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Editor's 
Introduction 

This past spring when we sun·c\Td 
.foun w/s ubscribcrs, readers rook the 
rime ro commem on the parri cu la1· 

,·aluc ofrhc issues fCawring Digital's 

64-bir Alpha technology. The engi

neering described in those two issues 
continu es, with ever higher levels of 
pcrr(>rmance in Alpha microproces

sors, servers, clusters, and systems 
software. This issue presents reccm 

developments: a log-structured file 
system, called Spiralog; the Open VMS 
opcr�1ting system extended ro take full 
a<hant�Jgc of64-bit addressing; high
pcrf(mnancc computing software f{>r 
Alpha clusters; and speech recognition 

sofn,arc for Alpha workstations. 
Spir�1log is a whollv new clusterwidc 

file svsrcm integrated with the new 
64-bir Open VMS version 7 .0 opcrat· 

ing system and is designed for hig h 
d�1ra avaibbiliry and high pert(xman cc. 

The tirst of four papers about Spira log 
is writtcn by Jim Johnson and Bill 
L1ing, wlw imroduce log -srru crured 

file ( LfS) concepts, the university 
research behind the design, and design 
innO\'�ltions. 

The <1dvantages of LFS technologv 

over com·emional "update-in-phcc" 

rcchnolog\' JI'C explai ned lw Chris 
Whir�1kcr, Stuart Baylcv, and Rod 
vViddowson. In their paper about the 
rile server design, they comp;m: rhc 

Spir;1log implementation of the LFS 
technology with others and describe 
the novel combination of the tcchnoi

O!:,''Y with a R-trce mappi ng mechanism 
to provide the S\'Stcm with needed 
d�1t;1 recovery guarantees. 

A third paper about Spiralog, 
\\Tittcn by Russ Green, Alasdair 
K1ird, �md Chris Davies, addresses 
a criric1l customer rcquirement
hst, application-consistent, on-line 

Digir:>l Technical journal 

b�Kkup. Exploiting the fe atures of 
log-structured storage, designers 
\\'ere �1blc ro combine rhe rlexibilin· 
of tile-based backup and the high 
pcdrml1�11KC ot' pll\'sical h· oriented 
lxKkup. Consistent copies of the file 
svstcm arc created \\'bile applications 
modi�' data. 

The Spiralog integration into the 
Opcn VMS file system required th�1t 
existing <lpplications be able to run 
u ncha nged . M<!rk Howell and Julian 
P:�lmcr describe tbe integration of the 
\\'rirc-b�1ck c:�ching used in Spira log 
into the \\Tire-through em·ironmcnt 
used in the existing Fi\cs-11 tile S�'Stcm. 

The imporL1nce of comp:�tibilin' 
h>r existing 32-bit applications in 
�1 64-bir environment is stressed 

:�g�1in in rhc set of three papers about 
the i<ltesr step in rhe evolution of'rhe 
Open VMS oper;1ting system. Digital 
first ported the 32-bir Open VMS 
opera ring system to the Alpha <1rchi

tecture in 1992. The extension of 
rhe svsrcm ro exploit 64-bit \'irru:·tl 
a ddressi ng is presented bv Mike 
f-L!n·el' �md Lennv Szubowicz. . . 
Their discussion includes the team's 
solution to signi6cant scaling issues 
rhat in\'(>h'cd �1 ne\\' approach to 

p;Jgc-rablc residenc\'. 
The Open VMS ream a nticipat ed 

rh�1r app lications would mix 32- �1nd 
64-lJit �1ddrcsscs, or pointers, in rhc 

new environment. Tom Benson, 
Karen Noel, and Rich Peterson 
explain why this mixing ofj ointer 
sizes is expected and the DEC C 
compiler solution thev developed ro 

sup port the practice. In a related dis
cussion, Du�me Smith's paper revic\\·s 

ne\\' technique s the team used to 
�malyzc and modifv the C run-time 
librarv intc rtaces that accommochtc 
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:�pplicatiom using 32-bit, 64-bit, or 
both �1dd rcss sizes. 

Designed f(>r scicntitic users, 
the p.!r;!llcl-programming tool 
ncx t described does not run on the 
Open VMS Alpha wstcm but instead 
on UNIX clusters connected with 
l'vlEMORY CHANNEL technologv. 
jim Lawton, John Brosnan, Morgan 
Doyle, Scosarnh () Riordain, and 
Tim Reddin rc\'iew the challenges in 
designing the TruCiu stcr ,vn-:,vlOJ�Y 
CH ANNE1. SofTware product, which 
is a ll!Cssagc-passing s�·stcm intended 
t(>r builders of parallel software 
libr�1rics and implcmenrers of fl�H�!Ilcl 
compilers. The product reduces 
communicuions latenc\' to Jess than 

10 f.lS in shared mcmor\' S\'stc ms. 
Fin�1lly, Bernie RozmO\·its prcscnrs 

the design of user interfaces f(Jr the 
Digital Speech Recognition Software 
( J)SRS) product. Although DSRS 
is r�ugct c d t(Jr Digital's Alpha work

stations running UNIX, the impk· 
mcnt<1tion issues examined and the 
tum\ eft{>rrs ro ensure the prod
uct's C�lsc-of-usc c1n be gcner<lllv 
�1pplicd to speech recognition prod
uct dC\'Ciopmcnr. 

Coming up arc p��pers on a ,·arictl' 
of topics, including the internet 
protocol, collaborati\·e SOIT\\':'ll'l: t(Jr 
the internet, and high-perk>nn�mcc 
servers. These topics rctlcct areas of 
imcrcst.frJ/11'/W/ readers rated ncar 
the rop in last spring's survcv. Our 
sincere th�1nks go ro C\'t:r\'onc \\'ho 

respo nded ro that sun·ev. 

J anc C. Blak e 
Mmwging Fditor 



Foreword 

Rich Marcello 
Vice President. Open VMS ,\)stems 
Sqfiu,are Group 

The papers you will read in this issue 

ofthe.fournal describe how we in the 
Open VMS engineering community 

set out to bring the Open VMS oper
ating system and our loyal customer 
base i nto the rwcnty-first century. 

The papers present both the develop
ment issues and the technical chal

lenges faced by the engineers who 

delivered the Open VMS operating 
system version 7.0 and the Spiralog 
file system, a new log-structured file 

system tor Open VMS. 

We are extremely proud of the 

results of these efforts. In December 

1995 at U.S. Fall DECUS (Digital 

Equipment Computer Users Society), 

Digital announced Open VMS version 

7.0 and the Spiralog tile system as part 

of a first wave of product deliveries for 
the Open VMS Windows NT Nllnity 

Program. Open VMS version 7.0 pro

vides the "unlimited high end" on 
which our customers can build their 

distributed computing environments 

and move toward the next millennium. 

The release of Open VMS version 

7.0 in January oftJ1is year represents 
the most significant engi11eering 

enhancement to the Open VMS oper
ating system since Digital released 

the VAXcluster system in 1983. 
Open VMS version 7.0 extends the 
32-bit architecture of Open VMS 
to a 64-bit <�rchitecture, allowing 
Open VMS Alpha users to fully exploit 
the 64-bit virtual address capacity of 

the Alpha architecture. As you will 
read in some of the papers in this 

issue, however, our design goal for 

Open VMS version 7.0 went beyond 

just delivering 64-bit virtual address 
capability to Open VMS users. It was 

essential to us that Open VMS users 
be able to upgrade to version 7.0 

with full compatibility tor their exist
ing 32-bit applications. 

In addition to achieving the sig
nificant goals of 64-bit addressing 
and compatibility for 32-bit applica

tions, version 7.0 includes very large 

memory (VLM ), very large database 
(VLDR ), fast 1/0, fast path, and 

symmetric multiprocessing (SMP) 
enhancements. These new features 
recently combined with the power 

of the Alpha architecture to earn 
Open VMS a world record tor perform

ance. ln May of this year, Open VMS 

version 7.0 on an AlphaServer 8400 
system configured with eight pro

cessors and 8 gigabytes of memory, 

running Oracle's Rdb7 database 

<llld using the ACMS transaction 

processing monitor, set a new world 

record tor TPC-C pertormance on 
a single SMP system. Audited per
tormance was 14,227 tpmC at $269 
per tpmC. Just this past August, the 

combination of Open VMS version 
7.0, Oracle's Rdb7 database, the 

ACMS monitor, and the AlphaServer 
4100 system achieved world -record 
departmental server performance. 
The new world record was set on 
an AlphaServer 4100 5/400 system 
configured with four processors and 

4 gigabytes of memory. ln audited 
benchmarks, the pertonnance results 
were 7,985 tpmC at $173 per tpmC. 

Such outstanding results are achiev

able in a ti.ill 64-bit environment

hardware architecture, operating 

systems, and applications such as 
Oracle's Rdb database. No other 

vendor today can deliver this power. 

Digital Technical journal Vol. 8 No.2 1996 3 
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In E1ct, Digit�l has two 64-bit oper

�uing s1·srems 1\'ith this po11·er: the 
OpenV/vlS �1nci the Digital U:-.JIX 

oper;ni ng SI'Stems. 

As noted �1bm·e, Digit:ll inrrocluccd 
the OpenV1v!S operating system with 
SUflport f(lr full 64-bit l'irtual address

ing at the s:1mc time it introduced the 

Spir;1log tile system, in Dt:cembcr 
1995. The Spira log design is lmt:d 
on rhe Sprite log-structllred tile svs
rem trom the University ofCalit(>rni;1, 
Berkeley. Wirh irs usc of this log
structured ;1pproaeh, Spira log offers 
Jll;1jor nell performance reatures, 
including t�1st, applicnion-consistcnr, 
on-line b;lckup. further, ir is fulk 
comparibk 11·irh customers' oisting 
hies-II rile SI'Stems, and applications 
rh;H t·un 011 hles - 1 1 will run on 

Spir;Jiog 11·ith no modification. To 
ddiver �111 of the re;nures we kit ll't:rc 
esscmd to mt:t:t the needs of our 
loval utstomer base, the Spiralog tc1m 
0;1mined ;1t1d resoked a number of 
rechniul issues. The papers in this 
issue desuibe some ofrhe clullcnges 
rhe1· hcnl, including the decision to 
design ;1 hlcs-11 tile SI'Stcm emubrion. 

The dcli1·crv ofrhe OpenVMS 
1 crsion 7.0 operating SI'Stem and 
rhe Spir:1lug tile system are part of 
DigiL1I's continued commitment ro 

rhe Open VMS customer b:�se. These 
products reptTsent the work of dedi

cated, t:demed engineering teams 
that h;we deployed state-ot�the-arr 

reehnology in products rhat ll'ill help 
our customers remain competiti1·e 
r(Jt- \'cars to come. 

In the Open VMS group as else
ll'hcre in Digital, 11·e are committt:d 

to excellence in the de,·clopmcnt and 

Di1;ital Technical )ourn�l 

delivnv o�· business computing solu
tions. 'vVt: ll ' i ll continue to maint;lin 
;Jnd cnluncc a product porr�(,lio th;1t 
meers our customers' need for true 
24-hour bl' 365-dal' acct:ss ro theit-. . 

d�1t;1, ti.tll imegration wirh Microsof-t 
'vVindows :-.rr enl'ironmenrs, and the 
full complement of network solutions 
;1nd application software tor today 
and well into tht: next millennium. 

Vol. 8 No. 2 J 996 



Overview of the Spira log 
File System 

The OpenVMS Alpha environment requi res a 

fi le system that supports its ful l  64-bit capabi l i

ties. The Spiralog fi le system was developed to 

increase the capabi l ities of Dig ita l 's Files-11 fi le 

system for Open VMS. It incorporates ideas from 

a log-structured file system and an ordered write

back model. The Spiralog file system provides 

improvements in data avai labi l ity, sca l ing of the 

amount of storage easily managed, support for 

very large volume s izes, support for appl ications 

that are either write-operation or fi le-system

operation intensive, and support for heteroge

neous file system client types. The Spi ra log 

technology, which matches or exceeds the rel ia

bi l ity and device independence of the Files-11 

system, was then integrated into the Open VMS 

operating system. 

I 
James E. Johnson 
William A. Laing 

Digital's Spiralog product is a log-structured ,  duster
wide file system with i ntegrated , on -line backup and 
restore capability and support tor multiple tile sys
tem personalities. It incorporates a number of recent 
ideas ti·om the research com m u nity, i nclud ing the 
log-structured tile system ( LFS) from the S prite tile 
system and the ordered write back ti-om the Echo 
tile system.U 

The Spiralog file system is fully integrated into the 
Open VMS operati ng system ,  providin g  compatibility 
with the current Open VMS fi le system, Files-ll. It 
supports a coherent, clusterwide write-beh ind cache 
and provides h igb-pertonnance, on -line bac kup and 
per-file and per-volume restore functions. 

In this paper, we first d iscuss the evolution of tile 
systems and the requirements tor many of the basic 
designs in the Spiralog tile system .  Next we descri be 
the overall archi tecture of the Spiralog file system, 
identit),ing its major components and outl ining their 
designs. Then we discuss the project's results: what 
worked well and what did not work so well. Finally, \Ve 
present some conclusions and ideas tor future work. 

Some of the major components, i . e . ,  the backup 
and restore facil ity, the LFS server, and OpcnVMS 
integration,  are described i n  greater detail in compan
ion papers in this issue .3-5 

The Evolution of File Systems 

File systems have existed throughout much of the h is
tory of computing.  The need tor libraries or services 
that help to manage the collection of data on long
term storage devices was recognized many years ago. 
The early support libraries have evolved into the tile 
systems of today. During their evolution, they have 
responded to the industry's improved hardware capa
bilities and to users' increased expectations. Hardware 
has contin ued to d ecrease i n  price and im prove in its 
price/performance ratio. Consequently, ever larger 
amounts of data are stored and manipulated by users 
i n  ever more sophisticated ways. As more and more 
data are stored on-line, the need to access that data 24 

hours a day, 365 days a year has also escalated. 

Digital Technical Jounul Vol. 8 No. 2 1996 5 
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Sign iticant i m provements to file systems h ave been 
made in the t(> l lowing areas: 

• Di recrorv stru ctures to ease locating data 

• Device i ndependence of data access through the ri le  
svstcm 

• Accessi b i l ity of the data to users on other svstems 

• Avail;1bility of the thta, despite either pla nned or 
unplanned service outages 

• Re l iab i l ity of the stored data and the pertc>rm:mn.: 
of the datJ JCCCSS 

Requirements of the Open VMS File System 

Since l977, the OpenVMS operating system has 
ofti..:rcd a stable, robust til e  svstem known as Files-!!. 

This ti le system is considered to be very successfu l in 
the areas o f  re l ia b i l ity and device independ ence .  
Recent customer teed lxtck, however, indicated th;H 
the areas of data avaibbility, scaling of the ::tmounr of 
sror:�gc c:tsi lv managed, support tor \'Cry large vol u m e  
sizes, and support tc>r heterogeneous file system client 
types were in need of i m prove ment. 

The Spiralog project was initiated in response to 
customers' needs. We designed the Spiralog rile system 
ro match or somewhat exceed the Fi les-1 1 system i n  
its re l i ab ility and device independence. T h e  focus of 
the Sp ir::t log project was on those areas that were d u e  
tor improveme nt , notably: 

• DatJ ava i l ab i l i ty, especia l ly d uring pJanned opera 
tions, such ::ts backup . 

If the stor:tgc device needs to be taken offline 
to pcrtcm11 J backup, even at a very high backup 
rate of  20 mega bytes per second ( Ml3/s ), ;llmost 
14 hours are needed to back up l tera byte . This 
length of service outage is  clearly unacceptable. 
More typical backup rates of 1 to 2 M B/s can rake 
several davs, which, of course, is not acceptable . 

• Grc:nlv increased sca l ing in total amount of on-l ine 
storage, without greatly increasing the cost to man
age rhar storage. 

For exa mp l e, 1 terabyte of d isk storage cu tTcmly 
costs approxi mately $250,000, which i s  we l l with i n  
t h e  budget o f  many large computing centers . 

However, the cost in staff and rime to ma nage such 
amounts of storage can be many times th::tt of the 
storage.'' The cost of storage continues ro t�11I, whil e  
the cost of managing it continues to rise . 

• Efkc rivc scaling as more processing and storage 
resources become avai l able .  

For examp le, Open V M S  Cluster systems aJlow pro
cess i ng power and storage capac ity to be added 
incremental ly. Ir i s  crucial that the software support-

Dig.it.tl Tcdtnic;tl jounul Vol. 8 No. 2 1996 

ing the ri le system scale as the processing power, 
bandwidth to storage, and storage capacity increase . 

• Im proved performance tor appl ic:nions that arc 
e ither \\'rite-operation or ti le- system -operation 
i mcnsivc. 

As ti le svsrem caches m main mcmor\' ha\'C 
i ncreased in capacitv, data reads and file svsrcm read 
opcr.nions h ave become satisf-ied more and more 
tl-om the cache .  At the same time, nL1nv applica
tions write large amounts of data or create and 
manipulate large numbers of tiles . The usc of 
red undant arrays of inexpensive disks (RAID) stor

age has increased the avai labl e  bandwidth r(>r d:na 
writes and rile system writes. Most tile system oper
ations, on the other hand, are small writes and �1rc 
spread across the d isk  at random, often ne gating 
the bcndirs of RAID storage. 

• lmpnl\'cd ;lbi l ity to transparently access the stored 
d ata across several dissim ilar client types. 

Computing e nvironments h ave become tncrcas
ingly heterogeneous . Different client S\'Stcms, such 
as the W i n do\\'S or the UNIX opc cni ng S\'Stcm, 
store their nics on and share the ir ti les with scn·cr 
S\'Stcms such as the OpenVJ\1\S sen·cr. It Ius 
become ncccssJry to support the svn tax ;md scmJn
rics ot- several ditkrcnr ti l e  system personal it ies on 
:1 common rile server. 

These n eeds were centra l ro many design d ecis ions we 
m::tdc t(lr the Spiralog tile system. 

The mem bers of the Spiralog project eval uJtcd 
much of the ongoing work in file systems, dat:tbascs, 
:tnd storage architectures. RA.ID storage ma kes h igh 
bandwidth av:tiLlble to disk storage, but it  req u ires 
large writes to be etiective. Dar:tbascs ha\'C exp lo ited 
logs ;md the grouping of writes toget her to minimize 
the n u m ber ot' disk f/Os and disk seeks req u i red . 

Databases and transaction systems h ave a lso e xp loited 
the tt:cbniquc of copving the tai l of the log to dkct 
back ups or data replication. The Sprite project at 
Berkeley had brought together a log-structured ri le 
system and RA.I D storage to good eftccr.1 

By d rawing rl·om the above ideas, parri cu l ::tr lv the 
insight of how a log structure cou l d  support on-l ine, 
h igh- pcrr(mnance backup, we began our dcvc lopmcnr 
cft(>rt. We designed and buil t a d i stributed tile system 
rhar made extensive use of t he processor and me mory 
ncar the appl ication and used log-stru ctured storage in 
the server. 

Spiralog File System Design 

The m ai n cxccur i o n  stack of the Spira log til e  svstcm 
consists of three d istinct lavers. Figure I sho\\'S the 
o\·er:�ll structure. At the rop, nearest the user, is the ri le  
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system cl ient layer. It consists of a number of fi le  
system personal ities and the underlying personality
independent services, which we call the V P I .  

Two tile system personali ties dominate the  Spiralog 
design.  The F64 personality is an emulation of the 
Fi les-l l fi le system .  The fi le system library ( FSLIB )  
personal ity i s  an implementation of Microsoft's New 
Technology Advanced Server ( NTAS)  fi l e  services for 
use by the PATHWORKS for Open VMS fi le server. 

The next l ayer, present on all systems, is the clerk 
layer. It supports a d istributed cache and ordered write 
back to the LFS server, giving single -system semantics 
in a cluster configuration . 

The LFS server, the third layer, is present on a l l  des
ignated server systems. This component is responsible 
for maintain ing the on-d isk log structure; it inc ludes 
the cleaner, and it is accessed by mul tiple clerks. D isks 
can be connected to more than one LFS server, but 
they are served only by one LFS server at a time. Trans
parent fail over, fi·om the point of view of the tl le sys
tem client layer, is achieved by cooperation between 
the clerks and the surviving LFS servers. 

The backup engine is present on a system with an 
active LFS server. I t  uses the  LFS server to access the 
on-d isk data , and it interfaces to the clerk to ensure 
that the backup or restore operations are consistent 
with the c lerk's cache. 

Figure 2 shows a typical Spiralog cluster configura
tion.  In  this cl uster, the c lerks on nodes A and B are 
accessing the Spira log volu mes. Normal ly, they use the 
LFS server on node C to access their data. I f node C 
should fai l ,  the LFS server on node D wou ld  immedi
ately provide access to the vol u mes. The clerks on 
nodes A and B would usc the LFS server on node D, 
retrying a ll their outstanding operations. Neither user 
appl ication would detect any f�1i lure. Once node C had 
recovered , it would become the standby LFS server. 

NODE A NODE B 

USER APPLICATION USER APPLICATION 

SPI RALOG CLERK SPI RALOG CLERK 

ETHERNET 

NODE C NODE D 

SPI RALOG VOLUMES 

Figure 2 
Spiralog Cluster Configuration 

File System Client Design 

The fi le  system client is responsible for the trad itional 
fi l e  system fimctions. This l ayer provides fi l es, directo
ries, access arbitration, and file naming rules .  It a lso 
provides the services that the user cal ls to access the fi le 
system . 

VPI Services Layer The VPI  layer provides an underly
ing primitive fi le  system i nterface, based on the UNIX 
V FS switch . The VPI layer has two overall goals: 

1 .  To support mu ltiple file system personal ities 

2. To effectively scale to very large volumes of data 
and very large numbers ofti lcs 

To meet the first goal ,  the VPI layer provides 

• File names of 2 56 Unicode characters, with no 
reserved characters 

• No restriction on directory depth 

• Up to 255  sparse data streams per ti le, each with 
64-bit addressing 

• Attributes with 255  Unicode character names, con
tain ing values of up to l ,024 bytes 

• Files and d i rectories that are freely shared among 
fi le system personality mod ules 

To meet the second goal, the V Pl layer provides 

• File identifiers stored as 64-bit integers 

• Directories through a B - tree, rather than a simple 
l inear structure, for log(n) fi le name lookup time 

The VPI layer is only a base for fi le system personali
ties. Therefore it requires that such personalities are 
trusted components of the operating system .  
Moreover, it requ ires them to  implement ti le access 
security (a lthough there is a convention tor storing 
access control l ist information ) and to perform a l l  nec
essary cleanup when a process or image terminates. 
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F64 Fi le System Personality As �m.:viously state d ,  the 
Spi ra log prod uct i nc l udes t\VO ri l e  system persona l ities , 

F64 :111d fS U B .  The f64 pcrson �1 l i ry provides a sen·ice 
that  e m u l ates the Fi les-! ! ri le  S\'Stc m . '  I ts fu nctions, 
services, ava i lable ri l e  attri b u tes, and execu tion 
bch�wiors :lrc s imi lar to those in the Fi lcs-l l ri l e  S\'S
tc m .  i'vl i nor d i fkrcnccs �l i'C isobtcd i nt o  areas that 
receive l ittle usc ti·om most app l icuions .  

F m  i nstance , the Sp ira log ti le  svstcm su pports rhe 
\':lrious Fi les- ! ! q u eued l/0 ( $QIO)  parJmc ters for 
reru m i n g  ri l e  attri b u te i n f(mn�uion, because they are 
used i mpl icit�\' or exp l ic i t l y by most usn :1pp l ic:1tions .  
On the other h a n d ,  the h lcs-1 1 method of read i ng 
the ri l e  hea<.kr i n r(mmtion d i rectly through �1 tile  
cal led J N DEX f.SYS is nor com mon l v used by app l ica
tions �md is nor suppom . .:d . 

The F64 ri le svstcm pcrson �1 l i ry demonstrates that 
rhc V PI layer con ta i ns suffic ient  tlC \ i bi l i ty ro su pport 
a com p l ex ti le system inrnbcc.  I n  a n u m ber of cases, 
however, several V P I  ca l ls arc needed ro i mp lemen t  
a s i ng l e , comp le x Fi les - [ ]  ope ration . F o r  instance,  ro 
do a h ie  open operation, the F64 persona l ity pcrr(xms 
the tasks l isted below. The i tems th:t t  end with ( V PI )  

arc tasks that usc V P I  serv ice u lls to com p l ete .  

• Access rhc ti le's p�1rc n t  d i rectory ( V P I )  

• Read the d i rectory's rile �mributcs ( V P I )  

• Veri !-\• authorization r o  rc1d t h e  d irectory 

• Loop , search i ng r( >r the ti l e  name,  by 
- Read i ng some d irccrorv e n tries ( V PI )  

- Search i ng the d i rccrorv b u ftl.:r r()r the h ie name 
- Exiting the l oop , i f rhc 1mtch is tcll l l 1d 

• Access the target ti le  ( V P l ) 

• Read rhc ri le 's  attributes ( V I' ! )  

• Audit  the h i e  open �Htempt 

FSL IB  Fi le System Personal ity The �S U B  ti le  sysre m 
persona l itv is J spcc i �1 1 izcd ri le  system to su pport the 

PATHWORKS rc > r  Open VMS ri l e server. I rs nvo major 
goa l s  arc to su pport the ti l e 11amcs, a ttri butes, and 
bcha,·iors ti.n1 1 1d i n  M icrosoft's NTAS ri le access proto
coJs , and ro prov ide low r u n - time cost rc > r  processi n g  
NTAS ti le svstcm req uests. 

The PATHWO RKS server im p l ements �1 ri le  service 
t(Jr persona l  compute r  ( !'C ) c l ients bycrcd on rop of 
the F i lcs-1 1 ti l e syste m services.  When NTAS service 
behaviors or ::�trri hu tcs do not match those of Fi l es - l l ,  
the PATHWORKS serve r  h:ts to e m u l ate the m .  This 
can lead to check ing secur ity access perm iss ions nvice , 

mapp i n g  ri le  na mes, and e m u l atin g ri l e  Jttr iburcs. 
Many of these pro blems can be avoided if the V PI 

i nter bcc is used d i rect l y. for i nstance, because the 
�SLI B pcrson:1 l i ry docs nor l aver on top of a F i les-1 1 
persona l i n·, sccurin· access checks do nor need to be 
pcrtcmm:d t\\'icc .  fu rthermore, in a srraigh trc >rward 
des ign , there is 110 need to map across d i ftl.:renr ti l e  
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n a m i ng or attri b u te ru les .  For rc1sons II'C describe 
l ater, in the V I' !  Resu l ts sectio n ,  we c hose nor ro p u r
sue this design to i ts conc l u sion . 

Clerk Design 

The c lerks arc respons i b l e  tc>r m�mag i ng the caches,  
determ i n i ng the order o f  writes out of rhc cache to the 
LFS scn·cr, and m a i n L1i n i n g  c:tche cohet-cnc\· ,,·i th in  
a c l uster. The caches arc write behind i n  �1 111�1n ncr rhat 
preserves the order of d epe nd ent  operations. 

The c l e rk-scn·c r  protoco l controls the rr:-�nskr of 
d:tta to and fro m  stab le  storage . Data  G il l  he scm �1s 
a m u lti block :nomic \\Titc, �md oper�uions th�u ch �1 ngc 
m u ltip l e  data i tems su c h as a ri l e re name em be made 
atom i ca l l y. I f  a server tai ls d u ring ;� requ est, the c lerk 
treats the req u est as i f  i t  were lost and retries r i t e  
req uest. 

The clerk-server protocol is i d e m potent .  I d e m 
potent operations cJn b e  :tppl icd rc pcarcd l v with n o  

effects other t h a n  t h e  d esired o n e .  Thus,  a fter a n y  
n u m ber of server fai l u res or scn·cr tai l ovcrs, ir is a l wavs 
sate to reissu e  an operation .  Clerk-to-se rver wri te 
operations always !ewe the ri le  system stare consistent . 

The c lerk-clerk protocol protects the user data :1nd 
ti.Jc svstcm mctadatJ cached lw the c l uks . C:�c hc . . 
coherency i n r(Jrmarion, rather th�1 11  <.bra, is passed 

d i rect!\' between c l erks . 
The ti le svsrcm caches a 1-c kept in the c le rks . iVI u l 

tip le clerks can have copies ot'sta bi l i t.cd data ,  i . e . ,  <.b ra 
rhat has been ll'ritte n to the scn'Cr 11·ith the IIT i tc 
acknowledged . Onlv one c l er k  can h�li'C unsL1 b i l i zcd,  
volati l e  data. Data is cschangcd between c lerks b1· 
stabi l i z i ng it. vVhcn a c lerk  needs to \\Ti tc a block oF 
d ata to the server ti·om i ts cache,  it  uses a rok.cn i mcr
f:1ce that is l ayered o n  the c l e rk - c l e rk proto co l .  

The ll'rites ti·om t h e  c:�c hc to t h e  SCI"\'CI" arc dete rred 
as l on g as possi blc ,,.i th in  the constra i n ts of the c�1c he 
protocol a n d  the d cpcndcncv gu:1r�m tccs.  

Dirn· d ata remains i n  the cache �1s l o ng as 30 sec 
onds.  D u ri n g  th:n r ime,  m·cr11Titcs �1 rc combined 
within rhe constra ints of' the dcpcnd cncv g ua ra mecs. 
Furthermore, operations that arc known to other one 
a nother, such :�s ti-cc ing a ti le idcnt iricr  and �1 l loca ting 
a ti l e identitier, <l iT fu l l v  combined with i n  the c1chc . 

Even tua l ly, some trigge r ca uses the d i r tv d �na ro be 
written to the server. At this poi nt , scvcLll wri tes  arc 
grouped together. Wri te opcLltions ro :1d jacc nt, or 
overlappi ng, fi l e  locations arc combined to r(mn 
a smal ler  n u m ber of larger writes.  The resu l t ing write 
operations are then grouped i nr o  messages ro the 
LFS server. 

The c lerks pertorm write beh i nd r(>r rcn 1r  reasons :  

• To spread t h e  I /0 load over ti me 

• To remove occ l uded data , wh ich c.m res u l t  ti·om 
repeated O\'crwritcs of :1 d:� t�l b l oc k ,  �i-om bei ng 

tra nsterrcd to the scn·er 



• To avoid wri ting data thJt is q uickly deleted such as 
temporary tiles 

• To com bine multiple smaU writes into larger transfers 

The c lerks order dependent writes from t ile cac he 
to the server; conseq uently, other c lerks never see 
"im possib le" states, and rel ated wri tes never overtake 
each oth er. For i nstance, the deletion of a ti le cannot 
happen beti:>rc a ren:�me that was previously issued to 
the same ti le.  Related d:�ta writes arc caused by a partial 
overwrite, or a n  expl ic it  l i nking of operations passed 
i nto the clerk by the V PI layer, or an i m plicit l ink ing 
due to the clerk-clerk coherency protoco l .  

T h e  ordering between writes i s  kept a s  a d irected 
graph.  As the c lerks trave rse these graphs, they issue 
the writes in order or col lapse the graph when writes 
can be sately combined or el im inated . 

LFS Server Design 

The Spira log ti le system uses a log-structured, on-disk 
format tor storin g data wi thin a vol u me, yet prese nts 
a trad ition a l ,  update- in- place ti le system to its users. 

l USER 1/0s 

FILE VI RTUAL BLOCKS 

I I I I I I I I I I 

Figure 3 
Spira log Add ress M apping 

Recen tly, log-structured ti l e  systems, such as Sprite, 
have been an area of active 1-escJrch . '  

With i n  the LFS server, su pport i s  provided ti:x the 
.log-structured, on-disk format and Jor mapping that 
tormat to an update - i n -place model . Specitical ly, this 
component is responsi ble tor 

• Mappi ng the incom i n g  read and write operations 
from their s imple Jdd ress space to posi tions in an 
open -e nded Jog 

• Mapping the open -ended log onto a ti n ite amount 
of disk spJce 

• Reclaiming disk space by cleaning (gJrbage collect
ing) the obsolete (overwritte n )  sections of the log 

Figure 3 shows tllC various mapping layers in the 
Spiralog ti l e  syste m ,  i nc lud i ng those hJndled by the 
LFS server. 

fncoming read and write operations arc based on a 
single, la rge address space. Initial ly, the LFS server trans
torms the address ranges in the incoming operations 
into equivalent add ress ranges in an open-ended log. 
This log supports a very large, write-once address space. 

DISK 
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A read operation l ooks u p  its location i n  the open
ended log and proceeds.  O n  the other hand, a write 
operation m akes obsolete i ts c u rre n t  address range 
and appends its new val ue to the tai l  of the log. 

In turn, l ocations in the ope n -ended l og arc then 
mapped i nto locations on the ( fin i te - sized ) disk.  This 
additional  mapping a l l o\\'S d isk b locks to be reused 
once their original  contents h ave become obso lete .  

Physical ly, t h e  log is divided into Jog segments, each 
of w h ich is 256 ki lobytes ( KB) in lengrl1. The log seg
m e nt is used as the transfer  u nit  for the backu p engine .  
I t  is a lso used by the c leaner for recla iming obsolett 
log space. 

More int<xmation about the LFS server can be 
t(Ju nd i n  this iss u e :' 

On-line Backup Design 

The d esign goals tor the backup engine arost ti·om 
h igher storage m anagement costs and greater data ava i l 
abi l ity netds.  I nves6garions with a n u m ber of customers 
revealed their req uirements for a backup engint:  

• Consisten t  save optrations without stopping a 11V 
appl ications or locking out data mod i fications 

• Verv bst save operations 

• Both fu l l  and i ncremental save operations 

• Restorts of a ful l  volu me and of indivi d u a l  ti les 

Our response to these needs i n fl uenced many dtci 
sions concern ing the Spira log ti l e  system d esign . The 
need for  a h igh-performance, on-l ine backup led to 
a search ten an on-dis k  structure that cou ld  su pport 
it. Aga i n ,  we c hose the l og-structu red design as the 
most suitable one. 

A log-structured organ ization a l l ows the backup 
bci l i ty to eas i ly  demarcate snapshots of tht ti l e  system 
at  any poi nt in  t ime,  s i m p l y  by marking a point in the 
log. Such a mark represents a version of the file system 
and prevellts d isk  bl ocks that  compose that vers ion 
ti·om being c ltancd . I n  turn, this  a l lows the backup to 
r u n  agai nst a low ln·el of the ti le syste m ,  that of tht 
logical  log, and thcrdorc to operate c lose to the spira l  
tr�mskr rate of t h e  u nderlying d isk.  

The d i ffe rence between a parti a l ,  or i ncremtntal,  
and a ti.d l save operation is o n ly the starting point  in 
the log. An i nc re mental  save need not copy d a ta back 
to the begi n n i ng of the log.  Therefore, both i ncre
mental and hi l l  save operations transfer d ata at very 
high speed . 

By i m plcmciHing these features i n  t h e  Spira log ti le  
syste m ,  we fu l fi l l e d  our customers' req u i rements  f(>r 
h igh- pcdcm11ancc, o n - l i n e  backup save opcLltions . 
We :: dso met their  needs tor per- ti le and per-vo l u m e  
restores a n d  an ongoing need tor simpl icity and red uc
t ion in  operating costs . 
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To provide per-ti l e  restore capa b i l i ties, tht backup 
ut i l itY and the LrS server ensure that the :1ppropriarc 
ti l e  header i n formation is stortd d ur ing the sa\ c opcr
:lti on . The Sa\·cd ri le  svstem clara, i nc lud ing ri l e  head 
ers, log mapping i n formatio n ,  and user d ata, arc 
stored in  a ti le k.no\\'n as a SCI/ Y!SC'I . Each sa\·esc r, 
regardless of the n u m ber of tapes it requires, repre
sents a s ingl e sa,·e operatio n .  

'T'o red u ce the complcxitv o f fi l e  restore opcr: nions, 
the Spiralog fi l e  system provides an on� l i nc SJ\'CSCt 
merge featu re .  This  al lows tht systtm ma nager to 
merge severa l  savesets, either tl.d l or i ncre menta l ,  to 
t(mn a new, single savcset .  VVi th this katurc, system 
managers can h ave a workable backup save p lan that 
never cal ls fc>r  :�n o n - l i n e  fu ll  backup,  rhus h1 rthcr 
red uc ing the l oad on their prod uction syste ms.  Also, 
this featurt can be used to ens u re that ti lt  restore oper
ations can be acco m p l ished with a s m a l l ,  bou nded set 
of S:l\'CSCtS . 

The Spira log backup t:K i l i tv is dtscribcd in d c u i l  in  
th is  issue . ;  

Project Results 

'l'he  Spi r:t log tile svstem contai ns a n u mber of in nm·::t
tions in the areas of o n - l ine backup,  log-structu red 
storage, c lusttrwick ord e red \\'rite -beh ind cach ing,  
and m u lt ip le- ti l e-system c l ient  s upport. 

The usc o f  log structuring as an on-disk  t(Jrmat is 
very c ftCctivc in s upporting h igh-pcrf(mnancc, o n - l i n e  
backup. The Spira log ti l e  system reta i ns t h e  previously 
documented benefits of LfS, s uch as bst write pcrfc >r
mancc that  scales with t h e  d is k  size and through put 
that i ncreases as large read caches arc used to oftscr 
disk rc:1d s . '  

I t  s h o u l d  also b e  noted that t h e  Fi lcs- 1 1 ti l e  svstcm 
stts a h igh standard t(x d ata rel iab i l itY and robusmcss. 
The Spi ra log tec h nologv met this c h a l le nge \'en· wel l :  
a s  a res u l t  o f  the idempote n t  protoco l ,  the c l uster  
Eli  l over design, and the recover capa b i l i tv of the  log, 
\\'C cncoun tertd fC\\' d ata r c l i abi l itv p ro blems d u ri n g  
d evelopment. 

In any large, complex project, manv tec h n ical  dec i 
s ions arc necessary to convert research tec hnol ogy 
i n to :1 prod uct .  I n  t h is sectio n ,  we d iscuss why certa i n  
d ecisions were m a d e  d u ring the devtlopmtnt of t h e  
Spira log s u bsystems . 

VPI Results 

The V PI ti l e  system was genera l ly s uccessfu l  1 11 pro

vid i ng the u nderly ing support necessary r<>r d i rkrcnr 
ti le  syste m personal it ies.  We fou n d  that i t  was possi 
b l e  t o  construct a set ot' pri m i tive operations that 
cou l d  be used to b u i l d  complex,  user- lC\·c l ,  ti le  svstcm 
operations. 



By using these primitives, the Spir:�log project 
members were able to successfu l ly design t\vo dis
ti nctly d ifterenr personal ity modules .  Neither was a 
fu nctiona l  superset of the other, and neither was lay
ered on top of the other. However, there was an 
imporrallt second -order problem .  

The fS LI B t-i le  system personal ity did not have a fu l l  
mapping to the  Fi les-1 1 file system .  As  a consequence, 
ti le management was rather  d ifficult ,  because all the 
data management tools on the OpenVMS operating 
system assumed compliance with a Fi les - 1 1 ,  rather 
than a VPI, t-ile system. 

This  problem led to the decision not to proceed 
with the origina l  design for the FSLI B personal ity in  
version 1 .0 of Spiralog. I nstead, we developed an 
FSLI B !l i e  svstem personality that was ndly compatible 
with the F64 personal ity, even when that compatibi l ity 
t(>rced us to accept an add i tional execution cost. 

We also r()Li lld an execution cost to the primit ive 
VPI operations. Genera lly, there was l i ttle overhead 
t(x <.bta read and write operations. However, tor 
operations such as opening a ti le , searching t(x a ti le  
name, and deleting a ti le ,  we found too high an over
head fi·om the number of cal ls into the V PJ services 
and the resu l ting cal ls into the cache manager. We 
cal led this the "bn-out" problem:  one h igh- level 
operation would turn into several V PJ operations, each 
of which would turn into several cache manager ca l ls .  
Table l gives the detai ls of the E1n-out problem . 

We bel ieve that it would be worthwhile to provide 
sl ightly more complex V PI services in  order to com 
bine ca l ls that always appear in  the same sequence. 

Table 1 
Ca l l  Fan-out by Level  

Revised 
F64 VPI Clerk Clerk 

Operation Calls Calls Calls Calls 

Create f i le  4 1 8  29 24 
Open f i le  1 6 1 8  1 4  
Read block 1 1 3 3 
Write block 2 4 7 6 
C lose f i l e  1 4 1 3  1 0  

Clerk Results 

The c lerk met a number of our design goa ls. First, the 
usc of idempotent operations a l lowed tai lover to 
standby L�S servers to occur  with no Joss of service to 
the t-ile system cl ients ,  and with l i ttle add i tional com 
plexiry within the clerk . 

Second, the ordered write beh ind proved to be 
efrective at ordering dependent, metadata file system 

operations, rhus supporting the abi l ity to construct 
complex file system operations out of simpler elements. 

Third, the clerk was able to manage large physical 
caches. I t  is \'ery dlt:ctive at making use of unused 
pages when the memory demand fro m  the Open VMS 
operating system is low, and at quickly shri n king the 
cache when memory demands increase . Although 
certa in parameters can be used ro l imit the size of a 
clerk's cache, the caches are normally self tuning. 

Fourth,  the clerks red uce the number of operations 
and messages sent to the LFS server, with a subsequent 
reduction to the number  of messages and operations 
waiting to be processed . For the COPY command, the 
number of operations sent to the server \vas typicall y 
reduced by a tacror of 3 .  By using transient fi les with 
l i fetimes of tewer than 30 seconds, we saw a reduction 
of operations by a r:1cror of 100 or more, as long as the 
temporary ti le fir into the c lerk's cache.  

In genera l ,  the code complexity and C PU path 
length within the clerk were greater than we had origi
nally planned , and they wi l l  need further work. Two 
aspects of the services offered by the clerk com
pounded the cost in  CPU path length. First, the clerk 
has a simple in terface th::n su pports reads and writes 
in to a single, large add ress space only. This i nterface 
requ i res a num ber  of clerk operations tor a number  of 
the VP I  calls, further expanding the call Em-out issues. 
Second ,  a concurrency control model al lows the clerk 
to un i l atera l ly  drop locks. This requ i res the V PI !ayer 
to reval idate its i nternal state with each cal l .  

Either a change to  the  derk and  V PI service inter
faces to support notification of lock inval idation , or a 
change to the concurrency contro l  model ro d isal low 
locks that cou ld be un i l ateral ly invalidated , wou ld 
reduce the number  of ca l ls made. We bel ieve such 
changes would produce the resu lts given in  the last 
column of Table l .  

LFS Server Results 

The LFS server provides a h ighly avai lable ,  robust fi le  
system server. Under heavy write .loads, it  provides the 
abi l ity to group together multiple requests and reduce 
the number of d isk IjOs. In  a d uster configuration, 
it supports tai lover to a standby server. 

In normal operJtion, the cleaner was successfu l i n  
minimizing overhead, typical ly  adding only a tew per
cent to the elapsed rime .  The cleaner operated in  a lazy 
manner, c leaning only when there was an immediate 
shortage ofspace . The cleaner operations were n1rther 
lessened by the tendency t(>r norma.! fi.le overwrites to 
free up recently ti lled Jog segments for reuse . 

Although this produced a cleaner that operated 
with l ittle overhead , it also brought about t\vo u nusual 
i nteractions with the backup fac i l i ty. ln  the t!rst place, 
the log often contains a number of obsolete areas that 
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arc el igible tor c leaning bur  have nor  yet  been 
processed . T hese obsolete a reas an: a lso saved by the 
backup engine .  Although they have no c fkct on the 
logic:d  state of the log, they do req u i re the b�1ckup 
engine to move more data to b�Kkup storage t iL1n 
m igh t othe rwise be necess:try. 

Second,  the des ign in i tia l ly proh ib ited the c leaner 
tl:om r u nn ing ag:� i nst a l og w i th snapshots . Conse
quc nrlv, the cleaner was disabled during  �1 save opera 
tion, which had the fo l lowi ng d kcts: ( 1 )  The :�mount 
of ava i lab le  ti·ee space i n  tht: l og was artiti cia l l v 
depressed d u ri ng a backup.  ( 2 )  Once the backup \\'JS 
fi n ished, the activated cle:111cr wou ld  d iscover that 
a great n u m ber o f  l og segments were now e l ig ib le for 
c lean ing. As a resu lt , the c leaner underwent a sudden 
surge in  c lea n i ng acrivirv soon a fter th e back up h:td 
completed . 

vVc addressed this p rob l em bv n.:ducing the area of 
th e  l og that was off� l im irs to the c leaner ro on lv the 
part that the backu p e ng ine \\'ou ld read . This l im i ted 
snapshot window a l lowed more segme nts to rem ai n 
el igi b le fix c l ean ing , rh us great!\' a l ln· i :t ting the short
age of cleanab le space during the backup and e l im inat
ing the postb::tcku p  clean in g surge. for �1n 8 -gigabvte 
rime -sh aring ,-ol ume, th is cha nge tvpical h· reduced the 
period of high c leaner acti,·i rv ti·om 40 secon ds to less 
than one-half of a second.  

vVe have nor vet  experi mented with d i fkrellt c lcm er 
a lgori th ms. More work needs to be done in this a rc:J. 
to sec i f  the c lea ni ng eftic iencv, cost, and interactions 
with backup can be improved . 

The c urrent mapp ing transt(mnarion fi·om the 
i ncom ing operation add ress space to l ocations in  rhc 
open -ended log is more ex pensive in CPU r ime rh;l11 
we would l ike .  More work is needed ro opt i m ize rhe 
code path .  

F i na l ly, rhe LfS server is gc ncra llv successfu l  a t  pro
vid ing the appearance of a trad i tion:� ! ,  u pcbrc- i n - pl ace 
ti l e  system . H owcvcr, as the unusecl space in a vol u mc 
nears zero, the abili ty to behave with sem a ntics t h a t  
meet users' expectations i n  a log-structured fi le system 
proved m o re difricu l t  than we had a 11 ti c ip �ned and 
required signi tican r cff(Jrt to correct. 

The LfS server is d escribed in m uc h  m ore deta i l  i n  
th is issue • 

Table 2 
Performance Compariso n  of the Backup Save Ope ration 

Backup Performance Results 

vVc rook a new approach ro the b:tckup des ign in the 
Spi ralog system ,  resu l ti ng i n  a very t;1St and very low 
impact backup that un be used ro cre�ne consistent 
copies of the ti le  system whi le  applications :1 re ::tctively 
mod i�' ing dat<1. We achieved th is d egree of s uccess 
wi thout com promisi ng such fu nctional i ry as i ncrt:

menra l  backup or fjst , selective restore . 
The pcrt(mnance im prO\·cmcnts of the Spira log 

save operation �1rc par ticu lar lv noticeabl e  ,, ·i t h the 
l::irgc numbers of rransie !H or acri,·c ti les that �11·e rvpi
ca l lv t(nmd on user volu mes or on ma i l  serve r ,-o l u mes. 
In rhe t(J ! lowi n g  tables,  we compare the Spi ra log 
and rhc fi le - b�1sed h lcs -1 1  backup operat ions on a 
DEC 3000 Model 500 workst:J tion with J 260- MB 
,·o lume,  conr�1 i n i ng 2 1 ,682 ti les in  40 1 d i rectori es and 
a TZ877 rape . 

Tab le 2 gi ,·es the  resu l ts of two sa,·e opcr�uions, 
which �11-c the �werage o f fi,-c ope ra tio ns .  Al though i ts 
s�wcser s ize is somewhat l arger, the Spi r:t log sa, ·e 
opcr;n ion completes ncark t\vicc as fJst :1s the hks -1 1  
sa,·c ope r:�r ion .  

T1b lc  3 gives the resu l ts ti·om resto ri ng <1 si ngle ti l e 

ro rhe target ,·ol u m e .  I n  rhis case, rhe Spi ra log fi l e  
restore opera rion c.;ecu res more r ha n three rim es as 
bst as the h lcs-1 1 svstem .  

The perf(mnan ce �1d ,·am�1gc ot' rhe Sp ira log bac kup 
and restore tac i l i t\' i n creases fu rther kH- l a rge , m u lt i 
tape S�1\'Csc rs . I n  these cases , the Sp i ra log S\'Stcm is  a ble 
to omit  tapes that �11-c nor needed f( J r the fi le resro1·e ; 
the Fi lcs-1 1 S\'stcm docs nor h<l\'C th is capab i l i t\'. 

Observations and Conclusions 

(),·cra l l ,  we bcl ie\ 'C that rhc s ign iti canr i tJnov�uion and 
real success of the Spiralog project was the inrcgLlt ion 
of h igh - pcr f(m11�l llcc , o n - l i ne bac kup with rhe l og
structured ti l e  S\'Stem mod e l .  The Spi ra log ti l e  svsrem 
del ivers an on- l ine bKku p  engine that  Glll run ncar 
device speeds, wirh l i tt le i mpact on concu rrcnrlv run
n i n g  Jppl icnions. Manv fi l e  opcr:�r ions �1 rc sign i fi 
c1ntly Elster i n  e lapsed r ime as a resu l t  ofrhc red uction 
in 1 /0s d ue ro the c1chc �md the group ing of wri te 
operations . A l though the code p�1ths for <1 n u mber 
of operations �11-c longe r than we had p l �1 nncd, t h ei r 

File System 
Elapsed Time 
(Mi nutes:Seconds) Saveset Size (MB) Throughput (MB/s) 

S p i ra l og 
F i l es-1 1 

Dig:it,l l Technic.1l )ounnl 

05:20 
1 0 : 1 4  

Vol . ::; No. 2 ! l)\!6 

3 3 9  
297 

1 . 05 
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Table 3 
Performance Comparison of the Ind iv idua l  F i l e  
Restore Operation 

Elapsed Time 
File System ( M i n utes:Seconds) 

Sp i ra log 
F i les-1 1 

0 1 :06 
03 :35  

length is m itigated by continuing improvements UJ 

processor performance . 
We learned a great deal during the Spiralog project 

and made the fol lowing observations: 

• Volume fu ll semantics and tine-tuning the c leaner 
were more complex than we anticipated and wil l 
require future reti nemenr.  

• A heavi ly layered architecture extends the CPU 
path l ength and the tan-out of procedure cal ls .  We 
focused too much attention on reducing JjOs and 
not enough attention on reducing the resource 
usage of some critical code paths. 

• Although e legant, the memory abstraction for tbe 
interface to the cache was not as good a fit to fi le 
system operations as we had expected . Further
more, a block abstraction for the data space would 
have been more suitable .  

I n  summary, the project team delivered a new 
fi le system for the OpenVMS operatjng system.  The 
Spiralog file system offers single-system semantics in 
a cluster, is compatible with the cu rrent OpcnVMS 
fi le system ,  and supports on- l ine backup.  

Future Work 

During the Spira log version 1 .0 project, we pursued a 
number of new technologies and found four areas that 
warrant future work: 

• Support is needed from storage and ti le
management tools tor multiple, d issimilar ti le 
system personal ities. 

• The c leaner represents another area of ongoing 
innovation and complex dynamics. We believe a 
better understanding of these dynamics is n eeded , 
and design alternatives shou ld be studied . 

• The on- l ine backup engine, coupled with the log
structured fi le system technology, oHers many areas 
for potential development . For i nstance, one area 

tor investigation is continuous backup operation, 
either to a local backup device or to a remote 
repl ica. 

• Final ly, we do not believe the h igher-than-expected 
code path length is intrinsic to the basic fi le system 

design . vVc expect to be working on this resource 
usage in the near future .  
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Design of the Server for 
the Spira log File System 

The Spira log fi le system uses a log-structured, 

on-disk format inspired by the Sprite log

structured fi le system (L FS) from the University 

of Ca l ifornia, Berkeley. Log-structured fi le sys

tems promise a number of performance and 

functional benefits over conventional, update

in-place file systems, such as the Fi les-11 fi le 

system developed for the Open VMS operating 

system or the FFS fi le system on the UNIX oper

ating system .  The Spira log server combines log

structured technology with more traditional 

B-tree technology to provide a general server 

abstraction. The B-tree mapping mechanism 

uses write-ahead logging to g ive stabi l ity and 

recoverabi l ity g uarantees. By combining write

ahead logging with a log-structured , on-d isk 

format, the Spira log server merges fi le system 

data and recovery log records into a sing l e ,  

sequential write stream. 

I 
Christopher Whitaker 

J .  Stuart Bayley 

Rod D. W. Widdowson 

The goal of the Spira log fi le  system project team was 
w produce a high-pedonnance, h ighly ava i l able,  and 
robust ti l e  system with a high-performance, on- l ine 
backup capabi l i ty for the OpenVMS Alpha operating 
system .  The server component of the Spira log fi le sys
tem is responsi ble tor reading data trom and writing 
data w persistent storage . I t  m ust provide fast write 
performance, scalabi l ity, and rapid recovery from sys
tem fai l ures. In addition, the server must a l low an  
on- l ine backup uti l ity to  copy a consistent snapshot of 
the ti le system to another location, whi le al lowing nor
mal fi l e  system operations to continue in  para l le l .  

In  this paper, \Ve describe the log-structured file sys
tem ( LFS) technology and its particular implementation 
in  the Spiralog file system .  We also describe the novel 
way in which the Spiralog server maps the log to pro
vide a rich address space in  which files and directo1ies are 
constructed.  Final ly, we review some of the opportuni
t ies and chal lenges presented by the design we chose. 

Background 

A l l  ti le  systems m ust trade off performance against 
avai labi lity in d ifferent ways to provide the throughput 
required duri ng normal operations and to protect data 
from corruption d uring system fai lures. Traditionally, 
fi le systems fal l  i n to two categories, carefu l write and 
check on recovery. 

• Careful  wri t ing policies are designed to provide a 
fai l -safe n1cchanism tor the fi le  system structures in  
the  event of a system fai lure; however, they sufter 
fl·om the need to serial ize several ljOs during fi le  
system operations. 

• Some fi le systems forego the need to serial ize fi le 
system updates. After a system fai lure,  however, 
they requ i re a complete d isk scan to reconstruct a 
consistent fi le  system. This requ irement becomes 
a problem as d isk sizes i ncrease. 

Modern fi l e  systems such as Cedar, Episode ,  
Microsoft's New Technology F i le  System ( NTFS ) ,  
and Digital 's POLYCENTER Advanced Fi le  System 
use Jogging to overcome the problems inherent  in 
these two approaches.' ·2 Logging file system metadata 
removes the need to seria l ize IjOs and al lows a simple 
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Jnd bounded mechanism f(>r  reconstructing the ti le 
system ah:cr a fai l ur e .  Rcsc.1rchcrs at th e University of 
Ca l i ti:m1 i a , Be rkeley, took this process one stage fi.Jr
ther  and treated the ll' ho le disk as a s ingle,  sequ entia l  
log where al l  ri le system modi fica tions arc appended to 
tbe tai l of the log.' 

Log-structured tile system tcc h nolot,'Y is p;1rticu larh' 
appropriate to the Spira l og ti l e  s\·stc m ,  because it  is 
tksigncd as a c lustcrwidc ti l e  S\·stcm . The seJTcr must 
support a large n u mber  of ti le  S\'Stcm c l e rks, each of 
which may be rcJdi ng ;1 nd ll'riting lh ta to the disk. The 
c lerks usc 1:-�rge ll'ri te- back caches to red uce the need to 
read daL1 ti·om the server. The caches also a l low the 
c lerks to bufkr write requests desti ned t(>r the server. 
A log-structured design a l lows mu ltiple concurrent 
writes to be grouped togcthn imo la rge , seq uential 
ljOs to the disk.  This 1 /0 pJttcrn red u ces disk head 
movement d urin g writ ing and a l l ows the size of the 
writes to be marched to characteristics of the underlyi ng 
disk. This is Inrticu l •1rly  bcncticial t( >r storage devices 
with redundant arr.n·s of inexpensive d isks ( RA I D  ) 4  

The usc of a l og-structured , on-d isk f(>rmat great ly 
simp l i fies the imp lementation of ;111 on- l ine backup 
capabi l i ty. Here, the cha l lenge is  ro provi de a con s is
tent snaps hot of thc ti l e  system that can be cop ied to 
the bac kup med ia wh i l e  nor ma l  opeLltions conti nue 
to mod i t\• the ti l e  svsrc m .  BcG\ usc ;1n LrS appends J i l  
data to rhc tai l  o f  a l og , a l l  d:1 t�1 writes with i n  the log 
arc tc m pora l lv ordered . A com pl ete sn:-�pshot of the 
ti le systcn1 correspo nds to the contcllts of the seq uen 
tial log up ro th<.: point in r ime that the snapshot was 
created . Bv extension,  an i ncreme nta l backup col-re
sponds to the section of the scqucnr i a l  log crc1tcd 
since the l ast backup \\'aS u kc n .  The Spir: d og backup 
uti  l i t\' uses these k:1tmcs to prm · id c a bst , o n - l i ne, fu l l  
and i ncrcmen t : d  backu p sc heme.;  

vVc hJ\'C t:1kcn a n u m be r  of Featu res ti·om the exist
in g log-structu red tile system i m plcmcmations, in par
ticu lar, the ide:\ o r· d i\· id ing the l og i n to ti xcd-sizcd 
segments as the basis ti: >r space ;1 l locarion :1 nd clean 
in g. '' Fu mbmcnL1 l ly, hm\'e\·cr, e xisting log-strucw rcd 
ti l e  syste ms h ave been b u i l t  by using the main bodv of 
an exi sting ti le svstcm and bycring on top oLm under
ly i ng, log-structmcd conL1i ncr. ' c This design has been 
taken to the l ogic1 l extreme with the  imp lc menration 
of a log-stru ctu red d isk.''  for the Spira log ti le system ,  
we have chosen to usc r h c  seq uential  l o g  capability 
provided by the log-structu red, on-disk format through
out the ril e  system. The Spiralog server combines log
structured tech n ol ogy with more tradit iona l  B - trec 
tec hnol ogy to provi de a genera l server a bstraction .  
The B-tree m app i ng mechanism uses write-ahead log
ging to give sta bi l ity and recovera bi l i ry guarantees." B y  
com b ini ng write-a heJd logging with a loa-str uctured 
on-disk fo rmat,  the SpiraJog server merges ti le  system 
data and recovery l og records in to a single, seq u enti al 
write stream .  

Digital Tc chnic;ll )ournc1 l  Vo l .  il :-\o.  2 1996 

The Spi ra log ti l e  syste m d i fkrs ti·om nisri ng log
structu red imp l eme nt a tions in :1 n u m be r  ot· other 
i m portanr \\'ays, in parric u L 1r, the mecha nisms th;l t  we 
haYc chosen to usc t( >r the c lc mcr. I n  su bsequent sec
tions of this paper, we compare these d i ffe rences \\·ith 
e xisti ng i mp l emc nrarions ll'hcrc appropri •1tc . 

Spiralog File System Server Architectu re 

The Spiralog ti le S\ ·stcm cm p l o\'s ;1 c l ic m-scn·cr J J·c h i 
recture .  E:-�ch nod e  i n  rhc d uster thar  1nou ms ;l 
Sp i ra l og \·ol u m e  r u ns a ti le svstcm c lerk.. The term 
clerk is used in  this p;1pcr ro d istingu ish  the c l ient  com
ponent of the ri le system fi·om diems oft he ti le  S\'Stem 
as a whole.  Clerks i m plement a l l  the ti le  h1 11crions asso
ciated \\'ith mainta i n i n g  the tile svsrem sr�1rc wirh the 
exception of p e rsistent storage of  ti le  S\'ste m :md user 
d ata . This l atter respons i b il i ty Lli ls  on the Spi r;1log 
server. There is exactly o n e  sc n·cr h>1· eac h vol u m e ,  
which must  r u n on a node t h a t  l 1 ;1s ;1 d i rec t connection 
to the d isk conta in ing the vol u m e .  This d istri bution of 
fu nct ion , w h e re the majori ty of ti l c  system processing 
takes p l ace on the c le rk,  i s  sim i L l r  to that of the  Echo 
ti le system . '" The reasons t(n choosing rh is  ;1 rc h itccrurc 
arc described in more dct:-�il in  the p;1pcr  "O vcn'icw of 
the Spira log hie Syste m , "  elsewhere in  this issue . "  

Spiralog c l e rks b u i l d  ti. lcs a n d  d i rectories in a str u c 
t ured add ress space ca l led the ti le  ;1d d rcss s1x1cc . This 
add ress space is i mcma l ro the ti le  S\'Stcm and is onh· 
l oose ly rel ated w tiLlt pcrcc i\ ·cd lw c l icms of rhc  ti le 
svsrc m .  The server pro\· ides ;1 11 i mcr bcc that : d lm\·s 
tbe clerks to pcrsistcnth· map to ti l c sp;Kc add rc�scs.  

I ntern al h·, the scnn uses a l ogic:� l h· i n fin i te log struc
ture, b u i l t  on top of a plwsic :� l d i sk ,  to store the ti le  
S\'Stem datJ a nd the  srructu res ncce ss:11·\· to locate 
the datJ.  Figure l shO\\·s the rc l ;Hionshifl hcn\·cc n t he 
c lerks and the sc nu· a nd the rebtionships among 
the major componcms \\· i th in  the scrnT. 

Figure 1 
Sen·er Architectu re 



The mapping layer is responsible for mai ntaining 
the mapping between the fi l e  address space used by 
the clerks to the address space of the log. The server 
directly supports the fi l e  address space so that i t  can 
make use of information about the relative perfor
mance sensitivity of parts of the add ress space that is 
implicit within i ts structure . Although this resu l ts i n  
the mapping layer being relatively complex, i t  reduces 
the complexity of the clerks and aids performance. 
The mapping layer is the primary point of contact with 
the server. Here, read and write requests from clerks 
are received and translated into operations on the log 
address space . 

The log driver ( LD) creates the i l lusion of an i nfinite 
log on top of the physical d isk .  The LD transforms read 
and write requests from the mapping layer that are cast 
in terms of a location in the log address space into read 
and write requests to physical addresses on the underly
ing disk. Hiding the implementation of the log from 
the mapping layer a llows the organ ization of the log to 
be altered transparently to the mapping layer. For 
example, parts of the log can be migrated to other 
physical devices without i nvolving the mapping layer. 

1 USER 1/0s 

FILE HEADER FILE VIRTUAL BLOCKS 

I I I I I I I I I I 

Figure 2 
Add ress Translation 

Although the log exported by the LD layer is con
ceptual ly infinite, d isks have a finite s ize .  The cleaner 
is responsi ble for garbage collecting or coa lescing free 
space within the log. 

Figure 2 shows the relationship between the various 
address spaces making up the Spiralog file system .  I n  
the next three sections, we examine each o f  the com 
ponents of the server. 

Mapping Layer 

The mapping layer implements the mapping bet\veen 
the file address space used by the fi le system clerks 
and the log add ress space maintained by the LD. 
I t  exports an i nterface to the clerks that t hey use to 
read data from locations in the fi le  add ress space, 
to write new data to the file address space , and to spec
if)' which previously written data is no longer requi red. 
The interface also a l lows clerks to group sets of depen
dent writes i n to units that succeed or fai l  as i f  they 
were a single write. In this section, we i ntroduce the 
file address space and describe the data structure used 
to map i t .  Then we expla in the method used to handle 
c lerk requests to modi  f)' the add ress space. 
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File Address Space 

Tht fi le address space is a structurtd address sp:1ce. At 
its h ighest level it i s  d ivided into objects ,  each of which 
Ius a nu meric object ident ifier ( O l D ) . An object may 
have any nu mber of named cells associated with it  and 
u p  to 2 '"- 1 streams. A named cdl may contai n  a vari
able amount of data, but it is  read and written as a sin
gle u n it .  A stream is  a sequence of bytes that are 
add ress�.:d by their offset from tiK start of the stream, 
up to a maximum o f 2"' - l .  Fund:Jm�.:nta l ly, there are 
t\vo f(>rms of addresses defined by tiK ti k add ress 
space : Named add resses of the form 

< O l D ,  n a m e >  

sp�.:ci�, a n  ind ividual  n amed cel l  within an object, and 
nu meric add resses o f  t he f(mn 

< O l D ,  s t r e a m - i d ,  s t r e a m - o f f s e t ,  L e n g t h >  

spce i�' a sequence of lengtb con tiguous bytes i n  an  
indiv idua l  stream belonging to an obj�.:et .  

The ekrks use named cells and streams to bui ld tiks 
and d i reerori�.:s. In the Spiralog fi l e  system vers ion l .O ,  

a ti le i s  repr�.:scnted by an object, a named ed l cont�l in
ing its  attributes, and a s ingk str�.:am that is used 
to store the ti le's data .  A d i r�.:ctory is  represented by 
an object that conta ins a nu mber of nanKd ct l ls .  
Each 1wned ce l l  represents a l ink  in that d i r�.:cron· a n d  
conr:.1ins what a tradi tional ti le svstcm rdcrs to as a 
d i rectory entry. Figure 3 shows how data ti les and 
d i rectories are bu i l t  from named cells and str�.:ams. 

The mapping layer prov id es thrc�.: principal opera
tions f(>r manipu lating the ti l e  address space: read,  
write,  :1nd clear. The read operation a l lovvs a c lerk to 
read rhc coments of a named cel l ,  a contiguous range 
of bytes from a stream, or all the named ce l l s  tC>r a par
ticu lar object that tal l  into a speci fied search range. The 
write opcr:ltion al lows a clerk to writ�.: ro a contiguous 
range of bytes in a stream or an ind ividual named cel l .  

DATA FILE 
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KEY 

0 OBJECT 
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Figure 3 
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The dear operation a l lows a c lerk to remove a named 
cell or a nu m ber of lwtes fi-om an object . 

Mapping the File Address Space 

We looked at a variety of indexing strucwres tor mapping 
the file add ress spJcc onto the log add ress space -'"'1 We 
chose a derivative of the B-trcc for the following reasons. 
For a unif(>rm add ress space, B - trees provide pred ictab le 
worst-ease access times because the tree is balanced 
across a l l  the keys it maps . A B-tree scales we l l  as the 
number of keys mapped increases. In other words, Js 
more keys arc added, the B- tree grows in width and in 
depth . Deep B-rrccs urry an obvious perf(>rm<lllcc 
penalt\', particu larlv when the B -tree grows too la rge to 
be held i n  memorv. As described above, directory entries, 
file attributes, and ti le data are all addresses, or kcvs, in 
the fiJe add ress space. Treating these ke)'S as equals and 
balanc ing the mapf1ing B-trec across al l  these keys imro
duees the possibi l i ty that a single d irectory wi th many 
entries, or a file with many extents, may have an  impact 
on the ace�.:ss times f(>r :1ll the tiles stored in the log. 

To solve this p roblem, we l imited the keys t<>r an  
object to a single B -trce leaf node .  Wi th th is restric
t ion, several small ti les can be accommodated in a s in
gle l eaf node .  fi les wi th a l a rge number of exrents ( or 
large d i rectories) arc su pported b�r a l lowi ng ind ividual  
streams to be spawned into su btrees. The subtrees arc 
balanced across the kevs within the su btree .  An object 
can never span more than a s ingle leaf node oF  the 
main B - trce; therefore, nonleaf nodes of the main 
B -tree on ly need to con tJi n O I Ds.  Th is a l lows the 
main B- trcc to be very compact. F igure 4 shows the 
relationship bet>.vccn the main B - tree and i ts su btrees. 

Figure 4 
Mapping B- rrcc Sn·ucrurc 



To reduce the time required to open a file, data for 
small extents and small named cells are stored directly in 
the leaf node tl1at maps tl1em. For larger extents (greater 
than one disk block in size in the current implementa
tion ), the data item is written i nto tl1e log and a pointer 
to it is stored in the node . This pointer is an address in  
the log add ress space. Figure 5 illustrates how the B-tree 
maps a small file and a file with several large extents. 

Processing Read Requests 

The clerks submit read req uests that may be for a 
sequence of bytes from a stream ( reading a data from a 
fi le) ,  a single named cel l ( read i ng a fi le's attributes ) ,  or 
a set of named cells ( reading d irectory contents ) .  To 
fulti l l  a given read request, the server must consult  the 
B- tree to translate from the address in  the file address 
space suppl ied by the clerk to the position in the log 
address space where the data is stored . The extents 
making up a stream are created when the file data 
is written .  If an application writes 8 ki lobytes ( KB )  
o f  data in  1 - KB chunks, the B-tree would contain 
8 extents, one tor each 1 - KB write. The server may 

need to col l ect data ti·om several d ifferent parts of the 
log address space to fi.dtll l  a single read request. 

Read req uests s hare access to the B - t.ree in much 
the  same way as  processes s hare access to  the CPU of 
a m ult iprocessing compute r  system .  Read requests 
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Figure 5 
Mappi ng B-rree Derail 
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arriving from c lerks are placed i n  a tl rst in tl rst out 
(F IFO)  work q ueue and are started in order of their  
arriva l .  Al l operations on the B -tree arc performed by 
a s ingle worker thread in each vol u m e .  This avoids 
the need tor heavyweight locking on i n d ividual  
nodes in the B - tree, which signi ficantly red uces the 
comp l exi ty o f  the tree manipu lation al gorithms and 
removes tbe potent ia l  for deadlocks on tree nodes.  
This red u ction in complexity comes at  the cost of 
the design not scal ing with the nu m ber of processors 
in a symmetric m ul tiprocessing ( S M P )  system .  So far 
we h ave no evidence to show that this  design deci
s ion represents a major performance l imi tation on 
the server. 

The worker thread takes a request from the head 
of the work queue and traverses the B-tree unti l  it 
reaches a leaf node that m aps the add ress range of 
the read req uest. Upon reaching a leaf node, i t  m ay 
discover that the node contains 

• Records that map part or al l of the add ress of the 
read request to locations i n  the log, and/or 

• Records that map part or al l of the address of the 
read request to data stored directly in the node, 
and/or 

• No records mapping part or a l l  of the add ress of the 
read request 

, , /'- ' , 
, 
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SUBTREE FOR OlD 35, 
_STREAM 1 

B-TREE INDEX RECORD 
MAPPING OlD 35, STREAM 1 ,  
START OFFSET 0 . . .  

RECORD CONTAINING POINTER 
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Data rh:n is stored i n  the node is s implv copied 
to rhc output b u fkr. When d ata is stored in the log , 

rhc worker thread issues req uests to the LD to read the 
chra imo the output buffer. O n ce :.�ll the reads ha\T 
been issu ed , the original request is placed on a pend
ing q ueue unti l  they complete; then the results are 
returned to the c lerk.  When no dat:t is stored t(>r all or 
part of the read request, the server zero-tills the corn:
sponding part of the output  buftCr. 

The process described above is compl icated by the 
bet that the B- trcc is itself stored in the log. The map
ping layer contains a node cache rh:lt  ensures thJt com 
monly referenced nodes Jre nonna l lv  tc>Lmd in memory. 
vVhen the worker thread needs to traverse through a 
tree node that is not i n  mernono, it must atTJ.nge tc>r the 
node to be read into the cache. The address ofrhe node 
in the log is the vaJ ue of rhe pointer to it fl·om its pJ.rent 
node.  The worker thread uses th is to issue a request to 
the LD to read the node into a cad1e butkr. While the 
node reJ.d request is in progress, the origin::tl clerk oper
ation is placed on a pending q ueue and the worker 
thread proceeds to the next request on the work queue. 
When the node is resident i n  memory, the pmd i ng read 
request is p l aced back on the work queue to be 
rest:� rred . In this way, m ultiple read req uests can be i n  
progress :-t t  any given time. 

Processing Write Requests 

Write requ ests received by the server arrive in groups 
consisting of a n u m ber of data i tems correspondi ng to 
upcbtes to noncontiguous addn:sses in the tile :-tddress 
sp:1ce . Eac h group must be writt�n as :t s i ngle tJi lure 
atom ic unit, which means rbat a l l  the parts of the write 
requ est must be made stable or none of th�m must 
become stable .  Such groups of writes arc u l kd wun
ners :tnd ar�  used by the c lerk  to cncapsubtc complex 
til e  system operations. "  

B di:lre the server Glll complete a wun ncr, that 
is,  bd(>rc an acknowl edgment c:tn be sent b:1ck to 
the clerk ind icating t hat the \\' l l llner w:1s successfu l ,  
the scn·er must make two guar:1ntecs: 

1 .  A l l  [Xl rts of the wun ner are stably stored in the log 
so that the entire \\'Utmer is persistent in  the e\·ent 
of:� system b i l u re .  

2. All  cbtJ. items described by the wunner arc visi b le to 
subseq uent read requests .  

T h e  wunncr is made persistent b y  writing each data 
i tem to the log. Each data i tem is tagged with a log 
record that identi fies irs correspond i ng ti l e  sp�Kc 
ad d ress. This :1 l lows the data to be recovered i n  the 
e\'l'nt of a S\'Stcm tailurc. All  i nd i,·id ual writes arc made 
as p�1 rr ofa single compound atomic operation (C:AO ) .  
This method is prm·idcd by the LD bvcr to br:1ckct 
a scr of wri tes rhar must be recm·ered as :1 11 :tto m ic 
un ir. On ce a l l  the writes for the \\ ' U tl ller have been 
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issued to the log, the mapping !Jvcr instructs the LD 
l ayer to end ( or com mit)  the CAO. 

The \\·u nncr c1n be made ,·isible to subsequent rc1d 
operations by u pdat i ng the B- tree to rdkct the loca
tion of th� new dat::J. U n tc>r ntnJ.tely, this "·ould c:1usc 
writes to i ncur :1 sign i ficant latency since updating the 
B - tree invo l ves traversing the B -tree and potential ly 
read ing B-tree nodes imo memory ti·om the log. 
Instead , the server com pletes a writ� operation before 
the B - tree is updated . By doing this,  how�ver, it must 
take addition:1l steps to ensure that the data is  1·isiblc to 
subseq uent read requests. 

Betorc completing the wun ner, the mapping Ll\n 
q ueues the B - trce upd:ttes resulti ng t[·om \\Ti ri ng rhe 
\l'ltt J I K r  to the same F I FO work q ueue as read requests. 
All i tems arc q ueued atomicallv, that is, no other read 
or write oper:�rion can be ime rlcwed with t he i n d i, · id
ual wu nncr upd ates. In this wav, the ordering between 
the wri tes making up the wuntler and su bsequellt read 
or write oper:-ttions is maintained . vVork cannot begi n 
on a su bsequent rc:td request u nti l  work has started OJJ 

the B - trce updates ahead ofit in the q ueue.  
Once the B-trcc upd ates have been q ueued to the 

server work queue and the m apping layer h:�s been 
notified th:-tt the C :AO for th� writes has eomm irred , 

both of the gu:1ranrces rhar the sen-er gi ,·es on write 
completion hol d .  The data is pcrsiste m, and the writes 
arc ,·is ible to su bseq uenr operations; therefore, the 
sen·er can send an ac knowledgment back to the clerk. 

Updating the 8-tree 

The worker th read processes a B - trce update req uest 
in much the s:�me way �1s a read req uest. The upd ate 
req uest traverses the B - rrcc unti l  either it reaches the 
node that maps the appropri ate pan of the file add ress 
space, or it tai ls to fi nd a node i n  memory. 

Once the lc:.1fnode is reach�d , it is updated to point at 
the locarjon of the data in the log ( if  the clatJ is to be 
stored d i rectlv i n  the node, the chta is copied inr o  the 
nod e ) .  The node is tlOW d i m· i n  memorY :md must 
be written to the log at some point.  Rather than \\Tiring 
the node immediate�\-, the lll3pping la,·cr writes a log 
record descri bing the ch:�nge, locks the node i nto rhe 
cache, and places :1 fl ush operation ror the node to 
tl1e mapping L1yer's Hush queue. The flush operation 
describes the locltion of the node in the tree and 
records the need to write it to the log at some poi nt 
i n  the future. 

I t� on its \\·�1\· to the lc:tf node, the write operation 
reaches a node that is not in memorv, the worker 
th read arranges t( Jr it  to be read h·om the log :.1nd the 
write operation is pbced on a pe n d i ng queue J s  "· i rh :1 

read operation. Because the wri te has been ack no11·l
edged to the clerk, the nc,,· d<lta mu st be 1 · isiblc to su b
sequent read operations e\·e n though the B- trce has 
nor been upcbted ful k  This is ach in·ed lw attach i n g  
a n  in -mcmorv record ofrhc update to t he node that is 



being read .  I f  a read operation reaches the node with 
records of sta l l ed updates, i t  must check whether any 
of these records contains data that should be returned. 
The record contains either a pointer to the data in  the 
Jog or the actua l  data itself. If a read operation rinds 
a record that can satist)r al l or part of the request, the 
read request uses the information in the record to 
retch the data. This preserves the guarantee that the 
c lerk must see all data for which the write req uest has 
been acknowledged . 

Once the node is read i n  ti-om the log, the stal led 
updates are restarted.  Each update removes i ts log 
record fi·om the node and recommences traversing the 
B-tree from that point. 

Writing B-tree Nodes to the Log 

Writing nodes consumes bandwidth to the disk that 
might otherwise be used for writing or read ing user 
data, so the server tries to avoid doing so unt i l  
absol ute ly necessary. Two cond itions make i t  neces
sary to begin wri ting nodes: 

1 .  There are a l arge nu mber of di rty nodes in the 
cache .  

2 .  A checkpoint is i n  progress. 

In the fi rst cond ition ,  most of the memory avai lable 
to rbe server bas been given over to nodes that are 
locked in  memory and waiting to be written to the 
Jog. Read and update operations begin to back up, 
waiting for ava i l able memory to store nodes. I n  the 
second cond ition , the LD has requested a checkpoint 
in  order to bound recovery time ( see the section 
Checkpointing later in this paper) . 

When either of these conditions occurs, the mapping 
layer switches into tlush mode, during which i t  only 
writes nodes, u nti l  rhc condi tion is changed. In  Hush 
mode, the worker thread processes tlush operations 
ti·om the mapping layer's flush queue in depth order, 
that is, starting with the nodes ti.1 rthest from the root 
of rhc B - rrcc . For each tl ush operation, it traverses the 
B- trce until i t  tinds the target node and its parent .  The 
target node is identified by the keys i t  maps and its 
leve l .  The level of a node is its d istance ri·om the leaf of 
the B- rn::e (or su btree ) .  Un l ike its depth, which is its 
distance from the root of the B- tree, a node's level does 
not change as the B- tree grows and shrinks. 

Once it has reached i ts destination, the tlush opera
tion writes out the target node and updates the parent 
with the new log address. The modi ti cnions made to 
the p<lrcnt node by the tl ush operation are analogous 
to those made to a leaf n ode by an update operation . 
In this way, a modification to a leaf node eventually 
works its way to the root of  the B-tree,  causing each 
node in its path to be rewritten to the log over time. 
Writing d irty nodes only when necessary and then i n  
deepest tl rst order min imizes the nu mber o f  nodes 

written to the log and increases the average number of 
c hanges that are rdlectcd in  each node written .  

Log Driver 

The log driver is responsible tor creating the i l l usion of 
a semi- infin ite seq uential log on top of a physical disk.  
The enti re h istory of the ti le system is recorded in  the 
updates made to the log, but  on ly  those parts of 
the log that descri be its current or l ive state need to 
be persistently stored on the disk.  As ti les are overwrit
ten or deleted, the parts of the log that contain the 
previous contents become obsolete. 

Segments and the Segment Array 

To make the management of fi-ce space more straight
forward, the log is d ivided into sections cal led 
segments. In the Spiralog rile system, segments are 
256 KB .  Segments in the log are identi fied by their seg
ment identiti.er (SEG I D ) .  SEG J Ds increase monotoni
cal ly and are never reused . Segments in the log that 
contain l ive data are mapped to p hysical ,  segment-sized 
locations or slots on the d isk that are identified by their 
segment number (SEG N U M )  as shown in Figure 6. 

The mapping between SEG I D  and SEGNUM is main
tained by the segment array. The segment array a lso 
tracks which parts of each mapped segment contain live 
data. This in formation is used by the cleaner. 

The LD interface layer contains a segment switch 
that a l lows segments to be retched from a location 
other than the disk.  13 The backup function on the 
Spira log file system uses this mechanism to restore fi les 
contained in  segments held on backup media .  Figure 7 
shows the LD layer. 
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Figure 6 
M appi ng rhe Log onto the Disk 
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S u bcomponents of rhe LD LJI'er 

The Segment Writer 

The segment writer is responsible tor al l  I/Os to the 
log.  It  groups together writes it  receives ti·om the map
ping layer in to large, sequentia l  I/Os wiKre possib le .  
This  increases write throughput,  but at the potential  
cost of increas ing the latency of ind ivid ual operations 
when the disk is l ightly loaded . 

As shown in Figure 8, the segment writer is respon
sible for the i nternal organization of segments written 
to the disk. Segments are divided in to two sections, a 
data area �md a much smaller commit record area. 
Writing a piece of data requires two operations to the 
segment at the tail of the log. First the data item is 
written to the data area of the segment. Once this I/0 
has com pleted successfu l ly, a record describing that 
data is written to the com mit record area. Only when 
the write to the com mit record area is complete can 
the original request be considered stable .  

F igure 8 
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The need tor two writes to disk ( potentia lly, with a 
rotational delay berween ) to commit a single data 
write is  clearly a d isadvantage. Normally, however, the 
segment wri ter receives a set of related writes from 
the mapping layer which are tagged as part of a single 
CAO. Since the mapping layer is interested in the com
pletion of the whole CAO and not the writes within it, 
the segment writer is able to bu ffer add itions to the 
commit records area in  memory and then write them 
with a s ingle I/0. Under a normal write load , this 
reduces the number ot' ljOs tor a single data write to 
very close to om: .  

The bou ndary between the commit record area and 
the data arcJ is ti xed . I ne\'itably, this wastes space in  
either the  commit  record area or data area  when the 
other ti l l s .  C hoosing a size t(Jr the commit record area 
that minim izes this waste req uires some care . After 
analysis of segments that had been subj ected to a typi
cal OpenVMS load, we chose 24 KB as the value ti.>r 
the commit record area . 

This segment organ ization permits the segment 
writer to have comp.letc control over the contents of 
the commit  record area, which a l lows the segment 
writer to accomplish two important  recovery tasks: 

• Detect the end of the log 

• Detect mu l tib lock wri te fai l u re 

When physica l  segme nts are reused to extend the 
log, they arc not scrubbed and their commit record 
areas contain stale (but  compre hensible) records. The 
recovery man<1gcr must d istinguish between records 
belonging to the current and the previous incarnation 
of the physical slot. To ach ieve this, the segment writer 
writes a sequence number into a specific byte in every 
block wri tten to the commit record area. The origina l  
contents of the "stolen" bytes are stored with in the 
record being written . The sequence number used t(Jr 
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a segment is an attribute of the physical slot that is 
assigned to it .  The sequence number tor a physical slot 
is incremented each time the slot is reused, a l lowing 
the recovery manager to detect blocks that do not 
belong to the segment stored in  the physical slot. 
The cost of resubstituting the sto len bytes is incurred 
only duri ng recovery and c leaning, because th is is 
the only time that the commit record area is read.  

I n  h i ndsight, the partitioning of segments i nto data 
and commit areas was probably a mistake. A layout 
that i ntermingles the data and commit records and that 
al lows them to be written in one ljO would offer bet
ter latency at low throughput. If combined with careful 
writing, command tag queuing, and other optimiza
tions becoming more prevalent in  d isk hardware and 
control lers, such an on-disk structure could offer sig
nificant improvements in  latency and throughput. 

Cleaner 

The cleaner's job is to turn free space in segments i n  
the log into empty, unassigned physical slots that can 
be used to extend the log. Areas offree space appear i n  
segments when the corresponding data decays; that is, 
it is e ither deleted or replaced .  

The cleaner rewrites the live data contained in par
tially fu l l  segments. Essential ly, the cleaner torces the 
segments to decay completely. If the rate at which data 
is written to the log matches the rate at which it is 
de leted, segments eventual ly become empty of their 
own accord . When the log is fu l l  ( fu l lness depends on 
the d istri bution of ti le longevity ) ,  it is necessary to 
proactively clean segments. As the cleaner continues 
to consu me more of the d isk bandwidth, performance 
can be expected to dec l ine .  Our design goal was that 
performance should be maintained up to a point at  
which the log is 8 5  percent  fu l l .  B eyond th is ,  it was 
acceptable for performance to degrade significantly. 

Bytes Die Young 

Recently written data is more l ikely to decav than old 
data . 1 " · 1 '  Segments that were writt�n a shor� time ago 
are likely to decay further, after which the cost of 
cleaning them will be less . In our design, the cleaner 
selects cand idate segments that were written some 
time ago and are more l i kely to have undergone this 
initial decay. 

Mixing data cleaned from older segments with data 
trom the current stream or' new writes is l i kely to pro
duce a segment that wil l  need to be cleaned again once 
the new data has undergone its in itial decay. To avoid 
mixing cleaned data and data hom the current write 
stream, the cleaner bui lds its output segments sepa
rately a nd then passes them to the LD to be threaded i n  
at the tai l  of the log. This has two important benefits : 

• The recovery in formation in the output segment is 
min imal ,  consisting only of the selfdescribing tags 
on the data .  As a resu lt, the cleaner is un l ikely to 
waste space i n  the data area by virtue of having ti l led 
the commit record area. 

• By constructing the output segment offl ine ,  the 
c leaner has as much time as i t  needs to look for data 
chunks that best ti l l  the segment.  

Remapping the Output Segment 

The data items contained in the cleaner's output seg
ment receive new addresses. The cleaner informs the 
mapping layer of the change of location by submitting 
B - tree update operation for each piece of data it 
copied . The mapping layer handles this update opera
tion in much the same way as i t  would a normal over
write . This update does have one special property: 
the c leaner writes are conditional . In other words, tbe 
mapping layer wil l update the B -tree to point to 
the copy created by the cleaner as long as no change 
has been made to the data s ince the cleaner took its 
copy. This al lows the cleaner to work asynchronously 
to ti le  system activity and avoids any locking protocol 
between the cleaner and any other part of the Spira log 
fi le  system .  

To avoid modifYing the mapping layer d irectly, the 
cleaner does not copy B-tree nodes to its output seg
ment. I nstead , i t  requests the mapping layer to flush 
the nodes that occur in  its i nput  segments ( i .e . ,  rewrite 
them to the tai l  of the log) .  This also avoids wasting 
space in the cleaner output segment on nodes that 
map data in  the c leaner's input segments. These nodes 
are guaranteed to decay as soon as the cleaner's B-tree 
updates are processed .  

Figure 9 shows how the cleaner constructs an output 
segment from a number of input segments. The cleaner 
keeps selecting input segments until either the output 
segment is fu l l ,  or there are no more input segments. 
Figure 9 also shows the set of operations that are gener
ated by tl1e cleaner. In this example, tl1e output segment 
is fil led with the contents oftvm fu ll segments and part 
of a third segment. This wil l  cause the third input seg
ment to decay still further, and the remaining data and 
B-tree nodes will be cleaned when that segment is 
selected to create another output segment. 

Cleaner Policies 

A set of heuristics governs the cleaner's operation . 
One of our fundamental design decisions was to sepa
rate the cleaner policies from the mechanisms that 
i mplement them.  

When to clean ?  

Our  design expl icitly avoids cleaning until i t  is 
required . This design appears to be a good match tor 
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Fig u re 9 
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a workload on the OpenVMS system . On our rime
sharing system,  the cleaner was en tirely inactive for the 
tirst th ree months of 1 996; al though segments were 
used : :md reused repeatedly, they always dec:1ycd 
e nt i re ly  to empty of their own accord . The trade-off 
in avoiding cleaning is that although performance i s  
improved (no cleaner activity), the size of riK fu l l  
savcsnaps created by backup is increased . This is 
because backup copies whole segments, regardless of 
how much l ive data thev con tai n .  

vVhcn the c leaner i s  nor running, the live data in the 
volume tends to be disnibuted across a large number of 
partial ly  hi l l  segments. To avoid this problem, we have 
added a conrrol to allow the system manager to nunu
a l ly surt and stop the c l eaner. Forcing the c leilner ro 

run bd()re performing a fu l l  backup compacts the l ive 
cbta in the log and reduces the size ofthe savesnap. 

I n  normal operation, the cleaner wi l l  Stilrt c leaning 
\\' hen rhc number of tree segments avai lable ro extend 
rhc log blls below a fi xed threshold ( 300 i n  the cur
rent imp lcmentJtion ) .  I n  making this  ca lcu latio n ,  the 
cleaner takes into accou n t  the amount of space in 

rhe log that wi l l  be consumed by writing data currently 
held in rhe c lerks' write-behind caches. Thus, accepting 
data into the cache c1uses the cleaner to "clear the way" 
tC:.>r the subseq uent write request fi-om the clerk. 

When the c leaner starts, it is possible that rhc 
amou11t of l ive data in the log is appro:�ching 
the capacity of the underlying d isk, so the cleaner may 
tind noth ing to do.  It  is more l ikely, however, that 
there wi l l  be free space it can recla im .  Because the 
cleaner works by torcing the data in its input segments 
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OPERATIONS SU BMITTED TO MAPPING LAYER 

to dec1y by rewriting, it is im portant that it begins 
work while ti-ee segments are avai lab le .  Debying the 
decision to start clean ing cou ld result in the cleaner 
being u nable to proceed. 

A tlxed number was chosen tor the c leaning thresh
old rather than one based on the s ize of the disk .  The 
size of the disk does not affect the urgency of cleaning 
Jt any p:�rticu lar point in time. A more cftcctivc ind ic:�
tor of urgency is the time taken f()r the disk ro ti l l  :1t the 
maximum rate of writing. Writing to the log at lO M B 
per second wi l l  usc 300 segments i n  about  8 seconds .  
With h indsight, we real i ze that a threshold based on a 
measuremc11t of the speed of the disk might have been 
a more appropriate choice. 

Input Segment Selection 

The clc::mer divides segments into tou r  d istinct groups: 

l .  Em pty. These segments con tain no live data :md arc 
avai lab le to the LD to exte nd the Jog. 

2 .  Noncle:�nable .  These segments arc not candichtes 
t(w cleaning f()r one of t\vo reasons: 

• The segmem contains i n formation that wou ld 
be requ ired by the recovery manager in the event 
of a system fl i lure .  Segments in this grou p  arc 
a lways close to the tail of the log and therd(Jrc 
l i ke ly to undergo t-l1 rther decay, making them 
poor candidiltes tor cleaning. 

• The segment is part of a snapshot.; The SILlpsllot 
represents a rercrcnce to the segment, so it cm -

110t b e  reused even though i t  may n o  longer C O i l 

rain l ive data . 



3 .  Preferred noncleanable. These segments have 
recently experienced some natura l  d ecay. The sup
position is that they may decay fu rther in  the near 
ti.1 ture a nd so are not good candid ates tor cleani ng. 

4.  Cleanable.  These segments have not decayed tor 
some time. Their stability makes them good cami.i 
dates tor cleaning. 

The transitions between the groups are i l lustrated in  
Figure 10 .  It  should be noted that  the cleaner itse lf  
does not have to execute to transfer segments into the 
empty state . 

The cleaner's job is to fi l l  output segments, not to 
empty input segments. Once i t  has been started, the 
cleaner works to entirely fi l l  one segment.  When that 
segment h as been fil led,  i t  is th readed into the log; 
if appropriate, the cleaner will then repeat the process 
with a new o utput segment and a new set of input 
segments. The cleaner wi l l  commit  a partial ly ful l  
output segment only under circumstances of extreme 
resource depletion . 

The cleaner ti lls the output segment by copying 
chunks of data forward fi·om segments taken ti-om the 
cleanable group . The members of this group are held 
on a l ist sorted in  order of emptiness. Thus, the tlrst 
cleaner cycle wil l  a lways cause the greatest number of 
segments to decay. As the output segment fills,  the 
smallest chunk of data i n  the segment at the head of 
the cleanabl e  J ist may be larger than the space left in  
the output segment. In this case, the cleaner performs 
a l imited search down the cleana ble l ist tor segments 
containing a suita ble  chunk. The required information 
is kept in  memory, so this is a reasonably cheap opera
tion.  As each input  segment is processed, the c leaner 

Figure 1 0  
Segment States 

DECAY 
TO EMPTY 

temporarily removes it from the cleanable list. This 
a l lows the mapping l ayer to process the operations the 
cleaner submitted to it  and thereby cause decay 
to occur before the cleaner again considers the seg
ment as a candidate for cleaning. As the volume fi l ls, 
the ratio between the number of segments in the 
cleanable and preferred noncleanable groups is  
adj usted so that the size of the preferred non cleanable 
group is reduced and segments are i nserted i nto the 
c leanable J ist. If appropriate, a segment in the clean
able l ist that experiences decay wil l  be moved to the 
preferred noncleanable l ist. The preferred nonclean
able l ist is kept in  order of least recently decayed. 
Hence, as i t  is emptied, the segments that are least 
l ikely to experience further decay are moved to the 
cleanable group. 

Recovery 

The goal of recovery of a ny fi l e  system is to rebui ld the 
ti le system state after a system fai lure.  This section 
describes how the server reconstructs state, both i n  
memory a n d  i n  t h e  log. It  then describes checkpoi.nt
ing, the mechanism by which the server bounds the 
a mount of time it takes to recover the file system state. 

Recovery Process 

In normal operation,  a single u pdate to the server can 
be viewed as several stages: 

l .  The user data is written to the log. It is tagged with 
a sel f-identifYing record that describes its position i n  
the fi l e  address space .  A B-tree u pdate operation i s  
generated that drives stage 2 of the upd ate process. 

CHECKPOINT/ 
SNAPSHOT 
DELETION 

CLEANER POLICY/ 
SEGMENT DECAY 
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2 .  The leaf nodes of the B-tree are mod i tled i n  mem
ory, and corresponding change records are written 
to the log to reflect the position of the n ew data. 
A flush operation is generated and queued and then 
starts stage 3. 

3. The B-tree is written out level by level unti l  the root 
node has been rewritten .  As one node is written to 
the log, the parent of that node must be modified , 
and a correspond ing change record is written to the 
log. As a parent node is changed, a further Hush 
operation is generated for the parent node and so 
on up to the root node .  

Stage 2 of this process, logging changes to  the  leaf 
nodes of the B- tree, is actua l l y  red undant. The self 
ident i�' ing tags that are written with the user data are 
sufficient to act as change records for the leaf nodes of 
the B- tree.  When we started to design the server, we 
chose a simple implementation based on physiological 

B-TREE 

LOG 
STAGE 1 

LOG 
STAGE 2: 

LOG 
STAGE 3: 

Figure 1 1  
St�gcs oLl Write Request 

Digital Tcchn icJI Joum.1 l  Vol .  8 No. 2 1 996 

write-ahead logging." As time progressed, we moved 
more toward operational  loggi ng." The records writ
ten in stage 2 arc a holdover trom the earl ier imple
mentation, which we may remove in a fu ture release ot' 
the Spiralog file system . 

At each stage of the process, a change record is writ
ten to the log and an in-memory operation is generated 
to d rive the update through the next stage . In drect, 
the change record describes the set of changes mack 
to an in-memory copy of a node and an in -memory 
operation associated with that change . 

Figure l l  shows the log and the i n -memory work 
queue at each stage of <1 write req uest. The B - trce 
describing the fi le  system state consists of three nodes: 
A, B, and C. A wun ner, consisting of a single data 
write is accepted by the server. The write request 
requires that both leaf nodes A and B are modi tled . 
Stage I starts with an empty log and a write request tor 
Data l .  

WORK OUEUE 

WORK OUEUE 

WORK QUEUE 

WORK 0\JEUE 

WRITE 
REQUEST 
DATA 1 

B-TREE 
UPDATE 
DATA 1 

.-----., 
RUSH 
REOUESl 
NODE C 



After a system bi lure, the server's goal is to recon
struct the fi le system state to the point of the last write 
that was written to the log at the time of the cras h .  
This recovery process involves rebu i lding, in memory, 
those B - tree nodes that were dirty and generating any 
operations that were outstanding when the system 
tai led.  The outstanding operations can be scheduled in 
the normal way to make the changes that they repre
sent permanent, thus avoiding the need to recover 
them in the event of a future system fai l ure. The recov
ery process itself does not write to the log. 

The m appi ng layer work queue and the flush l ists 
are rebuilt, and the nodes are fetched into memory by 
read ing the sequential log from the recovery start 
position (see the section Checkpointing) to the end of 
tl1e log in  a single pass. 

The B - tree update operations are regenerated using 
the selfidentifYing tag that was written with each 
piece of data. When the recovery process finds a node, 
a copy of the node is stored in memory. As log records 
for node changes are read, they are attached to the 
nodes in memory and a Hush operation is generated 
for the node. I fa log record is read for a node that has 
not yet been seen, the log record is attached to a place
holder node that is marked as not-yet-seen .  The recov
ery process does not pertorm reads to tetch in nodes 
that are not part of the recovery scan. Changes to 
B - tree nodes are a consequence of operations that 
happened earlier in the log; therefore, a B- tree node 

log record has the e t1ect of committing a prior modifi
cation . Recovery uses th is fact to throw away update 
operations that have been committed; they no longer 
need to be applied.  

Figure 12 shows a log with change records and 
B - tree nodes along with the in-memory state of the 
B - tree node cache and the operations that are regener
ated.  In this example, change record l for node A is 
superseded or committed by the new version of node A 
( node A' ) .  The new copy of node C ( node C ' )  super
sedes change records 3 and 5 .  This example also shows 
the effect of finding a Jog record without seeing a copy 
of the node during recovery. The log record for node B 
is attached to an in-memory version of the node that is 
marked as not-yet-seen.  The data record with self-iden
tifYing tag Data l generates a B - tree update record that 
is p laced on the work queue for processing. As a fi nal  
pass, the recovery process generates the set of flush 
operations that was outstanding when the system tailed. 
The set oftlush requests is defined as the set of nodes in  
the B - tree node cache that has  log records attached 
when the recovery scan is complete. In this case, flush 
operations for nodes A' and B are generated. 

The server guarantees that a node is never written to 
the log with u ncommitted changes, which means that 
we only need to log redo records.9·16 In addition, when 
we see a node d uring the recovery scan, any log 
records that are attached to the previous version of the 
node in memory can be d iscarded . 

RECOVERY SCAN 
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Figure 1 2  
Recovering a Log 

I � 

-
CHANGE 
RECORD 4 

NODE A' 

B-TREE r-- FLUSH 
UPDATE REQUEST 

DATA 1 NODE A' 

-
CHANGE 
RECORD 2 

NODE B 

r- FLUSH 
REQUEST 

NODE B 

Digital Technical Journal Vol .  8 No. 2 1 996 27 



28 

Operati ons generated d uring recovery arc posted to 
the work queues as they would be in normal running. 
Normal operation is nor a llowed to begin u ntil the 
recovery pass has completed ; however, when recovery 
reaches rhe end of the log, tJ1e server is :�blc to service 
opcr:�rions fi·om clerks. Thus new requests from the clerk 
can be scn�ced, potentially in paral le l with tJ1c operations 
tJ1at were generated by rJ1e recove ry process. 

Log records are not appl ied to nodes d u ring recov
ery t(x :1 nu mber of reasons: 

• Less processing t ime is needed to scan the log and 
therefore the server can start servici ng new user 
requests sooner. 

• Recover�' will not have seen copies of a l l  nodes t(x 
which i t  has log records. To apply the log records, 
the R - tree node must be read ti·om the log. This 
would result in random read requests d u ring the 
sequential scan ofthe log, and again wou ld result in a 
longer period betore user requests cou ld  be serviced . 

• There may be a copy of rhe node L :ltcr in tiK recov
ery sca n .  This would make the additional I/O oper
ation red undant .  

Checkpointing 

As we have shown, recovering an LfS log is i mplc
mcnred by a single-pass seq ucnr i:- 11 scan of �1 1 1  records 
in rhc log ti·om the recovery start position ro the tai l of 
the log. This section deti nes a recovery start position 
and d escribes how i r  can be moved t()l·ward to red uce 
rhc �1 mount of log that Ius to be scan ned to recover 
rhc ti l e  system state. 

To reconstruct the in- memory stare when a system 
cr:�shcd , recovery mu st see someth ing in the log that 
represents each operati on or clnngc of stare that was 
represented in memory but nor yet made stable .  T h is 
means that at t ime t, the recovery st:�rr  position is 
ddincd as a poi nt  i n  the log afte r which a l l  operations 
rh :n arc not stably stored h ave a log record associated 
with them . Operations obtain rhe :tssoci:t tion by sca n
ning the log seq uential ly from rhc begi nning ro the 
end .  The recovery position then becomes the start of 
the log, which has two i mportant pro blems: 

l .  I n  the worst case, it wou ld be necessary to sequen
tia l ly scan the enti re log ro pcr f(mn recovery. For 
large d isks, a seq uentia l  read of the enti re log con
sumes a great deal of time. 

2. Recove ry must process every log record writte n 
between the recovery start position and rhe end of 
the Jog. As a consequence, segments bct\vccn the 
start of recovery and the end of the log cannot be 
c lc:�ned and reused. 

To restrict the amount of r ime to recover the log 
and to a l low segments to be re leased Lw cJca nin g, the 
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recovery position mus t be mm·ed forward ti·om rime 
to time, so that it is al w:�ys c lose to rhe tai l  of rhc log. 

Under <l llv worklo:td,  a n u m ber ofoursrand ing oper
ations arc ar vJrious stages of compl etion . In other 
words, there is no point in the log when a l l  activ ity 
has ceased . To overcome this problem, we usc a h!Zzy 
checkpoint  scheme.'' In version 1 . 0  of the Spiralog ti le 
syste m, the server i nitiates a new chec kpoi nt when 
20 M B of datJ has been written since the previous 
c heckpoint  St<1rtcd . The process cannot yet move rhc 
recovery position r(>rward in the log to rhe starr of 
rhe new c heckpoin t, because some outstand i ng opera
tions mav ha\'C priori t\'. The mappi ng laver keeps track 
of rhe opeLHions that wnc started bdore rhc check
point \\'aS i n ir i:�tcd . When the last of these oper:�rions 
has JllO\'Cd to rhc next stage ( JS defi ned bv rhc recO\nv 
process ), the m:�pping layer declares that rhe check
point is complete. On l v then c1n the recovery position 
be moved t(xw:�rd to rhc point in the log where the 
checkpoint  was starred .  

'With th is  scheme , the server docs not need to write 
a l l  the nodes i n  a l l  p:�rhs in the 13- rree bct\vcc n a dirty 
node and the root nod e .  All  that is req ui red i n  practice 
is to write those nodes rhar have fl ush operations 
q u e u ed t()r them �lt rh c rime that the checkpoint  is 
started . Flushing th ese nodes causes change records 
ro be written t(n the i r  paren t nodes after the starr of 
the checkpo in t. As the recovery scan proceeds h·om 
rhe start ot' rhc l ast completed c heckpoinr , i r is ab le  to 
regenerate the tl ush operation on the parent nodes 
fi·om these ch:l llgc records .  

VVe chose to base the c heckpoi n t i n tervJJ on the 
amount of data wri tten ro the log rather than on 
the amount ofrimc to recover rhe l og. We k i t  th�\l this 
wou ld be an acc urate measure of how long it  wou ld 
take ro recover a particul ar log. In ope ration , we ti nd 
this  works we l l on l ogs th�lt ex pe ri ence a rc:�sonablc 
write load; however, t(>r Jogs rhar predominan tlv ser
vice read requests, rhe rccoverv ri me rends toward the 
l imit.  In these cases, ir mav be more appropriate to add 
rj mer - b:�scd ch ec kpoi nts. 

Managing Free Space 

A tradit ional,  updarc - i n - p! Jce tile system 0\H \\'ri rcs 
superseded d a ta by writing to the same p h ysi cal loc:�
tion on disk. I t� t(>r example, <\ single b lock is  comi n u 
a l ly  O\'crwritten by �1 ti le  system c l i ent, no e xtra d i s k  
space i s  req u i red t o  store t h e  b lock. In contrast, :1 log
structu red ti le system :�ppcn ds a l l mod ifications to the 
fi l e  system to the r�1 i l  of the log. Every update ro a si n 
gle block req u i res log space , not o n l y  for the data, but 
also tor the log records and B - trce nodes req uired to 
m a ke the B- rrcc consiste n t. AJrboug h old copies ot'rhc 
data and B- rrec nodes :�rc marked as no longer l i\'<.: , 
this ti"Ce space is not im mediate l v a\·a i l able t(x reuse; ir 
must be recl a i med lw the c leaner. The goal is ro ensure 
rhar there i s  suftic icnt spKe in the log to write the 



parts of the B- tree that arc needed to make the til e  
system structures consistent. This means that we can 
never have dirty B-tree nodes in memory that cannot 
be tlushed to the log. 

The server must carefu l ly  manage the amount of free 
space in  the log. It must provide 1:\vo guarantees: 

l .  A write wil l  be accepted by the server only i f  there is 
sufficient free space in the log to hold the data and 
rewrite tbe mapping B-trce to describe it. This guar
antee must hold regardless of how much space the 
cleaner may subsequently reclaim . 

2 .  At the h igher levels of the ti le system, if an I/0 oper
ation is accepted, even i f  that operation is stored i n  
the write-behind cache, t h e  data w i l l  b e  w1itten to 
the Jog. This guarantee holds except in rbe event of 
a system fai lure .  

The server provides these guarantees using the same 
mechanism . As shown in Figure 1 3 ,  the free space and 
the reserved space in the log are mod eled using an 
escrow function. 1 7 

The total nu mber of blocks that contain l ive, valid 
data is maint<li ned as the used space. When a write 
operation is received, the server calculates the amount 
of space in the log that is requi red to complete the 
write and upd ate the B- tree, based on the size of 
the write and the cu rrent topology of the B- tree. The 
calcu lation is generous because the B- trec is a dynamic 
structure and the outcome of a single update has 
unpred ictable effects on i t .  Each clerk reserves space 
for di rty data that it has stored in the write -behind 
cache using the same mechanism. 

To accept an operation and provide the required 
guarantees, the server checks the current state of the 
escrow function . I f  the guaranteed free space is suffi
cient, the  server accepts the operation. As  operations 
proceed, reserved space is converted to used space as 
writes are performed.  A single write operation may 
affect several leaf nodes. As it becomes clear bow the 
B- tree is changing, we can convert any unrequired  
reserved space back to guaranteed free space. 

If  the cost of an operation exceeds the free space 
irrespective of how the reserved space is converted , the 
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operation cannot be guaranteed to complete; there
fore i t  is rejected . On the other hand, if the cost of the 
operation is greater than the guaranteed tree space (yet it 
may fit in the log, depending on the outcome of the out
standing operations), the server enters a "maybe" state. 
For the server to leave the maybe state and renm1 defin.i
tive resu lts, the escrow cost fimction must be col lapsed . 
This removes any uncertainty by decreasing the reserved 
space figure, potentiaJ i y  to zero. Operations and unused 
clerk reservations are drained so that reserved space is 
converted to either used space or guaranteed tree space. 

This mechanism provides a fu zzy measure of how 
much space is avai lable in the log. When it is clear that 
operations can succeed, they are al lowed to continue.  
If success is  doubtfu l ,  the operation is held unti l  a 
definitive yes or no resu lt  can be determined. This 
scheme of free space management is s imi lar to the 
method described in reference 7. 

Future Directions 

This section outlines some of the possibi l ities tor future 
implementations of the Spira log file system. 

Hierarchical Storage Management 

The Spiralog server d istinguishes between the logical 
position of a segment in the log and its physical location 
on the media by means of the segment array. This map
ping can be extended to cover a h ierarchy of devices 
with differing access characteristics, opening up the pos
sibil ity of transparent data shelving. Since the unit  of 
migration is the segment, even large, sparsely used fi les 
can benefit. Segments containing sections of the file not 
held on the primary media can be retrieved ti'om slower 
storage as required. This is identical to the virtual mem
ory paging concept. 

For applications that require a complete h istory of 
the file system, segments can be saved to archive med ia 
bdore being recycled by the cleaner. In principle, this 
would make it possible to reconstruct the state of the 
file system at any time . 

Disk Mirroring (RAID 1) Improvements 

vVhen a mirrored set of disks i s  forceful ly dismounted 
with outstanding updates, such as when a system 
crashes, rebui lding a consistent disk state can be an 
expensive operation . A complete scan of the members 
may be necessary because I/Os may have been out
standing to any part of the mirrored set. 

Because the data on an LFS disk is tempora l ly 
ordered , maki ng the members consistent foll owing 
a fai l ure is much more straightforward . In  effect, an 
LFS a l lows the equivalent of the minimergc function
al i t)' provided by Vol u me Shadowing tor OpenVMS, 
without the need for hardware support such as ljO 
control ler Jogging of operations . 1 "  

Digital T�chnical )ourn<l i  Vol .  8 No. 2 1996 29 



Compression 

Adding file compression to an update- in -place file 
system presents a particular problem: what to do when 
a data item is overwritten with a new version that does 
not compress to the same size. Since all updates take 
place at the tail of the log, an LFS avoids this problem 
entirely. In adctition, the amount of space consumed 
by a data item is determined by its size and is not influ
enced by the cl uster s ize of the disk. For this reason,  an 
LFS does not need to employ file compaction to make 
efficient use of large disks or RAID sets . '9 

Future Improvements 

The existing i mplementation can be improved in a 
number of areas, many of which involve resource con
sumption . The B - tree mapping mechanism, although 
general and flexible, has h igh CPU overheads and 
requires complex recovery algorithms. The segment 
layout needs to be revisited to remove the need for seri
alized 1/0s when committing w1ite operations and thus 
further reduce the write latency. 

For the Spiralog file system version 1 .0 ,  we chose to 
keep complete information about live data and data that 
was no longer valid for every segment in the log. This 
mechanism allows us to reduce the overhead of the 
cleaner; however, it does so at the expense of memory 
and disk space and consequently does not scale well to 
multi-terabyte disks. 

A Final Word 

Log structuring is a relatively new and exciting tech
nology. Bu i lding Digital's first product using this 
technology has been both a considerable challenge and 
a great deal of fun. Our experience during the con
struction of the Spiralog product has led us to believe 
that LFS technology has an important role to play in 
the future of file systems and storage management. 
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Designing a Fast, 
On-line Backup System 
for a Log-structured 
File System 

The Spira log file system for the Open VMS 

operating system incorporates a new tech

nical approach to backing up data. The fast, 

low-impact backup can be used to create 

consistent copies of the file system while 

applications are actively modifying data. 

The Spira log backup uses the log-structured 

file system to solve the backup problem. The 

physical on-disk structure allows data to be 

saved at near-maximum device throughput 

with little processing of data. The backup 

system achieves this level of performance 

without compromising functionality such as 

incremental backup or fast, selective restore. 
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I 
Russell J. Green 
Alasdair C. Baird 
J. Christopher Davies 

iVlost computer users want to be able to recover data 
lost through user error, software or mcdi:1 E1i l u rc, or 
site disaster but are u nwi l l ing to devote system 
resources or downti m e  to m�1ke backup copies of the 
data. Fu rthermore, with the rapid growth in the usc of 
data storage and the tendency to move systems toward 
complete uti l ization ( i . e . ,  24-hour by 7 -day operation),  
the practice of taking the system off l ine to back up 
data i s  no longer feasi ble. 

The Spiralog tile system, an option:JI component of 
the OpenVMS Al pha operating system,  incorporates 
a nevv approach to the backup process (cal led 
s imply backup ) ,  resulting in J nu mber of su bst:llltial 
customer benefits.  By exploiting the featu res of log
structured storage, t he backup system combi nes the 
advantages o f  two ditkrent tradition:t l  approaches 
to perf-ormi n g  backup:  the flex i b i l ity of ti le- based 
backup and the h i gh pcrt(mnancc of p lwsica l l v  ori
ented backup.  

The design goal tor the Spi ralog b:1c kup system was 
to provide customers \\'ith a last, applic:1tion -consistent, 
on-l ine backup. In this paper, we exp la in  rhc features 
of t h e  Spiralog ti le system that hel ped ach ieve th is goal 
and outl ine the d esign of the n1:1jor backup hrnctions, 
namelv vo l u m e save, vol ume restore, ti le restore, :md 
i n c remental managemen t .  \Ve then prese n t  some per
formance results arrived at using Spira log version l . l .  
The paper conc ludes with a d iscussion of other design 
approac hes and areas for ti.1 ture work.  

Backg round 

File system data may be lost t( Jr many re:tsons, i n c l u d 
mg 
• U se r  error-A user m:ty m istaken l y  de lete tb t::l .  

• Software fai l u re-An appl ication m:ty cxccure 
i ncorrectly. 

• Media fa i l ure-The computi ng c q u i r m enr may 
m a l fu n ction because of poor design, o ld  :1ge , etc .  

• Site disaster-Computing fKil i tics m<1)' experience 
failures in,  for example, the e l ectric:1l su pply or cool
i n g  systems. Also, envi ronmental catastrophes such 
as electrical storms and floods mav damage faci l ities. 



The abi l ity to save backup copies of al l or part of 
a fi le  system's i nformation in a form that a l lows it to be 
restored is essential  to most customers who usc com
puting resources. To understand the backup capabi lity 
needed in the Spiralog file system, we spoke to a num
ber of customers-five directly and several hundred 
through publ ic forums. Each ran a different type of sys
tem i n  a distinct environment, ranging from research 
and development to finance on OpenVMS and other 
systems. Our survey revealed the fol lowing set of cus
tomer requirements tor the Spiralog backup system: 

l .  Backup copies of d:1ta must be consistent with 
respect to the appl ications that use the data. 

2. Data must be contin uously avai lable to applica
tions. Dowmime for the pu rpose of backup is unac
ceptab le .  An application must copy a l l  data of  
i nterest as  i t  exists at an instant in  t ime ;  ho>vever, 
the applicarjon should also be al lowed to modi t)' 
the data du ring the copying process. Performing 
backup in such a way as to satist)' t hese constraints is 
often called hot backup or on- line backup . Figure l 
i l lustrates how data inconsistency can occur during 
an  on-l ine backu p. 

3. The backup operations, particularly tJ1c save opera
tion, must be fast.  That is, copying data from the 
system or restoring data to the system must be 
accomplished in the time avai lab le .  

4 .  The backup system rnust al low an i ncremental 
backup operation, i . e . ,  an  operation that captures 
on ly the changes made to data since the last backup . 

The Spiralog backup team set out to design and 
imp lement a backup system that woul d  meet the four 
customer req uirements. The fol lowing section dis
cusses the features of the implementation of a log
structured ti le system ( LFS ) that a l lowed us to use 
a new approach to performing backup. Note that 
throughout this paper we use disk to describe the 

TIME 

F ILE BACKUP EXPLANATION 

The initial file contains two blocks. 

Backup starts and copies 1he first 
block. 

The application rewrites the fi le. 

Backup proceeds and copies the 
second block. The resulting backup 
copy is corrupt because the first 
block is inconsistent with the latest 
rewritten file. 

Figure 1 
ExJmplc of an O n - l i ne Backup ThJt Resu l ts i n  I nconsiste nt 
Data 

physical media used to store data and uolume to 
describe the abstraction of the disk as presented by the 
Spiralog ti le system. 

Spiralog Features 

The Spiralog fi le  system is an implementation of a log
structured fi le system .  An LFS is characterized by the 
use of d isk storage as a seq uentia l ,  never-ending repos
itory of data . We genera l ly  reter to this organization of 
data as a Jog. Johnson and Ll ing describe i n  detai l  the 
design of the Spira log implementation of an LFS and 
how ti les are maintained in this implementation . '  
Some teatures un ique to a Jog-structured fi le system 
are of particular i nterest i n  the design of a backup 
system.2-• These teatures are 

• Segments, where a segment is the fu ndamental 
unit of storage 

• The no-overwrite nature of the system 

• The temporal orderin g  of on-d isk data structu res 

• The means by which fi les are constructed 

This section of the  paper d iscusses the relevance of 
these features; a later section explai ns how these fea
tures arc exploited in the backup design. 

Segments 

I n  this paper, the term segment refers to a logiGd 
entity that i s  un ique ly identi fied and never overwrit
ten .  This defi nition is distinct fi·om the physical stor
age of a segment.  The only physical feature of in terest 
to backup with regard to segments is that they are effi 
cient to read i n  their entirety. 

Using Jog-structured storage in a ti le system a l lows 
efficient writing irrespective of the write patterns or 
load to the ti le  system .  A l l  write operations arc 
grouped in segment-sized chunks .  The segment size is 
chosen to be sufficiently la rge that the time required 
to read or write the segment is significantly greater 
than the time required to access the segment, i . e . ,  the 
time required f()r a head seek and rotational dc!Jy on 
a magnetic disk .  AJ I data (except the LFS homeblock 
and checkpoint  i n formation used to l ocate the end of 
the data log) is stored in  segments, and a l l  segments 
are known to the ti le  system.  From a backup point  of 
view, this means that the entire contents of a volume 
can be copied by readi ng the segments. The segments 
are l a rge enough to a l low efficient reading, resulting in  
a ncar- maximum transfer rate of thc device. 

No Overwrite 

In a log-structured file system, i n  which the segments 
are never overwritten ,  all data is written to new, empty 
segments. Each new segment is given a segmen t  iden
t i fier (segid ) a l located i n  a monoton ica l ly  i ncreasing 
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manner. At any point i n  t ime, the e n tire contcm.s and 
state of a volume can be described in terms of a ( check
poim position, sep,rnent list) pair. A t  the physical leve l ,  
a vol u m e  consists o f  a l ist or· segments and a position 
within a segment that ddi nes the end of the l og.  
Rosenblum describes the concept of t ime trave l ,  where 
an old stare o f rhe fi le  system can lx r�o:visitcd by cn:ar
ing and m a i nta in ing a snapshot of the J-i lc  system r(>r 
future access . '  Al l owing time travel in this \\'ay req uires 
maintaining an old checkpoint :md disa b l i n g  the r�.:use 
of d isk space by the cleaner. The ckaner is a mecha
n ism used to rec l a i m  d isk  space occupied by obsol ete 
data in a Jog, i . e . ,  disk space no longer rdcn::nc�.:d i n  
t h e  ti le  syste m .  The conte nts o f  a snapshot :m..: ind e 
pendent of operations u nd e rtaken o n  the live version 
of the ti le syste m .  Modit)'ing or dt:leting a file a rkcts 
onlv the l ive version of the rile system ( sec figure 2 ) . 
Because of the no-overwrite nature of the l.YS, prC\' i 
ous lv  written data re mains u ncha nged . 

Other mechanisms specific to a particular backup 
algorithm have been developed to achieve on-line CO!l 
sistencv.' The snapshot model as described abm'C a l lo\\'s 
a more general solution with respect to multiple con 
currem backups and the choice of the s:-�,·c a lgori th m .  

A re:1d -onl y  version of the fi le  svstem a t  a n  inst:lll t 
in t ime is preciselv what is req u i red for appl ication 
consistency in o n - l i ne backup.  This snapshot approach 
to attai ning consistency i n  on - l i ne backup has been 
used in other systems . 0·' As exp l ained in the fd lowing 
sections, the Spira log ti le system combi nes the snap 
shot tech nique with fi:::atu res of log-structurcd storage 
to obtain both on- l ine backup consistency and perr(>r
mancc benefits r(>r bJckup. 

Temporal Ordering 

As mentioned earl ier, a l l  data , i . e . ,  user d ata and fi le 
system metadata ( d ata that  describes the user d:-�ta in 
the fi le system ) ,  is stored i n  segments and there is no 
overwrite of segments. All  on-disk data structures that 
rekr to physical placement of d ata usc poi mcrs, 
namely ( segid, ofJ.;,el) pairs ,  ro descri be tbc location of 
the d ata.  Each ( segid, off-�el) pair speci fics the segment 
and where wit h i n  rhar  segmcnr the d :-�ra is stor e d . 
Together, these i mply the fol lowi ng two properties of 
d ata structures, which are key rcatures oLln LrS: 

This data is  
visible to only 
!he snapshot. 

Figure 2 

This dala is 
shared by the 
snapshot and the 
live file system. 

This is new live 
dala written since 
the snapshot was 
laken. 

Data Accessi ble to the Snapshot Jnd to the Live hie 
Svstem 
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l .  On-d isk structure poi nters ,  name ly  ( s(:r_: id. (!ff.\·et) 

pai rs, arc re l atively ri me ordered . Specifically, d a ta 
stored at ( s2 ,  n2 ) was written more recentlv than 
data stored at ( sl , ol ) i f  and only if s2 is greater 
than sl or s2 cqu::� ls  sl and o2 is greater than ol . 
Th us,  new datJ wou ld appear to the right in the 
dat:1 structure depicted in Figure 3 .  

2 .  Any daLl structure that uses on-disk poin ters stored 
within the segments ( the mapping d ata structure 
implementing the LfS index)  must be ri me 
ordered ; that is,  a l l  poi mers must rekr ro data writ
ten prior ro the poi nter. Rckrri ng �1g�1 in to Figu re 3, 
onlv d�na structu res rh:�r poi n r  ro the left are val i d .  

These properties of on-disk d ata structures are of 
i n terest when designing backup syste ms. Such d ata 
structu res can be traversed so rhat segments arc re:�d 
in reverse time order. To u nderstand this concept, con
sider the root of some 011-disk darJ structu re .  This root 
m ust h ;wc been written after any of the d ata to '' hich 
ir rekrs ( p ropertY 2 ) . A d ata i tem that the root rd c r
cn ccs must h:J\·c been written bd()re the root and so 
must ha,·e been stored in a segment with a scgid less 
than or equal  to that of the segment in ,,·hich the root 
is stored (proper tv 1 ) . A s imi lar  ind ucrivc :1rgumen t em 

be used to show tll<l t  a ll\' on-disk d ata structure can be 
tra\·crsed using J si ngle p:�ss of segments in increasing 
segme nt age, i . e . ,  decreasing scgi d .  This is o f  particular 
i mcrest when considering how to rccm·cr se lective 
pieces of data ( e .g. ,  indiv idual  fi les)  ri·om an on-disk 
structure rh:-�r  has been stored in such a way that onk 
scq ucnti::!l  access is  Y iablc .  The storage of the segmcn�s 
that com pose J \'Olumc on t�1 pc as parr of a backup is an  
example ofsuch an on-disk d ata structu re .  

File Construction 

Whitaker, Bayley, and Widdowson describe the persis
tent add ress space as exported by the Spiralog LfS .' 

Essc nria l l y, the intcrbtcc presented by the J og
structured server i s  that oL1 memory (various re:1d and 
write operat ions ) indexed using a ri le  ident i fier  and an 
address range.  The e n ti re cont e n ts of a fi l e ,  rega rd less 
of type or s ize,  are d e fi n ed by the ri le  idcnr i fier and a l l  
possible addresses bu i l t  using tb:1t ident ifier. 

This means or· fi l e  construction is import::�nt when 
considering how to restore the contents of :1 ti l e .  Al l  

Al l  pointers specify 
previously writ1en segments. 

�r---;::::=�' ; �: " S3 

DIRECTION IN WHICH THE LOG IS WRITTEN 

F igure 3 
A V1 iid D�rc1 Strucrun: i n  the Log 



data contained in a fi le  defined by a file identifier can be 
recovered,  independent of how the ti le was created , 
without any knowledge of the ti le system structure. 
Conseq uently, together with the temporal ordering of 
data in an LfS, fi les can be recovered using an ordered 
l inear scan of the segments of a volume,  provided the 
on-disk data structures are traversed correctly. This 
mecbanism al lows efficient tile restore ti·om a sequence 
of segments. In particular, a set of fi les can be restored 
in a single pass of a saved volume stored on tape .  

Existing Approaches to Backup 

The design of the Spiralog backup attempts to com 
bine the advantages oHi le- based backup tools such as 
Fi les- 1 1  backup, UNIX  tar, and Windows NT backup, 
and physical backup tools such as UN IX dd, Fi les- 1 1  
backup/PHYSICAL, and HSC backup ( a  controller
based backup tor Open VMS volu mes) ." 

File-based Backup 

A file- based backup system has two main advantages: 
( 1 )  the system can expl icitly name fi les to be saved, and 
(2) the system can restore individual fi les. In this paper, 
the fi le or structure that contains the o utput data of 
a backup save operation is cal led a saveset .  Individual 
fi l e  restore is  achieved by scanning a saveset for the file 
and then recreati ng the ti le using t he saved contents. 
Incremental fi le- based backup usua l ly entails keeping 
a record of when the l ast backup was made ( either on a 
per- file basis or on a per-vol ume basis) and copyi ng 
on ly those fi les a nd d irectories that h ave been created 
or modified since a previous backup time. 

The penalty associated with t hese featu res of a ti le
based backup system is that of save performance. 
I n  efkct, the backup system performs a considerable 
amount of work to l ay out data in  the saveset to a l low 
simple restore. All fi les arc segregated to a much greater 
extent than they are in the fi le  system on-disk struc
ture. The l i m i ting factor in  the performance of a fi le
based save operation is the rate at  which data can be 
read from the source disk .  Although there are some 
ways to improve performance , in the case of a volume 
that has a l arge n u m ber of ti l es,  read performance is  
a lways costly. Figure 4 i l l ustrates the layouts of three 
different types of savcscts. 

Physical Backup 

I n  contrast to the fi le - based approach to backup, a 
physical backup system copies the actual blocks of data 
on the sou rce d isk to a saveset. The backup system is 
able to read the disk opti mally, which al lows an imple
mentation to achieve data throughpu t near t be d isk's 
maxi mum transfer rate . Physical backups typica l ly  
a l low neither individ ua l  file restore nor  i ncremental 

DIRECTION IN WHICH THE TAPE IS WRITTEN 

1 1  1 2 1 3 1 4 1 s 1 6 1 7 1 s 1 9 l 1 o l 1 1 1 · · · 1  
In a physical backup saveset, blocks are laid out contiguously on tape. 
File restore is not possible without random access. 

FILE 1 FILE 2 FILE 3 

In a file backup saveset. files are laid out contiguously on tape. 
To create this sort of saveset, lites need to be read individually 
lrom diSk, wh1ch generally means suboptimal disk access. 

DIR I SEGT I SEG SEG SEG I . .  · I 
In a Spiralog backup saveset, directory (DIR) and segment table 
(SEGT) allow file restore from segments. Segments are large 
enough to allow near-optimal disk access. 

Figure 4 
Layouts of Three Diftcrcnt Types ofSavcser 

backup.  The overhead required to include sufficient 
i n formation for these featu res usual ly erodes the per
formance benefits oftered by the physical copy. In 
addition , a physica l backup usual ly requires that the 
entire volume be saved regardless of how much of the 
volume is used to store data. 

How Spira log Backup Exploits the LFS 

Spiralog backup uses the snapshot mechanism to 
achieve on- l ine  consistency tor backup. This section 
descri bes how Spira log atta i ns h igh- performance 
backup with respect to the various save and restore 
operations. 

Volume Save Operation 

The save operation of Spiralog creates a snapshot and 
then p hysical ly copies it to a tape or disk structure 
called a savesnap. (This term is chosen to be differen t  
from saveset t o  emphasize t h a t  it holds a consisten t  
snapshot o f  the data . )  This physical copy operation 
allows high-performance data transfer with minimal 
processing. 1 0  In addition, the temporal ord ering of 
data stored by Spiralog means that this physical copy 
operation can a lso be an i ncremental operation . 

The savcsnap is a file that contains, a mong other 
i n formation ,  a l ist of segments cxactlv as thcv exist 
in  the log. The structure of the savcs�ap a l lo�·VS the 
efficient imple mentation of volume restore and ti le 
restore (see Figure 5 and Figure 6 ) .  

T h e  steps of a fu l l  save operation arc a s  fol lows: 

1 .  Create a snapshot and mount i t .  This mounted 
snapshot looks l i ke a separate, read-on ly fi l e  system . 
Read i n formation about the snapshot. 
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METADATA SEGMENTS (DECREASING SEGID) 
.---------------------------------� 

KEY 

DIRECTORY 
INFO 

PHYSICAL SAVESNAP 
RECORD (FIXED SIZE FOR 
ENTIRE SAVESNAP) 

� ZERO PADDING 

Figure 5 
SJ1·csn;1p Structure 

DIRECTION IN WHICH THE LOG IS WRITTEN 

SAVESNAP 

l 1 os 1 1 04 l 1o2 l 1 o 1 1 
DI RECTION I N  WHICH 
THE TAPE IS WRITTEN 

KEY: 

D U NUSED SEGMENT 

D USED SEGMENT 

Figure 6 
Cor-respondence bctll'ecn Segments on Disk Jnd in the 
SJI'CStl;lp 

2. Write the he:�d er ro the s;ll'esnap,  incl ud ing snap
shot i n f<:.m11:1tion such as the checkpoint pos i tion .  

3 .  Copy the contents o f  t h e  ri le system directories to 
the savesn ap.  

4 .  Write the J ist of segids that compose the snapshot 
to the savesnap as <1 segment table in decre:�sing 
scgid order. 

5. Copy these segments in d ccrc:�sing segid orde r  
rrom the volume to the  savcsnap (sec Figure 6) .  

6 .  Dismount :1nd delete t h e  sn apshot, leaving o n l y  the 
contents oftbe Ji ve vo l u me accessib le .  The cfkcr of 
de leti ng the sn:1pshot is  ro release :� I I  the space used 
to store segme nts tbJt contain onl y  snapshot data . 
A l l  segments th:n conta in chtJ in the li1·c volu me 
arc ldt i ntact. 
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SP SAVESNAP INFORMATION 

ST SNAPSHOT I N FORMATION 

The Spi ralog backup system is pri m ;lr i l y  physical .  
T h e  system copies t h e  vol u me (sn:�pshot) d:�ta in 
segments that arc .i<u·ge enough to a l l ow cfticicnt 
d isk reading, regardless of the n u m ber of riles in the 
volu m e .  To save a volume,  the Spiral og backup sys
tem bas to read a l l  the directories in the volume :�nd 
then a l l  the segments. I n  comparison, J ri le- based 
backup system must read J l l  the d i rectories a n d  then 
al l  the ti les. On I'O i u mes with L1rge ti le popul :�tions, 
ri le- based bac k u p  ped(Jrm:�nce s u fkrs greatly as a 
resu lt  of the number of read operations req u i red ro 
save the volu me. Our measu rements showed th;n the 
directory-gath eri ng phJsc o f' o ur copv opcr:nion was 
insign i ficant in re l :nion to rh e dJ.ta transkr d u ring the 
segment copv phase. 

Incremental Save Operation 

The i ncremcntJl S<ll'e oper:Jt ion in  Spir<1log is I 'Cl'\' 
differ,;: nt from tlut in a ti le- based b;K k u p .  We usc the 
tempora l ordering tCaturc of the LrS to ca ptu re on li
the ch anges i n a vol u me's dJtJ as p;:�rr of the incremen
tal sa,·e . The tcmpor;:�l order in g pr<ll· ides J simple \\'<1\' 
of detnm ining the relati1 -c age o r· d<H<l . To be precise, 
data in the segment with scgid s2 mu st ha1·e been writ
ten afi:cr d ata in the segment with segid sl i F :1nd on ly 
if s2 is greater thJn s l .  

Consider the l iktimc of a vol u me :1s Jn end less 
seq u e nce of segments. A bJckup copy of a volu me ;lt 
any time is a copy of a l l  segments r h :l t  contai n  ch t<l 
access i b le in that vol u me.  Segm ents in the vo l u me 's 
history that <H'C not included in rhe lxKkup copy a rc 
those that no longe r contain J.ny usdid lhta or those 
that have been c leaned . An incre ment a l  backup con
tains the seq ue nce of segments contai ning :-�ccess ib lc  
data written since a previous backu p.  

This is d i fferent ri·om an inu-c mcntJl  S<ll'e operation 
in a ti le- based backup sche me. The Spi rJ !og incremen
tal save operation copies onlv the data ll'ritrcn since 
the lasr backu p .  ln comp:�r ison ,  J ri l e - based b:lckup 



increnH.:ntJI SJIT comprises entire ti les that contain 
new or modi tied data . for example, consider an incre
menta l save of a vol ume in which a large datJbasc ti le 
h:1s h:1d only one n:cord updated in  place since a fu l l  
backup .  Spiralog's i ncremental sa1·c copies the  seg
ments written since the last fu I I  backup that conta in 
the mod i tied record with other updated tlk system 
index data. A ti l e - based backup copies the entire data
base ti l c .  

Thc t< > l lowing stcps t(>r the  incremental S<lVe opera
tion augment the six process steps previously 
described t(>r the save operation . Note that steps 3a , 
4a, and Sa tc> l low steps 3, 4, and 5 ,  respectively. 

3a .  Write dependen t savesnap information .  This is a 
l ist of the savesnaps requ i red to complete the 
chain ofscgmcnts that constitutes the entirc snap
shot contcnts. The savesnap information i ncludes 
a uniquc savcsnap identifier ( uolu me id, segmeul 

id. segmcnl ojj.i·cr ) .  This is the checkpoint position 
of the sn;�pshot Jnd is uniquc across volumes. 

4;1 .  Determine thc segment range to be stored in  this 
s:t1·esnap. This range is calculated bv re:tding the 
segment r:mgc of the l ast b:tckup from a tile stored 
on the sourcc volume.  

S:t .  Record thc minimum seg id stored in  this savc
snap with thc scgment table. The segment tab le 
contains thc scgids of a l l  segments in  the saved 
snapshot. The incremental savesnap contains 
scgments ident i ticd by a subset of these segids.  
The segid of the last segment stored in  the save
SIUP is recorded as the min imum segid held in the 
savesnap.  

7 .  Record on thc source volume the segment range 
stored in the sJvcsnJp. 

The implemcntation provides an i n terface that 
a l lows thc user to speci �r the maximum num ber of 
s�wesnaps rcquired t(>r 3 restore operation . This reature 
is s imiL1r to speci�· ing the le1·els in the U N I X  dump 

Fig ure 7 

TIME LIVE SEGMENTS I N  VOLUME 

Monday , 1 3 

Wednesday 

Friday 5 1 7 

Snapshot Contents in I ncremcnta l  Savesnaps 

uti l ity, where J l evel 0 save is a fu l l  backup ( it requ i res 
no other savesnaps tor a restore ) ,  and a l evel I sa1·e 
is :tn incremental backup since the fu l l  bJCku p ( i t  
requ i res one additional savesnap t(>r :1 rcstorc, n�uncly 
thc fu l l  backup ) .  

Figure 7 shows the savesnaps produced trom 
fu l l  and incremental save operations. Notc that the 
most rccent ly wri tten segment mav appear i n  t11·o 
d i frcrcnt savesnaps that supposed lv  contain d isjoint 
data. For example, segment 4, the youngest segmcnt 
i n  Monday's savesnap, appears in the sa1·esnaps madc 
on both Monday and Wednesday. The you ngest seg
ment is not guaranteed to be fu ll at the time of a snap
shot creation, and therefore a later savesnap may 
cont:t in data that was not in  the ti rst savesnap. 
Conseque nt ly, incremental savesnaps recapture thc 
oldest segment in  their segment range . 

Note that with this design a slowly changing ti lc 
c1n bc spread across manv incrementa l  s:�vesnaps. 
Restoring such a ti le accord i ngly m:1y req uire access 
to many sa1·esnaps. The fi le restore section shows tl1:1t 
the design of tile restore a l lows eftlc ient tJpe trJI'ersal 
t(>r these ti l es .  

Volume Restore Operation 

The Spiralog backup volume restore operation takes a 
ser ofsavesnaps and copies the segmcnts rhat make up  
a sn:tpshot onto a disk. Together, this set of segments 
and the location of the snapshot checkpoi nt dctine 
:1 vo lume . The steps involved in a volume restore ti·om 
a fu l l  savesn:1p arc 

1 .  Open the savesnap, and read the snapshot check 
poin t position fi-om the savesnap header. 

2 .  l n i ti �1 l ize the tJrgct disk to be a Spira log volume .  

3 .  Copy a l l  segments ti·om the savesnap to the tar
gct disk. Note that the segments written to thc 
target d isk  do not depend in  any 11·av on the t:Jr
gct disk geometry. This me�1ns thJt thc target disk 
m:tv be completelv d itkrent ti·om the source 

SAVESNAPS 

Ful l  save on 
Monday 

Wednesday 
since Monday 

9 Friday since 
Wednesday 

@ 
@ 
@ 
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disk from which the savcsnap was made, providing 
the target container is l arge enough to hold the 
restored segments .  

4. Backup declares the vol ume restore as  complete 
( no more segments wi l l  be written to the volume) .  
Backup tel ls the fi le  system how to mount the  vol 
tune by supplying the snapshot checkpoint location . 

A Spira log restore operation treats an i ncremental 
savesnap and all the preceding savesnaps upon which i t  
depends a s  a s ingle savesnap. For savesnaps other than 
the most recent savesnap ( the  base savesnap ) ,  the 
sn apshot i n tcJrmation and d i rectory in tcmnation arc 
ignored.  The sole purpose of these saves naps is to pro
,·idc segments to the base savesnap. 

To r�store a volume from a set of i ncrementa l  save
snaps, the Spiralog backup system pcr tcmm steps 1 
and 2 us ing the base savcsnap.  I n  step 3, the restore 
cop ies a l l  the segments in the snapshot ddincd by 
the base savcsnap to the target d isk .  ( Note that there 
is :-� one-to-one correspondence between snapshots 
and savcsnaps . )  The savcsnaps :�rc processed in reverse 
chronological order. The conten ts of the segment  
table i n  the  base savesnap define the l ist ofscgmcms i n  
the  snapshot to  be  restored . Al though the  volume  
restore operation copies a l l  t h e  segmen ts i n  the  base 
savcsnap, nor :: ti l  segments in the savcsnaps proc<.:ssed 
mav be req u i red .  Savcsnaps are inc luded in rhc restore 
prc;ccss i f thcv contain some segments that arc needed. 
Such savesnaps may a lso conta in s<.:gmcnts t lut \\'ere 
cleaned bdore the base savesnap was created . 

The structure of the savesnap a l lows the efficient 
location and copying of specific scgmcms. The segment 
table in the  savcsnap describes exactly which segments 
arc stored i n  the savesnap.  Since the segments are of 
a fixed size, it is easy to calculate the position with in 
the savcsnJp where a particu l ar segment is stored,  pro
vided the scgm<.:nt table i s  available ::md the position of 
rhc tirst segment is known.  This wi l l  a lways be the case 
lw the  time rhc segment ta ble has bcm rc�1d because 
tl�c scgmmts immediately fol low this tab le .  

Most savcsnaps are stored on tape . This  storage 
medi u m  lends i tsel f  to the index ing just dcscrib<.:d . I n  
particu lar, modern tape dri,·cs such :J S  rhc D ig ital 
LincJr Tape ( D LT) series prov ide f1st, relative t::tpc 
positioning that a l lows rape -based savesn:�ps to be 
selective ly re:�d more q u ickl y  than with a sequentia l 
sca n . "  S imilarl y, on random-acc<.:ss media such as 
d isks, :1 particu lar segment can be read without strict 
sequential scann ing of data. 

The volu me restore operation is rhcrdc>rc a physical 
opercltion .  The sc:gments can be read :tnd written cft-i 
cicnrlv ( c\'Cll i n  the case of i ncrcmcnt�1l savesn�1ps fro m  
sequentia l  mcd iJ  ) , resu lt ing in :1 high -pert(>rmancc 
recovcn· ti·om volume bilurc or s ite d isaster. 
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File Restore Operation 

The purpose of :-� ti le restore operation is ro provide 
a fast and effic ient  wav to retrieve a smal l  number of 
ti les from a savesnap wi thout pc:rtorming a ful l  vo lume 
restore.  Typical ly, ti le  restore is used to recover f-i les 
that have been i n:tdvertcnt ly  de leted . To achieve h igh
performance ti l e  restore , we imposed the fo l lowing 
requirements on the design : 

• A tile restore session must process as few savesnaps 
as possible;  it should skip savesnaps that do not 
contain data needed by the session . 

• vVhcn processi ng a savesnap,  the fi l e  restore must  
scan  the  savcsnap l i ncarlv, i n  a single pass . 

Th<.: process of restor ing ti l es can be broken down 
into three steps: ( l )  d iscover th<.: fi l e  identifiers r(>r all 
the tiles to be restored ;  ( 2 )  usc the tile ident i fiers to 
locate th<.: ti l e  chta in the  saved segments, and then 
read that data; and ( 3 )  place the newly recovered data 
back into tbc current  Spiralog fi le  system . 

Discovering the Fi le Identifiers The user supp l ies the 
names of the ti les to be restored . The mapp ing 
between the ti le  names and tb<.: til e  identi tiers <lssoci 
ated with these ll�lmes i s  stored i n  the segments, but  
th i s  i n t(mnation cc1nnot be d iscovered simplv bv 
i nspecting the contents of the  s:tved segments .  A 

corollarv of the te mpora l ordering of the segments 
within a savesnap is tlut h ierarchical  i n form atio n , such 
as nested d i rectories, rends to be presen ted in  precise l v  
the  wrong order tc >r scan n ing i n  a single pass. To over
come this prob lem , the s:1ve operation writes the com
plete directory tree to the savcsnap before copying any 
segments to the savcsnap. T l 1 is tree maps fi le nan1<:s to 
identi fi e rs tc>r every ti le  :l lld d irectory i n  the savcsiLlp .  
The ti l e  restore session constructs a partial tree of the 
names of the ti les to be restored . The parti a l  ttTc is 
then ma tched , i n  a s ingle pass , �lg<l inst the complete 
tree stored in the Sa\Tsnap . This process prod uces the 
required til<: identifiers. 

Locati ng and Read ing the File Data Aiter d i scovering 
the ti le  idcnt iticrs, the ti le restore session reads the J ist 
of segments prese nt  in the sa,·esnap; this l ist comes 
after the d ircctorv tree and bdcJre any saved segments .  
The  ti le restore �hen switches focus to d iscover pre
cise ly which segments conta in  the ti le  data that  corre-
spond to the ti le  idcntiriers. 

. 
The tirsr segment read ti·om the savesnap comatns 

the rai l ofrhe log. The log provides a mapping bctwem 
file identifiers and locations of data with in segments. 
The tai l of the lo•r contains the root of the map. 

We developcd0J s impk i nterbcc for the tik restore 
to usc to na, ig�ltc the m�1p .  Esscntia l lv, this i n tcrbcc 
permits tbc rcrric\·�11 of a l l  mapping in t(m1lation 



relevant to a particu lar  ti le identifier that is held within 
a given segment.  The mapping i n formation returned 
through this interface describes either mappi ng i nfor
mation he ld  e lsewhere or real fi le  data. One character
istic of the log is that anything to which such mapping 
information poin ts must occur earlier in  the log, that 
is, in  a subsequent saved segment .  Recal l  property 2 of 
the LFS on-disk d ata structures. Conseq uently, rhe file 
restore session will progress th rough the savesnaps in 
the desired l inear fashion provided that requests are 
presented to the interface in the correct order. The 
correct order is determi ned by the a l location of segids. 
Since segids increase monotonica l ly over time, it is 
necessary only to ensure that req uests are presented in  
a decreasing segid order. 

The ti l e  restore i n terface operates on an object 
cal led a context. The context is a tuple that contains a 
location in the log, namely (segid, ojf\·et), and a type 
field. When suppl ied with a fi le  identi fier and a con 
text, the core function of the interface i nspects the seg
ment determined by the context and returns the set of 
contexts that enu merate al l  avai lable m apping i n for
mation for the file ide nti fier  held at the location given 
by the initial context. 

The type of context returned ind icates one of the 
fol lowi ng situations: 

633 

METADATA 

SAVES NAP 

555 478 

EXTENT OF SAVESNAP TRAVERSAL SO FAR 

• The location contains real fi le  data . 

• The location given by the context holds more 
mapping i n formation . I n  this case , the core fun c 
tion can b e  applied repeated ly  to determine t h e  
precise location of the fi l e's data.  

A work l ist  of contexts i n  decreasing segid order 
drives the fi l e  restore process. The procedure tor 
retrieving the data for a single fi le  identifier is as fo l 
lows. A t  t h e  outset of t h e  fi l e  restore operation, the 
work l ist holds a single contex t  that identifies the root 
of the map ( th e  tai l  of the log) .  As items are taken from 
the head of the list, the ti le restore m ust perform one 
of two actions. If the context is a pointer to real file 
data, then the tile restore reads the data at that location. 
If the context holds the location of mapping informa
tion , then the core fimction must be appl ied to enu
merate a l l  possible fimher mapping i n formation held 
there. The tile restore operation places a l l  retu rned 
contexts in  the work list in the correct order prior to 
picking the next work item. This simple proced ure, 
which is i l lustrated i n  Figure 8,  conti n ues u nti l  the 
work l ist is empty and al l  the file's data has been read . 

To cope with more than one ti le, the fi le restore 
operation extends this procedure by converting the 
work l ist  so that it associates a particu lar fi l e  identi fier 

1 95 69 59 

TARGET FILE SYSTEM FOR FILE RESTORE 

Figure 8 

D IRECTION IN WHICH THE LOG IS WRITIEN 

KEY: r - - - ,  ... - - - � 
• 

FILE DATA 

FILE SYSTEM MAP DATA 

The shaded areas represent the file data to be restored and the file system metadata that 
needs to be accessed to retrieve that data. The restore session has thus far processed 
segment 478. Part A of the file has been recovered into the target file system. Parts B and C 
are st1 l l  to come. Aller processing segment 478, the file restore visits the next known parts of 
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment 
59 Will be on the work list. The next segment that the file restore will read is segment 69. so the 
sess1on can sk1p the intervemng segment (segment 1 95). 

Fi le Restore Session in Progress 
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with e:Kh context .  F i le  restore i n i ti a l i zes the work l ist 
ro hol d a poi nrer ro the root of the map ( rhe rail  of the 
log) t(lr each ti l e  idemi tier ro be n:srored . The eftec r  is 
ro i merleave req uests ro read more than one ti l e  whi le 
mainta in ing the correct segid ordering. 

A fu rther su btl etY occ u rs w hen rhc conrexr ar  the 
head of rhc work l ist is tc)U nd ro rckr ro a segmen t  
outside the curre n t  savesnap.  The ordering imposed 
on the work l ist i m pl ies that a l l  su bseq uent  i tems of 

work m ust also Lx: outside the cu rrent S31'esnap.  This 
fcl l lows from the rc m por.1l orderi ng properties of LFS 
on-d isk str u c tu res and the way in which incremental 
savesnaps a rc ddi n e d .  vVh e n  this s itu:nion occurs, the 
work list is  sa1·cd . When the next s�wesn:tp is ready for 
processing, the ti le  restore st:ssion c:tn be restarted 
using the saved work l ist �1s the start ing point . 

D u ring this step, the fi le  restore writes the pieces o f  
fl ies t o  the target vo l u me a s  they arc read from the 
savcsnap. Since the ti le restore p rocess a l locates fi l e  
iden tifiers o n  a per-vo l u me basis, restore m ust a l locate 
n ew fi le  identifiers in the target volu m<.: ro accept the 
datJ. being read from the source savcsn:1p.  

The new ti le idemi ticrs arc hidd<.:n  tl-om users d ur 
i n g  the tik restore u n t i l  the ti l e  restore process has fi n
ished si nce th<.: ti les a1T nor  compl ete and may be 
m issi ng vira l  parts such as access perm issi ons.  Rather 
than a l low access to rh<.:sc parri:�l  ti les, the ti le  restor<.: 
h ides rhe new ti le ident i fiers u nt i l  :: d l  the data is pres
ent,  �lt which rime the ti na!  stage of the fi l e  restore can 
take place. 

Making the Recovered Fi les Avai lable to the User In 
rhe t h i rd step o f thc process, the ti le restore operation 
makes the ncw]v recovered ri les �1ccess i b k .  At the 
begi n n i ng of the step, the ti les exist on l 1· as bits of data 
associ�1ted 11·irh IKII' ti l e  idmritiers-thc tiles do not vet 
ILwc n ames. The n:1mes rh�1r  :11-c now bou n d  to these 
ti le identifiers come tl·om the part ia l  d i rectory tree that 
was origi n a l l v  used to match ag�1 i nst the d i rectory tree 
in the s�wcsm p.  This ti n J !  step restores the origi na l  
names :.11 1 d  conte n ts ro a l l  the ri les that were origi n a l l v  
req uested . T h e  ti les reta in  t h e  new ti l e  ident i fiers that 
were a l l oc:Jtcd d u ring the ti le  restore process. 

Management of Incremental Saves 

One design go:1l rclr the Spiralog backup was to red u ce 
the cost of storage m:J n J.gcmcnt.  The d esign i n c l udes 
the means o f perr(m11i ng a n  i n cremental  vol ume save 
that cop ies only  data wri tten since the previous 
back u p .  To i m plement a backup strategy that never 
req u i res more than one fl.d l backup but :� l l ows restores 
using J. finite nu m ber of savcsnaps, we designed and 
implemented the sav<.:snap merge fu nctio n .  

S:�,·csnap merge operates s imi brlv t o  vol u m e  
restore,  bur  instead of copyi ng segments t o  :1 d i s k  as 
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in a vol u me restore, savcsnap merge copies segments 
to a n ew savesn:1p. As s hown in Figure 9, the cfkct 
of mergi ng a base savcsn:1p and all the i ncrementa l  
savesnaps upon which  i r  depends i s  t o  prod uce a tl.d l  
savesnap. This savesnap is precisdy the one that wou l d  
have been created had th<.: base SJI'CSnap been spccitied 
as a full savesnap inst<.:ad of an i ncrcm<.:n t:t l SJI'eSn::lp .  
Spira log merge copies the savcsnap i n t(lrmarion and 
the d irecrorv i n r(mnation stored i n  rbe b:tse sa1·esn:1p 
to the merged sa1•esnap bdclrc it copies the segment 
table and the segments. 

Savesnap merge pr<ll'ilks :1 practicc l i ll'al' of mJ nag
ing very brge data volu mes. The merge operation can 
be used to l i m i t  the n u mber of savcsnaps req u i red to 
restore a snapshot, even i f  fu l l  backu ps :1re IKI'Cr take n .  
Merge i s  independent o f  t h e  sou rce vo l u me a nd c a n  be 
u ndertaken on :1 d i fterw r system ro a l low fu rther sys
tem management fle x i b i l i ty. 

Summary of Spira log Backup Features 

A s u m mary of the features :�mi pcrt<.mnancc provi lkd 
by the Spiralog backup system appcm i n  T:t blc 3 at 
the end of the Resu l ts secti o n .  For com p:1riso n ,  the 
table also cont:Jins correspon d i n g  i n f(lrmJtion t(Jr the 
ti le - based and physical appro:1chcs to backup .  

Results 

We m easu red vol u m e sav<.: �1 11d i n d i1·i d u a l  ti l e  r<.:storc 
performanc<.: on both the Spi ralog backup system and 
the backup svstcm for Fi les- I I , the origi na l  Open VMS 
file svste m .  The hJrd11 �1 rc contigu r:nion consisted of 
a DEC 3000 Model 500 and a s ingle RZ25 source disk 
each tor Spira log and F i les - 1  J m l  um cs, r<.:spccri' c l v. 
The target dc\·ice tor the backup 11 �1s :t TZ�77 tape . 
The SI'Stem was runn ing u nder  the Open VMS \'crsion 
7.0 operating system �md Sp i ra log 1·crsion 1 . 1 .  The 
volumes ll'ere popu btcd ll'i th ti le d istri b u tions th�H 
refl ected typica l  user acco u n ts in o u r  dc,·c lopmcnt 
environment .  Each 1·o lume cont::t i ncd 260 meg�1bytcs 
( MB)  of user data,  which inc l uded a total of 2 1  ,682 
fi les in 40 I d i rectories. 

Volume Save Performance 

For both the Spira log backup a nd the Files- I I  backup,  
we saved the sou rce vol u m e  to J. ti-csh ly i n it i �1 l i zed tape 
on an otherwise id lc syste m .  VVc mc:1su red the elapsed 
time of the save opnation and recorded the size of the 
output savesnap or savcsct. vVc ave raged the resu l ts 
over five iterations of the bench mark.  T :1 bk J presents 
these meas u rements and the resu l ting throughput .  

The thro u gh p u t  represents th<.: �l l'cragc rate in  
meg:�bvtes per second ( MB/s) o f  wri ti ng ro rap<.: m-er 
the d urat ion of a save operation. In the case of 
Spiralog, rape t h roughput varies grcarlv ll'i th tbc 



Figure 9 
Merging Savesnaps 

Ta ble 1 

BACKUPS 

Monday - Full 

Wednesday 
Incremental 

Friday 
Incremental 

Merge three savesets to produce one 
new savesnap equivalent to a full 
savesnap taken on Friday. 

Performance Comparison of the Sp i ra log a n d  F i les-1 1 Backup Save Operat ions  

Elapsed Time 
Backup System (Min utes:seconds) 

Sp i ra log save 05:20 

F i les- 1 1 backup 1 0: 1 4  

phases o f  the save operation.  During the d irectory 
scan phase ( typically up to 20 percent of the total 
elapsed save time ) ,  the only tape output  is a compact 
representation of the volume directory graph. In com
parison, the segment writing phase is usually bound by 
the tape throughput rate. In this configuration , the 
tape is the throughput bott l eneck; i ts maximum raw 
data throughput is 1 .25  M B/s ( uncompressed ) . 1 1  

Overa l l ,  the Spira log vol ume save operation i s  nearlv 
twice as f:1st as the Fi les- 1 1  backup volume save opera

-


tion in this type of computing environment. Note that 
the Spiralog savesnap is larger than the corresponding 
F i les- 1 1  saveser .  The Spiralog savesnap is less e fticient 
at holding user data than the packed per- tile represen
tation of the Fi lcs- l l  saveset. In  many cases, though, 
the higher pert(xmance of the Spira log save operation 
more than outweighs this i nefficiency, particularly 
when it is taken into account that the Spiralog save 
operation can be performed on-l ine.  

File Restore Performance 

To determine ti le  restore performance, we measured 
how long i t  took to restore a si ngle fi le from the 
savesets created in the save benchmark tests. The hard
ware and software configurations were identical to 
those used tor the save measurements. \Ve deleted 
a s ingle 3 -ki lobyte ( J(li ) ti le ti·om the source volume 
and then restored the ti le .  We repeated this operation 
n ine times, each time measuring the time it took to 
restore the fi le .  Table 2 shows the results .  

Savesnap or  
Saveset Size Th roug h put 
(Megabytes) (Mega bytes/second) 

339 1 .05 

297 0.48 

Table 2 
Performa nce Comparison of the Sp i ra log and F i les-1 1 
I nd iv idua l  F i l e  Restore Operations 

Backup System 

Sp i ra log f i l e  restore 

F i les- 1 1 backup 

Elapsed Time 
(Minutes:seconds) 

0 1 :06 

03 :35 

The Spiralog backup system achieves such good 
pertormance for tile restore by using its knowledge of 
the way the segments are laid out  on tape. The fi le 
restore process needs to read on ly those segments 
required to restore the tile; the restore skips the inter
vening segments using tape skip commands. In the 
example presented in Figure 8,  the restore can skip 
segments 555  and 1 95 .  I n  contrast, a file-based backup 
such as Fi lcs- l l  usual ly does not have accurate index 
ing information to min imize tape 1/0 . Spiralog's 
tape-skipping benefi t  is particularly noticeable when 
restoring small numbers of fi les from very l arge save
snaps; however, as shown in Table 2, even with small 
savesets, i ndividual fi le  restore using Spira log backup is 
three times as fast as using Fi les- l l .  

Table 3 presents a comparison of rhe save per
formance and features of the Spiralog, ti le- based, and 
physical backup systems. 
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Table 3 
Comparison of Sp ira log, F i l e-based, a n d  Phys ica l  Backup Systems 

Save performance 
(the number of 1/0s 
req u i red to save the 
the sou rce vo l u me) 

F i l e  restore 

Vo l u m e  restore 

I ncrementa l save 

Spiralog Backup 
System 

The n u mber of 1/0s is 
O(number of segments that 
conta i n  l ive data) p l us 
O(number of d i rectories) 

Yes 

Yes, fast 

Yes, physica l 

Fi le-based Backup 
System 

The n u m ber of 1/0s is 
O(nu mber of f i l es) 
1/0s to read the f i le  
data p lus  O(nu mber 
of d i rectories) I /Os 

Yes 

Yes 

Yes, ent i re f i les  that 
have changed 

Physical Back u p  
System 

The n u m ber of 1/0s 
is O(size of the d isk) 

No 

Yes, fast but l i m ited 
to d isks of the same size 

No 

Note that this table uses "big o h "  notat ion to bound a va lue.  O(n), which i s  pro n o u nced "order of n, " means that t h e  value represented is n o  
greater t h a n  Cn for some constant C,  regardless of the va lue o f  n. Informal ly, t h i s  m e a n s  t h a t  O(n) c a n  be t h o u g h t  o f  as s o m e  constant m u lt i p l e  
of n. 

Other Approaches and Future Work 

This section out l i nes some other d esign options 
we considered for the Spiralog back u p  syste m .  O ur 
approach o ncrs further possi b i l i ties in a n u m ber 
of areas. \Ve describe some of the opportun i ties 
avai l a b l e .  

Backup and the Cleaner 

The benefits of the write perf(xmancc g�1 i ns in an LFS 
arc attai ned at the  cost of having to c lean segments . "  
An opportunity appears to exist i n  com bining the 
c leaner a n d  bac kup functions to red uce the amount of 
work done by either or  both of these com ponents ;  
however, the aims of backup and tbe cleaner are  qu ite 
diftcrmt.  Backup needs to read a l l  segments written 
since a speci tlc time ( in the case of a ti.J I I  backu p ,  since 
the birth of the vol u m e ) .  The cleaner needs to defrag
ment the tree space on the vol u m e .  This is done most 
efficimtly by relocating data held in certain segments.  
These segments are those that arc suHicien t ly  empty to 
be worth scave nging tor ti-ee space . The dat�l in these 
segments should a lso be stable in the sense that the 
data is u nl ike ly  to be deleted or ou tdated im med iately 
after re location.  

The on l y real benefit that  can be exacted by looking 
at thest fu nctions together is to c lean some segments 
whi le performing back u p .  For example,  once a stg
mcnt has been read to copy to a savesnap,  i t  can be 
cleaned . This approach is probably not a good one 
because i t  redu ces system pedorm::mce i n  the fo l l ow
i n g  ways: additional  processing req u i red in c lc: : m ing 
removes CPU and memory resources ava i lab le  to 
applications, and tht cleaner gtneratcs \\'rite opera 
tions that rtd ucc t h e  backup rtad rate . 
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There are two other areas in which backup and 
the cleaner mechanism i n te ract  that warrant  fu rther 
i nvestigatio n .  

l .  Th e save opcLltion copies stgments i n  their  
e nti rety. Th:1t  is, the operation copies both "sta l e "  
(ol d )  cbtJ and l i\'c d ata to a s�1vesnap.  T h e  cost o f  
ex tra storage m e d i a  t(>r t h i s  extra neous data is 
traded otfagainst the performance penalty in trying 
to copy only l ive data .  It appears that the tile systtm 
should run the c lemtr vigorously prior to a backup 
to min irnizt the sta le data copied . 

2 .  I ncremental savesnaps conta in  c l eaned data .  This 
means that an i ncremental savesnap contains a copy 
of data that a lrtady exists in one of the savcsnaps on 
which it depends. This is an  apparent waste ofdhm 
and storagt space. 

It is best to undert:� kc a ful l  backup a fter a thorough 
cleaning of the vol u m t .  A single strategy tor incremen
ta l backups is  l ess easy to dctine .  O n  one hand,  the s ize 
of an i ncrcmcll t:t l backu p is incrtased if much c lemi ng 
is pcd(m11td bd(l!-c the bac kup . On tht other h :m d ,  
restore operations from a l a rgt i ncremental  backup 
( particu larly sclectivt ri l e  rcstorts) are l i ke ly  to be 
more efticitnt.  The larger tht incremental  backu p, the 
more data i t  con tains .  Conseq uent ly, the c h a nce of 
restoring a s ingle ti l e  trom just the base savesnap 
i n c reases with the s ize of the incrcmemal backup . 
Studying the i ntcLKtions bcrween the backup and the 
cleaner may oft-Cr some i nsight i n to how to i mprove 
either or both of thest components. 

A conti nuous b�1ekup system can takt copies of seg
ments ti·om disk using pol icies s imi lar  to the cle:mcr. 
This is expl ored in Koh l 's paptr. 12 



Separating the Backup Save Operation into a 

Snapshot and a Copy 

The (ksign of the save operation involves the creation 
of a snapshot toll owed by the tast copy of the snapshot 
to some separate storage . The Spiralog version 1 . 1  
imp lementation of the save operation com bines these 
steps. A snapshot can exist only during a backup save 
operation . 

System administrators and appl ications have signifi 
cantly more flexibil ity if the sp l i t  i n  these two fu nctions 
of backup is visi ble. The abi li ty to create snapshots that 
can be mounted to look like read -on ly  versions of a til e  
system may eliminate the need for the large number of 
backups performed today. I ndeed , some fi le systems 
ofkr this kature 6·7 The additional advantage that 
Spir:. dog otkrs is to al low the very efticient copying of 
individual snapshots to off l ine medi:t. 

Improving the Consistency and Availability 

of On-line Backup 

There :�re a nu mber of ways to improve appl ication 
consistency <lnd avai labi l ity using the Spiralog backup 
design . In addition, some of these fCJturcs further 
reduce storage management costs. 

lntervolume Snapshot Creation Spiralog al lows a 
practical way of creating and managing large vol umes, 
bur there wi l l  be times when applications req u ire data 
consistency tor backup across volumes. A coordi nated 
snapshot across volumes wou ld provide this. 

Appl ication Involvement The Spiralog version l . l  

implemt.:ntation does not address appli cation involve
nKnt in tht.: creation of a snapshot. A snapshot's (On
tuns ::tre precisely the volume's contents that �1 re on 
disk at tht.: time of snapshot creation . This mt.:ans that 
appl ications acct.:ssi ng the vol ume have to (Ommit 
indepe ndt.:ntly to the ti le  system data they rt.:quire ro 
be part of the snapshot. 

Thert.: is an emerging trend to design systt.:m
lcvel intcrb(cs that a l low better app l ication interac
tion with the �i le system .  For example, tht.: Windows 
NT opt.:r::tting system providt.:s the oplock and 
NtNotiR,ChangeDirectory intnfact.:s to ad\'ise an 
i ntnestt.:d appl ication of changes to ti les and d ireno
rics. Simil ;1rly, an interface could al low appli(ations to 
registt.:r an interest with the file system tor notification 
of an impending snapshot creation .  The appl ication 
would tht.:n be able to commit the data it tKt.:ds as part 
of a ba(kup and continue, thus improving appl ication 
consistt.:ncy ::tnd ava i labi l ity and reducing work for sys
tem administrators. 

Minimizing Disk Reads 

The Spira log file restore retrieves the data that 
constitutes a nu mber of �i les in a single pass of 

segments read in  a specific order. This design was 
important to a l low the efficient restore of fi les from 
sequential media .  

More general ly, this way of traversing the file system 
al lows specific, known parts of a set of fi les to be 
obtained by reading the segments that conta in part of 
this data only once. This tech nique is also i nteresting 
for random-access media storage of volumes because 
it describes an algorithm for m i n imizing the number 
of d isk reads to get this data.  Possible appl ications 
of this technique art.: nu merous and are particul arly 
interesting in the context of data management of very 
large volu mes. 

For example, su ppost.: an appl ication is required 
to monitor an attri bute (e .g . ,  the time oflast access) of 
a l l  fi les on a massive volume.  Su ppose also that the vol
ume is too big to al low the application to trawl the fi le 
system dai ly tor this infcxmation ; th is process takes too 
long. If the appl ication maintains a database of the 
i n formation,  it  needs only to gather the (hanges that 
h ave happened to this data on a daily basis. Therefore, 
the application could obtain this i n formation by tra
versing only those segments written s ince the last time 
i t  updated its database and locating the relevan t  data 
withi n  those segmt.:nts. Our mechanism for restoring 
fi les provides exactly this capabi l ity. An investigation of 
how appl ications might best use th is  te(hnique cou ld 
lead to the design of an i nter face that the file system 
cou ld use tor tilSt scanning of data. 

Conclusions 

File systems use backup to protect against data loss. 
A sign ificant portion of the cost associated with man
aging storage is d irectly related to the backup func
tion . ' 3- ' 7  Log-structured data storage provides some 
features that red uce the costs associated with backup.  

The Spira log log-structured ti le system version l . l  
tor the OpenVMS Alp ha operati ng system includes 
a new, h igh- performance, on- l ine backup system. The 
approach that Spiralog takes to obtain data consis
tency tor on- l ine backup is simi lar to the snapshot 
approach used in Network Appliance Corporation's 
FAServer, the Digital UNIX Advanced File System, and 
other systems."·7 The feature unique to the Spiralog 
backup system i s  i ts use of the physical attributes of 
Jog-structured storage to obtain high-pertonnance 
saving and restoring of data to and from tape . In par
ticu lar, the gain in savt.: performance is the resu l t  of 
a restore strategy that can efticiently retrieve data from 
a sequence of segments stored on tape as they arc on 
d isk. This design leads to a min imum of processing 
and d iscrete 1/0 operations. The restore operation 
uses improvements in tape hardware to red uce pro
cessing and 1/0 bandwidth consu mption; the opera
tion uses tape record skipping within savesnaps for fast 

Digital Tech nical Journal Vol .  8 No. 2 1996 43 



44 

data indexing. The Spiralog backup implementation 
provides an on- l int: backup save operation with signifi
cantly improved performance over existing offeri ngs. 
Performance of individual file restore is also improved . 
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Integrating the Spiralog 
Fi le System into the 
Open VMS Operating 
System 

Digital's Spira log file system is a log-structured 

file system that makes extensive use of write

back caching. Its technology is substantially 

different from that of the traditional Open VMS 

file system, known as Files-1 1 .  The integration 

of the Spiralog file system into the Open VMS 

environment had to ensure that existing appli

cations ran unchanged and at the same time had 

to expose the benefits of the new file system. 

Application compatibility was attained through 

an emulation of the existing Fi les-1 1 file system 

interface. The Spira log file system provides an 

ordered write-behind cache that allows applica

tions to control write order through the barrier 

primitive. This form of caching gives the benefits 

of write-back caching and protects data integrity. 
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I 
Mark A. Howell 
J u1ian M. Palmer 

The Spiral og file system is based 011 a log-stru cturing 
met hod rll3t off-ers fast writes and a bst, on-l ine backup 
capability. '- ' The i ntegration of the Srira log fi le system 
into the Open VMS operati ng system prese nted many 
cha l lenges. I ts progra mmi ng i ntnrace and its ex tensive 
use of write-back cachi ng were su bst;1 1 lt ia l ly  difkre n t  
ti·om those o f  the existing O p e n  VMS fi le svstc m ,  
known a s  F i l es-1 1 .  

To encou rage usc of the Sp ira log fi l e  system , we had 
to ensure that ex ist i ng appl i cations ran unchanged i n  
t h e  OpenVMS e nv i ronmen t . A ti l e  system em u lati on 
layer provided the necessary compati bi l ity by mapping 
t he Fi les-1 1 file system i n terrace onto the Sp i ra log ri l e  
syste m .  Bdore w e  cou ld b u i l d  t h e  emu Lnion layer, we 
needed to understa nd how these applications used the 
ri le  system i n terrace. The approach taken to u nder
sta nding appl i cation rcq u ire ll1C I1tS led to a ri le SVStCl11 

emu l ation layer t hat exceeded the origi na l compati b i l 
i ty expectations. 

The first part of th is paper dea ls  with the approach 

to i ntegrati ng a new ti le system into the OpenVMS 
environment and prese rvi ng app l icat ion compatibi l itY. 
I t  describes the various levels at which the fi le  system 
could have been int egrated and the d ecision to em u 
late the l ow- leve l  tile system i n terbcc . Tec hn i ques 
such as tracing, source code sca nn ing, a nd fu nctional  
analysis of the Fi les-1 1 ri le svstcm he lped determine 
which featu res should be suppo rted bv the emu lation .  

The Spiralog fi l e  system uses extensive write- back 
cachi ng to gai n  pe rtonnance over the write-through 
cache on the Files-1 1 ri le syste m .  Applications have 
relied on the ordering of writes impl ied by wri te
through cac h i ng to mai nta in on -disk consistency in  
the event of system rai l u rcs. The lack  of orderi ng 
guarantees preven ted the i mplementation of such 
careful write po l ic i es in write- b::tck e nviron ments .  The 
Spi ralog ri le system uses a wri te -beh ind cache ( int ro 
d uced i n  the Echo ti l e  syste m )  to a l l m.v  applications to 
take advantage of write-back cach ing pcrr(Jrmance 
while preservi ng carefu l  write pol i cies.'  This f-eatu re is 
unique in a comnH.:rcia l  fi le syste m .  The second parr of 
this paper describes the d i rlicul tics of i ntcgr:�ting write
back cach ing i nto a write-th ro ugh environment and 
how a write - behind cache addressed these probl ems. 



Providing a Compatible File System Interface 

Application compatibil ity can be described in two 
ways : compatibi l ity at the fi le  system interface and 
compatib i l i ty of the on-disk structure. S ince only spe
cia l ized appl ications use knowledge of the on-d isk 
structure and maintaining compat ib i l i ty a t  the inter
face leve l is a teature of the Open VMS system, the 
Spira log ti le system preserves compatib i l ity at the fil e  
system interface level on ly. In the section Fi les-1 1 and 
the Spiralog F i l e  System On-disk Structures, we give 
an overview of the major on-disk d ifferences bet\veen 
the t\VO fi le  systems. 

The level of in terface compatib i l ity wou ld have a 
large i mpact on how wel l  users adopted the Spiralog 
fi le  system. If data and appl ications could be moved to 
a Spiralog vol u me and r u n  u nchanged, the fi le  system 
would be better accepted . The goal tor the Spiralog 
file system was to ach ieve 100 percent i nterface com
patibi l i ty for the majority of existing appl ications. The 
i mplementation of a log-structured ti le system , how
ever, meant that certain featu res and operations of the 
Fi les-1 1 file system cou ld  not be supported . 

The Open VMS operating system provides a number 
of ti l e  system interfaces that are cal led by applications. 
This section describes how we chose the most compat
ible tile system interface. The OpenVMS operating 
system directly supports a system- leve l ca l l  i nterface 
(QIO) to the ti l e  system,  which is an extremely com
plex i nterface.' The QIO i nterface is very specific to 
the OpenVMS system and is d ifficu l t  to map directly 
onto a modern ti le system intedace . This in terface is 
used infrequently by appl ications but  is  used exten
sively by Open VMS uti l ities. 

Open VMS File System Environment 

This section gives an overview of the general 
OpenVMS fi le system environ ment, and the ex isting 

Open VMS and the new Spiralog fi le system i ntertaces .  
To emulate the Fi les-1 1 fi le system, i t  was important to 
understand the way i t  is used by appl ications i n  the 
OpenVMS environment .  A brief description of the 
Files-1 1 and the Spiralog file system i nterfaces gives an 
indication of the problems in mapping one interface 
onto the other. These problems are d iscussed later i n  
the section Compatibi l ity Problems. 

In the Open VMS environment, app l ications in ter
act with the ti le system through various interfaces, 
ran ging from high- level l anguage interfaces to d irect 
ti le system cal ls .  Figure 1 shows the organ ization of 
interfaces with in  the Open VMS environ ment, inc lud
ing both tl1e Spira log and the Fi les-1 1 fi le systems. 

The fol lowing brietly describes the l evels of interface 
to the til e  system.  

• H igh- level language ( H LL) l i braries. H LL l i braries 
provide ti le system fu nctions tor high- level 
l anguages such as the Standard C library and 
FORTRAN I/0 fu nctions. 

• OpenVMS language-specific l i braries . These 
l i braries offer OpenVMS-spccific ti le system fu nc
t ions at a h igh level .  For ex;�m ple, l ib$create_dir( ) 
creates a new d irectory with specitic OpenVMS 
security attributes such as ownership.  

• Record Management Services. The OpenVMS 
Record Management Services ( RMS) are a set of 
compl ex rou tines that form part of the Open VMS 
kerne l . These routines <�re pri mari ly used to access 
structured data within a fi l e .  However, there are 
also routines at the tile level ,  for example, open ,  
c lose, delete, ;�nd rename. The RMS parsing rou 
ti nes for ti le search <�nd open give the OpenVMS 
operating system a consistent syntax for ti l e  names. 
These rou tines also provide file name parsing oper
ations tor h igher level l ibraries. RMS calls to the fi le 
system are treated i n  the same way as direct applica
tion cal ls to the file system .  

APPLICATIONS 

r-

Figure 1 

n 1 HIGH-LEVEL LANGUAGE 1 1 OPENVMS LANGUAGE-
LIBRARIES, e.g. ,  C LIBRARY SPECIFIC LIBRARI ES 

RECORD MANAGEMENT SERVICES - SYSTEM CALLS I I  
OPENVMS FILE SYSTEM INTERFACE - SYSTEM CALLS (010) 

FILES- 1 1 FILE SYSTEM I EMULATION LAYER 

FILES 1 1  FILE SYSTEM 

SPIRALOG FILE SYSTEM 

The Open VMS Fi le  System Environment 
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• Fi les-1 1 file system interface. The Open VMS oper
ating system has traditional ly  provided the Fi les-1 1 
file system for appl ications. It provides a low- level 
fil e  system intert:ace so that applications can request 
fue system operations from the kernel .  

Each tile system cal l  can be composed of multiple 
subcal ls .  These subcalls can be combi ned i n  nu mer
ous permutations to form a complex file system 
operation. The number of permutations of calls and 
subcalls makes the fi le system interface extremely 
d i fficult to understand and use. 

• File system emulation layer. This layer provides 
a compatible i nterface bet\¥een the Spiralog ti le 
system and existing appl ications. Calls to export 
the new features avai lable in the SpiraJog file system 
are also inc luded in this layer. An important new 
feature, the write -behind cache, is described in the 
section Overview of Caching. 

• The Spiralog file system interface. The Spira log 
file system provides a generic fi le  system interface. 
This interface was designed to provide a s uperset 
of the features that are typically avai lable in fi le sys
tems used in the UNIX operating system. File 
system emu lation layers, such as the one written for 
Fi les-1 1 ,  could also be written for many different 
file systems." Features that cou ld  not be provided 
generical ly, for example, the implementation of 
security pol icies, arc implemented in the fi le system 
emu lation l ayer. 

The Spiralog fi l e  system's interface is based on the 
Virtual File System (VFS ) , which provides a fi le 
system interface s imi lar to those found on UNIX 
systems.7 Functions avai lable are at a higher level 
than the Fi les-1 1 fi le  system interface. For example, 
an atomic rename fitnction is provided . 

Files-1 1 and the Spira log File System 

On-disk Structures 

A major difference bet\'lecn the Fi lcs-1 1 and the 
Spiralog fi le systems i s  the way data is laid out on 
the d isk. The Fi les-1 1 system is a conventional, 
update- in-place fi le system -" Here, space is reserved for 
file data, and updates to that data are written back to 
the same location on the disk. Given this knowledge, 
appl ications could pl ace data on Fi les-1 1 volu mes to 
take advantage of the disk's geometry. For example, 
the Files-l l fi le system a l lows applications to place files 
on cylinder boundaries to reduce seck times. 

The Spiralog file system is a log-structured fi le  
system (LFS ) .  The entire volume is treated as  a con
tinuous Jog with updates to files being appended to 
the tail of the log. In efkct, fi les do not have a fixed 
home location on a volume. Updates to fi les, or cleaner 
activity, will change the location of data on a volume. 
Applications do nor have to be concerned where their 
data is placed on the disk; LFS provides this mapping. 
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With the advent of modern disks in the last decade, 
the exact placement of data has become much less crit
ica l .  Modern disks fi·cquently retu rn geometry i nfor
mation that does not reflect the exact geometry of 
the d isk. This nu l l i ties any advantage that exact place
ment on the disk ofters to appl ications. Fortunately, 
with the Files-l l fi le  system, the use of exact fi le  place
ment is considered a hint to the ti le  system and can be 
safe ly  ignored .  

Interface Decision 

Many featu res of the Spiralog fi l e  system and the 
Fi les-l l fi le system are not directly compati ble.  To 
enable existing applications to use the Spira log tile  
system, a suitable fi le system interface had to be 
selected and emulated . The fi le system emulation layer 
vvould need to hook into an existi ng kernel - level fil e  
system interface to  provide existing app l ications with 
access to the Spira log fi le system .  

Analysis o f  existing applications showed that the 
majority of ti le system ca l ls came through the R.J\.15 
i nterface. This provides a functional ly  simpler i nterbcc 
onto the lower l evel Fi lcs-1 1  interface. Most applica
tions on the Open VMS operating system use the R.MS 
interface, either di rectly or through H LL l i braries, to 
access the file system.  

Few appl ications make direct calls to the low- level 
Fi les-l l interface. Cal l s  to this intcrf1ce are typical ly 
made by RMS and OpcnVMS util ities that provide 
a simpl i fied interface to the ti l e  system .  lUviS supports 
fi le  access routines, and OpenVMS uti l ities support 
modi fication of file mctadata, f(.>r example, security 
information.  Although few in number, those applica 
tions that do cal l  the Fi les-l l fi le system directly arc 
significant ones. If tile only interface supported was 
RMS, then these ut i l i ties, such as SET F I LE and 
OpcnVMS Backup, would need signiticant modifica
tion. This class of uti l ities represents a large nu mber of 
the OpcnVMS uti l i ties that maintain the file system . 

To provide support tor the widest range of applica
tions, we selected the low- level Fi lcs-1 1 interface tor 
usc by the file system emulation layer. By selecting this 
interface, we decreased the amount of work needed 
for its emulation . However, this gain was offset by the 
increased compl exity in the interface emulation.  

Problems caused by this i nterface selection are 
described in the next section . 

Interface Compatibility 

Once the file system interface was selected, choices 
bad to be made about the l evel of support provided by 
the emulation layer. Due to the nature of tl1e log
structured ti le system, described in the section Fi lcs-1 1 
and the Spiralog F i le System On -disk Structures, ful l  
compati bi l ity of a l l  features in the emu lation layer was 
not possible .  This section discusses some of the deci
sions made concerning interface compatibi l ity. 



An i nit ia l  decision w::�s made to support docu
mented low- level Fi les-l l cal ls through the emula
tion layer as  ofi:en as  possi b le .  This  would enable a l l  
wel l - behaved appl ications to run unchanged on the 
Spi ra log ti le system.  Examples of wel l -behaved appli
cat ions are those that make use of H LL l ibrary ca l ls .  
The tol lowi ng categories of access to the fi l e  system 
wou ld  not be supported : 

• Those d i rectly accessing the disk without goi ng 
through the file system 

• Those making usc of specitlc on-disk structure 
information 

• Those making use of u ndocumented ti l e  system 
katu res 

A very smal l number of applications fel l  into these 
categories. Exampl es of appl ications that make use of 
on-di sk structu re knowledge are the Open VMS boot 
code, disk structure ana lyzers, and disk dcti·agmenters. 

The majority of Open VMS applications make ti le 
system calls through the 1'-LV\S interface. Using fi le sys
tem cal l - tracing tech niques, described i n  the section 
I nvestigation Techn iques,  a fu l l  set of ti l e  system calls 
made by RMS coul d  be constructed . Afi:er analysis of 
this trace data, it  was cle::�r that IUv\S used a smal l  set 
of we l l -structu red cal l s  to the l ow- level ti le system 
i ntertace. Further, detailed analysis of these cal ls 
showed that al l  RMS operations could be fu l ly  emu
lated on the  Spiralog fi l e  system .  

The su pport o f  Open VMS ti le system ut i l ities that 
made direct cal ls to the low-level Fi lcs- 1 1 intertace was 
important if we were to minimize the amount of code 
change requ i red in the Open VMS code b::�se. Analysis 
of these uti l i ties showed that the majority of them 
could be supported through tJ1e emu lation layer. 

Very rcw applications made use of katures of the 
Filcs-1 1 ti le system that could not be emu lated . This 
enabled a h igh number of applications to run 
unchanged on the Spiralog file system.  

Ta ble 1 
Categorization of F i l e  System Features 

Category Examples 

Compatibility Problems 

This section describes some of the comp::�tibil ity prob
lems that we encountered in developing the emulation 
layer and how we resolved them. 

When considering the compati bi l i ty of the Spira log 
ti le system with the Fi les-l l fi le system, we placed the 
features of the file system into three categories: sup
ported, ignored, and not supported . Table 1 gives 
examples and descriptions of these categories. A feature 
was recategorized on ly if it  cou ld  be supported but was 
not used, or if it could not be easi ly supported but 
was used by a wide range ofapplieations. 

The majority of Open VMS applications make sup
ported fi l e  system ca l ls .  These :�ppl ications wi l l  run as 
i ntended on the Spiralog ti le  system .  Few applications 
make cal ls that could be safe ly ignored . These appl ica
tions would run successfu l ly but could not make use of 
these features. Very few appl ications made calls that 
were not supported . Untortunatcly, some of these 
appl ications were very im portant to the success of the 
Spiralog ti l e  system, for example, system management 
ut i l ities that were optimized for the Fi l es-1 1 syste m .  

Analysis o f  applications that made unsupported cal ls 
showed the tol l  owi ng categories of use: 

• Those that accessed the ti l e  header-a structu re 
used to store a til e's attributes. This method was 
used to return mul tiple fi le attributes in one cal l .  
The supported mechanism i nvolved a n  ind ividua l  
ca l l  for each attribute .  

This was solved by  returning an emu lated fi le 
header to appl ications that contained the majority 
of information interesting to appl ications. 

• Those read ing d irectory fi les. This method was used 
to perform fast d i rectory scans. The supported 
mechanism involved a fil e  system call for each nJme. 

This was solved by provid ing a bulk di rectory 
read ing interface cal l .  This ca l l  was similar to the 
getd ircntries( ) ca l l  on the U N IX system and was 

Notes 

Su pporte d .  The operation requested 
was completed, a n d  a success status 
was retu rned.  

Requests to create a f i l e  or open 
a f i l e .  

Most ca l ls  made b y  appl ications 
belong in the supported category. 

I gnored. The operation req uested 
was i g n ored, a n d  a success status 
was retu rned. 

Not supported.  The operation 
req uested was i gnored, a n d  a 
fai l u re status was returned. 

A requ est to place a f i le i n  a 
specific pos it ion o n  the disk to 
i m p rove performance.  

A request to d i rectly read the 
on-disk structure.  

This type of featu re is i n compatible 
with a log-struct u red fi le syste m .  
It is very infreq uently used a n d  not 
ava i lable through HLL l i braries.  It 
co u l d  be safely i g nored . 

This type of request is specific to 
the F i les- 1 1 f i le  system and could 
be a l l owed to fai l  because the 
appl icat i o n  would not work on the 
Spira log f i l e  system.  It is used onl y 
by a few spec i a l ized appl ications. 
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straigh tr(>rward to replace in appl ications that  
directly read d i rectories.  

The OpcnVMS Backup ut i l ity was an example of 
:t system man:tgcmcm mil ity that d irectly read 
d irectory ti les .  The backup mi l i rv \\'aS cha nged to 
usc the d i rcctorv rc:1ding ca l l  on Spira l og volu mes. 

• Tl10sc access ing rcscnni riles. The existing file sys
tem stores :ti l  irs mctad:na in normal ti les that can be 
read lw :1ppl ic:t tions. These ri les :tre cal led reserved 
ri les and :11-e crc1tcd when a \ 'o lume is in iti�1 l i zed . 

No reserved ti les arc cn:ated on a Spi ralog volume,  
\\' ith the exception of  the  m:�ster t-i le  d i rectory 
( M FD ). App l iutions that 1-e:1d reserved ti les make 
spec i fi c  usc of on-disk structu re i n fi:mnation and 
are not supporrcd with the Spira log fi le system .  The 
M FD is used as the root d i rectory :�nd performs 
d i rectory tr:tvcrsa ls. This ti le  w:ts virtua l ly  emulated . 
It appears in directory l isti ngs of a Spi ralog volume 
and can he used to sta rr :t di rectory traversa l ,  but  i t  
docs not exist  o n  the volu me :t s  a real ri l e .  

Investigation Techniques 

This section describes the appro:tch taken to investi
gate the interhcc and compatib i l i ty problems 
described <l bovc.  Resu l ts ti·om these investigations 
were used to determine which tCJtures of the Fi les-1 1 
r! le system needed to be provided to prod uce J high 
b-el  of compati bi l ity. 

The invcstigJtion t-(>euscd on understJnd ing how 
applications c:d led the ti le  wstcm and the sem:1ntics of 
tbc c;�ll s . A number o f  techn iques were used in  l ieu 
of design documcnt:ttion t<>r <l pplications <md the 
Fi les- 1 1 ti le S\'Stcm .  T hese techn iques were a lso used 
to ;woid the d irect examination of source code .  

T h e  r(l l lo\\' ing techn iques \\'Crc used to understand 
appl ication calls to the fi l e  syste m:  

• Tracing ri le  S\'StClll opcrations 

Tracing ri le  system operations prm·idcd a large 
;�mount of chtJ r(>r appl ications .  A mod ified 
Fi lcs-1 1 ti l e  system was constructed that logged a l l  
ti l c  oper.nions o n  J vo l u me.  A fu l l  set of regression 
tests were then run  t(H· the 25 Digital and th ird 
party prod ucts most oti:cn l ayncd on the Fi les-1 1 
t-i l e  system . The d:lta was then reduced to detcr
minc the type o l-' ri l e  system ca l l s  made by the 
layered produ cts. Analysis of log data showed 
tlut most laycrcd prod ucts made t-i l e  systcm c;� l ls 
through H l .L l i braries or the IZJV!S interface. This 
techn ique  is usefu l  where source code is not avail
Jblc,  but  t-i.d l code p:1th cover:tgc is <lVJi lable to con
struct <1 fu l l  pictu rc of cal ls and argu ments. 

• Smveying appl ication maintaincrs on fi le system use 

Surveying applic:l tion maint:tincrs was a potential ! )' 
usefu l  techn ique t(>r :� lc !·t ing the other maimainers 
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about the impact of the Spira log ti le system .  J\l[orc 
than 2,000 su rveys were sen t  out ,  but rcwcr than 
25 usefu l resu l ts were rctu mcd . S:tdly, most appl i 
cation mainta iners were not aw:�t-c o f  how their 
product used the fi le s\·stcm.  

• Automated appl ic:�tion source code sc:�rch ing 

Autom:1tcd source code search ing qu ickly checks 
a la rge amount ofsourcc code .  This technique 1vas 
most usdi.d when :tn:� lyzing lil c  svstcm ca l l s  m:�de bv 
the OpenYt'viS opcDting system or uti l it ies. How
ever, this does not 1\'0rk we l l  \\'hen :�pplic:1tions 
make dvnamic oils to the ti l e  wstcm <1t run rime .  

The toll mving tech niques were used to undcrst:lnd 
the semantics of tilc system cal ls :  

• Functiona l  :�na lysis of the Fi lcs-1 1 �i lc system 

Functional analysis of the hlcs- l l  ti le system was 
one of the most usefu l  tcchn iqucs :�doptcd . 1 t  
avoided thc need to rcvcrsc-cnginccr the �i lcs-1 1 
fi l e  system.  Whenever possi b.lc, the Fi lcs-1 1 �i l c  sys
tem was treated as :1 black box, and its ti.mction was 
inferred from i n tcrbcc docu me ntation and app l i 
cation ca l l s .  This  techn ique  :1voidcd d u p l icat ing 
detects i n  the i nter face and enabled the d esign of 
the emulation la�'Cr to be derived ti·om ti.mction , 
rather t lun the ex isting implementation of the 
Fi les-1 1 svstem . 

• Test programs to determ i ne c;� l l  scmJntics 

Test programs \\'Crc used otcnsivclv to isolate spe
c ific appl ication calls to the ti le svstc m .  l nd i,·id ua l  
cal l s  could be  ana lvzed to dctcrm inc how rhcv 
worked with the Fi l es-1 1 ti le  S\'Stem and \\· ith the 
e m.u la t ion layer. This techn ique  t(xmcd the basis 
for an extcnsi,·e fi le system i nter race regression test 
suite without requiring the complete ;�ppl iCltion .  

Level o f  Compatibility Achieved 

The b el offi lc  system compatib i l irv \\'ith :tppl ications 
far exceeded our  in it ia l  expcct<l tions.  Tab le  2 summ<l
rizes the resu l ts of the regrcss ion tests uscd to veri�
compati b i l i ry. 

Table 2 i l l ustrJtcs that appl iutions that usc the C or 
the �O RTRAN langu<lgc or the RMS imcrbcc to 
access the fi le system can be e xpected to work 
unchanged . Verification with the top 25 Digital lay
ered prod ucts :1n d  th ird - parry prod ucts shows that 
a l l  products tbJt do not In<lkc spcc i ti c  use of hlcs-l l 
on-d isk featu res run with the Spiralog ti l e  system .  
Wid1 the vers ion 1 .0 release of rhe Spira log ti le syste m,  
there ;�rc no known compatib i l i ty issues. 

Providing New Caching Features 

The Spira log ti l e  svstem uses ordered writc-b :�ck cach 
ing to provide pcrti:m11Jncc benet-i ts ti>r app l iutions.  



Table 2 
Verifi cat ion of Compat i b i l ity 

Test Suite 

R M S  regressi o n  tests 

OpenVMS regression tests 

F i les- 1 1 compatibi l ity tests 

C2 sec u r ity test su ite 

C l a n guage tests 

FORTRAN ianguage te�s 

Number of Tests 

- 500 

- 1 00 

- 1 00 

- 50 d i screte tests 

-2,000 

- 1 00 

Write- back cac h i ng provides very d i fterent  semantics 
to the model of write-through cach ing used on the 
Fi les-l l ti le syste m .  The goal of the Spiralog project 
members was to provide write- back caching 
i n  a way that was co mpati ble with existing Open VMS 
applications. 

This section compares write -through and write- back 
caching and shows how some important OpenVMS 
applicatiom re ly on write-th rough sema ntics to pro
tect data ti·om system fai lure .  It descri bes the ordered 
wri te-back cache as i ntroduced in  the Echo file system 
and exp la ins how this model of cach i n g  ( known as 
write-hehind cach i ng )  is particu larly suited to the envi
ronment of  Open VMS Cluster systems and the 
Spira log l og-structured ti le  svste m .  

Overview o f  Caching 

During the last kw years, CPU pcrf{mnance improve
ments have continued to ou tpace performance 
im provements t(lr d isks. As a resu l t , the 1/0 bott le
neck has worsc iH.:d rather than im proved. One of 
the most succcssfi.d tech niques used to a l leviate this 
problem is  caching.  Cach ing means holding a copy of 
data that has been recently read ri·om , or written to, 
the disk in memory, givi ng appl ications access to that 
data at memory speeds rather than at disk speeds. 

VVrite-t h rough and write- back cach ing are two 
d i frerent models h·cqucnr ly used in ti le s�rstems. 

• Write-through caching.  In a write - t h rough cache, 
data read ti·om the d is k  is  stored i n  the i n - memory 
cache.  When data is  written,  a copy is placed in  
the cac he, but  the write request does not  return 
until the data is on the d isk .  Wri te- through caches 
i mprove the pcrtormance of read requests but not 
write requests. 

• Write- back cach ing.  A write -back cache improves 
the pert(ml1<11Ke of both read and write requests. 
Reads arc hand led exactly as in a wri te - th rough 

Result 

All passed.  

A l l  passed. 

All passed. 

All passed, g i ving the S p i ra log 
file system the same potent i a l  
security rat i n g  as t h e  F i les-1 1 
system. 

Al l  passe d .  

A l l  passed.  

cache.  This t ime thou gh,  a write request returns :1s 
soon as the data has bee n copied to the cac he;  some 
time l a ter, the data is written to the disk.  This 
method al l ows both read :md write requests to 
operate J t  main memory speeds .  The cache can also 
amalgamate write requests that supersede one 
another. By deterring and amalgamating write 
requests, a write- back cache can issue many tl.:wcr 
write requests to the d isk, using less disk bandwidth 
and smooth ing the write pattern over time. 

Figure 2 shows the write- th rough and write- hack 
cach i ng models .  The Spiralog ti le system makes exten
sive usc of cach ing, provi ding both \.vrite-through and 
write- back models .  The usc of ll"rite- back cach ing 
a l lows tbe Spira l og tile system to amalgamate writes, 
thus conservi n g  d isk bandwid th . This is cspcciallv 
i m portant in an Open VMS Cl uster system where d isk 
bandwidth is shared by several computers. The 
Spiralog ti le system attempts to amalgamate not j ust 
data writes h u t  also tile system operations. For example, 
many compilers create temporarv til es that arc de leted 
at the end of the compilation. With \vri tc- back caching, 
it is possi ble that th is type of tile may be created and 
deleted without ever being wrirtcn to the disk. 

There arc two d isadvantages of write- back cac hing:  
( 1)  if the system tai l s ,  any write requests that have 
not been written to the d isk arc l ost, and ( 2 )  on ce in 
the cache, any ordering of the write requests is lost. 
The data may be written fi·om the cache to the d isk in 
a com p letely d itlerent order than the order in  which 
the app l ication issued the write requests . To preserve 
data i n tegri ty, some appl ications rely on write orderi ng 
and the usc of carefu l  write techni ques.  ( Carehi l writ
i ng is d iscussed fi.u·ther in the section below. ) The 
Spiralog ti le system preserves tbta i n tegritv by provi d 
i n g  a n  ordered write- back cache known a s  a write
behind cache.  
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CACHE 
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Cach i ng is more i m portant to t h e  Spi ra log ti l t  
system than  i t  is t o  con vcntion�l l ti le systems.  Log
structu red ti le  systems have i n herently worse read 
pertonn�1 ncc rhan com·enrional ,  update - i n -pl ace ti l e  
svstems, d u e  to t h e  n eed to locate t h e  data i n  the log . 
As descri bed i n  another paper i n  rh isjour1 1a/. l ocating 
data in the log req u i res m ore disk I/Os than ;1 11 

upd ate-i n - p l ace ti le system 2 The Spiralog ti le system 
uses large read caches to other th is extra read cost. 

Careful Writing 

The Filcs-1 1 ti l e  system prm·ides \\'ri te -through 
semantics. Key Open VMS applications such as tr: msac
tion processing and the OpenVJ'v!S Record Man::tge
ment Services ( RMS) have come to rely on the i m pl ic it  
orderi n g  of write-throu gh.  Thcv use a tech nique 
kno\\'n as c::trcfu l  writing to pre\'(: llt data corruption 
fol lo\\'ing �l S\'Stem fai l u re .  

C1refu l  \\'ri ri ng a l lo\\'s an �1 ppl icnion to ensure rh:n 
rhe data on rhe d isk is never in :tn inconsistent or 
i nvalid st:ttc. This guara ntee <woids situations in which 
an appliCltion h:ts to scan and possibly re bui ld  the d ata 
on the d isk after :t system hi l u r e .  Recovery to a consis
tent state �1ti:er �l  svstcm fai l ur e  is oti:en a \'er�· complex  
and time - consum i n g  t:tsk. Bv ensur ing that the d isk 
can never be i nconsistent, u rcfu l  writ ing remm·es the 
need ten th i s t(mn of recovery. 

Ca refu l  wri ting is used in situations i n  which an 
upd;He requ ires several blocks on the d isk to be writte n .  
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Most disks guarantee atomic updJte of only J single 
disk block. The occurrence of a system tai l u re while 
several b locks are being updated cou l d  leave the blocks 
parti:d ly  upd :tted and inconsistent.  Cardi.d \\'ri ri ng 
amids this risk bv deti ning the order in \\'h ich the 
blocks shou ld  be upd ated on the disk . I f rhe blocks are 
\\'ritten in this order, the data w i l l  <l i ways be consistent .  

For example,  the ti le shown i n  Figure 3 re presents 
a persiste n t  data s trucwre .  At the starr of the ti le is a n  
i n d e x  b l ock, I ,  th at poi nts t o  rwo data blocks \\' i tbin 
the tile, A :m d R.  The applic:t tion wishes to update the 
data (A, R) to t h e  ne\\' dac1 ( A ' ,  B' ) . For the ti le to be 
,·a lid , the i ndex m ust poi nt to J consisrenr set o f ch ta 
blocks. So, the index must point either to (A, B )  or to 
(A ' ,  W ) .  I t  cannot point to a mixture such ;lS ( A ' ,  B ) .  
Si nce t h e  disk can gu:trantee t o  write only  J si ngle 
block �ltomicJ! Iy, the appl ication cannot si m plv \\'rite 
( A ' ,  W )  on top of (A, B) because that involves \\'riting 
two blocks. Should the system tai l  during rhc upcbrcs, 
doing so cou ld lca,·e the cbta in an i nva l id st:ttc . 

To solve this  problem,  the appl ication writes the 
new dac1 to the fi le in a specific order. F irst, it  wri tes 
the ncw da ta (A' ,  B ' )  to a nc\\' section of the ti le, \\':t i r
i n g  u nt i l  the data is \\'rittcn to the d isk .  O nce ( A ' ,  B ' )  
are known to be on the di sk, i t  atomicallv upd :ncs the 
index b lock to poi n t  to the nc,,· d:tt<l . The old blocks 
( A, B) :�1-c now obsolete,  :t n d  rhc space they consume 
can be reused . During the update , the fi.le i s  never i n  
<111 i nconsistent state . 
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Figure 3 
r:x�1mplc of a Careti. i l  Write 

Write-behind Caching 

A careful write policy rel ics tota l l y  on being able to 
control the order of writes to the disk .  This G mnot be 
ach ieved on a write-back cache because the write-back 
method docs not preserve the order of write req u ests . 
Reordering writes i n  a write- bac k  cache would risk cor
rupting the data that applications using carefu l  wri ting 
were seeking to protect. This is u n tclrtu natc because 
the pcrtcm11ancc bene fits of d e ferring the write to the 
d isk Jrc compatible with a careful write pol in•. Cm.:ful 
writing docs not need to know when the data is written 
to the d isk, on ly the order it is wJittcn . 

To al low these appl ications to gain the pcrt(mnancc 
of the write - back cache bur sti l l  prorcct their d ata on 
d isk, the Spiralog ti le system uses a variation on write
back oching known as write-behind caching. Int ro
d uced in the Echo tile system ,  write - be h i nd e1ching is 
essen tia l l y  write- back cac h i ng with ordering guara n 
tees.' The cache al lows the appl ication to spccit)r which 
writes must be ordered and the order in which they 
m ust be written to the disk.  

This is achieved bv providing the barrier primitive to 
applications. Barrier  defi nes an order or dcpendencv 
between write operations. For example, consider the 
d iagram i n  Figure 4:  Here, writes arc represented as 
a ti me-ordered q ueue,  with later writes being added 

TIME ----• 

Fig u re 4 
B<lrrier I n sertion in vVrite Queue 

WAIT UNTIL ON-DISK 

to the tai l .  I n  the ex�1mplc,  the application issues 
the writes in the order l ,2 , 3 ,4 . Without a b<lrricr, the 
cache cou ld write the data ro the d isk in any order ( tcx 
example,  1 , 3 ,4 , 2 ) .  If a barrier is placed in the write 
queue,  i t  speci fics to the cac he that all writes prior to 

the barrier must be written to the disk bdorc ( or 
atomical ly  with ) any write req uests after i t .  In the 
example,  i f  a barrier is placed after the second write, 
the cac he ti le system guJranrccs that writes 1 and 2 wi l l  
b e  written to t h e  d i s k  before writes 3 and 4.  vVritcs 1 
and 2 mav sti l l  be written in anv order, as could writes 
3 and 4 ,  but 3 and 4 wi l l  be written after 1 and 2 .  

A carefu l  write policy can easi ly be implemented on 
a write - behind cac h e .  As shown in Figure 5 ,  the Jppl i 
cation wou l d  usc barriers to control  the wri te ord er
ing. Two barriers arc req uired . The fi rst ( B l )  comes 
after the writes of the new data ( A ' ,  B' ) .  The second 
( B 2 )  is placed after the index update I ' .  B 1 is requi red 
to ensure that the new cbta is on the d isk before the 
index block is updated . B2 ensures that the index 
block is  updated bd(Jrc :my subseq uent write requests. 

The usc of barriers avoids the need to wait tor 1/0s 
to reach the d isk, improving C P U  ut i l ization . In  ad d i 
tion , t h e  Spi ra log ti le system al lows amalgamation 
of supersed ing writes between barriers, red ucing 
the n u mber of requests being written to the disk .  

NO BARRIER 

BARRIER AFTER 
SECOND WRITE 

Digital Tcchnic;ll Jounul Vol .  8 No. 2 1 996 53 



54 

START 

j ... I ..,. ..... I _____ ....... ....,.. ....... "'"T"_._ __ �-A-' ...._s_·_._ _____ ...JI wj i TE (A', B') 

I • 
BARRIER 81 t 

......, ...... _____ ...... _ ....... _ _._ __ .J.....,..A_' ...._s.,..·_._ _____ ...JI wi iTE ( I ') 

t t • 

Figure 5 
Ex<�mplc  o f �1 Carefu l  vVrite Using Barrier  

Internal ly, t he Spiralog ti le svstcm a l lows barriers to be 
placed between any two writ<: operations, even i f  thcv 
are to d i fkrc n t  fi les . The Spira log fi l e  system uses this 
to build i rs own carefu l  write po l icy for all  ch�1ngcs 
to Ji les, inc lud ing mctadata changes. This guaramccs 
that the fi le  system is alwavs consiste n t  and gives write
back pcrtcmnancc on changes to ti l e  metadata as we l l  
as data.  One major advan tage is that the Spi ra log ti le  
system docs not  req u ire a d is k  repair  u ti l ity such :�s the 
U N I X  system's fsck to rebui ld  the fi l e  system tc) l lowing 
a system b i l u rc .  

Barriers arc used i nterna l ly in  several p l aces to pre
serve the order of u pdates to the fi le system meradata. 
For exampk , when a ti le is extended , the a l location of 
new blocks must be written to the d isk bd()rc any 
subseq uent data writes to the newly a l located region .  
A barrier i s  pl aced immediatcJy after the write req u est 
to u pdate the fi le length . 

Barriers arc also used d u ring comp lex ti le operations 
such as a ti le  create . These complex operations ti·c
qucnrly u pdate shared resources such as pare n t  d i rec
tories .  The barriers preve n t  updates to these shared 
objects, avoid i ng the ris k  of corruption d u e  to the 
u pdates being reordered by the cache. 

At the app l ication leve l ,  the Spira log fi le  system pro
vides the barrier fl.mction onlv within a fi l e .  I t  is not 
poss ib le  to order writes between fi les. This WJS su r'fi 
cient to Jl !ow R.MS ( described in the section Open VMS 
File System Envi ron ment ) to exp loit  the performance 
of write- be hind cachi n g  on most of irs fi le organiza
tions. R.MS was enhanced to usc barriers i n  i ts own 
carefu l  write policy, which ensures the consistency of 
complex ti l e  organizations, such :1s i ndexed fi l es, even 
when thev �1re s u bject to wri te - beh i nd caching.  Since 
the majority of Open VMS app lications access the ti le 
system through R.MS, gai n ing write- behind cach i ng 
on al l  RMS ti l e  organizations provides a s ignificant 
pertormat\CC benefit  to appl ications. 
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I nrernal lv, the Spiralog ti le  system supports barriers 
between ti les .  The decision to support barriers within 
a ti le  was made to l imit  the complexity of inrcrbcc 
changes, in the belief that a cross - fi le  barrier  was of 
l ittle usc to RMS . In retrospect, this proved to be 
wrong. Some kev R.t'vlS tile organizations usc secondary 
ti les to hold journal records t(>r the main application 
tile .  These ti le  organizations can not express the order 
in which u pdates to the two fi l es shouJd reach the disk, 
and so arc precluded from using write - be hi nd cach ing. 

Application-level Caching Policies 

The main problem with the barrier prim iti1 ·c is its 
req u i reme n t  that the app l ication express the depen
dencies to the ti le system .  AJ though this is u n:ll'oid
able ,  i t  means that the appl ication h as to change if  
it  wishes to satdy exploit write-behind caching. Clearly, 
many app l ic1tions were not goi ng to make these 
changes . In addit ion, some appl ications have on-d isk 
consistency req u i remen ts that tic them to a write
through e nvironment.  

The ti le  system emu lat ion l ayer provides additional  
support tc >r these types of app l ications by exposi ng 
th ree cachi ng pol icies to applications. The policies arc 
stored as permanent attri bu tes of the fi l e .  By defa u l t, 
when the ti le  is opened by the fi l e  system ,  the perma
nent cach i ng pol icy is used on a l l  write req u ests. 

The three policies are described as tal lows: 

l .  Write- through cach ing pol icy. This pol icy provides 
applications with the standard write-through beha
vior provided by the hlcs-l l fi l e  system . Each write 
req uest is Hushed to the disk bd(xe the applic:ltion 
req uest returns.  If �1 1\ :�pp l ication needs to know 
what data is on the disk at �1 1 1  times, ir shou ld usc 
write-through cac hi ng.  

2 .  Write-behind cach in g policy. A p u re write - behind 
cache provides the h ighest kvel of pcrt(mnancc. 
Di rty dau is not tlushcd to the d isk whe n the ti le is 



closed . The semantics of fu ll write-behind caching 
arc best suited to applications that  can easily regen
erate lost data at any t ime. Temporary ti les from a 
compi ler arc a good example.  Should t he system 
fai l ,  the com pilation can be restarted without any 
loss of data. 

3 .  Flush-on-close caching pol icy. The fl ush-on-close 
policy provides a restricted level of write-behind 
caching f(x appl ications. Here, al l  updates to the file 
are treated as write behind, but when the file is 
closed, al l  changes are forced to the d isk. This gives 
the performance of wri te-behind but,  in addition, 
provides a known point when the data is on the disk. 
This torm of caching is particularly suitable tor appli
cations that can easily re-create data in the event of 
a system crash but need to know that data is on the 
disk at a specific ti me. For example, a mail store-and
forward system receiving an i ncoming message m ust 
know the data is on the d isk when it acknowledges 
receipt of the message to the forwarder. Once the 
acknowledgment is sent, the message has been for
mally passed on, and the forwarder may delete i ts 
copy. I n  this example, the data need not be on the 
disk until that acknowledgmen t  is sent, because that 
is the point at which the message receip t  is  commit
ted . Should the system fai l  before the acknowledg
ment is sent, all dirty data in the cache would be lost. 
In that event, the sender can easily re-create the data 
by sending the message again .  

Figure 6 shows t h e  resu lts of a performance com
parison of the three caching policies. The test was run 
on a d ua l -CPU DEC 7000 Alpha system with 384 
megabytes of memory on a RAI D - S  d isk. The test 
repeated the fo l l owing sequence tor the d i fferent fi le 
SIZeS. 

l .  Create and open a file of the requ ired size and set 
its caching policy. 

2. Write data to the whole ti le in l ,024- byte 1/0s. 

3. Close the ti le .  

4 .  Delete the ti l e .  

With sma l l  fi les, t h e  n u m ber of fi l e  operations (create, 
close, delete ) dominates. The leftmost side of the 
graph therefore shows the time per operation for tile 
operations .  vVith time, the fi les i ncrease in size, and the 
data 1/0s become prevalent .  Hence, the rightmost 
side of Figure 6 is displaying the time per operation for 
data ljOs. 

Figure 6 clearly shows that an ordered write-behind 
cache provides the highest performance of the t h ree 
caching models .  For file operations, the write- be hind 
cache is  a l most 30 percen t  faster than the write
through cach e .  Data operations are approxi mately 
three ti mes faster than the correspond i ng operation 
with write-through caching.  
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Figure 6 
Performance Comparison of Caching Policies 

Summary and Conclusions 

The task of i ntegrating a log-structu red ti le  system 
into the Open VMS environment was a significant 
cha l lenge tor the Spira log project members .  Our 
approach of carefu l l y  determi n i ng the i n terface to 
emulate and the level  of compatibil ity was i mportan t  
t o  ensu re t h a t  t h e  majority of appl ications worked 
unchanged . 

vVe have shown that an existi ng update- in-place tile 
system can be replaced by a log-structured ti le syste m .  
I n itial  e ffort i n  the analysis of application usage fur 
n ished i n tormatjon o n  interface compati b i l ity. Most 
fi l e  system operations can be provided through a fi l e  
system emu lation layer. Where necessary, n e w  i n ter
faces were provided for applications to replace their 
d irect knowledge of the Fi les-1 1 fi le  system . 

Fi le system operation tracing and fu nctional analysis 
of the Fi les-1 1 fi le system proved to be the most use fld 
techniq ues to establ ish i n terface compati b i l ity. Appl i 
cation compati bi l ity far exceeds the l evel expected 
when the project was started . A majority of people use 
the Spira log ti le system vol umes without noticing any 
change in their application's behavior. 

Careful write policies rely on the ord er of updates 
to the disk.  S ince write- back caches reorder write 
requests, appl ications using carefu l writ ing have been 
unable to take advantage of the signi ficant i mprove
ments in write performance given by write- back 
cach i ng.  The Spiralog ti le system solves this problem 
by provid ing ordered write - back cac hing, known as 
write- beh i n d .  The write- beh i nd cache allows appl ica
tions to control the order of writes to the d isk through 
a primitive cal led barrier. 

Using barriers, appl ications can bui ld careful write 
policies on top of a write-behind cache, gai ning a l l  the 
performance of write-back caching withou t riski ng 
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d:�u integritY. A \\Ti re - behind cache a lso �1 l lows the ri le 
system itsel f  ro gai n write -back ped(>nll<l l1ce on a l l 
�i l e  svstc m operations. S ince m a ll\' fi le svstem opera· 
tions �1re themselves quickly su perseded, using write· 
behind caching prevents manv ti le svstem operations 
from ever reach ing the d isk.  BJ rricrs a l so a l low the ti le 
system to protect the on-disk fi l e  system consistency 
by i mpkmcnting i ts own cardi.J! write pol icy, avoiding 
the need for disk repair  ut i l i ties. 

The barrier prim i tive provided �l way to get write
through semantics with i n  a fi le for those appliutions 
relying on carcfi.1l write pol icies. Changing 1\JV!S to usc 
the b�l!Ticr pri m i tive al lowed the Spiralog fi le system 
to support write - behind cach i ng as the dehu l t  pol icv 
on :� l l  ti le  tvpes i n  the OpenVJ'v!S environ ment. 
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Extending OpenVMS 
for 64-bit Addressable 
Virtual Memory 

The OpenVMS operating system recently 

extended its 32-bit virtual address space to 

exploit the Alpha processor's 64-bit virtual 

addressing capacity while ensuring binary 

compatibi l ity for 32-bit non privi leged pro

gra ms. This 64-bit technology is now avai lable 

both to Open VMS users and to the operating 

system itself. Extending the virtual address 

space is a fundamental evolutionary step for 

the OpenVMS operating system, which has 

existed with in  the bounds of a 32-bit address 

space for nearly 20 years. We chose an asym

metric d ivision of virtual address extension that 

al locates the majority of the address space to 

appl ications by min imizing the address space 

devoted to the kernel.  S ign ificant sca l ing issues 

arose with respect to the kernel that dictated 

a d ifferent approach to page table residency 

within the OpenVMS address space. The paper 

d iscusses key scaling issues, their solutions, 

and the resulting layout of the 64-bit virtual 

address space. 

I 
�chaei S. llarvey 

Leonard S. Szubowicz 

The OpcnVMS Alpha operating system in itia l ly sup
ported a 32 -bit  virtual add ress space that maximized 
compatibi l ity for Open VMS VAX users as they ported 
their applications from the VAX platform to the Alpha 
plattonn. Providing access to the 64-bit  v irtual  mem
ory capabi l i ty detlned by the Alpha architecture was 
always a goal tor the Open VMS operating system .  An 
early consideration was the eventual usc of this tech
no logy to enable a transition from a purely 32-bit
oriented context to a purely 64-bi t-oricnted native 
context.  OpenVMS designers recognized that such 
a fundamental transition tor the operating system,  
along with a 32 -bi t  VAX compatibi l i ty mode support 
environment, would take a long time to implement 
and cou ld seriously jeopardize the migration of appl i 
cations from the VAX platform to the Alpha platform. 
A phased approach was cal led tor, by which the operat
i ng system cou ld evolve over time, a l lowing tor quicker 
time-to-market for significant features and better, more 
timely support for binary compatibi l ity. 

In 1 989, a strategy emerged that defined two funda
mental phases of Open VMS Alpha development. Phase 
1 wou ld del iver the Open VMS Alpha operating system 
initiaUy with a virtua l  address space that faithfully repl i 
cated address space as i t  was defined by the VAX archi 
tecture. This fami l iar 32-bit  environment would case 
the migration of applications from the VAX platform 
to the Alpha platform and wou ld case the port of the 
operating system i tself. Phase l ,  the OpenVMS Alpha 
version 1 .0 product, was del ivered in 1 992. 1  

For Phase 2, the Open VMS operating system would 
successful ly exploit the 64-bit  virtual add ress capacity 
of the Alpha archi tecture, laying the groundwork 
tor further evolution of the OpenVMS system .  In  
1 989, strategists predicted that Phase 2 could  be  del iv
ered approximately three years after Phase 1 .  As 
planned, Phase 2 culminated in 1 995 with the del ivery 
of Open VMS Alpha version 7 .0,  the first version of 
the OpenVMS operating system to support 64-bit 
virtual addressing. 

This paper d iscusses how the OpenVMS Alpha 
Operating System Development group extended the 
OpenVMS virtua l  add ress space to 64 bits .  Topics 
covered include compatib i l i ty for existing applica
tions, the options for extending the add ress space , the 
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strategy tor page table residency, and the fi nal layout of 
the Open VMS 64- bi t  v irtua l  add ress space. I n  imple
ment ing support tor 64- bit virtual add resses, design 
ers maximized privileged code compatibi l ity;  the paper 
presents some key measures taken to this e nd <lnd pro
vides a privileged code example .  A d iscussion of the 
i m med iate use o f 64-bit  addressing by the Open VMS 
kernel and a sum mary of the work accompl ished con
clude the paper. 

Compatibil ity Constrai nts 

Growi ng the virtual address space ti·o m  a 32-b i t  to 
a 64- bi t  capac i ty was su bject to one m·er:trching con
sideration :  compatib i l ity. Spec i tic:tl ly, any existing non 
privil eged program that could execute prior to the 
i ntroduction of 64- bi t  add ressing su pport, even in 
binary torm, must cont i n u e  to run correct l y  and 
un modified u n der a version of the Open VMS operat
ing system that supports a 64-bit virtual add ress spac e .  

I n  this con text,  a n o n  privileged program is  o n e  that 
is coded only to stable interfaces that arc 110t al lowed 
to change from one release of rhe operating system to 
another. I n  contrast, a privi leged program is defi ned 
as one that m ust be l i nked agai nst the OpenVMS 
kernel to resolve rercrences to i n ternal i n tert;Kes and 
d ata structures that may change as the kernel evolves. 

The compatib i l ity constraint dictates that the t<> l l ow
ing characteristics of the 32-bit  virtual address space 
environmen t, upon which a nonprivi leged program 
may depend, m ust contin u e  to appear u nchanged 2 

• The lower-add ressed ha l f ( 2  gigabytes [ G B ] )  of vir
tual  address space is defi ned to be private to a given 
process. This process-private space is ti.1 rther divided 
into two 1 - G B  spaces that grow toward each other. 

1 .  The lower 1 - G B  space is referred to as PO sp�1ce.  
This space is cal led the program region,  where 
user programs typically reside whi le  running. 

2.  The higher 1 -G B  space is referred to as P l space . 
This space is cal led the control region and con 
tains rhe stacks k>r a given process, process
permanent code, and various process -specific 
control cells. 

• The higher-addressed hal f ( 2 G B )  of virtual add ress 
space is detlned to be shared by a l l  processes. This 
shared space is  where tbe Open VMS operating sys
tem kernel resides. Although the VAX architecture 
divides this space i n to a pair of separately n amed 
1 -G B  regions (SO space and Sl space) ,  the Open VMS 
Alpha operating system makes no material d isti nc
t ion between the two regions and re ters to them 
collectively <\S S0/5 1 space. 

Figure 1 i l l ustrates the 32-bi t  vi rtual  address space 
l ayout as implemented by the Open VMS Al pha oper
ating system prior to version 7 . 0 . '  An i meresti ng 
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mechanism can be see n in the A l pha i m plementation 
of this add ress space.  The Alpha arch i tectu re defi nes 
32-bi t  load opera tions such that V<l l ues ( possibly 
poi n ters) arc s ign exte nded from bit  3 1  as they are 
loaded in to registers . -'  Th is fac i l i tates add ress calcu la 
tions with resu l ts that  arc 64-bit,  s ign-extended t(mm 
of the origina l  3 2 - bi t  poi nter values.  For a l l  PO or P l  
space add resses, the upper 32 bits of a given poi nter  in  
a register wi l l  be written with zeros. For a l l  SO/S l 
sp<Ke add resses, rhe u pper 32 bi ts of a given poi n ter i n  
a register wi l l  b e  written with ones. Hence, on the 
A l pha pla tti:mn ,  the 3 2 - b i t  virtual  add ress space actu
a l ly  ex ists <lS the  lowest 2 C B  and h ighest 2 G B of rhe 
ellti re 64- bi t  virtu:� l  :�dd ress space. From the perspec
tive of a program using onlv 32-b i t  poi n ters, these 
regions appear to be contiguous, exact ly as they 
appeared on the VAX platform . 

Superset Address Space Options 

We considered the t(> l lowing three general  options ti:>r  
extending the address space beyond the curren t  3 2 - bi t  
l imits .  The degree to which each option \\'Ou ld  rel ieve 
the add ress sp<lce pressure being k i t  by applications 
and the OpenVMS kernel itse l f  varied signi ticantly, 
as d id the cost of imp l ementing each option.  

l .  Ex tension of s lured space 

2 .  Extension ofprocess-priv;\te space 

3. Extension of both shared space and p rocess-private 
sp:-�ce 

The first option considered was to extend the virtual 
add ress boundaries for shared space on ly. Process
private space would  remain l i m i ted to i ts current size 
of2 G B .  I f  processes needed access to a h uge amount 
of v irtua l  memory, the memory wou l d  have to h ave 
been created in shared space where, by defi n ition,  a l l  
processes wou ld h ave access t o  i t .  This option 's c hief 
advantage was that  no changes were req u i red i n  the 
com plex memory management code that spec i fical ly 
supports process-private space .  Choosing this option 
would have m in im ized the t ime-to-market for del iver
ing some degree of virtual  address extension, however 
l imited it wou ld be. Avoid ing any i m pact ro process
private space was a l so i ts chief d isadvan t<�ge . By fai l ing 
to extend process-private space, this option proved to 
be gener<� l l y  unappeal ing to our customers. I n  addi
tion , it  was viewed as a makeshitt sol ution that we 
wou ld be unab le  to d iscard once process-private space 
was extended :lt :1 fu ture t ime.  

The second option was to extend process-private 
space only. This option wou l d  have de l ivered the 
highly desirable 64- bi t  c:1pacity to processes but would 
not have extended shared sp<Ke beyond i ts current 
32- bit  boundaries. The option presu med to red uce 
the degree of change in  the kerne l ,  hence maxi mizing 
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Open VMS Alpha 32-bit Virtual Address Space 

privi leged code compatibi l ity and ensuring Elster time
to- market.  However, analysis of this option showed 
that the1-c were enough significant portions of the ker
nel requiring change that, in practice, very l itt le add i 
tiona l privi leged code compati bi l ity, such a s  tor 
drivers, wou ld be achievable .  A lso, this option did not 
address certain important problems that are specific to 
shared space, such as l imitations on the kernel 's capac
ity to manage ever- larger, very large memory (VLM) 
systems in  the futur e .  

We decided to pursue the option o f  a fl at, superset 
64-bit  virtual address space that provided extensions 
f(x both the shared and the process-private portions of 
the sp:1ce that a given process could reference. The 
new, extended process-private sp:1ce, named P2 space, 
is ad jacent to P l  space and extends toward h igher 
virtual addresses . "5 The new, extended shared space, 
named 52 space, is adjacent to 50/5 1 space and 
extends toward lower virtual addresses. P2 and 52 
spaces grow toward each other. 

A remaining design problem was to decide where 
P2 and 52 woul d  meet i n  the address space layout. 
A simple approach wou ld  split the 64-bit address 
space exactly in ha l t� symmetrical ly sca l ing up the 
design of the 32 -bit  address space a lready in  p lace . 
(The add ress space is spl it in this way by the Digital 
U N I X  operating system 3 )  This solution is easy to 
explain because, on the one hand,  it extends the 32-bit 
convention that the most significant address bit can be 
tre<lted as a s ign bit,  ind icating whether an  address 
is private or shared . On the other hand, it a l locates 
fu l ly OtJe -ha lfthe avai lable virtual add ress space to the 

operating system kernel ,  whether or not this space i s  
needed i n  i ts e nt irety. 

The pressure to grow the address space genera l ly 
stems from appl ications rather than from the operat
ing system itself In response, we implemented the 
64-bit address space with a boundary that tloats 
between the process-private and shared portions. The 
operating system configures at bootstrap only as much 
virtual add ress space as it needs ( never more than 
50 percent of the whole ) .  At this point,  the boundary 
becomes fixed for a l l  processes, with the majority of 
the address space avai lable for process-private use. 

A floating boundary maximizes the virtual address 
space that is avai lable to appl ications; however, using 
the sign bit to d istinguish between process-private 
pointers and shared -space pointers continues to work 
only for 32 -bi t  pointers.  The location of the floating 
boundary must be used to d istinguish between 64-bit 
process-private and shared poin ters. We bel ieved that 
this was a minor trade-off in return tor rea l izing twice 
as much process-private address space as wou ld  other
wise h ave been achieved . 

Page Table Residency 

While pursu ing the 64-bit  virtual address space layout, 
we grappled with the issue of where the page tables 
that map the address space wou ld reside within that 
address space. This section d iscusses the page table 
structure that supports the Open VMS operating sys
tem, the residency issue,  and the method we chose to 
resolve this issue .  
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Virtual Address-to-Physical Address Translation 

The Alpha arch itecture a l lows an impl ementation to 
choose one of the fol lowing tour  page sizes: 8 ki lo 
bytes ( KB ), 16  KB, 32 KB , or  64 KB . '  The architecture 
also ddines a mu lti leve l ,  h ierarchical page table struc
ture for virtual address- to-physical add ress (VA-to
PA ) translations. Al l OpenVMS Alpha platforms have 
i mplemented a page size of 8 KB and three levels 
in this page table structure. Although throughout 
this paper we assume a page size of 8 KB and three 
l evels in  the page table h ierarchy, no loss of genera l i ty 
is incurred by this assumption.  

Figure 2 i l lustrates the VA-to-PA translation 
sequence using the mu l ti level page table structure. 

l .  The page table base register ( PTBR) is a per-process 
pointer to the highest leve l ( L l ) of that process' 
page table structure. At the h ighest level is one 
8 - KB page ( Ll PT)  that contains 1 ,024 page table 
entries ( PTEs) of 8 bytes each .  Each PTE at the 
h ighest page table level ( that is, each L l PTE )  maps 
a page table page at the next lower level in the tr;.Jns
lation h ierarchy ( the L2PTs ) .  

2 .  The Segment 1 bit field o f  a given virtual address 
is an index i nto the L l  PT that selects a particular 
L l l'TE, hence selecting a specific L2PT tor the next 
stage of the tra nslation . 

3 .  The Segment 2 bit fie ld of the virtua l  add ress 
then i ndexes i nto that L2PT to select an L2PTE, 

Figure 2 
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hence selecting ;1 specific L3PT tor the next stage 
ofthe translation . 

4. The Segment 3 bit tie ld of the vi rtual  add ress then 
i ndexes into that l..3PT to select an L3PTE, hence 
selecting a specific 8 - KB  code or data page . 

5 .  The byte-within -page bit f-ie ld of the virtual address 
then selects a specific byte address in that page . 

An Alpha  implementation may increase the page 
s ize and/or number of levels in the page t:�ble h ierar
chy, thus mapping greater amounts of virtual space up 
to the fu l l  64- bit  amount .  The assu med com bin:�tion 
of8 -KB pJge size and three levels of page table a l lows 
the system to map up to 8 teralwtes (TB)  ( i .e . ,  1 ,024 
X 1 ,024 X l ,024 X 8 KR = 8 TB) of virtual memorv 
for a single  process. 

To map the entire 8 -TB Jddress space avai lable to a 
single process requi res up to 8 GB of PTEs ( i .e . ,  1 ,024 
X l ,024 X I ,024 X 8 bytes = 8 GB ). This bet alone 
presents a serious sizing issue f(>r the Open VMS oper
ating system.  The 32 -bit  page table residency model 
that the Open VMS operating system ported ti·om the 
VA,'{ plattorm to the Alpha platform does not have 
the capacity to support such large page tables. 

Page Tables: 32-bit Residency Model 

We stated earl ier thJt mater ia l iz ing a 32-bit v irt ua l  
address space <lS it \\'JS dcnned bv the  VAX architecture 
would ease the dh.>rt to port the Open VMS operating 

3 2  3 1  'I ..1 0 ' ' 
BYTE 

: SEGMENT 2 SEGMENT 3 WITHIN ' PAGE ' 

L2PTs L3PTs DATA PAGES 



system tl·om the V fv'<.. platform to the Alpha platform. 
A concrete example of this relates to page table resi 
dency i n  virtual memory. 

The VAX architecture defi nes, for a given process, 
a PO page table and a PI page table that map that 
process' PO and P I  spaces, respectively.2 The architec
ture specifies that these page tables are to be located i n  
SO/SI shared virtual address space. Thus, the page 
ta bles in virtual memory are accessible regardless of 
which process context is currently active on the system. 

The Open VMS VAX operating system places a given 
process' PO and Pl page tables, along with other per
process data, in a fixed -size data structure cal led a bal
ance slot. An array of such slots exists withi n  SO/Sl 
space with each memory-resident process being 
assigned to one of these slots. 

This page table residency design was ported from 
the VAX platform to the Alpha platform . 1  The L3PTs 
needed to map PO and P I  spaces and the one L2PT 
needed to map those L3PTs are all mapped i n to a bal
a nce slot in SO/Sl space . (To conserve virtual mem
ory, the process' Ll  PT is not m apped i nto SO/Sl 
space. )  The net effect is i l lustrated i n  Figure 3 .  

The VAX architecture defi nes a separate, physically 
resident system page table (SPT) that maps SO/S l 
space. The SPT was explicitly  mapped i nto SO/S l 
space by the Open VMS operating system on both the 
VAX and the Alpha platforms. 

Figure 3 
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Only 2 megabytes ( M B )  of level 3 PT space is  
required to map a l l  of a given process' PO and PI 
spaces. This  balance slot design reasonably accommo
dates a large n umber of processes, all of whose PO and 
Pl  page tables s imultaneously reside within those 
balance slots in SO/SI shared space. 

This design cannot scale to s upport a 64-bit virtual 
add ress space. Measu re d  i n  terms of gigabytes per 
process, the page tables required to map such a n  enor
mous address space are too big for the balance slots ,  
w h i c h  are constrained t o  exist i nside t h e  2 -GB SO/Sl 
space . The designers h a d  to fi nd another  approach for 
page tab le  residency. 

Self-mapping the Page Tables 

Recall from earlier discussion that on today's Alpha 
implementations, the page size is  8 KB, three levels of 
translation exist within the hierarchical page table struc
ture, and each page table page contains 1 ,024 PTEs. 
Each Ll PTE maps 8 GB of virtual memory. Eight giga
bytes of PT space allows all 8 TB of virtual memory that 
this i mplementation can mateJialize to be mapped. 

An e legant approach to mapping a process' page 
tables i nt o  virtual memory is  to selt:map the m .  A s in ·  
g le  PTE i n  the  h ighest · level page table page is set  to 
map that page table page . That is, the selected Ll PTE 

contains the page ti·ame n u mber of the level I page 
table page that contains that Ll PTE. 
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The effect of this self- mapping on the VA-to-PA 
translation sequence (shown in Figure 2 )  is su btle but 
important.  

• For those virtual addresses with a Segment l bit 
field va lue that selects the self- mapper Ll PTE, step 
2 of the VA-to-PA translation sequence reselects 
the L l  PT as the effective L2PT ( L2PT ' )  tor the 
next stage of the translation.  

• Step 3 indexes into L2PT ' ( the Ll PT) using the 
Segment 2 bit field value to select an L3 PT '. 

• Step 4 i ndexes into L3PT ' (an L2PT) usi ng the 
Segment 3 bit field val ue to select a specific data 
page. 

• Step 5 i ndexes i nto that data page (an  L3 PT) using 
the byte-within -page bit field of the virtual add ress 
to select a specific byte address with in that page . 

When step 5 of the VA-to-PA translation sequence 
is fin ished , the fina l  page being accessed is itse lf  one of 
the level 3 page table pages, not a page that is mapped 

Figure 4 
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by a l evel 3 page table p::�ge . The self- map operation 
p laces the entire 8 - G B  page table structure at the end 
of the VA-to-PA translation seq uence for a specific 
8-GB portion of the process' add ress space. This vir
tual space that contains a l l  of a process' potentia l  page 
tables is cal l ed page table space ( PT space) ." 

Figure 4 depicts the effect of self-mapping the page 
tables. On the left is the highest- l eve l  page table 
page conta in ing a fixed number of PTEs. On the right 
is the virtual add ress space that is mapped by that page 
table page. The mapped address space consists of a col
lection of identical ly sized , contiguous add ress range 
sections, each one mapped by a PTE i n  the corre
sponding position in the h ighest-level page table page . 
(For clarity, lower levels of the page table structure arc 
omitted from the llgure . )  

Notice that L l PTE # 1 022  i n  Figure 4 was chosen to 
map the high- level p::�ge table page that contains that 
PTE. (The reason f()r th is particu lar choice wi l l  
be explained in  the next  section.  Theoretically, any one 
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of the L l  PTEs could have been chosen as the self
mapper. ) The section of vi rtual memory mapped by 
the chosen Ll PTE contains the entire set of page 
tables needed to map the avai l able add ress space of 
a given process. This section of virtual memory is PT 

space, which i s  depicted on the right side of Figure 4 
in the 1 ,022d  8-GB section in the material ized virtual 
address space . 

The base address for this PT space i ncorporates the 
i ndex of the chosen self mapper Ll PTE ( 1 ,022 = 
3FE( l 6 ) )  as fol lows ( see Figure 2 ) :  

Segment 1 b i t  field = 3FE 
Segment 2 b i t  field = 0 
Segment 3 bit field = 0 

Byte within page = 0, 

which resul t  in 

VA = FFFFFFFC.OOOOOOOO 
( a lso known as PT_Base) .  

Figure 5 i l lustrates the exact contents of PT space 
for a given process. One can observe the positional 
effect of choosing a particu lar  h igh- level PTE to self 
map the page tables even with in PT space. In Figure 4, 
the choice of PTE for selfmapping not only places PT 

space as a whole i n  the l ,022d 8-GB section in vi rtual 
memory but also means that 

• The 1 ,022d grouping of the lowest - level page 
tables ( L3 PTs) within PT space is actual ly the col
lection of next-h igher-level PTs ( L2PTs) that map 
the other groupings ofL3PTs, beginning at 

Segment l bit field = 3FE 
Segment 2 bit field = 3FE 
Segment 3 b i t  fie ld  = 0 
Byte within  page = 0, 

which resu l t  in  

VA = FFFFFFFD.FFOOOOOO 
(a l so known as L2_Base) .  

• Within that  block of L2PTs , t h e  1 ,022d L2 PT is  
actual ly the next-higher- level page table that maps 
the L2 PTs, namely, the Ll PT. The Ll PT begins at 

Segment I bit field = 3FE 
Segment 2 bit  field = 3FE 
Segment 3 b i t  fie ld  = 3FE 
Byte within page = 0,  

which resu l t  in  

VA = FFFFFFF D.FF7FCOOO 
( a lso known as Ll_Base ) .  

• Within that  Ll PT, the  l ,022d PTE is the  one used 
for self-mapping these page tables. The add ress of 
the self-mapper Ll PTE is  

NEXT-LOWER 8 GB 

Figure 5 
Page Table Space 

PAGE TABLE 
SPACE (8 GB) 

PT_BASE: 

L2_BASE: 

L 1 _BASE: 

l 1 ,024 L3PTs 

1 ,021 x (1 ,024 L3PTs) 

L2PT 
- - - - - - - - - - - - - - - - - - - - - -

1 .02 1 L2PTs 
1 ,024 L2PTs 

- - - - - - - - - - - - - - - - - - - - - -
L 1 PT - -- - - - - - - - - - - - - - - - - - - -
L2PT 

l 1 ,024 L3PTs 

NEXT-HIGHER 8 GB 
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Stgmem l bit rie ld = 3FE 
Segmellt 2 bit tleld = 3FE 
Segment 3 bit rie ld = 3 r E  
Bvte within page = 3FE X 8 
,,· hich resu l t  i n  

VA = FrHH FD. FF7FDHO . 

This posit ional correspondence within PT space is pre
served should a d ifrcrenr high-b·e l  PTE be chosen r(>r 
se l f-mapping the p:�ge tables. 

The propert ies i n herent in this sc lf mapped page 
tabk Jrc compe l l ing .  

• The amount of v irtua l  memory reserved is ex:�ct ly 
the amount requ i red for mapp ing the page ta b les, 
regard less of page size or page t:�blc depth. 
Consider the stgme m-numbered bit fields of :1 
given virtua l  address ri·om Figure 2 .  Concatenated , 
these b i t  tic lds constitute the \' i r tual page number 
( VPN)  portion of a gi,·en virtual address . 

The tor:� I size of the PT space need ed to map n·en· 
Vl'N is the nu mber of possible V PNs times 8 l)\'tes, 
the size of :1 PTE. The tota l size of the add ress 
space mapped bv that PT space is the nu mber of 
possib le VPNs times the page size. Factori ng 
out the VPN mu lt ip l ier, the d i ftc rence between 
these is the page size d iv ided bv 8, which is cxactlv 
the size of the Segmen t 1 bit fie ld in the \ ' ir
tual :�dd ress. Hence, J l i  the space mapped Lw �1 
single PTE Jt  the h ighest level of p:1ge tab le is 
exacrly the s ize required for mapping all the I'TEs 
that could ever be needed to map the process' 
�1ddress sp:�ce. 

• The mapping of PT space i nvolves simplv choos
ing one ohhe highest-b·e l PTEs and forcing i t  to 
sel r:map.  

• No add ition:�! system tun i ng or coding is required 
to :-�ccommodatt a mort \\' ide ly impleme nted 
\ irtLd address width in PT space. Bv ddin i tion of 
rhe sc l f m:1p cftecr, rhe cxacr amount of ,·i rtu �1 l  
address space req u i red wi l l  be  a,·a i l ab le ,  no more 
and no less. 

• lr is easy to locate a given PTE. The add rcss of 
:1 PTE becomes an efficient funct ion of the address 
that rhc PTE m:1ps. The function first c l c1rs 
the byte-with i n -page bit  field of the subject vi r
ttd add ress and then shifts the remaining virru�1 1  
J.ddress b i ts such that rhe Segments 1 ,  2 ,  and 3 bit 
ricld va l ues ( Figure 2 )  now reside  i n  the cmTc
sponding next- lower bit ricld positions. The func
tion then wri tes (and s ign extends if  necessary) 
the ,.�1c1ted Segment l ticld with the index of 
the se l fmapper PTE .  The result is the add ress 
o t· the r'TE that maps the origina l  \ ' i rtua l  add ress . 
Note that this a lgorithm a l so ,,·orks ror addresses 
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\\' ith in PT space, i nc lud ing that of the se lf mappn 
PTE itsc lt'. 

• Process page L1blc residcnc1 ·  in , · irtu�1 l  111e mon· is 
:�chie,'Cd ,, · i thout imposing on the c:1pacin· ot' 
sh:� rcd space . Th:-�r is, there is no longer �� need ro 
111�1p the process page tables in to shared space . Such 
a 111�1pping \\'Ou ld be red undant and \\'�lstefu l .  

Open VMS 64-bit Virtual Address Space 

With this page table residency strategy in h:�nd,  i t  
beca me possi ble ro tina l ize a 64-bit  virtu:� I add ress l ay
our r(>r the Open VtviS operating system.  A self mapper 
I'TE had to be chosen .  Consider ag:�i n  the highest b·e l 
of page tab le i n  a given process' page table structure 
( Figure 4 ). The first PTE in rh:u page table 1mps a sec
tion ofvirru�1 l memorv that inc l udes PO and PI spaces . 
TIJis PTE \\'JS rherdore una,·a ibblc tc>r usc as a scl t� 
mapptr. The last PTE i n  that page t:-�b lc  n1�1ps a section 
ohirtual memorv that includes SO/S I space. This I'TI-'. 
was :�!so una,·a i l �lbk tor se l t:mapping purposes. 

All the intu,·cn ing h igh -Jn·el PTEs ,,·ere potent i a l  
choices t<>r se l t:mapping the page rabies. To m�n imizc 
the size of pmccss -pri\ ate space , the COITCCt choice 
is the ncxt- lmn::r PTE than the one rh:�t maps the lo\\·
est :�ddress in sh;H·ed sp:�ce. 

This choice is implemented �1s a boor-r ime a lgo
ri thm .  Bootstrap code Erst dercnnines the s ize 
req u i red for OpcnVMS sh ared space, ca lcubr ing the 
correspond ing number of h igh- level PTLs. A su fti
c ient number  of PTEs to map rh:�r shared sp�1cc arc 
�1 l l ocated Lner ti·om the h igh -order end of a gi, ·cll 
process' h ighest- ln·d page tab l e  page. Then t l 1c next
lower PTE is a l located tor sclfn1�1pping tiLlt process' 
page r:�bles. All rema in ing l <l\\'er-ordered I'TEs arc lett 
:l\·�1 ibb l e  t(> r  ma pping [Jrocess- pri, ·�uc sp�Ke . In  pr�lc
t ice, ncarh· a l l  the l'TEs are a\·:� i l Jb lc ,  ,,·h ich mc1ns riLlt 
on roda\·'s svstcms, a lmost 8 TB of process pri\ �1rc , · ir
ru�l l mcmon· is a\·�1 i lablc to a gi,·en Open V1'viS pmccss . 

F igure 6 presents the ri.nal 64 -bir OI)CllVI'vLS , · irtual 
add ress space la\·out .  The portion \\'i th the lo\\·cr 
addresses is cmire lv proccss -pt· i, ·Jte . The h ighn
�lddrcsscd port ion is sbared b�· �1 1 1  process ,1ddrcss 
sp�lCcS. PT space is a region oh·irtual memor\' th�lt l ies 
lxrwecn the P2 and S2 spaces rC)[ am· gi\'C l l  pmccss 
�1 11d at the s�1 111e virtual Jddress t())' a l l  processes. 

Note rh�H I''T' sp�1ce i rsel t'consisrs of a proccss ·pri ,·�1rc 
and J shared f)Ortion .  Again,  consider figure 5 .  'The 
h ighest-b·cl p �1ge tJblc page, Ll l'T, is proccss-pri''�ltc . 
I r is poimcd to lw the PT B R .  (When a process' comcxt 
is l o��tkd, or 111�1dc acti\T, the process' PT B R  \ :l luc is 
loaded ti·om rhc process' hard,, ·art- pri, · i legcd comnt 
block into r he PT B 1\ register, t l lcrc l)\' J 1 1 �1k ing cu rrellt 
the p:�ge r�1blc structure poimcd ro lw rh�1t l 'T B R  ,md 
the pmcess-pri,·�lte �1ddress space th<l t it maps. ) 
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Figure 6 
Open VMS Alpha 64 - bit  Vi rtual Address Space 

All higher-add ressed p:�gc tables in PT space are 
used to map sh:.1red space and are themselves shared .  
They arc also adjacent to the  shared space that  they 
map. All page tables i n  PT space that reside at 
add resses lower than that of the L l  PT :�re used to map 
process-private sp:.1ce.  These p:.1ge tables arc process
private and Jre adjacent w the process-private space 
that they map. Hence, the end of the L l  PT marks 
a u niversal bound ary between the process- private 
portion and the shared portion of the emire virtual 
address space, serving to separate even the PTEs that 
map those portions. In Figure 6, the line passing 
through PT space i l l ustrates this bou ndary. 

A d irect consequence of th is des i gn is that the 
process page tables have been privatized . That is, 
the portion of PT space that is process-private is cur
remly active in virtual memory only when the owning 
process i tself is currentl y Jctive on the processor. 

Fortu nately, the majority of page table references 
occur while executing in  the conrext of the owning 
process. Such rderenccs Jctua iJy arc en hanced by 
the privatization of the process page t<lb lcs because 
the mapping function of a virt ua l  :.1dd ress to i ts l'TE 
is now more efficient . 

Privatization does raise a hur d le for certain pri
v i leged code that previously cou ld  :1cccss a process' 
page tables when executing outside the comext of the 
own i ng process. With the p:1ge tables resident in 
s lnred space , such refere nces could be made regard 
less of which process is cur rently active. With priva
t ized page tables, additional access support is needed, 
as presented in the next section . 

A tlnal commentary is warranted tor the separately 
maintained system page tab le .  The self mapped page 
table approach to su pplying page table rcsiduKy in 
virtual  memory inc ludes the l'TEs tor any virtual 
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add resses, whether they �1re process-private or shared . 
The shared portion of" PT space could serve now as the 
sole location tcx shared-space PTEs. Being redu ndant, 
the original SPT is e minently d iscardab le ;  however, 
d iscarding the SI'T would cn.:are a nussive compati b i l 
ity prob lem r()r device d rivers w i t h  their many 32 -bi r  
S PT rdc renccs.  This area i s  one i n  which a n  opportu
n i ty ex ists to preserve a signi ficant degree of"pri,· i leged 
code cornpati b i l i t\'. 

Key Measures Taken to Maximize 
Privileged Code Compatibility 

To implement 64-bit virtual address space support, we 
a ltered central sections of the Open VMS Al pha kernel 
and many ofits key data structures. We expected that 
such changes wou ld  requ ire compensating or corre
spond ing source changes in surrou nding privi leged 
components wi thin the kernel , in device d rivers ,  and 
in privi l eged layered products .  

For example ,  the previous discussion seems to ind i 
care that  any privi leged component that  reads or writes 
PTEs wou ld  now need to usc 64-bit-widc pointers 
instead of 32 -bi t  l1oimcrs. S imi l a rly, a l l  system f"ork 
threads and interrupt service routines cou ld no longer 
count on d i rect :tccess to proccss- priv:tte PTEs with
out regard to which process happens to be cu rrent 
at the momun. 

A number of bctors exacerbated the impact of such 
changes. S i nce the Opc nVMS AJplLl operating  sys
te m origin :ttcd h·om the OpenVMS Vt\X operating 
system, s igniric:mr portions of the Open VMS Alpha 
operating system and i ts d C\·ice d ri ,·ers are sti l l  written 
in MAC:R0-32 code,  a compiled bnguage on the 
Alpha p! J rr(mn .' Because MACR0-32 is an  ;lssembly
le,-cl srvle of progr: unming Llnguagc ,  we could not 
s irnp l\' change the ddin i rions �1 11d dec larations of l'ar i 
OL I S  t\-pes and rch· on recompi l :nion to handle the 
mm-c ti·om 32- bir to 64 -b ir  pointers. Fin:- d ly, there are 
wel l over 3 ,000 rckrcnces to PTEs h·om MAC R0 - 32  
code modu l es i n  the OpenV JVIS Alpha sou rce pool . 

We were thus LKed with the prospect or" visiti ng and 
potent ia l ly  a l tering c1cb of these 3 ,000 rdcre nces. 
Moreover, II'C wou ld need to r( > l low the register l ife
t imes that resu l ted h·om each of these rctcrences to 
ensure that a l l  address o leu larions and me mory re kr
enccs were done using 64- bir operations. \Ve expected 
that this process wo u l d be time-consuming �md error 
prone and that i t  wou l d  h:we a sign i ticant negative 
impact on our com pletion dJte. 

Once OpcnViVIS Alpha version 7.0 was wai lab le 
to users, those with device d ri\'ers and privi leged code 
of their own wou ld  need to go through a s imi lar  
efti.)rt . This would further delav wide usc of the 
release . For a l l  these reasons, we were we l l  motivated 
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to minimize the impact on privi leged code . The next 
fou r  sections d iscuss tech niques th:Jt we used to 0\·er
come these obstac les . 

Resolving the SPT Problem 

A signific:mt numbe r  of the PTE rc krcnces i n  pri
"i leged code arc to PT Es 11·irh in  the SPT. Dc1·icc 
d rivers often dou ble-map the user's 1/0 hufkr in to 
SO/S l space lw a l locating and appmpriately in it ia l iz
ing svstem p:.1ge ta ble ent ries ( S I'Tr:s ) .  Another s itua
tion in w hich :1 d ri\'er mani pu l ates S I'TEs i s  in the 
substitution of a svstcm bufk r  ri. >r �1 poor ly a l igned or 
noncontiguous user 1/0 bufkr that pre,·ems rhe 
buffer from being d i recth- used wi th a p:1 rr icu lar 
dc,·i ce . Such code rel ics ho,'il v  on the svsrem dat:1 cel l  
MMG$GL_S PTBAS E ,  which points to the SPT. 

The new page ublc design comple re lv olwi�1rcs the 
need ror a separ:nc SPT. Given an 8 - K B  p�1ge s ize �1 nd 
8 bytes per PTE, the ent i re 2-GB SO/S I virtua l  �H.idrcss 
space range can be mapped by 2 M B ofPTEs with in PT 
space. Because S0/5 1 resides at the h ighest addressable 
end ofrhe 64-bir virtual address sp�1ec, i r is  m apped bv 
the h ighest 2 M B of PT space. The :uu on the left in 
Figure 7 il lustrate th is mapping. The PTI-:s in PT space 
that map SO/S l arc fu l l y  shared l1\' :1 l l  processes, bur 
they must be rdcrmccd with 64-b i r  add resses. 

This in comp�nibi l iry is complete lv h idden lw the 
creation of :1 2 - M B  "SI'T wi ndow" m-cr rhe 2 iv\ B  i n  
I'T space ( lel'e l 3 PTEs ) t ha t  m:tps SO/S I space . The 
SPT window is pos i tioned at  the  h ighest �1dd rcss�1blc 
end ot"SO/S l space . Therdi.>re, an access through the 
SPT wi ndow onlv requ i res a 32-b i r  SO/S I �1dd rcss and 
can obtain anv of the I'TEs i n  PT sp�1ce that m:1p 
SO/S l space The �l i"CS on the ri ght in hgurc 7 i l l u s 
tratc this access path . 

The SPT 11·i ndow is set up at svstcm in i '  i �1 l i zarion 
rime and consu mes onll' the 2 KB of 1'TI-:s tlLlt 
are needed to map 2 MB. The S\'stcm d �1 t.1 cel l  
M M G $ G L_SPTBASE now points to the b:1se of rhe 
S PT window, and a l l  ex isting rekrmccs to that d:1ta ce l l  
continue to function corrcctlv withou t ch:1ngc. -

Providing Cross-process PTE Access for Direct 1/0 
The sel f m:1pp ing of the page t:1b les i s  J n  elegant sol u 
tion to the page ta ble residency problem imposed by 
the  preceding des ign .  However, the se l r:map1xd page 
ta b les presen t  sign ificant cha l lenges or" their own to the 
I/0 subsystem and to many device d rivers .  

Typica l ly, OpenVJ\115 device drivers ri.>r 111�1SS stor�lgc, 
net\vork, and other high-perr(mn�lncc dev1ccs pcrJ-(mn 
d i rect memory access ( D M A )  �1nd what Open VMS cal ls 
"d irect 1/0 . "  These dn·icc d rivers lock down I IHO 

physical mcmorv the v irtua l  pages rlut conLl in  the 
requester's l/0 bu frcr. The 1/0 rr:1nsrcr is fXrr(mned 
d irecrlv to those pages, a iLLT which the bu tkr pages are 
un locked, hence the term "direct 1/0 ." 



PAGE TABLE SPACE 
(8 GB) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PTEs THAT MAP SO/S1 (2 MB) 

S2 ( � 6 GB) 

: "1 

SO/S1 (2 GB) - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SPT WINDOW (2 MB) · �FFFFFF�FFFFFFFF 

Figure 7 
System Page Table Window 

The virtual address of the buffer is not adequate for 
device drivers because much of the driver code runs in 
system context and nor in the process context of the 
requester. Simi larly, a process-specific virtual address is 
meaningless to most DMA devices, which typical ly  can 
deal only with the physical add resses of the virtual 
pages spanned by the buffer. 

For these reasons, when the 1/0 buffer is locked 
into memory, the Open VMS I/0 subsystem converts 
the virtual address of the req uester's buffer into 
( 1 )  the address of the PTE that maps the start of 
the buffer and ( 2 )  the byte oftset within that page to 
the fi rst byte of the buffer. 

Once the virtua l  add ress of the 1/0 bufkr is con
vened to a PTE address, all references to that buffer 
are made using the PTE address. This remains the case 
even if this 1/0 request and 1/0 bufkr are handed otT 
from one driver to another. For example,  the IjO 
request may be passed fi·om the shadowing virtual d isk 
driver to the smal l computer systems i ntertace (SCS I )  
d isk class driver to a port d river for a specific SCSI host 
adapter. Each of these drivers will re ly solely on the 
PTE address and the byte offset and not on the virtual 
add ress of the 1/0 bu tler. 

Therefore ,  the number of virtual address bits the 
requester original ly used to specif)r rh� add ress of 

the l/0 buffer is i rrelevant.  What real l y  matters is 
the n umber of address bits that the driver must use 
to reference a PTE.  

These PTE addresses were always within the  page 
tables within the balance set slots in shared SO /S 1 
space. With the introduction of tbe se l f� mapped page 
tables, a 64-bit address is req uired t()r accessing any 
l)TE in PT space. Furthermore, the desired PTE is not 
accessible using this 64-b i t  address when the driver is 
no longer executing in  the context of the original  
requester process. This is ca l led a cross-process PTE 

access problem . 
In  most cases, this access problem is solved tor 

d i rect 1/0 by copying the PTEs that map the 1/0 
buftcr when the 1/0 buffer is locked into physical 
memory. The PTEs in  PT space are access ib le at that 
point because the requester process context is required 
in order to lock the buffer. The PTEs arc copied i nto 
the kernel's heap storage and the 64-bit PT space 
address is  replaced by the address of the PTE copies. 
Because the kernel 's heap storage remains in SO/S l 
space, the replacement address is a 32 -bit add ress that 
is shared by a l l  processes on the system.  

This  copy approach works because drivers do not 
need to modit)r the actual PTEs. Typical ly, this 
arrangement works well because the associated PTEs 
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em ti t i n to dcdic:�n:d space \\'i th in  the I/0 request 
p�K kct d:�t:� structure used bv the OncnVMS operati n o-- t b 
S\'Stc m ,  �md there is 110 mcasu r:t b l e  i n crease in CPU 
Ol'crhcad to copy those PT Es . 

If the 1/0 b u Fkr is so L1rgc th:�t i ts :1ssoci ;1ted PTEs 
c1nnot ti t \\'ith i n  the 1/0 req uest pKkct, a separate 
kernel hc:-tf1 stm:�gc packet is �1 l l outcd ro hold the 
PTEs. lf the l/0 b u fk r  is  so l a rge rh�H the cost of 
copl' ing a l l  the l'TFs i s  J lot iccab le ,  a d i rect access path  
i s  crc:.1tcd as t(ll lo\\'s: 

• The L::l PTEs rh �H m:.1p the I/0 b u fh: r arc locked 
i nto p h1·s ic1l men1or\·. 

• Add ress sp�1ce 11·i t h i n  SO/S l sp:.1ce is a l locned 
and nup pcd OI'Cr the l .3 PT Es th at \\'Cre j us t  
locked do\\' J l .  

This esr;1b l ishcs �' 3 2 - bir  address�1blc slLlred -space 
\\'indo\\' m·cr the 1 .3 l'TEs rhar 1mp the 1 /0 bu ffer. 

The essc mial point is that one of these methods is  
se lected �md e m ployed u mi l  the 1 /0 is  completed :md 
the b u fh:r is u n lockl:d . Eac h  method prol' i dcs a 3 2 - b i t  
l'TE address t h a t  t h e  rest o f r h c  l/0 su bsystem c a n  use 
transp::�rcnrly, �1s it has been accustomed ro doing, with
our req u i ring n umerous, complex sou rce cha nges. 

Use of Self-identifying Structures 

To �1Ccommod :.1 tc 64 -bir  user l ' irtu�l l  addresses, �1 n u m 
ber of kemel dar:1 stru ctures had to be cx p�1nded a n d  
ch:1n gcd .  f o r  example,  as, ·nchronous system trap 
(AST ) contro l  b locks, bu ffered l/0 p�Kk<.:rs, and r imer 
q u e u e  en tries ;l l l  cont�1 i n  l'a rious uscr- p rm·ided 
addresses and p�lr;lmcrcrs that can no\\'  be 64-bit 
add resses .  These structures :11-c often e m bedded i n  
other structu res such  rh�H �' clu ngc i n  one has a ripp l e  
ctlcc r to : 1  s e t  o f  other structures. 

If these structures c lLl iH!,cd u n condi tional  I I "  m:1 n 1· 
sc1ttcrcd sou rce cha nges �� · c n i l d  hal'c been r�:] u i rcci . 
Yet, ;lt the s �ll11C r ime, c:-�ch ohhcsc structu res h:-td con
su mers \\'ho had no im med iate need t()J" the 64- b i r  
add rcssi n�-rdarcd c:1pabi l i rics. 

l nstc:-td ofs imph' changing clCh ot' r l1 ese structures, 
II'C ddincd a nell' 64- bit -clpablc l';lriam that can coex
ist \\' i th  i rs n·�1 d i ri on:1 l  32 -bit  coumcrparr . The 64-bir  
1·ari:1 11 t's structures arc  "scl fidenr i�·i ng" beca use they 
em rc1d i l v  be d istingu ished h·om their 3 2 - bi r  cou nrcr
p:u-rs by o.1 m i n i n g  a p;l rt ic u b r  fie ld with i n  the str u c 
ture itsel f. Typica l l y, t h e  32-b ir :1nd 64-bir  I'Mi:Jnts can 
be i n termixed �i-cdy wi thin q u e u es �m d only a l i m i ted 
set of rou tines need to be �1 ware of the variant types .  

Th us, t( J r  c:x:1mpk, componenrs th<lt do n o r  need 
64 - bir ASTs em conti n u e  to bui ld  32-bir  AST contro l  
bl ocks and queue them \\'ith the SCJ-I$ QAST rou t i n e .  
S i m i L 1rly, 64-bi t  AST co nrrol bl ocks U LJ b e  que ued 
with the  s�1 m c  SC :H .�QAST ro ut ine beca use the AST 
d e l i1·en· code 11';\s en hanced ro su pport e i ther rvpc of 
AST conrrol b lock .  
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The use o f se l f ide nri�·i ng structures i s  ;J iso :1 te c h 
n i q u e  t h a t  was e m plo\'cd t o  com p�Hi b ly  e nhance p u b 
l i c  user- mode i nt c rbccs to l i br:-�rv rou ti nes a n d  the 
OpenVMS kerne l .  Th is topic  is Li iscusscd in  greater 
derail in "The Open VMS Mixed Poi mcr Size 
Em·i ron menr ."" 

Limiting the Scope of Kernel Changes 

Another ke1· t:Ktic tlur a l lm1 ·ed u s  ro m i n im t zc rhc 
req u i red somce code chan ges to the Of1CnV,VIS kc mcl 
came ti·om the real ization rhar  fu l l  suppon o f  64-bir 
l'irtu �l l  :1d d ress i ng tor al l  processes docs nor  i m p lv m 

req u i re excJ usivc usc of 64- bi r f10i nrns 11·i rh in the ker
ne l .  The portions of the kcmd rh:-�t  I L1nd lcd user 
add resses wou ld f(lr  the  most p�u·t need to I L1ndlc  
64-bit  addresses; ho11'e1·cr, most kernel  d:1ta srrucrmcs 
could remain  \\'i thin the 3 2 -h i r  �1dd rcssa blc SO/S l 
space without any l i m i t  on usn ft Jn crion�1 1 i tl'. For 
c:xamplc ,  the kernel hc:1p storage is sti l l  I�Jcarcd 
i n  SO/S l space :1 11d cont in ues to be 3 2 - b i t  Jdd rcss
a b l c .  The Record M�m�1gc mcnr Scrl' iccs ( RMS) 
su ppo rts da ta tr:1nsh: rs to and ti·om 64 - b i t  :Jdd ress
ab lc  user buftl: rs , but RMS contin ues to usc 32- hit
wide pointers t<x i rs i mcrna! con trol structu res . 
V.le therefore t(xuscd our e H(H·r on rhc p;l rts o r· 
rbe kern e l  t h :Jt could bcndir ti·om inrcm�1 l  usc 
of 64- bir  add resses ( sec the section lmmcdi �lte Usc 
of 64 -bir  Ad dressing lw the OpcnVJ\t!S Kernel 
�or examples)  :1nd that needed ro ch mgc ro su pport 
64 -bit  user 1·irrua l  add resses. 

Privileged Code Exam ple-The Swapper 

The OpcnV!VIS ll'orking set S11':1ppcr prm ides an imcr
esring example of· ho11 the 64-bir  c h :1ngcs ll' i th in  rhc 
kernel 111J\' i m p:-�c t  pri1 i legcd cod e. 

O n lv a s u bset of :1 process' 1 · irtu�1 l  p�1gcs is m.lf1pcd 
to plwsical memor\' ar ;1m· gi,·cn poi nt  in r ime.  The 
OpenV!'v1S operJti n g  S\'Stcm occ1siona l l \ '  s\\'aps this 
\\'Orkin g set of pages our of memory to sccond�1n· sror
:Jge as a conseque nce ofm:maging the pool oL11'�1 i l �1b lc  
physical memo rl'. The cntitv responsible f(,r this actil·
itv is a pri1· i leged process c 1 l l ed the 11·mking set S\\'ap 
per o r  swapper, t(>r short .  S ince i t  i s  responsi ble t(Jr 
tra nsfe rr i ng rbe \\'O rki ng set of a process i n to and our 
or· memory when n ecessarv, the s\\ 'appcr mu st lu1-c 
i n ti mate knowled ge of rhc virr u�1 1  :1ddrcss space of 
a p rocess inc lud ing that process' p:�gc tables . 

Consider the c:1rl icr discussion in t h e  section 
OpenVMS 64-bit Virtual  Address Space ;J bour ho\1' 
the process' page t:1 blcs hai'C been prii'Jtizcd �1s �1 ��·�11· 
to eHicicmlv pro1 ·idc page table residcncl' in 1·i rrual  
memory. A consequence of this  d esign is rh:1 r  ll ' h i l c  the 
swapper process is �lctil'e, the p�1gc t;lb lcs of the  11roccss 
being S\\'appcd �1 1-c not :11 · a i l ablc i n  1 i rttd mc moiY 
Ye t, the s11·apper requ ires access to those p:1gc tables to 



do i ts job. This is an instance of the cross-process PTE 
access problem mentioned earlier. 

The swappcr is u nable to d i rectly access the page 
tables of the process being swapped because the swap
per's own page tables are currently active in virtual 
memory. We solved this access problem by revising the 
swapper to temporari ly "adopt" the page tables of 
the process being swapped.  The swapper accomplishes 
this by temporari ly changing i ts PTBR contents to 
point to the page table structure tor the process being 
swapped instead of to the swapper's own page table 
structure. This change torces the PT space of the 
process being swapped to become active in  virtual 
memory and therd(xe avai l able to the swapper as i t  
prepares the process to be swapped . Note that the 
swapper can make th is  temporary change because 
the swapper resides in shared space. The swapper does 
not vanish ti-om virtual memory as the PTBR value is 
changed . Once the process has been prepared for 
swapping, the swappcr restores its own PTB R  value,  
thus rel inquishing access to the target process' PT 
space contents .  

Thus,  i t  can be seen how privi leged code with 
intimate knowledge of OpenVMS memory man
agement mechanisms can be affected by the changes 
to support 64- bi t  virt u a l  memory. Also evident is that 
the a l terations needed to accommodate the 64-bit 
changes arc rel ative ly straighttorward . Al though the 
swappcr has a h igher-than- normal awareness of mem
ory managemenr internal  workings, extend ing the 
swapper to accommodate the 64-bit changes was 
not particularly d ifficu l t. 

Immediate Use of 64-bit Addressing by the 
OpenVMS Kernel 

Page table residency was certain ly the most pressing 
issue we taced with regard to the Open VMS kerne l as 
it evolved ti·om a 32-bit to a 64- bit -capable operating 
system . Once implemented,  64- bit virtua l  add ressing 
could  be harnessed as an enabling technology tor solv
ing a nu mber of other problems :�s we l l .  This section 
briefly d iscusses some prominent examples that serve 
to i l l ustrate how immediately usefu l  64-bit  addressing 
became to the OpcnVJ\IIS kerne l .  

Page Frame Number Database and 

Very Large Memory 

The OpenVMS Alpha operating system maintains a 
database t(>r managing ind ividu a l ,  physical page ti·ames 
of memory, i .e . ,  page ti·ame n umbers. This database is 
stored in SO/S l space . The size of this database grows 
l inearly as the size of the physical memory grows. 

Future Alpha systems may inc lude larger memory 
configu rations as memory technology continues to 
evolve. The correspond ing growth of the page ti-ame 

number database tor such systems could consume 
an unacceptably large portion of SO /S 1 space, which 
has a maxi m u m  size of 2 GB. This design effectively 
restricts the maxirnum amount of physical memory 
that the OpenVMS operating system would be able 
to support in the fuwre. 

We chose to remove this poten tia l  restriction by 
relocating the page trame llU !llber database ti·om 
SO/S l to 64-bit addressab l e  52 space. There it can 
grow to support any physical memory size being con
sidered tor years to come. 

Global Page Table 

The OpenVMS operating system maintains a data 
structure in SO /S 1 space cal led the global page table 
( G PT) .  This pseudo-page table maps memory objects 
called global sections. Multiple processes may map 
portions of thei r respective process - private add ress 
spaces to these global sections to achieve protected 
shared memory access tor whatever applications they 
may be running. 

With the advent ofP2 space, one can easi ly anrjcipate 
a need tor orders-of-magnitude-greater global section 
usage . This usage d i rectly i ncreases the size of the 
GPT, potential ly reaching the point where the G PT 
consumes an unacceptably large portion of SO/S l 
space . We chose to forestal l  this problem by relocating 
the G PT fi·om SO/S l to S2 space. This move a l l ows the 
con figuration of a G PT that is much larger than any 
that cou ld  ever be configured in SO/S l space . 

Summary 

AJ though provid ing 64-bit support was a significant 
amount of work, the design of the Open VMS operat
ing system was read i ly scalable such that it cou ld 
be achieved practica l ly. First, we establ ished a goal of 
strict binary compati bi l ity tor nonprivil eged applica
tions. We then designed a su perset vi rtual address 
space that extended both process-private and shared 
spaces while preserving the 32-bit visible address space 
to ensure compatibility. To maximize the avai lable 
space for process-private use, we chose an asymmetric 
sty le of add ress space layout.  We privatized the pro
cess page tables, thereby e l iminating their residency 
in shared space. The bv page table accesses that 
occurred fl·om outside the context of the owning 
process, which no longer worked after the privatiza
tion of the page tables, were addressed in various ways. 
A variety of ripple effects stemming ti-om this design 
were read i ly solved within the kerne l .  

Solutions to other sca l ing problems related ro  the 
kernel were immediately possib le  with the advent of 
64-bit virtual add ress space. AJrcady mentioned was 
the complete removal of the process page tables ti-om 
shared space. vVe also removed the global page table 
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and the page fi-ame n u m ber database from 3 2 - bi t  
addressab le t o  64- bi t  addressable  shared space. T h e  
i m med iate n e t  d kct of t hese changes was significant l y  
more room in  SO/S l space tor con figuring more 
kernel heap storage, more balance slots to be assigned 
to greater numbers of memory resident processes, e tc .  
We fur ther anticipate use o f 64 - bi t  addressable shared 
space to rea l i ze addit ional  bendits of VLM, such as 
tor cac hing massive amounts of fi le  system data. 

Providing 64- bi t  addressing capacity was a logical , 
evo lutionary step for the Open VMS operating syste m .  
Growing numbers of customers are demand i ng the 
addi tional virtual memory to help solve their problems 
i n  new ways and to achieve higher performance. This 
has been especial ly fru itful for database appl ications, 
with su bstantial  performance i mprovements al ready 
proved possible by the use of64-bit  addressing on the 
Digital UNIX operating system . Similar results are 
expected on the OpenVMS system . With terabytes 
of virtual memory and many gigabytes of physical 
memory avai lable,  entire data bases may be loaded into 
memory at once. M uch of the I/0 that otherwise 
would be necessary to access the database can be el imi
nated, thus a l lowing an appl ication to i mprove perfor
mance by orders of magnitude, for example, to reduce 
q uery time from eight hours to five minutes. Such 
performance gains were di fficult  to ach ieve whi le 
the  OpenVMS operating system was constrained to a 
32-bit  environment. With the advent of 64-bit  address
ing, OpenVMS users now have a powerfu l  enabl ing 
tec hnology avai lable to solve their problems. 

Acknowledgments 

The work described in this paper was done by m e m 
bers of t h e  Open VMS A l p h a  Operating System Devel 
opmen t  group.  Nu merous contributors p u t  in  many 
long hours to ensure a wel l -considered design and 
a h igh-qual ity implementation . The a uthors part icu
larly wish to acknowledge the fol l owi ng major con 
tribu tors to this effort :  Tom Benson, Richard Bishop , 
Wa lter B laschuk,  Nit in Karkhanis, Andy Kuehnel ,  
Karen Noel ,  P h i l  Norwich,  M a rgie Sherlock, Dave 
\Val l ,  and Elinor ·wood s.  Thanks a lso to mem bers 
of the Alpha languages commun ity who provided 
extended programmi ng support for a 64-bit  environ
ment; to Wayne Cardoza, who h elped shape the earli
est notions of w hat cou ld be accompl ished; to Beverly 
Schu ltz,  who provided strong, early encouragement 
tor p u rsuing this project; and to Ron H iggins and 
S teve Noyes, tor their spiri ted and u n flaggi ng support 
to the very end . 

The tdl owing reviewers also d eserve t h a nks tor 
the inva l uable com ments they provided in h elping to 
prepare this paper:  Tom Benson, Cathy Foley, Clair  
Grant,  Russ Green, Mark Howel l ,  Karen Noel,  Margie 
S herlock, and Rod vViddowson .  

Digital Tec hnica l  Journal Vol .  8 No. 2 1 996 

References and Notes 

I .  N. Kronenberg, T. Benson, W. Cardoza, R. Jagannathan, 
a nd B. Thomas, "Porti ng Open VMS from VAX to AJpha 
1\.,\P," Digital Tecbnical.fournal, val . 4,  no.  4 ( 1 992 ) :  
l l l-120 .  

2 .  T.  Leonard, cd . ,  VAX A rch itecture Reference Manual 
( Bedford, Mass . :  Digital Press, 1 98 7 ) .  

3 .  R .  Sites and R .  Witek, A lpha AXP A rchitecture Refer
ence JI!Ianual, 2d cd. ( Newton, 1Vlass . :  Digital Press, 
1 995 ) .  

4 .  Although an OpcnVMS process may refer to  PO  o r  P I  
space using either 32-b i t  or 64-bit poi n ters, references 
to P2 space requ i re 64-bit poin ters. AppJications may 
very wel l  execute with mixed poi n ter si zes. (See refer
ence 8 and D. Smith, "Adding 64-bit Pointer Support 
to a 32 -bi t  Run-time Library," Digital Technical 
journal, val . 8, no.  2 [ 1 996, this issue ] :  83-95 . )  There 
i s  no notion of an application executing in  either a 32-bit 
mode or a 64-bit mode.  

5 .  Superset system services and language support wct-c 
added to faci l i tate the mani pulation of 64-bit address
able P2 space.8 

6 .  This mechanism has been in place since OpenVMS 
Alpha version 1 .0 to support virtual PTE tCtchcs by the 
translation buffer m iss handler i n  PALcode.  ( PALcodc 
is rbe operating system-specifi c  privi leged arch i tecture 
l ibrary that provides control over i n terrupts, exceptions, 
context switching, ctc 3 )  In cHeer, this means rhar the 
OpenV!YlS page rabies a lready existed i n  two virtual 
l ocations, namely, SO/S l space and PT space . 

7 .  The SPT window is more precise ly only an SO/S l PTE 
window. The PTEs that map 52 space <He referenced 
using 64-bir poin ters ro their natural locations in PT 
space and :�rc not accessible through the use of th is SPT 
window. However, because 52 PTEs d id nor exist prior 
to the i ntroduction of 52 space, this l imitat ion is of no 
con seq ucnce to contexts that arc otherwise restricted to 
SO/S I space. 

8. T. Benson, K. Noel ,  and R. Peterson ,  "The OpenVMS 
Mixed Pointer S ize Envi ronment," Digital Tech n ical 

Journal, val . 8, no. 2 ( 1 996, th is  issue ) :  72-82 .  

General References 

R. Goldenberg and S. Saravanan, Open VMS AX!' Internals 
and Data Structures, Version 1 .5  ( Newton, Mass . :  Digital 
Press, 1 994 ) .  

Open VNIS Alpha Gu ide to 64-Bit Addressing ( Maynard , 
Nlass . :  Digital Equipment Corporation, Order No. 
AA-QSBCA-TE, December 1 995 ) .  

Open Viv!S A lpha Gu ide to Upgrading Priuileged-Code 
Applications (Nlaynard ,  Mass . :  Digita l  Equipment 
Corporation, Order No.  AA-QSBGA-TE, December 1 995 ) .  



Biographies 

Michael S. Harvey 
M ich �cl Harvey joi ned Digit� !  in 1 978 at-i:er receiv i n g h is  
B . S . C. S .  h·om the U nivcrsirv of  Vermon t . In 1 984, as  a mem · 
ber of rhe OpenV;viS Engi;1eering group, he participated i n  
nell' processor support �i:>r VAX mu ltiprocessor systems and 
helped de1·clop Open VMS Sl'mmetric mul tiprocessing (S;vl I') 
support for these s1·srems.  He rece in:d a patenr �or this ll'ork. 
M ike 1v�s an o1·igi n�l member of the RJSC1· - VAX task ti Jt·co:, 
which conccil'ed and d eve loped rhc A l ph a arc h i tectu n: . 
Mike led the project that ported the Open VMS E xecu til'(: 
fi·om the VA-'< to the Alph� pbr�cmn and subsequ e ntly led 
the project that designed <1 1ld i mp lemen ted 64-bit  virtual 
,,ddn:ssing supporr i n  Open VMS.  This effort led ro a ml m 
ber of parent applications. As '' consult ing software cngi 
nn:r, ;\!l i ke is currenrlv ll'orki ng i n  rhc area of i n frastructure 
rhat supports the Windm1 s NT /Open VMS Affin i rv in i riati1·e . 

Leonard S. Szu bowiez 
Leon:u·d Szubowicz is a consu lt i ng software en gineer i n  
Digital's Open V M S  Engineering group.  Currenrly the 
ted1nic.1l leadcr �(>r the Open VMS 1/0 engineering team ,  
he joi ned Digir,, l So�iW<lre Sen·ices in  1 98 3 .  A s  a member 
of the Open VMS 64- bi t 1· i r tual ;lddress i ng projec t rea m , 
I .C i l l 1\' had pri nJ<\1'1' n:sponsi b i l in· ti:>r r;o a nd d rii'CI' Sl l �)
port. Prior to rhat, he ll'cls rhe a1·ch itcct and pro j ect lc;lder 
t(>r rh c Open VMS high - l c l e l langtugc dc1·ice d ril'cr p ro j 
ccr , conrri butcd ro rhc port ohhc Open VMS opcr•1r ing 
sysrem ro the Alph<l pl ati(mn , and "'"s p1·ojecr l eader t(Jr 
R.MS ) ournJi i ng. Lt:nny is a coaurhor of Wriliug Opeu Vt\1/S 
Alpha {)elJice Orit,ers ill  C. w h ic h was recenr ly pu blished 
by Digital Press. 

Digir<li T�chn ical journal  Voi . S No. 2 1 996 7 1  



72 

The OpenVMS Mixed 
Pointer Size Environment 

A central goal  in  the implementation of 64-bit 

addressing on the OpenVMS operating system 

was to provide upward-compatible support for 

appl ications that use the existing 32-bit address 

space. Another gu id ing principle was that mixed 

pointer sizes are l ikely to be the rule rather than 

the exception for appl ications that use 64-bit 

address space. These factors d rove several key 

design decisions in the OpenVMS Calling Stan

dard and programming interfaces, the DEC C 

language su pport , and the system services 

support. For example,  self-identifying 64-bit 

descriptors were designed to ease development 

when mixed pointer sizes are used. DEC C sup

port makes it easy to mix pointer sizes and to 

recompile for un iform 32- or 64-bit poi nter s izes. 

OpenVMS system services remain fully upward 

compatible, with new services defined only 

where required or to enhance the usabil ity of the 

huge 64-bit address space. This paper describes 

the approaches taken to support the mixed 

pointer s ize environment in  these areas. The 

issues and rationale beh ind these OpenVI\IIS 

and DEC C solutions are presented to encourage 

others who provide l ibrary i nterfaces to use 

a consistent programming interface approach. 
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Su ppmt t(>r 64-bir \ ' irtual addressi ng on the OpcnVt\!!S 
Alph;l opcr;ning s\·src m ,  \'Crsion 7.0,  h:1s \·asril· inc 1·clscd 
the ;lmmmr oh i nu:1 l  :-�ddrcss space ;l\'<l i lab lc  t(x :-�pplica
tion usc . '  At the same rime, li.i l lv compatible support tor 
appl ic:-�tions that usc onlv 32-b it  add resses ( ;1lso ul lcd 
pointers) has been prcscnnL 

A n  app l icuion that mi\cs 3 2 - bi r  and 64 - b i r  poi n ter 
sizes ope rates i n  : t  m i.\·ed pointer size ent ·imnnwnl. 
tVl i\cd poi mc1· s ize appl ications \\'ere the design center 
tc > r  the i n i ti <l i  i m plcmc nt:-�tion o f 64 - b i t  su pport i n  the 
OpcnVMS opcr<Hing svsrcm .  This paper d iscusses 
the I'Clso ns ,,·Jw m i \ i n g  poi n te r  s izes is  ex pected to 
be a common prxticc ;md d csni bcs the design of 
opcr:tt ing S\'Stcm and l anguage featu res that J I'C pro
,· idcd to usc progr:-� m m i n g  in this  mi\cd poi n ter s i ze 
cm·ironm e n  t .  

Reasons for Mixed Pointer S izes 

To usc 64-h i r  :tdd rcss space, some s imple appl ications 
need only be recompi l ed t(Jr :t u n i f(>nl1 64 - b i t  poi nter 
s ize . For c x;l m p l c ,  scl fcont a i ncd DEC: C appl ic:1rions 
rhar rc l v  on onlv the C: r u n - r i me l i b r.1ry, without 
using s\·s rcm services or  other l i braries, can take 
this ;lpproac h .  Rea l - worl d  :-�pp l ications arc se ldom this 
c l c:t n -c u t, hm\'C\'Cr. In more complc\ appl ications, 
where 64 - b i t  :tddrcss space i s  l i ke l v  to be needed,  
mi xes of langu:-�gcs, depend encies on svstcm intcrt:lces 
a nd oth e r  l i braries, :-�nd re l i ance on t h i rd - part\1 pack
ages or l i braries ;l re com mon . These practices a l l  lead 
to the m i \cd poi nter size environment i n  which  appl i 
cnions continue ro usc some 3 2 - bi t  add resses w h i l e  
ta king adv:-�nr:-�gc of64-bit v i rtu:-�! add ress space . 

Appl ic:-�tions that arc l i ke l y  to rake adva n tage of 
64- bi t  m emory a rc those i n  which the dcclar;�rion and 
manage m e n t  of ;l L1rgc d ata set u n  be logica l l v  sepa
rated ti·om the rest of the progr:-� 111 . This  scpar;ni on 
docs not need to be ar  the sou rce fi l e  Jc,·c l .  I r  em be 
at a progr.1 111 r1ow l e ve l ,  i n d i c;� t ing which i n te rn a l  and 
exte rn a l  i n tc rhccs wi l l  be gi\'Cil 64- bi r  ;ld d rcsses to 
work wi rh . 

'I'hc t< >l lowing sections exp l ore the reasons t(>r 
m i x i n g  poi nter s izes .  



Open VMS and Language Support 

I mp lement3tion choices that Digita l made tor this first 
release of the Open VMS operating system that sup
ports 64-bit virtual  addressing wi l l  probably e ncour
age m i xed pointer s ize programming.  These choices 
were d riven largel y  by the need tor a bsolute upward 
com pati b i l ity tor nisti ng programs and the goal of 
supporti ng large , dynamic data sets as the primary 
applicltion t()r 64-bit add ressing. 

Dynamic Data Only OpcnVMS services su pport 
dynamic a l location o t-64- bit  add ress space . This mech
anism most closely resembles the mal loc and free fimc
tions t()r al locating and deal locaring dynamic storage 
in the C progra m ming langu age. Allocation of this 
type d i ffers trom static a n d  stack storage in that e xplicit 
source statements are req u i red to manage it .  For static 
and stack storage, the system is a l locating the memory 
on beha lf  of the appl ication at i mage activation r ime.  
( O f  course, the al location may be extended during 
execution i n  the case of st:�ck stor:�ge . )  This a l location 
cont i n ues co be fi·om 3 2 - bit  add rcss:�ble space. 

Two specia l  cases of static a l location are worth men
tioning. Lin kage sections, which are program sections 
that contain routine l i n kage i n formation ,  and code 
sections, which contJin the cxccutJbk i nstructions, 
do not d i fkr su bstantia l l y  ti·om preinitialized static 
storage. As J result ,  these sections also resid e  only i n  
32-bit add ressab le memory. 

U pward-compatibi l ity Constraints The OpenVMS 
Al pha operating system is cautious to avoid using 
64- bit memory free ly where it  may prevent u pward 
compatibi l ity tor 3 2 - bit  :�ppl ications. For exampl e,  the 
lin kage section m ight seem to be a nJtural candidate 
for the Open VMS system to a l locate au tomatica l ly  i n  
64-bit memory. T h i s  a l locnion woul d  essentia l ly  free 
more 3 2 - bit  add ressable memory for appl ication use; 
however, even i f  this were done only tor appl ications 
relin ked tor new versions of the Open VMS operating 
system ,  there is no guarantee that all object code treats 
J in kagc section add resses as 64 bits in wid t h .  A simple 
example is  stori ng the add ress of a routi ne i n  a struc
ture. S ince a routine's ad d ress is the add ress of i ts pro
cedure descriptor in the l i n kage section, movi ng t h e  
li n kage section to 64 - bit  m emory wouJd cause cod e 
that stores this add ress i n  a 3 2 - bi t  cel l  to fai l .  

Al locating the user stack in 64- bit space also appears 
to be a good opportunity to easily i ncrease the amou nt 
of memory avai lable to an application. Stack add resses 
arc often more visi ble to appl ication code than l i n kage 
section add resses arc. For instance, a rou tine can easi ly 
al locate a local variable using tem porary storage on the 
stack and pass the add ress of the variable to another 
routine.  I f  the stack is moved to 64-bit space, this 

ad d ress qu ietly becomes a 64- bit add ress. If the cal led 
routine is  not 64-bit capable, attempts to u se the 
add ress will fai l .  

Focus on Services Req u i red for  Large Data Sets Not 
all system services cou l d  be changed to support 64- bit  
add resses ( i . e . ,  promoted) i n  t ime tor the first version 
of the OpenVMS operating system to support 64-bit 
addressing. vVith the m i xed-poi n ter model  in  mind , 
we tocused on those services that were l i ke ly  to be 
req u i red for l arge data sets. For example, to a l low IjO 
d i rectly to a nd from h igh memory, it was essential that 
the IjO queu i ng service , SYS$ QIO,  accept a 64-bit 
buffer add ress. Converse ly, the SYS$TRN LNM service 
t(x translating a logical name d i d  not need to be mod
i ticd to accept 64 - bit  addresses. Its arguments inc lude 
a logical name, a table name, and a vector that contains 
requests tor information about the name.  These are 
small  data elements that arc u n l i ke ly to req ui re 64-bit 
add ressing on their own . Of course, they may be part 
of some larger structure that resides in 64-bit space. 
In  this case, they can easi ly be copied to or from 32 - bit  
addressable memory. 

System services are d iscussed further in the section 
Open VMS System Services. The 32-bi t  ad d ress restric
tion on certain system services again emphasi zes the 
im portance of being able  to l ogica l ly  separate large 
data set support from the rest of an application. 

Limited Language Support Another i nterface poi nt 
that requires care when using 64 - bit  addressing is at 
ca l ls between mod ules written in d i fferent  program
m ing languages. The Open VMS Cal l ing Standard 
tradi tional ly ma kes it easy to m i x  .languages in an appl i 
cation,  b u t  DEC C i s  the o n l y  high- level l anguage 
to fu l l y  support 64-bit ad d resses in the tirst 64-bit
capable version of the Open VMS operating system . 2  

The usc of 64-bit add resses i n  m ixed - language 
applications is possib le ,  and data that contains 64- bi t  
add resses may even b e  shared ; however, references 
that actua l ly use the data pointed to by these add resses 
n eed to be l imited to DEC C cod e or asse m bl y  lan
guage . Mixed h igh-level language appl ications arc cer
tai n  to be mixed pointer  s ize appl ications in this 
version of the operating syste m .  

Support for 32-bit Libraries 

Many applications rely on l i brary packages to provide 
some aspect of their  fu nctional ity. Typical examples 
i nclude user i nterface packages, graphics l i braries, and 
database utilities. Third -party l ibraries may or may not 
support 64- bi t  add resses. App l ications that usc these 
l ibraries wil l  probably mix 32-bit  and 64-bit poi nter 
sizes and wil l  therefore requ ire an operating system 
that supports m ixed pointer sizes. 
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Implications of Full 64-bit Conversion 

for some applications, i t  may be desirable to mix 
pointer si zes to avoid the s ide dkcts of un iversal 64- bit  
add ress conversion.  The approach of recompi l ing every
thing with 64-bit  address wid ths is sometimes cal led 
"throwing the switch . "  An obvious i m pl ication of 
throwing the switch is  that a l l  poi nter data dou bles in 
size. For complex l i n ked data structu res, this can be a 
signi ficant overal l increase in size. I ncreasing the pointer 
size may also reveal hidden dependencies on pointer size 
being the same as integer size. I f  code accesses a cel l as 
both a 32-bit  i nteger and a 32-bit  pointer, the code wi l l  
n o  longer work i f  the poin ter i s  en larged . Thus, 
univerS<ll ly  i ncreasing the pointer size may torce changes 
to code that would othen,�se continue to work. 

There is a more compel l ing reason t()r not throwing 
the swi tch tor code that is part  of a sha red l i brary. 
Library packages m ust not retu rn 64 -bit  add resses to 
users of the l ibrary un less tbe cal l i ng code is d di n i te l y  
64-bit capab l e . I f  t h e  l i brary developer th rows t h e  
swi tc h  w h e n  bu i l ding a l ibrary written in  DEC C, a l l  
memory returned b y  t h e  malloc fu nction wi l l  b e  i n  
64-bit add ress space. This can be a problem i f  the 
add ress is b l ind ly returned to a l ibrary cal ler. If a l i brary 
is to work in a m i xed pointer size environment, and 
i t  sometimes returns poin ters to memory it has al lo
cated , it  needs to use m i xed poin ter si zes i nternal ly. 

Programming Interface Issues 

The coexiste nce of 3 2 - b i t  and 64- b i t  poi mcrs raised 
several design q u estions tor operating system and l �m 
guage support, particularl y  i n  t h e  area of routine i n ter
faces. "When an app l ication or l i brary is being mod i fied 
to use 64- b i t  add ress space, argument passing may 
be the most exposed area. In this  section,  we d escri be 
how mixed poi n ter size support affects argument
passing mechanisms and the design decisions made to 
case the coexistence of mi xed pointer sizes. 

Argument List Width 

Even bd(>re the introduction of64-bit add ressi ng, the 
Open VMS Ca l l ing Standard defined argu ment l ist cle
me nts to be 64 bits i n  width. When passing a 32 - bit  
add ress ( that  is, when passing an i tem i n  3 2 - bi t  space 
by rc k rcncc ) ,  compi l ers sign extend the 3 2 - bi t  val u e  
i n to the 64- bit  argu ment location . '  Passi ng 64- bi t  
addresses as val ues works transparently without c hang
ing the ca l l ing standard , assum ing, of course, that the 
cal led routine e x pects to receive 64- bi t  add resses. 
Passi ng 32 - bit  addresses as values to rou ti nes that  
expect  64- bit  add resses works properly bec1use the 
values have been sign extended to a 64-bit  wid th.  

Pointers by Reference 

P�1ssing the add resses of pointers req u i res specia l  care 
when mix ing poin ter si zes. If the ca l ler  passes a 32- bi t  
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add ress by rckrcncc, and the cal led routine reads it  as 
a 64 -bit  address tl·om mcmon·, the u pper 32 bits wi l l  be 
incorrect. S imi larly, i f  the add ress of a 64- bi t  add ress is 
passed , a nd the cal led rou tine reads only 32 bits ri-om 
memory, it  wi l l  bil when that address is  used . 

This is the s implest case in which s u pport of 64-bit 
add resses may req uire a programming interface change 
tor 64- bi t  ca l lers .  A single ent r y  poin t  that receives 
a pointer by rdercnce cannot tell which s ize pointer 
i t  has received . Some possible solutions inc lude a new 
a lternate entry poi n t  t(Jr  64- bi t-capa ble cal lers or a 
new parameter indicating the si ze of the add ress. 

Pointers Embedded in Structures 

Pointers passed by reference are a specia l  case of the 
more general problem o f  passing structures that con
tai n pointers .  Again,  the cal ler and cal led rou tine must 
agree on t he size of the pointers contained i n  the 
structure .  This case ofters an option that may not 
req u ire a new progra m m i ng i nt erface, however. If the 
structure is self- identifying, the routi ne rnay be able to 
tel l  which rcm11 ofrhe structure it has received and dis
patch to appro priate code ror the corresponding 
poi n ter  length.  

Function Return Values 

Fu nction return val ues are also defined to be 64 bits i n  
width, s o  n o  cal l ing standard change was req u i red to 
support 64-bit  poi n ter  retu rns. I t  is i m portant that ::t 

64 - bi t  address not be retu rned bl ind lv, though, u n less 
it is known that the ca l ler  is 64 -bit  capa b l e .  Typica l ly, 
this  is a problem f()r l ibrary support rout i nes rather 
than t()r those within an appl ication . A l i brary rou tine 
should return a 64- bi t  add ress only if  the routine has 
been specifica l ly  developed tor a 64- bi t  environment  
or i f  i t  can te l l  with certa inty, based on input parame
ters received, thJt the cd lcr  is 64 -bit  capable.  

Calling Standard Issues 

The Open VMS Cal l ing St�1 1 1d ard defines register usage 
conventions, argu ment l ist  locations, data structures, 
and standard practices r(>r making procedure calls that 
operate correctly in  a m u lt i language and m u l ti 
threaded environment .  As memioned earlier, this stan 
dard a l ready ddincd :1rgument l i s t  eleme nts t o  b e  
6 4  b i ts i n  wid t h ;  however, some key data structures 
ddined by the standard were based on 32 -b i t  poi n ter 
s izes.  The goal  of  upward comp::tti bi l ity tor e x isting 
code compl icated the job of extending the standard . 
The rollowi ng sections describe bow the Structures 
were u l timatelv changed and i l l ustrate some 
approaches to supporting mi xed pointer si zes w hen 
shared structures conrai n poi ntcrs. 

Descri ptors Descriptors �1rc structures defined bv 
the ca l l ing stand ard to specit-\' an argu men t's tvpc, 
length,  and add ress, along with other tvpe or 



structure -specific information . Typical ly, descriptors 
are used only tc>r character strings, arrays, and complex 
data types such as packed decimal . 

Descriptor types are by ddinition sclfidcntit)ring by 
virtue of the type and cl ass fie lds they conta in .  An 
obvious choice, therd(xe, for extending descriptors to 
handle 64-bir add resses wou ld be to �1dd new type 
constants t(>r 64- bit  data e lements and extend the 
structure beyond the type fields to accommodate 
l arger addresses and sizes. I n  practice , however, the 
address and Jength fields hom descriptors are fi-e
quently used wi thout accessing the type fie lds,  partic
u larly when a character stri ng descriptor is expected . 

As a resu lt, a solution was sought that wou ld yield 
a predictable fai lure, rather than i ncorrect resu lts or 
data corruption, when a 64- bit descriptor is received 
by a routine that expects onlv the 32 -bit  f(>rm .  The 
final design includes a separate 64-bit descriptor l ayout 
that contains two special fie lds at the same ottSets as 
the length and add ress fields in the 32- bit descriptor. 
These fields are cal led M BO ( must be one) and 
M RMO ( must be minus one ) , respective ly. The sim
plest versions of the  3 2 - bit  and  64- bit  descriptors are 
i l l ustrated in Figure l .  

If  <1 routine that expects a 32-bit  descriptor receives 
a 64- bit descriptor, it wi l l  find rhe value  1 in the length 
tic ld . This nonzero val ue ensures th:tt the address wi l l  
need to be read . Otherwise, the descriptor cou ld be 
treated as describing a n u l l  value ,  and the address 
would be ignored . In the add ress fie ld ,  a 32 -bit reader 
wi l l  find the value - 1 .  When the reader attempts to 
rdcrcnce this add ress, an  access viol:ttion occurs, 
bccJusc the OpenVMS operati ng system guarantees 
this add ress to be inaccessible .  This combination of 
values ensures that an access wil l  also bil if the length is 
added to the address first, in an attempt to rcJd the last 
byte of data. 

BYTE 
OFFSET 

.-----,------,------------� 
CLASS I DTYPE I LENGTH . 0 

ADDRESS 4 

S IMPLE 32-BIT DESCRI PTOR 

CLASS I DTYPE I MBO 0 
MBMO : 4  

LENGTH 8 

ADDRESS 1 6  

S IMPLE 64-BIT DESC R I PTOR 

Figure 1 
Simplest Versions of the 3 2 - bir  Jnd 64-bit  Dcsniptors 

To d istinguish the descriptor forms, a new routine 
must check the MBO and MBMO fields for the 
expected 64- bi t  descriptor values .  In  the OpenVMS 
operating system,  many routines now accept either 
descriptor tcm11 . 

Signal Arrays The signal array is a user-visible struc
ture that is passed to cond ition handlers when an 
exception occurs. The array contains message codes, 
arguments speci fic to the conditions, and control data. 
Because the arguments may inc lude one or more vir
tual add resses, a new format was necessary to accom
modate 64-bit  addresses. 

The signal array could not simply be promoted to 
contain 64-bit addresses, becJuse handlers in existing 
code often make assumptions about its format. The 
mechanism array, a related structure containing a snap
shot of register contents, was already 64 bits in wid th. 

The solution was to leave the original form of the 
signal array unchanged and create a 64- bit counter
part. The items passed to a condition hand ler, the 
32-bi t  signal array add ress, and a 64- bit  mechanism 
array address arc the same. The mechanism array now 
contains a pointer to the 64- bit  version of the signal 
array. This a l lows existing code to work without 
change, whi le new hand lers that may require access to 
64- bit  addresses in exceptions can obtain the 64-bit 
array address from the mechanism array. Some add i 
t iona l  work was needed in OpcnVMS exception han
d l ing to keep these two Jrrays synchron ized , because 
handlers are J l lowcd to change their contents. 

Sign-extension Checking 

As described earl ier, 32-bit addresses passed as routine 
arguments arc sign extended into 64- bi t  argument loca
tions. A safeguard that can be used in 32-bit routines 
that are not extended to ful ly  support 64-bit addresses is 
rderred to as sign-extension checking of the argumem 
addresses. This checking consists of simply reading the 
low 32 bits of the argumcm, sign extending this value to 
a 64-bit \vidth, and comparing the resu lt  to the fu l l  
64 bits o f  the argu ment. I f  the bits d i ffer, the add ress is 
not one that can be represented in 32 bits. The routine 
can then return an error status of some kind , rather than 
ta i l ing in some u n pred ictable way. S ign-extension 
checking is a usdl.1l tool t(>r ensuring robust interfaces in 
the mixed pointer size environment.  

D EC C Language Support for Mixed Pointer Sizes 

To support appl ication programming in the mixed 
pointer size environment, some design work was 
req uired in the D E C :  C compiler. Th is section 
describes the rationale behind the tina! design . 

It was clear that the compiler wou ld have to provide 
a way tor 32 -bit  and 64- bit  poi n ters to coexist in the 
same regions of code .  At the same time, customers and 
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internal users i nitial ly  favored a simp le command l ine 
switch when pol led on  potentia l  compi ler support 
for 64-bit  add ress space. (At least one C compiler that 
supports 64-bit addressing, M I PSpro C, does so only 
through command l ine switches for setting pointer 
sizes . 3 )  The motivation for using swi tches was to l imi t  
the  source changes n eeded to take advantage of  the 
add itional address space, especial ly when portabi l i ty 
to other p lattonns is desi red . For cases in which mix 
ing pointer sizes was unavoidable,  something more 
flexible than a switch was needed . 

Why Not _near and _far? 

The most common suggestion for control l ing ind ivid 
ua l  pointer declarations was to adopt the _near and 
_far type qual ifier syntax used in the PC environment 
in its transition from 1 6- bit  to 32 -bi t  addressing.4 
While this idea has merit in that it has a l ready been 
used e lsewhere in C compilers and is fami liar to PC 
software developers, we rejected this approach for the 
fol lowing reasons: 

• The syntax is not standard. 

• The syntax requires source code edits at each decla
ration to be affected . 

• The syntax h as become largely obsolete even i n  the 
PC domain with the acceptance of the flat 3 2 - bit 
address space mode l  offered by modern 386-
min imum PC compilers and the Win32  program
ming interface. 

• Because of the vast difference in scale i n  choosing 
between 1 6-bit or 32 -bit  pointers on a PC as com
pared to choosing between 32-bit  or 64-bit poimers 
on an Alpha system ,  there would be no porting ben
efit in using the same keywords .  No existing source 
code base would be able to port to the OpenVMS 
mixed pointer size environment more easily because 
of the presence of _near and _t:1r qualifiers. 

Pragma Support 

The Digi ta l  U N I X  C compi ler had previously defined 
pragma preprocessing d i rectives to control pointer 
sizes tor sl ightly d i fkrcnt reasons than those described 
for the OpenVMS system. '  By defau lt, the Digital 
U N I X  operating system ofkrs a pure 64-b i t  address
ing model . In some circumstances, however, it is desir
able to be able to represent pointers i n  32  bits to 
match externa l ly imposed data layouts or, more rarely, 
to red uce the amount of memory used in representing 
pointer val ues . The Digi ta l UNIX pointer_size prag
mas work in conjunction with command l ine options 
and l inker/loader katu rcs that l imi t  memory use and 
map memory such that pointer values accessible to the 
C program can a lways be represented in  32 bits. 

Since compatib i l ity with the Digita l  U N I X  compiler 
wou ld  have greater value i f  i t  met the needs of the 
OpenVMS platform, we evaluated the pragma-based 
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approach and decided to adopt it, propagating any 
necessary changes back to the UNIX platform to main 
tain  compatibi l ity. The decision to use pragmas to 
control pointer s ize addressed the major deficiencies 
of the _ncar and _far approach .  In particu lar, the 
pragma d irective is specitled by ISO I ANSI C in such 
a way that using it docs not compromise portabi l ity as 
the use of add itional keywords can, because unrecog
n ized pragmas arc ignored .  Furthermore, pragmas can 
easily be specified to apply to a range of source code 
rather than to an ind ividual declaration. A nu mber of 
DEC C pragmas, inc luding the pointer size controls 
implemented on the U N I X  system ,  provide the abi l ity 
to save and restore the state of the pragma .  This makes 
them convenient and safe to usc to modit)r the pointer 
size within a particular region of code without d isturb
ing the surrounding region .  The state may easily be 
saved betore changing it at the beginning of the region 
and then restored at the end .  

Command Line Interaction 

Pragmas tlt in with the initial desire of p rospective 
users to have a simple command l ine switch to indicate 
64 bits. As with several other pragmas, we detined a 
command l ine q ualifier ( /pointer_size ) to spccif)r the 
initial state of the pragma before any instances arc 
encountered in the text. U nl ikc other pragmas, 
though , we also use the same command line qua l i fier 
to enable or d isable the action of the pragmas a lto
gether. In this way, a ddault  compi l ation of sou rce 
code moditied for 64-bit  support behaves the same 
way that it would on a system that did not ofter 64- bit 
support. That is, the pragmas arc effectively ignored, 
with only an  informational message prod uced . 

This behavior was adopted for consistency with the 
Digital U N I X  behavior and a lso to aid in the process of 
adding optional 64-bit support to existing portable 
32 -bit source code that might be compiled for an 
older system or with an older compiler. In this model ,  
a compi lation of new source code using an o ld com
mand line produces behavior that is equivalent to the 
behavior produced using an  older compi ler  or a com 
piler o n  another platform. vVitb one notable excep
tion, bui lding an application that actua l ly uses 64-bit 
addressing requ i res changing the command l ine .  

The exception to the ru le that  existing 32 -bit build 
procedures do not create 64-bit dependencies is a sec
ond form of the pragma, named required_pointer_size . 
This form contrasts with the form poimcr_size i n  that it 
is always active regardless of command l ine qual i fiers; 
otherwise, required_pointer_size and pointer_size arc 
identica l .  The intent of this second pragma is to sup
port writing source code that specifics or interfaces to 
services or l ibraries that can only work correctly with 
64-bit pointers . An example of this code might be a 

header file that contains declarations for both 64- bit 
and 32-bit memory management services; the services 



must always be defi ned to accept and return the 
appropriate pointer size, regardless of the com mand 
l ine qua l i tler used in  the compilation. 

Pragma Usage 

The use of pragmas to control pointer sizes with in a 
range of source code fits well with the model of start
ing with a working 32 -bit application and extending i t  
to exploit 64- bit  addressing with minimal source code 
edits. Programming interface and data structure decla
rations are typica l ly packaged together in header files, 
and the primary manipu lators of those data structu res 
are often implemented together i n  modules. 

One good approach for extending a 32-bit applica 
tion wou ld be  to  start with a n  in i tia l  analysis of mem
ory usage measurements. The purpose of this analysis 
would be ro prod uce a rough partitioning of routi nes 
and data structu res into two categories: "32 -bit suffi 
cient" and "64-bit desirable ."  Next, 64-bit pointer 
pragmas could be used to enclose just the header fil es 
and source modu les that correspond to the routi nes 
and dat<l structures in the 64-b i t-desirable category. 
After recompilation, the next step wou ld be to respond 
to compi ler diagnostics for pointer-type mismatches by 
adding pragma regions to mark sections of the 64- bit 
files as 32 -bit and parts of the 32-bi t  fi les as 64-bit  and 
to carefu l ly  add type casts, where necessary. This  opera
tion is Jikelv to iterate u ntil the compilation is clean and 
a debuggi;1g cycle has shown correctness. The end 
result is an appl ication that rakes advantage of the 
increased address space }or the data structures that wi l l  
benefit fi·om it .  

A common approach to min imizing the spread of 
pragmas throughout a p rogram is to l imit  them to 
typedefs in header fi les. Then, subsequent uses of the 
defined type do not require the pragma. A s imple 
example appears in Figure 2 .  

This example defines a type called char_ptr64, 
which mav be used to declare 64-bit pointers to char
acter data 

.. 
without the use ofpragmas. Of course, indi

vidual pointers within structure types may also be set 
to 64- bi t  or 32-bi t  sizes. 

Secondary Effects 

With the decision made to use pragmas and the basic 
semantics of how the pragmas take effect established 
by the D igital UNIX implementation , we needed to 
consider additional requ irements and issues that 

m ight be speci fic  to the OpenVMS implementation . 
Two major d ifferences between the platforms are 

l .  On the Digital  UNIX system, the l inker/loader 
options used with mixed pointer size compilations 
ensure that  any add ress value obtained by the pro
gram can be represented using 32 bits, whereas on 
the OpenVMS system, any program using 64-bit 
pointers in C ''�l l  a lmost certainly encounter address 
va lues that can not be represented i n  32 bits. 

2. On the Digital U N IX system, the scope of the use 
of mixed pointer sizes was e xpected to be qui te 
smal l  and not l i kely to grow much over t ime, 
whereas on the OpenVMS system, the scope is 
expected to be somewhat larger at first and grow 
significantly over time. 

These rwo d ifferences emphasized the need tor effec 
tive compi le-time d iagnostics, debugging aids, envi 
ronmental support, and c lear documentation. 

Diagnostics As an aid to find ing bugs resu lting from 
improper mixing of pointer sizes, the DEC C compiler 
provides two kinds of diagnostics. Compile-time warn
ings are issued for assignments fi-om long pointers to 
short pointers because of the possibi l ity of data loss. In  
addition, users may enable run- time checking tor 
pointer truncation through a command l ine qual ifier. 
This option causes the compiler to generate code on 
each conversion from a long to a short pointer, which 
wi l l  signal a range-check error i f  data truncation occurs. 

Run-time checking is particu larly usefu l  in code that 
sometimes employs type casting to use long pointers 
in short pointer contexts. Since this action prevents a 
compi le-t ime warn ing about using a long pointer 
where a short pointer is expected , a r u n- time check 
may be t he only way to discover a cod ing error. The 
run- time check q ual i fier provides options d istinguish 
ing this case from checki ng on general assignments 
and parameter passing, a l lowing users to select tor 
which c lasses of poi nter-size mixing the compiler 
should generate checking code. Ru n -time checking is 
a lso avai lable for parameters received by a routine. 
This  a l lows detection of 64-bit add resses passed to 
routines that expect 32-bit  parameters even when the 
ca l l er is separately compi led or written i n  a d ifferent 
programming l anguage. For perrormance reasons, it is 
usual ly  desirable to remove a l l  run-time checking once 
a program is debugged . 

# p r a g m a  
# p r a g m a  
t y p e d e f  
# p r a g m a  

r e q u i r e d _ p o i n t e r _ s i z e 
r e q u i r e d_ p o i n t e r_ s i z e 
c h a r  * c h a r _p t r 6 4 ; 
r e q u i r e d_p o i n t e r_s i z e 

s a v e / *  S a v e t h e  p r e v i o u s  p o i n t e r  s i z e * /  

Fig ure 2 

6 4  / *  S e t  p o i n t e r  s i z e  t o  6 4  b i t s  * /  
I *  D e f i n e a 6 4 - b i t c h a r  p o i n t e r  * /  

r e s t o r e  / *  R e s t o r e  t h e  p o i n t e r  s i z e * /  

Sa mple He�der hie  Code Th�r Li m irs l'ragmas to Defined Types 

Digir"l Technical )ourn�l Vol .  R No. 2 1996 77 



78 

Allocation Fu nction Mapping The com mand l ine 
qual itier sett ing the default pointer s ize h as an add i 
tional effect that  s impl ifies the  use of 64- bi t  add ress 
space. If an expl icit poi nrer size is specified on the 
command l ine,  the ma l loc function is  m apped to a 
routine spec ific to the address space tor that size. For 
example, _mal loc64 is used for mal l oc when the 
default  pointer size is 64 bits. This al lows a l location 
of 64-bit address space without addit ional source 
changes. The sou rce code m ay also ca l l  the size
specific versions of run -t ime routines expl ici tly, when 
compiled for mixed pointer sizes. These size-specific 
functions are avai lable,  however, only when the 
/pointer_size command l i ne q ua�tler is used.  See 
"Adding 64-bit Pointer Support to a 32- bi t  Ru n-time 
Library" in this issue for a discussion of other cHeers of 
64-bit addressing on the C run-time l ibrary." 

Header File Semantics The treatment of poinrer_size 
pragmas i n  and around header fi les ( i .e . ,  any source 
included by the #include preprocessi ng directive) 
deserves special mention.  Programs typically include 
both ptivate definition files and public or system-specific 
header files. In the latter case, it may not be desirable tor 
definitions within the header files to be afrccted by t he 
poinrer_size pragmas or command l ine currently in 
effect. To prevent these definitions trom being aHected, 
the DEC C compi ler searches for special prologue and 
epilogue header files when a #include di rective is 
processed. These files may be used to establ ish a par
ticular state for environmental pragmas, such as 
pointer_size, tor all header files in the di rectory. This 
el iminates the need to modify either the i ndividual 
header files or the source code that includes them . 

The compiler creates a predetined macro cal led 
_JN ITIAL_POTNTER_SIZE to indicate the initial 
pointer size ;-tS specified on the command l ine.  This may 
be of particu la r  use in header files to determine what 
pointer size should be used, if mixed pointer size sup
port is desirable .  Conditional compilation based on this 
macro's definition state can be used to set or override 
pointer size or to detect compilation by an older com
piler lacking pointer-size support. If its val ue is zero, no 
/pointer_size quali fier was specified, which means that 
pointer_size pragmas do not take effect. If its value is 
32 or 64, pointer_size pragmas do take drect, so it  can 
be assumed that mixed pointer sizes are in usc . 

Code Example 

I n  the s imple code example shown in Figure 3 ,  sup
pose that the routine proc l is part of a l ibrary that has 
been only partia l ly promoted to use 64-bit add resses. 
This function may receive either a 32-bit add ress or a 
64- bi t  address i n  the mRwneru_ptr parameter. To 
demonstrate the use of the new DEC C features, prod 
has been modified to copy this character string para
meter fi·om 64-bit space to 32 -bit space when ncces-
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sary, so that rout ines that procl  subsequently cal ls 
need to deal with only 32-bit addresses. 

The IN ITIAL_POI NTER_S IZE macro is used to 
determ ine i f  pointer_size pragmas wi l l  be effective 
and, hence, whether argument_ptrmight be 64 bits in 
width .  If  it might be a 64-bit pointer, whose actual 
width i s  u tlk.nown in  this example, the poi nter's value 
is copied to a 32 -bi t-wide pointer. The pointer_size 
pragma is used to change the current poin ter size to 
32 bits to declare the temporary pointer. Next, the 
two pointer va.l ues are compared to determine if 
the original  pointer fits i n  32 bits. If the pointer does 
not fit, temporary storage in 3 2 - bit  addressable space 
is a l located, and the argument is copied there. Note 
that the example uses _ma l loc32 ra ther than ma lloc, 
because mal loc wou ld a l locate 64-b i t  address space 
if the initial pointer size was 64 b its. At the end of 
the routine,  the temporary space is treed, i f  necessary. 

A type cast is used in the assignment from 
argument:__ptr to temp_short_ptr. even though both 
variables are of type char * .  Without this type cast, i f  
arp,umeJZI_jJtr i s  a 64-bit-wide pointer, the DEC C 
compiler would report a warning message because of 
the potential data loss when assigning from a 64-bit to 
a 3 2 - bit pointer. 

For other examples of pointer_ size pragmas and the 
use of the _INITIAL_PO INTER_SIZE macro, see 
Duane Smith's paper on 64-bit pointer support in 
run-ti me l ibraries." 

OpenVMS System Services 

The OpenVJVlS operating system provides a suite of 
services that perform a variety of basic operating sys
tem functions 7 Design work was requ ired to maxi
m ize the uti l ity of these routines in the new mixed 
pointer s ize environment . Issues that needed to be 
addressed i nc luded the fol lowing, which arc discussed 
in subsequent sections:  

• Several services pass pointers by refe rence and, 
hence, requ ired an interface change. 

• Because of resource constraints, nor a l l  system ser
vices cou ld be p romoted to handle 64- bit addresses 
in the first version of the 64-bit-capable Open VMS 
operating system. 

• Since the services provide mixed l evels of support, i t  
i s  important to indicate those that support 64- bit 
addresses and those that do not. 

• Certain new services seemed desirable to improve 
the usabi l ity of64- bit address space . 

Services That Are 64-bit Friendly 

Services that can be promoted to support 64-bit 
addresses without any interface change are cal led 64-bit 
fi·iend ly. If a service receives an add ress by reference, the 
service is typically not 64- bit friend ly, and a separate 



v o i d p r o c 1 ( c h a r  * a r g u m e n t _ p t r )  
{ 
# i f  I N I T I A L P O I N T E R  S I Z E  ! =  0 

# p r a g m a  p o i n t e r_ s i z e s a v e  
# p r a g m a  p o i n t e r _s i z e 3 2  
c h a r  * t e m p _ s h o r t _p t r ;  
t e m p_ s h o r t_ p t r  = ( c h a r  * ) a r g u m e n t _p t r ;  
i f  ( t e m p _s h o r t _p t r  ! =  a r g u m e n t _p t r )  { 

t e m p_ s h o r t _p t r  = _m a l l o c 3 2 ( s t r l e n ( a r g u m e n t _p t r )  + 1 ) ; 
s t r c p y ( t e m p_s h o r t _ p t r , a r g u m e n t _p t r ) ;  
a r g u m e n t _p t r  = t e m p_ s h o r t _p t r ;  

} 
e l s e { 

t e m p_ s h o r t _p t r  = 0 ;  
} 
# p r a g m a  p o i n t e r _s i z e r e s t o r e  

# e n d  i f  

I *  
T h e  a c t u a l  b o d y  o f  p r o c 1  i s  o m i t t e d .  A s s u m e  t h a t  i t  c a l l s 
r o u t i n e s  t h a t  o p e r a t e  o n  t h e  d a t a  p o i n t e d  t o  b y  a r g u m e n t _ p t r  
a n d  t h a t  t h e  r o u t i n e s  a r e  n o t  y e t  p r e p a r e d  t o  h a n d l e  6 4 - b i t  
a d d r e s s e s . 

Figure 3 

* I  

# i f  I N I T I A L_ P O I N T E R _S I Z E  1 =  0 
i f  ( t e m p_ s h o r t _p t r  1 = 0 )  

f r e e ( t e m p_ s h o r t _p t r ) ;  
# e n d i f  
} 

Code Example of Poi nrc r_sizc Pragmas and rhc _lN lTlAI ,_ POI NTER_S I Z E M�Kro 

enrry point is required to support 64-bir addresses. A 
single routine cannot distinguish whether the address at 
the specified location is 32 bits or 64 birs in width. 

If a scn·icc docs not rccei\'c or return an address by 
rderence, the service is usual ly 64- bit triend ly. Even 
descriptor argu ments present no problem, because the 
32 -and 64-bit versions can be distinguished at run 
t ime.  The majority of services t:t l l  into this category. 

The services th::tt  are not 64-bit tl-icndly include 
the en tire su ite of memory management system scr
\'ices, s ince they access add ress ranges passed by refer
ence.  Other such services include those that receive 
J 32-bit  vector as an Jrgu ment, which may inc l ude the 
add ress of a pointer as an e lement.  A good example 
ti·om this group is SYS$FAOL, which accepts a 32-bi t  
\'LCtor argu ment t(x t(>rmatrcd output .  For a l l  these 
scn·i ces, JlC\\' intcrhccs were designed to accommo
date 64-bir callers. 

Promotion of Services 

The Open VMS project team explored the idea of pro· 
moting all system services to support 64 -bit add resses .  
Since the  majority of OpcnVtvlS system service 
rout ines an: 1\'rittcn in the l'viAC R0-32 assembly l an 
gu age or  the  B l iss- 3 2  programming language, the 
internals of the routi nes could not be promoted to 
hand le 64- bi t  addresses without modi tications. We 
cou ld not take advantage of the throw-the-swirch 
approach, and we did not want to because many 

pointers used in ternal ly in the OpcnVMS operating 
system remain at 32 bits. 

We considered using 64-bit jacket routines to copv 
64-bit argumcllts to the stack in 32 -bi t  space, which 
wou ld then e1l l  the 32-bit intcrnJI routine to pert<xm 
the requested function. However, this approach wou ld  
ta i l  for context arguments such as asynchronous system 
rrap (AST) rou tine parameters, where the address of 
the argument is stored tor su bsequent usc. This 
approach would also prevent services tl·om operating 
on any true 64-bit addresses. It  was clear that :n least 
some routines would have to be modi tied internally. 

The idea of using jacket rou tines was u ltimately 
rejected t( >r several reasons. First, the jackets wou ld 
need ro be custom written to ensure correct parameter 
semantics. There cou ld not be a "common jacket" 
that cou ld have saved time and lowered risk.  Second,  
there would be  an  undesirable pcrtc>n11ance impact h1r 
64- bi t  cal l ers. Third ,  we decided that ba\'i ng a com 
plete 64- bi t  system service su ite was not essential h>r 
usable 64-bit support .  'We cou ld ddine a subset that 
wou ld meet the needs of 64- bit add ress space users, 
while lowering our risk and im plementation costs. 

The sen·iccs selected tor 64-bit su pport fa l l  inro 
tour categories. 

l .  Memory mJnagement services. 

2. Performa nce-critical services. This group inc ludes 
services that Jre typical ly scnsi ti\·e to the addition of 
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e\·en a fe\\' cycles of execution t i me . Req u i ri ng that 
a 64 -bi t  add ress user d o  any addi tional \\'ork, such 
as copy ing da ta to 3 2 - bi t  space, is  u n desira b l e .  An 
exam p le of this type of service is SYS$ ENQ, which 
is used tor q ueu i ng lock requests . 

3 .  Design center services. The primary design cent e r  
tor 6 4 - b i t  su pport was database appl icati o ns .  
Database arch itects J n d  consul tants were pol led to 
determ ine \\ 'h i c h scn·ices \\'ere most needed lw 
their products .  Many of these services , t(Jr examp le 
SYS$QIO f(x q ueu i ng JjO requests, wen: also i n  
the performance-cri tical  set. 

4. Other usefu l  basic services. Th is set inc l udes ser
vices to case the tra nsition to 64 b i ts with minim: d  
ch ange to program structure .  F o r  examp le, the 
SYS$Gv! Kll..N L  serv ice accepts a routine add ress 
and a vector of 32 - bit a rguments  <1 11d i l l\ ' C l kcs the 
rou ti ne in kerne l mode, pass ing those arguments . 
Wi thout a nc\\' 64- b i t ,·ersion of SYS$ C:M KRN L, 
a cal ler could not pass '' 64-bit ad d ress to the kernel 
mode ro utine wi thou t changi ng the t(mn of the 
argument  block, such as passi ng '' structure that 
SYS$C1vl KRJ'\J L wou ld not interpret JS '' vecrm. 

Several steps were taken to ease progra mming to 
this subset i mplc mcmation . 

• Fo r al l  64-bit scn·iccs, all pointer argumcnrs ma\· 
be in 64- b i t  space . Extend i ng onlv ind i, · id ua l  •• rgu
ments for some services wou ld have been con fusi ng 
and d i fficu lt to docu ment . 

• The 64-bit-capablc  svsrcm services arc cl early listed 
in the Opc nVMS documentation, Jnd the docu 

mentation r(J r  ind i,· idu<1 1  sen · iccs c lc1rl v  ca l l s  out 
their capJbi l ities.c' 

• For C program mers , rhe header ti le that ddincs 
tlmction prototypes for svstcm services 

( STARLET.H)  ddincs the expected pointer size 
tor service argu ments .  This ti le can be used t(Jr 
compi le- t ime type checking tor correct a rgum e nt 
poi nter si zes .  

• A strict n am in g COil\'Ciltion has been ad hered to t(n 
64 -bit  sen· ices. l f a  rou tine was 64-bit ti-icnd ly, i . e . ,  
i t  requ i red n o  i n tcr t:lce ch an ge , its name \\'�1S not 
changed . If :1 llC\\' en try poi m ,,.,1s requ i red 
because , t(Jr exa mple ,  an :�dd ress is passed by rer\: r
ence, a "_64" su fti x wJS <H.ided to the n<1lllc to iden 
t ify the new entry point .  

• S ign -ex te ns ion checking is pertormcd in  ro ut ines 
that do not accept 64 - b ir �1dd rcsses .  

Centralized Sign-extension Checking 

For sen ·ices th•lt hJ\'C not been promoted to :�ccept 
.1 rgu menrs i n  64-bir space, cenrraJ i zed sign -extension 
checking takes place . As described in the section S ign

extension Checking, suc h checking prc\'cnts errors that 
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occur  \\'hen a 64-bit add ress is eJToncousl\- passed to a 
routine that uses onlv 3 2- bit addresses. This cen tralized 
ch ecking is p�lrt of the system scn · icc d ispatch er, which 
returns the error status SS$_A RC_<..;TR_32_B ITS when 
the error is discovered . Pert(Jrm i ng the checki ng at  this 
common po int minimized the i mp leme ntati on efTort , 

while protect ing scnsi ri,·e inner mode sen· ices . No 
c ha nges ,,·ere neccssar\' to the mod u les that contain t ile 
32 - bi t scn·icc code .  The intern•1l ,·ector ofscn·ices con 
tains a tbg t(JJ' cKh sen·ice i nd ic:�ring ,,·herhcr ch ecking 
shou ld be done .  

N:1tur a l l y, i t  is best tor mixed -size errors to be dis

covered •H compi le r ime.  The DEC C compi ler issues a 
warn i ng n1essJgc when a 64-b i r pointer  is used as a 
para meter to '' routine \\'hose ti. 1 nctio J1 protot\'pe spec
i fics that the p�l r.lmcter sho u l d  be •1 3 2 - bit  poi nter. 
Ru n-time sign - e x tension checking ,,·mks t(Jr am· la n 

gu •1gc , though,  i nc l ud ing MAC:R0- 3 2 .  

Th is S t l [)port c1 n also b e  used to •1 l lo\\' ,1 ru n - ti me 
decision to be made to cop,· datJ ti·om (A- bit space 
to 32 -bit spKe . For cxam pk , a mu r i ne could  c: ! l l  a 
system service, passi ng a long an add ress that i t  
h �1d received as  a paramete r. If  the  serv ice  ret u rns 
SS$_A l\(;_c.;TR_32_B fTS, the c a l l i ng  routine c1n 
then copv the argu men t  to the stack •1 1 1d ret!'\' the scr
, · icc. In this \\'<\\', the O\'crhead of cop,· ing can be 
J\ ·oid cd i t' cop,· i ng is  unnece s-.aJ'\' . When rhc svstem 
scn·icc is promoted to h and le 64-bir •l lid resscs in a 
fi.1 turc version o f t hc Open VMS ope ra t ing wste m, no 
change wi l l  be n eeded in this cal l er ;  rhc data copyi ng 
code wi l l  never be invoked . Th i s <1p proach mav be 
a ppropri .ue t(H· a run- time l i brarv thJt needs to be fu lh · 

64-bit capab l e  todav on Open V M S  Al ph •1 \'cJ·sion 7 .0 ,  
- i f  that l i brarv '' i l l  nor  be rcrc lc �1Snl t( Jr •1 furmc \ 'CJ'si on 

of the Opcn VtvlS operati ng S\ 'Stcm . 

Memory Management System Services 

The Opc nVM S mcmorv nunagcmcnt S\'Stc m ser
vices Jrc not 64-b it friend l y bcuusc rhcv pass 3 2 - bir 

i np ut •1 1 1d output add ress a rgu ment s  lw rck rencc. 
This set of sc n· iccs includes SYSS E X P REC (cx�x\ Jld 
programjw 11 tm l reg ion ) , SYSS M c; B J .S C :  ( map g loba l 
section ) ,  SYSS C : RM l'SC ( create Jnd m•lp section ) ,  and 
SYS$ PU ll..GWS ( pu rge \\'Orking set ) ,  ,unong others. 

The gu id i ng princ ip le in p romoting these scr ,·iccs 
was that the nc\\' 64-bit  sen·iccs h�1d to pcr t(mn the 
same fu nctions as their 32 -bit cou nterparts but nor 

necessari l y with an i d entical i mc rt:lcc . Since 32 - bit 
:�ddresscs can be expressed as 64-b i r  •1dd rcsses \\'i th 
sign -C\tcnsion bits in the upper 32 bi ts, ir 111•1Lic sense to 
<Kcommodatc 32-bit  add resses i n  rhc 64-bir  imerf:1ccs, 

m ::llu ng the nc,,· sc n· i ces a superset of the 32-bit torrns. 
For C \J mp lc , the SYS$CRMPSC sen icc \\'JS split into 
m u l ti ple 64-hit-c:1pJblc sen·iccs, bec1 usc it hand les a 
,·arietY of rnxs o r. sections. The new sen ices can opcLltc 
on either 32-b ir  or 64-bit addresses <\nd ba,·c simpler 



interfaces than the 32 - bi t -only SYS$CRJ\tlPSC. The 
original SYS$CRNI.PSC is sti l l  present so that existing 
code may ti.mction without change. 

Some new feature requests were considered as part 
of the 64- bit eftort, but, to maintain the focus of 
the release, these featu res were not i mplemented . The 
64- b i t  memory management services were designed 
to more easi l y  accom modate new features i n  the 
future .  For exa mple,  the new services check the arg u 
ment cou nt f()r both too m a n y  and too tew suppl ied 
arguments .  In this  way, new optional arguments can 
be added later to the end of the list without jeopard i z 

ing backward compati b i l ity. 

Virtual Regions 

One new feature that was added to the su i te of 64-bit  
memory management services is support tor new ent i 
ties cal led virtual regions. A virtual  region i s  an address 
range th:�t is n:served by a program for fu ture dynam i c  
al location requests. The region is s imi lar  in  concept to 
the program region ( PO )  and the contro l region ( Pl ) , 

which have long existed on the Open VMS operat ing 
system .'' A virtual region d i ffers tl-om the program and 
control regions i n  that  i t  may be ddi ned by the user  by 
ca l l ing :� system service and may ex ist  within PO, P l ,  or  
the new 64-bit  add ressable process-pri vate space, P2 . '  
When a virtual  region is created, a handle i s  retu rned 
that is s u bseq uently used to ide ntif)' the region i n  
memory management requests . 

Add ress space wit h i n  virtual  regions is a l located i n  
t h e  same manner a s  i n  the def:lll l t  P O ,  P 1 ,  a n d  P 2  
regions , with al location defined t o  expand space 
toward either ascend ing or d esce nding add resses. As 
in  the defa u l t  regions, a l location is in  multiples of 
pages. The Open VMS operat ing system keeps track of 
the first fiTe virtual  add ress within the regi o n .  A region 
can be created such that add ress space is created a u to
matica l ly  when a virtual  referen ce is made with i n  the 
region, j ust as the control region in Pl space expands 
automatical ly to accom modate user stack e xpansion . 
When a vi rtua l  region is created with i n  PO, P l ,  or P2 , 
the remainder of that conta in ing region decreases in  
s ize  so that  i t  does nor  overlap with the virtual region .  

Virtual  regions were added to the Open VMS Alpha 
opcr:ning system along with the 64- b i t  addressing 
capabi lity so that the h u ge expanse of 64 - b it add ress 
space cou ld be more easi ly managed . I f  a subsystem 
requ i res a large portion of virtual ly contiguous address 
space , the space can be reserved with i n  P2 with l i tt le 
ovcrhe:�d .  Other su bsystems with in  the appl ication 
cannot i nadvertently interfere with the contiguity 
of this  add ress space. They may create their  own 
regions or cre:Jte ad d ress space wi thi n  one of the 
detault  regions .  

Another advantage o f  usi ng virtual  regions i s  that 
they arc the most efficient w�1y ro manage sparse 
add ress space within the 64- b i t  P2 space. F u rther-

more, no quotas are c harged for the creation of a vir
tual  region .  The i n ternal storage for the description 
of the regi o n  comes from process :�ddress space , which 
is the only resou rce used.  

Summary 

This paper presents the reasons behi n d  the new 
OpenVMS m ixed poi nter size enviro n m e nt and the 
support added to al low programming within this envi
ronmen t .  The d iscussion tou c hes on some of the new 
support designed to s impl if)r the usc of the 64 - b i t  
add ress space. 

The approac hes disc ussed yielded fu l l  upward com
pati bil ity tor 32 - bit  appl ications, whi le a l lowin g  other 
appl ications access ro the h u ge 64- bi t  add ress space tor 
d ata sets th:�t req u i re i t .  Promotion of a l l  p oi nters to 
64-bit width is not required to use 64- b i t  space; the 
m i xed poi n ter  s ize environment was considered para
mount in a l l  design decisions. A case study of adding 
64- bit  support to the C run-time l ibrary also appears 
i n  this issue of the .fou rna/.'' 
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Adding 64-bit Pointer 
Support to a 32-bit 
Run-time Library 

A key component of del ivering 64-bit addressi ng 

on the OpenVMS Alpha operating system, ver

sion 7 .0 ,  is an enhanced C run-ti me l ibrary that 

allows appl ication prog rammers to allocate and 

util ize 64-bit virtua l  memory from thei r C pro

grams. This C run-time l ibrary includes modified 

progra m m ing interfaces and additional new 

interfaces yet ensures upward compatibi l ity 

for existing appl ications. The same run-time 

l ibrary supports applications that use only 

32-bit addresses, only 64-bit addresses, or 

a combination of both. Source code changes 

are not req u i red to utilize 64-bit addresses ,  

although recompilation is necessary. The new 

techn iques used to analyze and modify the 

interfaces are not specific to the C run-time 

library and can serve as a guide for engineers 

who a re enhancing their programming inter

faces to support 64-bit pointers. 

I 
Duane A. Smith 

The OpenVMS Alpha operating system ,  version 7.0,  
h as exten ded the address space accessible to applica
tions beyond the trad it ional 32-bi t  address space . This 
new address space is reterred to as 64-bit virtual mem
ory and requ i res a 64-bit  pointer tOr memorv access . 1  
The operati ng system h as a n  additional set o f  new 
memory a l location routines that a l lows programs to 
a l locate and release 64- bit memory. ]n OpenVMS 
Alpha version 7.0, this set ofrouti nes is  the only mech
a nism ava i l ab le to acq u i re 64- bit memory. 

For application programs to take advantage of these 
new OpenVMS progra m m ing i nterfaces, high - level 
program m ing l anguages such as C had to support 
64-bit poi nters .  Both the C compiler and the C r u n 
t i m e  l i brarv req uired changes to provide t h i s  suppor t .  
The compi ler  neec.kd to und erstand bot h 3 2 - bi t  and 
64- bi t  pointers,  and the ru n - ti me l ibrary needed to 
accept and return such pointers . 

The compiler has a new qual i fier called /pointcr_sizc , 
which sets the ddiHl l t  poi n ter size t(x the compi lation 
to either 32 bits or 64 bits. Also added to the compi ler 
are pragmas ( d i rectives ) that c1n be used within the 
sou rce code to ch ange the active pointer size . An 
app l ication program is not  requ i red to compi le  each 
mod u l e  using the same /pointcr_size q ual i tier; some 
modules m ay usc 3 2 - bi t  pointers wh i le others usc 
64-bit poi n ters. Benson , Noel ,  and Peterson describe 
these compi ler  en hancem e nts . '  The DEC C [!ser \ 

Cuide jor Open 'vi\1S 5)•slems docu ments the q u a l i ticr  
and the pragmas 3 

The C ru n - time l i brarv added 64 - bi t  poi nter sup
port  ei ther by modit\•i ng the ex isting i nterrace to ,, 
fu nction or by adding a second i nre rtacc to the same 
function . P u blic header ti l es d c ti n e  the C: run-t ime 
l ibrary i ntcrtaces. These header ti l es contain the p u b 
l i c l y  accessible ti.11Ktion prototypes a n d  structure defi 
nitions . T h e  l ibrary documentation a n d  he:�.dcr ti les 
are sh ipped with the C compiler; the C r u n - rime 
l ibrary sh ips with the operating system .  

This paper d iscusses a l l  phases o f  the enhanccmenrs 
to the C r u n -t ime l i brarv, ti·om project concepts 
through the analysis, the design , a nd ti nal ly the i mple
mentation .  The f)hC C Nuntime Lihrarv R(fercnce 

Mauua/j(Jr Open \ 'MS S)•stems contains user docu men
tation regard ing the chan gcs .4 
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Starting the Project 

We devoted the in i tial two momhs of the project to 
u ncle rst�111d i ng the overall OpcnVMS presen tation of 
64- bi t  add resses and decid i ng ho\\ to prescllt 64- bit 
en hance mems to customers .  Represent�\tin:s ti·om 
OpenVMS engineering, the comp i ler team ,  the run
t ime l ibrary ream,  and t h e  Open VMS Call ing St:1 1 1dard 
team met weekly with the go:d of converging on the 
cl d ivcra h l cs f{>r Open VMS A lpha version 7 . 0 .  

The pro ject team was committed to  preserving both 
sou rce code compati b i l i tv :\lld the upward compa ti 
bi l it\' aspects of shareable i m ages on the Open VMS 

operati ng S\ 'Stem .  Early d iscussions with  app l ica tion 
developers reint()rced o u r  belief that the OpwVMS 
system m ust  a!Jow app l ications to usc 3 2 - b i t  and 
64-bit pointers withi n  the s�1mc appl ication. The team 
a l so :-�greed that  tor a mixed-pointer appl ication to 
work cfkctin: h', a s ingle ru n-t ime l i brarv \\ ould need 
to support both 32 - b it and 64- bit poin�ers; ho\\'cn:r, 
there \\'as no known prcccdem tor design ing such 
a l ibr:-�ry. 

One imp l ication of the d ecision to d esign a r u n 
ti me l i b r�m· that supported 32 -b it :md 64 -b it pointers 
\\':IS that the l i brarv could ne\Tr return an u nsol ic ited 
64- bi t  pointer. Returning a 64-b i r  pointer to a n  
appl ication that  was expecting J 32 -bi t poi mer \\·ou ld 
resu lt  in t he loss of one ha lf  of a n  add ress. A l t hough 
typic1 1 ly this error would cause a hardwa re except ion , 

the resu l t ing add ress cou l d  be a \'a l id add ress.  Stor ing 
to or read ing tl·om such a n  �1d drcss could resu l t  i n  
incorrect  bc l 1 �1\· ior that \\'O u l d  b e  d i fficu l t  to detect. 

The OJ X' I I \  :If.'; C:allil lP, Sta 1 1 rlm d specif-ics thar a rgu 
mems p �1ssed to a f u n ction be 64- bi t  va l ues . '  I f  �1 
32-b i t  <1dd ress is used, it is a lways sign extended ro 
torm �1 64 - bi t  add ress that can be used by the Alpha 
hard\\'<1 1T .  The C r u n-time l ibr�1 ry  team exploi ted th is  
tact \\' hen creating the 64-hit  1 11 ter t:lce to the l i hran ·. 

The ream a lso agreed that using 64- bit poin tc ;·s 
shou ld be as si mp le as possible; the si mp lest mode 
wou ld a l low the appl i cation ro comp i le  us ing the 
qua l i fi er /poin ter_size=64 withou t  making source 
code ch �1ngcs . The design of 64- bit su pport m ust 
appc1r <1S :1 logical ex tens ion to the C: progL1m m ing 
em·ironmcllt  i n  use tod a\'. Fu rthe rmore, �1ppl iut ions 
\\'rittcn ro COilr(lnn str ict lv to the ANS I st:JIKhrd m usr 
be able to usc 64-bit poin ters whi le  remaining cont(>r
mant.  For nample, a llocating 64-bit v irtu a l  memorv 
wou ld be an extension to the st:�ndard C memmy man

-


agement functions malloc, c:d loc, rca l l oc, and tiTc. 
This paper s hm\ s that each of the C run-time l ibran· 

in terbces n�1mined tai l s  i mo one of the f( > l l o\\ ' in ;, ::::> 
t-our categories ( l isted in order of added comple :-; i n· 

to librarv users ) :  

I .  Not �1fkcted by the size o f  a pointer 

2 .  En hanced to accept both pointer sizes 
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3. Dupl icated to have a 64-bi r-specific in rerf..1cc 

4 .  Restricted from using 64-bit  pointers 

One last point to come tt·om rbe meetings was 
that man\' of the C r u n-t ime l i brarv intet·bces arc 
i m p l e m emed bv ca l l i ng  other OpenV

.
MS i m ages. For 

example,  the Curses Screen J\llanagcmc m i n terfaces 
make ca l l s  to the OpcnVMS Screen Man age ment 
( S M G )  bei l i ty. I t  is  i mporr:mt that t h e  C run -t ime 
l i br:� rv ddines the inrcrt:1ces to support 64- bit 
addrcsSl's without looking �1t t he i mplementatio n  of 
r l1e fu nction . Consistenc\· and completeness of the 
imerbcc arc more important than the comf) lex it\· 
of the imp lementation .  In the SNI G ex�1mp lc , if th� 
C r u n-rime l i brary needs to mJke a copy of a string 
prior ro pass ing the string to the SMG f:1e i l iry, this 
is what will be implemented . 

Analyzing the Interfaces 

The process of ana lyz i ng the i nterfaces began by creat
ing �1 document that l is ted all the header ti les <l lld rhc 
cktin i rions in these fi les . A total of 50 huder ti les that 
conta i ned approximately 5 0  structu res and 500 proto
t\'pes needed to be ana l \'zcd .  Each structure or pro
tot\Ve had to be examined to sec i f a  change in poi nter 
size \\'o u l d  atkct the i nterface . Keep in mind rhat 
\I'C <l ll�1 1y;.cd only the i ntert:1ces; we did not namine 
the underlying i mplementation changes that wou ld 
be requ ired . 

Analyzing the Structures 

It is nccessar\' ro d isti ngu ish bet\\'een a structure, 
\\·h ich 111:1\' contain pointers, :md a pointer to rile struc
ture i tse l f. For example, the di \·_t structure conta i ns 
two i n teger tie lds . A lthough the size of the pointer 
to cl i\'_t docs not affect the contents of· the structure, 
the emi rc structure ma\ '  be ::�l locued i n  32-bit or 64-bir 
\' irtu a l memory. Fu nctions that :�ccept a pointer to such 
a structure mav need to be mod itled to accomnHKhte 
the 64-bit case . The d i\'_t srrucru1·e is 

t y p e d e f  s t r u c t  { 
i n t  q u a t ,  r e m ;  

} d i v_ t ; 

Man\'  structu res used i n  the C run-time  l ibran· 
i ntcrbccs arc ::tl locatcd b\· the ru n- r ime l i br�ll-\' i ;1 
response to �1 fu nction c a l l : for example,  �1 ca l l  to

. 
the 

topen fu nction returns the till lowi ng po in ter to 
the f i LE structure :  

F I L E  * f o p e n ( c o n s t  c h a r  * f i l e n a m e ,  

c a n s t  c h a r  * m o d e l ;  

The C run -r ime l ibrarv �1 lw�1\'S a l locates }'! I .E struc
tu res in 32 - bi r virtual memorv and returns �1 32 -b it 
pointer to the cal l ing progr:� m .  This i mportant con
cept un d ramatica lh· impact the usc of 64- bit poimers 



in strucrurcs. I f  a rl LE poi n ter is :� l wavs a 3 2 -bit  
poi nter, structu res that contai n on ly H L E  pointers arc 
not affected by the choice of poi nrcr s ize We use this 
i n rormation when we look Jt  the L lyout of structu res 
and examine fu nction prototvpcs that accept poi n te rs 
to structures. 

I n  this  paper, structures that arc a lwavs <1 1 1 ocated in 
3 2 - bi t virt u JI memory arc rdcrrcd ro as structures 
bou nd to l ow memory. A fter determ i n ing wh ich 
struct u res arc  bound to low memory, we exa m i ne the 
layout of each structure to dec ide i f  the structure 
is affected bv poi n ter  si ze . We kee p i n  m i n d that 
poi n ter s ize docs nor afrect  a structure that is bound 
to low mc morv. 

For upward compati b i l ity, the :ud ysis m ust a lways 
consider exist ing software that depen ds on the ! Jyout 
of the structure .  In the case of pu b l ic hc<1dcr fi le analy
sis,  such ckpc ndcncc wil l  probablv J lwavs be present . 
An app l ication lllJV hJ\ 'e exccu Ll blc  code that,  r(Jr 
example,  ktchcs 4 bvtes begin n i ng at bvte 12 of the 
structure :md dcrdcn:nces those 4 bvtcs as the add ress 
of a string.  

For these pu b l ic structu res, the :malysis must weigh 
the i m pact of r(>rcing these structures to be 3 2 -bit  
poi nters . I f  the decision is made to a l l oca te two d i Hcr
ell t structure tvpcs, each fu nction th<lt  e i ther returns 
or is passed such a str ucture m ust have a poin ter-si ze 
specific impic lncnr<l tion .  The cJsc : \ll alysis and fu rther 
detai l s  appear i n  the section Poi n ter to Poi nter-size
sensitive Structures .  

Analyzing the Function Prototypes 

Ana lyz ing nmctions only req u i res lookin g at the ftmc 
tion prototypes . To determ ine t h e  c ftcct of poi nter 
size on a fu nction, we look at eac h paramete r  and 
return va l ue th:Jt i nvolves a poi11tcr. This section 
describes the types of situ ations th:�t  are a ffected by 
poi nter size, ri·om the s i m plest tvpc ro the most com 
plex .  Note that when a program passes an arrav of anv 
type to a fu nction, the arrav is p<lSscd as a poin ter �md 
must be considered . 

Making 64-bit-friendly Parameters As men tioned i n  
t h e  sen ion Starti ng t h e  Project, the OfX!I l  1.-;HS Calli11g 
Standard spcc i rics that a 32 - bit  add ress is sign 
extended to a 64 - b i t  add ress when passed as an 
argu me m to a fu nction .  This i mp l ies that exist ing 
programs th<H pass add resses as p�1ramctcrs are a l ready 
sign ex te nd i ng those 3 2 - bi t  add resses to be passed as 
64 - b i t  quant i ties . bch 32 - b i t  :-td d ress can,  thcrd(Jrc , 

be expressed :�s J 64-bit  add ress i n  \\' h ich the top 
32 bi ts arc zero. 

This s ign - extend ing scheme a l l ows the r u n - ti me 
l i brary to h�l\'C a s ingle i mple mentation that can be 
used by both 32-bit  and 64-bit  ca l l ing programs.  Th is 

i m plementation wou ld be mod i ti cd to acce pt oni l' 

64- bi t  add resses. An im p le me ntat ion that supports 
parameters of either pointer size is  rct\:rrcd to as being 
64-bit hicnd ly. The tl.1 1Ktion strlcn i s  an e xample of 
a 64-bit -ri·icnd lv  ti.1 nction .  

s i z e t s t r l e n ( c o n s t  c h a r * s t r i n g ) ;  

The slrin.£< p<1Ll lllcter  is the only  p�1rt of the strlcn fu nc
tion that the po i nter size afkcts.  To support 64-bit  
add ressi ng , the strl en fu nction IL1d to be mod i ticd to 
accept a 64 - b i t  pointer. 

Parameters Bound to Low Memory In structures bound 
to .low mc morv, the add resses th:n the programs p:�ss 
are a lways 3 2 -bit  addresses. One cxplan:�tion is that 
the structu res arc managed bv the ru n - ri me l i brary, 

and the on ly method of c reati ng, destroy i ng, or 
obtai n i ng the ;1dd resses of these structu res is bv cal l ing 
a l i b ran· routi ne . Gi,·cn th <H a s ingle l i brarv scn·iccs 
both 3 2 - bi t  <llld 64- bit ca l l ing progra ms, rhc l i bLJrv 
docs not c ha nge tbe strucru res based on command 
q ua l i fiers, nor docs i t  al locate the structures i n  64- bit 
virtual memory. For user conven ience, the C run - time 
l i brarv i m pleme nted these poi n ters ;JS 3 2 - bi t  ret u rn 
,·a l u es b u t  64 - b i t- ri·icnd lv p•lramctcrs. 

The reason r(n this design beca me apparent \\'hi  le 
testing the 64-bit i n terbces to the l ibrar v. Consid er 
the rol lowi ng code fragme nt, which exists i n  manv 
appl ications : 

F I L E * f p ;  
c h a r  b u f f e r [ 1 0 0 J ;  
f p  = f o p e n ( " t h e _ f i l e " ,  " r " l ;  
f r e a d ( a r r a y ,  s i z e o f ( b u f f e r ) ,  1 ,  f p ) ;  

The c run- time l ibrary aiW<l)'S a l locates :1 r l  LE 
structure in  32 -bit  virt u a l  memory. vVhcn the previous 

code ri·agmem is compi led using /pointer_size=64 , jj> 
is decl ared as �� 64 - b i t poi n ter to a f i L E  structu re , 
because using this q u a l i fier speci fics the dcb u l t  poi nter 
size to be used . When the fopen fu nction returns th e 
32 -bit  poi n ter, the return va l ue is sign extended i n to 
the 64- bi t H LE pointer. I f  the tc ll l rth parameter of the 
head fu nction had been declared :�s a 32 - bit fi i .E 
pointer, the compi l er wou l d  report <1n error \\'hen the 
64-bit F l  LE poi n te r  fp \\'as 11asscd as an argument.  
Th is exa mp l e  expla ins ,,-lw the C run - ti m e  l i hraJ'\' 
declares structures bound to low mcm orv :�s 3 2 - hit  
return va l ues but  64- bi t  parameters. 

Para m eters Restricted to Low M e m o ry S tr u c tu res 
restricted to IO\\' mcmorv arc s imi lar to those bou nd to 
low me mory except that the user a l locates the srruc
tu res and c:�n <1i locate the structures in high nKmoJ'\'. 
The C run -t ime l i brary can not support the a l loca tion 
of such structures in 64-bit virtual nll'mory. 
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An exam p le of a parameter  being rcsrricrcd ro a 
low memory add ress is the bu ffer being passed as rhe 
parameter  to the function sctbuf. The para meter 
defines rhis bu ffer to be used t(Jr I/0 operations . The 
user expects to see this b u fkr change as 1/0 opcLl
tions arc pcrt( Jrmed on the ti l e .  I f  th e  run - t i me l i brary 
made a copy of th is bufkr, the changes wou ld <'t)pca r 
in the copy and not in the origi na l bufrer that the user 
supp l ied . VVhcn the C ru n - r i me l i brary begi ns to usc 
the 64 - bit  Opc nVMS Record Manageme nt Serv ices 
( RJ\115 )  i mcrt:1ce, this low- m c morv restri ction wi I I  be 
remm·cd . 

I n  most c1scs , the r u n - ri m e  l i brary is a ble ro h ide  
the  bcr that  the 3 2 - bit  RMS i n tcr t:1ce is not able to 
interpret a 64 - bit virtua l  memory Jddress . Cons itkr 
the jllename parameter to the topen funcrion.  I f  the 
par:11nctcr is a 64- bit virtuzd  me mory add ress, rhc run
time l i brary copies th is  par;11nctcr to 3 2 -b i t  v irru�1 l  
memor\' and p�1sses t h e  add ress of t h e  copy to RMS .  
Neither t h e  user nor RMS is  awJrc that th is copy has 
been made. The l ibrary may copy the d ata if and only i f  
such a copy operation docs nor change fu nction a l i ty o r  
s ign ificanrly degrade pcrhm11J ncc . 

Size-independent Structure Poi nters Manv fu nctions 
rccc i ,·c the Jddrcss of a stru cture whose l ayout is not 
afkctcd bv poi n rer size. The s implest add ress in this 
category is ti1Jt of an Jr ray of i ntegers .  This arr.1y m�1y 
be in e ither  3 2 - bi t  or 64-bit  v irtua l  memory, but on ly  
one i nterbcc i s  needed to determ i ne the l ayou t  of rhc 
structur e .  I f  the structure bvour is i nd epende n t ot· 
poin ter s ize,  then pointer-si ze-specific entry points arc 
not requ i red t(Jr th is parameter. The deve loper would 
sti l l  make the parameter 64- bit ti·icnd ly so thar the user 
wou ld luvc the ti-eedom to ma ke the a l l ocation that is 
besr t(Jr the app l ication . 

Pointer to Pointer Parameters I r is common pr;1cricc 
tor a tlmct ion to be passed a po in ter to a po i nter. I f  the 
pointer be i ng poi nted ro i s  nor bound or restricted to 
a 3 2 - b i t  ad d ress, then two i m p le mentations of the 
tlmction �1rc necessary. 

To u nderstand w h v  some fu nctions requ i re two 
i mp lcm cmar ions , consider  rhc fo l lowi ng stnod 
fu nction: 

d o u b l e  s t r t o d < c o n s t  c h a r  * s t r i n g ,  
c h a r  * * e n d p t r ) ;  

The strtod fu nct ion converts �1 stri ng to a tl oat i ng
poin t dou b le - prec is ion n u m  bcr. The second para me 
ter ro this  hmcrion , l!lldj)li: is J pointer to a mcmon· 
location i nto \\"h ich  the add ress of tbc fi rst u n recog
n ized ch�1 ractcr  is to be placed . The ca l ler of this fu nc 
tion has a l located either 4 or 8 bytes to store this  
address. Withou t poi nrcr-sizc-speci tic en try points, 
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the fu nction has no way o f  de te rm i n i ng how many 
bytes to write. vVriti ng 4 bytes m ay tru ncate a po i nter; 
wri ting 8 byres may overwri te 4 byres of user data that 
fo l lows the pointer. The strrod fu nction, thcrd(Jrc , has 
two imp le m entations .  "The tirst e xpects endjJ!r to be 
rhc Jddrcss of a 3 2 - bit poi nter, and the second expects 

endptr to be the address of a 64 -hit  pointer. 

Pointer to Pointer-size-sensitive Structures M;my fu nc
t ions receive the address of  a structu re . I f  the  �1 n�1 lvsis 
reveals  rh�H rhe L 1yout of th is structure is dependent 
upon po i mer s ize , the h 1 ncrions that recci,·c or rcrurn 
this structure must have pointer-size-specific cnrrv points. 

Note that tbe layou t of the structure is scp�1ratc 
fi·om w hether tbe structure is a l located in low memory 
or in  high memory. The 3 2 - bit-spec i tic c ntrv poi n t  is 
needed to understa nd the layou t ofrhc structure , but 
the par;unercr shou ld a l l ow this  structu re to he a l lo 
cated in high mcmorv. 

Functions rhat receive the add ress of <1 1 1  a rra\' of 
add resses a rc treated in rhc same way, assuming that 
tbc :ldd resscs i n  the arr;1y arc neither hound nor 
restricted w l ow mcmorv. The function bc i n� cal led 
needs ro know i f the a rra\' con r;1 i ns 3 2 - bit add resses or 
64 - b i r  �lli d n::sses . Un l i ke rhc Jddress of the a 1-rav, the 
i ndi v id ua l mem bers of rhc .l iT�l\' Jrc not sign exte nded 
ro 64 - bi r va l ues . 

Scp�1 rarc im plementati ons arc necessary on ly to 
determine rhc l ayout of what  is be ing pointed to . The 
32-bir  i n terface hand les po i nr c rs to structu res conta in
ing 3 2 - bi r  ;�dd rcsses, and rhc 64-bit  i n tcrr:1cc lnnd lcs 
po i mcrs to structures con Ll i n i ng 64 - bit  addresses .  

Functions That Return Pointers Many fu nctions retu rn 
poi nters ;)S the V:l luc of the rimction.  These poi nters arc 
e ither po inr cr-s ize spec ific or they arc not �1ftcctcd by 
the poi nrc r size. Simi l �1 r  to i rs spec ifications r(n 64-bit
ti-icnd lv parameters, the Open \ : l iS Cctllinp, Stondord 

i nd icates that return , ·a lu cs on the OpcnVMS A l pha 
opcLH i ng svstem are a lw;�vs sign c:.: tcndcd to 64-bit 
va l ues Jnd returned in reg ister i'.cro ( RO ) .  

To m ake a n  add ress parametc 1· 64- b i t  tri c n d l y, a 
timction �1 l l ows a 64-b ir  ad d ress to be pJsscd , rhus 
enab l ing both 3 2 - bit a n d  64-bit  ca l l ing pmgr: u ns to 
usc J s in g le i n terface . COIJ,·crsc ly, i f J  hmcrion retu rns 
a 64 - bi t add ress to J 3 2 - b i r ca l l ing progra m ,  the 
add ress i s  safclv rctumcd in KO bur i s  truncated when 
moved ti·om RO i n to the user's data arc�1. A 64-bir
fric nd ly add ress retu rn va l ue is �1 lways 32 bits .  When 
mmnl ti·om R.O into rhe ca l l ing program's \':t riab l e , 
it is sign otcnded \\"hen rhc e1l l ing program is using 
64- bir  addresses. 

I f  the retu rn val ue of J fu nction can be �1 64-bir 
address, rhis  fu nction must have poi n rcr-sizc-spcc i tic 
entry poin ts .  I f  the fu nction returns rhe add ress of  a 



structure thJt is bound to low memorv, such as a fl LE 
or WlN DOW poin te r, the return v�1lue does not t()rce 
separate e ntry points. 

Certain fu nctions, such as mal loc, J l locate memory 
on behalf ohhc call ing program Jnd return the address 
of that memory Js the val u e  of the ti.mction.  These 
h.t nctions have two i m pleme ntations: the 3 2 -bit i n tcr
fKe a lways :t l locues 3 2 - bit  virtual memory, Jnd the 
64 - bi t  interface always a l locates 64- bit virtual memory. 

Many stri ng and memory fu nctions h:JVe return val 
u es that are relative to a parameter  passed to t h e  same 
routine.  These ;�ddrcsses mav be returned as high 
memory add resses i f  ;�nd on ly i f  the p;�ramerer is a 
high memory address. 

The fol lowing is the fu nction prototype for strcat, 
which is tound i n  the header ti le <String. h > : 

c h a r  * s t r c a t ( c h a r  * s 1 , c a n s t  c h a r  * s 2 ) ;  

The strcat fu nction appends the stri ng poi n ted to lw 
s2 to the string poi med to by sl . The return va l u e  is 
the add ress of thc latest stri ng sl . 

I n  th is  case, the s ize of the poi nter in the return 
val u e  is a lways the same as the size of the poi n ter 
passed as the first parameter. The C programming l ; m 
gu age h a s  no wJv to reflect t h i s .  Since t h e  f u nct ion 
may retu rn �1 64- b i t  pointer, the strcat fu n ction m ust 
h;1ve two entry points. 

As d iscussed c�1r l icr, the poi mcr size used for parJ
mctcr s2 is not related to the returned po i nter size. 
The C r u n - rime l i br:� ry made this s2 argu m ent 64- b i t  
ti·iendly b y  declaring i t  a 64- b i t  poi nter. This decl ara
tion a l lows the appl i cat ion progra mmn to concatc
n;ltC a stri ng i n  h igh memorv to one in low memory 
without al teri ng the source code .  The t( ) l lowing strcat 
fu nction statement shows this declaration :  

c h a r  * s t r c a t ( c h a r  * s 1 , __ c h a r_ p t r 6 4  s 2 ) ; 

The data rvpc _cbar_ptr64 is �1 64- b i t  character 
pointer whose defi ni tion ;md usc w i l l  be expla ined 
later in this paper. 

High-level Design 

T he /pointcr_size q ua l i tler is J\"J i l ab lc in those 
versions of the C: compi ler  that  su pport 64-bi t  point 
ers. The compiler has a prcddl ncd macro named 
_I N I T I A L_PO I NT E R_S I Z J-:  whose val u e  i s  based on 
the usc of the /poin tcr_sizc q u a l i fier.  The macro 
accepts the tll l lowi ng values:  

• 0,  which ind icates rh:�t the /pointer_size qua l i fier is 
not u sed or is not a\·a i bble 

• 32, which i n d i cates that the /pointcr_sizc q u a l i fier 
is  used and has �l value  of 32 

• 64, which i n d icates that the /pointcr_size qua l i ticr 
is used and has J va l u e  of64 

The C ru n - ti me l ibrary hodcr tiles cond i tionally 
compi le  based on the va l ue o f  this prede fined macro. 
A zero value indicates to the header Illes that the com
puting e nvironment is  pure ly 32-bit .  The poin ter-size
specific  function prototypes arc not d di ned . The user 
m ust usc the /pointer_sizc q u a l i fier to access 64-hit  
fu nctional ity. The c h oice of 32 or 64 determines the 
defa u l t  poi nter size . 

The heackr ti les define two d istinct types of dccbra
tions: those that have a s i ng l e  i mplementation and 
tbose that have poi nter-size-speci fic implementations. 
The add resses passed or returned h·om ti.mctions that 
ba,·e a single implementation arc either bou nd to lm,· 
memory, restricted to low mcmorv, or widened to 
accept a 64- bit poin ter. 

Those fu nc tions that have poi ntcr-sizc-spcci tic  
entry  poi n ts have th ree ti.mction prototypes ddi ncd . 
Using m;� l loc Js an cxJmple, prototypes Jre created hn 
the fu nctions m;� l loc,  _ma l l oc 3 2 ,  Jnd _rnal loc64 . The 
latter two prorotvpes arc the poi nter-si ze-speci fic  pro
totypes and Jrc ddi ned on ly when the /pointcr_sizc 
qua l i tier is  used . The m a l l oc prototype dct:lll l ts to cal l
ing _m�1 1 1oc32 when the defa u l t  poin ter size is 32 bits . 
The mal lnc prototype dcbu lts to ulling _n1JI Ioc64 

when the d c b u l r  pointer size is 64 bits. Appl ic;�
tion programmers who mix po i n ter types usc the 
/poin ter_sizc qua l i fier  to establ ish  the defa u lt poi n ter 
si ze b u t  can then usc the _m al loc 3 2  and m �1 1 loc64 
expl icit ly to achieve nonde b u l t  behavior. 

In addition to being en hanced to support 64-bit  
poi nters,  the C compi l er h�1s the Jdded capa bi l i ty of 
detect ing i ncorrec t m i xed-pointer usage. I t  is the  
fu nction prororvpe found i n  the header ti les ti1Jt tel ls 
the com pi ler  exactly wh<1 t poi nter s ize is  permitted or 

expected in a c:� l l .  P roper use of the header Il les he lps 

prevent poi n tcr truncation . 
The actu�1 l  fu nctions cJ I Icd in the C run-rime l i br�1rv 

are either decc$mal loc or decc$_mal loc64, depending 
on the pointer  size . The C r u n - ti me l i brary d ocs not 
contain an entry poin t  cal led dccc$_ma l loc 3 2 . This 
naming sc heme w:ts se lected so th:lt  appl ications that 
l i n k  on older systems a lways get the 3 2 - bi t  i merbcc.  

The C compi ler  has a lwavs looked : tt  a t:1 b lc within 
the C r u n -time l i brary sharc:tble i mage t()r assistance in  
name prdi xi ng.  Us ing th is  t:t b le ,  the compi ler  kno\\"S 
t.o change u l l s  to the mJI Ioc fu nction i n to c1l ls  to the 
decc$ mal l oc fu nction and not to change ca l l s  to :-.:yz, 
which is 1 10t a C r u n - time l i brary tll iKtion,  i n to ca l ls to 
decc$xyz. 

The C r u n -t ime l i brary Jnd the C compi ler  have 
added nc\\' i n t<.nmat ion to rhc table that te l ls rhe com
pi ler  which  fu nctions ha,·c poi mcr-sizc-spcci tic c n rn· 
poi nts. When the compi ler sees 3 ca l l  to the fu nction 
_xyz32 ,  i t  looks i t  up i n  the name tJb l e .  I f  the nJme of 
the fu n ction is f()u n d ,  the compi ler then looks at 
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whether the fu nction is the 32-bi t-spcc i tic cmn· poinr .  
I f  i t is, the comp iler t(mns the prdixed n:une by 
add i ng "dccc$" to the begi n n i ng  of the n:�mc but 
al so removes the "_" and the " 3 2 . "  Conseq ucn tlv, the 

funct ion n :1mc _mal loc32 becomes dccc$m:t l loc ,  but  
the h.t ncrion n a m e  _wz32 docs not c hange . 

Implementation 

To i l lustrate changes th:�t needed to be made ro the 
hc:�dcr ti les, we inven ted a s i ngle header ti le Cl l l cd 
<he.1ckr. h > .  Th is ti le,  wh i c h  is s hown in Figure 1 ,  i l lus 
trJtes rhe c lasses of problems bccd Lw a dC\·c lopcr 11 ho 
is add ing su pport tc)r 64- b i t poi nters .  The fu n ctions 
deti ned i n  this  he:�der tile :�rc acrua l  C run-ri m e  l i br;m• 
ri.J nct ions . 

Preparing the Header File 

The fi rst p�1ss through <hc1d cr·. h >  rtsu lted in a num
ber of ch �mgcs i n  terms of t(mnatti ng, commcming, 
and 64-b i r  support. Rta l i z i ng that matw mod i fi cations 
wou l d  be m �1dc to the hc1dcr ti les,  we considered 
rcachb i l itv a major goJI t( >r this rel ease of th ese ti les . 

The in i ti�11 htader J-I l es �1ssu mcd '' u n i form poimcr 
size of 32 bits rc)f the OpcnVi\1\S operating S\'Stc m .  
Du ri ng the fi rst pass th mu gh < hcadcr. h > ,  11·e :�ddcd 
po i n ter-s ize pr;1gmas to ensu r-e that the ti le S•ll'cd the 
user's poimcr s ize,  set the poi n ter s ize to 32  b i ts, and 
then restored the user's pointer s ize a t  the end ofrhc  
header. 

Next 11 c t(mnattcd < heJdcr. h> to s ho\\' the 1 ·ar ious 
categor ies that the  structures ,md fi.t nctions ta l l  i mo .  
T h e  Gt tcgor ics a n d  t h e  res u l t  of the first pass th rough 
< h e ad er. h >  can be seen in hgurc 2. For exa mple , 
the fu nction r:md l1ad no poi n ters in the fu nct ion 

prototvpc and was immcd iatclv m c)l'cd to the section 
"Functions that support 64-b i t  po inters . " 

Orga n i z i ng < headcr. h >  i n  th is wav gave us an accu
r:�te read ing o f  b o w  m :l n\' more fu nctions needed 
64- b i r  support .  If arw of the sections became cmptl', 
11·e d id nor rcm<)l'e the section . This  ::tppro:Jch 11·orkcd 
we l l  bccHisc whi le  some e ng i neers 11-crc doing 64- bi t  
ll'ork, others \\'Crc ;Hid i ng new fi.mctions .  An\' nc\\' 
fu nctions �1d dcd to a header ti le  a Fter the 64- bi t  wmk 

was done II'OLI Id  be placed in the section "hmctions 
th �H need 64- bit support . "  Pri or to sh ipping the 
header fi les,  we rcmmui the cm pt�· sections. 

Preparing the Source Code 

After SCI'CI":t l b lsc starts, we settled on :t des ign tcH· 
mod i f-• ing the sou rce code t(lr 64-b it support .  The 
expected start ing  dcsigr1 ll'as to mod i t\· the sour·ce 
code h1· add ing pointcr_sizc pragmas and compi le the 
sou rce mod u les usi ng the /po i n tcr_s i zc qua l i ricr. 
Sorn<.: mod u les \\'O u ld usc /pointe r_sizc= 3 2 ;  others 
ll'ou ld usc jpoi ntcr_s izc=64.  The maj or d r:tll'h�lck to 
th is  :�pproach was th:n look ing �l t �1 l'ar iab le dccLlrcd as 
a poin ter rcq u i r·es an  u nderstand i ng of rhc con te xt i n  
11·h ich that 1·ari�1bk appc:trs . � o  longer wou l d  "ch�1r * "  
be s imph- �1 charJcter poin ter. I t  cou ld  be :t 32 -bit or  '1 
64-b i t  c lnr·:�ctcr poimcr, Jnd rhc imp lemcmcr needed 
to kno11' 11· h ich  one.  

The des i gn on wh ic h \\'C dec ided O\'Crcom cs the 
reada b i l i ty problem . 13v dcr:l l1 1 t ,  source ti l es .1 re nor 
comp i l ed with the jpoinrcr_sizc q ua l i fie r. This n1c1ns 
that no pointer-size m�1 1 1 ipu larion occurs 11·hcn tnc lud 
ing the header ti l es .  The rcad:t h i l i t\' of rhc source code 

is impro1-cd i n  that the i m f1 lc m cn tcrs can SCl' 11 h ich 
point ers ;H-e 3 2 - bi r  poin ters and ll' h i ch  :l t'C 64-b i t  
poi nters .  

lf i f n d e f  
# d e f i n e 

H E A D E R  L O A D E D  
H E A D E R  L O A D E D  

Figure 1 
Orisi t l ;t i  H c;ld c r  � i l c  <hc,,dn. h >  

lf i f n d e f  S I Z E  T 
If d e f i n e S I Z E  T 1 

t y p e d e f  u n s i g n e d i n t s i z e _ t ; 
lf e n d i f  

i n  t 
v o i d  
v o i d  
i n  t 
c h a r  
c h a r  
s i z e 

e x e c v ( c o n s t  c h a r  * c h a r  * [ J ) ;  
f r e e ( v o i d  * ) ;  

* m a l l o c ( s i z e _ t ) ;  
r a n d (  v o i d ) ;  

* s t r c a t ( c h a r  * ,  c a n s t  c h a r  * ) ;  
* s t r e r r o r ( i n t ) ;  

t s t r l e n ( c o n s t  c h a r  * ) ;  

lf e n d i f / *  H E A D E R  L O A D E D  * /  
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/l i f n d e f  
# d e f i n e 

I *  

H E A D E R_ L O A D E D  
H E A D E R  L O A D E D  

* *  E n s u r e  t h a t  w e  b e g i n  w i t h  3 2 - b i t  p o i n t e r s . 
* I  
# i f  I N I T I A L  P O I N T E R  S I Z E  
If i f  ( V M S  V E R  < 7 0 0 0 0 0 0 0 )  
If e r r o r  " P o i n t e r  s i z e a d d e d  i n  O p e n V M S  V 7 . 0  f o r  A l p h a "  

Figure 2 

If e n d i f  
If p r a g m a  __ p o i n t e r _s i z e s a v e  
If p r a g m a  __ p o i n t e r _s i z e 3 2  
# e n d i f  

I *  
* *  S T R U C T U R E S  N O T  A F F E C T E D  B Y  P O I N T E R S  
* I  
# i f n d e f  S I Z E_T 
If d e f i n e  S I Z E  T 1 

t y p e d e f  u n s i g n e d  i n t s i z e _ t ; 
# e n d i f  

I *  
* *  F U N C T I O N S  T H A T  N E E D  6 4 - B I T  S U P P O R T  
* I  
i n  t 
v o i d 
v o i d 
c h a r  
c h a r  
s i z e 

I *  

e x e c v ( c o n s t  c h a r  * ,  c h a r  * [ ] ) ;  
f r e e ( v o i d  * ) ;  

* m a l l o c ( s i z e _t ) ;  
* s t r c a t ( c h a r  * ,  c o n s t  c h a r  * ) ;  
* s t r e r r o r ( i n t ) ;  

t s t r l e n ( c o n s t  c h a r * > ;  

* *  C r e a t e  3 2 - b i t h e a d e r  f i l e  t y p e d e f s .  
* I  

I *  
* *  C r e a t e  6 4 - b i t h e a d e r f i l e  t y p e d e f s . 
* I  

I *  
* *  F U N C T I O N S  R E S T R I C T E D  F R O M  6 4  B I T S  
* I  

I *  
* *  C h a n g e  d e f a u l t  t o  6 4 - b i t  p o i n t e r s .  
* I  
# i f  I N I T I A L  P O I N T E R  S I Z E  
If p r a g m a  __ p o i n t e r _ s i z e 6 4  
# e n d i f 

I *  
* *  F U N C T I O N S  T H A T  S U P P O R T  6 4 - B I T  P O I N T E R S  
* I  
i n t  r a n d ( v o i d ) ;  

I *  
* *  R e s t o r e  t h e  u s e r ' s  p o i n t e r  c o n t e x t . 
* I  
# i f I N I T I A L  P O I N T E R  S I Z E  
If p r a g m a  __ p o i n t e r_s i z e __ r e s t o r e  
# e n d i f  

ll e n d i f  I *  H E A D E R  L O A D E D  * I  

hrsr PJss through <hcadcr.h >  
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We created a C run-time l i brary private header 
fi le caLled < wide_types . src> .  This header file has the 
appropriate pragmas to define 64- bit pointer types used 
within the C run-time l ibrary, as shown in Figure 3 .  

This header fi l e  also contains the definitions ofrnacros 
used in the implementations of the functions. Figure 4 
shows the macros declared in <wide_types. sre> . 

Once a mod u l e  i nc l u d es the ti le <wide_types . sre>,  
the compilation of that  mod ule  changes to add the 
qual i fier /poi nter_size= 3 2 .  This change improves the 
readabi l ity of the code because "char * " is  read as a 

I *  

3 2 - bit  character pointer, whereas 64- bit  poi mcrs usc 
typedcfs whose names begin with "_wid e . "  The 
name of the new typed cf is _ wide_char_ptr, which is 
read as a 64-bit character poi nter. 

The C run-time l i brarv design also req u i res that the 
impleme n tation of a fu nction inc lude a l l  header ti les 
that d e fine the nmction.  This ensu res that the i m p l e 
mentation matches the header files a s  they a r c  mod i 
fied to su pport 64- bi t  poi nters .  For fu nctions d e fined 
i n  m u l tiple header ti les, this ensu res that h eader ti les 
do not contrad ict each other. 

* * T h i s  i n c l u d e  f i l e  d e f i n e s  a l l  3 2 - b i t a n d  6 4 - b i t d a t a  t y p e s  u s e d  i n  
* *  t h e  i m p l e m e n t a t i o n o f  6 4 - b i t a d d r e s s e s  i n  t h e  C r u n - t i m e L i b r a r y .  

Figure 3 

* *  
* * T h o s e  m o d u l e s  t h a t  a r e c o m p i l e d w i t h  a 6 4 - b i t - c a p a b l e  c a m p i L e r  
* * a r e r e q u i r e d  t o  e n a b l e  p o i n t e r  s i z e  w i t h  / P O I N T E R  S I Z E = 3 2 . 
* I  
# i f d e f  I N I T I A L_ P O I N T E R_ S I Z E  
# i f  C I N I T I A L  P O I N T E R  S I Z E  ! =  3 2 ) 
# e r r o r  " T h i s  m o d u l e  m u s t b e  c o m p i l e d / p o i n t e r _ s i z e = 3 2 "  
# e n d i f 
# e n d i f 

I *  
* *  A L L  i n t e r f a c e s  t h a t  r e q u i r e 6 4 - b i t p o i n t e r s m u s t  u s e  o n e  o f  
* * t h e  f o l l o w i n g  d e f i n i t i o n s . W h e n  t h i s h e a d e r  f i l e  i s  u s e d  o n  
* *  p l a t f o r m s  n o t  s u p p o r t i n g 6 4 - b i t p o i n t e r s ,  t h e s e  d e f i n i t i o n s  
* * w i l l  d e f i n e 3 2 - b i t p o i n t e r s . 
* I  
# i f d e f  I N I T I A L  P O I N T E R  S I Z E  
# p r a g m a  __ p o i n t e r _ s i z e  s a v e  
# p r a g m a  __ p o i n t e r _s i z e 6 4  
# e n d i f  

t y p e d e f  c h a r  * __ w i d e_ c h a r_ p t r ;  
t y p e d e f  c a n s t  c h a r  * __ w i d e_ c o n s t _ c h a r_ p t r ;  

t y p e d e f  i n t * __ w i d e_ i n t _ p t r ;  
t y p e d e f  c a n s t  i n t * __ w i d e_ c o n s t _ i n t _ p t r ;  

t y p e d e f  c h a r  * *  __ w i d e_ c h a r _ p t r _ p t r ;  
t y p e d e f  c a n s t  c h a r  * *  __ w i d e _ c o n s t _ c h a r _ p t r _ p t r ;  

t y p e d e f  v o i d  * __ w i d e_ v o i d_ p t r ;  
t y p e d e f  c a n s t  v o i d  * __ w i d e_ c o n s t _ v o i d_ p t r ;  

# i n c l u d e  < c u r s e s . h > 
t y p e d e f  W I N D O W  * __ w i d e _W I N D O W_ p t r ;  

# i n c l u d e  < s t r i n g . h > 
t y p e d e f  s i z e t * __ w i d e _ s i z e _ t _ p t r ;  

I *  
* *  R e s t o r e  p o i n t e r  s i z e .  
* I  
# i f d e f  I N I T I A L P O I N T E R  S I Z E  
# p r a g m a  __ p o i n t e r_ s i z e __ r e s t o r e  
# e n d i f  

Typcdds From <widc_rypes .sre> 

Digital Technical Joumal Vol .  8 No. 2 1 996 



I *  
* *  D e f i n e m a c r o s  t h a t  a r e u s e d  t o  d e t e r m i n e p o i n t e r  s i z e a n d  
* * m a c r o s  t h a t  w i l l  c o p y  f r o m  h i g h m e m o r y  o n t o  t h e  s t a c k .  
* I  
# i f d e f  I N I T I A L  P O I N T E R  S I Z E  

# i n c l u d e  < b u i l t i n s . h > 

# d e f i n e C $ $ I S  S H O R T  A D D R ( a d d r )  
( ( ( (  i n t 64 ) ( a d d r ) < < 3 2 ) > > 3 2 ) = =  ( u n s i g n e d  i n t 6 4 ) a d d r )  

# d e f i n e C $ $ S H O R T  A D D R  O F  S T R I N G ( a d d r )  \ 
( C $ $ I S  S H O R T  AD D R ( ;d d � ) ? ( c h a r  * )  ( a d d r )  \ 
: ( c h a r

-
* )  s t �c p y (  __ A L L O C A ( s t r l e n ( a d d r )  + 1 ) , ( a d d r ) ) )  

# d e f i n e C $ $ S H O R T  A D D R  O F  S T R U C T ( a d d r )  \ 
( C $ $ I S  S H O R T AD D R ( ;d d � ) ? ( v o i d  * )  ( a d d r )  \ 
: ( v o i d

-
* )  m e; c p y (  __ A L L O C A ( s i z e o f ( *  a d d r ) ) ,  C a d d r ) ,  s i z e o f ( * a d d r ) ) )  

# d e f i n e C $ $ S H O R T_A D D R _ O F _ M E M O R Y C a d d r ,  l e n )  \ 
( C $ $ I S S H O R T  A D D R C a d d r )  ? ( v o i d * )  ( a d d r )  \ 
: ( v o i d * )  m e ; c p y (  __ A L L O C A ( L e n ) ,  ( a d d r ) ,  L e n ) )  

# e l s e 

# d e f i n e C $ $ I S _ S H O R T_A D D R ( a d d r )  ( 1 )  
# d e f i n e C $ $ S H O R T _A D D R_O F _ S T R I N G C a d d r ) ( a d d r )  
# d e f i n e C $ $ S H O R T _A D D R _ O F _ S T R U C T ( a d d r )  ( a d d r )  
# d e f i n e C $ $ S H O R T_A D D R _O F _M E M O R Y ( a d d r ,  l e n )  ( a d d r )  

# e n d i f  

Fig u re 4 
iVL lnos ti·om <widc_rypcs.sre> 

Implementing the strerror Return Pointer 

The function strcrror a lways returns a 3 2 - bit poi nter. 
The memory is  a l located by the C ru n-time l i brary for 
both 32-bit and 64-bit  cal l ing programs. As shown 
in Figure 5, we moved the fu nction strcrror in to the 
section "Functions that support 64-bit poin ters" of 
<header.h> to show that there arc no rcsrrictions on 
the usc of this fi.mcrio n .  

T h e  "Create 3 2 - bit  header file rypcdcts" section o f  
<headcr.h> i s  i n  the 3 2 - bit pointer section,  where the 
bound-to- low- me mory da ta stru ctu res :.1re decl ared.  
The function retu rns a poi nter to a character string.  
We, therefore, ad ded typedefs for _c har_ptr32 and 
_const_char_ptr32 while in a 32-bit  poinrer context. 
Th ese dec l arations :�re protected wirh rhe ddinition of 
_CHAR_PTR32 ro al low multiple header ti les to usc 
the same naming conventio n .  Decl arations of the 
consr form of the typcdef arc always made in  the same 
cond itional code since they usually :Jrc needed and 
using the same condition removes the need tor a d if 
krcnt protecting n:Jmc.  

The strerror fi.1 11ction could have been i m plemented 
in <header.l1> by placing the fi.mction in the 32-bit sec 
tion, but that wo uld have i mpl ied that the 3 2 - bit 
pointer was a restriction that could be removed later. 
The pointer is not a restriction, and the strerror fu nc
tion fu lly supports 64 -bit pointers. 

Tile private header ti le typedefs are always d ecl ared 
starti ng with rwo underscores and ending in either 
"_ptr32 "  or "_ptr64 ."  These typede ts arc created only 
when the header tile needs to be in a particu lar 
pointer-size mode whi le referring to a pointer of the 
other size. The return v:.1 l u e  of strerror is  modified to 
usc the typedef_char_ptr32 . 

Including the header tile,  which declares strerror, 
a l l ows the compiler to vcrif)' that the argu ments, 
retu rn values, and pointer si zes are correct. 

Widening the strlen Argument 

The fu nction strlen accepts a constant character 
pointer and re turns an u nsigned i n teger ( size_t) . 
I m p l e me nting fu l l  64-bit support i n  strlcn means 
changing the parameter to a 64-bit constant character 
poi nter. If an application passes a 3 2 - bit  poi nter to 
the strlcn function, the compiler- generated code sign 
extends the pointer. The required header tile mod 
i fic:�tion i s  t o  simply move strlen from the sec
tion " F u nctions that need 64 - bit support" to the 
section " F unctions that su pport 64 -bit  pointers . "  

The steps necessary tor the source code t o  support 
64 -bit addressing arc as tal lows: 

l .  Ensure that the mod u le incl udes header files that 
declare strlen . 
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F igure 5 

# i f n d e f  
# d e f i n e 

I *  

H E A D E R _ L O A D E D  
H E A D E R  L O A D E D  

* *  E n s u r e  t h a t  w e  b e g i n  w i t h  3 2 - b i t p o i n t e r s . 
* I  
# i f  I N I T I A L  P O I N T E R  S I Z E  
# i y- ( V M S  V E R  < 7 0 0 0 0 0 0 0 ) 
# e r r o r  " P o i n t e r  s i z e a d d e d  i n  O p e n V M S  V 7 . 0  f o r  A l p h a "  
# e n d i f 
# p r a g m a  __ p o i n t e r _ s i z e s a v e  
# p r a g m a  __ p o i n t e r _ s i z e  3 2  
# e n d i f 

I *  
* *  S T R U C T U R E S  N O T  A F F E C T E D  B Y  P O I N T E R S  
* I  
# i f n d e f  S I Z E_ T  
# d e f i n e S I Z E  T 1 

t y p e d e f  u n s i g n e d  i n t s i z e _t ; 
# e n d i f  

I *  
* *  F U N C T I O N S  T H A T  N E E D  6 4 - B I T  S U P P O R T  
* I  

I *  
* *  C r e a t e  3 2 - b i t  h e a d e r  f i l e  t y p e d e f s . 
* I  
# i f n d e f  C H A R _P T R 3 2  

C H A R  P T R 3 2  
c h a r  * __ c h a r _ p t r 3 2 ;  

# d e f i n e 
t y p e d e f  
t y p e d e f  

# e n d i f  
c o n s t  c h a r  * __ c o n s t _ c h a r_ p t r 3 2 ;  

I *  
* *  C r e a t e  6 4 - b i t  h e a d e r  f i l e  t y p e d e f s . 
* I  
# i f n d e f  C H A R_ P T R 6 4  
# d e f i n e C H A R  P T R 6 4  
# p r a g m a  __ p o i n t e r _ s i z e  6 4  

t y p e d e f  c h a r  * __ c h a r_ p t r 6 4 ;  
t y p e d e f  c o n s t  c h a r  * __ c o n s t _ c h a r _ p t r 6 4 ;  

# p r a g m a  __ p o i n t e r _ s i z e 3 2  
# e n d i f  

I *  
* *  F U N C T I O N S  R E S T R I C T E D  F R O M  6 4  B I T S  
* I  
i n t e x e c v (  __ c o n s t _ c h a r _ p t r 6 4 ,  c h a r  * [ ] ) ;  

I *  
* *  C h a n g e  d e f a u l t  t o  6 4 - b i t p o i n t e r s . 
* I  
# i f I N I T I A L P O I N T E R  S I Z E  
# p r a g m a  __ p o i n t e r_ s T z e  6 4  
# e n d i f  

I *  
* * T h e  f o l l o w i n g  f u n c t i o n s  h a v e  i n t e r f a c e s  o f  X X X ,  _X X X 3 2 ,  
* *  a n d  X X X 6 4 . 
* *  
* *  T h e  f u n c t i o n s t r c a t  h a s  t w o  i n t e r f a c e s  b e c a u s e  t h e  r e t u r n  
* *  a r g u m e n t  i s  a p o i n t e r  t h a t  i s  r e l a t i v e t o  t h e  f i r s t  a r g u m e n t s .  
* *  
* *  T h e  m a l l o c  f u n c t i o n r e t u r n s  e i t h e r  a 3 2 - b i t o r  a 6 4 - b i t 
* *  m e m o r y  a d d r e s s . 
* I  
# i f  I N I T I A L  P O I N T E R  S I Z E  
# p r a g m a  __ p o i n t e r _ s i z e 3 2  
# e n d  i f  

3 2  

Final  Forrn o f  < header.h> 
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v o i d  * m a l l o c ( s i z e_ t  __ s i z e ) ;  
c h a r  * s t r c a t ( c h a r  * __ s 1 , __ c o n s t _ c h a r _ p t r 6 4  __ s 2 ) ;  

# i f  I N I T I A L _P O I N T E R _S I Z E  = =  3 2  
# p r a g m a  __ p o i n t e r _ s i z e 6 4  
# e n d i f  

# i f I N I T I A L  P O I N T E R  S I Z E  & &  V M S  V E R  > =  7 0 0 0 0 0 0 0  
# p r a g m a  __ p o i n t e r _s i z e 3 2  

v o i d *_m a l l o c 3 2 ( s i z e_ t ) ;  
c h a r  *_s t r c a t 3 2 ( c h a r  * __ s 1 , __ c o n s t _ c h a r _ p t r 6 4  __ s 2 ) ;  

# p r a g m a  __ p o i n t e r_ s i z e 6 4  
v o i d * _ m a l l o c 6 4 ( s i z e _ t ) ;  
c h a r  * s t r c a t 6 4 ( c h a r  * __ s 1 , c o n s t  c h a r  * __ s 2 > ;  

# e n d i f  

I *  
* *  F U N C T I O N S  T H A T  S U P P O R T  6 4 - B I T  P O I N T E R S  
* I  
v o i d f r e e ( v o i d * __ p t r ) ;  
i n t  r a n d ( v o i d ) ;  
s i z e t s t r l e n ( c o n s t  c h a r  * __ s ) ;  

__ c h a r _ p t r 3 2  s t r e r r o r ( i n t __ e r r n u m ) ;  

I *  
* *  R e s t o r e  t h e  u s e r ' s  p o i n t e r  c o n t e x t . 
* I  
# i f I N I T I A L P O I N T E R  S I Z E  
# prag m a  __ po i n t e r _ s i z e  __ r e s t o r e  

Figure 5 
Conti nued 

# e n d  i f  

# e n d i f  I *  H E A D E R  L O A D E D  * I  

2 .  Add the kJJiowi ng l i ne of code to the top of the 
mod u le :  II i n c 1 u de < w i d e_ t y p e s  . s r c > .  

3 .  Ch:mge the dec laration of t h.e fu nction t o  accept 
a _wide_const_char_ptr parameter insteJd of the 
previous eonst char * parameter. 

4.  Visu a l ly  tcJI Iow this argument through the code, 
looking for assignment statements.  This particular 
tl1 1Ktion wou ld be a s imple loop . If l ocal variables 
store this poi nter, thev must  a lso be decla red as 
_ wide_const_chJr_ptr. 

5. Co mpi le  the source code using the di rective 
/wJ rn=enable=maylosedata to have the compi ler 
help detect poi nter tru ncation.  

6 .  Add ::1 new test to the test system ro exercise 64 - bit  
poi mers. 

Restricting execv from High Memory 

Examination of the execv fi.m ction prototype showed 
thJt this fu nction receives two argumenrs. The ri rst 
::�rgumem is J pointer to the name of the fi le  to start .  
The second Mgu ment represents the ::�rg" a rray that is 
to be passed to the chi ld process. Th is JJTJY of pointers 
to n u l l  terminated strings ends with a N U LL poi nter. 

I nit ia l ly, the exeev fu nction was to have had two 
i m plemen tations.  The parameters passed to the execv 
function are used as the parameters to the main func
tion of the chi ld process being started . Because no 
assu mptions cou ld be made about that ch i ld process 
( i n  terms of support tor 64 - bit pointers) ,  these para
me ters are restricted to low memory add resses. 

To i l l ustrate that the art,"' passing was a restriction,  
\\'e place that  prorotvpe i n to the section "Fu nctions 
restri cted from 64 bits" of <header. h > .  The firs t  a rgu
ment,  the name of the tile, d id  not need to have this 
restriction . The section "Create 64 -bi t  header file 
typcdds" was enha nced to add the defi nition of 
_const_c har_ptr64, which a l l ows the prototypes to 
define a 64-bit pointer to constant  characters whi le in 
either 32-bi t  or 64 - bit context .  

Returning a Relative Pointer in strcat 

The strcat function returns a pointer relative to its tirst 
a rgument.  We looked at this function and determined 
that i t  required two entry points. In addition , we 
widened the second parameter, which is the add ress of 
the stri ng to concatenate to the second, to a l low the 
appl ication to concatenate a 64 - bit string to a 32 -bit 
string without source code ch anges. 
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Figure 5 shows the changes made to support fu nc
tions that have pointer-size-speci fic  entry poi nts .  The 
prototypes of functions X.:'\.X., _XXX32,  and _XXX64 
begin in 64- bi t  pointer-size mode.  Since the u n mod i
fied fi.mction name (stt-cat, XXX) is  to be in the pointer 
s ize specified by the /pointer_size qual i fie r, the 
poin ter size is changed from 64 bits to 32 bits if and 
only if the user has specified /pointer_size=32.  At  this 
point ,  we are not certain of the poin ter size in effect. 
We know only that the size is the same as the size of 
the qua l ifier. The second argu ment to strcat uses the 
_const_char_ptr64 typedef in case we are in 32 -bi t  
pointer mode. Notice the  declaration of  _strcat64 
does not use this typedef because we are guaranteed 
to be in 64-b i t  pointer context. Figure 6 shows the 
i mplementation of both the 32-bit and the 64-bi t  
strcat fi.mctions. 

The 64-bit mal/oc Function 

The implementation of mul tiple entry points was dis
cussed and demonstrated in the strcat implementation . 
Al though multiple entry poi nts are typical ly added to 
woid tru ncatin g  pointers, fi.mctions such as memory 
allocation routines have newly defined behavior. 

The functions decc$ mal loc and decc$_mal loc64 
use new support provided by the OpenVMS Alpha 
operating system for a l locating, extending, and ri·ec ing 
64-bit  virtual memory. The C run-time l ibrary uti l izes 
this new fu nctionality through the LIBRTL entry 
poin ts.  The LI B RTL group added new entry poin ts for 
each of the existing memory management fu nctions. 
The LI B RTL inc ludes an  additional second t:ntry 
point  for the free function.  S ince our implementation 
of the free function simply widens the pointer, wt: end 
up with a single, C run- time l ibrary function that must 
choose which LIB RTL fu nction to call. 

# i n c l u d e  < s t r i n g _ h > 
# i n c l u d e  < w i d e_ t y p e s . s r c >  

I *  
* *  S T R C A T I  S T R C A T 6 4  
* *  

i n t  f r e e (  __ w i d e_v o i d_ p t r  p t r )  { 
i f  ( ! ( C $ $ I S_S H O R T_A D D R ( p t r ) ) )  

r e t u r n ( c $ $_f r e e 6 4 ( p t r ) ) ;  
e l s e  r e t u r n ( c $ $  f r e e 3 2 ( ( v o i d  * )  p t r ) ;  

} 

Conclud ing Remarks 

The project took approximatdy seven person- months 
to complete. The work involved two months to deter
mine what we wanted to do, one month to tlgurc out 
how we were.� going to do it, and four person -months 
to modi �', document,  and test the software. 

Dur ing the init ial  two months ,  the technical  leaders 
met on a weekly basis and d iscussed the overall 
approach to adding 64-bi t  pointers to the OpenVi'vlS 
environ ment .  Since I was the tech nical lead for the C 
run - t ime l ibrary project, this in i tial phase occupied 
between 25 and 50 percent of my time. 

The ont: month of detai led analysis and design con
sumed more than 90 percent of my time and resu l ted 
i n  a detailed document of approximately 100 pages. 
The document covered each of the 50 headt:r fi les and 
500 function i nterfaces. The fu nctions were grou ped 
by type, based on the amount of work req uired to 
support 64 -bit poin ters .  

The first month  of  impl ementation occupied Iwarl�' 
a l l  of my time, as I made several fa lse starts. Once I 
worked out the tlna l  implementation technique, I 
completed at least two of each type of work. As coding 
deadlines approached, I taught nvo other engineers on 
my team how to add 64-bit pointer su pport, pointing 
out those fu nctions already completed tor refe rence. 
They came up to speed within one week. Togcthn, we 

completed the work during  the final month of the 
project. 

* * T h e  ' s t r c a t ' f u n c t i o n c o n c a t e n a t e s  ' s 2 ' ,  i n c l u d i n g t h e  
* *  t e r m i n a t i n g n u l l  c h a r a c t e r ,  t o  t h e  e n d  o f  ' s 1 ' .  
* I  

__ w i d e_ c h a r _ p t r  _ s t r c a t 6 4 < __ w i d e _ c h a r _ p t r  s 1 , __ w i d e _ c o n s t _ c h a r _ p t r  s 2 )  
{ 

} 

( v o i d )  _m e m c p y 6 4 ( ( s 1  + s t r l e n ( s 1 ) ) ,  s 2 ,  ( s t r l e n ( s 2 )  + 1 ) ) ;  
r e t u r n ( s 1 ) ;  

c h a r  * s t r c a t 3 2 < c h a r  * s 1 , __ w i d e _c o n s t _ c h a r _ p t r  s 2 )  { 
( v o i d )  m e m c p y ( ( s 1  + s t r l e n ( s 1 ) ) ,  s 2 ,  ( s t r l e n ( s 2 )  + 1 ) ) ;  
r e t u r n ( s 1 ) ;  

Figure 6 
lmplcmenrarion of32-bit and 64-bir sn·car Fu nctions 
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Building a H ig h-performance 
Message-passing System for 
MEMORY CHANNEL Clusters 

The new MEM ORY CHANNEL for PCI cluster 

interconnect technology developed by Digital 

{based on technology from Encore Computer 

Corporation) d ramatically reduces the over

head involved in intermachine commun ica-

tion . Digital has designed a software system, 

the TruCiuster ME MORY CHAN NEL Software ver

sion 1 .4 product, that provides fast user-level 

access to the M E MORY CHANNEL network and 

can be used to implement a form of distributed 

shared memory. Using this product, Digital has 

built a low-level message-passing system that 

reduces the communications latency in a ME MORY 

CHANNEL cluster to less than 1 0  microseconds. 

This system can, in turn, be used to easily build 

the communications l ibraries that programmers 

use to parallel ize scientific codes. Digital has 

demonstrated the successful use of this message

passing system by developing implementations 

of two of the most popular of these libraries, 

Parallel Virtual Machine (PVM) and Message 

Passing Interface {MPI). 

Vo l .  8 No. 2 1 ':!96 
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Timothy G. Reddin 

During rlw l:�st [(:,,. vc1rs ,  s igniric:�nr rcsc:1rch ;l ml 
dn·c lopmen t  has been u nd e rtaken in both academia 
and i n d ustry in  an dlc>rt to red u ce the cost of high
pertimnanu: com puting ( H PC ) .  The meth od most 
ti·cquem l\' used was to bu i ld  p;lra l l e l  S\'Stems out of 
clu sters of commodity ,,·orkstations or sen"Crs tlut 
cou l d  be used as a ,·i rtu;l l  supercom p u tcr. ' The nwti
\'Jtion t(>r this '' ork ,,·as the tremendous g:1 i ns that 
have lx:en ;K h ievcd i n  red u ced i nstruction set com 
puter ( !US C : )  m icroprocessor perf()l'mJnce d u ring the  
last d ecade .  I ndeed , processor pertormance i n  rod:1v's 
workst:Jtions and sen·ers often cxceeds that ofrhc ind i 
, · idu;l l  processors in  a tigiH I \· coupled s upercomputer. 
H m,·e,·er, trad itional Joc1l �1rc:1 net\\'ork ( LA N )  per· 
torm�1nce has not kept pace ll' i th  mi croprocessor 
pert(mn:l JKe.  LANs,  such as rl bcr d istri b u ted d :na 
i n tcrbce ( FD D I ) ,  ofkr rosonable bandwidth ,  since 
comm u n ication is  geneLl l lv GlJTied our Lw me�ms of 
rrad i rion�1l prorocol stacks su clJ as the usn d:�t:�gr;1 lll 
protoco!ji mernct protocol ( U D P /1 !' ) or the tr:ms
mission conrroJ protoco l/internet protow l (TCI)/I P) ,  
bu r softw:t re O\'erhead is �1 major factor i n  mess:�gc
rranskr time 2 This sofi-,,.,lre o\'erhead is not red uced 
by bu i ld ing hster LAN ncrwork ha rdwa re. 1\:\rhcr, a 
ne\\' appro:tch is needed - one that bvpasses the pro
tocol stack ll'h i le p rescn·ing sequencing, error detec
tion , :tnd protection .  

Much c ur re nt research is d cnncd to red ucing this 
com m u ni carions O\'erhe::Jd usi ng specia l i zed lurd w�1re 
:1 nd sof-twa re. To th is  <: nd , Digi t:tl has been working 
to m:tke commercia l  A l p h a  cl uste rs, d esce nd ed ti·om 
the origin�1 l  VAXclust<:r tech n ol ogv, a\·aibblc to scicn
t itic and te ch nical users . ' ' This cl ustn tec lmol og1· 
uses a1·a i lable com mod itY ln rd\\'Jre and software to 
i mplement  :t h igh- pert(mnance co m m u n ications sub
syste m . '  The hardware i n tercon nect th�lt  su ppons 
cl ustcred operation is E ncore Computer CorporJtion's 
patented t'vi EMORY C : H A :---! N J-: 1 .  technol og\ . ' '  This 
int e rconnect pro1·ides J mech �m ism that a l lo\\'s the ,·ir
rua l  add ress space of :t process to be m:tpped so th:tt 
:1 store i nstruction in  one s1·srem is d i renh· rctlccted in 
the p ll\'sic1l memory ol ·  another syste m.  We ha1·e 
developed software applic1tion programming in tn
bces ( A l' l s )  th:n  pro,·ide  usu-l cl'el applications \\' ith 
this up�1b i l i n· i n  a contro l l ed ::1nd protected m�mner. 



Data may then be transkrred between the mach ines 
using simple memory read and write operations, with 
no software overh ead , esse ntia l ly  ut i l izi n g  the fu l l  per
formance of the hardware. This approach is sim i l a r  to 
the one used i n  the Princeton S H RJ M P  project, where 
this process is described as Virtua l  Me mory- Mapped 
Com munication (VJ'v! M C ) .  7-'" 

Figure 1 shows the re lationship between the various 
components of our message - passing syste m .  The tirst 
phase of our work i nvolved designing a program
ming l ibrary and associated kernel  components to pro
vide protected , u n privi leged access to the M EM O RY 
C H A N N EL network. Our objective in creating this 
l ibrary was to provide a faci l ity much l i ke the standard 
System V in terproccss com m unication ( J  PC ) shared 
memory fi.mctions avai lable i n  U N I X  implementations. 
Programmers cou ld usc the l ibrary to set up operations 
over the M EMO RY C H A N N EL i nterconnect, but t hey 
would not need to use the l i brary ti.mctions tor data 
transfer. In this way, pcrtonnance cou ld be maximi zed . 
This pro d uct, the Tru Ciustcr M EMORY CHAN N EL 
Software, provides progra m mers with a simple,  high
pert(mllancc mechanism kH- bui lding paral lel  systems.  

TruCi ustcr M E M O L�Y C HAN NEL Software d elivers 
the pert(xm:mce avai lable  ti·om the M EMORY 

C H A N N E L  network directly to user appl ications but 
rcq uircs a programming style that is d i fferent from 
that req uired for shared memory. This d ifferen t  pro
gramming sty le  is necessary because of the d iffe rent 
access characteristics between local memory and mem
orv on a remote node con nected through a MEMORY 

C�I A N NEL network. To m a ke programming with the 
MEMOKY C H ANNEL technology re latively s imple 
whi le cont i n u i n g  to del iver the hardware performance, 
we built a l i brary of pri m itive com munications fu nc
tions. This system,  cal l ed Un iversal Message Passing 
( U M P ) ,  h i d es the detai ls of M EM O RY CH.AJ"l N EL 
operations from t h e  program mer and operates seam
l cssly over two transports ( initia l l y ) :  sh ared memory 
and the M b\ll O RY C H A N N E L  i ntercon nect. This 
a l lows seamless growth h·om a sym metric m u l tipro
cessor ( S M P )  to a hi l l  M EMORY CHANN EL c l u ster. 
Devel opment can be done on a workstatio n, whi le  
prod uction work is  done on the cl uster. The U M P  

PARALLEL APPLICATION 

PVM I MPI  

UMP 

TRUCLUSTER 
OTHER SHARED MEMORY CHANNEL 

MEMORY SOFTWARE TRANSPORT 

Figure 1 
Message-passi ng Systc111 Archirccrurc 

layer was designed from the beginn i ng with pertor
mance considerations in mind,  part icuLlrly  \Vith 
respect to m i n i m i z i ng the overhead i l1\·oJvcd in se n d 
i n g  s m a l l  messages. 

Two distri buted memory models arc pred ominamly 
used in high- performance computing today: 

1 .  Data paral le l ,  which is used in H igh Performance 
Fortran ( H PF ) . "  With this model, tl1e programmer 
uses para l l e l  l anguage constructs to i ndicate ro the 
compiler how to d istri bute data and what opera
t ions should be pertormed on it .  The problem is 
assumed to be regu lar so that the compiler can use 
one of a n u mber of data d istri bu tion algori thms.  

2 .  Message passing, which is  used in Para l le l  Virtual  
Machine ( PV M) and Message Passing I nrcrt:Ke 
( M PI ) u  15 I n  this approach, a l l  messaging is per
formed expl ic itly, so the appl ication programmer 
determines the d ata distri bution algorithm, making 
this approach more suitable for i rrcgubr probkms. 

It i s  not yet. c lear whether one of these approaches 
wi l l  predomi nate in rhe ti. tturc or if both wi l l  conti nue 
to coexist .  D i gita l  has been worki ng to provide com 
petitive sol u tions for both approaches usi ng M E M O RY 
CHAN N EL cl usters. Digita l 's H PF \\'Ork has been 
descri bed in a previous issue of the Journal ' "· '' This 
paper is prim arily concerned with message passing.  

Bui ld ing on the U M P  layer, we constructed imple
men tations of two common message- passing systems. 
The tl rst, PVM ,  is  a de facto st<mdard for programmers 
who wa nt to p a ra l l e l ize large scie ntific  and tec h nical  
appl ications. In addit ion to messaging fu nctions, l'VM 
a lso provides process control fu nctions. The second , 
M P I ,  represents the eftorts of a large gro u p  of acade
mic and industri a l  users who an: working together 
to speci�' a standard A P I  tor message passing.  At this 
time, MPI does not provide any process control fac i l i 
t ies .  The perf(mnancc of these PV M and MPI systems 
on M EMORY C H A N N EL c l usters exceeds rhat of the 
publ ic-domain i mplementations. 

MEMORY CHANNEL Overview 

Encore's MEM O RY CHANN E L  tech n ology is a h igh
performance network that imp leme nts a torm of 
cl usterwide shared virtua l  mem ory. l n  Di gital's first 
i mplementation of th is technol ogy, it is a shared, 
100 - mcgabytc -pcr-sccond ( M B/s ) bus that provides 
a write-only path from a page of virtual  address space 
on one node to a page of physical memory on another 
node (or multiple other nodes ) .  The M EM O RY 
C H ANNEL network outperforms any tradit ional  LA 1 

technology that uses a bus topology. For example,  a 
peak bandwidth of between 35 M I3/s and 70 M I3/s is 
possible with the c ur rent 32-bit pcriphcr:� l  component 
i nterconnect ( PCI ) M EM O RY C H AN N EL adapters, 
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depend ing  on the bandwidth of the I/0 su bsystem 
i n to which the adapter is plugged .  Although the cur
rent /vi EMORY CHAN N E L  network is  a shared bus, the 

plan ti:.Jr the next generation is to uti l ize a switched 
tec h nol ogv that wi l l  increase the aggregate bandll'id th 
of the l lCt\Hlrk be\·ond th�n of c u rrentlv a\·a i Llblc . . 
s\\·itchcd LAN tech nologies. The latency ( time to send 
a m i n i m u m-length message one way bct\vccn t\vo 
processes) is l ess than S m ic roseconds ( 1-ls) .  The 
M E MO RY CHANN E L net\vork provides a com m L I Il ic:t
tions med ium with a low bit-error rate, on the order of 
1 0 - u,_ The proba bi l it\' of u ndetected errors occ u rri ng 
is so sm::Lil ( on the order of the u ndetected error rate of 
CPUs and memory Sll bsystcms) that it is esscnri �1 l l v  
negligi b le .  A M EMORY C H ANN E L cluste r consists of 
one or more PCI M EM O RY CH ANN E L adapters on 
each node and a hub connecting u p  to eight nodes. 

The M t-:M O RY CH AN N E L  c l uster suppmts �l 

5 1 2 - M B  glob:�! address space i n to \\'h ich e::�ch ada pter, 
under opcr:�ti ng S\'Stcrn contml ,  em map regions of 
local \ ' i r tua l  �1d d ress space . "  f igmc 2 i l l u strates the 
JVJ F.MO RY C H ANNEL opc r;1tion .  Figure 2a shows 

transm ission ,  and Figure 2 h  shows reception . A p�1ge 
tab le cntr�· ( PTE) is an cntrv in the svstcm \'i r tu �l l 
to-p lwsicl l map t h ::n  translates t h e  , · irtual  :�d d rcss o f  
a p:�ge to t h e  correspond ing p hvsical address.  The 
M E M O KY C H ANNEL adapte r  comains a page comrol 
table ( PC:T) that i nd i cates t<Jr each page of M EM O I\Y 

CHANNEL g lobal  add ress space if that page is m:�ppcd 
l oca l lv �md w h ether it is mapped t(Jr  transm ission or 

reception . Thus,  to map a page of local \'i rtu �l l mcm 
on· tor tr�msm ission, a l l  that i s  rcq u i rcd i s  to 
• Set up an entry i n  the system ,· i rtual - to-physical 

map to poi nt to a page i n  the M E MORY C HA N N E l . 

adapter's PC! l/0 add ress space window, which 
is d i rectly mapped to the p:1ge in  M EM O RY 

C H A N N E L  space 

• Enable the correspond i n g  p�1 gc cntrv i n  the I'C :T 

t(Jr transm ission 

Anv write to tbe mapped v i rtu a l page w i l l  then 
resu lt  i n  a correspondi ng write to the M EM O RY 
C H A � � l-: 1 .  ncm·ork. 

To complete the c i rcu i t ,  the page of M EM O RY 

C H A !': :\ 1-. L space m ust be mapped to , ·i rru :� l mc morv 
on �mother node.  This is accomplished on the other 
node by 

• Making �l page of physical memory nonpagea b l e  
( \\'i red ) 

• Croting a ,· i rrua l  region \\'hose PTE poims to the 
wired page 

• Setting up the 1/0 d i rect memory Jcccss ( D t'v! A )  
scatter/gather map to point  to the physic:�l p:�gc 

• Ena b l i ng the appropriate entrv in the adap ter's 
P C :T r( >r rece ption 

Vol .  S :--Jo 2 I ')') (,  

Thus, \\ 'hen a MEMO 1\Y CH ANNEL network packet 
is received that corresponds to the page tb:Lt is mapped 
t( Jr  reception , the data is transkrred directly to the 
appropriate page o f  physic1 l  memory by the system 's 
D M A  engine.  In a d d i ti o n ,  an\' cache l i nes th:Lt  rckr to 
the upd�ned page are i n\-�l l idatcd . 

S u bscq ucm lv, am· \\'rites to the mapped page oh·ir
tual mcmmy on the r!rst node resu l t  in correspond i ng 
writes to physical memory on the second nod e .  This 
means th<H w hen a region in  M EMORY CHANNEL 
space Ius hccn al loutcd and attached to ::1 process, 
\\'rites to that region arc just s imp le  stores to J process 
vi rtual address. The ,· irrual ad d ress translates to a ph\'S
ica l add ress that is mapped t(Jr  tr:� nsmission . RcJds 
ti"om that region are si mply loads from a process virtual 
ad d ress, so the operati ng system is not involved i n  data 
transkr, with consequent reduction in overhead . 

To usc the M EM O RY C H A� �EL b ard,, ·arc , the 
operating S\'Stem m ust prO\ id e certain basic sen ices. 
Digita l 's c luster soft\\'arc inc l udes a set of l ol\ · - b ·c l 
p ri m i ti,·cs that c-1 n  be used in the U N I X  ke rnel .  The 
functiona l ity tha t  these services provid e  i nc l u des 

• Allocni n g  and dca l locating regions of M EM O RY 

C : H A N l' E L  space ri:.JI" tL111smission or reception 

• Al locu i ng and dca l l ocning c l uster spi n locks 

• Prm·id i ng the capa bi l i t\' to be notiticd \\ hen �l page 
h:1s been written ( i .e . ,  a notitication cha n ne l )  

TruCiuster M EMORY CHANNEL Software 

We designed the Tru Ci ustcr ME;\r!O RY C : H A � � E L  

Sotiw�l l"C product r o  prm · id c  uscr-le,·el access t o  the 
kerne l Fu nctions that contro l the JVt i-:M O RY CHA:\ � 1 -:L  
h a rdware. The target a u d ience t(Jr this  tec hnology is  
para l le l  sottware l i brary b u i l d ers and para l l e l  compi ler  
implcmcntcrs. A s  shm,·n i n  h l' urc 3 ,  the prod uct  con
sists of t\\'o components l ::tycrcd o n  top or· r ile kernel 
M EM O RY c : J-!A�NEL fu nctions: 

l .  A kernel s u bsvstem that interfaces to the lo\\ - l c\·c l 
kernel fu nctions 

2 .  A usu- lcvc l API l i br::trv 

There \\"Crc t\\'0 choices in de1'e lopi ng the f1r<>d uct:  
pr01 ide si mp lc user- lcYd .Kccss to rhc basic ti.1 nctiona 1 -
irv or bu i ld :1 more soph isticated S\'stcm ( c .� . ,  a d istrib
uted s iLl red memorv [ DSM J S\'Stcm) . vVc chose to 
make a su bset of the fu nction �1 l iry of the operating sys
tem kcmcl pr imi tives al'a i l ab l c  to appl icatiom ti n tii'O 
rc1sons . Fi r'il", \l'e d i d  not i n i tial!\'  kno\\' the degree 
of ri.1 1Ktion�1 l i t\' req u i red to prm ide  ge neric user
l en:! access ro the M l  .. \10 1\Y CI !A'-.; :\ LJ .  nct\\ urk 
for the l ong ter m .  Second , the origi n a l  p l l lvose ot 
the work ,,-�ls to g ive  scient i tic and tec h nical  cus
tomers ,  rather t han commercial cl uster users, c�1 r ly  
access to rhc t\ I UvlORY C H AN NE L nct\l'ork .  As  a 

res u l t, rhc functiona l in· \\"C b u i l t  i nto rhc pmduct is 
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a set of simple bui ld ing blocks that arc analogous to the 
System V ! PC bci l ity in most U NIX i mplementations. 
The advantage is that while a very simple interface is 
provided initial ly, the intertiKe can later be extended as 

required , \Vithout losing compatibil ity with appl ications 
based on the initial implementation . Table l details the 
M EMORY CHAl'\! N EL API l i brary timctions that the 
produ ct provides. An i mportant feature to note is that 
when a M EMORY CHANNEL region is a l located using 
TruCJuster MEMORY CHANNEL Software, a key is 
specified that uniquely identifies this region in the clus
ter. Otber processes anywhere i n  the cl uster can attach 
to the same region using the same key; the collection of 
keys provides a clusterwide namespace. 

The MEMORY CHAN EL API l ibrary com m u n i 
cates with t h e  kernel su bsystem using kmodcal l ,  a sim
ple generic system cal l  used to manage kernel 
su bsystems.  The l i brary fu nction constructs a com 
mand block conta in ing the type of command ( i .e . ,  
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Ta ble 1 
Tru C i uster M E MORY CHAN N E L  API  L ibrary Funct ions 

Fu nction 
Name 

i m c_asa l l oc 

l m c_asattach 

l m c_asdetach 

i mc_asdea l l oc 

i mc_l k a l loc 

i mc_l kacq u i re 

i mc_l k re lease 

imc_l kdea l l oc 

imc_rderrcnt 

imc ckerrcnt 

i mc k i l l  

i mc_get h osts 

Description 

A l l ocates a reg ion of M E M ORY C H A N N E L  add ress space of a specified size and permiss ions  a n d  
with a user-s u p p l i ed key; the a b i l ity to specify a key a l l ows other c l uster processes t o  rend ezvous 
at the sa me reg io n .  The funct i o n  retu rns to the user a c l usterwide ID for th i s  reg ion .  

Attaches a n  a l l ocated M E MORY CHAN N E L  reg ion to  a process v i rtua l add ress space. A reg i o n  
c a n  b e  attached for tra nsmiss ion or reception,  a n d  i n  shared or  exc l us ive mode. T h e  user c a n  a lso 
requ est that the page be attached in loopback mode, i . e. ,  a ny writes w i l l  be reflected back to the 
cu rrent node so that if a n  appropriate reception m a p p i n g  is  in  effect, the resu lt of the writes can 
be seen loca l ly. The v i rtua l  address of the ma pped reg ion is  ass ig ned by the kernel  a n d  returned 
to the user. 

Detaches an a l l ocated M E M O RY CHAN N E L  reg i o n  from a process v i rtua l  add ress space. 

Dea l locates a reg ion of M E MORY CHAN N E L  add ress space with a specified 1 0 .  
A l l ocates a set o f  c l usterwide s p i n locks.  The user can specify a k ey a n d  the req u i red permiss ions.  
Normal ly, if  a sp in  lock set exists, then th is  fun ct ion j ust retu rns the ID of that lock set; oth erwise 
i t  creates the set. If  the user specifies that creation is  to be excl us ive, then fa i I u re wi I I  resu It  if the 
s p i n lock set exists a lready. In add it ion,  by specify i n g  the I M C_CR EATOR f lag, the f i rst spin lock in 
the set wil l  be acq u i red.  These two features prevent the occu rrence of races in the a l locat ion of 
s p i n  lock sets across the c l uster. 

Acq u i res ( l ocks) a s p i n  lock i n  a specif ied s p i n  lock set. 

Re leases (u n l ocks) a s p i n  lock in a specified s p i n  lock set. 

Dea l l ocates a set of s p i n  locks.  

Reads the c lusterwide lVI E M O RY CHAN N E L  error cou nt a n d  returns the value to the user. Th i s  
va l u e  is  n o t  g u a ranteed t o  be up-to-date f o r  a l l  nodes i n  the c l uster. It c a n  be used t o  construct 
an a pp l i cation-specific error-detect ion scheme. 

Checks for outsta nding M E MO RY CHAN N E L  errors, i .e., errors that have not yet been reflected in 
the c lusterwide M E MO RY CHANNEL error cou nt retu rned by imc_rd errcnt. This  fu nct ion checks 
each node in the c luster for any outsta nd ing errors and updates the g lobal  error count accord ing ly. 

Sends a U N I X  s i g n a l  to a specified process on a nother node in the c luster. 

Returns the n u m ber of nodes cu rrently in the c l uster a n d  the i r  host n a mes. 

1\'h ich  l i bran· fu nction has been c a l led ) <l lld :�m· p:�t·:� 
meters a nd sends it to the kcmc l  su bsvstcm us ing 
kmodca l l .  The kernel  su bsi'Stcm h :-�s :1 match ing ti.mc 
tion r(lr each o r' the l i hr:-tr\' c:-� l l s .  When a l'Oil1 In:ll1d 
block is rccci,ni ,  it is p:1rscd :md the :1ppropriare fu nc
t ion is c:-� l lcd to scn·icc the req u est.  All secu ritv and 
resource checks arc pcrr(mncd i nside the kernel .  

c reation t ime,  :md the UN IX user I D  ( U I [) )  and group 
I D  ( C I D )  of the c reating process. for :111 ind i ,·id u a l  
C RD, there is a host region desc riptor ( H RD ) for each 

node that has the region nupped . This H RD contains 
the duster l D  of the node a n d  othn node-spcci r!c 
i n tonnation . Fi nal lv, rc.lr a speci ric H l\ 1) ,  there  i s  a 
process region descri ptor ( 1'1\D ) t(Jr  c1ch process on 
that node that is us ing the regio n .  'T I 1c  I)JU) comains 
the U N I X  rrocess I D  ( I' I D )  of the pmcess rlut created 
the region and any rroccss-spcci ric  i n r( >rmation,  such 
as virtu a l  addresses. 

figu re 4 shows some of the d :1ta structu res that the 
kernel scn·iccs usc. A c l ustcrwidc region of NI EMORY 

CHANN E L  sp:�cc is a l located to store these mamgc
mcnt structures. 'fhis region contains a control struc
ture :1 nd six l i n ked l ists of descriptors. The control 
structure manages M EM O RY CHANNEL resources 
a l l oc1tcd using Tru Ci ustcr M EMORY CHANNEL 

Sofuva rc. Each region of M EMORY CH ANNEL address 
space :-�nd GK h set of MF.MO R.Y C H A N N EL spin locks 
a l located using the product have :1 correspon d i ng 
descriptor i n  the kernel dat:� structure. 

For each region of M EM O RY C H A N N E L  add ress 
space :1 l loc:�tcd in the c l uster, t h ere  is a c l uster  region 
descri ptor ( C : R D )  th:�t cont a i n s  i n r(mnation ckscri b 
i n g  the region,  i n c l u d i n g  its c lusterwidc region ident i 
tlcation n u m ber ( I D ) , i rs s i z e ,  kcv, pcrmtsstons, 
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S i m i l arly, ror eac h set of sp in  locks a I l ooted on the 
c l uster there is  a cluster lock dcscri prm ( C L D )  that 
contains i n formation d escrib ing the sp in lock set, 
i nc l u d i n g  i ts c l usterwidc lock I D, the nu m hu of sp in
locks in  the set, the  key, perm iss ions,  crc::ttion t ime,  
and the UID and GlD of the creati ng f>roccss . Fm a n  
individ u a l  CLD, there is a host l ock dcsni ptor  ( H LD)  

tor each node that i s  u s i n g  the spi n  l o c k  s e t .  T h e  H LD 

contains the c l uster I D  o F  the node and other nodc
spccifie  i n t(>r mation :� bou t the spi n]ock set.  for a spe 
c ific  H LD ,  there is a process l ock d escriptor ( I'L D )  r( >r 
each pmccss o n  th :� t  node that is  us ing the S f)in lock 



HRD 0: HOST 4 

H R D  1 :  HOST 6 

H R D  0: HOST 6 

H R D  1 ·  HOST 1 

( J )  Regions 

HLD 0: HOST 2 PLD 0: PID 3346 

HLD 1 HOST 0 I 
CLD 0 

J L PLD 3: PID 4072 CLD 1 

� 

- HLD 0 HOST 4 . . .  

HLD 1 :  HOST 6 . . .  � HLD 2: HOST 3 

r--- . . .  

( b )  Spin locks 

Figure 4 

KEY: 

CLD CLUSTER LOCK DESC R I PTOR 
CRD CLUSTER REGION DESCRIPTOR 
HLD HOST LOCK DESCRIPTOR 
HRD HOST REGION DESC R I PTOR 
PLD PROCESS LOCK DESC R I PTOR 
PRO PROCESS REGION DESCRIPTOR 

Truc: l uster M E/I I O RY C : H A :-..: \: E L  Kernel Data Structu res 

set .  The PLD con tai ns the l' I D  of the process that cre
ated the spin l ock set .md any process-spec ific  i n forma
tion abou t the spinlock set. 

A l l  these c l uster dat<l structures h ave poinrers that 
can not be updated aromic1 l l v. I 1 1  our impl ement ation ,  
tbev actual lv consist oftwo copies (o ld and nell' ) and 
a toggle that ind icates ,,·h ich  of the two copies is ,·al id . 
The toggle is switched ti·om an o ld  copv to a new copv 
only  when the new copy is known to be consistent,  so 
that r:1 i l u rc of a c l uster m e m ber w h i l e  mod it), ing the 
structu res can be tolerate d .  

Figure 4 a  i l lustrates "' hypothetical situation in  w h i c h  
tc>ur regions of M r)v! O RY C H A N :-J E L  space have been 
a l l ocued on the c l uster. The ti rst region , with d escrip
tor CRD 0, is mapped on three nodes:  host 4,  host 6, 
and host 3 .  The d iJgr:tm <l lso shows ti:ntr processes on 
host 3 with the region mapped <l nd l ists the PI D of each 
process. Figu re 4b shows a s imi lar s i tu ation tc>r  spi n 
locks. Two sets of s p i n  locks have been a l locucd . T h e  

fi rst, w i t h  d escriptor CLD 0, is mapped on two nodes 
of the c l uster: host 2 a nd host 0. One process on each 
of these nodes i s  cu rrcnrly us ing the spin lock set. 

Command Relay 

The command rel a\· is a kerncl- IC\ -c l  tr<llllc\n >rk that 
enables tbc execution of a generic scn·icc rou tine on 
a nother n od e  with i n  the c l uster. It f unctions :ts �l s im
p le  kernel remorc proced ure cal l ( RI'C ) mechanism 
based on tixed u n i d i rcctional messJgc loutions ( ma i l 
boxes) a n d  M E!'v!O RY C H AN N E L  noti fication c ha n 
ne ls  t o  awaken the  server k e m c l  thtT<ld . Figure 5 
shows the major components of the command rc lav 
and i l l ustrates i rs operation between two hosts i n  a 
c luster. A c l i e nt ke rnel rl11'C<ld on one h ost im·oki ng <l 
service  and the corresponding server kernel thread on 
another cluster host communicate data us ing a ddincd 
bidirectionJI command/response b lock, known as a 
parameter structure . The c l ient  and scr\'cr routi nes 
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Figure 5 
Com mand Relav Opcr<Hion 

must conform to this interface and m ust be re l iab l e ,  
i .e . , they m u s t  always return t o  the cal l er. The server 

em ca l l  any kernel fu nction . Server routi nes are regis 
tered (step l in F igure 5 )  using a dustenvid e  service 
! D .  A kerne l thread i nvokin g  a remote service passes 
a packed parameter structure to the com mand relay, 
together \\'ith a destination node I D  and a serv ice l D  
( step 2 ) . This command reiJy then adds process creden
tials Jnd builds  a service protoco l data unit ( S PD U ) .  
Using a M EMORY C H A N N E L  noti tication channel,  i t  
s igna ls the remote node and passes th e SPDU by means 
of a mai l box in MEMO RY CHAN N E L  space ( step 3 ) .  
The server parses the S P D U  and cal ls the req uested ser
vice fimction , passing it the parameter structure (step 
4 ) . When the service fu nction completes (step 5 ) , its 
retu rn status and any Lhta values :�.re packed i n to a n  
S P D U  and placed into the mai lbox, a n d  t h e  i n i tiating 
re l av is signaled ( step 6 ) . The in i tjaror then unpacks the 
dau !Tom the SPD U and returns the appropriate status 
:md values to the c l ient kernel threJd ( step 7 ) .  

A l l  ca l l s  to t h e  command re lay arc synch ronous and 
scri J l i zed . The i nvokjng kernel thread blocks u n ti l  the 
server retu rns. Requests to th e  com mand relay subsys
tem :.11-c treated on a ti rst-comc tirst-scrved basis, and 
c: d ls to a busy re lay block unti l  th e  rel ay becomes free 
Re l ays arc a u romatic<l l lv creJtcd between a l l  nodes i n  
t h e  c l uster. 

The command rclav mec hanism m:1kes it poss i b l e  
t o  s e n d  a U N I X  signal  t o  a process on a nother n ode 
wi thin the M EMORY C H A N N E L  c luster. The imc_ki l l  
l i brary fu n ction uses the com mand re l ay to i n voke 
the registered kernel server rou tine tor cl uster signa ls 
on the remote node , wh ich , i n  tu rn ,  calls the kernel ki l l  
fu nction d i rect ly with the P I  D suppl ied . 

Initial Coherency 

\tVhen a process on a c luster member maps a region of 
ME1v!O RY CHAN N E L  �1dd rcss space tor both recep
tion and tra nsmission, <1 11) '  wri tes to the transmit  
region by that  process :�rc rctlcctcd as c hanges to the 
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correspon d ing receive region .  I f  Jnother process on 
another c l uster node su bseq uen t ly maps th e  same 
region tor reception ,  the contents of i rs receive region 
arc i nd etermi nate ; i . e . ,  the t\1'0 processes do not have 
a coherent view of t hat region . This situation is kn0\\'11 
as the in i ti<l l  coherencv pro b l e m .  For an appl icJtion 
deve l oper , this pro b l e m  ma kes it  d i ffic u l t  to treat 
M E1\tlORY C:HA � N E L  add ress space as another f()rm 
of s hared memory. Appl ic:ltions can overcome this d if 
ticu lty by using some t(mTl of starr-up synch ron ization. 
H owever, a l l  developers wou ld have to imp lement 
these so lutions sep ara tel y. To increJse the usabi lity of 
Tru C l uster M EM O RY CHANNEL Soti:ware, the design 
team decided to bui ld in the a bi l itY to request coherent  
Ji locJtion of MEM ORY C : l-I A � � U .  add ress space 
Jcross the c luster. Deve lopers cJn spcc i f< : this as an 
option in the call to i mc_asal loc.  As �� result , a p rocess 
c:1n amch :1. MEMORY C H A N � !-].  region for reception 
t(>l lowi ng anv updates :md sti l l  sh <l l'C a common vic\\' of 
the region with other processes in the c luster. 

A special process, ca l led the m a pper, is used to pro
vide the virtual Jdd ress space to hold the coherent  user 
space nu pp i ngs . When the kernel su bsystem receives 
::t request tor cohere nt a l locJtion, it a l locates the 
M EM O R.Y CHAl'\J N E L region as norma l <l lld then maps 
the region for reception i n to the \'i rtual  address space 
of the m:1pper process. The command rc]a\· mech :� 
nism then causes <I ll the other nodes in  the duster to 
a l locate the same region and map i t  t( >r reception inro 

the add rcss space of the m::tppcr process on each nod e .  
Si nce mu ltip le user-level processes on a node that 
att�Kh J particu lar region h>r reception s hare the sJmc 
physical memory, al l  updates to the region arc seen by 
la te-jo in ing processes on any node in the c l uster. I f  
the req uesti ng process ex its ,  the region wi l l  st i l l  be 
J l loG1ted to the mapper, so rh �n another a l location of 
the same region on that node \\'i l l  res u l t  i n  a cohere n t  
pictu re of that region . The region i s  fu l lv dea l located 
( i .e . ,  from a l l the mapper processes ) \\'hen the l ast 
app l ication process a l locat ing the region either exits or 
expl ici tly dcal locates the region . 



Gi\'cn the usefu l ness of cohere n t  a l l ocations, it may 
seem unusu:1 l  that we nude this fea tu re an option 
rJ thcr th:m the dcbult .  There are severa l t-eJsons t(x 
this .  vVith cohere n t  J l locations, the associated physical 
memory becomes nonpagcable on aU nodes within the 
c luster, <l llcl , : ts s u c h ,  i t  consu mes physical resources. 
I n  addit io n ,  even· outbound write to such a region 
resu l ts in an inbound write to the physical  me mory of 
each node in the cl uster. For some application designs, 
it  may be more desirable to create a region that is writ
ten by one node and only read by other nodes. Also, 
autom atical ly rdlecting all writes back to a node, as 
is done ti:)r coherent regions,  consumes t\vice as much 
bandwidth on the PC! bus.  

Late Join and Failure Resilience 

To provide an operational e nv i ronment i n  which 
nodes can jo in or leave the c luster at any time, the ker
nel su bsvstem needs to O\'crcome a n u m ber of prob
lems res u l tin g  from l ate join a n d  node ta i l urc .  I n  tact, 
the ke rnel  su bsystem is subject ro the same d i ffi cu l ties 
of i n i t i a l  cohcrc nc1· as appl ication- level processes .  To 
ma nage user space a l locations, late- joining nodes 
require a coherent \'icll' of the c l uster data structures .  
Morcm'Cr, bil urc of an existing node can resu lt  in  om
ofd ate or, c1 ·cn worse , corr u p t  d ata stru ctures in the 
su bsyste m 's control region . To contJin the tai l u rc ,  
corrupt 'bta structures must be repaired . 

Low- level kcrnd routines detect cluster membership 
cha nge :md W<lke u p  :t managem e nt service thread on 
c:1e h node th:n pcrt(mns operations local  to that nod e .  
The first ma n<lge mcnt service thread t o  acq uire 3 spc
citi c  spin lock is elected to manage clustcrwi de updates. 

In the case of l ate jo in,  rhe management service 
thread updates local st:Hc to rdlect the new configura
tion . The thread that has been designated to ma nage 
c l ustcrwidc U f)d atcs is responsible for p roviding rhc 
! a rc -joining node with an u p - to-d are copv of the c lus
ter  d:l ta structu res. When triggered by the new node, 
the th rc:-�d rctr<l l lSmits the contents of the data struc
tu res so that the !arc -joi ning node has a fu l il' up-to 
date ' ic"· of J ! Ioc:�t ions <md resource usage . 

When a node b i ls ,  the thread elected to ma nage 
c l usrcrwidc updates  must examine the ent ire manage
ment data structure a nd rep a i r  it appropriate l y. Repair 
is ncccss:�ry when the E1 i l ing node that is i n  the process 
of updating the global data structures has ldt these 
cl ustcrwidc upd:�tcs in <ln u nsta ble state . Repair is pos
s ible bcc:�usc a ll u pdates to global d ata structures usc 
two copies of the structure ( old  and new, as descri bed 
previ ously ) ,  which means that the structures can be 
reset c;ls i lv  to :1 st:-� h lc  state.  l t' the tai l e d  node w:�s not 
actively updJting the data structures at the time of rhe 
b i l ur c ,  the m:�tuge ment t h read simply removes J i l  
resources <ll l ocarcd to the b iled node. 

Error Management 

The M r.l'viOR.Y CHA.:-..l �EL hardll'are provides a verv 
low e rror rate, ordering guarantees, and an abi l i t\• to 
detect remote error situations qu ick.lv, making i t  possi
ble to construct s imple e rror detection and reco\'crv 
protocols .  A kernel i nterrupt sen·ice routine detects 
c l uster errors and updates an error counter that rdlccts 
the clusterwide error count. A low-level ke rnel rou tine 
returns the value of this counter. Due to timing consid 
erations, i t  is not possib le to guarantee that this  count 
wi l l  be up-to-date wit h  respect to possible errors on 
remote nodes . A low-level kernel rou tine that e fti 
cienrly reads t h e  error status o f  remote M EM O RY 

C H A N N EL adapters and detects u nprocessed errors 
is provided . This routine uses a hardware feature, 
known :�s an ACK page, that is  specifical ly designed to 
tac i l itate error detection .  A write to such a page res u l ts 
i n  the error status of each M EivlORY C H A N N E L  

adJptcr bei ng written to successive l ocnions of the 
corresponding reception m apped region . 

Duri ng development, we b u i l t  s imple i ntertaces 
to access these low-b·el routines, therclw al lowing 
message - pass ing l i braries to bui ld in error  manage 
ment .  Because the method of getting into and out of 
the kernel  is a generic one, the m·e rhead is h igh
::�pproxim atel y 30 j..LS .  This compares poorly with the 
raw btcncv tor short  messages, which is less than S j..LS .  
To provide su itable pert(xm ance, w e  rc imple mcntcd 
the fl.t ncrions to execute tota l ly  in user sp:1ce . As a 
res u l t, when an :1pp l ication reads the error co um ti.H· 
the tirst ti me ( using i m c_rderrcnt ) ,  the kerne l V<l i uc of 
the erro r cou n t  is mapped tor read -only Jccess i n to the 
v irtua l  address space of the process. Subsequent  reads 
of t he error coutlt arc then s imply  rctds of a mc morv 
locnion . S imibrly, when an appl icJtion o i l s the c heck 
error service ( u sing imc_ckerrc n t )  t()r the tirst ri m e ,  
ACK pages a r c  transparently mapped i n to the v irt u a l  
<lddress space of t h e  process, a n d  t h e  error detection is  
performed at h a rdll'are speeds d irectlv ti·om user 
spJcc. This has been measured at l ess than 5 j..LS .  

The t() J iowi ng seq uence can be used to gu ar:�ntcc 
detection ofi nten ening errors b�· the transm itter : 

1 .  Sa,·c the error cou nt.  

2 .  Write the message. 

3 .  Check the error count ( using imc_c kerrcn t ) .  

I f  t h e  tr<lnsmi ttcr writes t h e  saved error cou n t  �l t the 
end of the message, the message receiver c:u1 deter
m i ne if any i ntervening errors have occu rred by s imply 
comparing the error co u n t  i n  t h e  mcSS<lgc wi th the 
cu rrent V:J iuc us ing imc_rd errcl lt .  This is possible 
beuuse of the sequencing guaran tees bui l t  in to the 
M E M O RY CHA N N E L  net\vork. Using imc_rd c rrcnt 
and imc_ckerrcnt, the programmer can build an appro
pri:�tc error detection and/or recovery scheme that 
meers the pertormance requirements of the appl ication. 
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Performance 

The performance ofTruCtus te r  M EM O RY C H I\N ::--J EL 

Soft\\-�11-c on a pair o f  AlphaSc n e r  4 1 0 0 5/300 
n1 �1c h i nes i s  prese nted in Tab l e 2. These meas u reme nts  
\\'CIT made us ing 1·crs ion 1 . 5 1\Jl EMO I�Y C : H A 0l :\ EL 
atbptc rs .  The lmKill' idth ( 64 M H/s ) <lnd Lnc ncy 
( 2 .9 IJ.S ) achi cl'cd us ing this system :�rc essen ti a l ly that 
of the h <1 rd ware ,  since no system Ol'crhc:�d is invo lved . 

The t imes req u i red to pcrronn the error-c heck i ng 
fu nctions i n d i cate that the ovcrh e<1d of c:� l l i ng 
imc_rd c rrcnt is  much less than that of i m c_ckcrrcnt . 
This is because the l atter has to synchro n i 7.c with <1 1 1  
other mem bers o f  the duster. Protocols t int re ly  o n  
J-ccci1·cr-onh- error detection ( us i ng i mc_rderrc m ) II' i l l  
t l 1u·d()rc h :ll'c �1 l oll 'cr m·crhud . 

Programming with TruC/uster 

MEMORY CHANNEL Software 

'T'he M EM O RY C H A:'\1 ::--J E L  netll'ork 1111poscs some 
u n ique restrictions on the progra mmer. Si nce the nct
wol'ic req u i res sepa rate transmit ;l !1d rcce i1·c regions, 
any read-write memory location that i s  to he visible 
clustcrwidc m u st have two addresses: a read :-td d rcss 
:l !1d :1 write addJ·css. At tempts to rc:-td ti·om a write 
address tvpical lv  cau se a segme ntation l'io l ,nion . 

M E M O RY CHI\:\.'! I::L address space em be used l ike 
shared mcmoi'I'. U n l i ke sh�1rcd mc morv, though , its 
1�1te11c1' is 1 · isib lc  to the progra mmer, "·ho must consider 
hrcnc1· e i'l\:cts ll'hcn \\Ti ring to �l dustcrll'ide l ocati on . 

As <1 1 1  o ;1 mp le  of pwgra lllming "·i rh TruCi u stcr 
,\ [ 1-.Vl O I\Y C Ht\.'! .N E L  Sofu1·aiT, f igu re 6 s hows a 
s imp le  program that i mpk mcnts a g l o h<1 1 cou n ter, 
pcrf( mns some II'Ork, and then decreme n ts the glo b�1 t  
counter and e x i ts .  For the pu rposes of· this CX<1 m p l c ,  
:�ss umc t h :-t t  m u lt i p le co pi es o f  t h e  pmgL1m arc r u n  
conui iTent l y o n  d i fkrcn t mac h i nes i n  a c l u ster. S u c h  
oper�nion req u ires sync h roni zation t o  cnsurr S�ltC 
<Kcess to s hared data i n  M EMORY C H AN N E l .  sp•KC.  
The c x�1m pl c pmgram fi rst �1l l oc.ues M L tvl O RY 
C : H A :\ :\ 1-. l .  regions tor transmission �1 nd rece ption � m d  
:�naches them ro pmccss \ · irrual  �1ddresses. l\ c \ t ,  :1 

set ofspin locks is created ( un less it ,, Jrc,1th· oisrs ) .  The 
tirsr e<>J)I' of the progr�1m to crc.He rhc sp i n loc k set 
acq u i 1·cs the fi rst lock i n  the set a nd i n i ri .1 ! i .-:es the 
gl ob a l regi on,  wh ere upo n i t  re leases the s pi n l ock and 
cominucs.  Al l orber copi es of the p rogLun ll'a i t  in 
imc_l lucq u i rc u n ti l  the s pi n l oc k. i s  re l eased hy rhe tirst 

Ta ble 2 
Tru C l uster M E M O RY C H AN N E L  Software Performa nce 

Su sta ined b a n dwidth 

Latency 

Read error cou nt ( i mc_rd errcnt) 

Check error count ( i m c_c kerrcnt) 

64 M B/s 

2 .9  f.l.S 
< 1  f.l.S 
< 5  f.l.S 
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copv. Each copl' in  rum �Kq u i rcs the lock itse l f� in crc
JJ1Cnts the process cou ntn, and re leases the loc k . The 
copi es then pcr t(mn some "·ork in pa ral lel . vVh cn each 
progr:�m h <1S ti nished its ponion of rhc work, i t  decre 
ments the gloh:-� 1  process co u nte r ( using the spi n lock 
ro comml �Kccss <1 ga in ) .  F i n a l ! \·, the spin lock set and 
shared reg ions : �rc d ea l locned .  Sever:� I C\J111pks of 
code i l l ustra ting these topics are conta ined  in th e 
TmC/uster .1· 11: 1 /0Nl Cl ll1NNI'I, Sojiwa re Proiva n t n w r ·s 

Mall lwl. ' '' We h<11'e r<.> L i nd th:� r  i mp l ement ing a s i m p l e  
message - pass i ng laver o n  top of TruCiusrer I'd EM O RY 

C H A N 0l i-" J ,  So trw�1 1"C is a more dkctive sol u tion th�m 
progra m m i ng d i rcctll' 11 ith 1vl F. MORY C H A N \! E L  

regions, a s  de'>cribed i n  the n c \ t  section. 
Sc1-cr:d k�nu res dcsni bed abol'c ll'ere not i 11  i ti a l l\· 

present in the TruCl usrcr M EJVl O RY C H A l\ � E l .  

Sofu\ ·arc prod uct .  As <1 resu l t  o f  o u r  c :-.:pc rie ncc i m p le 
ment ing U M L' and the h i gher PVM and M PI l al'crs , 

we added the t( >J i owing karu rcs :  

• I ni t i al coheren cy 

• Command rel ay 

• C l uster s ig1uls 

• User- l eve l error checking 

Universal Message Passing 

The Un i1us:Ii Mess�1ge Passing ( LIMP)  l i br<lr\' is 
designed to prm · ide <\ f(n i mbtion for i m p l e menting 
ettic i cnt mess:�gc-p�1ss ing s1·srcms on the ,\! E M O RY 

CHA;'\1 :--.; E L  n ct ln>rk . fro m the outse t, \\'C 11 ·c re Jll':-trc 
th at there \\'o u l d be �1 demand for PVM and M P I 
i m p lementations �1 nd that other implcmenr:�tions 
might r() l l ow. We td t that it II'Ol l id  be eas i e r  to con
struct hi gh - pcrf( >rmancc mcss�\gc -pass ing systems if 
we p rovi ded J thin l�1ycr th�n could  efficien tly I J �md lc 
the restric t ions that the M E M O RY CHA::--J.NEL net
wor k  i m poses. 

The gm ts in deve lop i ng U M P  \\'e re to 

• S i m [1 l i� · the con struction of m cssagc -p:�ss ing s\·s
tcms ut i l i /. ing the l'd l . .  \l O RY C : H A\: :\I E L  nct11 ork 
bv h i d i ng the dct<1 i l s of rhc u n d erh· i ng com m u 
n ic:-ttions rr:�nsport ( i n it i <l l i l', shared mcmon· or 
MElvlORY CHANNEl. ) .  

• Opt im i /.c pc d(mn�1 ncc <1 n d  C X [1 lo it  the low hrc ncy 
of the M r,M 0 R Y CH A :--..! N U, nctii'Ork; the in  i ria I 
goal t(>r 1 :-ttc ncy over the M EM O RY C H A N N f":t_ net

work us i ng PVM was to achieve less than 30 IJ.S. 

• Ease the deve lopment of p�1r�1 l td mcssage- p:-tss ing 
l i braries lw prol ' i d ing �1 s imple  set of mcss:�gc
passing fu nc tions . 

• Pcrf(m1l on lv basic com m u n ications;  •1 111' more 
com p ln 0[1CI':-ttions ( e . g . ,  pmccss control ) ll'o u l d  
b e  pcrr()rmcd h1· a higher b\'C I'. 

• Act as a C O l l i  ngcncc cen ter fc >r p ossi b le fu ture 
i ntcrcon nccrs. 



e x t e r n  L o n g  a s m ( c o n s t  c h a r  * 
# p r a g m a  i n t r i n s i c ( a s m )  
# d e f i n e m b ( )  a s m ( " m b " ) 

. . .  ) ; 

# i n c l u d e  < s y s l t y p e s . h > 
# i n c l u d e  < s y s l i m c . h > 

rn a  i n  < ) 
{ 

} 

i n t s t a t u s ,  i ,  L o c k s = 4 ,  t e m p ,  e r r o r s ;  
i m c _a s i d_ t  r e g i o n_ i d ;  
i m c _ L k i d  t L o c k_ i d ;  
t y p e d e f  s t r u c t  { 

v o l a t i l e i n t p r o c e s s e s ;  
v o l a t i l e  i n t p a t t e r n [ 2 0 4 7 J ;  
s h a r e d_ r e g i o n ;  

I *  M C  r e g i o n I D  * I  
I *  M C  s p i n l o c k s e t  I D  * I  

I *  S h a r e d  d a t a  s t r u c t u r e  * I  

s h a r e d_ r e g i o n * r e g i o n _ r e a d ,  * r e g i o n_w r i t e ;  
c a d d r_ t  r e a d_p t r  = 0 ,  w r i t e_p t r  = 0 ;  

I *  A l l o c a t e  a r e g i o n o f  c o h e r e n t  M C  a d d r e s s  s p a c e  a n d a t t a c h t o  * I  
I *  p r o c e s s  V A  * I  
i m c _ a s a l l o c ( 1 2 3 ,  8 1 9 2 ,  I M C _U R W ,  I M C _ C O H E R E N T , & r e g i o n_ i d ) ;  
i m c _a s a t t a c h ( r e g i o n _ i d ,  I M C _T R A N S M I T ,  I M C _ S H A R E D ,  I M C _ L O O P B A C K ,  & w r i t e_ p t r ) ;  
i m c _a s a t t a c h ( r e g i o n _ i d ,  I M C _ R E C E I V E ,  I M C_ S H A R E D ,  0 ,  & r e a d_p t r ) ;  

r e g i o n_ r e a d  = ( s h a r e d_ r e g i o n * ) w r i t e_ p t r ;  
r e g i o n_w r i t e  = ( s h a r e d_ r e g i o n * ) r e a d_ p t r ;  

I *  A l l o c a t e  a s e t  o f  s p i n l o c k s  a n d  a t o m i c a l l y a c q u i r e t h e f i r s t  L o c k  * I  
s t a t u s  = i m c _ L k a l l o c ( 4 5 6 ,  & l o c k s ,  I M C _ L K U ,  I M C _ C R E A T O R ,  & l o c k_ i d ) ;  
e r r o r s  = i m c r d e r r c n t ( ) ;  
i f  ( s t a t u s  =� I M C  S U C C E S S )  { 

d o  { 
r e g i o n w r i t e - > p r o c e s s e s  = 0 ;  
f o r  ( i �O ; i < 2 0 4 7 ;  i + + )  

r e g i o n_w r i t e - > p a t t e r n [ i ]  = i ;  
i - - ;  
m b  ( ) ;  

I *  I n i t i a l i z e t h e  g l o b a l r e g i o n * I  

} w h i l e ( i m c  c k e r r c n t ( & e r r o r s )  I I r e g i o n_ r e a d - > p a t t e r n [ i J  ! =  i )  
i m c _ l k r e l e a s eC l o c k_ i d ,  0 ) ;  

} e l s e i f  ( s t a t u s  = =  I M C  E X I S T S )  { 
i m c _ l k a l l o c < 4 5 6 ,  & l o c ks , I M C _ L K U ,  0 ,  & l o c k_ i d ) ;  
i m c _ l k a c q u i r e ( l o c k_ i d ,  0 ,  0 ,  I M C _ L O C K W A I T ) ; 
t e m p = r e g i o n_ r e a d - > p r o c e s s e s  + 1 ;  I *  I n c r e m e n t  t h e  p r o c e s s  c o u n t e r  * I  
e r r o r s  = i m c _ r d e r r c n t ( ) ;  
d o  { 

r e g i o n_w r i t e - > p r o c e s s e s  = t e m p ;  
m b  < ) ;  

} w h i l e  ( i m c c k e r r c n t < & e r r o r s )  I I r e g i o n_ r e a d - > p r o c e s s e s  1 =  t e m p ) 
i m c _ l k r e l e a s e ( l o c k_ i d ,  0 ) ;  

} 

( B o d y  o f  p r o g r a m  g o e s  h e r e )  

I *  c l e a n  u p  * I  
i m c _ l k a c q u i r e ( L o c k_ i d ,  0 ,  0 ,  I M C _ L O C K W A I T ) ;  
t e m p  = r e g i o n_ r e a d - > p r o c e s s e s  - 1 ;  I *  D e c r e m e n t  t h e  p r o c e s s  c o u n t e r  * I  
e r r o r s  = i m c _ r d e r r c n t ( ) ;  
d o  { 

r e g i o n_w r i t e - > p r o c e s s e s  = t e m p ;  
m b ( ) ; 

} w h i l e  ( i m c c k e r r c n t < & e r r o r s )  I I r e g i o n_ r e a d - > p r o c e s s e s  ! =  t e m p ) 

i m c _ L k r e l e a s e ( l o c k_ i d ,  0 ) ;  
i m c _ L k d e a l l o c ( l o c k_ i d ) ;  
i m c _ a s d e t a c h ( r e g i o n _ i d ) ;  
i m c _a s d e a l l o c ( r e g i o n _ i d ) ;  

I *  D e a l l o c a t e  s p i n l o c k  s e t  * I  
I *  D e t a c h  s h a r e d  r e g i o n * I  

I *  D e a l l o c a t e  M C  a d d r e s s  s p a c e  * I  

Figure 6 
Programming wirh Tru Ciusrer 1'vl E M O RY CHANNEL Software 
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These gu�1 l s  p laced some i m porta n t  constraints on 
the architecture o f  UMP, parricu larl �' with regard to 
pcrt(>rmance . This meant that design d ecisions had 
to be constantly eval uated i n  terms of their pcrt<>rmance 
impact. The i n itial design decision was to use a dedi
cated point - to-point circular butter between ever)' pair  
of processes. These bu f1ers use prod u cer and consumer 
i n dexes to control the readi n g  and writing o f  bufter 
contents .  The indexes can be moditied only by the 
consumer and produ cer tasks and a l low fll l ly lockless 
operation of the b u ffers. Removing l ock requ i rements  
e l imi nates not o n l y  the so ftware costs associated with 
lock manipu l ation (in the i nitial implementation of 
TruCiuster Jv! EMORY CHANNEL Software, acquir ing 
and releasi ng an u n con tested spin lock takes approxi
mately 1 30 f.LS and 1 2 0 f.LS, respecti,-e l v )  but a lso the 
i m pact on processor pertormance associated with 
Load - locked/Store-conditional i nstruction sequences. 

Although this butlering style e l imi nates lock manip
u lation costs, it resu lts i n  an exponential demand tor 
storage and can l imit  sca labi lity. If there arc N processes 
com m u n icating using this m ethod , that impl ies N2 
b u fkrs are req uired for fil i i  mesh com m u nicatio n .  
M EM ORY CHAN NE L add ress space is a relatively 
scarce resource that n eeds to be carefu l lv h usbanded . 
To manage the demand on cl uster resources as t3ir ly  as 
possibk, we decided to do the t(>l lowi ng: 

• Al locate bu ftc rs sparsely, i . e . ,  as req u i red u p  to 
some dcbu l t  l imit .  F u l l  N2 al location wou ld sti l l  be 
possib le  if the user increased the n u m  bcr of bu fkrs. 

• Make the size of the bu tlers contigurJb le .  

• Usc lock-contro l led s ingle-writer, m u lt ipl e - reader 
b u ffers to hand lc both the overflow trom the JV2 
bufkr and bst m u l ticast. One of these b u fk rs, 
cal led outbufs,  wou ld be assigned to each process 
using U M P  u pon i n i tia l ization. 

Note that w h i l e  the channel  buffers are logically 
point - to-point, they may be implemen ted physica l ly as 
e ither point-to - point or broadcast. For example,  i n  the 
first \'ersion o f  U M P, we used broadcast M E M O RY 

CHANNEL mappi ngs fc>r the sake of s implicity. We <ltT 

c ur rent!\' modin'ing U M P  to use point-to-point 
M EMORY C: H A � N E L  mappings,  both to increase 
avai l a b l e  bandwidth and to exploit  a switc hed 
M E M O RY CHANNEL network. 

Figure 7 shows SC\'Cra l tasks com m u n icati ng i n  
a c l uster a n d  i l lustrates how the two types o f  U M I) 

bu ffers arc used . Task l a n d  task 2 arc executing 
on node l ,  wh i le  task 3 i s  cxecu ring on node 2. In the 
diagram, the channel butlers are l ocated under the t:lsk 
in  whose ,·irtual add ress space they reside to ind icate 
visual ly that thcv reside in the virtual  address Sp<lCC of 
the dcsti nJtion task. In the figure, task l comnHmicatcs 

, - - - - - - - - - - - - - - - - - - - - - - - - - - ,  , - - - - - - - - - - - - - - - ,  

Figure 7 
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with task 2 usi ng U M P  channel bu ffers i n  shared mem
ory, shown as l ->2 and 2--> l .  Task l and task 3 com
municate using UMP channel buffers i n  ME1viORY 

CHANNEL space, shown as l --> 3 and 3--> l .  Task 3 is 
read ing a message from task 1 using an outbuf. The 
outbuf can be written only by task 1 but is mapped for 
transmission to al l  other c luster members. On node 2 ,  
the same region i s  mapped for reception. Access to 
each outbuf is controlled by a u n ique cluster spinlock.  

Our rationale for taking this  approach i s  that a short 
software path is more appropriate for small  messages 
because overhead dominates message transfer time, 
whereas the overhead of lock manipulation is a small  
component of message transfer time for large mes
sages. We fe lt that this approach he lped to control the 
use of cluster resources and mainta ined the lowest pos
sible latency tor short messages yet sti l l  accommodated 
large messages. Note that outbuts are sti l l  ti.xed-size 
buffers but are generally configured to be much larger 
than the N2 buffers. 

This approach worked for PVM because its message 
transfer semantics m a ke it  acceptable to fai l  a mes
sage send req uest due to buffer space restrictions 
(e .g . ,  i f  both the N2 buffer and tbe outbuf are fu l l ) . 
When we analyzed the requirements tor M PI,  how
ever, we fou nd that this approach was not possible . For 
this reason, we changed the design to use only the N2 
buffers. I nstead of writ ing the message as a s ingle 
operation, the message is streamed through the buffer 
i n  a series of fragments. Not only does this approach 
su pport arbitrarily large messages, but it also improves 
message bandwidth by al lowing ( a n d ,  for messages 
exceeding the avai lable bufter capacity, requ i ri n g )  the 
overlapped writing and read ing of the message. 
Deadl ock is avoided by using a background thread 
to write the message. S ince over flow is now h andled 
using the streaming N2 buffers, outbufs were not nec
essary to achieve the required level of performance for 
large messages and were not implemented.  Outbufs 
are retained in the design to provide fast multicast 
messaging, even though in the current implementa
tion they are not yet supported . 

Achieving the performance goals set tor U M P  was 
not easv. I n  add ition to the b u tler architectu re 
described earlier, several other techniques were used. 

• No syscalls were al lowed anywhere in the U M P  
messagin g  fu nctions, so U M P runs completely i n  
user space. 

• Calls to li brary routines and any expensive arith 
metic operations were min imized . 

• Global state was cached in .local m emory w herever 
possi ble. 

• Carefu l  attention was paid to data alignment issues, 
and all transfers are multiples of 32-bit data. 

At the programmer's level, U M P  operation is based 
on d uplex poi n t -to-point l in ks cal led channels,  which 
correspond to the N2 buffers a lready descri bed . 
A channel is a pair of unidirectional bu ffers used to 
provide two-way commu nication between a pair of 
process endpoints a nywhere in the c luster. U M P  pro
vides functions to open a channel between a pair of 
tasks. While the resources are al located by the first task 
to open the channel ,  the con nection is  not complete 
until the second task also opens the same channel .  
Once a channel h as been opened by both sides, UMP 
functions can  be  used to send and receive messages on 
that channel . It  is  possible to  d irect UMP to use  shared 
memory or M E M O RY CHANN EL address space for 
the channel buffers ,  depending on the relative location 
ofthe associated processes. In add ition, U M P  provides 
a fu nction to wait on any event (e .g . ,  arrival of a mes
sage, creation or deletion of a channe l ) .  In tota l ,  U M P  
provides a dozen fu nctions, which are l isted i n  Table 3 .  
Most o f  t h e  functions relate t o  i nitial i zation , shut
down, and miscel laneous operations. Three fu nctions 
establish the channel connection, and three fu nctions 
pertorm al l  m essage communications. 

UMP chan nels provide guaranteed error detection 
but  not recovery. Through the use of TruC!uster 
MEMORY CHANNEL Software error-checking rou
ti nes, we were able to provide efficient error detection 
i n  U M P .  We decided to let the higher layers implement 
error recovery. As a result, designers of h igher layers can 
control the performance penalty they i ncur by specifY
ing their ovvn error recovery mechanisms, or, since 
rel iabi l ity is high ,  can adapt a fai l-on-error strategy. 

Performance 

U MP avoids any calls to the kernel and any copying of 
d ata across the kernel bou ndary. Messages are written 
directly i nto the reception buffer of the destination 
channel .  Data is copied once from the user's buffer 
to p hysical memory on the destination node by the 
sending process. The receiving process then copies the 
data from local physical m emory to the destination 
user's butle r. By comparison, the n u m be r  of copies 
involved in a similar operation over a LAN using sock
ets is greater. In this case, the data has to be copied 
into the kernel ,  where the network d river uses DMA to 
copy it again into the memory of the network adapter. 
At this point t he data is transmitted onto the LAN. 

The first version of U M P  used one large shared 
region of M EM O RY CHANNEL space to conta in  its 
channel buffers and a broadcast mapping to transmit 
this s imu ltaneously to a l l  nodes i n  the cluster. This 
version ofUMP a lso used loopback to reflect transmis
sions back to the corresponding receive region on the 
sending node, which resulted i n  a Joss of avai lable 
bandwidth . Usi ng our AI phaSe rver 2 100 4/190 

development machines, we measured 
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Table 3 
U M P  API  F u nctions 

Function 
Name Description 

u m p_i n it 

u m p_exit 

u m p_open 

I n it ia l izes U M P  a nd a l locates the necessary resou rces . 

S h uts down U M P  and deal  locates any resources used by the ca l l i ng process. 

O pens a d u plex channe l  between two endpoints over a g iven transport (shared memory or 
M E MORY CHAN N E L) .  Channe l  endpoints are id entif ied by user-suppl ied, 64-bit i nteger hand les. 

u m p_close 

u m p_l isten 

Closes a specified U M P  channe l, deal locat i n g  a l l  resources ass igned to that channel  as necessa ry. 

Reg isters a n  endpoint for a channel  over a specified transport. This  can be used by a server process 
to wait on conn ections from c l ients with u n k nown hand les. This  fu nction returns i m m ed iately, 
but the channel  is created o n ly when a nother task opens the channe l .  This can be detected us ing 
u m p_wa it .  

u m p_wa it Wa its for a U M P  event to occur, either on one specified channe l  to th is  task or on a l l  channe ls 
to th is  task. 

Reads a message from a specified channe l .  u m p_read 

u m p_write Writes a message to a specified channe l .  Th is  function i s  block ing,  i .e . ,  it  does not retu rn unt i l  
the comp lete message has been written to the channe l .  

u m p_n bread Starts rea d i ng a messa ge from a channe l, i .e., it returns as soon as a specified amount of the 
message has been received, but not necessar i ly  all the message.  

u m p_n bwrite Starts writ i n g  a messa ge to a specified channel, i . e ., it  returns as soon as the write has sta rted .  
A background thread wi l l  cont inue writ i n g  the message unt i l  it  i s  com pletely transm itted.  

u m p_mcast 

u m p_i nfo 

Writes a messag e  to a specified l i st of channels .  

Returns UMP configuration a n d  status i nformation.  

• Lncncv : 1 1  f.LS ( M E i'v! O RY C H A N N E L ) ,  4 JJ.S 
( sh;1rcd rncmorv) 

• Bandwidt h : 1 6  M B/s ( M E M O RY C H A N N EL),  
30 ;VI B/s ( sha red m emory ) 

To i ncrease bandwidt h ,  we mod i �icd U 1\'I P to usc 
transmit-only regions fur i ts challnel b u tlers, th us 
e l i m i m.ti ng J oopback .  The per�(>rma ncc mosun.:d for 
the revised U MP usin g the same machi nes was 

• Lltcncy: 9 f.LS (MEM ORY C H A N N E L ) ,  3 f.LS 
(shared memory) 

• Bandwid th :  23 M B/s ( M EM O RY C H A N N E L) ,  
3 2  M B/s (shared mernon· ) 

figu re 8 sho\\'s the message tr:111s�cr time ;1nd F igu re 
9 sho\\'S the bandwidth �(x various mcss�1gc sizes �(lr  the 
ITI' iscd 1·crsion of U M P  us i ng both b l oc ki ng ;l lld non
b l ock ing writes m·cr shared memorv and the M EM O RY 

C H A N N E L  network. Usi n g newer Alp haSc nn 4 1 00 
5/300 mach i nes , which have a Elster [/0 su bsystem 
th� 111 the older machi nes, and version 1 . 5 /vi E!VlORY 

C HA N N E L  ad apters, the mc�1su rcd latency is 5 . 8  f.LS 
( M EM O RY CH A N N EL ) ,  2 f.LS (shared memo ry ) . The 
pc;l k  bandwidth achieved i s  6 1  M B/s ( M E M O RY 
C H A N N E L ) ,  75 M B/s ( shared memory ) . I n  the non
b lock ing cases, the bu ffer s ize used 11·:-�s 256 ki lobvtcs 
( KB )  �(lr sh �1rcd memon· and 32 KB �(lr M EM O RY 
C :H A N N  E L. Further work is u nder 11·a1' to im prm·c the 
pcr�(Jml;l llce us i ng shared memorv �1s the trans port . 
This work is <l i med at e l i m i nating the h igh -md tJ I I o�fi n 
ba ndwid th in the blocki ng case and the notch when the 
mess:-�gc size exceeds the bu t'tcr size in the non h l oc ki ng 
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case. Note that these dkcts arc not d isp l avcd i n  th e 
M EM O RY C H A N N E L  resu l ts .  

Message-passing Libraries 

Messagc -p:-�ss i ng l i braries pro,·ide the progra m m e r  
with a s e t  of flc i l i t ics to bu i ld par<l l leJ appl ications.  
Typical ly, these services inc l ude the ab i l ity to send and 
rece ive a var iety of d :-� t:-� types to and from other peer 
processes i tl ;1 v�1 riety of modes, as wd l as collective 
operations that span :-� set of peer processes. Other 
fac i l ities 111�1y be provided i n  add ition to the bas ic set, 
e . g . ,  PVM p mvides fu nctions t()r managing PVM 

processes ( spawning, k i l l ing, s ign�1 l ing,  etc . ) ,  whereas 
M PI ( at least in  i ts first rc1 ision , M P I  - 1 )  docs not. PY1'vl 
is probabh· the most 11· idch- used message - p ;lss i n g  S\'S
te m .  It h Js been �1\'a i b blc �(lr approx im Jte lv �i1-c I ' C l i'S , 
and imp le mentat ions �1rc �ll'a i lab lc  t( Jr a "'ide ,-aricty of 
pbtturms.  M l' l is an emerging stand ard �(n message 
passi ng t h J t  is growi ng ,-;lp id ly i n pop u l ari ty ; mam' 
new app l icJt io ns arc be i ng wri tten t(Jr i t .  

Parallel Virtual Machine 

Para l le l  V i rtua l  Mac h i ne ( PVM ) is supported on a 

wide varict\' of p l at�( mns , i nc l ud i ng su percompu ters 
and net\vorks of wo rkstations ( N OWs ) .  PVM uses 

<1 1 ·ariety of u ndcr lv ing comm u n ications methods: 
shared memorv on m u l tiprocessors, ,-arious nati1·c 
message - passi ng systems on massi1-c lv para l le l proces
sors ( M P Ps ) ,  and U D l'/ l P  or TC P/l P on N O'vVs . The 
large sofu,·;lrc m-crhc:-�d i n  the ! P  stacks makes i t  d ifti 
c u l t  to prm ide h igh- Jlc rt(mnancc communications �{n· 
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PVM when using net\\'Orks l ike Ethernet or  fDDJ .  
T h e  high cost of commun ications f()r these systems 
means that only the more co:�rse -grai ned para l le l  appli
cations h:�ve de monstrJted pert(mnancc im pro,·c ments 
as a res u l t  of para l k l i zation using PVM . Using the 
M EMORY C H A N N E L  cl uster techno logy descri bed 
earl ier, we have i m p le mented :m opt imized PVM that 
otters l o\1' l atencv :�nd high -h :.llldwidth comnHi l1ic:�
rions.  The PVM l ibrarv and daemon use UM I' ro pro
vide se:�mless com mu nications over the M E MORY 

CHANN E L  c l uster. 

\iVhen we began to devel op PVM ror M EM O RY 

C HA N 1  EL c lusters , \\'e had one overrid ing goal :  to usc 
the hardw;u-c pe rtormance the M EM O RY C : H A N N F L  

i ntercon nect ofters t o  prm·ide a PVM with ind ustry
leading commun icuions pertormancc, spec i tica l lv with 
regard to btcncy. I ni tial lv, we set a target btency t(n 
PVM of l ess than 1 5  f..lS using shared mc morv �md less 
tha n  30 f..lS usi ng the M EMORY C H AN NEL tr:msport. 

Our ti rst task was to bu i ld ;\ prototype usi ng the 
publ ic-domain PVM implementati o n .  We used an 
earlv prototYpe of the M E M O RY CHANNEL svstcm 
jointlv  dc\ 'e loped by Digital  and E ncore . The proto
type had a h a rdware latency of4 f..lS .  We mod i tied the 
shared- memory version of PVM to usc the prototype 
hard\\'are and achieved a PVM l :ltencv of 60 f..lS .  
Proti l ing and straigh ttcx\\'ard code Jn:l l\'sis I-c\·ealed 
that most of the overhead was caused by 

• PVM's support t<x heterogeneity ( i . e . ,  external data 
reprcscnt;uion [ XDR )  encod ing ) 

• Messages being copied m ultiple times i ns ide PVM 

• A l 01rgc number ofttlllction ca l l s  in  the c ri tic1 l com
mun ications path 

• Inefficient coding of rhc lo\\'-b·el cbta copv routines 

S ince we wanted to achic,·e the max i m u m  possib le 
performance avai lable ti-om rhe hardware, we decided 
to rei mp lemcnt the PVM l i brary, el i m i nating support 
tor hete roge neit y ti·om the commun ications fu nctions 
of PVM :m d t(xus ing on ma xi m u m  pertc >rmance 
inside a Digit:�! c l u ster.'" Heteroge ne ity would then be 
supported by using a special  PVM gateW<\Y process. 

The m·era l l  :�rch i tecture of the Di gi ta l PVM imple
men tation is  sho\\'n in  F igure 10 .  To maximize per
tornl<\ llCC, we decided that, wherever possible, an 
operation shou ld be e xecu ted i n - l ine  rather than be 
requested ti·om a remote task or dacmon . This con
trasts \\'ith PVM's trad itiona l  approach of rc l a�· ing such 
req uests to the PVM daemon tor service. For example,  
when a PVM task starts, often i t  tirsr ca l ls  pvm_myt id to 
request a un ique task idc ntiticr (TJ  D ) .  Prc,·ious ly, this 
\\'Ould have i nvoh·ed se nding a message to a PVM dae
mon, which would then a l locate :1 T I D  to the process 
and retu rn another message. In our d esign , we could 
usc global data structun:s in M EM O RY C H A N N E L  

space ( e . g . ,  t h e  J ist o f  a l l  PVM t:tsks and :�ssociatcd 
data ) .  No,,·, tc>r exa mp le , �w m_myrid s imply i 1 l \'olvcs 
acquiring a c l uster lock on a global ta ble,  ge tti ng tbc 
new TI D , and rele asi ng the lock-al l  execu ted in - l ine 
l)l' the ca l l ing process r:tther tb:111 a d :temon.  Executing 
PVM sen ·iccs i n - l i n e  with the re q ucsting process 
i ncreases multiprocess ing capabi l i ty and e l i m i nates 
daemon bottlenecks and associated delays. 

We rc implcmenred the PVM l i br:� ry with the empha
sis on pcrt<>rmance rather than hetcrogeneit\', :�!though 
we plan to eventua l l y  :� l low i nteropc r:�tion with het
eroge neous implementations of PVM using a spec ial 
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KEY: 

A A PVM application on host t performs local control functions using U N I X  signals. 

B A PVM application on host 1 commun1cates w1th another PVM task on the same host using 
UMP (via shared memory). 

C A PVM application on host t communicates with another PVM task on a different host in the 
cluster (host 2) using U M P  (via MEMORY CHANNEL). 

D A PVM application on host 1 requires a control function (e.g.,  a signal) to be executed on 
another host in the cluster (host 3 ); i t  sends a request to a PVM daemon on host 3. 

E The PVM daemon on host 3 executes the control function. 

F A PVM application on host t sends a message to a PVM task on a host outside the MEMORY CHANNEL 
cluster; the message is routed to the PVM gateway task on host 3. 

G The PVM gateway translates the cluster message into a form compatible with the external PVM 
implementation and forwards the message to the external task via IP sockets. 

Fig u re 1 0  
Digital PVM Architecture 

gateway daemon. The PVM API li brary is a complete 
rewrite of the standard PVM ,·ersion 3 . 3  API, \\'ith 
which ful l  functional  compatibi l ity is maintained . 
Emph asis has been p laced on optimizi ng the pcd()r· 
mancc of the most frequently used code paths .  In  
add ition, a l l  d ata structures and dat:� transters h ;wc 
been opt imized for the Alpha architecture .  As stated 
earlier, the amount of message passing between tasks 
and the local daemon has been minimi;.ed by pcrt(mn·  
ing most operations in - l i ne and communicating \\'ith 
the daemon only \\'hen abso l ute ly  necessary. !mer· 
mediate bufkrs are used for copying data between the 
user bufrcrs. This is necessary because ofthe semantics 
of PVM, which a l low operations on buffer contents 
bd()re and at-i:cr a message has beetJ sent. The one 
exception to this i s  pvm_pscnd; in this case, data is 
copied d i rectly since the user is not a l l owed to modi�' 
the send buffer. 

The purpose of om PVM daemon is d i fkrem ri·om 
that of the daemon in tbc standard PVM package . Our 
daemon is  designed to re lay com mands between d i f
tl:rent nodes in the PVM cluster. It exists solely ro 
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perf(mn remote execution of those com m:mds that 
cannot be performed i n - l ine bv UNIX ca l l s in the PVM 
AP I  l i brary or by d i rect ly manipulat ing global data 
structures. Commands to be executed on a remote 
node �1rc sent to the daemon on that node, which then 
executes the command directlv. Note that this 
remm·es a l e,·c] of ind i rection that exists in st :mdard 
PVM. Daemon-to-daemon communications a rc mini
mized . S ince there is no master daemon, the PVM 
cluster has no single point  of bi l ure. All daemons arc 
eq ua l . When nor in usc, the daemon s leq)s, being 
awakened as requ i red by a sigt\J I  fi·om the cal l ing task. 
For a local task, UN IX  signals arc used . If the task is on 
another node in the c l uster, then M ElvlORY CHAN N EL 

cl uster signals arc used . As a resu l t ,  the daemon uses 
minimal cluster resources . 

The PVM group or col lective fu nctions operate on 
a group of PVM tasks. For example: pvm_barri�.:r 
svnc hronizes mu l tiple PVM processes; P''m_bcast 
sends a message to all mem bers of a parti cu l a r  group; 
pvm_scattcr d istributes an array to the members of 
a group; pvm_gather reassemb les the arr;1v fi·om the 



comri bu rions of each of the group members, etc. The 
group fu nctions arc i mp le mented sepa rately ti-om the 
other PVM messaging fu nctions. They use a sep:.�rate 
globa l structure (the group tab le ) to manage l'VJ\11 
group data. Access to the group table is contro l led 
by locks. Unl ike other l'VM implementations, there is 
no PVM group server, s ince a l l  group operations c:tn 
man ipu l :ne the group t:�b le direcrlv. 

Performance 

Table 4 compares the com munications latency achieved 
by various PVM implementations. A� the ta ble indi
cates, the Lnency between two m �Kh incs with Digital 
PVM over :1 M E M O RY C H AN N E L.  tr:1nsport is much 
less th:�n the l:1rcncy of the pu blic-domain PVM 
implemelltation over sh ared memor�r, which va l idates 
our approach of removing support r(Jr heterogeneity 
ti-orn the crit ical pert<.mnanee paths . Figure 1 1  sho\\'s 
the message tr:1nstl:r rime and Figure 1 2  shows the 
bandwidth t<x D igita l l'VM over shared memory and 
MEMORY C H A N N E L  transports rC.1r various message 
sizes. Two Alp haServcr 4 100 5/300 machines were 
used t(Jr these mosu remenrs . The peak bandwidth 
reached by Digita l I'VM is about 66 MB/s (sh<l!"ed 
memory) and 43 M B/s ( MEMORY C H A N N E L ) .  
Bv comp:1rison, PVM 3 . 3 . 1 0  ach ieves a band width o f  
24 M B/s (shared memory) and 3 M B/s ( FDDI  LAN ) .  
A \'ersion of PVM developed at Digita l 's Systems 
Research Center (SRC) using a special ly adapted asyn
chronous transfer mode ( ATM )  driver achieved a 
l a tency of app rox ima te lv 60 f.LS and a bandwidth of 
approx imate ly 1 6  M B/s usi ng the A N 2  ATM LAN 2'  
The pert(mnance resu l ts t(>r l 'VM latency over the 
M EM O RY CHAN N E L  transport given in Reterence 6 

were obtained us 1ng an carl in- vers1on of 
Digir:l i  PVM.  Since those resu l ts were measured , 
latency has been hah-ed , mostly due to im provements 
in  U M I' pertcm11<1111.:e . 

Figure 1 3  comp:1rcs the pertorm;lnce of an un mod
itied I'VM appl ication using the p u b l ic -d oma in I'VM 
3 .3 .7  implementation �md Digital PVM version 1 .0 .  
The :1pp l ic at ion is  :1 para l le l  molecular mode l ing pro
gram.  The bar chart shows the e lapsed time for a \'ari
ery of configurations. The applicnion ran t(Jr 220 
seco nds 0 1 1  2 two-processor SM !' mach ines con nected 

Ta ble 4 
PVM Latency Comparison 

PVM Im plementation 

PVM 3 . 3 . 9  

PVM 3.3 .9  

D i g ital  PVM V 1 .0 

Digita l  PV M V 1 .0 

D i g ital  PVM V 1 .0 

D i g ita l  PVM V 1 .0 

D i g ita l  PV M V 1 .0 

Tra nsport 

Sockets F D D I  

Shared Memory 

M E M ORY CHAN N E L  1 .0 

M EM O RY C H A N N E L 1 . 5 

Shared Memory 

S h a red Memory 

Shared Mem ory 

with fDDI .  By re placing H") DI with a MEMORY 
C H A N N E L  network and PVM 3 .3 .7  wi th Digital 
PVM, we were able to speed up performance by a fac
tor of approximate ly  3 .4  for the same number of pro
cessor�: the run rime dropped from 220 seconds to 65 
seconds. For comparison, we also ran the program 
on a tc JLtr-processor SM P; the application completed i n  
64. 5  seconds. This time was just margina l ly faster than 
the M EM O RY CHANNEL configurat ion tor the same 
number of processors, demonstrating that D igiral l'VM 
scales we l l  ti-om SMP to the M EM O RY C H AN EL 
cl uster. Final ly, 2 tc>u r-processor SMP machines con
nected in a two-node M EMORY C H A N N E L  cluster ran 
the program in 3S seconds, demonstrating a speedup 
of 1 .7.  

Message Passing Interface 

Mess:1ge Passing ! mer face ( M PI )  is a message -passing 
standard developed by a large group of industrial and 
acad emic users .  The standard contains a su bstantial 
number of funct ions ( more than 1 2 0 )  and ofkrs the 
same wide range oftacil ities th:lt many earlier message
passing AP!s prO\"ided . In bet, m�my para l le l  app l ica
tions can be written using only six of the fi.metions, but 
a correct implementation m u st prov ide the complete 
set. Argonne National Llboratory ( AN L )  has p ro
d uced a retcrence implementation c1l led M l' I CH." 
This i s  a robust, c lean implenKntation of the comp lete 
MPI - 1  timction set. In addition, i t  has isolated trans
port-specific components behind an abstract device 
inrerf:Kc (ADI ) 2' The abstract device implements the 
commu nications-related ti.mctions and is titrrher lav
ercd on what is cal led the channel device . The public 
domain version comes with channel implementations 
fix a nu mber of interconnects including shared mem
orv, TC:P /IP, :�nd other propriet�1ry interbces. This 
\'ersion <l lso includes a template tc>r bui ld ing :1 channel 
device, cal led the channel i n terbcc H To bui ld :� c han
nel device, the programmer m ust supply tive timcrions: 

1 .  Indicate if a con trol message is a\·a i l able  on a con
tro l c hannel 

2 .  Get a control message ti·om a control channel  

3 .  Send a control message to �' control channel  

Platform latency 

DEC 3000/800 400 tJ..S 
Alpha Server 2 1 00 4/2 33 60 tJ..S 
Alpha Server 2 1 00 4/2 33 1 1  tJ..S 
AlphaServer 4 1 00 5/300 8 tJ..S 
AlphaServer 2 1 00 4/233 5 f.LS 
AI phaServer 41 00 5/300 4 tJ..S 
AlphaServer 8400 5/3 50 3 tJ..S 
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Figure 1 1  
Digita l  PVM Communications Performance: Message 
Transfe1· Time 
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Fig u re 1 2  
Digital PVNI Com m u n.ications Performance: Bandll'idth 

4. Receive data from a data channel 

5. Send data to a data c lunnel 

These fu n ctions can a l l  be i m p l emented using the 
UMP fu nctions u mp_read ,  ump_wri te, and u m p_wait 
described earlier. In addition, hooks arc added to 
rhc chan nel in iti a l ization and s h u tdown code ro cal l  
u m p_i nit  and u mp_exit .  This approach leaves the 
porta ble M PICH API l i brary u nchanged and attempts 
to del iver optim u m  performance. Ml'ICH imp lements  
al l  i rs  operations, point- to-point and collective, on the 
basic point-to-point services that  the ADJ provides. 

Working with the Edinburgh Para l l e l  Computing 
Centre ( EPCC), we produced an early fu nctional  M PI 
prototype by bui lding a channel  device on U M P, as 
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F igure 1 3  
PVM Application Perf(mn;uKc 

shown in Figure l 4a.  This implementation demon
sn-ared la tencies of 1 2 . 5  J.LS ( sha red memon·) and 
29 fLS ( fv1 E M O RY CH AN N EL ) ,  respecta ble  ped(>r
manee for such a q u ick port of Jv! l' I f(>r cl usters. 
Fu rth ermore, since rhis  imple mentation uses U M P, ir 

works transp:�rentl\ '  on sh:�rcd memon· and M F.lv! O RY 
CHAl"JN E L .  AD! channe ls rypicallv sup[)Ort onlv one 
interconnect; m u ltiple A Dis are not vcr supported lw 
M PICH. Unl ike PV1YI , rhc semantics of MPI a l low 
operation without an intennediatc bu tkr, so rl1ar U M I' 

buffers can be used direcrlv. 
To fu rther improve rhc pedornLmcc of M P I  011 

clusters, we e l imi nated the M P I C H  channel del'ice and 
i nterfaced U M P  directly ro the AD l ,  as shown in 
Figure l 4b. The absrr�Kt del'ice i n c urs  some pcrt()r
ma nce pen:t l t\· in its support tor the ch:t n ncl  device . I n  
rhe U M P  i m plementation , t h i s  is u n 11Ccess�1ry as U M I' 
:1lrcady pcrf(mns t h e  h1 11crion of h id ing d etails of thc 
transport m echanism . This implementation demon
sn·ared l atencies of9.5  fLS ( s hared memorv) :t nd 1 6  fLS 
( M EMORY C H ANN E L ) ,  using an Alp!JJ c l uster con 
sisting of rwo Al phaSer \·er 2 1 0 0 4/2 3 3  machi nes 
connected by :1 M EM O RY CHANN E L  network. 

Performance 

Table 5 compares the commu11 ic:tr ions latenc \· 
ach ieved by M P I CH and rhc Digit�d MPI  implementa
tion ,  using an Alpha c lu ster. Resu lts <1rc shown lor both 
AlphaServer 2 1 00 4/ 1 90 :1 11d Alph:�Sen-cr 4 1 00 
5/300 m:�chin cs connected Ll\ '  a .\! E M O RY CHA :---.: � l-: 1 . 

net\vork. h gurc 1 5  shcl\\ s rhc message transrcr time 
and Figure 1 6  s hows rhc lxmdwi dr h  of Digi t<li M P I  
over shared memory a n d  ;VI EMO I!..Y CH AN N E L  
transports t( >r a l'ariery of message sizes. A pair  or· 
Alp haSenu 4 1 00 5/300 machines \\ ere used tor these 
measurements .  Digital JVI I' l  reaches :t peak b:md\\ id rh 
of about 64 M B/s using sh :trcd memory :�nd 6 1  MB/s 
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Figure 1 4  
Digit� I JV! PI  Arch i rccrurc 

using M EM O RY CHAN N EL Bv comparison, the 
unmod i fied lvl PI CH achieves a pok bandwidth of 
24 M B/s using shared memon· and 5 . 5  M B/s usi ng 
TCP/l P mn an � D D I  LAN . 

Figure 1 7  shows the speedup demonstrated by an 
M PI app l ication . The application is the Accelerated 
Strategic Com puting I n i tiative ( ASCI ) benchmark 
S PPM, which soh-es a three- d i mensional g;:�s dynamics 
problem on a u n i tonn Cartesian mcsh s2'' The same 
code \\'JS run u sing both Digit:�! M l' l  and M P I C H  
using TCr / 1  P .  The hardware con ligur:ttion was a two
node MEMORY C : HA:--.J N EL c lustn of AJ phaServer 
8400 5/350 1mchi nes, each with six CPUs.  D i gital  
M PJ used sh:tred memory ;:� nd M EM O RY CHAN N E L  

transports, ll'herus M l' I C H  used the Ethernet LAN 
eonnecring the machi nes. The m�n i m u m  spee d u p  

Ta ble 5 
M P I  Latency Comparison 

MPI Implementation 

M PICH 1 .0 . 1 0  

M P I C H  1 .0 . 1 0  

Dig ita l  M P I  V 1 . 0  

D i g ital  M P I  V 1 .0 

D i g ita l M P I  V 1 .0 

D i g ita l M P I  V 1 .0 

Transport 

Sockets FDDI  

Shared M emory 

M E M O RY CHAN N E L  1 .0 

M E M O RY CHAN N E L  1 . 5 

Shared Memory 

Shared M emory 

obtained usi n g  D i gital M P I ll'as �lpproxi mate ly  7, 
whereas f<>r M P I CH the m�1 x i m u m  speed u p  w�1s 
approxi mately 1 .6 .  

Future Work 

We intend to continue rdi n i ng tlH: compom: n ts 
descri bed in this paper. The major c h �m ge em·isioned 
regard i n g  the TruCi uster M EM O RY C H A N N E L  Soft
ware prod uct is  the add it ion of user-spJ.ce spin locks, 
which should s ign i fi canrlv reduce tl1<.: cost of acq u i ri n g  
a spin lock .  We i n tend to i ncre.1sc t h e  performance 
of UMP lw making more e fficient usc of MEMO RY 
C. H AN N  EL in �, n u m ber of w�l\'s: striping brgc 
messages over mu lt ip le ad�1pters, supporti n g  next
generation adapters, and us ing poi nt- to - poi nt  map
pings with a M E M ORY C H A N N EL swi tch .  In :�d d i 
tion , w e  pl:m to a d d  outbu ts to i ncrease m u l ticast 
m essage- pass ing pcrt(xmancc.  l'VM enhancements 
p.lanned i n c l ude tll<: ad d i tion of the g�HCII'a\' d aemon to 
a l low i nrcroperation ll'ith other PVM impkmenr;,tions 
on external platf(mns. PVM wi l l  also be modi lied to usc 
the U M P  non blocki ng write fac i l i tv t(>r arbitrari ly Llrgc 
messages so that i ts perf(mn�mcc 111:1 tc hcs thar of 
M P I .  Si nce the sc m :J n tics of I'VM t(>rcc the usc of an 
i ntermediate b u fti.:r, perf<mnancc when using shared 
memory wi l l  be i m prm·ed Lw p.1ssi ng pointers to a lock
control l ed b u fkr f()r messages ll'hosc tra nsti.:r time 
wou ld exceed the overhead associ:ltcd with a lock. We 
wi l l  continue to improve M PI pcrt(mnance bv optimiz
ing the U M P  AD! f( >r the tVI l ' l C H  impkmentation .  

Summary 

We have b u i l t  a h igh - pert(mnancc com m u n ications 
i n frastructu re f(>r scicntilic �1pplic:1tions that ut i l izes a 

new network technology to hvpass the sotrll':lrc over
head that l imits the applicabi l i t\' of trad it ional  nct
II'Orks. The pcrt(ll'mance ofrhis s\·stcm has been prm·cn 
to be on a p�1 r ll' i th  that of c urrenr supercomputer tec h
nology and has been ach ie1·ed using commod i tv 
techno logy developed tor D igita l 's commercia l  c l uster 
prod u cts . The paper demons trates the su i tabi l i ty of 
the M EM O RY CHAN:-.JF.l .  rcchnolnt-'Y as a communica
t ions med i u m  h>r sel l able svstem del'clopmcnt .  

Platform Latency 

D E C  3000/800 350 JJ.S 
AlphaServer 2 1 00 4/23 3  30 JJ.S 

Alpha Server 2 1 00 4/2 33 1 6  JJ.S 
A l phaServer 4 1 00 5/300 6.9 JJ.S 
Alpha Server 2 1 00 4/233 9 .5  JJ.S 
Alpha Server 4 1 00 5/300 5.2 JJ.S 
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The Design of User 
Interfaces for Digita l 
Speech Recognition 
Software 

Digital Speech Recognition Software (DSRS) adds 

a new mode of interaction between people and 

computers-speech. DSRS is a command and 

control application integrated with the UNIX 

desktop environment. It accepts user commands 

spoken into a microphone and converts them 

into keystrokes. The project goal for DSRS was 

to provide an easy-to-learn and easy-to-use 

computer-user interface that would be a power

ful productivity tool. Making DSRS simple and 

natu ral to use was a challenging engineering 

problem in user interface design. Also challeng

ing was the development of the part of the 

interface that communicates with the desktop 

and applications. DSRS designers had to solve 

timing-induced problems associated with enter

ing keystrokes into applications at a rate much 

higher than that at which people type. The DSRS 

project clarifies the need to continue the devel

opment of improved speech integration with 

applications as speech recognition and text-to

speech technologies become a standard part of 

the modern des ktop computer. 

I 
Bernal"d A. Rozmovits 

I n  the 1 960s a nd early 1 970s, people control led com· 
purcrs us ing toggle switches, pu nchcd cards, :m d 
punched paper tape . I n  the 1 970s, the common co n 
trol mechanism was the kevboard on  tc lcrvpes a n d  on 
1·ideo te rm i na ls . In the 1 980s, with the adve n t  of 
graphica l  user i n terfaces , people �( nmd th :� t  :� new 
mode of i n terJction with the compu ter w�1s usdi. d .  
T h e  concept o f  a po inte r-the nH >use -n·olved . I ts 
popu larirv grew such that the mouse is now a st:mdard 
compone nt of every modern compu ter. In tlK 1 990s, 
the t ime is righ t to 3dd yet another mode of i n ter
:lction with the compu ter. As compu te pown grows 
each I'C:lr, the bou nd an· ofthe man-n1:1chinc imerhce 
c:�n move ti·om in teraction that is native to the  com 
puter tow;trd commun ication that is !l<Hural to 
humans, thot  is, speech recognition . 

DSRS Product Overview 

Verv simplv, OS RS is �1 n appJ iu tion that  provides 
speech m�Kros. The user speoks J comm:1 n d ,  phrase , or 

sentence ( th:1t  is,  an u tterance),  and DSKS pcrti.>rms 
some ;tctions. The action might be to l aunch an appl i 
cation, f(>r nample ,  i n  response to the com m:�nd 
"bring up calendar"; or to rvpc somethi ng, t(>r c x ::t m 
p lc ,  in  response to " ed i t  to-do l i st," t o  i t11'oke e macs 
\ti lcs\projcctA\tod o . txt .  OS RS not only houses the 
speech macro capab i l i ty but a l so provides a user imer· 
t:Ke, a speec h recogn i tion eng i ne , and in tcrhccs to the 
X Window System . 

Fol lowing is a high - b·c l  description of how the 
sofuvarc fu nctions.  Commands arc spoken i n to :1 

m icrophom: , and the audio is captured :�ncl d ig iti /.cd . 

The ti.rst step i n  the processi ng is the speech �malvsis 
system, which pro\·id es a spectra l rcpn:sent<ltion of the 
characteristics of the time -vJry i ng speech s ign �1 l . Nc:\t 
is the tl:ature - detcction st:�ge. Here,  rhe spccrra l mca
suremcnrs arc corwerted to a set of teaturcs th:H 
descr ibe the broad acoustic properties of the d i tll:ren r 
phone t ic u ni ts . '  These representations of the speech 
signal Jrc then segmemcd and idcn ti tied as phone tic 
seqw:nccs.  The speech recognit ion engi ne accepts 
these phonetic sequences and returns 1\'0rd matches 
and contide nce values t(>r each match .  These <.htJ arc 
used to determine i f  each m :� tc h  is accept;lb le .  If a 
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matc h  is acceptable, DSRS retrieves keystrokes associ 
:ncd with each u tterance, ; :md the keystrokes are then 
sent into the system's keyboard bufkr or to the appro
priate appl ication . For i nstances of continuous speech 
recognit ion, a sentence is  recognized and keystrokes 
are concatenated to represent the u tterance.  for 
cxJmple,  �(>r the u tterance "ti.\'e two times seven three 
tc>ur eq uals ," the keys "52  * 734 =" wou ld be dc l i\'
crcd to the ca l cu l ator application .  

Although th i s  concept seems s imple,  i ts implemen
tation raised sign ificant svstem integr:nion issues and 
d i rcctlv affected the user  i n terface design, which w�1s 
critical

� 
to the prod uct's success. This paper speci tic1 l ly 

addresses the user i nterbcc and i n tegration  issues and 
concludes with a d iscussion of future d i rections t(.>r 
speech recognition products. 

Project Objective 

The objecti\'c of the DS RS project was to provide a 
usefu l  but  l im i ted tool to users of Digital 's Alpha 
workstations running the UNIX operating sysn.:m .  
DS RS wou ld  be  designed a s  a low-cost, speech recog
nition appl ication and wou ld be provided at no cost to 
workstation users for a fin i te period of ri me.  

vVhen the project began in 1 994, a number of com
mand and control speech recogn ition products f( >r 
PCs a l readv nistcd . These progrJms were ai med at 
end users and performed usefu l  tasks "out of the bo:x," 
that is ,  immediately upon start -up .  They al l  carne with 
bu i l t - in  vocabu lary for common applications and gave 
users the abi l itv to add their own \'OGtbulary. 

On U N I X  systems, howc\'er, speech recognition 
prod ucts existed on ly in rhc �orm of programmable 
rccognizcrs ,  such as RRN Hark software . Our  objec
tive was to bui ld a speech recogn i tion prod uct tor the 
U N I X  workst:� tion that h �1d the char:�ctcristics of the 
PC recognizcrs, that is ,  one that wou l d  be functiona l  
i m mediately upon start -up and would al low the non
programmer end user to customize the prod uct's 
vocabulary. 

vVc stud ied severa l speech recogn ition prod ucts, 
inc lud ing Ta l k-> To Next �i·om Dragon Systems, Inc . ,  
VoiccAssist from Creative Labs, Voice Pilot h·om 
Microsoft, ;ll) d  Listen fi·om Verbcx .  'vVe decided to 
provid e  users with the �(> ! lowing featu res as the most 
d es irable in a command :�nd control speech recogni 
tion prod uct:  

• Intu iti,-c, c�1sv-ro-use i n terface 

• Speaker- independent mode l s  that wou l d  e l im inate 
rhe need �(>r extensive tra in ing 

• Spcakcr<tdaptive cap�1b i l i ty to i mprove accurJcy 
of words 

• Contin uous speech recognition c:�pahi l ity 

• Prompts t()r active vocabu lary 
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• Minimum usc of screen Jrca 

• l1scr control over the user i ntcrfau.: contiguration 

• Simple mechanism to mod i(\· and create new 
vocabu lary 

• I ntegration with the X vVindow System 

• Support for out-of- the-bm desktop applications 
prm·ided with the U N I X  opccning system 

• Support tc>r vi and cmJcs ed i tors ,  and for C 
programmtng 

The DSRS Architecture 

DSRS comprises several major components which arc 
out l i ned below and i l l ustrated in Figure l .  Of these 
components, three arc l icensed f-i-om Dragon Systems, 
Inc . :  the ti·onr-cnd processor, the recognizer engine , 
and the speaker- independent speech models . 

Dragon Systems, Inc. \\'as chosen as the provider of 
the Sf)Ccch recogn i tion engine based on the accurac\· 
of their technology, thei r prod ucts and npertise i n  
other local languages, <lnd their long-te rm commit
ment ro speech recogn ition .  

now acqu lsi! l o u  consists of the microphone, audio 
card ,  �md t llC mu ltimedia scn·iccs appl ication pro
gramming i ntcrbcc (API ) th �lt  provides support �c>r 

the sound card . 
The jimzt-end f!IDU!Ssor an �1h·zes a stream of digi

t ized data and d i fkrenti�Hcs hcrween si lence, noise , 
and speech ;  it then c:xtracts a set of computed katurcs 
ti·om the speech signals . 

The recogni.:c1: or speech recogn ition engine,  
accepts the computed representation of the speech 
in the tcmn of tt:�nure packets which d rive the Hid 
den MJrkov Mode ls  to recognize utterances. H idden 
JVLlrkm· Models  a t-e basica l lv  stare machines that tran 
sit ion ti·orn :1 beginn ing SLltC to a number of interna l  
states and then to a final state b�1scd on i np u t  data and  
proh�1hi l i ties .' Each transition carries rwo sets of prob
abi l it ies :  a trans ition probabi l i tv, which provides the 
prob�1b i l in· of this trJnsition being taken ,  and an out
pur probabil in' dcnsin· function ( PDf) ,  which is the 
condit iona l  probab i l ity of emitt ing eac h output  sym 
bol �i·om a fin i te :1 lph:Jbct given rhat  a trJns ition is 
take n . '  The l'DFs arc aLhptcd \\'hen the model 
is "tr<lincd," that is ,  c ustomized, b\ ' the indi' idua l uscr. 

·rhe jluile s/ole grammar is a state mKhinc that 
contains a rcprcscnt�1 tion of the vocabularv supported 
by DS ItS . Each st<He contains words ,  phrases, or  sen 
t�nccs; their associated actions; a n d  t h e  int<mnarion 
needed ro transition to the nc:xt stare . The current 
state is used to control the Active words .  

The .1peech 111ndels arc a set of u tterance models 
used [)I' the recognizer. DSRS prm·idcs ' ocabulan· and 
speaker- in dependent  mode l s  tl>r the app lications sup
ported by DSRS .  Users who wish to i nc lude their 0\\'11 
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• Denotes a component l icensed from Dragon Systems. Inc 

Figure 1 
DSRS Architcctur;ll Block Di:tgrcl ln 

words can crcuc mode ls  usmg the Vocabu l:�ry 
Manager user i ntcrbc<..:. 

The Speech Mo nager is the main user- inte r face 
component. The Speech M; HJJgc r  window prov id es 
visual feed b:�ck to use rs . I t  a lso keeps tr:�c k of the cur 
rent  window i n  h>eus :�nd Jets ;1S the :�ge nt to  control 
focus i n  response to users' speech commands. 

The Vocahulmy /via nager uscr- i nter bce window 
d ispl:�ys the current h ierarchy of the fi n ite state gr:� tn 
mar ti l e .  T h e  Vocabulary Manager <l l l ows r h e  user to 

custom ize using the fu nctions t(>t· addition,  deletion, 
:�nd moditic:�tion of words or macros . Also in  this win
dow, the command - u tterance to keystroke tra nslations 
arc di splaye d ,  created , or modi tie d .  

I n  t h e  TJ-ain ing ;11a nagC'r user i n tcrbcc, tl1e user 
may tra in newly created words or phrases in the 
user vocab u l :lry ti les and rctr:1 in,  or adapt, the prod uct
suppl ied , independent vocabulary. 

The DSRS Implementation 

As the d es ign team gai ned experien ce wi th the D S RS 

prototypes, we rdi ncd user proced u res and i ntert:1ccs. 
This section descr i bes the kcv fu nctions the team 
dc,-e loped ro L· nsurc the use r- fi·icnd l iness of the prod 
uct, including the first-time setup, the Speech 
Manager, the Training Ma nager, the Vocabu iJ ry 
Manager, <l nd the ti nite state gr:�mmar. 

First-time Setup 

DSRS requ i res a setup process ll'hcn used tor the fi rst 
t ime.  The user m ust crcJtc user-speci fic ti les and set
tings. The user begins by selecting the microph one 
and by testing and adj usti ng the mic rophone i n p u t  
vol u me to usable settings .  The user i s  then prompted 
to speak <1 ti:w words, which arc presented on the 

VOCABULARY 
FINITE STATE MANAGER 
GRAMMAR USER 

INTERFACE 

t l COMMANDS 
AND ACTIONS 

SPEECH 
SPEECH 

MANAGER 
RECOGNITION STATE 

ENGINE'  TRANSITIONS USER 
INTE RFACE 

KEYSTROKES 
AND WINDOW X WI NDOW 

NTS ACTIONS EVE 

X WI NDOW 
SYSTEM 

screen.  DSRS uses the speech dat<l to c hoose rhc 
speaker- inde pen dent model that most cl osely matches 
the speaker's voice. There :�re models for lower- and 
higher-pitc hed \'Oices. The soti:warc copies the selected 
model to the user's home dirccron·; the model is then 
modi fied when the user makes changes to the provided 
models and vocabu lary. After setup is complete,  the 
next step is  the Trai n ing M<mJger which presents the 
user with <l l ist of  20 words to tLl i n ;  when this step is  
comp leted ,  D S RS i s  ready tc>r  usc. The Training 
Manager is described i n  more dct<l i l later i n  th is section.  

The proced u re abO\'e was dc, cJoped to take a llC\\' 
user through the e ntire setu p  process without the 
n eed to refer to any docu menration . Once the user 
fi les arc crcJtcd , DSRS bypasses these steps and comes 
up ready to work. A notJble change that we mJtk to 
the setup was instigated bv o u r  own use of the son
ware. 'vVc t()l tnd th at inconsistent microphone \'O] u mc 
settings were a trcqucnt pro b l e m .  'vVhen systems were 
rebooted, vol u m e settings were reset to defau l t  values .  
Conseq uently, we created an in i tial ization ti le  that 
records the volume setti ngs as well  as a l l user-ddin abk 
characteristics of the graphicJi uscr interface. 

Speech Manager 

Once D S RS is ready and i n  its i d le state, it presents the 
user with the Speech M.anagcr window, an exa mple of 
which is shown i n Figure 2 .  The Speech Manager pro
vides the fc> Jiowing critica l  con trol s : 

• Microphone on/offsll'i tc h .  

• A V U  (volume u ni ts )  mete r  that gives rc:�l - t i mc 
fCed bJck to the audio signal being heard . A V U  

meter is  :1 visual teed back d evice com mon ly used on 
devices such as tape decks. Users are ge neral ly very 
comfortable using the m .  
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Figure 2 
DSRS Si1<::cc l l i\'L l Juger Windm\ 

• Two user-control lable panes that d i splay tiK Alw�1ys 
Acrivc ;md Acti\'e vocabu L1rv sets. The AJ\I'avs Active 
n>c.1buL11 "1 '  ,,·ords arc recogn i zed regardless of 
rhe C L I ITC llr  :tp p l ic.nion in r( >cus.  The Actin: \'OC1bu
larv \I'OI'ds �m: spec i fic to  the �1ppl ic1rion i n  h>L us 
and c h �mge dynamica l l y  as the cu rrent application 
changes . The vocabularies arc designed i n  this way so 
t l1:1t �1 user can speak comm;mds both withi n <I ll 

appl icnion come:-;t and in order to S\\'itch contots. 

• Th ree s m�11l fra mes that  prm·idc status i n formation 
to the user. 
- Th e  Mode �i-ame i nd icnes the c u rrent  state of  

the Speec h Manager: command and control or  
sleepi ng.  
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- The Conrext fi·amc displays the class n:tmc of the 
:1pplicnion cu rrently in  f(>Lus.  This comcxt :dso 
determi nes the current stJte of the Active word l ist. 

- The h istory fr:1me d isplavs the word, ph r;1se , or 
scmcncc l ast heard lw the recognizer. The h isrorv 
ti·amc is set up as :1 button . \rVhen pressed , it d rops 
do\\'n ro revea l the l :1st 20 recogni zed u ttera nces. 

• A menu that provides access to the management of 
user ti les,  the Vocabu l ary M a 11<1gcr, the TL1 i n i ng 
M:1n�1 gcr, �1 11d \':Lri ous uscr- contigur<1 b l e  options.  

Training Manager 

The Tr�1 i n i n g  M anager :1Lhpts the sp<.:<1kcr- i ndcpe n 
d e n t  speech models  to t h e  user's speech patte rns a n d  
creates n e w  models f<>r :1dded words. O u r  swdy o f  

PC- b�1sed speec h recognizcrs led us t o  the concl usion 
that the design of a tr:1 i n i n g  i n te r EKe i s  critic1l to 
obt:1 i n  good resul ts .  For example ,  the trai n ing compo
nent of  one PC:- based rccogni ;cr we nami ned d id  not 
prm·idc c l ear ked back to the user when :1n u trn,mcc 
had been processed, thus  c:1us ing the user con Fusion 
about when to speak .  This  confus ion le:1d to tr<1 i n i ng 
errors :\lld ti·ustration . Another recognizer d id not 
a llow the u ser to pause w h i l e  tL1 i n i ng, <1 major i ncon 
\'C n i cncc �(>r t h e  user \\'ho, �i >r cxampk: ,  needed to 
clear h i s  th m�n or spc:1k to someone. 

We dn ·e loped the fol lowing l ist of d esign char:tctcr
istics t(>r ;1 good train i n g  u ser  i mc rbcc . 

• Strong, c lear  i nd ic:lt ions th�lt  u tterances arc pro
cessed . \rYe �1ddcd a series of bo,;cs th<lt �1 1-c c hecked 
off as each u tterance is processed and �1 VU mete r  
t h a t  shm,·s the SI'Stcm is p icking u p  a u d i o  s ignals .  

• Red u ced amount of eve mm-cmcnt needed �(>r  the 
tc1 i n i n g  to proceed smoothly and q u ick ly. We 
placed visua l  feed back objects in position s  th<1 t  
: il lo\1' usns to foc u s  t h e i r  eves o n  a l i mi ted �1ro of 
the screen ;md not ln\T to l ook back �1 11d �(>rth 
across the screen at each u tterance . 

• A gl i m pse of u pcom i n g  \\'ords.  A l ist of\\'ords is d is 
pl ayed on the user  inter bee ;md moves <1S words :1 rc 
processe d .  

• A pmgrcss i n d icator. 'T'c xt  is d ispl aved and u lxhted 
as cK h word is  processed , i nd i cating progress, t(>r 
example ,  Wmd 4 of2 l .  

• Option to p a use, resume,  and rcstJrt tra i n i ng .  

• Large, bo ld  tonr d isp lay of the word ro be spoken 
and a smal l  prompt, " Please conti n u e," d isp lavcd 
when the svstcm is wa it ing t(:>r i n put .  

• A u tom�Hic ;1dd i tion of rq1c1tcd utterJ n ccs that  <HC 

"bad" or do tJOt ll1Jtch the c ,; pcctcd ,,·ord . 

• Control over the nu mber of repeti t ions.  

As the ex:1 m p l c  in Figu re 3 shows, the TL1 i n i n g  
Ma nager presen ts a word ri·om a l i st  of words t o  be 
tra i ned . The word to be spoken i s  presented in :1 l a rge, 



Figure 3 
Tr:1 i n i n g  i'vbnager vVindow 

bold tom to d iftcrcmiate i t  ri·om the other c lements i n  
t he  window. To tra in  the words, t he  user repeats an  
um:rancc ti·om one  to  s i x  t imes. The user must speak 
�lt the proper times to make tr�1in i ng a smooth �md eff-i
c ient process. DSRS manages the process by prompt
ing the speaker with visual cues .  Right below the word 
is :1 set of boxes th:u represent the repetitions .  The 
boxes arc checked off as utterances arc processed,  pro
vid ing posi tive visu�1 l  feed back to the speaker. When 
one word is complete ,  the next word to be trained is 
displayed and the process is  repeated . vVhcn :� I I  the 
words in the l ist arc tra ined, the user saves the files, and 
DSRS returns to the Speech Manager and i ts Jcti ,·c 
mode with the microphone tu rned off. 

Vocabulary Manager 

The Vocabu larv J\tLmager, �l ll example  of which is 
shown in Figu re 4 ,  enables users to modi!)' speech 
ll1 <1CfOS by c l1 <1 11ging the kcvstrokcs Stored r(Jr each 
command <l !1d bv �1dd ing new comm�mds to ex isting 
<lppl ications. Users can a lso add speech support t(>r 
cntirclv new appl ications. The vocabuL1rics are rcprc 
SC!lted graph ical lv as h ierarch ies of appl ication nKabu
brics, groups of words, and indiv idua l  words .  The 
Vocabu lary Manager provides an i n tcrf:Kc that  a l l ows 
m;mipu lation of this thtabasc of words without resort
ing to text ed i tors .  ·rhc AJways Active vocabu laries arc 
:�cccss ib lc here and arc manipu lated in the same man
ncr as  the  application-speci fic vocabu laries. With  the  
VocabuL1rv l'vlanagcr, the  user  may import and export 

,·ocabu l �1rics or parts of vocabu laries in order to sh:�rc 
comnLmds <lnd rhus enable speech recognit ion m 
appl icuions not supported by defa u l t  in DSRS.  

Finite State Grammar 

The fin i te state grammar ( t:SG ) is a state machine with 
a l l  the ,·ocabulary requ ired to tr::msition between states 
:�nd cond itions. The FSG has two d istinct sets of 
vocabul:1ry, which have already been mentioned : the 
Alw:�vs Active, or global vocabu larv, and the Active, or 
context-specific, vocabulary. 

I n  crclting the FSG , we �(>lmd that we needed spe
cial fu nctions for int e raction with the windowing sys
tem and representations t( >r all keyboard keys. Whi le  
creating these speci�1 l  functions, we designed the inter
action t(>r max imum convenience.  For example, when 
a user speaks the phrase "go to c:� lcu lator" or "s,vitch 
to ca lcu lator" or simply "calcu lator," the meaning is 
read i ly i n terpreted by the software. For the user's con 
\'en icncc,  these phrases trigger the tc>l lowing cond i 
tional actions. 

• I f �� w indow of class "ca lcu lator" is presen t  on the 
s\·srcm ,  then set t(Kus to it .  This is done regard less 
of i ts state; the window may be i n  an icon state, 
h idden ,  or on ::mother work space such as may be 
fou nd i n  the Common Desktop Environment  
(CDE) .  

• If the window does not exist, then create one by 
l aunch ing the appl ication . 
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Figure 4 
Voca bularv ivl anager Windo\\' 

The s imple l ogic of this  speci a l  function e n h :m ces 
user prod u ctivi ty. Often worksta tion and PC screens 
are l i ttered with wind ows or appl ications icons �1 nd 
icon boxes t h rough which the usn must searc h .  
Speech control e l i rnin:Hes the steps between t h e  user 
t h i nking "I want the ca lculator" and the appl icuion 
being prese nted in  f(Kus,  ready to be used . The DSRS 
tea m  created a function cal led FocusOrlaunch,  which 
i m plements the beh avior described above . The �t i nc 
tion i s  encoded i n to the FSC continuous-switch i ng
mode sentences in the Always Active vocabu l a ry 
associated with the spoken commands "switch to 
<appl i cation name>," "go to <application name>,"  
and just  p la in  " <application n: une > . "  

Appl ications l ike c1ku lator �mel c:tl c ndJr  :l iT not 
likely to be needed i n  m u ltiple instances.  H m\'e\·er, 
appl ications such as term in:1l e m u l ator windows �1re . 
DSRS defines the speci fic phrase "bring up <appl ic:ttion 
name>" to exp l ic it ly  l :nmch a new i nst:mcc of tht �1p p l i 
cation; t h a t  i s ,  t h e  ph rase " b ri n g  up <applica tion 
name>" is  tied to a fu nction 1umed Lau nc h .  

T h e  phrases " next <applicltion name > "  and "pre\ · i 
ous <Jpplication name>" were chosen t(Jr navigating 
between i nstJnces of the s�1 m e  applicati o n .  DS RS 
rem e m bers the previous state of the appl icatio n .  For 
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i nsta nce, if  the calcndJr :tppl ication is m i n i m i zed when 
the u ser  says "switch to ca l e ndar," the ca lendar 
window is  restored . \<\'hen the user  sa\'S "switch to 
emacs," the calendar is retu rned to i ts fC.)n11er state. I n  
this case , i t  i s  m i n imi zed . 

DSRS also adds speech control to the com mon \\'i n 
dm\· controls s u c h  as m i n i mize, m a \ i m i z c ,  �md close . 
These tl1 nctions operate on whatever window is c u r
ren t!\' i n  t(Kus .  

Anothcr con\·en ient command is  "Spccch Man�1gcr 
go to s leep ."  vV hen the user spc1ks this command,  
D S RS tLmsitions i n to a special  st: m d b\' state .  In  th is  
st•1te, termed "s leeping," the recognizer is sti l l  l iste n 
i n g  b u r  w i l l  renm1 t o  command •1 n d  comrol mode 
onh·  when the command "Speec h M anager wJke up" 
is spoke n .  The "go to s leep" command puts DS RS 
i nto a sta n d by st:tre, a l lowing normal conversation to 
take p lace without words being recogni zed :ts com
mands and causi ng u n \\ 'amed e\·ems to occ u r. 

Ve rsion l . l  of DSRS �1d ds even more hmctions, 
such as the " microphone oFf" comm�md , \\'h ich  goes a 
step be\'ond "go to s lee p . "  With " m icrophone oft�" 
the i n p u t  :tu d i o  section is com p l e te l y  re leased and 
D S RS will  n o  longer l isten u nt i l  the microphone is  
m a n m l l v  turned back 0 1 1 .  This tlmction a l lows the 



user to launch an audio-based appl ication that wi l l  
record, such as a teleconferencing session. Version 1 . 1  
also inc ludes a fu nction that al lows the user to play 
a "wave," or digiti zed audio c l ip .  Audio c ues may thus 
be played JS part of speech macros. The "say" com
mand i nvokes DECta l k  Text- to-Speech fu nctional ity 
so rbat audio events can be spoken! 

Since speech recognition is  a st<Histical process and 
prone to errors, rhe design team deemed "confirm" an 
important function to protect user data and prevent 
unwanted acrions. The "confirm" fu nction protects 
certain sensitive actions, such as exiting an ed itor, with 
a confirmation dia log box . Simply add i ng the "con 
firm" syntax within a speech macro causes the dialog 
box "arc you sure ? "  to appear. The vocabu lary is 
switched to respond ro only yes and no so that a higher 
rel iabi l ity can be achieved . If the user says no or presses 
the no button, the computer returns to i ts previous 
state. If the user says yes, the action fol lowing the 
"confirm" function is executed . 

Another concept encoded in the FSG for user con
venience is menu flattening.  Menu displays are hierar
chical because rhc number of menu entries that can 
be shown on the screen a t  one rime is l im i ted . A good 
example is the F i l e  men u .  When rhc user cl icks the 
mouse button on F i l e ,  a drop-down menu appears 
conta in ing actions such as Open ti le, Save fi le ,  Save 
fi le as . . .  , Print, �md Exit .  However, hierarchical menus 
do not rea l ly  represent the way people normal ly 
think about Jctions; for example, when the user thinks 
"exit," he or she must then take the steps ti le and 
exit .  With speech recognition, rhc computer can take 
rhc interim steps . The FSG in DSRS was bu i l t  ro han
d l e  two cases: ( I )  The user says "fi l e" and "exit," and 
( 2 )  the user says on ly "exit" and DSRS performs the 
ti le and exit sequence transparent ly. This second mode 
connects the Jctions more closely with the user's 
thought processes and does not t(>rcc a sequence of 
actions in order f(>r tasks to be pcrf(>rmed. The menu
thttening feature of DSRS was encoded into the FSG 
ti le .  vVhi lc  rhc example given may seem trivia l ,  the 
concept is an i mportant one and can be used to flatten 
many levels of menus.  For instance, users take several 
steps to change the font or type size on a region of 
highl ighted text in a word processing program. The 
followi ng cou ld conceivably be invoked as a speech 
macro: "Change ro Helvetica Bold Italic 24 poi nts . "  

Integrating Speech Recognition in Applications 

As described i n  the section Overview, DSRS feeds key
strokes to appl ications. Therefore, rhc preferred appli
cation development method t(>r a l lowi ng access to 
fimctions-one that wi l l  a l low integration of speech 
recogni tion-is accelerator keys. Typical ly, accelerator 

keys are i n  the f(xm of CTRL + <key> bindings that 
a l low d irect access to a fu nction , regardless of menu 
h ierarchies. I t  shou l d  be noted that this lack of hierar
chy l imits the number of d irectly accessi ble functions. 

A second method for imegrati ng speech within an 
application is through menu m nemon ics. Mnemonics 
are the keyboard equivalents signitied in appl ication 
menus by an underl ined letter. The first mnemonic is 
i nvoked by a combination of the ALT key and the 
underl i ned letter, which can be fol lowed by another 
u nderlined letter. For example, pressing ALT + f 
invokes the fi le  menu item; press ing x immediate ly  
thereafter invokes the  "exit" entry t(>r the  application . 

I n tegrati ng speech recognit ion becomes d ifficult  
when appl ication functions are not accessible through 
the keyboard . Applications designed to allow access to 
fu nctions only by means of the mouse can not be 
speech enabled as DSRS is curremly implemented . 
Although DS RS can send mouse c l icks into the system,  
consistently locat ing the  mouse pointer on  applica
tions is d ifficu lt .  The next sections fu rther i l lustrate the 
issues that stemmed from these in tegration 1ssucs as 
we implemented and tested DSRS .  

Client-Server Protocols 

Appl ications such as emacs and Nctscape Navigator 
have protocols that a l low other processes to send 
commands to them.  For example , a ti le name or a 
un iversal resource locator ( U RL) may be sent via 
the command l ine .  DSRS exploits this bci l ity in 
Netscape Navigator to J i low Web surfing by voice. 
For example,  in the Nctscapc context, the speech 
macro " Digital home page" wou ld  translate to the 
fol lowing command issued to a window: nctsc:lpc 
remote open URL("http:/ jwww.digita.l .com").  Although 
this command stri ng seems a bit awkward, the resu l t  i s  
that  the actions be ing taken are J l l  transparent to the 
user and they work verv we l l .  

Problems Encountered in Implementation 

Unl i ke the applications discussed i n  this paper, some 
applications arc not developed with good program
ming  practices. Neither are the  keyboard interfaces 
wel l - tested .  We encountered the fol lowing types of 
problems when using the keybo:�rd as the main input  
mechanism. 

• Appl ications had mu lt ip le menu mnemonics 
mapped ro rhc same key seq uence. This approach 
could not work even if the keyboard vverc used 
d i rectlv. 

• Appl ication fu nctions control led by graphic but
tons were accessible only by mouse. 

• Keyboard mapping was incomplete, that is, mnem
onics were on ly  partial ly i mp lemented . 
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I n  the i m plementation of D S RS, we encountered 
one u nexpected pro blem .  vVh e n  :t nested m e n u  
mnemon ic was i nvoked , the second c h �1 r:tcter was lost. 
The seque nce of events was as ro l lows : 

• A spo ken word was recogn ized , and keystrokes 
were sent to the keyboard butkr. 

• The ri rst character, ALT + <key> ,  acted n orma l ly 
and caused a pop- up menu to d ispL1y. 

• The menu rema i ned on d isp l ay, and the last key was 
lost . 

vVe determined that the second keystroke was be i ng 
del ivered to the appl ication bd(>re the pop - u p  menu 
'"�1s displavcd . Th erdorc , at the ti me the key was 
pressed , i t  did not yet have me:1ning to the app l ic:1tion . 
It is �1 pparent  that such appl ications arc written rc>r 
�1 IH1 1n:m reaction-based pa rad igm . DS RS , on the 
other ha nd , is typing on beh a l f  of the user at computer 
speeds �md is  not wa iti ng tor the pop - u p  menu to 
d ispby bd(xc e n tering the next key. 

To overcome th is prob l em ,  we deve loped J syn
ch ron iz i ng ti.1 nctio n .  Norma l ly the Voca bu lary 
M:1nagcr not:1tion to send an A lT + f fd lowcd bv an 
x wou ld be A LT + f x .  Th is new synchroniz ing func
tion was designated as sALT + f x .  The sync h roni z i ng 
fu nction sends the A LT + f and the n monitors e\·e n ts 
t(>r a map - noti f'\• message i ndicati ng that  the pop-up 
menu has been wri tten to the screen . The ch:1ractcr 

fo l l ow i ng ALT + f is then sent, in this usc , the x .  

The svnchroni zi ng t'i.mction also has a watchdog timer 
to prcvellt a hang in the ev<.:n t a map- noti �· message 
This method is i ncluded in the ti na!  prod uct .  

Guidelines for Writing Speech-friendly 
Applications 

Severa l gu ide l i nes tor ena b l i ng speec h recognition i n  
applications became appare n t  a s  w e  gained e x perience 

usi ng DS RS .  Coi n cidenta l ly, a gu ide l i ne rccenr l y  p u b
l ished by M icrosoft Corporation documents some 

of the ,·cry same poi nts . ;  

• Prov ide kcvboard access to a l l  tCatures. 

• Prov ide access keys tor a l l  menu items �md contro ls .  

• Ful ly  document  the keyboard user  i ntcrbcc . 

• \IVhcn�:vcr possible, usc accelerator k.cys ; they Me 
more reliable than using menu m ne mon ics. 
M nemon ics C<111 be overloaded or non - ti.mctional 
if  the menu is nor active. 

• C l ien t-server protoco l s C:ln work we l l r(lr  C IL1 h l i ng 

speech recogn i ti on ; document ndlv. 
• Do not depe nd on h u man rc::tction t imes r(lr d is 

pLl\'cd wi nd ows or on sl ow tvp ing L1tcs . 

• Provide user- tl·icnd lv t it les for :1 l l  w i nd ows , e\·cn i f  
the title is n o t  ,·isi b le .  
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• A\'(>id trigge ring �1ctions or messages Lw m o u se 
poi nter location . 

• Gi,·c d i :1 log boxes consistent kevboard access ; t( Jr  
i nst�1 1Kt:, boxes shou ld close when the ESC key is 
pressed . The d i :1 l og box responses yes and no 
should correspond to the v and n keys. 

Appl ication developers who wish to d es ign a speech 
i n ter race d irect ly i n to the i r  <1pp l ications now have th is 
option.  Scvcr�1 l speech A P is <1 1-c avai lable .  L'vl icrosoft 
ofrers tbc Speech Software Deve lopmen t  Kit, and the 
Speec h Recognition API Com m ittee, c lui rcd lw 
Novel l, offers S RA. P I .  Computer-huma n  speech 

i n teraction is the su bject of ongo i ng research .  Much of 
the gm-c rnmcn t-sponsorcd researc h is now being 

com merci a l i zed . Sc\Tra l  gro u ps ,  s u c h  as ACM C:H I ,'' 
have bec.:n �md com i n u c  to studv speec h -on ! \ · 
i nrcrt:Kcs. Thcv arc Jiscm-cri ng that " trans lati ng �1 
grap h ica l i ntcrr:1ce i n ro sp<.:cch is not l i ke l y  to prod uce 

<1 11 e fkcti,·c intcrbcc.  The design of tbe Speech User 

Interbcc must be a separate d't<>rt that involves studv
i ng the h u m <m-h u m�1 11 conversa tions i n  the appl ica 
tion domai n . " '' 

Future Directions for Speech Recognition 

I n  add i t ion to U llCO\'er ing poi n ts tor d evel opers to 
bui ld  specch - cn�1b lni �1ppl ic:1 tions , \\'C a lso ga ined �1 
perspective on how sp<.:cch recogn ition ma\' dc,clop 1 1 1  
t h e  t'i.nurc .  A brief m-crvic,,· of these ins igh ts i s  pre
sented in this section . 

Integrating speech �1 nd a ud i o  ou tpu t-The addi
tion of a two-w�1y i n te rrace of speech a nd a u d i o  rh�1 t  
gives users kcdback wi l l move the user  i n ter bce ro a 
new leve l . 

Telephone access-Te l ephone access can make 

workstations more v�1 l u �1 b l e  c o m m t m i cations devices 
by con nect in g users to i n r(m11::tt ion such �1s e - n.1 :1 i l  
messages and appoi ntmc ll t c1 lc ndars .  T h e  te le phone 

can extend the rcxh oh n 1 r d esktop computers . '' 
D i ctation -D iscrete d ictation prod ucts \\'ith capa

b i l i ti es of 60,000 '' mds �1re commercia l  I\ - <1\ �1ibblc  
now; i n  the nor- roo-d istallt h 1 ture , con t i n uou s
recogni tion d ictation prod ucts '' i l l become ,·i a h l c .  
A command a n d  comrol recogn i zer t h a t  c a n  b e  scam
lcsslv switched to d ict:Jtion mode is a very powcrnd too l . 

sixec h recogn ition i ntegrated with natural l a n 
guage process i ng-Th e ri c ld  of natural  langu �1ge 

process ing deals  wirh the extraction of semantic inr( Jr
mation contai ned i n  a sen ten ce . Machine u n derstand 
ing of natu rJ l l �1 ngu :1ge is an obvious next step . Users 

wi l l  be ab l e to spc1k in �1 lcss restricted bshion and sti l l  
have the ir des i red �1cti ons carried out . 

A new par:1d igm r()l· �1p p l i cations-A nc\\' cbss of  
app l ications needs to b e  created , one t h a t  is mode led 
m ore on h u man thou gh t processes and naru r�1 l  Lm 
guage ex pression th�m on the ti.mctional partit io n i ng 



in tociay's applications. A user agent or secretary pro
gram that cou ld process com mon requests del ivered 
entirely by speech is not out of reach even with the 
technology avai lab le  tod ay, for example: 

User: What t ime is it? 
Computer: I t  is now 1 : 30 p . m .  

User: Do I have a ny meetings today) 
Computer: Staff meeti ng is ten o'clock to twelve 

o'clock in the corner conference room. 

Computer: Mike Jones is  e<1 1 J ing on the phone. 
vVould you like to answer or transfer the 
cal l  to voice mai l )  

User: Answer it. 

User: Do I have any new maiP 
Computer: Yes, rwo messages. One is ti·om P<lul  

Jones, the other ti·om your boss. 
User: Read message two. 

User: Wh at is  tbe price of Digital stock? 
Computer: Digital srock is at $72 1/�, up 1 / •• 

The example above shows the user agent providing 
i n formation and interacting with e-mai l ,  telephone, 
stock qu ote, and calendar programs. As we move i n to 
th e fu ture, tbe computer-user i.ntertace should move 
closer to the interaction model humans use to com 
mu n icate with each other. Speech recogn ition and 
text-to-speech software help in  a signit!cant way to 
move i n  this d irection -'' 

Performance 

D S RS word recognition , which is the pri mary perfor
mance measure, is as good as comparable com mand 
and control recognizers found on PCs. Train ing trou
blesome and acoustica l ly similar words improves the 
performance. The vocabulary, because of the targets 
chosen,  ti1Jt is, U N lX commands, does have acoustic 
col l isions, for example,  escape and Netscape. Further, 
we had to usc the voc:�bu laries support ing the U N I X  
shel l  commands, and commands such <lS vi c a n  b e  pro
nounced in d i ftl:rent ways, fi:>r example, vee-eye or vie. 
The shel l  commands are also fu l l  of  very short utter
ances that tend to result in  higher error rates. 

On the slower, Erst-gen eration Alpha workstations, 
DSRS has noticeable delays, on the order of a tew h u n 
dred m i l l iseconds. However, on t h e  newer a n d  faster 
Alpha workst:�tions, DS RS responds within human 
perceptual l i mits, Jess than 100 mill isecon ds.  

Another interesting ph enomenon associated with 
the speed of the workstation is the i mprovement DSRS 
makes i n  user prod ucti v i ty. On a slow mac hine,  the 
speech interface has l ittle impact if the appl ication is 
slow in performing its tasks. In other words, the time it 
takes to perform a cert a i n  task is not greatly aHectcd 

u nless the human input  of commands is a significant 
portion of that t ime. However on a fast mach ine, the 
app l ication performs tasks as quickly as the commands 
are spoken ,  and the prod uctivity e n hancement, there
fo re , is great.  

Summary and Conclusions 

The DSRS team accomplished its objective of develop
ing a low-cost speech recognition product. DSRS tor 
Digital U N I X  is being shipped with a l l  Alpha work
stations at no additional  cost. Integration with the 
X vVi ndow System was successfu l .  

With reference to the focus of this paper-develop
ing the user- friendly interface-we found through 
feedback from our user base that most first-time users 
pertorm usefu l  work using DSRS without consu lting 
the documentation . The first-time setup design that 
provides i nstructions and feed back to users was suc
cessfu l .  The l ist  of Active and Always Active vvords and 
phrases is a helpful  reference for new users unti l  they 
learn the "language" they can use to comm u ni cate 
with their applications. 

Adding vocabulary for new applications is a bit 
more chal lenging because some "reverse engi neering" 
may be req ui red on a particu lar applicatio n .  One 
needs to know the class name of each of tl1e windows 
and then map the keystrokes for each of the functions 
to speech macros. Although this proced ure is docu
me nted in the manual,  i t  can be chal lenging for users . 

Prototypes of DSRS control for sophisticated menu
d riven applications, such as  mechanical compu ter
a ided design, show exce l lent  promise for e n hancing 
user prod uctiv ity. For example,  with computer- aided 
design or drafti ng software, users can focus their eyes 
on the drawing target on the screen while they are 
speaking menu fun ctions. 

Speech recognition is an evolutionary step in the 
overall compu ter-user interrace .  It is not a replace
ment for the keyboard and mouse and should be used 
to complement these d evices . Speech recognition 
works as an in terrace because it  a l lows a more direct 
connection berween the human thought processes 
and the applications. 

Speech recognition coup led with natura l  language 
processing, text-to-s peec h, and a new generation of 
applications will make computers more accessible to 
people by making them easier to use and understand . 
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