
I
PROGRAMMING LANGUAGES & TOOLS

Volume 10 Number 1
1998

Editorial
jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Hden L. Patterson, Editor

Circulation
Kristine M. Lowe, Administrator

Production
Christa W. Jessica, Production Editor
Elizabeth McGrail, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Thomas F. Gannon, Chairman (Acting)
Scott E. Cutler
Donald Z. Harbert
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robcrt M. Supnik

Cover Design
This special issue of the jounw/ focuses on
Programming Languages & Tools, specifi
cally on compiler software. For the cover,
wc have chosen the alchemist who trans
forms common elements into precious gold
to represent the compiler developer who
transforms code to extract the highest per
formance possible for software applications.

The cover was designed by Lucinda O'Neill
of the Compaq Industria! and Graphic
Design Group.

The Digital Technicaljoumalis a refereed
journal published quarterly by Compaq
Computer Corporation, 550 King Street,
LKGI-2jW7, Littleton, MA 01460-1289.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Compaq Computer Corporation) to the
published-by address. General subscription
rates arc $40.00 (non-U.S. $60) for four issues
and $75.00 (non-U.S. $1 15) for eight issues.
University and college professors and Ph.D.
students in the elecu·icaJ engineering and com
puter science fields receive complimentary sub
scriptions upon request. Compaq customers
may qualify tor gift subscriptions and arc encour
aged to contact tl1eir sales representatives.

Electronic subscriptions are available at
no charge by accessing URL
http:jjwww.digital.com/subscription.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues can be ordered
by sending tl1e requested issue's volume and
number and a check for $16.00 (non-U.S.
$18) each to tl1e published-by address. Recent
issues arc also available on me Internet at
http://www.digital.com/ dtj.

Compaq employees may order subscrip
tions through Readers Choice at URL
http://web rc.das.dec.com.

Inquiries, address changes, and compli
mentary subscription orders can be sent
to the Dlj!,ital Technica/Joumal at tl1e
published-by address or tl1e electronic
mail address, ctj@compaq.com. Inquiries
can also be made by calling U1e.fournal
office at 978-506-6858.

Comments on the content of any paper and
requests to contact autl1ors are welcomed
and may be sent to tl1e managing editor at
tl1e published-by or electronic mail address.

Copyright© 1998 Compaq Computer
Corporation. Copying wimout fee is per
mitted provided that such copies are made
f·or usc in educational institutions by faculty
members and are not distributed for com
mercial advantage. Absu·acting with credit
of Compaq Computer Corporation's author
ship is permitted.

The information in tl1e journal is subject
to change without notice and should not
be construed as a commitment by Compaq
Computer Corporation or by the compa
nies herein represented. Compaq Computer
Corporation assumes no responsibility for
any errors that may appear in t11e./OII/'I/Cii.

ISSN 0898-90IX

Documentation Number EC-P9706-I8

Book production was done by Quantic
Communications, Inc.

AlphaServer, Compaq, tl1e Compaq logo,
DEC, DIGITAL, tl1e DIGITAL logo,
ULTIUX, VAX, and VMS are registered
in the U.S. Patent and Trademark Office.

DIGITAL UNIX, FX132, and Open VMS
arc trademarks of Compaq Computer
Corporation.

Intel and Pentium are registered u·ademarks
of Intel Corporation.

I lUX is a registered trademark of Silicon
Graphics, Inc.

Microsoft, Visual C++, Windows, and
Windows NT are registered trademarks
of Microsoft Corporation.

MIPS is a registered trademark of MIPS
Technologies, Inc.

NULLSTONE is a trademark ofNullstonc
Corporation.

Roque Wave and .h++ are registered trade
marks of Roque Wave Software, Inc.

RS/6000 is a registered trademark of
International Business Machines C01voration.

Solaris is a registered trademark of Sun
Microsysrems, Inc.

SPARC is a registered trademark of SPARC
International, Inc.

SPEC and SPECint are registered trademarks
of Standard Performance Evaluation
Corporation.

UNIX is a registered trademark in the United
States and in other countries, licensed exclu
sively through X/Open Company Ltd.

Other product and company names mentioned
herein may be trademarks and/or registered
trademarks of their respective owners.

December 1998

A letter to readers of the Dip,ital Technical journal

This issue is the last Digital Technicaljournal to be published. Since 1985, the

Journal has been privileged to publish intormation about significant engineeting

accomplishments for DIGITAL, including standards-setting network and storage

teclmologies, industry-leading VAX. systems, record-breaking Alpha microproces

sors and semiconductor technologies, and advanced application software and

performance tools. The Journal has been rewarded by continual growth in

rhe number of readers and by rheir expressions of appreciation for the quality

of content a.nd presentation.

The editors dunk rhe engineers who somehow made d1e time to write, the engi

neering managers who supported rhem, rhe consulting engineers and professors

who reviewed manuscripts and made rhe process a learning experience for all of

us, and, of course, the readers who are the reason the Journal came into existence

13 years ago.

With kind regards,

Jane Blake

Managing Editor

Kathleen Stetson

Editor

Helen Patterson

Editor

Digital Technical Journal
Volume 10 Number 1

Contents

Introduction

Foreword

Tracing and Characterization of Windows NT -based

System Workloads

Automatic Template Instantiation in DIGITAL C++

Measurement and Analysis of C and C++ Performance

Alias Analysis in the DEC C and DIGITAL C++ Compilers

Compiler Optimization for Superscalar Systems:

Global I nstruction Scheduling without Copies

Maximizing Multiprocessor Performance

with the SUIF Compiler

Debugging Optimized Code: Concepts and

Implementation on DIGITAL Alpha Systems

Differential Testing for Software

C. Robert Morgan, Guest Editor 2

William C. Blake 4

Jason P. Casmira, David P. Hunter, 6
and David R. Kael i

Avrum E . I tzkowitz and Lois D . Foltan 22

Hemant G. Rotithor, Kevin W. Harris, 32
and Mark W. Davis

August G. Reinig 48

P hi l ip H. Sweany, Steven M. Carr, 58
and Brett L. H uber

Mary W. Hall, Jennifer M . Anderson, 71
Saman P. Amarasinghe, Brian R. Murphy,

Shih-Wei Liao, Eduoard Bugnion, :md Monica S. Lam

Ronald F. Brender, Jeffrey E. Nelson, 81
and Mark E. Arsenault

William M. McKeeman 100

2

Introduction

C. Robert Morgan
Senior Consulting Engineer and
Technical Program Manage1;
Core Technology Croup

Digital Technical Journal

The complexity of high-performance

systems and d1e need tor ever-increased

performance to be gained from those

systems creates a challenge for engi

neers, one d1at requires bod1 experience

and innovation in the development

of software tools. The papers in this

issue of tJ1e]ournal are a few selected

examples of the work performed

within Compaq and by researchers

worldwide to advance me state of me

art. In fact, Compaq supports rele

vant research in programming lan

guages and tools.

Compaq has been developing

high-performance tools for more
than thirty years, starting with the

Fortran compiler for the DIGITAL

PDP-10, introduced in 1967. Later

compilers and tools for VAX com

puter systems, introduced in 1977,

made the VA.'< system one of me most

usable in history. The compilers and

debugger for VAXjVMS are exem

plary. With the introduction of the

VfuY.. successor in 1992, the 64-bit
RISC Alpha systems, Compaq has

continued me tradition of developing

advanced tools that accelerate appli

cation performance and usability for
system users. The papers, however,

represent not only the work of
Compaq engineers but aJso that of

researchers and academics who are

working on problems and advanced

techniques of interest to Compaq.

The paper on cbaractetization of

system workloads by Casmira, Hw1ter,

and Kaeli addresses the capture of

basic data needed for me development

of tools and high-performance appli

cations. The authors' work focuses

on generating accurate profile and
trace data on machines running the

Windows NT operating system.

Vol. 10 No.1 1 998

Profiling describes the point in the

program that is most frequently

executed. Tracing describes the

commonly executed sequence of

instructions. In addition to helping

developers build more efficient

applications, this information assists

designers and implementers of future

Windows NT systems.

Every compiler consists of two

components: the front end, which

analyzes the specific language, and

the back end, which generates opti

mized instructions for the target

machine. An efficient compiler is a

balance of both components. As lan

guages such as C++ evolve, the com

piler front end must also evolve to

keep pace. C++ has now been stan

dardized, so evolutionary changes

will Jessen. However, compiler devel
opers must continue to improve

front-end techniques for implement

ing the language to ensure ever better

application performance. An impor

tant feature of C++ compiler develop

ment is C++ templates. Templates

may be implemented in multiple
ways, with varying effects on appli

cation programs. The paper by

Itzkowitz and Foltan describes
Compaq's efficient implementation
of templates. On a related subject,

Rotid1or, Hanis, and Davis describe

a systematic approach Compaq has
developed for monitoring and

improving C++ compiler perfor

mance to minimize cost and maxi
mize function and reliability.

Improved optimization techniques

for compiler back ends are presented
in three papers. In the first of d1ese,

Reinig addresses the requirement in

an optimizing compiler for an accu
rate description of the variables and

fields that may be changed by an
assignment operation, and describes
an efficient technique used in the
C/C++ compilers for gathering this

information. Sweany, Carr, and Huber
describe techniques for increasing
execution speed in processors like
the Alpha that issue multiple instruc
tions simultaneously. The technique
reorders the instructions in the pro
gram to increase the number of
instructions that are simultaneously
issued. Maximizing the performance
of multiprocessor systems is the sub
ject of the paper by Hall et al., which
was previously published in IEEE
Computer and updated with an
addendum for this issue. The authors
describe the SUIF compiler, which
represents some of the best research
in this area and has become the basis
of one part of the ARPA compiler
infrastructure project. Compaq
assisted researchers by providing the
DIGITAL Fortran compiler fi-ont end
and an AJphaServer 8400 system.

As compilers become more effec
tive in increasing application program
performance, the ability to debug
the programs becomes more difficult.
The difficulty arises because the
compiler gains efficiency by reorder
ing and eliminating instructions.
Consequently, the instructions for
an application program are not easiJy
identifiable as part of any particular
statement. The debugger cannot
always report to the application pro
gram where variables are stored or
what statement is currently being
executed. Application programmers
have two choices: Debug an unopti
mized version of the program or find
some other technique for determining
the state of the program. The paper

by Brender, Nelson, and Arsenault
reports an advanced developmt:nt
project at Compaq to provide tech
niques for the debugger to discover
a more accurate image of the state of
the program. These techniques are
currently being added to Compaq
de buggers.

One of the problems that tool
developers face is increasing tool reli
ability. Tool developers, therefore,
test the code. However, developers
are often biased; they know how their
programs operate, and they test cer
tain aspects of the code but not oth
ers. The paper by McKeeman describes
a technique called differential testing
that generates correct random tests of
tools such as compilers. The random
nature of the tests removes the devel
opers' bias. The tool can be used for
two purposes: to improve existing
tools and to compare the reliability
of competitive tools.

The High Performance Technical
Computing Group and the Core
Technology Group within Compaq
are pleased to help develop this issue

of the]ournal. Studying the work
performed within Compaq and by
other researchers worldwide is one
way tlut we remain at the cutting
edge of technology of programming
language, compiler, and program
ming tool research.

Digital Technical Journal Vol. 10 No. I 1998 3

4

Foreword

William C. Blake
Director, High Performance
Technical Computing and
Core Technologv Gruups

Digital Technical Journal

You might think that the cover of this
issue of the Digital Tecbnicaljournal
is a bit odd. After all, what could be
the relevance of those ancient alchemists

in the drawing to the computer-age
topic of programming languages and
tools? Certainly, both alchemists and
programmers work busily on new
tools. An even more interesting
metaphorical connection is the
alchemist and the compiler software
developer as creators of tools that
transform (transmute, in the strict
sense of alchemy) tbe base into the
precious. The metaphor does, how
ever, break down. Unlike the mytl1
and folklore of alchemy, the science
and technology of compiler software
development is a real and important
part of processing a new solution or
algorithm into the correct and high
est performance set of actual machine
instructions. This issue of tl1ejournal
addresses current, state-of-the-art
work at Compaq Computer Corp
oration on programming languages
and tools.

Gone are the days when program
mers plied their craft "close to the
machine," tlut is, working in detailed
machine instructions. Today, system
designers and application developers,
driven by the pressures of time to
market and technical complexity,
must express their solutions in terms
"close to the programmer" because
people think best in ways that are

abstract, language dependent, and
machine independent. Enhancing
the characteristics of an abstract
high-level language, however, con
flicts with the need tor lower level
optimizations tl1at make tl1e code
run f:1stest. Computers still require
detailed machine instructions, and

Vol. 1 0 No. I 1998

the high-level programs close to the

programmer must be correctly com
piled into those instructions. This
semantic gap between programming
languages and machine instructions is
central to the evolution of compilers
and to microprocessor architectures
as well. The compiler developer's role
is to help close tbe gap by preserving
the correctness of the compilation
and at the same time resolving the
trade-offs between the optimizations
needed tor improvements "close to
the programmer" and those needed
"close to the machine."

To put the work described in tl1is
journal into context, it is helptl.IJ to
think about the changes in compiler
requirements over tl1e past 15 years.

It was in the early 1980s that the direc
tion of future computer architectures
changed rrom increasingly complex
instruction sets, CISC, that supported
high-level languages to computer
architectures with much simpler,
reduced instruction sets, RJSC. Three
key research efforts led the way: the
Berkeley RJSC processor, the IBM
801 RISC processor, and the Stanford
MIPS processor. Nl three approaches
dramatically reduced the instruction
set and increased the clock rate. The
RISC approach promised improve
ments up to a factor of five compared
witl1 CISC machines using the same
manufacturing technology. Compaq's
transition rrom the VAX to the Npha
64-bit RISC architecture was a direct
result of the new architectural trend.

As a consequence of these major
architectural changes, compilers and
their associated tools became signifi
cantly more important. New, much
more complex compilers for RISC
machines eliminated the need tor the

large, microcoded CISC machines.

The complexities of high-level lan

guage processing moved from the

petri tied software of CISC micro

processors to a whole new generation

of optimizing compilers. This move

caused some to claim that ruse really

stands for "Relegate Important Stuff

to Compilers."
The introduction of the third-gen

eration Alpha microprocessor, the

21264, demonstrates that the shift to

ruse and AJpha system implementa

tions and compilers served Compaq

customers well by producing reliable,

accurate, and high-performance com
puters. In fact, AJpha systems, which

have the ability to process over a bil

lion 64-bit floating-point numbers

per second, pertorm at levels formerly

attained only by specialized super

computers. It is not surprising that

the AJpha microprocessor is the most

frequendy used microprocessor in the

top 500 largest supercomputing sites

in the world.

After reading through the papers

in this issue, you may wonder what is

next for compilers and tools. As phys

ical limits curtail the shrinking of sili
con feature sizes, there is not likely to

be a repeat of the performance gains
at the microprocessor level, so atten
tion will turn to compiler technology
and computer architecture to deliver
the next thousandfold increase in sus
tained application pertormance. The

two principal laws that atfect drama6c
application pertormance improve

ments are Moore's Law and Amdahl's

Law. Moore's Law states d1at perfor

mance will double each 1 8 months
due to semiconductor process scaling;

and Amdahl's Law expresses the

diminishing returns of various system

speedup enhancements. In the next
1 5 years, Moore's Law may be stopped

by the physical reali6es of scaling lim

its. But Amdahl's Law will be broken

as well, as improvements in parallel

language, tool development, and new

methods of achieving parallelism wiU

posi6vely affect the future of compil

ers and hence application performance.

As you will see in papers in this issue,

there is a new emphasis on increasing

execution speed by exploiting the

multiple instruction issue capability of

AJpha microprocessors. Improvements

in execu6on speed will accelerate dra

matically as future compilers exploit

performance improvement techniques

using new capabilities evolved in AJpha.

Compilers will deliver new ways of

hiding instruc6on latency (reducing

the pertormance gap bel:\veen vector

processors and IUSC superscalar

machines), improved unrolling and

optimization of loops, instruction

reordering and scheduling, and ways

of dealing with parallel decomposi-

6on and data layout in nonuniform

memory architectures. The challenges

to compiler and tool developers will

undoubtedly increase over 6me.
By not relying on hardware

improvements to deliver all the
increases in performance, compiler
wizards are making their own contri

butions- always watchful of correct
ness first, d1en run-time performance,

and, finally, speed and efficiency of the

software development process itself

Digital Technical Journal Vol . 10 No. 1 1 998 5

6

Tracing and
Characterization of
Windows NT-based
System Workloads

To optimize the design of pipelines, branch pre

dictors, and cache memories, computer archi

tects study the characteristics of benchmark

programs by examining traces, i.e., samples of

program execution. Since commercial desktop

applications are increasingly dependent on ser

vices and application programming interfaces

provided by the host operating system, the

authors argue that traces from benchmark exe

cution must capture operating system execution

in addition to native application execution.

Common benchmark-based workloads, how

ever, lack operating system execution. This

paper discusses the ongoing joint efforts of the

Northeastern University Computer Architecture

Research Laboratory and Compaq Computer

Corporation's Advanced and Emerging Tech

nologies Advanced Development Group to cap

ture operating system-rich traces on Alpha

based machines running the Windows NT oper

ating system. The authors describe the latest

PatchWrx software toolset and demonstrate its

trace-generating capabilities by characterizing

numerous applications. Included is a discussion

of the fundamental differences between using

traces captured from common benchmark pro

grams and using those captured on commercial

desktop applications. The data presented

demonstrates that operating system execution

can dominate the overall execution time of

desktop applications such as Microsoft Word,

Microsoft Visual C/C++, and Microsoft Internet

Explorer and that the characteristics of the

operating system instruction stream can be

quite different from those typically found in

benchmarking workloads.

Digital Technic� I journal Vol. 10 No. l 1 998

I
Jason P. Cas mira
David P. Htmter
David R. Kaeli

The computer architecture research communiry com
monly uses trace-driven sim ulation in pursuing
answers to a variety of design issues. Archi tects spend a
significant amoun t of ti me studying the characteristics
of benchmark programs by examin ing traces, i .e ., sam
ples taken from program execu tion . Popu lar bench
mark programs inc lude the SPEC' and the BYTEmark2
benchmark test su i tes. Since the underlying assump
t ion is that these programs generate workloads that
represent user applications, today's computer designs
have been optimized based on the c l1aracteristics of
these benchmark programs.

Although the authors of popu l ar benchmarks arc
wel l i n tentioned, the resulti ng workloads lack operat
ing system execution and consequent ly do not repre
sent some of the most prevalen t desktop applications,
e.g., Microsoft Word , Microsoft Visua l C/C++, and
Microsoft Internet Explorer. Such applications make
heavy use of app l ication programming inted:1ces
(APis) , which in turn execute many instructions in the
operat ing system. As a resu lt, the overal l performance
of many desktop applications depends on efficient
operating system interaction . C learly operating system
overhead can greatly reduce the benefits of a new
compu ter design feature. Past archi tectural studies ,
however, have general ly ignored operating system
interaction because few tools can generate operating
system-rich traces.

This paper d iscusses the ongoing joint ef forts of
Northeastern U niversi ty and Compaq Computer
Corporation to capture operating system-rich traces on
DIGITAL Alpha-based machines running the Microsoft
Windo>vs NT operating system. We argue th:tt tor u·aces
of today's workloads to be accurate, they must capture
the operating system execution as well as the native appli
cation execution . This need to capture complete pro
gram u·ace in formation has been a dtiving fen-ce behind
the development and use of software tools such as the
PatchWrx dynamic execution-tracing toolset, which we
desctibe i n this paper.

The PatchvVrx toolset was origi nally developed by
S ites and Perl at Digi tal Equ ipment Corporation's
Systems Research Center. They described P:ttchWrx, as
developed for vVindows NT version 3.5, in "Studies of

Windows NT Performance Using Dynamic Execution
Traces."> The Northeastern University Computer
Architecture Research Laboratory and Compaq's
Advanced and Emerging Technologies Advanced
Development Group continue to develop the toolset.
We have updated the framework to operate under
Wi ndows NT version 4.0, added the ability to trace
programs that have code sections larger than 4 mega
bytes (MB), added multiple trace buffer sizes, and
developed additional postprocessing tools.

After briefly discussi ng related tracing tools, we
describe the PatchWrx toolset and specify the new
features we have ad ded. We then analyze PatchWrx
traces captured on Wi ndows NT version 4.0, demon
strating the capabilities of the tool while illustrati ng
the im portance of capturing operating system-rich
traces. In the final section, we su mmarize the paper,
discuss the current l imitations of the toolset, and sug
gest new directions for development and study.

Trace Generation Tools

Trace-driven simulation has been the method of
choice for evaluating the merits of various architec
tural trade-offs.'5 Traces captured from the system
under test are recorded and replayed through a model
of the proposed design. Computer architecture
researchers have proposed methodologies that capture
both application and operati ng system references.
These tools include hardware- based"- 10 and software
based' Hs methods. Some of the issues involved in cap
turing operating system-rich traces are

l. Tracing overhead (system slowdown)

2. Accuracy (perntrbation of the memory address space)

3. Completeness (capturing all desired information,
e .g . , the operating system reference stream)

Table 1 contains a list of 10 tracing tools that have
been developed over the past 10 to 15 years. Although

Tab le 1
Sample of Trac ing Tools

far from complete, th is list provides a sample of the
tools that have been used to generate input to a variety
of trace-driven sim ulation studies. 'vVe have character
ized each tool in terms of the three issues (criteria) pre
viously mentioned. Table llists the target plattorm(s)
for each tracing tool.

Note that many of these tools cannot capture oper
ating system activity. For those that can, their associ
ated slowdown can significantly affect the accuracy of
the captured trace . Of the tools that provide this capa
bility, Patch Wrx introduces the least amount of slow
down yet mai ntains the integrity of the address space.
The next section discusses the Patch Wrx toolset.

PatchWrx

Patch Wrx is a dynamic execution-traci ng toolset
developed for use on the Alpha- based Microsoft
W indows NT operating system. The toolset utilizes
the Privileged Architecture Library (PAL) facility, also
referred to as PALcode, of the Alpha microprocessor
to perform tracing with minimal overhead .2' PatchWrx
can instrument, i . e . , patch, all Windows NT applica
tion and system binary i mages, including the kernel,
operating system services, drivers, and shared libraries.
The PAL faci l ity is a set of architected fu nctions and
instructions that provides a consistent interface to a set
of complex system functions. These routines provide
pri mitives for memory management, context switch
ing, interrupts, and exceptions.

Patch Wrx and the Alpha PAL Routines

The PatchWrx software tool is made possible through
the PAL used by DIGITAL Alpha microprocessors.
PAL routines have access to physical memory and
i nternal hardware registers and operate with interrupts
disabled . PALcode is loaded from disk at system boot
time. We modified and extended the shrink-wrapped
Alpha PALcode on a DIGITAL Alpha 21064-based
system to support the PatchWrx operations. The mod-

Average Addr ess Operating
Name Slowdown Pertur bation

ATOM'3 lOX to lOOX No

ATUM'6 20X No

EEL" lOX to lOOX Yes

Etch'" 35X Yes

NT-Atom" lOX to lOOX No

PatchWrx3 4X No

Pixie'-0 lOX to lOOX Yes

QPT 12 lOX to lOOX Yes

Shade2' 6X No

SimOS14 1 OX to 50,000X No

System Activity Platfor m

Yes DIGITAL Alpha UNIX

Yes DIGITAL VA X Ope nVMS

No SPARC Solaris

No Intel x86 Microsoft Windows NT V4.0

No DIGITAL Alpha Microsoft Windows N T V4.0

Yes DIGITAL Alpha Microsoft Windows NT V4.0

No DIGITAL MIPS ULTRIX

No SPARC Sola r is, DIGITAL ULTRIX

No SPARC Solar is

Yes DIGITAL Alpha UNIX, SGIIRIX, SPARC Solar is

Digital TechnicJ! Journal Vol. 10 No. I 1998 7

8

i fied PatchWrx PAL rout ines serve two major pur
poses: (l) to reserve the trace bufkr at system boot
time and (2) to log trace entries at trace ti me.

One way that PatchWrx mai ntains a low operati ng
overhead is to store the captu red trace i n a physical
memory bu fter, w hich is reserved at boot time. The
size of the bu ffer can be varied depending on the
amount of physical memory i nstal led on the system .
Since we use PAL rou tines to reserve this memory, the
operati ng system is not aware that the memory exists
because the PALcode performs all low-level system i n i
tia l ization before t h e operating system is started.

PatchWrx logs all trace entries in this buffer. Writi ng
trace e ntries directly to physical memory h as several
advantages. F irst, writing to memory is much faster
th;m writ ing to disk or to tape. Second, using physical
memory a l lows tracing of the lowest levels of the oper
ating system (i .e . , the page fau l t h:md ler) without gen
erati ng page fau l ts . Third, usi ng physical memor}'
a l lows tracing across m u l ti ple threads r u n n i n g in m u l
tiple add ress spaces regardJess of which address space i s
currently running.

To enabl e PatchWrx to operate u nder Wi ndows NT
versions 3 . 5 1 and 4.0 , we started with the PA L rou
tines mod i fi ed by S ites and Perf and made additional
modi fications as required by the operating system ver
sions . These mod i fications were concentrated in the
process d ata structu res . The PatchWrx-specitlc PAL
routines are listed i n Ta ble 2 . The fi rst three routines
are used for read ing the trace entries tl·om the bu ffer
and for turning tracing on and off. The remain ing five
rou tines are used to log trace entries based on the type
of i nstruction i nstru mented .

Patch Wrx Image Instrumentation

Next we describe how we use PatchWrx to i nstru ment
M icrosoft Windows NT images. Patchi ng the o perat
i ng system involves the i nstru mentation of ::d l the
binary images, inc lud i ng app l ications, operating sys
tem cxecutables, l ibraries, and kerne l . O nce patching
is complete , trace e ntries are logged by means or' PA L
rou tines as i mages execute.

Table 2
PatchWrx-specific PAL Routines

PAL Routines Function

We define a patched i nstr uction as an i nstruction
with in an image's code section that is overwri tten wi th
an u ncon d i tional branch (B R) to a patc h . The target of
the B R contains the parch sec/ion . The patch section
i ncludes the trap (CA L L_PAL) to the appropriate PA L
routine that l ogs a trace e ntry corresponding to the
type of instruction p<1tched and the return branch to
the origin a l target.

PatchWrx docs not mod i fy the origina l b inary
i mages; i nstead , i t generates new i m ages that conta i n
patches. This operation preserves t h e origi nal i mages
on the system in case they need to be restored .
I nstrumentation i nvolves replaci ng a l l branching
i nstructions of type unconditional branch, cond itional
branch (e . g . , branch i f equal to zero [BEQ]) , branch
to subroutine (BSR), fu n ction retu rn (RET), j ump
(J M P) , and jump to su bro u ti n e (JSR) within an
i mage 's code section with unconditional bra nches to
a patch section. If loads and stores are a lso traced,
PatcbWrx rep l aces these i nstructions (e . g . , load sign
e x te nded longword [LD L]) with u n conditional
branches to tl1e patch section, where the original load
o r store i nstruction is copied . A return branch is also
needed to return control flow to the i nstruction subse
quent to the original load . Wnen PatchWrx enco u n
ters this patc h , t h e tool records t h e register value of the
original load or store i nstruction in the trace log. The
p atch section con tains all the patches for the i mage
and is added to the rewritten i mage. Figure l shows
examp les of patched i nstructions . Patch \rVrx rep laces
only branch instructions within an i mage to red uce the
type and n u m ber of en tries logged in the trace bu ffer.
Usi ng these traced branches, the tool can later recon
struct the basic blocks they represent.

As shown in Figure 1 , PatchWrx replaces B R and
J M P i nstructions with B R i nstructions that transfer
control to the patch sectio n . The original BR or J M P
instruction is repeated i n t h e patch section for the p u r
pose of record i n g the value or· the target register (i f
necessary) i n to the trace bu ffer when the patched
i mage is execu ted . This register val u e is necessary tor
reconstructi ng the traced i nstruction stream . Patch\Vrx

PWRDENT

PWPEEK

PWCTRL

PWBSR

PWJSR

PWLDST

PWBRT

PWB RF

Read a trace entry from trace memory

Read an arbitrary locat ion (for debug)

I n iti a l i ze, turn trac ing on/off

DigiL11 Technical Journ,l l

Record a branch to subrouti ne

Record a jump/call/return

Record a load/store base reg ister va l ue

Record a condit iona l branch taken bit

Record a condit iona l branch fa l l -through bit

Vul . !0 No. l 1 998

ORIGINAL CODE

EXAMPLE 1 MP ZERO , (R1 9)

EXAMPLE 2 J S R R2 6 , (R1 9)

EXAMPLE 3 BEQ R3 , TARGET . 0 0 3

EXAMPLE 4 LDL R2 0 , 4 (R1 6)

Figure 1
Instruction Patch Examples

replaces JSR and BSR instructions with BSR patches.
This replacement preserves the return address (RA)
register fie ld value, which contains the return address
for the subroutine. Again, the original i nstruction is
repeated in the patch section for register val ue record
ing during tracing to help facilitate reconstruction.

Conditional branches have a larger and more com
plex patch than the other branch types because the
original condition is duplicated and resolved within
the patch . The taken or fal l -through path generates a
bit value when logged within the taken or fall-th rough
trace entry. The return branch i n the patch section is a
rep l ica of the original cond i tional branch .

As explained earuer, tor all patches, PatchWrx replaces
the original branch with a patch unconclitional branch .
Since Alpha instructions are equal i n size, this replace
ment process al lows patching without increasing the
code size with in the i mage . Although the code size
remains unchanged, the image size wi l l increase in
proportion to the number of patches added. This

PATCHED CODE

Jl!P Z'i8RO, (Rl9) B R l?l>.TCH . 0 0 1

PATCH . O O l : CALL_PAL PltJJSR

J�lP ZERO , (R 1 9)

��� BSR R2 6 , PAT CH . 0 0 2

P.'\TCH . 0 0 2 : CALL_PAL PWJSR

JMP ZERO , (R l 9)

BEQ R3 . �RSE� . 002 BR PAT . H . 0 0 3
BACK . 0 0 3

PATCH . 0 0 3 :

PATCH . 0 0 3 T :

BEQ R 2 , PATCH . 0 0 3 T

Cli.LL_PAL PWBRF
BR BACK . 0 0 3

CAL _PAL P BRT
BR TARGET . 0 0 3

LDL R20 , 41Rl6) BR P TCH . 0 0 4

Bli.CK . 0 4

1?/I.TCH . 0 0 4 : CALL_PAL PWLDST

LDL R2 0 , 4 (Rl 6)
BR 8 ACK . 0 0 4

image size change becomes an issue for dynamical ly
l inked l ibrary (DLL) images.

Patching Dynamic Link Libraries

The Microsoft Windows NT operating system pro
vides a memory management system that al lows shar
ing between processes.n For example , two processes
that edit text files can share the text editor application
image that has been mapped into memory. When the
first process i nvokes the editor, the operating system
loads the appl ication into memory and maps the
process's virtual address space to i t . When the second
process i nvokes the editor, rather than load another
editor image, the operating system maps the second
process's virtual address space to the physical pages
that contain the editor. Of course, both processes con
tain local storage for private data .

DLLs are loaded into memory and shared in this
manner. When patches are added to a DLL, the size of
the image i ncreases. When this image is mapped to

Digital Technical Journal Vol . . lO No. l 1998 9

1 0

physical memory (as per its preferred base load
address) , the larger image may overlap with another
image having J bJse address wi thin the new range.
This image overlap can prevent the operati ng system
from booting properly: some environment DLLs wi l l
confl ict in memory because they perform calls d i rectly
i n to other DLLs at fixed offsets . To resolve this issue,
we rebase 24 the preferred base load addresses of the
patched DLLs, which modifies the base load add resses
of each patched D L L to e l imi nate confl icts . Rebasing
affects the address accuracy of the patched S}'Stem,
though we are ab le to readjust the addresses during
reconstruction . An increase i n the paging activit\' may
a lso be observed si nce the additional code may cross
page boundaries.

The original version of the PatchWrx toolset was
developed on Microsoft Windows NT version 3 . 5 .
When versions 3 . 5 1 and 4 . 0 were released, several mod
ifications were made to the image format. In complet
ing the 3 . 5 1 - and 4.0-eompatible versions ofPatchWrx,
we bad to add ress this issue. One change that affected
how we patch was the placement of the I mport Address
T1ble (IAT) into the front of the i nitial code section of
executable binary images. This tab le is used to look up
the addresses of DLL procedures used (i .e . , imported)
by the executable binary. In developing the current gen
eration of Patch\Vrx, we had to make modifications to
usc image header fields that had previously remained
unused or reserved, indicating the executab le code sec
tions that contained data areas.

Another issue that we addressed in the recent modi
fications to Patch vVrx was long branches. The origina l
version of PatchWrx replaces a l l branch, j u mp , ca l l ,
and return instructions with either B R o r B S R instruc
tions to the patch section. S ince the Patch Wrx tool has
no information about machine state during the patch
ing phase, i t is impossi ble to uti l ize other branching
instructions (e .g . , J MP or JSR instructions) to provide
this branch-to-patch trans i tion . Register and register
indirect branching instructions would require per
turbing the machine state . Therefore , the developers
could use only program counter (PC)-based offset
branching instructions.

As discussed previously, in replacing a control How
instruction with a patch branch, PatchvVrx uses a B R
o r B S R instruction in which the off-Set field i s set to
branch to the correspond ing patch wi thin the image's
patch section . The A lpha architecture branching
instructions use the format shown i n hgurc 2 .

I OPCODE REG 21 -BIT DISPLACEMENT

31 26 25 21 20 0

Figure 2
Al pha Branch Instruction Format

Oi[!:iLal Technical Journal Vol . 10 No. l 1 998

The branch target virtual add ress computation t-cJr
this format is newPC = (oldPC + 4) + (4 * sign
cxtcndcd (2 l -bit branch d isp lacement)) . The register
fie ld holds the return address for BSRs. With this
branch format and target virtual add ress computation,
the Alpha architectu re provides a branch target range
of 4 MB from an i nstruction's current PC.

Several appl ications that run today on Microsoft
Windows NT version 4 .0 are sufficiently large that the
displacement between a control rlow instruction to be
patched and the patch location within the patch section
exceeds this 4-MB l imit . (Recal l that s ince we want to
avoid moving code or data sections, the patch section is
placed at the end of the image .) To address this problem,
we developed two new branch instructions for usc with
PatchWrx. These new branches were not implemented
in the i nstruction set architecture of the Alpha architec
ture. I nstead, we used PALcodc to implement d1cm . The
two new branches arc designated long branch (LB R) and
long branch subroutine (LBSR) . F igure 3 i l l ustrates the
format of these two i nstructions.

The computation of the target virtual address is
newPC = (oldPC + 4) + (4 * sign-ex te nded(2 5-b it
branch d isplacement)) tor LBR branches and ncwPC =

(o ldPC + 4) + (32 * zcro-cxtended(20-bi t br::mch dis
placement)) for LBSR branches. PatchWrx uses LB Rs
when patch ing any control flow instruction that has
a d ispl acement greater than 4 LV!B . PatchWrx uses
LBSRs similarly for control How i nstructions that must
preserve the register field value .

\Vhcn an LBR or LBSR instruction i s cxecu ted
within the image code section, a trap to PALcodc
occurs . Normal ly, CALL_PAL i nstructions have one of
several defined function fields that cause a correspond
ing PAL routine to be executed . The two long branch
instructions have fu nction fields that do not belong to
any of the defi ned CALL_PAL instructions and there
fore force an i l legal i nstruction exception within the
PALcode . This PALcodc flow has been modified to
detect i f a long branch has been encountered .

25-BIT DISPLACEMENT

LBR I NSTRUCTION FORMAT

20-BIT DISPLACEMENT

LBSR I NSTRUCTION FOR MAT

Fig u re 3
PALcode Long B ranch Instruction l-'ormars

AB shown in Figure 3, both long branch types have
the same PALcode operation code (opcode) value of
000000. To distinguish between the r-.vo types, the least
significant bit in the instruction word is set to 0 for LBRs
and to 1 for LBSRs. This bit is not included as a usable
bit for the displacement fields of either branch type.
Consequently, each LBR has a 25-bit displacement field
and each LBSR has a 20-bit field. With a 25-bit usable
displacement field, the PALcode performs the LBR tar
get address computation, allowing a ±64-MB range .

Since each LBSR instruction has a 20-bit d isplace
ment field, whereas the original Alpha architecture
branch displacement field is 2 1 bits, the target instruc
tion address computation for LBSR instructions is per
formed differently than tOr standard branches within
the PALcode. As shown in the address computation
equation, the 20-bi t displacement is multiplied by 32
rather than by 4 (as for the LBR branch) . Notice that
the 20-bi t d isplacement is always zero extended . The
computation provides the LBSR instruction with a dis
placement of +32 MB.

This computation procedure has two implications.
First, LBSR instructions can only be used to branch
from an image code section to an image's patch sec
tion . Second , branches into the patch section are
either BR or BSR instructions (or their long displace
ment counterparts) . PatchWrx uses only BR or LBR
instructions to return from the patch section to the
original branch target within a code section; BSR and
LBSR instructions are never used . Therefore, restrict
ing LBSR instructions to use positive displacements
does not present a problem.

The LBSR displacement mu l tiplier value of 32 does
present some restrictions, however. The multiplier
value of 4 used in the original Alpha instruction set
architecture represents the instruction word length
of 4 bytes. Thus, normal branch instruction target
addresses must be aligned on a 4-byte boundary. By
using the multipl ier value of 32 for LBSR instructions,
LBSR target addresses are restricted to align on a 32-
byte (i .e . , eight-instruction) boundary. Since all LBSR
targets reside within the patch section, this restriction
does not pose a problem . If an LBSR is to be inserted
into the image code section and the next available
patch target address is not aligned properly, PatchWrx
can insert no operation (NOP) instruction words and
advance the next avai lable patch target address unti l
the necessary alignment is achieved. PatchWrx never
executes the NOPs; they are inserted for alignment
purposes only. Although inserting these NOP instruc
tions increases the image size, we have implemented
several optimizations into the instrumentation algo
rithm to minimize this increase. For example, a queue
is used to hold LBSRs that do not align . As LBR
patches are committed , PatchWrx probes the queue to
determine if any LBSRs align fi·om their origin to the
newly available patch target offset.

Trace Capture

The PatchWrx toolset allows the user to turn tracing on
and off and thus capture any portion of workload execu
tion. The tracing tool is also responsible for copying trace
entJies fi-om the physical memory buffer to disk. Copying
the trace buffer to disk is performed after u·acing has
stopped so that the time required to perform the copy
does not introduce any overhead during u·ace capture .

PatchWrx logs a trace enu·y for each patch encoun
tered during program execution. AB .it executes instruc
tions witllin the code section, PatchWrx encounters an
unconditional PatchWrx branch. Instead ofbranclling to
the otiginal target, the patched branch transfers control
to tl1e image's patch section . Witl1in the patch section, a
PatcbWrx PALcall u·aps to the PAL routine correspond
i.ng to tl1e patch type and logs a trace entry to tl1e trace
buffer. The PAL routine then returns to the instruction
following the CALL_PAL insu·uction. PatchWrx uses an
unconditional branch to transfer control fi-om tl1e patch
section back to the original target within an image code
section. During the execution of the PatchWrx PAL rou
tine, necessary machine state information is recorded
and logged in the trace buffer. This allows for the capture
of register contents, process I D information, etc . , which
are used later during u·ace reconsu·uction.

The trace capture £1cility captures tl1e dynamic execu
tion of a workload running on the system . To recon
struct tl1e trace after it has been captured, the tracing
tool must also capture a snapshot of tlK base load
addresses of all active images on tl1e system. This snap
shot serves as the virtual address map used in recon
structing the trace. Each active process and its associated
libra.Jies is loaded into a separate address space, which
may be different tha.Jl me preferred load address as spec
ified statically in tl1e image header. If each image was
loaded into memory at its preferred base address, tl1e
virtual address map would not be necessary to perform
reconstruction. Instead, Patch Wrx could map target
addresses from the trace buffer using the base address
values contained in tl1e static image headers.

The type of trace record that PatchWrx logs into the
trace buffer depends on the type of branch or low-level
PAL function being traced. Figure 4 shows the trace
record formats. The first three trace entry formats
consist of an 8 -bit opcode and a 24-bit time stamp.
The time stamp is the low-order 24 bits of the CPU
cycle counter. The 32-bit field of these three formats
depends on the type of trace entry logged . The .first
format is used for target virtual addresses for al l
unconditional direct and indirect branches, j umps,
cal ls, returns, interrupts, and returns from interrupts.
The 32-bit field of the second format is used to record
the base register value tor traced load and store
instructions and stack pointer values that are flushed
into the trace buffer during system caJis and returns.
The 32-bit field of the third format is used for logging
the current active process ID at a context swap.

Digita} Technical Journal VoJ . 10 No. 1 1 998 1 1

1 2

OPCODE

8

OPCODE

8

OPCODE

8

r-- OPCODE

J \ START BIT

TIME STA M P TARGET P C

24 32

TIME STAMP BASE REGISTER VALUE

24 32

TIME STAMP NEW PROCESS 10

24 32

I VECTOR OF 60 TA KE N/FALL-TH ROUGH TWO-WAY BRANCH BITS

3 1 60

Figur e 4
Trace Entry Formats

The fo urth trace entry type is used for tracing con
ditional branches. It uses a 3-bit opcode and up to 60
taken/fal l -through bits. A start bit is used to deter
mine how many bits are active. The start bit is set to
l if a conditional branch is taken and to 0 if the branch
is not taken . This recording scheme allows a compact
encoding of conditional branch trace entries. Duri n g
trace reconstruction, PatchWrx uses conditional branch
trace entries to reconstruct the correct instru ction
flow when condi tional branches are encountered and
to provide concise information about when to deliver
interrupts in loops.

Trace Reconstruction

The reconstruction phase is the final step in generating
a full instruction stream of traced system activity. As
shown i n Figure 5 , trace reconstruction requires sev
eral resources in order to generate an accurate instruc
tion stream of all traced system activity.

Trace reconstruction reads and initializes the head
ing of the captured trace, which i ncludes a time stamp,
the name of the user who captured the trace, and any
important system configuration information, e . g . , the
operating system version n u m ber. Next, reconstruc
tion reads the first four raw trace records, which are
automatically entered whenever tracing is turned on.
These records contain the first target virtual address,
the active process ID , the value of the stack pointer,
and the first talcen/fall- through record to be used
(such records always precede the branches they repre
sen t) . PatchvVrx uses this i nformation to initialize the
necessary data su·uctures of the reconstruction process.

Digital Technic:�] Journal Vol . 10 No. I 1 998

Using the first target virtual address and process ID
pair from the captured trace, trace reconsu·uction con
su l ts the virtual address map to determine in which
image the instruction falls (based on its dynamic base
load address) and where that image is physically
located o n the system . The tool consults the patched
image to determine the actual instruction at the target
address, records this instruction , and then reads the
next insu·uction from the patched image . This process
continues unti l reconstruction encounters either a
conditional branch or an unconditional branch. A
conditional branch causes the tool to check the first
active bit of the current taken/fall- through entry to
determine su bsequent control flow; the process then
continues at that address. I f an unconditional branch is
encou ntered , reconstruction records the entry and
checks it against the next captured trace en try. If the
tvvo entries match, the tool outp u ts the recorded
instructions to an instruction stream file, consults the
captured trace entry for the next target instruction vir
tual address, and repeats the procedure u n til the entire
captured trace has been processed.

Since PatchWrx captures interrupts and other low
level system activities (e .g., page faults) in the trace,
these activities must also be reconstructed . When
Patch Wrx logs an interrupt into the trace bu ffer, the
corresponding target virtual address in the captured
record represents the address of the rlrst instruction
not executed when the i nterrupt was taken. Patch vVrx
flushes the currently active taken/fa l l -through entry
to the memory buffer and in itializes a nevv taken/fall
through enu·y. This new entry will be responsible for

PATCHED PATCHED

IMAGE IMAGE

PATCH E D I -
IMAGE

RECONSTRUCTED

I N STRUCTION

STREAM

CAPTUR E D RECON STRUCTION

RAW TOOL

TRACE

V I RTUAL

ADDRESS

MAP

Figur e 5
Instruction Stream Reconstruction Resources

the conditional branches e ncountered begi nning with
the i n terrupt service routi ne. The add ress of the first
in struction within the interrupt service routine is then
logged i n the trace .

D u ring reconstruction, the reconstruction tool looks
for the interrupt's first unexecmed instruction address
to know which instruction to stop at when recon
structing the instruction strea m . The tool then begi ns
reco nstructi ng the instruction stream, inc luding the
interrupt handler stream. I f the u nexecuted instruc
tion is within a loop, trace reconstruction uti l izes the
taken/fa l l -through entry convention . On ta king the
i nterrupt, the active taken/fall-through record is flushed
and another record is started . This process al lows the
tool to continue to reconstruct i terations of the l oop
unti l a l l the taken/fal l-through bits are exhausted .

Operating System-Rich Workload
Characterization

As prese nted i n the study by Lee et al . ; ' desktop appli
cations and benchmarks share some workload charac
teristics, but app l ications alone do not represent fu l l
system behavior. To investigate and address system
design issues, computer arch itects should use operat
ing system-rich traces.

To i l lustrate this point, we present a sample of the
vJrious workload characteristics tbat exist in a set of
bench mark and desktop applications specia l ly selected
to study the d i fferences in the use of the operati ng sys
tem and related services. The first characteristic we dis
cuss is the amount oftime each benchmark or desktop
application spends within three domains:

l . Application-on ly domai n (e .g . , winword .exe and
excel .exe)

2 . DLL domain-Wi n 3 2 user (e .g . , kernel 32 d l l ,
user32.dl l , a n d ntd ll .dl l)

3 . Operati ng system domain-Win32 kerne l , kernel,
system processes, system idle process (e . g . ,
Wi n32K.sys, ntoskrnl .exe, drivers, and t h e spooler)

Examining the e ti mes provides i nsight into a work-
load 's use of each dom ai n . We also examine DLL and
system service usJge on an i m age basis for each work
load . Tlus breakdown helps us more clearly identi f)r the
dependence between the workloJd and the system ser
vices provided by the Windows NT operati ng system.

We also present the instruction mix of each workload
with and without the incl usion of the operating system
execution . U ndersta nding the djfferences in instru c
tion composition in the presence of system activity fur
ther highli ghts the behavior lacking in application-only
traces, such as i ncreases in branch and memory instruc
tions, when compared to application-only workloads.
We present the average basic block lengths for each
domain of execution (Jpplication-only, DLL, operating
syste m) separately a nd then i n combination. This met
ric reveals which workload domai n dominates the
branc hing beh avior. Casmira's work provides a more
complete description of these differences across a wider
set of workload characteristics.2;

Workload Descriptions

We pertonn ed a l l the e xperiments reported on in this
paper on a DI GITAL Alpha plattorm running the
.Microsoft Windows NT version 4.0 operating system .
We captured the traces o n a 1 5 0- megahertz Npha
2 1064 processor. The system configuration included
80 MB of physical memory. TJble 3 l ists the workloads
we examined .

Digital Tech n ical Journal Vol . 10 No. 1 1 998 1 3

Table 3
Workload Descr iption

Workload Description

four ier

neura l

BYTEmark benchma rk; a numerica l ana lysis routi ne for calcu lat ing series approximations of waveforms

BYTEmark bench mark; a sma l l , funct iona l back-propagation netwo rk s imu lator

go SPEC95 Go! game bench mark

SPEC95 Lisp i nterpreter bench mark

Microsoft CD Pl ayer playing a mus ic CD

l i

cdplay

fx ! 32

ie

vc50

word

D IG ITAL FX 1 32 V 1 . 1 interpretin g/translating inc l uded OpenGL sample x86 app l ication

M icrosoft I nternet Explorer V2.0 fo l lowing a series of web page l i nks

M icrosoft Visual C/C++ VS.O com p i l i ng a 3,000- l ine C program

Microsoft Word97 V7.0, spell-check ing a 1 5-page docu ment

The fourier and neura l workloads are from the
BYTEmark benchm ark test su ite : the neural workload
is a small array- based floating-point test; the fou rier
workload is designed to measure transce ndental and
trigonometric floating-poi nt unit performance.

The go and li workloads a.rc !Tom the SPEC95 integer
bench mark suite: the go workload is a simulation of the
game Co1, witl1 ilie computer playing against itselr; ilie li
workload is a Lisp interpreter. All the workloads use ilie
stand ard inputs provided vvith tl1c bench marks and are
com piled with the default optimiz:.tion level using the
native Alpha version of Mi crosoft C/C++ version 5 .0 .

The cdplay workload i s t h e Mi crosoft CD Player
application incl uded in Microsoft Wi ndows NT ver
sion 4 . 0 . The device w:.s traced while playing a music
CD using defau lt playi ng options (e .g . , playing a l l the
songs i n order).

The 6.:'32 workload is the DIGITAL FX' 32 version 1 . 1
emulator/translator provided by Compaq's DIGITAL
Alpha Migration Tools G roup.1" We ran the robot arm
Open G L sample I n tel-based application in the fore
ground d u ring trace captu re.

The ie workl oad is the st:.ndard Microsoft I n ternet
Exp lorer version 2 . 0 workload in cluded i n lvl icrosoft
Windows NT version 4.0. The ie workload was traced
whi le traversing fo ur l inks through the Sony home
web page, arriving final ly at the Sony PlayStation Store
we b page . The trace was captured on M ay 4, 1 99 8 ;
pages m ay have changed since this d ate. The history
cache and the web link cache were both e mpty when
the trace was captu red .

The vcSO workload i s tl1c Microsoft C/C++ version
5 . 0 compiler compiling a 3,000-l ine C source code tile.
We used the command l i ne i nterrace, and we used the
default optimization levels and oilier parameters, which
best represented ilie common usage of tl1e compiler.

The word workload is Microsofi: \Nord from the
M icrosofi: Offi ce97 desktop app l ic::�tion su ite tor the
Alpha processor used to capture :1 manual spell check
of a 1 5 -page Microsoft Word document. The standard
Microsoft Word dictiorury was employed .

1 4 Digital Tcdmi'<ll Journal Vol . 10 No. I 1998

To provide a clear and represent::�tivc comparison
ohvorkload behavior, we captured several traces. For
all scenarios, fu l l traces of each workload captu red
approximately 5 to lO seconds of execution, f-i l l ing the
45-MB trace buffer. To characterize worldoad behav
ior, each experiment w:1s run with the benchmark or
application as the only activity on the syste m . Each
workload was run in the !-(>reground.

To ensure that the traces captured were represe nta
tive of the overall worldo:�d behavior, we captured
mul tiple traces. We chose differe nt poi n ts duri n g exe
cution for tracing to allow comparison between d i fter
en t portions of the selected scen:�rios. To investigate
the variabi l ity present in selected workloads, we tr:�ced
additional scenarios . A second Microsoft Word trace
was captured with the appli cation performing an auto
format operation of the same docu ment used in the
first trace of the spell-check operation , and we cap
tured a second Microsoft I n ternet Explorer tr;Ke,
repeating the Sony l inks but with the l inks cac hed . We
captured a second trace of FX ' 32 using the inc luded
boggle sample game (to r comparison agai nst using the
OpenGL application i nput) . Add i tional ly, the FX 132
translator was traced while i t optim ized a n:�tive Intel
x86 application's profile . To conde nse the n u m be r of
memory pages occupied by an im:� gc, Microsoft
designed the new l inker to al low d ata to reside wi r- h i n
t h e code regions. Hookway and Herdeg"' provide :1 n
expl anation of the DIGITAL FX1 32 emu lation and
t:ranslationjoptimization procedures . Casmira discusses
iliese scenarios and others .' ·

Domain Mix

To i l lustrate the i n herent d i fferences between bench
mark and d esktop application behavior, we break
down the captured trace in terms of three mmually
exclusive domains . These domains arc (l) application,
(2) DLL, and (3) operati ng syste m . The application
domai n represents the set of-' executed instructions that
are within the traced application's execut a ble i m ::�ge.

The DLL domain represents the instructions executed
by the application of interest's process but excludes
the app l ication's executable image . This domain is
made up of the DLLs, system services, and drivers that
the application may access during execution . The
operating system domain i ncludes i nstructions exe
cuted by the kernel or other system support service
executable images, and all associated DLL and driver
images. These are the processes, images, and l i braries
that are always present and running on the system.
Figure 6 d isp lays the breakdown of i nstructions i nto
these three domains. The x -axis l ists the workloads,
and the y-axis presents the percent composition of the
captured trace. Note that the four benchmarks, i .e . ,
fourier, neural , go, l i , spend a t least 9 5 percent of their
execution within their appl ication image. Both the
fourier and the neural benchmarks spend about
99 percent of their execution within their appl ication
image . The go and l i benchmarks do exhibit some
operating system activity, but this activity is due to the
I/0 generated as go d isplays output as i t progresses
and as li reads input from its standard input file .

The operating system dominates the execution i n
the cdplay vmrl<load . The Microsoft CD Player appli
cation is I/0 bound, relying heavily on the necessary
services provided by the operating system and the
DLLs to access the CD hardware. Whi le waiti ng for
I/Os to complete, the system activity is composed

1 00

90

80

70 i=' z lJ.J
� 60
lJ.J e:.
� 50 f= iii 0 � 40

0 u
30

20

1 0

0

aJmost completely of the kernel idle loop performing
busy waiting (reca l l that each workload investigated is
the only application running on the system, so there is
no other work to be done during these periods) .

The fx ! 32 workload spends nearly aJ l i ts execution
time operating with in DLLs. The robot arm Intel x86
OpenGL sample that the DIGITAL FX1 3 2 appl ication
is interpreting heavily exercises the graphics d isplay
l ibraries and console display services.

The ie workload is more evenly distributed across
the three domains. The moderate amount of operating
system activity is due to the network and screen display
I/0 and also to the Microsoft I nternet Explorer's
caching of the pages i t touches to locaJ disk fi les. The
DLL activity is generated by operating system services
for screen and file I/0 and by network service l i brary
routines. The appl ication image coordinates the usage
of these routines, and network and display I/0, which
is frequently encountered duri ng the operations of
selecting and opening web l inks. This coordination
accounts for the high percentage of application domain
execution exhibited by ie, as shown in Figure 6.

The vc50 workload spends nearly all its execution
time within its app l ication image. This phase of the
compiler is responsible for performing the parsing and
l exical analysis of the source code file. There is some
use ofDLLs through invoking l ibrary routines to load
included header fi les . The operating system activity,

KEY:

APP
DLL
OS

FOU R I E R NEURAL GO Ll COPLAY FX132

WORKLOAD

I E VC50 WORD

Fig u re 6
Donuin Execution Mix

Digital Technical Journal Vol . 10 No. l 1 998 1 5

1 6

although small , is present; all I/0 must be accessed by
means of a system service.

The Microsoft Word spell -checking service is pro
vided by means of a DLL included with the :1pplication.
Thus for the word workload, this DLL handles both the
search through the document and the successive diction
ary lookups . Operating system services are required for
:1ccessing portions of the file resid ing on disk (not i n
memory pages) , for displaying the search and compare
resu lts to the user, and for performing the user-driven
I/0 associated with accepti ng/rejecting word replace
ment choices (prompted by the spell -checking tool) .

Figure 6 shows the consistent pattern of instruction
domains that the four benchmarks follow in contrast to
the v:uiability in the insn·uction mix domain of the deskrop
:1pplication workloads. Even though there is slight operat
ing system acti,�ty for go and li (attributable to I/0 ser
vices), the benchmarks spend practically all their execution
\vithin their application images; no DLL usc is visible.
Clearly these benchmarks do not utilize system services to
the level observed in the commercial desktop workloads.
With the exception of the CD player, the commercial
desktop applications examined use DLLs more heavily
than they do operating system services. This is especially
true in the I:X132 and word workloads, which carry out the
tasks caprured in the trace by means ofDLL routines.

Characterization of Image Usage

To i nvestigate the domains present in the trace a t the
image leve l , we identified the top tive most he:lVi ly
used images, based on the nu mber of i nstructions exe
cuted in each image . F i rst, an expbn:nion of some of
the more freq uently used system exccuta bles and
D LLs is i n order. Table 4 lists the names of the com
monly used images and a brief description of each .

We present tJ1e image usage of the nine traces. This
characterization includes all the images (e .g . , execura
bles, DLLs, services, and drivers) listed in Table 5 . The
data helps demonstrate several points. First, commercial
desktop workloads spend a lot more time in DLLs than
benchmarks do. Consequently, we can project that tl1C

Table 4
Common System Images

Name Descr iption

Windows NT operating system kernel core

number of procedure caJis in desktop applications wi l l
be h igher tl1an the number of ca!Js in benchmarks.
Second, real appl ications depend not only on system
DLLs but also on their local DLLs. We see this beha,�or
explicitly \\�th tl1e Microsoft Word application.

Instruction Mix

Although understanding the domain mix and image
usage he lps identifY d ifferences between benchmarks
and desktop :1ppl ications, we wou ld l ike to look deeper
within each domain to see i nherent differences that
affect design decisions. Figure 7 shows tJ1e application
only instruction mix (i . e . , the instruction mix for only
the appli cation and application -specific DLLs) tor each
workload. Each entry in the legend represents a c lass
of instructions f() Lmd with in the application domain .
The y-axis denotes the percent compos i tion o f the
trace; the workloads are d ispl ayed on tJ1e x -axis.

Note that the i nstruction mix tor the fx132 workload
is zero . This value is a resu lt of the lack of execution
within the appl ication image i tself. Referring back to
Ta ble 5 and the domain instruction mix, note that
nearly al l the workload execution is within DLLs (some
execution is withi n ntoskrnl .exe) . The remaining work
loads consist mainly of load , store, conditional branch,
and arithmetic and logic un i t (ALU) logic operations.
No overriding ch:�racteristic differentiates benchmarks
and desktop applications. Note the significant variabi l
ity in the instruction mix among the different bench
marks and among the differen t desktop applications.

Figure 8 shows tJK instruction mix of the entire
trace . The first and most noticeable difference between
the application domain and fu l l - trace i nstruction mix
figures is the i ncrease i n i nstruction types present in
the trace. N i ne instruction classes were present in the
application domain i nstruction m ixes, while 17 are
presen t i n the ful l-system traces. Worth noting is the
presence of 6 CALL_PAL instruction types (aJl use the
same opcode, but invoke 6 different PAL routines)
in the ful l traces. Since each executed CALL_PAL
instruction causes a trap that takes on the order of tens
of cycles to comp lete , we can conclude that this is a

ntoskrnl .exe

h a l .d l l

kernel3 2 . d l l

win32k.sys

gd i32 .d l l

ntd l l . d l l

MSVCRT.d l l

s3 .d l l

Ha rdware Abstract ion Library (HAL), wh ich i s respons ib le for the underly ing hardware interface

Main kernel l i brary

qv.d l l

Kernel-mode device dr iver

Graph ics d isp lay interface l i brary

L ibrary routines provided to each c l ient process on the Win dows NT system

Mi crosoft CJC++ ru n-time l i brary

Graphics adapter l i brary for the test pl atform

Graph ics adapter l i brary for the test p latform

DigitJI Technical Journal Vol . 10 No. I 1 998

Table 5
The F ive Most F requently Used Images i n Each Appl i cation or Benchmark

I mage Name
Workload (Percentage of Total Number of Instructions Executed within the Image)

fourier bytecpu .exe winsrv.d l l win32k.sys ntoskrnl .exe user32 .d l l Other
(99 .5%) (0.2%) (0. 1 %) (0. 1 %) (0.02%) (0.08%)

neura l bytecpu . exe winsrv.d l l ntoskrnl .exe win32k.sys ntd l l . d l l Other
(99 .7%) (0.2%) (0.03%) (0.03%) (0.02%) (0.02%)

go go.exe win32k.sys ntoskrn l .exe ha l .d l l qv. d l l Other
(95.5%) (2.0%) (1 .0%) (0.4%) (0. 1 %) (1 .0%)

l i l i .exe win32k.sys ntoskrn l .exe user32.d l l qv.d l l Other
(97 .7%) (1 .0%) (0.6%) (0. 1 %) (0. 1 %) (0.5 %)

cdplay ntoskrn l . exe h a l . d l l win32k.sys tcpi p.sys wi nsrv.d l l Other
(8 1 .8%) (1 4 .7%) (1 . 1 %) (0.4%) (0.3%) (1 .7%)

fx ! 32 ha l .d l l s3.d l l OPENGL32.DLL M SVCRT.d l l GLU32.d l l Other
(42 . 5 %) (24.6 %) (1 2 .2%) (1 1 .7 %) (2.7%) (6.3 %)

ie iexplore.exe win32k.sys ntoskrnl .exe Fastfat.sys ntd l l .d l l Other
(37.2%) (1 9 .3%) (1 7 . 5%) (6. 1 %) (6 .0%) (1 3 .9%)

vc50 c1 .exe ntoskrn l . exe MSVCRT. d l l Ntfs.sys win32k.sys Other
(83 . 1 %) (1 0 .5%) (2.8%) (1 . 2%) (1 . 1 %) (1 .3%)

word MSSP232. DLL MSGREN32.DLL ntoskrn l .exe win32k.sys h a l . d l l Other
(36.4%) (34 .0%) (1 0 .2%)

significant insight into the system's inherent run-time
latency, not visible with application-only workloads.

Next note the striking simi larities in instruction
mix for the fou r benchmarks in Figures 7 and 8 .
Benchmarks d o not interact with the operating system
in any significant manner. The desktop application
workloads, however, show significant differences
between the application domain and the complete
trace instruction mixes.

The number of store instructions for the cdplay
workload decreases from about l l percent to approxi
mately 1 percent. The number of BSR instructions
increases fi·om l percent to about 6 percent. Most
interesting for this application is the decrease in the
number of ALU operations from almost 30 percent to
about 2 percent, while the number of CALL_PAL
instructions increases from 0 to 2 1 percent. Referring to
Figure 6, the domain execution mix plots clearly show
why the differences tor this workload are so large when
the system activity is included-more than 95 percent
of the workload trace is operating system execution.

Considering the latency incurred by executing
CALL_PAL instructions, clearly an optimization that
concentrates on improving ALU operations based on
the application domain instruction mi,xes would have a
much smaller impact on the true system performance.
The measured difference in instruction mix under
scores the importance not only of using real workloads
for trace-driven simulations but also of including the
operating system behavior in order to see the full picture.

The fx ! 32 complete trace instruction mix is, of
course, completely different from the application
instruction mix of Figure 7, in which no instructions

(7 .7%) (4.0%) (7 .7%)

were executed within the fx 1 32 application image. Both
the i.e and the word workloads introduce CALL_PAL
instructions when including the operating system . The
i.e instruction mix shows an increase in j umps, calls, and
returns, which most likely reflects the increase in sub
routine calls for system services. The word instruction
mix expetiences a reduction in load instructions from
approximately 52 percent to 35 percent. This decrease
can be attributed to the increase i.n ALU operations pre
sent when operating system activity is included.

The results presented in Figures 7 and 8 reinforce
the points that benchmarks do not represent true desk
top workloads and that tl1e desktop workloads display
significantly different characteristics when viewed in the
presence of system activity.

Average Basic Block Length

Includi.ng the operating system activity in our traces yields
an overall increase in the percentage of control How
instructions present. Figure 9 shows a consequence of
this fact. In this figure, we present the average basic block
length for each worldoad, on a per-domain basis. The
ALL bar is the average basic block length across all
domains; OS denotes the operating system instructions
only; DLL denotes the workload's DLL instructions
only; APPDLL denotes the combined application and
DLL instructions; and APP denotes the application
instructions only.

Inspecting the fou r benchmarks, we notice little dif
ference between the application-only basic block
lengtl1 and the overall basic block length . Referring to
our domain instruction mix figure, recall that the
benchmarks spend about 95 percent of their execution

Digital Technical Journal Vol. 10 No. 1 1998 1 7

1 8

1 00

90

80

i=' 70

:z UJ
ii 60 UJ e:.
:z 0 50 f= Vi
� 40 :2 0 u

30

20

1 0

FOU R I E R NEURAL GO Ll CDPLA Y FX!32

Figure 7
Application-only Instruction Mix

1 00

i=' :z

90

80

70

� 60
a: UJ o._
:z 0 50 f= Vi 0 o._ � 40

u

30

20

1 0

Figure 8

FOU RIER NEURAL GO

Complere Trace Instruction Mix

Digital Technical Journal

Ll

WORKLOAD

COPLAY FX132

WORKLOAD

Vol . 10 No. I 1 998

KEY:

IE VC50 WORD

KEY:

I E VC50 WORD

ALULOG

JSR

RET

LD

ST

BRXX

BR

BSR

JMP

ALULOG

PMISC

SWAPIROL

RETSYS

RDTHREAD

RDTEB

CALLSYS

MB

TRAPB

BSR

BR

BRXX

ST

LD

RET

JSR

JMP

1-
z

25

20

6 1 5
u
z
0
i=
u
::>
a:
1-
U)
�

1 0

5

0

Figure 9

I

I

FOURIER NEURAL

Average Basic Block Length

n

GO Ll

within their executable images . Therefore, inc l uding
any operati ng system activity i n to a basic block le ngth
average has a minimal effect.

However, consideri n g the large amount of operat
ing system execution present in the cdplay trace, the
overa l l basic block length is s ign i ficantly Jess than the
appl ication-only l ength . The overa l l and operating
system length values are al most the same. Not only
does i nc lu ding the system activity i n the trace i n tl u
ence t h e overa l l basic block length b u t the amount

of system activity determines to what degree the length
is affected .

In a si milar fashion, the overall basic block length of
the fx!32 trace tracks that of its D LLs. The length is
directly proportional to the amount of time the work
load spends in its DLL domai n . The execution of the ie
workload is more evenly distri buted among the t hree
domains, which affects tl1e overall basic block length,
producing a more evenly weighted average of all its
domain basic block lengths (n o one domain dominates) .

COPLAY FX'32

WORKLOAD

I E

KEY:

l

VC50

ALL

OS

DLL

APPOLL

APP

�
:

WORD

The vc50 workload spends a s ignifica nt amount of
time with in i ts own executable image, which leads to
an overa l l average basic block length si mi lar to the
application-only value . The word workload is s imi lar,
but the D LL behavior domi nates. The cdp l ay and ie
workloads experience a 50 percent decrease in average
basic block length . This decrease c a n be attributed to
an i ncrease in the nu mber of branc hes in the presence
of operating system activity. With this increase in con
trol fl ow instructions, we ex pect increased pressure to
be placed upon the branch prediction hardware.

As observed in other characteristic categories, the
four bench marks do not e x h i bit noticeable deviations
from appli cation-only be havior when the operati ng
system activity is introduced. Aga i n this explains why
simulation results using bench mark traces usual ly track
the actual performance when the bench marks are run
on the real syste m . In contrast, four of the five desktop
applications exhibit significantly d ifferent behavior i n
the presence o f the operating system.

Digiral l.edmical Journal Vol . 1 0 No. 1 1998 19

20

Summary

I n this paper we described the PatchWrx toolset. We
compared it to existi ng tools and d emonstrated the
need for operati ng system-ri ch traces by showing the
amount of the total execution spent in the kernel and
the D LLs. I n addit ion, we showed that nisting desk
top bench marks do not exercise the kernel and the
D LL sufficiently to provide meani ngfu l indicators of
desktop pertonnance.

These resu lts have rein torced our argu ment that
researchers need to use traces with both application
and operating system information , especia l ly as new
appl ications spend more time executing within the
operating syste m . The goal is for computer arch itects
to usc operati ng system-ric h traces of applications that
domi nate the desktop market.

We have rece ntly fi n ished mod i fi cations to the PAL

to enable PatchWrx to run on the Al pha 2 1 1 64 plat
form . We plan to study a wider range of desktop appl i
cations , i n cluding database and server applications.
Fu ture plans also inc lude migrati ng the too lset to the
Windows 2000 operating system .

Acknowledgments

We wou l d l i ke to acknowl edge the help and advice of
the fol lowing people : Richard Sites of Adobe Syste ms;
Sharon Smith, Geoff Lowney, Joel Emer, Steve
Thierauf, Tom Wenners, Pa u l De lvy, a n d Dan
Lambalot, a l l from Compaq Comp uter Corpora tion;
and Ro bert Davidson from Microsoft Research . Jason
Casmira and David Kael i have been su pported by a
National Scie nce Fou nd ation CAREE R grant .

References and Notes

l . SPEC Neu'Sietter(September 1 995) .

2 . In formation about the BYTEmark benchmark suite i s
ava i lab le fi·om B YTE Magazine ar http :/ jwww. byte.
com/bmark/bmark .hrm.

3. S . Per l and R . Sites, "Studies of Windows NT Perfor
mance Using Dynamic Execution Traces," Proceed
ings o/ the Secoud fSIW!X .�vrnposium on Operating

S),stem f)esig n and lmplcmentmiun (October 1996) :
1 69-1 8 3 .

4. D. Kael i , " Issues i n Trace- Driven Simu lation," Lecture

Notes in Computer Science, f\iu. 729, Per/ormance

Eualuatiou of Computer and Com m u n ication
Svstems. L. Donatiel lo and R. Nelson, eds. (Springer
Verlag, 1993) : 224-244 .

5. R. Uhl ig and T. Mudge, "Trace-Driven Memory Sim
u lation : A Su rvey," A C/11 Comfllltillg Surn·:Fs, vol . 29,
no. 2 (J unc 1 99 7) : 1 2 8-1 7 0 .

Digital T.:d1nic.1l journal Vol . 10 No. l 1 998

6. J . Emer and D. Clark, "A Characte rization of Proces
sor Performance in the VA,\. l l -780," Proceedillf.;s u/

rhe Eleue nrh Symposium on Computer A rchitecture

(June 1 994) : 1 2 6-1 3 5 .

7 . K . Flanagan , J . Arch ibald, B . Nelson, and K . Grim
srud , "BACH: BYU Address Collection Hardware;
The Collection of Complete Traces ," Proceedings of

the Sixtb International Olllfereucc un Jfodeling Tech

niques and Tools /or Computer Fmlwttiol l (1 992) :
5 1-65 .

8 . D. Kaeli, 0 . LaMaire, 'vV. White, P . Henner, and W.
Starke, " Real-Time Trace Generation," !ntemutiuual

Journal 011 Computer Sim ula tion. vol . 6, no. 1 (1 996) :
53-68 .

9 . D . Kae l i , L. Fong, D . Renfrew, K. Imming, and
R. Booth , "Performance Analysis on J CC-NUM.A
Prototype," IBM .foumal ol l<escurch and !Jecclop
ment, Spec ial Issue on Per(onnance Tools. vol . 4 1 ,
no. 3 (May 1 99 7) 205-2 1 4 .

1 0 . D. Nagle, R . U h l ig , and T . Mu dge, " Monster: A Tool
for Analyzing the Interaction Between Operating Sys
tems and Computer Architectures," Techn ical Report,
CSE-TR- 1 47- 92 , University of Michigan, 1 99 2 .

1 1 . B . Chen and B . Bershad, "The I mpact of Operating
System Structure on Memory System Performance,"
Operating Svstems Ret•iew. vo l . 27, no. 5 (December
1 99 3) : 1 2 0-1 3 3 .

1 2 . J. Larus, "Abstract Execution : A Technique tor Effi
ciently Tracing Progra ms," Tec hn ical Report, CS-TR-
90-9 1 2 , Universitv ofVVisconsi n-Madi son, 1 990.

13 . A. Srivastava and A. Eustace, "ATOM : A System
for Bu i ld ing Customized Program Analysis Too ls,"
Proceedings o/ the A CM SJG!'L4:V94 Omji:reuce 011

Programming Lungttct,�e r>es(t;il a11d !mplementatioll .

Orloudo. Fla . (June 1 994) : 1 96-2 0 5 .

1 4 . M . Rosenblum, S . Herrod , E . Wirchcl, a n d A . Gu pta,
"Complete Computer System Simulation: The SimOS
Approach," JEF:F..foumal of Pa rallel a u d Distrlhu ted

Tech nology, 1 998, forthcoming .

1 5 . M . Rosenblum, E . Bugnion, S . Devine, and S . Herrod,
"Using the S imOS Machine Simu lator to Study Com
plex Computer Systems," ACJ1 Transactio/Is IJ/1 .\llod

eling and Sim ulation , vol . 7, no. I (January 1 9 9 7) :
78-1 0 3 .

1 6 . A. Agarwal, A nazvsis o/ Cache Perjorma n e e j(;r Oper
ating Systems a11d Multipru,qra rnming (Kluwer Acade
mic Publisher, 1 9 8 9) .

1 7 .] . Larus and E . Schnarr, "EEL: Rewriting Executable
Fi les to Measure Program Behavior," Pmc('edings of

the A C!VI SIG'PLA N"95 Conference 011 Pn��ran1111i11g

Language Desi_q 1 1 and Implementation. La jol la, Cal if
(Ju n e 1 99 5) : 29 1-300.

1 8 . D . Lee, P. Crowley,] . - L. B:ter, T. Anderson, and
B. B ershad , " Execution CharJCteristics of Desktop
Appl ications on Windows NT," Proceedings of the

Twenty�jifih International -�ymposiu m on Computer

Architecture. Barcelona, Spain (June 1 998) .

19 . E . Bem, D . Hunter, and S . Smith , " Moving ATOM to
Windows NT for Al pha ," Dtj; ital Techn ical journal.
vol . 10, no. 2 , accepted for pub l ication .

20. M . Smith, "Tracing with Pixie," Technica l Report,
CSL-TR-9 1 -497, Stanford University, November
1 99 1 .

2 1 . R . Cmelik and D . Keppel, "Shade: A Fast Instruction
Set Simu lator for Execution Profi l ing," Proceedings of
A CM S(qmetrics (May 1 994) : 1 28-1 37 .

22 . Alphu AXP A rchitecture Handhnok. Order No. EC
QD2KA-TE (Maynard , Mass . : Digital Equipment
Corporation, October 1 994) .

23 . H . Custer, Inside Windows NT (Red mond , Wash . :
Microsoft Press, 1 993) .

2 4 . Microsoft Sothvare Developer's Toolkit. This toolkit is
avai lable :tt http:/ /msd n.microsoft.com/developer/
sdk/plattorm.htm.

25. J. Casmira, "Operating System Rich Workload Char
acterization," Master's thesis, ECE-CEG-98-0 1 8 ,
Northeastern University, May 1 998 .

26. R . Hookw<1Y and M . Herdeg, "DIGITAL F X ! 3 2 :
Combining Emu lation a n d Binary Translation,"
Digital Tecbnicaljournal. vol. 9, no. 1 (1997): 3-1 2 .

Biographies

Jason P. Casmira
Jason Casmira received B . S . and M.S . degrees in electrical
engineering ri·om Northeastern University i n 1 996 and
1998, respectively, and is pursuing a Ph . D . degree in com
puter science at the University of Colorado, Boulder. For
the past two yc<1rs,] a son was a member of the Northeastern
U niversity Computer Architectu re Research Laboratory
(N UCAR), where he focused on developing the current
version of the P:nchWrx tracing toolset. He also investi
gated issues related to swdying operating system-ric h
traces. While at NUCAR, Jason was supported by a grant
ri·om the Nation;� I Science Foundation. He has published
seven papers and is a member of the I EEE and the Eta
Kappa Nu honor society.

David P. Hunter
David H unter is the engineering manager of Compaq
Computer Corporation's Advanced and Emerging
Technologies Group. Prior to that he was the manager
of DIGITAL's Software Parmer Engineering Advanced
Development Group, where he was involved in perfornnnce
investigations of databases and their i nteractions with the
UNIX and Windows NT operating systems. He has held
positions i n the Alpha Migration Organization, the I SV
Porting Group, and the Government Group's Technical
Program Management Oftice. David joined DIGITAL's
Laboratory Data Products Group in 1 983 , where he devel
oped the VA..,'\lab User Management System. He was the
project leader of the advanced development project, ITS, an
executive information system, tor which he designed hard
ware a.nd sothvare components. David has two patent appl i
cations pending in the area of sothvare engineering. He
holds a degree in electrical and computer engineering ti·om
Northeastern U niversity in Boston, Mas achusetts, and a
diploma in National Security and Strategic Smdies fTom the
United States Naval War Col lege in Newport, Rhode Island .

David R. Kael i
Da,�d .Kadi received Ph .D. (1 992) and B .S . (1 98 1) degrees in
e lectrical engineering trom Rutgers U niversity and an M .S .
degree in computer engineering trom Syracuse U niversity
in 1 985. He joined the electrical and computer engineering
facu l ty at Northeastern University in 1 993 after spending
12 years at I BM, the last 7 of which were at the I B M T. j .
vVatson Research Center i n Yorktown Heights, New York.
David is the d i rector of the Northeastern University
Computer Architecrure Research Laboratorv (NCCAR) ,
where he investigates the performance and design o f high
performance computer systems and sothvare. H is current
research topics i nclude 1/0 worklo:�d characterization,
branch prediction snrdies, memory hierarchy design, object
oriented code execution pertonnance, 3-D microelectronics,
and back-end compiler design. He frequently gives tutorials
on the subject of trace-driven char<Kterization and simula
tion. In 1 995, David received the prestigious National
Science Foundation CAREER Award . His research has
been supported by the Office of Naval Research , Kopin
Corporation, Digi tal Equipment Corporation, EMC, Data
General, Microsoft Research , ! -Tech Corporation, IEEE
DAC, and I B M Research . David i s a member of the ACM,
IEEE, and the Era Kappa Nu and Sigma Xi honor societies.

Digital Technical journal Vol . 1 0 No. I 1 998 2 1

2 2

Automatic Template
Instantiation In
DIGITAL C++

Automatic template instantiation in DIGITAL C++

version 6.0 employs a compile-time scheme that

generates instantiation object files into a reposi

tory. This paper provides an overview of the C++

template facility and the template instantiation

process. including manual and automatic instan

tiation techniques. It reviews the features of

template instantiation in DIG ITAL C++ and

focuses on the development and implemen

tation of automatic template instantiation in

DIGITAL C++ version 6.0.

Digir:li Technicol Journ:�l Vol . 10 No. I 1 998

I
Avrum E. Itzkowitz
Lois D. Foltan

The template raci l i ty within the C++ language a l lows
the user to provide a template ror a class or function
and then apply speci fic argu ments to the tempbte
to speci�r a type or fu nct ion . The process of app ly ing
arguments to a template, referred to as template i nstan
tiation , causes specific code to be generated to imple

ment the functions and static data members of the
instantiated tem plate as needed by the program .
Automatic temp l ate i nstantiation relieves the user of
determining wh ich temp late entities need to be instan

tiated and where they should be i nstantiated.
In this paper, we review the C++ temp late faci l i ty and

descri be approaches to implementing automatic tem

plate instantiation . We fol low that with a discussion of
tl1e facilities, rationale, and experience of the DIGITAL

C++ automatic template instantiation support. We
men describe the design of the DIGITAL C++ vers ion
6 . 0 automatic template instantiation fac i l ity and ind i

cate areas to be explored tor further improvemen t .

C++ Template Facility

The C++ langu age provides a template fac i l ity that
allows the user to create a r:m1ily of classes or functions
that are parameterized by typeY For examp l e , a user
may prov ide :1 Stack temp late , which defines a stack
c lass for its argu ment type. Consider the fol low ing
template dec laration :

templa te <class T> class S tack (
T * top_o f_s t ack ;

p bl ic :

} ;

voi d push (: aL l ;
voi po (T · ar) ;

The act of ap p l ying the arguments to the tem plate
is referred to as template instantiation . An insta ntia

tion of a template creates a new type or functi on that
i s defined for the speci f-ied types. Stack< int> creates
a c lass that provides a stack of the type int.
Stack<user_c lass> creates a c lass that provides a stack
of user_class . The types int and user_class are the argu
ments for the tempiJte Stack .

In genera l , :1 templ ate needs to be instantiated when
it is referenced . When a c lass template is i nstantiated,
only those membe r functions and static data members
that are referenced are also i nstanti:Hed . In the Stack
example, the m e m ber fu nction Push of the c lass
Stack<int> needs to be i nstantiated only if it is used .
Templ ate functions a n d static data mem bers have
global scope; therefore, o n ly one instantiation of each
should be i n a user's appl ication. Since source fi les are
compiled separately and combined later at l ink time to
prod uce an exec utable, the compi ler alone is not able
to ensure that one and only one i nstance of a specific
templ ate is efficient ly generated for any given exe
cutable . That is, the compiler by itself is not able to
know whether the function or variable defi nition for a
speci tlc template is satisfied by code ge nerated in
another object mod u l e .

T h e C++ Standard provides fac i l i ties for the user to
specif)' where a tem p late en tity shou ld be instantiated . '
When the user explicit ly specities template instantia
tion, the user then becomes responsible for ensuring
that there is only one i nstantiation of the te mplate
fu nction or static data member per appl ication . This
responsibil ity can necessitate a considera ble amount of
work. However, the compiler and l inker worki ng
together can provide effective templ ate instantiation
without specific user d i rectio n .

I n the foll owing section, we presen t t h e various
approaches that can be used for template instantiati o n .

Template Instantiation Techniques

Templ ate i nstantiation techniq ues can be broad ly cat
egorized as either manual or automatic . vVith manual
i nstantiation, the com pilation system responds to user
directives to i nstantiate template e n tities. These d irec
tives can be in the source program, or they may be
command- l ine options. With autom atic instantiation ,
the compilation system, i n c l u d i n g t h e l i n ker, decides
which instantiations are req uired and attempts to pro
vide them t(Jr the user's appl ication.

Manual Instantiation

Manual tem p late instantiation is the act of manua l ly
specifYing that a template should be instantiated in the
ti le that is being compi led . This instantiation is given
global external l inkage, so that references to the
i nstantiation that are made in other til es resolve to this
te mplate instantiation. Manual te mplate i nstantiation
inc l udes explicit instantiation requests and pragmas as
wel l as com mand - l ine options.

Explicit I nsta ntiation Requests and Pragmas The
compilation system i nstantiates those te mplate e n tities
that the user specifies tor i nstantiation . The specification
can be made using the C++ expl icit te mplate instantia
tion syntax or may be made using i m plementation-

defined d i rectives or pragm as. S ince i nstanti ations are
given global external l i nkage, the user must ensure
that the specified te mplate i nstanti ations appear only
once throughout al l the modu les that com pose the
progra m . When only this mode of instantia tion is
used, the user also must ensure that a l l req u i red tem
plate instanti ations are specified to avoid u n resolved
symbols at l ink time.

Command-line Instantiation Command- l ine options
can be used to speci f)' template in stantiation . They are
similar in operation to the explicit i nstantiation req uests,
except they indicate groups of templates that shou ld be
instantiated, rather than naming specific templates to be
i nstantiated . The command - l ine options include

• Instantiate Al l Te mpl ates. A com m a n d - l ine option
can direct the compiler to instantiate all tem p l ate
entities whose definitions are known d u ring compi
lation and whose argu ment types are specified . This
has the advantage of specifYing many te mpl ate
instantiations at once. The user must st i l l e nsure
that no tem p late instantiation happens more than
once in the program and that all required instantia
tions are satisfi ed . Due to these requirements, the
user can not usually specif)' this option on more than
one source-fi l e compila tion in the progra m. This
option can also cause the i nstantiation of templates
that are not used by the program .

• Instantiate Used Te mplates. A command-line option
can be used to d i rect the compiler to i nstantiate
only those templ ate entities that are used by the
source code and whose defin i tions arc known at
com pil ation . As in the previous technique, the user
must ensure that no template i nstantiation happens
more than once in the program and that all req uired
i nstantiations arc satisfied . Due to these req u i re
ments , the user can not usua l ly speci fY this option
on more than one sou rce-fi le comp ilation in the
program.

• Instantiate Used Te mplates Locally. This command
line option works l i ke the i nstantiate used templates
option, except that it defines each te mplate i nstan
tiation locally in the current compilation . This option
has the adva n tage of provid i n g com plete te mpbte
insta n tiation coverage for the program , as long as
the definitjons of the used tem plates are avai lable in
each mod u l e . Since al l template i nstantiations are
given local scope, there is no potential problem
with mult iply defi ned i nstantiations when the
program is l i n ked . The major problem with this
technique is that the user's appl ication can be
unnecessari ly large, si nce the same template instan
tiations could appear withi n multiple object fi les
used to l i n k the app l ication. This technique wi ll fai l
if the i nstantiations must have global scope such as
a c lass's static d ata members.

Digital T,·,hni,al Journal Vol . 1 0 No. l 1 998 23

24

Figure 1 shows an example o r' a template fu nction,
template_func, that contains a local ly defined static
variable. As shown in the figure, the object fi les ofboth
A and B contain local copies of template_func instanti
ated with i nt . Each instance of template_func<int>
defines i ts own version of static variable x. I n this case,
d irecting the compiler to i nstantiate used templates
local ly yields a d ifferent resul t than i nstantiating a l l or
used templates globally.

I f we give the static data members global scope and
ensure that they are properly defined and in i ti al ized by
executable code rather than by static in i tia l ization, we
can solve the static data mem bers prob lem. The app l i
cation , however, remains unnecessari l y large, because
mu l tip le copies of the i nstantiated templates can be
present i n the executable.

Automatic Instantiation

Automatic template instantiation rel ieves the user of
the burden of determining which templates must be
instantiated and where in the application those instanti
ations should take place. Automatic template instantia
tion can be d ivided into two categories: compi le - time
instantiation , whereby the decision about what shou ld
be instantiated is made at compile t ime , and l i nk- time
i nstantiation, whereby decisions about template ins tan
tiation are made when the user's application is l inked .
I n both cases, specific]ink-time support is needed to
select the required i nstantiations for the executable .

Compile-time I nstantiation Two major techn iques
can be used to perform automatic template instantia
tion at compile time. The choice between the two
depends upon the fac i l i ties avai lable i n the l i nker.
Microsoft Visual C++ i nstantiates templates at compile
time using a strategy similar to the instantiate used
templates command-line option described previously. '

I I templ e . h:'"
linclu e c i o s t ream . h

Each i nstantiation is placed i n the communal data sec
tion (COMDAT) of the current compi l ation 's object
fi l e . Each object fi l e contains a copy of every template
instantiation needed by that compilation un i t .
COMDATs are sections that have an attribute that tel ls
the l i nker to accept, without issuing a warni ng, m u l ti
p le definitions of a symbol defined in the section . ' I f
more than one object fi le defines that symbol , on ly the
section from one object fi le is l inked into the image
and the rest are d iscarded, a long with a l l symbols in
the symbol table defined in the d iscarded section con
tribution . At l ink ti me, the l i nker resolves an instantia
tion reference by choosing one of the instantiations
defined in an i ndividual object fi le's COMDAT. The
resu l ti ng user's appl ication executable has a s ingle
copy of each requested instan tiation .

vVhen such l i n ker support is not avai l able, another
mechanism must be used to control compi le - time
instantiation . One such approach is to use a repository
to contain the generated instantiations. The compiler
creates the i nstantiations in the repository i nstead of
the current compi lation's object fi le . At l ink t ime, the
l inker incl udes any requested i nstantiations from the
repository. As a performance i mprovement, the com
pi ler can also decide whether an i nstantiation needs to
be generated from the state of the reposi tory. I f the
requested i nstantiation is in the repository and can be
determined to be up to date, the compiler does not
need to regenerate the instantia tion .

Link-time Instantiation The decision to instantiate can
be left unti l l i nk time. The l inker can find the instantia
tions that are needed and direct the compiler to generate
those i nstantiations. McCluskey describes one l ink-time
instantiation scheme.'.r' The compiler logs every class,
union, struct, or cnum in a name-mapping file in a repos
i tory. Every declared template is also logged in the name-

t emp l a te c l ass T vo i d te�plate_func IT p)
{

Figure 1

s ta ic 'J' :< � 0 ;
cou t << x .,. p ;
X + + ;

I / A . c :< :{

i ncl ude • emp l a t e . h x x "
e x t e n vo i c� b_func {) ;
int ma i n {)
(

template_func (lO I ;
b_func () ;
re urn 0 ;

Template Function Containing a Loca l ly Ddi necl Static Variable

Digital Technical Journal Vol . 10 No. I 1 998

/ / B . c::< x
" i nc lude " L empl te . hxx"
vo i d b_func (vo i d)
{

I I . . .
templ� e_f unc (2 0) ;
I I . . .

mapping file. At link time, a prelinker determines which
template instantiations are required. The prelinker builds
temporary instantiation source files in the repository to
satisfY the referenced instantiations, compiles them, and
adds the resulting object files to the linker input.
Consider the example in Figure 2.

D u ri n g the compilation of m a i n . cxx, a name
mapping file is bui lt in the repository and the location
of the user-defined class C and tJ1e flmction template,
perform_some_function, are recorded. From tJ1e infor
mation stored i n the name- mapping file, an i nstan
tiation source file is men created in me repository.
Figure 3 shows the contents of tJ1e instantiation source
file created to satisfY perform_some_fu nction<C>.

The prelinker tJ1en compi les me instantiation source
file by invoking the compiler in a special directed mode,
which directs the com piler to generate code only for
specific template i nstantiations that are l isted on the
command l i ne . The compiler then generates the defin
ition of perfonn_some_flmction<C> in the resu lting
object file . The resu lting object now satisfies the
instantiation request and is included as part of the
application's final .l ink . To bui ld the i nstantiation
source fi les easily, the i mplementation of this scheme
generally requires mat template decl arations, template
definitions, and any argu ment types used to instantiate
a class or function template must appear i n separate,
related header files.

The Edison Design Group has developed anomer
approach to li nk-time i nstantiation . 7 In this approach,
tJ1e compiler records where template i nstantiations are
used and ·where they can be i nstantiated . At l ink time,
a pre l inker assigns template i nstantiations by recording
the assignments in a specially gene rated file that corre-

I I C_c lass . h xx:
c l ss C {
publ ic :

I I . . .
} ;

1 / templ a t e . hxx

I* per for�so e_ f unct i on (C& } * /

.i ncl ude " empl a te . hxx"
� i nclude " temp l a t e . cx x "

U i nc lude · c_class . h "

Figur e 3
Example of an Instantiation Sou rce File

sponds to the particular source file that can success
ful ly instantiate the user's request. Compiling and pre
l in king the program used in Figure 2 generates an
i ns tantiation assignment file for main.cxx. This tile
contains information concerning the command-l ine
options specified, me user's current worki ng directory,
and a l ist of instantiations m at should be i nstantiated.
Main .cxx now owns the responsibi l i ty of i nstantiating
perform_some_flmction<C>. The prelinker recompiles
tJ1e source fi les, such as main .cxx, tJ1at have changes i n
their template i nstantiation assignments. The process
is repeated unti l there are no changes made to the
i nstantiation assignments. Then the final l ink can be
completed.

This approach has the advantage of requiring no
special file structure to support automatic template
instantiation. It is generally faster and simpler than
McCluskey's approach, because fewer files are com
piled in the generation of the needed i nstantiations
and the i nstantiations are generated in the context of
the use r's source code. I n addition, the assignment of
i nstantiations to sou rce files can be preserved between
recompilations of the source code, so that unless the
strucmre of the application changes, the needed instanti
ations \viU be available wimout additional recompilation.

templ a ce < C]ass T v o i d erform_s ome_ f nc i on (T &par m) ;

1 / templ a te . cxx

templ a e <c lass �> vo id per f o rm_s ome_ func i o n (T & param l (}

Figur e 2

l lma in . c x x
h nc l e "C_c las s . hxx"

h ncl· de " emp l a e . h xx"

i n t ma i n ()

{
C C ;
perfo m_some_ unct i on () ;
r e rn 0 ;

Example of a Li nk-time I nstantiation Sc heme (McCluskey)

Digital Technical Journal Vol. 1 0 No I 1998 25

26

Comparison of Manual and Automatic Instantiation

Techniques

The manual instantiation techniques require planning
on the part of the user to ensure that needed instantia
tions are present, that no extraneous i nstantiations are
generated, and that each needed instantiation appears
exactly once within the application . Witl1 manual
instantiation , the user has the advantage of gaining
explicit control over aU template instantiations.
Almough the strategy of instantiating used templates
local ly requires l ess planning, it does so at the cost of
object file size and tl1e restricted use of templates when
static data mem bers are present or when static data is
defined locally within a function template instantiation.

Automatic template i nstantiation provides template
instantiation wim no explicit action on the part of the
user. Compi le-time i nstantiation requires e ither spe
cific l inker support to select a single template instanti
ation from potentially many candidates, or support by
the compiler to generate instantiations in separate
object files while compil ing the user's source code .
Relying on l inker support al lows the compiler to effi
ciently generate instantiations at the cost of larger
object files; however, tl1e user loses control over which
i nstantiation is used in the executable fil e . Although
the use of separate instantiation object files usually
takes more time at compilation than tl1e linker-support
memod, it results in more compact object files and can
provide the user wim more control over which instan
tiation is used in the executable fi le .

Link-time instantiation provides template instan
tiation that is tai lored to the needs of the executable
fi le . The primary cost is l ink-time performance, since
generation of instantiations occurs at l ink time.
Another disadvantage ofl ink-time instantiation can be
observed when building object-code l ibraries. Either
the l ibrary must contain all the instantiations that it
requires, or the user who wants to l ink with the ubrary
must have access to all the machinery to create instan
tiations. Creating a l ibrary's instantiations involves
extra steps during l ibrary construction . All the object
files to be included in the l i brary m ust be pre l i nked,
so tlut the needed i nstantiations are generated. If
i nstantiations are i ncl uded in the i ndividual object
files in the l ibrary, as in the Edison Design Group
approach , unintended modules may be l inked from
the l ibrary to provide the needed instantiations.
Consider the fol lowing scenario, in which object
fi les A and B are i ncluded in tl1e l ibrary. Both files
require tl1e instantiation of perform_some_function<int>.
V/hen these fi les are prel inked, the instantiation of
perform_some_function< int > is assigned to one of
the files, say A. If an application that is being l inked
against the l ibrary requires that the object fi le B be
l inked into tl1e executable, men the object file A is also
l inked . Here tl1e instantiation needed by B was i nstan-

Digiral Technical Journal Vol . 1 0 No. 1 1 998

tiated in A even though the executable never refer
enced anything explicitly defined in file A. This can
yield an unnecessarily large executable.

In the next section, we review the template instan
tiation support in earlier versions of DIGITAL C++
and then discuss the rationale and design of the auto
matic template i nstantiation faci l i ty in version 6.0 of
DIGITAL C++.

DIGITAL C++ Template Instantiation Experience

As the use of C++ templates has grown, DIGITAL
C++ has been enhanced to support the need for
improved i nstantiation techniques . The in i tial release
of DIGITAL C++ occurred before the C++ standard
ization process had matured, so that the language sup
ported was based on The Annotated C++ Reference
Manual, referred to as the AR.t\1 .8 The ARM defined
template fimctional ity, but it d id not provide guidance
for either manual or automatic template i nstantiation.
Thus it was necessary to provide a DIGITAL C++
specific mechanism for template instantiation.

DIGITAL C++ Manual Template Instantiation

The #pragma define_template directive and the instan
tiate all command- l ine option, -define_temp lates, have
been supported since the initial release of DIGITAL
C++.

In Figure 4, tl1e define_template pragma directs the
compi ler to instantiate class template , C, with type i nt.
When the compiler detects the use of the pragma, it
creates an internal C<int> type node and traverses the
list of static data members and member fu nctions
defined within tl1e class. If the definitions of these
members are present at tl1C point me pragma is speci
fied, the compiler material izes each with type int .

As the C++ language developed and template usage
increased, users found manual template i nstantiation
to be very labor i ntensive and req uested an automated
method.

DIGITAL C++ Version 5.3 Automatic Template

Instantiation

Automatic template instantiation capabi l ity became a
serious issue d uring the planning stages of DIGITAL
C++ version 5 . 3 . The use of templates was i ncreasing
rapidly, and many new thi rd-parry l ibraries, such as
Rogue Wave Software's Tools .h++, contained a signif
icant use of templates. Due to this growing need, the
requirements were straightforward. The support had
to be easy to use, have a short design phase, be quickly
implemenrable on both the DIGITAL UNIX and the
OpenVMS platforms, and provide reasonable perfor
mance. Because McCluskey's approach had been used
in several implementations, it presented i tself as our
best option.

emp la t e < lass T c l a s s c {
p bl i c :

void mem_f nc1 { T p) ;

vo i d mem_f •nc2 { T p) ;

) ;

t mp l e cl a s s T > vo i d C<T> : : mem_Eunc l (T p) I I . . . l
t empl a te <class T > vo i d C<T> : : mem_f unc 2 (T p) I I . . . l

lrprag a de f " ne_ e mp l a t e C < i n t >

Figure 4
The define_template Pragma

DIGITAL made two major changes to McCluskey's
approach to take advantage of the DIGITAL C++
compiler design . First, we al lowed i nstantiation
source files to be created at compile t ime instead of
l ink time. This el iminated the need for McCluskey's
name-mapping fi le and simplified the prelinking
process considerably. Since the needed source files
existed in the repository, there was no need to decon
struct the required template instantiations to deter
mine their arguments and types.

The second change addressed the transitive closure
problem. Figure 5 shows an example of the class tem
plate Buffer being instantiated with the user-defined type
C. After compilation of app.cxx with the McCluskey

approach, the name-mapping file contained definition
locations of class B and class C. However, it did not con
tain any indication that class C had a data member that
relied on the definition of class B . From the information
in the name-mapping file, the pre linker then created an
instantiation source file that included only C_class .hxx,
Buffer.hxx, and Buffer.cxx. When this instantiation
source file was compiled, an error resulted complaining
that B is an undefined type whose size is unknown .

We solved this problem in DIGITAL C++ version
5 . 3 by i ncluding al l the top-level header files included
by the current compilation unit in any i nstantiation
source files created. This ensured that B_class.hxx
wou ld be included in the generated i nstantiation file .

I I B_c las s . h xx

c l a s s B { I I . . . J ;
I IC_c l a s s . hxx
c l a s s C {

Figure 5

I I Bu f fer . h xx
emp l a t e < c l a s s T> c l a s s Bu f f e r {

T * u f f er ;

int num_o f_i tems ;

p b l i c :

) ;

vo " d add_i tem (T *) ;
I I . . .

l l app . cxx
i n cl ude " B_c l ss . hxx"
� · nc lude " C_c l a s s . hxx "

N i n c lude " Bu f fer . hxx "

vo i d f (vo i d)

{
C c ;
B f fer< C > c_bu f f er ;

c_ bu f fe r . a dd_ i t em (& c) ;

I nstantiation of the Class Template B u ffer

B data_mem ;
p bl i c :

I I . . .

) ;

l i B f fer . cxx
templ a t e <Class T>

void Bu f fer T> : : a dd_i t e m (T *p) {)

Digital Technical Jouriul Vol. 1 0 No. l 1 99 8 27

28

Despite the fact that this type of automatic l ink
t ime instantiation scheme was bei ng widely used
in the industry, the results of using a modified
McCluskey approach were mixed . Stroustrup has
described the general problems with McCl uskey's
approach.9 We found that our implementation suf
fered particularly from poor l ink- time performance
and so did not satisfy our users' needs.

DIGITAL C++ Version 6.0 Automatic Template

Instantiation

DIGITAL C++ version 6 . 0 is a complete reimpJemen
tation of DIGITAL C++, with emphasis on ANSI C++
conformance. It is implemented using a completely
new code base, which includes the i ndustry -standard
C++ tl·ont end from the Edison Design Group and a
standard class l ibrary from Rogue Wave.

From our experience with template i nstantiation
in DIGITAL C++ versions 5 . 3 through 5 . 6, we con
cluded that the most i mportant issue that should
be addressed in the design and implementation of
the automatic template instantiation facil ity was the
compile- and l ink-time performance. The primary
goal w:ts to have the performance of automatic tem
plate i nstantiation su bstantially exceed the perfor
mance of version 5 . 6 . Another important goa l was
to remove the restriction of template declaration and
defin ition placement in header files. In :�ddit ion, the
automatic template instantiation facility in version 6 . 0
had ro be culturally compati ble with the previous
implementation . The user had to be able to move
sources and objects to d ifferent di rectories, easi ly
bui ld archived and shared libraries, share instantia
tions between various applications, and have error
diagnostics reported at the earliest possible moment in
the i nstantiation process.

Design and I mplementation We decided to use a
compile-time instantiation model as the basis for our
implementation . Since we were using the Edison
Design Group's front end, we seriously considered
using their l ink-time mode l . However, the compi le
time model seemed advantageous tor several reasons.
First, there are significant complications (as described
in the section Comparison of Manual and Automatic
I nstantiation Techniques) when trying to bui ld
l ibraries with a compiler that uses the Edison Design
Group l ink-time model . In addition, the l ink-ti me
model requires recompilations that limit performance
in many typical cases of template use. We recognized
that the l ink-time model could provide better pertor
mance in some cases, but these would be i n the minor
ity. Finally, the implementation of the l ink-time model
would require su bstantially more implementation
eftort on the Open VMS platform . The version of the
Edison Design Group front end being used to build
DIGITAL C++ version 6 . 0 required tools to scan a

Digir�l Technical Journal Vol . 10 No. l 1998

user's object fi les tor information concerning which
mod ules could instantiate requested templates. Similar
functionality would need to be implemented for the
Open VMS platform .

We preserved the concept of the templ ate reposi
tory as a d irectory that contains the i ndivid ual tem
plate i nstan tiation ob;ect fi les. The repository stores
one object fi le tor each template fu nction , mem ber
function , static data member, and virtual table that is
generated by automatic template instantiation . The
file name of the instantiation object file is derived from
the name of the instantiation 's external name. At com
pile time, the front end generates i n termediate code
for aJI templates that are needed in the compilation
unit and can be instantiated . A tree walk is pedorrned
over the i n termediate code to find all entities that are
needed by each generated template instantiation . The
code generator is cal led to generate cod e for the user
specified object ti le and is then called repeatedly for
each template i ns tantiation to generate t he instan tia
tion object fi les in the repository.

The compiler generally considers an instantiation to
be needed when it is referenced from a context that is
itself needed, such as in a function with global visibility or
by the initialization of a vatiable d1at is needed . Virtual
member fi.mctions are needed when a constructor for
the class is needed . Thus, ail virtual .fi.mction definitions
should be visible in a compilation unit that requ ires a
constructor for d1e class. Each instantiation d1at is gener
ated ''�th autom:.1tic instantiation is marked as potentially
being in its own object file i n the repository.

The intermediate representation of each generated
instantiation is walked to determine what other entities
it references. At this point, the i nstantiation is a candi
date to be generated in its own object fil e , but it can
sometimes be generated as part of the user-specified
object file. If the i nstantiation references an entity that
is local to the compi lation unit, such as a static fu nc
tion, and that local entity i s nonconstant and statically
initial ized , the instantiation is merged into the user
specified object fi le rather than generated in its own
object file. As an :�lternative, we could have chosen to
change the loc:tl enti ty i nto a global entity with :-�

u nique name and generate the instantiation in its own
object file . We chose not to do this in order to make i t
easier to share a repository between applications. With
this alternative, the instantiation in the repository
requires the object file containing d1e local entity's def
inition, which may be i n another application . Note that
any application that contains more d1an one definition
of the same instantiation that references a nonconstant
local entity is a nonstandard -conforming application.
This is a violation ofd1e one definition rule w Consider
the following code fragment:

static int j ;
templa e <class T i nt fun (T ar-g) { return j ;)
!nt var = unc { 2 . 5) ;

The reference to the static variable j i n the template
function, time, prevents the template fi·om being gen
erated into its own object file in the repositorv.

When the individual instantiations are w� lked, we
mark each globa l entity that is defined in the compi la
tion unit so that the definition is replaced by an exter
nal reference when the i nstantiation object file is
generated . Consider the fol lowing code fragment:

voi r i n _coun t (const chal * s , i n t ivar)
{

cout<< s < < " : " << ivar ;

templa e <C�ass T> vo i d f u n c (T ar)
{

s a ic i n t coun: = 0 ;
pt-in _co n t { " co n ::. " , count + +) ;

The fi.mction, print_count, is defined in the source
fi le :md generated as a defined function in the user
specified object file. The template function, func, refer
ences the function, print_count. When the code for
fi.mc is generated i n its own object file, the rderence to
print_count must be changed from a rderence to a
defined h.mction to a reference to an external function .

By default, each needed instantiation is generated by
every compilation that requires the instantiation . This
is the safe defau l t because it ensures that instantiations
in the repository are up to date. However, there will
prob:�bly be some compilation overhead fi-om regener
ating instantiations that may already be up to date . We
believed that the overhead of regeneratin(T instantia-

. b
nons would typical ly be relatively smaJ I . For applica-
tions with a high overhead of i nstantiation , such as a
large number of source files using the same large num
ber of template i nstantiations, we provided a compila
tion option to control the generation of template
i nstantiations to improve compile-time performance.

The generation of i nstantiation object files only
when they are actually required is a difficult problem .
Fine-grain dependency information would have to be
kept for each i nstantiation object file . Such depen
dency information would need to rdlect those fiJes that
are required to successfully generate the instantiation
and record which command- line options the user speci
fied to the compiler. vVe suspected that the overhead
involved with gathering and checkjng the information
might be an appreciable percentage of the time it wouJd
take to do the instantiation , and thus it would not give
us the performance improvement that we wanted.

Instead, we decided to provide an option that allows
the user to decide when i nstantiations are generated .
We rder to this as the template time-stamp option,
-mmestamp. When using the time-stamp option, the
compi ler looks 111 the repository for a file named
TIMESTAl\1P. If the fi le is not found, i t is created . The
modification time of this ftle is referred to as the time

stamp. When generating an instantiation, the compi ler
looks i.n the repository to see if the instantiation object
file exists. If i t does not exist, i t is generated . If the fi le
already exists, i ts modification time is compared to the
time stamp. If the modification time is later than the
time stamp, the i nstantiation is assumed to be up to
date and is not regenerated . Otherwise, the i nstantia
tion is generated. The user can control the generation
of instantiation object ti les by changing the modifica
tion time of the TIMESTAMP file .

The time-stamp option wou ld typical ly be used in
a makefile or a shel l script that compiles and bui lds
an entire appl ication. Before i nvoking make or the
shell script, the user would make certain that no
TIMESTAMP file resided in the repository. This
would ensure that each needed instantiation would be
generated exactly once duri ng a l l the compilations
done by the build procedure.

Much of the C++ l inker support in version 5.6 was
reused with only minor mod ifications for version
�.0 . The compiler is presented with a single repository
mto whtch the instantiation object fi les are written .
Multiple repositories can be specified at link time, and
each can be searched for i nstantiations that are needed
by the executable ti le . The l inker is used in a tria l l ink
mode to generate a l ist of a l l the unresolved external
r�ferences . This list is then used to search the reposito
nes to find the needed instantiation fiks, and tl1e
process is repeated unti l no more instantiations are
needed or can be satisfied from the repository. The
lmk then proceeds as any normal link, adding the l ist
of tnstantiation object files to the l ist of object ti les
and l ibraries as specified by the user.

If a vendor is cre:�ting a l ibrary rather tl1an an exe
cutable file, the instantiations needed by the modules
in the _library can be provided in either of two ways: (1)
The hbrary vendor can put the needed instantiations
in the l ibra:y by adding tJ1e files in the repository to
the hbrary h le . (2) The l ibrary vendor can provide the
repository with the l ibrary and require that l ibrary
users lmk WJth the repository as wel l . Note that instan
tiations placed in the library :u·e fixed when the l i brary
IS created . Smce the l ibrary is included in the trial l ink
of an appl ication, any instantiation i n the library takes
precedence over the same named instantiatia"n in a
repository.

Results In a number of tests, DIGITAL C++ version
6.0 showed improved performance over version 5 .6 .
We tested a variety of user code samples that use tem
plates to varying degrees and found that build times tor
version 6 .0 decreased substantially compared to tl1e
version 5 . 6 compi ler. Examples of two typical C++
applications used in our tests are the publicly avai l able
EON ray-tracing benchmark and a subset of tests from
our Standard Template Library (STL) test suite. For

Digital Technical Journal Vol . 10 No. I 1 998 29

30

the EON benchnurk, the bui ld time for version 6.0 was
reduced to 28 percent of the build time tor version 5 .6 .
For the STL tests, t h e bui ld ti me tor version 6 . 0 was
reduced to 1 9 percent of the build time for version 5 .6 .
The number o f fi les i n the repository also decreased
signiti cm tly because version 6.0 generates only i nstan
tiation object fi les i nstead o f the i nstan tiation source,
command, dependency, and object files of\-crsion 5 .6 .
For EON, the version 6 . 0 repository contained 88 files
compared to 260 files in version 5 . 6.

Using the ti me-sta m p option, bui ld time tor the
EON bench mark was red u ced by on l y 5 percent com
pared to t h e dcfJ u l t i nstanti ation strJtegy. The real
benefit of the ti me-stamp option comes with appl ica
tions that usc the same template i nstantiations i n many
comp i lation u n i ts . For example, in one user's test case,
build times dropped from roughly 18 hours with the
default instantiation to 3 h ours when using the time
stamp option.

In tl1e next section, we conclude our paper with a dis
cussion of fu rtl1er work that can i mprove the perfor
mance and usability of automatic template instantiation.

Future Research

We continue to investigate approaches a nd tech niq ues
to im prove tl1e usJbi l ity and performance of the auto
matic template i nstantiJtion faci l ity. Optimal usJbility
and performance would seem to require a development
environment completely intq!;rJted for C++. This envi
ronment wou ld keep trac k of all entity definitions Jnd
usage <md would be able to li mit aiJ inst:.mtiation gener
ation to the m i nimum needed . This approach would
req uire a great deal of development work and might be
difficul t to in tegrate with existing customer develop
ment methodologies. Therefore , we focus on more
modest techniques tlut approxi nute tl1e optimal case.

vVe are exp loring WJ)'S to improve both performance
and usabil ity in the mJnJgement of dependency i n for
mation . We conti nue to look at approaches for using
dependencies that can be rel iable, autom atic , and fast.
We also continue to i nvestigate ways to gJther and check
fi n e-grai ned dependency int(xmation for the instanti
ation object fi les, though performance is J concern.
One approxi mJtion to the ti ne-grai n dependency
information that we are investigating is a larger grain
dependency scheme. This tech n iq ue creates a time
stamp ti·om the latest creation time of any sou rce ti l e
included d u ri n g compilation of a given module . Any
i nstantiation object fi le i n the repository whose modj
fication ti me is later than th is time stamp wou l d not be
regenerate d . This approach is more automati c and can
potential ly yield better perform ance than our cu rre n t
t ime-stamp option, b u t i t would n o t b e sensitive to
changes on the command l ine or changes to th e struc-

Disiral Tcchni-::11 Journal Vo l. 10 No. l J 998

ture of the ti l es used to generate the i nstJn tiation. For
example, if the user speci fied Jn i nc l u de d irectory
of old_include on the i nitial compibtion and later
specified J.n i ncl ude directory of new_inc l ude, this
approach wo uld not recognize that differen t fi les were
being included.

Another approach to i m proving application bui ld
performance i s to support a bui ld facil ity that can
make use of template inf(m11Jtion in determining
dependency. Currently, each user-spec i fied object fil e
is dependent o n :�I I the i ncluded fi les necessary to
create instantiation object fi les f(>r te mpl ate req uests.
When a change is made to a te mpbte defi nition, all the
sources that reference the te mpl ate need to be recom
pi led. A b u i ld fac i l ity designed to be sensitive to tem
plate i nstJntiation cou ld de tect that a cha nge i n the
template d e fi n ition was l imited to the i nstantiation
object file. It could then i nstruct the compi ler to sup
press the regeneration of object fi les tor sou rce fi les
that are only be ing recompi led due to the ci1Jnge in
the te mplate i nstanti ation . S uch a f.1ci l i ty could also
suppress the recompi iJtion of any source file thJt
wou l d only reproduce the changes to i nstantiations
that were already regenerated .

Because we recognize that l i nk-time i nsta nti:�tion
can pertonn better i n some cases than the compile-time
approach, we Jre investigating the l in k - time inst:�ntia
tion model as a user option.

Finally, we continue to look at ways to reduce the
cost of generating each insta ntiation . For example, by
default the compi ler compresses the generated object
files. Although most instantiation object files are smal l ,
many oftl1em are potential ly generated in a si ngle com
piJation. As a result, the time to compress al l the i nstan
tiation object fi les can be signific.1 nt . Im provements
such as not compressing small object fi les Jnd/or
i mproving the algorithm of the object fi le compression
implementation i tself could yield sign ificant perfor
mance i mprovement. I n add ition to improvements
tlut wou ld reduce the overhead of generating i nstanti
ations, we are also researching wJys to redu ce the num
ber of i nstantiation object files. For ex:�mp le, we might
combine all the virtual functions of a c i Jss i nto a single
i nstantiation object file in the reposi tory.

Summary

As vvith most engineering problems, no single Jpproach
to tl1e automatic instantiation of templates is optimal for
all potential uses of templates. Rased on our experience
witl1 providing template su pport i n DIG ITAL C++, we
chose to implement a compile-time automatic template
instantiation scheme for version 6.0 tl1 at generates
instantiation object files i n to a reposi tory. This choice
allows users to better control when templ:�te instantia-

tion occurs. In addition, it provides a substantial
improvement in performance of template instantiation
over version 5 .6 and reduces the restrictions on the
location of template declarations and definitions. We
continue to investigate the template-instantiation imple
mentation to further improve compile- and link-time
performance and ease of use.

Acknowledgment

The authors wish to acknowledge Bevin B rett, who
contributed substantially to the design and implemen
tation of the needed wal k and instantiation object fi le
generation for DIGITAL C++ version 6.0, and
Hemant Rotithor, who provided the performance
measurements for DIGITAL C+ + version 6.0 versus
version 5 .6 . The authors also wish to acknowledge
Charlie Mitchel l, Coleen PhiUimore, Rich Phillips, and
Harold Seigel for their contributions to the design and
implementation of the DIGITAL C++ automatic tem
plate instantiation .

References

l . ISO/IEC Standard 1 4882, Programming Language
C++, 1 998 .

2. B . Stroustrup, Tbe C++ Programming Language,

Third Edition (Reading, Mass . : Addison-Wesley,
1 997) .

3 . Microsoft Visual C++ 5 .0 , On-l ine Help, "Templates,
C++."

4. 1\tl icrosoft Corporation, "Microsoft Portable Exe
cutable and Common Object Fi le Format Speciftca
tion," Revision 5 .0 , Section 5 . 5 .6, Microsojt

Deueloper�· Network (October 1997) .

5 . G . McCluskey, "An Environment tor Template Instan
tiation," Tbe C++ Report, voL 4, no. 2 (1 992) .

6. G. McCluskey and R. M urray, "Template I nstantiation
for C++," Sigplan Notices, vaL 27, no . 1 2 (1 99 2) :

47-56.

7 . Edison Design Group, "Template I nstantiation i n the
EDG C++ Front End," Note to the Al'\JSI C++ Com
mittee, X3J l 6/95-0l63 , WG2 1/N0763.

8 . M . Ellis and B. Stwustrup, 77.?e A nnotated C++ Refer

ence /VIanual (Reading, Mass . : Add ison-Wesley,
1 990) .

9 . B . Stroustrup, Tbe Design a.nd Evolution of C++
(Read ing, Mass . : Addison-Wesley, 1 994) : 366.

10 . B . Stroustrup, The C++ Programming Language,

Third Edition (Reading, Mass . : Addison-Wesley,
1 997) : 203-205 .

Biographies

Avrwn E. Itzkowitz
Avrum Itzkowitz was a contractor/consultant at DIGITAL
from September 1995 through December 1 997. During
that time, he worked as part of the DIGITAL C++ develop
ment team, designing and implementing much of the sup
port for the automatic template instantiation facil ity i n
DIGITAL C++ version 6 .0 . Avrum also designed and
implemented template instantiation tests. He is currently a
senior software architect engineer at GTE lnternetworking.
He holds a B .S . (1972) in electrical engineering from
Northwestern University and M . S . (1 976) and P h . D .
(1 979) degrees i n computer science from the University
of l l l.inois. Avrum is a member of the ACM, the IEEE
Computer Society, and SIGPLAN .

Lois D. Foltan
Lois Foltan is a principal software engineer at Compaq.
Her areas of expertise include support for C++ automatic
template i nstantiation and the DIG ITAL C++ object
model . She was a member of the DEC C/C++ compiler
team for eight years. During that rime, she contributed
to the first GEM-based DEC C and DEC C++ compilers.
Recently, she joined the Digital Java ream. Lois received a
B .S . in computer science from the University ofVermont
in 1 988 .

Digital Technical Journal Vol . l O No. 1 1 998 31

32

Measurement and
Analysis of C and C++
Performance

As computer languages and architectures

evolve, many more challenges are being pre

sented to compilers. Dealing with these issues

in the context of the Alpha Architecture and the

C and C++ languages has led Compaq's C and

C++ compiler and engineering teams to develop

a systematic approach to monitor and improve

compiler performance at both run time and

compile time. This approach takes into account

five major aspects of product quality: function,

reliability, performance, time to market, and

cost. The measurement framework defines a

controlled test environment, criteria for select

ing benchmarks, measurement frequency, and

a method for discovering and prioritizing oppor

tunities for improvement. Three case studies

demonstrate the methodology, the use of mea

surement and analysis tools, and the resulting

performance improvements.

Digital Technical Journal VoL 10 No. 1 1 998

I
Hemant G. Rotithor
Kevin W. Harris
Mark W. Davis

Optimizing compilers are becoming ever more complex
as languages, target architectures, and prod uct features
evolve. Languages contribute to compiler complexity
with their increasing use of abstraction, modularity,
delayed binding, polymorphism, and source reuse,
especially when these attributes are used in combina
tion. Modern processor architectures are evolving ever
greater levels of internal paral lelism in each successive
generation of processor design. In addition, product
feature demands such as support for fast threads and
other forms of external parallelism, integration with
smart debuggers , memory use analyzers, performance
analyzers, smart ectitors, incremental builders, and feed
back systems continue to add complexity. At the same
time, traditional compiler req uirements such as stan
dards conformance, compatibility with previous ver
sions and competitors' products, good compile speed ,
and reliability have not ctiminishcd.

AU these issues arise in the engineering of Compaq's
C and C++ compilers for the Alpha Architecture.
Dealing with the m req uires a ctisciplined approach to
performance measurement, analysis, and engineering of
the compiler and libraries i f consistent im provements in
out-of-the-box and peak performance on Alpha proces
sors are to be achieved. In response, several engineering
groups working on Alpha software have established
procedures for feature support, performance measure
ment, analysis, and regression testing.

The operating system groups measure and improve
overall system performance by providing system-level
tuning features and a variety of performance analysis
tools. The Digital Products Division (DPD) Performance
Analysis Group is responsible for providing official
performance statistics for each new processor mea
sured against industry-standard benchmarks, s uch as
SPECmarks published by the Standard Performance
Evaluation Corporation and the TPC series of transac
tion processing benchmarks from the Transaction
Processing Performance Council . The DPD Performance
Analysis Group has established rigorous methods for
analyzing these benchm arks and provides perfor
mance regression testing for new software versions.

Simibrly, the Alpha compiler back- end development
group (G E M) has establ ished performance im prove
ment and regression testing procedmes for SPECmarks;
it also performs extensive run-time performance analy
sis of new processors, i n conjunction with refining and
developing new optim ization tech n iques. Final ly, con
su l ta nts worki ng with independent software vendors
(ISVs) help the ISVs port and tune their appl ications
to work well on Alpha systems.

Al though the e ffort from these groups does con
tribute to competitive performance, especially on
ind ustry-standard be nch marks, the DEC C and C++
com piler engi neering teams have found i t necessary to
i ndependen tly monitor and improve both run-time
and compile- time performance . J n many cases, ISV
support consultants have discovered that their applica
tions do not achieve the performance levels expected
based on ind ustry-standard benchmarks . We have seen
a variety of causes: New language constructs and prod
uct features are slow to appear in ind ustry bench
marks, thus these optimi zations have not received
suffi cient atte ntion . Obsolete or obsolescent source
code remai ning i n the bulk of existing applicat ions
Gl uscs defau l t options/switches to be selected that
i n hibit optimizations. Many of the most i mportant
optim izations used for exploiting i n ternal para l lelism
make assumptions about code behavior that prove to
be wrong. Bad experiences with compiler bugs indu ce
users to avoid optimizations e ntirely. Configuration
and source-code changes made j ust before a prod uct is
released can i nterfere with i m portant optimi zations .

For al l these reasons, we have used a systematic
approach to monitor, i m prove, and trade off five
major aspects of product quality in t he DEC C and
DIG ITAL C++ compilers. These aspects are fu ncti o n ,
rel iabi l ity, performance, time to market, a n d cost.
Each aspect is chosen because it is i m portan t in isola
tion and because it trades off against each of the other
aspects. The objective of this paper is to show how the
one characteristic of performance can be improved
wh i l e minimizing the i mpact on the other four aspects
of prod uct qual ity.

J n th is paper, we do not d iscuss a ny individ u al opti
mization methods in detai l ; tl1ere is a plethora of liter
ature devoted to these topics, i nc luding a paper
pu blished in this journal.' Nor do we d iscuss specifi c
compiler prod uct features needed tor competitive sup
port on i nd ividual platforms. I nstead, we show how
the efforts to measure, monitor, and im prove perfor
ma nC<: are organized to minimize cost and time to
market while maximizing fu nction and rel i abi l i ty.
Since al l these prod uct aspects are managed i n tJ1e con
text of a series of product releases rather than a s ingl e
release , our goals are frequently expressed i n terms o f
relationships between old and new product versions.

For exampl e, tor the performance aspects, goals along
the fol lowing lines are common :

• Optimizations should not i mpose a compi le -speed
penalty on programs for which they do not app ly.

• The use of unrelated compiler featu res should not
d egrade optimizations.

• New optim izations should not degrade rel iabi l i ty.

• New optimizations should not degrade perfor
mance in any appl ications.

• Opti mi zations should not i mpose any nonlinear
compile-speed penaJty.

• No appl ication should experience run-time speed
regreSSIOnS.

• Specific benchmarks or appl ications should achieve
specific run-time speed i mprovements.

• The use of specific new language features should not
i n troduce compile-speed or run-time regressions.

In the context of pertormance, the term measure
ment usually refers to crude metrics collected during
an automated script, such as compile t ime, r u n t ime,
or memory usage. The term analysis, in contrast,
refers to the process of breaki ng down the crude mea
surement i nto components and discoveri ng how the
measurement responds to changing cond itions. For
example, we an alyze how compi le speed responds to
an i ncrease i n avai lable physical memory. Ofte n , a
comprehensive ana lysis of a particular issue may
require a large number of crude measu rements . The
goal is usually to identi �r a particular prod uct feature
or optimization algoritl1m tlut is fail ing to obey one of
the product goals, such as those l isted above, and
repair it , repl ace it, or amend the goal as appropriate.
As always, i ndividual i nstances of this approach are
i n teresting in themselves, b u t the goal is to maximize
the overall performance while mi nimizi n g the deve l
opment cost, new feature avai labi l ity, rel iabi l ity, and
time to market for the new version.

Although some literature' - 4 discusses specific aspects
of analyzing and improving performance of C and C++
compilers, a comprehensive discussion of the practical
issues i nvolved in the measurement and analysis of
compiler performance has not been presented

.
i n the

literature to our knowledge. I n this paper, we provide a
concrete background tor a practitioner i n the field of
compilation -related performance analysis.

In the next section, we describe the m e trics assoc i
ated with the compiler's performance. Followi ng that,
we discuss a n environment tor obtai ning stable perfor
mance resul ts, i nclud ing appropriate benchm arks,
measmement frequency, and management of the results.
FinalJy, we discuss the tools used for performance mea
surement and analysis and give examples of the use of
tl1ose tools to solve real problems.

Digital Techn ical Joumal Vol. lO No. l 1 998 3 3

34

Performance Metrics

In our experi ence , ISVs :md end users are most i n ter
ested in the fol lowing performance metrics:

• Function. Although fu nction is not usual ly consid
ered an Jspect of performa nce, new language and
product features J.re entire l y appropriate to consider
among potenti al pe rformance improvements when
trading off deve lopment resources. From the point
of view of a user who needs a p:trticu l ar feature , the
Jbsence of that feJture is i ndistingu isha ble from an
umcceptab ly slow i mpl ementation of that fea ture .

• Re l i ab i l i ty. Academic papers o n pcd(xmance sel

dom d iscuss re l ia bi l i ty, but it is cru ci al . Not on ly is
an unrel iable optim izat ion use less , often i t prej u
dices progr:� mmers against using a n y op ti miza
ti ons, thus degrad i ng rather than en harKi ng overall
perform:mcc .

• Application abso lu te r u n time. Typically, the absolute
ru n ti me of an appl ication is measured for a bench
mark with specific input data . It is i mportant to real
ize, however, that a user-su ppl ied benchmark is often
on ly a surrogate for the maximum appl ication size.

• Max im um app l icni on size. Often , the end user is

not trying to solve a specific i nput set in the shortest
time ; instead , the user is trying to solve the largest
possible real -world prob le m with in a specific t ime.
Thus, trends (e .g . , memory bandwid th) arc often

more i mportant tha n abso lu te tim ings . Th is a lso
i mp l ies thJt spec i fic benchmarks must be retired or
upgraded when processor i m provements moot thei r
original rationa le .

• Price/Pe rformance ratio . Often, the most effective
competitor is not the one who em match our
prod uct's perform ance, but the one who cJ.n give
acceptable performance (see Jbovc) wid1 d1e cheJpcst
solution . Since compiJcr developers do not contribute
direcdy to server or workstation pricing decisions,
they must use d1c previous meuics as surrogates .

• Compile speed . This aspect is primari ly of i nterest to
appl ication developers rather thJn end users.
Com pile speed is often given secondary considera
tion in academic papers on opti mization; however, it
can make or breJ k the decision of an ISV consider
ing a pl atform or J developmen t environment. Also,
for C++, there is an important distinction between
ab i n i tio build speed a n d i nc remen ta l bui ld speed,
due to the need for template instJnriation .

• Resu lt file size. B oth t h e obj ect fi l e and executable
fi le sizes arc impor tant . This Jspect WJS not a partic
u lar problem with C, but scverJI Ianguage features
of C++ :l!1d its optim izations can lcJd to exp losive
growth i n resu l t fi le size. The most obvious prob
lems Jrc the need for ex tensive function i n li ni ng

Digital Tcdmic.�l Jound Vol . 1 0 No. I 1 998

and for instantiation of temp lates . I n add it ion, for
debu g versions of the result fi les, it is essential to
find a way to suppress repeated descri ptions of the
type information for varia bl es i n m ul ti ple modu les .

• Co mpi ler dynamic memory use. Peak usJge, aver
age usage , and pattern of usage must be regulated
to keep the cost of a minimum deve lopme nt con
figu ration low. In add i ti on , it is i mportan t to ensure
that speci fi c com pi ler a lgorithms or com b i nati ons
of them do not viol ate the usage Jssu mptions bui l t
in to the paging system, which can make the system
u nusab l e d uring large compi lations.

Crude measu rem ents can be made t(Jr a l l or most of
these metrics in a single script. When Jttempting to
make a si gn ifi cant i mprovement in one or more mct
rics, however, the change often necessari l y d egrades
others. This i s acceptable, as long as the only cases that
pay a penalty (e .g . , in l arger dyr1:1 mic memory usc) arc
the compilations that benefit from the i m proved run
time performance .

As the list of performance metrics ind icatcs, the most
important d i sti nc tion is made betvvcen comp i le -ti me
and r u n - time metrics. In pract ice , we use auton1J tcd
scripts to measu re comp i le -ti me Jnd ru n-time perfor
mance on a fai rly frequent (dai ly or weekly during
development) basis.

Compile- Time Performance Metrics

To measure compile- t ime perform:mce , we usc fou r
metrics: compilation ti m e , size o f d1e generated objects ,
dynam ic memory usage during comp i lation , and tem
plate instantiation time fcJr C++.

Compilation Time The compi lation time is measured
as d1e time it takes to compi le J given set of sources,
typical ly excl ud ing the link t ime. The l ink ti me is
excluded so that only compi ler pcrfonnJncc is m ea
su red . This metric is i mportJnt because i t d irccdy
affects d1e prod uctivity of a deve lope r. In the C++ c:1sc,
performance is measured ab initio, because our prod
uct set does not support incremental compi lation
below the grJnu la rity of ::1 who le mod u l e . When opti
mization of the enti re program is attempted, this may
become a more interesti ng issu e . The U N I X shel l ti m
ing tools make a distinction between user a n d system
time, but iliis is not a meaningfu l distinction f(x a com
p i ler user. S i nce compi btion is typic:� l ly CPU intensive
and system time is usual ly modest, tr:�c king the sum of
both d1<:: user and the system time gives the most realis
tic result. S l ow comp ilation ti mes can be ca used by the
use of 0 (n2) a lgori th ms i n the opti mi zation phases ,
but they can also be freq uent ly caused by excessive
l ayering or mod u l arity due to code reuse or excess ive
growth of the i n- memory representation of the pro
gram during compi lation (e .g . , due to inl ini ng) .

Size of Gene rated Objects Excessive size of generated
objects is a d i rect contri butor to s low compi le and
l i nk times. In add i tion to the obvious issues of i n l i n
i ng and template instantiation, dupl ication of the type
and naming information in the symbol ic debugging
support has been a particu lar prob lem with C++.
Compression is possible and helps with disk space, but
this i ncreases l ink time and memory use even more .
The current solu tion is to e l iminate dupl i cate infonna
tion present in mu l tiple modu les of an appl ication.
This work requ ires s ignificant support in both the
l inker and the debugger. As a resu l t , the implementa
tion has been d ifficult .

Dynamic Memory Usage during Compi lation Usual ly
modern compilers have a mu l tiphase design whereby
the program is represented in several d ifterent forms in
dynamic memory during the compi lation process. For
C and C++ optimized com pilations, this involves at
least the fd lowing processes:

• Retrieving the enti re sou rce code tor a module
from its various headers

• Preprocessing the source according to the C/C++
rules

• Parsing the source code and representing i t i n an
abstract f(:>rm with semantic i nformation embedded

• For C++, expanding template c lasses and fu nctions
into their individuaJ instances

• Simpl ifYing h igh-level l an guage constructs i n to a
form acceptable to the opti mization phases

• Converting the abstract represen tation to a d iffer
ent abstract form acceptable to an opti mizer, usu
al ly cal led an i ntermed iate language (I L)

• Expand ing some low- level functions in l ine i nto the
context of their cal lers

• Performing mu lt ip le optim ization passes involving
an notation and transformation of the IL

• Converti ng the I L to a form symbolical ly represent
ing the target machine language , usual ly called code
generation

• Performing schedul ing and other opti mizations on
the symbolic machine l anguage

• Converting the symbolic machine language to actual
object code and writing it onto disk

In modern C and C++ compi lers, these various i nter
mediate f(xms are kept entirely in dynamic memory.
Although some of these operations can be performed
on a fu nction-by-function basis with in a modu le, it is
sometimes necessary for at least one intermed iate form
of the module to reside in dynamic memory in i ts
entirety. I n some instances, it is necessary to keep mul
ti ple tonns of the whole module s imultaneously.

This presents a d ifficu l t design chaJ le nge : how do we
compile large programs using an acceptable amount of
virtuaJ and physical memory? Trade-offs change con
stantly as memory prices dec l ine and pagi ng a lgorithms
of operating systems change. Some optimizations even
have the potential to expand one of the intermediate
representations into a form that grows faster than the
size of the program (0(n x log(n)) , or even 0(n1)) . I n
these cases, optimization designers often l imit the
scope of the transformation to a subset of an i ndividual
function (e .g . , a loop nest) or use some other means to
artificial ly l imi t the dynamic memory and computation
requirements. To allow additional headroom, upstream
compiler phases are designed to el iminate unnecessary
portions of the module as early as possi ble.

In ad d it ion, the memory management systems are
designed to a l low in ternal memory reuse as effi
c iently as possib l e . For th is reason , compi ler design
ers at Compaq have genera l l y preferred a zone-based
memory management approach rather than e ither a
malloc- based or a garbage-col lection approach . A
zoned memory approach typical ly a l lows a l location
of varying amoun ts of memory i nto one of a set of
ident i fied zones, fo l lowed by deal location of the
e n ti re zone when a l l the individual al locations are no
longer needed . Since the source program is repre
sented by a succession of i n ternal representations
in an optimizing compi ler, a zoned -based memory
management system is very appropriate .

The main goals of the design are to keep the peak
memory use below any art i fic ia l l imits on the virtual
memory avai lable for al l the actual source modules
that users care about, and to avoid algorithms that
access memory i n a way that causes excessive cache
misses or page tau l ts.

Template Instantiation Time for C++ Templates are a
major new teature of the C++ language and are heav i ly
used in the new Standard Li brary. I nstantiation of
templates can dominate the compile time of the mod
u les that use them . For this reason, template instantia
tion is undergoing active study and improvement,
both when compi l ing a mod ule for the first t ime and
when recom pil ing in response to a source change. An
improved technique, now widely adopted , retains pre
compiled i nstantiations in a l i brary to be used across
compil ations of multiple modu les.

Template instantiation may be done at either com
pile t ime or during l i nk time, or some com bination . '
DIGITAL C++ has recently changed from a l ink- time
to a compi le-ti me model for improved i nstantiation
performance . The i nstanti ation time i s general ly pro
portional to the nu mber of templates i nstanti ated ,
which is based on a command- l ine swi tch specification
and the ti me requ i red to instantiate a typical template.

Digital Tcchniol Journal Vo l . 1 0 No. 1 1 998 35

36

Run-Time Performance Metrics

We use automated SC!ipts to measure run-time perfor
mance tor generated code, the debug image size, the pro
duction image size, and specific optimizations triggered .

Run Time for Generated Code The run time for gen
erated code is measured as the sum of user and system
time on UNIX required to run an executable image.
This is the pri mary metric for the qua l ity of generated
cod e . Code correctness i s also validated . Comparing
run times tor s l ightly differing versions of synthetic
benchmarks al lows us to test su pport for specitic opti
mizations. Performance regression testing on both
synthetic bench marks and user applications, h owever,
is the most cost-effective method of preventing per
formance degradations. Tracing a perrormance regres
sion to a specific compiler change is often d ifficu lt , but
the earl ier a regression is detected, the easier and
cheaper it is to correct.

Debug Image Size The s ize of an image compiled
with the debug option selected during compilation is
mcJ.sured in bytes. It is a constant struggle to avoid
bloat caused by unnecessary or redu ndant information
req u i red for sym bolic debugging support.

Production Image Size The size of a prod uction
(optimized , with no debug i n tonmtion) Jppl ication
i mage is measured in bytes. The use of optimization
techniques has historical ly made this size smal ler, but
modern RISC processors such as the Alpha micro
processor require optimizations that can increase code
size substantial ly and can lead to excessive i mage sizes
i f the techniq ues are used indiscri minately. Heuristics
used in the optimization algorithms l im i t this size
impact; however, su btle changes in one part of the
optimizer can trigger unexpected size increases that
aHect I -cache performance.

Specific Opti m izations Triggered In J multiphase
optimizing compi ler, a specific optimization usua l ly
req ui res preparatory contributions from several
upstream phases and cleanup from several down
stre;�m phases, i n addition to tbe ;�ctua l transforma
tion . In this environment, an unre l a ted change in one
of the upstream or downstream phases may in terfere
with a data structure or vio late an assumption
exploi ted by a downstream phase and thus generate
bad code or suppress the optimizations. The genera
tion of bad code can be detected qu ickly with auto
mated testing, but optim ization regressions are much
harder to find .

For some opti mizations, however, it is poss ib le to
write test programs that are clearly representative
;�nd can show, e i ther by some kind of d umping or
by compar;�tive performance tests, when an imp le
mented optimization fai ls to work as expected . One

Digit:ll T�chnicJI Journal Vol 10 No. 1 1 998

commercially avaiL1ble test suite is called NULLSTONE ,''
and custom-wri tten tests are used as wel l .

In a collection of such tests, the total number of opti
mizations implemented as a percentage of the total
tests can provide a usefu l metric . This metric can indi
cate if successive compi ler versions have improved and
can he lp in comparing optimizations implemented in
compilers from difterent vendors. The opti mizations
that are indicated as not implemented provide usefu l
data for guiding future development effort.

The app lication developer must always consider the
compile-time versus run-time trade-off. I n a wel l
designed opti mizing compi ler, longer compile times
are exchanged f(Jr shorter run times. This re lationship,
however, is far from l inear and depends on the im por
tance of pertormance to the application and the phase
of deve lopment.

During the initia l code-deve lopment stage, a shorter
compi le time is usefu l because the code is compiled
often . During the production stage, a shorter run time
is more import<lnt because the code is run often .
Although most of the above metrics can be d irectly
measured, dynamic memory use can on l y be indirectly
observed, for example, ri·om the peak stack use and the
peak heap use . As a resu l t, our tests include bench
marks that poten tia l ly make heavy use of dynamic
memory. Any degradation in a newer compiler version
can be deduced ti·om observing the compi lation of
such test cases.

Environment for Performance Measurement

In th is section, we describe our testing environment,
inc lud ing hardware and software requirements, cri te
ria for selecting benchmarks, frequency of perfor
mance measurement, and tracking the resu l ts of our
performance measurements.

Compiler performance ana lysis and measurement
give the most rc l i:�ble and consi stent resu l ts in a

control led envi ronment. A n u m ber of tactors other
than the compi ler performance have the potential of
aHecting the observed resu l ts, and the effect of such
pertu rbations must be minimized . The hardware and
software components of the test environ ment used arc
d iscussed below.

Experience has shown that i t helps to have a ded i
cated machine tor pcdormance analysis and measure
ment, because the resu l ts obta ined on the same
machine tend to be consistent and can be meaning
ful ly compared with successive runs . In addition , the
external i n fluences can be closely control led, and ver
sions of system software, compilers, and benc hmarks
can be controlled without impacting other users.

Several aspects of the hardware configuration on the
test machine can aftcct the resu lting measurements.
Even with in a singl e f:un i ly of CPU architectures at
comparable clock speeds, differences i n specific i mple-

mentations can cause signi ficant pedonnance changes.
The number of levels and the sizes of t he on-chip and
board- level caches can have a strong effect on perfor
mance in a way that depends on a l gorithms of the
appl ication and the size of the input data set. The size
and the access speed of the main memory strongly
affect performance, especial ly when the appl ication
code or data does not fit into the cache. The activity on
a network connected to the test system can h ave an
effect on performance; for example, i f the test sources
and the executable i mage are located on a remote disk
and Jre fetched over a nenvork. Va riations in the
observed performance may be divided into nvo parts:
(1) system-to-system variations in measurement when
running the s:une bench mark and (2) ru n-to-run varia
tion on the same system nnmi ng the same bench mark.

Va riJtion due to hardware resource differences
between systems is add ressed by using a dedicated
mach ine tor performance measurement as i n d icated
above. VJriation d u e to network activity can be mini
mi zed by closing a l l the appl ications that make use of
the network before the performance tests are started
and by using a disk system local to the mach ine under
test. The variations due to cache and mai n memory
system effects can be kept consistent berween r u ns by
usi ng similar setups for successive runs ofpedorma nce
measurement.

I n addition to the hardware components of the
set up descri bed above, several aspects of the sof-tware
environ ment can affect performance . The operating
system version used on the test machine should corTe
spond to the version that the users are l ikely to use on
their machi nes, so that the users see comparable per
fonnance. The l i braries used with the compiler are
usual ly shi pped with the operating syste m . Using dif
fere nt l i braries can affect performance because newer
l ibraries may have better optimizations or new fea
tures. The compiler switches used whi le compi l ing test
sources can result i n different opti mi zation trade- offs .
Due to the large number of compi ler options sup
ported on a modern compiler, it is i m practical to test
performance with all possible combi nations.

To meet our requireme nts, we used the fol lowing
small set of switch combinations:

I . Default Mode. The default mode represents the
default combination of switches selected for the com
pilcr when no user-selectable options are specified.
The compiler designer chooses tl1e default combina
tion to provide a reasonable trade-off between com
pi le speed and run speed. The use oftl1is mode is very
common, especially by novices, and thus is important
to measure.

2 . Debug Mode. In the debug mode, we test the option
combination that the programmer would select when
debuggi ng. Opti mi zations are typica l ly turned off,
and ful l sym bolic information is generated about the

types and addresses of program variables. This mode
is commonly specified during code development.

3. Optimize/Prod uction Mode. In the optimize/
produ c tion mode, we select the option com bina
tion for generati ng optimized code (-0 compi ler
option) for a prod uction image . This mode is most
l ikely to be used in com pi l ing applications bdore
shipping to customers.

We prefer to measure compile speed for debug mode,
r u n speed for prod uction mode, and both speeds for
the default mode. The default mode is expected to lose
only modest r u n speed over optimize mode, have good
compile speed, and provide usable debug information .

Criteria for Selecting Benchmarks

Specific benchma rks are selected for measuring perfor
mance based on the ease of measuring i n teresti ng
properties and the relevance to the user community.
The desirable characteristics of usefu l benchmarks are

• It should be possi ble to measure i ndividual opti
mizations i mplemented in the compiler.

• It should be possible to test performance for com
monly used language features.

• At least some of the bench marks should be repre
sentative of wid ely used appl ications.

• The benchmarks should provide consistent resu lts,
and the correctness of a run should be verifiable.

• The benchmarks should be scalable to newer
machi nes. As newer and faster machi nes are devel
oped, the be nchmark execu tion times diminish . I t
should be possible to scale the bench marks on the
machi nes, so that usdi.1 l results can still be obtained
without significant error in measurement.

To meet tl1ese diverse requirements, we selected a set
of benc hmarks, each of which meets some of the
requirements. vVe grouped our bench marks i n accor
dance with the performance meaics, that is, as compile
time and run-time benchmarks. This disti nction is
necessary because it al lows us to fine -tune the contents
of the benchmarks under each category. The compi le
t ime and ru n-time bench marks may be fi.rrther classified
as (l) synthetic benchmarks for testi ng the petiormance
of specific features or (2) real applications tl1at i n dicate
typical performance and combi ne the specific feanu·es.

Compile-Time Benchmarks Examples of synthetic
compile-t ime bench marks inc l ude the #define i n ten
sive preprocessing test, t h e array intensive test, the
com ment intensive test, the declaration processing
i n tensive test, the h i erarchical #include intensive test,
the printf i ntensive test, the empty #include i n tensive
test, the ari th metic i n tensive test, the fi.mc tion defini
tion i n tensive test (needs a large memory), and the
i nstantiation i n tensive test.

Digital Tec hnical Jou mal Vol . lO No. 1 1998 37

38

Re al appl ications used as compi le- t i me benc h
marks incl ude selected sources from the C compiler,
the DIG ITAL UNIX operati ng syste m , U N I X ut i l i ties
such as awk, the X wi ndow i nter face, and C++ class
i n heri tance.

Ru n-Time Bench marks Synthetic run-time bench
marks contain tests fo r i ndividual opti mizations for
different data type, storage types, and operators. One
run-time suite cal led NULLSTON£6 contains tests for
C and C++ co mpi ler opti mi zations; another test su i te
cal led Bench++7 has tests for C++ features such as vir
tual fu nction calls, exception handling, and abstraction
penalty (th e Haney kernels test, the Stepanov benc h
mark, and t h e OOPACK benchmark") .

Ru n-time bench marks of real applications for the C
language i nclude some of the SPEC tests that are closely
tracked by the DPD Performance Group . For C++, the
tests consist of the groff word processor processing a set
of documents, the EON ray tracing benchmark, the
Odbsi m-a database simulator fi·om the U niversity of
Colorado, and tests that call fu nctions from a search
class l ibrary.

Acquiring and Maintaining Benchmarks

We have esta blished methods of acquiri ng, maintain
ing, and u pdating bench marks. Once the desirable
characteristics of the benchmarks have been identified,
usefu l benchmarks may be obtained from several
sources, notably a standards organization such as
SPEC or a vendor such as Nul lstone Corporation . The
pu blic domai n can provide benchmarks such as EON,
groff, and Bench++. The use of a p u blic-domain
bench mark may req u i re some l evel of porting to make
the bench mark usable on the test platform i f the origi
nal appl i cation was developed for use with a d i fterent
language dialect, e . g., GNU's gee .

Sometimes, customers encou nter performance prob
lems ''�th a specific feature usage pattern not anticipated
by the compiler developers. Customers can provide
extracts of code that a vendor can use to reprod uce
these performance problems. These code extracts can
form good bench marks for use in fi..tnJre testing to avoid
reoccurrence of the problem .

Application code such as extracts from the compi ler
sources can be acquired from with i n the organization .
Code may also be obtained from other software devel
opment groups, e . g . , the class l ibrary group, the
debugger group, and the operating system group .

If none o f these sources can yield a bench mark with
a desirable characteristic, then one may be written
solely to test the speci fic tearure or combination .

In our tests of the D I G ITAL C++ compi ler, we
needed to use a l l the sources discussed above to obtain
C++ benchmarks that test the major featu res of the
la nguage . The pub l ic -domai n bench marks someti mes
req uired a sign ificant porting effort because of com -

Di[.;it�l T<.:dllliCJI JournJI Vol . 10 No. I 1 998

pati b i l ity issues bel:\veen d i fferent C++ d ial ects. We
also reviewed the results publ ished by other C++ com
piler vendors.

Maintai ning a good set of performance measurement
bench marks is necessary for evolving langu ages such as
C and C++. New standards are being developed tor
these languages, and standards compatibility mav make
some of a bench mark's features obsolete. Updating the
database of bench marks used in testing i nvolves

• Changing the source of existing bench marks to
accommodate system header and default behavior
changes

• Adding new benchmarks to the set when new com
piler features and opti mizations are implemented

• Deleting outdated benchmarks that do not scale
we l l to newer mac hines

In the fol lowi n g subsectio n , we d iscuss the fre
quency of our performance measurement.

Measurement Frequency

When deciding how often to measure comp iler per
formance, we consider 1:\vo major factors:

• It is costly to track down a spec ific performance
regression amid a large n u mber of changes. In tact,
it somerjmes becomes more econom ical to add ress
a new opportu nity instead .

• I n spite of automation , it is sti l l costly to run a suite
of pertormance tests. I n addi tion to the actual run
time and the eval uation time, and even with signifi
cant efforts to filter out noise, the normal run-to
run variabi l ity can show phantom regressions or
improvements .

These considerations natural ly lead to two obvious
approaches to test frequency:

• Measuri n g at regular i n tervals. During active devel
opment, measuring at regu lar i n tervals i s the most
appropriate policy. It a l lows pinpointing specific
pertormance regressions most cheaply and permits
easy sched u l ing and cost management. The intcrv::tl
selected depends on the amount of deve lopment
(n u m ber of developers and freq uency of new code
check-ins) and the cost of the testi ng. I n our rests,
the i n tervals have been as fi·eq uent as three days and
as i n frequent as 30 days.

• Measl!ling on deman d . Measurement is performed
on demand when significant changes occur, for
example, the del ivery of a major new version of a
component or a new version of the operati ng system.
A fi.dl performance test is warra nted to establ ish a
new basel ine when a competitor's prod uct is rclc:�scd
or to ensure that a problem has been corn:cted .

Both strategies, i f i mp lemented purely, have problems.
Frequent measurement can catch problems early but is

resource intensive, whereas an on-demand strategy
may not catch problems early enough and may not
al low sufficient time to address discovered problems.
In retrospect, we discovered that the time devoted to
more frequent runs of existing tests could be better
used to develop new tests or analyze known results
more fully.

We concluded that a combination strategy is the best
approach . In our case all the performance tests are run
prior to product releases and after major component
deliveries. Periodic testing is done during active devel
opment periods. The measurements can be used for
analyzing existing problems, analyzing and comparing
pertormance with a competing product, and finding
new opportunities for performance improvement.

Managing Performance Measurement Results

Typical ly, the first time a new test or analysis method is
used, a few obvious improvement opportunities are
revealed that can be cheaply addressed. Long-term
improvement, however, can only be achieved by going
beyond this initial success and addressing the remain
ing issues, which are either costly to implement or
which occur infrequently enough to make the effort
seem unworthy. This effort i nvolves systematically
tracking the performance issues uncovered by the
analysis and judging the trends to decide which
improvement efforts are most worthwhi le .

Our experience shows that rigorously tracki ng all
the performance issues resu lting from the analyses
provides a long list of opportun i ties for improvement,
far more than can be addressed during the develop
ment of a single release . It thus became obvious that,
to deploy our development resources most effective ly,
we needed to devise a good prioritization scheme.

For each performance opportunity on our list, we
keep crude estimates of three ctiteria : usage frequency,
payoff from implementation, and difficulty of imple
mentation . vVe then use the three criteria to divide tl1e
space of performance issues into equivalence classes.
\Ve define our criteria and estimates as fol lows:

• Usage frequency. The usage freq uency is said to be
common if the language feature or code pattern
appears in a large fraction of source modules or
uncommon if it appears in only a few modules.
When the language feature or code pattern appears
in most modules for a particular application domain
predominantly, the usage frequency is said to be
skewed . The classic example of skewed usage is the
complex data type.

• Payoff from implemen tation . Improvement in an
implementation is estimated as high, moderate, or
smal l . A high improvement would be the el imina
tion of the language construct (e .g . , removal of
unnecessary constructors in C++) or a significant
fraction of their overhead (e .g . , i n l ining small func-

tions) . A moderate improvement wou ld be a 10 to
50 percent increase in the speed of a language fea
ture . A small improvement such as loop unrol l ing
is worthvvhile because i t is common.

• D ifficulty of implementation. We estimate the
resource cost for implementing the suggested
optimization as difficult, straightforward , or easy.
Items are classified based on the complexity of
design issues, total code required, level of risk, or
num ber and size of testing requirements. An easy
improvement requires l ittle up-front design and
no new programmer or user i nterfaces, in troduces
l ittle breakage risk for existing code, and is typically
l imited to a single compiler phase, even if it involves
a su bstantial amount of new code . A straightfor

ward improvement would typically require a sub
stantial design component with multiple options
and a substantial amount of new coding and testing
but would introduce little risk. A difficult improve
ment would be one that introduces substantial risk
regardless of the design chosen , involves a new user
interface , or requires substantial new coordination
between components provided by different groups.

For each candidate improvement on our list, we
assign a triple representi ng its priority, which is a
Cartesian product of the m ree components above:

Priority = (frequency) x (payoff) x (difficulty)

This classification scheme, though crude and subjec
tive, provides a usefu l base for resource al location .
Opportunities classified as common, high, and easy are
likely to provide the best resource use, whereas those
issues classified as uncommon, small, and difficult are
the least attractive . This scheme also a l lows manage
ment to prioritize performance opportun i ties against
functional improvements when allocating resources
and schedule for a product release.

Further classification requires more judgment and
consideration of external forces such as usage trends,
hardware design trends, resource availabil ity, and
expertise in a given code base. Issues classified as com
mon and high but difficult are appropriate for a major
achievement of a given release, whereas an opportu
nity that is uncommon and moderate but easy migh t
b e a n appropriate task for a novice compiler developer.

So-called "nonsense optimizations" are often con
troversial . These are opportunities that are almost
nonexistent in human-written source code, for exam
ple, extensive operations on constants. Ordinarily they
would be considered unattractive candidates; how
ever, they can appear in h idden forms such as the result
of macro expansion or as the result of optimizations
performed by earlier phases. In addition, they often
have high per-use payoff and are easy to implement, so
it i s usually worthwhile to implement new nonsense
optimizations when they are discovered.

Digital Technical Journal Vol. lO No. l 1 998 39

40

Management control and resource a l location issues
can arise when com mon, h igh, or easy opportun i ti es
i nvolve software owned by groups not under the
d irect control of the compiler developers, such as
headers or l i braries.

Tools and Methodology

We begi n this section with a d iscussion of pertonnance
evaluation tools and their application to problems. We
then brieAy present the results of three case studies.

Tools and Their Application to Problems

Tools for performance eva luation are used for either
measurement or ana lysis. Tools for measurement are
designed main ly for accurate, absolute timing. Low
overhead , reproducibi l i ty, and stabi l i ty are more
i mportan t than h igh reso l utio n . Measurement tools
are primari l y used in regression testi ng to identifY the
existence of new performance problems. Tools tor
analysis, on the other hand, are used to isolate the
source code responsi ble for the problem . High, rela
tive accu racy is more important than low overhead or
stabi l i ty here. Ana lysis tools te n d to be intrusive : they
add i nstrumentation to either the sou rces or the exe
cutable i mage i n some man ner, so that e nough i n f(x
mation about the execution can be captured to
provide a dctai k:d profi le .

\iVe h ave constructed adeq uate automated measure
ment tools using scripts l ayered over standard operating
system timing packages. For com pile-time measure
ment, a driver reads the compi le commands from a fi l e
and, after com pi l ing t h e sou rce t h e specified n u m ber
of t imes, writes the resu lti n g ti mi ngs to a fi le . Post
processing scripts eva l u ate the usabi l i ty of the resu l ts
(average ti mes, deviations, and fi le s izes) and compare
the new resu l ts agai nst a set of reference resu l ts . For
compi le-t ime measurement, the default, debug, and
opti m i ze compibtion m od es are all tested, as previ
ously discussed .

These sum marized results ind icate if the test version
has su ffered performance regressions, the magnitude
of these regressions, and which bench mark source is
ex hibit ing a regressio n . A na lysis of the problem can
then begi n .

T h e tools we use for compi le-speed a n d r u n - ti m e
analysis are considerably more sophisticated tha n the
measurement tools. They are genera l ly provided by
the CPU design or operating system tools develop
ment groups and are wid e ly used for a pplication tu n
i n g a s wel l a s compi ler i m provements. VVe h ave used
the fol lowi ng compile-speed analysis tools :

• The compi l er's i nternal -show stati s t i cs feature
gives a crude measure of the time req u i red tor each
compi ler phase.

D i giral Tec h n ical Jounul Vol . lO N o . 1 1 998

• The gprof and h iprof tools arc suppl ied i n the
development suites for DIGITAL UNIX. Both
operate by bui ld ing an i nstru mented version of the
test software (the compi ler i tse l f i n our case) . The
gprof tool works with the compiler, the l i n ker, and
the loader; i t is ava i l able from several UNIX ven
dors . Hiprof is a n Atom tool '' 1 1 avai lable only on
DIGITAL UNIX; i t does not req u i re compiler or
l i n ker support.

The bench mark ex hibiting the performance prob
lem can then be compi l ed with the profi l ing version
of the compiler, and the compilati o n profile can be
captured . Using the display fac i l i ties of the too l , we
can analyze the relevant portions of the execution
profile . We can then compare this profile with that
of the reference version to loca l ize the problem to a
specific area of compi ler source . Once this i n f(xma
tion is available, a specific edit can be identified as
the cause and a solution can be identified and
i mplemented . Another round of measurement is
needed to veri ty the repJir is effective, similar to the
procedu re for add ressi ng a fu nctionJI regress ion .

• VVhen the problem needs to be pi npointed more
accurately than is possible with these profi l i ng
tools, we use the !PROBE tool, which can provide
i nstruction- by-instruction details about the execu
tion of a function . 1 4

VVe h ave used the fol lowi n g tools or processes tor
run-ti m e anal ysis:

• \Ve apply h i prof and gprof i n combination, and
the ! PROBE tool as descri bed above , to the
run-time behavior o f the test program rather than
to i ts compil atio n .

• We analyze the NULLSTONE results b v examining
the detailed log file . This log identi fies the problem
and the machine code generated. This analysis is usu
ally adequate since the tests arc genera l l y q uire simple.

• If m ore detaiJed ana lysis is need ed, e . g . , to pi n
point cache misses, we usc the h i gh l y deta i l ed
resu l ts generated by the Digi tal Continuous
Profil i n g I n ti·astructurc (DCPf) tooJ H·1 ' DCPI can
d isplay detai led (average) hardware be havior on an
i nstructi on -by- i nstruction basis . Any sche d u l i n g
prob lems t h a t may b e responsible f(>r fi-equent
cache misses can be identi fied fi·o m the DCPl out
put, whereas they may not a lways be obvious from
casua l l y observing the machine code.

• Final ly, we use the estimated schedule d u m p and
statistical data optionally generated by the GEM
back e n d . 1 This dump tel l s us how instructions are
sched u led and issued based on the processor archi
tecture selected. It may also provide i n formation
about ways to i mprove the sched ule .

In the rest of this section, we discuss three examples
of applying analysis tools to problems identified by the
performance measurement scripts.

Compile-Time Test Case

Compile-time regression occurred after a new opti
mization cal led base components was added to tbe
GEM back end to improve the run-time performance
of structure reterences. Table l gives compile-time test
results that compare the ratios of compile times using
the new optimized back end to those obtained with
the older back end . The resu I ts for the iostream test
indicate a significant degradation of 25 percent in the
compile speed for optimize mode, whereas the perfor
mance in the other two modes is unchanged .

To analyze this problem, we built hi prof versions of
the two compilers and compiled the iostream bench
mark to obtain its compi lation profi le . Figures l a and
l b show the top contributions in the flat hi prof pro
fi les from the two compilers. These profiles i ndicate
that the number of calls made to esc and gem_il_peep
in the new version is greater than that of the old one
and that these cal ls are responsible for performance
degradation . Figures 2a and 2b show d1e cal l graph
profiJes tor esc for the two compilers and show me calls
made by esc and the contributions of each component

Table 1

called by esc . Since these components are included in
dle GEM back end, the problem was fixed there.

Run-Time Test Cases

For the run-time analysis, we used two different test
environments, the Haney kernels benchmark and the
NULLSTONE test nm against gee .

Haney Kernels The Haney kernels benchmark i s a
synthetic test written to examine the performance of
specific C++ language features. In this run-time test
case, an older C++ compiler (version 5 . 5) was com
pared with a new compiler under development (version
6 .0) . The Haney kernels results showed that the ver
sion 6 .0 development compiler experienced an overal l
performance regression of 40 percent. We isolated the
problem to the real matrix multiplication function.
Figure 3 shows the execution profile for this function .

We then used the DCPI tool to analyze perfor
mance of the inner loop instructions exercised on ver
sion 6 .0 and version 5 . 5 of the C++ compi ler. The
resulting counts in Figures 4a and 4b show that dle
version 6.0 development compi ler suffered a code
schedul ing regression. The leftmost column shows the
average cycle counts for each i nstruction executed.
The reason for th is regression proved to be that a test

Ratios of CPU (User a nd System) Compi le Ti mes (Seconds) of the New Compi ler to Those of the Old Compi ler

Fi le Name Debug Mode Default Mode Optimize Mode

Options - 00 -g -04 - gO
a 1 amch2 0.970 0.970 0.930

col l evol 0.9 1 0 0.780 0.740

d_inh 0.970 0.960 0.960

e_rvi rt_yes 0.970 0.980 0.960

i nterfacepartic le 0.880 0.790 0.730

iostream 0.990 0.980 1 .250

pistream 0.890 0.760 0.790

t202 0.970 0.970 1 . 1 30

t300 0.980 0.960 1 .040

t601 1 .0 1 0 1 .020 1 .0 1 0

t606 1 .000 1 .020 1 .020

t643 1 .020 1 .0 1 0 1 .000

test_complex_excepti 0.960 0.890 0.830

test_complex_math 0.970 0.950 0.950

test_ demo 0.950 0.830 0.780

test_generic 1 .000 1 .020 1 . 1 00

test_task_queue6 0.970 0.920 0.960

test_task_rand 1 0 .950 0.890 0.890

test_ vector 0.970 0.920 1 . 1 20

vectorf 0.890 0.790 0.850

Averages 0 .961 0.920 0.952

Digital Technical Journal Vol. 10 No. I 1998 4 1

42

g ranu l ar i ty : cyc l e uni t s : seconds ; to tal : 4 8 . 9 6 seconds
% cumu l a t i ve sel f se l f tota l

t ime seconds seconds cal l s m s / ca l l ms / ca 1 l name
2 . 8 1 . 3 7 1 . 3 7 1 0 1 9 5 0 . 1 3 0 . 1 3 c s e [1 2]
2 . 6 2 . 6 6 1 . 2 9 2 1 9 6 0 7 0 . 0 1 0 . 0 1 gem_j l_oeep (3 1]
2 . 6 3 . 9 3 1 . 2 7 5 1 5 5 6 6 0 . 0 0 0 . 0 0 gem_ f i _ud_acces s_resource [6 7]
2 . 4 5 . 0 9 1 . 1 7 4 8 1 8 9 1 0 . 0 0 0 . 0 0 gem_vm_get_nz [3 7]
2 . 3 6 . 2 3 1 . 1 4 7 1 3 1 7 6 0 . 0 0 0 . 0 0 _OtsZero [7 5)

(a) HiprofProfile Showing Instructions Executed with the New Compiler

granu l a ri ty : cyc l es ; un i ts : seconds ; t ocal : 2 7 . 4 9 seconds

c� c umu l a t i ve se l f sel f t o t a l
ime seconds seconds ca l l s ms / c a l l ms / ca l l name
3 . 0 0 . 8 3 0 . 8 3 1 4 3 4 8 3 0 . 0 1 0 . O J gem_i I _peep [4 0]
?. . 7 1 . 5 8 0 . 7 5 6 1 4 3 5 0 0 . 0 0 0 . 0 0 _O t s z er o [6 4 J
2 . 5 2 . 2 6 0 . 6 8 8 6 6 4 0 . 0 8 0 . 0 8 c s e [1 6]
1 . 7 2 . 7 1 0 . 4 5 4 6 5 6 3 4 0 . 0 0 0 . 0 0 gem_ f i _ud_access_resource [8 6]
1 . 6 3 . 1 4 0 . 4 3 4 2 3 1 4 4 0 . 0 0 0 . 0 0 g em_vm_gec_ nz [3 6)

(b) Hiprof Proftle Showing Instructions Executed with the Old Compiler

Figure 1
H i prof Profiles of Compilers

for pointer disambiguation outside the loop code was
not performed properly in the version 6.0 compiler.
The test would have ensured that the pointers a and t
were not overlapping.

We traced the origin of this regression back to the
intermediate code generated by the two compilers.
Here we found that the version 6.0 compiler used a
more modern form of array address computation i n
the in termediate language for which the scheduler had
not yet been tuned properly. The problem was fixed i n
the scheduler, and the regression was el iminated.

I n itial N U LLSTONE Test Run against gee We measured
the performance of the DEC C compiJer in compi l ing
the NULLSTONE tests and repeated the performance
measurement of the gee 2 .7 .2 compiler and libraries
on the same tests. Figures Sa and Sb show the results
of our tests. This comparison is of interest because gee
is in the public domain and is widely used , being the
primary compiler available on the public-domain
Linux operating system . Figure Sa shows the tests i n
which the DEC C compi ler performs a t least 10 per
cent better than gee. Figure Sb ind icates the optirniza-

[1 2] 1 4 . 1 1 . 3 7 5 . 5 5

2 . 6 3
0 . 6 3
0 . 5 9
0 . 3 4

0 . 3 2

1 0 1 9 5 + 9 9 5

1 3 4 4 8 5 / 1 3 4 4 8 5
1 3 4 4 8 5 / 1 3 r. 4 8 5

1 0 2 7 6 0 / 1 0 2 7 6 0

1 2 1 2 4 3 / 1 2 12 4 3

c s e [1 2]

tes t_for_c se [4 2]

update_operands [9 2]
Les L_ for_induct i on [9 7]

gem_df_mo ve [13 6 J
push_e f ect [1 4 9 1 1 2 1 2 7 / 12 1 2 7

(a) Hierarchical Profile for cse with the New Compiler

[1 6) 1 0 . 5 0 . 6 8 2 . 1 9 8 6 64 + 7 5 9 3 c s e [1 6]

1 . 0 4 9 6 5 5 4 / 9 6 5 5 4 test -for_c s e [5 6]

0 . 3 0 6 6 8 5 0 / 6 6 8 5 0 t es t_for_ i nduc t ion 1 1 0 4]
0 . 2 9 9 6 5 54 / 9 6 5 5 4 upd a t e_operands [1 0 6]

0 . 1 2 87 1 7 6 / 8 7 1 7 6 move [2 1 5]
0 . 0 9 7 8 6 3 ! 7 8 6 3 pop_e f fec t [2 6 7]

(b) Hierarchical Profile for cse with the Old Compiler

Figure 2
H ierarchical Call Graph Proti les for esc

Digital Tech n ical journal Vol . 1 0 No. l 1 998

void nna �1 lHC (Real • t ,
cons Rea l * a ,
const Real * b .
cons i n M , const in N , const in� K l

int i , j , k ;
Rea l emp ;

memse l l t , 0 , H • N * s i z o f (Rea l l l ;

for- (j � 1 ; j < = N; j • I
{

for l k - l ; k c� K ; k + +)
(

tern = b [k - 1 ,. K * I j
i f (temp ! = 0 . 0)

{

1)] ;

E r l i - l ; i < = M ; i H I
t [i - 1 • �l • (j - 1 1 l + -

ernp * a { · - 1 - H • I k • l l J ;

Figure 3
Haney Loop r()r Real Matrix Nlu l tiplication

tion tests i n which the DEC C compiler shows 10 per
cent or more regression compared to gee.

We i nvestigated the i n divid u a l regressions by look·
ing at the detai led log of the r u n and then examining
the machine code generated for those test cases. In this
case, the alias optimization portion showed that the
regressions were caused by the use of an ou tmoded
standard " as the d efa u l t language d ialect (-st 0) for
DEC C i n the DIG ITAL U N IX environ ment. After we
retested with the -ansi_al ia s option , these regres
sions disappeared.

We also investigated and fi xed regressions i n
i nstruction com bining a n d i f optimizations. O ther
regressions, which were too d i ftic u l t to fi x within the
existing sche d u l e for the current release, were added
to the issues list with appropriate priorities.

Conclusions

The measurement and analysis of compiler performance
has become an i m portant and demanding fie ld . The
i ncreasing complexity of CPU architectures and the
addition of new features to languages require the devel
opment and i mplementation of new strategies for test
ing the perf(xmance of C and C++ compilers. By
employing en hanced measurement and analysis tech
niq ues, tools, and benchmarks, we were able to address
these challenges. Our systematic ti·a mework tor com
piler performance measurement, analysis, �md prioriti
zation of improve ment opportunities should serve as an
excel lent st:u-ting point for the practitioner in :� situation
in which simil:�r requirements :u-c im posed .

References and Notes

1 . D. B lickstein et a l . , "The G EM Opti mizing Compi ler
System," D(t5ital Tc'ch n ica! Journal, vo l . 4, no. 4
(Special issue, 1 99 2) : 1 2 1-1 36.

2 . B . Ctlder, D. Gru nw�ld, ;md B . Zorn, "QuanritYing
Beh�vioral Difkrences Berween C and C++ Programs,"
journal of Pru,f5rctnuning Lcmi�uages, 2 (1994):
3 1 3-35 1

3 . D . Detlefs, A. Dosser, and B . Zorn, "Memory AJ ioo
tion Costs in Large C and C++ Programs," Sojitl'are

Practice and l:..,perience, vol. 24, no. 6 (1 994) :
527-542 .

4. P. Wu :md F. Wang, "On the Efficiencv and Optimiza
tion of C++ Programs," Sojiu>are Practice and Experi
ence. vol . 26, no 4 (1 996) : 453-465 .

5 . A. Itzkowitz and L . Folt:111, "Au tomatic Template
I nstanri:Jtion in D IGITAL C++," Digital Techn ical

Journal. vol. 10 , no. I (this issue, 1998) : 22-3 1

6. NULLSTONE Optimization Categories, URL:
h ttp :/ /w>vw. nu l l srone . com/h tmls/ category. h tm,
Nullsrone Corporation, 1 990- 1 998.

7 .] . Orost, "The Bench++ Benchmark Su ite," December
1 2 , 1 995 . A drati: paper is available at http:/ jwww
. research .a tt .com/ -orost /bench_pl us_plus/ paper. h tml.

8 . C++ Benchnurks, Comparing Compi ler Performance,
URL: h ttp:/ jwww.bi .com/index .html , Kuck <1 11d
Associates, Inc. (KAI) , 1998.

9 . A TOJiif.o User Mwtllai (Maynard, Mass . : Digital Equip
ment Corporation, 1 995) .

1 0 . A . Eustace and A. Srivast:wa, "ATOM : A Flexib le
I nterface for Bu i lding H i gh Performance Program
Analysis Tools," Western Research Lab Technical Note
TN-44, Digital Equipment Corporation, Ju ly 1 994.

1 1 . A. Eustace, "Using Atom i n Computer Architecture
Teaching and Research," Compu ter A rchitect/Ire

Technical Cornm ittee Neil 'sletter I EE E Computer
Society, Spring 1995 : 28-3 5 .

1 2 . J . Anderson e t a l . , "Continuous Profiling: Where Have
All the Cycles Gone?" SRC Technical Note 1 997- 0 1 6 ,
Digit::t l Equipment Corporation, Ju ly 1997; ;tlso in
A CM Tra nsactions 0 1 1 Computer Svstems. vol . 1 5 , no.
4 (1 997) : 3 5 7-39 0.

1 3 . J. Dean,) . H icks, C . W::tldspurger, W. Weih l , and G.
Chrysos, "Proti leMe: Hardware Support for Instruction
Level Profiling on Out-ofOrder Processors," 30th Sym
posium on Microarchitecrure (Micro-30) , Raleigh, N.C.,
December 1 997.

1 4 . G'u ide to /PRO/Jt·. lustct!linp, and r :,ing (M aynard,

Mass . : Digital Equipment Corporation, 1 994) .

1 5 . B. Kerninghon �nd D . Richie, The C Programm iug

Language (Englewood Cl iffs, N . J . : Prentice- Ha l l ,
1 978) .

Digital T.:chnictl Journal Vol . 10 No. l 1 998 43

44

Figure 4

tm t.l lHC_X PtPC t PC ' i i :

1 8 1
7 0

6 2 4
33 6

1

0
3 0 5 8

1 5

0

7 2 6 5
1 2 7 8 4

3 2 0 7

0
6 4

1 3 0 5 4

1 L 8 8
3 2 5

0
6 3 8 8

1 2 8 6 2

L 87
3 1 3 4

0

6 3 5 7
1 2 7 0 5

1 2 7 4 8

xl 2 0 0 � 4 8 9 4
Ox l 2 0 0 1 4 8 9 8
O xl 2 0 0 4 8 9c
O xl 00 4 8a 0
O x 1 2 0 0 1 4 8 a 4

0 :< 1 0 0 1 4 8 a 8

0 :< 1 2 0 0 1 � 8ac
O x 1 2 0 0 1 4 8 b0
O x.l 2 0 0 1 4 8b4

0 :.; 1 0 0 2.� 8b8

Oxl 0 14 8b
x l 2 0 0 1 4 8 c 0

'J x 1 - D 0 1 4 8c 4
:<1 0 0 1 4 8 c8

0:<1 2 0 0 4 8 cc
Ox1 2 0 01 48 d0

O x l 2 o : 4 8 d4

O x l 2 0 0 1 4 8 8
Ox 1 2 0 0 1 4 8dc
O x l 2 0:. 4 8 e0

Ox1 2 0 0 1 4 8 e4

Ox1 2 0 1 4 8e8
Ox1 20 0 1 4 8ec
O :< l 2 0 0 1 4 8 f 0
Ox l 2 0 0 1 4 8 f 4

O x1 2 0 01 4 8 f 8

0 : 8 82 7 0 0 0 0

O : a 3 e7 0 0 8 0

0 : 8 9 4 6 0 00 0
0 : 5 8 0 1 1 0 4 1

0 : 4 7e 6 0 4 1 2

0 : 4 0 0 9 0 0 5
0 : 2 0 c6 0 0 1 0

0 : 4 0 a 8 0 b4
0 : 2 0 e7 0 0 1 0

0 : 5 9 4 1 1 0 0 ...

0 : 9 8 2 6 f f f
0 : 8 9 6 7 £ f 4

: 8 9 8 6 f f f 4

: 5 8 b 4 b

0 : 5 98bl 0 0 b
0 : 9 6 6 f f f 4

: 8 7 f f 8
0 : 8 9 c f f f 8
0 : 5 80 d .._ 04 d

: 5 c . 1 0 d
0 : 9 9a 6 f f f
0 : 9e7 f f f c
0 : 8a0 6 f
0 : 5 8 0 f1 0 4 f

0 : 5 a 0 f1 00 f

0 : 9 9 £ 2 0 0 0

l ds

1 '1
l d s
mul s

bi s

a dl
lda
cmp l e

lda

add s

t s

lds
_ds

muls

m ls

adds
t

$ £ 1 , 0 (L 6)
zero , 1 8 (6 1

S f l O , 0 (t5 1
$ f0 , $ t l , S t l

z e ro , L a2

t 4 , O x 4 , 4

<:5 , < 5 1

t4 , L 7 , a4
L 6 , : 6 (t 6)
$ f l O , f l . $ f l

f l , - 1 6 (t 5)

S f l l , - 1 2 (L 6)
$ t l 2 , - 1 2 (t 5)

$ f " , $ f l l , S f l l

S f 1 2 . S f l l , S t l "
$ f l l. - 12 (t 5)
$ 1 3 , - 8 (t)

$ 1 4 , - 8 (t 5)

$ f 0 . $. 3 . $ £ 1 3
$ f l 4 , $ f l . $ f l)
s 1 3 , -8 t 5)

£ 1 5 , -4 (t 6)
$ f l 6 , - 4 (t 5)

$ f 0 , $ f 1 5 , !' 1 5
$.. 1 6 , $ f l 5 , $ [1 5

$ 1 5 , 2 (2 1

(a) DCPI Profile for This Execution with Version 6.0

l·ma t Mu l HC_X P f PC f PC fC i C i Ci :

3 5 1
0

3 :i 3 '

0

3 2 ' 5
1 7 9 6 8

0

.._2 8 7 0
1 2 7 7

3 2 2 8
0

2 3 3

3 2 0

0
3 1 2 7

0

• 7 4

0
67 •

3 ' 6 8
3 0 6 6

6 5 8
3 1 3 tl

3 2 0 0

3 1 6 8

O x l 2 0 0 1 94 d0

O x l 2 0 0 1 9 4 4

O x l 2 1 9 4 d8

Ox 1 2 0 0 1 9 4 c
O x l 2 u0 1 94 e0

x 1 2 0 1 9 e4

O xl 2 0 0 1 9 4 eB
Ox l 2 0 0 1 9 4 ec
O x l 2 0 0 1 9 4 f0

0 :<12 00 1 4 ftl
xl 2 0 0 1 94 f 8

O x l 2 0 0 1 9 fc

O x l 2 0 0 1 9 5 0 0
O x 1 2 0 1 9 5 04
O x l 2 0 0 1 9 5 08
Oxl 2 0 0 1 9 5 0c

:< 1 2 1 5 1 0

O x 1 2 0 0 1 9 5 1 4

Oxl 2 0 0 1 9 5 1 8

O:<i 2 0 0 1 95 1

O x 1 2 0 0 1 9 5 2 0
Ox 1 2 0 0 1 9 5 2 tl

x l 2 1 9 2 8
O x ' 2 0 0 1 9 5 2 c
O x ' 0 0 1 9 5 3 0

0 : 8 8 2 7 0 0 0 0
0 : 4 0 a 0 9 0 0 5

0 : 8 % 6 0
0 : 4 0a 8 0db4

0 : Oe 7 0 0 1 0
0 : 5 8 0 1 1 <i 1

0 : 2 0 c 6 0 0 1 0
0 : 5 9 -1 1 1 0 0 1

: 9 8 2 G f f f

0 : 8 9 6 7 f f f 4
0 : 8 9 8 7 f f f 8

: 8 9 a 7 f f f
0 : 5 8 0 b l O <: b
0 : 8 9 c 6 f f f 4

0 : 5 8 0 1 0 4 c
: 8 9 e6 f f f 8

0 : ':> 8 0 d 1 0 4 d

0 : 8 6 f f f
0 : 5 9c b 1 0 0 b

: 5 9ec l 0 0c
0 : 5a0 l O Od

: 9 9 6 6 f f f 4
0 : 9 9 8 6 f t f 8
0 : 9 9 6 f f E

O : f 6 9 f f f e 7

1 s

a 'dl
lds

cmp le

. aa

mu:..s

1 ·a

ad ·s
s t s

lcs
lds

lcs

m ... s

1 ·s

mu ls

lcls

mu i s

ld

a 'd
adds
a ds

s t s

s s

s s
bne

$ f l . 0 (

4 , O x4 , t1
S f l O , 0 (L 5)

4 , t 7 , 4

t 6 , 1 6 1 t 6)
f O , f l , $ f 1

') , 1 6 (�)
S E 1 0 , ' L , $ t l
$ f l . - 1 (t 5)
$ E l l , - ' 2 (6)

$ E l 2 , - 8 (t 6)
$ f l 3 , - ·1 (t 6)

S f 0 , $ f l l . $ f l 1
S f l t; , - 1 7. (5 l
S f . $ f l 2 , $ f 1 2
$ f l 5 , - 8 (L 5)

0 , $ 1 3 .. , f l 3

$ f 1 6 , - 4 (t 5)
$ f 1 4 , f 1 1 , S E l l

$ f 1 5 , $ 12 , $ £ 1 :!
S f l 6 , S f l 3 , $ f U
$ f : l , - 12 (t 5)
$ E l 2 , - 8 (t5)
$ f 1 3 , - 4 I t S)

a4 , Ox l2 0 0 1 4 d0

(b) DCPI Profile with Counts with Version 5 . 5

DCPI Profi les of rhe Inner Loop

Digiral 'l 'cchnical Journal Vol . 1 0 No. l 1 998

ULL TONE SU:• \ARY PERE'OR!,�C E Hl PROVE�1Et\'T E PORT

l l s one e l ea s e 3 . 9b2
� - +

1 l'h:reshol d : , u l lstone Ra t i o Increase by a leas e 1 0 %
� - - - - - - - - - - - - - - - - - - + - � - - +

Figure Sa

Ba s e l i ne Compi - e r Comp a r i o . Com_ � · er
· - - - - - - - - - - - - - - - - - - � - � - +

Comp i l er

Architec �:e
, odel

GCC '2 . 7 . 2

DEC A l pha
.3 0 0 0 / 3 0 0

DEC Alpha C 5 . 7 1 2 3 bl 3 6
n o r e s u i c ·
DEC Al pha
3 0 0 0 / 3 0 0

+ - - - - - - - - - - - - - - - - - i - + - +

0 t ' m ' � a i on Sa ple i z e I Impr ve ents I

+ - +
Al i a s 0 i mi za t i on (y t yp)
Al i a s Op . i m ' za i on (con ua l i f i ed)
Al i a s Op �miza i on (y a dr ess)

Bi f i el d Op im i za ion
Branch E l :. i n a - i o n
I n s t ruct � o� Comb i n i ng
Co s Lan Fol i n
Con rant Propa a t i o

C S E E� imi�a i o n

Dead Code E l i m i n a t i on
I n l e" er Di vide Op t i m i za ion
Expres s i on S impl i f i c a L i o n
I f 09 i m i z - don

Func i on I n. i n ' ng
Indu c L ' on Var i b l e E l imi na t i on
S reng t h Reduc t: i on

Ho i s t i ng
Lo p Un�:o l l ing
Loop Co L a9s i n
Loop Fus i on

UnsH i tchi �

B l oc k t·lerg ing

Cl:OSS J mp i ng
In t eget. l·iodu l s Op i m i z a i on
I n tege:r Mul t ip l y Opt imizat ion
Address Op im i z a i on
Poinler Op t imi z t i n

P � i n t f Op i i z a ion

!'on1ard S tore
Va l ue Range Op l i mi z Lion

T< i l Recur ion
Re i s ter A l l oc a t ion
N t'l'OWing
S PEC Co formance
S La t i c ec l a ra t ions

S t ri ng Op i m i z a t ion

Vo l a t i l e Conformanc

- - - - · - - - - - - - - - - - - - - +
1 02 t !: S

1 1

52
3

1 5
2 5 1 0

5 6 tests
15 e s t s

2 6 0 0 es t
3 0 6 ces s

92 ests
1 8 1 L e s ts

69 l s s
3 9 t e s t s

4 t SI.:S
2 e s · s

3 8 t e s t s
1 6 t.:es s

3 Lesu;
2 t s t s
2 res s
l es ts
4 tes s

92 L es s

9 9 es ts

2 6 es ts
15 tes s

3 Le s
3 tes s

30 t t s
4 t S L S
4 t e s t s

3 es c s

2 tes t s
l tes t
4 tes s

90 t es t s

0
1 9

3
1 5

2 0 2 6
5 6

8
2 3 5 3

2 7 8
1 5

1/. 0
1 3
3 9

3
1

1 8

1 1
3
2
1

1
2

2 6
3

2 0

9
3
3
0
2
1
0
0

1
4
0

tes ts I
t e s s
L e s t s

tes ts
tests

t e s t s

tes t s

tes ts
es s

c e s t s
tests

e s t s

tes t s

t es t s

tes t s
es ts

Les s
teSLS

es ts

e s t s
tests

tes s

res s

res _

tes ts

te s ts

t e s t s

tes
tes ts

res s

tes t s

tes ts
t e s t s
tes t s
t e s t s

t e s t s

tes t s
+ - - - - - - - - - - - - - - - - - - � - - - - - • - T - +
1 Tot 1 Pe�: formanc Improvemen t s > � 1 0 % 6 4 9 9 e s . 5 0 6 5 t e s t s

N U LLSTON E Results Comparing gee with DEC C Compiler, Showing All I mprovem.cnts of Magnitude 10% or More

Digiral Technical Jourrul Vol . 10 No. l l 99S 45

46

Figure 5b

NULLSTONE SU}WARY PERFORMfu�CE REGRE .Sl O, R EPORT
� l l s to � Re " ease 3 . 9b2

+ -
I Threshol : N l l s o n R c i o Decreas d by a c l ea t 1 0%

+ - � - +-

B · e l ir.e Comp � l er Compa ri son omp i l e t
+ - - - - - - - - - - - - + - + - +

Comp i l er I G CC 2 . 7 . 2 DEC A lpha . 5 . 7 - 1 2 3 bl 3 6

Arch · tec'.ute

�1odel

I no res t.r i c t
DEC Alpha DEC Alpna

I 3 0 0 t 3 0 C 300 0 / 3 0
� - - - - - - - - - - - - - - - - - - · - · - - - - - - - - - � - - - - - - - - - - - - - - - +

Op t imi z a t ion Sampl e S i ,:e I Regr· s s i ons
· - - - - - - - - - - - - -- + - - - -

1 Al i a · OpL i i : a t � on (by t yp) 10 ests
Alia� Op t l rni z a t · on l con s t - aua ! : . l ea) 1 1 es s
Alias Op irni :::a · on (by n dd;ess) 5 7 e s t s
Ins truc t i n Cornn' n ing 2 5 1 0 tests
Cons tan Propaga i on l j Les s
CSE El imina t i on 2 6 0 0 t e s t s
I n eger Divide t im i z t on 9 2 tes s
Expre sian Si mpl i f i ca t i on 1 8 1 tes ts

t p t imi zat ion 6 9 e s Ls
Hoi s L i n
Unswi �hing
In eger Modu s OpL irniza t i on
I n t eger Mu. L iply Opt imi z a t i on
Pointet Opt irn i z t ion
Ta i l Recur i on

"'l tO\�ing

J 8 tes ts
2 t e s t s

9 2 e s t s
9 tests
15 t es ts

1 t e s t s
3 es s

6 4
a
7

2 0 4
1

3 2
3 2
3 4
1 4

4
�

4 0
9 5

1
/.
2

es s
t s 5
t e s t s

es s
tes ts
:-ests

s

t.: e s t: s
L s t s

e s
tests

€'!;l:S
t:es s

I
I

i

., - - - - - - - - - - - - - - - - - - t - � - �

i T o al Performance Regre s s i ons > - 1 0 % 6 4 9 9 e s t s 1 5 4 2 tes s 1

N ULLSTON E Res u l ts Comp�ring gee with DEC C Compi l e r, Sh owing Al l Regress ions of 10% or vVors..:

Biographies

Hemant G. Rotithor
Hcmant Rotithor received B . S . , td . S . , :md P h . D . d egrees
in e lectr ic:� I e ngin ..:..: ring in 19 79, 1 98 1 , and 1 989, respn:·
tively. He worked on C �nd C++ c ompi le r per �ornun ce
i:;sues in tht: Core Technology Grou p ;�t Digit;�J Equipment
Co rpor�t ion �or three years. Prior to that, he w;�s Jn clssis
tant �)rofessor at vVorcester Polytech n i c I nstitute and :1
devel opm en t ..:ngi ncer ctt Ph i l ips . H e m a n t i s a member
of the p rogra m com minee ofThe l Oth l nrnn :-ttio na l
ContC:rt:ncc on ParJl le l and Distributed Com puti ng an d
Syste ms (PDCS '98) . He is a sc·nim m ember of rhe II:J-: E
and ,1 member of Eta Kapp:� N u , T:1u Beta P i , and Sigma
Xi. His interests i nclude computer :� rchirccmre, perfor
ma nce an:� lvs is, d igita l design, and networki ng. Hennnt
is currentlv emplov..:d at I nt e l Corpor:�r ion .

Dig:iral Technical)ournJI Vol . 10 No. 1 1 998

Kevin W. Harris
Kevi n Harris is a consulting sofrw:�t-c engi neer at Compaq,
cu rrentJy wo rk ing in the DEC C and C ++ D eve l opment
Group. He has 2 1 ye:-t rs of ex perie nce work ing on high
performance compi lers, optimization, and p:�ra lkl pro
cessi ng . Kevin grad uated Phi BeLl Kappa in m:�rhem:�tics
�i·om the U n iversiry of 1\lb ryland cmd JOi ned Digita l
Equi pment Corpora tion c1ti:cr earning a n M.S . in com purer
science ti:om the Penn sy lva n i a State U n ivers ity. He has
m ade major contri bu tions to t he DIG ITAL Fortr:�n , C,
and C++ product fam i l ies. He holds p.tLcnts f(Jr tech niqu es
tor exploiti n g performance of shared memory m u l t iproces
sors and register al location . H ..: is c urren tl y responsible tor
per formance issues in the DEC C and D 1 G !Tt\L C++
product famil ies . He is interested in CPU a rch itecture,
compiler design, large · and snul l -scalc p.tra l le l i sm :�nd irs
exploitation, and oti:ware q u a l irv issues.

Mark W. Davis
Mark Davis is a senior consulting engineer in the Core
Technology Group at Compaq. He is a member of Compaq's
GEM Compiler Back End team, tocusing on performance
issues. He also chairs the D IGITAL Unix Calling Standard
Committee. He joined Digital Equipment Corporation i n
199 1 after worki ng as Director of Compilers at Stardent
Computer Corporation. Mark graduated Phi Beta Kappa i n
mathemat.ics from Amherst College and earned a Ph. D . in
computer science !Tom Harvard University. He is co-inventor
on a pending patent concerning 64-bit software on
Open VMS.

Digital Technical Journal Vol . 10 No. l 1998 47

48

Alias Analysis in the
DEC C and DIGITAl C++
Compilers

During alias analysis, the DEC C and DIGITAl C++

compilers use source-level type information to

improve the quality of code generated. Without

the use of type information, the compilers

would have to assume that any assignment

through a pointer expression could modify any

pointer-aliased object. In contrast, through the

use of type information, the compilers can

assume that such an assignment can modify

only those objects whose type matches that

referenced by the pointer.

Digital Technical Jou rnal Vol . lO No. 1 1 998

I
August G. Reinig

vVhen two or more address expressions reference the
same memory location, these add ress expressions are
aliases for each other. A compiler performs alias anJJy
sis to detect which address expressions do not refer
ence the same memory locJ.tions. Good alias analysis is
essential to the generation of efficient code. Code
motion out of loops, common subexpression e l imina
tion, al location of variables to registers, and detection
of unin i tia l ized variables a l l depend upon the compiler
knowing which objects a load or a store operation
could reference.

Address expressions may be symbol expressions
or pointer expressions. I n the C and C++ languages,
a compiler always knows what obj ect a symbol expres
sion references. The same is not true with pointer
expressions. Determining which objects a pointer
expression may reference is a n ongoing topic of
research .

Most o f the research i n this area focuses o n the use
of techniq ues that track which object a poin ter expres
sion might point to. u When these techniques cannot
make this determination, they assume that the pointer
expression points to any object whose add ress has
been taken . These techniq ues generally ignore the
type information avai l able to the source program . The
best techniques perform interprocedural analysis to
i mprove their accu rJcy. Although effective, the cost of
analyzing a complete program can make this analysis
impractical .

I n contrast, the DEC C and DIGITAL C++ compi l
ers use h igh-level type information as they perform
alias analysis on a routine -by-routine basis. Limiting alias
analysis to withi n a routine reduces its cost, albeit at
the cost of red ucing its effectiveness .

The use of this type information results in s l ight
i mprovements in the performance of some standard
con forming C and C++ programs. These improve
ments come at l i ttle expense in terms of compi lation
time. There is, however, a risk that the use of this rype
information on nonsrand:�rd-conforming C or C++
programs may result in the compi ler producing code
that exhibits unexpected behavior.

The C and C++ Type Systems

Research avai lab.le on the use of type intormation du r
ing alias analysis involves languages other than C and
C++ . ' Trad itional ly, C is a weakJy typed la nguage . A
poi nter that references one type may actually point to
an object of a different type . For this reason, most
alias-analysis techniques ignore type information when
analyzing programs written in C.

The ISO Standard for C detlnes a much stronger
typing system .' In ISO Stand ard C, a poi nter expres
sion can access an object only if the type referenced by
the pointer meets the following criteria:

• It is compatible with the type of the object, ignor
ing type qual i fiers and signedness.

• It is compatible with the type of a member of an
aggregate or union or su bmembers thereof, ignor
ing type qu ali fiers and signedness.

• It is the char type .

Thus, in Figure 1 , the pointer p can poi nt to A, B ,
C, o r S (through S .s u b . m) b u t not to T or F. The
poi nter q, bei ng a pointer to char, can refer to any of
A, B, C, S, T, or F.

The proposed ISO Standard for C++ defines a simi
lar typing system for C++. ' The strength of the
Standard C and C++ type systems a l lows the DEC C
and DIG ITAL C++ compi lers to use type i n formation
d u ring al ias analysis.

Many existi ng C appl ications do not conform to the
Standard C typing rules. They use cast ex pressions to
circu mvent the Standard C type system. To support
these applications, the DEC C compiler has a mode
whereby i t ignores type information during alias analy
sis. The DIGITAL C++ compiler also has such a mode .
This mode exists to support those C++ programmers
who circumvent the C++ type system.

Figure 1

int
i gned i� � c n s t B ;

un s i gned int vol t i l e C ;
s Lruct: {

s tru
i n t m ;

) s b ;
$;

s L r c t {
horL z ;

) T ;
flo t F ;

i ' p ;
c ha r * q ;

Code Fragmenr Associated with rhe E.xpbnation ofthe
Standard C Aliasing Ru les

The Side-effects Package

The DEC C and DIG ITAL C++ compilers are GEM
compil ers -" The GEM compiler system incl udes a
highly optimizing back end. This back end uses the
GEM data access model to determine which objects a
load or a store may access. GEM compiler front ends
augment the GEM data access model with a side
effects package, i . e . , an a l ias-analysis package . The
side-effects package provides the GEM optimizer
additional information about loads and stores using
l anguage-spec ific information otl1erwise unavailable
to the GEM optimizer.

The DEC C and DIGITAL C++ compilers share a

com mon side-eftects package . The DEC C and C++
side-effects package

• Determines which symbols, types, and parts thereof
a routine references

• Determines the possi ble side efkcts of these reterences

• Answers queries fi.-om tl1e GEM optimizer regardi ng
tl1e effects and dependencies of memory accesses

Preserving Memory Reference Information

The DEC C and DIG ITAL C++ front ends perform
lexical analysis and parsing of the source program,
generating a GEM i ntermediate language (GEM I L)
graph representation of the source program 6 A tuple
i s a node in the GEM I L and represents an operation in
the source program.

As the DEC C and D I GITAL C++ tfont ends gener
ate GEM IL, they an notate each fetch (read) and store
(write) tuple with intormation describing tl1e object
being read or written . The front ends annotate fetches
and stores of symbols with intormation about tl1e sym
bol. They annotate fetches and stores tlu-ough poi nters
with information about tl1e type tl1e pointer references.
The an notation intornution includes information
describing exactly which bytes of the symbol or type
tl1e tuple accesses. This al lows the side-effects package
to differentiate between access to t\vo different mem
bers of a structure.

Arrays Neitl1er the DEC C nor the DIGITAL C++
tfont end ditferentiates bet\veen accesses to different
elements of an array. Both assume that aU array accesses
are to the first element: of the array. The GEM optimizer
does extensive analysis of array references.7 Being flow
insensitive, the DEC C and C++ side-effects package
can, at best, differentiate between two array references
tl1at both use constam indices. The GEM optimizer can
do much more.

V/hat the GEM optimizer cannot do, however, is
determine that an assignment through a pointer to an
int: does not change any value in an array of doubles.
This is the purpose oftl1e DEC C and C++ side-eftects
package. Mapping a l l array accesses to access the first

Digital Technical Journal Vol . 1 0 No. I 1 998 49

50

element of a n array does not hinder this purpose and
simpl ifies al ias analysis of arrays.

Tuple Annotation Example For the program fi·agme nt
in Figure 2, the DEC C and DIGITAL C++ ti·ont ends
generate the annotated tuples displ<lyed in Table l .

lntraprocedural Effects Analysis

The GEM opti mizer makes several optimization passes
over a ro utine. During each optimization pass, the
DEC C and C++ side-effects package provides a l i as
analysis intormation to the GEM optimizer by means
of the following procedures:

• Ex:�mining each tuple within the rou tine that refer
ences (reads or writes) memory, al locating e f'fects
classes that represent the memory that the tuple
references

• Perform ing type-based alias analysis

• Responding to alias-an alysis q ueries from the GEM
optimizer

To determine the possible s ide effects of a memory
:�ccess, the side-eftects package p:�rtitions memory into
effects classes. An e ffects class represents a l l or part of

Figure 2

st:ru t S {
nt x ;

i n t y ;
vl , v2 ;

int i ;
double cl [r ;
s t ruc t s *p ;

p - X 3 ;
vl . y
v2 = v l ;

d [i] [0] ;

Code fragment Associated with Tuple Annotation
Ex<lmplc

Ta ble 1
Tu ple Annotations

C/C++ Source Annotation
Expression Tu ple Symbol

Fetch p p

p->X = 3; Store p->x none

v1 .y = 3 Store v 1 .y v1

Fetch v 1 v1

v2 = v1 Store v2 v2

Fetch d [O] d

d [i] = d [O] Fetch i

Store d(i] d

Vol . 10 To. 1 1 99 8

an object. To m i n i mize the n u m ber of effec ts c l asses
u nder considera tion, the side-effects package creates
effects classes for only those object regions referenced
withi n the curre nt routine .

Having created effects classes tor each referenced
obj ec t region within the cu rrent routine, the side
effects package then associates a signatu re with each
effects class. The signatu re for a n eftects c lass records
the possible side etfects of referenci ng the effects class.
The side-effects package uses this signature to respond
to queries from the GEM optimizer about the effects
and dependencies of tuples and symbols with i n the
curre nt routine.

Allocating Effects Classes There are two kinds of
effects c lasses. The first ki nd represents a region of :�n
i n d ivi dual object. The second kind represents a region
of all al located objects of a particular type. Al located
objects are those created by the l loc () fu nction
and i ts relatives or the C++ �� operator.

As it processes the tu ples with i n a routi ne, the side
effects package exami nes the me mory reference infor
mation associated with the tu ple. The side-effects
package creates :�n effects c lass tor each differe nt set of
memory reference intormation i t encounters. Tvvo sets
of memory retcrence i n t<xmation are difte re nt if they
contai n d ifferent start- or end- offset information or
different symbol i n tormation.

Two sets of memory reterence i n formation that
contai n di fterenr type in tormation are d ifferent only if
the two types are not effects equ ivalent . Two types are
effects equivalent if they differ only in their signed ness
or their type q u a l i fiers . The signed int type and rhe
volatile u nsigned i n t type are effects equivalent . An
assign ment through :1 poi nter to a signed i n t may
change the value of a volati le u nsigned int .

Typical ly, an effects class represents a complete
object or an ind ividual me mbe r of a structure . An
e ffects c lass may represent a su bregion of the region
represented by another effects c lass. This occurs when
ever code references a whole structure as wel l as i nd i
vidual mem bers of the structure . In the case of uni ons,

Annotation
Type Start Byte End Byte

struct S * 0 7

struct S 0 3

struct S 4 7

struct S 0 7

struct S 0 7

double 0 7

i nt 0 3

doub le 0 7

if two members occupy exactly the same memory loca
tions, a single effects cl ass represents both mem bers .

For the program fragment in Figure 3 , the side
effects package creates the effects cl asses displayed in
Table 2 .

There i s only one effects class for *uip and * ip since
uip and ip may point to the same object. There are no
effects c lasses for bytes 0 through 3 ofs and struct S as
there arc no references to s . x or sp->x. By al locating
effects classes for only those object regions referenced
within the routine, the side-effects package greatly
red uces both the number of effects classes and the
time requi red to perform al ias analysis.

In the traditional C type system, a poi nter expres
sion may point to anything, regardless of type. To rep
rcst:nt this, the side-effects package creates exactly one
eftects class to represent allocated objects. It ignores
the type and the start- and end-offset information .

S t:. rUCL S {
inl x ;
s r c T

t ;
s ;

int y ;
f l o t z ;

s tl.·uc t s * p ;
signed i n t • ip ;
u si gned i nt • ui p ;

l oa * fp ;

* u ip : * ip ;
* fp = 2 ;
sp - > t = s . e ;
sp- . y = 2 ;
s - • sp ;

Fig u re 3
Code Fragment Associated with Al locating Efkcts Classes

Table 2
Effects C lasses Using the Sta ndard C Type Rules

Type or
Effects Class Symbol Start Offset

1 0

2 4

3 sp 0

4 fp 0

5 i p 0

6 u i p 0

7 struct 5 0

8 struct 5 4

9 struct 5 4

1 0 fl oat 0

1 1 i nt 0

Using tl1e traditional C type system, for the program
fragment shown in Figure 3, the side-effects package
creates the effects classes displayed in Table 3 . Here,
effects class 7 replaces effects classes 7 through 1 1 in
Table 2. All the differentiation by types djsappears.

Effects-class Sig natures Having created the effects
classes, the side-effects package associates a signature
with each effects class. In addi tion, it associates an
effects-class signature with each tuple within the rou
tine and each symbol referenced within the rou tine .

An effects-class signature records the possible side
effects of referencing an effects class. A reference to
one effects class may reference another effects class.
The effects class for a load through a pointer to an int
indicates that the load references an al located int
object. The pointer to an int may actually reference a
pointer-aliased int symbol or an int mem ber of a struc
ture or union.

An effects-class signature is a su bset of al l the effects
classes that might be referenced by a tuple. There is
only one requirement for an effects-class signature : If
two tuples may refer to the same part of memory, the
intersection of their respective effects-class signatures
must be non-nul l . If two tuples cannot refer to the
same part of memory, it is desirable that tl1e intersec
tion of their effects-class signatures is nu l l . An empty
i ntersection l eads to more optimization opportunities.

The most obvious rule for building an effects-class
signature is to include in it a l l the effects c lasses that
might be touched by a reference to tl1e effects class.
This leads to subopti mal code in cases such as that
shown in Figure 4.

There are three effects c lasses for this code , s<0,3>,
S<4,7> , and S<0,7>, generated by references to s .x , s .y,
and s, respectively. If the effects-class signature for
S<0,3> includes both s<0,3> and s<0,7> and the
effects-class signature for s<4,7> includes both s<4,7>
and s<0,7> , then the intersection of these 1:\vo effects-

End Offset

1 1

1 1

7

7

7

7

1 1

1 1

7

3

3

Digital Tech nical journal

Sou rce Generating
Effects Class

s.t

sp

fp

i p

u i p

*sp

sp->t

sp->t.y

*fp

* u i p and * i p

Vol . tO N o I 1 998 5 1

52

Ta ble 3
Effects Cl asses Us ing the Tradit ional C Type Rules

Effects Class Type or Symbol Start Offset

1 0

2 4

3 5p 0

4 fp 0

5 i p 0

6 u ip 0

7 char 0

c lass signatures is non -nu l l . This talsely indi cates that
s .x and s .y may refer to the same memory location. This
forces GEM to generate code that stores s.y after stor
ing to s .x .

The DEC C and C++ side-ef'tects package uses more
effective rules for bui ldi ng effects-class signatures. These
rules offer more optimization oppornmities while pre
serving necessary dependency in tormation.

Effects-class Signatures for Symbols If an effects class
represents a region A of a symbol , its signature includes
itself Its signature also includes a l l efrecrs cl asses repre
senti ng regions of the symbol whol ly conta i ned with in
A. Final ly, i t i nc ludes any eftects c lass representing a

region of the symbol that partial ly overlaps A. I t does
not i nclude effects c l asses representing regions of the
symbol that do not overlap A or th::�t whol ly contain A.

Ta ble 4 gives the symbol effects-class signatures for
the three effects cl :lsscs under discussion .

The i nc lusion o f su bregions i n an effects-cl ass signa
ture means that references to symbols i n terfere with
references to members therein and vice versa. Excluding
super-regions in an effects- class signature means that

Figure 4

struct S {
int: x ;
int y ;

s ;
S . X - • • • ;
s . y - . . . ;
re t u tn s ;

Example o f Problem atic Code for the NaYvc Ru le for
Bui ld ing E tlccrs-c lass Signatu res

Table 4
Symbol Effects-c lass S ignatu res

Effects Class

S<0,3>

S<4,7>

S<0, 7>

Effects-class Signature

5<0,3>

5<4, 7>

<0,3>, 5<4, 7>, 5<0, 7>

Dip.ital Tcchniol Jou rnal Vol . ! 0 No. l 1 998

End Offset Source Generating Effects Class

1 1

1 1

7

7

7

7

5

s.t

sp

fp

i p

u ip

*sp, sp->t, *u ip, sp->t.y, *fp, * ip

references to two separate members of :1 symbol do
not interfere with each other. In Table 4, the eftects
class signatures for S<0,3> and s<4,7> do not intcrkrc
with each other. Both signatu res interfere with the
effects-c lass signature tor s<0,7>.

The inc lusion of effects classes represent ing parti::� l ly
overlapping regions of a symbol a l l ows tor the correct
representation of the side effects of referencing sub
members of complex un ions.

Effects-class Sig natures for Types If Jn efkcts class
represents a region of a type, the contents of its signa
ture depends upon the type. I f tbe type is the char type,
the effects-class signature contains a l l the eftects c lasses
representing regions of other types or pointer-aliased
symbols. This reflects the C and C++ type rules , which
state that a pointer to a char can point to :mything.

If the type is some type T other than char, the effects
class signature contains dlects c lasses represen ting:

• Those regions ofT that overlap the region ofT the
effects class represents, using the same ovnlap ru les
JS for symbols

• Any region of a poi nter-al i ased sym bol whose type
is compatib le to T, ignori ng type qu::� l i fiers ::�nd
signed n ess

• A region of a poin ter-a liascd aggregate or union
symbol that contains a member or submember
whose type is compatible to T, ignoring type qua l i
fiers and signed ness

• A region of an aggregate or un ion type that con
tains a member or submember whose type i s com
patible to T, ignoring type qual i fiers and s igned ness

Table 5 gives the signatures for the efkcts c lasses in
Table 2 , assuming that the sym bol s is poi nter a l i ased .

I ncluding the effects classes of symbols in the effects
c lass signatures of types records the interference of
references through poi nters with references to pointer
a l iased sym bols. I n Figure 3, the pointer u ip points to
an unsigned int . The member s . t .y hJs type int. Thus,
uip may point to s . t .y. The mem ber s.r contains s . t .y.
Thus, the signature for the effects-class int<0,3> con-

Table 5
Type Effects-class Signatures

Number Effects Class Effects-class Signature

1 S<0, 1 1 > 1 , 2

2 S<4, 1 1 > 2

3 sp<0,7> 3

4 fp<0,7> 4

5 i p<0,7> 5

6 u ip<0.7> 6

7 struct 5<0, 1 1 > 1 , 2, 7, 8, 9

8 struct 5<4, 1 1 > 1 , 2, 8, 9

9 struct 5<4, 7> 1 , 2, 9

1 0 f loat<0,3> 1 , 2, 7, 8, 1 0

1 1 int<0,3> 1 , 2, 7, 8, 9, 1 1

rains the e tiects-class s<4, l l > . This means that the
load of s . t depends upon the store through uip .

Including the effects classes of types i n the signa
tures of the effects classes of other types records the
i nterference of references through a pointer with ref
erences through pointers to other types. I n Figure 3 ,
the pointer fp points to a float object. T h e member
sp ->t .z has type float. Thus, fp may point to sp->t .z .
The member sp->t contains sp->t .z . Thus, the signa
ture for tJ1e effects-cl ass float<0,3> contains ilie effects
class struct 5<4, 1 1 > . This reflects the fact that the

�tore to sp->t .y depends upon the store tJ1 rough fp,
I .e . , It m ust occ ur after ilie store ilirough fp.

Even though the signature for the effects-class
float< 0,3> contains the effects-class struct 5 <4 l l >
(sp->t), it does not contain the effects-class s�ruct
5<4,7> (sp->t .y) . There is no float member of struct
5 whose position within struct 5 overlaps bytes 4
through 7 ofstruct 5. There is a float member of struct
5, namely z, whose position within struct S overlaps
bytes 4 through 1 1 of struct S . The signature for the
effects-class float<0,3> wou ld not contai n the effects
class s<0,3> if i t existed. There is no float member of s
whose position overlaps bytes 0 ilirough 3 of s .

Additional Effects-class Signatures The side-effects
package creates a special effects-class signature repre
senting the side effects of a cal l . A cal led procedure
may reference the following:

• Any pointer-aliased symbol (by means of a refer
ence through a pointer)

• Any al located object (by means of a reference
ilirough a pointer)

• Any nonlocal symbol (by means of direct access)
• Any local static symbol (by means of recursion)

The effects signature for a call i ncl udes all the effects
classes representing these objects .

Responding to Optim izer Queries During opti miza
tion, ilie optimizer ma kes two types of q ueries to the
side-effects analysis routines: domi nator-based queries
and nondominator-based queries .

When doing nondominator- based optimizations, tJ1e
optimizer uses a bit vector to represent iliose objects a
write may ch ange (its effects) . A similar bit vector repre
sents those objects whose val ue a read may fetch (its
dependencies) . Each bit in tJ1e bit vector represents an
effects class. If a tuple's effects-class signan1re contains
an effects class, iliat effects class's bit is set in ilie tuple's
bit vector. The optimizer uses ilie u nion of ilie bit vec
tors associated witJ1 a set ofn1ples to represent the com
bined effects or dependencies of those mples.

Domi nator-based queries involve fi nding the near
est dominating tuple that might write to the same
memory location as the tuple in q uestion. Tuple A
domi nates tuple B if every path from the start of the
rou tine to B goes through A.8 I f both tuples A and C
dominate B , tuple A is the nearer domi nator i f C dom
inates A.

When doing dominator- based opti mizations, the
side-effects package represents the tuples in the cur
rent dominator chain as a stack, adding and removing
tuples from the stack as G EM moves from one path
in the routine's domi nator tree to another. Searching
a single stack for the nearest dominating tuple that
might write the same memory as the tuple in question
references could lead to O(N9 performance, where N
is the n u mber of tup les i n the domi nator chain . This
worst-case behavior occurs when none ofilie tuples in
a dominator chain affects any su bsequent tuple i n the
chai n . Each time the side-effects package searches the
stack, it exami nes all the tuples in the stack.

To avoid iliis, ilie DEC C and C++ side-effects pack
age creates a stack for each effects class. When pushing
a tuple, the side-effects package pushes the tuple on
each stack associated with an e fTects class in the tuple's
effects-class signature. When the GEM optimizer tells
th e side -effects package to find the nearest domina ti na
write for a tuple, the side-effects package need onl�
choose the nearest of those tu ples that are on the top
of the stacks associated with ilie tuple's effects-class
signature . It need only look at the top of each stack,
because a tuple would not be in tJ1e stack u n less it
mi ght affect objects i n the effects class associated with
tJ1e stack.

The m ultistack worst-case behavior is O(NC). There
are C separate stacks, one for each effects class. The
effects-class signature for each effects class may con
tam all the other effects classes. This would mean that
each of the N tuples in the domin ator chain would
appear in each of ilie stacks.

Although the worst-case behavior for the multistack
case is no better than the single-stack case (C may be
e�uaJ to N), in practice there are often more tL;ples
Withm a routine than effects classes. Furthermore)

Digital Technical Journal Vol . 10 No. 1 1 998 5 3

54

effects-class signatures often contai n a smal l number
of effects classes. A smal l number of effects cl asses in
an effects-class signature means that there are a small
number of stacks to consider. Choosing the nearest
dominator from among the top tuples on these stacks
requires examining only a small numbe r of tuples.

Cost of Using Type Information

When compiling all of the SPECint95 test suite9 using
high optimization, alias analysis accounts for approxi
mately 5 percent of the comp i l ation ti me. The use of
Standard C type rules during alias analysis i ncreases
compilation time by less than 0 . 2 percent (time mea
sured i n number of cycles consumed by the compiler
as reported by Digital Continuous Profil ing Infra
structure [DCPI] '"). The i ncrease in compilation time
varies from program to program but never exceeds
0 . 5 percent. Hand l i ng the extra effects classes gener
ated by using Standard C type al iasing i n formation
accounted for most of the i ncrease .

Potentially, the cost of including type-aliasing infor
mation could be huge . Calculating which effects classes
a reference through a char * pointer could touch is
straightforward as shown by the algorithm in Figure 5 .

A much more complicated process i s required to
calculate which effects classes could be touched by a
reference through a poi nter to a type other than char.
The algorithm in Figure 6 performs this process.

Fortu nately, the innermost section of this loop is
rare ly executed . The innermost section executes onJy
if a routine references a structure either through a
pointer or a pointer-al iased sym bol, that structure
contains a substructure, and the routine references the
su bstructure through a pointer.

forea ch p o inter al ia sed symbol

Effectiveness

The benchmark programs from the SPECint95 suite
offer some convenient test cases for measm ing the
effectiveness of type-based alias analysis. The sources are
readily available and portable. The programs conform
to aLias rules established by the American National
Standards Institute (ANSI) and are compute intensive.
Unfortunately, they do not contain floating-point cal
culations. This reduces the number of different types
used in the programs. Type -based alias analysis works
best when there are many different types in use .

Tlu·ee of the SPECint95 programs show no improve
ment when compiled using the Standard C typing rules
as opposed to using the traditional C typing ru les.
These programs, namely compress, go, and li, do not
use many different types and pointers to them. \Vhen
all the pointers i n a program are pointers to ints (go) ,
there is only one e ffects class for a l l pointer accesses.
Because the compiler has no way to differentiate
among the objects touched by a dereference of a
pointer expression, it generates identical code for these
programs, regardless of the type rules used. The gen
erated code for l i differs only sl ightly and only for
infrequently executed routines.

Changes in generated code for the remai ning five
benchmarks are more prevalent. Two benchmarks,
ijpeg and perl, show a smal l reduction in the number
of loads executed but no meani ngful reduction in the
total number of instructions executed . The other
three SPECi nt95 benchmarks show varying degrees
of red uction i n both the number of loads executed
(see Table 6) and the total nu mber of instructions
executed (see Ta ble 7) .

foreach e f fects c l a s s represen i ng a region o f the symbol

add chat e f fec s lass to the e f fec ts c l as s s igna ure for c ar

Figure 5
Calculation of the Effects-class Signature of the Type char *

Figure 6

foreach p oi nter aliased s ymbo l or cype referenced t hrough a o i n ter
f o r e a c h member here i n

i f t he member ' s type i s referenced through poin er
foreach e f feccs class repre sen t i ng a re ion o f the member ' s Lype

foreach e f fec t s c l a ss re p resen t i g a region f che s ymbo l or type

referenced hrough a pointer
if the tHO e f fect s cl ass re i on s ove rlap

add the symbol ' s or po i n ter ' s e f fects c l a s s to the e f fects
class signatur associated with the ef fec t c l ss
represent i n the member ' s Lype

Calculation of the Effects-class Signature for Types Other Than char

DigiraJ Technical JournaJ Vol . 1 0 No. 1 1 998

Table 6
Number of Loads Executed by the Select SPECint95 Benchmarks

M i l l ions of Loads M i l l ions of Loads
SPEC Benchmark Using Type I nformation without Type I nformation Percent Reduction

gee 1 0,268 1 0,365 0 .9

ij peg 1 6,853 1 6,888 0.2

m88ksim 1 3,889 1 4, 1 57 1 .9

peri 1 1 , 260 1 1 ,296 0.3

vortex 1 8,994 1 9,207 1 . 1

Table 7
Number of Instructions Executed by the Se lect SPECint95 Benchmarks

Mil l ions of Instructions M i l lions of I nstructions
SPEC Benchmark Using Type I nformation without Type Information Percent Reduction

gee 42,830 42,935

ijpeg 82,844 82,834

m88ks im 72,490 73, 1 55

peri 45,2 1 9 45,252

vortex 80,093 80,607

The load and instruction counts are those reported
by using Atom's pixie tool on the SPECint95 binaries
to generate pixstat data. 1 1 • 1 1 The compiler used was a
deve lopment C compiler. A l l compi l ations used the
fol lowing swi tches: - fas t , -04 , -a rch ev56 , and
- i nl i ne peed . The compi l ations using the
Standard C type system used the -ansi_al i a
switch . The compi lations using the trad itional C type
system used the -noansi_a l i s switch . The bench
mark binaries were run using the reference data set.

DCPI '" measurements of the reduction in the num
ber of cycles consumed by these SPECint95 bench
marks showed no consistent reductions. Run-to-run
variabi l ity in the data col lected swamped any cycle
time reductions that might have occurred. S imi larly,
measu rements of gains in SPECint95'' resu lts due to
the use of type information during alias analysis showed
no significant changes .

Changes in Generated Code

The code-generation changes one sees in the SPECint95
benchmarks arc exactly what one would expect.

The usc of type information during alias analysis
reduces the number of redundant loads. An example
of this occurs in ijpeg, which contains the code sequence:

main->r v?group_ctr·
= fJDH1EN ·ron) (c in fo- >min_OCT_s ca l ed_s i ze • l l ;

main- �rowgrou s_ava i l

; (JDI M� SlO I) (c i n fo->mi n_DCT_scal d_size + 2) ;

in process_data_context . Using the tradi tional C type
system, the compi ler must assume that main->row
group_ctr is an al ias tor cinfo->min_DCT_scaled_size.

0.2

0.0

0.9

0. 1

0 .6

Thus, it must generate code that loads c info->min_
DCT_scaled_size twice . The Standard C type system
al lows the compiler to generate only one load of
cinfo->min_DCT_scaled_size.

Several of the benchmarks contain code similar to
the fol lowing from conversion_rccipe in gee:

c rr . ne . . t - l i s - >opcode ; - 1 ;
ur . ne x > l i s -> o - from ;

curr . ex t > l i s t - c o s t - 0 ;
curr . exc l i s - >prev - 0 ;

Using traditional C type rules, the compiler must gen
erate four loads of curr. next-> l ist. The compi ler must
assume that the pointer curr.next-> l ist may point to
itself, making curr. next-> l ist->member an al ias tor
curr.next-> l ist. The Standard C type r u les a l low the
compi ler to assume that curr.next->l ist does not point
to itsel f. This allows the compiler to generate code that
reuses the resu lt of the fi rst load of curr.next->l ist,
e l iminating three redundant loads.

In another example in gee, the use of Standard C
type rul es a l lows the compiler to move a load outside a
loop. The fol lowing loop occurs i n fixup_gotos:

f or (; 1 i s Ls ; l i s t s - TREE_ H.l\I (l i s ts))

i f ! T REE_CHAI (l i s s)
- - thi s bloc k- > . b l oc k . ou er_c l.e nup ·)

TREE_ADDRES ABLE (l i Ls) • 1

Standard C type rules tel l the compiler that the store
generated by TR.EE_ADD RESSABLE (l ists) = I
can not modi�' thisblock->data .block.outer_clcanups.
This a l lows the compiler to generate code that retches
thisblock->data.block.outer_cleanups once betore
entering the loop. Using traditional C type ru les,
the compiler must generate code that fetches

Digital Technid journal Vol . 1 0 No. 1 998 55

56

thisblock->d ata . block.outer_cleanups each time i t
traverses the loop.

Not only can type i n formation reduce the n u m ber
of redundant loads, i t em reduce the nu m ber of red un
d an t stores. I n m88ksi m , there are many routines s imi
lar to the fol lowi ng:

ir:t ffirst < s trLct n.S ':.. J.1..:t:L iu;. � c;rri , t:nior. opcode ?·pt:r)

p:r->gen . opcl = 0. 3c: ;
ptr-·.gen . r.:cs t • operar.d,; . v-lue [O] ;
p•t -"9'� . OJX/ • am-�op,c . nT;
p�r >gen . n;/. - ope ran .,; . alue [1 I ;
retuLr. (0 l ;

where ope 1 , dest, opc2, and src2 Jrc bit fields sharing
the same 32 bits (long-vord) . Using traditional C typ
ing ru les, ptr- >gcn and cmd- >opc may be al iases for
each other. Thus to i mplement the above routine, the
compi ler must generate code that performs the fol
lowing actions:

• Load ptr->gen

• U pdate bit fie lds ptr- >gen .opc l and ptr->gen .dest

• Store ptr->gcn

• Load cmd->opc. rrr

• Update bit fie lds ptr- >ge n .opc2 and ptr->gen.src2

• Store ptr->gen

Usi ng Standard C typing ru l es, the compiler does not
have to generate the first store ofptr- >gen . The assign
ments to ptr- >gcn .opc l and ptr->ge n . d est cannot
change cmd - >opc. rrr. I n this case, a l ias ana lysis that is
not type based wou ld have a d ifficu l t time detecting
that p tr- >gen and cmd - >opc d o not a l ias each other.
M88ksim never cal ls Hi rst d i rectly. It cal ls it by means
of an array-indexed fu nction pointer.

A Note of Caution

Many C programs do not ad here to the Standard C
aliasing rules. Through d1e usc of expucit casting and
impl icit casting, they access objects of one type by means
of pointers to other types. More aggressive optimization
by GEM combi ned with more detailed alias-analysis
information fi·om the DEC C and C++ side-effects
package increasi ngly resu l ts in these programs e x hi bit
ing unexpected behavior when the compiler uses
Standard C al iasing ru les.

Passing a pointer to one type to a routine that
expects a poi nter to another type works as expected,
u ntil the GEM opti m izer in l i nes the cal led procedur e .
If the procedure is n o t in l ined , t h e D EC C and C++
side-effects package m ust assume that the cal l confl icts
with aJ I pointer accesses before and after the cal l . Once
GEM in l i nes the routine, the side-effects package is
free to assume t hat references using the in l i ned pointer
do not confl ict with references using the poi nter at the
call site. The two pointers point to t:\vo d ifferent types.

Digital Tcchnic;JI Jound Vol . 10 No. l 1 998

A recent example of this problem occu rred in the
gee program in the SPECint9 5 benchmark suite . All
programs in this suite a rc supposed to conf(xm to the
Standard C type-al iasing ru les . B ecll!se of an improve
ment to the GEM optimizer, this benchmark started
to give unexpected resu l ts . In rrx_a l loc, gee c l ears a
structure by treating it as an a rray of i nts, assigning
zero to each e lement of the array. Subseq uent to zero
i ng this structu re, gee assigns a val ue to one of the
fields i n the structure. Through a series of va l id opti
mizations (given the i ncorrect type information) , the
resu l ting code did not c lear a l l the fields i n the struc
ture . This left u n in itia l ized data i n the structure
resu lting i n gee behavi ng in an unexpected manne/

To avoid potential problems, the D EC C compi le r,
by d ef:1u l t, d oes not use the Standard C type ru les
when performing alias analysis. The user of the com
pi ler has to expl icitly assert that the program does fol
low the Standard C type ru les thro u gh the use of a
com mand -l ine switc h .

T h e DIG ITA L C++ compiler docs assume that the
C++ program it is compi l ing ad h eres to the Standard
C++ type rules . A user of the D I G ITAL C++ com pi ler
can use a com mand - li ne switch to inkmn the compi ler
that i t should use traditional C type ru les when per
forming al ias a nalysis.

Summary

Using Standard C type inf(xmation d u ring al ias analysis
does improve the generated code f()r some C and C++
programs. The compi lation cost of· using type informa
tion is sma l l . Except for rare cases, performance gains
resu l ting from these code improvements are smal l . Any
programs compiled using type information duri ng al ias
analysis must strictly adhere to the Standard C and C++
aliasing rules. If not, the optimizer may generate code
that produces unexpected resu lts .

Acknowledgments

The author wou ld l ike to than k Dave B l ickste in , Mark
D avis, Nei l Fai man, Steve Hobbs, and B i l l Noyce of
the GEM team for their advice and reviews of this
work. Dave B lickstein and Nei l Faiman a lso d id work
in the G EM opti m i zer to ensure that the D EC C and
C++ side-effects package had a l l the i n f(mnation i t
needed t o do alias analysis correctly a n d to ensur e that
the GEJ\rl opti mizer effectively used the i n fcm1ution
the side-effects package provid ed. Thanks a l so to John
Henning of the CSD Performance Group and J eannie
Lieb of the GEM team fiJr their he lp usi ng the
S PECint95 benchmark suite. A f-i nal word of thanks
goes to Bob Morgan f(x suggesti ng that I write this
paper and to my m anage ment f()r supporting my
doi ng so.

References and Notes

1 . R. Wi lson a nd M . Lam, " Enic ient Comext-Sensitive
Poimcr Analysis for C Programs," Proceedini�S of the

A C/\1 S!C;PLA1\ '95 Conference on Programm ing Lan

guaw' IJesip,n a n d Implementation. La J o l l a , Ca l if.
(J u ne 1 99 5) : 1-1 2 .

2 . D . Coutant, "Rctargetable High-Level Alias Analysis,"
Proceedings of the 13th A nnual �)mposium on Pl7n

ciples oj' Program ming Languages, St. Petersburg
Beach, Fla . (January 1 986) : 1 1 0-1 1 8 .

3 . A . Diwan e t al . , "Type-Based Alias Analysis," Procecd
iu,�s o/ the 1998 A CM SICPLA N Couference o11 Pro

f:ira m m ing Language Desig n and Implementation.

Montreal , Canada (June 1 998): 1 06-1 1 7 .

4 . Jo int Tech n ical Committee ISO/IEC JTC 1 , "The C
Programming Language," International Standard

!SO/JJ;'C 9899 1990, section 6 .3 Expressions.

5. "Working Paper for Draft Proposed I n ternational
Standard for I nformation Systems-Programming
Language C++," WG2 1/N 1 146, November 1 997,
section 3 . 10 .

6 . D . Bl ickstein e t a l . , "The GEM Optimizing Compiler
System," /Ji[;ilal Technical.fournal, vol. 4 , no. 4 (Spe
cial Issue, 1 99 2) : 1 2 1-136.

7. R. Crowell ct a l . , "The GEM Loop Transformer,"
ni,� ital Techn icaiJournal, vol. 1 0 , no. 2, accepted for
publ ication.

8. A . AJ1o, R . Sethi , and] . Ul lman, Compilers Principles.

Techniljlles. and Tools (Reading, l'vbss: Addison
vVesley, 1 986): 104.

9 . Information about the SPEC benchmarks is available
from the Standard Pertorm<\nce Evaluation Corpora
tion at http :/ /www.specbench.org/.

10 . J. Anderson ct a l . , "Continuous Profil ing: vVhcre H ave
All the Cycles Gone>" Proceedings of the Sixteenth

A O\If .S)'mposium on Operatln/:5 Systl!rn Principles, Sait
M::tlo, France (October 1 997) : 1 5-26.

I I . A. SrivJstava and A. Eustace, "ATOM : A System for
Bui lding Customized Program Analysis Tools," Pro

ceedings oft be .-10\lf S!CPL- !:V 9 ·1 Conference on Pro

wwnm ing Language Design Ulld !mplemenlalion.

Orlando, F l a . (J une 1 994) : 1 96-205 .

12 . l/i\1/IPS- V Rejere11ce Manual (pixie a nd pixstats)

(Sunnyva le, Ca l if. : M IPS Computer Systems, 1 990) .

Biography

August G. Reinig
August Rein ig is a principal somvarc engineer, currently
working on debugger support in the DIGITAL C++
compiler. In addition to his work on the DEC C and C++
side-effects package, August implemented a Java-based
distributed test system for t.he DEC C and D IGITAL C++
compilers and a

·
para l le l bui ld system for the DEC C and

DIGITAL C++ compilers. The d istributed test system
simultaneously runs multiple tests on d ifferent machines
and is fau lt tolerant. Betore joining the DEC C and C++
team, he conu·ibuted to an advanced development incre
mental compiler project, which led to two patents,
"Method and Apparatus fc>r Somvare Testing Using a
Testing Technique to Test Compilers" and "Method
and Apparatus tor Testing Somvare. " He earned a B .S. in
mathematics (magna cum laude) !Tom Dartmouth Col lege
in 1 980 and an M .S . in computer science fi·om H arvard
University in 1 997. He is a member of Ph.i Beta Kappa.

Digital Technical Joumal Vol . 10 No. 1 1 998 5 7

58

Compiler Optimization
for Superscalar Systems:
Global Instruction
Scheduling without
Copies

The performance of instruction-level paral lel

systems can be improved by compiler programs

that order machine operations to increase

system paral lel ism and reduce execution time.

The optimization, cal led instruction schedul ing,

is typica lly classified as local schedul ing if only

basic-block context is considered, or as g lobal

schedul ing if a larger context is used. G lobal

schedul ing is general ly thought to g ive better

results. One g lobal method, dominator-path

schedul ing, schedules paths in a function's

dominator tree. U n l i ke many other g lobal

schedul ing methods, dominator-path schedul

ing does not requ i re copying of operations

to preserve program semantics, making this

method attractive for supersca lar arch itectures

that provide a l imited amount of instruction

level para l l e l i sm. In a sma l l test su ite for the

Alpha 21 1 64 supersca lar arch itecture, dominator

path schedul ing produced schedules requiring

7.3 percent less execution time than those pro

duced by local schedul ing alone.

Digital Tcch tlical journal Vol . 10 No. I 1 998

I
Philip H. Sweany
Steven M. Carr
Brett L. Huber

Many of today's computer appl ications require compu
tation power not easily achieved by computer architec
tures that provide l i ttle or no para l l e l i sm. A promising
alternative is the parallel architecture, more specifical ly,
the instruction-level para l le l (I LP) architecture, which
i ncreases computation d u ring each machine cycle. I LP
computers a llow para l l e l computation of the lowest
level machine operations with i n a single instruction
cycle, inc luding such operations as memory l oads and
stores, i n teger additions, and floating-point mu ltipl ic:�
tions. I LP architectures, l ike conventional architectures,
conta i n multiple fu nctional u n its and pipcl i ned fi.mc
tional u nits; but, they have a singJ c progr:�m cou nter
and operate on a single instruction stream. Compaq
Computer Corporation's AlphaServer system, based on
the Alpha 2 1 1 64 microprocessor, is :�n example of an
ILP machine.

To effectively usc parallel h a rdware and obtain
performance ad van tagcs, compi ler programs must
idcntif)r the appropriate level of paral le l ism . For I LP
architectu res, the compi ler must order the s ingle
instruction stream such that mu ltiple, low-level opera
tions execute s imultaneously whenever possi b le . This
orderi ng by the compiler of machine operations to
effectively use an I LP arch i tecture's increased para l
le l ism i s called instruction schedulin,r, . It i s an opti
mization not usu a l l v rou nd in compi lers for non- I LP
arch i tcctu res .

Instruction sched u l i ng is c lassified as local if i t
considers code only within a basic b lock and ,r,loha! i f
i t schedu les code across m u l tiple bJsic b l ocks. A dis
advantage to local instruction schedul ing is its inabi l i ty
to consider context from surrounding blocks. \Vhi le
local sche d u ling can find parallelism within a basic
block, it can do nothing to exploit para l l el ism bel:\veen
basic blocks. General ly, global sched ul ing is preferred
because i t can take advantage of added program parJ l
lelism avai lable when t h e compiler is :� !lowed t o move
code across basic block bmmdJries. Tjaden and Flynn, '
tor example , found paralle l ism within a basic block
qu ite l im ited . Using a test suite of scienti fi c programs,
they measured an average paral le l ism of 1 . 8 within
basic blocks. In s imi lar experi ments on scientific pro-

grams in which the compi l er moved code across basic
block boundaries, Nicolau and Fisher ' round paral
le l ism that ranged from 4 to a virtually un l imited n u m
ber, with a n average of90 for the entire test suite.

Trace scheduling'' is a global schedu ling technique
that attempts to optimize fi:equently executed paths of
a program, possibly at t11e expense of less frequently
executed pat11s . Trace schedu ling exploits paral lclis�
within sequential code by allowing massive migration of
operations across basic block bounda.ties during schedul
ing. By addressing this l arger scheduling context (many
basic blocks), trace scheduling can produce better sched
ules tlun teclmiques that address the smaller context of a
single block. To ensure the program sema.t1tics are not
changed by interblock motion , trace scheduling inserts
copies of operations that move across block bou ndaties.
Such copies, necessary to ensure program semantics, are
called wmpm1sation copies.

The research described here is driven by a desire to
develop a global i nstruction sched u l i n g technique
that, l i ke trace schedu l i ng, a l lows operations to cross
block bou ndaries to find good schedules and that,
u n l i ke trace sched u l ing, does not require insertion of
compensation copies . Like trace schedu l i ng, D PS first
defi nes a mu ltiblock context for sched u l i ng and then
uses a local i nstruction scheduler to treat the l arger
context l i ke a si ngle basic block. Such a techniq ue pro
vides effective sched ules and avoids the performance
cost of execu ting compensation copies. The global
schedu l i ng tech nique described here is based on the
dominator relation * among the basic blocks of a fu nc
tion and is called domi nator-path sched ul ing (D PS) .

Local Instruction Schedul ing

Si nce DPS relies on a local instruction scheduler we
begin with a brief d iscussion of the local schedt;l ing
problem. As the n a me i m plies, local instruction sched
uling attempts to maxi mize para l lelism within eac h
basic block of a fu nction's control rlow graph. I n gen
eral , this optimization problem is N P-complete . '
H owever, i n practice, heuristics achieve good results.
(L..1.ndskov et al.'' give a good survey of early instruction
schedu l ing algorithms. Al lan et aF describe how one
might bui ld a retargetable local i nstruction sched u ler.)

L1st schedulinp, " i s a general method often used tor
local instructi

_
on sched u l i ng. Briefly, l ist sched u l ing

typtc:: d ly requtres two phases. The fi rst phase bui lds
a directed acyclic graph (DAG), c<�l led the d:J.tJ. depen
dence DAG (D D D) , tor each basic block i n the
functio n . DDD nodes represent operations to be
sched u led . The DDD's d i rected edges indicate that a
node X preceding a node Y constrains X to occ u r no

* A basic bl_ock , D , dominates another block, B , i f cl'<.:n p a t h from
the root ot the control-How graph (or a function ro B must pass
throug;h D

later than Y. These DOD edges are b;�sed on the formal
ism of data dependence analysis. There are tl1ree basic
types of data dependence, as described by Padua et al .''

• Flow dependence, also cal led b·ue dependence or
data dependence. A D D D node M, is flow depen
dent on D D D node M , i f M , executes before M, and
lvL writes to some memory location read by M, .

• Antidependence, a lso cal led false dependence. A
DDD node M2 is a n tidependent on D D D node M ,
i f M , executes before M z and M 2 writes t o a mem
ory location read by M , , thereby destroying the
value needed by M , .

• Output dependence. A D D D node M , i s output
dependent on ODD node M, i f M , executes before
M2 and M1 and M, both write to the same location.

To faci l itate determi nation <1 11d manipul ation of
data dependence, the compiler maintains, for each
D D D node, a set of a l l memory locations used (read)
and all memory locations defined (writte n) by that
particular D D D node.

Once the DDD is constructed, the second phase
begin s when list schedul ing orders the graph 's nodes
into the shortest sequence of insb·uctions, subject to
(1) the constraints in the graph, and (2) the resource
l imitations i n the machine (i .e . , a machine is typical ly
umited to holding only a single value at any time) . I�
genera! l ist sched ul ing, :.1.n ordered J ist of tasks, called a
pnoriz)l list, is constructed . The priority l ist takes i ts
name from the tact that tasks are r:mked such that those
with the highest priority are chosen first. In the context
of local instruction scheduling, the priority list contains
DDD nodes, all of whose predecessors have a lready
been incl uded in the schedule being constructed .

Expressions, Statements, and Operations

Within the context of this paper, we discuss a lgorithms
for code motion . Before going fu rther, we need to
ensure common u nderstanding among our readers tor
our use of terms such <�S expressions. statements. and
operations. To start, we consider a com puter program
to be a l tst of operations, each of which (possi bly)
computes a righ t-hand side (rhs) v;�lue and assigns the
rhs val u e to a memory location represented by a left
hand side (l hs) variable . This can be expressed as

A � E

where A represents a single memory l ocation and E
represents an expression with one or more operators
and an appropri:ue n u m be r of oper;�nds . Du ring d i f
ferent phases of a compiler, operations might be repre
sented <�s

• Source code, a high -level langu<�ge such as C

• I n termediate statements, a l inear form of three
address code such as q uads or n-tuples'"

Digital Technical Journal Vol . L O No. 1 998 59

60

• DDD nodes, nodes in a DDD, ready to be sched
u led by the instruction scheduler

Important to note about operations, whether repre
sented as mtermediate statements, source code, or
DDD nodes, i s that operations include both a set of
definitions and a set of uses.

Expressions, in contrast, represent the rhs of an
operation and, as such, include uses but not defini
tions. Throughout this paper, we use the terms state
ment .

.
intermediate statement, operation, and DDD

node Interchangeably, because they all represent an
operation, with both uses and definitions, albeit gen
erally at different stages of the compilation process .
When we use the term expression, however, we mean
an rhs with uses only and no definition.

Dominator Analysis Used in Code Motion

I n order to determine which operations can move
across basic block boundaries, we need to analyze the
source program . Although there are some choices
as to tl�e exact analysis to perform, dominator-patl1
scheduhng IS ?ased upon a formalism first described by
Retf and Taqan." We summarize Reif and Tarjan's
work here and then discuss the enhancements needed
to allow interblock movement of operations.

In their 1 9 8 1 paper, Reif and Tarjan provide a fast
algorithm for determining the approrimate hirthpoints
of expressions in a program's flow graph . An expres
sion's birthpoint is the first block in the control flow
graph at which the expression can be computed, and
the value computed is guaranteed to be the same as in
the original program. Their technique is based upon
fast computation of the idefset for each basic block of
the control flow graph . The idef set for a block B is
that set of variables defined on a path between B's
i mmediate dominator and B. Given that the domina
tor relation for the basic blocks of a function can be
represented as a dominator tree, the immediate domi
nator, IDOM, of a basic block B is B's parent in the
dominator tree .

Expression birth points are not sufficient to allow us
to safely move entire operations from a block to one of
its dominators because birthpoints address only the
movement of expressions, not definitions. Operations
in general include not only a computation of some
expression but the assignment of the val ue computed
to a program variable . Ensuring a "safe" motion tor an
expression requires only that no expression operand
move above any possible definition of that operand,
thus changing the program semantics. A similar
requirement is necessary, but not sufficient, for the
variable to which the value is being assigned. In addi
tion to not moving A above any previous defirution o f
A, A cannot move above any possible use of A .
Otherwise, w e r u n the risk of changjng A's value for

Digital Technical JournaJ Vol . 1 0 No. l 1998

mat previous use. Thus, dominator analysis computes
me zuse set for each basic block and tor me idef set.
The iuse set for a block, B, is that set of variables used
on some path between B 's immediate dominator and
B. Using the idefand iuse sets, dominator analysis com
putes an approxinute birtl1point for each operation.

In this paper, we use the term dominator analysis
to mean the analysis necessary to allow code motion of
opera�ons while disallowing compensation copies.
Additional ly, we use the term dominator motion for
the �eneral optimization of code motion based upon
dommator analysis.

Enhancing the Reif and Tarjan Algorithm

By enhancing Reif and Tarjan 's algorithm to compute
hi11hpoints of operations i nstead of expressions, we
make several issues important that previously had no
effect upon Reif and Tarjan's algorith m . This section
motivates and describes the information needed to
allow dominator motion, including the use, def iuse,
and ide{ sets for each basic block. An algorithmic
description of this dominator analysis information is
included in the section Overview of Dominator-Path
Scheduling and the Algorimm tor Intet·block Motion .

\V:hen we aLlow code motion to move intermediate
statements (or just expressions) from a block to one of
its dominators, we run the tisk that the statement
(expression) will be executed a different number of
times in the dominator block than it would have been
in its original location. vVhen we move only expres
sions, the risk is acceptable (although it may not be
efficient to move a statement into a loop) since the
value needed at the original point of computation is
preserved. Relative to program semantics, the number
of times the same value is computed has no effect as
long as the correct value is computed the last time.
This accuracy is guaranteed by expression birthpoints.

Consider also the consequences of moving an expres
sion Jiom a block that is never executed for some partic
ular input data. Again, i t may not be efficient to compute
a value never used, but the computation does not alter
progran1 semantics. \Vhen dominator motion moves
entire statements, however, the issue becomes more
complex. I f the statement moved assigns a new value to
an induction vatiable, as in me following exatnple,

n = n + 1

dominator motion would change n's final value if i t
moved the statement to a block where the execution
freq uency differed from that of its original block. We
cou ld al leviate this problem by prohibiting motion of
any statement for which the use and de{ sets are not
disjoint, but the possibi l ity remains that a statement
may ddine a variable based indirectly upon that vari
able's previous value. To remedy the more general
p roblem, we disallow motion of any statement S))

whose def set intersects with those variables that are
used-before-defined in the basic block in which S resides.

Suppose the optimizer moves an i ntermediate state
ment that defines a global variable from a block that
may never be executed for some set of inpu t data i nto
a dominator block that is executed at least once for
the same input data. Then the optimized version has
defined a variable that the u noptimized function did
not, possibly changing program semantics. We can be
sure that such motion does not change the semanti cs
of that function being compiled; but there is no mech
anism, short of compil ing the entire program as a sin
gle unit, to ensure that defining a global variable in this
function will not change the value used in another
function. Thus, to be conservative and ensure that
i t does not change program semantics, dominator
motion prohibits interblock movement of any state
ment that detines a global variable . At first glance, it
may seem that this prohibition cripples dominator
motion's abi l ity to move any intermediate statements
at a l l ; but we shall see that such is not the case .

One fi n al addition to Reif and Tarjan information is
required to take care of a subtle problem. As discussed
above, dominator analysis uses the idef and iuse sets to
prevent i l legal code motion . The use of these sets was
assumed to be sufficient to ensure the legal ity of code
motion i nto a dominator block; unfortunately, this is
not the case . The problem is that a definition might
pass through the immediate dominator o f B to reach
a use in a sibling of B i n the dominator tree. I f there
were a detlnition of this variable in B, but the variable
was not defined on any path from the immediate dom
i nator, there would be nothing in dominator analysis
to prevent the definition from being moved into the
dominator. But that would change tl1e program's
semantics. Figure 1 shows tl1e control-flow graph for a
function called fi ndmax () , with only the statements
referring to register r7. Register r7 is defined in blocks
B3 and B7, and referenced in B9. This means mat r7
is live-out of B 5 and live-in to B 8 , but not live-in to
B7; there is a definition of r7 i n B 3 that reaches B 8 .
Because there i s no definition o r use between B 7 and
its immediate dominator B 5 , the idef and iuse sets of
B7 are empty; thus, dominator analysis, as described
above, would al low the assignment of r7 to move
upward to block B 5 . This motion is i ll egal ; i t changes
the definition in B 3 . Moving me operation from B7 to
B5 changes the conditional assignment of r7 to an
unconditional one.

To prevent this from happening, we can insert the
variable into the iuse set of the block B, in which we
wish the statement to remain. We do not, however,
want to add to the iuse set unnecessarily. The solution
is to add each variable, V, that is live-in to any of B 's
siblings in tl1e dominator tree, but not i nto B, or to B's

I I B4

I
t t

B5

qJ
7

gJ G -

B8

Figure 1
Control Flow Graph for the Function tindmax()

iuse set. This wil l prevent any definition of V that
might exist in B from moving up. If there is a defini
tion ofV in B, but V is live-in to B , there must be some
use ofV in B before the definition, so it could not move
upward in any case .

Measurement of Dominator Motion

To measure the motion possible in C programs,
Sweany1' defined dominator motion as the movement
of each intermediate statement to its birthpoint as
defined by dominator analysis and by the number of
dominator blocks each statement jumps during such
movement. Sweany's choice of i ntermediate state
ments (as contrasted with source code, assembly lan
guage, or DDD nodes) is attributed to the lack of
machine resource constraints at that level of program
abstraction . He envisioned dominator motion as an
upper bound on the motion avai lable in C programs
when compensation copies are i ncluded . In the test
suite of 12 C programs compiled, more than 25 per
cent of all intermediate statements moved at least one
dominator block upwards toward the root of the dom
i nator tree . One function al lowed more than 50 per
cent of the statements to be hoisted an average of
nearly eight dominator blocks. The considerable
amount of motio n (without copies) avai lable at the
intermediate statement level of program abstraction

Digital Technical Journal Vol . 10 No. 1 1 998 61

62

provided us with the motivation to use similar analysis
techniques to facilitate global instruction schedu l ing.

Overview of Dominator-path Schedul ing and the
Algorithm for lnterblock Motion

Since experi ments show that dominator analysis al lows
considerable code motion without copies, we chose to
use dominator analysis as the basis tor the instruction
scheduling algorithm described here, namely dominator
path scheduling. As noted above, DPS is a global
instruction scheduling method that does not require
copies of operations that move ti.-om one basic block to
another. DPS performs global instruction scheduling by
treating a group of basic blocks found on a dominator
tree path as a single block, scheduling the group as a
whole . In this regard, it resembles trace scheduling,
\vhich schedules adjacent basic blocks as a single block.
DPS's foundation is scheduling instructions while mov
ing operations among blocks according to both the
opportunities provided by and the restrictions imposed
by dominator analysis.

The question arises as to how to exploit dominator
analysis information to permit code motion at the
instruction level during scheduling. DPS is based on
the observation that we can use ide(and iuse sets to
al low operations to move from a block to one of its
dominators during instruction scheduling. I nstruction
scheduling can then choose the most advantageous
position tor an operation that is placed in any one of
several blocks. Because machine operations are incor
porated in nodes of the DDD used in schedu ling and ,
l ike intermediate statements, DDD nodes are repre
sented by dej and use sets, the same analysis performed
on intermediate statements can also be applied to a
basic block's DDD nodes.

The same motivation that drives trace scheduling
namely that scheduling one large block allows better use
of machine resources than scheduling the same code as
several smaller blocks-also applies to D PS . I n contrast
to trace schedul ing, DPS does not allow motion of
DDD nodes when a copy of a node is required and does
not incur the code explosion due to copying that trace
scheduling can potentially produce. For architectures
with moderate instruction- level paralle lism, DPS may
produce better results than trace sche�uling, because
the more l imited motion may be suttictent to make
good use of machine resources, and unlike trace sched
ul ing, no machine resources are devoted to execunng
semantic-preserving operation copies.

Much l i ke traces,* the dominator path's blocks can
be chosen by any of several methods. One method is a
heuristic choice of a path based on length , nesting
depth , or some other program characteristic . Another
is programmer specification of the most important

•groups of blocks ro be scheduled rogerhcr in rrace schedul ing

Digital Technical Journal Yol . l O No. 1 1 998

paths. A third is actual profi l ing of the running pro
gram. We visit this issue again in the section Choosing
Dominator Paths . First, however, we need to discuss
the algorithmic details ofDPS .

Once D PS selects a dominator path to schedule, it
requires a method to combine the blocks' DDDs into
a single DDD for the entire dominator path . I n our
compiler, this task is performed by a DDD coupler, � .'
which is designed for the p urpose. Given the DDD
coupler, DPS proceeds by repeatedly

• Choosing a dominator path to schedule

• Using the DDD coupler to combine each block's
DDD on the chosen dominator path

• Scheduling tl1e combined DDD as a single block

The dominator-path schedu ling algorithm, detailed
in this section, is summarized in Figures 2 and 3 .

A significant aspect o f the D PS process i s to ensure
"appropriate" interblock motion of DDD nodes and
to prohibit "i l legal" motion. As noted earl ier, the
combined DDD for a dominator path includes control
flow. Therefore, when DPS schedules a group of
blocks represented by a single DDD, i t needs a mecha
nism to map correctly the scheduled instructions to
the basic blocks. The mechanism is easi ly accom
pl ished by tl1e addition of two special nodes to each
block's n"DD. Called B lockStart and B lockEnd, these
special nodes represent the basic block boundaries.
S ince dominator-path scheduling does not allow
branches to move across block boundaries, each
B lockStart and B lockEnd node is in itially "tied" (witl1
DDD arcs) to the branch statement of the block, .if any.
Because B lockStart and B lockEnd are nodes in the
eventually combined DDD, they arc sched uled l ike all
other nodes of the combined DDD. After scheduling,
all i nstructions between the instruction containing the
B lockStart node for a block and the instruction con
taining the B lockEnd node for that block are consid
ered i nstructions for that block. Next, DPS must
ensure that the B lockStart and BlockEnd DDD nodes
remain ordered (i n the scheduled instructions) relative
to one another and ro the B lockStart and BlockEnd
nodes tor any other block. To do so, DPS adds use and
dej information to the nodes to represent a pseudore
source, B lockBoundary. Because each BlockStart
node defines B lockBoundary and each B lockEnd
node uses BlockBoundary, no BlockEnd node can be
scheduled ahead of i ts associated BlockStart node
(because of flow dependence .) Also, a BlockStart node
cannot be scheduled before i ts dominator block's
BlockEnd node (because of antidependence) . By
establishing these imaginary dependencies, DPS
ensures that the DDD coupler adds arcs between all
BlockS tart a nd B lockEnd nodes .

Algorithm Dominator-Path Scheduling
I nput :

Output:

Function Control Flow Graph
Domi nator Tree
Post- Dominator Tree

Schedu led i nstructions for the function

Algorithm :
Whi le at least one Basic B lock i s unschedu l ed

Heuristically choose a path B , , B1, . . . , B, in the Dominator Tree that includes
only unschedu led Basic B locks.

Pe rform dominator analysis to compute lDefand IUse sets

/* B uild one D D D tor the entire dominator path *I
Combined DDD = B ,

For i = 2 to n
T = I ni tializeTransitionDDD (B, ., , B ,)
Com binedDDD = Couple(CombinedDDD,T)
Combined D D D = Couple (Combined DDD, B,)

Perform list sched uling on Combined DOD
Mark each block o f DP scheduled
Copy schedu led instructions to the Blocks of the path (instructions between the
BlockStart and B lockEnd nodes for a Block are "written " to that B lock)

End vVhi le

Figure 2
Dominaror-pJth Scheduling Algorithm

Looking back to domi nator analysis, we see that
interblock motion is prohibited if the operation being
moved

• Defi nes something that is i n c l uded in either the
ide/or iusc set

• Uses something included i n the idef set for the
bl ock in which the operation currently resides

To obtain the same p rohibitions in the combined
D O D, we add the ide("set tor a basic block, B, to the
defset B 's BlockStart node. Similarl y, we add the iuse
set tor B to the use set of B's BlockStart node. Thus we
cntorcc the same restriction on movement that domi
nator analysis i m posed upon i n termediate statements
and ensure that any i ntcrb.lock motion preserves pro
gram scmJntics. In J similar manner, DPS i ncludes the
restrictions on movement of operations that define
either global vJriJbles or ind uction variables. Figure 3
gives an a lgorithmic descrip tion of the process of
"doping" the B lockS tart and BlockEnd nodes to pre
vent d isal l owed code motion.

DPS is complicated by factors not relevant tor dom
inator motion of intermediate statements. Foremost is
the complexity im posed by the bidirectional motion of

operations tl1at instruction sched ul ing allows. In dom
inator motion , i ntermediate stJtements move in only
one direction , i . e . , toward the top of the ti.mction's
control How graph , not from a dominator block to a
domi nJted one. This one-directional motion is rea
sonable when attempting to move intermediate stJte
ments because one statement's movement wil l l i kely
open possibil i ties tor more motion i n the same d irec
tion by other statements. When statements move i n
different directions, o n e stJtement's motion m ight
inhibi t another's movement in tl1e opposite d irection .
The goal of dominator motion is to move statements as
t�u· as possible i n tl1e control flow graph. In contrast, tl1e
goal of DPS is not to maxi.rn.ize code motion, but rather
to find, for each operation, 0, that location for 0 that
will yield me shortest schedule. Thus our goal has
changed fi:om that of dominator motion. To gain the
fu ll benefit from DPS, we wish to allow operJtions to
move past block boundaries in either direction . To per
mit bidirectional motion, we use the post-dominJtor
relation , which says that a basic block, P D , is a post
domi nator of a basic block B if al l paths from B to the
function's exit must pass ilirough P D . Using thi s strat
egy, we s imi larly define post-idefand post-iuse sets. I n

Digital TcdHlic.ll Journal Vol . 10 No. l 1 998 63

Figure 3

Algorithm Initi al i zeTransitionDDD(B , , B1)
Input :

Output:

A Transition DDD templates, with a D u mmy DD DNode
for B , 's block end and one for B, 's block start
Two basic blocks, B, and B, that we wish to couple
Domi nator Tree
Post- Domi nator Tree
The fol l owing dataflow information

Def, Use, IDef, and I Use sets for B , and B,
Used-Before-Defined set for B,
Post-I Def, and Post-I Use sets for B , and B,
B,'s "sibling" set, defined to i nclude any variable

live-in to a dominator-tree si bling ofB,, but not
live-in to B,

A basic block D D D for each of B, and B,

An i n itialized Transition DDD, T
Algorithm :

T = TransitionDDD
/* "Fix" set for global and induction variables. * /
Add set of global variables to B/s !Use
Add B/s Used - Before-Defined to B/s IUse
Add B/s sibl ing set to B/s I Use

If B, does not post-dominate B ,

Else

Add B, 's Use set to Ts Block End Def set
Add B, 's Defset to T's BlockEnd Use set

Add B, 's Post- I Def set to T's BlockEnd Def set
Add B , 's Post-lUse set to T's BlockEnd Use set

Add B/s I Def set to T's B lockS tart Def set
Add B� 's I Use set to T's BlockS tart Use set
Return T

I nitial ize Transition ODD Algorithm

fact, it is not d i fficult to comp u te Jll these quanti ties
for a fu nction . The simplest w:�y is to l ogica l l y reverse
the direction of all the control flow gr:�ph arcs and per
form domi nator an alysis on the resu lt ing graph .
Having computed the post-domi nator tree, DPS
ch ooses dominator paths such that the dominated
node is a post-domi nator of its immediate predecessor
in a dominator path. This choice a l lows operations to
move "freely" in both directions. Of course, this may
be too l imiting on the choice of domi nator paths. To
allow for the possibility that nodes in a dominator path
wi l l not form a post-domin ator relati on, D PS needs a
mechanism to l imit bidirectional motion when
needed . Again, we rely on the tech nique of adding
dependencies to the combined D D D . In this case
(assuming that DPS is schedu l i ng paths in the forward
domi nator tree), for any basic block, B, whose succes-

64 Digiral T�c hnical JournJI Vol . 10 No. I 19 98

sor, S, in the forward domi nator p:tth does not post
dominate B , DPS adds B 's de(set to the use set of the
B l ockEnd node associated with B . In similar t-:1shion,
we add B 's use set to B 's B lockEnd node's de(set.
This technique prevents any DDD node origi nal ly in
B from moving downward i n the domi nator path .

Choosing Dominator Paths

DPS al lows code movement a long any domin ator
path, but there are many ways to select these paths. An
investigation of the effects of domi nator-path choice
on the efficiency of generated schedu les tel ls us that
the choice of path is too i mportan t to be left to arbi
trary selection; twice the average percent speed up* for
several functions can often be ach ieved with a simple ,

*(unoptimized_speed - oprirnized_spccd)/u noptirnizcd_spccd

well-chosen heuristic. Some functions have a potential
percent speed up almost four times the average. Thus,
it is important to find a good, generally appl icable
heuristic to select tl1e domi nator paths.

Unfortunately, it is not practical to schedule all of
the possible partitionings for large functions. If we
allow a basic block to be included in only one domina
tor path, the formula for the numbe r of distinct parti
tionings of the dominator tree is

IT [outdeg(n) + 1]
II € .\'

where N is the set of nodes of the dominator tree . "
Although the number of possible paths i s not prohi bi
tive for small dominator trees, larger trees have a pro
hibitively large number. For example, whetstone's
main(), with 49 basic blocks, has a lmost two tri ll ion
distinct partitionings.

To evaluate differences in dominator-path choices,
we scheduled a group of small fu nctions with DPS
using every possible choice of dominator path . The
target architecture for this study was a hypotheticaJ
6-wide long-instruction-word (LIW) machine, which
was simu lated and in which it was assumed that all
cache accesses were hits.

The results of exhaustive dominator-path testing
show, as expected , that varying the choice of domina
tor paths significantly affects the performance of
scheduling. For all functions of at least two basic
blocks, DPS showed improvement over local schedul
ing for at least one of tl1e possible choices of domina
tor paths. Table 1 shows the best, average, and worst
percent speedup over local scheduling found for al l
fu nctions that had a "best" speedup of over 2 percent;
it also shows the speed up of tl1e origi nal implementa-

Table 1

tion ofDPS and the n u mber of clistinct dominator tree
partitionings. The original im plementation of DPS
incl uded a single, simple heuristic to choose domina
tor patl1s. More specifically, to choose dominator pams
witl1 in a group, G, of contiguous blocks at me same
nesting level, me compiler continues to choose a
block, B, to "expand . " Expansion ofB initializes a new
dominator path to include B and adds B's dominators
until no more can be added. The algorimm then starts
anomer domi nator path by expanding another (as yet
unexpanded) block of G. The first block of G chosen
to expand is me tail block, T, in an atte mpt to obtain as
long a dominator pam as possible .

Unformnately, not all functions are small enough to
be tested by performing DPS for each possible parti
t ioning of the dominator tree. Therefore, we defined
37 different heuristic memods of choosing dominator
trees, based upon groupings of SL"X key heuristic factors.

The maximum patl1 lengms of tl1e basic guidelines
were adjusted to produce actual heuristics . We used
the heuristic factors from which the individual heuris
tics were constr ucted ; each seemed likely e ither to
mimic the observed characteristics of the best path
selection or to allow more freedom of code motion
and, therefore, more fl exibility in filling "gaps. "

• One nesting level-Group blocks from the same
nesti ng level of a loop. Each block is in the same
strongly connected component, so the blocks tend
to have similar restrictions to code motion . For a

group of blocks to be a strongly connected compo
n ent, there must be some path in the control tlow
graph from each node in the component to all the
otl1er nodes in the component. Si nce the function
will probably repeat the loop, it seems l ikely that
the scheduler will be able to overlap blocks in it.

Percent of Function Speedup Improvement Using DPS Path Choices over Local Schedu l ing

Function Name Best Average

bu bble 39.2 1 0 .6

readm 32.5 9 .3

solve 27.8 9 .9

queens 25.4 8.3

swaprow 2 3 . 1 5 .8

print(g) 22.0 9 . 1

find max 2 1 .3 6 .2

copy col 1 8.5 5 .6

e l im 1 4.3 2 .3

mu lt 1 3 .7 2 . 1

subst 1 2 .9 2.4

pri nt(8) 1 2 .5 6 .2

Percent Speed up

Worst Original

- 0. 1 1 1 .7

- 0.2 32 .5

- 0.2 27.8

- 0.4 - 0.4

- 3 .7 1 9 .5

- 0.2 22.0

- 0. 3 8. 7

- 5.0 1 9 .9

- 3.8 1 0.2

- 3.8 1 0.3

- 4.9 4 .9

0 .0 1 2 .5

Digiral Technical Journal

No. Dominator
Tree Partitions

72

48

96

96

24

8

1 8

8

576

96

9 6

8

Vo l. 10 No. l 1 99 8 65

66

• Longest path-Sched ule the longest avai lable path .
This heuristic c l ass Jl lows the maxim u m distance
tor code motion .

• Postdominator-Follow the postdominator relation
in the dominator tree. When J dominator block, P, is
succeeded by a non-postdominator block, S, our
compiler adds P's del set to the use set of P's
B loc kl-: nd node and the use set to the def set to
prevent any code motion from P to S. I f P is instead
succeeded by its postdomi mtor block, no such mod
incation is necess::try, and code would be allowed to
move in both directions. Intuitively, the postd omi na
tor relation is the cx::tct inverse of the dominator reb
ti on, so code can move down, into a postdomi nator,
as it moves up i nto a domi nator. Further, the simple
act of adding n odes to the D D D will complicate list
sched ul ing, mal<ing it harder tor the scheduler to
generate the most efficient sched u I e .

• Non -postdominator-Follow a non-postdominator
i n the dominator tree. This heuristic class generally
means Jdding loop body blocks to the path . Notice
that th is seems at odds with the previous h e u ri s tic
class . The previous cbss was suggested by intuition
about the schedu ler, and this one by observation of
path behavior.

• idef size-Group by idef set size. The larger the
idef size, the more interference there is to code
motion . A small idefsize will probably a l low more
code motio n , so we try to add blocks with small
ide/sizes.

• Densi ty-Grou p by operation density. vVe define
the density of each basic block as the number of
nodes in the DDD divided by the nu mber of instruc
tions req uired f(x local sched u l ing. A dense block
already has close to its maximum number of opera
tions; Jdding or removing operations wi l l probably
not improve the sched ule. For this reason, we want
to avoid sched u ling dense blocks together. Two
methods arc tried: sched u l ing dense blocks >vith
sparse blocks and putting sparse blocks together.

The heuristic factors were used to make i nd ividual
heuristics by ch:1nging the limit on the possible nu m
ber of blocks i n a p::lth . I t was reasonable t o set l i mits
for four tactors : postdominator, non- postdominator,
ide/ size, and density. We tried p:�th length l imits in
blocks of 2 , 3, 4, 5 , :1nd un l imited , making a total o f
five heu ristics fi·om each h euristic factor.

Ru nning DPS using cJch of the he uristic methods
a nd comparing the efti ciency of the resu l ting code
l eads to several concl usions about effective heu ristics
for choosi ng DPS's dominator paths. for some heu ris
tics, we can achieve the best schedules for DPS by
using paths that r:1rely exceed th ree blocks. For :1 ny
particular class of heuristics, we can Jchievc the best
schedule with paths l imited to rive blocks or fewer.

Digital Techn ical journal Vol . 10 No. 1 1 998

Consequently, path lengths c: 1n be l i m i ted without
lowering the efficie ncy of generated cod e, and longer
paths, whi c h i ncrease sched ul ing time, c:m be avoided.

Since no one heuristic performed we l l for al l fu nc
tions, we advise using a combi nation of heu ristics, i .e . ,
schedule by using each of th ree heuristics Jnd taking
the best sched ule . The "com bined " heuristic inc ludes
the following:

• Instruc tion density, l imit to five blocks

• One nesting level on path, l i mit to five bl ocks

• Non -postdomi nator, un l imited length

Frequency-based List Scheduling

Like some other global schedulers, DPS uses a local
scheduling algorithm (list schedul ing) on a global con
text, namely the meta-blocks bui lt by DPS. This algo
rithm raises the possibility of moving code n·om less
fi-equently execu ted blocks to more fTeq uent!y executed
blocks. At first glance, tl1is practice seems to be a bad idea.

In theory, to best schedule any meta- block, an
instruction sched uler must acco u n t t(x the d i fferi ng
cost of the i nstructions withi n the meta-block. I fa s in
gle meta-block inc ludes mu ltiple nesti ng l evels, the
sched uler must recogni ze that instructions added to
blocks with h igher nesti ng levels are more costly than
those added to blocks with lower n esting levels. Even
within a loop, there exists the potenti�1 l tor consider
able variation in the execution fTcq uencies o f d i tkrent
blocks i n the meta- block due to control tlow. or·

course variable execution freq uency is not :111 issue i n
trad iti onal local schedul ing bec:1use, with i n the con
text of a s ingle basic block, each D D D nodl: is exe
cuted the same number of times, n:�mely, once each
time execution enters the block.

To address the issue of differi ng execution frequen
cies within meta-blocks schedu led as :1 single block by
D PS, we i.nvestigated fl·equency- based l ist sc hedu l ing
(FBLS), ' ; an extension of Jist schedul ing th::Jt provides
an answer to this d ifficulty by considering that execu
tion fi-equencies d iffer with i n sections of the meta
blocks. FBLS uses a greedy method to pl :1cc D D D nodes
in the lowest-cost instruction possible . f B LS amends
tl1e basic list-schedul ing a lgorithm by revising only the
DDD node placement policy in an attempt to red uce
the run-time cycles required to execute ;1 meta-block.

Unfortunately, although FBLS makes intuitive sense,
we fou nd that D PS produced worse schedu les with
FBLS than i t produ ced with a na ive local schedul ing
algorithm that ignored frequency d i fferences with i n
D PS's meta- blocks. Therefore, t h e current imple
mentation of D PS ignores the execution tt·cq uency
d i ffe rences be t\.veen basic blocks, both in ch oosing
dominator paths to schedule and in sched u l i n g those
dominator-path meta - blocks.

Evaluation of Dominator-path Scheduling

To measure the potential of DPS to generate more
efficient sched ules than local schedul ing for commer
cial superscalar architectures, we ran a small test suite
of C programs on an Alpha 2 1 1 64 server. The Al pha
server is a superscalar architecture capable of issuing
two integer and tvm floati ng-point i nstr u ctions each
cycle . Our compiler esti mates the effectiveness of a
sched u le by modeling the 2 1 1 64 as an LIW architec
ture with all operation latencies known at compile
time. Of course th is mode l was used only within the
compiler itself. Our resu l ts measured changes in
2 1 1 64 execution ti me (measured with the UNIX
"time" command) required for each program.

Our test suite of 1 4 C programs includes 8 programs
that use integer computation only and 6 programs that
i nclude tloati ng-poi nt computation. We separated
those groups because we see dramati c differences i n
DPS's pertormance when viewing i nteger and floating
point programs. To choose dominator paths, we used
the combined he uristic recommended by Huber. ''

Table 2 sum marizes the resu l ts of tests we con
ducted to compare the execution times of programs
using DPS schedul ing with those using local schedul
ing only. The table l ists the programs used i n the test
suite and the percent im provement in execution times
for DPS-scheduled p rograms. The execution time

Table 2
Percent DPS Sched ul ing I m provements over Local
Sched u l i ng of Programs

Program

8- Queens

SymboiTab le

Bubb leSort

Nsieve

Heapsort

K i l lcache

TSP

D h rystone

C integer average

D ice

Whetstone

Matrix M u lt ip ly

Gauss

F i n ite Difference

Livermore

C floati ng-point average

Overal l average

Percent Execution
Time Improvement

7 .3

7 . 3

5.0

6. 1

6.0

2.6

2.4

0.7

4.7

3.7

5.4

1 6.2

1 2. 3

1 7.6

9 .3

1 0.8

7.3

measurements were made on an Alpha 2 1 1 64 server
running at 250 megahertz with data cache sizes of 8
kilobytes, 96 ki lobytes, and 4 megabytes.

Looking at Table 2, we see that, in genera l , DPS
improved the integer programs less than it i m proved
the floati ng-poi nt programs. The range of improve
ments for i nteger programs was from 0.7 percent for
Dhrystone to 7.3 percent each for 8- Queens and for
Sym bo!Table. Summing a l l the improve ments and
d ividing by eight (t he number of integer programs)
gives an "average" of 4.7 percent im provement for the
integer programs. DPS improved some of the floating
point programs even more significantly than the in te
ger programs. The range of i mprovements for the six
floating-poi nt programs was from 3 .7 percent for Dice
(a s imu lation of rolli ng a pair of dice 10,000,000 times
using a uniform random n u m ber generator) to 1 7 .6
percent i mprovement fo r the finite difference pro
gram. The average for the six floating-point programs
was 10.8 percent. This suggests, not surprisingly, that
the Alpha 2 1 1 64 provides more opportu nities for
global schedul ing i mprovement when floati ng-point
programs are being compiled.

Even with in the six floati ng-point programs, how
ever, we see a distinct bi- modal behavior in terms of
execution-ti me improvement. Three of the programs
range from 1 2 . 3 percent to 1 7 . 6 percent improve
ment, whereas three are below lO percent (and two of
those sign ificantly below lO percent) . A reason for this
wide range is the use of global variables. Remember
tl1at DPS forbids the motion of global variable defi n i
tions across block bo undaries. This is necessary to
ensure correct program semantics. I t is hardly a coinci
dence that both Dice and Whetstone incl ude on ly
global floati ng-point variables, whereas Livermore's
floating-point variables are mixed about hal f local
a nd half global, and the three better performers use
a lmost no global variables. Thus we conclude that, for
floating-point programs with few global variables, we
can expect i mprovements of roughly 1 2 to 1 5 percent
in execution time. Inclusion of global variables and
exclusion of fl oati ng-point values wi l l , however,
decrease DPS's abi l ity to improve execu tion time tor
the Alpha 2 1 1 64.

Related Work

As we have discussed , local instruction schedul ing can
find paral lel ism wi thin a basic block but cannot exploit
parallel ism between basic blocks. Several global sched
ul ing techniques are avai lable , however, that extract
paral lel ism from a program by moving operations
across block bou ndaries and subsequently inserting
compensation copies to maintai n program semantics.
Trace schedul ing1 was the first of these techniq ues to
be defined. As previously mentioned, trace schedul ing

Digital Technical Journal Vol. 10 No. I 1998 67

68

requires compensation copies. Other "early" global
schedu l ing algorithms that req uire compenstation
copies include Nicolau's percolation scheduling 1"· 1 7
and Gupta's region scheduling 1 8 A recent and qu ite
popular extension of trace scheduling is Hwu's
SuperBlock scheduling. 19 20 In add ition to these more
general, global schedu l ing methods, signi ficant resu lts
have been obtained by software pipel ini ng, which is a
technique that overlaps i terations of loops to exploit
avai lable ILP. Al lan ct a l . 2 1 provide a good summary,
and Rau22 provides an excellent tutorial on how modulo
scheduling, a popular software pipel in ing technique,
should be implemented. Promising recent tech niques
have focused on defining a meta-environment, which
i ncludes both global scheduling and software pipelin
ing. Moon and Ebcioglu23 present an aggressive tec h
nique that combines software pipdining and global
code motion (with copies) i nto a s i ngle fra mework.
Novak and Nicolau2' describe a sophisticated schedul
i ng framework in which to place software pipe l in ing,
including alternatives to modulo scheduling. While
provi d i ng a significant number of excel lent global
scheduling altern atives, none of these techniques pro
vides global sc heduling without the possibi l ity of code
expansion (copy code) as D PS does.

To address the issue of producing schedules without
operation copies, Bernstein2;-27 defined a technique he
calls global instruction scheduling (G PS) that aJ.lows
movement of instructions beyond block bou ndaries
based upon the program dependence graph (PDG) .28 In

a test suite of four programs run on I BM's RS/6000,
Bernstein's method showed improvement of rough ly
7 percent over local scheduling for two of the programs,
with no significant clifference for the others.

Comparing DPS to Bernstein's method, we see that
both allow for interb lock motion without copies.
Bernstein also al lows for interblock movement req uir
ing dupl icates that DPS does not. Interestingly,
Bernstein's later work27 does not make use of th is abi l
i ty to al low motion that req uires duplication of opera
tions, suggesting that, to date , he has not found such
motion advisable for the RS/6000 architecture to
which his techniq ues have been applied . Bernstein
a l lows operation movement in only one clirection,
whereas DPS a llows operations to move from a domi
nator block to a postdominator. This added flexibility is
an advantage to DPS. Of possibly greater significance,
DPS uses the local i nstruction scheduler to place opera
tions. Bernstein uses a separate set of heuristics to move
operations i n the PDG and then uses a subsequent local
scheduling pass to order operations v.rithin each block.
Fisheil argues that incorporati ng movement of opera
tions with the scheduling p h ase itself provides better
schedu l ing than divicling the i nterblock motion and
schedul ing phases. Based on that criterion alone, DPS
has some advantages over Bernestein's method.

Digital Technical Journal Vol . 1 0 No. 1 1 998

Conclusions

It is commonly accepted that to exploit the perfor
mance benefits of iLP, global i nstruction schedul ing is
requi red . Several varieties of global instruction sched
u l ing exist , most req uiring compensation copies to
ensure proper program semantics when operations
cross block boundaries during i nstruction scheduling.
Although such global scheduling with compensation
copies may be an effective strategy for archi tectures
with large degrees of ILP, another approach seems
reasonable for more limited architectures, such as c ur
rently available su perscalar computers.

This paper outli nes DPS, a global instruction sched
uling technique that docs not req uire compensation
copies. Based on the fact that more than 25 percent of
i ntermediate statements can be moved upward at l east
one domi nator block in the control flow graph with
out changing program semantics, DPS schedules paths
in a function's domi nator tree as meta- blocks, making
use of an extended local instruction scheduler to
schedu le dominator paths.

Experimental evidence shows that D PS does indeed
produce more efficient schedules than local schedul
ing for Com paq's Alpha 2 1 1 64 server syste m , particu
larly tor floati ng-point programs that avoid the use of
global variables. This work has demonstrated that con
siderable fl exibil ity in p lacement of code is possible
even when com pensation copies are not a l lowed .
Al though more research i s req u ired t o look into
possible uses for this flexibi l ity, the global instruction
schedu l i ng method described here (D PS) shows
promise for lLP architectures.

Acknowledgments

This research was supported i n part by an External
Research Program grant from Digita l Equ ipment
Corporation and by the National Scie nce Fou ndation
under grant CCR-9308348.

References

l . G. Tjaden and M . Flynn , " D etection of Parallel Exe
cution of Independent I nstructions," IEEE Tra nsac

tions on Computers, C- 1 9 (1 0) (October 1 97 0) :
889-895.

2. A . Nicolau and J . Fisher, "Measu ring the Parallelism
Available tor Very Long I nstruction Word Architec
tures," IEEE Transactions on Computers, 33(l l)
(November 1984) : 968-976.

3 . J . Fisher, "Trace Schedul ing: A Tec hnique tor Global
Microcode Compaction," IEEE Transactions on Com

puters, C-30(7) (Ju ly 1 9 8 1) 478-490

4. J. El lis, Bulldog A Compiler for VJJW A rchitectures

(Cambridge, MA: M I T Press, 1 9 8 5) , Ph D. thesis,

Yale U niversity (1 9 84).

5. D. DeWitt, "A Machine- Independent Approach to the

Production of Optimal Horizontal Microcode," P h . D .
thesis, University of Michigan, A n n Arbor, Mich.
(1 97 6) .

6 . D. Landskov, S . Davidson, B . Shriver, a n d P. Mallett,
" Local Microcode Compaction Tec hniques," A CM

Computing Surveys, 1 2(3) (September 1 9 80):
26 1-294.

7. V. Allan, S . Beaty, B. Su, and P. Sweany, " B ui lding a
Retargetable Local Instruction Schedu ler," So.ftware

Practice & Experience, 2 8 (3) (March 1 99 8) : 249-284.

8 . E. Colfmao, Compuler and job-Shop Scheduling

77JeOiy (New York : John Wiley & Sons, 1 9 76).

9 . D . Padua, D. Kuck, and D. Lawrie, " High-Speed Mul

tiprocessors and Compilation Techniques," IEEE Trans

actions on Computers, C-29(9) (September 1 98 0) :
763-776.

10. A. Aho, R. Sethi, and } . Ullman, Compilers. Principles,

Techniques, and Tools (Reading, MA: Addison
Wesley, 1986) .

1 1 . H . Rei f and R . Tarjan, "Symbolic Program Analysis i n

Almost- Linear Time," Journal of Compuling, 1 1 (1)
(February 1 98 1) : 8 1-93 .

1 2 . P. Sweany, " lnterblock Code Motion without Copies,"
Ph . D . thesis, Computer Science Department, Col
orado State U niversity (1 992) .

1 3 . R. M uel ler, M . Duda, P. Sweany, and J . Walicki,
" Horizon: A Retargetable Compiler lor Horizontal
Microarchitectures," IEEE Tra nsaclions on Software

Engineering· Special Issue on Microprogramm ing,

1 4(5) (May 1 998) : 575-5 8 3 .

1 4. B . Huber, "Path-Selection Heutistics tor Dominator

Path Schedu l ing," Master's thesis, Department of Com
puter Science, Michigan Technological University

(1 995) .

1 5 . M . Bourke, P . Sweany, and S . Beaty, " Extending List
Sched uling to Consider Execution Frequency," Pro

ceedings of the 28th Hawaii International Conference

on System Sciences (J anuary 1 996) .

1 6. A . Nicolau, " Percolation Schedu ling: A Parallel Com
pilation Technique," Technical Report TR8 5 -678 ,
Department of Computer Science, C01·neU U niversity
(May 1 9 8 5) .

17 . A . Aiken a n d A . icolau, " A Deve lopment Envi ron·
ment for Horizontal M icrocode," !Etc Transactions

on Software Engineering, 1 4(5) (May 1 9 8 8) :
584-594 .

1 8 . R. Gupta and M. Solh, " Region Scheduling: An
Approach for Detecting and Redistributing Paral

lelism," IEEE Transactions on Software Engineering,

16(4) (April l990) : 42 1-43 1 .

1 9 . S . Mahlke, W. Chen, W. - M . Hwu , B . Rao, and M.
Schlansker, "Sentinel Scheduling for VLIW and Super
scalar Processors," Proceedings of the 5th Interna

tional Conference on Arcbitectu.rat Support .for

Programm ing Languages and Operating Systems,

Boston, Mass. (October 1 9 9 2) : 23 8-247.

20. C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B.

Rau, and M. Schlansker, "Profile- Driven I nstruction

Level-Paral le l Sched u ling with Application to Super

B locks," Proceedings of the 29th International Sym

posium on Microarchitecture (MICR0-29), Paris,
France (December 1 996) : 58-67 .

2 1 . V. Al lan, R. Jones, R. Lee , and S . Al lan, "Software

Pipel in ing," A CJ\11 Computing Su rveys, 27(3) (Septem

ber 1 995) .

2 2 . B. Rau, "Iterative Modulo Scheduling: An Algorithm

for Software Pipelining Loops," Proceedings of tbe

2 7tb International Symposium on Microarchitecture

(M ICR0·27), San Jose, Calif (December 1994) : 63-74.

2 3 . S . - M . Moon and K. Ebcioglu , " Paral lel izing Nonnu

merical Code with Selective Schedul ing and Software

Pipel ining," A CM Transactions on Programming

Languages and s:ystems, 1 8 (6) (N ovember 1 997) :
8 5 3-898.

24. S . Novak and A. Nicolau, "An Efficient Global Resource

Directed Approach to Exploiting Insu·uction-Level Paral

lelism," Proceedings qftbe 1996 International Conference

on Parallel Architectures and Compiler Techniques

(PACT 96), Boston, Mass. (October 1996) 87-96.

2 5 . D. Bernstein and M. Rodeh, "Global Instruction
Schedul ing tor Su perscalar Machines," Proceedings of

the ACM 51GPLAN 1 991 Conference on Programming

Language Design and Implementation, Toronto,
Canada (June 1 99 1) : 241-2 5 5 .

2 6 . D . Bernstein , D . Cohen, and H . Krawczyk, "Code

Dupl ication: An Assist lor Global Instruction Sched ul
ing," Proceedings of the 24th International Symposium

on Microarchitecture (MI C R0-24), Albuquerque,
N . Mex. (November 1 99 1) : 1 03-1 1 3 .

2 7 . D . Bernstein, D. Cohen, Y. Lavon, and V. Rainish,
" Performance Evaluation of Instruction Scheduling
on the IBM RS/6000," Proceedings of the 25tb Inter

national Symposium on Microarchitecture (M ICR0-
25), Portland, Oreg. (December 1 992) : 226-2 3 5 .

2 8 . J . Ferrante, K. Ottenste in, and J . Warren, "The Pro

gram Dependence Graph and Irs Use in Optimiza
tion," ACM Transactions on Programming Languages

and Systems, 9 (3) (Ju ly 1 98 7) : 3 1 9-349.

Digital Technical Journal Vol . 10 No. l 1 998 69

70

Biographies

Philip H. Sweany
Associate Professor Phil Sweanv has been a member of
Michigan Technological Unive'rsity's Computer Science
faculty since 1 99 1 . He has been investigating compiler
techniques for instruction-level parallel (ILP) architectures,
co-authoring several papers on instruction schedul ing, reg
ister assignment, and the i nteraction between these two
optimizations. Phil has been the primary designer and
implementer of Rocket, a highly optimizing compiler that
is easily retargeta ble for a wide range ofiLP architectures.
His research has been significantly assisted by grants from
Digital Equipment Corporation and the National Science
Foundation. Phil received a B .S . in computer science in
1 983 from Washington State University, and M.S . and
Ph . D . degrees i n computer science from Colorado State
University in 1 986 and 1 992, respectively.

Steven M. Carr
Steve Carr is an assistant professor in the Department of
Com puter Science at J\tlichigan Technological University.
The focus of his research at the un iversity is memory
hierarchy management and optimization of instruction
level parallel architectures. Steve's research has been sup
ported by both the National Science Foundation and
DigitaJ Equipment Corporation. He received a B . S . i n
computer science trom Nliduga.n Technological Uruversity
in 1987 and M.S. and Ph.D. degrees fi·om Rice University
in 1 990 and 1993, respectively. Steve is a member o.fACM
and an I EEE Computer Society Affiliate.

Digiral Technical Journal VoL 10 No. I 1 998

Brett L. Huber
Raised in Hope, lv1ichigan, Brett earned B . S . and M.S.
degrees in computer science at M ichigan Technological
University i n Mich igan's h istoric Keweenaw Peninsu la. He
is an engineer in the Software Development Systems group
at Texas I nsrruments, Inc . , and is currently developing an
optimizing com piler for the TMS320C6x familv ofVLIVV
digitaJ signal processors. Brett is a member oftl�e ACM
and an IEEE Computer Society Affil iate .

Maximizing
Multiprocessor
Performance with
the SUIF Compiler

Paral lel izing compi lers for multiprocessors face

many h u rdles. However, SU IF's robust analysis

and memory optimization techniques enabled

speedups on three fourths of the NAS and

SPECfp95 benchmark programs.

© 1 996 IEEE. Repri nted , with permission, ti·om CiJJIIjm/eJ;
December 1 996, pages 84-89. This p3pa has been mod i tied for
publication h e re with the addition of the section The Status :md

Fu ture ofS l " l F

I
Mary W. Hall
Jetmifer M. Anderson
Sarnart P. Amarasinghe
Briart R. Murphy
Shih-Wei Liao
Edouard Bugnion
Monica S. Lam

The affordability of shared memory mu lti processors
offers the potential of supercomputer-class performance
to the general public. Typical ly used in a multiprogram
ming mode, these machines increase throu ghput by
running several independent applications in paral le l .
But m u l tiple processors can also work together to
speed up single applications. This req uires that ordinary
sequential programs be rewritten to take advantage of
the extra processors. ' 4 Automatic paral le l ization with a
compi ler otfers a way to do this.

Paral le lizing com pilers face more difficult challenges
from multiprocessors than from vector machines, which
were their initial target. Using a vector architecwre eftec·
tively i nvolves paral le l i zi ng repeated a.tithmetic opera
tions on large data su-eams-for example , the i nnermost
loops in array-oriented programs. On a mul tiprocessor,
however, this approach typical ly does not provide suffi
cient granularity of paral lel ism: Not enough work is
performed in paral lel to overcome processor synch
ronization and communication overhead . To use a
multiprocessor effectively, the compiler must exploit
coarse-grain paral lel ism, locating large computations
that can execute independently in parallel .

Locating para l le l ism i s j ust the fi rst step i n prod uc·
ing efficient m u l ti processor cod e . Achievi ng h igh per
formance also req uires e ffective use of the memory
hierarchy, and multjprocessor systems have more com
plex memory hierarch ies than typical vector mac hines:
They contain not only shared memory but also multi
ple levels of cache memory.

These added challenges often limited tl1e effectiveness
of early paralJe l izing compilers for mul tiprocessors, so
programmers developed their appl ications fi·om scratch,
without assistance from tools. But explicitly managing an
application's paral lel ism and memory use requires a great
deal of programming knowledge, and tl1e work is tedious
and error-prone. Moreover, the resulting programs are
optimized for only a specific machine. Thus, the effort
required to develop efficient parallel programs restricts
the user base for multiprocessors.

This article describes automatic paral le l ization tech
n iques in the SU I F (Stanford U niversity I n termed iate

Digital Tc·chnical Journ;ll Vol. 10 No. I 1 998 71

72

Format) compiler that result in good m u l tiprocessor
pertormance for array- based num erical progra ms. vVe
provide SUIF performance measurements for the com
plete NAS and SPECfP95 benchmark suites. Overal l , the
results tor these scientific programs are promising. The
compiler yields speedups on three fourths of the pro
grams and has obtained the highest ever pcrronnancc on
the SPECfP95 bench mark, indicating that the com piler
can also achieve e fficient absolute performance.

Finding Coarse-grain Parallelism

Mu ltiprocessors work best when the in dividu,l l proces
sors have large units of independent com pu tation , but
it is not easy to find such coarse-grain para l lel ism . First
the compiler mu st find avai lable paral lel ism across pro
ced ure boundaries. Furthermore, the original compu
tations may not be paral le l izable as given and may first
require some transtonnations. For example, experience
in paral le l iz ing by hand suggests that we must often
replace global arrays with private versions on d i fferent
processors. In other cases, the com p u tation may
need to be restructured-for example, we may have to
re place a sequential accumu lation with J p:tral lel reduc
tion operation.

I t takes a l arge suite of robust a nalysis tec hniq ues to
successfu l ly locate coarse -grain p::tral le l ism . Gen eral
and un i r(xm frameworks he lped us ma nage the com
plexity i nvolved i n bui ld ing such a system i nto S U I F .
We autom ated t h e analysis to privatize arrays and to
recognize red uctions to both sca lar and array variab les .
Our com pile r's analysis techniques a l l operate seam
less ly :Kross procedure bound aries.

Scalar Analyses

An initial phase analyzes scalar variables in the programs.
It uses techn iq ues such as data dependence analysis,
scalar privatization analysis, and reduction recognition
to detect paral lel ism among operations with scal ar· vari
ables. It also derives symbolic information on these scalar
variables that is useful in the array analysis phase. Such
information includes constant propagation, induction
variable recognition and el imi nation, recognition of
loop-i nvariant computations, and symbolic relation
propagation .'"'

Array Analyses

An :trray analysis ph ase uses a un i fied mathematical
tl-amework based on l inear algebra and i nteger l i near
program ming. ' The analysis appl ies the basic data
dependence test to d etermine if accesses to an array
can rerer to the same location. To support array priva
tization, it a lso finds array data � ow i n formation that
determ i nes whether array elements used in an i teration
rd cr to the val ues produced in a p revious i teration .

Digira1 Technical Journal Vol . 10 No. l 1 998

Moreover, it recognizes commutative operations on
sections of an array and tra ns forms them i nto paral le l
red uctions. The red u c tion analysis is powerful enough
to recogn i ze co mmutative updates of even indirectly
accessed array l ocations, a l lowing para l le lization of
sparse computations.

All these analyses are formulated i n terms of i nteger
programming problems on systems of l inear ineq ua l i
ties that represent the data accessed. These i neq ualities
are derived from loop bounds and array access fu nc
tions. I m plementing opti mizations to speed u p com
mon cases reduc<::s the compilation ti me.

lnterprocedural Analysis Framework

All the ana lyses arc i m p lemented using a un i form
i n terprocedu ral analysis framework, which helps ma n
age the software engineering complexity. The frame
work uses interprocedural dataflow analysis,• which is
more efficient tlun the more common tec h n i q ue of
i n l i ne substitutio n . ' I n l ine substitu tion replaces each
proced u re cal l with J copy of the cal led proced ure,
then analyzes the expanded code in the usual i ntrapro
cedural manner. I n l ine subs ti tution is not practical for
large progra ms, because it can make the program too
large to ana lyze .

O u r technique :1 11alyzes only a single copy of each
procedure, captu ri ng irs side efrects in a function . This
fu nction i s then appl ied at each cal l site to produce
precise results. When different cal l i ng contexts make it
necessary, the algorithm sel ective ly cl ones a procedure
so that code can be analyzed and poss ib ly paral le l i zed
under d i ffe rent cal l i n g contexts (as when d i ffere nt
constant values Jrc passed to the same formal parame
ter) . In this way the fu l l advantages of i n l in ing are
achieved without expanding the code ind iscri minate ly.

In Fi gure 1 the boxes represe nt procedure bodies,
and the l i nes connecting them represent procedure
calls. The m::tin com putation is a series o f tour loops to
com pute three - d i mensional fast Fourier transr(mns.
Using i nterproced ural scalar and array analyses, tile
S U [f compiler determines that these l oops are para l
lel izable . Each loop contai ns more than 500 li nes of
code spanning up to n i ne procedures with up to 42
procedure calls . If this program had been fu l l y i n l i ned ,
the loops pres<::nted to the compiler for analysis would
have each contained more than 86 ,000 l i nes of code.

Memory Optimization

Numerical appl ications on high-performance micro
processors are often memory bou nd. Even with one or
more levels of cache to bridge the gap between proces
sor and memory speeds, a processor may still waste half
its t ime stalled on memory accesses because it ITequently
references an item not in the cache (a cache miss) . This

P1ifi

Figure 1
The compiler discovers parallelism through intcrprocedural array analysis. Each of the four paral lel ized loops at left consists of
more than 500 l ines of code spanning up to nine procedures (boxes) with up to 42 procedure calls (l i nes) .

memory bottleneck i s fi.1rther exacerbated on multi
processors by tl1eir greater need for memory traffic,
resulting in more contention on tl1e memory bus.

An effective compiler must address four issues that
affect cache behavior:

• Communication : Processors in a multiprocessor
system communicate through accesses to the same
memory location . Coherent caches typically keep
tl1e data consistent by causing accesses to data writ
ten by another processor to miss in the cache. Such
misses are cal led true sharing misses.

• Limited capacity: Numeric applications tend to have
large working sets, which typically exceed cache
capacity. These applications often stream through
large amounts of data before reusing any of it,
resulting in poor temporal locality and numerous
capacity misses.

• Limited associativity: Caches typical ly have a small
set associativity; that is, each memory location can
map to only one or just a few locations in the cache.
Conflict misses-when an item is discarded and
later retrieved--can occur even when the applica
tion 's working set is smaller than the cache, i f the
data are mapped to the same cache locations.

• Large line size : Data in a cache are transferred in
fixed-size units called cache l ines. Applications that
do not use all the data in a cache l ine i ncur more
misses and are said to have poor spatial locality. On
a multiprocessor, large cache J ines can also lead to
cache misses when different processors use differ-

ent parts of the same cache line. Such misses are
called false sharing misses.

The compiler tries to eliminate as many cache misses as
possible, ilien minimize tl1e impact of any iliat remain by

• ensuring that processors reuse the same data as
many times as possible and

• making the data accessed by each processor con
tiguous in tl1e shared address space .

Teclmiques for addressing each oft11ese subproblems
are discussed below. Final ly, to tolerate tl1e latency of
remaining cache misses, the compiler uses compiler
insetted prefetching to move data into the cache before
it is needed.

Improving Processor Data Reuse

The compiler reorgani zes tl1e computation so mat each
processor reuses data to the greatest possible extent -'-�
This reduces tl1e working set on each processor,
thereby minimizing capacity misses. It also reduces
i nterprocessor communication and thus minimizes
true sharing misses. To achieve optimal reuse, the com
piler uses affine pm1itioning. This technique analyzes
reference patterns in the program to derive an aftine
mapping (l inear transformation plus an offset) of the
computation of the data to tl1e processors . The affine
mappings are chosen to maximize a processor's reuse
of data wh.ile maintaining sufficient parallelism to keep
all processors busy. The compi ler also uses loop block
ing to reorder tl1e computation executed on a single
processor so that data is reused in the cache.

Digital Technical Journal Vol . 10 No. 1 1 998 73

74

Making Processor Data Contiguous

The compiler tries to arrange the data to m a ke a
processor's accesses contiguous in the share d address
space . This i m proves spatial loca l i ty whi le red ucing
conA ict misses and false shari ng. SUIF can ma nage
d ata p lacement within a single array and across multi
p l e arrays. The data-to- processor mappi ngs computed
by the affine partitioning ana lysis are used to d e ter
mine the data being accessed by each processor.

Figure 2 shows how the compi ler' s usc of data per
mutation and data strip-mining'" can make contiguous
the data within a single arra)' that is accessed by one
processor. Data permuta tion interchanges the dimen
sions of the array-fix example, transposi ng a !'NO
dimensional array. Data strip-mining changes an
array's di mensional ity so that all data accessed by the
same processor are in the same plane of the array.

To make data :Kross m u l t ip l e arrays accessed by the
same processor contiguous, we use a tec hnique cal led
compiler-directed page colorinp,. ' ' The co mpiler uses

y

X

y

y

X

STRI P-MINING

X

its knowl ed ge of the access patterns to d irect the oper
ating system's page a l location policy to m a ke each
processor's data contiguous in the physical address
space. The operating system uses these h ints to deter
mine the virtua l - to-p hysical p:�ge m:�pping at p:�gc
al location time .

Experimental Results

vVe conducted a series of performance eval uations to
demonstrate the impact of· S U I �'s ana lyses and opti
m izations. We obtained measu reme nts on a D igita l
AlphaServer 8400 with eight 2 1 1 64 processors, each
with two levels of on-chip cache and a 4 - Mbyte exter
nal cache . B ecause speed ups are harder to obtain on
machi nes with fJst processors, our usc of a state-of
the-:lrt machine makes the resu lts more meani ngfu l
and ap pl icable to fi.1ture systems.

\Ve used two complete standard bench mark suites
to evaluate our compiler. W<:. present resu l ts for the 10

y

X

y

X

PERMUTATION

Figure 2
Data transformations cJn make the dar,1 accessed by each processor contiguous i n the shared address space. I n the two
examples above, the original arrays arc two-dimensional ; the axes are identified to show that elements along the ti rst nis
arc contiguous. F irst the aHine partitioning analysis determines which data elements arc accessed by the same processor
(the shaded ele ments are accessed by the first processor.) Second, data strip-mining turns the 20 Jrray i nto a 3D array,
with the s haded elements i n the same plane. Fina l ly, applying data permutation rotates the array, mJking data accessed
by each processor contiguous .

Digital Technical journal Vol . 10 No. l 1 998

programs in the SPECtp95 benchmark suite, which is
commonly used for benchmarking uniprocessors. We
also used the eight official benchmark programs from
the NAS paral lel-system benchmark suite, except for
embar; here we used a slightly modified version from
Applied Para l le l Research.

Figure 3 shows the SPECtp95 and NAS speedups,
measured on up to eight processors on a 300-MHz
AJphaServer. We calculated the speedups over the best
sequential execution time from either officially reported
resul ts or our own measurements. Note that mgrid and
applu appear in both benchmark suites (the program
sou rce and data set sizes differ slightly).

To measure the effects of the different compiler
techniq ues, we broke down the performance obtained
on eight processors into three components. In Figure
4, baseline shows the speedu p obtained with paral
lelization using only intraprocedural data dependence
analysis, scalar privatization, and scalar reduction
transtormations. Coarse grain includes the baseline

1 6

1 5

1 4

1 3

1 2

1 1

1 0

a..
9 ::>

Cl
w
w

8 ll.
(f)

7

6

5

4

3

2

/
/

/

0 2

Figure 3

3 4 5 6

PROCESSORS

(a) SPECfp95

/
/

7

/

/
/

/

8

swim

tomcatv

mgrid
applu

turb3d
hydro2d

su2cor

techniq ues as well as techniq ues for locating coarse
grain parallel loops-for example, array privatization
and reduction transformations, and ful l interproce
dural analysis of both scalar and array variables.
Memory includes the coarse-grain techniq u es as wel l
as the m u ltiprocessor memory optimizations we
described earlier.

Figure 3 shows tl1at of tl1e 1 8 programs, 1 3 show good
parallel speedup and can tlms take advantage of adclitionaJ
processors. SUIF's coarse-grain techniques and memory
optimizations significantly affect tl1e performance of half
the programs. The swim and tomcat\' programs show
superlinear speedups because the compiler eliminates
almost al l cache misses and their 14 Mbyte working sets
fit into the multiprocessor's aggregate cache.

For most of the programs that did not speed up, the
compiler found much of their computation to be par
al lelizable, but tl1e granularity is too fi ne to yield good
multiprocessor performance on machines with fast
processors. Only two applications, tpppp and buk, have

8

7

6

a.. 5
::>
Cl
w
w 4
a..
(f)

3

2

0

/
/

,
/

,
' , em bar

appbt

applu

/'>...._____. cgm
appsp

�--�----------�--�-----� buk
/ fftpde

2 3 4 5 6

PROCESSORS

7

(b) NAS Parallel Benchmarks

8

SUIF compi ler speedups over the best sequential time achieved on the (a) SPECfp95 and (b) NAS parallel benchmarks.

Digital Tcdmical Journal Vol . 10 No. 1 1 998 75

76

Figu re 4

1 4

1 2
Q._ 1 0 ::::J
[il 8 w Q._
[f) 6

4
2
0

KEY:

D
D
•

.?. E 0 "0 "0 :0
"' -� u N ·� Ci. u N e a. E (f) ::0 "0 E "'
2 (f) >-;;:

MEMORY OPTIM IZATION

COARSE-GRAIN PARALLELISM

BASELINE

"0 ·u; a. l[) C') a. a. Q) -e "' a. >
.=l .e- "'

i:

:0 ::0
a. Ci. a. a. "' "'

a. -"' (f) ::0 a. .D a. "'

E ro Ol .D u E Q)

Q) "0 a. E
"0
·� E

The speedup achieved on eight processors is broken down into three components to show how SUIF's memory opt.imization
and discovery of coarse-grain parallel ism affected perform:mce .

no statically analyzable loop-level parallelism, so they
are not amenable to our techniques.

Table 1 shows the times and SPEC ratios obtained
on an eight-processor, 440-MHz Digital AlphaServer
8400, testifYing to our compiler's h igh absolute per
formance. The SPEC ratios compare machine perfor
mance with that of a reference machine . (These are
not official SPEC ratings, which among other things

Table 1

require that the software be general ly available . The
ratios we obtained are nevertheless valid in assessing
our compiler's performance .) The geometric mean of
the SPEC ratios improves over the u niprocessor execu
tion by a factor of 3 with four processors and by a fac
tor of 4 . 3 with eight processors. Our eight-processor
ratio of 63 .9 represents a 50 percent improvement
over the highest number reported to date . ' 2

Abso l ute Performance for t h e SPECfp95 Benchmarks Measured o n a 440-MHz D ig ita l AlphaServer Us ing One
Processor, Four Processors, and Eight Processors

Benchmark 1 P

tomcatv 2 1 9. 1

swim 297.9

su2cor 1 55 .0

hyd ro2d 249 .4

mgr id 1 85 .3

app lu 296 . 1

turb3d 267.7

a psi 1 37 . 5

fpppp 33 1 .6

waveS 1 5 1 .8

Geometric Mean

Digital Technical J ournal

Execution Time (sees)

4P

30.3

33.5

44.9

6 1 . 1

42 .0

85 .5

73 .6

1 4 1 .2

3 3 1 .6

1 4 1 .9

Vol. lO No. 1 1 998

8P

1 8.5

1 7.2

3 1 .0

40.7

27.0

39.5

43.5

1 43.2

3 3 1 . 6

1 47 .4

SPEC Ratio

1 P 4P 8P

1 6.9 1 22 . 1 200.0

28.9 256 .7 500.0

9.0 3 1 .2 45 .2

9 .6 39 .3 59.0

1 3. 5 59 .5 92.6

7.4 25.7 55 .7

1 5.3 55 .7 94.3

1 5. 3 1 4.9 1 4.7

29.0 29.0 29.0

1 9.8 2 1 . 1 20.4

1 5 .0 44.4 63.9

Acknowledgments

This research was supported in part by the Air Force
Materiel Command and ARPA contracts F30602-95 -
C-0098, DABT63-95 -C-O l l 8, and DABT63-94-C-
0054; a D igital Equipment Corporation grant; an
NSF Young Investjgator Award ; an NSF CISE post
doctoral fel lowship; and fe llowships from AT&T Bel l
Laboratories, DEC Western Research Laboratory,
I ntel Corp. , and the National Science Foundation.

References

l . J . M . Anderson, S .P. Amarasinghe, and M .S . Lam,
"Data and Computation Transformations for Mu l ti
processors," Proc. Fifth A CM S!GPlan Symp. Princi

ples and Practice of Parallel Programming, ACM
Press, New York, 1995, pp . 1 66-1 78.

2 .] . M . Anderson and M .S . Lam, "Global Optimizations
for Para l l e l ism and Local iry on Scalable Paralle l
Machines," Proc. SIGPian '93 Conf Programming

Language Design and Implementation, ACM Press,
New York, 1 993, pp. 1 12- 1 2 5 .

3 . P. Banerjee et a l . , "The Paradigm Compiler for
Distributed -Memory JVI.u l ticompnters," Computer,

Oct. 1 995 , pp. 37-47.

4 . W. Blume et a l . , "Effective Automatic Para l l e l ization
with Polaris," Int i I Parallel Programming, May
1 99 5 .

5 . E . B ugnion et a l . , "Compiler-Directed Page Coloring
for Multiprocessors," Proc. Seventh In! ' I C011f A rchi

tectural Support for Programming Languages and

Operating Systems, ACM Press, New York, 1 996, pp .
244-257.

6 . K. Cooper et a l . , "The ParaScope Paralle l Program
ming Environment," Proc. IEEE, Feb. 1 993, pp .
244-263 .

7 . Standard Performance Evaluation Corp . , "Digital
Equipment Corporation AlphaServer 8400 5/440
SPEC CFP95 Results," SPEC Newsletter; Oct. 1 996.

8 . M . Haghighat and C. Polychronopolous, "Symbolic
Analysis for Parallel izing Compilers," A Cl\1 Trans. Pro

gramming Languages and Systems, July 1 996, pp .
477-5 1 8 .

9 . .M.W. Hall et al . , "Detecting Coarse-Grain Paral le l ism
Using a n lnterprocedural Paral l e l izing Compi ler,"
Proc. Supercomputing '95, IEEE CS Press, Los Alami
tos, Calif. , 1 995 (CD - ROM only) .

10 . P. Havlak, lnterprocedural !Symbolic A nalysis, PhD
thesis, Dept . of Computer Science, Rice U niv. , May
1 994.

1 1 . F . l rigoin , .P. Jouvelot, and R. Triolet, "Semantical
Interprocedura l Paral lel ization: An Overview of the
P I PS Project," Proc. 1991 A C!J!! lnt'l Conf Supercom

puting, ACM Press, New York, 199 1 , pp. 244-2 5 1 .

1 2 . K. Kennedy and U . Kremer, "Automatic Data Layout
tor High Performance Fortran," Proc. Supercomput

ing '95. IEEE CS Press, Los Alamitos, Calif. , 1995
(CD - ROM only) .

Editors ' Note.· With the following section, the authors
provide an update on the status of the SU!F compiler
since the publication of their paper in Computer in
December 1996.

Addendum: The Status and Future of SUIF

Public Availability of SUIF-parallelized Benchmarks

The SUIF-parallelized versions of the SPECfp95
benchmarks used for the experiments described in this
paper have been released to the SPEC committee and
are avail able to any license holders of SPEC (see
http:/ jwww.specbench.org/osg/cpu95/par-research) .
This benchmark distribution contains the SUIF out
put (C and FORTRAI'\1 code) , along with the source
code for the accompanying run-time l ibraries. We expect
these benchmarks wil l be usefu l for two purposes:
(l) for technology transfer, providjng insight i nto how
the compiler transforms the applications to yield the
reported results; and (2) for further experimentation ,
such as in architecture-simulation studies.

The SUIF compiler system i tself is available from the
SUIF web site at http :/ /www-su ifstanford .edu. This
system includes only the standard parallelization analy
ses that were used to obtain our basel ine results.

New Parallelization Analyses in SUIF

Overall, the results of automatic paraUelization reported
in this paper are impressive; however, a few applica
tions either do not speed up at all or achieve l imited
speedup at best. The question arises as to whether
SUIF is exploiting al l the avai lable parallel ism in these
applications. Recently, an experiment to answer this
question was performed in which loops left unparal
lelized by SUIF were instrumented witl1 run-time tests
to determine whether opportunities for increasing the
effectiveness of automatic parallelization remained in
these programs . ' Run- time testing determined that
eight of the programs from the NAS and SPEC95fp
benchmarks had additional paral le l loops, for a total of
69 additional parallel izable loops, which is less than 5%
of the total number of loops in these programs. Of
these 69 loops, the remaining parallelism had a signifi
cant effect on coverage (the percentage of the pro
gram that is paral le lizable) or granularity (the size of
the parallel regions) in only four of the programs: a psi,
su2cor, waveS , and fftpde.

We found that almost al l the significant loops in
these four programs could potentially be paral lelized
using a new approach that associates predicates with
array data-flow values.2 Instead of producing conserv-

Digital Technical Journal Vol . l O No. 1 1 998 77

78

ative results that hold tor all control-How paths and all
possi b le program i nputs, predicated array data-flow
analysis can derive optimistic results guarded by predi
cates . Pred icated array data - flow analysis can lead to
more dkctive automatic para l le l ization in three ways:
(l) It i mproves compile-time ana.Jysis by ru l ing out
infeasible control -flow paths. (2) It provides a frame
work for the compi ler to introduce pred icates that, i f
proven true, wou ld guar:mtee safety tor desirable data
flow vaJ ues. (3) I t enJbles the compiler to derive low-cost
run-time para l le l ization tests based on the predicates
associated with desirJble data-flow values.

SUIF and Compaq's GEM Compiler

The GEM compiler system is the technology Compaq
has been using to bui ld compiler products for a variety
of languages and hardware/software platforms . ·1
With i n Compaq , work bas been done to connect S U I F

with the G EM compi ler. SU IF's i n termediate repre
sentation was converted into GEM's i ntermediate rep
resen tation , s o that SUIF code can b e passed directly
to GEM 's optimizing back end . This e l im i nates the
Joss of i nformation suftCred when SUIF code is trans
l ated to C/FORTRAN source bdore i t is passed to
GEM. It also enables us to generate more efficient
code for Alpha-microprocessor systems .

SUIF and the National Compiler Infrastructure

The SUIF compiler system was recently chosen to be
part of the National Compiler I n frastrucnrre (NCI)
project funded by the Defense Advanced Research
Projects Agency (DARPA) and the National Science
Foundation (NSF) . The goal of the project is to
develop a com mon compi le r p latform for researchers
and to faci l i tate technology transfer to industry. The

FRONT
ENDS

INTERPROCEDURAL ANALYSIS
PARALLELIZATION

LOCALITY OPTIM IZATIONS
OBJECT-OR I E NTED OPTIM IZATIONS

SCALAR OPTIMIZATIONS

SUlF component of the NCI project is the resu lt of tl1e
col laboration among researchers in five universities
(Harvard University, Massachusetts I nstitute of
Technology, Rice U niversity, Stanford Un iversity,
University of Cal i forn ia at Santa Barbara) and one
industrial partner, Portland Group I nc . Compaq is a
corporate sponsor of the p roject and is provid ing the
FORTRAN fron t end .

A revised version of the SUIF i n frastructure (SUIF
2 .0) is being released a s part o f the S U I r: N C I project
(a prel iminary version of s u r r: 2 .0 is ava i lable at the
S UIF web site) . The completed system wi l l be
enhanced to support para l lel iz::�tion , in tcrprocedu ra l
analysis, memory hierarchy optimizations , objected
oriented programming, sca lar optimizations, and
machine-dependent opti mi z:nions. An overview of
the SUIF NCI system is shown in Figure Al . Sec
vvww-suif.stanford .cd u/suif/NCI/su i f.html for more
i n formation about S U I F and the NCI project, inc lud
ing a complete list of optim izations ;md a schedu le .

References

1 . B. So, S. Moon, and M. Hal l , "Measuring rhc Eftecrivc
ness of Automatic Paral lcl ization in S U I !:'," Proceedin;:;s
of the Jnterr/{./ffonal Confaence on SupercomjJIItinp,

98, Ju ly 1998 .

2 . S . M o o n , J\11 . Hal l , and B. Murph1·, " Predicated Arr:1y

Data-Flow Amlysis for Ru n-Time Para l le l ization," Pro

ceedings of the fntt!rncltiiJIIUI Umfim'IICe 011 Sllj)('rcom

puting 98, July 1998 .

3 . D . B l ickste i n c t a l . , "The G F M Optimizing Compi lc t
System," Digilcd h·cbn ical follmal. \'O I . 4, no. 4 (Speci:ll
Issue, 1 99 2) : 1 2 1-1 36 .

CIC++ (I BM)

SCHEDULING
REGISTER ALLOCATION

TARGET
LANGUAGES ._

__

A

_

L

_

P

-

HA

__ _.I L..l ___ x_s6 __ ---..�l I C/FORTRAN

Figure A1
The S U ! F Comp i ler lntrJstrucwre

Digital Tcc' h n icll journal Vul . 10 No. l 1998

Biographies

Mary W. Hall
Mary Hall is jointly a research assistant professor and project
leader at the University of Southern California, Department
of Computer Science and at USC's Information Sciences
Institute, where she has been since 1996. Her research
interests focus on compiler support for high-performance
computing, particularly interprocedural analysis and auto
matic parallelization. She graduated magna cum laude with
a B .A. in computer science and mathematical sciences in
1985 and received an M.S. and a Ph .D. in computer science
in 1 989 and 1 99 1 , respectively, all from Rice University.
Prior w joining USC/lSI, she was a visiting assistant pro
fessor and senior research tdlow in the Department of
Computer Science at Caltech . In earlier positions, she was
a research scientist at Stanford University, working with
the SUIF Compiler group, and in the Center for Research
on Parallel Computation at Rice University.

Jennifer M. Anderson
Jenniter Anderson is a research staff member at Compaq's
Western Research Laboratory where she has worked on the
Digital Continuous Profiling Infrastructure (DCPI) proj
ect. Her research interests include compiler algorithms,
programming languages and environments, profil ing sys
tems, and para l le l and distributed systems software. She
earned a B .S . i n intormation and computer science from
the University of California at I rvine and received M .S .
and Ph . D . degrees in computer science from Stanford
University.

Saman P. Amarasinghe
Sa man Amarasinghe is an assistant professor of computer
science and engineering at the Massachusetts Institute of
Technology and a member oftl1e Laborawry for Computer
Science. His research interests include compilers and com
puter architecture. He received a B .S. in electrical engineer
ing and computer science from Cornell University and M .S .
and Ph.D. degrees in electrical engineering from Stanford
University.

Brian R. Murphy
A doctoral canclidate in computer science at Stanford Uni
versity, Brian Murphy is currently working on advanced pro
gram analysis under SUIF as part of the National Compiler
Infrastructure Project. He received a B .S. in computer sci
ence and engineering and an M .S. in electrical engineering
and computer science from the Massachusetts Institute of
Technology. His master's thesis work on program analysis
was carried out with the Functional Languages group at
the IBM Almaden Research Center. Brian was elected to
me Tau Beta Pi and Eta Kappa Nu honor societies.

Shih-Wei Liao
Shih-Wei Liao is a doctoral candidate at the Stanford
U niversity Computer Systems Laboratory. His research
interests include compiler algorithms and design, pro
gramming environments, and computer architectures.
He received a B .S . in computer science from National
Taiwan University in 1 9 9 1 and an M.S . in electrical
engineering from

.
Stanford U niversity in 1994.

Edouard Bugnion
Ed Bugnion holds a Diplom in engineering from the Swiss
Federal Institute ofTechnology (ETH), Zurich (1 994)
and an M .S . from Stanford University (1 996) , where h e i s a
doctoral candidate i n computer science. His research inter
ests include operating systems, computer architecture, and
machine simulation . From 1 996 to 1 997, Ed was also a
research consultant to Compaq's Western Research
Laboratory. He is the recipient of a National Science
Foundation Graduate Research Fellowship.

Digital Technical Journal Vol . 10 No. I 1 998 79

8 0

Monica S. Lam
Monica Lam is an associate professor i n the Computer
Science Department at Stanford University. She leads the
SUIF project, which is aimed at developing a common
infrastructure to support research i n compilers for
advanced languages and architectures. Her research inter
ests are compilers and computer architecture. Monica
earned a B .S . from the U niversity of British Colu mbia in
1 980 and a Ph . D . in computer science fi·om Carnegie
Mellon University in 1987. She received the National
Science Foundation Young Investigator award in 1992.

Digital Technical Journal Vol. 1 0 No. 1 1 998

Debugging Optimized
Code: Concepts and
Implementation on
DIGITAL Alpha Systems

Effective user debugging of optimized code has

been a topic of theoretical and practical interest

in the software development community for

almost two decades, yet today the state of the

a rt is sti l l highly uneven. We present a brief sur

vey of the l iterature and current practice that

leads to the identification of three aspects of

debugging optimized code that seem to be

critical as well as tractable without extraordi

nary efforts. These aspects are (1) spl it l ifetime

support for variables whose al location varies

within a program combined with defin ition

point reporting for currency determination,

(2) stepping and setting breakpoints based on

a semantic event characterization of program

behavior, and (3) treatment of in l ined routine

calls in a manner that makes in l in ing largely

transparent. We describe the real ization of

these capabi l ities as part of Compaq's GEM

back-end compiler technology and the debug

g ing component of the Open VMS Alpha oper

ating system.

I
Ronald F. Brender
Jeffrey E. Nelson
Mark E. Arsenault

Introduction

In software development, it is common practice to
debug a program that has been compi l ed with little or
no optimization applied. The generated code closely
corresponds to the source and is readily described by a
simple and straightforward debugging symbol table . A
debugger can interpret and control execution of the
code in a fashion close to the user's source-level view
of the program.

Sometimes, however, developers find it necessary or
desirable to debug an optimized version of the pro
gram . For instance, a bug-whether a compiler bug or
incorrect source code-may only reveaJ itself when
optimization is appLied . In other cases, the resource
constraints may not aLlow the unoptimized form to be
used because the code is too big and/or too slow. Or,
the deve loper may need to start anaJysis using the
remains, such as a core file, of the failed program,
whether or not this code has been optimized . Whatever
the reason , debugging optimized code is harder than
debugging unoptimized code-much harder-because
opti mization can greatly compLicate the relationship
between the source program and the generated code.

Zellweger1 introduced the terms expected behavior

and truthful behavior when referring to debu gging
optimized code. A debugger provides e xpected behav
ior if it provides the behavior a user would experience
when debugging an u noptimized version of a pro
gra m . Since achieving that behavior is often not possi
ble, a secondary goal is to provide at least truthful
behavior, that is, to never lie to or mislead a user. In
our experience, even truthfuL behavior can be chal
lenging to achieve, but it can be closely approached .

This paper describes three i mprovements made to
Compaq 's GEM back-end compiler system and to
Open VMS DEBUG, the debugging component of the
OpenVMS Alpha operating system . These improve
ments address

1 . Split lifetime variables and cu rrency determination

2. Semantic events

3. Inlining

Digital Technical Journal Vol . 1 0 No. 1 1998 8 1

82

Before presenting the details of this work, we dis
cuss the alternative approaches to debugging optimized
code that we considered, the state of the art, and the
operating strategies we adopted.

Alternative Approaches

Various approaches have been expl ored to i m p rove
the abil ity to debug optimized code . They incl ude
the following:

• Enhance debugger analysis

• Li mit optimization

• Limit debugging to preplan ned locations

• Dynamically deoptimize as needed

• Exploit an associated program database

We touch on these approaches in turn.
In probably the oldest theoretical analysis that

supports debugging optimized code, H ennessyl stud
ies whether the value displayed for a variable is current,
that is, the expected value for that variable at a given
point in the program. The value displayed might not
be current because, for example, assignment of a later
value has been moved forward or the relevant assign
ment has been delayed or omitted . Hennessy postu
lates that a flow graph description of a program is
comm unicated to the debugger, which then solves
certain flow analysis equations in response to debug
comm ands to determine currency as needed .
Copperman' takes a similar though m uch more gen
eral approach . Conversely, commercial implementa
tions have favored more complete preprocessing of
information in the compiler to enable simpler debug
ger mechanisms.H

If optimization is the "problem," then one approach
to solving the problem is to l imit optimization to only
those kinds that are actually supported in an available
debugger. Zurawski7 develops the notion of a recovery
function that matches each kind of optimization . As an
optimization is applied during compilation, the com
pensating recovery function is also created and made
avai lable for later use by a debugger. I f such a recovery
function cannot be created, then the optimization is
omitted. Unfortunately, code-motion-related opti mi
zations generally lack recovery functions and so must
be foregone . Taking this approach to the extrem e
converges with traditional practice, which i s simply to
disable all optimization and debug a completely unop
timized program .

l f ful l debugger functionality need only b e provided
at some locations, then some debugger capabil ities can
be provided more easily. Zurawski7 also employed this
idea to make it easier to construct appropriate recov
ery fu nctions. This approach builds on a language
dependent concept of inspection points, which

Digital Technical Journal Vol . 10 No. 1 1 998

general ly must include all call s ites and may corre
spond to most statement boundaries. His experience
suggests, however, that even l imiting inspection points
to statement boundaries severely l imits almost all kinds
of optimization .

Holzle et al . 8 describe techniq ues to dynamically
deoptimize part of a program (replace optimized code
with i ts unoptimized equivalent) during debugging to
enable a debugger to perform requested actions. They
make the techniq ue more tractable, in part by delaying
asynchronous events to well-defined interruption
points, generally backward branches and cal ls . Opti
mization between interruption points is unrestricted .
However, even this choice of interruption points
severely l i mits most code motion and many other
global optimizations.

Pollock and others9 10 use a different kind of deopti
mization , which might be called preplanned, incre
mental deoptimization . D uring a de bugging session,
any debugging requests that cannot be honored
because of optimization effects are remem bered so
that a subsequent compilation can create an exe
cuta ble that can honor these requests . This scheme is
supported by an incremental opti mizer that uses a pro
gram database to provide rapid and smooth forward
i nformation flmv to subseq uent debugging sessions.

Feiler' ' uses a program database to achieve the bene
fits of interactive debugging while applying as m uch
static compilation technology as possible. He describes
techniques for m aintaining consistency between the
primary tree-based representation and a derivative
compiled form of the program in the face of both
debugging actions and program modifications on-the
fly. While he appears to demonstrate that more is possi
ble than might be expected, su bstantial l imitations still
exist on debugging capability, optimization, or both.

A comprehensive introduction and overview to these
and other approaches can be found in Copperman3 and
Adl-Tabatabi . " In addition, "An Annotated B iblio
graphy on Debugging Optimized Code" is available
separately on the Dl:(!,ital Tecl:mical.fourna! web site at
http:/ /wvvw.digital.com/info/DTJ. This bibliography
cites and summarizes tbe entire literature on debugging
optimized code as best we know it.

State of the Art

When we began our work in early 1 994, we assessed
the level of support for debugging optimized code
that was available with competitive compilers. Because
we have not updated this assessment, it is not appro
priate for us to report the results here in detail . We do
however summarize the methodology used and the
mai n results, which we believe remain generally valid .

VIe created a series of example programs that pro
vide opportunities for optimization of a particular kind

or of related kinds, and which could lead a traditional
debugger to deviate from expected behavior. We com
p i led and executed these programs under the control
of each system's debugger and recorded how the sys
tem hand led the various kinds of optimization. The
range of observed behaviors was diverse .

At one extreme were compi lers that automati cal ly
disable al l optimization i f a debugging symbol table is
requested (or, equivalently for our purposes, give an
error i f both optimization and a debugging symbol
table are requested) . For these compilers, the whole
exercise becomes moot; that is, attempting to debug
optimized code i s not al lowed .

Some compiler/ debugger combinations appeared
to usefully support some of our test cases, although
none handled all of them correctly. In particular, none
seemed able to show a traceback of subrouti ne cal ls
that compensated for in l in ing of routine calls and all
seemed to produce a Jot of j i tter when stepping by l ine
on systems where code is highly scheduled .

The worst example that we found al lowed comp i la
tion using optimization but produced a debugging
symbol table that did not reflect the results of that opti
mization . For example, local variables were described
as allocated on the stack even though the generated
code clearly used registers for these variables and never
accessed any stack locations. At debug time, a request
to exami ne such a variable resulted in the ctisplay of the
irrelevant and never-accessed stack locations.

The bottom l ine fi·om this analysis was very clear:
the state of the art for support of debugging opti
mized code was general ly q uite poor. D IGITAL's
debuggers, inc luding OpenVMS DEBUG, were not
unusual in this regard . The analysis d id indicate some
good examples, though. Both the CONVEX CXdb4·"
and the HP 9000 DOC6 systems provide many valu
able capabi l ities.

Biases and Goals

Early i n our work, we adopted the fol lowing strategies:

• Do not l imit or compromise optimization in any way.

• Stay within the t!·amework of the traditional edit
compile- l ink-debug cycle .

• Keep the burden of analysis within the compiler.

The prime directive for Compaq 's GEM-based
compilers is to achieve the h ighest possible perfor
mance from the Alpha architecture and chip technol
ogy. Any improvements i n debugging such optimized
code shou ld be usefu l in the £1ce of the best that a
compiler has to offer. Conversely, i f a programmer has
the luxury of preparing a less optimi zed version for
debugging purposes, there is l ittle or no reason for
that version to be anything other than completely

unop timized. There seems to be no particular benefit
to creating a special i ntermediate level of combined
debugger/optimization support.

Pragmatical ly, we did not have the time or staffi ng
to develop a new optimization framework, for exam
ple, based on some kind of program database. Nor
were we interested i n i ntruding into those parts of the
GEM compiler that performed optimization to create
more complicated options and variations, which might
be needed for dynamic deoptimization or recovery
function creation .

Finally, i t seemed sensible to perform most analysis
activities within the compiler, where the most complete
information about the program is already available. It i s
conceivable that passing additional information from
tl1e compiler to the debugger using the object file
debugging symbol table might eventually tip the bal
ance toward performing more analysis in the debugger
proper. The avai lable size data (presented later in this
paper in Table 3) do not incticate thi s .

We identified three areas i n which we fe lt enhanced
capabi l i ties would significantly improve support for
debugging optimized code . These areas are

l . The handling of split l ifetime variables and currency
determination

2. The process of stepping though the program

3 . The handl ing of procedure inlining

In the fol lowing sections we present the capabil ities we
developed in each of these areas together with i nsight
i nto the implementation techniques employed.

F irst, we review the GEM and OpenVMS DEBUG
framework in which we worked. The next three sec
tions address the new capabi l i ties in turn. The last
major section explores the resource costs (compile
time size and performance, and object and image
sizes) needed to real ize these capabil i ties.

Starting Framework

Compaq's GEM compi ler system and the OpenVMS
DEBUG component of the OpenVMS operating
system provide the framework for our work. A brief
description of each follows.

GEM

The GEM compiler system 1 3 is tl1e technology
Compaq is using to bui ld state-of- the-art compiler
products for a variety of languages and hardware and
software platforms. The GEM system supports a range
of languages (C, C++, FORTRAN including HPF,
Pascal, Ada, COBOL, B LISS, and others) and has been
successfu l ly retargeted and rehosted for the Alpha,
MIPS, and Intel IA- 32 architectures and tor the

Digital Technical Journal Vol . 10 No. l 1998 83

84

OpenVJV!S, DI GITAL U N I X , Win dows NT, and
Windows 9 5 operati ng systems.

The major components of a GEM compi ler are the
fron t end, the optimizer, the code ge nerator, the fi nal
code stream optimizer, and the compi ler she l l .

• The front end performs lexical ana lysis a n d pars ing
of the sou rce program . The prim ary outputs are
i n termedi ate language (I L) graphs and sym bol
tables. Front ends for all source languages translate
to the same common representation .

• The opti mizer transforms the I L generated by the
front end i nto a semantically eq uival ent form that
wi l l execute faster on the target machine. A sign i fi
cant technical achievement i s that a si ngle optimi zer
is used ror al l la nguages and target pl atforms.

• The code generator translates the IL i n to a l ist of
code cel l s , each of which represents one machin e
in struction for the target h ardware . Virtual l y al l the
target m achine instruction-specific code is e ncapsu
l ated i n the code ge nerator.

• The final phase pertorms patte rn- based peephole
optimi zations fol lowed by i nstru ction sc hedu l ing.

• The shel l i s a portable i n terface to the external envi
ron ment in which the compi ler is used. It provides
common compiler fu nctions such as l isti ng genera
tors, object fi l e emitters, and command line proces
sors in a form that a l lows the other components to
remain independent of the operating syste m .

The bu lk of the GEM impleme ntation work described
i n this paper occurs at the boundary between the final
phase and the object fi l e output portion of the shel l . A
new debugging optimized code analysis phase exam
ines the generated code stream representation of the
program, together with the com piler symbol table, to
extract the information necessary to pass on to a
debugger through the de b uggi ng symbol table . Most
of the i mplementation is readily adapted to different
target a rchitectures by means of the same instruction
property tables that arc used i n the code generator and
final optimizer.

Open VMS DEBUG

The OpenVMS Alpha debugger, original ly d eveloped
for the OpenVMS VAX system, 1 '' is a fu l l -fu nction ,
source- leve l , symbol ic debugger. I t supports sym bolic
debugging of programs written i n BLISS , MACR0-32,
MACR0-64, FORTRAN, Ada, C, C++, Pascal , P L/ 1 ,
BASIC, and COBOL. The debugger al lows the user to
control the execution and to exa m i n e the state o f a
program. Users can

• Set breakpoints to stop at certain points i n the program

• Step through the ex ecution of the program a l i ne at
a time

Digital Technical journal Vol to No. I 1 99 8

• D isplay the source-level view of the program's exe
cuti o n usi ng either a graphical user i nte rface or a
character- based user in te rrace

• Examine user variables and hardware recristers 0

• Display a stack traceback showi ng the cu rrent cal l
stack

• Set watch points

• Perform many other fu nctions1'

Split Lifetime Variables and Currency
Determination

Displayi ng (printing) the va lue of a program vatiable is
one of th e most basic services that a debugger can pro
vide. For unopti m i zed code and traditional debug
gers, the mechan isms for doing this are general ly
based on several assumptions.

l . A variable has a single al location that remains f-i xed
throughout its lifetime. For a local or a stack-allocated
variable that means throu ghout the l i fetime of the
scope in which the variable is declared .

2. Definitions and uses of the va l u es of user variables
occur in the same order in the ge nerated cod e as
they do i n the original program source.

3 . The set of instructions that belong to a given scope
(which may be a routine body) can be described by
a single contiguous range of addresses.

The first and second assumptions arc of interest in this
discussion because many GFM optim izations mal(e
them inappropriate. Split lifeti me optimization (d is
cussed later in this section) leads to violation of the fi rst
assumption. Code motion optimization leads to viol a
tion of the second assumption and thereby creates rl1e
so-called currency problem. 'I'Ve treat both �frl1ese prob
lems together, and we refer to them collectively as .>plit
lifetime suppo11. Statement and in struction schedul ing
optimization leads to violation of the rl1ird assumption.
This topic is addressed l ater, in the section I n li ning.

Split Lifetime Variable Definition

A variable is said to have spl it l i fetimes i f the set of
fetches and stores of the variable can be partitioned
such that none of the values stored in one su bset are
ever fetched in another subset. When such a partition
exists, the vari able can be "split" i n to several indepen
dent "chi ld" variabl es, each corresponding to a parti
tion . As independent variables, the chi ld variables can
be a l located i ndepe ndent!}'· The eftect is that the
original variable can be thought to reside in diftcrent
locations at d ifferent poi nts in ti me-so metim es in a
register, sometimes in memory, and someti mes
nowhere at a l l . I ndeed , it is even possible ror the dirfer
ent child variables to be active s imultaneously.

Split Lifetime Example A simple e xample of a split
l i tctime variable can be seen in the fo ll owing straight
line code fragment:

A =

B =

A =

c =

;

A .
;

A

;

! Define (as s i g n va lue t o) A

! Use def i i t ion (v lue o f) A
1 De ine A agai n

1 Use lat er e f i n i i on A

I n this example, the first value assigned to variable A is
used later i n the assignment to variable B and then
never used agai n . A new value is assigned to A and
used in the assi gnment to vari able C.

Without changing the meaning of this fragment, we
can rewrite the code as

Al - . . . , ! D e f ine Al

B ='1.1 . . . , I Use .:0.1
2 - . . . , De f i ne . ·. 2

c = �� . . . ' Use A2

where variables A l and A2 are split child variables of A.
Because A l and A2 are independent, the fol lowing

is also an equ ivalent fragment:

Al . , ! De f ine Al

A 2 • • • I ! De E i ne l\?.

B Jl ! Us e .'U

c . . A2 . ' I Use A2

Here, we see that the value of A2 is assigned whi l e the
val ue of Al is sti l l al ive . That is, the spl it chiJdren of a
single variable have overlapping l ifetimes.

This example i l lustrates that spl it l ifetime opti m i
zation i s possible even in s i m p l e straight-l ine code.
Moreover, other optim izations can create opportu n i
ties for s p l i t l ifetime opti mization t h a t may n o t b e
apparent from casu a l examination o f the original
source. In particular, loop un rol l ing (i n which the
body of a loop is replicated several ti mes in a row)
can create loop bod ies for which spl it l i fetime opti
mization is fe:�si b le and desirable .

Variables of Interest Our implementation deals only
with scalar variables and parameters. This i ncludes
Al pha's extended precision tloati ng-point (1 28 - bit

Line
1
2

U noptimized
A

. . . A . . . '
! De E i e A

Use 7'.

X_Fioating) variables as we l l as variables of any of the
complex types (see Sites '6) . These latter variables are
referred to as two-part variables because each requ ires
two registers to hold i ts val ue.

Currency Definition

The value of a variable in an opti mized program is cur
rent with respect to a given position i n the source pro
gram if the variable h olds the value that wou ld be
expected in an u noptimi zed version of the progra m .
Several kinds of optimization c a n lead t o noncu rrent
variables. Consider the cur rency example in Figu re l .

As shown i n Figure l , the opti m izing compiler has
ch osen to change the order of operations so that l ine 4
is executed prior to l i ne 3 . Now su ppose that execu
tion has stopped at the instruction in l ine 3 of the
unoptimized code, the l ine that assigns a value to vari
able C.

G iven a req uest to display (p ri n t) the value of A,

a tradi tional debugger wi l l d isplay whatever value
happens to be contained i n the location of A, which
he re , i n the opti m i zed cod e , happens to be the res u l t
of t h e second assignment t o A . This d isplayed value
of A is a correct va lue, but i t is not the expected
value that should be displayed at l ine 3 . This scenario
might easi ly m islead a user into a fr ustrati n g and
fru it less attempt to determine how the assignment
in l ine l is comput ing and assigning the wro ng
value. The problem occurs because the compi ler has
moved the second assi gnment so that i t is early rel a
tive t o l i n e 3 .

Another cu rrency example can be seen in the frag
ment (taken from Copperman·') that appears in Figure
2. In this case, the optimizing com pi ler has chosen to
omit the second assignment to variable A and to assign
that val u e directly i n to the actual parameter location
used for the call of routine FOO. Suppose that the
debugger is stopped at the call of routine FOO. Given
a request to d isplay A, a traditional debugger is l ikely
to display the resu lt of the first assignment to A. Again ,
this val u e i s an actual value o f A, b u t i t i s not the
expected value .

Alte rnatively, it is possi ble that prior to reac hing the
cal l , the optimizing compi ler has decided to reuse the

Optimized
A . . . '
B = . . . A . . . ;

3
4

B
c
A

c es no depend on A
De f i ne 7'.

A
c

5 D . . . A . . . ;

Figure 1
Currency Example 1

! U e s econa ae f i n i t io o[A D = . . . A . . . ;

Digital Technical journal Vol . 10 No. 1 1 998 8 5

86

Line Unoptimized
l A express i o nl ;
2 B = . . . A . . . ; I Use
3 A = e xp ression . ;
4 FOO () ; I Use

Figure 2
Cu rrency Example 2

location that originally held the first value of A for
another p u rpose. I n this case, no val ue of A is avai la ble
to display at the call of rou tine FOO.

Final ly, consider the example shown i n Figure 3 ,
which i l lustrates that t h e currency o f a vari able i s not a
property that is invariant over ti me. Suppose that exe
cuti on is stopped at line 5, i nside the Joop. In this case,
A is not current d uring the first time through the loop
body because the actual value comes from l ine 3
(m oved from inside the loop); i t shou l d come ti·om
l i ne 1 . On subseq uent t imes through the loop, the
value from l ine 3 is the expected value, and the val ue of
A is cu rrent.

As d iscussed earlier, most approaches to cu rrency
determi nation involve making certain ki nds of A ow
graph and compiler opti m i zation i n forma tion avai l
ab le to the debugger so that it can report when a d is
p layed va l u e is not curre n t . However, we wan ted to
avoid adding major new kinds of analysis capabi l ity to
DIGITAL's debuggers.

More fundamentally, as the degree of opti mization
i ncreases, the notion of currentposition i n the program
itself becomes increasingJy ambiguous. Even when the
partic u lar instruction at which execution is pending can
be clearly and unequivocally related to a particu lar source
location, this location is not automatically the best one to
use tor currency determination. Nevertheless, the source
location (or set of locations) where a displayed value was
assigned can be reliably reported without needing to
establish the current position .

Accordi ngly, we use an approach d i fferen t than
those considered in the l iterature. We use a straight
forward flow analysis form ulation to determine what

Line
l
2
3
4
5

On optimized
A = . . . ;
. . . A . . . ;

�;hil e (. . .)

1 s t

2 nd

Optimized
A ex re s ionl ;

def . of A B = . . . A . . . ;

deE . 0 A FOO (e xpress i on .) ;

locations hold val ues of user variables at any given
poin t i n the program and combine this with the set of
definition locations that provide those values. Because
there may be more than one source location, the user
is given the basic information to determine where i n
the source t h e value of a variable may have originated .
Consequen tly, the user can determine whether the
val ue d isplayed is appropriate for his or her p urpose .

Compiler Processing

A compiler performs most spl i t l i fetime analysis on a
routine-by-routine basis. A pre l i minary walk over the
entire symbol table identifies the variable sym bols that
are of i nterest fo r further analysis . Then , for each rou
tine, t h e compiler performs t h e fol lowing steps:

• Code cell prepass

• Flow gra ph construction

• Basic block processing

• Parameter processi ng

• Backward propagation

• Forward propagation

• Information promotion and cleanup

After the compiler comp letes this processing fo r
all ro u tines, a symbol table posrwal k performs fina l
clean u p tasks . The fol lowi ng contains a brief d iscus
sion of these steps.

In this summary, we highlight only the main charac
tetistics of general interest. In particular, we assume that
each location, such as a register, is independent of all
other locati ons. This assumption is not appropriate to
locations on the stack because variables of different sizes

Optimized
A = . . . ;
. . . A . . . ;

A - . . . ;
wh i l e (. . .)

6 A - . . . , I I A is 1 op in va rian t

Figure 3
Currency Example 3

Digital Techn ical Journal

7 }

Vol . 10 No I 1 998

may overlay each other. The complexity of dealing with
overlapping allocations is beyond the scope of this paper.

Of special importance in this processing is the fact
that each operand of every instruction includes a base
symbol field that refers to the compi ler's symbol table
entry for the entity that is involved.

Symbol Table Prewal k The symbol table prewalk
identifies the variables of interest for analysis. As dis
cussed, we are interested i n scalars corresponding to
user variables (not compiler-created temporaries) ,
including Alpha's extended precision floating-point
(1 28-bit X_Fioating) and complex values.

DIGITAL's FORTRAN implementations pass para
meters using a by-reterence mechanism with bind
(rather than copy-in/copy-out) semantics. GEM treats
the hidden reference value as a variable that is su bject
to split lifetime optimization. Since the reference vari
able must be avai lable to effect operations on the logi
cal parameter variable, it fol lows that both the abstract
parameter and its reference value must be treated as
interesting variables.

Code Cel l Prepass The code cel l prepass performs a
single walk over al l code cells to determine

• The maximum and minimum offsets in the stack
frame that hold any interesting variables

• The highest numbered register that is actually refer
enced by the code

• Whether the stack frame uses a frame pointer that is
separate from the stack pointer

The compiler uses these characteristics to preal locate
various working storage areas.

Flow Graph Construction A flow graph is built, i n
which each basic block i s a node o f the graph.

Basic Block Processing Basic block processing per
forms a kind of symbolic execution of the instructions
of each block, keeping track of the effect on machine
state as execution progresses.

When an instruction operand writes to a location
with a base symbol that i ndicates an interesting vari
able, the compiler updates the location description to
i ndicate tbat the variable is now known to reside in
that location-this begins a l i fetime segment. The
instruction that assigned the value is also recorded
with the l ifetime segment.

If there was previously a known variable in that loca
tion, that l ifeti me segment is ended (even if it was for
the same variable) . The beginning and ending i nstruc
tions for that segment are then recorded with the vari
able in the symbol table .

When an instruction reads an operand with a base
symbol that indicates an interesting variable, some
more unusual processing applies.

If the variable being read is already known to
occupy that location, then no further processing is
required. This is the most common case .

I f the location already contains some other known
variable, then the variable being read is added to the
set of variables for that location. This situation can
arise when there is an assignment of one variable to
another and the register al locator arranges to a llocate
them both to the same location. As a result, the assign
ment happens impl icitly.

If the location does not contain a known variable
but there is a write operation to that location earlier in
the same block (a fact that is available from the loca
tion description) , the prior write is retroactively
u·eated as though it did write that variable at the earlier
instruction. This situation can atise when the resu lt of
a function cal l is assigned to a variable and the register
al locator arranges to al locate that variable in tl1e regis
ter where the call returns its value. The code cell repre
sentation for the ca l l contains nothing that indicates a
write to the variable; all that is known is that me return
value location is written as a resu lt of the cal l . Only
when a later code cell i ndicates that i t i s using the val ue
of a known variable from that location can we infer
more of what actually happened.

If the location does not contain a known variable and
there is no write to that same location earlier in this
same basic block, then the defining instruction cannot
be immediately determined. A location description is
created for the beginning of tl1e basic block indicating
that the given variable or set of variables must have
been defined in some predecessor block. Of course, the
contents known as a result of the read operation can
also propagate forward toward the end of the block,
just as for any other read or write operation.

Special care is needed to deal ��th a two-part variable .
Such a variable does not become defined until both
instructions that assign tl1e value have been encoun
tered. S imi larly, any reuse of eitl1er of the two locations
ends tl1e ufetime segment of me variable as a whole.

At the end of basic block processing, location
descriptions specif)' what is known about the contents
of each location as a resul t of read and write operations
that occurred in the block. This description indicates
the set of variables that occupy the location, or that the
location was last written by some value that is not the
value of a user variable, or that the location does not
change during execution of the block.

Parameter Processing The compiler models parame
ters as locations that are defined with the contents of a
known variable at the entry point of a routine .

Digiral Technical Journal Vol . 1 0 No. l 1998 87

88

Backward Propagation Backward propagation i ter
ates over the flow graph and uses the locations with
known contents at the beginning of a block to work
backward to predecessor blocks looking tor instruc
tions that write to that location . For each variable in
each input location, any such prior write i nstruction is
retroactively made to look like a definition of the vari
able . Note that this propagation is not a flow algo
ri thm because no convergence criteria is involved; it is
simply a kind of spanning walk.

Forward Propagation Forward propagation iterates
over the flow graph and uses the locations with known
contents at the end of each block to work forward to
successor blocks to provide known contents at the
beginning of other blocks. This is a classic "reaching
definitions" flow algorithm, in which the input state of
a location for a block is the intersection of the known
contents from the predecessors.

In our case, the compiler also propagates definition
points, which are the addresses of the instructions that
begin the lifetime segments. For those variables that are
known to occupy a location, the set of definitions is tl1e
union of all the definitions that flow into that location .

Information Promotion and Cleanup The final step of
compiler processing is to combine information for adja
cent blocks where possible . This action saves space in me
debugging symbol table but does not affect me accuracy
of the desctiption . Descriptions for by-reference bind
parameters are next merged witl1 me descriptions for the
associated reference variables . Finally, lifetime segment
information not already associated wim symbol table
entries is copied back.

Object File Representation

The object file debugging symbol table representation
tor split l ifetime variables is actually q uite simple.
Instead of a single address for a variable, there is a
sequence of l i fetime segment descriptions. Each l ife
time segment consists of

• The range of addresses over which the child loca
tion appl ies

• The location (in a register, at a certain offSet in the
current stack frame, indirect through a register or
stack location, etc .)

• The set of addresses that provide defini tions for this
l i fetime segment

By convention, the last segment in the sequence can
have the address range 0 to FFFFFFFF (hex) . This
address range is used for a static variable, for example
in a FORTRAN COMMON block, that has a default al lo
cation that applies whenever no active chi ldren exist.

Digital Technical Journal VoL 10 No. 1 1 998

Debugger Processing

Name resolution, that is, binding a textual name to the
appropriate entry in the debug symbol table, is in no
way affected by whether or not a variable has split lite
time segments. After the symbol table entry is found,
any sequence of l i fetime segments is searched for one
that includes the current point of execution i ndicated
by the program counter (PC) . If found, the location of
the value is taken from that segment. Otherwise, the
value of the variable is not avai lable.

Usage Example

To i l lustrate how a user sees tl1e results of this processing,
consider me smaJJ C program in Figure 4. Note mat me
numbers in me left colunm are listing line numbers.

\Vhen DOCT8 is compiled , l inked, and executed
under debugger control, me dialogue shown in Figure 5
appears. The figure also includes interpretive comments.

Known Limitations

The fol lowing l imitations apply to the existing split
l ifetime support.

Multiple Active Split Children While the compiler
analysis correctly determines multiple active spl i t child
variables and me debug symbol tab.le corrccdy describes
them, OpenVMS DEBUG docs not currendy support
mu ltiple active c hild variables. When searching a sym
bol's lifetime segments for one mat includes the current
PC, me first match is taken as the ortly match .

Two-part Variables Support for two-part variables
(those occupying two registers) assumes that a com
plete definition wi l l occur within a single basic block .

3 8 5 o c t 8 () {
386
387 in t i , j , k ;
3 8 8
389 i 1 ;
390 j 2 ;

3 9 1 k 3 ;
392
393 if (f oo (i))

394 j = 1 7 ;
395)
396 e l se (
397 k 1 8 ;
398)
399
400 prin t f (" %d , %d , %d \ n " , i , j , k) ;

4 0 1
402

Figure 4
C Example Routine DOCT8 (Source with Listi ng Line
Numbers)

$ t un doc t B

OpenVMS Al pha Debug64 Ve rs ion T7 . 2 - 0 0 1
% I , langucge i s C , mod l e set to DOCT 8

DBG> s ep / i n to

s teppe . o DOCTB \ doc 8 \ %LINE 3 9 1

3 9 1 : k = 3 ;

DBG > exam ine i , j , k

%�1 . en t i ty · i ' v1a s no l a l l oca ted in memory (wa p t lm i z ed a\v.:ly)

%W , en i ly ' j ' does no h ve va l ue a t the curren t PC
%W , en t i t y ' k ' does no t h v a va lue a the cu rrent PC

Note the difference in the message for variable i compared to the messages for variables j and k. We
see that variable i was not allocated i n memory (registers or otherwise) , so there is no point in ever
trying to examine its value again . Variables j an d k, however, do not have a vaJ ue "at the current PC."

Somewhere later in the program they will have a value, but not here.
The dialogue continues as follows :

DBG> s tep 6
s epp ed to DOCT 8 \ doc t 8 \ %LINE 3 9 1

3 9 1 : k = 3 ;
OBG s tep

s t epped to DOCT 8 \ doc t 8 \ %LINE 3 9 3
3 9 3 : i f (f oo (i)) (

DBG> exam i ne j , k
%1-'1 , en t i t y ' j ' do s not have a value at the current PC
DOCT8 \ doct8 k : 3

va lue defined a t DOCT8 \ oc t 8 \ % L INE 3 9 1

Here we see that j i s still u ndefined b u t k now has a value, namely 3, which was assigned a t l ine 39 1 .
The source indicates thatj was assigned a value at line 390, before the assignment to k, butj's assign
ment has yet to occur.

Skipping ahead in the dialogue to the print statement at l ine 400, we see the foJ iowing:

DBG> set br ak % l ine 4 0 0
DBG> g o

break a t DOCT 8 \ d oc t 8 \ % LIN E 4 0 0
4 0 0 : pr in t f (" %d , %d , %d \ n " , i , j , k) ;

DBG> examine j

OCTB \ oc t 8 \ j : 2
va l de f i ned at DOCT 8 \ d oc t 8 \ % L I NE 3 9 0
value de f i ned a t DOCT 8 \ d oc t 8 \ %LI NE 3 9 4

DBG> ex m i ne k

DOCTS \ oc t 8 \ k : 1 8

va lue de f i ned at DOCT8 \ doc t8 \ %LI E 3 97 + 4

val e e i ned a t DOCT 8 \ oc t 8 \ %LI E 3 9 1

This portion o f the message shows that more than one definition location is given for bothj and k.

Which of each pair applies depends on which path was taken in the i f statement. If a variable has an
apparently inappropriate val ue, this mechanism provides a means to take a c loser look at those places,
and only those places, from vvhich that value might have come.

Figure 5
Dialogue Result ing from Running DOCT8

That is, at the end of a basic block, if the second part of
a definition is missing then the initial part is discarded
and forgotten .

Consider the following FORTRAN fragment:

COHPLEX X, Y

X =
Y = X + [1 . 0 , 0 . 0)

Suppose that the last use of variable X occurs i n the
assignment to variable Y so that X and Y can be and are
allocated i n the same location, in particular, the same
register pair. In this case, the definition of Y requires
only one instruction, which adds 1 .0 to the real part of
the location shared by X and Y. Because there is no sec
ond instruction to indicate completion of the defini
tion, the definition will be lost by our implementation.

Digital Tech nical Journal Vol . 10 No. 1 1 998 89

9 0

Semantic Stepping

A major problem with stepping by l ine though opti
mized code is that the apparent sou rce program loca
tion " bounces" back and forth , with the same l i ne
often appearing again a nd again . In l arge part this
bouncing is due to a compiler opti mization cal led
code scheduling, in which instructions that arise from
the same source l ine are sched u led, that is , reordered
and intermixed with other instructions, for better exe
cution performance.

Open VMS DEBUG, l i ke most de buggers, interprets
the STEP/ LINE (step by l i n e) command to m ean that
the program should execute u nt i l the l ine nu mber
changes. Line nu mbers change more ti·cqu cntly i n
schedu led code than in u noptimized code.

For example, in sample programs ti·om the SPEC95
B enchmark Su ite, the average n u m ber of instructions
in sequence that share the same l i ne n u m ber is typi
ca l ly between 2 and 3-and typica l ly 50 to 70 percen t
of those sequences consist of j u s t 1 instruction ! I n
contrast, i f on ly instruction- level sched u l ing i s d is
abled , then t h e average number of instructions is
between 4 and 6, with 2 0 to 3 0 percent consistin g of
one instruction . I n a compi lation with no optimiza
tion, there are 8 to 12 instructions i n a seq uence, with
roughly 5 percem consisting of a single instruction.

A second prob lem with stepping by l i ne through an
opti mized program is that, because of the behavior of
revisiting the same l ine again and again, the user is
never qu i te sure when the l i ne has fin ished e xecuting.
It is unc lear when an assignment actual ly occurs or a
control flow decision is abom to be made.

In unopti mi zcd cod e, when a user requests a break
point on a certain l ine , the user expects e xecution to
stop j ust before that l ine, hence before the l ine is car
ried out. I n opti mized code, however, there is no wel l
defined location that i s " before t h e l ine i s carried out,"
because the code for that l ine is typica l ly scattered
about, i ntermixed, and even com bined wi th the code
for various other l i nes. It is usua l ly possi b le , h owever,
to identifY !be instruction that actual ly carries out the
cfkct of the l ine .

Semantic Event Concept

We introd uce a new kind of stepping mode ca l le d
semantic stepping t o address these problems. Semantic
stepping al lows the program to execute u p to, but not
i ncluding, an instruction that causes a semantic eftect.
I nstructions that cause semantic eftixts are instructions
that

• Assign a value to a user variable

• Make a control flow decision

• Make a routine cal l

Digiral Tech n ical)ounul Vol . 10 1'-Jo . 1 1 998

Not all such instructions are appropriate, h owever.
We start with an in i tial set of cand id ate instructions
and refine it. The fol lowing sections describe the
heuristics that are currently in use.

Assig nment The candid ates for assignment evcms
are the instructions that assign a val u e to a variable (or
to one of i ts sp l i t ch i ldren) . The second instruction in
an assignment to a two-part variable is excluded.
Stopping between the two assignmcms is inadvisable
because at that point the variable no longer h as the
compl ete old state and docs not yet have the complete
new state.

Branches There are two kinds of branch : u ncond i
tional a n d cond itiona l . An u ncond itional branch may
have a known desti nation or an u n known destination .
U nconditional branches with known d estinations
most often arise as part of some larger semantic con
struct such as an i f-then-e lse or a loop . For example,
code for an i f- then-else construct genera l ly has an
i mpl ic i t join that occurs at the end of the statement.
The join takes the form of a jump fi·om the end of one
al ternative to the location j ust past the last instruction
of the other (which has no expl ic it j u m p and fal l s
through into the next statement) . Th is j u m p turns the
inherently symmetric join at the sou rce leve l i nt o an
asymmetric construction at the code stream level .

Uncond itional j u m ps a lmost never define interest
ing semantic events-some re l ated instruction usua l l y
provides a more useful even t point, such as the termi
nation test in t he case of a loop . One exception is a
s imple goto statement, but these arc very often opti
m i zed away in any case . Conseq uent ly, u nconditional
branches with known destinations arc not treated as
semantic events.

U nconditional branches with u nknown destinJ
tions are rea l ly cond i tional branches: they arise from
constructs such as a C swi tch statement implemented
as a table dispatch or a FORTRAN assigned GO TO state
ment. These bra nches defin itely arc interesti ng points
at vvhich to a l low user interaction before the new
d i rection is taken . Thus, the com piler retains u ncon
d i tional branches as semantic events.

Similarly, in genera l , cond i tional branches to known
destinations are important semantic event points. Often
more t11JJ1 one branch instruction is generated rcJr a sin
gle high- level source construct, rex example, a decision
tree of tests and branches used to i mplement J smal l
C switch statement. I n this case, on ly the first in the
execution sequence is used as the semantic event poi nt.

Calls Most cal ls are visible to a user and constitute
semanti cally i nteresting even ts . However, cal ls to
some run-time l i brary rou ti nes arc usual ly n ot interest-

ing because these calls are perceived to be merely soft
ware i mplementations of primitive operations, such as
integer division i n the case of the Alpha architecture.
GEM internally marks calls to all its own run-time sup
port routines �s not semantically interesting. CompiJer
front ends accomplish this where appropriate for their
own set of run-time support routines by setti ng a flag
on the associated entry symbol node.

Compiler Processing

I n most cases, the compiler can identify semantic event
locations by simple predicates on each instruction .
The exceptions are

• The second of the tvvo instructions that assign val
ues to a two-part variable is iden tified during split
lifetime analysis.

• Conditional branches that are part of a larger con
su·uct are identified during a simple pass over the
How graph.

Object Module Representation

The object module debugging semantic event repre
sentation contains a sequence of address and event
kind pairs, in ascend i ng address order.

Debugger Processing

Semantic stepping i n the debugger involves a new
algorithm for determining the range of instructions to
execute. This algorithm is built on a debugger primi
tive mechanism that supports full-speed execution of
user instructions within a given range of addresses but
u·aps any transter out of that range, whether by reach
i ng the end or b y executing any kind of branch o r call
instruction.

Semantic stepping works as follows. Starti ng with
the current program cou nter address, Open VMS
DEBUG rinds the next higher address that is a seman
tic event point; this i s the target event point.
OpenVMS DEBUG executes i nstructions in the
add ress range that starts at the address of the current
instruction and ends at the i nstru ction that precedes
the target event point. The range execution terminates
in the following two cases:

l . If the next instruction to execute is the target event
point, then execution reached t he end of target
range and the step operation is complete.

2. If the next insu·uction to execute is not the target
event point, then the next address becomes the cur
rent address and the process repeats (silently).

Note that, un l ike the algorithm that determines the
range for stepping by line, the new algoritl1m does not
require an explicit test for the kind of instruction, in
particular, to test if it is a kind of branch. The compiler

already marks branches with the semantic eve nt
attrib�1te, if appropriate. Also unlike the u·aditional
stepping- by-line algorithm, the new algorithm does
not consider d1e source line number.

Visible Effect

With semantic steppi ng, a user's perception of forward
progress through the code is no longer dominated by
the side e ffects of code sched uling, that is, stopping
every few insm.Ktions regardless of what is happening.
Rather, this perception is m uch more closely related to
the actual semantic behavior, that is, stopping every
statement or so, i ndependent of how many instruc
tions from disparate statements may have executed.

Note that j u mping forward and backward in the
sou rce may still occur, for example, when code motions
have changed the order in which semantic actions are
performed. Nothing about semantic event handling
attempts to hide such reordering.

lnlining

Procedure call inlining can be confusing when using a
traditional debugger. For example, if routine INNER
is i n l ined into rou tine CALLER and the current point
of execution is within INN ER, should the debugger
report the current source location as at a location in
the caller routine or in the called routine? Neither is
completely satisfactory by itself. I f the current line is
reported as at the location within INNER, then that
information will appear to conflict with information
from a call stack traceback, which would not show
routi ne INN ER. If the current l ine is reported as
though in CALLER, then relevant location informa
tion from the callee will be obscured or suppressed .
Worse yet, i n the case of nested inl ining, potentially
crucial information about tl1e intermediate call path
may not be available in any torm .

The problem of dealing with inlining was solved
long ago by Zellweger'-at least the topic has not
been treated again since. Zellweger's approach adds
additional information to an otherwise traditional table
that maps from instruction addresses to the corre
sponding source line numbers. Our approach is d iffer
ent: it i ncludes additional information in the scope
description of the debugging symbol table.

A key u nderpinning for inline support is the ability
to accurately describe scopes that consist of m ultiple
discontiguous ranges of instr uction addresses, rather
than the tradi tional single range. This capabil ity is
qu ite independent of inl ining as such. However,
because code from an inli ned rou tine is freely sched
u led with other code from the cal l ing context, dealing
accurately with the resul ting disjoint scopes 1s an
essential buiJd ing block for effective support.

Digital Technical Journal Vol . 10 No. 1 1 998 9 1

92

Goals for Debugger Support

Our overa l l goal is to support debuggin g of i n l i ned
code with expected behavior, that is , as though the
in l in ing has not occurred . More specifically, we seek to
provide the abi l ity to

• Report the source locJtion corresponding to the
current position in the code

• Display parameters and local variables of an i.nl ined
routine

• Show a traceback that incl udes cal l frames corre
sponding to in lined routines

• Set a breakpoi nt at a given rou tine e n try

• Set a breJkpoint at a given line n u m ber (from
with i n an in lined routine)

• Cal l a n i n l i ned rou tine

We have achieved these goals to a substantial exte n t .

GEM Locators

Bdore descr ib ing the mechanisms to r i n l in i ng, we
introd uce the GEM notion of a locator. A locator
describes a place in the source text. The sim plest kinds
of locator describe a poi nt in the source, i nclud ing the
name of the file, the l i ne within that file, and the col
umn with i n that l ine; they eve n describe the point at
which that fi le was i n c luded by another file (as for a C
or C++ #include directive), i f applicable.

A crucial characteristic of locators is that they are aU
of a uniform fixed size that is no larger than an integer
or pointer. (How this is achieved is beyond the scope
of this paper.) I n particu lar, locators are smal l enough
that every tuple node in the i n termediate language
(IL) and every code cel l in the ge nerated code stream
contains one. M oreover, GEM as a whole is q uite
meticulous about mai ntai n i ng and propagating high
qual ity locator i n formation throughout i ts opti miza
tion and code generation .

An addi tional ki nd of locator was i n trod uced for
in l ining support. This inline locator encodes a pair
that consists of a locator (which may also be a n i n l i ne
locator) and the add ress of an associated scope node i n
the G E M symbol tab l e .

Compiler Processing

De buggi ng optimized code su pport tor in l in ing gen
era l ly bui lds o n a n d is a mi nor en hancement of the
GEM i n l in ing mechanis m . l n l i n i ng occurs du ring a n
early part of the GEM optimizer phase.

In l in ing is i mpleme nted in GEM as fol l ows:

• Within the scope that contains the cal l site, an inline
scope block is i ntrod uced . This scope represents the
result of the in l in ing operation . It is populated with
local variable declarations that correspond one-to
one with d1e tormal parameters ofd1e i.nlined routine.

Digiral Technid Journ:1l Vol . 10 No. I 1 998

• The actual argu ments of the call are transformed
i n to assignments that i n i tiJiize the val ues of the sur
rogate parameter variables.

• The i nl i ne scope is also made to contain a bod)'

scope, which is a copy of the body of the in l ined
routi n e , includi ng a copy of its local variables.

• The original call is replaced with a jump to a copy of
the IL for the body of the routine, i n which refer
e nces to declarations or parameters of the rou ti ne
are replaced with references to their correspo nding
copied declarations. I n add i tion, returns ti·om the
routine are replaced with jumps back to rhe tuple
following the original cal l .

• S imilar "boundary adj ustments" Jre made to deal
with fu nction results, output parameters, choice of
e ntry point (when there is more than one, as might
occur for FORTRAN alternate entry statements) ,
e t c . (The bookkeeping is a bit intricate, b u t it is
conceptual ly straightforw:�rd .)

The cal l ing routine, which now i ncorporates a copy
of the i n l ined routine, is then further processed as a
normal (though larger) routine .

lnlining Annotations for Debugging The main changes
introduced for debuggi ng opti mized code support are
as follows.

• The newly created i n l i ne scope block is annotated
with additional i n formation , namely,

- A pointer to the routine declaration being inl i ned.

The locator fi·om the call that is replaced . In a sim
ple call wid1 no arguments, there may be nothing
left i n the IL from the origin a l cal l after in l in ing is
completed; dtis locator captures the original call
location for possi ble later use, for example, as J
supplement to d1e i n formation thJt maps instruc
tion addresses to source line numbers.

• As the code l ist of the original i n l i ned routine is
copied, each locator from the origi n a l is replaced by
a new inline locator that records

- The origi nal locator.

- The newly created in l ine scope i n to which it is
bei ng copied .

As a result of these steps, every in l ined i nstruction Gin

be related back to the scope i nto which it was in l ined
and hence to the routine ri·om which it was i n l ined,
regardless of how it may be modi tied or moved as a
resu lt of subseq uent optimization .

Note dut these additional steps arc an exception to
the general assertion th at debugging optimized code
su pport occurs after code ge neration and just prior to
object code e m ission. T hese steps i n no vvay in t1 u e nce
the generated code-only th e de buggi ng symbol table
that is output.

Prologue and Epilogue Sets The prologue of a rou
tine general ly consists of those i nstructions at the
beginning of the routine that establish the routine
stack frame (for example, a l locate stack and save the
return address and other preserved registers) and that
must be execu ted before a debugger can usefu Uy inter
pret the state of the rou tine. For this reason , setting a
breakpoint at the beginning of a routi ne is usual ly
(transparently) implemented by setting a breakpoint
after the prologue of that routine is completed.

Conversely, the epilogue of a rou tine consists of
those instructions at the end of a routin e that tear
down the stack frame, reestablish the caller's conte xt,
and make the return value, if any, avai lable to the
caller. For this reason , stopping at the end of a routine
is usu ally (transparently) i mplemented by setti ng a
breakpoint before the epilogue of that routine begi ns.

One benefit of in l in ing is that most prologue and
epi logue code is avoided; however, there may still be
some scope management associated with scope entry
a nd exit. Also, some programming la nguage-related
environment ma nagemen t associated with the scope
may exist and should be treated in a manner analogous
to traditional prologue and epilogue code. The prob
lem is hovv to identif)' it, because most of the tradi
tional compi ler code generation hooks do not app ly.

The model we chose takes adva ntage of the seman
tic event i n formation that we describe in the section
Semantic Steppi n g . In particular, we define the first
semantic event that can be executed within the in l i ned
routine to be the end of the prologue. For reasons d is
cussed l ater, we define the last instruction (not the l ast
semantic event) of the i nJ ined code as the beginning of
the epi logue . As a res u l t of unrelated optimization
effects, each of these may turn out to be a set of
i nstructions. Determ i nation of i nl ine prologue and
epi logue sets occurs after split l i feti me and semantic
event determination is completed so that the results of
those analyses can be used.

To determine the set of prologue instructions, for each
i nline instance, CEM starts vvjtl1 every possible entry
block and scans torward through the flow graph looking
for tl1C first semantic event instruction that can be reached
from that entry. The set of such i nstructions constitutes
the prologue set for tl1at instance of the inJined routine.

This is a spanning walk forward from the routine
entry (or entries) that stops either when a block is
fou nd to conta i n a n i nstruction from the given i n l ine
i nstance or when the block has alreJdy been encou n
tered (each block i s considered a t most once) . Note
that there nuy be execution paths that include one or
more i nstructions from an inl in ing, none of which is a
semantic event i nstruction.

The set of epilogue i nstructions is determined using
an i nverse of the prol ogue algorith m . The process
starts with eJch possible exit block and scans backward

through the tlow graph looki ng for the last instruction
(that is, the i nstru ction closest to the routine exit) of
an i n l i ne i nstance that can reach Jn exit.

Note that prologue and epi logue sets are not strictly
symmetric: prologue sets consist of only instructions tl1at
are also semantic events, whereas epilogue sets inc lude
instructions tlut may or may not be semantic events.

Object Module Representation

To describe any in l in ing that may have occurred dur
ing compilation, we i nclude three new kinds of i n for
mation in the debu gging symbol table.

If tl1e instructions contained in J scope do not form a
single contiguous range, then the description of the
scope is augmented vvjth a discontiguous range descrip
tion. This description consists of J sequence of ranges.
(The scope itself indicates tl1e traditional approximate
range description to provide bac kward compati bil ity
with older versions of Open VMS DEBUC). This aug
mented desc1iption applies to aU scopes, whether or not
they are tl1e result ofinlining.

For a scope that results from i nl i ning a cal l , the
description of the scope is augmented with a record
that refers to the rou tine that was in l ined as wel l as the
l ine n u mber of the cal l . Each scope also contains two
e n tries that consist of the sequence of prologue J nd
epilogue addresses, respectively.

Backward compatibility is ful l y maintained . An older
version of Open VMS DEBUC that does not recognize
the new kinds of infonnation wi l l simply ignore it.

Debugger Processing

As the debugger reads the debugging symbol table of
a modu le, i t constructs a l ist of the i nl i ned i nstances for
each routi ne . This process makes it possible to tlnd a l l
instances o f a given routine. Note, however, that if every
call of the routine is expanded inl ine and the routine
cannot otherwise be called fi-om outside that module,
tl1en CEM does not create a noninl ined (closed - form)
version of tl1e routine.

Report Source Location It is ;.1 simple process to report
the source location tl1at corresponds to tl1e current code
address. When stopped inside the code resu lting from
an inlined routine, the program cou nter maps directly
to a source l ine ,vjthin the inlined routine.

Display Parameters and Local Variables As i s tl1e case
for a noni n l ined rou tine , tl1e scope description tor an
i nlined routine contains copies of the parameters and
the local variables. No special processing is req uired to
perform name binding for such entities.

Include ln l ined Cal ls in Traceback The debu gger pre
sents inl i ned routi nes as if they are real routi ne cal ls . A
stack frame whose cu rrent code address corresponds

Digital Technical)ourml Vol . 10 No. I 1 998 93

94

to an i nl ined routine i nstance is described with two or
more virtual stack frames: one or more for the in l i ned
instance(s) and one for the u l ti mate cal ler. (An exam
ple is shown later in Figure 7 .)

Set Breakpoints at l n l ined Routine Instances The
strategy for setting breakpoints at i n l i ned routines is
based on a generalization of processing that previously
existed for C++ member fu nctions. Com pilation of
C++ modules can resul t i n code for a given member
fu nction being compiled every time the class or tem
pbte definition that contains the me mber fu nction is
compiled. vVe refer to all these com pilations as clones.
(It is not necessary to distinguish which of them is the
originaL) I n our general i zation, an inl ined routine call
instance is treated l ike a clone . To set a breakpoint at a
routine, the debugger sets breakpoints at all the end
of�prologue addresses of every c lone of the given rou
tine: in all the curren tly active modules .

Set Breakpoints at I n lined Line Nu mber Instances The
strategy for setting breakpoints on line numbers shares
some teatures of setting breakpoints on routines, with
additional complications. Compiler- reported l ine num
bers on OpenVMS systems are unique across a l l the
files i ncluded in a compilation. It follows that the same
file i ncluded in more than one compilation may h ave
differe nt associated line numbers.

To set a breakpoint at a particu l :�r l ine n u m ber,
that l i ne nu mber needs to be fi rst nonn:1 l ized relative
to the conta in ing file. This norm a lized l i n e n u m ber
v:t lue i s then compared to normal ized l ine numbers
fo r that same fi l e that are included in other compi la
tions. (If d i fferent versions of the same named fi le
occu r in d i fferent compil ations, the versions are
treated as u nrelated .) The origin a l l i ne n u m ber is
converted i n to the set of add ress ranges that corre
spond to it in a l l modules, taking into account i n l i n
i n g and c loning.

Cal l a Routine That Is ln l i ned If the compiler creates a
closed-form version of a routi ne, then the debugger
can cal l that rou tine independent of whether there
nuv also be in l ined i nstances of tl1e routine . If no such
ver�ion ofthe routine exists, then the debugger cannot
cal l the routine.

Usage Example

In l in ing support has many aspects, but we will i l lus
trate only one-a cal l traceback that inc ludes in l ined
ca lls . Consider the sample program shown in hgu re 6.
This program has four routines: tl1t-cc JIT combi ned in
: 1 s ingle fi l e (enabling the GEM FORTRA.N compi ler
to perform in l ine opti m izations), and the last is i n a
separate fi le . To help correlate the l ines of code in

DigitJI TcchnicJI JournJI Vol . 10 No. I 1 998

Line.: + • + + + F' i l e DOCF'J - J NLI E - 2 . FOR

c �·la i n .t.out:ne
2 c
3 1 ·-EGER A , c
4 TYPE * .� (3 ' c (0) 1
5 END
6 c
7 F'UNCT ! ON .'\ (I . L)
8 II TEGER B
9 A ; 8 (5 , I) + 2 "" L
1 0 RETURN

1 1 END

1 2 c
1 3 F'UNCTIO: B (J , K)
14 INTEGER B , c
1 5 B - C (9) + J + K
1 6 END

+ T + + + File DOCFJ- I NLI � E - 2 A . FOR

c
2 fUNCT ION C (J)
3 INTEGER C
4 c � 2 ' 1
5 R ETUR
6 END

Figure 6
Program to J l lustr:�rc In l in ing Support

these two riles with those in Figure 7, we added l i ne
numbers to the left of the code . Note that these n u m
bers are not p:�rt o f the program.

If we com pile , l ink, and r u n this program using the
OpenVMS DEBUG option, we can step to a place in
routine B that is just bdore the call to routine C and
tl1en request a traceb:1ck of the call stack. This dialogue
is shown in Figure 7 .

Figure 7 shows tlut pseudo stack fi-ames are reported
for routines A and B, even tl1ough the cal l of routine B
has been in lined into routine A and the call of rou tine A
has been in l ined i nto the main program. The main dif
ference from a real stack rrame is the ext.rJ l ine that
reports tl1at tl1e "above routine is in lined ."

Limitations

In a real stack ri·ame, i t is possib le to examine (a nd
even deposit i nto) the real machine registers, rather
than examine the variJ bles that happen to be a l located
in machine registers. In an in l ined stack frame, this
operation i s not well ddlncd and consequently not
supported . In a nonin l ined stack ti:a me, these opera
tions are sti l l allowed .

An attractive feature that wou l d rou nd out the
expected beluvior of in l i ned routine calls wou ld be to
support steppi ng into or over the inl ined cal l i n the
same way that is possible tc)r noni nl ined caJls. This rea
ture is not currently su pported-execution alwJys
steps into the ull .

GEMEVN$ r n D FJ - I NL I 1E- 2
Open 1S Al ph a Debu 6 ver s i o� T7 . 2 - 0 0 1

% ! , Lang ge : FORTRAN , Modu l e : DOCFJ -Ir LINE-2 $.1AIN

D G> s ep / seman t i c
s t epped t o DOCFJ - I L I E - 2 $MAI 1 B \ % LI E 1 5 � 8

1 5 : B = C (9) � J + K
DBG > show ca l l s

mod e n e rou ine name l ine
* DOCFJ - I . LI E - 2 $ MAI'l

B 1 5

- - - - - abo ve rou t i ne i s inl ined
* DOCFJ- I LINE 2 $ IN

A 9

- - - - - above tO ine is i . l in e '
' DOC FJ- I• r , E - 2 $ MAI

rel P abs PC

O O O O O O O O O O O O O O l C 0 0 0 0 0 0 0 0 0 0 2 0 0 6 C

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 2 0 5 4

DO FJ - It\LINE-2 $:�. I .

4 0 0 0 00 0 0 0 0 0 0 0 0 0 3 8 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FFFFFFFF 8 5 9 0 7 1 6 C

Figure 7
OpenVMS DEBUG Dialogue to I l lustrate I nlining Suppon

Performance and Resource Usage

We gathered a n u m ber of statistics to determine t:ypi
cal resource requirements tOr using the enhanced
debugging optimized code capability compared to the
traditional practice of debugging unopti mized code. A
short sum mary of the findi ngs fol lows.

• All metrics tend to show wide variance fi·om pro
gram to program , especially small ones.

• Generating traditional debugging symbol information
increases the size of object modules typically by 50 to
100 percent on the OpenVMS system. Executable
image sizes show similar but smaller size increases.

• Generating en hanced symbol table information
adds about 2 to 5 percent to the typical compilation
time, although higher percentages have been seen
tor un usually large progra ms.

• Generating enhanced symbol table information
uses significant me mory during compilation bm
does not affect the peak memory req ui re ment of a
compi lation .

• Generating enhanced symbol table information
further i ncreases the s ize of the sym bol table intor
mation compared to that for an unoptimized com·
pilation . On the Open VMS syste m , this adds 100 to
200 perce nt to the debugging symbol table of
object modules and perhaps 50 to 1 00 percent for
executable i mages.

• Compiling with ful l opti mization reduces the
resulting image size . Total net i mage s i ze increases
typical ly by 50 to 80 percent.

A more detai led presentation of findings fol lows.
Ta bles 1 through 3 present data collected using pro
du ction OpenVMS Alpha native compi lers built in
December 1 996. In developing these results, we used
five combi nations of compilation options as foll ows:

5 1 : no opti m i zation (noopt) , no debugging infor
mation (nodebug, nodbgopt)

52: no optimization (noopt), normal debugging
information (debug, nodbgopt)

54: full (default) optimization (opt), no debugging
information (nod ebug, nodbgopt)

5 5 : full opti mization (opt), normal debugging
information only (debug, nodbgopt)

58: fu ll optimi zation (opt), en hanced debugging
information (debug, d bgopt)

Note that the option combination numbering sys
tem is historical; we retained the system to help keep
data logs consistent over ti me.

Compile-time Speed

The incremental compile-time cost of creating enhanced
symbol table information is presented i.n Table l for a
sampling of BLISS, C, and FORTRAN modules. The
data in this table can be summaJized as follows:

• Traditional debugging (column 1) increases the
total compi lation time by about l percent.

• Enhanced debugging (col u m n 2) increases the
compilation time by about 4 percent. The largest
component of that ti me, approxi mately 3 percent,
is attributed to the flow analysis i nvolved in han
dling split l ifetime variables (column 3) .

• Debuggi ng tends to i ncrease a s a percen tage of
ti me in larger modules, which suggests that pro
cessing time is slightly nonli near in program size;
however, thi s i ncrease does not seem to be excessive
even in very large modules.

Compile-time Space

The compile-time memory usage during the creation of
enhanced symbol information is presented in Table 2 .

Digital Technical)ourn;ll Vol. 10 No. I 1 998 95

Table 1
Percent of Compi lation Time Used to Create/Output Debugging Information

Module
S2 (noopt, debug, S8 (opt, debug, (Split lifetime
nodbgopt) dbgopt) Ana lysis On ly)

BLISS CO DE
G E M_AN 0 .3% 1 . 1 % 0 .7%
G E M_DB 0.9 1 .8 1 . 3
G EM_DF 0.8 5.2 4.4
GEM_FB 0.7 3 . 5 2.7
GEM_I l_PEEP 0.6 1 4.4 1 3 .9

C CODE
(_METR IC 1 . 5 5.2 4 . 1
G RAM 0.5 2 .9 2 .2
INTERP 1 .2 4 .5 3.2

FORTRAN COD E
MATRIX300X nm nm nm
NAG l 1 .4 1 3 .0 1 1 .9
SP ICE_V07 3 .0 6 .4 4.7
WAVEX 2 .5 6 .3 4.8

Average 1 .2 % 4.3% 3 . 2 %
Typical range (0. 5 %-1 . 5 %) (3.0%-7.0%) (2 .0%-5.0%)
Note: " n m " represents "not meani ngful ," that i s , too s m a l l to b e accurately measured.

Table 2
Key Dynamic Memory Zone S izes dur ing B LISS GEM Com p i l at ions

Peak SYMBOL E l l CODE OM % % %
File Total ZON E ZONE ZONE ZONE Peak Larg E ll

BLISS CODE

GEM_AN 2, 507 1 30 85 1 84 1 5 6 % 8 % 1 8%
G E M_DF 1 1 , 305 836 1 , 672 2,056 1 ' 1 80 1 0 57 7 1
G E M_FB 4,694 3 1 6 522 457 304 6 58 58
G E M_Il_pEEP 40,4 1 9 1 ,606 1 7, 666 4.4 1 1 1 4, 1 43 34 80 80

C CO D E

C_M ETRIC 7,381 1 ' 1 1 5 494 2,563 1 67 2 6 34
GRAM 3,03 1 82 8 1 5 2 1 1 267 9 33 33
I NTERP 3,563 354 308 688 1 3 1 4 20 43

FORTRAN CODE

MATRIX300X 934 1 43 227 1 0 1 58 6 26 26
NAG l 6,267 1 ,520 1 , 791 1 .742 68 1 1 38 38
SPICE_V07 6,234 1 ,0 5 1 3,256 885 459 7 1 4 1 4
WAVEX 1 2, 8 1 2 4,676 3, 1 1 9 3.482 68 5 1 4 22

Average 9% 32% 40%
Note: Al l numbers t o t h e left of t h e vertical bar are thousa nds o f bytes. not multiples o f 1 ,024.

Column Key:
Column Description

Peak Tota l The peak dynamic memory a l located i n a l l zones d u ring the compi lat ion
SY MBOL ZONE The zone that holds the GEM symbol tab le
E l l ZONE The zone that holds the l argest E ll ZONE (used for the expanded intermediate representation)
CO DE ZON E The zone that holds the G E M generated code l ist
OM ZONE The zone that holds sp l it l ifet ime and other work ing data
% Peak The OM ZONE size as a percentage of the Peak Total size
% larg The OM ZONE s ize as a percentage of the l a rgest s ing le zone in the compi lat ion
% E l l The OM ZONE s ize a s a percentage o f the E l l ZONE size

96 Digir:U Tcchnica.l Journal Vol . 10 No. 1 1 998

I

I

The followi ng is a summary of the data, where OM
ZON E refers to the temporary working virtual mem
ory zone used tor split l i feti me analysis :

• The OM ZON E size averages about 10 percent of
the peak compi l ation size.

• The OM ZON E size is one-quarter to one- half of the
EIL ZONE size. (The latter is well known for typi
cal ly being the largest zone in a GEM compi lation .)

• Since the O M ZONE i s created and destroyed after aU
ElL ZONEs are destroyed, the OM ZONE does not
conuibutc to establishing the peak total size.

Object Module Size

The increased size of enhanced symbol table informa
tion tor both object files and executable image files is
shown in Table 3.

In Table 3, the application or group of modu les is iden
tified in the first column. The columns labeled 5 1 , 52, etc.
give the resulting size for the combination of compilation
options described earlier. Object module and executable
image data is presented in successive rows.

Three ratios of particu lar interest arc computed .

52/5 1 : This ratio shows the object or image size
with traditional debugging information compared
to a base compilation without any debugging infor
mation . This ratio i ndicates the additional cost, in
terms of increased object and image fi le size, associ
ated with doing traditional symbol ic debugging.

(S8-S5)/(S2-S 1) : This ratio shows the increase in
debugging symbol table size (exclusive of base object,

Table 3

image text, etc .) due to the inclusion of enhanced infor
mation compared to the traditional symbol table size.

SS/52 : This ratio shows the object or i mage s ize
with enhanced debugging i n formation with opti
mization compared to the traditional debugging
size without optimization.

The last ratio, SS/52, is especially interesting because
it combines two effects: (l) the reduction in size as a
result of compiler optimization, and (2) the increase i n
size because the larger debugging symbol table needed
to describe the resu lt of the optimization . The resu l t
ing net i ncrease is reasonably modest.

Summary and Conclusions

There exists a small but significant l i terature regarding
the debugging of optimized code, yet very kw de bug
gers take advantage of what is known. In this paper we
describe the new capabi l i ties tor debugging optimized
code that are now supported in the G EM compiler sys
tem and the Open VMS DEBUG component of the
Open VMS Alpha operating system . These capabi l i ties
deal with sp l i t l i fetime variables and currency determi
nation , semantic stepping, and procedure inl ining. For
each case, we describe the p roblem addressed and then
present an overview of G EM compi ler and Open VMS
DEBUG processing and the object modu le represen
tation that mediates between them. All but the in l in
ing support are i ncluded i n Open VMS DEBUG V7 .0
and in GEM-based compi lers for Alpha systems that
have been shipping since 1 996. The in l ining support is

Object/Executab le (.OBJ/. EXE) F i le S izes (in N umber of B l ocks) for Var ious Open VMS Components

51 52 54 55 58
noopt no opt opt opt opt (58-55)/
nodebug debug 52/51 node bug debug debug (52-51) 58/52

Fi le nodbgopt nodbgopt Ratio nodbdopt nodbgopt dbgopt Ratio Ratio

BLISS CODE

G EM_ * .OBJ 3 1 ,477 5 1 ,069 1 .62 27,483 47,031 68,728 1 . 1 1 1 . 35
G E M_* .EXE 1 2, 1 60 29,543 2 .43 1 0,373 27,755 32,288 0.26 1 .09

C CODE

C_M ETRIC.OBJ 436 653 1 . 50 478 733 1 ,680 4.36 2 . 57
C_M ETR IC .EXE 250 348 1 .39 250 385 581 2 .00 1 .67
GRAM.OBJ 1 02 1 20 1 . 1 9 1 00 1 1 7 224 5 .94 1 .87
GRAM.EXE 60 70 1 . 1 7 58 69 9 1 2.20 1 .30
INTERP.OBJ 1 40 207 1 .48 1 34 205 450 3 .66 2 . 1 7
INTERP. EXE 80 1 1 3 1 .4 1 75 1 1 3 1 67 1 .64 1 .47

FORTRAN CODE

MATRIX300X.OBJ 20 34 1 .70 1 6 29 7 1 3 .00 2 .08
MATRIX300X. EXE 1 9 29 1 . 53 1 5 25 34 0.90 1 . 1 7
NAGL.OBJ 42 63 1 . 5 1 288 509 1 ' 1 78 3 . 1 1 1 .84
NAGL .EXE 289 388 1 . 34 1 87 333 469 1 .37 1 .2 1
SPICE .OBJ 1 ,652 3, 1 1 7 1 .89 1 ,073 2 ,571 4,9 1 6 1 .60 1 . 58
SP ICE .EXE 1 ,03 1 1 ,660 1 .6 1 549 1 ,3 1 8 1 , 803 0.77 1 .09
WAVEX.OBJ 555 1 ,639 2 .95 393 1 , 556 2,949 1 .29 1 .80
WAVEX.EXE 634 1 , 1 90 1 .88 490 1 , 1 67 1 ,437 0.49 1 .2 1

Digital Tec h n ical journal Vol . l O No. ! 998 97

98

currently i n tleJd test. Work is under way to provide
similar capa bilities in the lade bug debugger"·" compo
nent of the DIGITAL UNIX operating system.

There are and will always be more opportunities and
new challenges to im prove the ability to debug opti
mized code . Perhaps tl1e biggest problem of all is to fig

ure out where best to focus future anention. l t is easy to
see how the capabilities described in this paper provide
major benefits. We find it much harder to see what capa

bility cou ld provide the next major increment in debug
ging effectiveness when working wi tl1 optimized code.

References

l . P. Ze l lwt:gt:r, " Interactive Source- Level Debugging o f
Opti m i zed Programs," P h . D . D issertation , U nivers ity
of California, Xerox PARC CSL-84-5 (M ay 1 984) .

2 . J . Hennessy, "Symbolic Debuggi
ng o f Optimized Code,"

ACM]i·(n lsactions on Programm ing Languoges (/1 /d
5)s/ems. vol 4, no. 3 (Ju ly 1982) : 323-344.

3. M. Copperman , "Deb uggi ng Optim ized Code With
our B eing Misled," Ph .D . Dissertation, U n iversity o f
Californ ia at Santa Cruz, U CSC Technical Report
U CSC-CRL- 9 3 - 2 1 (J une I I , 1 99 3) .

4 . G . B rooks , G . Hansen, and S . Simmons , " A New
ApproJc h to Debuggi ng Optim ized Code ," ACW SIC

PLAN '92 Conference on Progr am ming Language

Design and !mplementalion, SJG'PLAN Notices, vol 27,
no. 7 (J u ly 1992) : 1-l l

5 . Convex Computer Corporation , CONVJ;X CXdh Con

cepts (Richardson, Tex . : Convex Press, Order No.
DSW-47 1 , May 1 99 1) .

6 . D . Coutant, S. Meloy, and M . Ruscetta, "D OC: A PrJc
tical Approach to Source-Level De bugg ing of G loba l ly
Optimized Code," Proceedings oft he 5/CPLAN 8H Con

ferenw on Pro,({rctmmincf� Lan,r.;uage Design and Imple
mentation. Atlanta , Ga. (June 2 2-24, 1 9 8 8) : 1 25-1 34.

7 . L. Zurawski , "Source-Leve l Debugging of GlobaLly Opti
m i zed Code witl1 Expected Behavior," Ph . D . Disserta
tion, University of I ll ino is at Urbana-Champaign (1989) .

8 . U. Hol z le , C . Cham bers, �111d D . U ngar, "Deb u gging
Op timi zed Code with Dynamic Deopti mi zation , "
A CM SIG'PLA N '92 Couference on Programming Lcl l l
gua.lw Desigu and lmplemenlalion, San Franc isco,
Calif (June 1 7-19, 1 992) and SI GPLAi'-l Notices, vol.
27, no. 7 (July 1 99 2) : 3 2-43.

9 . L. Pollock an d M . Soffa, " H igh - leve l Debuggi ng with
the Aid of' an I ncremenral Optim izer," Proceedings o(

the .l lsi J-Jmuaii /nlernalioua/ Conference on 5rstem

Scieuces (January 1 9 8 8) : 5 24-5 3 2 .

1 0 . L. Po l lock , LV! . B i1·en s, and M . Soffa , "Debuggi ng
Op timized Code via Tai lori ng ," fulernational 5ympu
silun on Software Testing and A na/)JSis (August 1994) .

1 1 . P. Fei ler, "A Language-Oriented I nteractive Progrclm
ming Environment Based on Comp i lation Technol
ogy," Ph .D . Dissertati on , Carnegie - Mel lon University,
CJ\-W -CS-82 - 1 1 7 (May 1 9 8 2) .

Digit:�! Tcchniccll Journ:�l Vol . 10 No. l ! 998

1 2 . A. Adl -Tabatabi , "Source- Level Debugging of Glob
al ly Optimized Code ," Ph . D . Dissertation , Ca rm:git:
Me l lon Un iversi ty, CM U-CS-96- 1 3 3 (June 1 996) .

1 3 . D . B l ickste i n et al . , "The GEM O ptim iz ing Comp i l er
System ," /.!igilal Tech nicaljoumal, I'Ol. 4, no . 4 (Spe
cial lssue 1 99 2) : 1 2 1-1 3 6 .

14 . B . Beander, "V&V.. DEB UG : A n I nteractive, Symbolic,
Multilingual Debugger," ACM 5!CSOFT/5!G'PI..AN Soft
war(' Eugineering S)lmpusium on I-Jigb-Lel'el Debug
ging ACM 5/CPLAN Notices. vo l . 1 8 , no. 8 (August
1 9 8 3) : 1 73-1 79 .

1 5 . Open \I,VfS Dehugp,er /vfan uol, Order No . i\A- QSBJ B
TE (Maynard , M ass. : Digital Equipme nt Corpo ration ,
November 1 9 9 6) .

1 6 . R. Sites , ed. , Alpha Architecture Reference Jllh!l l ! la/.

3d ed. (VVob urn, Mass. D igi tal Press, 1 998) .

1 7. T. B ing:hJm, N. Hobbs, and D . Husson, ''Experiences
Developing and Us ing an Object-Oriented Library tor
Program Manipu lat1011," OOP5LA c'rJI I(i:rence Pro
ceedings. A CM 5/CPLAN Notices. vo l. 1 2 , no. l O
(October 1993) : 83-89.

1 8 . D(v,ital UNIX Ladehug [)ehu,�er Man ual, Order No.
AA-PZ7EE-Tl TE (Mavna.rd, Mass . : Digital Eq u ipment
Corporation, March 1996) .

Biographies

Ronald F. Brender
Ronald F. B rt:nde r is a senior consultant software engineer
in Compaq's Core Technology Group, where he is working
on botl1 the GEM compi ler and the l • 1 IX lade bu g pro
jec ts . D ur ing his oreer, Ron bas worked in advanced
deve lopment and product development roles for BLISS,
FOKfR.:\ N, Ada, and multi.bngmgt: debugging on DIGITAL's
DECsy�t<:m- 1 0 , PDP- 1 1 , VAX, and Alpha computn systems.
He served as a representative on the ANSI and ISO standards
committ<:es tor fO Rl'RAN 77 and later for Ada 83, also sel·v
ing as a U.S. Department ofDcti::nse invited Distingu ished
Reviewer Jnd a mem ber of the Ada Board and the Ada
La nguage Maintenance Com mittee tor more than eight
years. Ron joined Digital Equipment COlvorat.ion in 1970,
after earning the degrees of B . .S. t:. (<:ngineeri ng scienc<:s) ,
M.S. (appl ied mathematics) , a nd P h . D . (computer .1 11d
communication sc iences) in 1965, 1968, and 1 969, respec
tively, aJ l ti·om me University of M ich ig<Hl . He is a member
of the Association tor Compurin r Mach inery and the I EEE
Computer Society. Ron holds seven patents and has pub l ished
several papers in the area ofp rogramm ing l anguage design
and implementation.

Jeffrey E. Nelson
Jeffrey E. Nelson is a senior software developer at Candle
Corporation in Minneapolis, Minnesot:�. He currently
develops message broker software for Roma BSP, Canc!Je's
middleware framework tor integrating business applications.
Previously :-tt D I G !TAL, Jeff was a principal software engineer
on tl1e Open VMS and ladebug de bugger projects. He spe
cialized in debug symbol table formats, run-time language
support, and computer architecUJre support. He conuibuted
to porting tl1e Open VMS debugger fi·om the V&'\. to tl1e
Alpha platform. He represented D I GITAL on me indumy
,,�de PLSIG committee mat developed the DWARF debug
ging symbol table format. Jeff holds an M.S. degree in
computer science and applications ti·om Virginia Polytechnic
Institute and State University and a B.S. degree in computer
science tTom the University ofWisconsin-LaCrosse. Jeff is
an alumnus of the Graduate Engineering Ed ucation Program
(GEEP), has been awarded one patent, and has previously
pu blished and presented work in me area of real-time, object
oriented garbage collection.

Mark E. Arsenault
Mark E. Arsenault is a principal software engineer in
Compaq's Open VMS Engineering Group working on
tl1e Open VMS debugg.:r. Mark has implemented support in
the debugger for 64-bit addressing, C++, and inlining. He
joined D I G ITAL in 198 1 and has worked on several soti:
ware development tools, inc luding tl1e BLISS compiler and
the Source Code Analyzer. Mark holds two patents, one each
for the HL·ap Analyzer and for the Correlation Facility. H e
received a B . A . i n physics from Boston U niversity i n 1 98 1 .

Digital Technical Journal Vo l . 1 0 N o . l 1 998 99

Differential Testing
for Software

Differential testing, a form of random testing,

is a component of a mature testing technology

for large software systems. It complements

regression testing based on com mercial test

suites and tests local ly developed during prod

uct development and deployment. Differential

testing requires that two or more comparable

systems be avai lable to the tester. These sys

tems are presented with an exhaustive series

of mechanica l ly generated test cases. If (we

might say when) the resu lts differ or one of

the systems loops indefin itely or crashes, the

tester has a cand idate for a bug-exposing test.

Implementing differential testing is an interest

ing technical problem. Getting it i nto use is an

even more i nteresting social chal lenge. This

paper is derived from experience in d ifferential

testing of compilers and run-time systems at

D I GITAL over the last few years and recently

at Compaq. A working prototype for testing

C compi lers is avai lable on the web.

I 00 Digiul Tcd1nic�l Jounul Vol 1 0 No. I 1 998

I
William M. McKeeman

The Testing Problem

Successfi.d commercial computer systems contain te ns
of m i l l ions of l ines of handwritten software, Jll of
which is subject to c hange as competitive pressures
motivate the addition of new features in each release.
As a practical matter, qual ity is not a question of cor
rectness, but rather of how many bugs are fixed and
how few arc introd uced in the ongoing development
process . If the bug cou nt is i ncreasing, the software is
deteriorati ng.

Quality

Testin g is a major contributor to qua l i ty-it is the last
c hance for the development organi zation to red uce
the n u mber of b ugs del ivered to customers . Typical ly,
developers bu i ld a suite of tests that the software must
pass to advance to a new release. Three major sou rces
of such tests arc the deve lopment engi neers, who
know where to probe the weJk poin ts; commercial test
suites, which :tre the arbiters of contonnance; a nd cus
tomer complaints, which developers m u st address to
win customer loya l ty. A l l three types of test cases are
relevant to customer satisfaction and therefore h ave
val ue to the develope rs . The resultant test su ite tor the
software u nder test becomes i ntellectu a l property,
encapsu lates the accumu lated experience of problem
fixes, and can contain more l i nes of code than the soft
ware itself.

Testing i s always i ncomplete. The s implest measure
of completeness is statement coverage . I nstrumentation
can be added to the software bdore it is tested. When
a test is ru n , the instru mentation generates a report
detai l ing which statements are actually executed .
O bviously, code that is not executed was not tested .
Random testi ng is J way to make testi ng m ore com
p lete. One val u e of random testing is i ntrod ucing the
unexpected test-1 ,000 monkeys o n the keyboard can
produce some surprisi ng and even amusing i nput 1 The
traditional approach to acq uiring such input is to let
u niversity students use the software.

Testi ng software is Jn active fie ld of endeavor.
I n teresti ng starti ng poi nts for gathering background

i n formation and references are the we b site main
tained by Sofuvare Researc h , Inc . 1 and the book
Sojiware Testing and Quality Assurance.2

Developer Distaste

A development team with a su bsta n tia l bug backlog
does not find it helpful to have an automatic bug
fi nder continua l ly i ncreasi ng the backlog. The team
priority is to address customer comp l aints before deal
i ng with bugs detected by a robot. Engi neers argue
that the randomly produced tests do not u n cover
errors that are l i kely to bother customers. "Nobody
would do that, " "That error is not i mportant," and
" Don't waste our ti me; we have p lenty of real errors
to fix" are typical developer retorts.

The complai nts have a su bstantial basis. D uring a visit
to our development group, Proti::ssor C. A. R. Hoare of
Oxford University succincdy summarized one c lass of
complaints: "You cannot fix an infi nite number of bugs
one at a time." Some software needs a stronger remedy
than a stream of bug reports. Moreover, a stream of bug
reports may consume the energy that could be applied
in more general and productive ways.

The developer push back j ust described indicates that
a differential testi ng effort must be based on a per
ceived need tor better testing from within the product
development team . Performing the testi ng is poi ndess
if the developers cannot or will not use the results .

Difkren tial testi ng is most easi l y appl icable t o soft
ware whose qual ity is a l ready u nder contro l , that is,
software for which there arc few known outstanding
errors. Ru n n i ng a very l arge n u mber of tests and
expending team eftort only when an error is found
becomes an attractive a l ternative. Tea m members'
morale i ncreases when the software passes m i l l ions of
hard tests and test coverage of their code expands.

The technology shou ld be i mportant tor appl ica
tions for which there is a h igh premium on correct
ness. In particu lar, product d ifferentiation can be
achieved tor software that has few fai l u res i n compari
son to the competition . D i fferential testing is designed
to provide such comparisons .

T h e tech nology shou ld also be important for appl i
cations t(x which there is a h igh premium on i ndepen
dentl y dupl icati ng the behavior of some existi ng
application . I dentical behavior is i m portant when o ld
sofhvare is being retired in tavor of a new implementa
tion, or when the new software is cha l l enging a domi
nant competitor.

Seeking an Oracle

The ugl iest problem i n testi ng is evaluating the resu l t
o f a test. A regression h arness can automatica l ly c heck
that a resu lt has not changed , but this intormation
serves no purpose u nless the result is known to be cor-

rect. The very complexity of modern software that
d rives us to construct tests makes it i mpractical to pro
vide a priori knowledge of the expected results . The
problem is worse for randomly generated tests. There
is not l ikely to be a h igher l evel of reasoning that can
be appl ied, which forces the tester to i nstead fol low
the tedious steps that the computer wi l l carry out dur
i ng the test run. An orac le is needed .

One c lass of results is easy to evaluate: program
crashes. A crash is never the right answer. I n the triage
that drives a m aintenance effort, crashes are assigned to
the top priority category. Al though this paper does not
contain an in-depth discussion of crashes, all crashes
caused by difterential testing are reported and consti
tute a substantial portion of the discovered bugs.

Differential testing, which is covered in the foUowing
section, provides part of the solution to the problem of
needing an oracle . The remainder of the sol u tion is dis
cussed in the section entitled Test Reduction .

Differential Testing

Differential testing addresses a specific problem-the
cost of eva luating test resu lts . Every test yie lds some
resu lt . If a single test is ted to several comparable pro
grams (for example, several C compilers) , a nd one pro
gram gives a d ifferent result, a bug may have been
exposed . For usable sofhvare, very few generated tests
will result i n differences. Because it is feasib le to gener
ate millions of tests, even a few differences can result i n
a substantial stream of detected bugs. T h e trade-off i s
t o use many computer cycles i nstead of human effort to
design and evaluate tests. Particle physicists use the
same paradigm: they examine m i l l ions of mosdy boring
events to find a tew high-interest particle interactions.

Several issues must be addressed to make differen
tia l testing e ffective. T h e first issue concerns t h e qual
ity of the test. Any random stri ng fed to a C compi ler
yields some result-most l ikely a diagnosti c . Feeding
random strings to the compi ler soon becomes unpro
d uctive, however, because these tests provide only
shallow coverage of the compiler logic . Developers
m ust devise tests that drive deep i nto the tested com
pi ler. The second issue rel ates to false positives. The
resu l ts of two tested programs may differ and yet
sti l l be correct, depending o n the require ments. For
example, a C compi ler may free ly choose among alter
natives for u nspeci fied , u ndefined , or implementation
defined constructs as detai led in the C Standard . '
Simi larly, even tor requi red diagnostics, the form of
the diagnostic is u nspecified and therefore difficu lt to
compare across systems. The third issue deals with the
amou n t of n oise in the generated test case. Given a
successfu l random test, there is l ikely to be a much
shorter test that exposes the same bug. The developer

Digital Technical journal Vol . 10 No. I 1 998 1 01

who is seeking ro fix the bug strongly prefers to use the
shorter test. The fourth issue concerns comparing pro
grams that must run on diHerent platforms. Differential
testing is easily adapted to distributed testing.

Test Case Qual ity

·writing good tests requires a deep knowledge of the
system under test. Writing a good test generator
requires embedding that same knowledge in the gen
erator. This section presents the testing of C compilers
as an example .

Testing C Compilers

For a C compiler, we constructed sample C source fi les
at several levels of increasing qual ity.

1 . Sequence of ASCII characters

2 . Sequence of words, separators, and white space

3. Syntactically correct C program

4 . Type-correct C program

5. Statically conforming C program

6. Dynamical ly conforming C program

7. Model-conforming C program

Given a test case selected from any level , we con
structed additional nearby test cases by randomly
adding or deleting some character or word from the
given test case. An altered test case is more l i kely to
cause the compilers to issue a diagnostic or to crash.
Both the selected and the altered test cases are valuable.

One of the more entertai ning testing papers reports
the results of feeding random noise to the C run-time
library • A typical l ibrary function crashed or hung on 30
percent of the test cases. C compilers should do better,
but this hypothesis is worth checking. Only rarely
would a tested compiler faced with Ievei l input execute
any code deeper than the lexer and its diagnostics. One
test at this level caused the compi ler to crash because an
input line was too long for the compiler's buffer.

At level 2, given lexically correct text, parser error
detection and diagnostics are tested, and at the same
time the Jexer is more thoroughly covered . The C
Standard describes the form ofC tokens and C "white
space" (blanks and comments) . I t is relatively easy ro
write a lexeme generator that wi l l eventual ly produce
every correct token and white-space . What surprised us
was the kind of bugs that the testing revealed at this

leve l . One compiler could not handle OxOOOOO l if
there were too many lead i ng zeros in the hexadecimal
number. Another compi ler crashed when faced with
the tloating-point constant l E l 000. lvlany compi lers
failed to properly process digraphs and trigraphs.

Stochastic Grammar

A vocabu lary is a set of two kinds of symbols: terminal
and nontermi na l . The terminal symbols are what one
can write down. The nonterminal symbols are names
for h igher level language structures. For example, the
symbol "+" is a termina l symbol , and the symbol
"addi tive-expression" is a non terminal symbol of the
C programming language. A grammar is a set of ru les
for describing a language . A ru le has a l eft side and a
right side . The left side is always a nonterminal sym
bol . The right side is a sequence of symbols. The rule
gives one definition for the structure named by the left
side. For example , the r u l e shown i n Figure l defi nes
the use of"+" for addition in C. This rule is recursive,
defining additive-expression in terms of itse l f.

There is one special nonterminal symbol cal led the
start symbol . At any time, a non terminal symbol can be
replaced by the right side of a ru le for which i t is the left
side. Beginning with the start symbol, nonterminals
can be replaced unti l there are no more nontenninal
symbols. The result of many replacements is a sequence
of terminal symbols. If the grammar describes C, the
sequence of termina l symbols wi l l form a syntactically
correct C program . Randomly generated white-space
can be inserted during or after generation.

A stochastic grammar associates a probabi l ity with
each grammar rule.

For l evel 2, we wrote a stochastic grammar for lex
emes and a Tel script to interpret the gram mar,; " per
forming the replacements j ust descri bed . Whenever a
nonterminal is to be expanded, a new random nu mber
is compared with the fixed rule probabil i ties to direct
the choice of right side.

In either case, at this level and at levels 3 through 7,
setting the many fixed choice probabilities permits
some control of the distri bution of output values.
Not all assignments of probabil ities make sense. The
probabi l i ties for the right sides that define a specific
nonterminal must add up to 1 .0 . The probabi l i ty of
expanding recursive rules must be weighted toward a
nonrecursive alternative to :�void a recursion loop in
the generator. A system of l i near equations can be
solved for the expected lengths of strings generated by

add i t ive - express i on addi t i ve-expres s i on + m l t ip l i c a t ive- expres s i on

Figure 1
Rul e That Defines rhe Use of"+" tor Addition i n C

1 02 Digital T�'chnic1l J ournal Vol . l O No. 1 1 998

each n onterm i na ! . H� for some set of proba bi l i ties, a l l
the expected lengths are finite and non negative, this
set of probabi l ities ensures that the generator does not
often run away.

Increasing Test Quality

At level 3, given syntacticall y correct text, one would
expect to see declaration d iagnostics whi le more thor
oughly coveri ng the code in the parser. At this level ,
the generator i s u n l i kely to prod uce a test program
that wi l l compi le . Nevertheless, compiler errors were
detected . For example, one parser refused the expres
sion 1 == 1 = 1 .

The syntax o f C i s given i n the C Standard . Using
the concept of stochastic grammar, i t is easy to write a
generator that wi l l eventuaUy produce every syntacti
cally correct C translation - u nit . In fact, we exte nded
our Tcl lexer grammar to al l of C.

At level 4, given a syntactical ly correct generated
program i n which every identifier is dec lared and a l l
expressions are type correct, t h e lexer, t h e parser, a n d a
good deal of the sema n tic logic of the compiler are
covered . Some generated test programs compile and
execute, giving the first interesting differential testing
results . Achieving level 4 is not easy but is relatively
straightforward for a n experienced compiler writer. A
symbol table m ust be bui l t and the identifier use l i m
ited t o those identi fiers that are al ready declared . The
req u irements tor combining arithmetic types in C
(int , short , char , float , double with long
and/or unsigned) were ex pressed grammatical ly.
Grammar ru les defining, for example, inc-add itive
expression replaced the ru les defining additive-expres
sion . The replacements were done systematical ly tor a l l
combinations of arith metic types and operators. To
avoid introd ucing typographical errors i n the defining
grammar, much of the grammar itself was generated
by auxi l iary Tel programs. The Tel grammar i nter
preter did not n eed to be changed to accommodate
this more accurate and volumi nous gram matical data.
We extended the generator to implement declare-

before-use and to provide the derived types of C
(struct , union , ointer) . These necessary
i mprovements led to thousands of l ines of tricky
implementation detail in Tel . At this poi nt , Tel, a
nearly structureless language, was reaching i ts l imits
as a n i mple mentation language.

At level 5, where the static semantics of the C
Standard have been factored i nto the generator, most
generated programs com pile a nd r u n .

Figure 2 con tains a fragment of a generated C test
program ti·om level 5 .

A large percentage o f level 5 programs terminate
abnormally, typically on a divide- by-zero operation. A
pecuJiarity of C is that many operators prod uce a
Boolean value ofO or l . Consequently, a lot of expres
sion results arc 0, so it is l ike ly tor a division operation
to have a zero denominator. Such tests are wasted. The
n u m ber of wasted tests can be reduced somewhat by
setting low probabilities for using divide, for creating
Boolean val ues, or fix using Boolean val ues as divisors.

Regarding level 6, dynamic standards violations can
not be avoided at generation time without a priori
choosing not to generate some valid C, so instead we
implement post-run analysis. For every discovered dif
ference (potential bug), we regenerate the same test case,
replacing each arithmetic operator witl1 a fi.mction cal l ,
inside which tl1ere is a check for standards violations.

The followi ng is a fu nction that checks for "integer
shi ft out of range . " (l f we were testing C++, we could
have used overloading to avoid havi ng to incl ude the
type signature i n the name of the checking fu nction .)

· n
i n t_shl_i n t_i n t (i n t val , i n t arnt) {

a s ser (amt >� 0 am < s i zeof (in t) * 8) ;
return val << amt ;

For example, the generated text

a < < b

is replaced upon regeneration by the text

i t_sh l _in t_ i n (a , b l

H u l 1 5 + - - u j 8 * • • H l 1 6 - (u i 1 7 + + + u i 2 0 * (s l 2 1 & (a rgc < �

Figure 2

c 1 4) ? (us2 3) < • + argc: < = • + s 1 2 2 : - - ((* & * sl 4 1)
0 1 6 0 0 3 0 3 7 < • • (5u7) . s i t 5m6 & 1 7 3 1 0 4 4 3 8 u * + + ui 5 * (

nsigned int I ++ (ld2 6)) & (((0 7 6 1) * 2 1 3 7 1 6 7 7 2 1 L * sl27 ?
u l2 8 & d 1 2 * + + d9 * DBL_EPSI LON * 7 e + 4 * + + 1 1 ., , d l O * d1 2 * (
" ld3 J * . � L * 9 . 1 - ld3 2 * ++ f 3 3 - - . 7 3 9 2 E- 6 L * " ld3 4 + ?. ? . 8 2 L
+ 1 . 9 1 * - - l d 3 5 >= H l d3 7) = - . F + (+ + f 3 8) + + + [3 9 * [4 0 > (
floa t) + + f 4 1 * 1: 4 2 >= c l 4 + + : sc43 & s s 4 4 1 ' I IC 1 3 & . 9 3 0 9L (
u i 1 8 * 0 0 7 1 1 U * u i l 9 , sc 4 6 - - ? - - ld4 7 + ld4 8 : • • Ld4 9 - ld4 8 *
+ + ld5 0 : • + l d 5 l I > - 2 3 9 . 6 1 1) • - + + ar c (int s ig ned) argc -
+ + ui 5 4) - + + · 1 7 > = • • u l 5 8 * argc - 9ul * + - & ul59 * + + u l 6 0 ;

Generated C Expression

Digital Technical Journal Vol . 10 No. 1 1 998 1 03

It� on being rerun, the regenerated test case asserts a
stand ards violation (tor example, a shift of more than
the word length) , the test is discarded and testing con
ti nues with the next case.

Two problems "'�th the generator remain: (l) obtain
i n g enough output fi-om t h e generated programs so
that d ifferences are visible and (2) ensuring that the
generated programs resemble real-world programs so
that the developers are interested in the test results .
Solving these two problems brings the q u al ity of test
input to level 7. The t1ick here is to begin generating the
program not fi-om the C grammar nonterminal symbol
translation -u nit but rather !Tom a model program
described by a more e laborate string in which some of
the program is a lready fully generated . As a simple
example, suppose you want to generate a number of
print statements at the end of the test program. The
starting string of the generating grammar might be

n de f i ne P (v) prinl f (� v • - % x \ \ n " , v i

in a i n ()

decl ara t i on - l i s e

s t <> tement 1 i s t

r i t - l i s t

ex i t (0) ;

where the gram matical defin i tion of pri nt- l i s t I S
given by

pri n t l i s t P (j den t i f ier) ;
pr i n t - l i pr i n t - l i s t P (i denl i f i er) ;

I n the starti ng stri ng a bove there are three nonter
mi nals for the three l ists i nstead of j ust one for the
standard C start symbol tra nslation- unit . Programs
generated tl-om this starting stri ng wi l l cause output
j ust betore exit . Because d i fferences caused by rou nd
ing error were un i nteresti ng t o u s , w e mod i fied this
print macro tor types f loa t and double to pri nt only
a tew significant d igits. With a l ittle more effort, the
expa nsion of pri n t - l i s t can be forced to print each
variable exactly once.

Alternatively, suppose a test designer receives a bug
report fl·om the field, analyzes the report, and fixes the
bug. I nstead of simply putting the bug-causing case in
the regression suite, the test designer can genera l i ze it
in the manner j ust presented so that many simi lar test
cJses can be used to expl ore for other nearby bugs.

The effect of l evel 7 is to augment the probabi l i ties
in the stochastic grammar with more precise and direct
means of control .

Forgotten Inputs

The e laborate com mand - l i ne fl ags, config fi les, and
environ ment variables that condition the behavior of
progr:�ms arc also input. Such input can also be gener
ated using the same toolset that is used to generate the
test programs. The very first test on the very first run

1 04 Dig;i t<ll Tcchnic�l journal Vol . ! 0 No. l ! 998

with generated com piler directive flags revea led a bug
i n a compiler under test-it could not even compi le its
own header files .

Results

Table l indi cates tl1e ki nds of bugs we discovered d u r
ing the testi ng. Only those results that are exhi bited by
very short text are shown . Some of the resu lts derive
from hand genera l ization of a p roblem that origi na l ly
surfaced through random testi ng.

There was a reason for each result . For example, the
server crash occurred when the tested compi ler got a
stack overflow on a heavily loaded machine with a very
large memory. The operating system attempted to
cl ump a gigabyte of com piler stack, which caused a l l
the other active users to thrash , and many of them a lso
d u m ped tor l ack of memory. The many disk drives on
t he server began a d ance of the l ights that sopped up
the remai n ing free resources, causing the operators to
boot the server to recover. Excel lent testi n g can m;�kc
you unpopular with almost everyone.

Test Distribution

Each tested or comparison program must be executed
where i t is supported. This may mean d i frerent hard
ware, oper;�ting system , a n d even p hysical location.

There are n umerous ways to ut i l ize a network
to distribute tests and the n gather the resu lts. One par
ticul arly simple way is to use continuously running
watcher programs. Each watcher program periodical ly
exami nes a common ti le system for the existence of
some particu lar fi les upon which the program can act.
If no fi les exist, the watcher program sleeps for a whi l e
and tries agai n . O n most operating systems, watcher
programs can be implemented as command scripts.

There is a test master and a n u m ber of test beds .
The test master generates the test cases, assigns them
to the test beds, and later analyzes the resu l ts . Each
test bed runs its assigned tests. The test master and test
beds share a fi le space, perhaps via a network. For each
test bed there is a test input directory and a test output
di rectory.

A watcher program ca l led the test d river waits u n ti l
a l l the (possibly remote) test i nput d i rectories are
empty. The test d river then writes its l atest generated
test case i nto each of tlhe test input d i rectories and
returns to its watch -sleep cycle. For each test bed there
is a test watcher program that waits unt i l there is a fi le
i n its test i nput d irectory. \Vhen a test watcher finds a
fi le to test, the test watcher r uns the new test, puts the
resu lts in i ts test output d i rectory, and returns to the
watch -sleep cyc le . Another watcher program cal led
the test analyzer waits u ntil all the test output directo
ries contain results. Then the results, both input and

Table 1
Resu lts of Test ing C Com p i lers

Sou rce Code Resulting Problem

i f (1 . 1)

1 ? 1 : 1 /0

O .OF/O.OF

Constant float expression evaluated false

Several compiler crashes

x != 0 ? x!x : 1

1 == 1 == 1

Compiler crash

I ncorrect answer

Spurious syntax error

Spurious type error - ! 0

OxOOOOOOOOOOOOOOO

Ox80000000

1 E 1 000

Spurious constant out of range message

Incorrect constant conversion

Compiler crash

1 » INT_MAX

'ab'

Twenty-minute compile t ime

Inconsistent byte order

int i=si zeof(i = 1) ;

LDBL_MAX

(++n,O) ? -- n : 1

Compiler crash

Incorrect value

Operator ++ ignored

if (s izeof(char)+d) f(d)

i=(uns igned)- 1 .0F;

I l l egal instruction in code generator

Random val u e

i nt f(reg ister()); Compiler crash or spurious d iagnostic

i nt (. . . (x) . . .); Enough nested parentheses to kill the compi ler

Spu rious d iagnostic (10 parentheses)

Compiler crash (100 parentheses)

Server crash (10 ,000 parentheses)

Spurious e rror messages d igraphs (<: <% etc.)

alb The famous Pentium divide bug (we did not catch it

but we could have)

output, are col lected for analysis, and al l the files are
de leted from every test input and output directory,
thus enabl ing another cycle to begi n .

Using the fi l e system for synchroni zation i s adequate
tor computations on the scale of a compile-and-execute
sequence. Because of the many sleep petiods, this distri
bution system runs efficiently but not fast. I f t11rough
put becomes a problem, the test system designer can
provide more sophisticated remote execurjon. The dis
tri bution sol ution as described is neither robust against
crashes and loops nor easy to start. I t is possible to elab
orate the watcher programs to respond to a reasona ble
nu mber of additional req uirements .

Test Analysis

The test analyzer can compare the output in various
ways. The goal is to d iscover l ike ly bugs in the com
piler u nder test. The i nitial step is to distinguish the
test resu l ts by fai l ure category, using corresponding
directories to hold the results . If the compiler under
test crashes, the test analyzer writes the test data to the
crash directory. If the compiler under test enters an

endless loop, the test analyzer writes the test data to
the loop di rectory. I f one of the comparison compi lers
crashes or enters an end less loop, the test analyzer dis
cards the test, si nce reportin g the bugs of a compari
son compiler is not a testing objective . If some , but
not a l l , of the test case executions terminate a bnor
m al ly, the test case is written to the a bend directory. I f
a l l the test cases run to completion but the output dif
fers, the case is written to the test d iff directory.
Otl1erwise, the test case is discarded .

Test Reduction

A tester must examine each filed test case to determine
i f it exposes a t:mlt in the compiler u nder test. The first
step is to reduce the test to the shortest version that
qual ifies for exami nation .

A watcher cal led the crash analyzer exami nes the
crash directory tor files and moves tou n d files to a
workin g directory. The crash ana lyzer then appl ies a
shorte n ing transformation to the source of the test
case and reruns the test. If the compiler u nder test sti l l
crashes, the origi nal test case is replaced by the short
ened test case . Otherwise, the change is backed out

Digital Technical JournaJ Vol . 10 No. 1 1 998 1 05

and a new transformation is tried . We used 2 3 heuris
tic tra nstorma tions, including

• Remove a statement

• Remove a decl aration

• Change a constant to l
• Change an identi fier to l
• Delete a pair of matching braces

• Delete an if clause

When all the transformations h ave been systematical ly
tried once, the process is started over again . The
process is repeated until a whole cycle l eaves the
source of the test unchanged . A similar process is used
for the loop, :�bend, and diff di rectories .

The typical resu l t o f the test reduction process is to
reduce generated C test programs of500 to 600 lines
to eq u a l ly usefu l C p rograms of only a few l i nes. It is
not unusual to usc 10 ,000 or more com pi le opera
tions d u ring test reductio n . The trade-off is using
many com puter cycles instead of h uman eftort to ana
lyze the ugly generated test case .

Test Presentation

After the shortest form of the test case is ready, the test
analyzer wraps it in a command script that

l . Reports environ mental information (compi ler ver
sion , compiler flags, name of the test p latform, time
o f test, etc .)

2 . Reports the test output or crash information

3. Reruns the test (the test input is em bedded in the
scri pt)

The test analyzer writes the command scripts to a
results d i rectory.

Test Evaluation and Report

The person who is managing the d i fterential testi ng
setup periodical l y runs scripts that have accu m u lated i n
the results directory to determi ne which ones expose a
problem of interest to the development team . One
p roblem pecu l iar to random testing is that once a bug
is found, it will be found again and again until i t is
fi xed . This argues the case for givi ng high priority to
the bugs e xposed by differential testing. Uni nteresti ng
and dupl icate tests are manual ly djscarded, and the rest
are entered into the deve l opment team bug queue.

Summary and Directions

D i fferential testi ng, suitably tuned to the tested
program, complements traditional software testing
processes. It finds fau l ts that would otherwise remain
undetected. I t is cost-effective. It is applicable to a
wide range o f b rge software. It bas p roven unpop u l ar
with the developers of the tested software .

I 06 Digir�l TcchnicJ I JournJI Vol . 1 0 No. I 1 99R

This technol ogy exposed new bugs i n C compilers
each day during its use at D I GITAL. Most of the bugs
were in the comparison compil ers, but a signi ficant
n u m ber of bugs i n D I GITAL code were found and
corrected .

N u merous specia l-purpose differential testi ng har
nesses were put into use at DIGITAL, each testi ng
some smal l part of a l arge program . For example, the
C p reprocessor, m u ltidi mensional Fortran arrays,
opti m i zer constant folding, and a new print £ func
tion each were tested by ad hoc d ifferential testers.

The J ava A P I (r u n - time l i brary) is a large body of
relatively new code that runs on a wide variety of p bt
forms. Since "Write once, run anywhere" is the Java

motto, the standard for conformance is high; however,
experience has shown that the standard is d ifficult to
ach ieve . D i fferentia l testi ng should hel p . vVl1:�t needs
to be done is to generate a seq uence of calls i nto the
API on various J ava p latforms, comparing the results
and reporti ng d ifferences. Techn ical ly, this proced u re
is much simpler than testing C compilers . Chris Rohrs,
an NI IT intern at D IGITAL, wrote a system enti rely in
Jav:�, gathering method signature information d i rectly
out of the bi nary class fi les . This API tester may be
used when the qual i ty of the Java A P I reaches the
point where the i m plementors are not b uried in bug
reports and when there are more independent imple
mentations of the J ava run t ime.

Differential testing can be used to i ncrease test cov
erage. Usi ng the coverage data taken fro m running
the standard regression suite as a base l ine, the devel
opers can run random tests to see i f coverage can
be increased . Developers can fi-eely add coverage
increasing tests to the test suite using the test output as
an in i tia l oracle . No harm is done because even if the
recorded resu l t is wrong, the compiler is no worse off
for it . I f at a l ater time a regression is observed on the
generated test, either the new or the old version was
wrong. The developers are alerted and can react. John
Parks and John Hale appl ied this technology to
DIGITAL's C compi lers.

The problem of reti ri ng an old com piler in favor of a
new one requires the new one to duplicate old bel1:1vior
so as not to upset the installed base. Differential testing
can compare the old and the new, flagging al l new
results (correct or not) that disagree with d1e old results.

D i fferential testi ng can be used to measure q u a l i ty.
Supposi ng that the majority r ules, a mi l l ion tests can
be run on a set of competing compi lers. The metric is
failed tests per m i l l io n r u ns . The authors of the tai led
compilers can either fix the bugs or p rove the majority
wrong. In any case, quality improves.

At Compaq , d i fferential testing opportunities arise
regularl y and are often satisfied by testing systems that
arc less e laborate than the original C testi ng system ,
which has been reti red .

Acknowledgments

This work was begun in the Digital Cambridge
Research Laboratory by Andy Payne based on his ear
lier experience in testing DIGITAL Alpha hardware.
The author and August Reinig continued the develop
ment as an advanced development project in the com
piler prod uct group in Nashua, New Hampshire.
Steve Rogers and Christine Gregowske contributed to
the work, and Steve eventually placed a free working
prototype on the web . 7 Bruce Foster managed and
encouraged the project, giving the implementors ideas
faster than they could be used .

References and Notes

I . Information on resting is av:Ubble :�r hnp:/ jww\v.remvorks .
com/Insrirute/HorList/.

2 . B. Beizcr, Sojttl 'ttre Tesli 1 1,� und Quality Assurance (New
York: Van Nosmnd Reinhold, 1 984) .

3. 150/!EC 9899. 1 990, Programming Languages - c ; lst
ed . (Geneva, Switzerland : I nternational Organization
for Standardization, 1 990) .

4 . B . Mi l l er, "An Empirical Study of Rel iabi l i ty," CA CM,
vol . 33, no. 1 2 (December 1 990) : 32-44.

5. Infornution on Tci/Tk is :wai l able at
http :/ /sunscript.sutl .com/.

6 . J . Ousterhout, 7 C/ and !be 7'1.! Toolkit (Reading, Mass . :
Add is on-Wes ley, 1994) .

7 . Intormation on DDT distribution is available at
http:/ /steve-rogers.com/projecrs/ddt/.

General Reference

W. McKeeman, A. Rein ig, :md A. Payne, "Method
and Apparatus for Software Testing Using a
Differential Testing Technique to Test Compilers,"
U .S . P:�tent 5 ,754,860 (May 1 998) .

Biography

William M. McKeeman
Will iam McKeeman develops system sofrwat-e for Compaq
Computer Corporation. He is a senior consu l ting engineer
in the Core Technology Group . His work encompasses
fast-turnaround compilers, unit testing, difterential resting,
physics simu lation , and the) ol'o compiler. B i l l came to
D I GITAL in 1 988 after more than 20 years in aodemia
and rese:�rch. Most recently, he was a research professor at
the Aiken Computation Laboratory of Harvard University,
visiting from the Wang Institute Masters in Software
Engineering program, where he served as Professor and
Chair of the Facu lty. He has served on the facu lties of rhe
University ofCal i tornia at Santa Cruz and Stanford
Universitv and on ,·arious stare and universitv computer
advisory committees. In addition, he has been an ACM and
I EEE National Lecturer and chairman of rhe 4th Annual
Workshop in Microprogramming and is a member ofrh e
IF IP Working Group 2 . 3 o n Programming Methodology.
B i l l founded the Summer I nstitute in Computer Science
progroms at Santa Cruz and Stanford and was technical
advisor to Boston Universirv for the W:1ng Institute 1 988
Summer Institute. He received a Ph . D . in computer sc i
ence ti·om Stantord U niversity, an .M.A. in mathematics
fi·om The George Washington University, a B .A. i n mathe
matics ti·om University ofC:�Iiforni:� ar Ikrkeley, :md pi lot
wings fi·om the U . S . Na\')'. B i l l has coauthored 16 patents,
3 books, and numerous publ ished papers in the arc:�s of
compi lers, programming language design, :md program
ming methodology.

Digital Technical journal Voi . J O No. l 1998 1 07

ISSN 0898-901X

Printed in U.S.A. EC-P9706-18/98 12 19 1.0 Copyright © Compaq Computer Corporation

	Front cover
	A letter to readers of the Digital Technical Journal
	Contents
	Introduction
	Foreword
	Tracing and Characterization of Windows NT-based System Workloads
	Automatic Template Instantiation In DIGITAL C++
	Measurement and Analysis of C and C++ Performance
	Alias Analysis in the DEC C and DIGITAL C++ Compilers
	Compiler Optimization for Superscalar Systems: Global Instruction Scheduling without Copies
	Maximizing Multiprocessor Performance with the SUIF Compiler
	Debugging Optimized Code: Concepts and Implementation on DIGITAL Alpha Systems
	Differential Testing for Software
	Back cover

