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Introduction 

C. Robert Morgan 
Senior Consulting Engineer and 
Technical Program Manage1; 
Core Technology Croup 

Digital Technical Journal 

The complexity of high-performance 

systems and d1e need tor ever-increased 

performance to be gained from those 

systems creates a challenge for engi

neers, one d1at requires bod1 experience 

and innovation in the development 

of software tools. The papers in this 

issue of tJ1e]ournal are a few selected 

examples of the work performed 

within Compaq and by researchers 

worldwide to advance me state of me 

art. In fact, Compaq supports rele

vant research in programming lan

guages and tools. 

Compaq has been developing 

high-performance tools for more 
than thirty years, starting with the 

Fortran compiler for the DIGITAL 

PDP-10, introduced in 1967. Later 

compilers and tools for VAX com

puter systems, introduced in 1977, 

made the VA.'< system one of me most 

usable in history. The compilers and 

debugger for VAXjVMS are exem

plary. With the introduction of the 

VfuY.. successor in 1992, the 64-bit 
RISC Alpha systems, Compaq has 

continued me tradition of developing 

advanced tools that accelerate appli

cation performance and usability for 
system users. The papers, however, 

represent not only the work of 
Compaq engineers but aJso that of 

researchers and academics who are 

working on problems and advanced 

techniques of interest to Compaq. 

The paper on cbaractetization of 

system workloads by Casmira, Hw1ter, 

and Kaeli addresses the capture of 

basic data needed for me development 

of tools and high-performance appli

cations. The authors' work focuses 

on generating accurate profile and 
trace data on machines running the 

Windows NT operating system. 
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Profiling describes the point in the 

program that is most frequently 

executed. Tracing describes the 

commonly executed sequence of 

instructions. In addition to helping 

developers build more efficient 

applications, this information assists 

designers and implementers of future 

Windows NT systems. 

Every compiler consists of two 

components: the front end, which 

analyzes the specific language, and 

the back end, which generates opti

mized instructions for the target 

machine. An efficient compiler is a 

balance of both components. As lan

guages such as C++ evolve, the com

piler front end must also evolve to 

keep pace. C++ has now been stan

dardized, so evolutionary changes 

will Jessen. However, compiler devel
opers must continue to improve 

front-end techniques for implement

ing the language to ensure ever better 

application performance. An impor

tant feature of C++ compiler develop

ment is C++ templates. Templates 

may be implemented in multiple 
ways, with varying effects on appli

cation programs. The paper by 

Itzkowitz and Foltan describes 
Compaq's efficient implementation 
of templates. On a related subject, 

Rotid1or, Hanis, and Davis describe 

a systematic approach Compaq has 
developed for monitoring and 

improving C++ compiler perfor

mance to minimize cost and maxi
mize function and reliability. 

Improved optimization techniques 

for compiler back ends are presented 
in three papers. In the first of d1ese, 

Reinig addresses the requirement in 

an optimizing compiler for an accu
rate description of the variables and 



fields that may be changed by an 
assignment operation, and describes 
an efficient technique used in the 
C/C++ compilers for gathering this 

information. Sweany, Carr, and Huber 
describe techniques for increasing 
execution speed in processors like 
the Alpha that issue multiple instruc
tions simultaneously. The technique 
reorders the instructions in the pro
gram to increase the number of 
instructions that are simultaneously 
issued. Maximizing the performance 
of multiprocessor systems is the sub
ject of the paper by Hall et al., which 
was previously published in IEEE 
Computer and updated with an 
addendum for this issue. The authors 
describe the SUIF compiler, which 
represents some of the best research 
in this area and has become the basis 
of one part of the ARPA compiler 
infrastructure project. Compaq 
assisted researchers by providing the 
DIGITAL Fortran compiler fi-ont end 
and an AJphaServer 8400 system. 

As compilers become more effec
tive in increasing application program 
performance, the ability to debug 
the programs becomes more difficult. 
The difficulty arises because the 
compiler gains efficiency by reorder
ing and eliminating instructions. 
Consequently, the instructions for 
an application program are not easiJy 
identifiable as part of any particular 
statement. The debugger cannot 
always report to the application pro
gram where variables are stored or 
what statement is currently being 
executed. Application programmers 
have two choices: Debug an unopti
mized version of the program or find 
some other technique for determining 
the state of the program. The paper 

by Brender, Nelson, and Arsenault 
reports an advanced developmt:nt 
project at Compaq to provide tech
niques for the debugger to discover 
a more accurate image of the state of 
the program. These techniques are 
currently being added to Compaq 
de buggers. 

One of the problems that tool 
developers face is increasing tool reli
ability. Tool developers, therefore, 
test the code. However, developers 
are often biased; they know how their 
programs operate, and they test cer
tain aspects of the code but not oth
ers. The paper by McKeeman describes 
a technique called differential testing 
that generates correct random tests of 
tools such as compilers. The random 
nature of the tests removes the devel
opers' bias. The tool can be used for 
two purposes: to improve existing 
tools and to compare the reliability 
of competitive tools. 

The High Performance Technical 
Computing Group and the Core 
Technology Group within Compaq 
are pleased to help develop this issue 

of the]ournal. Studying the work 
performed within Compaq and by 
other researchers worldwide is one 
way tlut we remain at the cutting 
edge of technology of programming 
language, compiler, and program
ming tool research. 
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Foreword 

William C. Blake 
Director, High Performance 
Technical Computing and 
Core Technologv Gruups 

Digital Technical Journal 

You might think that the cover of this 
issue of the Digital Tecbnicaljournal 
is a bit odd. After all, what could be 
the relevance of those ancient alchemists 

in the drawing to the computer-age 
topic of programming languages and 
tools? Certainly, both alchemists and 
programmers work busily on new 
tools. An even more interesting 
metaphorical connection is the 
alchemist and the compiler software 
developer as creators of tools that 
transform (transmute, in the strict 
sense of alchemy) tbe base into the 
precious. The metaphor does, how
ever, break down. Unlike the mytl1 
and folklore of alchemy, the science 
and technology of compiler software 
development is a real and important 
part of processing a new solution or 
algorithm into the correct and high
est performance set of actual machine 
instructions. This issue of tl1ejournal 
addresses current, state-of-the-art 
work at Compaq Computer Corp
oration on programming languages 
and tools. 

Gone are the days when program
mers plied their craft "close to the 
machine," tlut is, working in detailed 
machine instructions. Today, system 
designers and application developers, 
driven by the pressures of time to 
market and technical complexity, 
must express their solutions in terms 
"close to the programmer" because 
people think best in ways that are 

abstract, language dependent, and 
machine independent. Enhancing 
the characteristics of an abstract 
high-level language, however, con
flicts with the need tor lower level 
optimizations tl1at make tl1e code 
run f:1stest. Computers still require 
detailed machine instructions, and 

Vol.  1 0  No. I 1998 

the high-level programs close to the 

programmer must be correctly com
piled into those instructions. This 
semantic gap between programming 
languages and machine instructions is 
central to the evolution of compilers 
and to microprocessor architectures 
as well. The compiler developer's role 
is to help close tbe gap by preserving 
the correctness of the compilation 
and at the same time resolving the 
trade-offs between the optimizations 
needed tor improvements "close to 
the programmer" and those needed 
"close to the machine." 

To put the work described in tl1is 
journal into context, it is helptl.IJ to 
think about the changes in compiler 
requirements over tl1e past 15 years. 

It was in the early 1980s that the direc
tion of future computer architectures 
changed rrom increasingly complex 
instruction sets, CISC, that supported 
high-level languages to computer 
architectures with much simpler, 
reduced instruction sets, RJSC. Three 
key research efforts led the way: the 
Berkeley RJSC processor, the IBM 
801 RISC processor, and the Stanford 
MIPS processor. Nl three approaches 
dramatically reduced the instruction 
set and increased the clock rate. The 
RISC approach promised improve
ments up to a factor of five compared 
witl1 CISC machines using the same 
manufacturing technology. Compaq's 
transition rrom the VAX to the Npha 
64-bit RISC architecture was a direct 
result of the new architectural trend. 

As a consequence of these major 
architectural changes, compilers and 
their associated tools became signifi
cantly more important. New, much 
more complex compilers for RISC 
machines eliminated the need tor the 



large, microcoded CISC machines. 

The complexities of high-level lan

guage processing moved from the 

petri tied software of CISC micro

processors to a whole new generation 

of optimizing compilers. This move 

caused some to claim that ruse really 

stands for "Relegate Important Stuff 

to Compilers." 
The introduction of the third-gen

eration Alpha microprocessor, the 

21264, demonstrates that the shift to 

ruse and AJpha system implementa

tions and compilers served Compaq 

customers well by producing reliable, 

accurate, and high-performance com
puters. In fact, AJpha systems, which 

have the ability to process over a bil

lion 64-bit floating-point numbers 

per second, pertorm at levels formerly 

attained only by specialized super

computers. It is not surprising that 

the AJpha microprocessor is the most 

frequendy used microprocessor in the 

top 500 largest supercomputing sites 

in the world. 

After reading through the papers 

in this issue, you may wonder what is 

next for compilers and tools. As phys

ical limits curtail the shrinking of sili
con feature sizes, there is not likely to 

be a repeat of the performance gains 
at the microprocessor level, so atten
tion will turn to compiler technology 
and computer architecture to deliver 
the next thousandfold increase in sus
tained application pertormance. The 

two principal laws that atfect drama6c 
application pertormance improve

ments are Moore's Law and Amdahl's 

Law. Moore's Law states d1at perfor

mance will double each 1 8  months 
due to semiconductor process scaling; 

and Amdahl's Law expresses the 

diminishing returns of various system 

speedup enhancements. In the next 
1 5  years, Moore's Law may be stopped 

by the physical reali6es of scaling lim

its. But Amdahl's Law will be broken 

as well, as improvements in parallel 

language, tool development, and new 

methods of achieving parallelism wiU 

posi6vely affect the future of compil

ers and hence application performance. 

As you will see in papers in this issue, 

there is a new emphasis on increasing 

execution speed by exploiting the 

multiple instruction issue capability of 

AJpha microprocessors. Improvements 

in execu6on speed will accelerate dra

matically as future compilers exploit 

performance improvement techniques 

using new capabilities evolved in AJpha. 

Compilers will deliver new ways of 

hiding instruc6on latency (reducing 

the pertormance gap bel:\veen vector 

processors and IUSC superscalar 

machines), improved unrolling and 

optimization of loops, instruction 

reordering and scheduling, and ways 

of dealing with parallel decomposi-

6on and data layout in nonuniform 

memory architectures. The challenges 

to compiler and tool developers will 

undoubtedly increase over 6me. 
By not relying on hardware 

improvements to deliver all the 
increases in performance, compiler 
wizards are making their own contri

butions- always watchful of correct
ness first, d1en run-time performance, 

and, finally, speed and efficiency of the 

software development process itself 
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Tracing and 
Characterization of 
Windows NT-based 
System Workloads 

To optimize the design of pipelines, branch pre

dictors, and cache memories, computer archi

tects study the characteristics of benchmark 

programs by examining traces, i.e., samples of 

program execution. Since commercial desktop 

applications are increasingly dependent on ser

vices and application programming interfaces 

provided by the host operating system, the 

authors argue that traces from benchmark exe

cution must capture operating system execution 

in addition to native application execution. 

Common benchmark-based workloads, how

ever, lack operating system execution. This 

paper discusses the ongoing joint efforts of the 

Northeastern University Computer Architecture 

Research Laboratory and Compaq Computer 

Corporation's Advanced and Emerging Tech

nologies Advanced Development Group to cap

ture operating system-rich traces on Alpha

based machines running the Windows NT oper

ating system. The authors describe the latest 

PatchWrx software toolset and demonstrate its 

trace-generating capabilities by characterizing 

numerous applications. Included is a discussion 

of the fundamental differences between using 

traces captured from common benchmark pro

grams and using those captured on commercial 

desktop applications. The data presented 

demonstrates that operating system execution 

can dominate the overall execution time of 

desktop applications such as Microsoft Word, 

Microsoft Visual C/C++, and Microsoft Internet 

Explorer and that the characteristics of the 

operating system instruction stream can be 

quite different from those typically found in 

benchmarking workloads. 

Digital Technic� I journal Vol. 10 No. l 1 998 

I 
Jason P. Cas mira 
David P. Htmter 
David R. Kaeli 

The computer architecture research communiry com
monly uses trace-driven sim ulation in pursuing 
answers to a variety of design issues. Archi tects spend a 
significant amoun t  of ti me studying the characteristics 
of benchmark programs by examin ing traces, i .e ., sam
ples taken from program execu tion . Popu lar bench
mark programs inc lude the SPEC' and the BYTEmark2 
benchmark test su i tes. Since the underlying assump
t ion is that these programs generate workloads that 
represent user applications, today's computer designs 
have been optimized based on the c l1aracteristics of 
these benchmark programs. 

Although the authors of popu l ar benchmarks arc 
wel l i n tentioned, the resulti ng workloads lack operat 
ing system execution and consequent ly do not  repre
sent some of the most prevalen t desktop applications, 
e.g., Microsoft Word , Microsoft Visua l  C/C++, and 
Microsoft Internet Explorer. Such applications make 
heavy use of app l ication programming inted:1ces 
(APis) ,  which in turn execute many instructions in the 
operat ing system. As a resu lt, the overal l  performance 
of many desktop applications depends on efficient  
operating system interaction .  C learly operating system 
overhead can greatly reduce the benefits of a new 
compu ter design feature. Past archi tectural studies ,  
however, have general ly ignored operating system 
interaction because few tools can generate operating 
system-rich  traces. 

This paper d iscusses the ongoing joint  ef forts of 
Northeastern U niversi ty and Compaq Computer 
Corporation to capture operating system-rich traces on 
DIGITAL Alpha-based machines running the Microsoft 
Windo>vs NT operating system. We argue th:tt tor u·aces 
of today's workloads to be accurate, they must capture 
the operating system execution as well as the native appli
cation execution . This need to capture complete pro
gram u·ace in formation has been a dtiving fen-ce behind 
the development and use of software tools such as the 
PatchWrx dynamic execution-tracing toolset, which we 
desctibe i n  this paper. 

The PatchvVrx toolset was origi nally developed by 
S ites and Perl at Digi tal Equ ipment Corporation's 
Systems Research Center. They described P:ttchWrx, as 
developed for vVindows NT version 3.5, in "Studies of 



Windows NT Performance Using Dynamic Execution 
Traces."> The Northeastern University Computer 
Architecture Research Laboratory and Compaq's 
Advanced and Emerging Technologies Advanced 
Development Group continue to develop the toolset. 
We have updated the framework to operate under 
Wi ndows NT version 4.0, added the ability to trace 
programs that have code sections larger than 4 mega
bytes (MB), added multiple trace buffer sizes, and 
developed additional postprocessing tools. 

After briefly discussi ng related tracing tools, we 
describe the PatchWrx toolset and specify the new 
features we have ad ded. We then analyze PatchWrx 
traces captured on Wi ndows NT version 4.0, demon
strating the capabilities of the tool while illustrati ng 
the im portance of capturing operating system-rich 
traces. In the final section, we su mmarize the paper, 
discuss the current l imitations of the toolset, and sug
gest new directions for development and study. 

Trace Generation Tools 

Trace-driven simulation has been the method of 
choice for evaluating the merits of various architec
tural trade-offs.'5 Traces captured from the system 
under test are recorded and replayed through a model 
of the proposed design. Computer architecture 
researchers have proposed methodologies that capture 
both application and operati ng system references. 
These tools include hardware- based"- 10 and software
based' Hs methods.  Some of the issues involved in cap
turing operating system-rich traces are 

l. Tracing overhead (system slowdown ) 

2. Accuracy (perntrbation of the memory address space) 

3. Completeness ( capturing all desired information, 
e .g . ,  the operating system reference stream) 

Table 1 contains a list of 10 tracing tools that have 
been developed over the past 10 to 15 years. Although 

Tab le 1 
Sample of Trac ing Tools  

far from complete, th is  list provides a sample of the 
tools that have been used to generate input to a variety 
of trace-driven sim ulation studies. 'vVe have character
ized each tool in terms of the three issues (criteria) pre
viously mentioned. Table llists the target plattorm(s) 
for each tracing tool. 

Note that many of these tools cannot capture oper
ating system activity. For those that can, their associ
ated slowdown can significantly affect the accuracy of 
the captured trace . Of the tools that provide this capa
bility, Patch Wrx introduces the least amount of slow
down yet mai ntains the integrity of the address space. 
The next section discusses the Patch Wrx toolset. 

PatchWrx 

Patch Wrx is a dynamic execution-traci ng toolset 
developed for use on the Alpha- based Microsoft 
W indows NT operating system. The toolset utilizes 
the Privileged Architecture Library (PAL) facility, also 
referred to as PALcode, of the Alpha microprocessor 
to perform tracing with minimal overhead .2' PatchWrx 
can instrument, i . e . ,  patch, all Windows NT applica
tion and system binary i mages, including the kernel, 
operating system services, drivers, and shared libraries. 
The PAL faci l ity is  a set of architected fu nctions and 
instructions that provides a consistent interface to a set 
of complex system functions. These routines provide 
pri mitives for memory management, context switch
ing, interrupts, and exceptions. 

Patch Wrx and the Alpha PAL Routines 

The PatchWrx software tool is made possible through 
the PAL used by DIGITAL Alpha microprocessors. 
PAL routines have access to physical memory and 
i nternal hardware registers and operate with interrupts 
disabled . PALcode is loaded from disk at system boot 
time.  We modified and extended the shrink-wrapped 
Alpha PALcode on a DIGITAL Alpha 21064-based 
system to support the PatchWrx operations. The mod-

Average Addr ess Operating 
Name Slowdown Pertur bation 

ATOM'3 lOX to lOOX No 

ATUM'6 20X No 

EEL" lOX to lOOX Yes 

Etch'" 35X Yes 

NT-Atom" lOX to lOOX No 

PatchWrx3 4X No 

Pixie'-0 lOX to lOOX Yes 

QPT 12 lOX to lOOX Yes 

Shade2' 6X No 

SimOS14 1 OX to 50,000X No 

System Activity Platfor m 

Yes DIGITAL Alpha UNIX 

Yes DIGITAL VA X Ope nVMS 

No SPARC Solaris 

No Intel x86 Microsoft Windows NT V4.0 

No DIGITAL Alpha Microsoft Windows N T  V4.0 

Yes DIGITAL Alpha Microsoft Windows NT V4.0 

No DIGITAL MIPS ULTRIX 

No SPARC Sola r is, DIGITAL ULTRIX 

No SPARC Solar is 

Yes DIGITAL Alpha UNIX, SGIIRIX, SPARC Solar is 

Digital TechnicJ! Journal Vol. 10 No. I 1998 7 
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i fied PatchWrx PAL rout ines serve two major pur
poses: ( l )  to reserve the trace bufkr at system boot 
time and ( 2 )  to log trace entries at trace ti me.  

One way that PatchWrx mai ntains a low operati ng 
overhead is  to store the captu red trace i n  a physical 
memory bu fter, w hich is reserved at boot time. The 
size of the bu ffer can be varied depending on the 
amount of physical memory i nstal led on the system .  
Since we use PAL rou tines to reserve this memory, the 
operati ng system is not aware that the memory exists 
because the PALcode performs all  low-level system i n i 
tia l ization before t h e  operating system is started. 

PatchWrx logs all trace entries in this buffer. Writi ng 
trace e ntries directly to physical  memory h as several 
advantages. F irst, writing to memory is much faster 
th;m writ ing to disk or to tape. Second, using physical 
memory a l lows tracing of the lowest levels of the oper
ating system ( i .e . ,  the page fau l t  h:md ler) without gen 
erati ng page fau l ts .  Third,  usi ng physical memor}' 
a l lows tracing across m u l ti ple threads r u n n i n g  in m u l 
tiple add ress spaces regardJess of which address space i s  
currently running.  

To enabl e PatchWrx to operate u nder Wi ndows NT 
versions 3 . 5 1  and 4.0 ,  we started with the PA L rou
tines mod i fi ed by S ites and Perf and made additional  
modi fications as required by the operating system ver
sions . These mod i fications were concentrated in the 
process d ata structu res . The PatchWrx-specitlc PAL 
routines are listed i n  Ta ble 2 .  The fi rst three routines 
are used for read ing the trace entries tl·om the bu ffer 
and for turning tracing on and off. The remain ing five 
rou tines are used to log trace entries based on the type 
of i nstruction i nstru mented . 

Patch Wrx Image Instrumentation 

Next we describe how we use PatchWrx to i nstru ment 
M icrosoft Windows NT images. Patchi ng the o perat
i ng system involves the i nstru mentation of ::d l  the 
binary images, inc lud i ng app l ications, operating sys
tem cxecutables, l ibraries, and kerne l .  O nce patching 
is complete ,  trace e ntries are logged by means or' PA L 
rou tines as i mages execute. 

Table 2 
PatchWrx-specific PAL Routines 

PAL Routines Function 

We define a patched i nstr uction as an i nstruction 
with in  an image's code section that is overwri tten wi th 
an u ncon d i tional branch ( B R) to a patc h .  The target of 
the B R  contains the parch sec/ion .  The patch section 
i ncludes the trap ( CA L L_PAL) to the appropriate PA L 
routine that l ogs a trace e ntry corresponding to the 
type of instruction p<1tched and the return branch to 
the origin a l  target. 

PatchWrx docs not mod i fy the origina l  b inary 
i mages; i nstead , i t  generates new i m ages that  conta i n  
patches. This operation preserves t h e  origi nal i mages 
on the system in case they need to be restored . 
I nstrumentation i nvolves replaci ng a l l  branching 
i nstructions of type unconditional branch, cond itional  
branch ( e . g . ,  branch i f  equal  to zero [ BEQ] ) ,  branch 
to subroutine ( BSR),  fu n ction retu rn ( RET),  j ump 
( J M P ) ,  and jump to su bro u ti n e  (JSR) within an 
i mage 's code section with unconditional  bra nches to 
a patch section.  If loads and stores are a lso traced, 
PatcbWrx rep l aces these i nstructions ( e . g . ,  load sign 
e x te nded longword [ LD L ] )  with u n conditional  
branches to tl1e patch section, where the original  load 
o r  store i nstruction is  copied . A return branch is also 
needed to return control flow to the i nstruction subse
quent to the original  load . Wnen PatchWrx enco u n 
ters this patc h ,  t h e  tool records t h e  register value of the 
original load or store i nstruction in  the trace log. The 
p atch section con tains all  the patches for the i mage 
and is added to the rewritten i mage. Figure l shows 
examp les of patched i nstructions .  Patch \rVrx rep laces 
only  branch instructions within an i mage to red uce the 
type and n u m ber of en tries logged in the trace bu ffer. 
Usi ng these traced branches, the tool can later recon 
struct the basic blocks they represent. 

As shown in Figure 1 ,  PatchWrx replaces B R and 
J M P  i nstructions with  B R  i nstructions that  transfer 
control to the patch sectio n .  The original  BR or J M P  
instruction is  repeated i n  t h e  patch section for the p u r
pose of record i n g  the value or· the target register ( i f  
necessary) i n to the trace bu ffer when the patched 
i mage is execu ted . This register val u e  is necessary tor 
reconstructi ng the traced i nstruction stream . Patch\Vrx 

PWRDENT 

PWPEEK  

PWCTRL 

PWBSR 

PWJSR 

PWLDST 

PWBRT 

PWB RF 

Read a trace entry from trace memory 

Read an arbitrary locat ion (for debug) 

I n iti a l i ze, turn trac ing on/off 

DigiL11 Technical  Journ,l l  

Record a branch to subrouti ne 

Record a jump/call/return 

Record a load/store base reg ister va l ue 

Record a condit iona l  branch taken bit 

Record a condit iona l  branch fa l l -through bit 

Vul .  !0  No. l 1 998 



ORIGINAL CODE 

EXAMPLE 1 MP ZERO , ( R1 9 )  

EXAMPLE 2 J S R  R2 6 , ( R1 9 ) 

EXAMPLE 3 BEQ R3 , TARGET . 0 0 3  

EXAMPLE 4 LDL R2 0 , 4 ( R1 6 )  

Figure 1 
Instruction Patch Examples 

replaces JSR and BSR instructions with BSR patches. 
This replacement preserves the return address ( RA) 
register fie ld value,  which contains the return address 
for the subroutine. Again, the original i nstruction is 
repeated in the patch section for register val ue record
ing during tracing to help facilitate reconstruction. 

Conditional branches have a larger and more com
plex patch than the other branch types because the 
original condition is duplicated and resolved within 
the patch . The taken or fal l -through path generates a 
bit value when logged within the taken or fall-th rough 
trace entry. The return branch i n  the patch section is a 
rep l ica of the original cond i tional branch .  

As explained earuer, tor all patches, PatchWrx replaces 
the original branch with a patch unconclitional branch .  
Since Alpha  instructions are equal i n  size, this replace
ment process al lows patching without increasing the 
code size with in  the i mage . Although the code size 
remains unchanged, the image size wi l l  increase in 
proportion to the number of patches added. This 

PATCHED CODE 

Jl!P Z'i8RO, ( Rl9) B R l?l>.TCH . 0 0 1  

PATCH . O O l : CALL_PAL PltJJSR 

J�lP ZERO , ( R 1 9 )  

��� BSR R2 6 , PAT CH . 0 0 2 

P.'\TCH . 0 0 2 : CALL_PAL PWJSR 

JMP ZERO , ( R l 9 ) 

BEQ R3 . �RSE� . 002 BR PAT . H . 0 0 3 
BACK . 0 0 3  

PATCH . 0 0 3 : 

PATCH . 0 0 3 T : 

BEQ R 2 , PATCH . 0 0 3 T 

Cli.LL_PAL PWBRF 
BR BACK . 0 0 3 

CAL _PAL P BRT 
BR TARGET . 0 0 3 

LDL R20 , 41Rl6 ) BR P TCH . 0 0 4  

Bli.CK . 0 4  

1?/I.TCH . 0 0 4 : CALL_PAL PWLDST 

LDL R2 0 , 4 ( Rl 6 ) 
BR 8 ACK . 0 0 4  

image size change becomes an issue for dynamical ly 
l inked l ibrary ( DLL) images. 

Patching Dynamic Link Libraries 

The Microsoft Windows NT operating system pro
vides a memory management system that al lows shar
ing between processes.n For example ,  two processes 
that edit text files can share the text editor application 
image that has been mapped into memory. When the 
first process i nvokes the editor, the operating system 
loads the appl ication into memory and maps the 
process's virtual address space to i t .  When the second 
process i nvokes the editor, rather than load another 
editor image, the operating system maps the second 
process's virtual address space to the physical pages 
that contain the editor. Of course, both processes con
tain local storage for private data . 

DLLs are loaded into memory and shared in this 
manner. When patches are added to a DLL, the size of 
the image i ncreases. When this image is mapped to 
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physical memory ( as per its preferred base load 
address ) ,  the larger image may overlap with another 
image having J bJse address wi thin the new range. 
This image overlap can prevent the operati ng system 
from booting properly: some environment DLLs wi l l  
confl ict in  memory because they perform calls d i rectly 
i n to other DLLs at fixed offsets . To resolve this issue, 
we rebase 24 the preferred base load addresses of the 
patched DLLs, which modifies the base load add resses 
of each patched D L L  to e l imi nate confl icts . Rebasing 
affects the address accuracy of the patched S}'Stem,  
though we are ab le  to readjust the  addresses during 
reconstruction . An increase i n  the paging activit\' may 
a lso be observed si nce the additional code may cross 
page boundaries. 

The original version of the PatchWrx toolset was 
developed on Microsoft Windows NT version 3 . 5 .  
When versions 3 . 5 1 and 4 . 0  were released, several mod
ifications were made to the image format. In complet
ing the 3 . 5 1 - and 4.0-eompatible versions ofPatchWrx, 
we bad to add ress this issue. One change that affected 
how we patch was the placement of the I mport Address 
T1ble ( IAT) into the front of the i nitial code section of 
executable binary images. This tab le is used to look up 
the addresses of DLL procedures used ( i .e . ,  imported) 
by the executable binary. In developing the current gen
eration of Patch\Vrx, we had to make modifications to 
usc image header fields that had previously remained 
unused or reserved, indicating the executab le code sec
tions that contained data areas. 

Another issue that we addressed in the recent modi 
fications to Patch vVrx was long branches. The origina l  
version of PatchWrx replaces a l l  branch, j u mp ,  ca l l ,  
and return instructions with either B R  o r  B S R  instruc
tions to the patch section.  S ince the Patch Wrx tool has 
no information about machine state during the patch
ing phase, i t  is impossi ble to uti l ize other branching 
instructions (e .g . ,  J MP or JSR instructions) to provide 
this branch-to-patch trans i tion .  Register and register
indirect branching instructions would require per
turbing the machine state . Therefore , the developers 
could use only program counter ( PC)-based offset 
branching instructions. 

As discussed previously, in  replacing a control How 
instruction with a patch branch, PatchvVrx uses a B R  
o r  B S R  instruction in  which the off-Set field i s  set to 
branch to the correspond ing patch wi thin the image's 
patch section .  The A lpha architecture branching 
instructions use the format shown i n  hgurc 2 .  

I OPCODE REG 21 -BIT DISPLACEMENT 

31 26 25 21 20 0 

Figure 2 
Al pha Branch Instruction Format 
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The branch target virtual add ress computation t-cJr 
this format is newPC = (oldPC + 4) + (4 * sign
cxtcndcd ( 2 l -bit  branch d isp lacement) ) .  The register 
fie ld holds the return address for BSRs. With this 
branch format and target virtual add ress computation,  
the Alpha architectu re provides a branch target range 
of 4 MB from an i nstruction's current PC. 

Several appl ications that run today on Microsoft 
Windows NT version 4 .0 are sufficiently large that the 
displacement between a control rlow instruction to be 
patched and the patch location within the patch section 
exceeds this 4-MB l imit .  ( Recal l that s ince we want to 
avoid moving code or data sections, the patch section is 
placed at the end of the image . )  To address this problem, 
we developed two new branch instructions for usc with 
PatchWrx. These new branches were not implemented 
in the i nstruction set architecture of the Alpha architec
ture. I nstead, we used PALcodc to implement d1cm .  The 
two new branches arc designated long branch ( LB R) and 
long branch subroutine ( LBSR) .  F igure 3 i l l ustrates the 
format of these two i nstructions. 

The computation of the target virtual address is 
newPC = ( oldPC + 4)  + (4 * sign-ex te nded( 2 5-b it  
branch d isplacement)) tor LBR branches and ncwPC = 

(o ldPC + 4 )  + ( 32 * zcro-cxtended(20-bi t  br::mch dis
placement) ) for LBSR branches. PatchWrx uses LB Rs 
when patch ing any control flow instruction that has 
a d ispl acement greater than 4 LV!B .  PatchWrx uses 
LBSRs similarly for control How i nstructions that must 
preserve the register field value .  

\Vhcn an  LBR or LBSR instruction i s  cxecu ted 
within the image code section,  a trap to PALcodc 
occurs .  Normal ly, CALL_PAL i nstructions have one of 
several defined function fields that cause a correspond
ing PAL routine to be  executed . The two long  branch 
instructions have fu nction fields that do not belong to 
any of the defi ned CALL_PAL instructions and there
fore force an  i l legal i nstruction  exception within the 
PALcode .  This PALcodc flow has been modified to 
detect i f  a long branch has been encountered . 

25-BIT DISPLACEMENT 

LBR I NSTRUCTION FORMAT 

20-BIT DISPLACEMENT 

LBSR I NSTRUCTION FOR MAT 

Fig u re 3 
PALcode Long B ranch Instruction l-'ormars 



AB shown in Figure 3, both long branch types have 
the same PALcode operation code (opcode) value of 
000000. To distinguish between the r-.vo types, the least 
significant bit in the instruction word is set to 0 for LBRs 
and to 1 for LBSRs. This bit is not included as a usable 
bit for the displacement fields of either branch type. 
Consequently, each LBR has a 25-bit displacement field 
and each LBSR has a 20-bit field. With a 25-bit usable 
displacement field, the PALcode performs the LBR tar
get address computation, allowing a ±64-MB range . 

Since each LBSR instruction has a 20-bit d isplace
ment field, whereas the original Alpha architecture 
branch displacement field is 2 1  bits, the target instruc
tion address computation for LBSR instructions is per
formed differently than tOr standard branches within 
the PALcode. As shown in the address computation 
equation, the 20-bi t  displacement is multiplied by 32  
rather than by 4 (as for the LBR branch) .  Notice that 
the 20-bi t  d isplacement is always zero extended . The 
computation provides the LBSR instruction with a dis
placement of +32 MB.  

This computation procedure has two implications. 
First, LBSR instructions can only be used to branch 
from an image code section to an image's patch sec
tion . Second , branches into the patch section are 
either BR or BSR instructions (or their long displace
ment counterparts ) .  PatchWrx uses only BR or LBR 
instructions to return from the patch section to the 
original branch target within a code section; BSR and 
LBSR instructions are never used . Therefore, restrict
ing LBSR instructions to use positive displacements 
does not present a problem. 

The LBSR displacement mu l tiplier value of 32 does 
present some restrictions, however. The multiplier 
value of 4 used in the original Alpha instruction set 
architecture represents the instruction word length 
of 4 bytes. Thus, normal branch instruction target 
addresses must be aligned on a 4-byte boundary. By 
using the multipl ier value of 32 for LBSR instructions, 
LBSR target addresses are restricted to align on a 32-
byte ( i .e . ,  eight-instruction) boundary. Since all LBSR 
targets reside within the patch section, this restriction 
does not pose a problem . If an LBSR is to be inserted 
into the image code section and the next available 
patch target address is not aligned properly, PatchWrx 
can insert no operation ( NOP) instruction words and 
advance the next avai lable patch target address unti l 
the necessary alignment is achieved. PatchWrx never 
executes the NOPs; they are inserted for alignment 
purposes only. Although inserting these NOP instruc
tions increases the  image size, we have implemented 
several optimizations into the instrumentation algo
rithm to minimize this increase. For example, a queue 
is used to hold LBSRs that do not align . As LBR 
patches are committed , PatchWrx probes the queue to 
determine if any LBSRs align fi·om their origin to the 
newly available patch target offset. 

Trace Capture 

The PatchWrx toolset allows the user to turn tracing on 
and off and thus capture any portion of workload execu
tion. The tracing tool is also responsible for copying trace 
entJies fi-om the physical memory buffer to disk. Copying 
the trace buffer to disk is performed after u·acing has 
stopped so that the time required to perform the copy 
does not introduce any overhead during u·ace capture . 

PatchWrx logs a trace enu·y for each patch encoun
tered during program execution. AB .it executes instruc
tions witllin the code section, PatchWrx encounters an 
unconditional PatchWrx branch. Instead ofbranclling to 
the otiginal target, the patched branch transfers control 
to tl1e image's patch section . Witl1in the patch section, a 
PatcbWrx PALcall u·aps to the PAL routine correspond
i.ng to tl1e patch type and logs a trace entry to tl1e trace 
buffer. The PAL routine then returns to the instruction 
following the CALL_PAL insu·uction. PatchWrx uses an 
unconditional branch to transfer control fi-om tl1e patch 
section back to the original target within an image code 
section. During the execution of the PatchWrx PAL rou
tine, necessary machine state information is recorded 
and logged in the trace buffer. This allows for the capture 
of register contents, process I D  information, etc . ,  which 
are used later during u·ace reconsu·uction. 

The trace capture £1cility captures tl1e dynamic execu
tion of a workload running on the system .  To recon
struct tl1e trace after it has been captured, the tracing 
tool must also capture a snapshot of tlK base load 
addresses of all active images on tl1e system. This snap
shot serves as the virtual address map used in recon
structing the trace. Each active process and its associated 
libra.Jies is loaded into a separate address space, which 
may be different tha.Jl me preferred load address as spec
ified statically in tl1e image header. If each image was 
loaded into memory at its preferred base address, tl1e 
virtual address map would not be necessary to perform 
reconstruction. Instead, Patch Wrx could map target 
addresses from the trace buffer using the base address 
values contained in tl1e static image headers. 

The type of trace record that PatchWrx logs into the 
trace buffer depends on the type of branch or low-level 
PAL function being traced. Figure 4 shows the trace 
record formats. The first three trace entry formats 
consist of an 8 -bit opcode and a 24-bit time stamp. 
The time stamp is the low-order 24 bits of the CPU 
cycle counter. The 32-bit field of these three formats 
depends on the type of trace entry logged . The .first 
format is used for target virtual addresses for al l  
unconditional direct and indirect branches, j umps, 
cal ls,  returns, interrupts, and returns from interrupts. 
The 32-bit field of the second format is used to record 
the base register value tor traced load and store 
instructions and stack pointer values that are flushed 
into the trace buffer during system caJis and returns. 
The 32-bit field of the third format is used for logging 
the current active process ID at a context swap. 
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OPCODE 

8 

OPCODE 

8 

OPCODE 

8 

r-- OPCODE 

J \ START BIT 

TIME STA M P  TARGET P C  

24 32 

TIME STAMP BASE REGISTER VALUE 

24 32 

TIME STAMP NEW PROCESS 10 

24 32 

I VECTOR OF 60 TA KE N/FALL-TH ROUGH TWO-WAY BRANCH BITS 

3 1 60 

Figur e 4 
Trace Entry Formats 

The fo urth trace entry type is used for tracing con
ditional branches. It  uses a 3-bit opcode and up to 60 
taken/fal l -through bits. A start bit is  used to deter
mine how many bits are active. The start bit is  set to 
l if  a conditional branch is taken and to 0 if  the branch 
is not taken . This recording scheme allows a compact 
encoding of conditional branch trace entries. Duri n g  
trace reconstruction, PatchWrx uses conditional branch 
trace entries to reconstruct the correct instru ction 
flow when condi tional branches are encountered and 
to provide concise information about when to deliver 
interrupts in loops. 

Trace Reconstruction 

The reconstruction phase is the final step in generating 
a full instruction stream of traced system activity. As 
shown i n  Figure 5 ,  trace reconstruction requires sev
eral resources in  order to generate an accurate instruc
tion stream of all traced system activity. 

Trace reconstruction reads and initializes the head
ing of the captured trace, which i ncludes a time stamp, 
the name of the user who captured the trace, and any 
important system configuration information, e . g . ,  the 
operating system version n u m ber. Next, reconstruc
tion reads the first four raw trace records, which are 
automatically entered whenever tracing is  turned on. 
These records contain the first target virtual address, 
the active process ID , the value of the stack pointer, 
and the first talcen/fall- through record to be used 
(such records always precede the branches they repre
sen t ) .  PatchvVrx uses this i nformation to initialize the 
necessary data su·uctures of the reconstruction process. 

Digital Technic:�] Journal Vol .  10  No. I 1 998 

Using the first target virtual address and process ID 
pair from the captured trace, trace reconsu·uction con
su l ts the virtual address map to determine in which 
image the instruction falls (based on its dynamic base 
load address) and where that image is physically 
located o n  the system .  The tool consults the patched 
image to determine the actual instruction at the target 
address, records this instruction , and then reads the 
next insu·uction from the patched image . This process 
continues unti l  reconstruction encounters either a 
conditional branch or an unconditional branch. A 
conditional branch causes the tool to check the first 
active bit of the current taken/fall- through entry to 
determine su bsequent control flow; the process then 
continues at that address. I f  an unconditional branch is 
encou ntered , reconstruction records the entry and 
checks it against the next captured trace en try. If  the 
tvvo entries match, the tool outp u ts the recorded 
instructions to an instruction stream file, consults the 
captured trace entry for the next target instruction vir
tual address, and repeats the procedure u n til the entire 
captured trace has been processed.  

Since PatchWrx captures interrupts and other low
level system activities ( e .g.,  page faults) in the trace, 
these activities must also be reconstructed . When 
Patch Wrx logs an interrupt into the trace bu ffer, the 
corresponding target virtual address in the captured 
record represents the address of the rlrst instruction 
not executed when the i nterrupt was taken.  Patch vVrx 
flushes the currently active taken/fa l l -through entry 
to the memory buffer and in itializes a nevv taken/fall
through enu·y. This new entry will be responsible for 
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Figur e 5 
Instruction Stream Reconstruction Resources 

the conditional branches e ncountered begi nning with 
the i n terrupt service routi ne.  The add ress of the first 
in struction within the interrupt service routine is then 
logged i n  the trace .  

D u ring reconstruction, the reconstruction tool looks 
for the interrupt's first unexecmed instruction address 
to know which instruction to stop at when recon
structing the instruction strea m .  The tool then begi ns 
reco nstructi ng the instruction stream, inc luding the 
interrupt handler stream. I f  the u nexecuted instruc
tion is within a loop, trace reconstruction uti l izes the 
taken/fa l l -through entry convention . On ta king the 
i nterrupt, the active taken/fall-through record is  flushed 
and another record is started . This process al lows the 
tool to continue to reconstruct i terations of the l oop 
unti l  a l l  the taken/fal l-through bits are exhausted . 

Operating System-Rich Workload 
Characterization 

As prese nted i n  the study by Lee et al . ; ' desktop appli
cations and benchmarks share some workload charac
teristics, but app l ications alone do not represent fu l l  
system behavior. To investigate and address system 
design issues, computer arch itects should use operat
ing system-rich traces. 

To i l lustrate this point, we present a sample of the 
vJrious workload characteristics tbat exist in a set of 
bench mark and desktop applications specia l ly selected 
to study the d i fferences in the use of the operati ng sys
tem and related services. The first characteristic we dis
cuss is the amount oftime each benchmark or desktop 
application spends within three domains: 

l .  Application-on ly domai n ( e .g . ,  winword .exe and 
excel .exe)  

2 .  DLL domain-Wi n 3 2  user (e .g . ,  kernel 32 d l l ,  
user32.dl l ,  a n d  ntd ll .dl l )  

3 .  Operati ng system domain-Win32 kerne l ,  kernel,  
system processes, system idle process ( e . g . ,  
Wi n32K.sys, ntoskrnl .exe, drivers, and t h e  spooler) 

Examining the e ti mes provides i nsight into a work-
load 's use of each dom ai n .  We also examine DLL and 
system service usJge on an i m age basis for each work
load . Tlus breakdown helps us more clearly identi f)r the 
dependence between the workloJd and the system ser
vices provided by the Windows NT operati ng system. 

We also present the instruction mix of each workload 
with and without the incl usion of the operating system 
execution . U ndersta nding the djfferences in instru c
tion composition in  the presence of system activity fur
ther highli ghts the behavior lacking in application-only 
traces, such as i ncreases in branch and memory instruc
tions, when compared to application-only workloads. 
We present the average basic block lengths for each 
domain of execution ( Jpplication-only, DLL, operating 
syste m )  separately a nd then i n  combination.  This met
ric reveals which workload domai n dominates the 
branc hing beh avior. Casmira's work provides a more 
complete description of these differences across a wider 
set of workload characteristics.2; 

Workload Descriptions 

We pertonn ed a l l  the e xperiments reported on in this 
paper on a DI GITAL Alpha plattorm running the 
.Microsoft Windows NT version 4.0 operating system .  
We captured the traces o n  a 1 5 0- megahertz Npha 
2 1064 processor. The system configuration included 
80 MB of physical memory. TJble 3 l ists the workloads 
we examined . 
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Table 3 
Workload Descr iption 

Workload Description 

four ier  

neura l  

BYTEmark benchma rk; a numerica l  ana lysis routi ne for calcu lat ing series approximations of waveforms 

BYTEmark bench mark; a sma l l ,  funct iona l  back-propagation netwo rk s imu lator 

go SPEC95 Go! game bench mark 

SPEC95 Lisp i nterpreter bench mark 

Microsoft CD Pl ayer playing a mus ic  CD 

l i  

cdplay 

fx ! 32 

ie  

vc50 

word 

D IG ITAL FX 1 32 V 1 . 1  interpretin g/translating inc l uded OpenGL sample x86 app l ication 

M icrosoft I nternet Explorer  V2.0 fo l lowing a series of web page l i nks 

M icrosoft Visual  C/C++ VS.O com p i l i ng a 3,000- l ine C program 

Microsoft Word97 V7.0, spell-check ing  a 1 5-page docu ment 

The fourier and neura l  workloads are from the 
BYTEmark benchm ark test su ite : the neural workload 
is a small  array- based floating-point test; the fou rier 
workload is  designed to measure transce ndental  and 
trigonometric floating-poi nt unit performance. 

The go and li workloads a.rc !Tom the SPEC95 integer 
bench mark suite: the go workload is a simulation of the 
game Co1, witl1 ilie computer playing against itselr; ilie li 
workload is a Lisp interpreter. All the workloads use ilie 
stand ard inputs provided vvith tl1c bench marks and are 
com piled with the default optimiz:.tion level using the 
native Alpha version of Mi crosoft C/C++ version 5 .0 .  

The cdplay workload i s  t h e  Mi crosoft CD Player 
application incl uded in  Microsoft Wi ndows NT ver
sion 4 . 0 .  The device w:.s traced while playing a music 
CD using defau lt  playi ng options (e .g . , playing a l l the 
songs i n  order). 

The 6.:'32 workload is the DIGITAL FX' 32 version 1 . 1  
emulator/translator provided by Compaq's DIGITAL 
Alpha Migration Tools G roup.1" We ran the robot arm 
Open G L  sample I n tel-based application in the fore
ground d u ring trace captu re. 

The ie workl oad is  the st:.ndard Microsoft I n ternet 
Exp lorer version 2 . 0  workload in cluded i n  lvl icrosoft 
Windows NT version 4.0.  The ie workload was traced 
whi le traversing fo ur l inks through the Sony home 
web page, arriving final ly at the Sony PlayStation Store 
we b page . The trace was captured on M ay 4, 1 99 8 ;  
pages m ay have changed since this d ate.  The history 
cache and the web link cache were both e mpty when 
the trace was captu red .  

The vcSO workload i s  tl1c Microsoft C/C++ version 
5 . 0 compiler compiling a 3,000-l ine C source code tile.  
We used the command l i ne i nterrace, and we used the 
default optimization levels and oilier parameters, which 
best represented ilie common usage of tl1e compiler. 

The word workload is Microsofi: \Nord from the 
M icrosofi: Offi ce97 desktop app l ic::�tion su ite tor the 
Alpha processor used to capture :1 manual  spell check 
of a 1 5 -page Microsoft Word document.  The standard 
Microsoft Word dictiorury was employed . 
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To provide a clear and represent::�tivc comparison 
ohvorkload behavior, we captured several traces. For 
all scenarios, fu l l  traces of each workload captu red 
approximately 5 to lO seconds of execution, f-i l l ing the 
45-MB trace buffer. To characterize worldoad behav
ior, each experiment w:1s run with the benchmark or 
application as the only activity on the syste m .  Each 
workload was run in the !-(>reground.  

To ensure that  the traces captured were represe nta
tive of the overall worldo:�d behavior, we captured 
mul tiple traces. We chose differe nt poi n ts duri n g  exe
cution for tracing to allow comparison between d i fter
en t portions of the selected scen:�rios. To investigate 
the variabi l ity present in selected workloads, we tr:�ced 
additional scenarios . A second Microsoft Word trace 
was captured with the appli cation performing an auto
format operation of the same docu ment used in the 
first trace of the spell-check operation , and we cap
tured a second Microsoft I n ternet Explorer tr;Ke,  
repeating the Sony l inks but with the l inks cac hed . We 
captured a second trace of FX ' 32 using the inc luded 
boggle sample game ( to r  comparison agai nst using the 
OpenGL application i nput) .  Add i tional ly, the FX 132  
translator was traced while i t  optim ized a n:�tive Intel 
x86 application's profile .  To conde nse the n u m be r  of 
memory pages occupied by an im:� gc, Microsoft 
designed the new l inker to al low d ata to reside wi r- h i n  
t h e  code regions.  Hookway and Herdeg"' provide :1 n  
expl anation of the DIGITAL FX1 32 emu lation and 
t:ranslationjoptimization procedures . Casmira discusses 
iliese scenarios and others .' · 

Domain Mix 

To i l lustrate the i n herent d i fferences between bench
mark and d esktop application behavior, we break 
down the captured trace in  terms of three mmually 
exclusive domains .  These domains arc ( l )  application, 
( 2 )  DLL, and ( 3 )  operati ng syste m .  The application 
domai n  represents the set of-' executed instructions that 
are within the traced application's  execut a ble i m ::�ge. 



The DLL domain represents the instructions executed 
by the application of interest's process but excludes 
the app l ication's executable image . This domain is 
made up of the DLLs, system services, and drivers that 
the application may access during execution . The 
operating system domain i ncludes i nstructions exe
cuted by the kernel or other system support service 
executable images, and all associated DLL and driver 
images. These are the processes, images, and l i braries 
that are always present and running on the system.  
Figure 6 d isp lays the  breakdown of  i nstructions i nto 
these three domains. The x -axis l ists the workloads, 
and the y-axis presents the percent composition of the 
captured trace. Note that the four benchmarks, i .e . ,  
fourier, neural , go, l i ,  spend a t  least 9 5  percent of their 
execution within their appl ication image. Both the 
fourier and the neural benchmarks spend about 
99 percent of their execution within their appl ication 
image . The go and l i  benchmarks do exhibit some 
operating system activity, but this activity is due to the 
I/0 generated as go d isplays output as i t  progresses 
and as li reads input from its standard input file .  

The operating system dominates the execution i n  
the cdplay vmrl<load . The Microsoft CD Player appli 
cation is I/0 bound,  relying heavily on the necessary 
services provided by the operating system and the 
DLLs to access the CD hardware. Whi le  waiti ng for 
I/Os to complete, the system activity is composed 

1 00 

90 

80 

70 i=' z lJ.J 
� 60 
lJ.J e:. 
� 50 f= iii 0 � 40 

0 u 
30 

20 

1 0  

0 

aJmost completely of the kernel idle loop performing 
busy waiting ( reca l l  that each workload investigated is 
the only application running on the system, so there is 
no other work to be done during these periods) .  

The fx ! 32 workload spends nearly aJ l i ts execution 
time operating with in  DLLs. The robot arm Intel x86 
OpenGL sample that the DIGITAL FX1 3 2  appl ication 
is interpreting heavily exercises the graphics d isplay 
l ibraries and console display services. 

The ie workload is more evenly distributed across 
the three domains. The moderate amount of operating 
system activity is due to the network and screen display 
I/0 and also to the Microsoft I nternet Explorer's 
caching of the pages i t  touches to locaJ disk fi les. The 
DLL activity is generated by operating system services 
for screen and file I/0 and by network service l i brary 
routines. The appl ication image coordinates the usage 
of these routines, and network and display I/0, which 
is frequently encountered duri ng the operations of 
selecting and opening web l inks.  This coordination 
accounts for the high percentage of application domain 
execution exhibited by ie, as shown in Figure 6. 

The vc50 workload spends nearly all its execution 
time within its app l ication image. This phase of the 
compiler is responsible for performing the parsing and 
l exical analysis of the source code file. There is some 
use ofDLLs through invoking l ibrary routines to load 
included header fi les .  The operating system activity, 
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OS 
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Fig u re 6 
Donuin Execution Mix 
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although small ,  is present; all I/0 must be accessed by 
means of a system service. 

The Microsoft Word spell -checking service is pro
vided by means of a DLL included with the :1pplication. 
Thus for the word workload, this DLL handles both the 
search through the document and the successive diction
ary lookups . Operating system services are required for 
:1ccessing portions of the file resid ing on disk (not i n  
memory pages) ,  for displaying the search and compare 
resu lts to the user, and for performing the user-driven 
I/0 associated with accepti ng/rejecting word replace
ment choices (prompted by the spell -checking tool ) .  

Figure 6 shows the consistent pattern of instruction 
domains that the four benchmarks follow in contrast to 
the v:uiability in the insn·uction mix domain of the deskrop 
:1pplication workloads. Even though there is slight operat
ing system acti,�ty for go and li (attributable to I/0 ser
vices), the benchmarks spend practically all their execution 
\vithin their application images; no DLL usc is visible. 
Clearly these benchmarks do not utilize system services to 
the level observed in the commercial desktop workloads. 
With the exception of the CD player, the commercial 
desktop applications examined use DLLs more heavily 
than they do operating system services. This is especially 
true in the I:X132 and word workloads, which carry out the 
tasks caprured in the trace by means ofDLL routines. 

Characterization of Image Usage 

To i nvestigate the domains present in the trace a t  the 
image leve l ,  we identified the top tive most he:lVi ly 
used images, based on the nu mber of i nstructions exe
cuted in each image . F i rst, an  expbn:nion of some of 
the more freq uently used system exccuta bles and 
D LLs is  i n  order. Table 4 lists the names of the com
monly used images and a brief description of each .  

We present tJ1e image usage of  the nine traces. This 
characterization includes all the images (e .g . ,  execura
bles, DLLs, services, and drivers) listed in Table 5 .  The 
data helps demonstrate several points. First, commercial 
desktop workloads spend a lot more time in DLLs than 
benchmarks do. Consequently, we can project that tl1C 

Table 4 
Common System Images 

Name Descr iption 

Windows NT operating system kernel core 

number of procedure caJis in desktop applications wi l l  
be h igher tl1an the number of ca!Js in benchmarks. 
Second, real appl ications depend not only on system 
DLLs but also on their local DLLs. We see this beha,�or 
explicitly \\�th tl1e Microsoft Word application. 

Instruction Mix 

Although understanding the domain mix and image 
usage he lps identifY d ifferences between benchmarks 
and desktop :1ppl ications, we wou ld  l ike to look deeper 
within each domain to see i nherent differences that 
affect design decisions. Figure 7 shows tJ1e application
only instruction mix ( i . e . ,  the instruction mix for only 
the appli cation and application -specific DLLs) tor each 
workload. Each entry in the legend represents a c lass 
of instructions f() Lmd with in  the application domain .  
The y-axis denotes the percent compos i tion o f  the 
trace; the workloads are d ispl ayed on tJ1e x -axis. 

Note that the i nstruction mix tor the fx132 workload 
is zero . This value is a resu lt  of the lack of execution 
within the appl ication image i tself. Referring back to 
Ta ble 5 and the domain instruction mix, note that 
nearly al l  the workload execution is within DLLs ( some 
execution is withi n  ntoskrnl .exe ) .  The remaining work
loads consist mainly of load , store, conditional branch, 
and arithmetic and logic un i t  (ALU) logic operations. 
No overriding ch:�racteristic differentiates benchmarks 
and desktop applications. Note the significant variabi l 
ity in the  instruction mix  among the  different bench
marks and among the differen t  desktop applications. 

Figure 8 shows tJK instruction mix of the entire 
trace . The first and most noticeable difference between 
the application domain and fu l l - trace i nstruction mix 
figures is the i ncrease i n  i nstruction types present in 
the trace. N i ne instruction classes were present in the 
application domain i nstruction m ixes, while 17 are 
presen t  i n  the ful l-system traces. Worth noting is the 
presence of 6 CALL_PAL instruction types ( aJl use the 
same opcode,  but invoke 6 different PAL routines) 
in the ful l  traces. Since each executed CALL_PAL 
instruction causes a trap that takes on the order of tens 
of cycles to comp lete , we can conclude that this is a 

ntoskrnl .exe 

h a l .d l l  

kernel3 2 . d l l  

win32k.sys 

gd i32 .d l l  

ntd l l . d l l  

MSVCRT.d l l  

s3 .d l l  

Ha rdware Abstract ion Library (HAL), wh ich  i s  respons ib le for  the underly ing hardware interface 

Main kernel l i brary 

qv.d l l  

Kernel-mode device dr iver 

Graph ics d isp lay interface l i brary 

L ibrary routines provided to each c l ient process on the Win dows NT system 

Mi crosoft CJC++ ru n-time l i brary 

Graphics adapter l i brary for the test pl atform 

Graph ics adapter l i brary for the test p latform 
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Table 5 
The F ive Most F requently Used Images i n  Each Appl i cation or Benchmark 

I mage Name 
Workload (Percentage of Total Number of Instructions Executed within the Image) 

fourier bytecpu .exe winsrv.d l l  win32k.sys ntoskrnl .exe user32 .d l l  Other 
(99 .5%)  (0.2%)  (0. 1 %)  (0. 1 %) (0.02%)  (0.08%) 

neura l  bytecpu . exe winsrv.d l l  ntoskrnl .exe win32k.sys ntd l l . d l l  Other 
(99 .7%) (0.2%) (0.03%)  (0.03%)  (0.02%) (0.02%) 

go go.exe win32k.sys ntoskrn l .exe ha l .d l l  qv. d l l  Other 
(95.5%) (2.0% )  ( 1 .0%) (0.4%) (0. 1 %) ( 1 .0%) 

l i  l i .exe win32k.sys ntoskrn l .exe user32.d l l  qv.d l l  Other 
(97 .7%)  ( 1 .0%) (0.6%) (0. 1 %) (0. 1 %)  (0.5 % )  

cdplay ntoskrn l . exe h a l . d l l  win32k.sys tcpi p.sys wi nsrv.d l l  Other 
(8 1 .8%) ( 1 4 .7%) ( 1 . 1  %) (0.4%) (0.3%)  ( 1 .7%) 

fx ! 32 ha l .d l l  s3.d l l  OPENGL32.DLL M SVCRT.d l l  GLU32.d l l  Other 
(42 . 5 % )  (24.6 % )  ( 1 2 .2%)  ( 1 1 .7 % )  (2.7%) (6.3 % )  

ie  iexplore.exe win32k.sys ntoskrnl .exe Fastfat.sys ntd l l .d l l  Other 
(37.2%) ( 1 9 .3%)  ( 1 7 . 5%)  (6. 1 %) (6 .0%) ( 1 3 .9%) 

vc50 c1 .exe ntoskrn l . exe MSVCRT. d l l  Ntfs.sys win32k.sys Other 
(83 . 1  %)  ( 1 0 .5%)  (2.8%) ( 1 . 2%)  ( 1 . 1  %) ( 1 .3%)  

word MSSP232. DLL MSGREN32.DLL ntoskrn l .exe win32k.sys h a l . d l l  Other 
(36.4%) (34 .0%) ( 1 0 .2%) 

significant insight into the system's inherent run-time 
latency, not visible with application-only workloads. 

Next note the striking simi larities in instruction 
mix for the fou r  benchmarks in Figures 7 and 8 .  
Benchmarks d o  not interact with the operating system 
in any significant manner. The desktop application 
workloads, however, show significant differences 
between the application domain and the complete 
trace instruction mixes. 

The number of store instructions for the cdplay 
workload decreases from about l l  percent to approxi
mately 1 percent. The number of BSR instructions 
increases fi·om l percent to about 6 percent. Most 
interesting for this application is the decrease in the 
number of ALU operations from almost 30 percent to 
about 2 percent, while the number of CALL_PAL 
instructions increases from 0 to 2 1  percent. Referring to 
Figure 6, the domain execution mix plots clearly show 
why the differences tor this workload are so large when 
the system activity is included-more than 95 percent 
of the workload trace is operating system execution. 

Considering the latency incurred by executing 
CALL_PAL instructions, clearly an optimization that 
concentrates on improving ALU operations based on 
the application domain instruction mi,xes would have a 
much smaller impact on the true system performance. 
The measured difference in instruction mix under
scores the importance not only of using real workloads 
for trace-driven simulations but also of including the 
operating system behavior in order to see the full picture. 

The fx ! 32 complete trace instruction mix is, of 
course, completely different from the application 
instruction mix of Figure 7, in which no instructions 

(7 .7%) (4.0%) (7 .7%) 

were executed within the fx 1 32 application image. Both 
the i.e and the word workloads introduce CALL_PAL 
instructions when including the operating system .  The 
i.e instruction mix shows an increase in j umps, calls, and 
returns, which most likely reflects the increase in sub
routine calls for system services. The word instruction 
mix expetiences a reduction in load instructions from 
approximately 52 percent to 35 percent. This decrease 
can be attributed to the increase i.n ALU operations pre
sent when operating system activity is included. 

The results presented in Figures 7 and 8 reinforce 
the points that benchmarks do not represent true desk
top workloads and that tl1e desktop workloads display 
significantly different characteristics when viewed in the 
presence of system activity. 

Average Basic Block Length 

Includi.ng the operating system activity in our traces yields 
an overall increase in the percentage of control How 
instructions present. Figure 9 shows a consequence of 
this fact. In this figure, we present the average basic block 
length for each worldoad, on a per-domain basis. The 
ALL bar is the average basic block length across all 
domains; OS denotes the operating system instructions 
only; DLL denotes the workload's DLL instructions 
only; APPDLL denotes the combined application and 
DLL instructions; and APP denotes the application 
instructions only. 

Inspecting the fou r  benchmarks, we notice little dif
ference between the application-only basic block 
lengtl1 and the overall basic block length . Referring to 
our domain instruction mix figure, recall that the 
benchmarks spend about 95 percent of their execution 
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within their executable images . Therefore, inc l uding 
any operati ng system activity i n to a basic block le ngth 
average has a minimal  effect. 

However, consideri n g  the large amount of operat
ing system execution present in the cdplay trace, the 
overa l l  basic block length is s ign i ficantly Jess than the 
appl ication-only l ength . The overa l l  and operating 
system length values are al most the same. Not only 
does i nc lu ding the system activity i n  the trace i n tl u 
ence t h e  overa l l  basic block length b u t  the amount 

of system activity determines to what degree the length 
is  affected . 

In a si milar fashion, the overall basic block length of 
the fx!32 trace tracks that of its D LLs. The length is 
directly proportional to the amount of time the work
load spends in its DLL domai n .  The execution of the ie 
workload is more evenly distri buted among the t hree 
domains, which affects tl1e overall basic block length, 
producing a more evenly weighted average of all its 
domain basic block lengths ( n o  one domain dominates ) .  

COPLAY FX'32 

WORKLOAD 

I E  
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APPOLL 
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The vc50 workload spends a s ignifica nt amount of 
time with in  i ts own executable image, which leads to 
an overa l l  average basic block length si mi lar to the 
application-only value .  The word workload is s imi lar, 
but the D LL behavior domi nates. The cdp l ay and ie 
workloads experience a 50 percent decrease in average 
basic block length . This decrease c a n  be attributed to 
an i ncrease in the nu mber of branc hes in the presence 
of operating system activity. With this increase in con 
trol fl ow instructions, we ex pect increased pressure to 
be placed upon the branch prediction hardware. 

As observed in other characteristic categories, the 
four bench marks do not e x h i bit noticeable deviations 
from appli cation-only be havior when the operati ng 
system activity is introduced. Aga i n  this explains why 
simulation results using bench mark traces usual ly track 
the actual performance when the bench marks are run 
on the real syste m .  In  contrast, four of the five desktop 
applications exhibit  significantly d ifferent behavior i n  
the presence o f  the operating system. 
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Summary 

I n  this paper we described the PatchWrx toolset. We 
compared it to existi ng tools and d emonstrated the 
need for operati ng system-ri ch traces by showing the 
amount of the total execution spent  in  the kernel  and 
the D LLs. I n  addit ion, we showed that nisting desk
top bench marks do not exercise the kernel and the 
D LL sufficiently to provide meani ngfu l  indicators of 
desktop pertonnance. 

These resu lts have rein torced our argu ment that 
researchers need to use traces with both application 
and operating system information , especia l ly as new 
appl ications spend more time executing within the 
operating syste m .  The goal is  for computer arch itects 
to usc operati ng system-ric h  traces of applications that 
domi nate the desktop market. 

We have rece ntly fi n ished mod i fi cations to the PAL 

to enable PatchWrx to run on the Al pha 2 1 1 64 plat
form . We plan to study a wider range of desktop appl i 
cations ,  i n cluding database and server applications. 
Fu ture plans also inc lude migrati ng the too lset to the 
Windows 2000 operating system .  

Acknowledgments 

We wou l d  l i ke to acknowl edge the help and advice of 
the fol lowing people :  Richard Sites of Adobe Syste ms; 
Sharon Smith, Geoff Lowney, Joel Emer, Steve 
Thierauf, Tom Wenners, Pa u l  De lvy, a n d  Dan 
Lambalot, a l l  from Compaq Comp uter Corpora tion; 
and Ro bert Davidson from Microsoft Research .  Jason 
Casmira and David Kael i  have been su pported by a 
National  Scie nce Fou nd ation CAREE R  grant .  

References and Notes 

l .  SPEC Neu'Sietter( September  1 995 ) .  

2 .  In formation about the  BYTEmark benchmark suite i s  
ava i lab le fi·om B YTE Magazine ar http :/ jwww. byte. 
com/bmark/bmark .hrm. 

3.  S .  Per l  and R .  Sites, "Studies of Windows NT Perfor
mance Using Dynamic Execution Traces," Proceed
ings o/ the Secoud fSIW!X .�vrnposium on Operating 

S),stem f)esig n and lmplcmentmiun ( October 1996 ) :  
1 69-1 8 3 .  

4.  D. Kael i ,  " Issues i n  Trace- Driven Simu lation," Lecture 

Notes in Computer Science, f\iu. 729, Per/ormance 

Eualuatiou of Computer and Com m u n ication 
Svstems. L. Donatiel lo and R. Nelson, eds. (Springer
Verlag, 1993 ) :  224-244 . 

5. R. Uhl ig and T. Mudge, "Trace-Driven Memory Sim
u lation : A Su rvey," A C/11 Comfllltillg Surn·:Fs, vol . 29,  
no. 2 ( J  unc 1 99 7 ) :  1 2 8-1 7 0 .  

Digital T.:d1nic.1l journal Vol . 10 No. l 1 998 

6. J . Emer and D. Clark, "A Characte rization of Proces
sor Performance in the VA,\. l l -780," Proceedillf.;s u/ 

rhe Eleue nrh Symposium on Computer A rchitecture 

(June 1 994 ) :  1 2 6-1 3 5 .  

7 .  K .  Flanagan ,  J .  Arch ibald,  B .  Nelson, and K .  Grim
srud , "BACH:  BYU Address Collection Hardware; 
The Collection of Complete Traces ," Proceedings of 

the Sixtb International Olllfereucc un Jfodeling Tech

niques and Tools /or Computer Fmlwttiol l  ( 1 992 ) :  
5 1-65 .  

8 .  D. Kaeli, 0 .  LaMaire,  'vV. White, P .  Henner, and  W. 
Starke, " Real-Time Trace Generation," !ntemutiuual 

Journal 011 Computer Sim ula tion. vol . 6, no.  1 ( 1 996 ) :  
53-68 . 

9 .  D .  Kae l i ,  L. Fong, D .  Renfrew, K. Imming,  and 
R. Booth , "Performance Analysis on J CC-NUM.A 
Prototype," IBM .foumal ol l<escurch and !Jecclop 
ment, Spec ial Issue on Per(onnance Tools. vol . 4 1 ,  
no. 3 (May 1 99 7 )  205-2 1 4 .  

1 0 .  D. Nagle, R .  U h l ig ,  and  T .  Mu dge, " Monster: A Tool 
for Analyzing the Interaction Between Operating Sys
tems and Computer Architectures," Techn ical Report, 
CSE-TR- 1 47- 92 , University of Michigan,  1 99 2 .  

1 1 . B .  Chen and B .  Bershad,  "The I mpact of  Operating 
System Structure on Memory System Performance," 
Operating Svstems Ret•iew. vo l .  27, no. 5 ( December 
1 99 3 ) :  1 2 0-1 3 3 .  

1 2 . J. Larus, "Abstract Execution :  A Technique tor Effi 
ciently Tracing Progra ms," Tec hn ical Report, CS-TR-
90-9 1 2 ,  Universitv ofVVisconsi n-Madi son, 1 990.  

13 .  A. Srivastava and A. Eustace, "ATOM :  A System 
for Bu i ld ing Customized Program Analysis Too ls," 
Proceedings o/ the A CM SJG!'L4:V94 Omji:reuce 011 

Programming Lungttct,�e r>es(t;il  a11d !mplementatioll .  

Orloudo. Fla .  ( June 1 994 ) :  1 96-2 0 5 .  

1 4 .  M .  Rosenblum, S .  Herrod , E .  Wirchcl, a n d  A .  Gu pta, 
"Complete Computer System Simulation: The SimOS 
Approach," JEF:F..foumal of Pa rallel a u d  Distrlhu ted 

Tech nology, 1 998,  forthcoming .  

1 5 .  M .  Rosenblum, E .  Bugnion, S .  Devine, and S .  Herrod, 
"Using the S imOS Machine Simu lator to Study Com
plex Computer Systems," ACJ1 Transactio/Is IJ/1 .\llod

eling and Sim ulation , vol . 7, no. I ( January 1 9 9 7 ) :  
78-1 0 3 .  

1 6 .  A. Agarwal, A nazvsis o/ Cache Perjorma n e e  j(;r Oper
ating Systems a11d Multipru,qra rnming ( Kluwer Acade 
mic Publisher, 1 9 8 9 ) .  

1 7 . ] .  Larus and E .  Schnarr, "EEL: Rewriting Executable 
Fi les to Measure Program Behavior," Pmc('edings of 

the A C!VI SIG'PLA N"95 Conference 011 Pn��ran1111i11g 

Language Desi_q 1 1  and Implementation. La jol la, Cal if 
( Ju n e  1 99 5 ) :  29 1-300. 



1 8 .  D .  Lee, P. Crowley, ] . - L. B:ter, T. Anderson, and 
B. B ershad , " Execution CharJCteristics of Desktop 
Appl ications on Windows NT," Proceedings of the 

Twenty�jifih International -�ymposiu m on Computer 

Architecture. Barcelona, Spain (June 1 998 ) .  

19 .  E .  Bem, D .  Hunter, and S .  Smith ,  " Moving ATOM to 
Windows NT for Al pha ," Dtj; ital Techn ical journal. 
vol .  10, no. 2 ,  accepted for pub l ication . 

20. M .  Smith,  "Tracing with Pixie," Technica l  Report, 
CSL-TR-9 1 -497, Stanford University, November 
1 99 1 .  

2 1 .  R .  Cmelik and D .  Keppel, "Shade: A Fast Instruction
Set Simu lator for Execution Profi l ing," Proceedings of 
A CM S(qmetrics (May 1 994) :  1 28-1 37 .  

22 .  Alphu AXP A rchitecture Handhnok. Order No.  EC
QD2KA-TE ( Maynard , Mass . :  Digital Equipment 
Corporation, October 1 994 ) .  

23 .  H .  Custer, Inside Windows NT ( Red mond , Wash . :  
Microsoft Press, 1 993 ) .  

2 4 .  Microsoft Sothvare Developer's Toolkit. This toolkit is 
avai lable :tt http:/ /msd n.microsoft.com/developer/ 
sdk/plattorm.htm. 

25. J. Casmira, "Operating System Rich Workload Char
acterization," Master's thesis, ECE-CEG-98-0 1 8 ,  
Northeastern University, May 1 998 .  

26. R .  Hookw<1Y and M .  Herdeg, "DIGITAL F X ! 3 2 :  
Combining Emu lation a n d  Binary Translation," 
Digital Tecbnicaljournal. vol. 9, no. 1 ( 1997): 3-1 2 .  

Biographies 

Jason P. Casmira 
Jason Casmira received B . S .  and M.S .  degrees in electrical 
engineering ri·om Northeastern University i n  1 996 and 
1998, respectively, and is pursuing a Ph . D .  degree in com
puter  science at the University of Colorado, Boulder. For 
the past two yc<1rs, ] a son was a member of the Northeastern 
U niversity Computer Architectu re Research Laboratory 
( N UCAR), where he focused on developing the current 
version of the P:nchWrx tracing toolset. He also investi
gated issues related to swdying operating system-ric h 
traces. While at NUCAR, Jason was supported by a grant 
ri·om the Nation;� I Science Foundation.  He has published 
seven papers and is a member of the I EEE and the Eta 
Kappa Nu honor society. 

David P. Hunter 
David H unter is the engineering manager of Compaq 
Computer Corporation's Advanced and Emerging 
Technologies Group.  Prior to that he was the manager 
of DIGITAL's Software Parmer Engineering Advanced 
Development Group, where he was involved in perfornnnce 
investigations of databases and their i nteractions with the 
UNIX and Windows NT operating systems. He has held 
positions i n  the Alpha Migration Organization, the I SV 
Porting Group, and the Government Group's Technical 
Program Management Oftice.  David joined DIGITAL's 
Laboratory Data Products Group in 1 983 ,  where he devel 
oped the VA..,'\lab User Management System. He was the 
project leader of the advanced development project, ITS, an 
executive information system, tor which he designed hard
ware a.nd sothvare components. David has two patent appl i
cations pending in the area of sothvare engineering. He 
holds a degree in electrical and computer engineering ti·om 
Northeastern U niversity in Boston, Mas achusetts, and a 
diploma in National Security and Strategic Smdies fTom the 
United States Naval War Col lege in Newport, Rhode Island . 

David R. Kael i  
Da,�d .Kadi received Ph .D.  ( 1 992)  and B .S .  ( 1 98 1 )  degrees in 
e lectrical engineering trom Rutgers U niversity and an M .S .  
degree in computer engineering trom Syracuse U niversity 
in 1 985. He joined the electrical and computer engineering 
facu l ty at Northeastern University in 1 993 after spending 
12 years at I BM, the last 7 of which were at the I B M  T. j .  
vVatson Research Center i n  Yorktown Heights, New York. 
David is the d i rector of the Northeastern University 
Computer Architecrure Research Laboratorv ( NCCAR) ,  
where he investigates the performance and design o f  high
performance computer systems and sothvare. H is current 
research topics i nclude 1/0 worklo:�d characterization, 
branch prediction snrdies, memory hierarchy design, object
oriented code execution pertonnance, 3-D microelectronics, 
and back-end compiler design. He frequently gives tutorials 
on the subject of trace-driven char<Kterization and simula
tion. In 1 995, David received the prestigious National 
Science Foundation CAREER Award . His research has 
been supported by the Office of Naval Research ,  Kopin 
Corporation, Digi tal Equipment Corporation, EMC, Data 
General, Microsoft Research ,  ! -Tech Corporation, IEEE 
DAC, and I B M  Research .  David i s  a member of the ACM, 
IEEE, and the Era Kappa Nu and Sigma Xi honor societies. 

Digital Technical journal Vol . 1 0  No. I 1 998 2 1  



2 2  

Automatic Template 
Instantiation In 
DIGITAL C++ 

Automatic template instantiation in DIGITAL C++ 

version 6.0 employs a compile-time scheme that 

generates instantiation object files into a reposi

tory. This paper provides an overview of the C++ 

template facility and the template instantiation 

process. including manual and automatic instan

tiation techniques. It reviews the features of 

template instantiation in DIG ITAL C++ and 

focuses on the development and implemen

tation of automatic template instantiation in 

DIGITAL C++ version 6.0. 

Digir:li  Technicol Journ:�l Vol . 10 No. I 1 998 

I 
Avrum E. Itzkowitz 
Lois D. Foltan 

The template raci l i ty within the C++ language a l lows 
the user to provide a template ror a class or function 
and then apply speci fic argu ments to the tempbte 
to speci�r a type or fu nct ion . The process of app ly ing 
arguments to a template, referred to as template i nstan
tiation , causes specific code to be generated to imple

ment the functions and static data members of the 
instantiated tem plate as needed by the program . 
Automatic temp l ate i nstantiation relieves the user of 
determining wh ich temp late entities need to be instan 

tiated and where they should be i nstantiated. 
In this paper, we review the C++ temp late faci l i ty and 

descri be approaches to implementing automatic tem 

plate instantiation .  We fol low that with a discussion of 
tl1e facilities, rationale, and experience of the DIGITAL 

C++ automatic template instantiation support. We 
men describe the design of the DIGITAL C++ vers ion 
6 . 0  automatic template instantiation fac i l ity and ind i 

cate areas to  be explored tor further improvemen t . 

C++ Template Facility 

The C++ langu age provides a template fac i l ity that 
allows the user to create a r:m1ily of classes or functions 
that are parameterized by typeY For examp l e ,  a user 
may prov ide :1 Stack temp late , which defines a stack 
c lass for its argu ment type.  Consider the fol low ing 
template dec laration : 

templa te <class T> class S tack ( 
T * top_o f_s t ack ; 

p bl ic : 

} ; 

voi d  push ( : aL l ;  
voi po ( T · ar ) ; 

The act of ap p l ying the arguments to the tem plate 
is referred to as template instantiation . An insta ntia 

tion of a template creates a new type or functi on that 
i s  defined for the speci f-ied types. Stack< int> creates 
a c lass that provides a stack of the type int. 
Stack<user_c lass> creates a c lass that provides a stack 
of user_class . The types int and user_class are the argu
ments for the tempiJte Stack .  



In genera l ,  :1 templ ate needs to be instantiated when 
it is referenced . When a c lass template is i nstantiated,  
only those membe r  functions and static data members 
that are referenced are also i nstanti:Hed . In the Stack 
example,  the m e m ber fu nction Push of the c lass 
Stack<int> needs to be i nstantiated only if it is used . 
Templ ate functions a n d  static data mem bers have 
global scope; therefore, o n ly one instantiation of each 
should be i n  a user's appl ication.  Since source fi les are 
compiled separately and combined later at l ink time to 
prod uce an exec utable, the compi ler alone is  not able 
to ensure that one and only one i nstance of a specific 
templ ate is efficient ly generated for any given exe
cutable .  That is, the compiler by itself is not able to 
know whether the function or variable defi nition for a 
speci tlc template is satisfied by code ge nerated in 
another object mod u l e .  

T h e  C++ Standard provides fac i l i ties for the user to 
specif)' where a tem p late en tity shou ld be instantiated . '  
When the user explicit ly specities template instantia
tion, the user then becomes responsible for ensuring 
that there is only one i nstantiation of the te mplate 
fu nction or static data member per appl ication . This 
responsibil ity can necessitate a considera ble amount of 
work. However, the compiler and l inker worki ng 
together can provide effective templ ate instantiation 
without specific user d i rectio n .  

I n  the foll owing section, we presen t  t h e  various 
approaches that can be used for template instantiati o n .  

Template Instantiation Techniques 

Templ ate i nstantiation techniq ues can be broad ly cat
egorized as either manual  or automatic .  vVith manual  
i nstantiation, the com pilation system responds to user 
directives to i nstantiate template e n tities. These d irec
tives can be in the source program, or they may be 
command- l ine  options. With autom atic instantiation ,  
the compilation system, i n c l u d i n g  t h e  l i n ker, decides 
which instantiations are req uired and attempts to pro
vide them t(Jr the user's appl ication.  

Manual Instantiation 

Manual tem p late instantiation is the act of manua l ly 
specifYing that a template should be instantiated in the 
ti le that is  being compi led . This instantiation is  given 
global external l inkage, so that references to the 
i nstantiation that are made in other til es resolve to this 
te mplate instantiation.  Manual  te mplate i nstantiation 
inc l udes explicit instantiation requests and pragmas as 
wel l as com mand - l ine options. 

Explicit I nsta ntiation Requests and Pragmas The 
compilation system i nstantiates those te mplate e n tities 
that the user specifies tor i nstantiation . The specification 
can be made using the C++ expl icit te mplate instantia
tion syntax or may be made using i m plementation-

defined d i rectives or pragm as. S ince i nstanti ations are 
given global external l i nkage, the user must ensure 
that the specified te mplate i nstanti ations appear only 
once throughout al l  the modu les that com pose the 
progra m .  When only this  mode of instantia tion is  
used, the user also must ensure that a l l  req u i red tem
plate instanti ations are specified to avoid u n resolved 
symbols at l ink  time. 

Command-line Instantiation Command- l ine  options 
can be used to speci f)' template in stantiation . They are 
similar in operation to the explicit i nstantiation req uests, 
except they indicate groups of templates that shou ld be 
instantiated, rather than naming specific templates to be 
i nstantiated . The command - l ine options include 

• Instantiate Al l Te mpl ates. A com m a n d - l ine option 
can direct the compiler to instantiate all tem p l ate 
entities whose definitions are known d u ring compi
lation and whose argu ment types are specified . This 
has the advantage of specifYing many te mpl ate 
instantiations at once.  The user must st i l l  e nsure 
that no tem p late instantiation happens more than 
once in the program and that all required instantia
tions are satisfi ed .  Due to these requirements, the 
user can not usually specif)' this option on more than 
one source-fi l e  compila tion in the progra m.  This 
option can also cause the i nstantiation of templates 
that are not used by the program . 

• Instantiate Used Te mplates. A command-line option 
can be used to d i rect the compiler to i nstantiate 
only those templ ate entities that are used by the 
source code and whose defin i tions arc known at 
com pil ation . As in the previous technique,  the user 
must ensure that no template i nstantiation happens 
more than once in the program and that all req uired 
i nstantiations arc satisfied . Due to these req u i re
ments ,  the user  can not usua l ly  speci fY this option 
on more than one sou rce-fi le  comp ilation in the 
program. 

• Instantiate Used Te mplates Locally. This command
line option works l i ke the i nstantiate used templates 
option,  except that it defines each te mplate i nstan
tiation locally in the current compilation . This option 
has the adva n tage of provid i n g  com plete te mpbte 
insta n tiation coverage for the program ,  as long as 
the definitjons of the used tem plates are avai lable in 
each mod u l e .  Since al l  template i nstantiations are 
given local scope, there is no potential problem 
with mult iply defi ned i nstantiations when the 
program is l i n ked . The major problem with this 
technique is that the user's appl ication can be 
unnecessari ly large, si nce the same template instan
tiations could appear withi n multiple object fi les 
used to l i n k  the app l ication.  This technique wi ll fai l 
if the i nstantiations must have global scope such as 
a c lass's static d ata members. 
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Figure 1 shows an example o r' a template fu nction,  
template_func,  that  contains a local ly defined static 
variable. As shown in the figure, the object fi les ofboth 
A and B contain local copies of template_func instanti 
ated with i nt .  Each instance of template_func<int> 
defines i ts own version of static variable x. I n  this case, 
d irecting the compiler to i nstantiate used templates 
local ly yields a d ifferent resul t  than i nstantiating a l l  or 
used templates globally. 

I f  we give the static data members global scope and 
ensure that  they are properly defined and in i ti al ized by 
executable code rather than by static in i tia l ization, we 
can solve the static data mem bers prob lem.  The app l i 
cation ,  however, remains unnecessari l y  large, because 
mu l tip le  copies of the i nstantiated templates can be 
present i n  the executable. 

Automatic Instantiation 

Automatic template instantiation rel ieves the user of 
the burden of determining which templates must be 
instantiated and where in the application those instanti
ations should take place. Automatic template instantia
tion can be d ivided into two categories: compi le - time 
instantiation ,  whereby the decision about what shou ld  
be  instantiated is made at compile t ime ,  and l i nk- time 
i nstantiation, whereby decisions about template ins tan 
tiation are made when the user's application is l inked . 
I n  both cases, specific ]ink-time support is needed to 
select the required i nstantiations for the executable .  

Compile-time I nstantiation Two major techn iques 
can be used to perform automatic template instantia
tion at compile time.  The choice between the two 
depends upon the fac i l i ties avai lable i n  the l i nker. 
Microsoft Visual C++ i nstantiates templates at compile 
time using a strategy similar to the instantiate used 
templates command-line option described previously. ' 

I I  templ e . h:'" 
linclu e c i o s t ream . h 

Each i nstantiation is placed i n  the communal data sec
tion ( COMDAT) of the current compi l ation 's object 
fi l e .  Each object fi l e  contains a copy of every template 
instantiation needed by that compilation un i t .  
COMDATs are sections that  have an attribute that  tel ls 
the l i nker to accept, without issuing a warni ng, m u l ti 
p le  definitions of  a symbol defined in  the section . '  I f  
more than  one object fi le defines that symbol , on ly  the 
section from one object fi le is l inked into the image 
and the rest are d iscarded, a long with a l l  symbols in  
the symbol table defined in the  d iscarded section con
tribution .  At l ink ti me, the l i nker resolves an  instantia
tion reference by choosing one of the instantiations 
defined in  an i ndividual object fi le's COMDAT. The 
resu l ti ng user's appl ication executable has a s ingle 
copy of each requested instan tiation .  

vVhen such  l i n ker support is not  avai l able, another 
mechanism must be used to control compi le - time 
instantiation . One such approach is to use a repository 
to contain the generated instantiations. The compiler 
creates the i nstantiations in  the repository i nstead of 
the current compi lation's object fi le .  At  l ink  t ime, the 
l inker incl udes any requested i nstantiations from the 
repository. As a performance i mprovement, the com 
pi ler can also decide whether an i nstantiation needs to 
be generated from the state of the reposi tory. I f  the 
requested i nstantiation is in the repository and can be 
determined to be up to date, the compiler does not 
need to regenerate the instantia tion .  

Link-time Instantiation The decision to instantiate can 
be left unti l  l i nk  time. The l inker can find the instantia
tions that are needed and direct the compiler to generate 
those i nstantiations. McCluskey describes one l ink-time 
instantiation scheme.'.r' The compiler logs every class, 
union, struct, or cnum in a name-mapping file in a repos
i tory. Every declared template is also logged in the name-

t emp l a te c l ass T vo i d te�plate_func IT p )  
{ 

Figure 1 

s ta ic 'J' :< � 0 ;  
cou t << x .,. p ;  
X + + ;  

I / A . c :< :{ 

# i ncl ude • emp l a t e . h x x " 
e x t e  n vo i c�  b_func { ) ;  
int ma i n  { )  
( 

template_func ( lO I ; 
b_func ( ) ; 
re urn 0 ; 

Template Function Containing a Loca l ly Ddi necl Static Variable 
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/ / B . c::< x 
" i nc lude " L empl te . hxx"  
vo i d  b_func ( vo i d ) 
{ 

I I . . .  
templ� e_f unc ( 2 0 ) ; 
I I . . .  



mapping file. At link time, a prelinker determines which 
template instantiations are required. The prelinker builds 
temporary instantiation source files in the repository to 
satisfY the referenced instantiations, compiles them, and 
adds the resulting object files to the linker input. 
Consider the example in Figure 2. 

D u ri n g  the compilation of m a i n . cxx, a name
mapping file  is bui lt  in the repository and the location 
of the user-defined class C and tJ1e flmction template, 
perform_some_function, are recorded. From tJ1e infor
mation stored i n  the name- mapping file, an i nstan
tiation source file is men created in  me repository. 
Figure 3 shows the contents of tJ1e instantiation source 
file created to satisfY perform_some_fu nction<C>. 

The prelinker tJ1en compi les me instantiation source 
file by invoking the compiler in a special directed mode, 
which directs the com piler to generate code only for 
specific template i nstantiations that are l isted on the 
command l i ne .  The compiler then generates the defin
ition of perfonn_some_flmction<C> in the resu lting 
object file .  The resu lting object now satisfies the 
instantiation request and is included as part of the 
application's final .l ink .  To bui ld the i nstantiation 
source fi les easily, the i mplementation of this scheme 
generally requires mat template decl arations, template 
definitions, and any argu ment types used to instantiate 
a class or function template must appear i n  separate, 
related header files. 

The Edison Design Group has developed anomer 
approach to li nk-time i nstantiation . 7  In this approach, 
tJ1e compiler records where template i nstantiations are 
used and ·where they can be i nstantiated . At l ink time, 
a pre l inker assigns template i nstantiations by recording 
the assignments in a specially gene rated file that corre-

I I C_c lass . h xx: 
c l  ss C { 
publ ic : 

I I . . .  
} ; 

1 / templ a t e . hxx 

I* per for�so e_ f unct i on ( C& }  * /  

# .i ncl ude " empl a te . hxx"  
� i nclude " temp l a t e . cx x " 

U i nc lude · c_class . h "  

Figur e 3 
Example of an Instantiation Sou rce File 

sponds to the particular source file that can success
ful ly instantiate the user's request. Compiling and pre
l in king the program used in Figure 2 generates an 
i ns tantiation assignment file for main.cxx.  This tile 
contains information concerning the command-l ine 
options specified, me user's current worki ng directory, 
and a l ist of instantiations m at should be i nstantiated. 
Main .cxx now owns the responsibi l i ty of i nstantiating 
perform_some_flmction<C>. The prelinker recompiles 
tJ1e source fi les, such as main .cxx, tJ1at have changes i n  
their template i nstantiation assignments. The process 
is repeated unti l  there are no changes made to the 
i nstantiation assignments. Then the final l ink can be 
completed. 

This approach has the advantage of requiring no 
special file structure to support automatic template 
instantiation. It  is  generally faster and simpler than 
McCluskey's approach, because fewer files are com
piled in the generation of the needed i nstantiations 
and the i nstantiations are generated in the context of 
the use r's source code.  I n  addition, the assignment of 
i nstantiations to sou rce files can be preserved between 
recompilations of the source code, so that unless the 
strucmre of the application changes, the needed instanti
ations \viU be available wimout additional recompilation. 

templ a ce < C ]ass T v o i d  erform_s ome_ f nc i on ( T &par m ) ; 

1 / templ a te . cxx 

templ a e <c lass �> vo id per f o rm_s ome_ func i o n ( T  & param l ( } 

Figur e 2 

l lma in . c x x 
h nc l e "C_c las s . hxx" 

h ncl· de " emp l a  e . h xx" 

i n t  ma i n ( )  

{ 
C C ; 
perfo m_some_ unct i on ( ) ;  
r e  rn 0 ; 

Example of a Li nk-time I nstantiation Sc heme (McCluskey) 
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Comparison of Manual and Automatic Instantiation 

Techniques 

The manual instantiation techniques require planning 
on the part of the user to ensure that needed instantia
tions are present, that no extraneous i nstantiations are 
generated, and that each needed instantiation appears 
exactly once within the application . Witl1 manual 
instantiation ,  the user has the advantage of gaining 
explicit control over aU template instantiations. 
Almough the strategy of instantiating used templates 
local ly requires l ess planning, it  does so at the cost of 
object file size and tl1e restricted use of templates when 
static data mem bers are present or when static data is 
defined locally within a function template instantiation. 

Automatic template i nstantiation provides template 
instantiation wim no explicit action on the part of the 
user. Compi le-time i nstantiation requires e ither spe 
cific l inker support to select a single template instanti
ation from potentially many candidates, or support by 
the compiler to generate instantiations in  separate 
object files while compil ing the user's source code .  
Relying on l inker support al lows the compiler to effi
ciently generate instantiations at the cost of larger 
object files; however, tl1e user loses control over which 
i nstantiation is used in the executable fil e .  Although 
the use of separate instantiation object files usually 
takes more time at compilation than tl1e linker-support 
memod, it results in more compact object files and can 
provide the user wim more control over which instan
tiation is used in the executable fi le .  

Link-time instantiation provides template instan
tiation that is tai lored to the needs of the executable 
fi le .  The primary cost is l ink-time performance, since 
generation of instantiations occurs at l ink time.  
Another disadvantage ofl ink-time instantiation can be 
observed when building object-code l ibraries. Either 
the l ibrary must contain all the instantiations that it 
requires, or the user who wants to l ink with the ubrary 
must have access to all the machinery to create instan
tiations.  Creating a l ibrary's instantiations involves 
extra steps during l ibrary construction . All the object 
files to be included in the l i brary m ust be pre l i nked, 
so tlut the needed i nstantiations are generated.  If 
i nstantiations are i ncl uded in  the i ndividual object 
files in the l ibrary, as in the Edison Design Group 
approach ,  unintended modules may be l inked from 
the l ibrary to provide the needed instantiations. 
Consider the fol lowing scenario, in  which object 
fi les A and B are i ncluded in tl1e l ibrary. Both files 
require tl1e instantiation of perform_some_function<int>. 
V/hen these fi les are prel inked, the instantiation of 
perform_some_function< int >  is assigned to one of 
the files, say A. If an application that is being l inked 
against the l ibrary requires that the object fi le  B be 
l inked into tl1e executable, men the object file A is also 
l inked . Here tl1e instantiation needed by B was i nstan-
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tiated in A even though the executable never refer
enced anything explicitly defined in  file A.  This can 
yield an unnecessarily large executable. 

In the next section, we review the template instan 
tiation support in  earlier versions of DIGITAL C++ 
and then discuss the rationale and design of the auto
matic template i nstantiation faci l i ty in  version 6.0 of 
DIGITAL C++. 

DIGITAL C++ Template Instantiation Experience 

As the use of C++ templates has grown, DIGITAL 
C++ has been enhanced to support the need for 
improved i nstantiation techniques . The in i tial release 
of DIGITAL C++ occurred before the C++ standard
ization process had matured, so that the language sup
ported was based on The Annotated C++ Reference 
Manual, referred to as the AR.t\1 .8 The ARM defined 
template fimctional ity, but it d id not provide guidance 
for either manual or automatic template i nstantiation.  
Thus it was necessary to provide a DIGITAL C++
specific mechanism for template instantiation. 

DIGITAL C++ Manual Template Instantiation 

The #pragma define_template directive and the instan
tiate all command- l ine option, -define_temp lates, have 
been supported since the initial release of DIGITAL 
C++. 

In Figure 4, tl1e define_template pragma directs the 
compi ler to instantiate class template , C, with type i nt. 
When the compiler detects the use of the pragma, it 
creates an internal C<int> type node and traverses the 
list of static data members and member fu nctions 
defined within tl1e class. If the definitions of these 
members are present at tl1C point me pragma is speci
fied, the compiler material izes each with type int .  

As the C++ language developed and template usage 
increased, users found manual template i nstantiation 
to be very labor i ntensive and req uested an automated 
method. 

DIGITAL C++ Version 5.3 Automatic Template 

Instantiation 

Automatic template instantiation capabi l ity became a 
serious issue d uring the planning stages of DIGITAL 
C++ version 5 . 3 .  The use of templates was i ncreasing 
rapidly, and many new thi rd-parry l ibraries, such as 
Rogue Wave Software's Tools .h++, contained a signif
icant use of templates. Due to this growing need, the 
requirements were straightforward. The support had 
to be easy to use, have a short design phase, be quickly 
implemenrable on both the DIGITAL UNIX and the 
OpenVMS platforms, and provide reasonable perfor
mance. Because McCluskey's approach had been used 
in several implementations, it presented i tself as our 
best option. 



emp la t e < lass T c l a s s  c { 
p bl i c : 

void mem_f nc1 { T  p ) ; 

vo i d  mem_f •nc2 { T p ) ; 

) ; 

t mp l e cl a s s  T >  vo i d  C<T> : : mem_Eunc l ( T p )  I I . . .  l 
t empl a te <class T > vo i d  C<T> : : mem_f unc 2 ( T  p )  I I . . .  l 

lrprag a de f " ne_ e mp l a t e C < i n t > 

Figure 4 
The define_template Pragma 

DIGITAL made two major changes to McCluskey's 
approach to take advantage of the DIGITAL C++ 
compiler design . First, we al lowed i nstantiation 
source files to be created at compile t ime instead of 
l ink  time.  This el iminated the need for McCluskey's 
name-mapping fi le  and simplified the prelinking 
process considerably. Since the  needed source files 
existed in  the repository, there was no need to decon
struct the required template instantiations to deter
mine their arguments and types. 

The second change addressed the transitive closure 
problem. Figure 5 shows an example of the class tem
plate Buffer being instantiated with the user-defined type 
C. After compilation of app.cxx with the McCluskey 

approach, the name-mapping file contained definition 
locations of class B and class C. However, it  did not con
tain any indication that class C had a data member that 
relied on the definition of class B .  From the information 
in the name-mapping file,  the pre linker then created an 
instantiation source file that included only C_class .hxx, 
Buffer.hxx, and Buffer.cxx. When this instantiation 
source file was compiled, an error resulted complaining 
that B is an undefined type whose size is unknown . 

We solved this problem in DIGITAL C++ version 
5 . 3  by i ncluding al l  the top-level header files included 
by the current compilation unit  in any i nstantiation 
source files created. This ensured that B_class.hxx 
wou ld be included in the generated i nstantiation file .  

I I B_c las s . h xx 

c l a s s  B { I I . . . J ;  
I IC_c l a s s . hxx 
c l a s s C { 

Figure 5 

I I Bu f fer . h xx 
emp l a t e  < c l a s s  T> c l a s s  Bu f f e r  { 

T * u f f er ; 

int num_o f_i tems ; 

p b l i c : 

) ; 

vo " d add_i tem ( T  * ) ; 
I I . . .  

l l app . cxx 
# i n cl ude " B_c l ss . hxx" 
� · nc lude " C_c l a s s . hxx " 

N i n c lude " Bu f fer . hxx " 

vo i d f ( vo i d ) 

{ 
C c ;  
B f fer< C >  c_bu f f er ; 

c_ bu f fe r . a dd_ i t em ( & c ) ; 

I nstantiation of the Class Template B u ffer 

B data_mem ; 
p bl i c : 

I I . . .  

) ; 

l i B  f fer . cxx 
templ a t e  <Class T> 

void Bu f fer T> : : a dd_i t e m ( T *p ) { ) 
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Despite the fact that this type of automatic l ink
t ime instantiation scheme was bei ng widely used 
in the industry, the results of using a modified 
McCluskey approach were mixed . Stroustrup has 
described the general problems with McCl uskey's 
approach.9 We found that our implementation suf
fered particularly from poor l ink- time performance 
and so did not satisfy our users' needs. 

DIGITAL C++ Version 6.0 Automatic Template 

Instantiation 

DIGITAL C++ version 6 . 0  is a complete reimpJemen
tation of  DIGITAL C++,  with emphasis on ANSI C++ 
conformance. It is implemented using a completely 
new code base, which includes the i ndustry -standard 
C++ tl·ont end from the Edison Design Group and a 
standard class l ibrary from Rogue Wave. 

From our experience with template i nstantiation 
in DIGITAL C++ versions 5 . 3  through 5 . 6,  we con 
cluded that the most i mportant issue that should 
be addressed in the design and implementation of 
the automatic template instantiation facil ity was the 
compile- and l ink-time performance. The primary 
goal w:ts to have the performance of automatic tem
plate i nstantiation su bstantially exceed the perfor
mance of version 5 . 6 .  Another important goa l was 
to remove the restriction of template declaration and 
defin ition placement in  header files. In :�ddit ion, the 
automatic template instantiation facility in version 6 . 0  
had ro be  culturally compati ble with the previous 
implementation . The user had to be able to move 
sources and objects to d ifferent di rectories, easi ly 
bui ld archived and shared libraries, share instantia
tions between various applications, and have error 
diagnostics reported at the earliest possible moment in 
the i nstantiation process. 

Design and I mplementation We decided to use a 
compile-time instantiation model as the basis for our 
implementation . Since we were using the Edison 
Design Group's front end,  we seriously considered 
using their l ink-time mode l .  However, the compi le
time model seemed advantageous tor several reasons. 
First, there are significant complications (as described 
in the section Comparison of Manual and Automatic 
I nstantiation Techniques) when trying to bui ld 
l ibraries with a compiler that uses the Edison Design 
Group l ink-time model .  In addition, the l ink-ti me 
model requires recompilations that limit performance 
in many typical cases of template use. We recognized 
that the l ink-time model could provide better pertor
mance in some cases, but these would be i n  the minor
ity. Finally, the implementation of the l ink-time model 
would require su bstantially more implementation 
eftort on the Open VMS platform . The version of the 
Edison Design Group front end being used to build 
DIGITAL C++ version 6 . 0  required tools to scan a 
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user's object fi les tor information concerning which 
mod ules could instantiate requested templates. Similar 
functionality would need to be implemented for the 
Open VMS platform . 

We preserved the concept of the templ ate reposi 
tory as a d irectory that contains the i ndivid ual tem
plate i nstan tiation ob;ect fi les. The repository stores 
one object fi le tor each template fu nction , mem ber 
function , static data member, and virtual table that is 
generated by automatic template instantiation . The 
file name of the instantiation object file is derived from 
the name of the instantiation 's external name. At com
pile time, the front end generates i n termediate code 
for aJI templates that are needed in the compilation 
unit and can be instantiated .  A tree walk is pedorrned 
over the i n termediate code to find all entities that are 
needed by each generated template instantiation . The 
code generator is cal led to generate cod e for the user
specified object ti le and is then called repeatedly for 
each template i ns tantiation to generate t he instan tia
tion object fi les in the repository. 

The compiler generally considers an instantiation to 
be needed when it is referenced from a context that is 
itself needed, such as in a function with global visibility or 
by the initialization of a vatiable d1at is needed . Virtual 
member fi.mctions are needed when a constructor for 
the class is needed . Thus, ail virtual .fi.mction definitions 
should be visible in a compilation unit that requ ires a 
constructor for d1e class. Each instantiation d1at is gener
ated ''�th autom:.1tic instantiation is marked as potentially 
being in its own object file i n  the repository. 

The intermediate representation of each generated 
instantiation is walked to determine what other entities 
it references. At this point, the i nstantiation is a candi
date to be generated in its own object fil e ,  but it can 
sometimes be generated as part of the user-specified 
object file. If  the i nstantiation references an entity that 
is local to the compi lation unit, such as a static fu nc 
tion,  and  that local entity i s  nonconstant and statically 
initial ized , the instantiation is merged into the user
specified object fi le rather than generated in its own 
object file. As an :�lternative, we could have chosen to 
change the loc:tl enti ty i nto a global entity with :-� 

u nique name and generate the instantiation in its own 
object file .  We chose not to do this in order to make i t  
easier to  share a repository between applications. With 
this alternative, the instantiation in the repository 
requires the object file containing d1e local entity's def 
inition, which may be i n  another application . Note that 
any application that contains more d1an one definition 
of the same instantiation that references a nonconstant 
local entity is a nonstandard -conforming application.  
This is a violation ofd1e  one definition rule w Consider 
the following code fragment: 

static int j ; 
templa e <class T i nt fun (T ar-g) { return j ;  ) 
!nt var = unc { 2 . 5 ) ; 



The reference to the static variable j i n  the template 
function, time, prevents the template fi·om being gen
erated into its own object file in the repositorv. 

When the individual instantiations are w� lked, we 
mark each globa l entity that is defined in the compi la
tion unit so that the definition is replaced by an exter
nal reference when the i nstantiation object file is 
generated . Consider the fol lowing code fragment: 

voi r i n  _coun t ( const chal * s ,  i n t  ivar)  
{ 

cout<< s < < " : " << ivar ; 

templa e <C�ass T> vo i d  f u n c  ( T  ar ) 
{ 

s a ic i n t  coun: = 0 ;  
pt-in  _co n t { " co n ::. " ,  count + + ) ; 

The fi.mction, print_count, is defined in  the source 
fi le  :md generated as a defined function in the user
specified object file. The template function, func, refer
ences the function, print_count. When the code for 
fi.mc is generated i n  its own object file, the rderence to 
print_count must be changed from a rderence to a 
defined h.mction to a reference to an external function .  

By default, each needed instantiation is  generated by 
every compilation that requires the instantiation . This 
is the safe defau l t  because it ensures that instantiations 
in the repository are up to date. However, there will 
prob:�bly be some compilation overhead fi-om regener
ating instantiations that may already be up to date . We 
believed that the overhead of regeneratin(T instantia-

. b 
nons would typical ly be relatively smaJ I .  For applica-
tions with a high overhead of i nstantiation , such as a 
large number of source files using the same large num
ber of  template i nstantiations, we provided a compila
tion option to control the generation of template 
i nstantiations to improve compile-time performance. 

The generation of i nstantiation object files only 
when they are actually required is a difficult problem .  
Fine-grain dependency information would have to be 
kept for each i nstantiation object file .  Such depen
dency information would need to rdlect those fiJes that 
are required to successfully generate the instantiation 
and record which command- line options the user speci
fied to the compiler. vVe suspected that the overhead 
involved with gathering and checkjng the information 
might be an appreciable percentage of the time it wouJd 
take to do the instantiation , and thus it would not give 
us the performance improvement that we wanted. 

Instead, we decided to provide an option that allows 
the user to decide when i nstantiations are generated . 
We rder to this as the template time-stamp option, 
-mmestamp. When using the time-stamp option, the 
compi ler looks 111 the repository for a file named 
TIMESTAl\1P.  If the fi le is not found, i t  is created .  The 
modification time of this ftle is referred to as the time 

stamp.  When generating an instantiation, the compi ler 
looks i.n the repository to see if the instantiation object 
file exists. If i t  does not exist, i t  is generated . If the fi le 
already exists, i ts modification time is compared to the 
time stamp.  If the modification time is later than the 
time stamp, the i nstantiation is assumed to be up to 
date and is not regenerated . Otherwise, the i nstantia
tion is generated. The user can control the generation 
of instantiation object ti les by changing the modifica
tion time of the TIMESTAMP file .  

The time-stamp option wou ld typical ly be used in 
a makefile or a shel l  script that compiles and bui lds 
an entire appl ication. Before i nvoking make or the 
shell script, the user would make certain that no 
TIMESTAMP file resided in the repository. This 
would ensure that each needed instantiation would be 
generated exactly once duri ng a l l  the compilations 
done by the build procedure. 

Much of the C++ l inker support in version 5.6 was 
reused with only minor mod ifications for version 
�.0 . The compiler is presented with a single repository 
mto whtch the instantiation object fi les are written .  
Multiple repositories can be  specified at link time, and 
each can be searched for i nstantiations that are needed 
by the executable ti le .  The l inker is used in a tria l  l ink 
mode to generate a l ist of a l l  the unresolved external 
r�ferences . This list is then used to search the reposito
nes to find the needed instantiation fiks, and tl1e 
process is repeated unti l  no more instantiations are 
needed or can be satisfied from the repository. The 
lmk then proceeds as any normal link,  adding the l ist 
of tnstantiation object files to the l ist of object ti les 
and l ibraries as specified by the user. 

If a vendor is cre:�ting a l ibrary rather tl1an an exe
cutable file, the instantiations needed by the modules 
in the _library can be provided in either of two ways: ( 1 )  
The hbrary vendor can put the needed instantiations 
in the l ibra:y by adding tJ1e files in the repository to 
the hbrary h le .  (2 )  The l ibrary vendor can provide the 
repository with the l ibrary and require that l ibrary 
users lmk WJth the repository as wel l .  Note that instan
tiations placed in the library :u·e fixed when the l i brary 
IS created . Smce the l ibrary is included in the trial l ink 
of an appl ication, any instantiation i n  the library takes 
precedence over the same named instantiatia"n in  a 
repository. 

Results In a number of tests, DIGITAL C++ version 
6.0 showed improved performance over version 5 .6 .  
We tested a variety of user code samples that use tem
plates to varying degrees and found that build times tor 
version 6 .0 decreased substantially compared to tl1e 
version 5 . 6  compi ler. Examples of two typical C++ 
applications used in our tests are the publicly avai l able 
EON ray-tracing benchmark and a subset of tests from 
our Standard Template Library (STL) test suite. For 
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the EON benchnurk, the bui ld time for version 6.0 was 
reduced to 28 percent of the build time tor version 5 .6 .  
For the STL tests, t h e  bui ld ti me tor version 6 . 0  was 
reduced to 1 9  percent of the build time for version 5 .6 .  
The number o f  fi les i n  the repository also decreased 
signiti cm tly because version 6.0 generates only i nstan 
tiation object fi les i nstead o f  the i nstan tiation source, 
command, dependency, and object files of\-crsion 5 .6 .  
For EON, the version 6 . 0  repository contained 88 files 
compared to 260 files in  version 5 . 6. 

Using the ti me-sta m p  option, bui ld time tor the 
EON bench mark was red u ced by on l y  5 percent com 
pared to t h e  dcfJ u l t  i nstanti ation strJtegy. The real 
benefit of the ti me-stamp option comes with appl ica
tions that  usc the same template i nstantiations i n  many 
comp i lation u n i ts .  For example,  in one user's test case, 
build times dropped from roughly 18 hours with the 
default  instantiation to 3 h ours when using the time
stamp option. 

In tl1e next section, we conclude our paper with a dis
cussion of fu rtl1er work that can i mprove the perfor
mance and usability of automatic template instantiation. 

Future Research 

We continue to investigate approaches a nd tech niq ues 
to im prove tl1e usJbi l ity and performance of the auto
matic template i nstantiJtion faci l ity. Optimal usJbility 
and performance would seem to require a development 
environment completely intq!;rJted for C++. This envi 
ronment wou ld keep trac k  of all entity definitions Jnd 
usage <md would be able to li mit aiJ  inst:.mtiation gener
ation to the m i nimum needed . This approach would 
req uire a great deal  of development work and might be 
difficul t  to in tegrate with existing customer develop
ment methodologies. Therefore , we focus on more 
modest techniques tlut approxi nute tl1e optimal case. 

vVe are exp loring WJ)'S to improve both performance 
and usabil ity in the mJnJgement of dependency i n for
mation . We conti nue to look at approaches for using 
dependencies that can be rel iable,  autom atic , and fast. 
We also continue to i nvestigate ways to gJther and check 
fi n e-grai ned dependency int(xmation for the instanti
ation object fi les, though performance is J concern.  
One approxi mJtion to the ti ne-grai n  dependency 
information that we are investigating is a larger grain 
dependency scheme. This tech n iq ue creates a time 
stamp ti·om the latest creation time of any sou rce ti l e  
included d u ri n g  compilation of a given module .  Any 
i nstantiation object fi le i n  the repository whose modj
fication ti me is  later than th is time stamp wou l d  not be 
regenerate d .  This approach is more automati c  and can 
potential ly yield better perform ance than our cu rre n t  
t ime-stamp option, b u t  i t  would n o t  b e  sensitive to 
changes on the command l ine  or changes to th e struc-
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ture of the ti l es used to generate the i nstJn tiation.  For 
example, if the user speci fied Jn i nc l u de d irectory 
of old_include on the i nitial compibtion and later 
specified J.n i ncl ude directory of new_inc l ude, this 
approach wo uld not recognize that differen t  fi les were 
being included.  

Another approach to i m proving application bui ld  
performance i s  to support a bui ld facil ity that  can 
make use of template inf(m11Jtion in determining 
dependency. Currently, each user-spec i fied object fil e  
is  dependent o n  :�I I  the i ncluded fi les necessary to 
create instantiation object fi les f(>r te mpl ate req uests. 
When a change is made to a te mpbte defi nition, all the 
sources that reference the te mpl ate need to be recom
pi led.  A b u i ld fac i l ity designed to be sensitive to tem
plate i nstJntiation cou ld de tect that a cha nge i n  the 
template d e fi n ition was l imited to the i nstantiation 
object file. It could then i nstruct the compi ler to sup
press the regeneration of object fi les tor sou rce fi les 
that are only be ing recompi led due to the ci1Jnge in 
the te mplate i nstanti ation . S uch a f.1ci l i ty could also 
suppress the recompi iJtion of any source file thJt 
wou l d  only reproduce the changes to i nstantiations 
that were already regenerated . 

Because we recognize that l i nk-time i nsta nti:�tion 
can pertonn better i n  some cases than the compile-time 
approach,  we Jre investigating the l in k - time inst:�ntia
tion model  as a user option. 

Finally, we continue  to look at  ways to reduce the 
cost of generating each insta ntiation . For example, by 
default the compi ler compresses the generated object 
files. Although most instantiation object files are smal l ,  
many oftl1em are potential ly generated in  a si ngle com 
piJation. As a result, the time to compress al l  the i nstan
tiation object fi les can be signific.1 nt . Im provements 
such as not compressing small object fi les Jnd/or 
i mproving the algorithm of the object fi le compression 
implementation i tself could yield sign ificant perfor
mance i mprovement. I n  add ition to improvements 
tlut wou ld reduce the overhead of generating i nstanti
ations, we are also researching wJys to redu ce the num 
ber of i nstantiation object files. For ex:�mp le, we might 
combine all the virtual functions of a c i Jss i nto a single 
i nstantiation object file in the reposi tory. 

Summary 

As vvith most engineering problems, no single Jpproach 
to tl1e automatic instantiation of templates is optimal for 
all potential uses of templates. Rased on our experience 
witl1 providing template su pport i n  DIG ITAL C++, we 
chose to implement a compile-time automatic template 
instantiation scheme for version 6.0 tl1 at generates 
instantiation object files i n to a reposi tory. This choice 
allows users to better control when templ:�te instantia-



tion occurs. In addition, it provides a substantial 
improvement in performance of template instantiation 
over version 5 .6  and reduces the restrictions on the 
location of template declarations and definitions. We 
continue to investigate the template-instantiation imple
mentation to further improve compile- and link-time 
performance and ease of use. 
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Measurement and 
Analysis of C and C++ 
Performance 

As computer languages and architectures 

evolve, many more challenges are being pre

sented to compilers. Dealing with these issues 

in the context of the Alpha Architecture and the 

C and C++ languages has led Compaq's C and 

C++ compiler and engineering teams to develop 

a systematic approach to monitor and improve 

compiler performance at both run time and 

compile time. This approach takes into account 

five major aspects of product quality: function, 

reliability, performance, time to market, and 

cost. The measurement framework defines a 

controlled test environment, criteria for select

ing benchmarks, measurement frequency, and 

a method for discovering and prioritizing oppor

tunities for improvement. Three case studies 

demonstrate the methodology, the use of mea

surement and analysis tools, and the resulting 

performance improvements. 
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Optimizing compilers are becoming ever more complex 
as languages, target architectures, and prod uct features 
evolve. Languages contribute to compiler complexity 
with their increasing use of abstraction, modularity, 
delayed binding, polymorphism, and source reuse, 
especially when these attributes are used in combina
tion. Modern processor architectures are evolving ever 
greater levels of internal paral lelism in each successive 
generation of processor design. In addition, product 
feature demands such as support for fast threads and 
other forms of external parallelism, integration with 
smart debuggers , memory use analyzers, performance 
analyzers, smart ectitors, incremental builders, and feed
back systems continue to add complexity. At the same 
time, traditional compiler req uirements such as stan
dards conformance, compatibility with previous ver
sions and competitors' products, good compile speed , 
and reliability have not ctiminishcd. 

AU these issues arise in the engineering of Compaq's 
C and C++ compilers for the Alpha Architecture. 
Dealing with the m req uires a ctisciplined approach to 
performance measurement, analysis, and engineering of 
the compiler and libraries i f  consistent im provements in 
out-of-the-box and peak performance on Alpha proces
sors are to be achieved. In response, several engineering 
groups working on Alpha software have established 
procedures for feature support, performance measure
ment, analysis, and regression testing. 

The operating system groups measure and improve 
overall system performance by providing system-level 
tuning features and a variety of performance analysis 
tools. The Digital Products Division (DPD) Performance 
Analysis Group is responsible for providing official 
performance statistics for each new processor mea
sured against industry-standard benchmarks, s uch as 
SPECmarks published by the Standard Performance 
Evaluation Corporation and the TPC series of transac
tion processing benchmarks from the Transaction 
Processing Performance Council . The DPD Performance 
Analysis Group has established rigorous methods for 
analyzing these benchm arks and provides perfor
mance regression testing for new software versions. 



Simibrly, the Alpha compiler back- end development 
group ( G E M )  has establ ished performance im prove
ment and regression testing procedmes for SPECmarks; 
it also performs extensive run-time performance analy
sis of new processors, i n  conjunction with refining and 
developing new optim ization tech n iques. Final ly, con
su l ta nts worki ng with independent software vendors 
( ISVs) help the ISVs port and tune their appl ications 
to work well on Alpha systems. 

Al though the e ffort from these groups does con 
tribute to competitive performance, especially on 
ind ustry-standard be nch marks, the DEC C and C++ 
com piler engi neering teams have found i t  necessary to 
i ndependen tly monitor and improve both run-time 
and compile- time performance . J n  many cases, ISV 
support consultants have discovered that their  applica
tions do not achieve the performance levels expected 
based on ind ustry-standard benchmarks . We have seen 
a variety of causes: New language constructs and prod 
uct features are slow to appear in ind ustry bench
marks, thus these optimi zations have not received 
suffi cient atte ntion . Obsolete or obsolescent source 
code remai ning i n  the bulk of existing applicat ions 
Gl uscs defau l t  options/switches to be selected that 
i n hibit  optimizations. Many of the most i mportant 
optim izations used for exploiting i n ternal para l lelism 
make assumptions about code behavior that prove to 
be wrong. Bad experiences with compiler bugs indu ce 
users to avoid optimizations e ntirely. Configuration 
and source-code changes made j ust before a prod uct is  
released can i nterfere with i m portant optimi zations .  

For al l  these reasons, we have used a systematic 
approach to monitor, i m prove, and trade off five 
major aspects of product quality in t he DEC C and 
DIG ITAL C++ compilers. These aspects are fu ncti o n ,  
rel iabi l ity, performance, time to market, a n d  cost. 
Each aspect is chosen because it is  i m portan t  in isola
tion and because it trades off against each of the other 
aspects. The objective of this paper is  to show how the 
one characteristic of performance can be improved 
wh i l e  minimizing the i mpact on the other four aspects 
of prod uct qual ity. 

J n  th is paper, we do not d iscuss a ny individ u al opti
mization methods in detai l ;  tl1ere is a plethora of liter
ature devoted to these topics, i nc luding a paper 
pu blished in this journal.' Nor do we d iscuss specifi c  
compiler prod uct features needed tor competitive sup
port on i nd ividual platforms.  I nstead, we show how 
the efforts to measure, monitor, and im prove perfor
ma nC<: are organized to minimize cost and time to 
market while maximizing fu nction and rel i abi l i ty. 
Since al l these prod uct aspects are managed i n  tJ1e con 
text of a series of product releases rather than a s ingl e  
release , our goals are frequently expressed i n  terms o f  
relationships between old and new product versions. 

For exampl e,  tor the performance aspects, goals along 
the fol lowing lines are common : 

• Optimizations should not i mpose a compi le -speed 
penalty on programs for which they do not app ly. 

• The use of unrelated compiler featu res should not 
d egrade optimizations. 

• New optim izations should not degrade rel iabi l i ty. 

• New optimizations should not degrade perfor
mance in any appl ications. 

• Opti mi zations should not i mpose any nonlinear 
compile-speed penaJty. 

• No appl ication should experience run-time speed 
regreSSIOnS.  

• Specific benchmarks or appl ications should achieve 
specific run-time speed i mprovements. 

• The use of specific new language features should not 
i n troduce compile-speed or run-time regressions. 

In the context of pertormance, the term measure
ment usually refers to crude metrics collected during 
an automated script, such as compile t ime, r u n  t ime, 
or memory usage. The term analysis, in  contrast, 
refers to the process of breaki ng down the crude mea
surement i nto components and discoveri ng how the 
measurement responds to changing cond itions. For 
example, we an alyze how compi le  speed responds to 
an i ncrease i n  avai lable physical memory. Ofte n ,  a 
comprehensive ana lysis of a particular issue may 
require a large number of crude measu rements .  The 
goal is  usually to identi �r a particular prod uct feature 
or optimization algoritl1m tlut is  fail ing to obey one of 
the product goals, such as those l isted above, and 
repair it ,  repl ace it, or amend the goal as appropriate. 
As always, i ndividual i nstances of this approach are 
i n teresting in themselves, b u t  the goal is to maximize 
the overall performance while mi nimizi n g  the deve l 
opment cost, new feature avai labi l ity, rel iabi l ity, and 
time to market for the new version. 

Although some literature' - 4  discusses specific aspects 
of analyzing and improving performance of C and C++ 
compilers, a comprehensive discussion of the practical 
issues i nvolved in the measurement and analysis of 
compiler performance has not been presented 

.
i n  the 

literature to our knowledge. I n  this paper, we provide a 
concrete background tor a practitioner i n  the field of 
compilation -related performance analysis. 

In the next section, we describe the m e trics assoc i 
ated with the compiler's performance. Followi ng that, 
we discuss a n  environment tor obtai ning stable perfor
mance resul ts,  i nclud ing appropriate benchm arks, 
measmement frequency, and management of the results. 
FinalJy, we discuss the tools used for performance mea
surement and analysis and give examples of the use of 
tl1ose tools to solve real problems. 
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Performance Metrics 

In our experi ence , ISVs :md end users are most i n ter
ested in the fol lowing performance metrics: 

• Function. Although fu nction is not usual ly consid
ered an Jspect of performa nce, new language and 
product features J.re entire l y appropriate to consider 
among potenti al pe rformance improvements when 
trading off deve lopment resources. From the point 
of view of a user who needs a p:trticu l ar feature , the 
Jbsence of that feJture is i ndistingu isha ble from an 
umcceptab ly slow i mpl ementation of that fea ture .  

• Re l i ab i l i ty. Academic papers o n  pcd(xmance sel 

dom d iscuss re l ia bi l i ty, but it is cru ci al .  Not on ly is 
an unrel iable optim izat ion use less , often i t  prej u 
dices progr:� mmers against using a n y  op ti miza 
ti ons, thus degrad i ng rather than en harKi ng overall 
perform:mcc .  

• Application abso lu te r u n  time. Typically, the absolute 
ru n ti me of an appl ication is measured for a bench 
mark with specific input data . It is i mportant to real
ize, however, that a user-su ppl ied benchmark is often 
on ly a surrogate for the maximum appl ication size. 

• Max im um app l icni on size. Often ,  the end user is 

not trying to solve a specific i nput set in  the shortest 
time ; instead , the user is  trying to solve the largest 
possible real -world prob le m with in  a specific t ime.  
Thus, trends (e .g . ,  memory bandwid th ) arc often 

more i mportant tha n  abso lu te tim ings . Th is a lso 
i mp l ies thJt spec i fic benchmarks must be retired or 
upgraded when processor i m provements moot thei r  
original rationa le . 

• Price/Pe rformance ratio . Often, the most effective 
competitor is  not the one who em match our 
prod uct's perform ance, but the one who cJ.n give 
acceptable performance (see Jbovc) wid1 d1e cheJpcst 
solution . Since compiJcr developers do not contribute 
direcdy to server or workstation pricing decisions, 
they must use d1c previous meuics as surrogates . 

• Compile speed . This aspect is primari ly of i nterest to 
appl ication developers rather thJn end users. 
Com pile speed is often given secondary considera
tion in  academic papers on opti mization; however, it 
can make or breJ k the decision of an ISV consider
ing a pl atform or J developmen t  environment. Also, 
for C++, there is an important distinction between 
ab i n i tio build speed a n d  i nc remen ta l  bui ld speed, 
due to the need for template instJnriation .  

• Resu lt file size. B oth t h e  obj ect fi l e  and executable 
fi le  sizes arc impor tant . This Jspect WJS not a partic
u lar problem with C, but scverJI Ianguage features 
of C++ :l!1d its optim izations can lcJd to exp losive 
growth i n  resu l t  fi le size. The most obvious prob
lems Jrc the need for ex tensive function i n li ni ng 
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and for instantiation of temp lates . I n  add it ion, for 
debu g  versions of the result fi les,  it is essential  to 
find a way to suppress repeated descri ptions of the 
type information for varia bl es i n m ul ti ple modu les . 

• Co mpi ler dynamic memory use. Peak usJge, aver
age usage , and pattern of usage must be regulated 
to keep the cost of a minimum deve lopme nt con
figu ration low. In add i ti on , it  is i mportan t to ensure 
that speci fi c  com pi ler a lgorithms or com b i nati ons 
of them do not viol ate the usage Jssu mptions bui l t  
in to the paging system, which can make the  system 
u nusab l e  d uring large compi lations. 

Crude measu rem ents can be made t(Jr a l l  or most of 
these metrics in a single  script. When Jttempting to 
make a si gn ifi cant i mprovement in one or more mct 
rics, however, the change often necessari l y  d egrades 
others. This i s  acceptable, as long as the only cases that 
pay a penalty (e .g . , in l arger dyr1:1 mic memory usc) arc 
the compilations that benefit from the i m proved run
time performance . 

As the list of performance metrics ind icatcs, the most 
important d i sti nc tion is  made betvvcen comp i le -ti me 
and r u n - time metrics. In pract ice , we use auton1J tcd 
scripts to measu re comp i le -ti me Jnd ru n-time perfor
mance on a fai rly frequent (dai ly or weekly  during 
development) basis. 

Compile- Time Performance Metrics 

To measure compile- t ime perform:mce , we usc fou r  
metrics: compilation ti m e ,  size o f  d1e generated objects ,  
dynam ic memory usage during comp i lation , and tem
plate instantiation time fcJr C++.  

Compilation Time The compi lation time is  measured 
as d1e time it takes to compi le J given set of sources, 
typical ly excl ud ing the link t ime.  The l ink  ti me is  
excluded so that only compi ler  pcrfonnJncc is m ea
su red . This metric is i mportJnt because i t d irccdy 
affects d1e prod uctivity of a deve lope r. In the C++ c:1sc, 
performance is measured ab initio,  because our prod 
uct set does not support incremental compi lation 
below the grJnu la rity of ::1 who le mod u l e .  When opti
mization of the enti re program is attempted, this may 
become a more interesti ng issu e .  The U N I X  shel l ti m
ing tools make a distinction between user a n d  system 
time, but iliis is not a meaningfu l distinction f(x a com
p i ler user. S i nce compi btion is typic:� l ly  CPU intensive 
and system time is usual ly modest, tr:�c king the sum of 
both d1<:: user and the system time gives the most realis
tic result. S l ow comp ilation ti mes can be ca used by the 
use of 0 ( n2) a lgori th ms i n the opti mi zation phases , 
but  they can also be freq uent ly caused by excessive 
l ayering or mod u l arity due to code reuse or excess ive 
growth of the i n- memory representation of the pro
gram during compi lation (e .g . ,  due to inl ini ng) . 



Size of Gene rated Objects Excessive size of generated 
objects is a d i rect contri butor to s low compi le and 
l i nk  times. In add i tion to the obvious issues of i n l i n 
i ng  and template instantiation, dupl ication of  the type 
and naming information in the symbol ic  debugging 
support has been a particu lar prob lem with C++. 
Compression is possible and helps with disk space, but 
this i ncreases l ink time and memory use even more . 
The current solu tion is to e l iminate dupl i cate infonna
tion present in mu l tiple modu les of an appl ication. 
This work requ ires s ignificant support in both the 
l inker and the debugger. As a resu l t , the implementa
tion has been d ifficult .  

Dynamic Memory Usage during Compi lation Usual ly 
modern compilers have a mu l tiphase design whereby 
the program is represented in several d ifterent forms in 
dynamic memory during the compi lation process. For 
C and C++ optimized com pilations, this involves at 
least the fd lowing processes: 

• Retrieving the enti re sou rce code tor a module 
from its various headers 

• Preprocessing the source according to the C/C++ 
rules 

• Parsing the source code and representing i t  i n  an 
abstract f(:>rm with semantic i nformation embedded 

• For C++, expanding template c lasses and fu nctions 
into their individuaJ instances 

• Simpl ifYing h igh-level l an guage constructs i n to a 
form acceptable to the opti mization phases 

• Converting the abstract represen tation to a d iffer
ent abstract form acceptable to an opti mizer, usu
al ly cal led an i ntermed iate language ( I L) 

• Expand ing some low- level functions in l ine i nto the 
context of their cal lers 

• Performing mu lt ip le optim ization passes involving 
an notation and transformation of the IL 

• Converti ng the I L to a form symbolical ly represent
ing the target machine language , usual ly called code 
generation 

• Performing schedul ing and other opti mizations on 
the symbolic machine l anguage 

• Converting the symbolic machine language to actual 
object code and writing it onto disk 

In modern C and C++ compi lers, these various i nter
mediate f(xms are kept entirely in dynamic memory. 
Although some of these operations can be performed 
on a fu nction-by-function basis with in a modu le,  it is 
sometimes necessary for at least one intermed iate form 
of the module to reside in dynamic memory in i ts 
entirety. I n  some instances, it is necessary to keep mul
ti ple tonns of the whole module s imultaneously. 

This presents a d ifficu l t  design chaJ le nge : how do we 
compile large programs using an acceptable amount of 
virtuaJ and physical memory? Trade-offs change con
stantly as memory prices dec l ine and pagi ng a lgorithms 
of operating systems change. Some optimizations even 
have the potential to expand one of the intermediate 
representations into a form that grows faster than the 
size of the program ( 0( n x log( n) ) ,  or even 0( n1 ) ) . I n  
these cases, optimization designers often l imit the 
scope of the transformation to a subset of an i ndividual 
function (e .g . ,  a loop nest) or use some other means to 
artificial ly l imi t  the dynamic memory and computation 
requirements. To allow additional headroom, upstream 
compiler phases are designed to el iminate unnecessary 
portions of the module as early as possi ble. 

In ad d it ion, the memory management systems are 
designed to a l low in ternal memory reuse as effi
c iently as  possib l e .  For th is  reason ,  compi ler design
ers at Compaq have genera l l y  preferred a zone-based 
memory management approach rather than e ither a 
malloc- based or a garbage-col lection approach .  A 
zoned memory approach typical ly a l lows a l location 
of varying amoun ts of memory i nto one of a set of 
ident i fied zones, fo l lowed by deal location of the 
e n ti re zone when a l l  the individual al locations are no 
longer needed . Since the source program is repre
sented by a succession of i n ternal representations 
in an optimizing compi ler, a zoned -based memory 
management system is very appropriate . 

The main goals of the design are to keep the peak 
memory use below any art i fic ia l  l imits on the virtual 
memory avai lable for al l the actual source modules 
that users care about, and to avoid algorithms that 
access memory i n  a way that causes excessive cache 
misses or page tau l ts. 

Template Instantiation Time for C++ Templates are a 
major new teature of the C++ language and are heav i ly  
used in  the new Standard Li brary. I nstantiation of 
templates can dominate the compile time of the mod 
u les that use them . For this reason,  template instantia
tion is undergoing active study and improvement, 
both when compi l ing a mod ule for the first t ime and 
when recom pil ing in response to a source change. An 
improved technique, now widely adopted , retains pre
compiled i nstantiations in a l i brary to be used across 
compil ations of multiple modu les. 

Template instantiation may be done at  either com
pile t ime or during l i nk  time, or some com bination . '  
DIGITAL C++ has  recently changed from a l ink- time 
to a compi le-ti me model for improved i nstantiation 
performance . The i nstanti ation time i s  general ly pro
portional to the nu mber of templates i nstanti ated , 
which is based on a command- l ine swi tch specification 
and the ti me requ i red to instantiate a typical template. 
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Run-Time Performance Metrics 

We use automated SC!ipts to measure run-time perfor
mance tor generated code, the debug image size, the pro
duction image size, and specific optimizations triggered . 

Run Time for Generated Code The run time for gen
erated code is  measured as the sum of user and system 
time on UNIX required to run an executable image. 
This is the pri mary metric for the qua l ity of generated 
cod e .  Code correctness i s  also validated . Comparing 
run times tor s l ightly differing versions of synthetic 
benchmarks al lows us to test su pport for specitic opti
mizations. Performance regression testing on both 
synthetic bench marks and user applications, h owever, 
is the most cost-effective method of preventing per
formance degradations. Tracing a perrormance regres
sion to a specific compiler change is often d ifficu lt , but 
the earl ier a regression is detected, the easier and 
cheaper it  is to correct. 

Debug Image Size The s ize of an image compiled 
with the debug option selected during compilation is 
mcJ.sured in bytes. It is a constant struggle to avoid 
bloat caused by unnecessary or redu ndant information 
req u i red for sym bolic debugging support. 

Production Image Size The size of a prod uction 
(optimized , with no debug i n tonmtion ) Jppl ication 
i mage is  measured in bytes. The use of optimization 
techniques has historical ly  made this size smal ler, but 
modern RISC processors such as the Alpha micro
processor require optimizations that can increase code 
size substantial ly and can lead to excessive i mage sizes 
i f  the techniq ues are used indiscri minately. Heuristics 
used in the optimization algorithms l im i t  this size 
impact; however, su btle changes in one part of the 
optimizer can trigger unexpected size increases that 
aHect I -cache performance. 

Specific Opti m izations Triggered In J multiphase 
optimizing compi ler, a specific optimization usua l ly 
req ui res preparatory contributions from several 
upstream phases and cleanup from several down
stre;�m phases, i n  addition to tbe ;�ctua l  transforma
tion . In this environment, an unre l a ted change in one 
of the upstream or downstream phases may in terfere 
with a data structure or vio late an assumption 
exploi ted by a downstream phase and thus generate 
bad code or suppress the optimizations. The genera
tion of bad code can be detected qu ickly with auto
mated testing, but optim ization regressions are much 
harder to find .  

For some opti mizations, however, it  is poss ib le  to 
write test programs that are clearly representative 
;�nd can show, e i ther by some kind of d umping or 
by compar;�tive performance tests, when an imp le
mented optimization fai ls to work as expected . One 
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commercially avaiL1ble test suite is called NULLSTONE ,'' 
and custom-wri tten tests are used as wel l .  

In a collection of such tests, the total number of opti 
mizations implemented as a percentage of the total 
tests can provide a usefu l metric .  This metric can indi 
cate if successive compi ler versions have improved and 
can he lp  in comparing optimizations implemented in 
compilers from difterent vendors. The opti mizations 
that are indicated as not implemented provide usefu l  
data for guiding future development effort. 

The app lication developer must always consider the 
compile-time versus run-time trade-off. I n  a wel l 
designed opti mizing compi ler, longer compile times 
are exchanged f(Jr shorter run times. This re lationship, 
however, is far from l inear and depends on the im por
tance of pertormance to the application and the phase 
of deve lopment. 

During the initia l  code-deve lopment stage, a shorter 
compi le time is usefu l  because the code is compiled 
often .  During the production stage, a shorter run time 
is more import<lnt because the code is run  often .  
Although most of the  above metrics can be  d irectly 
measured, dynamic memory use can on l y  be indirectly 
observed, for example, ri·om the peak stack use and the 
peak heap use . As a resu l t, our tests include bench
marks that poten tia l ly make heavy use of dynamic 
memory. Any degradation in a newer compiler version 
can be deduced ti·om observing the compi lation of 
such test cases. 

Environment for Performance Measurement 

In th is section, we describe our  testing environment, 
inc lud ing hardware and software requirements, cri te 
ria for selecting benchmarks, frequency of perfor
mance measurement, and tracking the resu l ts of  our 
performance measurements.  

Compiler performance ana lysis and measurement 
give the most rc l i:�ble  and consi stent resu l ts in a 

control led envi ronment.  A n u m ber  of tactors other 
than the compi ler performance have the potential of 
aHecting the observed resu l ts, and the effect of such 
pertu rbations must be minimized . The hardware and 
software components of the test environ ment used arc 
d iscussed below. 

Experience has shown that i t  helps to have a ded i 
cated machine tor pcdormance analysis and measure
ment, because the resu l ts obta ined on the same 
machine tend to be consistent and can be meaning
ful ly compared with successive runs .  In addition ,  the 
external  i n fluences can be closely control led,  and ver
sions of system software, compilers, and benc hmarks 
can be controlled without impacting other users. 

Several aspects of the hardware configuration on the 
test machine can aftcct the resu lting measurements.  
Even with in  a singl e f:un i ly of CPU architectures at 
comparable clock speeds, differences i n  specific i mple-



mentations can cause signi ficant pedonnance changes. 
The number of levels and the sizes of t he on-chip and 
board- level caches can have a strong effect on perfor
mance in a way that depends on a l gorithms of the 
appl ication and the size of the input data set. The size 
and the access speed of the main memory strongly 
affect performance, especial ly when the appl ication 
code or data does not fit into the cache. The activity on 
a network connected to the test system can h ave an 
effect on performance; for example, i f  the test sources 
and the executable i mage are located on a remote disk 
and Jre fetched over a nenvork. Va riations in the 
observed performance may be divided into nvo parts: 
( 1 )  system-to-system variations in measurement when 
running the s:une bench mark and ( 2 )  ru n-to-run varia
tion on the same system nnmi ng the same bench mark. 

Va riJtion due to hardware resource differences 
between systems is add ressed by using a dedicated 
mach ine tor performance measurement as i n d icated 
above. VJriation d u e  to network activity can be mini 
mi zed by closing a l l  the  appl ications that  make use of 
the network before the performance tests are started 
and by using a disk system local to the mach ine under 
test. The variations due to cache and mai n memory 
system effects can be kept consistent berween r u ns by 
usi ng similar setups for successive runs ofpedorma nce 
measurement. 

I n  addition to the hardware components of the 
set up descri bed above, several aspects of the sof-tware 
environ ment can affect performance . The operating 
system version used on the test machine should corTe
spond to the version that the users are l ikely to use on 
their machi nes, so that the users see comparable per
fonnance. The l i braries used with the compiler are 
usual ly shi pped with the operating syste m .  Using dif
fere nt l i braries can affect performance because newer 
l ibraries may have better optimizations or new fea
tures. The compiler switches used whi le compi l ing test 
sources can result i n  different opti mi zation trade- offs . 
Due to the large number of compi ler options sup
ported on a modern compiler, it is i m practical to test 
performance with all possible combi nations.  

To meet our requireme nts, we used the fol lowing 
small set of switch combinations: 

I .  Default Mode. The default mode represents the 
default combination of switches selected for the com 
pilcr when no user-selectable options are specified. 
The compiler designer chooses tl1e default combina
tion to provide a reasonable trade-off between com
pi le speed and run speed. The use oftl1is mode is very 
common, especially by novices, and thus is important 
to measure. 

2 .  Debug Mode. In the debug mode, we test the option 
combination that the programmer would select when 
debuggi ng. Opti mi zations are typica l ly  turned off, 
and ful l  sym bolic information is generated about the 

types and addresses of program variables. This mode 
is commonly specified during code development. 

3. Optimize/Prod uction Mode. In the optimize/ 
produ c tion mode, we select the option com bina
tion for generati ng optimized code ( -0 compi ler  
option) for a prod uction image . This  mode is most 
l ikely to be used in com pi l ing applications bdore 
shipping to customers. 

We prefer  to measure compile speed for debug mode,  
r u n  speed for prod uction mode, and both speeds for 
the default mode. The default mode is expected to lose 
only modest r u n  speed over optimize mode, have good 
compile speed, and provide usable debug information . 

Criteria for Selecting Benchmarks 

Specific benchma rks are selected for measuring perfor
mance based on the ease of measuring i n teresti ng 
properties and the relevance to the user community. 
The desirable characteristics of usefu l benchmarks are 

• It  should be possi ble to measure i ndividual  opti
mizations i mplemented in the compiler. 

• It should be possible to test performance for com
monly used language features. 

• At least some of the bench marks should be repre
sentative of wid ely used appl ications. 

• The benchmarks should provide consistent resu lts, 
and the correctness of a run should be verifiable.  

• The benchmarks should be scalable to newer 
machi nes.  As newer and faster machi nes are devel
oped, the be nchmark execu tion times diminish .  I t  
should be possible to scale the bench marks on the 
machi nes, so that usdi.1 l results can still be obtained 
without significant error in measurement. 

To meet tl1ese diverse requirements, we selected a set 
of benc hmarks, each of which meets some of the 
requirements. vVe grouped our bench marks i n  accor
dance with the performance meaics, that is, as compile
time and run-time benchmarks. This disti nction is 
necessary because it al lows us to fine -tune the contents 
of the benchmarks under each category. The compi le
t ime and ru n-time bench marks may be fi.rrther classified 
as ( l )  synthetic benchmarks for testi ng the petiormance 
of specific features or ( 2 )  real applications tl1at i n dicate 
typical performance and combi ne the specific feanu·es. 

Compile-Time Benchmarks Examples of synthetic 
compile-t ime bench marks inc l ude the #define i n ten 
sive preprocessing test, t h e  array intensive test, the 
com ment intensive test, the declaration processing 
i n tensive test, the h i erarchical #include intensive test, 
the printf i ntensive test, the empty #include i n tensive 
test, the ari th metic i n tensive test, the fi.mc tion defini
tion i n tensive test ( needs a large memory),  and the 
i nstantiation i n tensive test. 
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Re al appl ications used as compi le- t i me benc h
marks incl ude selected sources from the C compiler, 
the DIG ITAL UNIX operati ng syste m ,  U N I X  ut i l i ties 
such as awk, the X wi ndow i nter face, and C++ class 
i n heri tance. 

Ru n-Time Bench marks Synthetic run-time bench
marks contain tests fo r i ndividual opti mizations for 
different data type, storage types, and operators. One 
run-time suite cal led NULLSTON£6 contains tests for 
C and C++ co mpi ler opti mi zations; another test su i te 
cal led Bench++7 has tests for C++ features such as vir
tual fu nction calls, exception handling, and abstraction 
penalty ( th e  Haney kernels test, the Stepanov benc h 
mark, and t h e  OOPACK benchmark") .  

Ru n-time bench marks of real applications for the C 
language i nclude some of the SPEC tests that are closely 
tracked by the DPD Performance Group . For C++, the 
tests consist of the groff word processor processing a set 
of documents, the EON ray tracing benchmark, the 
Odbsi m-a database simulator fi·om the U niversity of 
Colorado, and tests that call fu nctions from a search 
class l ibrary. 

Acquiring and Maintaining Benchmarks 

We have esta blished methods of acquiri ng, maintain
ing, and u pdating bench marks. Once the desirable 
characteristics of the benchmarks have been identified, 
usefu l benchmarks may be obtained from several 
sources, notably a standards organization such as 
SPEC or a vendor such as Nul lstone Corporation . The 
pu blic domai n can provide benchmarks such as EON, 
groff, and Bench++.  The use of a p u blic-domain 
bench mark may req u i re some l evel of porting to make 
the bench mark usable on the test platform i f  the origi 
nal appl i cation was developed for use with a d i fterent 
language dialect, e .  g., GNU's gee . 

Sometimes, customers encou nter performance prob
lems ''�th a specific feature usage pattern not anticipated 
by the compiler developers. Customers can provide 
extracts of code that a vendor can use to reprod uce 
these performance problems. These code extracts can 
form good bench marks for use in fi..tnJre testing to avoid 
reoccurrence of the problem . 

Application code such as extracts from the compi ler 
sources can be acquired from with i n  the organization . 
Code may also be obtained from other software devel 
opment groups, e .  g . ,  the  class l ibrary group, the 
debugger group, and the operating system group .  

If none o f  these sources can yield a bench mark with 
a desirable characteristic, then one may be written 
solely to test the speci fic tearure or combination . 

In our tests of the D I G ITAL C++ compi ler, we 
needed to use a l l  the sources discussed above to obtain 
C++ benchmarks that test the major featu res of the 
la nguage . The pub l ic -domai n bench marks someti mes 
req uired a sign ificant porting effort because of com -
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pati b i l ity issues bel:\veen d i fferent C++ d ial ects. We 
also reviewed the results publ ished by other C++ com
piler vendors. 

Maintai ning a good set of performance measurement 
bench marks is necessary for evolving langu ages such as 
C and C++.  New standards are being developed tor 
these languages, and standards compatibility mav make 
some of a bench mark's features obsolete. Updating the 
database of bench marks used in testing i nvolves 

• Changing the source of existing bench marks to 
accommodate system header and default  behavior 
changes 

• Adding new benchmarks to the set when new com
piler features and opti mizations are implemented 

• Deleting outdated benchmarks that do not scale 
we l l  to newer mac hines 

In the fol lowi n g  subsectio n ,  we d iscuss the fre
quency of our performance measurement.  

Measurement Frequency 

When deciding how often to measure comp iler per
formance, we consider 1:\vo major factors: 

• It is costly to track down a spec ific performance 
regression amid a large n u mber of changes. In tact, 
it somerjmes becomes more econom ical to add ress 
a new opportu nity instead . 

• I n  spite of automation ,  it is sti l l  costly to run a suite 
of pertormance tests. I n  addi tion to the actual run 
time and the eval uation time, and even with signifi
cant efforts to filter out noise, the normal run-to
run variabi l ity can show phantom regressions or 
improvements .  

These considerations natural ly lead to two obvious 
approaches to test frequency: 

• Measuri n g  at regular i n tervals.  During active devel 
opment,  measuring at regu lar i n tervals i s  the most 
appropriate policy. It a l lows pinpointing specific 
pertormance regressions most cheaply and permits 
easy sched u l ing and cost management. The intcrv::tl 
selected depends on the amount of deve lopment 
( n u m ber of developers and freq uency of new code 
check-ins) and the cost of the testi ng. I n  our rests, 
the i n tervals have been as fi·eq uent as three days and 
as i n frequent as 30 days. 

• Measl!ling on deman d .  Measurement is performed 
on demand when significant changes occur, for 
example, the del ivery of a major new version of a 
component or a new version of the operati ng system. 
A fi.dl performance test is  warra nted to establ ish a 
new basel ine when a competitor's prod uct is rclc:�scd 
or to ensure that a problem has been corn:cted . 

Both strategies, i f  i mp lemented purely, have problems. 
Frequent measurement can catch problems early but is 



resource intensive, whereas an on-demand strategy 
may not catch problems early enough and may not 
al low sufficient time to address discovered problems. 
In retrospect, we discovered that the time devoted to 
more frequent runs of existing tests could be better 
used to develop new tests or analyze known results 
more fully. 

We concluded that a combination strategy is the best 
approach .  In our case all the performance tests are run 
prior to product releases and after major component 
deliveries. Periodic testing is done during active devel
opment periods. The measurements can be used for 
analyzing existing problems, analyzing and comparing 
pertormance with a competing product, and finding 
new opportunities for performance improvement. 

Managing Performance Measurement Results 

Typical ly, the first time a new test or analysis method is 
used, a few obvious improvement opportunities are 
revealed that can be cheaply addressed. Long-term 
improvement, however, can only be achieved by going 
beyond this initial success and addressing the remain
ing issues, which are either costly to implement or 
which occur infrequently enough to make the effort 
seem unworthy. This effort i nvolves systematically 
tracking the performance issues uncovered by the 
analysis and judging the trends to decide which 
improvement efforts are most worthwhi le .  

Our experience shows that rigorously tracki ng all  
the performance issues resu lting from the analyses 
provides a long list of opportun i ties for improvement, 
far more than can be addressed during the develop
ment of a single release . It  thus became obvious that, 
to deploy our development resources most effective ly, 
we needed to devise a good prioritization scheme. 

For each performance opportunity on our list,  we 
keep crude estimates of three ctiteria :  usage frequency, 
payoff from implementation, and difficulty of imple
mentation . vVe then use the three criteria to divide tl1e 
space of performance issues into equivalence classes. 
\Ve define our criteria and estimates as fol lows: 

• Usage frequency. The usage freq uency is said to be 
common if the language feature or code pattern 
appears in a large fraction of source modules or 
uncommon if it appears in only a few modules. 
When the language feature or code pattern appears 
in most modules for a particular application domain 
predominantly, the usage frequency is said to be 
skewed .  The classic example of skewed usage is the 
complex data type. 

• Payoff from implemen tation .  Improvement in  an 
implementation is estimated as high, moderate, or 
smal l .  A high improvement would be the el imina
tion of the language construct (e .g . ,  removal of 
unnecessary constructors in C++) or a significant 
fraction of their overhead (e .g . ,  i n l ining small func-

tions) .  A moderate improvement wou ld be a 10 to 
50 percent increase in  the speed of a language fea
ture .  A small improvement such as loop unrol l ing 
is worthvvhile because i t  is common. 

• D ifficulty of implementation.  We estimate the 
resource cost for implementing the suggested 
optimization as difficult, straightforward , or easy. 
Items are classified based on the complexity of 
design issues, total code required, level of risk, or 
num ber and size of testing requirements. An easy 
improvement requires l ittle up-front design and 
no new programmer or user i nterfaces, in troduces 
l ittle breakage risk for existing code, and is typically 
l imited to a single compiler phase, even if  it involves 
a su bstantial amount of new code .  A straightfor

ward improvement would typically require a sub
stantial design component with multiple options 
and a substantial amount of new coding and testing 
but would introduce little  risk. A difficult improve
ment would be one that introduces substantial risk 
regardless of the design chosen ,  involves a new user 
interface , or requires substantial  new coordination 
between components provided by different groups. 

For each candidate improvement on our list, we 
assign a triple representi ng its priority, which is a 
Cartesian product of the m ree components above: 

Priority = ( frequency) x (payoff) x (difficulty )  

This classification scheme, though crude and subjec
tive, provides a usefu l base for resource al location . 
Opportunities classified as common, high, and easy are 
likely to provide the best resource use, whereas those 
issues classified as uncommon, small, and difficult are 
the least attractive . This scheme also a l lows manage
ment to prioritize performance opportun i ties against 
functional improvements when allocating resources 
and schedule for a product release. 

Further classification requires more judgment and 
consideration of external forces such as usage trends, 
hardware design trends, resource availabil ity, and 
expertise in a given code base. Issues classified as com
mon and high but difficult are appropriate for a major 
achievement of a given release, whereas an opportu
nity that is uncommon and moderate but easy migh t  
b e  a n  appropriate task for a novice compiler developer. 

So-called "nonsense optimizations" are often con
troversial . These are opportunities that are almost 
nonexistent in human-written source code, for exam
ple, extensive operations on constants. Ordinarily they 
would be considered unattractive candidates; how
ever, they can appear in h idden forms such as the result 
of macro expansion or as the result of optimizations 
performed by earlier phases. In  addition, they often 
have high per-use payoff and are easy to implement, so 
it i s  usually worthwhile to implement new nonsense 
optimizations when they are discovered. 
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Management control and resource a l location issues 
can arise when com mon, h igh,  or easy opportun i ti es 
i nvolve software owned by groups not under the 
d irect control of the compiler developers, such as 
headers or l i braries. 

Tools and Methodology 

We begi n this section with a d iscussion of pertonnance 
evaluation tools and their application to problems. We 
then brieAy present the results of three case studies.  

Tools and Their Application to Problems 

Tools for performance eva luation are used for either 
measurement or ana lysis.  Tools  for measurement are 
designed main ly for accurate, absolute timing. Low 
overhead , reproducibi l i ty, and stabi l i ty are more 
i mportan t  than h igh reso l utio n .  Measurement tools 
are primari l y  used in  regression testi ng to identifY the 
existence of new performance problems.  Tools  tor 
analysis, on the other hand,  are used to isolate the 
source code responsi ble for the problem . High,  rela
tive accu racy is more important than low overhead or 
stabi l i ty here. Ana lysis tools te n d  to be intrusive : they 
add i nstrumentation to either the sou rces or the exe
cutable i mage i n  some man ner, so that e nough i n f(x
mation about the execution can be captured to 
provide a dctai k:d profi le .  

\iVe h ave constructed adeq uate automated measure
ment tools using scripts l ayered over standard operating 
system timing packages. For com pile-time measure
ment, a driver reads the compi le commands from a fi l e  
and,  after com pi l ing t h e  sou rce t h e  specified n u m ber 
of t imes,  writes the resu lti n g  ti mi ngs to a fi le .  Post
processing scripts eva l u ate the usabi l i ty of the resu l ts 
( average ti mes, deviations, and fi le  s izes) and compare 
the new resu l ts agai nst a set of reference resu l ts .  For 
compi le-t ime measurement,  the default,  debug, and 
opti m i ze compibtion m od es are all tested, as previ
ously discussed . 

These sum marized results ind icate if the test version 
has su ffered performance regressions, the magnitude 
of these regressions, and which bench mark source is  
ex hibit ing a regressio n .  A na lysis of  the problem can 
then begi n .  

T h e  tools we use for compi le-speed a n d  r u n - ti m e  
analysis are considerably more sophisticated tha n  the 
measurement tools. They are genera l ly  provided by 
the CPU design or operating system tools develop
ment groups and are wid e ly used for a pplication tu n 
i n g  a s  wel l  a s  compi ler  i m provements. VVe h ave used 
the fol lowi ng compile-speed analysis tools :  

• The compi l er's i nternal -show stati s t i cs feature 
gives a crude measure of the time req u i red tor each 
compi ler  phase. 
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• The gprof and h iprof tools arc suppl ied i n  the 
development suites for DIGITAL UNIX.  Both 
operate by bui ld ing an i nstru mented version of the 
test software ( the compi ler  i tse l f  i n  our case ) .  The 
gprof tool works with the compiler, the l i n ker, and 
the loader; i t  is ava i l able from several UNIX ven
dors .  Hiprof is a n  Atom tool '' 1 1  avai lable only on 
DIGITAL UNIX; i t  does not req u i re compiler or 
l i n ker support. 

The bench mark ex hibiting the performance prob
lem can then be compi l ed with the profi l ing version 
of the compiler, and the compilati o n  profile can be 
captured . Using the display fac i l i ties of the too l ,  we 
can analyze the relevant portions of the execution 
profile .  We can then compare this  profile with that 
of the reference version to loca l ize the problem to a 
specific area of compi ler source . Once this i n f(xma
tion is available, a specific  edit can be identified as 
the cause and a solution can be identified and 
i mplemented . Another round of measurement is  
needed to veri ty the repJir is effective, similar to the 
procedu re for add ressi ng a fu nctionJI regress ion .  

• VVhen the problem needs to be pi npointed more 
accurately than is possible with these profi l i ng 
tools,  we use the !PROBE tool,  which can provide 
i nstruction- by-instruction details about the execu
tion of a function . 1 4 

VVe h ave used the fol lowi n g  tools or processes tor 
run-ti m e  anal ysis: 

• \Ve apply h i prof and gprof i n  combination,  and 
the ! PROBE tool as descri bed above , to the 
run-time behavior o f  the test program rather than 
to i ts compil atio n .  

• We analyze the NULLSTONE results b v  examining 
the detailed log file .  This log identi fies the problem 
and the machine code generated.  This analysis is  usu
ally adequate since the tests arc genera l l y  q uire simple.  

• If m ore detaiJed ana lysis is  need ed,  e . g . ,  to pi n 
point  cache misses, we usc the h i gh l y  deta i l ed 
resu l ts generated by the Digi tal  Continuous 
Profil i n g  I n ti·astructurc ( DCPf)  tooJ H·1 ' DCPI can 
d isplay detai led ( average ) hardware be havior on an 
i nstructi on -by- i nstruction basis . Any sche d u l i n g  
prob lems t h a t  may b e  responsible f(>r fi-equent  
cache misses can be  identi fied fi·o m  the  DCPl out
put, whereas they may not a lways be obvious from 
casua l l y  observing the machine code.  

• Final ly, we use the estimated schedule d u m p  and 
statistical data optionally generated by the GEM 
back e n d . 1  This dump tel l s  us how instructions are 
sched u led and issued based on the processor archi
tecture selected.  It  may also provide i n formation 
about ways to i mprove the sched ule .  



In the rest of this section, we discuss three examples 
of applying analysis tools to problems identified by the 
performance measurement scripts. 

Compile-Time Test Case 

Compile-time regression occurred after a new opti 
mization cal led base components was added to tbe 
GEM back end to improve the run-time performance 
of structure reterences. Table l gives compile-time test 
results that compare the ratios of compile times using 
the new optimized back end to those obtained with 
the older back end . The resu I ts for the iostream test 
indicate a significant degradation of 25 percent in the 
compile speed for optimize mode, whereas the perfor
mance in the other two modes is unchanged . 

To analyze this problem,  we built hi prof versions of 
the two compilers and compiled the iostream bench
mark to obtain its compi lation profi le .  Figures l a  and 
l b show the top contributions in the flat hi prof pro
fi les from the two compilers. These profiles i ndicate 
that the number of calls made to esc and gem_il_peep 
in the new version is greater than that of the old one 
and that these cal ls are responsible for performance 
degradation . Figures 2a and 2b show d1e cal l graph 
profiJes tor esc for the two compilers and show me calls 
made by esc and the contributions of each component 

Table 1 

called by esc . Since these components are included in 
dle GEM back end,  the problem was fixed there. 

Run-Time Test Cases 

For the run-time analysis, we used two different  test 
environments, the Haney kernels benchmark and the 
NULLSTONE test nm against gee .  

Haney Kernels The Haney kernels benchmark i s  a 
synthetic test written to examine the performance of 
specific C++ language features. In this run-time test 
case, an older C++ compiler (version 5 . 5 )  was com
pared with a new compiler under development (version 
6 .0) .  The Haney kernels results showed that the ver
sion 6 .0 development compiler experienced an overal l 
performance regression of 40 percent. We isolated the 
problem to the real matrix multiplication function. 
Figure 3 shows the execution profile for this function .  

We then used the DCPI tool to analyze perfor
mance of the inner loop instructions exercised on ver
sion 6 .0  and version 5 . 5  of the C++ compi ler. The 
resulting counts in Figures 4a and 4b show that dle 
version 6.0 development compi ler suffered a code 
schedul ing regression. The leftmost column shows the 
average cycle counts for each i nstruction executed. 
The reason for th is regression proved to be that a test 

Ratios of CPU (User a nd System) Compi le  Ti mes (Seconds) of the New Compi ler  to Those of the Old Compi ler  

Fi le  Name Debug Mode Default Mode Optimize Mode 

Options - 00  -g -04 - gO 
a 1 amch2 0.970 0.970 0.930 

col l evol 0.9 1 0  0.780 0.740 

d_inh  0.970 0.960 0.960 

e_rvi rt_yes 0.970 0.980 0.960 

i nterfacepartic le 0.880 0.790 0.730 

iostream 0.990 0.980 1 .250 

pistream 0.890 0.760 0.790 

t202 0.970 0.970 1 . 1 30 

t300 0.980 0.960 1 .040 

t601 1 .0 1 0 1 .020 1 .0 1 0  

t606 1 .000 1 .020 1 .020 

t643 1 .020 1 .0 1 0  1 .000 

test_complex_excepti 0.960 0.890 0.830 

test_complex_math 0.970 0.950 0.950 

test_ demo 0.950 0.830 0.780 

test_generic 1 .000 1 .020 1 . 1 00 

test_task_queue6 0.970 0.920 0.960 

test_task_rand 1 0 .950 0.890 0.890 

test_ vector 0.970 0.920 1 . 1 20 

vectorf 0.890 0.790 0.850 

Averages 0 .961  0.920 0.952 

Digital Technical Journal Vol. 10 No. I 1998 4 1  



42 

g ranu l ar i ty : cyc l e  uni t s : seconds ; to tal : 4 8 . 9 6 seconds 
% cumu l a t i ve sel f se l f  tota l 

t ime seconds seconds cal l s  m s / ca l l ms / ca 1 l name 
2 . 8 1 . 3 7  1 . 3 7  1 0 1 9 5  0 . 1 3  0 . 1 3  c s e  [ 1 2 ] 
2 . 6 2 . 6 6  1 .  2 9  2 1 9 6 0 7  0 . 0 1  0 . 0 1 gem_j l_oeep ( 3 1 ] 
2 . 6 3 . 9 3 1 .  2 7 5 1 5 5 6 6  0 . 0 0 0 . 0 0  gem_ f i  _ud_acces s_resource [ 6 7 ]  
2 . 4  5 . 0 9  1 . 1 7  4 8 1 8 9 1  0 . 0 0  0 . 0 0 gem_vm_get_nz [ 3 7 ]  
2 . 3 6 . 2 3 1 . 1 4  7 1 3 1 7 6  0 . 0 0  0 . 0 0 _OtsZero [ 7 5 )  

(a) HiprofProfile Showing Instructions Executed with the New Compiler 

granu l a ri ty : cyc l es ; un i ts : seconds ; t ocal : 2 7 . 4 9 seconds 

c� c umu l a t i ve se l f  sel f t o t a l  
ime seconds seconds ca l l s  ms / c a l l ms / ca l l  name 
3 . 0 0 . 8 3 0 . 8 3 1 4 3 4 8 3  0 . 0 1 0 . O J  gem_i I _peep [ 4 0 ]  
?. . 7 1 . 5 8  0 . 7 5 6 1 4 3 5 0  0 . 0 0  0 . 0 0 _O t s z er o [ 6 4  J 
2 . 5 2 . 2 6  0 . 6 8 8 6 6 4  0 . 0 8 0 . 0 8  c s e  [ 1 6 ]  
1 . 7 2 .  7 1  0 . 4 5 4 6 5 6 3 4  0 . 0 0 0 . 0 0 gem_ f i  _ud_access_resource [ 8 6 ]  
1 . 6  3 . 1 4  0 . 4 3  4 2 3 1 4 4  0 . 0 0 0 . 0 0 g em_vm_gec_ nz [ 3 6 ) 

(b) Hiprof Proftle Showing Instructions Executed with the Old Compiler 

Figure 1 
H i  prof Profiles of Compilers 

for pointer disambiguation outside the loop code was 
not performed properly in the version 6.0 compiler. 
The test would have ensured that the pointers a and t 
were not overlapping. 

We traced the origin of this regression back to the 
intermediate code generated by the two compilers. 
Here we found that the version 6.0 compiler used a 
more modern form of array address computation i n  
the in termediate language for which the scheduler had 
not yet been tuned properly. The problem was fixed i n  
the scheduler, and the regression was el iminated. 

I n itial N U LLSTONE Test Run against gee We measured 
the performance of the DEC C compiJer in  compi l ing 
the NULLSTONE tests and repeated the performance 
measurement of the gee 2 .7 .2  compiler and libraries 
on the same tests. Figures Sa and Sb show the results 
of our tests. This comparison is of interest because gee 
is in the public domain and is widely used , being the 
primary compiler available on the public-domain 
Linux operating system .  Figure Sa shows the tests i n  
which the DEC C compi ler performs a t  least 10 per
cent better than gee. Figure Sb ind icates the optirniza-

[ 1 2 ] 1 4 . 1  1 .  3 7  5 . 5 5 

2 . 6 3  
0 . 6 3 
0 . 5 9 
0 . 3 4  

0 . 3 2 

1 0 1 9 5 + 9  9 5  

1 3 4 4 8 5 / 1 3 4 4 8 5  
1 3 4 4 8 5 / 1 3 r. 4 8 5  

1 0 2 7 6 0 / 1 0 2 7 6 0  

1 2 1 2 4 3 / 1 2 12 4 3 

c s e  [ 1 2 ]  

tes t_for_c se [ 4 2 ] 

update_operands [ 9 2 ] 
Les L_ for_induct i on [ 9 7 ]  

gem_df_mo ve [ 13 6 J 
push_e f ect [ 1 4 9 1  1 2 1 2 7 / 12 1 2 7  

(a) Hierarchical Profile for cse with the New Compiler 

[ 1 6 ) 1 0 . 5  0 . 6 8  2 . 1 9  8 6 64 + 7 5 9 3  c s e  [ 1 6 ]  

1 .  0 4  9 6 5 5 4 / 9 6 5 5 4  test -for_c s e  [ 5 6 ]  

0 . 3 0 6 6 8 5 0 / 6 6 8 5 0 t es t_for_ i nduc t ion 1 1 0 4 ] 
0 . 2 9  9 6 5 54 / 9 6 5 5 4  upd a t e_operands [ 1 0 6 ]  

0 . 1 2 87 1 7 6 / 8 7 1 7 6 move [ 2 1 5 ] 
0 . 0 9 7 8 6 3 ! 7 8 6 3  pop_e f fec t  [ 2 6 7 ]  

( b )  Hierarchical Profile for cse with the Old Compiler 

Figure 2 
H ierarchical Call Graph Proti les for esc 
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void nna �1 lHC ( Real • t ,  
cons Rea l * a , 
const Real * b .  
cons i n  M ,  const in N ,  const in� K l  

int i ,  j , k ;  
Rea l  emp ; 

memse l l t , 0 ,  H • N * s i z  o f ( Rea l l l ; 

for- ( j � 1 ;  j < =  N; j • I 
{ 

for l k  - l ;  k c� K ;  k + + ) 
( 

tern = b [ k - 1 ,. K * I j 
i f  ( temp ! =  0 . 0 ) 

{ 

1 ) ] ;  

E r l i  - l ; i < =  M ; i H I  
t [ i - 1 • �l • ( j - 1 1  l + -

ernp * a { · - 1 - H • I k • l l  J ; 

Figure 3 
Haney Loop r()r Real Matrix Nlu l tiplication 

tion tests i n  which the DEC C compiler shows 10 per
cent or more regression compared to gee. 

We i nvestigated the i n divid u a l  regressions by look· 
ing at the detai led log of the r u n  and then examining 
the machine code generated for those test cases. In this 
case, the alias optimization portion showed that the 
regressions were caused by the use of an ou tmoded 
standard " as the d efa u l t  language d ialect ( -st 0 ) for 
DEC C i n  the DIG ITAL U N IX environ ment. After we 
retested with the -ansi_al ia s option , these regres
sions disappeared. 

We also investigated and fi xed regressions i n  
i nstruction com bining a n d  i f  optimizations.  O ther 
regressions, which were too d i ftic u l t  to fi x within the 
existing sche d u l e  for the current release, were added 
to the issues list with appropriate priorities. 

Conclusions 

The measurement and analysis of compiler performance 
has become an i m portant and demanding fie ld .  The 
i ncreasing complexity of CPU architectures and the 
addition of new features to languages require the devel
opment and i mplementation of new strategies for test
ing the perf(xmance of C and C++ compilers. By 
employing en hanced measurement and analysis tech
niq ues, tools, and benchmarks, we were able to address 
these challenges. Our systematic ti·a mework tor com
piler performance measurement, analysis, �md prioriti
zation of improve ment opportunities should serve as an 
excel lent st:u-ting point for the practitioner in :� situation 
in which simil:�r requirements :u-c im posed . 
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Figure 4 
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Alias Analysis in the 
DEC C and DIGITAl C++ 
Compilers 

During alias analysis, the DEC C and DIGITAl C++ 

compilers use source-level type information to 

improve the quality of code generated. Without 

the use of type information, the compilers 

would have to assume that any assignment 

through a pointer expression could modify any 

pointer-aliased object. In contrast, through the 

use of type information, the compilers can 

assume that such an assignment can modify 

only those objects whose type matches that 

referenced by the pointer. 

Digital Technical Jou rnal Vol .  lO No.  1 1 998 
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vVhen two or more address expressions reference the 
same memory location, these add ress expressions are 
aliases for each other. A compiler performs alias anJJy
sis to detect which address expressions do not refer
ence the same memory locJ.tions.  Good alias analysis is 
essential to the generation of efficient code. Code 
motion out of loops, common subexpression e l imina
tion,  al location of variables to registers, and detection 
of unin i tia l ized variables a l l  depend upon the compiler 
knowing which objects a load or a store operation 
could reference. 

Address expressions may be symbol expressions 
or pointer expressions. I n  the C and C++ languages, 
a compiler always knows what obj ect a symbol expres
sion references. The same is not true with pointer 
expressions. Determining which objects a pointer 
expression may reference is a n  ongoing topic of 
research .  

Most o f  the research i n  this area focuses o n  the use 
of techniq ues that track which object a poin ter expres
sion might point to. u  When these techniques cannot 
make this determination, they assume that the pointer 
expression points to any object whose add ress has 
been taken .  These techniq ues generally ignore the 
type information avai l able to the source program .  The 
best techniques perform interprocedural analysis to 
i mprove their accu rJcy. Although effective, the cost of 
analyzing a complete program can make this analysis 
impractical . 

I n  contrast, the DEC C and DIGITAL C++ compi l
ers use h igh-level type information as they perform 
alias analysis on a routine -by-routine basis. Limiting alias 
analysis to withi n a routine reduces its cost, albeit at 
the cost of red ucing its effectiveness . 

The use of this type information results in s l ight 
i mprovements in the performance of some standard 
con forming C and C++ programs. These improve
ments come at  l i ttle expense in terms of compi lation 
time. There is, however, a risk that the use of this rype 
information on nonsrand:�rd-conforming C or C++ 
programs may result in the compi ler producing code 
that exhibits unexpected behavior. 



The C and C++ Type Systems 

Research avai lab.le on the use of type intormation du r
ing alias analysis involves languages other than C and 
C++ . '  Trad itional ly, C is a weakJy typed la nguage . A 
poi nter that references one type may actually point to 
an object of a different type . For this reason, most 
alias-analysis techniques ignore type information when 
analyzing programs written in C.  

The ISO Standard for C detlnes a much stronger 
typing system .' In ISO Stand ard C, a poi nter expres
sion can access an object only if  the type referenced by 
the pointer meets the following criteria: 

• It is compatible with the type of the object, ignor
ing type qual i fiers and signedness. 

• It  is compatible with the type of a member of an 
aggregate or union or su bmembers thereof, ignor
ing type qu ali fiers and signedness. 

• It is the char type . 

Thus, in Figure 1 ,  the pointer p can poi nt to A, B ,  
C, o r  S ( through S .s u b . m )  b u t  not to T or F. The 
poi nter q, bei ng a pointer to char, can refer to any of 
A, B, C, S, T, or F. 

The proposed ISO Standard for C++ defines a simi
lar typing system for C++. '  The strength of the 
Standard C and C++ type systems a l lows the DEC C 
and DIG ITAL C++ compi lers to use type i n formation 
d u ring al ias analysis. 

Many existi ng C appl ications do not conform to the 
Standard C typing rules. They use cast ex pressions to 
circu mvent the Standard C type system.  To support 
these applications, the DEC C compiler has a mode 
whereby i t  ignores type information during alias analy
sis. The DIGITAL C++ compiler also has such a mode .  
This mode exists to  support those C++ programmers 
who circumvent the C++ type system. 

Figure 1 

int  
i gned i� � c n s t  B ; 

un s i gned int vol t i l e  C ; 
s Lruct: { 

s tru 
i n t  m ;  

) s b ; 
$ ; 

s L r  c t  { 
horL z ;  

) T ; 
flo t F ;  

i ' p ;  
c ha r * q ;  

Code Fragmenr Associated with rhe E.xpbnation ofthe 
Standard C Aliasing Ru les 

The Side-effects Package 

The DEC C and DIG ITAL C++ compilers are GEM 
compil ers -" The GEM compiler system incl udes a 
highly optimizing back end.  This back end uses the 
GEM data access model to determine which objects a 
load or a store may access. GEM compiler front ends 
augment the GEM data access model with a side
effects package, i . e . ,  an a l ias-analysis package . The 
side-effects package provides the GEM optimizer 
additional information about loads and stores using 
l anguage-spec ific information otl1erwise unavailable 
to the GEM optimizer. 

The DEC C and DIGITAL C++ compilers share a 

com mon side-eftects package . The DEC C and C++ 
side-effects package 

• Determines which symbols, types, and parts thereof 
a routine references 

• Determines the possi ble side efkcts of these reterences 

• Answers queries fi.-om tl1e GEM optimizer regardi ng 
tl1e effects and dependencies of memory accesses 

Preserving Memory Reference Information 

The DEC C and DIG ITAL C++ front ends perform 
lexical analysis and parsing of the source program, 
generating a GEM i ntermediate language (GEM I L )  
graph representation of the source program 6 A tuple 
i s  a node in  the GEM I L  and represents an operation in 
the source program. 

As the DEC C and D I GITAL C++ tfont ends gener
ate GEM IL,  they an notate each fetch (read ) and store 
(write) tuple with intormation describing tl1e object 
being read or written .  The front ends annotate fetches 
and stores of symbols with intormation about tl1e sym
bol. They annotate fetches and stores tlu-ough poi nters 
with information about tl1e type tl1e pointer references. 
The an notation intornution includes information 
describing exactly which bytes of the symbol or type 
tl1e tuple accesses. This al lows the side-effects package 
to differentiate between access to t\vo different mem
bers of a structure. 

Arrays Neitl1er the DEC C nor the DIGITAL C++ 
tfont end ditferentiates bet\veen accesses to different 
elements of an array. Both assume that aU array accesses 
are to the first element: of the array. The GEM optimizer 
does extensive analysis of array references.7 Being flow 
insensitive, the DEC C and C++ side-effects package 
can, at best, differentiate between two array references 
tl1at both use constam indices. The GEM optimizer can 
do much more. 

V/hat the GEM optimizer cannot do, however, is  
determine that an assignment through a pointer to an 
int: does not change any value in an array of doubles.  
This is  the purpose oftl1e DEC C and C++ side-eftects 
package. Mapping a l l  array accesses to access the first 
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element of a n  array does not hinder this purpose and 
simpl ifies al ias analysis of arrays. 

Tuple Annotation Example For the program fi·agme nt 
in  Figure 2, the DEC C and DIGITAL C++ ti·ont ends 
generate the annotated tuples displ<lyed in Table l .  

lntraprocedural Effects Analysis 

The GEM opti mizer makes several optimization passes 
over a ro utine.  During each optimization pass, the 
DEC C and C++ side-effects package provides a l i as 
analysis intormation to the GEM optimizer by means 
of the following procedures: 

• Ex:�mining each tuple within the rou tine  that refer
ences ( reads or writes ) memory, al locating e f'fects 
classes that represent the memory that the tuple 
references 

• Perform ing type-based alias analysis 

• Responding to alias-an alysis q ueries from the GEM 
optimizer 

To determine the possible s ide effects of a memory 
:�ccess, the side-eftects package p:�rtitions memory into 
effects classes. An e ffects class represents a l l  or part of 

Figure 2 

st:ru t S { 
nt x ;  

i n t  y ; 
vl , v2 ; 

int i ; 
double cl [ r ; 
s t ruc t s *p ; 

p - X 3 ; 
vl . y  
v2 = v l ; 

d [ i ]  [ 0 ] ; 

Code fragment Associated with Tuple Annotation 
Ex<lmplc  

Ta ble 1 
Tu ple Annotations 

C/C++ Source Annotation 
Expression Tu ple Symbol 

Fetch p p 

p->X = 3; Store p->x none 

v1 .y = 3 Store v 1 .y v1 

Fetch v 1  v1 

v2 = v1 Store v2 v2 

Fetch d [O] d 

d [ i ] = d [O] Fetch i 

Store d( i ]  d 
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an object. To m i n i mize the n u m ber of effec ts c l asses 
u nder considera tion, the side-effects package creates 
effects classes for only those object regions referenced 
withi n  the curre nt routine .  

Having created effects classes tor each referenced 
obj ec t  region within the cu rrent routine,  the side
effects package then associates a signatu re with each 
effects class. The signatu re for a n  eftects c lass records 
the possible side etfects of referenci ng the effects class. 
The side-effects package uses this signature to respond 
to queries from the GEM optimizer about the effects 
and dependencies of tuples and symbols with i n  the 
curre nt routine.  

Allocating Effects Classes There are two kinds of 
effects c lasses. The first ki nd represents a region of :�n 
i n d ivi dual object. The second kind represents a region 
of all al located objects of a particular type. Al located 
objects are those created by the l loc ( )  fu nction 
and i ts relatives or the C++ �� operator. 

As it processes the tu ples with i n  a routi ne,  the side
effects package exami nes the me mory reference infor
mation associated with the tu ple.  The side-effects 
package creates :�n effects c lass tor each differe nt  set of 
memory reference intormation i t  encounters. Tvvo sets 
of memory retcrence i n t<xmation are difte re nt if they 
contai n  d ifferent start- or end- offset information or 
different symbol i n tormation.  

Two sets of memory reterence i n formation that 
contai n di fterenr type in tormation are d ifferent only if 
the two types are not effects equ ivalent .  Two types are 
effects equivalent if they differ only in their signed ness 
or their type q u a l i fiers . The signed int  type and rhe 
volatile u nsigned i n t  type are effects equivalent . An 
assign ment through :1 poi nter to a signed i n t  may 
change the value of a volati le u nsigned int .  

Typical ly, an effects class represents a complete 
object or an ind ividual  me mbe r  of a structure .  An 
e ffects c lass may represent a su bregion of the region 
represented by another effects c lass. This occurs when
ever code references a whole structure as wel l  as i nd i 
vidual mem bers of the  structure . In the case of uni ons, 

Annotation 
Type Start Byte End Byte 

struct S * 0 7 

struct S 0 3 

struct S 4 7 

struct S 0 7 

struct S 0 7 

double 0 7 

i nt 0 3 

doub le  0 7 



if two members occupy exactly the same memory loca
tions, a single effects cl ass represents both mem bers . 

For the program fragment in Figure 3 ,  the side
effects package creates the effects cl asses displayed in 
Table 2 .  

There i s  only one effects class for *uip and * ip  since 
uip and ip may point to the same object. There are no 
effects c lasses for bytes 0 through 3 ofs and struct S as 
there arc no references to s . x  or sp->x.  By al locating 
effects classes for only those object regions referenced 
within the routine,  the side-effects package greatly 
red uces both the number of effects classes and the 
time requi red to perform al ias analysis. 

In the traditional C type system,  a poi nter expres
sion may point to anything, regardless of type. To rep
rcst:nt this, the side-effects package creates exactly one 
eftects class to represent allocated objects. It ignores 
the type and the start- and end-offset information . 

S t:. rUCL S { 
inl  x ;  
s r c T 

t ;  
s ; 

int  y ;  
f l o  t z ;  

s tl.·uc t  s * p ;  
signed i n t  • ip ; 
u si gned i nt • ui p ; 

l oa * fp ; 

* u ip : * ip ; 
* fp = 2 ;  
sp - > t  = s . e ;  
sp- . y = 2 ;  
s - • sp ; 

Fig u re 3 
Code Fragment Associated with Al locating Efkcts Classes 

Table 2 
Effects C lasses Using the Sta ndard C Type Rules 

Type or 
Effects Class Symbol Start Offset 

1 0 

2 4 

3 sp 0 

4 fp 0 

5 i p  0 

6 u i p  0 

7 struct 5 0 

8 struct 5 4 

9 struct 5 4 

1 0  fl oat 0 

1 1  i nt 0 

Using tl1e traditional C type system, for the program 
fragment shown in Figure 3, the side-effects package 
creates the effects classes displayed in Table 3 .  Here, 
effects class 7 replaces effects classes 7 through 1 1  in 
Table 2. All the differentiation by types djsappears. 

Effects-class Sig natures Having created the effects 
classes, the side-effects package associates a signature 
with each effects class. In addi tion, it associates an 
effects-class signature with each tuple within the rou
tine and each symbol referenced within the rou tine . 

An effects-class signature records the possible side 
effects of referencing an effects class. A reference to 
one effects class may reference another effects class. 
The effects class for a load through a pointer to an int 
indicates that the load references an al located int 
object. The pointer to an int may actually reference a 
pointer-aliased int symbol or an int  mem ber of a struc
ture or union.  

An effects-class signature is a su bset of al l the effects 
classes that might be referenced by a tuple. There is 
only one requirement for an effects-class signature : If  
two tuples may refer to the same part of  memory, the 
intersection of their respective effects-class signatures 
must be non-nul l .  If two tuples cannot refer to the 
same part of memory, it is desirable that tl1e intersec
tion of their effects-class signatures is nu l l .  An empty 
i ntersection l eads to more optimization opportunities. 

The most obvious rule for building an effects-class 
signature is to include in it a l l  the effects c lasses that 
might be touched by a reference to tl1e effects class. 
This leads to subopti mal code in cases such as that 
shown in Figure 4. 

There are three effects c lasses for this code ,  s<0,3>,  
S<4,7> , and S<0,7>, generated by references to s .x ,  s .y, 
and s, respectively. If the effects-class signature for 
S<0,3> includes both s<0,3> and s<0,7> and the 
effects-class signature for s<4,7> includes both s<4,7> 
and s<0,7> , then the intersection of these 1:\vo effects-

End Offset 

1 1  

1 1  

7 

7 

7 

7 

1 1  

1 1  

7 

3 

3 

Digital Tech nical journal 

Sou rce Generating 
Effects Class 

s.t 

sp 

fp 

i p  

u i p  

*sp 

sp->t 

sp->t.y 

*fp 

* u i p  and * i p  

Vol .  tO N o  I 1 998 5 1  



52 

Ta ble 3 
Effects Cl asses Us ing the Tradit ional  C Type Rules 

Effects Class Type or Symbol Start Offset 

1 0 

2 4 

3 5p 0 

4 fp 0 

5 i p  0 

6 u ip  0 

7 char 0 

c lass signatures is non -nu l l .  This talsely indi cates that 
s .x  and s .y may refer to the same memory location.  This 
forces GEM to generate code that stores s.y after stor
ing to s .x .  

The DEC C and C++ side-ef'tects package uses more 
effective rules for bui ldi ng effects-class signatures. These 
rules offer more optimization oppornmities while pre
serving necessary dependency in tormation. 

Effects-class Signatures for Symbols If  an effects class 
represents a region A of a symbol ,  its signature includes 
itself Its signature also includes a l l  efrecrs cl asses repre
senti ng regions of the symbol whol ly conta i ned with in  
A. Final ly, i t  i nc ludes any  eftects c lass representing a 

region of the symbol that partial ly overlaps A. I t  does 
not i nclude effects c l asses representing regions of the 
symbol that do not overlap A or th::�t whol ly contain A. 

Ta ble 4 gives the symbol effects-class signatures for 
the three effects cl :lsscs under discussion .  

The i nc lusion o f  su bregions i n  an effects-cl ass signa
ture means that references to symbols i n terfere with 
references to members therein and vice versa. Excluding 
super-regions in an effects- class signature means that 

Figure 4 

struct S { 
int: x ;  
int  y ;  

s ; 
S . X - • • •  ; 
s . y - . . .  ; 
re t u tn s ;  

Example o f  Problem atic Code for the NaYvc Ru le for 
Bui ld ing E tlccrs-c lass Signatu res 

Table 4 
Symbol Effects-c lass S ignatu res 

Effects Class 

S<0,3> 

S<4,7> 

S<0, 7> 

Effects-class Signature 

5<0,3> 

5<4, 7> 

<0,3>, 5<4, 7>, 5<0, 7> 
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End Offset Source Generating Effects Class 

1 1  

1 1  

7 

7 

7 

7 

5 

s.t 

sp 

fp 

i p  

u ip  

*sp, sp->t, *u ip, sp->t.y, *fp, * ip  

references to two separate members of :1 symbol do 
not interfere with each other. In Table 4, the eftects
class signatures for S<0,3> and s<4,7> do not intcrkrc 
with each other. Both signatu res interfere with the 
effects-c lass signature tor s<0,7>. 

The inc lusion of effects classes represent ing parti::� l ly 
overlapping regions of a symbol a l l ows tor the correct 
representation of the side effects of referencing sub
members of complex un ions. 

Effects-class Sig natures for Types If Jn  efkcts class 
represents a region of a type, the contents of its signa
ture depends upon the type. I f tbe type is the char type, 
the effects-class signature contains a l l  the eftects c lasses 
representing regions of other types or pointer-aliased 
symbols. This reflects the C and C++ type rules ,  which 
state that a pointer to a char can point to :mything.  

If the type is some type T other than char, the effects
class signature contains dlects c lasses represen ting: 

• Those regions ofT that overlap the region ofT the 
effects class represents, using the same ovnlap ru les 
JS for symbols 

• Any region of a poi nter-al i ased sym bol whose type 
is compatib le  to T, ignori ng type qu::� l i fiers ::�nd 
signed n ess 

• A region of a poin ter-a liascd aggregate or union 
symbol that contains a member or submember 
whose type is compatible to T, ignoring type qua l i 
fiers and signed ness 

• A region of an aggregate or un ion type that con
tains a member or submember whose type i s  com
patible to T, ignoring type qual i fiers and s igned ness 

Table 5 gives the signatures for the efkcts c lasses in 
Table 2 ,  assuming that the sym bol s is poi nter a l i ased . 

I ncluding the effects classes of symbols in the effects
c lass signatures of types records the interference of 
references through poi nters with references to pointer
a l iased sym bols. I n  Figure 3, the pointer u ip points to 
an unsigned int .  The member s . t .y hJs type int. Thus, 
uip may point to s . t .y. The mem ber s.r contains s . t .y. 
Thus, the signature for the effects-class int<0,3> con-



Table 5 
Type Effects-class Signatures 

Number Effects Class Effects-class Signature 

1 S<0, 1 1 >  1 ,  2 

2 S<4, 1 1 >  2 

3 sp<0,7> 3 

4 fp<0,7> 4 

5 i p<0,7> 5 

6 u ip<0.7> 6 

7 struct 5<0, 1 1  > 1 , 2, 7, 8, 9  

8 struct 5<4, 1 1  > 1 ,  2, 8, 9 

9 struct 5<4, 7> 1 ,  2, 9 

1 0  f loat<0,3> 1 ,  2, 7, 8, 1 0  

1 1  int<0,3> 1 , 2, 7, 8, 9, 1 1  

rains the e tiects-class s<4, l l > .  This means that the 
load of s . t  depends upon the store through uip .  

Including the effects classes of types i n  the signa
tures of the effects classes of other types records the 
i nterference of references through a pointer with ref
erences through pointers to other types. I n  Figure 3 ,  
the pointer fp points to a float object. T h e  member 
sp ->t .z  has type float. Thus, fp may point to sp->t .z .  
The member sp->t  contains sp->t .z .  Thus,  the signa
ture for tJ1e effects-cl ass float<0,3> contains ilie effects
class struct 5<4, 1 1 > .  This reflects the fact  that the 

�tore to sp->t .y depends upon the store tJ1 rough fp, 
I .e . ,  It m ust occ ur after ilie store ilirough fp. 

Even though the signature for the effects-class 
float< 0,3> contains the effects-class struct 5 <4 l l > 
(sp->t),  it does not contain the effects-class s�ruct 
5<4,7> (sp->t .y) .  There is  no float member of struct 
5 whose position within struct 5 overlaps bytes 4 
through 7 ofstruct 5. There is a float member of struct 
5,  namely z, whose position within struct S overlaps 
bytes 4 through 1 1  of struct S .  The signature for the 
effects-class float<0,3> wou ld not contai n the effects
class s<0,3> if i t  existed. There is no float member of s 
whose position overlaps bytes 0 ilirough 3 of s .  

Additional Effects-class Signatures The side-effects 
package creates a special effects-class signature repre
senting the side effects of a cal l .  A cal led procedure 
may reference the following: 

• Any pointer-aliased symbol ( by means of a refer
ence through a pointer) 

• Any al located object (by means of a reference 
ilirough a pointer) 

• Any nonlocal symbol ( by means of direct access) 
• Any local static symbol ( by means of recursion) 

The effects signature for a call i ncl udes all the effects 
classes representing these objects . 

Responding to Optim izer Queries During opti miza
tion, ilie optimizer ma kes two types of q ueries to the 
side-effects analysis routines: domi nator-based queries 
and nondominator-based queries . 

When doing nondominator- based optimizations, tJ1e 
optimizer uses a bit vector to represent iliose objects a 
write may ch ange ( its effects ) .  A similar bit vector repre
sents those objects whose val ue a read may fetch ( its 
dependencies) .  Each bit in tJ1e bit vector represents an 
effects class. If a tuple's effects-class signan1re contains 
an effects class, iliat effects class's bit is  set in ilie tuple's 
bit vector. The optimizer uses ilie u nion of ilie bit vec
tors associated witJ1 a set ofn1ples to represent the com
bined effects or dependencies of those mples. 

Domi nator-based queries involve fi nding the near
est dominating tuple that might write to the same 
memory location as the tuple in q uestion.  Tuple A 
domi nates tuple B if every path from the start of the 
rou tine to B goes through A.8  I f  both tuples A and C 
dominate B ,  tuple A is the nearer domi nator i f C  dom
inates A. 

When doing dominator- based opti mizations, the 
side-effects package represents the tuples in  the cur
rent dominator chain as a stack, adding and removing 
tuples from the stack as G EM moves from one path 
in the routine's domi nator tree to another. Searching 
a single stack for the nearest dominating tuple that 
might write the same memory as the tuple in question 
references could lead to O(N9 performance, where N 
is the n u mber of tup les i n  the domi nator chain .  This 
worst-case behavior occurs when none ofilie tuples in 
a dominator chain affects any su bsequent tuple i n  the 
chai n .  Each time the side-effects package searches the 
stack, it exami nes all the tuples in the stack. 

To avoid iliis, ilie DEC C and C++ side-effects pack
age creates a stack for each effects class. When pushing 
a tuple, the side-effects package pushes the tuple on 
each stack associated with an e fTects class in the tuple's 
effects-class signature. When the GEM optimizer tells 
th e side -effects package to find the nearest domina ti na 
write for a tuple, the side-effects package need onl� 
choose the nearest of those tu ples that are on the top 
of the stacks associated with ilie tuple's effects-class 
signature . It need only look at the top of each stack, 
because a tuple would not be in tJ1e stack u n less it 
mi ght affect objects i n  the effects class associated with 
tJ1e stack. 

The m ultistack worst-case behavior is  O(NC). There 
are C separate stacks, one for each effects class. The 
effects-class signature for each effects class may con
tam all the other effects classes. This would mean that 
each of the N tuples in the domin ator chain would 
appear in each of ilie stacks. 

Although the worst-case behavior for the multistack 
case is no better than the single-stack case ( C may be 
e�uaJ to N ), in practice there are often more tL;ples 
Withm a routine than effects classes. Furthermore ) 
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effects-class signatures often contai n a smal l  number 
of effects classes. A smal l number of effects cl asses in 
an effects-class signature means that there are a small 
number of stacks to consider. Choosing the nearest 
dominator from among the top tuples on these stacks 
requires examining only a small numbe r  of tuples. 

Cost of Using Type Information 

When compiling all of the SPECint95 test suite9 using 
high optimization, alias analysis accounts for approxi
mately 5 percent of the comp i l ation ti me. The use of 
Standard C type rules during alias analysis i ncreases 
compilation time by less than 0 . 2  percent ( time mea
sured i n  number of cycles consumed by the compiler 
as reported by Digital Continuous Profil ing Infra
structure [ DCPI] '"). The i ncrease in compilation time 
varies from program to program but never exceeds 
0 . 5  percent. Hand l i ng the extra effects classes gener
ated by using Standard C type al iasing i n formation 
accounted for most of the i ncrease . 

Potentially, the cost of including type-aliasing infor
mation could be huge . Calculating which effects classes 
a reference through a char * pointer could touch is 
straightforward as shown by the algorithm in Figure 5 .  

A much more complicated process i s  required to 
calculate which effects classes could be touched by a 
reference through a poi nter to a type other than char. 
The algorithm in Figure 6 performs this process. 

Fortu nately, the innermost section of this loop is 
rare ly executed . The innermost section executes onJy 
if a routine references a structure either through a 
pointer or a pointer-al iased sym bol, that structure 
contains a substructure, and the routine references the 
su bstructure through a pointer. 

forea ch p o inter al ia sed symbol 

Effectiveness 

The benchmark programs from the SPECint95 suite 
offer some convenient test cases for measm ing the 
effectiveness of type-based alias analysis. The sources are 
readily available and portable. The programs conform 
to aLias rules established by the American National 
Standards Institute (ANSI) and are compute intensive. 
Unfortunately, they do not contain floating-point cal
culations. This reduces the number of different types 
used in the programs. Type -based alias analysis works 
best when there are many different types in use . 

Tlu·ee of the SPECint95 programs show no improve
ment when compiled using the Standard C typing rules 
as opposed to using the traditional C typing ru les. 
These programs, namely compress, go, and li, do not 
use many different types and pointers to them. \Vhen 
all  the pointers i n  a program are pointers to ints ( go) ,  
there is only one e ffects class for a l l  pointer accesses. 
Because the compiler has no way to differentiate 
among the objects touched by a dereference of a 
pointer expression, it generates identical code for these 
programs, regardless of the type rules used.  The gen
erated code for l i  differs only sl ightly and only for 
infrequently executed routines. 

Changes in generated code for the remai ning five 
benchmarks are more prevalent. Two benchmarks, 
ijpeg and perl, show a smal l reduction in the number 
of loads executed but no meani ngful reduction in the 
total number of instructions executed . The other 
three SPECi nt95 benchmarks show varying degrees 
of red uction i n  both the number of loads executed 
(see Table 6) and the total nu mber of instructions 
executed (see Ta ble 7 ) .  

foreach e f fects c l a s s  represen i ng a region o f  the symbol 

add chat e f fec s lass to the e f fec ts c l as s  s igna ure for c ar 

Figure 5 
Calculation of the Effects-class Signature of the Type char * 

Figure 6 

foreach p oi nter aliased s ymbo l or cype referenced t hrough a o i n ter 
f o r e a c h  member here i n 

i f t he member ' s type i s  referenced through poin er 
foreach e f feccs class repre sen t i ng a re ion o f the member ' s Lype 

foreach e f fec t s  c l a ss re p resen t i g a region f che s ymbo l or type 

referenced hrough a pointer 
if the tHO e f fect s  cl ass re i on s ove rlap 

add the symbol ' s or po i n ter ' s e f fects c l a s s  to the e f fects 
class signatur associated with the ef fec t c l  ss 
represent i n  the member ' s Lype 

Calculation of the Effects-class Signature for Types Other Than char 
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Table 6 
Number of Loads Executed by the Select SPECint95 Benchmarks 

M i l l ions of Loads M i l l ions of Loads 
SPEC Benchmark Using Type I nformation without Type I nformation Percent Reduction 

gee 1 0,268 1 0,365 0 .9 

ij peg 1 6,853 1 6,888 0.2 

m88ksim 1 3,889 1 4, 1 57 1 .9 

peri 1 1 , 260 1 1 ,296 0.3 

vortex 1 8,994 1 9,207 1 . 1  

Table 7 
Number of Instructions Executed by the Se lect SPECint95 Benchmarks 

Mil l ions of Instructions M i l lions of I nstructions 
SPEC Benchmark Using Type I nformation without Type Information Percent Reduction 

gee 42,830 42,935 

ijpeg 82,844 82,834 

m88ks im 72,490 73, 1 55 

peri  45,2 1 9  45,252 

vortex 80,093 80,607 

The load and instruction counts are those reported 
by using Atom's pixie tool on the SPECint95 binaries 
to generate pixstat data. 1 1 • 1 1  The compiler used was a 
deve lopment C compiler. A l l  compi l ations used the 
fol lowing swi tches: - fas t , -04 , -a rch ev56 , and 
- i nl i ne peed . The compi l ations using the 
Standard C type system used the -ansi_al i a  
switch .  The compi lations using the trad itional C type 
system used the -noansi_a l i  s switch .  The bench
mark binaries were run using the reference data set. 

DCPI '" measurements of the reduction in the num
ber of cycles consumed by these SPECint95 bench
marks showed no consistent reductions. Run-to-run 
variabi l ity in the data col lected swamped any cycle
time reductions that might have occurred.  S imi larly, 
measu rements of gains in SPECint95'' resu lts due to 
the use of type information during alias analysis showed 
no significant changes . 

Changes in Generated Code 

The code-generation changes one sees in the SPECint95 
benchmarks arc exactly what one would expect. 

The usc of type information during alias analysis 
reduces the number of redundant loads. An example 
of this occurs in ijpeg, which contains the code sequence: 

main->r v?group_ctr· 
= fJDH1EN ·ron) ( c in fo- >min_OCT_s ca l ed_s i ze • l l ; 

main- �rowgrou s_ava i l  

; ( JDI M� SlO I ) ( c i n fo->mi n_DCT_scal d_size + 2 ) ; 

in process_data_context .  Using the tradi tional C type 
system,  the compi ler must assume that main->row 
group_ctr is an al ias tor cinfo->min_DCT_scaled_size. 

0.2 

0.0 

0.9 

0. 1 

0 .6 

Thus, it must generate code that loads c info->min_ 
DCT_scaled_size twice . The Standard C type system 
al lows the compiler to generate only one load of 
cinfo->min_DCT_scaled_size. 

Several of the benchmarks contain code similar to 
the fol lowing from conversion_rccipe in  gee: 

c rr . ne . . t - l i s  - >opcode ; - 1 ;  
ur . ne x > l i s  -> o - from ; 

curr . ex t > l i s t - c o s t  - 0 ; 
curr . exc l i s - >prev - 0 ;  

Using traditional C type rules, the compiler must gen
erate four loads of curr. next-> l ist. The compi ler must 
assume that the pointer curr.next-> l ist may point to 
itself, making curr. next-> l ist->member an al ias tor 
curr.next-> l ist. The Standard C type r u les a l low the 
compi ler  to assume that curr.next->l ist does not point 
to itsel f. This allows the compiler to generate code that 
reuses the resu lt  of the fi rst load of curr.next->l ist, 
e l iminating three redundant loads. 

In another example in gee,  the use of Standard C 
type rul es a l lows the compiler to move a load outside a 
loop. The fol lowing loop occurs i n  fixup_gotos: 

f or ( ;  1 i s Ls ; l i s t s  - TREE_ H.l\I ( l i s ts ) ) 

i f  ! T REE_CHAI ( l i s  s )  
- - thi s bloc k- > . b l oc k . ou er_c l.e nup · )  

TREE_ADDRES ABLE ( l i Ls ) • 1 

Standard C type rules tel l  the compiler that the store 
generated by TR.EE_ADD RESSABLE ( l ists ) = I 
can not modi�' thisblock->data .block.outer_clcanups. 
This a l lows the compiler to generate code that retches 
thisblock->data.block.outer_cleanups once betore 
entering the loop. Using traditional C type ru les, 
the compiler must generate code that fetches 
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thisblock->d ata . block.outer_cleanups each time i t  
traverses the loop. 

Not only can type i n formation reduce the n u m ber 
of redundant loads, i t  em reduce the nu m ber of red un
d an t  stores. I n  m88ksi m ,  there are  many routines s imi
lar to the fol lowi ng: 

ir:t  ffirst < s trLct n.S ':.. J.1..:t:L iu;. � c;rri , t:nior. opcode ?·pt:r) 

p:r->gen . opcl = 0. 3c: ; 
ptr-·.gen . r.:cs t • operar.d,; . v-lue [ O ] ; 
p•t -"9'� . OJX/ • am-�op,c . nT; 
p�r >gen . n;/. - ope ran .,; . alue [ 1 I ; 
retuLr. ( 0  l ; 

where ope 1 ,  dest, opc2, and src2 Jrc bit  fields sharing 
the same 32 bits ( long-vord ) .  Using traditional C typ
ing ru les,  ptr- >gcn and cmd- >opc may be al iases for 
each other. Thus to i mplement the above routine, the 
compi ler  must generate code that performs the fol 
lowing actions: 

• Load ptr->gen 

• U pdate bit  fie lds ptr- >gen .opc l and ptr->gen .dest 

• Store ptr->gcn 

• Load cmd->opc. rrr 

• Update bit fie lds ptr- >ge n .opc2 and ptr->gen.src2 

• Store ptr->gen 

Usi ng Standard C typing ru l es,  the compiler does not 
have to generate the first store ofptr- >gen .  The assign
ments to ptr- >gcn .opc l and ptr->ge n . d est cannot 
change cmd - >opc. rrr. I n  this case, a l ias ana lysis that is 
not type based wou ld have a d ifficu l t  time detecting 
that p tr- >gen and cmd - >opc d o  not a l ias each other. 
M88ksim never cal ls  Hi rst d i rectly. It cal ls  it by means 
of an array-indexed fu nction pointer. 

A Note of Caution 

Many C programs do not ad here to the Standard C 
aliasing rules. Through d1e usc of expucit casting and 
impl icit casting, they access objects of one type by means 
of pointers to other types. More aggressive optimization 
by GEM combi ned with more detailed alias-analysis 
information fi·om the DEC C and C++ side-effects 
package increasi ngly resu l ts in these programs e x hi bit
ing unexpected behavior when the compiler uses 
Standard C al iasing ru les. 

Passing a pointer  to one type to a routine that 
expects a poi nter to another type works as expected,  
u ntil the GEM opti m izer in  l i nes the cal led procedur e .  
If the procedure is  n o t  in  l ined ,  t h e  D EC C and C++ 
side-effects package m ust assume that the cal l  confl icts 
with aJ I pointer accesses before and after the cal l .  Once 
GEM in l i nes the routine, the side-effects package is  
free to assume t hat references using the in  l i ned pointer 
do not confl ict with references using the poi nter at the 
call site. The two pointers point to t:\vo d ifferent types. 
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A recent example of this problem occu rred in the 
gee program in the SPECint9 5  benchmark suite .  All 
programs in this suite a rc supposed to conf(xm to the 
Standard C type-al iasing ru les .  B ecll!se of an improve
ment to the GEM optimizer, this benchmark started 
to give unexpected resu l ts .  In rrx_a l loc, gee c l ears a 
structure by treating it as an a rray of i nts,  assigning 
zero to each e lement of the array. Subseq uent to zero
i ng this structu re, gee assigns a val ue to one of the 
fields i n  the structure. Through a series of va l id opti 
mizations ( given the i ncorrect type information ) ,  the 
resu l ting code did not c lear  a l l  the fields i n  the struc
ture . This left u n in itia l ized data i n  the structure 
resu lting i n  gee behavi ng in  an unexpected manne/ 

To avoid potential problems, the D EC C compi le r, 
by d ef:1u l t, d oes not use the Standard C type ru les 
when performing alias analysis. The user of the com 
pi ler  has to expl icitly assert that the program does fol 
low the Standard C type ru les thro u gh the use of a 
com mand -l ine switc h .  

T h e  DIG ITA L  C++  compiler docs assume that the 
C++ program it  is  compi l ing ad h eres to the Standard 
C++ type rules . A user of the D I G ITAL C++ com pi ler 
can use a com mand - li ne switch to inkmn the compi ler 
that i t  should use traditional C type ru les when per
forming al ias a nalysis. 

Summary 

Using Standard C type inf(xmation d u ring al ias analysis 
does improve the generated code f()r some C and C++ 
programs. The compi lation cost of· using type informa
tion is sma l l .  Except for rare cases, performance gains 
resu l ting from these code improvements are smal l . Any 
programs compiled using type information duri ng al ias 
analysis must strictly adhere to the Standard C and C++ 
aliasing rules. If not, the optimizer may generate code 
that produces unexpected resu lts .  
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Compiler Optimization 
for Superscalar Systems: 
Global Instruction 
Scheduling without 
Copies 

The performance of instruction-level paral lel  

systems can be improved by compiler programs 

that order machine operations to increase 

system paral lel ism and reduce execution time. 

The optimization, cal led instruction schedul ing, 

is  typica lly classified as local schedul ing if only 

basic-block context is considered, or as g lobal 

schedul ing if a larger context is used. G lobal 

schedul ing is general ly thought to g ive better 

results. One g lobal method, dominator-path 

schedul ing, schedules paths in a function's 

dominator tree. U n l i ke many other g lobal 

schedul ing methods, dominator-path schedul

ing does not requ i re copying of operations 

to preserve program semantics, making this 

method attractive for supersca lar arch itectures 

that provide a l imited amount of instruction

level para l l e l i sm. In a sma l l  test su ite for the 

Alpha 21 1 64 supersca lar arch itecture, dominator

path schedul ing produced schedules requiring 

7.3 percent less execution time than those pro

duced by local schedul ing alone. 
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Many of today's computer appl ications require compu
tation power not  easily achieved by computer architec
tures that provide l i ttle or no para l l e l i sm.  A promising 
alternative is the parallel architecture, more specifical ly, 
the instruction-level para l le l ( I LP )  architecture, which 
i ncreases computation d u ring each machine cycle.  I LP 
computers a llow para l l e l computation of the lowest 
level machine operations with i n  a single instruction 
cycle, inc luding such operations as memory l oads and 
stores, i n teger additions, and floating-point mu ltipl ic:�
tions.  I LP architectures, l ike conventional architectures, 
conta i n  multiple fu nctional u n its and pipcl i ned fi.mc
tional u nits; but, they have a singJ c  progr:�m cou nter 
and operate on a single instruction stream. Compaq 
Computer Corporation's AlphaServer system,  based on 
the Alpha 2 1 1 64 microprocessor, is :�n example of an 
ILP machine. 

To effectively usc parallel h a rdware and obtain 
performance ad van tagcs, compi ler programs must 
idcntif)r the appropriate level of paral le l ism . For I LP 
architectu res, the compi ler must order the s ingle 
instruction stream such that mu ltiple,  low-level opera
tions execute s imultaneously whenever possi b le .  This 
orderi ng by the compiler of machine operations to 
effectively use an I LP arch i tecture's increased para l 
le l ism i s  called instruction schedulin,r, . It  i s  an opti
mization not usu a l l v  rou nd in compi lers for non- I LP 
arch i tcctu res . 

Instruction sched u l i ng is c lassified as local if i t  
considers code only within a basic b lock and ,r,loha! i f  
i t  schedu les code across m u l tiple bJsic b l ocks. A dis
advantage to local instruction schedul ing is its inabi l i ty 
to consider context from surrounding blocks. \Vhi le  
local sche d u ling can find parallelism within a basic 
block, it can do nothing to exploit para l l el ism bel:\veen 
basic blocks. General ly, global sched ul ing is preferred 
because i t  can take advantage of added program parJ l 
lelism avai lable when t h e  compiler is  :� !lowed t o  move 
code across basic block bmmdJries. Tjaden and Flynn, '  
tor example ,  found paralle l ism within a basic block 
qu ite l im ited . Using a test suite of scienti fi c  programs, 
they measured an average paral le l ism of 1 . 8 within 
basic blocks. In s imi lar  experi ments on scientific pro-



grams in which the compi l er moved code across basic 
block boundaries, Nicolau and Fisher ' round paral
le l ism that ranged from 4 to a virtually un l imited n u m 
ber, with a n  average of90 for the entire test suite. 

Trace scheduling'' is a global schedu ling technique 
that attempts to optimize fi:equently executed paths of 
a program,  possibly at t11e expense of less frequently 
executed pat11s . Trace schedu ling exploits paral lclis� 
within sequential code by allowing massive migration of 
operations across basic block bounda.ties during schedul
ing. By addressing this l arger scheduling context (many 
basic blocks), trace scheduling can produce better sched
ules tlun teclmiques that address the smaller context of a 
single block. To ensure the program sema.t1tics are not 
changed by interblock motion ,  trace scheduling inserts 
copies of operations that move across block bou ndaties. 
Such copies, necessary to ensure program semantics, are 
called wmpm1sation copies. 

The research described here is driven by a desire to 
develop a global i nstruction sched u l i n g  technique 
that,  l i ke trace schedu l i ng, a l lows operations to cross 
block bou ndaries to find good schedules and that, 
u n l i ke trace sched u l ing, does not require insertion of 
compensation copies . Like trace schedu l i ng, D PS first 
defi nes a mu ltiblock context for sched u l i ng and then 
uses a local i nstruction scheduler to treat the l arger 
context l i ke a si ngle basic block.  Such a techniq ue pro
vides effective sched ules and avoids the performance 
cost of execu ting compensation copies. The global 
schedu l i ng tech nique described here is based on the 
dominator relation * among the basic blocks of a fu nc
tion and is  called domi nator-path sched ul ing ( D PS) .  

Local Instruction Schedul ing 

Si nce DPS relies on a local instruction scheduler we 
begin with a brief d iscussion of the local schedt;l ing 
problem. As the n a me i m plies, local instruction sched
uling attempts to maxi mize para l lelism within eac h 
basic block of a fu nction's control rlow graph. I n  gen
eral ,  this optimization problem is N P-complete . '  
H owever, i n  practice, heuristics achieve good results. 
( L..1.ndskov et al.'' give a good survey of early instruction 
schedu l ing algorithms. Al lan et aF describe how one 
might bui ld a retargetable local i nstruction sched u ler. )  

L1st schedulinp, " i s  a general method often used tor 
local instructi

_
on sched u l i ng.  Briefly, l ist sched u l ing 

typtc:: d ly requtres two phases. The fi rst phase bui lds 
a directed acyclic graph ( DAG),  c<�l led the d:J.tJ. depen
dence DAG ( D D D ) ,  tor each basic block i n  the 
functio n .  DDD nodes represent operations to be 
sched u led . The DDD's d i rected edges indicate that a 
node X preceding a node Y constrains X to occ u r  no 

* A  basic bl_ock ,  D ,  dominates another block, B ,  i f cl'<.:n p a t h  from 
the root ot the control-How graph (or a function ro B must pass 
throug;h D 

later than Y. These DOD edges are b;�sed on the formal
ism of data dependence analysis. There are tl1ree basic 
types of data dependence, as described by Padua et al .'' 

• Flow dependence, also cal led b·ue dependence or 
data dependence. A D D D  node M, is flow depen
dent on D D D  node M ,  i f M ,  executes before M, and 
lvL writes to some memory location read by M, .  

• Antidependence, a lso cal led false dependence. A 
DDD node M2 is a n tidependent on D D D  node M ,  
i f  M ,  executes before M z  and M 2  writes t o  a mem
ory location read by M , , thereby destroying the 
value needed by M , .  

• Output dependence. A D D D  node M ,  i s  output 
dependent on ODD node M,  i f M ,  executes before 
M2 and M1 and M, both write to the same location.  

To faci l itate determi nation <1 11d manipul ation of 
data dependence, the compiler maintains, for each 
D D D  node, a set of a l l  memory locations used ( read ) 
and all  memory locations defined (writte n )  by that 
particular D D D  node. 

Once the DDD is  constructed, the second phase 
begin s  when list schedul ing orders the graph 's nodes 
into the shortest sequence of insb·uctions, subject to 
( 1 )  the constraints in the graph,  and ( 2 )  the resource 
l imitations i n  the machine ( i .e . ,  a machine is typical ly 
umited to holding only a single value at  any time) .  I� 
genera! l ist  sched ul ing,  :.1.n ordered J ist  of tasks, called a 
pnoriz)l list, is constructed . The priority l ist takes i ts 
name from the tact that tasks are r:mked such that those 
with the highest priority are chosen first. In the context 
of local instruction scheduling, the priority list contains 
DDD nodes, all of whose predecessors have a lready 
been incl uded in the schedule being constructed . 

Expressions, Statements, and Operations 

Within the context of this paper, we discuss a lgorithms 
for code motion . Before going fu rther, we need to 
ensure common u nderstanding among our readers tor 
our use of terms such <�S expressions. statements. and 
operations. To start, we consider a com puter program 
to be a l tst of operations, each of which ( possi bly)  
computes a righ t-hand side ( rhs)  v;�lue and assigns the 
rhs val u e  to a memory location represented by a left
hand side ( l hs)  variable .  This can be expressed as 

A � E  

where A represents a single memory l ocation and E 
represents an expression with one or more operators 
and an appropri:ue n u m be r  of oper;�nds . Du ring d i f
ferent  phases of a compiler, operations might be repre
sented <�s 

• Source code,  a high -level langu<�ge such as C 

• I n termediate statements, a l inear form of three
address code such as q uads or n-tuples'" 
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• DDD nodes, nodes in a DDD, ready to be sched
u led by the instruction scheduler 

Important to note about operations, whether repre
sented as mtermediate statements, source code, or 
DDD nodes, i s  that operations include both a set of 
definitions and a set of uses. 

Expressions, in contrast, represent the rhs of an 
operation and, as such, include uses but not defini 
tions. Throughout this paper, we use the terms state
ment .

. 
intermediate statement, operation, and DDD 

node Interchangeably, because they all represent an 
operation, with both uses and definitions, albeit gen
erally at different stages of the compilation process . 
When we use the term expression, however, we mean 
an rhs with uses only and no definition. 

Dominator Analysis Used in Code Motion 

I n  order to determine which operations can move 
across basic block boundaries, we need to analyze the 
source program .  Although there are some choices 
as to tl�e exact analysis to perform, dominator-patl1 
scheduhng IS ?ased upon a formalism first described by 
Retf and Taqan."  We summarize Reif  and Tarjan's 
work here and then discuss the enhancements needed 
to allow interblock movement of operations. 

In  their 1 9 8 1  paper, Reif and Tarjan provide a fast 
algorithm for determining the approrimate hirthpoints 
of expressions in a program's flow graph .  An expres
sion's birthpoint is the first block in the control flow 
graph at which the expression can be computed, and 
the value computed is guaranteed to be the same as in 
the original program. Their technique is  based upon 
fast computation of the idefset for each basic block of 
the control flow graph . The idef set for a block B is 
that set of variables defined on a path between B's 
i mmediate dominator and B. Given that the domina
tor relation for the basic blocks of a function can be 
represented as a dominator tree, the immediate domi
nator, IDOM, of a basic block B is B's parent in the 
dominator tree .  

Expression birth points are not sufficient to  allow us  
to  safely move entire operations from a block to  one of 
its dominators because birthpoints address only the 
movement of expressions, not definitions. Operations 
in general include not only a computation of some 
expression but the assignment of the val ue computed 
to a program variable .  Ensuring a "safe" motion tor an 
expression requires only that no expression operand 
move above any possible definition of that operand, 
thus changing the program semantics. A similar 
requirement is necessary, but not sufficient, for the 
variable to which the value is being assigned. In addi 
tion to not moving A above any previous defirution o f  
A, A cannot move above any possible use of A .  
Otherwise, w e  r u n  the risk of changjng A's value for 
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mat previous use. Thus, dominator analysis computes 
me zuse set for each basic block and tor me idef set. 
The iuse set for a block, B, is that set of variables used 
on some path between B 's immediate dominator and 
B. Using the idefand iuse sets, dominator analysis com
putes an approxinute birtl1point for each operation. 

In this paper, we use the term dominator analysis 
to mean the analysis necessary to allow code motion of 
opera�ons while disallowing compensation copies. 
Additional ly, we use the term dominator motion for 
the �eneral optimization of code motion based upon 
dommator analysis. 

Enhancing the Reif and Tarjan Algorithm 

By enhancing Reif  and Tarjan 's algorithm to compute 
hi11hpoints of operations i nstead of expressions, we 
make several issues important that previously had no 
effect upon Reif and Tarjan's algorith m .  This section 
motivates and describes the information needed to 
allow dominator motion, including the use, def iuse, 
and ide{ sets for each basic block. An algorithmic 
description of this dominator analysis information is 
included in the section Overview of Dominator-Path 
Scheduling and the Algorimm tor Intet·block Motion . 

\V:hen we aLlow code motion to move intermediate 
statements (or just expressions) from a block to one of 
its dominators, we run the tisk that the statement 
(expression) will be executed a different number of 
times in the dominator block than it would have been 
in its original location. vVhen we move only expres
sions, the risk is acceptable (although it may not be 
efficient to move a statement into a loop ) since the 
value needed at the original point of computation is  
preserved. Relative to program semantics, the number 
of times the same value is computed has no effect as 
long as the correct value is computed the last time. 
This accuracy is guaranteed by expression birthpoints. 

Consider also the consequences of moving an expres
sion Jiom a block that is never executed for some partic
ular input data. Again, i t  may not be efficient to compute 
a value never used, but the computation does not alter 
progran1 semantics. \Vhen dominator motion moves 
entire statements, however, the issue becomes more 
complex. I f  the statement moved assigns a new value to 
an induction vatiable, as in me following exatnple, 

n =  n + 1 

dominator motion would change n's final value if i t  
moved the statement to a block where the execution 
freq uency differed from that of its original block. We 
cou ld al leviate this problem by prohibiting motion of 
any statement for which the use and de{ sets are not 
disjoint, but the possibi l ity remains that a statement 
may ddine a variable based indirectly upon that vari
able's previous value.  To remedy the more general 
p roblem, we disallow motion of any statement S ) ) 



whose def set intersects with those variables that are 
used-before-defined in the basic block in which S resides. 

Suppose the optimizer moves an i ntermediate state
ment that defines a global variable from a block that 
may never be executed for some set of inpu t  data i nto 
a dominator block that is executed at least once for 
the same input data. Then the optimized version has 
defined a variable that the u noptimized function did 
not, possibly changing program semantics. We can be 
sure that such motion does not change the semanti cs 
of that function being compiled; but  there is no mech
anism, short of compil ing the entire program as a sin
gle unit,  to ensure that defining a global variable in this 
function will not change the value used in another 
function.  Thus, to be conservative and ensure that 
i t  does not change program semantics, dominator 
motion prohibits interblock movement of any state
ment that detines a global variable .  At first glance, it 
may seem that this prohibition cripples dominator 
motion's abi l ity to move any intermediate statements 
at a l l ;  but we shall see that such is not the case . 

One fi n al addition to Reif and Tarjan information is 
required to take care of a subtle problem. As discussed 
above, dominator analysis uses the idef and iuse sets to 
prevent i l legal code motion . The use of these sets was 
assumed to be sufficient to ensure the legal ity of code 
motion i nto a dominator block; unfortunately, this is 
not the case . The problem is  that a definition might 
pass through the immediate dominator o f B  to reach 
a use in  a sibling of B i n  the dominator tree.  I f  there 
were a detlnition of this variable in B, but the variable 
was not defined on any path from the immediate dom
i nator, there would be nothing in dominator analysis 
to prevent the definition from being moved into the 
dominator. But that would change tl1e program's 
semantics. Figure 1 shows tl1e control-flow graph for a 
function called fi ndmax ( ) ,  with only the statements 
referring to register r7. Register r7 is defined in blocks 
B3 and B7, and referenced in B9.  This means mat r7 
is live-out of B 5  and live-in to B 8 ,  but not live-in to 
B7; there is a definition of r7 i n  B 3  that reaches B 8 .  
Because there i s  no definition o r  use between B 7  and 
its immediate dominator B 5 ,  the idef and iuse sets of 
B7 are empty; thus, dominator analysis, as described 
above, would al low the assignment of r7 to move 
upward to block B 5 .  This motion is i ll egal ;  i t  changes 
the definition in B 3 .  Moving me operation from B7 to 
B5 changes the conditional assignment of r7 to an 
unconditional one. 

To prevent this from happening, we can insert the 
variable into the iuse set of the block B, in which we 
wish the statement to remain.  We do not, however, 
want to add to the iuse set unnecessarily. The solution 
is to add each variable, V, that is live-in to any of B 's 
siblings in  tl1e dominator tree, but not i nto B, or to B's 
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7 
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Figure 1 
Control Flow Graph for the Function tindmax( )  

iuse set. This wil l  prevent any definition of V that 
might exist in B from moving up. If there is a defini
tion ofV in  B,  but V is live-in to B ,  there must be some 
use ofV in B before the definition, so it could not move 
upward in any case . 

Measurement of Dominator Motion 

To measure the motion possible in  C programs, 
Sweany1' defined dominator motion as the movement 
of each intermediate statement to its birthpoint as 
defined by dominator analysis and by the number of 
dominator blocks each statement jumps during such 
movement. Sweany's choice of i ntermediate state
ments (as contrasted with source code, assembly lan
guage, or DDD nodes) is attributed to the lack of 
machine resource constraints at that level of program 
abstraction . He envisioned dominator motion as an 
upper bound on the motion avai lable in C programs 
when compensation copies are i ncluded . In the test 
suite of 12 C programs compiled, more than 25 per
cent of all intermediate statements moved at least one 
dominator block upwards toward the root of the dom
i nator tree . One function al lowed more than 50 per
cent of the statements to be hoisted an average of 
nearly eight dominator blocks. The considerable 
amount of motio n  (without copies ) avai lable at the 
intermediate statement level of program abstraction 
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provided us with the motivation to use similar analysis 
techniques to facilitate global instruction schedu l ing. 

Overview of Dominator-path Schedul ing and the 
Algorithm for lnterblock Motion 

Since experi ments show that dominator analysis al lows 
considerable code motion without copies, we chose to 
use dominator analysis as the basis tor the instruction 
scheduling algorithm described here, namely dominator
path scheduling. As noted above, DPS is a global 
instruction scheduling method that does not require 
copies of operations that move ti.-om one basic block to 
another. DPS performs global instruction scheduling by 
treating a group of basic blocks found on a dominator 
tree path as a single block, scheduling the group as a 
whole .  In this regard, it resembles trace scheduling, 
\vhich schedules adjacent basic blocks as a single block.  
DPS's foundation is scheduling instructions while mov
ing operations among blocks according to both the 
opportunities provided by and the restrictions imposed 
by dominator analysis. 

The question arises as to how to exploit dominator 
analysis information to permit code motion at the 
instruction level during scheduling. DPS is based on 
the observation that we can use ide( and iuse sets to 
al low operations to move from a block to one of its 
dominators during instruction scheduling. I nstruction 
scheduling can then choose the most advantageous 
position tor an operation that is placed in any one of 
several blocks. Because machine operations are incor
porated in nodes of the DDD used in schedu ling and , 
l ike intermediate statements, DDD nodes are repre
sented by dej and use sets, the same analysis performed 
on intermediate statements can also be applied to a 
basic block's DDD nodes. 

The same motivation that drives trace scheduling
namely that scheduling one large block allows better use 
of machine resources than scheduling the same code as 
several smaller blocks-also applies to D PS .  I n  contrast 
to trace schedul ing, DPS does not allow motion of 
DDD nodes when a copy of a node is required and does 
not incur the code explosion due to copying that trace 
scheduling can potentially produce. For architectures 
with moderate instruction- level paralle lism, DPS may 
produce better results than trace sche�uling, because 
the more l imited motion may be suttictent to make 
good use of machine resources, and unlike trace sched
ul ing, no machine resources are devoted to execunng 
semantic-preserving operation copies. 

Much l i ke traces,* the dominator path's blocks can 
be chosen by any of several methods. One method is a 
heuristic choice of a path based on length , nesting 
depth , or some other program characteristic .  Another 
is programmer specification of the most important 

•groups of blocks ro be scheduled rogerhcr in rrace schedul ing 
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paths. A third is actual profi l ing of the running pro
gram. We visit this issue again in the section Choosing 
Dominator Paths .  First, however, we need to discuss 
the algorithmic details ofDPS .  

Once D PS selects a dominator path  to schedule,  it 
requires a method to combine the blocks' DDDs into 
a single DDD for the entire dominator path . I n  our 
compiler, this task is performed by a DDD coupler, � .' 
which is designed for the p urpose. Given the DDD 
coupler, DPS proceeds by repeatedly 

• Choosing a dominator path to schedule 

• Using the DDD coupler to combine each block's 
DDD on the chosen dominator path 

• Scheduling tl1e combined DDD as a single block 

The dominator-path schedu ling algorithm, detailed 
in  this section, is summarized in Figures 2 and 3 .  

A significant aspect o f  the D PS process i s  to ensure 
"appropriate" interblock motion of DDD nodes and 
to prohibit "i l legal" motion.  As noted earl ier, the 
combined DDD for a dominator path includes control 
flow. Therefore, when DPS schedules a group of 
blocks represented by a single DDD, i t  needs a mecha
nism to map correctly the scheduled instructions to 
the basic blocks. The mechanism is easi ly accom 
pl ished by tl1e addition of two special nodes to each 
block's n"DD.  Called B lockStart and B lockEnd, these 
special nodes represent the basic block boundaries. 
S ince dominator-path scheduling does not allow 
branches to move across block boundaries, each 
B lockStart and B lockEnd node is in itially "tied" (witl1 
DDD arcs) to the branch statement of the block, .if any. 
Because B lockStart and B lockEnd are nodes in  the 
eventually combined DDD, they arc sched uled l ike all 
other nodes of the combined DDD. After scheduling, 
all i nstructions between the instruction containing the 
B lockStart node for a block and the instruction con
taining the B lockEnd node for that block are consid
ered i nstructions for that block. Next, DPS must 
ensure that the B lockStart and BlockEnd DDD nodes 
remain ordered ( i n  the scheduled instructions) relative 
to one another and ro the B lockStart and BlockEnd 
nodes tor any other block. To do so, DPS adds use and 
dej information to the nodes to represent a pseudore
source, B lockBoundary. Because each BlockStart 
node defines B lockBoundary and each B lockEnd 
node uses BlockBoundary, no BlockEnd node can be 
scheduled ahead of i ts associated BlockStart node 
( because of flow dependence . )  Also, a BlockStart node 
cannot be scheduled before i ts dominator block's 
BlockEnd node ( because of antidependence) .  By 
establishing these imaginary dependencies, DPS 
ensures that the DDD coupler adds arcs between all 
BlockS tart a nd B lockEnd nodes . 



Algorithm Dominator-Path Scheduling 
I nput :  

Output:  

Function Control Flow Graph 
Domi nator Tree 
Post- Dominator Tree 

Schedu led i nstructions for the function 

Algorithm :  
Whi le at least one Basic B lock i s  unschedu l ed 

Heuristically choose a path B , ,  B1,  . . .  , B, in the Dominator Tree that includes 
only unschedu led Basic B locks.  

Pe rform dominator analysis to compute lDefand IUse sets 

/* B uild one D D D  tor the entire dominator path *I 
Combined DDD = B ,  

For i =  2 to n 
T = I ni tializeTransitionDDD ( B, ., , B , )  
Com binedDDD = Couple(CombinedDDD,T) 
Combined D D D  = Couple (Combined DDD, B,  ) 

Perform list sched uling on Combined DOD 
Mark each block o f DP scheduled 
Copy schedu led instructions to the Blocks of the path ( instructions between the 
BlockStart and B lockEnd nodes for a Block are "written " to that B lock) 

End vVhi le 

Figure 2 
Dominaror-pJth Scheduling Algorithm 

Looking back to domi nator analysis, we see that 
interblock motion is  prohibited if the operation being 
moved 

• Defi nes something that is i n c l uded in either the 
ide/or iusc set 

• Uses something included i n  the idef set for the 
bl ock in which the operation currently resides 

To obtain the same p rohibitions in  the combined 
D O D, we add the ide("set tor a basic block, B, to the 
defset B 's BlockStart node. Similarl y, we add the iuse 
set tor B to the use set of B's BlockStart node. Thus we 
cntorcc the same restriction on movement that domi
nator analysis i m posed upon i n termediate statements 
and ensure that any i ntcrb.lock motion preserves pro
gram scmJntics. In J similar manner, DPS i ncludes the 
restrictions on movement of operations that define 
either global vJriJbles or ind uction variables. Figure 3 
gives an a lgorithmic descrip tion of the process of 
"doping" the B lockS tart and BlockEnd nodes to pre
vent d isal l owed code motion. 

DPS is  complicated by factors not relevant tor dom
inator motion of intermediate statements. Foremost is 
the complexity im posed by the bidirectional motion of 

operations tl1at instruction sched ul ing allows. In dom
inator motion , i ntermediate stJtements move in only 
one direction , i . e . ,  toward the top of the ti.mction's 
control How graph ,  not from a dominator block to a 
domi nJted one. This one-directional motion is rea
sonable when attempting to move intermediate stJte
ments because one statement's movement wil l  l i kely 
open possibil i ties tor more motion i n  the same d irec
tion by other statements.  When statements move i n  
different directions, o n e  stJtement's motion m ight 
inhibi t  another's movement in tl1e opposite d irection . 
The goal of dominator motion is to move statements as 
t�u· as possible i n  tl1e control flow graph. In contrast, tl1e 
goal of DPS is not to maxi.rn.ize code motion, but rather 
to find, for each operation, 0, that location for 0 that 
will yield me shortest schedule.  Thus our goal has 
changed fi:om that of dominator motion.  To gain the 
fu ll benefit from DPS, we wish to allow operJtions to 
move past block boundaries in either direction .  To per
mit bidirectional motion, we use the post-dominJtor 
relation ,  which says that a basic block, P D ,  is a post
domi nator of a basic block B if al l paths from B to the 
function's exit must pass ilirough P D .  Using thi s  strat
egy, we s imi larly define post-idefand post-iuse sets. I n  
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Figure 3 

Algorithm Initi al i zeTransitionDDD( B , ,  B1)  
Input :  

Output: 

A Transition DDD templates, with a D u mmy DD DNode 
for B ,  's block end and one for B, 's block start 
Two basic blocks, B, and B, that we wish to couple 
Domi nator Tree 
Post- Domi nator Tree 
The fol l owing dataflow information 

Def, Use, IDef, and I Use sets for B ,  and B, 
Used-Before-Defined set for B, 
Post-I Def, and Post-I Use sets for B ,  and B, 
B,'s "sibling" set, defined to i nclude any variable 

live-in to a dominator-tree si bling ofB,, but not 
live-in to B, 

A basic block D D D  for each of B, and B, 

An i n itialized Transition DDD, T 
Algorithm :  

T = TransitionDDD 
/* "Fix" set  for global and induction variables. * / 
Add set of global variables to B/s !Use 
Add B/s Used - Before-Defined to B/s IUse 
Add B/s sibl ing set to B/s I Use 

If B, does not post-dominate B ,  

Else 

Add B, 's Use set to Ts Block End Def set 
Add B,  's Defset to T's BlockEnd Use set 

Add B, 's Post- I Def set to T's BlockEnd Def set 
Add B , 's Post-lUse set to T's BlockEnd Use set 

Add B/s I Def set to T's B lockS tart Def set 
Add B� 's I Use set to T's BlockS tart Use set 
Return T 

I nitial ize Transition ODD Algorithm 

fact, it is not d i fficult  to comp u te Jll these quanti ties 
for a fu nction . The simplest w:�y is to l ogica l l y  reverse 
the direction of all the control flow gr:�ph arcs and per
form domi nator an alysis on the resu lt ing graph .  
Having computed the post-domi nator tree, DPS 
ch ooses dominator paths such that the dominated 
node is a post-domi nator of its immediate predecessor 
in a dominator path.  This choice a l lows operations to 
move "freely" in both directions. Of course, this may 
be too l imiting on the choice of domi nator paths. To 
allow for the possibility that nodes in a dominator path 
wi l l  not form a post-domin ator relati on, D PS needs a 
mechanism to l imit bidirectional  motion when 
needed . Again, we rely on the tech nique of adding 
dependencies to the combined D D D .  In this case 
( assuming that DPS is schedu l i ng paths in the forward 
domi nator tree),  for any basic block, B, whose succes-
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sor, S, in the forward domi nator p:tth does not post
dominate B ,  DPS adds B 's de( set to the use set of the 
B l ockEnd node associated with B .  In similar t-:1shion,  
we add B 's  use set to B 's  B lockEnd node's de( set. 
This technique prevents any DDD node origi nal ly in 
B from moving downward i n  the domi nator path . 

Choosing Dominator Paths 

DPS al lows code movement a long any domin ator 
path, but there are many ways to select these paths. An 
investigation of the effects of domi nator-path choice 
on the efficiency of generated schedu les tel ls us that 
the choice of path is too i mportan t  to be left to arbi 
trary selection; twice the average percent speed up* for 
several functions can often be ach ieved with a simple ,  

*( unoptimized_speed - oprirnized_spccd )/u noptirnizcd_spccd 



well-chosen heuristic. Some functions have a potential 
percent speed up almost four times the average. Thus, 
it is important to find a good, generally appl icable 
heuristic to select tl1e domi nator paths. 

Unfortunately, it  is not practical to schedule all of 
the possible partitionings for large functions. If we 
allow a basic block to be included in only one domina
tor path, the formula for the numbe r  of distinct parti 
tionings of the dominator tree is 

IT [ outdeg( n) + 1 ]  
II € .\' 

where N is the set of nodes of the dominator tree . "  
Although the number of possible paths i s  not prohi bi
tive for small dominator trees, larger trees have a pro
hibitively large number. For example, whetstone's 
main( ), with 49 basic blocks, has a lmost two tri ll ion 
distinct partitionings. 

To evaluate differences in  dominator-path choices, 
we scheduled a group of small fu nctions with DPS 
using every possible choice of dominator path .  The 
target architecture for this study was a hypotheticaJ 
6-wide long-instruction-word ( LIW) machine, which 
was simu lated and in  which it  was assumed that all 
cache accesses were hits. 

The results of exhaustive dominator-path testing 
show, as expected , that varying the choice of domina
tor paths significantly affects the performance of 
scheduling. For all functions of at least two basic 
blocks, DPS showed improvement over local schedul 
ing for at least one of tl1e possible choices of domina
tor paths.  Table 1 shows the best, average, and worst 
percent speedup over local scheduling found for al l  
fu nctions that had a "best" speedup of over 2 percent; 
it  also shows the speed up of tl1e origi nal implementa-

Table 1 

tion ofDPS and the n u mber of clistinct dominator tree 
partitionings. The original im plementation of DPS 
incl uded a single, simple heuristic to choose domina
tor patl1s. More specifically, to choose dominator pams 
witl1 in a group, G, of contiguous blocks at me same 
nesting level, me compiler continues to choose a 
block, B, to "expand . "  Expansion ofB initializes a new 
dominator path to include B and adds B's dominators 
until no more can be added. The algorimm then starts 
anomer domi nator path by expanding another (as yet 
unexpanded) block of G. The first block of G chosen 
to expand is me tail block, T, in an atte mpt to obtain as 
long a dominator pam as possible . 

Unformnately, not all functions are small enough to 
be tested by performing DPS for each possible parti
t ioning of the dominator tree.  Therefore, we defined 
37 different heuristic memods of choosing dominator 
trees, based upon groupings of SL"X key heuristic factors. 

The maximum patl1 lengms of tl1e basic guidelines 
were adjusted to produce actual heuristics .  We used 
the heuristic factors from which the individual  heuris
tics were constr ucted ; each seemed likely e ither to 
mimic the observed characteristics of the best path 
selection or to allow more freedom of code motion 
and, therefore, more fl exibility in  filling "gaps. "  

• One nesting level-Group blocks from the same 
nesti ng level of a loop. Each block is in the same 
strongly connected component, so the blocks tend 
to have similar restrictions to code motion . For a 

group of blocks to be a strongly connected compo
n ent,  there must be some path in the control tlow 
graph from each node in the component to all the 
otl1er nodes in the component.  Si nce the function 
will probably repeat the loop, it seems l ikely that 
the scheduler will be able to overlap blocks in it.  

Percent of Function Speedup Improvement Using DPS Path Choices over Local  Schedu l ing 

Function Name Best Average 

bu bble 39.2 1 0 .6 

readm 32.5 9 .3  

solve 27.8 9 .9 

queens 25.4 8.3 

swaprow 2 3 . 1  5 .8 

print(  g) 22.0 9 . 1  

find max 2 1 .3 6 .2  

copy col 1 8.5  5 .6  

e l im  1 4.3 2 .3  

mu lt  1 3 .7 2 . 1  

subst 1 2 .9 2.4 

pri nt(8) 1 2 .5  6 .2  

Percent Speed up 

Worst Original 

- 0. 1  1 1 .7 

- 0.2  32 .5  

- 0.2  27.8 

- 0.4 - 0.4 

- 3 .7 1 9 .5  

- 0.2  22.0 

- 0. 3  8. 7 

- 5.0 1 9 .9 

- 3.8 1 0.2  

- 3.8 1 0.3  

- 4.9 4 .9  

0 .0  1 2 .5  
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• Longest path-Sched ule the longest avai lable path . 
This heuristic c l ass Jl lows the maxim u m  distance 
tor code motion . 

• Postdominator-Follow the postdominator relation 
in the dominator tree. When J dominator block, P, is 
succeeded by a non-postdominator block, S, our 
compiler adds P's del set to the use set of P's 
B loc kl-: nd node and the use set to the def set to 
prevent any code motion from P to S. I f P  is instead 
succeeded by its postdomi mtor block, no such mod
incation is necess::try, and code would be allowed to 
move in both directions. Intuitively, the postd omi na
tor relation is the cx::tct inverse of the dominator reb
ti on, so code can move down, into a postdomi nator, 
as it moves up i nto a domi nator. Further, the simple 
act of adding n odes to the D D D  will complicate list 
sched ul ing, mal<ing it harder tor the scheduler to 
generate the most efficient sched u I e .  

• Non -postdominator-Follow a non-postdominator 
i n  the dominator tree. This heuristic class generally 
means Jdding loop body blocks to the path . Notice 
that th is seems at odds with the previous h e u ri s tic  
class . The previous cbss was suggested by intuition 
about the schedu ler, and this one by observation of 
path behavior. 

• idef size-Group by idef set size. The larger the 
idef size, the more interference there is to code 
motion . A small  idefsize will probably a l low more 
code motio n ,  so we try to add blocks with small  
ide/sizes. 

• Densi ty-Grou p by operation density. vVe define 
the density of each basic block as the number of 
nodes in the DDD divided by the nu mber of instruc
tions req uired f(x local sched u l ing. A dense block 
already has close to its maximum number of opera
tions; Jdding or removing operations wi l l  probably 
not improve the sched ule.  For this reason, we want 
to avoid sched u ling dense blocks together. Two 
methods arc tried: sched u l ing dense blocks >vith 
sparse blocks and putting sparse blocks together. 

The heuristic factors were used to make i nd ividual 
heuristics by ch:1nging the limit on the possible nu m 
ber of blocks i n  a p::lth . I t  was reasonable t o  set l i mits 
for four tactors : postdominator, non- postdominator, 
ide/ size, and density. We tried p:�th length l imits in 
blocks of 2 ,  3, 4, 5 ,  :1nd un l imited , making a total o f  
five heu ristics fi·om each h euristic factor. 

Ru nning DPS using cJch of the he uristic methods 
a nd comparing the efti ciency of the resu l ting code 
l eads to several concl usions about effective heu ristics 
for choosi ng DPS's dominator paths. for some heu ris
tics, we can achieve the best schedules for DPS by 
using paths that r:1rely exceed th ree blocks. For :1 ny 
particular class of heuristics, we can Jchievc the best 
schedule with paths l imited to rive blocks or fewer. 
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Consequently, path lengths c: 1n be l i m i ted without 
lowering the efficie ncy of generated cod e, and longer 
paths, whi c h  i ncrease sched ul ing time, c:m be avoided. 

Since no one heuristic performed we l l  for al l  fu nc
tions, we advise using a combi nation of heu ristics, i .e . ,  
schedule by using each of th ree heuristics Jnd taking 
the best sched ule .  The "com bined " heuristic inc ludes 
the following: 

• Instruc tion density, l imit to five blocks 

• One nesting level on path, l i mit to five bl ocks 

• Non -postdomi nator, un l imited length 

Frequency-based List Scheduling 

Like some other global schedulers, DPS uses a local 
scheduling algorithm (list schedul ing) on a global con
text, namely the meta-blocks bui lt  by DPS. This algo
rithm raises the possibility of moving code n·om less 
fi-equently execu ted blocks to more fTeq uent!y executed 
blocks. At first glance, tl1is practice seems to be a bad idea. 

In theory, to best schedule any meta- block, an 
instruction sched uler must acco u n t  t(x the d i fferi ng 
cost of the i nstructions withi n  the meta-block. I fa  s in
gle meta-block inc ludes  mu ltiple nesti ng l evels, the  
sched uler must recogni ze that  instructions added to 
blocks with h igher nesti ng levels are more costly than 
those added to blocks with lower n esting levels. Even 
within a loop, there exists the potenti�1 l  tor consider
able variation in the execution fTcq uencies o f d i tkrent 
blocks i n  the meta- block due to control tlow. or· 

course variable execution freq uency is not :111 issue i n  
trad iti onal  local schedul ing bec:1use, with i n  the con 
text of a s ingle basic block, each D D D  nodl: is exe
cuted the same number of times, n:�mely, once each 
time execution enters the block. 

To address the issue of differi ng execution frequen 
cies within meta-blocks schedu led as :1 single block by 
D PS, we i.nvestigated fl·equency- based l ist sc hedu l ing 
(FBLS ), ' ;  an extension of Jist schedul ing th::Jt provides 
an answer to this d ifficulty by considering that execu
tion fi-equencies d iffer with i n  sections of the meta
blocks. FBLS uses a greedy method to pl :1cc D D D  nodes 
in the lowest-cost instruction possible .  f B LS  amends 
tl1e basic list-schedul ing a lgorithm by revising only the 
DDD node placement policy in an attempt to red uce 
the run-time cycles required to execute ;1 meta-block. 

Unfortunately, although FBLS makes intuitive sense, 
we fou nd that D PS produced worse schedu les with 
FBLS than i t  produ ced with a na ive local schedul ing 
algorithm that  ignored frequency d i fferences with i n  
D PS's meta- blocks. Therefore, t h e  current imple
mentation of D PS ignores the execution tt·cq uency 
d i ffe rences be t\.veen basic blocks, both in  ch oosing 
dominator paths to schedule  and in sched u l i n g  those 
dominator-path meta - blocks. 



Evaluation of Dominator-path Scheduling 

To measure the potential of DPS to generate more 
efficient sched ules than local schedul ing for commer
cial superscalar architectures, we ran a small test suite 
of C programs on an Alpha 2 1 1 64 server. The Al pha 
server is  a superscalar architecture capable of issuing 
two integer and tvm floati ng-point i nstr u ctions each 
cycle .  Our compiler esti mates the effectiveness of a 
sched u le by modeling the 2 1 1 64 as an LIW architec
ture with all operation latencies known at compile 
time. Of course th is mode l was used only within the 
compiler itself. Our resu l ts measured changes in  
2 1 1 64 execution ti me (measured with the UNIX 
"time" command) required for each program. 

Our test suite of 1 4  C programs includes 8 programs 
that use integer computation only and 6 programs that 
i nclude tloati ng-poi nt computation. We separated 
those groups because we see dramati c  differences i n  
DPS's pertormance when viewing i nteger and floating
point programs. To choose dominator paths, we used 
the combined he uristic recommended by Huber. '' 

Table 2 sum marizes the resu l ts of tests we con
ducted to compare the execution times of programs 
using DPS schedul ing with those using local schedul
ing only. The table l ists the programs used i n  the test 
suite and the percent im provement in execution times 
for DPS-scheduled p rograms. The execution time 

Table 2 
Percent DPS Sched ul ing I m provements over Local 
Sched u l i ng of Programs 

Program 

8- Queens 

SymboiTab le  

Bubb leSort 

Nsieve 

Heapsort 

K i l lcache 

TSP 

D h rystone 

C integer average 

D ice 

Whetstone 

Matrix M u lt ip ly 

Gauss 

F i n ite Difference 

Livermore 

C floati ng-point average 

Overal l  average 

Percent Execution 
Time Improvement 

7 .3  

7 . 3  

5.0 

6. 1 

6.0 

2.6 

2.4 

0.7 

4.7 

3.7 

5.4 

1 6.2  

1 2. 3  

1 7.6  

9 .3  

1 0.8 

7.3 

measurements were made on an Alpha 2 1 1 64 server 
running at 250 megahertz with data cache sizes of 8 
kilobytes, 96 ki lobytes, and 4 megabytes. 

Looking at Table 2, we see that, in genera l ,  DPS 
improved the integer programs less than it i m proved 
the floati ng-poi nt programs. The range of improve
ments for i nteger programs was from 0.7 percent for 
Dhrystone to 7.3  percent  each for 8- Queens and for 
Sym bo!Table.  Summing a l l  the improve ments and 
d ividing by eight (t he number of integer programs) 
gives an "average" of 4.7 percent im provement for the 
integer programs. DPS improved some of the floating
point programs even more significantly than the in te 
ger programs. The range of i mprovements for the six 
floating-poi nt programs was from 3 .7 percent for Dice 
(a s imu lation of rolli ng a pair of dice 10,000,000 times 
using a uniform random n u m ber generator) to 1 7 .6 
percent i mprovement fo r the finite difference pro
gram. The average for the six floating-point programs 
was 10.8 percent. This suggests, not surprisingly, that 
the Alpha 2 1 1 64 provides more opportu nities for 
global schedul ing i mprovement when floati ng-point 
programs are being compiled. 

Even with in  the six floati ng-point programs, how
ever, we see a distinct bi- modal behavior in terms of 
execution-ti me improvement. Three of the programs 
range from 1 2 . 3  percent to 1 7 . 6  percent improve
ment, whereas three are below lO percent (and two of 
those sign ificantly below lO percent) .  A reason for this 
wide range is the use of global variables. Remember 
tl1at DPS forbids the motion of global variable defi n i 
tions across block bo undaries. This is  necessary to 
ensure correct program semantics. I t  is hardly a coinci
dence that both Dice and Whetstone incl ude on ly 
global floati ng-point variables, whereas Livermore's 
floating-point variables are mixed about hal f local 
a nd half  global, and the three better performers use 
a lmost no global variables. Thus we conclude that, for 
floating-point programs with few global variables, we 
can expect i mprovements of roughly 1 2  to 1 5  percent 
in  execution time. Inclusion of global variables and 
exclusion of fl oati ng-point values wi l l ,  however, 
decrease DPS's abi l ity to improve execu tion time tor 
the Alpha 2 1 1 64. 

Related Work 

As we have discussed , local instruction schedul ing can 
find paral lel ism wi thin a basic block but cannot exploit 
parallel ism between basic blocks. Several global sched
ul ing techniques are avai lable ,  however, that extract 
paral lel ism from a program by moving operations 
across block bou ndaries and subsequently inserting 
compensation copies to maintai n program semantics. 
Trace schedul ing1 was the first of these techniq ues to 
be defined. As previously mentioned, trace schedul ing 
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requires compensation copies. Other "early" global 
schedu l ing algorithms that req uire compenstation 
copies include Nicolau's percolation scheduling 1"· 1 7  
and Gupta's region scheduling 1 8  A recent and qu ite 
popular extension of trace scheduling is Hwu's 
SuperBlock scheduling. 19 20 In add ition to these more 
general, global schedu l ing methods, signi ficant resu lts 
have been obtained by software pipel ini ng, which is a 
technique that overlaps i terations of loops to exploit 
avai lable ILP. Al lan ct a l . 2 1  provide a good summary, 
and Rau22 provides an excellent tutorial on how modulo 
scheduling, a popular software pipel in ing technique,  
should be implemented. Promising recent tech niques 
have focused on defining a meta-environment, which 
i ncludes both global scheduling and software pipelin
ing.  Moon and Ebcioglu23 present an aggressive tec h
nique that combines software pipdining and global 
code motion (with copies) i nto a s i ngle fra mework. 
Novak and Nicolau2' describe a sophisticated schedul
i ng framework in which to place software pipe l in ing, 
including alternatives to modulo scheduling. While 
provi d i ng a significant number of excel lent global 
scheduling altern atives, none of these techniques pro
vides global sc heduling without the possibi l ity of code 
expansion ( copy code ) as D PS does. 

To address the issue of producing schedules without 
operation copies, Bernstein2;-27 defined a technique he 
calls global instruction scheduling (G PS) that aJ.lows 
movement of instructions beyond block bou ndaries 
based upon the program dependence graph ( PDG) .28 In 

a test suite of four programs run on I BM's RS/6000, 
Bernstein's method showed improvement of rough ly 
7 percent over local scheduling for two of the programs, 
with no significant clifference for the others. 

Comparing DPS to Bernstein's  method, we see that 
both allow for interb lock motion without copies. 
Bernstein also al lows for interblock movement req uir
ing dupl icates that DPS does not. Interestingly, 
Bernstein's later work27 does not make use of th is abi l
i ty to al low motion that req uires duplication of opera
tions, suggesting that, to date , he has not found such 
motion advisable for the RS/6000 architecture to 
which his techniq ues have been applied . Bernstein 
a l lows operation movement in only one clirection, 
whereas DPS a llows operations to move from a domi
nator block to a postdominator. This added flexibility is 
an advantage to DPS. Of possibly greater significance, 
DPS uses the local i nstruction scheduler to place opera
tions. Bernstein uses a separate set of heuristics to move 
operations i n  the PDG and then uses a subsequent local 
scheduling pass to order operations v.rithin each block. 
Fisheil argues that incorporati ng movement of opera
tions with the scheduling p h ase itself provides better 
schedu l ing than divicling the i nterblock motion and 
schedul ing phases. Based on that criterion alone, DPS 
has some advantages over Bernestein's method. 
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Conclusions 

It is commonly accepted that to exploit the perfor
mance benefits of iLP, global i nstruction schedul ing is 
requi red .  Several varieties of global instruction sched 
u l ing exist ,  most req uiring compensation copies to 
ensure proper program semantics when operations 
cross block boundaries during i nstruction scheduling.  
Although such global scheduling with compensation 
copies may be an effective strategy for archi tectures 
with large degrees of ILP, another approach seems 
reasonable for more limited architectures, such as c ur
rently available su perscalar computers. 

This paper outli nes DPS, a global instruction sched
uling technique that docs not req uire compensation 
copies. Based on the fact that more than 25 percent of 
i ntermediate statements can be moved upward at l east 
one domi nator block in the control flow graph with 
out changing program semantics, DPS schedules paths 
in a function's domi nator tree as meta- blocks, making 
use of an extended local instruction scheduler to 
schedu le dominator paths. 

Experimental evidence shows that D PS does indeed 
produce more efficient schedules than local schedul
ing for Com paq's Alpha 2 1 1 64 server syste m ,  particu
larly tor floati ng-point programs that avoid the use of 
global variables. This work has demonstrated that con
siderable fl exibil ity in p lacement of code is possible 
even when com pensation copies are not a l lowed .  
Al though more research i s  req u ired t o  look into 
possible uses for this flexibi l ity, the global instruction 
schedu l i ng method described here ( D PS ) shows 
promise for lLP architectures. 
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Maximizing 
Multiprocessor 
Performance with 
the SUIF Compiler 

Paral lel izing compi lers for multiprocessors face 

many h u rdles. However, SU IF's robust analysis 

and memory optimization techniques enabled 

speedups on three fourths of the NAS and 

SPECfp95 benchmark programs. 
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The affordability of shared memory mu lti processors 
offers the potential of supercomputer-class performance 
to the general public.  Typical ly used in a multiprogram
ming mode, these machines increase throu ghput by 
running several independent applications in paral le l . 
But  m u l tiple processors can also work together to 
speed up single applications. This req uires that ordinary 
sequential programs be rewritten to take advantage of 
the extra processors. '  4 Automatic paral le l ization with a 
compi ler otfers a way to do this. 

Paral le lizing com pilers face more difficult challenges 
from multiprocessors than from vector machines, which 
were their initial target. Using a vector architecwre eftec· 
tively i nvolves paral le l i zi ng repeated a.tithmetic opera
tions on large data su-eams-for example , the i nnermost 
loops in array-oriented programs. On a mul tiprocessor, 
however, this approach typical ly does not provide suffi
cient granularity of paral lel ism: Not enough work is  
performed in  paral lel to overcome processor synch
ronization and communication overhead . To use a 
multiprocessor effectively, the compiler must exploit 
coarse-grain paral lel ism, locating large computations 
that can execute independently in parallel .  

Locating para l le l ism i s  j ust the fi rst step i n  prod uc· 
ing efficient m u l ti processor cod e .  Achievi ng h igh per
formance also req uires e ffective use of the memory 
hierarchy, and multjprocessor systems have more com
plex memory hierarch ies than typical vector mac hines: 
They contain not only shared memory but also multi
ple levels of cache memory. 

These added challenges often limited tl1e effectiveness 
of early paralJe l izing compilers for mul tiprocessors, so 
programmers developed their appl ications fi·om scratch, 
without assistance from tools. But explicitly managing an 
application's paral lel ism and memory use requires a great 
deal of programming knowledge, and tl1e work is tedious 
and error-prone. Moreover, the resulting programs are 
optimized for only a specific machine.  Thus, the effort 
required to develop efficient parallel programs restricts 
the user base for multiprocessors. 

This article describes automatic paral le l ization tech 
n iques in the SU I F  (Stanford U niversity I n termed iate 
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Format)  compiler that result  in good m u l tiprocessor 
pertormance for array- based num erical progra ms.  vVe 
provide SUIF performance measurements for the com
plete NAS and SPECfP95 benchmark suites. Overal l ,  the 
results tor these scientific programs are promising. The 
compiler yields speedups on three fourths of the pro
grams and has obtained the highest ever pcrronnancc on 
the SPECfP95 bench mark, indicating that the com piler 
can also achieve e fficient absolute performance. 

Finding Coarse-grain Parallelism 

Mu ltiprocessors work best when the in dividu,l l  proces
sors have large units of independent com pu tation , but 
it is not easy to find such coarse-grain para l lel ism . First 
the compiler mu st find avai lable paral lel ism across pro
ced ure boundaries.  Furthermore, the original compu
tations may not be paral le l izable as given and may first 
require some transtonnations. For example, experience 
in paral le l iz ing by hand suggests that we must often 
replace global arrays with private versions on d i fferent 
processors. In other cases, the com p u tation may 
need to be restructured-for example,  we may have to 
re place a sequential accumu lation with J p:tral lel  reduc
tion operation.  

I t  takes a l arge suite of robust a nalysis tec hniq ues to 
successfu l ly  locate coarse -grain p::tral le l ism . Gen eral 
and un i r(xm frameworks he lped us ma nage the com 
plexity i nvolved i n  bui ld ing such a system i nto S U I F .  
We autom ated t h e  analysis to privatize arrays and to 
recognize red uctions to both sca lar and array variab les .  
Our com pile r's analysis techniques a l l  operate seam
less ly :Kross procedure bound aries. 

Scalar Analyses 

An initial phase analyzes scalar variables in the programs. 
It  uses techn iq ues such as data dependence analysis, 
scalar privatization analysis, and reduction recognition 
to detect paral lel ism among operations with scal ar· vari
ables. It also derives symbolic information on these scalar 
variables that is useful in the array analysis phase. Such 
information includes constant propagation, induction 
variable recognition and el imi nation, recognition of 
loop-i nvariant computations, and symbolic relation 
propagation .'"' 

Array Analyses 

An :trray analysis ph ase uses a un i fied mathematical 
tl-amework based on l inear algebra and i nteger l i near 
program ming. ' The analysis appl ies the basic data 
dependence test to d etermine if accesses to an array 
can rerer to the same location. To support array priva
tization, it a lso finds array data � ow i n formation that 
determ i nes whether array elements used in an i teration 
rd cr to the val ues produced in a p revious i teration . 
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Moreover, it recognizes commutative operations on 
sections of an array and tra ns forms them i nto paral le l  
red uctions. The red u c tion analysis is powerful  enough 
to recogn i ze co mmutative updates of even indirectly 
accessed array l ocations, a l lowing para l le lization of 
sparse computations.  

All  these analyses are formulated i n  terms of i nteger 
programming problems on systems of l inear ineq ua l i 
ties that represent the  data accessed.  These i neq ualities 
are derived from loop bounds and array access fu nc
tions. I m plementing opti mizations to speed u p  com 
mon cases reduc<::s the compilation ti me. 

lnterprocedural Analysis Framework 

All the ana lyses arc i m p lemented using a un i form 
i n terprocedu ral analysis framework, which helps ma n
age the software engineering complexity. The frame
work uses interprocedural dataflow analysis,• which is  
more efficient tlun the more common tec h n i q ue of 
i n l i ne substitutio n . '  I n  l ine substitu tion replaces each 
proced u re cal l with J copy of the cal led proced ure, 
then analyzes the expanded code in the usual i ntrapro
cedural  manner. I n l ine subs ti tution is not practical for 
large progra ms, because it can make the program too 
large to ana lyze . 

O u r  technique :1 11alyzes only a single copy of each 
procedure, captu ri ng irs side efrects in a function . This 
fu nction i s  then appl ied at each cal l site to produce 
precise results. When different cal l i ng contexts make it 
necessary, the algorithm sel ective ly cl ones a procedure 
so that code can be analyzed and poss ib ly  paral le l i zed 
under d i ffe rent cal l i n g  contexts ( as when d i ffere nt 
constant  values Jrc passed to the same formal parame
ter ) .  In this way the fu l l  advantages of i n l in ing are 
achieved without expanding the code ind iscri minate ly. 

In Fi gure 1 the boxes represe nt  procedure bodies, 
and the l i nes connecting them represent procedure 
calls. The m::tin com putation is a series o f tour loops to 
com pute three - d i mensional  fast Fourier transr(mns. 
Using i nterproced ural scalar and array analyses, tile 
S U [f compiler determines that these l oops are para l
lel izable .  Each loop contai ns more than 500 li nes of 
code spanning up to n i ne procedures with up to 42 
procedure calls .  If this program had been fu l l y  i n l i ned , 
the loops pres<::nted to the compiler for analysis would 
have each contained more than 86 ,000 l i nes of code.  

Memory Optimization 

Numerical appl ications on high-performance micro
processors are often memory bou nd. Even with one or 
more levels of cache to bridge the gap between proces
sor and memory speeds, a processor may still waste half 
its t ime stalled on memory accesses because it ITequently 
references an item not in the cache (a cache miss ) .  This 
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Figure 1 
The compiler discovers parallelism through intcrprocedural array analysis. Each of the four paral lel ized loops at left consists of 
more than 500 l ines of code spanning up to nine procedures ( boxes) with up to 42 procedure calls ( l i nes ) .  

memory bottleneck i s  fi.1rther exacerbated on multi
processors by tl1eir greater need for memory traffic, 
resulting in more contention on tl1e memory bus. 

An effective compiler must address four issues that 
affect cache behavior: 

• Communication :  Processors in a multiprocessor 
system communicate through accesses to the same 
memory location . Coherent caches typically keep 
tl1e data consistent by causing accesses to data writ
ten by another processor to miss in the cache. Such 
misses are cal led true sharing misses. 

• Limited capacity: Numeric applications tend to have 
large working sets, which typically exceed cache 
capacity. These applications often stream through 
large amounts of data before reusing any of it, 
resulting in poor temporal locality and numerous 
capacity misses. 

• Limited associativity: Caches typical ly have a small 
set associativity; that is, each memory location can 
map to only one or just a few locations in  the cache. 
Conflict misses-when an item is discarded and 
later retrieved--can occur even when the applica
tion 's working set is smaller than the cache, i f  the 
data are mapped to the same cache locations. 

• Large line size : Data in a cache are transferred in  
fixed-size units called cache l ines. Applications that 
do not use all the data in a cache l ine i ncur more 
misses and are said to have poor spatial locality. On 
a multiprocessor, large cache J ines can also lead to 
cache misses when different processors use differ-

ent parts of the same cache line. Such misses are 
called false sharing misses. 

The compiler tries to eliminate as many cache misses as 
possible, ilien minimize tl1e impact of any iliat remain by 

• ensuring that processors reuse the same data as 
many times as possible and 

• making the data accessed by each processor con
tiguous in tl1e shared address space . 

Teclmiques for addressing each oft11ese subproblems 
are discussed below. Final ly, to tolerate tl1e latency of 
remaining cache misses, the compiler uses compiler
insetted prefetching to move data into the cache before 
it is needed. 

Improving Processor Data Reuse 

The compiler reorgani zes tl1e computation so mat each 
processor reuses data to the greatest possible extent -'-� 
This reduces tl1e working set on  each processor, 
thereby minimizing capacity misses. It also reduces 
i nterprocessor communication and thus minimizes 
true sharing misses. To achieve optimal reuse, the com
piler uses affine pm1itioning. This technique analyzes 
reference patterns in the program to derive an aftine 
mapping ( l inear transformation plus an offset) of the 
computation of the data to tl1e processors . The affine 
mappings are chosen to maximize a processor's reuse 
of data wh.ile  maintaining sufficient parallelism to keep 
all processors busy. The compi ler also uses loop block
ing to reorder tl1e computation executed on a single 
processor so that data is reused in the cache. 
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Making Processor Data Contiguous 

The compiler tries to arrange the data to m a ke a 
processor's accesses contiguous in the share d  address 
space . This i m proves spatial loca l i ty whi le red ucing 
conA ict misses and false shari ng.  SUIF can ma nage 
d ata p lacement within a single array and across multi 
p l e  arrays. The data-to- processor mappi ngs computed 
by the affine partitioning ana lysis are used to d e ter
mine the data being accessed by each processor. 

Figure 2 shows how the compi ler' s usc of data per
mutation and data strip-mining'" can make contiguous 
the data within a single arra)' that is accessed by one 
processor. Data permuta tion interchanges the dimen
sions of the array-fix example,  transposi ng a !'NO
dimensional array. Data strip-mining changes an 
array's di mensional ity so that all data accessed by the 
same processor are in the same plane of the array. 

To make data :Kross m u l t ip l e  arrays accessed by the 
same processor contiguous, we use a tec hnique cal led 
compiler-directed page colorinp,. ' '  The co mpiler uses 

y 

X 

y 

y 

X 

STRI P-MINING 

X 

its knowl ed ge of the access patterns to d irect the oper
ating system's page a l location policy to m a ke each 
processor's data contiguous in  the physical  address 
space. The operating system uses these h ints to deter
mine the virtua l - to-p hysical p:�ge m:�pping at p:�gc 
al location time . 

Experimental Results 

vVe conducted a series of performance eval uations to 
demonstrate the impact of· S U I �'s ana lyses and opti
m izations. We obtained measu reme nts on a D igita l  
AlphaServer 8400 with eight 2 1 1 64 processors, each 
with two levels of on-chip cache and a 4 - Mbyte exter
nal cache .  B ecause speed ups are harder to obtain on 
machi nes with fJst processors, our usc of a state-of
the-:lrt machine makes the resu lts more meani ngfu l 
and ap pl icable to fi.1ture systems. 

\Ve used two complete standard bench mark suites 
to evaluate our compiler. W<:. present resu l ts for the 10 

y 

X 

y 

X 

PERMUTATION 

Figure 2 
Data transformations cJn make the dar,1 accessed by each processor contiguous i n  the shared address space. I n  the two 
examples above, the original arrays arc two-dimensional ;  the axes are identified to show that elements along the ti rst nis 
arc contiguous. F irst the aHine partitioning analysis determines which data elements arc accessed by the same processor 
(the shaded ele ments are accessed by the first processor. ) Second, data strip-mining turns the 20 Jrray i nto a 3D array, 
with the s haded elements i n  the same plane. Fina l ly, applying data permutation rotates the array, mJking data accessed 
by each processor contiguous .  
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programs in the SPECtp95 benchmark suite, which is  
commonly used for benchmarking uniprocessors. We 
also used the eight official benchmark programs from 
the NAS paral lel-system benchmark suite, except for 
embar; here we used a slightly modified version from 
Applied Para l le l  Research. 

Figure 3 shows the SPECtp95 and NAS speedups, 
measured on up to eight processors on a 300-MHz 
AJphaServer. We calculated the speedups over the best 
sequential execution time from either officially reported 
resul ts or our own measurements. Note that mgrid and 
applu appear in both benchmark suites (the program 
sou rce and data set sizes differ slightly). 

To measure the effects of the different compiler 
techniq ues, we broke down the performance obtained 
on eight processors into three components. In Figure 
4,  baseline shows the speedu p  obtained with paral
lelization using only intraprocedural data dependence 
analysis, scalar privatization, and scalar reduction 
transtormations. Coarse grain includes the baseline 
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techniq ues as well as techniq ues for locating coarse
grain parallel loops-for example, array privatization 
and reduction transformations, and ful l  interproce
dural analysis of both scalar and array variables. 
Memory includes the coarse-grain techniq u es as wel l  
as the m u ltiprocessor memory optimizations we 
described earlier. 

Figure 3 shows tl1at of tl1e 1 8  programs, 1 3  show good 
parallel speedup and can tlms take advantage of adclitionaJ 
processors. SUIF's coarse-grain techniques and memory 
optimizations significantly affect tl1e performance of half 
the programs. The swim and tomcat\' programs show 
superlinear speedups because the compiler eliminates 
almost al l cache misses and their 14 Mbyte working sets 
fit into the multiprocessor's aggregate cache. 

For most of the programs that did not speed up, the 
compiler found much of their computation to be par
al lelizable, but tl1e granularity is too fi ne to yield good 
multiprocessor performance on machines with fast 
processors. Only two applications, tpppp and buk, have 
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( b )  NAS Parallel Benchmarks 
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SUIF compi ler speedups over the best sequential  time achieved on the ( a )  SPECfp95 and ( b )  NAS parallel benchmarks. 
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Figu re 4 
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The speedup achieved on eight processors is broken down into three components to show how SUIF's memory opt.imization 
and discovery of coarse-grain parallel ism affected perform:mce . 

no statically analyzable loop-level parallelism, so they 
are not amenable to our techniques. 

Table 1 shows the times and SPEC ratios obtained 
on an eight-processor, 440-MHz Digital AlphaServer 
8400, testifYing to our compiler's h igh absolute per
formance. The SPEC ratios compare machine perfor
mance with that of a reference machine .  (These are 
not official SPEC ratings, which among other things 

Table 1 

require that the software be general ly available .  The 
ratios we obtained are nevertheless valid in assessing 
our compiler's performance . )  The geometric mean of 
the SPEC ratios improves over the u niprocessor execu
tion by a factor of 3 with four processors and by a fac
tor of 4 . 3  with eight processors. Our eight-processor 
ratio of 63 .9 represents a 50 percent improvement 
over the highest number reported to date . ' 2  

Abso l ute Performance for t h e  SPECfp95 Benchmarks Measured o n  a 440-MHz D ig ita l  AlphaServer Us ing One 
Processor, Four Processors, and Eight Processors 

Benchmark 1 P  

tomcatv 2 1 9. 1  

swim 297.9 

su2cor 1 55 .0 

hyd ro2d 249 .4 

mgr id 1 85 .3  

app lu  296 . 1  

turb3d 267.7 

a psi 1 37 . 5  

fpppp 33 1 .6 

waveS 1 5 1 .8 

Geometric Mean 

Digital Technical J ournal 

Execution Time (sees) 

4P 

30.3 

33.5 

44.9 

6 1 . 1  

42 .0  

85 .5  

73 .6 

1 4 1 .2 

3 3 1 .6  

1 4 1 .9 
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8P 

1 8.5  

1 7.2 

3 1 .0 

40.7 

27.0 

39.5 

43.5 

1 43.2 

3 3 1 . 6  

1 47 .4 

SPEC Ratio 

1 P  4P 8P 

1 6.9  1 22 . 1  200.0 

28.9 256 .7 500.0 

9.0 3 1 .2 45 .2  

9 .6  39 .3  59.0 

1 3. 5  59 .5  92.6 

7.4 25.7 55 .7  

1 5.3  55 .7 94.3 

1 5. 3  1 4.9  1 4.7 

29.0 29.0 29.0 

1 9.8 2 1 . 1  20.4 

1 5 .0 44.4 63.9 
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Editors ' Note.· With the following section, the authors 
provide an update on the status of the SU!F compiler 
since the publication of their paper in Computer in 
December 1996. 

Addendum: The Status and Future of SUIF 

Public Availability of SUIF-parallelized Benchmarks 

The SUIF-parallelized versions of the SPECfp95 
benchmarks used for the experiments described in this 
paper have been released to the SPEC committee and 
are avail able to any license holders of SPEC ( see 
http:/ jwww.specbench.org/osg/cpu95/par-research) .  
This benchmark distribution contains the SUIF out
put (C and FORTRAI'\1 code) ,  along with the source 
code for the accompanying run-time l ibraries. We expect 
these benchmarks wil l  be usefu l  for two purposes: 
( l )  for technology transfer, providjng insight i nto how 
the compiler transforms the applications to yield the 
reported results; and ( 2) for further experimentation , 
such as in architecture-simulation studies. 

The SUIF compiler system i tself is available from the 
SUIF web site at http :/ /www-su ifstanford .edu. This 
system includes only the standard parallelization analy
ses that were used to obtain our basel ine  results. 

New Parallelization Analyses in SUIF 

Overall, the results of automatic paraUelization reported 
in this paper are impressive; however, a few applica
tions either do not speed up at all or achieve l imited 
speedup at best. The question arises as to whether 
SUIF is exploiting al l the avai lable parallel ism in these 
applications. Recently, an experiment to answer this 
question was performed in  which loops left unparal
lelized by SUIF were instrumented witl1 run-time tests 
to determine whether opportunities for increasing the 
effectiveness of automatic parallelization remained in 
these programs . '  Run- time testing determined that 
eight of the programs from the NAS and SPEC95fp 
benchmarks had additional paral le l  loops, for a total of 
69 additional parallel izable loops, which is less than 5% 
of the total number of loops in these programs. Of 
these 69 loops, the remaining parallelism had a signifi
cant effect on coverage ( the percentage of the pro
gram that is paral le lizable) or granularity ( the size of 
the parallel regions) in only four of the programs: a psi, 
su2cor, waveS ,  and fftpde. 

We found that almost al l  the significant loops in 
these four programs could potentially be paral lelized 
using a new approach that associates predicates with 
array data-flow values.2 Instead of producing conserv-
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ative results that hold tor all control-How paths and all  
possi b le program i nputs, predicated array data-flow 
analysis can derive optimistic results guarded by predi
cates . Pred icated array data - flow analysis can lead to 
more dkctive automatic para l le l ization in  three ways: 
( l )  It i mproves compile-time ana.Jysis by ru l ing out 
infeasible control -flow paths. ( 2 )  It  provides a frame
work for the compi ler to introduce pred icates that, i f  
proven true, wou ld  guar:mtee safety tor desirable data
flow vaJ ues. ( 3) I t  enJbles the compiler to derive low-cost 
run-time para l le l ization tests based on the predicates 
associated with desirJble data-flow values. 

SUIF and Compaq's GEM Compiler 

The GEM compiler system is the technology Compaq 
has been using to bui ld compiler products for a variety 
of languages and hardware/software platforms . ·1 
With i n  Compaq ,  work bas been done to connect S U I F  

with the G EM compi ler. SU IF's i n termediate repre
sentation was converted into GEM's i ntermediate rep 
resen tation , s o  that SUIF  code can b e  passed directly 
to GEM 's optimizing back end . This e l im i nates the 
Joss of i nformation suftCred when SUIF code is trans
l ated to C/FORTRAN source bdore i t  is passed to 
GEM. It  also enables us to generate more efficient 
code for Alpha-microprocessor systems . 

SUIF and the National Compiler Infrastructure 

The SUIF compiler system was recently chosen to be 
part of the National Compiler I n frastrucnrre ( NCI) 
project funded by the Defense Advanced Research 
Projects Agency ( DARPA) and the National  Science 
Foundation ( NSF) .  The goal of the project is to 
develop a com mon compi le r p latform for researchers 
and to faci l i tate technology transfer to industry. The 

FRONT 
ENDS 

INTERPROCEDURAL ANALYSIS 
PARALLELIZATION 

LOCALITY OPTIM IZATIONS 
OBJECT-OR I E NTED OPTIM IZATIONS 

SCALAR OPTIMIZATIONS 

SUlF component of the NCI project is the resu lt of tl1e 
col laboration among researchers in five universities 
( Harvard University, Massachusetts I nstitute of 
Technology, Rice U niversity, Stanford Un iversity, 
University of Cal i forn ia at Santa Barbara) and one 
industrial partner, Portland Group I nc .  Compaq is a 
corporate sponsor of the p roject and is provid ing the 
FORTRAN fron t end . 

A revised version of the SUIF  i n frastructure (SUIF 
2 .0 )  is being released a s  part o f  the S U I  r: N C I  project 
(a  prel iminary version of s u r r:  2 .0 is  ava i lable at the 
S UIF web site ) .  The completed system wi l l  be 
enhanced to support para l lel iz::�tion , in tcrprocedu ra l 
analysis, memory hierarchy optimizations , objected
oriented programming, sca lar optimizations, and 
machine-dependent opti mi z:nions.  An overview of 
the SUIF NCI system is shown in  Figure Al . Sec 
vvww-suif.stanford .cd u/suif/NCI/su i f.html  for more 
i n formation about S U I F  and the NCI project, inc lud
ing a complete list of optim izations ;md a schedu le .  
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Debugging Optimized 
Code: Concepts and 
Implementation on 
DIGITAL Alpha Systems 

Effective user debugging of optimized code has 

been a topic of theoretical and practical interest 

in the software development community for 

almost two decades, yet today the state of the 

a rt is sti l l  highly uneven. We present a brief sur

vey of the l iterature and current practice that 

leads to the identification of three aspects of 

debugging optimized code that seem to be 

critical as well as tractable without extraordi

nary efforts. These aspects are (1)  spl it l ifetime 

support for variables whose al location varies 

within a program combined with defin ition 

point reporting for currency determination, 

(2) stepping and setting breakpoints based on 

a semantic event characterization of program 

behavior, and (3) treatment of in l ined routine 

calls in a manner that makes in l in ing largely 

transparent. We describe the real ization of 

these capabi l ities as part of Compaq's GEM 

back-end compiler technology and the debug

g ing component of the Open VMS Alpha oper

ating system. 

I 
Ronald F. Brender 
Jeffrey E. Nelson 
Mark E. Arsenault 

Introduction 

In software development, it is common practice to 
debug a program that has been compi l ed with little or 
no optimization applied.  The generated code closely 
corresponds to the source and is readily described by a 
simple and straightforward debugging symbol table . A 
debugger can interpret and control execution of the 
code in a fashion close to the user's source-level view 
of the program. 

Sometimes, however, developers find it necessary or 
desirable to debug an optimized version of the pro
gram . For instance, a bug-whether a compiler bug or 
incorrect source code-may only reveaJ itself when 
optimization is appLied .  In other cases, the resource 
constraints may not aLlow the unoptimized form to be 
used because the code is too big and/or too slow. Or, 
the deve loper may need to start anaJysis using the 
remains, such as a core file, of the failed program, 
whether or not this code has been optimized . Whatever 
the reason , debugging optimized code is harder than 
debugging unoptimized code-much harder-because 
opti mization can greatly compLicate the relationship 
between the source program and the generated code. 

Zellweger1 introduced the terms expected behavior 

and truthful behavior when referring to debu gging 
optimized code.  A debugger provides e xpected behav
ior if it provides the behavior a user would experience 
when debugging an u noptimized version of a pro
gra m .  Since achieving that behavior is often not possi
ble, a secondary goal is to provide at least truthful 
behavior, that is, to never lie to or mislead a user. In 
our experience, even truthfuL behavior can be chal
lenging to achieve, but it  can be closely approached . 

This paper describes three i mprovements made to 
Compaq 's GEM back-end compiler system and to 
Open VMS DEBUG, the debugging component of the 
OpenVMS Alpha operating system .  These improve
ments address 

1 .  Split lifetime variables and cu rrency determination 

2. Semantic events 

3. Inlining 
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Before presenting the details of this work, we dis
cuss the alternative approaches to debugging optimized 
code that we considered, the state of the art, and the 
operating strategies we adopted. 

Alternative Approaches 

Various approaches have been expl ored to i m p rove 
the abil ity to debug optimized code .  They incl ude 
the following: 

• Enhance debugger analysis 

• Li mit optimization 

• Limit debugging to preplan ned locations 

• Dynamically deoptimize as needed 

• Exploit an associated program database 

We touch on these approaches in  turn. 
In probably the oldest theoretical analysis that 

supports debugging optimized code, H ennessyl stud
ies  whether the value displayed for a variable is current, 
that is, the expected value for that variable at a given 
point in the program. The value displayed might not 
be current because, for example, assignment of a later 
value has been moved forward or the relevant assign
ment has been delayed or omitted .  Hennessy postu
lates that a flow graph description of a program is 
comm unicated to the debugger, which then solves 
certain flow analysis equations in response to debug 
comm ands to determine currency as needed . 
Copperman' takes a similar though m uch more gen 
eral approach . Conversely, commercial implementa
tions have favored more complete preprocessing of 
information in the compiler to enable simpler debug
ger mechanisms.H 

If optimization is the "problem," then one approach 
to solving the problem is to l imit optimization to only 
those kinds that are actually supported in an available 
debugger. Zurawski7 develops the notion of a recovery 
function that matches each kind of optimization . As an 
optimization is applied during compilation, the com
pensating recovery function is also created and made 
avai lable for later use by a debugger. I f  such a recovery 
function cannot be created, then the optimization is 
omitted. Unfortunately, code-motion-related opti mi
zations generally lack recovery functions and so must 
be foregone . Taking this approach to the extrem e  
converges with traditional practice, which i s  simply to 
disable all optimization and debug a completely unop
timized program .  

l f ful l  debugger functionality need only b e  provided 
at some locations, then some debugger capabil ities can 
be provided more easily. Zurawski7 also employed this 
idea to make it  easier to construct appropriate recov
ery fu nctions. This approach builds on a language
dependent concept of inspection points, which 
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general ly must include all call s ites and may corre
spond to most statement boundaries. His experience 
suggests, however, that even l imiting inspection points 
to statement boundaries severely l imits almost all kinds 
of optimization . 

Holzle et al . 8  describe techniq ues to dynamically 
deoptimize part of a program ( replace optimized code 
with i ts unoptimized equivalent) during debugging to 
enable a debugger to perform requested actions. They 
make the techniq ue more tractable, in part by delaying 
asynchronous events to well-defined interruption 
points, generally backward branches and cal ls .  Opti
mization between interruption points is unrestricted . 
However, even this choice of interruption points 
severely l i mits most code motion and many other 
global optimizations. 

Pollock and others9 10 use a different kind of deopti
mization , which might be called preplanned, incre
mental deoptimization . D uring a de bugging session, 
any debugging requests that cannot be honored 
because of optimization effects are remem bered so 
that a subsequent compilation can create an exe
cuta ble that can honor these requests . This scheme is 
supported by an incremental opti mizer that uses a pro
gram database to provide rapid and smooth forward 
i nformation flmv to subseq uent debugging sessions. 

Feiler' ' uses a program database to achieve the bene
fits of interactive debugging while applying as m uch 
static compilation technology as possible. He describes 
techniques for m aintaining consistency between the 
primary tree-based representation and a derivative 
compiled form of the program in the face of both 
debugging actions and program modifications on-the
fly. While he appears to demonstrate that more is possi
ble than might be expected, su bstantial l imitations still 
exist on debugging capability, optimization, or both. 

A comprehensive introduction and overview to these 
and other approaches can be found in Copperman3 and 
Adl-Tabatabi . "  In addition, "An Annotated B iblio
graphy on Debugging Optimized Code" is available 
separately on the Dl:(!,ital Tecl:mical.fourna! web site at 
http:/ /wvvw.digital.com/info/DTJ. This bibliography 
cites and summarizes tbe entire literature on debugging 
optimized code as best we know it. 

State of the Art 

When we began our work in early 1 994, we assessed 
the level of support for debugging optimized code 
that was available with competitive compilers. Because 
we have not updated this assessment, it is not appro
priate for us to report the results here in  detail . We do 
however summarize the methodology used and the 
mai n results, which we believe remain generally valid . 

VIe created a series of example programs that pro
vide opportunities for optimization of a particular kind 



or of related kinds, and which could lead a traditional 
debugger to deviate from expected behavior. We com
p i led and executed these programs under the control 
of each system's debugger and recorded how the sys
tem hand led the various kinds of optimization.  The 
range of observed behaviors was diverse . 

At one extreme were compi lers that automati cal ly 
disable al l  optimization i f  a debugging symbol table is 
requested (or, equivalently for our purposes, give an 
error i f  both optimization and a debugging symbol 
table are requested) .  For these compilers, the whole 
exercise becomes moot; that is, attempting to debug 
optimized code i s  not al lowed . 

Some compiler/ debugger combinations appeared 
to usefully support some of our test cases, although 
none handled all of them correctly. In particular, none 
seemed able to show a traceback of subrouti ne cal ls 
that compensated for in l in ing of routine calls and all 
seemed to produce a Jot of j i tter when stepping by l ine 
on systems where code is highly scheduled . 

The worst example that we found al lowed comp i la
tion using optimization but produced a debugging 
symbol table that did not reflect the results of that opti
mization . For example, local variables were described 
as allocated on the stack even though the generated 
code clearly used registers for these variables and never 
accessed any stack locations. At debug time, a request 
to exami ne such a variable resulted in the ctisplay of the 
irrelevant and never-accessed stack locations. 

The bottom l ine fi·om this analysis was very clear: 
the state of the art for support of debugging opti 
mized code was general ly q uite poor. D IGITAL's 
debuggers, inc luding OpenVMS DEBUG, were not 
unusual in this regard . The analysis d id indicate some 
good examples, though. Both the CONVEX CXdb4·" 
and the HP 9000 DOC6 systems provide many valu
able capabi l ities. 

Biases and Goals 

Early i n  our work, we adopted the fol lowing strategies: 

• Do not l imit or compromise optimization in any way. 

• Stay within the t!·amework of the traditional edit
compile- l ink-debug cycle . 

• Keep the burden of analysis within the compiler. 

The prime directive for Compaq 's GEM-based 
compilers is to achieve the h ighest possible perfor
mance from the Alpha architecture and chip technol
ogy. Any improvements i n  debugging such optimized 
code shou ld be usefu l  in the £1ce of the best that a 
compiler has to offer. Conversely, i f  a programmer has 
the luxury of preparing a less optimi zed version for 
debugging purposes, there is l ittle or no reason for 
that version to be anything other than completely 

unop timized. There seems to be no particular benefit 
to creating a special i ntermediate level of combined 
debugger/optimization support. 

Pragmatical ly, we did not have the time or staffi ng 
to develop a new optimization framework, for exam
ple, based on some kind of program database. Nor 
were we interested i n  i ntruding into those parts of the 
GEM compiler that performed optimization to create 
more complicated options and variations, which might 
be needed for dynamic deoptimization or recovery 
function creation . 

Finally, i t  seemed sensible to perform most analysis 
activities within the compiler, where the most complete 
information about the program is already available. It  i s  
conceivable that passing additional information from 
tl1e compiler to the debugger using the object file 
debugging symbol table might eventually tip the bal
ance toward performing more analysis in the debugger 
proper. The avai lable size data (presented later in this 
paper in Table 3) do not incticate thi s .  

We identified three areas i n  which we fe lt enhanced 
capabi l i ties would significantly improve support for 
debugging optimized code .  These areas are 

l .  The handling of split l ifetime variables and currency 
determination 

2. The process of stepping though the program 

3 .  The handl ing of procedure inlining 

In  the fol lowing sections we present the capabil ities we 
developed in  each of these areas together with i nsight 
i nto the implementation techniques employed. 

F irst, we review the GEM and OpenVMS DEBUG 
framework in  which we worked. The next three sec
tions address the new capabi l i ties in turn. The last 
major section explores the resource costs (compile
time size and performance, and object and image 
sizes) needed to real ize these capabil i ties. 

Starting Framework 

Compaq's GEM compi ler  system and the OpenVMS 
DEBUG component of the OpenVMS operating 
system provide the framework for our work. A brief 
description of each follows. 

GEM 

The GEM compiler system 1 3  is  tl1e technology 
Compaq is using to bui ld state-of- the-art compiler 
products for a variety of languages and hardware and 
software platforms. The GEM system supports a range 
of languages (C, C++, FORTRAN including HPF, 
Pascal, Ada, COBOL, B LISS, and others) and has been 
successfu l ly retargeted and rehosted for the Alpha, 
MIPS, and Intel IA- 32 architectures and tor the 
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OpenVJV!S, DI GITAL U N I X ,  Win dows NT, and 
Windows 9 5  operati ng systems. 

The major components of a GEM compi ler are the 
fron t  end, the optimizer, the code ge nerator, the fi nal 
code stream optimizer, and the compi ler she l l .  

• The front end performs lexical ana lysis a n d  pars ing 
of the sou rce program . The prim ary outputs are 
i n termedi ate language ( I L )  graphs and sym bol 
tables. Front ends for all source languages translate 
to the same common representation .  

• The opti mizer transforms the I L  generated by the 
front end i nto a semantically eq uival ent form that 
wi l l  execute faster on the target machine.  A sign i fi 
cant technical  achievement i s  that a si ngle optimi zer 
is used ror al l  la nguages and target pl atforms. 

• The code generator translates the IL i n to a l ist of 
code cel l s ,  each of which represents one machin e  
in struction for the target h ardware . Virtual l y  al l the 
target m achine instruction-specific code is e ncapsu
l ated i n  the code ge nerator. 

• The final  phase pertorms patte rn- based peephole 
optimi zations fol lowed by i nstru ction sc hedu l ing.  

• The shel l i s  a portable i n terface to the external envi
ron ment in which the compi ler  is  used. It provides 
common compiler fu nctions such as l isti ng genera
tors, object fi l e  emitters, and command line proces
sors in a form that  a l lows the other components to 
remain independent of the operating syste m .  

The bu lk  of the GEM impleme ntation work described 
i n  this paper occurs at the boundary between the final  
phase and the object fi l e  output portion of the shel l .  A 
new debugging optimized code analysis phase exam
ines the generated code stream representation of the 
program, together with the com piler symbol table, to 
extract the information necessary to pass on to a 
debugger through the de b uggi ng symbol table .  Most 
of the i mplementation is readily adapted to different 
target a rchitectures by means of the same instruction 
property tables that arc used i n  the code generator and 
final optimizer. 

Open VMS DEBUG 

The OpenVMS Alpha debugger, original ly d eveloped 
for the OpenVMS VAX system, 1 '' is  a fu l l -fu nction , 
source- leve l ,  symbol ic debugger. I t  supports sym bolic 
debugging of programs written i n  BLISS , MACR0-32, 
MACR0-64, FORTRAN, Ada, C,  C++, Pascal , P L/ 1 ,  
BASIC, and COBOL. The debugger al lows the user to 
control the execution and to exa m i n e  the state o f  a 
program. Users can 

• Set breakpoints to stop at certain points i n  the program 

• Step through the ex ecution of the program a l i ne at 
a time 
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• D isplay the source-level view of the program's exe
cuti o n  usi ng either a graphical user i nte rface or a 
character- based user in te rrace 

• Examine user variables and hardware recristers 0 

• Display a stack traceback showi ng the cu rrent cal l 
stack 

• Set watch points 

• Perform many other fu nctions1' 

Split Lifetime Variables and Currency 
Determination 

Displayi ng (printing) the va lue  of a program vatiable is 
one of th e most basic services that a debugger can pro
vide.  For unopti m i zed code and traditional debug
gers, the mechan isms for doing this are general ly 
based on several assumptions. 

l .  A variable has a single al location that remains f-i xed 
throughout its lifetime. For a local or a stack-allocated 
variable that means throu ghout the l i fetime of the 
scope in which the variable  is  declared . 

2. Definitions and uses of the va l u es of user variables 
occur in the same order in the ge nerated cod e as 
they do i n  the original  program source.  

3 .  The set of instructions that belong to a given scope 
(which may be a routine body) can be described by 
a single contiguous range of addresses. 

The first and second assumptions arc of interest in this 
discussion because many GFM optim izations mal(e 
them inappropriate. Split lifeti me optimization (d is
cussed later in this section ) leads to violation of the fi rst 
assumption. Code motion optimization leads to viol a
tion of the second assumption and thereby creates rl1e 
so-called currency problem. 'I'Ve treat both �frl1ese prob
lems together, and we refer to them collectively as .>plit 
lifetime suppo11. Statement and in struction schedul ing 
optimization leads to violation of the rl1ird assumption. 
This topic is addressed l ater, in the section I n li ning. 

Split Lifetime Variable Definition 

A variable is said to have spl it l i fetimes i f  the set of 
fetches and stores of the variable can be partitioned 
such that none of the values stored in one su bset are 
ever fetched in another subset. When such a partition 
exists, the vari able can be "split" i n to several indepen
dent "chi ld" variabl es, each corresponding to a parti 
tion . As independent variables, the chi ld variables can 
be a l located i ndepe ndent!}'· The eftect is that the 
original variable can be thought to reside in diftcrent 
locations at d ifferent poi nts in ti me-so metim es in a 
register, sometimes in memory, and someti mes 
nowhere at a l l .  I ndeed , it is even possible ror the dirfer
ent child variables to be active s imultaneously. 



Split Lifetime Example A simple e xample of a split 
l i tctime variable can be seen in  the fo ll owing straight
line code fragment: 

A = 

B = 

A = 

c = 

; 

A .  
; 

A 

; 

! Define ( as s i g n  va lue t o )  A 

! Use def i i t ion ( v  lue o f )  A 
1 De ine A agai n  

1 Use lat er e f i n i  i on A 

I n  this example, the first value assigned to variable A is 
used later i n  the assignment to variable B and then 
never used agai n .  A new value is assigned to A and 
used in the assi gnment to vari able C. 

Without changing the meaning of this fragment, we 
can rewrite the code as 

Al - . . .  , ! D e f ine Al 

B = . . . .'1.1 .  . .  , I Use .:0.1 
2 - . . . , De f i ne . ·. 2 

c = . . . . �� . . .  ' Use A2 

where variables A l and A2 are split child variables of A. 
Because A l  and A2 are independent, the fol lowing 

is also an equ ivalent fragment: 

Al . ,  ! De f ine Al 

A 2 • •  • I  ! De E i  ne l\?. 

B Jl ! Us e .'U 

c . .  A2 . ' I Use A2 

Here, we see that the value of A2 is assigned whi l e  the 
val ue of Al is sti l l  al ive . That is, the spl it chiJdren of a 
single variable have overlapping l ifetimes. 

This example i l lustrates that spl it  l ifetime opti m i 
zation i s  possible even in s i m p l e  straight-l ine code. 
Moreover, other optim izations can create opportu n i 
ties for s p l i t  l ifetime opti mization t h a t  may n o t  b e  
apparent from casu a l  examination o f  the original 
source. In particular, loop un rol l ing ( i n  which the 
body of a loop is replicated several ti mes in  a row ) 
can create loop bod ies for which spl it  l i fetime opti
mization is fe:�si b le and desirable . 

Variables of Interest Our implementation deals only 
with scalar variables and parameters. This i ncludes 
Al pha's extended precision tloati ng-point ( 1 28 - bit  

Line 
1 
2 

U noptimized 
A 

. . .  A . . .  ' 
! De E i  e A 

Use 7'. 

X_Fioating)  variables as we l l  as variables of any of the 
complex types ( see Sites '6) .  These latter variables are 
referred to as two-part variables because each requ ires 
two registers to hold i ts val ue.  

Currency Definition 

The value of a variable in  an opti mized program is cur
rent with respect to a given position i n  the source pro
gram if the variable h olds the value that wou ld be 
expected in an u noptimi zed version of the progra m .  
Several kinds of optimization c a n  lead t o  noncu rrent 
variables. Consider the cur rency example in Figu re l .  

As shown i n  Figure l ,  the opti m izing compiler has 
ch osen to change the order of operations so that l ine 4 
is executed prior to l i ne 3 .  Now su ppose that execu
tion has stopped at the instruction in l ine 3 of the 
unoptimized code, the l ine that assigns a value to vari
able C. 

G iven a req uest to display ( p ri n t )  the value of A, 

a tradi tional debugger wi l l  d isplay whatever value 
happens to be contained i n  the location of A, which 
he re , i n  the opti m i zed cod e ,  happens to be the res u l t  
of t h e  second assignment t o  A .  This d isplayed value 
of A is  a correct va lue,  but i t  is not the expected 
value that should be displayed at l ine 3 .  This scenario 
might easi ly m islead a user into a fr ustrati n g  and 
fru it less attempt to determine how the assignment  
in l ine l is comput ing and assigning the wro ng 
value.  The problem occurs because the compi ler  has 
moved the second assi gnment so that i t  is early rel a 
tive t o  l i n e  3 .  

Another cu rrency example can be seen in  the frag
ment ( taken from Copperman·') that appears in Figure 
2. In  this case, the optimizing com pi ler has chosen to 
omit the second assignment to variable A and to assign 
that val u e  directly i n to the actual parameter location 
used for the call of routine FOO. Suppose that the 
debugger is stopped at the call of routine FOO. Given 
a request to d isplay A, a traditional debugger is l ikely 
to display the resu lt of the first assignment to A.  Again ,  
this val u e  i s  an actual value o f  A,  b u t  i t  i s  not the 
expected value . 

Alte rnatively, it is possi ble that prior to reac hing the 
cal l ,  the optimizing compi ler has decided to reuse the 

Optimized 
A . . .  ' 
B = . . .  A . . .  ; 

3 
4 

B 
c 
A 

c es no depend on A 
De f i ne 7'. 

A 
c 

5 D . . .  A . . .  ; 

Figure 1 
Currency Example 1 

! U e s econa ae f i n i t io o[ A D = . . .  A . . .  ; 
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Line Unoptimized 
l A express i o nl ; 
2 B = . . .  A . . .  ; I Use 
3 A = e xp ression . ; 
4 FOO ( ) ; I Use 

Figure 2 
Cu rrency Example 2 

location that originally held the first value of A for 
another p u rpose. I n  this case, no val ue of A is avai la ble 
to display at the call of rou tine FOO.  

Final ly, consider the  example shown i n  Figure 3 ,  
which i l lustrates that t h e  currency o f  a vari able i s  not a 
property that is invariant over ti me.  Suppose that exe
cuti on is stopped at line 5, i nside the Joop. In  this case, 
A is not current d uring the first time through the loop 
body because the actual value comes from l ine 3 
( m oved from inside the loop ); i t  shou l d  come ti·om 
l i ne 1 .  On subseq uent t imes through the loop, the 
value from l ine 3 is the expected value, and the val ue of 
A is cu rrent. 

As d iscussed earlier, most approaches to cu rrency 
determi nation involve making certain ki nds of A ow 
graph and compiler opti m i zation i n forma tion avai l 
ab le  to the debugger so that it can report when a d is
p layed va l u e  is not curre n t .  However, we wan ted to 
avoid adding major new kinds of analysis capabi l ity to 
DIGITAL's debuggers. 

More fundamentally, as the degree of opti mization 
i ncreases, the notion of currentposition i n  the program 
itself becomes increasingJy ambiguous. Even when the 
partic u lar instruction at which execution is pending can 
be clearly and unequivocally related to a particu lar source 
location, this location is not automatically the best one to 
use tor currency determination. Nevertheless, the source 
location (or set of locations) where a displayed value was 
assigned can be reliably reported without needing to 
establish the current position . 

Accordi ngly, we use an approach d i fferen t  than 
those considered in the l iterature. We use a straight
forward flow analysis form ulation to determine what 

Line 
l 
2 
3 
4 
5 

On optimized 
A = . . .  ; 
. . .  A . . .  ; 

�;hil e ( . . . ) 

1 s t  

2 nd 

Optimized 
A ex re s ionl ; 

def . of A B = . . .  A . . .  ; 

deE . 0 A FOO ( e xpress i on . ) ; 

locations hold val ues of user variables at any given 
poin t  i n  the program and combine this with the set of 
definition locations that provide those values. Because 
there may be more than one source location,  the user 
is given the basic information to determine where i n  
the source t h e  value of a variable may have originated . 
Consequen tly, the user can determine whether the 
val ue d isplayed is appropriate for his or her p urpose . 

Compiler Processing 

A compiler performs most spl i t  l i fetime analysis on a 
routine-by-routine basis. A pre l i minary walk over the 
entire symbol table identifies the variable sym bols that 
are of i nterest fo r further analysis .  Then , for each rou 
tine, t h e  compiler performs t h e  fol lowing steps: 

• Code cell prepass 

• Flow gra ph construction 

• Basic block processing 

• Parameter processi ng 

• Backward propagation 

• Forward propagation 

• Information promotion and cleanup 

After the compiler comp letes this processing fo r 
all ro u tines, a symbol table posrwal k performs fina l  
clean u p  tasks . The fol lowi ng contains a brief d iscus
sion of these steps. 

In this summary, we highlight only the main charac
tetistics of general interest. In particular, we assume that 
each location, such as a register, is independent of all 
other locati ons. This assumption is not appropriate to 
locations on the stack because variables of different sizes 

Optimized 
A = . . .  ; 
. . .  A . . .  ; 

A - . . . ; 
wh i l e  ( . . .  ) 

6 A - . . . , I I  A is 1 op in va rian t 

Figure 3 
Currency Example 3 
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may overlay each other. The complexity of dealing with 
overlapping allocations is beyond the scope of this paper. 

Of special importance in this processing is the fact 
that each operand of every instruction includes a base 
symbol field that refers to the compi ler's symbol table 
entry for the entity that is involved. 

Symbol Table Prewal k  The symbol table prewalk 
identifies the variables of interest for analysis. As dis
cussed, we are interested i n  scalars corresponding to 
user variables ( not compiler-created temporaries) ,  
including Alpha's extended precision floating-point 
( 1 28-bit  X_Fioating) and complex values. 

DIGITAL's FORTRAN implementations pass para
meters using a by-reterence mechanism with bind 
(rather than copy-in/copy-out) semantics. GEM treats 
the hidden reference value as a variable that is su bject 
to split lifetime optimization. Since the reference vari
able must be avai lable to effect operations on the logi
cal parameter variable, it fol lows that both the abstract 
parameter and its reference value must be treated as 
interesting variables. 

Code Cel l  Prepass The code cel l prepass performs a 
single walk over al l  code cells to determine 

• The maximum and minimum offsets in  the stack 
frame that hold any interesting variables 

• The highest numbered register that is actually refer
enced by the code 

• Whether the stack frame uses a frame pointer that is 
separate from the stack pointer 

The compiler uses these characteristics to preal locate 
various working storage areas. 

Flow Graph Construction A flow graph is built, i n  
which each basic block i s  a node o f  the graph.  

Basic Block Processing Basic block processing per
forms a kind of symbolic execution of the instructions 
of each block, keeping track of the effect on machine 
state as execution progresses. 

When an instruction operand writes to a location 
with a base symbol that i ndicates an interesting vari
able, the compiler updates the location description to 
i ndicate tbat the variable is  now known to reside in 
that location-this begins a l i fetime segment. The 
instruction that assigned the value is also recorded 
with the l ifetime segment.  

If there was previously a known variable in that loca
tion, that l ifeti me segment is ended (even if it was for 
the same variable ) .  The beginning and ending i nstruc
tions for that segment are then recorded with the vari
able in the symbol table .  

When an instruction reads an operand with a base 
symbol that indicates an interesting variable, some 
more unusual processing applies. 

If the variable being read is already known to 
occupy that location, then no further processing is 
required. This is the most common case . 

I f  the location already contains some other known 
variable, then the variable being read is added to the 
set of variables for that location. This situation can 
arise when there is an assignment of one variable to 
another and the register al locator arranges to a llocate 
them both to the same location. As a result, the assign
ment happens impl icitly. 

If the location does not contain a known variable 
but there is a write operation to that location earlier in 
the same block (a fact that is available from the loca
tion description) ,  the prior write is retroactively 
u·eated as though it  did write that variable at the earlier 
instruction.  This situation can atise when the resu lt of 
a function cal l is assigned to a variable and the register 
al locator arranges to al locate that variable in tl1e regis
ter where the call returns its value. The code cell repre
sentation for the ca l l  contains nothing that indicates a 
write to the variable; all that is known is that me return 
value location is written as a resu lt of the cal l .  Only 
when a later code cell i ndicates that i t  i s  using the val ue 
of a known variable from that location can we infer 
more of what actually happened. 

If  the location does not contain a known variable and 
there is no write to that same location earlier in this 
same basic block, then the defining instruction cannot 
be immediately determined. A location description is 
created for the beginning of tl1e basic block indicating 
that the given variable or set of variables must have 
been defined in some predecessor block. Of course, the 
contents known as a result of the read operation can 
also propagate forward toward the end of the block, 
just as for any other read or write operation. 

Special care is needed to deal ��th a two-part variable . 
Such a variable does not become defined until both 
instructions that assign tl1e value have been encoun
tered. S imi larly, any reuse of eitl1er of the two locations 
ends tl1e ufetime segment of me variable as a whole. 

At the end of basic block processing, location 
descriptions specif)' what is known about the contents 
of each location as a resul t  of read and write operations 
that occurred in the block. This description indicates 
the set of variables that occupy the location, or that the 
location was last written by some value that is not the 
value of a user variable, or that the location does not 
change during execution of the block. 

Parameter Processing The compiler models parame
ters as locations that are defined with the contents of a 
known variable at the entry point of a routine .  
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Backward Propagation Backward propagation i ter
ates over the flow graph and uses the locations with 
known contents at the beginning of a block to work 
backward to predecessor blocks looking tor instruc
tions that write to that location . For each variable in 
each input location, any such prior write i nstruction is 
retroactively made to look like a definition of the vari 
able . Note that this propagation is not a flow algo
ri thm because no convergence criteria is involved; it  is 
simply a kind of spanning walk. 

Forward Propagation Forward propagation iterates 
over the flow graph and uses the locations with known 
contents at the end of each block to work forward to 
successor blocks to provide known contents at the 
beginning of other blocks. This is a classic "reaching 
definitions" flow algorithm, in which the input state of 
a location for a block is the intersection of the known 
contents from the predecessors. 

In our case, the compiler also propagates definition 
points, which are the addresses of the instructions that 
begin the lifetime segments. For those variables that are 
known to occupy a location, the set of definitions is tl1e 
union of all the definitions that flow into that location . 

Information Promotion and Cleanup The final step of 
compiler processing is to combine information for adja
cent blocks where possible . This action saves space in me 
debugging symbol table but does not affect me accuracy 
of the desctiption .  Descriptions for by-reference bind 
parameters are next merged witl1 me descriptions for the 
associated reference variables . Finally, lifetime segment 
information not already associated wim symbol table 
entries is copied back. 

Object File Representation 

The object file debugging symbol table representation 
tor split l ifetime variables is actually q uite simple. 
Instead of a single address for a variable, there is a 
sequence of l i fetime segment descriptions. Each l ife 
time segment consists of 

• The range of addresses over which the child loca
tion appl ies 

• The location ( in a register, at a certain offSet in the 
current  stack frame, indirect through a register or 
stack location, etc . )  

• The set of addresses that provide defini tions for this 
l i fetime segment 

By convention, the last segment in the sequence can 
have the address range 0 to FFFFFFFF ( hex ) .  This 
address range is used for a static variable, for example 
in a FORTRAN COMMON block, that has a default al lo
cation that applies whenever no active chi ldren exist. 
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Debugger Processing 

Name resolution, that is, binding a textual name to the 
appropriate entry in the debug symbol table, is in no 
way affected by whether or not a variable has split lite
time segments. After the symbol table entry is found, 
any sequence of l i fetime segments is  searched for one 
that includes the current point of execution i ndicated 
by the program counter ( PC) .  If found, the location of 
the value is  taken from that segment. Otherwise, the 
value of the variable is not avai lable. 

Usage Example 

To i l lustrate how a user sees tl1e results of this processing, 
consider me smaJJ C program in Figure 4. Note mat me 
numbers in me left colunm are listing line numbers. 

\Vhen DOCT8 is compiled , l inked, and executed 
under debugger control, me dialogue shown in Figure 5 
appears. The figure also includes interpretive comments. 

Known Limitations 

The fol lowing l imitations apply to the existing split 
l ifetime support. 

Multiple Active Split Children While the compiler  
analysis correctly determines multiple active spl i t  child 
variables and me debug symbol tab.le corrccdy describes 
them, OpenVMS DEBUG docs not currendy support 
mu ltiple active c hild variables. When searching a sym
bol's lifetime segments for one mat includes the current 
PC, me first match is taken as the ortly match . 

Two-part Variables Support for two-part variables 
( those occupying two registers) assumes that a com
plete definition wi l l  occur within a single basic block .  

3 8 5  o c t 8  ( )  { 
386 
387 in t i ,  j ,  k ;  
3 8 8  
389 i 1 ; 
390 j 2 ; 

3 9 1  k 3 ;  
392 
393 if ( f oo ( i ) ) 

394 j = 1 7 ; 
395 ) 
396 e l se ( 
397 k 1 8 ; 
398 ) 
399 
400 prin t f ( " %d , %d , %d \ n " ,  i ,  j ,  k ) ; 

4 0 1  
402 

Figure 4 
C Example Routine DOCT8 (Source with Listi ng Line 
Numbers) 



$ t un doc t B 

OpenVMS Al pha Debug64 Ve rs ion T7 . 2 - 0 0 1 
% I , langucge i s C ,  mod l e  set to DOCT 8 

DBG> s ep / i n to 

s teppe . o DOCTB \ doc 8 \ %LINE 3 9 1  

3 9 1 : k = 3 ; 

DBG > exam ine i ,  j , k 

%�1 . en t i ty · i ' v1a s  no l a l l oca ted in memory ( wa p t lm i z ed a\v.:ly )  

%W , en i ly ' j ' does no h ve va l ue a t  the curren t PC 
%W , en t i t y ' k ' does no t h v a va lue a the cu rrent PC 

Note the difference in the message for variable i compared to the messages for variables j and k. We 
see that variable i was not allocated i n  memory ( registers or otherwise ) ,  so there is no point in ever 
trying to examine its value again .  Variables j an d  k, however, do not have a vaJ ue "at the current PC." 

Somewhere later in the program they will have a value, but not here. 
The dialogue continues as follows : 

DBG> s tep 6 
s epp ed to DOCT 8 \ doc t 8 \ %LINE 3 9 1  

3 9 1 : k = 3 ;  
OBG s tep 

s t epped to DOCT 8 \ doc t 8 \ %LINE 3 9 3  
3 9 3 : i f  ( f oo ( i ) ) ( 

DBG> exam i ne j , k 
%1-'1 , en t i t y ' j ' do s not have a value at the current PC 
DOCT8 \ doct8 k :  3 

va lue defined a t  DOCT8 \ oc t 8 \ % L INE 3 9 1  

Here we see that j i s  still u ndefined b u t  k now has a value, namely 3,  which was assigned a t  l ine 39 1 .  
The source indicates thatj was assigned a value at line 390, before the assignment to k, butj's assign
ment has yet to occur. 

Skipping ahead in the dialogue to the print statement at l ine 400, we see the foJ iowing: 

DBG> set br ak % l ine 4 0 0  
DBG> g o 

break a t  DOCT 8 \ d oc t 8 \ % LIN E 4 0 0  
4 0 0 : pr in t f ( " %d , %d , %d \ n " , i ,  j ,  k ) ; 

DBG> examine j 

OCTB \ oc t 8 \ j : 2 
va l de f i ned at DOCT 8 \ d oc t 8 \ % L I NE 3 9 0  
value de f i ned a t  DOCT 8 \ d oc t 8 \ %LI NE 3 9 4  

DBG> ex m i ne k 

DOCTS \ oc t 8 \ k : 1 8  

va lue de f i ned at DOCT8 \ doc t8 \ %LI E 3 97 + 4  

val e e i ned a t  DOCT 8 \  oc t 8 \ %LI E 3 9 1  

This portion o f  the message shows that more than one definition location is given for bothj and k. 

Which of each pair applies depends on which path was taken in  the i f  statement. If  a variable has an 
apparently inappropriate val ue, this mechanism provides a means to take a c loser look at those places, 
and only those places, from vvhich that value might have come. 

Figure 5 
Dialogue Result ing from Running DOCT8 

That is, at the end of a basic block, if the second part of 
a definition is missing then the initial part is discarded 
and forgotten .  

Consider the following FORTRAN fragment: 

COHPLEX X, Y 

X = 
Y = X +  [ 1 . 0 ,  0 . 0 )  

Suppose that the last use of variable X occurs i n  the 
assignment to variable Y so that X and Y can be and are 
allocated i n  the same location, in particular, the same 
register pair. In this case, the definition of Y requires 
only one instruction, which adds 1 .0 to the real part of 
the location shared by X and Y. Because there is no sec
ond instruction to indicate completion of the defini
tion, the definition will be lost by our implementation.  
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Semantic Stepping 

A major problem with stepping by l ine  though opti 
mized code is that the apparent sou rce program loca
tion " bounces" back and forth , with the same l i ne 
often appearing again a nd again . In l arge part this 
bouncing is due to a compiler opti mization cal led 
code scheduling, in  which instructions that arise from 
the same source l ine  are sched u led,  that is ,  reordered 
and intermixed with other instructions, for better exe
cution performance. 

Open VMS DEBUG, l i ke most de buggers, interprets 
the STEP/ LINE (step by l i n e )  command to m ean that 
the program should execute u nt i l  the l ine nu mber 
changes. Line nu mbers change more ti·cqu cntly i n  
schedu led code than in  u noptimized code. 

For example, in sample programs ti·om the SPEC95 
B enchmark Su ite, the average n u m ber of instructions 
in sequence that share the same l i ne n u m ber is typi
ca l ly  between 2 and 3-and typica l ly 50 to 70 percen t  
of those sequences consist of j u s t  1 instruction ! I n  
contrast, i f  on ly  instruction- level sched u l ing i s  d is 
abled , then t h e  average number of instructions is  
between 4 and 6,  with 2 0  to 3 0  percent consistin g  of 
one instruction . I n  a compi lation with no optimiza
tion, there are 8 to 12 instructions i n  a seq uence, with 
roughly 5 percem consisting of a single instruction.  

A second prob lem with stepping by l i ne through an 
opti mized program is that, because of the behavior of 
revisiting the same l ine again and again,  the user is  
never qu i te sure when the l i ne has fin ished e xecuting.  
It is unc lear when an assignment actual ly  occurs or a 
control flow decision is abom to be made. 

In unopti mi zcd cod e, when a user requests a break
point on a certain l ine ,  the user expects e xecution to 
stop j ust before that l ine,  hence before the l ine is car
ried out. I n  opti mized code, however, there is no wel l 
defined location that i s  " before t h e  l ine i s  carried out," 
because the code for that l ine is typica l ly  scattered 
about,  i ntermixed, and even com bined wi th the code 
for various other l i nes. It is usua l ly possi b le ,  h owever, 
to identifY !be instruction that actual ly carries out  the 
cfkct of the l ine .  

Semantic Event Concept 

We introd uce a new kind of stepping mode ca l le d  
semantic stepping t o  address these problems. Semantic 
stepping al lows the program to execute u p  to, but not 
i ncluding, an instruction that causes a semantic eftect. 
I nstructions that cause semantic eftixts are instructions 
that 

• Assign a value to a user variable 

• Make a control flow decision 

• Make a routine cal l  
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Not all such instructions are appropriate, h owever. 
We start with an in i tial set of cand id ate instructions 
and refine it. The fol lowing sections describe the 
heuristics that are currently in  use. 

Assig nment The candid ates for assignment evcms 
are the instructions that assign a val u e  to a variable (or  
to one of i ts sp l i t  ch i ldren ) .  The second instruction in  
an assignment to a two-part variable is excluded.  
Stopping between the two assignmcms is inadvisable 
because at that point the variable no longer h as the 
compl ete old state and docs not yet have the complete 
new state. 

Branches There are two kinds of branch : u ncond i 
tional a n d  cond itiona l . An u ncond itional branch may 
have a known desti nation or an u n known destination . 
U nconditional branches with known d estinations 
most often arise as part of some larger semantic con
struct such as an i f-then-e lse or a loop . For example,  
code for an i f- then-else construct genera l ly  has an 
i mpl ic i t  join that occurs at the end of the statement.  
The join takes the form of a jump fi·om the end of one 
al ternative to the location j ust past the last instruction 
of the other (which has no expl ic it  j u m p  and fal l s  
through into the next  statement) .  Th is j u m p  turns the 
inherently symmetric join at the sou rce leve l i nt o  an 
asymmetric construction at the code stream level . 

Uncond itional j u m ps a lmost never define interest
ing semantic  events-some re l ated instruction usua l l y 
provides a more useful even t  point, such as the termi
nation test in  t he case of a loop . One exception is a 
s imple goto statement, but  these arc very often opti
m i zed away in  any case . Conseq uent ly, u nconditional 
branches with known destinations arc not treated as 
semantic events. 

U nconditional branches with u nknown destinJ
tions are rea l ly  cond i tional branches:  they arise from 
constructs such as a C swi tch statement implemented 
as a table dispatch or a FORTRAN assigned GO TO state
ment.  These bra nches defin itely arc interesti ng points 
at vvhich to a l low user interaction before the new 
d i rection is taken .  Thus, the com piler retains u ncon
d i tional branches as semantic events. 

Similarly, in genera l ,  cond i tional branches to known 
destinations are important semantic event points. Often 
more t11JJ1 one branch instruction is generated rcJr a sin
gle high- level source construct, rex example, a decision 
tree of tests and branches used to i mplement J smal l  
C switch statement. I n  this case, on ly the first in  the 
execution sequence is used as the semantic event poi nt. 

Calls Most cal ls  are visible to a user and constitute 
semanti cally i nteresting even ts .  However, cal ls  to 
some run-time l i brary rou ti nes arc usual ly n ot interest-



ing because these calls are perceived to be merely soft
ware i mplementations of primitive operations, such as 
integer division i n  the case of the Alpha architecture. 
GEM internally marks calls to all its own run-time sup
port routines �s not semantically interesting. CompiJer 
front ends accomplish this where appropriate for their 
own set of run-time support routines by setti ng a flag 
on the associated entry symbol node. 

Compiler Processing 

I n  most cases, the compiler can identify semantic event 
locations by simple predicates on each instruction . 
The exceptions are 

• The second of the tvvo instructions that assign val
ues to a two-part variable is iden tified during split 
lifetime analysis. 

• Conditional branches that are part of a larger con
su·uct are identified during a simple pass over the 
How graph. 

Object Module Representation 

The object module debugging semantic event repre
sentation contains a sequence of address and event 
kind pairs, in ascend i ng address order. 

Debugger Processing 

Semantic stepping i n  the debugger involves a new 
algorithm for determining the range of instructions to 
execute. This algorithm is built on a debugger primi
tive mechanism that supports full-speed execution of 
user instructions within a given range of addresses but 
u·aps any transter out of that range, whether by reach 
i ng the end or b y  executing any kind of branch o r  call 
instruction. 

Semantic stepping works as follows. Starti ng with 
the current program cou nter address, Open VMS 
DEBUG rinds the next higher address that is a seman
tic event point; this i s  the target event point. 
OpenVMS DEBUG executes i nstructions in the 
add ress range that starts at the address of the current 
instruction and ends at the i nstru ction that precedes 
the target event point. The range execution terminates 
in the following two cases: 

l .  If the next instruction to execute is the target event 
point, then execution reached t he end of target 
range and the step operation is complete. 

2. If the next insu·uction to execute is not the target 
event point, then the next address becomes the cur
rent address and the process repeats ( silently). 

Note that, un l ike the algorithm that determines the 
range for stepping by line, the new algoritl1m does not 
require an explicit test for the kind of instruction, in 
particular, to test if it is a kind of branch. The compiler 

already marks branches with the semantic eve nt 
attrib�1te, if appropriate. Also unlike the u·aditional 
stepping- by-line algorithm, the new algorithm does 
not consider d1e source line number. 

Visible Effect 

With semantic steppi ng, a user's perception of forward 
progress through the code is no longer dominated by 
the side e ffects of code sched uling, that is, stopping 
every few insm.Ktions regardless of what is happening. 
Rather, this perception is m uch more closely related to 
the actual semantic behavior, that is, stopping every 
statement or so, i ndependent of how many instruc
tions from disparate statements may have executed. 

Note that j u mping forward and backward in the 
sou rce may still occur, for example, when code motions 
have changed the order in which semantic actions are 
performed. Nothing about semantic event handling 
attempts to hide such reordering. 

lnlining 

Procedure call inlining can be confusing when using a 
traditional debugger. For example, if routine INNER 
is  i n  l ined into rou tine CALLER and the current point 
of execution is within INN ER, should the debugger 
report the current source location as at a location in 
the caller routine or in the called routine? Neither is 
completely satisfactory by itself. I f  the current line is 
reported as at the location within INNER, then that 
information will  appear to conflict with information 
from a call stack traceback, which would not show 
routi ne INN ER. If the current l ine is reported as 
though in CALLER, then relevant location informa
tion from the callee will be obscured or suppressed . 
Worse yet, i n  the case of nested inl ining, potentially 
crucial information about tl1e intermediate call path 
may not be available in any torm . 

The problem of dealing with inlining was solved 
long ago by Zellweger'-at least the topic has not 
been treated again since. Zellweger's approach adds 
additional information to an otherwise traditional table 
that maps from instruction addresses to the corre
sponding source line numbers. Our approach is d iffer
ent: it i ncludes additional information in the scope 
description of the debugging symbol table. 

A key u nderpinning for inline support is  the ability 
to accurately describe scopes that consist of m ultiple 
discontiguous ranges of instr uction addresses, rather 
than the tradi tional single range. This capabil ity is 
qu ite independent of inl ining as such. However, 
because code from an inli ned rou tine is freely sched
u led with other code from the cal l ing context, dealing 
accurately with the resul ting disjoint scopes 1s an 
essential buiJd ing block for effective support. 
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Goals for Debugger Support 

Our overa l l  goal is to support debuggin g  of i n l i ned 
code with expected behavior, that is ,  as though the 
in l in ing has not occurred . More specifically, we seek to 
provide the abi l ity to 

• Report the source locJtion corresponding to the 
current position in  the code 

• Display parameters and local variables of an i.nl ined 
routine 

• Show a traceback that incl udes cal l  frames corre
sponding to in lined routines 

• Set a breakpoi nt at a given rou tine e n try 

• Set a breJkpoint  at a given line n u m ber ( from 
with i n  an in lined routine) 

• Cal l a n  i n l i ned rou tine 

We have achieved these goals to a substantial exte n t .  

GEM Locators 

Bdore descr ib ing the mechanisms to r i n l in i ng, we 
introd uce the GEM notion of a locator. A locator 
describes a place in the source text. The sim plest kinds 
of locator describe a poi nt in  the source, i nclud ing the 
name of the file, the l i ne within that file, and the col 
umn with i n  that l ine;  they eve n describe the point at  
which that fi le  was i n c luded by another file ( as for a C 
or C++ #include directive ),  i f  applicable. 

A crucial characteristic of locators is that they are aU 
of a uniform fixed size that is no larger than an integer 
or pointer. ( How this is achieved is beyond the scope 
of this paper. ) I n  particu lar, locators are smal l enough 
that every tuple node in the i n termediate language 
( IL) and every code cel l  in the ge nerated code stream 
contains one. M oreover, GEM as a whole is q uite 
meticulous about  mai ntai n i ng and propagating high
qual ity locator i n formation throughout i ts opti miza
tion and code generation . 

An addi tional ki nd of locator was i n trod uced for 
in l ining support. This inline locator encodes a pair  
that consists of a locator (which may also be a n  i n  l i ne 
locator) and the add ress of an associated scope node i n  
the G E M  symbol tab l e .  

Compiler Processing 

De buggi ng optimized code su pport tor in l in ing gen 
era l ly bui lds o n  a n d  is  a mi nor en hancement of the 
GEM i n l in ing mechanis m .  l n l i n i ng occurs du ring a n  
early part of the GEM optimizer phase. 

In l in ing is i mpleme nted in GEM as fol l ows: 

• Within the scope that contains the cal l site, an inline 
scope block is i ntrod uced . This scope represents the 
result of the in l in ing operation . It is  populated with 
local variable declarations that correspond one-to
one with d1e tormal parameters ofd1e i.nlined routine. 
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• The actual argu ments of the call are transformed 
i n to assignments that i n i tiJiize the val ues of the sur
rogate parameter variables. 

• The i nl i ne scope is also made to contain a bod)' 

scope, which is a copy of the body of the in l ined 
routi n e ,  includi ng a copy of its local variables.  

• The original call  is replaced with a jump to a copy of 
the IL for the body of the routine, i n  which refer
e nces to declarations or parameters of the rou ti ne 
are replaced with references to their correspo nding 
copied declarations. I n  add i tion, returns ti·om the 
routine are replaced with jumps back to rhe tuple 
following the original  cal l .  

• S imilar "boundary adj ustments" Jre made to deal 
with fu nction results, output parameters, choice of 
e ntry point (when there is  more than one, as might 
occur for FORTRAN alternate entry statements ) ,  
e t c .  ( The bookkeeping is  a bit intricate, b u t  it is 
conceptual ly straightforw:�rd . )  

The cal l ing routine,  which now i ncorporates a copy 
of the i n l ined routine, is then further processed as a 
normal ( though larger) routine .  

lnlining Annotations for Debugging The main changes 
introduced for debuggi ng opti mized code support are 
as follows. 

• The newly created i n l i ne scope block is annotated 
with additional i n formation , namely, 

- A pointer to the routine declaration being inl i ned. 

The locator fi·om the call that is  replaced . In a sim
ple call wid1 no arguments, there may be nothing 
left i n  the IL from the origin a l  cal l  after in l in ing is  
completed; dtis locator captures the original call 
location for possi ble later use, for example, as J 
supplement to d1e i n formation thJt maps instruc
tion addresses to source line numbers. 

• As the code l ist of the original i n l i ned routine is 
copied, each locator from the origi n a l  is replaced by 
a new inline locator that records 

- The origi nal locator. 

- The newly created in l ine scope i n to which it is 
bei ng copied . 

As a result of these steps, every in l ined i nstruction Gin 

be related back to the scope i nto which it  was in l ined 
and hence to the routine ri·om which it was i n l ined,  
regardless of how it  may be modi  tied or moved as a 
resu lt of subseq uent optimization . 

Note dut these additional steps arc an exception to 
the general assertion th at debugging optimized code 
su pport occurs after code ge neration and just prior to 
object code e m ission. T hese steps i n  no vvay in t1 u e nce 
the generated code-only th e de buggi ng symbol table 
that is output. 



Prologue and Epilogue Sets The prologue of a rou 
tine general ly  consists of those i nstructions at the 
beginning of the routine that establish the routine 
stack frame ( for example, a l locate stack and save the 
return address and other preserved registers) and that 
must be execu ted before a debugger can usefu Uy inter
pret the state of the rou tine. For this reason ,  setting a 
breakpoint at the beginning of a routi ne is usual ly 
(transparently) implemented by setting a breakpoint 
after the prologue of that routine is  completed. 

Conversely, the epilogue of a rou tine consists of 
those instructions at the end of a routin e  that tear 
down the stack frame, reestablish the caller's conte xt, 
and make the return value, if  any, avai lable to the 
caller. For this reason ,  stopping at the end of a routine 
is  usu ally ( transparently) i mplemented by setti ng a 
breakpoint  before the epilogue of that routine begi ns. 

One benefit of in l in ing is  that most prologue and 
epi logue code is avoided; however, there may still  be 
some scope management associated with scope entry 
a nd exit.  Also, some programming la nguage-related 
environment ma nagemen t  associated with the scope 
may exist and should be treated in a manner analogous 
to traditional prologue and epilogue code.  The prob
lem is  hovv to identif)' it, because most of the tradi 
tional compi ler  code generation hooks do not app ly. 

The model we chose takes adva ntage of the seman
tic event i n formation that we describe in the section 
Semantic Steppi n g .  In particular, we define the first 
semantic event that can be executed within the in l i ned 
routine to be the end of the prologue. For reasons d is
cussed l ater, we define the last instruction ( not the l ast 
semantic event) of the i nJ ined code as the beginning of 
the epi logue .  As a res u l t  of unrelated optimization 
effects, each of these may turn out to be a set of 
i nstructions. Determ i nation of i nl ine prologue and 
epi logue sets occurs after split l i feti me and semantic 
event determination is completed so that the results of 
those analyses can be used.  

To determine the set of prologue instructions, for each 
i nline instance, CEM starts vvjtl1 every possible entry 
block and scans torward through the flow graph looking 
for tl1C first semantic event instruction that can be reached 
from that entry. The set of such i nstructions constitutes 
the prologue set for tl1at instance of the inJined routine. 

This is a spanning walk forward from the routine 
entry (or entries) that stops either when a block is 
fou nd to conta i n  a n  i nstruction from the given i n l ine 
i nstance or when the block has alreJdy been encou n 
tered ( each block i s  considered a t  most once ) .  Note 
that there nuy be execution paths that include one or 
more i nstructions from an inl in ing, none of which is a 
semantic event i nstruction.  

The set of epilogue i nstructions is  determined using 
an i nverse of the prol ogue algorith m .  The process 
starts with eJch possible exit  block and scans backward 

through the tlow graph looki ng for the last instruction 
( that is, the i nstru ction closest to the routine exit)  of 
an i n l i ne i nstance that can reach Jn exit. 

Note that prologue and epi logue sets are not strictly 
symmetric:  prologue sets consist of only instructions tl1at 
are also semantic events, whereas epilogue sets inc lude 
instructions tlut may or may not be semantic events. 

Object Module Representation 

To describe any in l in ing that may have occurred dur
ing compilation, we i nclude three new kinds of i n for
mation in the debu gging symbol table. 

If tl1e instructions contained in J scope do not form a 
single contiguous range, then the description of the 
scope is augmented vvjth a discontiguous range descrip
tion.  This description consists of J sequence of ranges. 
(The scope itself indicates tl1e traditional approximate 
range description to provide bac kward compati bil ity 
with older versions of Open VMS DEBUC).  This aug
mented desc1iption applies to aU scopes, whether or not 
they are tl1e result ofinlining. 

For a scope that results from i nl i ning a cal l ,  the 
description of the scope is augmented with a record 
that refers to the rou tine that was in l ined as wel l  as the 
l ine n u mber of the cal l .  Each scope also contains two 
e n tries that consist of the sequence of prologue J nd 
epilogue addresses, respectively. 

Backward compatibility is ful l y maintained . An older 
version of Open VMS DEBUC that does not recognize 
the new kinds of infonnation wi l l  simply ignore it. 

Debugger Processing 

As the debugger reads the debugging symbol table of 
a modu le,  i t  constructs a l ist of the i nl i ned i nstances for 
each routi ne .  This process makes it possible to tlnd a l l  
instances o f  a given routine. Note, however, that if every 
call of the routine is expanded inl ine and the routine 
cannot otherwise be called fi-om outside that module, 
tl1en CEM does not create a noninl ined (closed - form ) 
version of tl1e routine. 

Report Source Location It is ;.1 simple process to report 
the source location tl1at corresponds to tl1e current code 
address. When stopped inside the code resu lting from 
an inlined routine, the program cou nter maps directly 
to a source l ine ,vjthin the inlined routine.  

Display Parameters and Local Variables As i s  tl1e case 
for a noni n l ined rou tine ,  tl1e scope description tor an 
i nlined routine contains copies of the parameters and 
the local variables. No special processing is req uired to 
perform name binding for such entities. 

Include ln l ined Cal ls  in Traceback The debu gger pre
sents inl i ned routi nes as if they are real routi ne cal ls .  A 
stack frame whose cu rrent code address corresponds 
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to an i nl ined routine i nstance is described with two or 
more virtual stack frames: one or more for the in l i ned 
instance(s)  and one for the u l ti mate cal ler. ( An exam
ple is  shown later in Figure 7 . )  

Set Breakpoints at l n l ined Routine Instances The 
strategy for setting breakpoints at i n l i ned routines is 
based on a generalization of processing that previously 
existed for C++ member fu nctions. Com pilation of 
C++ modules can resul t  i n  code for a given member 
fu nction being compiled every time the class or tem
pbte definition that contains the me mber fu nction is 
compiled.  vVe refer to all these com pilations as clones. 
(It  is not necessary to distinguish which of them is the 
originaL ) I n  our general i zation, an inl ined routine call 
instance is treated l ike a clone . To set a breakpoint at a 
routine,  the debugger sets breakpoints at all the end
of�prologue addresses of every c lone of the given rou
tine: in  all the curren tly active modules .  

Set Breakpoints at I n  lined Line Nu mber Instances The 
strategy for setting breakpoints on line numbers shares 
some teatures of setting breakpoints on routines, with 
additional complications. Compiler- reported l ine num
bers on OpenVMS systems are unique across a l l  the 
files i ncluded in  a compilation. It follows that the same 
file i ncluded in more than one compilation may h ave 
differe nt associated line numbers. 

To set a breakpoint at a particu l :�r  l ine  n u m ber, 
that l i ne nu mber needs to be fi rst nonn:1 l ized relative 
to the conta in ing file. This norm a lized l i n e  n u m ber 
v:t lue i s  then compared to normal ized l ine numbers 
fo r that same fi l e  that are included in other compi la 
tions. ( If  d i fferent versions of the same named fi le  
occu r  in  d i fferent compil ations, the  versions are 
treated as u nrelated . )  The origin a l  l i ne n u m ber is 
converted i n to the set of add ress ranges that corre
spond to it  in a l l  modules, taking into account i n l i n 
i n g  and c loning.  

Cal l  a Routine That Is ln l i ned If the compiler creates a 
closed-form version of a routi ne,  then the debugger 
can cal l  that rou tine independent of whether there 
nuv also be in l ined i nstances of tl1e routine . If no such 
ver�ion ofthe routine exists, then the debugger cannot 
cal l  the routine.  

Usage Example 

In l in ing support has many aspects, but we will  i l lus
trate only one-a cal l  traceback that inc ludes in l ined 
ca lls .  Consider the sample program shown in  hgu re 6.  
This program has four routines: tl1t-cc JIT combi ned in  
: 1  s ingle fi l e  (enabling the GEM FORTRA.N compi ler 
to perform in l ine opti m izations), and the last  is  i n  a 
separate fi le .  To help correlate the l ines of code in 
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Line.: + • + + +  F' i l e  DOCF'J - J NLI E - 2 . FOR 

c �·la i n  .t.out:ne 
2 c 
3 1 ·-EGER A ,  c 
4 TYPE * .� ( 3 ' c ( 0 )  1 
5 END 
6 c 
7 F'UNCT ! ON .'\ ( I .  L )  
8 II TEGER B 
9 A ; 8 ( 5 , I )  + 2 "" L 
1 0  RETURN 

1 1  END 

1 2  c 
1 3  F'UNCTIO: B ( J , K )  
14 INTEGER B , c 
1 5  B - C ( 9 )  + J + K 
1 6  END 

+ T + + +  File DOCFJ- I NLI � E - 2 A . FOR 

c 
2 fUNCT ION C ( J )  
3 INTEGER C 
4 c � 2 ' 1 
5 R ETUR 
6 END 

Figure 6 
Program to J l lustr:�rc In l in ing Support 

these two riles with those in Figure 7, we added l i ne 
numbers to the left of the code .  Note that these n u m 
bers are not p:�rt o f  the program.  

If we com pile , l ink, and r u n  this program using the 
OpenVMS DEBUG option,  we can step to a place in 
routine B that is  just bdore the call to routine C and 
tl1en request a traceb:1ck of the call stack. This dialogue 
is  shown in Figure 7 .  

Figure 7 shows tlut pseudo stack fi-ames are reported 
for routines A and B, even tl1ough the cal l of routine B 
has been in lined into routine A and the call of rou tine A 
has been in l ined i nto the main program. The main dif 
ference from a real stack rrame is the ext.rJ l ine that 
reports tl1at tl1e "above routine is in lined ." 

Limitations 

In a real stack ri·ame, i t  is possib le  to examine ( a nd 
even deposit i nto) the real machine registers, rather 
than examine the variJ bles that happen to be a l located 
in machine registers. In an in l ined stack frame, this 
operation i s  not well ddlncd and consequently not 
supported . In a nonin l ined stack ti:a me, these opera
tions are sti l l  allowed . 

An attractive feature that wou l d  rou nd out the 
expected beluvior of in l i ned routine calls wou ld be to 
support steppi ng into or over the inl ined cal l  i n  the 
same way that is possible tc)r noni nl ined caJls. This rea
ture is  not currently su pported-execution alwJys 
steps into the ull .  



GEMEVN$ r n D FJ - I NL I  1E- 2 
Open 1S Al ph a Debu 6 ver s i o� T7 . 2 - 0 0 1  

% ! , Lang ge : FORTRAN , Modu l e : DOCFJ -Ir LINE-2 $.1AIN 

D G> s ep / seman t i c  
s t epped t o  DOCFJ - I  L I  E - 2 $MAI 1 B \ % LI E 1 5 � 8  

1 5 : B = C ( 9 )  � J + K 
DBG > show ca l l s  

mod e n e rou ine name l ine 
* DOCFJ - I . LI E - 2 $ MAI'l 

B 1 5  

- - - - - abo ve rou t i ne i s  inl ined 
* DOCFJ- I LINE 2 $  IN 

A 9 

- - - - - above tO ine is i . l in e '  
' DOC FJ- I• r ,  E - 2 $ MAI 

rel P abs PC 

O O O O O O O O O O O O O O l C 0 0 0 0 0 0 0 0 0 0 2 0 0 6 C 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 2  0 5 4  

DO FJ - It\LINE-2 $:�. I .  

4 0 0 0 00 0 0 0 0 0 0 0 0 0 3 8  0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 8  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  FFFFFFFF 8 5 9 0 7 1 6 C  

Figure 7 
OpenVMS DEBUG Dialogue to I l lustrate I nlining Suppon 

Performance and Resource Usage 

We gathered a n u m ber of statistics to determine t:ypi 
cal resource requirements tOr using the enhanced 
debugging optimized code capability compared to the 
traditional practice of debugging unopti mized code.  A 
short sum mary of the findi ngs fol lows. 

• All metrics tend to show wide variance fi·om pro
gram to program , especially small  ones. 

• Generating traditional debugging symbol information 
increases the size of object modules typically by 50 to 
100 percent on the OpenVMS system. Executable 
image sizes show similar but smaller size increases. 

• Generating en hanced symbol table information 
adds about 2 to 5 percent to the typical compilation 
time, although higher percentages have been seen 
tor un usually large progra ms. 

• Generating enhanced symbol table information 
uses significant me mory during compilation bm 
does not affect the peak memory req ui re ment of a 
compi lation . 

• Generating enhanced symbol table information 
further i ncreases the s ize of the sym bol table intor
mation compared to that for an unoptimized com· 
pilation . On the Open VMS syste m ,  this adds 100 to 
200 perce nt to the debugging symbol table of 
object modules and perhaps 50 to 1 00 percent  for 
executable i mages. 

• Compiling with ful l  opti mization reduces the 
resulting image size . Total net i mage s i ze increases 
typical ly by 50 to 80 percent. 

A more detai led presentation of findings fol lows. 
Ta bles 1 through 3 present data collected using pro
du ction OpenVMS Alpha native compi lers built  in 
December 1 996.  In developing these results, we used 
five combi nations of compilation options as foll ows: 

5 1 :  no opti m i zation (noopt) ,  no debugging infor
mation ( nodebug, nodbgopt) 

52: no optimization (noopt), normal debugging 
information ( debug, nodbgopt) 

54: full (default)  optimization (opt), no debugging 
information ( nod ebug, nodbgopt) 

5 5 :  full opti mization (opt),  normal debugging 
information only (debug, nodbgopt) 

58: fu ll optimi zation (opt), en hanced debugging 
information (debug, d bgopt) 

Note that the option combination numbering sys
tem is historical; we retained the system to help keep 
data logs consistent over ti me.  

Compile-time Speed 

The incremental compile-time cost of creating enhanced 
symbol table information is presented i.n Table l for a 
sampling of BLISS, C, and FORTRAN modules. The 
data in this table can be summaJized as follows: 

• Traditional debugging ( column 1 )  increases the 
total compi lation time by about l percent. 

• Enhanced debugging (col u m n  2) increases the 
compilation time by about 4 percent. The largest 
component of that ti me, approxi mately 3 percent,  
is attributed to the flow analysis i nvolved in han
dling split l ifetime variables (column 3 ) .  

• Debuggi ng tends to i ncrease a s  a percen tage of 
ti me in larger modules, which suggests that pro
cessing time is slightly nonli near in program size; 
however, thi s  i ncrease does not seem to be excessive 
even in very large modules. 

Compile-time Space 

The compile-time memory usage during the creation of 
enhanced symbol information is  presented in Table 2 .  
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Table 1 
Percent of Compi lation Time Used to Create/Output Debugging Information 

Module 
S2 (noopt, debug, S8 (opt, debug, (Split lifetime 
nodbgopt) dbgopt) Ana lysis On ly) 

BLISS CO DE 
G E M_AN 0 .3% 1 . 1 %  0 .7% 
G E M_DB 0.9 1 .8 1 . 3 
G EM_DF 0.8 5.2 4.4 
GEM_FB 0.7 3 . 5  2.7 
GEM_I l_PEEP 0.6 1 4.4 1 3 .9 

C CODE 
(_METR IC  1 . 5  5.2 4 . 1  
G RAM 0.5  2 .9 2 .2  
INTERP 1 .2 4 .5 3.2 

FORTRAN COD E  
MATRIX300X nm nm nm 
NAG l 1 .4 1 3 .0 1 1 .9 
SP ICE_V07 3 .0  6 .4 4.7 
WAVEX 2 .5  6 .3 4.8 

Average 1 .2 %  4.3% 3 . 2 %  
Typical range (0. 5 %-1 . 5 % )  (3.0%-7.0%) (2 .0%-5.0%) 
Note: " n m "  represents "not meani ngful ,"  that i s ,  too s m a l l  to b e  accurately measured. 

Table 2 
Key Dynamic  Memory Zone S izes dur ing B LISS GEM Com p i l at ions  

Peak SYMBOL E l l  CODE OM % % % 
File Total ZON E  ZONE ZONE ZONE Peak Larg E ll  

BLISS CODE 

GEM_AN 2, 507 1 30 85 1 84 1 5  6 %  8 %  1 8% 
G E M_DF 1 1 , 305 836 1 , 672 2,056 1 '  1 80 1 0  57 7 1  
G E M_FB 4,694 3 1 6  522 457 304 6 58 58 
G E M_Il_pEEP 40,4 1 9  1 ,606 1 7, 666 4.4 1 1 1 4, 1 43 34 80 80 

C CO D E  

C_M ETRIC 7,381 1 '  1 1 5 494 2,563 1 67 2 6 34 
GRAM 3,03 1 82 8 1 5 2 1 1 267 9 33 33 
I NTERP 3,563 354 308 688 1 3 1  4 20 43 

FORTRAN CODE 

MATRIX300X 934 1 43 227 1 0 1 58 6 26  26 
NAG l 6,267 1 ,520 1 ,  791  1 .742 68 1 1  38 38 
SPICE_V07 6,234 1 ,0 5 1  3,256 885 459 7 1 4  1 4  
WAVEX 1 2, 8 1 2  4,676 3, 1 1 9 3.482 68 5 1 4  22 

Average 9% 32% 40% 
Note: Al l  numbers t o  t h e  left of t h e  vertical bar are thousa nds o f  bytes. not multiples o f  1 ,024. 

Column Key: 
Column Description 

Peak Tota l  The peak dynamic  memory a l located i n  a l l  zones d u ring the compi lat ion 
SY MBOL ZONE The zone that holds the GEM symbol tab le  
E l l  ZONE The zone that holds the l argest E ll ZONE (used for the expanded intermediate representation) 
CO DE ZON E The zone that holds the G E M  generated code l ist 
OM ZONE The zone that holds sp l it l ifet ime and other work ing  data 
% Peak The OM ZONE size as a percentage of the Peak Total  size 
% larg The OM ZONE s ize as a percentage of the l a rgest s ing le  zone in  the compi lat ion 
% E l l  The OM ZONE s ize a s  a percentage o f  the  E l l  ZONE size 
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The followi ng is a summary of the data, where OM 
ZON E  refers to the temporary working virtual mem
ory zone used tor split l i feti me analysis : 

• The OM ZON E  size averages about 10 percent of 
the peak compi l ation size. 

• The OM ZON E  size is one-quarter to one- half of the 
EIL ZONE size. (The latter is well known for typi 
cal ly being the largest zone in a GEM compi lation . )  

• Since the O M  ZONE i s  created and destroyed after aU 
ElL ZONEs are destroyed,  the OM ZONE does not 
conuibutc to establishing the peak total size. 

Object Module Size 

The increased size of enhanced symbol table informa
tion tor both object files and executable image files is 
shown in Table 3. 

In Table 3, the application or group of modu les is iden
tified in the first column. The columns labeled 5 1 ,  52, etc. 
give the resulting size for the combination of compilation 
options described earlier. Object module and executable 
image data is presented in successive rows. 

Three ratios of particu lar interest arc computed . 

52/5 1 :  This ratio shows the object or image size 
with traditional debugging information compared 
to a base compilation without any debugging infor
mation . This ratio i ndicates the additional cost, in 
terms of increased object and image fi le  size, associ 
ated with doing traditional symbol ic  debugging. 

(S8-S5 )/(S2-S 1 ) :  This ratio shows the increase in 
debugging symbol table size (exclusive of base object, 

Table 3 

image text, etc . )  due to the inclusion of enhanced infor
mation compared to the traditional symbol table size. 

SS/52 : This ratio shows the object or i mage s ize 
with enhanced debugging i n formation with opti
mization compared to the traditional debugging 
size without optimization. 

The last ratio, SS/52, is especially interesting because 
it combines two effects: ( l )  the reduction in size as a 
result of compiler optimization, and (2)  the increase i n  
size because the larger debugging symbol table needed 
to describe the resu lt of the optimization . The resu l t 
ing net  i ncrease is reasonably modest. 

Summary and Conclusions 

There exists a small but significant l i terature regarding 
the debugging of optimized code, yet very kw de bug
gers take advantage of what is known. In this paper we 
describe the new capabi l i ties tor debugging optimized 
code that are now supported in the G EM compiler sys
tem and the Open VMS DEBUG component of the 
Open VMS Alpha operating system .  These capabi l i ties 
deal with sp l i t  l i fetime variables and currency determi
nation ,  semantic stepping, and procedure inl ining. For 
each case, we describe the p roblem addressed and then 
present  an overview of G EM compi ler and Open VMS 
DEBUG processing and the object modu le  represen
tation that mediates between them.  All but the in l in
ing support are i ncluded i n  Open VMS DEBUG V7 .0 
and in  GEM-based compi lers for Alpha systems that 
have been shipping since 1 996. The in l ining support is 

Object/Executab le  ( .OBJ/. EXE) F i le  S izes (in N umber of B l ocks) for Var ious Open VMS Components 

51 52 54 55 58 
noopt no opt opt opt opt (58-55)/ 
nodebug debug 52/51 node bug debug debug (52-51 )  58/52 

Fi le nodbgopt nodbgopt Ratio nodbdopt nodbgopt dbgopt Ratio Ratio 

BLISS CODE 

G EM_ * .OBJ 3 1 ,477 5 1 ,069 1 .62 27,483 47,031  68,728 1 . 1 1  1 . 35 
G E M_* .EXE 1 2, 1 60 29,543 2 .43 1 0,373 27,755  32,288 0.26 1 .09 

C CODE 

C_M ETRIC.OBJ 436 653 1 . 50 478 733 1 ,680 4.36 2 . 57 
C_M ETR IC .EXE 250 348 1 .39 250 385 581 2 .00 1 .67 
GRAM.OBJ 1 02 1 20 1 . 1 9  1 00 1 1 7 224 5 .94 1 .87 
GRAM.EXE 60 70 1 . 1 7  58 69 9 1  2.20 1 .30 
INTERP.OBJ 1 40 207 1 .48 1 34 205 450 3 .66 2 . 1 7  
INTERP. EXE  80 1 1 3 1 .4 1  75  1 1 3 1 67 1 .64 1 .47 

FORTRAN CODE 

MATRIX300X.OBJ 20 34 1 .70 1 6  29 7 1  3 .00 2 .08 
MATRIX300X. EXE 1 9  29 1 . 53 1 5  25  34 0.90 1 . 1 7  
NAGL.OBJ 42 63 1 . 5 1  288 509 1 ' 1 78 3 . 1 1 1 .84 
NAGL .EXE 289 388 1 . 34 1 87 333 469 1 .37 1 .2 1  
SPICE .OBJ 1 ,652 3, 1 1 7 1 .89 1 ,073 2 ,571  4,9 1 6  1 .60 1 . 58 
SP ICE .EXE 1 ,03 1 1 ,660 1 .6 1  549 1 ,3 1 8  1 , 803 0.77 1 .09 
WAVEX.OBJ 555 1 ,639 2 .95 393 1 , 556 2,949 1 .29 1 .80 
WAVEX.EXE 634 1 , 1 90 1 .88 490 1 , 1 67 1 ,437 0.49 1 .2 1  
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currently i n  tleJd test. Work is under way to provide 
similar capa bilities in the lade bug debugger"·" compo
nent of the DIGITAL UNIX operating system. 

There are and will always be more opportunities and 
new challenges to im prove the ability to debug opti
mized code .  Perhaps tl1e biggest problem of all is to fig

ure out where best to focus future anention. l t  is easy to 
see how the capabilities described in this paper provide 
major benefits. We find it much harder to see what capa

bility cou ld provide the next major increment in debug
ging effectiveness when working wi tl1 optimized code. 
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Differential Testing 
for Software 

Differential testing, a form of random testing, 

is a component of a mature testing technology 

for large software systems. It complements 

regression testing based on com mercial  test 

suites and tests local ly developed during prod

uct development and deployment. Differential  

testing requires that two or more comparable 

systems be avai lable to the tester. These sys

tems are presented with an exhaustive series 

of mechanica l ly  generated test cases. If (we 

might say when) the resu lts differ or one of 

the systems loops indefin itely or crashes, the 

tester has a cand idate for a bug-exposing test. 

Implementing differential testing is an interest

ing technical problem. Getting it i nto use is an 

even more i nteresting social  chal lenge. This 

paper is derived from experience in  d ifferential 

testing of compilers and run-time systems at 

D I GITAL over the last few years and recently 

at Compaq. A working prototype for testing 

C compi lers is avai lable on the web. 
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William M. McKeeman 

The Testing Problem 

Successfi.d commercial  computer systems contain te ns 
of m i l l ions of l ines of handwritten software, Jll of 
which is subject to c hange as competitive pressures 
motivate the addition of new features in each release. 
As a practical matter, qual ity is not a question of cor
rectness, but rather of how many bugs are fixed and 
how few arc introd uced in the ongoing development 
process . If the bug cou nt  is i ncreasing, the software is 
deteriorati ng.  

Quality 

Testin g  is a major contributor to qua l i ty-it is the last 
c hance for the development organi zation to red uce 
the n u mber of b ugs del ivered to customers .  Typical ly, 
developers bu i ld a suite of tests that the software must 
pass to advance to a new release. Three major sou rces 
of such tests arc the deve lopment engi neers, who 
know where to probe the weJk poin ts;  commercial test 
suites, which :tre the arbiters of contonnance; a nd cus
tomer complaints, which developers m u st address to 
win customer loya l ty. A l l  three types of test cases are 
relevant to customer satisfaction and therefore h ave 
val ue to the develope rs . The resultant test su ite tor the 
software u nder test becomes i ntellectu a l  property, 
encapsu lates the accumu lated experience of problem 
fixes, and can contain more l i nes of code than the soft
ware itself.  

Testing i s  always i ncomplete.  The s implest measure 
of completeness is statement coverage . I nstrumentation 
can be added to the software bdore it is tested.  When 
a test is ru n ,  the instru mentation generates a report 
detai l ing  which statements are actually executed . 
O bviously, code that is not executed was not tested . 
Random testi ng is J way to make testi ng m ore com
p lete. One val u e  of random testing is i ntrod ucing the 
unexpected test-1 ,000 monkeys o n  the keyboard can 
produce some surprisi ng and even amusing i nput 1  The 
traditional approach to acq uiring such input  is to let 
u niversity students use the software. 

Testi ng software is Jn active fie ld  of endeavor. 
I n teresti ng starti ng poi nts for gathering background 



i n formation and references are the we b site main
tained by Sofuvare Researc h ,  Inc .  1 and the  book 
Sojiware Testing and Quality Assurance.2 

Developer Distaste 

A development team with a su bsta n tia l  bug backlog 
does not find it  helpful to have an automatic bug 
fi nder continua l ly  i ncreasi ng the backlog. The team 
priority is  to address customer comp l aints before deal 
i ng with bugs detected by a robot. Engi neers argue 
that the randomly produced tests do not u n cover 
errors that are l i kely to bother customers. "Nobody 
would do that, " "That error is  not i mportant," and 
" Don't  waste our ti me; we have p lenty of real errors 
to fix" are typical developer retorts. 

The complai nts have a su bstantial basis. D uring a visit 
to our development group, Proti::ssor C. A. R. Hoare of 
Oxford University succincdy summarized one c lass of 
complaints:  "You cannot fix an infi nite number of bugs 
one at a time." Some software needs a stronger remedy 
than a stream of bug reports. Moreover, a stream of bug 
reports may consume the energy that could be applied 
in more general and productive ways. 

The developer push back j ust described indicates that 
a differential testi ng effort must be based on a per
ceived need tor better testing from within the product 
development team .  Performing the testi ng is poi ndess 
if the developers cannot or will not use the results .  

Difkren tial  testi ng is most easi l y  appl icable t o  soft
ware whose qual ity is a l ready u nder contro l ,  that is, 
software for which there arc few known outstanding 
errors. Ru n n i ng a very l arge n u mber of tests and 
expending team eftort only when an error is found 
becomes an attractive a l ternative. Tea m  members' 
morale i ncreases when the software passes m i l l ions of 
hard tests and test coverage of their code expands. 

The technology shou ld be i mportant tor appl ica
tions for which there is  a h igh premium on correct
ness. In particu lar, product d ifferentiation can be 
achieved tor software that has few fai l u res i n  compari
son to the competition . D i fferential testing is designed 
to provide such comparisons .  

T h e  tech nology shou ld also be important for appl i 
cations t(x which there is a h igh premium on i ndepen
dentl y  dupl icati ng the behavior of some existi ng 
application . I dentical behavior is i m portant when o ld 
sofhvare is being retired in tavor of a new implementa
tion, or when the new software is  cha l l enging a domi
nant competitor. 

Seeking an Oracle 

The ugl iest problem i n  testi ng is  evaluating the resu l t  
o f  a test. A regression h arness can automatica l ly c heck 
that a resu lt  has not changed , but this intormation 
serves no purpose u nless the result is known to be cor-

rect. The very complexity of modern software that 
d rives us to construct tests makes it i mpractical to pro
vide a priori knowledge of the expected results .  The 
problem is worse for randomly generated tests. There 
is  not l ikely to be a h igher l evel  of reasoning that can 
be appl ied, which forces the tester to i nstead fol low 
the tedious steps that the computer wi l l  carry out dur
i ng the test run.  An orac le  is  needed . 

One c lass of results is easy to evaluate: program 
crashes. A crash is never the right answer. I n  the triage 
that drives a m aintenance effort, crashes are assigned to 
the top priority category. Al though this paper does not 
contain an in-depth discussion of crashes, all crashes 
caused by difterential testing are reported and consti
tute a substantial portion of the discovered bugs. 

Differential testing, which is covered in the foUowing 
section, provides part of the solution to the problem of 
needing an oracle .  The remainder of the sol u tion is dis
cussed in the section entitled Test Reduction . 

Differential Testing 

Differential testing addresses a specific problem-the 
cost of eva luating test resu lts .  Every test yie lds some 
resu lt .  If a single test is ted to several comparable pro
grams ( for example, several C compilers ) ,  a nd one pro
gram gives a d ifferent result, a bug may have been 
exposed . For usable sofhvare, very few generated tests 
will result  i n  differences. Because it is feasib le  to gener
ate millions of tests, even a few differences can result  i n  
a substantial stream of detected bugs.  T h e  trade-off i s  
t o  use many computer cycles i nstead of human effort to 
design and evaluate tests. Particle physicists use the 
same paradigm: they examine m i l l ions of mosdy boring 
events to find a tew high-interest particle interactions. 

Several issues must be addressed to make differen 
tia l  testing e ffective. T h e  first issue concerns t h e  qual
ity of the test. Any random stri ng fed to a C compi ler 
yields some result-most l ikely a diagnosti c .  Feeding 
random strings to the compi ler soon becomes unpro
d uctive, however, because these tests provide only 
shallow coverage of the compiler logic .  Developers 
m ust devise tests that drive deep i nto the tested com 
pi ler. The second issue rel ates to false positives. The 
resu l ts of two tested programs may differ and yet 
sti l l  be correct, depending o n  the require ments. For 
example, a C compi ler may free ly  choose among alter
natives for u nspeci fied ,  u ndefined ,  or implementation
defined constructs as detai led in the C Standard . '  
Simi larly, even tor requi red diagnostics, the form of 
the diagnostic is u nspecified and therefore difficu lt  to 
compare across systems. The third issue deals with the 
amou n t  of n oise in the generated test case. Given a 
successfu l  random test, there is l ikely to be a much 
shorter test that  exposes the same bug. The developer 
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who is seeking ro fix the bug strongly prefers to use the 
shorter test. The fourth issue concerns comparing pro
grams that must run on diHerent platforms. Differential 
testing is easily adapted to distributed testing. 

Test Case Qual ity 

·writing good tests requires a deep knowledge of the 
system under test. Writing a good test generator 
requires embedding that same knowledge in the gen
erator. This section presents the testing of C compilers 
as an example .  

Testing C Compilers 

For a C compiler, we constructed sample C source fi les 
at several levels of increasing qual ity. 

1 .  Sequence of ASCII characters 

2 .  Sequence of words, separators, and white space 

3. Syntactically correct C program 

4 .  Type-correct C program 

5. Statically conforming C program 

6. Dynamical ly conforming C program 

7. Model-conforming C program 

Given a test case selected from any level ,  we con
structed additional nearby test cases by randomly 
adding or deleting some character or word from the 
given test case. An altered test case is more l i kely to 
cause the compilers to issue a diagnostic or to crash. 
Both the selected and the altered test cases are valuable. 

One of the more entertai ning testing papers reports 
the results of feeding random noise to the C run-time 
library • A typical l ibrary function crashed or hung on 30 
percent of the test cases. C compilers should do better, 
but this hypothesis is worth checking. Only rarely 
would a tested compiler faced with Ievei l input execute 
any code deeper than the lexer and its diagnostics. One 
test at this level caused the compi ler to crash because an 
input line was too long for the compiler's buffer. 

At level 2, given lexically correct text, parser error 
detection and diagnostics are tested,  and at the same 
time the Jexer is more thoroughly covered . The C 
Standard describes the form ofC tokens and C "white
space" ( blanks and comments ) .  I t  is relatively easy ro 
write a lexeme generator that wi l l  eventual ly produce 
every correct token and white-space . What surprised us 
was the kind of bugs that the testing revealed at this 

leve l .  One compiler could not handle OxOOOOO l if 
there were too many lead i ng zeros in the hexadecimal 
number. Another compi ler crashed when faced with 
the tloating-point constant l E l 000.  lvlany compi lers 
failed to properly process digraphs and trigraphs. 

Stochastic Grammar 

A vocabu lary is a set of two kinds of symbols: terminal 
and nontermi na l .  The terminal symbols are what one 
can write down.  The nonterminal symbols are names 
for h igher level language structures. For example, the 
symbol "+" is a termina l  symbol , and the symbol 
"addi tive-expression" is a non terminal symbol of the 
C programming language. A grammar is a set of ru les 
for describing a language . A ru le has a l eft side and a 
right side .  The left side is always a nonterminal sym
bol . The right side is a sequence of symbols. The rule 
gives one definition for the structure named by the left 
side. For example ,  the r u l e  shown i n  Figure l defi nes 
the use of"+" for addition in C. This rule is recursive, 
defining additive-expression in terms of itse l f.  

There is one  special nonterminal symbol cal led the 
start symbol .  At any time, a non terminal symbol can be 
replaced by the right side of a ru le for which i t  is the left 
side. Beginning with the start symbol, nonterminals 
can be replaced unti l  there are no more nontenninal 
symbols. The result of many replacements is a sequence 
of terminal  symbols. If the grammar describes C, the 
sequence of termina l  symbols wi l l  form a syntactically 
correct C program .  Randomly generated white-space 
can be inserted during or after generation. 

A stochastic grammar associates a probabi l ity with 
each grammar rule.  

For l evel 2, we wrote a stochastic grammar for lex
emes and a Tel script to interpret the gram mar,; " per
forming the replacements j ust descri bed .  Whenever a 
nonterminal is to be expanded, a new random nu mber 
is compared with the fixed rule probabil i ties to direct 
the choice of right side. 

In  either case, at this level and at levels 3 through 7, 
setting the many fixed choice probabilities permits 
some control of the distri bution of output values. 
Not all assignments of probabil ities make sense. The 
probabi l i ties for the right sides that define a specific 
nonterminal must add up  to 1 .0 .  The probabi l i ty of 
expanding recursive rules must be weighted toward a 
nonrecursive alternative to :�void a recursion loop in 
the generator. A system of l i near equations can be 
solved for the expected lengths of strings generated by 

add i t ive - express i on addi t i ve-expres s i on + m l t ip l i c a t ive- expres s i on 

Figure 1 
Rul e  That Defines rhe Use of"+" tor Addition i n C 
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each n onterm i na ! .  H� for some set of proba bi l i ties, a l l  
the expected lengths are  finite  and non negative, this 
set of probabi l ities ensures that the generator does not 
often run away. 

Increasing Test Quality 

At level 3, given syntacticall y  correct text, one would 
expect to see declaration d iagnostics whi le more thor
oughly coveri ng the code in the parser. At this level ,  
the generator i s  u n l i kely to prod uce a test program 
that wi l l  compi le .  Nevertheless, compiler errors were 
detected . For example, one parser refused the expres
sion 1 == 1  = 1 .  

The syntax o f  C i s  given i n  the C Standard . Using 
the concept of stochastic grammar, i t  is easy to write a 
generator that wi l l  eventuaUy produce every syntacti
cally correct C translation - u nit .  In fact, we exte nded 
our Tcl lexer grammar to al l  of C. 

At level 4, given a syntactical ly correct generated 
program i n  which every identifier is dec lared and a l l  
expressions are type correct, t h e  lexer, t h e  parser, a n d  a 
good deal of the sema n tic  logic of the compiler are 
covered . Some generated test programs compile and 
execute, giving the first interesting differential testing 
results .  Achieving level 4 is not easy but is relatively 
straightforward for a n  experienced compiler writer. A 
symbol table m ust be bui l t  and the identifier use l i m 
ited t o  those identi fiers that are al ready declared . The 
req u irements tor combining arithmetic types in C 
( int , short , char , float , double with long 
and/or unsigned) were ex pressed grammatical ly. 
Grammar ru les defining, for example,  inc-add itive
expression replaced the ru les defining additive-expres
sion . The replacements were done systematical ly tor a l l  
combinations of arith metic types and operators. To 
avoid introd ucing typographical errors i n  the defining 
grammar, much of the grammar itself was generated 
by auxi l iary Tel programs. The Tel grammar i nter
preter did not n eed to be changed to accommodate 
this more accurate and volumi nous gram matical data. 
We extended the generator to implement declare-

before-use and to provide the derived types of C 
(struct , union ,  ointer ) .  These necessary 
i mprovements led to thousands of l ines of tricky 
implementation detail in Tel .  At this poi nt , Tel, a 
nearly structureless language, was reaching i ts l imits 
as a n  i mple mentation language. 

At level 5, where the static semantics of the C 
Standard have been factored i nto the generator, most 
generated programs com pile a nd r u n .  

Figure 2 con tains a fragment of a generated C test 
program ti·om level 5 .  

A large percentage o f  level 5 programs terminate 
abnormally, typically on a divide- by-zero operation.  A 
pecuJiarity of C is that many operators prod uce a 
Boolean value ofO or l .  Consequently, a lot of expres
sion results arc 0, so it is  l ike ly tor a division operation 
to have a zero denominator. Such tests are wasted. The 
n u m ber of wasted tests can be reduced somewhat by 
setting low probabilities for using divide, for creating 
Boolean val ues, or fix using Boolean val ues as  divisors. 

Regarding level 6, dynamic standards violations can
not be avoided at generation time without a priori 
choosing not to generate some valid C, so instead we 
implement post-run analysis. For every discovered dif
ference ( potential bug), we regenerate the same test case, 
replacing each arithmetic operator witl1 a fi.mction cal l ,  
inside which tl1ere is a check for standards violations. 

The followi ng is  a fu nction that checks for "integer 
shi ft  out of range . "  ( l f we were testing C++,  we could 
have used overloading to avoid havi ng to incl ude the 
type signature i n  the name of the checking fu nction . )  

· n  
i n t_shl_i n t_i n t ( i n t  val , i n t arnt ) { 

a s ser ( amt >� 0 am < s i zeof ( in t ) * 8 ) ; 
return val << amt ; 

For example, the generated text 

a < <  b 

is replaced upon regeneration by the text 

i t_sh l _in t_ i n ( a , b l  

H u l 1 5  + - - u j 8  * • • H l 1 6 - ( u i 1 7  + + +  u i 2 0 * ( s l 2 1  & ( a rgc < �  

Figure 2 

c 1 4  ) ? ( us2 3  ) < • +  argc: < =  • +  s 1 2 2  : - - ( ( * & * sl 4 1 ) 
0 1 6 0 0 3 0 3  7 < • •  ( 5u7 ) . s i t 5m6 & 1 7 3 1 0 4 4  3 8 u  * + +  ui 5 * ( 

nsigned int I ++ ( ld2 6 ) ) & ( ( ( 0 7 6 1  ) * 2 1 3 7 1 6 7 7 2 1 L  * sl27 ? 
u l2 8  & d 1 2  * + +  d9 * DBL_EPSI LON * 7 e + 4  * + +  1 1  ., , d l O  * d1 2 * ( 
" ld3 J * . � L * 9 . 1 - ld3 2 * ++ f 3 3  - - . 7 3 9 2 E- 6 L * " ld3 4 + ?. ? . 8 2 L  
+ 1 . 9 1  * - - l d 3 5  >= H l d3 7  ) = - . F + ( + +  f 3 8  ) + + +  [ 3 9  * [4 0 > ( 
floa t ) + +  f 4 1  * 1: 4 2  >= c l 4  + +  : sc43 & s s 4 4  1 ' I IC 1 3  & . 9 3 0 9L ( 
u i 1 8  * 0 0 7 1 1 U * u i l 9  , sc 4 6  - - ? - - ld4 7 + ld4 8  : • •  Ld4 9 - ld4 8 * 
+ +  ld5 0  : • + l d 5 l  I > - 2 3 9 . 6 1 1  ) • - + +  ar c ( int s ig ned ) argc -
+ +  ui 5 4  ) - + +  · 1 7 > =  • •  u l 5 8  * argc - 9ul * + - & ul59 * + +  u l 6 0  ; 

Generated C Expression 
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It� on being rerun,  the regenerated test case asserts a 
stand ards violation ( tor example,  a shift of more than 
the word length ) ,  the test is discarded and testing con
ti nues with the next case.  

Two problems "'�th the generator remain: ( l )  obtain 
i n g  enough output fi-om t h e  generated programs so 
that d ifferences are visible and ( 2 )  ensuring that the 
generated programs resemble real-world programs so 
that the developers are interested in the test results .  
Solving these two problems brings the q u al ity of test 
input to level 7. The t1ick here is to begin generating the 
program not fi-om the C grammar nonterminal symbol 
translation -u nit but rather !Tom a model program 
described by a more e laborate string in which some of 
the program is a lready fully generated .  As a simple 
example, suppose you want to generate a number of 
print statements at the end of the test program.  The 
starting string of the generating grammar might be 

n de f i ne P ( v )  prinl f ( � v • - % x \ \ n " ,  v i  

in a i n  ( )  

decl ara t i on - l i s e  

s t <> tement 1 i s t  

r i  t - l i s t  

ex i t  ( 0 ) ; 

where the gram matical defin i tion of pri nt- l i s t  I S  
given by 

pri n t  l i s t P ( j den t i f ier ) ; 
pr i n t - l i pr i n t - l i s t  P ( i denl i f i er ) ; 

I n  the starti ng stri ng a bove there are three nonter
mi nals for the three l ists i nstead of j ust one for the 
standard C start symbol tra nslation- unit .  Programs 
generated tl-om this starting stri ng wi l l  cause output 
j ust betore exit .  Because d i fferences caused by rou nd 
ing error were un i nteresti ng t o  u s ,  w e  mod i fied this 
print  macro tor types f loa t and double to pri nt  only 
a tew significant d igits. With a l ittle more effort, the 
expa nsion of pri n t - l i s t  can be forced to print  each 
variable exactly once. 

Alternatively, suppose a test designer receives a bug 
report fl·om the field,  analyzes the report, and fixes the 
bug. I nstead of simply putting the bug-causing case in 
the regression suite,  the test designer can genera l i ze it 
in the manner j ust presented so that many simi lar test 
cJses can be used to expl ore for other nearby bugs. 

The effect of l evel 7 is to augment the probabi l i ties 
in the stochastic grammar with more precise and direct 
means of control . 

Forgotten Inputs 

The e laborate com mand - l i ne fl ags, config fi les, and 
environ ment variables that condition the behavior of 
progr:�ms arc also input.  Such input can also be gener
ated using the same toolset that is used to generate the 
test programs. The very first test on the very first run 
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with generated com piler directive flags revea led a bug 
i n  a compiler under test-it could not even compi le its 
own header files .  

Results 

Table l indi cates tl1e ki nds of bugs we discovered d u r
ing the testi ng. Only those results that are exhi bited by 
very short text are shown . Some of the resu lts derive 
from hand genera l ization of a p roblem that origi na l ly 
surfaced through random testi ng.  

There was a reason for each result .  For example, the 
server crash occurred when the tested compi ler got a 
stack overflow on a heavily loaded machine with a very 
large memory. The operating system attempted to 
cl ump a gigabyte of com piler stack, which caused a l l  
the other  active users to thrash ,  and many of them a lso 
d u m ped tor l ack of memory. The many disk drives on 
t he server began a d ance of the l ights that sopped up 
the remai n ing free resources, causing the operators to 
boot the server to recover. Excel lent testi n g  can m;�kc 
you unpopular with almost everyone. 

Test Distribution 

Each tested or comparison program must be executed 
where i t  is supported. This may mean d i frerent hard 
ware, oper;�ting system ,  a n d  even p hysical location.  

There are n umerous ways to ut i l ize a network 
to distribute tests and the n  gather the resu lts. One par
ticul arly simple way is to use continuously running 
watcher programs. Each watcher program periodical ly 
exami nes a common ti le  system for the existence of 
some particu lar fi les upon which the program can act. 
If no fi les exist, the watcher program sleeps for a whi l e  
and tries agai n .  O n  most operating systems, watcher 
programs can be implemented as command scripts. 

There is a test master and a n u m ber of test beds .  
The test master generates the test cases, assigns them 
to the test beds, and later analyzes the resu l ts .  Each 
test bed runs its assigned tests. The test master and test 
beds share a fi le  space, perhaps via a network. For each 
test bed there is a test input directory and a test output 
di rectory. 

A watcher program ca l led the test d river waits u n ti l  
a l l  the ( possibly remote ) test i nput d i rectories are 
empty. The test d river then writes its l atest generated 
test case i nto each of tlhe test input d i rectories and 
returns to its  watch -sleep cycle. For each test bed there 
is  a test watcher program that waits unt i l  there is a fi le 
i n  its test i nput d irectory. \Vhen a test watcher finds a 
fi le  to test, the test watcher r uns the new test, puts the 
resu lts in i ts test output d i rectory, and returns to the 
watch -sleep cyc le .  Another watcher program cal led 
the test analyzer waits u ntil all the test output directo
ries contain results. Then the results, both input and 



Table 1 
Resu lts of Test ing  C Com p i lers 

Sou rce Code Resulting Problem 

i f  ( 1 . 1 )  

1 ? 1 : 1 /0 

O .OF/O.OF 

Constant float expression evaluated false 

Several compiler crashes 

x != 0 ?  x!x : 1 

1 == 1 == 1 

Compiler crash 

I ncorrect answer 

Spurious syntax error 

Spurious type error - ! 0  

OxOOOOOOOOOOOOOOO 

Ox80000000 

1 E 1 000 

Spurious constant out of range message 

Incorrect constant conversion 

Compiler crash 

1 » INT_MAX 

'ab' 

Twenty-minute compile t ime 

Inconsistent byte order 

int i=si zeof( i = 1 ) ;  

LDBL_MAX 

(++n,O) ?  -- n :  1 

Compiler crash 

Incorrect value 

Operator ++ ignored 

if (s izeof(char)+d) f(d) 

i=(uns igned)- 1 .0F; 

I l l egal instruction in code generator 

Random val u e  

i nt f(reg ister()); Compiler crash or spurious d iagnostic 

i nt ( . . .  (x) . . .  ); Enough nested parentheses to kill the compi ler  

Spu rious d iagnostic ( 10 parentheses) 

Compiler crash ( 100 parentheses) 

Server crash ( 10 ,000 parentheses) 

Spurious e rror messages d igraphs (<: <% etc.)  

alb The famous Pentium divide bug (we did not catch it 

but we could have ) 

output,  are col lected for analysis, and al l the files are 
de leted from every test input and output directory, 
thus enabl ing another cycle to begi n .  

Using the fi l e  system for synchroni zation i s  adequate 
tor computations on the scale of a compile-and-execute 
sequence. Because of the many sleep petiods, this distri
bution system runs efficiently but not fast. I f  t11rough
put becomes a problem, the test system designer can 
provide more sophisticated remote execurjon. The dis
tri bution sol ution as described is neither robust against 
crashes and loops nor easy to start. I t  is possible to elab
orate the watcher programs to respond to a reasona ble 
nu mber of additional req uirements .  

Test Analysis 

The test analyzer can compare the output in various 
ways. The goal is to d iscover l ike ly bugs in the com
piler u nder test.  The i nitial  step is to distinguish the 
test resu l ts by fai l ure category, using corresponding 
directories to hold the results .  If  the compiler under 
test crashes, the test analyzer writes the test data to the 
crash directory. If the compiler under test enters an 

endless loop, the test analyzer writes the test data to 
the loop di rectory. I f  one of the comparison compi lers 
crashes or enters an end less loop, the test analyzer dis
cards the test, si nce reportin g  the bugs of a compari
son compiler is not a testing objective . If  some ,  but  
not  a l l ,  of the  test case executions terminate a bnor
m al ly, the test case is written to the a bend directory. I f  
a l l  the test cases run to completion but the output dif
fers, the case is written to the test d iff directory. 
Otl1erwise, the test case is discarded . 

Test Reduction 

A tester must examine each filed test case to determine 
i f  it  exposes a t:mlt  in the compiler u nder test. The first 
step is to reduce the test to the shortest version that 
qual ifies for exami nation . 

A watcher cal led the crash analyzer exami nes the 
crash directory tor files and moves tou n d  files to a 
workin g  directory. The crash ana lyzer then appl ies a 
shorte n ing transformation to the source of the test 
case and reruns the test. If the compiler u nder test sti l l  
crashes, the origi nal test case is replaced by the short
ened test case . Otherwise, the change is backed out 
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and a new transformation is tried . We used 2 3  heuris
tic tra nstorma tions, including 

• Remove a statement 

• Remove a decl aration 

• Change a constant to l 
• Change an identi fier to l 
• Delete a pair of matching braces 

• Delete an if clause 

When all the transformations h ave been systematical ly 
tried once, the process is started over again . The 
process is repeated until a whole cycle l eaves the 
source of the test unchanged . A similar process is used 
for the loop, :�bend, and diff di rectories .  

The typical resu l t  o f  the test reduction process is to 
reduce generated C test programs of500 to 600 lines 
to eq u a l ly usefu l  C p rograms of only a few l i nes. It is 
not unusual  to usc 10 ,000 or more com pi le  opera
tions d u ring test reductio n .  The trade-off is using 
many com puter cycles instead of h uman eftort to ana
lyze the ugly generated test case . 

Test Presentation 

After the shortest form of the test case is ready, the test 
analyzer wraps it  in a command script that 

l .  Reports environ mental information (compi ler ver
sion , compiler flags, name of the test p latform, time 
o f test, etc . )  

2 .  Reports the test output or crash information 

3. Reruns the test (the test input  is  em bedded in the 
scri pt) 

The test analyzer writes the command scripts to a 
results d i rectory. 

Test Evaluation and Report 

The person who is managing the d i fterential testi ng 
setup periodical l y  runs scripts that have accu m u lated i n  
the results directory to determi ne which ones expose a 
problem of interest to the development team . One 
p roblem pecu l iar  to random testing is that once a bug 
is found, it  will be found again and again until  i t  is 
fi xed . This argues the case for givi ng high priority to 
the bugs e xposed by differential testing. Uni nteresti ng 
and dupl icate tests are manual ly djscarded, and the rest 
are entered into the deve l opment team bug queue.  

Summary and Directions 

D i fferential  testi ng, suitably tuned to the tested 
program,  complements traditional software testing 
processes. It  finds fau l ts that would otherwise remain 
undetected.  I t  is  cost-effective. It  is  applicable to a 
wide range o f b rge software. It bas p roven unpop u l ar 
with the developers of the tested software . 
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This technol ogy exposed new bugs i n  C compilers 
each day during its use at D I GITAL. Most of the bugs 
were in the comparison compil ers, but a signi ficant 
n u m ber of bugs i n  D I GITAL code were found and 
corrected . 

N u merous specia l-purpose differential testi ng har
nesses were put into use at DIGITAL, each testi ng 
some smal l  part of a l arge program . For example,  the 
C p reprocessor, m u ltidi mensional Fortran arrays, 
opti m i zer constant folding, and a new print £  func
tion each were tested by ad hoc d ifferential testers. 

The J ava A P I  ( r u n - time l i brary) is a large body of 
relatively new code that runs on a wide variety of p bt
forms. Since "Write once, run anywhere" is  the Java 

motto, the standard for conformance is high;  however, 
experience has shown that the standard is d ifficult  to 
ach ieve . D i fferentia l  testi ng should hel p .  vVl1:�t needs 
to be done is to generate a seq uence of calls i nto the 
API on various J ava p latforms, comparing the results 
and reporti ng d ifferences. Techn ical ly, this proced u re 
is much simpler than testing C compilers .  Chris Rohrs, 
an NI IT intern at  D IGITAL, wrote a system enti rely in 
Jav:�, gathering method signature information d i rectly 
out of the bi nary class fi les .  This API tester may be 
used when the qual i ty of the Java A P I  reaches the 
point where the i m plementors are not b uried in  bug 
reports and when there are more independent imple
mentations of the J ava run t ime.  

Differential  testing can be used to i ncrease test cov
erage. Usi ng the coverage data taken fro m  running 
the standard regression suite as  a base l ine,  the devel
opers can run random tests to see i f  coverage can 
be increased . Developers can fi-eely add coverage
increasing tests to the test suite using the test output as 
an in i tia l  oracle .  No harm is done because even if the 
recorded resu l t  is  wrong, the compiler is  no worse off 
for it .  I f  at a l ater time a regression is observed on the 
generated test, either the new or the old version was 
wrong. The developers are alerted and can react. John 
Parks and John Hale  appl ied this technology to 
DIGITAL's C compi lers. 

The problem of reti ri ng an old com piler in favor of a 
new one requires the new one to duplicate old bel1:1vior 
so as not to upset the installed base. Differential testing 
can compare the old and the new, flagging al l  new 
results (correct or not) that disagree with d1e old results. 

D i fferential testi ng can be used to measure q u a l i ty. 
Supposi ng that the majority r ules, a mi l l ion tests can 
be run on a set of competing compi lers. The metric is 
failed tests per m i l l io n  r u ns .  The authors of the tai led 
compilers can either fix the bugs or p rove the majority 
wrong. In any case, quality improves. 

At Compaq , d i fferential testing opportunities arise 
regularl y  and are often satisfied by testing systems that 
arc less e laborate than the original C testi ng system ,  
which has been reti red . 
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