
•

Digital
Technical
Journal

I
ALPHASERVER 4100 SYSTEM

ORACLE AND SYBASE DATABASE PRODUCTS
FOR VLM

INSTRUCTION EXECUTION ON ALPHA PROCESSORS

Volume 8 Number 4
1996

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Christa W. Jessica, Production Editor
Anne S. Katzcff, Typographer
Peter R. Woodbury, lllustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robert M. Supnik

Cover Design
The performance advantage of very large
memory teclUlology for commercial applica
tions is a major theme in this issue of the

journal. The cover is a collage of images
from the development of the AlphaScrver
4100 four-processor symmetric multipro
cessing system, which offers 8 gigabytes
of memory and industry leadership per
formance. This four-processor symmetric
multiprocessing system is not only charac
terized by very large memory but by low
latency, high bandwidth, and 400-megaherrz
microprocessors.

The cover design is by Lucinda O'Neill of
DIGITAL's Corporate Design Group.

The Digital Technical journal is a refereed
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AK02-3/B3, Acton, MA 017 20-9843.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Digital Equipment Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for four
issues and $75.00 (non-U.S. $115) for
eight issues. University and college profes
sors and Ph.D. students in the electrical
engineering and computer science fields
receive complimentary subscriptions upon
request. DIGITAL's customers may qualifY
for gifi: subscriptions and are encouraged
to contact their account representatives.

Electronic subscriptions are available at
no charge by accessing URL
http://www.cligital.com/infojsubscription.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues are available
for $16.00 (non-U.S. $18) each and can
be ordered by sending the requested issue's
volume and number and a check to the
published-by address. See the Further
Readings section in the back of this issue
for a complete listing. Recent issues are
also available on the Internet at
http://www.cligital.com/i nfo/dtj.

DIGITAL employees may order subscrip
tions through Readers Choice at URL
http:/ /webrc.das.dcc.com or by entering

VfX PROFILE at the Open VMS system
prompt.

Inquiries, address changes, and compli
mentary subscription orders can be sent
to the Digital Technical]ournal at the
published-by address or the electronic
mail address, dtj@digital.eom. Inquiries
can also be made by calling rJ1eJournal
office at 508-264-7549.

Comments on the content of any paper and
requests to contact authors are welcomed
and may be sent to rJ1e managing editor at
rJ1e published-by or electronic mail address.

Copyright© 1997 Digital Equipment
Corporation. Copying without fcc is per
mitted provided that such copies are made
for use i11 educational institutions by faculty
members and are not distributed for com
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's aurJ1or
ship is permitted.

The information in rJ1ejourna./is subject
to change wirJ10ut notice and shonld not
be construed as a commitment by Digital
Equipment Corporation or by the compa
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the journal.

ISSN 0898-901X

Documentation Number EC-N7629-l8

Book production was done by Quantic
Communications, Inc.

The following arc trademarks of Digital
Equipment Corporation: AlphaServer,
AlphaStation, DEC, DECnet, DIGITAL,
the DIGITAL logo, VAX, VMS, and
ULTIUX.

AIM is a trademark of AIM Technology, Inc.
CCT is a registered trademark of Cooper
and Chyan Technologies, Inc. CHALLENGE
and Silicon Graphics are registered a-ademarks
and POWER CHALLENGE is a trademark
of Silicon Graphics, Inc. Compaq is a regis
tered trademark and ProLiant is a trademark
of Compaq Computer Corporation. HP is
a registered trademark of Hewlett-Packard
Company. HSPICE is a registered a·ade
mark of Metasoftware Corporation. IBM,
Power PC, Power PC 504, and PowerPC
604 are registered trademarks and RS/6000
is a trademark oflnternational Business
Machines Corporation. Insignia is a trade
mark of Insignia Solutions, Inc. Intel and
Pentium arc trademarks oflntel Corp01-ation.
IPX/SPX is a trademark of Novell, Inc.
ispLSI and Lattice Semiconductor arc regis
tered trademarks of Lattice Semiconductor
Corporation. KAP is a trademark of Kuck &
Associates, Inc. MEMORY CHANNEL is a
a·ademark of Encore Computer Corporation.
Mental Ray is a a·ademark of Mental Images.
Metra! is a trademark of Berg Technology, Inc.
Microsofi:, MS-DOS, and Visual C++ are
registered trademarks and Windows and
Windows NT are tradem<u·ks of Microsofi:
Corporation. MIPS and R4400 are trade
marks of MIPS Technologies, Inc., a wholly
owned subsidiary of Silicon Graphics, Inc.
Motorola is a registered a·adem,u·k of
Motorola, Inc. Oracle is a registered a-ade
mark and Oracle7, Oracle 64 Bit Option,
and Oracle Parallel Server arc trademarks
of Oracle Corporation. PostScript is a
registered trademark of Adobe Systems
Incorporated. Powerview is a registered
trademark ofViewlogic Corporation.
SPARCstation is a registered trademark
and SPARCluster, SPARCserver, and
UltraSPAil..C are trademarks of SPARC
International, Inc., used under license by
Sun Microsystems,

·
Inc. SPEC is a registered

trademark of the Standard Performance
Evaluation Corporation. SPICE is a trade
mark of rJ1e University of California at
Berkeley. SQL Server and System 11 are
trademarks and Sybase is a registered trade
mark of Sybase, Inc. Sun is a registered
a·ademark and Ula·a is a trademark of Sun
Microsystems, Inc. Synopsys is a regis-
tered trademark of Synopsys, Inc. Texas
Instruments is a registered trademark of
Texas Instruments Incorporated. Timing
Designer is a registered trademark of
Chronology Corporation. TPC-C is a
registered trademark of rJ1e Transaction
Processing Performance CoLuKil. UNIX
is a registered trademark in rJ1e United
States and in other countries, licensed
exclusively rJ1rough X/Open Company
Ltd. Xilinx is a registered trademark of
Xilinx, Inc.

Contents

ALPHASERVER 4100 SYSTEM

Alpha Server 4100 Performance Characterization

The AlphaServer 4100 Cached Processor Module

Architecture and Design

The AlphaServer 4100 Low-cost Clock Distribution System

Design and Implementation of the Alpha Server 4100 CPU

and Memory Architecture

High Performance 1/0 Design in the AlphaServer 4100

Symmetric Mu ltiprocessing System

ORACLE AND SYBASE DATABASE PRODUCTS FOR VLM

Design of the 64-bit Option for the Orade7 Relational

Database Management System

VLM Capabilities of the Sybase System 1 1 SQL Server

INSTRUGION EXECUTION ON ALPHA PROCESSORS

Measured Effects of Adding Byte and Word Instructions

to the Alpha Architecture

Zarka Cvetanovic and Darrel D. Donaldson

Maurice .B. Stcinm;m, George J. Harris,
Andrej Kocev, Virginia C. Lamere, and
Roger D. Pannell

Roger A. Dame

Glenn A. Herdeg

SJmuel H. Duncan, Craig D. Keefer, and
Thomas A. NlcL1ughlin

Vipin V. GokhJie

T.K. Rengarajan, Maxwell Berenson,
Ganesan Gop;!], Bruce lvlcCrc.Jd)', Sa pan Panigrahi,
Srikanr Subram;1niam, and Marc B. SugiyamJ

David P. Hunter and Eric 13. Bcrrs

3

21

38

48

61

76

83

89

Digit;!\ Tccbnicll Journal Vol. 8 No.4 1996

2

Editor's
Introduction

Just 40 years ago, a machine called the

TX-0-a successor to Whirlwind

was built at MIT's Lincoln Laboratory

to find out, among other things, if a

core memory as large as 64 Kwords

could be built. Over tJ1e years mem
ory sizes have grown so large that,
in the '90s, tJ1e industry has felt the

need to characterize memory in big

machines as uery large. At five orders

of magnitude greater in size than the

TX -0 memory, the AlphaServer 4100
8-gigabyte memory is indeed very

brgc, even by today's standards. \Vhole
databases can be designed to reside in

memory. Very large memory technol

ogy, or VLM, is a key to rJ1e system
and application performance discussed
in this issue of the.fournal, which fea

tures the AlphaServer 4100 system,
database enhancements from Oracle

Corporation and !Tom Sybase, Inc., and
extensions to the Alpha architccwre.

The AJphaServcr 4100 is a mid
range, symmetric multiprocessing

system designed tor industry-leading
performance at a low cost. The sys

tem accommodates up to four 64-bit

Alpha 21164 microprocessors operat
ing at 400 megahertz, four 64-bit PCI
bus bridges, and 8 gigabytes of main

memory. Opening the section about
rJ1e 4100 system, Zarka Cvetanovic
and Darrel Donaldson describe tJ1e

project te:un 's performance characteri
zation of different Alph�,server 4100
models under technical and commer

cial workloads. Both the process and
the findings are of interest. As one

example set of data demonstrates,

tJ1e model 5/300 is not only faster

tJ1an its DIGITAL predecessors but
30 to 60 percent taster rhan a com
parative industry platform when run
ning memory-intensive workloads
ti-om the SPECtp95 benchmark.

The four papers that follow exam

ine areas of the system rhat challenged
designers to keep costs low and at the

same time deliver high performance.

The AlphaScrvcr 4100 cached pro

cessor module design is presented by

Mo Steinman, George Harris, Andrej

Kocev, Ginny Lamere, <llld Roger
Pannell . Built around the Alpha 211 64

64-bit !USC microprocessor, the
module is the first ti·om DIGITAL

to employ a high-performance, cost
etkctive synchronous cache rather

than a traditional asynchronous cache.

Next, Roger Dame reviews the clock

distribution system, the use of off�
the-shelf phase-locked loop circuits

as the basic building block to keep
costs low, and the signal integrity
techniques developed to optimize

performance of the clock distribution
system for a worst-case clock skew of
2.2 nanoseconds, a goal which the

team far exceeded. A unique memory
architecture for the model 5/300£ is
the subject. of Glenn Herdeg's paper.

This memory design incorporates a

processor module that has no external
cache and instead takes advantage

of the multiple-issue tearure of the

Alpha 211 64 microprocessor. Closing

the section on the 4100 design is the

1/0 subsystem's contribution to the
system goals of low latency and high
memory and 1/0 bandwidth. Sam

Duncan, Craig Keefer, �md Tom
McLaughlin present several innova

tive techniques developed f()r the sys
tem bus-to-PC! bus bridge design,

including partial cache line writes,
peer-to-peer transactions across PC!
bridges, and support t(Jr large bursts
of data.

All efforts to make the hardware
run taster are t(x the benefit of the

applications that run on those sys
tems. A paper fi·om Oracle Corpora
tion and another from Sybase, Inc.,
examine ways in which their respec

tive database systems take advantage
of VLM. V ipin Gokhalc describes
the 64 Bit Option implememation
for the Oracle7 relational database
system. A primary project goal was to

Vol. 8 No.4 1 996

demonstrate a clear performance ben

efit tor decision support systems and
online transaction processing. The

author summarizes data that show
a clear benefit for a database with the

64 Bit Option enabled running on
the AlphaServer 8400 with 8 gigabytes

of memory; in some cases, the pertor
mance increase was 200 times that

ofrhe standard configuration. Sybase

engineers T.K. Renga.rajan, Max

Berenson, Ganesan Gop�1l, I>rucc
McCready, Sapan Panigrahi, Srikam

Subramaniam, and Marc Sugiyama
examine the technology of the
System 1 1 SQL Server that was spc

citically designed for VLM systems.

In addition to achieving record results

with the SQL Server running on rhc
AJphaServer 8400, the engineers have
laid the groundwork for ti.Iturc main

memory database systems.
RecenrJy, byte and word instruc

tions were added to DIGITAL's
64-bit Alpha architecture. Dave

Hunter and Eric Betts describe the
process of analvzing bow these addi

tions aftect the pertormance of a

commercial database. �or resting,
the team used prototype harci\v,ue,
rebuilt Microsoti: Corporation's SQL
Server to use rhe new instructions,
and ran the TPC-B benchmark.

The editors thank Darrel Donaldson

of the AlphaServer 4100 team and
Kuk Chung of the Dat<lbase Applica
tion Partners group tor rheir dlixts
to acquire the papers presented in this
issue. Our upcoming issue will k:nure
CMOS-6 process technologies.

Jane C. Blake

J'vlana{;ing Editor

Alpha Server 4100
Performance
Characterization

The AlphaServer 4100 is the newest four

processor symmetric multiprocessing addition

to DIGITAL's l ine of midrange Alpha servers.

The DIGITAL AlphaServer 4100 fa mily, which

consists of models 5/300E, 5/300, and 5/400,

has major platform perfor mance adva ntages

as compared to previous-generation Alpha plat

forms and leading industry midrange systems.

The primary performa nce strengths are low

memory latency, high bandwidth, low-latency

1/0, and very large memory (VlM) technology.

Evaluating the characteristics of both tech nical

and commercial workloads against each fa mi ly

member yielded recommendations for the best

appl ication match for each model. The perfor

mance of the model with no modu le-level cache

and the advantages of using 2- and 4-megabyte

module- level caches are quantified. The profiles

based on the bui lt- in performance monitors are

used to evaluate cycles per instruction, stall time,

multiple-issuing benefits, instruction frequen

cies, and the effect of cache misses, branch

mispredictions. and replay traps. The authors

propose a time al location-based model for

eval uati ng the performance effects of various

sta l l components and for predicting future per

formance trends.

I
Zarka Cvetanovic

Darrel D. Donaldson

The AlphaServer 4100 is DIGITAL's latest four
processor symmetric mul tiprocessing (SMP) midrange
Alpha server. This paper characterizes the performance
of the AlphaServer 4 100 tamily, which consists of
three models: 1-5

I. AlphaServer 4 1 00 mode l 5/300E, which has up to
four 300- megahertz (MHz) Alpha 21164 micro
processors, each without a mod ule- level, third
level, write-back cache (B-cache) (a design referred
to as uncached in this paper)

2. AJphaServer 4 100 model 5/300, which has up to
tour 300-M Hz Alpha 21164 microprocessors, each
with a 2 -megabyte (MB) B -cache

3. AlphaServer 4100 model 5/400, which has up to
four 400-MHz Alpha 2 1 1 64 microprocessors, each
with a 4-MB B-cache

The performance analysis undertaken examined
a number of workloads with d i fferent character
istics, including the SPEC95 benchmark su i tes
(floating-point and integer), the UNPACK bench
mark, AIM Suite VII (UNIX multiuser benchmark) ,
the TPC-C transaction processi ng benchmark, image
rendering, and memory latency and bandwidth
tests-" 1 5 Note that both commercial (AlJ\1 and TPC-C)
and technical/scientific (SPEC, UNPACK, and image
re ndering) classes of workloads were inc luded in
this analysis.

The results of the analysis ind icate that the major
AJphaServer 4 100 pertormance advantages resu lt
from the to! lowi ng server rcatures:

• Significantly higher bandwidth (up to 2 .6 times)
and lower latency compared to the previous
generation midrange AJphaServer plattorms and
leading i ndustry midrange systems. These improve
ments benefit the large, mul tistrcam applica
tions that do not fit in the B-cache . For example,
the AlphaServer 4 1 00 5/300 is 30 to 60 percent
faster than the HP 9000 K420 server in the
memory- intensive workloads from the SPECf1.)95
benchmark su i te . (Note that all competitive per
formance data presented in this paper is val id as

Digital Tcdmical journal Vol. 8 No.4 1996 3

4

of the submission of this paper in July 1996. The
references cited rekr the reader to the literature
and the appropriate Web sites for the latest ped(>r
nunce information.)

• An expanded very large memory (VLM). The max
imum memory size increased from 2 gig<1bytes
(GB) to 8GB without sacrificing CPU slots. This
increase in memory size benefits primarily the com
me!-cial, multistream applications. For example, the
AJphaServer 4100 5/300 server achieves approxi
mately r..vice the throughput of the Compaq
ProLiant 4500 server and 1.4 times the throughput
of the AJphaServer 2100 on the AIM Suite Vll

benchmark tests.

• A 4-M 13 B-cache and a clock speed of 400 M Hz
in the AJphaServer 4100 5/400 system. The larger
B-cache size and 33 percent faster clock resulted in
a 30 to 40 percent performance improvement over
the AlphaServer 4100 5/300 system.

The performance improvement rrom rhe IJrger
B-cache increases with the number of CPUs. For
example, rhe AJphaServer 4100 5/300 system with
its 2-M13 R-cache design performs 5 to 20 percent
raster with one CPU and 30 to 50 percent raster
with four CPUs than the uncached 5/300£ system.
The majority of workloads included in this analysis
benefit ri·om the B-cache; however, the uncached sys
tem ourperr(mns the cached implementation by 10 to
20 percent f(>r large applications that do nor fit in
the 2-MB B-cache.

The pertc>rmance counter profiles, based on rhe
built-in h::�rdware monitors, indicate that the nnjor
ity of issuing time is spent on single and dual issuing
and that a small number of Aoating-point workloads
take advantage of triple and quad issuing. The
load/store instructions make up 30 to 40 percent of
all instructions issued. The stall time associated with
waiting ror data that missed in the various levels of
cache hierarchy accounts ror the most significant por
tion of the time the server spends processing com
mercial workloads.

Memory latency

Memory IJrency and bandwidth have been recog
nized as important perr(mnance factors in the earJy
Alpha-based implementations. "'·'7 Since CPU speed is
increasing at a much higher rate than memory speed,
the "memory wall" limitation is expected to become
even more important in the future. Therdore, reduc
ing memory latency and increasing bandwidth have
been major design goals ror the AlphaServer 4100
platrorm.' The AlphaServer 4100 achieved the lowest
memory latency of all DIGITAL products based on

Vol. 8 No.4 1996

the Alpha 21164 microprocessor Jnd all multiproces
sor products by leading industrv vendors. The major
benefits come ri·om the simpler intcrhce, rhe use of
synchronous dvnamic random-access memun·
(DRMvl) chips (i.e., svnchronous memorv), and rhe
lower fill time." Figure 1 shows the measured mem
ory load latencv using the lmbench benchm::�rk with
a 512-byte stride.'" In this benchmark, each load
depends on the result ri·om the previous load' and
therd()re l:!tency is nor a good measure of pnr(>r
mance rc>r systems that can have multiple outstanding
loads. (AiphaServer 4100 systems can have up to
two outst:rnding requests per CPU on the bus.)
The lmbench benchmark data indic1tes rhar the
AlphaServer 4100 has the lowest memory latency of
:rll industry-leading reduced-instruction set comput
ing (RISC) vendors' sen·ers.

As shown in Figure 2 , using a slightlv dii"fi..Tel1t
worklo:�d where there is no dependencv bel:\1-een
consecutiYe loads, the AJphaSen·er 4100 achie1·es c1 en

lower per-Joad latency, since the iateilC\" r(>r the l:\1"0
consecutive lo:�ds can be overbpped. The platc1lls
in Figure 2 sholl" rhe load latency at each ofrhe r(>llow
ing levels of cache/memory hierarclw: R-kilobne
(KB) on-chip data cache (D-cache), 96-KB on-chip
secondary instruction/data cache (S-cache), 2- and
4-MB offchip B-eaches (except rl.lr model 5/300 E),
:�nd memory. The uncached AlphaServer 4100
5/300E :�chieves Jn 85 percent lower memory load
latency than the previous-generation Alph:�Server
2100. The AJphaServer 4100 5/300, with its 2-MB
B-cache, increases memorv latency 30 percent r(>r
load operations and 6 percent for store oper:�tions
compared to the uncachcd 5/300E svsrem because of
the time spent checking for data in the B-c1che. The
svnchronous memorv shows one cvcle lower Lltencv
than the asvnchronous extended dar:� out (EDO)
DRAM (i.e., asynchronous memorv), ll"hich results in
9 percent bster load operations and 5 percent bster
store operations. "Note that the cached AlphaSnl'er
4100 and AI phaSe rver 8200 SI'Stems, ll'hich ha\·e
the same clock speeds of 300 lv!Hz, achieve com
par:�ble B-c:�che latencv, while the memory Lnenc1·
r(>r :�II AlphaServer 4100 S\'Stems is signific:�ntlv
lower than on both the AlphaServer 8200 and the
Alph:.1Server 2100 systems. The latency to the B-cKhe
in this rest is lower on the AlphaServer 2 J 00 th:ll1
on the other AlphaServer systems due to 32-byte
blocks (compared to 64-byte blocks in the 4100 �111d
8200 systems). Although not shown in this rest, many
applications can benefit from the larger uche block
size. The 400-IV!Hz AlphaSen·er 4100 svsrem uses
J 33 percent raster CPU and Khiei"CS 11 percent
reduction in B-cache and memorv Lltcncv compared
to the 300-MHz AlphaServer 4100 s1·stem.

LMBENCH: DEPENDENT LOAD MEMORY LATENCY
(STRIDE= 512 BYTES)

Figure 1

ALPHASERVER 8200
(300 MHZ)

ALPHASERVER 4100
5/400 (400 MHZ)

ALPHASERVER 4100
5/300 (300 MHZ)

ALPHASERVER 4100
5/300E (300 MHZ)

INTEL PENTIUM PRO
(200 MHZ)

SUN ULTRASPARC
(167 MHZ)

HP 9000 K210
(119 MHZ)

SGI POWER CHALLENGE
R1 0000 (200 MHZ)

IBM RS/6000 43P
POWERPC (133 MHZ)

0 200 400 600 BOO
MEMORY LATENCY
(NANOSECONDS)

1,000 1,200

lmbench Benchmark Test Resu l ts Showing Memory Latency for Dependenr Loads

Memory Bandwidth

The AJphaServer 4 100 system bus achieves a peak
bandwidth of 1 . 06 gigabytes per second (GB/s). The
STREAM McCalpin benchmark measures sustainable
memory bandwidth in megabytes per second (MB/s)
across four vector kernels: Copy, Scale, Sum, and
SAXPY." Figure 3 shows measured memory band
width using the Copy kernel from the STREAM
benchmark. Note that the STREAM bandwidth is
33 percent lower than the actual bandwidth observed
on the AJphaServer 4100 bus because the bus data
cycles are a l located for three transactions: read
source, read destination, and vvrite destination. The
AlphaServer 4 100 shows the best memory bandwidth
of all multiprocessor platforms designed to support up
to four CPUs. The platforms designed to support
more than fou r CPUs (i.e . , the AJphaServer 8400, the
Sil icon Graphics POWER CHALLENGE R10000, and
the Sun Ultra Enterprise 6000 systems) show a higher
bandwidth for fou r CPUs than the AlphaServer 4 100.
The STREAM bandwidth on the AlphaServer 4 1 00
5/300 is 2.2 times h igher than on the previous
generation AlphaServer 2100 5/250 (2 .6 times higher

with the AJphaServer 4100 5/400). The uncached
AJphaServer 4 100 model shows 22 percent higher
memory bandwidth than the cached model 5/300.

The AJphaServer 4 1 00 memory bandwidth
improvement from synchronous memory compared
to EDO ranges from 8 to 1 2 percent. The synchro
nous memory benefit i ncreases with the number of
CPUs, as shown in Table l.

Low memory latency and high bandwidth have
a significant dtect on the performance of workloads
that do not fit in 2- to 4-MB B-eaches. For example ,
the majority of the SPECtp9 5 benchmarks do not fit
in the 2 -MB cache. (Figure 20, which appears later in
this paper, shows the cache misses.) The SPECtp95
performance comparison presented in Figure 4 shows
that the uncached AlphaServer 4100 5/3 00£ system
outperforms the 2-MB B -cache model 5/300 i n the
benchmarks with the highest number of B-cache
misses (tomcatv, swim, applu , and hydro2d). The per
formance of the uncached mod el 5/300£ is compar
able to that of the 4 -MB B-cache model 5/400 for the
swim benchmark. However, the benchmarks that fit
better in the 4-MB cache (apsi and waveS) run signifi
cantly slower on the 5/300£ than on the 5/400.

Digital Technical journal Vol. 8 No.4 1996 5

6

(jJ
0
z
0
u
w
(J)
0
z
<(
�
>-
u
z
w

� _j

300

250

200

150

100

50

INDEPENDENT LOAD LATENCY
(STRIDE= 64 B YTES)

0 ���������
4 KB 8 KB 1 6 KB 32 KB 64 KB 1 28 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB

DATA SET SIZE

Figure 2

KEY:

------ ALPHASERVER 4100 5/300E
- ALPHASERVER 4100 5/300

ALPHASERVER 4100 5/400

ALPHASERVER 8200 5/300

-- ALPHASERVER 2100 5/300

Cache/Memory Latency for 1ndepencknt Loc1ds

1.000

900

0
800 z

0
u
w
(J)

700 a:
w
CL
(J)
w 600 f-->-en
<(
<.9 500
w

6
I
f--
0

3:
0
z 300 <(en

0

Figure 3

2 3

NUMB ER OF CPUs

4

STREAM t'vlcCalpin Memory Copy Bandwidth Comparison

Digital Technical journal Vol. 8 No.4 l996

5

KEY:

---+-- ALPHASERVER 8400 5/300
- ALPHASERVER 8400 5/350

IB M RS/6000-990
SGI POWER CHALLENGE R10000

- ALPHASERVER 4100 5/300E

- ALPHASERVER 4100 5/300
- ALPHASERVER 4100 5/400

HP 9000 J210

ALPHASERVER 2100 5/250
----<>---- SUN SPARCSERVER 2000E

INTEL ALDER PENTIUM PRO

SUN ULTRA ENTERPRISE 6000

6

Table 1
Bandwidth Improvement from Synchronous Memory
to Asynchronous Memory

Bandwidth
improvement 8%

Number of CPUs

2 3

8% 9%

4

12%

Figure 4 shows that the AlphaServcr 4100 5/300
system has a significant (up to t\vo times) performance
advantage over the previous-generation AlpbaServer
2100 system in the SPEC!p95 benchmark tests with
the highest number of B -cache misses. The SPEC!p95
tests indicate that the 300-MHz AlphaServer 4100 is
more than 50 percent faster than the HP 9000 K420
server, and the 400-MHz AlphaServer 4100 is twice as
fast as the HP 9000 K420 in the SPECtp95 bench
marks that stress the memory subsystem.

SPEC95 Benchmarks

The SPEC95 benchmarks provide a measure of pro
cessor, memory hierarchy, and compiler pert(Jrmance.
These benchmarks do not stress gr<lphics, net\vork,
or l/0 pertormance. The integer SPEC95 suite

SPECFP95

146.WAVE5

145.FPPPP

141.APSI

125.TURB3D

110.APPLU

107.MGRID

1 04.HYDR02D

103.SU2COR

102.SWIM

101.TOMCATV

0

KEY:

• HP 9000 K420

5 10

• ALPHASERVER 2100 5/300

• ALPHASERVER 4100 5/400

0 ALPHASERVER 4100 5/300

ALPHASERVER 4100 5/300E

Fig ure 4

SPECFP95

15 20 25 30

SPECtp95 Benchmarks Performance Comparison

35

(CINT95) contains eight compute- intensive integer
benchmarks written in C and incl udes the benchmarks
shown in Table 2 .''·12

The floating- point SPEC95 su ite (CFP95) contains
10 compute- intensive floating-point benchmarks writ
ten in FORTRAN and includes the benchmarks shown
in Table 3 .

"·12

The SPEC Homogeneous Capacity Method
(SPEC95 rate) measures how t:\st an SMP system can
perform multiple CINT95 or CFP95 copies (tasks) .
The SPEC95 rate metric measures the throughput of
the system running a number of tasks and is used tor
evaluating multiprocessor system performance.

Table 2
CINT95 Benchmarks (SPECint95)

Benchmark

099.go

124.m88ksim

126.gcc

129.compress

130.1i
132.ijpeg

134.perl

147.vortex

Table 3

Description

Artificial intelligence, plays the
game of Go
A Motorola 88100 microprocessor
simulator
A GNU C compiler that generates
SPARC assembly code

A program that compresses large
text files (about 16 MB)
A LISP interpreter
A program that compresses/
decompresses an image
A Perl interpreter that performs
text and numeric manipulations
A database program that builds and
manipulates three interrelational
databases

CFP95 Benchmarks (SPECfp95)

Benchmark

1 01.tomcatv

102.swim

1 03.su2cor

1 04.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

Description

A fluid dynamics mesh generation
program

A weather prediction shallow water
model

A quantum physics particle mass
computation (Monte Carlo)

An astrophysics hydrodynamical
Navier-Stokes equation

A multigrid solver in a 3-D potential
field (electromagnetism)

Parabolic/elliptic partial differential
equations (fluid dynamics)

A program that simulates
turbulence in a cube

A program that simulates tempera
ture, wind, velocity, and pollutants
(weather prediction)

A quantum chemistry program that
performs multielectron derivatives

A solver of Maxwell's equations on
a Cartesian mesh (electromagnetics)

Digital TcchnicaJ journ;ll Vol. 8 No.4 1996 7

8

Figure 5 compares the SPEC95 performance of
the AlphaServer 4 1 00 systems to that of the other
industry- lead ing vend ors using published results as
of July 1 996. Figure 6 shows the same comparison in
the multistream SPEC95 rates u Note that all the
SPEC95 comparisons in this paper are based on the
peak results that i nclude extensive compiler optimiza
tions. 1 2 Figure 5 indicates that even the uncached
AlphaServer 4100 5/300£ performs better than the
HP 9000 K420 system, and the AlphaServer 4 100
5 I 400 shows approximately a two times performance
advantage over the HP system. The AlphaServer 4 100
5/300 SPECin t95 performance exceeds that of the
Intel Pentium Pro system, and the Al phaServer 4 100
5/300 SPECtp95 performance is double that of
the Pentium Pro . The AlphaServer 4100 5/400 is
1 . 5 times (SPECint9 5) and 2 . 5 times (SPECfp95)
faster th::m the Pentium Pro system. The multiple
processor SPECtp95 on the AlphaServer 4 100 is
obtained by decomposing benchmarks using the KAP
preprocessor from Kuck & Associates. Note that the
c:Khed tour- CPU AlphaServer 4 I 00 5/300 outper
tCll'IllS the Sun Ultra Enterprise 3000 with six CrUs in
the SrECtp95 para llel test. The performance benefit
of the cached versus the uncached AlphaServer 4 100
is greater in multiprocessor configurations than in uni
processor configurations.

SPEC95 Multistream Performance Scal ing

Figures 7 and 8 show srEC95 multistrcam perfor
mance as the number of CrUs increases. The SMr
scal ing on the AlphaServer 4 100 is comparable to that

SPEC95
35

30

25

20

15

1 0

5

0

450

400

350

300

250

200

150

1 00

50

0

KEY:

SPEC95 RATES

SPEC INT _RATE95 SPECFP _RATE95

• ALPHASERVER 4100 5/300E (4 CPUs)

Iii ALPH ASERVER 4100 5/300 (4 CPUs)

0 ALPHASERVER 4100 5/400 (4 CPUs)

• HP 9000 K420 PA-RISC 7200 1 20 MHZ (4 CPUs)

0 SUN ULTRA ENTERPRISE 3000 ULTRASPARC 167 MHZ (4 CPUs)

0 INTEL C ALDER PENTIUM PRO 200 MHZ (1 CPU)

0 IB M RS/6000 J40 POWERPC 604 112 MHZ (6 CPUs)

Figure 6
SPEC95 Throughput Resu l ts (S PEC95 Rates)

KEY

• ALPHASERVER 4100 5/300E

ALPHASERVER 4100 5/300

0 ALPHASERVER 4100 5/400
• HP 9000 K420 PA-RISC 7200 (1 20 MHZ)

0 SUN ULTRA ENTERPRISE 3000

ULTRASPARC (167 MHZ)

0 SGI POWER CHALLENGE R10000 (195 MHZ)

0 INTEL C ALDER PENTIUM PRO (200 MHZ)

0 IBM RS/6000 43P POWERPC 604E (166 MHZ)

SPECINT95 1 CPU SPECFP95 1 CPU SPECFP95 4 CPUs
(SUN SYSTEM 6 CPUs)

Figure 5
SPEC95 Speed Results

Dig;itol Technical journal Vol . 8 No.4 1 996

SPECINT _RATE95

450

O L---------�--------�--------�
1

KEY:

-

-
-

2 3
NUMBER OF CPUs

ALPHASERVER 4 1 00 5/300E

ALPHASERVER 4 1 00 5/300

ALPHASERVER 4 1 00 5/400

ALPHASERVER 2 1 00 5/300

HP 9000 K420
SUN ULTRA ENTERPRISE 3000

---o--- IBM RS/6000 J40

Figure 7
S PECi nt_rate95 Performance Sca l ing

SPECFP _RATE95

450

400

350

300

250

200

1 50

1 00 , ..

4

5: ['-----------'-------'------------'--
2 3
NUMBER OF CPUs

KEY:

- ALPHASERVER 4 1 00 5/300E

ALPHASERVER 4 1 00 5/300

ALPHASERVER 4 1 00 5/400
- ALPHASERVER 2 1 00 5/300

--- HP 9000 K420

SUN ULTRA ENTERPRISE 3000

---o-- IBM RS/6000 J40

Figure 8
SPECfp_rate95 Pertonnancc Scal i ng

4

on the AJphaServer 2 100 for integer workloads
(that fit in the 5/300 2 -MB B-cache) . Note that
SPECint_rate95 scales proportionally to the number
of CPUs in the majority of systems, since these work
loads do not stress the memory su bsystem. The SMP
sca l ing in SPECfP_rate95 is lower, s ince the majority
of these workloads do not fit i n 1 - to 4-MB caches .

I n the majority of applications, the AJphaServer
4100 5/300 and 5/400 systems improve SMP sca l ing
compared to the uncached AJphaServer 4 100 5 /300E
by reducing the bus traffic (from fewer B-cache
misses) and by takjng advantage of the duplicate tag
store (DTAG) to reduce the number of S -cache
probes . The cached 5/300 scaling, however, is
lower than the uncached 5/300E scal i ng in memory
bandwidth- intensive applications (e .g . , tomcat\' and
swim) . The analysis of traces collected by the logic
analyzer that monitors system bus traffic indicates that
the lower scaling is caused by (1) Set Dirty overhead,
where Set Dirty is a cache coherency operation used to
mark data as modified in the initiating CPU's cache;
(2) sta l l cycles on the memory bus; and (3) memory
bank conflicts . 2 · 3

Symmetric Multiprocessing Performance Scal ing
for Paral lel Workloads

Paral le l workloads have higher data sharing and lower
memory bandwidth requirements than multistream
workloads. As shown in Figu res 9 and 10 , the
AJphaServer 4 1 00 models with module - level caches
improve the SMP sca ling compared to the uncached
AJphaServer 4 100 model in the UNPACK 1000 X
1 000 (mi l lion floating-point operations per second
[MFLOPS]) and the paral lel S PECfP95 benchmarks
that benefit from 2- and 4-M.B B -eaches. Figure 9
indicates that tl1e AJphaServer 4 100 5/400 outper
forms the SGJ Origin 2000 system in the UNPACK
1000 X 1 000 bench mark by 40 percent . Figure 10
ind icates that the four-CPU AlphaServer 4 100 5/400
shows better scal ing than any other system in its class
and outperforms the six-CPU Sun U ltra Enterprise
3000 system by more than 70 percent.

Very Large Memory Advantage:
Commercial Performance

As shown in Figures l l and 1 2 , the AJphaServer 4 100
performs well in the commercial benchmarks TPC-C
and AIM Suite VI I . 1 3• 1 4 In addition to the low memory
and ljO latency, the AJphaServer 4 1 00 takes advan
tage of the VLM design i n these I/O-intensive work
loads : with four CPUs, the platform can support up to
8 GB of memory compared to l GB of memory on the
AJphaServer 2 100 system with four CPUs and 2 GB
with three crus.

Digital 'kchnical journ;ll Vol . 8 No. 4 1 996 9

! 0

2,000

1 ,800

1 ,600

1 ,400

1 ,200

1 ,000

800

600

400

200

KEY:

UNPACK 1 000 x 1 000

2 3
NUMBER OF CPUs

- ALPHASERVER 4 1 00 5/300E
- ALPHASERVER 4 1 00 5/300

ALPHASERVER 4 1 00 5/400

-- ALPHASERVER 2 1 00 5/300
- SGI ORIGIN 2000 R 1 0000 { 1 95 MHZ)

IBM ES/9000 VF

HP EXEMPLAR S-CLASS PA 8000 { 1 80 MHZ)

Figure 9
U N PACK lOOO x l OOO Para l le l Pcrtonmncc Scal i ng

IBM RS/6000 J30
(8 CPUs)

COMPAQ PROLIANT
4500/166

HP 9000 K420

SUN SPARCSERVER
2000E

ALPHASERVER
4 1 00 5/400

0 1 ,000

4

PARALLEL SPECFP95

35

30

25

20

1 5

1 0

KEY:

2 3 4
NUMBER OF CPUs

- ALPHASERVER 4 1 00 5/300E

ALPHASERVER 4 1 00 5/300

ALPHASERVER 4 1 00 5/400
- ALPHASERVER 2 1 00 5/300
- HP 9000 K420

SUN ULTRA ENTERPRISE 3000

Fig u re 1 0
P;�ul lc l SPECfp95 Pcrtixmance Sc1 l ing

TPC-C THROUGHPUT (TPMC)

2,000 3,000 4,000 5,000 6,000 7,000

THROUGHPUT (TRANSACTIONS PER MINUTE)

Fig u re 1 1
Transaction Processing Pcrtorrnancc (TPC-C Using a n OrJCic D<lt:tbJsc)

Digiral Technic.1l Jou rna l Vol . 8 No. 4 l Y%

5 6

COMPAQ PROLIANT 4500
PENTIUM (1 66 MHZ)

COMPAQ PROLIANT 5000 6/200
PENTIUM PRO (200 MHZ)

ALPHASERVER 2 1 00 5/300

ALPHASERVER 4 1 00 5/400

ALPHASERVER 4 1 00 5/300"

ALPHASERVER 4 1 00 5/300E"

AIM SUITE VII THROUGHPUT

0 500 1 ,000 1 ,500 2,000 2,500 3,000 3,500

THROUGHPUT (JOBS PER MINUTE)

"These internally generated results have not been AIM certified.

Figure 1 2
AJ M Su ite VII Jvlul riuser/S hared U N I X M i x Performance

Figures 1 1 and 1 2 show the AlphaServer 4 100 sys
tem's TPC-C performance (using an Oracle database)
and AIM Suite V I I throughput pertormance as com
pared to other industry-leading vendors. Note that the
performance of the uncached AlphaServer 4 100
5/300E is comparable to that of the 300-MHz
AlphaServer 2 100. (The AlphaServer 2 100 system
used in this test had three CPUs and 2 GB of memory,
whereas the AlphaServer 4 100 system had four CPUs
and 2 GB of memory.)

With its 2 - M B B-cache, the AlphaServer 4 100
5/300 improves throughput by 40 percent in the
AIM Su ite V I I benchmark tests as compared to
the uncached AlphaServer 4 100 5 /300E. The
AlphaServer 4 1 00 5/400, with its 4 -MB B -cache,
benefits from its 33 percent taster clock and two times
larger B -cache and provides 40 percent improvement
over the A lphaServer 4 100 5/300. Note that the
AlphaServer 4 100 5/300 and 5/300E results were
obtained through in ternal testing and have n ot been
AIM certified . The AlphaServer 5/400 results have
AIM certification .

Compared to the best published industry AIM Suite
VI I pertorma nce, the AlphaServer 4 100 5/300
throughput is almost twice that of the Compaq
ProLiant 4500 server, and the AlphaServer 4 100
5/400 throughput is more than 50 percent higher
than that of the Compaq ProLiant 5000 server. 1 4 At

the October 1 996 UNIX Expo, the AipbaServer 4 100
family won three AIM Hot I ron Awards: for the best
performance on the vVindows NT operating system
(for systems priced at more than $50,000) and tor
the best price/performance i n two UNIX mixes
multi user shared and file system (tor systems priced at
more than $ 1 50,000) . 1 4

Cache Improvement on the
Al pha Server 41 00 System

Figures 1 3 and 1 4 show the percentage performance
improvement provided by the 2 -MB B - cache in
the AlphaServer 4 100 5/300 as compared to the
uncached AlphaServer 4 100 5 /300E. Figure 1 3
shows the improvement across a variety of workloads;
Figure 1 4 shows the improvement in i nd ividual
SPEC95 benchmarks for one and tour CPUs.

As shown in Figure 1 3, the 2-MB B -cache in the
Alp baSe rver 4 100 5/300 improves the performance by
5 to 20 percent for one CPU and 25 to 40 percent for
tour CPUs as compared to the uncached AlphaServer
4 100 5/300E system . The benefits derived from having
larger caches are significantly greater tor tour CPUs
compared to one CPU, since large caches help alleviate
bus traffic in multiprocessor systems.

The workloads that do not fit in the 2- to 4-MB
B - cache (i .e . , tomcat\', swim, applu) in Figure 1 4

Digital Tec h n ical Journal Vol . 8 No. 4 1 996 l l

1 2

PERFORMANCE IMPROVEMENT FROM 2-MB CACHE

AIM SU ITE VII MAX USERS
4 CPUs

AIM SUITE VII JOBS/M IN
4 CPUs

L INPACK_1 K 4 CPUs

LINPACK_1 K 1 CPU

SPECFP92 4 CPUs

SPECI NT92 4 CPUs

SPECFP92 1 CPU

SPECI NT92 1 CPU

SPECFP95 4 CPUs

SPECI NT95 4 CPUs

SPECFP95 1 CPU

SPECI NT95 1 CPU

I

I

I

I

�
I

0 5 10 1 5 20 25 30 35 40 45

PERCENT IMPROVEMENT

Figure 1 3
PcrrormatKe I m pro,·cmcnt ;lcross VJrious Wol'i<ioads ti·om a 2 - lv! B B - C1ehc

run raster on the u ncached A l p haServer 4 100 tha n
on the cached AJphaServer 4 tOO (u p to 10 perce nt
taster on one CPU and 2 0 percent faster on f() u r
C P U s) d ue t o the overhead f(>r prob ing the B- cache
and the i ncrease i n Set Dirty bandwid th . The majority
of the other workl oads benefit fi·om la rger caches.

The Ai phaServcr 4 100 5/400 flt rther improves
the ped(mnance by increasing the s ize of th e B - cache
fi·om 2 MB to 4 MB. I n Jdd ition, the CPU clock
im prove ment of 33 percent, B -cache i mprove ment of
7 percent in !Jrency and l l percent in bandwid th, and
the memo ry bus speed i mprovement of 1 1 percen t
together yield an ovec1 1 l 30 to 4 0 percen t improve
ment in the A lp haServe r 4 1 00 model 5/400 perfor
mance as co mpared to that of the AlphaScrver 4 1 00
model 5/3 00.

Large Scientific Applications: Sparse UNPACK

The SpJrse UNPACK benchmJrk solves a large, sparse
symmetric svsrem of l i near eq uations using the con
j u gate grJd ient (CG) i terative method . The bench
mark h as th ree cases, each with a d i fferent tvpe of
precond irionc r. Cases 1 and 2 usc the incomplete

Digital Tcchnic1l journal VoL 8 No. 4 1 996

Choles ky (! C) t:<ctori zarion as the preconditioner,
w hereas Case 3 uses the diagonal precond itioner.

This workload is representative of l :t rge scientific
:tpp l iotions that d o not fi t i n mega byte-size caches.
The workload is i m portallt in l arge appl ications,
e . g . , models of electrica l ncrworks, economic systems,
d i ffltsion , radiation, a n d c lasticirv. I t was decom posed
to r u n on m u l tiprocessor systems using the KA P
preprocessor.

f igure 1 5 shows that the uncached AJphaServer
4 1 00 5/300E outper f(mm the Al phaServer 8400 by
4 1 percent for one CPU and by 9 percent fcJr two CPUs
because of h igher de livered system bus bandwidth .
However, the AlphaServcr 4 1 00 5/300E tai ls behind
with three and tour CPUs, as i t docs i n the McCa lpin
memory bandwidth tests shown i n Figure 3 . Note tllJt
with one CPU, the 300- M H z u tlCJched AlphaServer
4 1 00 pc r f(mm :tt the same level as the 400-MHz
cached AlphaServer 4 1 00 and pcrfcm11S 1 8 percent
better than the 300-M Hz cached A l ph aSen'er 4 1 0 0 .
T h is is <1 11 e xamp l e o f t h e tvpe of appl ication tor
which the cache d i m i n ishes the pedcmllJilCe . The
AlphaScrver 4 1 00 5/300E is a better march for t his
class of applications than the cached systems.

PERFORMANCE I MPROVEMENT FROM 2-MB CACHE IN SPEC95

SPECINT95

1 47.VORTEX

1 34 . PERL

1 32 . 1JPEG

1 30 .LI

1 29.COMPRESS

1 26.GCC

1 24.M88KSIM

099.GO

SPECFP95

1 46WAVE5

1 45 .FPPPP

1 4 1 .APSI

1 25.TURB3D

1 1 0.APPLU

1 07.MGRID

1 04.HYDR02D -

�--...... --

1 03.SU2COR

1 02.SWIM

1 0 1 .TOMCATV

KEY:

0 1 CPU

• 4 CPUs

- 20 0 20 40 60 80 1 00 1 20
PERCENT IMPROVEMENT

Figure 1 4
SPEC95 Performance I m provement ti·01n a 2 - M B B- Cacl1e

Image Rendering

The AlphaServer 4 100 shows significant performance
advantage in image rendering applicatjons compared to
the other industry-leading vendors. Figure 16 shows
that the AlphaServer 4 1 00 5/400 system is approxi
mately 4 rimes taster than the Sun SPARC system that
was used in the movie Toy Story, as measured in
RenderMarks. ' 5 The AJphaScrver 4 1 00 is 2.6 times
taster than the Sil icon Graphics POWER CHALLENGE

system and 2 .4 times faster than the HP /Convex
Exemplar S PP- 1 200 system on the M ental Ray image
rendering application tt·om Mental Images. These
image rendering appl ications rake advantage of larger
caches, and the performance improves as the cache size
increases, particularly with four C:PUs.

Performance Counter Profiles

The figures in this section, Figures 1 7 through 22,
show the performance statistics collected using
the bui l t- in Alpha 2 1 1 64 performance cou nters on the
AlphaServer 4 100 5/400 system. These hardware
monitors col lect various events, incl uding the num ber
and type of i nstructions issued, mu l tiple issues, s ingle

issues, branch mispred ictions, sta ll components, and
cache misses.' ·"'. l ' These statistics are usdi.d for analyz
ing the system behavior under various workJoads.
The resu l ts of this ana lysis can be used by computer
architects to drive hardware design trade-oHs in fi.1 ture
system designs.

The S PEC95 cycles per i nstruction (C P I) d ata
presented in Figure 1 7 shows lower C:PI val ues for
the i nteger benchmarks (CPI values of 0 .9 to 1 . 5)
than tor the floating-point benc hmarks (CPI val ues
of 0 .9 to 2 . 2) . The C P I in commercial workloads
(e .g . , TPC- C) is higher than in the SPEC bench
marks, primarily because commercial workloads have

a higher stal l t ime, as shown in Figure 1 8 . Note
that the performance counter statistics were col l ected
with tou r CPUs running TPC-C (with a Sybase data
base) , while S PEC95 statistics were col lected on a
single CPU.

The Alpha 2 1 1 64 has two i nteger and two floating
point pipel ines and is capable of issuing up to four
i nstructions s imultaneously. The i nteger pipe l ine 0
executes arithmetic, logical , load/store, and shift
operations. The integer pipe l ine l executes arithmetic,
logica l , load , and branch/jump operations. The
floating-point pipel i ne 0 executes add, subtract,
Digital Tec h n ical journal Vol . 8 No. 4 1 996 1 3

1 4

Figure 1 5

70

60

50

(f) � 40
_J u.
::;;;;

30

20

1 0

0

Sparse L I N PAC K l\:d(mnc1ncc

SPARSE UNPACK

2 3
NUMBER OF CPUs

4

KEY:

D ALPHASERVER 4 1 00 5/300E

D ALPHASERVER 4 1 00 5/300

Ill ALPHASERVER 4 1 00 5/400

• ALPHASERVER 8400

PIXAR RENDERMARKS

IBM RS/6000 390

HP 9000 735
(1 25 MHZ)

SGI CHALLENGE R4400
(200 MHZ)

KEY:

D 1 CPU
• 4 CPUs

0 500 1 ,000 1 ,500 2,000 2 ,500

RENDERMARKS

Figure 1 6
I mage Rendering Pcrr(mnance

compare, and floating-point branch instructions. The
floating-point pipe l ine 1 executes mul tiply i nstruc
t ions. The time d istribu tion il l ustrated in Figure 1 8
ind icates that most of the issu i ng time is spent in single

Digir�l Tcchnic1l)ourn:1l Vol . ::> No. 4 1 996

and d ual issu ing. Triple and quad issuing is noticeable
in several floating-point benchmarks, but, on averap:c ,
only 3 percent of the time i s spent on triple a nd qu ,'td
issuing in the SPECf1..,95 benchmarks.

CPI

TPC-C

SPECINT9S

VORTEX

PERL

M88KSIM

Ll
IJPEG

GO

GCC

COMPRESS

SPECFP9S

WAVES

TURB3D

TOMCATV

SWIM

SU2COR

MGRID

HYDR02D

FPPPP

A PSI

APPLU

0 o.s 1 .0 1 .S 2.0 2.S 3.0 3 .S 4 .0

CYCLES PER INSTRUCTION

Figure 1 7
S PEC95 Cycles-per-instruction Comparison

TIME D ISTRIBUTION

TPC-C

SPECINT9S

VORTEX

PERL

M88KSIM

Ll

IJPEG

GO

GCC

COMPRESS

SPECFP9S

WAVES

TURB3D

TOMCATV

SWIM KEY:
SU2COR

MGRID
• SINGLE ISSUE
• DUAL ISSUE

HYDR02D D TRIPLE ISSUE
FPPPP D QUAD ISSUE

A PSI • DRY STALL

APPLU D FROZEN STALL

0% 20% 40% 60% 80% 1 00%

TIME

Figure 1 8
Issuing and Stall Time

Digit,ll T�chnical Journal Vol . 8 No. 4 1 996 1 5

1 6

The sta l l time (dry p lus frozen sta l ls in Figure 1 8)
i s h igher i n the floating-point benchmarks than in
the integer benchmarks and higher i n the TPC-C
benchmarks than in the SPEC95 benchmarks. Dry
stalls inc lude instruction stream (! -stream) stal ls
caused by the branch mispredictions, program counter
(PC) mispredictions, replay traps, I -stream cache
misses, and exception drain. Frozen stalls include data
stream (D -stream) sta l ls caused by D-stream cache
m isses as well as register conflicts and un i t busy. Dry
sta l l s are h igher in SPECint95 and TPC-C (main ly
because of I -stream cache misses and replay traps) ,
whereas frozen stalls a re h igher in SPEC!p95 and
TPC-C (mainly because of D-stream cache misses) .

The Alpha 2 1 1 64 microprocessor reduces the per
formance penalty due to cache misses by implement
ing a brge, 96- KB on-chip S-cache:' ' This cache is
three -way set associative and contains both instruc
tions and data . The four-entry prde tch bufter al lows
prefetching of the next four consecutive cache blocks
on an i nstruction cache (I -cache) miss. This reduces
the pena lty tor ! -stream stalls. The s ix-entry m iss
add ress file (MAF) merges loads in the same 32-bytc
block and a l lows servicing multiple load misses wi th
one data fi l l . A six-entry write buffe r is used to reduce
the store bus traffic and to aggregate stores into
32-byte blocks.'"'

Figure 19 shows the instruction mix in SPEC95 .
The Alpha instructions are grouped into the fol lowing

TPC-C

SPECINT95

VORTEX

PERL

M88KSIM

Ll

IJPEG

GO

GCC

COMPRESS

SPECFP95

WAVES

TURB3D

TOMCATV

SWIM

SU2COR

MGRID

HYDR02D

FPPPP

A PSI

APPLU

0%

Fig u re 1 9
S PEC95 I nsrrucrion Profiles

Dig;i t.ll Tcdl ll icll)ourn;ll

20%

INSTRUCTION STATISTICS

40% 60%
INSTRUCTIONS

Vol . 8 No. 4 1 9')6

80%

categories: load (both floating-point and i nteger),
store (both floating-point and integer) , integer (a ll
integer instructions, excluding ones with only R3 l or
l i teral as operands) , branch (al l branch instructions
including uncond i tiorral), and floati ng-point (except
floating-point load and store instructions) . Figure 19
shows the percentage of instructions i n each category
relative to the total number of instructions executed .
Note that load/store i nstructions account for 30 to
40 percent of a l l instructions issued. I nteger instruc
tions are present in both integer and floating-point
benchmarks, but no floating-point i nstructions exist in
the SPECint95 and commercial TPC-C workloads .
The i nteger and commercial workloads execute more
branches, while the branch instructions make up only
a kw percent of a l l i nstructions issued in the floating
point workloads.

The cache misses shown in Figure 20 are higher
in the floating-point benchmarks than in the inte
ger benchmarks . The I -cache misses arc low in the
floati ng-point benchmarks (except tor !pppp) :1 11d
higher in the SPECi nt95 benchmarks and the TPC-C
benchmark. The D-cache m isses are high in the major
ity of the benchmarks, which indicates that a larger D
cachc wou ld reduce D-stream m isses. The TPC-C
benchmark wou ld benefit from a larger 5 -cache ami
taster R -oche, s ince the number of 5 -cachc misses is
high . The B -cache m isses are negligi b le i n the
SPECint95 benchmarks and higher in the majority of

1 00%

KEY:

• STORES

LOADS
0 I NTEGER OPERATIONS
0 FLOATING-POINT OPERATIONS

• BRANCHES

TPC-C

SPECI NT95

VORTEX

PERL

M88KSIM

Ll

IJPEG

GO

GCC

COMPRESS

SPECFP95

WAVES

TURB3D

TOMCATV

SWIM

SU2COR

MGRID

HYDR02D

FPPPP

A PSI

APPLU

CACHE MISSES

....
-

KEY:

• I-CACHE MISSES

• D-CACHE MISSES

0 S-CACHE MISSES

• B-CACHE MISSES

0 � 100 1� �0

CACHE MISSES PER 1 ,000 INSTRUCTIONS

Figure 20
Cache Misses

the SPECfP95 TPC-C bench marks. This data indicates
that complex commercial workloads, such as TPC-C,
are more profoundly affected by the cache design than
simpler workloads, such as SPEC9 5 .

The replay traps are generally caused by (l) fu ll
write -buffer (WB) traps (a fu l l write buffer when a
store instruction is executed) and fu l l miss address file
(MAF) traps (a full MAF when a load instruction is
executed); and (2) load traps (speculative execution of
an instruction that depends on a load instruction, and
the load misses in the D -cache) and load-after-store
traps (a load following a store that hits in the D-cache,
and both access the same location) . 3 The replay traps
and branch/PC mispredictions shown in Figure 21
are not the major reason for the high stall time i n the
commercial workloads (TPC-C), since traps and m is
predictions are h igher in some of the SPECint95
benchmarks than in TPC-C. Instead, a h igh number of
cache misses (see Figure 20) correlates well with the
high stall time and CPI (see Figure 1 7) in TPC-C.

Figure 22 shows the estimated stall components in
SPEC95 and TPC-C. A time-allocation model is used to
analyze the performance effect of different stal l compo
nents. The total execution time is divided into t\vo com
ponents: the compute component (where the CPU is
issuing instructions) and the stall component (where

the CPU is not issuing instructions) . The stall compo
nent is further divided into the dry and fi·ozen stalls:

time = compute + stal l
compute = single + dual + aiple + quad issu ing
stall = dry + frozen

dry = branch mispredictions + PC mispredictions
+ replay traps + I -stream cache misses
+ exception drain sta l ls

frozen = D-su·eam cache misses
+ register conflicts and unit busy

The branch and PC mispredictions affect the per
formance of SPECint95 workloads (6 percent of the
time is spent in branch and PC mispredictions in
SPECint9 5) and have little effect on the performance
of SPECfP95 workloads (less than 1 percent of the
time) and the TPC-C benchmark (1.4 percent of
the time) . The SPECint95 workloads are affected pri
marily by the load traps, whereas the SPECfP95
benchmarks are affected by both load and WB/MAF
traps. Note that the time spent on a load replay trap
is overlapped with the load -miss time.

The S-cache and B-cache stalls are high i n the
SPECfP95 and TPC-C benchmarks, where the stal l
t ime is dominated by the B -cache and memory laten
cies. Note the high stall time resulting from waiting tor

Digital Technical journal Vol . 8 No. 4 1996 1 7

1 8

Figure 2 1

TPC-C

SPECI NT95

VORTEX

PERL

M88KSIM

Ll
IJPEG

GO

GCC

COMPR ESS

SPECFP95

WAVES

TURB3D

TOMCATV

SWIM

SU2COR

MGRID

HYDR02D

FPPPP

A PSI

APPLU

REPLAY TRAPS AND BRANCH M ISPR EDICTIONS

____,

�

0 10 20 30 40 50 60 70 80
REPLAY TRAPS AND BRANCH/PC MISPREDICTIONS
PER 1 , 000 INSTRUCTIONS

Replay Traps and Bmnch/PC Mispredictions

SPEC95 STALL TIME COMPONENTS

TPC-C

SPECINT95

VORTEX

PERL

M88KSIM

Ll

IJPEG

GO

GCC

COMP RESS

SPECFP95

WAVES

TURB3D

TOM CATV

SWIM

SU2COR

MGRID

HYDR02D

FPPPP

A PSI

APPLU

0 1 0 20 30 40 50 60 70 80

PERCENT OF TOTAL T IME

Fig ure 22
Estimated Stal l Time Distribution

Dip:itJI Technical JournJI Vol . 8 No. 4 1996

90 1 00

KEY:

• LDU REPLAY TRAPS

• WB/MAF REPLAY TRAPS

0 BRANCH MISPREDICTIONS

• PC MISPREDICTIONS

KEY:

• BRANCH AND PC

MISPREDICTIONS
• LDU REPLAY TRAPS

0 WB/MAF REPLAY TRAPS

0 I-CACHE MISS TO S-CACHE

• D·CACHE MISS TO S-CACHE

0 S-CACHE MISS TO B·CACHE

• B·CACHE MISS TO MEMORY

0 REGISTER CONFLICT AND

UNIT BUSY

data from memory (c lose to 40 percent) in several of
the SPECfp95 benchmarks that do not fit i n a 4-MB
cache. Al though it contributes to the h igh SPECfP95
sta l l time, the memory component h as a negl igible
effect on SPECint95 performance, since these bench
marks generate on ly a smal l number of B -cache misses
(see Figure 20) . Figure 22 indicates that sta l ls caused
by cache misses are the largest component of the total
stall time; therefore, reducing cache misses and
improving cache and memory latencies would yield
the largest performance benefit.

Once calibrated and val idated with measurements,
this model is an effective tool for evaluating the perfor
mance impact of various components on the overa l l
system design . System architects can vary parameters,
l ike the cache or memory access times or cache size,
and adjust the appropriate stall component to predict
performance of alternative designs without carrying
out detailed and often time-consuming architectural
s imulations.

Conclusion

Using several performance metrics and a variety of
workloads, we have demonstrated that the D I GITAL

AJphaServer 4 100 family of midrange servers provides
significant pertormance improvements over the
previous-generation AJphaServer platform and pro
vides performance leadership compared to the lead ing
i ndustry vendors' platforms. The major AJphaServer
4 100 performance strengths are the low memory and
I/0 latency and high memory bandwidth, the large
memory support (Vl,M) , and the fast Alpha 2 1 1 64
microprocessor. The work described in this paper has
led ro design changes that are expected to be imple
mented i n tlHu re versions of the AJphaServer 4 100
platform. The anticipated performance benefits wi ll
come ti-om a faster CPU, faster and larger caches, faster
memory, and improved memory bandwidth .

Acknowledgments

The authors wou ld l i ke to acknowledge the contribu
tions of John Shakshober, Dave Stanley, Greg Tarsa,
Dave Wi lson, Pau l a Smith, John Henning, M ichael
Delaney, and Huy Phan for providing many of the
benchmark measurements. In addition, special thanks
go to Maurice Steinman, Glenn Herdeg, and Ted
Gent for dedicating system resources and to Masood
Heydari tor supporting this work.

References

l . G . He:rdeg, " Design and I mplementation of the
AlphaSe:rver 4 100 CPU and Memory Architecture,"
Digital Technical journal, vol . 8, no. 4 (1 99 6 , this
issu e) : 48-60.

2. M. Steinman, G. Harris, A . Kocev, V. Lamere, and

R. Pannel l , "The AlphaServer 4 1 0 0 Cached Processor
J'vlodule Architecture and Design," Digital Technical
Journal, vol . 8, no. 4 (1 996, this issu e) : 2 1-37.

3. A lpha 21 1 64 Microprocessor Hardware Reference
J\!/anual (Maynard , Mass . : Digi ta l Equipment Corpo
ration , Order No. EC-QAEQA-TE, 1 994).

4 . J . Edmondson, P. Rubinfeld, and V. Rajagopalan,
"Su perscalar I nstruction Execution i n the 2 1 1 64
Alpha Microprocessor," Il::tl:: Jl1icro, vol . 1 5 , no. 2
(April 1 99 5) .

5 . R . Sires, cd . , A lpha A rchitecture Reference Manual
(Burlington, Mass . : Digital Press, ISBN 1 -5 55 58-098-X,
1 99 2) .

6 . SPEC9 5 Benchmarks (Manassas, Va. : Standard Perfor
mance Evaluation Corporation, 1 99 5) .

7. J . Dongarra, " Performance of' Various Compu ters
Using Standard Li near Equation Sofrware" (Oak
Ridge, Tenn . : Oak Ridge National Laboratory, 1 996) .

8 . UNIX System Price Performance Guide (Menlo Park,
Calif.: AIM Technology, Summer 1 996) .

9 . J . Gray, ed . , The Handbool< for Database a nd
Transaction Processing Systems (San M a teo, Calif. :
JVlorgan Kau ftinan, 1 99 1) .

1 0 . I n formation about the 1m bench suite o f bench marks
is available at h ttp:/ /real iry.sgi .com/employees/
I m_engr /lm bench/wha tis_l m bench . h tm l .

1 1 . T h e STREAM bench mark program i s described
o n - l i ne by the U niversity of Virginia, Department
of Computer Science (Charl ottesvil le , Va.) at
http:/ jww\v.cs.virgi nia .ed u/stream .

1 2 . T h e Standard Performance Evaluation Corporation
(SPEC) makes avai lable submitted resu l ts, benchmark
descriptions, backgro u nd i n formation , and tools at
http:/ jwww.specbench .org.

1 3 . I n formation about the Transaction Processing
Performance Cou nci l (TPC) is available ar http://
www. tpc.org.

1 4 . I n formation about system performance benchmarking
products from AIM Technology, I nc . (Menlo Park,
Cal i f) is avai lable at http:/ jwww.aim.com.

1 5 . I n formation about Pixar Animation Studio's
RenderMark benchmark is available at http://
www. e u rope . d igita l . com/i n fo/a l p haserver/news/
pixar.htm l .

1 6 . Z . Cvetanovic a n d D . B handarkar, " C haracterization
of Alpha f\.,'\P Performance Usi ng TP and SPEC Work
loads," 77Je 21st A nnual International Symposium
on Computer A rchitecture (April 1 994) : 60-70 .

1 7 . Z. Cvetanovic and D . B handarkar, "Performance
Characterization of the Alpha 2 1 1 64 Microprocessor
Using TP a nd SPEC Workloads," 77Je Second
International Symposium on High-Performance
Computer A rchitecture (February 1 996): 270-280.

Digital T�chnical Journal Vol . 8 No. 4 1996 19

20

Biograph ies

Zarka Cvetanovic
A cons u lti ng cngin<.:n in D I G ITAL's Server Prod uct
De1 e lopmcn t Grou p, Zarka l\ ·ctanovic 11·as responsible
for th e pedorniJnce duracteri zatiun and anail'sis o t' thc
Al phaScn cr 4 100, Alp luSen et · 8400/8200, AlphaSenu
2 1 00, D E C : 7000, VAX 7000, a n d VA.\ 6000 s1 stcms, c1 11d
for the perlornunce mod el ing and definition �fti. tturc
AlphaSen-cr plattonm . Since joining D I G ITAL in I 986,
she h:�s been i m·oh·ed i n the de1·c lopment of fist (btabasc
app l ications and efllciclll para l l e l .1pp l ications tor m u l ti
processor s1·stems . /,arb recei1·ed a P h . D . i n e lec trica l and
compu ter cnsinccring ti·om the Unii'CI'Sin· o f ,\-Llssc!Chusetts,
A m h c t·st. She has pu b l ished m er a dozen t<.:chnical pa�Krs
at compu ter arc h i tecture conferences and in leading i ndus
tn· jou n1 Jls .

Darrel D . Donaldson
Darrel Donaldson is a senior consu lt i ng engineer and
the tech nical leader and engineeri ng matugcr tiJr the
A lp h a.Scrver 4 1 00 project . He jo ined D I G ITA L i n 1 983
and served as t h e lead technologist tor the VAX 6000,
VAX 7000, AJphaScrver 7000, and AJp haServer 4 1 00
projects . Darrel has ;1 bachelor's degree in mathematics/
physics ti·om Miami U niversi ty and a master's degrc<.:
in electrica l eng,inec6ng from Ci nci nnati Un iversity,
Cincinnat i , Ohio . H e holds 1 2 patents and hc1s 1 0 patents
pend i ng , all related to protocols , signal i ntegrity, and ch ip
transceiver design tor mu ltiprocessor systems and non
volati l e memory chip design . Darrel maint c1 i ns member
�hip in rhe I EEE El ectron Dev ices Sociery and the
Solid S tate Circuits Society.

Vol . 8 No. 4 l 996

The AlphaServer 4100
Cached Processor Module
Architecture and Design

The DIG ITAL AlphaServer 4100 processor module

uses the Alpha 21 1 64 microprocessor series com

bined with a large, modu le-level backup cache

(B-cache). The cache uses synchronous cache

memory chips and includes a dup l icate tag store

that allows CPU modu l es to monitor the state

of each other's cache memories with minimal

disturbance to the microprocessor. The synchro

nous B-cache, which can be easily synchronized

with the system bus, permits short B-cache

access times for the DIG ITAL Alpha Server 4100

system. It a lso provides a smooth trans ition

from accessing the B-cache to transferring data

to or from main memory, without the need for

re-synchronization or data buffering.

I
Maw·ice B. Steimnan

George J. Harris

Andrej Kocev
Virginia C. Lamere
Roger D. Pannell

The DIGITAL Alp haScrvcr 4100 series of servers repre
sents the third generation of Alpha microprocessor
based , mid-range computer systems. Among the
technical goals achieved in the system design were the
use oftour CPU modu les, 8 giga bytes (GR) of memorv,
and partial block writes to improve 1/0 pertonnann.:.

Unlike the previous gmcration of mid-range servers,
the AJphaServcr 4 1 00 series em accommodate tour
processor modu les, whi le retaining the maxi mum
memory capacity. Using mu l tip le crus to shJre the
workload is known <lS symmt:tric mu ltiprocessi ng
(SMP) . As more CI'Us ;m.: added, the performa nce
of an SMP system increases . This abi l ity to increase
performance by adding CPUs is known as scalabi l i ty.
To achieve perkct sca labi l i tv, the performance offc>ur

crus would have to be C\Jctly t(>ur times that of a s in
gle CPU system. One of the goals of the design was to
keep scalabi l itv as h igh as possible yet consistem with
low cost. For example, the AlphaServer 4100 system
ach ieves a sca labi l ity bctor of 3 . 3 3 on the Linp<Kk
1000 X 1000, J large, parJ I Icl scientific benchmark.
The same benchmark achieved 3.05 scal abi lity on the
previous-gcnec1tion pi:Jtt(mn . '

The 8-GB memory in the AlphaScrvcr 4100 system
represents a bctor oft(>Lu· improvement compared with
the previous generation of mid-range servers.2 The new
memory is also faster in terms of the data volume flow
ing over the bus (b:mdwidth) and data access time
(l atency). Again , compared with the previous genera
tion, a\'ai lable memory bandwidth is improved bv a be
tor of2 .7 and latency is reduced bv a fKtor of0.6 .

I n systems ofrhis class, memory is usually addressed
in large blocks of 32 to 64 bytes. This can be ineffi
cient when one or two bytes need to be modified
because the entire block might have to be read out
ti·om memory, modified , and then written back into
memory to achievt.: this mi nor modi fication. The abi l
ity to modif)' a smal l fi·Jction of the block withou t hav
ing to extract the entire b lock fi·om memory results in
partial block writes . This capabi l i ty also represents an
advance over the pr�.:vious gcm:ration of servers.

To take fi.dl advantage of the Alpha 2 1 164 series of
microprocessors, a nc,,· system bus was needed . The bus
used in the pt-c,·ious generation of servers was not bst

Vol . 8 No. 4 1 996 2 1

22

enough, and the cost and size of the bus used in high
end servers was not adaptable to mid-range servers.

Three separate teams worked on the project. One
ream defined the system arch i tecture and the system
bus, and designed the bus control logic and the mem
ory modules. 3 The second team designed the periph
eral i n terface (I/O) , which consists of the Peripheral
Component Interconnect (PCI) and the Extended
Industry Standard Architecture (EI SA) buses, and its
interface to the system bus (I/0 bridge) .' The third
team designed the CPU module. The remainder of
this paper describes the CPU module design i n deta i l .
Before delving into the discussion ofthc CPU mod ule,
however, it is n ecessary to briefly describe bow the sys
tem bus functions.

The system bus consists of 1 28 data bits, 16 check
bits with the capabil ity of correcting single- bit errors,
36 address bits, and some 30 control signals. As many
as 4 CPU modules, 8 memory modu les, and l l/0
module plug into the bus. The bus is 1 0 i nches l ong
and, with a l l modules i n p lace, occupies a space of
1 1 by 1 3 by 9 i nches. With power suppl ies a nd the
console, the entire system fits into an enclosure that is
26 by 1 2 by 1 7. 5 inches in d imension .

CPU Module

The CPU module is built around the Alpha 2 1 1 64
microprocessor. The module's main fu nction is to
provide a n extended cache memory tor the m icro
processor and to al low it to access the system bus.

The m icroprocessor has its own interna l cache
memory consist ing of a separate primary data cache
(D-cache) , a primary instruction cache (! -cache) , and
a second- level data and i nstruction cache (S -cache) .
These internal caches are relatively smal l , ranging in
size from 8 kilobytes (KB) for the primary caches to
96 KB for the secondary cache. Although the internal
cache operates at microprocessor speeds in the 400-
megahcrtz (MHz) range, i ts small s ize would l imit
performance in most appl ications. To remedy this, the
microprocessor has the controls t(x an optional exter
nal cache as large as 64 megabytes (M B) in size. As
implemented on the CPU module, the external cache,
a lso known as the backup cache or 13-cachc, ranges
from 2 MB to 4 MB in size, depend ing on the size
of the memory chips used . In this paper, a l l references
to the cache assume the 4-MB implementation .

The cache is organized as a physica l , d irect-mapped,
write-back cache with a 1 44-bit-wide data bus consist
ing of 1 2 8 data bits and 1 6 check bits, which matches
the system bus. The check bits protect data integrity
by providing a means for single-bit-error correction
and double-bit-error detection . A physical cache is one
in which the address used to address the cache mem
ory is translated by a table i nside the microprocessor
that converts software addresses to physical memory

Digital Technical journal Vol . 8 No. 4 l996

locations. Direct-mapped refers to the way the cache
memory is addressed, in which a subset of the physical
address bits is used to uniquely p lace a main memory
location at a particular location in the cache . When the
microprocessor modifies data in a write- back cache, it
only updates its local cache . Main memory is updated
later, when the cache block needs to be used tor a d if
ferent memory address. ·when the microprocessor
needs to access data not stored in tbe cache, it performs
a system bus transaction (fil l) that brings a 64-byte
block of data from main memory into the cache . Thus
the cache is said to have a 64-byte block size.

Two types of cache chips are in common use in
modern computers: synchronous and asynchronous .
The synchronous memory chips accept and del iver
data at d iscrete times l i nked to an external clock. The
asynchronous memory elements respond to i nput
signals as they arc received, without regard to a clock.
Clocked cache memory is easier to interface to the
clock-based system bus. As a result, a l l transactions
involving data flowing ti-om the bus to the cache (fi l l
transactions) and from the cache to the bus (write
microprocessor- based system transactions) are easier
to i mp lement and faster to execute.

Across the industry, personal computer and server
vendors have moved from the trad itional asynchro
nous cache designs to the higher-pertorming synchro
nous solutions. Smal l synchronous caches provide
a cost-effective performance boost to personal com
puter designs. Server vendors push synchronous
memory technology to i ts l im i t to achieve data rates
as h igh as 200 MHz; that is, the cache provides new
data to the microprocessor every 5 nanoscconds.'·6
The AJphaScrver 4100 server is D I GITAL's first prod
uct to employ a synchronous modu le- level cache .

At power-up, the cache contains no usefu l data,
so the first memory access the microprocessor
makes results i n a miss . I n the block diagram shown
in Figure l , the m icroprocessor sends the address out
on t\vo sets of l i nes: the i ndex l i nes connected to the
cache and the add ress l ines connected to the system
bus address transceivers . One of the cache chips, called
the TAG, is not used for data but i nstead contains
a table ofvalid cache-block addresses, each of which is
associated with a val id bit . When the microprocessor
addresses the cache, a subset of the high-order bits
add resses the tag table. A miss occu rs when either of
the fol lowing conditions has been met.

l . The addressed val id bit is clear, i .e . , there is no valid
data at that cache location .

2 . The add ressed valid bit is set, but the block address
stored at that location does not match the address
requested by the microprocessor.

Upon detection of a miss, the microprocessor
asserts the READ MISS command on a set of fou r
command l ines. This starts a sequence of events

- - - - - - - - - - - - - -I

I I I
I

TAG RAM I
I
I
I

INDEX -

� - - - - - - - - - - - - - - - - - ;
: BUS ARBITER I
I I

r- - �
PROGRAMMABLE
LOGIC

- - - - - - - 1 "

I I I WRITE ENABLE,
ALPHA 21164 t I OUTPUT ENABLE

DATA RAMS
I MICROPROCESSOR
I
I CLOCK ASIC (VCTY)
I

_ _ _ _ _ _ r _ _ _ _ _ J

I SYSTEM t
ADDRESS I I AND DTAG RAM

144-BIT COMMAND
DATA BUS SNOOP

ADDRESS

I DATA TRANSCEIVER I I ADDRESS TRANSC8VER I

Figure 1
CPU Module

SYSTEM BUS

that results in the add ress being sent to th<.: system bus.
Th<.: m<.:mory r<.:c<.:ives this add ress and after a delay
(m emory lat<.:ncy) , it sends the data on the system bus.
Data transe<.:ivers on the CPU mod u l<.: rec<.:ive the
data and start a cache fill transaction that r<.:su Its in
64 byt<.:s (a cache block) being written into th<.: cache
as t(>ur consecutive 1 28 -bit words \-vith their associated
check bits.

In an S M P system, two or more C:PUs may have the
same data in their cache memories. Such data is known
as shared , and the shared bit is set in th<.: TAG tc>r that
address . The cache protocol used in the AlphaScrver
4 100 s<.:ries of servers allows each CPU to modifY <.:ntries
in its own cache . Such modified data is known as djny,
and th<.: d irty bit is set in the TAG . If the data about to be
modified is shared , however, th<.: microproc<.:ssor resets
the shar<.:d bit, and other CPUs invalidate that data in
their own cach<.:s. The need is thus apparent t(>r a way
to k:t a l l Cl'Us keep track of data in oth<.:r caches. This
is accomplished by the process known as snooping,
aid<.:d by s<.:veral dedicated bus signals.

To faci l i tate snooping, a separate copy of the TAG is
maintain<.:d in a dedicated cache chip, ca l k:d dup l icate
tag or DTAG . DTAG is controlkd by an appl ication
specific i ntegrated circuit (AS I C) ca l kd VCTY. VCTY
and DTAG arc located next to <.:ach other and in close
prox imity to the address transc<.:iv<.:rs. Their t iming is
tied to the system bus so that th<.: address associated
with a bus transaction can easily lx applied to the
DTAG, which is a synchronous memory d<.:vice, and
th<.: stat<.: of the cache at that add ress can be read out.
I f that cache location is vali d and the addr<.:ss that is
stor<.:d in the DTAG matc hes that of the system bus

!

command (a hit i n DTAG), the signal MC�SHARED

may be asserted on the system bus by VCTY. If that
location has been modified by the microprocessor,
then MC_DI RTY is asserted. Thus each CPU is aware
of the state of all the caches on the system . Other
acrions also take place on the module as part of this
process, which is explained in greater detai l in the sec
tion deal ing specifically with the VCTY.

Because of the write- back cache organization, a spe
cial type of miss transaction occurs when new data
needs to be stored i n a cache location tbat is occupied
by dirty data . The old data needs to be put back into
the main memory; otherwis<.:, the changes that the
microprocessor made will be lost. The process of
returning t l1at data to memory is cal led a victim write
back transaction, and the cache location is said to be
victimized . This process i nvolves moving data out of
the cache, through the system bus, and into the main
memory, fo l lowed by n<.:w data moving from the main
memory into the cache as in an ordi nary fi l l transac
tion . Completing this fi l l quickly reduces the tim<.: that
the microprocessor is waiting for the data. To speed up
this process, a hardware data bufkr on the module is
used for storing the old data whi le the new data is
being loaded into the cache. This buffer is physica l ly
a part of the data transceiver since each bit of the trans
ceiver is a shift register four bits long. One hundred
twenty-eight shift registers can hold the entire cache
block (5 1 2 bits) of victi m data while the new data is
being read in through the bus receiver portion of the
data transceiver chip . In this manner, the microproces
sor does not have to wait until the victim data is trans
tcrred along the system bus and into the main memory

Digital T�(h n i,al journal Vol . 8 No. 4 1 996 23

24

bd()re the fill portion of the transanion can take p l ace .
When the fil l is comp leted , the vict im data is sh ifted
out of the victim bu fte r and into the main memory.
This is known as Jn exchange, since the victi m write
back and fill transactio ns execu te o n the system bus i n
reverse of th e order that was i n i tiated b y the micro
processor. The transce iver has a signal cal led B Y PASS;
when asserte d , i t causes th ree of the tour bi ts of the
victim sh ift register to be bypassed . Consequent ly, t()r
ord i nary block write tr:msactions, the transcei\'Cr oper
ates without im·olving the \'ictirn bufter.

B-Cache Design

As previously me ntioned , the B - cache uses synchro
nous random- access memory (RAJ'vl) devices. Each
device requ i res a clock that loads signa l inp uts i nto
a register. The RAM operates i n the registered in pu t ,
flow-t hroug h output mode. This means that an input
fl ip -flop captu res addresses, write enab les , and write
datJ, but the i nternal RAM arrJy drives read ou tp u t
d ata d irectly a s soon a s i t becomes avai lab l e , withou t
n:gard to the cl ock. The output enab le sign al acti\'atcs
RA1vl output drin:rs asynchronously, ind epcndem ly of
the clock.

One of the fi.mdamenral properties of c locked logic
is the requ iremem t()r the data to be present tor some
defined time (setup time) bdon: the clock edge , �md to
remain u nchanged tor another imervJ I fo l lowi ng the
clock edge (hold time) . Obviously, to meet the setup
time, the clock must arrive at the RAM some time after
the data or other s ign a ls needed by the RAM . To h e lp
the mod u le des igner meet th is requ irement, the micro
processor may de lay the RAM clock by one i nternal
microprocessor cycle time (approx imate ly 2.5 nanosec
onds) . A programmable register in the microprocessor
controls whether or not this de lay is invoked . Th is
de lay is used i n the AlphaServer 4 100 series CPU mod
u les, and it e l iminates the need t<>r external delay l ines .

for i ncreased data bandwidt h , the cache ch ips used
on CPU mod u les are designed to overlap portions of
successive data accesses. The first d ata b lock becomes
ava i lable Jt the m icroprocessor in pu t after a de l ay
equa l to the B C_READ_S PEED parameter, wh ich is
preset at power- u p . The t() l lowing data blocks arc
! Jtched after a shor ter delay, B C_READ_SPEED
WAVE . The BC_READ_S l ' E E D is set at 10 micro
processor cyc les and the WAVE va l ue is set to 4, so that
B C_READ_SPEED-WAV E is 6 . Thus, after the first
de lay of 10 m icroprocessor cyc les , successive data
blocks arc del ivered every 6 microprocessor cycles .
Figure 2 i l l ustrates these concepts .

I n Figure 2 , the RAM c lock at the m icroprocessor is
dc iJyed by one m icroprocessor cyc le . The RAM clock
Jt the RAM device is fur ther delayed by c lock bufkr
and network de lays on the mod u le . The address at the
microprocessor is d riven where the clock wou ld have

Digir.tl Tcchniol)oumal Vol . 8 No. 4 1 996

occu rred had i t not been de layed by one m icroproces
sor cyc le , and the address at the RAM is fu rt h er delayed
by i ndex bufkr and network dcl :�ys . Index setup at the
RAM satisfies the minimum setup time requ ired by the
ch ip , and so does address hold . D:�ta is shown as
:1ppearing after data access time (a ch ip property) , and
data setup at tbe microprocessor is also i l lustrated.

VCTY

As d escribed earli er, a d u p l icne copv of the micro
processor's pri marv TAG is m:� i n ta ined in the DTAG
RAM . I f DTAG were not prese nt, cJch bus address
wou ld have to be app l ied by the m icroprocessor to the
TAG ro decide i f the d atJ at this address is p resent i n
t h e B -cache. This act ivity wou l d impose a very large
!oJd on the microprocessor , th us red uc i ng the amount
of usdi.d work it could pcrt(mn . The 111�1 i n p u rpose of
the DTAG and i ts supporting logic contained in the
VCTY is to rel ie\·e the m icroprocessor ti·om h avi ng to
exam ine each add ress prese nted bv the svstem bus.
The m icroprocessor is only interrupted when i ts pri
m a r y TAG m u s t b e u pdated o r \\'hen data m ust be
prm·ided to satisf)' tbe bus req uest.

VCTY Operation

The VCTY contai ns a system bus i nterrace consisting of
the system bus command and add ress signals, as wel l as
some system bus control signa ls requ i red tor the VCTY
to mon itor each system bus tr�msaction . There is also
:�n in terrace to the m icroprocessor so that the VCTY
can send commands to the m icroprocessor (system - to
CPU com mands) and mon itor the commands and
:�dd resscs issued by the m icroprocessor. Last but not
le .lst , a bidi rectional i nterface between the VCTY and
the DTAG al lows on ly those system bus ad dresses that
requ ire action to reach the microprocessor.

While monitoring the system bus f(>r commands
ti·om other nodes, the VCTY c hecks tor matches
between the received system bus �1dd ress Jnd the data
from the DTAG looku p . A DTAC; lookup is in i tiated
anytime a va l id svstem b u s add ress is received bv the
mod u l e . The DTAG l ocation rc>r the lookup is sel ected
by using system bus Add ress < 2 1 :6> as the index i nt o
t h e DTAG. I f th e DTAG locJtion had previous ly been
marked va l id , and there is J 111�1tch between the
received syste m bus Add rcss < 3 8 : 2 2 > and the data
ti·om the DTAG lookup, th en the block is present in
the microprocessor's cache. This scenario is caJ icd a
cache hit .

In para l l e l with t h is, the VCTY decod es the received
system bus comm a n d to determ ine the appropriate
updJte to the DTAG and determ ine the correct system
bus response and C P U command needed to mai n tai n
syste m -wide cache coherency. A tew cases are i l l us
trated here, without any attempt a t a comprehe nsive
discussion ofa l l possible tra nsactions .

MICROPROCESSOR
CYCLES

MICROPROCESSOR
CLOCK

RAM CLOCK AT
MICROPROCESSOR

1 0 6 6 6

I NDEX AT
MICROPROCESSOR • • • • • • • • • : : : : : : : :

. . '
. .

. . .
. ' .

. : : : : : : : :
. . .

.
. . .

. . ' . .
. . .

. . ' . .

: : : : : : � :
"DEX A;;

,

�� j '�DEX O.! "DEX ' X 'NO EX '

AT RAM I INDEX
.

X. INDEX 3 ·�

Figure 2

RAM CLOCK AT RAM

DATA ACCESS TIME TO
MICROPROCESSOR

DATA AT
M ICROPROCESSOR

Cache Read Transaction Sho\\'ing Timing

HOLD
AT RAM

DATA

Assume that the DTAG shared bit is �(>LIIld ro be set
at this add ress, the d irty bit is not set, and the bus
command ind icates a write transaction . The OTAG
valid bit is then reset by the VCTY, and the micro
processor is i nt errupted to do the same i n rhe TAG .

If rhe dirty b i t i s fou n d t o b e set, a n d the command
is a rc1d , rhe MC_DI RTY_EN signal is asserted on rhe
system bus to te l l the other CPU that the loc:�tion i t is
trving to access is i n cache and has been mod i fied lw
this C P U . At the same t ime, a signal is sent to t he
1n icroprocessor req uesting it to supplv the mod i fied
datJ to the bus so the other CPU can get an u p - to-d ate
version of rhe data .

If the add ress being exami ned b v the VC:TY was
nor shared in the DTAG and the transaction was a
write, the val id bit is reset in the DTAG, and no bus
signals Jre generJted . The m icroprocessor is requested
to reset the va l id bit in the TAG . H owever, i f rhc trans
action wJs not a write, then shared is set in the DTAG ,
MC:_S H ARED is asserted on the bus, and a signal is
sent to the microprocessor to set shared in the TAG .

From these examples, it becomes obvious that only
transactions that change the state of the val id, shared , or
d i rty TAG bits requ i re any action on the parr of rbe

DATA 1

microprocessor. Si nce these transactions arc re latively
infrequent, the DTAG saves J great deal of microproces
sor time and improves over:tl l system performance.

I f the VCTY detects that the command originated
trom the m icroprocessor co- resident on the mod u l e ,
t h e n t h e b l o c k is not ch ecked t<>r a h i t, but t h e com
mand is decoded so that the DTAG block is u pdated
(i f a l ready va l id) or a l located (i . c . , marked va l id , if not
a l ready val id) . I n the l atter case, a fi l l tra nsaction td
lows and the VC:TY writes rhe val id bit into the TAG <lt
that tim e . The fi l l transaction is the only one t(Jr which
the VCTY writes d i rectly i n to the TAG .

A l l cycles of a system bus trJnS�Ktion are n u m bered ,
wit h cycle 1 being the cyc l e in which the system bus
add ress and command arc va l i d on the bus. The con
trollers i nternal to VCTY re ly on the cycle n u m bering
scheme to re main synchronizcd with the system bus .
By remai ning synch ron ized with the system bus, a l l
accesses to the DTAG and accesses tl·om the VCTY to
the microprocessor occur in fi xed cycles re lative to the
system bus transaction i n progress.

The index used t()r lookups to the DTAG is pre
sented to the DTAG in cycle I of the system bus trans
action. In the cvcnt of a hit requ iring an update of the

Digital T..:chni..:al [ourn.tl Vol . 8 No. 4 1 996 25

26

DTAG and primary TAG, the microprocessor i nterface
signal , EV_ABUS_REQ, is asserted in cycles 5 and 6 of
that system bus transaction, with the appropriate
system-to-CPU command being driven in cycle 6 . The
actual update to the DTAG occurs in cycle 7, as does
the al location of blocks in the DTAG.

Figure 3 shows the timing relationship of a system
bus command to the update of the DTAG, inc luding
the sending of a system-to-CPU command to the
microprocessor. The numbers a long the top of the
diagram indicate the cycle numbering. In cycle 1 ,
when the signal MC_CA_L goes low, the system bus
address is valid and is presented to the DTAG as the
DTAG_INDEX bits. By the end of cycle 2 , the DTAG

data is val id and is clocked into the VCTY where it is
checked for good parity and a match with the upper
received system bus address bits. In the event of a h it, as
is the case in this example, the microprocessor i ntertace
signal F.V _ABUS_REQ is asserted in cycle 5 to i nd icate
that the VCTY will be driving the microprocessor com
mand and address bus in the next cycle . I n cycle 6, the
address that was received from the system bus is driven
to the microprocessor along with the SETSHARED

command . The microprocessor uses this command
and address to update the primary tag control bits t(x
that block. I n cycle 7, the control signals DTAG_OE_L

and DTAG_ WE l_L arc asserted low to update the con
trol bits in the DTAG, thus ind icating that the block is
now shared by another mod ule.

SYSTEM BUS
CYCLE NUMBER

MC_CA_L

2 3 4

DTA G Initialization

Another important feature bui l t into the VC:TY design
is a cursory self-test and in itia l ization of the DTAG.

After system reset, the VCTY writes a l l locations of the
DTAG with a un ique data pattern, and then reads the
entire DTAG, comparing the data read versus what
was written and checking the parity. A second write
read -compare pass is made using the i nverted data pat
tern. This inversion ensures that a l l DTAG data bits are
written and checked as both a l and a 0 . In add ition ,
the second pass of the initia l ization leaves each block
of the DTAG marked as invalid (not present in the
B -cache) and with good parity. The entire in itia l i za
tion sequence takes approximately l mil lisecond per
megabyte of cache and Finishes before the micro
processor completes i ts sclf test, avoiding special han
d l ing by firmware.

Logic Synthesis

The VCTY ASIC was designed using the Verilog
Hardware Description Language (H DL) . The use of
H D L enabled the design team to begin behavioral
simu lations qu ickly to start the debug process.

I n para l le l with this, the Vcrilog code was loaded
into the Synopsys Design Compi ler, which synthe
sized the behavioral equations i nto a gate-level design .
The use ofHDL and the Design Compi l er enabled the
designers to maintain a single set of behavioral models
f(x the ASIC, without the need to manual lv enter

5 6 7

DTAG_INDEX<1 5:0> �-' '-�M_C_:_:_A_D_D_R_<2_1_:6_>�-A_1_,c_..JL-A_AA_A_A_AA_A_A_A_A_JA AAAA

MC ADDR<38:22> MC ADDR<38·22>
DOAG_

:::

<

::

'

� --'---
---:-----

-

-��

-

-��
-
-���

_

:·-
�
--V-A

-

-L

-

1-D

�

-

-

-

_

-

_

"

_

:._

_

-

�

-

-

-

_

-

_

-

_

-

_

-

_

-

_

-

_

-

_

-

_

-

;_J

. ---,�"'--�����\�\,

DTAG_WE1 _L

DTAG_WEO_L --'-----�-�--�--�--�--+--�--�--�--

EV_ABUS_REQ --'------:------�--�--�--�
MC_ADDR

EV_ADDR<39:4> ____ D_RI_V_E�N_B_Y_M_IC_R�O_P_R_O_C_E_S_S_O_R ___ _.,·�-
-
-
-

-
• SETSHARED >DRIVEN BY

EV _CMD<3:0> ----0

-
RI
_
V
_
E
_
N
_
B
_
Y
_
M
-
IC
_
R
_
O
_
P
_
R
_
O
_
C_E
_
S
_
S
_
O
_
R ___ --,.�

���
R
C
O
ESSOR

Figure 3
DTAG Operation

Digital Technical Journal Vol . 8 No. 4 1 996

schematics to represent the gate -level design . The syn
thesis process is shown in a flowchart form in Figure 4.
Logic verification is an integral part of this process,
and the flowchart depicts both the synthesis and verifi
cation, and their interaction .

Only the synthesis is explained at this time. The ver
ification process depicted on the right side of the flow
chart is covered in a later section of this paper.

As shown on the left side of the flowchart, the logic
synthesis process consists of multiple phases, in which
the Design Compiler is invoked repeatedly on each
sub block of the design, feeding back the resu l ts from
the previous phase. The Synopsys Design Compiler
was supplied with timing, loading, and area constraints
to synthesize the VCTY into a physical design that met
technology and cycle-time requirements . S ince the
ASIC is a small design compared to technology capa
bi l ities, the Design Compiler was run without an area
constraint to facil itate timing optimization .

The process requires the designer to supply timing
constraints only to the periphery of the ASIC (i .e . , the

I/0 pins) . The initial phase of the synthesis process cal
culates the timing constraints for i nternal nen:vorks that
connect between subblocks by invoking the Design
Compiler with a gross target cycle time of 100 nanosec
onds (actual cycle time of the AS IC is 1 5 nanoseconds) .
At the completion of this phase, the process analyzes
all paths that traverse multiple hierarchical subblocks
within the design to determine the percentage of time
spent in each block. The process then scales this data
using the actual cycle time of 1 5 nanoseconds and
assigns the timing constraints for internal networks at
subblock boundaries. Multiple iterations may be
required to ensure that each subblock is mapped to
logic gates ,,rjth the best timing optimization.

Once the Design Compiler completes the su bblock
optimization phase, an industry-standard electronic
design interchange format (EDIF) file is output . The
EDIF file is postprocessed by the SPIDER tool to gen
erate .files that are read into a timing analyzer, Topaz. A
variety of industry-standard file formats can be input
into SPI DER to process the data. Output files can then

r VERILOG SOURCE FILES I r
I

�
1 00-NS CYCLE-TIME V2BDS GROSS SYNTHESIS

1
1 5-NS CYCLE-TIME

r
SUBBLOCK FC PA RSE
OPTIMIZATION

' T
FIX MINIMUM-DELAY DECSIM: COMPILE HOLD-TI M E
VIOLATIONS AND LINK

�
DESIGN COMPILER DECS IM SIMU LATION
OUTPUTS EDIF FILE RANDOM EXERCISER

I FOCUSED TESTS

� SYSTEM SIMU LATION
FC ANALYZE I WRITE NEW I TESTS � SPIDER PROCESSES t EDIF FILE � FC REPORT i

� �
DECSIM

TOPAZ TIMING GATE-LEVEL H FIX TIMING VIOLATIONS I
ANALYZER SIMULATION AND/OR LOGIC BUGS I (NO FC)

I I FIX TIMING VIOLATIONS I -I r
Figure 4
AS IC Design Synthesis and Verification Flow

Digital T�dmical Journal Vol . 8 No. 4 1 996 27

2S

be gcncrJ.ted :md easi ly read by i n tcrnJ.l CAD tools
such :.�s the D ECSI M logic s im u l ator :l!1d the Topaz
ri ming analvzcr.

Topn uses information contJincd in the ASIC tech
nology l ibrary to analyze the t iming o f the design a s i t
was mapped b y the Design Compi ler. This ana lys is
resu l ts i n output d ata fi les that arc used to constra in
thc ASIC l ayout process and obtain the optima l l ayout .
Logic paths arc prioritized for placement of the gates
and rout ing of the connections b�1scd on the timing
m:.�rgins as determined by Topaz. Thosc paths with the
!cast r iming margin are gi\'cn the h ighest priority in
the L:tyou t process.

Log ic Verification

This section of the paper discusses logic veri fi ca tion
and t(>Cuses on the use ofbehavior:� l model s imu lat ion.
I t should also be noted that once the Design Compi l er
had mapped the design to gates, SP I D E R. was a lso
used to postprocess the E D I F fi l e so that DEC:SI M
simu lation cou l d be run on the structu ra l design . This
process a l l owed for the verification ohhe actual gates
:�s thcy wou ld be bu i l t in the ASIC.

The right-hand side ofFigure 4 i l l ustrates the logic
vcri fic:tt ion process using a behavioral s imubtion
mode l . To veri!'\• the l ogic, the S\'St<.:m must be per
f(mn ing transactions that exercise a l l or most of i ts
l ogic. Idea l ly, the same software used i n plwsica l sys
tems should be run on the design, but this is not prac
ticll bcc1Usc of' the long run rimes that wou ld oc
req u i red . Thcrd()re, special ized software tools arc used
that em accompl ish the task in a shorter r ime. The ver
i fi cation team developed two such tools : the R:l l ldom
Exerciser and the Fu nctional Checker. They are
described in deta i l in this section .

Random Exerciser

Veri fication strategv is crucial to the success of the
design . There arc t\\'o approaches to \'er ificuion rest
i ng, d i rected and random. Directed or t(>cuscd tests
requ ire short run rimes and target speci fic parts oftbe
design . To fu l lv rest a complex design using d i rected
tests requ i res a very l a rge n u m ber of tests, which rake
a long ri me to write and to r u n . Moreover, a d i rected
rest strategy �1ssumes that the designer can hxcsce
every possib l e system i nteraction and i s ab le to write
a rest that wi l l adequately exercise it. For these t-c:�sons,
random rest ing has become the pretCrrcd methodo l
ogy i n modern logic designs . 7 Directed rests were not
complete ly abandoned , but they compose on ly :1 sm:� l l
portion of the test su i te .

ftmdom rests relv on a random sequence of events
to create the ta i l ing condit ions. The goa l of the
Random Exerciser \\'aS to create a ri·JlllC\\'Ork that
wou ld a l low the verification team to create random

Digital Tcc hnicll)omnal Vol . S No. 4 1 996

tests qu ickly and efficiently without sacrific ing flcx i b i l
itv and portab i l ity. I t consisted of three parts: the test
generator, the exercise,- code, :1nd the bus monitor.

Test Generator This col lection of DECSIM comm<mds
random ly gcncrares the test data consisting of addresses
(both 1/0 space and memory space) and data patterns.
The user controls the test data generator by setting test
parameters. For example, to l im i t the range of working
address space to the uppermost 2 MB of a 4-MR mem
ory space, the working address space parameter is
defined as [200000, 400000 J. I t tel l s the test generator
to choose addresses within that range on lv-grc:ner
than 2 MB :md less than 4 1YIB .

Exerciser Code This code is a col lection of routi nes or
sequences of A lpha macmcodc i nstructions to be exe
cuted b�· the microprocessors. Each routine performs
a u n ique task us ing one of the add resses suppl ied by
the test generator. For CX<l mpk: , rout ine l pcrf(xms
a read -veri�•- mod it)r-write sequence. Routine 2 is s im
i lar to routine l , but i t reads :Jnothcr address that is
8 MB away tl-om the origi na l add ress, before wri t ing
to the cache . Si nce the B -c:tc !H.: is one-w:Jy associative,
the origi na l :tdd rcss is then evicted rl-om the cache.
Lastly, rou tine 3 pert(mns a lock operation .

Most routi nes \\'ere of the rvpe described above;
thev used s imple lo:�d and store i nstructions. A kw
routines \\'ct-c of a spec ia l rvpc : one generated inter
processor i nterrupts , others serviced i n terrupts,
another rou tine generated errors (using add resses to
nonexistent memory and 1/0 space) and checked that
the errors were handled properly, and another routine
exercised lock-type i nstructions more heavi ly.

The activity on the system bus generated by the
crus was not Cllough to veriry the l ogic . Two addi
tional system bus agents (mode l s of system bus devices)
s imu lat ing the 1/0 were needed to s imulate a fu l l
system- le\·cl em·i ronment . The 1/0 was modeled using
so-cal led com mander models . These arc nor HDL or
DECSI M behaviora l models of the logic but arc \\'rirretl
in a h igh -b-cl l anguagc, such as C. From the pcrspcc
ti\·e of the CPU, the com mander models beh�1ve .l i ke
rea l logic and rherdcltT arc adequate for the purpose of
verit)•i ng the C P U modu le . There were several reasons
f()r using a commander model i nstead of a logic/
behaviora l model . A complete 1/0 model was not yet
ava i lable when the CPU module design began . The
commander model was Jn evo lu tion ofa model used in
a previous project, ;md i t oHcrcd much needed flexibi l
ity. It could be configured to act :JS either a n 1/0 inter
bee or a CPU module :�nd was eJsi ly progr,umnablc to
flood the system ous 1\'ith even more activity: memon·
reads and wri tes; interrupts to the crus by randomh·
insert ing sta l l cvcles i n the pipe l ine ; and assertion of
S\'Stem bus sign:1ls at random times .

Bus Mon itor The bus mon itor is a collection of
DEC:S I M s imu lation watches that monitor the system
bus and the CPU i nternal bus. The watches a lso report
when various bus signals arc being asserted and
deasserted and lu\'c the ab i l ity to halt simu lation i f
they cm:ou nter uchc incoherency o r a violation .

CJchc incohcn:ncv is a datJ inconsistency, t(Jr exam
ple, a piece of nond i rtv data residing in the B -cachc
:.Hld d i fkring ti·om data resid ing in main memory.
A data inconsistency can occu r among the CPU mod
u les: t()r example, two CPU mod u les may have d i fter
cnt data in their caches at the same m emory address .
D:HJ inconsistencies are detected by the C P U . Each
one mainta ins an exc lusive (nonsharcd) copy of i ts
data that it uses ro compare with the data it reads ti·om
the test Jddrcsscs. I f the two copies d i ffer, the CPU

signa ls to the bus moni tor to stop the s imu lation and
report an error.

The bus monitor also detects other violations:

1 . No activity on the system bus tor 1 ,000 consecutive
cvcles

2. Stal led system bus t(>r 100 c�'cles

3. I l legal commands on the system bus and CPU

i nternal bus

4. Catastrophic system error (machine check)

The com bination of ra ndom CPU and 1/0 activity
flooded the system bus with heavy traffic . With the
he lp of the bus monitor, this technique exposed bugs
quickly.

A� men tioned , a rcw d i rected tests were also wri tten .
Directed tc�ts were u�cd to re -create a situation that
occurred in r:mdom tests. l t'J bug was uncovered using
a random test that ran three days, a d i rected test was
written to rc-cn:atc the same fai l ing scenario. Then,
alter the bug was fixed , a quick run of the d i rected test
con firmed th�n the problem was indeed corrected .

Functional Checker

During the in i tia l design stages, the verification team
dc,-c lopcd the Fu nctional C becker (FC) for the J<.)l
lowing pu rposes:

• To functional ly vcrit\r the HDL models of a l l ASI C:s
in the AlphaScrvcr 4 I 00 system

• To <lSscss the test coverage

The t:C : tool consists of th ree applications: the
parser, the :tnalyzcr, Jnd the report generator. The
right-hand side of figure 4 i l lustrates how the fC was
used to :tid in the fu nctional veri fication process.

Parser Si nce DFCS I M was the c hosen logic simu la
tor, the first step WJS to trans late a l l H D L code to
P, DS, a D I:-:CS I M bchJvior language . This task was

pcrt(xmcd using a tool cal led V2 13DS. The parser's
task was to postprocess a B DS fi le : extract inf(mlution
and generate a modi fied version of it. The intormation
extracted was a l i st of control signals and logic state
ments (such as logical expressions, i t�then -e lse state
ments, case statements, and loop constructs) . This
in t()rmation was later suppl ied to the analyzer. The
modified BDS was fi.tnctionally equivalent to the origi
nal code, but it contained some embedded ca l ls to
routi nes whose task was to monitor the activity of the
comrol s ignals in the context of the l ogic statements .

Analyzer Written i n C , the analyzer is a collection of
monitoring rou tines. Along with the mod ified BDS

code, the analyzer is compi led and l in ked to t(Jrm rhc
s imulation mode l . During s imulation , the ana lyzer
is invoked and the routines begin to monitor the acriv
iry of the control signals. I t keeps J record of all con
trol signals that form a l ogic statement. For example,
assu me the t() l lowing statement was recognized bv the
parser JS one to be monitored .

(A XOR B) AND C

The analyzer created a table of a l l possible combina
tions of l ogic v::llues for A , B , and C; it then recorded
which ones were achieved . At the start of s imu lation,
there was zero coverage achieved .

ABC Ach ieved
000 No
00 1 No
o r o No
OJ l No
100 No
10 1 No
1 10 No
1 1 1 No

Achieved coverage = 0 percent

further assume that d u ri ng one of the simu l ation
tests gencrJted by the Random Exerciser, A assu med
both 0 and I logic states, \\'h i le R and C remained con
stantly at 0. At the end of sim u lation, the state of the
table wou ld be the fol l owing:

ABC Achieved
000 Yes
001 No
0 10 No
0 1 1 No
100 Yes
101 No
1 1 0 No
l l l No

Achieved coverage = 25 percellt

Digiral T.:.:h ni,,d Journal Vol . I! No. 4 1 996 29

30

Report Generator The report generator app! iGLtion
gathered all tables created by the analyzer and gener
ated a report file i ndicating which combinations were
not achieved . The report file was then reviewed by the
verification team and by the logic design team .

The report pointed out deficiencies i n the verifica
tion tests. The verification team created more tests
that wou ld increase the "yes" count i n the "Achieved"
column . For the example shown above, new tests
m ight be created that would make signals B and C
assume both 0 and l logic states.

The report also pointed out fau l ts in the design,
such as redundant logic . In the example shown , the
logic that produces signal B m ight be the same <lS the
logic that produces signal C, a case of red undant logic.

The fC tool proved to be an i nvaluable aid to the
verification process. It was a transparent addition to the
simulation environment. With FC, the incurred degra
dation in compi lation and simulation time was negl igi
ble. It pertormed two types of coverage analysis:
exhaustive combinatorial analysis (as was described
above) and bit-toggle anal ysis, which was used for vec
tored signals such as data a nd address buses. Perhaps
the most valuable feature of the tool was the tact that it
replaced the time-consuming and compute- intensive
process oftault grading the physical design to verif)r test
coverage . fC establ ished a new measure of test cover
age, the percentage of achieved coverage. In the above
example, the calculated coverage would be two out of
e ight possible achievable combinations, or 25 percent.

For the verification of the cached CPU modu le, the
fC tool ach ieved a final test coverage of 95 . 3 percent.

Module Design Process

As the first step in the module design process, we used
the Powerview schematic ed itor, part of the Viewlogic
CAD tool suite , t()r schematic capture. An i nternally
developed tool , V2 LD, converted the schematic to a
form that could be simulated by DECSIM . This process
was repeated unti l DECSIM ran \\�thout errors.

D uring this t ime, the printed circuit (PC) layout of
the modu le was proceed ing independently, using the
ALLEG RO CAD tools . The l ayout process was partly
manual and partly automated with the CCT router,
which was eftective in t() J lowing the layout engineer's
design rules contained in the DO files.

Each version of the completed layout was translated
to a format su itable for signal integrity model ing,
using the internally developed tools ADSconvert and
MODULEX. The MODU LEX tool was used to extract
a module 's e lectrical parameters from its physical
description. Signal integrity model ing was performed
with the HSPICE analog simulator. V•/e selected
H S P I C E because of its universal acceptance by the

Di�it.li T�d l ll ical)ou rn.li Vol. ll No. 4 1 996

industry. Virtua l ly al l component vendors wi l l , on
request, supply HSPICE models of their products .
Problems detected by H S P ICE were corrected either
by layout modifications or by schematic changes. The
mod ule design process flow is depicted in figure 5 .

Software Tools and Models

Three internally developed tools were of great value .
One was MSPG, which was used to d isplay the
HSPICF plots; a nother was M O D U LEX, which auto
matical ly generated HSPICE su bcircuits from PC

layout fi les and performed cross-talk calculations.
Cross- tal k amplitude violations were reported by
M O D U LEX, and the oftending PC traces were moved
to reduce coupl ing. F ina lly, SALT, a visual PC d isplay
tool, was used to verify that signal routing and branch
ing contormed to the design requ i rements.

One of the important successes was in data l ine
model i ng, where the signal lengths from the RAMs
to the microprocessor and the transceivers were very
critica l . By using the HSPICE .ALT E R statement :llld
M O D U LE X subcircu it generator command, we could
configure a single HSPICE deck to s imulate as many as
36 data l i nes. As a resu lt, the entire data l ine group
could be s imulated in only four H S P I C E runs. I n an
excel lent example of synergy between tools, the script
capabi l ity of the MSPG plotting tool was used to
extract , annotate, and create PostScript fi les of wave
t(>rm p lots d i rectly from the s imulation resul ts, with
out having to manual ly d isplay each waveform on the
screen . A mass prin ting command was then used to
print al l stored PostScript fi les .

Another useful HSPICE statement was . M EAS U R.E,
which measured signal de lays at the specified threshold
level s and sent the results to a file. From this, a separate
program extracted clean delay values and calculated the
maximum and minimum delays, tabulating the results
in a separate file . Reflections crossing the threshold
leve ls caused i ncorrect results to be reported by
the . M EASU RE statement, which were easily seen in
the tabulation . \Ve then simply looked at the waveform
printout to see where the reflections were occurring.
The layout engineer was then asked to modi�' those
signals by changing the PC trace lengths to either the
microprocessor or the transceiver. The modified signals
were then rcsimulated to verifY the changes.

Timing Verification

OverJ I I cache timing was verified with the Timing
Designer t iming analyzer from Chronology Corpor
ation . RdevJn t timing d iagrams wen; d rawn using
the waveform plotting fac i l ity, and delay values and
control l ing parameters such as the microprocessor
cyc le interval, read speed , wave, and other constants
were entered into the associated spreadsheet. A l l

DECSIM VL2D (CONVERTS DIGITAL LOGIC
SIMULATOR TO DECSIM)

,---
�

-
POWERVIEW
SCHEMATIC EDITOR

-

�
-

VIEWDRAW.NET ANALYSIS
-

�
ALLEGRO 1-

"DO" FILES
LAYOUT TOOL

- RESTRICTIONS AND
CONSTRAINTS

+
. RTE

,--- ALLEGRO.BRD CCT ROUTER ..--. DSN

tADSCONVERT t t
VLS.ADS MODULEX

TOOL HSPICE TIMING DESIGNER FOR MODULEX ANALOG SIMULATOR I---+ TIMING ANALYZER COMPATIBILITY

� MDA FILES
FOR MANUFACTURING

Figure 5
Design Process flow

delays were expressed in terms of HSPICE-simu lated
values and those constants, as appropriate . This
method simplified changing parameters to try various
"what if" strategies. The timing analyzer would
i nstantly reca lculate the delays and the resu l ting mar
gins and report all constra int violations. Th is tool was
also used to check t iming elsewhere on the module ,
outside of t he cache area, and i t provided a reasonable
level of confidence that the design did not contain any
timing violations.

Signa/ Integrity

In high-speed designs, where signal propagation times
are a significant portion ofthe clock-to-clock interval ,
reflections due to impedance mismatches can degrade
the signal quality to such an extent that the system wil l
fai l . For this reason, signal integrity (S I) analysis is an
important part of the design process . Electrical con
nections on a modu le can be made fol lowing a d i rect

point-to-point path, but in high-speed designs, many
signals must be routed in more compl icated patterns.
The most common pattern i nvolves bringing a signal
to a point where i t branches out in several d irections,
and each branch is connected to one or more
receivers. This method is referred to as treeing.

The SI design of this module was based on the
principle that component p lacement and proper sig
nal treeing are the two most important elements of
a good SI design. However, ideal component place
ment is not always achievable due to overriding factors
other than S I . This section describes how successfu l
design was achieved i n spite of less than ideal compo
nent placement.

Data Line Length Optimization

Most of the S I work was d i rected to optimizing the
B -cache, which presented a d ifficu lt challenge because
of long data paths. The placement of major module

Digital Tech n ical)ourn:1l Vol . 8 No. 4 1 996 3 1

32

data bus components (microprocessor and data trans
ceivers) was dictated by the enclosure req u irements
and the need to fit k>ur CPUs and eight memory mod
u les i nto the system box . Rather than a l lowing the
microprocessor heat-sin k height to dictate mod u le
spacing, the system designers opted for fi tting smal ler
memory mod u les next to the crus, fil l ing the space
that wou ld have been left empty if modu le spacing
were un i t(xm . As a consequence, the microprocessor
and data transceivers had ro be placed on opposite
ends of the mod u le, which made the data bus exceed
I I inches in l ength . Figure 6 shows the p lacement of
the major components.

Each cache data l ine is connected to four compo
nents: the microprocessor chip, two RAMs, and the
bus transceiver. As shown in Table l , any one of these
components can act as the driver, depending on the
transaction in progress.

The goa l of data l i ne design was to obtain clean sig
nals at the receivers. Assuming that the microproces
sor, Ri\.Ms, and the transceiver are a l l located i n - l ine
without branching, with the d istance between the two
RAMs ncar zero, and since the positions of the micro
processor and the transceivers are fixed, the only vari
able is the location of the two RAMs on the data l ine .
As shown in the waveform p lots of Figures 7 and 8,
the qua l ity of the received signals is strongly affected
by this variable . In Figure 7, the reflections arc so large
that they exceed threshold levels. By conrrJst, the
reflections in Figure 8 are very smal l , and their wavc
t(>rms show signs of cance l l ation . From this i t C J i l

be inferred that optimum PC trace lengths cause the
reflections to cance l . A range of acceptable RAM posi
tions was t()lmd through HSPICE s imu lation. The
resu l ts of these s imu lations are summarized in Table 2 .

INDEX BUFFERS DATA RAMS
(THREE MORE ON (EIGHT MORE ON
THE OTHER SIDE) �-----LTHE OTHER SIDE)

r------------, o D D
����

0
ESSOR

D D D CLOCK MICRO-
PROCESSOR

ITAGl
�

DlUITRY

D D D D l.::lGjDD D OJ/ PROGRAMMABLE � ASIC DO 11

LOGIC Ll D DATA TRANSCEIVERS
D O D D D D D D D D D D

PROGR0A
;_

M

_

M

_

A

_

B

_

L

_

E ____ A
_

D

_

D

_

R

-

ES

-J-

N

-

D

_

C

_

O

_

M

_

M

_

A

_

N

_

D _____ \ SYSTEM BUS
LOGIC TRANSCEIVERS CONNECTOR

Figure 6
P! Jccmcm of JV!Jjor Componems

Table 1
Data L ine Components

Transaction

Private cache read

Pr ivate cache write

Cache fi l l

Cache m iss with vict i m

Write b l ock

Dif!:ital Technica l) ounul

Driver

RAM

M icroprocessor

Tra nsceiver

RAM

M icroprocessor

Vol . 8 No. 4 1 996

Receiver

M icroprocessor

RAM

RAM a n d m i croprocessor

Tra nsceiver

RAM and tra nsceiver

-1 .0

-2.0'----�-�-�--�-�-�--'------'--
40 45 50

Figure 7

55 60 65
NANOSECONDS

70 75

Private Cache Read Showing Large Reflections Due to
Unfavorable Trace Length Ratios

4.0

-1 .0

80

-2.0 '-----'----'---�-----''----'-----'------'---"-
40 45 50 55 60 65 70 75

NANOSECONDS

Figure 8
Private Cache Read Showing Reduced Reflections with
Optimized Trace Lengths

Table 2

80

In the series of s imulations given in Table 2, the
threshold levels were set at l . l and 1 .8 volts. This was
justified by the use of pertect transmission l ines. The
l ines were lossless, had no vias, and were at the lowest
i mpedance level theoretically possible on the module
(5 5 ohms) . The entries labeled SR i n Table 2 ind icate
unacceptably large delays caused by signal reflections
recrossing the threshold levels . Discarding these
entries leaves only those with microprocessor-to
RAM distance of 3 or more i nches a nd the RAM
to-transceiver d istance of at least 6 inches, with the total
microprocessor-to-transceiver distance not exceeding
l l i nches. The l ayout was done within this range, and
a l l data J ines were then sim ulated using the network
subcircuits generated by MO D U LEX with threshold
levels set at 0.8 and 2 . 0 volts. These subcircuits
i ncluded the effect of vias and PC traces run on several
signal planes. That simulation showed that a l l but
12 of the 1 44 data- and check-bit l i nes had good sig
nal integrity and did not recross any threshold levels.
The fai ling l i nes were recrossing the 0 .8 -volt thresh
old at the transceiver. Increasing the length of the
RAM -to-transceiver segment by 0 . 5 inches corrected
this problem and kept signal delays within accept
able l imits.

Approaches other than placing the components
in- l ine were i nvestigated bu t d iscarded. Extra signal
lengths requi re additional signal layers and i ncrease
the cost of the module and its thickness.

RAM Clock Design

We selected Texas I nstru ments' CDC235 1 clock drivers
to handle the RAM clock distribution network. The
CDC2 3 5 l device has a well -controlled input-to-output
delay (3 .8 to 4.8 nanoseconds) and 10 drivers in each
package that are controlled fi·om one input. The fairly

Accepta b l e RAM Posit ions Found with HSPICE S i m u l ations

PC Trace Length Write Delay Read Delay
(Inches) (Nanoseconds) (Nanoseconds)

M icroprocessor RAM to M icroprocessor RAM to RAM to
to RAM Transceiver to RAM M icroprocessor Transceiver

Rise Fall Rise Fall R ise Fall

2 7 0 .7 2 . 3 0 . 9 S R 1 . 1 1 .4
2 8 0 .7 2 .7 S R S R 1 . 5 1 .4
2 9 0 .6 3 . 1 S R S R 1 . 7 1 . 5
3 6 0 .9 2 . 1 1 .2 1 . 1 0 .9 1 .0
3 7 0 .9 2 . 4 1 .0 1 . 1 1 .4 1 .3
3 8 0 .9 2 .9 1 .0 1 .3 1 .5 1 .3
4 5 1 . 1 1 .8 1 .2 1 .4 0 .9 S R
4 6 1 .3 2.2 1 .4 1 .4 0 .9 1 .0
4 7 1 .2 2 .6 1 .3 1 .4 1 .2 1 .2
5 4 1 . 5 1 .7 1 . 5 1 .7 S R S R
5 5 1 .4 2 . 1 1 .8 1 . 7 S R S R
5 6 1 .6 2.4 1 .7 1 .4 0.9 1 .2

Note: S ignal reflections recrossing the threshold levels caused unaccepta ble delays; these entries were discarded.

Digit�! Tech nical journal Vol . 8 No. 4 1 996 33

34

long delay through the part was beneficial because,
as shown in Figure 2, c lock delay is needed to ach ieve
adequate setup rimes. Two CDC2 3 5 l clock drivers,
mounted back to back on both sides of the PC board,
were required to deliver clock signals to the 17 RAMs.

The RA Ms were divided i nto seven groups based on
their physical proximity. As show n in Figure 9, there
are fou r groups of three, rwo groups of two, and a sin
gle RAM . Each of the first six groups was d ri\'en by
two clock driver sections connected i n parallel through
resistors i n series with each driver to achieve good load
sharing. The seventh group has only one load, and one
CDC2 3 5 l section was su fficient to d rive i t . HSPICE
s imulation showed that mu lt iple d rivers were needed
to adequately drive the transmission line and the load .
The load con m:ctions were made by short equal
branches oftewer than two i nches eac h . T he .length of
the branches was critical tor achieving good signal
integrity at the RAMs.

Data Line Damping

In the ideal world, a l l signals switch only once per clock
interval , al lowing plenty of setup and hold time. In the
real world, however, narrow pu lses often precede valid
data transitions. These tend to create m u ltiple reAec
tions superimposed on the edges of val id signals . The
reAcctions can recross the threshold levels and incre<lSe
the effective delay, thus causing data errors.

Anticipating these p henomena, and having seen
their dkcts in previous designs, designers included

CLOCK 1-----Y\�--,
DRIVER

30 OHMS

CPU

CLOCK
0 RIVER 1-----YI�---'

Figure 9
RAM Clock Distri bution

DigitJI Tcc h n ic1l j o u rn a l Vol . 8 No. 4 l 996

series-damping resistors in each cache data l ine, as
shown in Figure 10. Automatic component placement
machines and avai labi l ity of resistors in small pacbges
made mou nti ng 2 8 8 resistors on the mod u le a painless
task, and the payoff was huge : nearly perkct signals
even in the presence of spurious data transitions
caused by the m icroprocessor's arch itectural katurcs
and RAM c haracteristics. Figure l l i l lustrates the han
d l ing of some of the more d i fficu lt wavdcm11s.

Performance Features

This section d iscusses the perr()rnlance of the
AlphaServer 4 1 00 system derived ti·o1n the physical
aspects of the CPU mod u le design and the effects of
the d uplicate TAG store .

Physical Aspects of the Design

As previously mentioned, the synchronous cache was
chosen primarily tor performa nce reasons. The archi
tecture of the Alpha 2 1 1 64 m icroprocessor is suc h th<1t
its data bus is used f()r transters to and from main mem
ory (fi l ls and writes) as wel l as its B -cache :' As system
cycle times decrease, it becomes a chal lenge to manage
memory transactions without req uiri ng wait cycles
using asynchronous cache RAM devices. for example,
a transfer from the B -cache to main memory (victim
transaction) has the tol lowing dcby com ponents:

l . The m icroprocessor drives the add res. otr�chip .

2 . The add ress is fanned out to the RAM devices .

3 . The RA.Jv1s retrie\'e data .

4 . The RAl\!ls d rive d ata to the bus i ntcrf
.
1ce device.

5. The bus i nterface device req uires a setup time .

vVorst-case delay values t()r the above items might
be the fol lowi ng:

l . 2 . 6 nanoseconds'

2. 5 . 0 nanoseconds

3. 9 . 0 nanoseconds

4. 2 . 0 nanoseconds

5. l .O nanoseconds

Total : 1 9 . 6 nanoseconds

Thus, tor system cyc le ti mes rhar arc signi ficantly
shorter than 20 nanoseconds, i t becomes i mpossible

F igure 1 0
RAJ'vl. Driving the Micropmccssor Jnci TI·J nsccivci· rh mugh
1 0-ohm Series Resistors

Figure 11
Handling of Difficult Wavdorms

to access the RAM without using mu ltiple cycles per
read operation, and since the full transter invo lving
memory comprises four of these operations, the
penalty mounts considerably. Due to pipelining, the
synchronous cache enables this type of read operation
to occur at a rate of one per system cycle, which is
15 nanoseconds in the AlphaServer 4100 system,
greatly increasing the bandwidth for data transfers to
and from memory. S ince the synchronous RAM is
a pipeline stage, rather than a delay element, the win
dow of valid data avai lable to be captured at the bus
interface is large. By driving the R.A!vls with a delayed
copy of the system clock, delay components 1 and 2
are hidden, al lowing taster cycling of the B-cache.

'When an asynchronous cache communicates with
the system bus, all data read out fi·om the cache must
be synchronized with the bus clock, which can add
as many as two clock cycles to the transaction. The
synchronous B-cache avoids this performance penalty
by cycl ing at the same rate as the system bus.2

In addition, the choice of synchronous RAMs pro
vides a strategic benefit; other microprocessor vendors
are moving toward synchronous caches. For example,
nu merous Intel Pentium microprocessor-based sys
tems employ pipeline-burst, module- level caches using
synchronous RAM devices. The popularity of these
systems has a large bearing on the RAM industry.9 It i s
in DIG ITAL's best interest to tol low the synchronous
RAM trend of the ind ustry, even tor Alpha-based
systems, since the vendor base wi l l be larger. These
vendors will also be l ikely to put their efforts into
improving the speeds and densities of the best-sel l ing
synchronous RAM products, which will facilitate
improving the cache performance in future variants of
the processor modules.

Effect of Duplicate Tag Store (DTA G)

As mentioned previously, the DTAG provides a mech
anism to filter irrelevant bus transactions from the

DATA LINE SCALE:
1 .00 VOLT/D IVISION,
OFFSET 2.000 VOLTS,
I N PUT DC 50 OHMS

TIME BASE SCALE:
10.0 NANOSECONDS/
DIVISION

Alpha 2 1 1 64 microprocessor. In addition, it provides
an opportunity to speed up memory writes by the I/0
bridge when they modif)r an amount of data that is
smal ler than the cache block size of 64 bytes (partial
block writes) .

The AlphaServer 4100 I/0 subsystem consists of
a PC! mother board and a bridge. The PC! mother
board accepts I/0 adapters such as network interfaces,
disk controllers, or video controllers. The bridge pro
vides the inter£1ce between PCI devices and between
the CPUs and system memory. The I/0 bridge reads
and writes memory in much the same way as the CPUs,
but special extensions are built into the system bus pro
tocol to handJe the requirements of the I/0 bridge.

Typical ly, writes by the f/0 bridge that are smaller
than the cache block size require a read-modifY-write
sequence on the system bus to merge the new data
with data from main memory or a processor's cache.
The AJphaServer 4 100 memory system typically trans
fers data in 64-byte blocks; however, it has the abil ity
to accept writes to al igned 1 6-byte locations when the
I/0 bridge is sourcing the data. When such a partial
block write occurs, the processor module checks the
DTAG to determine if the address bits in the Alpha
2 1 1 64 cache hierarchy. I f it misses, the partial write is
permitted to complete unhindered. If there is a hit,
and the processor module contains the most recently
modified copy of the data, the l/0 bridge is alerted
to replay the partial write as a read -modifY-write
sequence. This feature enhances DMA write perfor
mance for transfers smaller than 64 bytes since most of
these references do nor hit in the processor cache.<

Conclusions

The synchronous B -cache a l lows the CPU modules
to provide high performance with a simple arch itec
ture, achieving the price and performance goals of
the AlphaServer 4 100 system . The AlphaServer 4 1 00

Digiral Technical Journal Vol . 8 No. 4 1 99 6 35

36

CPU design team pioneered the use of synchronous
RAMs in an Alpha microprocessor- based system
design, and the knowledge gained in bringing a design
from conception to volu me shipment wil l benefit
future upgrades in the AlphaServer 4100 server fami ly,
as well as products in other platf-orms.

Acknowledgments

The development of this processor mod ule would not
have been possible withou t the support of nu merous
individuals. Rick Hetherington pertormed early
conceptual design and built the project team. Pete
Bannon implemented the synchronous RAM support
features in the CPU design . Ed Rozman championed
the use of random testjng techniques. Norm Plante's
ski l l and patience in implementing the often tedious
PC layout req uirements contri buted in no smal l mea
sure to the project's success. Many others contributed
to firmware design, system testing, and performance
analysis, and their contributions are gratefu l ly
acknowledged. Special thanks must go to Darrel
Donaldson for supporting this project throughout the
entire development cycle.

References

1 . D I GITAL AlphaServer Family DIG ITAL U N IX Perfor
mance Flash (Maynard, Mass . : Di gital Eq uipm ent
Corporation, 1 996) , http :/ jwww.europe.digital.com/
i n fo/ performa nce/ sys/ unix -svr- flash - 9 .abs.html.

2. Z. Cveranovie and D. Donaldson, "AiphaServer 4 LOO
Performance C haracterization," IJi,t.;ital Tech nical

Journal, val. 8, no. 4 (L 996, this iss u e) : 3-20 .

3 . G . Hcrdeg, " Design and I m plem entation of the
AlphaServer 4 1 00 CPU and Memory Architecture,"
D(f!,ital Techn ica! Joumal, vol. 8, no. 4 (I 996, thi s
issue) : 48-60 .

4. S. Duncan, C. Keefer, and T. McLaughlin, " H igh
Performance 1/0 Design in rhe AJphaServer 4 100 Sy m
metric M u ltiprocessing System," D(c;ital Technical

Journal, vol . 8, no. 4 (1 996, this issue) : 6 1-75 .

5 . " M icroprocessor Report," MicroDesign Resources,
val . 8, no. 1 5 (1 994) .

6 . JIJM Personal Cnmputer Power Series 800 Perj'or
mance (A.rmonk, N.Y. : Inte rnational Business Machines
Corporation, 1 995), http:/ /ike.e ngr.wash ingron.edu/
news/whirep/ps-perf.hrml .

7. L. Sau nders and Y. Trivedi , "Testbench Tutorial," Inte
grated System Desig n, val. 7 (April and May 1 995) .

8 . [)!GJ'JAL Semiconductor 27 764 (366 i\'1!-lz Through
433 J\1/Hz) Alpha Microprocessor J-Jardware
Rejerence t\llanual (Hudson, Mass . : Digital Eq u ipment
Corporation, 1 996) .

Digital Tech n ical journal Vol . 8 1 o. 4 1 996

9.] . Handy, "Synchronous SRAlvl Ro undup," Dataquest
(September l l , 1995) .

General Reference

R . Sites, ed . , A lpha A rchitecture R(fere1lce Manual
(Burlingron, Mass . : Digit:� I Press, 1 992) .

Biographies

Maurice B. Steinman
JVlaurice Steinman is a hardware principal engineer in the
Server Product Development Group and was the leader of
the CPU design tc1m for rhe DIGITAL AlphaServer 4 1 00
system . In previous projects, h e was one ofthe designers
of the AlpluServcr 8400 CPU module and a designer of
rhe cache conn·ol su bsystem tor rhc VAX 9000 com puter
system. Maurice received a B .S . in computer and systems
engineering ti·om Rensselaer Polytechnic I nsriturc in 19 86.
He was :�warded two patents related to cache control and
coherence and has [\VO p:Henrs pending.

George J. Harris
George Harris was responsible for the signal integrity and
cache design ofrhe CPU module in the AlphaServer 4 1 00
series. He joined DIG ITAL in I 98 1 and is a ha rdware prin
cipal engineer in the Server Product Development Group.
Iktore joining DIGITAL, he designed digital circuits at
the computer divisions of Honeywell, RCA, and Ferranti .
He also designed compu ter-assisted medical monitoring
svsrems using PDP- 1 1 compu ters for the American Optical
Division ofWarncr Lambert. He received a master's degree
in electronic communications from McGill Universi ty,
J\ilontreal, Quebec, and was awarded ten parents relati ng
to compu ter-assisted medical monitoring and one patent
related to work at DIG ITAL in the area of circuit design.

And rej Kocev
And rej Koccv joined D I G I TA L in 1 994 after rece iv ing
a B.S. i n con1putcr science ti·om Rensselaer Polytcdmic
I nstirute. He i s a sen ior hardware engi neer in the Sen·er
Prod uct Development Group and a n1emhn of rhc CPL'
l'cri fication tea m . H e designed the logic 1cri l ica rion sol[
" arc described in th is paper.

Virginia C. Lamere
Virginia LmH.:n: is a hardll'are pri ncipa l engi nee r in the
Scrn-r Product De,·clopment Group Jnd ll'as responsible
ttlr C : l' l m odu le design in the D I G I TA l . AlphaSen-cr 4 1 00
series. l; i n n v 11·Js J nu:m be1· ofrhe verification n::1ms t(.>r
rhe AlphaSenn 8400 and AlphaServer 2000 C PU mod·
uks. Prior to those projects, she conrribured to rile d esign
ofrhc floating-point processor on rhe VAX 8600 and the
execution u n it on the VAvX 9000 compu ter syste m . She
n.:ccivcd '' B .S. in clccrrical engi neeri ng and computer
science t'rom Princeton Unive1·sity i n 1 98 1 . Ginny was
awarded two p:ucnts i n the area of the C .\ecu tion u n i t
design a n d i s J co-au thor of t h e paper "Floati n g Poi nt
Processor t(n· the VAX 8600" pu blished in this jounw/.

Roger D. Pannell
Roger I\m nell was the leader of the VCTY AS I C design
tc:1m t(Jr the Alph:1Sen•e1· 4 1 00 svste m . H e is :1 hardware
princip:1l engi neer in the Server Product De,·e lopmcnt
(;roup. Roger Ius II'Orked on several projects since joi n
i ng l)igi tJI i n 1 977. Most recent!\', he h a s been a module/
ASIC (ksignn on rhe Al phaSer�t:r 8400 and VAX 7000
1 /0 port modu les and ,1 bus- to-bus I/0 bridge . Roger
ree<.:iH:d a B.S . in e lccrmnic engi neeri ng r..:chnologv ti·om
the U niversity of Lowel l .

Digital · tcdmi ·;11)ourn;11 Vol . R No. 4 1 996 37

The Al pha Server 4100
low-cost Clock
Distri bution System

High-performance server systems general ly

require expensive custom clock distribution

systems to meet tight timing constraints.

These clock systems typica l ly have expensive,

appl ication-specific integrated circu its for

the bus interface and require control led etch

im pedance for the clock distribution on each

module in the server system. The DIGITAL

AlphaServer 4100 system util izes phase-locked

loop circu its, clock treeing, and termination

techniques to provide a cost-effective, low

skew clock distribution system. This system

provides mu ltiple copies of the clock, which

al lows off-the-shelf com ponents to be used

for the bus interface, which in turn results in

lower costs and a qu icker system power-u p.

Com ponent placement and network com

pensation eliminated the need for contro l led

im pedance circuit boards. The clock system

design ma kes it possible to upgrade servers

with faster processor options and bus speeds

without changing components.

Digi t,ll Tec hn ic�!)ourn:d Vol . 8 No. 4 I 996

I
Roger A. Dame

Every d igital computer system needs a clock d istri bu
tion system to synchronize electron ic communication .
The primary metric used to quanti !)' the performance
of a dock distribution svstem is clock skew. S\'llch
ronous S\'Ste ms requ i re mul tip le copies (outputs) of
the same clock, and clock skew is the unwanted delay
between any t\\'O of the copies. In genera l , the Jo\\'er
the skew, the better the clock svstcm. Clock skew is one
of sever:d parameters that aftcct bus speed . Bus length ,
bus loading, driver and receiver technology, and bus
signal voltage swing also affect bus speed . If problems
arise that jcop:mi izc meeting timing goals , though,
these addirion: tl parameters arc d i fficu l t to change
because of ph,·siCll and archi tectural constraims.

The D rc; rrAL AlphaSenn 4100 clock distribution
system is a compact, low-cost sol u tion for a h igh
performance mid r::� ngc ser\'er. The c lock system pro
vides more copies of the c lock than machi nes in the
same class typ ical ly need. The d istri bu tion system
a l lows expansion on those module designs where
more copies of the c lock are needed with minimal
ske\\'. The svsrem is based on a low-cost, oH�rhe -shelf
phase- locked loop (PLL) as the basic b u i ld ing block.
The simple appl ication of the PLL alone ,,·ould not
provide low c lock skew, though. Signa l integrity tech
niques and rrade-offs were needed to m�magc skew
throughout the system. The tech nica l cha l lenges were
ro d esign J low-cost system that wou l d (l) require
only a sma l l area on the pri nted wiring bo::mi s (PW"Bs),
(2) be adap t�l ble ro ,·a r io us speed grades (options) of
Cl' Us, and (3) h�we good performance, i .e . , lo\\' skew.
This paper discusses the tech niq ues used to optimize
the perti:Jrmance of an offthe-she l f PLL- based clock
distribution system.

Design Goals

Based on irs experience with p revious plartorm designs,
the design rea m considered a clock ske\\' under 10 per
cent of the bus cycle rime a reasonable t:t rget tOr a
midrange server S\'Stem. The cycle rime d es ign target of
rhe AlphaSenn 4100 system was l S nanoseconds (ns) ;
consequent ly, the skew goal was 1 . 5 ns or less. This
goal would �1 l low a total of 13. 5 ns h>r clock to out
put of the rransmi rri ng mod ule (Teo) (the t ime the

transmitti ng mod u l e needs to d ri\'e d:�ta to a stable
state ti·om a c loc k edge); setu p and hold time req uire
ments tclr the receivi ng mod u l e (the m i n i m u m time
th:lt data needs to be stable at the recei,·er (tlop] betore
and ati:er the local clock edge) ; a nd bus sett l i ng ti me.
The fol lowi ng is a breakdown of the t iming based on
the se lection of components f(lr the bus i nterbcc:

Bus cycle
Transmitti ng mod ule (Teo)
Setup a nd hold time tor the

receiving mod u l e
Clock skew
Time ::tllocated for bus settl ing

1 5 .0 ns
5 . 1 ns

1 . 5 ns
1 . 5 J l S

6.9 JlS

The selection of components was based on a,·ai labi l
ity, speed, cost, and s ize . The goal was to e l imi nate the
need tclr costly appJ ication-specinc i n tegrated circu its
(AS I Cs) :md sti l l meet the critical t iming perf(mnance.

The A l p haSer\'er 4 1 00 bus is a simple d istri buted
bus, 305 m i l l i meters (m m) long, with 1 0 loads (mod
u l es) and para l lel term ination at both ends. The fi rst
order estimate of bus sett l ing time assumed one fu l l
rdl ection o r twice the loaded velocity o f propagation
de lay end to end. The estimate took i nto account bus
t iming opti mization , which is discussed btcr in this
paper. It was also estimated that 25 copies of the clock
wou ld be req ui red tor the processor mod u l es, and
46 copies of t he dock wou ld be req u i red tclr certa i n
memory mod u les (synchronous dynamic random
access memory [SDRAM]-based designs) . O n ly the
rising edge of the clock could be used for critical t im
ing. I f the bl l ing edge were used tclr latches, then
c lock skew wou ld d ramatical ly increase because of the
duty cycle d istortion associated with P LLs. The mem
ory mod u l e design a l lowed very l ittle space for clock
circuitry and needed more copies of thc clock than any
other mod u l e design in the system . Further, the physi
cl l size of the memory module determined the actual
size of the server box . Trad e -ofts had to be made in
the design and timing to make the off-the-shelf sol u
tion work. The key goa l was to optimize the solu tion
to get the worst-case skew as c lose as possible to the
1 . 5 ns estimated goa l and to ti nd svstem trade- oft$ to
al low higher mod u l e - to- mod u le skew f(lr a 1 5 ns bus.

A su rvey of c ustom clock circu its ava i lable within
D I G I TA L and offthe-shelt� commercial l y a\·a i lablc
PLLs suggested that a custom circu i t was requ i red .
Untflrtu nately, the circuits that wou l d be avai lable
within our project sched ule were cost l y, consu med tar
too much circu it board area, required emitter-coupled
logic (ECL) or positive emitter-cou pled logic (PECL)
inputs, and d issipated su bstantial power. The best off
the -she lf solu tion was cost-efkctive, required less
space than custom circuits, and provided adeq uate
fa n-out . The skew performance, however, ranged
from 2 ns to 4 ns, which exceeded the design goa l .
G iven t h e project t i m e constraints a n d the design

benefits of the oft�the-she l f solution, it was paramount
that we m a ke the oft�the-shdfsol u tion work.

Bus Trade-offs

The design phi losoph y of using stock componen ts tor
the bus i nterface a l l owed some latitude in the bus
design . Typical bus i nterfaces use l arge ASICs, each
hand l i ng up to 5 0 percent of the data bits. Such a
design resu l ts i n a relatively long d ispersion etch ti·om
the connector to the AS IC. These devices can range
in size from 200 to 400 pins and can requ i re up to
38 mm of etch ti·om the ASI C to the connector. SPICE
s imul ations demonstrated that the length of each
module's dispersion etch or bus "stu bbing" had a p ro
found e ffect on bus sett l ing time . ' Figure l shows bus
sett l ing time (worst-case d ri\'er-receiver com bi nation)
as a fi.mction of mod u l e d ispersion etc h . The bus trunk
length was nxed at 305 111 111 .

The designers used an 1 8 - bit-wide transceiver i n
a l ow-profi l e su rbce mount package with a p i n pitch
of 0 . 5 111111. The location of the 1/0 pins tor the bus
con nections on the interrace transceiver (l ocated on
the same side of the package, which a l lows the device
to be pl aced very c l ose to the bus connector) and the
connector pitch fac i l itated short d ispersion etch (less
than 1 3 mm) . This design decreased by 1 ns the set
t l ing time typical ly t()l l l)d on ASIC- based intert:lces
with comparable tru n k lengths and loading.

Bus termination is another parameter that designers
can manipu late to fu rther improve settl i ng ti me. We
used parallel terminators at both ends of the bus on the
AlphaServer 4 100 system . The bus protocol has rwo
katures that allow aggressive termination, approaching
the u nloaded impedance of the tru nk. 'vVe placed an
anticontention cycle between the module that rel in
quishes the bus <l l1d the mod u le tl1at begins to d rive the
bus. This arrangement reduces the possibi l ity for driver
contention (stress) as wel l as the possibi l ity of generat
ing ringing on the bus clllscd by large changes in cur
rent ati:er contention . The bus "parking" feature tclrccs
the last d riving module to contjnue driving the bus to

w 7.5
� - 7.0
t- <n
C) 0 6.5
� 6 --' u � w w rn rn O (J) z 5.0

iii � 4 .5
4 .0 '----------'---------'-

5 .08

Fig u re 1

1 2.70

DISPERSION ETCH LENGTH
(MILLIMETERS)

25.40

Bus Settli ng Time As a fu nction of Dispersion Etch
Length

Vol . 8 No. 4 1 996 39

40

a logic state d l!ling long id le times unti l another mod ule
wants to use the bus. Without this katurc, the bus
would settle at the tcrminZ�tor Thevcnin vol tage if no
modules were driving the bus. Both protocols a l low f(x
Thevcni n vol tage to be c lose to the thresholds of the
receivers. Normally this is avoided if the bus is lett idle,
because the receivers can go metastable, i .e . , arrive at
the unstable condition \\'here i ts input voltage is
between i ts speci f ied logic 0 and logic 1 voltage levels,
resu lting in uncontrolled oscil lation . Centering the
Thevenin ,·o l tage in the normal fu l l vol tage swing had
two ad,·antages: (l) it balanced the settl ing time t(x
both transitions, and (2) i t reduced the driver cu rrent.
The reduced driver current allowed t(x a lower
Thevenin resistance, which brought the tcrmi1utors
closer to the un lo�1dcd (no modules) impedance of the
bus, thus ensuring that the bus would s<::ttle 1\' ithin 6 ns.

The Basic Bui lding Block

Texas I nstruments' CDC:586 dock distribution circu it
was chosen as the basic bu ilding block t()!· the system
because of its low cost and fi.mctjonalit:y. The device has
a tan -out o f l 2 outputs with a single compcns�uion loop
and a frequency r�mge of2 5 megah<::rtz (MH z) to 100
MHz, and i s '' 3 . 3 -volt (V) bipolar complementary
metal -oxide semiconductor (B iCMOS) part. Process
skew is l ns bef\vecn any two parts with the same ref
erence input dock, and root mean square (RMS) j i tter
is 2 5 picoseconds (ps) . 2 The CDC586 has a bui l t - in
loop filter, which reduces the number of support com
ponents. Un l i ke custom c lock circu its with multip le ,
independent compens�1tion loops, the s imp le , s ing le
loop design r<::qu i rcd critical attention to the Lwout of
each module design to ensure the best possi ble skew
pedonnance . The circuit board layout designer had
to determine the maximum etch length ti·om the I'LL
to the receiver. Al l copies of the clock had to be pre
cisely matched i n length to the maxim u m length
t()L! I1d , and routed on the same etch layer with
0 .5 1 m m (20 m i l) spacing to other etches :�nd mini
mum etch crossovers h·om other etch layers on du::d
strip- l ine]av-ups . Typical strip- l ine etch i n mu lti byer
PWRs is a sign:1l layer th:Jt h:1s reference planes, usua l lv
assigned to po\\'cr or grou nd, in the layer :Jbo,·e and
the layer below. This design al lows better i mped�1 ncc
conn-� ! and el iminates cross ta l k ti·om other signal
layers. PWB th ickness and cost constraints often resu lt
in moditied t(mns on the inner layers, however. Dual
strip - l ine etch is often used i n these cases . This design
consists of two signal layers sandwiched between rctcr
cncc p la nes i n the lavers abm·e and below. General ly
the dielectric thickness bcf\vcen the two signal byers is
greater than the die lectri c thickness bef\veen either
s ignal layer and its related (nearest) rckrcnce p lane to
min imize cross talk bcf\vecn the two signal layers.
Figure 2 i l lustrates a typic:1l appl ication.

Digiral Tcchniol J o u rna l Vol. R No. 4 ! 996

CLOCK RECEIVER 1 I
I NPUT R L1 ---

PHASE- A L2 LOCKED
LOOP

FB A

L3

KEY:

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
A SER IES TERMI NATING RESISTOR
L 1 , L2, ETCH LENGTHS
AND L3

Fig u re 2
Tvpic<l l l'hasc- lockcd Loop Connccrion

Etch Layout

The PWB l ay-ups used on various modu les in the
AlphaServer 4 10 0 system conta in microstrip etch
(surbce etc h) <lnd dual strip- l ine etc h . Idea l ly, single
strip- l ine etch wou ld be opti mum t(H· clock etch; how
ever, i t req uires more l ayers <lt h igher cost tor PWB

materia l . One d rawback to dua l strip - l ine lav-ups is
etch crosso,·cr. A crossover is :1 point along an etch
trace where another etch , one on a d i tkrcnt la\'er not
separated by a reference p lane, crosses. The crossover
forms small capacitance patches, which can load the
clock etch and afkct its impedance and veloc ity of
propagation. The resu l t is additional skew h·om clock
etch to c lock etc h . Designers avoided crossovers on a l l
c lock e tch , <lnd the design docs not permit paral le l
etch on the other l ayer 1\'i thin the dua l strip - l ine ,
which cou ld induce cross tal k .

Figure 2 shows matched <:: tch lengths /. 1 , L2 , and L-, .
On some module designs, th is e tch can be t:1 i rly long.
The layou t designers wou ld genera l ly "serpenti ne"
or " trombon e" these long etch runs ro comply with
the ,,t()l-cmentioned l ayout ru les . Sp:1ci ng between
the loops on the same etch run in the serpentine or
trombone is crit ical . If the spacing is roo c lose, then
coupl ing wil l occu r, thus changing the ,·clocity of
prop:1gation JS \\'C i l as signal qua l i tv. Designers used
s imula tion to determine a min imum etch-to - etch
spacing t(H· each PVVB lay- up . The maxi mum a l l owable
cross-tal k noise level for any min imum spac ing was
400 mill ivo lts (mY). This level is within the maximum
transistor-transistor l ogic (TTL) low-state l evel of
800 m V. Larger spaci ngs were used \\'here no other
lavout ru les wou ld be affected .

The Use o f External Series Terminating Resistors

External series terminating resistors (�1lso ca l led termi
nators) , denoted by R, arc used at the source (sec
Figure 2) . Although Texas I nstru ments otli::rs :1nothcr
version of the P LL, namely CDC2586, which has

built- ill series terminators, the AlphaServcr 4100 design
ers did not use this variation tor the tol lowing reasons:

• Some tOnns of clock treeing (a method of connect
ing mu ltiple receivers to the same c lock output)
require mu ltiple source terminators.

• The nominal value for the i nternal series terminator
was not optimum for the target i mpedance of the
PWBs.

• The tolerance of the i nternal series terminators
over the process range of the part cou ld be as h igh
as 20 percent compared to 1 percent for external
resistors.

Local Power Decou piing

PLLs arc analog components and are susceptible to
power supply noise. One major point source tor noise
is t he PLL itself. Most appl ications requ i re all 1 2 out
puts to drive substantial loads, which generates local
noise. A su bstantial number of local decoupl ing capac
itors (one tor every tour output pins) and short, wide
d ispersion etch on the power and ground pins of
the PLL w�::re requ ired to he lp counter the noise.
Designers a lso used tangential vias to minimize para
sitic inductance, which can severely reduce the t:ffec
tiveness of the decou p li ng capacitors. Typical surface
mount components have d ispersion etch , wh ich con
nects the surface pad to a via . Tan gentia l vias attach
di rectly to the pad and e l iminate any surface etch that
can act l i ke inductance at high frequency. The PLLs
were a lso located away from other potentia l no1se
sources such as the Alpha microprocessor chip .

Analog Power Supply Filter

The most important externa l ci rcui t to the PLL is the
low-pass fi l ter on the analog power pins. Typical ly, PLL
designs have separate analog and d igital power and
ground pins. This a l lows the usc of a low-pass fi l ter to
prevent local switching noise from entering the ana log
core of the PLL (primari ly the voltage-controlled osci l
lator [VCO]) . I f a fi lter is not used , then large edge-to
edge j itter wi l l develop and wi l l greatly i ncrease c lock
skew. Most PLL vendors suggest ti l ter designs and
PWB l ayout patterns to he lp reduce the noise entering
the analog core . The CDC586 PLL was introduced at
the beginning of the AlphaScrvcr 4 100 design, and the
vendor had not yet specified a filter tor the a na log
power input . lt is important to note that if any new
P LL is considered and prel iminary vendor specifica
tions do not i nc lude detai ls about the analog power,
the dcsign<.:r should contact the vendor tor detai ls .

Two torms of low-pass tl lters were considered: L-C
and R-C . The L-C fi l ter consists of a series inductor L
trom the power source to the ana log power pins of
the PLL and a capacitor C from the same power pins
to grou nd . The R-C tl lter consists of a series resistor
R trom the power source to the a na log power pins of

the PLL and a capacitor C tl·om the same power pins
to grou nd.

The L-C fi l ter can be implem<.:nted i n two ways:
(1) by using a surtace mount inductor and (2) by using
a length of etch f()r t he i nductor. In e ither case, the Q
of the circuit has to be kept low to prevent osci l lation .
Q is a d ime nsion less number reterred to as the qual ity
factor and is computed from the inductance L and
resistance R (i n this case the i nductor's resistance) of
a resonant circuit using the formu la Q = wL/ R. where
w equals 2'IT/: and / is the frequency. A low-value resis
tor in series wi th the inductor can he lp . Extreme care
shou ld be taken if the lengtb-ot�etch (used to generate
i nductance) implementation is considered. The etch
must be strip-.l ine -ctch isolated from any other adja
cen t etch or etch on other layers not separated by
power or groun d planes. A rwo-dimensional (2 � D)
model ing tool should b e used t o ca lcu late t h e l ength
of etch needed to get the proper inductance value tor
the fi lter. Simple ru les of thumb tor inductance wil l
not work with reference p lanes (i . e . , power and
ground planes) .

The R- C tl l ter i s l imi ted to PLLs with moderately
low current draw on the ana log power pins . The cur
rent generates an IR d rop (the voltage drop caused by
the current through the resistor) across the resistor R .
Typical PLL analog power inputs requi r<.: kss than
1 mil l iamp (mA), which would a l low a reasonable
value resistor R. Two capacitors shou ld be used i n the
R-C type fi lter: a bu lk capacitor for basic tl l tcr response
and a radio tl-cquency (Rf') capacitor to fi lter higher
frequencies. B u l k capacitors are any e lectrolytic-sty le
capacitor 1 microfarad (J.LF) or greater. These capaci
tors have intrinsic parasitics that keep them fi·om
responding to h igh-frequency noise. The benefi t of
the L-C fi lter is that, a lthough a single capacitor can b<.:
used (r.vo arc sti l l suggested with this style fi l ter) , the
reactance of the inductor increases with ti·equency and
h el ps b lock noise . Both tlltcr styles were us<.:d i n the
AlphaScrvcr 4 100 system.

System Distribution Description

The AlphaServer motherboard has four CPU slots,
e igh t memory slots, and an I/0 bridge mod u le slot.
Each module in the system, i ncluding the mother
board, has at l east one PLL. The starting point of the
system is the CPU that pl ugs i n to CPU s lot 0 . Each
CPU modu le has an osci l lator and a bufter to drive the
main system d istribution, but the CPU that p lugs in to
slot 0 actual ly driv<.:s the system d istribution . A PLL on
the motherboard receives t he clock sou rce generated
by the C P U in slot 0 and distributes low skew copies of
the clock to each modu le slot in the system. Each
module in the system h as one and in some cases r.vo
PLLs to supply the requ ired copies of the clock locally.
Figure 3 shows the basic system tlow of c locks.

Digital Tcdlnic;ll)omn.1l Vol . 8 No. 4 1 996 4 1

42

MOTHERBOARD
CONTROL
LOGIC MEMORY 7

r
�

� MEMORY O
MOTHERBOARD

I CPU 3

PRIMARY CPU 0
DISTRIBUTION �

,.....

� J
� 1/0

BRIDGE

Fig u re 3
System Clock flow Diagr::un

The Alpha microprocessor used on al l CPU options
tor rhe AJphaScrvcr 4 100 system has irs own l ocal
c lock c i rcuitry. The microprocessor uses a bui l t - in
d igital PLL that al lows i t to lock to an externa l rckr
cncc clock at a m u l tiple of i ts i n ternal clock . ' In the
context of the AJphaServcr 4 1 00 system, the rekrcnce
c lock is generated by the local c lock d istribution sys
tem . The AJphaScrvn 4 100 is ful ly synchronous.

Each CPU in the system has two c lock sources:
one for the bus d istribution (system cycle rime) and
one for the microprocessor. This design may appear to
be a costly one, but this :1pproach is extremely cost
eftecrive when f-ield upgr.1des are considered . W hen
new, faster versions of the AJ pha m icroprocessor
become avaibblc, new C PU options wi l l be intro
duced . To remain svnchronous, the Alpha micro
processor i nternal clocks need to run at a m u l tiple of
the system cyc le rime. Al though the system cycle r ime
goal is 1 5 ns, the cyc le ri me needs to be adjusted ro the
speed of the CPU option used . Placing the bus osci lb
ror, which drives the primary PLL for the c lock system
(cycle rime) , on the CPU module and design ing the
clock d istribution system to fu nction over a wide t-i·e
quency range makes field upgrades as simple as replac
ing the CPU mod ules. The motherboard docs not
need to be changed .

Digital Technical journal Vol . 8 No. 4 1 996

Skew Ma nagement Techniq ues

The AlphaScrvcr 4 100 system had t-(nJ r design teams.
Each team was assigned a portion of the system. Signal
in tcgriry tech niques had to be developed to keep the
skew across the system as low as possib le . These tech
niques were structured into a set of design ru les that
each team had to applv to their portion ohhc design.
To develop these ru les, designers explored several
areas, inc luding impedance rJngc, termination, tree
i ng, PLL pLlcemenr, and compensation .

Impedance Range

Contro l led impedance (+/- 1 0 perce nt from a target
impedance) r::�iscs the FWB cost bv lO percent to
20 percent, depend ing on board s ize . Each raw PWJ3
has to be tested and documented lw the PWB s u p
pl iers, wh ich resu l ts i n a fixed c harge t(>r each PWB ,
regJrdlcss o f size. Theref-ore, smaller PWBs have the
highest cost burden. The AJphaScrvcr 4 100 uses rela
tively small daughter cards . Since low system cost was
a primary goa l , noncontrol lcd impedance PWBs had
to be considered . U n t()rtu natcly, al lowi ng the PvVB
i mpedance r;mgc (over process) to spread to greater
than +/ - 10 percent makes the task of keeping clock
skew low more d ifticu lt . Specification of mechanical
d i mensions with tolerances was the only wav to
provide some control of the impedance range with
no additional costs.

Table l comains the resu lts of simu lations per
tormed using S I MPEST, a 2 - D model ing tool deve l
oped by DIG ITAL, for a s ix- layer PW B used on one of
the AJphaServer 4 1 00 modu les. The PWB dimensions
and tolerances specified to the vendors were used i n
the simu lations. The d ie lectric constant, the onlv para
meter nor speci f-ied to the vendor, ranged from 3 . 8 to
5 .2 , which ovcrbps the rypical industry-pu blished
range of 4.0 to 5 . 0 tor fR4-type material (epm..)r-glass
PWB) .'' S ince our PWB material acceptance with the
vendor is based on meeting dimension tolerances, we
used the 6cr i mpedance range on al l SPICE s imula
tions, rhus ensuring that a l l acceptab le PWB material
wou ld work electrical ly.

Ta ble 2 shows the impedance range t-(>r J control led
i mpedance PW B t-(>r the target impedance reported i n

Table 1
Vendor I mpeda nce Ranges Specify i ng
D im e nsions Only

Mean ta rget
i m peda nce

I m peda nce
range

4cr Yield

71 ohms

62 ohms to
83 ohms

6a Yield

71 ohms

57 ohms to
89 ohms

Table 2
Vendor I m peda nce Range for a n I m peda nce
To l era nce of +/- 1 0 Perce nt

Mean t a rget
I m peda nce

I m peda nce range

+ I - 1 0 Specification Range

71 ohms

64 o h ms to 78 o h ms

Table I . The d i fkrence i n i m pedance r;mgc between
specifY ing d i mensions and i mpedance is - 7 ohms to
l l ohms. The s imulations suggested that the range
d i tkrcnccs have a minor i mpact on signal beh;wior.

The target i mpedance was based on nominal
d i me nsions and die l ectric constant . The target of
7 1 o h n1s \\'aS chosen to opti mize routing densi ty and
to keep the l:�ycr cou n t down ti:>r most designs.
Another J.dv:t ntage was that keeping the m i n i m u m
im ped:�nce above 50 ohms would m i n i m i ze load ing.
The i mpedance range covers th<.: fu l l mechanica l
d i mensions and d iel ectric constant ranges. Propt.:rly
i mpkmcntcd , the PLLs would dkc tivcly e l i minate
local etch d elay mod u l e to mod u le over the ti.d l
process rang<.: of the PWJ3s. The main chal knge was
to adeq uate l y termi nate withou t sacri flcing skew
pert(>rmance at th<.: extreme process r:t nge (6u) of
the PW B materia l .

Termination

The designers used series termination 011 �1 1 1 c locks i n
t h e system . P<1 r;1 1 ld terminators wou ld have <.:xceeded
the d rive capabil ity of the CDC586. Diode damping
was not practical when so many copies of the c l oc k
were requ ired because o f PW B surbce area con
strai n ts . Normal ly, the optimal term i nation value is
one that provides critical damping ti:Jr the case where
the driver's i mpedance is the lmvest and the etch
i mpedance is the h ighest. Designers can then make
adj ustments :�t the other extreme corner (high driver
impedance and low etch i mpedance) to avoid non mo
noto n i c behavior such as pl ateaus . This generally
introd uces s lope delay u ncerta inty at the s low corner
(high d river i mpedance and low e tch i mped a nce) ,
which c:�n be substa n tia l . To m i n i mi ze th is cftcct,
designers selected term inator values th;lt a l l ow over
shoot and some bounce-away ti·om the threshold
region at t i Je extreme process corner. Overshoot can
reach the maxi m u m spec i tied a l tern:�ting current (AC)
i np u t o F the receivers over the worst-case process
range. Some receivers have bui l t - in d iode c lamping to
their power supply rai ls as a resu l t o r· ESD c i rc u i ts i n
their i n p u t structures (ESD circu i ts :�re used tc.>r static
d ischarge protection) . In these cases, the c lock sign;ll is
c lamped, which in turn dampens bou nce. The i njec
t ion curre nt s c:�used by clamping wou l d be tested in
SPICE s imu l ations to be sure that the parts were not

stressed. If the tests ind icated stressed parts, designers
wou ld adjust the termi nator val u e accord i nglv.

Treeing

Treeing is :-� method of d istri buting clocks from a
si ngle sou rce driver to many receivers . This practice,
whi c h is wel l known to m emory designers, was used
on the AlphaServer 4 100 memory mod u l es, bus i nter
face logic , and primary d istribut i on clocks on the
mothe rboard . The designers used two basic forms of
treeing: the bal :�nced H tr<.:e and the shared output
tree . The balanced H tree is best suited tor fixed loads
(receivers) of the same type (i . e . , memories, trans
ceivers, ere .) . A single, series-terminated clock ou tpu t
feeds a tru n k l i ne to a via and then branches to each
load . Each branch is equal i n lengt h . The total com
pensated path inc l udes the pre-terminator stub, the
main trunk, and the branch ex t<.:nding to the load .
Figure 4 i l l ustrates the c lock treeing topoiOb'Y The
shared ou tpu t tree was used where various mod u l e
configurations cou ld a l tn clock load ing . Specitica l l y,
the d istri bution on the motherboard is restricted to
one P LL to keep the cloc k skew low. Consequent ly,
some outputs needed to drive more than one slot.
A single output d river d rove two termi nators-one
tor each load . The low d river i mpedance isolated
rd1ections tl·om perturbing a mod u le when a mod ule
s lot was left ope n .

PLL Placement

P lacement of the PLL on each mod u l e is critical . Figure
5 is a s impl itied view of the primary d istri bu tion up to
and inc luding the PLL on a mod u l e . The Al phaServer

FB

KEY:

PHASE
LOCKED
LOOP

R

MODULE

MODULE

SHARED
OUTPUT
TREE

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR

Figure 4
C lock Treeing

Digital T((hnica l journal Vol . 8 No. 4 1 996 4 3

44

4 100 system has two types of module connectors:
a Metra ! con nector (F u ru rcbus + -style connector) is
used on the CPU mod ules and the I/0 bridge mod u le,
and an Extended I nd ustrv Stand ard Architectu re
(EISA) connector is used on the memory modu les .
I n tri nsic delay on these connectors cou l d d i ffer sub
stan ti a l ly depending on pi n n i ng and the s ign a l - to
return ratio i n the application . The Mcn·a l con nector is
a right-angle , nvo-picce con necto r with tou r rows of
pins: rows A, B , C, and D. The row A pins arc the
shortest, and the row D pins arc the longest. The EISA
connector is an edge connector with nvo rows of pins
with m i nor l ength d i fferences p in to pin o n either s ide
of the con nector. Designers had to balance the pinning
of these connectors for the c lock circu i ts in such a way
that the mod ule-to-mod u le skew woul d not be
a tlectcd . The Metra! con nector was pinned to replicate
the loop inductance of the EISA connector.

D ispersion e tch is requ i red on eac h mod u le to con
nect the P LL to the connector. This etch can h ave d i f
krent i mpedance and velocity of propagation ti·mn
mod u l e to module as a res u l t of P\VB process range ,
which transl ates i nt o addition ::� ! modu le -to-mod u le
c lock skew. Designers can dea l w i th this problem in
t\vo wavs.

First, adding the same dispers ion len gth L, (sec
Figure 5) to the compe nsation loop L2 nul ls this error.
Th is becomes obvious if you l ook at the PLL's basic
fu nction . The i nsertion d e!Jy 7

i
·
d f-1-om the c lock- in pin

of the PLL to the inp u t pin of the receiver is approx i
mately 0 ns i f L 1 = L2, o r

MOTHERBOARD
PRIMARY
DISTRIBUTION

7;
.
d = (T{, + 0) - 7, 2 .

For 'f{ , = 02 (eq ua l etch l engths) , 'f,·d = 7f. 1
Adding 7/ , to the compcns:n ion path y ields

'l;'d = (7; , + 0) - (lj2 + ·r;
For 7{ , = 7{2 (etch eq ua l lengths) , 7id = 0 ns,

where

Tid = the inserti on d e l ay f-rom the connector
p in to the receiver input

lj , = the etch d e l ay f-i·om the PLL output
t o the receiver i npu t

'fj 2 = the etch de Ll\' of the PLL
compensation loop

l/, = the d ispersion etch d el ay connector
to the clock- in of the P LL.

One d rawback to this method is that the etch lengths
could get b irlv l a rge , which wou ld resu l t in edge r:ne
degradation . Alph aServer 4 1 00 designers d id not usc
this p laccmcnr method on the cu rrent set oh11od u l cs;
however, they will consider using i t on new designs that
require :1 d i ff-Crcnt location t(>r the P LL.

The second way of dea l ing w i th the dispersion etch
ti·om the m od u le connector to t he cl ock- in p i n ohhc
P LL is to ma ke the d ispersion e tch very short and to

take a skew pe na lty over the l)W B process . P l acement
stu dies on the various mod u le designs su ggest that
a 2 5 - m m d ispe rsion etch wou l d a llow rclSOILlb le
placcmcllt of PLLs . The :1dd i tional skew is just u nder
5 0 ps, based on a velocity of propagation range of
5 . 59 ps/mm to 7 . 3 6 ps/m m .

TYPICAL MODULE
LOCAL DISTRIBUTION

DISPERSION R L,

Figure 5
PrinlJrl' Disn·iburion

Digital Tcchniul)ou rn,li

CLOCK IN
FROM CPU 0 R

PHASE-
LOCKED
LOOP

FB R

KEY

ETCH L3\
\ CLOCK IN

CONNECTOR

COMPENSATION
LOOPS

FB

PHASE-
LOCKED
LOOP

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR
L1 , L2, ETCH LENGTHS
AND L3

Vol . R No. 4 1 996

TO
RECEIVERS

R

R

Compensation

Some mod u les have a wide variety of circu its receivi ng
clocks that, because of input load ing, do not balance
wel l with the various treeing methods. Designers
used d u m my capacitor load ing to help balance the
treei ng. This approach was particu larly useful o n
memory modu les, w h i c h cou ld be depopul ated to
provide different options using the same etch . Su rface
mou nt pads were added to the etch such that if the
depopu lated version were b u i l t, a capacitor coul d be
added to replicate the m issing load on the tree, thus
keeping it i n balance. The CPU modu les have a wide
variety of clock needs, which resu l ts i n two forms
of skew: (1) load - to- load sknv at the mod ule and
(2) control logic-to-C PU skew, tor control logic
located on the motherboard . The local load - to
load skew is acceptable because only one PLL is
used and the ou tput-to-ou tput skew is only 500 ps.
Motherboard -to-CPU control logic skew, though, is
cri tical because of ti m i ng constrai nts.

D u mmy capaci tor loading at each l ightly loaded
receiver wou ld have reduced the skew, but to compen
sate tor j ust o n e heavi ly loaded receiver would have
required many capacitors. PWR su rrace area and the
req uirement of simpl icity d ictated t he need tor an
a l ternative. The solution was to keep the clock edges
as fast as possible (by adj usti ng the series terminators)
and to add a compensation capacitor at the input (the
feedback [F l3 J) of the P LL's compensation loop. This
effectively reduced the skew from the slowest load on
the CPU to the control logic on the motherboard .
Figure 6 shows the d isparity between l ight and h eavy
loading from T1 to 72. Without teed back compensa
tion, the P LL self- adjusts to the l ightly loaded receiver.
Tbis ;�djustment results in skew T1 to 72 from the
heavy load to the control logic on the motherboard .
A capacitor on the fB input of the PLL sp l i t the d i f
fercnce berween 73 ro 7 2 and T.1 to 7] ;�nd min i mized
the perceived skew.

Skew Target

Designers generated the worst-case mod u le-to-mod u le
clock skew specification tor the Al ph aServer 4 100
trom vendor specitications, S Pl C E sim u l ations, and
bench tests using the techniques d iscussed in this
paper. The worst-case skew goal i s 2 .2 ns and i s sum
m arized i n Table 3.

The reader wi l l note that e ight t imes the vend or's
specification may appear to be <1 rather conservative
specification . The usc of this value was based on two
concerns: (1) the PLL was new at the time, and experi
ence suggested that the vendor's specification was
aggressive; and (2) some level of padding w;�s required
if the exception to the ru les was needed . Actual system
testing bore out these concerns. The vendor had

LIGHTLY LOADED
RECEIVER

HEAVILY LOADED
RECEIVER

COMPENSATION LOOP
FB INPUT (PLL) WITH
NO CAPACITOR

COMPENSATION LOOP
FB INPUT (PLL) WITH
CAPACITOR

KEY:

T1 LIGHTLY LOADED RECEIVER CLOCK EDGE TIME
(REFERENCE)

T2 HEAVILY LOADED RECEIVER CLOCK EDGE TIME
T3 COMPENSATION LOOP FB INPUT EDGE TIME WITH

CAPACITOR
FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP

Figure 6
feedback Loop Compensation

to relax the j i tter specitication ti·om 25 ps to 70 ps
RMS, and there were some d ifficu lties getting good
load balance . The specitication did not change, how
ever. Reassessing the a l located bus sett l ing time yields
the followi ng:

Bus cycle
Transmitting module (Teo)
Setup and hold time for the

receiving mod u le
Clock skew
Time a l located for bus settling

1 5 .0 ns
5 . 1 ns

1 . 5 115

2 .2 ns
6 .2 ns

SPICE simu lations tor a fu l ly lo;�ded bus with the
worst possible driver receiver position yielded a bus
settl ing time of 5 .7 ns. The relaxed skew of 2 .2 ns
maximum was acceptable tor the design .

Comparative Analysis

A comparison of clock d istri bution systems between
two other p latforms best summarizes the AlphaScrver
4 100 system . The AlphaServer 4 100 has a price and
performance target berween those of the A lphaServer

2 100 and the AlphaServer 8400 systems. Table 4 com
pares the basic d ifrerences among these systems rel at
ing to cl ock d istribution tor a CPU module ti-om each
platform .

Both the Al p haServer 2 100 and the AlphaServer
8400 systems have large custom AS!Cs f(x their mod
u le's bus interface. The Alp haServer 4100 and the
Al phaServer 8400 systems have bus termination; the
Alp haServer 2 100 system does not. Al lowing a bus to

Digiul Technical Journal Vol . S No. 4 1 996 45

46

Ta ble 3
Worst-case Clock S kew

Stage

M otherboard

I n puts to modules

Module to module

I n puts to rece ivers

I n puts to receivers

Tota l c lock skew

Table 4

Source

O ut-to-out skew

Load m ismatch

PLL process

Loa d mismatch

PLL j itter

Clock D istr i bution Comparison of T h ree Platforms

AlphaServer 2 1 00 System

B us width 1 28 + ECC

B us speed 24 ns

Clock skew 1 . 5 ns

Inputs req u i r i n g c l ocks 1 0

Clock d rivers used 1 2

N u m be r of c l oc k phases 4

settle natura l ly (with no termination), as in the case of
the AlphaServer 2 100 system, req uires a tighter skew
budget from the clock system. The trade-off is higher
cost, power, and PWJ3 area t()r lower bus speed .
Higher performance systems, such �lS the AlphaServer
8400 and AJphaServer 4100 systems, generally requ i rc
bstcr bus speeds with term inators . The AJp h aServcr
4 100 has shorter bus stubbing (mod ule transceiver to
con nector d ispersio n etc h) Jnd s lower bus speed than
the AlphaServer 8400, which al lows larger skew (Js
a percentJge of the bus spccd) .

Table 5 i s a comparison o f board areJ needed and
cost for the clock syste m . Dcsigncrs analyzed an entry
levcl system consisting of one CPU module , one mem
ory mod u l e , and one 1/0 bridgc or i nterface mod u l e .
Thc board area shows the spacc req uired b y t h e active
components only (the d igitJ I p hase- loc ked l oops,
PLLs, d rivers, etc .) .

Both Tables 4 a n d 5 show that the c lock system
dcsign t(>r the AJphaScrvcr 4 1 00 system req u ires only
one-th ird the space of either thc Al p haServer 2 100
systcm or the AJphaServcr 8400 system at a fraction of
thc cost and d istri butes more copies of the clock.

Ta ble 5
Board U t i l i zation a n d Cost Compa rison

Board a rea used*

Normal i zed cost

AlphaServer 2 1 00 System

352.8 sq u a re ce nt imeters

1 .00

Skew Component

500 ps (vendor specificat ion)2

1 00 ps (s i m u l at i on/bench test)

1 , 000 ps (vendor specif ication)'-

200 ps (si m u lation/bench test)

400 ps (e ight t imes the vendor specification)2

2,200 ps = 2 . 2 ns

AlphaServer 4 1 00 System Alpha Server 8400 System

1 28 + ECC 256 + ECC

1 5 ns 1 0 ns

2 . 2 ns (max.) 1 . 1 ns (max.)

2 5 1 4

1 3 1 1

Conclusions

An etkctive, low-cost, high -pcrh>rmance c lock distri
bution system can be lksigncd using an off. the-shclf
componcnt as the basic b u i l d ing b lock. D fG fTA L
AJ phaServer 4100 s�·stem dcsigncrs accomplished this
by optimiz ing the bus and den: l oping s imple tec h
niqucs structured i n the t()rm o f dcsign rules. Thcsc
ru les arc

• Use positive edges t(x critical clocking.

• Match dc lay through d i ftCrc nt con nectors usmg
appropriate p inning.

• Usc a fixed d ispersion ctch length from the connec

tor to the PLI , .

• Rou te and bal a nce a ll dock nets on the same PWB
laycr.

• Minimizc adjaccnt- laycr crossovcrs and maximize
spacmgs.

• Use minimum val u c tcrminarors.

• Usc tree and loop comrxns<ltion where needed .

• Usc conservative local d ccoupl ing and a l ow-pJss
ti l ter on the PLL (analog powcr) .

Alpha Server 4 1 00 System

1 1 1 .4 sq uare centi m eters

0.46

Alpha Server 8400 System

3 7 1 .3 s q u a re centimeters

4.40

*Note that these measu rements do not include decoupl ing capacitors and terminators.

Digital Techn ical Jourml Vol . 8 No. 4 1 996

The worst-case lab meas u re ment of c lock skew
between any two mod u l es in a rLd ly con hgu red system
was l . l ns, which is wel l within the 2 . 2 ns ca lcu lated
m J x i m u m skew.

Acknowledgments

Terry Skrypek and Bruce Al ford assisted with the
prototyping and measurements . Cheryl Preston ,
Andy Kon i ng, Steve Coe, George H arris, and
Larrv Derenne worked with the designers to
ensure compliance with the signal i n tegrity r u les.
Darrel Donaldso n , Don Smelser, Glenn H erdeg, Jnd
Dan Wissel ! provided invJ i uablc tech nical guidance.

Note and References

I . S l' I CE is a genera l - pu rpose c i rcu i t s imu lc1tor program
developed Lw Lawrence Nagel and E l l is Collen of t i le
\)epclrtmcm of Elecnical Engineer i ng and Computer
Sciences, Unive rsity ofCal i rornia at Berkeley.

2 . CDC- Clock Distribution Circu its, Data .Book
(Da l l as, Tex . : Texas Instruments I ncorporated, 1 994) .

3 . A lpha 2 ! 1 64 /Vlicroprocessor 1-fctrdware Heference
/vlmwal (Maynard, Mass . : D igital Eq u ipmem Corpora
tion, September 1 994) .

4. C. Cuiks, f:"t ·etything Vou l:"uer Wanted to Know
Ah(mt Laminates. . But \h're Aji-aid to As/,o, 4th ed .
(Maitland, fla . : Arion, Inc . , January 1 989) .

Biography

Roger A. Dame
A principal signal i n tegrity engineer in the !VI id r<l llge
Servers group, Roger Dame is cu rremly working on the
A lphaServer 4 100 project. During the I 0 years he has been
with this grou�), he has a l so contri buted to the VAX 6000,
VAX 5800, VAX 7000, D EC 7000, and D EC 1 0000 proj
ects. I n earl ier work at DICITAL, in the Industrial Products
group, he developed cmalog-to-d igita l process control sys
tem intcrr:tces. Roger joined DICITA.L in 1 97 1 . He holds
an A .S . E . E .T. degree fi·orn Springfield Tcclmical Cornmu
n itv College and a B .S .E .E .T. (summa cum ! Jude) fi·om
Ccnrral Ne'' England College. Roger is coinventor of the
laser bus used i n the DEC 7000 and DEC 1 0000 systems.

Digiul Tech n ical Journal Vol . 8 No. 4 1 996 47

Design and Implementation
of the Alpha Server 41 00 CPU
and Memory Arch itecture

The DIGITAL AlphaServer 4100 system is Digita l

Equipment Corporation's newest four-processor

midrange server product. The server design is

based on the Alpha 21 1 64 CPU, DIGITAL's latest

64-bit microprocessor, operating at speeds of

up to 400 megahertz and beyond. The memory

architecture was designed to interconnect up

to four Al pha 21 1 64 CPU chips and up to four

64-bit PCI bus bridges (the Alpha Server 4100

supports up to two buses) to as much as 8 giga

bytes of main memory. The performance goal

for the AlphaServer 4 1 00 memory interconnect

was to del iver a four-multiprocessor server with

the lowest memory latency and highest mem

ory bandwidth in the ind ustry by the end of

June 1 996. These goals were met by the time the

AlphaServer 4100 system was introduced in May

1 996. The memory interconnect design enables

the server system to achieve a min imum mem

ory latency of 1 20 nanoseconds and a maximum

memory bandwidth of 1 giga byte per second by

using off-the-shelf data path and address com

ponents and programmable logic between the

CPU and the main memory, which is based on

the new synchronous dynam ic random-access

memory technology.

41l Di�;i tcll Tech nical journal Vol . 8 No. 4 1 996

I
Glenn A. Herdeg

The DIG I TAL AlphaSuvn 4 100 s�'stem i s a svrnmet
ric multiprocessing (SMP) midra nge suver that sup
ports up to fou r Alph:1 2 I 1 64 microprocessors .
A singk Alph<� 2 1 164 CPU chip may simultaneous ly
issue multiple extern:�! accesses to main memory. The
Alph:1Servu 4100 memory imuconncct was designed
to maximize this multiple- issue ti::ature of the Alpha
2 1 164 CPU chip :�nd to t:� kc :llh':111tage ohhe perfor
mance benefits of the new bmi ly of memory chips
called synchronous d\'n:unic random·access memories
(SDRAMs). To meet the best-i n-industry latency <111d
b:mdwidth pertorm:1ncc goa ls, D I G ITAL de,-eloped
:1 simple memory interconnect ,1rchitccturc th<�t com
bines the existing Alpha 2 ! 164 CPU memory i n ter
race wi th the industry-standard SDRAM interrace .

Throughout this paper the term late ncy reters to the
time required to return data ti·om the mcmorv chips ro
the C PU chips-the lo\\'er the latency, the better the
put(>rmancc. The AlphaScr\'er 4 10 0 svstcm achic,·cs
:1 m in inl l lm latencv of 120 nanoseconds (ns) tl-om rhc
rime the address appc::lrS ar rbe p ins of rhc Alplu 2 1 164
CPU ro the time the CPU internal tv receives tl1e corre
sponding data hom any address i n m:1 in memory. The
term ba ndwidth rdcrs to the ::tmount or' data, i . e . , the
n umber of bytes, transferred berwecn the memory
ch ips and the CPU chips per unit of rime-the higher

the bandwidth, the better the pcrt(mnance. The
AlphaServer 4 100 delivers '1 nJ,lXimum memory band
width of l gig<�byte per second (G B/s).

Beh-c in troducing the DIGITA L AlphaServer 4 lOO
product i n M:1y 1996, rhc developme nt ream con
d u cted :m extensi,·e pcd(mllancc comparison of
the top sen·crs in the industry. The bencbnurk
tests showed that the A l p h aServcr 4 10 0 delivered the
lowest memory latency :md rhc highest McC<�Ipin
memory b:1 11dwidth of a l l the t'vVO- to four-processor
systems in the industry. A companion p<�per in
this issue of the]oumol " A i p luServer 4100 Pcr
t(>nll Jnce Characterization," contains the comparative
int(mnation.1

This p:�per focuses on the '1 rchi tecturc and design of
the rhn:e core modules that \\'ere developed concur
rently to optimize the ped(mn:�ncc of the e ntire

me mory arch i tecture . These th ree mod u les-the
motherboard , the synchronous memory mod u l e , and
the no-external -cache p rocessor mod u l c-�H"C shown
in Figu re l .

Motherboard

The motherboard contains connectors t()r up to t(> u r
processor mod u les, u p t o t(Jur memory mod u l e pairs,
u p to two 1/0 i nterrace modu les (tcH1 r peripheral
component i nterconnect [PC!] bus bridge c h ips
ror:�l) , memory add ress m u ltiplexers/drivers, :md
logic t(>r memory control and arbi tration.' Al l con
trol logic on the motherboard is im plemented using
simple 5 - ns 28 -pin programmable arra�' l ogic (PAL)
de\ ' ices and more complex 90- mcgahcrtz (M H z)
44-pin programmable logic devices (P LDs) c locked Jt
66 M Hz. Several motherboards have been produced
to su pport various n u m bers of processor modu les,
memory modu les, and 1/0 interbcc modules. The
Alp haScrvcr 4 10 0 supports one to t(> u r processor
mod u les, one to t<> u r memory mod u le pJirs (8 - G B
maxim u m memory) , and o n e I/0 int crbcc mod u l e
(up to two P C I buses) . '

Synchronous Memory Mod ule

The synch ronous memory modu les arc custo m
designed, 72 - bit-wide p lug- in cJrds i nstJ I Icd i n
pairs t o co1Tr t h e fu l l width of t h e 1 44 -bit memory
data bus . Synchronous memory mod u les that provide
32 megabytes (M J)) to 256 M R per pair were designed
usmg 1 6- mcgabit (M b) S D RAM chips. These
memory mod u les conta in n ine, eighteen, thi rty-si x ,
or seventy-two 1 0 0- M H z S D R.AM chips clocked at
66 M H z, t(>ur 1 8 - bit clocked data rcmsccivcrs, add ress
bn-our b u fkrs, a nd control provided by 5 - ns 2 8 - p i n
PA Ls. To increase the maxi m u m a m o u n t of memor v
in the system , a tami ly of p lug- in compati ble memory
mod u les was designed, providing u p to 2 G B per pa ir
us ing 64 - M b exte nded data our dynamic random
access mcmorv (EDO D RA M) c h ips . These modu les
cont a i n 72 or 1 44 EDO DRAM chips controlled by
two custom appl ic1tion -specitic i n tegrated circuits
(ASJ C:s) provid ing d ata m u l tip l exing and contro l , t(> u r
1 8 - bir clocked data transceivers, Jnd add ress b n - o u t
buftl:rs. Consequently, t h e Al phaServcr 4 1 00 memory
arch itecture provides main memory capacities of
3 2 M B to 8 G B with a m i n i m u m latency of 1 2 0 ns to
:111y address. This paper concentrates on the imple
mentation of the synch ronous memory mod u les,
a lthough the EDO me mory modu les arc fu nctionally
compati b le . The recontigu rabi l ity descri ption later in
th is paper pro\·idcs more derails of the im plementation
of the EDO memory mod u l es.

No-External-Cache Processor Module

The no-external -cache processor mod u le is a p lug- in
card with a 144-bit rncmor�r i nred�1ce that contai ns
one Al pha 2 1 1 64 C P U chip, eight 1 8 - bit clocked data
transceivers, tou r 1 2 - bit b id irectional add ress l atches,
and control provided by 5 - ns 2 8 - p i n PALs and
9 0 - M H z 44 - pin P LDs clocked at 66 M H z . The Alpha
2 1 1 64 C P U chip is program med to operate at a syn
c h ronous memory i n tcrtacc cycle time of 66 M H z
(1 5 ns) to match the speed o f the S O RAM chips o n the
memory modu les. Although there are no external
cache random- access memory (RAlvl) ch ips on the
mod u l e , the Alph<l 2 1 1 64 i tself contains two levels of
on-chip caches: �1 primary 8 - ki lobyrc (KB) data cache
and a primary 8 - KB instruction cache, and a second
level 96- KB three-way set- associative data and i nstruc
tion cache . The no-external-cache processor mod u le
was designed to take adva ntage of t he mult ip le- issu e
feature o f t h e A l p h a 2 1 1 64 C P U . By keeping the
latency to main memory low and by iss uing m u ltiple
references trom the Alpha 2 1 1 64 CPU tO main mem
ory at the same time to increase memory bandwidth,
the pedormancc of many appl ications actu a l ly exceeds
the pertormancc of a processor mod u le with a third
l evel external cac h e . ' N u merous appl ications perform
better, however, with a l arge on- board cache. For this
reason , the Al phaScrver 4 1 00 ofkrs several variants of
plug- i n compatible processor modules containing a
2 - M B , 4 - M B , or greater module- level cache. The paper
"The AlphJScrvcr 4 1 00 Cached Processor Mod u l e
Architectu re and Design," which appears in this issue
ofthejourua/, contains more related information!

The th ree components of the core mod ul e set were
d esigned concurrent ly to address five issues:

1 . Simple d esign

2. Quick design r ime

3 . Low memory l atencv

4. High me mory bandwidth

5. Recon figurJbi l i ry

Simple Design

The Alpha 2 1 1 64 CPU ch ip is based on a reduced
instruction set computing (R.ISC) architecture, which
h as a smal l , s im ple set of i nstructions operating as tast
as possi ble. A l phJScrvcr 4 1 00 designers set the sam e
goal of s impl icity t()l· the rest of the server system.

The Al phaScrvcr 4 1 00 i n terconnect between rhc
CPU and main me mory was optimized tor the Alpha
2 1 1 64 chip and the S D RAJ\11 chip . To keep the design
si mple, only off the-shel f data path and add ress com
ponents and rcprogrJ mmable control logic devices
were placed between the Alp h a 2 1 1 64 and S D RAM

Digita l Tcchnic1 1 jounLli Vol . 8 No. 4 1 996 49

50

Figure 1

MOTHERBOARD
MEMORY PAIR 4 - 32 MB TO 2 GB I (ALPHASERVER 4 1 00 ONLY) I MEMORY PAIR 3 - 32 MB TO 2 GB 1----------------� .. 1 (ALPHASERVER 4 1 00 ONLY)
r-�--��----�1--------------1 MEMORY PAIR 2 - 32 MB TO 2 GB �

MEMORY PAIR 1 - 32 MB TO 2 GB
�I FLOP 1�--+---------------------------��1

DRAM COLUMN ADDRESS
(I+-D_R_AM_R�O_W_A�D�D�R�ES�S�

�1-----+�� DRAMS

c_ __
__

_ _ CON_TR()L-<} _ _ _ _ _ • _ : ���1;�� �;��RoL- ;
- - - - 1 AND CENTRAL :-: ARBITRATION 1

PROCESSOR CARD 1 , _ _ _ _ _ _ _ _

� - - - - - - - - - - - ... - 1

r--- - - - - - - - - - - - - - - -: CONTROL :- - - - - - - - - - - - -ALPHA 21 1 64 CPU .. _ _ _ _ _ _ _ J

,CMDMDDR•ii�LA�T�C;H�tl.---------�----�-----. DATA � FLOP
PROCESSOR CARD 2 , _ _ _ _ _ _ _ _ - --- - - - - - - - - - - - -: CONTROL :- - - - - - - - - - - -

.. _ _ _ _ _ _ _ J
ALPHA I�:C�M�D/�A�D�D�R:.����1:�========1=========:ll-_.l
2 1 1 64 . LATCH CPU DATA I F LOP I

-

PROCESSOR CARD 3 (ALPHASERVER 4 1 00 ONLY)
,--- . _ _ _ _ - .: -coN-T�o� f -

,. _ _ _ _ _ _ _ j ALPHA CMD/ADDR I I 2 1 1 64 LATCH CPU DATA ·I I . FLOP
'------

PROCESSOR CARD 4 (ALPHASERVER 4 100 ONLY)
,--- - - - - - - fc_o_N��0� 1 - - - - - - - - - · - ·

.. _ _ _ _ _ _ _ j CMD/ADDR I I < • : LATCH .

"'•2
- ·

:
/

en ::J <D
en en UJ a: 0 0 <(
0 z <(::;; ::;;
0 0

ALPHA 2 1 164 CPU • DATA ·I FLOP 1-------------1-----�----++----• 1
-

r;;;I,O�M�o�D:;;-u;L;E -;-, -;:::: 1 ====� r · _:-:-_l _ _ _ _ _ _ _ PCI SLOTS 1 TO 4 I o----l-----�------J-jf-__ ... +--'-===_:_:_::c..:_+--------;�-11 PCI BRIDGE I r

PCI sLoTs s To a 1 r - - - - - - - ----'-"C..::.::C:.:.::..::.:..::::..::_I----•1 PCI BRIDGE 2 1
1/0 MODULE 2 (ALPHASERVER

PCI SLOTS 9 TO 1 2 4000 ONLY) I -, . - - - .
--..!..:===:c.:.:�=---+--------; ... 1 I PCI BRIDGE 3 11+-l---__:_---+1--·1
,.__:_P_:::C.:_:I S:::L:.::O:,cT_:::S__:1"-3_:_T0"---'1:_6-+-----+-� PCI BRIDGE 4 r�-- --·_- -1-·--_- -_·_- -_:_· -----l-�-.. 1

/ I 44

CfJ ::J <D
<(:;: 0

Note that the AlphaServer 4000 system contains the same CPU-to-memory inteliace as the AlphaServer 4 1 00 but supports half the number ol processors and memory modules and twice the number ol PCI bridges. The
AlphaServer 4000 molherboard was des1gned at the same t ime as the Alpha Server 4 1 00 mo lherboard but was
not produced until alter the AlphaServer 4 1 00 motherboard was ava1lable.

Alp haServer 4100 Memory I nrerconnecr

DigitJI Technical journal Vol . 8 No. 4 1 996

chips. The designers removed excess logic and hard
ware features, minimized the "glue" logic between the
CPU chip and main memory, reduced memory laten
cies a s much a s possible, and used custom ASlCs only
when necessary.

Data Path between the CPU and Memory

The external i nterface of the Alpha 2 1 1 64 chip pro
vides 1 28 bits of data plus 16 bits of error-correcting
code (ECC), thus e nabl ing single-bit error correction
and multiple-bit error detection over the fu l l width of
the data path, which is shown in Figure 2. These 1 44
signals are connected to eight 1 8-bit bidirectional
transceivers on the processor module . As i l lustrated
in Figure l , the motherboard connects up to tour
processor modules and up to four memory mod
u le pairs . Each memory module contains 72 bits of
information; therdore, a pair of memory modu les
is required to provide the necessary 1 44 data sig
nals. Each pair of memory modules contains eight
additional 1 8 -bit bid i rectional transceivers that are
connected directly to a number of SDRAM chips.
The data transceiver used on the processor module
and on tl1e memory module is the 56-pin Phi l ips
ALVC 1 6260 l in a 1 4- mil l imeter (mm)- long package
with 0 . 5 -mm pitch pins. Error detection and correc
tion using tbe 1 6 ECC bits is pertormed inside the
Alpha 2 1 164 chip on al l read transactions. Data path
errors are checked by the PCI bridge chips on all trans
actions, including read and write transactions between
each CPU and memory, and any errors are reported
to the operating system.

The data path is clocked at each stage by a copy of
a single-phase clock. The clock is provided by a low
skew clock d istribution system built from the 52-pin
CDC586 phase-locked loop clock driver.' The clock
cycle is controlled by an oscillator on the processor
module and runs as fast as 66 MHz (1 5 -ns minimum
cycle time) while delivering less than a 2 -ns worst-case
skew (i .e . , the difterence in the rising edge of me clock)
between any tvvo components, including the Alpha
2 1 1 64, SDRAMs, and any transceiver on any module .

Read transaction data is returned from the pins
of the SDRAMs to the pins of the Alpha 2 1 164 in
two dock cycles (30 ns), as shown in Table l . The no
external -cache processor has no module- level data
cache, so data is clocked d irectly i nto the Alpha 2 1 1 64
from the transceiver. In Table 1 , read data that corre
sponds to transactions Rd l and Rd2 is returned from
the same set of SDRAM chips in consecutive cycles.
Read data that corresponds to transaction Rd3 is
returned from a different set of SD RAM chips with a
one-cycle gap to allow the data path drivers from trans
action Rd2 to be turned offbetore the data path drivers
tor transaction Rd3 can be turned on . This process pre
vents tri -state overlap. As a result, consecutive read
transactions have address bus commands either four or
five cycles apart. Note that the Alpha 2 1 164 data, com
mand, and address signals are shown tor only one
processor (CPU 1) , which issues transactjon Rd l . The
other transactions are issued by otl1er processors.

Write transaction data is also transferred from the
pins of the Alpha 2 1 1 64 CPU to the pins of the
SDRAMs in two clock cycles (see Table 2) . Write data

MOTHERBOARD

r - ,
NO-EXTERNAL-CACHE PROCESSOR
MODULE (1 TO 4)

r - ,
,- L ,
I SYNCHRONOUS MEMORY
1 (1 TO 4 PAIRS)

ALPHA
21 1 64
CPU

72

B DATA AND ECC

~
SDRAMs

/.
1 44

FLOP I-_.__��----__!_---..,,L
72
-.J......,--. �E�� �ER 1 44

PAIR)
- : A

I _ J L - j

Figure 2
Data Parb between rhe C P U a nd Memory

Table 1
CPU Read Memory Data Ti m i n g

Cycle (1 5 ns) 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7
Add ress Bus Com m a n d Rd 1 Rd2 Rd3 Rd4
SDRAM Data 1 1 1 1 2 2 2 2 3 3 3 3
Motherboard Data 1 1 1 1 2 2 2 2 3 3 3
CPU 1 : Alpha 2 1 1 64 Data 1 1 1 1
CPU 1 : Alpha 2 1 1 64 Command Rd 1

CPU 1 : Alpha 2 1 1 64 Add ress Addr1

Oig;ital Tcd111ical Journal Vol . 8 No. 4 1 996 5 1

5 2

Ta ble 2
CPU Write Memory Data Tim ing

Cycle (15 ns) 1 2 3 4 5 6

Address Bus Command Wr1 Wr2

SDRAM Data 1 1 1 1

Mot herboard Data 1 1 1 1

Alpha 21164 Data 1 1 1 1 2

al ways incurs a one-cycle gap between transactions.
As a result, a l l but the first two consecu tive write trans
actions have add ress bus commands t-ive cycles apart.

Since the Alph:�Scrver 4 100 i ntercon nect between
the CPU and main memory was opti mized t<>r the
SDRAM memory ch ip , the transaction t imi ng, as
shown in Tables l and 2, was designed to provide data
in the correct cycles for the SDRA.Ms without the need
tor custom AS !Cs to buffer the data between the
motherboard and S D RAM ch ips . This design works
wel l t()[an in fin i te stream of a l l reads or ;: ti l writes
because of the SDRAM pi pc l ined i nterface ; however,
when a write transaction immed iately fo l lows a read
transaction, a gap or "bubble" m ust be inserted i n the
data stream ro account tor the tac t that read Lbta is
returned later in the rr:1nsaction than write data. As :1

resul t, every write transaction that i rn medi:lte lv t(>l l ows
a read tra nsaction produces a five-cycle g:� p in the
command pipe l ine . Ta ble 3 shows the read/write
transaction tim ing .

Address Path between the CPU and Memory

The Alpha 2 1 1 64 provides 36 address signa ls (byte
address <39:4>, i . e . , bits 4 through 39) , 5 command
bits, and l bit of parity protection. These 42 signa ls are
connected directly to t(1ur 1 2 -b i t bidi rection al latched
transceivers on the processor modu le , as i ll ustrated i n

Ta ble 3
CPU Read/Write Memory Data Tim ing

Cycle (15 ns) 1 2 3 4 5 6

Address Bus Command Rd1 Wr2

SDRAM Data 1 1

Mot herboard Data 1

7

2

2

7

1

1

8 9 10 11 12 13

Wr3

2 2 2 2 3

2 2 2 3 3

2 2 3 3 3

14 15

Wr4

3 3

3 3

3

16

3

4

17 1118

4

4 4

4 4

Figu re 3 . The motherboard latches the fu l l add ress
and d rives ti rst the row and then the colu mn portion
of the add ress to the memorv modu les . Each syn ch
ronous memory module bu fkrs the row/co l u m n
address and tans our a copy to e:tch ot" the SDRA.M
ch ips using tclLi r 24-bit bufkrs. S imi lar ro traditional
dynamic ra ndom-access memory (D RA M) ch ips,
S DRAM chips usc the roll" address on their pins ro
access the page i n their memor�· arr;ws �1 11d the col umn
address that appears l ater on the sa me pi ns ro read or
wri te the d esired location with i n the page . Conse
quently, there i s no need to provide the enrire 36- bit
wide add ress to tbe memory mod u le.� . All add ress
components used tor transceivers, btches, m ult i
plexers, and drivers on the no·exrernal -cKhe proces
sor module, rhc motherboard , and rhe synchronous
memorv mod u le consist ofrbc 56-pin A LVC 1 6260 or
the ALVC : I 62260 , which is the s:�me l1arr ll'ith internal
output resistors. Add ress parity is checked by rhe PCJ
bridge c h i ps on al l transactions , :�nd :�ny errors arc
reported ro the operari ng system .

The add ress path uses How-through latches tor the
tl rst ha lf of the add ress transfer (i .e . , the row address)
from rhe Al pha 2 1 1 64 ro the S D RAMs. When tile
address appears ar rhe pins of rhe Alpha 2 1 1 64,
the latched rranscei,·cr on the processor mod u le, the
mu lt ip lexed row add ress dri,·er 0 1 1 the motherboard ,

8 9 10 11 12 13 14 1 5 16 17 18

Wr3

1 2 2 2 2 3 3

1 1 2 2 2 2 3 3 3

MOT H E R BOARD

r - ,
NO-EXTERNAL-CAC H E PROCESSOR
MODULE (1 TO 4)

L.
-
�
�

;
-
�

�

�A

�

� --�-��g-�--EJNCH --+-A_D_D_R_E_SS_.
CPU 42

A
- �

Figure 3
Address Path between the CPU and .Memory

Dig;it;t[Tcchn ictl journal Vol . 8 No. 4 1 996

r - ,
SYNCH RONOUS MEMORY
(1 TO 4 PAI RS)

SDRAM
AD D R ESS S DRAMs

1---T---t---+ (1 TO 4
SETS PER
PAI R)

BUFFER �
_]

and the fan -out butlers on the m emory modu les are al l
open and turned on, enabl ing the address information
to propagate d irectly ti·om the Alpha 2 1 1 64 pins to
the SDR.A.Nl pins in two cycles . The motherboard then
switches the mu ltiplexer and drives the column
address to the memory modu les to complete the
transaction (see Table 4) . Back -to-back memory trans
actions are pipe l ined to de l iver a new address to the
SDRAM c hips every four cycles. The fu l l memory
address is driven to the motherboard in two cycles
(cycles 0-l , 4-5 , 8-9) , whereas add itional i n tonna
tion about the corresponding transaction (which is
used only by the processor and the l/0 modu les)
follows in a third cycle (cycles 2, 6, 10). To avoid tri
state overlap, the fourth cyc le is a l located as a dead
cycle, which a l lows the address d rivers of the current
transaction to be turned off bdore the address d rivers
tor the next transaction can be turned on (cycles 3, 7,
l l) . These tour cycles constitute the address transfer
that is repeated every tour or live cycles tor consecutive
transactions. Note that the one-cycle gap inserted
between transactions Rcl3 and Rd4 for reasons indi
cated earlier i n the read data t iming description causes
the row address for transaction Rd4 to appear at the
pins of the S D RAMs tor three cycles instead of two.

Control Path between the CPU and Memory

The Alpha 2 1 1 64 provides five command bits (tour
Alpha 2 1 1 64 CMD signals plus the Alpha 2 1 1 64
Victim_Pend ing signa l) that ind icate the operation
being requested by the Alpha 2 1 1 64 external inter
f:lCe -" These live command bits arc i nc luded in the 42
command/address (CA) signals ind icated in Figure 3

Table 4
CPU Read Memory Add ress Ti m i n g

Cycle (1 5 ns) 0 1 2 3 4 5

Address Bus Command Rd1 Rd2

SDRAM Address Row Addr1 Col Addr1 Row Addr2

Motherboard Address Mem Addr1 lnfo1 Mem Addr2

Alpha 2 1 1 64 Address Addr1 Addr2 Addr3

6

and are d riven d irectly and unmodified through the
latched address transceivers on the processor module
to become the motherboard command/address. Since
the AlphaServer 4 100 interconnect between the CPU
and main memory was optimized fix the Alpha 2 1 1 64
CPU chip , the Alpha 2 1 1 64 external CMD signa ls map
d irectly into the 6-bit encod ing of the memory in ter
connect command used on the motherboard , thus
avoiding the need for custom AS!Cs to manipu late the
commands between the CPU and motherboard .

Prudentl y chosen encod ings of the Alpha 2 1 1 64
external CM D signals resu lted i n only two command
bits (to determine a read or a write transaction) and
one address bit (to determine the memory bank)
being used by a 5 - ns PAL on the processor modu le to
d irectly assert a Req uest signal to the motherboard to
use the memory i nterconnect. Figure 4 shows the
control path between t he CPU and memory. If the
central arbiter is ready to a l low a new transaction by
the processor module asserting a Request signal (i .e . , if
the memory interconnect is not in usc) , then a 5 -ns
PAL on the motherboard asserts th<.: control signal
Row_CS to each of the memory modu les in the tal
lowing cyc le . A t the same time, another 5 -ns PAL on
the motherboard decodes 7 bits of th<.: add ress and
d rives the Sck 1 :0> signal to all memory modu les to
ind icate which of the fou r memory modu le pairs is
being selected by the transaction. Each synchronous
memory mod u l e uses another 5 - ns PAL to immedi
ately send the corresponding chip select (C S) signal to
the requested SO RAM ch ips on one of the CS< 3 :0>
signals when the Row_CS control signal is asserted if
se lected by the va lue encoded on Sek l : (l>, as shown
in Figure 4 .

7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Rd3 Rd4

Col Addr2 Row Addr3 Col Addr3 . . . Row Addr4 Col Addr4

lnfo2 Mem Addr3 lnfo3

Addr4

. . ,
AddrS

Mem Addr4 l nfo4

MOTHERBOARD

- �
-EXTERNAL-CACH E PROCESSOR

r -
NO
MO DULE (1 T0 4)

CMO/
ALPHA ADDR
21 1 64 •

73"
• 5-NS

CPU PAL

A A
- �

Figure 4
Conrrol l'ath between rhc CPU and Memory

ADDRESS

77

REQUEST

5-NS
PAL

5-NS
PAL

A

n SEL<1 :0>

ROW_CS

, -
SYNCHRONOUS MEMORY
(1 TO 4 PAIRS)

SORAMs CS<3:0>
5-NS (1 T0 4
PAL /

4 SETS PER
PAI R)

A
- -

I
I

_J

Dig;i t;ll Tcdmical Journal Vol. S No. 4 1 996 53

54

Table 5 shows the control s ignals between the
processor mod u les, the memory modu les, :md the
cent r:d arbiter on the motherboard t(x multiple
processor mod ules i s uing si ngle read tr:msactions.
The central arbiter receives one or more Request< II>

signals fi·om the processor modu le� and asserts a
u nique Grant< l'l > signal to the processor mod ule that
currently owns the bus. The arbiter then drives a copy
of the CA signal to every processor module along with
the identical Row_CS signal to every memory mod u le
to mark cyc le l of a new transaction . Note that the
cyck: cou nter begins at cycle l with e:�ch new
CA/Row_C:S assertion and may stal l t<>r one or more
cycles when g:�ps appear on the memon· i l l terconnect.
Two trans::tctions may be pipelined �lt the s::tmc time.
for s impl icity of i m plementation in pro�r:lmmable
logic de,· ices, the cycle coumer of c:�ch transaction is
always exactly tour cycles from the other.

T:1blc 6 shows a s ingJc processor modu le issuing
two consecu tive read transactions (d ual -issue) t<> l
lowcd by a third read transaction at a later ti me.
Normal ly, the node issu ing the tra nsaction on the bus
de::tsserrs the Req uest signal in cycle 2 . I f a node con
tinues to assert the Request sign: d , the centr:-tl a rbiter
continues to assert the Grant sign�1 l to that node tO
:II low guaranteed back-to - back tr;ms::tctions to occur.
Note th :-tt the tirst CA cycle occurs three cycles after
the :-�sscrtion oftbe Request sigr1:1 1 bee:� use ofthe delay
within the central arbiter to switch the Gr:�nt signal

Ta ble 5
Multiple CPU Read M e mory Control Tim i ng

Cycle Counter
(1 5-ns cycle)

Request<n> 1 234 1 234 24 24 24 24

Grant<n>

CA, Row CS (New transaction) I X I
2 2

I X

bet\\'een processors. The th ird CA cycle occurs onlv
one cyc le after the node asserts the Request signal ,
however, because of bus parki ng . B us parki ng is an
arbitration te�nu re that ca uses the central arbiter to
assert the Gram s igrul to the last node to use the bus
when the bus is idle u<)l lowing cycle 7 of transaction
Rd2) . Consequently, if the same processor wishes to
use tht bus aga in , the ::tssertion of CA and Row_CS
signals occurs two cycles e�1 dier than it wou ld without
the bus parking katu rt .

Data Transfers between Two CPU Chips

(Dirty Read Data)

The Alpha 2 1 1 64 CPU ch ips conta in i nternal 1\'J'i te
back caches. When a CPU writes to a block ofdat::t, the
modi fied data is IJcld loc::tl ly in the write - lnck cache
u nt i l it i s written back to main memorv at a bter rime .
The modi tied (d irty) copy ohhe block of d:-tta must
be returned in p lace of the u n modi fied (sta le) copy
ti·om main memory when another CPU issues a n.:::td
transaction on the memory i merconnect. The mem
ory modules return the s ta le dat::t at the normal t ime
on the memory inte rconnect, and the d i rty data is
returned by the processor modu le conta in ing the
moditicd copy in the cycles that tol low. The processor
module issu ing the rc:td tr::tnsaction ignores the st::tlc
data trorn memo1-v.

There r<)re, to m:�i nt:-tin cache coherencv bet\\'ctn
the write- b:�ck caches contained in m u lt iple A lpha

3 3

2 2

I
3 3

3 3

2 J (3)
6 (7)

4 4 4

3 3 4

l
4 4

4 4

l l X

6 7

2 3

4 4

Address/Command Bus Addr/Rd 1 lnfo1J Addr/Rd2 l nfo2J Addr/Rd3 lnfo31 Addr/Rd4 l nfo4

SDRAM CMD (RAS,CAS,WE} ACT 1 Read 1

SDRAM CS I X

Table 6
Single CPU Read M emory Control Tim i ng

Cycle Counter I 1 2

(1 5-ns cycle)

Request<n> 1 1 1 1 1

G rant<n> 2 2 1 1 1
CA, Row_CS (New transaction) I X
Address/Command Bus Addr/Rd1 l nfo1

CPU 1 : Alpha 2 1 1 64 Data I

ACT 2 Read 2

3

1

1

I X I X

4 I 5 6

1 2

1 1

1 1 1

l X
Addr/Rd2 lnfo2

l

Vol . H No . 4 1 9<)6

ACT 3 Read 3 l ACT 4 Read 4

l x I X I I X X

7 - _I , 2

3 4 5 6 7 -

1 1
1 1 1 1 1

l x
Addr/Rd3 lnfo3

1 1 1 1 2 2 2 1 2

2 1 1 64 CPU chips, each read transaction that appears
on the memory interconnect causes a cache probe
(snoop) to occur at a l l other CPU chips to determine if
a moditied (dirty) copy of the requested data is found
in one of the internal caches of another Alpha 2 1 1 64
CPU chip. I f i t is, then the appropriate processor mod
ule asserts the signal Dirty_Enable< n> for a min imum
of ti.ve cycles to a l low the memory module to fin ish
driving the old data. The processor modu le deasserts
the signal when the d irty data has been fetched from
one of the internal caches and is ready to be driven
onto the motherboard data bus. Table 7 s hows read
data corresponding to transaction Rd 1 being returned
tl·om CPU2 to CPU 1 five cycles l ater than the data
ti-om memory, which is ignored by CPU 1 . Note the
one-cycle gap in cycles 10 and 1 5 to avoid tri-state
overlap between the memory module and processor
module data path drivers.

As discussed earl ier in this section, the AlphaServcr
4 1 00 system implements memory address decoding
and memory control without using custom AS! Cs
on the motherboard , synchronous memory, or no
external -cache processor modu les . Using PALs al lows
the address decode fu nction and the tim-out buffering
to the l a rge number of SD RAMs to be performed at
the same time, thus reducing the component count
and the access r ime to main memory. Al l the necessary
glue logic between the Alpha 2 1 1 64 CPU and the
SDRAJvls, including the central arbiter on the mother
board, was implemented using 5 -ns 28-pin program
mable PALs or 90-JV! H z 44-pin ispLSI 1 0 1 6 in -circuit
reprogrammable PLDs produced by Lattice Semicon
ductor. These devices can be reprogrammed directly
on the module using the para l le l port of a laptop per
sonal computer. Eacb no-external -cache processor
module uses t!ve PALs and four PLDs; the motl1er-

Table 7
D i rty Read Data Ti m i n g

Cycle (1 5 ns) 0 1 2 3 4 5
Address Bus Command Rd1 Rd2

SDRAM CS X X X
SDRAM CMD (RAS,CAS,WE) AQ 1 Read 1 AQ2

SDRAM Data 1

Motherboard Data

CPU 1 : Alpha 2 1 1 64 Command Rd1 Rd3

CPU 1 : Alpha 2 1 1 64 Address Addr1 Addr3

CPU 1 : Alpha 2 1 1 64 Response

CPU 1 : Alpha 2 1 1 64 Data

CPU2: Alpha 2 1 1 64 Command Rd2 Snp1 Rd4

CPU2: Alpha 2 1 1 64 Address Addr2 Addr1 �ddr4

CPU2: Alpha 2 1 1 64 Response Dirty1

CPU2: Alpha 2 1 1 64 Data

Dirty_Enable<n>

6

. . .
1

1

Snp2

Addr2

board (arbiter and memory contro l) uses eight PALs
and three PLDs; and each synchronous memory mod
u le uses three PALs.

As shown i n Table 1 , the min imum memory read
l atency (read data access time) is eight cycles (1 20 ns)
ti·om the time a new command and address arrive at
the pins of the Alpha 2 1 1 64 chip to the time the first
data arrives back at the p i ns . The SDR.Alv'ls are pro
grammed for a burst of tour data cycles, so data is
returned in tour consecutive I 5 - ns cycles. Two trans
actions at a time are interleaved on the memory inter
connect (one to each of the two memory banks) ,
which a l lows data to be continuously driven in every
bus cyc le . This resu l ts i n the maximu m memory read
bandwidth of l GB/s.

Trade-offs Made to Reduce Complexity

The Alpha 2 1 1 64 external i nterf:1ce contains many
commands required exclusively to support an external
cache. By not inc luding a modu le- level cache on the
no-external -cache processor module, on ly Read,
Write, and Fetch commands are generated by the
Alpha 2 1 1 64 external i nterface; the Lock, M B ,
SetDirty, WriteBiockLock, BCacheVictim, and
ReadM issModSTC commands are not used."·7 This
design al lows the logic on the processor module that is
asserting the Request signal to the central arbiter to be
implemented simply in a smal l 28- pin PAL because
on ly rwo of the Alpha 2 1 1 64 C M D signals are
required to encode a Read or a Write command .
S imi l arly, a l lowing a maximum of two memory banks
in the system, i ndependent of the number of memory
mod ules i nstal led, enables the Request logic to the
central arbiter to be i m plemented in the 28-pin PAL,
since only one add ress bit (byte address <6>) is
required to determi ne the memory bank.

7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Rd3

X X X
. Read 2 AQ3 Read 3

1 1 2 2 2

1 1 1 Dirty1 Dirty1 Dirty1 Dirty1 2 2

Rd5

Addr5

Miss2

(1) (1) (1) (1) Dirty1 Dirty1 Dirty1 Dirty1

Snp3

�ddr3

Dirty1 Dirty1 Dirty1 Dirty1 2

I

I

Dirty Dirty Dirty Dirty Dirty

Digital Tt:chnical)ounul Vol . 8 No. 4 1 99 6 55

56

To d ecode me morv add resses in 2 8 -pin PALs , the
AJ phaScr\'er 4 1 00 system usts the concept of memory
holes. The memory interconnect architecture and con
sole code support se\·en difk rent si zes of me mory
mod ul es a nd up to t(Ju r pairs oF memory mod u les per
system tor a total system me mory capacity of 32 MB to
8 G B . Any mix of memory mod u l e pairs is supported as
long as the largest rnemorv p�lir is plactd in the Jowest
n u rn hered memory slot. The physicJI memorv add ress
Lmge fo r each of the t(n t r memory slots is assigned as
iF a l l tt>Ltr memory mod u le p:1irs are the same s ize .
Conseq uent ly, i F t\\'O addit ional memorv pai rs that arc
smJI !cr than the pair in the lmn:st- n u m be rcd s lot
arc i nstalled in the u pper memory s lots, there wi l l be a
g�l p or " hole" i n the ph vsica l memor y space between
the two smal ler memory pai rs (sec T:1blc 8) . Rather
th:tn req u ire each memory mod u l e to compare the Fu l l
munory add ress to a base :td d rcss a n d size register to
determine if it should respond to the me mory transac
tion, the 28 -pin PAL d riving Sek 1 :0> on the mother
board (sec Figure 4) uses the seven add ress bits
Addr< 3 2 : 2 6 > a nd the size of the memorv mod ule i n
the lowest- n u m bered slot to encode the memory s lot
n u m ber oF the selected memory mod u le pair. Console
code detects any memory holes Jt power-up and tel ls
the operating systems th:n these arc un usabJe ph ysic:�!
memory addresses.

Another s impl itlcation that the AlphaScrver 4 1 00
system uses is to remove 1/0 space registers from the
data p:�th of the processor Jtlli memory mod u l es.
Beca use there are no c ustom AS !Cs on these mod u ks ,
read ing a n d \\Tiring control registers wo uld h a\·c
req u ired :�d dition :�l d ata path components. Since a l l
t h e error c hecking is pedormcd b y either the 2 1 1 64
CPU chip or the PCJ bridge ch ips :�nd since there arc
no address decoding control registers req u i red on the
memory modules, there was no need tor more than
a tl:w bits of control i n t(>rmation to be accessed by
sothvJre on the processor or me mory modu les. The
l2C bus (s low seria l b u s) �l lrcH.iy present in the I/0
su bsystem was used tc>r tr:mskrring this sm a l l amount
of i n f ormJtion .

Furthermore, i n the process of removing the 1/0
sp:�ce d:�ta p:tth from the moth erboard and processor
mod u l es, the ti rmw:�re (i . e . , the consol e code, Alp ha

Ta ble 8
Memory H ole Example

Memory Slot 1 2-GB Module Pair

Memory Slot 2 2-GB Module Pair

Memory Slot 3 1-GB Module Pair
Memory H o le

Memory S lot 4 1-G B Module Pair
Unused Memory

Vc.>l. 8 No. 4 1 996

2 1 1 64 PAL code, and d iagnostic sotiw:� re) , \\'h ich is
oti:en p laced i n re:td - onlv memories (ROMs) on the
processor mod u l e or motherboard, was moved to the
1/0 su bsystem . Only a s m J ! l 8 - K.B s ingl e - bi t seri;: tl
ROM (SROM) was placed on each processor mod u le
th�H wou ld i n it ia l ize the Alpha 2 1 ! 64 chip on power
u p and instruct the AlphJ 2 1 1 64 to access the rest of
the tirmwarc code from the 1/0 su bsysrem .

Quick Design Time

To prO\·idc stable CPU :md mem ory h : miware tor 1/0
su bsystem hardware debug ami operating system soli:
warc debug and thus a l low the D I G ITAL AJ phaSe rvn
4 1 00 to be i n troduced on sched u l e i n Mav 1 996, the
core modu le set was designed and powered on i n less
than six months. This prim�lry goal of the AlphaServer
4 ! 00 project was :tch ieved by keeping the design tclm
smal l , by usi ng only programm:1 b l c l ogic and ex isting
d:tta p:1th components, and by keeping the amount of
docu me ntation of design i n tcr t:Kes to a m i n i m u m .

The d tsign team tor t h e motherboJrd , no-external
cache processor mod u le, Jnd S\'nchronous memory
mod ule consisted of one design engi neer, one
schem atic/layout assistant , one sigtd i n tegritv engi
neer, and two s imulation engineers . The team also
enl isted the hdp of members oft he other Alph aServer
4 1 00 design teams .

The Jrchitccture :�nd actu al ti n:1l logic design o f the
core modu le set were developed at the same ti me. Bv
using pmgrammable Jogic :m d oft�thc-she l f add ress
�lnd data p:1th compone nts, the logic \\\lS \\'rittcn i n
A B L code (:1 langu�lgc used t o tksc ri be the logic fu nc
tions of programmable de\·iccs) and compiled i m mt
di atcly in to the PALs and l ' LDs whi le the arch i tecture
was being specified. I f the desired timctional ity did not
tit i n to the programmable devices, the architecture
was mod i tied. unt i l the logic d id ti t . A l l t h ree modules
were designed by the s�ll lle engineer Jt the same time,
so th ere was no need t(>r interbcc speci ti cuions to be
written tor each mod u l e . F u rr lJnmorc, modi fications
and cn hJncements could be nLldc in para l lel to eJch
design to opti m i ze pertormancc �md red uce complex
i t\' Jcross a l l three mod ules.

000000000 - 07F FFFFFF

080000000 - OFFF FFFFF

1 00000000 - 1 3FFFFFFF ·--

140000000 - 17FFFFFFF

1 80000000 - 1 BFFFFFFF
1 COOOOOOO - 1 FFFFFFFF

Because the design did not incorporate any custom
ASI Cs, the core system was powered on as soon as the
mod u l es were bui l t . Any l ast -minute logic changes
required to fix probl ems identi fied by si mu lation
cou l d be made d irectly to the reprogrammablc logic
devices installed on the mod u les in the laboratory. In
particular, the reset and power sequ encing logic on the
motherboard was not even si m u lated betore power-on
and was developed directly on actual hardware.

Since the I/0 su bsystem was not avai lable when the
core mod u le set was fi rst powered on, the software that
ran on the core hardware was loaded fi·om the serial
port of a laptop personal compu ter and through the
Alpha 2 1 1 64 serial port, and then written directly into
main memory. Diagnostic programs that had been
developed for simul ation were loaded i nto the memory
of actual hardware and run to test a tou r- processor, fu l ly
loaded memory configuration. This testi ng enabled
signal i ntegrity fixes to be made on the hardware at f-ld l
speed bet(>re the I/0 s ubsystem was ava ilable . When
the l/0 su bsystem was powered on, the core mod ule
set was operating bug free at fi.d l speed, a l lowing the
AlphaServer 4 100 to ship in volume six months l ater.

As mentioned in tbe section Sim ple Design, the
central arbiter logic on the motherboard was imple
mented i n programmable logic. Conseq uently, by
qu ickly changing to the reprogrammable logic on the
motherboard instead of perf()l'ming a lengthy redesign
of a custom AS IC, designers were able to avoid several
l ogic design bugs that were f(>u mi later in the custom
AS I Cs of other AlphaServer 4 1 00 processor and mem
ory mod u les.

Low Memory Latency

Mini mizing the access time of data being returned to
the CPU on a read transaction was a major design goal
for the core mod u le set. The core module set design was
optimized to del iver the Addr and CS signa ls to the
SDRA.Ms i n two cycles (30 ns) fi·om the pins of
the Alpha 2 1 1 64 CPU and to return the data from the
SD RAMs to the Alpha 2 1 1 64 pins in another two cycles
(30 ns). vVith the SO RAMs operating at a two-cycle
internal row access and a t\.vo-cyc le internal col u m n
access to t h e fi rst data (6 0 n s total internal SDR.AM
access ti me), the main memory latency is 1 2 0 ns.

The low latency was accompl ished in f(>Lir ways:

l . By removing custom ASICs and error checking
from the data path bet\veen the pins of the Alpha
2 1 1 64 CPU chip and main memory

2. By combining the SDRA.Jvl row/col u m n add ress
multiplexer with add ress tan-out buffering on the
motherboard

3. By simpl i �' ing the memory address d ecode and
memory i n terconnect request logic

4 . By usi ng bus parking

Many m u l tiprocessor servers share a common
command/add ress bus by issu ing a request to use the
bus in one cycle, by e i ther waiting for a grant to be
returned from a central arbiter or performing local arbi
n·ation in the next cycle, and by d riving the command/
address on the bus in the cycle that fol lows. This
seq uence occurs for a l l transactions, even when the
memory bus is not being used by other nodes. The
AlphaServer 4 1 00 memory i n terconnect impl ements
bus parki ng, which al lows a modu le to turn on i ts
address d rivers even though it is not cu rren tly using
the bus. If the Al pha 2 1 1 64 on that mod u l e in i tiates a
new transaction , the command/address flows d i rectly
to memory i n t\vo less cycles than i t wou ld take to per
form a costly arbitration seq uence . Transaction Rd 3 in
Table 6 shows a n example of the dkcts of bus parki ng.

High Memory Bandwidth

One of the most important features of the SDRAM
chip is that a single chip can provide or consume data
in every cycle for long burst lengths. The AlphaServer
4 1 00 operates the SDRAMs with a burst l ength oftc1L1 r
cycles for both reads and writes. Each SDRAM c h ip
contains t\.vo ban ks determined by Add r<6>, which
selects consecutive memory blocks . If accesses are
made to a l ternating banks, then a single S D RAM can
conti n uously d rive read data in every cycle . The arbi
tration of the AlphaServer 4 1 00 memory interconnect
s upports only t\vo memory ban ks, so the smal lest
memory mod u l e , wh ich consists of one set of
SDRAMs, can provide the same 1 -G B/s max i m u m
read bandwidth a s a fu l ly popu l ated memory configu
ration, i .e . , a system configured with the min imum
amount of memory can pertonn as well as a fu lly con
figured system.

To i ncrease the single-processor memory bandwid th,
the arbitration allows two s imultaneous read trans
actions to be issued fi·om a si ngle processor mod u le . As
long as the arbitration memory bank restrictions and
arbitration tairness restrictions are obeyed, it is possible
to issue back-to-back read transactions to memory from
a single CPU with read data being returned to the Alpha
2 1 1 64 CPU in eigh t consecutive cycles i nstead of the
usual f(m r (see Ta bles I and 6). This dual -issue kature
and the other low memory latency and high memory
bandwidth features of the AlphaServer 4 100 archi tec
ture enabled the AlphaServer 4 100 system to meet the
best- in-ind ustry pertonnance goals tor McCalpin mem
ory bandwidth . '

A s discussed i n t h e section Simple Design a n d i l lus
trated in Figu re 3 , to avoid tri-state overlap, whenever
read data is returned by a d i fkrent set of SD R.AMs
(on the same memory mod u l e or on a difte re n t mem
ory mod u l e) , a dead cycle is pl aced bet\veen bu rsts
of ft)U r data cycles to a l low one d river to tu rn off

Digital Tcdmic1l jounLll Vol . 8 No. 4 1 996 57

58

bcf(m� the next d river turns on. By keeping the lower
ord er add ress bits con nected ro a l l S D RAMs, i . e . , by
nor i nterleavi ng additional banks of memory ch ips on
low-order add ress bits, consecu tive accesses to a l ter
nating memory banks such as large d i rect memor y
access (DM A) seq uences can potenti a l l y achieve the
fu l l 1 - GB/s read bandwidth of the d ata bus. With the
dead cycle i nserted , the read bandwid th of the mem
ory intercon nect is red u ced by 2 0 percent.

The data bus connecting the processor, memory,
and 1/0 modu les was i m plemented as a tradit ion:.JI
shared 3 . 3 -vo l t tri -state bus with a sing le-phase syn
chronous c l ock at a l l mod u les . As a resu lt , the bus
becomes saturated as more processors are added and
bus traftic increases. To keep the design time as short
as poss ib le , the AlphaServer 4 1 0 0 d esigners chose nor
to explore the concept of a switched bus, on which
more than one private transkr may occur at a t ime
between mu l tiple pairs of nodes. Clearly, the
Al phaServcr 4 100 system bas reached the practical
upper l imit of bus bandwidth using the trad i tional tri
state bus approac h .

Reconfigurabil ity

The AlphaServer 4 1 00 h a rdware modules were
d esigned to al low en hancement s to be made in the
fu ture withou t having to redesign every element i n
t h e system .

Motherboard Options

The AlphaServer 4 1 00 motherboard contains t(Jur
dedicated processor s lots, eight ded icated memorv
slots (tour memory pairs) , and one s lot ri:Jr :�n
1/0 mod u l e with two PC! bus bridges. Designed at
tht.: same time but not produced unt i l after rlw
AlphaServer 4 1 00 morhnboard was availabk,
rht.: AlphaServer 4000 morht.:rboard contai ns on ly two
proct.:ssor sl ots, rou r nKmory s lots (two memory
pairs) , and slots tor rwo 1/0 mod uks Jl lowing ti.Jur
PCI bus bridges. Si nce mod u le hardware veritication
i n rhc laboratory is a lengthy process, rhc AlphaServer
4000 motherboard '' as designed ro usc the same logic
as the AlphaServer 4 100 except ri.)r rhe programmabk
arbi tration l ogic , wh ic h hJd a d i ffere n t a lgori t h m
bec:wse of the extra I/0 m o d u l e Wht.:n the signals o n
the A lp haServer 4 0 0 0 motherboard were rou ted , all
nets were kept shorrt.:r than tht.: corresponding nets on
the AlphaServer 4 100 motherbo:trd so that every sig
nal did not need to be rt.:cxamincd. Only those signa ls
that wert: un iquely d i tkrcnt were su bject to tht.: fu l l
signal integrity veritication process .

Memory Options

T·he synchronous memory mod u les avai lable tc>r the
AlphaScrver 4 1 00 arc all based on the 1 6- M b SDRA M .

Di,_i l .l l Tec hnical journal Vol . 8 No. 4 ! 996

Using this size chip a l lowed designns to bui ld synchro
nous memon' mod u l es thar cont:1 in 9, 1 8 , 36, and
72 S D RAMs and provide, respectively, 32 M B , 64 M B ,
1 28 1VI B, a n d 2 5 6 M B o f main memory per pair. The
mt.: mory archi tecture supports synchronous memory
mod u l es that contain up to 1 G B of mai n memory pa
pair (up to 4 GB per syste m) by using the 64- M b
S D RAi\tls; however, when t h e Al phaSt.:rver 4 1 00 sys
tem WJS i ntroduced, the pric ing :md avai labi l ity of the
64- M b S D RA M d i d not a l low these larger capacit:v svn
ch ronous memory modu les ro bt.: b u i l t.

At the same time the svnc h ro nous memorv mod u l es
were being designed, a ramilv of plug-in compatible
memory mod u l es bu i lt with EDO DRAMs was
designed and bu i l t . The memory arch i tecture supports
1--:DO memory mod ules containing up to 2 G B of main
memory pe r pair (up to 8 G B per system) by using the
64- M b E DO DRA M . When the A lph aServer 4 1 00 sys
tem w�1s in troduced , rhe 64 - M b EDO D RAM was
avai lable and EDO memory mod u l t.:s containing 72 or
1 44 EDO D RAMs were bu i l t providing 1 GB and 2 G B
of main memorv per pai r. To rou nd our the range of
memorv capacities and to provide Jn altcrnati ,·e to the
svnc hronous memory mod uks i n case there was a cost
or design prob lem with the new 1 6- M b S D RAM chips,
a rJmily of EDO memory mod u l es was a l so bui l t us i ng
1 6-Mb and 4 - M b EDO D RAMs, p rovid i ng 64 M B ,
2 5 6 M B , and 5 1 2 t\t!B o f main memory per pair.

Although EDO D RAMs can provide data at a higher
b�1nd width than standard D RAMs, a si ngk EDO
D RA M cannot retu rn cbra in t(Hir consecutive 1 5 -ns
C\'c l t.:s l i ke the single S D RAM used on the S\'nch ronous
memory mod u les. Therdi:>JT, J custom AS I C was used
on the EDO memory modu l e to Jccess 288 bits of
Lbta every 3 0 ns fl-om the EDO D RAMs and m u l tiplex
the d:tta onto the 1 44 - bi t me mory i n terconnect every
1 5 ns. To im itate the two-bank tcature of a single
S D RA M , a second bank of EDO D RAMs is req u i red .
Conseq uen tly, the m i n i m u m n u m ber of memory
ch ips per EDO memory mod u k is 72 ri:>u r- bit-wide
EDO D RA M c h ips, whereas the m i n i m u m n u mber
of memon' chips per svnc h ronous memorv mod u l e
i s onlv 1 8 r(>u r-bit-wide S D RA M ch ips o r a s rew as
9 eight- bit-wide S D RA M ch ips.

When rhe AlphaServer 4 1 00 systt.:m was i ntroduced,
tht.: bstest EDO D RA M avJ i l a b k that met the pric ing
requ i rements was the 60- ns vnsion . When this ch ip
i s ust.:d on the EDO memory mod u l e , data cannot
be returned to the motherboard as bst as data can bt.:
returned tl-om the sync h ro nous memory mod u les. To
support the 60-ns EDO D RA.Ms, a one - cvcle (1 5 ns)
increase i n the access ti me to main mcmorv i s requ i red .
Support fi:>r this extra n'clc ofbtcncv was designed into
the memory interconnect Lw placing; a one-cvc le gap
between cycles 2 and 3 (st.:e Table I) of anv read trans
Jction :1ccessing a 60-ns EDO nKmory mod u l e . Con
seq uently, the read m emory Lltt.:ncy is one cycle longer

and the maximum read bandwidth is 20 percent less
when using EDO memory modu les bui lt with 60-ns
EDO DRAJ\1s. Note that i t is possible to have a mixture
of EDO memory mod ules and synchronous memory
modu les in the same system . In such a case, only the
memory read transactions to the 60-ns EDO memory
module wou ld result in a loss of performance.

New versions of the EDO memory modules that
contain 50-ns EDO DRAMs providing up to 8 GB of
total system memory arc sched uled to be introd uced
within a year after the introduction of the AJphaServer
4 1 00 . These modules wi l l not require the addi tional
cycle of latency, and as a resu l t they wi l l have identical
pertormance to the sync hronous memory modules.

Processor Options

The no-external -cache processor modu le was designed
to support either a 300-MHz Alpha 21164 CPU chip
with a 60-rVlHz (1 6.6-ns) synchronous memory inter
connect or a 400-MHz AJpha 2 1 1 64 CPU chip with
a 66 MHz (1 5-ns) synchronous memory interconnect.
As previously mentioned, the Alpha 2 1 164 i tself
contains a primary 8-KH data cache, a primary 8-KB

instruction cache, and a second - level 96-KB three
way set-associative data and instruction cache . The
no-external-cache processor module contains no third
level cache, but by keeping the latency to main mem
ory low and by issuing multiple references from the
same AJpha 21 1 64 to main memory at the same time
to increase memory bandwidth , the performance of
many appl ications is better than that of a processor
modu le containing a th ird- level external cache . '

Appl ications that are small enough to fit i n a large
third-level cache perform better with an external
cache, however, so the AJphaServer 4 1 00 offers several
variants of plug-in compati ble processor modu les con
taining a 2 -MB, 4- MB , or greater modu le-level cache .
In addition, cached processor mod ules are being
designed to support AJpha 2 1 1 64 CPU chips that run
t:lSter than 400 MHz whi le st i l l maintaining the maxi
mum 66- MHz synchronous memory interconnect.
The arch itecture of the cached processor module
was developed in paral le l with the core mod ule set,
and several enhancements were made to the CPU and
memory arch itecture to support the module-level
cache. See the companion paper "The AlphaServer
4 100 Cached Processor Modu le Architectu re and
Design" t(>r more int(>rmation.'

Versions of the AJ pha 21164 chip that operate
at 400 MHz and faster requ ire 2 -vo lt power, whi le
slower versions of the Alpha 2 1 1 64 req uire only
3 . 3 volts. The Al phaServer 4100 motherboard does
not provide 2 volts of power to the processor modu le
connectors; consequently, a 3.3 - to-2-volt converter
card is used on the higher-speed processor modu les
to provide this unique voltage. Each new version of

processor modu le is p lug- in compatib le , and systems
can be upgraded without changing the motherboard .
This is true even i f the ti·eq uency of the synchronous
memory interconnect changes, a lthough a l l processor
mod ules in the system must be configured to operate
at the same speed. The osci l lators for both the high
speed internal CPU clock and the memory intercon
nect bus clock are located on the processor modules
to al low processor upgrades to be made without mod
ifYing the motherboard.

Summary

The high-pertormance DIGITAL AlphaServer 4 1 00
SMP server, which supports up to tour AJpha 2 1 1 64
CPUs, was designed simply and quickly using offthe
shelf components and programmable logic. vVhen the
AlphaServer 4 1 00 system was introd uced in May
1 996, the memory interconnect design enabled the
server to achieve a minimum memory latency of
1 20 nanoseconds and a maximum memory band
width of l gigabyte per second . This ind ustry- leading
performance was ach ieved by using oH� the-shelf data
path and address components and programmable
logic between the CPU and the SDRAM-based main
memory. The motherboard , the synchronous memory
mod ule, and the no-external-cache processor module
were developed concurrently to optimize the perfor
mance of the memory arch itecture. These core mod
u les were operating successful ly within six months of
the starr of the design. The AJphaServer 4 1 00 hard
ware modu les were designed to al low future enhance
ments without redesigning the system.

Acknowledgments

Bruce AJford from Revenue Systems Engineering
assisted with the schematic entry, modu le layout ,
manufacturing issues, and power-up logic design, and
succeeded in smoothly transi tioning the core modu le
set to h is long-term engineering support organization.
Roger Dame hand led signal integrity and ti ming
analysis , while Da le Keck and Arina Finkelstein
worked on simu lation. Don Smelser and Darrel
Donaldson provided technical gu idance and moral
support.

References and Notes

l . Z. Cveranovic and D. Donaldson, "AiphaServer 4 1 00
Pc rtormance Characterization," Digital Tecbnical
Journal, vol . 8 , no. 4 (1 996, this issue) : 3-20.

2 . S. Duncan, C . Keefer, :111d T. McLaugh l i n , " H igh
Pertormance 1/0 Design i n rhe AlphaServer 4 1 00 Sym
merr.ic M u l ti processing Syste m , " Digital Teclmicctf

Journal, vo l . 8, no. 4 (1 996, this issue) : 6 1 -75.

Digital Tcdl !1ical journal Vol . 8 1o. 4 1 996 59

60

3 . 'l' lll' .'\ l [' h c1Scr1·er 4000 wstL·m contc1 i n s the same CPU
to- mcmot·y i nr crhcc �s rhe Alphc1Scrvcr 4 1 00 s1·stcn1
bur su ppmrs ha lf rhe n u mber of prm:essors c1 11d nK morv
mod u les �nd rll'ice the number of PC! bridges . The
A l p h �Se n·er 4000 motherbo�rd ,, . ,1s designed at the
same rime as the Al ph aSenTr 4 1 00 morhcrbocnd but
11 c ts nor prod uced u nt i l a fter r i le A l p luScrver 4 1 00
mothCI'boclrd was avai l ab le .

4 . iVI . Stei nman e t <11 . , "The AlphaServer 4 1 00 CJChcd
Processor Mod u le Architecture and Design," D(�itaf
'l(,cb u icaf Journal. vol. 8, no. 4 (1 996, th is issu e) :
2 1-37.

5. R. [);lme, "The AlphaSen er 4 100 Low-cost C l oc k Dis

tribution s,·sre m , " D��itof 'J 'ecbn icol journ({f. vol . 8,
no . 4 (1 996, r h is issu e) 38-47.

6. A fpho 2 I 1 6'-i . \ ticropmcessor Hwdtiw·e Nej'erence
,\ [{{ 1 / I IC!f (."v!.n·nard , lviass . : D igi ta l F q u i p m e n t Corpora
tion , Order �o. EC-QAEQA- lT, Septem ber 1 994) .

7 . T h e fnch command is n o t i m plementni on the
A l p h aScn·cr 4 1 00 system, bur tlJL:rc is no mechanism to
keep ir h-om appea r ing on rbc CMD pins of the A l ph c1
2 1 1 64 C P I c h i p . The Ferch comn1and is simply te nni
n;Jted without a n v add i tional acrion .

Biography

G lenn A. Herdeg
c_; lenn H erdcg has been II'Orking on the design ofcom
p u tn mod u ks since join ing D igi ta l i n l 9R3 . A princi p;ll
hclrdll';m: engineer in the A l phaScri'C.: r Pbt�(mn Del·e l op
m e n t p:roup, he 11 .1S the project l e ader, arc h i tect, logic
designer, ;l lld mod u l e designer for the AlphaServer 4 1 00
mothcrbo;ll·d, no o: ternal -ochc processor m od u les , ;l lld
s\' l lchronous mcmot-�' mod u les . He a l so led the design
of the . \ 1 pluScrvcr 4000 motherbo:lrd . In ear l ier work,
c_; l e n n served as the princ ipa l ASIC .1 1 1d mod u l e designer
tCJr se1·eral DEC 7000, VAX 7000, and VA X 6000 projects.
He holds a B.A. i n physics ti'om Co l by Collep:e ;l nd <1 11 M .S.
i n computer systems ti-om RcnssL· IJcr Poly technic I nstitute
and ILlS two p;ltents. G l e n n is currently i n volved i n tlnTher
.\ lp l. 1 ;1 - b;1sed se rver system d evelopment.

Dit>-i t .t l Techn ical)ounJ:JI Vol . X No. 4 I 996

High Performance 1/0
Design i n the Alpha Server
4100 Symmetric
Multiprocessi ng System

The DIGITAL AlphaServer 4100 symmetric mu lti

processing system is based on the Alpha 64-bit

RISC microprocessor and is designed for fast

CPU performance, low memory latency, and

high memory and 1 /0 bandwidth. The server's

1/0 subsystem contributes to the ach ievement

of these goals by implementing several innova

tive design techniques, primarily in the system

bus-to-PCI bus bridge. A partia l cache l ine write

technique for small transactions reduces traffic

on the system bus and improves memory latency.

A design for deadlock-free peer-to-peer transac

tions across multiple 64-bit PCI bus bridges reduces

system bus, PCI bus, and CPU util ization by as

much as 70 percent when measured in DIGITAL

AlphaServer 4100 MEMORY CHAN NEL cl usters.

Prefetch logic and buffering supports very large

bursts of data without stalls, yielding a system

that can amortize overhead and deliver perfor

ma nce l imited only by the PCI devices used in

the system.

I
Samuel H. Dnncan
Craig D. Keefer

Thomas A. McLaughlin

The AlpbaServer 4 100 is a symmetric m ultiprocess
ing system based on the Alpha 2 1 1 64 64-bit RJSC
microprocessor. This midrange system supports one
to four crus, one to tou r 64-bit-widc peer bridges to
the peripheral component interconnect (PCI) , and
one to tou r logical memory slots. The goals for the
AlphaServer 4100 system were fast CPU performance,
low memory latency, and high memory and I/0
bandwidth . One measure of success in ach ieving these
goals is the AIM benchmark multiprocessor perfor
mance results. The AJphaServer 4 1 00 system was
audited at 3,337 peak jobs per minute, wi th a sus
tained number of3,0 1 8 user loads, and won the AI M
Hot I ron price/performance award in October 1 996. '

The subject of th is paper is the contribution of the
T/0 su bsystem to these h igb-pertonnance goals . In an
in - house test, 1/0 performance of an AJphaServer
4 1 00 system based on a 300-mcgabertz (MHz)
processor shows a 1 0 to 1 9 percen t improvement in
I/0 when compared with a previous-generation
midrange Alpha system based on a 350 -MHz proces
sor. Reduction in CPU u til ization is particularly bene
ficial for applications that usc small transfers, e .g . ,
transaction processing.

1/0 Subsystem Goals

The goal for the AlphaServer 4 100 I/0 su bsystem was
to increase overa l l system performance by

• Reducing CPU and system bus uti l ization for a l l
applications

• Delivering full I/0 bandwidth, specifical ly, a band
width l im ited only by the PCI standard protocol,
which is 266 megabytes per second (M B/s) on
64-bit option cards and 1 3 3 MB/s on 32-bi t
option cards

• Minimizi ng latency t()r a l l direct memory access
(DMA) and programmed I/0 (PI O) transactions

Our discussion t(xuses on several i nnovative
techniq ues used in the design of the I/0 subsystem
64-bit-wide peer host bus bridges that dramatical ly
red uce CPU and bus uti l ization and deliver ful l PCI
bandwidth:

Digital Tcdmic1l Journal Vol . 8 No. 4 1 996 6 1

62

• A p:�rria l cach e l i n e write technique for coherent
DMA writes. This technique permi ts :�n r;o device
ro i nsert data t hat is s m a l l e r than a cache l i n e or
block, i nto the cache-coherent domain without flrst
obtai n i ng ownership of the cache bJ ock and pcr
tc.Jrming a read - mod i t)r-write operati o n . Partial
cache l i ne writes red uce traffic on the svstem bus
and i m prove l atency, p<lrt icu l ar ly t(x

,
message�

passed in a M E M O RY C HA N N E L cluster.'

• Support tor device- in itiated transactions that target
other devices (peers) across m u ltiple (peer) PC!
buses. Peer- to-peer transactions reduce svstem
b us ut i l ization, PC ! bus u ti l i zation, and C PU u ti
l i zation b y a s much a s 7 0 percent w h e n measured i n
M EM O RY CHANNEL c l u sters. I n testing, w e ran
a M EM O RY CHAN N E L appl ication without peer
to- peer DMA, and observed 85 percent CPU
uti l ization ; r u n n i ng the same application with peer
to-peer DMA enab led , we o bserved 1 5 perce nt
CPU ut i l i zation . The peer- to- peer technique i s
successfu ll y i mplemented on the AlphaServer 4 10 0
system without causing deadlocks .

• Large bursts of P C I -device - i n itiated DMA data to
or trom })'Stem memory. 1/0 su bsystem support
tor large b u rsts of DMA data enables efficient PC!
bus ut i l i zation because fi xed blJS l atency can be
amortized over these large tr:�nsactions .

• Prcktched read data :�nd posted write dat:� b u ffer
ing designed to keep u p with the h ighest pertor

nuncc PC! devices . When used i n combi nation
with the PCI delayed-read protocol , the bufter ing
<l lld prefetch i n g appro<1ch a l lows the system to
avoid PCI bus st:� l ls i ntrod uced by the bridge d ur
ing PC! -device- in itiated tra nsactions.

The tol lowing overview of the system concentrates
on the areas in which these tec hniq ues arc used to
en hance performance, that is, e fficiency in the system
bus and in the PC! bus bridge . In s u bseq uent sections,
we describe i n greater deta i l the performance issues,
other possi bk approaches to reso lving the issues, and
the techni q ues we developed . vVe conclude the paper
witll performance resu l ts .

Alpha Server 4100 System Overview

The Al phaServer 4 10 0 system shown in Figure 1
i n c l u des four CPUs con nected to the system bus,
which comprises the data and e rror correction code
(ECC) and the command and add ress l i nes. Also
connected to the system bus arc main memory and
a s i ngle module with two indepe ndent peer PCI bus
bridges . The s ingle mod u l e, the PCI bridge mod u l e ,
provides the physical and the log ical bridge be[\Vecn
the svstem bus and the PC! buses . Each i ndependent
peer PC! bus bridge is constructed of a set of three

Digital Technical j ournal Vol . 8 No. 4 1 996

app l i cation-specific i ntcgr:ncd c irc u i t (AS I C) ch ips,
one control ch ip, and t\\'O sl iced data path chips .

The two i ndependent PCI bus bridges arc the inter
bees between the system bus and their respective PC!
buses. A PC! bus is 64 or 3 2 b i ts wide, transferring
dat:� at a peak of266 M B/s or 1 3 3 M B/s, respectively.
In the AlphaServcr 4 1 00 syste m , the PC! b uses arc
64 bits wide.

The PCT buses connect to �1 PC: ! backplane mod u l e
with a n u m ber o f expansion s l ot s a n d a bridge t o the
Extended Ind ustry Standard Arch i tecture (EISA) bus .
I n Figure I , each P C ! b us is shown to support up to
r(Ju r devices in option slots.

The Alp haScrver 4000 series <l lso supports a config
u r:�rion in which two of the CPU cards are replaced
with rwo ad d i tiona l independent peer PC! bus
bridges. In the quad PCI bus configuratio n , there arc
1 6 option slots avai lable t(Jr PCI devices, at the cost

or· bou nd i ng the system to a maxi m u m of two CPUs
and rwo logical memorv slots . This q u :�d PCI bus con
figuration is shown in hgurc 2 .

!Ylost or· the tech niq ues descri bed i n this paper arc
implemented in the PC! bus bridge . The partial cache
l i ne write tec h n iq u e , presen ted next, is also designed
i nto the protocol on the system bus and i nto the CPU
c:�rds .

Im provements i n CPU and System Bus Uti l ization
th rough Use of Partial Cache Line Writes

I nefficient use of system resources can l i m i t perfor
mance on heavi lv loaded systems . Svstem designers
must be attcnti,·e to potential pcd(Jrmance bottle
necks beyond the com mon l y add ressed CPU speed ,
cache loop rime, and CPU memory latency. O u r tCJCus
in rhc I/0 su bsystem design was to ba lance system
pcrtcm11:111Ce in the face of ;J wide range of I/0 device
behaviors . vVe therdixe implemented tec h n i ques that
mi n im ize the load on the PC ! bus, the system bus, and
the C l�Us . The technique descri bed in this section
partial cache l i ne writes- red u ces the load on the sys
tem bus and impro\'CS o\'era l l system pert(mnancc .

!'vLmy first- and second -generation PCI control ler
devices were d esigned to operate i n platforms that
su pport 3 2 - byte c:�chc l i nes and 1 6- bvtc write butTers .
I t is common for an o lder PC! device to l im i t the
amount of DJ\IlA d ata i t reads or writes to match this
characteristic of compu ters rhat were on the market at
the time those devices were designed . Some classes of
devices wi l l , bv their nature, <llways l imit the amount
ofcbta in J b u rst transaction .

As do most Alpha pJatt(mm, the Alp haServer 4 1 00
svstcm su pports a 64- bytc cJC hc l ine that is t\\'ice that
of other common svstcms . When a PC! de,·ice pcr
tcm11S �1 memory wri tc of less than a complete cache
l i ne, the system must merge the d ata i nto a cache l ine
whi le maintai n i ng a consistent (coherent) view of

Figure 1

PCI BACKPLANE MODULE I STANDARD 1/0 PORTS 1.--t.,.----t.,.---t;------------,
���::S�6N /# /# /# /#
SLOTS if if if if

I -I
: PCI BRIDGE MODULE :

ONE DEDICATED
PCI AND THREE
SHARED PCI/EISA
SLOTS

: I PCI BUS BRIDGE I I PCI BUS BRIDGE I : MEMORY
I I

! :_ - - -}- - - - - - - - - - -} - - - - I _ _ _ _ J

COMMAND/ADDRESS
DATA AND ECC ! ! ! !

CPU CARD I I CPU CARD I I CPU CARD I I CPU CARD

SYSTEM BUS

AlphaServer 4 1 00 System with Four CPUs, Two 64-bit Buses

Figure 2

PCI BACKPLANE MODULE I STANDARD 1/0 PORTS 1...--t.------t;-----.,t;-----------,
����{s?�w g g g � i���ri�:��:A

l 8: --�- -":'�� :" ,1 _ _ _ - �l-- - t -� -_),") � - -: j_ !��"'_I_ - - - - - - - -
COMMAND/ADDRESS
DATA AND ECC

I -I I PCI BRIDGE MODULE 1 I I i I PCI BUS BRIDGE I I PCI BUS BRIDGE I i L - - -} - - - - - - - - - - -} - - - - _ _ _ _] !
MEMORY

SYSTEM BUS

t : - - - - -!- - - - - - - - - - - -!- - - - - - - -
:

......-:--t
____.:.._..., I CPU CARD I i I PCI BUS BRIDGE I I PCI BUS BRIDGE I i CPU CARD

"

I I
: PCI BRIDGE MODULE I

- - - - - - - - - - - - - - - - -����������!���1�����������-�- - - - - - - - - - - - - - ,
I

" "IPCI 3

! I 1 T:i �f ������6w g g g � g � � ������6,
AlphaServer 4000 System with Two CPUs, Four 64-bit Buses

Digital Technical Journal Vol . 8 No. 4 1 996 63

64

memory tor a l l CPUs on the system bus . Th is mergi ng
of write data i nto the cache-coheren t donlJ i n is typi
cal ly done on the P C ! bus bridge , which reads the
cache li ne , merges the new b�'tes , :�nd wri tes the cache
l i ne b::�ck ou t to memory. The read - modi r\'-wrin: m ust
be pert<:>rmed as an atom ic ope ration to m:l i nta in
memory consistency. For the d u ration of tht: atom ic
read -mod i �1-write operation , tht: system bus is busy.
Const:qut:ntly, a write of less than a cacht: l int: rt:su l ts
in a rcad - mod i�� -write that ta kt:s at least thrct: timt:s :�s
m:�ny cycl es on the system bus as a si mple 64- byte
al ignt.:d cache l i nt: write.

For example, if we bad used an url it:r D I G I TA L
i mple mentation o f a system bus protoco l on the
A l ph aSt:rver 4 1 00 syste m , an 1/0 d evict: operation
on the l)CJ that performed a s ing l e 1 6- bytt.:-a l igned
memory write wou ld have consu mt:d system bus
bandwidth that cou ld have m oved 256 bytt:s of d a ta ,
o r 1 6 ti mes t h e amount o f data . W e tht:rdi:>rt: h a d to
find a more e ffi cient approach to wr i ti ng su bblocks
into tht: cache-coherent doma in .

Wt: first examined opportu nities ti:> r efficiency gains
i n tht: memory system 3 Tht: Al phaServn 4 1 00 mem
ory system i n terrace is 1 6 bytes wide ; a 64- byte cache
l ine read or write takes fou r cyc les on the system bus .
The memory mod u les themse lves can be des igned to
nnsk one or more of the writes and al loll' :1 l igncd
blocks that arc m u l tipl es of 1 6 byres to be ll'rittcn to
memory i n a si ngle system bus trans�lction . Tht: prob
lem wi th permitting a Jess than comp kte c:1che l i n e
write, i .e . , less tha n 6 4 bytes, i s t h a t t h e writt: goes to
main memorv, b u t the only u p- to- date/complt:tc
copv of a cache l ine may be i n a CPU card 's cache .

To permit the more effic ient partia l cac he l ine
wri te operati ons , we mod i fied the system bus cac he
cohuency protocol . W h e n a PCI b u s bridge issues
a parti;�l CKhc l ine write on the system bus, c:.<ch C P U
c;�rd perti:mns a cache looku p to sec if t h e target o f
t h e write is d irty. I n t h e evt:nt that tht: target cache
block is d i rtv, the CPU sign;� ls tht: PC! bus bridge
bdi:>re rhe end of the partia l wrirt: . On d i rty partial
eacht: l i nt: write transactions, the bridge s imp!�, per
ti:ml1S <1 second transaction as a read - modit\1 -write . I f
the t<1rgct cache block is nor d i rty, r h t: operJ tion com
p l etes in a si ngk systt:m bus transaction.

Add rt:ss traces taken d uring prod uct developmen t
were si m u l ated t o determ i ne the ti·eq u t:ncy of d i rty
cache blocks that a re targets of DMA wri tes . O u r s im
u lations showed that, tor the add ress trace wt: used ,
tl-cquency was extreme ly rare . Mt:asurcmcnr ta ken
ti·om St:VeraJ appJiutiOJlS and benchmarks con fl rmed
that a d i rty cache block is almost never asserted with
a parri;� l cache line wri te .

T h e D M A transft:r of blocks thJt arc a l i gned
mu l t i p l es of 1 6 bytes but less t ha n :1 cache l i ne is ti:>ur
ti mes more e fficient in the 4 100 svstem than i n earl ier
D I G I TA L imp lem entations .

Vol . � N o . 4 J l)96

MmTnK n t of blocks o f less than 64 lwtcs is
important ro :1pp l ieation performance because there
are h igh -pc r ti:mnance dc\ 'iees that move less thJn
64 byres. One cx<� m p l e is D I G ITAL's M LM O RY
C H AN N E l . Jdaptcr, which m oves 3 2 - byte b locks i n �1

b u rst . 2 As M EM O RY CHANNEL ad apters move l :1rge
n u mbers of blocks that art: a l l Jess than a cache l i n e of
data, the 1/0 su bsystem part ia l cache l i n e write tC;�rure
i mproves system bus ut i l i zation and e l i m i nates the
system bus as a bott lenec k . Message latency across the
tab ric of an Alph :1Servn 4 1 00 tv! E M O RY C H AN !\I I -: ! ,
c l uster (version 1 . 0) is <1pprox i mate l\' 6 microseconds
(fJ.s) . Thnc art: two DMA writes i n the message : the
first is a message, and tht: second is a flag to va l ida te the
message . Thest: DMA wri tes on the target A lphaSenn
4 1 00 contri bu te to mcssJgc brency. The i mprm e
ment in l atencv provi ded by tht: partia l cache l ine 11ritc
tCature is approx i mate ly 0 . 5 11-s per wri te. W i th two
writes per message , latt:ney is red u ced b�' approx i
matdy 1 5 percent over an AlphaServer 4 1 00 system
with the partia l cache l ine write tearurc. With version
1 . 5 of M E M O RY C H A N N E L adapters , net Lucnev
w i l l i m prove by �1 bou t 3 fLS, and the etlect of pani;: d
cache l ine writt:s wi l l ::tpproach a 30 pcrct: n t i m prove
ment in message la tency.

In summar�', tht: chJ I I cngc is to efficient lv mm·c a
block of dat<1 of a common size (mu l t ip le of 1 6 bvtes)
that is sma l ler than a cache l i ne into the cache-coherent
domain . vVithout anv t(u·ther imprm'emellt, the tech
n ique reduces system bus u ti l ization bv a s much a s �1

tacror of t<:>u r. Th is tcclmique a l lows su bblocks to be
merged \\ ·ithou r incurring the overhead ofre:�d- mod i �'
write, yet m;� inrains c:�che coherency. The on ly d raw
back to the technique is some increased comp lex i ty in
the CPU cache control ler to support this modt: . We
considered the a lternative of adding a sma l l cache to the
PCI bridge. Writes into the same memory rt:g ion that
occur within a short period of ti me cou ld merge d irect l y
i nto a c::tcht: . This appro::tch adds significan t complex itY
and increases pcr tcm11ance onlv if transactions that tar
get the same cache l i n e a rt: \UV close together in time .

Peer-to-Peer Transaction Support

Systt:m bus and PC! bus u r i l i z:1tion can be optimi zed
fc:>r certa in app lications by l i m it ing the n u m bt:r of times
the sanK block of dar:� moves th rou gh the system .
As noted in tht: section A lp haScrvcr 4 1 00 Svstem
Overview, the PCI su bsystem can conta i n two or ti:H !r
indepc ndcll t PC ! bus bridges . O u r design al.kl\l·s exter
nal dev ices eonncctt:d to these separate peer PC! bus
bridges to sh�u-c data without accessing main mt:mor\'
and bv using a m in ima l amount of host bus bandwidth.
In other words , external dC\' iccs can efkct direct access
to data on 3 peer-to-peer basis.

I n conventional systems, a data file on a disk that is
requested by a c l ient node is transferred by DMA trom
the d isk, across the P C ! and the system bus, and i nto
main memory. Once the data is in main memory, a net
work device can n.:ad the data d in.:ctly in memory and
send it across the network to the cl ient n ode. I n a 4 100
system, device peer-to-peer transaction circumvents
the transter to main memory. However, peer-to-peer
transaction req uires that the target device have certa in
properties. Tbe essential property is that the device tar
get appear to the source device as if it is main memory.

The balance of this section exp lains how conven
tional DMA reads and writes are performed on the
AlphaServer 4 1 00 system , bow the infrastructure for
conventiona l DMA can be used for peer-to-peer trans
actions, and how dead loci(avoidance is accompl ished .

Conventional DMA

We extended the k<Hures of conventiona l DMA on the
AlphaSaver 4 100 system to support peer- to-peer
transaction . Conventional Di\1A in the 4 1 00 system
works as ta l lows .

Add ress space on the Alpha processor is 2 ��� or l tera
byte; the AlphaServer 4 100 system supports up to
8 gigabytes (G B) of main memory. To directly address
a l l of memory ·wi thout using memory management
hardware, an address must be 3 3 b its . (Eight G B is
equ iva lent to 2'' bytes .)

Because the amounr o f memory is large compared to
address space avai lable on the PCI, some sort of mem
ory management hardware and soft-ware is needed to
make memory directly addressab le by PC! devices.
Most PCI devices use 32 -bit Dlvi.A addresses. To pro
vide direct access for every PC! device to a l l of the sys
tem add ress space, the PC! bus bridge has memory
management hardware similar to that which is used on

a C P U daughter card . Each PCI bridge to the system
bus has a transl ation look-aside butler (TLB) that con
verts PC! addresses into system bus addresses. The use
of a TLB permits hardware to make all of phys ica l
memory visible th rough a re lative ly sma l l region of
address space that we cal l a DMA window.

A DMA window can be specified as "direct
mapped" or "scatter-gather mapped ." A direct
mapped DMA window adds an offset to the PCI
address and passes i t on to the system bus . A scatter
gather mapped DMA window uses the TLB to look up
the system bus add ress .

Figure 3 is an examp le of how PCI memory address
space might be a l located tor DMA windows and tor
PCI device control status registers (CSRs) and memory.

A PCl device in i tiates a DMA write by driving an
address on the bus. In Figu re 4, d ata from PCl devices
0 and l are sent to the scatter-gather D MA windows;
data from PCI device 2 are sent to the d i rect- mapped
Di\1A window. When an address hits in one of the
DMA windows, the PC! bus bridge acknowledges
the address a nd immed ia te ly begins to accept write
data. Whi le consum ing write data in a bufter, the PC!
bus bridge translates the PCl address into a system
address. The bridge then arbitrates tor the system bus
and, using the trans lated add ress, completes the write
transaction . The write transaction comp letes on the
PC! before it comp letes on the system bus .

A DMA read transaction has a longer latency than
a DMA write because the PCI bus bridge must fi rst
translate the PC! address i nto a system bus address and
tCtch the data before completing the transaction . That
is to say, the read transaction completes on the system
bus before it can complete on the PCI .

Figure 5 shows the address path through the P C !
bus bridge . All DMA writes and reads are ordered

SYSTEM ADDRESS SPACE
(240 BYTES)

PCI MEMORY ADDRESS SPACE
(232 BYTES)

Figure 3

I ·
1 GB

1-----jl ,

T T

8 MB
8 MB

1 1 2 MB

384 MB

5 1 2 MB

1 GB

1 GB

1 GB

Es �mplc o f l'Cl Memory Add ress Space M�ppcd ro DMA Windows

PCI DEVICE CSRs
SCATTER-GATHER WINDOW 0

PCI DEVICE CSRs

(UNUSED)

SCATTER-GATHER WINDOW 1

PCI DEVICE PREFETCHABLE
MEMORY SPACE

DIRECT-MAPPED WINDOW 2

SCATTER-GATHER WINDOW 3

Digira l Tcc" hnica l journal Vol . S No. 4 1 996 65

66

..... - - - - . . - - . . - .

1------1-

11__.----------.

Figure 4
Exam ple of PCI Dn·ice ReJds or Wri tes to DMA Windo"s Jnd Address Translation ro S1·stem Bus Addresses

SYSTEM BUS

t t � -
1 PCI BUS

BRIDGE

Figure 5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DiJgram of Data Paths in J Si ngle PC! Bus Bridge

through the outgoing queue (O Q) en route to the sys
tem bus. DMA read data is passed through an incom
ing queue (IQ) bypass by way of a DMA fi l l data butfcr
en route to the PC! .

Note that the IQ orders CPU-in i tiated PIO transac
tions. The IQ bypass is neccssarv for correct, dead
lock- tree operation ofpeer- ro-pcer transactions, which
are explained in the next section .

Diginl Technical journal Vol . R No. 4 1 996

10

-rr - - - - - - - -
64-BIT PCI

I
I
I
I

Following is an example of how a conventional
" bou nce " DJ\!lA operation is used to move a file from a
local storage device to a network device. The example
i l l ustrates how data i s ll'rirren i nto memory by one
de1 icc ll'here it is temporarilv stored . Later the data i s
read by another DlVIA device . Th i s operation i s cal led
a "bounce I/0" because the data "bou nces" off

memory and out a network port, a common operation
tor a network fi le server application.

Assume PC! device A is a storage control ler and PC!
device B is a net\vork device :

l . The storage control ler, PC! device A, writes the fi le
into a buffer on the PC! bus bridge us ing an
add ress t hat h its a DJ\1A wind ow.

2 . The PCI bridge translates the PC! memory add ress
into a system bus add ress and writes the data i n to
memory.

3 . The CPU passes the net\vork device a PCI memory
space add ress that corresponds to the system bus
add ress of the data in memory.

4. The network control l er, PC! device B , reads the fi le
in main memory using a DMA window and sends
the data across the nct\vork.

I f both control lers are on the same PC! bus segment
and i f the storage contro l ler (PC! device A) cou l d
write d i rectly t o t h e nctvvork control ler (PCI d evice
B) , no traffic wou l d be i nt roduced on the system bus.
Traffic on the system bus is red u ced by saving one
DMA wri te, possibly one copy operation, and one
DMA read . On the PC! bus, traffic is a lso red uced
because there is one transaction rather than two.
When the target of a transaction is a device other than
main m emory, the transaction is ca l led a peer-to-peer.
Peer-to-peer transactions on a single-bus system arc
simple, bordering on trivia l ; but deadlock-free support
on a system with m u l tiple peer PCI buses is qu ite a bit
more difficu lt .

This section has presented a high-level description
of how a PC! device DMA address is translated into
a svstem bus address and data arc moved to or from
m;i n memory. In the next section, we show h ow the
same mechanism is used to support device peer-to
peer transactions and bow traffic is managed for dead
lock avoidance.

A Peer-to-Peer Link Mechanism

For d irect peer-to-peer transactions to work, the target
device must behave as if it is main memory; t hat i s ,
i t must have a target address in pretetchable PCI mem
ory space.' The PCI specification fu rther states that
devices are not a l lowed to depend on completion of
a transaction as master.' Two devices supported by
the DIG ITAL UN IX operating system meet these
criteria today with some restrictions; these arc the
MEMORY CHANNEL adapter noted earl ier and
the Prestoscrve NVRAM, a nonvolati le memory stor
age device used as an accelerator for transaction
processing. The PNVRAM was part of the configura
t ion in which the AIM bench mark results cited in the
i ntroduction were achieved.

Both conventional DMA and peer-to-peer trans
actions work the same way trom the perspective of

the PCI master: The device driver provides the master
d evice with a target add ress, size of the transfer, and
identification of data to be moved . In the case in which
a data fi le is to be read from a d isk, the device d river
software gives the PC! device that controls the d isk a
" handle," which is an identifier for the data fi le and the
PCI target address to which the file should be written .
To reiterate, i n a conventional DMA transaction, the
target add ress is in one of the PCI bus bridge DMA
windows. The DMA. window logic translates the
address into a main memory address on the system bus.
In a peer-to-peer transaction, the target add ress is
translated to an address assigned to another PCI device.

Any PC! d evice capable of DMA can perform peer
to-peer transactions on the AlphaServer 4 100 system .
For example, in Figure 6, PC I d evice A can transfer
data to or from PC! device B without using any
resources or facil ities in the system bus bridge. The use
of a peer- to-peer transaction is control led entirely by
soft\vare: The d evice dr iver passes a target address to
PCI device A, and device A uses the add ress as the
DMA data source or destination.

I f the target of the transaction is PCI device C, then
system services software allocates a region in a scatter
gather m ap and specifies a transl ation that maps the
scatter-gather-mapped address on PCI bus 0 to a sys
tem bus address that maps to PC! device C. This
address translation is placed i n the scatter-gather map.
When PC! device A in i tiates a transaction, the add ress
matc hes one of the DMA wi ndows that has been in i
t ia l ized for scatter-gather. The PCI bus bridge accepts
t he transaction , looks up the translation in the scatter
gather map, and uses a system address that maps
through PCI bus bridge l to h i t PC! d evice C. The
transaction on the system bus is between the two PCI
bridges, with no involvement by memory or CPUs. I n
this transaction, the system bus i s u ti l i zed, b u t the d ata
is not stored i n mai n memory. This e l iminates the
i n termed iate steps and overhead associated with con
ventional DMA, tradi tional ly done by the "bou nce" of
the data through main memory.

The features that a l low software to make a device on
one PCI bus segment visible to a device on another are
a l l impl ic it in the scatter-gather mapping TLB . For
peer-to-peer transaction support, we extended the
range of translated addresses to include memory space
on peer PC! buses. This al lows address space on one
independent PC! bus segment to appear in a window
of address space on a second i ndependent peer PC!
bus segment. On the system bus, the peer transaction
hits in the address space of the other PC! bridge.

Deadlock Avoidance in Device Peer-to-Peer Transactions

The definition of d eadlock, as it is solved i n this
design, is the state i n which no progress can be made
on any transaction across a bridge because the queues
are fil led with transactions that wi l l never complete.

DigitJI Tcc hnic1l j ournal Vol . 8 No. 4 1 996 67

68

I CPU 0 I I CPU 1 I I CPU 2 I I CPU 3 I I MAIN MEMORY

A t t t t t
SYST EM BUS) COMMAND/ADDR ESS

DATA AND ECC

t "
_ _ _ _ _ _ _ : _ _ _ _ _ - - - - - r - - - - - - - - - - - - - - - -1 BRIDGE 1

r t BRIDGE 0
I
I
I
I
I

10 I

J� i
POSTED PIO
WRITES BYPASS
PENDED PIO
READS

I
I
I
I

1 0

I I I I
�

- - - -

-

�:>�C�,J::::,:,� ,- - �
�

- -

- - -

�C:C�C�CJ�;-�:,:,� 0- - �
PCI DEVICE E .._:ll:.._. PCI DEVICE F PCI DEVICE G .._:ll:.._. PCI DEVICE H

Figure 6
AlpluScrvcr 4 1 00 System DiagrJm Showing Dat� P.nhs through PC! Bus Ihidgcs

A deadlock situation is analogous to h ighway grid lock
in which two l ines of a u tomobiles race each other on
a single- lane road; there is no room to pass and no way
to back up . Rules tor deadlock avoidance arc analo
gous to the ru les for directing veh icle tr<lffic on :� nar
row bridge.

An o:tmple of peer- to-peer deadlock is one in
which two PC:l devices are dependent on the comple
tion of a write as masters bdore they wi l l accept wri tes
as t:�rgcts. \Vhen these two devices target one another,
the resu l t is deadlock; each device responds with
RETRY to every write in which it is the target, and
each device is unable to complete i ts curren t write
trans:�ction bec:�usc it is being retried .

A device that docs 1101 depend on completion of a
transaction as master bdore accepting a transaction as
target may also cause dead locks i n a bridged enviro n
ment. Situations can occur on a bridge in which mu lti
ple o utstanding posted transactions must be kept in
order. C:�rdi.ll design is required to avoid the potential
t(>r deadlock.

The design t(n dcJd lock-ti-ee peer-to-peer transaction
support in the Alph:�Scrvcr 4100 system i ncludes the

• Implemcnt<ltion of PC! delayed -read transactions

• Usc of bypass paths i n the IQ and i n read -retu rn
thta

Digit;J[Tcchnic1l jound Vol . 8 No. 4 1 <)96

This section assu mes th�t the reader is bmil iar with
the PC! protocol and ordering rules '

Figu re 6 shows the data paths through two PC : !
bus bridges. Transactions pass through these bridges
as t(J I Iows:
• CPU sottw�I-c - in i tiated PIO reads and P I O writes

arc entries in the IQ .

• Dc,·icc peer- to-peer transJctions targeting devices
011 peer PC! segments also usc the IQ.

• PCI -dcvice-ini tiated reads and writes (D1VIA or
pccr-ro- pecr) , interrupts, and PIO ni l data arc
e ntries in the OQ.

• The mul ti plexer selecting entries in the I Q :: d lows
writes (PIO or peer-to-peer) to bypass de layed
(pcndcd) reads (PIO or peer-to-peer) .

• T h e read prdctch add ress register permits read
retu rn in the OQ data to bypass PC! dcl:1ycd rc:Itk

The t\vo bypass paths arou nd the IQ and OQ arc
req uired to avoid deadlocks that m�1y occur dur ing
device peer-to-peer transactions. All PC! ordering ru les
arc satisfied ti·om the point ohicw of any single device
in the syste m . The tol lowing example dcmonstr:Hcs
dc�dlock a\'Oid:mcc in a de\'icc peer-to-peer write and
a device pcer-to-�xcr read , rdcrencing Figure 7 .

The configuration in the example is an AJphaServer
4 100 system with four CPUs and two PCI bus bridges.
Devices A and C are simple master-capable DMA
control lers, and devices B and D are simple targets,
e .g . , video RAMs, nerwork controllers, Pl'-TV RAJ.'vl, or
any device with pretetchable memory as defined in the
PC! standard .

Example of device peer-to-peer write block comple
tion ofpended PIO read-return data:

l . PCI device A initiates a peer-to -peer burst write
targeting PCI device D.

2 . Write data enters the OQ on bridge 0 , fi ll ing three
posted write bu ffers.

3. The target bridge, bridge 1 , writes data from
bridge 0 .

4 . When the I Q on bridge l hits a threshold, it
uses the system bus flow-control to bold off the
next write.

5. As each 64- byte block of write data is retired out
of the JQ on bridge 1, an addi tional 64- byte
(cache l ine size) write of data is al lowed to move
from the OQ on bridge 0 to the JQ on bridge l .

6 . I f the OQ on bridge 0 i s full , bridge 0 wil l discon
nect from the current PCI transaction and wi l l
retry a l l transactions on PC! 0 until an OQ slot
becomes ava i lable .

7. PCI device C initiates a peer- to-peer burst write,
targeting PCI device B; the same scenario follows
as steps 1 through 6 above but in the opposite
direction.

8. CPU 0 posts a read of PCI memory space on PCI
device E .

9 . CPU 1 posts a read o f P C ! memory space o n PCI
device G.

10. CPU 2 posts a read of PCI memory space on PCI
device F.

1 1 . CPU 3 posts a read of PCI memory space on PCI
device H .

1 2 . Deadlock:

- Both OQs are stalled waiting for the corre
sponding IQ to complete an earlier posted write.

- The design has two PIO read-return data (fil l)
buffers; each is fi.dl .

- The PIO read-return data must stay behind the
posted writes to sat is f)' PCI -specified posted
write buffe r flushing rules.

-A third read is at the bottom of each IQ, and it
cannot complete because there is no fill buffer
available i n which to put the data.

To avoid this deadlock, posted writes are al lowed
to bypass delayed (pended) reads in the IQ, as

shown i n Figure 6. In the AlpbaServer 4100 deadlock
avoidance design, the IQ will always empty, which in
turn allows the OQ to empty.

Note that the IQ bypass logic implemented for
dead lock avoidance on the AJphaServer 4 100 system
may appear to violate General Rule 5 tl-om the PC!
specification, Append ix E:

A read transaction must push ahead of it through
the bridge any posted writes originating on
the same side of the bridge and posted before the
read. Before the read transaction can complete on
its originating bus, it must pu l l out of the bridge
any posted writes that originated on the opposite
side and were posted before the read command
completes on tbe read-destination bus.'

In fact, because of the characteristics of the CPUs
and the flow-control mechanism on the system bus, all
rules are fol lowed as observed fl·om any single CPU or
PCI device in the system . Because reads that target
a PCI address are always spl it i nto separate request and
response transactions, the appropriate ordering rule
for this case is PCI Specification Delayed Transaction
Rule 7 in Section 3 . 3 . 3 . 3 of the PC! specification :

Delayed Req uests and Delayed Completions
have no ordering requ irements with respect to
themselves or each other. Only a Delayed Write
Completion can pass a Posted Memory Write. A
Posted Memory Write must be given an oppor
tunity to pass everything except another Posted
Memory Write .'

Also note that, as shown in Figure 6, the DMA fill
data buffers bypass the IQ, apparently violating
General Rule 5. The purpose of General Rule 5 is to
provide a mechanism in a device on one side of a bridge
to ensure that al l posted writes have completed. This
ru le is required because interrupts on PC! are side
band signals that may bypass al l posted data and signal
completion of a transaction before the transaction has
actually completed . In the AJphaServer 4 100 system,
a l l writes to or from PCI devices are strictly ordered,
and there is no side-band signal notit),ing a PCI device
of an event. These system characteristics al low the PCI
bus bridge to permit D MA fill data (in PC! lexicon, tl1is
could be a delayed-read completion, or read data in a
connected transaction) to bypass posted memory
writes in the IQ . This bypass is necessary to l imit PCI
target latency on DMA read transactions.

We have presented two IQ bypass paths in the
AJphaServer 4 1 00 design. We describe one IQ bypass
as a required feature for dead lock avoidance i n peer
to- peer transactions between devices on different
buses. The second bypass is required for performance
reasons and is d iscussed in the section JjO Bandwidth
and Efficiency.

Digit31 Technical Journal Vol . 8 No.4 1 996 69

70

CPU 0 I I CPU 1 I I CPU 2 I I CPU 3

COMMAND/A D D R ESS
DATA AND ECC

t
t - - - - :::�-
. - - ' � - - - - - - - - - - - � - - - - � - - ·

BRIDGE 0 ' I I ; 10 I
1-----� 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figu re 7

00
PEER WRITE
PEER WRITE

1-----� 1
1-----� 1
1---:P:-::E:=E::-R--:W:::R--:IT=E-1 I
1-----'-P-=E=E--'-R-'-W---R"-'IT-=E-1 I

PEER WRITE
1-----'-P-=E=E--'-R-'-w---R""'IT-=E-1 I

PEER WRITE I
PIO READ REQUEST I

I
I
I
I
I
I

_ _ _ _ _ _ _ _ _ I
PCI O

PCI DEVICE A PCI DEVICE B
MASTER OF ..._... - TARGET OF
PEER WRITES PEER WRITE

PCI DEVICE E
TARGET OF
PIO READ

PCI DEVICE F
- TARGET OF PIO

READ REQUEST

SYSTEM BUS - - - - - ----- � - - - - · r - - - - - - - - - - -
1 -; I�E

-
' 1

- - - -t- - - - - - - � - -�- - -
" ' ' ' � ' '

/ "
+

A READ I EFETCH
DM
PR
AD DRESS

t '
00

PEER WRITE
PEER WRITE
PEER WRITE

PIO READ FILL
PIO READ FILL

t /

, , 10

PEER WRITE
PEER WRITE

DMA PEER WRITE
FILL PEER WRITE DATA

PEER WRITE
PIO READ REQUEST

" I

I
I
I
I
I
I
I
I
I
I
I
I t

RITE I DMA W
EAD I OR R EJ I I�TERRUPTSI

I
I

t t
t

- - - - - - -

PCI DEVICE C
MASTER OF -
PEER WRITES

PCI DEVICE G
TARGET OF -
PIO READ

1- - - - - - - - - -
PCI 1

PCI DEVICE D
� TARGET OF

PEER WRITE

PCI DEVICE H
- TARGET OF PIO

READ

Block Di:�gra111 Showing Deadlock Case without IQ Bypass l\1th

Required Characteristics for Deadlock-free Peer-to-Peer

Target Devices

PC! devices must fo l low a l l PCI standard ordering
ru les for dead lock-free peer-to-peer transaction. The
spec ific ru le rel n·ant to the AlphaServer 4 1 00 design
for peer-to-peer transaction support is Delayed
Transaction Rule 6, which guarantees that the IQ wi l l
a lways emprv:

A target must accept all memory writes
add ressed to it whi le completing a request using
Delayed Transaction termination .'

Our design includes a l ink mechanism using scatter
gat her TLBs to create a logical connection between two
PC! devices. It inc ludes a set of ru les tor bypassing data
that ensures deadlock-tree operation when al l partici
pants in a peer-to-peer transaction follow the ordering
ru les in the PC! standard . The link mechanism provides
a logical path tor peer-to-peer transactions and the
bypassing ru les guarantee the IQ wi l l aJ,,·avs drain .
The key kature, then, is a guarantee that the lQ wi l l
al\\·ays drain, thus ensu ring deadlock-tYee operation.

Vol. 8 No. 4 1 99 6

1 /0 Bandwidth and Efficiency

With overa l l system performance as our goal , 1\'e
selected rwo design approaches to deJ i, ·er fu l l PC!
bandwidth without bus stalls . These were s upport tor
large bu rsts of PCI-de,·ice-in itiated DMA, and suffi
cient buffering and prefetching logic to keep up \\'ith
the PCI and a\'oid i ntroducing sta l l s . vVe open this sec
tion with a re,·iew of the bandwidth and latency issues
11-e examined in our efforts ro ach ie\'e greater band
width effic iency.

The bandwidth available on a plattorm is dependent
on rhe efficiency of the design and on rhe type of
transactions performed . Bandwidth i s measured i n
mil l ions o f bytes per second (M B/s) . On a 32-bi t
l'Cl , the ava i lable bandwidth is effi.ciencv multip l ied
by 1 3 3 MB/s; on a 64- bit PCI, ava i lable bandwidth is
efficiency mu ltip lied by 266 M B/s. By efficiency, we
mean the amount of rime spent actua l ly rranskrring
data as com pared with total transaction rime.

Both parties in a transaction contri bute to efficiency
on the bus . The AlphaServer 4100 1/0 design keeps
the o,·crhead introduced by the system to a min imum
and supports large b urst sizes O\'er wh ich the per
tr;.ll1sacrion m·erhead can be amorti zed .

Support for Large Burst Sizes

To predict the efficiency of a given design, one must
break a transaction into its constituent parts. For exam
ple, when an ljO device initiates a transaction it must

• Arbitrate tor the bus

• Connect to the bus (by driving the address of the
transaction target)

• Transfer data (one or more bytes move in one or
more bus cycles)

• D isconnect from the bus

Time actually spent in an I/0 transaction is the
sum of arbitration, connection, data transter, and
disconnection.

The period of time before any data is transferred
is typically called latency. With smal l burst sizes, band
width is limited regardless of latency. Latency of
arbi tration, connection, and d isconnection is f

.
1 irly

constant , but the amount of data moved per unit of
time can increase by making the I/0 bus wider. The
AJphaServer 4100 PCI buses are 64 b its wide , yielding
(efficiency X 266 MB/s) of available bandwidth.

As shown in Figure 8 , efficiency improves as burst
size increases and overhead (i .e . , latency p lus stall
time) decreases. Overhead introduced by the
AlphaServer 4 100 is fairly constant. As discussed ear
l ier, a DMA write can complete on the PCI before it
completes on the system bus. As a consequence, we
were able to keep overhead introduced by the p lat
form to a minimum for DMA writes. Recognizing that
efficiency improves with burst size, we used a queuing
mode l of the system to predict how many posted write
buffers were needed to sustain D.MA write bursts with
out stal l ing the PCI bus. Based on a simu lation model
of the configurations shown in Figures l and 2, we
determined that three 64-byte butlers were sufficient
to stream DMA writes ti·om the (266 MB/s) PCI bus
to the (I Gl3/s) system bus.

Later in this paper, we present measured perfor
mance ofDMA write bandwidth that matches the sim
ulation model resu l ts and, with large burst stzes,
actual ly exceeds 95 percent efficiency.

Prefetch Logic

DMA writes complete on the PCI before they com
plete on the system bus, but DMA reads must wait for
data fetched from memory or from a peer on another
PCI. As such, latency for DMA reads is a lways worse
than it is tor writes. PC! LocaL Bus Spec ification

Revision 2. 1 provides a delayed -transaction mechanism
tor devices with latencies that exceed the PCT initia l
latency requirement.' The initial- latency requ irement
on host bus bridges is 32 PC:I cycles, which is the max
imum overhead that may be introduced betore the
first data cycle . The AlphaServer 4 100 initial l atency
for memory DMA reads is bet\veen 1 8 and 20 PCI

PE RCENT
AVAI LABLE
CYCLES
SPENT
MOVING

1 00%

90%

DATA
(EFFICI ENCY) 30%

20%

12 16 20 24 28
OVERHEAD CYCLES
(LATENCY PLUS STALLS)

KEY:
• 90% - 1 00% • 40% - 50%

• 80% - 90% D 30% - 40%

• 70% - 80% D 20% - 30%

D 60% - 70% 1 0% - 20%

• 50% - 60% • 0% - 1 0%

Fig u re S

5 1 2
256

1 28
64

32
1 6 DATA

4
8 CYCLES

I N A 2 BURST

PC! Efficiency as a Function of B urst Size and L-ttency

cycles. Peer-to-peer reads of devices on d ifferent bus
segments are a lways converted to de layed- read trans
actions because the best-case initial latency wi l l be
longer than 32 PCI cycles.

PCI initial latency tor DMA reads on the
AlphaServer 4 1 00 system is commensurate with
expectations tor c urrent generation quad- processor
SMP systems. To maximize efficiency, we designed
prefetching logic to stream data to a 64-bit PCI device
without stal ls after the initial- latency penalty bas been
paid. To make sure the design cou ld keep up with an
uninterrupted 64-bit DMA read, we used the queuing
mode l and analysis of the system bus protocol and
decided that three cache- l ine-size pretetch bu fters
would be sufficient. The a lgorithm tor pretetc hing
uses the advanced PCI commands as hints to deter
mine how far memory data prefetching should stay
ahead of the PCI bus:

• M emory Read (MR) : Fetch a single 64-byte cache
l ine.

• Memory Read Line (M RL) : Fetch t\vo 64- byte
cache lines.

• Memory Read Mu l tiple (MR.M): Fetch t\vo
64-byte cache lines, and then ktch one l ine at
a time to keep the pipe line fu lL

After the PCI bus bridge responds to an M RM com
mand by fetching t\vo 64-byte cache lines and the sec
ond l ine is returned , the bridge posts another read; as
the oldest bufter is unloaded, new reads arc posted,
keeping one buffer ahead of the PCI . The third
pretetch buffer is reserved tor the case in which a DMA

Digital Technical Journal Vol. 8 No. 4 l996 71

72

M RM com pletes whi le there arc sti l l prdctch reads
outstanding. Reservat ion of this buffer accomplishes
two things: (1) i t el iminates a time-delay bubble that
would appear between consecutive DMA read trans
actions, and (2) it maintains a resource to fetch a
scatter-gather trans lation i n the even t that the next
transaction address is not in the TLB . Measured DMA

bandwidth is presented later in this paper.
The point at which the design stops prefetching is on

page boundaries. As the Dl'vlA window scatter-gather
map is partitioned into 8 -K.B pages, the interface is
designed to disconnect on 8-KB-aligned addresses.

The advantage of prefe tching reads and absorbing
posted writes on this system is that the burst size can
be as large as 8 KB . With large burst size, the overhead
of connecting and disconnecting from the bus is
amortized and approaches a negl igi b le pena lty.

DMA and PIO Performance Results

We have discussed the relationship between burst size,
initial l atency, and bandwidth and described several
techn iques we used in the Alph:�Scrver 4] 00 PC! bus
bridge design w meet the goals for high -bandwidth
I/0 . This section presents the perf-(xmance del ivered
by the 4 100 I/0 su bsystem design , which has been
measured using a high-performance PC! tr:�nsaction
generator.

We coJ iected performance dat:t under the U N I X
operating system with a reconfigurable i nterf:1ce card
developed at D I G ITAL, cal l ed PCI Pamette. It is a
64-bit PCI option with a Xi l i nx FPGA i nterface to
PCI . The board was configured as a programmable
PCI transaction generator. In this configuration , the
board can generate burst l engths of l ro 5 1 2 cyc les.
DMA either runs to a fixed count of words transferred
or runs continuously (software selected) . The DMA

engine runs at a fixed cadence (delay between bursts)
of 0 to 1 5 cycles i n the case of a fixed count and at 0 to
63 cvcles when run continuously.

The source of the DMA is a com bination of a free
running counter that is c locked using the PCI clock
and a PCI transaction count. The fl·ee-running counter
time-stamps successive words and detects wait states
and delays between transactions. The transaction count
identifies retries as wel l as transaction boundaries.

As the target of PIO read or write, the board can
accept arbitrarily large bursts of either 32 or 64 bits . I t
i s a medium decode device a n d a lways operates with
zero wait states.

DMA Write Efficiency and Performance

Figure 9 shows the close comparison between the
AlphaServer 4 1 00 system and a nearly perkct PC!

design in measured DMA write bandwidth . As
explained above , to susta in large bursts of DMA

writes, we implemented th ree 64- byte posted write

Digiral Tcchnic.ll journal Vol . 8 No. 4 1 996

300

� 250 I-
0 u
� 200
a:
w
� 1 50 hi w f-
in 1 00
<{
(9
w 50 2

0
32 64 1 28 256 5 1 2 1 024 2048 4096

BURST SIZE (BYTES)
KEY:

0 I DEAL PCI
0 MEMORY WRITE (MEASURED)

Figure 9
Comp�1rison of Measured DMA Write Performance on an
Ideal 64-bit P C ! :�nd on an AlphaServer 4 100 Svsrem

buffers. Simulation predicted rhat rhis number of
bufkrs wou ld be sufficient to sustain ful l bandwid th
DNIA writes-even when the system bus is extremely
busy-because the bridges to the PCI arc on a shared
svstem bus that has roughly l GB/s avai lable band
,�·idth . The PC! bus bridges arbitrate for the shared
system bus at a priority higher than the CPUs, but the
bridges arc permitted to execute onlv a single transac
tion each rime rhcy win the system bus. Therefore, i n
the worst case, a PCI bus bridge wil l wait behind three
other PC! bus bridges t(x a slor on rhe bus, and each
bridge wi l l have at least one quarter of the ;wailable
svstem bus bandwidth . With 250 MB/s avai lable but
\�•ith potentia l de lay in accessing the bus, three posted
write buffers are sufficient to maintain fu l l PCI band
width t<x memory writes.

The ideal PC! system is represented by calculated
performance data tor comparison purposes. It is a sys
tem that has three cycles of target l a tency tor writes.
Three cvdes is the best possible tor a medium decode
device. The goal f(x DNlA writes was to del iver perfor
mance l imited on ly by the PCI device itself, and this
goal was ach ieved. Figure 9 demonstrates that mea
sured DMA write performance on the AlphaServer
4 100 system approaches theoretical maximums . The
combir�ation of optimizations and in novations used
on this platform yielded an implementation that meets
the goal f(x Di'v!A writes .

DMA Read Efficiency and Performance

As noted i n the section Prefctch Logic, bandwidth
pertemllJ ilCC of D MA reads will be lower than the per
formance of DMA writes on a l l systems because there
is de !Jy in ktchi ng the read data fi-om memory. For
this reason, we inc luded three cache- l ine-size preferch
bu ffers in the design.

Figure 1 0 compares DMA read bandwidth mea
sured on the AJphaServer 4 1 00 system with a PCI sys
tem that has 8 cycles of i nitial latency i n delivering
DMA read data . This figure shows that del ivered
bandwidth improves on the AJphaServer 4100 system
as burst size i ncreases, and that the effect of i nitial
l atency on measured performance is d imin ished with
larger DMA bursts.

The ideal PCI system used calcu lated performance
data for comparison , assuming a read target latency of
8 cycles; 2 cycles are for medium decode of the
address, and 6 cycles are tor memory latency of 1 8 0
nanoseconds (n s) . This represents about the best per
formance that can be achieved today.

Figure 1 0 shows memory read and memory read
l ine commands with burst sizes l imited to what is
expected from these commands. As explained else
where in this paper, memory read is used for bursts of
less than a cache line; memory read line is used tor
transactions that cross one cache l ine boundary but are
less than two cache l ines; and memory read multiple

is for transactions that cross two or more cache l ine
boundaries.

The efficiency of memo1y read and memory

read line does not improve with larger bursts because
there is no prefetching beyond the first or second
cache l ine respectively. This sho·ws that large bursts
and use of the appropriate PC! commands are both
necessary for efficiency.

Performance of P/0 Operations

PIO transactions are in i tiated by a CPU . AJphaServer
4 1 00 PIO performance has been measured on a

Cl
z
0

300

250

&l 200
<fJ
a:
LU
e; 1 50
LU
f>-00 <3 1 00
LU ::;:

50

0

F

Ill
32 64 1 28 256

system with a single CPU, and the results are pre
sented in Figure 1 1 . The pended protocol tor flow
control on the system bus limits the number of read
transactions that can be outstanding from a single
CPU. A single CPU issu ing reads wil l stall wait ing for
read-return data and cannot issue enough reads to
approach the bandwidth l imit of the bridge. Measured
read performance is quite a bit lower than the theoret
ical l imit . A system with m ultiple CPUs doing PIO
reads-or peer- to-peer reads-will del iver PIO read
bandwidth that approaches the pred icted performance
of the PCI bus bridge. PIO writes are posted and the
CPU stalls on ly when the writes reach the I Q thresh
old . Figure 1 1 shows t hat P IO writes approach the
theoretical limit of the host bus bridge.

PIO bursts are l imited by the size of the I/0 read
and write merge buffers on the CPU. A single
AJphaServer 4 1 00 CPU i s capable of bursts up to
32 bytes. PIO writes are posted; therefore, to avoid
stal l ing the system with system bus flow control , in the
maximum configuration (see Figure 2), we provide a
min imum of three posted write buffers that may be
filled before flow control is used. Configurations with
fewer than the maximum n umber of CPUs can post
more PIO writes betore encountering flow control .

Summary

The DIGITAL AJphaServer 4 100 system incorporates
design innovations in the PC! bus bridge that provide
a h ighly efficient interface to 1/0 devices. Partia l
cache l ine writes i mprove the efficiency of smal l writes
to memory. The peer l ink mechan ism uses TLBs to

5 1 2 1 024 2048 4096
BURST SIZE (BYTES)

Figure 1 0

KEY:

0 IDEAL PCI (8 CYCLES TARGET LATENCY)
• MEMORY READ MULTIPLE (MEASURED)
0 MEMORY READ LINE (MEASURED)
0 MEMORY READ (MEASURED)

Comparison of D MA Read Bandwidth on the Al phaServer 4 100 System and on an Ideal PCI System

Digital Tl'chnical Journal Vol . 8 No. 4 1 996 73

74

0
z
0
0
w
(f)
a:
w
o._
(f)
w
f-

1 60

1 40

1 20

1 00

80

60

� 40

<3 20
w
�

PIO WRITE, 32-BIT PCI PIO READ, 32-BIT PCI P IO WRITE, 64-BIT PCI PIO READ, 64-BIT PCI

KEY:

0 MEASURED PERFORMANCE
0 THEORETICAL PEAK PERFORMANCE

Figure 1 1
Comparison of Al phaServer 4100 PI O Pertormancc with Theoretical 32 -byte Burst Peak Perfo rmance

map device add ress space on i ndependent peer PCI
buses ro permit direct peer transactions. Reordering of
transactions in queues on the PCI bridge, combined
witb the use of PCI delayed transactions, provides a
dead lock-free design tor peer transactions. Bufrers and
prdetch logic that support very large bursts without
stal ls yield a system that can a mortize overhead and
del iver performance l imited only by the PC! devices
used in the system .

I n summary, this system meets a n d exceeds t h e per
formance goals esta bl ished for the I/0 su bsystem.
Notably, I/0 subsystem support for partial cache l ine
writes and for d i rect peer-to-peer transactions signifi
cantly improves efficiency of operation in a M EM O RY

C HAN NEL cluster system.

Acknowledgments

The DIG !Ti\L AlphaServer 4100 IjO design team
was respo nsible f()r the I /0 subsystem implemen ta
tion . The design team i ncl uded B i l l Bruce, Steve Coe,
Dennis Hayes, Craig Keefer, Andy Koning, Tom
McLaugh l in, and John Lyn c h . The I/0 design veri n
cation team was a lso key to del ivering this prod uct:
Dick Beaven, Dmen·o Kormeluk, Art S inger, and
Hitesb Vyas , with CAD support f!·om Mark Matulatis
and Dick Lombard .

Several system team members contributed to inven
tions that improved product performance; most notable
were Paul Guglielmi, Rick Hetherington, Glen Herdeg,
a nd Maurice Stein man . We also extend thanks to our
performance partners Zarka Cvetanovic and Susan
Carr, who developed and ran the gueujng models.

Mark Shand designed the PC! Pamette and pro
vided the ped()fmance measurements used in this
paper. Many thanks for the nights and weekends spent
remotely connected to the system in our lab to gather
this data .

Digital Technical journal Vol. 8 No. 4 1996

References and Note

l . Wimer U N I X Hot Iron A\\'a rds, U � I X E X PO Plus,
October 9, 1 996, http:/ /WI\w.a im .com (Menlo Pcnk,
Calif. A IM Tech nolog\') .

2 . R. Ci l lett , " ,v! H·l ORY CHAl,NEL Net11 0rk t()l" P C ! , "

/f:Ff: Jiicro (FcbruarY ! 996) : 1 2- 1 8 .

3 . G . He rd cg , " Design and I mp lementation of the
AlphaSen·er 4100 CPU and Memorv Arch i tecw re,"
Di.�itul Tech nical }oumal. vol . 8, no. 4 (1 996, this
issue) : 48-60.

4. PC! Local Bus Specification, Ret'ision 2. 1 (Portla nd,
Oreg . : PC! Speci a l I nterest Group, I 995) .

5 . In PC! terminology, a master is any device that arbi trates
for the bus and i n i ti ates transactions on the PC! (i . e . ,
pedorms DMA) before accepting a transaction a s target.

Biographies

Samuel H. Duncan
A consultant enginee1· and the architect for the AlphaServer
4 1 00 1/0 su bsystem design, Sam Dunec1n is cu rrem ly
working on core logic design and architecwre for the next
generation of Alpha servers and workstations. S i nce join
ing DIGITAL i n I 979, he has been part ofAlplu and VAX
svstem engineering teams and has rep resented DICITAI .
o n scvcrc1l ind ustry standards bodies, i nc ludi n!J, t h e PC!
Spccic1 l Interest Gwup. He a lso chaired th e group that
dcl'e l oped the I EEE Sr:111dard for Com municHing Among
ProCl:ssors and Periphera ls Using Shared tV!c mon·. He Ius
been a11·ardcd one pcuenr and has fou r patems fi l ed tc)l"
i 1m:ntions in the AlphaSerl'er 4 l00 S\'Stem . Sam rccci,·ed
a B.S. E . E . fmm Tu fts U n i,·ersitv.

Craig D . Keefer
Craig Keefer is a principal hardware engi neer whose engi
neering experrise is designi ng gate arrays. H e was the gate
array designer for one of the two 235K CMOS gate arrays
in the AJphaServer 8200 system and the team leader for the
comn1and and add ress gate array i n the AJphaServer 8400
l/0 module . A member of the Server Product Development
Group, h e is now responsible for designing gate arrays for
h ierarch ical switch h u bs. Craig joined D I G ITAL in 1 977
and holds a B.S .E .E from the U niversity of Lowel L

Thomas A. McLaughlin
Tom McLaughl in is a principal hardware engineer work
i ng in D I GITAL's Server Product Development Group .
He is current ly i nvolved with t h e next generation of high
end server platforms and is focusing on logic synthesis
and ASIC design processes. For the AJphaServer 4100
proj ect, he was responsible for the logic design of the l/0
subsyste m , inc luding ASIC design, logic synthesis, logic
verification, and r iming verification. Prior to joi n i ng the
AJphaServer 4 100 project, he was a member of Design
and Applications Engineering within D I GITAL's External
Semicond uctor Technology Group . Tom joi ned D I GITAL
in 1 986 after receiving a R T E.ET from the Rochester
I nstitute ofTechnology; he also holds an M.S.C.S . degree
ti·om the Worcester Polytechnic Institute .

Digital Technical Journal VoL 8 No. 4 1 996 75

Design of the 64-bit
Option for the Oracle7
Relational Database
Management System

Like most data base management systems, the

Oracle7 database server uses memory to cache

data in d isk fi les and improve the performance.

In general. larger memory caches result in better

performance. Until recently, the practical l im it

on the amount of memory the Oracle7 server

could use was well under 3 giga bytes on most

32-bit system platforms. Dig ita l Equi pment

Corporation's combination of the 64-bit Alpha

system and the DIGITAL UNIX operating system

d ifferentiates itself from the rest of the com

puter ind ustry by being the f irst standards

compl iant UNIX implementation to support

l inear 64-bit memory addressing and 64-bit

appl ication programming interfaces, allowing

high-performance appl ications to directly access

memory in excess of 4 gigabytes. The Oracle7

database server is the first commercial data

base product in the ind ustry to exploit the per

formance potentia l of the very large memory

config urations provided by DIGITAL. This paper

explores aspects of the design and implementa

tion of the Oracle 64 Bit Option.

76 Digital Technic� I Journal Vol . 8 No. 4 1 996

I
Vipi.n V. Gokhale

Introduction

Historica l ly, the l im iting tacror tor the Oracle7 re la
tional database managcment system (RDBMS) pertor
mancc on any given p latform has been " thc amount of
computational and I/0 rcsources ava i lable on a single
node . Al though CPUs havc bccomc taster by an order
of magnitude over thc last sc1·eral ycars, I/0 speeds
ha1·c not imprm·ed commensu r:nclv. For i nstance, the
Alpha CPU clock speed alone has increased tour times
since its introd uction; d u ring the same t ime period,
disk access t imes have i mp roved by a t:Kror of two at
bcst . The overall throughput of database software is
critically dependent on the speed of access to data.

To overcome the ljO specd l i mitation and to maxi
mize performance, the standard Oracle7 database server
alreadv uti lizes and is optimized tor various paraUel iza
tion techniques in software (e .g . , intel l igent caching,
data prcfctching, and para l le l query execution) and i n
hardware (e .g . , symmeu·ic mu ltiprocessing [SMP] sys
tems, c lusters, and massi1·clv para l le l processing [MPP]
systems) . Given the disparity in latency for data access
between memory (a tew tcns of nanoseconds) and disk
(a tew milliseconds), a common technique for maximiz
ing performance is to mini mize d isk ljO. Our project
originated as an investigation into possible additional
performance improvements in the Oracle7 database
scrver in tl1e context of increased memory addressability
and execution speed provided by the AlphaServer and
DIG ITAL UNDC system. Work done as part oftl1is proj
ect subsequently became the foundation tor product
development of the Oracle 64 Bit Option.

Of the memory resource that the Oracle7 database
uses, the largest portion is used to cache the most fre
quently used data blocks . With hardware and operat
ing system support for 64- bi t memory addresses, new
possibi l i ties have opened up for h igh-per formance
applic:nion software to take advantage of large mem
ory configurations.

Two of the concepts u ti l ized are hardly new in data
base development, i . e . , improl' ing database server per
formance by cach ing more data in memory and
improving ljO su bsystem throughput by i ncreasing
data transfEr sizes. However, various con flicting ftc
tors contribute to the practi ca l upper bounds on

performance improvement . These factors include
CPU architectures; memory addressabi l ity; operating
system features; cost; and product requirements tor
portabi l ity, compatibi l i ty, and time-to- market. An
additional design chal lenge for the Oracle 64 B it
Option project was a requ irement for significant per
formance increases for a broad class of existing d ata
base applications that use an open, general -purpose
operating system and database software.

This paper provides an overview of the Oracle 64
B i t Option, factors that influenced its design and
implementation, and performance impl ications tor
some database application areas. I n -depth information
on Oracle7 RDBMS architecture, administrative com
mands, and tuning guidelines can be found in the
Orac!e 7 Seruer Docu mentation Set . ' Detailed analysis,
database server, and application- tun ing issues arc
deferred to the references cited . Overa l l observations
and conclusions from experiments, rather than specific
detai ls and data points, are used in this paper except
where such data is publicly avai lable .

Oracle 64 Bit Option Goals

The goals for the Oracle 64 Bit Option project were as
follows:

• Demonstrate a clearly identifiable performance
increase for Oracle7 running on D IG ITAL UNJX
systems across two commonly used classes of data
base applications : decision support systems (DSS)
and onl ine transaction processing (OLTP) .

• Ensure that 64-bit addrcssabi l ity and large memory
configurations arc the only two control variables
that influence overall application performance.

• Break the 1 - to 2 - GB barrier on the amount
of directly accessible memory that can practically
be used tor typical Oracle7 database cache
implementations.

• Add scalabi l ity and performance features that com
plement, rather than replace, current Orade7
server SMP and duster ofterings.

• Implement all of the above goals without signifi
cantly rewriting Oracle7 code or introducing appli
cation incompatibi l ities across any of the other
platforms on which the Oracle7 system runs.

Oracle 64 Bit Option Components

Two major components make up the Oracle 64 Bit
Option: b ig Oracle blocks (BOB) and l arge shared
global area (LSGA) . They are briefly described in this
section .

The BOB component takes advantage of large
memory by maki ng ind ividual database blocks larger
than those on 32-bit platf(mm. A database b lock is a

basic unit tor I/0 and disk space al location in the
Oracle7 RDBMS. Large block sizes mean greater den
sity in the rows per block tor the data a nd indexes, and
typically benefit decision-support appl ications. Large
blocks are also usdi.d to applications that require long,
contiguous rows, tor example, applications that store
multimedia data such as images and sound. Rows that
span multiple blocks in Oracle7 req uire proportion
ately more 1/0 transactions to read al l the pieces,
result ing i n performance degradation . Most p latforms
that run the Oracle7 system support a maximum data
base block s ize of 8 kilobytes (KB) ; the DLG rTAL
UNIX system supports block sizes of up to 32 KB .

The shared global area (SGA) i s that area o f memory
used by Oracle7 processes to hold critical shared data
structures such as process state, structured query lan
guage (SQL)-Ievel caches, session and transaction
states, and redo buffers . The bu lk of the SGA in terms
of size, however, is the database buffer (or block)
cache. Use of the buffer cache means that costly d isk
l/0 is avoided ; therefore, the performance of the
Oracle7 database server relates d irectly to the amounr
of data cached in the buffer cache . LSGA seeks to use
as much memory as possible to cache database blocks.
Ideal ly, an entire database can be cached in memory
(an " in-memory" database) and avoid a lmost all 1/0
during normal operation .

A transaction whose data request is satisfied ti·om
the database buffer cache executes an order of magni
tude faster than a transaction that must read its data
fi·om disk. The d ifference in pcrtcxmance is a direct
consequence of the d isparity in access times tor main
memory and d isk storage. A database block tound in
the buffer cache i s termed a "cache h i t ." A cache miss,
in contrast, is the single largest contributor to degra
dation i n transaction latency. Both BO l3 and LSGA use
memory to avoid cache misses. The Oracle7 bufkr
cache implementation is the same as that of a typical
write- back cache. As such, a cache miss, in addition to
resu lt ing i n a costly disk 1/0, can have secondary
efkcts. For instance, one or more of the least recently
used buffers may be evicted from the butkr cache if no
tree bufkrs arc avai lable, and additional 1/0 transac
tions may be i ncurred if the evicted block has been
modified since the last time it was read trom the d isk.
Oracle7 buffer cache management algorithms already
implement aggressive and intelligent caching schemes
and seek to avoid d isk l/0. Although cache-miss
penalties apply with or without the 64-bit option,
"cache thrashing" that results from constra ined cache
sizes and large data sets can be reduced with the
option to the benefit of many existing appl ications.

The Oracle7 buffer cache is specifical ly designed
and optimized tor Oracle's mu lti -versioning read
consistency transactional model . (Oracle7 buffer
cache is independent of the DIGITAL UNIX unified
buffer cache, or UBC.) Since Oracle7 can manage irs

Digital li:dmical journal Vol. S No. 4 I 9Y6 77

own butkr cache more etkcti,·clv than fi ll:: system
butkr caches, it is oth.:n recom mended that the file
system cache size be red uced in tiwor of a larger
Or;�clc7 buffer cache when rhc database resides on
�1 file system . Red ucing fi le system cache size a l so min i
mizes red undant c ;�ch ing of dJta at the file system
level . For th is reason, we rejected early on the obvious
design sol ution of using the D I G ITAL UNIX file sys
tem as a large cache t(>r taking advantage of brge
memory con figurations-even though it had the
appeal of complete transpJrency and no code changes
to the Oracle? syste m .

Background and Rationale for Design Decisions

The primary impetus t(>r this project was to eva luate
the impact on the Oracle? dJtabase server of emerging
64-bit platforms, such as the A lphaServer system and
D!G ITAL UNIX operating system. Goals set t(>rth
t(>r this project and su bscq w.:nr design considerations
therctore excluded any pcrt(mnJnce and fu nctional ity
cnhJncements in the Orac le? RDBMS that cou ld not
be attributed to the benefits ofkrcd by a typical 64 -bit
p l att(mn or othe rwise c ncapsu iJtcd within platt(mn
spcc ific layers of the dat;�bsc server code or the oper
ating system itself.

Common areas of potential benefit for a typical
64-bit p l ;�ttorm (when compJred to its 3 2 - bi t coun
terpart) are (a) i ncreased d irect memory address<�bi l ity,
and (b) the potential t(>r con fi guring systems with
greater than 4 G B of memor�'· As noted above, appl i
cation performance o f the Oracle? database sen·cr
depends on whether or not data Jre t(JLllld in the datJ
base b u tler cache. A 64 -bi t p lattonn provides the
opportunity to expand the datJbase bufter cache in
Or,1cle7 to sizes well beyond those of a 32-bit plat
tc>nn . BOB and LSGA reflect the only logical design
choices avai lable in Oracle? to take advantage of this
extended addressabi l ity and meet the project goa ls .
I mp lementation of these components focused on
ensuring scalabi l ity and maximiz ing the e ftectiveness
ofav,1 i lable memory resources.

BOB: Decisions Relevant to On-disk Database Size

L<�rgcr database blocks consu me proportionate ly
larger ;�mou nts of memory when the data conr;�ined in
those blocks are re<�d from the d i sk in to the database
butler cache . Consequently, the size of the buftcr
cache itsel f must be increased ibn application req uires
a greater number of t hese larger blocks to be cached .
For any given size of database buftcr cache, Oracle?
cbtabase administrators of 32 -b ir platforms h ave
had to choose between the size of each database block
:md the number of cbtabasc blocks that must be i n
the cache to minimize d isk 1/0, the choice depending
on data access patterns of the appl ications. Memory
available tor rhe database buftc r cache is further con-

Dig;itJI Techn ical journal VoL X No . 4 J 996

strained by the bet that this resou rce is also s hared by
many other critical dau structures in rhe SGA besides
the bu tler cache and the me mory needed by the oper
<�t ing system . By e l iminating the need to choose
between the size of the database blocks and bufkr
cJche, Oracle? on a 64-bir pl:!rtcm11 can run a greater
appl ication mix without sacrificing performance.

Despite the codependency and the common go;�l
of red ucing costly disk 1/0, BOB and LSGA add ress
t\\'o diftcrent d imensions of d'1tabase scalabil ity : BOB
;�ddresses on -disk dat;�basc s ize, Jnd the LSGA add resses
in -memory database size. Application de,·elopers ;�nd
daubase ad mi nistrators have complete flexi bi l ity to
bvor one over the other or to usc them in combin;�rion.

I n Orac le?, the on-d isk d;�ta structu res that locate
:1 row of data in the datJbasc usc <1 block- address
byte-onset tuple . The data block add ress (DB A) is a
3 2 - bit quantity, which is fu rther broken up i nto fi l e
number a n d block other within rlut fi l e . The byte off
set within a block is a 1 6 -bit qu anti t\'. Although the
number of bits in the D BA used t<>r fi l e n u m ber and
block oftsct are p latt(mn dependent (10 bits tor the file
n u m ber and 2 2 bits t()r the block oftsct is a common
r<m1ut) , there exists a theoretic:d upper l im i t to the
s ize of an Oracle? dJtabase . With some exceptions,
most 32 -bi t p lattorms support a maximum data block
size of 8 K.B , with 2 K.B as the dd�u l t . For example,
using a 2- KB block size, the upper l im i t for the size
of the database on D I G ITA L U N I X is s l ightly u nder
8 te r<�Lwtes (TB) ; whereas ,1 32- K.B block s ize raises
that l im i t to s l ight ly u nder 1 2 8 T B . The abi l i t\' to sup
port bu fter cache sizes ,,·e l l bcvond those of 32 -bit
plart<mm was a cri tic1 l prcreq u isi tc to enab l ing l arger
sized dJta blocks <�nd consequent ly l ;�rgcr sized data
bases. Some 32 -bit p latr<mm arc a lso constrained by
the bet that each data file cannot exceed a s ize of4 G B
(especia l ly if t h e data fi l e i s a fi l e system managed
object) Jnd therefore may not be able to use a l l of the
,wJi i J blc b lock oHset r;�ngc in the existing D B A for
nut. The largest database size that can be supported in
such a case is eYen smaller. Add ressing the percei,·ed
l im its on the size of an Oracle? databJse was an impor
tant consider;�t ion. Design J l tcmatiYes that req uired
ch;�nges to the lavout or an i nt erpretation of DBA tc>r
mat were rejected, at least in this project, because such
chJnges would have in troduced incompatibi l i ties in
on-disk data structures.

I t shou ld be pointed out th<�t on cu rrent Alph:.1
processors using an 8 - KB page size , a 32- KB data
block sp<�ns tour memory pages , and 1/0 code p<�ths
in the operating system need to lock/u nlock tc)ltr
times as m;�ny pages when pert(>rming an 1/0 trans
:.lction . The larger transkr size also :�dds to the total
ti me t<�ken to pedorm an 1/0. For instance, tour
pJges of memory that cont<� in the 32- KB data block
may not be p hysical ly contiguous, :�nd " scatter-gather
operation may be req uired . Although the Oracle7

database supports row-Jevel locking tor maximum
concurrency in c:tses where u nrelated transactions may
be accessing d ifferent rows with in a given data block,
access to the data block is seriali zed as each individual
change (a transaction- level chJnge is broken down
i nto multiple, smaller un its of change) is applied to the
datJ block. Larger data b locks accommodate more
rows of data and consequently increase the probabil ity
of contention at the data bJock level if appl ications
change (insert, update, delete) data and have a local ity
of rekrence. Experiments have shown, however, that
this added cost is only marginal relative to the overall
performance gains and can be oftset easily by carefu l ly
tuning the application . Moreover, applications that
mostly query the data rather than modif)' it (e .g . , DSS
appl ications) greatly benefit from larger block sizes
since in th is case access to the data block need not be
serial ized . Subtle costs such as the ones mentioned
above nevertheless he lp explain why some appl ications
may not necessarily see, tor example, a fourfOld per
formance i ncrease when the change is made fi-om an
8-KB block size to a 32- KB block size.

As with Oracle7 implementations on other platfonm,
database block size with the 64-bit option is determined
at database creation time using db_b lock_size con
figuration parameter. ' It cannot be changed dynamically
at a later time.

LSGA: Decisions Relevant to In-memory Database Size

The focus f<>r the LSGA eftort was to idcntif)' and el im
inate any constraints i n Oracle7 on the sizes to which
the database buffer cache could grow. DIGITAL UNIX
memory al location appl ication programming interfaces
(APis) and process address space layout make it fairly
straightforward to a l locate and manage System V
shared memory segments. Although the size of each
shared memory segment is l imited to a maximum of
2 GB (due to the requirement to comply with UNIX
standards), mul tiple segments c an be used to work
around this restriction . The memory management
layer in Oracle7 code therefore was the i nitial area of
focus. Much of the Oracle7 code is written and archi
tected to make i t highly portable across a diverse range
of platf(>rms, i ncluding memory-constrained 1 6- bit
desktop platforms. A particu larly interesting aspect of
1 6-bit platforms with respect to memory management
is that these plat forms cannot support contiguous
memory allocations beyond 64 K.B. Users arc forced
to resort to a segmented memory model such that
each i ndividual segment docs not exceed 64 K.B in
s ize . Although such restrictions are somewhat con
straining (and perhaps i rrelevant) tor most 32 -bit
platforms-more so tor 64- bit platforms-which can
easi ly handle contiguous memory a l locations well
in excess of 64 K.B, memory management layers in
Oracle7 code are designed to be sensitive and cautious
about large contiguous memory al locations and

would use segmented al locations if the size of
the memory al location req uest exceeds a platform
dependent threshold . I n particu lar, the size in bytes
for each memory al location request (a platt(.>rm
dependent va lue) was assumed to be wel l under 4 GB,
which was a correct assumption tor a l l 32-bit plat
forms (and even for a 64- bit platform without LSGA).
In terna l data structures used 32-bi t integers to repre
sent the size of a memory al location request.

For each buffer in the buffer cache, SGA also
contains an additional d::tta structure (bufkr header)
to hold al l the metadata associated with that buf..
fer. Although memory tor the buffer cache itself was
allocated using a specia l interface into the memory
management layer, memory a llocation tor butkr
headers used conventional i nterfaces. A d i tkrent
al location scheme was needed to allocate memory
for buffer headers. The bufkr header is the on ly
major data structure i n Oracle7 code whose size
requirements are directly dependent on the number of
buffers in the bufter cache. Existing memory man
agement interfaces and algorithms used prior to LSGA
work were adequate until the number of buffers in
the buffer cache exceeded approximately 700,000
(or buffer cache size of approximately 6.5 GB) . Minor
code changes were necessary in memory manage
ment a lgorithms to accommodate bigger a l location
requests possible with existing h igh-end and future
AlphaServer configurations.

The AlphaServer 8400 platform can support mem
ory configurations ranging from 2 to 1 4 GB, using
2-GB memory modules. Some existing 32 -bit p lat
forms can support physical memory configurations
that exceed their 4-GB addressing l imit by way of seg
mentation, such that on ly 4 GB of that memory is
directly accessible at any rime. Programming complex
ity associated with such segmented memory models
precluded any serious consideration in the design
process to extend LSGA work to such platforms.
Significantly rewriting the Oracle7 code was specifi
cally identified as a goal not to be pursued by this proj
ect. The Alpha processor and DIGITAL UNIX system
p rovides a Aat 64-bi t virtual address space model to
the applications. DIGITAL UNIX extends standard
UNIX APis into a 64-bit programming environment.
Our choice of the AlphaScrver and DIGITAL UNIX as
a development platform for th is project was a fairly
simple one ti-om a time-to-market perspective because
it al lowed us to keep code changes to a minimum.

Efficiently managing a buffer cache of� for example,
8 or 10 GB in size was an interesting chal lenge. More
than five m il l ion b uffers can be accommodated in a
10-GB cache , with a 2 -KB block size. That number of
buffers is already an order of magnitude greater than
what we were able to experiment with prior to the
LSGA work. The Oracle7 butter cache is organized as
an associative write- back cache. The mechanism tor

Digital Technical Joumal Vol . 8 No. 4 1 996 79

lo-=ating a data bl o-=k of interest in this -=a-= he is supported
by -=omrnon algorithms :md data structures such as hash
fu nctions and linked lists. In manv cases, traversing crit i
cal / inked l ists is serialized among contending threads of
execution to maintain the imcgrity of the l ists themselves
and secondary data structures managed by these lists. As
a result, the size of such critical l ists, t()r example, has an
impact on overall cotK UtTcncy. The larger buHe r count
now possi ble in LSCA conf-igurations h :Ki the net eftcct
of red uced concu rrency because the size of these l ists is
proportionate/\' larger. L SCA pro\'ided a ti·amework to
test contributions ti-om other u nrelated projects that
addressed such potenti:�l bottl enecks to concurrency, as
i t co u l d real istically simu bte re latively more stringent
boundary conditions than bd(>rc.

Scalability Issues

Engineering teams :Jt Oracle have worked very closely
with the i r cou nterparts in the D I G ITAL UNIX operat
i ng system group throughout this projecr. The lbt:�
col lected in the course of the project was usefu l in :l na
l yzing and addressing the sca L1bi l i ty issues in the base
operating system <lS well <1 S in the Oracle7 prod uct .
Ex ampl es of this work arc i n the base operating system
gra n u larity hint regions :.1nd in the shared page tables.2·'

for every page of p hysical and virtual memory, an
opcr,lting system must maintJin various data structures
such as page tables, data structures to track regions of
mcmorv wirh certain attributes (such as System V shared
memory regions, or tc\t and data segments) , or data
structures thJt track processes which have reterences to
these memory regions. Ancii !Jr\' operating system data
structu res such as page tJblcs grow in size pro
portion<nely to the size of physical memory. Ch:1nges
to page table m.:magement :Jssociated with System V
s ha red memory regions were made such that processes
that mapped the shared memory regions coul d sh are
page ta b les in addition to the datJ p:1ges themselves.
Prior to this change, e<Kh process m:1pping the slured
memory reg ion used a copy of associJted page ta bles.
A c h:1 nge l ike this red uced physical memory consump
tion Lw the opcrJting system . For example, on an Alpha
CPU su pporting an 8 - KB p:1gc s ize , i t would take 8 KB
i n page rable entries to map 8 M B of physical memor\'.

For an SGA of8 CB, it wou ld tJke 1 J\II B in page t:�blc
entries. It is not u ncommon in the Oracle7 system tor
hundreds of processes to connect to the datab:�sc, and
rherd()re map the 8 G B ofSGA. VVithout shared p:1ge
tJhles, 100 such processes wou ld have consu med 1 0 0
MB of physical memory by ma int aining a per- process
copy of page t:�blcs.

A grJnularity h int region is a region ofphysica/lv con
tiguous pages of memory that sh<lre virtual and physical
m:1ppings between all the processes thJt map them .
Such :1 mcmorv layout Jllows D i l; ITAL UNIX to take
JdvJntJge of the gr.:mu larity hint tl:Jture supported by
Alpha processors. Granularity h int bits i n a page table

Dig:it:1l Tcchnic1l Journal Vol. R No. 4 ! 996

entry a / lo\\' the Alpha C P U to usc :1 single trans/Jtion
look-aside buffer (TLB) entrv to map a 5 1 2K physic:1l
memory space. Using one TLB e ntry to map larger
physiul memory has the potential to reduce proces:;or
sta l ls d u ring TLB misses and re fi l l s . Also, because oftl1e
req u i rement that the grJnularity hint region be both
virtual ly and physical ly contiguous, it is J l located at sys
tem startup time and is not subject to normal virtual

memory management; t(>r example, i t is never paged in
or out, and subseq ucntlv the cost of a page ta ult is mini
mal . Si nce pages in granulatity h i nt regions are p h)'Si
cal lv contiguous, anv I/0 done h·om this region of
memory is rdati\'e iv more efficient because i t need not
go through the scatter-garber plusc .

Summary of Test Results

One of the project go<lls was to demo nstrate clear
pcrt(mnancc benefits t(x two common classes of data
base :1ppl ications, DSS and 0 I .TP . The Transaction
Processi n g Counci l (TPC:) prO\ ides an ind ustn'
srandard benchmark su ite t-c >r both applications, that
is, TPC-C: t()r OLTP and TPC- D t(Jr DSS. An ind ustrv
stancbrd bench mark wou l d have been a logiul choice
t(H· �1 workload that wou l d demonstrate pertonnance
be nefits. However, the enormous t ime, resources, and
cft()rt req u ired to stage Jn audite d TPC benchm ark
<llld the strict guidel i nes t(H- any d i rect com parison of
pu blished bench mark res u l ts were major tactors i n
the decision to develop a \\'orkload t()r this p roject
that matched the spirit of the TPC: benchmark bur not
necessa rily the letter.

In late L995, Oracle Corporation ra n :1 series of per
t(m11Jnce tests for a DSS-cbss \\'Ork.load of the Oraclc7
syste m , with and without the 64-bit option on the
Alph:.1Scrver 8400 system running the DICITAL U N I X
operating system with 8 C B o f physical memory. A
deta i l ed report on this test is puh/ ished and avai lable
h·om Oracle Corporation ' These res u l ts , shown i n
Figure 1 , c learly demonstrate the be nefits of a brge
<ltnount of physical memory in a configuration with
the 64- b i t optio n . A su nHnary of the tests conducted is
prese nted he re a long with some lbta poi nts <ll1d kev
observations.

(Rc.1ders inte rested in pert-cmn:1nce characteristics of
<l n Jud itcd ind ustry-stJ nlbrd OLTP benchm ark are
rckrred to the Dii.;i/C/1 Teclm icol joun wl. Vo lume 8 ,
Number 3 . Two papers prcscm pertcm11ance character
istics of0racle7 Para l le l Server re l c. 1se 7 . 3 us ing 5.0 l; P,
SG·\, and a TPC-C workload on <1 t(Jur- node c l uste r.')

The test data base consisted of five t<lb les, represe nt
ing <l pprox imately 6 C B of data. The tests i ncl uded
two separate configu rations:

• A "stancb rd " con figuration \\' ith <l 1 2 8 -MB SGA
with a 2- KB databJse block size

• A 64- bit option-enabled con figm:1tion with a 7 - C B
SCA � m d 32 - KB database block size

PERFORMANCE RATIOS OF LSGA TO SGA

251 9
250.0 ,---:..

�2 2E:_8

Q 200.0

� a:
w 1 50.0 0
z
<t: I
:;::;
a: 1 00.0
0 �
lL
a: I
w
n_ 50.0

0.0 � n IL
2 3 4 5 6

TRANSACTION TYPE

Figure 1
Performance Improvements tor a DSS-c lass ·workload,
Ratios of LSGA to SGA

The evaluation included running six separate trans
action types against these two configurations:

1 . Fu l l table scan against a table with 42 mi l l ion rows
(without the Parallel Query Option)

2 . Ful l table scan against a table with 42 mi l l ion rows
(with the Para l leJ Query Option)

3. Set of ad hoc queries against a tab le with
42 mil l ion rows

4. Set of ad hoc queries i nvolving a JOin against
three tab les with 10 . 5 mi l l ion, 1 .4 mi l l ion, and
42 mi ll ion rows, respectively

5. Set of ad hoc quu-ies involving a join against tou r
tables with 1 mil l ion, 1 0 . 5 mi l l ion, 1 .4 mil l ion, and
42 m il l ion rows, respectively

6. Set of ad hoc q ueries invoJving a join against
five tables with 70,000, 1 mill ion, 10 . 5 mil l ion,
1 .4 mill ion, and 42 mil l ion rows, respectively

Each bar in Figure l represents a ratio of execution
time (el apsed) between a large SGA (64-bit option)
and a smal l SGA ("standard" configuration) tor each
of the six transaction types. In every case, the configu
ration with the 64-bit option enabled consistently out
perfOrmed a "standard" configuration . In some cases,
the pertonnance increase with the option enabled was
over 200 times that of the standard configuration.

The transaction mix chosen t()r th is test represents
database operations commonly used in DSS-class
applications (e .g . , fu l l table scans, sort/merge, and
joins) . The test a lso uses a characteristical ly large data
set. Transaction types 1 and 2 arc identical except t()r the
use of the Paral le l Query Option . The Parallel Query
Option in Oracle7 breaks up some database operations
such as table scans and sorts/merge into smaller work
units, and executes them concurrently. By defau lt, these
operations are executed serially, using only one thread
of execution . The Parallel Query Option (independent

of the 64-bit option) is a standard offering in the
Oracle7 database server product since release 7 . l . Use
of parallel query in this test i l l ustrates the efkct of the
64-bit option enhancements on preexisting mecha
nisms tor database performance improvement.

All other things being equal, if the only difference
between a standard configuration and a 64-bit
option--cnablcd configuration is that the entire data set
is cached in memory in the latter con figuration and that
typical times tor main memory accesses are a tew tens of
nanoseconds whereas times for disk accesses arc a few
mil liseconds, only the six to seven times pcrt()rmance
increase in transaction type l vvould seem tar below
expectation. For a full table scan operation, the Oracle7
server is already optimized to use aggressive data
prdctch . Before the server begins processing data i n
a given data block, it launches a read operation tor
the next block. This technique significantly reduces
application-visible disk access l atencies by overlapping
computation and I/0. Disparity in access time tor main
memory and disk is sti ll large enough to cause the com
putation to stall while waiting for the read-ahead 1/0 to
finish . When data is cached in memory, this remaining
stal l point in the query processing is eliminated .

I t is also important to note that a fu l l table scan
operation tends to access the d isk sequential ly. It is
typical for d isk access times to be better by a factor of
at least two in sequential access as compared with ran
dom access. Keeping block size and disk and main
memory access times the same as bd()re in this equa
tion, a faster Alpha CPU wou ld yield better ratios in
this test because it wou ld finish computation propor
tionately taster and would wait longer t()r the read
ahead I/0 to finish . Follow-on tests with faster CPUs
supported this observation . Overlapping computation
and I/0 as in a table scan operation may not be possi
ble in an index lookup operation. The sequence of
operations tor accessing a row of data using a B -tree
i ndex, in the best case, involves an I/0 to read the
index block match ing the kev value first fol lowed bv
another 1/0 to read the data

,
block; a sec�nd 1/0 cat{

not be launched until the first finishes because the
address of the data block to be read can only be deter
mined by examining the contents of the index block
read in the previous operation. Un l ike table scans,
these I/Os arc nonseq uential . Latencies of the d isk
1/0 tor an i ndex lookup, as seen from the application
perspective, are consequently greater than latencies tor
a table scan . Minimizing or e l iminating ljOs in the
i ndex lookup, therefore, has the potential tor even
greater i ncreases in speed . I ndex lookups arc typical in
OLTP workloads.

The test using transaction type 2 i l lustrates a cumu
lative effect because performance benefits for a single
thread of execution extend to al l the threads when the
workload is paral lel ized .

Digital Tec h n ical)ou rn;ll Vol. 8 No. 4 1 996 8 1

82

U n l i ke fu l l table scans, the sort/merge operation
generates i n termediate resu l ts . Depending on the s ize
of these pa rtia l res u l ts, they may be stored i n main
memory i f an adeq uate a m o u nt of memory is ava i l

ab le; or they mav be written back to temporary storage
space in the d atabase . The latter operation res u l ts i n
add i tional 1 /0s, proport ionately more i n n u m be r as
i n p u ts to the sort/merge grow in s ize or cou n t . The
64-bit option makes it poss i b le to e l iminate these TjOs
as wel l , as i l l u strated in transaction types 4 through 6 .
Pcrtim11ance i mprovements a r e greater a s the com
plexity of queries increases .

Conclusion

The disparity between memory speeds and d isk speeds
is l ikely to conti n ue t()r the f(xcseeablc future . L1rgc
memory configurations represent an opportu nity to
overcome this d ispar ity .md to i ncrease appl ication
pert(mluJKe by cac h ing a large amount of data i n
memory. Fven though t h e Oracle 6 4 Bit Opt ion

im proves data base pertormance-two orders of mag
n itude i n some Glses-spec i fic appl ication characteris
tics must be eva l u ated to d eterm i ne the best means for
maxi miz ing overa l l pedormancc a n d to balance the
s ignificant i nc rease in hardware cost for the large
amou nt of memory. The Oracle 64 Bit Option com

p l eme nts ex isti ng Oracle7 featu res and functiona l i ty.
The exact extent of t h e i ncreases i n speed with the
64- bit option va ries based on the type of database
operation . F;:�stcr CPUs and d enser memory a l low
tiJr even more pcrt(mllancc improvements than have
been d e monstrated . Factors of i mportance to new
or e x isting app l icati ons , parti c u lar ly those sensi tive to
response time, arc an order of magnitude performance
in terms of speed i ncreases and the a bi l i ty to ut i l i ze
memory config urations much l arger than previously
poss ib l e i n Oracl c7 or f()r appl ications that us�:
moderate-si ze data sets. With s u fficient physical mem
ory, the dat.lbases used bv t hese response- time
sensitive appl ications can now be entirely cached in
m emory, c l i m i n ;1t ing vi rtua l ly a l l d isk I/0 , which is
oh:cn a lll<ljor constrai nt to response time. I n - memory
(or fu l l y cached) Oraclc7 databases do not compro
mise transaction<l l i ntegrity i n any way; nor do such
con figur;1 tions requ i re specia l h ardware (to r example ,
n onvolatile random access memory [RAM]) .

Beca use a 64- b i t A l phaServer a n d D I GITA L U N I X
operating system transparently extends existing 3 2 - bit
AP!s into a 64- bi t progra m m i n g model, app l ications
can rake advant;'lge of added addressab i l ity without
usi ng specia l i zed A P i s or m a king signi ficant code
changes . Pcrt(mll:t n ce l evels equal to or better than
prev ious ly possib le wi th specia l ized hardware and soft
ware can now be achieved with i nd ustry-standard ,
open , gene ra l -pu rpose platforms.

Digital Tcdmic;�l)ourn� l Vol . 8 No. 4 1 996

Acknowledgments

i'vL lnl' people \\' i th in se,·nal groups and d isc ip l i m:s <1t botl1
Oracle .md D I G ITAL h a\·e cont ri b u ted to the succc'' of this
pmjcct. I \\ Ou ld l ike ro tha n k the r(J I Io\\' ing: i n d i ,· id u .Jis li·om
Orac l e : vV,l l tc r B ,ntistc l la , Saar Maoz, l e t' Ke n nnh· and
D,l\ id l r \\' i n of the D IGITAL Svsrem n u ,i ncss L n i r ;
a nd h·om D I G ITAL: J i m Woodward , P a u L l Lon g ,]),lrrc\ 1
D u n n uck, a n d Da\'l: Winchel l of the D!C l'I':\ L C :--.: I X
t-:ngi n e cr i ng gro u p . M e m bers o f the Compu rn s\'StCillS

Divis ion's Performa nce G roup ar DIG ITAL have a lso con

tri b u ted ro this project.

References

I . Omclc 7 Scrt •cr Documentatiou Set (Redwood S h tncs,

C:� l i f. : Oracle Corpor:�tion) .

2 . t>t(,'f'liU l .\ /X \ ·4 .0 Release Notes (M avn :trd , M ass . :
Digital Equipment Corporation, 1 99 6) .

3 . R . S ites :�nd R. Wi tek , eels . , A lpba A rchi!cc/11re Hefcr
ence ,\'hunwl (':'-Je,, ron, Mass . : Digiul l'rcss, 1 99S) .

4. Orocle 6 4 Bil Option Peifomtmtce Hcport ou f)(r;i!al
I '.\'IX (Rcd\\'ood Shores, C:� l i f : Or,lc lc C:orpor:�tion ,
parr n u m be r C 10430, 1 996)

S .] . Pi a n tcdos i , 1\ . S;lth ;we , and D . S h a kshobcr, " Pn r(Jr
mance McclSU J'elllctH of Tru C:Iustcr Svsrems u n d er rile
'l'PC-C: lknchm;l rk," and T. Kawar; D. S l u kshobcr, and
D . Sta n l ey, " Perform;HKe An:tlvsis Usi ng Vcrv Luge
M c nJOry on the 64 - bir AlphaSen·er Syste m , " f)ip,i!al

'f(>ch n ical jnu mul. vol . 8, n o . 3 (1 996): 46-6S .

Biography

Vipin V. Gokhale
Vi pin (;okh;l\c is ;1 Consu lti ng Sofnv<l t"L Engineer ar Ck1clc
C :orpor,nion i n rhc DICIT.-\L Svsrcrn Busi ness U n i t ,,·here
he· iLlS con rri b u n:d ro port i ng, opti mization , ,md pbrr(mn
spcc i fic rc:�tu rcs ;lnd h t ncrion a l i tv nrensions ro O rJc l c ' s
d .1rahasc· sen er on D I G I T.\L's opcr;lt i ng S\·srems an d scr
,·crs. H e \\'aS responsible t(Jr de l i , -cri ng the first O ra c l e 7
port ro the DJC ITAI . UNI X pl atform. Prior to joi n i n g
Orc1ele i n 1 990, Vi p i n ,,.,1s ,1 Senior Soft\\'Jre Engi neer
in l ndi<l, dc,·cloping telecommunications sotl\\ arc . Hc
recci,·cd a B .Tcch . in Electronics and Tclecomnutnicl
rions ti·om rhc I nsrirurc ofTechnologv, BJtnras Hindu
U n i ,·crsi ry, l n &1, in 1 9 8 5 .

VLM Capabil ities of
the Sybase System 1 1

SQL Server

Software appl ications must be en hanced to

take advantage of very large memory (VLM)

system capabil ities. The System 1 1 SQL Server

from Sybase, Inc. has expanded the semantics

of database ta bles for better use of memory

on DIG ITAL 64- bit Alpha microprocessor-based

systems. Database memory management for

the Sybase System 1 1 SQL Server incl udes the

abil ity to partition the physical memory avai l

able to database buffers i nto m u ltiple caches

and subdivide the named caches i nto m u ltiple

buffer pools for various 1/0 sizes. The database

ma nagement system can bind a database or

one table i n a database to any cache. A new

faci l ity on the SQL Server engine provides

noni ntrusive checkpoi nts i n a VLM system.

I
T.K. Rengarajan
Maxwell Berenson
Ganesan Gopal
Bruce McCready
Sapan Panigrahi
Srikant Subrarnaniarn
Marc B. Sugiyanu

The advent of the System l l SQL Server trom Sybase,
Inc . coincided with the widespread avai labi l i ty and
use of very large memory (VLM) technology on
DTGITAL's Alpha microprocessor-based computer
systems. Technological features of the System l l SQL
Server were used to achieve record results of 1 4 , 1 76
transactions-per-m inute C (tpmC) at $ 198/tpmC
on the DIGITAL AJphaServer 8400 server prod uct . '
One of these features, the Logical Memory Manager,
provides the abi l ity to tine-tune memory manage
ment. It is the fi rst step in exploiting the semantics of
database tables ror better usc of memory in VLM sys
tems. To partition memory, a database administrator
(DBA) creates mu ltiple named bufkr caches. The
DBA then subd ivides each named cache in to multiple
buffer pools for various 1/0 sizes. The DBA can bind a
datab<1Se or one table i n a dat<1base to anv cache.
A new thread in the SQL Server engine, cal led the
Housekeeper, uses idle cycles to provide free (non
i ntrusive) checkpoints in a large memory system.

I n th is paper, we briet1y discuss VLM technology.
Then we describe the capabil ities of the Sybasc System
l l SQL Server that address the issues of fast access,
checkpoint, and recovery ofVLM systems, namely, the
Logical Memory Manager, a VLM query optimizer,
the Housekeeper, and fuzzy checkpoint .

VLM Technology

The term very l arge memory is subjective, and i ts
widespread meaning changes with time . By VLM, we
mean systems with more than 4 gigabytes (GB) of
memory. In late 1 996, personal computer servers with
4 GB of memory appeared in the marketplace. At $ 1 0
per megabyte (M B) , 4 G B of memory becomes afford
able ($40,000) at the departmental l evel for corpora
tions. \Ve expect that most of the m id -range and
high-end systems wi l l be bui lt with more memory i n
1 997. Growth in the amount of system memory is an
ongoing trend . Growth beyond 4 GB, however, is a
signi ficant expansion; 32-bit systems run out of mem
ory alter 4 GB.

DIG ITAL developed 64-bit computing with i ts
Alpha l ine of microprocessors. Digital is now

Digital Tec h n ical Journal Vol . 8 No. 4 ! 996 83

\\T i l - positioned to faci l i tate the transi tion ti-om 32 -bit
to 64- bit S\'Stcms. Sybase, Inc. provided one of the first
relational database management svstcms to usc V LM
technology. The Svbase System l l SQL Server pro
,·idcs fu l l , native support of64 - bit Alpha microproces
sors and the 64- bit DIG ITAL U N I X operating system .
DIGITAL U N I X i s the first operating system to provide
a 64- bi t address space for a l l processes. The System 1 1
SQL Server uses this large address space primarily to
c:tchc large portions of the database in memory.

VLM tech nology is appropriate t(x usc with applica
tions that have stringent response time requ i rements.
With these appl ications, tor example, cal l - rout ing, i t
becomes necessarv to fit the entire database in mcm
orv.' ' The usc of VLM svstcms can a lso be benefic ia l
when the priccjperform::mce is i m proved by adding
more memory.'

l\lla in Memory Database Systems

The widespread ava i l ab i l ity of VLM systems raises
the possibi l i ty of bu i ld ing main memory database
(M M D B) systems. Severa l techniques to improve the
pcd(xmance of MMDB systems have been d iscussed
in the database l iterature. R.ckrcncc 5 provides an
excel lent, deta i led su n•qr. \Vc provide a brief d iscus
sion in this section .

Lock contention is low in MMDB svstcms since the
datcl resides in memorv. Hence, the granu lar ity ofcon
cu tTcncv control can be increased to mini mize the
overhead of lock operations. The lock manager data
structures can be combined with the database objects
to reduce memor y usage. Specia l ized, stable memory
hardware c:m be used to min imize latency of logging.
Early release of transaction locks and group com mit
d u ring commit processing c:m be used to increase
concurrency and tbroughput. S i nce random access is
bst in MM DBs, access methods can be developed with
no key ,·a l ucs in the index but on ly pointers to data
rows i n mcmory.6 Querv optimizcrs need to consider
CPU costs, not 1/0 costs, when comparing various
a l tcmativc plans tor a querv. In an i'vi M D B , check
pointing and tai l ur e recovery arc the only reasons for
pcrt(m11 ing d isk operations. A c heckpoint process can
be made " h.1 z.zy" with l ow i m pact on transaction
through put. A fter a system fai lure , incremental recov
ery processing a l lows transaction processing to resume
bd(H-c the recovery is complctc.7

As memory sizes increase with V LM systems, data
base sizes arc also i ncreasing. I n genera l , w e expect
that databases w i l l not fit in mcmor v in the next
decade . Therefore, tor most of the databases, M ivi D B
tech niq ues can be exploited onlv for those p<l rts of thc
database that do fit i n memorv.'

In :.1dd ition to the capabi l ity o f' cach ing the entire
cbtabasc in buffers, the Sybase System l l SQL Server

Dig:ital Tec hnical)ourn,ll Vol . 1l No. 4 1 996

provides tech no logical ad\·ances that take advantage of
VLM systems. These arc the Logical Memory
Manager, VLM query optimization, the Housekeeper
thread , and fu zzy c heckpoints . We d iscuss the signifi
cance o f these adv,mccs in the remaining sections of
this paper.

Logical M emory Manager

The Sybase SQL Server consists of several D I G ITAL
UNIX processes, cal led engines. The DBA con figures
the number of engines. As shown in Figure l , each
engine is permanently ded icated to one CPU ofa sym
metric m u ltiprocessing (SMP) machine . The Sybasc
engines share virtual memory, which has been sized to
inc lude the SQL Server executable . The virtual mem
ory is locked to p hysic:.1l memorv. As :.1 res u l t, there is
never any operati ng system paging f(.>r the S�'bJSC
memory. This shared memory region also uses large
operating system pages to min imize translation look
aside buffer (TLB) entries t(x the CPU.- ' The shared
memory holds the database buffers, stored procedure
cache, sort bu ftcrs, and other dynamic memory. This
memory is managed excl usivel y by the SQL Server.
One SQL Server usu;� l ly processes transactions on
mu ltiple databases . EKh database has i ts own log.
Transactions can span databases using two-phase com
mit. For fu rther details on the SQL Server arch i tec
ture, p l ease sec rc lcrcncc 9.

The Logica l Mcmorv Nlanager (LM M) provides the
abi l ity tor a D BA to partition the physical memory
avai lable to database bufkrs. The D B A can partition
the mcmorv used f(Jr the database buffers into multi
p le caches. The D B A needs to specifY a size and a name
t(x each cache . A fter a l l named caches have been
defined, the system ddincs the remaining memory as
the defa u l t cache . Once the DBA partitions the mem
ory, i t can then bind database enti ties to a particu lar
cache . The datab:.1sc enti ty is one of the fol lowing: an

CPU CPU

MEMORY

Fig u re 1
SQL Scn·cr on an SMP s,·src m

entire database, one table in a database, or one i ndex
on one table i n a database. There is no l imit to the
number of such entities that can be bound to a cache .
This cache binding d irects the SQL Server to use only
that cache tor the pages that belong to the entity.
Thus, the DRA can bind a small database to one cache.
In a VLM system, i f the cache were sized to be larger
than the database, an MMDB would result .

Figure 2 shows the table b ind ings to named caches
with the LMM. The procedure cache is used only
for keeping compiled stored procedures in memory
and is shown tor completeness. The item cache is a
smal l cache of l GB in s ize and is used for storing
a smal l read-only table (item) i n memory. The default
cache holds the remaining tables. Figure 2 shows one
table bound to the item cache and the other tables
bound to the ddault cache. By being able to partition
the use of memory for the item table separately, the
SQL Server is now able to take advantage of MMDB
techniques tor on ly the i tem cache.

Each named cache can be l arger than 4 GB. The size
is l imited only by the amount of memory present in
the system. Although we do not expect such a need ,
it is also possible to have hundreds of n amed caches;
64- bit pointers are used throughout the SQL Server
to address large memory spaces.

The LMM enables the DBA to fine-tune the use of
memory. The LMM also a l lows for the introduction
ofspecitlc MMDB algorithms in the SQL Server based
on the semantics of database entities and the size of
named caches. For example, in the future, it becomes
possible for a DBA to express the tact that most of one
table tits in one named cache in memory, so that SQL
Server can use clock butfer replacement.

VLM Query Optimization

The SQL Server query optimizer computes the cost
of query plans in terms of CPU as well as I/0 . Both

PROCEDURE CACHE, 0.5 GB

m ITEM CACHE, 1 GB

m • I DECAULT CACHC,
45 GB

Figure 2
Table Bindings to Named Caches with Logical
Memory Manager

costs are reduced to an estimate of time. Since the
number of I/0 operations depends on the amount of
memory avai lable, the optimizer uses the size of the
cache in the cost calculations. With LMM, the opti
mizer uses the size of the named cache to which a cer
tain table is bound. Therefore, in the case of a database
that completely tits in memory in a VLM system, the
optimizer choices are made purely on the basis of CPU
cost. I n particular, the I/0 cost is zero, when a table
or an i ndex fits i n a named cache.

The Sybase System 1 1 SQL Server i ntroduced the
notion of the fetch-and-d iscard buffer replacement
policy. This strategy indicates that a buffer read from
d isk wil l not be used in the near fi1ture and hence is
a good candidate to be replaced fi·om the cache. The
buffer management algorithms leave this buffer close
to the l east-recently-used end of the buffer chai n . In
the simplest example, a sequential scan of a table uses
this strategy. With VLM, this strategy is turned off
i f the table can be completely cached in memory. The
fetch-and-discard strategy can also be tuned by appl i
cation developers and DBAs if necessary.

Housekeeper

One of the motivations for developing VLM was the
extremely quick response time requirements for trans
actions. These environments also requ ire h igh avai l
abi l ity of systems. A key component in achieving high
avai labi l ity is the recovery t ime. Database systems
write d irty pages to d isk primarily for page replace
ment. The checkpoint procedure writes dirty pages to
disk to minimize recovery time.

The Sybase System 1 1 SQL Server introduces a new
thread cal led the Housekeeper that runs only at idle
time tor the system and does useful work. This thread
is the basis for lazy processing i n the SQL Server for
now and the future . I n System 1 1 , the Housekeeper
writes d irty pages to disk. At first, i t writes pages to
disk from the least-recently-used buffer. In this sense,
i t helps page replacement. In add ition to ensuring that
there are enough clean buffers, the Housekeeper also
attempts to minimi ze both the checkpoint time and
the recovery time. If the system becomes idle at any
time during transaction processing, even for a few mi l
liseconds, the Housekeeper keeps the d isks (as many as
possible) busy by writing d i rty pages to disk. I t also
makes sure that none of the d isks is overloaded, thus
preventing an undue delay i f transaction processing
resumes. In the best case, the Housekeeper automati
cal ly generates a free checkpoint tor the system,
thereby reducing the performance impact of the
checkpoint during transaction processing. In steady
state, the Housekeeper continuously writes d i rty pages
to d isk, whi le minimizing the number of extra writes
incurred by premature writes to disk . 10

Digital ·rcchnical journal Vol . 8 No. 4 1 996 85

86

Checkpoint and Recovery

As the size of memory increases, the h:>l lowing two
bctors increase as wel l : (1) the number of wri tes to
disk d u ri ng the checkpo int �md (2) the n u m ber of
disk !jOs to be done d u ri ng recovery. The Sybasc
System 1 1 SQL Server al lows the DBA to tu ne the
amou nt of buffers that wil l be kept clean al l the t ime.
This is cal l ed the wash region. In essence, the wash
region represents the amount of memory that is always
clean (or strictly, in the process of being written to
d isk) . For example, if the total amount of memory tcJr
databJse bu tlers is 6 GB and the wash region is 2 G B ,
rhen at a n y t ime, o n l y 4 GB o f memor y can b e i n a n
updated StJte (d irty) . The abi l i ty to tunc t h e wash
region reduces the load on the checkpoint procedu re ,
as we l l :� s recovery.

The Sybase System 1 1 SQL Server has i m plemented
a fuzzy c heckpoint thJt a l lows transactions to proceed
even d u ring a c heckpoint operation. Trans::�crions
are sra l l cd only when they try to upd:l tc a database
page that is being written to d isk by the c heckpoint.
Even in that case, t he sta l l lasts on l y tcJr the t ime
i t takes the disk write to complete . I n addit ion, in
tbe SQL Server, the checkpoint process can keep m u l
tiple disks busy b y issuing a large nu mber o f asynchro
nous writes one after another. During the time of
rhc checkpoint , the Housekeeper ofTen becomes
active due to extra idle time cre:ued by the c heckpoint .
The Housekeeper is selfpacing; i t docs nor swamp the
storage system with writes.

Commit Processing

The SQL Server uses the group commit a lgori thm to
improve throughput.8·" The group commit algor i thm
col lects the log records of mu l tip le trJnS<Ktions and
writes them to the d isk in one l/0. Th is a l lows h ightT
transaction throughput d u e to the amortization o f
d isk I/0 costs, as we l l a s committing more ;:md more
trJnsactions i n each d isk write to the Jog ti l e . The SQL
Server docs not use a timer, however, to improve the
grouping of transactions. I nstead , t he d u ration of the
previous log I/0 is used to col lect transactions to be
committed in the next batc h . The s ize ohhe batch is
determined by the n u m ber of transactions that reach
commit process ing d u ring one rota tion of the l og
d isk. This self- tu n ing algorithm adapts i tself to various
speeds of d isks. For the same transaction processing
system, the grouping occu rs more often with s lower
disks than with Elster d isks.

Consider, t()r example, a system pedcmning l ,000
transactions per second . Let us assume the log disk is
rated at 7,200 rpm. Each rotation of the d isk takes
� mi l l iseconds. With in this d u ration, we expect (on

Di�i rcd Technica l Journal Vol . 8 No. 4 1 996

the aver:1ge) 8 transactions to complete, assuming un i
f(Jrm arrival rates at commit point . This indicates a nat
ura l grouping of 8 transactions per log write . For the
same system, if the log d isk is rated at 3 ,600 rpm , the
same cal cu lation yie lds 16 transactions per log wri te .

The group commit a lgorithm used by t h e SQL
Server also takes ack1 11tagc of d isk arrays by in i tiating
mu l tip le asynchronous wri tes to d ifferent mem bers of
the d isk array. The SQL Server is a lso able to issue up
to 1 6 ki lobytes in one write to a single d isk. Together,
the group commit a lgori thm, large writes, and the
abi l i ty to d rive mu l ti ple d isks in a disk array c l imin ;He
the log bottleneck t(Jr high- throughput systems.

Future Work

'vVhen a V L M svstcm tji ls , the large nu mber of data
base b utlers in mcmorv that are d i rtv need to lx: . .
recovered . Therd(Jre, database recovery time grows
with the size of m emory in the V L M system, at least
tor a l l database systems that usc l og-based recovery.
In addit ion, s ince there arc a l arge n u m ber of dirty
buffers in memory, the pcrt(xmance impact of check
point on transactions also increases with memory size .
To min imize the recovery time, one may increase the
c heckpoint ti-eq uency. The checkpoints have a h igher
impact, however, ;md need to be done infrequentlv.
These conflicting req u i rements need to be addressed
for VLM systems.

When a database tits in mcmorv, the buffer rep lace
ment a lgori thm can be e l im inated . For e xample, t(Jr
a single table that tits in one named cache, this opti
mization can be done with the L M M . I n addit ion, i f
a table i s read-on ly, i t i s possib le to min imize t he syn
chronization necessary ro access the buffers in mem
ory. These opt imizations require syntax f()f the D BA
to speci �' properties (tcJr cx: unplc, read-only) of tables,
as wel l as properties of named caches (for exampl e ,

bufkr replacement a lgori thms) .
These two areas a s wel l a s other M lvl D B techniques

wi l l be explored by the SQL Server developers tc Jr
i ncorporation in ti.1turc releases.

Summary

The Sybasc System I 1 SQL Server supports V LM
systems bu i l t and sold by D I G ITAL. The SQL Server
can completely cache parts of a database in memory.
It can also cac he the enti re da tabase in memor y i f
the database size is smal ler t h a n the a m o u n t of mem
ory. Svstcm 1 1 has bci l irics that address issues of
fast access, checkpoinr, �md recovcrv ofVLM systems;
these L1c i l i ties arc the Logic::d M emory M anager, the
VLM q uery opti mizer, the Housekeeper, and fu zzv
checkpoi nt . The SQL Server prod uct ach ic1'Cd

S M P TPC performance of 1 4, 1 76 tpmC at
$ 1 98/tpmC on a D I G ITAL VLM system . The tech
nology developed i n System l l l ays the groundwork
for further im plementation of M M D B techn iques i n
the S Q L Server.

Acknowledgments

We gratefu l ly acknowledge the various members of
the SQL Server development team who contributed to
the VLM capabi l ities described in this paper.

References and Notes

I . t-:or more information about aud ited tpmC measure
ments, see the Transaction Process ing Performance
Counci l home page on the World Wide Web,
http:/ jW\VW.tpc.org.

2. S . -0 . H vasshovd, 0 . Torbjornsen , S . 13ratsberg, a nd
P. Hobger, "The ClustRa Telecom Database : H igh
Avai labi l i ty, H igh Throughput, and Rea l -Time
Response," Proceedings of tbe 21st limy Lar8e
Database Conference, Zurich, Switzerland, L 995 .

3. H . J agad ish, D . Lieuwen , R . Rastogi , A. Si lberschatz,
and S . Sudharsll Jn , "Da l i : A High Performance Ma in
Memory Storage Manager," Proceedings of the 20tb
\lerv LW�!Je Database Conference Conference,
Santiago, Chi le , 1 994 .

4. M . H eytens, S. Listgarten , M . -A. Neimat, and
K . Wi lk inson , "Sma l l base: A Main -Memory DlHviS
for H igh- Pertormance Applications" (1995) .

5 . H. Garcia- Molina and K . Salem , "Main Memory
Database Systems: An Overview," IFF/:.' Transactions
on Knowlec(!!,e and Du!Ct Engineering, vol . 4, no. 6

(1 99 2) : 509-5 1 6.

6. D . GJwlick and D . Kinkade, "Varieties of Concurrency
Control in Hv!SjVS Fast Path ," Database Fn,[iineer
in,[i Bulletin, vol . 8 , no. 2 (1 9 8 5) : 3-1 0 .

7. E . Levy and A. S i lbcrschatz, Incremental Recovety
in Aiain lvlemory Datai?ase Systems (Un iversity of
Texas at Austin , Technica l Report TR-92 -0 1 , January

1 99 2) .

8 . j . H ennessy and D. Patterson, Complller Architec
ture: A Quantitatiue Approach, Second Edition (S �m
han cisco: Morgan Kautinann Publ ishers, I nc . , 1 99 5) .

9 . S. Roy and M . Sugiy<lma, Sybase Performance
Tuning (Upper Saddle River, N . J . : Prentice H al l
Prokssional Techniul Reference, 1 996) .

1 0 . Svbase S)'stem I I SQL Ser l'er Dowmentation Set
(Emeryvi l le, Cal if. : Sybase, Inc . , 1 996) .

1 1 . P. Spiro, A. Joshi , and T Rengarajan , " Designing
an Optimized Tr<msacrion Commit Protocol ," D(!!,ital
Technical Journal, vol . 3, no. 1 (Wi nter 1 99 1) :

70-78.

Biograph ies

T.K. Rengarajan
T. K. Rengarajan has been bui ld ing h igh -performance
database systems tor the past 10 years . He now l eads the
Server Performance Engineering and Development (SPeeD)
Group i n SQL Server Engineering a t Sybase, Inc . H is most
recent focus has been System 1 1 scalabi l ity and se lftun ing
algorithms. Prior to jo in ing Sybase, he contributed to the
DEC Rdb system at DIG ITAL in the a reas of butTer man
agement, h igh avai labi l it-y, O LTI' pe rformance on Alpha
systems, and multimedia databases. He holds M .S. degrees
i n computer- aided design and computer science ti·om the
U niversity of Kentucky and the University of Wisconsin ,
respectively.

Ma..xwell Berenson
Max Berenson is a staff software engineer in the Server
Performance Engineering and Development Group i n SQL
Server Engineering at Sybase, I nc . Duri ng his tour years at
Sybase, Max has developed the Logical Memory J'vlanager
tor System 1 1 and has made many bufkr manager modifi
cations to i mprove Sl\>IP sca lability. Prior to joining Sybase,
Max worked at D I G ITAL, where he developed a rdational
database engine .

Ganesan Gopal
Ganesan Gopal is a senior member of the Server Pert(Jrm
ance Engineering and Deve lopment Croup at Sybase, Inc .
He was a member of the ream that implemented the H ouse
keeper i n System I I . In addition, ht: has worked on a num
ber of projects that have enhanced the perfornunce and
sc� l ing of the Sybase SQL Server. At present, he is working
on a pertorn1ance tCature tor an upcoming release. H t:
h olds bachelor degrees i n advanced ph)'Sics and in elec
tronics a nd comm unication engineering ti·om the I nd ian
I nstitute of Science, Bangalore, I nd i a .

Di�ital Technica l Journal Vol . 8 No. 4 1 996 87

8 8

Bruce McCready
Bruce McCt·cadv is an SQL Server pcrfixmance engineer
in rhe Scn·er Pertormance Engi tH:cri ng and Deve lopment
C3rou p ar Sybase, I nc . B ruce received a B.S . i n computer
science ti·om the University of (:a l i l (>rnia at 13crkcley i n 1 989.

Sapan Panigrahi
A senior performance e ngi neer, Sapan Pan igra h i works i n
t h e Servu Pcrtormance Engineeri n g :llld Development
G roup •H Sybase , I nc . H e \\';\� rL·sponsib l e for TPC bench
m,Hks a nd performance ana l vs is I(Jr the Sybase SQL Server.

Srikant Subramaniam
A member of the Sen·er Pcrlim11ancc 1-'nginecring and
Deve lopment Gro u p :lt Syb;Jsc , I nc . , S ri kant Subraman iam
was involved i n the design and imp l eme ntation of the VLM
support i n the Sybase SQL Server. He was a mem ber of
the ream that i mp lcmemed the Logical M emory Man <lgcr
in System l l . In add ition , he Ius worked on projects that
luvc en hanced th e performance and sca l i ng of the Sybase
SQL Server. At present, he is wo t·ki ng on performance
optimizations for an u pcomi ng release. He holds an M .S.
i n com [nt ter science fi·om the Un iversirv ofSaskatche\\ ;\n ,
Cuuda. H i s spec ia l t v ;Ire;\ was t h e performance of slun:d
memorv multiprocessor systems.

Marc B. Sugiyama
Marc S ug ivama is a staff software engineer in the SQL
Server Per formance Engi neering and DcvelopnH::nr Group
<lt Sybasc, I nc . H e W;JS the techn ical lead for rhe ori gi na l
port ofSyb:1se SQL Server to the D !Ci !T:\ L Alpha OSF/ 1
svsrcm . He is coau rhor of Svhuse Pelji;rmance Tu n inl�
publ ished by Prenrice Hall, 1 996.

Digital Tcchnie<ll)ournJI Vol . 8 No. 4 1 996

Measured Effects of
Adding Byte and Word
Instructions to the Alpha
Architecture

The performance of an a ppl ication can be

expressed as the product of three variables:

(1) the numbe r of instructions executed, (2) the

average numbe r of mach ine cycles req u i red to

execute a single i nstruction, and (3) the cycle

time of the mach ine. The recent decision to

add byte and word manipu lation instructions

to the DIG ITAL Alpha Arch itecture has an effect

u pon the fi rst of these variables. The perfor

mance of a commercial database running on

the Windows NT operati ng system has been

ana lyzed to determ ine the effect of the addition

of the n ew byte and word i nstructions. Static

and dynamic analysis of the new i nstructions'

effect on i nstruction counts, function calls, and

i nstruction distribution have been conducted.

Test measurements ind icate an i ncrease in per

formance of 5 percent and a decrease of 4 to

7 percent i n i n structions executed. The use of

prototype Alpha 21 1 64 microprocessor-based

hardware and i nstruction tracing tools showed

that these two measurements are due to the

use of the Alpha Arch itecture's new i nstructions

within the application.

I
David P. Hunter
Eric B. Betts

The Alpha Architecture and i ts i nit ia l implementations
were l imi ted in their abi l ity to manipu l ate data valu es
at the byte and word granu larity. Instead of a l lowi ng
single i nstructions to manipulate byte and word val
ues, the origina l Al pha Architecture requi red as many
as sixteen i nstructions. Recen tly, D IGITAL extended
the Alpha Architecture to manipulate byte and word
data values with a single instruction . The second gen
eration o f the Alpha 2 1 1 64 microprocessor, operating
at 400 megahertz (M Hz) or greater, is the first imple
mentation to i nclude the n ew i nstructions.

This paper presents the results of an a nalysis of
the effects that the new i nstructions in the Alpha
Architecture have on the performance, code size, and
dynamic i nstruction d istri bution of a consistent execu
tion path through a com mercial database . To exercise
the database, we mod i fied the Transaction Processing
Performance Counci l 's (TPC) obsolete TPC-B bench
mark. Al though it is no longer a valid TPC bench
mark, the TPC-B benchmark, along with other TPC
benchmarks, has been widely used to study database
performance. '-5

We began our project by rebui ld ing M icrosoft
Corporation's SQL Server product to use the new
Alpha i nstructions. vVe proceeded to conduct a static
code analysis of the result ing images and dynamic l ink
l i braries (D LLs) . The focus of the study was to i nvesti
gate the i m pact that the new instructions had upon a
large application and not their i mpact u pon the oper
ating system. To this e n d , w e did n ot rebui ld the
Windows NT operating system to use the new byte
and word instructions.

We measured the dynamic effects by gathering
i nstruction and fu nction traces with several profil ing
and image analysis tools. The resu l ts ind icate that
the Microsoft SQL Server product benefi ts from the
additional byte and word i nstructions to the Alpha
m icroprocessor. Our measurements of the i mages and
DLLs show a decrease i n code size, rangi ng ti-om neg
l igible to a lmost 9 percen t . For the cached TPC-B
transactions, the n umber of i nstructions executed
per transactio n decreased ti-om 1 1 1 ,288 to 1 06,52 1
(a 4 percent reduction) . For the scaled TPC-B trans
actions, the n u m ber of i nstructions executed per

Digital Technical Journal Vol . 8 No. 4 1 996 89

90

tr:�ns:�ction dccrc:�sed from 1 1 5 ,895 to 1 0 7, 8 54
(a 7 percent red uctio n) .

T h e rest o f this paper i s d ivided as tal l ows: w c begin
with a brief ovcn·icw oft he Al pha Architecture and its
introd uction of the new byte and word mJnipu lation
instructions. Next, we describe the hardware, soft\\'�lrc,
and tools used in our experiments. Lastly, we prcl\'ide
:tn an:� lysis of the instruction distribution and count.

Alpha Architecture

The Alph a Architectu re is a 64- bit, load and store,
red uced i nstruction set computer (RISC) architecture
that was d esigned with high pertormancc and longev
ity in m i n d . I rs major areas of concen tration arc
the processor clock spee d , the multiple i nstruction
issue , and m u l tip le processor i mplement a tions. for a
det:t i l cd acco u n t of the Alpha Architectu re , its major
design choices, and overal l benefits, sec the p:tpcr
by R. Sites .'' The origi n:�! Jrchitecture d id not dctinc
the c1pabi l i ty to manipu late byte - and word -Jc\ ·cl
data with a single i nstructio n . As a resu lt , the tirst
th ree implcmcnt:ttions of the Al pha Arch i tectmc, the
2 1 064, the 2 1 064A, and thc 2 1 1 64 m icroprocessors,
were torccd to usc as many as sixteen additional
i nstructions ro accomplish th is tas k . The Al pha
Archi tectu re w:ts recently extended to inc lude six new
instructions t(Jr manipul ating data at byte :tnd word
boundaries. The second implementa tion of the 2 1 1 64
b m i l y of microprocessors i nc l udes these extensions.

The t! rsr i m plementation of the Alpha Arc h i
tecture, the 2 1 064 m i croprocessor, was i ntro
d uced in Nove mber 1 99 2 . It was ta.bric:tted in a
0 . 7 5 - m icromctcr (f.Lm) complementary metal-oxide
semicond uctor (CMOS) process and operated at
speed s up to 2 0 0 M H z. I t had both an 8 - ki l obvtc
(KB) , d i rect- mapped , write -through, 32 - bytc l i n e
i nstruction cache (I -c:tche) and data cache (D-cachc) .

The 2 1 064 microprocessor was able to issue two
i nstructions per c lock cyc l e to a 7 -stage intege r
pipel i n e or a 10-stage tl oati ng-point pipcl ine.c The
second i m p lcment ation of the 2 1 064 generation w:�s
the Alph:t 2 1 064A microprocessor, i nt rodu ced i n
October 1 99 3 . I t was manufa.ctu red i n a 0 . 5 - f,Lm
CMOS process and operated at speeds of 2 3 3 M Hz to
275 M H z . This i m p l ementation i n creased the s ize o t'
the l - c;tchc and D-cachc to 1 6 KB . Various other d i f
fCrcnccs exist bcn.vcen t h e two i mplem entations a nd
arc outlined i n the product data sheet."

The A lpha 2 1 1 64 micro processor was the second
generation i m plemen tation of the Alpha Arch i tecture
and wJs i ntrod uced i n October 1 994. It was m a n u
factu red i n J 0 . 5 - f,Lm CNIOS technology and h a s the
abi l ity t o issue fou r i nstructions p e r c l o c k cycle. I t
contains a 64-c ntry data translation b u ffer (DT B) and
a 48-cnrrv i nstruction translation b u fter (ITB) com
pared ro the 2 1 064A microprocessor's 32- enrrv DTB

Digital Tcchn ic1\ joum;l\ Vol . � :'\o. 4 1 996

and 1 2 -c ntt·y ITB . The chip contains three on -ch i p
caches. T h e level o n e (L l) caches inc lude :1.11 8 - KB ,
di rcct-mJppcd I - cJchc and :�n 8 - KB , d u �1 l - portcd ,
d i rect-ma pped , write- through D-cJch c . A third
on-ch ip uchc is J 96-KB, thrce- w:�v set-associative,
write hJCk mixed instruction and d:�ra cache . The
tloating-point pipel ine was red uced to nine stJ�cs, and
the CPU has t\\'O integer u nits and rwo t)oJti ng-point
c:-.:ccution u n its.9

The Exclusion of Byte and Word I nstructions

The origin:d A lpha Architecture i ntended that opera
tions involved i n loading or stori ng al igned bytes and
words wou ld involve sequences as given in Ta b l es 1
:�nd 2 . '" As nuny as 1 6 addit ional i nstructions arc
req u i re d to accomp l ish these operations on u na l igned
tbta. These same operations i n the M I PS Architecture
i m·oh-c only J single i nstruction: LB, LvV, S B , :t nd
SW. " The M I PS Arch i tecture a lso inc ludes si ngle
instructions to do the same tor u n a l igned d :�ta . Gi\Tn
�� situation i n \\'hich al l other bctors arc consistent, this
\\'ould appc:1r to give the M I PS Arch i tectu re an ach·an
tagc in i ts abi l i rv to reduce the n u mber of i nstru ctions
execute d per workload .

Sites has presented several kev Alpha Architecture
d esign decisions." Among them is the decision 11ot ro

i n c l u d e byte l oad a n d store i nstructions. Key d esign
assu mptions related to the exclusion of thcsc katurcs
inc lude the tol l owing:

• The majority of operations woul d i nvolve natura l ly
a l igned data c lements .

Ta ble 1
Load i n g A l i g ned Bytes a nd Words on A l p h a

LDL

EXT B L

Load a n d S i g n Extend a Byte

R 1 , D . l w(Rx)

R 1 , # D . mod, R 1

Load and Zero Extend a Byte

LDL R 1 , D . lw(Rx)

SLL R 1 , #56-8 * D . mod, R1

SRA R 1 , #56, R 1

Load a n d S i g n Extend a Word

LDL R 1 , D . lw(Rx)

EXTWL R 1 , # D . mod, R 1

Load and Zero Extend a Word

LDL R1 , D . lw(Rx)

SLL R 1 , #48-8 * D . mod, R1

SRA R 1 , #48, R1

Table 2
Storing A l i g ned Bytes a n d Words on Alpha

Store a Byte

LDL R 1 , D. lw(Rx)

I N S B L RS,#D.mod, R 3

M S K B L R 1 , #D.mod, R 1

B I S R 3 , R 1 , R 1

STL R 1 , D . 1 w(Rx)

Store a Word

LDL R 1 , D . lw(Rx)

I N SWL RS,#D.mod, R3

M S KWL R 1 , # D . mod, R1

BIS R3, R 1 , R 1

STL R 1 , D . 1 w(Rx)

• I n the best possible scheme tor multiple instruction
issue, single byte and write instructions to memory
are not al lowed .

• The addition of byte and write i nstructions would
require an additional byte sh ifter in the load and
store path.

These factors i nd icated that the exclusion of specific
instructions to manipu late bytes and words would be
advantageous to the performance of the Alpha
Architecture.

The decision not to include byte and word manipu
lation i nstructions is not without precedents. The
original M I PS Architecture developed at Stanford
University did not have byte i nstructions. 1 ' Hennessy
et a l . have discussed a series of hardware and software
trade-otis for pcrfcxmance with respect to the M I PS
processor. 13 Among those trade-ofts are reasons tor
not including the abi l ity to do byte addressing opera
tions. Hennessy et a l . argue that the additional cost
of inc luding the mechan isms to do byte addressing
was not justified. Their studies s howed that word ref.
erences occur more freq uently in appl ications than do
byte references. Hennessy et al . conc lude that to make
a word-addressed machine feasible, special i nstruc
tions are requ i red for inserting and extracting bytes.
These i nstructions arc available in both the M IPS and
the Alpha Architectures.

Reversing the Byte and Word Instructions Decision

During the development of the Alpha Architecture,
DIGITAL supported two operating systems, Open VMS
and U LTRJX. The developers had as a goal the abi lity
to maintain both customer bases and to facil itate their
transitions to the new Alpha microprocessor-based
machines. In 1 99 1 , Microsoft and DIGITAL began
work on porting M icrosoft's new operating system,

Windows NT, to the Alpha platform. The Windows
NT operating system had strong l inks to the Intel x86
and the M I PS Architectures, both of which included
instructions tor single byte and word manipulation . 14
This strong connection i nfluenced the M icrosoft devel
opers and i ndependent software vendors (ISVs) to
favor those architectures over the Alpha design .

Another factor contributed to this issue: the major
ity of code being run on the new operating system
came from the M icrosoft Windows and MS-DOS envi
ronments. In design ing software appl ications tor these
two environments, the manipulation of data at the
byte and word boundary is preva lent . With the Alpha
microprocessor's inabi l ity to accomplish this manipu
lation in a single i nstruction, i t suffered an average of
3 : l and 4 : l i nstructions per workload on load and
store operations, respectively, compared to those
architectures with single instructions tor byte and
word manipulation.

To assist in runn ing the I SV applications under the
Windows NT operating system, a new technology was
needed that would al low 1 6-bit applications to run as
if they were on the older operating system. M icrosoft
developed the Virtual DOS Machine (VDM) environ
ment for the I ntel Architecture and the Windows
on-Windows (WOW) environment to al low 1 6-bit
Windows appl ications to work. For non- I ntel architec
tures, Insignia developed a VDM environment that
emulated an I n tel 80286 microprocessor-based com
puter. Upon examining th is emulator more closely,
DIGITAL found opportunities tor improving perfor
mance if the Alpha Architecture had single byte and
word instructions.

Based upon this information and other factors, a
corporate task force was commissioned in March 1 994
to investigate improving the general performance of
Windows NT running on Alpha machines. The further
D IGITAL studied the issues, the more convincing the
argument became to extend the Alpha Architecture to
i nclude single byte and word instructions.

This reversal in position on byte and word i nstruc
tions was also seen in the evolution of the MI PS
Architecture. In the original M I PS Architecture devel
oped at Stanford University, there were no load or
store byte i nstructions . 1 2 However, for the first com
mercially produced chip of the M I PS Architecture, the
MIPS R2000 RJSC processor, developers added
instructions for the loading and storing ofbytes . 1 1 One
reason tor this choice stemmed from the chal lenges
posed by the U N IX operating system. Many implicit
byte assumptions i nside the UNIX kernel caused per
formance p roblems. S ince the operating system being
implemented was UNIX, i t made sense to add the byte
instructions to the MIPS Architecture . 1'

In June 1 994, one of the coarchitecrs of tbe Alpha
Architecture, Richard Sites, submitted an Engineering

Digital Technical Journal Vol. 8 N o . 4 1 996 9 1

92

Change Order (ECO) tor the extension of the archi
tecture ro include byte and word i nstructions. I t was
specu lated at the time that an i ncrease of as much as
4 percent in ovnall performance would be ach ieved
using the new instructions. In June 1 99 5 , six new
instructions were added to the Alpha Architecture.
The new instructions are outl ined in Table 3 . The tirst
implementation to include support for the new
instructions was the second generation of the Alp h a
2 1 1 64 m icroprocessor series. Th is reimplementation
of the tirsr Alpha 2 1 1 64 design was manu factured
in a 0 . 35 -J-Lm CMOS process and was introd uced in
October 1 995 .

Testing Environment

We set up tests to measure the performance of eq uip
ment with and without the new i nstru ctions . To con
duct our experiments, we used prototype hardware
that incl uded the second -generation Alpha 2 1 1 64
microprocessor, and we devised a method to enable
and d isable the new instructions in h ardware . At the
same rime, we investigated the projected performance
of the software emulation mechanism to execute the
new instructions on older processors. Final ly, we bu i l t
two separate versions of the Microsoft SQL Server
application, one that used the new i nstr uctions and
one that did not. for the purposes of discussing the
different scenarios under study, we su mmarize the
three execution schemes in Table 4. We usc the associ
a ted nomenclature given there i n the rest o f this paper.
In the remainder of this section, we describe each of
the hardware, software, compiler, and analysis tools.

Prototype Hardware

As previously mentioned, our machine was capable
of operat ing with and without the new instructions.
By using the same machine, we were able to mini
mize eftccts that could be i ntroduced from variations
in machine designs or processor fa mi l i es that cou ld
cause an increase in the executed code path through
the operating system . All experiments were run

Table 3
New Byte and Word Manipulation Inst ructions

Mnemonic Opcode Function

stb OE Store byte from register
to memory

stw OD Store word from register
to memory

ldbu OA Load zero-extended byte
from memory to register

ldwu oc Load zero-extended word
from memory to register

sextb 1C.OOOO Sign extend byte

sextw 1 C.0001 Sign extend word

DiJ;it�l Tec hn ical Journ:1l Vol . 8 No. 4 1 996

Table 4
Three Methods for Execution of the New Instructions

Nomenclature

Original

Byte/Word

Emulation

Description

Compiled with instructions
that can execute on all Alpha
implementations

Compiled using the new
instructions that will execute
on second-generation 2 1 164
implementations at ful l speed

Compiled with new inst ructions
and emulated through software

on a prototype of the AlphaStation 500 work
station that was based upon the second-gen eration
2 1 1 64 microprocessor operating at 400 M H z . (The
AlphaStation 500 is a fami ly of high-pert(mmnn:,
m id - range graphics workstations .) The prototype was
configured with 1 28 megabytes (M B) of memorv and
a single, 4-gigabyte (GB) tast-wide-difkrential (r:wn)
sma ll computer systems i nterface (SCS I -2) disk.

New tirmwa re al lowed us to alternate between
d i rect hard ware execution and software emu l ation of
the new byte and word instructions. We modi fied the
Adva nced RISC Consortium (ARC) code to a l low us
to switch between the two firmware versi ons through
a simp l e power-cycle u til ity, cal led the tai l -sate loader. 1 ''

When the mach ine is powered on, it loads code ti·om
a seria l read -only memory (SROM) storage device.
This code then loads the ARC firmware tl-om non
volati l e flash ROM . The fai l -sak loader al lowed the
ARC firmware to be loaded i nto physical memory and
not into the flash ROM . The new firmware w:1s init ia l
ized by a reset of the processor and was executed as
i f it were loaded from th e Hash RO M. When the
machine was turned off and then back on, the version
oHi rmware that was stored in nonvolati le memory was
loaded and executed.

Operating System

We used a beta copy of the Microsoft Wi ndows NT
version 4.0 operating system . We chose this operating
system for irs capabi l ity to al low us to exam i ne the
i m pact of emu lating the new byte and word instruc
tions in the operating system .

By default , version 4.0 of the Windows NT opeLH
ing system disables the trap and emu lation ca p�1bi l ity
t()r the new instructions. This approach is simi lar to

the one VVindows NT provides for the Alpha micro
processor to handle unal igned data references. for
testing pu rposes, we enabled and d isabled the trap and
em ulation capabi l i ty of the new i nstructions. VV hen
this option is enabled, the operati ng S\'Stem treats each
new i nstruction l isted i n Table 3 as an i l legal instruc
tion and emu lates the instruction. The trap and emu
late strategy rakes approx imate!�' 5 to 7 microseconds

per emulated instruction . When it is d isabled or not
present, the action taken depends upon the hardware
support for the new instructions. If disabled in hard
ware, the instruction is treated as an i l legal instruction;
if enabled , it is executed l i ke any other i nstruction .

Microsoft SQL Server

To observe the effects of the new instructions, we
chose the Microsofi: SQL Server, a relational database
management system (tU)BMS) tor the Windows NT
operating system . M icrosoft SQ L Server was engi
neercd to be a scalable , m u ltiplatform, m u ltithreaded
RDBMS, supporting symmetric mu l tiprocessing
(SMP) systems. It was designed specitically tor d istrib
uted cl ient-server computing, data warehousing, <l l1d
database applications on the Internet.

In an earlier investigation, Sites and Perl present a
profile of the Microsofi: SQ L Server running the TPC-B
benchmark! They identif)r the executables and D LLs
that are involved in running the benchmark and break
down the percentage of t ime that each contributes to
the benchmark. Their resu lts, summarized i n Figure l ,
show that only a few SQL Server execu tables and
DLLs were heavily exercised during the benchmark.
After verif)ring these results with the SQL Server devel
opment group at Microsoft, we decided to rebui ld
only the images and DLLs identified in Figure l to use
the new byte and word instructions.

Table 5 l ists the executables and DLLs that we modi
fied and their correlation to the ones identified by Sites
<'llld Perl . The variations exist because of name changes
of DLLs or the use of a d ifferent network protocol . We
changed network protocols tor performance reasons.

w
X w -'
w X -' -' -' (fJ

a: w
-' 0 -' >-0 0 (fJ -' -'

w _j -' a:i 0 -' -'
z -' (fJ l{) (\J 1-' (fJ 0 0 > :::::; "' a: a: a: 0 >- (fJ -' >- -' _j ;> co (fJ 0 0 (fJ -' -' w � _j w -' a:
(fJ 0 en z z £l_ en 0 0 -' (fJ -' (fJ -' 0 0 :5: u._ UJ a: iii u._ _j f- z 0 a f- f- f- f- 0. UJ u 0. <{ a: � ;>

U) z z z z 0 � (fJ z I (.) a
1 00.00

f-
z
w
(.) "-..,
ffi 1 0.00
0. '\ ui
z i= :::l
0 1 .00
a:

�__.�� � � ��

(fJ
>-
())
0.: a:
(.) f-

Sites and Peri used an early version of the Microsoft
SQL Server version 6.0 , in which the fastest network
transport avai lable at that time was Named Pipes. In
the fi nal release of SQL Server version 6.0 and sub
sequent versions of the product, the Transmission
Control Protocol/Internet Protocol (TCP /IP)
replaced Named Pipes i n this category. Based upon
this, \ve rebui lt the l ibraries associated with TCP /lP
instead of those associated with Named Pipes. Other
networking l ibraries, such as those tor DECnet and
Internetwork Packet Exchange/Sequenced Packet
Exchange (IPX/SPX) , were not rebuilt.

Table 5
Images and DLLs Modified for the Microsoft SOL
Server

Sites V6.0 Function
DLLIEXE DLLIEXE

sqlserver.exe sqlservr.exe SQL Server Main
Executable

ntwdblib.dll ntwdblib.dll Network
Communications
Library

opends50.dll opends60.dll Open Data Services
Networking Library

dbnmpntw.dll N/A V4.2 1 A Client Side
Named Pipes Library

ssnmpntw.dll N/A V4.21A Named Pipes
Library

N/A dbmssocn.dll V6.5 Client Side
TCP/IP Library

N/A ssmsso60.dll V6.5 Netlibs TCP/IP
Library

-' -'
(fJ -' -' > -'

(fJ >- -' 0 U) a: 0
>- 0 � >- � -'
(fJ U) w 0 -' (fJ � C\i X U) (\J f- 0 >-

en U) X (fJ "' w z (fJ (fJ "' (fJ z C\i -' ()) " � 1-' £l_ 0 >- >- � >- >- £l_ £l_ Q U) "' w 1'- u z � EO ()) (fJ (.) (fJ � (.)
en a: u ;:;: (fJ 0 UJ z f- 1-' ci <{ a: z UJ en z

I (.) U) :::::; co UJ co u._ U) 0 0 U) U) 0. :5 <{ ()) :5: u 0 z z <{ � a: z U) :::l :::l

�__. >----< r---., f-
z
w 0. 1 0 0.
U)
w

.....__. � ,__ r-.... � � ,__ � i=
0.01

Figure 1
Images/DLL� Involved in a TPC- B Trc1nsacrion for Microsoft SQL Server Based on Sites and Peri's AIJ:�Iysis

Digital Tcdmical Journal VoL 8 No. 4 1 996 93

94

Compil ing Microsoft SQL Server to
Use the New Instructions

Our goal was to measure only the dkcrs inrrod uced
by using the new i nstructions ;md not dlccts inrro
d uced by different versions or generations of compi l
ers. Therefore, we needed to find a W3)' to use the same
version of a com piler that d i fkrcd only in irs usc or
non use of the new instructions. To do this, we used
a compi ler option avai lable on the Microsoft Visual
C + + compi ler. This switc h , avai lable on a l l !US C : pl:tt
forms that support Visual C + + , al lows the gener3tion
of optimized code for a speci fic processor within �l

processor family whi le maintaining bi n3ry compatibi l
itY with al l processors in t h e processor fa mi ly. Processor
optimizations are accompl ished by 3 combination of
spec ific cod e -pattern selection and code schedu l ing.
The defa u l t action of the compiler is to usc 3 blended
model, resu lting i n code tbat executes eq ua l ly we l l
across al l processors with in a pl atf(mn t:m1 i ly.

Using this compile r option, we built two versions
of the aforementioned i mages within the S Q L
Server appl icatjon, varying o n l y t h e i r usc of t he code
generation switc h . The first version, rdcrred to as the
Original bu i ld , was bui lt without specii),ing an argu
ment for the code-generation swi tch . The second one,
referred to as Byte/Word, set the switch to generate
code patterns using the new byte and word manipula
tion instructions. AJ I other req uired fi les came from the
SQL Server version 6 . 5 Beta II distri bution CD- ROM.

The Benchmark

The bench mark we chose was derived fi·om the TPC:- B
bench mark. As previously mentioned, the 'ITC-H
benchmark is now obsolete; however, it is sti l l usefu l
for stressing a database a n d its interaction with �l co m
purer system . The TPC. B benchmark is relatively
easy to set u p and scales read ily. I t h as been used by
both database vend ors and comp u ter m:1nufacru rers
to measure the performance of either the com puter
system or the actua l database. We did not include a l l
t h e req u i red metrics of the TPC- B benchmark; there
fore, it is not i n fu ll compliance with pub l ished guide
l i nes of the TPC. We refer to i t hcncdorth simply :�s
the application benchmark.

The appl ication benchmark is ch aracterized by sig
nifican t disk ljO activity, moderate system and appl ica
tion execution time, and transaction integrity. The
appl ication benchmark exercises and measures the effi
ciency of the processor, I/0 archi tectu re , and RD BMS.
The resu l ts measure performance by ind icating how
many sim.u l ated banking transactions can be com
pleted per second . This is defined as trans3ctions per
seco nd (tps) and is the total n u m ber of com mitted
transactions that were started and completed d ur i n g
the measurement i nterval .

Digi toll Technic� I j o u rn a l Vol . ll No. 4 1 996

The appl ication bench mark can be run in t\vo dif
krent mod es: cached 3nd sc: ded . The cached , or in
memory mode, is used to estimate rhe system 's
maxi mum perf(mna nce in this benc hmark envi ron
ment. This is :1ccomplished by bui lding 3 small database
that resides co mpletely in the database cache, which in
turn fits within the system's physical ra ndom -access
memory (RAt'vl) . Since the entire database resides in
memory, <1 1 1 ljO activity is el imi nated with the excep
tion of log writes. Consequentl y, the benchmark on ly
pcrf(mllS one disk l/0 f(>r each transaction, once the
cmire database is read off the d isk and into the database
cKhe. The resu l t is ;1 representation of the max imum
nu mber of tps th;lt rhc system is c1pable of sustain ing.

The sc::dcd mode is run using a bigger database with
a brgcr :�mount of disk 1/0 activity. The in crease in
d isk 1/0 is a result of the need to re:�d and write data to
locations that 3re nor within the data base cache. These
additional reads and writes add extra disk 1/0s. The
resu l t is normal ly charJCterizcd as having to do one
read and one write to the database :m d a single write to
the tr�nsaction log for each transaction. The combina
t ion of a larger data base and additional I/0 activity
dccrc�1scs the tps n l u c from the c3ched \ ·crsio n . Based
upon our previous experience running this benchmark,
the scaled bench mark can be ex pected to reach approx
i mate l y 80 percent of the cached pert(mllance.

For the scaled tests, we b u i l t a data base sized to
3ccom mod atc 5 0 tps. This was less than 80 percent
of the maximum tps prod u ced by the cached results .
'We chose this s ize because we were concentrating
on iso l3ting ;l single sca led transaction under 3 moder
ate lo;ld and not u nder the maxi m u m scaled perfor
mance possi ble .

Image Tracing and Analysis Tools

Col lecting onl y static me3SLII-cments of the executables
and DLL� afkctcd was insufficient to determine the
app l icabi l i ty of the new instructions. \,Ye col lected the
actual i nstruction traces of SQL Server w h i l e it exe
cuted the appl ication benc h mark. Furthermore, we
decided that the ;l bi l i ty to trace the actu a l instructions
bei ng executed was more desirable than developing or
extendin g a s imulator. To obtain the traces, we needed
;1 tool that wou ld al low us to

• Col lect both system- and user- mode code.

• Col lect fu nction traces, which wou ld a l low us to
a l ign the starti ng and stopping poi nts of d i fferent
bench mark runs.

• \.York without modifYing either the 3ppl icarion or
the operating syste m .

I n t h e p3St, the on l y tool t b 3 t wo u l d provide
instruction traces under the vVindows NT operating
system was the debugger running i n s ingle-step mode.

Obtaining traces through e ither the ntsd or the
windbg debugger is quite l imited due to the fol lowi ng
problems:

• The tracing rate is only about 500 i nstructions per
second . This is far too slow to trace anything other
than isolated pieces of cod e .

• T h e trace fails across system cal ls .

• The trace loops infin itely in critical section code.

• Register con tents arc not easily d isplayed for each
i nstruction .

• Real-rime ana lysis of i nstruction usage and cache
m isses are not possible.

Instruction traces can also be obtained using the
PatchWrks trace analysis tool . ' Although th is tool
operates with near real -t ime pertormance and can
trace i nstructions executing in kernel mode, i t has the
tollowi ng l imitations:

• It operates only on a DIGlTAL Alpha AXP personal
compu ter.

• It requires an extra 40 MB of memory.

• All images to be traced m ust be patched, thus
sl ightly distorting text addresses and function sizes.

• S uccessive runs of application code are not repeat
able due to unpred ictable kernel interrupt behavior
(the traces are too accurate) .

The solution was Ntstcp, a tool that can trace user
mode i nstruction execution of any i m age in the
Windows NT/ Alp h a environment through a n i n nov
ative combination of breakpointing and "Alpha-on
Alpha" emulation. It has the abi l i ty to trace a
program's execu tion at rates approach i n.g a mi l l ion
i nstructions per second. N tstep can trace i ndividual
i nstructions, loads, stores, fimction calls, I -cache a n d
D-cache misses, u nal igned d ata accesses, a n d anything
else that can be observed when given access to each
i nstruction as i t is being e xecuted . It prod uces sum
mary reports of the i nstruction d istri bu tion , cache l ine
usage, page usage (working set) , a nd cache simu lation
statistics for a variety of Alpha systems.

Ntstep acts l ike a debugger that can execute single
step instructions except that it execu tes instructions
using emu lation instead of si ngle-step breakpoints
whenever possible. I n practice, emulation accounts for
the majority of i nstructions executed with in N tstep.
S ince a single-step execu tion of a n i nstruction with
breakpoints rakes approximately 2 mil liseconds and
emulation of an Alpha i nstruction requires only 1 or 2
m icroseconds, Ntstep can trace approximately 1 ,000
times faster than a debugger. Unl ike most emulators,
the appl ication executes normally in i ts own address
space and environment.

Results

We collected data on three d ifferent experi ments . I n
the first i nvestigation , w e looked a t the relative perfor
mance of the three different versions of the M icrosoft
SQL Server outl ined in Table 4. We compared the
tbree variations usi ng rbe cached version of the app l i
cation benchmark.

In tbe second experiment, we observed how the
new i nstructions affect the i nstruction d istribution in
the static images and D LLs that we rebui l t . We com
pared the Byte/ Word versions to the Origi nal versions
of rhe i mages and D LLs. We a lso attempted to l ink the
d i fferences in i nstruction cou n ts to the use of the new
instructions.

Lastly, we i nvestigated the variation between the
Original and the Byte/Word versions with respect to
i nstruction d istribu tion on the scaled version of the
benchmark. This comparison was based upon the code
path executed by a s ingle transaction .

Cached Performance

I n the first experiments, we compared the relative per
tonnance i mpact of using the new i nstructions. We
chose to measure performance of only the cached ver
sion of the application bench mark because the l/0
su bsystem available on the prototype of the
AlphaSrarion 500 was not adequate for a fu ll -scaled
measurement. We e nsure d that the database was fu l ly
cached by using a ramp- u p period of 60 seconds and a
ramp-down period of 30 seconds. This was veri tied as
steady state by observing that the SQL Server buffer
cache h i t ratio remai ned at or above 95 percent. The
measu rement period tor the benchmark was 60 sec
onds. We ran the benchmark several t imes and took
the average tps for each of the three variations outl ined
in Table 4.

The resu l ts of the three schemes arc as follows: 444
tps tor the Origi nal version, 460 tps for the Byte/
Word version, and 1 1 6 rps for the Emu lation ver
sion . The new instructions contributed a 3 .5 percent
gai n in performance. The impact of emulating the
instructions is a loss of 73 .9 percent of the potential
performance.

Static Instruction Counts

To analyze the mixture of instructions i n the i mages
and DLLs, we disassem bled each image and D L L i n
t h e Original a n d Byte/Word versions. We then looked
at only t hose i nstructions that exhi bited a d ifference
between the two versions within the i mages or D LLs.
The variations i n i nstruction cou nts ofthese are shown
i n Table 6.

To examine the images more c losely, we d isassem
bled each image and D LL and collected counts of code

Digital Technical Journal Vol . 8 No. 4 1996 95

96

Table 6
Instruction Deltas (Normal M i n us Byte/Word) for the SQL Server Images and D L Ls

I nstruction dbmssocn.dll ntwdblib.dll opendsGO.dll sqlservr.exe ssmsso60.dll Instruction dbmssocn.dll ntwdblib.dll opendsGO.dll sqlservr.exe ssmssoGO.dll

Ida
ldah
ld l
ldq

ldq_l

ldq_u

stl

0
0

- 9

0

0

- 3
0

- 1 1

0
0

-2

-247 - 8524
- 2 7 1 8 - 1 8

- 597 - 1 3 1 33

-29 - 2980

-4 xor
0 s l l

-46 sra

0 sri

0
0

0

0
0

0
0
0

0

0

- 2
.f 2

- 1 5
0

- 1

1 1 9
-2359
- 3 534

- 295

0
0

- 4
0
0

-8

0 -9 0 cm pbge - 1 8
- 1 0 - 3 1 1 -8529 - 1 8 mskbl - 3

0

-- 1
5

0
0
0

0
0
0

0

0

0
0
0

- 1 96 - 3 647
- 5 - 1 1 - 278 - 7932 - 1 1 mskwl -41 - 1 604 0

stb + 3

+ 2
· 1
· 5
0

0
5
0
0

0
0
0

0

+ 2 1 6 + 3969 + 7 zap not - 5
0

0

0
0

0

0
0
0
0

- 1 1 5 - 2 1 35 -33
0

0

0
0

0

0
0
0

stw + 59 + 2798 + 3 addl 0
0
0
0

0
0

0

0

-8
stq
stq_c
beq

bge
bgt

b lbc
b ibs

bit

bne
br

bsr

0

0
0

0

0

0
0

0

0

0

0
0

0
0

0

0
0

-4
0

0

0
0
0

0
- 5

- 4 - 53
0 -9

+ 1 - 1 236

0 + 8

0 + 3

- 1 - 1 9
0 - 4

0 0
+ 1 +24
+ 1 - 1 1 20

0 - 6
+4 + 1 5

0 + 9

0 + 1 5

0 + 5
- 1 1 - 1

- 2 1 1 83-1 1 83

0 addq

0 s4addl
0 cmovge
0 cmovne
0 cmovlt

0 cmovlbc

0 cal lsys

0 extqh
0 ldwu

0 ldbu
0 mul l
0 subl
0 subq

0 insl l

0 inswl
0 cal l_pal
0 extlh

+4
+ 9

0

0
0
0

+ 3
0

0
0

0

- 1 4
+ 1 93
+464

0
+ 1

0
0

- 54

+ 3
-4
+ 1
+ 2
- 1
- 2

0

- 426
+ 6320

+ 1 0231

+ 1

+ 6

+ 3

1 - 1

- 2647

+ 1 6 1
- 1 4

- 4

+ 3 5
+ 1 8

0
0
0
0

ret

cmpeq

cmplt
cmple
cmpult

em pule

and -2 -6 - 3 64 -6435 -8 insbl

-2

+2
0

- 2

0
- 1 0

- 3
+ 1

0

- 1
0

- 6
0

+ 1
0

- 1 35
0

-3 67

- 3 1 63

- 3
0
0

- 6

0
- 1 4

b ic -3 - 1 1 - 287 - 7242 - 8 ext l l - 2 0
bis
ornot

-4 - 7 - 208 - 7097 -9 extbl - 1 0656
0 0 0 +4 0 extwl - 1 - 84 324 - 1

size, the n u mber o f fu nctions, the number :m d tvpc of
new byte and \\'Ord instructions, and bstl y, nop and
trapb i nstructions. The resu lts are prese nted in Tables
7 through 10 .

We expected that the instructions used to manipu late
bytes and words i n the origi nal A lpha Arc hitecture
(Tables l and 2) would decrc :�sc proportionally to the
usage of the new i nstructions. These assu m ptions held
true f()r a l l the images and DLLs that used the new
instructions. For e xam ple , in the original Alpha
Architecture, the i nstru ct ions MSKBL and MSKWL arc
used to store a byte •md \\'Ord , respective ly. In the
sqlservr.exc image, these rwo instructions showed a
decrease of 3,647 and l ,604 instructions, rcspccr ivc lv.

Compare this \\'ith the corresponding addition of3,969
STB and 2 ,798 STvV i nstructions in the same image .
Looki ng fl.trthcr imo the sqlservr.cxe i mage, w e also saw
that 10,2 3 1 LDBU instructions were used and the
usage of the EXTB L i nstruction was red uced bv 1 0 ,65 6.
Although these numbers do not correlate on '1 one- t(>r

onc basis, we bel ieve this is due ro other usage ofrhcsc
i nstructions. Other usage might i nclude the compi ler
scheme for in trod ucing the new i nstructions in pLKcs

where it used an LDL or Jn LDQ i n the Original image .

Vol. ll N " . 4 1 <;! 96

Of the reb ui lt images and DLLs, sq lservr. n c and
opcnds60 .d l l showed rhe most \'ariations, with the new
i nstructions maki ng up 3 .73 perccm .md 3.9 percent
of these ti les . The most frequcntlv occurring new
instruction W•1S ldbu, rol l owcd bv ldw u . The least
used i nstru ctions were sextb and scxrw. The s ize of
the i mJgcs was red u ce d in three out of rive i m ages .
The i m age size red uction ranged ti·om negl igible to
just over 4 perccm. ln a l l cases, rile s ize of the code
section \\':ts red uced and ranged fro m i ns igni ti.cJnt
to :1pproxi m:�tclv 8 . 5 percent . There ,,.,,s no c !J ,1 1lge i n
t h e n u mber oft -i111ctions in any o f the ti l es .

Dynamic Instruction Counts

We gathered datJ from the app l i cation benchmark
ru nn ing in both cached and scaled mod es. \Nc ran ar

least one ire ration of the bcncllmJrk test prior to ga th

ering rrace da ta to a l low both the vVi ndows NT oper
ating system and the Microsoh S Q I . Server database to
reac h •l steadv state of operation on the S\'Stcm u nder
tes t (Sl : f') . Steady sure was ac h ieved '' hen rhe SQL
Server cach e - h i t ratio reached 9 5 perce nt o r greater,

the n u m ber of transactions per second wJs consta nt ,

•md the C P U ur i l i zJtion was as c lose to 1 0 0 percent as
poss ible . The traces were gathered over a s u thcient

oc

Table 7
Byte/Word Images a n d D LLs

lmage/DLL Total

File

Bytes

sqlservr.exe 8053624

dbmssocn.dl l 1 3824

ntwdblib.dl l 3 1 8464

opends60.dll 2 1 2992

ssmsso60.dll 70760

Table 8

Total

Text

Bytes

298 1 1 48

5884

2463 1 6

1 04204

9884

Total

Code

Bytes

2884776

5520

231 688

97240

9 1 28

Orig i n a l B u i ld of I mages a n d D L Ls

lmage/DLL Total

File

Bytes

sql servr.exe 8337248

dbmssocn.d l l 1 3824

ntwdbl ib .d l l 3 1 8464

opends60.dll 222720

ssmsso60.dll 7 1 284

Table 9

Total

Text

Bytes

3264108

6012

246620

1 1 40 1 2

10300

Total

Code

Bytes

3 1 53480

5656

231 904

105536

9424

Number

of

Functions

3364

1 3

429

243

1 9

Number

of

Functions

3364

1 3

429

243

1 9

Total

Byte/

Word

26869

1 8

948

67

Total

Byte/

Word

0

0

% Byte/

Word

3 73

1 .3

0.02

3.9

2.94

LDBU

Count

10231

9

464

1 8

% Byte/ LDBU

Word Count

0

0

N u merica l D iffe rences of Orig i n a l M i nus Byte/Word I ma g es a n d D LLs

lmage/DLL Total

File

Bytes

lsqlservr.exe -283624

dbmssocn.dll 0

ntwdblib.dll 0

opends60.dll -9728

ssmsso60.dll -524

Table 1 0

Total

Text

Bytes

-282960

- 1 28

- 304

-9808

- 4 1 6

Total

Code

Bytes

- 268704

- 1 3 6

- 2 1 6

-8296

- 296

Number

of

Functions

0

0

0

0

0

Total

Byte/

Word

+26869

- 1 8

+9

+ 948

+67

% Byte/ LDBU

Word Count

+ 4

+ I
0

+ 4

+3

+ 1 0231

+9

+3

+464
+ 1 8

Percentage Va r iat ion o f Orig i n a l M i nus Byte/Word I m a g es a n d D LLs

lmage/DLL Total

File

Bytes

Total

Text

Bytes

sqlservr.exe -3.402% -8.669%

dbmssocn.dl l 0.000% - 2 . 1 29 %

ntwdblib.dl l 0.000% - 0 . 1 23%

opends60.dll -4.368% -8.603%

ssmsso60.dll -0.735% -4.039%

Total

Code

Bytes

- 8.52 1 %

- 2.405%

-0.093%

-·7.86 1 %

- 3 . 1 4 1 %

Number

of

Functions

0.000%

0.000%

0.000%

0.000%

0.000%

Total

Byte/

Word

N/A
N/A
N/A
N/A
N/A

% Byte/

Word

N/A
N/A
N/A
N/A
N/A

LDBU

Count

N/A
N/A
N/A
N/A
N/A

LDBU

%

38.077

50

33.333

48.945

26.866

LDBU

%

LDBU

%

-dB
+50

+33

+49
+27

LDBU

%

N/A
N/A
N/A
N/A
N/A

LDWU

Count

6320

193

35

LDWU

Count

0

0

LDWU

Count

+ 6320

1-4

0

+ 1 9 3

-d5

LDWU

Count

N/A
N/A
N/A
N/A
N/A

LDWU STB

% Count

23.52 1 5 3969

22.2222

1

20.3586 2 1 6

52.2388 7

LDWU

%

0

0

LDWU

%

+ 24

+22

0

+20

+52

LDWU

%

N/A
N/A
N/A
N/A
N/A

STB

Count

0

0

0

STB

Count

+3969

+ 3

+ 1
" 21 6

� 7

STB

Count

N/A
N/A
N/A
N/A
N/A

STB

%

1 4 . 7 7 1 7

1 6.6667

1 1 . 1 1 1 1

22.7848

10.4478

STB

%

0

0

0

STB

%

+ 1 5

+ 1 7

+ 1 1

+ 2 3

+10

STB

%

N/A
N/A
N/A
N/A
N/A

STW

Count

2798

59

5TW

Count

0

0

0

0

STW

Count

+2798

-2

�5
; 59

+ 3

STW

Count

N/A
N/A
N/A
N/A
N/A

STW SEXTB

% Count

10.4135 1 39

1 1 . 1 1 1 1 0

55.5556

6.22363

4.47761

STW

%

STW

%

+ 1 0

t- 1 1

+ 56

·t· 6

+ 4

SEXTB

Count

0

0

0

SEXTB

Count

+ 1 39

0

0

+9
-+4

STW SEXTB

Count %

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

SEXTB SEXTW

'% Count

0 . 5 1 7325 3412

0 0

0.949367

5.970 1 5

SEXTW Total

% NOPs

1 2.6986 5929

0 2 1

767

0.738397 391

0 25

SEXTB

%

SEXTW 5EXTW Total

NOPs

SEXTB

%

Count %

0

0

0

0

0

0

0

SEXTW SEXTW

Count %

+ 3 4 1 2

0

0

+7
0

+ 1 3

0

0

+ 1

0

6207

1 6

770

405

1 8

Total

NOPs

-278

+5

- 3

- 14

+ 7

Total

TRAPB

2 2 1 9

0

1 0

1 2 8

Total

TRAPB

2252

0

1 0

1 28

0

Total

TRAPB

-33

SEXTB SEXTW

Count

SEXTW Total Total

TRAPB %

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

% NOPs

N/A
N/A
N/A
N/A
N/A

-4.479% - 1 .465%

+ 3 1 .250% N/A
-0.390% 0.000%

-3.457% 0.000% + 38.889% N/A

98

period of time to ensure that we captured severa l
transactions. The traces were then edited into separate
i ndividual transactions. The geometric mean was
taken fi·om the resu lting traces and used tor a l l subsc ·
quent analysis.

We used Ntstcp to gather complete instruction and
function traces of both versions of the SQL Server data·
base whi le it executed the applic:�tion benchmark.
Figure 2 shows an example output t(Jr an instruction

trace, and Figu re 3 shows an example output f()r a
fu nction trace from Ntstcp . Since Ntstcp can attach to
a running process, we ;: d l owcd the appl ication bench·
mark ro achieve steady state prior to data col lection.
This approach ensured that we did not sec the cfkcts of
warming up either the machine caches or the SQL
Server database cache. Each instruction trace consisted
of approximately one m i l l ion instructions, which was
sufficient to cover mu l tip le transactions. The data was

0 * * B r e a k p o i n t (p i d 0 X d 1 , T i d O x b 2) S Q L S E R V R . E X E p c 7 7 f 3 9 b 3 4

0 * * T r a c e b e g i n s a t 2 4 2 6 9 8
o p e n d s 6 0 ! F e t c h N e x t C o m m a n d

1 0 0 2 4 2 6 9 8 : 2 3 d e f f b 0 L d a s p , - 5 0 (s p) I I s p n o w 7 2 b f f 0 0

2 0 0 2 4 2 6 9 c : b 5 3 e 0 0 0 0 s t q s O , O C s p) I I @ 0 7 2 b f f 0 0 = 1 4 8 4 4 0

3 0 0 2 4 2 6 a 0 : b 5 5 e 0 0 0 8 s t q s 1 , 8 C s p) I I @ 0 7 2 b f f 0 8 = 0

4 0 0 2 4 2 6 a 4 : b 5 7 e 0 0 1 0 s t q s 2 , 1 0 C s p) I I @ 0 7 2 b f f 1 0 = 5

5 0 0 2 4 2 6 a 8 : b 5 9 e 0 0 1 8 s t q s 3 , 1 8 C s p) I I @ 0 7 2 b f f 1 8 = 1 4 7 6 a 8

6 0 0 2 4 2 6 a c : b 5 b e 0 0 2 0 s t q s 4 , 2 0 C s p) I I @ 0 7 2 b f f 2 0 = 2 c 4

7 0 0 2 4 2 6 b 0 : b 5 d e 0 0 2 8 s t q s 5 , 2 8 (s p) I I @ 0 7 2 b f f 2 8 = 4 1

8 0 0 2 4 2 6 b 4 : b 5 f e 0 0 3 0 s t q f p , 3 0 C s p) I I @ 0 7 2 b f f 3 0 = 0

9 0 0 2 4 2 6 b 8 : b 7 5 e 0 0 3 8 s t q r a , 3 8 C s p) I I @ 0 7 2 b f f 3 8 = 2 4 2 3 9 8

1 0 0 0 2 4 2 6 b c : 4 7 f 0 0 4 0 9 b i s z e r o , a D , s O I I s O n o w 1 4 8 4 4 0

1 1 0 0 2 4 2 6 c 0 : 4 7 f 1 0 4 0 a b i s z e r o , a 1 , s 1 I I s 1 n o w 7 2 b f f a 0

1 2 0 0 2 4 2 6 c 4 : 4 7 f 2 0 4 0 b b i s z e r o , a 2 , s 2 I I s 2 n o w 7 2 b f f a 8

1 3 0 0 2 4 2 6 c 8 : d 3 4 0 4 e 6 7 b s r r a , 0 0 2 5 6 0 6 8 I I r a n o w 2 4 2 6 c c

o p e n d s 6 0 1 n e t i O R e a d D a t a

1 4 0 0 2 5 6 0 6 8 : 2 3 d e f f a 0 L d a s p , - 6 0 C s p) I I s p n o w 7 2 b f e a 0

1 5 0 0 2 5 6 0 6 c : 4 3 f 1 0 0 0 2 a d d l z e r o , a 1 , t 1 I I t 1 n o w 7 2 b f f a 0

1 6 0 0 2 5 6 0 7 0 : b 5 3 e 0 0 0 0 s t q s O , O C s p) I I @ 0 7 2 b f e a 0 = 1 4 8 4 4 0

1 7 0 0 2 5 6 0 7 4 : b 5 5 e 0 0 0 8 s t q s 1 , 8 C s p) I I @ 0 7 2 b f e a 8 = 7 2 b f f a 0

1 8 0 0 2 5 6 0 7 8 : b 5 7 e 0 0 1 0 s t q s 2 , 1 0 C s p) I I @ 0 7 2 b f e b 0 = 7 2 b f f a 8

1 9 0 0 2 5 6 0 7 c : b 5 9 e 0 0 1 8 s t q s 3 , 1 8 C s p) I I @ 0 7 2 b f e b 8 = 1 4 7 6 a 8

2 0 0 0 2 5 6 0 8 0 : b 5 b e 0 0 2 0 s t q s 4 , 2 0 C s p) I I @ 0 7 2 b f e c 0 = 2 c 4

2 1 0 0 2 5 6 0 8 4 : b 5 d e 0 0 2 8 s t q s 5 , 2 8 C s p) I I @ 0 7 2 b f e c 8 = 4 1

2 2 0 0 2 5 6 0 8 8 : b 5 f e 0 0 3 0 s t q f p , 3 0 C s p) I I @ 0 7 2 b f e d 0 = 0

2 3 0 0 2 5 6 0 8 c : b 7 5 e 0 0 3 8 s t q r a , 3 8 C s p) I I @ 0 7 2 b f e d 8 = 2 4 2 6 c c

2 4 0 0 2 5 6 0 9 0 : a 1 d 0 1 1 4 0 L d L s 5 , 1 1 4 0 C a 0) I I @ 0 0 1 4 9 5 8 0 1 4 7 9 e 8

2 5 0 0 2 5 6 0 9 4 : 4 7 f 0 0 4 0 9 b i s z e r o , a D , s O I I s O n o w 1 4 8 4 4 0

2 6 0 0 2 5 6 0 9 8 : a 1 f 0 0 1 d 0 L d L f p , 1 d 0 C a 0) I I @ 0 0 1 4 8 6 1 0 d b b a O

2 7 0 0 2 5 6 0 9 c : 4 7 e 0 3 4 0 d b i s z e r o , # 1 , s 4 I I s 4 n o w 1

2 8 0 0 2 5 6 0 a 0 : a 0 6 2 0 0 0 0 L d L t 2 , 0 (t 1) I I @ 0 7 2 b f f a 0 1 5 5 c 5 8

2 9 0 0 2 5 6 0 a 4 : b 2 3 e 0 0 4 c s t L a 1 , 4 c (s p) I I @ 0 7 2 b f e e c = 7 2 b f f a 0

3 0 0 0 2 5 6 0 a 8 : b 2 5 e 0 0 5 0 s t L a 2 , 5 0 C s p) I I @ 0 7 2 b f e f 0 = 7 2 b f f a 8

3 1 0 0 2 5 6 0 a c : b 2 7 e 0 0 5 4 s t L a 3 , 5 4 C s p) I I @ 0 7 2 b f e f 4 = 1 4 7 6 a 8

3 2 0 0 2 5 6 0 b 0 : e 4 6 0 0 0 1 d b e q t 2 , 0 0 2 5 6 1 2 8 I I (t 2 i s 1 5 5 c 5 8)

3 3 0 0 2 5 6 0 b 4 : 2 2 0 3 0 3 e 0 L d a a D , 3 e 0 C t 2) I I a D n o w 1 5 6 0 3 8

3 4 0 0 2 5 6 0 b 8 : 4 7 f 0 0 4 0 4 b i s z e r o , a D , t 3 I I t 3 n o w 1 5 6 0 3 8

3 5 0 0 2 5 6 0 b c : 6 3 f f 4 0 0 0 m b I I

3 6 0 0 2 5 6 0 c 0 : 4 7 e 0 3 4 0 0 b i s z e r o , # 1 , v O I I v O n o w 1

3 7 0 0 2 5 6 0 c 4 : a 8 2 4 0 0 0 0 L d L - L t O , 0 C t 3) I I @ 0 0 1 5 6 0 3 8 0

3 8 0 0 2 5 6 0 c 8 : b 8 0 4 0 0 0 0 s t L c v O , 0 C t 3) I I @ 0 0 1 5 6 0 3 8 = 1 -
3 9 0 0 2 5 6 0 c c : e 4 0 0 0 0 b 6 b e q v O , 0 0 2 5 6 3 a 8 I I C v O i s 1)

4 0 0 0 2 5 6 0 d 0 : 6 3 f f 4 0 0 0 m b I I

4 1 0 0 2 5 6 0 d 4 : e 4 2 0 0 0 0 1 b e q t O , 0 0 2 5 6 0 d c I I C t O i s 0)

o p e n d s 6 0 ! n e t i O R e a d D a t a + O x 7 4 :
4 2 0 0 2 5 6 0 d c : a 1 b e 0 0 4 c L d L s 4 , 4 c (s p) I I @ 0 7 2 b f e e c 7 2 b f f a 0

4 3 0 0 2 5 6 0 e 0 : a O O d O O O O L d L v O , 0 C s 4) I I @ 0 7 2 b f f a 0 1 5 5 c 5 8

4 4 0 0 2 5 6 0 e 4 : a 0 4 0 0 3 d c L d L t 1 , 3 d c (v 0) I I @ 0 0 1 5 6 0 3 4 0

4 5 0 0 2 5 6 0 e 8 : 2 0 8 0 0 4 0 4 L d a t 3 , 4 0 4 C v 0) I I t 3 n o w 1 5 6 0 5 c

4 6 0 0 2 5 6 0 e c : 4 0 5 f 0 5 a 2 c m p e q t 1 , z e r o , t 1 I I t 1 n o w 1

4 7 0 0 2 5 6 0 f 0 : e 4 4 0 0 0 0 3 b e q t 1 , 0 0 2 5 6 1 0 0 I I (t 1 i s 1)
4 8 0 0 2 5 6 0 f 4 : a 0 6 0 0 4 0 4 L d L t 2 , 4 0 4 C v 0) I I @ 0 0 1 5 6 0 5 c 1 5 6 0 5 c

4 9 0 0 2 5 6 0 f 8 : 4 0 6 4 0 5 a 3 c m p e q t 2 , t 3 , t 2 I I t 2 n o w 1

5 0 0 0 2 5 6 0 f c : 4 7 e 3 0 4 0 2 b i s z e r o , t 2 , t 1 I I t 1 n o w 1

5 1 0 0 2 5 6 1 0 0 : 4 7 e 2 0 4 0 d b i s z e r o , t 1 , s 4 I I s 4 n o w 1

Figure 2
Example ofl nstruction Trace Output ri·om Ntstep

Digital Technical joumal Vol . 8 No. 4 1 996

5 2 0 0 2 5 6 1 0 4 : e 4 4 D 0 0 0 5 b e q t 1 , D D 2 5 6 1 1 c I I (t 1 i s 1)

5 3 O D 2 5 6 1 0 8 : a O a D D O O O L d L t 4 , D C v D) I I @ 0 0 1 5 5 c 5 8 2 0 4 2 0 0

5 4 O D 2 5 6 1 0 c : 2 4 d f D D 8 0 L d a h t 5 , 8 D (z e r o) I I t 5 n o w 8 0 0 0 0 0

5 5 0 0 2 5 6 1 1 0 : 4 8 a 0 7 6 2 5 z a p n o t t 4 , # 3 , t 4 I I t 4 n o w 4 2 0 0

5 6 0 0 2 5 6 1 1 4 : 4 D a 6 0 0 0 5 a d d l t 4 , t 5 , t 4 I I t 4 n o w 8 0 4 2 0 0

5 7 0 0 2 5 6 1 1 8 : b D a D O D D D s t L t 4 , D C v D) I I @ 0 0 1 5 5 c 5 8 = 8 0 4 2 0 D

5 8 0 0 2 5 6 1 1 c : a D f e 0 0 4 c L d L t 6 , 4 c C s p) I I @ 0 7 2 b f e e c 7 2 b f f a 0

5 9 O D 2 5 6 1 2 D : a D e ? D D O D L d L t 6 , D (t 6) I I @ 0 7 2 b f f a 0 1 5 5 c 5 8

6 0 O D 2 5 6 1 2 4 : b 3 e 7 D 3 e D s t L z e r o , 3 e D C t 6) I I @ 0 0 1 5 6 0 3 8 = D

6 1 0 0 2 5 6 1 2 8 : e 5 a O O D 6 1 b e q s 4 , D D 2 5 6 2 b D I I C s 4 i s 1)

6 2 D D 2 5 6 1 2 c : 2 5 7 f 0 0 2 6 L d a h s 2 , 2 6 C z e r o) I I s 2 n o w 2 6 0 0 0 0

6 3 0 0 2 5 6 1 3 D : 2 1 6 b 6 2 f 8 L d a s 2 , 6 2 f 8 C s 2) I I s 2 n o w 2 6 6 2 f 8

6 4 0 0 2 5 6 1 3 4 : 5 f f f D 4 1 f c p y s f 3 1 , f 3 1 , f 3 1 I I
6 5 0 0 2 5 6 1 3 8 : a 2 1 e 0 0 5 4 L d L a D , 5 4 C s p) I I @ 0 7 2 b f e f 4 1 4 7 6 a 8

6 6 0 0 2 5 6 1 3 c : 2 2 5 e D D 4 0 L d a a 2 , 4 D C s p) I I a 2 n o w 7 2 b f e e D

6 7 0 0 2 5 6 1 4 0 : a D D b D O O D L d L v D , D C s 2) I I @ D 0 2 6 6 2 f 8 7 7 e 9 8 5 a D

6 8 0 0 2 5 6 1 4 4 : 2 2 7 e 0 D 4 8 L d a a 3 , 4 8 C s p) I I a 3 n o w 7 2 b f e e 8

6 9 0 0 2 5 6 1 4 8 : a 2 3 e 0 0 5 0 L d L a 1 , 5 D C s p) I I @ 0 7 2 b f e f 0 7 2 b f f a 8

7 0 O D 2 5 6 1 4 c : 4 7 e f 0 4 1 4 b i s z e r o , f p , a 4 I I a 4 n o w d b b a O

7 1 0 0 2 5 6 1 5 D : a 2 1 0 0 0 0 0 L d L a D , D C a D) I I @ 0 0 1 4 7 6 a 8 2 c 0

7 2 0 0 2 5 6 1 5 4 : 6 b 4 0 4 0 0 0 j s r r a , C v O) , D I I r a n o w 2 5 6 1 5 8

K E R N E L 3 2 1 G e t Q u e u e d C o m p l e t i o n S t a t u s :
7 3 7 7 e 9 8 5 a 0 : 2 3 d e f f c 0 L d a s p , - 4 D C s p) I I s p n o w 7 2 b f e 6 0

7 4 7 7 e 9 8 5 a 4 : b 5 3 e O O D O s t q s O , O C s p) I I @ 0 7 2 b f e 6 0 = 1 4 8 4 4 0
7 5 7 7 e 9 8 5 a 8 : b 5 5 e 0 0 0 8 s t q s 1 , 8 C s p) 1 1 @ 0 7 2 b f e 6 8 = 7 2 b f f a 0

7 6 7 7 e 9 8 5 a c : b 5 7 e 0 0 1 D s t q s 2 , 1 D C s p) I I @ 0 7 2 b f e 7 0 = 2 6 6 2 f 8

7 7 7 7 e 9 8 5 b 0 : b 5 9 e O D 1 8 s t q s 3 , 1 8 C s p) I I @ 0 7 2 b f e 7 8 = 1 4 7 6 a 8

7 8 7 7 e 9 8 5 b 4 : b 7 5 e D 0 2 D s t q r a , Z D C s p) I I @ 0 7 2 b f e 8 0 = 2 5 6 1 5 8
7 9 7 (' e 9 8 5 b 8 : 4 7 f 0 0 4 0 9 b i s z e r o , a O , s O I I s O n o w Z e D
8 0 7 7 e 9 8 5 b c : 4 7 f 1 D 4 D a b i s z e r o , a 1 , s 1 I I s 1 n o w 7 2 b f f a 8
8 1 7 7 e 9 8 5 c 0 : 4 7 f 2 D 4 0 b b i s z e r o , a 2 , s 2 I I s 2 n o w 7 2 b f e e 0
8 2 7 7 e 9 8 5 c 4 : 4 7 f 3 0 4 0 c b i s z e r o , a 3 , s 3 I I s 3 n o w 7 2 b f e e 8
8 3 7 7 e 9 8 5 c 8 : 4 7 f 4 D 4 1 1 b i s z e r o , a 4 , a 1 I I a 1 n o w d b b a O
8 4 7 7 e 9 8 5 c c : 2 2 1 e D 0 3 8 L d a a D , 3 8 C s p) I I a D n o w 7 2 b f e 9 8
8 5 7 7 e 9 8 5 d 0 : d 3 4 0 5 8 9 3 b s r r a ,

Figure 2 (continued)
Example of l ostruction Trace Output trom Ntstcp

then reduced to a series of single transactions and ana
lyzed tor instruction distri bution . For both the cached
and the scaled-transaction instruction counts, we com
bined at least three separate transactions and took the
geometric mean of the instructions executed, which
caused sl igh t variations in the i nstruction counts. Al l
result ing instruction cou nts were within an acceptable
standard deviation as compared to ind ividual transac
tion instruction coun ts .

We col lected the fi.mction traces i n a similar fashion .
Once the application bench mark was at a steady state,
we began col lecting the fi.mction cal l tree. Based on
previous work with the SQL Server database and con
su ltation with M icrosoft engineers, we cou ld pinpoint
the beginning of a single transactjon . We then began
col lecting samples tor both traces at the same instant,
using an Ntstep feature that al lowed us to start or stop
sample collection based upon a particular address .

The dynamic instruction counts for both the scaled
and the cached transactions are given in Tables I I and
1 2 . We also show the variation and percentage varia
tion bet\veen the Origi nal and the Byte/Word versions
of the SQL Server. Two of the six new instructions,
sextb and sextw, are not present i n the Byte/Word

7 7 e a e 8 2 0 I I r a n o w 7 7 e 9 8 5 d 4

trace . The remammg tour instructions combine to
make up 2 .6 percent and 2 .7 percent of the instruc
tions executed per scaled and cached transaction,
respectively. Other observations include the fol lowi ng:

• The number of i nstructions executed decreased
7 percent for scaled and 4 percent tor cached
transactions.

• The num ber of ld l_ljstl_c sequences decreased
3 percent for scaled transactions.

• Al l the i nstructions that are identified in Tables l
and 2 show a decrease in usage . Not surprisingly,
the instructions mskwl and mskbl completely d isap
peared . The inswl and insbl instructions decreased
by 47 percent and 90 percent, respectively. The s l l
instruction decreased by 3 8 percent, and the sra
instruction usage decreased by 53 percent. These
reductions hold true within l to 2 percent for both
scaled and cached transactions.

• The i nstructions Jdq_u and Ida, which are used
in unal igned load and store operations, show a
decrease in the range of20 to 22 percent and 1 5 to
1 6 percent, respectively.

Digiral l!:chnical Journal Vol . 8 No. 4 1 996 99

Figure 3

0
0
0

1 3
7 2
8 5
9 9

1 2 9
2 7 2
2 8 5
2 9 0
3 1 8
3 4 8
3 9 9
4 1 2
4 1 7
4 2 3
5 0 9
5 6 0
6 6 5
6 8 2
7 4 9
7 6 2
8 0 2
8 6 4
9 1 1
9 3 7
9 5 0

1 0 2 4
1 0 3 8
1 0 5 5
1 1 7 3
1 2 0 8
1 2 2 7
1 2 6 3
1 3 1 3
1 3 6 5
1 4 0 5
1 4 3 7
1 5 0 0
1 5 7 7
1 5 8 0
1 6 1 2
1 7 7 7
1 8 0 8
2 1 1 5
2 1 3 1
2 1 8 3
2 2 5 2
2 3 1 9
2 5 4 6
2 5 5 9
2 5 9 7
2 6 4 2
2 6 7 3
2 9 7 9
3 0 1 0
3 3 2 3
3 3 6 3
3 4 9 3
3 5 1 0
3 6 5 8
3 6 6 8
3 7 0 3
3 7 6 4
3 7 9 9
3 8 5 7
3 9 0 1
3 9 7 8
4 0 6 4
4 1 0 9
4 1 7 0
4 3 3 1
5 3 2 3
5 4 3 6
5 5 5 0

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

B r e a k p o i n t (P i d O x d 7 , T i d O x d b l S Q L S E R V R . E X E p c 7 7 f 3 9 b 3 4
T r a c e b e g i n s a t 0 0 2 4 2 6 9 8

o p e n d s 6 0 1 F e t c h N e x t C o m m a n d
o p e n d s 6 0 ! n e t i O R e a d D a t a

K E R N E L 3 2 1 G e t Q u e u e d C o m p l e t i o n S t a t u s
K E R N E L 3 2 ! B a s e F o r m a t T i m e 0 u t
n t d l l ! N t R e m o v e i o C o m p l e t i o n

o p e n d s 6 0 1 n e t i O C o m p l e t i o n R o u t i n e
o p e n d s 6 0 ! n e t i O R e q u e s t R e a d

K E R N E L 3 2 1 R e s e t E v e n t
n t d l l ! N t C L e a r E v e n t

S S N M P N 6 0 1 * 0 x 0 6 a 1 3 1 f 0 *

K E R N E L 3 2 1 R e a d F i L e
n t d l l ! N t R e a d F i L e
K E R N E L 3 2 1 B a s e S e t l a s t N T E r r o r

n t d l l 1 R t l N t S t a t u s T o D o s E r r o r
n t d l l 1 R t L N t S t a t u s T o D o s E r r o r N o T e b

K E R N E L 3 2 1 G e t l a s t E r r o r
o p e n d s 6 0 1 g e t _ c l i e n t e v e n t

o p e n d s 6 0 1 p r o c e s s R P C
o p e n d s 6 0 ! u n p a c k _ r p c

o p e n d s 6 0 1 e x e c u t e _ e v e n t
o p e n d s 6 0 1 e x e c u t e _ s q l s e r v e r _e v e n t

o p e n d s 6 0 1 u n p a c k_ r p c
S Q L S E R V R ! e x e c r p c

K E R N E L 3 2 1 W a i t F o r S i n g l e O b j e c t E x
K E R N E L 3 2 ! B a s e F o r m a t T i m e 0 u t
n t d l l 1 N t W a i t F o r S i n g l e O b j e c t

S Q L S E R V R 1 U s e r P e r f S t a t s
K E R N E L 3 2 1 G e t T h r e a d T i m e s

n t d l l 1 N t Q u e r y l n f o r m a t i o n T h r e a d
S Q L S E R V R 1 i n i t _ r e c v b u f
S Q L S E R V R ! i n i t s e n d b u f
S Q L S E R V R 1 p o r t _ e x _ h a n d l e
S Q L S E R V R 1 _0 t s s e t j m p 3
S Q L S E R V R ! m e m a l l o c

S Q L S E R V R 1 O t s Z e r o
S Q L S E R V R ! r e c v h o s t

S Q L S E R V R 1 O t s M o v e
S Q L S E R V R ! m e m a l l o c
S Q L S E R V R ! r n c h a r

S Q L S E R V R 1 r e c v h o s t
S Q L S E R V R 1 O t s M o v e

S Q L S E R V R ! p a r s e _n a m e
S Q L S E R V R 1 d b c s s t r n c h r

S Q L S E R V R ! r p c p r o t
S Q L S E R V R 1 m e m a l l o c

S Q L S E R V R ! O t s Z e r o
S Q L S E R V R 1 g e t p r o c i d

S Q L S E R V R 1 p r o c r e l i n k + O x 1 2 5 0
S Q L S E R V R 1 _ 0 t s R e m a i n d e r 3 2
S Q L S E R V R 1 O t s D i v i d e 3 2 + 0 x 9 4

S Q L S E R V R ! o p e n t a b l e
S Q L S E R V R 1 p a r s e _ n a m e

S Q L S E R V R 1 d b c s s t r n c h r
S Q L S E R V R 1 p a r s e_ n a m e

S Q L S E R V R 1 d b c s s t r n c h r
S Q L S E R V R 1 o p e n t a b i d

S Q L S E R V R 1 g e t d e s
S Q L S E R V R 1 G e t R u n i d F r o m D e f i d + O x 4 0

S Q L S E R V R ! O t s Z e r o
S Q L S E R V R 1 i n i t a r g
S Q L S E R V R 1 s e t a r g

S Q L S E R V R ! O t s F i e l d i n s e r t
S Q L S E R V R 1 s e t a r g

S Q L S E R V R 1 O t s F i e l d l n s e r t
S Q L S E R V R ! s t a r t s c a n

S Q L S E R V R ! g e t i n d e x 2
S Q L S E R V R 1 g e t k e e p s l o t
S Q L S E R V R 1 r o w o f f s e t
S Q L S E R V R 1 r o w o f f s e t
S Q L S E R V R 1 O t s M o v e
S Q L S E R V R 1 m e m c m p
S Q L S E R V R 1 b u f u n h o l d

S Q L S E R V R 1 p r e p s c a n
S Q L S E R V R 1 m a t c h_ s a r g s _ t o_ i n d e x

[\,unpk o f Function Tr·�cc Ourpu r ri·om �rsrep

Vol . R 1\:o. 4 l 9%

5 8 2 8 * *
5 8 9 5 * *
5 9 4 2 * *
5 9 7 6 * *
5 9 8 5 * *
6 0 9 0 * *
6 3 5 6 * *
6 5 3 9 * *
6 7 2 0 * *
6 9 1 2 * *
7 3 0 9 * *
7 7 2 8 * *
8 1 2 5 * *
8 5 2 2 * *
8 9 1 9 * *
9 4 1 0 * *
9 4 6 5 * *
9 6 4 1 * *
9 6 6 1 * *
9 8 0 9 * *

1 0 2 1 2 * *
1 0 6 1 6 * *
1 0 7 0 2 * *
1 0 7 6 9 * *
1 0 8 2 2 * *
1 0 8 3 8 * *
1 0 8 8 5 * *
1 0 9 1 9 * *
1 0 9 2 8 * *
1 1 0 3 3 * *
1 1 3 5 9 * *
1 1 4 8 9 * *
1 1 5 5 7 * *
1 1 6 7 5 * *
1 1 8 5 3 * *
1 1 9 0 7 * *
1 2 0 4 4 * *
1 2 1 0 3 * *
1 2 1 3 8 * *
1 2 2 9 1 * *
1 2 4 6 4 * *
1 2 5 2 4 * *
1 2 6 6 1 * *
1 2 7 2 9 * *
1 2 7 5 6 * *
1 2 7 9 2 * *
1 2 8 4 5 * *
1 2 8 8 7 * *
1 2 9 5 8 * *
1 3 0 2 5 * *
1 3 0 7 7 * *
1 3 1 2 7 * *
1 3 1 7 9 * *
1 3 2 6 3 * *
1 3 2 6 7 * *
1 3 2 9 9 * *
1 3 3 6 9 * *
1 3 4 0 1 * *
1 3 4 7 7 * *
1 3 5 0 9 * *
1 3 5 6 2 * *
1 3 5 9 4 * *
1 3 6 7 0 * *
1 3 7 0 2 * *
1 3 7 5 5 * *
1 3 7 8 7 * *
1 3 8 4 7 * *
1 3 8 9 5 * *
1 3 9 2 1 * *
1 4 0 4 6 * *
1 4 0 9 8 * *
1 4 1 5 7 * *
1 4 1 6 1 * *
1 4 1 9 3 * *

Figure 3 (continued)

S Q L S E R V R 1 s r c h i n d e x
S Q L S E R V R ! g e t p a g e

S Q L S E R V R ! b u f g e t
S Q L S E R V R ! O t s D i v i d e
S Q L S E R V R ! O t s D i v i d e 3 2 + 0 x 9 4
S Q L S E R V R 1 g e t k e e p s l o t

S Q L S E R V R ! b u f r l o c k w a i t
S Q L S E R V R ! s r c h p a g e

S Q L S E R V R ! n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 n c __ s q l h i l o + O x 8 b 0

S Q L S E R V R ! i n d e x_ b e f o r e s l e e p + O x 1 0 0
S Q L S E R V R ! b u f r u n l o c k

S Q L S E R V R ! t r i m_ s q o f f + O x f O
S Q L S E R V R ! q u a l p a g e

S Q L S E R V R ! n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R ! n c __ s q l h i l o + O x 8 b 0
S Q L S E R V R 1 r o w o f f s e t

S Q L S E R V R 1 g e t n e x t
S Q L S E R V R 1 O t s F i e l d l n s e r t
S Q L S E R V R ! ge t r o w 2

S Q L S E R V R 1 g e t p a g e
S Q L S E R V R ! b u f g e t

S Q L S E R V R ! _O t s D i v i d e
S Q L S E R V R ! O t s D i v i d e 3 2 + 0 x 9 4
S Q L S E R V R 1 ge t k e e p s l o t

S Q L S E R V R ! O t s M o v e
S Q L S E R V R ! e n d s c a n

S Q L S E R V R ! b u f u n k e e p
S Q L S E R V R ! b u f u n k e e p

S Q L S E R V R ! c l o s e t a b l e
S Q L S E R V R ! e n d s c a n
S Q L S E R V R 1 g e t _s p i n l o c k

S Q L S E R V R ! o p e n t a b i d
S Q L S E R V R ! g e t d e s
S Q L S E R V R ! O t s Z e r o

S Q L S E R V R 1 c l o s e t a b l e
S Q L S E R V R ! e n d s c a n
S Q L S E R V R ! g e t _ s p i n l o c k

S Q L S E R V R ! p r o t e c t
S Q L S E R V R ! p o r t _ e x _ h a n d l e
S Q L S E R V R ! _O t s s e t j m p 3
S Q L S E R V R ! p r o t _s e a r c h

S Q L S E R V R 1 d b t b l f i n d
S Q L S E R V R ! c h e c k_p r o t e c t

S Q L S E R V R 1 m e m a l l o c
S Q L S E R V R 1 O t s Z e r o

S Q L S E R V R ! m e m a l l o c
S Q L S E R V R 1 _ 0 t s Z e r o

S Q L S E R V R ! r n i 2
S Q L S E R V R 1 r e c v h o s t

S Q L S E R V R ! O t s M o v e
S Q L S E R V R ! r e c v h o s t

S Q L S E R V R 1 O t s M o v e
S Q L S E R V R ! r e c v h o s t

S Q L S E R V R 1 O t s M o v e
S Q L S E R V R ! r e c v h o s t

S Q L S E R V R 1 O t s M o v e
S Q L S E R V R 1 r e c v h o s t

S Q L S E R V R ! O t s M o v e
S Q L S E R V R 1 r e c v h o s t

S Q L S E R V R 1 O t s M o v e
S Q L S E R V R ! b c o n s t

S Q L S E R V R ! m k c o n s t a n t
S Q L S E R V R 1 m e m a l l o c
S Q L S E R V R 1 m e m a l l o c

S Q L S E R V R 1 O t s Z e r o
S Q L S E R V R ! r n i 4

S Q L S E R V R 1 r e c v h o s t
S Q L S E R V R ! O t s M o v e

Exa mple of Fu nction Trace Output from Nrsrep

Digital Technical Journal Vol . 8 No. 4 1996 1 0 1

Table 1 1
I nstruct ion Count a n d Va riat ions for Sca led Tra nsact ion

I nstruction Original Byte/Word Delta % Delta

stb 0 1 74 + 1 74 N/A
stw 0 2 1 9 + 2 1 9 N/A

ldwu 0 1 2 1 5 + 1 2 1 5 N/A

l d b u 0 1 2 1 6 + 1 2 1 6 N/A
cmpbge 2 0 - 2 - 1 00 %
cmovlbs 2 2 0 0 %
a d d t 3 3 0 0 %
cmovlbc 5 4 - 1 - 2 0 %
cmovle 5 5 0 0 %
i nsqh 6 6 0 0 %
cmovgt 1 3 1 3 0 0 %
cal lsys 1 8 1 4 - 4 - 22 %
m u l q 1 3 1 3 0 0 %
s8subq 1 7 1 7 0 0 %
cmovlt 1 6 1 6 0 0 %
ldt 2 5 2 5 0 0 %
z a p 34 3 3 - 1 - 3 %
u m u l h 3 5 3 5 0 0 %
m u l l 60 62 + 2 + 3 %
arnot 52 52 0 0 %
cmpeq 64 6 1 - 3 - 5 %
insql 6 1 6 1 0 0 %
b i bs 69 69 0 0 %
s8a d d l 7 1 74 + 3 + 4 %
mskwl 74 0 - 74 - 1 00 %
jsr 98 89 - 9 - 9 %
cpys 1 04 4 1 - 63 - 6 1 %
mskqh 1 5 5 1 53 - 2 - 1 %
cmovne 1 47 1 4 1 - 6 - 4 %
mskbl 1 63 0 - 1 63 - 1 00 %
cmoveq 1 83 1 73 - 1 0 - 5 %
i nsbl 1 82 1 9 - 1 63 - 90 %
extwh 1 96 1 96 0 0 %
trapb 203 2 1 5 + 1 2 + 6 %
mskq l 204 202 - 2 - 1 %
j m p 208 200 - 8 - 4 %
cmovge 2 9 1 287 -4 - 1 %
blbc 249 249 0 0 %
bgt 3 3 1 328 -3 - 1 %
ld l_l 344 3 3 5 - 9 - 3 %
stl_c 344 3 3 5 - 9 - 3 %
extq l 329 327 -2 - 1 %

For the scaled transaction, a decrease i n 58 out of
8 1 instructions types occurred . Of the remain ing 25
i nstructions, 2 1 had no change and on ly 4 i nstructions,
m u l l , s8addl , trapb, and sub], showed an i ncrease . For
cached transactions, 22 instruction counts decreased ,
29 increased, and 22 remained unchanged .

The performance gain of 3 . 5 percent measured for
the cached version of the application benchmark cor
relates c losely to the decrease in the number of

1 02 Digiral Tcchniol Journal Vol . H No. 4 1 996

Instruction Original Byte/Word Delta % Delta

stt 334 334 0 0 %
c m p l e 368 358 1 0 - 3 %
i nswl 390 207 1 83 -47%
sri 457 398 59 - 1 3 %
extq h 441 3 1 7 1 24 - 28%
em p u l e 468 450 1 8 - 4 %
c m p u lt 563 5 1 8 45 - 8 %
cmplt 565 534 3 1 - 5 %
rdteb 604 597 7 - 1 %
extwl 660 345 3 1 5 - 48%
stq_u 688 688 0 0 %
bit 784 7 7 1 1 3 - 2 %
b i c 7 7 1 347 424 - 55 %
ext I I 789 7 6 1 2 8 - 4 %
ext l h 789 7 6 1 2 8 - 4 %
bge 828 8 1 9 9 - 1 %
m b 9 6 1 94 1 20 - 2 %
s l l 949 590 359 - 38%
sub I 1 052 1 06 1 (9) + 1 %
br 1 1 60 1 080 80 - 7 %
sra 1 2 1 1 562 649 - 54%
bsr 1 203 1 1 9 1 1 2 - 1 %
s4a d d l 1 1 76 1 1 66 1 0 - 1 %
ret 1 282 1 2 64 1 8 - 1 %
za pnot 1 262 9 1 0 3 5 2 - 28%
addq 1 704 1 685 1 9 - 1 %
subq 2 1 59 2 1 40 1 9 - 1 %
l d a h 2793 2746 47 - 2 %
extb l 2902 1 668 1 234 - 4 3 %
x o r 3426 3380 46 - 1 %
a n d 3402 2969 433 - 1 3 %
bne 4537 4440 97 - 2 %
a d d I 4897 4855 42 - 1 %
l d q_u 5046 3933 1 1 1 3 - 2 2 %
stl 5753 5301 452 - 8 %
I d a 6496 5435 1 06 1 - 1 6 %
stq 6778 67 1 3 65 - 1 %
ldq 7 0 1 8 6 5 1 9 - 499 + 7 %
beq 7607 7455 1 52 - 2 %
b is 1 1 284 1 0707 577 - 5 %
l d l 1 5962 1 4260 1 702 - 1 1 %
Totals 1 1 5895 1 07854 8042 - 7 %

i nstructions per transaction measured in Table 1 3 . I f
this corre l ation holds true, we would expect to sec a n
i ncrease in pcrri.>rmancc o f approximately 7 percent
t(>r scaled transactions runs .

Dynamic Instruction Distribution

The pcrtcxmancc of the Alpha microprocessor using
technical and commercia l workloads has been eva lu
ated . ' The commercial worklo::td used WJS debit-

Table 1 2
I nstruct ion Count a n d Va riat ions for Cached Tra nsact ion

Instruction Original Byte/Word Delta % Delta

stb 0 1 74 + 1 74 N/A

stw 0 2 1 7 + 2 1 7 N/A

ldwu 0 1 1 89 + 1 1 89 N/A

ldbu 0 1 333 + 1 333 N/A

cmpbge 2 0 - 2 - 1 00 %
cmovlbs 2 2 0 0 %
a ddt 3 3 0 0 %
cmov l bc 4 5 + 1 + 2 5 %
cmovle 5 5 0 0 %
i nsqh 6 6 0 0 %
cmovgt 1 3 1 3 0 0 %
ca l lsys 1 5 1 6 + 1 + 7 %
m u l q 1 3 1 3 0 0 %
s8subq 1 3 1 4 + 1 + 8 %
cmovlt 1 6 1 6 0 0 %
ldt 25 25 0 0 %
zap 2 6 2 7 + 1 +4%
u m u l h 3 2 32 0 0 %
m u l l 46 48 + 2 + 4 %
ornot 46 46 0 0 %
c m peq 53 53 0 0 %
i nsql 61 61 0 0 %
b i bs 63 63 0 0 %
s8a d d l 6 9 70 + 1 + 1 %
mskwl 73 0 - 7 3 - 1 00 %
jsr 90 92 + 2 + 2 %
cpys 87 4 1 -46 - 53 %
mskq h 1 52 1 57 + 5 + 3 %
cmovne 1 60 1 65 + 5 + 3 %
mskbl 1 63 0 - 1 63 - 1 00 %
cmoveq 1 82 1 90 + 8 + 4 %
i nsbl 1 82 1 9 - 1 63 - 90 %
extwh 1 9 5 1 96 + 1 + 1 %
trapb 2 1 0 2 1 1 + 1 0 %
mskql 201 203 + 2 + 1 %
j m p 209 2 1 5 + 6 + 3 %
cmovge 226 236 + 1 0 + 4 %
b l bc 238 238 0 0 %
bgt 292 302 + 1 0 + 3 %
l d l_l 3 1 4 320 + 6 + 2 %
stl_c 3 1 4 320 + 6 + 2 %
extql 326 329 + 3 + 1 %

cred it, vvhich is similar to the TPC-A benchmark. The
TPC- B benchmark is similar to the TPC-A, differing
only in i ts method of execution . Cvetanovic and
Bhandarkar presented an instruction d istri bution
matrix f(x the debit-cred i t workload . The Alpha
instruction type mix is dominated by the i nteger class,
tol lowed by other, load, branch , and store i nstructions,
in descend ing order. 1 7 We took a similar approach
but d ivided the instructions i nto more groups to
achieve a tiner detailed distribmion . Table 1 3 gives the

I nstruction Orig inal Byte/Word Delta % Delta

stt 334 334 0 0 %
c m p l e 367 374 + 7 + 2 %
i nswl 381 203 - 1 78 - 47 %
sr i 433 383 - 50 - 1 2 %
extqh 434 3 1 4 - 1 20 - 28 %
c m p u l e 450 440 - 1 0 - 2 %
c m p u lt 550 572 + 22 + 4 %
c m p lt 5 6 1 585 + 24 + 4 %
rdteb 587 590 + 3 + 1 %
extwl 654 340 - 3 1 4 -48%
stq_u 689 687 - 2 0 %
bit 7 5 1 770 + 1 9 + 3 %
bic 7 5 9 346 - 4 1 3 - 54 %
ext I I 784 805 + 2 1 + 3 %
ext l h 784 805 + 2 1 + 3 %
bge 8 1 3 8 3 1 + 1 8 + 2 %
m b 883 9 0 1 + 1 8 + 2 %
s l l 899 569 - 330 - 3 7 %
s u b I 983 995 + 1 2 + 1 %
br 1 1 30 1 1 00 - 30 - 3 %
sra 1 1 34 528 - 606 - 53 %
bsr 1 1 58 1 1 65 + 7 + 1 %
s4a d d l 1 1 60 1 1 70 + 1 0 + 1 %
ret 1 232 1 239 + 7 + 1 %
z a p not 1 247 9 1 1 - 336 - 2 7 %
addq 1 589 1 63 1 + 42 + 3 %
subq 1 994 2046 + 52 + 3 %
l d a h 2684 269 1 + 7 + 0 %
extbl 2921 1 682 - 1 239 - 4 2 %
x o r 3 2 7 8 3332 + 54 + 2 %
and 3361 2990 - 3 7 1 - 1 1 %
bne 4328 4376 +48 + 1 %
add I 4734 4856 + 1 22 + 3 %
ldq_u 506 1 4046 - 1 0 1 5 - 20 %
stl 54 1 8 5052 - 366 - 7 %
Ida 6289 5344 - 945 - 1 5 %
stq 6464 6588 + 1 24 + 2 %
ldq 6685 6359 - 326 - 5 %
beq 7 3 5 5 7466 + 1 1 1 + 2 %
bis 1 0890 1 0668 - 222 - 2 %
l d l 1 4964 1 3772 - 1 1 92 - 8 %
Totals 1 1 1 288 1 06521 - 4767 - 4 %

i nstruction makeup of each group. Figure 4 shows the
percentage of instructions i n each group for the tour
a l ternatives we studied . In a l l four cases, I NTEGER
LOADs make up 3 2 percent of the instructions exe
cuted. In tbe scaled Byte/Word category, the new
ld bu and ldwu instructions compose l percent of the
integer i nstructions, and the new stb and stw i nstruc
tions accounted for 1 8 percent of the integer store
instructions executed.

Digital Tcchn icll J ournal Vo i . 8 No . 4 1 996 1 0 3

Table 1 3
I nstruction Groupi ngs

Instruction
G roup Group Mem bers

I nteger loads l dwu, l d bu, l d l_l, l d a h, l d q_u,
Ida, ldq, l d l

I nteg er stores stb, stw, stl_c, stq_u, stl, stq

I nteg er control b i bs, jsr, j m p, b l bc, bgt, b it, bge,
b r, bsr, ret. bne, beg

I ntege r a r ithmet i c cm pbge, s8su bq, u m u l h, m u l l,
cmpeq, s8a d d l , c m p l e, c m p u l e,
c m p u lt. c m p lt, s u b l, s4a d d l ,
addq, subq, add I

Log ica l sh ift cmovl bs, cmovl bc, cmovle,
cmovgt, cmovlt. ornot. cmovne,
cmoveq, cmovge, sri, bic, s l l , sra,
xor, and, bis

Byte m a n i p u lat ion i ns l l, ins lh , msk l l, mskhl , i nsqh,
zap, insql, mskwl, mskqh, mskbl,
insbl, extwh, i nsbl , extwh, mskql,
extql , i nswl, extqh, extwl, ext l l ,
ext l h , z a pnot, extb l

Other ad dt, ldt, stt, m u lq, c a l l sys, cpys,
tra pb, rdteb, m b

During the sCJ icd tra nsactions, each instruction
group showed a decrease i n the n u m ber of i nstruc
tions exec u ted, ra nging from negl igible to as much as
54 percent . In addition, the n u m ber of byte manipu la
tion and logical sh ift i nstructions decreased, because

CACHED
BYTE/WORD

CACHED
ORIGINAL

SCALED
BYTE/WOR D

SCALED
ORIGINAL

KEY

0

• INTEGER LOAD

1 0

D INTEGER STORE

� INTEGER CONTROL

20 30 40

� I NTEGER ARITHMETIC

lffil . LOGICAL SH IFT

� BYTE MANIPULATION

D OTHER

Figure 4
l nsl rucrion Group Distribution

l 04 Dig:itcll Technica l)oumcl l Vol . 8 No. 4 I ')')6

the method of load i ng or stori ng byres :\ lld words
on the orig ina l Alpha Arch itecture made h cJ\'\' usc of
these types of instructions.

In our last examination, \\'e l ooked �l t the instruc
tion \'ariation between a suled and a cached trans
action . The major d i fference betwee n the two
transactions is the additional I/0 req u i red by the
scaled version of the bench mark. Table 14 gives the
resu lts. The Origina l versi on of the SQL Server cbt:t
basc execu ted an e xtra 4,596 i nstructions d u ring the
cJchcd tr:tnsaetion as compared to the sca l ed trans
action. for the Byte/Wor d version, only an additional
I ,334 i nstructions were executed .

Conclusions

The i ntrod uction of the ne\\" single byte and \\"ord
mani f1t t !ation i nstructions in the A lpha Arch i tectu re
improved the performance of the M icrosoft SQ L
Server database . \Ve observed a decrease in the n u m
ber of instructions executed p e r transaction, the
e l i mi nation of some i nstructions in the \\"orklo:td , •l

red istri bution of the i nstruction m i x , and an increase
i n rebti\'e pcrt(mlunce . The resu l ts arc in line wi th
cxpect:ttions when the add ition of the nc\\" i nstruc
tions was proposed .

We l i m i ted our i nvestigation to J s ingle commercial
workl oad :: l!ld operating system . Testing a work!oJd
with more TjO, such as the TPC-C benchmark, wou ld

50

PERCENT

60 70 80 1 00

Ta ble 1 4
I nstruct ion Va riat ions (Sca led M i nus Cached Tra nsact ions)

I nstruction Original Byte/Word Instruction Original Byte/Word Instruction Original Byte/Word

stw 0 - 2 cm plt
ldwu 0 - 2 6 rdteb
l d b u 0 + 1 1 7 extwl
cmovlbc - 1 + 1 stq_u
c a l l sys - 3 + 2 bit
s8subq -4 -3 b ic
zap -8 -6 ext I I
u m u l h - 3 - 3 ext l h
m u l l - 1 4 - 1 4 bge
arnot - 6 - 6 m b
cm peq - 1 1 - 8 s l l
b i bs - 6 - 6 cmovge
s8a d d l - 2 - 4 b l bc
mskwl - 1 0 bgt
jsr - 8 + 3 l d l_l
cpys - 1 7 0 st l_c
mskq h - 3 + 4 extql
cmovne + 1 3 +24 cmple
cmoveq - 1 + 1 7 i nsw l
extwh - 1 0 sr i
tra pb + 7 - 4 extqh
mskq l - 3 + 1 c m p u l e
j m p + 1 + 1 5 c m p u lt

prod uce J d i tkrent set of res u l ts Jnd wou ld merit
i nvestig:�tio n . The use of another database, such �1s the
Oracle RDBMS, which makes greater usc of bytc oper
:ltions, wou l d possi bly resu l t in an even greater pcrt(Jr
mancc i m p�Kt . L:1stly, rebui ld ing the entire operating
system to usc the new instructions wou l d m:1ke an
i n teresti ng and worthwh i le study.

Acknowledgments

As with :111y project, many people were instru menta l in
this dh>rt. Wim Colgate, Miche Raker- H a n-ey, and
Steve J e n ness gave us n u merous insights i n to the
Windows NT operat ing system . Tom Van Baak p ro
v ided seve r:� ! ana lys is and tracing/si m u lation tools for
the Windows NT environ ment . Rich G rove provid t d
access to early b u i l d s of t h e CEM compi l e r back e n d
t h a t contJ ined bytt and word support. StJn Gazaway
bu i l t the SQL Server app l ication with the mod i fica
t ions. Vehbi Tasar provided encouragement and sanity
checki ng. John S hakshober lent i nsight i n to the world
of TPC : . Peter Bannon provided the early prototype
machine . Contri bu tors from Microsott Corporation
i nc l uded Todd Ragland , who he lped rebu i l d the SQL

Server; Ric k Vicik, w h o provided detai led i nsights i nto
the operJtion of the SQL Server; and Damien
Li ndauer , who h e l ped set up and run the TPC: bench
mark. Finally, we thank Dick Sites tor e n couragin g
us t o undertake this dhxt.

-4 + 5 1 sub I - 69 - 66
- 1 7 - 7 b r - 3 0 + 20

- 6 - 5 sra - 7 7 - 3 4
+ 1 - 1 bsr - 45 - 2 6

- 3 3 - 1 s4a d d l - 1 6 + 4
- 1 2 - 1 ret - 50 - 2 5

- 5 + 44 za pnot - 1 5 + 1
- 5 +44 addq - 1 1 5 - 54

- 1 5 + 1 2 subq - 1 65 - 94
- 7 8 -40 l d a h - 1 09 - 55
- 50 - 2 1 extbl + 1 9 + 1 4
- 65 - 5 1 xor - 1 48 - 48
- 1 1 - 1 1 a n d - 4 1 + 2 1
- 39 - 2 6 b n e - 209 - 64
- 3 0 - 1 5 a d d I - 1 63 + 1
- 3 0 - 1 5 l dq_u + 1 5 + 1 1 3

- 3 + 2 stl - 33 5 - 249
- 1 + 1 6 Ida - 207 - 9 1
- 9 - 4 stq - 3 1 4 - 1 25

- 24 - 1 5 l d q - 333 - 1 60
- 7 - 3 beq - 2 5 2 + 1 1

- 1 8 - 1 0 bis - 394 - 39
- 1 3 + 54 l d l - 998 -488

Totals - 4596 - 1 334

References and Notes

I . Z. C1·etanm· ic and D. l\handarb1·, "Characterization
of AJ p lu A X P Pcd(lrmance Using TP and SPEC Work
loads," 2 1st A l l l l l lal lnlenwtional Symposiu m on
Cornputer A rchilec/u re, Chicago (1 994) .

2 . vV. Koh ler ct :� 1 . , " Pert(mllJIKe Ev;Jiuation ofTransac
tion Processing," J)igiral Technical}ournal, vol . 3 ,
no. I (Winter 1 99 1) 45-57.

3 . S . Lcurcncggcr and D . Dias , "A Model ing Study ofthc
TPC-C Benchmark," Proceedin,�s of thf! 1993 ACM
SJG"tlH)f) flltemalional Conference on /VJ.unage
Jnent ()/Datct, S ! G t'v!O D Record 22 (2) , (J u ne 1 993) .

4 . R . S ites :�nd E . Peri , Palch Wrk.s-A D}'l"lCtmic
Execution Tmcillii Tool (Palo AJro, Cal if. : D ig ita l
Equipment Corporation , Svstcms Research Center,
1 995) .

5 . W . Koh le r, A . Shah, and F . Raab , Owruil!ll' of lPC
Bf!nch mark C: "! he Order-t:nt1y Benchmark (San
J ose, Ca l i f. : ·rransacrion Process i ng Performance
Cou n c i l Technica l Report, \ 99 1).

6 . R. Sires, "Alpha AX P Architectu re," Dip,i!al Techni

caljou rnal. vol . 4, no. 4 (Specia l Issue 1 992) : 1 9-34.

7 . A lpha AXP Svstems Hu11dbook (Maynard, M:�ss . :
D igita l Equipment Corporation, 1 99 3) .

8 . DF;Ccb ip 2 1 064A-2.·U. -2 75 Alpha AXP klicro
processor Data SIJeet (Mavnard , Mass . : D igi ta l
Equipn1cnr Cmporarion , 1 994) .

Digital Technical)ourn;ll Vol . 8 No. 4 1 996 1 05

9 . Alpha 2 1 1 0- 1 Microprocessor Hardll'rlrc Nefc'r
ence Manual (!'vbyn:ml , Mass . : D igi ta l Equipment
Corporati on, 1 994) .

1 0 . R . S ires and R . \Virek, AljJba AXP Archilcc!u rc Rl:fc'r

ence t\ll!l l t l lal, 2d e d . (Newton, Mass . : D i gi ra l Press,
1 99 5) .

1 1 . C . Kane, Mil'S N2000 m.'l.C A rchi!eC!ure (En!!-kwood
Cl i ffs, N .] . : l'renr ice H al l , 1 98 7) .

1 2 .] . Hen nessv, N .)ouppi , F Baskett, and) . G i l l , . l f!PS·
A IlLS! Processor Arch ilec/1/rc (S tan�(mi , C 1 1 i f. :
Computer Syste ms Laboratory, Sta n ford Univers ity,
Tech nical Report No. 2 2 3 , 1 98 1) .

1 3 . J . Hen nessy, N . Jo uppi, F . Baskett, T. Cross,] . G i l l ,
;1nd S . l'rzyb)'lski, 1-!anlll'are/SoJiware hrtdmf/.\j(n
li?Creascd Pe1jiwmonce (Stan ford , C:� l i f. : Computer
Sl'stems l .. 1bor:�torl', Stanford U n i H: rsi t�·, Tec h n ic:�!
Report No. 2 2 8 , 1 98 3) .

1 4 . The origi n al lv! I PS Arch itecture a t Stant(mi Uni1-crsirv
did not coma i n s ingle byte manipu lation in structions;
th is decision w.1s reYcrsed �or the tirst commercia l ly
prod uced M I PS R2000 processor. The I ntel x86
Architecture has ;1 lw:�ys i nc luded these instructions.

1 S. C. Cole and L. Crudele, perso na l corrcsponcknce,
Dece m be r ! 996 .

1 6 . M icrosoft Corpma tio n developed t h e A RC ti rm,,-,1re
tot· the M I PS pbr�(mn . Duri n g the earlv (L11's of the
port of Wi ndows NT to Alpha, D I G ITAL's eng in cns
ported the ARC fi rmware to the Alpha platt(mn .

1 7 . The A l plu instruction type mix i nc l uded PALcode

cal ls , barriers, and other i m p lemcntation-spn:i�i c
PALcock i nstructions.

Biographies

David P. Hunter
David Hu nter is rhc engineering manager of the DIG ITA l .
Sofi:wat·e Partne rs En):\inecring Advanced Development
Group, where he has been involved in perturmance investi
gat ions of databases and their i nteractions with U N I X and
·windows NT. Prior ro this work, he held positions in the
A l p h a Migration Organizcnion, rhc ISY Porti ng <_;roup,
and the Gol'ernment <_;roup's Technical Program Ma n;1ge
menr Office. He JOined D I G ITA l . i n rhe La bora ton· J),m
Prod ucts Croup in 1 9 8 3 , where he dc1·c loped the V.-\ X I ,lb

scr Management S 1·s tem . He 11 ·as rhe project leader of rhc
advanced de,·dopmenr project, I TS, an executive i n t(mna
rion system, �or 11·hich he (ksigncd hardware and sotn1 are
components. David has two patent appl i cations pending in
rhe area of software engineering. He holds a degree i n electri
cal and computer engineering �rom Northeastern Uni1 crsiry.

l 06 Digital Tec hni cal)ourn;ll Vol . R No. 4 l <J96

Eric B. Betts
Eric Betts is ;1 pri nc ip: li software engineer in rh c DI GITAL
Sotnvare Partners En gi neeri ng Grou p, where he has been
i n volved ll' i th perf<lrmancc engineering, project manage
ment, :md benc h marki ng tor the M icrosoft SQI . Sen-cr
and Windows NT prod u cts . Previously ll' ith the Federal
Government Region , Eric was a membe r of the tec hn ical
su pport group ;l lld ;\ tec hnical lead on se1 -c r;1 l go1·ernmenr
progra n1s. lkt<m.: JO i n i ng D I G ITA L in ! 990, he worked
in 111;lnl' d i lh::n.:nt sot[-ware de1·e lopment are as at Marrin
J\tLH·ictra and the Defense l n t(mn;ltion Snrcms AgctK\'.
Eric rccci1-cd ;1 B.S. in com pu ter science from 0!orth
Carol i n a Cenr ral Uni 1·crsit1'.

Further Readings

The Dip,ilal Techn ica/fou mal is a rdcreed, quarterly
publ ication of papers that explore the toundations
of DIGITAL's products and technologies. journal

content is selected by the Journal Advisory Board,
and papers are written by DIGITAL's engineers
and engineering partners. Engineers who would
l ike to contribute a p:1pcr to the Jou rna/ shou ld
contact the manJging editor, Jane Rlake, at
Jane. Blake@ ljo .dec .com.

Topics covered in previous issues of the [)igital

Techn ical.fournal arc as fol lows:

Internet Protocol V.6/Preservation of Historical
Computer Systems/Fortran for Paral lel Computing/
Server P erformance Evaluation and Optimization/
Internet Collaboration Software
Vol . 8, No. 3 , 1 996, EC-N7285 - l 8

Spiralog Log-structured File System/
Open VMS for 64-bit Addressable Virtual Memory/
H igh-performance Message Passing for Cl usters/
Speech Recognition Software
Vol . 8 , 1 o. 2 , 1 996, EY- N699 2 - I 8

Digital U N I X Clusters/Object Modification Tools/
eXcursion for Windows Operating Systems/
Network Directory Services
Vol . 8, No. I , 1 996, t-:Y- U025 l:-Tj

Audio and Video Technologies/ U N I X Available
Servers/Real-time Debugging Tools
Vol . 7, No. 4, 1 995 , EY- U002E-T)

High Performance Fortran in Parallel Environments/
Sequoia 2000 Research
Vol . 7, No. 3 , 1 99S, E Y-T838E-TJ

(Availahle on/)• on !he Internet J
Graphical Software Development/Systems Engineering
Vol . 7, No. 2 , 1 995, EY- U00 1 E-TJ

Database Integration/ Alpha Servers & Wor kstations/
Alpha 2 1 1 64 CPU
Vol . 7, No. l , 1 99 5 , EY-T l 35 E-TJ

(Aoai.luble onlr on the Internet J
RAI D Array Controllers/Workflow Models/
PC LAN and System Management Tools
Vol . 6, No. 4, bll 1 994, EY-T l l 8 E-TJ

AlphaServer Multi processing Systems/ DEC OSF / 1
Symmetric Multiprocessing/ Scientific Computing
Optimization for Alpha
Vol . 6, No. 3 , Summer 1 994, EY-S799 F-T'j

I

Alpha AXP Partners-Gray, Raytheon, Kubota/
DECchip 2 1 07 1 /2 1 072 PCI Chip Sets/
DLT2000 Tape Drive
Vol . 6, No. 2 , Spri ng 1 994, EY- F947E-TJ

High-performance Networking/Open VMS AXP
System Software/ Alpha AXP PC Hardware
Vol . 6, No . l , Wi nter 1 994, EY-Q0 1 1 E-TJ

Software Process and Quality
Vol . 5, No. 4 , Fall 1 993, EY-P920E- DP

Product Internationalization
Vol . 5, No. 3 , Summer 1 99 3 , EY- !'986E-DP

Multimedia/ Application Control
Vol . 5, No. 2 , Spring 1 993, EY-P963E-DP

DECnet Open N etworking
Vol . 5, No. I , Winter 1 993, EY-M 770E- D P

Alpha AXP Architecture and Systems
Vol . 4, No. 4, Specia l Issue 1 992 , EY-)886E- DP

NV AX-microprocessor VAX Systems
Vol . 4, No. 3 , Summer 1 992, EY-)884E- D P

Semiconductor Technologies
Vol . 4, No. 2 , Spri ng 1 992, EY- L5 2 1 E - D !'

PATHWORKS: PC Integration Software
Vol . 4, No. 1 , Winter 1 992, EY-)825E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol . 3, No. 4 , rail 1 99 1 , EY- H889E- D l'

Availabil ity in VAXcluster Systems/
Network Performance and Adapters
Vol . 3, No. 3 , Summcr 1 99 1 , EY- H890E-D P

Fiber Distributed Data Interface
Vol . 3, No. 2 , Spring 1 99 1 , EY-H876E- D P

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol . 3, No. 1 , Winter 1 99 1 , EY-F588E-DP

VAX 9000 Series
Vol . 2, No. 4, �al l 1 990, EY- E762E-DP

DECwindows Program
Vol . 2, No. 3 , Summer 1 990, EY- E756E-DP

VAX 6000 Model 400 System
Vol . 2 , No. 2 , Spring 1 990, EY-C 1 97E- Dl'

Compound Document Architecture
Vol. 2 , No. 1 , vVinter 1 990, EY-C 1 96E-Dl'

Digital Technical Journal Vol . 8 No. 4 1 996 1 07

Call for Authors
from Digital Press

Digital Press i s a n imprint o f Butterworth - Heinemann, a major i nternational pub
lisher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized pu blisher for Digital Equipment Corporation: The two
companies are working in partnership to identif)r and pu blish new books under the
Digital Press i mprint and create opportu nities for authors to publish their work.

Digital Press is com mitted to publ ishing high-quality books on a wide variety of
subjects. We would l ike to hear from you if you are writing or thinking about writ
ing a book.

Contact: Liz McCarthy, Associate Acquisitions Editor, or
Mike Cash, Digital Press Manager

DIG ITAL PRESS
3 1 3 Washington Su·eet
Newton, MA 02 1 58 - 1626
U.S.A.
Tel : (6 1 7) 928- 2649, Fax : (6 1 7) 928 -2640
E-mai l : Liz.McCarthy@repp.com or
Mike. Cash@ BHein .re l .co.uk

	Front cover
	Contents
	Editor's Introduction
	AlphaServer 4100 Performance Characterization
	The AlphaServer 4100 Cached Processor Module Architecture and Design
	The AlphaServer 4100 Low-cost Clock Distribution System
	Design and Implementation of the AlphaServer 4100 CPU and Memory Architecture
	High Performance I/O Design in the AlphaServer 4100 Symmetric Multiprocessing System
	Design of the 64-bit Option for the Oracle7 Relational Database Management System
	VLM Capabilities of the Sybase System 11 SQL Server
	Measured Effects of Adding Byte and Word Instructions to the Alpha Architecture
	Further Readings
	Call for Authors from Digital Press
	Back cover

