equipment

 international
TECHNICIAN'S HANDBOOK

compiled by

Training Department

Digital Equipment International Ballybrit Galway Ireland

First Edition February 1974
Second Printing May 1974
Third Printing August 1974

Fourth Printing Apri1 1975
Fifth Printing March 1977
Copyright © 1974, 1975, 1977
Digital Equipment International

CONTENTS

CALENDAR 1974/1975
2 TROUBLE SHOOTING
3 GENERAL NOTES
48 FAMILY NOTES

6 I.C. INDEX
7 SAFETY

FOREWORD

The content of this book is draft information which has been compiled at short notice. Please inform your Training Department of any errors, ambiguities or omissions you find.
Any comments or suggestions concerning the format, content or scope of the book would be welcomed by the Training Department.

CALENDAR 1974/1975

NAME:

AREA:
Page
Fiscal Calendar 1.2
1.1

$197 / F M E M P$															
FIRST QUARTER								THIRD QUARTER							
MONTH	s	M	T	W	T	F	s	MONTH	s	\boldsymbol{M}	T	w	T	F	s
JUL	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\left.\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array} \right\rvert\,$	$\begin{array}{r} 5 \\ 12 \\ 19 \\ 26 \end{array}$	$\begin{array}{r} 6 \\ 13 \\ 20 \\ 27 \end{array}$	$\begin{array}{r} 7 \\ 14 \\ 21 \\ 28 \end{array}$	JAN	30 6 13 20	31 7 14 21	1 8 15 22	2 9 16 23	3 10 17 24	4 11 18 25	5 12 19 26
AUG	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	$\begin{array}{r} 31 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$	FEB	$\begin{array}{r} 27 \\ 3 \\ 10 \\ 17 \end{array}$	$\begin{array}{r} 28 \\ 4 \\ 11 \\ 18 \end{array}$	29 5 12 19	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	31 7 14 21	1 8 15 22	2 9 16 23
SEP	$\begin{array}{r} 26 \\ 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 27 \\ 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 28 \\ 4 \\ 11 \\ 18 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \\ 26 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \\ 27 \end{array}$	$\begin{array}{r} 31 \\ 74 \\ 21 \\ 28 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \\ 29 \\ \hline \end{array}$	MAR	24 3 10 17 24	$\begin{array}{r} 25 \\ 41 \\ 18 \\ 25 \end{array}$	26 5 12 19 26	27 6 13 20 27	28 7 14 21 28	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \\ 29 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \\ 30 \end{array}$
SECOND OUARTER								FOURTH QUARTER							
MONTH	s	M	T	w	T	F	s	MONTH	s	M	T	w	T	F	s
OCT	$\begin{array}{r} 30 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$	$\begin{array}{r} 5 \\ 12 \\ 19 \\ 26 \end{array}$	$\begin{array}{r} 6 \\ 13 \\ 20 \\ 27 \end{array}$	APR	31 7 14 21	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	2 9 16 23	3 10 17 24	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$	5 12 19 26	6 13 20 27
NOV	$\begin{array}{r} 28 \\ 4 \\ 11 \\ 18 \end{array}$	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	$\begin{array}{r} 31 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	MAY	28 5 12 19	$\begin{array}{r} 29 \\ 6 \\ 13 \\ 20 \end{array}$	30 7 14 21	1 8 15 22	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	3 10 17 24	$\begin{array}{r}4 \\ 11 \\ 18 \\ 25 \\ \hline\end{array}$
DEC	$\begin{array}{r} 25 \\ 2 \\ 9 \\ 16 \\ 23 \\ \hline \end{array}$	$\begin{array}{r} 26 \\ 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 27 \\ 4 \\ 11 \\ 18 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 5 \\ 12 \\ 19 \\ 26 \\ \hline \end{array}$	$\begin{array}{r} 29 \\ 6 \\ 13 \\ 20 \\ 27 \end{array}$	$\begin{array}{r} 30 \\ 7 \\ 14 \\ 21 \\ 28 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \\ 29 \end{array}$	JUN	26 2 9 16 23	27 3 10 17 24	28 4 11 18 25	29 5 12 19 26	30 6 13 20 27	31 7 14 21 28	$\begin{array}{r}1 \\ 8 \\ 15 \\ 22 \\ 29 \\ \hline\end{array}$

197 FSGA CAEM															
FIRST QUARTER								THIRD QUARTER							
MONTH	s	M	T	W	T	F	s	MONTH	s	M	T	W	T	F	s
JUL	$\begin{array}{r} 30 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$	$\begin{array}{r} 5 \\ 12 \\ 19 \\ 26 \end{array}$	$\begin{array}{r} 6 \\ 13 \\ 20 \\ 27 \end{array}$	JAN	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	31 7 14 21	1 8 15 22	2 9 16 23	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$
AUG	$\begin{array}{r} 28 \\ 4 \\ 11 \\ 18 \end{array}$	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	$\begin{array}{r} 31 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	FEB	$\begin{array}{r} 26 \\ 2 \\ 9 \\ 16 \end{array}$	$\begin{array}{r} 27 \\ 3 \\ 10 \\ 17 \end{array}$	28 4 11 18	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \end{array}$	30 6 13 20	31 7 14 21	$\begin{array}{r}1 \\ 8 \\ 15 \\ 22 \\ \hline\end{array}$
SEP	25 1 8 15 22	$\begin{array}{r} 26 \\ 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 27 \\ 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 28 \\ 4 \\ 11 \\ 18 \\ 25 \end{array}$	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \\ 26 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \\ 27 \end{array}$	$\begin{array}{r} 31 \\ 7 \\ 14 \\ 21 \\ 28 \end{array}$	MAR	23 2 9 16 23	$\begin{array}{r} 24 \\ 3 \\ 10 \\ 17 \\ 24 \end{array}$	25 4 11 18 25	$\begin{array}{r} 26 \\ 5 \\ 12 \\ 19 \\ 26 \end{array}$	27 6 13 20 27	$\begin{array}{r} 28 \\ 7 \\ 14 \\ 21 \\ 28 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \\ 29 \end{array}$
SECOND QUARTER								FOURTH QUARTER							
MONTH	s	M	T	W	T	F	s	MONTH	s	M	T	w	T	F	s
OCT	$\begin{array}{r} 29 \\ 6 \\ 13 \\ 20 \end{array}$	$\begin{array}{r} 30 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$	$\begin{array}{r} 5 \\ 12 \\ 19 \\ 26 \end{array}$	APR	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	$\begin{array}{r} 31 \\ 7 \\ 14 \\ 21 \end{array}$	1 8 15 22	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 4 \\ 11 \\ 18 \\ 25 \end{array}$	$\begin{array}{r} 5 \\ 12 \\ 19 \\ 26 \end{array}$
NOV	$\begin{array}{r} 27 \\ 3 \\ 10 \\ 17 \end{array}$	$\begin{array}{r} 28 \\ 4 \\ 11 \\ 18 \end{array}$	$\begin{array}{r} 29 \\ 5 \\ 12 \\ 19 \end{array}$	$\begin{array}{r} 30 \\ 6 \\ 13 \\ 20 \end{array}$	$\begin{array}{r} 31 \\ 7 \\ 14 \\ 21 \end{array}$	$\begin{array}{r} 1 \\ 8 \\ 15 \\ 22 \end{array}$	$\begin{array}{r} 2 \\ 9 \\ 16 \\ 23 \end{array}$	MAY	$\begin{array}{r} 27 \\ 4 \\ 11 \\ 18 \end{array}$	$\begin{array}{r} 28 \\ 5 \\ 12 \\ 19 \end{array}$	29 6 13 20	30 7 14 21	8 15 22	2 9 16 23	3 10 17 24
DEC	24 1 8 15 22	$\begin{array}{r} 25 \\ 2 \\ 9 \\ 16 \\ 23 \end{array}$	$\begin{array}{r} 26 \\ 3 \\ 10 \\ 17 \\ 24 \end{array}$	$\begin{array}{r} 27 \\ 4 \\ 11 \\ 18 \\ 25 \end{array}$	$\begin{array}{r} 28 \\ 5 \\ 12 \\ 19 \\ 26 \end{array}$	$\begin{array}{r} 29 \\ 6 \\ 13 \\ 20 \\ 27 \end{array}$	$\begin{array}{r} 30 \\ 7 \\ 14 \\ 21 \\ 28 \end{array}$	JUN	25 1 8 15 22	$\begin{array}{r} 26 \\ 2 \\ 9 \\ 16 \\ 23 \end{array}$	27 3 10 17 24	28 4 11 18 25	29 5 12 19 26	30 6 13 20 27	31 7 14 21 28

TROUBLE SHOOTING

MAINTENANCE 2.3
Reliability 2.4
Component Failures 2.5
Production Errors 2.8
TROUBLE SHOOMING 2.9
Fault Detection 2.9
Fault Location 2.10
Fault Rectification 2.15
Tools 2.15
Soldering 2.16
IC Removal 2.18

MAINTENANCE

The work of the computer technician in the manufacturing environment is part of a much wider subject maintenance. Maintenance divides into two parts and our work contributes to each:
(a) Preventive Maintenance:
aimed at preventing unserviceability. The production of a reliable and high quality product is the foundation of the preventive maintenance programme at the customers site. The initial adjustments made during manufacture are to secure reliable as well as optimum performance.
(b) Corrective Maintenance:
fixing a piece of equipment which is not working properly or not working at all. In our environment there is a peculiarity - the equipment with which we deal will probably never have worked before.

Maintenance is closely related to another subject RELIABILITY - which has a close bearing on both aspects of our work.

RELIABILITY

It is easy to understand that a piece of machinery must have a degree of reliability. No machine is perfectly reliable - the wear between moving parts takes care of that - but, on the other hand, few machines are totally unreliable, if we exclude those that are nearly worn out.

The reliability of a mechanism is related to its complexity and its quality and is measured as a Failure Rate (failures per " n " hours or " n " operations) or as a MEAN TIME BETWEEN FAILURES (MTBF).

Now consider a piece of electronic equipment. One might expect to encounter 100% reliability because of the lack of moving parts. Unfortunately the cycling of the components between their ON and OFF temperatures produces expansions and contractions that fatique metal and plastics and give rise to electrical failures. Nevertheless the reliability of electronic devices is far greater than that of mechanical or electromechanical devices.

If we draw a graph of reliability against time for the working life of a batch of devices or components, the curve always comes out like this:

and three zones are easily discernible.
(A) Burn-In:
where initial failures occur:
when the first contact with work weeds out delicate parts and exposes weaknesses.
(B) Useful Life:
with a relatively low rate of random failures.
(C) Wear Out:
when old age and wear and tear combine to produce a rising failure rate.

Of these three aspects of reliability our work is governed by the first - Burn-In, because our trouble shooting and testing procedures eliminate the weak and delicate components and represent a significant fraction of the Burn-In period of the systems we ship.

In trouble shooting newly manufactured modules, assemblies and sub-assemblies, the technician has to deal with faults stemming from two main sources:
(a) Component Failures
(b) Production Errors

COMPONENT FAILURES

Table 1 summarises the commonest faults associated with components. The components are given in order of failure rates. Although the typical rates quoted are for the Useful Life part of their reliability curves, the relative order of failure rates is approximately the same during Burn-in.

TABLE 1			
COMPONENT	COMMON FAULT	TYPICAL CAUSES	\% FAILURES PER 1000 HOURS
Lamps	Open Circuit	Fatigue from thermal and magnetic motion at ON/OFF	1.2
Capacitors (electrolytic)	Open Circuit Short Circuit	Stressed and broken connections Dielectric breakdown or leakage	0.2
Transistors (Si-power)	Performance Change Open Circuit Short Circuit	Seal or chip defect Broken bond or connection Crystalline breakdown - connection clearance	0.08
Capacitors (paper)	Open Circuit Short Circuit	Stressed and broken connections Dielectric failure	0.05
Transistors (Ge - power)		See Si Power Transistors	0.05
Capacitors Glass/Mica		See Paper Capacitors	0.03
Relays	Contact Failure Action Failure	Arcing - corrosion fatigue Mechanical stress	0.03
Resistors (variable)	Change in value Open Circuit	Track wear - substrat cracks - turn shorts Wiper or connection failure	0.03
I.C's. (linear)	Performance Change Short Circuits Open Circuits	Chip and package defects - stresses Fouled connections Broken bonds and connections	0.03

COMPONENT	COMMON FAULT	TYPICAL CAUSES	\% FAILURES PER lOOO HOURS
Zener Diodes	Performance Change Short Circuits Open circuits \& intermittent connections	Chip and package defects Crystal failures Bond and connection failure	0.01
Switches Transformers	Short Circuits Open Circuits	See Relays Insulation failure or connector clearance Connector or winding failure	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$
Transistors (Ge -low pwr.)		See Si-power Transistors	0.01
I. C's. Digital		See I.C's linear	0.01
Resistors (WW)	Value change Open Circuit	shorted turns Fatigued winding or connector	0.01
Transistors (Si Low Pwr.)		See Transistors (Si-power)	0.008
Multiway Connectors	High R Open Circuit Short Circuit	Galvanic corrosion Broken Pin Bent Pin	0.005
Diodes	Performance Change Short circuit Open Circuit	Crystal defects Crystal failure Bond failure	0.005
Resistors (film \& comp)	Value Change Open Circuit	Substrate cracks composition aging Cracking, connector failure	0.005

2.7

COMPONENT	COMMON FAULT	TYPICAL CAUSES	\% FAILURES PER 1000 HOURS
Connection (solder)	Open	Fatigue	0.001
Connection (wrapped)	Open	Fatigue	0.0001

PRODUCTION ERRORS

No matter how rigorous the inspection procedure of the production areas a percentage of errors escape detection. Some of the more common errors are listed below.

COMPONENT	ERRORS
I. C^{\prime} s.	1. Reversed 2. Wrong type 3. Legs not inserted (bent under by insertion machine)
Resistors	1. Wrong Value 2. Wrong Place 3. One connector in wrong hole 4. Missing 5. Additional - inserted in space intended to be vacant 6. Diode or capacitor instead
Diodes	1. Wrong type 7. Reversed 2. Wrong place 3. One connector in wrong hole 4. Missina 5. Additional - inserted in space intended to be vacant 6. Resistor or capacitor instead
Capacitors	1. Wrong type 2. Wrong value 3. Wrong place 4. Connector in wrong hole 5. Wrong polarity 6. Diode or resistor instead 7. Additional - inserted in space intended to be vacant

COMPONENT	ERRORS
Etch	1. Cracked tracks (sometimes two or more at same site. 2. Break in track (s) 3. Lifted track 4. Missing etch - lifted or guillotined off on one or more edges 5. Solder shorts 6. Open circuit plated through holes Note - all defects may be concealed by components or handles.
Joints	1. Dry 2. Unsoldered 3. Excess solder shorting components or tracks. 4. Open circuit - apparently soldered.

TROUBLE SHOOTING

The process of trouble shooting divides into three stages:

1. Detection of the fault
2. Location of the fault
3. Repair of the fault

FAULT DETECTION

This merely implies "becoming aware" of the existence of a fault. Because, in our case, the technician is the first user of the equipment this stage holds few complications. This is not true in other environments where the technician has to unravel the ideas and actions of the user - where "faulty readers" need switching on and "dead videos" need the brightness turned up.

FAULT LOCATION

The technician can use a number of different methods to locate a fault. He can:
(a) Start at the output end of a system and search back towards the input until he finds the point at which the "signal" stops.
(b) Start at the input end of the system and search forward to locate the point at which the "signal" is lost.
(c) Start half-way between input and output and move forward to a new half-way point if the "signal" is present, or backward if not.
(d) Cast about at random until he discovers the fault.
(e) Gather all available information and use his power of reasoning and his theoretical knowledge to deduce which components have failed.

These methods have names. They are known respectively as:
(a) Output - to - input.
(b) Input - to - output
(c) Half split
(d) Random or non-systematic
(e) Theoretical analysis or non-sequential.

If we consider these methods applied to this functional diagram.

(a) Output-to-input is of most use in the convergent area (a lot of combinational logic falls into this category).
(b) Input-to-output is of most use in the divergent area.
(c) Half split is the fastest way to identify the faulty area of the system but is applicable to a system with a long serial aspect and which, like the diagram, can be considered in "functional" blocks.
(d) Random is difficult to justify.
(e) Theoretical analysis, for ordinary mortals, is likely to be a technique to support either a, b, or c.

Generally speaking, a reasonable plan would be to use the half split method to localise the area of the fault and then to use output-to-input or input-to-output according to the nature of the circuitry in that area.

To support the methods of fault location there are certain 'tools' at the disposal of the technician. Some of these, alone or in combination, are powerful enough to obviate the need for a formal method of fault location but this is only true when the system or fault is relatively uncomplicated. Usually these "tools" are included as techniques or aids in the location sequence. They are listed below in the order in which they should be of use when tracing an obscure fault in a large system to component level:
a) Logical Approach Work deliberately, eliminating the irrelevant as you go so that each decision has only to be made once. Untidy thinking often sends us round the same loop of deduction several times - with varying results for each cycle.
b) Pencil and Paper An invaluable aid to the previous item allowing us to work out and record the most logical approach to the fault. When having second thoughts later on we have a record of the sequence of reasoning - complete with its errors.
c) Knowledge If you don't know how the thing works then you are reduced to the RANDOM method of fault location with the added disadvantage of not knowing what you are looking for. If you have only a partial knowledge then every deduction you make will be suspect and surrounded with alternatives.
d) Experience As time passes the technician accumulates a mental file of faults which eventually separates into groups of related faults. The diary section of this book is intended to help this process.
e) Symptoms Make sure that you use all of the data that the hardware offers: all lamp and register indications and switch settings. Note the effect of, and response to, manual operation. If the correct output is not obtained from a system then the incorrect output, if any, may be significant.
f) Diagnostics. This is an extension of the previous item, but the power of repetitive selftesting is realised against intermittent and partial failures. Too often the reserve of diagnostic programmes is inadequately used. Make sure that the programmes and listings are up to date.
g) Programming. Vital to the selection, understanding and interpretation of diagnostics and vital for the generation of your own test programmes - another neglected technique.
h) Documentation. Manuals, Handbooks, Prints, Timing diagrams and Flow-charts - OF THE CORRECT REVISION. The flow-charts and timing diagrams are generally underestimated. They are the only source of dynamic information - the data is presented with the provisos of relative timing included.
j) Substitutions. The location of a fault within a particular module or assembly can be confirmed by substituting an identical item that is known to be serviceable. The occasional substitution of a good module also checks the continued serviceability of the other parts of the system which may have suffered during the troubleshooting process.
k) Inspection. A close examination for production errors at the suspected site can often reveal the cause of the fault.

1) Test Equipment. The intelligent use of testequipment which is well kept and properly calibrated includes the frequent checking of its performance - 'scope probes need frequent checking.
m) Hand Tools. Generally associated with the repair of faults but often useful in the final stages of fault location. In this situation, for instance:

Suppose that the line TP is being held low. To discover which gate is holding it down each must be released from the line in turn.

By sucking away the solder from, say - pin 6 of the 74 H 40 and checking that it is isolated from the etch with a multi-meter the line is disconnected from the gate (without damaging the IC) and its state can be checked.

At this final stage it is sometimes possible to combine the rectification of the fault with the last stage of fault location. If, in the example above, the two 8881's were in the same IC and one of them were known to be at fault the obvious course of action would be to change the IC.

The way in which a technician works varies from fault to fault but in each case the sequence of events will include some of the methods and techniques mentioned here. The order in which they are used is again a function of circumstances and can differ widely from the order suggested here. For instance - the half-split method may be found to be useless for identifying the faulty function at system level but ideal for pin-pointing the faulty component in a sub-assembly.

FAULT RECTIFICATION

The action taken to remove a fault from a system will usually involve making an adjustment or replacing a component. In both cases you will need hand tools.

TOOLS

Keep your tools safe and in good condition. They will stay in good condition longer if you don't lend them. Several Tools need special attention:
a) Soldering Iron Keep at least two bits one fine point and one long chisel. The fine point serves (for technicians dealing with modules) as a general purpose bit but having such a small surface area for its volume it gets very hot and is hard to keep in good condition. It also tends to develop a pronounced hook at the tip when used for heavier work and this can lead to damage in delicate work. For heavier jobs change to a chisel bit. The occasional bit change removes the oxide dust from the element body and helps to keep the iron efficient. Bit changing can be carried out when the iron is hot by manipulating the retaining collar and hot parts with pliers. Bits should be cleaned frequently and for this reason the sponge must be moistened often. If ever the flex of the iron gets damaged or burnt have it replaced.
b) Cutters Keep a fine pair for working on IC's. A narrow point is needed to clip the pins cleanly. When trimming pins or leads make sure the clippings are aimed in a safe direction.
c) Solder Sucker Do not modify the action of a solder sucker by tampering with the spring. The intensity of its action can be adjusted at the point of work by tilting the nozzle to allow extra air to enter. Do not use
oily or greasy lubricants in the bore of the sucker - they will destroy the internal washers. To maintain an efficient action the cylinder should be cleared of debris frequently.

SOLDERING

The object of a soldered joint is to join two pieces of metal for electrical continuity with a degree of mechanical strength. In the electronics industry the two pieces of metal will almost always be copper because:
a) It is a good conductor of electricity
b) It is relatively cheap in comparison to silver
c) It is flexible and withstands wear
d) It is a good conductor of heat

If an attempt is made to solder together two pieces of bare copper wire with the aid of a dry iron and some bar solder it will be impossible to produce a soldered joint. To produce a successful joint the solder must be able to flow freely into the pores of the metal: this freedom to flow is prevented by the presence of copper oxide on the surface of the metal and also by sundry other contaminants.

To remove the oxide and contamination a fairly savage flux would be needed - a substance like 'killed spirit' which would be too corrosive for our use. So, in practice we dont attack copper oxide with severe fluxes: we prevent the copper from oxidising by plating it with a thin layer of another metal which does not oxidise so readily and which solders easily (tin and tin-lead coatings are common). The plating oxidises, of course but this oxide is easy to deal with and a mild flux is adequate. For our purposes the solder is made as a fine tube and the flux is put in the tube.

Solder manufactured in the form of wire with the flux inside is known as cored solder. The flux is usually resin which is comparatively mild but strong enough to deal with ordinary surface contamination.

There are two jargon words associated with soldering:
Wetting. When a surface of metal has a coating of bright molten solder adhering to it the surface is said to be wetted. The flowing on of the molten solder is called wetting.

Tinned. When the wetted surface has cooled it is known as a tinned surface. A soldering iron is tinned by cleaning the bit and applying a coating of bright molten solder - in other words, by wetting the bit with solder.

To make a soldered joint:
a) Tin the bit of the iron and wipe or shake off. surplus solder.
b) Heat the joint by applying the tip of the bit so that the joint is between you and the bit -
c) At the same time apply the tip of the solder to the joint from the front.
d) At the moment the joint 'wets' remove the solder and then the iron.
e) Keep the joint perfectly still until the solder is seen to set.

The amount of solder applied to the joint is a matter of timing at the instant of wetting. The aim is to produce a joint with a concave fillet of solder -the upper photographs on page 4-62 of the Workmanship Standards Manual illustrate the required effect.

Surplus solder at the joint can run through a platedthrough hole and cause solder shorts beneath components on the other side of a board. On the other hand, an attempt to make the joint with insufficient solder causes overheating and the formation of dusty oxides which the flux cannot remove.

Above all - any movement of a joint before it has set must be avoided. Movement of a setting joint produces a dry joint with a typical dull grainy appearance. Dry joints have little or no mechanical strength and electrical properties which can vary from open circuit to semi-conductor rectification.

1 C REMOVAL

The following sequence assumes that the IC is not to be saved for re-use:
a) Cut the legs of the IC at the top where they enter the body of the device using a pair of miniature side-cutters. Remove the body of the IC.
b) Remove each leg by applying heat and gently withdrawing it from side 1 using a pair of fine-nosed pliers. If a leg is reluctant to move, leave it.
c) Turn the board over and heat each hole individually, removing solder with a de-soldering tool. If any remaining leg is retained by a bend at the tip it can be straightened and the removal completed from side l. Where no obstruction is apparent the addition of a little extra solder may facilitate removal.
d) Clean both sides of the area with solvent and inspect for damage.

NOTES

GENERAL NOTES

OPERATIONAL AMPLIFIERS 3.3
Feedback 3.3
The Differential Amplifier 3.6Virtual Earth3.8
FLIP FLOPS
J-K Flip Flop 3.10
D-Type Flip Flop 3.10
Redefined D-Type Flip Flop 3.12
MAGNETIC DATA RECORDING 3.13
Pulse Recording 3.13
Return to Zero 3.14
Non-Return to Zero 3.15
NRZI 3.16
System Limitations 3.16
Manchester 3.18
THE TIL NAND GATE 3.19
Totem Pole Output 3.21
FORMULAE 3.22
LOCATION OF I.C's. 3.25
INFORMATION DIRECTORY 3.26

OPERATIONAL AMPLIFIERS

The idea of the amplifier as a 'component' to be inserted into a piece of equipment and adjusted for the required performance seems to have originated in the late 1940's. This idea became a reality in the 1960's with the arrival of the integrated circuit.

The underlying principle of such a versatile amplifier is that the parameters of an amplifier can be set by adjusting the amount of FEEDBACK between its input and output terminals.

For an 'op-amp' to be truly versatile it would need to have:
(a) Infinite gain
(b) Infinitely High input impedance
(c) Zero output impedance
(d) Infinite bandwidth

We could, of course, add small physical size and minute power consumption.

In practice the op-amp is a very high gain, wide band, direct-coupled amplifier with a performance that can be pre-set over a wide range by selecting a suitable feedback arrangement.

FEEDBACK

In a simple amplifier, having a gain of A

Vout $=A x \operatorname{Vin}$

If we feed back a portion of Vout the performance of the amplifier is modified. The fraction of Vout fed back is designnated β so
V fed back $=\beta$. Vout

So, with Feedback, Vin becomes Vin $+\beta$.Vout and since Vout $=$ A.Vin

$$
\operatorname{Vin}^{\prime}=\operatorname{Vin}+\beta \cdot A \cdot V i n
$$

Now Gain $=\frac{\text { Vout }}{\text { Vin }}$
So gain with feedback, $A^{\prime}=\frac{A \cdot V i n}{\text { Vin }+\beta \cdot A \cdot V i n}$

$$
A^{\prime}=\frac{A}{1+A \beta}
$$

Let's try an example:

Suppose we have an amplifier with a gain of 50

If Vin $=1 \mathrm{~V}$
\therefore Vout $=50 \mathrm{~V}$

Now suppose we feedback 1% of this, i.e. $\beta=0.01$

$$
\begin{aligned}
\text { Now Vin } & =1 \text { Volt }+(0.01 \times 50) \\
& =1 \mathrm{~V}+0.5 \mathrm{~V} \\
& =?
\end{aligned}
$$

Remember, Vin and Vout are a.c. signals so lV + 0.5V is a matter of relative phase. Let us exclude all but IN-PHASE and ANTI-PHASE.

If β is in-phase $1 \mathrm{~V}+0.5 \mathrm{~V}=1.5 \mathrm{~V}$ so now Vin is bigger, Vout gets bigger. β Vout gets bigger so Vin gets bigger again This is a POSITIVE FEEDBACK and gives us impressive gain figures, instability and oscillators.

Let us concentrate on the ANTI-PHASE condition:

$$
\begin{aligned}
& 1 \mathrm{~V}+0.5 \mathrm{~V} \text { anti-phase } \\
= & 1 \mathrm{~V}-0.5 \mathrm{~V} \\
= & 0.5 \mathrm{~V}
\end{aligned}
$$

So Vout drops to 25 V and β drops to $0.25 \mathrm{~V}$.
It is quicker to use the "gain with feedback" formulae.

$$
\begin{aligned}
A^{\prime} & =\frac{A}{1+A \beta}=\frac{50}{1+(50 \times 0.01)} \\
& =\frac{50}{1.5}=33.33^{\circ}
\end{aligned}
$$

So Vout settles at $33 \frac{1}{3} \mathrm{~V}$.

In practical op-amps, gain is very high. If we feedback a large portion of Vout

$$
1+A \beta \bumpeq A \beta
$$

so Gain $=\frac{A}{1+A \beta}=\frac{A}{\beta A}=\frac{1}{\beta}$
So the feedback fraction sets the gain and since β is determined by the feedback components, the gain of an op-amp is selectable for any particular application (within reason).

Several circuits are suitable for use as direct-coupled amplifiers but, of these, the differential amplifier has superior stability and interference rejection qualities. The dual input arrangement of this circuit gives the op-amp much of its versatility.

If Q1 and Q2 are matched and if R1 $=$ R2 then in the quiescent state the two collectors will be at the same potential. If we apply a differential signal to the input terminals, (inputs are driven with opposite polarities) one collector potential will rise and the other will fall - in other words antiphase outputs will result. But if a signal affects both inputs equally, in the same sense (noise, for example) then both collectors will respond in phase. This in-phase response to commonmode inputs can be used to cancel interference.

Because the differential amplifier forms the first stage of an op-amp the symbol is:

where

+ is the non-inverting input
- is the inverting input.

This allows the selection of either positive or negative feedback.

If we consider the op-amp in the inverting mode:

Because the gain is extremely high then the current into the amplifier at point X must be virtually zero; and if this is so then the voltage at point X must also be virtually zero. In fact, point X is a virtual Earth - approximately at ground without actually being grounded - under all operating conditions.

We must now account for Vin and Iin. Vin must be dropped across $Z i n$ and Iin can only flow through $Z f b$, as Ifb. So if Iin $=I f b$ and point X is at ground (virtual) then

$$
\begin{aligned}
& \frac{\text { Vin }}{\text { Zin }}=-\frac{\text { Vout }}{\text { Zfb }} \\
& \therefore \frac{\text { Vout }}{\text { Vin }}=-\frac{\text { Zfb }}{\text { Zin }}=\text { Gain }
\end{aligned}
$$

This is a re-statement of the earlier argument but in a more practical context. It is also an elaboration of Fig. 2, Page 272 of the 1973-74 LOGIC HANDBOOK - part of an article on op-amps to which the reader is referred for terminology and configuration details.

FLIP FLOPS

If we think of flip-flops as logic elements, and not as sophisticated bistable circuits, it is surprising how little there is to know about them. Since we spend so much of our time dealing with flip-flops we must be clear about their operation.

There are certain factors common to all types of flipflop:
a) Complementary Outputs:

Every flip-flop has two outputs which we know as the 1 and \varnothing_{2} outputs. They are also called Q and \bar{Q}, true and false,
 ON and OFF, and SET and RESET. These two outputs are usually opposite in state - if one is Hi then the other is Lo and vice-versa.

When 1 is $H i$ and \varnothing is Lo the flip-flop is said to be SET.

When 1 is Lo and \varnothing is $H i$ the flip-flop is said to be RESET.
b) SET and/or RESET Inputs:

Most flip-flops have inputs which can force the outputs to a particular state. These inputs are enabled Lo. If held high they have no effect on the operation of the device. The input which forces the set condition is called SET (sometimes PRE for PRESET) and the other, which forces Reset is known as RESET.

Note: If both inputs are made Lo at the same time both outputs go Hi normally an undesirable state.

c) Clock Input:

Most flip-flops have a clock input that controls the insertion of binary data. The clock pulse usually causes the flip-flop to record the input state prevailing before the pulse.

The J-K has two data inputs, designated J and K. Data applied to these inputs will not affect the outputs

UNTIL THE CLOCK PULSE ENDS.
The effect the inputs have on the outputs is quite definite. On the trailing edge of the clock pulse the outputs:

Do not change if J and K are both Lo.

Complement if both J and K are $H i$.

Otherwise they copy the inputs.

Inputs		Outputs when Clock Pulse Ends	
J	K	l	O
Lo	Lo	No Change	
Lo	Hi	Lo	Hi
Hi	Lo	Hi	Lo
Hi	Hi	Changes	

Sometimes the J or K or both inputs have combinational gating included within the device. For example:

Here the J input is determined by J1, J2, and J3 where
$J=J 1 \cdot J 2 \cdot \overline{J 3}$

D-TYPE FLIP FLOP

The D-type has a single information input, D. The output responds to the state of the D input

At THE StART OF THE CLOCK PULSE.

It will not respond to a change of input taking place during or after the pulse. The behaviour of the D-type at the leading edge of the clock pulse is simply:
a) If D is Lo it RESETS (or stays Reset).
b) If D is Hi it SETS (or stays Set).

REDEFINED D-TYPE FLIP FLOP

In modern logic circuitry many signals are true (asserted) when Lo. This means that the D-type often has its "active" condition as RESET - a state associated with "inactive". This situation is remedied by re-drawing the device with the \varnothing output in the 1 position and vice-versa. In other words, the pin numbers for the outputs are reversed; so for the 7474:

Notice that the sense of the D input is inverted to signify the change.

We now have a flip-flop that looks SET when responding to a Lo assertion. All that is needed now is to change the set and Reset input titles so that their effects match the new arrangement:

becomes

3.11

This gives the final redefinition as:

One final complication. Sometimes outputs are shown twice on the same flip-flop - one for each sense of the output. In other words an output is drawn for the circuits it affects when Hi and again for those it affects when Lo.

SET / RESET FLIP FLOP

This flip-flop has no clock input.

If a Lo is applied:
(a) to the Set input the flip-flop SETS (or stays set)
(b) to the Reset input the flip-flop RESETS (or stays Reset)
(c) to both inputs both outputs go Hi , but on removal of the inputs the output state is unpredictable.

MAGNETIC DATA RECORDING

These elementary notes summarise the methods of magnetic recording available to the engineer. Some methods not in current use are included to indicate the advantages of those that are.

The bit cell boundaries, pulse directions and field polarities have been chosen arbitrarily as innumerable variations will be encountered in practice. Alternative titles are given where a recording technique is known by more than one name.

Pulse Recording
or Return to Zero (single polarity)

Write Current

Tape Pattern

Read Voltage

Pulses of Write Current are applied for 'ones'. Zeros are signified by absence of pulse.

Disadvantage: Since zero bit cells contain no event the data is not self-clocking.

When the tape or surface has been pre-magnetised (saturated by a D.C. erase) this method is known as Return to Saturation or Return to Bias.

Write Current

Tape Pattern

Read Voltage

A development of the previous method with zeros written by current pulses in the opposite direction. As there is an event in each bit cell the data can be selfclocking. The greater signal range gives an improved signal to noise ratio.

Write Current

Tape Pattern

Read Voltage

The write current reverses only on bit changes, i.e. \varnothing to l or l to \varnothing.

Note that write current, always flows and that data is not self-clocking as some bits are not marked by an event.

Tape Pattern

Read Voltage

Write current reverses to indicate a 1 . No reversal for a \varnothing.

Not self clocking. Preferred to NRZ as any error affects only one bit whereas an error in NRZ propagates i.e. affects all subsequent bits in the read cycle.

Used in several D.E.C. products including TUlø, TU2O, DF32, and RS $\varnothing 8$.

SYSTEM LIMITATIONS

The recovery of data which has been recorded using the techniques described above simply involves an amplitude detection system (and suitable clocking arrangements to mark the data times for the NRZ systems).

Noise pulses caused by tape imperfections do not usually have sufficient magnitude to be interpreted as data but any large pulse would also have to coincide with data-time in the NRZ systems.

So - error rates can be insignificant when signals have to meet both amplitude and timing standards. Unfortunately, these standards limit the amount of data we can record on a given length of surface since compression of the data produces wide variations in amplitude and timing. For example, if we raise the data rate in NRZI

certain pulses degrade both in amplitude and timing: for two reversals close together the detected voltage for the first is just getting established when the field of the next reversal influences it causing an early peak of reduced amplitude.

It is possible to overcome this deficiency of NRZI by detecting the zero-crossings instead of the peaks of the read waveform. This modified form of NRZI is used in the RKO5.

NRZI used with zero-crossing (more accurately, zeroapproaching) detection gives low error rates and high data density. There remains the one major disadvantage - the data is not self-clocking - which means that in multi-track systems head skew, both static and dynamic, can interfere with the relationship between the clock and data tracks. Also, in single track systems clock information must be combined with data.

For these reasons use is often made of phase and frequency modulation techniques, the commonest of which is described overleaf.

Tape Pattern

Read Voltage

A 1 is indicated by a flux reversal in one direction and a \varnothing by a reversal in the other direction. Information is retrieved by merely detecting the polarity of the output pulses.

However, some intermediate flux reversals are necessary to enable transitions of the correct polarity to be made and thus frequencies of up to twice the bit rate are encountered.

This form of recording is used in the TU60 and Dectape.

THE TTL NAND GATE

This circuit is fundamental to the system of TTL logic and yet the conventional analytical approach to its operation is not easy to grasp, especially for the technician encountering logic for the first time.

An N-P-N transistor consists essentially of two blocks of N type semi-conductor separated by a thin layer of P -type.

We usually think of the transistor as its symbol is drawn, with the base controlling the flow of electron current from emitter to collector. But, when a transistor is used as a switch it will still work if the collector and emitter
are interchanged: both are N-type and even in discrete transistors where emitter and collector dopings are markedly different, the device will still function upside-down.

The emitter of the transistor can be switched to either $\varnothing \mathrm{V}$ or +5 V . If it is taken to $\varnothing \mathrm{V}$ then, because the base is high it will switch the transistor on and connect the output point to $\varnothing \mathrm{V}$. (O / P goes to "about" $\varnothing \mathrm{V}$ - in fact $0.4 \mathrm{~V}=\mathrm{Vce}$ (sat) for any transistor).

When the switch is taken to +5 V the transistor works upside-down; the emitter behaves as a collector and the collector as an emitter. Now the transistor is on (still with its base hich) but this time the output point is connected to +5 V via an "ON" transistor so output goes to about +5 V .

If the collector of Ql is taken to the base of a second transistor Q2, then Q2 will be cut off when the switch is to ground (because Q2 base is taken to about $\varnothing \mathrm{V}$ via Q1) and the output will rise to +5 V . When the switch is at +5 V , the base of Q2 is high: Q2 conducts heavily and the divider effect of the 16 k and lk resistors combined with Vce (Sat) gives an output of about 0.7 V .

To provide multiple inputs Ql
is given a number of emitters. If one or more of these is taken LOW the transistor works as a normal $\mathrm{N}-\mathrm{P}-\mathrm{N}$ and Q 2 is off. However, if all the emitters are HIGH then Q1 operates in its inverted mode
 and turns on Q2. This gives a NAND function.

TOTEM POLE OUTPUT

Q2 is used as a phase splitter and drives a cascade pair 23 and Q4. When Q2 is cut off its emitter is at ground and Q4 must also be off. Q2 collector is at +5 V - so is Q3 base. 03 is therefore on and the output is High.

When $Q 2$ is conducting its emitter is a fraction of a volt above ground - enough to turn on Q4 and switch the output to ground. 03 base is slightly higher in potential than $Q 4$ base and $Q 3$ would like to conduct but diode Dl has to operate in the flat part of its characteristic, just above $\varnothing \mathrm{V}$, and limits the current to a negligible value.

FORMULAE

Resistors	$\begin{aligned} & R=R_{1}+R_{2} \\ & 1 / R=1 / R_{1}+1 / R_{2} \\ & R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \end{aligned}$	in series in parallel 2 in parallel
Ohms Law	$I=E / R \quad R=E / I E=I R$	
Power	$P=V I \quad P=I^{2} R \quad P=\frac{E^{2}}{R}$	
Charge in Capacitor	$\mathrm{Q}=\mathrm{VC}$	Q in Couls C in Farads V in Volts
Capacitors	$\begin{aligned} & 1 / c=1 / c_{1}+1 / c_{2} \\ & c=\frac{c_{1} c_{2}}{c_{1}+c_{2}} \\ & c=c_{1}+c_{2} \end{aligned}$	in series 2 in series in parallel
Capacitive Reactance	$\mathrm{X}_{c}=\frac{1}{2 \pi \mathrm{fc}_{c}}$	f in Hz
Charge/ Discharge of CR	$T=5 C R$	$T=$ time to 99.7\% change
CR Time constant	$T=C R$	T in Secs
Capacitor Charge State	$V=V_{s} e^{-\left(\frac{t}{c r}\right)}$	$\begin{aligned} & \mathrm{V}=\text { aiming voltage } \\ & e=2.7182 \end{aligned}$

Inductors	$\begin{aligned} & L=L_{1}+L_{2} \\ & 1 / L=1 / L_{1}+1 / L_{2} \\ & L=\frac{L_{1} L_{2}}{L_{1}+L_{2}} \\ & L=L_{1}+L_{2}+2 M \\ & L=\frac{L_{1}}{L_{1}+L_{2}-M_{2}} \end{aligned}$	in series in parallel 2 in parallel series with mutual inductance parallel with mutual inductance
LR Time constant	$T=L / R$	T in secs. L in Henries.
Charge / Discharge of LR	$T=5^{L} /{ }_{R}$	T = time for 99.7\% change
Inductor Charge State	$I=I_{s} e^{-\left(\frac{t L}{R}\right)}$	$\begin{aligned} & I \text { in Amps } \\ & e=2.7182 \\ & I_{s}=\text { aiming current } \end{aligned}$
Inductive Reactance	$\mathrm{X}_{L}=2 \pi \mathrm{fL}$	f in Hz
Q of Coil	$Q=\frac{X_{L}}{R}$	
Resonant Frequency	$f=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$	
Impedance	$\begin{aligned} & Z=R \\ & Z=\frac{L}{C R} \\ & Z=\sqrt{X^{2}+R^{2}} \\ & Z=\frac{R \quad X}{\sqrt{R^{2}+X^{2}}} \\ & Z=R \pm j X \end{aligned}$	series resonance Parallel resonance X and R in series X and R in parallel combined impedances

Conductance	$\mathrm{G}=1 / \mathrm{R}$	G in mhos
Susceptance	$B=1 / x$	B in mhos
Amittance	$Y=1 / z$	Y in mhos
Transistor	$\begin{aligned} & \mathrm{Hfb}=\frac{\Delta \mathrm{I}_{c}}{\Delta \mathrm{I}_{e}} \\ & \mathrm{Hfe}=\frac{\mathrm{Hfb}}{1-\mathrm{Hfb}}=\frac{\Delta I_{c}}{\Delta I_{b}} \end{aligned}$	
Gain	$\begin{aligned} & A=\frac{\text { Vout }}{V \text { in }} \\ & A^{\prime}=\frac{\beta}{1-\beta} \end{aligned}$	with feedback $\beta=\mathrm{Fb}$ fraction

LOCATION OF I.C's.
With the module component side up the I.C's are numbered starting beside the Al contact set. This plan of the M8330 shows the system:

IF IN DOUBT CONSULT THE PRINT.

INFORMATION DIRECTORY

In this list the abbreviations used indicate the book in which the information will be found.

LSDH - Logic System Design Handbook
WSM - Workmanship Standards Manual
LH - Logic Handbook
CLW - Computer Lab Workbook
ITDDL - Introduction to DEC Drawing
\& Logic
SCH - Small Computer Handbook
ITP - Introduction to Programming

ITEM	REF.	CHAPTER/PAGE
Cable characteristics connections		
	LSDH	Ch. 4
	WSM	Ch. 1
		Ch. 6
types	LH	393
Component Identifier	WSM	Ch. 8
Decimal to Binary Conversion	CLW	App. F
	ITP	Ch. 1
Flip Flops	LH	11
timing	LH	18
signal names	ITDDL	2.20
Flow Charting	SCH	3.3
Flow Chart Symbols	ITP	App. C
Gates		
timing considerations	LH	16
unused inputs	LH	16

Information Directory (cont'd)

8 FAMILY NOTES

Basic Instructions	4.2
Group l Operate Microinstructions	4.2
Group 2 Operate Microinstructions	4.2
Instruction Bit Assignments	4.3
Rim Loaders	4.4
MQ Microinstruction Bit Assignments	4.4
Memory Extension \& Time Share MC8-E	4.4
Combined Operate Microinstructions	4.5
MQ Microinstructions	4.5
Internal Ior Microinstructions	
Program Interrupt and Flag	4.6
Loading Constants into the AC	4.6
Extended Arithraetic Element KE8-E	4.7
Teletype Keyboard Reader	4.7
Teletype Teleprinter Punch	4.8
PC8-E Reader Punch	4.8
LE-8 Line Printer	4.8
TCO8-P Dectape Control	4.9
TD8-E Dectape Control	4.9
TA8-E DECcassette IOT Instructions	4.10
RKO8-P Control \& TKOl Disk Drive \&	
Control	4.10
VT8-E Instructions	4.11
RFO8 Disk File	4.12
DF32-D Disk File \& Control	4.12
VC8-E CRT Display Control	4.12
CR8-E Card Reader \& Control or CM8-E	
XY8-E Incremental Plotter Control	4.13
TM8-E/F Magtape Control	4.13
Data Transfer Signals	4.14
ASCII Code	4.14
Omnibus Pin Assignments	4.15
Module Contact Designators	4.16
Information Directory	4.17

Mnemonic	Code	Operation	Time (μ sec.)
BASIC INSTRUCTIONS			
AND	0000	logical AND	2.6
TAD	1000	2's complement add	2.6
ISZ	2000	increment, and skip if zero	2.6
DCA	3000	deposit and clear AC	2.6
JMS	4000	jump to subroutine	2.6
JMP	5000	jump	1.2
IOT	6000	in/out transfer	-
OPR	7000	operate	1.2

GROUP I OPERATE MICROINSTRUCTIONS (1.2)

	GROUP I OPERATE MICROINSTRUCTIONS (I.2)		
		Sequence	
NOP	7000	no operation	-
CLA	7200	clear AC	1
CLL	7100	clear link	1
CMA	7040	complement AC	2
CML	7020	complement link	2
RAR	7010	rotate AC and link right one	4
RAL	7004	rotate AC and link left one	4
RTR	7012	rotate AC and link right two	4
RTL	7006	rotate AC and link left two	4
IAC	7001	increment AC	3
BSW	7002	Swap Bytes in AC	4

GROUP 2 OPERATE MICROINSTRUCTIONS (1.2)
Sequence

SMA	7500	skip on minus AC	1
SZA	7440	skip on zero AC	1
SPA	7510	skip on plus AC	1
SNA	7450	skip on non zero AC	1
SNL	7420	skip on non-zero link	1
SZL	7430	skip on zero-link	1
SKP	7410	skip unconditionally	1
OSR	7404	inclusive OR, switch register	
	with AC		
HLT	7402	halts the program	3
CLA	7600	clear AC	3

GROUP 1 OPERATE INSTRUCTION BIT

 ASSIGNMENTS

GROUP 2 OPERATE INSTRUCTION BIT ASSIGNMENTS

4.3
(Low Speed)
7756/ 6032

7757/ 6031
7760/ 5357
7761/ 6036
7762/ 7106
7763/ 7006
7764 / 7510
7765/ 5357
$7766 / 7006$
7767/ 6031
7770/ 5367
$7771 / 6034$
7772/ 7420
7773/ 3776
7774/ 3376
7775 / 5356
(High Speed)
7756/ 6014
7757/ 6011
7760/ 5357
7761/ 6016
7762/ 7106
$7763 / 7006$
7764/ 7510
$7765 / 5374$
7766 / 7006
7767/ 6011
7770/ 5367
7771/ 6016
7772/ 7420
7773/ 3776
$7774 / 3376$
7775/ 5357

MEMORY EXTENSION \& TIME SHARING TYPE MC8-E

CDF	62 nl	Change to Data Field n	1.2
CIF	62 n 2	Change to Instruction Field n	1.2
CDI	62 n 3	Change to Data Field and Instruction Field n	2
CINT	6204	Clear User Interrupt	1.2
RDF	6214	Read Data Field	1.2
RIF	6224	Read Instruction Field	1.2
RIB	6234	Read Interrupt Buffer	1.2
RMF	6244	Restore Memory Field	1.2
SINT	6254	Skip on User Interrupt	1.2
CUF	6264	Clear User Flag	1.2
SUF	6274	Set User Flag	1.2

LOADING CONSTANTS INTO THE AC ($1.2 \mu \mathrm{SEC}$.)					
OCTAL Constant	Decimal Constant	OCTAL Instruction	Instructions Combined		
5777	-1025	7352	CLA	CLL CMA	RTR
6000	-1024	7333	CLA C	CLL CML	IAC RTL
7775	-3	7346	CLA C	CLL CMA	RTL
7776	-2	7344	CLA C	CLL CmA	RAL
7777	-1	7340	CLA C	CLL CMA	
4000	-0	7330	CLA C	CLL CML	RAR
0000	0	7300	CLA C	CLL	
0001	1	7301	CLA C	CLL IAC	
0002	2	7305	CLA C	CLL IAC	RAL
0002	2	7326	CLA C	CLL CML	RTL
0003	3	7325	CLA C	CLL CML	IAC RAL
0004	4	7307	CLA C	CLL IAC	RTL
0006	6	7327	CLA C	CLL CML	IAC RTL
0100	64	7302	CLA I	IAC BSW	
2000	1024	7332	CLA C	CLL CML	RTR
3777	2047	7350	CLA C	CLL CMA	RAR

Extended			arithmetic element ker-e (optional)
Mode Instructions			
SWAB	7431		switch Mode from A to B
SWBA	7447		switch Mode from B to A
Shift Instructions			
SCA	7441		logical OR step counter with AC
SCA CLA	7641		step counter to AC
SCL	7403 ((Mode A)	step counter load (from memory)
NMI	7411		normalize
SHL	7413		shift left
ASR	7415		arithmetic shift right
LSR	7417		logical shift right
ASC	7403 ((Mode B)	AC to step counter
Arithmetic Instructions			
MVY	7405		multiply
DVI	7407		divide
SAM	7457 ((Mode B)	subtract AC from MQ
Double Precision Instructions (Mode B)			
DLD	7763		double precision load
DST	7445		double precision store
DAD	7443		double precision add
DPIC	7573		double precision increment
DCM	7575		double precision complement
DPSZ	7451		double precision skip if zero
TELETYPE KEYBOARD READER			
Mnemonic Symbol	Octal Code		Operation
KCF	6030	Clear Keyboard Flag	
KSF	6031	Skip on Keyboard Flag	
KCC	6032	Clear Keyboard Flag, and AC, Advance Reader	
KRS	6034	Read Keyboard Buffer Static	
KIE	6035	Set/Clear Interrupt Enable	
KRB	6036	Read K	eyboard Buffer, Clear Flag

telethre felemphnan punch		
Mnemonic Symbol	Octal Code	Operation
TFL	6040	Set Teleprinter Flag
TSF	6041	Skip on Teleprinter Flag.
TCF	6042	Clear Teleprinter Flag
TPC	6044	Load Teleprinter and Print
TSK	6045	Skip on Printer or Keyboard Interrupt
TLS	6046	Clear Flag Load Teleprinter and Print

PC8-E PEADER PUNCH		
Mnemonic Symbol	Octal Code	Operation
RPE	6010	Set Reader/Punch Interrupt Enable
RSF	6011	Skip on Reader Flag
RRB	6012	Read Reader Buffer
RFC	6014	Reader Fetch Character
RFC RRB	6016	Read Buffer and Fetch New Character
PCE	6020	Clear Reader/Punch Interrupt Enable
PSF	6021	Skip on Punch Flag
PCF	6022	Clear Punch Flag
PPC	6024	Load Punch Buffer and Punch Character
PLS	6026	Clear Flag Load Punch Buffer and Punch

	LE-s LINE PRINTER	
Mnemonic Symbol	Octal Code	Operation
PSKF	6661	Skip on Character Flag
PCLF	6662	Clear the Character Flag
PSKE	6663	Skip on Error
PSTB	6664	Load Printer Buffer, Print on Full
PSIE	6665	Buffer or Control Character
Set Program Interrupt Flag		
PCLF PSTB	6666	Clear Line Printer Flag, Load Character,
and Print		
PCIE	6667	Clear Program Interrupt Flag

TCOB-P DECTAPE CONTROL			
Mnemonic Symbol	Octal Code	Operation	Time ($\mu \mathrm{s}$)
DTRA	6761	Read Status Register A	2.6
DTCA	6762	Clear Status Register A	2.6
DTXA	6764	Load Status Register A	2.6
DTLA	6766	Clear and Load Status Register A	3.6
DTSF	6771	Skip on Flag	2.6
DTRB	6772	Read Status Register B	2.6
DTXB	6774	Load Status Register B	2.6

TDB-E DECTAPE CONTROL		
Mnemonic Symbol	Octal Code	Operation
SDSS	67x1	Skip if single line flag is set.
SDST	67x2	Skip if time error flag is set.
SDSQ	67×3	Skip if Quad Line flag is set.
SDLC	67×4	Load Command Register from the AC, clear Time Error, and start UTS delay if UNIT, DIRECTION, or STOP/ GO flip-flops are changed.
SDLD	67×5	Load Data Register from the AC, do not clear the AC, and clear Single Line and Quad Line flags.
SDRC	67×6	Load contents of Command Register, Mark Track Register, and Status bits into the AC. Clear Single Line and Quad Line flags.
SDRD	67×7	Load contents of Data Register into the $A C$, and clear Single Line and Quad Line flags.

TAB-E dec cassette iot instructions		
Mnemonic Symbol	Sctal Code	Operation
KCLR	67x0	Clear all. Clears Status A and B Registers.
KSDR	67×1	Skip on Data flag, for either a read or a write.
KSEN	67×2	Skip on, EOT/BOT or EOF or Drive Empty or Timing Error, Block Error or Write Lock and "Write" True.
KSBF	67×3	Skip on Ready Flag.
KLSA	67×4	Load Status A from AC 4-11, clear AC, load complement Status A back into AC.
KSAF	67X5	Skip on any flag or error condition.
KGOA	67×6	Assert the contents of Status A, transfer data into the AC for a read, out of the AC into the Read/ Write buffer for a write.
KRSB	67×7	Read Status B into AC 4-11.

Mnemonic Symbol	Octal Code	Operation	$\begin{aligned} & \text { Time } \\ & (\mu \mathrm{s}) \end{aligned}$
DLDA	6731	Load Disk Address (Maintenance Only)	2.6
DLDC	6732	Load Command Register	2.6
DLDR	6733	Load Disk Address and Read	2.6
DRDA	6734	Read Disk Address	2.6
DLDW	6735	Load Disk Address and Write	2.6
DRDC	6736	Read Disk Command Register	3.6
DCHP	6737	Load Disk Address and Check Parity	4.6
DRDS	6741	Read Disk Status Register	2.6
DCLS	6742	Clear Status Register	2.6
DMNT	6743	Load Maintenance Register	3.6
DSKD	6745	Skip on Disk Done	3.6
DSKE	6747	Skip on Disk Error	4.6
DCLA	6751	Clear All	2.6
DRWC	6752	Read Word Count Register	3.6
DLWC	6753	Load Word Count Register	3.6
DLCA	6755	Load Current Address Register	3.6
DRCA	6757	Read Current Address Register	4.6

VT8-E INSTRUCTIONS		
Mnemonic Symbol	Octal code	Operation
DPLA	6050	Load starting address of data buffer
DPGO	6051	Load starting extended address of data buffer and go - start display after next vertical retrace in one of the two modes. Enable or disable interrupts from keyboard and printer.
DPSM	6052	Stop the display. Inhibit video and further device-initiated breaks.
DPMB	6053	Maintenance instruction - perform a single one-cycle data break.
DPMD	6054	Maintenance instruction - read extended break, address or status registers.
DPCL	6056	Skip on real-time clock flag; clear the flag if it is set.
DPBELL	6057	Generate a half-second audible tone.
Keyboard Instructions		
DKCF	6030	Clear keyboard flag.
DKSK	6031	Skip on keyboard flag.
DKCC	6032	Clear keyboard flag, clear AC.
DKOB	6034	OR contents of keyboard buffer with $A C$, and deposit in AC.
SKIN	6035	Enable interrupt if $A C 11=1$. Disable interrupt if AC $11=0$.
DKRB	6036	Read keyboard buffer - transfer contents of keyboard buffer to AC - clear keyboard flag.
Printer Instructions		
PNSF	6040	Set printer flag.
PNSK	6041	Skip on printer flag.
PNCF	6042	Clear printer flag.
	6043	Not used.
PNLP	6044	Load printer buffer from AC5-ll print.
PNSI	6045	Skip if about to interrupt.
PNPC	6046	Load printer buff - print - clear printer flag.

	AFOB DISK FILE	
Mnemonic Symbol	Octal Code	Operation
DCIM	6611	Clear Disk Interrupt Enable and Core Memory Address Extension Register
DIML	6615	Load Interrupt Enable and Memory
DIMA	6616	Address Extension Register.
		Address

DF32-D DISK FILE AND CONTROL			
Mnemonic Symbol	Octal Code	Operation	Time ($\mu \mathrm{s}$)
DCMA	6601	Clear Disk Address Register	2.6
DMAR	6603	Load Disk Address Register and Read	3.6
DMAW	6605	Load Disk Address Register and Write	3.6
DCEA	6611	Clear Disk Extended Address	2.6
DSAC	6612	Skip on Address Confirmed Flag	2.6
DEAL	6615	Load Disk Extended Address	3.6
DEAC	6616	Read Disk Extended Address	3.6
DFSE	6621	Skip on Zero Error Flag	2.6
DFSC	6622	Skip on Data Completion Flag	2.6
DMAC	6626	Read Disk Memory Address Register	3.6

VCB-E CRT DISPLAY CONTROL		
Mnemonic Symbol	Octal Code	Operation
DILC	6050	Clears Enables, Flags and Delays
DICD	6051	Clears Done Flag
DISD	6052	Skip on Done Flag
DILX	6053	Load X Register
DILY	6054	Load Y Register
DIXY	6055	```Clear Done Flag; Intensify- Set Done Flag```
DILE	6056	Transfers AC to Enable Register
DIRE	6057	Transfers Display Enable/Status Register to AC

4.12

CRE-E CARD READER \& CONTROL OT CM8-E OPTICAL MARK CARD READER \& CONTROL		
Mnemonic Symbol	Octal code	Operation
RCSF	6631	Skip on Data Ready
RCRA	6632	Read Alphanumeric
RCRB	6634	Read Binary
RCNO	6635	Read Conditions Out to Card Reader
RCRC	6636	Read Compressed
RCNI	6637	Read Condition in From Card Reader
RCSD	6671	Skip on Card Done Flag
RCSE	6672	Select Card Reader and Skip if Ready
RCRD	6674	Clear Card Done Flag
RCSI	6675	Skip if Interrupt Being Generated
RCTF	6677	Clear Transition Flags

		XY8-E INCREMENTAL PLOTTER CONTROL
Mnemonic Symbol	Octal Code	Operation
PLCE	6500	Clear Interrupt Enable
PLSF	6501	Skip On Plotter Flag
PLCF	6502	Clear Plotter Flag
PLPU	6503	Pen Up
PLLR	6504	Load Direction Register, Set Flag
PLPD	6505	Pen Down
PLCF PLLR	6506	Clear Flag, Load Direction Register,
PLSE	6507	Set Flag
Set Interrupt Enable		

4.13

	TM8-ElF MAGTAPE CONTROL	
Mnemonic	Octal SYmbol Code	Operation
LWCR	6701	Load Word Count Register
CWCR	6702	Clear Word Count Register
LCAR	6703	Load Current Address Register
CCAR	6704	Clear Current Address Register
LCMR	6705	Load Command Register
LFGR	6706	Load Function Register
LDBR	6707	Load Data Buffer Register
RWCR	6711	Read Word Count Register
CLTT	6712	Clear Transport
RCAR	6713	Read Current Address Register
RMSR	6714	Read Main Status Register
RCMR	6715	Read Command Register
RFSR	6716	Read Function Register \& Status
RDBR	6717	Read Data Buffer
SKEF	6721	Skip if Error Flag
SKCB	6722	Skip if Not Busing
SKJD	6723	Skip if Job Done
SKTR	6724	Skip if Tape Ready
CLF	6725	Clear Controller and Master

data transfer signals			
Control Signals CO, Cl, C2 control the data path and loading within the processor. They come into play during I/O transfers and are controlled from outside by the peripheral interface. When it is time for a device to make either an input or output transfer, the device will ground the appropriate combination of C control lines.			
	COL	Cl L	C2 L
Output, AC Unchanged	Hi	Hi	Hi
Output, AC Cleared	Lo	Hi	Hi
Input, AC Or'd with Input Data	Hi	Lo	Hi
Jam Input	Lo	Lo	Hi
Input, Data Added to PC	Lo	Hi	Lo
Input Data to PC	Lo	Lo	Lo

ASCII CODE			
Character	Code	Character	Code
A	301	!	241
B	302	"	242
C	303	\#	243
D	304	\$	244
E	305	\%	245
F	306	\&	246
G	307	'	247
H	310	$($	250
I	311)	251
J	312	*	252
K	313	+	253
L	314	,	254
M	315	-	255
N	316	-	256
\bigcirc	317	$/$	257
P	320	:	272
Q	321	;	273
R	322	$<$	274
S	323	$=$	275
T	324	\rangle	276
U	325	?	277
V	326	${ }^{\circ}$	300
W	327	[333
X	330	\%	334
Y	331]	335
z	332	4	336
\bigcirc	260	\leftarrow	337
1	261	EOT	204
2	262	W RU	205
3	263	RU	206
4	264	BELL	207
5	265	Line Feed	212
6	266	Return	215
7	267	Space	240
8	270	ALT MODE	375
9	271	Rub Out	377
		Escape	233

PIN	D1	D2	C1	C2	B1	B2		A1	A. 2	
A		+15V		+5V		$+5 \mathrm{~V}$			+5V	
B		-15V		-15V		-15V			$-15 \mathrm{~V}$	
C	GND	GND	GND	GND	GND	GND		SP* ${ }_{\text {GND }}$	GND	
D	MA8 L	IR $\varnothing \quad$ L	IO PAUSE L	TPI	MA4 4	INT STB	H	MA \varnothing L	EMA \varnothing	L
E	MA9 L	IR1 L	C \varnothing L	TP2 H	MA5 L	BRK PROG	L	MA1 I	EMAI	L
F	GND	GND	GND	GND	GND	GND		GND	GND	
H	MA $1 \varnothing$ L	IR2 \quad L	$\mathrm{Cl} \quad \mathrm{L}$	TP3 H	MA6 $\quad \mathrm{L}$	MA, MS LD	L	MA2 L	EMA2	L
J	MA11 L	$\mathrm{F} \quad \mathrm{L}$	$\mathrm{C} 2 \quad \mathrm{~L}$	TP4 H	MA7 L	OVERFLOW	L	MA3 I	MEM START	L
K	MD8 L	D L	BUS STB L	TSI L	MD4 4	BRK DA CT	L	$M D \varnothing$ L	MD DIR	I
L	MD9 L	E L	INT I/O L	TS2 L	MD5 \quad L	BRK CYC	L	MDI L	SOURCE	H
M	MDI \varnothing L	USR MD H	N L XFR	TS3	MD6 \quad L	LA EN.	L	MD2 L	STROBE	H
N	GND	GND	GND	GND	GND	GND		GND	GND	
P	MDll \quad L	F SET L	INT RQST L	TS4 L	MD7 5	INT PROG	H	MD 3 L	INHIBIT	H
R	DATA 8 L	PULSE LA H	INIT. $\quad \mathrm{H}$	LNK DATA L	DATA 4 L	RES 1	H	DATA \varnothing L	RETURN	H
5	DATA 9 L	STOP I	SKIP 1	LNK LOAD L	data 5 L	RES 2	H	DATA 1 L	WRITE	H
T	GND	GND	GND	GND	GND	GND		GND	GND	
U	DATA $1 \varnothing$ L	KEY CTRL L	CPMA DIS L	IND 1 L	DATA 6 L	RUN	L	DATA 2 L	ROM ADDR	L
V	DATA 11 L	SW L	MS, IR DIS L	IND $2 \quad \mathrm{~L}$	DATA 7 L	POWER OK	H	DATA 3 L	LINK	L

Blank pins are not interconnected on the bus but may be test points on individual modules.

* This pin is connected to GND on the bus but serves as a logic signal within modules to facilitate testing.

MODULE CONTACT DESIGNATORS

Information Directory

In this list the abbreviations used indicate the book in which the information will be found.
$\left.\begin{array}{lll}\text { ITP } & - & \text { Introduction to Programming } \\ \mathrm{SCH} & - & \text { Small Computer Handbook } \\ \text { LH } & - & \text { Logic Handbook } \\ \text { Vol I } \\ \text { Vol II } \\ \text { Vol III }\end{array}\right\}-\quad$ - \quad PDP8e/f/m Maintenance Manual

ITEM	PAGE	REFERENCE
A		
Auto Indexing	3-27	ITP Vol I
B		
Bus Drivers	10-34	SCH
Bus Receivers	10-36	SCH
Bin Format	App.E	ITP
C		
Cables	393	LH
Connector Blocks	393	LH
Cycle Timing	3-55	Vol I
		Print Set
$\mathrm{CO}, \mathrm{Cl}, \mathrm{C} 2$	$3-147$	Vol I
	$9-12$	SCH
D		
Data Break single cycle flowchart	4-16	SCH
single cycle timing	9-48	SCH
3-cycle flowchart	9-49	SCH
3 -cycle timing	10-15	SCH
transfers	10-13	SCH
	4-11	SCH
	3-154	Vol I
	6-40	ITP
	9-58	SCH
priority	10-7	Vol II
Device Codes	9-33	SCH
Drivers	10-34	SCH

4.18

P continued Part Numbers (DEC) Program (Echo Test, Print all characters, clean core, etc.)	Appendix Spare Parts List Appendix of Each Chapter $4-1$	SCH Vol II \& III Vol I
R Ringing Receivers Rim	$\begin{aligned} & 10-30 \\ & 10-36 \\ & \text { App. E } \end{aligned}$	$\begin{aligned} & \mathrm{SCH} \\ & \mathrm{SCH} \\ & \mathrm{ITP} \end{aligned}$
S Subroutines Software (general)	$\begin{aligned} & 3-16 \\ & 2-20 \end{aligned}$	$\begin{aligned} & \text { ITP } \\ & \text { SCH } \end{aligned}$
T Terminations Tape (Paper) Formats Thresholds (TTL)	$\begin{gathered} 10-30 \\ 4-16 \\ A-21 \\ 9 \end{gathered}$	SCH ITP SCH LH

NOTES

11 FAMILY NOTES

Word Format	5.3
General Register Addressing	5.3
Programme Counter Addressing	5.3
Legend	5.3
Single Operand	5.4
Double Operand	5.5
Branch	5.5
Jump \& Subroutine	5.6
Trap \& Interrupt	5.6
Miscellaneous	5.7
Condition Code Operators	5.7
PDPll-40 Floating Point Unit	5.7
Floating Point: PDPll-45	5.8
Hardware Multiply-Divide (KEll-A)	5.9
Numerical Op Code List	5.10
Processor Register Addresses	5.11
Interrupt Vectors	5.11
Device Register Addresses	5.12
Absolute Loader	5.13
Bootstrap Loader	5.13
MRll-DB Bootstrap Loader	5.14
$7-B i t ~ A S C I I ~ C o d e ~$	5.15
Unibus Pin Assignments	5.16
Module Contact Designations	5.18
ROM Maps	5.19
PDPll Unibus Signals	5.20
Information Directory	5.22

GENERAL REGISTER ADDRESSING			Mode	R
Mode	Name	Symbolic	Description	
0	register	R	(R) is operand	[ex. R2=\%2]
1	register deferred	(R)	(R) is address	
2	auto increment	(R) +	(R) is adrs;	R) $+(1$ or 2$)$
3	auto-incr deferred	(R) +	(R) is adrs of	adrs; (R)+2
4	auto-decrement 1	-(R)	(R) -(l or 2):	(R) is adrs
5	auto-decr deferred	Q-(R)	(R) -2; (R) is	adrs of adrs
6	index	$\mathrm{X}(\mathrm{R})$	(R) +X is adrs	
7	index deferred	@x (R)	(R) +X is adrs	of adrs

PROGRAM COUNTER ADDRESSING		$\operatorname{Reg}=7$		Mode	
2	immediate	\#n	operand	lows	s
3	absolute	@\#A	address	lows	s
6	relative	A	instr a	$4+\mathrm{X}$	
7	relative deferred	@A	$\begin{array}{r} \text { instr } \\ \text { of } a \end{array}$	$4+$	s

continued overleaf

LEGENO	
Boolean	Condition Codes
\wedge = AND	$*=$ conditionally set/cleared
$V=$ inclusive or	$-=$ not affected
$\forall=$ exclusive OR	$0=$ cleared
$\sim=$ NOT	$1=$ set

SINGLE OPERAND		OPR dst		
Mnemonic	Op Code	Instruction	dst Result	N 2 V C
General				
CLR (B)	-050DD	clear	0	0100
COM (B)	mo5ldD	complement (1's)	$\sim \mathrm{d}$	* * 01
INC (B)	-052DD	increment	d +1	* * * -
DEC (B)	-053DD	decrement	d - 1	* * * -
NEG (B)	-054DD	negate (2's com)	-d	* * * *
TST (B)	O57DD	test		* * 00
Rotate \& Shift				
ROR (B)	-060DD	rotate right	$\rightarrow \mathrm{C}, \mathrm{d}$	* * * *
ROL (B)	-061DD	rotate left	C, d 4	* * * *
ASR (B)	-062DD	arith shift right	d/2	* * * *
ASL (B)	-063DD	arith shift left	2d	* * * *
SWAB	0003DD	swap bytes		0
Multiple Precision				
ADC (B)	-055DD	add carry	$d+c$	* * * *
SBC (B)	-056DD	subtract carry	d - c	* * * *
\triangle SXT	0067DD	sign extend	O or -1	- * * -

© Applies to the $11 / 40$ \& $11 / 45$ computers

- Applies to the $11 / 45$ computer

BRANCH		B - - location	If condition is satisfied Branch to location, New PC\& Updated PC +
Base Cod		7	
Ba	Code		
Op code $=$ Base Code +xxx			
Mnemonic	Base Code	Instruction	Branch Condition
Branches			
BR	000400	branch (unconditional)	(always)
BNE	001000	br if not equal (to 0)	\#0 $\mathrm{z}=0$
BEQ	001400	br if equal (to O)	$\begin{array}{ll}=0 & \mathrm{Z}=1 \\ + & \mathrm{N}=0\end{array}$
BPL	100000	branch if plus	
BMI	100400	branch if minus	$\mathrm{N}=1$$\mathrm{~V}=0$
BVC	102000	br if overflow is clear br if overflow is set	
BVS	102400		$\mathrm{V}=0$ $\mathrm{~V}=1$
BCC	103000	br if carry is clear	$\mathrm{C}=0$
BCS	103400	br if carry is set	$\mathrm{C}=$

BRANCH (cont'd)			
Mnemonic	Base Code	Instruction	Branch Condition
Signed Conditional Branches			
BGE	002000	br if greater or eq (to 0)	$30 \mathrm{NFV}=0$
BLT	002400	br if less than (0)	$\angle 0 \mathrm{NFV}=1$
BGT	003000	br if greater than (0)	$>0 \mathrm{Zv}(\mathrm{N} * \mathrm{~V})=0$
BLE	003400	br if less or equal (to 0)	$\leqslant 0 \mathrm{Zv}(\mathrm{N} * \mathrm{~V})=1$
Unsigned Conditional Branches			
BHI	101000	branch if higher	> $\mathrm{CvZ}=0$
BLOS	101400	branch if lower or same	$\leq \quad C v Z=1$
BHIS	103000	branch if higher or same	$\geqslant \mathrm{c}=0$
BLO	103400	branch if lower	$<\mathrm{C}=1$

JUMP \& SUBROUTINE			
Mnemonic	Op Code	Instruction	Notes
JMP JSR RTS MARK SOBA	$\begin{aligned} & \text { OOO1DD } \\ & \text { OO4RDD } \\ & \text { OOO2OR } \\ & \text { OO64NN } \\ & \text { O77RNN } \end{aligned}$	```jump jump to subroutine { return from subroutine} mark subtract l & br (if # 0)```	$\mathrm{PC} \leftarrow \mathrm{dst}$ use same R aid in subr rtn. (R) -1 , then if (R $\neq 0$: PC \leftarrow Updated PC - (2 x NN)

trap \& Interrupt			
Mnemonic	Op Code	Instruction	Notes
EMT	$\begin{aligned} & 104000- \\ & 104377 \end{aligned}$	emulator trap (not for general use)	PC at 30, PS at 32
TRAP	$\begin{aligned} & 104400- \\ & 104777 \end{aligned}$	trap	PC at 34, PS at 36
BPT	000003	breakpoint trap	PC at $14, \mathrm{PS}$ at 16
IOT	000004	input/output trap	PC at 20, PS at 22
RTI	000002	return from interrupt	
RTT \triangle	000006	return from interrupt	inhibit T bit trap

MISCELLANEOUS		
Mnemonic	Op Code	Instruction
HALT	000000	halt
WAIT	000001	wait for interrupt
RESET	000005	reset external bus
NOP	000240	(no operation)
- SPL	00023 N	set priority level (to N)
\triangle MFPI	0065SS	move from previous instr space
$\triangle M T P$ I	0066DD	move to previous instr space
- MFPD	1065SS	move from previous data space
- MTPD	1066DD	move to previous data space

PDP11-40 FLOATING POINT UNIT			
Mnemonic	Op Code	Instruction	N Z V C
FADD	O7500R	floating add	* * 00
FSUB	O7501R	floating subtract	* * 00
FMUL	07502R	floating multiply	* * 00
FDIV	07503R	floating divide	* * 00

FLOATING POINT; PDPIT-45			
Mnemonic	Op Code	Instruction	Operation
CFCC	170000	copy fl cond codes	
SETF	170001	set floating mode	FD<0
SETI	170002	set integer mode	FL<-0
SETD	170011	set fl dbl mode	FD 41
SETL	170012	set long integer mode	FL 41
LDFPS	1701 src	load FPP prog status	
STFPS	1702 dst	store FPP prog status	
STST	1703 dst	store (exc codes \& adr)	
CLRF, CLRD	1704 fdst	clear floating/double	fdst 4 -
TSTF, TSTD	1705 fdst	test fl/dbl	
ABSF, ABSD	1706 fdst	make absolute fl/dbl	fdst-lfdstl
NEGF, NEGD	1707 fdst	negate fl/dbl	f.dst4-fdst
MULF, MULD	171 (AC) fsrc	multiply fl/dbl	AC 4 AC x fsrc
MODF, MODD	171 (AC+4)fsrc	multiply \& integerize	
ADDF, ADDD	172 (AC) fsrc	add fi/dbl	$\mathrm{AC} 4 \mathrm{AC}+\mathrm{fsrc}$
LDF, LDD	$172(\mathrm{AC}+4) \mathrm{fsrc}$	load fl/dbl	AC 4 fsrc
SUBF, SUBD	173 (AC) fsrc	subtract fl/dbl	$A C \leftarrow A C-f s r c$
CMPF, CMPD	$173(\mathrm{AC}+4) \mathrm{fsrc}$	compare fl/dbl (to AC)	
STF, STD	174 (AC) fdst	store fl/dbl	fdst-AC
DIVF, DIVD	174 (AC+4) fsrc	divide fl/dbl	AC 4 AC/fsrc
STEXP	175 (AC) dst	store exponent	
STCFI, STCFL	175 (AC+4) dst	Store \& convert fl or	
STCDI, STCDL $\}$	175 ($\mathrm{AC}+4$) dst	dal to int or long int	
STCFD, STCDF	176 (AC) fdst	store \& convert (dbl l fl)	
LDEXP	176 ($\mathrm{AC}+4$) src	load exponent	
LDCIF, LDCID	177 (AC) src	fload \& convert int or	
LDCLF, LDCLD	177 (AC) src	llong int to fl or dbl	
LDCDF, LDCFD	$177(A C+4) f s r c$	load \& convert (dbl-fl)	

HARDWARE MULTIPLY-DIVIDE (KE11-A)			
OP/REG	ADDRESS	READ	WRITE
$\begin{aligned} & \text { DIV } \\ & \text { Divide } \end{aligned}$	777300	Read zero's	Load Divisor, Start divide.
AC	777302	Read AC	Load AC
MQ	777304	Read MQ	Load MQ, sign extends into AC
MUL Multiply	777306	Read Zero's	Load multiplicand. Start multiply
$\begin{aligned} & S C \\ & S R \end{aligned}$	$\begin{aligned} & 777310 \\ & 777311 \end{aligned}$	$\begin{aligned} & \text { Read SC } \\ & \text { and SR } \end{aligned}$	Load SC and load SR bits 0, 6, 7
NOR Normalize	777312	Read SC	Start Normalize
LSH Logical Shift	777314	Read zero's	Load SC, Start logical shift
ASH Arithmet. Shift	777316	Read zero's	Load SC, start arithmetic shift


```Processor Status Word PS - 777776```  ```Current Mode Previous Modea \(\square\) Gen Reg Set \(\longrightarrow\) Trace Trap``` $\qquad$   ```Negative``` $\qquad$   ```zero``` $\square$   ```Overflow Carry``` $\qquad$ ```NoneNone ```


NTERRUPT	VECTORS
OOO	(reserved)
OO4	Time Out \& other errors
O10	illegal \& reserved instr
O14	BPT
O20	IOT
O24	POwer Fail
O30	EMT
O34	TRAP
240	PIRQ
244	Floating Point trap
250	Segmentation trap


device register adoresses					
Device		$\begin{array}{\|l} \hline \text { Control } \\ \& \\ \text { Status } \end{array}$	Data Buffer	Vector	$\begin{aligned} & \text { Priority } \\ & \text { Level } \end{aligned}$
CR11	Card Reader data buffer 1 data buffer 2	777160	$\begin{array}{ll} 777 & 162 \\ 777 & 164 \end{array}$	230	BR6
KWll-L	Line Clock	777546	-	100	BR6
KW-11-P	Real Time Clock control \& status counter	$\begin{array}{ll} 772 & 540 \\ 772 & 544 \end{array}$	772542	104	BR6
LA30	DECwriter keyboard printer	$\begin{array}{ll} 777 & 560 \\ 777 & 564 \end{array}$	$777 \quad 562$	$60$	$\begin{array}{\|l\|l\|} \hline \text { BR } \\ \text { BR4 } \end{array}$
LPIl	Line Printer	777514	777516	200	BR4
LT33	Teletype keyboard printer	$\begin{array}{ll} 777560 \\ 777 & 564 \end{array}$	$\begin{array}{r} 777562 \\ 777566 \end{array}$	$\begin{aligned} & 60 \\ & 64 \end{aligned}$	$\begin{array}{\|l\|l} \text { BR4 } \\ \text { BR4 } \end{array}$
PCll	Paper Tape reader punch	$\begin{aligned} & 777550 \\ & 777554 \end{aligned}$	$\begin{aligned} & 777552 \\ & 777556 \end{aligned}$	$\begin{aligned} & 70 \\ & 74 \end{aligned}$	$\begin{array}{\|l\|l} \text { BR4 } \\ \text { BR4 } \end{array}$
$\begin{aligned} & \text { RCl1// } \\ & \text { RS64 } \end{aligned}$	Disk ( 64 K words) look ahead disk address error status command \& status word count current address maintenance	777 440   777 442   777 444   777 446   777 450   777 452   777 454	777456	210	BR5
RF11/ RSll	Disk ( 256 K words) control status word count current mem adrs disk address adrs ext error maintenance look ahead	777 460   777 462   777 464   777 466   777 470   777 474   777 476	777472	204	BR5
RK11/   RKO5	Disk Cartridge drive status error control status word count current address disk address maintenance	777 400   777 402   777 404   777 406   777 410   777 412   777 414	777416	220	BR5

5.12

Device Register Addresses (cont'd)					
Device		$\begin{aligned} & \text { Control } \\ & \& \\ & \text { Status } \end{aligned}$	Data Buffer	Vector	Priority Level
$\begin{aligned} & \text { TCll/ } \\ & \text { TU56 } \end{aligned}$	DECtape   control   command   word count   current address	$\begin{array}{ll} 777 & 340 \\ 777 & 342 \\ 777 & 344 \\ 777 & 346 \end{array}$	777350	214	BR6
$\begin{aligned} & \text { TM1l/ } \\ & \text { TUlO } \end{aligned}$	Magtape status command byte counter current address read lines	772 520   772 522   772 524   772 526   772 532	772530	224	BR5



BOOTSTAAP LOADER			
Address	Contents	Address	Contents
-744	016701	-764	000002
-746	000026	-766	- 400
-750	012702	-770	005267
-752	000352	-772	177756
-754	005211	-774	000765
-756	105711	-776	177560 (KB)
-760	100376		177550 (PR)
-762	116162		
773000 Paper Tape Bootstrap   773100 Disk/DECtape Bootstrap   773200 Card Reader Bootstrap			

5.13

MRH-DB BOOTSTRAP LOADER	
Device	Starting Address
RFIl	773100
RK11	773110
TCII	773120
TMII	773136
RP11	773154
RC11	773220

5.14

7-BIT ASCII CODE					
Octal Code	Char.	Octal Code	Char.	Octal Code	Char.
000	NUL	053	+	126	v
001	SOH	054	,	127	W
002	STX	055	-	130	X
003	ETX	056	-	131	Y
004	EOT	057	/	132	z
005	ENQ	060	O	133	[
006	ACK	061	1	134	〕
007	BEL	062	2	135	]
010	BS	063	3	136	$\wedge$
011	HT	064	4	137	-
012	LF	065	5	140	,
013	VT	066	6	141	a
014	FF	067	7	142	b
015	CR	070	8	143	c
016	So	071	9	144	d
017	SI	072	:	145	e
020	DLE	073	;	146	f
021	DC1	074	$<$	147	g
022	DC2	075	=	150	h
023	DC3	076	$>$	151	i
024	DC4	077	?	152	j
025	NAK	100	@	153	k
026	SYN	101	A	154	1
027	ETB	102	B	155	m
030	CAN	103	C	156	n
031	EM	104	D	157	-
032	SUB	105	E	160	p
033	ESC	106	F	161	q
034	FS	107	G	162	r
035	GS	110	H	163	s
036	RS	111	I	164	t
037	US	112	J	165	u
040	SP	113	K	166	v
041	,	114	L	167	w
042	*	115	M	170	x
043	\#	116	N	171	y
044	\$	117	O	172	z
045	-	120	P	173	\{
046		121	Q	174	1
047	'	122	R	175	\}
050	$($	123	S	176	
051	)	124	T	177	DEL
052	*	125	U		


UNIBUS PIN ASSIGNMENTS					
Pin	Signal		Pin	Signal	
AAI	INIT	L	BAI	BG6	H
AA2	Power		BA2	Power	(+5V)
ABI	INTR	L	BBl	BG5	H
AB2	Ground		BB2	Ground	
AC1	DOO	L	BCl	BR5	L
AC2	Ground		BC2	Ground	
ADl	DO2	L	BD1	Ground	
AD2	DO1	L	BD2	BR4	L
AEl	D04	L	BE1	Ground	
AE2	DO3	L	BE2	BG4	H
AFl	D06	L	BFl	ACLO	L
AF2	D05	L	BF2	DCLO	L
AHl	D08	L	BH1	AOl	L
AH2	D07	L	BH2	AOO	L
AJI	D10	L	BJI	AO3	L
AJ2	D09	L	BJ2	AO2	L
AKl	D12	L	BK1	A05	L
AK2	D11	L	BK2	AO4	L
ALI	D14	L	BLI	AO7	L
AL2	D13	L	BL2	AO6	L
AMI	PA	L	BM1	A09	L
AM2	D15	L	BM2	A08	L
ANI	Ground		BN1	All	L
AN2	PB	L	BN2	AlO	L
APl	Ground		BP1	A13	L
AP2	BBSY	L	BP2	Al2	L
AR1	Ground		BR1	Al5	L
AR2	SACK	L	BR2	Al4	L
AS1	Ground		BSI	A17	L
AS2	NPR	L	BS2	A16	L
AT1	Ground		BTl	Ground	
AT2	BR7	L	BT2	Cl	L
AUl	NPG	H	BU1	SSYN	L
AU2	BR6	L	BU2	CO	L
AV1	BG7	H	BV1	MSYN	1
AV2	Ground		BV2	Ground	


UNIBUS PIN ASSIGNMENTS					
Signal		Pin	Signal		Pin
AOO	L	BH2	D06	L	AFl
AOl	L	BH1	D07	L	AH2
AO2	L	BJ2	D08	L	AH1
A03	L	BJI	D09	L	AJ 2
AO4	L	BK2	D10	L	AJl
AO5	L	BK1	Dll	L	AK2
A06	L	BL2	D12	L	AKl
A07	L	BLI	D13	L	AL2
A08	L	BM2	D14	L	ALl
A09	L	BM1	D15	L	AM2
AlO	L	BN2	Ground		AB2
All	L	BN1	Ground		AC2
Al2	L	BP2	Ground		ANI
Al3	L	BP1	Ground		APl
Al4	L	BR2	Ground		ARI
Al5	L	BR1	Ground		ASl
Al6	I	BS2	Ground		ATl
Al7	L	BSl	Ground		AV2
ACLO	L	BFl	Ground		BB2
BBSY	L	AD2	Ground		BC2
BG4	H	BE2	Ground		BDI
BG5	H	BB1	Ground		BEl
BG6	H	BAl	Ground		BTI
BG7	H	AV1	Ground		BV2
BR4	L	BD2	INIT	L	AAI
BR5	L	BCl	INTR	L	ABl
BR6	L	AU2	MSYN	L	BVI
BR7	L	AT2	NPG	H	AU1
CO	L	BU2	NPR	L	AS2
Cl	L	BT2	PA	L	AM1
DOO	L	ACl	PB	L	AN2
DO1	L	AD2	+5V*		AA2
DO2	L	AD1	+5V*		BA2
D03	L	AE2	SACK	L	AR2
D04	L	AE1	DCLO	L	BF2
D05	L	AF2	SSYN	L	BU1
* +5 V is wired to these pins to supply power to the bus terminator only. +5 V should never be connected via the Unibus between system units.					

MODULE CONTACT DESIGNATIONS

5.18

## ROM MAPS

The inputs to a ROM are matrixed in a system of AND gates so that each combination of Hi and Lo input signals enables a particular internal bus-bar. If there are $n$ inputs then there will be $2^{n}$ internal bus-bars.


Initially, the ROM chip is manufactured with every bus-bar connected via diodes to each of the outputs. In the 'blasting' process any undesired connection between a busbar and an output is rendered open-circuit. Thus each combination of inputs selects a particular combination of outputs. The particular way in which a ROM has been blasted is expressed in a ROM map. ROM maps are constructed to show the output combination which each unique input combination produces. They are laid out as follows:


When trouble shooting a processor, it is best to ignore the columns headed Octal Address, Decimal Address, and Octal Data. The column headed by a string of letters in reverse alphabetical order represents the possible input combinations. The pin numbers are given at the bottom of the column. The next column gives the output combination relevant to each particular input combination. The pin numbers are given at the top of the column.

PDP11 UNIBUS SIGNALS			
Signal	Asser ted	No of tines	Function
Bus Address AO to Al7	L	18	Specify an address in core, in the processor or in a peripheral device.
Bus Data   DO to Dl5	L	16	Supply a l6-bit data word.
Bus Ctrl Line CO	L	1	Define one of four Unibus
Bus Ctrl Line Cl	L	1	operations.
$\begin{aligned} & \text { N.P.R. (Non } \\ & \text { Processor Request) } \end{aligned}$	L	1	Asserted by a device wishing to gain control of the bus without interrupting the current programme.
$\begin{aligned} & \text { N.P.G. (Non- } \\ & \text { Processor Grant) } \end{aligned}$	H	1	Asserted by the processor to grant bus control in response to a N.P.R.
B.R. (Bus Request)	L	4	Asserted by a device requesting bus control in order to interrupt the current program (four priority levels BR7, BR6, BR5, BR4)
B.G. (Bus Grant)	H	4	Asserted by the processor to grant bus control in response to a B.R. (Four priority levels, BG7, BG6, BG5, BG4.)
Bus Sack	L	1	Asserted by a device to acknowledge an N.P.G. or a.B.G.
Bus Bsy	L	1	Asserted by a device to take over bus control.
Bus Int. (Interrupt)	L	1	Asserted by a device after it has received bus control (B.Bsy asserted) to indicate to the processor that it wishes to interrupt the current programme. Simultaneously the device puts its vector address on the bus data lines. This vector address is the core address of the appropriate devicehandling sub-routine.


Signal	Asserted	No of Lines	Function
Bus M. Sync.   (Master Sync.)	L	1	Asserted by bus master to inform slave that address, data and control signals are valid on the bus.
Bus Slave Sync.	L	1	Asserted by slave to inform the bus master that he (slave) has completed the instruction issued by the master.
Bus A.C. LO	L	1	Monitors A.C. power supply and initiates power fail routine in the event of a failure.
Bus D.C. Lo	L	1	Held high for 70 milliseconds during power fail routine.
Bus Parity	L	2	Used by parity memory option.
Bus Initialise	L	1	20 millisecond pulse used to clear all device registers on the bus. Generated at   1. Power Up   2. Start Switch   3. Reset Instruction

## INFORMATION DIRECTORY

In this list the abbreviations used indicate the book in which the information will be found.

11/O5CM PDPIl/O5 Computer Manual
11/4OSMM PDPII/4O System Maintenance Manual

KDll/A.PM KDll/A Processor Manual
PH Peripherals Handbook, 1973-74
llPr.HB PDPll 05/10/35/40 Processor Handbook

RMM
Relevant Maintenance Manual
11/45Pr. HB PDP11/45 Processor Handbook

ITEM	PAGE	REFERENCE
A Addressing   Address Map	$\begin{aligned} & 3-1 \\ & 281 \end{aligned}$	$\begin{aligned} & 11 \mathrm{Pr} . \mathrm{HB} \\ & \mathrm{PH} \end{aligned}$
	4-1.95	Print Set PH
$\boldsymbol{D}$ Device Priority Levels		RMM
E   Extended Arithmetic Element Extended Instruction Set	7-1	$\begin{aligned} & \text { RMM } \\ & \text { llPr. } \mathrm{HB} \end{aligned}$
Floating Instruction Set Floating Point Processor (11/45)	$\begin{aligned} & 7-6 \\ & 167 \end{aligned}$	$\begin{aligned} & 11 \mathrm{Pr} . \mathrm{HB} \\ & 11 / 45 \mathrm{PRH} \end{aligned}$
I.C's. - Location   Interrupts   Integrated Circuit Chips   ISP Notation	$\begin{aligned} & 3-25 \\ & 5-3 \\ & \text { App. A } \\ & \text { App. } \end{aligned}$	This book   PH   RMM   IlPr.HB


ITEM	PAGE	REFERENCE
$\boldsymbol{K}_{\text {KT-11-C Memory Management }}$ Option (11/45)	147	ll/45Pr.HB
KT-ll-D Memory Management Option (11/40)	6-1	11Pr. HB
$M_{\text {Memories - General }}$	11-1	11/O5CM
Microprogramming - General	5-5	$11 / 05 \mathrm{CM}$
```Memories - Semiconductor (11/45)```		RMM
Memories - Parity (1l/45)	241	11/45Pr.HB
Module Configuration (11/05)	1-1-6	$11 / 05 \mathrm{CM}$
$\boldsymbol{P}^{\text {Paper }}$ Tape Format	B-5	
P.I.R.Q. (11/45)	239	11/45Pr. HB
$S_{\text {Segmentation }}(11 / 45)$	159	11/45Pr.HB
Stack	5-1	$11 \mathrm{Pr} . \mathrm{HB}$
Subroutines	5-1	11 Pr.HB
$T_{\text {T-Bit }}$	2-5	$11 \mathrm{Pr} . \mathrm{HB}$
Traps	5-17	$11 \mathrm{Pr} . \mathrm{HB}$
\boldsymbol{U} Unibus	5-1	PH
$V_{\text {V-Bit }}$	2-5	11 Pr.HB
$\boldsymbol{Z}_{\text {z-Bit }}$	2-5	$11 \mathrm{Pr} . \mathrm{HB}$

IC INDEX

This section contains basic information on the more common devices in use within the company. The information is laid out in the following form:

Device
Designator

Dec Part No.

Amplifying or detailed information follows the diagram. Further details can be found in the published data of the major manufacturers or in the purchase specification (held in the reproduction centre).

> WHERE THIS INDEX DISCLOSES A SIMILARITY BETWEEN DEVICES, UNDER NO CIRCUMSTANCES IS IT TO BE TAKEN AS AN AUTHORITY TO EFFECT A SUBSTITUTION.

380

Quad
2-Input NOR Gate

384

19-09486

Quad
2-Input OR Gate

1402

19-10206

This device can be used as a quad 256-bit shift register, or a dual 5l2-bit shift register, or a 1024-bit shift register, by suitably interconnecting the inputs and outputs of the individual registers.

This is a MOS device and uses a Vss of +5 V and a Vdd of -5 V . Clock $\varnothing 2$ is the antiphase version of clock $\varnothing \mathrm{l}$. Both clock inputs are required for the shifting action to take place.

1540G

19-05521

Continued Overleaf

1808

19-10459

PIN NO.	SYMBOL	NAME	FUNCTION
1	Vcc	Vcc Power Supply	+5v. supply
2	Vgg	Vgg Power Supply	-12v. supply
3	Gnd	Ground	Ground
4	RDE	Received Data Enable	A low on the receiver enable line places the received data onto the output lines.
5-12	$\begin{aligned} & \text { RD8- } \\ & \text { RD1 } \end{aligned}$	Received Data Bits	These are the 9 data output lines. These lines may be "Wire-Ored". When 5, 6, or 7 level code is selected the most significant unused bits are Low. Character will be right justified into the least significant bits. RDl (Pin 12) is the least significant bit, RD8 (Pin 5) is the most significant bit. A High indicates a Mark.
13	PER	Receive Parity Error	This line goes to a High if the received character parity does not agree with the selection (Pin 39).
14	FER	Framing Error	This line goes to a High if the received character has no valid Stop bit. i.e. the bit following the Parity bit is not marking.
15	OR	Overrun	This line goes to a High if the previously received character is not read (DA line not Reset) before the present character is transferred to the receiver holding register.
16	SWE	Status Word Enable	A Low on this line places the Status Word bits (PE, DA, TBMT, FE, OR) onto the output lines.
17	RCP	Receiver Clock Line	Requires a clock 16 times required Rx baud rate.
18	RDA	Reset Data Available	A Low on this line will reset the DA line.

PIN NO.	SYMBOL	NAME	FUNCTION
19	DA	Received Data	This line goes to a High when an entire character has been received and transferred to the receiver Holding register.
20	SI	Serial Input	This line accepts the Serial bits input stream. A High must be present when Data is not being received. High is a Mark. Low is a Space.
21	XR	External Reset	Should be pulsed after Power turn on to a High. Reset all registers. Sets Serial Output line to a High. Sets TBMT to a High. Sets EOC to a High.
22	TBMT	Transmitter Buffer Empty	The Transmitter Buffer Empty flag goes to a High when the data bits Holding Register may be loaded with another character.
23	DS	Data Strobe	A Low to High transition on this line will enter the data bits into the Data Bits Holding Register. Data loading is controlled by the rising edge of DS.
24	EOC	End of Character	This line goes to High each time a full character including Stop bits is transmitted. It remains at this level until the start of transmission which is the mark to space transition of the Start bit. It will remain at a High when data is not being transmitted.
25	so	Serial Output	This line will serially, by bit, provide the entire transmitted character. It will remain at a High when no data is being transmitted. High is a Mark, Low is a Space.
26-33	$\begin{aligned} & \text { DB1- } \\ & \text { DB88 } \end{aligned}$	Data Bit Inputs	These are the 8 parallel data input lines. If 5, 6 or 7 bits are transmitted the least most significant bits are used. DBl is the least significant bit (Pin 26). DB8 is the most significant bit, (Pin 33). A High input will cause a mark (High) to be transmitted.

Continued Overleaf

PIN NO.	SYMBOL	NAME	FUNCTION
34	CS	$\begin{aligned} & \text { Control } \\ & \text { Strobe } \end{aligned}$	A high on this lead will enter the control bits (POE, NB1, NB2, SB, NP) into the control bits Holding register. This line can be strobed or hard wired to a High level.
35	NP	No Parity	A High on this lead will eliminate the parity bit from the transmitted and received character. The stop bits will immediately follow the last data bit on transmission. The receiver will not check parity or reception. It will, when asserted, also clamp the PE to a Low.
36	2SB	$\begin{aligned} & \text { Two } \\ & \text { Stop } \\ & \text { Bits } \end{aligned}$	This lead will select the number of stop bits. 1 or 2 to be appended immediately after the parity bit. A low will insert 1 stop bit and a High will insert 2 stop bits.
37-38	NB2, NB1	Number of Bits/ Charact.	37 38 Bits/Character L L 5 L H 6 H L 7 H H 8
39	PEV	Even Parity Select	L Inserts/checks odd H Inserts/checks even
40	TCP	Transmitter	Requires clock freq. 16 times required Tx baud rate.

2501

19-10010

Diode
Array
16 Core
Driver

6.10

2518

Hex 32-bit Shift Register

Continued Overleaf..
6.11

RECIRCULATE	FUNCTION
1	Registers recirculate
0	Data entered from inputs

NOTE: Recirculate is also labelled "load".

3101

A matrix of 64 flip flops arranged to give 16 words of 4 bits each. The required word is addressed via the 4 select inputs.

WRITE Data at the inputs is entered at the selected address.

READ The complement of the $\overline{\text { data }}$ stored at the selected address is non-destructively read at the sense outputs.

ME	WR	OPERATION
L	L	Write
L	H	Read
H	L	Inhibit
H	H	-

Open collector outputs are provided to allow expansion of the word length. Thus, several devices can be used together to form a fast-access (approx. 33 ns) scratchpad memory.
6.12

4007

19-09867

Dual
2-line to
4-line Decoder

INPUTS			OUTPUTS			
ENABLE	SELECT					
G	B	A	YO	Y1	Y2	Y 3
H	X	X	H	H	H	H
L	L	L	I	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

Assigns the input (L at ENABLE) to one of 4 outputs, determined by the 'SELECT' settings.

5314

19-10391
See 314.
A version of 314 selected for speed of operation and noise immunity.

19-10392

See 380.
A version of 380 selected for speed of operation and noise immunity.

5384

19-10394

5603

23-000A2-03

6380

19-09971

See 384.
A version of 384 selected for speed of operation and noise immunity.

See 74187 for pin connections.
A version of the same device but data is not entered by the manufacturer.

See 380.

A version of 380 selected for speed of operation and noise immunity.

7400

74H00
See 7400 .

7402

19-09004

Quad 2-Input NOR Gate

7404

Hex
Inverter

74HO4
See 7404.
19-09931

7405

Open collector outputs.

7408

19-10155

Quad
2-Input AND Gate

7410

74H10

$$
\text { See } 7410 .
$$

19-09057
74H11

19-09267

Triple
3-Input
AND Gate

7412

Open collector outputs
Triple
3-Input NAND Gate

7413

19-09989

Dual
4-input NAND Schmitt Triggers

7416

19-09928

Hex
Inverter
Buffer/
Driver

Open collector high voltage outputs.

7417

19-09929

Hex
Buffer/
Driver

Open collector high voltage outputs.

7420

Dual
4-Input NAND Gate

74H21

Dual
4-Input
AND Gate

$74 S 22$

19-10540

Dual
4-Input NAND Gate

Open collector outputs

7426

19-10236

Quad
2-Input NAND Gate

High voltage interface.

7427

19-10878

Triple 3-Input NOR Gate

7430

8-Input
NAND
Gate

$$
6.23
$$

7437

19-10091

Quad
2-Input NAND Buffer

7440

19-05579

Dual
4-Input NAND
Buffer

74H40 See 7440 .

19-05586

INPUTS				OUTPUTS									
D	C	B	A	0	1	2	3	4	5	6	7	8	9
L	L	L	L	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	H	H	L	H	H	H	H	H	H	H
L	L	H	H	H	H	H	L	H	H	H	H	H	H
L	H	L	L	H	H	H	H	L	H	H	H	H	H
L	H	L	H	H	H	H	H	H	L	H	H	H	H
工	H	H	L	H	H	H	H	H	H	L	H	H	H
L	H	H	H	H	H	H	H	H	H	H	L	H	H
H	L	L	L	H	H	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L
H	L	H	L	H	H	H	H	H	H	H	H	H	H
H	L	H	H	H	H	H	H	H	H	H	H	H	H
H	H	L	L	H	H	H	H	H	H	H	H	H	H
H	H	L	H	H	H	H	H	H	H	H	H	H	H
H	H	H	工	H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H	H	H	H	H

7450

Used in $X-O R$, comparator and select functions.

74H50

```
    See 7450.
19-09060
```


74H52

Expandable 4-Wide AND-OR Gate

7453

19-05582

Expandable
4-Wide
AND-OR
Invert Gate

74H53

74H55

19-09063

Expandable
2-Wide 4-Input AND-OR Invert Gate

7460

Used in conjunction with expandable gates.

See 7460.

74H60

19-09064

19-09065

Triple
3-Input
Expander

74S64

19-10542
4-2-3-2
Input
AND-OR
Invert
Gate

74S65

> As 74 S 64 , with open collector outputs.

19-10543

7470

19-05589

Gated
J - K
Flip-Flop

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	J	K	1	\varnothing
L	H	X	X	X	H	工
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	4	H	L	H	L
H	H	4	L	H	L	H
H	H	4	L	L	No	hange
H	H	4	H	H	Cha	ges
H	H	L	X	X	No	ange

$$
\begin{aligned}
& \mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \overline{\mathrm{~J} 3} \\
& \mathrm{~K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \overline{\mathrm{~K} 3}
\end{aligned}
$$

Input information is transferred to the outputs on the positive-going edge of the clock pulse.

74H72

19-09068
$J-K$
Flip-Flop

Continued Overleaf..

74H72 Continued

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	J	K	1	\emptyset
L	H	X	X	X	H	L
H	L	X	x	X	L	H
L	L	x	X	X		H
H	H	Ω	L	L		Change
H	H	Ω	H	L		L
H	H	Ω	L	H		H
H	H	Ω	H	H		anges

$$
\begin{array}{llll}
\mathrm{J}=\mathrm{J} 1 . & \mathrm{J} 2 . & \mathrm{J} 3 \\
\mathrm{~K}=\mathrm{K} 1 . & \mathrm{K} 2 . & \mathrm{K} 3
\end{array}
$$

7473

INPUTS				OUTPUTS	
CLEAR	CLOCK	J	K	I	O
L	X	X	X	L	H
H	Ω	L	L	No Change	
H	Ω	H	L	H	L
H	Ω	L	H	L	H
H	Ω	H	H	Changes	

7474

19-05547

Dual
D-Type
Flip Flop

Continued Overleaf..
6.33

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	D	l	\varnothing	
L	H	X	X	H	L	
H	L	X	X	L	H	
L	L	X	X	H	H	
H	H	H	H	H	L	
H	H	H	L	L	H	
H	H	L	X	No Change		

74H74

$$
\text { See } 7474
$$

19-09667

7475

19-09050

Quad
Bistable Latch

7476

7481

16 Flip-flops arranged in a 4×4 matrix. Each flip-flop is 1 bit of 16 words : the word length is determined by the number of memories connected in parallel.

* To all 16 flip-flops.

```
To address a flip-flop (word) the X and Y lines
associated with that flip-flop are taken H.
To store information, the required flip-flop is
addressed and a High applied to Wl (to write a l)
or W\emptyset (to write a \emptyset).
To read information, the state of the addressed
flip-flop is found at the sense outputs. Reading
is non-destructive. The memory is volatile -
data is lost if Vcc is removed.
```

7483

Al-4 $=$ Number
BI-4 $=$ Addend
Sl-4 = Sum

7485

19-10224

4-Bit Magnitude Comparator

Compares two 4-bit numbers for magnitude and indicates the decision with a H on the appropriate output line.

When devices are cascaded to allow comparison of numbers larger than 4 bits, the decision outputs are connected to the related cascading inputs of the device handling the next most significant bits. The stage handling the least significant bits must have a H applied to the $\mathrm{A}=\mathrm{B}$ input.

7486

19-10011

4-bit True/ Complement Zero/one Element

Operation is controlled by the B and C inputs to transmit the data at the inputs (A1 - 4) to the outputs (Yl - 4) either true or complemented; or to set the outputs to the complement of the C input. Thus:-

CONTROL INPUTS		OUTPUTS			
B	C	Y1	Y2	Y3	Y4
L	L	$\overline{\text { A1 }}$	$\overline{\text { A2 }}$	$\overline{\mathrm{A} 3}$	$\overline{\mathrm{~A} 4}$
L	H	A1	A2	A3	A4
H	L	H	H	H	H
H	H	L	L	L	L

7489

19-10396

64-bit
Read/
Write
Memory

64 flip-flops arranged to give 16 4-bit words. Open collector outputs allow expansion of word length and the number of words.

The required word is addressed in binary on the select inputs: data can then be written or read:-

OPERATION	ME	WE	OUTPUT STATE
Write	L	L	Complement of data in
Read	L	H	Complement of Sel word
Inhibit Storage	H	L	Complement of data in
-	H	H	High

19-09051

Decade Counter

```
Counts the H to I transitions at the A
input. The maximum count before reset
is determined by the connections to
I/P A and I/P B. e.g. with Qa connected
to B:
```

COUNT	OUTPUT			
	Qd	Qc	Qb	Qa
O	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

RESET INPUTS				OUTPUT			
Rol	Ro2	Rgl	Rg2	Qd	Qc	Qb	Qa
H	H	L	x	L	L	L	L
H	H	x	L	L	L	L	L
x	x	H	H	H	L	L	H
x	L	x	L)			
L	x	L	x				
L	X	x	L		,		
X	L	L	X				

FUNCTION TABLE

7492

19-09053

Divide
By
Twelve Counter

Counts the H to L transitions at $I / P A$. With the B I/P connected to Qa the count is:

c	FUNCTION TABLE				
RESET	INPUTS	OUTPUTS			
RO1	RO2	Qd	QC	Qb	Qa
H	H	L	L	L	L
L	X	COUNT			
X	L	COUNT			

	CUPPUTS			
COUNT	Qd	QC	Qb	Qa
O	L	L	L	L
l	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	H	L	L	L
7	H	L	L.	H
8	H	L	H	L
9	H	L	H	H
IO	H	H	L	L
11	H	H	L	H

7493

Counts H to L transitions at I/P A. With B I / P connected to Qa the count is:

COUNT	OUTPUT			
	Qd	QC	Qb	Qa
O	L	L	L	L
l	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
10	H	L	L	H
11	H	L	H	L
12	H	L	H	H
13	H	H	L	L
14	H	H	L	H
15	H	H	H	L

FUNCTION TABLE

RESET	INPUTS	OUTPUT			
Ro1	Ro2	Qd	Qc	Qb	Qa
H	H	L	L	L	L
L	X	COUNT			
X	L	COUNT			

7495

19-09055

4-bit
Parallel
Access
Shift Register

Parallel Load: Data at the parallel inputs is loaded, with mode H, and appears at the outputs after 1 of clock 2.

Shift Right: Occurs on t of clock 1 with mode L. Moves data one bit along register and loads the serial input level to stage A for every clock pulse.

Shift Left: Occurs on 1 of clock 2 with Mode H but requires outputs to be connected to inputs of previous stages.

Ser
Clr Qa Qb Qc GND Qd Qe I/P

19-10363

5-bit Shift Register

All five flip-flops in the register can be cleared by applying L to clear with preset enable or preset inputs I .

Paralled loading is accomplished by applying data to the preset inputs and puising PRESET ENABLE H.

With CLEAR H and PRESET ENABLE L the data is right shifted 1 bit per clock 4 and data at serial input is entered at stage A.

8235

19-09935

Open
Collector Outputs.

CONTROL	INPUT	DATA	INPUT	OUTPUT
C	D	An	Bn	Yn
L	$L\{$	L	L	L
		L	H	H
		H	L	L
		H	H	L
L	H	-	-	Bn
H	L	-	-	$\overline{\text { An }}$
H	H	-	-	H

8242

Quad
2 Input EX-NOR

Open collector outputs are provided to permit tying for multi-bit comparisons.

8251

19-09594

Continued Overleaf
6.47

INPUTS				OUTPUTS									
D	C	B	A	0	1	2	3	4	5	6	7	8	9
L	L	L	L	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	H	H	L	H	H	H	H	H	H	H
L	L	H	H	H	H	H	L	H	H	H	H	H	H
L	H	L	L	H	H	H	H	L	H	H	H	H	H
L	H	L	H	H	H	H	H	H	L	H	H	H	H
L	H	H	L	H	H	H	H	H	H	I	H	H	H
L	H	H	H	H	H	H	H	H	H	H	L	H	H
H	L	L	L	H	H	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L
H	L	H	L	H	H	H	H	H	H	H	H	X	X
H	L	H	H	H	H	H	H	H	H	H	H	X	X
H	H	L	L	H	H	H	H	H	H	H	H	X	X
H	H	L	H	H	H	H	H	H	H	H	H	X	X
H	H	H	L	H	H	H	H	H	H	H	H	X	X
H	H	H	H	H	H	H	H	H	H	H	H	X	X

8266

19-09934

Quad
2-line
to l-line Selector

CONTROI INPUT		OUTPUT
C	D	Yn
L	I	Bn
L	H	Bn
H	I	$\overline{\mathrm{An}}$
H	H	H

8271

19-09615

4-bit
Parallel
Access
Shift
Register

8598

23-000A1-02
32×8-Bit
R.O.M.

Required address set on select lines. Data at output when En. low.
6.50

8815

Dual
4-Input NOR Gate

8875

Triple
3-Input NOR Gate

19-10647

Same function as 7427 but circuitry and characteristics different.

8881

Open collector outputs.
Same function as 7401 but different circuitry and characteristics allow it to handle greater currents. This makes the device suitable for use as a Unibus Driver.

8885

Same function as 7402 but circuitry and characteristics different.

8-Input Priority Encoder

The 9318 accepts data from 8 active low inputs and provides a binary representation on the 3 active low outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority. A high on the input enable (El) will force all outputs to the inactive state and allow new data to settle without producing erroneous information at the outputs. A group signal output (GS) and an enable output (EO) are provided with the three data outputs. The GS is active level low when all inputs are high. Using the output enable along with the input enable allows priority encoding of N input signals. Both EO and GS are inactive high when the input enable is high.

9601

19-09373

Duration of the output pulse is a function of the external timing components which must be connected thus:-

The input gating allows leadind or trailing edge triggering:-	INPUTS				OUTPUTS	
		1 A2	B1		Q	\bar{Q}
		H	X	X	L	H
		X	L	X	L	H
The device is retriggerable: the applica-		X	X	L	L	H
tion of a further		X	H	H	L	H
trigger pulse before		X	4	H	Ω	\square
will cause the output		X	H	4	Ω	T
pulse to extend its		L	H	H	L	H
	X	L	4	H	Ω	U
Retriggering can be		L	H	4	Ω	T
prevented by tying the \bar{Q} output to an		\dagger	H	H	Ω	U
active Low.		\dagger		H	Ω	U
				H	Ω	บ

9602

The duration of the output pulse for each monostable is set by the associated timing components:

The output pulse can be terminated before its normal width by taking the $C D$ input (Reset) Low.

The input gating allows leading or trailing edge triggering:-

The device like the 9601 is retriggerable. This facility can be overidden by taking \bar{Q} to an active L (or Q ťo a high).

[^0]19-11113
A version of the 380 but with different circuitry and characteristics.

74121

An internal timing resistor is provided. The timing capacitor is connected between pins 11 and 10.

The input coding allows leading or trailing edge triggering:-

INPUTS			OUTPUTS	
A1	A2	B	Q	\bar{Q}
L	X	H	L	H
X	L	H	L	H
X	X	L	L	H
H	H	X	L	H
H	\dagger	H	Ω	U
\dagger	H	H	Ω	U
\dagger	\downarrow	H	Ω	U
L	X	4	Ω	U
X	L	4	Ω	บ

74123

19-10436

Dual
Retriggerable
Monostable
Multivibrator

INPUTS			OUTPUTS	
CLEAR	A	B	Q	$\overline{\mathrm{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	4	I	U
H	\downarrow	H	Ω	L
4	L	H	Ω	I

The input gating allows leading or trailing edge triggering. The device is retriggerable: by applying a further trigger pulse during the output pulse its duration can be extended. The clear input allows any output pulse to be terminated independently of the timing components, $R x$ and Cu, which are connected thus:-

74150

Selects one of 16 data sources.

The internal logic is similar in form to that shown for the 74151 .

6.59

74153

19-09937
Dual
4-1
Data

16	$\boxed{15}$	$\boxed{14}$	$\boxed{13}$	$\boxed{12}$	$\boxed{11}$	$\boxed{10}$	$\boxed{9}$
VCC	2 G	E	2 D	2 C	2 B	2 A	2 Y
1 G	F	1 D	1 C	1 B	1 A	1 Y	GND
1	2	3	4	5	6	7	8

Selector/
Mux.

CONTROL INPUT		STROBE	OUTPUT
E	F	G	Y
L	L	L	A
H	L	L	B
L	H	L	C
H	H	L	D
Don't Care	H	L	

Vcc

74157

Vcc

0
$\stackrel{0}{4}$
$\stackrel{1}{0}$
0
0

Inputs $0 / P$ Inputs $0 / P$
19-10655

INPUTS				OUTPUT
STROBE	SELECT	A	B	Y
H	X	X	X	L
L	L	-	-	A
L	H	-	-	B

Strobe H sets all outputs Low. With Strobe Low, select input directs either A or B inputs to outputs.

74S158

19-10549

Quad
2-1
Data
Selector/
Mux.

See 74157 for pin connections; but outputs inverted, thus:-

INPUTS				OUTPUT
STROBE	SELECT	A	B	Y
H	X	X	X	H
L	L	-	-	$\overline{\mathrm{A}}$
L	H	-	-	\bar{B}

The counter is cleared by applying a Low to CLEAR. Presetting occurs when LOAD is taken Low: Information at the data input is then entered on the next clock 4. Both count enable inputs (P and T) must be taken H to count. The carry output is used for cascading counters.

19-10652

Hex
D-Type Flip-Flop

Continued Overleaf..

Information at the D inputs is transferred to the Q outputs on the positive-going edge of the clock pulse.

INPUTS			OUTPUT
CLEAR	CLOCK	D	Q
L	X	X	L
H	4	H	H
H	4	L	L
H	L	X	No
			Change

74175

19-10651

INPUTS			OUTPUTS	
CLEAR	CLOCK	D	Q	$\overline{\mathrm{Q}}$
L	X	X	L	H
H	A	H	H	L
H	A	L	L	H
H	L	X	No Change	

74181

19-09982

Arithmetic Logic Unit

G and P = Look Ahead Carry.
The 74181 performs logic functions with Mode High, or Arithmetic functions with Mode Low. The required functions are selected at the SELECT inputs. The interpretation of the functions depends on the assertion level of the data the alternatives are given in the following tables:-

SELECT.3210	DATA ASSERTED HIGH		
	$\begin{gathered} M=H \\ 0 \end{gathered}$	$\mathrm{M}=\mathrm{L}$; ARITH	METIC OPERATIONS
	FUNCTIONS	$\mathrm{Cn}=\mathrm{H}$	$\mathrm{Cn}=\mathrm{L}$
L L L L	$\mathrm{F}=\overline{\mathrm{A}}$	$F=A$	$\mathrm{F}=\mathrm{A}+1$
L L L H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B)+1$
L L H L	$F=\bar{A} B$	$F=A+\bar{B}$	$F=(A+\bar{B})+1$
L L H H	$\mathrm{F}=0$	$F=-1$ (2COMP)	$F=\mathrm{zERO}$
L H L L	$F=\overline{A B}$	$F=A+A \bar{B}$	$F=A+A \bar{B}+1$
L H L H	$\mathrm{F}=\overline{\mathrm{B}}$	$F=(A+B)+A \bar{B}$	$F=(A+B)+A \bar{B}+1$
L. H H L	$F=A \oplus B$	$F=A-B-1$	$F=A-B$
L H H H	$F=\bar{A} \bar{B}$	$F=A \bar{B}-1$	$F=A \bar{B}$
H L L L	$F=\bar{A}+B$	$F=A+A B$	$F=A+A B+1$
H L L H	$F=\overline{A(+B}$	$F=A+B$	$F=A+B+1$
H L H L	$F=B$	$F=(\bar{A}+\bar{B})+A B$	$F=(A+\bar{B})+A B+1$
H L H H	$\mathrm{F}=\mathrm{AB}$	$F=A B-1$	$F=A B$
H H L L	$F=1$	$F=A+A *$	$F=A+A+1$
H H L H	$F=\bar{A}+\bar{B}$	$F=(A+B)+A$	$F=(A+B)+A+1$
H H H H	$F=A+B$	$F=(A+\bar{B})+\mathrm{A}$	$F=(A+\bar{B})+A+1$
H H H H	$F=A$	$\mathrm{F}=\mathrm{A}-1$	$F=A$

* Each bit is shifted to the next more significant position.
$+=O R \quad \oplus \quad E X$ OR $\quad+=$ Arithmetic Plus (Add)

SELECT.3210	DATA ASSERTED LOW		
	$\begin{gathered} \mathrm{M}=\mathrm{H} \\ \mathrm{~T} \end{gathered}$	M=L; ARITHMET	C OPERATIONS
	FUNCTIONS	$\mathrm{Cn}=\mathrm{L}$	$\mathrm{Cn}=\mathrm{H}$
L L L L	$F=\overline{\mathrm{A}}$	$\boldsymbol{F}=\mathrm{A}-\mathrm{I}$	$\mathrm{F}=\mathrm{A}$
L L L H	$F=\overline{A B}$	$F=A B-1$	$F=A B$
L L H L	$\bar{F}=\overline{\mathrm{A}}+\mathrm{B}$	$F=A \bar{B}-1$	$\mathrm{F}=\mathrm{A} \overline{\mathrm{B}}$
L L H H	$F=1$	$\mathbf{F}=-1$ (2 COMP)	$\mathrm{F}=\mathrm{ZERO}$
L H L L	$F=\overline{A+B}$	$\mathrm{F}=\mathrm{A}+\quad(\mathrm{A}+\bar{B})$	$F=A>(A+\bar{B})+1$
L H L H	$F=\bar{B}$	$F=A B+(A+\bar{B})$	$F=A B+(A+\bar{B})+1$
L H H L	$F=\overline{A(P)}$	$F=A-B-1$	$\mathbf{F}=\mathrm{A}-\mathrm{B}$
L H H H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})+1$
H L L L	$F=\bar{A} B$	$F=A+(A+B)$	$F=A+(A+B)+1$
H L L H	$F=A \oplus B$	$F=A+B$	$F=A+B+1$
H L \quad H L	$\mathrm{F}=\mathrm{B}$	$F=A \bar{B}+(A+B)$	$F=A \bar{B}+(A+B)+1$
H L H H	$F=A+B$	$F=A+B$	$F=(A+B)+1$
H H L L	$\mathbf{F}=0$	$F=A+A$ *	$F=A+A D I$
H H L H	$F=A \bar{B}$	$\mathrm{F}=\mathrm{AB}+\mathrm{A}$	$F=A B+A>1$
H H H L	$\mathbf{F}=\mathrm{AB}$	$\mathrm{F}=\mathrm{A} \overline{\mathrm{B}}+\mathrm{A}$	$F=A \bar{B}+\mathrm{A}+1$
H H H H	$F=P$	$F=A$	$F=A+1$

* Each bit is shifted to the next more significant position.

The device functions as a comparator in the subtract mode ($F=A$ minus B) with $C n$ High. When the input words are equal $A=B$ is High.

74182

19-10019

LookAhead Carry Generator

Used in conjunction with adders or A.I.U's. in arithmetic operations to anticipate the carry inputs and thus increase the speed greatly.

DESSIGNATION	FUNCTION
GO, G1, G2, G3	Carry Generate Inputs Active-Low
PO, Pl, P2, P3	Carry Generate Inputs Active-Low
Cn	Carry Input
$\begin{gathered} C n+x, C n+y \\ C n+z \end{gathered}$	Carry Outputs
G	Carry Generate Output Active-Low
P	Carry Propagate Output Active-Low

The SN74182 is a high-speed, look-ahead carry generator capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry, and propogate-carry functions are provided.

256 Word 4-bit
Read Only Memory

Data is entered by the manufacturer and cannot be changed. Open collector outputs.

Word selection is in 8-bit binary:

WORD	H	G	F	E	D	C	B	A
O	L	L	L	L	L	L	L	L
1	L	L	L	L	L	L	L	H
2	L	L	L	L	L	L	H	L
-								
-								
--	H	H	H	H	H	H	H	L
255	H	H	H	H	H	H	H	H

When either or both of the ENABLE inputs is taken High the memory is inhibited and all four outputs go High.

74191

19-10096

4-bit Binary Synchronous Up-Down Counter

$$
A, B, C, D=\text { Parallel Inputs }
$$

The counter counts 1 for each clock 4 when En is Low. If Down/Up is Low the counter counts up - if High it counts down.

The counter may be preset by setting the required data at the parallel inputs. The outputs will assume these levels when LOAD is taken Low.

74193

19-10018

4-Bit
Binary
Synchronous
Up-Down
Counter

A, B, C, D, = Inputs

The counter counts the L to H transitions of the Count (Clock) inputs. The direction of counting is determined by which COUNT input is pulsed while the other is held High.

When a High is applied to CLEAR all four outputs are forced Low.

The counter may be preset by setting the required data at the parallel inputs. The outputs will assume these levels when LOAD is taken Low.

19-10623

4-Bit
Bidirectional Shift
Register

INPUTS				OUTPUTS
CLEAR	Sø	SI	CLOCK	Qa Qb Qc Qd
L	X	X	X	L L L L
H	X	X	L	No Change
H	H	H	4	Parallel Load
H	L	H	4	Shift Right + Right Serial Input to Qa
H	H	L	4	Shift Left + Left Serial Input to Qd
H	L	L	X	No Change

74197

Data A
Count/Load Clear

Data B

Data C

Data D

Continued Overleaf..
6.71
$\frac{\text { Divide by } 2 \text { operation. }}{\text { Output at } 0 \text { a }}$ Input at clock 1 : Output at Qa.

Divide by 8. Input at clock 2: Output at Qd.

Binary Counter; Qa must be connected to CLOCK 2. The counter can be preset by setting the required starting value on the data inputs and a Low on COUNT/LOAD. (This is also known at latch operation).

The CLEAR input overrides the clock inputs and sets the outputs Low.

97401

19-09973

Low output leakage current. Open collectors.

```
NOTES
```


SAFETY

Safety	7.2
Electric Shock	7.3
Resuscitation	7.6

Electric Shock 7.3
Resuscitation $\quad 7.6$

This chapter is intended as a supplement to existing safety information and instructions at the plant.

SAFETY

The computer technician is not exposed to many hazards. The commonest concern the EYES.
(a) Solvent Splashes

When applying solvents with a brush, make sure the hairs "flick" away from you. Do not inhale solvent fumes.
(b) Wire Clippings

The wedge action of side cutters can send a clipping a long way with surprising accuracy. Make sure the firing line is downwards and below eye level.
(c) Solder

Once in a while a conductor under tension can flick a speck of molten solder.

The FORK LIFT TRUCK is one of the finest generators of accidents in industry. When it's around, be CAREFUL.

This leaves the risk of ELECTRIC SHOCK - considered to be slight in our environment, and for that reason it gets forgotten entirely, with the result that every now and again somebody finds himself acting as a conductor.

The following paragraphs explain the exact nature of the hazard. The flow-chart shows how to help the victim of an electrical accident.

ELECTRIC SHOCK

Death by electric shock is a consequence of current passing through the body. The actual cause of death can be any of, or a combination of:
(a) Heart Damage

The normal action of the heart is that of a pump activated by electric pulses. A pulse from the brain contracts the muscle around the lower heart chambers moving blood into the upper chambers. While this is going on the pulse is moving up a delay line of nervous material called the BUNDLE OF HISS. When it emerges it contracts the muscle around the upper chambers and the blood, with valves behind it closed by pressure, exits via a large artery called the Aorta. The point here is not the technical economy of having one pulse do the work of two, but that the whole thing is electronic and cannot be expected to function again after receiving a sizeable fraction of mains power.
(b) Cessation of Breathing

The nervous system controlling our breathing does not take kindly to mains power. In fact, it stops working - but this stoppage is usually temporary.
(c) Burns

Large amounts of power passing through the body will produce charring at the high resistance points. Death from extensive burns usually results from the body retiring into secondary shock (a different sort of shock) but we rarely encounter power in such quantities in our environment.

The effect electricity has on the human body is governed by several factors:
(a) Frequency

DC and low frequency A.C. are the worst.
(b) Current

Table 1

$1-10 \mathrm{~mA}$	perceptible
$10-20 \mathrm{~mA}$	painful contractions
$20-100 \mathrm{~mA}$	via chest interrupts breathing
$100-200 \mathrm{~mA}$	via heart causes permanent damage
$200 \mathrm{~mA}+$	Burns

(c) Path Through Body

Hand to hand or hand to foot - both involve the chest; i.e. breathing and heart.

The magnitude of the current passing through the body is governed by a well known expression $I=E / R$
E is a function of whichever generator the victim is connected to.
R is a function of skin resistance at the entry and exit points. (What goes on in between these points is wet meat, pipes containing fluids, and nerves, all of which add up to about zero ohms.) Skin resistance varies from about 500Ω when wet to $100 k$ when dry.

We are now in a position to calculate our way through a few possible accidents.

Suppose somebody gets one hand on Mains Live while the other is clutching a metal bay frame, on a dry, cool day when his skin, moistened slightly by work, has a resistance of about 6 k .

In the USA or Puerto Rico he would
experience, across the chest, a current of $120 / 6=20 \mathrm{~mA}$. He would experience a painful contraction, which would throw him forcibly against the nearest object.

In Ireland, however, he would pass $220 / 6=36.6 \mathrm{~mA}$. His breathing would stop at about the same moment he hits the floor - unconscious. If his breathing were to stay in spasm for longer than $2 \frac{1}{2}$ minutes, he would begin to suffer brain damage, caused by oxygen starvation - maybe enough damage for the respiratory nervous system to lose interest in recovering.

And yet, prompt ARTIFICIAL RESPIRATION could have ensured his recovery.

Now - imagine the same situation on a hot day after some physical exertion. The hands completing the circuit will be relatively wet - with sweat. Skin resistance of about 1.5k:

In the USA the victim will pass $120 / 1.5=80 \mathrm{~mA}$, and will certainly lose his respiratory action, and will get into the condition just described, only worse.

In Ireland the casualty will pass $220 / 1.5=$ 146 mA . He will probably die instantaneously from heart damage: but he may not, and who will be in a position to say that he is dead?

In both cases ARTIFICIAL RESPIRATION must be started immediately and continued until expert medical opinion says that it should stop. A casualty can have a serviceable heart and yet not regain the power of breathing for some hours. Artificial respiration can keep shock victims alive.

RESUSCITATION

7.6

NOTES

INFORMATION REQUEST

The Manufacturing training group plans an annual revision of the Technicians Handbook.

Your comments and suggestions will help us in our effort to improve its content and usefulness. Please take a few minutes and send us your thoughts.

1. What factual errors, if any, did you find? (Please be specific, give page numbers, etc.)
Comments \qquad
\qquad
\qquad
2. In general, were the copy and illustrations easy to understand?
Comments \qquad
\qquad
\qquad
3. Did you feel any important subject needed a more detailed explanation?
Comments \qquad
\qquad
\qquad
4. Did you feel any superfluous or unnecessary information was given?
Comments \qquad
\qquad
\qquad
5. What changes, if any, would you like to see made in the next edition?

Thank you for your help.

Your Name	Mail to:
Organization	Howard Brown
Location	Manufacturing Training
	Maynard, Mass.

[^0]: See 380.

