�pplic:1tions
make dvnamic oils to the ti l e wstcm <1t run rime .

The toll mving tech niques were used to undcrst:lnd
the semantics of tilc system cal ls :

• Functiona l :�na lysis of the Fi lcs-1 1 �i lc system

Functional analysis of the hlcs- l l ti le system was
one of the most usefu l tcchn iqucs :�doptcd . 1 t
avoided thc need to rcvcrsc-cnginccr the �i lcs-1 1
fi l e system. Whenever possi b.lc, the Fi lcs-1 1 �i l c sys
tem was treated as :1 black box, and its ti.mction was
inferred from i n tcrbcc docu me ntation and app l i
cation ca l l s . This techn ique :1voidcd d u p l icat ing
detects i n the i nter face and enabled the d esign of
the emulation la�'Cr to be derived ti·om ti.mction ,
rather t lun the ex isting implementation of the
Fi les-1 1 svstem .

• Test programs to determ i ne c;� l l scmJntics

Test programs \\'Crc used otcnsivclv to isolate spe
c ific appl ication calls to the ti le svstc m . l nd i,·id ua l
cal l s could be ana lvzed to dctcrm inc how rhcv
worked with the Fi l es-1 1 ti le S\'Stem and \\· ith the
e m.u la t ion layer. This techn ique t(xmcd the basis
for an extcnsi,·e fi le system i nter race regression test
suite without requiring the complete ;�ppl iCltion .

Level o f Compatibility Achieved

The b el offi lc system compatib i l irv \\'ith :tppl ications
far exceeded our in it ia l expcct<l tions. Tab le 2 summ<l
rizes the resu l ts of the regrcss ion tests uscd to veri�
compati b i l i ry.

Table 2 i l l ustrJtcs that appl iutions that usc the C or
the �O RTRAN langu<lgc or the RMS imcrbcc to
access the fi le system can be e xpected to work
unchanged . Verification with the top 25 Digital lay
ered prod ucts :1n d th ird - parry prod ucts shows that
a l l products tbJt do not In<lkc spcc i ti c use of hlcs-l l
on-d isk featu res run with the Spiralog ti l e system .
Wid1 the vers ion 1 .0 release of rhe Spira log ti le syste m,
there ;�rc no known compatib i l i ty issues.

Providing New Caching Features

The Spira log ti l e svstem uses ordered writc-b :�ck cach
ing to provide pcrti:m11Jncc benet-i ts ti>r app l iutions.

Table 2
Verifi cat ion of Compat i b i l ity

Test Suite

R M S regressi o n tests

OpenVMS regression tests

F i les- 1 1 compatibi l ity tests

C2 sec u r ity test su ite

C l a n guage tests

FORTRAN ianguage te�s

Number of Tests

- 500

- 1 00

- 1 00

- 50 d i screte tests

-2,000

- 1 00

Write- back cac h i ng provides very d i fterent semantics
to the model of write-through cach ing used on the
Fi les-l l ti le syste m . The goal of the Spiralog project
members was to provide write- back caching
i n a way that was co mpati ble with existing Open VMS
applications.

This section compares write -through and write- back
caching and shows how some important OpenVMS
applicatiom re ly on write-th rough sema ntics to pro
tect data ti·om system fai lure . It descri bes the ordered
wri te-back cache as i ntroduced in the Echo file system
and exp la ins how this model of cach i n g (known as
write-hehind cach i ng) is particu larly suited to the envi
ronment of Open VMS Cluster systems and the
Spira log l og-structured ti le svste m .

Overview o f Caching

During the last kw years, CPU pcrf{mnance improve
ments have continued to ou tpace performance
im provements t(lr d isks. As a resu l t , the 1/0 bott le
neck has worsc iH.:d rather than im proved. One of
the most succcssfi.d tech niques used to a l leviate this
problem is caching. Cach ing means holding a copy of
data that has been recently read ri·om , or written to,
the disk in memory, givi ng appl ications access to that
data at memory speeds rather than at disk speeds.

VVrite-t h rough and write- back cach ing are two
d i frerent models h·cqucnr ly used in ti le s�rstems.

• Write-through caching. In a write - t h rough cache,
data read ti·om the d is k is stored i n the i n - memory
cache. When data is written, a copy is placed in
the cac he, but the write request does not return
until the data is on the d isk . Wri te- through caches
i mprove the pcrtormance of read requests but not
write requests.

• Write- back cach ing. A write -back cache improves
the pert(ml1<11Ke of both read and write requests.
Reads arc hand led exactly as in a wri te - th rough

Result

All passed.

A l l passed.

All passed.

All passed, g i ving the S p i ra log
file system the same potent i a l
security rat i n g as t h e F i les-1 1
system.

Al l passe d .

A l l passed.

cache. This t ime thou gh, a write request returns :1s
soon as the data has bee n copied to the cac he; some
time l a ter, the data is written to the disk. This
method al l ows both read :md write requests to
operate J t main memory speeds . The cache can also
amalgamate write requests that supersede one
another. By deterring and amalgamating write
requests, a write- back cache can issue many tl.:wcr
write requests to the d isk, using less disk bandwidth
and smooth ing the write pattern over time.

Figure 2 shows the write- th rough and write- hack
cach i ng models . The Spiralog ti le system makes exten
sive usc of cach ing, provi ding both \.vrite-through and
write- back models . The usc of ll"rite- back cach ing
a l lows tbe Spira l og tile system to amalgamate writes,
thus conservi n g d isk bandwid th . This is cspcciallv
i m portant in an Open VMS Cl uster system where d isk
bandwidth is shared by several computers. The
Spiralog ti le system attempts to amalgamate not j ust
data writes h u t also tile system operations. For example,
many compilers create temporarv til es that arc de leted
at the end of the compilation. With \vri tc- back caching,
it is possi ble that th is type of tile may be created and
deleted without ever being wrirtcn to the disk.

There arc two d isadvantages of write- back cac hing:
(1) if the system tai l s , any write requests that have
not been written to the d isk arc l ost, and (2) on ce in
the cache, any ordering of the write requests is lost.
The data may be written fi·om the cache to the d isk in
a com p letely d itlerent order than the order in which
the app l ication issued the write requests . To preserve
data i n tegri ty, some appl ications rely on write orderi ng
and the usc of carefu l write techni ques. (Carehi l writ
i ng is d iscussed fi.u·ther in the section below.) The
Spiralog ti le system preserves tbta i n tegritv by provi d
i n g a n ordered write- back cache known a s a write
behind cache.

Digital Tcc hnica l founul Vol . 8 �o. 2 l l)96 5 l

.'i 2

NO CACHE I I
MWSECONDS' -§ � ...____.. ____,___ -EY

Fig u re 2
Caching M odels

WRITE-BACK
CACHE

MICROSECONDS

Cach i ng is more i m portant to t h e Spi ra log ti l t
system than i t is t o con vcntion�l l ti le systems. Log
structu red ti le systems have i n herently worse read
pertonn�1 ncc rhan com·enrional , update - i n -pl ace ti l e
svstems, d u e to t h e n eed to locate t h e data i n the log .
As descri bed i n another paper i n rh isjour1 1a/. l ocating
data in the log req u i res m ore disk I/Os than ;1 11

upd ate-i n - p l ace ti le system 2 The Spiralog ti le system
uses large read caches to other th is extra read cost.

Careful Writing

The Filcs-1 1 ti l e system prm·ides \\'ri te -through
semantics. Key Open VMS applications such as tr: msac
tion processing and the OpenVJ'v!S Record Man::tge
ment Services (RMS) have come to rely on the i m pl ic it
orderi n g of write-throu gh. Thcv use a tech nique
kno\\'n as c::trcfu l writing to pre\'(: llt data corruption
fol lo\\'ing �l S\'Stem fai l u re .

C1refu l \\'ri ri ng a l lo\\'s an �1 ppl icnion to ensure rh:n
rhe data on rhe d isk is never in :tn inconsistent or
i nvalid st:ttc. This guara ntee <woids situations in which
an appliCltion h:ts to scan and possibly re bui ld the d ata
on the d isk after :t system hi l u r e . Recovery to a consis
tent state �1ti:er �l svstcm fai l ur e is oti:en a \'er�· complex
and time - consum i n g t:tsk. Bv ensur ing that the d isk
can never be i nconsistent, u rcfu l writ ing remm·es the
need ten th i s t(mn of recovery.

Ca refu l wri ting is used in situations i n which an
upd;He requ ires several blocks on the d isk to be writte n .

Digir,ll Tcchniol journal Vol . 8 No. 2 J 'J'J6

MILLISECONDS

Most disks guarantee atomic updJte of only J single
disk block. The occurrence of a system tai l u re while
several b locks are being updated cou l d leave the blocks
parti:d ly upd :tted and inconsistent. Cardi.d \\'ri ri ng
amids this risk bv deti ning the order in \\'h ich the
blocks shou ld be upd ated on the disk . I f rhe blocks are
\\'ritten in this order, the data w i l l <l i ways be consistent .

For example, the ti le shown i n Figure 3 re presents
a persiste n t data s trucwre . At the starr of the ti le is a n
i n d e x b l ock, I , th at poi nts t o rwo data blocks \\' i tbin
the tile, A :m d R. The applic:t tion wishes to update the
data (A, R) to t h e ne\\' dac1 (A ' , B') . For the ti le to be
,·a lid , the i ndex m ust poi nt to J consisrenr set o f ch ta
blocks. So, the index must point either to (A, B) or to
(A ' , W) . I t cannot point to a mixture such ;lS (A ' , B) .
Si nce t h e disk can gu:trantee t o write only J si ngle
block �ltomicJ! Iy, the appl ication cannot si m plv \\'rite
(A ' , W) on top of (A, B) because that involves \\'riting
two blocks. Should the system tai l during rhc upcbrcs,
doing so cou ld lca,·e the cbta in an i nva l id st:ttc .

To solve this problem, the appl ication writes the
new dac1 to the fi le in a specific order. F irst, it wri tes
the ncw da ta (A' , B ') to a nc\\' section of the ti le, \\':t i r
i n g u nt i l the data is \\'rittcn to the d isk . O nce (A ' , B ')
are known to be on the di sk, i t atomicallv upd :ncs the
index b lock to poi n t to the nc,,· d:tt<l . The old blocks
(A, B) :�1-c now obsolete, :t n d rhc space they consume
can be reused . During the update , the fi.le i s never i n
<111 i nconsistent state .

I I I A I B

I t t
START

I I I A I B

I t t

j I WRITE (A'. B')

�----��--��----� !
A' B'

WAIT UNTIL ON-DISK

J I A B I
I

!
�---L--------L----L.-...J.... __ ...J....

,

A
_
' .L..-s.·....�.... _____ __.l wR!ITE (l 'l

t t

Figure 3
r:x�1mplc of a Careti. i l Write

Write-behind Caching

A careful write policy rel ics tota l l y on being able to
control the order of writes to the disk . This G mnot be
ach ieved on a write-back cache because the write-back
method docs not preserve the order of write req u ests .
Reordering writes i n a write- bac k cache would risk cor
rupting the data that applications using carefu l wri ting
were seeking to protect. This is u n tclrtu natc because
the pcrtcm11ancc bene fits of d e ferring the write to the
d isk Jrc compatible with a careful write pol in•. Cm.:ful
writing docs not need to know when the data is written
to the d isk, on ly the order it is wJittcn .

To al low these appl ications to gain the pcrt(mnancc
of the write - back cache bur sti l l prorcct their d ata on
d isk, the Spiralog ti le system uses a variation on write
back oching known as write-behind caching. Int ro
d uced in the Echo tile system , write - be h i nd e1ching is
essen tia l l y write- back cac h i ng with ordering guara n
tees.' The cache al lows the appl ication to spccit)r which
writes must be ordered and the order in which they
m ust be written to the disk.

This is achieved bv providing the barrier primitive to
applications. Barrier defi nes an order or dcpendencv
between write operations. For example, consider the
d iagram i n Figure 4: Here, writes arc represented as
a ti me-ordered q ueue, with later writes being added

TIME ----•

Fig u re 4
B<lrrier I n sertion in vVrite Queue

WAIT UNTIL ON-DISK

to the tai l . I n the ex�1mplc, the application issues
the writes in the order l ,2 , 3 ,4 . Without a b<lrricr, the
cache cou ld write the data ro the d isk in any order (tcx
example, 1 , 3 ,4 , 2) . If a barrier is placed in the write
queue, i t speci fics to the cac he that all writes prior to

the barrier must be written to the disk bdorc (or
atomical ly with) any write req uests after i t . In the
example, i f a barrier is placed after the second write,
the cac he ti le system guJranrccs that writes 1 and 2 wi l l
b e written to t h e d i s k before writes 3 and 4. vVritcs 1
and 2 mav sti l l be written in anv order, as could writes
3 and 4 , but 3 and 4 wi l l be written after 1 and 2 .

A carefu l write policy can easi ly be implemented on
a write - behind cac h e . As shown in Figure 5 , the Jppl i
cation wou l d usc barriers to control the wri te ord er
ing. Two barriers arc req uired . The fi rst (B l) comes
after the writes of the new data (A ' , B') . The second
(B 2) is placed after the index update I ' . B 1 is requi red
to ensure that the new cbta is on the d isk before the
index block is updated . B2 ensures that the index
block is updated bd(Jrc :my subseq uent write requests.

The usc of barriers avoids the need to wait tor 1/0s
to reach the d isk, improving C P U ut i l ization . In ad d i
tion , t h e Spi ra log ti le system al lows amalgamation
of supersed ing writes between barriers, red ucing
the n u mber of requests being written to the disk .

NO BARRIER

BARRIER AFTER
SECOND WRITE

Digital Tcchnic;ll Jounul Vol . 8 No. 2 1 996 53

54

START

j ... I ..,. I _____,.. "'"T"_._ __ �-A-'_s_·_._ _____ ...JI wj i TE (A', B')

I •
BARRIER 81 t

......, _____ _ _ _._ __ .J.....,..A_'_s.,..·_._ _____ ...JI wi iTE (I ')

t t •

Figure 5
Ex<�mplc o f �1 Carefu l vVrite Using Barrier

Internal ly, t he Spiralog ti le svstcm a l lows barriers to be
placed between any two writ<: operations, even i f thcv
are to d i fkrc n t fi les . The Spira log fi l e system uses this
to build i rs own carefu l write po l icy for all ch�1ngcs
to Ji les, inc lud ing mctadata changes. This guaramccs
that the fi le system is alwavs consiste n t and gives write
back pcrtcmnancc on changes to ti l e metadata as we l l
as data. One major advan tage is that the Spi ra log ti le
system docs not req u ire a d is k repair u ti l ity such :�s the
U N I X system's fsck to rebui ld the fi l e system tc) l lowing
a system b i l u rc .

Barriers arc used i nterna l ly in several p l aces to pre
serve the order of u pdates to the fi le system meradata.
For exampk , when a ti le is extended , the a l location of
new blocks must be written to the d isk bd()rc any
subseq uent data writes to the newly a l located region .
A barrier i s pl aced immediatcJy after the write req u est
to u pdate the fi le length .

Barriers arc also used d u ring comp lex ti le operations
such as a ti le create . These complex operations ti·c
qucnrly u pdate shared resources such as pare n t d i rec
tories . The barriers preve n t updates to these shared
objects, avoid i ng the ris k of corruption d u e to the
u pdates being reordered by the cache.

At the app l ication leve l , the Spira log fi le system pro
vides the barrier fl.mction onlv within a fi l e . I t is not
poss ib le to order writes between fi les. This WJS su r'fi
cient to Jl !ow R.MS (described in the section Open VMS
File System Envi ron ment) to exp loit the performance
of write- be hind cachi n g on most of irs fi le organiza
tions. R.MS was enhanced to usc barriers i n i ts own
carefu l write policy, which ensures the consistency of
complex ti l e organizations, such :1s i ndexed fi l es, even
when thev �1re s u bject to wri te - beh i nd caching. Since
the majority of Open VMS app lications access the ti le
system through R.MS, gai n ing write- behind cach i ng
on al l RMS ti l e organizations provides a s ignificant
pertormat\CC benefit to appl ications.

DigirJI Tt:chniccll lou nul Vol . 8 No. 2 1 <)96

BARRIER 82

I nrernal lv, the Spiralog ti le system supports barriers
between ti les . The decision to support barriers within
a ti le was made to l imit the complexity of inrcrbcc
changes, in the belief that a cross - fi le barrier was of
l ittle usc to RMS . In retrospect, this proved to be
wrong. Some kev R.t'vlS tile organizations usc secondary
ti les to hold journal records t(>r the main application
tile . These ti le organizations can not express the order
in which u pdates to the two fi l es shouJd reach the disk,
and so arc precluded from using write - be hi nd cach ing.

Application-level Caching Policies

The main problem with the barrier prim iti1 ·c is its
req u i reme n t that the app l ication express the depen
dencies to the ti le system . AJ though this is u n:ll'oid
able , i t means that the appl ication h as to change if
it wishes to satdy exploit write-behind caching. Clearly,
many app l ic1tions were not goi ng to make these
changes . In addit ion, some appl ications have on-d isk
consistency req u i remen ts that tic them to a write
through e nvironment.

The ti le system emu lat ion l ayer provides additional
support tc >r these types of app l ications by exposi ng
th ree cachi ng pol icies to applications. The policies arc
stored as permanent attri bu tes of the fi l e . By defa u l t,
when the ti le is opened by the fi l e system , the perma
nent cach i ng pol icy is used on a l l write req u ests.

The three policies are described as tal lows:

l . Write- through cach ing pol icy. This pol icy provides
applications with the standard write-through beha
vior provided by the hlcs-l l fi l e system . Each write
req uest is Hushed to the disk bd(xe the applic:ltion
req uest returns. If �1 1\ :�pp l ication needs to know
what data is on the disk at �1 1 1 times, ir shou ld usc
write-through cac hi ng.

2 . Write-behind cach in g policy. A p u re write - behind
cache provides the h ighest kvel of pcrt(mnancc.
Di rty dau is not tlushcd to the d isk whe n the ti le is

closed . The semantics of fu ll write-behind caching
arc best suited to applications that can easily regen
erate lost data at any t ime. Temporary ti les from a
compi ler arc a good example. Should t he system
fai l , the com pilation can be restarted without any
loss of data.

3 . Flush-on-close caching pol icy. The fl ush-on-close
policy provides a restricted level of write-behind
caching f(x appl ications. Here, al l updates to the file
are treated as write behind, but when the file is
closed, al l changes are forced to the d isk. This gives
the performance of wri te-behind but, in addition,
provides a known point when the data is on the disk.
This torm of caching is particularly suitable tor appli
cations that can easily re-create data in the event of
a system crash but need to know that data is on the
disk at a specific ti me. For example, a mail store-and
forward system receiving an i ncoming message m ust
know the data is on the d isk when it acknowledges
receipt of the message to the forwarder. Once the
acknowledgment is sent, the message has been for
mally passed on, and the forwarder may delete i ts
copy. I n this example, the data need not be on the
disk until that acknowledgmen t is sent, because that
is the point at which the message receip t is commit
ted . Should the system fai l before the acknowledg
ment is sent, all dirty data in the cache would be lost.
In that event, the sender can easily re-create the data
by sending the message again .

Figure 6 shows t h e resu lts of a performance com
parison of the three caching policies. The test was run
on a d ua l -CPU DEC 7000 Alpha system with 384
megabytes of memory on a RAI D - S d isk. The test
repeated the fo l l owing sequence tor the d i fferent fi le
SIZeS.

l . Create and open a file of the requ ired size and set
its caching policy.

2. Write data to the whole ti le in l ,024- byte 1/0s.

3. Close the ti le .

4 . Delete the ti l e .

With sma l l fi les, t h e n u m ber of fi l e operations (create,
close, delete) dominates. The leftmost side of the
graph therefore shows the time per operation for tile
operations . vVith time, the fi les i ncrease in size, and the
data 1/0s become prevalent . Hence, the rightmost
side of Figure 6 is displaying the time per operation for
data ljOs.

Figure 6 clearly shows that an ordered write-behind
cache provides the highest performance of the t h ree
caching models . For file operations, the write- be hind
cache is a l most 30 percen t faster than the write
through cach e . Data operations are approxi mately
three ti mes faster than the correspond i ng operation
with write-through caching.

(jJ
0 z 0 0 w '!]_
z
Q
f-
<>:
0: w o._ 0 0: w
o._
w
�
f-

0. 1 56

0 . 1 38

0 . 1 2 1

0 . 1 04

0.086

0.069

0.052

0.035

0.01 7

0.000

\
\ ' ' - - - - - - -

1 ,024 2,048 4,096 8 . 1 92 1 6,384 32,768

KEY

FILE SIZE (BYTES)

WRITE-BEHIND CACHE
FLUSH-ON-CLOSE CACHE
WRITE-THROUGH CACHE

Figure 6
Performance Comparison of Caching Policies

Summary and Conclusions

The task of i ntegrating a log-structu red ti le system
into the Open VMS environment was a significant
cha l lenge tor the Spira log project members . Our
approach of carefu l l y determi n i ng the i n terface to
emulate and the level of compatibil ity was i mportan t
t o ensu re t h a t t h e majority of appl ications worked
unchanged .

vVe have shown that an existi ng update- in-place tile
system can be replaced by a log-structured ti le syste m .
I n itial e ffort i n the analysis of application usage fur
n ished i n tormatjon o n interface compati b i l ity. Most
fi l e system operations can be provided through a fi l e
system emu lation layer. Where necessary, n e w i n ter
faces were provided for applications to replace their
d irect knowledge of the Fi les-1 1 fi le system .

Fi le system operation tracing and fu nctional analysis
of the Fi les-1 1 fi le system proved to be the most use fld
techniq ues to establ ish i n terface compati b i l ity. Appl i
cation compati bi l ity far exceeds the l evel expected
when the project was started . A majority of people use
the Spira log ti le system vol umes without noticing any
change in their application's behavior.

Careful write policies rely on the ord er of updates
to the disk. S ince write- back caches reorder write
requests, appl ications using carefu l writ ing have been
unable to take advantage of the signi ficant i mprove
ments in write performance given by write- back
cach i ng. The Spiralog ti le system solves this problem
by provid ing ordered write - back cac hing, known as
write- beh i n d . The write- beh i nd cache allows appl ica
tions to control the order of writes to the d isk through
a primitive cal led barrier.

Using barriers, appl ications can bui ld careful write
policies on top of a write-behind cache, gai ning a l l the
performance of write-back caching withou t riski ng

Digital Technical)ournall Vol. 8 No. 2 1 996 55

56

d:�u integritY. A \\Ti re - behind cache a lso �1 l lows the ri le
system itsel f ro gai n write -back ped(>nll<l l1ce on a l l
�i l e svstc m operations. S ince m a ll\' fi le svstem opera·
tions �1re themselves quickly su perseded, using write·
behind caching prevents manv ti le svstem operations
from ever reach ing the d isk. BJ rricrs a l so a l low the ti le
system to protect the on-disk fi l e system consistency
by i mpkmcnting i ts own cardi.J! write pol icy, avoiding
the need for disk repair ut i l i ties.

The barrier prim i tive provided �l way to get write
through semantics with i n a fi le for those appliutions
relying on carcfi.1l write pol icies. Changing 1\JV!S to usc
the b�l!Ticr pri m i tive al lowed the Spiralog fi le system
to support write - behind cach i ng as the dehu l t pol icv
on :� l l ti le tvpes i n the OpenVJ'v!S environ ment.

Acknowledgments

The deve lopment of the Spira log �i lc system involved
rhc help and su pport of many individuals . We wou ld
l ike to acknowledge Ian Pattison, i n particu lar, who
developed the Spira log cache. We a lso want to thank
C:nhy �olcy and Jim Johnson t(>r their he lp through·
out the project, and Karen H owe l l , Morag Cu rrie, and
a l l those who h elped with this paper. fi ll<l l ly, we arc
\'cry gratdi.J ! to And�, Goldste in, S tu Davi dson, and
Tom Speer �(>r their he lp and advice w i th the Spira log
imcgr:t tion work.

References

I . J . Joh nson Jnd vV. LJ i ng, "Ov.:rv icw of t l 1e Spin l og Fi le

Svste m , " Digital Tech n ical jounwl. \'o l . 8 , no . 2
(1 996, th is issu e) : 5-1 4 .

2 . C. Whitaker, S. Bayley, and R. W iddowson , " Design o f the
Server l(>r the Spiralog File System," DiMilrtl Techn ical

.foil n wl. mi . 8, no. 2 (1 996, this issue) : l S-3 I .
3 . R . c_; reen , A . Baird , and J . Da,·ics, " Design i n g a bst,

O n - l i ne Backup Svstem �oc a Log·stcuctu red f i le Svs
te m ," DigiWI Tech n ical}oumct!. ,·o l . 8, no. 2 (1 996,
this issue) : 3 2 - 4 5 .

4 . A . B i rre l l , A. H isgen , C. Jeri an , T. M a n n , and C . Swarr,
"The Echo Distribured Fi le S\'Ste m," D igi o l Systems
Resorch Cen ter, Resea t·c h Report l l l (Septem ber
1 99 3) .

S . Upen VMS 110 Users Refereuce Man ual (Maynard ,

,\ILJss . : D igita l Equipment Corporation, I 988) .

6 . R . Go lden berg a n d S. Saravanan , Open \ 'MS A XP lnter-

1 /Cils and Data Structures (Newton , Mass . : D igital
Press, 1 994) .

7 . S . Kleiman, "Vnodcs: An Arch itecture �(n M u l ti p le Fi le
Svstem T1·pcs i n S u n U�IX," Pmceedin,r.;s o/Summer
I SF,\IX Conf£'rence. At lanra , Ga. (1 986): 2 3 8-247.

8 . K. ,'vicCo\', 1 ' \IS File 5) 'slem lntemctl,· (B u r l i ngron ,
MJss . : D i gita l Press, 1 990) .

Dig:it:JI Tcchniol Journal Vol . 1{ No. 2 1 996

Biographies

Mark A. Howel l
Mark Ho\\'c l l i s e1 11 e ngi neeri ng nunagcr i n t he Of'cnV,\!S
Engi n eer ing Cwup in L. i , i ngston , U . K. "-'Iat·k was the proj
ect le;1der �or Spi ra l og ;md 11-rore some of the product code .
He is no,,· rn.magi ng the tc>l lo" ·on releases to S pir<l l og 1cr·
sion 1 .0 . I n prc,·ious projects, i\hrk contributed to DigiL1 I 's
D ECdtm d istribured tL1ns.1crion manager, DECd �s d istr ib·
u tcd fi le SI'Stc m , a n d the Alpha porr of Open VMS . Prior
ro jo i n i ng D igita l , tVb t·k \\'Orkcd on tl igbt simu lators ;md
fl ight sotiware �(Jr R t-i t ish Aerosf1acc . M;lrk received a 1� .Sc.
(honours) in m;tri ne b io log-y e1nd bio<:hem istry ti-0111 Bangor
U n iversi ty, v\',l lcs . H e is one o fthe rat·e peopl e w ho sti l l l i ke
i n teractive �ict ion (the st u ffl'ou ha1·e to tl'pc, i ns tc1d of thc
sruff vou po i n t " mouse e1t .)

Jul ian M . Palmer
A se n ior soft\\';J rc c n gi ncn, j u l i.1n P;J i mn is a member of
the Open VMS Engineeri n g (;roup in Li,·ingsto n , ScotLl l ld .
He is currcnrh· ' ' orkitlg on ti l e Sl·stem oching for Open\',\ IS .
Prior ro his 11·ork i n ti le s\·stcms, J u li<lll contri buted to
OpenVi\IS i mcrproccss <:ommu nicttion. J u l ian joined
Digi ta l i n 1 989 ;ltl e r complcti t lg his f\ .Sc. (honours) in
compu ter science ti·om Ed i n b urgh U n i n: rsi tY.

Extending OpenVMS
for 64-bit Addressable
Virtual Memory

The OpenVMS operating system recently

extended its 32-bit virtual address space to

exploit the Alpha processor's 64-bit virtual

addressing capacity while ensuring binary

compatibi l ity for 32-bit non privi leged pro

gra ms. This 64-bit technology is now avai lable

both to Open VMS users and to the operating

system itself. Extending the virtual address

space is a fundamental evolutionary step for

the OpenVMS operating system, which has

existed with in the bounds of a 32-bit address

space for nearly 20 years. We chose an asym

metric d ivision of virtual address extension that

al locates the majority of the address space to

appl ications by min imizing the address space

devoted to the kernel. S ign ificant sca l ing issues

arose with respect to the kernel that dictated

a d ifferent approach to page table residency

within the OpenVMS address space. The paper

d iscusses key scaling issues, their solutions,

and the resulting layout of the 64-bit virtual

address space.

I
�chaei S. llarvey

Leonard S. Szubowicz

The OpcnVMS Alpha operating system in itia l ly sup
ported a 32 -bit virtual add ress space that maximized
compatibi l ity for Open VMS VAX users as they ported
their applications from the VAX platform to the Alpha
plattonn. Providing access to the 64-bit v irtual mem
ory capabi l i ty detlned by the Alpha architecture was
always a goal tor the Open VMS operating system . An
early consideration was the eventual usc of this tech
no logy to enable a transition from a purely 32-bit
oriented context to a purely 64-bi t-oricnted native
context. OpenVMS designers recognized that such
a fundamental transition tor the operating system,
along with a 32 -bi t VAX compatibi l i ty mode support
environment, would take a long time to implement
and cou ld seriously jeopardize the migration of appl i
cations from the VAX platform to the Alpha platform.
A phased approach was cal led tor, by which the operat
i ng system cou ld evolve over time, a l lowing tor quicker
time-to-market for significant features and better, more
timely support for binary compatibi l ity.

In 1 989, a strategy emerged that defined two funda
mental phases of Open VMS Alpha development. Phase
1 wou ld del iver the Open VMS Alpha operating system
initiaUy with a virtua l address space that faithfully repl i
cated address space as i t was defined by the VAX archi
tecture. This fami l iar 32-bit environment would case
the migration of applications from the VAX platform
to the Alpha platform and wou ld case the port of the
operating system i tself. Phase l , the OpenVMS Alpha
version 1 .0 product, was del ivered in 1 992. 1

For Phase 2, the Open VMS operating system would
successful ly exploit the 64-bit virtual add ress capacity
of the Alpha archi tecture, laying the groundwork
tor further evolution of the OpenVMS system . In
1 989, strategists predicted that Phase 2 could be del iv
ered approximately three years after Phase 1 . As
planned, Phase 2 culminated in 1 995 with the del ivery
of Open VMS Alpha version 7 .0, the first version of
the OpenVMS operating system to support 64-bit
virtual addressing.

This paper d iscusses how the OpenVMS Alpha
Operating System Development group extended the
OpenVMS virtua l add ress space to 64 bits . Topics
covered include compatib i l i ty for existing applica
tions, the options for extending the add ress space , the

Digital Tt"chnical Journal Vol . 8 No. 2 19Y6 57

5 8

strategy tor page table residency, and the fi nal layout of
the Open VMS 64- bi t v irtua l add ress space. I n imple
ment ing support tor 64- bit virtual add resses, design
ers maximized privileged code compatibi l ity; the paper
presents some key measures taken to this e nd <lnd pro
vides a privileged code example . A d iscussion of the
i m med iate use o f 64-bit addressing by the Open VMS
kernel and a sum mary of the work accompl ished con
clude the paper.

Compatibil ity Constrai nts

Growi ng the virtual address space ti·o m a 32-b i t to
a 64- bi t capac i ty was su bject to one m·er:trching con
sideration : compatib i l ity. Spec i tic:tl ly, any existing non
privil eged program that could execute prior to the
i ntroduction of 64- bi t add ressing su pport, even in
binary torm, must cont i n u e to run correct l y and
un modified u n der a version of the Open VMS operat
ing system that supports a 64-bit virtual add ress spac e .

I n this con text, a n o n privileged program is o n e that
is coded only to stable interfaces that arc 110t al lowed
to change from one release of rhe operating system to
another. I n contrast, a privi leged program is defi ned
as one that m ust be l i nked agai nst the OpenVMS
kernel to resolve rercrences to i n ternal i n tert;Kes and
d ata structures that may change as the kernel evolves.

The compatib i l ity constraint dictates that the t<> l l ow
ing characteristics of the 32-bit virtual address space
environmen t, upon which a nonprivi leged program
may depend, m ust contin u e to appear u nchanged 2

• The lower-add ressed ha l f (2 gigabytes [G B]) of vir
tual address space is defi ned to be private to a given
process. This process-private space is ti.1 rther divided
into two 1 - G B spaces that grow toward each other.

1 . The lower 1 - G B space is referred to as PO sp�1ce.
This space is cal led the program region, where
user programs typically reside whi le running.

2. The higher 1 -G B space is referred to as P l space .
This space is cal led the control region and con
tains rhe stacks k>r a given process, process
permanent code, and various process -specific
control cells.

• The higher-addressed hal f (2 G B) of virtual add ress
space is detlned to be shared by a l l processes. This
shared space is where tbe Open VMS operating sys
tem kernel resides. Although the VAX architecture
divides this space i n to a pair of separately n amed
1 -G B regions (SO space and Sl space) , the Open VMS
Alpha operating system makes no material d isti nc
t ion between the two regions and re ters to them
collectively <\S S0/5 1 space.

Figure 1 i l l ustrates the 32-bi t vi rtual address space
l ayout as implemented by the Open VMS Al pha oper
ating system prior to version 7 . 0 . ' An i meresti ng

Digiral Tcd111i�JI Journal Vol . 8 No. 2 l Y%

mechanism can be see n in the A l pha i m plementation
of this add ress space. The Alpha arch i tectu re defi nes
32-bi t load opera tions such that V<l l ues (possibly
poi n ters) arc s ign exte nded from bit 3 1 as they are
loaded in to registers . -' Th is fac i l i tates add ress calcu la
tions with resu l ts that arc 64-bit, s ign-extended t(mm
of the origina l 3 2 - bi t poi nter values. For a l l PO or P l
space add resses, the upper 32 bits of a given poi nter in
a register wi l l be written with zeros. For a l l SO/S l
sp<Ke add resses, rhe u pper 32 bi ts of a given poi n ter i n
a register wi l l b e written with ones. Hence, on the
A l pha pla tti:mn , the 3 2 - b i t virtual add ress space actu
a l ly ex ists <lS the lowest 2 C B and h ighest 2 G B of rhe
ellti re 64- bi t virtu:� l :�dd ress space. From the perspec
tive of a program using onlv 32-b i t poi n ters, these
regions appear to be contiguous, exact ly as they
appeared on the VAX platform .

Superset Address Space Options

We considered the t(> l lowing three general options ti:>r
extending the address space beyond the curren t 3 2 - bi t
l imits . The degree to which each option \\'Ou ld rel ieve
the add ress sp<lce pressure being k i t by applications
and the OpenVMS kernel itse l f varied signi ticantly,
as d id the cost of imp l ementing each option.

l . Ex tension of s lured space

2 . Extension ofprocess-priv;\te space

3. Extension of both shared space and p rocess-private
sp:-�ce

The first option considered was to extend the virtual
add ress boundaries for shared space on ly. Process
private space would remain l i m i ted to i ts current size
of2 G B . I f processes needed access to a h uge amount
of v irtua l memory, the memory wou l d have to h ave
been created in shared space where, by defi n ition, a l l
processes wou ld h ave access t o i t . This option 's c hief
advantage was that no changes were req u i red i n the
com plex memory management code that spec i fical ly
supports process-private space . Choosing this option
would have m in im ized the t ime-to-market for del iver
ing some degree of virtual address extension, however
l imited it wou ld be. Avoid ing any i m pact ro process
private space was a l so i ts chief d isadvan t<�ge . By fai l ing
to extend process-private space, this option proved to
be gener<� l l y unappeal ing to our customers. I n addi
tion , it was viewed as a makeshitt sol ution that we
wou ld be unab le to d iscard once process-private space
was extended :lt :1 fu ture t ime.

The second option was to extend process-private
space only. This option wou l d have de l ivered the
highly desirable 64- bi t c:1pacity to processes but would
not have extended shared sp<Ke beyond i ts current
32- bit boundaries. The option presu med to red uce
the degree of change in the kerne l , hence maxi mizing

PROCESS
PRIVATE
(2 GB)

00000000.00000000

00000000. 7FFFFFFF
•JOOOilOOO HOOOOOOO

I
I
I

/ /
/1

/

PO SPACE

P 1 SPACE

UNREACHABLE WITH
32-BIT POINTERS

12 2 't BYTES

/ / / /
/ -------; / / / /

� Cj � 0
R'

Ff r f 7FFF"FFF : �--------------�

SHARED
SPACE
(2 GB)

FFFFFFFF .80000000

SO/S1 SPACE

FFFFFFFF.FFFFFFFF L------------1

Figure 1
Open VMS Alpha 32-bit Virtual Address Space

privi leged code compatibi l ity and ensuring Elster time
to- market. However, analysis of this option showed
that the1-c were enough significant portions of the ker
nel requiring change that, in practice, very l itt le add i
tiona l privi leged code compati bi l ity, such a s tor
drivers, wou ld be achievable . A lso, this option did not
address certain important problems that are specific to
shared space, such as l imitations on the kernel 's capac
ity to manage ever- larger, very large memory (VLM)
systems in the futur e .

We decided to pursue the option o f a fl at, superset
64-bit virtual address space that provided extensions
f(x both the shared and the process-private portions of
the sp:1ce that a given process could reference. The
new, extended process-private sp:1ce, named P2 space,
is ad jacent to P l space and extends toward h igher
virtual addresses . "5 The new, extended shared space,
named 52 space, is adjacent to 50/5 1 space and
extends toward lower virtual addresses. P2 and 52
spaces grow toward each other.

A remaining design problem was to decide where
P2 and 52 woul d meet i n the address space layout.
A simple approach wou ld split the 64-bit address
space exactly in ha l t� symmetrical ly sca l ing up the
design of the 32 -bit address space a lready in p lace .
(The add ress space is spl it in this way by the Digital
U N I X operating system 3) This solution is easy to
explain because, on the one hand, it extends the 32-bit
convention that the most significant address bit can be
tre<lted as a s ign bit, ind icating whether an address
is private or shared . On the other hand, it a l locates
fu l ly OtJe -ha lfthe avai lable virtual add ress space to the

operating system kernel , whether or not this space i s
needed i n i ts e nt irety.

The pressure to grow the address space genera l ly
stems from appl ications rather than from the operat
ing system itself In response, we implemented the
64-bit address space with a boundary that tloats
between the process-private and shared portions. The
operating system configures at bootstrap only as much
virtual add ress space as it needs (never more than
50 percent of the whole) . At this point, the boundary
becomes fixed for a l l processes, with the majority of
the address space avai lable for process-private use.

A floating boundary maximizes the virtual address
space that is avai lable to appl ications; however, using
the sign bit to d istinguish between process-private
pointers and shared -space pointers continues to work
only for 32 -bi t pointers. The location of the floating
boundary must be used to d istinguish between 64-bit
process-private and shared poin ters. We bel ieved that
this was a minor trade-off in return tor rea l izing twice
as much process-private address space as wou ld other
wise h ave been achieved .

Page Table Residency

While pursu ing the 64-bit virtual address space layout,
we grappled with the issue of where the page tables
that map the address space wou ld reside within that
address space. This section d iscusses the page table
structure that supports the Open VMS operating sys
tem, the residency issue, and the method we chose to
resolve this issue .

Digiral Technical journal Vol . 8 N o . 2 1 996 59

60

Virtual Address-to-Physical Address Translation

The Alpha arch itecture a l lows an impl ementation to
choose one of the fol lowing tour page sizes: 8 ki lo
bytes (KB), 16 KB, 32 KB , or 64 KB . ' The architecture
also ddines a mu lti leve l , h ierarchical page table struc
ture for virtual address- to-physical add ress (VA-to
PA) translations. Al l OpenVMS Alpha platforms have
i mplemented a page size of 8 KB and three levels
in this page table structure. Although throughout
this paper we assume a page size of 8 KB and three
l evels in the page table h ierarchy, no loss of genera l i ty
is incurred by this assumption.

Figure 2 i l lustrates the VA-to-PA translation
sequence using the mu l ti level page table structure.

l . The page table base register (PTBR) is a per-process
pointer to the highest leve l (L l) of that process'
page table structure. At the h ighest level is one
8 - KB page (Ll PT) that contains 1 ,024 page table
entries (PTEs) of 8 bytes each . Each PTE at the
h ighest page table level (that is, each L l PTE) maps
a page table page at the next lower level in the tr;.Jns
lation h ierarchy (the L2PTs) .

2 . The Segment 1 bit field o f a given virtual address
is an index i nto the L l PT that selects a particular
L l l'TE, hence selecting a specific L2PT tor the next
stage of the tra nslation .

3 . The Segment 2 bit fie ld of the virtua l add ress
then i ndexes i nto that L2PT to select an L2PTE,

Figure 2

V I R T U A L
A D D R E S S

63 I
SIGN EXTENSION
OF SEGMENT 1

PAGE TABLE
BASE REGISTER

42

SEGMENT 1

L1 PT

Virtual Address-to-Physical Address Translation

Digital Tec hn ical)oumal Vol . 8 No. 2 1 996

hence selecting ;1 specific L3PT tor the next stage
ofthe translation .

4. The Segment 3 bit tie ld of the vi rtual add ress then
i ndexes into that l..3PT to select an L3PTE, hence
selecting a specific 8 - KB code or data page .

5 . The byte-within -page bit f-ie ld of the virtual address
then selects a specific byte address in that page .

An Alpha implementation may increase the page
s ize and/or number of levels in the page t:�ble h ierar
chy, thus mapping greater amounts of virtual space up
to the fu l l 64- bit amount . The assu med com bin:�tion
of8 -KB pJge size and three levels of page table a l lows
the system to map up to 8 teralwtes (TB) (i .e . , 1 ,024
X 1 ,024 X l ,024 X 8 KR = 8 TB) of virtual memorv
for a single process.

To map the entire 8 -TB Jddress space avai lable to a
single process requi res up to 8 GB of PTEs (i .e . , 1 ,024
X l ,024 X I ,024 X 8 bytes = 8 GB). This bet alone
presents a serious sizing issue f(>r the Open VMS oper
ating system. The 32 -bit page table residency model
that the Open VMS operating system ported ti·om the
VA,'{ plattorm to the Alpha platform does not have
the capacity to support such large page tables.

Page Tables: 32-bit Residency Model

We stated earl ier thJt mater ia l iz ing a 32-bit v irt ua l
address space <lS it \\'JS dcnned bv the VAX architecture
would ease the dh.>rt to port the Open VMS operating

3 2 3 1 'I ..1 0 ' '
BYTE

: SEGMENT 2 SEGMENT 3 WITHIN ' PAGE '

L2PTs L3PTs DATA PAGES

system tl·om the V fv'<.. platform to the Alpha platform.
A concrete example of this relates to page table resi
dency i n virtual memory.

The VAX architecture defi nes, for a given process,
a PO page table and a PI page table that map that
process' PO and P I spaces, respectively.2 The architec
ture specifies that these page tables are to be located i n
SO/SI shared virtual address space. Thus, the page
ta bles in virtual memory are accessible regardless of
which process context is currently active on the system.

The Open VMS VAX operating system places a given
process' PO and Pl page tables, along with other per
process data, in a fixed -size data structure cal led a bal
ance slot. An array of such slots exists withi n SO/Sl
space with each memory-resident process being
assigned to one of these slots.

This page table residency design was ported from
the VAX platform to the Alpha platform . 1 The L3PTs
needed to map PO and P I spaces and the one L2PT
needed to map those L3PTs are all mapped i n to a bal
a nce slot in SO/Sl space . (To conserve virtual mem
ory, the process' Ll PT is not m apped i nto SO/Sl
space.) The net effect is i l lustrated i n Figure 3 .

The VAX architecture defi nes a separate, physically
resident system page table (SPT) that maps SO/S l
space. The SPT was explicitly mapped i nto SO/S l
space by the Open VMS operating system on both the
VAX and the Alpha platforms.

Figure 3

BALANCE
SLOTS

:

SLOT

SLOT

SLOT

SLOT

SLOT

SLOT

:

Only 2 megabytes (M B) of level 3 PT space is
required to map a l l of a given process' PO and PI
spaces. This balance slot design reasonably accommo
dates a large n umber of processes, all of whose PO and
Pl page tables s imultaneously reside within those
balance slots in SO/SI shared space.

This design cannot scale to s upport a 64-bit virtual
add ress space. Measu re d i n terms of gigabytes per
process, the page tables required to map such a n enor
mous address space are too big for the balance slots ,
w h i c h are constrained t o exist i nside t h e 2 -GB SO/Sl
space . The designers h a d to fi nd another approach for
page tab le residency.

Self-mapping the Page Tables

Recall from earlier discussion that on today's Alpha
implementations, the page size is 8 KB, three levels of
translation exist within the hierarchical page table struc
ture, and each page table page contains 1 ,024 PTEs.
Each Ll PTE maps 8 GB of virtual memory. Eight giga
bytes of PT space allows all 8 TB of virtual memory that
this i mplementation can mateJialize to be mapped.

An e legant approach to mapping a process' page
tables i nt o virtual memory is to selt:map the m . A s in ·
g le PTE i n the h ighest · level page table page is set to
map that page table page . That is, the selected Ll PTE

contains the page ti·ame n u mber of the level I page
table page that contains that Ll PTE.

PROCESS
HEADER

PROCESS·PRIVATE
L2PT

t
PO PAGE TABLE
(L3PTs) / / / / / SIZED AT / / / / / / / / / BOOTSTRAP / / / / / / / / / / / / / /
P1 PAGE TABLE
(L3PTs)

t ARROWS INDICATE
DIRECTION OF GROWTH

32· bir Page Tables in S0/51 Space (Prior to Open VMS Alpha Version 7 .0)

Digital Technical journal Vol . 8 No. 2 1 996 6 1

62

The effect of this self- mapping on the VA-to-PA
translation sequence (shown in Figure 2) is su btle but
important.

• For those virtual addresses with a Segment l bit
field va lue that selects the self- mapper Ll PTE, step
2 of the VA-to-PA translation sequence reselects
the L l PT as the effective L2PT (L2PT ') tor the
next stage of the translation.

• Step 3 indexes into L2PT ' (the Ll PT) using the
Segment 2 bit field value to select an L3 PT '.

• Step 4 i ndexes into L3PT ' (an L2PT) usi ng the
Segment 3 bit field val ue to select a specific data
page.

• Step 5 i ndexes i nto that data page (an L3 PT) using
the byte-within -page bit field of the virtual add ress
to select a specific byte address with in that page .

When step 5 of the VA-to-PA translation sequence
is fin ished , the fina l page being accessed is itse lf one of
the level 3 page table pages, not a page that is mapped

Figure 4

L 1 PT
_ ,,.r--------r

PTBR

L 1 PT'S PFN · � . .

KEY:

PTBR
PFN
PTE

PTE # 1 022 L 1 PT'S PFN

L--------1. . .

PAGE TABLE BASE REGISTER
PAGE FRAME NUMBER
PAGE TABLE ENTRY

Eftect of Page Table Se l f�map

Digiral Technical Journal Vol. R No. 2 1 996

by a l evel 3 page table p::�ge . The self- map operation
p laces the entire 8 - G B page table structure at the end
of the VA-to-PA translation seq uence for a specific
8-GB portion of the process' add ress space. This vir
tual space that contains a l l of a process' potentia l page
tables is cal l ed page table space (PT space) ."

Figure 4 depicts the effect of self-mapping the page
tables. On the left is the highest- l eve l page table
page conta in ing a fixed number of PTEs. On the right
is the virtual add ress space that is mapped by that page
table page. The mapped address space consists of a col
lection of identical ly sized , contiguous add ress range
sections, each one mapped by a PTE i n the corre
sponding position in the h ighest-level page table page .
(For clarity, lower levels of the page table structure arc
omitted from the llgure .)

Notice that L l PTE # 1 022 i n Figure 4 was chosen to
map the high- level p::�ge table page that contains that
PTE. (The reason f()r th is particu lar choice wi l l
be explained in the next section. Theoretically, any one

64-BIT ADDRESSABLE
VIRTUAL ADDRESS SPACE

PO/P1
00000000.00000000

8-GB #0

1 ,020 X 8 GB

PT SPACE f 8-GB O W22

t-_-__ -_-_s-o;-_s_1 __ _ -_-�_ \ :,:::::3,,mm

of the L l PTEs could have been chosen as the self
mapper.) The section of vi rtual memory mapped by
the chosen Ll PTE contains the entire set of page
tables needed to map the avai l able add ress space of
a given process. This section of virtual memory is PT

space, which i s depicted on the right side of Figure 4
in the 1 ,022d 8-GB section in the material ized virtual
address space .

The base address for this PT space i ncorporates the
i ndex of the chosen self mapper Ll PTE (1 ,022 =
3FE(l 6)) as fol lows (see Figure 2) :

Segment 1 b i t field = 3FE
Segment 2 b i t field = 0
Segment 3 bit field = 0

Byte within page = 0,

which resul t in

VA = FFFFFFFC.OOOOOOOO
(a lso known as PT_Base) .

Figure 5 i l lustrates the exact contents of PT space
for a given process. One can observe the positional
effect of choosing a particu lar h igh- level PTE to self
map the page tables even with in PT space. In Figure 4,
the choice of PTE for selfmapping not only places PT

space as a whole i n the l ,022d 8-GB section in vi rtual
memory but also means that

• The 1 ,022d grouping of the lowest - level page
tables (L3 PTs) within PT space is actual ly the col
lection of next-h igher-level PTs (L2PTs) that map
the other groupings ofL3PTs, beginning at

Segment l bit field = 3FE
Segment 2 bit field = 3FE
Segment 3 b i t fie ld = 0
Byte within page = 0,

which resu l t in

VA = FFFFFFFD.FFOOOOOO
(a l so known as L2_Base) .

• Within that block of L2PTs , t h e 1 ,022d L2 PT is
actual ly the next-higher- level page table that maps
the L2 PTs, namely, the Ll PT. The Ll PT begins at

Segment I bit field = 3FE
Segment 2 bit field = 3FE
Segment 3 b i t fie ld = 3FE
Byte within page = 0,

which resu l t in

VA = FFFFFFF D.FF7FCOOO
(a lso known as Ll_Base) .

• Within that Ll PT, the l ,022d PTE is the one used
for self-mapping these page tables. The add ress of
the self-mapper Ll PTE is

NEXT-LOWER 8 GB

Figure 5
Page Table Space

PAGE TABLE
SPACE (8 GB)

PT_BASE:

L2_BASE:

L 1 _BASE:

l 1 ,024 L3PTs

1 ,021 x (1 ,024 L3PTs)

L2PT
- -

1 .02 1 L2PTs
1 ,024 L2PTs

- -
L 1 PT - -- - - - - - - - - - - - - - - - - - - -
L2PT

l 1 ,024 L3PTs

NEXT-HIGHER 8 GB

Digit:JI T<:chnic.ll journal Vol . R No. 2 1996 63

64

Stgmem l bit rie ld = 3FE
Segmellt 2 bit tleld = 3FE
Segment 3 bit rie ld = 3 r E
Bvte within page = 3FE X 8
,,· hich resu l t i n

VA = FrHH FD. FF7FDHO .

This posit ional correspondence within PT space is pre
served should a d ifrcrenr high-b·e l PTE be chosen r(>r
se l f-mapping the p:�ge tables.

The propert ies i n herent in this sc lf mapped page
tabk Jrc compe l l ing .

• The amount of v irtua l memory reserved is ex:�ct ly
the amount requ i red for mapp ing the page ta b les,
regard less of page size or page t:�blc depth.
Consider the stgme m-numbered bit fields of :1
given virtua l address ri·om Figure 2 . Concatenated ,
these b i t tic lds constitute the \' i r tual page number
(VPN) portion of a gi,·en virtual address .

The tor:� I size of the PT space need ed to map n·en·
Vl'N is the nu mber of possible V PNs times 8 l)\'tes,
the size of :1 PTE. The tota l size of the add ress
space mapped bv that PT space is the nu mber of
possib le VPNs times the page size. Factori ng
out the VPN mu lt ip l ier, the d i ftc rence between
these is the page size d iv ided bv 8, which is cxactlv
the size of the Segmen t 1 bit fie ld in the \ ' ir
tual :�dd ress. Hence, J l i the space mapped Lw �1
single PTE Jt the h ighest level of p:1ge tab le is
exacrly the s ize required for mapping all the I'TEs
that could ever be needed to map the process'
�1ddress sp:�ce.

• The mapping of PT space i nvolves simplv choos
ing one ohhe highest-b·e l PTEs and forcing i t to
sel r:map.

• No add ition:�! system tun i ng or coding is required
to :-�ccommodatt a mort \\' ide ly impleme nted
\ irtLd address width in PT space. Bv ddin i tion of
rhe sc l f m:1p cftecr, rhe cxacr amount of ,·i rtu �1 l
address space req u i red wi l l be a,·a i l ab le , no more
and no less.

• lr is easy to locate a given PTE. The add rcss of
:1 PTE becomes an efficient funct ion of the address
that rhc PTE m:1ps. The function first c l c1rs
the byte-with i n -page bit field of the subject vi r
ttd add ress and then shifts the remaining virru�1 1
J.ddress b i ts such that rhe Segments 1 , 2 , and 3 bit
ricld va l ues (Figure 2) now reside i n the cmTc
sponding next- lower bit ricld positions. The func
tion then wri tes (and s ign extends if necessary)
the ,.�1c1ted Segment l ticld with the index of
the se l fmapper PTE . The result is the add ress
o t· the r'TE that maps the origina l \ ' i rtua l add ress .
Note that this a lgorithm a l so ,,·orks ror addresses

Dig:ir.tl ' 1 \:dmicJI)uu nlJ! Vo l . 8 No. 2 I YY6

\\' ith in PT space, i nc lud ing that of the se lf mappn
PTE itsc lt'.

• Process page L1blc residcnc1 · in , · irtu�1 l 111e mon· is
:�chie,'Cd ,, · i thout imposing on the c:1pacin· ot'
sh:� rcd space . Th:-�r is, there is no longer �� need ro
111�1p the process page tables in to shared space . Such
a 111�1pping \\'Ou ld be red undant and \\'�lstefu l .

Open VMS 64-bit Virtual Address Space

With this page table residency strategy in h:�nd, i t
beca me possi ble ro tina l ize a 64-bit virtu:� I add ress l ay
our r(>r the Open VtviS operating system. A self mapper
I'TE had to be chosen . Consider ag:�i n the highest b·e l
of page tab le i n a given process' page table structure
(Figure 4). The first PTE in rh:u page table 1mps a sec
tion ofvirru�1 l memorv that inc l udes PO and PI spaces .
TIJis PTE \\'JS rherdore una,·a ibblc tc>r usc as a scl t�
mapptr. The last PTE i n that page t:-�b lc n1�1ps a section
ohirtual memorv that includes SO/S I space. This I'TI-'.
was :�!so una,·a i l �lbk tor se l t:mapping purposes.

All the intu,·cn ing h igh -Jn·el PTEs ,,·ere potent i a l
choices t<>r se l t:mapping the page rabies. To m�n imizc
the size of pmccss -pri\ ate space , the COITCCt choice
is the ncxt- lmn::r PTE than the one rh:�t maps the lo\\·
est :�ddress in sh;H·ed sp:�ce.

This choice is implemented �1s a boor-r ime a lgo
ri thm . Bootstrap code Erst dercnnines the s ize
req u i red for OpcnVMS sh ared space, ca lcubr ing the
correspond ing number of h igh- level PTLs. A su fti
c ient number of PTEs to map rh:�r shared sp�1cc arc
�1 l l ocated Lner ti·om the h igh -order end of a gi, ·cll
process' h ighest- ln·d page tab l e page. Then t l 1c next
lower PTE is a l located tor sclfn1�1pping tiLlt process'
page r:�bles. All rema in ing l <l\\'er-ordered I'TEs arc lett
:l\·�1 ibb l e t(> r ma pping [Jrocess- pri, ·�uc sp�Ke . In pr�lc
t ice, ncarh· a l l the l'TEs are a\·:� i l Jb lc , ,,·h ich mc1ns riLlt
on roda\·'s svstcms, a lmost 8 TB of process pri\ �1rc , · ir
ru�l l mcmon· is a\·�1 i lablc to a gi,·en Open V1'viS pmccss .

F igure 6 presents the ri.nal 64 -bir OI)CllVI'vLS , · irtual
add ress space la\·out . The portion \\'i th the lo\\·cr
addresses is cmire lv proccss -pt· i, ·Jte . The h ighn
�lddrcsscd port ion is sbared b�· �1 1 1 process ,1ddrcss
sp�lCcS. PT space is a region oh·irtual memor\' th�lt l ies
lxrwecn the P2 and S2 spaces rC)[am· gi\'C l l pmccss
�1 11d at the s�1 111e virtual Jddress t())' a l l processes.

Note rh�H I''T' sp�1ce i rsel t'consisrs of a proccss ·pri ,·�1rc
and J shared f)Ortion . Again, consider figure 5 . 'The
h ighest-b·cl p �1ge tJblc page, Ll l'T, is proccss-pri''�ltc .
I r is poimcd to lw the PT B R . (When a process' comcxt
is l o��tkd, or 111�1dc acti\T, the process' PT B R \ :l luc is
loaded ti·om rhc process' hard,, ·art- pri, · i legcd comnt
block into r he PT B 1\ register, t l lcrc l)\' J 1 1 �1k ing cu rrellt
the p:�ge r�1blc structure poimcd ro lw rh�1t l 'T B R ,md
the pmcess-pri,·�lte �1ddress space th<l t it maps.)

/ /
/1 /

/ /
/ / ____,_:__, / / / / /

/

PO SPACE /
00000000.00000000

00000000. 7FFFFFF
00000000.80000000

F P1 SPACE 1-------: /
/ /

:::b: P2 SPACE :;;::

------:;
/

/
/

;; PAGE TABLE SPACE ;; - - /
/ �0 /00

/ (;0 �«-0 PROCESS-PRIVATE
- - - - - - - - - - - - - - - - - - « - - -

SHARED SPACE

::::;::

F FFFFFFFF. 7FFFFFF

FFFFFFFF.80000000

S2 SPACE :;;:�

SO/S1 SPACE
FFFFFFFF.FFFFFFF F

Note that this drawing is not to scale.

Figure 6
Open VMS Alpha 64 - bit Vi rtual Address Space

All higher-add ressed p:�gc tables in PT space are
used to map sh:.1red space and are themselves shared .
They arc also adjacent to the shared space that they
map. All page tables i n PT space that reside at
add resses lower than that of the L l PT :�re used to map
process-private sp:.1ce. These p:.1ge tables arc process
private and Jre adjacent w the process-private space
that they map. Hence, the end of the L l PT marks
a u niversal bound ary between the process- private
portion and the shared portion of the emire virtual
address space, serving to separate even the PTEs that
map those portions. In Figure 6, the line passing
through PT space i l l ustrates this bou ndary.

A d irect consequence of th is des i gn is that the
process page tables have been privatized . That is,
the portion of PT space that is process-private is cur
remly active in virtual memory only when the owning
process i tself is currentl y Jctive on the processor.

Fortu nately, the majority of page table references
occur while executing in the conrext of the owning
process. Such rderenccs Jctua iJy arc en hanced by
the privatization of the process page t<lb lcs because
the mapping function of a virt ua l :.1dd ress to i ts l'TE
is now more efficient .

Privatization does raise a hur d le for certain pri
v i leged code that previously cou ld :1cccss a process'
page tables when executing outside the comext of the
own i ng process. With the p:1ge tables resident in
s lnred space , such refere nces could be made regard
less of which process is cur rently active. With priva
t ized page tables, additional access support is needed,
as presented in the next section .

A tlnal commentary is warranted tor the separately
maintained system page tab le . The self mapped page
table approach to su pplying page table rcsiduKy in
virtual memory inc ludes the l'TEs tor any virtual

Digit;![Tcchniol jou rnal Vol. S �o 2 1 996 6S

66

add resses, whether they �1re process-private or shared .
The shared portion of" PT space could serve now as the
sole location tcx shared-space PTEs. Being redu ndant,
the original SPT is e minently d iscardab le ; however,
d iscarding the SI'T would cn.:are a nussive compati b i l
ity prob lem r()r device d rivers w i t h their many 32 -bi r
S PT rdc renccs. This area i s one i n which a n opportu
n i ty ex ists to preserve a signi ficant degree of"pri,· i leged
code cornpati b i l i t\'.

Key Measures Taken to Maximize
Privileged Code Compatibility

To implement 64-bit virtual address space support, we
a ltered central sections of the Open VMS Al pha kernel
and many ofits key data structures. We expected that
such changes wou ld requ ire compensating or corre
spond ing source changes in surrou nding privi leged
components wi thin the kernel , in device d rivers , and
in privi l eged layered products .

For example , the previous discussion seems to ind i
care that any privi leged component that reads or writes
PTEs wou ld now need to usc 64-bit-widc pointers
instead of 32 -bi t l1oimcrs. S imi l a rly, a l l system f"ork
threads and interrupt service routines cou ld no longer
count on d i rect :tccess to proccss- priv:tte PTEs with
out regard to which process happens to be cu rrent
at the momun.

A number of bctors exacerbated the impact of such
changes. S i nce the Opc nVMS AJplLl operating sys
te m origin :ttcd h·om the OpenVMS Vt\X operating
system, s igniric:mr portions of the Open VMS Alpha
operating system and i ts d C\·ice d ri ,·ers are sti l l written
in MAC:R0-32 code, a compiled bnguage on the
Alpha p! J rr(mn .' Because MACR0-32 is an ;lssembly
le,-cl srvle of progr: unming Llnguagc , we could not
s irnp l\' change the ddin i rions �1 11d dec larations of l'ar i
OL I S t\-pes and rch· on recompi l :nion to handle the
mm-c ti·om 32- bir to 64 -b ir pointers. Fin:- d ly, there are
wel l over 3 ,000 rckrcnces to PTEs h·om MAC R0 - 32
code modu l es i n the OpenV JVIS Alpha sou rce pool .

We were thus LKed with the prospect or" visiti ng and
potent ia l ly a l tering c1cb of these 3 ,000 rdcre nces.
Moreover, II'C wou ld need to r(> l low the register l ife
t imes that resu l ted h·om each of these rctcrences to
ensure that a l l address o leu larions and me mory re kr
enccs were done using 64- bir operations. \Ve expected
that this process wo u l d be time-consuming �md error
prone and that i t wou l d h:we a sign i ticant negative
impact on our com pletion dJte.

Once OpcnViVIS Alpha version 7.0 was wai lab le
to users, those with device d ri\'ers and privi leged code
of their own wou ld need to go through a s imi lar
efti.)rt . This would further delav wide usc of the
release . For a l l these reasons, we were we l l motivated

Vol . 8 \: o . 2 1 996

to minimize the impact on privi leged code . The next
fou r sections d iscuss tech niques th:Jt we used to 0\·er
come these obstac les .

Resolving the SPT Problem

A signific:mt numbe r of the PTE rc krcnces i n pri
"i leged code arc to PT Es 11·irh in the SPT. Dc1·icc
d rivers often dou ble-map the user's 1/0 hufkr in to
SO/S l space lw a l locating and appmpriately in it ia l iz
ing svstem p:.1ge ta ble ent ries (S I'Tr:s) . Another s itua
tion in w hich :1 d ri\'er mani pu l ates S I'TEs i s in the
substitution of a svstcm bufk r ri. >r �1 poor ly a l igned or
noncontiguous user 1/0 bufkr that pre,·ems rhe
buffer from being d i recth- used wi th a p:1 rr icu lar
dc,·i ce . Such code rel ics ho,'il v on the svsrem dat:1 cel l
MMG$GL_S PTBAS E , which points to the SPT.

The new page ublc design comple re lv olwi�1rcs the
need ror a separ:nc SPT. Given an 8 - K B p�1ge s ize �1 nd
8 bytes per PTE, the ent i re 2-GB SO/S I virtua l �H.idrcss
space range can be mapped by 2 M B ofPTEs with in PT
space. Because S0/5 1 resides at the h ighest addressable
end ofrhe 64-bir virtual address sp�1ec, i r is m apped bv
the h ighest 2 M B of PT space. The :uu on the left in
Figure 7 il lustrate th is mapping. The PTI-:s in PT space
that map SO/S l arc fu l l y shared l1\' :1 l l processes, bur
they must be rdcrmccd with 64-b i r add resses.

This in comp�nibi l iry is complete lv h idden lw the
creation of :1 2 - M B "SI'T wi ndow" m-cr rhe 2 iv\ B i n
I'T space (lel'e l 3 PTEs) t ha t m:tps SO/S I space . The
SPT window is pos i tioned at the h ighest �1dd rcss�1blc
end ot"SO/S l space . Therdi.>re, an access through the
SPT wi ndow onlv requ i res a 32-b i r SO/S I �1dd rcss and
can obtain anv of the I'TEs i n PT sp�1ce that m:1p
SO/S l space The �l i"CS on the ri ght in hgurc 7 i l l u s
tratc this access path .

The SPT 11·i ndow is set up at svstcm in i ' i �1 l i zarion
rime and consu mes onll' the 2 KB of 1'TI-:s tlLlt
are needed to map 2 MB. The S\'stcm d �1 t.1 cel l
M M G $ G L_SPTBASE now points to the b:1se of rhe
S PT window, and a l l ex isting rekrmccs to that d:1ta ce l l
continue to function corrcctlv withou t ch:1ngc. -

Providing Cross-process PTE Access for Direct 1/0
The sel f m:1pp ing of the page t:1b les i s J n elegant sol u
tion to the page ta ble residency problem imposed by
the preceding des ign . However, the se l r:map1xd page
ta b les presen t sign ificant cha l lenges or" their own to the
I/0 subsystem and to many device d rivers .

Typica l ly, OpenVJ\115 device drivers ri.>r 111�1SS stor�lgc,
net\vork, and other high-perr(mn�lncc dev1ccs pcrJ-(mn
d i rect memory access (D M A) �1nd what Open VMS cal ls
"d irect 1/0 . " These dn·icc d rivers lock down I IHO

physical mcmorv the v irtua l pages rlut conLl in the
requester's l/0 bu frcr. The 1/0 rr:1nsrcr is fXrr(mned
d irecrlv to those pages, a iLLT which the bu tkr pages are
un locked, hence the term "direct 1/0 ."

PAGE TABLE SPACE
(8 GB)

- -
PTEs THAT MAP SO/S1 (2 MB)

S2 (� 6 GB)

: "1

SO/S1 (2 GB) -
SPT WINDOW (2 MB) · �FFFFFF�FFFFFFFF

Figure 7
System Page Table Window

The virtual address of the buffer is not adequate for
device drivers because much of the driver code runs in
system context and nor in the process context of the
requester. Simi larly, a process-specific virtual address is
meaningless to most DMA devices, which typical ly can
deal only with the physical add resses of the virtual
pages spanned by the buffer.

For these reasons, when the 1/0 buffer is locked
into memory, the Open VMS I/0 subsystem converts
the virtual address of the req uester's buffer into
(1) the address of the PTE that maps the start of
the buffer and (2) the byte oftset within that page to
the fi rst byte of the buffer.

Once the virtua l add ress of the 1/0 bufkr is con
vened to a PTE address, all references to that buffer
are made using the PTE address. This remains the case
even if this 1/0 request and 1/0 bufkr are handed otT
from one driver to another. For example, the IjO
request may be passed fi·om the shadowing virtual d isk
driver to the smal l computer systems i ntertace (SCS I)
d isk class driver to a port d river for a specific SCSI host
adapter. Each of these drivers will re ly solely on the
PTE address and the byte offset and not on the virtual
add ress of the 1/0 bu tler.

Therefore , the number of virtual address bits the
requester original ly used to specif)r rh� add ress of

the l/0 buffer is i rrelevant. What real l y matters is
the n umber of address bits that the driver must use
to reference a PTE.

These PTE addresses were always within the page
tables within the balance set slots in shared SO /S 1
space. With the introduction of tbe se l f� mapped page
tables, a 64-bit address is req uired t()r accessing any
l)TE in PT space. Furthermore, the desired PTE is not
accessible using this 64-b i t address when the driver is
no longer executing in the context of the original
requester process. This is ca l led a cross-process PTE

access problem .
In most cases, this access problem is solved tor

d i rect 1/0 by copying the PTEs that map the 1/0
buftcr when the 1/0 buffer is locked into physical
memory. The PTEs in PT space are access ib le at that
point because the requester process context is required
in order to lock the buffer. The PTEs arc copied i nto
the kernel's heap storage and the 64-bit PT space
address is replaced by the address of the PTE copies.
Because the kernel 's heap storage remains in SO/S l
space, the replacement address is a 32 -bit add ress that
is shared by a l l processes on the system.

This copy approach works because drivers do not
need to modit)r the actual PTEs. Typical ly, this
arrangement works well because the associated PTEs

Vol . 8 No. 2 1 996 67

em ti t i n to dcdic:�n:d space \\'i th in the I/0 request
p�K kct d:�t:� structure used bv the OncnVMS operati n o-- t b
S\'Stc m , �md there is 110 mcasu r:t b l e i n crease in CPU
Ol'crhcad to copy those PT Es .

If the 1/0 b u Fkr is so L1rgc th:�t i ts :1ssoci ;1ted PTEs
c1nnot ti t \\'ith i n the 1/0 req uest pKkct, a separate
kernel hc:-tf1 stm:�gc packet is �1 l l outcd ro hold the
PTEs. lf the l/0 b u fk r is so l a rge rh�H the cost of
copl' ing a l l the l'TFs i s J lot iccab le , a d i rect access path
i s crc:.1tcd as t(ll lo\\'s:

• The L::l PTEs rh �H m:.1p the I/0 b u fh: r arc locked
i nto p h1·s ic1l men1or\·.

• Add ress sp�1ce 11·i t h i n SO/S l sp:.1ce is a l locned
and nup pcd OI'Cr the l .3 PT Es th at \\'Cre j us t
locked do\\' J l .

This esr;1b l ishcs �' 3 2 - bir address�1blc slLlred -space
\\'indo\\' m·cr the 1 .3 l'TEs rhar 1mp the 1 /0 bu ffer.

The essc mial point is that one of these methods is
se lected �md e m ployed u mi l the 1 /0 is completed :md
the b u fh:r is u n lockl:d . Eac h method prol' i dcs a 3 2 - b i t
l'TE address t h a t t h e rest o f r h c l/0 su bsystem c a n use
transp::�rcnrly, �1s it has been accustomed ro doing, with
our req u i ring n umerous, complex sou rce cha nges.

Use of Self-identifying Structures

To �1Ccommod :.1 tc 64 -bir user l ' irtu�l l addresses, �1 n u m
ber of kemel dar:1 stru ctures had to be cx p�1nded a n d
ch:1n gcd . f o r example, as, ·nchronous system trap
(AST) contro l b locks, bu ffered l/0 p�Kk<.:rs, and r imer
q u e u e en tries ;l l l cont�1 i n l'a rious uscr- p rm·ided
addresses and p�lr;lmcrcrs that can no\\' be 64-bit
add resses . These structures :11-c often e m bedded i n
other structu res such rh�H �' clu ngc i n one has a ripp l e
ctlcc r to : 1 s e t o f other structures.

If these structures c lLl iH!,cd u n condi tional I I " m:1 n 1·
sc1ttcrcd sou rce cha nges �� · c n i l d hal'c been r�:] u i rcci .
Yet, ;lt the s �ll11C r ime, c:-�ch ohhcsc structu res h:-td con
su mers \\'ho had no im med iate need t()J" the 64- b i r
add rcssi n�-rdarcd c:1pabi l i rics.

l nstc:-td ofs imph' changing clCh ot' r l1 ese structures,
II'C ddincd a nell' 64- bit -clpablc l';lriam that can coex
ist \\' i th i rs n·�1 d i ri on:1 l 32 -bit coumcrparr . The 64-bir
1·ari:1 11 t's structures arc "scl fidenr i�·i ng" beca use they
em rc1d i l v be d istingu ished h·om their 3 2 - bi r cou nrcr
p:u-rs by o.1 m i n i n g a p;l rt ic u b r fie ld with i n the str u c
ture itsel f. Typica l l y, t h e 32-b ir :1nd 64-bir I'Mi:Jnts can
be i n termixed �i-cdy wi thin q u e u es �m d only a l i m i ted
set of rou tines need to be �1 ware of the variant types .

Th us, t(J r c:x:1mpk, componenrs th<lt do n o r need
64 - bir ASTs em conti n u e to bui ld 32-bir AST contro l
bl ocks and queue them \\'ith the SCJ-I$ QAST rou t i n e .
S i m i L 1rly, 64-bi t AST co nrrol bl ocks U LJ b e que ued
with the s�1 m c SC :H .�QAST ro ut ine beca use the AST
d e l i1·en· code 11';\s en hanced ro su pport e i ther rvpc of
AST conrrol b lock .

Vol . H :--:u 2 1 996

The use o f se l f ide nri�·i ng structures i s ;J iso :1 te c h
n i q u e t h a t was e m plo\'cd t o com p�Hi b ly e nhance p u b
l i c user- mode i nt c rbccs to l i br:-�rv rou ti nes a n d the
OpenVMS kerne l . Th is topic is Li iscusscd in greater
derail in "The Open VMS Mixed Poi mcr Size
Em·i ron menr .""

Limiting the Scope of Kernel Changes

Another ke1· t:Ktic tlur a l lm1 ·ed u s ro m i n im t zc rhc
req u i red somce code chan ges to the Of1CnV,VIS kc mcl
came ti·om the real ization rhar fu l l suppon o f 64-bir
l'irtu �l l :1d d ress i ng tor al l processes docs nor i m p lv m

req u i re excJ usivc usc of 64- bi r f10i nrns 11·i rh in the ker
ne l . The portions of the kcmd rh:-�t I L1nd lcd user
add resses wou ld f(lr the most p�u·t need to I L1ndlc
64-bit addresses; ho11'e1·cr, most kernel d:1ta srrucrmcs
could remain \\'i thin the 3 2 -h i r �1dd rcssa blc SO/S l
space without any l i m i t on usn ft Jn crion�1 1 i tl'. For
c:xamplc , the kernel hc:1p storage is sti l l I�Jcarcd
i n SO/S l space :1 11d cont in ues to be 3 2 - b i t Jdd rcss
a b l c . The Record M�m�1gc mcnr Scrl' iccs (RMS)
su ppo rts da ta tr:1nsh: rs to and ti·om 64 - b i t :Jdd ress
ab lc user buftl: rs , but RMS contin ues to usc 32- hit
wide pointers t<x i rs i mcrna! con trol structu res .
V.le therefore t(xuscd our e H(H·r on rhc p;l rts o r·
rbe kern e l t h :Jt could bcndir ti·om inrcm�1 l usc
of 64- bir add resses (sec the section lmmcdi �lte Usc
of 64 -bir Ad dressing lw the OpcnVJ\t!S Kernel
�or examples) :1nd that needed ro ch mgc ro su pport
64 -bit user 1·irrua l add resses.

Privileged Code Exam ple-The Swapper

The OpcnV!VIS ll'orking set S11':1ppcr prm ides an imcr
esring example of· ho11 the 64-bir c h :1ngcs ll' i th in rhc
kernel 111J\' i m p:-�c t pri1 i legcd cod e.

O n lv a s u bset of :1 process' 1 · irtu�1 l p�1gcs is m.lf1pcd
to plwsical memor\' ar ;1m· gi,·cn poi nt in r ime. The
OpenV!'v1S operJti n g S\'Stcm occ1siona l l \ ' s\\'aps this
\\'Orkin g set of pages our of memory to sccond�1n· sror
:Jge as a conseque nce ofm:maging the pool oL11'�1 i l �1b lc
physical memo rl'. The cntitv responsible f(,r this actil·
itv is a pri1· i leged process c 1 l l ed the 11·mking set S\\'ap
per o r swapper, t(>r short . S ince i t i s responsi ble t(Jr
tra nsfe rr i ng rbe \\'O rki ng set of a process i n to and our
or· memory when n ecessarv, the s\\ 'appcr mu st lu1-c
i n ti mate knowled ge of rhc virr u�1 1 :1ddrcss space of
a p rocess inc lud ing that process' p:�gc tables .

Consider the c:1rl icr discussion in t h e section
OpenVMS 64-bit Virtual Address Space ;J bour ho\1'
the process' page t:1 blcs hai'C been prii'Jtizcd �1s �1 ��·�11·
to eHicicmlv pro1 ·idc page table residcncl' in 1·i rrual
memory. A consequence of this d esign is rh:1 r ll ' h i l c the
swapper process is �lctil'e, the p�1gc t;lb lcs of the 11roccss
being S\\'appcd �1 1-c not :11 · a i l ablc i n 1 i rttd mc moiY
Ye t, the s11·apper requ ires access to those p:1gc tables to

do i ts job. This is an instance of the cross-process PTE
access problem mentioned earlier.

The swappcr is u nable to d i rectly access the page
tables of the process being swapped because the swap
per's own page tables are currently active in virtual
memory. We solved this access problem by revising the
swapper to temporari ly "adopt" the page tables of
the process being swapped. The swapper accomplishes
this by temporari ly changing i ts PTBR contents to
point to the page table structure tor the process being
swapped instead of to the swapper's own page table
structure. This change torces the PT space of the
process being swapped to become active in virtual
memory and therd(xe avai l able to the swapper as i t
prepares the process to be swapped . Note that the
swapper can make th is temporary change because
the swapper resides in shared space. The swapper does
not vanish ti-om virtual memory as the PTBR value is
changed . Once the process has been prepared for
swapping, the swappcr restores its own PTB R value,
thus rel inquishing access to the target process' PT
space contents .

Thus, i t can be seen how privi leged code with
intimate knowledge of OpenVMS memory man
agement mechanisms can be affected by the changes
to support 64- bi t virt u a l memory. Also evident is that
the a l terations needed to accommodate the 64-bit
changes arc rel ative ly straighttorward . Al though the
swappcr has a h igher-than- normal awareness of mem
ory managemenr internal workings, extend ing the
swapper to accommodate the 64-bit changes was
not particularly d ifficu l t.

Immediate Use of 64-bit Addressing by the
OpenVMS Kernel

Page table residency was certain ly the most pressing
issue we taced with regard to the Open VMS kerne l as
it evolved ti·om a 32-bit to a 64- bit -capable operating
system . Once implemented, 64- bit virtua l add ressing
could be harnessed as an enabling technology tor solv
ing a nu mber of other problems :�s we l l . This section
briefly d iscusses some prominent examples that serve
to i l l ustrate how immediately usefu l 64-bit addressing
became to the OpcnVJ\IIS kerne l .

Page Frame Number Database and

Very Large Memory

The OpenVMS Alpha operating system maintains a
database t(>r managing ind ividu a l , physical page ti·ames
of memory, i .e . , page ti·ame n umbers. This database is
stored in SO/S l space . The size of this database grows
l inearly as the size of the physical memory grows.

Future Alpha systems may inc lude larger memory
configu rations as memory technology continues to
evolve. The correspond ing growth of the page ti-ame

number database tor such systems could consume
an unacceptably large portion of SO /S 1 space, which
has a maxi m u m size of 2 GB. This design effectively
restricts the maxirnum amount of physical memory
that the OpenVMS operating system would be able
to support in the fuwre.

We chose to remove this poten tia l restriction by
relocating the page trame llU !llber database ti·om
SO/S l to 64-bit addressab l e 52 space. There it can
grow to support any physical memory size being con
sidered tor years to come.

Global Page Table

The OpenVMS operating system maintains a data
structure in SO /S 1 space cal led the global page table
(G PT) . This pseudo-page table maps memory objects
called global sections. Multiple processes may map
portions of thei r respective process - private add ress
spaces to these global sections to achieve protected
shared memory access tor whatever applications they
may be running.

With the advent ofP2 space, one can easi ly anrjcipate
a need tor orders-of-magnitude-greater global section
usage . This usage d i rectly i ncreases the size of the
GPT, potential ly reaching the point where the G PT
consumes an unacceptably large portion of SO/S l
space . We chose to forestal l this problem by relocating
the G PT fi·om SO/S l to S2 space. This move a l l ows the
con figuration of a G PT that is much larger than any
that cou ld ever be configured in SO/S l space .

Summary

AJ though provid ing 64-bit support was a significant
amount of work, the design of the Open VMS operat
ing system was read i ly scalable such that it cou ld
be achieved practica l ly. First, we establ ished a goal of
strict binary compati bi l ity tor nonprivil eged applica
tions. We then designed a su perset vi rtual address
space that extended both process-private and shared
spaces while preserving the 32-bit visible address space
to ensure compatibility. To maximize the avai lable
space for process-private use, we chose an asymmetric
sty le of add ress space layout. We privatized the pro
cess page tables, thereby e l iminating their residency
in shared space. The bv page table accesses that
occurred fl·om outside the context of the owning
process, which no longer worked after the privatiza
tion of the page tables, were addressed in various ways.
A variety of ripple effects stemming ti-om this design
were read i ly solved within the kerne l .

Solutions to other sca l ing problems related ro the
kernel were immediately possib le with the advent of
64-bit virtual add ress space. AJrcady mentioned was
the complete removal of the process page tables ti-om
shared space. vVe also removed the global page table

Digir�l Tc�h nic.ll journ;ll Vol . S No. 2 l996 69

70

and the page fi-ame n u m ber database from 3 2 - bi t
addressab le t o 64- bi t addressable shared space. T h e
i m med iate n e t d kct of t hese changes was significant l y
more room in SO/S l space tor con figuring more
kernel heap storage, more balance slots to be assigned
to greater numbers of memory resident processes, e tc .
We fur ther anticipate use o f 64 - bi t addressable shared
space to rea l i ze addit ional bendits of VLM, such as
tor cac hing massive amounts of fi le system data.

Providing 64- bi t addressing capacity was a logical ,
evo lutionary step for the Open VMS operating syste m .
Growing numbers of customers are demand i ng the
addi tional virtual memory to help solve their problems
i n new ways and to achieve higher performance. This
has been especial ly fru itful for database appl ications,
with su bstantial performance i mprovements al ready
proved possible by the use of64-bit addressing on the
Digital UNIX operating system . Similar results are
expected on the OpenVMS system . With terabytes
of virtual memory and many gigabytes of physical
memory avai lable, entire data bases may be loaded into
memory at once. M uch of the I/0 that otherwise
would be necessary to access the database can be el imi
nated, thus a l lowing an appl ication to i mprove perfor
mance by orders of magnitude, for example, to reduce
q uery time from eight hours to five minutes. Such
performance gains were di fficult to ach ieve whi le
the OpenVMS operating system was constrained to a
32-bit environment. With the advent of 64-bit address
ing, OpenVMS users now have a powerfu l enabl ing
tec hnology avai lable to solve their problems.

Acknowledgments

The work described in this paper was done by m e m
bers of t h e Open VMS A l p h a Operating System Devel
opmen t group. Nu merous contributors p u t in many
long hours to ensure a wel l -considered design and
a h igh-qual ity implementation . The a uthors part icu
larly wish to acknowledge the fol l owi ng major con
tribu tors to this effort : Tom Benson, Richard Bishop ,
Wa lter B laschuk, Nit in Karkhanis, Andy Kuehnel ,
Karen Noel , P h i l Norwich, M a rgie Sherlock, Dave
\Val l , and Elinor ·wood s. Thanks a lso to mem bers
of the Alpha languages commun ity who provided
extended programmi ng support for a 64-bit environ
ment; to Wayne Cardoza, who h elped shape the earli
est notions of w hat cou ld be accompl ished; to Beverly
Schu ltz, who provided strong, early encouragement
tor p u rsuing this project; and to Ron H iggins and
S teve Noyes, tor their spiri ted and u n flaggi ng support
to the very end .

The tdl owing reviewers also d eserve t h a nks tor
the inva l uable com ments they provided in h elping to
prepare this paper: Tom Benson, Cathy Foley, Clair
Grant, Russ Green, Mark Howel l , Karen Noel, Margie
S herlock, and Rod vViddowson .

Digital Tec hnica l Journal Vol . 8 No. 2 1 996

References and Notes

I . N. Kronenberg, T. Benson, W. Cardoza, R. Jagannathan,
a nd B. Thomas, "Porti ng Open VMS from VAX to AJpha
1\.,\P," Digital Tecbnical.fournal, val . 4, no. 4 (1 992) :
l l l-120 .

2 . T. Leonard, cd . , VAX A rch itecture Reference Manual
(Bedford, Mass . : Digital Press, 1 98 7) .

3 . R . Sites and R . Witek, A lpha AXP A rchitecture Refer
ence JI!Ianual, 2d cd. (Newton, 1Vlass . : Digital Press,
1 995) .

4 . Although an OpcnVMS process may refer to PO o r P I
space using either 32-b i t or 64-bit poi n ters, references
to P2 space requ i re 64-bit poin ters. AppJications may
very wel l execute with mixed poi n ter si zes. (See refer
ence 8 and D. Smith, "Adding 64-bit Pointer Support
to a 32 -bi t Run-time Library," Digital Technical
journal, val . 8, no. 2 [1 996, this issue] : 83-95 .) There
i s no notion of an application executing in either a 32-bit
mode or a 64-bit mode.

5 . Superset system services and language support wct-c
added to faci l i tate the mani pulation of 64-bit address
able P2 space.8

6 . This mechanism has been in place since OpenVMS
Alpha version 1 .0 to support virtual PTE tCtchcs by the
translation buffer m iss handler i n PALcode. (PALcodc
is rbe operating system-specifi c privi leged arch i tecture
l ibrary that provides control over i n terrupts, exceptions,
context switching, ctc 3) In cHeer, this means rhar the
OpenV!YlS page rabies a lready existed i n two virtual
l ocations, namely, SO/S l space and PT space .

7 . The SPT window is more precise ly only an SO/S l PTE
window. The PTEs that map 52 space <He referenced
using 64-bir poin ters ro their natural locations in PT
space and :�rc not accessible through the use of th is SPT
window. However, because 52 PTEs d id nor exist prior
to the i ntroduction of 52 space, this l imitat ion is of no
con seq ucnce to contexts that arc otherwise restricted to
SO/S I space.

8. T. Benson, K. Noel , and R. Peterson , "The OpenVMS
Mixed Pointer S ize Envi ronment," Digital Tech n ical

Journal, val . 8, no. 2 (1 996, th is issue) : 72-82 .

General References

R. Goldenberg and S. Saravanan, Open VMS AX!' Internals
and Data Structures, Version 1 .5 (Newton, Mass . : Digital
Press, 1 994) .

Open VNIS Alpha Gu ide to 64-Bit Addressing (Maynard ,
Nlass . : Digital Equipment Corporation, Order No.
AA-QSBCA-TE, December 1 995) .

Open Viv!S A lpha Gu ide to Upgrading Priuileged-Code
Applications (Nlaynard , Mass . : Digita l Equipment
Corporation, Order No. AA-QSBGA-TE, December 1 995) .

Biographies

Michael S. Harvey
M ich �cl Harvey joi ned Digit� ! in 1 978 at-i:er receiv i n g h is
B . S . C. S . h·om the U nivcrsirv of Vermon t . In 1 984, as a mem ·
ber of rhe OpenV;viS Engi;1eering group, he participated i n
nell' processor support �i:>r VAX mu ltiprocessor systems and
helped de1·clop Open VMS Sl'mmetric mul tiprocessing (S;vl I')
support for these s1·srems. He rece in:d a patenr �or this ll'ork.
M ike 1v�s an o1·igi n�l member of the RJSC1· - VAX task ti Jt·co:,
which conccil'ed and d eve loped rhc A l ph a arc h i tectu n: .
Mike led the project that ported the Open VMS E xecu til'(:
fi·om the VA-'< to the Alph� pbr�cmn and subsequ e ntly led
the project that designed <1 1ld i mp lemen ted 64-bit virtual
,,ddn:ssing supporr i n Open VMS. This effort led ro a ml m
ber of parent applications. As '' consult ing software cngi
nn:r, ;\!l i ke is currenrlv ll'orki ng i n rhc area of i n frastructure
rhat supports the Windm1 s NT /Open VMS Affin i rv in i riati1·e .

Leonard S. Szu bowiez
Leon:u·d Szubowicz is a consu lt i ng software en gineer i n
Digital's Open V M S Engineering group. Currenrly the
ted1nic.1l leadcr �(>r the Open VMS 1/0 engineering team ,
he joi ned Digir,, l So�iW<lre Sen·ices in 1 98 3 . A s a member
of the Open VMS 64- bi t 1· i r tual ;lddress i ng projec t rea m ,
I .C i l l 1\' had pri nJ<\1'1' n:sponsi b i l in· ti:>r r;o a nd d rii'CI' Sl l �)
port. Prior to rhat, he ll'cls rhe a1·ch itcct and pro j ect lc;lder
t(>r rh c Open VMS high - l c l e l langtugc dc1·ice d ril'cr p ro j
ccr , conrri butcd ro rhc port ohhc Open VMS opcr•1r ing
sysrem ro the Alph<l pl ati(mn , and "'"s p1·ojecr l eader t(Jr
R.MS) ournJi i ng. Lt:nny is a coaurhor of Wriliug Opeu Vt\1/S
Alpha {)elJice Orit,ers ill C. w h ic h was recenr ly pu blished
by Digital Press.

Digir<li T�chn ical journal Voi . S No. 2 1 996 7 1

72

The OpenVMS Mixed
Pointer Size Environment

A central goal in the implementation of 64-bit

addressing on the OpenVMS operating system

was to provide upward-compatible support for

appl ications that use the existing 32-bit address

space. Another gu id ing principle was that mixed

pointer sizes are l ikely to be the rule rather than

the exception for appl ications that use 64-bit

address space. These factors d rove several key

design decisions in the OpenVMS Calling Stan

dard and programming interfaces, the DEC C

language su pport , and the system services

support. For example, self-identifying 64-bit

descriptors were designed to ease development

when mixed pointer sizes are used. DEC C sup

port makes it easy to mix pointer sizes and to

recompile for un iform 32- or 64-bit poi nter s izes.

OpenVMS system services remain fully upward

compatible, with new services defined only

where required or to enhance the usabil ity of the

huge 64-bit address space. This paper describes

the approaches taken to support the mixed

pointer s ize environment in these areas. The

issues and rationale beh ind these OpenVI\IIS

and DEC C solutions are presented to encourage

others who provide l ibrary i nterfaces to use

a consistent programming interface approach.

Digital Tcclmiul)ounul Vol . � No. 2 [')')(,

I
Thomas R. Benson
Karen L. Noel
Richard E. Peterson

Su ppmt t(>r 64-bir \ ' irtual addressi ng on the OpcnVt\!!S
Alph;l opcr;ning s\·src m , \'Crsion 7.0, h:1s \·asril· inc 1·clscd
the ;lmmmr oh i nu:1 l :-�ddrcss space ;l\'<l i lab lc t(x :-�pplica
tion usc . ' At the same rime, li.i l lv compatible support tor
appl ic:-�tions that usc onlv 32-b it add resses (;1lso ul lcd
pointers) has been prcscnnL

A n app l icuion that mi\cs 3 2 - bi r and 64 - b i r poi n ter
sizes ope rates i n : t m i.\·ed pointer size ent ·imnnwnl.
tVl i\cd poi mc1· s ize appl ications \\'ere the design center
tc > r the i n i ti <l i i m plcmc nt:-�tion o f 64 - b i t su pport i n the
OpcnVMS opcr<Hing svsrcm . This paper d iscusses
the I'Clso ns ,,·Jw m i \ i n g poi n te r s izes is ex pected to
be a common prxticc ;md d csni bcs the design of
opcr:tt ing S\'Stcm and l anguage featu res that J I'C pro
,· idcd to usc progr:-� m m i n g in this mi\cd poi n ter s i ze
cm·ironm e n t .

Reasons for Mixed Pointer S izes

To usc 64-h i r :tdd rcss space, some s imple appl ications
need only be recompi l ed t(Jr :t u n i f(>nl1 64 - b i t poi nter
s ize . For c x;l m p l c , scl fcont a i ncd DEC: C appl ic:1rions
rhar rc l v on onlv the C: r u n - r i me l i b r.1ry, without
using s\·s rcm services or other l i braries, can take
this ;lpproac h . Rea l - worl d :-�pp l ications arc se ldom this
c l c:t n -c u t, hm\'C\'Cr. In more complc\ appl ications,
where 64 - b i t :tddrcss space i s l i ke l v to be needed,
mi xes of langu:-�gcs, depend encies on svstcm intcrt:lces
a nd oth e r l i braries, :-�nd re l i ance on t h i rd - part\1 pack
ages or l i braries ;l re com mon . These practices a l l lead
to the m i \cd poi nter size environment i n which appl i
cnions continue ro usc some 3 2 - bi t add resses w h i l e
ta king adv:-�nr:-�gc of64-bit v i rtu:-�! add ress space .

Appl ic:-�tions that arc l i ke l y to rake adva n tage of
64- bi t m emory a rc those i n which the dcclar;�rion and
manage m e n t of ;l L1rgc d ata set u n be logica l l v sepa
rated ti·om the rest of the progr:-� 111 . This scpar;ni on
docs not need to be ar the sou rce fi l e Jc,·c l . I r em be
at a progr.1 111 r1ow l e ve l , i n d i c;� t ing which i n te rn a l and
exte rn a l i n tc rhccs wi l l be gi\'Cil 64- bi r ;ld d rcsses to
work wi rh .

'I'hc t< >l lowing sections exp l ore the reasons t(>r
m i x i n g poi nter s izes .

Open VMS and Language Support

I mp lement3tion choices that Digita l made tor this first
release of the Open VMS operating system that sup
ports 64-bit virtual addressing wi l l probably e ncour
age m i xed pointer s ize programming. These choices
were d riven largel y by the need tor a bsolute upward
com pati b i l ity tor nisti ng programs and the goal of
supporti ng large , dynamic data sets as the primary
applicltion t()r 64-bit add ressing.

Dynamic Data Only OpcnVMS services su pport
dynamic a l location o t-64- bit add ress space . This mech
anism most closely resembles the mal loc and free fimc
tions t()r al locating and deal locaring dynamic storage
in the C progra m ming langu age. Allocation of this
type d i ffers trom static a n d stack storage in that e xplicit
source statements are req u i red to manage it . For static
and stack storage, the system is a l locating the memory
on beha lf of the appl ication at i mage activation r ime.
(O f course, the al location may be extended during
execution i n the case of st:�ck stor:�ge .) This a l location
cont i n ues co be fi·om 3 2 - bit add rcss:�ble space.

Two specia l cases of static a l location are worth men
tioning. Lin kage sections, which are program sections
that contain routine l i n kage i n formation , and code
sections, which contJin the cxccutJbk i nstructions,
do not d i fkr su bstantia l l y ti·om preinitialized static
storage. As J result , these sections also resid e only i n
32-bit add ressab le memory.

U pward-compatibi l ity Constraints The OpenVMS
Al pha operating system is cautious to avoid using
64- bit memory free ly where it may prevent u pward
compatibi l ity tor 3 2 - bit :�ppl ications. For exampl e, the
lin kage section m ight seem to be a nJtural candidate
for the Open VMS system to a l locate au tomatica l ly i n
64-bit memory. T h i s a l locnion woul d essentia l ly free
more 3 2 - bit add ressable memory for appl ication use;
however, even i f this were done only tor appl ications
relin ked tor new versions of the Open VMS operating
system , there is no guarantee that all object code treats
J in kagc section add resses as 64 bits in wid t h . A simple
example is stori ng the add ress of a routi ne i n a struc
ture. S ince a routine's ad d ress is the add ress of i ts pro
cedure descriptor in the l i n kage section, movi ng t h e
li n kage section to 64 - bit m emory wouJd cause cod e
that stores this add ress i n a 3 2 - bi t cel l to fai l .

Al locating the user stack in 64- bit space also appears
to be a good opportunity to easily i ncrease the amou nt
of memory avai lable to an application. Stack add resses
arc often more visi ble to appl ication code than l i n kage
section add resses arc. For instance, a rou tine can easi ly
al locate a local variable using tem porary storage on the
stack and pass the add ress of the variable to another
routine. I f the stack is moved to 64-bit space, this

ad d ress qu ietly becomes a 64- bit add ress. If the cal led
routine is not 64-bit capable, attempts to u se the
add ress will fai l .

Focus on Services Req u i red for Large Data Sets Not
all system services cou l d be changed to support 64- bit
add resses (i . e . , promoted) i n t ime tor the first version
of the OpenVMS operating system to support 64-bit
addressing. vVith the m i xed-poi n ter model in mind ,
we tocused on those services that were l i ke ly to be
req u i red for l arge data sets. For example, to a l low IjO
d i rectly to a nd from h igh memory, it was essential that
the IjO queu i ng service , SYS$ QIO, accept a 64-bit
buffer add ress. Converse ly, the SYS$TRN LNM service
t(x translating a logical name d i d not need to be mod
i ticd to accept 64 - bit addresses. Its arguments inc lude
a logical name, a table name, and a vector that contains
requests tor information about the name. These are
small data elements that arc u n l i ke ly to req ui re 64-bit
add ressing on their own . Of course, they may be part
of some larger structure that resides in 64-bit space.
In this case, they can easi ly be copied to or from 32 - bit
addressable memory.

System services are d iscussed further in the section
Open VMS System Services. The 32-bi t ad d ress restric
tion on certain system services again emphasi zes the
im portance of being able to l ogica l ly separate large
data set support from the rest of an application.

Limited Language Support Another i nterface poi nt
that requires care when using 64 - bit addressing is at
ca l ls between mod ules written in d i fferent program
m ing languages. The Open VMS Cal l ing Standard
tradi tional ly ma kes it easy to m i x .languages in an appl i
cation, b u t DEC C i s the o n l y high- level l anguage
to fu l l y support 64-bit ad d resses in the tirst 64-bit
capable version of the Open VMS operating system . 2

The usc of 64-bit add resses i n m ixed - language
applications is possib le , and data that contains 64- bi t
add resses may even b e shared ; however, references
that actua l ly use the data pointed to by these add resses
n eed to be l imited to DEC C cod e or asse m bl y lan
guage . Mixed h igh-level language appl ications arc cer
tai n to be mixed pointer s ize appl ications in this
version of the operating syste m .

Support for 32-bit Libraries

Many applications rely on l i brary packages to provide
some aspect of their fu nctional ity. Typical examples
i nclude user i nterface packages, graphics l i braries, and
database utilities. Third -party l ibraries may or may not
support 64- bi t add resses. App l ications that usc these
l ibraries wil l probably mix 32-bit and 64-bit poi nter
sizes and wil l therefore requ ire an operating system
that supports m ixed pointer sizes.

DigirCll Tcc h n icJI)ourn<li Vol . 8 No. 2 1 996 73

74

Implications of Full 64-bit Conversion

for some applications, i t may be desirable to mix
pointer si zes to avoid the s ide dkcts of un iversal 64- bit
add ress conversion. The approach of recompi l ing every
thing with 64-bit address wid ths is sometimes cal led
"throwing the switch . " An obvious i m pl ication of
throwing the switch is that a l l poi nter data dou bles in
size. For complex l i n ked data structu res, this can be a
signi ficant overal l increase in size. I ncreasing the pointer
size may also reveal hidden dependencies on pointer size
being the same as integer size. I f code accesses a cel l as
both a 32-bit i nteger and a 32-bit pointer, the code wi l l
n o longer work i f the poin ter i s en larged . Thus,
univerS<ll ly i ncreasing the pointer size may torce changes
to code that would othen,�se continue to work.

There is a more compel l ing reason t()r not throwing
the swi tch tor code that is part of a sha red l i brary.
Library packages m ust not retu rn 64 -bit add resses to
users of the l ibrary un less tbe cal l i ng code is d di n i te l y
64-bit capab l e . I f t h e l i brary developer th rows t h e
swi tc h w h e n bu i l ding a l ibrary written in DEC C, a l l
memory returned b y t h e malloc fu nction wi l l b e i n
64-bit add ress space. This can be a problem i f the
add ress is b l ind ly returned to a l ibrary cal ler. If a l i brary
is to work in a m i xed pointer size environment, and
i t sometimes returns poin ters to memory it has al lo
cated , it needs to use m i xed poin ter si zes i nternal ly.

Programming Interface Issues

The coexiste nce of 3 2 - b i t and 64- b i t poi mcrs raised
several design q u estions tor operating system and l �m
guage support, particularl y i n t h e area of routine i n ter
faces. "When an app l ication or l i brary is being mod i fied
to use 64- b i t add ress space, argument passing may
be the most exposed area. In this section, we d escri be
how mixed poi n ter size support affects argument
passing mechanisms and the design decisions made to
case the coexistence of mi xed pointer sizes.

Argument List Width

Even bd(>re the introduction of64-bit add ressi ng, the
Open VMS Ca l l ing Standard defined argu ment l ist cle
me nts to be 64 bits i n width. When passing a 32 - bit
add ress (that is, when passing an i tem i n 3 2 - bi t space
by rc k rcncc) , compi l ers sign extend the 3 2 - bi t val u e
i n to the 64- bit argu ment location . ' Passi ng 64- bi t
addresses as val ues works transparently without c hang
ing the ca l l ing standard , assum ing, of course, that the
cal led routine e x pects to receive 64- bi t add resses.
Passi ng 32 - bit addresses as values to rou ti nes that
expect 64- bit add resses works properly bec1use the
values have been sign extended to a 64-bit wid th.

Pointers by Reference

P�1ssing the add resses of pointers req u i res specia l care
when mix ing poin ter si zes. If the ca l ler passes a 32- bi t

Vol . ll No. 2 I Y96

add ress by rckrcncc, and the cal led routine reads it as
a 64 -bit address tl·om mcmon·, the u pper 32 bits wi l l be
incorrect. S imi larly, i f the add ress of a 64- bi t add ress is
passed , a nd the cal led rou tine reads only 32 bits ri-om
memory, it wi l l bil when that address is used .

This is the s implest case in which s u pport of 64-bit
add resses may req uire a programming interface change
tor 64- bi t ca l lers . A single ent r y poin t that receives
a pointer by rdercnce cannot tell which s ize pointer
i t has received . Some possible solutions inc lude a new
a lternate entry poi n t t(Jr 64- bi t-capa ble cal lers or a
new parameter indicating the si ze of the add ress.

Pointers Embedded in Structures

Pointers passed by reference are a specia l case of the
more general problem o f passing structures that con
tai n pointers . Again, the cal ler and cal led rou tine must
agree on t he size of the pointers contained i n the
structure . This case ofters an option that may not
req u ire a new progra m m i ng i nt erface, however. If the
structure is self- identifying, the routi ne rnay be able to
tel l which rcm11 ofrhe structure it has received and dis
patch to appro priate code ror the corresponding
poi n ter length.

Function Return Values

Fu nction return val ues are also defined to be 64 bits i n
width, s o n o cal l ing standard change was req u i red to
support 64-bit poi n ter retu rns. I t is i m portant that ::t

64 - bi t address not be retu rned bl ind lv, though, u n less
it is known that the ca l ler is 64 -bit capa b l e . Typica l ly,
this is a problem f()r l ibrary support rout i nes rather
than t()r those within an appl ication . A l i brary rou tine
should return a 64- bi t add ress only if the routine has
been specifica l ly developed tor a 64- bi t environment
or i f i t can te l l with certa inty, based on input parame
ters received, thJt the cd lcr is 64 -bit capable.

Calling Standard Issues

The Open VMS Cal l ing St�1 1 1d ard defines register usage
conventions, argu ment l ist locations, data structures,
and standard practices r(>r making procedure calls that
operate correctly in a m u lt i language and m u l ti
threaded environment . As memioned earlier, this stan
dard a l ready ddincd :1rgument l i s t eleme nts t o b e
6 4 b i ts i n wid t h ; however, some key data structures
ddined by the standard were based on 32 -b i t poi n ter
s izes. The goal of upward comp::tti bi l ity tor e x isting
code compl icated the job of extending the standard .
The rollowi ng sections describe bow the Structures
were u l timatelv changed and i l l ustrate some
approaches to supporting mi xed pointer si zes w hen
shared structures conrai n poi ntcrs.

Descri ptors Descriptors �1rc structures defined bv
the ca l l ing stand ard to specit-\' an argu men t's tvpc,
length, and add ress, along with other tvpe or

structure -specific information . Typical ly, descriptors
are used only tc>r character strings, arrays, and complex
data types such as packed decimal .

Descriptor types are by ddinition sclfidcntit)ring by
virtue of the type and cl ass fie lds they conta in . An
obvious choice, therd(xe, for extending descriptors to
handle 64-bir add resses wou ld be to �1dd new type
constants t(>r 64- bit data e lements and extend the
structure beyond the type fields to accommodate
l arger addresses and sizes. I n practice , however, the
address and Jength fields hom descriptors are fi-e
quently used wi thout accessing the type fie lds, partic
u larly when a character stri ng descriptor is expected .

As a resu lt, a solution was sought that wou ld yield
a predictable fai lure, rather than i ncorrect resu lts or
data corruption, when a 64- bit descriptor is received
by a routine that expects onlv the 32 -bit f(>rm . The
final design includes a separate 64-bit descriptor l ayout
that contains two special fie lds at the same ottSets as
the length and add ress fields in the 32- bit descriptor.
These fields are cal led M BO (must be one) and
M RMO (must be minus one) , respective ly. The sim
plest versions of the 3 2 - bit and 64- bit descriptors are
i l l ustrated in Figure l .

If <1 routine that expects a 32-bit descriptor receives
a 64- bit descriptor, it wi l l find rhe value 1 in the length
tic ld . This nonzero val ue ensures th:tt the address wi l l
need to be read . Otherwise, the descriptor cou ld be
treated as describing a n u l l value , and the address
would be ignored . In the add ress fie ld , a 32 -bit reader
wi l l find the value - 1 . When the reader attempts to
rdcrcnce this add ress, an access viol:ttion occurs,
bccJusc the OpenVMS operati ng system guarantees
this add ress to be inaccessible . This combination of
values ensures that an access wil l also bil if the length is
added to the address first, in an attempt to rcJd the last
byte of data.

BYTE
OFFSET

.-----,------,------------�
CLASS I DTYPE I LENGTH . 0

ADDRESS 4

S IMPLE 32-BIT DESCRI PTOR

CLASS I DTYPE I MBO 0
MBMO : 4

LENGTH 8

ADDRESS 1 6

S IMPLE 64-BIT DESC R I PTOR

Figure 1
Simplest Versions of the 3 2 - bir Jnd 64-bit Dcsniptors

To d istinguish the descriptor forms, a new routine
must check the MBO and MBMO fields for the
expected 64- bi t descriptor values . In the OpenVMS
operating system, many routines now accept either
descriptor tcm11 .

Signal Arrays The signal array is a user-visible struc
ture that is passed to cond ition handlers when an
exception occurs. The array contains message codes,
arguments speci fic to the conditions, and control data.
Because the arguments may inc lude one or more vir
tual add resses, a new format was necessary to accom
modate 64-bit addresses.

The signal array could not simply be promoted to
contain 64-bit addresses, becJuse handlers in existing
code often make assumptions about its format. The
mechanism array, a related structure containing a snap
shot of register contents, was already 64 bits in wid th.

The solution was to leave the original form of the
signal array unchanged and create a 64- bit counter
part. The items passed to a condition hand ler, the
32-bi t signal array add ress, and a 64- bit mechanism
array address arc the same. The mechanism array now
contains a pointer to the 64- bit version of the signal
array. This a l lows existing code to work without
change, whi le new hand lers that may require access to
64- bit addresses in exceptions can obtain the 64-bit
array address from the mechanism array. Some add i
t iona l work was needed in OpcnVMS exception han
d l ing to keep these two Jrrays synchron ized , because
handlers are J l lowcd to change their contents.

Sign-extension Checking

As described earl ier, 32-bit addresses passed as routine
arguments arc sign extended into 64- bi t argument loca
tions. A safeguard that can be used in 32-bit routines
that are not extended to ful ly support 64-bit addresses is
rderred to as sign-extension checking of the argumem
addresses. This checking consists of simply reading the
low 32 bits of the argumcm, sign extending this value to
a 64-bit \vidth, and comparing the resu lt to the fu l l
64 bits o f the argu ment. I f the bits d i ffer, the add ress is
not one that can be represented in 32 bits. The routine
can then return an error status of some kind , rather than
ta i l ing in some u n pred ictable way. S ign-extension
checking is a usdl.1l tool t(>r ensuring robust interfaces in
the mixed pointer size environment.

D EC C Language Support for Mixed Pointer Sizes

To support appl ication programming in the mixed
pointer size environment, some design work was
req uired in the D E C : C compiler. Th is section
describes the rationale behind the tina! design .

It was clear that the compiler wou ld have to provide
a way tor 32 -bit and 64- bit poi n ters to coexist in the
same regions of code . At the same time, customers and

DigitJI Technical Journal Vol . 8 No. 2 1 996 75

76

internal users i nitial ly favored a simp le command l ine
switch when pol led on potentia l compi ler support
for 64-bit add ress space. (At least one C compiler that
supports 64-bit addressing, M I PSpro C, does so only
through command l ine switches for setting pointer
sizes . 3) The motivation for using swi tches was to l imi t
the source changes n eeded to take advantage of the
add itional address space, especial ly when portabi l i ty
to other p lattonns is desi red . For cases in which mix
ing pointer sizes was unavoidable, something more
flexible than a switch was needed .

Why Not _near and _far?

The most common suggestion for control l ing ind ivid
ua l pointer declarations was to adopt the _near and
_far type qual ifier syntax used in the PC environment
in its transition from 1 6- bit to 32 -bi t addressing.4
While this idea has merit in that it has a l ready been
used e lsewhere in C compilers and is fami liar to PC
software developers, we rejected this approach for the
fol lowing reasons:

• The syntax is not standard.

• The syntax requires source code edits at each decla
ration to be affected .

• The syntax h as become largely obsolete even i n the
PC domain with the acceptance of the flat 3 2 - bit
address space mode l offered by modern 386-
min imum PC compilers and the Win32 program
ming interface.

• Because of the vast difference in scale i n choosing
between 1 6-bit or 32 -bit pointers on a PC as com
pared to choosing between 32-bit or 64-bit poimers
on an Alpha system , there would be no porting ben
efit in using the same keywords . No existing source
code base would be able to port to the OpenVMS
mixed pointer size environment more easily because
of the presence of _near and _t:1r qualifiers.

Pragma Support

The Digi ta l U N I X C compi ler had previously defined
pragma preprocessing d i rectives to control pointer
sizes tor sl ightly d i fkrcnt reasons than those described
for the OpenVMS system. ' By defau lt, the Digital
U N I X operating system ofkrs a pure 64-b i t address
ing model . In some circumstances, however, it is desir
able to be able to represent pointers i n 32 bits to
match externa l ly imposed data layouts or, more rarely,
to red uce the amount of memory used in representing
pointer val ues . The Digi ta l UNIX pointer_size prag
mas work in conjunction with command l ine options
and l inker/loader katu rcs that l imi t memory use and
map memory such that pointer values accessible to the
C program can a lways be represented in 32 bits.

Since compatib i l ity with the Digita l U N I X compiler
wou ld have greater value i f i t met the needs of the
OpenVMS platform, we evaluated the pragma-based

Digi r.1l Technical Jourm l Vol . 8 No. 2 1 996

approach and decided to adopt it, propagating any
necessary changes back to the UNIX platform to main
tain compatibi l ity. The decision to use pragmas to
control pointer s ize addressed the major deficiencies
of the _ncar and _far approach . In particu lar, the
pragma d irective is specitled by ISO I ANSI C in such
a way that using it docs not compromise portabi l ity as
the use of add itional keywords can, because unrecog
n ized pragmas arc ignored . Furthermore, pragmas can
easily be specified to apply to a range of source code
rather than to an ind ividual declaration. A nu mber of
DEC C pragmas, inc luding the pointer size controls
implemented on the U N I X system , provide the abi l ity
to save and restore the state of the pragma . This makes
them convenient and safe to usc to modit)r the pointer
size within a particular region of code without d isturb
ing the surrounding region . The state may easily be
saved betore changing it at the beginning of the region
and then restored at the end .

Command Line Interaction

Pragmas tlt in with the initial desire of p rospective
users to have a simple command l ine switch to indicate
64 bits. As with several other pragmas, we detined a
command l ine q ualifier (/pointer_size) to spccif)r the
initial state of the pragma before any instances arc
encountered in the text. U nl ikc other pragmas,
though , we also use the same command line qua l i fier
to enable or d isable the action of the pragmas a lto
gether. In this way, a ddault compi l ation of sou rce
code moditied for 64-bit support behaves the same
way that it would on a system that did not ofter 64- bit
support. That is, the pragmas arc effectively ignored,
with only an informational message prod uced .

This behavior was adopted for consistency with the
Digital U N I X behavior and a lso to aid in the process of
adding optional 64-bit support to existing portable
32 -bit source code that might be compiled for an
older system or with an older compiler. In this model ,
a compi lation of new source code using an o ld com
mand line produces behavior that is equivalent to the
behavior produced using an older compi ler or a com
piler o n another platform. vVitb one notable excep
tion, bui lding an application that actua l ly uses 64-bit
addressing requ i res changing the command l ine .

The exception to the ru le that existing 32 -bit build
procedures do not create 64-bit dependencies is a sec
ond form of the pragma, named required_pointer_size .
This form contrasts with the form poimcr_size i n that it
is always active regardless of command l ine qual i fiers;
otherwise, required_pointer_size and pointer_size arc
identica l . The intent of this second pragma is to sup
port writing source code that specifics or interfaces to
services or l ibraries that can only work correctly with
64-bit pointers . An example of this code might be a

header file that contains declarations for both 64- bit
and 32-bit memory management services; the services

must always be defi ned to accept and return the
appropriate pointer size, regardless of the com mand
l ine qua l i tler used in the compilation.

Pragma Usage

The use of pragmas to control pointer sizes with in a
range of source code fits well with the model of start
ing with a working 32 -bit application and extending i t
to exploit 64- bit addressing with minimal source code
edits. Programming interface and data structure decla
rations are typica l ly packaged together in header files,
and the primary manipu lators of those data structu res
are often implemented together i n modules.

One good approach for extending a 32-bit applica
tion wou ld be to start with a n in i tia l analysis of mem
ory usage measurements. The purpose of this analysis
would be ro prod uce a rough partitioning of routi nes
and data structu res into two categories: "32 -bit suffi
cient" and "64-bit desirable ." Next, 64-bit pointer
pragmas could be used to enclose just the header fil es
and source modu les that correspond to the routi nes
and dat<l structures in the 64-b i t-desirable category.
After recompilation, the next step wou ld be to respond
to compi ler diagnostics for pointer-type mismatches by
adding pragma regions to mark sections of the 64- bit
files as 32 -bit and parts of the 32-bi t fi les as 64-bit and
to carefu l ly add type casts, where necessary. This opera
tion is Jikelv to iterate u ntil the compilation is clean and
a debuggi;1g cycle has shown correctness. The end
result is an appl ication that rakes advantage of the
increased address space }or the data structures that wi l l
benefit fi·om it .

A common approach to min imizing the spread of
pragmas throughout a p rogram is to l imit them to
typedefs in header fi les. Then, subsequent uses of the
defined type do not require the pragma. A s imple
example appears in Figure 2 .

This example defines a type called char_ptr64,
which mav be used to declare 64-bit pointers to char
acter data

..
without the use ofpragmas. Of course, indi

vidual pointers within structure types may also be set
to 64- bi t or 32-bi t sizes.

Secondary Effects

With the decision made to use pragmas and the basic
semantics of how the pragmas take effect established
by the D igital UNIX implementation , we needed to
consider additional requ irements and issues that

m ight be speci fic to the OpenVMS implementation .
Two major d ifferences between the platforms are

l . On the Digital UNIX system, the l inker/loader
options used with mixed pointer size compilations
ensure that any add ress value obtained by the pro
gram can be represented using 32 bits, whereas on
the OpenVMS system, any program using 64-bit
pointers in C ''�l l a lmost certainly encounter address
va lues that can not be represented i n 32 bits.

2. On the Digital U N IX system, the scope of the use
of mixed pointer sizes was e xpected to be qui te
smal l and not l i kely to grow much over t ime,
whereas on the OpenVMS system, the scope is
expected to be somewhat larger at first and grow
significantly over time.

These rwo d ifferences emphasized the need tor effec
tive compi le-time d iagnostics, debugging aids, envi
ronmental support, and c lear documentation.

Diagnostics As an aid to find ing bugs resu lting from
improper mixing of pointer sizes, the DEC C compiler
provides two kinds of diagnostics. Compile-time warn
ings are issued for assignments fi-om long pointers to
short pointers because of the possibi l ity of data loss. In
addition, users may enable run- time checking tor
pointer truncation through a command l ine qual ifier.
This option causes the compiler to generate code on
each conversion from a long to a short pointer, which
wi l l signal a range-check error i f data truncation occurs.

Run-time checking is particu larly usefu l in code that
sometimes employs type casting to use long pointers
in short pointer contexts. Since this action prevents a
compi le-t ime warn ing about using a long pointer
where a short pointer is expected , a r u n- time check
may be t he only way to discover a cod ing error. The
run- time check q ual i fier provides options d istinguish
ing this case from checki ng on general assignments
and parameter passing, a l lowing users to select tor
which c lasses of poi nter-size mixing the compiler
should generate checking code. Ru n -time checking is
a lso avai lable for parameters received by a routine.
This a l lows detection of 64-bit add resses passed to
routines that expect 32-bit parameters even when the
ca l l er is separately compi led or written i n a d ifferent
programming l anguage. For perrormance reasons, it is
usual ly desirable to remove a l l run-time checking once
a program is debugged .

p r a g m a
p r a g m a
t y p e d e f
p r a g m a

r e q u i r e d _ p o i n t e r _ s i z e
r e q u i r e d_ p o i n t e r_ s i z e
c h a r * c h a r _p t r 6 4 ;
r e q u i r e d_p o i n t e r_s i z e

s a v e / * S a v e t h e p r e v i o u s p o i n t e r s i z e * /

Fig ure 2

6 4 / * S e t p o i n t e r s i z e t o 6 4 b i t s * /
I * D e f i n e a 6 4 - b i t c h a r p o i n t e r * /

r e s t o r e / * R e s t o r e t h e p o i n t e r s i z e * /

Sa mple He�der hie Code Th�r Li m irs l'ragmas to Defined Types

Digir"l Technical)ourn�l Vol . R No. 2 1996 77

78

Allocation Fu nction Mapping The com mand l ine
qual itier sett ing the default pointer s ize h as an add i
tional effect that s impl ifies the use of 64- bi t add ress
space. If an expl icit poi nrer size is specified on the
command l ine, the ma l loc function is m apped to a
routine spec ific to the address space tor that size. For
example, _mal loc64 is used for mal l oc when the
default pointer size is 64 bits. This al lows a l location
of 64-bit address space without addit ional source
changes. The sou rce code m ay also ca l l the size
specific versions of run -t ime routines expl ici tly, when
compiled for mixed pointer sizes. These size-specific
functions are avai lable, however, only when the
/pointer_size command l i ne q ua�tler is used. See
"Adding 64-bit Pointer Support to a 32- bi t Ru n-time
Library" in this issue for a discussion of other cHeers of
64-bit addressing on the C run-time l ibrary."

Header File Semantics The treatment of poinrer_size
pragmas i n and around header fi les (i .e . , any source
included by the #include preprocessi ng directive)
deserves special mention. Programs typically include
both ptivate definition files and public or system-specific
header files. In the latter case, it may not be desirable tor
definitions within the header files to be afrccted by t he
poinrer_size pragmas or command l ine currently in
effect. To prevent these definitions trom being aHected,
the DEC C compi ler searches for special prologue and
epilogue header files when a #include di rective is
processed. These files may be used to establ ish a par
ticular state for environmental pragmas, such as
pointer_size, tor all header files in the di rectory. This
el iminates the need to modify either the i ndividual
header files or the source code that includes them .

The compiler creates a predetined macro cal led
_JN ITIAL_POTNTER_SIZE to indicate the initial
pointer size ;-tS specified on the command l ine. This may
be of particu la r use in header files to determine what
pointer size should be used, if mixed pointer size sup
port is desirable . Conditional compilation based on this
macro's definition state can be used to set or override
pointer size or to detect compilation by an older com
piler lacking pointer-size support. If its val ue is zero, no
/pointer_size quali fier was specified, which means that
pointer_size pragmas do not take effect. If its value is
32 or 64, pointer_size pragmas do take drect, so it can
be assumed that mixed pointer sizes are in usc .

Code Example

I n the s imple code example shown in Figure 3 , sup
pose that the routine proc l is part of a l ibrary that has
been only partia l ly promoted to use 64-bit add resses.
This function may receive either a 32-bit add ress or a
64- bi t address i n the mRwneru_ptr parameter. To
demonstrate the use of the new DEC C features, prod
has been modified to copy this character string para
meter fi·om 64-bit space to 32 -bit space when ncces-

DigitJ! TcchnicJ! Joumal Vol . 8 No. 2 1 996

sary, so that rout ines that procl subsequently cal ls
need to deal with only 32-bit addresses.

The IN ITIAL_POI NTER_S IZE macro is used to
determ ine i f pointer_size pragmas wi l l be effective
and, hence, whether argument_ptrmight be 64 bits in
width . If it might be a 64-bit pointer, whose actual
width i s u tlk.nown in this example, the poi nter's value
is copied to a 32 -bi t-wide pointer. The pointer_size
pragma is used to change the current poin ter size to
32 bits to declare the temporary pointer. Next, the
two pointer va.l ues are compared to determine if
the original pointer fits i n 32 bits. If the pointer does
not fit, temporary storage in 3 2 - bit addressable space
is a l located, and the argument is copied there. Note
that the example uses _ma l loc32 ra ther than ma lloc,
because mal loc wou ld a l locate 64-b i t address space
if the initial pointer size was 64 b its. At the end of
the routine, the temporary space is treed, i f necessary.

A type cast is used in the assignment from
argument:__ptr to temp_short_ptr. even though both
variables are of type char * . Without this type cast, i f
arp,umeJZI_jJtr i s a 64-bit-wide pointer, the DEC C
compiler would report a warning message because of
the potential data loss when assigning from a 64-bit to
a 3 2 - bit pointer.

For other examples of pointer_ size pragmas and the
use of the _INITIAL_PO INTER_SIZE macro, see
Duane Smith's paper on 64-bit pointer support in
run-ti me l ibraries."

OpenVMS System Services

The OpenVJVlS operating system provides a suite of
services that perform a variety of basic operating sys
tem functions 7 Design work was requ ired to maxi
m ize the uti l ity of these routines in the new mixed
pointer s ize environment . Issues that needed to be
addressed i nc luded the fol lowing, which arc discussed
in subsequent sections:

• Several services pass pointers by refe rence and,
hence, requ ired an interface change.

• Because of resource constraints, nor a l l system ser
vices cou ld be p romoted to handle 64- bit addresses
in the first version of the 64-bit-capable Open VMS
operating system.

• Since the services provide mixed l evels of support, i t
i s important to indicate those that support 64- bit
addresses and those that do not.

• Certain new services seemed desirable to improve
the usabi l ity of64- bit address space .

Services That Are 64-bit Friendly

Services that can be promoted to support 64-bit
addresses without any interface change are cal led 64-bit
fi·iend ly. If a service receives an add ress by reference, the
service is typically not 64- bit friend ly, and a separate

v o i d p r o c 1 (c h a r * a r g u m e n t _ p t r)
{
i f I N I T I A L P O I N T E R S I Z E ! = 0

p r a g m a p o i n t e r_ s i z e s a v e
p r a g m a p o i n t e r _s i z e 3 2
c h a r * t e m p _ s h o r t _p t r ;
t e m p_ s h o r t_ p t r = (c h a r *) a r g u m e n t _p t r ;
i f (t e m p _s h o r t _p t r ! = a r g u m e n t _p t r) {

t e m p_ s h o r t _p t r = _m a l l o c 3 2 (s t r l e n (a r g u m e n t _p t r) + 1) ;
s t r c p y (t e m p_s h o r t _ p t r , a r g u m e n t _p t r) ;
a r g u m e n t _p t r = t e m p_ s h o r t _p t r ;

}
e l s e {

t e m p_ s h o r t _p t r = 0 ;
}
p r a g m a p o i n t e r _s i z e r e s t o r e

e n d i f

I *
T h e a c t u a l b o d y o f p r o c 1 i s o m i t t e d . A s s u m e t h a t i t c a l l s
r o u t i n e s t h a t o p e r a t e o n t h e d a t a p o i n t e d t o b y a r g u m e n t _ p t r
a n d t h a t t h e r o u t i n e s a r e n o t y e t p r e p a r e d t o h a n d l e 6 4 - b i t
a d d r e s s e s .

Figure 3

* I

i f I N I T I A L_ P O I N T E R _S I Z E 1 = 0
i f (t e m p_ s h o r t _p t r 1 = 0)

f r e e (t e m p_ s h o r t _p t r) ;
e n d i f
}

Code Example of Poi nrc r_sizc Pragmas and rhc _lN lTlAI ,_ POI NTER_S I Z E M�Kro

enrry point is required to support 64-bir addresses. A
single routine cannot distinguish whether the address at
the specified location is 32 bits or 64 birs in width.

If a scn·icc docs not rccei\'c or return an address by
rderence, the service is usual ly 64- bit triend ly. Even
descriptor argu ments present no problem, because the
32 -and 64-bit versions can be distinguished at run
t ime. The majority of services t:t l l into this category.

The services th::tt are not 64-bit tl-icndly include
the en tire su ite of memory management system scr
\'ices, s ince they access add ress ranges passed by refer
ence. Other such services include those that receive
J 32-bit vector as an Jrgu ment, which may inc l ude the
add ress of a pointer as an e lement. A good example
ti·om this group is SYS$FAOL, which accepts a 32-bi t
\'LCtor argu ment t(x t(>rmatrcd output . For a l l these
scn·i ces, JlC\\' intcrhccs were designed to accommo
date 64-bir callers.

Promotion of Services

The Open VMS project team explored the idea of pro·
moting all system services to support 64 -bit add resses .
Since the majority of OpcnVtvlS system service
rout ines an: 1\'rittcn in the l'viAC R0-32 assembly l an
gu age or the B l iss- 3 2 programming language, the
internals of the routi nes could not be promoted to
hand le 64- bi t addresses without modi tications. We
cou ld not take advantage of the throw-the-swirch
approach, and we did not want to because many

pointers used in ternal ly in the OpcnVMS operating
system remain at 32 bits.

We considered using 64-bit jacket routines to copv
64-bit argumcllts to the stack in 32 -bi t space, which
wou ld then e1l l the 32-bit intcrnJI routine to pert<xm
the requested function. However, this approach wou ld
ta i l for context arguments such as asynchronous system
rrap (AST) rou tine parameters, where the address of
the argument is stored tor su bsequent usc. This
approach would also prevent services tl·om operating
on any true 64-bit addresses. It was clear that :n least
some routines would have to be modi tied internally.

The idea of using jacket rou tines was u ltimately
rejected t(>r several reasons. First, the jackets wou ld
need ro be custom written to ensure correct parameter
semantics. There cou ld not be a "common jacket"
that cou ld have saved time and lowered risk. Second,
there would be an undesirable pcrtc>n11ance impact h1r
64- bi t cal l ers. Third , we decided that ba\'i ng a com
plete 64- bi t system service su ite was not essential h>r
usable 64-bit support . 'We cou ld ddine a subset that
wou ld meet the needs of 64- bit add ress space users,
while lowering our risk and im plementation costs.

The sen·iccs selected tor 64-bit su pport fa l l inro
tour categories.

l . Memory mJnagement services.

2. Performa nce-critical services. This group inc ludes
services that Jre typical ly scnsi ti\·e to the addition of

Dig;i r;1\ Tcrhn ic1l journ.1l Vol . R No. 2 1 996 79

e\·en a fe\\' cycles of execution t i me . Req u i ri ng that
a 64 -bi t add ress user d o any addi tional \\'ork, such
as copy ing da ta to 3 2 - bi t space, is u n desira b l e . An
exam p le of this type of service is SYS$ ENQ, which
is used tor q ueu i ng lock requests .

3 . Design center services. The primary design cent e r
tor 6 4 - b i t su pport was database appl icati o ns .
Database arch itects J n d consul tants were pol led to
determ ine \\ 'h i c h scn·ices \\'ere most needed lw
their products . Many of these services , t(Jr examp le
SYS$QIO f(x q ueu i ng JjO requests, wen: also i n
the performance-cri tical set.

4. Other usefu l basic services. Th is set inc l udes ser
vices to case the tra nsition to 64 b i ts with minim: d
ch ange to program structure . F o r examp le, the
SYS$Gv! Kll..N L serv ice accepts a routine add ress
and a vector of 32 - bit a rguments <1 11d i l l\ ' C l kcs the
rou ti ne in kerne l mode, pass ing those arguments .
Wi thout a nc\\' 64- b i t ,·ersion of SYS$ C:M KRN L,
a cal ler could not pass '' 64-bit ad d ress to the kernel
mode ro utine wi thou t changi ng the t(mn of the
argument block, such as passi ng '' structure that
SYS$C1vl KRJ'\J L wou ld not interpret JS '' vecrm.

Several steps were taken to ease progra mming to
this subset i mplc mcmation .

• Fo r al l 64-bit scn·iccs, all pointer argumcnrs ma\·
be in 64- b i t space . Extend i ng onlv ind i, · id ua l •• rgu
ments for some services wou ld have been con fusi ng
and d i fficu lt to docu ment .

• The 64-bit-capablc svsrcm services arc cl early listed
in the Opc nVMS documentation, Jnd the docu

mentation r(J r ind i,· idu<1 1 sen · iccs c lc1rl v ca l l s out
their capJbi l ities.c'

• For C program mers , rhe header ti le that ddincs
tlmction prototypes for svstcm services

(STARLET.H) ddincs the expected pointer size
tor service argu ments . This ti le can be used t(Jr
compi le- t ime type checking tor correct a rgum e nt
poi nter si zes .

• A strict n am in g COil\'Ciltion has been ad hered to t(n
64 -bit sen· ices. l f a rou tine was 64-bit ti-icnd ly, i . e . ,
i t requ i red n o i n tcr t:lce ch an ge , its name \\'�1S not
changed . If :1 llC\\' en try poi m ,,.,1s requ i red
because , t(Jr exa mple , an :�dd ress is passed by rer\: r
ence, a "_64" su fti x wJS <H.ided to the n<1lllc to iden
t ify the new entry point .

• S ign -ex te ns ion checking is pertormcd in ro ut ines
that do not accept 64 - b ir �1dd rcsses .

Centralized Sign-extension Checking

For sen ·ices th•lt hJ\'C not been promoted to :�ccept
.1 rgu menrs i n 64-bir space, cenrraJ i zed sign -extension
checking takes place . As described in the section S ign

extension Checking, suc h checking prc\'cnts errors that

DigiL11 TcchniL-;11)our t l:l l Vol . � No. 2 1 996

occur \\'hen a 64-bit add ress is eJToncousl\- passed to a
routine that uses onlv 3 2- bit addresses. This cen tralized
ch ecking is p�lrt of the system scn · icc d ispatch er, which
returns the error status SS$_A RC_<..;TR_32_B ITS when
the error is discovered . Pert(Jrm i ng the checki ng at this
common po int minimized the i mp leme ntati on efTort ,

while protect ing scnsi ri,·e inner mode sen· ices . No
c ha nges ,,·ere neccssar\' to the mod u les that contain t ile
32 - bi t scn·icc code . The intern•1l ,·ector ofscn·ices con
tains a tbg t(JJ' cKh sen·ice i nd ic:�ring ,,·herhcr ch ecking
shou ld be done .

N:1tur a l l y, i t is best tor mixed -size errors to be dis

covered •H compi le r ime. The DEC C compi ler issues a
warn i ng n1essJgc when a 64-b i r pointer is used as a
para meter to '' routine \\'hose ti. 1 nctio J1 protot\'pe spec
i fics that the p�l r.lmcter sho u l d be •1 3 2 - bit poi nter.
Ru n-time sign - e x tension checking ,,·mks t(Jr am· la n

gu •1gc , though, i nc l ud ing MAC:R0- 3 2 .

Th is S t l [)port c1 n also b e used to •1 l lo\\' ,1 ru n - ti me
decision to be made to cop,· datJ ti·om (A- bit space
to 32 -bit spKe . For cxam pk , a mu r i ne could c: ! l l a
system service, passi ng a long an add ress that i t
h �1d received as a paramete r. If the serv ice ret u rns
SS$_A l\(;_c.;TR_32_B fTS, the c a l l i ng routine c1n
then copv the argu men t to the stack •1 1 1d ret!'\' the scr
, · icc. In this \\'<\\', the O\'crhead of cop,· ing can be
J\ ·oid cd i t' cop,· i ng is unnece s-.aJ'\' . When rhc svstem
scn·icc is promoted to h and le 64-bir •l lid resscs in a
fi.1 turc version o f t hc Open VMS ope ra t ing wste m, no
change wi l l be n eeded in this cal l er ; rhc data copyi ng
code wi l l never be invoked . Th i s <1p proach mav be
a ppropri .ue t(H· a run- time l i brarv thJt needs to be fu lh ·

64-bit capab l e todav on Open V M S Al ph •1 \'cJ·sion 7 .0 ,
- i f that l i brarv '' i l l nor be rcrc lc �1Snl t(Jr •1 furmc \ 'CJ'si on

of the Opcn VtvlS operati ng S\ 'Stcm .

Memory Management System Services

The Opc nVM S mcmorv nunagcmcnt S\'Stc m ser
vices Jrc not 64-b it friend l y bcuusc rhcv pass 3 2 - bir

i np ut •1 1 1d output add ress a rgu ment s lw rck rencc.
This set of sc n· iccs includes SYSS E X P REC (cx�x\ Jld
programjw 11 tm l reg ion) , SYSS M c; B J .S C : (map g loba l
section) , SYSS C : RM l'SC (create Jnd m•lp section) , and
SYS$ PU ll..GWS (pu rge \\'Orking set) , ,unong others.

The gu id i ng princ ip le in p romoting these scr ,·iccs
was that the nc\\' 64-bit sen·iccs h�1d to pcr t(mn the
same fu nctions as their 32 -bit cou nterparts but nor

necessari l y with an i d entical i mc rt:lcc . Since 32 - bit
:�ddresscs can be expressed as 64-b i r •1dd rcsses \\'i th
sign -C\tcnsion bits in the upper 32 bi ts, ir 111•1Lic sense to
<Kcommodatc 32-bit add resses i n rhc 64-bir imerf:1ccs,

m ::llu ng the nc,,· sc n· i ces a superset of the 32-bit torrns.
For C \J mp lc , the SYS$CRMPSC sen icc \\'JS split into
m u l ti ple 64-hit-c:1pJblc sen·iccs, bec1 usc it hand les a
,·arietY of rnxs o r. sections. The new sen ices can opcLltc
on either 32-b ir or 64-bit addresses <\nd ba,·c simpler

interfaces than the 32 - bi t -only SYS$CRJ\tlPSC. The
original SYS$CRNI.PSC is sti l l present so that existing
code may ti.mction without change.

Some new feature requests were considered as part
of the 64- bit eftort, but, to maintain the focus of
the release, these featu res were not i mplemented . The
64- b i t memory management services were designed
to more easi l y accom modate new features i n the
future . For exa mple, the new services check the arg u
ment cou nt f()r both too m a n y and too tew suppl ied
arguments . In this way, new optional arguments can
be added later to the end of the list without jeopard i z

ing backward compati b i l ity.

Virtual Regions

One new feature that was added to the su i te of 64-bit
memory management services is support tor new ent i
ties cal led virtual regions. A virtual region i s an address
range th:�t is n:served by a program for fu ture dynam i c
al location requests. The region is s imi lar in concept to
the program region (PO) and the contro l region (Pl) ,

which have long existed on the Open VMS operat ing
system .'' A virtual region d i ffers tl-om the program and
control regions i n that i t may be ddi ned by the user by
ca l l ing :� system service and may ex ist within PO, P l , or
the new 64-bit add ressable process-pri vate space, P2 . '
When a virtual region is created, a handle i s retu rned
that is s u bseq uently used to ide ntif)' the region i n
memory management requests .

Add ress space wit h i n virtual regions is a l located i n
t h e same manner a s i n the def:lll l t P O , P 1 , a n d P 2
regions , with al location defined t o expand space
toward either ascend ing or d esce nding add resses. As
in the defa u l t regions, a l location is in multiples of
pages. The Open VMS operat ing system keeps track of
the first fiTe virtual add ress within the regi o n . A region
can be created such that add ress space is created a u to
matica l ly when a virtual referen ce is made with i n the
region, j ust as the control region in Pl space expands
automatical ly to accom modate user stack e xpansion .
When a vi rtua l region is created with i n PO, P l , or P2 ,
the remainder of that conta in ing region decreases in
s ize so that i t does nor overlap with the virtual region .

Virtual regions were added to the Open VMS Alpha
opcr:ning system along with the 64- b i t addressing
capabi lity so that the h u ge expanse of 64 - b it add ress
space cou ld be more easi ly managed . I f a subsystem
requ i res a large portion of virtual ly contiguous address
space , the space can be reserved with i n P2 with l i tt le
ovcrhe:�d . Other su bsystems with in the appl ication
cannot i nadvertently interfere with the contiguity
of this add ress space. They may create their own
regions or cre:Jte ad d ress space wi thi n one of the
detault regions .

Another advantage o f usi ng virtual regions i s that
they arc the most efficient w�1y ro manage sparse
add ress space within the 64- b i t P2 space. F u rther-

more, no quotas are c harged for the creation of a vir
tual region . The i n ternal storage for the description
of the regi o n comes from process :�ddress space , which
is the only resou rce used.

Summary

This paper presents the reasons behi n d the new
OpenVMS m ixed poi nter size enviro n m e nt and the
support added to al low programming within this envi
ronmen t . The d iscussion tou c hes on some of the new
support designed to s impl if)r the usc of the 64 - b i t
add ress space.

The approac hes disc ussed yielded fu l l upward com
pati bil ity tor 32 - bit appl ications, whi le a l lowin g other
appl ications access ro the h u ge 64- bi t add ress space tor
d ata sets th:�t req u i re i t . Promotion of a l l p oi nters to
64-bit width is not required to use 64- b i t space; the
m i xed poi n ter s ize environment was considered para
mount in a l l design decisions. A case study of adding
64- bit support to the C run-time l ibrary also appears
i n this issue of the .fou rna/.''

Acknowledg ments

The authors wish to thank the other mem bers o r· the
64 -bit Al pha- L Team who helped shape many of the
id eas presented in th is paper: Mark Arse n a u lt, G:1ry
B arton, Barbara Benton, Ron B re nder, Ken Cowan ,
Mark Davis, M i ke Harvey, Lon H i lde, D uane Smith,
Cheryl Stocks, Lenny Szu bowicz, and Ed Voge l .

References

l . M. Harvey and L. Szu bowicz, "Exte nd i ng OpcnVMS

tor 64-bit Add ressable Virru,l l ,\!!emory," D(t;ital

Techn ical joumal, vol . 8, no. 2 (1 996, this issue) :
57-7 1 .

2 . Op!'n \ 'MS Callin,l!. S/(!ndcmi (J\ILwnard, M ass . : Digital

Eq uipmcnr Corporation , O rder No. AA-QSBBA-TE,
1995) .

3 . i\1/Jf'Spro 64-Bit Por!lni� and Ti'ansilion Gu ide, Docu

ment No. 007-239 1 -002 (Mounta in Vic\\', Ca l if. :
S i l icon Grc1phies , I n c . , 1996) .

4. C lcll lf:!JWi<.e N!'jerotce for MS-OOS a n d U'lindott•s

Operatlni; Svstems (Redmond, Was h . : Microsoft Cm
poratio n , 1 99 1) and " Decbrations and Types," c h J p . 3 ,
a 1 1 d " Expressions and Assi gnmenrs," c h a p . 4, i n
Micmso(i C/C+ + Ver:,·fon 7. 0 (Redmond, W,1sh . :
Microsoft Corpot·ation, 1 99 1) .

5 . D(� ital lf!VIX Pm,qra/11 1111!1 '\ C11ide (Mavnard, MJss. :
Digital Equipn1cnt Corporation, 1 996) .

6. D . Smith, "Add i n g 64-bit Poi nter Support r o a 32 - bi t
Run-time Li brarv," Dix ilal 'TI!ch n ical journal. vol . 8 ,

no . 2 (1 996, this issue) : 83-95 .

Digital Tec hnical)oum.1 l Vol . 8 No. 2 1 996 8 1

82

7. Open V/11/S System Seruices Hejerence iltfarmal.

A-GETMSG' (Maynard , Mass . : Digital Equi pment
Corporati o n , Order No. AA-QSBMA-TE, 1 995) and
Ope11 VMS Systern Sen• ices Re/erence Jl!Jcmual

GcTQUI-Z (Maynard, Mass . : D igital Equipment Corpo
ration, Order No. AA-QSBN-TE, I 995) .

8 . Open V/v/S Alpha Gu ide to 64-/Jit A dclressi11g (May
nard, lvbss. : Digital Eq uipment Corporation, Order
No. AA-QSIICA-TE, 1 995) .

9 . T. Leonard, ed . , li;J.X A rchitecture Re/erence iVIanual

(Bedford, Mass . : Digital Press, 1 987) .

Biograph ies

Thomas R. Benson
A consult ing engineer in the Open VMS Engineering Group,
Tom Benson is one of' the developers of 64-bit addressi ng
support. Tom joined DigitaJ's VA,\ Basic project i n I 979
after receivi ng B.S. and M.S. degt·ees in computer science
fi·om Svracuse Universitv. After wmking on an optimizing
compiler shell used by several VAX cornpilers, he joined
the VMS Group where he led the VMS D EC wind ows
File View Jnd Session Manager projects, and brought tbe
X l ib graphics l i brarv ro rbe VMS operati ng svstem. Tom
holds rhree parents on the design of the VAX MACR0-32
compiler for Alpha and recent!)' applied for two parents
related ro (A- bit addressing work.

Karen L. Noel
A pri ncipal engin eer in the Open VMS Engineering Group,
Karen Noel is one of the developers of64-bit <lddressi ng
su pport. After receivi ng cl B.S. in computer science ti·om
Cornel l University in I 98 5 , Ka ren joined Digi ta l 's RSX
Develop ment Group. In 1 990, she joined the VMS Group
Jnd ported several pans of the Vl'v!S kernel from the VAX
platform to rhe Alpha platform . As one ofrhc princip:d
designers of OpcnV/v!S Al pha 64-bit addressi ng su pport,
she has recently �ppl ied for six software parents.

Digir;tl Tcclmic:l] Journ<1 1 Vol . 8 No. 2 1996

Richard E. Peterson
Rich Peterson joined Digital 's DEC C/C++ team in I 992 .
He was rhe project leader for the development of the C
and C++ compilers that joi ned the Microsoft front ends
to the G EJV! back end. These compi lers were used to bui ld
and deliver the first release of the \Vindows NT operating
system on rhe Alpha platform a n d later were used i n Visual
C++ for Alpha. A principal software engineer in the Core
Technol ogies Group, Rich is currently the project leader
for DEC C on the Digital UNIX and Open VMS p l atforms.
Prior to j oin ing Digita l , Ric h worked at lntennetrics on
a n u m be r of comp i le r projects, incl uding HAL/S for the
Sp�ce Shuttle and Ada fot· J B M/370 and Ml L-STD 1 7 50A.
Rich also worked �t COiviPASS, where he was the project
leader for the Thinking Machi nes Fortran compi ler and
Digital 's i n i tia l M l'P compiler e ffort. He received a B .S.
in English from rhe California Institute ofTeclmology
and has applied for one parent on Alpha Open VMS 64-bit
compi ler work.

Adding 64-bit Pointer
Support to a 32-bit
Run-time Library

A key component of del ivering 64-bit addressi ng

on the OpenVMS Alpha operating system, ver

sion 7 .0 , is an enhanced C run-ti me l ibrary that

allows appl ication prog rammers to allocate and

util ize 64-bit virtua l memory from thei r C pro

grams. This C run-time l ibrary includes modified

progra m m ing interfaces and additional new

interfaces yet ensures upward compatibi l ity

for existing appl ications. The same run-time

l ibrary supports applications that use only

32-bit addresses, only 64-bit addresses, or

a combination of both. Source code changes

are not req u i red to utilize 64-bit addresses ,

although recompilation is necessary. The new

techn iques used to analyze and modify the

interfaces are not specific to the C run-time

library and can serve as a guide for engineers

who a re enhancing their programming inter

faces to support 64-bit pointers.

I
Duane A. Smith

The OpenVMS Alpha operating system , version 7.0,
h as exten ded the address space accessible to applica
tions beyond the trad it ional 32-bi t address space . This
new address space is reterred to as 64-bit virtual mem
ory and requ i res a 64-bit pointer tOr memorv access . 1
The operati ng system h as a n additional set o f new
memory a l location routines that a l lows programs to
a l locate and release 64- bit memory.]n OpenVMS
Alpha version 7.0, this set ofrouti nes is the only mech
a nism ava i l ab le to acq u i re 64- bit memory.

For application programs to take advantage of these
new OpenVMS progra m m ing i nterfaces, high - level
program m ing l anguages such as C had to support
64-bit poi nters . Both the C compiler and the C r u n
t i m e l i brarv req uired changes to provide t h i s suppor t .
The compi ler neec.kd to und erstand bot h 3 2 - bi t and
64- bi t pointers, and the ru n - ti me l ibrary needed to
accept and return such pointers .

The compiler has a new qual i fier called /pointcr_sizc ,
which sets the ddiHl l t poi n ter size t(x the compi lation
to either 32 bits or 64 bits. Also added to the compi ler
are pragmas (d i rectives) that c1n be used within the
sou rce code to ch ange the active pointer size . An
app l ication program is not requ i red to compi le each
mod u l e using the same /pointcr_size q ual i tier; some
modules m ay usc 3 2 - bi t pointers wh i le others usc
64-bit poi n ters. Benson , Noel , and Peterson describe
these compi ler en hancem e nts . ' The DEC C [!ser \

Cuide jor Open 'vi\1S 5)•slems docu ments the q u a l i ticr
and the pragmas 3

The C ru n - time l i brarv added 64 - bi t poi nter sup
port ei ther by modit\•i ng the ex isting i nterrace to ,,
fu nction or by adding a second i nre rtacc to the same
function . P u blic header ti l es d c ti n e the C: run-t ime
l ibrary i ntcrtaces. These header ti l es contain the p u b
l i c l y accessible ti.11Ktion prototypes a n d structure defi
nitions . T h e l ibrary documentation a n d he:�.dcr ti les
are sh ipped with the C compiler; the C r u n - rime
l ibrary sh ips with the operating system .

This paper d iscusses a l l phases o f the enhanccmenrs
to the C r u n -t ime l i brarv, ti·om project concepts
through the analysis, the design , a nd ti nal ly the i mple
mentation . The f)hC C Nuntime Lihrarv R(fercnce

Mauua/j(Jr Open \ 'MS S)•stems contains user docu men
tation regard ing the chan gcs .4

Digiral Technical j ournal Vol . 8 No. 2 1 ')')6

S4

Starting the Project

We devoted the in i tial two momhs of the project to
u ncle rst�111d i ng the overall OpcnVMS presen tation of
64- bi t add resses and decid i ng ho\\ to prescllt 64- bit
en hance mems to customers . Represent�\tin:s ti·om
OpenVMS engineering, the comp i ler team , the run
t ime l ibrary ream, and t h e Open VMS Call ing St:1 1 1dard
team met weekly with the go:d of converging on the
cl d ivcra h l cs f{>r Open VMS A lpha version 7 . 0 .

The pro ject team was committed to preserving both
sou rce code compati b i l i tv :\lld the upward compa ti
bi l it\' aspects of shareable i m ages on the Open VMS

operati ng S\ 'Stem . Early d iscussions with app l ica tion
developers reint()rced o u r belief that the OpwVMS
system m ust a!Jow app l ications to usc 3 2 - b i t and
64-bit pointers withi n the s�1mc appl ication. The team
a l so :-�greed that tor a mixed-pointer appl ication to
work cfkctin: h', a s ingle ru n-t ime l i brarv \\ ould need
to support both 32 - b it and 64- bit poin�ers; ho\\'cn:r,
there \\'as no known prcccdem tor design ing such
a l ibr:-�ry.

One imp l ication of the d ecision to d esign a r u n
ti me l i b r�m· that supported 32 -b it :md 64 -b it pointers
\\':IS that the l i brarv could ne\Tr return an u nsol ic ited
64- bi t pointer. Returning a 64-b i r pointer to a n
appl ication that was expecting J 32 -bi t poi mer \\·ou ld
resu lt in t he loss of one ha lf of a n add ress. A l t hough
typic1 1 ly this error would cause a hardwa re except ion ,

the resu l t ing add ress cou l d be a \'a l id add ress. Stor ing
to or read ing tl·om such a n �1d drcss could resu l t i n
incorrect bc l 1 �1\· ior that \\'O u l d b e d i fficu l t to detect.

The OJ X' I I \ :If.'; C:allil lP, Sta 1 1 rlm d specif-ics thar a rgu
mems p �1ssed to a f u n ction be 64- bi t va l ues . ' I f �1
32-b i t <1dd ress is used, it is a lways sign extended ro
torm �1 64 - bi t add ress that can be used by the Alpha
hard\\'<1 1T . The C r u n-time l ibr�1 ry team exploi ted th is
tact \\' hen creating the 64-hit 1 11 ter t:lce to the l i hran ·.

The ream a lso agreed that using 64- bit poin tc ;·s
shou ld be as si mp le as possible; the si mp lest mode
wou ld a l low the appl i cation ro comp i le us ing the
qua l i fi er /poin ter_size=64 withou t making source
code ch �1ngcs . The design of 64- bit su pport m ust
appc1r <1S :1 logical ex tens ion to the C: progL1m m ing
em·ironmcllt i n use tod a\'. Fu rthe rmore, �1ppl iut ions
\\'rittcn ro COilr(lnn str ict lv to the ANS I st:JIKhrd m usr
be able to usc 64-bit poin ters whi le remaining cont(>r
mant. For nample, a llocating 64-bit v irtu a l memorv
wou ld be an extension to the st:�ndard C memmy man

-

agement functions malloc, c:d loc, rca l l oc, and tiTc.
This paper s hm\ s that each of the C run-time l ibran·

in terbces n�1mined tai l s i mo one of the f(> l l o\\ ' in ;, ::::>
t-our categories (l isted in order of added comple :-; i n·

to librarv users) :

I . Not �1fkcted by the size o f a pointer

2 . En hanced to accept both pointer sizes

Dig:ir,11 Tcclmic,1 1)ourml Vol . 8 No. 2 1 996

3. Dupl icated to have a 64-bi r-specific in rerf..1cc

4 . Restricted from using 64-bit pointers

One last point to come tt·om rbe meetings was
that man\' of the C r u n-t ime l i brarv intet·bces arc
i m p l e m emed bv ca l l i ng other OpenV

.
MS i m ages. For

example, the Curses Screen J\llanagcmc m i n terfaces
make ca l l s to the OpcnVMS Screen Man age ment
(S M G) bei l i ty. I t is i mporr:mt that t h e C run -t ime
l i br:� rv ddines the inrcrt:1ces to support 64- bit
addrcsSl's without looking �1t t he i mplementatio n of
r l1e fu nction . Consistenc\· and completeness of the
imerbcc arc more important than the comf) lex it\·
of the imp lementation . In the SNI G ex�1mp lc , if th�
C r u n-rime l i brary needs to mJke a copy of a string
prior ro pass ing the string to the SMG f:1e i l iry, this
is what will be implemented .

Analyzing the Interfaces

The process of ana lyz i ng the i nterfaces began by creat
ing �1 document that l is ted all the header ti les <l lld rhc
cktin i rions in these fi les . A total of 50 huder ti les that
conta i ned approximately 5 0 structu res and 500 proto
t\'pes needed to be ana l \'zcd . Each structure or pro
tot\Ve had to be examined to sec i f a change in poi nter
size \\'o u l d atkct the i nterface . Keep in mind rhat
\I'C <l ll�1 1y;.cd only the i ntert:1ces; we did not namine
the underlying i mplementation changes that wou ld
be requ ired .

Analyzing the Structures

It is nccessar\' ro d isti ngu ish bet\\'een a structure,
\\·h ich 111:1\' contain pointers, :md a pointer to rile struc
ture i tse l f. For example, the di \·_t structure conta i ns
two i n teger tie lds . A lthough the size of the pointer
to cl i\'_t docs not affect the contents of· the structure,
the emi rc structure ma\ ' be ::�l locued i n 32-bit or 64-bir
\' irtu a l memory. Fu nctions that :�ccept a pointer to such
a structure mav need to be mod itled to accomnHKhte
the 64-bit case . The d i\'_t srrucru1·e is

t y p e d e f s t r u c t {
i n t q u a t , r e m ;

} d i v_ t ;

Man\' structu res used i n the C run-time l ibran·
i ntcrbccs arc ::tl locatcd b\· the ru n- r ime l i br�ll-\' i ;1
response to �1 fu nction c a l l : for example, �1 ca l l to

.
the

topen fu nction returns the till lowi ng po in ter to
the f i LE structure :

F I L E * f o p e n (c o n s t c h a r * f i l e n a m e ,

c a n s t c h a r * m o d e l ;

The C run -r ime l ibrarv �1 lw�1\'S a l locates }'! I .E struc
tu res in 32 - bi r virtual memorv and returns �1 32 -b it
pointer to the cal l ing progr:� m . This i mportant con
cept un d ramatica lh· impact the usc of 64- bit poimers

in strucrurcs. I f a rl LE poi n ter is :� l wavs a 3 2 -bit
poi nter, structu res that contai n on ly H L E pointers arc
not affected by the choice of poi nrcr s ize We use this
i n rormation when we look Jt the L lyout of structu res
and examine fu nction prototvpcs that accept poi n te rs
to structures.

I n this paper, structures that arc a lwavs <1 1 1 ocated in
3 2 - bi t virt u JI memory arc rdcrrcd ro as structures
bou nd to l ow memory. A fter determ i n ing wh ich
struct u res arc bound to low memory, we exa m i ne the
layout of each structure to dec ide i f the structure
is affected bv poi n ter si ze . We kee p i n m i n d that
poi n ter s ize docs nor afrect a structure that is bound
to low mc morv.

For upward compati b i l ity, the :ud ysis m ust a lways
consider exist ing software that depen ds on the ! Jyout
of the structure . In the case of pu b l ic hc<1dcr fi le analy
sis, such ckpc ndcncc wil l probablv J lwavs be present .
An app l ication lllJV hJ\ 'e exccu Ll blc code that, r(Jr
example, ktchcs 4 bvtes begin n i ng at bvte 12 of the
structure :md dcrdcn:nces those 4 bvtcs as the add ress
of a string.

For these pu b l ic structu res, the :malysis must weigh
the i m pact of r(>rcing these structures to be 3 2 -bit
poi nters . I f the decision is made to a l l oca te two d i Hcr
ell t structure tvpcs, each fu nction th<lt e i ther returns
or is passed such a str ucture m ust have a poin ter-si ze
specific impic lncnr<l tion . The cJsc : \ll alysis and fu rther
detai l s appear i n the section Poi n ter to Poi nter-size
sensitive Structures .

Analyzing the Function Prototypes

Ana lyz ing nmctions only req u i res lookin g at the ftmc
tion prototypes . To determ ine t h e c ftcct of poi nter
size on a fu nction, we look at eac h paramete r and
return va l ue th:Jt i nvolves a poi11tcr. This section
describes the types of situ ations th:�t are a ffected by
poi nter size, ri·om the s i m plest tvpc ro the most com
plex . Note that when a program passes an arrav of anv
type to a fu nction, the arrav is p<lSscd as a poin ter �md
must be considered .

Making 64-bit-friendly Parameters As men tioned i n
t h e sen ion Starti ng t h e Project, the OfX!I l 1.-;HS Calli11g
Standard spcc i rics that a 32 - bit add ress is sign
extended to a 64 - b i t add ress when passed as an
argu me m to a fu nction . This i mp l ies that exist ing
programs th<H pass add resses as p�1ramctcrs are a l ready
sign ex te nd i ng those 3 2 - bi t add resses to be passed as
64 - b i t quant i ties . bch 32 - b i t :-td d ress can, thcrd(Jrc ,

be expressed :�s J 64-bit add ress i n \\' h ich the top
32 bi ts arc zero.

This s ign - extend ing scheme a l l ows the r u n - ti me
l i brary to h�l\'C a s ingle i mple mentation that can be
used by both 32-bit and 64-bit ca l l ing programs. Th is

i m plementation wou ld be mod i ti cd to acce pt oni l'

64- bi t add resses. An im p le me ntat ion that supports
parameters of either pointer size is rct\:rrcd to as being
64-bit hicnd ly. The tl.1 1Ktion strlcn i s an e xample of
a 64-bit -ri·icnd lv ti.1 nction .

s i z e t s t r l e n (c o n s t c h a r * s t r i n g) ;

The slrin.£< p<1Ll lllcter is the only p�1rt of the strlcn fu nc
tion that the po i nter size afkcts. To support 64-bit
add ressi ng , the strl en fu nction IL1d to be mod i ticd to
accept a 64 - b i t pointer.

Parameters Bound to Low Memory In structures bound
to .low mc morv, the add resses th:n the programs p:�ss
are a lways 3 2 -bit addresses. One cxplan:�tion is that
the structu res arc managed bv the ru n - ri me l i brary,

and the on ly method of c reati ng, destroy i ng, or
obtai n i ng the ;1dd resses of these structu res is bv cal l ing
a l i b ran· routi ne . Gi,·cn th <H a s ingle l i brarv scn·iccs
both 3 2 - bi t <llld 64- bit ca l l ing progra ms, rhc l i bLJrv
docs not c ha nge tbe strucru res based on command
q ua l i fiers, nor docs i t al locate the structures i n 64- bit
virtual memory. For user conven ience, the C run - time
l i brarv i m pleme nted these poi n ters ;JS 3 2 - bi t ret u rn
,·a l u es b u t 64 - b i t- ri·icnd lv p•lramctcrs.

The reason r(n this design beca me apparent \\'hi le
testing the 64-bit i n terbces to the l ibrar v. Consid er
the rol lowi ng code fragme nt, which exists i n manv
appl ications :

F I L E * f p ;
c h a r b u f f e r [1 0 0 J ;
f p = f o p e n (" t h e _ f i l e " , " r " l ;
f r e a d (a r r a y , s i z e o f (b u f f e r) , 1 , f p) ;

The c run- time l ibrary aiW<l)'S a l locates :1 r l LE
structure in 32 -bit virt u a l memory. vVhcn the previous

code ri·agmem is compi led using /pointer_size=64 , jj>
is decl ared as �� 64 - b i t poi n ter to a f i L E structu re ,
because using this q u a l i fier speci fics the dcb u l t poi nter
size to be used . When the fopen fu nction returns th e
32 -bit poi n ter, the return va l ue is sign extended i n to
the 64- bi t H LE pointer. I f the tc ll l rth parameter of the
head fu nction had been declared :�s a 32 - bit fi i .E
pointer, the compi l er wou l d report <1n error \\'hen the
64-bit F l LE poi n te r fp \\'as 11asscd as an argument.
Th is exa mp l e expla ins ,,-lw the C run - ti m e l i hraJ'\'
declares structures bound to low mcm orv :�s 3 2 - hit
return va l ues but 64- bi t parameters.

Para m eters Restricted to Low M e m o ry S tr u c tu res
restricted to IO\\' mcmorv arc s imi lar to those bou nd to
low me mory except that the user a l locates the srruc
tu res and c:�n <1i locate the structures in high nKmoJ'\'.
The C run -t ime l i brary can not support the a l loca tion
of such structures in 64-bit virtual nll'mory.

Dig:ir�l Tc.: h n icll l o u rn a l \'o l . 8 0:o. 2 I <)<)(> 85

86

An exam p le of a parameter being rcsrricrcd ro a
low memory add ress is the bu ffer being passed as rhe
parameter to the function sctbuf. The para meter
defines rhis bu ffer to be used t(Jr I/0 operations . The
user expects to see this b u fkr change as 1/0 opcLl
tions arc pcrt(Jrmed on the ti l e . I f th e run - t i me l i brary
made a copy of th is bufkr, the changes wou ld <'t)pca r
in the copy and not in the origi na l bufrer that the user
supp l ied . VVhcn the C ru n - r i me l i brary begi ns to usc
the 64 - bit Opc nVMS Record Manageme nt Serv ices
(RJ\115) i mcrt:1ce, this low- m c morv restri ction wi I I be
remm·cd .

I n most c1scs , the r u n - ri m e l i brary is a ble ro h ide
the bcr that the 3 2 - bit RMS i n tcr t:1ce is not able to
interpret a 64 - bit virtua l memory Jddress . Cons itkr
the jllename parameter to the topen funcrion. I f the
par:11nctcr is a 64- bit virtuzd me mory add ress, rhc run
time l i brary copies th is par;11nctcr to 3 2 -b i t v irru�1 l
memor\' and p�1sses t h e add ress of t h e copy to RMS .
Neither t h e user nor RMS is awJrc that th is copy has
been made. The l ibrary may copy the d ata if and only i f
such a copy operation docs nor change fu nction a l i ty o r
s ign ificanrly degrade pcrhm11J ncc .

Size-independent Structure Poi nters Manv fu nctions
rccc i ,·c the Jddrcss of a stru cture whose l ayout is not
afkctcd bv poi n rer size. The s implest add ress in this
category is ti1Jt of an Jr ray of i ntegers . This arr.1y m�1y
be in e ither 3 2 - bi t or 64-bit v irtua l memory, but on ly
one i nterbcc i s needed to determ i ne the l ayou t of rhc
structur e . I f the structure bvour is i nd epende n t ot·
poin ter s ize, then pointer-si ze-specific entry points arc
not requ i red t(Jr th is parameter. The deve loper would
sti l l make the parameter 64- bit ti·icnd ly so thar the user
wou ld luvc the ti-eedom to ma ke the a l l ocation that is
besr t(Jr the app l ication .

Pointer to Pointer Parameters I r is common pr;1cricc
tor a tlmct ion to be passed a po in ter to a po i nter. I f the
pointer be i ng poi nted ro i s nor bound or restricted to
a 3 2 - b i t ad d ress, then two i m p le mentations of the
tlmction �1rc necessary.

To u nderstand w h v some fu nctions requ i re two
i mp lcm cmar ions , consider rhc fo l lowi ng stnod
fu nction:

d o u b l e s t r t o d < c o n s t c h a r * s t r i n g ,
c h a r * * e n d p t r) ;

The strtod fu nct ion converts �1 stri ng to a tl oat i ng
poin t dou b le - prec is ion n u m bcr. The second para me
ter ro this hmcrion , l!lldj)li: is J pointer to a mcmon·
location i nto \\"h ich the add ress of tbc fi rst u n recog
n ized ch�1 ractcr is to be placed . The ca l ler of this fu nc
tion has a l located either 4 or 8 bytes to store this
address. Withou t poi nrcr-sizc-speci tic en try points,

Vol . S N o . 2 1 996

the fu nction has no way o f de te rm i n i ng how many
bytes to write. vVriti ng 4 bytes m ay tru ncate a po i nter;
wri ting 8 byres may overwri te 4 byres of user data that
fo l lows the pointer. The strrod fu nction, thcrd(Jrc , has
two imp le m entations . "The tirst e xpects endjJ!r to be
rhc Jddrcss of a 3 2 - bit poi nter, and the second expects

endptr to be the address of a 64 -hit pointer.

Pointer to Pointer-size-sensitive Structures M;my fu nc
t ions receive the address of a structu re . I f the �1 n�1 lvsis
reveals rh�H rhe L 1yout of th is structure is dependent
upon po i mer s ize , the h 1 ncrions that recci,·c or rcrurn
this structure must have pointer-size-specific cnrrv points.

Note that tbe layou t of the structure is scp�1ratc
fi·om w hether tbe structure is a l located in low memory
or in high memory. The 3 2 - bit-spec i tic c ntrv poi n t is
needed to understa nd the layou t ofrhc structure , but
the par;unercr shou ld a l l ow this structu re to he a l lo
cated in high mcmorv.

Functions rhat receive the add ress of <1 1 1 a rra\' of
add resses a rc treated in rhc same way, assuming that
tbc :ldd resscs i n the arr;1y arc neither hound nor
restricted w l ow mcmorv. The function bc i n� cal led
needs ro know i f the a rra\' con r;1 i ns 3 2 - bit add resses or
64 - b i r �lli d n::sses . Un l i ke rhc Jddress of the a 1-rav, the
i ndi v id ua l mem bers of rhc .l iT�l\' Jrc not sign exte nded
ro 64 - bi r va l ues .

Scp�1 rarc im plementati ons arc necessary on ly to
determine rhc l ayout of what is be ing pointed to . The
32-bir i n terface hand les po i nr c rs to structu res conta in
ing 3 2 - bi r ;�dd rcsses, and rhc 64-bit i n tcrr:1cc lnnd lcs
po i mcrs to structures con Ll i n i ng 64 - bit addresses .

Functions That Return Pointers Many fu nctions retu rn
poi nters ;)S the V:l luc of the rimction. These poi nters arc
e ither po inr cr-s ize spec ific or they arc not �1ftcctcd by
the poi nrc r size. Simi l �1 r to i rs spec ifications r(n 64-bit
ti-icnd lv parameters, the Open \ : l iS Cctllinp, Stondord

i nd icates that return , ·a lu cs on the OpcnVMS A l pha
opcLH i ng svstem are a lw;�vs sign c:.: tcndcd to 64-bit
va l ues Jnd returned in reg ister i'.cro (RO) .

To m ake a n add ress parametc 1· 64- b i t tri c n d l y, a
timction �1 l l ows a 64-b ir ad d ress to be pJsscd , rhus
enab l ing both 3 2 - bit a n d 64-bit ca l l ing pmgr: u ns to
usc J s in g le i n terface . COIJ,·crsc ly, i f J hmcrion retu rns
a 64 - bi t add ress to J 3 2 - b i r ca l l ing progra m , the
add ress i s safclv rctumcd in KO bur i s truncated when
moved ti·om RO i n to the user's data arc�1. A 64-bir
fric nd ly add ress retu rn va l ue is �1 lways 32 bits . When
mmnl ti·om R.O into rhe ca l l ing program's \':t riab l e ,
it is sign otcnded \\"hen rhc e1l l ing program is using
64- bir addresses.

I f the retu rn val ue of J fu nction can be �1 64-bir
address, rhis fu nction must have poi n rcr-sizc-spcc i tic
entry poin ts . I f the fu nction returns rhe add ress of a

structure thJt is bound to low memorv, such as a fl LE
or WlN DOW poin te r, the return v�1lue does not t()rce
separate e ntry points.

Certain fu nctions, such as mal loc, J l locate memory
on behalf ohhc call ing program Jnd return the address
of that memory Js the val u e of the ti.mction. These
h.t nctions have two i m pleme ntations: the 3 2 -bit i n tcr
fKe a lways :t l locues 3 2 - bit virtual memory, Jnd the
64 - bi t interface always a l locates 64- bit virtual memory.

Many stri ng and memory fu nctions h:JVe return val
u es that are relative to a parameter passed to t h e same
routine. These ;�ddrcsses mav be returned as high
memory add resses i f ;�nd on ly i f the p;�ramerer is a
high memory address.

The fol lowing is the fu nction prototype for strcat,
which is tound i n the header ti le <String. h > :

c h a r * s t r c a t (c h a r * s 1 , c a n s t c h a r * s 2) ;

The strcat fu nction appends the stri ng poi n ted to lw
s2 to the string poi med to by sl . The return va l u e is
the add ress of thc latest stri ng sl .

I n th is case, the s ize of the poi nter in the return
val u e is a lways the same as the size of the poi n ter
passed as the first parameter. The C programming l ; m
gu age h a s no wJv to reflect t h i s . Since t h e f u nct ion
may retu rn �1 64- b i t pointer, the strcat fu n ction m ust
h;1ve two entry points.

As d iscussed c�1r l icr, the poi mcr size used for parJ
mctcr s2 is not related to the returned po i nter size.
The C r u n - rime l i br:� ry made this s2 argu m ent 64- b i t
ti·iendly b y declaring i t a 64- b i t poi nter. This decl ara
tion a l lows the appl i cat ion progra mmn to concatc
n;ltC a stri ng i n h igh memorv to one in low memory
without al teri ng the source code . The t() l lowing strcat
fu nction statement shows this declaration :

c h a r * s t r c a t (c h a r * s 1 , __ c h a r_ p t r 6 4 s 2) ;

The data rvpc _cbar_ptr64 is �1 64- b i t character
pointer whose defi ni tion ;md usc w i l l be expla ined
later in this paper.

High-level Design

T he /pointcr_size q ua l i tler is J\"J i l ab lc in those
versions of the C: compi ler that su pport 64-bi t point
ers. The compiler has a prcddl ncd macro named
_I N I T I A L_PO I NT E R_S I Z J-: whose val u e i s based on
the usc of the /poin tcr_sizc q u a l i fier. The macro
accepts the tll l lowi ng values:

• 0, which ind icates rh:�t the /pointer_size qua l i fier is
not u sed or is not a\·a i bble

• 32, which i n d i cates that the /pointcr_sizc q u a l i fier
is used and has �l value of 32

• 64, which i n d icates that the /pointcr_size qua l i ticr
is used and has J va l u e of64

The C ru n - ti me l ibrary hodcr tiles cond i tionally
compi le based on the va l ue o f this prede fined macro.
A zero value indicates to the header Illes that the com
puting e nvironment is pure ly 32-bit . The poin ter-size
specific function prototypes arc not d di ned . The user
m ust usc the /pointer_sizc q u a l i fier to access 64-hit
fu nctional ity. The c h oice of 32 or 64 determines the
defa u l t poi nter size .

The heackr ti les define two d istinct types of dccbra
tions: those that have a s i ng l e i mplementation and
tbose that have poi nter-size-speci fic implementations.
The add resses passed or returned h·om ti.mctions that
ba,·e a single implementation arc either bou nd to lm,·
memory, restricted to low mcmorv, or widened to
accept a 64- bit poin ter.

Those fu nc tions that have poi ntcr-sizc-spcci tic
entry poi n ts have th ree ti.mction prototypes ddi ncd .
Using m;� l loc Js an cxJmple, prototypes Jre created hn
the fu nctions m;� l loc, _ma l l oc 3 2 , Jnd _rnal loc64 . The
latter two prorotvpes arc the poi nter-si ze-speci fic pro
totypes and Jrc ddi ned on ly when the /pointcr_sizc
qua l i tier is used . The m a l l oc prototype dct:lll l ts to cal l
ing _m�1 1 1oc32 when the defa u l t poin ter size is 32 bits .
The mal lnc prototype dcbu lts to ulling _n1JI Ioc64

when the d c b u l r pointer size is 64 bits. Appl ic;�
tion programmers who mix po i n ter types usc the
/poin ter_sizc qua l i fier to establ ish the defa u lt poi n ter
si ze b u t can then usc the _m al loc 3 2 and m �1 1 loc64
expl icit ly to achieve nonde b u l t behavior.

In addition to being en hanced to support 64-bit
poi nters, the C compi l er h�1s the Jdded capa bi l i ty of
detect ing i ncorrec t m i xed-pointer usage. I t is the
fu nction prororvpe found i n the header ti les ti1Jt tel ls
the com pi ler exactly wh<1 t poi nter s ize is permitted or

expected in a c:� l l . P roper use of the header Il les he lps

prevent poi n tcr truncation .
The actu�1 l fu nctions cJ I Icd in the C run-rime l i br�1rv

are either decc$mal loc or decc$_mal loc64, depending
on the pointer size . The C r u n - ti me l i brary d ocs not
contain an entry poin t cal led dccc$_ma l loc 3 2 . This
naming sc heme w:ts se lected so th:lt appl ications that
l i n k on older systems a lways get the 3 2 - bi t i merbcc.

The C compi ler has a lwavs looked : tt a t:1 b lc within
the C r u n -time l i brary sharc:tble i mage t()r assistance in
name prdi xi ng. Us ing th is t:t b le , the compi ler kno\\"S
t.o change u l l s to the mJI Ioc fu nction i n to c1l ls to the
decc$ mal l oc fu nction and not to change ca l l s to :-.:yz,
which is 1 10t a C r u n - time l i brary tll iKtion, i n to ca l ls to
decc$xyz.

The C r u n -t ime l i brary Jnd the C compi ler have
added nc\\' i n t<.nmat ion to rhc table that te l ls rhe com
pi ler which fu nctions ha,·c poi mcr-sizc-spcci tic c n rn·
poi nts. When the compi ler sees 3 ca l l to the fu nction
_xyz32 , i t looks i t up i n the name tJb l e . I f the nJme of
the fu n ction is f()u n d , the compi ler then looks at

Digital Tcchnicl l)oumcl i Vol . � No. 2 1 <)<)6 �7

whether the fu nction is the 32-bi t-spcc i tic cmn· poinr .
I f i t is, the comp iler t(mns the prdixed n:une by
add i ng "dccc$" to the begi n n i ng of the n:�mc but
al so removes the "_" and the " 3 2 . " Conseq ucn tlv, the

funct ion n :1mc _mal loc32 becomes dccc$m:t l loc , but
the h.t ncrion n a m e _wz32 docs not c hange .

Implementation

To i l lustrate changes th:�t needed to be made ro the
hc:�dcr ti les, we inven ted a s i ngle header ti le Cl l l cd
<he.1ckr. h > . Th is ti le, wh i c h is s hown in Figure 1 , i l lus
trJtes rhe c lasses of problems bccd Lw a dC\·c lopcr 11 ho
is add ing su pport tc)r 64- b i t poi nters . The fu n ctions
deti ned i n this he:�der tile :�rc acrua l C run-ri m e l i br;m•
ri.J nct ions .

Preparing the Header File

The fi rst p�1ss through <hc1d cr·. h > rtsu lted in a num
ber of ch �mgcs i n terms of t(mnatti ng, commcming,
and 64-b i r support. Rta l i z i ng that matw mod i fi cations
wou l d be m �1dc to the hc1dcr ti les, we considered
rcachb i l itv a major goJI t(>r this rel ease of th ese ti les .

The in i ti�11 htader J-I l es �1ssu mcd '' u n i form poimcr
size of 32 bits rc)f the OpcnVi\1\S operating S\'Stc m .
Du ri ng the fi rst pass th mu gh < hcadcr. h > , 11·e :�ddcd
po i n ter-s ize pr;1gmas to ensu r-e that the ti le S•ll'cd the
user's poimcr s ize, set the poi n ter s ize to 32 b i ts, and
then restored the user's pointer s ize a t the end ofrhc
header.

Next 11 c t(mnattcd < heJdcr. h> to s ho\\' the 1 ·ar ious
categor ies that the structures ,md fi.t nctions ta l l i mo .
T h e Gt tcgor ics a n d t h e res u l t of the first pass th rough
< h e ad er. h > can be seen in hgurc 2. For exa mple ,
the fu nction r:md l1ad no poi n ters in the fu nct ion

prototvpc and was immcd iatclv m c)l'cd to the section
"Functions that support 64-b i t po inters . "

Orga n i z i ng < headcr. h > i n th is wav gave us an accu
r:�te read ing o f b o w m :l n\' more fu nctions needed
64- b i r support . If arw of the sections became cmptl',
11·e d id nor rcm<)l'e the section . This ::tppro:Jch 11·orkcd
we l l bccHisc whi le some e ng i neers 11-crc doing 64- bi t
ll'ork, others \\'Crc ;Hid i ng new fi.mctions . An\' nc\\'
fu nctions �1d dcd to a header ti le a Fter the 64- bi t wmk

was done II'OLI Id be placed in the section "hmctions
th �H need 64- bit support . " Pri or to sh ipping the
header fi les, we rcmmui the cm pt�· sections.

Preparing the Source Code

After SCI'CI":t l b lsc starts, we settled on :t des ign tcH·
mod i f-• ing the sou rce code t(lr 64-b it support . The
expected start ing dcsigr1 ll'as to mod i t\· the sour·ce
code h1· add ing pointcr_sizc pragmas and compi le the
sou rce mod u les usi ng the /po i n tcr_s i zc qua l i ricr.
Sorn<.: mod u les \\'O u ld usc /pointe r_sizc= 3 2 ; others
ll'ou ld usc jpoi ntcr_s izc=64. The maj or d r:tll'h�lck to
th is :�pproach was th:n look ing �l t �1 l'ar iab le dccLlrcd as
a poin ter rcq u i r·es an u nderstand i ng of rhc con te xt i n
11·h ich that 1·ari�1bk appc:trs . � o longer wou l d "ch�1r * "
be s imph- �1 charJcter poin ter. I t cou ld be :t 32 -bit or '1
64-b i t c lnr·:�ctcr poimcr, Jnd rhc imp lemcmcr needed
to kno11' 11· h ich one.

The des i gn on wh ic h \\'C dec ided O\'Crcom cs the
reada b i l i ty problem . 13v dcr:l l1 1 t , source ti l es .1 re nor
comp i l ed with the jpoinrcr_sizc q ua l i fie r. This n1c1ns
that no pointer-size m�1 1 1 ipu larion occurs 11·hcn tnc lud
ing the header ti l es . The rcad:t h i l i t\' of rhc source code

is impro1-cd i n that the i m f1 lc m cn tcrs can SCl' 11 h ich
point ers ;H-e 3 2 - bi r poin ters and ll' h i ch :l t'C 64-b i t
poi nters .

lf i f n d e f
d e f i n e

H E A D E R L O A D E D
H E A D E R L O A D E D

Figure 1
Orisi t l ;t i H c;ld c r � i l c <hc,,dn. h >

lf i f n d e f S I Z E T
If d e f i n e S I Z E T 1

t y p e d e f u n s i g n e d i n t s i z e _ t ;
lf e n d i f

i n t
v o i d
v o i d
i n t
c h a r
c h a r
s i z e

e x e c v (c o n s t c h a r * c h a r * [J) ;
f r e e (v o i d *) ;

* m a l l o c (s i z e _ t) ;
r a n d (v o i d) ;

* s t r c a t (c h a r * , c a n s t c h a r *) ;
* s t r e r r o r (i n t) ;

t s t r l e n (c o n s t c h a r *) ;

lf e n d i f / * H E A D E R L O A D E D * /

Vol . � :\o. 2 ! 9'J (J

/l i f n d e f
d e f i n e

I *

H E A D E R_ L O A D E D
H E A D E R L O A D E D

* * E n s u r e t h a t w e b e g i n w i t h 3 2 - b i t p o i n t e r s .
* I
i f I N I T I A L P O I N T E R S I Z E
If i f (V M S V E R < 7 0 0 0 0 0 0 0)
If e r r o r " P o i n t e r s i z e a d d e d i n O p e n V M S V 7 . 0 f o r A l p h a "

Figure 2

If e n d i f
If p r a g m a __ p o i n t e r _s i z e s a v e
If p r a g m a __ p o i n t e r _s i z e 3 2
e n d i f

I *
* * S T R U C T U R E S N O T A F F E C T E D B Y P O I N T E R S
* I
i f n d e f S I Z E_T
If d e f i n e S I Z E T 1

t y p e d e f u n s i g n e d i n t s i z e _ t ;
e n d i f

I *
* * F U N C T I O N S T H A T N E E D 6 4 - B I T S U P P O R T
* I
i n t
v o i d
v o i d
c h a r
c h a r
s i z e

I *

e x e c v (c o n s t c h a r * , c h a r * []) ;
f r e e (v o i d *) ;

* m a l l o c (s i z e _t) ;
* s t r c a t (c h a r * , c o n s t c h a r *) ;
* s t r e r r o r (i n t) ;

t s t r l e n (c o n s t c h a r * > ;

* * C r e a t e 3 2 - b i t h e a d e r f i l e t y p e d e f s .
* I

I *
* * C r e a t e 6 4 - b i t h e a d e r f i l e t y p e d e f s .
* I

I *
* * F U N C T I O N S R E S T R I C T E D F R O M 6 4 B I T S
* I

I *
* * C h a n g e d e f a u l t t o 6 4 - b i t p o i n t e r s .
* I
i f I N I T I A L P O I N T E R S I Z E
If p r a g m a __ p o i n t e r _ s i z e 6 4
e n d i f

I *
* * F U N C T I O N S T H A T S U P P O R T 6 4 - B I T P O I N T E R S
* I
i n t r a n d (v o i d) ;

I *
* * R e s t o r e t h e u s e r ' s p o i n t e r c o n t e x t .
* I
i f I N I T I A L P O I N T E R S I Z E
If p r a g m a __ p o i n t e r_s i z e __ r e s t o r e
e n d i f

ll e n d i f I * H E A D E R L O A D E D * I

hrsr PJss through <hcadcr.h >

Digital Tn:hnical Journal Vol . 8 No. 2 1996 89

90

We created a C run-time l i brary private header
fi le caLled < wide_types . src> . This header file has the
appropriate pragmas to define 64- bit pointer types used
within the C run-time l ibrary, as shown in Figure 3 .

This header fi l e also contains the definitions ofrnacros
used in the implementations of the functions. Figure 4
shows the macros declared in <wide_types. sre> .

Once a mod u l e i nc l u d es the ti le <wide_types . sre>,
the compilation of that mod ule changes to add the
qual i fier /poi nter_size= 3 2 . This change improves the
readabi l ity of the code because "char * " is read as a

I *

3 2 - bit character pointer, whereas 64- bit poi mcrs usc
typedcfs whose names begin with "_wid e . " The
name of the new typed cf is _ wide_char_ptr, which is
read as a 64-bit character poi nter.

The C run-time l i brarv design also req u i res that the
impleme n tation of a fu nction inc lude a l l header ti les
that d e fine the nmction. This ensu res that the i m p l e
mentation matches the header files a s they a r c mod i
fied to su pport 64- bi t poi nters . For fu nctions d e fined
i n m u l tiple header ti les, this ensu res that h eader ti les
do not contrad ict each other.

* * T h i s i n c l u d e f i l e d e f i n e s a l l 3 2 - b i t a n d 6 4 - b i t d a t a t y p e s u s e d i n
* * t h e i m p l e m e n t a t i o n o f 6 4 - b i t a d d r e s s e s i n t h e C r u n - t i m e L i b r a r y .

Figure 3

* *
* * T h o s e m o d u l e s t h a t a r e c o m p i l e d w i t h a 6 4 - b i t - c a p a b l e c a m p i L e r
* * a r e r e q u i r e d t o e n a b l e p o i n t e r s i z e w i t h / P O I N T E R S I Z E = 3 2 .
* I
i f d e f I N I T I A L_ P O I N T E R_ S I Z E
i f C I N I T I A L P O I N T E R S I Z E ! = 3 2)
e r r o r " T h i s m o d u l e m u s t b e c o m p i l e d / p o i n t e r _ s i z e = 3 2 "
e n d i f
e n d i f

I *
* * A L L i n t e r f a c e s t h a t r e q u i r e 6 4 - b i t p o i n t e r s m u s t u s e o n e o f
* * t h e f o l l o w i n g d e f i n i t i o n s . W h e n t h i s h e a d e r f i l e i s u s e d o n
* * p l a t f o r m s n o t s u p p o r t i n g 6 4 - b i t p o i n t e r s , t h e s e d e f i n i t i o n s
* * w i l l d e f i n e 3 2 - b i t p o i n t e r s .
* I
i f d e f I N I T I A L P O I N T E R S I Z E
p r a g m a __ p o i n t e r _ s i z e s a v e
p r a g m a __ p o i n t e r _s i z e 6 4
e n d i f

t y p e d e f c h a r * __ w i d e_ c h a r_ p t r ;
t y p e d e f c a n s t c h a r * __ w i d e_ c o n s t _ c h a r_ p t r ;

t y p e d e f i n t * __ w i d e_ i n t _ p t r ;
t y p e d e f c a n s t i n t * __ w i d e_ c o n s t _ i n t _ p t r ;

t y p e d e f c h a r * * __ w i d e_ c h a r _ p t r _ p t r ;
t y p e d e f c a n s t c h a r * * __ w i d e _ c o n s t _ c h a r _ p t r _ p t r ;

t y p e d e f v o i d * __ w i d e_ v o i d_ p t r ;
t y p e d e f c a n s t v o i d * __ w i d e_ c o n s t _ v o i d_ p t r ;

i n c l u d e < c u r s e s . h >
t y p e d e f W I N D O W * __ w i d e _W I N D O W_ p t r ;

i n c l u d e < s t r i n g . h >
t y p e d e f s i z e t * __ w i d e _ s i z e _ t _ p t r ;

I *
* * R e s t o r e p o i n t e r s i z e .
* I
i f d e f I N I T I A L P O I N T E R S I Z E
p r a g m a __ p o i n t e r_ s i z e __ r e s t o r e
e n d i f

Typcdds From <widc_rypes .sre>

Digital Technical Joumal Vol . 8 No. 2 1 996

I *
* * D e f i n e m a c r o s t h a t a r e u s e d t o d e t e r m i n e p o i n t e r s i z e a n d
* * m a c r o s t h a t w i l l c o p y f r o m h i g h m e m o r y o n t o t h e s t a c k .
* I
i f d e f I N I T I A L P O I N T E R S I Z E

i n c l u d e < b u i l t i n s . h >

d e f i n e C $ $ I S S H O R T A D D R (a d d r)
((((i n t 64) (a d d r) < < 3 2) > > 3 2) = = (u n s i g n e d i n t 6 4) a d d r)

d e f i n e C $ $ S H O R T A D D R O F S T R I N G (a d d r) \
(C $ $ I S S H O R T AD D R (;d d �) ? (c h a r *) (a d d r) \
: (c h a r

-
*) s t �c p y (__ A L L O C A (s t r l e n (a d d r) + 1) , (a d d r)))

d e f i n e C $ $ S H O R T A D D R O F S T R U C T (a d d r) \
(C $ $ I S S H O R T AD D R (;d d �) ? (v o i d *) (a d d r) \
: (v o i d

-
*) m e; c p y (__ A L L O C A (s i z e o f (* a d d r)) , C a d d r) , s i z e o f (* a d d r)))

d e f i n e C $ $ S H O R T_A D D R _ O F _ M E M O R Y C a d d r , l e n) \
(C $ $ I S S H O R T A D D R C a d d r) ? (v o i d *) (a d d r) \
: (v o i d *) m e ; c p y (__ A L L O C A (L e n) , (a d d r) , L e n))

e l s e

d e f i n e C $ $ I S _ S H O R T_A D D R (a d d r) (1)
d e f i n e C $ $ S H O R T _A D D R_O F _ S T R I N G C a d d r) (a d d r)
d e f i n e C $ $ S H O R T _A D D R _ O F _ S T R U C T (a d d r) (a d d r)
d e f i n e C $ $ S H O R T_A D D R _O F _M E M O R Y (a d d r , l e n) (a d d r)

e n d i f

Fig u re 4
iVL lnos ti·om <widc_rypcs.sre>

Implementing the strerror Return Pointer

The function strcrror a lways returns a 3 2 - bit poi nter.
The memory is a l located by the C ru n-time l i brary for
both 32-bit and 64-bit cal l ing programs. As shown
in Figure 5, we moved the fu nction strcrror in to the
section "Functions that support 64-bit poin ters" of
<header.h> to show that there arc no rcsrrictions on
the usc of this fi.mcrio n .

T h e "Create 3 2 - bit header file rypcdcts" section o f
<headcr.h> i s i n the 3 2 - bit pointer section, where the
bound-to- low- me mory da ta stru ctu res :.1re decl ared.
The function retu rns a poi nter to a character string.
We, therefore, ad ded typedefs for _c har_ptr32 and
_const_char_ptr32 while in a 32-bit poinrer context.
Th ese dec l arations :�re protected wirh rhe ddinition of
_CHAR_PTR32 ro al low multiple header ti les to usc
the same naming conventio n . Decl arations of the
consr form of the typcdef arc always made in the same
cond itional code since they usually :Jrc needed and
using the same condition removes the need tor a d if
krcnt protecting n:Jmc.

The strerror fi.1 11ction could have been i m plemented
in <header.l1> by placing the fi.mction in the 32-bit sec
tion, but that wo uld have i mpl ied that the 3 2 - bit
pointer was a restriction that could be removed later.
The pointer is not a restriction, and the strerror fu nc
tion fu lly supports 64 -bit pointers.

Tile private header ti le typedefs are always d ecl ared
starti ng with rwo underscores and ending in either
"_ptr32 " or "_ptr64 ." These typede ts arc created only
when the header tile needs to be in a particu lar
pointer-size mode whi le referring to a pointer of the
other size. The return v:.1 l u e of strerror is modified to
usc the typedef_char_ptr32 .

Including the header tile, which declares strerror,
a l l ows the compiler to vcrif)' that the argu ments,
retu rn values, and pointer si zes are correct.

Widening the strlen Argument

The fu nction strlen accepts a constant character
pointer and re turns an u nsigned i n teger (size_t) .
I m p l e me nting fu l l 64-bit support i n strlcn means
changing the parameter to a 64-bit constant character
poi nter. If an application passes a 3 2 - bit poi nter to
the strlcn function, the compiler- generated code sign
extends the pointer. The required header tile mod
i fic:�tion i s t o simply move strlen from the sec
tion " F u nctions that need 64 - bit support" to the
section " F unctions that su pport 64 -bit pointers . "

The steps necessary tor the source code t o support
64 -bit addressing arc as tal lows:

l . Ensure that the mod u le incl udes header files that
declare strlen .

Digjral Tl·dmical journal Vol . 8 No. 2 1 996 9 1

92

F igure 5

i f n d e f
d e f i n e

I *

H E A D E R _ L O A D E D
H E A D E R L O A D E D

* * E n s u r e t h a t w e b e g i n w i t h 3 2 - b i t p o i n t e r s .
* I
i f I N I T I A L P O I N T E R S I Z E
i y- (V M S V E R < 7 0 0 0 0 0 0 0)
e r r o r " P o i n t e r s i z e a d d e d i n O p e n V M S V 7 . 0 f o r A l p h a "
e n d i f
p r a g m a __ p o i n t e r _ s i z e s a v e
p r a g m a __ p o i n t e r _ s i z e 3 2
e n d i f

I *
* * S T R U C T U R E S N O T A F F E C T E D B Y P O I N T E R S
* I
i f n d e f S I Z E_ T
d e f i n e S I Z E T 1

t y p e d e f u n s i g n e d i n t s i z e _t ;
e n d i f

I *
* * F U N C T I O N S T H A T N E E D 6 4 - B I T S U P P O R T
* I

I *
* * C r e a t e 3 2 - b i t h e a d e r f i l e t y p e d e f s .
* I
i f n d e f C H A R _P T R 3 2

C H A R P T R 3 2
c h a r * __ c h a r _ p t r 3 2 ;

d e f i n e
t y p e d e f
t y p e d e f

e n d i f
c o n s t c h a r * __ c o n s t _ c h a r_ p t r 3 2 ;

I *
* * C r e a t e 6 4 - b i t h e a d e r f i l e t y p e d e f s .
* I
i f n d e f C H A R_ P T R 6 4
d e f i n e C H A R P T R 6 4
p r a g m a __ p o i n t e r _ s i z e 6 4

t y p e d e f c h a r * __ c h a r_ p t r 6 4 ;
t y p e d e f c o n s t c h a r * __ c o n s t _ c h a r _ p t r 6 4 ;

p r a g m a __ p o i n t e r _ s i z e 3 2
e n d i f

I *
* * F U N C T I O N S R E S T R I C T E D F R O M 6 4 B I T S
* I
i n t e x e c v (__ c o n s t _ c h a r _ p t r 6 4 , c h a r * []) ;

I *
* * C h a n g e d e f a u l t t o 6 4 - b i t p o i n t e r s .
* I
i f I N I T I A L P O I N T E R S I Z E
p r a g m a __ p o i n t e r_ s T z e 6 4
e n d i f

I *
* * T h e f o l l o w i n g f u n c t i o n s h a v e i n t e r f a c e s o f X X X , _X X X 3 2 ,
* * a n d X X X 6 4 .
* *
* * T h e f u n c t i o n s t r c a t h a s t w o i n t e r f a c e s b e c a u s e t h e r e t u r n
* * a r g u m e n t i s a p o i n t e r t h a t i s r e l a t i v e t o t h e f i r s t a r g u m e n t s .
* *
* * T h e m a l l o c f u n c t i o n r e t u r n s e i t h e r a 3 2 - b i t o r a 6 4 - b i t
* * m e m o r y a d d r e s s .
* I
i f I N I T I A L P O I N T E R S I Z E
p r a g m a __ p o i n t e r _ s i z e 3 2
e n d i f

3 2

Final Forrn o f < header.h>

Digiral Tcc hnic�l)oun1<1l Vol . R No. 2 1 996

v o i d * m a l l o c (s i z e_ t __ s i z e) ;
c h a r * s t r c a t (c h a r * __ s 1 , __ c o n s t _ c h a r _ p t r 6 4 __ s 2) ;

i f I N I T I A L _P O I N T E R _S I Z E = = 3 2
p r a g m a __ p o i n t e r _ s i z e 6 4
e n d i f

i f I N I T I A L P O I N T E R S I Z E & & V M S V E R > = 7 0 0 0 0 0 0 0
p r a g m a __ p o i n t e r _s i z e 3 2

v o i d *_m a l l o c 3 2 (s i z e_ t) ;
c h a r *_s t r c a t 3 2 (c h a r * __ s 1 , __ c o n s t _ c h a r _ p t r 6 4 __ s 2) ;

p r a g m a __ p o i n t e r_ s i z e 6 4
v o i d * _ m a l l o c 6 4 (s i z e _ t) ;
c h a r * s t r c a t 6 4 (c h a r * __ s 1 , c o n s t c h a r * __ s 2 > ;

e n d i f

I *
* * F U N C T I O N S T H A T S U P P O R T 6 4 - B I T P O I N T E R S
* I
v o i d f r e e (v o i d * __ p t r) ;
i n t r a n d (v o i d) ;
s i z e t s t r l e n (c o n s t c h a r * __ s) ;

__ c h a r _ p t r 3 2 s t r e r r o r (i n t __ e r r n u m) ;

I *
* * R e s t o r e t h e u s e r ' s p o i n t e r c o n t e x t .
* I
i f I N I T I A L P O I N T E R S I Z E
prag m a __ po i n t e r _ s i z e __ r e s t o r e

Figure 5
Conti nued

e n d i f

e n d i f I * H E A D E R L O A D E D * I

2 . Add the kJJiowi ng l i ne of code to the top of the
mod u le : II i n c 1 u de < w i d e_ t y p e s . s r c > .

3 . Ch:mge the dec laration of t h.e fu nction t o accept
a _wide_const_char_ptr parameter insteJd of the
previous eonst char * parameter.

4. Visu a l ly tcJI Iow this argument through the code,
looking for assignment statements. This particular
tl1 1Ktion wou ld be a s imple loop . If l ocal variables
store this poi nter, thev must a lso be decla red as
_ wide_const_chJr_ptr.

5. Co mpi le the source code using the di rective
/wJ rn=enable=maylosedata to have the compi ler
help detect poi nter tru ncation.

6 . Add ::1 new test to the test system ro exercise 64 - bit
poi mers.

Restricting execv from High Memory

Examination of the execv fi.m ction prototype showed
thJt this fu nction receives two argumenrs. The ri rst
::�rgumem is J pointer to the name of the fi le to start .
The second Mgu ment represents the ::�rg" a rray that is
to be passed to the chi ld process. Th is JJTJY of pointers
to n u l l terminated strings ends with a N U LL poi nter.

I nit ia l ly, the exeev fu nction was to have had two
i m plemen tations. The parameters passed to the execv
function are used as the parameters to the main func
tion of the chi ld process being started . Because no
assu mptions cou ld be made about that ch i ld process
(i n terms of support tor 64 - bit pointers) , these para
me ters are restricted to low memory add resses.

To i l l ustrate that the art,"' passing was a restriction,
\\'e place that prorotvpe i n to the section "Fu nctions
restri cted from 64 bits" of <header. h > . The firs t a rgu
ment, the name of the tile, d id not need to have this
restriction . The section "Create 64 -bi t header file
typcdds" was enha nced to add the defi nition of
_const_c har_ptr64, which a l l ows the prototypes to
define a 64-bit pointer to constant characters whi le in
either 32-bi t or 64 - bit context .

Returning a Relative Pointer in strcat

The strcat function returns a pointer relative to its tirst
a rgument. We looked at this function and determined
that i t required two entry points. In addition , we
widened the second parameter, which is the add ress of
the stri ng to concatenate to the second, to a l low the
appl ication to concatenate a 64 - bit string to a 32 -bit
string without source code ch anges.

Digital Tcchnictl)ourn:tl Vol . 8 No. 2 1 996 93

94

Figure 5 shows the changes made to support fu nc
tions that have pointer-size-speci fic entry poi nts . The
prototypes of functions X.:'\.X., _XXX32, and _XXX64
begin in 64- bi t pointer-size mode. Since the u n mod i
fied fi.mction name (stt-cat, XXX) is to be in the pointer
s ize specified by the /pointer_size qual i fie r, the
poin ter size is changed from 64 bits to 32 bits if and
only if the user has specified /pointer_size=32. At this
point , we are not certain of the poin ter size in effect.
We know only that the size is the same as the size of
the qua l ifier. The second argu ment to strcat uses the
_const_char_ptr64 typedef in case we are in 32 -bi t
pointer mode. Notice the declaration of _strcat64
does not use this typedef because we are guaranteed
to be in 64-b i t pointer context. Figure 6 shows the
i mplementation of both the 32-bit and the 64-bi t
strcat fi.mctions.

The 64-bit mal/oc Function

The implementation of mul tiple entry points was dis
cussed and demonstrated in the strcat implementation .
Al though multiple entry poi nts are typical ly added to
woid tru ncatin g pointers, fi.mctions such as memory
allocation routines have newly defined behavior.

The functions decc$ mal loc and decc$_mal loc64
use new support provided by the OpenVMS Alpha
operating system for a l locating, extending, and ri·ec ing
64-bit virtual memory. The C run-time l ibrary uti l izes
this new fu nctionality through the LIBRTL entry
poin ts. The LI B RTL group added new entry poin ts for
each of the existing memory management fu nctions.
The LI B RTL inc ludes an additional second t:ntry
point for the free function. S ince our implementation
of the free function simply widens the pointer, wt: end
up with a single, C run- time l ibrary function that must
choose which LIB RTL fu nction to call.

i n c l u d e < s t r i n g _ h >
i n c l u d e < w i d e_ t y p e s . s r c >

I *
* * S T R C A T I S T R C A T 6 4
* *

i n t f r e e (__ w i d e_v o i d_ p t r p t r) {
i f (! (C $ $ I S_S H O R T_A D D R (p t r)))

r e t u r n (c $ $_f r e e 6 4 (p t r)) ;
e l s e r e t u r n (c $ $ f r e e 3 2 ((v o i d *) p t r) ;

}

Conclud ing Remarks

The project took approximatdy seven person- months
to complete. The work involved two months to deter
mine what we wanted to do, one month to tlgurc out
how we were.� going to do it, and four person -months
to modi �', document, and test the software.

Dur ing the init ial two months , the technical leaders
met on a weekly basis and d iscussed the overall
approach to adding 64-bi t pointers to the OpenVi'vlS
environ ment . Since I was the tech nical lead for the C
run - t ime l ibrary project, this in i tial phase occupied
between 25 and 50 percent of my time.

The ont: month of detai led analysis and design con
sumed more than 90 percent of my time and resu l ted
i n a detailed document of approximately 100 pages.
The document covered each of the 50 headt:r fi les and
500 function i nterfaces. The fu nctions were grou ped
by type, based on the amount of work req uired to
support 64 -bit poin ters .

The first month of impl ementation occupied Iwarl�'
a l l of my time, as I made several fa lse starts. Once I
worked out the tlna l implementation technique, I
completed at least two of each type of work. As coding
deadlines approached, I taught nvo other engineers on
my team how to add 64-bit pointer su pport, pointing
out those fu nctions already completed tor refe rence.
They came up to speed within one week. Togcthn, we

completed the work during the final month of the
project.

* * T h e ' s t r c a t ' f u n c t i o n c o n c a t e n a t e s ' s 2 ' , i n c l u d i n g t h e
* * t e r m i n a t i n g n u l l c h a r a c t e r , t o t h e e n d o f ' s 1 ' .
* I

__ w i d e_ c h a r _ p t r _ s t r c a t 6 4 < __ w i d e _ c h a r _ p t r s 1 , __ w i d e _ c o n s t _ c h a r _ p t r s 2)
{

}

(v o i d) _m e m c p y 6 4 ((s 1 + s t r l e n (s 1)) , s 2 , (s t r l e n (s 2) + 1)) ;
r e t u r n (s 1) ;

c h a r * s t r c a t 3 2 < c h a r * s 1 , __ w i d e _c o n s t _ c h a r _ p t r s 2) {
(v o i d) m e m c p y ((s 1 + s t r l e n (s 1)) , s 2 , (s t r l e n (s 2) + 1)) ;
r e t u r n (s 1) ;

Figure 6
lmplcmenrarion of32-bit and 64-bir sn·car Fu nctions

Digital Tedm ic�l)ourn:tl Vol . 8 No. 2 1 996

Acknowledgments

The au thor wou l d l ike to acknowledge the others who
contributed to the success of the C r u n -t ime l ibrary
project. The engi neers who he lped with various
aspects of the analysis, design, and i mplementation
were Sandra Wh itman, Brian McCarthy, Greg Tarsa,
Marc Noe l , Boris G u benko, and Ken Cowan . Our
writer, John Paoli llo, worked countless hours docu
menting the changes we made to the l ibrary.

References

l . M. Harvey and L. Szubowiez, " Extend ing OpcnVl'viS
for 64-bit Add ressable Virtual Memory," Digital
Tech n ical journal, val . 8 , no. 2 (1 996, this issue) :
57-7 1 .

2 . T. Benson, K. Noe l , and R . Peterson, "The OpenV MS
Mixed Poin ter Size Environment," Dip,ital Tech n ical
.foumal. vol . 8, no. 2 (1 996, th is issue) : 72-82 .

3 . nH: C User \ Guide for Open Vt\1/S Systems (Maynard,
MJss . : Digital Equipment Corporation, Order No.
AA- P l c t\ZE TK, 1995) .

4 . f)h'C C Ru ntime Library Reference t\lla nual for
Open VMSSystems (Maynard, Mass . : Digi ta l Equipment
CorporJtion, Order No. AA- PU N EE-TK, 1 995) .

5 . Open VMS Calling Standard (Maynard , MJss . : Digita l
Equ ipment Cmporation, Order No. AA-QS B RA-TE,
1 99 5)

Biography

Duane A. Smith
As a consul ring soti:wan: engineer, Duane Smith is cu rrently
an:h i tect and project leader of the C run -r ime l ibr:�ry for

.

rhe Open VMS VAX and Alpha platforms. He joined Digital
in 1 98 1 and h•lS worked on a variety of projects, inc luding
the A-to-1: Datab<lSe Manager and the Language-Sensitive
Ediror. Du:tne received his R.S. in engineering from the
Univnsity of Connecticut in 1 98 1 and his M .S . in soft
ware engineering from Wang Institute of Graduate Stud ies
in J 987. He pur-sued his master's degree through Digital 's
Crad uate Engineering 1--:d ucnion Program (GEEP) . Duane
holds one .S . parent issued tor the DEC\\·indows Srnrctured
Visual. Navigation (SVN) widget.

Digital Technical journal Vol . 8 No. 2 1 996 95

Building a H ig h-performance
Message-passing System for
MEMORY CHANNEL Clusters

The new MEM ORY CHANNEL for PCI cluster

interconnect technology developed by Digital

{based on technology from Encore Computer

Corporation) d ramatically reduces the over

head involved in intermachine commun ica-

tion . Digital has designed a software system,

the TruCiuster ME MORY CHAN NEL Software ver

sion 1 .4 product, that provides fast user-level

access to the M E MORY CHANNEL network and

can be used to implement a form of distributed

shared memory. Using this product, Digital has

built a low-level message-passing system that

reduces the communications latency in a ME MORY

CHANNEL cluster to less than 1 0 microseconds.

This system can, in turn, be used to easily build

the communications l ibraries that programmers

use to parallel ize scientific codes. Digital has

demonstrated the successful use of this message

passing system by developing implementations

of two of the most popular of these libraries,

Parallel Virtual Machine (PVM) and Message

Passing Interface {MPI).

Vo l . 8 No. 2 1 ':!96

I
James V. Lav.rton
John]. Brosnan
Morgan P. Doyle
Seosamh D. 6 Riordain

Timothy G. Reddin

During rlw l:�st [(:,,. vc1rs , s igniric:�nr rcsc:1rch ;l ml
dn·c lopmen t has been u nd e rtaken in both academia
and i n d ustry in an dlc>rt to red u ce the cost of high
pertimnanu: com puting (H PC) . The meth od most
ti·cquem l\' used was to bu i ld p;lra l l e l S\'Stems out of
clu sters of commodity ,,·orkstations or sen"Crs tlut
cou l d be used as a ,·i rtu;l l supercom p u tcr. ' The nwti
\'Jtion t(>r this '' ork ,,·as the tremendous g:1 i ns that
have lx:en ;K h ievcd i n red u ced i nstruction set com
puter (!US C :) m icroprocessor perf()l'mJnce d u ring the
last d ecade . I ndeed , processor pertormance i n rod:1v's
workst:Jtions and sen·ers often cxceeds that ofrhc ind i
, · idu;l l processors in a tigiH I \· coupled s upercomputer.
H m,·e,·er, trad itional Joc1l �1rc:1 net\\'ork (LA N) per·
torm�1nce has not kept pace ll' i th mi croprocessor
pert(mn:l JKe. LANs, such as rl bcr d istri b u ted d :na
i n tcrbce (FD D I) , ofkr rosonable bandwidth , since
comm u n ication is geneLl l lv GlJTied our Lw me�ms of
rrad i rion�1l prorocol stacks su clJ as the usn d:�t:�gr;1 lll
protoco!ji mernct protocol (U D P /1 !') or the tr:ms
mission conrroJ protoco l/internet protow l (TCI)/I P) ,
bu r softw:t re O\'erhead is �1 major factor i n mess:�gc
rranskr time 2 This sofi-,,.,lre o\'erhead is not red uced
by bu i ld ing hster LAN ncrwork ha rdwa re. 1\:\rhcr, a
ne\\' appro:tch is needed - one that bvpasses the pro
tocol stack ll'h i le p rescn·ing sequencing, error detec
tion , :tnd protection .

Much c ur re nt research is d cnncd to red ucing this
com m u ni carions O\'erhe::Jd usi ng specia l i zed lurd w�1re
:1 nd sof-twa re. To th is <: nd , Digi t:tl has been working
to m:tke commercia l A l p h a cl uste rs, d esce nd ed ti·om
the origin�1 l VAXclust<:r tech n ol ogv, a\·aibblc to scicn
t itic and te ch nical users . ' ' This cl ustn tec lmol og1·
uses a1·a i lable com mod itY ln rd\\'Jre and software to
i mplement :t h igh- pert(mnance co m m u n ications sub
syste m . ' The hardware i n tercon nect th�lt su ppons
cl ustcred operation is E ncore Computer CorporJtion's
patented t'vi EMORY C : H A :---! N J-: 1 . technol og\ . ' ' This
int e rconnect pro1·ides J mech �m ism that a l lo\\'s the ,·ir
rua l add ress space of :t process to be m:tpped so th:tt
:1 store i nstruction in one s1·srem is d i renh· rctlccted in
the p ll\'sic1l memory ol · another syste m. We ha1·e
developed software applic1tion programming in tn
bces (A l' l s) th:n pro,·ide usu-l cl'el applications \\' ith
this up�1b i l i n· i n a contro l l ed ::1nd protected m�mner.

Data may then be transkrred between the mach ines
using simple memory read and write operations, with
no software overh ead , esse ntia l ly ut i l izi n g the fu l l per
formance of the hardware. This approach is sim i l a r to
the one used i n the Princeton S H RJ M P project, where
this process is described as Virtua l Me mory- Mapped
Com munication (VJ'v! M C) . 7-'"

Figure 1 shows the re lationship between the various
components of our message - passing syste m . The tirst
phase of our work i nvolved designing a program
ming l ibrary and associated kernel components to pro
vide protected , u n privi leged access to the M EM O RY
C H A N N EL network. Our objective in creating this
l ibrary was to provide a faci l ity much l i ke the standard
System V in terproccss com m unication (J PC) shared
memory fi.mctions avai lable i n U N I X implementations.
Programmers cou ld usc the l ibrary to set up operations
over the M EMO RY C H A N N EL i nterconnect, but t hey
would not need to use the l i brary ti.mctions tor data
transfer. In this way, pcrtonnance cou ld be maximi zed .
This pro d uct, the Tru Ciustcr M EMORY CHAN N EL
Software, provides progra m mers with a simple, high
pert(mllancc mechanism kH- bui lding paral lel systems.

TruCi ustcr M E M O L�Y C HAN NEL Software d elivers
the pert(xm:mce avai lable ti·om the M EMORY

C H A N N E L network directly to user appl ications but
rcq uircs a programming style that is d i fferent from
that req uired for shared memory. This d ifferen t pro
gramming sty le is necessary because of the d iffe rent
access characteristics between local memory and mem
orv on a remote node con nected through a MEMORY

C�I A N NEL network. To m a ke programming with the
MEMOKY C H ANNEL technology re latively s imple
whi le cont i n u i n g to del iver the hardware performance,
we built a l i brary of pri m itive com munications fu nc
tions. This system, cal l ed Un iversal Message Passing
(U M P) , h i d es the detai ls of M EM O RY CH.AJ"l N EL
operations from t h e program mer and operates seam
l cssly over two transports (initia l l y) : sh ared memory
and the M b\ll O RY C H A N N E L i ntercon nect. This
a l lows seamless growth h·om a sym metric m u l tipro
cessor (S M P) to a hi l l M EMORY CHANN EL c l u ster.
Devel opment can be done on a workstatio n, whi le
prod uction work is done on the cl uster. The U M P

PARALLEL APPLICATION

PVM I MPI

UMP

TRUCLUSTER
OTHER SHARED MEMORY CHANNEL

MEMORY SOFTWARE TRANSPORT

Figure 1
Message-passi ng Systc111 Archirccrurc

layer was designed from the beginn i ng with pertor
mance considerations in mind, part icuLlrly \Vith
respect to m i n i m i z i ng the overhead i l1\·oJvcd in se n d
i n g s m a l l messages.

Two distri buted memory models arc pred ominamly
used in high- performance computing today:

1 . Data paral le l , which is used in H igh Performance
Fortran (H PF) . " With this model, tl1e programmer
uses para l l e l l anguage constructs to i ndicate ro the
compiler how to d istri bute data and what opera
t ions should be pertormed on it . The problem is
assumed to be regu lar so that the compiler can use
one of a n u mber of data d istri bu tion algori thms.

2 . Message passing, which is used in Para l le l Virtual
Machine (PV M) and Message Passing I nrcrt:Ke
(M PI) u 15 I n this approach, a l l messaging is per
formed expl ic itly, so the appl ication programmer
determines the d ata distri bution algorithm, making
this approach more suitable for i rrcgubr probkms.

It i s not yet. c lear whether one of these approaches
wi l l predomi nate in rhe ti. tturc or if both wi l l conti nue
to coexist . D i gita l has been worki ng to provide com
petitive sol u tions for both approaches usi ng M E M O RY
CHAN N EL cl usters. Digita l 's H PF \\'Ork has been
descri bed in a previous issue of the Journal ' "· '' This
paper is prim arily concerned with message passing.

Bui ld ing on the U M P layer, we constructed imple
men tations of two common message- passing systems.
The tl rst, PVM , is a de facto st<mdard for programmers
who wa nt to p a ra l l e l ize large scie ntific and tec h nical
appl ications. In addit ion to messaging fu nctions, l'VM
a lso provides process control fu nctions. The second ,
M P I , represents the eftorts of a large gro u p of acade
mic and industri a l users who an: working together
to speci�' a standard A P I tor message passing. At this
time, MPI does not provide any process control fac i l i
t ies . The perf(mnancc of these PV M and MPI systems
on M EMORY C H A N N EL c l usters exceeds rhat of the
publ ic-domain i mplementations.

MEMORY CHANNEL Overview

Encore's MEM O RY CHANN E L tech n ology is a h igh
performance network that imp leme nts a torm of
cl usterwide shared virtua l mem ory. l n Di gital's first
i mplementation of th is technol ogy, it is a shared,
100 - mcgabytc -pcr-sccond (M B/s) bus that provides
a write-only path from a page of virtual address space
on one node to a page of physical memory on another
node (or multiple other nodes) . The M EM O RY
C H ANNEL network outperforms any tradit ional LA 1

technology that uses a bus topology. For example, a
peak bandwidth of between 35 M I3/s and 70 M I3/s is
possible with the c ur rent 32-bit pcriphcr:� l component
i nterconnect (PCI) M EM O RY C H AN N EL adapters,

Digital Tec h n ical j o urnal Vol . ll No. 2 1 996 97

depend ing on the bandwidth of the I/0 su bsystem
i n to which the adapter is plugged . Although the cur
rent /vi EMORY CHAN N E L network is a shared bus, the

plan ti:.Jr the next generation is to uti l ize a switched
tec h nol ogv that wi l l increase the aggregate bandll'id th
of the l lCt\Hlrk be\·ond th�n of c u rrentlv a\·a i Llblc . .
s\\·itchcd LAN tech nologies. The latency (time to send
a m i n i m u m-length message one way bct\vccn t\vo
processes) is l ess than S m ic roseconds (1-ls) . The
M E MO RY CHANN E L net\vork provides a com m L I Il ic:t
tions med ium with a low bit-error rate, on the order of
1 0 - u,_ The proba bi l it\' of u ndetected errors occ u rri ng
is so sm::Lil (on the order of the u ndetected error rate of
CPUs and memory Sll bsystcms) that it is esscnri �1 l l v
negligi b le . A M EMORY C H ANN E L cluste r consists of
one or more PCI M EM O RY CH ANN E L adapters on
each node and a hub connecting u p to eight nodes.

The M t-:M O RY CH AN N E L c l uster suppmts �l

5 1 2 - M B glob:�! address space i n to \\'h ich e::�ch ada pter,
under opcr:�ti ng S\'Stcrn contml , em map regions of
local \ ' i r tua l �1d d ress space . " f igmc 2 i l l u strates the
JVJ F.MO RY C H ANNEL opc r;1tion . Figure 2a shows

transm ission , and Figure 2 h shows reception . A p�1ge
tab le cntr�· (PTE) is an cntrv in the svstcm \'i r tu �l l
to-p lwsicl l map t h ::n translates t h e , · irtual :�d d rcss o f
a p:�ge to t h e correspond ing p hvsical address. The
M E M O KY C H ANNEL adapte r comains a page comrol
table (PC:T) that i nd i cates t<Jr each page of M EM O I\Y

CHANNEL g lobal add ress space if that page is m:�ppcd
l oca l lv �md w h ether it is mapped t(Jr transm ission or

reception . Thus, to map a page of local \'i rtu �l l mcm
on· tor tr�msm ission, a l l that i s rcq u i rcd i s to
• Set up an entry i n the system ,· i rtual - to-physical

map to poi nt to a page i n the M E MORY C HA N N E l .

adapter's PC! l/0 add ress space window, which
is d i rectly mapped to the p:1ge in M EM O RY

C H A N N E L space

• Enable the correspond i n g p�1 gc cntrv i n the I'C :T

t(Jr transm ission

Anv write to tbe mapped v i rtu a l page w i l l then
resu lt i n a correspondi ng write to the M EM O RY
C H A � � l-: 1 . ncm·ork.

To complete the c i rcu i t , the page of M EM O RY

C H A !': :\ 1-. L space m ust be mapped to , ·i rru :� l mc morv
on �mother node. This is accomplished on the other
node by

• Making �l page of physical memory nonpagea b l e
(\\'i red)

• Croting a ,· i rrua l region \\'hose PTE poims to the
wired page

• Setting up the 1/0 d i rect memory Jcccss (D t'v! A)
scatter/gather map to point to the physic:�l p:�gc

• Ena b l i ng the appropriate entrv in the adap ter's
P C :T r(>r rece ption

Vol . S :--Jo 2 I ')') (,

Thus, \\ 'hen a MEMO 1\Y CH ANNEL network packet
is received that corresponds to the page tb:Lt is mapped
t(Jr reception , the data is transkrred directly to the
appropriate page o f physic1 l memory by the system 's
D M A engine. In a d d i ti o n , an\' cache l i nes th:Lt rckr to
the upd�ned page are i n\-�l l idatcd .

S u bscq ucm lv, am· \\'rites to the mapped page oh·ir
tual mcmmy on the r!rst node resu l t in correspond i ng
writes to physical memory on the second nod e . This
means th<H w hen a region in M EMORY CHANNEL
space Ius hccn al loutcd and attached to ::1 process,
\\'rites to that region arc just s imp le stores to J process
vi rtual address. The ,· irrual ad d ress translates to a ph\'S
ica l add ress that is mapped t(Jr tr:� nsmission . RcJds
ti"om that region are si mply loads from a process virtual
ad d ress, so the operati ng system is not involved i n data
transkr, with consequent reduction in overhead .

To usc the M EM O RY C H A� �EL b ard,, ·arc , the
operating S\'Stem m ust prO\ id e certain basic sen ices.
Digita l 's c luster soft\\'arc inc l udes a set of l ol\ · - b ·c l
p ri m i ti,·cs that c-1 n be used in the U N I X ke rnel . The
functiona l ity tha t these services provid e i nc l u des

• Allocni n g and dca l locating regions of M EM O RY

C : H A N l' E L space ri:.JI" tL111smission or reception

• Al locu i ng and dca l l ocning c l uster spi n locks

• Prm·id i ng the capa bi l i t\' to be notiticd \\ hen �l page
h:1s been written (i .e . , a notitication cha n ne l)

TruCiuster M EMORY CHANNEL Software

We designed the Tru Ci ustcr ME;\r!O RY C : H A � � E L

Sotiw�l l"C product r o prm · id c uscr-le,·el access t o the
kerne l Fu nctions that contro l the JVt i-:M O RY CHA:\ � 1 -:L
h a rdware. The target a u d ience t(Jr this tec hnology is
para l le l sottware l i brary b u i l d ers and para l l e l compi ler
implcmcntcrs. A s shm,·n i n h l' urc 3 , the prod uct con
sists of t\\'o components l ::tycrcd o n top or· r ile kernel
M EM O RY c : J-!A�NEL fu nctions:

l . A kernel s u bsvstem that interfaces to the lo\\ - l c\·c l
kernel fu nctions

2 . A usu- lcvc l API l i br::trv

There \\"Crc t\\'0 choices in de1'e lopi ng the f1r<>d uct:
pr01 ide si mp lc user- lcYd .Kccss to rhc basic ti.1 nctiona 1 -
irv or bu i ld :1 more soph isticated S\'stcm (c .� . , a d istrib
uted s iLl red memorv [DSM J S\'Stcm) . vVc chose to
make a su bset of the fu nction �1 l iry of the operating sys
tem kcmcl pr imi tives al'a i l ab l c to appl icatiom ti n tii'O
rc1sons . Fi r'il", \l'e d i d not i n i tial!\' kno\\' the degree
of ri.1 1Ktion�1 l i t\' req u i red to prm ide ge neric user
l en:! access ro the M l .. \10 1\Y CI !A'-.; :\ LJ . nct\\ urk
for the l ong ter m . Second , the origi n a l p l l lvose ot
the work ,,-�ls to g ive scient i tic and tec h nical cus
tomers , rather t han commercial cl uster users, c�1 r ly
access to rhc t\ I UvlORY C H AN NE L nct\l'ork . As a

res u l t, rhc functiona l in· \\"C b u i l t i nto rhc pmduct is

EXECUTES STORE INSTRUCTION
TO VIRTUAL ADDRESS IN
TRANSMIT REGION

TRANSMIT
REGION

VI RTUAL-TO
PHYSICAL
ADDRESS
TRANSLATION

PHYSICAL ADDRESS
IN PCI I/0 SPACE

VIRTUAL
ADDRESS

PAGE TABLE ENTRY MEMORY CHANNEL
ADAPTER

PAGE CONTROL
TABLE

MEMORY
CHANNEL
ADDRESS
DATA

(a) Transmission

-+ - , DATA RETURNED FROM
' , PHYSICAL MEMORY

EXECUTES LOAD I NSTRUCTION
FROM VIRTUAL ADDRESS I N
RECEIVE REGION

RECEIVE
REGION

V I RTUAL
ADDRESS

VI RTUAL-TO
PHYSICAL
ADDRESS
TRANSLATION

PAGE TABLE ENTRY

CACHE
INVALI DATE

' ' '
I
I
I
I

PAGE CONTROL
TABLE

MEMORY
CHANNEL
ADDRESS
DATA

(b) Reception

Figure 2
/\'I EMORY CHANNEL OperJrion

TRUCLUSTER MEMORY
CHANNEL API L I BRARY

USER SPACE

TRUCLUSTER MEMORY CHANNEL
KERNEL SUBSYSTEM

KERNEL SPACE

LOW-LEVEL KERNEL
MEMORY CHANNEL FUNCTIONS

Figure 3
TruCi usrer ,vi El'v!O RY C H A N N E L Sofrware Architecture

a set of simple bui ld ing blocks that arc analogous to the
System V ! PC bci l ity in most U NIX i mplementations.
The advantage is that while a very simple interface is
provided initial ly, the intertiKe can later be extended as

required , \Vithout losing compatibil ity with appl ications
based on the initial implementation . Table l details the
M EMORY CHAl'\! N EL API l i brary timctions that the
produ ct provides. An i mportant feature to note is that
when a M EMORY CHANNEL region is a l located using
TruCJuster MEMORY CHANNEL Software, a key is
specified that uniquely identifies this region in the clus
ter. Otber processes anywhere i n the cl uster can attach
to the same region using the same key; the collection of
keys provides a clusterwide namespace.

The MEMORY CHAN EL API l ibrary com m u n i
cates with t h e kernel su bsystem using kmodcal l , a sim
ple generic system cal l used to manage kernel
su bsystems. The l i brary fu nction constructs a com
mand block conta in ing the type of command (i .e . ,

Digital Tech nical Journa l Vol . R No. 2 1 996 99

Ta ble 1
Tru C i uster M E MORY CHAN N E L API L ibrary Funct ions

Fu nction
Name

i m c_asa l l oc

l m c_asattach

l m c_asdetach

i mc_asdea l l oc

i mc_l k a l loc

i mc_l kacq u i re

i mc_l k re lease

imc_l kdea l l oc

imc_rderrcnt

imc ckerrcnt

i mc k i l l

i mc_get h osts

Description

A l l ocates a reg ion of M E M ORY C H A N N E L add ress space of a specified size and permiss ions a n d
with a user-s u p p l i ed key; the a b i l ity to specify a key a l l ows other c l uster processes t o rend ezvous
at the sa me reg io n . The funct i o n retu rns to the user a c l usterwide ID for th i s reg ion .

Attaches a n a l l ocated M E MORY CHAN N E L reg ion to a process v i rtua l add ress space. A reg i o n
c a n b e attached for tra nsmiss ion or reception, a n d i n shared or exc l us ive mode. T h e user c a n a lso
requ est that the page be attached in loopback mode, i . e. , a ny writes w i l l be reflected back to the
cu rrent node so that if a n appropriate reception m a p p i n g is in effect, the resu lt of the writes can
be seen loca l ly. The v i rtua l address of the ma pped reg ion is ass ig ned by the kernel a n d returned
to the user.

Detaches an a l l ocated M E M O RY CHAN N E L reg i o n from a process v i rtua l add ress space.

Dea l locates a reg ion of M E MORY CHAN N E L add ress space with a specified 1 0 .
A l l ocates a set o f c l usterwide s p i n locks. The user can specify a k ey a n d the req u i red permiss ions.
Normal ly, if a sp in lock set exists, then th is fun ct ion j ust retu rns the ID of that lock set; oth erwise
i t creates the set. If the user specifies that creation is to be excl us ive, then fa i I u re wi I I resu It if the
s p i n lock set exists a lready. In add it ion, by specify i n g the I M C_CR EATOR f lag, the f i rst spin lock in
the set wil l be acq u i red. These two features prevent the occu rrence of races in the a l locat ion of
s p i n lock sets across the c l uster.

Acq u i res (l ocks) a s p i n lock i n a specif ied s p i n lock set.

Re leases (u n l ocks) a s p i n lock in a specified s p i n lock set.

Dea l l ocates a set of s p i n locks.

Reads the c lusterwide lVI E M O RY CHAN N E L error cou nt a n d returns the value to the user. Th i s
va l u e is n o t g u a ranteed t o be up-to-date f o r a l l nodes i n the c l uster. It c a n be used t o construct
an a pp l i cation-specific error-detect ion scheme.

Checks for outsta nding M E MO RY CHAN N E L errors, i .e., errors that have not yet been reflected in
the c lusterwide M E MO RY CHANNEL error cou nt retu rned by imc_rd errcnt. This fu nct ion checks
each node in the c luster for any outsta nd ing errors and updates the g lobal error count accord ing ly.

Sends a U N I X s i g n a l to a specified process on a nother node in the c luster.

Returns the n u m ber of nodes cu rrently in the c l uster a n d the i r host n a mes.

1\'h ich l i bran· fu nction has been c a l led) <l lld :�m· p:�t·:�
meters a nd sends it to the kcmc l su bsvstcm us ing
kmodca l l . The kernel su bsi'Stcm h :-�s :1 match ing ti.mc
tion r(lr each o r' the l i hr:-tr\' c:-� l l s . When a l'Oil1 In:ll1d
block is rccci,ni , it is p:1rscd :md the :1ppropriare fu nc
t ion is c:-� l lcd to scn·icc the req u est. All secu ritv and
resource checks arc pcrr(mncd i nside the kernel .

c reation t ime, :md the UN IX user I D (U I [)) and group
I D (C I D) of the c reating process. for :111 ind i ,·id u a l
C RD, there is a host region desc riptor (H RD) for each

node that has the region nupped . This H RD contains
the duster l D of the node a n d othn node-spcci r!c
i n tonnation . Fi nal lv, rc.lr a speci ric H l\ 1) , there i s a
process region descri ptor (1'1\D) t(Jr c1ch process on
that node that is us ing the regio n . 'T I 1c I)JU) comains
the U N I X rrocess I D (I' I D) of the pmcess rlut created
the region and any rroccss-spcci ric i n r(>rmation, such
as virtu a l addresses.

figu re 4 shows some of the d :1ta structu res that the
kernel scn·iccs usc. A c l ustcrwidc region of NI EMORY

CHANN E L sp:�cc is a l located to store these mamgc
mcnt structures. 'fhis region contains a control struc
ture :1 nd six l i n ked l ists of descriptors. The control
structure manages M EM O RY CHANNEL resources
a l l oc1tcd using Tru Ci ustcr M EMORY CHANNEL

Sofuva rc. Each region of M EMORY CH ANNEL address
space :-�nd GK h set of MF.MO R.Y C H A N N EL spin locks
a l located using the product have :1 correspon d i ng
descriptor i n the kernel dat:� structure.

For each region of M EM O RY C H A N N E L add ress
space :1 l loc:�tcd in the c l uster, t h ere is a c l uster region
descri ptor (C : R D) th:�t cont a i n s i n r(mnation ckscri b
i n g the region, i n c l u d i n g its c lusterwidc region ident i
tlcation n u m ber (I D) , i rs s i z e , kcv, pcrmtsstons,

\'ol . X '-:<> . 2 1 996

S i m i l arly, ror eac h set of sp in locks a I l ooted on the
c l uster there is a cluster lock dcscri prm (C L D) that
contains i n formation d escrib ing the sp in lock set,
i nc l u d i n g i ts c l usterwidc lock I D, the nu m hu of sp in
locks in the set, the key, perm iss ions, crc::ttion t ime,
and the UID and GlD of the creati ng f>roccss . Fm a n
individ u a l CLD, there is a host l ock dcsni ptor (H LD)

tor each node that i s u s i n g the spi n l o c k s e t . T h e H LD

contains the c l uster I D o F the node and other nodc
spccifie i n t(>r mation :� bou t the spi n]ock set. for a spe
c ific H LD , there is a process l ock d escriptor (I'L D) r(>r
each pmccss o n th :� t node that is us ing the S f)in lock

HRD 0: HOST 4

H R D 1 : HOST 6

H R D 0: HOST 6

H R D 1 · HOST 1

(J) Regions

HLD 0: HOST 2 PLD 0: PID 3346

HLD 1 HOST 0 I
CLD 0

J L PLD 3: PID 4072 CLD 1

�

- HLD 0 HOST 4 . . .

HLD 1 : HOST 6 . . . � HLD 2: HOST 3

r--- . . .

(b) Spin locks

Figure 4

KEY:

CLD CLUSTER LOCK DESC R I PTOR
CRD CLUSTER REGION DESCRIPTOR
HLD HOST LOCK DESCRIPTOR
HRD HOST REGION DESC R I PTOR
PLD PROCESS LOCK DESC R I PTOR
PRO PROCESS REGION DESCRIPTOR

Truc: l uster M E/I I O RY C : H A :-..: \: E L Kernel Data Structu res

set . The PLD con tai ns the l' I D of the process that cre
ated the spin l ock set .md any process-spec ific i n forma
tion abou t the spinlock set.

A l l these c l uster dat<l structures h ave poinrers that
can not be updated aromic1 l l v. I 1 1 our impl ement ation ,
tbev actual lv consist oftwo copies (o ld and nell') and
a toggle that ind icates ,,·h ich of the two copies is ,·al id .
The toggle is switched ti·om an o ld copv to a new copv
only when the new copy is known to be consistent, so
that r:1 i l u rc of a c l uster m e m ber w h i l e mod it), ing the
structu res can be tolerate d .

Figure 4 a i l lustrates "' hypothetical situation in w h i c h
tc>ur regions of M r)v! O RY C H A N :-J E L space have been
a l l ocued on the c l uster. The ti rst region , with d escrip
tor CRD 0, is mapped on three nodes: host 4, host 6,
and host 3 . The d iJgr:tm <l lso shows ti:ntr processes on
host 3 with the region mapped <l nd l ists the PI D of each
process. Figu re 4b shows a s imi lar s i tu ation tc>r spi n
locks. Two sets of s p i n locks have been a l locucd . T h e

fi rst, w i t h d escriptor CLD 0, is mapped on two nodes
of the c l uster: host 2 a nd host 0. One process on each
of these nodes i s cu rrcnrly us ing the spin lock set.

Command Relay

The command rel a\· is a kerncl- IC\ -c l tr<llllc\n >rk that
enables tbc execution of a generic scn·icc rou tine on
a nother n od e with i n the c l uster. It f unctions :ts �l s im
p le kernel remorc proced ure cal l (RI'C) mechanism
based on tixed u n i d i rcctional messJgc loutions (ma i l
boxes) a n d M E!'v!O RY C H AN N E L noti fication c ha n
ne ls t o awaken the server k e m c l thtT<ld . Figure 5
shows the major components of the command rc lav
and i l l ustrates i rs operation between two hosts i n a
c luster. A c l i e nt ke rnel rl11'C<ld on one h ost im·oki ng <l
service and the corresponding server kernel thread on
another cluster host communicate data us ing a ddincd
bidirectionJI command/response b lock, known as a
parameter structure . The c l ient and scr\'cr routi nes

Digital Tcc ll l l ic.tl)ou m.ll Vol . N No. 2 1 996 1 0 1

HOST A � - - - - - - - - - - - - - - - - - - - �
I

INVOKE

2

RETURN

7
3

6

HOST B r - ,

REGISTER
SERVICE CALL COMPLETE

4 5

I N ITIATOR RELAY !¢==:==========�=� SLAVE RELAY
I MEMORY CHANNEL I 1

- - - - - - - - - - - - - - - - - - _J NOTI FICATION CHANNEL L - - - - - - - - - - - - - - - - - - - ...J

Figure 5
Com mand Relav Opcr<Hion

must conform to this interface and m ust be re l iab l e ,
i .e . , they m u s t always return t o the cal l er. The server

em ca l l any kernel fu nction . Server routi nes are regis
tered (step l in F igure 5) using a dustenvid e service
! D . A kerne l thread i nvokin g a remote service passes
a packed parameter structure to the com mand relay,
together \\'ith a destination node I D and a serv ice l D
(step 2) . This command reiJy then adds process creden
tials Jnd builds a service protoco l data unit (S PD U) .
Using a M EMORY C H A N N E L noti tication channel, i t
s igna ls the remote node and passes th e SPDU by means
of a mai l box in MEMO RY CHAN N E L space (step 3) .
The server parses the S P D U and cal ls the req uested ser
vice fimction , passing it the parameter structure (step
4) . When the service fu nction completes (step 5) , its
retu rn status and any Lhta values :�.re packed i n to a n
S P D U and placed into the mai lbox, a n d t h e i n i tiating
re l av is signaled (step 6) . The in i tjaror then unpacks the
dau !Tom the SPD U and returns the appropriate status
:md values to the c l ient kernel threJd (step 7) .

A l l ca l l s to t h e command re lay arc synch ronous and
scri J l i zed . The i nvokjng kernel thread blocks u n ti l the
server retu rns. Requests to th e com mand relay subsys
tem :.11-c treated on a ti rst-comc tirst-scrved basis, and
c: d ls to a busy re lay block unti l th e rel ay becomes free
Re l ays arc a u romatic<l l lv creJtcd between a l l nodes i n
t h e c l uster.

The command rclav mec hanism m:1kes it poss i b l e
t o s e n d a U N I X signal t o a process on a nother n ode
wi thin the M EMORY C H A N N E L c luster. The imc_ki l l
l i brary fu n ction uses the com mand re l ay to i n voke
the registered kernel server rou tine tor cl uster signa ls
on the remote node , wh ich , i n tu rn , calls the kernel ki l l
fu nction d i rect ly with the P I D suppl ied .

Initial Coherency

\tVhen a process on a c luster member maps a region of
ME1v!O RY CHAN N E L �1dd rcss space tor both recep
tion and tra nsmission, <1 11) ' wri tes to the transmit
region by that process :�rc rctlcctcd as c hanges to the

I 0 2 Di�iral Techn ical Joun131 Vol . 8 No. 2 1 9'16

correspon d ing receive region . I f Jnother process on
another c l uster node su bseq uen t ly maps th e same
region tor reception , the contents of i rs receive region
arc i nd etermi nate ; i . e . , the t\1'0 processes do not have
a coherent view of t hat region . This situation is kn0\\'11
as the in i ti<l l coherencv pro b l e m . For an appl icJtion
deve l oper , this pro b l e m ma kes it d i ffic u l t to treat
M E1\tlORY C:HA � N E L add ress space as another f()rm
of s hared memory. Appl ic:ltions can overcome this d if
ticu lty by using some t(mTl of starr-up synch ron ization.
H owever, a l l developers wou ld have to imp lement
these so lutions sep ara tel y. To increJse the usabi lity of
Tru C l uster M EM O RY CHANNEL Soti:ware, the design
team decided to bui ld in the a bi l itY to request coherent
Ji locJtion of MEM ORY C : l-I A � � U . add ress space
Jcross the c luster. Deve lopers cJn spcc i f< : this as an
option in the call to i mc_asal loc. As �� result , a p rocess
c:1n amch :1. MEMORY C H A N � !-]. region for reception
t(>l lowi ng anv updates :md sti l l sh <l l'C a common vic\\' of
the region with other processes in the c luster.

A special process, ca l led the m a pper, is used to pro
vide the virtual Jdd ress space to hold the coherent user
space nu pp i ngs . When the kernel su bsystem receives
::t request tor cohere nt a l locJtion, it a l locates the
M EM O R.Y CHAl'\J N E L region as norma l <l lld then maps
the region for reception i n to the \'i rtual address space
of the m:1pper process. The command rc]a\· mech :�
nism then causes <I ll the other nodes in the duster to
a l locate the same region and map i t t(>r reception inro

the add rcss space of the m::tppcr process on each nod e .
Si nce mu ltip le user-level processes on a node that
att�Kh J particu lar region h>r reception s hare the sJmc
physical memory, al l updates to the region arc seen by
la te-jo in ing processes on any node in the c l uster. I f
the req uesti ng process ex its , the region wi l l st i l l be
J l loG1ted to the mapper, so rh �n another a l location of
the same region on that node \\'i l l res u l t i n a cohere n t
pictu re of that region . The region i s fu l lv dea l located
(i .e . , from a l l the mapper processes) \\'hen the l ast
app l ication process a l locat ing the region either exits or
expl ici tly dcal locates the region .

Gi\'cn the usefu l ness of cohere n t a l l ocations, it may
seem unusu:1 l that we nude this fea tu re an option
rJ thcr th:m the dcbult . There are severa l t-eJsons t(x
this . vVith cohere n t J l locations, the associated physical
memory becomes nonpagcable on aU nodes within the
c luster, <l llcl , : ts s u c h , i t consu mes physical resources.
I n addit io n , even· outbound write to such a region
resu l ts in an inbound write to the physical me mory of
each node in the cl uster. For some application designs,
it may be more desirable to create a region that is writ
ten by one node and only read by other nodes. Also,
autom atical ly rdlecting all writes back to a node, as
is done ti:)r coherent regions, consumes t\vice as much
bandwidth on the PC! bus.

Late Join and Failure Resilience

To provide an operational e nv i ronment i n which
nodes can jo in or leave the c luster at any time, the ker
nel su bsvstem needs to O\'crcome a n u m ber of prob
lems res u l tin g from l ate join a n d node ta i l urc . I n tact,
the ke rnel su bsystem is subject ro the same d i ffi cu l ties
of i n i t i a l cohcrc nc1· as appl ication- level processes . To
ma nage user space a l locations, late- joining nodes
require a coherent \'icll' of the c l uster data structures .
Morcm'Cr, bil urc of an existing node can resu lt in om
ofd ate or, c1 ·cn worse , corr u p t d ata stru ctures in the
su bsyste m 's control region . To contJin the tai l u rc ,
corrupt 'bta structures must be repaired .

Low- level kcrnd routines detect cluster membership
cha nge :md W<lke u p :t managem e nt service thread on
c:1e h node th:n pcrt(mns operations local to that nod e .
The first ma n<lge mcnt service thread t o acq uire 3 spc
citi c spin lock is elected to manage clustcrwi de updates.

In the case of l ate jo in, rhe management service
thread updates local st:Hc to rdlect the new configura
tion . The thread that has been designated to ma nage
c l ustcrwidc U f)d atcs is responsible for p roviding rhc
! a rc -joining node with an u p - to-d are copv of the c lus
ter d:l ta structu res. When triggered by the new node,
the th rc:-�d rctr<l l lSmits the contents of the data struc
tu res so that the !arc -joi ning node has a fu l il' up-to
date ' ic"· of J ! Ioc:�t ions <md resource usage .

When a node b i ls , the thread elected to ma nage
c l usrcrwidc updates must examine the ent ire manage
ment data structure a nd rep a i r it appropriate l y. Repair
is ncccss:�ry when the E1 i l ing node that is i n the process
of updating the global data structures has ldt these
cl ustcrwidc upd:�tcs in <ln u nsta ble state . Repair is pos
s ible bcc:�usc a ll u pdates to global d ata structures usc
two copies of the structure (old and new, as descri bed
previ ously) , which means that the structures can be
reset c;ls i lv to :1 st:-� h lc state. l t' the tai l e d node w:�s not
actively updJting the data structures at the time of rhe
b i l ur c , the m:�tuge ment t h read simply removes J i l
resources <ll l ocarcd to the b iled node.

Error Management

The M r.l'viOR.Y CHA.:-..l �EL hardll'are provides a verv
low e rror rate, ordering guarantees, and an abi l i t\• to
detect remote error situations qu ick.lv, making i t possi
ble to construct s imple e rror detection and reco\'crv
protocols . A kernel i nterrupt sen·ice routine detects
c l uster errors and updates an error counter that rdlccts
the clusterwide error count. A low-level ke rnel rou tine
returns the value of this counter. Due to timing consid
erations, i t is not possib le to guarantee that this count
wi l l be up-to-date wit h respect to possible errors on
remote nodes . A low-level kernel rou tine that e fti
cienrly reads t h e error status o f remote M EM O RY

C H A N N EL adapters and detects u nprocessed errors
is provided . This routine uses a hardware feature,
known :�s an ACK page, that is specifical ly designed to
tac i l itate error detection . A write to such a page res u l ts
i n the error status of each M EivlORY C H A N N E L

adJptcr bei ng written to successive l ocnions of the
corresponding reception m apped region .

Duri ng development, we b u i l t s imple i ntertaces
to access these low-b·el routines, therclw al lowing
message - pass ing l i braries to bui ld in error manage
ment . Because the method of getting into and out of
the kernel is a generic one, the m·e rhead is h igh
::�pproxim atel y 30 j..LS . This compares poorly with the
raw btcncv tor short messages, which is less than S j..LS .
To provide su itable pert(xm ance, w e rc imple mcntcd
the fl.t ncrions to execute tota l ly in user sp:1ce . As a
res u l t, when an :1pp l ication reads the error co um ti.H·
the tirst ti me (using i m c_rderrcnt) , the kerne l V<l i uc of
the erro r cou n t is mapped tor read -only Jccess i n to the
v irtua l address space of the process. Subsequent reads
of t he error coutlt arc then s imply rctds of a mc morv
locnion . S imibrly, when an appl icJtion o i l s the c heck
error service (u sing imc_ckerrc n t) t()r the tirst ri m e ,
ACK pages a r c transparently mapped i n to the v irt u a l
<lddress space of t h e process, a n d t h e error detection is
performed at h a rdll'are speeds d irectlv ti·om user
spJcc. This has been measured at l ess than 5 j..LS .

The t() J iowi ng seq uence can be used to gu ar:�ntcc
detection ofi nten ening errors b�· the transm itter :

1 . Sa,·c the error cou nt.

2 . Write the message.

3 . Check the error count (using imc_c kerrcn t) .

I f t h e tr<lnsmi ttcr writes t h e saved error cou n t �l t the
end of the message, the message receiver c:u1 deter
m i ne if any i ntervening errors have occu rred by s imply
comparing the error co u n t i n t h e mcSS<lgc wi th the
cu rrent V:J iuc us ing imc_rd errcl lt . This is possible
beuuse of the sequencing guaran tees bui l t in to the
M E M O RY CHA N N E L net\vork. Using imc_rd c rrcnt
and imc_ckerrcnt, the programmer can build an appro
pri:�tc error detection and/or recovery scheme that
meers the pertormance requirements of the appl ication.

Digit.ll Tcchniol fou m.ll Vol . ll No. 2 l l)\1(, 1 0::1

Performance

The performance ofTruCtus te r M EM O RY C H I\N ::--J EL

Soft\\-�11-c on a pair o f AlphaSc n e r 4 1 0 0 5/300
n1 �1c h i nes i s prese nted in Tab l e 2. These meas u reme nts
\\'CIT made us ing 1·crs ion 1 . 5 1\Jl EMO I�Y C : H A 0l :\ EL
atbptc rs . The lmKill' idth (64 M H/s) <lnd Lnc ncy
(2 .9 IJ.S) achi cl'cd us ing this system :�rc essen ti a l ly that
of the h <1 rd ware , since no system Ol'crhc:�d is invo lved .

The t imes req u i red to pcrronn the error-c heck i ng
fu nctions i n d i cate that the ovcrh e<1d of c:� l l i ng
imc_rd c rrcnt is much less than that of i m c_ckcrrcnt .
This is because the l atter has to synchro n i 7.c with <1 1 1
other mem bers o f the duster. Protocols t int re ly o n
J-ccci1·cr-onh- error detection (us i ng i mc_rderrc m) II' i l l
t l 1u·d()rc h :ll'c �1 l oll 'cr m·crhud .

Programming with TruC/uster

MEMORY CHANNEL Software

'T'he M EM O RY C H A:'\1 ::--J E L netll'ork 1111poscs some
u n ique restrictions on the progra mmer. Si nce the nct
wol'ic req u i res sepa rate transmit ;l !1d rcce i1·c regions,
any read-write memory location that i s to he visible
clustcrwidc m u st have two addresses: a read :-td d rcss
:l !1d :1 write addJ·css. At tempts to rc:-td ti·om a write
address tvpical lv cau se a segme ntation l'io l ,nion .

M E M O RY CHI\:\.'! I::L address space em be used l ike
shared mcmoi'I'. U n l i ke sh�1rcd mc morv, though , its
1�1te11c1' is 1 · isib lc to the progra mmer, "·ho must consider
hrcnc1· e i'l\:cts ll'hcn \\Ti ring to �l dustcrll'ide l ocati on .

As <1 1 1 o ;1 mp le of pwgra lllming "·i rh TruCi u stcr
,\ [1-.Vl O I\Y C Ht\.'! .N E L Sofu1·aiT, f igu re 6 s hows a
s imp le program that i mpk mcnts a g l o h<1 1 cou n ter,
pcrf(mns some II'Ork, and then decreme n ts the glo b�1 t
counter and e x i ts . For the pu rposes of· this CX<1 m p l c ,
:�ss umc t h :-t t m u lt i p le co pi es o f t h e pmgL1m arc r u n
conui iTent l y o n d i fkrcn t mac h i nes i n a c l u ster. S u c h
oper�nion req u ires sync h roni zation t o cnsurr S�ltC
<Kcess to s hared data i n M EMORY C H AN N E l . sp•KC.
The c x�1m pl c pmgram fi rst �1l l oc.ues M L tvl O RY
C : H A :\ :\ 1-. l . regions tor transmission �1 nd rece ption � m d
:�naches them ro pmccss \ · irrual �1ddresses. l\ c \ t , :1

set ofspin locks is created (un less it ,, Jrc,1th· oisrs) . The
tirsr e<>J)I' of the progr�1m to crc.He rhc sp i n loc k set
acq u i 1·cs the fi rst lock i n the set a nd i n i ri .1 ! i .-:es the
gl ob a l regi on, wh ere upo n i t re leases the s pi n l ock and
cominucs. Al l orber copi es of the p rogLun ll'a i t in
imc_l lucq u i rc u n ti l the s pi n l oc k. i s re l eased hy rhe tirst

Ta ble 2
Tru C l uster M E M O RY C H AN N E L Software Performa nce

Su sta ined b a n dwidth

Latency

Read error cou nt (i mc_rd errcnt)

Check error count (i m c_c kerrcnt)

64 M B/s

2 .9 f.l.S
< 1 f.l.S
< 5 f.l.S

Vol . ('; No. 2 � ��6

copv. Each copl' in rum �Kq u i rcs the lock itse l f� in crc
JJ1Cnts the process cou ntn, and re leases the loc k . The
copi es then pcr t(mn some "·ork in pa ral lel . vVh cn each
progr:�m h <1S ti nished its ponion of rhc work, i t decre
ments the gloh:-� 1 process co u nte r (using the spi n lock
ro comml �Kccss <1 ga in) . F i n a l ! \·, the spin lock set and
shared reg ions : �rc d ea l locned . Sever:� I C\J111pks of
code i l l ustra ting these topics are conta ined in th e
TmC/uster .1· 11: 1 /0Nl Cl ll1NNI'I, Sojiwa re Proiva n t n w r ·s

Mall lwl. ' '' We h<11'e r<.> L i nd th:� r i mp l ement ing a s i m p l e
message - pass i ng laver o n top of TruCiusrer I'd EM O RY

C H A N 0l i-" J , So trw�1 1"C is a more dkctive sol u tion th�m
progra m m i ng d i rcctll' 11 ith 1vl F. MORY C H A N \! E L

regions, a s de'>cribed i n the n c \ t section.
Sc1-cr:d k�nu res dcsni bed abol'c ll'ere not i 11 i ti a l l\·

present in the TruCl usrcr M EJVl O RY C H A l\ � E l .

Sofu\ ·arc prod uct . As <1 resu l t o f o u r c :-.:pc rie ncc i m p le
ment ing U M L' and the h i gher PVM and M PI l al'crs ,

we added the t(>J i owing karu rcs :

• I ni t i al coheren cy

• Command rel ay

• C l uster s ig1uls

• User- l eve l error checking

Universal Message Passing

The Un i1us:Ii Mess�1ge Passing (LIMP) l i br<lr\' is
designed to prm · ide <\ f(n i mbtion for i m p l e menting
ettic i cnt mess:�gc-p�1ss ing s1·srcms on the ,\! E M O RY

CHA;'\1 :--.; E L n ct ln>rk . fro m the outse t, \\'C 11 ·c re Jll':-trc
th at there \\'o u l d be �1 demand for PVM and M P I
i m p lementations �1 nd that other implcmenr:�tions
might r() l l ow. We td t that it II'Ol l id be eas i e r to con
struct hi gh - pcrf(>rmancc mcss�\gc -pass ing systems if
we p rovi ded J thin l�1ycr th�n could efficien tly I J �md lc
the restric t ions that the M E M O RY CHA::--J.NEL net
wor k i m poses.

The gm ts in deve lop i ng U M P \\'e re to

• S i m [1 l i� · the con struction of m cssagc -p:�ss ing s\·s
tcms ut i l i /. ing the l'd l . . \l O RY C : H A\: :\I E L nct11 ork
bv h i d i ng the dct<1 i l s of rhc u n d erh· i ng com m u
n ic:-ttions rr:�nsport (i n it i <l l i l', shared mcmon· or
MElvlORY CHANNEl.) .

• Opt im i /.c pc d(mn�1 ncc <1 n d C X [1 lo it the low hrc ncy
of the M r,M 0 R Y CH A :--..! N U, nctii'Ork; the in i ria I
goal t(>r 1 :-ttc ncy over the M EM O RY C H A N N f":t_ net

work us i ng PVM was to achieve less than 30 IJ.S.

• Ease the deve lopment of p�1r�1 l td mcssage- p:-tss ing
l i braries lw prol ' i d ing �1 s imple set of mcss:�gc
passing fu nc tions .

• Pcrf(m1l on lv basic com m u n ications; •1 111' more
com p ln 0[1CI':-ttions (e . g . , pmccss control) ll'o u l d
b e pcrr()rmcd h1· a higher b\'C I'.

• Act as a C O l l i ngcncc cen ter fc >r p ossi b le fu ture
i ntcrcon nccrs.

e x t e r n L o n g a s m (c o n s t c h a r *
p r a g m a i n t r i n s i c (a s m)
d e f i n e m b () a s m (" m b ")

. . .) ;

i n c l u d e < s y s l t y p e s . h >
i n c l u d e < s y s l i m c . h >

rn a i n <)
{

}

i n t s t a t u s , i , L o c k s = 4 , t e m p , e r r o r s ;
i m c _a s i d_ t r e g i o n_ i d ;
i m c _ L k i d t L o c k_ i d ;
t y p e d e f s t r u c t {

v o l a t i l e i n t p r o c e s s e s ;
v o l a t i l e i n t p a t t e r n [2 0 4 7 J ;
s h a r e d_ r e g i o n ;

I * M C r e g i o n I D * I
I * M C s p i n l o c k s e t I D * I

I * S h a r e d d a t a s t r u c t u r e * I

s h a r e d_ r e g i o n * r e g i o n _ r e a d , * r e g i o n_w r i t e ;
c a d d r_ t r e a d_p t r = 0 , w r i t e_p t r = 0 ;

I * A l l o c a t e a r e g i o n o f c o h e r e n t M C a d d r e s s s p a c e a n d a t t a c h t o * I
I * p r o c e s s V A * I
i m c _ a s a l l o c (1 2 3 , 8 1 9 2 , I M C _U R W , I M C _ C O H E R E N T , & r e g i o n_ i d) ;
i m c _a s a t t a c h (r e g i o n _ i d , I M C _T R A N S M I T , I M C _ S H A R E D , I M C _ L O O P B A C K , & w r i t e_ p t r) ;
i m c _a s a t t a c h (r e g i o n _ i d , I M C _ R E C E I V E , I M C_ S H A R E D , 0 , & r e a d_p t r) ;

r e g i o n_ r e a d = (s h a r e d_ r e g i o n *) w r i t e_ p t r ;
r e g i o n_w r i t e = (s h a r e d_ r e g i o n *) r e a d_ p t r ;

I * A l l o c a t e a s e t o f s p i n l o c k s a n d a t o m i c a l l y a c q u i r e t h e f i r s t L o c k * I
s t a t u s = i m c _ L k a l l o c (4 5 6 , & l o c k s , I M C _ L K U , I M C _ C R E A T O R , & l o c k_ i d) ;
e r r o r s = i m c r d e r r c n t () ;
i f (s t a t u s =� I M C S U C C E S S) {

d o {
r e g i o n w r i t e - > p r o c e s s e s = 0 ;
f o r (i �O ; i < 2 0 4 7 ; i + +)

r e g i o n_w r i t e - > p a t t e r n [i] = i ;
i - - ;
m b () ;

I * I n i t i a l i z e t h e g l o b a l r e g i o n * I

} w h i l e (i m c c k e r r c n t (& e r r o r s) I I r e g i o n_ r e a d - > p a t t e r n [i J ! = i)
i m c _ l k r e l e a s eC l o c k_ i d , 0) ;

} e l s e i f (s t a t u s = = I M C E X I S T S) {
i m c _ l k a l l o c < 4 5 6 , & l o c ks , I M C _ L K U , 0 , & l o c k_ i d) ;
i m c _ l k a c q u i r e (l o c k_ i d , 0 , 0 , I M C _ L O C K W A I T) ;
t e m p = r e g i o n_ r e a d - > p r o c e s s e s + 1 ; I * I n c r e m e n t t h e p r o c e s s c o u n t e r * I
e r r o r s = i m c _ r d e r r c n t () ;
d o {

r e g i o n_w r i t e - > p r o c e s s e s = t e m p ;
m b <) ;

} w h i l e (i m c c k e r r c n t < & e r r o r s) I I r e g i o n_ r e a d - > p r o c e s s e s 1 = t e m p)
i m c _ l k r e l e a s e (l o c k_ i d , 0) ;

}

(B o d y o f p r o g r a m g o e s h e r e)

I * c l e a n u p * I
i m c _ l k a c q u i r e (L o c k_ i d , 0 , 0 , I M C _ L O C K W A I T) ;
t e m p = r e g i o n_ r e a d - > p r o c e s s e s - 1 ; I * D e c r e m e n t t h e p r o c e s s c o u n t e r * I
e r r o r s = i m c _ r d e r r c n t () ;
d o {

r e g i o n_w r i t e - > p r o c e s s e s = t e m p ;
m b () ;

} w h i l e (i m c c k e r r c n t < & e r r o r s) I I r e g i o n_ r e a d - > p r o c e s s e s ! = t e m p)

i m c _ L k r e l e a s e (l o c k_ i d , 0) ;
i m c _ L k d e a l l o c (l o c k_ i d) ;
i m c _ a s d e t a c h (r e g i o n _ i d) ;
i m c _a s d e a l l o c (r e g i o n _ i d) ;

I * D e a l l o c a t e s p i n l o c k s e t * I
I * D e t a c h s h a r e d r e g i o n * I

I * D e a l l o c a t e M C a d d r e s s s p a c e * I

Figure 6
Programming wirh Tru Ciusrer 1'vl E M O RY CHANNEL Software

Digit,ll Technical Journal Vol . 8 No. 2 1 996 105

These gu�1 l s p laced some i m porta n t constraints on
the architecture o f UMP, parricu larl �' with regard to
pcrt(>rmance . This meant that design d ecisions had
to be constantly eval uated i n terms of their pcrt<>rmance
impact. The i n itial design decision was to use a dedi
cated point - to-point circular butter between ever)' pair
of processes. These bu f1ers use prod u cer and consumer
i n dexes to control the readi n g and writing o f bufter
contents . The indexes can be moditied only by the
consumer and produ cer tasks and a l low fll l ly lockless
operation of the b u ffers. Removing l ock requ i rements
e l imi nates not o n l y the so ftware costs associated with
lock manipu l ation (in the i nitial implementation of
TruCiuster Jv! EMORY CHANNEL Software, acquir ing
and releasi ng an u n con tested spin lock takes approxi
mately 1 30 f.LS and 1 2 0 f.LS, respecti,-e l v) but a lso the
i m pact on processor pertormance associated with
Load - locked/Store-conditional i nstruction sequences.

Although this butlering style e l imi nates lock manip
u lation costs, it resu lts i n an exponential demand tor
storage and can l imit sca labi lity. If there arc N processes
com m u n icating using this m ethod , that impl ies N2
b u fkrs are req uired for fil i i mesh com m u nicatio n .
M EM ORY CHAN NE L add ress space is a relatively
scarce resource that n eeds to be carefu l lv h usbanded .
To manage the demand on cl uster resources as t3ir ly as
possibk, we decided to do the t(>l lowi ng:

• Al locate bu ftc rs sparsely, i . e . , as req u i red u p to
some dcbu l t l imit . F u l l N2 al location wou ld sti l l be
possib le if the user increased the n u m bcr of bu fkrs.

• Make the size of the bu tlers contigurJb le .

• Usc lock-contro l led s ingle-writer, m u lt ipl e - reader
b u ffers to hand lc both the overflow trom the JV2
bufkr and bst m u l ticast. One of these b u fk rs,
cal led outbufs, wou ld be assigned to each process
using U M P u pon i n i tia l ization.

Note that w h i l e the channel buffers are logically
point - to-point, they may be implemen ted physica l ly as
e ither point-to - point or broadcast. For example, i n the
first \'ersion o f U M P, we used broadcast M E M O RY

CHANNEL mappi ngs fc>r the sake of s implicity. We <ltT

c ur rent!\' modin'ing U M P to use point-to-point
M EMORY C: H A � N E L mappings, both to increase
avai l a b l e bandwidth and to exploit a switc hed
M E M O RY CHANNEL network.

Figure 7 shows SC\'Cra l tasks com m u n icati ng i n
a c l uster a n d i l lustrates how the two types o f U M I)

bu ffers arc used . Task l a n d task 2 arc executing
on node l , wh i le task 3 i s cxecu ring on node 2. In the
diagram, the channel butlers are l ocated under the t:lsk
in whose ,·irtual add ress space they reside to ind icate
visual ly that thcv reside in the virtual address Sp<lCC of
the dcsti nJtion task. In the figure, task l comnHmicatcs

, - , , - - - - - - - - - - - - - - - ,

Figure 7

CHANNEL BUFFERS

SHARED MEMORY
MEMORY CHANNEL

a a
OUTBUF

MEMORY
CHANNEL

SHARED
MEMORY

a
MEMORY
CHANNEL E§ · · · · · tj MEMORY

CHANNEL

tj I
I

NODE 1 · - · · · · · · · · · · · · · · · · · - - - < _ _ _ _ _ , NODE 2 1 _ J L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ j

KEY:

D I R ECT WRITE TO CHANNEL BUFFER
LOCK-CONTROLLED READ OF OUTBUF

Clusrcr Conlnl u n icarion Using U M P

I O o Disir.l l .lcchnicll)ound Vol . � No. 2 1 996

with task 2 usi ng U M P channel bu ffers i n shared mem
ory, shown as l ->2 and 2--> l . Task l and task 3 com
municate using UMP channel buffers i n ME1viORY

CHANNEL space, shown as l --> 3 and 3--> l . Task 3 is
read ing a message from task 1 using an outbuf. The
outbuf can be written only by task 1 but is mapped for
transmission to al l other c luster members. On node 2 ,
the same region i s mapped for reception. Access to
each outbuf is controlled by a u n ique cluster spinlock.

Our rationale for taking this approach i s that a short
software path is more appropriate for small messages
because overhead dominates message transfer time,
whereas the overhead of lock manipulation is a small
component of message transfer time for large mes
sages. We fe lt that this approach he lped to control the
use of cluster resources and mainta ined the lowest pos
sible latency tor short messages yet sti l l accommodated
large messages. Note that outbuts are sti l l ti.xed-size
buffers but are generally configured to be much larger
than the N2 buffers.

This approach worked for PVM because its message
transfer semantics m a ke it acceptable to fai l a mes
sage send req uest due to buffer space restrictions
(e .g . , i f both the N2 buffer and tbe outbuf are fu l l) .
When we analyzed the requirements tor M PI, how
ever, we fou nd that this approach was not possible . For
this reason, we changed the design to use only the N2
buffers. I nstead of writ ing the message as a s ingle
operation, the message is streamed through the buffer
i n a series of fragments. Not only does this approach
su pport arbitrarily large messages, but it also improves
message bandwidth by al lowing (a n d , for messages
exceeding the avai lable bufter capacity, requ i ri n g) the
overlapped writing and read ing of the message.
Deadl ock is avoided by using a background thread
to write the message. S ince over flow is now h andled
using the streaming N2 buffers, outbufs were not nec
essary to achieve the required level of performance for
large messages and were not implemented. Outbufs
are retained in the design to provide fast multicast
messaging, even though in the current implementa
tion they are not yet supported .

Achieving the performance goals set tor U M P was
not easv. I n add ition to the b u tler architectu re
described earlier, several other techniques were used.

• No syscalls were al lowed anywhere in the U M P
messagin g fu nctions, so U M P runs completely i n
user space.

• Calls to li brary routines and any expensive arith
metic operations were min imized .

• Global state was cached in .local m emory w herever
possi ble.

• Carefu l attention was paid to data alignment issues,
and all transfers are multiples of 32-bit data.

At the programmer's level, U M P operation is based
on d uplex poi n t -to-point l in ks cal led channels, which
correspond to the N2 buffers a lready descri bed .
A channel is a pair of unidirectional bu ffers used to
provide two-way commu nication between a pair of
process endpoints a nywhere in the c luster. U M P pro
vides functions to open a channel between a pair of
tasks. While the resources are al located by the first task
to open the channel , the con nection is not complete
until the second task also opens the same channel .
Once a channel h as been opened by both sides, UMP
functions can be used to send and receive messages on
that channel . It is possible to d irect UMP to use shared
memory or M E M O RY CHANN EL address space for
the channel buffers , depending on the relative location
ofthe associated processes. In add ition, U M P provides
a fu nction to wait on any event (e .g . , arrival of a mes
sage, creation or deletion of a channe l) . In tota l , U M P
provides a dozen fu nctions, which are l isted i n Table 3 .
Most o f t h e functions relate t o i nitial i zation , shut
down, and miscel laneous operations. Three fu nctions
establish the channel connection, and three fu nctions
pertorm al l m essage communications.

UMP chan nels provide guaranteed error detection
but not recovery. Through the use of TruC!uster
MEMORY CHANNEL Software error-checking rou
ti nes, we were able to provide efficient error detection
i n U M P . We decided to let the higher layers implement
error recovery. As a result, designers of h igher layers can
control the performance penalty they i ncur by specifY
ing their ovvn error recovery mechanisms, or, since
rel iabi l ity is high , can adapt a fai l-on-error strategy.

Performance

U MP avoids any calls to the kernel and any copying of
d ata across the kernel bou ndary. Messages are written
directly i nto the reception buffer of the destination
channel . Data is copied once from the user's buffer
to p hysical memory on the destination node by the
sending process. The receiving process then copies the
data from local physical m emory to the destination
user's butle r. By comparison, the n u m be r of copies
involved in a similar operation over a LAN using sock
ets is greater. In this case, the data has to be copied
into the kernel , where the network d river uses DMA to
copy it again into the memory of the network adapter.
At this point t he data is transmitted onto the LAN.

The first version of U M P used one large shared
region of M EM O RY CHANNEL space to conta in its
channel buffers and a broadcast mapping to transmit
this s imu ltaneously to a l l nodes i n the cluster. This
version ofUMP a lso used loopback to reflect transmis
sions back to the corresponding receive region on the
sending node, which resulted i n a Joss of avai lable
bandwidth . Usi ng our AI phaSe rver 2 100 4/190

development machines, we measured

Digir:1l Technical journal Vol . 8 N o . 2 1 996 107

Table 3
U M P API F u nctions

Function
Name Description

u m p_i n it

u m p_exit

u m p_open

I n it ia l izes U M P a nd a l locates the necessary resou rces .

S h uts down U M P and deal locates any resources used by the ca l l i ng process.

O pens a d u plex channe l between two endpoints over a g iven transport (shared memory or
M E MORY CHAN N E L) . Channe l endpoints are id entif ied by user-suppl ied, 64-bit i nteger hand les.

u m p_close

u m p_l isten

Closes a specified U M P channe l, deal locat i n g a l l resources ass igned to that channel as necessa ry.

Reg isters a n endpoint for a channel over a specified transport. This can be used by a server process
to wait on conn ections from c l ients with u n k nown hand les. This fu nction returns i m m ed iately,
but the channel is created o n ly when a nother task opens the channe l . This can be detected us ing
u m p_wa it .

u m p_wa it Wa its for a U M P event to occur, either on one specified channe l to th is task or on a l l channe ls
to th is task.

Reads a message from a specified channe l . u m p_read

u m p_write Writes a message to a specified channe l . Th is function i s block ing, i .e . , it does not retu rn unt i l
the comp lete message has been written to the channe l .

u m p_n bread Starts rea d i ng a messa ge from a channe l, i .e., it returns as soon as a specified amount of the
message has been received, but not necessar i ly all the message.

u m p_n bwrite Starts writ i n g a messa ge to a specified channel, i . e ., it returns as soon as the write has sta rted .
A background thread wi l l cont inue writ i n g the message unt i l it i s com pletely transm itted.

u m p_mcast

u m p_i nfo

Writes a messag e to a specified l i st of channels .

Returns UMP configuration a n d status i nformation.

• Lncncv : 1 1 f.LS (M E i'v! O RY C H A N N E L) , 4 JJ.S
(sh;1rcd rncmorv)

• Bandwidt h : 1 6 M B/s (M E M O RY C H A N N EL),
30 ;VI B/s (sha red m emory)

To i ncrease bandwidt h , we mod i �icd U 1\'I P to usc
transmit-only regions fur i ts challnel b u tlers, th us
e l i m i m.ti ng J oopback . The per�(>rma ncc mosun.:d for
the revised U MP usin g the same machi nes was

• Lltcncy: 9 f.LS (MEM ORY C H A N N E L) , 3 f.LS
(shared memory)

• Bandwid th : 23 M B/s (M EM O RY C H A N N E L) ,
3 2 M B/s (shared mernon·)

figu re 8 sho\\'s the message tr:111s�cr time ;1nd F igu re
9 sho\\'S the bandwidth �(x various mcss�1gc sizes �(lr the
ITI' iscd 1·crsion of U M P us i ng both b l oc ki ng ;l lld non
b l ock ing writes m·cr shared memorv and the M EM O RY

C H A N N E L network. Usi n g newer Alp haSc nn 4 1 00
5/300 mach i nes , which have a Elster [/0 su bsystem
th� 111 the older machi nes, and version 1 . 5 /vi E!VlORY

C HA N N E L ad apters, the mc�1su rcd latency is 5 . 8 f.LS
(M EM O RY CH A N N EL) , 2 f.LS (shared memo ry) . The
pc;l k bandwidth achieved i s 6 1 M B/s (M E M O RY
C H A N N E L) , 75 M B/s (shared memory) . I n the non
b lock ing cases, the bu ffer s ize used 11·:-�s 256 ki lobvtcs
(KB) �(lr sh �1rcd memon· and 32 KB �(lr M EM O RY
C :H A N N E L. Further work is u nder 11·a1' to im prm·c the
pcr�(Jml;l llce us i ng shared memorv �1s the trans port .
This work is <l i med at e l i m i nating the h igh -md tJ I I o�fi n
ba ndwid th in the blocki ng case and the notch when the
mess:-�gc size exceeds the bu t'tcr size in the non h l oc ki ng

Vol � No. 2 1 �"'6

case. Note that these dkcts arc not d isp l avcd i n th e
M EM O RY C H A N N E L resu l ts .

Message-passing Libraries

Messagc -p:-�ss i ng l i braries pro,·ide the progra m m e r
with a s e t of flc i l i t ics to bu i ld par<l l leJ appl ications.
Typical ly, these services inc l ude the ab i l ity to send and
rece ive a var iety of d :-� t:-� types to and from other peer
processes i tl ;1 v�1 riety of modes, as wd l as collective
operations that span :-� set of peer processes. Other
fac i l ities 111�1y be provided i n add ition to the bas ic set,
e . g . , PVM p mvides fu nctions t()r managing PVM

processes (spawning, k i l l ing, s ign�1 l ing, etc .) , whereas
M PI (at least in i ts first rc1 ision , M P I - 1) docs not. PY1'vl
is probabh· the most 11· idch- used message - p ;lss i n g S\'S
te m . It h Js been �1\'a i b blc �(lr approx im Jte lv �i1-c I ' C l i'S ,
and imp le mentat ions �1rc �ll'a i lab lc t(Jr a "'ide ,-aricty of
pbtturms. M l' l is an emerging stand ard �(n message
passi ng t h J t is growi ng ,-;lp id ly i n pop u l ari ty ; mam'
new app l icJt io ns arc be i ng wri tten t(Jr i t .

Parallel Virtual Machine

Para l le l V i rtua l Mac h i ne (PVM) is supported on a

wide varict\' of p l at�(mns , i nc l ud i ng su percompu ters
and net\vorks of wo rkstations (N OWs) . PVM uses

<1 1 ·ariety of u ndcr lv ing comm u n ications methods:
shared memorv on m u l tiprocessors, ,-arious nati1·c
message - passi ng systems on massi1-c lv para l le l proces
sors (M P Ps) , and U D l'/ l P or TC P/l P on N O'vVs . The
large sofu,·;lrc m-crhc:-�d i n the ! P stacks makes i t d ifti
c u l t to prm ide h igh- Jlc rt(mnancc communications �{n·

1 00,000

� 1 0 ,000

i=
a: UJ
t!i cn 1 .ooo
z o
� z
a: a
t- u � � 1 00

UJ CI:
UJ U
� � 1 0

/ . /
, "."

/ /
� � ·

,. ;; ."'"' '
, - .-- ·

·--.:.. :::: . - ---

y
/

.'/
!/ ' ;

. / .
. . ·" .,.,

�

. /.
. /

1 0 1 00 1 ,000 1 0.000 1 00,000 1 ,000,000

MESSAGE SIZE (BYTES)

KEY:

UMP BLOCKING (SHARED ME MORY)

UMP BLOCKING (MEMORY CHANNEL)

UMP NONBLOCKING (SHARED MEMORY)

UMP NONBLOCKING (MEMORY CHANNEL)

Figure 8
U M I ' Com municuions PcrfmmanC<.: : Mess�gc Tr;l llster
Time

� 80
0
u UJ
Ul
a: UJ a._
Ul UJ
1->CD
�
C.!l UJ
�
I 1-0
�
0
z
� CD

60

50

40

30

20

1 0

0

KEY:

- - - - - -

200,000 400,000 600,000 800,000 1 .000,000

MESSAGE SIZE (BYTES)

UMP BLOCKING (SHARED ME MORY)

UMP BLOCKING (M EMORY CHAN NEL)

U M P NONBLOCKING (SHARED MEMORY)

UMP NONBLOCKING (MEMORY CHANNEL)

Figure 9
U 1YI P C :om m u n ic.ll ions Pcrtorm�nu.:: Band "'idrh

PVM when using net\\'Orks l ike Ethernet or fDDJ .
T h e high cost of commun ications f()r these systems
means that only the more co:�rse -grai ned para l le l appli
cations h:�ve de monstrJted pert(mnancc im pro,·c ments
as a res u l t of para l k l i zation using PVM . Using the
M EMORY C H A N N E L cl uster techno logy descri bed
earl ier, we have i m p le mented :m opt imized PVM that
otters l o\1' l atencv :�nd high -h :.llldwidth comnHi l1ic:�
rions. The PVM l ibrarv and daemon use UM I' ro pro
vide se:�mless com mu nications over the M E MORY

CHANN E L c l uster.

\iVhen we began to devel op PVM ror M EM O RY

C HA N 1 EL c lusters , \\'e had one overrid ing goal : to usc
the hardw;u-c pe rtormance the M EM O RY C : H A N N F L

i ntercon nect ofters t o prm·ide a PVM with ind ustry
leading commun icuions pertormancc, spec i tica l lv with
regard to btcncy. I ni tial lv, we set a target btency t(n
PVM of l ess than 1 5 f..lS using shared mc morv �md less
tha n 30 f..lS usi ng the M EMORY C H AN NEL tr:msport.

Our ti rst task was to bu i ld ;\ prototype usi ng the
publ ic-domain PVM implementati o n . We used an
earlv prototYpe of the M E M O RY CHANNEL svstcm
jointlv dc\ 'e loped by Digital and E ncore . The proto
type had a h a rdware latency of4 f..lS . We mod i tied the
shared- memory version of PVM to usc the prototype
hard\\'are and achieved a PVM l :ltencv of 60 f..lS .
Proti l ing and straigh ttcx\\'ard code Jn:l l\'sis I-c\·ealed
that most of the overhead was caused by

• PVM's support t<x heterogeneity (i . e . , external data
reprcscnt;uion [XDR) encod ing)

• Messages being copied m ultiple times i ns ide PVM

• A l 01rgc number ofttlllction ca l l s in the c ri tic1 l com
mun ications path

• Inefficient coding of rhc lo\\'-b·el cbta copv routines

S ince we wanted to achic,·e the max i m u m possib le
performance avai lable ti-om rhe hardware, we decided
to rei mp lemcnt the PVM l i brary, el i m i nating support
tor hete roge neit y ti·om the commun ications fu nctions
of PVM :m d t(xus ing on ma xi m u m pertc >rmance
inside a Digit:�! c l u ster.'" Heteroge ne ity would then be
supported by using a special PVM gateW<\Y process.

The m·era l l :�rch i tecture of the Di gi ta l PVM imple
men tation is sho\\'n in F igure 10 . To maximize per
tornl<\ llCC, we decided that, wherever possible, an
operation shou ld be e xecu ted i n - l ine rather than be
requested ti·om a remote task or dacmon . This con
trasts \\'ith PVM's trad itiona l approach of rc l a�· ing such
req uests to the PVM daemon tor service. For example,
when a PVM task starts, often i t tirsr ca l ls pvm_myt id to
request a un ique task idc ntiticr (TJ D) . Prc,·ious ly, this
\\'Ould have i nvoh·ed se nding a message to a PVM dae
mon, which would then a l locate :1 T I D to the process
and retu rn another message. In our d esign , we could
usc global data structun:s in M EM O RY C H A N N E L

space (e . g . , t h e J ist o f a l l PVM t:tsks and :�ssociatcd
data) . No,,·, tc>r exa mp le , �w m_myrid s imply i 1 l \'olvcs
acquiring a c l uster lock on a global ta ble, ge tti ng tbc
new TI D , and rele asi ng the lock-al l execu ted in - l ine
l)l' the ca l l ing process r:tther tb:111 a d :temon. Executing
PVM sen ·iccs i n - l i n e with the re q ucsting process
i ncreases multiprocess ing capabi l i ty and e l i m i nates
daemon bottlenecks and associated delays.

We rc implcmenred the PVM l i br:� ry with the empha
sis on pcrt<>rmance rather than hetcrogeneit\', :�!though
we plan to eventua l l y :� l low i nteropc r:�tion with het
eroge neous implementations of PVM using a spec ial

Dig;ital Tcdmictl)nu n1.1l \'ol . 8 !'o 2 1 9 96 1 09

MEMORY CHANNEL CLUSTER
r --,

HOST 1 HOST 2 � - ,

I
DAEMON 1 PROCESS 1 PROCESS 2 DAEMON 2 PROCESS 3 I I

PVM APPLICATION PVM APPLICATION I I PVM DAEMON PVM APPLICATION I PVM DAEMON I I I
PVM API LIBRARY PVM API LIBRARY I I PVM API LIBRARY PVM API LIBRARY PVM API LIBRARY

I
1 UNIX UMP

: '-----'-----'
I

UNIX I UMP UNIX I
t B

I I I I I I UMP I I U N I X UMP UNIX UMP I I
t I I I I '- - - - - - - - - - - - - - - - - -�A- - -t - - - - - - - - - - - - - - - - - - � L -

c

D

HOST 3
r -
I
I DAEMON 3 PROCESS 4 GATEWAY I F I
I PVM DAEMON PVM APPLICATION PVM GATEWAY I
I PVM API LIBRARY PVM API LIBRARY PVM API LIBRARY I PVM3 DAEMON I

I I I INTERFACE I UNIX UMP UNIX UMP UNIX UMP I

l _ _ _ !�- - - - -� - _j

G

L - �
KEY:

A A PVM application on host t performs local control functions using U N I X signals.

B A PVM application on host 1 commun1cates w1th another PVM task on the same host using
UMP (via shared memory).

C A PVM application on host t communicates with another PVM task on a different host in the
cluster (host 2) using U M P (via MEMORY CHANNEL).

D A PVM application on host 1 requires a control function (e.g., a signal) to be executed on
another host in the cluster (host 3); i t sends a request to a PVM daemon on host 3.

E The PVM daemon on host 3 executes the control function.

F A PVM application on host t sends a message to a PVM task on a host outside the MEMORY CHANNEL
cluster; the message is routed to the PVM gateway task on host 3.

G The PVM gateway translates the cluster message into a form compatible with the external PVM
implementation and forwards the message to the external task via IP sockets.

Fig u re 1 0
Digital PVM Architecture

gateway daemon. The PVM API li brary is a complete
rewrite of the standard PVM ,·ersion 3 . 3 API, \\'ith
which ful l functional compatibi l ity is maintained .
Emph asis has been p laced on optimizi ng the pcd()r·
mancc of the most frequently used code paths . In
add ition, a l l d ata structures and dat:� transters h ;wc
been opt imized for the Alpha architecture . As stated
earlier, the amount of message passing between tasks
and the local daemon has been minimi;.ed by pcrt(mn·
ing most operations in - l i ne and communicating \\'ith
the daemon only \\'hen abso l ute ly necessary. !mer·
mediate bufkrs are used for copying data between the
user bufrcrs. This is necessary because ofthe semantics
of PVM, which a l low operations on buffer contents
bd()re and at-i:cr a message has beetJ sent. The one
exception to this i s pvm_pscnd; in this case, data is
copied d i rectly since the user is not a l l owed to modi�'
the send buffer.

The purpose of om PVM daemon is d i fkrem ri·om
that of the daemon in tbc standard PVM package . Our
daemon is designed to re lay com mands between d i f
tl:rent nodes in the PVM cluster. It exists solely ro

1 10 Digiral Technid Joumal Vnl . R No. 2 l 9<i o

perf(mn remote execution of those com m:mds that
cannot be performed i n - l ine bv UNIX ca l l s in the PVM
AP I l i brary or by d i rect ly manipulat ing global data
structures. Commands to be executed on a remote
node �1rc sent to the daemon on that node, which then
executes the command directlv. Note that this
remm·es a l e,·c] of ind i rection that exists in st :mdard
PVM. Daemon-to-daemon communications a rc mini
mized . S ince there is no master daemon, the PVM
cluster has no single point of bi l ure. All daemons arc
eq ua l . When nor in usc, the daemon s leq)s, being
awakened as requ i red by a sigt\J I fi·om the cal l ing task.
For a local task, UN IX signals arc used . If the task is on
another node in the c l uster, then M ElvlORY CHAN N EL

cl uster signals arc used . As a resu l t , the daemon uses
minimal cluster resources .

The PVM group or col lective fu nctions operate on
a group of PVM tasks. For example: pvm_barri�.:r
svnc hronizes mu l tiple PVM processes; P''m_bcast
sends a message to all mem bers of a parti cu l a r group;
pvm_scattcr d istributes an array to the members of
a group; pvm_gather reassemb les the arr;1v fi·om the

comri bu rions of each of the group members, etc. The
group fu nctions arc i mp le mented sepa rately ti-om the
other PVM messaging fu nctions. They use a sep:.�rate
globa l structure (the group tab le) to manage l'VJ\11
group data. Access to the group table is contro l led
by locks. Unl ike other l'VM implementations, there is
no PVM group server, s ince a l l group operations c:tn
man ipu l :ne the group t:�b le direcrlv.

Performance

Table 4 compares the com munications latency achieved
by various PVM implementations. A� the ta ble indi
cates, the Lnency between two m �Kh incs with Digital
PVM over :1 M E M O RY C H AN N E L. tr:1nsport is much
less th:�n the l:1rcncy of the pu blic-domain PVM
implemelltation over sh ared memor�r, which va l idates
our approach of removing support r(Jr heterogeneity
ti-orn the crit ical pert<.mnanee paths . Figure 1 1 sho\\'s
the message tr:1nstl:r rime and Figure 1 2 shows the
bandwidth t<x D igita l l'VM over shared memory and
MEMORY C H A N N E L transports rC.1r various message
sizes. Two Alp haServcr 4 100 5/300 machines were
used t(Jr these mosu remenrs . The peak bandwidth
reached by Digita l I'VM is about 66 MB/s (sh<l!"ed
memory) and 43 M B/s (MEMORY C H A N N E L) .
Bv comp:1rison, PVM 3 . 3 . 1 0 ach ieves a band width o f
24 M B/s (shared memory) and 3 M B/s (FDDI LAN) .
A \'ersion of PVM developed at Digita l 's Systems
Research Center (SRC) using a special ly adapted asyn
chronous transfer mode (ATM) driver achieved a
l a tency of app rox ima te lv 60 f.LS and a bandwidth of
approx imate ly 1 6 M B/s usi ng the A N 2 ATM LAN 2'
The pert(mnance resu l ts t(>r l 'VM latency over the
M EM O RY CHAN N E L transport given in Reterence 6

were obtained us 1ng an carl in- vers1on of
Digir:l i PVM. Since those resu l ts were measured ,
latency has been hah-ed , mostly due to im provements
in U M I' pertcm11<1111.:e .

Figure 1 3 comp:1rcs the pertorm;lnce of an un mod
itied I'VM appl ication using the p u b l ic -d oma in I'VM
3 .3 .7 implementation �md Digital PVM version 1 .0 .
The :1pp l ic at ion is :1 para l le l molecular mode l ing pro
gram. The bar chart shows the e lapsed time for a \'ari
ery of configurations. The applicnion ran t(Jr 220
seco nds 0 1 1 2 two-processor SM !' mach ines con nected

Ta ble 4
PVM Latency Comparison

PVM Im plementation

PVM 3 . 3 . 9

PVM 3.3 .9

D i g ital PVM V 1 .0

Digita l PV M V 1 .0

D i g ital PVM V 1 .0

D i g ita l PVM V 1 .0

D i g ita l PV M V 1 .0

Tra nsport

Sockets F D D I

Shared Memory

M E M ORY CHAN N E L 1 .0

M EM O RY C H A N N E L 1 . 5

Shared Memory

S h a red Memory

Shared Mem ory

with fDDI . By re placing H") DI with a MEMORY
C H A N N E L network and PVM 3 .3 .7 wi th Digital
PVM, we were able to speed up performance by a fac
tor of approximate ly 3 .4 for the same number of pro
cessor�: the run rime dropped from 220 seconds to 65
seconds. For comparison, we also ran the program
on a tc JLtr-processor SM P; the application completed i n
64. 5 seconds. This time was just margina l ly faster than
the M EM O RY CHANNEL configurat ion tor the same
number of processors, demonstrating that D igiral l'VM
scales we l l ti-om SMP to the M EM O RY C H AN EL
cl uster. Final ly, 2 tc>u r-processor SMP machines con
nected in a two-node M EMORY C H A N N E L cluster ran
the program in 3S seconds, demonstrating a speedup
of 1 .7.

Message Passing Interface

Mess:1ge Passing ! mer face (M PI) is a message -passing
standard developed by a large group of industrial and
acad emic users . The standard contains a su bstantial
number of funct ions (more than 1 2 0) and ofkrs the
same wide range oftacil ities th:lt many earlier message
passing AP!s prO\"ided . In bet, m�my para l le l app l ica
tions can be written using only six of the fi.metions, but
a correct implementation m u st prov ide the complete
set. Argonne National Llboratory (AN L) has p ro
d uced a retcrence implementation c1l led M l' I CH."
This i s a robust, c lean implenKntation of the comp lete
MPI - 1 timction set. In addition, i t has isolated trans
port-specific components behind an abstract device
inrerf:Kc (ADI) 2' The abstract device implements the
commu nications-related ti.mctions and is titrrher lav
ercd on what is cal led the channel device . The public
domain version comes with channel implementations
fix a nu mber of interconnects including shared mem
orv, TC:P /IP, :�nd other propriet�1ry interbces. This
\'ersion <l lso includes a template tc>r bui ld ing :1 channel
device, cal led the channel i n terbcc H To bui ld :� c han
nel device, the programmer m ust supply tive timcrions:

1 . Indicate if a con trol message is a\·a i l able on a con
tro l c hannel

2 . Get a control message ti·om a control channel

3 . Send a control message to �' control channel

Platform latency

DEC 3000/800 400 tJ..S
Alpha Server 2 1 00 4/2 33 60 tJ..S
Alpha Server 2 1 00 4/2 33 1 1 tJ..S
AlphaServer 4 1 00 5/300 8 tJ..S
AlphaServer 2 1 00 4/233 5 f.LS
AI phaServer 41 00 5/300 4 tJ..S
AlphaServer 8400 5/3 50 3 tJ..S

I ligir.ll 1i:dmical j ournal Vol . 8 No. 2 1 996 I l l

1 00,000

�
1 0 .000

f=
cr:
w
� (j) 1 ,000
z o
<t: Z
cr: o � &; 1 00
<!) en
-o:: O
en cr:
en o � � 1 0 F---_-_-_-_-_-_ -

/ / /
/

/

/
/ /

/

/
/

/

/

/
/

/

/
/

/ /

/ / /

1 0 1 00 1 ,000 1 0.000 1 00.000 1 ,000,000

MESSAGE SIZE (BYTES)

KEY:

SHARED MEMORY

MEMORY CHAN NEL

Figure 1 1
Digita l PVM Communications Performance: Message
Transfe1· Time

0 70
z

(' ... 0
() 60 w
en - - -
cr: - - - - - - - - - - - -w 50 Q_
en w

40 f-
>-co
<0::
<!) 30 w
�
I 20 f-0
� 1 0 0
z
<0:: co

0 200,000 400,000 600.000 800,000 1 .000,000

M ESSAGE SIZE (BYTES)

KEY:

SHARED MEMORY

MEMORY CHANNEL

Fig u re 1 2
Digital PVNI Com m u n.ications Performance: Bandll'idth

4. Receive data from a data channel

5. Send data to a data c lunnel

These fu n ctions can a l l be i m p l emented using the
UMP fu nctions u mp_read , ump_wri te, and u m p_wait
described earlier. In addition, hooks arc added to
rhc chan nel in iti a l ization and s h u tdown code ro cal l
u m p_i nit and u mp_exit . This approach leaves the
porta ble M PICH API l i brary u nchanged and attempts
to del iver optim u m performance. Ml'ICH imp lements
al l i rs operations, point- to-point and collective, on the
basic point-to-point services that the ADJ provides.

Working with the Edinburgh Para l l e l Computing
Centre (EPCC), we produced an early fu nctional M PI
prototype by bui lding a channel device on U M P, as

1 J 2 Digit�l Technid)ou rn;ll Vol . 8 No. 2 1996

250

220 .----
(j) 200 0
z
0
() � 1 50

w
�
f-
0 1 00 w
en Q_ 65 64.5 <0:: ,...--- r---' w 50 n 0

FOOl MEMORY SMP MEMORY
2 x 2 CHANNEL 4 X 1 CHANNEL

2 x 2 4 X 2

CONFIGURATION

F igure 1 3
PVM Application Perf(mn;uKc

shown in Figure l 4a. This implementation demon
sn-ared la tencies of 1 2 . 5 J.LS (sha red memon·) and
29 fLS (fv1 E M O RY CH AN N EL) , respecta ble ped(>r
manee for such a q u ick port of Jv! l' I f(>r cl usters.
Fu rth ermore, since rhis imple mentation uses U M P, ir

works transp:�rentl\ ' on sh:�rcd memon· and M F.lv! O RY
CHAl"JN E L . AD! channe ls rypicallv sup[)Ort onlv one
interconnect; m u ltiple A Dis are not vcr supported lw
M PICH. Unl ike PV1YI , rhc semantics of MPI a l low
operation without an intennediatc bu tkr, so rl1ar U M I'

buffers can be used direcrlv.
To fu rther improve rhc pedornLmcc of M P I 011

clusters, we e l imi nated the M P I C H channel del'ice and
i nterfaced U M P directly ro the AD l , as shown in
Figure l 4b. The absrr�Kt del'ice i n c urs some pcrt()r
ma nce pen:t l t\· in its support tor the ch:t n ncl device . I n
rhe U M P i m plementation , t h i s is u n 11Ccess�1ry as U M I'
:1lrcady pcrf(mns t h e h1 11crion of h id ing d etails of thc
transport m echanism . This implementation demon
sn·ared l atencies of9.5 fLS (s hared memorv) :t nd 1 6 fLS
(M EMORY C H ANN E L) , using an Alp!JJ c l uster con
sisting of rwo Al phaSer \·er 2 1 0 0 4/2 3 3 machi nes
connected by :1 M EM O RY CHANN E L network.

Performance

Table 5 compares the commu11 ic:tr ions latenc \·
ach ieved by M P I CH and rhc Digit�d MPI implementa
tion , using an Alpha c lu ster. Resu lts <1rc shown lor both
AlphaServer 2 1 00 4/ 1 90 :1 11d Alph:�Sen-cr 4 1 00
5/300 m:�chin cs connected Ll\ ' a .\! E M O RY CHA :---.: � l-: 1 .

net\vork. h gurc 1 5 shcl\\ s rhc message transrcr time
and Figure 1 6 s hows rhc lxmdwi dr h of Digi t<li M P I
over shared memory a n d ;VI EMO I!..Y CH AN N E L
transports t(>r a l'ariery of message sizes. A pair or·
Alp haSenu 4 1 00 5/300 machines \\ ere used tor these
measurements . Digital JVI I' l reaches :t peak b:md\\ id rh
of about 64 M B/s using sh :trcd memory :�nd 6 1 MB/s

M P I PORTABLE API LI BRARY

MPICH ABSTRACT DEVICE

MPICH CHAN N E L I NTERFACE

UMP

SHARED I MEMORY
MEMORY CHANN EL

MPICH - - - - - - ,

ABSTRACT
- DEVICE

I NTERFACE

I
I
I
I
I
I _ _ _ _ _ _ _j

(a) I n i ti � l Protor1·pc

r -

MPI PORTABLE API L I BRARY

MPICH ABSTRACT DEVICE
FRONT END

UMP

SHARED I MEMORY
MEMORY CHANNEL

MPICH
- - - - - - l

ABSTRACT I
- DEVICE - - I

I NTERFACE 1 _ _ _ _ _ _ _j

(b) Version 1 .0 I mp l c m c n Luion

Figure 1 4
Digit� I JV! PI Arch i rccrurc

using M EM O RY CHAN N EL Bv comparison, the
unmod i fied lvl PI CH achieves a pok bandwidth of
24 M B/s using shared memon· and 5 . 5 M B/s usi ng
TCP/l P mn an � D D I LAN .

Figure 1 7 shows the speedup demonstrated by an
M PI app l ication . The application is the Accelerated
Strategic Com puting I n i tiative (ASCI) benchmark
S PPM, which soh-es a three- d i mensional g;:�s dynamics
problem on a u n i tonn Cartesian mcsh s2'' The same
code \\'JS run u sing both Digit:�! M l' l and M P I C H
using TCr / 1 P . The hardware con ligur:ttion was a two
node MEMORY C : HA:--.J N EL c lustn of AJ phaServer
8400 5/350 1mchi nes, each with six CPUs. D i gital
M PJ used sh:tred memory ;:� nd M EM O RY CHAN N E L

transports, ll'herus M l' I C H used the Ethernet LAN
eonnecring the machi nes. The m�n i m u m spee d u p

Ta ble 5
M P I Latency Comparison

MPI Implementation

M PICH 1 .0 . 1 0

M P I C H 1 .0 . 1 0

Dig ita l M P I V 1 . 0

D i g ital M P I V 1 .0

D i g ita l M P I V 1 .0

D i g ita l M P I V 1 .0

Transport

Sockets FDDI

Shared M emory

M E M O RY CHAN N E L 1 .0

M E M O RY CHAN N E L 1 . 5

Shared Memory

Shared M emory

obtained usi n g D i gital M P I ll'as �lpproxi mate ly 7,
whereas f<>r M P I CH the m�1 x i m u m speed u p w�1s
approxi mately 1 .6 .

Future Work

We intend to continue rdi n i ng tlH: compom: n ts
descri bed in this paper. The major c h �m ge em·isioned
regard i n g the TruCi uster M EM O RY C H A N N E L Soft
ware prod uct is the add it ion of user-spJ.ce spin locks,
which should s ign i fi canrlv reduce tl1<.: cost of acq u i ri n g
a spin lock . We i n tend to i ncre.1sc t h e performance
of UMP lw making more e fficient usc of MEMO RY
C. H AN N EL in �, n u m ber of w�l\'s: striping brgc
messages over mu lt ip le ad�1pters, supporti n g next
generation adapters, and us ing poi nt- to - poi nt map
pings with a M E M ORY C H A N N EL swi tch . In :�d d i
tion , w e pl:m to a d d outbu ts to i ncrease m u l ticast
m essage- pass ing pcrt(xmancc. l'VM enhancements
p.lanned i n c l ude tll<: ad d i tion of the g�HCII'a\' d aemon to
a l low i nrcroperation ll'ith other PVM impkmenr;,tions
on external platf(mns. PVM wi l l also be modi lied to usc
the U M P non blocki ng write fac i l i tv t(>r arbitrari ly Llrgc
messages so that i ts perf(mn�mcc 111:1 tc hcs thar of
M P I . Si nce the sc m :J n tics of I'VM t(>rcc the usc of an
i ntermediate b u fti.:r, perf<mnancc when using shared
memory wi l l be i m prm·ed Lw p.1ssi ng pointers to a lock
control l ed b u fkr f()r messages ll'hosc tra nsti.:r time
wou ld exceed the overhead associ:ltcd with a lock. We
wi l l continue to improve M PI pcrt(mnance bv optimiz
ing the U M P AD! f(>r the tVI l ' l C H impkmentation .

Summary

We have b u i l t a h igh - pert(mnancc com m u n ications
i n frastructu re f(>r scicntilic �1pplic:1tions that ut i l izes a

new network technology to hvpass the sotrll':lrc over
head that l imits the applicabi l i t\' of trad it ional nct
II'Orks. The pcrt(ll'mance ofrhis s\·stcm has been prm·cn
to be on a p�1 r ll' i th that of c urrenr supercomputer tec h
nology and has been ach ie1·ed using commod i tv
techno logy developed tor D igita l 's commercia l c l uster
prod u cts . The paper demons trates the su i tabi l i ty of
the M EM O RY CHAN:-.JF.l . rcchnolnt-'Y as a communica
t ions med i u m h>r sel l able svstem del'clopmcnt .

Platform Latency

D E C 3000/800 350 JJ.S
AlphaServer 2 1 00 4/23 3 30 JJ.S

Alpha Server 2 1 00 4/2 33 1 6 JJ.S
A l phaServer 4 1 00 5/300 6.9 JJ.S
Alpha Server 2 1 00 4/233 9 .5 JJ.S
Alpha Server 4 1 00 5/300 5.2 JJ.S

Digi t;ll Trdmic.ll jounul Vol . 8 :-.:o. 2 1 996 1 1 3

1 00,000

� 1 0 .000

f=
((
w
� (j) 1 .000
z o
<(Z
ce o f- U
w w 1 00

� 8
(/) ((
Ul U � � 1 0 1-------,.../

/
/

/
/

/
/

/
/

7 /
/

1 0 1 00 1 .000 1 0,000 1 00,000 1 ,000,000

KEY:

MESSAGE SIZE (BYTES)

SHARED MEMORY

MEMORY CHANN E L

Figure 1 5
M I' I CommunicJtions Pnfmmancc: Me .,s.1ge Transkr
Ti me

0 70
z
0
u 60 w
(/)
((
w 50 (L
(/) w
f- 40 >-co
<(
<.9 30 w
�
I 20 f-0
� 1 0 0
z
<(co

0

KEY

\

200,000 400,000 600,000 800.000 1 ,000,000

MESSAGE SIZE (BYTES)

SHARED MEMORY

MEMORY CHANNEL

Fig ure 1 6
M P I Communicuions Performance : lhn d width

Acknowledgments

The :J uthors would l ike to acknowledge the fol lowing
rcop l e tor their contribu tions to this project: Gav:m
Duff}', \\'hose testing made the TruCiusrer J\'l Eivi O RY

C l l:\N N EL Softw:Jre �1 much more robust prod uct;
Liam Kel leher and Garret Taylor, who contributed
some of the Digital PVtv! functiona l i ty; vV:1yne
Cardoza and Brian Stevens of U N I X Engineering,
wbo pro\'ided earlv :1cccss to and ongoing support of

Vol . 8 No. 2 1 <.!96

!5 5
0
� 4
(L
(/) 3

2

2 4 6 8 1 0

KEY:

D DIG ITAL MPI

• MPICH TCP/IP

Figure 1 7

NUMBER OF PROCESSORS

M PI Appl ication Speed u p

1 2

kernel M EM O RY C HANNEL soft\\'are ; Rick G i l lett
and Mike Co l l i n s , \\'ho pro\'idcd carl \' M E1vlO RY
C H AN N E L hard \\'are; l\.i ch ard Kw ti11 :1nn, \\ ho g:1\ c

us encourageme nt and support; a nd Lyndon Clarke
and Kenneth Cameron at Ed in bu rgh Paral le l Com
put ing Centre (EPCC :) , \\'ho mod i tied MPICH to use

U M 1' for Digita l M P I .

References and Note

I . T. And erson , D. C u l ler, and D . Patterson, "A Case t(Jr
NOW (Ncn\·ork of Workstations)," Pmcecrlill.�.,- of'

1 ht' Hot lnlcrcoll ll<'c/s II .)) mposi11 1 1 1 . i>:� J o AI ro, (:�11 if.
(.'\ u gust 1 99 4) .

2 . K . Keeran, T . Anderson, and D . l'�urc rson, " LogP

Qu�lnt i tied : The Case for Low-Overhead Local Arc1
Ncrll'orks," Procccdiii,!!,S of !he Hoi lu/ercou nee is Ill
Sr111posiu m. Palo Alto, Cal i f (Augusr 1 995) .

3 . R . S i res, ed . , Alpha A rchilcc/1 /U' f<ej(•reuce . \ /(} } / /((.!/
(Bur l i ngto n , M�1ss . : Digita l Pre.,s, Order No.
EY- L .520E-DP, 1 9Y 2) .

4 . N . Kronen berg, H . LC\'\', and \N. Strec ker, "VAXclus·
re r� : A Closeh· Cou p l ed Distri b u ted S\·sre m , " A C \ 1
Tro usaclio11s 0 1 1 < . i 1 1 1 1/JI IIer S)' Si< 'II IS. ' o l . 4, no. 2

(M �w 1 98 6) 1 30-1 46.

5 . W. Ca rdoza , F Clover, and W. Sn:� ma n ,) r. , "Design of
the Tr u Ci u stcr M u l ricompurn Svstcm for the D i gi ta l

l! � I X J:: n,·i ron me nr," Di.� ilol 'f (•chuical juu n wl

\'O J . R, no. 1 (1 996) : S-1 7 .

6 . R . G i l l ett, "M l-:Jv!ORY C: H A N N I : I . �er11·ork for PC!:
An Opti m i zed Cl uster I n rerconncct," lfJ:F Micm
(l'e bru arv 1 996): 1 2-1 8 .

7 . J\11 . B l u m rich er � 1 . , "Virru� l Mcmorv Mapped Ncr

work l nrerbce �i>r the S H JU /v\ P M u l t icomputer," Pro
ceedings o{ lfw Tit,enl) •-jlrsl A ll l l ttal flllenwlional
Symposi11111 011 Com puler A nhilec/1 1re (April 1 994) :
142-1 5 3 .

8 . M . R l u m rich et a l . , "T\1 0 Virrual Mcmon· M apped
Network I n terhce Designs," Pmcl'edillg� of/he Hoi
Jntercollllects II ,\) ·rnposilltll . Palo Alto, Cal if
(August 1 994) : 1 34 - 1 4 2 .

9 . L I frock c t :\I . , " I mproving Relc:\sc- Consistenr Shared
Virtu<l l Memon· usi n g Au toma tic l pcbte ," Proceed
ings o/ the Seco11d illterllctliollal S) 'mposi/1 111 0 1 1
H(u,h-Perj(mno 1 1ce Comp111er A rchiteclu re (febru
arv 1 996) .

1 0 . C . Du bnicki er a l . , "Software Su pport for Virnd

Memor y - M �pped Com m u nication ," Proceeding\· o/
!he Tenlh lnlemalional Parallel Pmcessing 5)'mpo
sil l m (Apri l 1 996) .

1 1 . High Pc.:r�cmna nce forrran foru m , "High Pert()r
manct: Fortr�n Language Spcci�icuion," Version 1 . 0 ,
Scienlijlc J>rop,ram ming, vol . 2 , n o . l (1 99 3) .

1 2 . A . Geisr cr a l . , J>V/v/ 3 User �,· G11 ide a n d Reference
iVhlluwl. O RN L/TM - 1 2 1 87 (O� k Ridge, Tenn . : Oak
Ridge National Laboratorl', Mw 1 994). Also ava i !J.blc
o n - l i n e ,\t Imp:/ j\\ww.ner l ib .mg/pml 3/ug.ps .

1 3 . A. <._;eist et :1 ! . , P \ ', \ 1: Parallel \ 'irll lctl il1achille.
A User �,· G11 ide and Tutorial j(>r Nellmrked Parallel
Comp111i11p, (Cambridge, Mass . : The M IT Press, 1 994) .
Also avai lable on - l i ne a t hrrp:/ jwww. netl ib .org/
pvm 3 /book/pl' lll - book .html .

1 4 . M P ! Forum, " M P I : A Message P:tssing I merface Stan
dard ," fllll!rllalional jounwl oj' SllpercolllfJI IIer
Applica/iolls. ,·oL 8 , no. 3/4 (1 994). Version l . l of

this document is available on - l ine at h ttp://
w w w . m c s . a n l . go v / m p i / m p i - r e p o r t - 1 . 1 / m p i
report. htmL

l S. W. Gropp, E. Lusk, and A. Skje l lu m , L \ill,� .I'll'!.
Portable l'arct!lcl Pro�trantntill,� tci!h !be Jllfessa,�e
Passillp, llllerjctce (Ca mbridgc, Mass . : The lvi iT Press,
! 994) .

1 6 . J . Harris er a \ . , "Compi l i ng H i gh Pert(>nnance Fortran
for D isrri b t t ted -memory Srstenls ," D1,�ilal Tech 11ical

jou rnal. ' oL 7, no. 3 (1 995): S-2 3 .
1 7 . E . Benson et � 1 . , " Design o�· Digir:1 l 's P�ra l le l Sofr,, are

Etwimnment," Di,t; ilal Tech 1 1 ical jo11rnal, ,·o l . 7,
no. 3 , (! 99 S) 2 4 - 3 8 .

1 8 . 1 n t h e ti rst i tll l' lc mem�rions, r h e P C ! t\ll i:::M O itY

CHAN N E l . network adapter places a l i m i t of 1 2 8 !vi i\
on rhe amount of MEM ORY C H A N N EL space that can
be :\ 1 \ocm:d .

1 9 . TmC!us/er 1 /1:' 1 /()l? l ' CHAX\'f:f Sojill ·are Pmp_m/JI
mer �,· Mw 11wl (M �\·nard , M<lss . : D ip;ira l Eguipmenr
Corporation, Order No. AA-QTN4A-TE, 1 996) .

20 .

2 1 .

2 2 .

) . B rosna n ,) . Lawton, a n d T Red d i n , "A H igh
Performa nce l'VM for Alpha Clusters," Proceedillg'i
of/be Second European P\!M f �,-e,�· · Croup t'vleeling
Lyons, france (Septe mber ! 995) .

JVL H a u sner, M . l3urrows, a n d C. Thekkath, " EHicient
l mplcmc nrarion of PVM on rhe AN2 ATM N e twork,"
Proceedin,�s oj'Hip,b-Perj(m1WIIU' Co/Jipulil l,t; and
Ne!tmrkillp, (May 1 99 5) .

W . Gropp a n d N . Doss, " M PICH Model M P! I mple
mentation Rckrencc Manu;\ \ ," Draft Technical Rcporr
(Argonne, [1 1 . : Argon ne N:Hional Laboratorl', j u ne
1 99 5) .

W. Gropp � n d E . Lusk, " ,Vt i' I C H AD! I mplemem:Hion
Rekrence JVbn u a l ," Draft Technic�l Report (Argonne,
1 1 1 . : Argon ne National Laboratory, October ! 994) .

2 4 . W . Gropp :1 11d E . Lusk, " M P I C H Worki ng Note: Cre
ating a New M l' I CH Device usi ng the Channel l nrcr
facc," Draft Tech nica l Report (Argonne, I l L : Argonne
N,uional La bora ton', June ! 995) .

2 5 . Accelc r:md Sn·atcgic Computing I n i riati\'e (ASC I) ,

RF P State men t ofWork C6939ItF P6- 3 X, Los Ala mos
. tarion:l l L:1 boratory (LANL) (Fe bruary 1 2 , l 99 6) .
T h i s document i s also av:l i L l blc o n - l i ne at h ttp://
\\Ww.\ 1 n l .gov/asci_rrp/asci -so\\'.htm l .

26 . T h e ASC I SPPM Benchmark Code is a1·a i \ab\e ti·om
Lawt·e ncc Livnmore Nation;\ ! L1boratorv at http ://
www. l l n l .gov /asci_benchma rks/aseijl i rn i ted /ppm/
asci_sppm . h tml .

Biographies

James V. Lawton
J i m Lawton joi ned Digi ta l in I 986 :tnd is J principal engi
neer in the Tech n ical Com puting Group. In h is currcm
position , he comri buted to the dcsif';n of D igita l PVM and
rhe UMP l ibr:�n· and \\'JS responsible l(>r implementing U t'vi P
and adding support for collectil'e operations to D igit:l l l'VM.
l3ctore rh:lt, he worked on rhe charactni zation and opt i m i
zation of customer scienti fic/technica l benchmark codes
and on various lurdware and software design projects. Prior
to coming ro Digita l , J i m conrri butcd to the design ofana-
1og and digi t:ll morion control svstems and sensors at the
I n land Motor D i, · i -, ion of Kol lmorgen Corporation . J im
recei,·ed a ru:: . i n electrical engineeri ng (1 98 2) and an
M. Eng.Sc. (1 985) from Un i,usir1· Co l lege Cork, I rcbnd ,
where he wrote his thesis on rhe design of an e lectronic
control system �or variable rel ucta nce motors. In addition
to receiving rhe Hewlett-Packard (I rcbnd) Award t(Jr I nno
vation (1 98 2) , j i m holds one patent and has pu blished se1 -
era ! p:lpcrs . He is a member of I �: �: L and ACIVL

Digital Tcclmicll jou rnal Vnl. 8 No. 2 1 996 l i S

John J. Brosnan
)t lhn Brosn.1 1 1 is curre nrh ;1 princi pal engi neer in the
Tech nica l Compu ti ng Group 11·here he is project lc;1der
tor D ig ital PVM . I n prior positions <1t Digira l , he 11 .1s
project lc:1tkr for the High Pert(>rnunce Fortra n t c>t
suire and .1 sign i ticanr con tri bu ror to a ,·ariety of pu bl ish
i ng rech nolog1· prod ucts . john joined Digi tal a tin n:ceiv
i n g h is B. Lng. i n electron ic e ngineering in l 986 from the
U n i1crsi n· of Li meri c k, l n:] :l l \d . H e rece i1 ed his M . Eng.
i n conJ flU ter S\·stems in 1 994, a lso ti·o1n the U ni1·ersin· ot·
Limerick.

Morgan P. Doyle
In I 994, J'vlorgan Dol'le c1me to Digital ro \\'Ork on rhe
H ig h Perl(mn.\ncc fortran test suire . Presenrh·, he i s :m
engi neer in the Technica l Com p u ti n g G roup .

·
Earll- o n ,

he con t ri b u ted s ign i ticlllt lv ro the design and de,·e lop
lllenr of rhe Tru C i usrer M EM O l\ Y C f 1 .\ N N F. L Softw;1re,
and he is now responsible tllr i rs development. 1VImg:1n
rccein:d h i s I� .A . J a n d B .A. i n eb:tron ic engineeri ng
(1 99 1) .11 1 d h i s 1'v1 .Sc . (1 99 3) ti·om T1·i n i ry Col lq.1,c
Du bl i 1 1 , I 1·cLl l l d .

Seosamh D. 6 Riord,iin
Sema m h () Riord,\ i n i s J n engineer i n rhe Tech n i c1l
Comfl U t i n):'. C m u p \\ 'here he i s cmn:nrh· 11·ork i ng on
Digira i Jvl P I :1 n d on enh.1 11ceme nrs ro the l ' .'vl P l i b r:11·,·.
Pr�,· iou >h-, he contr ibuted to rhc design ;1nd i mp l c l n�nt:\
rion o f t he Tru Ci u srer ,\H: .\ ! O RY C I I . \� :"\ E L Sofrll':m· .
Seos;1m h JOi ned D igi ta l ;1frer I"Ccc i ,·i n g h i s Il.Sc. (1 99 1)
and M .Sc. (1 99 3) i n computer science ti·om the U n iversity
ofLi mnick, I rc l .l ll d .

Vol . 8 No. 2 [<)<)()

Timothy G. Reddin
A principal e ngi neer in rhe Tcchnic1 l Comput i n g Gro u p ,
Timorh1· Redd i n cu rren rh- lc :1ds r h c ream responsib le t(>r
the Tru C i uster M E/v! O I\Y C H .-\ :"\ :"\ l . L Soti:11 .ll't', rile L.' ,\ 1 1'

l i b1·;1r1 , Di�i r:1 l PVM, .1 nd D i�it.1l .VI P ! Prior ro com i 1 1 :-; ro
Digi t .l l in ! 994, Tim \\'Orkcd I(Jr eight vears as a w>te ms
designer at ! C I . H i gh I\:rt(ll'lll:lncc Svsrcms in r i\C L : n i rcd
Ki ngdom . He w;1s responsib le t(Jr rile l/0 a1·ch i rcct u re
of the ! CI . Coldrush para l l e l database sen·er, tc>1· w h i c h
h e h o l d s t\\'O patents, ;1ntl t h e dcsip;n o t' a n 1/0 and c o m -
1\lun ic:uions controller. Ti m :1lso ll'orkcd ar 1\:\nheon 011
the d :H:\ co1n m u 1J icarion' su bs,·sre\Jl tor rhc :S.: L\ Il-\ D
d istri buted re:\ 1 - time Doppler ll'<.::uher radar su bs1·sre 1n .
Prior ro rhar, he developed the sofr11·;1re arch i tec tu re t(n
an i ntegrated occuri,·e 11·orksr.nion wh ile \\-orking :H C PT
Limi ted. After rece ivi ng his B .Sc. (ll'ith distinction, 1 97 6)
i n computer science and marhc nntics trom l ' n i ,·crsi rv
College Dubl i n , I re land, Tim joined rhc sotfoi ' l1 1 1 i 1 cr
sin· College C :ork, \\·here h e 11 .1s a S\'>tcms pmgra n1 1ne1·
Tim is ,, n\l' lnbcr nf rhc Brit ish Compmer Socicn· .llld i s
a Chartered Engineer.

The Design of User
Interfaces for Digita l
Speech Recognition
Software

Digital Speech Recognition Software (DSRS) adds

a new mode of interaction between people and

computers-speech. DSRS is a command and

control application integrated with the UNIX

desktop environment. It accepts user commands

spoken into a microphone and converts them

into keystrokes. The project goal for DSRS was

to provide an easy-to-learn and easy-to-use

computer-user interface that would be a power

ful productivity tool. Making DSRS simple and

natu ral to use was a challenging engineering

problem in user interface design. Also challeng

ing was the development of the part of the

interface that communicates with the desktop

and applications. DSRS designers had to solve

timing-induced problems associated with enter

ing keystrokes into applications at a rate much

higher than that at which people type. The DSRS

project clarifies the need to continue the devel

opment of improved speech integration with

applications as speech recognition and text-to

speech technologies become a standard part of

the modern des ktop computer.

I
Bernal"d A. Rozmovits

I n the 1 960s a nd early 1 970s, people control led com·
purcrs us ing toggle switches, pu nchcd cards, :m d
punched paper tape . I n the 1 970s, the common co n
trol mechanism was the kevboard on tc lcrvpes a n d on
1·ideo te rm i na ls . In the 1 980s, with the adve n t of
graphica l user i n terfaces , people �(nmd th :� t :� new
mode of i n terJction with the compu ter w�1s usdi. d .
T h e concept o f a po inte r-the nH >use -n·olved . I ts
popu larirv grew such that the mouse is now a st:mdard
compone nt of every modern compu ter. In tlK 1 990s,
the t ime is righ t to 3dd yet another mode of i n ter
:lction with the compu ter. As compu te pown grows
each I'C:lr, the bou nd an· ofthe man-n1:1chinc imerhce
c:�n move ti·om in teraction that is native to the com
puter tow;trd commun ication that is !l<Hural to
humans, thot is, speech recognition .

DSRS Product Overview

Verv simplv, OS RS is �1 n appJ iu tion that provides
speech m�Kros. The user speoks J comm:1 n d , phrase , or

sentence (th:1t is, an u tterance), and DSKS pcrti.>rms
some ;tctions. The action might be to l aunch an appl i
cation, f(>r nample , i n response to the com m:�nd
"bring up calendar"; or to rvpc somethi ng, t(>r c x ::t m
p lc , in response to " ed i t to-do l i st," t o i t11'oke e macs
\ti lcs\projcctA\tod o . txt . OS RS not only houses the
speech macro capab i l i ty but a l so provides a user imer·
t:Ke, a speec h recogn i tion eng i ne , and in tcrhccs to the
X Window System .

Fol lowing is a high - b·c l description of how the
sofuvarc fu nctions. Commands arc spoken i n to :1

m icrophom: , and the audio is captured :�ncl d ig iti /.cd .

The ti.rst step i n the processi ng is the speech �malvsis
system, which pro\·id es a spectra l rcpn:sent<ltion of the
characteristics of the time -vJry i ng speech s ign �1 l . Nc:\t
is the tl:ature - detcction st:�ge. Here, rhe spccrra l mca
suremcnrs arc corwerted to a set of teaturcs th:H
descr ibe the broad acoustic properties of the d i tll:ren r
phone t ic u ni ts . ' These representations of the speech
signal Jrc then segmemcd and idcn ti tied as phone tic
seqw:nccs. The speech recognit ion engi ne accepts
these phonetic sequences and returns 1\'0rd matches
and contide nce values t(>r each match . These <.htJ arc
used to determine i f each m :� tc h is accept;lb le . If a

\ 'ol . R :--.:o . 2 I Y96 I I 7

matc h is acceptable, DSRS retrieves keystrokes associ
:ncd with each u tterance, ; :md the keystrokes are then
sent into the system's keyboard bufkr or to the appro
priate appl ication . For i nstances of continuous speech
recognit ion, a sentence is recognized and keystrokes
are concatenated to represent the u tterance. for
cxJmple, �(>r the u tterance "ti.\'e two times seven three
tc>ur eq uals ," the keys "52 * 734 =" wou ld be dc l i\'
crcd to the ca l cu l ator application .

Although th i s concept seems s imple, i ts implemen
tation raised sign ificant svstem integr:nion issues and
d i rcctlv affected the user i n terface design, which w�1s
critical

�
to the prod uct's success. This paper speci tic1 l ly

addresses the user i nterbcc and i n tegration issues and
concludes with a d iscussion of future d i rections t(.>r
speech recognition products.

Project Objective

The objecti\'c of the DS RS project was to provide a
usefu l but l im i ted tool to users of Digital 's Alpha
workstations running the UNIX operating sysn.:m .
DS RS wou ld be designed a s a low-cost, speech recog
nition appl ication and wou ld be provided at no cost to
workstation users for a fin i te period of ri me.

vVhen the project began in 1 994, a number of com
mand and control speech recogn ition products f(>r
PCs a l readv nistcd . These progrJms were ai med at
end users and performed usefu l tasks "out of the bo:x,"
that is , immediately upon start -up . They al l carne with
bu i l t - in vocabu lary for common applications and gave
users the abi l itv to add their own \'OGtbulary.

On U N I X systems, howc\'er, speech recognition
prod ucts existed on ly in rhc �orm of programmable
rccognizcrs , such as RRN Hark software . Our objec
tive was to bui ld a speech recogn i tion prod uct tor the
U N I X workst:� tion that h �1d the char:�ctcristics of the
PC recognizcrs, that is , one that wou l d be functiona l
i m mediately upon start -up and would al low the non
programmer end user to customize the prod uct's
vocabulary.

vVc stud ied severa l speech recogn ition prod ucts,
inc lud ing Ta l k-> To Next �i·om Dragon Systems, Inc . ,
VoiccAssist from Creative Labs, Voice Pilot h·om
Microsoft, ;ll) d Listen fi·om Verbcx . 'vVe decided to
provid e users with the �(> ! lowing featu res as the most
d es irable in a command :�nd control speech recogni
tion prod uct:

• Intu iti,-c, c�1sv-ro-use i n terface

• Speaker- independent mode l s that wou l d e l im inate
rhe need �(>r extensive tra in ing

• Spcakcr<tdaptive cap�1b i l i ty to i mprove accurJcy
of words

• Contin uous speech recognition c:�pahi l ity

• Prompts t()r active vocabu lary

1 1 8 Dig:ira l Tc·chniul Juumal Vol . 8 No. 2 1 '!96

• Minimum usc of screen Jrca

• l1scr control over the user i ntcrfau.: contiguration

• Simple mechanism to mod i(\· and create new
vocabu lary

• I ntegration with the X vVindow System

• Support for out-of- the-bm desktop applications
prm·ided with the U N I X opccning system

• Support tc>r vi and cmJcs ed i tors , and for C
programmtng

The DSRS Architecture

DSRS comprises several major components which arc
out l i ned below and i l l ustrated in Figure l . Of these
components, three arc l icensed f-i-om Dragon Systems,
Inc . : the ti·onr-cnd processor, the recognizer engine ,
and the speaker- independent speech models .

Dragon Systems, Inc. \\'as chosen as the provider of
the Sf)Ccch recogn i tion engine based on the accurac\·
of their technology, thei r prod ucts and npertise i n
other local languages, <lnd their long-te rm commit
ment ro speech recogn ition .

now acqu lsi! l o u consists of the microphone, audio
card , �md t llC mu ltimedia scn·iccs appl ication pro
gramming i ntcrbcc (API) th �lt provides support �c>r

the sound card .
The jimzt-end f!IDU!Ssor an �1h·zes a stream of digi

t ized data and d i fkrenti�Hcs hcrween si lence, noise ,
and speech ; it then c:xtracts a set of computed katurcs
ti·om the speech signals .

The recogni.:c1: or speech recogn ition engine,
accepts the computed representation of the speech
in the tcmn of tt:�nure packets which d rive the Hid
den MJrkov Mode ls to recognize utterances. H idden
JVLlrkm· Models a t-e basica l lv stare machines that tran
sit ion ti·orn :1 beginn ing SLltC to a number of interna l
states and then to a final state b�1scd on i np u t data and
proh�1hi l i ties .' Each transition carries rwo sets of prob
abi l it ies : a trans ition probabi l i tv, which provides the
prob�1b i l in· of this trJnsition being taken , and an out
pur probabil in' dcnsin· function (PDf) , which is the
condit iona l probab i l ity of emitt ing eac h output sym
bol �i·om a fin i te :1 lph:Jbct given rhat a trJns ition is
take n . ' The l'DFs arc aLhptcd \\'hen the model
is "tr<lincd," that is , c ustomized, b\ ' the indi' idua l uscr.

·rhe jluile s/ole grammar is a state mKhinc that
contains a rcprcscnt�1 tion of the vocabularv supported
by DS ItS . Each st<He contains words , phrases, or sen
t�nccs; their associated actions; a n d t h e int<mnarion
needed ro transition to the nc:xt stare . The current
state is used to control the Active words .

The .1peech 111ndels arc a set of u tterance models
used [)I' the recognizer. DSRS prm·idcs ' ocabulan· and
speaker- in dependent mode l s tl>r the app lications sup
ported by DSRS . Users who wish to i nc lude their 0\\'11

TRAI N ING
MANAGER SPEECH

USER MODELS'

INTERFACE

I

MICROPHONE D IG ITIZED FEATURE
AUDIO FRONT-END PACKETS

PROCESSOR'

AUDIO CARD

• Denotes a component l icensed from Dragon Systems. Inc

Figure 1
DSRS Architcctur;ll Block Di:tgrcl ln

words can crcuc mode ls usmg the Vocabu l:�ry
Manager user i ntcrbc<..:.

The Speech Mo nager is the main user- inte r face
component. The Speech M; HJJgc r window prov id es
visual feed b:�ck to use rs . I t a lso keeps tr:�c k of the cur
rent window i n h>eus :�nd Jets ;1S the :�ge nt to control
focus i n response to users' speech commands.

The Vocahulmy /via nager uscr- i nter bce window
d ispl:�ys the current h ierarchy of the fi n ite state gr:� tn
mar ti l e . T h e Vocabulary Manager <l l l ows r h e user to

custom ize using the fu nctions t(>t· addition, deletion,
:�nd moditic:�tion of words or macros . Also in this win
dow, the command - u tterance to keystroke tra nslations
arc di splaye d , created , or modi tie d .

I n t h e TJ-ain ing ;11a nagC'r user i n tcrbcc, tl1e user
may tra in newly created words or phrases in the
user vocab u l :lry ti les and rctr:1 in, or adapt, the prod uct
suppl ied , independent vocabulary.

The DSRS Implementation

As the d es ign team gai ned experien ce wi th the D S RS

prototypes, we rdi ncd user proced u res and i ntert:1ccs.
This section descr i bes the kcv fu nctions the team
dc,-e loped ro L· nsurc the use r- fi·icnd l iness of the prod
uct, including the first-time setup, the Speech
Manager, the Training Ma nager, the Vocabu iJ ry
Manager, <l nd the ti nite state gr:�mmar.

First-time Setup

DSRS requ i res a setup process ll'hcn used tor the fi rst
t ime. The user m ust crcJtc user-speci fic ti les and set
tings. The user begins by selecting the microph one
and by testing and adj usti ng the mic rophone i n p u t
vol u me to usable settings . The user i s then prompted
to speak <1 ti:w words, which arc presented on the

VOCABULARY
FINITE STATE MANAGER
GRAMMAR USER

INTERFACE

t l COMMANDS
AND ACTIONS

SPEECH
SPEECH

MANAGER
RECOGNITION STATE

ENGINE' TRANSITIONS USER
INTE RFACE

KEYSTROKES
AND WINDOW X WI NDOW

NTS ACTIONS EVE

X WI NDOW
SYSTEM

screen. DSRS uses the speech dat<l to c hoose rhc
speaker- inde pen dent model that most cl osely matches
the speaker's voice. There :�re models for lower- and
higher-pitc hed \'Oices. The soti:warc copies the selected
model to the user's home dirccron·; the model is then
modi fied when the user makes changes to the provided
models and vocabu lary. After setup is complete, the
next step is the Trai n ing M<mJger which presents the
user with <l l ist of 20 words to tLl i n ; when this step is
comp leted , D S RS i s ready tc>r usc. The Training
Manager is described i n more dct<l i l later i n th is section.

The proced u re abO\'e was dc, cJoped to take a llC\\'
user through the e ntire setu p process without the
n eed to refer to any docu menration . Once the user
fi les arc crcJtcd , DSRS bypasses these steps and comes
up ready to work. A notJble change that we mJtk to
the setup was instigated bv o u r own use of the son
ware. 'vVc t()l tnd th at inconsistent microphone \'O] u mc
settings were a trcqucnt pro b l e m . 'vVhen systems were
rebooted, vol u m e settings were reset to defau l t values .
Conseq uently, we created an in i tial ization ti le that
records the volume setti ngs as well as a l l user-ddin abk
characteristics of the graphicJi uscr interface.

Speech Manager

Once D S RS is ready and i n its i d le state, it presents the
user with the Speech M.anagcr window, an exa mple of
which is shown i n Figure 2 . The Speech Manager pro
vides the fc> Jiowing critica l con trol s :

• Microphone on/offsll'i tc h .

• A V U (volume u ni ts) mete r that gives rc:�l - t i mc
fCed bJck to the audio signal being heard . A V U

meter is :1 visual teed back d evice com mon ly used on
devices such as tape decks. Users are ge neral ly very
comfortable using the m .

Digital lcdmic:li journJI Vol . 8 No . 2 1 9'}6 1 19

Figure 2
DSRS Si1<::cc l l i\'L l Juger Windm\

• Two user-control lable panes that d i splay tiK Alw�1ys
Acrivc ;md Acti\'e vocabu L1rv sets. The AJ\I'avs Active
n>c.1buL11 "1 ' ,,·ords arc recogn i zed regardless of
rhe C L I ITC llr :tp p l ic.nion in r(>cus. The Actin: \'OC1bu
larv \I'OI'ds �m: spec i fic to the �1ppl ic1rion i n h>L us
and c h �mge dynamica l l y as the cu rrent application
changes . The vocabularies arc designed i n this way so
t l1:1t �1 user can speak comm;mds both withi n <I ll

appl icnion come:-;t and in order to S\\'itch contots.

• Th ree s m�11l fra mes that prm·idc status i n formation
to the user.
- Th e Mode �i-ame i nd icnes the c u rrent state of

the Speec h Manager: command and control or
sleepi ng.

1 2 0 Dig:ir.1l Tc·cl 1 1 1 ic.l l]ounL\1 Vol . S 1'\o. 2 1 996

- The Conrext fi·amc displays the class n:tmc of the
:1pplicnion cu rrently in f(>Lus. This comcxt :dso
determi nes the current stJte of the Active word l ist.

- The h istory fr:1me d isplavs the word, ph r;1se , or
scmcncc l ast heard lw the recognizer. The h isrorv
ti·amc is set up as :1 button . \rVhen pressed , it d rops
do\\'n ro revea l the l :1st 20 recogni zed u ttera nces.

• A menu that provides access to the management of
user ti les, the Vocabu l ary M a 11<1gcr, the TL1 i n i ng
M:1n�1 gcr, �1 11d \':Lri ous uscr- contigur<1 b l e options.

Training Manager

The Tr�1 i n i n g M anager :1Lhpts the sp<.:<1kcr- i ndcpe n
d e n t speech models to t h e user's speech patte rns a n d
creates n e w models f<>r :1dded words. O u r swdy o f

PC- b�1sed speec h recognizcrs led us t o the concl usion
that the design of a tr:1 i n i n g i n te r EKe i s critic1l to
obt:1 i n good resul ts . For example , the trai n ing compo
nent of one PC:- based rccogni ;cr we nami ned d id not
prm·idc c l ear ked back to the user when :1n u trn,mcc
had been processed, thus c:1us ing the user con Fusion
about when to speak . This confus ion le:1d to tr<1 i n i ng
errors :\lld ti·ustration . Another recognizer d id not
a llow the u ser to pause w h i l e tL1 i n i ng, <1 major i ncon
\'C n i cncc �(>r t h e user \\'ho, �i >r cxampk: , needed to
clear h i s th m�n or spc:1k to someone.

We dn ·e loped the fol lowing l ist of d esign char:tctcr
istics t(>r ;1 good train i n g u ser i mc rbcc .

• Strong, c lear i nd ic:lt ions th�lt u tterances arc pro
cessed . \rYe �1ddcd a series of bo,;cs th<lt �1 1-c c hecked
off as each u tterance is processed and �1 VU mete r
t h a t shm,·s the SI'Stcm is p icking u p a u d i o s ignals .

• Red u ced amount of eve mm-cmcnt needed �(>r the
tc1 i n i n g to proceed smoothly and q u ick ly. We
placed visua l feed back objects in position s th<1 t
: il lo\1' usns to foc u s t h e i r eves o n a l i mi ted �1ro of
the screen ;md not ln\T to l ook back �1 11d �(>rth
across the screen at each u tterance .

• A gl i m pse of u pcom i n g \\'ords. A l ist of\\'ords is d is
pl ayed on the user inter bee ;md moves <1S words :1 rc
processe d .

• A pmgrcss i n d icator. 'T'c xt is d ispl aved and u lxhted
as cK h word is processed , i nd i cating progress, t(>r
example , Wmd 4 of2 l .

• Option to p a use, resume, and rcstJrt tra i n i ng .

• Large, bo ld tonr d isp lay of the word ro be spoken
and a smal l prompt, " Please conti n u e," d isp lavcd
when the svstcm is wa it ing t(:>r i n put .

• A u tom�Hic ;1dd i tion of rq1c1tcd utterJ n ccs that <HC

"bad" or do tJOt ll1Jtch the c ,; pcctcd ,,·ord .

• Control over the nu mber of repeti t ions.

As the ex:1 m p l c in Figu re 3 shows, the TL1 i n i n g
Ma nager presen ts a word ri·om a l i st of words t o be
tra i ned . The word to be spoken i s presented in :1 l a rge,

Figure 3
Tr:1 i n i n g i'vbnager vVindow

bold tom to d iftcrcmiate i t ri·om the other c lements i n
t he window. To tra in the words, t he user repeats an
um:rancc ti·om one to s i x t imes. The user must speak
�lt the proper times to make tr�1in i ng a smooth �md eff-i
c ient process. DSRS manages the process by prompt
ing the speaker with visual cues . Right below the word
is :1 set of boxes th:u represent the repetitions . The
boxes arc checked off as utterances arc processed, pro
vid ing posi tive visu�1 l feed back to the speaker. When
one word is complete , the next word to be trained is
displayed and the process is repeated . vVhcn :� I I the
words in the l ist arc tra ined, the user saves the files, and
DSRS returns to the Speech Manager and i ts Jcti ,·c
mode with the microphone tu rned off.

Vocabulary Manager

The Vocabu larv J\tLmager, �l ll example of which is
shown in Figu re 4 , enables users to modi!)' speech
ll1 <1CfOS by c l1 <1 11ging the kcvstrokcs Stored r(Jr each
command <l !1d bv �1dd ing new comm�mds to ex isting
<lppl ications. Users can a lso add speech support t(>r
cntirclv new appl ications. The vocabuL1rics are rcprc
SC!lted graph ical lv as h ierarch ies of appl ication nKabu
brics, groups of words, and indiv idua l words . The
Vocabu lary Manager provides an i n tcrf:Kc that a l l ows
m;mipu lation of this thtabasc of words without resort
ing to text ed i tors . ·rhc AJways Active vocabu laries arc
:�cccss ib lc here and arc manipu lated in the same man
ncr as the application-speci fic vocabu laries. With the
VocabuL1rv l'vlanagcr, the user may import and export

,·ocabu l �1rics or parts of vocabu laries in order to sh:�rc
comnLmds <lnd rhus enable speech recognit ion m
appl icuions not supported by defa u l t in DSRS.

Finite State Grammar

The fin i te state grammar (t:SG) is a state machine with
a l l the ,·ocabulary requ ired to tr::msition between states
:�nd cond itions. The FSG has two d istinct sets of
vocabul:1ry, which have already been mentioned : the
Alw:�vs Active, or global vocabu larv, and the Active, or
context-specific, vocabulary.

I n crclting the FSG , we �(>lmd that we needed spe
cial fu nctions for int e raction with the windowing sys
tem and representations t(>r all keyboard keys. Whi le
creating these speci�1 l functions, we designed the inter
action t(>r max imum convenience. For example, when
a user speaks the phrase "go to c:� lcu lator" or "s,vitch
to ca lcu lator" or simply "calcu lator," the meaning is
read i ly i n terpreted by the software. For the user's con
\'en icncc, these phrases trigger the tc>l lowing cond i
tional actions.

• I f �� w indow of class "ca lcu lator" is presen t on the
s\·srcm , then set t(Kus to it . This is done regard less
of i ts state; the window may be i n an icon state,
h idden , or on ::mother work space such as may be
fou nd i n the Common Desktop Environment
(CDE) .

• If the window does not exist, then create one by
l aunch ing the appl ication .

Dig.ir.1l Tcdmical jou rnc1l Vo\ . 8 No. 2 1 996 1 2 1

-
Vocabulary Manager

£ile ::::'_ocabulary

I
I
I
I
I
I

OJ
I
I

I
I
I
I
I
-

1:6: ... Always Active Vocabl ' r.:1 �
C Programming Modr �
Calculator ...

Calendar ...

Calendar & Diary ...

DtTermlnal ...

Emacs . .
Emacs extensions.

Pesonal Emacs ex

File Manager . . .

Mail . . .

Nets cape .. .

Sentences for Switch

Speech Manager ...

J!j
J!j
•
�
J!j
J!j
J!j
J!j
J!j
J!j
�
J!j
J!j
•
I �

p -

abort

backward

backward char

backwards a page

beginning of blifer

beginning of line

beginning of word
center on line

control g

copy region

delete backward char

del ete character

delete l ine

delete previous word

delete region
delete word

edit declare project SllTlmary
Emacs extensions ...

end of buffer

!:::!.elp

- I /r------------, .. r-:

Number of active words in selected Vocabu lary. 64

Figure 4
Voca bularv ivl anager Windo\\'

The s imple l ogic of this speci a l function e n h :m ces
user prod u ctivi ty. Often worksta tion and PC screens
are l i ttered with wind ows or appl ications icons �1 nd
icon boxes t h rough which the usn must searc h .
Speech control e l i rnin:Hes the steps between t h e user
t h i nking "I want the ca lculator" and the appl icuion
being prese nted in f(Kus, ready to be used . The DSRS
tea m created a function cal led FocusOrlaunch, which
i m plements the beh avior described above . The �t i nc
tion i s encoded i n to the FSC continuous-switch i ng
mode sentences in the Always Active vocabu l a ry
associated with the spoken commands "switch to
<appl i cation name>," "go to <application name>,"
and just p la in " <application n: une > . "

Appl ications l ike c1ku lator �mel c:tl c ndJr :l iT not
likely to be needed i n m u ltiple instances. H m\'e\·er,
appl ications such as term in:1l e m u l ator windows �1re .
DSRS defines the speci fic phrase "bring up <appl ic:ttion
name>" to exp l ic it ly l :nmch a new i nst:mcc of tht �1p p l i
cation; t h a t i s , t h e ph rase " b ri n g up <applica tion
name>" is tied to a fu nction 1umed Lau nc h .

T h e phrases " next <applicltion name > " and "pre\ · i
ous <Jpplication name>" were chosen t(Jr navigating
between i nstJnces of the s�1 m e applicati o n . DS RS
rem e m bers the previous state of the appl icatio n . For

1 22 Dig:i nl Tcc hniol J o u nul \'o l . � l'\o. 2 1 996

i nsta nce, if the calcndJr :tppl ication is m i n i m i zed when
the u ser says "switch to ca l e ndar," the ca lendar
window is restored . \<\'hen the user sa\'S "switch to
emacs," the calendar is retu rned to i ts fC.)n11er state. I n
this case , i t i s m i n imi zed .

DSRS also adds speech control to the com mon \\'i n
dm\· controls s u c h as m i n i mize, m a \ i m i z c , �md close .
These tl1 nctions operate on whatever window is c u r
ren t!\' i n t(Kus .

Anothcr con\·en ient command is "Spccch Man�1gcr
go to s leep ." vV hen the user spc1ks this command,
D S RS tLmsitions i n to a special st: m d b\' state . In th is
st•1te, termed "s leeping," the recognizer is sti l l l iste n
i n g b u r w i l l renm1 t o command •1 n d comrol mode
onh· when the command "Speec h M anager wJke up"
is spoke n . The "go to s leep" command puts DS RS
i nto a sta n d by st:tre, a l lowing normal conversation to
take p lace without words being recogni zed :ts com
mands and causi ng u n \\ 'amed e\·ems to occ u r.

Ve rsion l . l of DSRS �1d ds even more hmctions,
such as the " microphone oFf" comm�md , \\'h ich goes a
step be\'ond "go to s lee p . " With " m icrophone oft�"
the i n p u t :tu d i o section is com p l e te l y re leased and
D S RS will n o longer l isten u nt i l the microphone is
m a n m l l v turned back 0 1 1 . This tlmction a l lows the

user to launch an audio-based appl ication that wi l l
record, such as a teleconferencing session. Version 1 . 1
also inc ludes a fu nction that al lows the user to play
a "wave," or digiti zed audio c l ip . Audio c ues may thus
be played JS part of speech macros. The "say" com
mand i nvokes DECta l k Text- to-Speech fu nctional ity
so rbat audio events can be spoken!

Since speech recognition is a st<Histical process and
prone to errors, rhe design team deemed "confirm" an
important function to protect user data and prevent
unwanted acrions. The "confirm" fu nction protects
certain sensitive actions, such as exiting an ed itor, with
a confirmation dia log box . Simply add i ng the "con
firm" syntax within a speech macro causes the dialog
box "arc you sure ? " to appear. The vocabu lary is
switched to respond ro only yes and no so that a higher
rel iabi l ity can be achieved . If the user says no or presses
the no button, the computer returns to i ts previous
state. If the user says yes, the action fol lowing the
"confirm" function is executed .

Another concept encoded in the FSG for user con
venience is menu flattening. Menu displays are hierar
chical because rhc number of menu entries that can
be shown on the screen a t one rime is l im i ted . A good
example is the F i l e men u . When rhc user cl icks the
mouse button on F i l e , a drop-down menu appears
conta in ing actions such as Open ti le, Save fi le , Save
fi le as . . . , Print, �md Exit . However, hierarchical menus
do not rea l ly represent the way people normal ly
think about Jctions; for example, when the user thinks
"exit," he or she must then take the steps ti le and
exit . With speech recognition, rhc computer can take
rhc interim steps . The FSG in DSRS was bu i l t ro han
d l e two cases: (I) The user says "fi l e" and "exit," and
(2) the user says on ly "exit" and DSRS performs the
ti le and exit sequence transparent ly. This second mode
connects the Jctions more closely with the user's
thought processes and does not t(>rcc a sequence of
actions in order f(>r tasks to be pcrf(>rmed. The menu
thttening feature of DSRS was encoded into the FSG
ti le . vVhi lc rhc example given may seem trivia l , the
concept is an i mportant one and can be used to flatten
many levels of menus. For instance, users take several
steps to change the font or type size on a region of
highl ighted text in a word processing program. The
followi ng cou ld conceivably be invoked as a speech
macro: "Change ro Helvetica Bold Italic 24 poi nts . "

Integrating Speech Recognition in Applications

As described i n the section Overview, DSRS feeds key
strokes to appl ications. Therefore, rhc preferred appli
cation development method t(>r a l lowi ng access to
fimctions-one that wi l l a l low integration of speech
recogni tion-is accelerator keys. Typical ly, accelerator

keys are i n the f(xm of CTRL + <key> bindings that
a l low d irect access to a fu nction , regardless of menu
h ierarchies. I t shou l d be noted that this lack of hierar
chy l imits the number of d irectly accessi ble functions.

A second method for imegrati ng speech within an
application is through menu m nemon ics. Mnemonics
are the keyboard equivalents signitied in appl ication
menus by an underl ined letter. The first mnemonic is
i nvoked by a combination of the ALT key and the
underl i ned letter, which can be fol lowed by another
u nderlined letter. For example, pressing ALT + f
invokes the fi le menu item; press ing x immediate ly
thereafter invokes the "exit" entry t(>r the application .

I n tegrati ng speech recognit ion becomes d ifficult
when appl ication functions are not accessible through
the keyboard . Applications designed to allow access to
fu nctions only by means of the mouse can not be
speech enabled as DSRS is curremly implemented .
Although DS RS can send mouse c l icks into the system,
consistently locat ing the mouse pointer on applica
tions is d ifficu lt . The next sections fu rther i l lustrate the
issues that stemmed from these in tegration 1ssucs as
we implemented and tested DSRS .

Client-Server Protocols

Appl ications such as emacs and Nctscape Navigator
have protocols that a l low other processes to send
commands to them. For example , a ti le name or a
un iversal resource locator (U RL) may be sent via
the command l ine . DSRS exploits this bci l ity in
Netscape Navigator to J i low Web surfing by voice.
For example, in the Nctscapc context, the speech
macro " Digital home page" wou ld translate to the
fol lowing command issued to a window: nctsc:lpc
remote open URL("http:/ jwww.digita.l .com"). Although
this command stri ng seems a bit awkward, the resu l t i s
that the actions be ing taken are J l l transparent to the
user and they work verv we l l .

Problems Encountered in Implementation

Unl i ke the applications discussed i n this paper, some
applications arc not developed with good program
ming practices. Neither are the keyboard interfaces
wel l - tested . We encountered the fol lowing types of
problems when using the keybo:�rd as the main input
mechanism.

• Appl ications had mu lt ip le menu mnemonics
mapped ro rhc same key seq uence. This approach
could not work even if the keyboard vverc used
d i rectlv.

• Appl ication fu nctions control led by graphic but
tons were accessible only by mouse.

• Keyboard mapping was incomplete, that is, mnem
onics were on ly partial ly i mp lemented .

Digital Technical journal Voi . 8 No. 2 1 996 ! 23

I n the i m plementation of D S RS, we encountered
one u nexpected pro blem . vVh e n :t nested m e n u
mnemon ic was i nvoked , the second c h �1 r:tcter was lost.
The seque nce of events was as ro l lows :

• A spo ken word was recogn ized , and keystrokes
were sent to the keyboard butkr.

• The ri rst character, ALT + <key> , acted n orma l ly
and caused a pop- up menu to d ispL1y.

• The menu rema i ned on d isp l ay, and the last key was
lost .

vVe determined that the second keystroke was be i ng
del ivered to the appl ication bd(>re the pop - u p menu
'"�1s displavcd . Th erdorc , at the ti me the key was
pressed , i t did not yet have me:1ning to the app l ic:1tion .
It is �1 pparent that such appl ications arc written rc>r
�1 IH1 1n:m reaction-based pa rad igm . DS RS , on the
other ha nd , is typing on beh a l f of the user at computer
speeds �md is not wa iti ng tor the pop - u p menu to
d ispby bd(xc e n tering the next key.

To overcome th is prob l em , we deve loped J syn
ch ron iz i ng ti.1 nctio n . Norma l ly the Voca bu lary
M:1nagcr not:1tion to send an A lT + f fd lowcd bv an
x wou ld be A LT + f x . Th is new synchroniz ing func
tion was designated as sALT + f x . The sync h roni z i ng
fu nction sends the A LT + f and the n monitors e\·e n ts
t(>r a map - noti f'\• message i ndicati ng that the pop-up
menu has been wri tten to the screen . The ch:1ractcr

fo l l ow i ng ALT + f is then sent, in this usc , the x .

The svnchroni zi ng t'i.mction also has a watchdog timer
to prcvellt a hang in the ev<.:n t a map- noti �· message
This method is i ncluded in the ti na! prod uct .

Guidelines for Writing Speech-friendly
Applications

Severa l gu ide l i nes tor ena b l i ng speec h recognition i n
applications became appare n t a s w e gained e x perience

usi ng DS RS . Coi n cidenta l ly, a gu ide l i ne rccenr l y p u b
l ished by M icrosoft Corporation documents some

of the ,·cry same poi nts . ;

• Prov ide kcvboard access to a l l tCatures.

• Prov ide access keys tor a l l menu items �md contro ls .

• Ful ly document the keyboard user i ntcrbcc .

• \IVhcn�:vcr possible, usc accelerator k.cys ; they Me
more reliable than using menu m ne mon ics.
M nemon ics C<111 be overloaded or non - ti.mctional
if the menu is nor active.

• C l ien t-server protoco l s C:ln work we l l r(lr C IL1 h l i ng

speech recogn i ti on ; document ndlv.
• Do not depe nd on h u man rc::tction t imes r(lr d is

pLl\'cd wi nd ows or on sl ow tvp ing L1tcs .

• Provide user- tl·icnd lv t it les for :1 l l w i nd ows , e\·cn i f
the title is n o t ,·isi b le .

1 24])igi t ,d k(hniol journal Vol . X No. 2 I <J<J6

• A\'(>id trigge ring �1ctions or messages Lw m o u se
poi nter location .

• Gi,·c d i :1 log boxes consistent kevboard access ; t(Jr
i nst�1 1Kt:, boxes shou ld close when the ESC key is
pressed . The d i :1 l og box responses yes and no
should correspond to the v and n keys.

Appl ication developers who wish to d es ign a speech
i n ter race d irect ly i n to the i r <1pp l ications now have th is
option. Scvcr�1 l speech A P is <1 1-c avai lable . L'vl icrosoft
ofrers tbc Speech Software Deve lopmen t Kit, and the
Speec h Recognition API Com m ittee, c lui rcd lw
Novel l, offers S RA. P I . Computer-huma n speech

i n teraction is the su bject of ongo i ng research . Much of
the gm-c rnmcn t-sponsorcd researc h is now being

com merci a l i zed . Sc\Tra l gro u ps , s u c h as ACM C:H I ,''
have bec.:n �md com i n u c to studv speec h -on ! \ ·
i nrcrt:Kcs. Thcv arc Jiscm-cri ng that " trans lati ng �1
grap h ica l i ntcrr:1ce i n ro sp<.:cch is not l i ke l y to prod uce

<1 11 e fkcti,·c intcrbcc. The design of tbe Speech User

Interbcc must be a separate d't<>rt that involves studv
i ng the h u m <m-h u m�1 11 conversa tions i n the appl ica
tion domai n . " ''

Future Directions for Speech Recognition

I n add i t ion to U llCO\'er ing poi n ts tor d evel opers to
bui ld specch - cn�1b lni �1ppl ic:1 tions , \\'C a lso ga ined �1
perspective on how sp<.:cch recogn ition ma\' dc,clop 1 1 1
t h e t'i.nurc . A brief m-crvic,,· of these ins igh ts i s pre
sented in this section .

Integrating speech �1 nd a ud i o ou tpu t-The addi
tion of a two-w�1y i n te rrace of speech a nd a u d i o rh�1 t
gives users kcdback wi l l move the user i n ter bce ro a
new leve l .

Telephone access-Te l ephone access can make

workstations more v�1 l u �1 b l e c o m m t m i cations devices
by con nect in g users to i n r(m11::tt ion such �1s e - n.1 :1 i l
messages and appoi ntmc ll t c1 lc ndars . T h e te le phone

can extend the rcxh oh n 1 r d esktop computers . ''
D i ctation -D iscrete d ictation prod ucts \\'ith capa

b i l i ti es of 60,000 '' mds �1re commercia l I\ - <1\ �1ibblc
now; i n the nor- roo-d istallt h 1 ture , con t i n uou s
recogni tion d ictation prod ucts '' i l l become ,·i a h l c .
A command a n d comrol recogn i zer t h a t c a n b e scam
lcsslv switched to d ict:Jtion mode is a very powcrnd too l .

sixec h recogn ition i ntegrated with natural l a n
guage process i ng-Th e ri c ld of natural langu �1ge

process ing deals wirh the extraction of semantic inr(Jr
mation contai ned i n a sen ten ce . Machine u n derstand
ing of natu rJ l l �1 ngu :1ge is an obvious next step . Users

wi l l be ab l e to spc1k in �1 lcss restricted bshion and sti l l
have the ir des i red �1cti ons carried out .

A new par:1d igm r()l· �1p p l i cations-A nc\\' cbss of
app l ications needs to b e created , one t h a t is mode led
m ore on h u man thou gh t processes and naru r�1 l Lm
guage ex pression th�m on the ti.mctional partit io n i ng

in tociay's applications. A user agent or secretary pro
gram that cou ld process com mon requests del ivered
entirely by speech is not out of reach even with the
technology avai lab le tod ay, for example:

User: What t ime is it?
Computer: I t is now 1 : 30 p . m .

User: Do I have a ny meetings today)
Computer: Staff meeti ng is ten o'clock to twelve

o'clock in the corner conference room.

Computer: Mike Jones is e<1 1 J ing on the phone.
vVould you like to answer or transfer the
cal l to voice mai l)

User: Answer it.

User: Do I have any new maiP
Computer: Yes, rwo messages. One is ti·om P<lul

Jones, the other ti·om your boss.
User: Read message two.

User: Wh at is tbe price of Digital stock?
Computer: Digital srock is at $72 1/�, up 1 / ••

The example above shows the user agent providing
i n formation and interacting with e-mai l , telephone,
stock qu ote, and calendar programs. As we move i n to
th e fu ture, tbe computer-user i.ntertace should move
closer to the interaction model humans use to com
mu n icate with each other. Speech recogn ition and
text-to-speech software help in a signit!cant way to
move i n this d irection -''

Performance

D S RS word recognition , which is the pri mary perfor
mance measure, is as good as comparable com mand
and control recognizers found on PCs. Train ing trou
blesome and acoustica l ly similar words improves the
performance. The vocabulary, because of the targets
chosen, ti1Jt is, U N lX commands, does have acoustic
col l isions, for example, escape and Netscape. Further,
we had to usc the voc:�bu laries support ing the U N I X
shel l commands, and commands such <lS vi c a n b e pro
nounced in d i ftl:rent ways, fi:>r example, vee-eye or vie.
The shel l commands are also fu l l of very short utter
ances that tend to result in higher error rates.

On the slower, Erst-gen eration Alpha workstations,
DSRS has noticeable delays, on the order of a tew h u n
dred m i l l iseconds. However, on t h e newer a n d faster
Alpha workst:�tions, DS RS responds within human
perceptual l i mits, Jess than 100 mill isecon ds.

Another interesting ph enomenon associated with
the speed of the workstation is the i mprovement DSRS
makes i n user prod ucti v i ty. On a slow mac hine, the
speech interface has l ittle impact if the appl ication is
slow in performing its tasks. In other words, the time it
takes to perform a cert a i n task is not greatly aHectcd

u nless the human input of commands is a significant
portion of that t ime. However on a fast mach ine, the
app l ication performs tasks as quickly as the commands
are spoken , and the prod uctivity e n hancement, there
fo re , is great.

Summary and Conclusions

The DSRS team accomplished its objective of develop
ing a low-cost speech recognition product. DSRS tor
Digital U N I X is being shipped with a l l Alpha work
stations at no additional cost. Integration with the
X vVi ndow System was successfu l .

With reference to the focus of this paper-develop
ing the user- friendly interface-we found through
feedback from our user base that most first-time users
pertorm usefu l work using DSRS without consu lting
the documentation . The first-time setup design that
provides i nstructions and feed back to users was suc
cessfu l . The l ist of Active and Always Active vvords and
phrases is a helpful reference for new users unti l they
learn the "language" they can use to comm u ni cate
with their applications.

Adding vocabulary for new applications is a bit
more chal lenging because some "reverse engi neering"
may be req ui red on a particu lar applicatio n . One
needs to know the class name of each of tl1e windows
and then map the keystrokes for each of the functions
to speech macros. Although this proced ure is docu
me nted in the manual, i t can be chal lenging for users .

Prototypes of DSRS control for sophisticated menu
d riven applications, such as mechanical compu ter
a ided design, show exce l lent promise for e n hancing
user prod uctiv ity. For example, with computer- aided
design or drafti ng software, users can focus their eyes
on the drawing target on the screen while they are
speaking menu fun ctions.

Speech recognition is an evolutionary step in the
overall compu ter-user interrace . It is not a replace
ment for the keyboard and mouse and should be used
to complement these d evices . Speech recognition
works as an in terrace because it a l lows a more direct
connection berween the human thought processes
and the applications.

Speech recognition coup led with natura l language
processing, text-to-s peec h, and a new generation of
applications will make computers more accessible to
people by making them easier to use and understand .

Acknowledgments

Thanks go to the dedi cated team of engi neers who
deve l oped this prod uct: Krishna Mangipudi , Darrel l
Stam, Alex Doohovskoy, Bi l l Hal lahan, and Bi l l
Scarborough , and to Dragon Systems, Inc. tor being
a cooperative business and engineeri ng partner.

Digital Tcch niol Journal Vol . 8 No. 2 1 996 125

References

l . L. Rabiner and B . J uang, Fundamentals of Speech
Recognition (Englewood Cl iffs, N.J . : Prentice -Ha l l ,
Inc . , 1 99 3) 45-46.

2. C. Schmandt, Voice Communication with Computers:
Corwersational Systems (New York, N .Y. : Van Nostrand
Reinhold, 1 994) : 1 44-1 45 .

3 . K.F. Lee, Large- \locabulmy Speaker-Independent
Continuous Speech Recognition: The SPHINX System
(Pi ttsburgh, Pa . : Carnegie-Mellon U niversity Computer
Science Deparunent, Apri I 1 98 8) .

4. W. Hallahan , "DECtalk Software: Text-to-Speech Tech
nology and Implementation," Dig ital Technical

Journal, vol . 7, no. 4 (1 995): 5-1 9 .

5 . G . Lowney, Th e Jvficrosoji Windows Guidelines for
A ccessible Sojiware Design (Redmond, Wash . :
Microsoft Development Library, 1995) : 3-4 .

6. N. Yankelovich, G. Levow, and M . Marx, "Designing
SpeechActs: Issues in Speech User Interfaces," Pro
ceedings of ACM Cm�ference on Computer-Human
Interaction (CHI) '9.5: Human factors in Computing
Systems: Mosaic of Creativity, Denver, Colo. (May
1 995) : 369-376.

Biography

Bernard A. Rozmovits
D uring his tenure at Digita l , Bernie Rozmovirs bas worked
on both sides of computer engineering-hardware and soft
ware . Cmrently he manages Speech Services in D igita l 's
Light and Sound Software Group, which developed the
user i nrerf.1ces for Digita l 's Speech Recognition Software
and also developed the DECtalk sofnvare product . Prior
to joining th is sofnvarc effort, he focused on hardware
engineering in the Computer Special Systems Group
an.d was the arch i tect for voice-processing p latforms i n
the Image, Voice and Video Group. Bernie received a
Diplome D 'Etude Col legiale (DEC) from Dawson
College, Montreal , Quebec, Canada, in 1 974 . H e
holds a patent entitled "Data Format ror P�ckets O f
Information," U .S . Patent No. 5 ,3 1 7,71 9 .

1 2 6 Digical Technical journal Vol . 8 No. 2 1 996

Further Readings

The DigitaL Technica/Joumal is a rerereed, q u arterly
publ ication of papers that explore the toundations of
Digital 's products and technologies. Journal content
is se lected by the Journal Advisory Board, and papers
are vvritten by Digital's engi neers and engineering
partners. Engi neers who woul d l i ke to contri bute a
paper to the JournaL should contact the Managing
Editor, Jane B l ake, at Jane . Blake@ ljo.dec .com.

Topics covered i n previous issues of the
Digital Tech nical.fourrwlare as tollows:

Digital UNIX Clusters/Object Modification Tools/

eXcursion for Windows Operating Systems/
Network Directory Services
Vol . 8, No. 1 , 1 996, EY- U025 E- TJ

Audio and Video Tecluwlogies/UNIX Available Servers/

Real-time Debugging Tools
Vol . 7, No. 4, 1 99 5 , EY- U002 F.-TJ

High Performance Fortran in Parallel Environments/
Sequoia 2000 Research
Vol . 7, No. 3 , 1 99 5 , EY-T838E-TJ
(Available only on the I nternet)

Graphical Software Development/Systems Engineering
Vol . 7, No. 2 , 1 995, F.Y- UOO l E-TJ

Database Integration/ Alpha Servers & Workstations/
Alpha 21 1 64 CPU

Vol . 7, No. 1 , 1 995, F.Y-T l 3 5E -TJ

(Avai l:tblc only on rhc I nternet)

RAID Array ContmllersjWorkflow Models/
PC LAN and System Management Tools
Vol . 6, No. 4, Fa l l l 994, EY-T l l 8E-TJ

AlphaServer Multiprocessing Systems/

DEC OSF/1 Symmetric Multiprocessing/

Scientific Computing Optimization for Alpha

Vol . 6, No. 3 , Summer 1994, EY-S799 F. -TJ

Alpha AXP Partners- Cray, Raytheon, Kubota/
DECchip 21 071/21072 PCI Chip Sets/
DLT2000 Tape Drive

Vol . 6, o. 2, Spring 1994, EY-F947E-T)

H igh· performance Networking/

Open VMS AXP System Software/

Alpha AXP PC Hardware
Vol . 6, No. I , Winter 1 994, EY-QO l ! E-TJ

I

Software Process and Quality

Vol . 5, No. 4, Fal l l 993, EY- P920E-DP

Product I nternationalization

Vol. 5 , No. 3 , Summer 1993, EY-P986E-Dl'

Multimedia/ Application Control

Vol . 5 , No. 2 , Spring 1 993, EY-P963E-DP

DECnet Open Networking
Vol . 5, N o . 1 , Wi n ter 1 99 3 , EY-M770E-DP

Alpha AXP Architecnlre and Systems

Vol . 4, No. 4, Specia l Issue 1 99 2 , EY-J886E-DP

NV AX- microprocessor VAX Systems

Vol . 4, No. 3, Summer 1 99 2 , EY-J 884E-DP

Semiconductor Technologies

Vol . 4, No. 2 , Spring 1 992, EY-L5 2 1 E- D P

PATHWORKS: PC Integration Software
Vol . 4, No. 1 , Winte r 1 99 2 , EY-J82 5E-DP

Image Processing, Video Terminals, and
Printer Technologies

Vol . 3 , N o . 4, fa l l l 99 1 , EY- H889E-DP

Availability in VAXcluster Systems/

Network Performance and Adapters
Vol . 3 , No. 3 , Sun1mer 1 99 1 , EY-H890E- D P

Fiber Distributed Data Interface

Vol . 3, No. 2 , Spri ng 1 99 1 , EY-H8 76E- D P

Transaction Processing, Databases, and

Fault-tolerant Systems
Vol . 3 , No. 1 , Winter 1 99 1 , J:::Y-1:'588E- DP

VAX 9000 Series
Vol . 2 , No. 4, Fa l l 1 990, EY-E76 2 E - D P

DECwindows Program

Vol . 2, No. 3 , Summer 1 990, EY-E756E-DP

VAX 6000 Model 400 System
Vol . 2, No. 2 , Spri ng 1 990, EY-C l 9 7E- Dl'

Compound Doctm1ent Architecture

Vol . 2, No. l , \Ninter 1 990, EY- C l 96 E- D P

Digital Tcd1nic�l Journ"l Voi . 8 No. 2 1 996 1 27

ISSN 0898-90 1X

Printed in U.S.A. EC-N6992- 1 8/96 9 1 4 20.0 Copyright © Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Overview of the Spiralog File System
	Design of the Server for the Spiralog File System
	Designing a Fast, On-line Backup System for a Log-structured File System
	Integrating the Spiralog File System into the OpenVMS Operating System
	Extending OpenVMS for 64-bit Addressable Virtual Memory
	The OpenVMS Mixed Pointer Size Environment
	Adding 64-bit Pointer Support to a 32-bit Run-time Library
	Building a High-performance Message-passing System for Memory Channel Clusters
	The Design of User Interfaces for Digital Speech Recognition Software
	Further Readings
	Back cover

