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Editor's 
Introduction 

Just 40 years ago, a machine called the 

TX-0-a successor to Whirlwind

was built at MIT's Lincoln Laboratory 

to find out, among other things, if a 

core memory as large as 64 Kwords 

could be built. Over tJ1e years mem
ory sizes have grown so large that, 
in the '90s, tJ1e industry has felt the 

need to characterize memory in big 

machines as uery large. At five orders 

of magnitude greater in size than the 

TX -0 memory, the AlphaServer 4100 
8-gigabyte memory is indeed very 

brgc, even by today's standards. \Vhole 
databases can be designed to reside in 

memory. Very large memory technol

ogy, or VLM, is a key to rJ1e system 
and application performance discussed 
in this issue of the.fournal, which fea

tures the AlphaServer 4100 system, 
database enhancements from Oracle 

Corporation and !Tom Sybase, Inc., and 
extensions to the Alpha architccwre. 

The AJphaServcr 4100 is a mid
range, symmetric multiprocessing 

system designed tor industry-leading 
performance at a low cost. The sys

tem accommodates up to four 64-bit 

Alpha 21164 microprocessors operat
ing at 400 megahertz, four 64-bit PCI 
bus bridges, and 8 gigabytes of main 

memory. Opening the section about 
rJ1e 4100 system, Zarka Cvetanovic 
and Darrel Donaldson describe tJ1e 

project te:un 's performance characteri
zation of different Alph�,server 4100 
models under technical and commer

cial workloads. Both the process and 
the findings are of interest. As one 

example set of data demonstrates, 

tJ1e model 5/300 is not only faster 

tJ1an its DIGITAL predecessors but 
30 to 60 percent taster rhan a com
parative industry platform when run
ning memory-intensive workloads 
ti-om the SPECtp95 benchmark. 

The four papers that follow exam

ine areas of the system rhat challenged 
designers to keep costs low and at the 

same time deliver high performance. 

The AlphaScrvcr 4100 cached pro

cessor module design is presented by 

Mo Steinman, George Harris, Andrej 

Kocev, Ginny Lamere, <llld Roger 
Pannell . Built around the Alpha 211 64 

64-bit !USC microprocessor, the 
module is the first ti·om DIGITAL 

to employ a high-performance, cost
etkctive synchronous cache rather 

than a traditional asynchronous cache. 

Next, Roger Dame reviews the clock 

distribution system, the use of off� 
the-shelf phase-locked loop circuits 

as the basic building block to keep 
costs low, and the signal integrity 
techniques developed to optimize 

performance of the clock distribution 
system for a worst-case clock skew of 
2.2 nanoseconds, a goal which the 

team far exceeded. A unique memory 
architecture for the model 5/300£ is 
the subject. of Glenn Herdeg's paper. 

This memory design incorporates a 

processor module that has no external 
cache and instead takes advantage 

of the multiple-issue tearure of the 

Alpha 211 64 microprocessor. Closing 

the section on the 4100 design is the 

1/0 subsystem's contribution to the 
system goals of low latency and high 
memory and 1/0 bandwidth. Sam 

Duncan, Craig Keefer, �md Tom 
McLaughlin present several innova

tive techniques developed f()r the sys
tem bus-to-PC! bus bridge design, 

including partial cache line writes, 
peer-to-peer transactions across PC! 
bridges, and support t(Jr large bursts 
of data. 

All efforts to make the hardware 
run taster are t(x the benefit of the 

applications that run on those sys
tems. A paper fi·om Oracle Corpora
tion and another from Sybase, Inc., 
examine ways in which their respec

tive database systems take advantage 
of VLM. V ipin Gokhalc describes 
the 64 Bit Option implememation 
for the Oracle7 relational database 
system. A primary project goal was to 

Vol. 8 No.4 1 996 

demonstrate a clear performance ben

efit tor decision support systems and 
online transaction processing. The 

author summarizes data that show 
a clear benefit for a database with the 

64 Bit Option enabled running on 
the AlphaServer 8400 with 8 gigabytes 

of memory; in some cases, the pertor
mance increase was 200 times that 

ofrhe standard configuration. Sybase 

engineers T.K. Renga.rajan, Max 

Berenson, Ganesan Gop�1l, I>rucc 
McCready, Sapan Panigrahi, Srikam 

Subramaniam, and Marc Sugiyama 
examine the technology of the 
System 1 1  SQL Server that was spc

citically designed for VLM systems. 

In addition to achieving record results 

with the SQL Server running on rhc 
AJphaServer 8400, the engineers have 
laid the groundwork for ti.Iturc main 

memory database systems. 
RecenrJy, byte and word instruc

tions were added to DIGITAL's 
64-bit Alpha architecture. Dave 

Hunter and Eric Betts describe the 
process of analvzing bow these addi

tions aftect the pertormance of a 

commercial database. �or resting, 
the team used prototype harci\v,ue, 
rebuilt Microsoti: Corporation's SQL 
Server to use rhe new instructions, 
and ran the TPC-B benchmark. 

The editors thank Darrel Donaldson 

of the AlphaServer 4100 team and 
Kuk Chung of the Dat<lbase Applica
tion Partners group tor rheir dlixts 
to acquire the papers presented in this 
issue. Our upcoming issue will k:nure 
CMOS-6 process technologies. 

Jane C. Blake 

J'vlana{;ing Editor 



Alpha Server 4100 
Performance 
Characterization 

The AlphaServer 4100 is the newest four

processor symmetric multiprocessing addition 

to DIGITAL's l ine of midrange Alpha servers. 

The DIGITAL AlphaServer 4100 fa mily, which 

consists of models 5/300E, 5/300, and 5/400, 

has major platform perfor mance adva ntages 

as compared to previous-generation Alpha plat

forms and leading industry midrange systems. 

The primary performa nce strengths are low 

memory latency, high bandwidth, low-latency 

1/0, and very large memory (VlM) technology. 

Evaluating the characteristics of both tech nical 

and commercial workloads against each fa mi ly 

member yielded recommendations for the best 

appl ication match for each model. The perfor

mance of the model with no modu le-level cache 

and the advantages of using 2- and 4-megabyte 

module- level caches are quantified. The profiles 

based on the bui lt- in performance monitors are 

used to evaluate cycles per instruction, stall time, 

multiple-issuing benefits, instruction frequen

cies, and the effect of cache misses, branch 

mispredictions. and replay traps. The authors 

propose a time al location-based model for 

eval uati ng the performance effects of various 

sta l l  components and for predicting future per

formance trends. 

I 
Zarka Cvetanovic 

Darrel D. Donaldson 

The AlphaServer 4100 is DIGITAL's latest four
processor symmetric mul tiprocessing (SMP) midrange 
Alpha server. This paper characterizes the performance 
of the AlphaServer 4 100 tamily, which consists of 
three models: 1-5 

I. AlphaServer 4 1 00 mode l  5/300E, which has up to 
four 300- megahertz (MHz) Alpha 21164 micro
processors, each without a mod ule- level, third
level, write-back cache (B-cache) (a  design referred 
to as uncached in this paper) 

2. AJphaServer 4 100 model 5/300, which has up to 
tour 300-M Hz Alpha 21164 microprocessors, each 
with a 2 -megabyte (MB) B -cache 

3. AlphaServer 4100 model 5/400, which has up to 
four 400-MHz Alpha 2 1 1 64 microprocessors, each 
with a 4-MB B-cache 

The performance analysis undertaken examined 
a number of workloads with d i fferent character
istics, including the SPEC95 benchmark su i tes 
(floating-point and integer), the UNPACK bench
mark, AIM Suite VII (UNIX multiuser benchmark) , 
the TPC-C transaction processi ng benchmark, image 
rendering, and memory latency and bandwidth 
tests-" 1 5  Note that both commercial (AlJ\1 and TPC-C) 
and technical/scientific (SPEC, UNPACK, and image 
re ndering) classes of workloads were inc luded in  
this analysis. 

The results of the analysis ind icate that the major 
AJphaServer 4 100 pertormance advantages resu lt  
from the to! lowi ng server rcatures: 

• Significantly higher bandwidth (up to 2 .6 times) 
and lower latency compared to the previous
generation midrange AJphaServer plattorms and 
leading i ndustry midrange systems. These improve
ments benefit the large, mul tistrcam applica
tions that do not fit in the B-cache .  For example, 
the AlphaServer 4 1 00 5/300 is 30 to 60 percent 
faster than the HP 9000 K420 server in the 
memory- intensive workloads from the SPECf1.)95 
benchmark su i te .  (Note that all competitive per
formance data presented in this paper is val id as 
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of the submission of this paper in July 1996. The 
references cited rekr the reader to the literature 
and the appropriate Web sites for the latest ped(>r
nunce information.) 

• An expanded very large memory (VLM). The max
imum memory size increased from 2 gig<1bytes 
(GB) to 8GB without sacrificing CPU slots. This 
increase in memory size benefits primarily the com
me!-cial, multistream applications. For example, the 
AJphaServer 4100 5/300 server achieves approxi
mately r..vice the throughput of the Compaq 
ProLiant 4500 server and 1.4 times the throughput 
of the AJphaServer 2100 on the AIM Suite Vll 

benchmark tests. 

• A 4-M 13 B-cache and a clock speed of 400 M Hz 
in the AJphaServer 4100 5/400 system. The larger 
B-cache size and 33 percent faster clock resulted in 
a 30 to 40 percent performance improvement over 
the AlphaServer 4100 5/300 system. 

The performance improvement rrom rhe IJrger 
B-cache increases with the number of CPUs. For 
example, rhe AJphaServer 4100 5/300 system with 
its 2-M13 R-cache design performs 5 to 20 percent 
raster with one CPU and 30 to 50 percent raster 
with four CPUs than the uncached 5/300£ system. 
The majority of workloads included in this analysis 
benefit ri·om the B-cache; however, the uncached sys
tem ourperr(mns the cached implementation by 10 to 
20 percent f(>r large applications that do nor fit in 
the 2-MB B-cache. 

The pertc>rmance counter profiles, based on rhe 
built-in h::�rdware monitors, indicate that the nnjor
ity of issuing time is spent on single and dual issuing 
and that a small number of Aoating-point workloads 
take advantage of triple and quad issuing. The 
load/store instructions make up 30 to 40 percent of 
all instructions issued. The stall time associated with 
waiting ror data that missed in the various levels of 
cache hierarchy accounts ror the most significant por
tion of the time the server spends processing com
mercial workloads. 

Memory latency 

Memory IJrency and bandwidth have been recog
nized as important perr(mnance factors in the earJy 
Alpha-based implementations. "'·'7 Since CPU speed is 
increasing at a much higher rate than memory speed, 
the "memory wall" limitation is expected to become 
even more important in the future. Therdore, reduc
ing memory latency and increasing bandwidth have 
been major design goals ror the AlphaServer 4100 
platrorm.' The AlphaServer 4100 achieved the lowest 
memory latency of all DIGITAL products based on 
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the Alpha 21164 microprocessor Jnd all multiproces
sor products by leading industrv vendors. The major 
benefits come ri·om the simpler intcrhce, rhe use of 
synchronous dvnamic random-access memun· 
(DRMvl) chips (i.e., svnchronous memorv), and rhe 
lower fill time." Figure 1 shows the measured mem
ory load latencv using the lmbench benchm::�rk with 
a 512-byte stride.'" In this benchmark, each load 
depends on the result ri·om the previous load' and 
therd()re l:!tency is nor a good measure of pnr(>r
mance rc>r systems that can have multiple outstanding 
loads. (AiphaServer 4100 systems can have up to 
two outst:rnding requests per CPU on the bus.) 
The lmbench benchmark data indic1tes rhar the 
AlphaServer 4100 has the lowest memory latency of 
:rll industry-leading reduced-instruction set comput
ing (RISC) vendors' sen·ers. 

As shown in Figure 2 ,  using a slightlv dii"fi..Tel1t 
worklo:�d where there is no dependencv bel:\1-een 
consecutiYe loads, the AJphaSen·er 4100 achie1·es c1 en 

lower per-Joad latency, since the iateilC\" r(>r the l:\1"0 
consecutive lo:�ds can be overbpped. The platc1lls 
in Figure 2 sholl" rhe load latency at each ofrhe r(>llow
ing levels of cache/memory hierarclw: R-kilobne 
(KB) on-chip data cache (D-cache), 96-KB on-chip 
secondary instruction/data cache (S-cache), 2- and 
4-MB offchip B-eaches (except rl.lr model 5/300 E), 
:�nd memory. The uncached AlphaServer 4100 
5/300E :�chieves Jn 85 percent lower memory load 
latency than the previous-generation Alph:�Server 
2100. The AJphaServer 4100 5/300, with its 2-MB 
B-cache, increases memorv latency 30 percent r(>r 
load operations and 6 percent for store oper:�tions 
compared to the uncachcd 5/300E svsrem because of 
the time spent checking for data in the B-c1che. The 
svnchronous memorv shows one cvcle lower Lltencv 
than the asvnchronous extended dar:� out ( EDO) 
DRAM (i.e., asynchronous memorv), ll"hich results in 
9 percent bster load operations and 5 percent bster 
store operations. "Note that the cached AlphaSnl'er 
4100 and AI phaSe rver 8200 SI'Stems, ll'hich ha\·e 
the same clock speeds of 300 lv!Hz, achieve com
par:�ble B-c:�che latencv, while the memory Lnenc1· 
r(>r :�II AlphaServer 4100 S\'Stems is signific:�ntlv 
lower than on both the AlphaServer 8200 and the 
Alph:.1Server 2100 systems. The latency to the B-cKhe 
in this rest is lower on the AlphaServer 2 J 00 th:ll1 
on the other AlphaServer systems due to 32-byte 
blocks (compared to 64-byte blocks in the 4100 �111d 
8200 systems). Although not shown in this rest, many 
applications can benefit from the larger uche block 
size. The 400-IV!Hz AlphaSen·er 4100 svsrem uses 
J 33 percent raster CPU and Khiei"CS 11 percent 
reduction in B-cache and memorv Lltcncv compared 
to the 300-MHz AlphaServer 4100 s1·stem. 



LMBENCH: DEPENDENT LOAD MEMORY LATENCY 
(STRIDE= 512 BYTES) 

Figure 1 
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lmbench Benchmark Test Resu l ts Showing Memory Latency for Dependenr Loads 

Memory Bandwidth 

The AJphaServer 4 100 system bus achieves a peak 
bandwidth of 1 . 06 gigabytes per second (GB/s). The 
STREAM McCalpin benchmark measures sustainable 
memory bandwidth in megabytes per second (MB/s) 
across four vector kernels: Copy, Scale, Sum, and 
SAXPY." Figure 3 shows measured memory band
width using the Copy kernel from the STREAM 
benchmark. Note that the STREAM bandwidth is 
33 percent lower than the actual bandwidth observed 
on the AJphaServer 4100 bus because the bus data 
cycles are a l located for three transactions: read 
source, read destination, and vvrite destination. The 
AlphaServer 4 100 shows the best memory bandwidth 
of all multiprocessor platforms designed to support up 
to four CPUs. The platforms designed to support 
more than fou r  CPUs (i.e . ,  the AJphaServer 8400,  the 
Sil icon Graphics POWER CHALLENGE R10000, and 
the Sun Ultra Enterprise 6000 systems) show a higher 
bandwidth for fou r  CPUs than the AlphaServer 4 100. 
The STREAM bandwidth on the AlphaServer 4 1 00 
5/300 is 2.2 times h igher than on the previous
generation AlphaServer 2100 5/250 (2 .6  times higher 

with the AJphaServer 4100 5/400). The uncached 
AJphaServer 4 100 model shows 22 percent higher 
memory bandwidth than the cached model 5/300. 

The AJphaServer 4 1 00 memory bandwidth 
improvement from synchronous memory compared 
to EDO ranges from 8 to 1 2  percent. The synchro
nous memory benefit i ncreases with the number of 
CPUs, as shown in Table l. 

Low memory latency and high bandwidth have 
a significant dtect on the performance of workloads 
that do not fit in 2- to 4-MB B-eaches. For example ,  
the majority of the SPECtp9 5 benchmarks do not fit 
in the 2 -MB cache. (Figure 20,  which appears later in 
this paper, shows the cache misses.) The SPECtp95 
performance comparison presented in Figure 4 shows 
that the uncached AlphaServer 4100 5/3 00£ system 
outperforms the 2-MB B -cache model 5/300 i n  the 
benchmarks with the highest number of B-cache 
misses (tomcatv, swim, applu ,  and hydro2d). The per
formance of the uncached mod el 5/300£ is compar 
able to that of  the 4 -MB B-cache model 5/400 for the 
swim benchmark. However, the benchmarks that fit 
better in the 4-MB cache (apsi and waveS) run signifi
cantly slower on the 5/300£ than on the 5/400. 
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Table 1 
Bandwidth Improvement from Synchronous Memory 
to Asynchronous Memory 

Bandwidth 
improvement 8% 

Number of CPUs 

2 3 

8% 9% 

4 

12% 

Figure 4 shows that the AlphaServcr 4100 5/300 
system has a significant (up to t\vo times) performance 
advantage over the previous-generation AlpbaServer 
2100 system in the SPEC!p95 benchmark tests with 
the highest number of B -cache misses. The SPEC!p95 
tests indicate that the 300-MHz AlphaServer 4100 is 
more than 50 percent faster than the HP 9000 K420 
server, and the 400-MHz AlphaServer 4100 is twice as 
fast as the HP 9000 K420 in the SPECtp95 bench
marks that stress the memory subsystem. 

SPEC95 Benchmarks 

The SPEC95 benchmarks provide a measure of pro
cessor, memory hierarchy, and compiler pert(Jrmance. 
These benchmarks do not stress gr<lphics, net\vork, 
or l/0 pertormance. The integer SPEC95 suite 
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35 

( CINT95) contains eight compute- intensive integer 
benchmarks written in C and incl udes the benchmarks 
shown in Table 2 .''·12 

The floating- point SPEC95 su ite ( CFP95) contains 
10 compute- intensive floating-point benchmarks writ
ten in FORTRAN and includes the benchmarks shown 
in Table 3 .

"·12 

The SPEC Homogeneous Capacity Method 
(SPEC95 rate ) measures how t:\st an SMP system can 
perform multiple CINT95 or CFP95 copies (tasks) .  
The SPEC95 rate metric measures the throughput of 
the system running a number of tasks and is used tor 
evaluating multiprocessor system performance. 

Table 2 
CINT95 Benchmarks (SPECint95) 

Benchmark 

099.go 

124.m88ksim 

126.gcc 

129.compress 

130.1i 
132.ijpeg 

134.perl 

147.vortex 

Table 3 

Description 

Artificial intelligence, plays the 
game of Go 
A Motorola 88100 microprocessor 
simulator 
A GNU C compiler that generates 
SPARC assembly code 

A program that compresses large 
text files (about 16 MB) 
A LISP interpreter 
A program that compresses/ 
decompresses an image 
A Perl interpreter that performs 
text and numeric manipulations 
A database program that builds and 
manipulates three interrelational 
databases 

CFP95 Benchmarks (SPECfp95) 

Benchmark 

1 01.tomcatv 

102.swim 

1 03.su2cor 

1 04.hydro2d 

107.mgrid 

110.applu 

125.turb3d 

141.apsi 

145.fpppp 

146.wave5 

Description 

A fluid dynamics mesh generation 
program 

A weather prediction shallow water 
model 

A quantum physics particle mass 
computation (Monte Carlo) 

An astrophysics hydrodynamical 
Navier-Stokes equation 

A multigrid solver in a 3-D potential 
field (electromagnetism) 

Parabolic/elliptic partial differential 
equations (fluid dynamics) 

A program that simulates 
turbulence in a cube 

A program that simulates tempera
ture, wind, velocity, and pollutants 
(weather prediction) 

A quantum chemistry program that 
performs multielectron derivatives 

A solver of Maxwell's equations on 
a Cartesian mesh (electromagnetics) 
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Figure 5 compares the SPEC95 performance of 
the AlphaServer 4 1 00 systems to that of the other 
industry- lead ing vend ors using published results as 
of July 1 996. Figure 6 shows the same comparison in 
the multistream SPEC95 rates u Note that all the 
SPEC95 comparisons in  this paper are based on the 
peak results that i nclude extensive compiler optimiza
tions. 1 2  Figure 5 indicates that even the uncached 
AlphaServer 4100 5/300£ performs better than the 
HP 9000 K420 system, and the AlphaServer 4 100 
5 I 400 shows approximately a two times performance 
advantage over the HP system. The AlphaServer 4 100 
5/300 SPECin t95 performance exceeds that of the 
Intel Pentium Pro system, and the Al phaServer 4 100 
5/300 SPECtp95 performance is double that of 
the Pentium Pro . The AlphaServer 4100 5/400 is 
1 . 5 times (SPECint9 5 )  and 2 . 5  times (SPECfp95 ) 
faster th::m the Pentium Pro system. The multiple
processor SPECtp95 on the AlphaServer 4 100 is 
obtained by decomposing  benchmarks using the KAP 
preprocessor from Kuck & Associates. Note that the 
c:Khed tour- CPU AlphaServer 4 I 00 5/300 outper
tCll'IllS the Sun Ultra Enterprise 3000 with six CrUs in 
the SrECtp95 para llel test. The performance benefit 
of the cached versus the uncached AlphaServer 4 100 
is greater in multiprocessor configurations than in uni
processor configurations. 

SPEC95 Multistream Performance Scal ing 

Figures 7 and 8 show srEC95 multistrcam perfor
mance as the number of CrUs increases. The SMr 
scal ing on the AlphaServer 4 100 is comparable to that 
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Figure 5 
SPEC95 Speed Results 
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on the AJphaServer 2 100 for integer workloads 
( that fit in the 5/300 2 -MB B-cache ) .  Note that 
SPECint_rate95 scales proportionally to the number 
of CPUs in the majority of systems, since these work
loads do not stress the memory su bsystem.  The SMP 
sca l ing in SPECfP_rate95 is lower, s ince the majority 
of these workloads do not fit i n  1 - to 4-MB caches . 

I n  the majority of applications, the AJphaServer 
4100 5/300 and 5/400 systems improve SMP sca l ing 
compared to the uncached AJphaServer 4 100 5 /300E 
by reducing the bus traffic ( from fewer B-cache 
misses ) and by takjng advantage of the duplicate tag 
store ( DTAG )  to reduce the number of S -cache 
probes . The cached 5/300 scaling, however, is 
lower than the uncached 5/300E scal i ng in memory 
bandwidth- intensive applications (e .g . ,  tomcat\' and 
swim) .  The analysis of traces collected by the logic 
analyzer that monitors system bus traffic indicates that 
the lower scaling is caused by ( 1 )  Set Dirty overhead, 
where Set Dirty is a cache coherency operation used to 
mark data as modified in the initiating CPU's cache; 
( 2 )  sta l l  cycles on the memory bus; and ( 3 )  memory 
bank conflicts . 2 · 3  

Symmetric Multiprocessing Performance Scal ing 
for Paral lel Workloads 

Paral le l  workloads have higher data sharing and lower 
memory bandwidth requirements than multistream 
workloads. As shown in Figu res 9 and 10 ,  the 
AJphaServer 4 1 00 models with module - level caches 
improve the SMP sca ling compared to the uncached 
AJphaServer 4 100 model in the UNPACK 1000 X 
1 000 ( mi l lion floating-point operations per second 
[MFLOPS ] )  and the paral lel S PECfP95 benchmarks 
that benefit from 2- and 4-M.B B -eaches. Figure 9 
indicates that tl1e AJphaServer 4 100 5/400 outper
forms the SGJ Origin 2000 system in the UNPACK 
1000 X 1 000 bench mark by  40 percent .  Figure 10  
ind icates that the four-CPU AlphaServer 4 100 5/400 
shows better scal ing than any other system in its class 
and outperforms the six-CPU Sun U ltra Enterprise 
3000 system by more than 70 percent. 

Very Large Memory Advantage: 
Commercial Performance 

As shown in Figures l l  and 1 2 ,  the AJphaServer 4 100 
performs well in the commercial benchmarks TPC-C 
and AIM Suite VI I . 1 3• 1 4  In addition to the low memory 
and ljO latency, the AJphaServer 4 1 00 takes advan
tage of the  VLM design i n  these I/O-intensive work
loads : with four CPUs, the platform can support up to 
8 GB of memory compared to l GB of memory on the 
AJphaServer 2 100 system with four  CPUs and 2 GB  
with three crus. 
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PENTIUM PRO (200 MHZ) 

ALPHASERVER 2 1 00 5/300 
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Figure 1 2  
AJ M Su ite VII Jvlul riuser/S hared U N I X  M i x  Performance 

Figures 1 1  and 1 2  show the AlphaServer 4 100 sys
tem's TPC-C performance ( using an Oracle database) 
and AIM Suite V I I  throughput pertormance as com
pared to other industry-leading vendors. Note that the 
performance of the uncached AlphaServer 4 100 
5/300E is comparable to that of the 300-MHz 
AlphaServer 2 100.  (The AlphaServer 2 100 system 
used in this test had three CPUs and 2 GB of memory, 
whereas the AlphaServer 4 100 system had four CPUs 
and 2 GB of memory. )  

With its 2 - M B  B-cache, the AlphaServer 4 100 
5/300 improves throughput by 40 percent in the 
AIM Su ite V I I  benchmark tests as compared to 
the uncached AlphaServer 4 100 5 /300E. The 
AlphaServer 4 1 00 5/400, with its 4 -MB B -cache, 
benefits from its 33 percent taster clock and two times 
larger B -cache and provides 40 percent improvement 
over the A lphaServer 4 100 5/300. Note that the 
AlphaServer 4 100 5/300 and 5/300E results were 
obtained through in ternal testing and have n ot been 
AIM certified . The AlphaServer 5/400 results have 
AIM certification .  

Compared to the best published industry AIM Suite 
VI I  pertorma nce, the AlphaServer 4 100 5/300 
throughput is almost twice that of the Compaq 
ProLiant 4500 server, and the AlphaServer 4 100 
5/400 throughput is more than 50 percent higher 
than that of the Compaq ProLiant 5000 server. 1 4  At 

the October 1 996 UNIX  Expo, the AipbaServer 4 100 
family won three AIM Hot I ron Awards: for the best 
performance on the vVindows NT operating system 
( for  systems priced at more than $50,000) and tor 
the best price/performance i n  two UNIX mixes
multi user shared and file system ( tor systems priced at 
more than $ 1 50,000 ) . 1 4 

Cache Improvement on the 
Al pha Server 41 00 System 

Figures 1 3  and 1 4  show the percentage performance 
improvement provided by the 2 -MB B - cache in 
the AlphaServer 4 100 5/300 as compared to the 
uncached AlphaServer 4 100 5 /300E. Figure 1 3  
shows the improvement across a variety of workloads; 
Figure 1 4  shows the improvement in i nd ividual 
SPEC95 benchmarks for one and tour CPUs. 

As shown in Figure 1 3, the 2-MB B -cache in  the 
Alp baSe rver 4 100 5/300 improves the performance by 
5 to 20 percent for one CPU and 25  to 40 percent for 
tour CPUs as compared to the uncached AlphaServer 
4 100 5/300E system .  The benefits derived from having 
larger caches are significantly greater tor tour CPUs 
compared to one CPU, since large caches help alleviate 
bus traffic in multiprocessor systems. 

The workloads that do not fit in the 2- to 4-MB 
B - cache ( i .e . ,  tomcat\', swim,  applu) in Figure 1 4  
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Figure 1 3  
PcrrormatKe I m pro,·cmcnt ;lcross VJrious Wol'i<ioads ti·om a 2 - lv! B B - C1ehc 

run raster on the u ncached A l p haServer 4 100 tha n 
on the cached AJphaServer 4 tOO ( u p to 10 perce nt  
taster on one CPU and 2 0  percent faster on f() u r  
C P U s )  d ue t o  the overhead f(>r prob ing the B- cache 
and the i ncrease i n  Set Dirty bandwid th . The majority 
of the other workl oads benefit fi·om la rger caches. 

The Ai phaServcr 4 100 5/400 flt rther improves 
the ped(mnance by increasing the s ize of th e  B - cache 
fi·om 2 MB to 4 MB. I n  Jdd ition, the CPU clock 
im prove ment of 33 percent, B -cache i mprove ment of 
7 percent in !Jrency and l l  percent in bandwid th,  and 
the memo ry bus speed i mprovement of 1 1  percen t 
together yield an ovec1 1 l 30 to 4 0  percen t improve
ment in the A lp haServe r 4 1 00 model 5/400 perfor
mance as co mpared to that of the AlphaScrver 4 1 00 
model 5/3 00.  

Large Scientific Applications: Sparse UNPACK 

The SpJrse UNPACK benchmJrk solves a large, sparse 
symmetric svsrem of l i near eq uations using the con 
j u gate grJd ient (CG)  i terative method . The bench
mark h as th ree cases, each with a d i fferent tvpe of 
precond irionc r. Cases 1 and 2 usc the incomplete 
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Choles ky ( ! C) t:<ctori zarion as the preconditioner, 
w hereas Case 3 uses the diagonal  precond itioner. 

This workload is representative of l :t rge scientific 
:tpp l iotions that d o  not fi t  i n  mega byte-size caches. 
The workload is  i m portallt in l arge appl ications, 
e . g . ,  models of electrica l ncrworks, economic systems, 
d i ffltsion ,  radiation, a n d  c lasticirv. I t  was decom posed 
to r u n  on m u l tiprocessor systems using the KA P  
preprocessor. 

f igure 1 5  shows that the uncached AJphaServer 
4 1 00 5/300E outper f(mm the Al phaServer 8400 by 
4 1  percent for one CPU and by 9 percent fcJr two CPUs 
because of h igher de livered system bus bandwidth . 
However, the AlphaServcr 4 1 00 5/300E tai ls behind 
with three and tour CPUs, as i t  docs i n  the McCa lpin 
memory bandwidth tests shown i n  Figure 3 .  Note tllJt 
with one CPU, the 300- M H z  u tlCJched AlphaServer 
4 1 00 pc r f(mm :tt the same level  as the 400-MHz 
cached AlphaServer 4 1 00 and pcrfcm11S 1 8  percent 
better than the 300-M Hz cached A l ph aSen'er 4 1 0 0 .  
T h is is <1 11 e xamp l e  o f  t h e  tvpe of appl ication tor 
which the cache d i m i n ishes the pedcmllJilCe . The 
AlphaScrver 4 1 00 5/300E is a better march for t his 
class of applications than the cached systems. 
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Image Rendering 

The AlphaServer 4 100 shows significant performance 
advantage in image rendering applicatjons compared to 
the other industry-leading vendors. Figure 16 shows 
that the AlphaServer 4 1 00 5/400 system is approxi 
mately 4 rimes taster than the Sun SPARC system that 
was used in  the movie Toy Story, as measured in 
RenderMarks. ' 5  The AJphaScrver 4 1 00 is 2.6 times 
taster than the Sil icon Graphics POWER CHALLENGE 

system and 2 .4 times faster than the HP /Convex 
Exemplar S PP- 1 200 system on the M ental Ray image 
rendering application tt·om Mental Images. These 
image rendering appl ications rake advantage of larger 
caches, and the performance improves as the cache size 
increases, particularly with four C:PUs. 

Performance Counter Profiles 

The figures in  this section, Figures 1 7  through 22,  
show the performance statistics collected using 
the bui l t- in Alpha 2 1 1 64 performance cou nters on the 
AlphaServer 4 100 5/400 system.  These hardware 
monitors col lect various events, incl uding the num ber 
and type of i nstructions issued, mu l tiple issues, s ingle 

issues, branch mispred ictions, sta ll components, and 
cache misses.' ·"'. l '  These statistics are usdi.d for analyz
ing the system behavior under various workJoads.  
The resu l ts of  this ana lysis can be used by computer 
architects to drive hardware design trade-oHs in  fi.1 ture 
system designs. 

The S PEC95 cycles per i nstruction ( C P I )  d ata 
presented in Figure 1 7  shows lower C:PI  val ues for 
the i nteger benchmarks ( CPI values of 0 .9 to 1 . 5 )  
than tor the floating-point benc hmarks ( CPI val ues 
of 0 .9 to 2 . 2  ) . The C P I  in commercial workloads 
(e .g . ,  TPC- C )  is  higher than in the SPEC bench
marks, primarily because commercial workloads have 

a higher stal l t ime, as shown in Figure 1 8 .  Note 
that the performance counter statistics were col l ected 
with tou r  CPUs running TPC-C (with a Sybase data
base ) ,  while S PEC95 statistics were col lected on a 
single CPU.  

The Alpha 2 1 1 64 has two i nteger and two floating
point pipel ines and is capable of issuing up to four  
i nstructions s imultaneously. The i nteger pipe l ine 0 
executes arithmetic, logical , load/store, and shift 
operations. The integer pipe l ine l executes arithmetic, 
logica l ,  load , and branch/jump operations. The 
floating-point pipel i ne 0 executes add, subtract, 
Digital Tec h n ical journal Vol .  8 No. 4 1 996 1 3  
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compare, and floating-point branch instructions. The 
floating-point pipe l ine 1 executes mul tiply i nstruc
t ions.  The time d istribu tion il l ustrated in  Figure 1 8  
ind icates that most of the issu i ng time is spent in single 
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and d ual issu ing. Triple and quad issuing is noticeable 
in  several floating-point benchmarks, but, on averap:c ,  
only 3 percent of  the time i s  spent  on triple a nd  qu ,'td 
issuing in the SPECf1..,95 benchmarks. 
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The sta l l  time (dry p lus  frozen sta l ls  in Figure 1 8 )  
i s  h igher i n  the floating-point benchmarks than in 
the integer benchmarks and higher i n  the TPC-C 
benchmarks than in the SPEC95 benchmarks. Dry 
stalls inc lude instruction stream ( ! -stream ) stal ls 
caused by the branch mispredictions, program counter 
( PC)  mispredictions, replay traps, I -stream cache 
misses, and exception drain.  Frozen stalls include data 
stream (D -stream)  sta l ls caused by D-stream cache 
m isses as well as register conflicts and un i t  busy. Dry 
sta l l s  are h igher in SPECint95 and TPC-C ( main ly 
because of I -stream cache misses and replay traps ) ,  
whereas frozen stalls a re  h igher in  SPEC!p95 and 
TPC-C ( mainly because of D-stream cache misses) .  

The Alpha 2 1 1 64 microprocessor reduces the per
formance penalty due to cache misses by implement
ing a brge, 96- KB on-chip S-cache:' '  This cache is 
three -way set associative and contains both instruc
tions and data . The four-entry prde tch bufter al lows 
prefetching of the next four  consecutive cache blocks 
on an i nstruction cache ( I  -cache) miss. This reduces 
the pena lty tor ! -stream stalls. The s ix-entry m iss 
add ress file (MAF)  merges loads in the same 32-bytc 
block and a l lows servicing multiple load misses wi th 
one data fi l l .  A six-entry write buffe r  is used to reduce 
the store bus traffic and to aggregate stores into 
32-byte blocks.'"' 

Figure 19 shows the instruction mix  in SPEC95 .  
The Alpha instructions are grouped into the fol lowing 
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80% 

categories: load ( both floating-point and i nteger),  
store ( both floating-point and integer) ,  integer (a ll 
integer instructions, excluding ones with only R3 l or 
l i teral as operands) ,  branch ( al l  branch instructions 
including uncond i tiorral ), and floati ng-point ( except 
floating-point load and store instructions) . Figure 19  
shows the percentage of  instructions i n  each category 
relative to the total number of instructions executed .  
Note that  load/store i nstructions account for 30 to 
40 percent of a l l  instructions issued. I nteger instruc
tions are present in  both integer and floating-point 
benchmarks, but no floating-point i nstructions exist in 
the SPECint95 and commercial TPC-C workloads .  
The i nteger and commercial workloads execute more 
branches, while the branch instructions make up only 
a kw percent of a l l  i nstructions issued in the floating
point workloads. 

The cache misses shown in Figure 20 are higher 
in the floating-point benchmarks than in  the inte
ger benchmarks . The I -cache misses arc low in the 
floati ng-point benchmarks ( except tor !pppp) :1 11d 
higher in the SPECi nt95 benchmarks and the TPC-C 
benchmark. The D-cache m isses are high in the major
ity of the benchmarks, which indicates that a larger D
cachc wou ld  reduce D-stream m isses. The TPC-C 
benchmark wou ld benefit from a larger 5 -cache ami 
taster R -oche, s ince the number of 5 -cachc misses is 
high . The B -cache m isses are negligi b le i n  the 
SPECint95 benchmarks and higher in the majority of 

1 00% 

KEY: 

• STORES 

LOADS 
0 I NTEGER OPERATIONS 
0 FLOATING-POINT OPERATIONS 

• BRANCHES 



TPC-C 

SPECI NT95 

VORTEX 

PERL 

M88KSIM 

Ll 

IJPEG 

GO 

GCC 

COMPRESS 

SPECFP95 

WAVES 

TURB3D 

TOMCATV 

SWIM 

SU2COR 

MGRID 

HYDR02D 

FPPPP 

A PSI 

APPLU 

CACHE MISSES 

.... 
-

KEY: 

• I-CACHE MISSES 

• D-CACHE MISSES 

0 S-CACHE MISSES 

• B-CACHE MISSES 

0 � 100 1� �0 

CACHE MISSES PER 1 ,000 INSTRUCTIONS 

Figure 20 
Cache Misses 

the SPECfP95 TPC-C bench marks. This data indicates 
that complex commercial workloads, such as TPC-C, 
are more profoundly affected by the cache design than 
simpler workloads, such as SPEC9 5 .  

The replay traps are generally caused by  ( l )  fu ll 
write -buffer (WB )  traps (a  fu l l  write buffer when a 
store instruction is executed) and fu l l  miss address file 
( MAF) traps (a full MAF when a load instruction is  
executed ); and (2) load traps ( speculative execution of 
an instruction that depends on a load instruction, and 
the load misses in the D -cache)  and load-after-store 
traps (a load following a store that hits in the D-cache, 
and both access the same location ) . 3  The replay traps 
and branch/PC mispredictions shown in Figure 21 
are not the major reason for the high stall time i n  the 
commercial workloads (TPC-C),  since traps and m is
predictions are h igher in  some of the SPECint95 
benchmarks than in TPC-C. Instead, a h igh number of 
cache misses (see Figure 20) correlates well with the 
high stall time and CPI (see Figure 1 7 )  in TPC-C.  

Figure 22 shows the estimated stall components in 
SPEC95 and TPC-C. A time-allocation model is used to 
analyze the performance effect of different stal l compo
nents. The total execution time is divided into t\vo com
ponents: the compute component ( where the CPU is 
issuing instructions) and the stall component (where 

the CPU is not issuing instructions) .  The stall compo
nent is further divided into the dry and fi·ozen stalls: 

time = compute + stal l 
compute = single + dual + aiple + quad issu ing 
stall = dry + frozen 

dry = branch mispredictions + PC mispredictions 
+ replay traps + I -stream cache misses 
+ exception drain sta l ls 

frozen = D-su·eam cache misses 
+ register conflicts and unit busy 

The branch and PC mispredictions affect the per
formance of SPECint95 workloads ( 6 percent of the 
time is spent in  branch and PC mispredictions in 
SPECint9 5 )  and have little effect on the performance 
of SPECfP95 workloads ( less than 1 percent of the 
time) and the TPC-C benchmark ( 1.4 percent of 
the time) .  The SPECint95 workloads are affected pri
marily by the load traps, whereas the SPECfP95 
benchmarks are affected by both load and WB/MAF 
traps. Note that the time spent on a load replay trap 
is overlapped with the load -miss time. 

The S-cache and B-cache stalls are high i n  the 
SPECfP95 and TPC-C benchmarks, where the stal l  
t ime is dominated by the B -cache and memory laten
cies. Note the high stall time resulting from waiting tor 
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data from memory (c lose to 40 percent ) in several of 
the SPECfp95 benchmarks that do not fit i n  a 4-MB 
cache. Al though it contributes to the h igh SPECfP95 
sta l l  time,  the memory component h as a negl igible 
effect on SPECint95 performance, since these bench
marks generate on ly a smal l  number of B -cache misses 
( see Figure 20) .  Figure 22 indicates that sta l ls  caused 
by cache misses are the largest component of the total 
stall time; therefore, reducing cache misses and 
improving cache and memory latencies would  yield 
the largest performance benefit. 

Once calibrated and val idated with measurements, 
this model is an effective tool for evaluating the perfor
mance impact of various components on the overa l l  
system design .  System architects can vary parameters, 
l ike the cache or memory access times or cache size, 
and adjust the appropriate stall component to predict 
performance of alternative designs without carrying 
out detailed and often time-consuming architectural 
s imulations. 

Conclusion 

Using several performance metrics and a variety of 
workloads, we have demonstrated that the D I GITAL 

AJphaServer 4 100 family of midrange servers provides 
significant pertormance improvements over the 
previous-generation AJphaServer platform and pro
vides performance leadership compared to the lead ing 
i ndustry vendors' platforms. The major AJphaServer 
4 100 performance strengths are the low memory and 
I/0 latency and high memory bandwidth, the large
memory support (Vl,M) ,  and the fast Alpha 2 1 1 64 
microprocessor. The work described in this paper has 
led ro design changes that are expected to be imple
mented i n  tlHu re versions of the AJphaServer 4 100 
platform. The anticipated performance benefits wi ll 
come ti-om a faster CPU, faster and larger caches, faster 
memory, and improved memory bandwidth .  
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The AlphaServer 4100 
Cached Processor Module 
Architecture and Design 

The DIG ITAL AlphaServer 4100 processor module 

uses the Alpha 21 1 64 microprocessor series com

bined with a large, modu le-level backup cache 

(B-cache). The cache uses synchronous cache 

memory chips and includes a dup l icate tag store 

that allows CPU modu l es to monitor the state 

of each other's cache memories with minimal 

disturbance to the microprocessor. The synchro

nous B-cache, which can be easily synchronized 

with the system bus, permits short B-cache 

access times for the DIG ITAL Alpha Server 4100 

system. It a lso provides a smooth trans ition 

from accessing the B-cache to transferring data 

to or from main memory, without the need for 

re-synchronization or data buffering. 

I 
Maw·ice B. Steimnan 

George J. Harris 

Andrej Kocev 
Virginia C. Lamere 
Roger D. Pannell 

The DIGITAL Alp haScrvcr 4100 series of servers repre
sents the third generation of Alpha microprocessor
based , mid-range computer systems. Among the 
technical goals achieved in the system design were the 
use oftour CPU modu les, 8 giga bytes (GR)  of memorv, 
and partial block writes to improve 1/0 pertonnann.:. 

Unlike the previous gmcration of mid-range servers, 
the AJphaServcr 4 1 00 series em accommodate tour 
processor modu les, whi le retaining the maxi mum 
memory capacity. Using mu l tip le crus to shJre the 
workload is known <lS symmt:tric mu ltiprocessi ng 
(SMP) . As more CI'Us ;m.: added, the performa nce 
of an SMP system increases . This abi l ity to increase 
performance by adding CPUs is known as scalabi l i ty. 
To achieve perkct sca labi l i tv, the performance offc>ur 

crus would have to be C\Jctly t(>ur  times that of a s in
gle CPU system.  One of the goals of the design was to 
keep scalabi l itv as h igh as possible yet consistem with 
low cost. For example, the AlphaServer 4100 system 
ach ieves a sca labi l ity bctor of 3 . 3 3  on the Linp<Kk 
1000 X 1000, J large, parJ I Icl scientific benchmark. 
The same benchmark achieved 3.05 scal abi lity on the 
previous-gcnec1tion pi:Jtt(mn . '  

The 8-GB memory in  the  AlphaScrvcr 4100 system 
represents a bctor oft(>Lu· improvement compared with 
the previous generation of mid-range servers.2 The new 
memory is also faster in terms of the data volume flow
ing over the bus ( b:mdwidth) and data access time 
( l atency). Again ,  compared with the previous genera
tion, a\'ai lable memory bandwidth is improved bv a be
tor of2 .7  and latency is reduced bv a fKtor of0.6 .  

I n  systems ofrhis class, memory is usually addressed 
in large blocks of 32 to 64 bytes. This can be ineffi
cient when one or two bytes need to be modified 
because the entire block might have to be read out  
ti·om memory, modified , and  then written back into 
memory to achievt.: this mi nor modi fication. The abi l 
ity to modif)' a smal l fi·Jction of the block withou t hav
ing to extract the entire b lock fi·om memory results in 
partial block writes . This capabi l i ty also represents an 
advance over the pr�.:vious gcm:ration of servers. 

To take fi.dl advantage of the Alpha 2 1 164 series of 
microprocessors, a nc,,· system bus was needed . The bus 
used in the pt-c,·ious generation of servers was not bst 
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enough, and the cost and size of the bus used in  high
end servers was not adaptable to mid-range servers. 

Three separate teams worked on the project. One 
ream defined the system arch i tecture and the system 
bus, and designed the bus control logic and the mem
ory modules. 3  The second team designed the periph
eral i n terface ( I/O) ,  which consists of the Peripheral 
Component Interconnect ( PCI ) and the Extended 
Industry Standard Architecture ( EI SA) buses, and its 
interface to the system bus ( I/0 bridge) .' The third 
team designed the CPU module. The remainder of 
this paper describes the CPU module  design i n  deta i l .  
Before delving into the discussion ofthc CPU mod ule, 
however, it is n ecessary to briefly describe bow the sys
tem bus functions. 

The system bus consists of 1 28 data bits, 16 check 
bits with the capabil ity of correcting single- bit  errors, 
36 address bits, and some 30 control signals. As many 
as 4 CPU modules, 8 memory modu les, and l l/0 
module plug into  the bus. The bus is 1 0  i nches l ong  
and, with a l l  modules i n  p lace, occupies a space of  
1 1  by  1 3  by  9 i nches. With power suppl ies a nd  the 
console, the entire system fits into an enclosure that is 
26 by 1 2  by 1 7. 5  inches in  d imension . 

CPU Module 

The CPU module  is built around the Alpha 2 1 1 64 
microprocessor. The module's main fu nction is to 
provide a n  extended cache memory tor the m icro
processor and to al low it to access the system bus. 

The m icroprocessor has its own interna l  cache 
memory consist ing of a separate primary data cache 
( D-cache) ,  a primary instruction cache ( ! -cache ) ,  and 
a second- level data and i nstruction cache (S -cache) .  
These internal caches are relatively smal l ,  ranging in  
size from 8 kilobytes ( KB )  for the  primary caches to 
96 KB for the secondary cache.  Although the internal 
cache operates at microprocessor speeds in the 400-
megahcrtz ( MHz)  range, i ts small s ize would l imit 
performance in most appl ications. To remedy this, the 
microprocessor has the controls t(x an optional exter
nal cache as large as 64 megabytes ( M B )  in size. As 
implemented on the CPU module,  the external cache, 
a lso known as the backup cache or 13-cachc, ranges 
from 2 MB to 4 MB in size, depend ing on the size 
of the memory chips used . In this paper, a l l  references 
to the cache assume the 4-MB implementation . 

The cache is organized as a physica l ,  d irect-mapped, 
write-back cache with a 1 44-bit-wide data bus consist
ing of 1 2 8  data bits and 1 6  check bits, which matches 
the system bus. The check bits protect data integrity 
by providing a means for single-bit-error correction 
and double-bit-error detection . A physical cache is one 
in which the address used to address the cache mem
ory is translated by a table i nside the microprocessor 
that converts software addresses to physical memory 
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locations. Direct-mapped refers to the way the cache 
memory is addressed, in which a subset of the physical 
address bits is used to uniquely p lace a main memory 
location at a particular location in  the cache .  When the 
microprocessor modifies data in a write- back cache, it 
only updates its local cache .  Main memory is updated 
later, when the cache block needs to be used tor a d if 
ferent memory address. ·when the microprocessor 
needs to access data not stored in tbe cache, it performs 
a system bus transaction (fil l )  that brings a 64-byte 
block of data from main memory into the cache .  Thus 
the cache is said to have a 64-byte block size. 

Two types of cache chips are in common use in 
modern computers: synchronous and asynchronous . 
The synchronous memory chips accept and del iver 
data at d iscrete times l i nked to an external clock. The 
asynchronous memory elements respond to i nput 
signals as  they arc received,  without regard to a clock. 
Clocked cache memory is easier to interface to the 
clock-based system bus. As a result, a l l  transactions 
involving data flowing ti-om the bus to the cache (fi l l  
transactions)  and from the  cache to  the bus (write 
microprocessor- based system transactions)  are easier 
to i mp lement and faster to execute. 

Across the industry, personal computer and server 
vendors have moved from the trad itional asynchro
nous cache designs to the higher-pertorming synchro
nous solutions. Smal l  synchronous caches provide 
a cost-effective performance boost to personal com
puter designs. Server vendors push synchronous
memory technology to i ts l im i t  to achieve data rates 
as h igh as 200 MHz; that is, the cache provides new 
data to the microprocessor every 5 nanoscconds.'·6 
The AJphaScrver 4100 server is D I GITAL's first prod
uct to employ a synchronous modu le- level cache .  

At power-up, the cache contains no usefu l data, 
so the first memory access the microprocessor 
makes results i n  a miss . I n  the block diagram shown 
in Figure l ,  the m icroprocessor sends the address out 
on t\vo sets of l i nes: the i ndex l i nes connected to the 
cache and the add ress l ines connected to the system 
bus address transceivers . One of the cache chips, called 
the TAG, is not used for data but i nstead contains 
a table ofvalid cache-block addresses, each of which is 
associated with a val id  bit . When the microprocessor 
addresses the cache, a subset of the high-order bits 
add resses the tag table. A miss occu rs when either of 
the fol lowing conditions has been met. 

l .  The addressed val id bit is clear, i .e . ,  there is no  valid 
data at that cache location . 

2 .  The add ressed valid bit is set, but the block address 
stored at that location does not match the address 
requested by the microprocessor. 

Upon detection of a miss, the microprocessor 
asserts the READ MISS command on a set of fou r  
command l ines. This starts a sequence of events 
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that results in the add ress being sent to th<.: system bus. 
Th<.: m<.:mory r<.:c<.:ives this add ress and after a delay 
( m emory lat<.:ncy) ,  it sends the data on the system bus. 
Data transe<.:ivers on the CPU mod u l<.: rec<.:ive the 
data and start a cache fill transaction that r<.:su Its in 
64 byt<.:s (a cache block)  being written into th<.: cache 
as t(>ur consecutive 1 28 -bit words \-vith their associated 
check bits. 

In an S M P  system, two or more C:PUs may have the 
same data in their cache memories. Such data is known 
as shared , and the shared bit is set in th<.: TAG tc>r that 
address . The cache protocol used in the AlphaScrver 
4 100 s<.:ries of servers allows each CPU to modifY <.:ntries 
in its own cache .  Such modified data is known as djny, 
and th<.: d irty bit is set in the TAG . If the data about to be 
modified is shared , however, th<.: microproc<.:ssor resets 
the shar<.:d bit, and other CPUs invalidate that data in 
their own cach<.:s. The need is thus apparent t(>r a way 
to k:t a l l  Cl'Us keep track of data in oth<.:r caches. This 
is accomplished by the process known as snooping, 
aid<.:d by s<.:veral dedicated bus signals. 

To faci l i tate snooping, a separate copy of the TAG is 
maintain<.:d in a dedicated cache chip, ca l k:d dup l icate 
tag or DTAG . DTAG is controlkd by an appl ication
specific i ntegrated circuit (AS I C) ca l kd VCTY. VCTY 
and DTAG arc located next to <.:ach other and in close 
prox imity to the address transc<.:iv<.:rs. Their t iming is 
tied to the system bus so that th<.: address associated 
with a bus transaction can easily lx applied to the 
DTAG, which is a synchronous memory d<.:vice, and 
th<.: stat<.: of the cache at that add ress can be read out. 
I f  that cache location is vali d  and the addr<.:ss that is 
stor<.:d in the DTAG matc hes that of the system bus 

! 

command (a hit  i n  DTAG ), the signal MC�SHARED 

may be asserted on the system bus by VCTY. If that 
location has been modified by the microprocessor, 
then MC_DI RTY is asserted.  Thus each CPU is aware 
of the state of all the caches on the system .  Other 
acrions also take place on the module as part of this 
process, which is explained in greater detai l in  the sec
tion deal ing specifically with the VCTY. 

Because of the write- back cache organization, a spe
cial type of  miss transaction occurs when new data 
needs to be stored i n  a cache location tbat is occupied 
by dirty data . The old data needs to be put back into 
the main memory; otherwis<.:, the changes that the 
microprocessor made will be lost. The process of 
returning t l1at data to memory is cal led a victim write
back transaction, and the cache location is said to be 
victimized . This process i nvolves moving data out of 
the cache, through the system bus, and into the main 
memory, fo l lowed by n<.:w data moving from the main 
memory into the cache as in an ordi nary fi l l  transac
tion . Completing this fi l l  quickly reduces the tim<.: that 
the microprocessor is waiting for the data. To speed up 
this process, a hardware data bufkr on the module is 
used for storing the old data whi le the new data is 
being loaded into the cache. This buffer is physica l ly 
a part of the data transceiver since each bit of the trans
ceiver is a shift register four bits long. One hundred 
twenty-eight shift registers can hold the entire cache 
block ( 5 1 2  bits) of victi m data while the new data is 
being read in through the bus receiver portion of the 
data transceiver chip .  In this manner, the microproces
sor does not have to wait until the victim data is trans
tcrred along the system bus and into the main memory 
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bd()re the fill portion of the transanion can take p l ace . 
When the fil l  is comp leted , the vict im data is sh ifted 
out of the victim bu fte r and into the main memory. 
This is known as Jn exchange,  since the victi m write
back and fill transactio ns execu te o n  the system bus i n  
reverse of th e  order that was i n i tiated b y  the micro
processor. The transce iver has a signal cal led B Y PASS; 
when asserte d ,  i t  causes th ree of the tour bi ts of the 
victim sh ift register to be bypassed .  Consequent ly, t()r 
ord i nary block write tr:msactions, the transcei\'Cr oper
ates without im·olving the \'ictirn bufter. 

B-Cache Design 

As previously me ntioned , the B - cache uses synchro
nous random- access memory ( RAJ'vl ) devices. Each 
device requ i res a clock that loads signa l inp uts i nto 
a register. The RAM operates i n  the registered in pu t , 
flow-t hroug h output mode. This means that an input  
fl ip -flop captu res addresses, write enab les , and write 
datJ,  but the i nternal  RAM arrJy drives read ou tp u t  
d ata d irectly a s  soon a s  i t  becomes avai lab l e , withou t 
n:gard to the cl ock. The output enab le sign al acti\'atcs 
RA1vl output drin:rs asynchronously, ind epcndem ly of 
the clock. 

One of the fi.mdamenral properties of c locked logic 
is the requ iremem t()r the data to be present tor some 
defined time ( setup time ) bdon: the clock edge , �md to 
remain u nchanged tor another imervJ I fo l lowi ng the 
clock edge ( hold time ) .  Obviously, to meet the setup 
time, the clock must arrive at the RAM some time after 
the data or other s ign a ls needed by the RAM . To h e lp 
the mod u le des igner meet th is requ irement, the micro
processor may de lay the RAM clock by one i nternal 
microprocessor cycle time (approx imate ly 2.5 nanosec
onds) .  A programmable register in the microprocessor 
controls whether or not this de lay is invoked .  Th is 
de lay is used i n  the AlphaServer 4 100 series CPU mod
u les, and it e l iminates the need t<>r external delay l ines . 

for i ncreased data bandwidt h , the cache ch ips used 
on CPU mod u les are designed to overlap portions of 
successive data accesses. The first d ata b lock becomes 
ava i lable Jt the m icroprocessor in pu t  after a de l ay 
equa l to the B C_READ_S PEED parameter, wh ich is 
preset at  power- u p .  The t() l lowing data blocks arc 
! Jtched after a shor ter delay, B C_READ_SPEED
WAVE . The BC_READ_S l ' E E D  is set at 10 micro
processor cyc les and the WAVE va l ue is  set to 4,  so that 
B C_READ_SPEED-WAV E is 6 .  Thus, after the first 
de lay of 10 m icroprocessor cyc les , successive data 
blocks arc del ivered every 6 microprocessor cycles . 
Figure 2 i l l ustrates these concepts . 

I n  Figure 2 ,  the RAM c lock at the m icroprocessor is 
dc iJyed by one m icroprocessor cyc le .  The RAM clock 
Jt the RAM device is fur ther delayed by c lock bufkr 
and network de lays on the mod u le . The address at the 
microprocessor is d riven where the clock wou ld have 
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occu rred had i t  not been de layed by one m icroproces
sor cyc le , and the address at the RAM is fu rt h er delayed 
by i ndex bufkr and network dcl :�ys . Index setup at the 
RAM satisfies the minimum setup time requ ired by the 
ch ip , and so does address hold . D:�ta is  shown as 
:1ppearing after data access time (a ch ip property) , and 
data setup at tbe microprocessor is also i l lustrated.  

VCTY 

As d escribed earli er, a d u p l icne copv of the micro
processor's pri marv TAG is m:� i n ta ined in  the DTAG 
RAM .  I f  DTAG were not prese nt, cJch bus address 
wou ld have to be app l ied by the m icroprocessor to the 
TAG ro decide i f  the d atJ at  this address is p resent i n  
t h e  B -cache. This act ivity wou l d  impose a very large 
!oJd on the microprocessor , th us red uc i ng the amount 
of usdi.d work it could pcrt(mn . The 111�1 i n  p u rpose of 
the DTAG and i ts  supporting logic contained in the 
VCTY is to rel ie\·e the m icroprocessor ti·om h avi ng to 
exam ine each add ress prese nted bv the svstem bus.  
The m icroprocessor is only interrupted when i ts pri 
m a r y  TAG m u s t  b e  u pdated o r  \\'hen data m ust be 
prm·ided to satisf)' tbe bus req uest. 

VCTY Operation 

The VCTY contai ns a system bus i nterrace consisting of 
the system bus command and add ress signals,  as wel l  as 
some system bus control signa ls requ i red tor the VCTY 
to mon itor each system bus tr�msaction . There is also 
:�n in terrace to the m icroprocessor so that the VCTY 
can send commands to the m icroprocessor (system - to
CPU com mands)  and mon itor the commands and 
:�dd resscs issued by the m icroprocessor. Last but not 
le .lst , a bidi rectional i nterface between the VCTY and 
the DTAG al lows on ly those system bus ad dresses that 
requ ire action to reach the microprocessor. 

While monitoring the system bus f(>r  commands 
ti·om other nodes, the VCTY c hecks tor matches 
between the received system bus �1dd ress Jnd the data 
from the DTAG looku p . A DTAC; lookup is in i tiated 
anytime a va l id svstem b u s  add ress is received bv the 
mod u l e .  The DTAG l ocation rc>r the lookup is sel ected 
by using system bus Add ress < 2 1 :6> as the index i nt o  
t h e  DTAG. I f th e  DTAG locJtion had previous ly been 
marked va l id , and there is J 111�1tch between the 
received syste m  bus Add rcss < 3 8 : 2 2 >  and the data 
ti·om the DTAG lookup, th en the block is  present in  
the  microprocessor's cache. This scenario is caJ icd a 
cache hit .  

In  para l l e l with t h is, the VCTY decod es the received 
system bus comm a n d  to determ ine the appropriate 
updJte to the DTAG and determ ine the correct system 
bus response and C P U  command needed to mai n tai n 
syste m -wide cache coherency. A tew cases are i l l us
trated here, without any attempt a t  a comprehe nsive 
discussion ofa l l possible tra nsactions . 
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Assume that the DTAG shared bit  is �(>LIIld ro be set 
at this add ress, the d irty bit is not set, and the bus 
command ind icates a write transaction . The OTAG 
valid bit  is then reset by the VCTY, and the micro 
processor is i nt errupted to do the same i n  rhe TAG .  

If rhe dirty b i t  i s  fou n d  t o  b e  set, a n d  the command 
is  a rc1d , rhe MC_DI RTY_EN signal is asserted on rhe 
system bus to te l l  the other CPU that the loc:�tion i t  is 
trving to access is i n  cache and has been mod i fied lw 
this C P U .  At the same t ime,  a signal is sent to t he 
1n icroprocessor req uesting it to supplv the mod i fied 
datJ to the  bus so the other  CPU can get  an u p - to-d ate 
version of rhe data .  

If  the add ress being exami ned b v  the VC:TY was 
nor shared in the DTAG and the transaction was a 
write, the val id bit  is reset in the DTAG, and no bus 
signals  Jre generJted . The m icroprocessor is requested 
to reset the va l id bit in the TAG . H owever, i f rhc trans
action wJs not a write, then shared is set in the DTAG , 
MC:_S H ARED is asserted on the bus, and a signal is 
sent to the microprocessor to set shared in the TAG . 

From these examples, it becomes obvious that only 
transactions that change the state of the val id, shared , or 
d i rty TAG bits requ i re any action on the parr of rbe 

DATA 1 

microprocessor. Si nce these transactions arc re latively 
infrequent, the DTAG saves J great deal of microproces
sor time and improves over:tl l  system performance. 

I f  the VCTY detects that the command originated 
trom the m icroprocessor co- resident on the mod u l e ,  
t h e n  t h e  b l o c k  is not  ch ecked t<>r a h i t, but t h e  com 
mand is decoded so that the DTAG block is u pdated 
( i f  a l ready va l id ) or a l located ( i . c . ,  marked va l id ,  if not 
a l ready val id ) .  I n  the l atter case, a fi l l  tra nsaction td 
lows and the VC:TY writes rhe val id bit into the TAG <lt 
that tim e .  The fi l l  transaction is the only one t(Jr which 
the VCTY writes d i rectly i n to the TAG . 

A l l cycles of a system bus trJnS�Ktion are n u m bered , 
wit h  cycle 1 being the cyc l e  in which the system bus 
add ress and command arc va l i d  on the bus. The con 
trollers i nternal  to VCTY re ly on the cycle  n u m bering 
scheme to re main synchronizcd with the system bus .  
By remai ning synch ron ized with  the system bus,  a l l  
accesses to the DTAG and accesses tl·om the VCTY to 
the microprocessor occur in fi xed cycles re lative to the 
system bus transaction i n  progress. 

The index used t()r lookups to the DTAG is pre
sented to the DTAG in cycle I of the system bus trans
action.  In the cvcnt of a hit requ iring an update of the 
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DTAG and primary TAG,  the microprocessor i nterface 
signal , EV_ABUS_REQ, is asserted in cycles 5 and 6 of 
that system bus transaction, with the appropriate 
system-to-CPU command being driven in cycle 6 .  The 
actual update to the DTAG occurs in cycle 7, as does 
the al location of blocks in the DTAG.  

Figure 3 shows the timing relationship of a system 
bus command to the update of the DTAG, inc luding 
the sending of a system-to-CPU command to the 
microprocessor. The numbers a long the top of the 
diagram indicate the cycle numbering. In cycle 1 ,  
when the signal MC_CA_L goes low, the system bus 
address is valid and is presented to the DTAG as the 
DTAG_INDEX bits. By the end of cycle 2 ,  the DTAG 

data is val id and is clocked into the VCTY where it is 
checked for good parity and a match with the upper 
received system bus address bits. In the event of a h it, as 
is the case in this example, the microprocessor i ntertace 
signal F.V _ABUS_REQ is asserted in cycle 5 to i nd icate 
that the VCTY will be driving the microprocessor com
mand and address bus in the next cycle .  I n  cycle 6, the 
address that was received from the system bus is driven 
to the microprocessor along with the SETSHARED 

command .  The microprocessor uses this command 
and address to update the primary tag control bits t(x 
that block. I n  cycle 7, the control signals DTAG_OE_L 

and DTAG_ WE l_L arc asserted low to update the con
trol bits in the DTAG, thus ind icating that the block is 
now shared by another mod ule. 

SYSTEM BUS 
CYCLE NUMBER 

MC_CA_L 

2 3 4 

DTA G  Initialization 

Another important feature bui l t  into the VC:TY design 
is a cursory self-test and in itia l ization of the DTAG. 

After system reset, the VCTY writes a l l  locations of the 
DTAG with a un ique data pattern,  and then reads the 
entire DTAG, comparing the data read versus what 
was written and checking the parity. A second write
read -compare pass is made using the i nverted data pat
tern. This inversion ensures that a l l  DTAG data bits are 
written and checked as both a l and a 0 .  In add ition , 
the second pass of the initia l ization leaves each block 
of the DTAG marked as invalid ( not present in the 
B -cache) and with good parity. The entire in itia l i za 
tion sequence takes approximately l mil lisecond per 
megabyte of cache and Finishes before the micro
processor completes i ts sclf test, avoiding special han
d l ing by firmware. 

Logic Synthesis 

The VCTY ASIC was designed using the Verilog 
Hardware Description Language ( H DL ) .  The use of 
H D L  enabled the design team to begin behavioral 
simu lations qu ickly to start the debug process. 

I n  para l le l  with this, the Vcrilog code was loaded 
into the Synopsys Design Compi ler, which synthe
sized the behavioral equations i nto a gate-level design . 
The use ofHDL and the Design Compi l er enabled the 
designers to maintain a single set of behavioral models 
f(x the ASIC, without the need to manual lv enter 
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schematics to represent the gate -level design . The syn
thesis process is shown in a flowchart form in Figure 4. 
Logic verification is an integral part of this process, 
and the flowchart depicts both the synthesis and verifi
cation, and their interaction . 

Only the synthesis is explained at this time. The ver
ification process depicted on the right side of the flow
chart is covered in a later section of this paper. 

As shown on the left side of the flowchart, the logic 
synthesis process consists of multiple phases, in which 
the Design Compiler is invoked repeatedly on each 
sub block of the design, feeding back the resu l ts from 
the previous phase. The Synopsys Design Compiler 
was supplied with timing, loading, and area constraints 
to synthesize the VCTY into a physical design that met 
technology and cycle-time requirements .  S ince the 
ASIC is a small design compared to technology capa
bi l ities, the Design Compiler was run without an area 
constraint to facil itate timing optimization . 

The process requires the designer to supply timing 
constraints only to the periphery of the ASIC ( i .e . ,  the 

I/0 pins ) .  The initial phase of the synthesis process cal
culates the timing constraints for i nternal nen:vorks that 
connect between subblocks by invoking the Design 
Compiler with a gross target cycle time of 100 nanosec
onds (actual cycle time of the AS IC is 1 5  nanoseconds) .  
At  the  completion of this phase, the  process analyzes 
all paths that traverse multiple hierarchical subblocks 
within the design to determine the percentage of time 
spent in each block. The process then scales this data 
using the actual cycle time of 1 5  nanoseconds and 
assigns the timing constraints for internal networks at 
subblock boundaries. Multiple iterations may be 
required to ensure that each subblock is mapped to 
logic gates ,,rjth the best timing optimization. 

Once the Design Compiler completes the su bblock 
optimization phase, an industry-standard electronic 
design interchange format ( EDIF) file is output .  The 
EDIF file is postprocessed by the SPIDER tool to gen
erate .files that are read into a timing analyzer, Topaz. A 
variety of industry-standard file formats can be input 
into SPI DER to process the data. Output files can then 
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1 
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be gcncrJ.ted :md easi ly read by i n tcrnJ.l CAD tools 
such :.�s the D ECSI M  logic s im u l ator :l!1d the Topaz 
ri ming analvzcr. 

Topn uses information contJincd in the ASIC tech 
nology l ibrary to analyze the t iming o f  the design a s  i t  
was mapped b y  the Design Compi ler. This ana lys is 
resu l ts i n  output d ata fi les that arc used to constra in  
thc  ASIC l ayout process and obtain the  optima l  l ayout .  
Logic paths arc prioritized for placement of  the  gates 
and rout ing of the connections b�1scd on the timing 
m:.�rgins as  determined by Topaz. Thosc paths with the 
!cast r iming margin are gi\'cn the h ighest priority in 
the L:tyou t process. 

Log ic Verification 

This section of the paper discusses logic veri fi ca tion 
and t(>Cuses on the use ofbehavior:� l model s imu lat ion.  
I t  should also be noted that once the Design Compi l er 
had mapped the design to gates, SP I D E R. was a lso 
used to postprocess the E D I F  fi l e  so that DEC:SI M 
simu lation cou l d  be run on the structu ra l  design . This 
process a l l owed for the verification ohhe actual gates 
:�s thcy wou ld  be bu i l t  in the ASIC. 

The right-hand side ofFigure 4 i l l ustrates the logic 
vcri fic:tt ion process using a behavioral s imubtion 
mode l .  To veri!'\• the l ogic, the S\'St<.:m must be per
f(mn ing transactions that exercise a l l  or most of  i ts 
l ogic. Idea l ly, the same software used i n  plwsica l  sys
tems should be run on the design, but this is not prac
ticll bcc1Usc of' the long run  rimes that wou ld oc 
req u i red . Thcrd()re, special ized software tools arc used 
that em accompl ish the task in a shorter r ime. The ver
i fi cation team developed two such tools :  the R:l l ldom 
Exerciser and the Fu nctional Checker. They are 
described in deta i l  in  this section .  

Random Exerciser 

Veri fication strategv is  crucial to the success of the 
design . There arc t\\'o approaches to \'er ificuion rest
i ng, d i rected and random. Directed or t( >cuscd tests 
requ ire short run  rimes and target speci fic parts oftbe 
design . To fu l lv  rest a complex design using d i rected 
tests requ i res a very l a rge n u m ber of tests, which rake 
a long ri me to write and to r u n .  Moreover, a d i rected 
rest strategy �1ssumes that the designer can hxcsce 
every possib l e  system i nteraction and i s  ab le to write 
a rest that wi l l  adequately exercise it. For these t-c:�sons, 
random rest ing has become the pretCrrcd methodo l 
ogy i n  modern logic designs . 7  Directed rests were not 
complete ly  abandoned , but they compose on ly :1 sm:� l l  
portion of the test su i te .  

ftmdom rests relv on a random sequence of events 
to create the ta i l ing condit ions.  The goa l  of the 
Random Exerciser \\'aS to create a ri·JlllC\\'Ork that 
wou ld  a l low the verification team to create random 
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tests qu ickly and efficiently without sacrific ing flcx i b i l  
itv and  portab i l ity. I t  consisted of three parts: the test 
generator, the exercise,- code, :1nd the bus monitor. 

Test Generator This col lection of DECSIM comm<mds 
random ly gcncrares the test data consisting of addresses 
( both 1/0 space and memory space) and data patterns. 
The user controls the test  data generator by setting test 
parameters. For example, to l im i t  the range of working 
address space to the uppermost 2 MB of a 4-MR mem
ory space, the working address space parameter is 
defined as [ 200000, 400000 J. I t  tel l s  the test generator 
to choose addresses within that range on lv-grc:ner 
than 2 MB :md less than 4 1YIB . 

Exerciser Code This code is a col lection of routi nes or 
sequences of A lpha macmcodc i nstructions to be exe
cuted b�· the microprocessors. Each routine performs 
a u n ique  task us ing one of  the add resses suppl ied by 
the test generator. For CX<l mpk: ,  rout ine l pcrf(xms 
a read -veri�•- mod it)r-write sequence. Routine 2 is s im
i lar  to routine l ,  but  i t  reads :Jnothcr address that is 
8 MB away tl-om the origi na l  add ress, before wri t ing 
to the cache .  Si nce the B -c:tc !H.: is one-w:Jy associative, 
the origi na l  :tdd rcss is then evicted rl-om the cache. 
Lastly, rou tine 3 pert(mns a lock operation .  

Most routi nes \\'ere of the rvpe described above; 
thev used s imple lo:�d and store i nstructions. A kw 
routines \\'ct-c of a spec ia l  rvpc :  one generated inter
processor i nterrupts ,  others serviced i n terrupts, 
another rou tine generated errors ( using add resses to 
nonexistent memory and 1/0 space ) and checked that 
the errors were handled properly, and another routine 
exercised lock-type i nstructions more heavi ly. 

The activity on the system bus generated by the 
crus was not Cllough to veriry the l ogic .  Two addi
tional system bus agents ( mode l s  of system bus devices ) 
s imu lat ing the 1/0 were needed to s imulate a fu l l  
system- le\·cl em·i ronment .  The 1/0 was modeled using 
so-cal led com mander models .  These arc nor HDL or 
DECSI M behaviora l models  of  the logic but arc \\'rirretl 
in a h igh -b-cl l anguagc, such as C. From the pcrspcc
ti\·e of the CPU,  the com mander models beh�1ve .l i ke 
rea l  logic and rherdcltT arc adequate for the purpose of 
verit)•i ng the C P U  modu le .  There were several reasons 
f()r using a commander model i nstead of a logic/ 
behaviora l  model . A complete 1/0 model was not yet 
ava i lable  when the CPU module design began . The 
commander model was Jn evo lu tion ofa model used in  
a previous project, ;md i t  oHcrcd much needed flexibi l 
ity. It could be configured to act :JS either a n  1/0 inter
bee or a CPU module :�nd was eJsi ly progr,umnablc to 
flood the system ous 1\'ith even more activity: memon· 
reads and wri tes; interrupts to the crus by randomh· 
insert ing sta l l  cvcles i n  the pipe l ine ;  and assertion of
S\'Stem bus sign:1ls at random times . 



Bus Mon itor The bus mon itor is a collection of 
DEC:S I M  s imu lation watches that monitor the system 
bus and the CPU i nternal bus. The watches a lso report 
when various bus signals arc being asserted and 
deasserted and lu\'c the ab i l ity to halt simu lation i f  
they cm:ou nter uchc incoherency o r  a violation . 

CJchc incohcn:ncv is a datJ inconsistency, t(Jr exam
ple, a piece of nond i rtv data residing in  the B -cachc 
:.Hld d i fkring ti·om data resid ing in  main memory. 
A data inconsistency can occu r  among the CPU mod
u les: t()r example, two CPU mod u les may have d i fter
cnt data in their  caches at the same m emory address . 
D:HJ inconsistencies are detected by the C P U .  Each 
one mainta ins an exc lusive ( nonsharcd ) copy of i ts 
data that it uses ro compare with the data it reads ti·om 
the test Jddrcsscs. I f  the two copies d i ffer, the CPU 

signa ls to the bus moni tor to stop the s imu lation and 
report an error. 

The bus monitor also detects other violations: 

1 .  No activity on the system bus tor 1 ,000 consecutive 
cvcles 

2. Stal led system bus t(>r 100 c�'cles 

3. I l legal commands on the system bus and CPU 

i nternal bus 

4.  Catastrophic system error (machine check) 

The com bination of ra ndom CPU and 1/0 activity 
flooded the system bus with heavy traffic .  With the 
he lp of the bus monitor, this technique exposed bugs 
quickly. 

A� men tioned , a rcw d i rected tests were also wri tten .  
Directed tc�ts were u�cd to re -create a situation that 
occurred in r:mdom tests. l t'J  bug was uncovered using 
a random test that ran three days, a d i rected test was 
written to rc-cn:atc the same fai l ing scenario. Then, 
alter the bug was fixed , a quick run of the d i rected test 
con firmed th�n the problem was indeed corrected . 

Functional Checker 

During the in i tia l  design stages, the verification team 
dc,-c lopcd the Fu nctional C becker (FC)  for the J<.)l 
lowing pu rposes: 

• To functional ly vcrit\r the HDL models of a l l  ASI C:s 
in the AlphaScrvcr 4 I 00 system 

• To <lSscss the test coverage 

The t:C :  tool consists of th ree applications: the 
parser, the :tnalyzcr, Jnd the report generator. The 
right-hand side of figure 4 i l lustrates how the fC was 
used to :tid in the fu nctional veri fication process. 

Parser Si nce DFCS I M  was the c hosen logic simu la 
tor, the first step WJS to  trans late a l l  H D L  code to 
P, DS, a D I:-:CS I M  bchJvior language . This task was 

pcrt(xmcd using a tool cal led V2 13DS.  The parser's 
task was to postprocess a B DS fi le :  extract inf(mlution 
and generate a modi fied version of it. The intormation 
extracted was a l i st of control signals and logic state
ments (such as logical expressions, i t�then -e lse state
ments, case statements, and loop constructs ) .  This 
in t()rmation was later suppl ied to the analyzer. The 
modified BDS was fi.tnctionally equivalent to the origi
nal code, but  it contained some embedded ca l ls to 
routi nes whose task was to monitor the activity of the 
comrol s ignals in  the context  of  the l ogic statements .  

Analyzer Written i n  C ,  the analyzer is a collection of 
monitoring rou tines. Along with the mod ified BDS 

code,  the analyzer is compi led and l in ked to t(Jrm rhc 
s imulation mode l .  During s imulation , the ana lyzer 
is invoked and the routines begin to monitor the acriv
iry of the control signals. I t  keeps J record of all con
trol signals that form a l ogic statement. For example, 
assu me the t() l lowing statement was recognized bv the 
parser JS one to be monitored . 

( A  XOR B )  AND C 

The analyzer created a table of a l l  possible combina 
tions of l ogic v::llues for A ,  B ,  and C; it then recorded 
which ones were achieved . At the start of s imu lation, 
there was zero coverage achieved . 

ABC Ach ieved 
000 No 
00 1 No 
o r o  No 
OJ l No 
100 No 
10 1 No 
1 10 No 
1 1 1  No 

Achieved coverage = 0 percent 

further assume that d u ri ng one of the simu l ation 
tests gencrJted by the Random Exerciser, A assu med 
both 0 and I logic states, \\'h i le R and C remained con
stantly at 0. At the end of sim u lation,  the state of the 
table wou ld be the fol l owing: 

ABC Achieved 
000 Yes 
001 No 
0 10 No 
0 1 1 No 
100 Yes 
101 No 
1 1 0 No 
l l l  No 

Achieved coverage = 25 percellt 
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Report Generator The report generator app! iGLtion 
gathered all tables created by the analyzer and gener
ated a report file i ndicating which combinations were 
not achieved . The report file was then reviewed by the 
verification team and by the logic design team . 

The report pointed out deficiencies i n  the verifica
tion tests. The verification team created more tests 
that wou ld increase the "yes" count  i n  the "Achieved" 
column .  For the example shown above, new tests 
m ight be created that would make signals B and C 
assume both 0 and l logic states. 

The report also pointed out fau l ts in the design, 
such as redundant logic .  In the example shown , the 
logic that produces signal B m ight be the same <lS the 
logic that produces signal C, a case of red undant logic. 

The fC tool proved to be an i nvaluable aid to the 
verification process. It was a transparent addition to the 
simulation environment. With FC, the incurred degra
dation in compi lation and simulation time was negl igi
ble. It pertormed two types of coverage analysis: 
exhaustive combinatorial analysis (as was described 
above ) and bit-toggle anal ysis, which was used for vec
tored signals such as data a nd address buses. Perhaps 
the most valuable feature of the tool was the tact that it 
replaced the time-consuming and compute- intensive 
process oftault grading the physical design to verif)r test 
coverage . fC establ ished a new measure of test cover
age, the percentage of achieved coverage. In the above 
example, the calculated coverage would be two out of 
e ight possible achievable combinations, or 25 percent. 

For the verification of the cached CPU modu le, the 
fC tool ach ieved a final test coverage of 95 . 3  percent. 

Module Design Process 

As the first step in the module design process, we used 
the Powerview schematic ed itor, part of the Viewlogic 
CAD tool suite ,  t()r schematic capture. An i nternally 
developed tool , V2 LD, converted the schematic to a 
form that could be simulated by DECSIM .  This process 
was repeated unti l DECSIM ran \\�thout errors. 

D uring this t ime, the printed circuit ( PC )  layout of 
the modu le was proceed ing independently, using the 
ALLEG RO CAD tools .  The l ayout  process was partly 
manual  and partly automated with the CCT router, 
which was eftective in t() J lowing the layout engineer's 
design rules contained in  the DO files. 

Each version of the completed layout was translated 
to a format su itable for signal integrity model ing, 
using the internally developed tools ADSconvert and 
MODULEX. The MODU LEX tool was used to extract 
a module 's e lectrical parameters from its physical 
description.  Signal integrity model ing was performed 
with the HSPICE analog simulator. V•/e selected 
H S P I C E  because of its universal acceptance by the 
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industry. Virtua l ly  al l component vendors wi l l ,  on 
request, supply HSPICE models of their products .  
Problems detected by H S P ICE were corrected either 
by layout modifications or by schematic changes. The 
mod ule design process flow is depicted in figure 5 .  

Software Tools and Models 

Three internally developed tools were of great value .  
One was MSPG, which was used to d isplay the 
HSPICF plots; a nother was M O D U LEX, which auto
matical ly generated HSPICE su bcircuits from PC 

layout fi les and performed cross-talk calculations. 
Cross- tal k amplitude violations were reported by 
M O D U LEX, and the oftending PC traces were moved 
to reduce coupl ing. F ina lly, SALT, a visual PC d isplay 
tool, was used to verify that signal routing and branch
ing contormed to the design requ i rements. 

One of the important successes was in data l ine 
model i ng, where the signal lengths from the RAMs 
to the microprocessor and the transceivers were very 
critica l .  By using the HSPICE .ALT E R  statement :llld 
M O D U LE X  subcircu it  generator command, we could 
configure a single HSPICE deck to s imulate as many as 
36 data l i nes. As a resu lt, the entire data l ine group 
could be s imulated in  only four H S P I C E  runs.  I n  an 
excel lent example of synergy between tools, the script 
capabi l ity of the MSPG plotting tool was used to 
extract ,  annotate, and create PostScript fi les of wave
t(>rm p lots d i rectly from the s imulation resul ts, with
out having to manual ly d isplay each waveform on the 
screen .  A mass prin ting command was then used to 
print al l  stored PostScript fi les .  

Another useful HSPICE statement was . M EAS U R.E, 
which measured signal de lays at the specified threshold 
level s  and sent the results to a file. From this, a separate 
program extracted clean delay values and calculated the 
maximum and minimum delays, tabulating the results 
in a separate file .  Reflections crossing the threshold 
leve ls caused i ncorrect results to be reported by 
the . M EASU RE statement, which were easily seen in 
the tabulation .  \Ve then simply looked at the waveform 
printout to see where the reflections were occurring. 
The layout engineer was then asked to modi�' those 
signals by changing the PC trace lengths to either the 
microprocessor or the transceiver. The modified signals 
were then rcsimulated to verifY the changes. 

Timing Verification 

OverJ I I  cache timing was verified with the Timing 
Designer t iming analyzer from Chronology Corpor
ation . RdevJn t  timing d iagrams wen; d rawn using 
the waveform plotting fac i l ity, and delay values and 
control l ing parameters such as the microprocessor 
cyc le interval, read speed , wave, and other constants 
were entered into the associated spreadsheet. A l l  
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Design Process flow 

delays were expressed in terms of HSPICE-simu lated 
values and those constants, as appropriate .  This 
method simplified changing parameters to try various 
"what if" strategies. The timing analyzer would  
i nstantly reca lculate the delays and the  resu l ting mar
gins and report all constra int violations. Th is tool was 
also used to check t iming elsewhere on the module ,  
outside of t he cache area, and i t  provided a reasonable 
level of confidence that the design did not contain any 
timing violations. 

Signa/ Integrity 

In high-speed designs, where signal propagation times 
are a significant portion ofthe clock-to-clock interval ,  
reflections due to impedance mismatches can degrade 
the signal quality to such an extent that the system wil l  
fai l .  For this reason, signal integrity ( S I )  analysis is  an 
important part of the design process . Electrical con 
nections on a modu le can be made fol lowing a d i rect 

point-to-point path, but in  high-speed designs, many 
signals must be routed in  more compl icated patterns. 
The most common pattern i nvolves bringing a signal 
to a point where i t  branches out in  several d irections, 
and each branch is connected to one or more 
receivers. This method is referred to as treeing. 

The SI design of this module was based on the 
principle that component p lacement and proper sig
nal treeing are the two most important elements of 
a good SI design. However, ideal component  place
ment is not always achievable due to overriding factors 
other than S I .  This section describes how successfu l  
design was achieved i n  spite of less than ideal compo
nent placement. 

Data Line Length Optimization 

Most of the S I  work was d i rected to optimizing the 
B -cache, which presented a d ifficu lt challenge because 
of long data paths. The placement of major module 
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data bus components (microprocessor and data trans
ceivers )  was dictated by the enclosure req u irements 
and the need to fit k>ur CPUs and eight memory mod 
u les i nto the system box .  Rather than a l lowing the 
microprocessor heat-sin k  height to dictate mod u le 
spacing, the system designers opted for fi tting smal ler 
memory mod u les next to the crus, fil l ing the space 
that wou ld have been left empty if modu le  spacing 
were un i t(xm . As a consequence, the microprocessor 
and data transceivers had ro be placed on opposite 
ends of the mod u le,  which made the data bus exceed 
I I  inches in l ength . Figure 6 shows the p lacement of 
the major components. 

Each cache data l ine is connected to four  compo
nents:  the microprocessor chip, two RAMs, and the 
bus transceiver. As shown in  Table l ,  any one of these 
components can act as the driver, depending on the 
transaction in progress. 

The goa l of data l i ne design was to obtain clean sig
nals at the receivers. Assuming that the microproces
sor, Ri\.Ms, and the transceiver are a l l  located i n - l ine 
without branching, with the d istance between the two 
RAMs ncar zero, and since the positions of the micro
processor and the transceivers are fixed, the only vari 
able is the location of the two RAMs on the data l ine .  
As shown in  the waveform p lots of Figures 7 and 8,  
the qua l ity of the received signals is strongly affected 
by this variable .  In Figure 7, the reflections arc so large 
that they exceed threshold levels. By conrrJst, the 
reflections in  Figure 8 are very smal l ,  and their wavc
t(>rms show signs of cance l l ation . From this i t  C J i l  

be inferred that optimum PC trace lengths cause the 
reflections to cance l .  A range of acceptable RAM posi 
tions was t()lmd through HSPICE s imu lation. The 
resu l ts of  these s imu lations are summarized in  Table 2 .  
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P! Jccmcm of JV!Jjor Componems 

Table 1 
Data L ine Components 

Transaction 

Private cache read 

Pr ivate cache write 

Cache fi l l  

Cache m iss with vict i m  

Write b l ock 

Dif!:ital Technica l  ) ounul 

Driver 

RAM 

M icroprocessor 

Tra nsceiver 

RAM 

M icroprocessor 
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Receiver 

M icroprocessor 

RAM 

RAM a n d  m i croprocessor 

Tra nsceiver 

RAM and tra nsceiver 



-1 .0 

-2.0'----�-�-�--�-�-�--'------'--
40 45 50 

Figure 7 

55 60 65 
NANOSECONDS 

70 75 

Private Cache Read Showing Large Reflections Due to 
Unfavorable Trace Length Ratios 

4.0 

-1 .0 

80 

-2.0 '-----'----'---�-----''----'-----'------'---"-
40 45 50 55 60 65 70 75 

NANOSECONDS 

Figure 8 
Private Cache Read Showing Reduced Reflections with 
Optimized Trace Lengths 

Table 2 

80 

In the series of s imulations given in Table 2, the 
threshold levels were set at l . l  and 1 .8 volts. This was 
justified by the use of pertect transmission l ines. The 
l ines were lossless, had no vias, and were at the lowest 
i mpedance level theoretically possible on the module 
( 5 5  ohms ) .  The entries labeled SR i n  Table 2 ind icate 
unacceptably large delays caused by signal reflections 
recrossing the threshold levels .  Discarding these 
entries leaves only those with microprocessor-to
RAM distance of 3 or more i nches a nd the RAM
to-transceiver d istance of at least 6 inches, with the total 
microprocessor-to-transceiver distance not exceeding 
l l  i nches. The l ayout was done within this range, and 
a l l  data J ines were then sim ulated using the network 
subcircuits generated by MO D U LEX with threshold 
levels set at 0.8 and 2 . 0  volts. These subcircuits 
i ncluded the effect of vias and PC traces run on several 
signal  planes. That simulation showed that a l l  but 
12 of the 1 44 data- and check-bit l i nes had good sig
nal  integrity and did not recross any threshold levels. 
The fai ling l i nes were recrossing the 0 .8 -volt thresh
old at the transceiver. Increasing the length of the 
RAM -to-transceiver segment by 0 . 5  inches corrected 
this problem and kept signal delays within accept
able l imits. 

Approaches other than placing the components 
in- l ine  were i nvestigated bu t d iscarded.  Extra signal 
lengths requi re additional signal layers and i ncrease 
the cost of the module and its thickness. 

RAM Clock Design 

We selected Texas I nstru ments' CDC235 1 clock drivers 
to handle the RAM clock distribution network. The 
CDC2 3 5 l device has a well -controlled input-to-output 
delay (3 .8  to 4.8 nanoseconds) and 10 drivers in each 
package that are controlled fi·om one input.  The fairly 

Accepta b l e  RAM Posit ions Found with HSPICE S i m u l ations 

PC Trace Length Write Delay Read Delay 
(Inches) (Nanoseconds) (Nanoseconds) 

M icroprocessor RAM to M icroprocessor RAM to RAM to 
to RAM Transceiver to RAM M icroprocessor Transceiver 

Rise Fall Rise Fall R ise Fall 

2 7 0 .7  2 . 3  0 . 9  S R  1 . 1  1 .4 
2 8 0 .7  2 .7  S R  S R  1 . 5 1 .4 
2 9 0 .6  3 . 1  S R  S R  1 . 7 1 . 5 
3 6 0 .9  2 . 1  1 .2 1 . 1  0 .9  1 .0 
3 7 0 .9  2 . 4  1 .0 1 . 1  1 .4 1 .3 
3 8 0 .9  2 .9  1 .0 1 .3 1 .5 1 .3 
4 5 1 . 1 1 .8 1 .2 1 .4 0 .9  S R  
4 6 1 .3 2.2 1 .4 1 .4 0 .9  1 .0 
4 7 1 .2 2 .6  1 .3 1 .4 1 .2 1 .2 
5 4 1 . 5 1 .7 1 . 5 1 .7 S R  S R  
5 5 1 .4 2 . 1  1 .8 1 . 7 S R  S R  
5 6 1 .6 2.4 1 .7 1 .4 0.9 1 .2 

Note: S ignal  reflections recrossing the threshold levels caused unaccepta ble delays; these entries were discarded. 
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long delay through the part was beneficial because, 
as shown in Figure 2, c lock delay is needed to ach ieve 
adequate setup rimes. Two CDC2 3 5 l clock drivers, 
mounted back to back on both sides of the PC board, 
were required to deliver clock signals to the 17 RAMs. 

The RA Ms were divided i nto seven groups based on 
their physical proximity. As show n  in  Figure 9, there 
are fou r  groups of three, rwo groups of two, and a sin
gle RAM .  Each of the first six groups was d ri\'en by 
two clock driver sections connected i n  parallel through 
resistors i n  series with each driver to achieve good load 
sharing. The seventh group has only one load, and one 
CDC2 3 5 l section was su fficient to d rive i t .  HSPICE 
s imulation showed that mu lt iple d rivers were needed 
to adequately drive the transmission line and the load . 
The load con m:ctions were made by short equal  
branches oftewer than two i nches eac h .  T he .length of 
the branches was critical tor achieving good signal 
integrity at the RAMs.  

Data Line Damping 

In the ideal world, a l l  signals switch only once per clock 
interval ,  al lowing plenty of setup and hold time. In  the 
real world, however, narrow pu lses often precede valid 
data transitions. These tend to create m u ltiple reAec
tions superimposed on the edges of val id signals .  The 
reAcctions can recross the threshold levels and incre<lSe 
the effective delay, thus causing data errors. 

Anticipating these p henomena, and having seen 
their dkcts in previous designs, designers included 

CLOCK 1-----Y\�--, 
DRIVER 

30 OHMS 

CPU 

CLOCK 
0 RIVER 1-----YI�---' 

Figure 9 
RAM Clock Distri bution 
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series-damping resistors in  each cache data l ine,  as 
shown in Figure 10. Automatic component placement 
machines and avai labi l ity of resistors in  small pacbges 
made mou nti ng 2 8 8  resistors on the mod u le a painless 
task, and the payoff was huge :  nearly perkct signals 
even in  the presence of spurious data transitions 
caused by the m icroprocessor's arch itectural katurcs 
and RAM c haracteristics. Figure l l  i l lustrates the han
d l ing of some of the more d i fficu lt  wavdcm11s.  

Performance Features 

This section d iscusses the perr()rnlance of the 
AlphaServer 4 1 00 system derived ti·o1n the physical 
aspects of the CPU mod u le design and the effects of 
the d uplicate TAG store . 

Physical Aspects of the Design 

As previously mentioned, the synchronous cache was 
chosen primarily tor performa nce reasons. The archi
tecture of the Alpha 2 1 1 64 m icroprocessor is suc h th<1t 
its data bus is used f()r  transters to and from main mem
ory ( fi l ls and writes) as wel l as its B -cache :' As system 
cycle times decrease, it becomes a chal lenge to manage 
memory transactions without req uiri ng wait cycles 
using asynchronous cache RAM devices. for example, 
a transfer from the B -cache to main memory ( victim 
transaction) has the tol lowing dcby com ponents: 

l .  The m icroprocessor drives the add res. otr�chip .  

2 .  The add ress is  fanned out to the RAM devices . 

3 .  The RA.Jv1s retrie\'e data .  

4 .  The RAl\!ls d rive d ata to the bus i ntcrf
.
1ce device. 

5. The bus i nterface device req uires a setup time . 

vVorst-case delay values t()r the above items might 
be the fol lowi ng: 

l .  2 . 6  nanoseconds' 

2. 5 . 0  nanoseconds 

3. 9 .  0 nanoseconds 

4. 2 . 0  nanoseconds 

5. l .O nanoseconds 

Total : 1 9 . 6  nanoseconds 

Thus,  tor system cyc le ti mes rhar arc signi ficantly 
shorter than 20 nanoseconds, i t  becomes i mpossible 

F igure 1 0  
RAJ'vl. Driving the Micropmccssor Jnci TI·J nsccivci· rh mugh 
1 0-ohm Series Resistors 



Figure 11 
Handling of Difficult Wavdorms 

to access the RAM without using mu ltiple cycles per 
read operation, and since the full transter invo lving 
memory comprises four  of these operations, the 
penalty mounts considerably. Due to pipelining, the 
synchronous cache enables this type of read operation 
to occur at a rate of one per system cycle, which is 
15 nanoseconds in the AlphaServer 4100 system, 
greatly increasing the bandwidth for data transfers to 
and from memory. S ince the synchronous RAM is 
a pipeline stage, rather than a delay element, the win 
dow of valid data avai lable to be captured at the bus 
interface is large. By driving the R.A!vls with a delayed 
copy of the system clock, delay components 1 and 2 
are hidden, al lowing taster cycling of the B-cache. 

'When an asynchronous cache communicates with 
the system bus, all data read out fi·om the cache must 
be synchronized with the bus clock, which can add 
as many as two clock cycles to the transaction. The 
synchronous B-cache avoids this performance penalty 
by cycl ing at the same rate as the system bus.2 

In addition, the choice of synchronous RAMs pro
vides a strategic benefit; other microprocessor vendors 
are moving toward synchronous caches. For example, 
nu merous Intel Pentium microprocessor-based sys
tems employ pipeline-burst, module- level caches using 
synchronous RAM devices. The popularity of these 
systems has a large bearing on the RAM industry.9 It i s  
in DIG ITAL's best interest to tol low the synchronous 
RAM trend of the ind ustry, even tor Alpha-based 
systems, since the vendor base wi l l  be larger. These 
vendors will also be l ikely to put their efforts into 
improving the speeds and densities of the best-sel l ing 
synchronous RAM products, which will facilitate 
improving the cache performance in future variants of 
the processor modules. 

Effect of Duplicate Tag Store (DTA G) 

As mentioned previously, the DTAG provides a mech
anism to filter  irrelevant bus transactions from the 
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Alpha 2 1 1 64 microprocessor. In addition, it provides 
an opportunity to speed up memory writes by the I/0 
bridge when they modif)r an amount of data that is 
smal ler than the cache block size of 64 bytes (partial 
block writes) .  

The AlphaServer 4100 I/0 subsystem consists of 
a PC! mother board and a bridge. The PC! mother 
board accepts I/0 adapters such as network interfaces, 
disk controllers, or video controllers. The bridge pro
vides the inter£1ce between PCI devices and between 
the CPUs and system memory. The I/0 bridge reads 
and writes memory in much the same way as the CPUs, 
but special extensions are built into the system bus pro
tocol to handJe the requirements of the I/0 bridge. 

Typical ly, writes by the f/0 bridge that are smaller 
than the cache block size require a read-modifY-write 
sequence on the system bus to merge the new data 
with data from main memory or a processor's cache. 
The AJphaServer 4 100 memory system typically trans
fers data in 64-byte blocks; however, it has the abil ity 
to accept writes to al igned 1 6-byte locations when the 
I/0 bridge is sourcing the data. When such a partial 
block write occurs, the processor module checks the 
DTAG to determine if the address bits in the Alpha 
2 1 1 64 cache hierarchy. I f it misses, the partial write is 
permitted to complete unhindered.  If there is a hit, 
and the processor module contains the most recently 
modified copy of the data, the l/0 bridge is alerted 
to replay the partial write as a read -modifY-write 
sequence. This feature enhances DMA write perfor
mance for transfers smaller than 64 bytes since most of 
these references do nor hit in the processor cache.< 

Conclusions 

The synchronous B -cache a l lows the CPU modules 
to provide high performance with a simple arch itec
ture, achieving the price and performance goals of 
the AlphaServer 4 100 system .  The AlphaServer 4 1 00 
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CPU design team pioneered the use of synchronous 
RAMs in an Alpha microprocessor- based system 
design, and the knowledge gained in bringing a design 
from conception to volu me shipment wil l  benefit 
future upgrades in  the AlphaServer 4100 server fami ly, 
as well as products in other platf-orms. 
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The Al pha Server 4100 
low-cost Clock 
Distri bution System 

High-performance server systems general ly 

require expensive custom clock distribution 

systems to meet tight timing constraints. 

These clock systems typica l ly have expensive, 

appl ication-specific integrated circu its for 

the bus interface and require control led etch 

im pedance for the clock distribution on each 

module in the server system. The DIGITAL 

AlphaServer 4100 system util izes phase-locked 

loop circu its, clock treeing, and termination 

techniques to provide a cost-effective, low

skew clock distribution system. This system 

provides mu ltiple copies of the clock, which 

al lows off-the-shelf com ponents to be used 

for the bus interface, which in turn results in 

lower costs and a qu icker system power-u p. 

Com ponent placement and network com

pensation eliminated the need for contro l led

im pedance circuit boards. The clock system 

design ma kes it possible to upgrade servers 

with faster processor options and bus speeds 

without changing components. 
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I 
Roger A. Dame 

Every d igital computer  system needs a clock d istri bu
tion system to synchronize electron ic communication . 
The primary metric used to quanti !)' the performance 
of a dock distribution svstem is clock skew. S\'llch
ronous S\'Ste ms requ i re mul tip le  copies (outputs) of 
the same clock, and clock skew is the unwanted delay 
between any t\\'O of the copies. In genera l ,  the Jo\\'er 
the skew, the better the clock svstcm. Clock skew is one 
of sever:d parameters that aftcct bus speed . Bus length , 
bus loading, driver and receiver technology, and bus 
signal voltage swing also affect bus speed . If problems 
arise that jcop:mi izc meeting timing goals ,  though, 
these addirion: tl parameters arc d i fficu l t  to change 
because of ph,·siCll and archi tectural constraims. 

The D rc; rrAL AlphaSenn 4100 clock distribution 
system is a compact, low-cost sol u tion for a h igh
performance mid r::� ngc ser\'er. The c lock system pro
vides more copies of the c lock than machi nes in the 
same class typ ical ly need. The d istri bu tion system 
a l lows expansion on those module designs where 
more copies of the c lock are needed with minimal 
ske\\'. The svsrem is based on a low-cost, oH�rhe -shelf 
phase- locked loop ( PLL) as the basic b u i ld ing block.  
The simple appl ication of the PLL alone ,,·ould not 
provide low c lock skew, though. Signa l integrity tech
niques and rrade-offs were needed to m�magc skew 
throughout the system. The tech nica l  cha l lenges were 
ro d esign J low-cost system that wou l d  ( l )  require 
only a sma l l  area on the pri nted wiring bo::mi s  ( PW"Bs), 
( 2 )  be adap t�l ble ro ,·a r io us speed grades (options ) of 
Cl' Us, and ( 3 )  h�we good performance, i .e . ,  lo\\' skew. 
This paper discusses the tech niq ues used to optimize 
the perti:Jrmance of an offthe-she l f  PLL- based clock 
distribution system. 

Design Goals 

Based on irs experience with p revious plartorm designs, 
the design rea m considered a clock ske\\' under 10 per
cent of the bus cycle rime a reasonable t:t rget tOr a 
midrange server S\'Stem. The cycle rime d es ign target of 
rhe AlphaSenn 4100 system was l S  nanoseconds ( ns ) ;  
consequent ly, the  skew goal was 1 . 5 ns  or less. This 
goal would �1 l low a total of 13. 5 ns h>r clock to out
put of the rransmi rri ng mod ule (Teo) ( the t ime the 



transmitti ng mod u l e  needs to d ri\'e d:�ta to a stable 
state ti·om a c loc k  edge );  setu p and hold time req uire 
ments tclr the receivi ng mod u l e  (the m i n i m u m  time 
th:lt data needs to be stable at the recei,·er ( tlop] betore 
and ati:er the local clock edge ) ;  a nd bus sett l i ng ti me.  
The fol lowi ng is a breakdown of the t iming based on 
the se lection of components f(lr the bus i nterbcc: 

Bus cycle 
Transmitti ng mod ule (Teo ) 
Setup a nd hold time tor the 

receiving mod u l e  
Clock skew 
Time ::tllocated for bus settl ing 

1 5 .0 ns 
5 . 1  ns 

1 . 5 ns 
1 . 5 J l S  

6.9 JlS 

The selection of components was based on a,·ai labi l 
ity, speed,  cost, and s ize .  The goal was to e l imi nate the 
need tclr costly appJ ication-specinc i n tegrated circu its 
( AS I Cs )  :md sti l l  meet the critical t iming perf(mnance. 

The A l p haSer\'er 4 1 00 bus is  a simple d istri buted 
bus, 305 m i l l i meters ( m m )  long, with 1 0  loads ( mod
u l es )  and para l lel  term ination at both ends.  The fi rst
order estimate of bus sett l ing time assumed one fu l l  
rdl ection o r  twice the loaded velocity o f  propagation 
de lay end to end.  The estimate took i nto account bus 
t iming opti mization , which is discussed btcr in this 
paper. It was also estimated that 25 copies of the clock 
wou ld be req ui red tor the processor mod u l es,  and 
46 copies of t he dock wou ld be req u i red tclr certa i n  
memory mod u les (synchronous dynamic random
access memory [SDRAM ]-based designs ) .  O n ly the 
rising edge of the clock could be used for critical t im
ing.  I f  the bl l ing edge were used tclr latches, then 
c lock skew wou ld d ramatical ly increase because of the 
duty cycle d istortion associated with P LLs. The mem
ory mod u l e  design a l lowed very l ittle space for clock 
circuitry and needed more copies of thc clock than any 
other mod u l e  design in the system .  Further, the physi
cl l  size of the memory module  determined the actual 
size of the server box . Trad e -ofts had to be made in 
the design and timing to make the off-the-shelf sol u 
tion work.  The key goa l  was to optimize the solu tion 
to get the worst-case skew as c lose as possible to the 
1 . 5 ns estimated goa l  and to ti nd svstem trade- oft$ to 
al low higher mod u l e - to- mod u le skew f(lr a 1 5  ns bus. 

A su rvey of c ustom clock circu its ava i lable within 
D I G I TA L  and offthe-shelt� commercial l y  a\·a i lablc 
PLLs suggested that a custom circu i t  was requ i red . 
Untflrtu nately, the circuits that wou l d  be avai lable  
within our project sched ule  were cost l y, consu med tar 
too much circu it board area, required emitter-coupled 
logic ( ECL) or positive emitter-cou pled logic ( PECL) 
inputs, and d issipated su bstantial  power. The best off 
the -she lf  solu tion was cost-efkctive, required less 
space than custom circuits,  and provided adeq uate 
fa n-out .  The skew performance, however, ranged 
from 2 ns to 4 ns, which exceeded the design goa l .  
G iven t h e  project t i m e  constraints a n d  the design 

benefits of the oft�the-she l f solution, it was paramount 
that we m a ke the oft�the-shdfsol u tion work. 

Bus Trade-offs 

The design phi losoph y  of using stock componen ts tor 
the bus i nterface a l l owed some latitude in the bus 
design . Typical  bus i nterfaces use l arge ASICs, each 
hand l i ng up to 5 0  percent of the data bits. Such a 
design resu l ts i n  a relatively long d ispersion etch ti·om 
the connector to the AS IC.  These devices can range 
in size from 200 to 400 pins and can requ i re up to 
38 mm of etch ti·om the ASI C  to the connector. SPICE 
s imul ations demonstrated that  the length of each 
module's dispersion etch or bus "stu bbing" had a p ro
found e ffect on bus sett l ing time . '  Figure l shows bus 
sett l ing time ( worst-case d ri\'er-receiver com bi nation ) 
as a fi.mction of mod u l e  d ispersion etc h .  The bus trunk 
length was nxed at 305 111 111 . 

The designers used an 1 8 - bit-wide transceiver i n  
a l ow-profi l e  su rbce mount package with a p i n  pitch 
of 0 . 5  111111. The location of the 1/0 pins tor the bus 
con nections on the interrace transceiver ( l ocated on 
the same side of the package, which a l lows the device 
to be pl aced very c l ose to the bus connector)  and the 
connector pitch fac i l itated short d ispersion etch ( less 
than 1 3  mm ) .  This design decreased by 1 ns the set 
t l ing time typical ly t()l l l)d on ASIC- based intert:lces 
with comparable tru n k  lengths and loading.  

Bus termination is another parameter that designers 
can manipu late to fu rther improve settl i ng ti me. We 
used parallel terminators at both ends of the bus on the 
AlphaServer 4 100 system .  The bus protocol has rwo 
katures that allow aggressive termination, approaching 
the u nloaded impedance of the tru nk.  'vVe placed an 
anticontention cycle between the module that rel in 
quishes the bus <l l1d the mod u le tl1at begins to d rive the 
bus. This arrangement reduces the possibi l ity for driver 
contention (stress ) as wel l as the possibi l ity of generat
ing ringing on the bus clllscd by large changes in cur
rent ati:er contention .  The bus "parking" feature tclrccs 
the last d riving module  to contjnue driving the bus to 
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a logic state d l!ling long id le times unti l  another mod ule 
wants to use the bus. Without this katurc, the bus 
would settle at the tcrminZ�tor Thevcnin vol tage if  no 
modules were driving the bus. Both protocols a l low f(x 
Thevcni n  vol tage to be c lose to the thresholds of the 
receivers. Normally this is avoided if the bus is lett idle, 
because the receivers can go metastable, i .e . ,  arrive at 
the unstable condition \\'here i ts input voltage is 
between i ts speci f ied logic 0 and logic 1 voltage levels, 
resu lting in uncontrolled oscil lation .  Centering the 
Thevenin ,·o l tage in the normal fu l l  vol tage swing had 
two ad,·antages: ( l )  it balanced the settl ing time t(x 
both transitions, and ( 2 )  i t  reduced the driver cu rrent. 
The reduced driver current allowed t(x a lower 
Thevenin resistance, which brought the tcrmi1utors 
closer to the un lo�1dcd (no modules) impedance of the 
bus, thus ensuring that the bus would s<::ttle 1\' ithin 6 ns. 

The Basic Bui lding Block 

Texas I nstruments' CDC:586 dock distribution circu it 
was chosen as the basic bu ilding block t()!· the system 
because of its low cost and fi.mctjonalit:y. The device has 
a tan -out o f l 2  outputs with a single compcns�uion loop 
and a frequency r�mge of2 5  megah<::rtz ( MH z )  to 100 
MHz, and i s  '' 3 . 3 -volt (V)  bipolar complementary 
metal -oxide semiconductor ( B iCMOS) part. Process 
skew is l ns bef\vecn any two parts with the same ref
erence input dock, and root mean square ( RMS )  j i tter 
is 2 5  picoseconds ( ps ) . 2  The CDC586 has a bui l t - in  
loop filter, which reduces the number of support com
ponents. Un l i ke custom c lock circu its with multip le ,  
independent compens�1tion loops, the  s imp le ,  s ing le 
loop design r<::qu i rcd critical attention to the Lwout of 
each module  design to ensure the best possi ble skew 
pedonnance . The circuit  board layout designer had 
to determine the maximum etch length ti·om the I'LL 
to the receiver. Al l copies of the clock had to be pre 
cisely matched i n  length to  the maxim u m  length 
t()L! I1d ,  and routed on the same etch layer with 
0 .5 1 m m  (20 m i l )  spacing to other etches :�nd mini
mum etch crossovers h·om other etch layers on du::d 
strip- l ine ]av-ups .  Typical strip- l ine etch i n  mu lti byer 
PWRs is a sign:1l layer th:Jt h:1s reference planes, usua l lv 
assigned to po\\'cr or grou nd,  in the layer :Jbo,·e and 
the layer below. This design al lows better i mped�1 ncc 
conn-� ! and el iminates cross ta l k  ti·om other signal 
layers. PWB th ickness and cost constraints often resu lt  
in moditied t(mns on the inner layers, however. Dual  
strip - l ine etch is often used i n  these cases . This design 
consists of two signal layers sandwiched between rctcr
cncc p la nes i n  the lavers abm·e and below. General ly 
the dielectric thickness bcf\vcen the two signal byers is 
greater than the die lectri c  thickness bef\veen either 
s ignal layer and its related ( nearest) rckrcnce p lane to 
min imize cross talk bcf\vecn the two signal layers. 
Figure 2 i l lustrates a typic:1l appl ication. 
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Etch Layout 

The PWB l ay-ups used on various modu les in the 
AlphaServer 4 10 0  system conta in  microstrip etch 
(surbce etc h )  <lnd dual strip- l ine etc h .  Idea l ly, single 
strip- l ine etch wou ld be opti mum t(H· clock etch;  how
ever, i t  req uires more l ayers <lt h igher cost tor PWB 

materia l .  One d rawback to dua l  strip - l ine lav-ups is 
etch crosso,·cr. A crossover is :1 point along an etch 
trace where another etch , one on a d i tkrcnt la\'er not 
separated by a reference p lane,  crosses. The crossover 
forms small capacitance patches, which can load the 
clock etch and afkct its impedance and veloc ity of 
propagation.  The resu l t  is additional skew h·om clock 
etch to c lock etc h .  Designers avoided crossovers on a l l  
c lock e tch ,  <lnd the  design docs not  permit paral le l  
etch on the other l ayer 1\'i thin the dua l  strip - l ine ,  
which cou ld induce cross tal k .  

Figure 2 shows matched <:: tch lengths /. 1 ,  L2 , and L-, .  
On some module designs, th is  e tch  can be t:1 i rly long. 
The layou t  designers wou ld genera l ly "serpenti ne" 
or " trombon e" these long etch runs ro comply with 
the ,,t()l-cmentioned l ayout ru les .  Sp:1ci ng between 
the loops on the same etch run in the serpentine or 
trombone is crit ical .  If the spacing is roo c lose, then 
coupl ing wil l  occu r, thus changing the ,·clocity of 
prop:1gation JS \\'C i l  as signal qua l i tv. Designers used 
s imula tion to determine a min imum etch-to - etch 
spacing t(H· each PVVB lay- up .  The maxi mum a l l owable 
cross-tal k noise level for any min imum spac ing was 
400 mill ivo lts ( mY).  This level is within the maximum 
transistor-transistor l ogic ( TTL) low-state l evel of 
800 m V. Larger spaci ngs were used \\'here no other 
lavout ru les wou ld  be affected .  

The Use o f  External Series Terminating Resistors 

External series terminating resistors ( �1lso ca l led termi
nators ) ,  denoted by R, arc used at the source (sec 
Figure 2 ) . Although Texas I nstru ments otli::rs :1nothcr 
version of the P LL, namely CDC2586, which has 



built- ill series terminators, the AlphaServcr 4100 design
ers did not use this variation tor the tol lowing reasons: 

• Some tOnns of clock treeing ( a  method of connect
ing mu ltiple receivers to the same c lock output) 
require mu ltiple source terminators. 

• The nominal  value for the i nternal series terminator 
was not optimum for the target i mpedance of the 
PWBs. 

• The tolerance of the i nternal series terminators 
over the process range of the part cou ld be as h igh 
as 20 percent compared to 1 percent for external 
resistors. 

Local Power Decou piing 

PLLs arc analog components and are susceptible to 
power supply noise. One major point source tor noise 
is t he PLL itself. Most appl ications requ i re all 1 2  out
puts to drive substantial loads, which  generates local 
noise. A su bstantial  number of local decoupl ing capac
itors ( one tor every tour output pins)  and short, wide 
d ispersion etch on the power and ground pins of 
the PLL w�::re requ ired to he lp counter the noise. 
Designers a lso used tangential vias to minimize para
sitic inductance, which can severely reduce the t:ffec
tiveness of the decou p li ng capacitors. Typical surface 
mount components have d ispersion etch ,  wh ich con 
nects the surface pad to a via .  Tan gentia l  vias attach 
di rectly to the pad and e l iminate any surface etch that 
can act l i ke inductance at  high frequency. The PLLs 
were a lso located away from other potentia l  no1se 
sources such as the Alpha microprocessor chip .  

Analog Power Supply Filter 

The most important externa l  ci rcui t  to the PLL is the 
low-pass fi l ter on the analog power pins. Typical ly, PLL 
designs have separate analog and d igital power and 
ground pins. This a l lows the usc of a low-pass fi l ter to 
prevent local switching noise from entering the ana log 
core of the PLL ( primari ly the voltage-controlled osci l 
lator [VCO] ) .  I f  a fi lter is not used , then large edge-to
edge j itter wi l l  develop and wi l l  greatly i ncrease c lock 
skew. Most PLL vendors suggest ti l ter  designs and  
PWB l ayout patterns to he lp  reduce the  noise entering 
the analog core . The CDC586 PLL was introduced at 
the beginning of the AlphaScrvcr 4 100 design, and the 
vendor had not yet specified a filter tor the a na log 
power input .  lt  is important to note that if any new 
P LL is considered and prel iminary vendor specifica
tions do not i nc lude detai ls about the analog power, 
the dcsign<.:r should contact the vendor tor detai ls .  

Two torms of low-pass tl lters were considered:  L-C 
and R-C .  The L-C fi l ter  consists of a series inductor L 
trom the power source to the ana log power pins of 
the PLL and a capacitor C from the same power pins 
to grou nd .  The R-C tl lter consists of a series resistor 
R trom the power source to the a na log power pins of 

the PLL and a capacitor C tl·om the same power pins 
to grou nd.  

The L-C fi l ter can be implem<.:nted i n  two ways: 
( 1 )  by using a surtace mount inductor and ( 2 )  by using 
a length of etch f()r t he i nductor. In e ither case, the Q 
of the circuit has to be kept low to prevent osci l lation . 
Q is a d ime nsion less number reterred to as the qual ity 
factor and is computed from the inductance L and 
resistance R ( i n  this case the i nductor's resistance ) of 
a resonant circuit  using the formu la  Q = wL/ R. where 
w equals 2'IT/: and / is the frequency. A low-value resis
tor in series wi th the inductor can he lp .  Extreme care 
shou ld be taken if the lengtb-ot�etch ( used to generate 
i nductance ) implementation is considered.  The etch 
must be strip-.l ine -ctch isolated from any other adja
cen t  etch or etch on other layers not separated by 
power or groun d  planes. A rwo-dimensional ( 2 �  D )  
model ing tool should b e  used t o  ca lcu late t h e  l ength 
of etch needed to get the proper inductance value  tor 
the fi lter. Simple ru les of thumb tor inductance wil l  
not work with reference p lanes ( i . e . ,  power and 
ground planes ) .  

The R- C tl l ter  i s  l imi ted to PLLs with moderately 
low current draw on the ana log power pins .  The cur
rent generates an IR d rop (the voltage drop caused by 
the current through the resistor) across the resistor R .  
Typical PLL analog power inputs requi r<.: kss than 
1 mil l iamp (mA), which would a l low a reasonable 
value resistor R. Two capacitors shou ld  be used i n  the 
R-C type fi lter: a bu lk  capacitor for basic tl l tcr response 
and a radio tl-cquency ( Rf') capacitor to fi lter higher 
frequencies. B u l k  capacitors are any e lectrolytic-sty le 
capacitor 1 microfarad ( J.LF )  or greater. These capaci 
tors have intrinsic parasitics that keep them fi·om 
responding to h igh-frequency noise. The benefi t  of 
the L-C fi lter is that, a lthough a single capacitor can b<.: 
used ( r.vo arc sti l l  suggested with this style fi l ter ) ,  the 
reactance of the inductor increases with ti·equency and 
h el ps b lock noise . Both tlltcr styles were us<.:d i n  the  
AlphaScrvcr 4 100 system.  

System Distribution Description 

The AlphaServer motherboard has four  CPU slots, 
e igh t  memory slots, and an I/0 bridge mod u le slot. 
Each module  in the system, i ncluding the mother
board, has at l east one PLL. The starting point of the 
system is the CPU that pl ugs i n to CPU s lot 0 .  Each 
CPU modu le  has an osci l lator and a bufter to drive the 
main system d istribution, but the CPU that p lugs in to 
slot 0 actual ly driv<.:s the system d istribution . A PLL on 
the motherboard receives t he clock sou rce generated 
by the C P U  in slot 0 and distributes low skew copies of 
the clock to each modu le  slot in the system. Each 
module  in the system h as one and in some cases r.vo 
PLLs to supply the requ ired copies of the clock locally. 
Figure 3 shows the basic system tlow of c locks. 
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System Clock flow Diagr::un 

The Alpha microprocessor used on al l  CPU options 
tor rhe AJphaScrvcr 4 100 system has irs own l ocal 
c lock c i rcuitry. The microprocessor uses a bui l t - in  
d igital PLL that  al lows i t  to lock to an externa l rckr
cncc clock at a m u l tiple of i ts i n ternal clock . '  In the 
context of the AJphaServcr 4 1 00 system, the rekrcnce 
c lock is generated by the local c lock d istribution sys 
tem .  The AJphaScrvn 4 100 is ful ly  synchronous. 

Each CPU in the system has two c lock sources: 
one for the bus d istribution ( system cycle rime) and 
one for the microprocessor. This design may appear to 
be a costly one, but this :1pproach is extremely cost
eftecrive when f-ield upgr.1des are considered . W hen 
new, faster versions of the AJ pha m icroprocessor 
become avaibblc, new C PU options wi l l  be intro
duced . To remain svnchronous, the Alpha micro
processor i nternal clocks need to run at a m u l tiple of 
the system cyc le  rime. Al though the system cycle r ime 
goal is 1 5  ns, the cyc le ri me needs to be adjusted ro the 
speed of the CPU option used . Placing the bus osci lb
ror, which drives the primary PLL for the c lock system 
( cycle rime ) ,  on the CPU module  and design ing the 
clock d istribution system to fu nction over a wide t-i·e
quency range makes field upgrades as simple as replac
ing the CPU mod ules. The motherboard docs not 
need to be changed . 
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Skew Ma nagement Techniq ues 

The AlphaScrvcr 4 100 system had t-(nJ r design teams. 
Each team was assigned a portion of the system. Signal 
in tcgriry tech niques had to be developed to keep the 
skew across the system as low as possib le .  These tech
niques were structured into a set of design ru les that 
each team had to applv to their  portion ohhc design.  
To develop these ru les, designers explored several 
areas, inc luding impedance rJngc, termination, tree
i ng, PLL pLlcemenr, and compensation . 

Impedance Range 

Contro l led impedance ( +/- 1 0  perce nt from a target 
impedance ) r::�iscs the FWB cost bv lO percent to 
20 percent, depend ing on board s ize .  Each raw PWJ3 
has to be tested and documented lw the PWB s u p 
pl iers, wh ich  resu l ts i n  a fixed c harge t(>r each PWB , 
regJrdlcss o f  size.  Theref-ore, smaller PWBs have the 
highest cost burden. The AJphaScrvcr 4 100 uses rela
tively small daughter cards .  Since low system cost was 
a primary goa l ,  noncontrol lcd impedance PWBs had 
to be considered . U n t()rtu natcly, al lowi ng the PvVB 
i mpedance r;mgc ( over process) to spread to greater 
than +/ - 10  percent makes the task of keeping clock 
skew low more d ifticu lt .  Specification of mechanical 
d i mensions with tolerances was the only wav to 
provide some control of the impedance range with 
no additional costs. 

Table l comains the resu lts of simu lations per
tormed using S I MPEST, a 2 - D  model ing tool deve l 
oped by DIG ITAL, for a s ix- layer PW B used on  one  of 
the AJphaServer 4 1 00 modu les. The PWB dimensions 
and tolerances specified to the vendors were used i n  
the simu lations. The d ie lectric constant, the onlv para
meter nor speci f-ied to the vendor, ranged from 3 . 8  to 
5 .2 ,  which ovcrbps the rypical industry-pu blished 
range of 4.0 to 5 . 0  tor fR4-type material ( epm..)r-glass 
PWB ) .'' S ince our  PWB material acceptance with the 
vendor is based on meeting dimension tolerances, we 
used the 6cr i mpedance range on al l  SPICE s imula
tions, rhus ensuring that a l l  acceptab le  PWB material 
wou ld work electrical ly. 

Ta ble 2 shows the impedance range t-(>r J control led 
i mpedance PW B t-(>r the target impedance reported i n  

Table 1 
Vendor I mpeda nce Ranges Specify i ng 
D im e nsions Only 

Mean ta rget 
i m peda nce 

I m peda nce 
range 

4cr Yield 

71 ohms 

62 ohms to 
83 ohms 

6a Yield 

71 ohms 

57 ohms to 
89 ohms 



Table 2 
Vendor I m peda nce Range for a n  I m peda nce 
To l era nce of +/- 1 0  Perce nt 

Mean t a rget 
I m peda nce 

I m peda nce range 

+ I  - 1 0  Specification Range 

71 ohms 

64 o h ms to 78 o h ms 

Table I .  The d i fkrence i n  i m pedance r;mgc between 
specifY ing d i mensions and i mpedance is - 7  ohms to 
l l  ohms. The s imulations suggested that the range 
d i tkrcnccs have a minor i mpact on signal beh;wior. 

The target i mpedance was based on nominal  
d i me nsions and die l ectric constant .  The target of 
7 1  o h n1s \\'aS chosen to opti mize routing densi ty and 
to keep the l:�ycr cou n t  down ti:>r most designs. 
Another J.dv:t ntage was that keeping the m i n i m u m  
im ped:�nce above 50 ohms would m i n i m i ze load ing.  
The i mpedance range covers th<.: fu l l  mechanica l  
d i mensions and d iel ectric constant  ranges. Propt.:rly 
i mpkmcntcd , the PLLs would dkc tivcly e l i minate 
local etch d elay mod u l e  to mod u le over the ti.d l 
process rang<.: of the PWJ3s. The main chal knge was 
to adeq uate l y  termi nate withou t sacri flcing skew 
pert(>rmance at th<.: extreme process r:t nge ( 6u) of 
the PW B materia l .  

Termination 

The designers used series termination 011 �1 1 1  c locks i n  
t h e  system . P<1 r;1 1 ld terminators wou ld have <.:xceeded 
the d rive capabil ity of the CDC586.  Diode damping 
was not practical when so many copies of the c l oc k  
were requ ired because o f  PW B surbce area con
strai n ts .  Normal ly, the optimal  term i nation value is 
one that provides critical  damping ti:Jr the case where 
the driver's i mpedance is the lmvest and the etch 
i mpedance is the h ighest. Designers can then make 
adj ustments :�t the other extreme corner ( high driver 
impedance and low etch i mpedance ) to avoid non mo
noto n i c  behavior such as pl ateaus .  This generally 
introd uces s lope delay u ncerta inty at the s low corner 
( high d river i mpedance and low e tch i mped a nce ) ,  
which c:�n be substa n tia l .  To m i n i mi ze th is  cftcct, 
designers selected term inator values th;lt a l l ow over
shoot and some bounce-away ti·om the threshold 
region at t i Je extreme process corner. Overshoot can 
reach the maxi m u m  spec i tied a l tern:�ting current  (AC) 
i np u t  o F  the receivers over the worst-case process 
range. Some receivers have bui l t - in  d iode c lamping to 
their power supply rai ls  as a resu l t  o r· ESD c i rc u i ts i n  
their i n p u t  structures ( ESD circu i ts :�re used tc.>r static 
d ischarge protection ) .  In these cases, the c lock sign;ll is 
c lamped,  which in turn dampens bou nce.  The i njec
t ion curre nt s  c:�used by clamping wou l d  be tested in 
SPICE s imu l ations to be sure that the parts were not 

stressed.  If the tests ind icated stressed parts, designers 
wou ld adjust the termi nator val u e  accord i nglv. 

Treeing 

Treeing is :-� method of d istri buting clocks from a 
si ngle sou rce driver to many receivers . This practice, 
whi c h  is wel l  known to m emory designers, was used 
on the AlphaServer 4 100 memory mod u l es,  bus i nter
face logic ,  and primary d istribut i on clocks on the 
mothe rboard . The designers used two basic forms of 
treeing: the bal :�nced H tr<.:e and the shared output 
tree . The balanced H tree is best suited tor fixed loads 
(receivers) of the same type ( i . e . ,  memories, trans
ceivers, ere . ) .  A single,  series-terminated clock ou tpu t 
feeds a tru n k  l i ne to a via and then branches to each 
load . Each branch is  equal i n  lengt h .  The total com 
pensated path inc l udes the pre-terminator stub, the 
main trunk,  and the branch ex t<.:nding to the load . 
Figure 4 i l l ustrates the c lock treeing topoiOb'Y The 
shared ou tpu t tree was used where various mod u l e  
configurations cou ld a l tn clock load ing .  Specitica l l y, 
the d istri bution on the motherboard is restricted to 
one P LL to keep the cloc k skew low. Consequent ly, 
some outputs needed to drive more than one slot. 
A single output d river d rove two termi nators-one 
tor each load . The low d river i mpedance isolated 
rd1ections tl·om perturbing a mod u le when a mod ule 
s lot  was left ope n .  

PLL Placement 

P lacement of the PLL on each mod u l e  is critical . Figure 
5 is a s impl itied view of the primary d istri bu tion up to 
and inc luding the PLL on a mod u l e .  The Al phaServer 
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C lock Treeing 
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4 100 system has two types of module connectors: 
a Metra ! con nector ( F u ru rcbus + -style connector) is 
used on the CPU mod ules and the I/0 bridge mod u le,  
and an Extended I nd ustrv Stand ard Architectu re 
( EISA) connector is used on the memory modu les . 
I n tri nsic delay on these connectors cou l d  d i ffer sub
stan ti a l ly depending on pi n n i ng and the s ign a l - to
return ratio i n  the application .  The Mcn·a l con nector is 
a right-angle , nvo-picce con necto r  with tou r  rows of 
pins: rows A, B ,  C, and D.  The row A pins arc the 
shortest, and the row D pins arc the longest. The EISA 
connector is an edge connector with nvo rows of pins 
with m i nor l ength d i fferences p in  to pin o n  either s ide 
of the con nector. Designers had to balance the pinning 
of these connectors for the c lock circu i ts in  such a way 
that the mod ule-to-mod u le skew woul d  not be 
a tlectcd .  The Metra! con nector was pinned to replicate 
the loop inductance of the EISA connector. 

D ispersion e tch is requ i red on eac h mod u le to con
nect the P LL to the connector. This etch can h ave d i f  
krent i mpedance and velocity of propagation ti·mn 
mod u l e  to module as a res u l t  of P\VB process range , 
which transl ates i nt o  addition ::� !  modu le -to-mod u le 
c lock skew. Designers can dea l  w i th this problem in  
t\vo wavs. 

First, adding the same dispers ion len gth L, ( sec 
Figure 5) to the compe nsation loop L2 nul ls  this error. 
Th is becomes obvious if you l ook at the PLL's basic 
fu nction . The i nsertion d e!Jy 7

i
·
d f-1-om the c lock- in pin 

of the PLL to the inp u t pin of the receiver is approx i 
mately 0 ns i f L 1  = L2,  o r  

MOTHERBOARD 
PRIMARY 
DISTRIBUTION 

7;
.
d = ( T{, + 0) - 7, 2 . 

For 'f{ , = 02 ( eq ua l  etch l engths ) , 'f,·d = 7f. 1 
Adding 7/ ,  to the compcns:n ion path y ields 

'l;'d = ( 7; , + 0) - ( lj2 + ·r; 
For 7{ , = 7{2 ( etch eq ua l lengths ) ,  7id = 0 ns, 

where 

Tid = the inserti on d e l ay f-rom the connector 
p in  to the receiver input  

lj , = the etch d e l ay f-i·om the PLL output  
t o  the  receiver i npu t 

'fj 2 = the etch de Ll\' of the PLL 
compensation loop 

l/, = the d ispersion etch d el ay connector 
to the clock- in  of the P LL. 

One d rawback to this method is that the etch lengths 
could get b irlv l a rge , which wou ld resu l t  in edge r:ne 
degradation . Alph aServer 4 1 00 designers d id  not usc 
this p laccmcnr method on the cu rrent set oh11od u l cs; 
however, they will consider using i t  on new designs that 
require :1 d i ff-Crcnt location t(>r the P LL. 

The second way of dea l ing w i th the dispersion etch 
ti·om the m od u le connector to t he cl ock- in p i n ohhc 
P LL is  to ma ke the d ispersion e tch very  short and to 

take a skew pe na lty over the l)W B process . P l acement 
stu dies on the various mod u le designs su ggest that 
a 2 5 - m m  d ispe rsion etch wou l d  a llow rclSOILlb le  
placcmcllt  of PLLs .  The :1dd i tional skew is just  u nder 
5 0  ps,  based on a velocity of propagation range of 
5 . 59 ps/mm to 7 . 3 6  ps/m m .  

TYPICAL MODULE 
LOCAL DISTRIBUTION 

DISPERSION R L, 

Figure 5 
PrinlJrl' Disn·iburion 
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Compensation 

Some mod u les have a wide variety of circu its receivi ng 
clocks that, because of input load ing, do not balance 
wel l  with the various treeing methods. Designers 
used d u m my capacitor load ing to help balance the 
treei ng.  This approach was particu larly useful o n  
memory modu les, w h i c h  cou ld be depopul ated to 
provide different  options using the same etch . Su rface
mou nt pads were added to the etch such that if the 
depopu lated version were b u i l t, a capacitor coul d  be 
added to replicate the m issing load on the tree,  thus 
keeping it i n  balance. The CPU modu les have a wide 
variety of clock needs, which resu l ts i n  two forms 
of skew: ( 1 )  load - to- load sknv at  the mod ule  and 
( 2 )  control logic-to-C PU skew, tor control logic 
located on the motherboard . The local load - to
load skew is acceptable because only one PLL is 
used and the ou tput-to-ou tput skew is only 500 ps. 
Motherboard -to-CPU control logic skew, though, is 
cri tical because of ti m i ng constrai nts. 

D u mmy capaci tor loading at each l ightly loaded 
receiver wou ld have reduced the skew, but to compen 
sate tor j ust o n e  heavi ly  loaded receiver would have 
required many capacitors. PWR su rrace area and the 
req uirement of simpl icity d ictated t he need tor an 
a l ternative. The solution was to keep the clock edges 
as fast as possible ( by adj usti ng the series terminators ) 
and to add a compensation capacitor at the input ( the 
feedback [ F l3 J )  of the P LL's compensation loop. This 
effectively reduced the skew from the slowest load on 
the CPU to the control logic on the motherboard . 
Figure 6 shows the d isparity between l ight and h eavy 
loading from T1 to 72. Without teed back compensa
tion, the P LL self- adjusts to the l ightly loaded receiver. 
Tbis ;�djustment results in skew T1 to 72 from the 
heavy load to the control logic on the motherboard . 
A capacitor on the fB input  of the PLL sp l i t  the d i f  
fercnce berween 73 ro 7 2  and T.1 to 7 ]  ;�nd min i mized 
the perceived skew. 

Skew Target 

Designers generated the worst-case mod u le-to-mod u le 
clock skew specification tor the Al ph aServer 4 100 
trom vendor specitications, S Pl C E  sim u l ations, and 
bench tests using the techniques d iscussed in this 
paper. The worst-case skew goal i s  2 .2 ns and i s  sum
m arized i n  Table 3.  

The reader wi l l  note that  e ight  t imes the vend or's 
specification may appear to be <1 rather conservative 
specification . The usc of this value was based on two 
concerns: ( 1 )  the PLL was new at the time, and experi
ence suggested that the vendor's specification was 
aggressive; and ( 2 )  some level of padding w;�s required 
if  the exception to the ru les was needed . Actual system 
testing bore out these concerns. The vendor had 

LIGHTLY LOADED 
RECEIVER 

HEAVILY LOADED 
RECEIVER 

COMPENSATION LOOP 
FB INPUT (PLL) WITH 
NO CAPACITOR 

COMPENSATION LOOP 
FB INPUT (PLL) WITH 
CAPACITOR 

KEY: 

T1 LIGHTLY LOADED RECEIVER CLOCK EDGE TIME 
(REFERENCE) 

T2 HEAVILY LOADED RECEIVER CLOCK EDGE TIME 
T3 COMPENSATION LOOP FB INPUT EDGE TIME WITH 

CAPACITOR 
FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP 

Figure 6 
feedback Loop Compensation 

to relax the j i tter specitication ti·om 25 ps to 70 ps 
RMS,  and there were some d ifficu lties getting good 
load balance . The specitication did not change, how
ever. Reassessing the a l located bus sett l ing time yields 
the followi ng: 

Bus cycle 
Transmitting module  (Teo) 
Setup and hold time for the 

receiving mod u le 
Clock skew 
Time a l located for bus settling 

1 5 .0 ns 
5 . 1  ns 

1 .  5 115 

2 .2  ns 
6 .2  ns 

SPICE simu lations tor a fu l ly  lo;�ded bus with the 
worst possible driver receiver position yielded a bus 
settl ing time of 5 .7  ns. The relaxed skew of 2 .2  ns 
maximum was acceptable  tor the design .  

Comparative Analysis 

A comparison of clock d istri bution systems between 
two other p latforms best summarizes the AlphaScrver 
4 100 system . The AlphaServer 4 100 has a price and 
performance target berween those of the A lphaServer 

2 100 and the AlphaServer 8400 systems. Table 4 com
pares the basic d ifrerences among these systems rel at
ing to cl ock d istribution tor a CPU module  ti-om each 
platform . 

Both the Al p haServer 2 100 and the AlphaServer 
8400 systems have large custom AS!Cs f(x their mod 
u le's bus interface. The Alp haServer 4100 and the 
Al phaServer 8400 systems have bus termination; the 
Alp haServer 2 100 system does not.  Al lowing a bus to 
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Ta ble 3 
Worst-case Clock S kew 

Stage 

M otherboard 

I n puts to modules 

Module  to module  

I n puts to rece ivers 

I n puts to receivers 

Tota l  c lock skew 

Table 4 

Source 

O ut-to-out skew 

Load m ismatch 

PLL process 

Loa d  mismatch 

PLL j itter 

Clock D istr i bution Comparison of T h ree Platforms 

AlphaServer 2 1 00 System 

B us width 1 28 + ECC 

B us speed 24 ns 

Clock skew 1 . 5 ns 

Inputs req u i r i n g  c l ocks 1 0  

Clock d rivers used 1 2  

N u m be r  of c l oc k  phases 4 

settle natura l ly (with no termination),  as in the case of 
the AlphaServer 2 100 system,  req uires a tighter skew 
budget from the clock system.  The trade-off is higher 
cost, power, and PWJ3 area t()r lower bus speed . 
Higher performance systems, such �lS the AlphaServer 
8400 and AJphaServer 4100 systems, generally requ i rc 
bstcr bus speeds with term inators . The AJp h aServcr 
4 100 has shorter bus stubbing ( mod ule transceiver to 
con nector d ispersio n  etc h )  Jnd s lower bus speed than 
the AlphaServer 8400, which al lows larger skew ( Js 
a percentJge of the bus spccd ) .  

Table 5 i s  a comparison o f  board areJ needed and 
cost for the clock syste m .  Dcsigncrs analyzed an entry
levcl system consisting of one CPU module ,  one mem
ory mod u l e ,  and one 1/0 bridgc or i nterface mod u l e .  
Thc board area shows the spacc req uired b y  t h e  active 
components only ( the d igitJ I p hase- loc ked l oops, 
PLLs, d rivers, etc . ) .  

Both Tables 4 a n d  5 show that the c lock system 
dcsign t(>r the AJphaScrvcr 4 1 00 system req u ires only 
one-th ird the space of either thc Al p haServer 2 100 
systcm or the AJphaServcr 8400 system at a fraction of 
thc cost and d istri butes more copies of the clock. 

Ta ble 5 
Board U t i l i zation a n d  Cost Compa rison 

Board a rea used* 

Normal i zed cost 

AlphaServer 2 1 00 System 

352.8 sq u a re ce nt imeters 

1 .00 

Skew Component 

500 ps (vendor specificat ion)2  

1 00 ps (s i m u l at i on/bench test) 

1 , 000 ps (vendor specif ication)'-

200 ps (si m u lation/bench test) 

400 ps (e ight t imes the vendor specification)2 

2,200 ps = 2 . 2  ns 

AlphaServer 4 1 00 System Alpha Server 8400 System 

1 28 + ECC 256 + ECC 

1 5  ns 1 0  ns 

2 . 2  ns (max.)  1 . 1  ns (max.)  

2 5  1 4  

1 3  1 1  

Conclusions 

An etkctive, low-cost, high -pcrh>rmance c lock distri 
bution system can be lksigncd using an off. the-shclf 
componcnt as the basic b u i l d ing b lock.  D fG fTA L 
AJ phaServer 4100 s�·stem dcsigncrs accomplished this 
by optimiz ing the bus and den: l oping s imple tec h 
niqucs structured i n  the t()rm o f  dcsign rules.  Thcsc 
ru les arc 

• Use positive edges t(x critical clocking.  

• Match dc lay through d i ftCrc nt  con nectors usmg 
appropriate p inning.  

• Usc a fixed d ispersion ctch length from the connec

tor to the PLI , .  

• Rou te and bal a nce a ll dock nets on the same PWB 
laycr. 

• Minimizc adjaccnt- laycr crossovcrs and maximize 
spacmgs. 

• Use minimum val u c  tcrminarors. 

• Usc tree and loop comrxns<ltion where needed . 

• Usc conservative local d ccoupl ing and a l ow-pJss 
ti l ter on the PLL ( analog powcr) .  

Alpha Server 4 1 00 System 

1 1 1 .4 sq uare centi m eters 

0.46 

Alpha Server 8400 System 

3 7 1 .3 s q u a re centimeters 

4.40 

*Note that these measu rements do not include decoupl ing capacitors and terminators. 
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The worst-case lab meas u re ment of c lock skew 
between any two mod u l es in a rLd ly con hgu red system 
was l . l  ns, which is wel l  within the 2 . 2  ns ca lcu lated 
m J x i m u m  skew. 
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Design and Implementation 
of the Alpha Server 41 00 CPU 
and Memory Arch itecture 

The DIGITAL AlphaServer 4100 system is Digita l 

Equipment Corporation's newest four-processor 

midrange server product. The server design is 

based on the Alpha 21 1 64 CPU, DIGITAL's latest 

64-bit microprocessor, operating at speeds of 

up to 400 megahertz and beyond. The memory 

architecture was designed to interconnect up  

to  four Al pha 21 1 64 CPU chips and  up to four 

64-bit PCI bus bridges (the Alpha Server 4100 

supports up  to two buses) to as much as 8 giga

bytes of main memory. The performance goal 

for the AlphaServer 4 1 00 memory interconnect 

was to del iver a four-multiprocessor server with 

the lowest memory latency and highest mem

ory bandwidth in the ind ustry by the end of 

June 1 996. These goals were met by the time the 

AlphaServer 4100 system was introduced in May 

1 996. The memory interconnect design enables 

the server system to achieve a min imum mem

ory latency of 1 20 nanoseconds and a maximum 

memory bandwidth of 1 giga byte per second by 

using off-the-shelf data path and address com

ponents and programmable logic between the 

CPU and the main memory, which is based on 

the new synchronous dynam ic random-access 

memory technology. 

41l Di�;i tcll Tech nical journal Vol .  8 No. 4 1 996 

I 
Glenn A. Herdeg 

The DIG I TAL AlphaSuvn 4 100 s�'stem i s  a svrnmet
ric multiprocessing (SMP) midra nge suver that sup
ports up to fou r  Alph:1 2 I 1 64 microprocessors . 
A singk Alph<� 2 1 164 CPU chip may simultaneous ly 
issue multiple extern:�! accesses to main memory. The 
Alph:1Servu 4100 memory imuconncct was designed 
to maximize this multiple- issue ti::ature of the Alpha 
2 1 164 CPU chip :�nd to t:� kc :llh':111tage ohhe perfor
mance benefits of the new bmi ly of memory chips 
called synchronous d\'n:unic random·access memories 
(SDRAMs). To meet the best-i n-industry latency <111d 
b:mdwidth pertorm:1ncc goa ls, D I G ITAL de,-eloped 
:1 simple memory interconnect ,1rchitccturc th<�t com
bines the existing Alpha 2 ! 164 CPU memory i n ter
race wi th the industry-standard SDRAM interrace . 

Throughout  this paper the term late ncy reters to the 
time required to return data ti·om the mcmorv chips ro 
the C PU chips-the lo\\'er the latency, the better the 
put(>rmancc. The AlphaScr\'er 4 10 0  svstcm achic,·cs 
:1 m in inl l lm latencv of 120 nanoseconds ( ns) tl-om rhc 
rime the address appc::lrS ar rbe p ins of rhc Alplu 2 1 164 
CPU ro the time the CPU internal  tv receives tl1e corre
sponding data hom any address i n  m:1 in  memory. The 
term ba ndwidth rdcrs to the ::tmount or' data, i . e . ,  the 
n umber of bytes, transferred berwecn the memory 
ch ips and the CPU chips per unit of rime-the higher 

the bandwidth, the better the pcrt(mnance. The 
AlphaServer 4 100 delivers '1 nJ,lXimum memory band
width of l gig<�byte per second (G B/s). 

Beh-c in troducing the DIGITA L AlphaServer 4 lOO 
product i n  M:1y 1996,  rhc developme nt ream con
d u cted :m extensi,·e pcd(mllancc comparison of 
the top sen·crs in the industry. The bencbnurk 
tests showed that the A l p h aServcr 4 10 0  delivered the 
lowest memory latency :md rhc highest McC<�Ipin 
memory b:1 11dwidth of a l l  the t'vVO- to four-processor 
systems in the industry. A companion p<�per in 
this issue of the ]oumol " A i p luServer 4100 Pcr
t(>nll Jnce Characterization," contains the comparative 
int(mnation.1 

This p:�per focuses on the '1 rchi tecturc and design of 
the rhn:e core modules that \\'ere developed concur
rently to optimize the ped(mn:�ncc of the e ntire 



me mory arch i tecture .  These th ree mod u les-the 
motherboard , the synchronous memory mod u l e ,  and 
the no-external -cache p rocessor mod u l c-�H"C shown 
in Figu re l .  

Motherboard 

The motherboard contains connectors t()r up to t(> u r  
processor mod u les, u p  t o  t(Jur memory mod u l e  pairs,  
u p  to two 1/0 i nterrace modu les ( tcH1 r peripheral 
component  i nterconnect [ PC! ] bus bridge c h ips 
ror:�l ) ,  memory add ress m u ltiplexers/drivers, :md 
logic t(>r memory control and arbi tration.'  Al l con 
trol logic on the motherboard is im plemented using 
simple 5 - ns 28 -pin programmable arra�' l ogic ( PAL) 
de\ '  ices and more complex 90- mcgahcrtz ( M H z )  
44-pin programmable  logic devices ( P LDs) c locked Jt 
66 M Hz. Several motherboards have been produced 
to su pport various n u m bers of processor modu les, 
memory modu les, and 1/0 interbcc modules.  The 
Alp haScrvcr 4 10 0  supports one to t(> u r  processor 
mod u les, one to t<> u r  memory mod u le pJirs ( 8 - G B  
maxim u m  memory ) ,  and o n e  I/0 int crbcc mod u l e  
( up to two P C I  buses ) . '  

Synchronous Memory Mod ule 

The synch ronous memory modu les arc custo m 
designed,  72 - bit-wide p lug- in  cJrds i nstJ I Icd i n  
pairs t o  co1Tr t h e  fu l l  width of t h e  1 44 -bit memory 
data bus .  Synchronous memory mod u les that provide 
32 megabytes ( M J) )  to 256 M R  per pair were designed 
usmg 1 6- mcgabit ( M b) S D RAM chips.  These 
memory mod u les conta in  n ine,  eighteen, thi rty-si x ,  
or seventy-two 1 0 0- M H z  S D R.AM chips clocked at 
66 M H z, t(>ur  1 8 - bit clocked data rcmsccivcrs, add ress 
bn-our b u fkrs, a nd control provided by 5 - ns 2 8 - p i n  
PA Ls. To increase the maxi m u m  a m o u n t  of memor v 
in the system ,  a tami ly of p lug- in  compati ble memory 
mod u les was designed, providing u p  to 2 G B per pa ir  
us ing 64 - M b  exte nded data our dynamic random
access mcmorv ( EDO D RA M )  c h ips . These modu les 
cont a i n  72 or 1 44 EDO DRAM chips controlled by 
two custom appl ic1tion -specitic  i n tegrated circuits 
(ASJ C:s)  provid ing d ata m u l tip l exing and contro l ,  t(> u r  
1 8 - bir  clocked data transceivers, Jnd add ress b n - o u t  
buftl:rs. Consequently, t h e  Al phaServcr 4 1 00 memory 
arch itecture provides main memory capacities of 
3 2 M B  to 8 G B with a m i n i m u m  latency of 1 2 0 ns to 
:111y address. This paper concentrates on the imple
mentation of the synch ronous memory mod u les, 
a lthough the EDO me mory modu les arc fu nctionally 
compati b le .  The recontigu rabi l ity descri ption later in  
th is  paper pro\·idcs more derails of the im plementation 
of the EDO memory mod u l es. 

No-External-Cache Processor Module 

The no-external -cache processor mod u le is a p lug- in 
card with a 144-bit  rncmor�r i nred�1ce that contai ns 
one Al pha 2 1 1 64 C P U  chip,  eight 1 8 - bit clocked data 
transceivers, tou r  1 2 - bit b id irectional add ress l atches, 
and control provided by 5 - ns 2 8 - p i n  PALs and 
9 0 - M H z  44 - pin  P LDs clocked at 66 M H z .  The Alpha 
2 1 1 64 C P U  chip is  program med to operate at a syn
c h ronous memory i n tcrtacc cycle time of 66 M H z  
( 1 5  ns) to match the speed o f  the S O  RAM chips o n  the 
memory modu les. Although there are no external 
cache random- access memory ( RAlvl ) ch ips on the 
mod u l e ,  the Alph<l 2 1 1 64 i tself contains two levels of 
on-chip caches: �1 primary 8 - ki lobyrc ( KB )  data cache 
and a primary 8 - KB instruction cache, and a second
level 96- KB three-way set- associative data and i nstruc
tion cache .  The no-external-cache processor mod u le 
was designed to take adva ntage of t he mult ip le- issu e  
feature o f  t h e  A l p h a  2 1 1 64 C P U .  By keeping the 
latency to main memory low and by iss uing m u ltiple 
references trom the Alpha 2 1 1 64 CPU tO main mem
ory at the same time to increase memory bandwidth,  
the pedormancc of many appl ications actu a l ly exceeds 
the pertormancc of a processor mod u le with a third
l evel external  cac h e . '  N u merous appl ications perform 
better, however, with a l arge on- board cache. For this 
reason ,  the Al phaScrver 4 1 00 ofkrs several variants of 
plug- i n  compatible processor modules containing a 
2 - M B ,  4 - M B ,  or greater module- level cache. The paper 
"The AlphJScrvcr 4 1 00 Cached Processor Mod u l e  
Architectu re and Design," which appears in  this issue 
ofthejourua/, contains more related information! 

The th ree components of the core mod ul e  set were 
d esigned concurrent ly  to address five issues: 

1 .  Simple d esign 

2. Quick design r ime 

3 .  Low memory l atencv 

4. High me mory bandwidth 

5. Recon figurJbi l i ry 

Simple Design 

The Alpha 2 1 1 64 CPU ch ip  is based on a reduced 
instruction set computing ( R.ISC) architecture,  which 
h as a smal l ,  s im ple set of i nstructions operating as tast 
as possi ble.  A l phJScrvcr 4 1 00 designers set the sam e  
goal of s impl icity t()l· the rest of the server system.  

The Al phaScrvcr 4 1 00 i n terconnect between rhc 
CPU and main me mory was optimized tor the Alpha 
2 1 1 64 chip and the S D RAJ\11 chip .  To keep the design 
si mple,  only off the-shel f  data path and add ress com 
ponents and rcprogrJ mmable control logic devices 
were placed between the Alp h a  2 1 1 64 and S D RAM 
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Figure 1 

MOTHERBOARD 
MEMORY PAIR 4 - 32 MB TO 2 GB I (ALPHASERVER 4 1 00 ONLY) I MEMORY PAIR 3 - 32 MB TO 2 GB 1----------------� .. 1 (ALPHASERVER 4 1 00 ONLY) 
r-�--��----�1--------------1 MEMORY PAIR 2 - 32 MB TO 2 GB � 

MEMORY PAIR 1 - 32 MB TO 2 GB 
�I FLOP 1�--+---------------------------��1 

DRAM COLUMN ADDRESS 
(I+-D_R_AM_R�O_W_A�D�D�R�ES�S� 

�1-----+�� DRAMS 

c_ __
__

_ _  CON_TR()L-<} _ _ _ _ _  • _ : ���1;�� �;��RoL- ; 
- - - - 1  AND CENTRAL :-: ARBITRATION 1 

PROCESSOR CARD 1 , _ _ _ _ _ _ _  _ 

� - - - - - - - - - - - ... - 1  

r--- - - - - - - - - - - - - - - -: CONTROL :- - - - - - - - - - - - -ALPHA 21 1 64 CPU .. _ _ _ _ _ _ _  J 

,CMDMDDR•ii�LA�T�C;H�tl.---------�----�-----. DATA � FLOP 
PROCESSOR CARD 2 , _ _ _ _ _ _ _  _ - --- - - - - - - - - - - - -: CONTROL :- - - - - - - - - - - -

.. _ _ _ _ _ _ _ J 
ALPHA I�:C�M�D/�A�D�D�R:.����1:�========1=========:ll-_.l 
2 1 1 64 . LATCH CPU DATA I F LOP I 

-

PROCESSOR CARD 3 (ALPHASERVER 4 1 00 ONLY) 
,--- . _ _ _ _ . . . . . . . .  - .: -coN-T�o� f -

,. _ _ _ _ _ _ _  j ALPHA CMD/ADDR I I 2 1 1 64 LATCH CPU DATA ·I I . FLOP 
'------

PROCESSOR CARD 4 (ALPHASERVER 4 100 ONLY) 
,--- - - - - - - fc_o_N��0� 1 - - - - - - - - - · - ·  

.. _ _ _ _ _ _ _  j CMD/ADDR I I < • : LATCH . 

"'•2 
- ·  

: 
/ 

en ::J <D 
en en UJ a: 0 0 <( 
0 z <( ::;; ::;; 
0 0 

ALPHA 2 1 164 CPU • DATA ·I FLOP 1-------------1-----�----++----• 1 
-

r;;;I,O�M�o�D:;;-u;L;E -;-, -;:::: 1 ====� r · _:-:-_l _ _ _ _ _  _ _  PCI SLOTS 1 TO 4 I o----l-----�------J-jf-__ ... +--'-===_:_:_::c..:_+--------;�-11 PCI BRIDGE I r 

PCI sLoTs s To a 1 r - - - - - - - ----'-"C..::.::C:.:.::..::.:..::::..::_I----•1 PCI BRIDGE 2 1 
1/0 MODULE 2 (ALPHASERVER 

PCI SLOTS 9 TO 1 2 4000 ONLY) I -, . - - - .  
--..!..:===:c.:.:�=---+--------; ... 1 I PCI BRIDGE 3 11+-l---__:_---+1--·1 
,.__:_P_:::C.:_:I S:::L:.::O:,cT_:::S__:1"-3_:_T0"---'1:_6-+-----+-� PCI BRIDGE 4 r�-- --·_- -1-·--_- -_·_- -_:_· -----l-�-.. 1 

/ I 44 

CfJ ::J <D 
<( :;: 0 

Note that the AlphaServer 4000 system contains the same CPU-to-memory inteliace as the AlphaServer 4 1 00 but supports half the number ol processors and memory modules and twice the number ol PCI bridges. The 
AlphaServer 4000 molherboard was des1gned at the same t ime as the Alpha Server 4 1 00 mo lherboard but was 
not produced until alter the AlphaServer 4 1 00 motherboard was ava1lable. 

Alp haServer 4100 Memory I nrerconnecr 
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chips. The designers removed excess logic and hard
ware features, minimized the "glue" logic between the 
CPU chip and main memory, reduced memory laten 
cies a s  much a s  possible, and  used custom ASlCs only 
when necessary. 

Data Path between the CPU and Memory 

The external i nterface of the Alpha 2 1 1 64 chip pro
vides 1 28 bits of data plus 16 bits of error-correcting 
code ( ECC), thus e nabl ing single-bit error correction 
and multiple-bit error detection over the fu l l  width of 
the data path, which is shown in Figure 2. These 1 44 
signals are connected to eight 1 8-bit  bidirectional 
transceivers on the processor module .  As i l lustrated 
in Figure l ,  the motherboard connects up to tour 
processor modules and up to four memory mod
u le pairs .  Each memory module contains 72 bits of 
information; therdore, a pair of memory modu les 
is required to provide the necessary 1 44 data sig
nals. Each pair of memory modules contains eight 
additional 1 8 -bit  bid i rectional transceivers that are 
connected directly to a number of SDRAM chips. 
The data transceiver used on the processor module 
and on tl1e memory module is the 56-pin Phi l ips 
ALVC 1 6260 l in a 1 4- mil l imeter ( mm )- long package 
with 0 . 5 -mm pitch pins. Error detection and correc
tion using tbe 1 6  ECC bits is pertormed inside the 
Alpha 2 1 164 chip on al l  read transactions. Data path 
errors are checked by the PCI bridge chips on all trans
actions, including read and write transactions between 
each CPU and memory, and any errors are reported 
to the operating system.  

The data path is clocked at each stage by a copy of 
a single-phase clock. The clock is provided by a low
skew clock d istribution system built from the 52-pin 
CDC586 phase-locked loop clock driver.' The clock 
cycle is controlled by an oscillator on the processor 
module and runs as fast as 66 MHz ( 1 5 -ns minimum 
cycle time) while delivering less than a 2 -ns worst-case 
skew ( i .e . ,  the difterence in the rising edge of me clock) 
between any tvvo components, including the Alpha 
2 1 1 64,  SDRAMs, and any transceiver on any module .  

Read transaction data is returned from the pins 
of the SDRAMs to the pins of the Alpha 2 1 164 in 
two dock cycles ( 30 ns ), as shown in Table l .  The no
external -cache processor has no module- level data 
cache, so data is clocked d irectly i nto the Alpha 2 1 1 64 
from the transceiver. In Table 1 ,  read data that corre
sponds to transactions Rd l and Rd2 is returned from 
the same set of SDRAM chips in consecutive cycles. 
Read data that corresponds to transaction Rd3 is 
returned from a different set of SD RAM chips with a 
one-cycle gap to allow the data path drivers from trans
action Rd2 to be turned offbetore the data path drivers 
tor transaction Rd3 can be turned on . This process pre
vents tri -state overlap. As a result, consecutive read 
transactions have address bus commands either four or 
five cycles apart. Note that the Alpha 2 1 164 data, com
mand, and address signals are shown tor only one 
processor (CPU 1 ) , which issues transactjon Rd l .  The 
other transactions are issued by otl1er processors. 

Write transaction data is also transferred from the 
pins of the Alpha 2 1 1 64 CPU to the pins of the 
SDRAMs in  two clock cycles ( see Table 2 ) .  Write data 

MOTHERBOARD 

r - - - - - - - - - - - - - - - - - - - - - - - - - ,  
NO-EXTERNAL-CACHE PROCESSOR 
MODULE (1 TO 4) 

r - - - - - - - - - - - - - - - - - - - - - - - - - ,  
,- - - - - - - - - - - - - - - - - - - - - - - - L ,  
I SYNCHRONOUS MEMORY 
1 ( 1  TO 4 PAIRS) 

ALPHA 
21 1 64 
CPU 

72 

B DATA AND ECC 

~ 
SDRAMs 

/.
1 44 

FLOP I-_.__��----__!_---..,,L
72
-.J......,--. �E�� �ER 1 44 

PAIR)  
- : A 

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J L - - - - - - - - - - - - - - - - - - - - - - - - - j 

Figure 2 
Data Parb between rhe C P U  a nd Memory 

Table 1 
CPU Read Memory Data Ti m i n g  

Cycle ( 1 5  ns) 0 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  
Add ress Bus Com m a n d  Rd 1 Rd2 Rd3 Rd4 
SDRAM Data 1 1 1 1 2 2 2 2 3 3 3 3 
Motherboard Data 1 1 1 1 2 2 2 2 3 3 3 
CPU 1 :  Alpha 2 1 1 64 Data 1 1 1 1 
CPU 1 :  Alpha 2 1 1 64 Command Rd 1 

CPU 1 :  Alpha 2 1 1 64 Add ress Addr1 
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5 2  

Ta ble 2 
CPU Write Memory Data Tim ing 

Cycle ( 15 ns) 1 2 3 4 5 6 

Address Bus Command Wr1 Wr2 

SDRAM Data 1 1 1 1 

Mot herboard Data 1 1 1 1 

Alpha 21164 Data 1 1 1 1 2 

al ways incurs a one-cycle gap between transactions. 
As a result, a l l  but the first two consecu tive write trans
actions have add ress bus commands t-ive cycles apart. 

Since the Alph:�Scrver 4 100 i ntercon nect between 
the CPU and main memory was opti mized t<>r the 
SDRAM memory ch ip ,  the transaction t imi ng, as 
shown in Tables l and 2, was designed to provide data 
in the correct cycles for the SDRA.Ms without the need 
tor custom AS !Cs to buffer the data between the 
motherboard and S D RAM ch ips . This design works 
wel l  t()[ an in fin i te stream of a l l  reads or ;: ti l  writes 
because of the SDRAM pi pc l ined i nterface ; however, 
when a write transaction immed iately fo l lows a read 
transaction, a gap or "bubble" m ust  be inserted i n  the 
data stream ro account tor the tac t that read Lbta is  
returned later in the rr:1nsaction than write data. As :1 

resul t, every write transaction that i rn medi:lte lv t(>l l ows 
a read tra nsaction produces a five-cycle g:� p in the 
command pipe l ine .  Ta ble 3 shows the read/write 
transaction tim ing . 

Address Path between the CPU and Memory 

The Alpha 2 1 1 64 provides 36 address signa ls ( byte 
address <39:4>,  i . e . ,  bits 4 through 39 ) ,  5 command 
bits, and l bit of parity protection.  These 42 signa ls  are 
connected directly to t(1ur 1 2 -b i t  bidi rection al  latched 
transceivers on the processor modu le ,  as i ll ustrated i n  

Ta ble 3 
CPU Read/Write Memory Data Tim ing 

Cycle ( 15 ns) 1 2 3 4 5 6 

Address Bus Command Rd1 Wr2 

SDRAM Data 1 1 

Mot herboard Data 1 

7 

2 

2 

7 

1 

1 

8 9 10 11 12 13 

Wr3 

2 2 2 2 3 

2 2 2 3 3 

2 2 3 3 3 

14 15 

Wr4 

3 3 

3 3 

3 

16 

3 

4 

17 1118 

4 

4 4 

4 4 

Figu re 3 .  The motherboard latches the fu l l  add ress 
and d rives ti rst the row and then the colu mn portion 
of the add ress to the memorv modu les . Each syn ch 
ronous memory module  bu fkrs the row/co l u m n 
address and tans our a copy to e:tch ot" the SDRA.M 
ch ips using tclLi r 24-bit bufkrs. S imi lar  ro traditional 
dynamic ra ndom-access memory ( D RA M )  ch ips, 
S DRAM chips usc the roll" address on their pins ro 
access the page i n  their  memor�· arr;ws �1 11d the col umn 
address that  appears l ater on the  sa me pi ns ro read or  
wri te the  d esired location with i n  the  page . Conse
quently, there i s  no need to provide the enrire 36- bit
wide add ress to tbe memory mod u le.� . All add ress 
components used tor transceivers, btches, m ult i 
plexers, and drivers on the no·exrernal -cKhe proces
sor module,  rhc motherboard , and rhe synchronous 
memorv mod u le  consist ofrbc 56-pin A LVC 1 6260 or 
the ALVC : I 62260 , which is the s:�me l1arr ll'ith internal 
output resistors. Add ress parity is checked by rhe PCJ 
bridge c h i ps on al l  transactions , :�nd :�ny errors arc 
reported ro the operari ng system . 

The add ress path uses How-through latches tor the 
tl rst ha lf  of the add ress transfer ( i .e . ,  the row address ) 
from rhe Al pha 2 1 1 64 ro the S D RAMs. When tile 
address appears ar rhe pins of rhe Alpha 2 1 1 64, 
the latched rranscei,·cr on the processor mod u le, the 
mu lt ip lexed row add ress dri,·er 0 1 1  the motherboard , 

8 9 10 11 12 13 14 1 5  16 17 18 

Wr3 

1 2 2 2 2 3 3 

1 1 2 2 2 2 3 3 3 

MOT H E R BOARD 

r - - - - - - - - - - - - - - - - - - - - - - - - - ,  
NO-EXTERNAL-CAC H E  PROCESSOR 
MODULE (1 TO 4) 

L.
-
�
�

;
-
�

�

�A

�

� --�-��g-�--EJNCH --+-A_D_D_R_E_SS_. 
CPU 42 

A 
- - - - - - - - - - - - - - - - - - - - - - - - - �  

Figure 3 
Address Path between the CPU and .Memory 
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and the fan -out butlers on the m emory modu les are al l 
open and turned on, enabl ing the address information 
to propagate d irectly ti·om the Alpha 2 1 1 64 pins to 
the SDR.A.Nl pins in two cycles .  The motherboard then 
switches the mu ltiplexer and drives the column 
address to the memory modu les to complete the 
transaction ( see Table 4 ) .  Back -to-back memory trans
actions are pipe l ined to de l iver a new address to the 
SDRAM c hips every four  cycles. The fu l l  memory 
address is driven to the motherboard in two cycles 
(cycles 0-l , 4-5 , 8-9 ) ,  whereas add itional i n tonna
tion about the corresponding transaction (which is  
used only by the processor and the l/0 modu les) 
follows in a third cycle ( cycles 2,  6,  10). To avoid tri
state overlap, the fourth cyc le  is a l located as a dead 
cycle,  which a l lows the address d rivers of the current 
transaction to be turned off bdore the address d rivers 
tor the next transaction can be turned on ( cycles 3, 7, 
l l  ) . These tour cycles constitute the address transfer 
that is repeated every tour or live cycles tor consecutive 
transactions. Note that the one-cycle gap inserted 
between transactions Rcl3 and Rd4 for reasons indi 
cated earlier i n  the read data t iming description causes 
the row address for transaction Rd4 to appear at the 
pins of the S D RAMs tor three cycles instead of two. 

Control Path between the CPU and Memory 

The Alpha 2 1 1 64 provides five command bits ( tour 
Alpha 2 1 1 64 CMD signals plus the Alpha 2 1 1 64 
Victim_Pend ing signa l )  that ind icate the operation 
being requested by the Alpha 2 1 1 64 external inter
f:lCe -" These live command bits arc i nc luded in the 42 
command/address ( CA) signals ind icated in  Figure 3 

Table 4 
CPU Read Memory Add ress Ti m i n g  

Cycle ( 1 5 ns) 0 1 2 3 4 5 

Address Bus Command Rd1 Rd2 

SDRAM Address Row Addr1 Col Addr1 Row Addr2 

Motherboard Address Mem Addr1 lnfo1 Mem Addr2 

Alpha 2 1 1 64 Address Addr1 Addr2 Addr3 

6 

and are d riven d irectly and unmodified through the 
latched address transceivers on the processor module  
to become the motherboard command/address. Since 
the AlphaServer 4 100 interconnect between the CPU 
and main memory was optimized fix the Alpha 2 1 1 64 
CPU chip ,  the Alpha 2 1 1 64 external CMD signa ls map 
d irectly into the 6-bit encod ing of the memory in ter
connect command used on the motherboard , thus 
avoiding the need for custom AS!Cs to manipu late the 
commands between the CPU and motherboard . 

Prudentl y  chosen encod ings of the Alpha 2 1 1 64 
external CM D signals resu lted i n  only two command 
bits ( to determine a read or a write transaction ) and 
one address bit (to determine the memory bank)  
being used by a 5 - ns PAL on the processor modu le  to 
d irectly assert a Req uest signal to the motherboard to 
use the memory i nterconnect. Figure 4 shows the 
control path between t he CPU and memory. If  the 
central arbiter is ready to a l low a new transaction by 
the processor module asserting a Request signal ( i .e . ,  if 
the memory interconnect is not in  usc ) , then a 5 -ns 
PAL on the motherboard asserts th<.: control signal 
Row_CS to each of the memory modu les in the tal 
lowing cyc le .  A t  the same time, another 5 -ns PAL on 
the motherboard decodes 7 bits of th<.: add ress and 
d rives the Sck 1 :0> signal to all memory modu les to 
ind icate which of the fou r  memory modu le pairs is 
being selected by the transaction.  Each synchronous 
memory mod u l e  uses another 5 - ns PAL to immedi 
ately send the corresponding chip select ( C S )  signal to 
the requested SO RAM ch ips on one of the CS< 3 :0> 
signals when the Row_CS control signal is asserted if  
se lected by the va lue encoded on Sek l : (l>,  as  shown 
in Figure 4 .  

7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  

Rd3 Rd4 

Col Addr2 Row Addr3 Col Addr3 . . .  Row Addr4 Col Addr4 

lnfo2 Mem Addr3 lnfo3 

Addr4 

. .  , 
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Mem Addr4 l nfo4 
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-EXTERNAL-CACH E  PROCESSOR 

r - 
NO 
MO DULE (1 T0 4) 

CMO/ 
ALPHA ADDR 
21 1 64 • 

73" 
• 5-NS 

CPU PAL 

A A 
- - - - - - - - - - - - - - - - - - - - - - - � 

Figure 4 
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Table 5 shows the control s ignals between the 
processor mod u les, the memory modu les, :md the 
cent r:d arbiter on the motherboard t(x multiple 
processor mod ules i s  uing si ngle read tr:msactions. 
The central arbiter receives one or more Request< II> 

signals fi·om the processor modu le� and asserts a 
u nique Grant< l'l >  signal  to the processor mod ule that 
currently owns the bus. The arbiter then  drives a copy 
of the CA signal to every processor module  along with 
the identical Row_CS signal to every memory mod u le 
to mark cyc le  l of a new transaction . Note that the 
cyck: cou nter begins at cycle l with e:�ch new 
CA/Row_C:S assertion and may stal l  t<>r one or more 
cycles when g:�ps appear on the memon· i l l terconnect. 
Two trans::tctions may be pipelined �lt the s::tmc time. 
for s impl icity of i m plementation in pro�r:lmmable 
logic de,· ices, the cycle coumer of c:�ch transaction is 
always exactly tour  cycles from the other. 

T:1blc 6 shows a s ingJc processor modu le issuing 
two consecu tive read transactions (d ual -issue )  t<> l 
lowcd by a third read transaction at a later ti me.  
Normal ly, the node issu ing the tra nsaction on the bus 
de::tsserrs the Req uest signal in cycle 2 .  I f  a node con
tinues to assert the Request sign: d ,  the centr:-tl a rbiter 
continues to assert the Grant sign�1 l  to that node tO 
:II low guaranteed back-to - back tr;ms::tctions to occur. 
Note th :-tt the tirst CA cycle occurs three cycles after 
the :-�sscrtion oftbe Request sigr1:1 1  bee:� use ofthe delay 
within the central arbiter to switch the Gr:�nt  signal 

Ta ble 5 
Multiple CPU Read M e mory Control Tim i ng 

Cycle Counter 
( 1 5-ns cycle) 

Request<n> 1 234 1 234 24 24 24 24 

Grant<n> 

CA, Row CS (New transaction) I X I 
2 2 

I X  

bet\\'een processors. The th ird CA cycle occurs onlv 
one cyc le  after the node asserts the Request signal ,  
however, because of bus parki ng .  B us parki ng is an 
arbitration te�nu re that ca uses the central arbiter to 
assert the Gram s igrul to the last node to use the bus 
when the bus is idle u<)l lowing cycle 7 of transaction 
Rd2 ) .  Consequently, if the same processor wishes to 
use tht bus aga in ,  the ::tssertion of CA and Row_CS 
signals occurs two cycles e�1 dier than it wou ld without 
the bus parking katu rt . 

Data Transfers between Two CPU Chips 

(Dirty Read Data) 

The Alpha 2 1 1 64 CPU ch ips conta in  i nternal 1\'J'i te
back caches. When a CPU writes to a block ofdat::t, the 
modi fied data is IJcld loc::tl ly in the write - lnck cache 
u nt i l  it i s  written back to main memorv at a bter rime . 
The modi tied (d irty)  copy ohhe block of d:-tta must 
be returned in p lace of the u n modi fied (sta le ) copy 
ti·om main memory when another CPU issues a n.:::td 
transaction on the memory i merconnect. The mem
ory modules return the s ta le  dat::t at the normal t ime 
on the memory inte rconnect, and the d i rty data is 
returned by the processor modu le conta in ing the 
moditicd copy in the cycles that tol low. The processor 
module  issu ing the rc:td tr::tnsaction ignores the st::tlc 
data trorn memo1-v. 

There r<)re, to m:�i nt:-tin cache coherencv bet\\'ctn 
the write- b:�ck caches contained in m u lt iple A lpha 

3 3 
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SDRAM CS I X 

Table 6 
Single CPU Read M emory Control Tim i ng 

Cycle Counter I 1 2 

( 1 5-ns cycle) 

Request<n> 1 1 1 1 1 

G rant<n> 2 2 1 1 1 
CA, Row_CS (New transaction) I X 
Address/Command Bus Addr/Rd1 l nfo1 

CPU 1 :  Alpha 2 1 1 64 Data I 

ACT 2 Read 2 

3 

1 

1 

I X I X 

4 I 5 6 

1 2 

1 1 

1 1 1 

l X 
Addr/Rd2 lnfo2 

l 
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l x 
Addr/Rd3 lnfo3 
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2 1 1 64 CPU chips, each read transaction that appears 
on the memory interconnect causes a cache probe 
( snoop) to occur at a l l  other CPU chips to determine if 
a moditied ( dirty) copy of the requested data is found 
in  one  of  the  internal caches of  another Alpha 2 1 1 64 
CPU chip.  I f i t  is, then the appropriate processor mod
ule asserts the signal Dirty_Enable< n> for a min imum 
of ti.ve cycles to a l low the memory module  to fin ish 
driving the old data. The processor modu le  deasserts 
the signal when the d irty data has been fetched from 
one of the internal  caches and is ready to be driven 
onto the motherboard data bus. Table 7 s hows read 
data corresponding to transaction Rd 1 being returned 
tl·om CPU2 to CPU 1 five cycles l ater than the data 
ti-om memory, which is ignored by CPU 1 .  Note the 
one-cycle gap in cycles 10 and 1 5  to avoid tri-state 
overlap between the memory module  and processor 
module data path drivers. 

As discussed earl ier in this section, the AlphaServcr 
4 1 00 system implements memory address decoding 
and memory control without using custom AS! Cs 
on the motherboard , synchronous memory, or no
external -cache processor modu les .  Using PALs al lows 
the address decode fu nction and the tim-out buffering 
to the l a rge number of SD RAMs to be performed at 
the same time, thus reducing the component count 
and the access r ime to main memory. Al l the necessary 
glue logic between the Alpha 2 1 1 64 CPU and the 
SDRAJvls, including the central arbiter on the mother
board, was implemented using 5 -ns 28-pin  program
mable PALs or 90-JV! H z  44-pin ispLSI 1 0 1 6  in -circuit 
reprogrammable PLDs produced by Lattice Semicon
ductor. These devices can be reprogrammed directly 
on the module  using the para l le l  port of a laptop per
sonal computer. Eacb no-external -cache processor 
module uses t!ve PALs and four PLDs; the motl1er-

Table 7 
D i rty Read Data Ti m i n g  

Cycle ( 1 5  ns) 0 1 2 3 4 5 
Address Bus Command Rd1 Rd2 

SDRAM CS X X X 
SDRAM CMD (RAS,CAS,WE) AQ 1 Read 1 AQ2 

SDRAM Data 1 

Motherboard Data 

CPU 1 :  Alpha 2 1 1 64 Command Rd1 Rd3 

CPU 1 :  Alpha 2 1 1 64 Address Addr1 Addr3 

CPU 1 :  Alpha 2 1 1 64 Response 

CPU 1 :  Alpha 2 1 1 64 Data 

CPU2: Alpha 2 1 1 64 Command Rd2 Snp1 Rd4 

CPU2: Alpha 2 1 1 64 Address Addr2 Addr1 �ddr4 

CPU2: Alpha 2 1 1 64 Response Dirty1 

CPU2: Alpha 2 1 1 64 Data 

Dirty_Enable<n> 

6 

. . . 
1 

1 

Snp2 

Addr2 

board ( arbiter and memory contro l )  uses eight PALs 
and three PLDs; and each synchronous memory mod
u le uses three PALs. 

As shown i n  Table 1 ,  the min imum memory read 
l atency ( read data access time)  is eight cycles ( 1 20 ns) 
ti·om the time a new command and address arrive at 
the pins of the Alpha 2 1 1 64 chip to the time the first 
data arrives back at the p i ns .  The SDR.Alv'ls are pro
grammed for a burst of tour data cycles, so data is 
returned in tour  consecutive I 5 - ns cycles. Two trans
actions at a time are interleaved on the memory inter
connect ( one  to each of the two memory banks ) ,  
which a l lows data to  be  continuously driven in every 
bus cyc le .  This  resu l ts i n  the maximu m  memory read 
bandwidth of l GB/s. 

Trade-offs Made to Reduce Complexity 

The Alpha 2 1 1 64 external i nterf:1ce contains many 
commands required exclusively to support an  external 
cache. By not inc luding a modu le- level cache on the 
no-external -cache processor module, on ly Read, 
Write, and Fetch commands are generated by the 
Alpha 2 1 1 64 external i nterface; the Lock, M B ,  
SetDirty, WriteBiockLock, BCacheVictim,  and 
ReadM issModSTC commands are not used."·7 This 
design al lows the logic on the processor module that is 
asserting the Request signal to the central arbiter to be 
implemented simply in  a smal l  28- pin PAL because 
on ly rwo of the Alpha 2 1 1 64 C M D  signals are 
required to encode a Read or a Write command . 
S imi l arly, a l lowing a maximum of two memory banks 
in the system,  i ndependent of the number of memory 
mod ules i nstal led,  enables the Request logic to the 
central arbiter to be i m plemented in the 28-pin PAL, 
since only one add ress bit ( byte address <6> ) is 
required to determi ne the memory bank. 

7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  
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X X X 
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Miss2 
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To d ecode me morv add resses in  2 8 -pin PALs ,  the 
AJ phaScr\'er 4 1 00 system usts the concept of memory 
holes. The memory interconnect architecture and con
sole code support se\·en difk rent si zes of me mory 
mod ul es a nd up to t(Ju r pairs oF memory mod u les per 
system tor a total system me mory capacity of 32 MB to 
8 G B .  Any mix of memory mod u l e  pairs is supported as 
long as the largest rnemorv p�lir is plactd in  the Jowest
n u rn hered memory slot. The physicJI memorv add ress 
Lmge fo r each of the t(n t r  memory slots is assigned as 
iF a l l  tt>Ltr memory mod u le p:1irs are the same s ize .  
Conseq uent ly, i F  t\\'O addit ional memorv pai rs that  arc 
smJI !cr than the pair  in the lmn:st- n u m be rcd s lot 
arc i nstalled in the u pper memory s lots, there wi l l  be a 
g�l p or " hole" i n  the ph vsica l memor y  space between 
the two smal ler memory pai rs ( sec T:1blc 8 ) .  Rather 
th:tn req u ire each memory mod u l e to compare the Fu l l  
munory add ress to a base :td d rcss a n d  size register to 
determine if it should respond to the me mory transac
tion, the 28 -pin PAL d riving Sek 1 :0> on the mother
board ( sec Figure 4) uses the seven add ress bits 
Addr< 3 2 : 2 6 >  a nd the size of the memorv mod ule i n  
the lowest- n u m bered slot to encode the memory s lot 
n u m ber oF the selected memory mod u le pair. Console 
code detects any memory holes Jt power-up and tel ls 
the operating systems th:n these arc un usabJe ph ysic:�! 
memory addresses. 

Another s impl itlcation that the AlphaScrver 4 1 00 
system uses is  to remove 1/0 space registers from the 
data p:�th of the processor Jtlli memory mod u l es. 
Beca use there are no c ustom AS !Cs on these mod u ks ,  
read ing a n d  \\Tiring control registers wo uld h a\·c 
req u ired :�d dition :�l  d ata path components. Since a l l  
t h e  error c hecking is  pedormcd b y  either the 2 1 1 64 
CPU chip or the PCJ bridge ch ips :�nd since there arc 
no address decoding control registers req u i red on the 
memory modules,  there was no need tor more than 
a tl:w bits of control i n t(>rmation to be accessed by 
sothvJre on the processor or me mory modu les. The 
l2C bus (s low seria l  b u s )  �l lrcH.iy present in  the I/0 
su bsystem was used tc>r tr:mskrring this sm a l l  amount  
of i n f ormJtion . 

Furthermore, i n  the process of removing the 1/0 
sp:�ce d:�ta p:tth from the moth erboard and processor 
mod u l es, the ti rmw:�re ( i . e . ,  the consol e code,  Alp ha 

Ta ble 8 
Memory H ole Example 

Memory Slot 1 2-GB Module Pair 

Memory Slot 2 2-GB Module Pair 

Memory Slot 3 1-GB Module Pair 
Memory H o le 

Memory S lot 4 1-G B  Module Pair 
Unused Memory 

Vc.>l. 8 No. 4 1 996 

2 1 1 64 PAL code, and d iagnostic sotiw:� re ) ,  \\'h ich is 
oti:en p laced i n  re:td - onlv memories ( ROMs) on the 
processor mod u l e  or motherboard, was moved to the 
1/0 su bsystem .  Only a s m J ! l  8 - K.B s ingl e - bi t  seri;: tl  
ROM (SROM ) was placed on each processor mod u le 
th�H wou ld i n it ia l ize the Alpha 2 1 ! 64 chip on power
u p  and instruct the AlphJ 2 1 1 64 to access the rest of 
the tirmwarc code from the 1/0 su bsysrem .  

Quick Design Time 

To prO\·idc stable CPU :md mem ory h : miware tor 1/0 
su bsystem hardware debug ami operating system soli:
warc debug and thus a l low the D I G ITAL AJ phaSe rvn 
4 1 00 to be i n troduced on sched u l e  i n  Mav 1 996, the 
core modu le set was designed and powered on i n  less 
than six months. This prim�lry goal of the AlphaServer 
4 !  00 project was :tch ieved by keeping the design tclm 
smal l ,  by usi ng only programm:1 b l c  l ogic and ex isting 
d:tta p:1th components, and by keeping the amount of 
docu me ntation of design i n tcr t:Kes to a m i n i m u m .  

The d tsign team tor t h e  motherboJrd , no-external
cache processor mod u le,  Jnd S\'nchronous memory 
mod ule consisted of one design engi neer, one 
schem atic/layout assistant ,  one sigtd i n tegritv engi 
neer, and two s imulation engineers .  The team also 
enl isted the hdp of members oft  he other Alph aServer 
4 1 00 design teams .  

The Jrchitccture :�nd actu al ti n:1l logic design o f  the 
core modu le set were developed at the same ti me. Bv 
using pmgrammable Jogic :m d oft�thc-she l f  add ress 
�lnd data p:1th compone nts, the logic \\\lS \\'rittcn i n  
A B L  code (:1 langu�lgc used t o  tksc ri be the logic fu nc
tions of programmable de\·iccs) and compiled i m mt
di atcly in to the  PALs and l ' LDs whi le  the  arch i tecture 
was being specified.  I f  the desired timctional ity did not 
tit i n to the programmable  devices, the architecture 
was mod i tied. unt i l  the logic d id  ti t .  A l l  t h ree modules 
were designed by the s�ll lle engineer Jt the same time, 
so th ere was no need t( >r  interbcc speci ti cuions to be 
written tor each mod u l e .  F u rr lJnmorc, modi fications 
and cn hJncements could be nLldc in para l lel to eJch 
design to opti m i ze pertormancc �md red uce complex 
i t\' Jcross a l l  three mod ules.  

000000000 - 07F FFFFFF 

080000000 - OFFF FFFFF 

1 00000000 - 1 3FFFFFFF ·--

140000000 - 17FFFFFFF 

1 80000000 - 1 BFFFFFFF 
1 COOOOOOO - 1 FFFFFFFF 



Because the design did not incorporate any custom 
ASI Cs, the core system was powered on as soon as the 
mod u l es were bui l t .  Any l ast -minute logic changes 
required to fix probl ems identi fied by si mu lation 
cou l d  be made d irectly to the reprogrammablc logic 
devices installed on the mod u les in the laboratory. In 
particular, the reset and power sequ encing logic on the 
motherboard was not even si m u lated betore power-on 
and was developed directly on actual hardware. 

Since the I/0 su bsystem was not avai lable  when the 
core mod u le set was fi rst powered on, the software that 
ran on the core hardware was loaded fi·om the serial 
port of a laptop personal compu ter and through the 
Alpha 2 1 1 64 serial port, and then written directly into 
main memory. Diagnostic programs that had been 
developed for simul ation were loaded i nto the memory 
of actual hardware and run to test a tou r- processor, fu l ly  
loaded memory configuration. This  testi ng enabled 
signal i ntegrity fixes to be made on the hardware at f-ld l 
speed bet(>re the I/0 s ubsystem was ava ilable .  When 
the l/0 su bsystem was powered on, the core mod ule 
set  was operating bug free at fi.d l  speed, a l lowing the 
AlphaServer 4 100 to ship in volume six months l ater. 

As mentioned in tbe section Sim ple Design, the 
central arbiter logic on the motherboard was imple
mented i n  programmable logic.  Conseq uently, by 
qu ickly changing to the reprogrammable logic on the 
motherboard instead of perf()l'ming a lengthy redesign 
of a custom AS IC,  designers were able to avoid several 
l ogic design bugs that were f(>u mi later in the custom 
AS I Cs of other AlphaServer 4 1 00 processor and mem
ory mod u les. 

Low Memory Latency 

Mini mizing the access time of data being returned to 
the CPU on a read transaction was a major design goal 
for the core mod u le set. The core module set design was 
optimized to del iver the Addr and CS signa ls  to the 
SDRA.Ms i n  two cycles (30 ns) fi·om the pins of 
the Alpha 2 1 1 64 CPU and to return the data from the 
SD RAMs to the Alpha 2 1 1 64 pins in another two cycles 
( 30 ns ). vVith the SO RAMs operating at a two-cycle 
internal row access and a t\.vo-cyc le internal col u m n  
access to t h e  fi rst data ( 6 0  n s  total internal SDR.AM 
access ti me),  the main memory latency is 1 2 0  ns. 

The low latency was accompl ished in f(>Lir ways: 

l .  By removing custom ASICs and error checking 
from the data path bet\veen the pins of the Alpha 
2 1 1 64 CPU chip and main memory 

2. By combining the SDRA.Jvl row/col u m n  add ress 
multiplexer with add ress tan-out buffering on the 
motherboard 

3. By simpl i �' ing the memory address d ecode and 
memory i n terconnect request logic 

4 .  By usi ng bus parking 

Many m u l tiprocessor servers share a common 
command/add ress bus by issu ing a request to use the 
bus in one cycle, by e i ther waiting for a grant to be 
returned from a central arbiter or performing local arbi
n·ation in the next cycle, and by d riving the command/ 
address on the bus in the cycle that fol lows. This  
seq uence occurs for a l l  transactions, even when the 
memory bus is  not being used by other nodes. The 
AlphaServer 4 1 00 memory i n terconnect impl ements 
bus parki ng, which al lows a modu le to turn on i ts 
address d rivers even though it is not cu rren tly using 
the bus. If the Al pha 2 1 1 64 on that mod u l e  in i tiates a 
new transaction , the command/address flows d i rectly 
to memory i n  t\vo less cycles than i t  wou ld take to per
form a costly arbitration seq uence . Transaction Rd 3 in 
Table 6 shows a n  example of the dkcts of bus parki ng. 

High Memory Bandwidth 

One of the most important features of the SDRAM 
chip is that a single chip can provide or consume data 
in every cycle for long burst lengths. The AlphaServer 
4 1 00 operates the SDRAMs with a burst l ength oftc1L1 r 
cycles for both reads and writes. Each SDRAM c h ip 
contains t\.vo ban ks determined by Add r<6>, which 
selects consecutive memory blocks .  If accesses are 
made to a l ternating banks, then a single S D RAM can 
conti n uously d rive read data in every cycle .  The arbi
tration of the AlphaServer 4 1 00 memory interconnect 
s upports only t\vo memory ban ks,  so the smal lest 
memory mod u l e ,  wh ich consists of one set of 
SDRAMs, can provide the same 1 -G B/s max i m u m  
read bandwidth a s  a fu l ly popu l ated memory configu
ration, i .e . ,  a system configured with the min imum 
amount of memory can pertonn as well as a fu lly con
figured system. 

To i ncrease the single-processor memory bandwid th, 
the arbitration allows two s imultaneous read trans
actions to be issued fi·om a si ngle processor mod u le .  As 
long as the arbitration memory bank restrictions and 
arbitration tairness restrictions are obeyed, it is possible 
to issue back-to-back read transactions to memory from 
a single CPU with read data being returned to the Alpha 
2 1 1 64 CPU in eigh t consecutive cycles i nstead of the 
usual f(m r (see Ta bles I and 6).  This dual -issue kature 
and the other low memory latency and high memory 
bandwidth features of the AlphaServer 4 100 archi tec
ture enabled the AlphaServer 4 100 system to meet the 
best- in-ind ustry pertonnance goals tor McCalpin mem
ory bandwidth . '  

A s  discussed i n  t h e  section Simple Design a n d  i l lus
trated in Figu re 3 ,  to avoid tri-state overlap, whenever 
read data is returned by a d i fkrent set of SD R.AMs 
( on the same memory mod u l e  or on a difte re n t  mem
ory mod u l e ) ,  a dead cycle is  pl aced bet\veen bu rsts 
of ft)U r  data cycles to a l low one d river to tu rn off 
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bcf(m� the next d river turns on.  By keeping the lower
ord er add ress bits con nected ro a l l  S D RAMs, i . e . ,  by 
nor i nterleavi ng additional banks of memory ch ips on 
low-order add ress bits, consecu tive accesses to a l ter
nating memory banks such as large d i rect memor y  
access ( DM A )  seq uences can potenti a l l y  achieve the 
fu l l  1 - GB/s read bandwidth of the d ata bus.  With the 
dead cycle i nserted , the read bandwid th of the  mem
ory intercon nect is red u ced by 2 0  percent. 

The data bus connecting the processor, memory, 
and 1/0 modu les was i m plemented as a tradit ion:.JI  
shared 3 . 3 -vo l t  tri -state bus with a sing le-phase syn 
chronous c l ock at a l l  mod u les .  As a resu lt ,  the bus 
becomes saturated as  more processors are added and 
bus traftic increases. To keep the design time as short 
as poss ib le ,  the AlphaServer 4 1 0 0  d esigners chose nor 
to explore the concept of a switched bus,  on which 
more than one private transkr may occur  at a t ime 
between mu l tiple pairs of nodes.  Clearly, the 
Al phaServcr 4 100 system bas reached the practical  
upper l imit of bus bandwidth using the trad i tional  tri
state bus approac h .  

Reconfigurabil ity 

The AlphaServer 4 1 00 h a rdware modules were 
d esigned to al low en hancement s  to be made in the 
fu ture withou t having to redesign every element  i n  
t h e  system .  

Motherboard Options 

The AlphaServer 4 1 00 motherboard contains t(Jur 
dedicated processor s lots, eight ded icated memorv 
slots ( tour memory pairs ) ,  and one s lot ri:Jr :�n 
1/0 mod u l e  with two PC! bus bridges. Designed at 
tht.: same time but not produced unt i l  after rlw 
AlphaServer 4 1 00 morhnboard was availabk, 
rht.: AlphaServer 4000 morht.:rboard contai ns on ly two 
proct.:ssor sl ots, rou r nKmory s lots ( two memory 
pairs ) ,  and slots tor rwo 1/0 mod uks Jl lowing ti.Jur 
PCI bus bridges. Si nce mod u le hardware veritication 
i n  rhc laboratory is  a lengthy process, rhc AlphaServer 
4000 motherboard '' as designed ro usc the same logic 
as the AlphaServer 4 100 except ri.)r rhe programmabk 
arbi tration l ogic ,  wh ic h hJd a d i ffere n t  a lgori t h m  
bec:wse of the extra I/0 m o d u l e  Wht.:n the signals o n  
the A lp haServer  4 0 0 0  motherboard were rou ted , all  
nets were kept shorrt.:r than tht.: corresponding nets on 
the AlphaServer 4 100 motherbo:trd so that every sig
nal  did not need to be rt.:cxamincd.  Only those signa ls 
that wert: un iquely d i tkrcnt were su bject to tht.: fu l l  
signal integrity veritication process . 

Memory Options 

T·he synchronous memory mod u les avai lable tc>r the 
AlphaScrver 4 1 00 arc all  based on the 1 6- M b  SDRA M .  
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Using this size chip a l lowed designns to bui ld  synchro
nous memon' mod u l es thar cont:1 in 9, 1 8 ,  36, and 
72 S D RAMs and provide, respectively, 32 M B ,  64 M B ,  
1 28 1VI B, a n d  2 5 6  M B  o f  main memory per pair. The 
mt.: mory archi tecture supports synchronous memory 
mod u l es that contain up to 1 G B of mai n  memory pa 
pair ( up to 4 GB per syste m )  by using the 64- M b  
S D RAi\tls;  however, when t h e  Al phaSt.:rver 4 1 00 sys
tem WJS i ntroduced, the pric ing :md avai labi l ity of the 
64- M b  S D RA M  d i d  not a l low these larger capacit:v svn
ch ronous memory modu les ro bt.: b u i l t. 

At the same time the svnc h ro nous memorv mod u l es 
were being designed,  a ramilv of plug-in compatible 
memory mod u l es bu i lt with EDO DRAMs was 
designed and bu i l t .  The memory arch i tecture supports 
1--:DO memory mod ules containing up to 2 G B  of main 
memory pe r  pair (up to 8 G B  per system )  by using the 
64- M b  E DO DRA M .  When the A lph aServer 4 1 00 sys
tem w�1s in troduced , rhe 64 - M b  EDO D RAM was 
avai lable and EDO memory mod u l t.:s containing 72 or 
1 44 EDO D RAMs were bu i l t  providing 1 GB and 2 G B 
of main memorv per pai r. To rou nd our the range of 
memorv capacities and to provide Jn altcrnati ,·e to the 
svnc hronous memory mod uks i n  case there was a cost 
or design prob lem with the new 1 6- M b  S D RAM chips, 
a rJmily of EDO memory mod u l es was a l so bui l t  us i ng 
1 6-Mb and 4 - M b  EDO D RAMs, p rovid i ng 64 M B ,  
2 5 6  M B ,  and 5 1 2  t\t!B o f  main memory per pair. 

Although EDO D RAMs can provide data at a higher 
b�1nd width than standard D RAMs,  a si ngk EDO 
D RA M  cannot retu rn cbra in t(Hir consecutive 1 5 -ns 
C\'c l t.:s l i ke the single S D RAM used on the S\'nch ronous 
memory mod u les. Therdi:>JT, J custom AS I C  was used 
on the EDO memory modu l e  to Jccess 288 bits of 
Lbta every 3 0  ns fl-om the EDO D RAMs and m u l tiplex 
the d:tta onto the 1 44 - bi t  me mory i n terconnect every 
1 5  ns. To im itate the two-bank tcature of a single 
S D RA M ,  a second bank of EDO D RAMs is req u i red . 
Conseq uen tly, the m i n i m u m  n u m ber of memory 
ch ips per EDO memory mod u k  is 72 ri:>u r- bit-wide 
EDO D RA M  c h ips, whereas the m i n i m u m  n u mber 
of memon' chips per svnc h ronous memorv mod u l e  
i s  onlv 1 8  r(>u r-bit-wide S D RA M  ch ips o r  a s  rew as 
9 eight- bit-wide S D RA M  ch ips. 

When rhe AlphaServer 4 1 00 systt.:m was i ntroduced, 
tht.: bstest EDO D RA M  avJ i l a b k  that met the pric ing 
requ i rements was the 60- ns  vnsion . When this ch ip  
i s  ust.:d on the EDO memory mod u l e ,  data cannot 
be returned to the motherboard as bst as data can bt.: 
returned tl-om the sync h ro nous memory mod u les. To 
support the 60-ns EDO D RA.Ms, a one - cvcle ( 1 5  ns)  
increase i n  the access ti me to main mcmorv i s  requ i red . 
Support fi:>r this extra n'clc ofbtcncv was designed into 
the memory interconnect Lw placing; a one-cvc le gap 
between cycles 2 and 3 ( st.:e Table  I )  of anv read trans
Jction :1ccessing a 60-ns EDO nKmory mod u l e .  Con
seq uently, the read m emory Lltt.:ncy is one cycle longer 



and the maximum read bandwidth is 20 percent less 
when using EDO memory modu les bui lt  with 60-ns 
EDO DRAJ\1s. Note that i t  is possible to have a mixture 
of EDO memory mod ules and synchronous memory 
modu les in the same system . In such a case, only the 
memory read transactions to the 60-ns EDO memory 
module wou ld result in a loss of performance. 

New versions of the EDO memory modules that 
contain 50-ns EDO DRAMs providing up to 8 GB of 
total system memory arc sched uled to be introd uced 
within a year after the introduction of the AJphaServer 
4 1 00 .  These modules wi l l  not require the addi tional 
cycle of latency, and as a resu l t  they wi l l  have identical 
pertormance to the sync hronous memory modules. 

Processor Options 

The no-external -cache processor modu le was designed 
to support either a 300-MHz Alpha 21164 CPU chip 
with a 60-rVlHz ( 1 6.6-ns) synchronous memory inter
connect or a 400-MHz AJpha 2 1 1 64 CPU chip with 
a 66 MHz ( 1 5-ns) synchronous memory interconnect. 
As previously mentioned, the Alpha 2 1 164 i tself 
contains a primary 8-KH data cache, a primary 8-KB 

instruction cache, and a second - level 96-KB three
way set-associative data and instruction cache .  The 
no-external-cache processor module contains no third 
level cache, but by keeping the  latency to main mem
ory low and by issuing multiple references from the 
same AJpha 21 1 64 to main memory at the same time 
to increase memory bandwidth , the performance of 
many appl ications is better than that of a processor 
modu le containing a th ird- level external cache . '  

Appl ications that are small enough to fit i n  a large 
third-level cache perform better with an external 
cache,  however, so the AJphaServer 4 1 00 offers several 
variants of plug-in compati ble processor modu les con
taining a 2 -MB,  4- MB ,  or greater modu le-level cache .  
In addition, cached processor mod ules are  being 
designed to support AJpha 2 1 1 64 CPU chips that run 
t:lSter than 400 MHz whi le st i l l  maintaining the maxi
mum 66- MHz synchronous memory interconnect. 
The arch itecture of the cached processor module  
was developed in paral le l  with the core mod ule set, 
and several enhancements were made to the CPU and 
memory arch itecture to support the module-level 
cache. See the companion paper "The AlphaServer 
4 100 Cached Processor Modu le  Architectu re and 
Design" t(>r more int(>rmation.' 

Versions of the AJ pha 21164 chip that operate 
at 400 MHz and faster requ ire 2 -vo lt  power, whi le 
slower versions of the Alpha 2 1 1 64 req uire only 
3 . 3  volts. The Al phaServer 4100 motherboard does 
not provide 2 volts of power to the processor modu le 
connectors; consequently, a 3.3 - to-2-volt converter 
card is used on the higher-speed processor modu les 
to provide this unique voltage. Each new version of 

processor modu le is p lug- in compatib le ,  and systems 
can be upgraded without changing the motherboard . 
This is true even i f  the ti·eq uency of the synchronous 
memory interconnect changes, a lthough a l l  processor 
mod ules in the system must be configured to operate 
at the same speed. The osci l lators for both the high
speed internal CPU clock and the memory intercon
nect bus clock are located on the processor modules 
to al low processor upgrades to be made without mod
ifYing the motherboard. 

Summary 

The high-pertormance DIGITAL AlphaServer 4 1 00 
SMP server, which supports up to tour AJpha 2 1 1 64 
CPUs, was designed simply and quickly using offthe
shelf components and programmable logic. vVhen the 
AlphaServer 4 1 00 system was introd uced in May 
1 996, the memory interconnect design enabled the 
server to achieve a minimum memory latency of 
1 20 nanoseconds and a maximum memory band
width of l gigabyte per second . This ind ustry- leading 
performance was ach ieved by using oH� the-shelf data 
path and address components and programmable 
logic between the CPU and the SDRAM-based main 
memory. The motherboard , the synchronous memory 
mod ule, and the no-external-cache processor module 
were developed concurrently to optimize the perfor
mance of the memory arch itecture. These core mod
u les were operating successful ly  within six months of 
the starr of the design. The AJphaServer 4 1 00 hard
ware modu les were designed to al low future enhance
ments without redesigning the system.  
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High Performance 1/0 
Design i n  the Alpha Server 
4100 Symmetric 
Multiprocessi ng System 

The DIGITAL AlphaServer 4100 symmetric mu lti

processing system is based on the Alpha 64-bit 

RISC microprocessor and is designed for fast 

CPU performance, low memory latency, and 

high memory and 1 /0 bandwidth. The server's 

1/0 subsystem contributes to the ach ievement 

of these goals by implementing several innova

tive design techniques, primarily in  the system 

bus-to-PCI bus bridge. A partia l  cache l ine write 

technique for small  transactions reduces traffic 

on the system bus and improves memory latency. 

A design for deadlock-free peer-to-peer transac

tions across multiple 64-bit PCI bus bridges reduces 

system bus, PCI bus, and CPU util ization by as 

much as 70 percent when measured in DIGITAL 

AlphaServer 4100 MEMORY CHAN NEL cl usters. 

Prefetch logic and buffering supports very large 

bursts of data without stalls, yielding a system 

that can amortize overhead and deliver perfor

ma nce l imited only by the PCI devices used in 

the system. 

I 
Samuel H. Dnncan 
Craig D. Keefer 

Thomas A. McLaughlin 

The AlpbaServer 4 100 is a symmetric m ultiprocess
ing system based on the Alpha 2 1 1 64 64-bit RJSC 
microprocessor. This midrange system supports one 
to four crus, one to tou r  64-bit-widc peer bridges to 
the peripheral component interconnect ( PCI ) ,  and 
one to tou r  logical memory slots. The goals for the 
AlphaServer 4100 system were fast CPU performance, 
low memory latency, and high memory and I/0 
bandwidth .  One measure of success in ach ieving these 
goals is the AIM benchmark multiprocessor perfor
mance results. The AJphaServer 4 1 00 system was 
audited at 3,337 peak jobs per minute, wi th a sus
tained number of3,0 1 8  user loads, and won the AI M 
Hot I ron price/performance award in October 1 996. '  

The subject of th is  paper is the contribution of the 
T/0 su bsystem to these h igb-pertonnance goals .  In an 
in - house test, 1/0 performance of an AJphaServer 
4 1 00 system based on a 300-mcgabertz ( MHz)  
processor shows a 1 0  to 1 9  percen t  improvement in 
I/0 when compared with a previous-generation 
midrange Alpha system based on a 350 -MHz proces
sor. Reduction in CPU u til ization is particularly bene
ficial for applications that usc small transfers, e .g . ,  
transaction processing. 

1/0 Subsystem Goals 

The goal for the AlphaServer 4 100 I/0 su bsystem was 
to increase overa l l  system performance by 

• Reducing CPU and system bus uti l ization for a l l  
applications 

• Delivering full I/0 bandwidth,  specifical ly, a band
width l im ited only by the PCI standard protocol, 
which is 266 megabytes per second ( M B/s ) on 
64-bit option cards and 1 3 3 MB/s on 32-bi t  
option cards 

• Minimizi ng latency t()r a l l  direct memory access 
(DMA) and programmed I/0 ( PI O )  transactions 

Our discussion t(xuses on several i nnovative 
techniq ues used in the design of the I/0 subsystem 
64-bit-wide peer host bus bridges that dramatical ly  
red uce CPU and bus uti l ization and deliver ful l  PCI  
bandwidth:  
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• A p:�rria l cach e  l i n e  write technique for coherent 
DMA writes. This technique permi ts :�n r;o device 
ro i nsert data t hat is s m a l l e r  than a cache l i n e  or 
block, i nto the cache-coherent domain without flrst 
obtai n i ng ownership of the cache bJ ock and pcr
tc.Jrming a read - mod i t)r-write operati o n .  Partial  
cache l i ne writes red uce traffic on the svstem bus 
and i m prove l atency, p<lrt icu l ar ly t(x

, 
message� 

passed in a M E M O RY C HA N N E L  cluster.' 

• Support tor device- in itiated transactions that target 
other devices ( peers ) across m u ltiple ( peer) PC! 
buses.  Peer- to-peer transactions reduce svstem 
b us ut i l ization, PC ! bus u ti l i zation, and C PU u ti 
l i zation b y  a s  much a s  7 0  percent  w h e n  measured i n  
M EM O RY CHANNEL c l u sters. I n  testing, w e  ran 
a M EM O RY CHAN N E L  appl ication without peer
to- peer DMA, and observed 85 percent CPU 
uti l ization ;  r u n n i ng the same application with peer
to-peer DMA enab led , we o bserved 1 5  perce nt 
CPU ut i l i zation .  The peer- to- peer technique i s  
successfu ll y  i mplemented on the AlphaServer 4 10 0  
system without causing deadlocks .  

• Large bursts of P C I -device - i n itiated DMA data to 
or trom })'Stem memory. 1/0 su bsystem support 
tor large b u rsts of DMA data enables efficient PC! 
bus ut i l i zation because fi xed blJS l atency can be 
amortized over these large tr:�nsactions . 

• Prcktched read data :�nd posted write dat:� b u ffer
ing designed to keep u p  with the h ighest pertor

nuncc PC! devices . When used i n  combi nation 
with the PCI delayed-read protocol ,  the bufter ing 
<l lld prefetch i n g  appro<1ch a l lows the system to 
avoid PCI bus st:� l ls i ntrod uced by the bridge d ur
ing PC! -device- in itiated tra nsactions.  

The tol lowing overview of the system concentrates 
on the areas in which these tec hniq ues arc used to 
en hance performance, that is, e fficiency in the system 
bus and in the PC! bus bridge . In s u bseq uent sections, 
we describe i n  greater deta i l  the performance issues, 
other possi bk approaches to reso lving the issues, and 
the techni q ues we developed . vVe conclude the paper 
witll performance resu l ts .  

Alpha Server 4100 System Overview 

The Al phaServer 4 10 0  system shown in Figure 1 
i n c l u des four CPUs con nected to the system bus,  
which comprises the data and e rror correction code 
( ECC ) and the command and add ress l i nes.  Also 
connected to the system bus arc main memory and 
a s i ngle module with two indepe ndent peer PCI bus 
bridges .  The s ingle mod u l e,  the PCI bridge mod u l e ,  
provides the physical and the  log ical bridge be[\Vecn 
the svstem bus and the PC! buses . Each i ndependent 
peer PC! bus bridge is  constructed of a set of three 

Digital Technical j ournal  Vol .  8 No. 4 1 996 

app l i cation-specific i ntcgr:ncd c irc u i t  ( AS I C )  ch ips, 
one control ch ip,  and t\\'O sl iced data path chips .  

The two i ndependent PCI bus bridges arc the inter
bees between the system bus and their respective PC! 
buses. A PC! bus is 64 or 3 2  b i ts wide, transferring 
dat:� at a peak of266 M B/s or 1 3 3 M B/s, respectively. 
In the AlphaServcr 4 1 00 syste m ,  the PC!  b uses arc 
64 bits wide.  

The PCT buses connect to �1 PC: !  backplane mod u l e  
with a n u m ber o f  expansion s l ot s  a n d  a bridge t o  the 
Extended Ind ustry Standard Arch i tecture ( EISA)  bus .  
I n Figure I ,  each P C !  b us is shown to support up to 
r(Ju r  devices in option slots. 

The Alp haScrver 4000 series <l lso supports a config
u r:�rion in which two of the CPU cards  are replaced 
with rwo ad d i tiona l independent  peer PC! bus 
bridges. In the quad PCI bus configuratio n ,  there arc 
1 6  option slots avai lable t(Jr  PCI devices, at the cost 

or· bou nd i ng the system to a maxi m u m  of two CPUs 
and rwo logical memorv slots .  This q u :�d PCI bus con
figuration is shown in hgurc 2 .  

!Ylost or· the tech niq ues descri bed i n  this  paper arc 
implemented in the PC! bus bridge .  The partial cache 
l i ne write tec h n iq u e ,  presen ted next, is also designed 
i nto the protocol on the system bus and i nto the CPU 
c:�rds .  

Im provements i n  CPU and System Bus Uti l ization 
th rough Use of Partial Cache Line Writes 

I nefficient  use of system resources can l i m i t  perfor
mance on heavi lv loaded systems .  Svstem designers 
must be attcnti,·e to potential pcd(Jrmance bottle
necks beyond the com mon l y  add ressed CPU speed , 
cache loop rime, and CPU memory latency. O u r  tCJCus 
in rhc I/0 su bsystem design was to ba lance system 
pcrtcm11:111Ce in the face of ;J wide range of I/0 device 
behaviors . vVe therdixe implemented tec h n i ques that 
mi n im ize the load on the PC ! bus,  the system bus, and 
the C l�Us .  The technique descri bed in this section
partial  cache l i ne writes- red u ces  the load on the sys
tem bus and impro\'CS o\'era l l  system pert(mnancc . 

!'vLmy first- and second -generation PCI control ler 
devices were d esigned to operate i n  platforms that 
su pport 3 2 - byte c:�chc l i nes and 1 6- bvtc write butTers . 
I t  is common for an o lder PC! device to l im i t  the 
amount of DJ\IlA d ata i t  reads or writes to match this 
characteristic of compu ters rhat were on the market at 
the time those devices were designed . Some classes of 
devices wi l l ,  bv their  nature,  <llways l imit the amount 
ofcbta in J b u rst transaction . 

As do most Alpha pJatt(mm, the Alp haServer 4 1 00 
svstcm su pports a 64- bytc cJC hc l ine  that is t\\'ice that 
of other common svstcms .  When a PC! de,·ice pcr
tcm11S �1 memory wri tc of less than a complete cache 
l i ne, the system must merge the d ata i nto a cache l ine  
whi le maintai n i ng a consistent ( coherent) view of 
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memory tor a l l  CPUs on the system bus . Th is mergi ng 
of write data i nto the cache-coheren t  donlJ i n  is typi 
cal ly  done on the P C !  bus bridge , which reads the 
cache li ne ,  merges the new b�'tes , :�nd wri tes the cache 
l i ne b::�ck ou t to memory. The read - modi r\'-wrin: m ust 
be pert<:>rmed as an atom ic ope ration to m:l i nta in  
memory consistency. For the  d u ration of tht: atom ic 
read -mod i �1-write operation , tht: system bus is busy. 
Const:qut:ntly, a write of less than a cacht: l int: rt:su l ts 
in a rcad - mod i�� -write that ta kt:s at least thrct: timt:s :�s 
m:�ny cycl es on the system bus as a si mple 64- byte
al ignt.:d cache l i nt: write. 

For example,  if we bad used an url it:r D I G I TA L  
i mple mentation o f  a system bus protoco l on the 
A l ph aSt:rver 4 1 00 syste m ,  an 1/0 d evict: operation 
on the l)CJ that performed a s ing l e 1 6- bytt.:-a l igned 
memory write wou ld have consu mt:d system bus 
bandwidth that cou ld have m oved 256 bytt:s of d a ta ,  
o r  1 6  ti mes t h e  amount o f  data . W e  tht:rdi:>rt: h a d  to 
find a more e ffi cient approach to wr i ti ng su bblocks 
into tht: cache-coherent doma in .  

Wt: first examined opportu nities ti:> r  efficiency gains 
i n  tht: memory system 3 Tht: Al phaServn 4 1 00 mem
ory system i n terrace is 1 6  bytes wide ;  a 64- byte cache 
l ine  read or write takes fou r cyc les on the system bus .  
The memory mod u les themse lves can be des igned to 
nnsk one or more of the writes and al loll' :1 l igncd 
blocks that arc m u l tipl es of 1 6  byres to be ll'rittcn to 
memory i n  a si ngle system bus trans�lction .  Tht: prob
lem wi th permitting a Jess than comp kte c:1che l i n e  
write, i .e . , less tha n 6 4  bytes, i s  t h a t  t h e  writt: goes to 
main memorv, b u t  the only u p- to- date/complt:tc 
copv of a cache l ine may be i n  a CPU card 's cache .  

To permit  the more effic ient partia l cac he l ine 
wri te operati ons , we mod i fied the system bus cac he 
cohuency protocol . W h e n  a PCI b u s  bridge issues 
a parti;�l CKhc l ine write on the system bus, c:.<ch C P U  
c;�rd perti:mns a cache looku p  to sec if  t h e  target o f  
t h e  write is d irty. I n  t h e  evt:nt that tht: target cache 
block is d i rtv, the CPU sign;� ls  tht: PC! bus bridge 
bdi:>re rhe end of the partia l wrirt: . On d i rty partial 
eacht: l i nt: write transactions, the bridge s imp!�, per 
ti:ml1S <1 second transaction as a read - modit\1 -write . I f  
the t<1rgct cache block is nor d i rty, r h t:  operJ tion com 
p l etes in a si ngk systt:m bus transaction.  

Add rt:ss traces taken d uring prod uct developmen t  
were si m u l ated t o  determ i ne the ti·eq u t:ncy of d i rty 
cache blocks that a re targets of DMA wri tes . O u r  s im
u lations showed that,  tor the add ress trace wt: used , 
tl-cquency was extreme ly rare . Mt:asurcmcnr ta ken 
ti·om St:VeraJ  appJiutiOJlS and benchmarks con fl rmed 
that a d i rty cache block is almost never asserted with 
a parri;� l cache line wri te .  

T h e  D M A  transft:r of blocks thJt arc a l i gned 
mu l t i p l es of 1 6  bytes but less t ha n :1 cache l i ne is ti:>ur  
ti mes more e fficient in  the 4 100 svstem than i n  earl ier 
D I G I TA L  imp lem entations . 

Vol . �  N o . 4 J l)96 

MmTnK n t  of blocks o f  less than 64 lwtcs is 
important  ro :1pp l ieation performance because there 
are h igh -pc r ti:mnance dc\ 'iees that move less thJn 
64 byres. One cx<� m p l e  is D I G ITAL's M LM O RY 
C H AN N E l .  Jdaptcr, which m oves 3 2 - byte b locks i n  �1 

b u rst . 2 As M EM O RY CHANNEL ad apters move l :1rge 
n u mbers of blocks that art: a l l  Jess than a cache l i n e  of 
data, the 1/0 su bsystem part ia l cache l i n e  write tC;�rure 
i mproves system bus ut i l i zation and e l i m i nates the 
system bus as a bott lenec k . Message latency across the 
tab ric of an Alph :1Servn 4 1 00 tv! E M O RY C H AN !\I I -: ! ,  
c l uster ( version 1 . 0 )  is <1pprox i mate l\' 6 microseconds 
( fJ.s ) .  Thnc art: two DMA writes i n  the message : the 
first is a message, and tht: second is a flag to va l ida te the 
message . Thest: DMA wri tes on the target A lphaSenn 
4 1 00 contri bu te to mcssJgc brency. The i mprm e  
ment in l atencv provi ded by tht: partia l cache l ine  11ritc 
tCature is approx i mate ly 0 . 5  11-s per wri te. W i th two 
writes per message , latt:ney is  red u ced b�' approx i
matdy 1 5  percent over an AlphaServer 4 1 00 system 
with the partia l cache l ine  write tearurc.  With version 
1 . 5 of M E M O RY C H A N N E L  adapters , net Lucnev 
w i l l  i m prove by �1 bou t  3 fLS, and the etlect of pani;: d  
cache  l ine writt:s wi l l  ::tpproach a 30 pcrct: n t  i m prove 
ment in message la tency. 

In summar�', tht: chJ I I cngc is to efficient lv  mm·c a 
block of dat<1 of a common size ( mu l t ip le of 1 6  bvtes ) 
that is sma l ler than a cache l i ne into the cache-coherent 
domain .  vVithout anv t(u·ther imprm'emellt, the tech 
n ique reduces system bus u ti l ization bv a s  much a s  �1 

tacror of t<:>u r. Th is tcclmique a l lows su bblocks to be 
merged \\ ·ithou r  incurring the overhead ofre:�d- mod i �'
write, yet m;� inrains c:�che coherency. The on ly d raw
back to the technique is some increased comp lex i ty in 
the CPU cache control ler to support this modt: . We 
considered the a lternative of adding a sma l l  cache to the 
PCI bridge. Writes into the same memory rt:g ion that 
occur within a short period of ti me cou ld merge d irect l y 
i nto a c::tcht: .  This appro::tch adds significan t  complex itY 
and increases pcr tcm11ance onlv if transactions that tar
get the same cache l i n e  a rt: \UV close together in time . 

Peer-to-Peer Transaction Support 

Systt:m bus and PC! bus u r i l i z:1tion can be optimi zed 
fc:>r certa in  app lications by l i m it ing the n u m bt:r of times 
the sanK block of dar:� moves th rou gh the system .  
As noted in tht: section A lp haScrvcr 4 1 00 Svstem 
Overview, the PCI  su bsystem can conta i n  two or ti:H !r  
indepc ndcll t PC ! bus bridges . O u r  design al.kl\l·s exter
nal  dev ices eonncctt:d to these separate peer PC! bus 
bridges to sh�u-c data without accessing main mt:mor\' 
and bv using a m in ima l amount of host bus bandwidth. 
In other words , external dC\' iccs can efkct direct access 
to data on 3 peer-to-peer basis. 



I n  conventional systems, a data file on a disk that is 
requested by a c l ient node is transferred by DMA trom 
the d isk, across the P C !  and the system bus, and i nto 
main memory. Once the data is in main memory, a net
work device can n.:ad the data d in.:ctly in memory and 
send it across the network to the cl ient n ode.  I n  a 4 100 
system, device peer-to-peer transaction circumvents 
the transter to main memory. However, peer-to-peer 
transaction req uires that the target device have certa in 
properties. Tbe essential property is that the device tar
get appear to the source device as if it is main memory. 

The balance of this section exp lains how conven
tional DMA reads and writes are performed on the 
AlphaServer 4 1 00 system , bow the infrastructure for 
conventiona l DMA can be used for peer-to-peer trans
actions, and how dead loci( avoidance is accompl ished . 

Conventional DMA 

We extended the k<Hures of conventiona l DMA on the 
AlphaSaver 4 100 system to support peer- to-peer 
transaction . Conventional Di\1A in  the 4 1 00 system 
works as ta l lows . 

Add ress space on the Alpha processor is 2 ��� or l tera
byte; the AlphaServer 4 100 system supports up to 
8 gigabytes ( G B )  of main memory. To directly address 
a l l  of memory ·wi thout using memory management 
hardware, an address must be 3 3  b its .  ( Eight G B  is  
equ iva lent to 2''  bytes . )  

Because the amounr o f  memory is large compared to 
address space avai lable on the PCI, some sort of mem
ory management hardware and soft-ware is needed to 
make memory directly addressab le by PC! devices. 
Most PCI devices use 32 -bit Dlvi.A addresses. To pro
vide direct access for every PC! device to a l l  of the sys
tem add ress space, the PC! bus bridge has memory 
management hardware similar to that which is used on 

a C P U  daughter card . Each PCI bridge to the system 
bus has a transl ation look-aside butler (TLB ) that con
verts PC! addresses into system bus addresses. The use 
of a TLB permits hardware to make all of phys ica l 
memory visible th rough a re lative ly sma l l  region of 
address space that we cal l  a DMA window. 

A DMA window can be specified as "direct 
mapped" or "scatter-gather mapped ."  A direct
mapped DMA window adds an offset to the PCI  
address and passes i t  on to the system bus .  A scatter
gather mapped DMA window uses the TLB to look up 
the system bus add ress . 

Figure 3 is an examp le of how PCI memory address 
space might be a l located tor DMA windows and tor 
PCI device control status registers ( CSRs) and memory. 

A PCl device in i tiates a DMA write by driving an 
address on the bus. In  Figu re 4, d ata from PCl devices 
0 and l are sent to the scatter-gather D MA windows; 
data from PCI device 2 are sent to the d i rect- mapped 
Di\1A window. When an address hits in one of the 
DMA windows, the PC! bus bridge acknowledges 
the address a nd immed ia te ly begins to accept write 
data.  Whi le  consum ing write data in a bufter, the PC! 
bus bridge translates the PCl address into a system 
address. The bridge then arbitrates tor the system bus 
and,  using the trans lated add ress, completes the write 
transaction . The write transaction comp letes on the 
PC! before it comp letes on the system bus . 

A DMA read transaction has a longer latency than 
a DMA write because the PCI bus bridge must fi rst 
translate the PC! address i nto a system bus address and 
tCtch the data before completing the transaction . That 
is to say, the read transaction completes on the system 
bus before it can complete on the PCI . 

Figure 5 shows the address path through the P C !  
bus bridge . All DMA writes and reads are  ordered 
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DiJgram of Data Paths in J Si ngle PC! Bus Bridge 

through the outgoing queue ( O Q )  en route to the sys
tem bus. DMA read data is  passed through an incom 
ing queue ( IQ)  bypass by way of a DMA fi l l  data butfcr 
en route to the PC! . 

Note that the IQ orders CPU-in i tiated PIO transac
tions. The IQ bypass is neccssarv for correct, dead 
lock- tree operation ofpeer- ro-pcer transactions, which 
are explained in the next section .  

Diginl Technical journal Vol .  R No. 4 1 996 

10 

-rr - - - - - - - -
64-BIT PCI 

I 
I 
I 
I 

Following is an example of how a conventional 
" bou nce " DJ\!lA operation is used to move a file from a 
local storage device to a network device. The example 
i l l ustrates how data i s  ll'rirren i nto memory by one 
de1 icc ll'here it  is temporarilv stored . Later the data i s  
read by  another DlVIA device . Th i s  operation i s  cal led 
a "bounce I/0" because the data "bou nces" off 



memory and out a network port, a common operation 
tor a network fi le server application. 

Assume PC! device A is a storage control ler and PC! 
device B is a net\vork device : 

l .  The storage control ler, PC! device A, writes the fi le  
into a buffer on the PC! bus  bridge us ing an  
add ress t hat h its a DJ\1A wind ow. 

2 .  The PCI bridge translates the PC! memory add ress 
into a system bus add ress and writes the data i n to 
memory. 

3 .  The CPU passes the net\vork device a PCI memory 
space add ress that corresponds to the system bus 
add ress of the data in memory. 

4. The network control l er, PC! device B ,  reads the fi le  
in  main  memory using a DMA window and sends 
the data across the nct\vork. 

I f  both control lers are on the same PC! bus segment 
and i f  the storage contro l ler ( PC! device A )  cou l d  
write d i rectly t o  t h e  nctvvork control ler ( PCI  d evice 
B ) ,  no traffic wou l d  be i nt roduced on the system bus. 
Traffic on the system bus is red u ced by saving one 
DMA wri te, possibly one copy operation, and one 
DMA read . On the PC! bus, traffic is a lso red uced 
because there is one transaction rather than two. 
When the target of a transaction is a device other than 
main m emory, the transaction is ca l led a peer-to-peer. 
Peer-to-peer transactions on a single-bus system arc 
simple, bordering on trivia l ;  but deadlock-free support 
on a system with m u l tiple peer PCI buses is qu ite a bit  
more difficu lt .  

This section has presented a high-level description 
of how a PC! device DMA address is translated into 
a svstem bus address and data arc moved to or from 
m;i n  memory. In the next section, we show h ow the 
same mechanism is used to support device peer-to
peer transactions and bow traffic is  managed for dead
lock avoidance. 

A Peer-to-Peer Link Mechanism 

For d irect peer-to-peer transactions to work, the target 
device must behave as if it is  main memory; t hat i s ,  
i t  must  have a target address in  pretetchable PCI mem
ory space.' The PCI specification fu rther states that  
devices are  not  a l lowed to depend on completion of 
a transaction as master.' Two devices supported by 
the DIG ITAL UN IX  operating system meet these 
criteria today with some restrictions; these arc the 
MEMORY CHANNEL adapter noted earl ier  and 
the Prestoscrve NVRAM, a nonvolati le memory stor
age device used as an accelerator for transaction 
processing. The PNVRAM was part of the configura
t ion in  which the AIM bench mark results cited in  the 
i ntroduction were achieved. 

Both conventional DMA and peer-to-peer trans
actions work the same way trom the perspective of 

the PCI master: The device driver provides the master 
d evice with a target add ress, size of the transfer, and 
identification of data to be moved .  In  the case in  which 
a data fi le  is to be read from a d isk, the device d river 
software gives the PC! device that controls the d isk a 
" handle," which is an identifier for the data fi le  and the 
PCI target address to which the file should be written .  
To reiterate, i n  a conventional DMA transaction, the 
target add ress is  in  one of the PCI bus bridge DMA 
windows. The DMA. window logic translates the 
address into a main memory address on the system bus. 
In a peer-to-peer transaction, the target add ress is 
translated to an address assigned to another PCI device. 

Any PC! d evice capable of DMA can perform peer
to-peer transactions on the AlphaServer 4 100 system .  
For example, in  Figure 6,  PC I  d evice A can transfer 
data to or from PC! device B without using any 
resources or facil ities in the system bus bridge. The use 
of a peer- to-peer transaction is control led entirely by 
soft\vare: The d evice dr iver passes a target address to 
PCI device A,  and device A uses the add ress as the 
DMA data source or destination. 

I f  the target of the transaction is PCI device C, then 
system services software allocates a region in a scatter
gather m ap and specifies a transl ation that maps the 
scatter-gather-mapped address on PCI bus 0 to a sys
tem bus address that maps to PC! device C. This 
address translation is placed i n  the scatter-gather map. 
When PC! device A in i tiates a transaction, the add ress 
matc hes one of the DMA wi ndows that has been in i 
t ia l ized for scatter-gather. The  PCI bus  bridge accepts 
t he transaction ,  looks up the translation in  the scatter
gather map, and uses a system address that maps 
through PCI bus bridge l to h i t  PC! d evice C. The 
transaction on the system bus is between the two PCI 
bridges, with no involvement by memory or CPUs.  I n  
this transaction, the system bus i s  u ti l i zed,  b u t  the d ata 
is not stored i n  mai n memory. This e l iminates the 
i n termed iate steps and overhead associated with con
ventional DMA, tradi tional ly done by the "bou nce" of 
the data through main memory. 

The features that a l low software to make a device on 
one PCI bus segment visible to a device on another are 
a l l  impl ic it  in  the scatter-gather mapping TLB . For 
peer-to-peer transaction support, we extended the 
range of translated addresses to include memory space 
on peer PC! buses. This al lows address space on one 
independent PC! bus segment to appear in a window 
of address space on a second i ndependent peer PC! 
bus segment. On the system bus, the peer transaction 
hits in  the address space of the other PC! bridge. 

Deadlock Avoidance in Device Peer-to-Peer Transactions 

The definition of d eadlock, as it is solved i n  this 
design, is  the state i n  which no progress can be made 
on any transaction across a bridge because the queues 
are fil led with transactions that wi l l  never complete. 
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Figure 6 
AlpluScrvcr 4 1 00 System DiagrJm Showing Dat� P.nhs through PC! Bus Ihidgcs 

A deadlock situation is analogous to h ighway grid lock 
in  which two l ines of a u tomobiles race each other on 
a single- lane road; there is no room to pass and no way 
to back up .  Rules tor deadlock avoidance arc analo
gous to the ru les for directing veh icle tr<lffic on :� nar
row bridge. 

An o:tmple of peer- to-peer deadlock is one in 
which two PC:l devices are dependent on the comple
tion of a write as masters bdore they wi l l  accept wri tes 
as t:�rgcts. \Vhen these two devices target one another, 
the resu l t  is deadlock; each device responds with 
RETRY to every write in which it is the target, and 
each device is unable to complete i ts curren t  write 
trans:�ction bec:�usc it  is being retried . 

A device that docs 1101 depend on completion of a 
transaction as master bdore accepting a transaction as 
target may also cause dead locks i n  a bridged enviro n 
ment. Situations can occur on a bridge in which mu lti
ple o utstanding posted transactions must be kept in 
order. C:�rdi.ll design is required to avoid the potential 
t(>r deadlock. 

The design t(n dcJd lock-ti-ee peer-to-peer transaction 
support in  the Alph:�Scrvcr 4100 system i ncludes the 

• Implemcnt<ltion of PC! delayed -read transactions 

• Usc of bypass paths i n  the IQ and i n  read -retu rn 
thta 
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This section assu mes th�t the reader is bmil iar with 
the PC! protocol and ordering rules ' 

Figu re 6 shows the data paths through two PC : !  
bus bridges. Transactions pass through these bridges 
as t(J I Iows: 
• CPU sottw�I-c - in i tiated PIO reads and P I O  writes 

arc entries in  the IQ .  

• Dc,·icc peer- to-peer transJctions targeting devices 
011 peer PC! segments also usc the IQ. 

• PCI -dcvice-ini tiated reads and writes ( D1VIA or 
pccr-ro- pecr) ,  interrupts, and PIO ni l  data arc 
e ntries in the OQ.  

• The mul ti plexer selecting entries in  the I Q  :: d lows 
writes ( PIO or peer-to-peer) to bypass de layed 
( pcndcd ) reads ( PIO or peer-to-peer ) .  

• T h e  read prdctch add ress register permits read
retu rn in the OQ data to bypass PC! dcl:1ycd rc:Itk 

The t\vo bypass paths arou nd the IQ and OQ arc 
req uired to avoid deadlocks that m�1y occur dur ing 
device peer-to-peer transactions. All PC!  ordering ru les 
arc satisfied ti·om the point ohicw of any single device 
in  the syste m .  The tol lowing example dcmonstr:Hcs 
dc�dlock a\'Oid:mcc in a de\'icc peer-to-peer write and 
a device pcer-to-�xcr read , rdcrencing Figure 7 .  



The configuration in the example is an AJphaServer 
4 100 system with four CPUs and two PCI bus bridges. 
Devices A and C are simple master-capable DMA 
control lers, and devices B and D are simple targets, 
e .g . ,  video RAMs, nerwork controllers, Pl'-TV RAJ.'vl, or 
any device with pretetchable memory as defined in the 
PC! standard . 

Example of device peer-to-peer write block comple
tion ofpended PIO read-return data: 

l .  PCI device A initiates a peer-to -peer burst write 
targeting PCI device D.  

2 .  Write data enters the OQ on bridge 0 ,  fi ll ing three 
posted write bu ffers. 

3. The target bridge, bridge 1 ,  writes data from 
bridge 0 .  

4 .  When the  I Q  on bridge l hits a threshold,  it  
uses the system bus flow-control to bold off the 
next write. 

5. As each 64- byte block of write data is retired out 
of the JQ on bridge 1,  an addi tional 64- byte 
( cache l ine size ) write of data is al lowed to move 
from the OQ on bridge 0 to the JQ on bridge l .  

6 .  I f  the OQ on bridge 0 i s  full ,  bridge 0 wil l  discon
nect from the current PCI transaction and wi l l  
retry a l l  transactions on PC! 0 until an OQ slot 
becomes ava i lable . 

7. PCI device C initiates a peer- to-peer burst write, 
targeting PCI device B; the same scenario follows 
as steps 1 through 6 above but in the opposite 
direction. 

8. CPU 0 posts a read of PCI memory space on PCI 
device E .  

9 .  CPU 1 posts a read o f  P C !  memory space o n  PCI 
device G. 

10. CPU 2 posts a read of PCI memory space on PCI 
device F.  

1 1 .  CPU 3 posts a read of PCI memory space on PCI 
device H .  

1 2 .  Deadlock: 

- Both OQs are stalled waiting for the corre
sponding IQ to complete an earlier posted write. 

- The design has two PIO read-return data (fil l )  
buffers; each is fi.dl .  

- The PIO read-return data must stay behind the 
posted writes to sat is f)' PCI -specified posted 
write buffe r  flushing rules. 

-A third read is at the bottom of each IQ, and it 
cannot complete because there is no fill buffer 
available i n  which to put the data. 

To avoid this deadlock, posted writes are al lowed 
to bypass delayed (pended ) reads in the IQ, as 

shown i n  Figure 6. In the AlpbaServer 4100 deadlock
avoidance design, the IQ will always empty, which in 
turn allows the OQ to empty. 

Note that the IQ bypass logic implemented for 
dead lock avoidance on the AJphaServer 4 100 system 
may appear to violate General Rule 5 tl-om the PC! 
specification, Append ix E: 

A read transaction must push ahead of it through 
the bridge any posted writes originating on 
the same side of the bridge and posted before the 
read. Before the read transaction can complete on 
its originating bus, it must pu l l  out of the bridge 
any posted writes that originated on the opposite 
side and were posted before the read command 
completes on tbe read-destination bus.' 

In fact, because of the characteristics of the CPUs 
and the flow-control mechanism on the system bus, all 
rules are fol lowed as observed fl·om any single CPU or 
PCI device in the system .  Because reads that target 
a PCI address are always spl it  i nto separate request and 
response transactions, the appropriate ordering rule 
for this case is PCI Specification Delayed Transaction 
Rule 7 in Section 3 . 3 . 3 . 3  of the PC! specification : 

Delayed Req uests and Delayed Completions 
have no ordering requ irements with respect to 
themselves or each other. Only a Delayed Write 
Completion can pass a Posted Memory Write. A 
Posted Memory Write must be given an oppor
tunity to pass everything except another Posted 
Memory Write .' 

Also note that, as shown in Figure 6, the DMA fill 
data buffers bypass the IQ, apparently violating 
General Rule 5. The purpose of General Rule 5 is to 
provide a mechanism in a device on one side of a bridge 
to ensure that al l  posted writes have completed. This 
ru le is required because interrupts on PC! are side
band signals that may bypass al l posted data and signal 
completion of a transaction before the transaction has 
actually completed . In the AJphaServer 4 100 system,  
a l l  writes to or  from PCI  devices are strictly ordered, 
and there is no side-band signal notit),ing a PCI device 
of an event. These system characteristics al low the PCI 
bus bridge to permit D MA fill data (in PC! lexicon, tl1is 
could be a delayed-read completion, or read data in a 
connected transaction ) to bypass posted memory 
writes in the IQ . This bypass is necessary to l imit PCI 
target latency on DMA read transactions. 

We have presented two IQ bypass paths in the 
AJphaServer 4 1 00 design.  We describe one IQ bypass 
as a required feature for dead lock avoidance i n  peer
to- peer transactions between devices on different 
buses. The second bypass is required for performance 
reasons and is d iscussed in the section JjO Bandwidth 
and Efficiency. 

Digit31 Technical Journal Vol .  8 No.4 1 996 69 



70 

CPU 0 I I CPU 1 I I CPU 2 I I CPU 3 

COMMAND/A D D R ESS 
DATA AND ECC 

t 
t - - - - :::�-
. - - ' � - - - - - - - - - - - � - - - - � - - ·  

BRIDGE 0 ' I I ; 10 I 
1-----� 1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figu re 7 

00 
PEER WRITE 
PEER WRITE 

1-----� 1 
1-----� 1 
1---:P:-::E:=E::-R--:W:::R--:IT=E-1 I 
1-----'-P-=E=E--'-R-'-W---R"-'IT-=E-1 I 

PEER WRITE 
1-----'-P-=E=E--'-R-'-w---R""'IT-=E-1 I 

PEER WRITE I 
PIO READ REQUEST I 

I 
I 
I 
I 
I 
I 

_ _ _ _ _ _ _ _ _  I 
PCI O 

PCI DEVICE A PCI DEVICE B 
MASTER OF ..._... - TARGET OF 
PEER WRITES PEER WRITE 

PCI DEVICE E 
TARGET OF 
PIO READ 

PCI DEVICE F 
- TARGET OF PIO 

READ REQUEST 

SYSTEM BUS - - - - - ----- � - - - - · r - - - - - - - - - - -
1 -; I�E

-
' 1 

- - - -t- - - - - - - � - -�- - -
" '  ' '  � ... ... ' '  

/ " 
+ 

A READ I EFETCH 
DM 
PR 
AD DRESS 

t ' 
00 

PEER WRITE 
PEER WRITE 
PEER WRITE 

PIO READ FILL 
PIO READ FILL 

t / 

, , 10 

PEER WRITE 
PEER WRITE 

DMA PEER WRITE 
FILL PEER WRITE DATA 

PEER WRITE 
PIO READ REQUEST 

" I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I t 

RITE I DMA W 
EAD I OR R EJ I I�TERRUPTSI 

I 
I 

t t 
t 

- - - - - - -

PCI DEVICE C 
MASTER OF -
PEER WRITES 

PCI DEVICE G 
TARGET OF -
PIO READ 

1- - - - - - - - - -
PCI 1 

PCI DEVICE D 
� TARGET OF 

PEER WRITE 

PCI DEVICE H 
- TARGET OF PIO 

READ 

Block Di:�gra111 Showing Deadlock Case without IQ Bypass l\1th 

Required Characteristics for Deadlock-free Peer-to-Peer 

Target Devices 

PC! devices must fo l low a l l  PCI standard ordering 
ru les for dead lock-free peer-to-peer transaction. The 
spec ific ru le rel n·ant to the AlphaServer 4 1 00 design 
for peer-to-peer transaction support is Delayed 
Transaction Rule 6, which guarantees that the IQ wi l l  
a lways emprv: 

A target must accept all memory writes 
add ressed to it whi le completing a request using 
Delayed Transaction termination .' 

Our design includes a l ink mechanism using scatter
gat her TLBs to create a logical connection between two 
PC! devices. It inc ludes a set of ru les tor bypassing data 
that ensures deadlock-tree operation when al l  partici
pants in a peer-to-peer transaction follow the ordering 
ru les in the PC! standard . The link mechanism provides 
a logical path tor peer-to-peer transactions and the 
bypassing ru les guarantee the IQ wi l l  aJ,,·avs drain .  
The key kature, then,  is  a guarantee that the lQ wi l l  
al\\·ays drain, thus ensu ring deadlock-tYee operation. 
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1 /0 Bandwidth and Efficiency 

With overa l l  system performance as our goal , 1\'e 
selected rwo design approaches to deJ i, ·er fu l l  PC! 
bandwidth without bus stalls .  These were s upport tor 
large bu rsts of PCI-de,·ice-in itiated DMA, and suffi
cient buffering and prefetching logic to keep up \\'ith 
the PCI and a\'oid i ntroducing sta l l s .  vVe open this sec
tion with a re,·iew of the bandwidth and latency issues 
11-e examined in our efforts ro ach ie\'e greater band
width effic iency. 

The bandwidth available on a plattorm is dependent 
on rhe efficiency of the design and on rhe type of 
transactions performed . Bandwidth i s  measured i n  
mil l ions o f  bytes per second ( M B/s) .  On a 32-bi t  
l'Cl ,  the  ava i lable bandwidth is effi.ciencv multip l ied 
by 1 3 3 MB/s; on a 64- bit PCI, ava i lable bandwidth is 
efficiency mu ltip lied by 266 M B/s. By efficiency, we 
mean the amount of rime spent actua l ly rranskrring 
data as com pared with total transaction rime. 

Both parties in a transaction contri bute to efficiency 
on the bus .  The AlphaServer 4100 1/0 design keeps 
the o,·crhead introduced by the system to a min imum 
and supports large b urst sizes O\'er wh ich the  per
tr;.ll1sacrion m·erhead can be amorti zed . 



Support for Large Burst Sizes 

To predict the efficiency of a given design, one must 
break a transaction into its constituent parts. For exam
ple, when an ljO device initiates a transaction it must 

• Arbitrate tor the bus 

• Connect to the bus (by driving the address of the 
transaction target) 

• Transfer data (one or more bytes move in one or 
more bus cycles) 

• D isconnect from the bus 

Time actually spent in an I/0 transaction is the 
sum of arbitration, connection, data transter, and 
disconnection. 

The period of time before any data is transferred 
is typically called latency. With smal l  burst sizes, band
width is limited regardless of latency. Latency of 
arbi tration, connection, and d isconnection is f

.
1 irly 

constant , but the amount of data moved per unit of 
time can increase by making the I/0 bus wider. The 
AJphaServer 4100 PCI buses are 64 b its wide ,  yielding 
(efficiency X 266 MB/s) of available bandwidth. 

As shown in Figure 8 ,  efficiency improves as burst 
size increases and overhead ( i .e . ,  latency p lus stall 
time ) decreases. Overhead introduced by the 
AlphaServer 4 100 is fairly constant. As discussed ear
l ier, a DMA write can complete on the PCI before it 
completes on the system bus. As a consequence, we 
were able to keep overhead introduced by the p lat
form to a minimum for DMA writes. Recognizing that 
efficiency improves with burst size, we used a queuing 
mode l  of the system to predict how many posted write 
buffers were needed to sustain D.MA write bursts with
out stal l ing the PCI bus. Based on a simu lation model 
of the configurations shown in Figures l and 2, we 
determined that three 64-byte butlers were sufficient 
to stream DMA writes ti·om the (266 MB/s) PCI bus 
to the ( I  Gl3/s) system bus. 

Later in this paper, we present measured perfor
mance ofDMA write bandwidth that matches the sim
ulation model resu l ts and, with large burst stzes, 
actual ly exceeds 95 percent efficiency. 

Prefetch Logic 

DMA writes complete on the PCI  before they com
plete on the system bus,  but DMA reads must wait for 
data fetched from memory or from a peer on another 
PCI. As such, latency for DMA reads is a lways worse 
than it is tor writes. PC! LocaL Bus Spec ification 

Revision 2. 1 provides a delayed -transaction mechanism 
tor devices with latencies that exceed the PCT initia l 
latency requirement.' The initial- latency requ irement 
on host bus bridges is 32 PC:I cycles, which is the max
imum overhead that may be introduced betore the 
first data cycle .  The AlphaServer 4 100 initial l atency 
for memory DMA reads is bet\veen 1 8  and 20 PCI 
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cycles. Peer-to-peer reads of devices on d ifferent bus 
segments are a lways converted to de layed- read trans
actions because the best-case initial latency wi l l  be 
longer than 32 PCI cycles. 

PCI  initial latency tor DMA reads on the 
AlphaServer 4 1 00 system is commensurate with 
expectations tor c urrent generation quad- processor 
SMP systems. To maximize efficiency, we designed 
prefetching logic to stream data to a 64-bit PCI device 
without stal ls after the initial- latency penalty bas been 
paid. To make sure the design cou ld keep up with an 
uninterrupted 64-bit DMA read, we used the queuing 
mode l  and analysis of the system bus protocol and 
decided that three cache- l ine-size pretetch bu fters 
would be sufficient. The a lgorithm tor pretetc hing 
uses the advanced PCI commands as hints to deter
mine how far memory data prefetching should stay 
ahead of the PCI bus: 

• M emory Read (MR) : Fetch a single 64-byte cache 
l ine. 

• Memory Read Line ( M RL) :  Fetch t\vo 64- byte 
cache lines. 

• Memory Read Mu l tiple (MR.M):  Fetch t\vo 
64-byte cache lines,  and then ktch one l ine at 
a time to keep the pipe line fu lL 

After the PCI bus bridge responds to an M RM com
mand by fetching t\vo 64-byte cache lines and the sec
ond l ine is returned ,  the bridge posts another read; as 
the oldest bufter is unloaded, new reads arc posted,  
keeping one buffer ahead of the PCI .  The third 
pretetch buffer is reserved tor the case in which a DMA 
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M RM com pletes whi le  there arc sti l l  prdctch reads 
outstanding.  Reservat ion of this  buffer accomplishes 
two things: ( 1 )  i t  el iminates a time-delay bubble that 
would appear between consecutive DMA read trans
actions, and ( 2 )  it maintains a resource to fetch a 
scatter-gather trans lation i n  the even t  that the next 
transaction address is not in the TLB . Measured DMA 

bandwidth is presented later in  this paper. 
The point at which the design stops prefetching is on 

page boundaries. As the Dl'vlA window scatter-gather 
map is partitioned into 8 -K.B pages, the interface is 
designed to disconnect on 8-KB-aligned addresses. 

The advantage of prefe tching reads and absorbing 
posted writes on this system is that the burst size can 
be as large as 8 KB . With large burst size, the overhead 
of connecting and disconnecting from the bus is 
amortized and approaches a negl igi b le  pena lty. 

DMA and PIO Performance Results 

We have discussed the relationship between burst size, 
initial l atency, and bandwidth and described several 
techn iques we used in the Alph:�Scrver 4] 00 PC! bus 
bridge design w meet the goals for high -bandwidth 
I/0 . This section presents the perf-(xmance del ivered 
by the 4 100 I/0 su bsystem design , which has been 
measured using a high-performance PC! tr:�nsaction 
generator. 

We coJ iected performance dat:t under the U N I X  
operating system with a reconfigurable i nterf:1ce card 
developed at D I G ITAL, cal l ed PCI Pamette. It is a 
64-bit PCI option with a Xi l i nx FPGA i nterface to 
PCI . The board was configured as a programmable 
PCI transaction generator. In this configuration , the 
board can generate burst l engths of l ro 5 1 2  cyc les. 
DMA either runs to a fixed count of words transferred 
or runs continuously ( software selected ) .  The DMA 

engine runs at a fixed cadence ( delay between bursts ) 
of 0 to 1 5  cycles i n  the case of a fixed count and at 0 to 
63 cvcles when run continuously. 

The source of the DMA is  a com bination of a free
running counter that is c locked using the PCI clock 
and a PCI transaction count. The fl·ee-running counter 
time-stamps successive words and detects wait  states 
and delays between transactions. The transaction count  
identifies retries as  wel l  as  transaction boundaries. 

As the target of PIO read or write, the board can 
accept arbitrarily large bursts of either 32 or 64 bits .  I t  
i s  a medium decode device a n d  a lways operates with 
zero wait states. 

DMA Write Efficiency and Performance 

Figure 9 shows the close comparison between the 
AlphaServer 4 1 00 system and a nearly perkct PC! 

design in  measured DMA write bandwidth . As 
explained above , to susta in large bursts of DMA 

writes, we implemented th ree 64- byte posted write 
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buffers. Simulation predicted rhat rhis number of 
bufkrs wou ld  be sufficient to sustain ful l  bandwid th 
DNIA writes-even when the system bus is extremely 
busy-because the bridges to the PCI arc on a shared 
svstem bus that has roughly l GB/s avai lable band
,�·idth .  The PC! bus bridges arbitrate for the shared 
system bus at a priority higher than the CPUs, but the 
bridges arc permitted to execute onlv a single transac
tion each rime rhcy win the system bus.  Therefore, i n  
the  worst case, a PCI  bus bridge wil l  wait behind three 
other PC! bus bridges t(x a slor on rhe bus, and each 
bridge wi l l  have at  least one quarter of the ;wailable 
svstem bus bandwidth . With 250 MB/s avai lable but 
\�•ith potentia l de lay in accessing the bus, three posted 
write buffers are sufficient to maintain fu l l  PCI band 
width t<x memory writes. 

The ideal PC! system is represented by calculated 
performance data tor comparison purposes. It is a sys
tem that has three cycles of target l a tency tor writes. 
Three cvdes is the best possible tor a medium decode 
device. The goal f(x DNlA writes was to del iver perfor
mance l imited on ly by the PCI device itself, and this 
goal was ach ieved.  Figure 9 demonstrates that mea
sured DMA write performance on the AlphaServer 
4 100 system approaches theoretical maximums .  The 
combir�ation of optimizations and in novations used 
on this platform yielded an implementation that meets 
the goal f(x Di'v!A writes . 

DMA Read Efficiency and Performance 

As noted i n  the section Prefctch Logic,  bandwidth 
pertemllJ ilCC of D MA reads will be lower than the per
formance of DMA writes on a l l  systems because there 
is de !Jy in ktchi ng the read data fi-om memory. For 
this reason,  we inc luded three cache- l ine-size preferch 
bu ffers in the design.  



Figure 1 0  compares DMA read bandwidth mea
sured on the AJphaServer 4 1 00 system with a PCI sys
tem that has 8 cycles of i nitial latency i n  delivering 
DMA read data .  This figure shows that del ivered 
bandwidth improves on the AJphaServer 4100 system 
as burst size i ncreases, and that the effect of i nitial 
l atency on measured performance is d imin ished with 
larger DMA bursts. 

The ideal PCI system used calcu lated performance 
data for comparison , assuming a read target latency of 
8 cycles; 2 cycles are for medium decode of the 
address, and 6 cycles are tor memory latency of 1 8 0  
nanoseconds ( n s  ) .  This represents about the best per
formance that can be achieved today. 

Figure 1 0  shows memory read and memory read 
l ine commands with burst sizes l imited to what is 
expected from these commands. As explained else
where in  this paper, memory read is used for bursts of 
less than a cache line; memory read line is used tor 
transactions that cross one cache l ine boundary but are 
less than two cache l ines; and memory read multiple 

is for transactions that cross two or more cache l ine  
boundaries. 

The efficiency of memo1y read and memory 

read line does not improve with larger bursts because 
there is no prefetching beyond the first or second 
cache l ine  respectively. This sho·ws that large bursts 
and use of the appropriate PC! commands are both 
necessary for efficiency. 

Performance of P/0 Operations 

PIO transactions are in i tiated by a CPU . AJphaServer 
4 1 00 PIO performance has been measured on a 
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system with a single CPU, and the results are pre
sented in Figure 1 1 . The pended protocol tor flow 
control on the system bus limits the number of read 
transactions that can be outstanding from a single 
CPU. A single CPU issu ing reads wil l  stall wait ing for 
read-return data and cannot issue enough reads to 
approach the bandwidth l imit of the bridge. Measured 
read performance is quite a bit lower than the theoret
ical l imit .  A system with m ultiple CPUs doing PIO 
reads-or peer- to-peer reads-will del iver PIO read 
bandwidth that approaches the pred icted performance 
of the PCI bus bridge. PIO writes are posted and the 
CPU stalls on ly when the writes reach the I Q  thresh
old .  Figure 1 1  shows t hat P IO writes approach the 
theoretical limit of the host bus bridge. 

PIO bursts are l imited by the size of the I/0 read 
and write merge buffers on the CPU. A single 
AJphaServer 4 1 00 CPU i s  capable of bursts up to 
32 bytes. PIO writes are posted;  therefore, to avoid 
stal l ing the system with system bus flow control ,  in the 
maximum configuration ( see Figure 2 ), we provide a 
min imum of three posted write buffers that may be 
filled before flow control is used.  Configurations with 
fewer than the maximum n umber of CPUs can post 
more PIO writes betore encountering flow control . 

Summary 

The DIGITAL AJphaServer 4 100 system incorporates 
design innovations in the PC! bus bridge that provide 
a h ighly efficient interface to 1/0 devices. Partia l  
cache l ine writes i mprove the efficiency of smal l  writes 
to memory. The peer l ink mechan ism uses TLBs to 
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map device add ress space on i ndependent peer PCI 
buses ro permit direct peer transactions. Reordering of 
transactions in queues on the PCI bridge, combined 
witb the use of PCI delayed transactions, provides a 
dead lock-free design tor peer transactions. Bufrers and 
prdetch logic that support very large bursts without 
stal ls yield a system that can a mortize overhead and 
del iver performance l imited only by the PC! devices 
used in  the system .  

I n  summary, this system meets a n d  exceeds t h e  per
formance goals esta bl ished for the I/0 su bsystem. 
Notably, I/0 subsystem support for partial  cache l ine 
writes and for d i rect peer-to-peer transactions signifi
cantly improves efficiency of operation in a M EM O RY 

C HAN NEL cluster system. 
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Design of the 64-bit 
Option for the Oracle7 
Relational Database 
Management System 

Like most data base management systems, the 

Oracle7 database server uses memory to cache 

data in d isk fi les and improve the performance. 

In  general. larger memory caches result in  better 

performance. Until recently, the practical l im it 

on the amount of memory the Oracle7 server 

could use was well under 3 giga bytes on most 

32-bit system platforms. Dig ita l Equi pment 

Corporation's combination of the 64-bit Alpha 

system and the DIGITAL UNIX operating system 

d ifferentiates itself from the rest of the com

puter ind ustry by being the f irst standards

compl iant UNIX implementation to support 

l inear 64-bit memory addressing and 64-bit 

appl ication programming interfaces, allowing 

high-performance appl ications to directly access 

memory in excess of 4 gigabytes. The Oracle7 

database server is the first commercial data

base product in the ind ustry to exploit the per

formance potentia l  of the very large memory 

config urations provided by DIGITAL. This paper 

explores aspects of the design and implementa

tion of the Oracle 64 Bit Option. 
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I 
Vipi.n V. Gokhale 

Introduction 

Historica l ly, the l im iting tacror tor the Oracle7 re la
tional database managcment system ( RDBMS)  pertor
mancc on any given p latform has been " thc amount of 
computational and I/0 rcsources ava i lable on a single 
node .  Al though CPUs havc bccomc taster by an order 
of magnitude over thc last sc1·eral ycars, I/0 speeds 
ha1·c not imprm·ed commensu r:nclv. For i nstance, the 
Alpha CPU clock speed alone has increased tour times 
since its introd uction; d u ring the same t ime period, 
disk access t imes have i mp roved by a t:Kror of two at 
bcst . The overall throughput of database software is 
critically dependent on the speed of access to data. 

To overcome the ljO specd l i mitation and to maxi
mize performance, the standard Oracle7 database server 
alreadv uti lizes and is optimized tor various paraUel iza
tion techniques in  software (e .g . ,  intel l igent caching, 
data prcfctching, and para l le l  query execution ) and i n  
hardware (e .g . ,  symmeu·ic mu ltiprocessing [SMP] sys
tems, c lusters, and massi1·clv para l le l  processing [MPP] 
systems) .  Given the disparity in latency for data  access 
between memory (a tew tcns of nanoseconds) and disk 
(a  tew milliseconds), a common technique for maximiz
ing performance is to mini mize d isk ljO. Our project 
originated as an investigation into possible additional 
performance improvements in the Oracle7 database 
scrver in tl1e context of increased memory addressability 
and execution speed provided by the AlphaServer and 
DIG ITAL UNDC system. Work done as part oftl1is proj
ect subsequently became the foundation tor product 
development of the Oracle 64 Bit  Option. 

Of the memory resource that the Oracle7 database 
uses, the largest portion is used to cache the most fre
quently used data blocks . With hardware and operat
ing system support for 64- bi t  memory addresses, new 
possibi l i ties have opened up for h igh-per formance 
applic:nion software to take advantage of large mem
ory configurations. 

Two of the concepts u ti l ized are hardly new in data
base development, i . e . ,  improl' ing database server per
formance by cach ing more data in memory and 
improving ljO su bsystem throughput by i ncreasing 
data transfEr sizes. However, various con flicting ftc
tors contribute to the practi ca l  upper bounds on 



performance improvement .  These factors include 
CPU architectures; memory addressabi l ity; operating 
system features; cost; and product requirements tor 
portabi l ity, compatibi l i ty, and time-to- market. An 
additional design chal lenge for the Oracle 64 B it 
Option project was a requ irement for significant per
formance increases for a broad class of existing d ata
base applications that use an open, general -purpose 
operating system and database software. 

This paper provides an overview of the Oracle 64 
B i t  Option, factors that influenced its design and 
implementation, and performance impl ications tor 
some database application areas. I n -depth information 
on Oracle7 RDBMS architecture, administrative com
mands, and tuning guidelines can be found in  the 
Orac!e 7 Seruer Docu mentation Set . '  Detailed analysis, 
database server, and application- tun ing issues arc 
deferred to the references cited . Overa l l  observations 
and conclusions from experiments, rather than specific 
detai ls and data points, are used in this paper except 
where such data is publicly avai lable .  

Oracle 64 Bit Option Goals 

The goals for the Oracle 64 Bit Option project were as 
follows: 

• Demonstrate a clearly identifiable performance 
increase for Oracle7 running on D IG ITAL UNJX 
systems across two commonly used classes of data
base applications :  decision support systems ( DSS ) 
and onl ine transaction processing (OLTP) .  

• Ensure that 64-bit addrcssabi l ity and large memory 
configurations arc the only two control variables 
that influence overall application performance. 

• Break the 1 - to 2 - GB barrier on the amount 
of directly accessible memory that can practically 
be used tor typical Oracle7 database cache 
implementations. 

• Add scalabi l ity and performance features that com
plement, rather than replace, current Orade7 
server SMP and duster ofterings. 

• Implement all of the above goals without signifi
cantly rewriting Oracle7 code or introducing appli
cation incompatibi l ities across any of the other 
platforms on which the Oracle7 system runs. 

Oracle 64 Bit Option Components 

Two major components make up the Oracle 64 Bit  
Option:  b ig Oracle blocks ( BOB)  and l arge shared 
global area ( LSGA) .  They are briefly described in  this 
section . 

The BOB component takes advantage of large 
memory by maki ng ind ividual database blocks larger 
than those on 32-bit  platf(mm. A database b lock is a 

basic unit tor I/0 and disk space al location in the 
Oracle7 RDBMS. Large block sizes mean greater den
sity in the rows per block tor the data a nd indexes, and 
typically benefit decision-support appl ications. Large 
blocks are also usdi.d to applications that require long, 
contiguous rows, tor example, applications that store 
multimedia data such as images and sound.  Rows that 
span multiple blocks in Oracle7 req uire proportion
ately more 1/0 transactions to read al l  the pieces, 
result ing i n  performance degradation . Most p latforms 
that run the Oracle7 system support a maximum data
base block s ize of 8 kilobytes ( KB) ;  the DLG rTAL 
UNIX  system supports block sizes of up to 32 KB .  

The shared global area ( SGA) i s  that area o f  memory 
used by Oracle7 processes to hold critical shared data 
structures such as process state, structured query lan
guage (SQL)-Ievel caches, session and transaction 
states, and redo buffers . The bu lk  of the SGA in terms 
of size, however, is the database buffer (or block) 
cache. Use of the buffer cache means that costly d isk 
l/0 is avoided ; therefore, the performance of the 
Oracle7 database server relates d irectly to the amounr 
of data cached in the buffer cache . LSGA seeks to use 
as much memory as possible to cache database blocks. 
Ideal ly, an entire database can be cached in memory 
( an " in-memory" database ) and avoid a lmost all 1/0 
during normal operation . 

A transaction whose data request is satisfied ti·om 
the database buffer cache executes an order of magni
tude faster than a transaction that must read its data 
fi·om disk. The d ifference in  pcrtcxmance is a direct 
consequence of the d isparity in access times tor main 
memory and d isk storage. A database block tound in  
the  buffer cache i s  termed a "cache h i t ."  A cache miss, 
in contrast, is the single largest contributor to degra 
dation i n  transaction latency. Both BO l3 and LSGA use 
memory to avoid cache misses. The Oracle7 bufkr 
cache implementation is the same as that of a typical 
write- back cache. As such, a cache miss, in addition to 
resu lt ing i n  a costly disk 1/0, can have secondary 
efkcts. For instance, one or more of the least recently 
used buffers may be evicted from the butkr cache if no 
tree bufkrs arc avai lable, and additional 1/0 transac
tions may be i ncurred if the evicted block has been 
modified since the last time it was read trom the d isk. 
Oracle7 buffer cache management algorithms already 
implement aggressive and intelligent caching schemes 
and seek to avoid d isk l/0. Although cache-miss 
penalties apply with or without the 64-bit option, 
"cache thrashing" that results from constra ined cache 
sizes and large data sets can be reduced with the 
option to the benefit of many existing appl ications. 

The Oracle7 buffer cache is specifical ly designed 
and optimized tor Oracle's mu lti -versioning read
consistency transactional model .  ( Oracle7 buffer 
cache is independent  of the DIGITAL UNIX unified 
buffer cache, or UBC. )  Since Oracle7 can manage irs 
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own butkr cache more etkcti,·clv than fi ll:: system 
butkr caches, it  is oth.:n recom mended that the file 
system cache size be red uced in tiwor of a larger 
Or;�clc7 buffer cache when rhc database resides on 
�1 file system .  Red ucing fi le  system cache size a l so min i 
mizes red undant c ;�ch ing of dJta at the file system 
level . For th is reason, we rejected early on the obvious 
design sol ution of using the D I G ITAL UNIX file sys
tem as a large cache t(>r taking advantage of brge 
memory con figurations-even though it had the 
appeal of complete transpJrency and no code changes 
to the Oracle? syste m .  

Background and  Rationale for Design Decisions 

The primary impetus t(>r this project was to eva luate 
the impact on the Oracle? dJtabase server of emerging 
64-bit platforms, such as the A lphaServer system and 
D!G ITAL UNIX operating system. Goals set t(>rth 
t(>r this project and su bscq w.:nr design considerations 
therctore excluded any pcrt(mnJnce and fu nctional ity 
cnhJncements in the Orac le? RDBMS that cou ld not 
be attributed to the benefits ofkrcd by a typical 64 -bit 
p l att(mn or othe rwise c ncapsu iJtcd within platt(mn
spcc ific  layers of the dat;�bsc server code or the oper
ating system itself. 

Common areas of potential benefit for a typical 
64-bit p l ;�ttorm (when compJred to its 3 2 - bi t  coun
terpart) are ( a )  i ncreased d irect memory address<�bi l ity, 
and ( b )  the potential t(>r con fi guring systems with 
greater than 4 G B of memor�'· As noted above, appl i 
cation performance o f  the Oracle? database sen·cr 
depends on whether or not data Jre t(JLllld in the datJ
base b u tler cache. A 64 -bi t  p lattonn provides the 
opportunity to expand the datJbase bufter cache in  
Or,1cle7 to  sizes well beyond those of a 32-bit plat
tc>nn .  BOB and LSGA reflect the only logical design 
choices avai lable in Oracle? to take advantage of this 
extended addressabi l ity and meet the project goa ls .  
I mp lementation of these components focused on 
ensuring scalabi l ity and maximiz ing the e ftectiveness 
ofav,1 i lable memory resources. 

BOB: Decisions Relevant to On-disk Database Size 

L<�rgcr database blocks consu me proportionate ly  
larger ;�mou nts of memory when the data conr;�ined in  
those blocks are  re<�d from the d i sk  in to the  database 
butler cache .  Consequently, the size of the buftcr 
cache itsel f  must be increased ibn application req uires 
a greater number of t hese larger blocks to be cached . 
For any given size of database buftcr cache, Oracle? 
cbtabase administrators of 32 -b ir platforms h ave 
had to choose between the size of each database block 
:md the number of cbtabasc blocks that must be i n  
the cache to minimize d isk 1/0, the choice depending 
on data access patterns of the appl ications. Memory 
available tor rhe database buftc r cache is further con-
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strained by the bet that this resou rce is also s hared by 
many other critical dau structures in rhe SGA besides 
the bu tler cache and the me mory needed by the oper
<�t ing system .  By e l iminating the need to choose 
between the size of the database blocks and bufkr 
cJche, Oracle? on a 64-bir pl:!rtcm11 can run a greater 
appl ication mix without sacrificing performance. 

Despite the codependency and the common go;�l 
of red ucing costly disk 1/0, BOB and LSGA add ress 
t\\'o diftcrent d imensions of d'1tabase scalabil ity : BOB 
;�ddresses on -disk dat;�basc s ize,  Jnd the LSGA add resses 
in -memory database size. Application de,·elopers ;�nd 
daubase ad mi nistrators have complete flexi bi l ity to 
bvor one over the other or to usc them in combin;�rion. 

I n  Orac le?, the on-d isk d;�ta structu res that locate 
:1 row of data in the  datJbasc usc <1 block- address
byte-onset tuple .  The data block add ress ( DB A )  is a 
3 2 - bit quantity, which is fu rther broken up i nto fi l e  
number a n d  block other within rlut fi l e .  The byte off
set within a block is a 1 6 -bit  qu anti t\'. Although the 
number  of bits in  the D BA used t<>r fi l e  n u m ber and 
block oftsct are p latt(mn dependent ( 10 bits tor the file 
n u m ber  and 2 2  bits t()r the block oftsct  is  a common 
r<m1ut ) ,  there exists a theoretic:d upper l im i t  to the 
s ize of an Oracle? dJtabase . With some exceptions, 
most 32 -bi t  p lattorms support a maximum data block 
size of 8 K.B ,  with 2 K.B as the dd�u l t .  For example, 
using a 2- KB block size, the upper l im i t  for the size 
of the database on D I G ITA L  U N I X  is s l ightly u nder 
8 te r<�Lwtes (TB ) ;  whereas ,1 32- K.B block s ize raises 
that l im i t  to s l ight ly u nder 1 2 8  T B .  The abi l i t\' to sup
port bu fter cache sizes ,,·e l l  bcvond those of 32 -bit 
plart<mm was a cri tic1 l  prcreq u isi tc to enab l ing l arger 
sized dJta blocks <�nd consequent ly l ;�rgcr sized data
bases.  Some 32 -bit p latr<mm arc a lso constrained by 
the bet that each data file cannot exceed a s ize of4 G B  
( especia l ly  if  t h e  data fi l e  i s  a fi l e  system managed 
object) Jnd therefore may not be able to use a l l  of the 
,wJi i J blc b lock oHset r;�ngc in the existing D B A  for
nut. The largest database size that can be supported in  
such  a case is eYen smaller. Add ressing the percei,·ed 
l im its on the size of an Oracle? databJse was an impor
tant consider;�t ion. Design J l  tcmatiYes that req uired 
ch;�nges to the lavout or an i nt erpretation of DBA tc>r
mat were rejected, at least in this project, because such 
chJnges would have in troduced incompatibi l i ties in 
on-disk data structures. 

I t  shou ld be pointed out th<�t on cu rrent Alph:.1 
processors using an 8 - KB page size , a 32- KB data 
block sp<�ns tour memory pages , and 1/0 code p<�ths 
in the operating system need to lock/u nlock tc)ltr 
times as m;�ny pages when pert(>rming an 1/0 trans
:.lction .  The larger transkr size also :�dds to the total 
ti me t<�ken to pedorm an 1/0. For instance, tour 
pJges of memory that cont<� in the 32- KB data block 
may not be p hysical ly contiguous, :�nd " scatter-gather 
operation may be req uired . Although the Oracle7 



database supports row-Jevel locking tor maximum 
concurrency in c:tses where u nrelated transactions may 
be accessing d ifferent rows with in a given data block, 
access to the data block is seriali zed as each individual  
change ( a  transaction- level chJnge is broken down 
i nto multiple, smaller un its of change) is applied to the 
datJ block. Larger data b locks accommodate more 
rows of data and consequently increase the probabil ity 
of contention at the data bJock level if appl ications 
change ( insert, update, delete) data and have a local ity 
of rekrence. Experiments have shown, however, that 
this added cost is  only marginal relative to the overall 
performance gains and can be oftset easily by carefu l ly 
tuning the application . Moreover, applications that 
mostly query the data rather than modif)' it (e .g . ,  DSS 
appl ications) greatly benefit from larger block sizes 
since in th is case access to the data block need not be 
serial ized . Subtle costs such as the ones mentioned 
above nevertheless he lp explain why some appl ications 
may not necessarily see, tor example, a fourfOld per
formance i ncrease when the change is made fi-om an 
8-KB block size to a 32- KB block size. 

As with Oracle7 implementations on other platfonm, 
database block size with the 64-bit option is determined 
at database creation time using db_b lock_size con
figuration parameter. ' It cannot be changed dynamically 
at a later time. 

LSGA: Decisions Relevant to In-memory Database Size 

The focus f<>r the LSGA eftort was to idcntif)' and el im
inate any constraints i n  Oracle7 on the sizes to which 
the database buffer cache could grow. DIGITAL UNIX 
memory al location appl ication programming interfaces 
(APis) and process address space layout make it fairly 
straightforward to a l locate and manage System V 
shared memory segments. Although the size of each 
shared memory segment is l imited to a maximum of 
2 GB (due to the requirement to comply with UNIX  
standards), mul tiple segments c an  be used to  work 
around this restriction . The memory management 
layer in Oracle7 code therefore was the i nitial area of 
focus. Much of the Oracle7 code is  written and archi
tected to make i t  highly portable across a diverse range 
of platf(>rms, i ncluding memory-constrained 1 6- bit 
desktop platforms. A particu larly interesting aspect of 
1 6-bit  platforms with respect to memory management 
is that these plat forms cannot support contiguous 
memory allocations beyond 64 K.B. Users arc forced 
to resort to a segmented memory model such that 
each i ndividual segment docs not exceed 64 K.B in 
s ize .  Although such restrictions are somewhat con 
straining ( and perhaps i rrelevant)  tor most 32 -bit  
platforms-more so tor 64- bit platforms-which can 
easi ly handle contiguous memory a l locations well 
in excess of 64 K.B, memory management layers in 
Oracle7 code are designed to be sensitive and cautious 
about large contiguous memory al locations and 

would use segmented al locations if the size of 
the memory al location req uest exceeds a platform
dependent threshold .  I n  particu lar, the size in bytes 
for each memory al location request (a platt(.>rm
dependent va lue)  was assumed to be wel l under 4 GB, 
which was a correct assumption tor a l l  32-bit plat
forms (and even for a 64- bit platform without LSGA). 
In terna l  data structures used 32-bi t  integers to repre
sent the size of a memory al location request. 

For each buffer in the buffer cache, SGA also 
contains an additional d::tta structure ( bufkr header) 
to hold al l  the metadata associated with that buf.. 
fer. Although memory tor the buffer cache itself was 
allocated using a specia l  interface into the memory 
management layer, memory a llocation tor butkr 
headers used conventional i nterfaces. A d i tkrent 
al location scheme was needed to allocate memory 
for buffer headers. The bufkr header is  the on ly 
major data structure i n  Oracle7 code whose size 
requirements are directly dependent on the number of 
buffers in the bufter cache. Existing memory man
agement interfaces and algorithms used prior to LSGA 
work were adequate until the number of buffers in 
the buffer cache exceeded approximately 700,000 
(or buffer cache size of approximately 6.5 GB) .  Minor 
code changes were necessary in memory manage
ment a lgorithms to accommodate bigger a l location 
requests possible with existing h igh-end and future 
AlphaServer configurations. 

The AlphaServer 8400 platform can support mem
ory configurations ranging from 2 to 1 4  GB,  using 
2-GB memory modules. Some existing 32 -bit p lat
forms can support physical memory configurations 
that exceed their 4-GB addressing l imit by way of seg
mentation, such that on ly 4 GB of that memory is 
directly accessible at any rime. Programming complex
ity associated with such segmented memory models 
precluded any serious consideration in  the design 
process to extend LSGA work to such platforms. 
Significantly rewriting the Oracle7 code was specifi
cally identified as a goal not to be pursued by this proj
ect. The Alpha processor and DIGITAL UNIX  system 
p rovides a Aat 64-bi t  virtual address space model to 
the applications. DIGITAL UNIX  extends standard 
UNIX  APis into a 64-bit programming environment. 
Our choice of the AlphaScrver and DIGITAL UNIX as 
a development platform for th is project was a fairly 
simple one ti-om a time-to-market perspective because 
it al lowed us to keep code changes to a minimum. 

Efficiently managing a buffer cache of� for example, 
8 or 10 GB in size was an interesting chal lenge. More 
than five m il l ion b uffers can be accommodated in a 
10-GB cache ,  with a 2 -KB block size. That number of 
buffers is already an order of magnitude greater than 
what we were able to experiment with prior to the 
LSGA work. The Oracle7 butter cache is organized as 
an  associative write- back cache. The mechanism tor 
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lo-=ating a data bl o-=k of interest in this -=a-= he is supported 
by -=omrnon algorithms :md data structures such as hash 
fu nctions and linked lists. In manv cases, traversing crit i
cal / inked l ists is serialized among contending threads of 
execution to maintain the imcgrity of the l ists themselves 
and secondary data structures managed by these lists. As 
a result, the size of such critical l ists, t()r example,  has an 
impact on overall cotK UtTcncy. The larger buHe r  count 
now possi ble in LSCA conf-igurations h :Ki the net eftcct 
of red uced concu rrency because the size of these l ists is 
proportionate/\' larger. L SCA pro\'ided a ti·amework to 
test contributions ti-om other u nrelated projects that 
addressed such potenti:�l bottl enecks to concurrency, as 
i t  co u l d  real istically simu bte re latively more stringent 
boundary conditions than bd(>rc. 

Scalability Issues 

Engineering teams :Jt Oracle have worked very closely 
with the i r  cou nterparts in the D I G ITAL UNIX operat
i ng system group throughout this projecr. The lbt:� 
col lected in the course of the project was usefu l  in :l na
l yzing and addressing the sca L1bi l i ty issues in the base 
operating system <lS well <1 S in the Oracle7 prod uct .  
Ex ampl es of this work arc i n  the base operating system 
gra n u larity hint regions :.1nd in the shared page tables.2·' 

for every page of p hysical and virtual memory, an 
opcr,lting system must maintJin various data structures 
such as page tables, data structures to track regions of 
mcmorv wirh certain attributes (such as System V shared 
memory regions, or tc\t and data segments ) ,  or data 
structures thJt track processes which have reterences to 
these memory regions. Ancii !Jr\' operating system data 
structu res such as page tJblcs grow in size pro
portion<nely to the size of physical memory. Ch:1nges 
to page table m.:magement :Jssociated with System V 
s ha red memory regions were made such that processes 
that mapped the shared memory regions coul d  sh are 
page ta b les in addition to the datJ p:1ges themselves. 
Prior to this change, e<Kh process m:1pping the slured 
memory reg ion used a copy of associJted page ta bles. 
A c h:1 nge l ike this red uced physical memory consump
tion Lw the opcrJting system .  For example, on an Alpha 
CPU su pporting an 8 - KB p:1gc s ize ,  i t  would take 8 KB 
i n  page rable entries to map 8 M B of physical memor\'. 

For an SGA of8 CB,  it wou ld tJke 1 J\II B in page t:�blc 
entries. It is not u ncommon in the Oracle7 system tor 
hundreds of processes to connect to the datab:�sc, and 
rherd()re map the 8 G B ofSGA. VVithout shared p:1ge 
tJhles, 100 such processes wou ld have consu med 1 0 0  
MB of physical  memory by ma int aining a per- process 
copy of page t:�blcs. 

A grJnularity h int region is a region ofphysica/lv con
tiguous pages of memory that sh<lre virtual and physical 
m:1ppings between all the processes thJt map them . 
Such :1 mcmorv layout Jllows D i l; ITAL UNIX to take 
JdvJntJge of the gr.:mu larity hint tl:Jture supported by 
Alpha processors. Granularity h int bits i n  a page table 
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entry a / lo\\' the Alpha C P U  to usc :1 single trans/Jtion 
look-aside buffer (TLB ) entrv to map a 5 1 2K physic:1l 
memory space.  Using one TLB e ntry to map larger 
physiul memory has the potential  to reduce proces:;or 
sta l ls  d u ring TLB misses and re fi l l s .  Also, because oftl1e 
req u i rement that the grJnularity hint region be both 
virtual ly and physical ly  contiguous, it is J l located at sys
tem startup time and is not subject to normal virtual 

memory management; t(>r example, i t  is never paged in 
or out, and subseq ucntlv the cost of a page ta ult is mini
mal .  Si nce pages in granulatity h i nt regions are p h)'Si 
cal lv contiguous, anv I/0 done h·om this region of 
memory is rdati\'e iv more efficient because i t  need not 
go through the scatter-garber plusc . 

Summary of Test Results 

One of the project go<lls was to demo nstrate clear 
pcrt(mnancc benefits t(x two common classes of data
base :1ppl ications, DSS and 0 I .TP .  The Transaction 
Processi n g  Counci l  (TPC: )  prO\ ides an ind ustn'
srandard benchmark su ite t-c >r both applications, that 
is,  TPC-C: t()r OLTP and TPC- D t(Jr DSS. An ind ustrv
stancbrd bench mark wou l d  have been a logiul choice 
t(H· �1 workload that wou l d  demonstrate pertonnance 
be nefits. However, the  enormous t ime, resources, and 
cft()rt req u ired to stage Jn audite d  TPC benchm ark 
<llld the strict guidel i nes t(H- any d i rect com parison of 
pu blished bench mark res u l ts were major tactors i n  
the decision to develop a \\'orkload t()r this p roject 
that matched the spirit of the TPC: benchmark bur not 
necessa rily the letter. 

In late L995,  Oracle Corporation ra n :1 series of per
t(m11Jnce tests for a DSS-cbss \\'Ork.load of the Oraclc7 
syste m ,  with and without the 64-bit option on the 
Alph:.1Scrver 8400 system running the DICITAL U N I X  
operating system with 8 C B  o f  physical memory. A 
deta i l ed report on this test is puh/ ished and avai lable 
h·om Oracle Corporation ' These res u l ts ,  shown i n  
Figure 1 ,  c learly demonstrate the be nefits of a brge 
<ltnount of physical memory in a configuration with 
the 64- b i t  optio n .  A su nHnary of the tests conducted is 
prese nted he re a long with some lbta poi nts <ll1d kev 
observations. 

( Rc.1ders inte rested in pert-cmn:1nce characteristics of 
<l n Jud itcd ind ustry-stJ nlbrd OLTP benchm ark are 
rckrred to the Dii.;i/C/1 Teclm icol joun wl. Vo lume 8 ,  
Number 3 .  Two papers prcscm pertcm11ance character
istics of0racle7 Para l le l  Server re l c. 1se 7 . 3  us ing 5.0 l; P, 
SG·\, and a TPC-C workload on <1 t(Jur- node c l uste r.' ) 

The test data base consisted of five t<lb les, represe nt
ing <l pprox imately 6 C B  of data. The tests i ncl uded 
two separate configu rations:  

• A "stancb rd "  con figuration \\' ith <l 1 2 8 -MB SGA 
with a 2- KB databJse block size 

• A 64- bit option-enabled con figm:1tion with a 7 - C B  
SCA � m d  32 - KB database block size 
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Figure 1 
Performance Improvements tor a DSS-c lass ·workload, 
Ratios of LSGA to SGA 

The evaluation included running six separate trans
action types against these two configurations: 

1 .  Fu l l  table scan against a table with 42 mi l l ion rows 
(without the Parallel Query Option) 

2 .  Ful l  table scan against a table with 42 mi l l ion rows 
(with the Para l leJ Query Option ) 

3. Set of ad hoc queries against a tab le  with 
42 mil l ion rows 

4. Set of ad hoc queries i nvolving a JOin against 
three tab les with 10 . 5  mi l l ion, 1 .4 mi l l ion, and 
42 mi ll ion rows, respectively 

5. Set of ad hoc quu-ies involving a join against tou r  
tables with 1 mil l ion, 1 0 . 5  mi l l ion,  1 .4 mil l ion, and 
42 m il l ion rows, respectively 

6. Set of ad hoc q ueries invoJving a join against 
five tables with 70,000, 1 mill ion, 10 . 5  mil l ion, 
1 .4 mill ion, and 42 mil l ion rows, respectively 

Each bar in Figure l represents a ratio of execution 
time ( el apsed ) between a large SGA ( 64-bit option ) 
and a smal l  SGA ( "standard"  configuration )  tor each 
of the six transaction types. In every case, the configu
ration with the 64-bit option enabled consistently out
perfOrmed a "standard" configuration . In some cases, 
the pertonnance increase with the option enabled was 
over 200 times that of the standard configuration.  

The transaction mix chosen t()r th is  test represents 
database operations commonly used in DSS-class 
applications (e .g . ,  fu l l  table scans, sort/merge, and 
joins ) .  The test a lso uses a characteristical ly large data 
set. Transaction types 1 and 2 arc identical except t()r  the 
use of the Paral le l  Query Option . The Parallel Query 
Option in Oracle7 breaks up some database operations 
such as table scans and sorts/merge into smaller work 
units, and executes them concurrently. By defau lt, these 
operations are executed serially, using only one thread 
of execution . The Parallel Query Option ( independent 

of the 64-bit option ) is a standard offering in the 
Oracle7 database server product since release 7 . l .  Use 
of parallel query in this test i l l ustrates the efkct of the 
64-bit option enhancements on preexisting mecha
nisms tor database performance improvement. 

All other things being equal, if the only difference 
between a standard configuration and a 64-bit
option--cnablcd configuration is that the entire data set 
is cached in memory in the latter con figuration and that 
typical times tor main memory accesses are a tew tens of 
nanoseconds whereas times for disk accesses arc a few 
mil liseconds, only the six to seven times pcrt()rmance 
increase in transaction type l vvould seem tar below 
expectation. For a full table scan operation, the Oracle7 
server is already optimized to use aggressive data 
prdctch .  Before the server begins processing data i n  
a given data block, it launches a read operation tor 
the next block. This technique significantly reduces 
application-visible disk access l atencies by overlapping 
computation and I/0. Disparity in access time tor main 
memory and disk is sti ll large enough to cause the com
putation to stall while waiting for the read-ahead 1/0 to 
finish . When data is cached in memory, this remaining 
stal l point in the query processing is eliminated . 

I t  is also important to note that a fu l l  table scan 
operation tends to access the d isk sequential ly. It is 
typical for d isk access times to be better by a factor of 
at least two in sequential access as compared with ran
dom access. Keeping block size and disk and main 
memory access times the same as bd()re in this equa
tion, a faster Alpha CPU wou ld  yield better ratios in 
this test because it wou ld  finish computation propor
tionately taster and would wait longer t()r the read
ahead I/0 to finish . Follow-on tests with faster CPUs 
supported this observation . Overlapping computation 
and I/0 as in a table scan operation may not be possi 
ble in an index lookup operation. The sequence of 
operations tor accessing a row of data using a B -tree 
i ndex, in the best case, involves an I/0 to read the 
index block match ing the kev value first fol lowed bv 
another 1/0 to read the data 

,
block; a sec�nd 1/0 cat{

not be launched until the first finishes because the 
address of the data block to be read can only be deter
mined by examining the contents of the index block 
read in the previous operation.  Un l ike table scans, 
these I/Os arc nonseq uential . Latencies of the d isk 
1/0 tor an i ndex lookup, as seen from the application 
perspective, are consequently greater than latencies tor 
a table scan .  Minimizing or e l iminating ljOs in the 
i ndex lookup, therefore, has the potential tor even 
greater i ncreases in speed . I ndex lookups arc typical in 
OLTP workloads. 

The test using transaction type 2 i l lustrates a cumu 
lative effect because performance benefits for a single 
thread of execution extend to al l the threads when the 
workload is paral lel ized . 
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U n l i ke fu l l  table scans,  the sort/merge operation 
generates i n termediate resu l ts .  Depending on the s ize 
of these pa rtia l res u l ts,  they may be stored i n  main 
memory i f  an adeq uate a m o u nt of memory is ava i l 

ab le; or they mav be written back to temporary storage 
space in the d atabase . The latter operation res u l ts i n  
add i tional  1 /0s, proport ionately more i n  n u m be r  as 
i n p u ts to the sort/merge grow in s ize or cou n t .  The 
64-bit option makes it poss i b le  to e l iminate these TjOs 
as wel l ,  as i l l u strated in transaction types 4 through 6 .  
Pcrtim11ance i mprovements a r e  greater a s  the com
plexity of queries increases . 

Conclusion 

The disparity between memory speeds and d isk speeds 
is l ikely to conti n ue t()r the f(xcseeablc future . L1rgc 
memory configurations represent an opportu nity to 
overcome this d ispar ity .md to i ncrease appl ication 
pert(mluJKe by cac h ing a large amount of data i n  
memory. Fven though t h e  Oracle 6 4  Bit  Opt ion 

im proves data base pertormance-two orders of mag
n itude i n  some Glses-spec i fic appl ication characteris
tics must be eva l u ated to d eterm i ne the best means for 
maxi miz ing overa l l  pedormancc a n d  to balance the 
s ignificant i nc rease in  hardware cost for the large 
amou nt of memory. The Oracle 64 Bit  Option com 

p l eme nts ex isti ng Oracle7 featu res and functiona l i ty. 
The exact extent of t h e  i ncreases i n  speed with the 
64- bit  option va ries based on the type of database 
operation . F;:�stcr CPUs and d enser memory a l low 
tiJr even more pcrt(mllancc improvements than have 
been d e monstrated . Factors of i mportance to new 
or e x isting app l icati ons , parti c u lar ly  those sensi tive to 
response time, arc an order of magnitude performance 
in terms of speed i ncreases and the a bi l i ty to ut i l i ze 
memory config urations much l arger than previously 
poss ib l e  i n  Oracl c7 or f()r appl ications that  us�: 
moderate-si ze data sets. With s u fficient  physical mem
ory, the dat.lbases used bv t hese response- time
sensitive appl ications can now be entirely cached in 
m emory, c l i m i n ;1t ing vi rtua l ly a l l  d isk I/0 , which is 
oh:cn a lll<ljor constrai nt to response time. I n - memory 
(or fu l l y cached ) Oraclc7 databases do not compro
mise transaction<l l  i ntegrity i n  any way; nor do such  
con figur;1 tions requ i re specia l  h ardware ( to r  example ,  
n onvolatile random access memory [ RAM] ) .  

Beca use a 64- b i t  A l phaServer a n d  D I GITA L  U N I X  
operating system transparently extends existing 3 2 - bit  
AP!s  into a 64- bi t  progra m m i n g  model, app l ications 
can rake advant;'lge of added addressab i l ity without 
usi ng specia l i zed A P i s  or m a king signi ficant code 
changes . Pcrt(mll:t n ce l evels equal  to or better than 
prev ious ly possib le  wi th specia l ized hardware and soft
ware can now be achieved with i nd ustry-standard , 
open , gene ra l -pu rpose platforms. 
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VLM Capabil ities of 
the Sybase System 1 1  

SQL Server 

Software appl ications must be en hanced to 

take advantage of very large memory (VLM) 

system capabil ities. The System 1 1  SQL Server 

from Sybase, Inc. has expanded the semantics 

of database ta bles for better use of memory 

on DIG ITAL 64- bit Alpha microprocessor-based 

systems. Database memory management for 

the Sybase System 1 1  SQL Server incl udes the 

abil ity to partition the physical  memory avai l 

able to database buffers i nto m u ltiple caches 

and subdivide the named caches i nto m u ltiple 

buffer pools for various 1/0 sizes. The database 

ma nagement system can bind a database or 

one table i n  a database to any cache. A new 

faci l ity on the SQL Server engine provides 

noni ntrusive checkpoi nts i n  a VLM system. 

I 
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The advent of the System l l  SQL Server trom Sybase, 
Inc .  coincided with the widespread avai labi l i ty and 
use of very large memory (VLM ) technology on 
DTGITAL's Alpha microprocessor-based computer 
systems. Technological features of the System l l  SQL 
Server were used to achieve record results of 1 4 , 1 76 
transactions-per-m inute C ( tpmC)  at $ 198/tpmC 
on the DIGITAL AJphaServer 8400 server prod uct . '  
One  of  these features, the  Logical Memory Manager, 
provides the abi l ity to tine-tune memory manage
ment. It is the fi rst step in exploiting the semantics of 
database tables ror better usc of memory in VLM sys
tems. To partition memory, a database administrator 
(DBA) creates mu ltiple named bufkr caches. The 
DBA then subd ivides each named cache in to multiple 
buffer pools for various 1/0 sizes. The DBA can bind a 
datab<1Se or one table i n  a dat<1base to anv cache. 
A new thread in  the SQL Server engine, cal led the 
Housekeeper, uses idle cycles to provide free ( non
i ntrusive ) checkpoints in  a large memory system. 

I n  th is  paper, we briet1y discuss VLM technology. 
Then we describe the capabil ities of the Sybasc System 
l l SQL Server that address the issues of fast access, 
checkpoint, and recovery ofVLM systems, namely, the 
Logical Memory Manager, a VLM query optimizer, 
the Housekeeper, and fuzzy checkpoint .  

VLM Technology 

The term very l arge memory is subjective, and i ts 
widespread meaning changes with time .  By VLM, we 
mean systems with more than 4 gigabytes ( GB )  of 
memory. In  late 1 996, personal computer servers with 
4 GB of memory appeared in the marketplace. At $ 1 0  
per megabyte ( M B) ,  4 G B of memory becomes afford
able ( $40,000)  at the departmental l evel for corpora
tions. \Ve expect that most of the m id -range and 
high-end systems wi l l  be bui lt  with more memory i n  
1 997.  Growth in  the amount of system memory is an 
ongoing trend . Growth beyond 4 GB, however, is a 
signi ficant expansion; 32-bit systems run out of mem
ory alter 4 GB.  

DIG ITAL developed 64-bit computing with i ts 
Alpha l ine  of microprocessors. Digital is now 
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\\T i l - positioned to faci l i tate the transi tion ti-om 32 -bit 
to 64- bit S\'Stcms. Sybase, Inc.  provided one of the first 
relational database management svstcms to usc V LM 
technology. The Svbase System l l  SQL Server pro
,·idcs fu l l ,  native support of64 - bit Alpha microproces
sors and the 64- bit DIG ITAL U N I X  operating system .  
DIGITAL U N I X  i s  the first operating system to provide 
a 64- bi t  address space for a l l  processes. The System 1 1  
SQL Server uses this large address space primarily to 
c:tchc large portions of the database in memory. 

VLM tech nology is appropriate t(x usc with applica
tions that have stringent response time requ i rements.  
With these appl ications, tor example, cal l - rout ing,  i t  
becomes necessarv to  fit the  entire database in  mcm
orv.' ' The usc  of VLM svstcms can a lso be benefic ia l  
when the priccjperform::mce is i m proved by adding 
more memory.' 

l\lla in Memory Database Systems 

The widespread ava i l ab i l ity of VLM systems raises 
the possibi l i ty of bu i ld ing main memory database 
( M M D B )  systems. Severa l techniques to improve the 
pcd(xmance of MMDB systems have been d iscussed 
in the database l iterature. R.ckrcncc 5 provides an 
excel lent, deta i led su n•qr. \Vc provide a brief d iscus
sion in this section . 

Lock contention is low in MMDB svstcms since the 
datcl resides in memorv. Hence, the granu lar ity ofcon
cu tTcncv control can be increased to mini mize the 
overhead of lock operations. The lock manager data 
structures can be combined with the database objects 
to reduce memor y  usage. Specia l ized,  stable memory 
hardware c:m be used to min imize latency of logging.  
Early release of transaction locks and group com mit 
d u ring commit processing c:m be used to increase 
concurrency and tbroughput. S i nce random access is 
bst in MM DBs, access methods can be developed with 
no key ,·a l ucs in  the index but on ly pointers to data 
rows i n  mcmory.6 Querv optimizcrs need to consider 
CPU costs, not 1/0 costs, when comparing various 
a l tcmativc plans tor a querv. In an i'vi M D B ,  check
pointing and tai l ur e  recovery arc the only reasons for 
pcrt(m11 ing d isk operations.  A c heckpoint process can 
be made " h.1 z.zy" with l ow i m pact on transaction 
through put. A fter a system fai lure ,  incremental recov
ery processing a l lows transaction processing to resume 
bd(H-c the recovery is complctc.7 

As memory sizes increase with V LM systems, data 
base sizes arc also i ncreasing. I n  genera l ,  w e  expect 
that databases w i l l  not fit in mcmor v  in the next 
decade .  Therefore, tor most of the databases, M ivi D B  
tech niq ues can be exploited onlv for those p<l rts of thc 
database that do fit i n  memorv.' 

In :.1dd ition to the capabi l ity o f' cach ing the entire 
cbtabasc in  buffers, the Sybase System l l  SQL Server 
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provides tech no logical ad\·ances that take advantage of 
VLM systems. These arc the Logical Memory 
Manager, VLM query optimization, the Housekeeper 
thread , and fu zzy c heckpoints .  We d iscuss the signifi 
cance o f  these adv,mccs in the remaining sections of 
this paper. 

Logical M emory Manager 

The Sybase SQL Server consists of several D I G ITAL 
UNIX  processes, cal led engines. The DBA con figures 
the number of engines. As shown in Figure l ,  each 
engine is permanently ded icated to one CPU ofa sym
metric m u ltiprocessing (SMP)  machine .  The Sybasc 
engines share virtual  memory, which has been sized to 
inc lude the SQL Server executable .  The virtual mem
ory is locked to p hysic:.1l memorv. As :.1 res u l t, there is  
never any operati ng system paging f(.>r the S�'bJSC 
memory. This shared memory region also uses large 
operating system pages to min imize translation look
aside buffer ( TLB ) entries t(x the CPU.- '  The shared 
memory holds the database buffers, stored procedure 
cache, sort bu ftcrs, and other dynamic memory. This 
memory is managed excl usivel y  by the SQL Server. 
One SQL Server usu;� l ly processes transactions on 
mu ltiple databases . EKh database has i ts own log. 
Transactions can span databases using two-phase com
mit. For fu rther details on the SQL Server arch i tec
ture,  p l ease sec rc lcrcncc 9. 

The Logica l Mcmorv Nlanager ( LM M )  provides the 
abi l ity tor a D BA to partition the physical memory 
avai lable to database bufkrs. The D B A  can partition 
the mcmorv used f(Jr the database buffers into multi 
p le  caches. The D B A  needs to  specifY a size and a name 
t(x each cache .  A fter a l l  named caches have been 
defined,  the system ddincs the remaining memory as 
the defa u l t  cache .  Once the DBA partitions the mem
ory, i t  can then bind database enti ties to a particu lar  
cache . The datab:.1sc enti ty is one of the fol lowing: an 

CPU CPU 

MEMORY 

Fig u re 1 
SQL Scn·cr on an SMP s,·src m 



entire database, one table in a database, or one i ndex 
on one table i n  a database. There is no  l imit to the 
number of such entities that can be bound to a cache .  
This cache binding d irects the SQL Server to use only 
that cache tor the pages that belong to the entity. 
Thus, the DRA can bind a small database to one cache.  
In  a VLM system,  i f  the cache were sized to be larger 
than the database, an MMDB would result .  

Figure 2 shows the table b ind ings to named caches 
with the LMM.  The procedure cache is used only 
for keeping compiled stored procedures in memory 
and is shown tor completeness. The item cache is a 
smal l cache of l GB in s ize and is used for storing 
a smal l read-only table ( item) i n  memory. The default 
cache holds the remaining tables. Figure 2 shows one 
table bound to the item cache and the other tables 
bound to the ddault cache.  By being able to partition 
the use of memory for the item table separately, the 
SQL Server is now able to take advantage of MMDB 
techniques tor on ly  the i tem cache. 

Each named cache can be l arger than 4 GB.  The size 
is l imited only by the amount of memory present in 
the system.  Although we do not expect such a need , 
it is also possible to have hundreds of n amed caches; 
64- bit pointers are used throughout the SQL Server 
to address large memory spaces. 

The LMM enables the DBA to fine-tune the use of 
memory. The LMM also a l lows for the introduction 
ofspecitlc MMDB algorithms in the SQL Server based 
on the semantics of database entities and the size of 
named caches. For example, in the future, it becomes 
possible for a DBA to express the tact that most of one 
table tits in one named cache in memory, so that SQL 
Server can use clock butfer replacement. 

VLM Query Optimization 

The SQL Server query optimizer computes the cost 
of query plans in terms of CPU as well as I/0 . Both 

PROCEDURE CACHE, 0.5 GB 

m ITEM CACHE, 1 GB 

m • I DECAULT CACHC, 
45 GB 

Figure 2 
Table Bindings to Named Caches with Logical 
Memory Manager 

costs are reduced to an estimate of time. Since the 
number of I/0 operations depends on the amount of 
memory avai lable,  the optimizer uses the size of the 
cache in the cost calculations. With LMM, the opti
mizer uses the size of the named cache to which a cer
tain  table is bound.  Therefore, in the case of a database 
that completely tits in memory in a VLM system,  the 
optimizer choices are made purely on the basis of CPU 
cost. I n  particular, the I/0 cost is zero, when a table 
or an i ndex fits i n  a named cache. 

The Sybase System 1 1  SQL Server i ntroduced the 
notion of the fetch-and-d iscard buffer replacement 
policy. This strategy indicates that a buffer read from 
d isk wil l  not be used in the near fi1ture and hence is 
a good candidate to be replaced fi·om the cache. The 
buffer management algorithms leave this buffer close 
to the l east-recently-used end of the buffer chai n .  In 
the simplest example, a sequential scan of a table uses 
this strategy. With VLM, this strategy is turned off 
i f  the table can be completely cached in  memory. The 
fetch-and-discard strategy can also be tuned by appl i 
cation developers and  DBAs if necessary. 

Housekeeper 

One of the motivations for developing VLM was the 
extremely quick response time requirements for trans
actions. These environments also requ ire h igh avai l 
abi l ity of systems. A key component in achieving high 
avai labi l ity is the recovery t ime. Database systems 
write d irty pages to d isk primarily for page replace
ment. The checkpoint procedure writes dirty pages to 
disk to minimize recovery time.  

The Sybase System 1 1  SQL Server introduces a new 
thread cal led the Housekeeper that runs only at idle 
time tor the system and does useful work. This thread 
is the basis for lazy processing i n  the SQL Server for 
now and the future .  I n  System 1 1 , the Housekeeper 
writes d irty pages to disk. At first, i t  writes pages to 
disk from the least-recently-used buffer. In  this sense, 
i t  helps page replacement. In add ition to ensuring that 
there are enough clean buffers, the Housekeeper also 
attempts to minimi ze both the checkpoint time and 
the recovery time. If the system becomes idle at  any 
time during transaction processing, even for a few mi l 
liseconds, the Housekeeper keeps the d isks ( as many as 
possible ) busy by writing d i rty pages to disk. I t  also 
makes sure that none of the d isks is overloaded, thus 
preventing an undue delay i f  transaction processing 
resumes. In the best case, the Housekeeper automati
cal ly generates a free checkpoint tor the system, 
thereby reducing the performance impact of the 
checkpoint during transaction processing. In steady 
state, the Housekeeper continuously writes d i rty pages 
to d isk, whi le  minimizing the number of extra writes 
incurred by premature writes to disk . 10 
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Checkpoint and Recovery 

As the size of memory increases, the h:>l lowing two 
bctors increase as wel l :  ( 1 )  the number of wri tes to 
disk d u ri ng the checkpo int �md ( 2 )  the n u m ber of 
disk !jOs to be done d u ri ng recovery. The Sybasc 
System 1 1  SQL Server al lows the DBA to tu ne the 
amou nt  of buffers that wil l  be kept clean al l  the t ime.  
This is cal l ed the wash region.  In essence, the wash 
region represents the amount of memory that is always 
clean (or strictly, in the process of being written to 
d isk ) .  For example, if the total amount of memory tcJr 
databJse bu tlers is 6 GB and the wash region is 2 G B ,  
rhen at a n y  t ime, o n l y  4 GB o f  memor y can b e  i n  a n  
updated StJte ( d irty ) .  The abi l i ty to tunc t h e  wash 
region reduces the load on the checkpoint  procedu re ,  
as  we l l  :� s  recovery. 

The Sybase System 1 1  SQL Server has i m plemented 
a fuzzy c heckpoint thJt a l lows transactions to proceed 
even d u ring a c heckpoint  operation. Trans::�crions 
are sra l l cd only when they try to upd:l tc a database 
page that is being written to d isk by the c heckpoint. 
Even in that case, t he sta l l  lasts on l y  tcJr the t ime 
i t  takes the disk write to complete .  I n  addit ion, in  
tbe  SQL Server, the  checkpoint process can  keep m u l 
tiple disks busy b y  issuing a large nu mber o f  asynchro
nous writes one after another. During the time of 
rhc checkpoint ,  the Housekeeper ofTen becomes 
active due to extra idle time cre:ued by the c heckpoint .  
The Housekeeper is selfpacing; i t  docs nor swamp the 
storage system with writes. 

Commit Processing 

The SQL Server uses the group commit  a lgori thm to 
improve throughput.8·" The group commit algor i thm 
col lects the log records of mu l tip le trJnS<Ktions and 
writes them to the d isk in one l/0. Th is a l lows h ightT 
transaction throughput d u e  to the amortization o f  
d isk I/0 costs, as  we l l  a s  committing more ;:md more 
trJnsactions i n  each d isk write to the Jog ti l e .  The SQL 
Server docs not use a timer, however, to improve the 
grouping of transactions. I nstead , t he d u ration of the 
previous log I/0 is used to col lect transactions to be 
committed in  the next batc h .  The s ize ohhe batch is 
determined by the n u m ber of transactions that reach 
commit  process ing d u ring one rota tion of  the l og 
d isk. This self- tu n ing algorithm adapts i tself to various 
speeds of d isks. For the same transaction processing 
system, the grouping occu rs more often with s lower 
disks than with Elster d isks.  

Consider, t()r example, a system pedcmning l ,000 
transactions per second .  Let us assume the log disk is 
rated at 7,200 rpm. Each rotation of  the d isk takes 
� mi l l iseconds.  With in this d u ration,  we expect ( on 
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the aver:1ge ) 8 transactions to complete, assuming un i 
f(Jrm arrival rates at  commit  point .  This indicates a nat
ura l  grouping of 8 transactions per log write . For the 
same system,  if  the log d isk is rated at 3 ,600 rpm ,  the 
same cal cu lation yie lds 16 transactions per log wri te .  

The group commit a lgorithm used by t h e  SQL 
Server also takes ack1 11tagc of d isk arrays by in i tiating 
mu l tip le asynchronous wri tes to d ifferent mem bers of 
the d isk array. The SQL Server is a lso able to issue up 
to 1 6  ki lobytes in  one write to a single d isk. Together, 
the group commit a lgori thm,  large writes, and the 
abi l i ty to d rive mu l ti ple  d isks in a disk array c l imin ;He 
the log bottleneck t(Jr high- throughput systems.  

Future Work 

'vVhen a V L M  svstcm tji ls ,  the large nu mber of data 
base b utlers in mcmorv that are d i rtv need to lx: . . 
recovered . Therd(Jre, database recovery time grows 
with the size of m emory in the V L M  system, at least 
tor a l l  database systems that usc l og-based recovery. 
In addit ion, s ince there arc a l arge n u m ber  of dirty 
buffers in memory, the pcrt(xmance impact of check
point on transactions also increases with memory size . 
To min imize the recovery time, one may increase the 
c heckpoint ti-eq uency. The checkpoints have a h igher 
impact, however, ;md need to be done infrequentlv. 
These conflicting req u i rements need to be addressed 
for VLM systems. 

When a database tits in  mcmorv, the buffer rep lace
ment a lgori thm can be e l im inated . For e xample, t( Jr 
a single table that tits in one named cache, this opti 
mization can be done with the L M M .  I n  addit ion, i f  
a table i s  read-on ly, i t  i s  possib le  to min imize t he syn
chronization necessary ro access the buffers in  mem
ory. These opt imizations require syntax f()f the D BA 
to speci �' properties ( tcJr cx: unplc, read-only)  of tables, 
as wel l as properties of named caches ( for exampl e , 

bufkr replacement a lgori thms ) .  
These two areas a s  wel l  a s  other M lvl D B  techniques 

wi l l  be explored by the SQL Server developers tc Jr 
i ncorporation in  ti.1turc releases. 

Summary 

The Sybasc System I 1 SQL Server supports V LM 
systems bu i l t  and sold by D I G ITAL.  The SQL Server 
can completely cache parts of a database in  memory. 
It can also cac he the enti re da tabase in memor y  i f  
the  database size is  smal ler  t h a n  the a m o u n t  of mem
ory. Svstcm 1 1  has bci l irics that address issues of 
fast access, checkpoinr, �md recovcrv ofVLM systems; 
these L1c i l i ties arc the Logic::d  M emory M anager, the 
VLM q uery opti mizer, the Housekeeper, and fu zzv 
checkpoi nt .  The SQL Server prod uct ach ic1'Cd 



S M P  TPC performance of 1 4, 1 76 tpmC at 
$ 1 98/tpmC on a D I G ITAL VLM system .  The tech 
nology developed i n  System l l  l ays the groundwork 
for further im plementation of M M D B  techn iques i n  
the S Q L  Server. 
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Measured Effects of 
Adding Byte and Word 
Instructions to the Alpha 
Architecture 

The performance of an a ppl ication can be 

expressed as the product of three variables: 

(1) the numbe r  of instructions executed, (2) the 

average numbe r  of mach ine cycles req u i red to 

execute a single i nstruction, and (3) the cycle 

time of the mach ine.  The recent decision to 

add byte and word manipu lation instructions 

to the DIG ITAL Alpha Arch itecture has an effect 

u pon the fi rst of these variables. The perfor

mance of a commercial database running on 

the Windows NT operati ng system has been 

ana lyzed to determ ine the effect of the addition 

of the n ew byte and word i nstructions. Static 

and dynamic analysis of the new i nstructions' 

effect on i nstruction counts, function calls, and 

i nstruction distribution have been conducted. 

Test measurements ind icate an i ncrease in per

formance of 5 percent and a decrease of 4 to 

7 percent i n  i n structions executed. The use of 

prototype Alpha 21 1 64 microprocessor-based 

hardware and i nstruction tracing tools showed 

that these two measurements are due to the 

use of the Alpha Arch itecture's new i nstructions 

within the application. 

I 
David P. Hunter 
Eric B. Betts 

The Alpha Architecture and i ts i nit ia l  implementations 
were l imi ted in their abi l ity to manipu l ate data valu es 
at the byte and word granu larity. Instead of a l lowi ng 
single i nstructions to manipulate byte and word val
ues, the origina l  Al pha Architecture requi red as many 
as sixteen i nstructions. Recen tly, D IGITAL extended 
the Alpha Architecture to manipulate byte and word 
data values with a single instruction .  The second gen 
eration o f  the Alpha  2 1 1 64 microprocessor, operating 
at 400 megahertz ( M Hz) or greater, is the first imple
mentation to i nclude the n ew i nstructions. 

This paper presents the results of an a nalysis of 
the  effects that  the new i nstructions in the Alpha 
Architecture have on the  performance, code size, and 
dynamic i nstruction d istri bution of a consistent execu
tion path through a com mercial database . To exercise 
the database, we mod i fied the Transaction Processing 
Performance Counci l 's (TPC) obsolete TPC-B bench 
mark. Al though it is no longer a valid TPC bench
mark, the TPC-B benchmark, along with other TPC 
benchmarks, has been widely used to study database 
performance. '-5 

We began our project by rebui ld ing M icrosoft 
Corporation's SQL Server product to use the new 
Alpha i nstructions. vVe proceeded to conduct a static 
code analysis of the result ing images and dynamic l ink  
l i braries ( D LLs ) .  The focus of  the  study was to  i nvesti
gate the i m pact that the new instructions had upon a 
large application and not their i mpact u pon the oper 
ating system. To this e n d ,  w e  did n ot rebui ld the 
Windows NT operating system to use the new byte 
and word instructions. 

We measured the dynamic effects by gathering 
i nstruction and fu nction traces with several profil ing 
and image analysis tools. The resu l ts ind icate that 
the Microsoft SQL Server product benefi ts from the 
additional byte and word i nstructions to the Alpha 
m icroprocessor. Our measurements of the i mages and 
DLLs show a decrease i n  code size,  rangi ng ti-om neg
l igible to a lmost 9 percen t .  For the cached TPC-B 
transactions, the n umber of i nstructions executed 
per transactio n  decreased ti-om 1 1 1 ,288 to 1 06,52 1 
(a 4 percent reduction ) .  For the scaled TPC-B trans
actions, the n u m ber of i nstructions executed per 
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tr:�ns:�ction dccrc:�sed from 1 1 5 ,895 to 1 0 7, 8 54 
( a  7 percent red uctio n ) .  

T h e  rest o f  this paper i s  d ivided as tal l ows: w c  begin 
with a brief ovcn·icw oft he Al pha Architecture and its 
introd uction of the new byte and word mJnipu lation 
instructions. Next, we describe the hardware, soft\\'�lrc, 
and tools used in  our experiments. Lastly, we prcl\'ide 
:tn an:� lysis of the instruction distribution and count.  

Alpha Architecture 

The Alph a  Architectu re is a 64- bit,  load and store, 
red uced i nstruction set computer (RISC) architecture 
that was d esigned with high pertormancc and longev
ity in m i n d .  I rs major areas of concen tration arc 
the processor clock spee d ,  the multiple i nstruction 
issue ,  and m u l tip le  processor i mplement a tions.  for a 
det:t i l cd acco u n t  of the Alpha Architectu re ,  its major 
design choices, and overal l  benefits, sec the p:tpcr 
by R. Sites .'' The origi n:�! Jrchitecture d id not dctinc 
the c1pabi l i ty to manipu late byte - and word -Jc\ ·cl  
data with a single i nstructio n .  As a resu lt ,  the tirst 
th ree implcmcnt:ttions of the Al pha Arch i tectmc, the 
2 1 064, the 2 1  064A, and thc 2 1 1 64 m icroprocessors, 
were torccd to usc as many as sixteen additional 
i nstructions ro accomplish th is tas k .  The Al pha 
Archi tectu re w:ts recently extended to inc lude six new 
instructions t(Jr manipul ating data at byte :tnd word 
boundaries. The second implementa tion of the 2 1 1 64 
b m i l y  of microprocessors i nc l udes these extensions. 

The t! rsr i m plementation of the Alpha Arc h i 
tecture, the 2 1 064 m i croprocessor, was i ntro
d uced in Nove mber  1 99 2 . It was ta.bric:tted in a 
0 . 7 5 - m icromctcr ( f.Lm )  complementary metal-oxide 
semicond uctor ( CMOS ) process and operated at 
speed s up to 2 0 0  M H z.  I t  had both an 8 - ki l obvtc 
( KB ) ,  d i rect- mapped , write -through,  32 - bytc l i n e  
i nstruction cache ( I  -c:tche)  and data cache ( D-cachc ) .  

The 2 1 064 microprocessor was able to issue two 
i nstructions per c lock cyc l e  to a 7 -stage intege r 
pipel i n e  or a 10-stage tl oati ng-point  pipcl ine.c  The 
second i m p lcment ation of the 2 1 064 generation w:�s 
the Alph:t 2 1 064A microprocessor, i nt rodu ced i n  
October 1 99 3 .  I t  was manufa.ctu red i n  a 0 . 5 - f,Lm 
CMOS process and operated at speeds of 2 3 3  M Hz to 
275 M H z .  This i m p l ementation i n creased the s ize o t' 
the l - c;tchc and D-cachc to 1 6  KB .  Various other d i f  
fCrcnccs exist bcn.vcen t h e  two i mplem entations a nd 
arc outlined i n  the product data sheet." 

The A lpha 2 1 1 64 micro processor was the second
generation i m plemen tation of the Alpha Arch i tecture 
and wJs i ntrod uced i n  October 1 994. It  was m a n u 
factu red i n  J 0 . 5 - f,Lm CNIOS technology and h a s  the  
abi l ity t o  issue fou r  i nstructions p e r  c l o c k  cycle. I t  
contains a 64-c ntry data translation b u ffer ( DT B )  and 
a 48-cnrrv i nstruction translation b u fter ( ITB ) com 
pared ro the 2 1 064A microprocessor's 32- enrrv DTB 
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and 1 2 -c ntt·y ITB . The chip contains three on -ch i p  
caches.  T h e  level o n e  ( L l ) caches inc lude :1.11 8 - KB ,  
di rcct-mJppcd I - cJchc and :�n 8 - KB ,  d u �1 l - portcd , 
d i rect-ma pped , write- through D-cJch c .  A third 
on-ch ip  uchc is J 96-KB,  thrce- w:�v set-associative, 
write hJCk mixed instruction and d:�ra cache .  The 
tloating-point pipel ine was red uced to nine  stJ�cs, and 
the CPU has t\\'O integer u nits and rwo t)oJti ng-point 
c:-.:ccution u n its.9 

The Exclusion of Byte and Word I nstructions 

The origin:d A lpha Architecture i ntended that opera
tions involved i n  loading or stori ng al igned bytes and 
words wou ld involve sequences as given in  Ta b l es 1 
:�nd 2 . '" As nuny as 1 6  addit ional  i nstructions arc 
req u i re d  to accomp l ish these operations on u na l igned 
tbta. These same operations i n  the M I PS Architecture 
i m·oh-c only J single i nstruction:  LB, LvV, S B ,  :t nd 
SW. " The M I PS Arch i tecture a lso inc ludes si ngle 
instructions to do the same tor u n a l igned d :�ta .  Gi\Tn 
�� situation i n  \\'hich al l  other bctors arc consistent,  this 
\\'ould appc:1r to give the M I PS Arch i tectu re an ach·an
tagc in i ts abi l i rv to reduce the n u mber of i nstru ctions 
execute d  per workload . 

Sites has presented several kev Alpha Architecture 
d esign decisions." Among them is the decision 11ot ro 

i n c l u d e  byte l oad a n d  store i nstructions. Key d esign 
assu mptions related to the exclusion of thcsc katurcs 
inc lude the tol l owing: 

• The majority of  operations woul d  i nvolve natura l ly  
a l igned data c lements .  

Ta ble 1 
Load i n g  A l i g ned Bytes a nd Words on A l p h a  

LDL 

EXT B L  

Load a n d  S i g n  Extend a Byte 

R 1 ,  D . l w( Rx) 

R 1 ,  # D . mod, R 1  

Load and Zero Extend a Byte 

LDL R 1 ,  D . lw(Rx) 

SLL R 1 ,  #56-8 * D . mod, R1  

SRA R 1 ,  #56, R 1  

Load a n d  S i g n  Extend a Word 

LDL R 1 ,  D . lw(Rx) 

EXTWL R 1 ,  # D . mod, R 1  

Load and Zero Extend a Word 

LDL R1 ,  D . lw( Rx) 

SLL R 1 ,  #48-8 * D . mod, R1  

SRA R 1 ,  #48, R1 



Table 2 
Storing A l i g ned Bytes a n d  Words on Alpha 

Store a Byte 

LDL R 1 ,  D. lw(Rx) 

I N S B L  RS,#D.mod, R 3  

M S K B L  R 1 ,  #D.mod, R 1  

B I S  R 3 ,  R 1 ,  R 1  

STL R 1 ,  D . 1 w(Rx) 

Store a Word 

LDL R 1 ,  D . lw(Rx) 

I N SWL RS,#D.mod, R3 

M S KWL R 1 ,  # D . mod, R1 

BIS R3, R 1 ,  R 1  

STL R 1 ,  D . 1 w(Rx) 

• I n  the best possible scheme tor multiple instruction 
issue, single byte and write instructions to memory 
are not al lowed . 

• The addition of byte and write i nstructions would 
require an  additional byte sh ifter in the load and 
store path.  

These factors i nd icated that the exclusion of specific 
instructions to manipu late bytes and words would be 
advantageous to the performance of the Alpha 
Architecture. 

The decision not to include byte and word manipu 
lation i nstructions is not without precedents. The 
original M I PS Architecture developed at Stanford 
University did not have byte i nstructions. 1 '  Hennessy 
et a l .  have discussed a series of hardware and software 
trade-otis for pcrfcxmance with respect to the M I PS 
processor. 13 Among those trade-ofts are reasons tor 
not including the abi l ity to do byte addressing opera
tions. Hennessy et a l .  argue that the additional cost 
of inc luding the mechan isms to do byte addressing 
was not justified. Their studies s howed that word ref. 
erences occur more freq uently in appl ications than do 
byte references. Hennessy et al . conc lude that to make 
a word-addressed machine feasible, special i nstruc
tions are requ i red for inserting and extracting bytes. 
These i nstructions arc available in both the M IPS and 
the Alpha Architectures. 

Reversing the Byte and Word Instructions Decision 

During the development of the Alpha Architecture, 
DIGITAL supported two operating systems, Open VMS 
and U LTRJX. The developers had as a goal the abi lity 
to maintain both customer bases and to facil itate their 
transitions to the new Alpha microprocessor-based 
machines. In 1 99 1 ,  Microsoft and DIGITAL began 
work on porting M icrosoft's new operating system, 

Windows NT, to the Alpha platform. The Windows 
NT operating system had strong l inks to the Intel x86 
and the M I PS Architectures, both of which included 
instructions tor single byte and word manipulation . 14  
This strong connection i nfluenced the M icrosoft devel
opers and i ndependent software vendors ( ISVs) to 
favor those architectures over the Alpha design . 

Another factor contributed to this issue: the major
ity of code being run on the new operating system 
came from the M icrosoft Windows and MS-DOS envi
ronments. In design ing software appl ications tor these 
two environments, the manipulation of data at the 
byte and word boundary is preva lent .  With the Alpha 
microprocessor's inabi l ity to accomplish this manipu
lation in  a single i nstruction, i t  suffered an average of 
3 :  l and 4 :  l i nstructions per workload on load and 
store operations, respectively, compared to those 
architectures with single instructions tor byte and 
word manipulation. 

To assist in  runn ing the I SV applications under the 
Windows NT operating system, a new technology was 
needed that would al low 1 6-bit applications to run as 
if they were on the older operating system.  M icrosoft 
developed the Virtual DOS Machine (VDM) environ
ment for the I ntel Architecture and the Windows
on-Windows (WOW) environment to al low 1 6-bit  
Windows appl ications to work. For non- I ntel architec
tures, Insignia developed a VDM environment that 
emulated an I n tel 80286 microprocessor-based com
puter. Upon examining th is emulator more closely, 
DIGITAL found opportunities tor improving perfor
mance if the Alpha Architecture had single byte and 
word instructions. 

Based upon this information and other factors, a 
corporate task force was commissioned in March 1 994 
to investigate improving the general performance of 
Windows NT running on Alpha machines. The further 
D IGITAL studied the issues, the more convincing the 
argument became to extend the Alpha Architecture to 
i nclude single byte and word instructions. 

This reversal in position on byte and word i nstruc
tions was also seen in the evolution of the MI PS 
Architecture. In the original M I PS Architecture devel
oped at Stanford University, there were no load or 
store byte i nstructions . 1 2  However, for the first com
mercially produced chip of the M I PS Architecture, the 
MIPS R2000 RJSC processor, developers added 
instructions for the loading and storing ofbytes . 1 1 One 
reason tor this choice stemmed from the chal lenges 
posed by the U N IX operating system. Many implicit 
byte assumptions i nside the UNIX  kernel caused per
formance p roblems. S ince the operating system being 
implemented was UNIX, i t  made sense to add the byte 
instructions to the MIPS Architecture . 1' 

In June 1 994, one of the coarchitecrs of tbe Alpha 
Architecture, Richard Sites, submitted an Engineering 
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Change Order ( ECO ) tor the extension of the archi
tecture ro include byte and word i nstructions. I t  was 
specu lated at the time that an i ncrease of as much as 
4 percent in ovnall performance would be ach ieved 
using the new instructions. In June 1 99 5 ,  six new 
instructions were added to the Alpha Architecture. 
The new instructions are outl ined in Table 3 .  The tirst 
implementation to include support for the new 
instructions was the second generation of the Alp h a  
2 1 1 64 m icroprocessor series. Th is reimplementation 
of the tirsr Alpha 2 1 1 64 design was manu factured 
in a 0 . 35 -J-Lm CMOS process and was introd uced in 
October 1 995 .  

Testing Environment 

We set up tests to measure the performance of eq uip 
ment with and without the new i nstru ctions . To con 
duct our experiments, we used prototype hardware 
that incl uded the second -generation Alpha 2 1 1 64 
microprocessor, and we devised a method to enable 
and d isable the new instructions in h ardware . At the 
same rime, we investigated the projected performance 
of the software emulation mechanism to execute the 
new instructions on older processors. Final ly, we bu i l t  
two separate versions of the Microsoft SQL Server 
application, one that used the new i nstr uctions and 
one that did not. for the purposes of discussing the 
different scenarios under study, we su mmarize the 
three execution schemes in Table 4. We usc the associ 
a ted nomenclature given there i n  the rest o f  this paper. 
In the remainder of this section, we describe each of 
the hardware, software, compiler, and analysis tools. 

Prototype Hardware 

As previously mentioned, our machine was capable 
of operat ing with and without  the new instructions. 
By using the same machine, we were able to mini 
mize eftccts that could be i ntroduced from variations 
in machine designs or processor fa mi l i es that cou ld 
cause an increase in the executed code path through 
the operating system .  All experiments were run 

Table 3 
New Byte and Word Manipulation Inst ructions 

Mnemonic Opcode Function 

stb OE Store byte from register 
to memory 

stw OD Store word from register 
to memory 

ldbu OA Load zero-extended byte 
from memory to register 

ldwu oc Load zero-extended word 
from memory to register 

sextb 1C.OOOO Sign extend byte 

sextw 1 C.0001 Sign extend word 
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Table 4 
Three Methods for Execution of the New Instructions 

Nomenclature 

Original 

Byte/Word 

Emulation 

Description 

Compiled with instructions 
that can execute on all Alpha 
implementations 

Compiled using the new 
instructions that will execute 
on second-generation 2 1 164 
implementations at ful l speed 

Compiled with new inst ructions 
and emulated through software 

on a prototype of the AlphaStation 500 work
station that was based upon the second-gen eration 
2 1 1 64 microprocessor operating at 400 M H z . (The 
AlphaStation 500 is  a fami ly of high-pert(mmnn:, 
m id - range graphics workstations . )  The prototype was 
configured with 1 28 megabytes ( M B )  of memorv and 
a single, 4-gigabyte ( GB)  tast-wide-difkrential  ( r:wn ) 
sma ll computer systems i nterface (SCS I -2 )  disk. 

New tirmwa re al lowed us to alternate between 
d i rect hard ware execution and software emu l ation of 
the new byte and word instructions. We modi fied the 
Adva nced RISC Consortium (ARC ) code to a l low us 
to switch between the two firmware versi ons through 
a simp l e  power-cycle u til ity, cal led the tai l -sate loader. 1 '' 

When the mach ine is powered on, it loads code ti·om 
a seria l  read -only memory (SROM) storage device. 
This code then loads the ARC firmware tl-om non
volati l e  flash ROM .  The fai l -sak loader al lowed the 
ARC firmware to be loaded i nto physical memory and 
not into the flash ROM .  The new firmware w:1s init ia l 
ized by a reset of the processor and was executed as 
i f  it were loaded from th e Hash RO M. When the 
machine was turned off and then back on, the version 
oHi rmware that was stored in nonvolati le memory was 
loaded and executed.  

Operating System 

We used a beta copy of the Microsoft Wi ndows NT 
version 4.0 operating system .  We chose this operating 
system for irs capabi l ity to al low us to exam i ne the 
i m pact of emu lating the new byte and word instruc
tions in the operating system . 

By default ,  version 4.0 of the Windows NT opeLH
ing system disables the trap and emu lation ca p�1bi l ity 
t()r the new instructions. This approach is simi lar to 

the one VVindows NT provides for the Alpha micro
processor to handle unal igned data references. for 
testing pu rposes, we enabled and d isabled the trap and 
em ulation capabi l i ty of the new i nstructions. VV hen 
this option is enabled, the operati ng S\'Stem treats each 
new i nstruction l isted i n  Table 3 as an i l legal instruc
tion and emu lates the instruction. The trap and emu
late strategy rakes approx imate!�' 5 to 7 microseconds 



per emulated instruction . When it is d isabled or not 
present, the action taken depends upon the hardware 
support for the new instructions. If disabled in hard
ware, the instruction is treated as an i l legal instruction; 
if enabled , it is executed l i ke any other i nstruction . 

Microsoft SQL Server 

To observe the effects of the new instructions, we 
chose the Microsofi: SQL Server, a relational database 
management system ( tU)BMS) tor the Windows NT 
operating system .  M icrosoft SQ L Server was engi 
neercd to be a scalable ,  m u ltiplatform, m u ltithreaded 
RDBMS, supporting symmetric mu l tiprocessing 
(SMP) systems. It was designed specitically tor d istrib
uted cl ient-server computing, data warehousing, <l l1d 
database applications on the Internet. 

In an earlier investigation, Sites and Perl present a 
profile of the Microsofi: SQ L Server running the TPC-B 
benchmark! They identif)r the executables and D LLs 
that are involved in running the benchmark and break 
down the percentage of t ime that each contributes to 
the benchmark. Their resu lts, summarized i n  Figure l ,  
show that only a few SQL Server execu tables and 
DLLs were heavily exercised during the benchmark.  
After verif)ring these results with the SQL Server devel
opment group at Microsoft, we decided to rebui ld 
only the images and DLLs identified in Figure l to use 
the new byte and word instructions. 

Table 5 l ists the executables and DLLs that we modi
fied and their correlation to the ones identified by Sites 
<'llld Perl . The variations exist because of name changes 
of DLLs or the use of a d ifferent network protocol .  We 
changed network protocols tor performance reasons. 
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Sites and Peri used an early version of the Microsoft 
SQL Server version 6.0 ,  in which the fastest network 
transport avai lable at that time was Named Pipes. In 
the fi nal release of SQL Server version 6.0 and sub
sequent versions of the product, the Transmission 
Control Protocol/Internet Protocol (TCP /IP) 
replaced Named Pipes i n  this category. Based upon 
this, \ve rebui lt the l ibraries associated with TCP /lP 
instead of those associated with Named Pipes. Other 
networking l ibraries, such as those tor DECnet and 
Internetwork Packet Exchange/Sequenced Packet 
Exchange ( IPX/SPX ) ,  were not rebuilt. 

Table 5 
Images and DLLs Modified for the Microsoft SOL 
Server 

Sites V6.0 Function 
DLLIEXE DLLIEXE 

sqlserver.exe sqlservr.exe SQL Server Main 
Executable 

ntwdblib.dll ntwdblib.dll Network 
Communications 
Library 

opends50.dll opends60.dll Open Data Services 
Networking Library 

dbnmpntw.dll N/A V4.2 1 A  Client Side 
Named Pipes Library 

ssnmpntw.dll N/A V4.21A Named Pipes 
Library 

N/A dbmssocn.dll V6.5 Client Side 
TCP/IP Library 

N/A ssmsso60.dll V6.5 Netlibs TCP/IP 
Library 
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Figure 1 
Images/DLL� Involved in a TPC- B Trc1nsacrion for Microsoft SQL Server Based on Sites and Peri's AIJ:�Iysis 
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Compil ing Microsoft SQL Server to 
Use the New Instructions 

Our goal was to measure only the dkcrs inrrod uced 
by using the new i nstructions ;md not dlccts inrro
d uced by different versions or generations of compi l 
ers. Therefore, we needed to find a W3)' to use the same 
version of a com piler that d i fkrcd only in irs usc or 
non use of the new instructions. To do this, we used 
a compi ler option avai lable on the Microsoft Visual 
C + +  compi ler. This switc h ,  avai lable on a l l !US C :  pl:tt
forms that support Visual C + + ,  al lows the gener3tion 
of optimized code for a speci fic processor within �l 

processor family whi le  maintaining bi n3ry compatibi l 
itY with al l processors in t h e  processor fa mi ly. Processor 
optimizations are accompl ished by 3 combination of 
spec ific cod e -pattern selection and code schedu l ing.  
The defa u l t  action of the compiler is  to usc 3 blended 
model, resu lting i n  code tbat executes eq ua l ly  we l l  
across al l processors with in a pl atf(mn t:m1 i ly. 

Using this compile r  option, we built  two versions 
of the aforementioned i mages within the S Q L  
Server appl icatjon, varying o n l y  t h e i r  usc of t he code
generation switc h .  The first version, rdcrred to as the 
Original  bu i ld ,  was bui lt  without specii),ing an argu 
ment for the code-generation swi tch . The second one, 
referred to as Byte/Word, set the switch to generate 
code patterns using the new byte and word manipula
tion instructions. AJ I  other req uired fi les came from the 
SQL Server version 6 . 5  Beta II distri bution CD- ROM. 

The Benchmark 

The bench mark we chose was derived fi·om the TPC:- B 
bench mark. As previously mentioned, the 'ITC-H 
benchmark is  now obsolete; however, it is sti l l  usefu l  
for stressing a database a n d  its interaction with �l co m
purer system .  The TPC. B benchmark is  relatively 
easy to set u p  and scales read ily. I t  h as been used by 
both database vend ors and comp u ter m:1nufacru rers 
to measure the performance of either the com puter  
system or the actua l  database. We did not include a l l  
t h e  req u i red metrics of the TPC- B benchmark; there 
fore, it is not i n  fu ll compliance with pub l ished guide
l i nes of the TPC.  We refer to i t  hcncdorth simply :�s 
the application benchmark. 

The appl ication benchmark is ch aracterized by sig
nifican t disk ljO activity, moderate system and appl ica
tion execution time, and transaction integrity. The 
appl ication benchmark exercises and measures the effi
ciency of the processor, I/0 archi tectu re , and RD BMS. 
The resu l ts measure performance by ind icating how 
many sim.u l ated banking transactions can be com
pleted per second . This is  defined as trans3ctions per 
seco nd ( tps) and is the total n u m ber of com mitted 
transactions that were started and completed d ur i n g  
the measurement i nterval .  
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The appl ication bench mark can be run in t\vo dif 
krent mod es: cached 3nd sc: ded .  The cached , or in
memory mode, is  used to estimate rhe system 's 
maxi mum perf(mna nce in this benc hmark envi ron
ment.  This is  :1ccomplished by bui lding 3 small  database 
that resides co mpletely in the database cache, which in 
turn fits within the system's physical ra ndom -access 
memory ( RAt'vl ) . Since the entire database resides in 
memory, <1 1 1  ljO activity is el imi nated with the excep
tion of log writes. Consequentl y, the benchmark on ly 
pcrf(mllS one disk l/0 f(>r each transaction, once the 
cmire database is read off the d isk and into the database 
cKhe.  The resu l t  is  ;1 representation of the max imum 
nu mber of  tps th;lt rhc system is  c1pable of  sustain ing.  

The sc::dcd mode is  run using a bigger database with 
a brgcr :�mount of disk 1/0 activity. The in crease in 
d isk 1/0 is a result of the need to re:�d and write data to 
locations that 3re nor within the data base cache. These 
additional reads and writes add extra disk 1/0s. The 
resu l t  is normal ly  charJCterizcd as having to do one 
read and one write to the database :m d a single write to 
the tr�nsaction log for each transaction.  The combina
t ion of a larger data base and additional I/0 activity 
dccrc�1scs the tps n l u c  from the c3ched \ ·crsio n .  Based 
upon our previous experience running this benchmark, 
the scaled bench mark can be ex pected to reach approx
i mate l y  80 percent of the cached pert(mllance. 

For the scaled tests, we b u i l t  a data base sized to 
3ccom mod atc 5 0  tps. This was less than 80 percent 
of the maximum tps prod u ced by the cached results .  
'We chose this s ize because we were concentrating 
on iso l3ting ;l single sca led transaction under 3 moder
ate lo;ld and not u nder the maxi m u m  scaled perfor
mance possi ble .  

Image Tracing and Analysis Tools 

Col lecting onl y  static me3SLII-cments of the executables 
and DLL� afkctcd was insufficient to determine the 
app l icabi l i ty of the new instructions. \,Ye col lected the 
actual i nstruction traces of SQL Server w h i l e  it  exe
cuted the appl ication benc h mark.  Furthermore, we 
decided that the ;l bi l i ty to trace the actu a l  instructions 
bei ng executed was more desirable than developing or 
extendin g a s imulator. To obtain the traces, we needed 
;1 tool that wou ld al low us to 

• Col lect both system- and user- mode code.  

• Col lect fu nction traces, which wou ld a l low us to 
a l ign the starti ng and stopping poi nts of d i fferent 
bench mark runs.  

• \.York without modifYing either the 3ppl icarion or 
the operating syste m .  

I n  t h e  p3St, the on l y  tool t b 3 t  wo u l d  provide 
instruction traces under the vVindows NT operating 
system was the debugger running i n  s ingle-step mode. 



Obtaining traces through e ither the ntsd or the 
windbg debugger is quite l imited due to the fol lowi ng 
problems: 

• The tracing rate is only about 500 i nstructions per 
second .  This is far too slow to trace anything other 
than isolated pieces of cod e .  

• T h e  trace fails across system cal ls .  

• The trace loops infin itely in critical section code. 

• Register con tents arc not easily d isplayed for each 
i nstruction . 

• Real-rime ana lysis of i nstruction usage and cache 
m isses are not possible.  

Instruction traces can also be obtained using the 
PatchWrks trace analysis tool . '  Although th is tool 
operates with near real -t ime pertormance and can 
trace i nstructions executing in kernel mode, i t  has the 
tollowi ng l imitations: 

• It operates only on a DIGlTAL Alpha AXP personal 
compu ter. 

• It requires an extra 40 MB of memory. 

• All images to be traced m ust be patched,  thus 
sl ightly distorting text addresses and function sizes. 

• S uccessive runs of application code are not repeat
able due to unpred ictable kernel interrupt behavior 
( the traces are too accurate ) .  

The solution was Ntstcp, a tool that can trace user
mode i nstruction execution of any i m age in the 
Windows NT/ Alp h a  environment through a n  i n nov
ative combination of breakpointing and "Alpha-on 
Alpha" emulation. It has the abi l i ty to trace a 
program's execu tion at rates approach i n.g a mi l l ion 
i nstructions per second. N tstep can trace i ndividual  
i nstructions, loads, stores, fimction calls, I -cache a n d  
D-cache misses, u nal igned d ata accesses, a n d  anything 
else that can be observed when given access to each 
i nstruction as i t  is being e xecuted . It prod uces sum
mary reports of the i nstruction d istri bu tion , cache l ine 
usage, page usage (working set ) ,  a nd cache simu lation 
statistics for a variety of Alpha  systems. 

Ntstep acts l ike a debugger that can execute single
step instructions except that it execu tes instructions 
using emu lation instead of si ngle-step breakpoints 
whenever possible. I n  practice, emulation accounts for 
the majority of i nstructions executed with in  N tstep.  
S ince a single-step execu tion of a n  i nstruction with 
breakpoints rakes approximately 2 mil liseconds and 
emulation of an Alpha  i nstruction requires only 1 or 2 
m icroseconds, Ntstep can trace approximately 1 ,000 
times faster than a debugger. Unl ike most emulators, 
the appl ication executes normally in i ts own address 
space and environment. 

Results 

We collected data on three d ifferent experi ments .  I n  
the first i nvestigation ,  w e  looked a t  the relative perfor
mance of the three different versions of the M icrosoft 
SQL Server outl ined in Table 4. We compared the 
tbree variations usi ng rbe cached version of the app l i 
cation benchmark. 

In tbe second experiment, we observed how the 
new i nstructions affect the i nstruction d istribution in 
the static images and D LLs that we rebui l t .  We com 
pared the Byte/ Word versions to the Origi nal versions 
of rhe i mages and D LLs. We a lso attempted to l ink the 
d i fferences in i nstruction cou n ts to the use of the new 
instructions. 

Lastly, we i nvestigated the variation between the 
Original  and the Byte/Word versions with respect to 
i nstruction d istribu tion on the scaled version of the 
benchmark. This comparison was based upon the code 
path executed by a s ingle transaction . 

Cached Performance 

I n  the first experiments,  we compared the relative per
tonnance i mpact of using the new i nstructions. We 
chose to measure performance of only the cached ver
sion of the application bench mark because the l/0 
su bsystem available on the prototype of the 
AlphaSrarion 500 was not adequate for a fu ll -scaled 
measurement.  We e nsure d  that the database was fu l ly 
cached by using a ramp- u p  period of 60 seconds and a 
ramp-down period of 30 seconds.  This was veri tied as 
steady state by observing that the SQL Server buffer 
cache h i t  ratio remai ned at or above 95 percent.  The 
measu rement period tor the benchmark was 60 sec 
onds. We ran the benchmark several t imes and took 
the average tps for each of the three variations outl ined 
in  Table 4. 

The resu l ts of the three schemes arc as follows: 444 
tps tor the Origi nal  version, 460 tps for the Byte/ 
Word version, and 1 1 6 rps for the Emu lation ver
sion . The new instructions contributed a 3 .5  percent 
gai n  in performance. The impact of emulating the 
instructions is a loss of 73 .9 percent of the potential 
performance. 

Static Instruction Counts 

To analyze the mixture of instructions i n  the i mages 
and DLLs, we disassem bled each image and D L L  i n  
t h e  Original a n d  Byte/Word versions. We then looked 
at only t hose i nstructions that exhi bited a d ifference 
between the two versions within the i mages or D LLs. 
The variations i n  i nstruction cou nts ofthese are shown 
i n  Table 6. 

To examine the images more c losely, we d isassem 
bled each image and D LL and collected counts of code 
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Table 6 
Instruction Deltas (Normal M i n us Byte/Word) for the SQL Server Images and D L Ls 

I nstruction dbmssocn.dll ntwdblib.dll opendsGO.dll sqlservr.exe ssmsso60.dll Instruction dbmssocn.dll ntwdblib.dll opendsGO.dll sqlservr.exe ssmssoGO.dll 

Ida 
ldah 
ld l 
ldq 

ldq_l 

ldq_u 

stl 

0 
0 

- 9  

0 

0 

- 3  
0 

- 1 1  

0 
0 

-2 

-247 - 8524 
- 2 7  1 8 - 1 8  

- 597 - 1 3 1 33 

-29 - 2980 

-4 xor 
0 s l l  

-46 sra 

0 sri 

0 
0 

0 

0 
0 

0 
0 
0 

0 

0 

- 2  
.f 2 

- 1 5  
0 

- 1  

1 1 9 
-2359 
- 3 534 

- 295 

0 
0 

- 4  
0 
0 

-8 

0 -9 0 cm pbge - 1 8 
- 1 0  - 3 1 1 -8529 - 1 8  mskbl - 3  

0 

-- 1 
5 

0 
0 
0 

0 
0 
0 

0 

0 

0 
0 
0 

- 1 96 - 3 647 
- 5  - 1 1  - 278 - 7932 - 1 1  mskwl -41 - 1 604 0 

stb + 3  

+ 2  
· 1  
· 5  
0 

0 
5 
0 
0 

0 
0 
0 

0 

+ 2 1 6  + 3969 + 7 zap not - 5  
0 

0 

0 
0 

0 

0 
0 
0 
0 

- 1 1 5  - 2 1 35 -33 
0 

0 

0 
0 

0 

0 
0 
0 

stw + 59 + 2798 + 3  addl 0 
0 
0 
0 

0 
0 

0 

0 

-8 
stq 
stq_c 
beq 

bge 
bgt 

b lbc 
b ibs 

bit 

bne 
br 

bsr 

0 

0 
0 

0 

0 

0 
0 

0 

0 

0 

0 
0 

0 
0 

0 

0 
0 

-4 
0 

0 

0 
0 
0 

0 
- 5  

- 4  - 53 
0 -9 

+ 1  - 1 236 

0 + 8  

0 + 3  

- 1  - 1 9  
0 - 4  

0 0 
+ 1  +24 
+ 1  - 1 1 20 

0 - 6  
+4 + 1 5  

0 + 9  

0 + 1 5  

0 + 5  
- 1  1 - 1  

- 2  1 1 83-1 1 83 

0 addq 

0 s4addl 
0 cmovge 
0 cmovne 
0 cmovlt 

0 cmovlbc 

0 cal lsys 

0 extqh 
0 ldwu 

0 ldbu 
0 mul l  
0 subl  
0 subq 

0 insl l  

0 inswl 
0 cal l_pal 
0 extlh 

+4 
+ 9  

0 

0 
0 
0 

+ 3  
0 

0 
0 

0 

- 1 4  
+ 1 93 
+464 

0 
+ 1  

0 
0 

- 54 

+ 3  
-4 
+ 1  
+ 2  
- 1  
- 2  

0 

- 426 
+ 6320 

+ 1 0231  

+ 1  

+ 6  

+ 3  

1 - 1 

- 2647 

+ 1 6 1 
- 1 4  

- 4  

+ 3 5  
+ 1 8  

0 
0 
0 
0 

ret 

cmpeq 

cmplt 
cmple 
cmpult  

em pule 

and -2 -6 - 3 64 -6435 -8 insbl 

-2 

+2 
0 

- 2  

0 
- 1 0  

- 3  
+ 1  

0 

- 1  
0 

- 6  
0 

+ 1  
0 

- 1 35 
0 

-3 67 

- 3 1 63 

- 3  
0 
0 

- 6  

0 
- 1 4  

b ic  -3 - 1 1  - 287 - 7242 - 8  ext l l  - 2 0  
bis  
ornot 

-4 - 7  - 208 - 7097 -9 extbl - 1 0656 
0 0 0 +4 0 extwl - 1  - 84 324 - 1  

size, the n u mber o f  fu nctions, the number :m d  tvpc of 
new byte and \\'Ord instructions, and bstl y, nop and 
trapb i nstructions. The resu lts are  prese nted in  Tables 
7 through 10 .  

We expected that  the instructions used to manipu late 
bytes and words i n  the origi nal A lpha Arc hitecture 
(Tables l and 2 )  would decrc :�sc proportionally to the 
usage of the new i nstructions. These assu m ptions held 
true f()r a l l  the images and DLLs that used the new 
instructions. For e xam ple , in  the original Alpha 
Architecture, the i nstru ct ions MSKBL and MSKWL arc 
used to store a byte •md \\'Ord , respective ly. In the 
sqlservr.exc image, these rwo instructions showed a 
decrease of 3,647 and l ,604 instructions, rcspccr ivc lv. 

Compare this \\'ith the corresponding addition of3,969 
STB and 2 ,798 STvV i nstructions in the same image .  
Looki ng fl.trthcr imo the sqlservr.cxe i mage, w e  also saw 
that 10,2 3 1  LDBU instructions were used and the 
usage of the EXTB L i nstruction was red uced bv 1 0 ,65 6.  
Although these numbers do not correlate on '1 one- t(>r

onc basis, we bel ieve this is due ro other usage ofrhcsc 
i nstructions. Other usage might i nclude the compi ler 
scheme for in trod ucing the new i nstructions in pLKcs 

where it used an LDL or Jn LDQ i n  the Original image .  
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Of the reb ui lt images and DLLs, sq lservr. n c  and 
opcnds60 .d l l  showed rhe most \'ariations, with the new 
i nstructions maki ng up 3 .73  perccm .md 3.9 percent 
of these ti les .  The most frequcntlv occurring new 
instruction W•1S ldbu,  rol l owcd bv ldw u .  The least
used i nstru ctions were sextb and scxrw. The s ize of 
the i mJgcs was red u ce d  in three out of rive i m ages . 
The i m age size red uction ranged ti·om negl igible to 
just  over 4 perccm. ln a l l  cases, rile s ize of the code 
section \\':ts red uced and ranged fro m  i ns igni ti.cJnt 
to :1pproxi m:�tclv 8 . 5  percent . There ,,.,,s no c !J ,1 1lge i n  
t h e  n u mber oft -i111ctions in any o f  the ti l es . 

Dynamic Instruction Counts 

We gathered datJ from the app l i cation benchmark 
ru nn ing in  both cached and scaled mod es.  \Nc ran ar 

least one ire ration of the bcncllmJrk test prior to ga th 

ering rrace da ta to a l low both the vVi ndows NT oper
ating system and the Microsoh S Q I .  Server database to 
reac h •l steadv state of operation on the S\'Stcm u nder  
tes t (Sl :  f' ) .  Steady sure was ac h ieved '' hen rhe SQL 
Server cach e - h i t  ratio reached 9 5  perce nt o r  greater, 

the n u m ber of transactions per second wJs consta nt , 

•md the C P U  ur i l i zJtion was as c lose to 1 0 0  percent as 
poss ible .  The traces were gathered over a s u thcient 
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Table 7 
Byte/Word Images a n d  D LLs 

lmage/DLL Total 

File 

Bytes 

sqlservr.exe 8053624 

dbmssocn.dl l  1 3824 

ntwdblib.dl l  3 1 8464 

opends60.dll 2 1 2992 

ssmsso60.dll 70760 

Table 8 

Total 

Text 

Bytes 

298 1 1 48 

5884 

2463 1 6  

1 04204 

9884 

Total 

Code 

Bytes 

2884776 

5520 

231 688 

97240 

9 1 28 

Orig i n a l  B u i ld of I mages a n d  D L Ls 

lmage/DLL Total 

File 

Bytes 

sql servr.exe 8337248 

dbmssocn.d l l  1 3824 

ntwdbl ib .d l l  3 1 8464 

opends60.dll 222720 

ssmsso60.dll 7 1 284 

Table 9 

Total 

Text 

Bytes 

3264108 

6012 

246620 

1 1 40 1 2  

10300 

Total 

Code 

Bytes 

3 1 53480 

5656 

231 904 

105536 

9424 

Number 

of 

Functions 

3364 

1 3  

429 

243 

1 9  

Number 

of 

Functions 

3364 

1 3  

429 

243 

1 9  

Total 

Byte/ 

Word 

26869 

1 8  

948 

67 

Total 

Byte/ 

Word 

0 

0 

% Byte/ 

Word 

3 73 

1 .3 

0.02 

3.9 

2.94 

LDBU 

Count 

10231  

9 

464 

1 8  

% Byte/ LDBU 

Word Count 

0 

0 

N u merica l  D iffe rences of Orig i n a l  M i nus Byte/Word I ma g es a n d  D LLs 

lmage/DLL Total 

File 

Bytes 

lsqlservr.exe -283624 

dbmssocn.dll 0 

ntwdblib.dll 0 

opends60.dll -9728 

ssmsso60.dll -524 

Table 1 0  

Total 

Text 

Bytes 

-282960 

- 1 28 

- 304 

-9808 

- 4 1 6  

Total 

Code 

Bytes 

- 268704 

- 1 3 6  

- 2 1 6  

-8296 

- 296 

Number 

of 

Functions 

0 

0 

0 

0 

0 

Total 

Byte/ 

Word 

+26869 

- 1 8  

+9 

+ 948 

+67 

% Byte/ LDBU 

Word Count 

+ 4 

+ I  
0 

+ 4  

+3 

+ 1 0231 

+9 

+3 

+464 
+ 1 8  

Percentage Va r iat ion o f  Orig i n a l  M i nus Byte/Word I m a g es a n d  D LLs 

lmage/DLL Total 

File 

Bytes 

Total 

Text 

Bytes 

sqlservr.exe -3.402% -8.669% 

dbmssocn.dl l  0.000% - 2 . 1 29 %  

ntwdblib.dl l  0.000% - 0 . 1 23% 

opends60.dll -4.368% -8.603% 

ssmsso60.dll -0.735% -4.039% 

Total 

Code 

Bytes 

- 8.52 1 %  

- 2.405% 

-0.093% 

-·7.86 1 %  

- 3 . 1 4 1 %  

Number 

of 

Functions 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

Total 

Byte/ 

Word 

N/A 
N/A 
N/A 
N/A 
N/A 

% Byte/ 

Word 

N/A 
N/A 
N/A 
N/A 
N/A 

LDBU 

Count 

N/A 
N/A 
N/A 
N/A 
N/A 

LDBU 

% 

38.077 

50 

33.333 

48.945 

26.866 

LDBU 

% 

LDBU 

% 

-dB 
+50 

+33 

+49 
+27 

LDBU 

% 

N/A 
N/A 
N/A 
N/A 
N/A 

LDWU 

Count 

6320 

193 

35 

LDWU 

Count 

0 

0 

LDWU 

Count 

+ 6320 

1-4 

0 

+ 1 9 3  

-d5 

LDWU 

Count 

N/A 
N/A 
N/A 
N/A 
N/A 

LDWU STB 

% Count 

23.52 1 5  3969 

22.2222 

1 

20.3586 2 1 6  

52.2388 7 

LDWU 

% 

0 

0 

LDWU 

% 

+ 24 

+22 

0 

+20 

+52 

LDWU 

% 

N/A 
N/A 
N/A 
N/A 
N/A 

STB 

Count 

0 

0 

0 

STB 

Count 

+3969 

+ 3 

+ 1  
" 21 6  

� 7  

STB 

Count 

N/A 
N/A 
N/A 
N/A 
N/A 

STB 

% 

1 4 . 7 7 1 7  

1 6.6667 

1 1 . 1 1 1 1  

22.7848 

10.4478 

STB 

% 

0 

0 

0 

STB 

% 

+ 1 5  

+ 1 7  

+ 1 1  

+ 2 3  

+10 

STB 

% 

N/A 
N/A 
N/A 
N/A 
N/A 

STW 

Count 

2798 

59 

5TW 

Count 

0 

0 

0 

0 

STW 

Count 

+2798 

-2 

�5 
; 59 

+ 3  

STW 

Count 

N/A 
N/A 
N/A 
N/A 
N/A 

STW SEXTB 

% Count 

10.4135 1 39 

1 1 . 1 1 1 1  0 

55.5556 

6.22363 

4.47761 

STW 

% 

STW 

% 

+ 1 0  

t- 1 1  

+ 56 

·t· 6 

+ 4  

SEXTB 

Count 

0 

0 

0 

SEXTB 

Count 

+ 1 39 

0 

0 

+9 
-+4 

STW SEXTB 

Count % 

N/A 
N/A 
N/A 
N/A 
N/A 

N/A 
N/A 
N/A 
N/A 
N/A 

SEXTB SEXTW 

'% Count 

0 . 5 1 7325 3412 

0 0 

0.949367 

5.970 1 5  

SEXTW Total 

% NOPs 

1 2.6986 5929 

0 2 1  

767 

0.738397 391 

0 25 

SEXTB 

% 

SEXTW 5EXTW Total 

NOPs 

SEXTB 

% 

Count % 

0 

0 

0 

0 

0 

0 

0 

SEXTW SEXTW 

Count % 

+ 3 4 1 2  

0 

0 

+7 
0 

+ 1 3  

0 

0 

+ 1  

0 

6207 

1 6  

770 

405 

1 8  

Total 

NOPs 

-278 

+5 

- 3  

- 14 

+ 7  

Total 

TRAPB 

2 2 1 9  

0 

1 0  

1 2 8  

Total 

TRAPB 

2252 

0 

1 0  

1 28 

0 

Total 

TRAPB 

-33 

SEXTB SEXTW 

Count 

SEXTW Total Total 

TRAPB % 

N/A 
N/A 
N/A 
N/A 
N/A 

N/A 
N/A 
N/A 
N/A 
N/A 

% NOPs 

N/A 
N/A 
N/A 
N/A 
N/A 

-4.479% - 1 .465% 

+ 3 1 .250% N/A 
-0.390% 0.000% 

-3.457% 0.000% + 38.889% N/A 



98 

period of time to ensure that we captured severa l 
transactions. The traces were then edited into separate 
i ndividual  transactions. The geometric mean was 
taken fi·om the resu lting traces and used tor a l l  subsc · 
quent analysis. 

We used Ntstcp to gather complete instruction and 
function traces of both versions of the SQL Server data· 
base whi le it executed the applic:�tion benchmark. 
Figure 2 shows an  example output t(Jr an instruction 

trace, and Figu re 3 shows an example output f()r a 
fu nction trace from Ntstcp .  Since Ntstcp can attach to 
a running process, we ;: d l owcd the appl ication bench· 
mark ro achieve steady state prior to data col lection. 
This approach ensured that we did not sec the cfkcts of 
warming up either the machine caches or the SQL 
Server database cache. Each instruction trace consisted 
of approximately one m i l l ion instructions, which was 
sufficient to cover mu l tip le  transactions. The data was 

0 * *  B r e a k p o i n t ( p i  d 0 X d 1 ,  T i d  O x b 2 )  S Q L S E R V R . E X E  p c  7 7 f 3 9 b 3 4  

0 * *  T r a c e  b e g i n s a t  2 4 2 6 9 8  
o p e n d s 6 0 ! F e t c h N e x t C o m m a n d  

1 0 0 2 4 2 6 9 8 : 2 3 d e f f b 0  L d a  s p ,  - 5 0 ( s p )  I I s p  n o w  7 2 b f f 0 0 

2 0 0 2 4 2 6 9 c : b 5 3 e 0 0 0 0  s t q  s O ,  O C s p )  I I @ 0 7 2 b f f 0 0 = 1 4 8 4 4 0  

3 0 0 2 4 2 6 a 0 :  b 5 5 e 0 0 0 8  s t q  s 1 , 8 C s p )  I I @ 0 7 2 b f f 0 8 = 0 

4 0 0 2 4 2 6 a 4 :  b 5 7 e 0 0 1 0 s t q  s 2 ,  1 0 C s p )  I I @ 0 7 2 b f f 1 0  = 5 

5 0 0 2 4 2 6 a 8 :  b 5 9 e 0 0 1 8 s t q  s 3 ,  1 8 C s p )  I I @ 0 7 2 b f f 1 8  = 1 4 7 6 a 8  

6 0 0 2 4 2 6 a c :  b 5 b e 0 0 2 0  s t q  s 4 ,  2 0 C s p )  I I  @ 0 7 2 b f f 2 0 = 2 c 4  

7 0 0 2 4 2 6 b 0 : b 5 d e 0 0 2 8  s t q  s 5 ,  2 8 ( s p )  I I  @ 0 7 2 b f f 2 8  = 4 1  

8 0 0 2 4 2 6 b 4 : b 5 f e 0 0 3 0  s t q  f p ,  3 0 C s p )  I I @ 0 7 2 b f f 3 0 = 0 

9 0 0 2 4 2 6 b 8 : b 7 5 e 0 0 3 8  s t q  r a ,  3 8 C s p )  I I @ 0 7 2 b f f 3 8 = 2 4 2 3 9 8  

1 0 0 0 2 4 2 6 b c : 4 7 f 0 0 4 0 9  b i s  z e r o ,  a D ,  s O  I I  s O  n o w  1 4 8 4 4 0  

1 1  0 0 2 4 2 6 c 0 :  4 7 f 1 0 4 0 a  b i s  z e r o ,  a 1 , s 1 I I s 1 n o w  7 2 b f f a 0  

1 2 0 0 2 4 2 6 c 4 :  4 7 f 2 0 4 0 b  b i s  z e r o ,  a 2 ,  s 2  I I s 2  n o w  7 2 b f f a 8  

1 3 0 0 2 4 2 6 c 8 : d 3 4 0 4 e 6 7  b s r  r a ,  0 0 2 5 6 0 6 8  I I  r a  n o w  2 4 2 6 c c  

o p e n d s 6 0 1 n e t i O R e a d D a t a  

1 4 0 0 2 5 6 0 6 8 : 2 3 d e f f a 0  L d a  s p ,  - 6 0 C s p )  I I s p  n o w  7 2 b f e a 0  

1 5 0 0 2 5 6 0 6 c : 4 3 f 1 0 0 0 2  a d d l z e r o ,  a 1 , t 1 I I  t 1 n o w  7 2 b f f a 0  

1 6 0 0 2 5 6 0 7 0 : b 5 3 e 0 0 0 0  s t q  s O ,  O C s p )  I I  @ 0 7 2 b f e a 0  = 1 4 8 4 4 0  

1 7 0 0 2 5 6 0 7 4 : b 5 5 e 0 0 0 8  s t q  s 1 , 8 C s p )  I I  @ 0 7 2 b f e a 8  = 7 2 b f f a 0  

1 8 0 0 2 5 6 0 7 8 : b 5 7 e 0 0 1 0 s t q  s 2 ,  1 0 C s p )  I I  @ 0 7 2 b f e b 0 = 7 2 b f f a 8  

1 9 0 0 2 5 6 0 7 c : b 5 9 e 0 0 1 8 s t q  s 3 ,  1 8 C s p )  I I @ 0 7 2 b f e b 8 = 1 4 7 6 a 8  

2 0  0 0 2 5 6 0 8 0 : b 5 b e 0 0 2 0  s t q  s 4 ,  2 0 C s p )  I I @ 0 7 2 b f e c 0  = 2 c 4  

2 1  0 0 2 5 6 0 8 4 : b 5 d e 0 0 2 8  s t q  s 5 ,  2 8 C s p )  I I @ 0 7 2 b f e c 8  = 4 1  

2 2  0 0 2 5 6 0 8 8 : b 5 f e 0 0 3 0  s t q  f p ,  3 0 C s p )  I I  @ 0 7 2 b f e d 0  = 0 

2 3  0 0 2 5 6 0 8 c : b 7 5 e 0 0 3 8  s t q  r a ,  3 8 C s p )  I I @ 0 7 2 b f e d 8  = 2 4 2 6 c c 

2 4  0 0 2 5 6 0 9 0 : a 1 d 0 1 1 4 0 L d L s 5 ,  1 1 4 0 C a 0 )  I I @ 0 0 1 4 9 5 8 0  1 4 7 9 e 8  

2 5  0 0 2 5 6 0 9 4 : 4 7 f 0 0 4 0 9  b i s  z e r o ,  a D ,  s O  I I s O  n o w  1 4 8 4 4 0  

2 6  0 0 2 5 6 0 9 8 : a 1 f 0 0 1 d 0  L d L f p ,  1 d 0 C a 0 )  I I @ 0 0 1 4 8 6 1 0 d b b a O  

2 7  0 0 2 5 6 0 9 c : 4 7 e 0 3 4 0 d  b i s  z e r o ,  # 1 , s 4  I I s 4  n o w  1 

2 8  0 0 2 5 6 0 a 0 : a 0 6 2 0 0 0 0  L d L t 2 ,  0 ( t 1 ) I I @ 0 7 2 b f f a 0  1 5 5 c 5 8 

2 9  0 0 2 5 6 0 a 4 :  b 2 3 e 0 0 4 c  s t L a 1 , 4 c ( s p )  I I  @ 0 7 2 b f e e c  = 7 2 b f f a 0  

3 0  0 0 2 5 6 0 a 8 : b 2 5 e 0 0 5 0  s t L a 2 ,  5 0 C s p )  I I  @ 0 7 2 b f e f 0  = 7 2 b f f a 8  

3 1  0 0 2 5 6 0 a c :  b 2 7 e 0 0 5 4  s t L a 3 ,  5 4 C s p )  I I @ 0 7 2 b f e f 4  = 1 4 7 6 a 8  

3 2  0 0 2 5 6 0 b 0 : e 4 6 0 0 0 1 d  b e q  t 2 ,  0 0 2 5 6 1 2 8  I I ( t 2 i s 1 5 5 c 5 8 )  

3 3  0 0 2 5 6 0 b 4 : 2 2 0 3 0 3 e 0  L d a  a D ,  3 e 0 C t 2 )  I I a D  n o w  1 5 6 0 3 8  

3 4  0 0 2 5 6 0 b 8 : 4 7 f 0 0 4 0 4  b i s  z e r o ,  a D ,  t 3  I I  t 3  n o w  1 5 6 0 3 8  

3 5  0 0 2 5 6 0 b c : 6 3 f f 4 0 0 0  m b  I I  

3 6  0 0 2 5 6 0 c 0 :  4 7 e 0 3 4 0 0  b i s  z e r o ,  # 1 , v O  I I v O  n o w  1 

3 7  0 0 2 5 6 0 c 4 : a 8 2 4 0 0 0 0  L d L - L t O ,  0 C t 3 )  I I @ 0 0 1 5 6 0 3 8  0 

3 8  0 0 2 5 6 0 c 8 : b 8 0 4 0 0 0 0  s t L c v O ,  0 C t 3 )  I I @ 0 0 1 5 6 0 3 8  = 1 -
3 9  0 0 2 5 6 0 c c : e 4 0 0 0 0 b 6  b e q  v O ,  0 0 2 5 6 3 a 8  I I C v O i s  1 ) 

4 0  0 0 2 5 6 0 d 0 : 6 3 f f 4 0 0 0  m b  I I 

4 1  0 0 2 5 6 0 d 4 : e 4 2 0 0 0 0 1  b e q  t O ,  0 0 2 5 6 0 d c  I I C t O  i s  0 )  

o p e n d s 6 0 ! n e t i O R e a d D a t a + O x 7 4 : 
4 2  0 0 2 5 6 0 d c : a 1 b e 0 0 4 c  L d L s 4 ,  4 c ( s p )  I I @ 0 7 2 b f e e c  7 2 b f f a 0  

4 3  0 0 2 5 6 0 e 0 : a O O d O O O O  L d L v O ,  0 C s 4 )  I I @ 0 7 2 b f f a 0  1 5 5 c 5 8 

4 4  0 0 2 5 6 0 e 4 :  a 0 4 0 0 3 d c L d L t 1 , 3 d c ( v 0 )  I I @ 0 0 1 5 6 0 3 4  0 

4 5  0 0 2 5 6 0 e 8 : 2 0 8 0 0 4 0 4  L d a  t 3 ,  4 0 4 C v 0 )  I I t 3  n o w  1 5 6 0 5 c 

4 6  0 0 2 5 6 0 e c :  4 0 5 f 0 5 a 2  c m p e q  t 1 , z e r o ,  t 1 I I t 1  n o w  1 

4 7  0 0 2 5 6 0 f 0 :  e 4 4 0 0 0 0 3  b e q  t 1 , 0 0 2 5 6 1 0 0  I I  ( t 1 i s  1 )  
4 8  0 0 2 5 6 0 f 4 : a 0 6 0 0 4 0 4  L d L t 2 ,  4 0 4 C v 0 )  I I  @ 0 0 1 5 6 0 5 c  1 5 6 0 5 c  

4 9  0 0 2 5 6 0 f 8 :  4 0 6 4 0 5 a 3  c m p e q  t 2 ,  t 3 ,  t 2  I I  t 2  n o w  1 

5 0  0 0 2 5 6 0 f c :  4 7 e 3 0 4 0 2  b i s  z e r o ,  t 2 ,  t 1 I I t 1 n o w  1 

5 1  0 0 2 5 6 1 0 0 : 4 7 e 2 0 4 0 d  b i s  z e r o ,  t 1 , s 4  I I  s 4  n o w  1 

Figure 2 
Example ofl nstruction Trace Output  ri·om Ntstep 
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5 2  0 0 2 5 6 1 0 4 : e 4 4 D 0 0 0 5  b e q  t 1 , D D 2 5 6 1 1 c  I I ( t 1 i s  1 ) 

5 3  O D 2 5 6 1 0 8 : a O a D D O O O  L d L t 4 ,  D C v D )  I I @ 0 0 1 5 5 c 5 8 2 0 4 2 0 0  

5 4  O D 2 5 6 1 0 c : 2 4 d f D D 8 0  L d a h  t 5 ,  8 D ( z e r o )  I I  t 5  n o w  8 0 0 0 0 0  
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Figure 2 (continued) 
Example of l ostruction Trace Output trom Ntstcp 

then reduced to a series of single transactions and ana
lyzed tor instruction distri bution . For both the cached
and the scaled-transaction instruction counts, we com
bined at least three separate transactions and took the 
geometric mean of the instructions executed,  which 
caused sl igh t  variations in the i nstruction counts. Al l 
result ing instruction cou nts were within an acceptable 
standard deviation as compared to ind ividual transac
tion instruction coun ts .  

We col lected the fi.mction traces i n  a similar fashion . 
Once the application bench mark was at a steady state, 
we began col lecting the fi.mction cal l tree. Based on 
previous work with the SQL Server database and con
su ltation with M icrosoft engineers, we cou ld pinpoint 
the beginning of a single transactjon .  We then began 
col lecting samples tor both traces at the same instant, 
using an Ntstep feature that al lowed us to start or stop 
sample collection based upon a particular address . 

The dynamic instruction counts for both the scaled 
and the cached transactions are given in Tables I I  and 
1 2 .  We also show the variation and percentage varia
tion bet\veen the Origi nal and the Byte/Word versions 
of the SQL Server. Two of the six new instructions, 
sextb and sextw, are not present i n  the Byte/Word 

7 7 e a e 8 2 0  I I  r a  n o w  7 7 e 9 8 5 d 4  

trace . The remammg tour  instructions combine to 
make up 2 .6 percent and 2 .7 percent of the instruc
tions executed per scaled and cached transaction, 
respectively. Other observations include the fol lowi ng: 

• The number of i nstructions executed decreased 
7 percent for scaled and 4 percent tor cached 
transactions. 

• The num ber of ld l_ljstl_c sequences decreased 
3 percent for scaled transactions. 

• Al l the i nstructions that are identified in Tables l 
and 2 show a decrease in usage . Not surprisingly, 
the instructions mskwl and mskbl completely d isap
peared . The inswl and insbl instructions decreased 
by 47 percent  and 90 percent, respectively. The s l l  
instruction decreased by 3 8  percent, and the sra 
instruction usage decreased by 53 percent. These 
reductions hold true within l to 2 percent for both 
scaled and cached transactions. 

• The i nstructions Jdq_u and Ida, which are used 
in unal igned load and store operations, show a 
decrease in the range of20 to 22 percent and 1 5  to 
1 6  percent, respectively. 
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Figure 3 
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5 8 9 5  * *  
5 9 4 2  * *  
5 9 7 6  * *  
5 9 8 5  * *  
6 0 9 0  * *  
6 3 5 6  * *  
6 5 3 9  * *  
6 7 2 0  * *  
6 9 1 2 * *  
7 3 0 9  * *  
7 7 2 8  * *  
8 1 2 5  * *  
8 5 2 2  * *  
8 9 1 9  * *  
9 4 1 0  * *  
9 4 6 5  * *  
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1 4 1 6 1 * *  
1 4 1 9 3 * *  

Figure 3 (continued) 
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Table 1 1  
I nstruct ion Count a n d  Va riat ions for Sca led Tra nsact ion 

I nstruction Original  Byte/Word Delta % Delta 

stb 0 1 74 + 1 74 N/A 
stw 0 2 1 9  + 2 1 9  N/A 

ldwu 0 1 2 1 5  + 1 2 1 5  N/A 

l d b u  0 1 2 1 6  + 1 2 1 6  N/A 
cmpbge 2 0 - 2  - 1 00 %  
cmovlbs 2 2 0 0 %  
a d d t  3 3 0 0 %  
cmovlbc 5 4 - 1  - 2 0 %  
cmovle 5 5 0 0 %  
i nsqh 6 6 0 0 %  
cmovgt 1 3  1 3  0 0 %  
cal lsys 1 8  1 4  - 4  - 22 %  
m u l q  1 3  1 3  0 0 %  
s8subq 1 7  1 7  0 0 %  
cmovlt 1 6  1 6  0 0 %  
ldt 2 5  2 5  0 0 %  
z a p  34 3 3  - 1  - 3 %  
u m u l h  3 5  3 5  0 0 %  
m u l l  60 62 + 2  + 3 %  
arnot 52 52 0 0 %  
cmpeq 64 6 1  - 3  - 5 %  
insql  6 1  6 1  0 0 %  
b i bs 69 69 0 0 %  
s8a d d l  7 1  74 + 3  + 4 %  
mskwl 74 0 - 74 - 1 00 %  
jsr 98 89 - 9  - 9 %  
cpys 1 04 4 1  - 63 - 6 1 % 
mskqh 1 5 5 1 53 - 2  - 1 %  
cmovne 1 47 1 4 1  - 6  - 4 %  
mskbl 1 63 0 - 1 63 - 1 00 %  
cmoveq 1 83 1 73 - 1 0  - 5 %  
i nsbl  1 82 1 9  - 1 63 - 90 %  
extwh 1 96 1 96 0 0 %  
trapb 203 2 1 5  + 1 2  + 6 % 
mskq l 204 202 - 2  - 1 %  
j m p  208 200 - 8  - 4 %  
cmovge 2 9 1  287 -4 - 1 %  
blbc 249 249 0 0 %  
bgt 3 3 1  328 -3 - 1 %  
ld l_l 344 3 3 5  - 9  - 3 %  
stl_c 344 3 3 5  - 9  - 3 %  
extq l 329 327 -2 - 1 %  

For the scaled transaction, a decrease i n  58  out of 
8 1  instructions types occurred . Of the remain ing 25  
i nstructions, 2 1  had no change and on ly  4 i nstructions, 
m u l l ,  s8addl ,  trapb, and sub], showed an i ncrease . For 
cached transactions, 22 instruction counts decreased , 
29 increased, and 22 remained unchanged . 

The performance gain of 3 . 5  percent measured for 
the cached version of the application benchmark cor
relates c losely to the decrease in  the number  of 
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Instruction Original  Byte/Word Delta % Delta 

stt 334 334 0 0 %  
c m p l e  368 358 1 0  - 3 %  
i nswl 390 207 1 83 -47% 
sri 457 398 59 - 1 3 %  
extq h 441 3 1 7  1 24 - 28% 
em p u l e  468 450 1 8  - 4 %  
c m p u lt 563 5 1 8  45 - 8 %  
cmplt  565 534 3 1  - 5 % 
rdteb 604 597 7 - 1 %  
extwl 660 345 3 1 5  - 48% 
stq_u 688 688 0 0 %  
bit  784 7 7 1  1 3  - 2 %  
b i c  7 7 1  347 424 - 55 %  
ext I I  789 7 6 1  2 8  - 4 %  
ext l h  789 7 6 1  2 8  - 4 %  
bge 828 8 1 9  9 - 1 %  
m b  9 6 1  94 1 20 - 2 %  
s l l  949 590 359 - 38% 
sub I 1 052 1 06 1  (9) + 1 %  
br 1 1 60 1 080 80 - 7 %  
sra 1 2 1 1  562 649 - 54% 
bsr 1 203 1 1 9 1 1 2  - 1 %  
s4a d d l  1 1 76 1 1 66 1 0  - 1 %  
ret 1 282 1 2 64 1 8  - 1 %  
za pnot 1 262 9 1 0  3 5 2  - 28% 
addq 1 704 1 685 1 9  - 1 %  
subq 2 1 59 2 1 40 1 9  - 1 %  
l d a h  2793 2746 47 - 2 %  
extb l  2902 1 668 1 234 - 4 3 %  
x o r  3426 3380 46 - 1 %  
a n d  3402 2969 433 - 1 3 %  
bne 4537 4440 97 - 2 %  
a d d  I 4897 4855 42 - 1 %  
l d q_u 5046 3933 1 1 1 3 - 2 2 %  
stl 5753 5301 452 - 8 %  
I d a  6496 5435 1 06 1  - 1 6 % 
stq 6778 67 1 3  65 - 1 %  
ldq 7 0 1 8 6 5 1 9  - 499 + 7 %  
beq 7607 7455 1 52 - 2 %  
b is 1 1 284 1 0707 577 - 5 % 
l d l  1 5962 1 4260 1 702 - 1 1 %  
Totals 1 1 5895 1 07854 8042 - 7 % 

i nstructions per transaction measured in Table 1 3 .  I f  
this corre l ation holds true, we would expect to sec a n  
i ncrease in  pcrri.>rmancc o f  approximately 7 percent 
t(>r scaled transactions runs .  

Dynamic Instruction Distribution 

The pcrtcxmancc of the Alpha microprocessor using 
technical  and commercia l workloads has been eva lu 
ated . '  The  commercial worklo::td used WJS debit-



Table 1 2  
I nstruct ion Count a n d  Va riat ions for Cached Tra nsact ion 

Instruction Original  Byte/Word Delta % Delta 

stb 0 1 74 + 1 74 N/A 

stw 0 2 1 7  + 2 1 7  N/A 

ldwu 0 1 1 89 + 1 1 89 N/A 

ldbu 0 1 333 + 1 333 N/A 

cmpbge 2 0 - 2  - 1 00 %  
cmovlbs 2 2 0 0 %  
a ddt 3 3 0 0 %  
cmov l bc 4 5 + 1  + 2 5 %  
cmovle 5 5 0 0 %  
i nsqh 6 6 0 0 %  
cmovgt 1 3  1 3  0 0 %  
ca l lsys 1 5  1 6  + 1  + 7 %  
m u l q  1 3  1 3  0 0 %  
s8subq 1 3  1 4  + 1  + 8 %  
cmovlt 1 6  1 6  0 0 %  
ldt 25 25 0 0 %  
zap 2 6  2 7  + 1  +4% 
u m u l h  3 2  32 0 0 %  
m u l l  46 48 + 2  + 4 %  
ornot 46 46 0 0 %  
c m peq 53 53 0 0 %  
i nsql  61  61  0 0 %  
b i bs 63 63 0 0 %  
s8a d d l  6 9  70 + 1  + 1 %  
mskwl 73 0 - 7 3  - 1 00 %  
jsr 90 92 + 2  + 2 %  
cpys 87 4 1  -46 - 53 %  
mskq h 1 52 1 57 + 5  + 3 %  
cmovne 1 60 1 65 + 5  + 3 %  
mskbl  1 63 0 - 1 63 - 1 00 %  
cmoveq 1 82 1 90 + 8  + 4 %  
i nsbl  1 82 1 9  - 1 63 - 90 %  
extwh 1 9 5 1 96 + 1  + 1 %  
trapb 2 1 0  2 1 1 + 1  0 %  
mskql  201  203 + 2  + 1 %  
j m p  209 2 1 5 + 6  + 3 %  
cmovge 226 236 + 1 0  + 4 %  
b l bc 238 238 0 0 %  
bgt 292 302 + 1 0  + 3 %  
l d l_l 3 1 4  320 + 6  + 2 %  
stl_c 3 1 4  320 + 6  + 2 %  
extql 326 329 + 3  + 1 %  

cred it, vvhich is similar to the TPC-A benchmark. The 
TPC- B benchmark is similar to the TPC-A, differing 
only in i ts method of execution .  Cvetanovic and 
Bhandarkar presented an instruction d istri bution 
matrix f(x the debit-cred i t  workload . The Alpha 
instruction type mix is dominated by the i nteger class, 
tol lowed by other, load, branch , and store i nstructions, 
in descend ing order. 1 7  We took a similar approach 
but d ivided the instructions i nto more groups to 
achieve a tiner detailed distribmion . Table 1 3  gives the 

I nstruction Orig inal Byte/Word Delta % Delta 

stt 334 334 0 0 %  
c m p l e  367 374 + 7  + 2 %  
i nswl 381  203 - 1 78 - 47 %  
sr i  433 383 - 50 - 1 2 % 
extqh 434 3 1 4  - 1 20 - 28 %  
c m p u l e  450 440 - 1 0  - 2 %  
c m p u lt 550 572 + 22 + 4 %  
c m p lt 5 6 1  585 + 24 + 4 %  
rdteb 587 590 + 3  + 1 %  
extwl 654 340 - 3 1 4  -48% 
stq_u 689 687 - 2  0 %  
bit 7 5 1  770 + 1 9  + 3 %  
bic  7 5 9  346 - 4 1 3 - 54 %  
ext I I  784 805 + 2 1  + 3 %  
ext l h  784 805 + 2 1  + 3 %  
bge 8 1 3  8 3 1  + 1 8  + 2 %  
m b  883 9 0 1  + 1 8  + 2 %  
s l l  899 569 - 330 - 3 7 %  
s u b  I 983 995 + 1 2  + 1 %  
br 1 1 30 1 1 00 - 30 - 3 %  
sra 1 1 34 528 - 606 - 53 %  
bsr 1 1 58 1 1 65 + 7  + 1 %  
s4a d d l  1 1 60 1 1 70 + 1 0  + 1 %  
ret 1 232 1 239 + 7  + 1 %  
z a p  not 1 247 9 1 1 - 336 - 2 7 %  
addq 1 589 1 63 1  + 42 + 3 %  
subq 1 994 2046 + 52 + 3 %  
l d a h  2684 269 1 + 7  + 0 %  
extbl  2921  1 682 - 1 239 - 4 2 %  
x o r  3 2 7 8  3332 + 54 + 2 %  
and 3361  2990 - 3 7 1  - 1 1 %  
bne 4328 4376 +48 + 1 %  
add I 4734 4856 + 1 22 + 3 %  
ldq_u 506 1 4046 - 1 0 1 5 - 20 %  
stl 54 1 8  5052 - 366 - 7 %  
Ida 6289 5344 - 945 - 1 5 % 
stq 6464 6588 + 1 24 + 2 %  
ldq 6685 6359 - 326 - 5 %  
beq 7 3 5 5  7466 + 1 1 1  + 2 %  
bis  1 0890 1 0668 - 222 - 2 %  
l d l  1 4964 1 3772 - 1 1 92 - 8 %  
Totals 1 1 1 288 1 06521 - 4767 - 4 %  

i nstruction makeup of each group. Figure 4 shows the 
percentage of instructions i n  each group for the tour 
a l ternatives we studied .  In  a l l  four cases, I NTEGER 
LOADs make up 3 2  percent of the instructions exe
cuted.  In tbe scaled Byte/Word category, the new 
ld bu and ldwu instructions compose l percent of the 
integer i nstructions, and the new stb and stw i nstruc
tions accounted for 1 8  percent of the integer store 
instructions executed.  
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Table 1 3  
I nstruction Groupi ngs 

Instruction 
G roup Group Mem bers 

I nteger loads l dwu, l d bu, l d l_l,  l d a h, l d q_u, 
Ida, ldq, l d l  

I nteg er stores stb, stw, stl_c, stq_u, stl, stq 

I nteg er control b i bs, jsr, j m p, b l bc, bgt, b it, bge, 
b r, bsr, ret. bne, beg 

I ntege r  a r ithmet i c  cm pbge, s8su bq, u m u l h, m u l l, 
cmpeq, s8a d d l ,  c m p l e, c m p u l e, 
c m p u lt. c m p lt, s u b l, s4a d d l ,  
addq,  subq, add I 

Log ica l  sh ift cmovl bs, cmovl bc, cmovle, 
cmovgt, cmovlt. ornot. cmovne, 
cmoveq, cmovge, sri, bic, s l l ,  sra, 
xor, and, bis 

Byte m a n i p u lat ion i ns l l, ins lh ,  msk l l, mskhl ,  i nsqh, 
zap, insql,  mskwl, mskqh, mskbl,  
insbl,  extwh, i nsbl ,  extwh, mskql,  
extql ,  i nswl, extqh, extwl, ext l l ,  
ext l h ,  z a pnot, extb l  

Other ad dt, ldt, stt, m u lq,  c a l l sys, cpys, 
tra pb, rdteb, m b  

During the sCJ icd tra nsactions, each instruction 
group showed a decrease i n  the n u m ber of i nstruc
tions exec u ted,  ra nging from negl igible to as much as 
54 percent .  In addition, the n u m ber of byte manipu la
tion and logical sh ift i nstructions decreased, because 
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BYTE/WORD 
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SCALED 
BYTE/WOR D  
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KEY 
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Figure 4 
l nsl rucrion Group Distribution 
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the method of load i ng or stori ng byres :\ lld words 
on the orig ina l  Alpha Arch itecture made h cJ\'\' usc of 
these types of instructions. 

In  our last examination, \\'e l ooked �l t the instruc
tion \'ariation between a suled and a cached trans
action .  The major d i fference betwee n the two 
transactions is the additional I/0 req u i red by the 
scaled version of the bench mark. Table 14 gives the 
resu lts. The Origina l  versi on of the SQL Server cbt:t 
basc execu ted an e xtra 4,596 i nstructions d u ring the 
cJchcd tr:tnsaetion as compared to the sca l ed trans
action.  for the Byte/Wor d  version,  only an additional 
I ,334 i nstructions were executed . 

Conclusions 

The i ntrod uction of the ne\\" single byte and \\"ord 
mani f1t t !ation i nstructions in the A lpha Arch i tectu re 
improved the performance of the M icrosoft SQ L 
Server database . \Ve observed a decrease in the n u m 
ber of instructions executed p e r  transaction, the 
e l i mi nation of some i nstructions in the \\"orklo:td , •l 

red istri bution of the i nstruction m i x ,  and an increase 
i n  rebti\'e pcrt(mlunce . The resu l ts arc in  line wi th 
cxpect:ttions when the  add ition of the nc\\" i nstruc
tions was proposed . 

We l i m i ted our  i nvestigation to J s ingle commercial  
workl oad :: l!ld operating system .  Testing a work!oJd 
with more TjO, such as the TPC-C benchmark, wou ld  

50 
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Ta ble 1 4  
I nstruct ion Va riat ions (Sca led M i nus Cached Tra nsact ions) 

I nstruction Original  Byte/Word Instruction Original  Byte/Word Instruction Original  Byte/Word 

stw 0 - 2  cm plt 
ldwu 0 - 2 6  rdteb 
l d b u  0 + 1 1 7 extwl 
cmovlbc - 1  + 1  stq_u 
c a l l sys - 3  + 2  bit 
s8subq -4 -3 b ic  
zap -8 -6 ext I I  
u m u l h  - 3  - 3  ext l h  
m u l l  - 1 4  - 1 4  bge 
arnot - 6  - 6  m b  
cm peq - 1 1  - 8  s l l  
b i bs - 6  - 6  cmovge 
s8a d d l  - 2  - 4  b l bc 
mskwl - 1  0 bgt 
jsr - 8  + 3  l d l_l 
cpys - 1 7  0 st l_c 
mskq h - 3  + 4  extql  
cmovne + 1 3  +24 cmple 
cmoveq - 1  + 1 7  i nsw l 
extwh - 1  0 sr i  
tra pb + 7  - 4  extqh 
mskq l - 3  + 1  c m p u l e  
j m p  + 1  + 1 5  c m p u lt 

prod uce J d i tkrent set of res u l ts Jnd wou ld merit 
i nvestig:�tio n .  The use of another database, such �1s the 
Oracle RDBMS, which makes greater usc of bytc oper
:ltions, wou l d  possi bly resu l t  in an even greater pcrt(Jr
mancc i m p�Kt .  L:1stly, rebui ld ing the entire operating 
system to usc the new instructions wou l d  m:1ke an 
i n teresti ng and worthwh i le  study. 
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-4 + 5 1  sub I - 69 - 66 
- 1 7  - 7  b r  - 3 0  + 20 

- 6  - 5  sra - 7 7  - 3 4  
+ 1  - 1  bsr - 45 - 2 6  

- 3 3  - 1  s4a d d l - 1 6  + 4  
- 1 2  - 1  ret - 50 - 2 5  

- 5  + 44 za pnot - 1 5  + 1  
- 5  +44 addq - 1 1 5  - 54 

- 1 5  + 1 2  subq - 1 65 - 94 
- 7 8  -40 l d a h  - 1 09 - 55 
- 50 - 2 1  extbl  + 1 9  + 1 4  
- 65 - 5 1 xor - 1 48 - 48 
- 1 1  - 1 1  a n d  - 4 1  + 2 1  
- 39 - 2 6  b n e  - 209 - 64 
- 3 0  - 1 5  a d d  I - 1 63 + 1  
- 3 0  - 1 5  l dq_u + 1 5  + 1 1 3 

- 3  + 2  stl - 33 5  - 249 
- 1  + 1 6  Ida - 207 - 9 1  
- 9  - 4  stq - 3 1 4  - 1 25 

- 24 - 1 5  l d q  - 333 - 1 60 
- 7  - 3  beq - 2 5 2  + 1 1  

- 1 8  - 1 0  bis  - 394 - 39 
- 1 3  + 54 l d l  - 998 -488 

Totals - 4596 - 1 334 
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