
DEC OSF/l

Guide, to Realtime Programming

Part Number: AA-PS338-TE

DECOSF/1
Guide to Realtime Programming
Order Number: AA-PS338-TE

February 1994

This guide describes how to use POSIX 1003.4 Draft 11 (P1003.4ID11)
functions to write realtime applications that run on DEC OSFIl systems.
This guide is intended for experienced application programmers.

Product and Version:

Digital Equipment Corporation
Maynard, Massachusetts

DEC OSFIl Version 2.0 or higher

Revised, February 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1992, 1994. All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CDA, DDIF, DDIS, DEC,
DECdts, DECnet, DE C station, DECsystem, DECthreads, DEC OSF/1, DECUS, DECwindows,
DTIF, MASSBUS, MicroVAX, PrintServer 40, Q-bus, ReGIS, ULTRIX, ULTRIX Mail Connection,
ULTRIX Worksystem Software, UNIBUS, VAX DOCUMENT, VT, XUI, and the DIGITAL logo.

The following are third-party trademarks:

X Window System, Version U and its derivations (X, XU, X Version) are trademarks of the
Massachusetts Institute of Technology.

UNIX is a registered trademark licensed exclusively by XlOpen Co. Ltd.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSFlMotif, and Motif are trademarks of
the Open Software Foundation, Inc.

POSTSCRIPT@ and Adobe are registered trademarks of Adobe Systems Incorporated.

XlOpen is a trademark of the XlOpen Company, Ltd. in the U.K. and other countries.

System V and AT&T are registered trademarks of American Telephone & Telegraph Company in
the U.S. and other countries.

BSD is a trademark of University of California, Berkeley.

NFS is a trademark of Sun Microsystems, Inc.

All other trademarks are registered trademarks are property of their respective holders.

This document is available on CD-ROM

This document was prepared using VAX DOCUMENT Version 2.1.

S1857

Contents

About This Guide. xi

1 Introduction to Realtime Programming

1.1
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4
1.5
1.6
1.6.1
1.6.2

Realtime Overview
DEC OSF/1 Realtime System Capabilities

The Value of a Preemptive Kernel
Nonpreemptive Kernel
Preemptive Kernel
Comparing Latency

Fixed-Priority Scheduling Policies
Realtime Clocks and Timers
Memory Locking
Asynchronous 110
Interprocess Communication

Process Synchronization
Waiting for a Specified Time
Waiting for Semaphores
Waiting for Communication
Waiting for Other Processes
Realtime Needs and System Features

POSIX Standards
Installing the Realtime Kernel.
Building Realtime Applications

Defining the POSIX Environment
Compiling Realtime Applications

1-2
1-4
1-5
1-5
1-6
1-6
1-7
1-9

1-10
1-10
1-11
1-12
1-13
1-14
1-15
1-15
1-16
1-17
1-19
1-19
1-19
1-20

iii

2 Process Scheduling and Priorities

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5

Process Scheduling
Process States
The Scheduler
Scheduling Interfaces
Threads in Realtime Scheduling

Scheduling Policies
The Nature of the Work
Timesharing Scheduling
Fixed-Priority Scheduling

First-in First-out Scheduling
Round-Robin Scheduling

Process Priorities
Priorities for the nice Interface
Priorities for the Realtime Interface
Displaying Realtime Priorities
Configuring Realtime Priorities

Scheduling Functions
Determining Limits
Retrieving the Priority and Scheduling Policy
Setting the Priority and Scheduling Policy
Yielding to Another Process .

Priority and Policy Example

3 Shared Memory

iv

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.2
3.3

Memory Objects
Opening a Shared-Memory Object
Opening Memory-Mapped Files
Mapping Memory-Mapped Files
U sing File Functions
Controlling Memory-Mapped Files
Removing Shared Memory

Locking Shared Memory
Using Shared Memory with Semaphores

2-2
2-2
2-4
2-6
2-9
2-9

2-10
2-11
2-11
2-12
2-13
2-15
2-15
2-16
2-19
2-20
2-21
2-22
2-22
2-23
2-25
2-26

3-1
3-3
3-5
3-6
3-7
3-9

3-10
3-10
3-12

4 Memory Locking
4.1
4.2
4.2.1
4.2.2

5 Signals
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4

Memory Management
Memory-Locking and Unlocking Functions

Locking and Unlocking a Specified Region
Locking an Unlocking an Entire Process Space

PI003.41D11 Realtime Signals
The Signal Interface.

Sending Signals
Blocking Signals.
Managing Signals

U sing the sigaction Function .
U sing the signal Function
U sing Signal Handlers
U sing the sigsetops Primitives

6 Clocks and Timers
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.7

Clock Functions
Retrieving System Time
Setting the Clock .
Managing Clock Drift

'JYpes of Timers .
Timers and Signals
Data Structures Associated with Timing Facilities

U sing the timespec Data Structure
Using the itimerspec Data Structure
Using the sigevent Data Structure

Timer Functions
Creating Timers
Setting Timer Values
Retrieving Timer Values
Disabling Timers

High-Resolution Sleep
Clocks and Timers Example

4-1
4-2
4-3
4-6

5-1
5-2
5-4
5-6
5-8
5-8

5-10
5-10
5-13

6-2
6-3
6-4
6-5
6-6
6-6
6-7
6-7
6-8
6-9

6-10
6-10
6-11
6-13
6-13
6-13
6-14

v

7 Asynchronous Input and Output
7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1

·7.3.2

Data Structures Associated with Asynchronous I/O
Identifying the Location .
Specifying a Signal.

Asynchronous I/O Functions
Reading and Writing
Using List-Directed Input/Output
Determining Status
Canceling I/O
Blocking to Completion

Asynchronous I/O Examples
U sing the aio Functions
Using the lio_listio Function

8 Binary Semaphores
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3

Binary Semaphores
The Semaphore Interface

Creating and Opening a Semaphore Set
Locking and Unlocking Binary Semaphores
Priority Inversion with Semaphores
Closing a Semaphore Set

Semaphore Example

9 Messages

vi

9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3

Data Structures Associated with Messages
Establishing Message Permissions
Establishing Message Structure

The Message Interface
Creating and Opening a Message Queue
Using The ftok Function
Sending and Receiving Messages
Controlling and Removing a Message Queue

Message Queue Example

7-2
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-9
7-9

7-12

8-1
8-3
8-4
8-5
8-6
8-6
8-7

9-1
9-3
9-3
9-4
9-4
9-6
9-7
9-9

9-10

10 Pipes

10.1
10.1.1
10.1.2
10.1.3
10.2

Regular Pipes.
Creating a Pipe
Redirecting stdin, stdout, stderr to Pipes
Creating Pipes with popen

Named Pipes

A Summary of Differences Between P1 003.4/01 0 and
P1003.4/D11

A.1
A.2
A.3
AA

Scheduling Priorities and Policies
Clocks and Timers
Memory Locking
Asynchronous I/O

B DEC OSF/1 Realtime Functional Summary

Index

Examples

2-1
2-2
3-1
3-2
4-1
4-2
5-1
5-2
5-3
5-4
6-1
6-2
7-1
7-2
8-1
8-2
9-1

Initializing Priority and Scheduling Policy Fields
U sing Priority and Scheduling Functions
Including a Shared-Memory Object
Locking a Memory Object
Aligning and Locking a Memory Segment
Using the mlockall Function
Sending Signals Between Processes
Using the alarm Function
Handling Signals
Sending a Signal to Another Process
Returning Time
Using Timers
Using Asynchronous I/O
Using lio_listio in Asynchronous I/O
Locking a Binary Semaphore
Using Semaphores and Shared Memory
U sing Message Queues

10-1
10-2
10-4
10-5
10-6

A-1
A-2
A-2
A-2

2-24
2-26
3-5

3-10
4-5
4-8
5-5
5-9

5-11
5-12
6-4

6-14
7-9

7-12
8-6
8-8

9-10

vii

10-1

Figures

1-1
1-2
2-1
2-2
2-3
2-4
2-5
4-1
4-2
5-1
9-1
10-1
10-2

Tables

1-1
2-1
2-2
2-3
2-4
3-1
3-2
3-3

viii

3-4
4-1
5-1
5-2
6-1
6-2
6-3
7-1

Creating a Child Process and a Pipe

Nonpreemptive Kernel
Preemptive Kernel
Process States
Order of Execution
Process Events
Preemption-Finishing a Quantum
Priority Ranges for the nice and Realtime Interfaces
Memory Allocation with mlock
Memory Allocation with mlockall
Signal Mask that Blocks Two Signals
Representation of Message Data Structures
One-Way Pipe
Two-Way Pipe ;

Realtime Needs Summary
Process States
Priority Ranges for the nice Interface
Priority Ranges for the DEC OSF/l Realtime Interface
PI003.41D11 Process Scheduling Functions
Shared-Memory Functions
Memory-Mapping Functions
Status Flags and Access Modes for the shm_open
Function .. .
File Functions Used with Memory-Mapped Files
Memory-Locking Functions
Signal Control Functions .
The sigsetops Primitive Functions
Clock Functions
Values Used in Setting Timers
Timer Functions
Asynchronous I/O Functions

10-3

1-6
1-7
2-3
2-5
2-7

2-14
2-18
4-4
4-7
5-6
9-2

10-3
10-5

1-16
2-2

2-16
2-17
2-21
3-2
3-2

3-4
3-8
4-3
5-3

5-14
6-2
6-8

6-10
7-4

8-1
9-1
9-2
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19

Semaphore Functions
Message Functions
Message Command Control Flags
Process Control
PI003.41D11 Priority Scheduling
PI003.41D11 Clocks
Date and Time Conversion
PI003.41D11 Timers
BSD Clocks and Timers
PI003.41D11 Memory Locking
System V Memory Locking
PI003.41D11 Asynchronous 110
BSD Synchronous 110
System V Messages
PI003.41D11 Shared Memory
PI003.41D11 Semaphores
POSIX Signal Control
sigsetops Primitives
Process Ownership
Input and Output
Device Control
System Database

8-3
9-4
9-9
8-2
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-9
8-9

ix

About This Guide

This guide is designed for programmers who are using systems running
DEC OSF/l with the realtime kernel. Users may be writing new realtime
applications or they may be porting existing realtime applications from other
systems.

Purpose of this Guide
This guide explains how to use POSIX 1003.4 Draft 11 (PI003.41D11) functions
in combination with other system and library functions to write realtime
applications. This manual does not attempt to teach programmers how to
write applications.

The audience for this manual is the application programmer or system
engineer who is already familiar with the C programming language. The
audience using realtime features is expected to have experience with UNIX
operating systems. They also should have experience with UNIX program
development tools.

This manual does not present function syntax or reference information. The
online reference pages present syntax and explanations of these functions.

Structure of this Guide
This manual consists of eleven chapters and one appendix, organized as
follows:

• Chapter 1, Introduction to Realtime Programming, describes the realtime
functionality supported by the realtime kernel for the DEC OSF/l operating
system.

• Chapter 2, Process Scheduling and Priorities, describes use of the
PI003.41D11 functions to determine and set priority for processes in your
application. This chapter also describes the priority scheduling policies
provided by the realtime kernel for the DEC OSF/l operating system.

xi

• Chapter 3, Shared Memory, describes the creation and use of P1003.41D11
shared memory for interprocess communication.

• Chapter 4, Memory Locking, describes the use of P1003.41D 11 functions for
locking and unlocking memory.

• Chapter 5, Signals, describes the creation and use of signals for
interprocess communication.

• Chapter 6, Clocks and Timers, describes use of the P1003.41D11 functions
for constructing and using high-resolution clocks and timers.

• Chapter 7, Asynchronous Input and Output, describes the use of
P1003.41D11 functions for asynchronous input and output.

• Chapter 8, Binary Semaphores, describes the creation and use of
P1003.4ID11 semaphores for interprocess synchronization. An example
illustrates how to use semaphores and shared memory in combination.

• Chapter 9, Messages, describes the creation and use of System V message
queues for interprocess communication and synchronization in realtime
applications.

• Chapter 10, Pipes, describes the creation and use of pipes and named pipes
for interprocess communication.

• Appendix A, Summary of Differences Between P1003.41D10 and P1003.4
1D11, lists the differences between POSIX 1003.4 Drafts 10 and II.

• Appendix B, DEC OSF/1 Realtime Functional Summary, provides a table of
commands and functions useful for realtime application development.

Related Documents

xii

The following documents are relevant to writing realtime applications:

• OSF / 1 Application Programmer's Guide

• POSIX Conformance Document

• The C Programming Language by Kernighan and Ritchie

• Guide to Developing International Software

• Online Reference Pages

To view online reference pages for the P1003.41D11 functions, use the man or
whatis commands.

The printed version of the DEC OSF/l documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You can
order the printed documentation from Digital.) This color coding is reinforced
with the use of an icon on the spines of books. The following list describes this
convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also
used by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSF/l documentation set.

Using the man Command
System commands and library functions (including PI003.4IDll functions)
have no printed reference material. Instead, the information is shipped on the
system software kit and can be accessed through the man command. The man
command provides online displays of the reference pages. You can use options
to direct the man command to display online summaries of specific reference
pages, to use special formatting when preparing the reference page for viewing
or printing, and to search alternate reference page directories for specified
reference pages.

Use the man command to access the online reference pages for the PI003.4IDll
functions discussed in this manual. If you need help in using the man
command, use the following command:

* man man

If you do not specify an option, the man command formats and displays one or
more specified reference pages. If multiple reference pages match a specified
name, only the first matching reference page is displayed. If there are multiple
matches in one section for a specified name, the matching page in the first
alphabetically occurring subsection is displayed.

xiii

Conventions
The following conventions are used in this manual:

Convention

%

»
CPUnn»

user input

system
output

variable

UPPERCASE
lowercase

cat(l)

Meaning

The default user prompt is the user's system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to represent
this prompt.

A number sign is the default superuser prompt.

The console subsystem prompt is two right angle brackets. On a
system with more than one central processing unit (CPU), the prompt
displays two numbers: the number of the CPU, and the number of the
processor slot containing the board for that CPU.

This bold typeface is used in interactive examples to indicate typed
user input.

In text, this typeface indicates the exact name of a command, function,
option, partition, pathname, directory, or file. This typeface is used in
interactive examples to indicate system output. It is also used in code
examples and other screen displays.

This typeface indicates variable information, such as user-supplied
information in commands, syntax, or example text.

Horizontal ellipsis indicates that the preceding item can be repeated
one or more times. It is used in syntax descriptions and function
definitions.

Vertical ellipsis indicates that a portion of an example that would
normally be present is not shown.

The system differentiates between lowercase and uppercase
characters. Literal strings that appear in text, examples, syntax
descriptions, and function definitions must be typed exactly as shown.

Cross-references to the online reference pages include the appropriate
section number in parentheses. For example, a reference to cat(l)
indicates that you can find the material on the cat command in
Section 1 of the online reference pages.

Reader's Comments

xiv

Digital welcomes your comments on this or any other DEC OSF/1 manual. You
can send your comments in the following ways:

• Internet electronic mail: readerscomment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). 1\vo Reader's Comments forms are located at the back of
each printed manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

xv

1
Introduction to Realtime Programming

A realtime application is one in which the correctness of the application
depends on the timeliness and predictability of the application as well as the
results of computations. To assist the realtime application designer in meeting
these goals, the DEC OSF/1 realtime kernel provides features that facilitate
efficient interprocess communication and synchronization, a fast interrupt
response time, asynchronous input and output (lIO), memory management
functions, and facilities for handling timing constraints.

Realtime applications are becoming increasingly important in our daily lives
and can be found in diverse environments such as the automatic braking
system on an automobile, a lottery ticket system, or robotic environmental
samplers on a space station. The use of realtime programming techniques
is rapidly becoming a common means for improving the predicability of our
technology.

This chapter includes the following sections:

• Realtime Overview, Section 1.1

• DEC OSF/1 Realtime System Capabilities, Section 1.2

• Process Synchronization, Section 1.3

• POSIX Standards, Section 1.4

• Installing the Realtime Kernel, Section 1.5

• Building Realtime Applications, Section 1.6

Introduction to Realtime Programming 1-1

1.1 Realtime Overview
Realtime applications provide an action or an answer to an external event in
a timely and predictable manner. While many realtime applications require
high-speed compute power, realtime applications cover a wide range of tasks
with differing time dependencies. "Timeliness" has different definitions in each
realtime application. What may be fast in one application may be slow or late
in another. For example, an experimenter in high-energy physics needs to
collect data in microseconds while a meterologist monitoring the environment
might need to collect data in intervals of several minutes. However, the success
of both applications depends on well-defined time requirements.

The concept of "predictability" has many connotations, but for realtime
applications it generally means that a task or set of tasks can always
be completed within a predetermined amount of time. Depending on the
situation, an unpredictable realtime application can result in loss of data, loss
of deadlines, or loss of plant production. Examples of realtime applications
include process control, factory automation robotics, vehicle simulation,
scientific data acquisition, image processing, built-in test equipment, music or
voice synthesis, and analysis of high-energy physics.

To have control over the predictability of an application, the programmer must
understand which time bounds are significant. For example, an understanding
of the average time it takes for a context switch does not guarantee task
completion within a predictable timeframe. The realtime programmer must
know the worst-case time requirements so that he can design an application
that will always meet worst-case deadlines.

Realtime systems also use techniques to reduce the numbers associated with a
worst-case scenario. In some situations, a worst-case realtime deadline may be
significantly faster than the non-realtime, average time.

Realtime applications can be classified as either hard or soft realtime. Hard
realtime applications require a response to events within a predetermined
amount of time for the application to function properly. If a hard realtime
application fails to meet specified deadlines, the application fails. While many
hard realtime applications require high-speed responses, the granularity of the
timing is not the central issue in a hard realtime application. An example of
a hard realtime application is a missile guidance control system where a late
response to a needed correction leads to disaster.

Soft realtime applications do not fail if a deadline is missed. Some soft realtime
applications can process large amounts of data or require a very fast response
time, but the key issue is whether or not meeting timing constraints is a
condition for success. An example of a soft realtime application is an airline
reservation system where an occasional delay is tolerable.

1-2 Introduction to Realtime Programming

Many realtime applications require high I/O throughput and fast response
time to asynchronous external events. The ability to process and store large
amounts of data is a key metric for data collection applications. Realtime
applications that require high I/O throughput rely on continuous processing of
large amounts of data. The primary requirement of such an application is the
acquisition of a number of data points equally spaced in time.

High data throughput requirements are typically found in signal-processing
applications such as:

• Sonar and radar analysis

• Telemetry

• Vibration analysis

• Speech analysis

• Music synthesis

Likewise, a continuous stream of data points must be acquired for many
of the qualitative and quantitative methods used in the following types of
applications:

• Gas and liquid chromatography

• Mass spectrometry

• Automatic titration

• Colorimetry

For some applications, the throughput requirements on any single channel
are modest. However, an application may need to handle multiple data
channels simultaneously, resulting in a high aggregate throughput. Realtime
applications, such as medical diagnosis systems, need a response time of about
1 second while simultaneously handling data from, perhaps, ten external
sources.

High I/O throughput may be important for some realtime control systems,
but another key metric is the speed at which the application responds
to asynchronous external events and its ability to schedule and provide
communication among multiple tasks. Realtime applications must capture
input parameters, perform decision-making operations, and compute updated
output parameters within a given timeframe.

Introduction to Realtime Programming 1-3

Some realtime applications, such as flight simulation programs, require a
response time of microseconds while simultaneously handling data from a
large number of external sources. The application might acquire several
hundred input parameters from the cockpit controls; compute updated position,
orientation, and speed parameters; and then send several hundred output
parameters to the cockpit console and a visual display subsystem.

Realtime applications are usually characterized by a blend of requirements.
Some portions of the application may consist of hard, critical tasks (all of
which must meet their deadlines). Other parts of the application may require
heavy data throughput. Many parts of a realtime application can easily run
at a lower priority and require no special realtime functionality. The key to a
successful realtime application is the developer's ability to accurately define
application requirements at every point in the program. Resource allocation
and realtime priorities are used only when necessary so that the application is
not overdesigned.

1.2 DEC OSF/1 Realtime System Capabilities
The DEC OSF/1 operating system supports facilities to enhance the
performance of realtime applications. DEC OSF/1 realtime facilities make
it possible for the operating system to guarantee that the realtime application
has access to resources whenever it needs them and for as long as it needs
them. That is, the realtime applications running on the DEC OSF/1 operating
system can respond to external events regardless of the impact on other
executing tasks or processes.

The realtime applications written to run on the DEC OSF/1 operating system
make use of and rely on the following system capabilities:

• A preemptive kernel

• Fixed-priority scheduling policies

• Realtime clocks and timers

• Memory locking

• Asynchronous I/O

• Reliable, asynchronous signals

• Process communication facilities

All of these realtime facilities work together to form the DEC OSF/1 realtime
environment. In addition, realtime applications make full use of process
synchronization techniques and facilities, as summarized in Section 1.3.

1-4 Introduction to Realtime Programming

1.2.1 The Value of a Preemptive Kernel
The responsiveness of the operating system to asynchronous events is a critical
element of realtime systems. Realtime systems must be capable of meeting the
demands of hard realtime tasks with tight deadlines. To do this, the operating
system's reaction time has to be short and the scheduling algorithm must be
simple and efficient.

The amount of time it takes for a higher-priority process to displace a lower
priority process is referred to as Process Preemption Latency. In a realtime
environment, the primary concern of application designers is the Maximum
Process Preemption Latency that can occur at runtime, the worst-case scenario.

Every application interacts with the operating system in two modes: user
mode and kernel mode. User-mode processes call utilities, library functions,
and other user applications. A process running in user mode can be preempted
by a higher-priority process. During execution, a user-mode process often
makes system calls, switching the context from user to kernel mode where the
process interacts with the operating system. Under the traditional timesharing
scheduling algorithm, a process running in kernel mode cannot be preempted.

A preemptive kernel guarantees that a higher-priority process can quickly
interrupt a lower-priority process, regardless of whether the low-priority
process is in user or kernel mode. Whenever a higher-priority process becomes
runnable, a preemption is requested, and the higher-priority process displaces
the running, lower-priority process.

1.2.1.1 Nonpreemptive Kernel
The standard UNIX kernel is a nonpreemptive kernel; it does not allow a user
process to preempt a process executing in kernel mode. Once a running process
issues a system call and enters kernel mode, preemptive context switches
are disabled until the system call is completed. Although there are context
switches, a system call may take an arbitrarily long time to execute without
voluntarily giving up the processor. During that time, the process that made
the system call may be holding up the execution of a higher-priority, runnable,
realtime process.

The Maximum Process Preemption Latency for a nonpreemptive kernel is the
maximum amount of time it can take for the running, kernel-mode process to
switch out of kernel mode back into user mode and then be preempted by a
higher-priority process. Under these conditions it is not unusual for worst-case
preemption to take seconds, which is clearly unacceptable for many realtime
applications.

Introduction to Realtime Programming 1-5

1.2.1.2 Preemptive Kernel
A preemptive kernel, such as the DEC OSF/l realtime kernel, allows the
operating system to respond quickly to a process preemption request. When
a realtime user process engages one of the fixed-priority scheduling policies,
the DEC OSF/l kernel can break out of kernel mode to honor the preemption
request.

A preemptive kernel supports the concept of process synchronization, while
maintaining data integrity, with the ability to respond quickly to interrupts.
The kernel employs mechanisms to protect the integrity of kernel data
structures and defines the restrictions on where the kernel cannot preempt
execution.

The Maximum Process Preemption Latency for a preemptive kernel is exactly
the amount of time required to preserve system and data integrity and preempt
the running process. Under these conditions it is not unusual for worst-case
preemption to take milliseconds.

1.2.1.3 Comparing Latency
Figure 1-1 and Figure 1-2 illustrate the Process Preemption Latency that can
be expected from a nonpreemptive kernel and a preemptive kernel. In both
figures, a higher-priority, realtime process makes a preemption request, but
the amount of elapsed time until the request is honored depends on the kernel.
Latency is represented as the shaded area.

Figure 1-1 Nonpreemptive Kernel

User Kernel User
Mode Mode Mode

~

Preemption
Request

Higher-Priority
Process Runs

Preemption
Honored

1-6 Introduction to Realtime Programming

MLO-007312

Figure 1-1 shows the expected latency of a nonpreemptive kernel. In this
situation, the currently running process moves back and forth between user
and kernel mode as it executes. The higher-priority, realtime process advances
to the beginning of the priority process list, but cannot preempt the running
process while it runs in kernel mode. The realtime process must wait until the
running process either finishes executing or changes back to user mode before
the realtime process is allowed to preempt the running process.

Figure 1-2 Preemptive Kernel

Preemption
Request

Latency

Preemption
Honored

IIII!!
R~~ning Process

Higher-Priority
Process Runs

MLO-007313

Figure 1-2 shows the expected latency of a preemptive kernel. In this situation
the running process is quickly preempted and the higher-priority, realtime
process takes its place on the run queue. With a preemptive kernel, latency is
minimized and can be measured in terms of milliseconds.

1.2.2 Fixed-Priority Scheduling Policies
The scheduler determines how CPU resources are allocated to executing
processes. Each process has a priority that associates the process with a run
queue. Each process starts out with a base priority that can change as the
application executes depending on the algorithm used by the scheduler or
application requirements.

The algorithm or set of rules that governs how the scheduler selects runnable
processes, how processes are queued, and how much time each process is given
to run is called a scheduling policy. Scheduling policies work in conjunction
with priority levels. Generally speaking, the higher a process's priority, the
more frequently the process is allowed to execute. But the scheduling policy
may determine how long the process executes. The realtime application

Introduction to Realtime Programming 1-7

designer balances the nature of the work performed by the process with
process's priority and scheduling policy to control use of system resources.

If realtime is installed on your system, the DEC OSF/l operating system
supports two distinctly different scheduling interfaces: the nice interface and
the realtime interface. The nice interface provides functions for managing
nonrealtime applications running at nonrealtime priority level. The nice
interface uses the timesharing scheduling policy, which allows the scheduler to
dynamically adjust priority levels of a process.

The DEC OSF/l realtime interface supports a nonrealtime (timesharing)
scheduling policy and two fixed-priority, preemptive scheduling policies for
realtime applications. Under the timesharing scheduling policy, process
priorities are automatically adjusted by the scheduler. Under the fixed-priority
scheduling policies (first-in, first-out and round robin), the scheduler will
never automatically change the priority of a process. Instead, the application
designer determines when it is appropriate for a process to change priorities.

The realtime interface provides a number of functions to allow the realtime
application designer to control process execution. In addition, realtime
scheduling policies are attached to individual processes, giving the application
designer control over individual processes.

POSIX scheduling policies have overlapping priority ranges: The highest
priority range is reserved for realtime applications, the middle priority range
is used by the operating system, and the lowest priority range is used for
nonprivileged user processes. Realtime priority ranges loosely map to the nice
priority range, but provide a wider range of priorities for a realtime process.
Figure 2-5 illustrates the priority ranges for both the nice and realtime
scheduling interfaces.

Not all realtime processes need to run in the realtime priority range.
When using the realtime interface, each process starts execution under
the timesharing scheduling policy with an associated timesharing priority. The
application designer determines which processes are time-critical and under
what circumstances processes should run at an elevated priority level. The
application designer calls the PI003.41D11 functions to set the appropriate
priority and scheduling policy.

Under the first-in first-out (SCHED_FIFO) scheduling policy, a running process
continues to execute if there are no other higher-priority processes. The user
can raise the priority of a running process to avoid its being preempted by
another process. Therefore, a high-priority, realtime process running under
the first-in first-out scheduling policy can use system resources as long as
necessary to finish realtime tasks.

1-8 Introduction to Realtime Programming

Under the round-robin (SCHED_RR) scheduling policy, the highest-priority
process runs until either its alloted time (quantum) is complete or the process
is preempted by another, higher-priority process. At the end of the quantum,
a process of equal priority will take its place at the end of the run queue.
Processes at that priority continue to execute as long as the waiting processes
are lower-priority. Therefore, high-priority processes running under the
round-robin scheduling policy can share the processor with other time-critical
processes.

When a process raises its priority and preempts a running process, the
scheduler saves the runtime context of the preempted process so that context
can be restored once the process is allowed to run again. The preempted
process remains in a runnable state even though it was preempted.

For information on using the priority and scheduling policy functions, refer to
Chapter 2.

1.2.3 Realtime Clocks and Timers
Realtime timers often schedule tasks and events in time increments
considerably smaller than the traditional one-second timeframe. Because
the system-wide clock and realtime timers use seconds and nanoseconds as the
basis for time intervals, the resolution for the system clock, realtime timers,
and the nanos leep function has a fine granularity. For example, in a robotic
data acquisition application, information retrieval and recalculation operations
may need to be completed within a 4-millisecond timeframe. Timers are
created to fire every 4 milliseconds to trigger the collection of another round of
data. On expiration, a timer sends a signal to the calling process.

Realtime timers must be flexible enough to allow the application to set timers
based on either absolute or relative time. Furthermore, timers must be able to
fire as a one-shot or periodic timer. The application creates timers in advance,
but specifies timer characteristics when the timer is set.

Realtime applications use timers to coordinate and monitor the correctness of
a realtime application. Some applications may require only one per-process
timer; others may require multiple timers. Each timer is created and armed
independently, which means that the application designer controls the action of
each and every timer.

The DEC OSF/1 systemwide clock provides the timing base for per-process
timers and is the source for timer synchronization. This clock maintains
user and system time as well as the current time and date. The resolution
of the clock is such that it provides the basic mechanism to support realtime
per-process timers and high-resolution sleep.

Introduction to Realtime Programming 1-9

Clock and timer functions allow you to retrieve and set the systemwide clock,
retrieve and correct for clock drift rate, suspend execution for a period of time,
provide high-resolution timers, and use asynchronous signal notification.

For information on using the clock and timer functions, refer to Chapter 6.

1.2.4 Memory Locking
Memory locking is one of the primary tools available to the DEC OSF
/1 realtime application designer to reduce latency. Without locking time
critical processes into memory, the latency caused by paging would introduce
involuntary and unpredictable time delays at runtime.

A realtime application needs a mechanism to guarantee that time-critical
processes are locked into memory and not subjected to memory management
appropriate only for timesharing applications. In a virtual memory system,
a process may have part of its address space paged in and out of memory in
response to system demands for critical space.

The PI003.41D11 memory-locking functions allow the application designer to
lock process address space into memory. The application can lock in not only
the current address space, but also any future address space the process may
use during execution.

For information on using the memory-locking functions, refer to Chapter 4.

1.2.5 Asynchronous 110
With synchronous I/O the process waits (is blocked) for the I/O operations
to complete before continuing execution. DEC OSF/l asynchronous I/O
allows the calling process to resume execution immediately once an I/O
operation is queued. This capability is desirable in many different applications
ranging from graphics and file servers to dedicated realtime data acquisition
and control systems. The process immediately continues execution, thus
overlapping operations.

Often, one process simultaneously performs multiple I/O functions while other
processes continue execution. For example, an application may need to gather
large quantities of data from multiple channels within a short, bounded period
of time. In such a situation, blocking I/O may work at cross purposes with
application timing constraints. Asynchronous I/O performs nonblocking I/O,
allowing simultaneous reads and writes, which frees processes for additional
processing.

For information on using the asynchronous I/O functions, refer to Chapter 7.

1-10 Introduction to Realtime Programming

1.2.6 Interprocess Communication
Interprocess communication is the exchange of information between two or
more processes. In single-process programming, modules within a single
process communicate by using global variables and function calls with data
passing between the functions and the callers. In multiprocess programming
with images running in separate address space, you need to have additional
communication mechanisms for passing data.

DEC OSF/1 interprocess communication facilities allow the realtime
application designer to synchronize independently executing processes by
passing data within an application. Processes can pursue their own tasks
until they must synchronize with other processes at some predetermined point.
When they reach that point, they wait for some form of communication to
occur. Interprocess communication can take any of the following forms:

• Shared memory, Chapter 3

Shared memory is the fastest form of interprocess communication. As
soon as one process writes data to the shared memory area, it is available
to other processes using the same shared memory. DEC OSF/1 supports
P1003.41D11 shared memory.

• Signals, Chapter 5

Signals provide a means to communicate to a large number of processes,
but communication is limited to a signal number. Realtime signals for
timer expiration and asynchronous I/O completion use a data structure,
making signal delivery asynchronous, fast, and reliable.

• Semaphores, Chapter 8

Semaphores are most commonly used to control access to system resources,
such as shared memory regions. DEC OSF/1 supports P1003.41D11
semaphores.

• Messages, Chapter 9

Messages consist of user-defined structures that specify the length and type
of message as well as carry the message text. DEC OSF/1 supports System
V message queues.

• Pipes, Chapter 10

Pipes are used to transfer small amounts of data among related processes.

Named pipes are like pipes, except that named pipes use file descriptors.

Introduction to Realtime Programming 1-11

Some forms of interprocess communication are traditionally supplied by
the operating system and some are specifically modified for use in realtime
functions. All allow a user- or kernel-level process to communicate with a
user-level process. Interprocess communication facilities are used to notify
processes that an event has occurred or to trigger the process to respond to
an application-defined occurrence. Such occurrences can be asynchronous 110
completion, timer expiration, data arrival, or some other user-defined event.

To provide rapid signal communication on timer expiration and asynchronous
110 completion, these functions send signals through a common data structure.
It is not necessary to call signal functions.

For information on using asynchronous signals for interprocess communication,
refer to Chapter 5.

1.3 Process Synchronization
Use of synchronization techniques and restricting access to resources can
ensure that critical and noncritical tasks execute at appropriate times with
the necessary resources available. Concurrently executing processes require
special mechanisms to coordinate their interactions with other processes and
their access to shared resources. In addition, processes may need to execute at
specified intervals.

Realtime applications synchronize process execution through the following
techniques:

• Waiting for a specified time

• Waiting for semaphores

• Waiting for communication

• Waiting for other processes

The basic mechanism of process synchronization is waiting. A process must
synchronize its actions with the arrival of an absolute or relative time, or until
a set of conditions is satisfied. Waiting is necessary when one process requires
another process to complete a certain action, such as releasing a shared system
resource, or allowing a specified amount of time to elapse, before processing
can continue.

The point at which the continued execution of a process depends on the state
of certain conditions is called a "synchronization point." Synchronization
points represent intersections in the execution paths of otherwise independent
processes, where the actions of one process depend on the actions of another
process.

1-12 Introduction to Realtime Programming

The application designer identifies synchronization points between
processes and selects the functions best suited to implement the required
synchronization.

The application designer identifies resources such as message queues and
shared memory that the application will use. Failure to control access to
critical resources can result in performance bottlenecks or inconsistent data.
For example, the transaction processing application of a national ticket agency
must be prepared to process purchases simultaneously from sites around
the country. Ticket sales are transactions recorded in a central database.
Each transaction must be completed as either rejected or confirmed before
the application performs further updates to the database. The application
performs the following synchronization operations:

• Restricts access to the database

• Provides a reasonable response time

• Ensures against overbookings

Processes compete for access to the database. In doing so, some processes must
wait for either a confirmation or rejection of a transaction.

1.3.1 Waiting for a Specified Time
A process can postpone execution for a specified period of time or until a
specified time and date. This synchronization technique allows processes
to work periodically and to carry out tasks on a regular basis. To postpone
execution for a specified period of tiIne, use one of the following two methods:

• The sleep functions

• Per-process timers

The sleep function has a granularity of seconds while the nanosleep function
uses nanoseconds. The granularity of the nanosleep function may make it
more suitable for realtime applications. For example, a vehicle simulator
application may rely on retrieval and recalculation operations that are
completed every 5 milliseconds. The application requires a number of per
process timers armed with repetition intervals that allow the application to
retrieve and process information within the 5-millisecond deadline.

Realtime clocks and timers allow an application to synchronize and coordinate
activities according to a predefined schedule. Such a schedule might require
repeated execution of one or more processes at specific time intervals or only
once. A timer is set (armed) by specifying an initial start time value and an
interval time value. Realtime timing facilities provide applications with the

Introduction to Realtime Programming 1-13

ability to use relative or absolute time and to schedule events on a one-shot or
periodic basis.

1.3.2 Waiting for Semaphores
The semaphore allows a process to synchronize its access to a resource shared
with other processes, most commonly, shared memory. A semaphore is a kernel
data structure, shared by two or more processes, which enforces exclusive
access to the shared resource. Exclusive access means that only one process
can access the resource at a time. Exclusive access is achieved through the use
of binary semaphores.

The semaphore takes its name from the signaling system railroads developed to
prevent more than one train from using the same length of track, a technique
that enforces exclusive access to the shared resource of the railroad track. A
train waiting to enter the protected section of track waits until the semaphore
shows that the track is clear, at which time the train enters the track and sets
the semaphore to show that the track is in use. Another train approaching the
protected track while the first train is using it waits for the signal to show that
the track is clear. When the first train leaves the shared section of track, it
resets the semaphore to show that the track is clear.

The sempahore protection scheme works only if all the trains using the shared
resource cooperate by waiting for the semaphore when the track is busy and
resetting the semaphore when they have finished using the track. If a train
enters a track marked busy without waiting for the signal that it is clear, a
collision can occur. Conversely, if a train exiting the track fails to signal that
the track is clear, other trains will think the track is in use and refrain from
using it.

The same is true for processes synchronizing their actions through the use of
semaphores and shared memory. To gain access to the resource protected by
the semaphore, cooperating processes must lock and unlock the semaphore. A
calling process must check the state of the semaphore before performing a task.
If the semaphore is locked, the process is blocked and waits for the semaphore
to become unlocked. Binary semaphores restrict access to a shared resource by
allowing access to only one process at a time.

An application can protect the following resources with semaphores:

• Global variables, such as file variables, pointers, counters, and data
structures. Synchronizing access to these variables means preventing
simultaneous access, which also prevents one process from reading
information while another process is writing it.

1-14 Introduction to Realtime Programming

• Hardware resources, such as tape drives. Hardware resources require
controlled access for the same reasons as global variables; that is,
simultaneous access could result in corrupted data.

• The kernel. A binary semaphore can allow processes to alternate execution
by limiting access to the kernel on an alternating basis.

For information on using shared memory and semaphores, refer to Chapter 3
and Chapter 8.

1.3.3 Waiting for Communication
Typically, communication between processes is used to trigger process execution
so the flow of execution follows the logical flow of the application design. As
the application designer maps out the program algorithm, dependencies
are identified for each step in the program. Information concerning the
status of each dependency is communicated to the relevant processes so that
appropriate action can be taken. Processes synchronize their execution by
waiting for something to happen; that is, by waiting for communication that
an event occurred or a task was completed. The meaning and purpose of the
communication are established by the application designer.

Interprocess communication facilitates application control over the following:

• When and how a process executes

• The sequence of execution of processes

• How resources are allocated to service the requests from the processes

Section 1.2.6 introduced the forms of interprocess communication available
to the realtime application designer. For further information on using
interprocess communication facilities, refer to Chapters 6 through 10.

1.3.4 Waiting for Other Processes
Waiting for other processes means waiting until the process has terminated.
For example, a parent process can wait for a child process or thread to
terminate. The parent process creates a child process which needs to complete
some task before the waiting parent process can continue. In such a situation,
the actions of the parent and child processes are sometimes synchronized in
the following way:

1. The parent process creates the child process.

2. The parent process synchronizes with the child process.

3. The child process executes until it terminates.

4. The termination of the child process signals the parent process.

Introduction to Realtime Programming 1-15

5. The parent process resumes execution.

The parent process can continue execution in parallel with the child process.
However, if child processes are used as a form of process synchronization, the
parent process can use other synchronization mechanisms such as signals and
semaphores while the child process executes.

For information on using signals and semaphores and signals, refer to
Chapter 5 and Chapter 8.

1.3.5 Realtime Needs and System Features
Table 1-1 summarizes the common realtime needs and the features or
capabilities available through the PI003.41D11 functions and the DEC OSF/l
operating system. The realtime needs, in the left column of the table, are
ordered according to their requirement for fast system performance.

Table 1-1 Realtime Needs Summary

Realtime Need

Change the availability of a process for
scheduling

Keep critical code or data highly
accessible

Perform an operation while another
operation is in progress

Perform higher throughput or special
purpose I/O

Share data between processes

Synchronize access to resources shared
between cooperating processes

Communicate between processes

Synchronize a process with a time
schedule

Synchronize a process with an external
event or program

1-16 Introduction to Realtime Programming

Realtime Feature

Use the scheduler functions to set the
scheduling policy and priority of the process

Use the memory locking functions to lock
the process address space into memory

Create a child process or separate thread

Use asynchronous I/O

Use asynchronous I/O

Use shared memory

Use memory-mapped files

Use binary (POSIX) or counting (System V)
semaphores

Use messages, semaphores, shared memory,
signals, pipes, and named pipes

Set and arm per-process timers

Use signals

(continued on next page)

Table 1-1 (Cont.) Realtime Needs Summary

Realtime Need

1.4 POSIX Standards

Realtime Feature

Use semaphores

Cause the process to sleep and to awaken
when needed

The purpose of standards is to enhance the portability of programs and
applications; that is, to create code that is independent of the hardware or even
the operating system on which the application runs. Standards allow users
to move between systems without major retraining. In addition, standards
introduce internationalization concepts as part of application portability.

The POSIX standards and draft standards apply to the operating system.
For the most part, these standards apply to applications coded in the C
language. These standards are not mutually exclusive; the DEC OSF/1
realtime environment uses a complement of these standards.

POSIX is a set of standards generated and maintained by standards
organizations - they are developed and approved by the Institute of Electrical
and Electronics Engineers, Inc. (IEEE) and adopted by the International
Organization for Standardization (lSO) and the International Electrotechnical
Commission (lEC). Digital's POSIX implementations follow the standards and
drafts defined by the POSIX standards.

The only formal standards to date are POSIX 1003.1 for basic system
interfaces and POSIX 1003.13, the test assertions a vendor must test to
claim conformance to POSIX 1003.1. Draft standards, such as the realtime
extensions (1003.4ID11), are not formal standards. They are working
documents that will evolve over time into formal standards.

POSIX standards for the programming interface (Standard 1003.1), POSIX
threads (P1003.4a1D4), and realtime programming extensions (P1003.4ID11)
are supported by DEC OSF/I.

POSIX 1003.1 defines the standard for basic system services on an operating
system, and describes how system services can be used by POSIX applications.
These services allow an application to perform operations such as process
creation and execution, file system access, and I/O device management.

Introduction to Realtime Programming 1-17

POSIX 1003.4a (draft standard) defines a set of thread functions that can
be used in the design and creation of multithreaded realtime applications in
the DEC OSF/l environment. For this version of DEC OSF/l, Draft 4 of the
proposed POSIX 1003.4a standard (PI003.4a1D4) was used.

POSIX 1003.4 (draft standard) provides support for functions that support the
needs of realtime applications, such as enhanced interprocess communication,
scheduling and memory management control, and asynchronous 110 operations.
For this version of DEC OSF/l, Draft 11 of the proposed POSIX 1003.4
standard (PI003.41D11) was used.

As Digital adds support for evolving and final standards, customers should
modify their POSIX applications to conform to the latest version of these
standards. Because draft standards are working documents and not formal
standards, the level of backwards compatibility and formal support for older
versions (drafts) will be less than that normally expected from a stable Digital
product.

It is important to note that while the POSIX standards are evolving,
DEC OSF/l realtime will provide backwards compatibility for only one draft of
the 1003.4 standard. The current version of DEC OSF/l provides support for
both PI003.4IDI0 and PI003.4IDI1.The next release of DEC OSF/l will no
longer support PI003.4IDI0.

An application that strictly conforms to any combination of these standards
and drafts can be developed on one system and then ported to another system
that supports the same POSIX standards or drafts. (A strictly conforming
application uses only the facilities within the applicable standards.) Similarly,
an application developed on a non-Digital platform, if it strictly conforms to the
PO SIX standards and drafts supported by Digital systems, can be ported and
run on a Digital system on which the POSIX software is installed.

It is the source code of an application that is portable. Most applications
written for a POSIX environment use the C programming language. Each
system that supports a POSIX environment includes POSIX runtime libraries
as well as C runtime libraries. A portable application that requires an
executable image must be compiled and linked on a system after being ported.
It is important that you compile and link your POSIX applications against the
runtime libraries on the system where they will be run.

The POSIX standards are based on the UNIX environment. However, POSIX
specifies an interface to an operating system, not the operating system itself.
Additional information on POSIX standards is contained in the IEEE Standard
Portable Operating System Interface for Computer Environments manuals,
published by the Institute of Electrical and Electronics Engineers, Inc.

1-18 Introduction to Realtime Programming

1.5 Installing the Realtime Kernel
The files needed to build the realtime kernel are included with the base
system software and are installed as an optional software subset (Kernel Build
Environment) during an Advanced Installation.

Mter installing the realtime subsets, you must configure and reboot the
system. See the Guide to Installing DEC OSF I 1 for complete installation
instructions.

To check whether your system is running the realtime kernel, enter the
following command:

% /etc/motd
DEC OSF/1 [RT] V1.2; Wed Mar 3 14:26:18 EST 1993
DEC OSF/1 V1.2 Worksystem Software

The [RT] in the first line indicates that your system is running the realtime
kernel.

If your realtime application errors include ENOSYS, check whether the
realtime kernel is installed.

1.6 Building Realtime Applications
To build a DEC OSF/1 realtime application you must first define the POSIX
environment, then compile the application with the appropriate compile
command switches. These steps draw POSIX header information and realtime
libraries into your code.

1.6.1 Defining the POSIX Environment
Realtime applications should include the unistd. h header file before any
other header files are included in the application. This header file defines
the standard macros, _POSIX_ 4S0URCE, _POSIX_SOURCE, etc., that are
required to compile programs containing POSIX 1003.4 functions. If, for some
reason, you need to exclude any of the standards definitions provided by the
unistd. h header file, you can explicitly define those standards macros in the
source file or on the compilation command line.

The following example shows the code you would include as the first line of
code in either your local header file or your application code:

#include <unistd.h>

Because the unistd. h header file defines all the standards needed for realtime
applications, it is important that this #include is the first line of code in your
application.

Introduction to Realtime Programming 1-19

In addition to all the other symbols used by realtime applications, the
symbols for both _PO SIX_ 4S0URCE and _POSIX_SOURCE are included
in the unistd.h header file. If you defined _POSIX_4S0URCE (#define

POSIX 4S0URCE) elsewhere in your application, you would get only the
definitions for POSIX 1003.4 Draft 11 and other definitions pulled in by that
definition, such as, POSIX 1003.1. Therefore, use specific definitions only if
your application must exclude certain definitions related to other unneeded
standards, such as XPG3.

1.6.2 Compiling Realtime Applications
You must explicitly load the required realtime runtime libraries when you
compile realtime applications. The -1 switch forces the linker to include the
specified library and the -L switch indicates the search path the linker uses to
locate the libraries.

To find the realtime library, the ld linker expands the command specification
by replacing the -1 with lib and adding the specified library characters and
the • a suffix. Since the linker searches default directories in an attempt to
locate the realtime archive library, you must specify the pathname.

Note that you cannot use shared libraries with the realtime functions. Make
sure that you also specify -non_shared on the compile (or link) command.

The following example specifies that realtime archive library, librt. a, is to be
included from the / usr / cc s / lib directory.

cc -non_shared myprogram.c -L/usr/ccs/lib -lrt

When you compile an application that uses asynchronous I/O, you must also
include libraries used by pthreads; libpthreads. a, libmach. a, and libc r. a.
The following example shows the specification required if your application uses
asynchronous I/O.

cc -non shared myprogram.c -L/usr/ccs/lib \
-laio -Ipthreads -lmach -lc_r

The realtime library uses the libc. a library. When you compile an application,
the libc. a library is automatically pulled into the compilation.

Most drivers allow you to view the passes of the driver program and the
libraries being searched by specifying the -v option on the compile command.

If, for some reason, you want to just link your realtime application, you must
explicitly include the libc. a library. Since files are processed in the order
in which they appear on the link command line, libc. a must appear after
librt . a. For example, you would link an application with the realtime library,
librt. a, as follows:

1-20 Introduction to Realtime Programming

ld -non_shared myprogram.o -L/usr/ees/lib -lrt -le

For a limited amount of time, you will be able to run applications containing
P1003.4ID10 functions on a DEC OSF/1 Version 1.2 system. Source
compatibility between the two versions exists for realtime scheduling, clocks
and timers, asynchronous I/O, memory-locking, and signal operations if the
symbol for POSLX 1003.4ID10 is defined. You can define the POSIX_4D10
symbol on the command line as follows:

% ee -non_shared myprogram -DPOSIX_4DIO

If your application fails to compile, you may need to check your programming
environment to make sure that the realtime options are installed on your
system. The lack of the realtime software and its function library will cause
your program to fail.

Introduction to Realtime Programming 1-21

2
Process Scheduling and Priorities

The ability to control scheduling is an important requirement for realtime
application designers. Control over scheduling takes two forms: controlling
how the scheduler selects processes to run, and controlling the priority of a
process.

The scheduling policy determines how the scheduler selects runnable processes,
how processes are queued for execution, and how much time each process is
given to run.

Scheduling policies work in conjunction with priority levels. A global priority
range applies to all scheduling policies, but each policy has an associated
priority range. The nature of the work performed by the processes helps
determine the scheduling policy and priority best suited for the application's
needs.

Realtime applications must be able to control process priorities in order to
service external events in a timely and predictable manner. DEC OSF/1
P1003.4ID11 realtime facilities provide for a higher priority range as well as
a choice of scheduling policies for greater control over application execution.
Realtime functions allow processes to change both scheduling policies and
priorities depending on application needs. At run time, the combination of
these realtime features gives the user control over system resources.

This chapter includes the following .sections:

• Process Scheduling, Section 2.1

• Scheduling Policies, Section 2.2

• Process Priorities, Section 2.3

• Scheduling Functions, Section 2.4

• Priority and Policy Example, Section 2.5

Process Scheduling and Priorities 2-1

2.1 Process Scheduling
Applications are often divided into a number of programs. Each program
might run concurrently with one or more others; each program might run
conditionally; or one of the programs might execute noncritical code while the
others run critical code.

Each program is in turn composed of processes and threads. These processes
can be detached or subprocesses, depending on application needs. Each process
has a priority, that is, each process table entry contains a priority field used in
process scheduling.

The DEC OSF/l scheduler schedules threads rather than traditional UNIX
processes. A UNIX process is identified with a single thread, the first thread
in the process. In the following discussion of scheduling, the term "process"
represents the first thread. In multithreaded applications (using POSIX
threads, pthreads), all threads are treated equally by the scheduler. In fact,
throughout the system, the highest-priority runnable thread is selected to run.
Section 2.1.4 discusses the pthread package.

2.1.1 Process States
At run time, processes exist in various states: running, runnable, or waiting.
When a process is created, it is immediately ready to run (runnable). The
movement of a process from the runnable to the running state is controlled
by the scheduler. The scheduler maintains a list of runnable processes at
each priority level. When a process in the runnable state gains control of the
processor and begins to execute, it is in the running state. Depending on the
scheduling policy and priority of the running process, the process may return
to the runnable state, be preempted, or wait. Table 2-1 describes these three
process states.

Table 2-1 Process States

State

Running

Runnable

Description

The process has control of the processor and is executing code.

The process is eligible to run, but is not running. A runnable process
waits in the queue with other runnable processes until the running
process gives up control of the processor. At that time, the highest
priority runnable process will enter the running state.

(continued on next page)

2-2 Process Scheduling and Priorities

Table 2-1 (Cont.) Process States

State

Waiting

Description

The process has given up eligibility to run until a condition or set of
conditions is satisfied. A process may be waiting for a signal from
another process, a wakeup call, a timer expiration, I/O completion, or
any number of other events to occur.

During program execution, a process or thread may undergo many transitions
from one state to another. All processes that compete with other processes to
run on a single processor will move at least between the runnable and running
states. To enter the running state, a process must first be in memory and in
the runnable state. When it leaves the running state, a process may enter into
either of the two other states, runnable or waiting.

Unless user processes are locked into memory, pages may be paged out. The
user process then must wait for pages to be paged back into memory, thus
causing some latency in program execution. To guard against unwanted
paging, realtime applications should use the P1003.41D11 memory-locking
functions, as described in Chapter 4.

Figure 2-1 displays the possible states of processes and represents with arrows
the various state changes.

Figure 2-1 Process States

Scheduler
Chooses

a Process
to Run Process Yields

or is Preempted

Process Waits
for Event

Event
Occurs

MLO-010125

Process Scheduling and Priorities 2-3

The process in the running state is designated as the current process. If a
process is running, it has control of the kernel and is executing. However, if
the process is in the runnable or waiting state, the process could be preempted
before it runs.

A runnable process is one that is eligible to be selected to run. Runnable
processes reside on the process list.

A waiting process awaits satisfaction of one or more wait conditions, such as a
timeout, sleep, or the completion of some action.

2.1.2 The Scheduler
The primary function of the scheduler is to make scheduling decisions for the
kernel. The scheduler makes certain that the highest-priority runnable process
executes. The scheduler also maintains the kernel's scheduling database,
representing the state of the system, in a consistent and accurate state. For
example, the scheduler keeps process lists, which are priority-ordered queues
of runnable processes in correct order. Whether selecting a runnable process to
run or removing a process from the run queue, the scheduler applies a common
set of selection criteria.

The scheduler determines which of a number of run nab Ie processes is executed
at any particular moment. The scheduler keeps track of the set of runnable
processes and selects the highest-priority process to run.

Runnable processes are organized into process lists, or queues. The scheduler
imposes order on the execution of the process in the list by placing the process
that should run next at the beginning of the list, while the process that should
wait the longest to run is placed at the end of the list. Generally speaking,
the order of execution is on a first-in first-out (FIFO) basis. When a process
becomes runnable, it takes its position at the end of the process list for its
priority.

Figure 2-2 illustrates the general principles of process scheduling.

2-4 Process Scheduling and Priorities

Figure 2-2 Order of Execution

Runnable Processes

Before Priority Change After Priority Change

Priority Priority

30 30

29 29

15 15

14 14

13 13

MLO·007315

Processes A, B, and C are in the process list for the highest priority used
in this illustration. Process A is at the beginning of the process list for
priority 30. That means that Process A executes first, then processes Band C,
respectively. When no more processes remain in the process list for priority 30,
the scheduler looks to the next lowest priority, finds process D at the beginning
of the process list, and executes process D.

When a process changes priority, it goes to the end of the process list for its
new priority. Figure 2-2 shows process F changing priority from 15 to 30. At
priority 15 process F is at the end of the process list. When process F changes
to priority 30, the process goes to the end of the process list for priority 30. At
priority 30 process F is queued to execute after process C, but before process D.

The scheduling policy determines the length of execution for a process. The
priority of a process, combined with the scheduling policy, determines how the
process is scheduled. In a timesharing environment the scheduler recalculates
the priority of a process after a process executes and periodically readjusts the
priority of every eligible process. With a fixed-priority scheduling policy, the
priority is not modified by the scheduler.

Processes are rescheduled when one of the following events occurs:

• The running process enters the runnable or waiting state.

Process Scheduling and Priorities 2-5

• A higher-priority process becomes runnable.

• A process changes scheduling policy.

• A quantum expires for a running process.

When one of these events occurs, the scheduler reexamines the current
scheduling scheme to determine which other process is promoted to the
running state. The scheduler considers only processes in the runnable state
and makes its choice depending on the priority and scheduling policy specified
for the runnable processes. When a process whose priority is higher than that
of the currently running process becomes runnable, the scheduler preempts the
lower-priority process, returning it to the runnable state. Then the scheduler
promotes the higher-priority process to the running state. This method is
called "preemptive priority scheduling" and gives the user an effective way
to schedule time-critical processes. Between processes of equal priority, the
scheduler chooses on the basis of the specified scheduling policy.

Figure 2-3 illustrates how processes can change from the running state to
the runnable state within the queue for a single priority. In this illustration,
processes running under the SCHED_RR scheduling policy move in and out of
the running state.

As processes are selected to run or move from the end to the beginning of the
process list, the scheduler continually updates the kernel database and the
process list for each priority.

2.1.3 Scheduling Interfaces
The DEC OSF/l operating system provides two separate, but related interfaces
to scheduling policies: one that supports the default, timesharing scheduling
policy (the nice scheduling interface) and one that supports the scheduling
policies defined by the PI003.41D11 standard (the realtime scheduling
interface). These interfaces use different priority ranges and are managed
through different function calls. The nice interface allows you to set process
priority while the realtime interface allows you to set both the process priority
and the scheduling policy.

The default scheduling interface is the nice interface, which has the following
characteristics:

• Supports only the timesharing scheduling policy, (SCHED_OTHER)

• Supports priorities in the 20 through -20 range

• Uses a default priority of 0

2-6 Process Scheduling and Priorities

Figure 2-3 Process Events

Event Reaction
The Running

The Runnable Processes Are: Process Is:

G reaches beginning of G moves to running
the queue and starts
its quantum

@] --®-CD
A is a higher priority, G preempted - goes to

becomes runnable, and the beginning of the
preempts G queue

0 ---®----®---<D
A yields or enters G runs again to finish

waiting state its quantum

@] --®-CD
G finishes its quantum G goes to the end of the

queue

H moves to running

[BJ ----<D--®
A is a higher priority, H preempted - goes to

becomes runnable, and the beginning of the
preempts H queue

0 -----®----<D--®
A raises priority of K K changes priority

K goes to the end of the
queue

0 H I G K

MLO-007316

• Uses lower priority numbers to represent higher priority

• Provides relative priorities that can be changed by the scheduler

• Supports relative priority changes by the user through a call to the nice,
renice, or or setpriority functions

Process Scheduling and Priorities 2-7

The realtime interface provides support for multiple scheduling policies,
including the timesharing scheduling policy. You can change the scheduling
policy and priority of a process running under any P1003.41D11 scheduling
policy. The realtime interface has the following characteristics:

• Supports the timesharing, first-in first-out (FIFO) and round-robin
scheduling policies

• Supports priorities in the 0 through 63 range

• Uses a default priority of 19

• Supports absolute, fixed priorities

• Uses a higher priority number to represent a higher priority

• Supports absolute priority changes by the user through a call to one of the
P1003.41D11 functions, sched _setparam or sched _setscheduler

• Supports scheduling policy changes by the user through a call to the
sched set scheduler function

Priorities are changed by the scheduler only if you select the timesharing
scheduling policy. Note that you can use only the nice, renice, or setpriority
functions to change the priority of a process if the process is running under the
timesharing scheduling policy. If the realtime interface is used to change the
scheduling policy of a process to first-in first-out or round-robin, the process is
no longer affected by the nice, renice, or setpriority functions.

The nice interface logically divides priorities into two ranges, nonprivileged
user and system. While these ranges reflect the nature of the work commonly
associated with the priorities within a range, there is no clear distinction
between the ranges. For example, system processing can be done in the
nonprivileged user priority range.

The realtime interface divides the priority range in a similar way, but also
provides absolute control over scheduling. The application designer can
determine the priorities of other processes and precisely set the priority of each
realtime process, to better determine when processes will run relative to one
another. This way, the scheduler can guarantee that a critical process will
run whenever it is needed, for as long as it is needed. Time-critical realtime
processes must be able to run at a very high priority, but must also be able to
yield execution to other realtime processes in a deterministic manner.

The realtime interface allows you to alter the scheduling policy, which gives
you more control over when processes execute by more precisely defining
how individual processes are scheduled to run relative to one another.
P1003.41D11 scheduling policies include two fixed-priority scheduling policies

2-8 Process Scheduling and Priorities

and the standard timesharing policy. You can use the timesharing policy
for nonrealtime applications but will want to use either of the fixed-priority
policies for realtime applications.

Regardless of the scheduling interface, the scheduler uses the same method to
determine which process runs next: the process at the beginning of the highest
priority process list.

2.1.4 Threads in Realtime Scheduling
The DEC OSF/l realtime kernel supports the pthread interface, which is based
on PO SIX l003.4a, Draft 4. While the standard is still in draft form, threads
are useful in driving slow devices such as disks, networks, terminals, and
printers. A multithreaded application can perform other useful work while
waiting for the device to produce its next event.

To start a thread, you create it using the pthread create routine. A thread is
a single, sequential flow within an application. It 1s the active execution of a
designated routine, including any nested invocations. A thread object defines
and controls the executing thread. Each thread has its own thread identifier,
scheduling policy and priority, thread-specific data values, and the required
system resources to support a flow of control (stack size).

By default, a new thread's scheduling policy and priority are inherited
from the creating thread (whether the result of a call to the fork function
or a call to the pthread create routine.) To create a thread that uses
different attributes, first disable the inherit scheduling attribute using the
pthread attr setinheritsched routine. Then, set the scheduling attributes
individually using the pthread attr setsched and pthread attr setprio or
pthread_setsched and pthread_setprio. - -

Threads are created in the ready state and therefore might begin executing
immediately. The newly created thread will begin running before the
pthread create completes if the new thread follows either the SCHED_FIFO
or SCHED _RR scheduling policy or has a priority higher than the creating
thread, or both.

For additional information on using threads, refer to the Guide to DECthreads.

2.2 Scheduling Policies
Whether or not a timesharing process runs is often determined not by the
needs of the application, but by the scheduler's algorithm. The scheduler
determines the order in which processes execute and sometimes forces
resource-intensive processes to yield to other processes.

Process Scheduling and Priorities 2-9

Other users' activities on the system at that time affect scheduling. Whether
or not a realtime process yields to another process can be based on a quantum
or the scheduling policy.

2.2.1 The Nature of the Work
Scheduling policies are designed to give you flexibility and control in
determining how work is performed so that you can balance the nature of
the work with the behavior of the process. Essentially, there are three broad
categories of work:

• Timesharing Processing

Used for interactive and noninteractive applications with no critical time
limits but a need for reasonable response time and high throughput.

• System Processing

Performs work on behalf of the system, such as paging, networking, and
accessing files. The responsiveness of system processing impacts the
responsiveness of the whole system.

• Realtime Processing

U sed for critical work that must be completed within a certain time period,
such as data collection or device control. The nature of realtime processing
often means that missing a deadline makes the data invalid or causes
damage.

To control scheduling policies, you must use the PI003.41D11 realtinle
scheduling functions and select an appropriate scheduling policy for your
process. DEC OSF/l PI003.41D11 scheduling policies are set only through a
call to the sched setscheduler function. The sched set scheduler function
recognizes the scheduling policies by keywords beginning with SCHED _ as
follows:

• SCHED_OTHER, timesharing scheduling

• SCHED_FIFO, first-in first-out scheduling

• SCHED_RR, round-robin scheduling

All three scheduling policies have overlapping priority ranges to allow for
maximum flexibility in scheduling. When selecting a priority and scheduling
policy for a realtime process, consider the nature of the work performed by the
process. Regardless of the scheduling policy, the scheduler selects the process
at the beginning of the highest-priority, nonempty process list to become a
running process.

2-10 Process Scheduling and Priorities

2.2.2 Timesharing Scheduling
The P1003.4ID11 timesharing scheduling policy, SCHED_OTHER, allows
realtime applications to return to a nonrealtime scheduling policy. In
timesharing scheduling, a process starts with an initial priority that either
the user or the scheduler can change. Timesharing processes run until the
scheduler recalculates process priority, based on the system load, the length of
time the process has been running, or the value of nice. Section 2.3.1 describes
timesharing priority changes in more detail.

Under the timesharing scheduling policy, the scheduler enforces a quantum.
Processes are allowed to run until they are preempted, yield to another process,
or finish their quantum. If no equal or higher-priority processes are waiting
to run, the executing process is allowed to continue. However, while a process
is running, the scheduler changes the process's priority. Over time, it is likely
that a higher-priority process will exist because the scheduler adjusts priority.
If a process is preempted or yields to another process, it goes to the end of the
process list for the new priority.

2.2.3 Fixed-Priority Scheduling
With a fixed-priority scheduling policy, the scheduler does not adjust process
priorities. If the application designer sets a process at priority 30, it will
always be queued to the priority 30 process list, unless the application or the
user explicitly changes the priority.

As with all scheduling policies, fixed-priority scheduling is based on the
priorities of all runnable processes. If a process waiting on the process list has
a higher priority than the running process, the running process is preempted
for the higher-priority process. However, the two fixed-priority scheduling
policies (SCHED _FIFO and SCHED _RR) allow greater control over the length
of time a process waits to run.

Fixed-priority scheduling relies on the application designer or user to manage
the efficiency of process priorities relative to system workloads. For example,
you may have a process that must be allowed to finish executing, regardless
of other activities. In this case, you may elect to increase the priority of your
process and use the first-in first-out scheduling policy, which guarantees that
a process will never be placed at the end of the process list if it is preempted.
In addition, the process's priority will never be adjusted and it will never
be moved to another process list. With fixed-priority scheduling policies,
you must explicitly set priorities by calling either the sched setparam or
sched setscheduler function. Thus, realtime processes usi~g fixed-priority
schedliling policies are free to yield execution resources to each other in an
application-dependent manner.

Process Scheduling and Priorities 2-11

If you are using a fixed-priority scheduling policy and you call the nice or
renice function to adjust priorities, the function returns without changing the
priorities.

2.2.3.1 First-in First-out Scheduling
The first-in first-out scheduling policy, SCHED_FIFO gives maximum control
to the application. This scheduling policy does not enforce a quantum. Rather,
each process runs to completion or until it voluntarily yields or is preempted
by a higher-priority process.

Processes scheduled under the first-in first-out scheduling policy are chosen
from a process priority list that is ordered according to the amount of time its
processes have been on the list without being executed. Under this scheduling
policy, the process at the beginning of the highest-priority, nonempty process
list is executed first. The next process moves to the beginning of the list and is
executed next. Thus execution continues until that priority list is empty. Then
the process at the beginning of the next highest-priority, nonempty process list
is selected and execution continues. A process runs until execution finishes or
the process is preempted by a higher-priority process.

The process at the beginning of a process list has waited at that priority the
longest amount of time, while the process at the end of the list has waited the
shortest amount of time. Whenever a process becomes runnable, it is placed
on the end of a process list and waits until the processes in front of it have
executed. When a process is placed in an empty high-priority process list, the
process will preempt a lower-priority running process.

If an application changes the priority of a process, the process is removed from
its list and placed at the end of the new priority process list.

The following rules determine how runnable processes are queued for execution
using the first-in first-out scheduling policy:

• When a process is preempted, it goes to the beginning of the process list for
its priority.

• When a blocked process becomes runnable, it goes to the end of the process
list for its priority.

• When a running process changes the priority or scheduling policy of
another process, the changed process goes to the end of the new priority
process list.

• When a process voluntarily yields to another process, it goes to the end of
the process list for its priority.

2-12 Process Scheduling and Priorities

The first-in first-out scheduling policy is well suited for the realtime
environment because it is deterministic. That is, processes with the highest
priority always run, and among processes with equal priorities, the process
that has been runnable for the longest period of time is executed first. You can
achieve complex scheduling by altering process priorities.

2.2.3.2 Round-Robin Scheduling
The round-robin scheduling policy, SCHED_RR, is a logical extension of the
first-in first-out scheduling policy. A process running under the round-robin
scheduling policy is subject to the same rules as a process running under the
fixed-priority scheduling policy, but a quantum is imposed on the running
process. When a process finishes its quantum, it goes to the end of the process
list for its priority.

Processes under the round-robin scheduling policy may be preempted by a
higher-priority process before the quantum has expired. A preempted process
goes to the beginning of its priority process list and completes the previously
unexpired portion of its quantum when the process resumes execution. This
ensures that a preempted process regains control as soon as possible.

Figure 2-4 shows process scheduling using a quantum. One portion of the
figure shows the running process; the other portion of the figure shows what
happens to running processes over time. Process G is removed from the
beginning of the process list, placed in the run queue, and begins execution.
Process B, a higher priority process, enters the runnable state while process
G is running. The scheduler preempts process G to execute process B. Since
process G had more time left in its quantum, the scheduler returns process G
to the beginning of the process list, keeps track of the amount of time left in
process G's quantum, and executes process B. When process B finishes, process
G is again moved into the run queue and finishes its quantum. Process H, next
in the process list, executes last.

Process Scheduling and Priorities 2-13

Figure 2-4 Preemption-Finishing a Quantum

High

Low

Priority

Process List

1

G

Process B
Executes

Time

2

B

Process G Resumes

3 4

3 4

G H

MLO-007317

Round-robin scheduling is designed to provide a facility for implementing
time-slice algorithms. You can use the concept of a quantum in combi-
nation with process priorities to facilitate time-slicing. You can use the
sched get rr interval function to retrieve the quantum used in round-robin
schedii'ling-:- If-a process, running under the round-robin scheduling policy,
runs without blocking or yielding for more than this amount of time, it may be
preempted by another runnable process at the same priority.

2-14 Process Scheduling and Priorities

2.3 Process Priorities
All applications are given an initial priority, either implicitly by the operating
system or explicitly by the user. If you fail to specify a priority for a process,
the kernel assigns the process an initial priority.

You can specify and manage a process's priority using either nice or
PI003.41D11 functions. The nice functions are useful for managing priorities
for nonrealtime, timesharing applications. However, realtime priorities are
higher than the nice priorities and make use of the PI003.41D11 scheduling
policies. Realtime priorities can be managed only by using the associated
PI003.41D11 functions.

In general, process scheduling is based on the concept that tasks can be
prioritized, either by the user or by the scheduler. Each process table entry
contains a priority field used in process scheduling. Conceptually, each priority
level consists of a process list. The process list is ordered with the process that
should run first at the beginning of the list and the process that should run
last at the end of the list. Since a single processor can execute only one process
at a time, the scheduler selects the first process at the beginning of the highest
priority, nonempty process list for execution.

Priority levels are organized in ranges. The nonprivileged user application
runs in the same range as most applications using the timesharing scheduling
policy. Most users need not concern themselves with priority ranges above
this range. Privileged applications (system or realtime) use higher priorities
than nonprivileged user applications. In some instances, realtime and system
processes can share priorities, but most realtime applications will run in a
priority range that is higher than the system range.

2.3.1 Priorities for the nice Interface
The nice interface priorities are divided into two ranges: the higher range
is reserved for the operating system, and the lower range for nonprivileged
user processes. With the nice interface, priorities range from 20 through -20,
where 20 is the lowest priority. Nonprivileged user processes typically run in
the 20 through 0 range. Many system processes run in the range 0 through
-20 (or higher). Table 2-2 shows the ranges nice interface priority ranges.

Process Scheduling and Priorities 2-15

Table 2-2 Priority Ranges for the nice Interface

Range

N onprivileged user

System

Priority Level

20 through 0

o through -20

A numerically low value implies a high priority level. For example, a process
with a priority of 5 has a lower priority than a process with a priority of O.
Similarly, a system process with a priority of -5 has a lower priority than a
process with a priority of -15. System processes can run at nonprivileged user
priorities, but a user process can only increase its priority into the system
range if the owner of the user process has superuser privileges.

Processes start at the default base priority for a nonprivileged user process (0).
Since the only scheduling policy supported by the nice interface is timesharing,
the priority of a process changes during execution. That is, the nice parameter
represents the highest priority possible for a process. As the process runs, the
scheduler adds offsets to the initial priority, adjusting the process's priority
downward from or upward toward the initial priority. However, the priority
will not exceed (be numerically lower than) the nice value.

The nice interface supports relative priority changes by the user through a call
to the nice, renice, or set priority functions. Interactive users can specify
a base priority at the start of application execution using the nice command.
The renice command allows users to interactively change the priority of a
running process. An application can read a process's priority by calling the
getpriority function. Then the application can change a process's priority by
calling the setpriority function. These functions are useful for nonrealtime
applications but do not affect processes running under one of the P1003.41D11
fixed-priority scheduling policies, described in Section 2.2.

Refer to the reference pages for more information on the getpriority,
setpriority, nice, and renice functions.

2.3.2 Priorities for the Realtime Interface
Realtime interface priorities are divided into three ranges: the highest range
is reserved for realtime, the middle range is used by the operating system, and
the low range is used for nonprivileged user processes. DEC OSF/1 realtime
priorities loosely map to the nice priority range, but provide a wider range of
priorities. Processes using the P1003.41D11 scheduling policies must also use
the DEC OSF/1 realtime interface priority scheme. Table 2-3 shows the DEC
OSF/1 realtime priority ranges.

2-16 Process Scheduling and Priorities

Table 2-3 Priority Ranges for the DEC OSF/1 Realtime Interface

Range

N onprivileged user

System

Realtime

Priority Level

SCHED_PRIO_USER_MIN through SCHED_PRIO_USER_
MAX

SCHED _PRIO _SYSTEM_MIN through SCHED _PRIO_
SYSTEM_MAX

SCHED_PRIO_RT_MIN through SCHED_PRIO_RT_MAX

Realtime interface priority levels are the inverse of the nice priority levels; a
numerically high value implies a high priority level. A realtime process with a
priority of 32 has a higher priority than system processes, but a lower priority
than another realtime process with a priority of 45. Realtime and system
processes can run at nonprivileged user priorities, but a nonprivileged user
process cannot increase its priority into the system or realtime range without
superuser privileges.

The default initial priority for processes using realtime priorities is 19. The
default scheduling policy is timesharing.

Figure 2-5 illustrates the relationship between these two priority interfaces.

Process Scheduling and Priorities 2-17

Figure 2-5 Priority Ranges for the nice and Realtime Interfaces

nice
Interface

-20, -19
-18

· System Default ~ · · t
Privileged

User -3, -2
-1, 0, 1 "'- User Default ..

Nonprivileged -
User 2, 3

~ · · ·
19,20

Realtime
Interface

63

· · ·
32
31
30
29

· · ·
26
25
24

· · ·
20
19
18

· · ·
9

· · ·
°

""\

>- Realtime
Priorities

-<

System
>- Priorities

>- User
Priorities

-"

High
Priority

Low
Priority

MLO-007318

Note that hardware interrupts are unaffected by process priorities, even the
highest realtime priority.

2-18 Process Scheduling and Priorities

2.3.3 Displaying Realtime Priorities
The ps command displays current process status and can be used to give
realtime users snapshots of process priorites. Realtime users can use POSIX
realtime functions to change process priority. Therefore, the ps command is a
useful tool for determining if realtime processes are running at the expected
priority.

The ps command captures the states of processes, but the time required to
capture and display the data from the ps command may result in some minor
discrepencies.

Priorities used in the realtime scheduling interface are displayed when you use
the specifier psxpri in conjunction with the -0 or -0 switch on the ps command.
Fields in the output format include the process ID (Pid), control terminal of
the process (tname), user and system CPU time used by the process (cputime),
the state of the process (state), and an indication that the ps command that is
running (comm).

The following example requests information regarding processes, with or
without terminals, displays timesharing and POSIX priorities, as well as the
pid, tname, cputime, state, and comm for current processes.

% ps -aeO psxpri
PID PPR STAT TT TIME COMMAND
0 31 R< ?? 29171:32.53 [kernel idle]
1 18 I ?? 0:17.37 Isbin/init -a
2 19 I ?? 0:00.00 [device server]
3 19 I ?? 0:00.00 [exception hdlr]

7206 60 S< p2 0:00.01 ./tests/work
7207 18 R p2 0:00.06 ps -aeO psxpri

In the example above, two processes are using realtime priorities. The first
process (pid 0) is running at maximum system priority. The processes with
pids 2 and 3 are idle at the maximum user priority. The second realtime
process (pid 7206) has been sleeping for less than twenty seconds at priority
60.

See the reference page for the ps command for further information.

Process Scheduling and Priorities 2-19

2.3.4 Configuring Realtime Priorities
You should assign realtime priorities according to the critical nature of the
work the processes perform. Some applications may not need to have all
processes running in the realtime priority range. Applications that run in
a realtime range for long periods may prevent the system from performing
necessary services, which could cause network and device time outs or data
overruns. Some processes perform adequately if they run under a fixed-priority
scheduling policy at priority 19. Only critical processes running under a fixed
priority scheduling policy should run with priorities in the realtime range, 32
through 63.

Although P1003.41D11 functions let you change the scheduling policy while
your application is running, it is better to select a scheduling policy during
application initialization than to change the scheduling policy while the
application executes. However, you may find it necessary to adjust priorities
within a scheduling policy as the application executes.

It is recommended that all realtime applications provide a way to configure
priorities at runtime. You can configure priorities using the following methods:

1. Providing a default priority within the realtime priority range by calling
the sched_get_priority_max and sched_get_priority_min functions

2. Using an . rc initialization file, which overrides the default priority, or
using environment variables, which override the default priority

3. Adjusting priority during initialization by calling the sched setparam
function -

Each process should have a default base priority appropriate for the kind of
work it performs and each process should provide a configuration mechanism
for changing that base priority. To simplify system management, make the
hardcoded default equal to the highest priority used by the application. At
initialization, the application should set its process priorities by subtracting
from the base priority. Use the constants given in the sched.h header file as a
guide for establishing your default priorities.

The sched. h header file provides the following constants that may be useful in
determining the optimum default priority:

SCHED _PRIO _USER_MIN
SCHED_PRIO_USER_MAX
SCHED _PRIO _SYSTEM_MIN
SCHED _PRIO _SYSTEM_MAX
SCHED_PRIO_RT_MIN
SCHED_PRIO_RT_MAX

2-20 Process Scheduling and Priorities

These values are the current values for default priorities. When coding your
application, use the constants rather than numerical values. The resulting
application will be easier to maintain should default values change.

Debug your application in the nonprivileged user priority range before running
the application in the realtime range. If a realtime process is running at
a level higher than kernel processes and the realtime process goes into an
infinite loop, you must reboot the system to stop process execution.

Although priority levels for DEC OSF/l system priorities can be adjusted using
the nice or renice functions, these functions have a ceiling that is below the
realtime priority range. To adjust realtime priorities, use the sched getparam
and sched setparam PI003.4IDll functions, discussed in Section 2.4.3. You
should only adjust process priorities for your own application. Adjusting
system process priorities could have unexpected consequences.

2.4 Scheduling Functions
Realtime processes must be able to select dynamically the most appropriate
priority level and scheduling policy. A realtime application often modifies the
scheduling policy and priority of a process, performs some function, and returns
to its previous priority. Realtime processes must also be able to yield system
resources to each other in response to specified conditions. Eight PI003.4IDll
functions, as summarized in Table 2-4, satisfy these realtime requirements.
Refer to the reference pages for a complete description of these functions.

Table 2-4 P1003.4/011 Process Scheduling Functions

Function

sched_getscheduler

sched_getparam

sched set scheduler

Description

Returns the scheduling policy of a specified process

Returns the scheduling priority of a specified
process

Returns the maximum priority allowed for a
scheduling policy

Returns the minimum priority allowed for a
scheduling policy

Returns the current quantum for the round-robin
scheduling policy

Sets the scheduling policy and priority of a specified
process

(continued on next page)

Process Scheduling and Priorities 2-21

Table 2-4 (Cont.) P1003.4/011 Process Scheduling Functions

Function

sched_setparam

sched_yield

Description

Sets the scheduling priority of a specified process

Yields execution to another process

All the preceding functions, with the exception of the sched yield function,
require a process ID parameter, (Pid). In all the PI003.4lDii priority and
scheduling functions, a pid value of zero indicates that the function call refers
to the calling process. Use zero in these calls to eliminate using the getpid or
getppid functions.

The priority and scheduling policy of a process are inherited across a fork or
exec system call.

Changing the priority or scheduling policy of a process causes the process to
be queued to the end of the process list for its new priority. You must have
superuser privileges to change the realtime priorities or scheduling policies of
a process.

2.4.1 Determining Limits
Three functions allow you to determine scheduling policy parameter limits.
The sched get priority max and sched get priority min functions return
the appropriatemaximum or minimum priority permitted by the scheduling
policy. These functions can be used with any of the PI003.41D11 scheduling
policies: first-in first-out, round-robin, or timesharing. You must specify one of
the following keywords when using these functions:

• SCHED_FIFO

• SCHED_RR

• SCHED_OTHER

The sched get rr interval function returns the current quantum for process
execution ~nder the round-robin scheduling policy.

2.4.2 Retrieving the Priority and Scheduling Policy
Two functions return the priority and scheduling policy for realtime processes,
sched getparam and sched getscheduler, respectively. You do not need
special privileges to use these functions, but you need superuser privileges to
set both priority and scheduling policy.

2-22 Process Scheduling and Priorities

If the pid is zero for either functions, the value returned is the priority or
scheduling policy for the calling process. The values returned by a call to
the sched getscheduler function indicate whether the scheduling policy is
SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

2.4.3 Setting the Priority and Scheduling Policy
Use the sched getparam function to determine the initial priority of a process;
use the sched -setparam function to establish a new priority. Adjusting priority
levels in response to predicted system loads and other external factors allows
the system administrator or application user greater control over system
resources. When used in conjunction with the first-in first-out scheduling
policy, the sched setparam function allows a critical process to run as soon as
it is runnable, for as long as it needs to run. This occurs because the process
preempts other lower-priority processes. This can be important in situations
where scheduling a process must be as precise as possible.

The sched setparam function takes two parameters: pid and paramo The
pid parameter specifies the process to change. If the pid parameter is zero,
priority is set for the calling process. The param parameter specifies the new
priority level. The specified priority level must be within the inclusive range
for the minimum and maximum values for the scheduling policy selected for
the process.

The sched setscheduler function sets both the scheduling policy and priority
of a process. Three parameters are required for the sched set scheduler
function: pid, policy, and paramo If the pid parameter is zero, the scheduling
policy and priority will be set for the calling process. The policy parameter
identifies whether the scheduling policy is to be set to SCHED_FIFO,
SCHED _RR, or SCHED _OTHER. The param parameter indicates the priority
level to be set and must be within the range for the the indicated scheduling
policy.

Notification of a completed priority change may be delayed if the calling
process has been preempted. The calling process is notified when it is again
scheduled to run.

If you are designing portable applications (POSIX strictly conforming
applications), be careful not to assume that the priority field is the only field
in the sched param structure. All the fields in a sched param structure should
be initialized before the structure is passed as the par-;'m argument to the
sched setparam or sched setscheduler. Example 2-1 shows how a process
can initialize the fields u~ng only constructs provided by the P1003.41D11
standard.

Process Scheduling and Priorities 2-23

Example 2-1 Initializing Priority and Scheduling Policy Fields

j* Change to the SCHED FIFO policy and the highest priority, then *j
j* lowest priority, then back to the original policy and priority. *j

#include <unistd.h>
#include <sched.h>

#define CHECK(sts,msg) \
if (sts == ~1) { \

perror(msg); \
exit(-1); \

main ()
{

struct sched pararn par am;
int my pid =-0;
int old policy, old priority;
int sts; -
int low_priority, high_priority;

j* Get parameters to use later. Do this now *j
j* avoid overhead during time-critical phases.*j

high priority = sched get priority max(SCHED FIFO);
CHECK(high priority,"sched get priority max");
low priority = sched get priorIty min(SCHED FIFO);
CHECK(low_priority, "sched_get_priority_min");

j* Save the old policy for when it's restored. *j

old policy = sched getscheduler(my pid);
CHECK(old_policy,"sched_getscheduler");

j* Get all fields of the param structure. This is where *j
j* fields other than priority get filled in. *j

sts = sched getparam(my pid, ¶m);
CHECK (sts, "sched _getparam");

j* Keep track of the old priority. *j

old_priority = param.sched_priority;

j* Change to SCHED FIFO, highest priority. The pararn *j
j* fields other than priority get used here. *j

param.sched priority = high priority;
sts = sched-setscheduler(my-pid, SCHED FIFO, ¶m);
CHECK(sts, "sched_setscheduler"); -

(continued on next page)

2-24 Process Scheduling and Priorities

Example 2-1 (Cont.) Initializing Priority and Scheduling Policy Fields

/* Change to SCHED FIFO, lowest priority. The param */
/* fields other than priority get used here, too. */

param.sched priority = low priority;
sts = sched-setparam(my pid, ¶m);
CHECK(sts, "sched_setparam") ;

/* Restore original policy, parameters.
/* param fields are used here.

param.sched priority = old priority;

Again, other */
*/

sts = sched-setscheduler(my pid, old policy, ¶m);
CHECK(sts,"sched_setscheduler 2"); -

exit(O);

A process is allowed to change the priority of another process only if the target
process runs on the same node as the calling process and at least one of the
following conditions is true:

• The calling process is a privileged process with a real or effective UID of
zero.

• The real user UID or the effective user UID of the calling process is equal
to the real user UID or the saved-set user UID of the target process.

• The real group GID or the effective group GID of the calling process is
equal to the real group ID or the saved-set group GID of the target process,
and the calling process has group privilege.

Before changing the priority of another process, determine which UID is
running the application. Use the getuid system call to determine the real UID
associated with a process.

2.4.4 Yielding to Another Process
Use the sched yield function to control how processes at the same priority
access kernel resources. Sometimes, in the interest of cooperation, it is
important that a running process give up the kernel to another process at the
same priority level. You can force processes to cooperate by resetting priorities,
but this requires multiple function calls.

The sched yield function causes the scheduler to look for another process
to run and-forces the caller to return to the runnable state. The process that
calls the sched yield function resumes execution after all runnable processes
of equal priority have been scheduled to run. If there are no other runnable

Process Scheduling and Priorities 2-25

processes at that priority, the caller continues to run. The sched yield
function causes the process to yield for one cycle through the process list. That
is, after a call to sched yield, the target process goes to the end of its priority
process list. If another-process of equal priority is created after the call to
sched _yield, the new process is queued up after the yielding process.

The sched yield function is most useful with the first-in first-out scheduling
policy. Since the round-robin scheduling policy imposes a quantum on the
amount of time a process runs, there is less need to use sched yield. The
round-robin quantum regulates the use of system resources th;;-ough time
slicing. The sched yield function is also useful when a process does not have
permission to set its priority but still needs to yield execution.

2.5 Priority and Policy Example
Example 2-2 shows how the amount of time in a round-robin quantum can be
determined, the current scheduling parameters saved, and a realtime priority
set. Using the round-robin scheduling policy, the example loops through a test
until a call to the sched _yield function causes the process to yield.

Example 2-2 Using Priority and Scheduling Functions

#include <unistd.h>
#include <time.h>
#include <sched.h>
#define LOOP MAX 10000000
#define CHECK STAT(stat, msg) \

if (stat-== -1) \
{ perror(msg); \

}

main()
{

exit(-l); \

struct sched param my par am;
int my pid = 0; -
int old priority, old policy;
int stat; -

struct timespec rr_interval;

int try cnt, loop cnt;
volatile int-tmp_nbr; -

j* Determine the round-robin quantum *j

2-26 Process Scheduling and Priorities

(continued on next page)

Example 2-2 (Cont.) Using Priority and Scheduling Functions

stat = sched get rr interval (my pid, &rr interval);
CHECK STAT(stat,-"sched get rr interval");
printf("ROUnd-robin quantum-is-%lu seconds, %ld nanoseconds\n",

rr_interval.tv_sec, rr_interval.tv_nsec);

/* Save the current scheduling parameters */

old policy = sched getscheduler(my pid);
stat = sched getparam(my pid, &my param);
CHECK STAT(stat, "sched getparam :- save old priority");
old_priority = my_param~sched_priority;

/* Set a realtime priority and round-robin */
/* scheduling policy */

my param.sched priority = SCHED PRIO RT MIN;
stat = sched setscheduler(my pid, SCHED-RR, &my param)i
CHECK_STAT(stat, "sched_setscheduler - set rr priority");

/* Try the test */

for (try_cnt = 0; try_cnt < 10; try_cnt++)

/* Perform some CPU-intensive operations */

{for(loop cnt = 0; loop cnt < LOOP_MAX; loop_cnt++)
{ - -
tmp nbr+=loop cnt;
tmp-nbr-=loop-cnt;
} - -

printf("Completed test %d\n",try_cnt);
sched yield () ;
} -

/* Lower priority and restore policy */

my param.sched priority = old priority;
stat = sched setscheduler(my pid, old policy, &my param)i
CHECK_STAT(stat, "sched_setscheduler:- to old priority");
}

Process Scheduling and Priorities 2-27

3
Shared Memory

Shared memory and memory-mapped files allow processes to communicate by
incorporating data directly into process address space. Processes communicate
by sharing portions of their address space. When one process writes to
a location in the shared area, the data is immediately available to other
processes sharing the area. Communication is fast because there is none of the
overhead associated with system calls. Data movement is reduced because it is
not copied into buffers.

This chapter includes the following sections:

• Memory Objects, Section 3.1

• Locking Shared Memory, Section 3.2

• Using Shared Memory with Semaphores, Section 3.3

A process manipulates its address space by mapping or removing portions
of memory objects into the process address space. When multiple processes
map the same memory object, they share access to the underlying data.
Shared-memory functions allow you to open and unlink the shared-memory
files.

3.1 Memory Objects
The memory-mapping and shared-memory functions allow you controlled
access to shared memory so that the application can coordinate the use of
shared address space.

When you use a shared, mapped file, the changes initiated by a single process
or multiple processes are are reflected back to the file. Other processes using
the same path and opening the connection to the memory object have a shared
mapping of the file. Use memory-mapping or file control functions to control
usage and access. If the mappings allow it, data written into the file through
the address space of one process appears in the address space of all processes
mapping the same portion of the file.

Shared Memory 3-1

Memory-mapped objects are persistent; their names and contents remain until
all processes that have accessed the object unlink the file.

Shared memory and memory mapped files follow the same general usage, as
follows:

1. Get a file descriptor with a call to the open or shm _ open function.

2. Map the object using the file descriptor with a call to the rnmap function.

3. Unmap the object with a call to the munmap function.

4. Close the object with a call to the close function.

5. Remove the shared-memory object with a call to the shm unlink function or
optionally remove a memory-mapped file with a call to the unlink function.

Often shared-memory objects are created and used only while an application
is executing. Files, however, may need to be saved and reused each time the
application is run. The unlink and shm unlink functions remove (delete) the
file and its contents. Therefore, if you need to save a shared file, just close the
file, but do not unlink it.

You can use memory-mapped files without using shared memory, but
this chapter assumes that you will want to use them together. Table 3-1
summarizes the functions used to open and unlink shared memory.

Table 3-1 Shared-Memory Functions

Function

shm_open

shm unlink

Description

Opens a shared-memory object, returning a file descriptor

Removes the name of the shared-memory object

Table 3-2 lists the functions for creating and controlling memory-mapped
objects.

Table 3-2 Memory-Mapping Functions

Function

rnmap

mprotect

3-2 Shared Memory

Description

Maps the memory object into memory

Modifies protections of memory objects

(continued on next page)

Table 3-2 (Cont.) Memory-Mapping Functions

Function

msync

munmap

Description

Synchronizes a memory-mapped object

Unmaps a previously mapped region

A memory object can be created and opened by a call to the shm open function.
Then the object can be mapped into process address space. File control
functions allow you to control access permissions, such as read and write
permission or the timing of a file update.

Data written to an object through the address space of one process is available
to all processes that map the same region. Child processes inherit the address
space and all mapped regions of the parent process. Once the object is
opened, the child process can map it with the mmap function to establish a map
reference. If the object is already mapped, the child process also inherits the
mapped region.

Unrelated processes can also use the object, but must first call the open or
shm open function (as appropriate) and then use the mmap function to establish
a connection to the shared memory.

3.1.1 Opening a Shared-Memory Object
A process can create and open shared-memory regions early in the life of the
application and then dynamically control access to the shared-memory object.
Use the shm open function to open (establish a connection to) a shared-mernory
object. Afte; a process opens the shared-memory object, each process that
needs to use the shared-memory object must use the same pathname as the
controlling process when creating its own connections to the shared-memory
object by also calling the shm _open function.

The shm open function provides a set of flags that prescribe the action of the
function-and define access modes to the shared-memory object. Shared-memory
access is determined by the OR of the file status flags and access modes listed
in Table 3-3.

Shared Memory 3-3

Table 3-3 Status Flags and Access Modes for the shm_open Function

Flag

O_RDONLY

O_RDWR

O_CREAT

O_EXCL

O_TRUNC

Description

Open for read access only

Open for read and write access

Create the shared-memory object, if it does not already exist

When used with O_CREAT, creates a shared-memory object

Truncate to zero length

The first process to call the shm open function should use the 0_ CREAT flag
to create the shared-memory obJect, to set the object's user ID to that of the
calling process, and to set the object's group ID to the effective group ID of the
calling process. This establishes an environment whereby the calling process,
all cooperating processes, and child processes share the same effective group
ID with the shared-memory object.

A process can create an exclusive connection to a shared-memory object
by using the O_CREAT and O_EXCL flags. In this case, other processes
attempting to create the shared-memory object at the same time will fail.

The oflag argument of the shm open function requests specific actions from
the shm open code. For example, the following code creates an exclusive
shared-memory object and opens it for read and write access.

fd = shrn_open("all_rnine", (O_CREATlo_EXCLIO_RDWR), 0);

Once a shared-memory object is created, its state and name (including all
associated· data) are persistent. Its state and name persist until the shared
memory is unlinked with a call to the shm unlink function and until all other
references to the shared memory are gone-:-

3-4 Shared Memory

Example 3-1 shows the code sequence to include shared-memory objects in an
application.

Example 3-1 Including a Shared-Memory Object

#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

main ()
int md;
int status;
long pg size;
caddr_t-virt_addr;

/* Create shared memory object */

md = shm open ("my memory", 0 CREAT I 0 RDWR, 0);
pg_size -;; sysconf()C_PAGE_SIZE); -

if((ftruncate(md, pg size)) == -l){ /* Set the size */
perror("ftruncate failure");
exit();

/* Map one page */

virt_addr = mmap(O, pg_size, PROT_WRITE, MAP_SHARED, md, 0);

status = munmap(virt addr, pg size);
status = close(md); - -
status = shm_unlink("my_memory");

3.1.2 Opening Memory-Mapped Files

/* Unmap the page */
/* Close file */
/* Unlink shared-memory object */

The open function points to the data you intend to use; the rnmap function
establishes how much of the data will be mapped and how it will be accessed.
Use the same access permissions that you would normally use on any call
to the open function. If you intend to only read the file, specify only read
permission on the open function. If you intend to read and write to the file,
open the file with both read and write permissions. After opening a file, call
the rnmap function to map the file into application address space.

When finished using a memory-mapped file, unmap the object by calling the
munmap function, then close the object with the close function. Any memory
locks resulting from a call to the mlock function associated with the address
range are removed when the munmap function is called. The application could
then remove the data file by calling the unlink function.

Shared Memory 3-5

3.1.3 Mapping Memory-Mapped Files
The rnmap function maps the memory by mapping data from a file into memory.
The parameters to the rnmap function specify the starting address and length in
bytes for the new region, access permissions, attributes of the mapped region,
file descriptor, and an offset for the address. The MAP_SHARED flag indicates
the object will be accessible by other processes. A call to the munmap function
unmaps the same region.

The address, length, and offset of the new mapped region should be a multiple
of the page size returned by a call to the sysconf (SC PAGE SIZE) function. If
the length is not specified as a multiple of the page-size returned by sysconf,
then any reference to an address between the end of the region and the end
of the page containing the end of the region is undefined. Note, too, that the
offset must be aligned and sized properly. Other size parameters may also
need to be aligned, depending on whether you specified MAP_FIXED.

The prot argument determines the type of access permitted to the data being
mapped. As with other file permissions, the argument is constructed from the
bitwise inclusive OR of one or more of the following flags:

PROT_READ - Data can be read.
PROT_WRITE - Data can be written.
PROT_EXEC - Data can be executed.
PROT_NONE - Data cannot be accessed.

Whatever of the protection options specified as the prot argument, the
file descriptor must have been opened with at least read access. If you
specify PROT_WRITE, the file descriptor must have been opened with write
permission, unless MAP_PRIVATE is specified in the flags parameter.

The flags parameter provides additional information about how to handle
mapped data. The flags parameter uses one of the following flags:

MAP_SHARED - Share changes
MAP_PRIVATE - Changes are private
MAP_FIXED - Interpret the addr argument exactly

MAP_SHARED, MAP_PRIVATE, and MAP_FIXED are the only flags allowed
with the POSIX 1003.4 Draft 11 interfaces for shared memory. The MAP_
ANONYMOUS, MAP_FILE, and MAP_VARIABLE flags are not supported
by POSIX 1003.4 Draft 11, but are supported by DEC OSF/l. For more
information on these flags, see the reference page for the rnmap function.

3-6 Shared Memory

The MAP_FIXED flag controls the location of the new region. No matter
what flag is specified, a mapped region is never placed at address zero or at
an address where it would overlap with an existing region. When multiple
processes use the mapped object, the call to the mmap function can specify
the address, and subsequent calls to the mmap function can use MAP_FIXED
to request the same address in other processes. Cooperating processes must
also use care to communicate this address among themselves. If you specify
MAP_FIXED and for some reason the system is unable to place the new region
at the specified address, the call fails.

The MAP_SHARED and MAP_PRIVATE flags control the visibility of
modifications to the mapped file or shared-memory region. The MAP_SHARED
flag specifies that modifications made to the mapped file region are
immediately visible to other processes which are mapped to the same region
and also used the MAP_SHARED flag. Changes to the region are written to
the file.

The MAP_PRIVATE flag specifies that modifications to the region are not
visible to other processes whether or not the other process used MAP_SHARED
or MAP_PRIVATE. Modifications to the region are not written to the file.

Access to the mapped region or shared-memory region is controlled by the flags
specified in the prot parameter. These flags function much the way they do for
any other file descriptor in that access is specified as the OR of read, write, and
execute with an additional flag to indicate that data cannot be accessed. The
mprotect function changes the protection on a specified address range. That
range should be within the range specified on the call to the mmap function.
Protection flags can interact with the MAP_SHARED, MAP_PRIVATE, and
MAP_FIXED flags. Refer to the online reference pages for mmap and mprotect
for the specifics.

When you unmap a mapped region or shared memory, be sure to specify an
address and length in the range of the parameters used in the call the mma p
function.

3.1.4 Using File Functions
Shared-memory objects and memory-mapped files use the file system name
space to map global names for memory objects. As such, POSIX.l file control
functions can be used on shared-memory objects and memory-mapped files,
just as these functions are used for any other file control. Table 3-4 lists some
of the file functions available.

Shared Memory 3-7

Table 3-4 File Functions Used with Memory-Mapped Files

Function

fchmod

fcntl

flock
fstat

ftruncate

Description

Changes permissions on file descriptors

Controls operations on files and memory objects

Locks a file as shared or exclusive

Provides information about file status

Sets the length of a memory object

The fstat function returns information about the file, such as access
permissions, link references, and type and size of file. You can use this
function to obtain information for use in subsequent calls to other file control
functions. The fchmod function can be used to change access permissions on
a file. If you are the owner of the file or have superuser privileges, you can
use the fchmod function to set the access mode and grant or deny permissions
to the group, user, or others. The fcntl function can be used to retrieve and
set the value of the close-on-exec flag, status flags and access modes, or set
and clear locks. Using the fcntl function, you can override locks set with the
f lock function.

You can apply a lock to a shared-memory object or mapped file by using
a variety of file control functions, including fcntl and flock. Both these
functions apply a lock on an open file, but they differ in how the lock is
performed and the range of other tasks they can perform.

Note that the locks applied with these functions are for files, not file
descriptors. That means that under most circumstances, file locks are not
inherited across a fork. If a parent process holds a lock on a file and the parent
process forks, the child process will inherit the file descriptor, but not the lock
on the file. A file descriptor that is duplicated with one of the dup functions
does not inherit the lock.

The fcntl function is used for general file control. In addition to locking and
unlocking an open file, the fcntl function is used to return or set status, a new
file descriptor, or process IDs.

The f lock function is limited to applying locks on a file and is not used for
general file control.

Refer to the online reference pages for more information on using the file
control functions.

3-8 Shared Memory

3.1.5 Controlling Memory-Mapped Files
Numerous functions let you manipulate and control access to memory-mapped
files and shared memory. These functions include msync and mprotect. Using
these functions, you can modify access protections and synchronize writing to a
mapped file.

The msync function synchronizes the caching operations of a memory-mapped
file or shared-memory region. Using this function, you can ensure that
modified pages in the mapped region are transferred to the file's underlying
storage device or you can control the visibility of modifications with respect to
file system operations.

Flags used on the msync function specify whether the cache flush is to
be synchronous (MS_SYNC), asynchronous (MS_ASYNC), or invalidated
(MS_INVALIDATE). Either the MS_SYNC or MS_ASYNC flag may be
specified, but not both.

When you use the MS_SYNC flag, the msync function does not return until
all write operations are complete and the integrity of the data is assured. All
previous modifications to the mapped region are visible to processes using the
read parameter.

When you use the MS_ASYNC flag, the msync function returns immediately
once all of the write operations are scheduled.

When you invalidate previously cached copies of the pages, other users are
required to get new copies of the pages from the file system the next time they
are referenced. In this case, previous modifications to the file made with the
wr i te function are visible to the mapped region.

When using the msync function, you should use pages within the same address
and length arguments used in the mmap function to ensure that the entire
mapped region is synchronized.

The mprotect function changes the access protection of a mapped file or
shared-memory region. When using the mprotect function, use pages within
the same address and length specified in the call to the mmap function.
Protection flags used on the mprotect function are the same as those used
on the mmap function.

Note that use of the mprotect function modifies access only to the specified
region. If the access protection of some pages within the range were changed
by some other means, the call to the mprotect function may fail.

Shared Memory 3-9

3.1.6 Removing Shared Memory
When a process has finished using a shared-memory segment, you can remove
the pathname from the file system namespace with a call to the shm unlink
function, as shown in the following example: -

status = shm_unlink("my_file");

The shm unlink function unlinks the shared-memory object. Memory objects
are persistent; which means the contents remain until all references have been
unmapped and the shared-memory object has been unlinked with a call to the
shm unlink function.

Every process using the shared memory should perform the cleanup tasks of
unmapping and closing.

3.2 Locking Shared Memory
You can lock and unlock a shared-memory segment into physical memory to
eliminate paging. The MLOCK_FUTURE argument to the mlockall function
causes new shared-memory regions to be locked automatically. See Chapter 4
for more information on using the mlock and mlockall functions.

Example 3-2 shows how to map a file into the address space of the process
and lock it into memory. When the file is unmapped, the lock on the address is
removed.

Example 3-2 Locking a Memory Object

/* This program locks the virtual memory address that */
/* was returned from the mmap() function into the memory. */

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <errno.h>

main()
{
int fd;
caddr_t pg_addr;

int size = 5000;
int mode = S_IRWxoIS_IRWXGIS_IRWXU;

(continued on next page)

3-10 Shared Memory

Example 3-2 (Cant.) Locking a Memory Object

/* create a file */

fd = shm open("example", O_RDWRlo_CREAT, mode);
if(fd < O){

perror("open error ");
exit() ;

/* Set the size */

if((ftruncate(fd, size)) == -l){
perror("ftruncate failure");
exit() ;

}

/* Map the file into the address space of the process */

pg_addr = (caddr_t) mmap(O, size, PROT_READlpROT_WRITElpROT_EXEC, MAP_SHARED, fd, 0);

if(pg_addr == (caddr_t) -l){

perror ("mmap failure");
exit () ;

}

/* Lock the mapped region into the memory */

if(mlock(pg addr,size) 1= O){
perror ("mlock failure");
exit() ;

/* Unmap of the address region removes the memory lock */
/* established on the address region by this process */

if(munmap(pg addr, size) < 0)
perror ("unmap error");

close(fd) ;

shm unlink("example");
exit() ;
}

You can also lock the file so that other processes cannot use it, making it an
exclusive resource for a process and its descendants. See Section 3.1.4 for more
information on locking files.

Shared Memory 3-11

3.3 Using Shared Memory with Semaphores
When using shared memory, processes map the same area of memory into
their address space. This allows for fast interprocess communication because
the data is immediately available to any other process using the same shared
memory. If your application has multiple processes contending for the same
shared-memory resource, you must coordinate access.

Binary semaphores provide an easy means of regulating access to a memory
object and determining if the memory resource is available. Typically, an
application will begin execution at a nonrealtime priority level, then perform
the following tasks when using mapped or shared-memory objects and
semaphores:

1. Create the shared-memory object

2. Determine the address and map the region into memory

3. Create a binary semaphore set

4. Adjust the process priority and scheduling policy as needed

5. Before a read or write operation, lock (reserve) the semaphore

6. After a read or write operation, unlock (release) the semaphore

A process can lock the semaphore associated with a mapped or shared-memory
object to indicate that the process requires exclusive access. Cooperating
processes normally wait until the semaphore is unlocked before accessing a
region.

Refer to Chapter 8 for information on binary semaphores and for an example
using semaphores and shared memory.

3-12 Shared Memory

4
Memory Locking

Memory management facilities ensure that processes have effective and
equitable access to memory resources. The operating system maps and controls
the relationship between physical memory and the virtual address space of a
process. These activities are, for the most part, transparent to the user and
controlled by the operating system. However, for many realtime applications
you may need to make more efficient uSe of system resources by explicitly
controlling virtual memory usage.

This chapter covers the following sections:

• Memory Management, Section 4.1

• Memory-Locking and Unlocking Functions, Section 4.2

Memory locking is one way to ensure that a process stays in main memory
and is exempt from paging. In a realtime environment, a system must be
able to guarantee that it will lock a process in memory to reduce latency for
data access, instruction fetches, buffer passing between processes, and so
forth. Locking a process's address space in memory helps ensure that the
application's response time satisfies realtime requirements. As a general rule,
time-critical processes should be locked into memory.

4.1 Memory Management
In a multiprogramming environment, it is essential for the operating system to
share available memory effectively among the processes. Memory management
policies are directly related to the amount of memory required to execute
those processes. Memory management algorithms are designed to optimize the
number of runnable processes in primary memory while avoiding conflicts that
adversely affect system performance. If a process is to remain in memory, the
kernel must allocate adequate units of memory. If only part of a process needs
to be in primary memory at any given time, then memory management can
work together with the scheduler to make optimal use of resources.

Memory Locking 4-1

Virtual address space is divided into fixed-sized units, called pages. Each
process is usually composed of a number of pages, which are independently
moved in and out of primary memory as the process executes. Normally, a
subset of a process's pages resides in primary memory when the process is
executing.

Since the amount of primary memory available is finite, paging is often done
at the expense of some pages; to move pages in, others must be moved out. If
the page that is going to be replaced is modified during execution, that page
is written to a file area. This page is brought back into primary memory as
needed and execution is delayed while the kernel retrieves the page.

Paging is generally transparent to the current process. The amount of paging
can be decreased by increasing the size of physical memory or by locking
the pages into memory. However, if the process is very large or if pages are
frequently being paged in and out, the system overhead required for paging
may decrease efficiency.

For realtime applications, having adequate memory is more important than for
nonrealtime applications. Realtime applications must ensure that processes
are locked into memory and that there is an adequate amount of memory
available for both realtime processes and the system. Latency due to paging is
often unacceptable for critical realtime tasks.

4.2 Memory-Locking and Unlocking Functions
Realtime application developers should consider memory locking as a required
part of program initialization. Many realtime applications remain locked for
the duration of execution, but some may want to lock and unlock memory as
the application runs. DEC OSF/l memory-locking functions let you lock the
entire process at the time of the function call and throughout the life of the
application, or to selectively lock and unlock as needed.

Memory locking applies to a process's address space. Only the pages mapped
into a process's address space can be locked into memory. When the process
exits, pages are removed from the address space and the locks are removed.

Two functions, mlock and mlockall, are used to lock memory. The mlock
function allows the calling process to lock a selected region of address space.
The mlockall function causes all of a process's address space to be locked.
Locked memory remains locked until either the process exits or the application
calls the corresponding munlock or munlockall function.

Memory locks are not inherited across a fork and all memory locks associated
with a process are unlocked on a call to the exec function or when the process
terminates.

4-2 Memory Locking

For most realtime applications the following control flow minimizes program
complexity and achieves greater determinism by locking the entire address into
memory.

1. Perform non-realtime tasks, such as open files or allocate memory

2. Lock the address space of the process calling mlockall function

3. Perform realtime tasks

4. Release resources and exit

Table 4-1 lists the memory-locking functions.

Table 4-1 Memory-Locking Functions

Function Description

Locks all of a process's address space

Unlocks all of a process's address space

mlockall

munlockall

mlock

munlock

Locks a specified region of a process's address space

Unlocks a specified region of a process's address space

The memory-locking functions support locking the entire address space or a
selected range of one or more pages.

4.2.1 Locking and Unlocking a Specified Region
The mlock function locks a preallocated specified region. The address and size
arguments of the mlock function determine the boundaries of the preallocated
region. On a successful call to the mlock function, the specified region becomes
locked. Memory is locked by the system according to system-defined pages. If
the address and size arguments specify an area smaller than a page, the kernel
rounds up the amount of locked memory to the next page. The mlock function
locks all pages containing any part of the requested range, which can result in
locked addresses beyond the requested range.

Repeated calls to mlock could request more physical memory than is available:
subsequent processes must wait for locked memory to become available.
Pre allocating and locking regions is recommended for realtime applications.
Realtime applications often cannot tolerate the latency introduced when a
process must wait for lockable space to become available.

If the process requests more locked memory than will ever be available in the
system, an error is returned.

Memory Locking 4-3

Figure 4-1 illustrates memory allocation before and after a call to the mlock
function. Prior to the call to the mlock function, buffer space in the data area
is not locked and is therefore subject to paging. Mter the call to the mlock
function the buffer space cannot be paged out of memory.

Figure 4-1 Memory Allocation with mlock

Stack Stack

Heap Heap

~~ ~~

Data

} char buffer [1024]; char buffer [1024];

Text
(Code)

Before mlock
Call

D = Pageable

Text
(Code)

After mlock (buffer, 1024);
Call

= Locked in physical memory (not pageable)

MLO-007319

The mlock function locks all pages defined by the range addr to addr+len-l
(inclusive). The area locked is the same as if the len argument were rounded
up to a multiple of the next page size before decrementing by 1. The address
must be on a page boundary and all pages mapped by the specified range are
locked. Therefore, you must determine how far the return address is from a
page boundary and align it before making a call to the mlock function.

4-4 Memory Locking

Use the sysconf (SC PAGE SIZE) function to determine the page size. The
size of a page can-vary from system to system. To ensure portability, call
the sysconf function as part of your application or profile when writing
applications that use the memory-locking functions. The sys/mroan.h header
file defines the maximum amount of memory that can be locked. Use the
getrlimit function to determine the amount of total memory.

Exercise caution when you lock memory; if your processes require a large
amount of memory and your application locks memory as it executes, your
application may take resources away from other processes. In addition, you
could attempt to lock more virtual pages than can be contained in physical
memory.

Locked space is automatically unlocked when the process exits, but you
can also explicitly unlock space. The munlock function unlocks the specified
address range regardless of the number of times the mlock function was
called. In other words, you can lock address ranges over multiple calls to the
mlock function, but can remove the locks with a single call to the munlock
function. Space locked with a call to the mlock function must be unlocked with
a corresponding call to the munlock function.

Example 4-1 shows how to lock and unlock memory segments. Each user
written function determines page size, adjusts boundaries, then either locks or
unlocks the segment.

Example 4-1 Aligning and Locking a Memory Segment

#include <unistd.h>
#include <sys/mman.h>

/* Support all standards */
/* Memory locking functions */

#define DATA SIZE 2048

lock memory(char *addr,

{

}

- size_t size)

unsigned long page_offset, page_size;

page size = sysconf(SC PAGE SIZE);
page=offset = (unsigned-long) addr % page_size;

addr -= page offset;
size += page=offset;

/* Adjust addr to page boundary */
/* Adjust size with page_offset */

return (mlock(addr, size)); /* Lock the memory */

(continued on next page)

Memory Locking 4-5

Example 4-1 (Cont.) Aligning and Locking a Memory Segment

unlock memory(char *addr,
- size_t size)

unsigned long page_offset, page_size;

page size = sysconf(SC PAGE SIZE);
page=offset = (unsigned-long) addr % page_size;

addr -= page offset; /* Adjust addr to page boundary */
size += page=offset; /* Adjust size with page_offset */

return (munlock(addr, size)); /* Unlock the memory */

main()
{

char data[DATA_SIZE];

if (lock memory(data, DATA SIZE) == -1)
perror ("lock_memory") ; -

/* Do work here */

if (unlock memory(data, DATA SIZE) == -1)
perror ("unlock_memory") ; -

4.2.2 Locking an Unlocking an Entire Process Space
The mlockall function locks all of the pages mapped by a process's address
space. On a successful call to mlockall, the specified process becomes locked
and memory-resident. The mlockall function takes two flags, MCL_CURRENT
and MCL_FUTURE, which determine whether the pages mapped are those
currently used or if any pages mapped in the future are to be locked. You must
specifY at least one flag for the mlockall function to lock pages. If you specify
both flags, the address space to be locked is constructed from the logical OR of
the two flags.

If you specifY MCL_ CURRENT only, all currently mapped pages of the
process's address space are memory-resident and locked. Subsequent growth
in any of the specified region is not locked into memory. If you specifY the
MCL_FUTURE flag, all future pages are locked in memory. If you specify both
MCL_CURRENT and MCL_FUTURE, then the current pages are locked and
subsequent growth is automatically locked into memory.

4-6 Memory Locking

Figure 4-2 shows memory allocation before and after a call to the mloekall
function with both MCL_CURRENT and MCL_FUTURE flags. Prior to the call
to the mloekall function, space is not locked and is therefore subject to paging.
After a call to the mloekall function, which specifies the MCL_CURRENT and
MCL_FUTURE flags, all memory used by the process, both currently and in
the future, is locked into memory. The call to the malloe function increases the
amount of memory locked for the process.

Figure 4-2 Memory Allocation with mlockall

Stack

Heap

Data

Text
(Code)

Before mlockall
Call

D = Pageable

After mlockall
Call

= Locked in physical memory (not pageable)

~ = Unmapped address space

After malloc
Call

MLO-010124

The munloekall function unlocks all pages mapped by a call to the mloekall
function, even if the MCL_FUTURE flag was specified on the call. The call
to the munloekall function cancels the MCL_FUTURE flag. If you want
additional locking later, you must again call on the the memory-locking
functions.

Memory Locking 4-7

Example 4-2 illustrates how the mlockall function might be used to lock
current and future address space.

Example 4-2 Using the mlockall Function

#include <unistd.h>
#include <stdlib.h>
#include <sys/rnman.h>

/* Support all standards */
/* malloc support */
/* Memory locking functions */

#define BUFFER 2048

main()
{

void *p[3]; /* Array of 3 pointers to void */

prO] = malloc(BUFFER);

/* Currently no memory is locked */

if (mlockall(MCL CURRENT) == -1)
perror("mlockaII:1");

/* All currently allocated memory is locked */

p[l] = malloc(BUFFER);

/* All memory but data pointed to by p[l] is locked */

if (munlockall() == -1)
perror ("munlockall: 1") ;

/* No memory is now locked */

if (mlockall(MCL FUTURE) == -1)
perror ("mlockalI: 2") ;

/* Only memory allocated in the future */
/* will be locked */

p[2] = malloc(BUFFER);

/* Only data pointed to by data[2] is locked */

if (mlockall(MCL_CURRENTIMCL_FUTURE) == -1)
perror("mlockall:3");

/* All memory currently allocated and all memory that */
/* gets allocted in the future will be locked */

4-8 Memory Locking

5
Signals

The signal interface is a traditional form of interprocess communication and is
generally used to notify processes that something has happened in one process
that affects another process. Signals are often sent asynchronously; that is,
the receiving process cannot predict when a signal will arrive. The application
must contain code to take action once a signal is received. The action can be
to ignore the signal, terminate the process, or catch the signal by executing a
handler function.

Often, signals are referred to as "software interrupts" and are the software
equivalent of a hardware interrupt. Signals are the kernel's mechanism for
communicating events to processes. Signals are also sent by a user process to
notify another process of an event such as the expiration of a timer.

This chapter includes the following sections:

• P1003.41D11 Realtime Signals, Section 5.1

• The Signal Interface, Section 5.2

Signals do not pass data, do not identify the sending process, and are not
prioritized or queued. Nevertheless, signals are used by timers and other
events to trigger the start of a signal handler once the signal is received.

5.1 P1003.4/011 Realtime Signals
The P1003.41D11 standard extends signal generation and delivery for realtime
functions requiring asynchronous notification. Currently, asynchronous I/O and
timer functions generate signals as an explicit parameter to the asynchronous
I/O and timer function calls. When using these functions, you do not have to
call a separate function to deliver signals.

Signal delivery for the P1003.41D11 realtime functions uses a sigevent
structure. The sigevent structure is supplied as an argument (either directly
or indirectly) to the function call.

Signals 5-1

The sigevent structure is defined in the signal. h header file and contains the
following members:

int
union sigval

sigev signoi
sigev=valuei

/* Signal sent on timer expiration */
/* Not supported - Specify as NULL */

The sigual union contains at least the following members:

int
void

sival inti
*sivaI_ptri

/* Used when sigev value is of type int */
/* Used when sigev=value is of type ptr */

The sigeu_ualue member is an application-defined value to be passed to the
signal catching function at the time of signal delivery. This member is used in
PI003.4IDll Realtime Signals, which are not fully implemented at this time.
Specify a value of NULL for this member.

The sigeu _signo member specifies the signal number to be sent on completion
of the asynchronous I/O operation or on timer expiration. In both instances,
you must set up a signal handler to execute once the signal is received. You
can use sigaction or signal function to specify the action required. Refer to
Chapter 6 and Chapter 7 for examples of using signals with these functions.

5.2 The Signal Interface
Signal use consists of two actions: sending and receiving. Either the sending
process posts a signal to the receiving process, or the kernel can send a signal.
Examples of events that send a signal include hardware faults, the kill
function, or terminal input. The receiving process can respond by allowing
the signal to terminate the process, or it can take action such as blocking the
signal or invoking a routine to carry out an appropriate action.

Once a signal is sent, it is delivered, unless delivery is blocked. When blocked,
the signal is marked pending. Pending signals are delivered immediately once
they are unblocked. To determine whether a blocked signal is pending, use the
sigpending function.

Applications use signals to inform processes of the occurrence of asynchronous
events. Processes can send signals to each other using the kill functions or
the kernel can send signals to processes. Available signals include:

• Signals that prescribe actions to be performed by the receiving process,
such as SIGALRM

• Signals that indicate the occurrence of an event, such as SIGCLD

• Signals related to exceptions, such as SIGFPE

5-2 Signals

Many functions are associated with signals. For example, the pause, wait,
and waitpid functions suspend the execution of a process until an appropriate
signal arrives. Several functions deal with the signal set itself, such as
sigernptyset, which creates an empty set of signals, and sigpending, which
checks whether any blocked signals are currently pending.

For each type of signal, a process can use the sigaction function to
declare an associated signal-catching function. Such a function is executed
asynchronously when the signal is delivered to the process. The process may
also choose to ignore the signal or take a default action when it receives the
signal.

When two or more unblocked signals are pending, the kernel delivers the
pending unblocked signal with the lowest numeric signal number.

Table 5-1 lists the signal control functions in two categories: those used to
establish and manipulate sets of signals and those used to send signals or
respond to them.

Table 5-1 Signal Control Functions

Function

sigaction

sigpending

sigprocrnask

sigsuspend

Description

Controlling a Signal Set

Examines or specifies the action of a specific signal

Returns a set of pending signals in a specified signal set

Examines or changes the signal mask of the calling process

Replaces the signal mask of the calling process and then
suspends the process

(continued on next page)

Signals 5-3

Table 5-1 (Cont.) Signal Control Functions

Function

alarm

kill

nanosleep

pause

sleep

wait

waitpid

5.2.1 Sending Signals

Description

Sending and Responding to Signals

Sends the calling process a SIGALRM signal after a
specified number of seconds

Sends a signal to a process or a group of processes

Suspends the current process either for a specified period or
until a signal of a certain type is delivered

Suspends the calling process until a signal of a certain type
is delivered

Suspends the current process either for a specified period or
until a signal of a certain type is delivered

Lets a parent process get status information from a child
that has stopped and delays the parent process until a
signal arrives or one of its child processes terminates

Lets a parent process get status information from a specific
child that has stopped and delays the parent process until a
signal arrives from that child or that child terminates

Signals are sent by a user process, the kernel, or a driver program. Four
conditions can generate signals:

• A user-level process sends a signal to another user-level process.

For example, the call to kill can terminate the process or activate a signal
handler to perform some other action.

• A kernel-level process sends a signal to a user-level process.

For example, the kernel may send a signal to notify a process that
hardware conditions prevent further execution.

• A driver program sends a signal to a user-level process.

For example, the user initiates application control by pressing a CtrllC
from a terminal.

• A user-level process sends a signal to itself.

5-4 Signals

For example, a process needs to track software conditions, such as timer
expiration or asynchronous I/O completion.

A process sends a signal to another process (or an entire process group) by
using the kill system call. The first argument to the kill system call is the
process ID of the receiving process. The second argument identifies the signal
to be sent or indicates that a group of processes is to be signaled.

Signals can be sent from a keyboard. To see which signals are mapped to keys
on your keyboard, issue the command stty everything. Signals sent from a
keyboard are received by all processes in the process group associated with the
terminal.

In Example 5-1, a parent process sends a signal to its child, which handles the
signal and exits.

Example 5-1 Sending Signals Between Processes

/* The parent process sends SIGINT to a child process. */
/* The child process handles the signal and exits. */

'#include <unistd.h>
#include <signal.h>
#include <stdio.h>

main()
{
int pid; /* The child's PID is returned by fork() */

if ((pid = fork()) == 0) /* Child process; execute child's code */

else

{signal (SIGINT, SIGINT handler()); /* Make signal handler */
pause(); - /* wait for a signal */

}

{sleep (1);
kill(pid, SIGINT);
wait (0);
exit (0);
}

/* Parent process: executes parent's code */
/* Wait 1 second for child to be born */
/* Send signal to child */
/* Wait until child terminates */
/* Successful exit */

SIGINT handler(signal number) /* Identify the signal received */
int signal number; /* (SIGINT = 2) and exit */
{ -
printf("Signal %d received from parent.\n", signal number);
exit(O); /* Successful exit- */
}

Signals 5-5

5.2.2 Blocking Signals
A signal can be blocked to protect certain sections of code from receiving
signals when the work should not be interrupted. Unlike ignoring a signal,
blocking a signal postpones the signal until the process is ready to handle it.

Each process has a signal mask, a set of bits, each one corresponding to a
specific type of signal as defined in the signal. h header file. Signals are
blocked or unblocked through this bit mask. Each bit represents one of the
signal conditions - if the nth bit in the mask is set, then signal n is blocked.

The signal mask is initialized by the parent process and can be manipulated
to control signal delivery. Signals are explicitly blocked and unblocked by
manipulation of the signal mask. Initially, a process copies the signal mask of
its parent. The process can use the first nine functions listed in Table 5-1 to
manipulate and examine its signal mask, thus regulating the signals to which
it is sensitive.

Figure 5-1 represents a mask blocking two signals. In this illustration, two
signal bits are set, blocking signal delivery for the specified signals.

Figure 5-1 Signal Mask that Blocks Two Signals

Mask -
""'- -

- Unblocked Signal

Process
Blocked Signal

- Unblocked Signal

""- Blocked Signal

-
MLO-006770

A blocked signal is marked as pending when it arrives and is handled as soon
as the block is released. Multiple occurrences of the same signal are not saved;
that is, if a signal is generated more than once while the signal is already
pending, only one instance of the signal is delivered.

5-6 Signals

A user process can change the signal mask by calling the sigprocmask or
sigsuspend functions. The sigprocmask function lets you replace or alter
the signal mask of the calling process; the first argument to this function
determines the action taken. If you specify the SIG_SETMASK flag as the first
argument, you can replace the current signal mask with a new signal mask.
The SIG_BLOCK and SIG_UNBLOCK flags allow you to increase or decrease
the set of blocked signals.

Use the sigsuspend function to specify additional signals that you want
blocked until an unblocked signal is received. The argument to the sigsuspend
function specifies the signals used by the signal mask specified in sigmask and
then suspends the process. The process remains suspended until a signal is
delivered that either executes a signal-handling function or terminates the
process.

The sigprocmask function is useful when you want to set a mask but are
uncertain as to which signals are still blocked. You can retrieve the current
signal mask by calling sigprocmask (SIG BLOCK, NULL, &oldmask). The
sigpending function determines which signals are pending but blocked from
delivery. After the critical code is executed, use the sigprocmask or sigsuspend
functions to release any blocked signals and restore the old mask, as in the
following example:

sigset_t newrnask, oldmask;

sigemptyset(&newrnask);
sigemptyset(&oldmask);
sigaddset(&newset, SIGSYS);
sigaddset(&newset, SIGTRAP);
sigprocmask(SIG_BLOCK, &newrnask, &oldmask);

j* Code protected from SIGSYS and SIGTRAP goes here *j

j* Release blocked signals and restore old mask *j

sigprocmask(SET_SETMASK, &oldmask, NULL);

The s igprocmask function restores the original signal mask and allows the
blocked signal to be delivered if one or both signals became pending while the
protected code was executing.

Signals 5-7

The sigaction, sigprocmask, and sigsuspend signal-handling functions take
arguments that point to a sigset_t type. This type contains information about
the signal data objects as they pertain to the application. For example, the
signal set could contain either the set of signals blocked from delivery to a
process or the set pending for a process. The sigsetops primitive functions
let you manipulate the sets of signals defined in the s igset structure. The
sigsetops primitive functions also let you initialize the signal set to include or
exclude all signals, add or delete individual signals, and change the contents
of the set. See Section 5.2.3.4 for more information on using the sigsetops
primitive functions.

5.2.3 Managing Signals
Signals are managed by the sigaction or signal functions. Both functions can
take one of three actions for each signal it receives:

• Ignore the signal - Discard the signal as if it were never sent

• Take the default action - Allow the system to determine the signal action

• Catch the signal - Pass control to a user routine

When the signal is ignored, the process does not receive notification of the
signal. Most applications catch the signal and set up user-written signal
handlers to take care of the event that triggered the signal. The handler is
executed, passes control back to the process at the point where the signal was
received, and execution continues. Handlers can also send error messages,
save information about the status of the process when the signal was received,
or transfer control to some other point in the application.

Refer to the reference page for the signal function for a complete description
of the default actions associated with individual signals.

5.2.3.1 Using the sigaction Function
The sigaction function allows the calling process to examine and specify the
action to be taken for a signal. If you set a signal-handling action with a call
to the sigaction function, the user-specified action remains set until explicitly
reset with another call to the sigaction function.

When a signal is caught by a routine established by the sigaction function, a
new signal mask is created and used temporarily.

The sigaction function uses a sigaction structure to describe the action
taken. This structure is in the signal. h header file and contains the following
fields:

5-8 Signals

struct sigaction
{void *sa handler
sigset t-sa mask
int sa-flags

}; -

/* SIG DFL, SIG IGN, or a pointer to a function */
/* AddItional set of signals to be blocked */
/* Flags to affect behavior of the signal */

If the action is not specified as NULL, it points to a sigaction structure
specifying the action associated with the signal. If the action is specified as
NULL, signal handling is unchanged by the call to the sigaction function, but
the call can be used to inquire about the current handling of a specified signal.
The sa_handler field of the sigaction structure identifies the action associated
with a specific signal.

If the sa_handler field specifies a signal-catching function, the sa_mask field
identifies the additional set of signals to be added to the process's signal mask
before the signal-catching function is called. This signal mask is used for the
duration of the process's signal handler or until modified by another call to
sigaction, sigprocmask, or sigsuspend function. This new mask is formed by
taking the union of the current signal mask and the value of the signal that
triggered the call to the signal handler. If the user-specified signal handler is
successful, the original mask is restored.

Example 5-2 shows a program that sets an alarm to go off after the number of
seconds specified in the command line that invokes the program. The call to
the sigaction function establishes the signal handler announce, making the
signal handler responsive to the SIGALRM signal. After arming the alarm,
the process pauses. When the SIGALRM signal arrives, the signal handler
responds, waking the process and printing a message.

Example 5-2 Using the alarm Function

#include <unistd.h>
#include <signal.h>
#include <stdio.h>

main(argc,argv)
int argc;
char **argv;
{
void announce();
struct sigaction action;

if (argc 1= 2)
fprintf(stderr,"Usage: %s seconds\n",argv[O]), _exit(l);

(continued on next page)

Signals 5-9

Example 5-2 (Cont.) Using the alarm Function

sigemptyset(&action.sa mask);
action.sa_flags = 0; -

action.sa handler = announce;
sigaction(SIGALRM, &action, NULL);

alarm((unsigned) atoi(argv[l]));
pause() ;

puts("main continues after signal handler");
_exit (0);

void announce(signo)
int signo;
{

printf("Received signal %d - Awake after alarm\n", signo);

5.2.3.2 Using the signal Function
The signal function is a simple way to manage signals. The signal function
takes two arguments. The sig argument identifies the signal, such as
SIGALRM. The tunc argument specifies what to do with the signal. The
tunc argument can be the address of a signal handler function, or the values
SIG_DFL, SIG_IGN, which are defined in the signal. h header file. Calls to
the signal function could look like any of these examples:

signal (SIGIO, SIG IGN);
signal (SIGCHLD, SIG DFL);
signal (SIGALRM, myhandler);

/* Ignore the signal */
/* Accept signal default action */
/* Call a handler */

If you specify the SIG_DFL flag, the signal's default action is taken. This can
be to ignore the signal, to stop the process, or to terminate the process.

5.2.3.3 Using Signal Handlers
A routine that is declared to be a signal handler is passed three arguments
when the signal it handles is received by the process, but it need not declare or
use any of them. The signal_number argument is the value of the signal. The
code argument specifies additional information supplied with some signals. For
example, if the signal is SIGFPE (floating-point exception), code might be one
of the following values:

• FLTOVF _FAULT - Specifies floating-point overflow

• FPE_FLTDIV _FAULT - Specifies floating-point divide by 0

5-10 Signals

• ILL_RESAD_FAULT - Indicates an attempt to access a reserved address
space

The scp argument points to a sigcontext structure, defined in signal. h. This
structure stores the process context as it was before the signal was sent in case
the context needs to be restored after handling a signal.

Example 5-3 shows one way to handle the SIGINT signal. First it cleans up
the condition that generated the SIGINT signal; then it stops the program.

Example 5-3 Handling Signals

/* This program prompts for input in file 'tmp'. */
/* If interrupted by Ctrl/C, remove 'tmp' and exit. */

#include <unistd.h>
#include <stdio.h>
#include <signal.h>

main()
{
FILE *fp; /* File pointer to 'tmp' */
char C; /* Character read from terminal */
void sigint_handler(); /* The SIGINT signal handler */

if (signal (SIGINT, SIG_IGN) 1= SIG_IGN)

/* If SIGINT is already being ignored, */
/* Don't declare a handler for it */

signal (SIGINT, sigint_handler);

/* Make sigint handler handle all SIGINT */
/* Signals. signal() blocks other SIGINTs */
/* While a SIGINT is being handled. */

fp=fopen("tmp","w"); /* Open file 'tmp' for writing */
printf("Enter text. \n"); /* Prompt for text */
while ((c=getchar()) 1= EOF) /* Get a char and write it to 'tmp'*/

pu tc (c , fp);

puts("EOF typed before CTRL/C");
exit (0); /* Successful exit */
}

/* Remove 'tmp' file, and kill this */
/* Program. Do not return to main() */

(continued on next page)

Signals 5-11

Example 5-3 (Cont.) Handling Signals

void sigint handler()
{if (unlink("tmp") 1= -1)

puts("The tmp file has been removed.");
exit(l);

A signal sent from the keyboard, such as an interrupt (SIGINT), is sent to all
processes associated with the terminal. However, the shell turns off interrupts
sent to background processes. That is why the signal function is called for
SIGINT and its value is tested before declaring a handler for SIGINT in the
previous example. If the program, write text. c, declares that all SIGINTs are
to be handled by its handler, then the shell does not turn off interrupts when
the process is running in the background. The write text. c program tests the
current state of interrupt handling and continues to ignore interrupts if they
are currently being ignored.

Example 5-4 shows the code for a process that creates a child that in turn
creates and uses a signal handler, catchit. The child process also calls
sigaction to make catchit responsive to the signal SIGUSRl. Then the
child process pauses until the signal handler catches the signal and exits.

The parent process sleeps for one second, allowing the child to run. Then the
parent:

• Calls kill to send the SIGUSRl signal to the child

• Waits for the child process to terminate

The catchit signal handler calls exit to terminate the child process, sending
a signal to the parent. -

When the parent receives the process termination signal from the child, it
prints a message and stops.

Example 5-4 Sending a Signal to Another Process

(continued on next page)

5-12 Signals

Example 5-4 (Cont.) Sending a Signal to Another Process

#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

main()
{
pid_t pid;

if ((pid = fork()) == 0)
struct sigaction action;
void catchit();

sigemptyset(&action.sa mask);
action. sa_flags = 0; -

action.sa handler = catchit;

/* Child */

if (sigaction(SIGUSR1, &action, NULL) == -1)
perror("sigusr: sigaction"), exit(l);
pause(); /* Never get here */
}

else { /* Parent */
int stat;
sleep(l); /* Allow child to run */
kill(pid, SIGUSR1);
pid = wait(&stat);
printf("Child exit status %d\n", WEXITSTATUS(stat));
exit(O);

T

void catchit(signo)
int signo;
{printf("Signal %d received from parent\n" , signo);

exit(17);
}-

5.2.3.4 Using the sigsetops Primitives
The sigsetops primitives are used to manipulate signal sets that are blocked
from delivery or the set of signals pending for a process. Primitives operate on
data objects addressable by the application rather than on the set of signals
known to the system. Table 5-2 lists the sigsetops primitive functions.

Signals 5-13

Table 5-2 The sigsetops Primitive Functions

Primitive

sigaddset

sigdelset

sigemptyset

sigfillset

sigismember

Description

Adds the specified signal to the signal set

Deletes the specified signal from the signal set

Initializes the signal set to exclude all signals given in POSIX
1003.1

Initializes the signal set to include all signals given in PO SIX
1003.1

Tests whether the specified signal is a member of the signal set

Before calling the sigaddset, sigdelset, or sigismember primitives, you
should initialize the signal set with a call to either the sigemptyset or
sigfillset primitive. See the reference pages for additional information
about using the sigsetops primitives.

5-14 Signals

6
Clocks and Timers

Realtime applications must be able to operate on data within strict timing
constraints in order to schedule application or system events. Timing
requirements can be in response to the need for either high system throughput
or fast response time. Applications requiring high throughput may process
large amounts of data and use a continuous stream of data points equally
spaced in time. For example, electrocardiogram research uses a continuous
stream of data for qualitative and quantitative analysis.

Applications requiring a fast response to asynchronous external events
must capture data as it comes in and perform decision-making operations
or generate new output data within a given time frame. For example, flight
simulator applications may acquire several hundred input parameters from the
cockpit controls and visual display subsystem with calculations to be completed
within a 5 millisecond time frame.

DEC OSF/1 P1003.41D11 timing facilities allow applications to use relative
or absolute time and to schedule events on a one-shot or periodic basis.
Applications can create multiple timers for each process.

This chapter includes the following sections:

• Clock Functions, Section 6.1

• Types of Timers, Section 6.2

• Timers and Signals, Section 6.3

• Data Structures Associated with Timing Facilities, Section 6.4

• Timer Functions, Section 6.5

• High-Resolution Sleep, Section 6.6

• Clocks and Timers Example, Section 6.7

Clocks and Timers 6-1

The correctness of realtime applications often depends on satisfying timing
constraints. A systemwide clock is the primary source for synchronization and
high-resolution timers to support realtime requirements for scheduling events.
The P1003.41D11 timing functions perform the following tasks:

• Set a systemwide clock, obtain the current value of the clock, and fine-tune
the accuracy of the system time

• Set per-process timers to expire once or multiple times (arm the timers)

• Use asynchronous signals on timer expiration

• Retrieve the resolution of the systemwide clock

• Permit the calling thread or process to suspend execution for a period of
time or until a signal is delivered

Timing facilities are most useful when combined with other synchronization
techniques.

Although non-PaS IX functions are available for creating timers, application
programmers striving for standards conformance, portability, multiple
per-process timers, and flexibility in using high-resolution timers should use
the P1003.41D11 timing facilities described in this chapter.

6.1 Clock Functions
The supported time-of-day clock is the CLOCK_REALTIME clock, defined in
the time. h header file. The CLOCK_REALTIME clock is a systemwide clock,
visible to all processes running on the system. If all processes could read the
clock at the same time, each process would see the same value.

The CLOCK_REALTIME clock measures the amount of time (in nanoseconds)
that has elapsed since 00:00:00:00 January 1, 1970 Greenwich Mean Time
(GMT). 1

Table 6-1 lists P1003.41D11 timing functions for a specified clock.

Table 6-1 Clock Functions

Function Description

clock_getres Returns the resolution of the specified clock

(continued on next page)

1 January 1, 1970 is otherwise known as the "Epoch."

6-2 Clocks and Timers

Table 6-1 (Cont.) Clock Functions

Function

clock_gettime

clock_getdrift

clock set time

clock setdrift

Description

Returns the current value for the specified clock

Returns the value of the clock drift rate as set by the most
recent call to clock setdrift
Sets the specified clock to the specified value

Sets the drift rate of the specified clock, in parts per billion
(nanoseconds), to the specified value

Use the name CLOCK_REALTIME as the clock_id argument in all
P1003.4ID11 clock functions.

The values returned by the clock gettime function can be used to determine
values for the creation of realtime-timers. Setting the clock or changing the
drift rate for one application will not affect the expiration interval of armed
timers. Note that you cannot set the resolution of the specified clock.

The following example calls the clock getres function to determine clock
resolution. -

#include <unistd.h>
#include <time.h>

main()
{
struct timespec
int stat;

clock_resolution;

stat = clock_getres(CLOCK_REALTIME, &clock_resolution);

printf("Clock resolution is %d seconds, %ld nanoseconds\n",
clock_resolution. tv_sec , clock_resolution.tv_nsec);

6.1.1 Retrieving System Time
Both the time and clock gettime functions return the value of the systemwide
clock as the number of elapsed seconds since the Epoch. The timespec data
structure (used for the clock gettime function) also contains a member to hold
the value of the number of elapsed nanoseconds not comprising a full second.

Example 6-1 shows the difference between the time as returned by the time
and clock _gettime functions.

Clocks and Timers 6-3

Example 6-1 Returning Time

#include <unistd.h>
#include <time.h>

main ()
{
struct timespec ts;

/* Call time */

printf("time returns %d seconds\n", time(NULL);)

/* Call clock_gettime */

clock gettime(CLOCK REALTIME, &ts);
printf("clock gettime returns:\n");
printf("%d seconds and %ld nanoseconds\n" , ts.tv_sec, ts.tv_nsec);
}

In Example 6-1 876764530 seconds is returned from the time function and
returns 876764530 seconds and 0000674633 nanoseconds is returned from the
clock _gettime function.

The time function returns a long integer containing the number of seconds that
have elapsed since the Epoch. The clock gettime function receives a pointer
to the timespec structure and returns the values in the tv_sec and tv_nsec
members.

If you plan to write the current time to a device or file, you may want to
convert the time format returned by the clock _gettime function.

6.1.2 Setting the Clock
The clock settime function lets you set the time for the specified clock.
If you have an application that monitors time over the network use the
clock settime function to synchronize with other systems. However, under
normai circumstances you would not need to call the clock _ set time function.

Note that armed timers (pending execution) associated with the clock may be
affected by resetting the systemwide clock. If timers are pending execution,
use the clock setdrift function to adjust the clock slowly. Armed timers are
not affected by the clock_setdrift function.

You must have superuser privileges to use the clock settime and
clock setdrift functions. -

6-4 Clocks and Timers

6.1.3 Managing Clock Drift
As a form of interval timer, the CLOCK_REALTIME clock responds to
interrupts with every clock tick. A counter associated with clock interrupts
causes the clock time to deviate slightly over time. This deviation, or variance,
can be either positive or negative. Applications using high-resolution timers
may want to use the P1003.4ID11 clock drift functions to maintain the integrity
of the clock.

The initial drift rate for any clock is zero, but over time, it may vary by
intervals centered around zero. The clock gains time if the clock drift rate is
positive; the clock loses time if the clock drift rate is negative. The P1003.4ID11
clock drift functions provide a way to slow down or speed up a clock while
ensuring that time, as measured by the specified clock, is a monotonically
increasing quantity. For example, if you need to set a clock back in time, use a
negative drift to slow down the clock gradually until it converges to the correct
value. Applications and timers that rely on the clock will suffer minimal
impact from changes to the time base.

The clock setdrift function fine-tunes the clock slowly by setting the clock's
drift rate. -Pending timeouts are not affected by drifts applied to the system
clock. Nor is the drift reflected in the resolution of the system clock. Note
that you need superuser privileges to use the clock setdrift function. The
clock getdrift function returns the value of the clock driftrate as set by the
most recent call to the clock setdrift function.

The next example calls the clock setdrift function to set the clock drift
rate to 1000 nanoseconds and pri~ts out the previous drift rate for the clock
as returned by the clock setdrift function. A call to the clock getdrift
function checks the new drift rate. -

#include <unistd.h>
#include <time.h>

#define SUCCESS 0

main()
{
int clock id = CLOCK REALTIME;
int drift-= 1000; -
int odrift;

if(clock setdrift(clock id, drift, &odrift) == SUCCESS)
printf("previous drift is %d\n" , odrift);

if(clock getdrift(clock id, &drift) == SUCCESS)
printf("current drift is %d\n", odrift);

Clocks and Timers 6-5

Note that the clock drift functions should not be used in conjunction with
Digital Distributed Time Service (DECdts).

6.2 Types of Timers
Two types of timers are provided to support realtime timing facilities: one-shot
and periodic timers. Timers can be set up to expire only once (one-shot) or
on a repetitive (periodic) schedule. A one-shot timer is armed with an initial
expiration time, expires only once, and then is disarmed. A timer becomes a
periodic timer with the addition of a repetition value. The timer expires then
loads the repetition interval, rearming the timer to expire after the repetition
interval has elapsed.

The initial expiration value can be relative to the current time or an absolute
time value. A relative timer has an initial expiration time based on the
amount of time elapsed, such as 30 seconds from the start of the application
or 0.5 seconds from the last timer expiration. An absolute timer expires at a
calendar date and time.

Often, a timer uses both concepts of absolute and relative timers. You can
establish a timer to fire as an absolute timer when it first expires, and set
subsequent timer expirations relative to the first expiration. For example, an
application may need to collect data between midnight and 3:00 A.M. Data
collection during this three-hour period may be staged in 12-minute intervals.
In this case, absolute times are used to start and stop the data collection
processes at midnight and 3:00 A.M. respectively. Relative time is used to
initiate data collection in 12 second intervals.

The values specified in the arguments to the timer settime function determine
whether the timer is a one-shot or periodic and abSOlute or relative type. Refer
to Section 6.5.2 for more information on the timer settime function.

6.3 Timers and Signals
You create a timer with the timer create function, which is associated with
a sigevent structure. When using timers, you set the timers with an initial
expiration value and an interval value for when you want the timer to expire.
When the timer expires, the system sends the specified signal to the process
that created the timer. Therefore, you should set up a signal handler to catch
the signal once it is sent to the calling process.

To use signals with timers, include the following steps in your application:

1. Create and declare a signal handler.

2. Set the sigevent structure to specify the signal you want sent on timer
expiration.

6-6 Clocks and Timers

3. Establish a signal handler with the sigaetion function.

4. Create the timer.

If identical signals are delivered from multiple timers, the signals are
compressed into a single signal. Therefore, if you have multiple timers, you
may want to specify a different signal for each timer. Refer to Chapter 5 for
more information on signals and signal handling.

6.4 Data Structures Associated with Timing Facilities
The time. h header file contains structures for manipulating clock and timer
constructs. The times pee and i timers pee data structures in time. h are used
in many of the PI003.41D11 realtime clock and timer functions. The times pee
data structure contains members for both second and nanosecond values. This
data structure sets up a single time value and is used by many PI003.41D11
functions that accept or return time value specifications. The itimerspee data
structure contains two timespee data structures. This data structure sets up
an initial timer and repetition value used by PI003.41D11 timer functions.

The signal. h header file contains a s igevent structure for specifying the
signal to be sent on timer expiration.

6.4.1 Using the timespec Data Structure
The timespee data structure consists of two members, tv_sec and tv_nsec and
takes the following form:

typedef struct timespec{
time t tv sec;
long-tv nsec;
}; -

/* Seconds */
/* Nanoseconds */

The tv _nsec member is valid only if its value is greater than zero and less than
the number of nanoseconds in a second. The time interval described by the
timespee structure is (tv_sec * 109) + tv_nsec nanoseconds. (The minimum
possible time interval is limited by the resolution of the specified clock.)

The timespee structure is used in PI003.41D11 functions to set and return the
specified clock and to return the resolution of clocks, timers, and nanosleep.

Clocks and Timers 6-7

6.4.2 Using the itimerspec Data Structure
The itimerspec data structure consists of two timespec structures and takes
the following form:

typede£ struct itimerspec{
struct timespec it interval;
struct timespec it-value;
}; -

/* Timer period */
/* Timer expiration */

The two timespec structures specify an interval value and an initial expiration
value, both of which are used in all timer functions related to setting up timers.
The values specified for the member structures identify the timer as one-shot
or periodic. Table 6-2 summarizes the ways that values for the two members
of the i timerspec structure are used to specify timers.

Table 6-2 Values Used in Setting Timers

Member

iCvalue

it_interval

Zero

No expiration value

Disarm the timer

No reload value

One-shot timer

Non-Zero

Expiration value

Arm the timer

Interval reload value

Periodic timer

The it_value specifies the initial amount of time before the timer expires. A
nonzero value for the it_value member indicates the amount of time until the
timer's first expiration. If the TIMER_ABSTIME flag is not set, the time until
the next timer expiration is set equal to the interval specified by the it_value
member, and the timer is a relative timer.

If the TIMER_ABSTIME flag is set, timer is an absolute timer. The time until
the next timer expiration is specified in seconds and nanoseconds since the
Epoch and is the difference between the absolute time specified by the it_value
member and the current clock value. A zero value for the it_value member
disarms the timer.

Once the timer expires for the first time, the it_interval member specifies the
interval after which the timer will expire again. That is, the value of the
it_interval member is reloaded when the timer expires and timing continues.
A nonzero value for the it_interval member specifies a periodic timer. A
zero value for the it_interval member causes the timer to expire only once;
afterward the it_value member is set to zero and the timer is disarmed.

6-8 Clocks and Timers

For example, to specify a timer that executes only once, 5.25 seconds from now,
specify the following values for the members of the i timerspec structure:

my timer. it value.tv sec = 5;
mytimer.it-value.tv-nsec = 250000000;
mytimer.it-interval:tv sec = 0;
mytimer.it=interval.tv=nsec = 0;

To arm a timer to execute 15 seconds from now and then at 0.5 second
intervals, specify the following values:

mytimer.it value.tv sec = 15;
my timer. it-value. tv-nsec = 0;
mytimer.it-interval:tv sec = 0;
mytimer.it=interval.tv=nsec = 500000000;

In the preceding examples, the timer is armed relative to the current time. To
set up a timer with an absolute initial expiration time, such as 10:00 A.M.,
convert the absolute initial expiration value (in seconds and nanoseconds) to
the correct offset from the current time.

Because the value of the tv _nsec member is expressed in nanoseconds, it
may be somewhat cumbersome. To simplify specifying values for the tv_nsec
member, define a symbolic constant.

#define NSECS_PER_SEC 1000000000;

my timer. it_value. tv_nsec = NSECS_PER_SEC/4;

Or, use an assignment statement, such as this:

mytimer.it_value.tv_nsec = 1000000000/4;

See Section 6.5 for more information on relative and absolute timers.

6.4.3 Using the sigevent Data Structure
The sigevent structure delivers the signal on timer expiration. The evp
argument of the timer create function points to a sigevent structure, that
contains the signal to be sent upon expiration of each timer.

The sigevent structure is defined in the signal. h header file and contains the
following members:

int
union sigval

sigev signa;
sigev=value;

/* Signal sent on timer expiration */
/* Not supported - Specify as NULL */

The sigval union contains at least the following members:

int
void

sival inti
*sivaI_ptr;

/* Used when sigev value is of type int */
/* Used when sigev=value is of type ptr */

Clocks and Timers 6-9

The sigev_value member is an application-defined value to be passed to the
signal-catching function at the time of signal delivery. This member is used in
PI003.41D11 Realtime Signals, which are not currently supported. Specify a
value of NULL for this member.

The sigev _signo member specifies the signal to be sent.

6.5 Timer Functions
Clocks and timers allow an application to synchronize and coordinate activities
according to a user-defined schedule. DEC OSF/l PI003.41D11 timers have
the ability to issue periodic timer requests initiated by a single call from the
application.

Table 6-3 lists the PI003.41D11 timing functions available for realtime
applications.

Table 6-3 Timer Functions

Function

timer create

timer delete
timer_gettime

timer settime

Definition

Returns a unique timer ID used in subsequent calls to
identify a timer based on the systemwide clock

Removes a previously allocated, specified timer

Returns the amount of time before the specified timer is due
to expire and the repetition value

Sets the value of the specified timer either to an offset from
the current clock setting or to an absolute value

Timers do not have global IDs, which means that they are not inherited
by a child process after a call to the fork or exec system calls. You cannot
arm a timer, call the exec system call, and have the new image receive the
signal. The newly created timer structures are inherited across a fork, but any
pending timer signals will be delivered only to the parent process.

6.5.1 Creating Timers
The timer create function allocates a timer and returns a timer ID which
is unique ;ithin the calling process and exists for the life of that timer. The
timer is not armed until you make a call to the timer settime function, which
sets the values for the specified timer. -

6-10 Clocks and Timers

The timer functions perform a series of tasks necessary for setting up timers.
To create a timer, you must set up appropriate data structures, set up a signal
handler to catch the signal when the timer expires, and arm the timers. To use
timers in a realtime application, follow these steps:

1. Include time. h and signal. h in the application source file.

2. Declare the variable names for your i timerspec data structure to specify
interval and expiration values.

3. Establish a sigevent structure containing the signal to be passed to the
process on timer expiration.

4. Set up a signal handler in the calling process to catch the signal when the
timer expires.

5. Call the timer create function to create a timer and associate it with the
specified clock.-Specify a signal to be delivered when the timer expires.

6. Initialize the itimerspec data structure with the required values.

7. Call the timer settime function to initialize and activate the timer as
either an absoiUte or relative timer.

8. Call the timer_delete function when you want to remove the timer.

The number of per-process timersCTIMER_MAX) is defined in the limits. h
header file.

The timer create function also takes an evp argument, which is a pointer to
a sigevent structure. This structure defines the signal and value to be sent
to the calling process when the timer expires. You can either use the default
signal, SIGALRM, or specify a particular signal.

6.5.2 Setting Timer Values
The timer settime function determines whether the timer is an absolute or
relative thuer . .This function sets the initial expiration value for the timer as
well as the interval time used to reload the timer once it has reached the initial
expiration value. The arguments for the timer settime function perform the
following functions: -

1. The timerid argument identifies the timer.

2. The flags argument determines whether the timer behaves as an absolute
or relative timer.

Clocks and Timers 6-11

If the TIMER_ABSTIME flag i$ set, the timer is set with a specified
starting time (the timer is an absolute timer). If the TIMER_ABSTIME
flag is not set, the timer is set relative to the current time (the timer is a
relative timer).

3. The value argument points to an i timerspec structure, which contains the
initial expiration value and repetition value for the timer.

• The it_value member of the value argument establishes the initial
expiration time.

For absolute timers, the timer settime function interprets the next
expiration value as equal to the difference between the absolute time
specified by the it_value member of the value argument and the
current value of the specified clock. The timer then expires when the
clock reaches the value specified by the it_value member of the value
argument.

For relative timers, the timer settime function interprets the next
expiration value as equal to the interval specified by the it_value
member of the value argument. The timer will expire in it_value
seconds and nanoseconds from when the call was made. After a timer
is started as an absolute or relative timer, its behavior is driven by
whether it is a one-shot or periodic timer.

• The it_value member of the value argument can disable a timer.

To disable a periodic timer, call the timer and specify the value of zero
for the it_value member.

• The it_interval member of the value argument establishes the repetition
value.

The timer interval is specified as the value of the it_interval member
of the i timerspec structure in the value argument. This value
determines whether the timer functions as a one-shot or periodic
timer.

After a one-shot timer expires, the expiration value (it_value member)
is set to zero. This indicates that no next expiration value is specified,
which disarms the timer.

A periodic timer is armed with an initial expiration value and a
repetition interval. When the initial expiration time is reached, it is
reloaded with the repetition interval and the timer starts again. This
continues until the application exits. To arm a periodic timer, set the
it_value member of the value argument to the desired expiration value
and set the it_interval member of the value argument to the desired
repetition interval.

6-12 Clocks and Timers

4. The ovalue argument points to an itimerspec structure that contains the
time remaining on an active timer. If the timer is not armed, the ovalue is
equal to zero. If you displace an active timer, the ovalue will contain the
amount of time remaining in the interval.

You can use the timer settime function to reuse an existing timer ID. If
a timer is pending and-you call the timer settime function to pass in new
expiration times, a new expiration time isestablished.

6.5.3 Retrieving Timer Values
The timer gettime function returns two values: the amount of time before the
timer expires and the repetition value set by the last call to the timer settime
function. If the timer is disarmed, a call to the timer with the timer gettime
function returns a zero for the value of the it_value member. To arm the timer
again, call the timer settime function for that timer ID and specify a new
expiration value for the timer.

6.5.4 Disabling Timers
Once a one-shot timer expires, the timer is disarmed, but the timer ID is still
valid. The timer ID is still current and can be rearmed with a call to the
timer settime function. To remove the timer ID and disable the timer, use the
timer-delete function. Note that if you delete a timer that is still armed, no
signaCwill be sent.

6.6 High-Resolution Sleep
To suspend process execution temporarily using the PI003.41D11 timer
interface, call the nanosleep function. The nanosleep function suspends
execution for a specified number of nanoseconds, providing a high-resolution
sleep. A call to the nanosleep function suspends execution until either the
specified time interval expires or a signal is delivered to the calling process.

Only the calling thread sleeps with a call to the nanosleep function. In a
threaded environment, other threads within the process continue to execute.

The nanosleep function has no effect on the delivery or blockage of signals.
The action of the signal must be to invoke a signal-catching function or to
terminate the process. When a process is awakened 'prematurely, the rmtp
argument contains the amount of time remaining in the interval.

Clocks and Timers 6-13

6.7 Clocks and Timers Example
Example 6-2 demonstrates the use of PI003.41D11 realtime timers. The
program creates both absolute and relative timers. The example demonstrates
concepts using multiple signals to distinguish between timer expirations. The
program loops continuously until the program is terminated by a CtrllC from
the user.

Example 6-2 Using Timers

/*
* The following program demonstrates the use of various types of
* POSIX 1003.4 Realtime Timers in conjunction with 1003.1 Signals.
* * The program creates a set of timers and then blocks waiting for
* either timer expiration or program termination via SIGINT.
* Pressing CTRL/C after a number of seconds terminates the program
* and prints out the kind and number of signals received.
*
* To build:
*
* cc -g3 -0 -non_shared -0 timer_example timer_example.c -L/usr/ccs/lib -lrt
*/

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/limits.h>
#include <time.h>
#include <sys/signal.h>
#include <sys/errno.h>

/*
* Constants and Macros
*/

#define FAILURE -1
#define ABS TIMER ABSTIME
#define REL 0 -
#define TIMERS 3

#define MIN(x,y) (((x) < (y)) ? (x) (y))

sig handler () ;
void timeaddval();
struct sigaction sig_act;

6-14 Clocks and Timers

(continued on next page)

Example 6-2 (Cont.) Using Timers

j*
* Control Structure for Timer Examples
*j

struct timer definitions {
int type;
struct sigevent evp;
struct itimerspec timeout;

j* Absolute or Relative Timer *j
j* Event structure *j

} ;

j*

j* Timer interval *j

* Initialize timer_definitions array for use in example as follows:
*
*
*
*j

type, { sigev_value, sigev_signo }, { it_iteration, it value

struct timer definitions timer values[TIMERS] = {
{ ABS, {O,SIGALRM}, {O~O, 3,0} },

};

{ ABS, {O,SIGUSRl}, {0,500000000, 2,0} },
{REL, {0,SIGUSR2}, {O,O, 5,0} }

timer t timerid[TIMERS];
int tImers available; j* number of timers available *j
volatile int alrm, usrl, usr2;
sigset_t mask;

j*
* This program demonstrates the use of various PI003.4 Timers.
*j

main {)
{

int status, i;
int clock id = CLOCK REALTIME;
struct timespec current_time;

j*
* Initialize the sigaction structure for the handler.
*j

sigemptyset{&mask);
sig act.sa handler = (void *)sig handler;
sig-act.sa-flags = 0;
sigemptyset{&sig act.sa mask);
alrm = usrl = usr2 = 0;-

(continued on next page)

Clocks and Timers 6-15

Example 6-2 (Cont.) Using Timers

/*
* Determine whether it's possible to create TIMERS timers.
* If not, create TIMER_MAX timers.
*/

timers available = MIN(sysconf(_SC_TIMER_MAX) ,TIMERS);

/*
* Create "timer available" timers, using a unique signal
* type to denote the timer's expiration. Then initialize
* a signal handler to handle timer expiration for the timer.
*/

for (i = 0; i < timers available; iff) {
timerid[i] = tImer create(clock id, &timer_values[i].evp);
if (timerid[i] == FAILURE) { -

perror("timer create");
exit (FAILURE);

}
sigaction(timer_values[i].evp.sigev_signo, &sig_act, 0);

/*
* Establish a handler to catch CTRL-c and use it for exiting.
*/

sigaction(SIGINT, &sig_act, NULL);

/*

/* catch crtl-c */

* Queue the following Timers: (see timer_values structure for details)
* * 1. An absolute one shot timer (Notification is via SIGALRM).
* 2. An absolute periodic timer. (Notification is via SIGUSR1).
* 3. A relative one shot timer. (Notification is via SIGUSR2).
* * (NOTE: The number of TIMERS queued actually depends on
* timers_available)

*/

(continued on next page)

6-16 Clocks and Timers

Example 6-2 (Cont.) Using Timers

/*

for (i = 0; i < timers available; itt) {
if (timer values[i].type == ABS) {

/*

}

status = clock gettime(CLOCK REALTIME, ¤t time);
timeaddval(&tirner values[i].timeout.it value, -

¤t_time); -

status = timer settime(timerid[i], timer values[i].type,
&timer-values[i].timeout, NULL);-

if (status == FAILURE) {
perror("timer settime failed: ");
exit(FAILURE);

* Loop forever. The application will exit in the signal handler
* when a SIGINT is issued (CRTL/C will do this).
*/

for(;;) pause();

* Handle Timer expiration or Program Termination.
*/

sig handler(signo)
int-signo;
{

int i, status;

switch (signo) {
case SIGALRM:

alrmtt;
break;

case SIGUSR1:
usrltt;
break;

case SIGUSR2:
usr2tt;
break;

case SIGINT:
for (i = 0; i < timers available; itt) /* delete timers */

status = timer-delete(timerid[i]);
printf("ALRM: %d, USR1: %d, USR2: %d\n", alrm, usrl, usr2);
exit(l); /* exit if CRTL/C is issued */

(continued on next page)

Clocks and Timers 6-17

Example 6-2 (Cont.) Using Timers

j*

}
return;

* Add two timevalues: t1 = t1 + t2
*j

void tirneaddval(t1, t2)
struct tirnespec *t1, *t2;
{

t1->tv sec += t2->tv sec;
tl->tv-nsec += t2->tv nsec;
if (t1=>tv nsec < 0) {

t1=>tv_sec--;
t1->tv_nsec += 1000000000;

}
if (t1->tv nsec >= 1000000000) {

t1=>tv sec++;
t1->tv=nsec -= 1000000000;

6-18 Clocks and Timers

7
Asynchronous Input and Output

110 operations on a file can be either synchronous or asynchronous. For
synchronous 110 operations the process calling the 110 request is blocked until
the 110 operation is complete and regains control of execution only when the
request is completely satisfied or fails. For asynchronous I/O operations the
process calling the 110 request immediately regains control of execution once
the 110 operation is queued to the device. When the 110 operation is completed
(either successfully or unsuccessfully), the calling process can be notified of the
event by a signal.

This chapter includes the following sections:

• Data Structures Associated with Asynchronous 110, Section 7.1

• Asynchronous 110 Functions, Section 7.2

• Asynchronous 110 Examples, Section 7.3

Asynchronous 110 is most commonly used in realtime applications requiring
high-speed or high-volume data collection and/or low-priority journaling
functions. Compute-intensive processes can use asynchronous 110 instead
of polling for completion or blocking. For example, an application may
collect intermittent data from multiple channels. Because the data arrives
asynchronously, that is, when it is available rather than according to a
set schedule, the receiving process must queue up the data to be read and
immediately be free to receive the next data transmission. Another application
may require such a high volume of reads, writes, and computations that it
becomes practical to queue up a list of 110 operations and continue processing
while the 110 requests are being serviced. Applications can perform multiple
110 operations to multiple devices while making a minimum number of
function calls. The P1003.41D11 asynchronous 110 functions are designed to
help meet these realtime needs.

You can perform asynchronous 110 operations using any open file descriptor.

Asynchronous Input and Output 7-1

7.1 Data Structures Associated with Asynchronous 1/0
The PI003.41D11 asynchronous I/O functions use the asynchronous I/O
control block (aiocb). This control block contains asynchronous operation
information, such as the initial point for the read operation, the number of
bytes to be read, the priority of the I/O operation, and the file descriptor on
which the asynchronous I/O operation will be performed. The control block
contains information similar to that required for a read or write function, but
additionally contains members specific to asynchronous I/O operations. The
aiocb structure contains the following members:

int aio fildes; /* File descriptor */
off t aio-offset; /* Number of bytes in the offset */
volatile char *aio buf; /* Character pointer to buffer */
size t aio_nbytes; /* Number of bytes */
struct sigevent aio sigevent; /* Pointer to signal structure */
int aio=lio_opcode;/*Specifies type of I/O operation */

Note that you cannot reuse the aiocb structure while an asynchronous
I/O request is pending. To determine whether the aiocb is in use, use the
aiD error function.

7.1.1 Identifying the Location
When you call either the aiD read or aiD write function, you must specify
how to locate the data to be read or to position the data to be written.

The aio_offset and aio_nbytes members of the aiocb structure provide
information about the starting point and length of the data to be read
or written. The aio_buf member provides information about where the
information should be read or written in memory.

When you use the aiD write function to write to a new file, data is written to
the end of a zero-length file. On additional write operations, if the O_APPEND
flag is set, write operations are appended to the file in the same order as the
calls to the aiD wr i te function were made. If the 0 _APPEND flag is not set,
write operations take place at the absolute position in the file as given by
the aio_offset as if the lseek function were called immediately prior to the
operation with an offset equal to aio_offset and a whence equal to SEEK_SET.

On a call to the aiD read function, the read operation takes place at the
absolute position in the file as given by aio_offset as if the lseek function were
called immediately prior to the operation with an offset equal to aio_offset and
a whence equal to SEEK_SET.

7-2 Asynchronous Input and Output

After a successful call to queue an asynchronous write operation with 0_
APPEND or to an asynchronous read you must update the value of the offset
with the value returned from the read or write operation. The file offset is not
dynamically updated and failure to update the value of the offset can produce
incorrect results.

To determine whether the read or write operation was successful, call the
aiD error function. If the operation was successful, using the aiD return
function to update the value of the aio_offset member after each smcessful
read or write operation. See Section 7.2.3 for an example of using these
functions to determine status.

7.1.2 Specifying a Signal
You can send a signal on completion of every read and write operation,
regardless of whether the operation is issued from a call to the aio read,
aiD write, or lio listio function. In addition, you can send a signal on
completion of the fio listio function. See Chapter 5 for more information on
signals and signal handling.

The aio_sigevent member refers to a sigevent structure that contains the
signal number of the signal to be sent upon completion of the asynchronous
I/O request. The sigevent structure is defined in the signal. h header file and
contains the following members:

int
union sigval

sigev signa;
sigev=value;

j* Signal sent on timer expiration *j
j* Not supported - Specify as NULL *j

The sigev _signo member specifies the signal number to be sent on completion
of the asynchronous I/O operation. Setting the sigev _signo member to a legal
signal value will cause that signal to be posted when the operation is complete.
Setting the value to NULL means that no signal is sent, but the error status
and return value for the operation are set appropriately and can be retreived
using the aiD _error and aiD _return functions.

Note that the sigevent structure is used for both asynchronous I/O and
per-process timers.

Instead of specifying a signal, you can poll for I/O completion when you expect
the I/O operation to be complete.

Asynchronous Input and Output 7-3

7.2 Asynchronous I/O Functions
The asynchronous I/O functions combine a number of tasks normally performed
by the user during synchronous I/O operations. With synchronous I/O, the
application calls the lseek function, performs the I/O operation, and then
receives the return status.

Asynchronous I/O functions provide the following capabilities:

• Both regular and special files can handle I/O requests.

• One file descriptor can handle multiple read and write operations.

• Multiple read and write operations can be issued to multiple open file
descriptors.

• Both sequential and random access devices can handle I/O requests.

• Outstanding I/O requests can be canceled.

• The process can be suspended to wait for I/O completion.

• I/O requests can be tracked when the request is queued, in progress, and
completed.

Table 7-1 lists the functions for performing and managing asynchronous I/O
operations. Refer to the online reference pages for a complete description of
these functions.

Table 7-1 Asynchronous 1/0 Functions

Function

aiD cancel
aiD error
aio read
aiD return
aio_suspend

aiD write
lio listio

Description

Cancels one or more requests pending against a file descriptor

Returns the error status of a specified operation

Initiates a read request on the specified file descriptor

Returns the status of a completed operation

Suspends the calling process until at least one of the specified
requests has completed

Initiates a write request to the specified file descriptor

Initiates a list of requests

7-4 Asynchronous Input and Output

7.2.1 Reading and Writing
Asynchronous and synchronous I/O operations are logically parallel operations.
The asynchronous function aio read and aio write perform the same I/O
operations as the read and wr fte functions. However, the aio read or
aio write functions return control to the calling process once the the I/O is
initiated rather than after the I/O operation is complete. For example, when
reading data from a file synchronously, the application regains control only
after all the data is read. Execution of the calling process is delayed until the
read operation is complete.

In contrast, when reading data from a file asynchronously, the calling process
regains control right after the call is issued, before the read-and-return cycle is
complete. The aio read function returns once the read request is initiated or
queued for deliverY, even if delivery could be delayed. The calling process can
use the time normally required to transfer data to execute some other task.

A typical application using asynchronous I/O includes the following steps:

1. Create and fill the asynchronous I/O control block (aiocb).

2. Call the open function to open a specified file and get a file descriptor for
that file. After a call to the open function, the file pointer is set to the
beginning of the file. Select flags as appropriate. 1

3. If you use signals, establish a signal handler to catch the signal returned
on completion of the asynchronous I/O operation.

4. Call the aio read or aio write function to request asynchronous I/O
operations. - -

5. Call aio suspend if your application needs to wait for the I/O operations to
complete; or continue execution and poll for completion with aio error; or
continue execution until the signal arrives. -

6. After completion, call the aio _return function to retrieve completion value.

7. Call the close function to close the file. The close function waits for all
asynchronous I/O to complete before closing the file.

On a call to either the exit or fork function, the status of outstanding
asynchronous I/O operations is undefined. If you plan to use asynchronous
I/O operations in a child process, call the exec function before you call the I/O
functions.

1 Do not use the select system call with asynchronous I/O; the results are undefined.

Asynchronous Input and Output 7-5

7.2.2 Using List-Directed Input/Output
To submit list-directed asynchronous read or write operations, use the
lie listio function. As with other asynchronous I/O functions, you must
first establish the control block structures for the individual read and write
operations. The information contained in this structure is used during the
operations. The lie listio function takes as an argument an array of
pointers to I/O control block structures, which allows the calling process to
initiate a list of 110 requests. Therefore, you can submit multiple operations as
a single function call.

You can control whether the lie listie function returns immediately after
the list of operations has been queued or wait until all the operations have
been completed. The mode argument controls when the lie listio function
returns and can have one of the following values: -

• LIO_NOWAIT, queues the operation, returns, and can signal when the
operation is complete.

• LIO_ WAIT, queues the operation, suspends the calling process until the
operation is complete, and does not signal when the operation is complete.

The list argument to the lie _listio function is a pointer to an array of aiocb
structures.

The aio_lio_opcode member of the aiocb structure defines the 110 operation
to be performed and the aioJildes member identifies the file descriptor. The
combination of these members makes it possible to specify individual read and
write operations as if they had been submitted individually. Each read or write
operation in list-directed asynchronous 110 has its own status, return value,
and sigevent structure for signal delivery.

To use list-directed asynchronous 110 in your application, use the following
steps:

1. Create and fill the aiocb control blocks.

2. Call the open function to open the specified files and get file descriptors
for the files. After a call to the open function, the file pointer is set to the
beginning of the file. Select flags as appropriate.

3. If you use signals, establish signal handlers to catch the signals returned
on completion of individual operations upon completion of the lio listio
function. -

4. Call the lie listio function.

7-6 Asynchronous Input and Output

5. Call the close function to close the files. The close function waits for all
110 to complete before closing the file.

As with other asynchronous 110 operations, any open function that returns a
file descriptor is appropriate. On a call to either the exi t or fork function,
the status of outstanding asynchronous 110 operations is undefined.

7.2.3 Determining Status
Asynchronous 110 functions provide status values when the operation is
successfully queued for servicing and provides both error and return values
when the operation is complete. The status requirements for asynchronous
110 are more complex than the functionality provided by the errno function,
so status retrieval for asynchronous 110 is accomplished through using the
aio error and aio return functions in combination with each other.

The aiocbp argument to the aio error or aio return functions provide the
address of an aiocb structure, unique for each asynchronous 110 operation.
The aio error function returns the error status associated with the specified
aiocbp. The error status is the errno value that is set by the corresponding
asynchronous 110 read or wr i te operation.

The aio error function returns EINPROGRESS if the operation is ongoing.
Once the asynchronous 110 operation is complete, EINPROGRESS is not
returned. A call to the aio return function will show if the operation is
successful. -

Once you call the aio return function, the system resources associated with
the aiocb for the duration of the 110 operation are returned to the system. If
the aio return function is called for an aiocb with incomplete 110, the result
of the operation is undefined. To avoid losing data, use the aio error function
to ensure for completion before you call the aio return function. Then use the
aio return function to retrieve the number of bytes read or written during the
asynchronous 110 operation.

If you do not call the aio return function, the number of asynchronous 110
resources available for use in your application is reduced by one for every
completed asynchronous 110 operation that does not return data through a call
to the aio return function.

The following example shows how to use the aio error and aio return
functions to track the progress of asynchronous write operations.-

Asynchronous Input and Output 7-7

return value = aio error(aiocbp)i
if (return value !~ EINPROGRESS)

total-= aio return(aiocbp)i
if (total == -l){

errno = return value;
perror ("aio read") i
} -

In this example the variable total receives the number of bytes read in the
operation. This variable is then be used to update the offset for the next read
operation.

If you use list-directed asynchronous I/O, each asynchronous I/O operation in
the list has an aiocb structure and a unique aiocbp.

7.2.4 Canceling 110
Sometimes there is a need to cancel an asynchronous I/O operation once it has
been issued. For example, there may be outstanding requests when a process
exits, particularly if the application uses slow devices, such as terminals.

The aio cancel function cancels one or more outstanding I/O requests against
a specified file descriptor. The aiocbp argument points to an aiocb control
block for a specified file descriptor. If the operation is successfully canceled,
the error status indicates success. If, for some reason, the operation cannot be
canceled, normal completion and notification takes place.

The aio _ cancel function can return one of the following values:

• AIO_ALLDONE indicates that none of the requested operations could
be canceled because they had already completed when the call to the
aio cancel function was made.

• AIO_CANCELED indicates that all requested operations were canceled.

• AIO_NOTCANCELED indicates that some of the requested operations
could not be canceled because they were in progress when the call to the
aio cancel function was made.

If the value of AIO_NOTCANCELED is returned, call the aio error function
and check the status of the individual operations to determine-which ones were
canceled and which ones could not be canceled.

7-8 Asynchronous Input and Output

7.2.5 Blocking to Completion
The aiD suspend function lets you suspend the calling process until at least
one of the asynchronous I/O operations referenced by the aiocbp argument
has completed or until a signal interrupts the function. If the operation
has completed when the call to the aiD suspend function was made, the
function returns without suspending the calling process. Your application must
already have initiated an I/O request with a call to a aiD read, aiD write, or
lie listio function prior to an attempt for the caller to wait for completion
with a call to the aiD _suspend function.

7.3 Asynchronous 1/0 Examples
The examples in this section demonstrate the use of the asynchronous I/O
functions. Example 7-1 uses the aiD functions; while Example 7-2 uses the
lie listio function.

7.3.1 Using the aio Functions
In Example 7-1, the input file (read synchronously) is copied to the output file
(asynchronously) using the specified transfer size. A signal handler counts the
number of completions, but is not required for the functioning of the program.
A call to the aio _suspend function is sufficient.

Example 7-1 Using Asynchronous 1/0

/*
* Command line to build the program:
* cc -0 aiD copy aiD copy.c -g3 -non shared -00 -L/usr/ccs/lib \
* -laic -lpthreads -lmach -lc_r-
*/

/* * * * aio_copy.c * * * */

#include <unistd.h>
#include <aio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <signal.h>
#include <errno.h>
#include <malloc.h>

#define BUF CNT 2 /* number of buffers */

struct sigaction sig act;
volatile int sigcnt ~ 0;

(continued on next page)

Asynchronous Input and Output 7-9

Example 7-1 (Cont.) Using Asynchronous 1/0

j* * * * Signal handler * * * */

void sig_handler(signo)
int signo;
{

sigcnt++;
return;

j* * * * Main Routine * * * *j

main(int argc, char **argv)
{

int
typedef char
buf p
aiocb t
size t
int -

in file, out_file, rec cnt = 0;
*buf p;
buf(BUF CNT];
a write;
xIer size;
buf_Index, total = 0, ret;

j* * * * Check number of input arguments * * * *j

if (argc < 4) {
fprintf(stderr, "Usage: %s input-file output-file buf-size-in-Kb\n",

argv[O]);
exit(O);

j* * * * Open input file * * * *j

if ((in file = open(argv[l], O_RDONLY))
-perror(argv[l]);
exit(errno);

}
printf(" Opened Input File\n");

j* * * * Open output file * * * *j

-1) {

j* If 0 APPEND is added to flags, all writes will appear at end *j
if ((out file = open(argv[2], 0 WRONLYIO CREAT, 0777)) == -1) {

perror(argv[2]); - -
exit(errno);

}
printf("Opened Output File \n");

j* * * * Calculate transfer size (# bufs * 1024) * * * *j

xfer_size = atol(argv[3]) * 1024;

j* * * * Allocate buffers for file copy * * * *j

(continued on next page)

7-10 Asynchronous Input and Output

Example 7-1 (Cont.) Using Asynchronous 1/0

for (buf index = 0; buf index < BUF CNT; buf indextt)
buf[buf_index] (buf_p) maIloc(xfer=size);

buf index 0;

/* * * * Init. signal action structure for SIGUSR1 * * * */

sig act.sa handler = (void *) sig handler;/* handler for signal */
sigemptyset(&sig act.sa mask); - /* block only current signal */
sig_act.sa_flags-= 0; - /* no signal action flags */

/* * * * Estab. signal handler for SIGUSR1 signal * * * */

printf("Establish Signal Handler for SIGUSR1\n");
if (ret = sigaction (SIGUSR1, /* Set action for SIGUSR1 */

&sig act, /* Action to take on signal */
0))- /* Don't care about old actions */
perror("sigaction");

/* * * * Init. aio control block (aiocb) * * * */

a write.aio 'fildes = out file;
a-write.aio-offset = 0; - /* write from current */
a-write.aio-sigevent.sigev value.sival ptr = NULL;
- - /*not yet supported*/ -

a_write.aio_sigevent.sigev_signo = SIGUSR1;/* completion signal */

/* * * * Copy from in_file to out file * * * */

while (in file 1= -1) {
int buf_Ien;

/* * * * Read next buffer of information * * * */

buf_Ien = read(in_file, buf[buf_index], xfer_size);

if (rec_cnt) { /* will be >1 on all but first write ••. */

/* previous write completed? If not, wait */

while (aio error(&a write) == EINPROGRESS)
aiocb t *walt list = &a write;
aio_suspend(1~ &wait_Iist);

/* * * * Update total bytes written to set new file offset * * * */

total t= aio_return(&a_write);

/* * * * Check for end-of-file (won't have filled buffer) * * */

if (buf len <= 0)
-break;

(continued on next page)

Asynchronous Input and Output 7-11

Example 7-1 (Cont.) Using Asynchronous 1/0

/* * * * Set buffer up for next write * * * */

a write.aio nbytes = buf len;
a=write.aio=buf = buf[buf_index];

/* if file is opened for append, can ignore offset field */

a write.aio offset = total;
ret = aio write(&a write);
if (ret) {" perror ("aio_write"); exit(ret); }

/* * * Update record count, and position to next buffer * * */

rec cnt++;
buf=index "= 1;

/* * * * Close files * * * */

close(in file);
printf ("Closed Input File\n");
close(out file);
printf("Closed Output File\n");
printf("Copied: %d records, %d signals taken\n", rec_cnt, sigcnt);

7.3.2 Using the lio_listio Function
In Example 7-2 the input file is read synchronously to a specified number
of output files (asynchronously) using the specified transfer size from the
lio listio function. After the list-directed I/O completes, it checks the return
status and value for the write to each file and continues in a loop until the
copy is complete.

Example 7-2 Using lio_listio in Asynchronous 1/0

/*
* * Command line to build the program:
* cc -olio_copy lio_copy.c -g3 -non_shared -00 -L/usr/ccs/lib \

* -laio -lpthreads -lmach -lc r

*/

/* * * * lio_copy.c * * * */

(continued on next page)

7-12 Asynchronous Input and Output

Example 7-2 (Cont.) Using lio_listio in Asynchronous 1/0

#include <unistd.h>
#include <aio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <signal.h>
#include <errno.h>
#include <malloc.h>

#define FOR EACH FILE for (i 0; i < out_cnt; itt)

#define BUF CNT 2 /* number of buffers */

/* * * * Main Routine ------------------- * * * */

main(int argc, char **argv)
{

register int
char
int
typedef char
buf p

i, rec cnt = 0, out cnt = 0;
outname[128], temp[8];
in file, out file[AIO LISTIO MAX], len;

*buf p; - - -
bufTBUF CNT];

aiocb t a writeTAIO LISTIO MAX], *wait_list[AIO_LISTIO_MAX];
xIer size; - -size t

int - buf Index, total[AIO LISTIO MAX], ret;
struct sigevent lio=sigevent = {O,O}; -

/* * * * Check the number of input arguments * * * */

if (argc < 5) {
fprintf(stderr, "Usage: %s in file out file buffsz-in-kb #-out-files\n",

argv[O]);
exit(O);

/* * * * Open the input file * * * */

if ((in file = open(argv[l], O_RDONLY)) -1) {
-perror(argv[l]);
exit(errno);

}
printf("\tOpened Input File %s\n", argv[l]);

/* * * * Open the output files * * * */

(continued on next page)

Asynchronous Input and Output 7-13

Example 7-2 (Cont.) Using lio_listio in Asynchronous 1/0

out cnt = atoi(argv[4]);
if T(out~cnt <= 0) I I (out_cnt > AIO_LISTIO_MAX)) {

fprintf(stderr, "Number of output files must be l-%d.\n",
AIO LISTIO MAX);

exit (EINVAL); -
}

outname[O] = '\0';
len = strlen(argv[2]);
strcpy(outname, argv[2]);

FOR EACH FILE {
- sprintf(&outname[len], "%d", i);

/*
* If 0 APPEND is added to flags,
* end -

all writes will appear at

*/
if ((out file[i] = open(outname,

- == -1) {
perror(outname);
exit(errno);

o WRONLYIO CREAT, 0777)) - -

}
printf("\tOpened output file %s\n", outname);

}

/* * * * Calculate the transfer size (# bufs * 1024) * * * */

xfer_size = atol(argv[3]) * 1024;

/* * * * Allocate buffers for file copy * * * */

for (buf index = 0; buf index < BUF CNT; buf index++)
buf[buf_index] ~ (buf-p) maIloc(xfer=size)i
if (buf[buf index] == NULL) {

perror("malloc");
exit(1);

buf_index = 0;

/* * * * Init the aio control blocks and wait list * * * */

(continued on next page)

7-14 Asynchronous Input and Output

Example 7-2 (Cont.) Using lio_listio in Asynchronous 1/0

FOR EACH FILE {
- a write[i].aio fildes = out file[i];

a-write[i].aio-lio opcode =-LIO WRITE;
a-write[i].aio-sigevent.sigev sIgno = 0;
wait list[i] =-&a write[i]; -
totaI[i] = 0; -

/* * * * Copy from in_file to out file * * * */

while (in file 1= -1) {
int buf_Ien;

/* * * * Read the next buffer of information * * * */

buf_Ien = read(in_file, buf[buf_index], xfer_size);

if (rec_cnt) { /* will be >1 on all but the first write •.. */

/* * * * Update the bytes written to set new offset * * * */

FOR EACH FILE {

}

- errno = aio error(&a write[i]);
ret = aio return(&a write[i]);
if (ret =~ -1) { -

else {

}

perror("Write error");
exit(l);

total[i] += ret;

/* * * * Check for end-of-file (won't have filled buffer) * * */

if (buf len <= 0)
-break;

/* * * * Set the buffer up for the next write * * * */

FOR EACH FILE {

}

- a write[i].aio nbytes = buf len;
a-write[i].aio-buf = buf[buf index];
/* if opened for append, ignore offset field */
a_write[i].aio_offset = total[i];

ret = lie listio(LIO WAIT, wait list, out cnt, &lio sigevent);
if (ret) 7* report failure status, but don't exit yet */

perror("lio_listio");

(continued on next page)

Asynchronous Input and Output 7-15

Example 7-2 (Cont.) Using lio_listio in Asynchronous 1/0

/* * * Update record count, and position to next buffer * * */

buf index A= 1;
rec=cnt++;

/* * * * Close the files * * * */

close(in file);
printf("\tClosed input file\n");
FOR EACH FILE {

- close(out_file[i]);
}
printf("\tClosed output files\n");
printf("Copied %d records to %d files\n", rec cnt * out_cnt, out_cnt);

7-16 Asynchronous Input and Output

8
Binary Semaphores

Binary semaphores, as specified in Pl003.4ID11, provide an efficient form
of interprocess communication. Cooperating processes can use binary
semaphores to synchronize access to resources, most commonly, shared
memory. Semaphores can also protect the following resources available to
multiple processes from uncontrolled access:

• Global variables, such as file variables, pointers, counters, and data
structures. Protecting these variables means preventing simultaneous
access by more than one process, such as reading information as it is being
written by another process.

• Hardware resources, such as disk and tape drives. Hardware resources
require controlled access because simultaneous access can result in
corrupted data.

This chapter includes the following sections:

• Binary Semaphores, Section 8.1

• The Semaphore Interface, Section 8.2

• Semaphore Example, Section 8.3

A binary semaphore is in either the locked or unlocked state. When a binary
semaphore is unlocked, a process can successfully lock it and acquire exclusive
control to any resources that the application associated with that semaphore.
When a binary semaphore is locked, no process, including the current process,
can lock that semaphore.

8.1 Binary Semaphores
Binary semaphores are used to protect shared resources from uncontrolled
multiple access. For example, if a process has access to a shared memory
object, the semaphore is set to SEM_LOCKED. If the process relinquishes
access, the semaphore is set to SEM_UNLOCKED. For this reason, binary
semaphores are often referred to as "mutual exclusion semaphores."

Binary Semaphores 8-1

The lock operation checks to see if the resource is available or is locked by
another process. If the resource is not already locked, the lock is made and the
process continues execution. If the resource is locked, the process requesting
the lock waits (is blocked) until the first process unlocks the resource. Several
processes may be blocked waiting for a resource to become available.

The unlock operation sets the semaphore value to indicate that the resource is
not locked. The waiting process, if there is one, is unblocked and it accesses
the resource. Each semaphore keeps count of the number of processes waiting
for access to the resource and the state of the semaphore, locked or unlocked.

Semaphores are global entities and are not associated with any particular
process. In this sense, binary semaphores have no owners making it impossible
to track semaphore ownership for any purpose, for example, error recovery.

Semaphore protection works only if all the processes using the shared resource
cooperate by waiting for the semaphore when it is unavailable and resetting
the semaphore to an unlocked state when relinquishing the resource. Since
binary semaphores lack owners, there is no way to determine whether one of
the cooperating processes has become uncooperative. Applications using binary
semaphores must carefully detail cooperative tasks. All of the processes that
share a resource must agree on which semaphore controls the resource.

POSIX PI003.41D11 binary semaphores are persistent. The state of the
individual binary semaphore is preserved after the semaphore set is no longer
open. For example, a binary semaphore set containing ten semaphores may
contain seven semaphores in the locked state and three in the unlocked state
when the last process using the semaphore set closes it. The next time a
process opens that semaphore set, it will find seven locked semaphores and
three unlocked ones. For this reason, cleanup operations are advised when
using binary semaphores.

Please note that because semaphores are persistent, you should call the
sem destroy function after a system reboot. Once this is done, you should call
the 8em _ mksem function to establish a new semaphore set.

The semaphore descriptor is inherited across a fork. A parent process can
create a semaphore set, open it, and fork. The child process does not need to
open the semaphore set and can close the semaphore set if the application is
done with it.

8-2 Binary Semaphores

8.2 The Semaphore Interface
The functions relating to semaphores follow the same general logic as for
P1003.4!D11 shared memory and memory mapped files. The sem mksem
function allocates a semaphore set, but the semaphore set is not ready for use
until the the sem _ open function is called.

Table 8-1 lists the functions that allow you to create and control PI003.4!Dll
binary semaphores.

Table 8-1 Semaphore Functions

Function

sem close

sem_destroy

sem_getnsems

sem if wait

sem mksem

sem_open

sem_post

sem wait

Description

Deallocates the binary semaphore set descriptor and makes
it available for reuse

Destroys a binary semaphore set

Returns the number of semaphores in the set

Locks a binary semaphore only if it can lock the semaphore
without waiting for another process to unlock it

Creates a new binary semaphore set

Opens a set of binary semaphores

Unlocks a binary semaphore

Locks a binary semaphore even if the process must wait for
another process to unlock it

You create a semaphore set with a call to the sem mksem function, which
identifies pathname for the semaphore. A subsequent call to the sem open
function opens the senlaphore set for use in the application. Semaphore
operations of locking and unlocking are accomplished with calls to the
sem wait, sem ifwai t, and sem post functions. When the application is
finished with the semaphore set," the semaphore set name is deallocated with
a call to the sem close function and destroyed with a call to the sem destroy
function. - -

The sysconf system call can be used to determine the maximum
number of semaphores that can be contained in a semaphore set
sysconf (se SEM NSEMS MAX) as well as an implementation-defined maximum
number of semaphore sets sysconf(se SEM NSETS MAX). The binsem.h
header file also includes semaphore data strlictures-and defines the possible
binary semaphore states.

Binary Semaphores 8-3

8.2.1 Creating and Opening a Semaphore Set
A call to the sem mksem function allocates a specified number of semaphores
in a set of semaphores and sets the initial state of the semaphores to either
locked or unlocked. On a call to the sem mksem function, the kernel opens a file
with the name used in the call to the sem mksem function. This file is created
and opened with exclusive read and write-access and each semaphore in the
set is initialized to the state specified in the call to the sem _ mksem function.

The sem open function establishes a connection between the pathname of a
binary semaphore set created by a call to the sem mksem function and the
binary semaphore set descriptor. After a call to the sem open function, a
process may reference all the binary semaphores in the specified set. These
individual binary semaphores are used in subsequent calls to the sem wait,
sem _ ifwai t, and sem _post functions, which control access to the shared
resource.

If your application consists of multiple processes that will use semaphores to
synchronize access to a shared resource, each of these processes must first
open the semaphore set by a call to the sem open function. After the initial
call to the sem mksem function to establish the semaphore set and the sem open
function to link the pathname with the semaphore descriptor, each cooperating
function must also call the sem open function. If all cooperating processes are
in the same working directory, Just the name is sufficient. If the processes are
contained in different working directories, the full pathname must be used.

On the first call to the sem open function, the individual binary semaphores
are initialized to the state specified in the call to the 8em mksem function.
Subsequent calls to the sem open function by cooperating-processes do not
change semaphore states. -

The following example creates a semaphore set containing 25 semaphores and
opens the semaphore set for use in an application.

#include <hinsem.h>
#include <sys/types.h>

int status;
int state;
binsemset t semfd;
static char path[]

state = SEM LOCKED;
status sem_mksem (path, 25, state);

status = sem_open (path, &semfd);

8-4 Binary Semaphores

This example creates a semaphore set with the pathname "sem_test." The
semaphore set contains an array of 25 semaphores, numbered from 0-24.
The individual binary semaphores are referred to by number in subsequent
operations. The initial state of each of the binary semaphores is specified in
the flags parameter on the call to the sem mksem function. The flags argument
is constructed from the OR of the symboliC constants defined in the binsem. h
header file. All of the semaphores in the semaphore set are created with the
same initial state as specified by the flags argument. In the example above,
each of the 25 new semaphores is initialized to the locked state. To access
a previously allocated semaphore array, a process must call the sem open
function using the name of the semaphore set. -

To determine the number of semaphores in a previously allocated semaphore
set, use the sem getnsems function. Pass the semaphore descriptor to the
function and it returns the number of semaphores specified when the
sem mksem function was called. The sem getnsems function would return
the number 25 for the semaphore set created in the previous example.

The name of the semaphore set remains valid until the semaphore set is
removed with a call to the sem _destroy function.

8.2.2 Locking and Unlocking Binary Semaphores
After you have created the semaphore set with a call to the sem mksem function
and opened the semaphore set with a call to the sem open function, you can
use the sem wait, sem ifwait, and sem post functions to lock and unlock
individual semaphores-:- -

The use of semaphores to share resources among processes will work only if
processes unlock the resource immediately after they finish using it. As you
code your application, take care not to do an unlock operation on a semaphore
you have not locked.

To lock a semaphore, you can use either the sem wait or sem ifwait function.
The sem wait function locks the specified binary semaphore.-However, if the
semaphore is already locked, the process is blocked (sleeps) until either the
semaphore is unlocked or the process is interrupted by a signal.

If you want to make certain that the process is not blocked while waiting for a
semaphore to become available, use the sem if wait function. The sem ifwait
function will lock the specified semaphore if," and only if, it can do so ~ithout
waiting. That is, the specified semaphore must be available at the time of the
call to the sem ifwait function. If not, the sem ifwait function returns a-I
and errno is set to EAGAIN. -

Binary Semaphores 8-5

Example 8-1 locks the 10th binary semaphore in the set by using the
sern ifwait function.

Example 8-1 Locking a Binary Semaphore

#include <unistd.h>
#include <sys/types.h>
#include <binsem.h>

int status;
int state;
binsemset t semfd;
static char path[] = "sem_test";

status = sem_ifwait (semfd, 10);

The sern post function unlocks the specified semaphore. Any process with
access to the semaphore can call the sern post function and unlock a
semaphore. If more than one process is ~aiting for the binary semaphore,
only the highest priority process is allowed access to the semaphore.

8.2.3 Priority Inversion with Semaphores
Process priority inversion can occur when using semaphores to lock a resource
shared by processes of different priorities. If a low-priority process locks a
semaphore to control access to a resource and a higher-priority process is
waiting for the same resources, the higher-priority process is delayed. If
the lower-priority process is then preempted by a medium-priority process,
the higher-priority process is further delayed. In this situation, the higher
priority process is delayed while waiting for a resource locked by lower-priority
processes, and the result is priority inversion.

Since semaphores are global in nature and lack owners, there is no mechanism
for priority inheritance with binary semaphores. Therefore, semaphore locks
are separate from process priorities. Care must be exercised when designing
the use of semaphores in your application.

8.2.4 Closing a Semaphore S~t
When an application is finished using the semaphore set, it should deallocate
the semaphore descriptor with a call to the sern close function. The semaphore
set name is disassociated from the process, but the name and associated
data structures remain in the system. If needed, the semaphore set can be
reopened for use through a call to the sern open function. Since semaphores are
persistent, the state of the semaphores in the set is preserved, even though the
semaphore set is closed. When you reopen the semaphore set, each semaphore

8-6 Binary Semaphores

will be in the state it was when the set was closed, unless altered by another
process using the same semaphore set.

To remove a semaphore set, its name, and associated data structures, use the
sem destroy function. In this case, a call to the sem open function to open the
semaphore set will fail. Once a semaphore set is destroyed, it cannot be opened
again and the state of the semaphores in the set is not preserved. The state
of the semaphore set is preserved until the last call to the sem close function.
You can, however, call the sem mksem function and use the same semaphore set
name to create an entirely ne;- semaphore set by the same name.

The last process in your application to use the semaphore set should close it
with a call to the sem close function. Then,destroy the semaphore set with
a call to the or sem destroy function. If a process is waiting for a semaphore
and you close or destroy the semaphore set, the waiting process will still have
access to the semaphore set.

As with other interprocess communication methods, you can set up a signal
handler to remove the semaphore set as one of the tasks performed by the last
process in your application.

When the controlling process is finished using the semaphore set, remove the
semaphores from memory as follows:

status = sem close(semfd);
status sem=destory(path);

8.3 Semaphore Example
It is important that two processes not write to the same area of shared memory
at the same time. Binary semaphores protect access to resources such as
shared memory. Before writing to a shared memory region, a process can lock
the semaphore to prevent another process from accessing the region until the
write operation is completed. When the process is finished with the shared
memory region, the process unlocks the semaphore and frees the shared
memory region for use by another process.

Example 8-2 uses semaphores to ensure that two processes, writer and reader,
have exclusive, alternating access to a shared memory region.

Binary Semaphores 8-7

Example 8-2 consists of two programs, both of which open the shared-memory
object. The writer.c program creates the semaphore set with a call to the
sem mksem function, then opens the semaphore set. The reader. c program
opens the semaphore set previously created by the writer. c program. Because
the writer. c program creates the semaphore set, writer. c needs to be
executed before reader. c.

Example 8-2 Using Semaphores and Shared Memory

/*
** The WRITER and READER are the examples that use semaphores to
** ensure that the writer and reader processes have exclusive,
** alternating access to the shared-memory region.
*/

/********** writer.c ***********/

#include <unistd.h>
#include <binsem.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

char shm fn[] = "my shm";
char sem =fn[] = "my=sem";

/**** WRITER ****/

main(){
caddr t shmptr;
unsigned int mode;
int shmdes, index;
binsemset t semdes;
int SHM_SYZE;

mode = S_IRWxuIS_IRWXG;

/* Open the shared memory object */

if ((shmdes = shm open(shm fn,O CREATlo RDWRlo TRUNC, mode))
perror("shm_open failure"); - - -
exit();

/* Preallocate a shared memory area *j

SHM SIZE sysconf(_SC_PAGE_SIZE);

8-8 Binary Semaphores

-1) {

(continued on next page)

Example 8-2 (Cont.) Using Semaphores and Shared Memory

if (ftruncate(shmdes, SHM SIZE) == -l){
perror("ftruncate failure");
exit() ;

if((shmptr = rnmap(O, SHM_SIZE, PROT_WRITE I PROT_READ, MAP_SHARED,

shmdes,O)) == (caddr_t) -l){

perror ("rnmap failure");
exit() ;

j* Create a semaphore set *j

if(sem mksem(sem fn,l,SEM LOCKED) -l){
perror("sem mksem failure");
exit(); -

}

if(sem open(sem fn, &semdes) == -l){
perror("sem open failure");
exit(); -

}

j* Lock the semaphore *j

if(!sem_wait(semdes,O)){

j* Access to the shared memory area *j

for(index = 0; index < 100; index++){
printf("write %d into the shared memory shmptr[%d]\n", index*2, index);

shmptr[index]=index*2;

j* Release the semaphore lock *j

sem post(semdes, 0);
munmap(shmptr, SHM_SIZE);

j* Close the shared memory object *j

close(shmdes);

j* Delete the shared memory object *j

shm_unlink(shm_fn);

j* Close the Binary Semaphore set *j

(continued on next page)

Binary Semaphores 8-9

Example 8-2 (Cont.) Using Semaphores and Shared Memory

sem_close(semdes);

/* Destroy the Binary Semaphore set */

sem_destroy(sem_fn);

/***
***/

/********** reader.c ***********/

#include <sys/types.h>
#include <sys/rnman.h>
#include <binsem.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

char shm fn[] = "my shm";
char sem:)n[] = "my=sem";

/**** READER ****/

main(){
caddr t shmptr;
int shmdes, index;
binsemset t semdes;
int SHM_SIZE;

/* Open the shared memory object */

SHM_SIZE = sysconf(_SC_PAGE_SIZE);

if ((shmdes = shm open(shm fn, O_RDWR, 0))
perror("shm open failure");
exit(); -

-1) {

if((shmptr = rnmap(O, SHM_SIZE, PROT_WRITE I PROT_READ, MAP_SHARED,

shmdes,O)) == (caddr_t) -1){

perror("rnmap failure");
exit() ;

/* Open the Binary Semaphore set */

if(sem open(sem fn, &serndes) == -1){
perror("sem open failure");
exit(); -

8-10 Binary Semaphores

(continued on next page)

Example 8-2 (Cont.) Using Semaphores and Shared Memory

j* Lock the semaphore *j

if(!sem_wait(semdes,O)){

j* Access to the shared memory area *j

for(index = 0; index < 100; indextt)
printf("The shared memory shmptr[%d] %d\n", index,shmptr[index]);

j* Release the semaphore lock *j

sem_post(semdes, 0);

munmap(shmptr, SHM_SIZE);

j* Close the shared memory object *j

close(shmdes);

j* Close the Binary Semaphore set *j

sem close(semdes);
sem=destroy(sem_fn);

Binary Semaphores 8-11

9
Messages

Message queues are user-defined data structures that specify the length and
type of message and carry the message text.1 Essentially, message queues
are linked lists that are accessed by sending and receiving processes, allowing
flexibility and control over interprocess communication. Message queues use
data structures to store multiple messages that can be accessed by multiple
processes, read in any order, prioritized according to application needs, and
periodically polled for specific content.

Message queues work by exchanging data ip. buffers, which means any number
of other processes, regardless of whether they are related, can communicate
through message queues. If a process has all the right access data, it can send
or receive messages through the queue. The receiving process can also select
incoming messages of a specified type.

This chapter includes the following sections:

• Data Structures Associated with Messages, Section 9.1

• The Message Interface, Section 9.2

• Message Queue Example, Section 9.3

9.1 Data Structures Associated with Messages
The ipc perm structure is the basic permission structure for all System V IPC.
Messages use the i pc perm structure as well as other structures tailored to
message queues. Message structures are defined in the sys /msg. h header file.

A call to the msgget function creates the message queue identifier, msqid.
Each message queue identifier has an associated message queue and a data
structure. This data structure is called msqid _ ds and takes the following form:

1 This implementation uses System V messages, rather than POSIX messages.

Messages 9-1

#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>

struct msqid ds {

} ;

struct Ipc perm msg perm;
struct msg- *msg first;
struct msg *msg-last;
ushort msg cbytes;
ushort msg-qnum;
ushort msg-qbytes;
ushort msg-lspid;
ushort msg-lrpid;
time t msg-stime;
time-t msg-rtime;
time=t msg=ctime;

/* Operation permission structure */
/* Pointer to first message on queue */
/* Pointer to last message on queue */
/* Current number of bytes on queue */
/* Number of messages on queue */
/* Maximum number of bytes on queue */
/* pid of last msgsnd operation */
/* pid of last msgrcv operation */
/* Last msgsnd time - seconds since Epoch */
/* Last msgrcv time - seconds since Epoch */
/* Last change time - seconds since Epoch */

The msqid ds data structure holds information such as the number of
messages on the queue, the number of bytes on the queue, the PID of the
process that sent or received the last message, and timestamps for activities.

The msg perm structure is contained in an ipc perm structure. Figure 9-1
shows how message structures relate to each other.

Figure 9-1 Representation of Message Data Structures

msqid_ds

lipc_perml

MLO·007322

The msg. h header file contains information concerning message size, the
system-wide maximum number of queued messages, and other limits
pertaining to message queues.

9-2 Messages

9.1.1 Establishing Message Permissions
Processes can use message queues to read or write messages as long as the
processes have permission. The IPC message facility uses a msg perm structure
to determine permission. The msg perm structure is an ipc perm structure, but
uses only information specific to messages. The msg perm structure contains
the following members: -

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode
u short seq;
key_t key;

/* Creator user ID */
/* Creator group ID */
/* Owner's user ID */
/* Owner's group ID */
/* Read/write (or alter) permission */
/* Slot usage sequence number */
/* Key */

The msgop and msgctl functions check permission needed to use message
queues. Permission is interpreted as follows:

00400
00200
00060
00006

Read by user
write (or alter) by user
Read, Write (or alter) by group
Read, Write (or alter) by others

Read and write (or alter) permissions are granted to a process if the ID for
the calling process matches one or more combinations of permissions or if the
effective user ID (UID) of the process is superuser. Access permissions are
similar to those used for files. If you do not specify access for IDs other than
the owner process, only the owner and superusers will be able to access the
structure.

9.1.2 Establishing Message Structure
A call to msgsnd or msgrcv sends or receives a message from the associated
queue. The msgp parameter for these functions points to a structure containing
the message. The kernel does not interpret the content of messages. You can
customize messages by defining your own structure. This structure takes the
following form:

#include <unistd.h>
, #include <sys/types.h>

#include <sys/ipc.h>
#include <sys/msg.h>

struct msgbuf {
long mtype;
char mtext [];
};

/* Message type
/* Message data

*/
*/

Messages 9-3

The mtype member for a send operation can only be zero or a positive integer.
The mtype member for a receive operation can only be zero or negative. This
member can be used by the receiving process for message selection. The mtext
member is any form of data (text or binary).

9.2 The Message Interface
The message interface is a set of structures and data that allows you to send
messages to a message queue. The message queue is a linked list that serves
as a holding place for messages being sent to and received by processes sharing
the message queue. You can specify a message type or prioritize messages
based on the message type.

This section discusses the functions used to create, control, and remove the
message queue and messages in the queue. Table 9-1 lists the functions that
allow you to create and control messages.

Table 9-1 Message Functions

Function

msgget

msgctl

msgsnd

msgrcv

Description

Creates or returns a message queue identifier for use in
other message functions

Provides control for message operations and has options to
return and set message descriptor parameters and remove
the descriptor

Sends a message to the queue associated with the message
queue identifier

Reads a message from the queue associated with the
message queue identifier and places it in a user-defined
structure

9.2.1 Creating and Opening a Message Queue
To set up a message queue, first create a new message queue or open an
existing queue using the msgget function. To determine which course of action
to take, the kernel searches the array of message queues to determine if a
message queue indentifier already exists with the specified key. If there is
no entry, the kernel allocates a new message queue structure, initializes it,
and returns the identifier. If one already exists, the msgget function checks
permissions.

9-4 Messages

The value of the key argument on the msgget function call determines how the
message queue is established. If the key is not already in use, the function
returns a new message queue ID. If the key is in use, the existing message
queue ID is returned. If the key is specified as 0 (to indicate IPC_PRIVATE),
a unique, exclusive message queue ID is returned. Specifying IPC_PRIVATE
for the key parameter is usually done when you plan to share a message queue
among related processes.

The key and the message queue ID are directly related - processes sharing
the same key will also share the same message queue ID. You can use the ftok
function to create a key. This method allows processes to share an IPC channel
in a client and server relationship.

The flag parameter accepts combinations of flags and a permissions number.
The combinations of these elements determine whether a calling process has
permission and the nature of that permission.

The kernel checks the mode bits to determine if the caller has permission for
the requested operation. If IPC_PRIVATE is specified, only the owner and
related processes can access the message queue. If the calling process is not
the owner and is not in the group, the mode bits must be set for world access
before permission is granted. In addition, the appropriate access bits must be
set before an operation is performed. That is, to perform a read operation, the
read bit must be set.

If your application consists of related processes, you may want to use the
IPC_PRIVATE key on the function as follows:

#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

msq_id = msgget (IPC_PRIVATE, 0660);

This call creates a new message queue with read and write permission for the
owner and group. If you call the msgget function before calling fork to create
child processes, the IPC channel and permissions are inherited by the child
process, thus enabling all related processes to communicate with one another.
Read and write permissions for messages allow the process to receive (read)
messages and send (write) messages.

Whenever you create a new message queue with the msgget functions, the
ipc perm data structure is initialized. Fields are initialized for owner and
creator IDs (UID and CUID), user and group IDs (UID and GID), and mode.
The IPC _ CREAT flag returns a unique message queue ID or returns the
existing entry, if one already exists. The IPC_EXCL flag must be used in
conjunction with the IPC_CREAT flag. This combination guarantees that a

Messages 9-5

new channel is created, but does not guarantee exclusive access to the message
queue. When you use the IPC_PRIVATE key, it is not necessary to use either
the IPC_CREAT or IPC_EXCL flags.

When processes are unrelated, you must call the msgget function from each
process with which you want to communicate. In addition, each process must
use the same key parameter. Since the IPC_PRIVATE key returns a unique
message queue ID, you may not want to use it in this situation. Instead, you
may find it easier to use the IPC_CREAT and, possibly, IPC_EXCL flags.

If the process has superuser privileges, it is always allowed access. Any
process can specify a flag argument of zero to bypass permission problems with
the mode bits, as long as an access channel exists.

The IPC_CREAT flag either creates a new message queue ID or returns the
existing one. If you want the call to fail if a message queue already exists, use
the IPC_EXCL flag.

9.2.2 Using The ftok Function
One method for forming a key is to use the ftok function. This function returns
a key based on two parameters, path and id. The returned key is subsequently
used by the msgget function.

Client and server processes must first agree on a single path to be used as an
interprocess communication channel between them. This path could be the
name of a common data file or the path of the server daemon, as long as the
pathname is for an existing file and is accessible to the process. You must have
read permission on the file and execute permission on the directories of the
entire pathname before you can use the ftok function. The application then
calls the ftok function to convert the path into an interprocess communication
key.

The id argument is a character that uniquely identifies the project. The
following example returns a key that can be used in other System V IPC
functions.

keyofmine = ftok ("/usr/users/datal", 'X');

If unrelated processes create the message queue or if multiple message queues
are required, these processes should use the same path and id arguments to
the ftok function. You can also use the ftok function to help your application
overcome synchronization problems. If you are not certain which process will
create the message queue, or if you think the creating process may execute
earlier than the other communicating processes, call the ftok function.

9-6 Messages

The following example calls the msgget function to create a new message
queue. The call creates a new message queue, but the ftok call returns a
key based on the / usr / users / data3 pathname and the character X. As other
processes call the msgget function, msq_id is returned for them to use in other
message calls.

msq id = msgget (ftok ("/usr/users/data3", 'X'), IPC CREAT/0600)i - -
On the other hand, if the other processes will be using the message queue and
the first process fails to create the message queue ID, then subsequent calls
to that channel will fail. If the message queue does not exist at the time of
the call and the IPC_CREAT flag is not specified, there is no corresponding
message queue ID. The following function call overcomes this potential problem
by using the IPC_EXCL flag in addition to the IPC_CREAT flag:

mykey= msgget (ftok ("/usr/users/data3", 'X'), IPC_CREAT/IPC_EXCL/0600)i

U sing these flags together ensures that an IPC key is created if none previously
existed.

9.2.3 Sending and Receiving Messages
Once a message queue is open, you can send messages to another process with
the msgsnd function. The msgsnd function takes four parameters, including:
the message queue identifier, a pointer to a message structure, the size of the
data, and action to take if the kernel runs out of buffer space. The kernel
checks operation permissions, length of the message, the status of the message
queue, and the message flag. If all kernel checks are successful, the message is
added to the list of message headers on the message queue.

The message flag parameter is either ° or IPC_NOWAIT. If you specify a
msgflg of 0, then the sending process sleeps if the message cannot be sent to
the specified queue. When the queue is full, the msgsnd function will sleep
until other messages have been removed from the queue and space is available.
When the process is specified as IPC __ NOWAIT, the msgsnd function returns
immediately with an error status.

The following example attempts to write a message, but if the message queue
is full, it returns an error status without blocking the process.

msgsnd (msq_id, mymessage, messagesize, IPC_NOWAIT)i

Once a message has been placed on a queue, you can retrieve the message
with a call to the msgrcv function. The msgrcv function takes five parameters,
including: the message queue identifier, a pointer to a message structure, the
size of the data, the type of message the user wants to read, and action to take
if the kernel runs out of buffer space.

Messages 9-7

As with the msgsnd function, the kernel checks operation permissions. If the
requested message type is 0, the first message on the linked list is read. Then
the kernel checks for processes waiting to send messages and queues them as
space becomes available. If the message size is greater than that allowed for a
single message segment, the kernel truncates the message.

Specify the message flag parameter as either ° or IPC_NOWAIT. If you specify
a msgflg of 0, then the receiving process sleeps if there is no message of the
specified type on the queue. If you specify the IPC_NOWAIT flag, the process
returns immediately with an error status.

A process can control the type of messages it receives by setting the msgtyp
parameter. This parameter allows the receiving process to prioritize messages
on a specified queue or to conserve queue identifiers. The msgtyp parameter
specifies the type of requested message as follows:

• If msgtyp is equal to 0, the first message in the queue is received.

• If msgtyp is greater than 0, the first message of type msgtyp is received.

• If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

If you assign lower message types to messages of higher importance, you can
receive the most important messages first. If you assign higher message types
to less important messages, you can delay delivery of the messages as more
important events are executed.

The following example reads a message without blocking, that is, the process
looks to the queue for messages to read and does not sleep:

count = rnsgrcv (rnsq_id, rnyrnessage, rnessagesize, pid, IPC_NOWAIT);

The return value, count, is the number of bytes returned to the user. The pid
is used as the message type.

Prioritizing messages also lets you multiplex messages or use a single message
queue as if there were multiple message queues. If one process is the server
for several client processes, the server can receive messages of one type while
the clients receive messages of another type.

9-8 Messages

9.2.4 Controlling and Removing a Message Queue
The msgctl function allows you to query or set the status of the message queue
identifier, msqid. This function also removes a message queue.

The cmd argument can take one of three command control flags, which
determine what action is taken by the msgctl function. Table 9-2 describes
the command control flags.

Table 9-2 Message Command Control Flags

Command

IPC_RMID

IPC_STAT

Description

Removes a message queue identifier and the associated message queue
and data structure

Sets the user and group IDs (DID and GID), operation mode values,
and the size of the message queue

Returns the status information in the associated data structure for a
specified message queue identifier and copies it into a user-specified
buffer

These control flags allow you to control messages by performing the following
functions:

• Return all message structure member values and status in user memory

• Change operation permissions

• Remove messages, message queues, and their associated data structures

Note that to use the IPC_SET and IPC_RMID flags, you must either be the
owner or have superuser privileges.

The IPC_RMID flag removes the message queue identifier and its associated
data structures. When you specify the IPC_RMID control flag, you need
supply only the message queue identifier and the IPC_RMID control flag on
the function call. You can leave the buf argument as NULL. When you have
finished using a message queue, you should remove it either in this manner
before the application exits or with the ipcrm command.

The IPC_RMID flag removes a message queue from the system as follows:

msgctl (msq_id, IPC_RMID, 0);

The last process in your application to use the message queue should remove it
before exiting. If your application uses messages and signals in combination,
you can set up a signal handler to remove the message queue.

Messages 9-9

The IPC_SET control flag allows you to modify the user ID (DID), group ID
(GID), or mode values associated with the specified message queue identifier.

The IPC_STAT control flag copies status information into a user-specified
buffer where it can be inspected or monitored. If you determine that the status
information is no longer valid or you wish to make changes to the status
information, use the IPC_SET control flag.

9.3 Message Queue Example
Example 9-1 reads message types and text from a terminal and places the
messages into a message queue. Then the ftok function is used to generate a
message queue key and the key is kept in a file. The message queue is created
using IPC_ CREAT.

This example is a partial example, but gives the framework essential for
using message queues for interprocess communication. This program needs
to be started before the reader process as it creates the shared memory and
semaphores used by both processes.

Exam pie 9-1 Usi ng Message Queues

#include <unistd.h>
#include <errno.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define READ WRITE 0660
#define MTEXT SIZE 80
#define test error(a) if((a)== -l){perror("msg");exit(errno);}
#define loopT) while(l)

/* A simple message structure */

struct msg buf {
long type;
char mtext[MTEXT SIZE];
}; -

static jmp buf sjb;
static void end child(){

longjmp(sjb, 1);
}

9-10 Messages

/* Setjmp environment buffer */
/* Signal handler when child dies */

(continued on next page)

Example 9-1 (Cont.) Using Message Queues

main()
{

}

int msg id,
chIld;

/* Message queue identifier */
/* ID of child process */

struct msg buf m; /* Message buffer */
size_t status; /* Receive status/length */

signal(SIGCHLD,end child); /* Called when child dies */
m. t ype= 1 ; -
msg id = msgget(IPC PRIVATE,
test_error(msg_id); -

/* Message type must be >0 */
READ_WRITE); /* Create message queue */

/* fork the child process.
/* receives. */

The child sends and the parent */

if((child=fork()) == 0) loop() {

/* The child process reads from the terminal and generates */
/* messages until EOF. On EOF, it exits which raises a */
/* signal in the parent. */

printf("Enter message text: ");
if(gets (m.mtext) == NULL)

break;
status = msgsnd(msg id, &m, strlen(m.mtext)+l, 0);
test error(status);-
sleep(1);
}

/* The parent process calls setjmp. When the signal comes */
/* in after the child dies, the signal handler function, */
/* end_child(), does a longjmp forcing 1 to be returned. */

else if(setjmp(sjb) == 0) loop() {

/* The parent reads the messages and writes them to the */
/* terminal. */

status = msgrcv(msg id, &m, sizeof(m.mtext), 0, 0);
test error(status);-
printf("message received: %s\n" ,m.mtext);
}

printf("%s exiting\n",child?"Reciever":"Sender");

Messages 9-11

10
Pipes

A pipe is a structure that facilitates interprocess communication, providing a
flow of data between related processes. One process reads from an I/O channel
while another process writes to the I/O channel. All pipes require a sending
process (called a writer) and a receiving process (called a reader). Pipes are
unidirectional and will not work properly unless both a reader and a writer are
identified. However, only one reader and one writer can be associated with a
pipe.

This chapter includes the following sections:

• Regular Pipes, Section 10.1

• Named Pipes, Section 10.2

Regular pipes are invoked by the pipe system call and are known only to
processes which are descendants of the process that invoked the pipe system
call. Named pipes are identical to regular pipes except for the way that
processes access the pipe. Named pipes use file descriptors and are accessed by
a pathname.

Pipes, whether they are regular or named pipes, use the stream I/O model.
Data is transferred without any interpretation by the system. Messages in
pipes have no record boundaries.

10.1 Regular Pipes
Pipes can be used between parent and child processes or between child
processes of the same parent. Data moves in a one-way flow with a single pipe
or in a two-way flow if you create more than one pipe. Data transfer using
pipes is subject to rules for reading and writing. If you open the pipe with both
read and write access, you have a two-way pipe. If you open the pipe with
either read or write, you have a one-way pipe.

Pipes 10-1

Regular and named pipes use stream 110 to direct data to and from cooperating
processes. Data is transferred without any interpretation by the system.
Because of this, information sent to a pipe is read in the order in which it is
written and there is no mechanism to determine the length of the data sent,
stored, or received. If your application needs to interpret the data, the reader
and the writer processes must take care of that task.

Pipes move data from one 110 channel to another, which means that a pipe is a
memory buffer. Reads from a pipe remove the data from the buffer. Each pipe
holds up to PIPE_MAX bytes of data as defined in the limits. h header file.

A process can read its own data from a pipe, so use the close function to
control the flow of information. As long as you use sequential reads and writes,
you can use a pipe anywhere you would normally use a file descriptor. If
all write channels to a pipe are closed, the reader of that pipe will read an
end-of-file (EOF) when the pipe is empty.

Writing to a full pipe (PIPE_MAX) blocks the process because the process waits
until the pipe empties enough to take the data. Likewise, reading an empty
pipe blocks the process because the process waits until there is something in
the pipe to read. To avoid blocking, use the O_NONBLOCK flag on the fcntl
function. If no data is available for the operation or the operation would block
the calling process, -1 is returned and the error is EWOULDBLOCK.

10.1.1 Creating a Pipe
Pipes are created by a call to the pipe function and are accessed by the file
descriptors contained in an integer array. The system uses file descriptors
as handles for various objects: including disk files, special files, sockets, and
pipes. By convention, always read and write to the file descriptors in both
parent and child processes. Use the sysconf function to determine how many
file descriptors are allowed per process.

The first three file descriptors in any process are:

• File descriptor 0 - Standard input (stdin)

• File descriptor 1 - Standard output (stdout)

• File descriptor 2 - Standard error (stderr)

Subsequent file descriptors are allocated sequentially. A call to the pipe
function, for example, returns two additional file descriptors as follows:

• File descriptor 3 - read

• File descriptor 4 - write

10-2 Pipes

In a two-way pipe, both processes can read and write from the pipe and each
process can read the data written by itself. Therefore, it is sometimes easiest
to use pipes for for read-only or write-only communication by closing either the
write or read end of the pipe in each process.

Figure 10-1 shows a one-way pipe. The parent process writes data to the pipe
while the child process reads data from the pipe. Example 10-1 creates a pipe,
creates a child process, reads a line from stdin, and writes it to the pipe. The
child reads a line from the pipe and writes it to stdout.

Figure 10-1 One-Way Pipe

MLO-007326

Example 10-1 Creating a Child Process and a Pipe

/* This program creates a pipe and a child process. The parent */
/* reads a line from stdin and writes it to the pipe. The child*/
/* reads a line from the pipe and writes it to stdout. */

#include <stdio.h>

main()
{
int pid,

n,
fd[2];

char par line [81],
chi-line [81];

if (pipe(fd) == -1)
perror ("pipe.c:

/* Process ID returned by fork() */
/* Number of bytes read from pipe by child */
/* Array that holds pipe file descriptors */
/* Line buffer for parent */
/* Line buffer for child */

/* Create a pipe */
pipe failed"), exit(l);

(continued on next page)

Pipes 10-3

Example 10-1 (Cont.) Creating a Child Process and a Pipe

if ((pid = fork()) == -1) /* Create a child */
perror ("pipe.c: pipe failed"), exit(l);

if (pid == 0) /* Child process; execute code */
{close (fd[l]); /* Close write end of pipe */
n = read(fd[O], chi line, 80); /* Read from pipe */
chi line[n] = '\0';-
printf ("Child: your line was %s\n", chi line);
exit (0); /* Successful exit from child */
}

else /* Parent process; execute parent's code */
{close (fd[O]); /* Close read side of pipe */
printf ("Enter line: H);
gets (par line); /* Read line from stdin */
write (fdTl], par line, strlen(par_line)); /* Write line to pipe */
wait(O); - /* Wait for child to exit */
exit (0); /* Successful exit from parent */
}

The system synchronizes read and write activities by blocking when there are
not enough characters in the pipe to read or when the pipe is too full to receive
a write.

In situations where blocking will significantly delay process execution, you may
want to use the O_NONBLOCK flag on the fcntl function.

10.1.2 Redirecting stdin, stdout, stderr to Pipes
The information written to or read from a pipe can be redirected to different
file descriptors, such as stdin, stdout, and stderr.

Figure 10-2 illustrates two-way pipe communication between two processes.
Two-way pipes can be created and managed by using file descriptors.

The dup2 function allows you to duplicate file descriptors. The dup2 function
can be used to redirect a process's stdin, stdout, or stderr to a pipe. First,
you create a pipe; then you close an existing file descriptor with a call to the
close function. Next, you call the dup2 function, supplying the write channel
to the pipe as the object to which the newly allocated descriptor points. Now
any writes to stdout (which the system knows as file descriptor 1) are written
to the pipe. The writer process writes to file descriptor 1 just as it had before,
but now file descriptor 1 points to a pipe rather than stdout.

10-4 Pipes

Figure 10-2 Two-Way Pipe

MLO-007327

The following example fragment shows how to use the dup2 function to redirect
stdout in a parent. The parent executes the following functions:

int nfd[2];
pipe(fd);

if (fork 1=0) 1* Parent creates two child processes *1
if (fork 1=0) {

dup2(fd[1], stdin)i
close (fd[O])i

}
else { 1* Child *1

dup2(fd[0], stdout)i
close (fd[1]) i

}

10.1.3 Creating Pipes with popen
The popen function creates a child process that executes a Bourne shell (sh)
command. A popen call also creates a one-way pipe between the parent and a
child process. The popen function combines the pipe, fork, and exec functions
and performs the following tasks:

• Creates a pipe

• Creates a child process

• Creates a Bourne shell in the child process that executes the shell
command specified in the popen call

Pipes 10-5

• Causes the shell command to read or write the pipe to communicate with
the parent process

• Returns a standard I/O file pointer as the channel to the pipe for the
parent to read or write

The value returned by the popen function is a standard I/O file pointer, used
for either input or output, depending on the type specified in the command.

The pclose function closes the I/O stream created by a call to the popen
function.

10.2 Named Pipes
Named pipes (FIFOs)l are the same as regular pipes except that named pipes
are special files in the files system. You open named pipes with the open
system call and the pathname associated with the file. Data in named pipe
special files has no record boundaries.

One shortcoming of regular pipes is that they can only be used between
processes that share a common parent. Pipes are passed from one process to
another by the fork function, and all open files are shared between the parent
and child process after the fork call. Unrelated processes cannot use regular
pipes for communication because they do not share open files. Some other form
of interprocess communication must be used for communication between two
unrelated processes. One form of communication can be the named pipe.

A named pipe provides a one-way flow of data between unrelated processes.
Named pipes follow many of the same rules as regular pipes. For example,
they both use buffers to store data and read and write to other processes.
However, unlike regular pipes, named pipes can communicate with unrelated
processes. That means that processes can use the same buffering and
synchronization techniques offered by the system for use with regular pipes,
even if the processes are not related.

Unlike regular pipes, named pipes have an identifier and exist in a file or
directory. The file for the named pipe continues to exist until it is explicitly
removed.

Named pipes are created by a call to the mknod function. The mknod command
is most commonly used by system managers or users with superuser privileges
to create new device entries, but it can also be used by a nonprivileged user to
create a named pipe.

1 Named pipes are sometimes referred to as first-in, first-out pipes or FIFOs.

10-6 Pipes

The mknod function takes three parameters: pathname, mode, and dev. The
pathname parameter takes a character string specifying the pathname of the
file to be created. The mode parameter specifies the file type and the access
permissions for the file. Refer to the reference pages for an explanation of the
mknod function and an explanation of the values used in the parameters.

Use the open, fdopen, or fopen functions to associate an open file descriptor
with a standard stream I/O. Once this is done, you must decide how the
application will handle the data. To reduce the possibility that your process
will be blocked while waiting for a reader, writer, or appropriate data, you can
use the O_NONBLOCK flag on the fcntl function.

Named pipes must be opened by at least one reader and one writer. If only the
reader or only the writer opens the pipe, a signal is generated, and the calling
process is suspended until another process opens the pipe. If the process has
not called the signal function to handle the signal, the default action is to
terminate the process.

A regular pipe no longer exists when it is not in use or its application
terminates. Because named pipes are files, you must take several steps to
remove them. First, call the close function to close the open file descriptors,
then remove a named file with the rm or unlink command.

Pipes 10-7

A
Summary of Differences Between

P1 003.4/01 0 and P1003.4/D11

DEC OSF/l V1.0 realtime software followed POSIX 1003.4 Draft 10; Version
2.0 follows POSIX 1003.4 Draft 11. If you are tracking the evolution of POSIX
realtime standards, a summary of the differences between Draft 10 and Draft
11 might be useful. This section summarizes those differences.

Source compatibility between the two versions exists for realtime scheduling,
clocks and timers, memory-locking, and signal operations if POSIX_ 4DI0 is
defined for compilations. You can define POSIX_ 4DI0 on the command line as
follows:

% cc my_program -DPOSIX_4DIO

A.1 Scheduling Priorities and Policies
The following technical changes apply for realtime scheduling priorities and
policies:

• These function and field names were changed:

1. The sched set sched param function became the sched setparam
function. - - - -

2. The sched get sched param function became the sched getparam
function. - - - -

3. The priority field of the sched param structure became the the sched_
priority field of the sched _param structure

• The sched get rr interval function now takes a pid, and returns a
status ofO-ifitsucceeds and -1 (and sets errno) if it fails. This allows for
support of a per-process quantum for the SCHED_RR scheduling policy.

Summary of Differences Between P1 003.4/01 0 and P1003.4/011 A-1

A.2 Clocks and Timers
The following technical changes apply for realtime clocks and timers:

• Users are now required to include the time. h header file, which includes
the earlier timers. h header file.

• The return protocol for the nanosleep function was changed to use
(-1, [EINTR]) for interrupted sleep.

• The maximum value limits for timers, clocks, and the nanosleep function
were removed and now specify the full range of a time_t data type.

• The timer getres and nanosleep getres functions were removed. If
timers and the nanos leep function have different resolutions from the
realtime clock, it is implementation-defined.

• The maxval argument was removed from the clock _getres function.

• The abstime boolean was changed to a flag word containing an TIMER_
ABSTIME flag.

A.3 Memory Locking
The following technical changes apply for memory locking:

• The standard now states that if a failure occurs during memory locking, no
memory is locked.

• The range locked is now described as addr through (addr + len}-1.

A.4 Asynchronous 1/0
The following technical changes apply for asynchronous I/O:

• All parameters to the asynchronous I/O functions are now located in the
aiocb structure.

• The functions of the aiocb and liocb structures are combined into a single
data structure. Specifically, the following changes were made to the aiocb
structure:

1. The aio_handle element was removed. (The aio error and aio return
functions take a pointer to the aiocb structure as an argument instead
of the handle.)

2. The aio_whence field was eliminated. The aio_offset field must be
explicitly maintained.

3. The aiojio_opcode element was added.

A-2 Summary of Differences Between P1 003.4/01 0 and P1003.4/D11

4. The liocb structure was eliminated and the lio_opcode field was moved
into the aio_lio_opcode element of the aiocb structure.

• The aio return function has been defined such that it should be called
only once after the operation completes.

• The lio listio function takes a list of aiocb structures instead of a list of
liocb structures.

Summary of Differences Between P1 003.4/01 0 and P1003.4/011 A-3

B
DEC OSF/1 Realtime Functional Summary

Appendix B summarizes the functions that are of particular interest to
realtime application developers. The source of these functions ranges from
System V to POSIX 1003.1 and P1003.4ID11. The tables given in this appendix
serve as a guide in application development, but you may need to consult the
online reference pages for additional information or pointers to additional
functions and commands.

The function tables are arranged according to the following categories:

• Process Control

• P1003.4ID11 Priority Scheduling

• P1003.4ID11 Clocks

• Date and Time Conversion

• P1003.4ID11 Timers

• BSD Clocks and Timers

• P1003.4ID11 Memory Locking

• System V Memory Locking

• P1003.4ID11 Asynchronous I/O

• BSD Synchronous I/O

• System V Messages

• P1003.4ID11 Shared Memory

• P1003.4ID11 Semaphores

• POSIX Signal Control

• sigsetops Primitives

• Process Ownership

• Input and Output

DEC OSF/1 Realtime Functional Summary 8-1

• Device Control

• System Database

Table 8-1 Process Control

Function Purpose

alarm Sends the calling process a SIGALRM signal after a
specified number of seconds

exi t Terminates the calling process

exec Runs a new image, replacing the current running
image

fork
getenv
isatty

kill
malloc
pause

sleep

sysconf

uname

wait

waitpid

Creates a new process

Reads an environment list

Verifies whether a file descriptor is associated with
a terminal

Sends a signal to a process or a group of processes

Allocates memory

Suspends the calling process until a signal of a
certain type is delivered

Suspends the current process either for a specified
period or until a signal of a certain class is delivered

Gets the current value of a configurable system
limit or option

Returns information about the current state of the
operating system

Lets a parent process get status information for
a child that has stopped, and delays the parent
process until a signal arrives

Lets a parent process get status information for
a specific child that has stopped and delays the
parent process until a signal arrives from that child
or that child terminates

8-2 DEC OSF/1 Realtime Functional Summary

Table 8-2 P1003.4/011 Priority Scheduling

Function

sched_getscheduler
sched_get_priority_max

sched_getparam

sched setscheduler

sched_setparam
sched_yield

Table 8-3 P1003.4/011 Clocks

Function

clock_gettime
clock_getdrift

clock set time
clock setdrift

Purpose

Returns the scheduling policy of a specified process

Returns the maximum priority allowed for a
scheduling policy

Returns the minimum priority allowed for a
scheduling policy

Returns the interval time limit allowed for the
round-robin scheduling policy

Returns the scheduling priority of a specified
process

Sets the scheduling policy and priority of a specified
pl'ocess

Sets the scheduling priority of a specified process

Yields execution to another process

Purpose

Returns the current value for the specified clock

Returns the value of the clock drift rate as set by
the most recent call to clock setdrift
Returns the resolution and maximum value of the
specified clock

Sets the specified clock to the specified value

Sets the drift rate for the specified clock, in parts
per billion (nanoseconds), to the specified value

Table" 8-4 Date and Time Conversion

Function

asctime

ctime

Purpose

Converts a broken-down time into a 26-character
string

Converts a time in seconds since the Epoch to an
ASCII string in the form generated by asctime

(continued on next page)

DEC OSF/1 Realtime Functional Summary 8-3

Table 8-4 (Cont.) Date and Time Conversion

Function

difftime

gmtime

localtime

mktime

tzset

Table 8-5 P1003.4/011 Timers

Function

nanosleep

timer create

timer delete
timer_gettime

timer settime

Purpose

Computes the difference between two calendar
times (time I-timeO) and returns the difference
expressed in seconds

Converts a calendar time into a broken-down time,
expressed as GMT

Converts a time in seconds since the Epoch into a
broken-down time

Converts the broken -down local time in the tm
structure pointed to by timeptr into a calendar time
value with the same encoding as that of the values
returned by time
Sets the external variable tzname, which contains
current time zone names

Purpose

Causes the calling process to suspend execution for
a specified period of time

Returns a unique timer ID used in subsequent calls
to identify a timer based on the systemwide clock

Removes a previously allocated, specified timer

Returns the amount of time before the specified
timer is due to expire and the repetition value

Sets the value of the specified timer to either an
offset from the current clock setting or an absolute
value

Table 8-6 8S0 Clocks and Timers

Function

getitimer

gettimeofday

Purpose

Returns the amount of time before the timer expires
and the repetition value

Gets the time of day

(continued on next page)

8-4 DEC OSF/1 Realtime Functional Summary

Table 8-6 (Cont.) 8S0 Clocks and Timers

Function

setitimer
settimeofday

Purpose

Sets the value of the specified timer

Sets the time of day

Table 8-7 P1003.4/011 Memory Locking

Function

mlock
mlockall
munlock

munlockall

Purpose

Locks a specified region of a process's address space

Locks a process's address space

Unlocks a specified region of a process's address
space

Unlocks a process's address space

Table 8-8 System V Memory Locking

Function

plock

Purpose

Locks and unlocks a process, text, or data in
memory

Table 8-9 P1003.4/011 Asynchronous I/O

Function

aio cancel

aio error
aio read

aio return
aio_suspend

aio write

Purpose

Cancels one or more requests pending against the
file descriptor

Returns the error status of a specified operation

Initiates a read request on the specified file
descriptor

Returns the value of an operation

Suspends the calling process until at least one of
the specified requests has completed

Initiates a write request to the specified file
descriptor

(continued on next page)

DEC OSF/1 Realtime Functional Summary 8-5

Table 8-9 (Cont.) P1003.4/011 Asynchronous I/O

Function Purpose

lie listio Initiates a list of requests

Table 8-10 8S0 Synchronous I/O

Function

fcntl

fsync

sync

Purpose

Performs controlling operations on the specified
open file

Writes changes to a file to permanent storage
saves all modified data

Updates all file systems-all information in memory
that should be on disk is written out

Table 8-11 System V Messages

Function

msgctl

msgget

msgrcv

msgsnd

Purpose

Provides control for message operations and has
options to return and set message descriptor
parameters and remove the descriptor

Creates or returns a message queue identifier for
use in other message functions

Reads a message from the queue associated with
the message queue ID and places it in a user
defined structure

Sends a message to the queue associated with the
message queue ID

Table 8-12 P1003.4/011 Shared Memory

Function

shm unlink

Purpose

Opens a shared memory object, creating the object
if necessary

Removes a shared memory object created by a call
to shm_open

8-6 DEC OSF/1 Realtime Functional Summary

Table 8-13 P1003.4/011 Semaphores

Function

sem close

sem if wait

sem mksem
sem_open
sem_post
sem wait

Purpose

Deallocates the specified binary semaphore set
descriptor

Removes or destroys the specified binary semaphore
set

Returns the number of binary semaphores in the
binary semaphore set

Conditionally performs a semaphore lock on a
binary semaphore

Creates a new binary semaphore set

Opens a set of binary semaphores

Releases a locked binary semaphore

Performs a semaphore lock on a binary semaphore

Table 8-14 POSIX Signal Control

Function

sigaction
signal
sigpending
sigprocmask

sigsetops
sigsuspend

Purpose

E~amines or specifies the action of a specific signal

Changes the action of a signal

Stores a set of pending signals in a specified space

Examines or changes the signal mask of the calling
process

Manipulates signal sets

Replaces the signal mask of the calling process and
then suspends the process

Table 8-15 sigsetops Primitives

Function

sigaddset
sigdelset
sigemptyset

Purpose

Adds the specified signal to the signal set

Deletes the specified signal from the signal set

Initializes the signal set to exclude all signals given
in POSIX 1003.1

(continued on next page)

DEC OSF/1 Realtime Functional Summary 8-7

Table 8-15 (Cont.) sigsetops Primitives

Function

sigfillset

sigismember

Purpose

Initializes the signal set to include all signals given
in POSIX 1003.1

Tests if the specified signal is a member of the
signal set

Table 8-16 Process Ownership

Function

geteuid
getegid
getgid
getpgrp
getpid
getppid

getuid
setgid
setsid

setuid

Table 8-17 Input and Output

Function

close
dup
dup2
fileno
lseek
mkfifo

Purpose

Returns the effective user ID of the calling process

Returns the effective group ID of the calling process

Returns the real group ID of the calling process

Returns the process group ID of the calling process

Returns the process ID of the calling process

Returns the process ID of the parent of the calling
process

Returns the real user ID of the calling process

Sets the group ID of the calling process

Creates a new session, for which the calling process
is the session leader

Sets the user ID of the calling process

Purpose

Closes a file

Duplicates a file descriptor

Duplicates a file descriptor

Retrieves a file descriptor

Moves a pointer to a record within a file

Creates fifo special files

(continued on next page)

8-8 DEC OSF/1 Realtime Functional Summary

Table 8-17 (Cont.) Input and Output

Function

open
pipe
read
write

Table 8-18 Device Control

Function

cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
isatty

tcdrain

tcflow

tcflush
tcgetattr
tcsendbreak

tcsetattr

Table 8-19 System Database

Function

getgrgid
getgrnam

getpwnam

Purpose

Opens a file

Creates an interprocess channel

Reads the specified number of bytes from a file

Writes the specified number of bytes to a file

Purpose

Retrieves the input baud rate for a terminal

Retrieves the output baud rate for a terminal

Sets the input baud rate for a terminal

Sets the output baud rate for a terminal

Verifies whether a file descriptor is associated with
a terminal

Causes a process to wait until all output has been
transmitted

Suspends or restarts the transmission or reception
of data

Discards data that is waiting to be transmitted

Retrieves information on the state of a terminal

Sends a break character for a specified amount of
time

Applies a set of attributes to a terminal

Purpose

Returns group information when passed a group ID

Returns group information when passed a group
name

Returns user information when passed a user name

(continued on next page)

DEC OSF/1 Realtime Functional Summary 8-9

Table 8-19 (Cont.) System Database

Function Purpose

getpwuid Returns user information when passed a user ID

8-10 DEC OSF/1 Realtime Functional Summary

A
abstime boolean

changed to flag word in PI003.4IDll, A-2
Access permission

memory objects, 3-5
access system call, 2-25
aiocb structure, 7-2, 7-5, 7-6, 7-8

changed in P1003.4IDll, A-2
aio cancel function, 7-4,7-8, B-5
AlO-:CANCELED status, 7-8
aio error function, 7-3,7-4,7-5,7-6,

7-7, B-5
aio _handle element

removed in P1003.4IDll, A-2
Ala _NOTCANCELED status, 7-8
aio read function, 7-3, 7-4, 7-5, 7-9, B-5
aio -return function, 7-3, 7-5, 7-6, 7-7

changed in PI003.4IDll, A-3
aio suspend function, 7-4, 7-5, 7-8, 7-9,

13-5
aio write function, 7-3, 7-4, 7-5, 7-9,

13-5
alarm function, 5-4, 5-6, 6-6, B-2
Alarm timeout, 5-2
ALL_DONE status, 7-8
asctime function, B-3
Asynchronous I/O, 1-4, 1-10,7-1 to 7-16

blocking, 7-9
canceling, 7-8
data structures, 7-2
example, 7-9
example using lie listio, 7-12
functions, 7-4 -

Asynchronous I/O (cont'd)
identifying the location, 7-2
list-directed, 7-6
POSIX draft differences, A-2
return values, 7-7
signals, 5-2, 7-3
specifying a signal, 7-3
status, 7-7
summary, 7-4
using signals, 5-1
using with pipes, 10-4

Asynchronous I/O library
compiling, 1-20

B
binsem. h header file, 8-3, 8-5

c
cfgetispeed function, B-9
cfgetospeed function, B-9
cfsetispeed function, B-9
cfsetospeed function, B-9
Clock value limits

changed in P1003.41D11, A-2
Clocks, 1-9, 6-1 to 6-18

and DECdts, 6-6
drift, 6-5
POSIX draft differences, A-2
resolution, 6-7
returning, 6-7
setting, 6-4, 6-7
systemwide, 6-2
using with timers, 6-14

Index

Index-1

clock getdrift function, 6-2,6-5, B-3
clock - getres function, 6-2, B-3
clock-gettime function, 6-2,6-3,6-4,

B-=3
CLOCK_REALTIME clock, 6-2, 6-3, 6-5
clock setdrift function, 6-2,6-4,6-5,

B-=3
clock settime function, 6-2, 6-3, 6-4,

B-=3
close function, 7-5,7-6, 10-2, 10-3, 10-6,

10-7, B-8
Compiling

asynchronous 110 libraries, 1-20
in a POSIX environment, 1-19
with the realtime library, 1-20

ctime function, 6-7, B-3

D
Data structures

for asynchronous 110, 7-2
for messages, 9-1
for semaphores, 8-3
for system clock, 6-7
for timers, 6-7
itimerspec, 6-7, 6-8
timers, 6-7
timespec, 6-7,6-8

DEC OSF!l
POSIX, 1-18

DEC OSF!l realtime facilities, 1-4, B-1
difftime function, B-3
Digital Distributed Time Service (DECdts),

6-6
Drift rate, 6-3, 6-5

and timers, 6-4
Driver programs

viewing passes, 1-20
dup function, 3-8, B-8
dup2 function, 10-4, B-8

Index-2

E
ENOSYS error, 1-19
Epoch, 6-2
errno function, 7-7
exec function, 4-2,4-5, 5-2, 6-6, 6-10,

10-5, B-2
exec system call, 2-22
exit function, 7-5, 7-7, B-2

F
fchmod function, 3-8,3-9
fcntl function, 3-8, 3-9, B-6
fdopen function, 10-7
FIFOs

See Pipes
File descriptors, with pipes, 10-2
f ileno function, B-8
First-in first-out scheduling, 2-10, 2-11,

2-12
Fixed-priority scheduling, 1-8, 2-10, 2-11
Floating point exception, 5-10
f lock function, 3-8
fopen function, 10-7
fork function, 4-2,6-10,7-5, 7-7, 9-5,

10-5, 10-6, B-2
fork system call

with priorities, 2-22
fstat function, 3-8, 3-9
f sync function, B-6
ftok function, 9-5, 9-6, 9-7, 9-10
ftruncate function, 3-8

G
geteg id function, B-8
getenv function, B-2
geteuid function, B-8
getgid function, B-8
getgrgid function, B-9
getgrnam function, B-9

geti timer function, B-4
getpgrp function, B-8
getpid function, 2-22, B-8
getppid function, 2-22, B-8
getpriority function, 2-16
getpwnam function, B-9
getpwuid function, B-I0
getr 1 imi t function, 4-5
gettimeofday function, B-4
getuid function, B-8
getuid system call, 2-25
GID, changing priority, 2-25
GMT, 6-2
gmt ime function, B-3
Greenwich Mean Time (GMT), 6-2

H
.h files

See Header files
Hardware interrupts, 2-18

and priorities, 2-20
Header files

binsem.h, 8-3,8-5
conforming POSIX applications, 1-20
limits.h, 6-11,10-2
PO SIX draft differences, A-2
sched.h, 2-14,2-20
signal.h, 5-2,5-6,5-10,6-11,7-3
sys/ipc.h, 9-5
sys/mman.h, 4-5
sys/msg.h, 9-1,9-5
sys/types.h, 9-5
time.h, 6-2,6-7,6-11
unistd.h, 1-19

Interprocess communication
I/O

See Asynchronous I/O
IPC

See Memory-mapped files
See Messages
See Pipes

IPC (cont'd)
See Semaphores
See Shared memory
See Signals
getting a key, 9-6
operation permissions, 9-3
with ftok, 9-6

IPC keys, 9-6
ipcrm command, 9-9
IPC_CREAT flag, 9-7

with messages, 9-10
IPC_EXCL flag, 9-7
IPC_NOWAIT flag

with messages, 9-7
ipc perm structure, 9-1, 9-3, 9-5
IPC:-PRIVATE flag, 9-5

with messages, 9-4
IPC_RMID flag

with messages, 9-9
IPC _SET flag

with messages, 9-9, 9-10
IPC_STAT flag

with messages, 9-9,9-10
isatty function, B-2, B-9
itimerspec structure, 6-7,6-8,6-11,6-12
iCinterval member, i timerspec, 6-8, 6-12
iCvalue member, i timerspec, 6-8, 6-12

K
Kernel

nonpreemptive, 1-5
preemptive, 1-5, 1-6

Kernel mode preemption, 1-5
kill function, 5-2,5-4,5-5, B-2

L
Latency

comparing, 1-6
memory locking, 1-10, 4-1
nonpreemptive kernel, 1-5
preemption, 1-5
preemptive kernel, 1-6
reducing, 1-10

Index-3

librt. a library, 1-20, 1-21
limits.h header file, 6-11,10-2
Linking

realtime libraries, 1-20
specifying a search path, 1-21

1 iocb structure
removed in PI003.41D11, A-2

lio listio function, 7-3, 7-4, 7-6, 7-8,
7-9, B-5

and signals, 7-6
changed in PI003.41D11, A-3
example, 7 -12

LIO_NOWAIT mode, 7-6
LIO_ WAIT mode, 7-6
List-directed I/O, 7-6
Locking memory, 4-2

entire process, 4-6
region, 4-3
shared, 3-10

lseek function, 7-4, B-8

M
malloc function, 4-5, 4-7, B-2
man command, xiii
maxval argument

to clock getres
removed in PI003.41D11, A-2

MCL_CURRENT flags, 4-6
MCL_FUTURE flags, 4-6
Memory alignment, example, 4-5
Memory locking, 1-4, 1-10, 4-1 to 4-8

across a fork, 4-2
across an exec, 4-2
and paging, 4-1
example, 4-8
POSIX draft differences, A-2
realtime requirements, 4-1
removing locks, 4-5
speCifying a range, 4-3
specifying all, 4-3

Memory locking functions
range change in PI003.41D11, A-2

Index-4

Memory object
locking example, 3-10

Memory unlocking
example, 4-8

Memory-mapped files, 3-1 to 3-12
controlling, 3-9
locking, 3-7
mapping, 3-5
overview, 3-1
unmapping, 3-5

Message queue, 9-1,9-4
controlling, 9-9
creating, 9-4
opening, 9-4
removing, 9-9

Messages, 1-11, 9-1 to 9-11
changing permissions, 9-9
command control flags, 9-9
controlling, 9-4, 9-8
creating, 9-4
data structures, 9-1
functions, 9-4
getting status, 9-9
permissions, 9-3, 9-5
prioritizing, 9-4, 9-8
queue identifier, 9-1
receiving, 9-7
removing, 9-9
sending, 9-7
setting, 9-9
structures, 9-3
using queues example, 9-10
using the interface, 9-4

mkf i f 0 function, B-8
mknod function, 10-6
mkt ime function, B-3
mlock function, 3-10, 4-2, 4-3, 4-5, B-5

example, 4-8
mlockall function, 3-10, 4-2, 4-3, 4-6,

B-5
example, 4-8
MCL_CURRENT flag, 4-6
MCL_FUTURE flag, 4-6

mmap function, 3-2, 3-5, 3-6
mprotect function, 3-2, 3-9
msg. h header file, 9-8
msgctl function, 9-3, 9-4, 9-9, B-6
msgget function, 9-1, 9-4, 9-7, B-6
msgop function, 9-3, 9-4
msgrcv function, 9-3,9-4, 9-7, B-6
msgsnd function, 9-3, 9-4, 9-7, B-6
ms 9 perm structure, 9-2, 9-3
msqld ds structure, 9-2
msync function, 3-2,3-9
munlock function, 4-2, 4-3, 4-5, B-5

example, 4-8
munlockall function, 4-2, 4-3, 4-5, B-5

example, 4-8
munmap function, 3-2, 3-5

N
Named pipes, 10-6 to 10-7
nanosleep function, 1-9, 1-13, 5-4, 6-7,

6-13, B-4
effect on signals, 6-13
return changed in P1003.41D11, A-2

nanosleep getres function
removedTn P1003.41D11, A-2

nice function, 2-8, 2-11, 2-16, 2-21
and realtime, 2-12

nice interface, 1-8, 2-8, 2-15, 2-16
default priority, 2-16
priorities, 2-15

Non-blocking 110
See Asynchronous 110

Nonpreemptive kernel
latency, 1-5

o
open function, 7-1, 7-5, 7-6, 10-7, B-9

p
Page size

determining, 4-5
Paging, 4-1, 4-2
pause function, 5-3, 5-4, B-2
pclose function, 10-6
Pending signals, 5-3
Per-process timers

See Timers
Permission

read messages, 9-3
write messages, 9-3

PID in process scheduling, 2-22
pipe function, 10-2, 10-5, B-9
Pipes, 1-11, 10-1 to 10-7

and child processes, 10-3
and file descriptors, 10-2
creating, 10-2
creating a named pipe, 10-6
creating example, 10-3
creating with popen, 10-5
maximum number of bytes, 10-2
named, 1-11, 10-6
one-way, 10-3
reader, 10-1, 10-7
reading, 10-2
redirecting 110, 10-4
regular, 10-1
removing, 10-7
two-way, 10-4
using, 10-2
using async 110, 10-4
writer, 10-1, 10-7
writing, 10-2

PIPE_MAX constant, 10-2
plock function, B-5
Policy, setting scheduling, 2-26
popen function, 10-5
Portability of timers, 6-2
POSIX

DEC OSF/1, 1-18
runtime libraries, 1-18

Index-5

POSIX draft differences
asynchronous 110, A-2
clocks and timers, A-2
DI0 to D11, A-I
future compatibility, 1-18
memory locking, A-2
priorities, A-I
scheduling policies, A-I

POSIX environment, 1-17
compiling, 1-19

POSIX portability, 2-23,6-2
PO SIX 4S0URCE symbol, 1-20
_POSIX_SOURCE symbol, 1-20
Preemption latency, 1-5
Preemptive kernel, 1-4, 1-5, 1-6

latency, 1-6
Preemptive priority scheduling, 2-6, 2-11,

2-12
Priorities

and hardware interrupts, 2-20
and scheduling policies, 2-15, 2-16, 2-20
configuring, 2-20
determinging limits, 2-22
displaying, 2-19
nonprivileged user, 2~15

order of execution, 2-4
POSIX draft differences, A-I
realtime, 2-1, 2-16
relationships, 2-17
using the ps command, 2-19

Priority, 2-1 to 2-27
and preemption, 1-5
and shared memory, 3-12
base level, 2-16
change notification, 2-23
changing, 2-13,2-23
determining, 2-22
initial, 2-15, 2-23
initializing, 2-23
ranges, 1-8, 2-15, 2-16
setting, 2-23, 2-25, 2-26

priority field
of sched param structure

changed in PI003.41D11, A-I

Index-6

Priority inversion
with semaphores, 8-6

Priority ranges, 2-6, 2-8, 2-10, 2-15
Privileges

superuser, 6-4,9-6,9-9,10-6
Process

priority, 1-7
states, 2-2

Process list, 2-2, 2-4, 2-12, 2-15
changing scheduling, 2-6

Process scheduling, 2-1 to 2-27
preemptive, 2-6
setting policy, 2-26
yielding, 2-25

ps command, 2-19
pthread attr setinheritsched routine,

2-9 - -
pthread attr setprio routine, 2-9
pthread-attr - setsched routine, 2-9
pthread= create routine, 2-9

Q
Quantum, 1-9

R

in process scheduling, 2-11
round robin scheduling, 2-26
round-robin scheduling, 2-13

read function, 7-1, 7-2, 7-5, B-9
Realtime

building applications, 1-19
definition of, 1-2
environment, 1-4
features, 1-16
function summary, B-1
hard, 1-2
interface, 1-8, 2-17
kernel, 1-4

accessing, 1-19
installing, 1-19

librt. a library, 1-20
linking libraries, 1-20
POSIX standards, 1-17 to 1-18

Realtime (cont'd)
priorities, 2-16, 2-21

adjusting, 2-21
default, 2-17
using nice, 2-21
using renice, 2-21

process synchronization, 1-12
processing, 2-10
signals, 6-10
soft, 1-2

Realtime clocks
See Clocks

Realtime scheduling policies
See Scheduling policies

Realtime timers
See Timers

Reference pages
finding information, Xlll

renice function, 2-8,2-16,2-21
and realtime, 2-12

Resolution
clocks, 6-7

rm command, 10-7
Round-robin scheduling, 2-10, 2-11, 2-13

s
sched. h header file, 2-14, 2-20
Scheduler, 1-7, 2-4
Scheduling, 2-1 to 2-27

and threads, 2-2,2-9
fixed-priority, 1-8
functions, 2-21
interfaces, 1-8
policies, 1-7, 1-8
priority-based, 1-7
process list, 2-6
quantum, 1-9
with threads, 2-9

Scheduling policies, 1-4, 2-1, 2-9
and shared memory, 3-12
associated priorities, 2-5
changing, 2-23
default priorities, 2-8
determining limits, 2-22

Scheduling policies (cont'd)
determining type, 2-22
first-in first-out, 2-10, 2-12
fixed-priority, 2-10
interfaces, 2-6
POSIX draft differences, A-I
preemptive, 2-6
priority ranges, 2-10
realtime, 2-8
round-robin, 2-8, 2-10, 2-13
SCHED_FIFO, 2-8,2-10
SCHED_OTHER, 2-10
SCHED_RR, 2-10
setting, 2-10, 2-21, 2-23
timesharing, 2-8, 2-10, 2-11

SCHED_FIFO keyword, 2-10
SCHED_FIFO policy, 2-12,2-22,2-23
sched _getparam function, 2-22,2-23, B-3
sched getscheduler function 2-22 B-3
sched-get priority max fu~ction '2-22

B-=3 - - "
sched_get_priority_min function, 2-22,

B-3
sched get rr interval function 2-22,

B-=3 - - '
changed in PI003.41D11, A-I

sched get sched param function
changed'iiame in-P1003.41D11, A-I

SCHED_OTHER keyword, 2-10
SCHED_OTHER policy, 2-22
sched param structure 2-23
SCHEiLpRIO_RT_MAX constant, 2-21
SCHED_PRIO_RT_MIN constant, 2-21
SCHED_PRIO_SYSTEM_MAX constant,

2-21
SCHED_PRIO_SYSTEM_MIN constant,

2-21
SCHED_PRIO_USER_MAX constant, 2-21
SCHED_PRIO_USER_MIN constant, 2-21
SCHED_RR keyword, 2-10
SCHED_RR policy, 2-13,2-22
sched_setparam function, 2-8, 2-11, 2-22,

2-23, B-3

Index-7

sched setscheduler function, 2-8, 2-11,
2-22, 2-23, B-3

sched set sched param function
changed name i~P1003.41D11, A-I

sched yield function, 2-22,2-25, B-3
andthe process list, 2-26
with SCHED_FIFO, 2-26
with SCHED_RR, 2-26

Search path linking, 1-21
select function, with asynchronous 110,

7-5
Semaphores, 1-11,8-1 to 8-11

and shared memory, 3-12
binary, 8-1, 8-2
blocking, 8-2
closing, 8-6
controlling access, 8-1
counting, 8-1
creating, 8-4, 8-5
data structures, 8-3
decrementing, 8-1
example, 8-7
functions, 8-3
identifiers, 8-3
incrementing, 8-1
locking, 8-2, 8-5
opening, 8-4
persistence, 8-2
priority inversion, 8-6
releasing shared memory, 3-12
removing, 8-7
reserving, 8-6
reserving shared memory, 3-12
unlocking, 8-2,8-5,8-6
using the interface, 8-3, 8-4

semctl function, 8-7
sem close function, 8-3, 8-6, B-7
sem-destroy function, 8-3,8-6,8-7, B-7
sem-getnsems function, 8-3, 8-5, B-7
semifwait function, 8-3,8-5, B-7
sem-mksem function, 8-3,8-4,8-7, B-7
sem -open function, 8-3, 8-6, B-7
sem =post function, 8-3, 8-5, B-7

Index-8

sem wait function, 8-3, 8-5, B-7
set'gid function, B-8
set it imer function, B-4
setpriority function, 2-8,2-16
setsid function, B-8
settimeofday function, B-4
setuid function, B-8
sh command, 10-5
Shared memory, 1-11,3-1 to 3-12

and semaphores, 3-12
creating, 3-3
example with semaphores, 8-7
locking, 3-10
opening, 3-2
opening an object, 3-3
opening example, 3-5
overview, 3-1
releasing with a semaphore, 3-12
reserving with a semaphore, 3-12
unlinking, 3-2, 3-10
unlocking, 3-11

shm open function, 3-2,3-3, B-6
shm -unlink function, 3-2,3-10, B-6
sigaction function, 5-2, 5-3, 5-8, B-7
sigaddset function, 5-13, B-7
SIGALRM signal, 5-10,6-6
sigcontext structure, 5-11
sigdelset function, 5-13, B-7
sigemptyset function, 5-3, 5-13, B-7
sigevent structure, 5-1, 6-9, 6-10, 6-11,

7-3
sigfillset function, 5-13, B-7
SIGFPE signal, 5-10
SIGINT signal, 5-11, 5-12
sigismember function, 5-13, B-7
Signal

pending, 5-3
used with asynchronous events, 5-2

signal function, 5-2, 5-8, 5-10, 5-12, 6-6,
7-4, 10-7

Signal handlers, 5-8, 5-10
SIGINT example, 5-11

Signal mask, 5-6

Signal-catching function, 5-3
signal. h header file, 5-2, 5-6, 5-10, 6-11,

7-3
Signals, 1-11, 5-1 to 5-14

and timers, 6-6, 6-9
blocking, 5-2, 5-6
compressed, 5-6, 5-10
ignoring, 5-8, 5-10
managing, 5-8
parent to child, 5-5
parent-child example, 5-5
realtime, 5-1
receiving, 5-2
sending, 5-2, 5-4, 5-5
specifing action, 5-8
unblocking, 5-7
using sigaction, 5-8
using signal, 5-10
using sigsetops, 5-13
using the interface, 5-2
using with asynchronous I/O, 5-1, 7-3
using with timers, 5-1

signal handler function, 5-10
sigpending function, 5-3, 5-7, B-7
sigprocmask function, 5-3, 5-7, 5-8, B-7
sigset structure, 5-8
sigsetops function, 5-8, 5-13, B-7
sigsuspend function, 5-3, 5-7, 5-8, B-7
s igvec function, 5-8
SIG_IGN flag, 5-10
SIG_SETMASK flag, 5-7
sleep function, 5-4,6-13, B-2
Sleep, high-resolution, 6-13
Software interrupt

See Signals
Standards, 1-17

ISO, 1-17
POSIX, 1-17

Status, asynchronous 110, 7-7
stderr, 10-2, 10-4
stdin, 10-2, 10-3, 10-4
stdout, 10-2, 10-3, 10-4
stty everything command, 5-5

superuser privileges, 2-17, 2-22, 6-4, 6-5,
9-3,9-6,9-9,10-6

sync function, B-6
Synchronization, 1-12

by communication, 1-15
by other processes, 1-15
by semaphores, 1-14
by time, 1-13
timing facilities, 6-2

Synchronization point, 1-12
sysconf function, 4-5, 10-2, B-2
sys I ipc . h header file, 9-5
sys Imman. h header file, 4-5
sys/msg. h header file, 9-1, 9-5
System processing, 2-10
sys/types. h header file, 9-5

T
tcdrain function, B-9
tcflow function, B-9
tcflush function, B-9
tcgetattr function, B-9
tcsendbreak function, B-9
tcsetattr function, B-9
Threads

in realtime applications, 2-9
scheduling, 2-9
setting attributes, 2-9

Time
retrieving, 6-3
returning, 6-3

time function, 6-3, 6-4
TIME-OF-DAY clock, 6-2
time. h header file, 6-2, 6-7, 6-11
Timer functions, 6-10, B-4
Timer value limits

changed in PI003.41D1l, A-2
Timers, 1-9, 6-1 to 6-18

absolute, 1-9, 6-6, 6-11
and signals, 1-9
arming, 6-8
creating, 6-11, 6-12
disabling, 6-12, 6-13
disarming, 6-8, 6-13

Index-9

Timers (cont'd)
expiration, 6-12
expiration value, 6-12
interval time, 6-12
one-shot, 1-9, 6-6, 6-12
periodic, 1-9, 6-6, 6-12
POSIX draft differences, A-2
relative, 1-9, 6-6, 6-11
repetition value, 6-12
resetting, 6-13
returning values, 6-13
setting, 6-8
sleep, 6-13
types, 6-6
using signals, 5-1, 6-6, 6-9
using the s igevent structure, 6-9
using with clocks, 6-14

timers. h header file
removed in P1003.41D11, A-2

timer create function, 6-6, 6-10, 6-11,
B-=4

timer delete function, 6-10, 6-11, 6-13,
B-=4

timer getres function
removed in P1003.41D11, A-2

timer gettime function, 6-10, 6-12, 6-13,
B-=4

TIMER_MAX constant, 6-11
timer settime function, 6-6, 6-10, 6-11,

6-13, B-4
Timesharing processing, 2-10
Timesharing scheduling, 1-8, 2-10, 2-11

using nice, 2-11
timespec structure, 6-3, 6-4, 6-7,6-8
tv_nsec member, timespec, 6-7
tv_sec member, timespec, 6-7
tzset function, B-3

u
UID, changing priority, 2-25
uname function, B-2
unistd.h header file, 1-19

Index-10

unlink command, 10-7
Unlocking memory, 3-11,4-2,4-5
User mode and preemption, 1-5

w
wai t function, 5-4, B-2
wai tpid function, 5-4, B-2
write function, 7-1, 7-2, 7-5, 10-4, B-9

y
Yielding, to another process, 2-25

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQON19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-OI740-07).

Reader's Comments DEC OSF/1
Guide to Realtime Programming

AA-PS338-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
D
D
D
D
D
D
D
D

Good
D
D
D
D
D
D
D
D

Fair
D
D
D
D
D
D
D
D

Poor
D
D
D
D
D
D
D
D

What would you like to see more/less of? __________________ _

What do you like best about this manual? __________________ _

What do you like least about this manual? __________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

NamelTitle __________________ _ Dept.
__________________________ Date _______ _ Company

Mailing Address
Email ___________ Phone ________ _

I
I

- - - - Do Not Tear - Fold Here and Tape . - I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

II II •••• 11.11.11.11 •••• 1.11.1 •• 1.1 •• II .1.1 •• II .11 •• 1

- - - Do Not Tear - Fold Here

No Postage
Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

Reader's Comments DEC OSF/1
Guide to Realtime Programming

AA-PS338-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
o
o o
o
o
o
o o

Good
o o
o
o
o
o
o
o

Fair
o o
o
o
o
o
o o

Poor
o o
o
o
o
o
o o

What would you like to see morelless of? __________________ _

What do you like best about this manual? __________________ _

What do you like least about this manual? _________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______ _

Nameffitle _________________ Dept.

Company ________________________ Date

Mailing Address ___________________________ _
___________ Email ___________ Phone

- - - - Do Not Tear - Fold Here and Tape . - ,

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

111 ••••• 11. 11 •••• 11 •••• 1.1 II I •• II 1 •• 1 •• 1.1 •• II .11111

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

