
DEC aSF/ 1

mamaomo Gujde·lo-DECthreads

Part Number: AA-Q2DPA-TK

DECOSF/1
Guide to DECthreads
Order Number: AA-Q2DPA-TK

February 1994

This manual provides guidelines and reference information for DECthreads,
Digital's Multithreading Run-Time Library.

Digital Equipment Corporation
Maynard, Massachusetts

February 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1991, 1992, 1993, 1994. All rights reserved.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: AXP, DEC, DECthreads,
Digital, OpenVMS, VAX, VAX DOCUMENT, VMS, ULTRIX, and the DIGITAL logo.

The following are third-party trademarks:

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

POSIX is a registered trademark of the IEEE.

Internet is a registered trademark of Internet, Inc.

UNIX is a registered trademark licensed exclusively by XlOpen Co. Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6101

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

About This Manual. xiii

«

Part I DECthreads Overview and Programming Guidelines

1 Introduction to Multithreaded Programming

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5

Overview of Threads
Advantages of Using DECthreads
Thread Execution
Software Models for Multithreaded Programming

BosslWorker Model
Work Crew Model
Pipelining Model
Combinations of Models

Potential Problems with Multithreaded Programming

2 Thread Concepts and Operations

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.2
2.3
2.3.1
2.3.2

Thread Operations
Starting a Thread
Terminating a Thread
Normal Termination
Error Termination
Waiting for a Thread to Terminate
Deleting a Thread

Handles
Attributes Objects

Creating an Attributes Object
Deleting an Attributes Object

1-1
1-4
1-5
1-6
1-6
1-6
1-7
1-8
1-8

2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5

iii

2.3.3
2.3.3.1
2.3.3.2
2.3.3.3
2.3.3.4
2.3.3.5
2.3.4
2.3.4.1
2.3.5
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.1.3
2.4.1.4
2.4.2
2.4.3
2.5
2.6
2.7
2.8
2.9

Thread Attributes
Inherit Scheduling Attribute
Scheduling Policy Attribute
Scheduling Priority Attribute
Stacksize Attribute
Guardsize Attribute

Mutex Attributes
Mutex Type Attribute

Condition Variable Attributes
Synchronization Objects

Mutexes .. .
Fast Mutex
Recursive Mutex
Nonrecursive Mutex
Mutex Operations

Condition Variables
Other Synchronization Methods

One-Time Initialization Routines
Per-Thread Context and Thread-Specific Data
Thread Cancelation
Thread Scheduling
Atomic Queues

3 Programming with Threads

iv

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.5.2
3.6
3.7

Design for Asynchronous Execution
U sing Existing Libraries

Thread Safety
Thread Reentrancy
Working with Code that is not Thread-Safe

Converting Code to be Thread -Safe
DECthreads Global Lock
Thread -Specific Data .

Shared Variables
Static Memory
Stack Memory
Dynamic Memory
Use of Shared Memory

Stack Management
Stack Overflow
Sizing the Stack .

Priority Inversion
Using Synchronization Objects

2-5
2-6
2-6
2-7
2-8
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-11
2-11
2-12
2-12
2-17
2-17
2-18
2-19
2-21
2-23

3-1
3-2
3-3
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-9
3-9

3.7.1
3.7.2
3.7.3
3.7.4
3.8

lVIutex or Condition Variable
Race Conditions
Deadlocks
Signaling a Condition Variable

DECthreads Error Reporting

4 Using the DECthreads Exception Package

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3

4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9

4.3.10
4.3.11
4.3.12
4.4
4.5
4.6

Invoking the pthread Exception-Returning Interface
Overview of Exceptions

Types of Exceptions .
Terminating Exception Semantics

Exception Operations
Declaring and Initializing an Exception Object
Raising an Exception
Defining a Region of Code over which Exceptions are
Caught
Catching a Particular Exception
Catching All Exceptions
Reraising the Current Exception
Defining Epilogue Actions for a Block
Determining the Current Exception
Importing a System-Defined Error Status into the Program
as an Exception
Exporting a System-Defined Error Status
Reporting an Exception
Determining Whether Two Exceptions Match

C Language Syntax
Rules and Conventions for Modular Use of Exceptions
Pthread Exceptions and Definitions .

5 DECthreads Examples

5.1
5.2

Prime Number Search Example
Asynchronous User Interface Example

3-10
3-10
3-11
3-11
3-12

4-2
4-2
4-2
4-3
4-3
4-4
4-4

4-5
4-5
4-6
4-7
4-8
4-9

4-9
4-9

4-10
4-10
4-11
4-13
4-15

5-1
5-9

v

Part II POSIX 1003.4a (pthread) Reference

pthread_attr_create pthread-3
pthread_attr_delete pthread-5
pthread_attr_getguardsize_np pthread-7
pthread_attr_getinheritsched pthread-9
pthread_attr_getprio pthread-11
pthread_attr_getsched pthread-13
pthread_attr _getstacksize pth read-15
pthread_attr_setguardsize_np pthread-16
pthread_attr_setinheritsched pthread-18
pthread_attr_setprio pthread-20
pthread_attr_setsched pthread-22
pthread_attr_setstacksize pthread-24
pthread_cancel pthread-26
pthread_cleanup_pop pthread-28
pthread_cleanup_push pthread-30
pthread_condattr_create pthread-32
pthread_condattr_delete pthread-34
pthread_cond_broadcast pthread-36
pthread_cond_destroy pthread-37
pthread_cond_init pthread-39
pthread_cond_signal pthread-41
pthread_cond_signaLint_np pthread-43
pthread_cond_timedwait pthread-45
pthread_cond_wait pthread-47
pthread_create pthread-49
pthread_delay _np pthread-52
pthread_detach pthread-54
pthread_equal pthread-56
pthread_exit ... pthread-58
pthread_get_expiration_np pthread-59
pthread_getprio pthread-61
pthread-JSetscheduler . pth read-63
pthread-JSetspecific pthread-65
pthreadjoin ... pthread-67
pthread_keycreate . pth read-69

vi

pthread_lock_globaLnp pthread-71
pthread_mutexattr_create pthread-73
pthread_mutexattr_delete pthread-75
pthread_mutexattr~etkind_np pthread-77
pthread_mutexattr _setkind_np pthread-79
pthread_mutex_destroy pthread-81
pthread_mutex_init pthread-83
pthread_mutex_lock pthread-85
pthread_mutex_trylock pthread-87
pthread_mutex_unlock pthread-89
pthread_once .. pthread-91
pthread_self ... pthread-93
pthread_setasynccancel pthread-94
pthread_setcancel. pth read-96
pthread_setprio pth read-98
pthread_setscheduler pthread-1 01
pthread_setspecific pthread-1 04
pthread_testcancel pthread-106
pthread_unlock~lobal_np pthread-107
pthreadJield .. pthread-1 08

Part III Digital Proprietary Interface Reference

cma_alert_disable_asynch
cma_alert_disable~eneral
cma_alert_enable_asynch
cma_alert_enable~eneral
cma_alert_restore .
cma_alert_test
cma_attr_create
cma_attr_delete
cma_attr~et~ardsize
cma_attr_get_inherit_sched
cma_attr~et_mutex_kind
cma_attr_get_priority
cma_attr~et_sched
cma_attr_get_stacksize

cma-3
cma-5
cma-6
cma-8
cma-9

cma-11
cma-12
cma-14
cma-16
cma-18
cma-20
cma-21
cma-22
cma-23

vii

cma_attr_set_guardsize
cma_attr_set_inherit_sched
cma_attr_set_mutex_kind
cma_attr_set_priority
cma_attr_set_sched
cma_attr_set_stacksize
cma_cond_broadcast
cma_cond_create
cma_cond_delete
cma_cond_signal
cma_cond_signaLint
cma_cond_timed_ wait
cma_cond_wait
cma_debug
cma_debug_cmd
cma_delay
cma_handle_assign
cma_handle_equal
cma_init
cma_key_create
cma_key_get_context
cma_key_set_context
cma_lock_global
cma_mutex_create
cma_mutex_delete
cma_mutex_lock
cma_mutex_try _lock
cma_mutex_unlock
cma_once .. .
cma_stack_check_limit_np
cma_thread_alert
cma_thread_create
cma_thread_detach
cma_thread_exit_error
cma_thread_exit_normal
cma_thread_get_priority
cma_thread_get_sched

viii

cma-24
cma-26
cma-28
cma-29
cma-31
cma-33
cma-34
cma-35
cma-37
cma-39
cma-40
cma-42
cma-44
cma-46
cma-47
cma-48
cma-49
cma-51
cma-53
cma-54
cma-56
cma-57
cma-59
cma-61
cma-63
cma-65
cma-67
cma-69
cma-70
cma-73
cma-75
cma-77
cma-80
cma-82
cma-83
cma-84
cma-86

cma_ thread_get_self.
cma_threadjoin
cma_thread_set_priority
cma_thread_set_sched
cma_time_get_expiration
cma_unlock_global
cma-yield .. .

cma-87
cma-88

cma-90
cma-92
cma-94
cma-95

cma-96

Part IV DECthreads Library Reference (OpenVMS and DEC
OSF/1 Systems Only)

cma_lib_attr_create .. cmalib-3
cma_lib_attr_delete cmalib-5
cma_lib __ attr~et_queuesize .. cmalib-6
cma_lib_attr_set_queuesize cmalib-7

cma_lib_queue_create. .. cmalib-9
cma_lib_queue_delete cmalib-11

cma_lib_queue_dequeue cmalib-12
cma_lib_queue_enqueue cmalib-13

cma_lib_queue_requeue cmalib-14
cma_lib_queue_try _dequeue cmalib-16

cma_lib_queue_try _enqueue cmalib-18
cma_lib_queue_try _requeue cmalib-20

cma_lib_queue_try _enqueue_int cmalib-22

A Considerations for Systems Based on UNIX Software

A.1
A.1.1

A.1.2
A.2
A.3
A.3.1
A.3.2
A.3.2.1
A.3.2.2
A.3.2.3
A.4

DEC OSF/1 Systems
Compiling Multithreaded Applications: Static or Shared
Libraries
Support for the DEC OSF/1 Realtime Options

ULTRIX Systems
Jacketed UNIX Routines

Thread -Synchronous I/O
Forking aNew Process from a Thread

The forkO Jacket Routine
The atfork() Jacket Routine
Compiling Code with Jacketed System Calls

U sing Signals .

A-1

A-2
A-2
A-3
A-4
A-4
A-4
A-4
A-5
A-5
A-6

ix

A.4.1
A.4.1.1
A.4.1.2
A.4.1.3
A.4.1.4
A.4.2
A.4.2.1
A.4.2.2
A.4.3
A.5
A.6
A.6.1
A.6.2
A.6.3
A.7

Types of Signals .
Terminating Signals
Nonterminating Signals
Synchronous Signals
Asynchronous Signals

DECthreads Signal Handling
The POSIX sigwait Service
The POSIX sigaction Service

Signal Alternatives Using the sigwait Routine
Software Interrupts and Exceptions
Signals Reported as Exceptions .

Synchronous Terminating Signals
Arithmetic Error Signals
Illegal Instruction Signals .

Debugging Threads

B Considerations for OpenVMS Systems

8.1

8.2
8.3
8.4
8.5
8.5.1
8.5.2

Using DECthreads with Asynchronous System Trap (AST)
Routines
Declaring an OpenVMS Condition Handler
Linking Open VMS Images
Including DECthreads Header Files
Debugging Threads

Calling the cma_debug Routine
Using OpenVMS Debugger Tasking Support

C DECthreads Exceptions

D DECthreads Nonstandard Types for the POSIX 1003.4a
Interface

Glossary

x

A-6
A-7
A-7
A-7
A-7
A-a
A-a
A-a
A-a
A-9

A-10
A-10
A-10
A-11
A-12

8-1
8-1
8-2
8-2
8-3
8-3
8-4

Index

Examples

5-1
5-2

Figures

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
2-4
2-5
2-6
2-7

Tables

4-1
A-1

A-2
A-3
A-4
A-5
8-1

8-2
C-1
0-1

C Program Example (Prime Number Search)
C Program Example (Asynchronous User Interface)

Single Threaded Process
Multithreaded Process
Thread State Transition Diagram
Work Crew Model of Thread Operation
Pipe lining Model of Thread Operation
Only One Thread Can Lock a Mutex '.
Thread A Waits on Condition Ready
Thread B Signals Condition Ready
Thread A Wakes and Proceeds
Flow with FIFO Scheduling
Flow with RR Scheduling
Flow with Default Scheduling

Conventions
Pthread Exceptions
DEC OSF/l Static and Shared Libraries for Multithreaded

5-3
5-10

1-2
1-3
1-5
1-7
1-8

2-10
2-14
2-15
2-16
2-22
2-22
2-22

xvi

4-15

Programs . A-2
Synchronous Terminating Signals
Arithmetic Error Signals
Illegal Instruction Signals .
DECthreads Debugging Commands and Qualifiers
DECthreads Header Files
DECthreads Debugging Commands and Qualifiers
DECthreads Exceptions
DECthreads Nonstandard Data Types

A-10
A-11
A-11
A-12

8-3
8-3
C-1
D-1

xi

About This Manual

This manual provides usage and reference information on DECthreads
routines.

DECthreads provides three complete and distinct interfaces that allow you to
perform multithreaded operations: pthread, pthread exception-returning, and
cma. The interface you select depends upon your goals and environment.

Audience
This manual is intended for system and application programmers who want to
create a multithreaded program using DECthreads routines.

Organization
This manual consists of the following:

Part I

• Chapter 1 provides a brief overview of multithreaded programming.

• Chapter 2 discusses the concepts and techniques related to DECthreads.

• Chapter 3 describes issues you may face when writing a multithreaded
program.

• Chapter 4 introduces and provides conventions for the modular use of the
DECthreads exception package.

• Chapter 5 contains examples demonstrating how to call DECthreads
routines from the C language.

Part II

• This part provides detailed reference information on each DECthreads
pthread routine. Routine descriptions appear in alphabetical order by
routine name.

xiii

Part III

• This part provides detailed reference information on each DECthreads
cma routine. Routine descriptions appear in alphabetical order by routine
name.

Part IV

• This part provides detailed reference information on each DECthreads
library routine. Routine descriptions appear in alphabetical order by
routine name ..

Appendixes

• Appendix A discusses DECthreads issues specific to systems based on
UNIX software.

• Appendix B discusses DECthreads issues and restrictions specific to
Open VMS systems.

• Appendix C lists the DECthreads exceptions with an explanation and a
recommended user action for each exception.

• Appendix D lists the DECthreads nonstandard data types that correspond
to the types specified by the POSIX 1003.4a standard, with an explanation
of each type.

Glossary

• See the Glossary for definitions of terms used in this manual. The terms
are listed alphabetically.

Related Documents

xiv

See your system's documentation set for more information on that system.
DECthreads is available on the following platforms:

• DEC OSF/l AXP Version 1.0 or higher

• ULTRIX Version 4.2 or higher

• OpenVMS AXP Version 1.0 or higher

• VMS Version 5.5 or higher

The printed version of the DEC OSF/l documentation set is color coded to
help specific audiences quickly find the books that meet their needs. This
color coding is reinforced with the use of an icon on the spines of books. The
following list describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also
used by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides information
on all of the books in the DEC OSF/1 documentation set.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSF/1 manual. You
can send your comments in the following ways:

• Internet electronic mail: readerscomment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

Conventions
Table 1 shows the conventions used in this manual.

xv

xvi

Table 1 Conventions

Convention

%
$

cat(l)

Ctrllx

monospaced text

monospaced text

()

[]

{}

boldface text

Description

A percent sign represents the C shell system
prompt. A dollar sign represents the system prompt
for the Bourne and Korn shells.

A number sign represents the superuser prompt.

A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

The key combination Ctrllx indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, CtrlN or CtrllZ.

This typeface indicates the name of a command,
routine, service, exception, or file. This typeface is
also used in interactive examples and other screen
displays.

This bolded typeface represents user input in
interactive examples in the hardcopy and online
versions of this guide.

A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

A vertical ellipsis indicates the omission of items
from a code example or command format; the items
are omitted because they are not important to the
topic being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that
whatever is enclosed is optional; you can select
none, one, or all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Boldface text represents the introduction of a new
term.

(continued on next page)

Table 1 (Cont.) Conventions

Convention

italic text

numbers

mouse

Description

Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

Unless otherwise noted, all numbers in the text are
assumed to be decimal. N ondecimal radixes
binary, octal, or hexadecimal-are explicitly
indicated.

The term mouse refers to any pointing device, such
as a mouse, a puck, or a stylus.

xvii

Part I
DECthreads Overview and Programming

Guidelines

Part I contains chapters that provide a DECthreads overview and concepts as
well as programming guidelines for writing a multithreaded program.

1
Introduction to Multithreaded

Programming

This chapter introduces multithreaded programming, which is the
division of a program into multiple threads that execute concurrently. It also
describes four software models that can be used as a basis for constructing
multithreaded programming programs and applications.

This chapter also introduces concepts and techniques that are defined in more
detail in Chapter 2.

1.1 Overview of Threads
A thread is a single, sequential flow of control within a program. Within a
single thread, there is a single point of execution. Most traditional programs
consist of a single thread.

Using DECthreads, Digital's multithreading run-time library, a programmer
can create several threads within a program. Threads execute concurrently,
and, within a multithreaded program, there are at any time multiple points
of execution. Threads execute within (and share) a single address space.
Therefore, threads read and write the same memory locations. Synchronization
elements such as mutexes and condition variables ensure that the shared
memory is accessed correctly. DECthreads provides routines that allow you
to create and use these synchronization elements. Mutexes and condition
variables are discussed in Section 2.4.1 and Section 2.4.2.

Figure 1-1 and Figure 1-2 show the differences between a single threaded
process and a multithreaded process.

Introduction to Multithreaded Programming 1-1

Figure 1-1 Single Threaded Process

Process

Memory

Stack

ZK-3913A-GE

In Figure 1-2, notice that multiple threads share heap storage, static storage,
and code but that each thread has its own register set and stack.

1-2 Introduction to Multithreaded Programming

Figure 1-2 Multithreaded Process

Process
Thread Thread Thread

Memory

Stack Stack Stack

ZK-3914A-GE

DECthreads provides the following three separate interfaces with which you
can perform multithreaded operations:

• pthread interface

The pthread interface is based on Draft 4 of the proposed IEEE standard
for multithreaded programming, POSIX l003.4a. This interface reports
errors by setting a C language construct, the global errno value, and
returning -l.

Applications consistent with PI003.4a1D4 might require significant
modifications for those future versions of DECthreads that conform to
subsequent drafts or the final l003.4a standard. However, other vendors
have implemented the PI003.4a interface; therefore, programs using the
pthread interface are more portable to non-Digital platforms than programs
using the cma interface.

• pthread exception-returning interface

Introduction to Multithreaded Programming 1-3

The pthread exception-returning interface has the same syntax as the
pthread interface (and might also require modifications as the PI003.4a
standard evolves). However, like the cma interface, the pthread exception
returning interface reports errors by raising exceptions. This simplifies the
development of robust programs and reduces the chances of unpredictable
behavior caused by ignored errors.

• cma interface

The cma interface is a proprietary interface designed by Digital. Programs
written to use the cma interface will run without need for modification on
future versions of DECthreads. The cma interface reports errors by raising
exceptions. This interface is usually not available on non-Digital platforms.

1.2 Advantages of Using DECthreads
Threads are used to improve the performance (throughput, computational
speed, responsiveness-or some cOlnbination) of a program. Multiple threads
are useful in a multiprocessor system where threads run concurrently on
separate processors. Threads created using the DECthreads library are
capable of utilizing multiprocessors if the operating system on that platform
supports kernel threads. Multiple threads also improve program performance
on single processor systems by permitting the overlap of input, output, or other
slow operations with computational operations.

Threads are useful in driving slow devices such as disks, networks, terminals,
and printers. A multithreaded program can perform other useful work while
waiting for the device to produce its next event (such as the completion of a
disk transfer or the receipt of a packet from the network).

It is also advantageous to use threads when constructing a user interface.
Consider the typical arrangement of a window system. Each time the user
invokes an action (by clicking on a mouse button for example), a separate
thread can be used to implement the action. If the user invokes multiple
actions, multiple threads perform the actions in parallel. (Note that the
implementation of the window system can also use a thread to handle the
mouse actions, because the mouse is an example of a slow device.)

Threads are especially advantageous when building a distributed system.
These systems frequently contain a shared network server, where the server
services requests from multiple clients. Using multiple threads allows the
server to handle clients' requests in parallel, instead of artificially serializing
them (or creating one server process per client, at great expense).

1-4 Introduction to Multithreaded Programming

1.3 Thread Execution
You can view multiple threads in a program as executing simultaneously.
However, you cannot make any assumptions about the relative start or finish
times of threads or the sequence in which they execute. Nevertheless, you can
influence the scheduling of threads.

Each thread has its own thread identifier, which allows it to be uniquely
identified. Also associated with a thread are its scheduling policy and priority,
thread-specific data values, and the required system resources to support a
flow of control.

A thread changes states during the course of its execution. A thread is in one
of the following states:

• Waiting-The thread is not eligible to execute because it is synchronizing
with another thread or with an external event, such as lIO.

• Ready-The thread is eligible to be executed by a processor.

• Running-The thread is currently being executed by a processor.

• Terminated-The thread has completed all of its work.

Figure 1-3 shows the transitions between states for a typical thread
implementation.

Figure 1-3 Thread State Transition Diagram

L....-_w_a-,ir-tin_g_....IHL..._R_e_a_dy_-....IH
I

Running H Terminated

I
ZK-3786A-GE

Note ________________________ _

A multithreaded program must be reentrant. Therefore, be sure that
your compiler generates reentrant code before you do multithreading
design or coding work. (C, Ada, Pascal, and BLISS compilers generate
reentrant code by default.)

If your program is nonreentrant, it may be impossible to keep the
program's threads from interfering with each other. See Section 3.2.2
for more information about thread reentrancy.

Introduction to Multithreaded Programming 1-5

1.4 Software Models for Multithreaded Programming
The following sections describe four software models for which multithreaded
programming is especially well suited:

• Boss/worker model

• Work crew model

• Pipelining model

• Combinations of models

1.4.1 BosslWorker Model
In a boss/worker model of program design, one thread functions as the boss
because it assigns tasks to worker threads for them to perform. Each worker
performs a different task until it has finished, at which point it notifies the
boss that it is ready to receive another task. Alternatively, the boss polls
workers periodically to see whether or not each worker is ready to receive
another task.

A variation of the boss/worker model is the work queue model. The boss places
tasks in a queue, and workers check the queue and take tasks to perform.
An example of the work queue model in an office environment is a secretarial
typing pool. The office manager (boss) puts documents to be typed in a basket
and typists (workers) take documents from the basket to work on.

1.4.2 Work Crew Model
In the work crew model, multiple threads work together on a single task. The
task is divided horizontally into pieces that are performed in parallel, and each
thread performs one piece. An example of a work crew is a group of people
cleaning a house. Each person cleans certain rooms or performs certain types
of work (washing floors, polishing furniture, and so forth), and each works
independently.

Figure 1-4 shows a task performed by three threads in a work crew model.

1-6 Introduction to Multithreaded Programming

Figure 1-4 Work Crew Model of Thread Operation

TASK

Thread A

Setup Thread B Cleanup

Thread C

(Time)

ZK-3787A-GE

1.4.3 Pipelining Model
In the pipelining model, a task is divided vertically into steps. The steps must
be performed in sequence to produce a single instance of the desired output,
and the work done in each step (except for the first and last) is based on the
previous step and is a prerequisite for the work in the next step. However, the
program is designed to produce multiple instances of the desired output, and
the steps are designed to operate in parallel so that while one step is performed
on one instance of the output, the preceding step can be performed on the next
instance of the output.

An example of the pipe lining model in a factory environment is an automobile
assembly line. Each step or stage in the assembly line is continually busy
receiving the product of the previous stage's work, performing its assigned
work, and passing the product along to the next stage.

In a multithreaded program using the pipelining model, each thread executes
a step in the task. Figure 1-5 shows a task performed by three threads in a
pi pelining model.

Introduction to Multithreaded Programming 1-7

Figure 1-5 Pipelining Model of Thread Operation

TASK

Thread A Thread B Thread C

(Time)

ZK-3788A-GE

1.4.4 Combinations of Models
You may find it appropriate to combine the software models in a single program
if your task is complex. For example, a program could be designed using the
pipelining model, but with one or more steps handled by a work crew. In
addition, threads could be assigned to a work crew by taking a task from a
work queue and deciding (based on the task characteristics) which threads are
needed for the work crew.

1.5 Potential Problems with Multithreaded Programming
When you design and code a multithreaded program, consider the following
problems and accommodate or eliminate each as appropriate:

• Program complexity

Program complexity is the most significant problem to consider in any
multithreaded programming effort. Although using threads can simplify
the coding and designing of a program, a certain level of expertise is
required to be sure that the synchronization and interplay among threads
is correct. This level of expertise is higher than for most single-threaded
programs.

• Race conditions

A type of programming error called a race condition causes unpredictable
and erroneous program behavior. Section 3.7.2 discusses race conditions in
more detail.

1-8 Introduction to Multithreaded Programming

• Deadlocks

A type of programming error called a deadlock causes two or more threads
to be blocked from executing indefinitely. Section 3.7.3 discusses deadlocks
in more detail.

• Priority inversion

Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads of different priorities.
Section 3.6 discusses priority inversion in more detail.

• N onreentrant software

If a thread calls a routine or library that is not equipped to deal with
threads, use the global locking mechanism to prevent conflicts with
other threads using the same routine or library. Section 3.2.2 discusses
nonreentrant software in more detail.

Introduction to Multithreaded Proarammina 1-9

2
Thread Concepts and Operations

This chapter discusses concepts and techniques related to DECthreads.

For detailed information on the multithreading routines referred to in this
chapter, see the description of that routine in the appropriate reference section.

2.1 Thread Operations
The following sections describe the operations you can perform with threads.

2.1.1 Starting a Thread
To start a thread, you can create it using the cma thread create or
pthread create routine. These routines create the thread-object, based on
the specified or default attributes, and start execution of the function you
specified as the thread's start routine.

2.1.2 Terminating a Thread
A thread exists until it terminates and the cma thread detach or
pthread detach routine has been called for the -thread.-If the thread
terminates before a detach routine has been called for it, then the thread
continues to exist and other threads can join it until it is detached.

Note ________________________ _

When the initial thread returns from the main routine, the entire
process (on UNIX systems) or image (on OpenVMS systems)
terminates, just as it does when a thread calls exit () (on systems
based on UNIX software) or SYS$EXIT (on OpenVMS systems).

A thread terminates for any of the following reasons:

• The thread returns from its start routine. This is the usual case.

• The thread calls the cma thread exit normal, cma thread exit error, or
pthread _ exit routine. - - - - - -

Thread Concepts and Operations 2-1

The cma thread exit normal routine terminates the calling thread when
successful compietion ~ccurs prematurely; the cma thread exit error
routine terminates the calling thread when an error occurs. The
pthread exit routine terminates the calling thread and returns a status
value to indicate the thread's exit status.

• The thread is terminated prematurely after having been specified in a call
to the cma _thread_alert or pthread _cancel routine.

The cma thread alert and pthread cancel routines request termination
of a specified thread if alerts or cancelation are permitted. See Section 2.7
for more information on canceling threads and controlling whether or not
cancelation is permitted.

2.1.3 Normal Termination
Normal termination occurs when a thread returns from its start_routine
function or calls cma thread exit normal or pthread exit. In the case of a
normal termination, the follOWing actions are performed:

1. The return value of the start routine function and the normal termination
status (cma c term normal) are copied into the thread object. This permits
both to be ohfained-when another thread later calls the cma thread join
routine. (The pthread join routine returns only the start routine function
value). If the start routine returns normally and the start routine is a
procedure that does not return a value, then the return value obtained by
cma _thread _join or pthread _join will be unpredictable.

2. Each thread-specific data destructor is removed from the list of destructors
for this thread, and then is called. This step destroys all the thread
specific data associated with the current thread. See Section 2.6 for more
information on thread -specific data.

If an unhandled exception occurs when calling a destructor, the steps
described in the following section on error termination are performed.

3. In the pthread interface to DECthreads, each cleanup handler that
has been declared by pthread cleanup push and not yet removed by
pthread cleanup pop is called. The most recently pushed handler is called
first. - -

4. A broadcast is made so that all threads currently waiting in a call to
cma _thread _join or pthread _join can return from the call.

5. The thread object is marked to indicate that it is no longer needed by the
thread itself. A check is made to determine if the thread object is no longer
needed by other threads, that is, if cma thread detach or pthread detach
has already been called. If that routine has been called, then the thread

2-2 Thread Concepts and Operations

object is deallocated. Otherwise, the thread object is retained for use by
subsequent joiners until it is detached.

2.1.4 Error Termination
Error termination occurs when a thread calls the cma thread exit error
routine or calls the pthread exit routine specifying an error status as an
argument. In the case of an-error termination, the following actions are
performed:

1. The exit status of the thread object is set to the error value.

2. The unwind handlers of any stack frames that are still active are invoked.

3. Execution continues at step 2 in Section 2.1.3.

2.1.5 Waiting for a Thread to Terminate
A thread waits for the termination of another thread by calling the
cma thread join or pthread join routine. Execution in the current thread is
suspended {i'"ntil the specified-thread terminates. If multiple threads call these
routines and specify the same thread, all threads resume execution when the
specified thread terminates.

If you specify the current thread with the cma thread join or pthread join
routine, a deadlock results. See Section 3.7.3 for more information abo~t
deadlocks.

Do not confuse cma thread join and pthread join with other routines that
cause waits and that are related to the use of a particular DECthreads feature.
For example, use the cma cond wait or pthread cond wait routines, or
the cma cond timedwai t or pthread cond timedwai t routines to wait for a
condition variable to be signaled or broadcast. (See Section 2.4.2 for more
information on condition variables.)

2.1.6 Deleting a Thread
Once a thread has been marked for deletion, it is automatically deleted after
it terminates; that is, no explicit deletion operation is required. If the thread
has not yet terminated, the cma thread detach or pthread detach routine
marks the thread for deletion, and its storage is reclaimed immediately
when the thread terminates. A thread cannot be joined or canceled after the
cma thread detach or pthread detach routine has been called for the thread
(even if the thread has not yet terminated).

If a thread that has not been detached terminates, its storage is retained so
that other threads can join with it. The storage is reclaimed when the thread
is detached.

Thread Concepts and Operations 2-3

2.2 Handles
A handle is storage, similar to a pointer, that refers to a specific DECthreads
object (thread, mutex, condition variable, queue, or attributes object).

Handles are allocated by the user application. They can be freely copied
by the program and stored in any class of storage; objects are managed by
DECthreads.

Because DEC threads objects are only accessed by handles, you can think of the
handle as if it were the object itself.

DECthreads objects are accessed by handles, rather than pointers, because
handles allow for greater robustness and portability. Handles allow
DECthreads to detect the following types of run-time errors:

• U sing an unini tialized handle

• Using a handle that has been corrupted

• Using a handle whose object no longer exists (a dangling handle)

2.3 Attributes Objects
An attributes object is used to describe DECthreads objects. This description
consists of the individual attribute values that are used to create an object. An
attributes object is analogous to a type definition in a programming language;
it describes details of the objects to be created.

When you create an object, you can accept the default attributes for that object
or specify an attributes object that contains specific attributes that you have
set. For a thread, you can also change certain attributes after thread execution
starts-for example, you can change the thread's priority.

The following sections describe how to create and delete attributes objects, and
describe the individual attributes that you can specify for different objects.

2.3.1 Creating an Attributes Object
To create an attributes object, you can use one of the following routines,
depending on the type of object to which the attributes apply:

• cma _attr _create for any type of cma attributes object

• pthread _ attr _create for pthread thread attributes

• pthread _ condattr _create for pthread condition variable attributes

• pthread _ mutexattr _create for pthread mutex attributes

2-4 Thread Concepts and Operations

These routines create an attributes object containing default values for the
individual attributes. To modify any attribute values in an attributes object,
use one of the set routines described in the following sections.

Creating an attributes object or changing the values in an attributes object
does not affect the attributes of objects previously created.

In the cma interface to DECthreads, there is no distinction between thread,
mutex, or condition variable attributes objects. All attributes objects are
identical and can be used to create any type of object. However, in the pthread
interface, each type of object has a distinct type of attributes object.

2.3.2 Deleting an Attributes Object
To delete an attributes object, use one of the following routines:

• cma _attr _delete for any type of cma attributes object

• pthread _ attr _delete for pthread thread attributes objects

• pthread _ condattr _delete for pthread condition variable attributes objects

• pthread _ mutexattr _delete for pthread mutex attributes objects

Deleting an attributes object does not affect the attributes of objects previously
created with that attributes object.

2.3.3 Thread Attributes
A thread attributes object allows you to specify values for thread attributes
other than the defaults when you create a thread with the cma thread create
or pthread create routine. To use a thread attributes object, perform-the
following steps:

1. Create a thread attributes object by calling the cma attr create or
pthread _attr _create routine. - -

2. Call the routines discussed in the following sections to set the individual
attributes of the thread attributes object.

3. Create a new thread by calling the cma thread create or pthread create
routine and specifying the handle of th; thread-attributes object. -

You have control over the following attributes of a new thread:

• Scheduling inheritance

• Scheduling policy

• Scheduling priority

Thread Concepts and Operations 2-5

• Stack size

• Stack guard size

2.3.3.1 Inherit Scheduling Attribute
The inherit scheduling attribute specifies whether a newly created
thread inherits the scheduling attributes (scheduling priority and policy)
of the creating thread (the default) or uses the scheduling attributes
stored in the attributes object. You can set this attribute by calling the
cma _attr _set_ inherit_sched or pthread_ attr _setinheritsched routine.

2.3.3.2 Scheduling Policy Attribute
The scheduling policy attribute describes how the thread is scheduled
for execution relative to the other threads in the program. (In the following
list, the lowercase policy corresponds to the cma interface and the uppercase
policy corresponds to the pthread interface.) A thread has one of the following
scheduling policies:

• cma c sched fifo or SCHED FIFO (first-inlfirst-out (FIFO»-The highest
priority thread runs until it-blocks. If there is more than one thread with
the same priority and that priority is the highest among other threads,
the first thread to begin running continues until it blocks. If a thread with
this policy becomes ready, and it has a higher priority than the .currently
running thread, then it preempts the current thread and begins running
immediately.

• cma c sched rr or SCHED RR (round-robin (RR»-The highest priority
thread runs until it blocks; however, threads of equal priority, if that
priority is the highest among other threads, are timesliced. (Timeslicing
is a mechanism that ensures that every thread is allowed time to execute
by preempting running threads at fixed intervals.) If a thread with this
policy becomes ready, and it has a higher priority than the currently
running thread, then it preempts the current thread and begins running
immediately.

• cma c sched throughput (also known as cma c sched default) or
SCHED - FG NP (also known as SCHED OTHER) (D~fault)-All threads are
timesiiced. Under this policy, all threads receive some scheduling
regardless of priority. Therefore, no thread is completely denied execution
time. Nevertheless, higher priority threads receive more execution time
than lower priority threads. Threads with the default scheduling policy can
be denied execution time by FIFO or RR threads.

2-6 Thread Concepts and Operations

• cma c sched background or SCHED BG NP (Background)-Like the default
(throughput)-scheduling policy, this pOiicy ensures that all threads,
regardless of priority, receive some scheduling. However, background
threads can be denied execution time by FIFO or RR threads, and receive
less execution time than default policy threads.

You can use either of the following methods to set the scheduling policy
attribute:

• Set the scheduling policy attribute in the attributes object, which
establishes the scheduling policy of a new thread when it is created. To
do this, call the cma attr set sched or pthread attr setsched routine.
This allows the creator of a thread to establish the created thread's
initial scheduling policy and priority. Note that this value is used only
if the attributes object is set so that the created thread does not inherit
its priority from the creating thread. Inheriting priority is the default
behavior.

• Change the scheduling policy of an existing thread (and, at the same
time, the scheduling priority) by calling the cma thread set sched or
pthread setscheduler routine. This allows a thread to change its own
scheduli~g policy and priority but has no effect on an attributes object.

Section 2.8 describes and shows the effect of scheduling policy on thread
sched uling.

2.3.3.3 Scheduling Priority Attribute
The scheduling priority attribute specifies the execution priority of a
thread. This attribute is expressed relative to other threads in the same policy
on a continuum of minimum to maximum for each scheduling policy. A thread's
priority falls within one of the following ranges, depending on its scheduling
policy.

For cma routines:

Low

cma_c_prio_fifo_min

cma_c_prio_rr _min

cma_c_prio_through_min

cma_c_prio_back_min

Mid

cma_c_prio_fifo_mid

cma_c_prio_rr_mid

cma_c_prio_ through_mid

cma_c_prio_back_mid

High

cma_c_prio_fifo_max

cma_c_prio_IT_max

cma_c_prio_through_max

cma_c_prio_back_max

Thread Concepts and Operations 2-7

For pthread routines:

Low

PRCFIFO_MIN

PRCRR_MIN

PRCOTHER_MIN

PRCFG_MIN_NP

PRCBG_MIN_NP

High

PRCFIFO_MAX

PRCRR_MAX

PRCOTHER_MAX

PRCFG_MAX_NP

PRCBG_MAX_NP

Section 2.8 describes how to specify priorities between the minimum and
maximum values, and it also discusses how priority affects thread scheduling.

You can use either of the following methods to set the scheduling priority
attribute:

• Set the scheduling priority attribute in the attributes object, which
establishes the execution priority of a new thread when it is created. To
do this, call the cma attr set priority or pthread attr setprio routine.
This allows the creator of-a thread to establish the created thread's initial
execution priority. Note that this value is used only if the attributes object
is set so that the created thread does not inherit its priority from the
creating thread. Inheriting priority is the default behavior.

• Change the scheduling priority attribute of an existing thread by calling
the cma thread set priority or pthread setprio routine. (Call the
cma thread set sChed or pthread setscheduler routine to change both
the scheduling priority and scheduling policy of an existing thread.) This
allows a thread to change its <own execution priority.

2.3.3.4 Stacksize Attribute
The stacksize attribute is the minimum size (in bytes) of the memory
required for a thread's stack. To increase or decrease the size of the stack '
for the thread about to be created, call the cma attr set stacksize or
pthread attr setstacksize routine, and use this attributes object when
creating the thread and stack. You cannot change the size of a thread's stack
after the thread has been created. See Section 3.5.2 for more information on
sizing a stack.

2-8 Thread Concepts and Operations

2.3.3.5 Guardsize Attribute
The guard size attribute is the minimum size (in bytes) of the guard area
for the stack of a thread. A guard area is a reserved area designed to help
prevent or detect, or both, overflow of the thread's stack. The guard area is a
region of memory that cannot be accessed by a thread. It is located adjacent to
the last page in the thread's stack. To increase or decrease the size of the guard
area for the thread about to be created, call the cma attr set guardsize or
pthread _ attr _ setguardsize _ np routine. - - -

2.3.4 Mutex Attributes
A mutex attributes object allows you to specify values other than
the defaults for mutex attributes when you create a mutex with the
cma _ mutex _ create or pthread _ mutex _ ini t routine.

Section 2.4.1 describes the purpose and types of mutexes.

2.3.4.1 Mutex Type Attribute
The mutex type attribute specifies whether a mutex is fast, recursive,
or nonrecursive. (See Section 2.4.1 for more information.) You can set
the mutex type attribute by calling the cma attr set mutex kind or
pthread mutexattr setkind np routine. If-you do not use a mutex
attribut;s object to select a mutex type, calling the cma mutex create or
pthread _mutex _ ini t routine creates a fast mutex by default. -

2.3.5 Condition Variable Attributes
Currently, no attributes affecting condition variables are defined. You cannot
change any attributes in the condition variable attributes object.

Section 2.4.2 describes the purpose and uses of condition variables.

2.4 Synchronization Objects
In a multithreaded program, you must use synchronization objects whenever
there is a possibility of corruption of shared data or conflicting scheduling of
threads that have mutual scheduling dependencies. The following sections
discuss DECthreads synchronization objects: mutexes and condition variables.

Thread Concepts and Operations 2-9

2.4.1 Mutexes
A mutex (mutual exclusion) is an object that multiple threads use to ensure
the integrity of a shared resource that they access, most commonly shared data,
by allowing only one thread to access it at a time. A mutex has two states,
locked and unlocked. For each piece of shared data, all threads accessing that
data must use the same mutex: each thread locks the mutex before it accesses
the shared data and unlocks the mutex when it is finished accessing that data.
If the mutex is locked by another thread, the thread requesting the lock either
waits for the mutex to be unlocked or returns, depending on the lock routine
called. (See Figure 2-1.)

Figure 2-1 Only One Thread Can Lock a Mutex

r
Thread A

block

Thread B

ZK-3795A-GE

Each mutex must be created. (To create mutexes as part of your program's
one-time initialization code, see Section 2.5.) To create a mutex, use the
cma mutex create or pthread mutex init routine. These routines allow you
to specify an attributes object,-which allows you to specify the mutex type. The
types of mutexes are described in the following sections.

2.4.1.1 Fast Mutex
A fast mutex (the default) is locked exactly once by a thread. If a thread tries
to lock the mutex again without first unlocking it, the thread waits for itself to
release the lock and deadlocks.

This type of mutex is called fast because it can be locked and unlocked more
rapidly than a recursive or nonrecursive mutex. It is the most efficient form of
mutex.

2-10 . Thread Concepts and Operations

2.4.1.2 Recursive Mutex
A recursive mutex can be locked more than once by a given thread
without causing a deadlock. The thread must call the cma mutex unlock
or pthread mutex unlock routine the same number of times that it called the
cma mutex -lock or pthread mutex lock routine before another thread can
lock-the m"iitex. Recursive mutexeshave the notion of a mutex owner. When
a thread successfully locks a recursive mutex, it owns that mutex and the lock
count is set to 1. Any other thread attempting to lock the mutex blocks until
the mutex becomes unlocked. If the owner of the mutex attempts to lock the
mute x again, the lock count is incremented, and the thread continues running.
When an owner unlocks a recursive mutex, the lock count is decremented. The
mutex remains locked and owned until the count reaches zero. It is an error
for any thread other than the owner to attempt to unlock the mutex.

A recursive mutex is useful if a thread needs exclusive access to a piece of data,
and it needs to call another routine (or itself) that needs exclusive access to the
data. A recursive mutex allows nested attempts to lock the mutex to succeed
rather than deadlock.

This type of mutex is called recursive because it allows you a capability
not permitted by a fast (default) mutex. However, its use requires more
careful programming. A recursive mutex should never be used with
condition variables, because the unlock performed for a cma cond wait or
pthread cond wait, or a pthread cond timedwai t or cma cond tlmedwai t
might n;;-t actiially release the mtrtex. In that case, no other thread can
satisfy the condition of the predicate, and the thread waits indefinitely. See
Section 2.4.2 for information on the condition variable wait and timed wait
routines.

2.4.1.3 Nonrecursive Mutex
A nonrecursive mutex is locked exactly once by a thread, like a fast mutex.
If a thread tries to lock the mutex again without first unlocking it, the thread
receives an error. Thus, nonrecursive mutexes are more informative than
fast mutexes because fast mutexes deadlock in such a case, leaving you to
determine why the thread no longer executes. Also, if a thread other than the
owner tries to unlock a nonrecursive mutex, an error is returned. N onrecursive
mutexes are useful during development and debugging. Nonrecursive mutexes
can be replaced with fast mutexes when the code is put into production use.

Thread Concepts and Operations 2-11

2.4.1.4 Mutex Operations
To lock a mutex, use one of the following routines, depending on what you want
to happen if the mutex is locked:

• cma _ mutex _lock or pthread _ mutex _lock

If the mutex is locked, the thread waits for the mutex to become available.

• cma_mutex_trylock or pthread_mutex_trylock

This routine returns immediately with a Boolean value indicating whether
or not it was able to lock the mutex. Based on this return value, the calling
thread can take the appropriate action.

When a thread is finished accessing a piece of shared data, it unlocks the
associated mutex by calling the cma mutex unlock or pthread mutex unlock
routine. If another thread is waiting on the mutex, it is placed in the ready
state. If more than one thread is waiting on the mutex, the scheduling policy
(see Section 2.3.3.2) and the scheduling priority (see Section 2.3.3.3) determine
which thread is readied, and the next running thread that requests it locks
the mutex. The mutex is not automatically granted to the first waiter. If the
unlocking thread attempts to relock the mutex before the first waiter gets a
chance to run, the unlocking thread will succeed in relocking the mutex, and
the first waiter may be forced to reblock.

You can delete a mutex and reclaim its storage by calling the cma mutex delete
or pthread mutex destroy routine. Use these routines only after the ~utex is
no longer needed by any thread. A mutex cannot be deleted while it is locked.
Mutexes are automatically deleted when the program terminates.

Note

There is no deadlock detection for mutexes other than nonrecursive
mutexes or for deadlocks composed of combinations of multiple mutexes
or condition variables.

2.4.2 Condition Variables
A condition variable allows a thread to block its own execution until
some shared data reaches a particular state. A condition variable is a
synchronization object used in conjunction with a mutex. A mutex controls
access to shared data; a condition variable allows threads to wait for that data
to enter a defined state. The state is defined by a Boolean expression called a
predicate.

2-12 Thread Concepts and Operations

Cooperating threads check the predicate and wait on the condition variable.
For example, one thread in a program produces work-to-do packets and
another thread consumes these packets (does the work). If there are no
work-to-do packets when the consumer thread checks, that thread waits on a
work-to-do condition variable. When the producer thread produces a packet, it
signals the work-to-do condition variable.

A condition variable is used for tasks with coarse granularity; a thread
can wait on a condition variable for long periods. A mutex is used for
synchronization with fine granularity and should be held only for short
periods of time.

You must associate a mutex with a condition variable. A thread locks a mutex
for some shared data and then checks whether or not the shared data is
in the proper state. If it is not in the proper state, the thread waits on the
appropriate condition variable. Waiting on the condition variable automatically
unlocks the mutex. It is essential that the mutex be unlocked because another
thread needs to acquire the mutex in order to put the data in the state
required by the waiting thread. When the thread that acquires the mutex
puts the data in the appropriate state, it wakes a waiting thread by signaling
the condition variable. One thread comes out of its wait state with the mutex
locked (the thread relocks the mutex before returning from the wait); other
threads waiting on the condition variable remain blocked.

It is important to evaluate the predicate in a while loop. This ensures that
the program will check the predicate after it returns from the condition wait
and guards against the predicate becoming false again as the waiting thread
completes the wait.

For example, a thread A may need to wait for a thread B to finish a task X
before Thread A proceeds to execute a task Y. Thread B can tell Thread A that
it has finished Task X by putting a true or false value in a shared variable (the
predicate). When Thread A is ready to execute Task Y, it looks at the shared
variable to see if Thread B is finished (see Figure 2-2).

Thread Concepts and Operations 2-13

Figure 2-2 Thread A Waits on Condition Ready

~tex-reV1
YES

4-NOe

Thread A

ZK-3793A-GE

First, Thread A locks the mutex named mutex_ready that is associated with
the shared variable named ready. Then it reads the value in ready. This test
is called the predicate. If the predicate indicates that Thread B has finished
Task X, then Thread A can unlock the mutex and proceed with Task Y. If the
predicate indicates that Thread B has not yet finished Task X, however, then
Thread A waits for the predicate to change by calling the cma cond wait or
pthread cond wait routine. This automatically unlocks the mutex,-allowing
Thread B to lock the mutex when it has finished Task X. Thread B updates
the shared data (predicate) to the state Thread A is waiting for and signals
the condition variable by calling the cma cond signal or pthread cond signal
routine (see Figure 2-3). - - - -

2-14 Thread Concepts and Operations

Figure 2-3 Thread B Signals Condition Ready

Thread B

ZK-3792A-GE

Thread B releases its lock on the shared variable's mutex. As a result of
the signal, Thread A wakes up, implicitly regaining its lock on the condition
variable's mutex. It then verifies that the predicate is in the correct state, and
proceeds to execute Task Y (see Figure 2-4).

Thread Concepts and Operations 2-15

Figure 2-4 Thread A Wakes and Proceeds

unlock

lock

(wakeup)

Thread A

ZK-3794A-GE

Note that although the condition variable is used for communication among
threads, the communication is anonymous. Thread B does not necessarily
know that Thread A is waiting on the condition variable that Thread B signals
and Thread A does not know that it was Thread B that awakened it from its
wait on the condition variable.

You can use the cma cond ini t or pthread cond ini t routine to create a
condition variable. To create condition variables as part of your program's
one-time initialization code, see Section 2.5.

Use the cma cond wait or pthread cond wait routine to cause a thread to wait
until the colldition is signaled or broadcast. These routines specify a condition
variable and a mutex that you have locked. (If you have not locked the mutex,
the results of cma cond wait or pthread cond wait are unpredictable.) These
routines automatiCally unlock the mutex -and cause the calling thread to

2-16 Thread Concepts and Operations

wait on the condition variable until another thread calls one of the following
routines:

• cma cond signal or pthread cond signal to wake one thread that is
wafting on: the condition variable -

• cma cond broadcast or pthread cond broadcast to wake all threads that
are waiting on a condition variahle -

If a thread signals or broadcasts on a condition variable and there are no
threads waiting at that time, the signal or broadcast has no effect. The
next thread to wait on that condition variable blocks until the next signal
or broadcast. (The cma cond signal int and pthread cond signal int np
routines create a pending wake condItion, which causes the next waft on the
condition variable to complete immediately.)

If you want to limit the time that a thread waits for a condition to be signaled
or broadcast, use the cma cond timedwai t or pthread cond timedwai t routine.
These routines specify the condition variable, mutex, and absolute time at
which the wait should expire if the condition variable has not been signaled or
broadcast.

You can delete a condition variable and reclaim its storage by calling the
cma cond delete or pthread cond destroy routine. Use one of these routines
only after-the condition variable is no longer needed by any thread. A condition
variable cannot be deleted while one or more threads are waiting on it.
Condition variables are automatically deleted when the program terminates.

2.4.3 Other Synchronization Methods
Another synchronization method that you can use is calling cma thread join
or pthread join. These routines allow a thread to wait for a specific thread to
complete its execution. When the specified thread terminates, the joining
thread is unblocked and continues its execution. See Section 2.1.2 for
information on terminating a thread.

2.5 One-Time Initialization Routines
You will probably have one or more routines that must be executed before
any thread executes code in your facility but that must be executed only once
regardless of the sequence in which threads start executing. For example,
you may want to create mutexes and condition variables-each of which must
be created only once-in an initialization routine. Multiple threads can call
the cma once or pthread once routine, or one of those routines can be called
multiple times in the same thread, resulting in only one call to the specified
routine.

Thread Concepts and Operations 2-17

Use the cma once or pthread once routine to ensure that your initialization
routine is mZecuted only a single time, that is, by the first thread that tries
to initialize the facility. Note that it is extremely difficult to perform portable
one-time initialization reliably in a multithreaded environment without using
these routines.

2.6 Per-Thread Context and Thread-Specific Data
Each thread has an area in which thread-specific data information is kept.

Note ________________________ _

The cma routines use the term per-thread context, while the pthread
routines use the term thread-specific data. For simplicity, the
term thread-specific data is used in this section to describe both
per-thread context and thread-specific data.

You can associate arbitrary data with a thread's context. Think of this as the
ability to add one or more user-specified fields to the current thread's context.

Thread-specific data is like a global variable in that it is accessible to the
thread anywhere in the program. Each thread can store its own value in the
thread-specific data.

Use the following routines to create and access thread-specific data
information:

• cma _key_create or pthread _ keycreate to create a unique key value

These routines generate a unique key value that is shared by all threads in
the process. This keeps your data separate from other thread-specific data.
One call to the cma key create or pthread keycreate routine creates a
cell in all threads. A routine can be specified in the call to these routines
that destroy the context value associated with this key when the thread
terminates, for example, to free storage pointed to by an address in the
thread-specific data.

• cma key set context or pthread setspecific to associate data with a
key- - - -

These routines associate some data with a specific key. Multiple threads
associate different data with the same key. For example, each thread
stores the value of a pointer in a different block of dynamically allocated
memory that it has reserved. The same key is used in each thread to store
and retrieve that thread's thread-specific data value. You may want to call
cma _once to create the key. See Section 2.5 for more information.

2-18 Th read Concepts and Operations

• cma key get context or pthread getspecific to obtain the data
associat;d with a key -

These routines obtain the thread-specific context value associated with a
specified key. Use these routines to locate the data associated with the
current thread's context.

2.7 Thread Cancelation
Canceling (or alerting) is a mechanism by which one thread requests
termination of another thread (or itself).

Note

The cma routines use the term alert, while the pthread routines use
the term cancel. For simplicity, the term cancel is used in this section
to describe both cancels and alerts.

When you request that a thread be canceled, you are requesting that it
terminate as soon as possible. However, the target thread can control
how quickly it terminates by controlling its general cancel ability and its
asynchronous cancelabili ty.

The following is a list of routines that are cancelation points:

•
•
•
•
•
•

cma _alert_enable _ asynch or pthread _ setasynccancel

cma_alert_test or pthread_testcancel

cma _ delay or pthread _delay _ np

cma _thread _join or pthread _join

cma _ cond _ wai t or pthread _ cond _ wait

cma _ cond _ timed _ wai t or pthread _ cond _ timedwai t

General cancelability is enabled by default. General cancelability
determines whether a thread can receive a cancelation request. If general
cancelability is disabled, the thread does not receive any cancelation requests.
Normally threads receive cancelation requests only at cancelation points-for
example, when a call to the cma cond wait or pthread cond wait routine
is made. However, if you enable-asynchronous cancelabiltly, cancelation
requests can be delivered at any time.

Thread Concepts and Operations 2-19

If general cancelability is enabled, you can request the delivery of any pending
cancel request by using the cma alert test or pthread testcancel routine.
These routines allow you to permit cancelation to occur-at places where
it might not otherwise be permitted under general cancel ability, and it is
especially useful within very long loops to ensure that cancel requests are
noticed within a reasonable time.

If you disable general cancel ability, the thread cannot be terminated by any
cancel request. Disabling general cancel ability means that a thread could wait
indefinitely if it does not come to a normal conclusion; therefore, be careful
about disabling general cancelability.

Because it is impossible to predict exactly when an asynchronous cancelation
request will be delivered, it is extremely difficult to recover properly when an
asynchronous cancelation request is delivered. For this reason, asynchronous
cancelation should only be enabled across regions of code that do not need
to clean up in any way (such as unlocking mutexes or freeing storage).
For the same reason, you should not call any library subroutines while
asynchronous cancelation is enabled, including all DECthreads routines
exceptcma alert restore, pthread setcancel, andpthread setasynccancel.
Asynchron~us cancel ability is disabl-ed by default. -

Note

If general cancel ability is disabled, the thread cannot be canceled,
regardless of whether asynchronous cancel ability is enabled or
disabled. The setting of asynchronous cancel ability is relevant only
when general cancel ability is enabled.

Use the following routines to control the canceling of threads:

• cma alert enable general and cma alert disable general or
pthread _ setcanceI to enable and disable general cancelability

• cma alert test or pthread testcancel to request delivery of a pending
cancel to the current thread-

• cma alert enable asynch and cma alert disable asynch or
pthread _ setasynccancel to enable and disable asynchronous cancel ability

• cma _alert_restore to restore a prevous cancelation state

• cma _ thread_alert or pthread _cancel to request that a thread be canceled

2-20 Thread Concepts and Operations

2.8 Thread Scheduling
Threads are scheduled according to their scheduling priority and how the
scheduling policy treats those priorities. To understand the discussion in this
section, you must understand the concepts in the following sections:

• Section 2.3.3.2 on scheduling policies, including how each policy handles
thread scheduling priority

• Section 2.3.3.3 on thread scheduling priorities

• Section 2.3.3.1 on inheriting of scheduling attributes by created threads

To specify the minimum or maximum priority, use the appropriate
symbol-for example, cma c prio through min or PRI OTHER MIN, or
cma c prio through max or-PRI OTHER MAX. The cma interface to DECthreads
specifies a mid-range-value, but the ptilread interface does not. To specify
a value between the minimum and maximum priority, use an appropriate
arithmetic expression. For example, to specify a priority midway between
the minimum and maximum for the default scheduling policy in the pthread
interface, specify the following concept using your programming language's
syntax:

pri_other_mid = (PRLOTHER_MIN + PRLOTHER_MAX) /2

You should avoid using specific numerical values because the range of priorities
can change from implementation to implementation.

Values outside the range of minimum to maximum result in an error. Priority
values are integers.

To show results of the different scheduling policies, consider the following
example: A program has four threads, called A, B, C, and D. For each
scheduling policy, three scheduling priorities have been defined: minimum,
middle, and maximum. The threads have the following priorities:

A minimum

B middle

C middle

D maximum

The following figures show execution flows depending on whether the first-in
lfirst-out (FIFO), round-robin (RR), or throughput (Default) scheduling policy
is in effect. Assume that all waiting threads are ready to execute when the
current thread waits or terminates and that no higher priority thread is
awakened while a thread is executing (during the flow shown in each figure).

Thread Concepts and Operations 2-21

Figure 2-5 shows a flow with FIFO scheduling.

Figure 2-5 Flow with FIFO Scheduling

o --"""'I •• B ---•• C ---•• A ---••

ZK-3789A-GE

Thread D executes until it waits or terminates; then Thread B starts because
it has been waiting longer than Thread C, and it executes until it waits or
terminates; then Thread C executes until it waits or terminates; then Thread
A executes.

Figure 2-6 shows a flow with RR scheduling.

Figure 2-6 Flow with RR Scheduling

o ----•• B --..., •• C --..., •• B ---I.~ C ---•• A ----••

ZK-3790A-GE

Thread D executes until it waits or terminates; then Threads Band Care
timesliced, because they both have middle priority; then Thread A executes.

Figure 2-7 shows a flow with Default scheduling.

Figure 2-7 Flow with Default Scheduling

o ---..., •• B --...,.~ C --..., •• A --""'i.~ B --...... C --..., ... • • . • • • •

ZK-3791A-GE

Threads D, B, C, and A are timesliced, even though Thread A has a lower
priority than the others. Thread A receives less execution time than Thread D,
B, or C if any of those are ready to execute as often as Thread A is. However,
the default scheduling policy protects Thread A against being blocked from
executing indefinitely.

Because low-priority threads eventually run, the default scheduling policy
protects against the problems of starvation and priority inversion, discussed in
Section 3.6.

2-22 Thread Concepts and Operations

2.9 Atomic Queues
Atomic queues are DECthreads Library objects that you can use to
communicate information among threads or among routines in a single
thread.

Note ________________________ __

Atomic queues are documented in Part IV, the DECthreads Library
reference section. The queue routines begin with the cma lib prefix;
they are not included with the pthread interface. You can call these
routines from programs running on Open VMS and OSF/1 systems only.

Operations on queues are atomic because any operation on the queue is
guaranteed to complete before any other operation on that same queue can
begin. Queue operations are not interruptable.

An atomic queue contains preallocated queue items. Each element (an
integer identifier or a pointer to a block of data) inserted into the queue
consumes a queue item. The number of elements allowed on the queue is
called the queue size. The queuesize attribute can be specified by calling the
cma _lib _attr _set _ queuesize routine. The default is 128 queue items.

You can insert an element at the end of a queue by calling cma lib queue
enqueue or at the front of a queue by calling cma lib queue requeue. You-can
remove an element from a queue by calling cma fib queue dequeue. In each of
these routines, if the element cannot be inserted or removed because the queue
is full or empty, the calling thread is blocked until the action can be performed.

If you want to insert or remove an element but return with a status value
if the queue is full or empty rather than cause the thread to wait, you
can call the cma lib queue try enqueue, cma lib queue try requeue, or
cma lib queue try dequeue routines. These routines return a Boolean value
indiCating whether or not the routine succeeded.

The cma lib queue try enqueue int routine works exactly like
cma lib-queue try-enqueue except that it can be called from an interrupt
handler.-Only routines with an int suffix can be called from interrupt
routines. -

Thread Concepts and Operations 2-23

3
Programming with Threads

This chapter discusses issues of which a programmer using threads must be
aware. Pertinent examples include programming for asynchronous execution,
choosing a synchronization mechanism, avoiding priority scheduling problems,
making code thread-safe, and working with code that is not thread-safe.

3.1 Design for Asynchronous Execution
When programming with threads, always keep in mind that the execution of
a thread is inherently asynchronous with respect to other threads running
the system (or in the process). You cannot depend upon any synchronization
between two threads unless you explicitly code that synchronization into your
program using one of the following:

• Mutexes

• A properly tested application predicate loop on a condition variable

• A call to join with a thread you expect to terminate

• An equivalent platform dependent programming construct (such as VAX
interlocked instructions)

Some existing implementations of threads operate by context switching threads
in user mode, within a single operating system process. Context switches
between such threads occur only at relatively determinate times, such as when
you make a blocking call to the threads library or when a timeslice interrupt
occurs. This type of threading library might be termed "slightly asynchronous"
because, with such a library, you can get away with many errors.

Systems that support kernel threads are less forgiving because context
switches between threads can occur more frequently, and for less deterministic
reasons. Furthermore, systems that allow threads within a single process to
run simultaneously on multiple processors are even less forgiving.

Programming with Threads 3-1

Some examples of common programming errors that may work often under
some implementations but not at all under others are as follows:

1. Creating a thread with an argument that points to stack local data, or to
global or static data that is serially reused for a sequence of threads.

There is no guarantee of when a thread will start. It can start immediately
or not for a significant period of time, depending on the priority of the
thread in relation to other threads that are currently running. When a
thread will start can also depend on the behavior of other processes, as
well as on other threaded subsystems within the current process.

Specifically, the thread started with a pointer to stack local data may not
start until the creating thread's routine has returned, and the storage may
have been changed by other calls. The thread started with a pointer to
global or static data may not start until the storage has been reused to
create another thread.

2. Initializing DECthreads objects (such as mutexes) or global data that is to
be used by another thread after creating the thread.

On "slightly asynchronous" systems this is often safe because the thread
will probably not run until the creator blocks. Thus, the error can go
undetected initially. On another system (or in a later release of the
operating system) that supports kernel threading, the created thread
may run immediately, before the data has been initialized. This can
lead to failures that are difficult to detect. Note that a thread may run
to completion before the call that created it returns to the creator. The
system load may affect the timing as well.

Before you create a thread, you should set up all requirements that the thread
will need to execute. If you need to set the thread scheduling parameters, for
example, do so with attributes objects when you create it, rather than trying to
use cma thread set priority, pthread setprio, or other routines afterwards.
If you need to set global data for the thread or create synchronization
objects, do these before you create the thread or set them in a cma once or
pthread _ once initialization routine that is called from each thread~

3.2 Using Existing Libraries
Because multithreaded programming has only recently become common, many
existing code libraries are incompatible with threads. Many of the traditional
C run-time library routines, for example, maintain state across multiple
calls using static storage. This storage can become corrupted if routines are
called from multiple threads at the same time. Even if the calls from multiple
threads are serialized, code that depends upon a sequence of return values
might not work. For example, the getpwent (2) routine returns the entries in

3-2 Programming with Threads

the password file in sequence. If multiple threads call getpwent repetitively,
even if the calls are serialized, no thread will see all entries in the password
file.

Library routines might be compatible with multithreaded programming to
different extents. The important distinctions are thread safety and thread
reen trancy.

3.2.1 Thread Safety
A routine is called thread-safe if it can be called simultaneously from
multiple threads without risk of corruption. Generally this means that it does
some simple level of locking (possibly using the DECthreads global lock) to
prevent simultaneously active calls in different threads. See Section 3.3.1 for
information about the global lock.

Although these routines are thread-safe, they may be inefficient and are
frequently inconvenient. For example, a UNIX stdio package that is thread
safe might still block all threads in the process while waiting to read or write
data to a file. Routines such as local time (3) return a pointer to static storage,
so that callers do not have to deallocate the returned buffer. If one thread calls
localtime, and then another thread calls localtime before the first thread has
retrieved the returned value, both threads will retrieve the value returned by
the second call. Some other routines maintain an implicit context so that a
series of calls can be made to return sequential information, for example, the
strtok routine returns a sequence of delimited tokens. Interleaved calls from
multiple threads might disrupt that implicit context, even if the routine has
protected itself against corruption from multiple simultaneous calls.

Programmers utilizing thread-safe code from multithreaded programs must
be aware of these limitations and carefully take them into consideration. For
example, when using a hypothetical thread-safe implementation of local time,
the caller must lock a mutex before calling the routine, and keep it locked until
after the return value is processed or copied into local storage. In the case of
strtok, the mutex must be held before retrieving the first token value of a
string and until after the final token value has been safely copied or used.

3.2.2 Thread Reentrancy
A routine is thread-reentrant when it functions normally despite being
called simultaneously or sequentially by different threads. Again, taking the
hypothetical example of strtok, the traditional interface could most efficiently
be made thread-reentrant by adding an argument that specifies a context for
the sequence of tokens. Thus, multiple threads could simultaneously parse
different strings without interfering with each other.

Programming with Threads 3-3

The ideal thread-reentrant routine has no dependency on static data. Because
static data must be synchronized using mutexes and condition variables, there
is always a performance penalty due to the time required to lock and unlock
the mutex and also in the loss of potential parallelism throughout the program.
A routine that does not use any data that would be shared between threads
can proceed without locking.

If you are developing new interfaces, make sure that any persistent context
information (like the last-token-returned pointer in strtok) is passed explicitly
so that multiple threads can process independent streams of information
independently. Return information to the caller through routine values, output
parameters (where the caller passes the address and length of a buffer), or by
allocating dynamic memory and requiring the caller to free that memory when
finished. Try to avoid using errno for returning error or diagnostic information;
use routine return values instead.

3.2.3 Working with Code that is not Thread-Safe
When you must call code that is not thread-safe, you need to ensure
serialization and exclusivity of the unsafe routine across all threads in the
program. U sing the DECthreads global lock when calling any unsafe code
accomplishes this. All threads and libraries using the routine can use the same
mutex. Note that even if two libraries carefully lock a mutex around every call
to a given routine, if each library uses a different mutex, the routine is not
protected against multiple simultaneous calls.

Furthermore, as when using thread-safe routines, you must be aware that in
many cases you need to protect more than just the call itself. You need to use
or copy any static return values before releasing the mutex, and you may need
to protect a sequence of calls rather than just a single call.

If a routine is not specifically documented as thread-reentrant or thread-safe,
you should assume that it is unsafe. You should never assume that a routine
is fully thread-reentrant unless that is specifically documented; many times,
routines can rely on static data in ways that are not completely obvious from
the interface. A routine carefully written to be thread-reentrant but that calls
some other routine that is unsafe without proper protection, is actually unsafe
itself.

3-4 Programming with Threads

3.3 Converting Code to be Thread-Safe
Often, existing code can be converted from unsafe to thread-safe without
a great deal of difficulty, if the source code is available. One important
consideration is the language compiler used in translating the source code.

Note

Most Ada compilers generate inherently reentrant code because
Ada supports multithreaded programming. Although the C, Pascal,
and Bliss languages do not support multithreaded programming
directly, compilers for those languages generally create reentrant code.
However, the Fortran and COBOL languages are defined in such a
way that they generally make implicit use of static storage, and some
Fortran and COBOL compilers do not generate reentrant code. It is
difficult to write reentrant code in a nonreentrant language.

As long as your compiler provides reentrant code sequences, DECthreads
provides two tools that help convert existing code to be thread -safe-the global
lock and thread-specific data.

3.3.1 DECthreads Global Lock
DECthreads provides a single global lock that is used by all threads in
a program when calling routines or code that is not thread-safe to ensure
serialization and exclusivity of the unsafe code. You can acquire the global lock
by calling cma lock global or pthread lock global np and unlock by calling
cma unlock global-or pthread unlock-global np. The global lock allows a
thread to acquire the lock recursively, so that you do not need to be concerned
if you call a routine that also may acquire the global lock.

Because there is only one global lock, you do not need to fully analyze all of
the dependencies in unsafe code that you call. With private locks to protect
unsafe code, for example, one lock might protect calls to the stdio routine
while another protects calls to math routines-but if stdio then calls a math
routine without acquiring the math routine lock, the call is just as unsafe as if
no locks were used.

Use the global lock whenever calling unsafe routines-and when unsure,
always assume a routine is unsafe. All DECthreads routines are thread
safe (and all, except some of the UNIX system jacket routines, are also
thread -reentrant).

Proarammina with Threads 3-5

3.3.2 Thread-Specific Data
When an existing unsafe interface uses static storage for context information,
and you need to make that interface thread-safe or thread-reentrant, one
alternative for managing the static context is the use of thread -specific data.
Thread-specific data consists of user-specified fields of arbitrary data that
can be added to a thread's context.

Instead of using static storage, you can declare a thread-specific data key
to maintain the address of a dynamically allocated record. Use cma once
or pthread once routine to create the data key the first time the routine is
called using cma once. Use cma key get context or pthread getspecific
to retrieve the current value of the key for that thread. If there is none
(the value is NULL), allocate a new record and use cma key set context or
pthread setspecific to store the address of the record-:- Thereafter, you can
reuse that same record to maintain the static data and return the address
of that record. Although this method is less efficient than passing explicit
context, it allows the calls in different threads to be independent without
changing interfaces. It also allows each thread to maintain an independent
stream of information, as required by routines such as strtok.

3.4 Shared Variables
Most threads do not operate entirely independently. They cooperate to
accomplish a task, and cooperation requires communication. There are many
ways that threads can communicate, and which method is most appropriate
depends on the task. Threads that cooperate only rarely (for example, a boss
thread that only sends off a request for workers to do long tasks) may be
satisfied with a relatively slow form of communication. Threads that must
cooperate more closely (for example, a set of threads performing a parallelized
matrix operation) need fast communication-maybe even to the extent of using
machine-specific atomic hardware operations.

Most mechanisms for thread communication involve the use of shared memory,
taking advantage of the fact that all threads within a process share their full
address space. Although all addresses are shared, there are three kinds of
memory that are characteristically used for communication. The following
sections describe the scope (the areas of the program where code can access
the memory) and lifetime (the length of time the memory exists) of each of the
three types of memory.

3-6 Programming with Threads

3.4.1 Static Memory
Static memory is allocated by the language compiler when it translates
source code so the scope is controlled by the rules of the compiler. For example,
in the C language, extern variables can be accessed anywhere, and static
variables can be referenced within the source module or routine, depending on
where they are declared. Note that the static memory described in this section
is not the same as the C language static storage class; static memory refers to
any variable that is permanently allocated at a particular address for the life
of the program.

The scope of static memory depends on language scoping rules. The lifetime is
the life of the program.

3.4.2 Stack Memory
Stack memory is allocated by code generated by the language compiler at run
time, generally when a routine is initially called. When the program returns
from the routine, the storage ceases to be valid (although the addresses still
exist and may be accessible).

Generally, the storage is valid for the entire execution of the routine, and the
actual address can be calculated and passed to other threads, but this depends
on programming language rules. If you pass the address of stack memory to
another thread, you must ensure that all other threads are finished processing
that data before the routine returns; otherwise the stack will be cleared, and
values may be altered by subsequent calls. The other threads will not be able
to determine that this has happened, and erroneous behavior will result.

The scope of stack memory is the routine or a block within the routine. The
lifetime is no longer than the time during which the function executes.

3.4.3 Dynamic Memory
Dynamic memory is allocated by the program as a result of a call to some
memory management function (for example, the C language run-time function
malloc () or the Open VMS common run-time function LIB$GET _ VM).

Dynamic memory is referenced through pointer variables. Although the pointer
variables are scoped depending on their declaration, the dynamic memory itself
has no intrinsic scope or lifetime. It can be accessed from any routine or
thread that is given its address and will exist until explicitly made free (or,
in a language supporting automatic garbage collection, it will exist until the
run-time system detects that there are no references to it).

The scope of dynamic memory is anywhere a pointer containing the address
can be referenced. The lifetime is from allocation to deallocation.

Pmnr~mminn with ThrA~rlc::: ~-7

3.4.4 Use of Shared Memory
Although it can be difficult to safely share stack memory between multiple
threads, both static and dynamic memory are almost essential to multithreaded
programs.

Static memory is appropriate when you know that only one instance of an
object exists throughout the application. For example, if you want to keep a
list of active contexts or a mutex to control some shared resource, you would
not want individual threads to have their own copies of that data.

Dynamic memory is usually appropriate to manage persistent context. For
example, in a thread-reentrant routine that is called multiple times to return
a stream of information (for example, to list all active connections to a server
or to return a list of users), using dynamic memory allows multiple contexts
that are independent of threads. Multiple threads may be able to share a given
context, or a single thread may have more than one context.

3.5 Stack Management
DECthreads protects the ends of stack memory and sets a default stack size
that is acceptable to most applications. This section discusses the cases in
which the stack size is insufficient (resulting in stack overflow) and how to
determine the optimal size of the stack.

See the cma stack check limit np routine description for information on how
to determine whether sufficient ;pace exists on the current thread's stack to
allocate the requested number of bytes of local storage. (There is no stack limit
checking routine in the pthread interface to DECthreads.)

3.5.1 Stack Overflow
A program can receive a memory error (access violation, bus error, or
segmentation fault) when it overflows its stack. It is often necessary to
run the program under control of your system's debugger to determine where
these errors occur. (However, if the debugger needs to allocate space on the
stack, it may not function properly if the stack overflows.)

If a thread receives a memory access exception during a routine call
or when accessing a local variable, increase the size of the stack. (To
increase the thread's stack size attribute before creating it, call the
cma attr set stacksize or pthread attr setstacksize routine. See
Section 2~.3.4 for more information.) However, not all memory access
exceptions indicate a stack overflow.

3-8 Programming with Threads

For programs that are not run under a debugger, determining a stack overflow
is more difficult. This is especially true if the program continues to run
after receiving a memory access exception. For example, if a stack overflow
occurs while a mutex is locked, the mutex might not be released as the thread
recovers or terminates. When the program attempts to lock that mutex again,
it hangs.

3.5.2 Sizing the Stack
To determine the optimal size of a thread's stack, multiply the largest number
of nested subroutine calls by the size of the call frames and local variables.
Add to that number an extra amount of memory to accommodate interrupts.
This process is difficult to perform because stack frames vary in size, and it
might not be possible to estimate the depth of library function call frames.

3.6 Priority Inversion
Priority inversion occurs when interaction among three or more threads
blocks the highest-priority thread from executing. For example, a high-priority
thread waits for a resource locked by a low-priority thread, and the low-priority
thread waits while a middle-priority thread executes. The high-priority thread
is made to wait while a thread of lower priority (the middle-priority thread)
executes.

To avoid priority inversion, associate a priority (at least as high as the highest
priority thread that will use it) with each resource and force any thread using
that object to first raise its priority to that associated with the object.

The Default (throughput) scheduling policy prevents priority inversion from
causing a complete blockage of the high-priority thread, because the low
priority thread is eventually permitted to execute and release the resource.
The FIFO and RR policies, however, do not provide for resumption of the
low-priority thread if the middle-priority thread executes indefinitely.

3.7 Using Synchronization Objects
The following sections discuss when to use a mutex and when to use a
condition variable and the use of mutexes to prevent two potential problems:
race conditions and deadlocks. This section also discusses why you should
signal a condition variable with the associated mute x locked.

Programming with Threads 3-9

3.7.1 Mutex or Condition Variable
Use a mute x for tasks with fine granularity. Examples of fine-grained tasks are
those that serialize access to shared memory or make simple modifications to
shared memory (critical sections of a few program statements or less). Mutex
waits are not interruptable-threads waiting to lock a mutex cannot be alerted
or canceled.

A condition variable is not used to protect data. It is used to wait for data to
assume a desired state. A.condition variable is always used with a mutex that
protects the shared data. Condition variable waits are interruptable.

See Section 2.4.1 and Section 2.4.2 for more information on mutexes and
condition variables.

3.7.2 Race Conditions
A race condition occurs when two or more threads perform an operation, and
the result of the operation depends on unpredictable timing factors; specifically,
when each thread executes and waits and when each thread completes the
operation.

For example, if two threads execute routines and each increments the same
variable (such as X = X + 1), the variable could be incremented twice and one
of the threads could use the wrong value. For example:

1. Thread A increments variable X.

2. Thread A is interrupted by Thread B.

3. Thread B starts and increments variable X.

4. Thread B is interrupted by Thread A.

5. Thread A checks the value of X and takes some action based on that value.

The value of X is different from what it was when Thread A incremented
it, and the program's behavior is incorrect.

Race conditions result from lack of (or ineffectual) synchronization. To avoid
race conditions, ensure that any variable modified by more than one thread has
only one mutex associated with it, and ensure that all accesses to the variable
are made while holding that mutex.

See Section 3.7.4 for another example of a race condition.

3-10 Programming with Threads

3.7.3 Deadlocks
A deadlock occurs when a thread holding a resource is waiting for a resource
held by another thread, while that thread is also waiting for the first thread's
resource. Any number of threads can be involved in a deadlock if there is at
least one resource per thread. A thread can deadlock on itself. Other threads
can also become blocked waiting for resources involved in the deadlock.

Following are two techniques you can use to avoid deadlocks:

• Use sequence numbers with fast mutexes.

Associate a sequence number with each mutex and lock mutexes in
sequence. Never attempt to lock a mutex with a sequence number lower
than that of a mutex the thread already holds.

If a thread needs to acquire a mutex with a lower sequence number, it must
first release all mutexes with a higher sequence number (after ensuring
that the protected data is in a consistent state).

• Use a recursive mutex.

This method is useful when a thread needs to lock the same mutex more
than once before unlocking it. This technique can help prevent a thread
from deadlocking on itself.

3.7.4 Signaling a Condition Variable
When you are signaling a condition variable and that signal might cause the
condition variable to be deleted, signal or broadcast the condition variable with
the mutex locked.

The following C code fragment is executed by a releasing thread (Thread A):

pthread_mutex_lock (m);

••• j* Change shared variables to allow another thread to proceed *j

predicate = TRUE;
pthread_mutex_unlock (m);

o
pthread_cond_signal (cv); Et
The following C code fragment is executed by a potentially blocking thread
(Thread B):

Programming with Threads 3-11

pthread mutex lock (m);
while (Tpredicate)

pthread_cond_wait (cv, m);

pthread mutex unlock (m);
pthread=cond_destroy (cv);

o If Thread B is allowed to run while Thread A is at this point, it finds
the predicate true and continues without waiting on the condition
variable. Thread B might then delete the condition variable with the
pthread _ cond _ destory routine before Thread A resumes execution.

8 When Thread A executes this statement, the condition variable does not
exist and the program fails.

The previous code fragments also demonstrate a race condition. The program
depends on a sequence of events among multiple threads, but it does not
enforce the desired sequence. Signaling the condition variable while holding
the associated mutex eliminates the race condition. That prevents Thread B
from deleting the condition variable until after Thread A has signaled it.

This problem can occur when the releasing thread is a worker thread and
the waiting thread is a boss thread, and the last worker thread tells the boss
thread to delete the variables that are being shared by boss and worker.

Code the signaling of a condition variable with the mutex locked as follows:

pthread mutex lock (m);
••• /* Change-shared variables to allow some other thread to proceed */

pthread cond signal (cv);
pthread=mutex_unlock (m);

3.8 DECthreads Error Reporting
DECthreads can detect the following types of errors:

• Application programming interface (API) errors can occur when the
program specifies an invalid parameter or attempts an inappropriate
operation on some DECthreads object.

• Internal errors can occur when DECthreads determines that internal
information has become corrupted to the point where it cannot continue
operation.

API errors are reported in different ways by the various DECthreads
interfaces:

• The POSIX l003.4a (pthread) interface returns a function value of -1 and
sets the per-thread errno variable to an error code.

3-12 Programming with Threads

• The CMA interface and the "pthread exception" interface raise exceptions
to indicate error conditions.

DECthreads internal errors result in a bugcheck. DECthreads writes a
message to the current error device (UNIX stderr or Open VMS SYS$ERROR)
summarizing the problem, and creates a file containing more detailed
information. By default, the file is named cma dump .log and is created in the
current default directory. You can redirect thelnformation to a different file by
defining an Open VMS logical name or a UNIX environment variable CMA DUMP
before running any program that uses DECthreads. -

The following example shows how to define an Open VMS logical name:

$ define cma_dump sys$manager:server_001.thd_dmp

You can define a UNIX (Korn Shell) environment variable with a command
such as the following:

$ CMA_DUMP=/server_001.thd_dmp;export CMA_DUMP

If DECthreads cannot create the specified file when it performs the bugcheck,
it will try to create the default file. If it cannot create the default file, it will
write the detailed information to the error device.

The header message written to the error device starts with a line reporting
that DECthreads has detected an internal problem and that it is terminating
execution. It also includes the version of the DECthreads library. It will look
something like the following:

%Internal DECthreads problem (version V2.12-078), terminating execution.

The subsequent line is the reason for the failure, and the final line written to
the error device (usually) is the location of the detailed state information, as in
the following example:

% See 'sys$manager:server_001.thd_dmp' for state information.

The detailed information file contains information you can get from the
cma debug () interface. This information is usually necessary to track down
the problem. If you submit a problem report involving a DECthreads bugcheck,
please include this information file along with sample code and output.

The fact that DECthreads terminated the process with a bugcheck can mean
that some subtle problem in DECthreads has been uncovered. However,
DECthreads does not check for all possible API errors, and there are a number
of ways in which improper application code can result in a DECthreads
bugcheck.

Programming with Threads 3-13

One common example is the use of any mutex operation or certain condition
variable operations from within a UNIX signal handler or Open VMS AST
routine. This type of programming error most commonly results in bugchecks
reporting "enter_kernel: deadlock" or "Can't find null thread". To prevent this
error, avoid using any condition variables operations other than the following:

• cma_cond_signal_int

• cma_cond_signal_preempt_int

• pthread_cond_signal_int_np

• pthread_cond_sig_preempt_int_np

In addition, DECthreads maintains a variety of state information in memory
which is writable by user mode code. Therefore, it is possible for applications
to accidentally modify DECthreads state by writing through invalid pointers,
which can result in a bugcheck or other undesirable behavior.

3-14 Programming with Threads

4
Using the DECthreads Exception Package

DECthreads provides interfaces that report errors in the following two ways:

• The routine returns a status value to the thread.

• The routine raises an exception.

Note ________________________ _

The DECthreads cma routines raise exceptions only. However,
DECthreads provides two versions of the pthread routines: one that
raises exceptions and one that returns status values.

Before you write a multithreaded program using the pthread routines,
you must choose only one of the previous two methods of receiving
status. These two methods cannot be used together in the same source
code module.

The DECthreads exception package is most useful when you are programming
in the C language. The exception-returning interfaces are only usable from
languages other than C when run on OpenVMS systems. (On OpenVMS
systems you can use the Open VMS condition-handling facility to catch
exceptions.)

The POSIX PI003.4a standard specifies that status values be returned to
the thread. The pthread reference section of this manual documents that
status value-returning interface. However, an alternative to status values is
provided by DECthreads in the pthread exception-returning interface. The
cma interface also reports errors by raising exceptions.

This chapter introduces and provides conventions for the modular use of the
exception-returning interface.

Using the DECthreads Exception Package 4-1

4.1 Invoking the pthread Exception-Returning Interface
To invoke the exception-returning interface for pthread calls, replace #include
<pthread. h> in your program with the following include statement:

#include <pthread_exc.h>

Access to exceptions from the C language is defined by the macros in
the exc _ handling. h file, which is automatically included by cma. hand
pthread _ exc . h.

4.2 Overview of Exceptions
An exception is an object that describes an error condition. Operations on
exception objects allow errors to be reported and handled. If an exception is
handled properly, the program can recover from errors. For example, if an
exception is raised from a parity error while reading a tape, the recovery action
might be to retry 100 times before giving up.

Using a few simple macros, C functions can declare a block of code (an
exception scope) where exceptions are to be caught, and can define a
block of code within an exception scope to process a specific exception (or all
exceptions). DECthreads exception handlers are attached, which means that
the handler code appears within the block where exceptions are caught. This
allows you to see what actions will be taken when an exception occurs.

There are two ways to process an exception that occurs within the exception
scope:

• The exception is caught. This means that the code handles all effects of
the error and continues normal operation.

• The scope is finalized. This means that the current context is cleaned up
and resources (such as mutexes) are released. The exception is then passed
on to outer scopes for further processing. Additionally, finalization occurs
even if no exception was raised so that resources are always released
without duplication of code.

4.2.1 Types of Exceptions
There are two types of exceptions: address exceptions and status exceptions.
An exception is initialized as an address exception, but it can be modified
(before it is used) by defining a status value for it. Following are the primary
differences between address and status exceptions:

• Different exception objects can be declared with the same status value, and
those exceptions are considered identical by the exception package. For
example, if one exception is raised, it can be caught by specifying another

4-2 Using the DECthreads Exception Package

exception object having the same status. Two different address exceptions
can never match each other.

• If the platform supports a universal definition of error status, then
status exceptions can often be used to import and export system status
values. When a facility called by DECthreads raises a system exception,
DECthreads and its clients can catch the exception using a DECthreads
status exception. Similarly, when a function raises a DECthreads
exception, a caller might be able to handle it using facilities provided
by the language or platform.

Status values used in exceptions can be interpreted, handled, and reported in
a universal manner, regardless of which facility defined the status value. Use
address exceptions if your code does not have a range of status codes assigned
to it. Address exceptions are always unique so you do not risk colliding with
another facIlity's status codes and inadvertently handling the wrong exception.
Also, address exceptions are more portable because status codes are likely to
be different on each platform.

4.2.2 Terminating Exception Semantics
DECthreads exceptions are terminating exceptions. This means that control
never returns to the instruction following a RAISE statement. When an
exception occurs because of a hardware condition such as an illegal address,
execution cannot be resumed at the failing instruction. An exception causes
execution of handlers that have been de,clared (starting with the most recently
declared handler and proceeding backwards) until a CATCH or CATCH ALL clause
is reached that does not end with RERAISE. At this point, execution continues
at the first statement beyond the ENDTRY that terminates that current handler.

4.3 Exception Operations
The DECthreads Exception Package allows you to perform the following
operations on exceptions:

• Declare and initialize an exception object

• Raise an exception

• Define a region of code over which exceptions are caught

• Catch a particular exception or all exceptions

• Reraise the current exception

• Define epilogue actions for a block

• Import a system-defined error status into the program as an exception

USing the DECthreads Exception Package 4-3

• Extract a system-defined error status from an exception

• Report an exception

• Determine whether two exceptions match

These operations are discussed in the following sections.

4.3.1 Declaring and Initializing an Exception Object
An exception object is an opaque type which should only be manipulated by the
exception package functions. The actual contents of the type may differ from
one implementation to another.

Declaring and initializing an exception object documents that a program
reports or handles a particular error. Having the error expressed as an
exception object provides future extensibility as well as portability.

An exception is declared as a variable of type EXCEPTION. In general, you
should declare the type as static or extern. For example:

static EXCEPTION an_error;

Because an exception object may require dynamic initialization on some
platforms, the DECthreads exception package requires a run-time initialization
call in addition to the declaration. The initialization function is a macro named
EXCEPTION _ INIT. The name of the exception is passed as a parameter.

Following is an example of declaring and initializing an exception object:

EXCEPTION parity error;
EXCEPTION_INIT (parity_error);

4.3.2 Raising an Exception

/* Declare it */
/* Initialize it */

Raising an exception reports an error not by returning a value, but by
propagating the exception. Propagation involves searching all active scopes
for code written to handle the error or code written to perform finalization
actions in case of any error and causing that code to execute. If a scope does
not define a handler or finalization block, then the scope is simply torn down
as the exception propagates up the stack. This is sometimes referred to as
unwinding the stack. Because DECthreads exceptions are terminating, there
is no option to make execution resume at the point of the error. (Execution
resumes at the point where the exception is caught.)

If an exception is unhandled, the process is terminated with a core dump (on
systems based on UNIX software) or traceback (on OpenVMS systems).

4-4 Using the DECthreads Exception Package

Termination prevents the unhandled error from affecting other areas of the
program. An example of raising an exception is as follows:

RAISE (parity_error);

4.3.3 Defining a Region of Code over which Exceptions are Caught
The TRY macro defines the beginning of an exception scope, and the ENDTRY
macro defines the end of the scope. These macros allow the programmer to
define a scope (a block) wherein exceptions can be caught. Any exceptions
raised within the block, or within any functions that are called directly or
indirectly by the block, pass through the control of this scope. These exceptions
can be caught and reraised if it is desirable to continue propagation, or ignored
(which implicitly reraises them).

Following is an example of defining an exception-handling region (without
indicating any recovery actions):

TRY {
read_tape ();

}
ENDTRY

4.3.4 Catching a Particular Exception
The exception scope can express interest in any number of specific exceptions
by naming them in CATCH expressions. When an exception reaches the
exception scope, control is transferred to the first CATCH clause in the block that
matches the exception. If there is more than one CATCH for a given exception
within the scope of a single TRY /ENDTRY scope, then only the first one matching
the current exception gains control.

To catch an address exception, the CATCH macro must specify the same
exception object as the RAISE macro. However, status exceptions can be
caught using any exception object that has been set to the same status code as
the exception that was raised. In general, you should RAISE and CATCH using
the same exception object even when using status exceptions.

Following is an example of catching a particular exception and specifying the
recovery action (in this case, a message). After catching the exception and

Using the DECthreads Exception Package 4-5

executing the recovery action, the exception is explicitly reraised (causing it to propagate
to its callers):

TRY {
read_tape ();

}
CATCH (parity error) {

printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERAISE;

}
ENDTRY

4.3.5 Catching All Exceptions
The exception scope can express interest in all exceptions using the CATCH ALL
macro. No CATCH macros can follow the CATCH_ALL macro within an exception
scope.

Any exception that is caught using a CATCH ALL macro should be reraised. It
is inappropriate to absorb exceptions that your code is not explicitly aware
of. Because you cannot necessarily predict all possible exceptions that your
code might encounter, you cannot assume that your code can recover in
every possible situation. Therefore, your CATCH ALL clause should reraise all
exceptions to allow an outer scope to catch this specific exception and perform
the appropriate recovery.

Following is an example of the CATCH_ALL macro.

int *local mem;
local mem ~ malloc (sizeof (int));
TRY {-

operation(local mem); /* May raise an exception */
free (local_mem);

}
CATCH (an error) {

}

printf-("Oops; caught one! \n") ;
free (local mem);
RERAISE; -

CATCH ALL {
free (local_mem);

}
ENDTRY

4-6 Using the DECthreads Exception Package

4.3.6 Reraising the Current Exception
Within the code block of a CATCH or CATCH ALL macro, you can use RERAISE
to allow outer exception scopes the chance-to handle the exception. Do this
when the current scope needs to restore some permanent state (for example,
releasing resources such as memory or a mutex), but does not have enough
context about the error to attempt to recover.

Usina the DECthreads Exception Packaae 4-7

The RERAISE function is only valid in the code of a CATCH or CATCH_ALL clause.
For example:

int *local memi
local mem ~ malloc (sizeof (int))i

TRY {

}

operation(local mem)i
free (local_mem}i

CATCH (an error) {
free (local mem)i
RERAISEi -

/* May raise an exception */

4.3.7 Defining Epilogue Actions for a Block
Frequently, the only reason a block of code needs to catch exceptions is to
perform cleanup actions, such as releasing resources. In many cases, the
same operations are performed whether the block exits normally or with an
exception; under many exception models, this requires duplicating code (both
within a CATCH ALL type construct, and following the exception scope in case
an exception dOes not occur).

The FINALLY macro catches an exception and then reraises the exception for
outer scopes to handle. The actions defined by a FINALLY clause are also
performed when the scope exits normally without an exception, so that they do
not need to be duplicated.

Do not combine the FINALLY clause with CATCH or CATCH ALL. Doing so results
in unpredictable behavior. -

Following is an example of the FINALLY macro:

int *local memi
local mem ~ malloc (sizeof (int))i
TRY {-

operation(local_mem)i /* May raise an exception */
}
FINALLY {

free (local_mem)i
}
ENDTRY

4-8 Using the DECthreads Exception Package

4.3.8 Determining the Current Exception
The current exception object can be referenced within a CATCH or CATCH ALL
block by using the name THIS CATCH. The exception object THIS CATCH has
a type of EXCEPTION *. This value can be passed to exc get status (),
exc report (), or exc matches () (defined in Section 4.3~10, Section 4.3.11, and
Section 4.3.12). -

Because of the way exceptions are propagated, the address contained in
THIS CATCH might not be the actual address of an address exception; if you
needto match THIS_CATCH against known exceptions, use exc _matches ().

4.3.9 Importing a System-Defined Error Status into the Program as an
Exception

The exc set status () function can be used to create a status exception. The
exception object must already have been initialized with EXCEPTION INIT. Any
system specific status value may be used. All exception objects set to the same
status value are considered the same by the exception facility.

An example of importing an error status into an exception is as follows:

void exc set status (EXCEPTION *exception,
unsigned int code);

static EXCEPTION an_error;

EXCEPTION INIT (an error);
exc_set_sIatus (&an_error, ENOMEM);

4.3.10 Exporting a System-Defined Error Status
The exc get status () function can be used to retrieve the system status
value from a-status exception, for example, after an exception is caught. If
the exception object specified is a status exception, exc get status () sets the
status value argument and returns 0; otherwise, it retti"rns =-1 and does not set
the status value argument. For example:

int exc get status (EXCEPTION *exception,
unsigned int *status);

Using the DECthreads Exception Package 4-9

TRY {
operation ();

}
CATCH ALL {

int status;
if (exc get status (THIS CATCH, &status) 0

&&-status < sys nerr)
fprintf (stderr, "%Exception %s\n",

strerror (status));
else

}
ENDTRY

4.3.11 Reporting an Exception
DECthreads reports an exception only when it is raised without a CATCH
or CATCH ALL, immediately before the process is terminated. Sometimes
client code might wish to report an exception as part of error recovery. The
exc report () function prints a message to stderr or SYS$ERROR describing the
exception.

All predefined exceptions have an associated message describing the error.
Normally, when the DECthreads exception package has been well-integrated
with a platform status mechanism, external status values can also be reported.
However, when an address exception is reported, DECthreads can only report
the fact that an exception has occurred, and the address of the exception object.

Following is an example of reporting an error:

void exc_report (EXCEPTION *exception);

For example:

exc_report (&exc_e_illinstr);

4.3.12 Determining Whether Two Exceptions Match
The exc matches () function compares two exception objects, taking into
consideration whether they are address or status exceptions, and possibly
other system-specific rules for matching status values. Whenever you need to
compare two exceptions, you should use this function. For example:

int exc matches (EXCEPTION *exceptionl,
EXCEPTION *exception2);

EXCEPTION my_status;

4-10 Using the DECthreads Exception Package

EXCEPTION INIT (&my status);
exc set status (&my=status, status_code);

if (exc matches (THIS CATCH, &my status))
fprintf (stderr, "This is myexception\n");

4.4 C Language Syntax
The following example shows the syntax for handling exceptions:

TRY
try block

[CATCH (exception name)
handler block) ...

[CATCH ALL -
handler block]

ENDTRY -

A try_block or a handler_block is a sequence of statements, the first of
which may be declarations, as in a normal block. If an exception is raised
in the try_block, the catch clauses are evaluated in order to see if anyone
matches the current exception.

The CATCH or CATCH ALL clauses absorb an exception-they can catch an
exception propagatiIi:g out of the try_block and direct execution into the
associated handler_block. Propagation of the exception, by default, then ends.
Within the lexical scope of a handler, it is possible to cause propagation of
the same exception to resume (this is called reraising the exception), or it is
possible to raise some new exception.

The RERAISE statement is allowed in any handler statements and causes the
current exception to be reraised. Propagation of the caught exception resumes.

The RAISE (exception name) statement is allowed anywhere and causes a
particular exception to start propagating. For example:

TRY
sort(); /* Call a function that may raise an exception.

* An exception propogates by transferring control
* out of some nested routine back to the TRY
* clause. Any output parameters or return values
* of the called routine are therefore indeterminate.
*/

CATCH (pthread cancel e)
printf("Canceled while sorting\n");
RERAISE;

Using the DECthreads Exception Package 4-11

CATCH ALL
printf("Some other exception while sorting\n")i
RERAISEi

ENDTRY

In the previous example, if the pthread cancel e exception propagates
out of the function call, the first printfis executed. If any other exception
propagates out of sort, the second printf is executed. In either situation,
propagation of the exception resumes because of the RERAISE statement. (If the
code is unable to fully recover from the error, or does not understand the error,
it needs to do as in the previous example and further propagate the error to its
callers.)

The following example shows the syntax for an epilogue:

TRY
try block

FINALLY-
final block

ENDTRY -

The finaLblock is executed regardless of whether the try_block executes to
completion without raising an exception or if an exception is raised in the try_
block. If an exception is raised in the try_block, propagation of the exception is
resumed after executing the finaLblock.

Note that a CATCH ALL handler and RERAISE could be used to do this, but the
epilogue code would then have to be duplicated in two places, as follows:

TRY
try block

CATCH ALL
fInal block
RERAISEi

ENDTRY
{ final_block

A FINALLY statement has exactly this meaning but avoids code duplication.

Note

The behavior of FINALLY along with CATCH or CATCH ALL clauses is
unpredictable. Do not combine them for the same try_block.

4-12 Using the DECthreads Exception Package

Another example of the FINALLY statement is as follows:

pthread mutex lock (some object.mutex);
some ob3ect.num waiters ~ some object.num waiters + 1;
TRY- - - -

while (1 some object.data available)
pthread cond wait (some object.condition);

/* The code-to act on the data available goes here */
FINALLY -

some object.num waiters = some object.num waiters - 1;
pthread mutex unlock (some object.mutex);-

ENDTRY - - -

In the previous example, the call to pthread cond wait could raise the
pthread cancel e exception if the thread was canceled while it was waiting.
The final block ensures that the shared data associated with the lock is
correct for the next thread that acquires the mutex.

4.5 Rules and Conventions for Modular Use of Exceptions
The following rules ensure that exceptions are used in a modular way (so that
independent software components can be written without requiring knowledge
of each other):

• Use unique names for exceptions.

A naming convention ensures that the names for exceptions that are
declared EXTERN from different modules do not clash. The following
conventions are recommended.

For the cma interface:

<facility-prefix>_e_<error-name>

For example, cma _ e _alerted.

For the pthread interface:

<facility-prefix>_<error-name>_e

For example, pthread _ cancel_e.

• Avoid putting code in a TRY macro that belongs before it.

The TRY macro should only guard statements for which the statements in
the FINALLY or CATCH, or CATCH_ALL clauses are always valid to execute.

Using the DECthreads Exception Package 4-13

A common misuse of TRY is to put code in the try block that should be
placed before TRY. An example of this misuse is as-follows:

TRY
handle = open file (file name);
/* Statements-that may raise an exception here */

FINALLY
close (handle);

ENDTRY

The previous F INALL Y code assumes that no exception is raised by
open_file. Otherwise, the code would access an invalid identifier in the
FINALLY part if open file is modified to raise an exception. The previous
example should be rewritten as follows:

handle = open file (file name);
TRY - -

/* Statements that may raise an exception here */
FINALLY

close (handle);
ENDTRY

The code that is an opening bracket belongs prior to TRY, and the code that
is its matching closing bracket belongs in the FINALLY clause.

• Raise exceptions prior to performing side-effects.

Write functions that propagate exceptions to their callers so that the
function does not modify any persistent process state before raising the
exception. A call to the matching close call is required only if the open
operation is successful. (If an exception is raised, the caller cannot access
the output parameters of the function because the compiler may not have
copied temporary values back to their home locations from registers.)

If open file raises an exception, the identifier will not have been
written~ so open must not require that close be called when open raises
an exception. This property is also what allows the call to be moved to
open_file prior to the TRY.

• Do not place a return or go-to between TRY and ENDTRY.

It is invalid to return or go-to or leave by some other means a TRY, CATCH,
CATCH ALL, or FINALLY block. Special code is generated by the ENDTRY
macro-and it must be executed.

• Use the ANSI C volatile attribute.

Variables that are read or written by exception handling code must be
declared with the ANSI C volatile attribute. Run your tests with the
optimize compiler option to ensure that the compiler thoroughly tests your
exception handling code.

4-14 Using the DECthreads Exception Package

• Reraise exceptions that are not fully handled.

Reraise any exception that you catch, unless your handler has performed
the complete recovery action for the error. This rule permits an unhandled
exception to propagate to some final default handler that knows how to
recover fully.

A corollary of this rule is that CATCH ALL handlers must reraise, since they
may catch any exception, and usually cannot do recovery actions that are
proper for every exception.

Following this convention is important so that you also do not absorb a
cancel or thread-exit request. These are mapped into exceptions so that
exception handling has the full power to handle all exceptional conditions,
from access violations to thread-exit. (In some applications it is important
to be able to catch these to preserve an external invariant, such as an
on-disk database.)

• Declare only static exceptions.

4.6 Pthread Exceptions and Definitions
Table 4-1 lists the pthread exceptions and briefly explains the meaning of each
exception.

Exception names beginning with the prefix pthread_ or cma_ are raised as the
result of something happening internal to the DECthreads facility and are not
meant to be raised by user code. Exceptions beginning with exc_ are generic
and belong to the exception facility and/or the underlying system.

See Appendix C for a list and descriptions of the cma interface exceptions.
Most pthread exceptions correspond directly to a cma interface exception.

Table 4-1 Pthread Exceptions

Exception

pthread_canceLe

pthread_existence_e

pthread_in_use_e

pthread_use_error_e

pthread_badparam_e

Definition

Thread cancelation in progress

Object referenced does not exist

Object referenced is already in use

Requested operation is improperly invoked

Improper parameter

(continued on next page)

Usina the DECthreads Exception Packaqe 4-15

Table 4-1 (Cont.) Pthread Exceptions

Exception

pthread_stackovf_e

pthread_nostackmem_e

pthread_unimp_e

pthread_notstack_e

exc_illaddr_e

exc_exquota_e

exc_insfmem_ e

exc_nopriv _e

exc_uninitexc_ e

exc_SIGILL_e

exc_SIGTRAP _e

exc_SIGIOT_e

exc_SIGEMT_e

exc_SIGFPE_e

exc_SIGBUS_e

exc_SIGSEGV _e

exc_SIGSYS_e

exc_SIGPIPE_e

exc_SIGXCPU _e

exc_SIGXFSZ_e

exc_intovCe

exc_intdiv _e

exc_fltovCe

exc_fltdiv _e

exc_fltund_e

exc_decovCe

exc_subrng_e

exc_resaddr_e

Definition

Attempted stack overflow was detected

No space is currently available to create a new stack

Unimplemented feature

The current stack was not created by DECthreads

Data or object could not be referenced

Operation failed due to insufficient quota

Insufficient virtual memory for requested operation

Insufficent privilege for requested operation

Uninitialized exception raised

U nhandled illegal instruction signal

Unhandled trace or breakpoint trap signal

Unhandled lOT trap signal

Unhandled EMT trap signal

Unhandled floating point exception signal

U nhandled bus error signal

Unhandled segmentation violation signal

U nhandled bad system call signal

Unhandled broken pipe signal

Unhandled CPU-time limit exceeded signal

Unhandled file-size limit exceeded signal

Unhandled integer overflow trap exception

Unhandled integer divide by zero trap exception

Unhandled floating point overflow trap exception

Unhandled floating point/decimal divide by zero trap
exception

Unhandled floating point underflow trap exception

Unhandled decimal overflow trap exception

Unhandled subscript out of range trap exception

Unhandled reserved addressing fault exception

(continued on next page)

4-16 USing the DECthreads Exception Package

Table 4-1 (Cont.) Pthread Exceptions

Exception

exc_privinst_e

exc_resoper_e

Definition

Unhandled privileged instruction fault exception

Unhandled reserved operand fault exception

5
DECthreads Examples

This chapter contains two examples that show the use of the DECthreads
pthread routines from programs written in the C language. Example 5-1
uses the status-returning interface (the default) to perform a prime number
search. Example 5-2 uses the exception-returning interface to DECthreads to
demonstrate an asynchronous user interface.

5.1 Prime Number Search Example
Example 5-1 shows the use of the DECthreads pthread routines in a C
program that performs a prime number search. The program finds a specified
number of prime numbers, then sorts and displays these numbers. Several
threads participate in the search: each thread takes a number (the next one
to be checked), checks if it is a prime, records it if it is prime, and then takes
another number-and so on.

This program shows the work crew model of programming (see Section 1.4.2.)
The workers (threads) increment a number (current num) in order to get their
next work assignment. As a whole, the worker threads are responsible for
finding a specified number of prime numbers, at which point their work is
completed.

The number of workers to be used and the requested number of prime numbers
to be found are defined constants. A macro is used to check for error status
and to print a given string and the associated error value. Data to be accessed
by all threads (mutexes, condition variables, and so forth) are declared as
global items.

Worker threads execute the prime search routine, which begins by
synchronizing with the parent thread utilizing a predicate and a condition
variable. Enclose a condition wait in a predicate loop to prevent a thread from
continuing if it is wrongly signaled or broadcast. The lock associated with the
condition variable must be held by the thread during the call to condition wait.
The lock is released within the call and acquired again upon being signaled
or broadcast. The same mutex must be used for all operations performed on a
specific condition variable.

DECthreads Examples 5-1

After the parent sets the predicate and broadcasts, the workers begin finding
prime numbers until canceled by a fellow worker who has found the last
requested prime number. Upon each iteration the workers increment the
current number to be worked on and take the new value as their work item. A
mutex is locked and unlocked around getting the next work item, in order to
ensure that no two threads are working on the same item. This type of locking
protocol should be performed on all global data to ensure its integrity.

Each worker thread then determines if its current work item (number) is prime
by trying to divide numbers into it. If the number proves to be nondivisible, it
is put on the list of primes. Cancels are turned off while working with list of
primes in order to better control any cancels that do occur. The list of primes
and its current count are protected by locks, which also protect the cancelation
process of all other worker threads upon finding the last requested prime.
While still under the prime list lock, the current worker checks to see if it
has found the last requested prime, and, if so, unsets a predicate and cancels
all other worker threads. Cancels are then reenabled. The canceling thread
should fall out of the work loop as a result of the predicate that it unsets.

The parent thread's flow of execution is as follows:

• Set up the environment.

Setting up of the environment means initializing mutexes and the one
condition variable used in the example.

• Create worker threads.

Creation of worker threads is straightforward and utilizes the default
attributes (pthread attr default). Worker threads immediately wait on a
condition variable. - -

• Broadcast to the worker threads that they may start.

• Join each thread as it finishes.

As the parent joins each of the returning worker threads, it receives an exit
value from them which indicates whether a thread exited normally or not.
In this case the exit values on all but one of the worker threads should be
-1, indicating that they were canceled.

• Sort and print the list of primes.

The following pthread routines are used in Example 5-1:

pthread_ cancel
pthread_cond_broadcast
pthread_cond_init
pthread_cond_ wait

5-2 DECthreads Examples

pthread_create
pthread_detach
pthread_exit
pthreadjoin
pthread_m utex_ini t
pthread_mutex_lock
pthread_mutex_unlock
pthread_setcancel
pthread_ testcancel

Example 5-1 C Program Example (Prime Number Search)

/*
* * DECthreads example program conducting a prime number search
*
*/

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/*
* Constants used by the example.
*/

#define
#define

/*
* Macros
*/

workers
request

5
110

#define check{status,string) \

/* Threads to perform prime check */
/* Number of primes to find */

if (status == -1) perror (string)

/*
* Global data
*/

(continued on next page)

DECthreads Examples 5-3

Example 5-1 (Cont.) C Program Example (Prime Number Search)

pthread mutex t prime list; /* Mutex for use in accessing the prime */
pthread-mutex-t current mutex; /* Mutex associated with current number */
pthread-mutex-t cond mutex; /* Mutex used for ensuring CV integrity */
pthread-cond t cond-var; /* Condition variable for thread start */
int - - current num= -1;/* Next number to be checked, start odd */
int thread_hold=l; /* Number associated with condition state */
int count=O; /* Count of prime numbers - index to primes */
int primes[request];/* Store prime numbers - synchronize access */
pthread_t threads[workers]; /* Array of worker threads */

static void
unlock cond (pthread_addr_t arg)

{ -
int status; /* Hold status from pthread calls */

status = pthread mutex unlock (&cond mutex);
check(status,"3:Mutex unlock bad status\n");
} -

/*
* Worker thread routine.
*
* Worker threads start with this routine, which begins with a condition
* wait designed to synchronize the workers and the parent. Each worker
* thread then takes a turn taking a number for which it will determine
* whether or not it is prime.
*
*/

void
prime search (pthread addr t arg)

{- -
div t div results;
int- numerator;
int denominator;
int cut off;
int notlfiee;
int prime;
int my number;
int status;
int not_done=l;

my_number = (int)arg;

/*

/* DIV results: quot and rem */
/* Used for determing primeness */
/* Used for determing primeness */
/* Number being checked div 2 */
/* Used during a cancelation */
/* Flag used to indicate primeness */
/* Worker thread identifier */
/* Hold status from pthread calls */
/* Work loop predicate */

* Synchronize threads and the parent using a condition variable, of
* which the predicate (thread_hold) will be set by the parent.
*/

(continued on next page)

5-4 DECthreads Examples

Example 5-1 (Cont.) C Program Example (Prime Number Search)

status = pthread mutex lock (&cond mutex)i
check(status,"l:Mutex_lock bad status\n")i

pthread_cleanup_push (unlock_cond, NULL)i

while (thread hold) {
status = pthread cond wait (&cond var, &cond mutex)i
check(status, "2:Cond wait bad status\n"); -
} -

pthread_cleanup_pop (1);

/*
* Perform checks on ever larger integers until the requested
* number of primes is found.
*/

while (not_done) {

/* Cancelation point */
pthread_testcancel ();

/* Get next integer to be checked */
status = pthread mutex lock (¤t mutex);
check(status,"4:Mutex lock bad status'\n");
current num = current-num t 2; /* Skip even numbers */
numerator = current numi
status = pthread mutex unlock (¤t mutex);
check(status,"5:Mutex_unlock bad status'\n");

/* Only need to divide in half of number to verify not prime */
cut off = numerator/2 t 1;
prime = 1;

/* Check for prime; exit if something evenly divides */
for (denominator = 2; ((denominator < cut off) && (prime));

prime = numerator % denominator;
}

if (prime 1= 0) {

/* Explicitly turn off all cancels */
pthread_setcancel(CANCEL_OFF);

/*

- denominatortt)

* Lock a mutex and add this prime number to the list. Also,
* if this fulfills the request, cancel all other threads.
*/

(continued on next page)

DECthreads Examples 5-5

Example 5-1 (Cont.)C Program Example (Prime Number Search)

status = pthread mutex lock (&prime list);
check(status,"6:Mutex_Iock bad status\n");

if (count < request)
primes [count] = numerator;
count++;
}

else if (count == request) {
not done = 0;
count++;
for (notifiee = 0; notifiee < workers; notifiee++) {

if (notifiee != my number) {

}

status = pthread cancel (threads [notifiee]);
check(status,"12:Cancel bad status\n");
}

status = pthread mutex unlock (&prime list);
check(status, " 13:Mutex=:unlock bad status\n");

/* Reenable cancels */
pthread setcancel(CANCEL ON);
} - -

pthread testcancel ();
} -

pthread exit ((pthread_addr_t)my_number);
} -

main()
{
int
void
int
int
int
int
int
int

j*

worker num;
*exit value;
list;
status;
indexl;
index2;
temp;
not_done;

* Create mutexes
*/

. 5-6 DECthreads Examples

/* Counter used when indexing workers */
/* Individual worker's return status */
/* Used to print list of found primes */
/* Hold status from pthread calls */
/* Used in sorting prime numbers */
/* Used in sorting prime numbers */
/* Used in a swap; part of sort */
/* Indicates swap made in sort */

(continued on next page)

Example 5-1 (Cont.) C Program Example (Prime Number Search)

status = pthread mutex init (&prime list, pthread mutexattr default);
check(status,"7:Mutex Init bad status\n"); - -
status = pthread mutex in it (&cond mutex, pthread mutexattr default);
check(status,"8:Mutex Init bad status\n"); - -
status = pthread mutex in it (¤t mutex, pthread mutexattr default);
check (status, "9: Mutex _ Ini t bad status '\n") ; - -

/*
* Create conditon variable
*/

status = pthread cond init (&cond var, pthread condattr default);
check(status,"10:cond~)nit bad status\n"); - -

/*
* Create the worker threads.
*/

for (worker num = 0; worker num < workers; worker_num++)
status ~ pthread create-(

&threads[worker num],
pthread attr default,
prime search-;
(pthread addr t)worker num);

check (status -;" 11 : pthread _create bad status \n") ;

/*
* Set the predicate thread hold to zero, and broadcast on the
* condition variable that the worker threads may proceed.
*/

status = pthread mutex lock (&cond mutex);
check(status, "12:Mutex~)ock bad status\n");

thread hold = 0;
status-= pthread_cond_broadcast (&cond_var);

status = pthread mutex unlock (&cond mutex);
check(status,"13:Mutex=unlock bad status\n");

/*
* Join each of the worker threads inorder to obtain their
* summation totals, and to ensure each has completed
* successfully.
*
* Mark thread storage free to be reclaimed upon termination by
* detaching it.
*/

(continued on next page)

DECthreads Examples 5-7

Example 5-1 (Cont.) C Program Example (Prime Number Search)

for (worker num = 0; worker num < workers; worker_num++)
status ~ pthread join (-

threads[worker num],
&exit value);-

check(status,"14:Pthread_join bad status\n");

if (exit value == (pthread addr t)worker num)
printf("Thread terminated normally\n");

/*

/*

* Upon normal termination the exit value is equivalent to
* worker num.
*/

status = pthread detach (&threads[worker num]);
check(status,"15:Pthread detach bad status\n");
} -

* Take the list of prime numbers found by the worker threads and
* sort them from lowest value to highest. The worker threads work
* concurrently; there is no guarantee that the prime numbers
* will be found in order. Therefore, a sort is performed.
*/

not done = 1;
for-(indexl = 1; ((indexl < request) && (not done)); indexl++) {

for (index2 = 0; index2 < indexl; index2++)

/*

if (primes[indexl] < primes[index2]) {
temp = primes[index2];
primes[index2] = primes[indexl];
primes[indexl] = temp;
not done = 0;
} -

* Print out the list of prime numbers that the worker threads
* found.
*/

printf ("The list of %d primes follows:\n", request);
printf("%d",primes[O]);
for (list = 1; list < request; list++)

printf (",\t%d", primes[list]);
}

printf ("\n");

5-8 DECthreads Examples

(continued on next page)

Example 5-1 (Cont.) C Program Example (Prime Number Search)

5.2 Asynchronous User Interface Example
Example 5-2 shows the use of the DECthreads pthread routines in a C
program that features a text-based asynchronous user interface. This interface
reads and writes commands to the terminal.

This example uses the DECthreads exception package to allow the pthread
routines to report errors by raising exceptions rather than by returning status
values.

Example 5-2 allows you to start multiple commands that run concurrently
and report their results when complete. You can monitor the status of running
commands or cancel the commands.

Asynchronous Commands
The asynchronous commands are date and time. These commands cause the
program to wait a certain number of seconds before executing. The number
of seconds is the argument to the command; for example, time 10 causes the
program to wait 10 seconds before reporting the time.

Housekeeping Commands
The housekeeping commands are as follows:

• status
Displays the state of a command.

• wait
Waits for a command to finish.

• cancel
Stops a command.

The argument to these commands is the number of the command (assigned and
displayed when the asynchronous command starts). This program is limited to
four outstanding commands.

The following pthread routines are used in Example 5-2:

pthread_cancel
pthread_cond_init

DECthreads Examples 5-9

pthread_cond_signal
pthread_cond_ wai t
pthread_create
pthread_delay_np
pthread_detach
pthreadjoin
pthread_lock_globaLnp
pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock
pthread_once
pthread_unlock_globaLnp
pthreadjrield

Example 5-2 C Program Example (Asynchronous User Interface)

/*
* * DECthreads example program featuring an asynchronous user interface
*
*/

/*
* Include files
*/

#include <pthread exc.h> «)
#undef printf ~ -
#undef gets
#include <stdio.h>
#include <time.h>

/*
* Local definitions
*/

#define PROMPT "Info> "
#define MAXLINSIZ 81
#define THDNUM 5

5-10 DECthreads Examples

/* Prompt string */
/* Command line size */
/* Number of server threads */

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

1*
* Server thread "states"
*1

#define ST INIT 0
#define ST-FINISHED 1
#define ST-CANCELED 2
#define ST-ERROR 3
#define ST-RUNNING 4

#ifndef FALSE
define FALSE
define TRUE
#endif

#ifndef NULL
define NULL
#endif

1*
* Global variables
*1

struct THREAD DATA {

o
!FALSE

o

pthread t- thread handle;
pthread-mutex t mutex handle;
int - - time;-
char task;
int state;
} thread_data[THDNUM];

pthread mutex t
pthread=cond_t
int

1*
* Local Routines
*1

static void

free thread mutex;
free-thread-cv;
free=thread;

1* "Initial" state (no thread) *1
1* Command completed *1
1* Command was canceled *1
1* Command was terminated by an error
1* Command is running *1

1* Just in case these are not defined

1* Just in case this is not defined *1

1* Server thread handle *1
1* Mutex to protect fields below *1
1* Amount of delay remaining *1

*1

*1

1* Task being performed ('t' or 'd') *1
1* State of the server thread *1

1* Mutex to protect "free_thread" *1
1* Condition variable for same *1
1* Flag indicating a free thread *1

dispatch_task (pthread_startroutine_t routine, char task, int time);

static void
do_cancel (int index);

static void
do_cleanup (int index, int final_state);

static pthread addr t
do_date (pthread_addr_t arg);

static void
do_delay (int index);

(continued on next page)

DECthreads Examples 5-11

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

static void
do_status (int index);

static pthread addr t
do_time (pthread_addr_t arg);

static void
do_wait (int index);

static int
find_free_thread (int *index);

static char *
get_cmd (char *buffer);

static int
get_y_or_n (char *query, char defans);

static void
init_routine (void);

static void
print_error (char *message);

static void
print_help (void);

static void
this_shouldnt_happen (char *message);

/*
* The main program: Description TBS.
*/

main()
{
int done = FALSE;
char cmdline[MAXLINSIZ];
char cmd wd[MAXLINSIZ];
int cmd=arg;
int cmd cnt;

/* Flag indicating user is "done" */
/* Command line */
/* Command word */
/* Command argument */
/* Number of items on command line */

pthread_startroutine_t
static pthread_once_t

routine; /* Routine to execute in a thread */
once_block = pthread_once_init; ~

/*
* Perform program initialization.
*/

pthread_once (&once_block, init_routine); t)

5-12 DECthreads Examples

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Main command loop
*/

do {
/*
* Get and parse a command. Yield first so that any threads waiting
* to execute get a chance to before we take out the global lock
* and block for I/O.

*/
pthread yield (); ~
if (get-cmd(cmdline)) {

cmd-cnt = sscanf (cmdline, "%s %d", cmd wd, &cmd arg);
routine = (pthread_startroutine_t)NULL; /* No-routine yet */

if ((cmd_cnt == 1) I I (cmd_cnt == 2)) /* Normal result */
cmd wd[O] = tolower(cmd wd[O]); /* Map to lower case */

-switch (cmd wd[O]) {
case 'h': -/* "Help" */
case '?':

{
print help();
break;
}

case 'q': /* "Quit" */
{
done = TRUE;
break;
}

case's': /* "Status" */
{
do status ((cmd_cnt == 2 ? cmd_arg -1));
break;
}

(continued on next page)

DECthreads Examples 5-13

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
j*
* These commands require an argument
*j

case 'c' :
case 'd':
case 't' :
case 'w':

{

j* "Cancel" *j
j* "Date" *j
j* "Time" *j
j* "Wait" *j

if (cmd cnt 1= 2) {
print error ("Missing command argument.");
} -

else {
switch (cmd wd[O]) {

5-14 DECthreads Examples

case 'cT : j* "Cancel" *j
{
do cancel (cmd_arg);
break;
}

case 'd': j* "Date" *j
{
routine = do date;
break; -
}

case 't': j* "Time" * j
{
routine = do_time;
break;
}

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

/*

else

}

}
break;
}

default:
{

case 'W': /* "Wait" */
{
do wait (cmd_arg);
break;
}
default:
{
this shouldnt happen("Inner switch.");
break; -
}

print error ("Unrecognized command.");
break;
}

else if (cmd cnt 1= EOF) /* Ignore blank command line */
this_shouldnt_happen ("Unexpected parse error.");

/*
* If there is a routine to be executed in a server thread,
* create the thread.
*/

if (routine) dispatch_task (routine, cmd_wd[O], cmd_arg);
}

done = TRUE;
} while (1done);

* Create a thread to handle the user's request.
*/

static void
dispatch task (pthread_startroutine_t routine, char task, int time)

{ -
int i; /* Index of free thread slot */

(continued on next page)

DECthreads Examples 5-15

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

if (find free thread (&i)) {
j* - -

* Record the data for this thread where both the main thread and the
* server thread can share it. Lock the mutex to ensure exclusive
* access to the storage.
*j

pthread mutex lock (&thread data[i].mutex handle);
thread data[i].time = time;- -
thread-data[i].task = task;
thread-data[i].state = ST RUNNING;
pthread_mutex_unlock (&thread_data[i].mutex_handle);

/*
* Create the thread, using the default attributes. The thread will
* execute the specified routine and get its data from array slot 'i'.
*/

j*

pthread create (
-&thread data[i].thread handle,
pthread-attr default, -
routine~ -
(pthread_addr_t)i);

pthread lock global np (); ~
printf ("This is command #%d.\n\n", i);
pthread unlock global np ();
} - - -

* Wait for the completion of the specified command.
*/

static void
do cancel (int index)

- {
int cancelable;

if ((index < 0) I I (index >= THDNUM))
print error ("Bad command number.");
else T

pthread mutex lock (&thread data[index].mutex handle);
cancelable = (thread data[index].state == ST RUNNING);
pthread_mutex_unlock-(&thread_data[index].mutex_handle);

5-16 DECthreads Examples

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

if (cancelable)
pthread cancel (thread data[index).thread handle); tt

else - - -
print_error ("Conunand is not active.");

/*
* Post-task clean-up routine.
*/

static void
do cleanup (int index, int final_state)

- {
/*
* This thread is about to make the change from "running" to "finished",
* so lock a mutex to prevent a race condition in which the main thread
* sees this thread as finished before it is actually done cleaning up.
* * Note that when attempting to lock more than one mutex at a time,
* always lock the mutexes in the same order everywhere in the code.
* The ordering here is the same as in "find free thread".
*/ - -

pthread_mutex_lock (&free_thread_mutex); ~

/*
* Mark the thread as finished with its task.
*/

pthread mutex lock (&thread data[index).mutex handle);
thread data[index).state = final state; -
pthread_mutex_unlock (&thread_data[index).mutex_handle);

/*
* Set the flag indicating that there is a free thread, and signal the
* main thread, in case it is waiting.
*/

free thread = TRUE; ~
pthread cond signal (&free thread cv);
pthread-mutex unlock (&free thread mutex);
} - - --

(continued on next page)

DECthreads Examples 5-17

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Thread routine that prints out the date.
*
* Synchronize access to ctime as it is not thread-safe (it returns the address
* of a static string). Also synchronize access to stdio routines.
*/

static pthread addr t
do date (pthread addr t arg) - { --

time t clock time; /* Julian time */
char- *date-str; /* Pointer to string returned from ctime */
char day[4T, month[4], date[3], year[5]; /* Pieces of ctime string */

TRY {
/*
* Pretend that this task actually takes a long time to perform.
*/

do_delay ((int)arg);

pthread lock global np (); GD
TRY {- - -

clock time = time ((time t *)0); GD
date str = ctime (&clock-time);
sscanf (date str, "%s %s-%s %*s %s", day, month, date, year);
printf ("%d)-Today is %s, %s %s %s.\n\n", arg, day, date, month, year);
}

FINALLY { I)
pthread unlock global np ();
} - - -

ENDTRY
}

CATCH (pthread cancel e) { GD
pthread lock global np ();
printf ("%d)-Canceled. \n", arg);
pthread_unlock_global_np ();

5-18 DECthreads Examples

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
/*
* Perform exit actions
*/
do_cleanup ((int)arg, ST_CANCELED);

RERAISE;
}

CATCH ALL {
pthread lock global np ();
printf ("%d)-", arg);
exc report (THIS CATCH); G9
pthread_unlock_global_np ();

/*
* Perform exit actions
*/
do_cleanup ((int)arg, ST_ERROR);

RERAISE;
}

ENDTRY

/*
* Perform exit actions (thread was not canceled).
*/

do_cleanup ((int)arg, ST_FINISHED);

/*
* All thread routines return a value. This program doesn't check the
* value, however.

/*

*/
return arg;
}

* Delay routine
* * Since the actual tasks that threads do in this program take so little time
* to perform, execute a delay to make it seem like they are taking a long
* time. Also, this will give the user something to query the progress of.
*/

static void
do delay (int index)

- {
static struct timespec interval {I, O}; ~
int done; /* Loop exit condition */

(continued on next page)

DECthreads Examples 5-19

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
while (TRUE) {

/*

/*
* Decrement the global count, so the main thread can see how much
* progress we've made. Keep decrementing as long as the remaining
* time is greater than zero.
* * Lock the mutex to ensure no conflict with the main thread that
* might be reading the time remaining while we're decrementing it.
*/

pthread mutex lock (&thread data[index].mutex handle);
done = ((thread data[index]:time--) <= 0); -
pthread_mutex_unlock (&thread_data[index].mutex_handle);

/*
* Quit if the time is up.
*/
if (done) break;

/*
* wait for one second.
*/

pthread delay np (&interval);
} - -

* Print the status of the specified thread.
*/

static void
do status (int index)

- {
int start, end;
int i;

/* Range of commands queried */
/* Loop index */

int output = FALSE; /* Flag: produced output */

if ((index < -1) I I (index >= THDNUM))
print error ("Bad command number.");

else { -
if (index == -1)

start = 0, end = THDNUM;
else

start = index, end = start + 1;

5-20 DECthreads Examples

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

pthread lock global np ();
for (i ~ start; i <-end; itt) {

pthread mutex lock (&thread data[i].mutex handle);
if (thread data[i].state !=-ST INIT) { -

printf-("Command #%d: ", I);

switch (thread data[i].task) {
case 't': -

{
printf ("\"time\", ");
break;
}

case 'd':
{
printf ("\ "date\", ");
break;
}
default:
{
printf ("[unknown] ");
break;
}

switch (thread data[i].state)
case ST FINISHED:

{ -
printf ("completed");
break;
}

case ST CANCELED:
{ -
printf ("canceled");
break;
}

case ST ERROR:
{ -
printf ("terminated by error");
break;
}

(continued on next page)

DECthreads Examples 5-21

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
case ST RUNNING:

{ -
if (thread data[i].time < 0)

printf-("wai ting to print");
else

printf (

break;
}

default:
{

"%d seconds remaining",
thread_data[i].time);

this shouldnt happen ("Thread state default");

j*

break; -
}

printf (".\n");
output = TRUE;
}

pthread mutex unlock (&thread_data[i].mutex_handle);
} - -

if (loutput) printf ("No such command. \n");

printf ("\n");

pthread unlock global np ();
} - - -

* Thread routine that prints
*j

out the date.

static pthread addr t
do time (pthread addr t arg) - { --

j* Julian time *j time t clock time;
char- *date-str;
char time_str[8];

j* Pointer to string returned from ctime *j
j* Piece of ctime string *j

(continued on next page)

5-22 DECthreads Examples

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
TRY {

j*
* Pretend that this task actually takes a long time to perform.
*j
do_delay ((int)arg);

pthread lock global np ();
TRY {- - -

clock time = time ((time t *)0);
date str = ctime (&clock-time);
sscanf (date str, "%*s %*s %*s %s", time_str);
printf (-

"%d) At the tone the time will be, %s.%c\n\n",
arg,

}
FINALLY {

time str,
'\007');

pthread unlock global np ();
} - - -

ENDTRY
}

CATCH (pthread cancel e) {
pthread lock global np ();
printf ("%d) -Canceled. \n", arg);
pthread_unlock_global_np ();

do_cleanup ((int)arg, ST_CANCELED);

RERAISE;
}

CATCH ALL {
pthread lock global np ();
printf ("%d)-", arg);
exc report (THIS CATCH);
pthread_unlock_global_np ();

do_cleanup ((int)arg, ST_ERROR);

RERAISE;
}

ENDTRY

j*
* Perform exit actions (thread was not canceled).
*j

do_cleanup ((int)arg, ST_FINISHED);

(continued on next page)

DECthreads Examples 5-23

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

j*

j*
* All thread routines return a value. This program doesn't check the
* value, however.
*/

return arg;
}

* wait for the completion of the specified command.
*j

static void
do wait (int index)

- {

j*

if ((index < 0) I I (index >= THDNUM))
print error ("Bad command number.");

else -
pthread_join (thread_data[index].thread_handle, (pthread_addr_t)NULL);~

* Find a free server thread to handle the user's request.
*
* If a free thread is found, its index is written at the supplied address
* and the function returns true.
*j

static int
find free thread (int *index)

T -
int
int
int

i;
found;
retry = FALSE;

j* Loop index *j
j* Flag: free thread found *j
j* Flag: look again for finished threads *j

do {
j*
* We're about to look for a free thread, so prevent the data state
* from changing while we are looking.
*
* Note that when attempting to lock more than one mutex at a time,
* always lock the mutexes in the same order everywhere in the code.
* The ordering here is the same as in "do cleanup".
*j -

pthread_mutex_Iock (&free_thread_mutex);

(continued on next page)

5-24 DECthreads Examples

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Find a slot that doesn't have a running thread in it.
* * Before checking, lock the mutex to prevent conflict with the thread
* if it is running.
*/

for (i = 0, found = FALSE; i < THDNUM; itt) {
pthread mutex lock (&thread data[i].mutex handle);
found =-(thread data[i].state 1= ST RUNNING);
pthread_mutex_unlock (&thread_data[I].mutex_handle);

/*
* Now that the mutex is unlocked, break out of the loop if the
* thread is free.
*/

if (found) break;
}

if (found)
retry = FALSE;

else {
retry = get y or n (

"All threads are currently busy, do you want to wait?",
'y');

}

if (retry) {
/*
* All threads were busy when we started looking, so clear
* the "free thread" flag.
*/
free_thread = FALSE;

/*
* Now wait until some thread finishes and sets the flag
*/
while (lfree thread) ~

pthread=cond_wait (&free_thread_cv, &free_thread_mutex);

pthread mutex unlock (&free_thread_mutex);
} while - (retry) ;

(continued on next page)

DECthreads Examples 5-25

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
if (found) {

/*

/*
* Request DECthreads reclaim its internal storage for this old thread
* before we use the handle to create a new one.
*/

pthread_detach (&thread_data[i].thread_handle); G)
*index = i;
}

return (found);
}

* Get the next user command.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*/

static char *
get cmd (char *buffer)

-{
char *ret_val; /* Return from gets() */

/*
* The following calls to stdio routines are protected from concurrent
* calls by other threads by locking the "global lock".
*/

pthread lock global np(); /* Serialize calls to stdio */
printf (PROMPT); -
ret val = gets (buffer);
pthread_unlock_global_np(); /* Release for other threads */

return ret val;
} -

(continued on next page)

5-26 DECthreads Examples

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
/*
* Get a yes or no answer to a query. A "blank" answer uses default answer.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*
* Returns TRUE for "yes" and FALSE for "no".
*/

static int
get y or n (char *query, char defans)

-{- -
char
int
int

do {

buffer[MAXLINSIZ]i
answer;
retry = TRUE;

/* User's answer */
/* Boolean equivalent */
/* Ask again? */

buffer[O] = '\0'; /* Initialize the buffer */
pthread lock global np ();
printf ("%s T%c] ",-query, defans);
gets (buffer);
pthread_unlock_global_np ();

if (buffer[O] == '\0') buffer[O] = defans; /* Apply default */

switch (buffer[O]) {
case 'y':
case 'Y':

answer = TRUE;
retry = FALSE;
break;
}

(continued on next page)

DECthreads Examples 5-27

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

j*

case 'n':
case 'N':

{
answer = FALSE;
retry = FALSE;
break;
}

default:
{

}

pthread lock global np ();
printf ("Please enter \"Y\" or \"N\".\n");
pthread unlock global np ();
retry =-TRUE; - -
break;
}

} while (retry);

return answer;
}

* Initialization routine;
* * Called as a one-time initialization action.
*j

static void
init routine (void) GD

{"
int i;

for (i = 0; i < THDNUM; itt) {
pthread mutex init (

-&thread data[i].mutex handle,
pthread-mutexattr default);

thread data[i].time = 0; -
thread-data[i].task = '\0';
thread-data[i].state = ST INIT;
} - -

pthread mutex init (
-&free-thread mutex,
pthread_mutexattr_default);

pthread cond init (

}

-&free thread cv,
pthread_condattr_default);

5-28 DECthreads Examples

(continued on next page)

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)
/*
* Print user-error message.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*/

static void
print error (char *message)

{-

/*

pthread lock global np();
printf ("%s\n\n", message);
pthread unlock global np();
} - - -

* Print help text.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*/

static void
print help (void)

{-
pthread lock global np();
printf ("Commands are formed by a verb and an optional numeric argument.\n");
printf (liThe following commands are available:\n");
printf ("\tCancel\t[command]\tCancel running command\n");
printf ("\tDate\t[delay]\t\tPrint the date\n");
printf ("\tHelp\t\t\tPrint this text\n");
printf ("\tQuit\t\t\tQuit (same as EOF)\n");
printf ("\tStatus\t[command]\tReport on running command\n");
printf ("\tTime\t[delay]\t\tPrint the time\n");
printf ("\twait\t[command]\tWait for command to finish\n");
printf ("\n[command] refers to the command number. \n");;
printf ("[delay] delays the command execution for some number of seconds.\n");
printf ("This delay simulates a command task that actually takes some\n");
printf ("period of time to execute. During this delay, commands may be\n");
printf ("initiated, queried, and/or c~nceled.\n");
pthread unlock global np();
} - - -

(continued on next page)

DECthreads Examples 5-29

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Print error message for unexpected execution event.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*/

static void
this shouldnt happen (char *message) T -

pthread lock global np();
printf ("\n\nThis shouldn't happen: %s\n\n", message);
pthread unlock global np();
} - - -

o This program uses the pthread exception interface.

8 This program uses printf with gets to prompt for user input. To ensure
that no other thread can print or read between the printf and gets,
the program uses a local function to lock the global lock around printf
and gets. Although this does not conflict with the stdio jacket functions
provided by DECthreads, removing the macros may provide slightly better
performance.

6) Control block for one-time initialization.

e Initializes program global objects.

@) Ensures that other threads (of equal priority) have a chance to run without
mutex conflicts.

o Locks the global lock before calling printf because the DECthreads jacket
function for printf was disabled.

& Requests that the command thread terminate.

o Also locks a second mutex. When two mutexes are locked at the same time,
lock them in the same order to prevent a deadlock.

o Sets the predicate variable and signals the condition variable while the
mutex is locked to avoid a race condition.

G> Locks the global lock before entering the TRY block. Otherwise, the FINALLY
clause cannot determine whether or not the lock completed.

«D Locks the global mutex around calls to these C run-time functions (which
do not have DECthreads jacket routines). This avoids a race condition.

(continued on next page)

5-30 DECthreads Examples

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

48 Ensures that the mutex is unlocked, even if an exception is raised.

6) Performs cleanup and RERAISEs the exception if the function is canceled.

CD Prints a message describing the caught exception.

«9 Specifies the preset delay interval: tv. sec = 1, tv. nsec = O. This results
in a delay of 1 second.

4D Waits for the thread to complete. NULL is passed for the return status
value because the program is not interested in what the thread returns.

CD The condition variable wait is placed inside a loop that tests the wait
predicate. The condition wait is not called if the predicate is satisfied, and
the predicate is rechecked each time the condition wait returns.

«D Detaches the thread because no other threads will join with it.

~ Function called by pthread _once to initialize the program.

One example of the output generated by this program is as follows:

RUN DECTHREADS EXAMPLE

Info> help
Commands are formed by a verb and an optional numeric argument.
The following commands are available:

Cancel <COMMAND> Cancel running command
Date <DELAY> Print the date
Help Print this text
Quit Quit (same as EOF)
Status [<COMMAND>] Report on running command
Time <DELAY> Print the time
Wait <COMMAND> wait for command to finish

(continued on next page)

DECthreads Examples 5-31

Example 5-2 (Cont.) C Program Example (Asynchronous User Interface)

<COMMAND> refers to the command number.
<DELAY> delays the command execution for some number of seconds.
This delay simulates a command task that actually takes some
period of time to execute. During this delay, commands may be
initiated, queried, and/or canceled.

Info> time 5
This is command #0.
Info> date 15
This is command #1.

(0) At the tone the time will be, 11:19:46.

Info> status 1
Command #1: "date", 8 seconds remaining.

Info> status 1
Command #1: "date", 5 seconds remaining.

Info> time 10
This is command #0.

Info> status 0
Command #0: "time", 8 seconds remaining.

Info> status 1
Command #1: "date", waiting to print.

(1) Today is Tue, 6 Oct 1992.

Info> time 3
This is command #0.

Info> wait 0
(0) At the tone the time will be, 11:21:26.

Info> date 10
This is command #0.

Info> cancel 0
(0) Canceled.
Info> quit

5-32 DECthreads Examples

Part II
POSIX 1003.4a (pthread) Reference

Part II provides detailed descriptions of the POSIX l003.4a (pthread) Interface
to DECthreads.

Note

The pthread routines in DECthreads are based on PI003.4a Draft 4.
A future version of DECthreads is expected to provide support for
the final l003.4a standard. Users should be aware that applications
consistent with PI003.4aJD4 might require significant modifications for
those future versions of DECthreads that conform to subsequent drafts
of the final l003.4a standard.

To indicate errors, the pthread routines return status values by default. (See
Chapter 4 for a method of allowing the pthread routines to raise exceptions.)

You need not initialize the pthread routines.

Routine names ending with the np suffix denote that the routine is not
portable-the routine might not be available in implementations of POSIX
l003.4a other than DECthreads. Also, DECthreads defines some types (such
as pthread addr t) that are not specified by POSIX l003.4a. These types are
provided to-allow-code to be less dependent on ANSI C features (for example,
"void *"). These types are documented in Appendix D.

Creates a thread attributes object.

Syntax

pthread_attr _create(
attr);

Argument Data Type Access

attr opaque pthread_attct read

C Binding

int
pthread_attr_create (
pthread_attr_t *attr);

Arguments

attr
Thread attributes object created.

Description

This routine creates a thread attributes object that is used to specify the
attributes of threads when they are created. The attributes object created by
this routine is only used in calls to pthread _create.

The individual attributes (internal fields) of the attributes object are set to
default values. (The default values of each attribute are discussed in the
descriptions of the following routines.) Use the following routines to change
the individual attributes:

pthread attr setinheritsched
pthread=attr=setprio
pthread attr setsched
pthread=attr=setstacksize

pthread-3

When an attributes object is used to create a thread, the values of the
individual attributes determine the characteristics of the new object.
Attributes objects perform similar to additional arguments to object creation.
Changing individual attributes does not affect any objects that were previously
created using the attributes object.

When you set the scheduling policy or priority, or both, in an attributes object,
you must disable scheduling inheritance before the scheduling attributes are
used.

Return Values

pthread-4

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1

Error

[ENOMEM]

[EINVAL]

Description

Successful completion.

Insufficient memory exists to create the thread
attributes object.

The value specified by attr is invalid.

pthread_attr _delete

Deletes a thread attributes object.

Syntax

pthread_attr _ delete(
attr);

Argument Data Type Access

attr opaque pthread_attct read

C Binding

int
pthread_attr_delete (
pthread_attr_t *attr);

Arguments

attr
Thread attributes object deleted.

Description

This routine deletes a thread attributes object. This routine gives permission
to reclaim storage for the thread attributes object. Threads that were created
using this thread attributes object are not affected by the deletion of the thread
attributes object.

The results of calling this routine are unpredictable if the value specified by
the attr argument refers to a thread attributes object that does not exist.

pthread-5

Return Values

pthread-6

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1
-1

Error

[ENOMEM]

[EINVAL]

[ESRCH]

Description

Successful completion.

Insufficient memory exists to create the thread
attributes object.

The value specified by attr is invalid.

The value specified by attr does not refer to an
existing thread attributes object.

pthread_attr _getg uardsize_n p

Obtains the guard size attribute of the specified thread attributes object.

Syntax

pthread_attr_getguardsize_np(
attr);

Argument Data Type Access

attr read

C Binding

unsigned long
pthread_attr_getguardsize_np (
pthread_attr_t attr);

Arguments

attr
Thread attributes object whose guardsize attribute is obtained.

Description

This routine obtains the minimum size (in bytes) of the guard area for the
stack of a thread that is created using the attributes object specified by the attr
argument.

A guard area helps to detect stack overflows by preventing memory access
beyond the thread's stack. Large guard areas are necessary when threads
might allocate large structures on the stack.

pthread-7

Return Values

pthread-8

On successful completion, this routine returns the guardsize attribute value.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Guardsize attribute

-1

Error

[EINVAL]

Description

Successful completion.

The value specified by attr is
invalid.

pthread_attr _getinheritsched

pthread_attr _getinheritsched

Syntax

Obtains the inherit scheduling attribute of the specified thread attributes
object.

pthread_attr _getinheritsched(
aftr);

Argument Data Type Access

attr read

C Binding

int
pthread_attr_getinheritsched (
pthread_attr_t attr);

Arguments

attr
Thread attributes object whose inherit scheduling attribute is obtained.

Description

This routine obtains the value of the inherit scheduling attribute in the
specified thread attributes object. The inherit scheduling attribute specifies
whether threads created using the attributes object inherit the scheduling
attributes of the creating thread, or use the scheduling attributes stored in the
attributes object that is passed to pthread _create.

The default value of the inherit scheduling attribute is PTHREAD _INHERIT _SCHED.

pthread-9

pthread_attr _geti nheritsched

Return Values

On successful completion, this routine returns the inherit scheduling attribute
value.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Inheri t scheduling
attribute

-1

-1

pthread-10

Error

[EINVAL]

[ESRCH]

Description

Successful completion.

The value specified by attr is
invalid.

The value specified byattr
does not refer to an existing
thread attributes object.

pthread_attr _getprio

pthread_attr _getprio

Obtains the scheduling priority attribute of the specified thread attributes
object.

Syntax

pthread_attcgetprio(
attr);

Argument

attr

C Binding

int
pthread_attr_getprio (
pthread_attr_t attr);

Arguments

attr

Data Type Access

read

Thread attributes object whose priority attribute is obtained.

Description

This routine obtains the value of the scheduling priority of threads created
using the thread attributes object specified by the attr argument.

pthread-11

pthread_attr _getprio

Return Values

On successful completion, this routine returns the scheduling priority attribute
value.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Scheduling priority
attribute

-1

-1

pthread-12

Error

[EINVAL]

[ESRCH]

Description

Successful completion.

The value specified by attr is
invalid.

The value specified byattr
does not refer to an existing
thread attributes object.

pthread_attr _getsched

pthread_attr _getsched

Obtains the scheduling policy attribute of the specified thread attributes object.

Syntax

pthread_attr _getsched(
attr);

Argument

attr

C Binding

int
pthread_attr _getsched (
pthread_attr_t attr);

Arguments

attr

Data Type Access

opaque pthread_attr_t read

Thread attributes object whose scheduling policy attribute is obtained.

Description

This routine obtains the scheduling policy of threads created using the thread
attributes object specified by the attr argument. The default value of the
scheduling attribute is SCHED _ OTHER.

pthread-13

Return Values

On successful completion, this routine returns the value of the scheduling
policy attribute.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return Error

Scheduling policy attribute

-1 [EINVAL]

-1 ~SRCm

pthread-14

Description

Successful completion.

The value specified by attr is
invalid.

The value specified by attr
does not refer to an existing
thread attributes object.

Obtains the stacksize attribute of the specified thread attributes object.

Syntax

pthread_attr _getstacksize(
aftr);

Argument Data Type Access

attr opaque pthread_attct read

C Binding

unsigned long
pthread_attr~etstacksize (
pthread_attr_t attr);

Arguments

attr
Thread attributes object whose stacksize attribute is obtained.

Description

This routine obtains the minimum size (in bytes) of the stack for a thread
created using the thread attributes object specified by the attr argument.

Return Values

On successful completion, this routine returns the stacksize attribute value.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Stacksize attribute

-1

Error

[EINVAL]

Description

Successful completion.

The value specified by attr is
invalid.

pthread-15

pthread_attr _setguardsize_np

Syntax

Changes the guardsize attribute of thread creation.

pthread_attr_setguardsize_np(

Argument

attr

guardsize

attr,
guardsize);

Data Type

opaque pthread_attr_t

longword

Access

read

read

C Binding

int
pthread_attr_setguardsize_np (
pthread_attr_t *attr,
long guardsize);

Arguments

attr
Threads attributes object modified.

guardsize
New value for the guardsize attribute. The guardsize argument specifies the
mimi mum size (in bytes) of the guard area for the stack of a thread.

Description

This routine sets the minimum size (in bytes) of the guard area for the stack
of a thread that is created using the attributes object specified by the attr
argument.

A guard area helps to detect stack overflows by preventing memory access
beyond the thread's stack. Large guard areas are necessary when threads
might allocate large structures on the stack.

pthread-16

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The value specified by attr is invalid.

pthread-17

pthread_attr _setinheritsched

pthread_attr _setinheritsched

Syntax

Changes the inherit scheduling attribute of the specified thread attributes
object.

pthread_attr_setinheritsched(

Argument

attr

inherit

aftr,
inherit);

Data Type

opaque pthread_attr_t

integer

Access

read

read

C Binding

int
pthread_attr_setinheritsched (
pthread_attr_t *attr,
int inherit);

Arguments

attr
Thread attributes object to be modified.

inherit
New value for the inherit scheduling attribute. Valid values are as follows:

PTHREAD_INHERIT_
SCHED

PTHREAD_DEFAULT_
SCHED

pthread-18

This is the default value. The created thread
inherits the current priority and scheduling
policy of the thread calling pthread _create.
The created thread starts execution with the
priority and scheduling policy stored in the
thread attributes object.

pthread_attr _setinheritsched

Description

This routine changes the inherit scheduling attribute of thread creation.
The inherit scheduling attribute specifies whether threads created using
the specified thread attributes object inherit the scheduling attributes of the
creating thread, or use the scheduling attributes stored in the thread attributes
object that is passed to pthread _create.

The first thread in an application that is not created by an explicit call
to pthread create has a scheduling policy of SCHED OTHER. See the
pthread attr setprio and pthread attr setsched-routines for more
information o~ valid priority values "Emd valid scheduling policy values,
respectively.

Inheriting scheduling attributes (instead of using the scheduling attributes
stored in the attributes object) is useful when a thread is creating several
helper threads-threads that are intended to work closely with the creating
thread to cooperatively solve the same problem. For example, inherited
scheduling attributes ensure that helper threads created in a sort routine
execute with the same priority as the calling thread.

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1

Error

[EINVAL]

[ESRCH]

Description

Successful completion.

The value specified by attr is invalid.

The value specified by attr does not refer to an
existing thread attributes object.

pthread-19

Syntax

Changes the scheduling priority attribute of thread creation.

pthread_attr _setprio(

Argument

attr

priority

attr,
priority);

Data Type

opaque pthread_attr_t

integer

Access

read

read

C Binding

int
pthread_attr_setprio (
pthread_attr_t *attr,
int priority);

Arguments

attr
Thread attributes object modified.

priority
New value for the priority attribute. The priority attribute is dependent upon
scheduling policy. Valid values fall within one of the following three ranges:

Low

PRI_FIFO _MIN

PRI_RR_MIN

PRI_ OTHER_MIN

PRI_FG_MIN_NP

PRI_BG_MIN_NP

High

PRI_FIFO_MAX

PRI_RR_MAX

PRI_OTHER_MAX

PRI_FG_MAX_NP

PRI_BG_MAX_NP

The default priority is the midpoint between PRI OTHER MIN and PRI OTHER MAX.
(Section 2.8 describes how to specify priorities between-the minimum and
maximum values.)

pthread-20

pthread_attr _setprio

Description

This routine sets the execution priority of threads that are created using the
attributes object specified by the attr argument.

By default, a created thread inherits the priority of the thread calling
pthread create. To specify a priority using this routine, scheduling
inheritance must be disabled at the time the thread is created. Call
pthread attr setinheritsched and specify the value PTHREAD DEFAULT SCHED
for the inherit-argument before calling pthread _ create. - -

An application specifies priority only to express the urgency of executing
the thread relative to other threads. Priority is not used to control mutual
exclusion when accessing shared data. With a sufficient number of processors
executing, all ready threads, regardless of priority, execute simultaneously.

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1
-1

Error

[EINVAL]
[ERAN GE]

Description

Successful completion.

The value specified by priority is invalid.

One or more arguments supplied have an
invalid value.

pthread-21

pthread_attr _setsched

Changes the scheduling policy attribute of thread creation.

Syntax

pthread_attr_setsched(
aftr,
scheduler);

Argument

attr

scheduler

C Binding

int
pthread_attr_setsched (
pthread_attr_t *attr,
int scheduler);

Arguments

attr

Data Type

opaque pthread_attct

integer

Threads attributes object modified.

scheduler

Access

read

read

New value for the scheduling policy attribute. (Policies listed on the same line
are equivalent.) Valid values are as follows:

SCHED_FIFO
SCHED_RR
SCHED_FG_NPorSCHED_OTHER
SCHED_BG_NP

See Section 2.3.3.2 for a description of the scheduling policies.

pthread-22

Description

This routine sets the scheduling policy of a thread that is created using the
attributes object specified by the attr argument. The default value of the
scheduling attribute is SCHED _ OTHER.

By default, a created thread inherits the priority of the thread calling
pthread create. To specify a priority using this routine, scheduling
inherita~ce must be disabled at the time the thread is created. Call
pthread attr setinheri tsched and specify the value PTHREAD DEFAULT SCHED
for the inherit-argument before calling pthread _create. - -

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The value specified by scheduler is invalid.

pthread-23

pthread_attr _setstacksize

pthread_attr _setstacksize

Syntax

Changes the stacksize attribute of thread creation.

pthread_attr _ setstacksize(

Argument

attr

stacksize

attr,
stacksize);

Data Type

opaque pthread_attr_t

longword

Access

read

read

C Binding

int
pthread_attr _setstacksize (
pthread_attr_t *attr,
long stacksize);

Arguments

attr
Threads attributes object modified.

stacksize
New value for the stacksize attribute. The stacksize argument specifies the
minimum size (in bytes) of stack needed for a thread.

Description

This routine sets the minimum size (in bytes) of the stack needed for a thread
created using the attributes object specified by the attr argument. Use this
routine to adjust the size of the writeable area of the stack.

A thread's stack is fixed at the time of thread creation. Only the main or initial
thread can dynamically extend its stack.

Most compilers do not check for stack overflow. Ensure that your thread stack
is large enough for anything that you call from the thread.

pthread-24

pth read_attr _setstacksize

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The value specified by attr is invalid.

pthread-25

pthread_cancel

pthread_cancel

Allows a thread to request that it or another thread terminate execution.

Syntax

pthread_cancel(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

int
pthread_cancel (
pthread_t thread);

Arguments

thread
Thread that receives a cancel request.

Description

This routine sends a cancel to the specified thread. A cancel is a mechanism
by which a calling thread informs the specified thread to terminate as quickly
as possible. Issuing a cancel does not guarantee that the canceled thread will
receive or handle the cancel. The canceled thread can delay processing the
cancel after receiving it. For instance, if a cancel arrives during an important
operation, the canceled thread can continue if what it is doing cannot be
interrupted at the point where the cancel is requested.

Because of communication delays, the calling thread can only rely on the
fact that a cancel will eventually become pending in the designated thread
(provided that the thread does not terminate beforehand). Furthermore, the
calling thread has no guarantee that a pending cancel will be delivered because
delivery is controlled by the designated thread.

Termination processing when a cancel is delivered to a thread is similar to
pthread exit. Outstanding cleanup routines are executed in the context of the
target thread, and a status of -1 is made available to any threads joining with
the target thread.

pthread-26

pthread_cancel

This routine is preferred in implementing an Ada abort statement and any
other language- or software-defined construct for requesting thread cancelation.

The results of this routine are unpredictable if the value specified in thread
refers to a thread that does not currently exist.

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1

Error

[EINVAL]

[ESRCH]

Description

Successful completion.

The specified thread is invalid.

thread does not specify an existing thread.

pthread-27

pthread_cleanup_pop

Syntax

Removes the cleanup handler at the top of the cleanup stack and optionally
executes it.

pthread_cleanup_pop(
execute);

Argument Data Type Access

execute Boolean read

C Binding

int
pthread_cleanup_pop(
int execute);

Arguments

execute
Integer that specifies whether the cleanup routine in pthread cleanup push
is executed when the thread terminates normally (for exampk, when -
pthread exit is called). If the value of execute is 0, the routine is executed only
if the thread terminates abnormally (for example, if the thread is canceled). If
the value is 1 or more, the routine is executed regardless of whether the thread
terminates normally or abnormally.

Description

This routine removes the routine specified in pthread cleanup push at the top
of the calling thread's cleanup stack and executes it if the value specified in
execute is nonzero.

This routine and pthread cleanup push are implemented as macros and must
appear as statements and-in pairs ~ithin the same lexical scope. You can
think of the pthread cleanup push macro as expanding to a string whose first
character is a left brace (0 and pthread cleanup pop expanding to a string
containing the corresponding right brace (D. -

pthread-28

Return Values

If an error is detected, it may be indicated by sending the thread a
synchronously generated signal.

pthread-29

pthread_cleanup_push

Syntax

Establishes a cleanup handler to be executed when the thread exits or is
canceled.

pthread_cleanup_push(

Argument

routine

arg

*routine,
arg);

Data Type

opaque pthread_cleanup_t

opaque pthread_addr_t

Access

read

read

C Binding

int
pthread_cleanup_push(
pthread_cleanup_t *routine,
pthread_addr_t arg);

Arguments

routine
Routine executed as the cleanup handler.

arg
Argument executed with the cleanup routine.

Description

This routine pushes the specified routine onto the calling thread's cleanup
stack. The cleanup routine is popped from the stack and executed with the arg
argument when any of the following actions occur:

• The thread calls pthread _ exi t.

• The thread is canceled.

• The thread calls pthread cleanup pop and specifies a nonzero value for
the execute argument. -

pthread-30

This routine and pthread cleanup pop are implemented as macros and must
appear as statements and-in pairs within the same lexical scope. You can
think of the pthread cleanup push macro as expanding to a string whose first
character is a left brace (0 and pthread cleanup pop as expanding to a string
containing the corresponding right brace 0). -

Return Values

If an error is detected, it may be indicated by sending the thread a
synchronously generated signal.

pthread-31

pthread_condattr _create

pthread_condattr _create

Syntax

Creates a condition variable attributes object that can be used to specify the
attributes of condition variables when they are created.

pth read_ condattr _ create(
attr);

Argument Data Type Access

attr opaque pthread_condattct write

C Binding

int
pthread_condattr _create (
pthread_condattr_t *attr);

Arguments

attr
Condition variable attributes object that is created.

Description

This routine creates a condition variable attributes object that is used to
specify the attributes of condition variables when they are created. The
condition variable attributes object is initialized with the default value for all
of the attributes defined by a given implementation.

When a condition variable attributes object is used to create a condition
variable, the values of the individual attributes determine the characteristics
of the new object. Attributes objects act like additional arguments to object
creation. Changing individual attributes does not affect objects that were
previously created using the attributes object.

pthread-32

Return Values

The created condition variable attributes object is returned to the attr
argument.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[ENOMEM]

Description

Successful completion.

Insufficient memory exists to create the
condition variable attributes object.

pthread-33

pthread_condattr _delete

Deletes a condition variable attributes object.

Syntax

pthread_condattr_delete(
attr);

Argument Data Type Access

attr opaque pthread_condattct read

C Binding

int
pthread_condattr_delete (
pthread_condattr_t *attr);

Arguments

attr
Condition variable attributes object deleted.

Description

This routine deletes a condition variable attributes object. Call this routine
when a condition variable attributes object created by pthread condattr create
will no longer be referenced. - -

This routine gives permission to reclaim storage for the condition variable
attributes object. Condition variables that are created using this attributes
object are not affected by the deletion of the condition variable attributes
object.

The results of calling this routine are unpredictable if the handle specified by
the attr argument refers to an attributes object that does not exist.

pthread-34

pthread_condattr _delete

Return Values

Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The attributes object specified by attr is
invalid.

pthread-35

pthread_cond_broadcast

pthread_cond_broadcast

Wakes all threads that are waiting on a condition variable.

Syntax

pthread_cond_broadcast(
cond);

Argument Data Type

cond

C Binding

int
pthread_cond_broadcast(
pthread_cond_t *cond);

Arguments

cond
Condition variable broadcast.

Description

Access

read

This routine wakes all threads waiting on a condition variable. Calling this
routine implies that data guarded by the associated mutex has changed so that
it might be possible for one or more waiting threads to proceed. If any waiting
thread might be able to proceed, call pthread_ cond_signal.

Call this routine when the associated mutex is either locked or unlocked.

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-36

Error

[EINVAL]

Description

Successful completion.

The value specified by cond is invalid.

pthread_cond_destroy

Deletes a condition variable.

Syntax

pthread_cond_destroy(
cond);

Argument Data Type Access

cond read

C Binding

int
pthread_cond_destroy (
pthread_cond_t *cond);

Arguments

cond
Condition variable deleted.

Description

This routine deletes a condition variable. Call this routine when a condition
variable will no longer be referenced. The effect of calling this routine is to
give permission to reclaim storage for the condition variable.

The results of this routine are unpredictable if the condition variable specified
in cond does not exist.

The results of this routine are also unpredictable if there are threads waiting
for the specified condition variable to be signaled or broadcast when it is
deleted.

pthread-37

pthread_cond_destroy

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1
-1

pthread-38

Error

[EINVAL]
[EBUSY]

Description

Successful completion.

The value specified by cond is invalid.

A thread is currently executing a
pthread cond wait or pthread cond
timedwaI t on the condition variable specified
in condo

Syntax

Creates a condition variable.

pthread_condjnit(
cond,
attr);

Argument

cond

attr

Data Type

opaque pthread_cond_t

opaque pthread_condattr_t

Access

write

read

C Binding

int
pthread_cond_init (
pthread_cond_t *cond,
pthread_condattr_t attr);

Arguments

cond
Condition variable that is created.

attr
Condition variable attributes object that defines the characteristics of the
condition variable created. If you specify pthread _ condattr _ defaul t, default
attributes are used.

Description

This routine creates and initializes a condition variable. A condition variable
is a synchronization object used in conjunction with a mutex. A mutex controls
access to shared data; a condition variable allows threads to wait for that data
to enter a defined state.

Condition variables are not owned by a particular thread. Any associated
storage is not automatically deallocated when the creating thread terminates.

pthread-39

Return Values

If an error condition occurs, this routine returns -1, the condition variable is
not initialized, and the contents of cond are undefined. This routine ~ets errno
to the corresponding error value. Possible return values are as follows:

Return

o
-1

-1

pthread-40

Error

[EAGAIN]

[ENOMEM]

Description

Successful completion.

The system lacks the necessary resources to
initialize another condition variable.

The system-imposed limit on the total number
of condition variables under execution by a
single user is exceeded.

Insufficient memory exists to initialize the
condition variable.

Wakes one thread that is waiting on a condition variable.

Syntax

pthread_cond_signal(
cond);

Argument Data Type Access

cond read

C Binding

int
pthread_cond_signal (
pthread_cond_t *cond);

Arguments

cond
Condition variable signaled.

Description

This routine wakes one thread waiting on a condition variable. Calling this
routine implies that data guarded by the associated mutex has changed so that
it might be possible for a single waiting thread to proceed. Call this routine
when any thread waiting on the specified condition variable might find its
predicate true, but only one thread should proceed.

The scheduling policy determines which thread is awakened. For policies
SCHED FIFO and SCHED RR, a blocked thread is chosen in priority order, using
first-illifirst-out (FIFOf within priorities.

Call this routine when the associated mutex is either locked or unlocked.

pthread-41

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-42

Error

[EINVAL]

Description

Successful completion.

The value specified by cond is invalid.

Syntax

Wakes one thread that is waiting on a condition variable. This routine can
only be called from interrupt level.

pthread_cond_signaUnCnp(
cond);

Argument Data Type

cond

Access

read

C Binding

int
pthread_cond_signaLint_np(
pthread_cond_t *cond);

Arguments

cond
Condition variable signaled.

Description

This routine wakes one thread waiting on a condition variable. This routine
can only be called from interrupt level. Calling this routine implies that it
might be possible for a single waiting thread to proceed. Call this routine
when any thread waiting on the specified condition variable might find its
predicate true.

The scheduling policies of the waiting threads determine which thread is
awakened. For policies SCHED FIFO and SCHED RR, a blocked thread is chosen
in priority order, using first-iriffirst-out (FIFO) ~ithin priorities.

This routine does not cause a thread blocked on a condition variable to resume
execution immediately. A thread resumes execution at some time after the
interrupt handler returns.

pthread-43

You can call this routine when the associated mutex is either locked or
unlocked. (Never try to lock a mutex from an interrupt handler.)

Note ________________________ _

This routine allows you to signal a thread from a software interrupt
handler. Do not call this routine from noninterrupt code. If you
want to signal a thread from the normal noninterrupt level, use
pthread_cond_signal.

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-44

Error Description

Successful completion.

[EINVAL] The value specified by cond is invalid.

pthread_cond_timedwait

pthread_cond_timedwait

Syntax

Causes a thread to wait for a condition variable to be signaled or broadcast for
a specified period of time.

pthread_cond_timedwait(

Argument

cond

mutex

abstime

cond,
mutex,
abstime);

Data Type

opaque pthread_cond_t

opaque pthread_mutex_t

structure timespec

Access

read

read

read

C Binding

int
pthread_cond_timedwait (
pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *abstime);

Arguments

cond
Condition variable waited on.

mutex
Mutex associated with the condition variable specified in condo

abstime
Absolute time at which the wait expires, if the condition has not been signaled
or broadcast. (See the pthread get expiration np routine, which is used to
obtain a value for this argument.) - -

pthread-45

pthread_cond_timedwait

Description

This routine causes a thread to wait until one of the following occurs:

• The specified condition variable is signaled or broadcasted.

• The current system clock time is greater than or equal to the time specified
by the abstime argument.

This routine is identical to pthread cond wait except that this routine can
return before a condition variable is-signaied or broadcasted; specifically, when
a specified time expires.

If the current time equals or exceeds the expiration time, this routine returns
immediately, without causing the current thread to wait. Otherwise, waiting
on the condition variable can become a nonblocking loop.

Call this routine after you lock the mutex specified in mutex. The results of
this routine are unpredictable if this routine is called without first locking the
mutex.

Return Values

If an error condition occurs, this routine returns -1 and errno is set to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1
-1

pthread-46

Error

[EINVAL]

[EAGAIN]

[E DEAD LK.]

Description

Successful completion.

The value specified by cond, mutex, or abstime
is invalid.

Different mutexes are supplied for concurrent
pthread cond timedwai t operations or
pthread - cond - wait operations on the same
condition variable.

The time specified by abstime expired.

A deadlock condition is detected.

Syntax

pthread_cond_ wait

Causes a thread to wait for a condition variable to be signaled or broadcast.

pthread_cond_wait(

Argument

cond

mutex

cond,
mutex);

Data Type

opaque pthread_cond_t

opaque pthread_mutex_t

Access

read

read

C Binding

int
pthread_cond_ wait (
pthread_cond_t *cond,
pthread_mutex_t *mutex);

Arguments

cond
Condition variable waited on.

mutex
Mutex associated with the condition variable specified in condo

Description

This routine causes a thread to wait for a condition variable to be signaled
or broadcast. Each condition corresponds to one or more Boolean relations
(predicates) based on shared data. The calling thread waits for the data to
reach a particular state (for the predicate to become true).

Call this routine after you have locked the mutex specified in mutex. The
results of this routine are unpredictable if this routine is called without first
locking the mutex.

pthread-47

pthread_cond_ wait

This routine atomically releases the mutex and causes the calling thread to
wait on the condition. If the wait is satisfied as a result of some thread calling
pthread cond signal or pthread cond broadcast, the mutex is reacquired
and the routine returns. --

A thread that changes the state of storage protected by the mutex in such a
way that a predicate associated with a condition variable might now be true
must call either pthread cond signal or pthread condbroadcast for that
condition variable. If neither call is made, any thread waiting on the condition
variable continues to wait.

This routine might (with low probability) return when the condition variable
has not been signaled or broadcasted. When this occurs, the mutex is
reacquired before the routine returns. (To handle this type of situation,
enclose this routine in a loop that checks the predicate.)

Return Values

If an error condition occurs, this routine returns -1 and errno is set to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-48

Error

[EINVAL]

Description

Successful completion.

The value specified by cond or mutex is invalid.

Different mutexes are supplied for concurrent
pthread cond wait or pthread cond timedwai t
operations. - - -

pth read_create

Creates a thread object and thread.

Syntax

pthread_create(

Argument

thread

atlr

start_routine

arg

thread,
attr,
startJoutine,
arg);

C Binding

int
pthread_ create (
pthread_t *thread~

Data Type

opaque pthread_t

opaque pthread_atlr_t

procedure

opaque pthread_addr_t

pthread_attr_t attr~
pthread_startroutine_ t start_routine,
pthread_addr_t arg);

Arguments

thread
Thread object created.

attr

pthread_create

Access

write

read

read

read

Thread attributes object that defines the characteristics of the thread being
created. If you specify pthread_ attr _default, default attributes are used.

start_routi ne
Function executed as the new thread's start routine.

arg
Address value copied and passed to the thread's start routine.

pthread-49

pthread_ create

Description

This routine creates a thread object and a thread. A thread is a single,
sequential flow of control within a program. It is the active execution of a
designated routine, including any nested routine invocations. A thread object
defines and controls the executing thread.

Calling this routine sets into motion the following actions:

• An internal thread object is created to describe the thread.

• The associated executable thread is created with attributes specified by
the attr argument (or with default attributes if pthread attr default is
specified). - -

• The thread argument receives the new thread.

• The start _routine function is called.

A thread is created in the ready state and therefore might immediately begin
executing the function specified by the start_routine argument. The newly
created thread may preempt its creator if the new thread follows the SCHED RR
or SCHED FIFO scheduling policy or has a priority higher than the creating -
thread, or both. Otherwise, the new thread begins running at its turn, which
might also be before pthread _ create returns.

The new thread's scheduling policy and priority are, by default, inherited from
the creating thread-the scheduling policy and priority set in the attributes
object are ignored. To create a thread using the scheduling policy and priority
set in the attributes object, you must first disable the inherit scheduling
attribute by calling pthread_ attr _setinheritsched.

The start_routine is passed a copy of the arg argument. The value of the arg
argument is specified by the calling application code.

The thread object exists until the pthread detach routine is called or the
thread terminates, whichever occurs last. -

Synchronization between the caller of pthread create and the newly created
thread'is done through the use of the pthread- join routine (or any other
mutexes or condition variables they agree to use).

pthread-50

pth read_create

Return Values

If an error condition occurs, no thread is created, the contents of thread are
undefined, and this routine returns -1 and sets errno to the corresponding
error value. Possible return values are as follows:

Return

o
-1

-1

Error

[EAGAIN]

[ENOMEM]

Description

Successful completion.

The system lacks the necessary resources to
create another thread.

The system-imposed limit on the total number
of threads under execution by a single user is
exceeded.

Insufficient memory exists to create the thread
attributes object. This is not a temporary
condition.

pthread-S1

pthread_delay _np

pthread_delay _np

Syntax

Causes a thread to wait for a specified period of time before continuing
execution.

pthread_delay_np(
interval);

Argument Data Type Access

interval struct timespec read

C Binding

extern int
pthread_delay _np (
struct timespec *interval);

Arguments

interval
Number of seconds and nanoseconds that the calling thread waits before
continuing execution. The value specified must be greater than or· equal to o.

Descri ption

This routine causes a thread to delay execution for a specified period of elapsed
wall clock time. The period of time the thread waits is at least as long as the
number of seconds and nanoseconds specified in the interval argument.

Specifying an interval of 0 seconds and 0 nanoseconds is allowed and can result
in the thread giving up the processor or delivering a pending cancel.

The struct timespec structure contains the following two fields:

• tv _sec is an integer number of seconds

• tv _ nsec is an integer number of nanoseconds

pthread-S2

pthread_delay _"p

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The value specified by interval is invalid.

pthread-53

pthread_detach

pthread_detach

Marks a thread object for deletion.

Syntax

pthread_detach(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

int
pthread_qetach (
pthread_t *thread);

Arguments

thread
Thread object marked for deletion.

Description

This routine indicates that storage for the specified thread is reclaimed when
the thread terminates. This includes storage for the thread argument's return
value. If thread has not terminated when this routine is called, this routine
does not cause it to terminate.

Call this routine when a thread object is no longer referenced. Additionally,
call this routine for every thread that is created to ensure that storage for
thread objects does not accumulate.

You cannot join with a thread after the thread has been detached.

The results of this routine are unpredictable if the value of thread refers to a
thread object that does not exist.

pthread-54

pthread_ detach

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1
-1

Error

[EINVAL]
[ESRCH]

Description

Successful completion.

The value specified by thread is invalid.

The value specified by thread does not refer to
an existing thread.

pthread-55

pthread_equal

pthread_equal

Compares one thread identifier to another thread identifier.

Syntax

equal = pthread_equal (thread 1 , thread2)

Argument

equal

thread1

thread2

C Binding

int
pthread_equal (
pthread_t threadl,
pthread_t thread2);

Arguments

equal

Data Type

Boolean

opaque pthread_t

opaque pthread_t

Access

write

read

read

Boolean value that specifies whether threadl and thread2 designate the same
object.

thread1
The first thread identifier to be compared.

thread2
The second thread identifier to be compared.

Description

This routine compares one thread identifier to another thread identifier. (This
routine does not check whether the objects that correspond to the identifiers
currently exist.) If the identifiers have values indicating that they designate
the same object, 1 (true) is returned. If the values do not designate the same
object, 0 (false) is returned.

This routine is implemented as a C macro.

pthread-56

pthread_equal

Return Values

Possible return values are as follows:

Return Error

o

1

Description

Values of threadl and thread2 do not designate
the same object.

Values of threadl and thread2 designate the
same object.

pthread-57

pthread_.exit

Terminates the calling thread.

Syntax

pthread_exit(
status);

Argument

status

C Binding

void
pthread_exit (
pthread_addr_t *status);

Arguments

status

Data Type Access

read

Address value copied and returned to the caller of pthread _JoIn.

Description

This routine terminates the calling thread and makes a status value available
to any thread that calls pthread_join and specifies the terminating thread.

An implicit call to pthread exit is issued when a thread returns from the
start routine that was used-to create it. The function's return value serves as
the thread's exit status. The process exits when the last running thread calls
pthread _ exi t.

Return Values

None

pthread-58

Syntax

Obtains a value representing a desired expiration time.

pthread_geCexpiration_np(

Argument

delta

abstime

delta,
abstime);

Data Type

struct timespec

struct timespec

Access

read

write

C Binding

extern int
pthread_get_expiration_np (
struct time spec *delta,
struct time spec *abstime);

Arguments

delta
Number of seconds and nanoseconds to add to the current system time. The
result is the time that a timed wait expires.

abstime
Value representing the expiration time.

Description

This routine adds a specified interval to the current absolute system time and
returns a new absolute time. This new absolute time is used as the expiration
time in a call to pthread _ eond _ timedwai t.

The struet timespee structure contains the following two fields:

• tv. sec is an integer number of seconds

• tv. nsee is an integer number of nanoseconds

pthread-59

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-60

Error

[EINVAL]

Description

Successful completion.

The value specified by delta is invalid.

pthread_getprio

Obtains the current priority of a thread.

Syntax

pthread_getprio(
thread);

Argument

thread

C Binding

int
pthread_getprio (
pthread_t thread);

Arguments

thread

Data Type

opaque pthread_t

Thread whose priority is obtained.

Description

pthread_getprio

Access

read

This routine obtains the current priority of a thread. The current priority is
different from the initial priority of the thread if the pthread setprio routine
is called. -

The exact effect of different priority values depends upon the scheduling policy
assigned to the thread.

pthread-61

pthread_getprio

Return Values

The current priority value of the thread specified in thread is returned. See
the description of pthread _ setprio for valid values.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Priority
value

-1

pthread-62

Error Description

Successful completion.

[EINVAL] The value specified by thread is invalid.

pthread_getscheduler

Obtains the current scheduling policy of a thread.

Syntax

pthread_getscheduler(
thread);

Argument

thread

C Binding

int
pthread~etscheduler (
pthread_t thread);

Arguments

thread

Data Type

opaque pthread_t

Thread whose scheduling policy is obtained.

Description

pthread_getscheduler

Access

read

This routine obtains the current scheduling policy of a thread. The current
scheduling policy of a thread is different from the initial scheduling policy if
the pthread _ set scheduler routine is called.

pthread-63

pthread_getscheduler

Return Values

The current scheduling policy value of the thread specified in thread is
returned. See the description of pthread _ setscheduler for valid values.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Scheduling
policy
value

-1
-1

pthread-64

Error

[EINVAL]

[ESRCH]

Description

Successful completion.

The value specified by thread is invalid.

The value specified by thread does not refer to
an existing thread.

pthread_getspecific

pthread_getspecific

Syntax

Obtains the per-thread context associated with the specified key.

pth read_getspecific(

Argument

key

value

key,
value);

Data Type

opaque pthread_key_t

opaque pthread_addr_t

Access

read

write

C Binding

int
pthread~etspecific (
pthread_key _t key,
pthread_addr_t *value);

Arguments

key
Context key value that identifies the context value obtained. This key value
must be obtained from pthread _ keycreate.

value
Address of the current per-thread context value associated with the specified
key.

Description

This routine obtains the per-thread context associated with the specified key
for the current thread.

pthread-65

pthread_getspecific

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-66

Error

[EINVAL]

Description

Successful completion.

The key value is invalid.

Syntax

pthreadjoin

Causes the calling thread to wait for the termination of a specified thread.

pthreadjoin(

Argument

thread

status

thread,
status);

Data Type

opaque pthread_t

opaque pthread_addr_t

Access

read

write

C Binding

int
pthreadjoin (
pthread_t thread,
pthread_addr_t *status);

Arguments

thread
Thread whose termination is awaited by the caller of this routine.

status
Status value of the terminating thread (in other words, when that thread calls
pthread _ exi t.)

Description

This routine causes the calling thread to wait for the termination of a specified
thread. A call to this routine returns after the specified thread has terminated.

If the thread exits normally, the status value argument is the address
that the specified thread generates as its result. The thread's result is
normally returned as the value of the start_routine argument in its call to
pthread_ create. If the thread does not exit normally, the value of status is -1.

Any number of threads can call this routine. All calling threads are awakened
when the specified thread terminates.

pthread-67

pthread~oin

If the current thread calls this routine, a deadlock can result (if it is not
detected by the implementation).

The results of this routine are unpredictable if the value for thread refers to a
thread object that no longer exists (i.e., one which has been detached).

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1

pthread-68

Error

[EINVAL]
[ESRCH]

Description

Successful completion.

The value specified by thread is invalid.

The value specified by thread does not refer to
an existing thread.

pth read_keycreate

pthread_keycreate

Syntax

Generates a unique per-thread context key value.

pthread_keycreate(

Argument

key

destructor

key,
destructor) ;

Data Type

opaque pthread_key_t

procedure pthread_destructor_t

Access

write

read

C Binding

int
pthread_keycreate (
pthread_key _t *key,
pthread_ destructor _ t destructor);

Arguments

key
Value of the new per-thread context key.

destructor
Procedure called to destroy a context value associated with the created key
when the thread terminates.

Description

This routine generates a unique per-thread context key value. This key value
identifies a per-thread context, which is an address of memory generated by
the client containing arbitrary data of any size.

Per-thread context allows client software to associate context information with
the current thread. (This mechanism can be thought of as a means for a client
to add unique fields to the thread control block.)

pthread-69

pthread_keycreate

. For example, per-thread context can be used by a language run-time library
that needs to associate a language-specific thread-private data structure with
an individual thread. The per-thread context routines also provide a portable
means of implementing the class of storage called thread-private static, which
is needed to support parallel decomposition in the Fortran language.

This routine generates and returns a new key value. The key provides a cell
within each thread. Each call to this routine creates a new cell, and each
call within a process returns a key value that is unique within an application
invocation. Keys must be generated from initialization code that is guaranteed
to be called only once within each process. (See the pthread once description
for more information.) -

When multiple facilities share access to per-thread context, the facilities must
agree on the key value that is associated with the context. The key value
must be created once and should be stored in a location known to each facility.
(Encapsulate key creation and context value setting within a special facility for
that purpose.)

An implementation can choose to predefine some number of keys for favored
clients, such as certain compilers, run-time libraries, or the debugger.

When a thread terminates, its per-thread context is automatically destroyed;
however, the key value remains. For each per-thread context currently
associated with the thread, the destructor routine associated with the key value
of that context is called. The order in which per-thread context destructors are
called at thread termination is undefined.

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

-1
-1

pthread-70

Error

[ENOMEM]

[EAGAIN]

[EINVAL]

Description

Successful completion.

An attempt is made to allocate a key when the
key name space is exhausted. This is not a
temporary condition.

Insufficient memory exists to create the key.

Invalid argument.

Syntax

Locks a global mutex if the global mutex is unlocked. If the global mutex is
locked, causes the thread to wait for the global mutex to become available.

C Binding

void
pthread_Iock_global_np ();

Arguments

None

Description

This routine locks the global mutex. If the global mutex is currently held by
another thread when a thread calls this routine, the thread waits for the global
mutex to become available.

The thread that has locked the global mutex becomes its current owner and
remains the owner until the same thread has unlocked it. This routine returns
with the global mutex in the locked state and with the current thread as the
global mutex's current owner.

Use the global mutex when calling a library package that is not designed to
run in a multithreaded environment. (Unless the documentation for a library
function specifically states that it is compatible with multithreading, assume
that it is not compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that isn't known
to be reentrant uses the same lock. This prevents dependencies among threads
calling library functions and those functions calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global
mutex can relock it without deadlocking. (The locking thread must call
pthread unlock global np as many times as it called this routine to allow
another thread to lock the global mutex.)

pthread-71

Return Values

None

pthread-72

Syntax

Creates a mutex attributes object that is used to specify the attributes of
mutexes when they are created.

pthread_mutexattr_create(
aftr);

Argument Data Type Access

attr opaque pthread_mutexattct write

C Binding

int
pthread_mutexattr_create (
pthread_mutexattr _t *attr);

Arguments

attr
Mutex attributes object created.

Description

This routine creates a mutex attributes object used to specify the attributes of
mutexes when they are created. Themutex attributes object is initialized with
the default value for all of the attributes defined by a given implementation.

When a mutex attributes object is used to create a mutex, the values of
the individual attributes determine the characteristics of the new object.
Attributes objects act like additional arguments to object creation. Changing
individual attributes does not affect any objects that were previously created
using the attributes object.

pthread-73

pthread_mutexattr _create

Return Values

The created mutex attributes object is returned to the attr argument.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-74

Error

[ENOMEM]

Description

Successful completion.

Insufficient memory exists to create the mutex
attributes object.

pthread_m utexattr _delete

pthread_mutexattr _delete

Deletes a mutex attributes object.

Syntax

pth read_mutexattr _ delete(
attr);

Argument Data Type Access

attr opaque pthread_mutexattr_t read

C Binding

int
pthread_mutexattr_delete (
pthread_mutexattr_t *attr);

Arguments

attr
Attributes object deleted.

Description

This routine deletes a mutex attributes object. Call this routine when a mutex
attributes object is no longer referenced by the pthread mutexattr create
routine. - -

This routine gives permission to reclaim storage for the mutex attributes
object. Mutexes that were created using this attributes object are not affected
by the deletion of the mutex attributes object.

The results of calling this routine are unpredictable if the attributes object
specified in the attr argument does not exist.

pthread-75

Return Values

Possible return values are as follows:

Return

o
-1

pthread-76

Error

[EINVAL]

Description

Successful completion.

The value specified by attr is invalid.

pthread_mutexattr _getki nd_np

pth read_m utexattr _getki nd_np

Obtains the mutex type attribute used when a mutex is created.

Syntax

pthread_mutexattr_getkind_np(
attr);

Argument Data Type

attr opaque pthread_mutexattct

C Binding

int
pthread_mutexattr_getkind_np (
pthread_mutexattr_t attr);

Arguments

attr
Mutex attributes object whose mutex kind is obtained.

Description

Access

read

This routine obtains the mute x type attribute that is used when a mutex is
created. See the pthread mutexattr setkind np description for information
about mutex type attributes. - -

pthread-77

Return Values

On successful completion, this routine returns the mutex kind.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

Mutex type attribute

-1

-1

pthread-78

Error

[EINVAL]

[ESRCH]

Description

Successful completion.

The value specified by attr is
invalid.

The value specified byattr
does not refer to an existing
mutex attributes object.

Syntax

pthread_mutexattr _setkind_np

Specifies the mutex type attribute that is used when a mutex is created.

pthread_mutexattcsetkind_np{

Argument

attr

kind

aftr,
kind);

Data Type

opaque pthread_mutexattr_t

integer

Access

read

read

C Binding

int
pthread_mutexattr _setkind_np (
pthread_mutexattr_t *attr,
int kind);

Arguments

attr
Mutex attributes object modified.

kind
New value for the mutex type attribute. The kind argument specifies
the type of mutex that is created. Valid values are MUTEX FAST (default),
MUTEX_RECURSIVE, and MUTEX_NONRECURSIVE. -

Description

This routine sets the mutex type attribute that is used when a mutex is
created. See Section 2.3.4.1 for information on the types of mutexes.

pthread-79

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1
-1

pthread-80

Error

[EINVAL]
[ESRCH]

Description

Successful completion.

The value specified by attr or kind is invalid.

The value specified by attr does not refer to an
existing mutex attributes object.

Deletes a mutex.

Syntax

pthread_mutex_destroy(
mutex);

Argument Data Type

mutex

C Binding

int
pthread_mutex_destroy (
pthread_mutex_t *mutex);

Arguments

mutex
Mutex deleted.

Description

pthread_mutex_destroy

Access

read

This routine deletes a mutex and should be called when a mutex object is
longer referenced. This routine reclaims storage for the mutex object.

It is illegal to delete a locked mutex.

The results of this routine are unpredictable if the mutex object specified in the
mutex argument does not currently exist.

pthread-81

pthread_mutex_destroy

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1
-1

pthread-82

Error

[EBUSy]

[EINVAL]

Description

Successful completion.

An attempt is made to destroy a locked mutex.

The value specified by mutex is invalid.

Syntax

Creates a mutex.

pthread_mutexJnit(
mutex,
attr);

Argument

mutex

attr

Data Type

opaque pthread_mutex_t

opaque pthread_mutexattr_t

Access

write

read

C Binding

int
pthread_mutex_init (
pthread_mutex_t *mutex,
pthread_mutexattr_t attr);

Arguments

mutex
Mutex created.

attr
Mutex attributes object that defines the characteristics of the created mutex. If
you specify pthread _ mutexattr _ defaul t, default attributes are used.

Description

This routine creates a mutex. A mutex is a synchronization object that allows
multiple threads to serialize their access to shared data.

The mutex is created and initialized to the unlocked state.

The created mutex is not automatically deallocated because it is considered
shared among multiple threads if the thread that called this routine
terminates.

pthread-83

Return Values

If an error condition occurs, this routine returns -1, the mutex is not
initialized, and the contents of mutex are undefined. This routine sets errno to
the corresponding error value. Possible return values are as follows:

Return

o
-1

-1

pthread-84

Error

[EAGAIN]

[ENOMEM]

Description

Successful completion.

The system lacks the necessary resources to
initialize another mutex.

The system-imposed limit on the total number
of mutexes under execution by a singled user
is exceeded.

Insufficient memory exists to initialize the
mutex.

Syntax

Locks an unlocked mutex. If the mutex is locked, causes the thread to wait for
the mutex to become available.

pthread_mutexJock(
mutex);

Argument Data Type Access

mutex read

C Binding

int
pthread_mutex_Iock (
pthread_mutex_t *mutex);

Arguments

mutex
Mutex locked.

Description

This routine locks a mutex. If the mutex is locked when a thread calls this
routine, the thread waits for the mutex to become available.

The thread that has locked a mutex becomes its current owner and remains
the owner until the same thread has unlocked it. This routine returns with the
mutex in the locked state and with the current thread as the mutex's current
owner.

If you specified a fast mutex, a deadlock can result if the current owner of
a mutex calls this routine in an attempt to lock the mutex a second time.
If you specified a recursive mutex, the current owner of a mutex can relock
the same mutex without blocking. If the current owner of a nonrecursive
mutex calls this routine in an attempt to lock the mutex a second time, the
exception pthread in use e is raised. See pthread_mutexattr_setkind_np for
information about fast, rec~rsive, and nonrecursive mutexes.

Before you lock a mutex, disable asynchronous cancellation.

pthread-85

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return Error Description

0 Successful completion.

-1 [EINVAL] The value specified by mutex is invalid.

-1 [EDEADLK] A deadlock condition is detected.

pthread-86

pthread_mutex_trylock

pthread_mutex_trylock

Syntax

Locks a mutex. If the mutex is already locked, the calling thread does not wait
for the mutex to become available.

pthread_mutex_trylock(
mutex);

Argument Data Type Access

mutex read

C Binding

int
pthread_mutex_trylock (
pthread_mutex_t *mutex);

Arguments

mutex
Mutex locked.

Description

This routine locks a mutex. If the specified mutex is locked when a thread
calls this routine, the calling thread does not wait for the mutex to become
available.

When a thread calls this routine, an attempt is made to immediately lock
the mutex. If the mutex is successfully locked, 1 is returned and the current
thread is then the mutex's current owner.

If the mutex is locked by another thread when this routine is called, 0 is
returned and the thread does not wait to acquire the lock. If a fast mutex is
owned by the current thread, 0 is returned. If a recursive mutex is owned
by the current thread, 1 is returned and the mutex is relocked. (To unlock a
recursive mutex, each call to pthread mutex try lock must be matched by a
call to pthread _ mutex _unlock.) - -

pthread-87

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

1

o

-1

pthread-88

Error

[EINVAL]

Description

Successful completion.

The mutex is already locked; therefore, it was
not acquired.

The value specified by mutex is invalid.

pthread_mutex_unlock

pthread_mutex_unlock

Unlocks a mutex.

Syntax

pthread_mutex_unlock(
mutex);

Argument Data Type Access

mutex read

C Binding

int
pthread_mutex_unlock (
pthread_mutex_t *mutex);

Arguments

mutex
Mutex unlocked.

Description

This routine unlocks a mutex. If no threads are waiting for the mutex, the
mutex becomes unlocked with no current owner. If one or more threads are
waiting to lock the specified mutex, this routine causes one thread to unblock
and try to acquire the mutex. The scheduling policy is used to determine
which thread acquires the mutex. For the SCHED FIFO and SCHED RR policies, a
blocked thread is chosen in priority order, using FIFO within priorities.

The results of calling this routine are unpredictable if the mutex specified in
mutex is unlocked. The results of calling this routine are also unpredictable
if the mutex specified in mutex is currently owned by a thread other than the
calling thread.

pthread-89

pthread_mutex_unlock

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

pthread-90

Error

[EINVAL]

Description

Successful completion.

The value specified by mutex is invalid.

Syntax

pthread_once

Calls an initialization routine that can be executed by only one thread, a single
time.

pthread_once(

Argument

once_block

init_routine

once_block,
init_routine);

Data Type

opaque pthread_once_t

opaque pthread_initroutine_t

Access

read

read

C Binding

int
pthread_once (
pthread_once_t *once_block,
pthread_ini troutine_ t init _routine);

Arguments

once_block
Address of a record that defines the one-time initialization code. Each one-time
initialization routine must have its own unique pthread _ once _ t.

init_routine
Address of a procedure that performs the initialization. This routine is called
only once, regardless of the number of times it and its associated once_block
are passed to pthread _once.

Description

This routine calls an initialization routine executed by one thread, a single
time. This routine allows you to create your own initialization code that is
guaranteed to be run only once, even if called simultaneously by multiple
threads or multiple times in the same thread.

pthread-91

For example, a mutex or a per-thread context key must be created exactly
once. Calling pthread once prevents the code that creates a mutex or per
thread context from bclng called by multiple threads. Without this routine, the
execution must be serialized so that only one thread performs the initialization.
Other threads that reach the same point in the code would be delayed until the
first thread is finished.

This routine initializes the control record if it has not been initialized and
then determines if the one-time initialization routine has executed once. If
it has not executed, this routine calls the initialization routine specified in
init_routine. If the one-time initialization code has executed once, this routine
returns.

Note

If you specify an init_routine that directly or indirectly results in a
recursive call to pthread once specifying the same in it_block argument,
the recursive call will result in a deadlock.

The once_block must be declared static (for example, either extern or static
in the C language), and it must be initialized at compile time. In the C
language, using pthread. h or pthread exc. h, initialize an once_block using
the pthread once ini t macro. In oth;r languages, you must initialize a
pthread once t block to a value of three integer zeroes. In C, that corresponds
to the following:

static pthread_once_t block = {O,O,O};

Return Values

If an error occurs, this routine returns -1. No error values have been specified.
Possible return values are as follows:

Return

o
-1

pthread-92

Error

[EINVAL]

Description

Successful completion.

Invalid argument.

Obtains the identifier of the current thread.

Syntax

pthread_self();

C Binding

pthread_t
pthread_self ();

Arguments

None

Description

This routine allows a thread to obtain its own identifier. Use this identifier in
calls to pthread _ setpr io and pthread _ setscheduler.

This value becomes meaningless when the thread object is deleted-that is,
when the thread has terminated its execution and pthread detach has been
called. -

Return Values

Returns the identifier of the calling thread to pthread _ t.

pthread-93

pthread_setasynccancel

pthread_setasynccancel

Enables or disables the current thread's asynchronous cancelability.

Syntax

old_state = pthread_setasynccancel(
state);

Argument Data Type Access

state integer read

C Binding

int
pthread_setasynccancel (
int state);

Arguments

state
State of asynchronous cancel ability to set for the calling thread. Valid values
are as follows:

Value

CANCEL_ON

CANCEL_OFF

Descri ption

Description

Asynchronous cancel ability is enabled.

Asynchronous cancel ability is disabled.

This routine enables or disables the current thread's asynchronous cancel ability
and returns the previous cancel ability state.

When general cancel ability is set to CANCEL OFF,. a cancel cannot be delivered to
the thread, even if a cancelable routine is called or asynchronous cancel ability
is enabled. When general cancel ability is set to CANCEL ON, cancelability
depends on the state of the thread's asynchronous cancelability. When general
cancel ability is set to CANCEL ON and asynchronous cancel ability is set to
CANCEL OFF, the thread can only receive a cancel at specific cancelation points
(for example, condition waits, thread joins and calls to pthread _ testcancel.) If

pthread-94

pthread_setasynccancel

both general cancel ability and asynchronous cancel ability are set to CANCEL ON,
the thread can be canceled at any point in its execution. -

When a thread is created, the default asynchronous cancelability state is
CANCEL OFF.

If you call this routine to enable asynchronous cancel ability, call it in a region
of code where asynchronous delivery of cancels has been disabled by a previous
call to this routine. Threads routines should not be called in regions of code
where asynchronous delivery of cancels is enabled. The previous state of
asynchronous delivery can be restored later by another call to this routine.

Return Values

On successful completion, this routine returns the previous state of
asynchronous cancelabili ty.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The specified state is not CANCEL_ON or
CANCEL_OFF.

pthread-95

pthread_setcancel

pthread_setcancel

Enables or disables the current thread's general cancel ability.

Syntax

int pthread_setcancel(
state);

Argument Data Type Access

state integer read

C Binding

int
pthread_setcancel (
int state);

Arguments

state
State of general cancel ability to set for the calling thread. Valid values are as
follows:

Value

CANCEL_ON

CANCEL_OFF

Description

Description

Asynchronous cancelability is enabled.

Asynchronous cancel ability is disabled.

This routine enables or disables the current thread's general cancelability and
returns the previous cancel ability state.

When general cancel ability is set to CANCEL OFF, a cancel cannot be delivered to
the thread, even if a cancelable routine is called or asynchronous cancelability
is enabled.

When a thread is created, the default general cancel ability state is CANCEL_ON.

pthread-96

pthread_setcancel

Possible Dangers of Disabling Cancelability
The most important use of cancels is to ensure that indefinite wait operations
are terminated. For example, a thread waiting on some network connection,
which may take days to respond (or may never respond), is normally made
cancelable.

However, when cancelability is disabled, no routine is cancelable. Waits
must be completed normally before a cancel can be delivered. As a result,
the program stops but does not crash and the user is unable to cancel the
operation.

When disabling cancel ability, be sure that no long waits can occur or that it is
necessary for other reasons to defer cancels around that particular region of
code.

Return Values

On successful completion, this routine returns the previous state of general
cancelabili ty.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The specified state is not CANCEL_ON or
CANCEL_OFF.

pthread-97

pthread_setprio

pthread_setprio

Changes the current priority of a thread.

Syntax

pthread_setprio(

Argument

thread

priority

thread,
priority);

C Binding

int
pthread_setprio (
pthread_t thread,
int priority);

Arguments

thread

Data Type

opaque pthread_t

integer

Thread whose priority is changed.

priority

Access

read

read

New priority value of the thread specified in thread. The priority value is
dependent upon scheduling policy. Valid values fall within one of the following
three ranges.

Low

PRI_FIFO _MIN

PRI_RR_MIN

PRI_ OTHER_MIN

PRI_FG_MIN_NP

PRI_BG_MIN_NP

High

PRI_FIFO_MAX

PRI_RR_MAX

PRI_OTHER_MAX

PRI_FG_MAX_NP

PRI_BG_MAX_NP

If you create a new thread without specifying a threads attributes object
that contains a changed priority attribute, the default priority of the newly

pthread-98

pthread_setprio

created thread is the midpoint between PRI OTHER MIN and PRI OTHER MAX

(the midpoint between the minimum and the maxi~um for the SCHED OTHER

policy). (Section 2.8 describes how to specify priorities between the minimum
and maximum values.)

Description

This routine changes the current priority of a thread. A thread can change its
own priority using the identifier returned by pthread _self.

Changing the priority of a thread can cause it to start executing or be
preempted by another thread. The effect of setting different priority values
depends on the scheduling priority assigned to the thread. The initial
scheduling priority is set by calling the pthread _attr _setprio routine.

An application should specify priority only to express the urgency of executing
the thread relative to other threads. Priority should not be used to control
mutual exclusion when accessing shared data. With a sufficient number of
processors executing, all ready threads, regardless of priority, can be executing
simultaneously.

The pthread attr setprio routine sets the priority attribute that is used
to establish the priority of a new thread when it is created. However,
pthread _ setprio changes the priority of an existing thread.

Return Values

The previous priority of the thread specified in thread is returned.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return Error

Priority
value

-1 [EINVAL]

-1 [ENOTSUP]

-1 [ESRCH]

Description

Successful completion.

The value specified by thread is invalid.

An attempt is made to set the policy to an
unsupported value.

The value specified by thread does not refer to
an existing thread.

pthread-99

pthread_setprio

Return

-1

pthread-100

Error

[EPERM]

Description

The caller does not have the appropriate
privileges to set the priority of the specified
thread.

pthread_setscheduler

pthread_setscheduler

Changes the current scheduling policy and priority of a thread.

Syntax

pthread_setscheduler(

Argument

thread

scheduler

priority

thread,
scheduler,
priority);

C Binding

int
pthread_setscheduler (
pthread_t thread,
int scheduler,
int priority);

Arguments

thread

Data Type

opaque pthread_t

integer

integer

Thread whose scheduling policy is to be changed.

scheduler

Access

read

read

read

New scheduling policy value for the thread specified in thread. (Policies listed
on the same line are equivalent.) Valid values are as follows:

SCHED_FIFO
SCHED_RR
SCHED_FG_NPor SCHED_OTHER
SCHED_BG_NP

See Section 2.3.3.2 for a description of the scheduling policies.

pthread-101

pthread_setscheduler

priority
New priority value of the thread specified in thread. The priority attribute is
dependent upon scheduling policy. Valid values fall within one of the following
three ranges.

Low

PRI_FIFO _MIN

PRI_RR_MIN

PRI_ OTHER_MIN

PRI_FG_MIN_NP

PRI_BG_MIN_NP

High

PRI_FIFO_MAX

PRI_RR_MAX

PRI_OTHER_MAX

PRI_FG_MAX_NP

PRI_BG_MAX_NP

If you cr~ate a new thread without specifying a threads attributes object
that contains a changed priority attribute, the default priority of the newly
created thread is the midpoint between PRI OTHER MIN and PRI OTHER MAX
(the midpoint between the minimum and the maximum for the BeHED 'OTHER
policy). (Section 2.8 describes how to specify priorities between the minimum
and maximum values.)

Description

This routine changes the current scheduling policy and priority of a thread.
Call this routine to change both the priority and scheduling policy of a thread
at the same time. To change only the priority, call the pthread _setprio
routine.

A thread changes its own scheduling policy and priority by using the identifier
returned by pthread self. Changing the scheduling policy or priority, or
both, of a thread can-cause it to start executing or to be preempted by another
thread.

This routine is different from pthread attr setprio and pthread attr
setsched because those routines set the priOrity and scheduling policy -
attributes that are used to establish the priority and scheduling policy of a
new thread when it is created. This routine, however, changes the priority and
scheduling policy of an existing thread.

pth read-1 02

pthread_setscheduler

Return Values

The previous policy of the thread specified in thread is returned.

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return Error

Scheduling
policy
value

-1 [EINVAL]

-1 [ENOTSUP]

-1 [ESRCH]

-1 [EPERM]

Description

Successful completion.

The value specified by thread is invalid.

An attempt is made to set the policy to an
unsupported value.

The value specified by thread does not refer to
an existing thread.

The caller does not have the appropriate
privileges to set the priority of the specified
thread.

pth read-1 03

pthread_setspecific

pthread_setspecific

Syntax

Sets the per-thread context associated with the specified key for the current
thread.

pthread_setspecific(

Argument

key

value

key,
value);

Data Type

opaque pthread_key_t

opaque pthread_addr_t

Access

read

read

C Binding

int
pthread_setspecific (
pthread_key_t key,
pthread_addr_t value);

Arguments

key
Context key value that uniquely identifies the context cell to receive value.
This key value must be obtained from pthread _ keycreate.

value
Address containing data associated with the specified key for the current
thread; this is the per-thread context.

Description

This routine sets the per-thread context associated with the specified key
for the current thread. If a context is defined for the key in this thread (the
current value is not null), the new value is substituted for it.

Different threads can bind different values to the same key. These values are
typically pointers to blocks of dynamically allocated memory that are reserved
for use by the calling thread.

pth read-1 04

pthread_setspecific

Return Values

If an error condition occurs, this routine returns -1 and sets errno to the
corresponding error value. Possible return values are as follows:

Return

o
-1

Error

[EINVAL]

Description

Successful completion.

The key value is invalid.

pthread-105

pthread_testcancel

pthread_testcancel

Requests delivery of a pending cancel to the current thread.

Syntax

pthread_testcancel();

C Binding

void
pthread_testcancel ();

Arguments

None

Description

This routine requests delivery of a pending cancel to the current thread. The
cancel is delivered only if a cancel is pending for the current thread and
general cancel delivery is not currently disabled. (A thread disables delivery of
cancels to itself by calling pthread _ setcancel.)

This routine, when called within very long loops, ensures that a pending cancel
is noticed within a reasonable amount of time.

Return Values

None

pth read-1 06

Unlocks a global mutex.

Syntax

C Binding

void
pthread_unlock_globaLnp ();

Arguments

None

Description

This routine unlocks the global mutex when each call to pthread lock global np
has been matched by a call to this routine. For example, if you-called -
pthread lock global np three times, pthread unlock global np unlocks
the global mutex when you call it the third time. If no threads-are waiting
for the global mutex, it becomes unlocked with no current owner. If one or
more threads are waiting to lock the global mutex, this routine causes one
thread to unblock and try to acquire the mutex. The scheduling policy is
used to determine which thread acquires the global mutex. For the policies
SCHED FIFO and SCHED RR, a blocked thread is chosen in priority order, using
FIFO ~ithin priorities:-

The results of calling this routine are unpredictable if the global mute x is
already unlocked. The results of calling this routine are also unpredictable if
the global mutex is owned by a thread other than the calling thread.

Return Values

None

pthread-107

pthread_yield

pthread_yield

Syntax

Notifies the scheduler that the current thread is willing to release its processor
to other threads of the same or higher priority.

pthread_yield();

C Binding

void
pthread-Yield ();

Arguments

None

Description

This routine notifies the scheduler that the current thread is willing to release
its processor to other threads of the same priority. (A thread generally releases
its processor to a thread of a higher priority without calling this routine.)

If the current thread's scheduling policy (as specified in a call to pthread attr
setsched or pthread set scheduler) is SCHED FIFO, SCHED RR, or SCHED OTHER~
this routine yields the processor to other threads of the same priority. IT no
threads of the same priority are ready to execute, the thread continues.

This routine allows knowledge of the details of an application to be used to
increase fairness. It increases fairness by allowing other threads to access the
processor at convenient times, such as when critical resources are free.

Call this routine when a thread is executing code that denies access to other
threads on a uniprocessor if the scheduling policy is SCHED _FIFO.

Use pthread yield carefully because misuse causes unnecessary context
switching, which increases overhead without increasing fairness. For example,
it is counter-productive for a thread to yield while a needed resource is locked.

pthread-108

Return Values

None

pthread_yield

pthread-109

Part III
Digital Proprietary Interface Reference

Part III provides detailed descriptions of the Digital Proprietary (cma)
Interface to DECthreads.

The cma routines ensure a stable, upwardly compatible interface to
DECthreads.

To indicate errors, the cma routines raise exceptions. See Appendix C for
exception descriptions.

_________________________ Note ______________________ ___

Call cma _ ini t before calling any other cma routine.

Disables asynchronous alert delivery to the current thread.

Syntax

cma_alerCdisable_asynch (prior)

Argument Data Type Access

prior write

C Binding

void
cma_alert_disable_asynch (
cma_t_alert_state *prior);

Arguments

prior
Receives the state of asynchronous alert delivery (enabled or disabled) that
exists before the call to this routine.

Description

This routine disables asynchronous alert delivery to the current thread. The
prior state of asynchronous delivery is stored in the prior argument. Call
cma _ alert_restore to restore the setting previous alert delivery setting stored
in prior.

Asynchronous delivery of alerts is not appropriate over regions of code where
resources are being allocated, or when invariants are being modified. It is
difficult to determine exactly where an exception was raised within such a
region. Usually this makes it very difficult (and often impossible) to properly
release resources or restore invariants should an alert be delivered.

External routines often do not function correctly with asynchronous delivery
of alerts enabled. Also, most existing code will not be able to cope with
asynchronous alerts. It is always safest to disable asynchronous delivery
before calling any external routine from a region of code where asynchronous
delivery of alerts has been enabled.

cma-3

cm8_8Iert_dis8ble_8synch

Note ________________________ __

An alertable routine is one where synchronous alert delivery can
occur only at specific, well-defined points. These points are DECthreads
routines that can determine whether an alert is pending, and if so, can
deliver the alert.

This routine is not alertable.

Exceptions

None

cma-4

cma_alert_disable_general

Disables general delivery of alerts to the current thread.

Syntax

Argument Data Type

prior

C Binding

void
cma_alert_disable_general (
cma_t_alert_state *prior);

Arguments

prior

Access

write

Receives the prior state of general alert delivery (enabled or disabled).

Description

This routine disables general delivery of alerts to the current thread and
returns the previous state of alert delivery to the prior argument.

Exceptions

cma_e_alert_nesting
cma_ e _existence
cma_e_use_error

cma-5

Enables asynchronous alert delivery to the current thread.

Syntax

cma_alerCenable_asynch

C Binding

void
cma_alert_enable_asynch ();

Arguments

None

Description

cma-6

This routine enables asynchronous alert delivery to the current thread. Unlike
cma alert disable asynch, this routine does not return the prior state of
asyii:chronOus delivm.y. Before a call to this routine returns, asynchronous
delivery is enabled. Any return value would be unreliable. (An alert can occur
during the hardware or language procedure linkage.)

To allow restoration of the previous alert state when asynchronous cancelability
is no longer needed, call cma alert disable asynch to obtain the current alert
state prior to calling this rocline. - -

This routine is alertable. If an alert is pending for the current thread, and
alert delivery is not currently disabled, then the pending alert is delivered.

Asynchronous delivery of alerts means that the cma e alerted exception can
be raised at any point in the code where an interrupt can occur. The exception
could potentially be raised in the middle of a hardware instruction, if that is
permitted by the machine.

As a result, it is very difficult to write an exception handler that can restore
invariants for a region of code where an asynchronous alert is delivered.
Asynchronous delivery should be avoided in any region of code where program
invariants can be modified.

cma_alert_enable_asynch

The best application for asynchronous alert delivery is when the program
needs to perform a long computation that does not affect program invariants,
and where adding calls to cma alert test is impractical or would slow down
the computation. --

Enabling asynchronous delivery over such a region of code allows the code to
be highly responsive to abort requests (for example, the user pressing a Cancel
key), without complicating or slowing the computation.

For example, a matrix multiply has only two real states: either the product
was created successfully, or it was not. Generally, there is no need to know
about the state of the product if it could not be completed. A matrix multiply
can also take a very long time and should, therefore, be alertable. But because
it involves several nested loops whose limits are parameters, it is not obvious
where to place calls to cma alert test within it, or desirable to do so. To
ensure that the matrix multiply is alertable, perform the following steps:

1. Set a flag indicating that the product is not available.

2. Disable asynchronous alerts to get the prior state.

3. Enable asynchronous delivery of alerts.

4. Perform multiplication (which may take a long time but is alertable).

5. Restore prior alert state.

6. Set a flag indicating the product is available.

Exceptions

cma_e_alerted

cma-7

Enables general delivery of alerts to the current thread.

Syntax

Argument Data Type

prior opaque cma_CalerCstate

C Binding

void
cma_alert_enable_general (
cma_t_alert_state *prior);

Arguments

prior

Access

write

Receives the prior state of general alert delivery (enabled or disabled).

Description

This routine enables general delivery of alerts to the current thread and
returns the previous state of alert delivery to the prior argument. This routine
is not alertable. A pending alert will remain pending until the next alert point.

Exceptions

cma_e_alert_nesting
cma_e_existence
cma_e_use_error

cma-8

Restores the state of general or asynchronous alert delivery.

Syntax

cma_alertrestore (prior)

Argument Data Type Access

prior opaque cma_CalerCstate read

C Binding

void
cma_alert_restore (
cma_t_alert_state *prior);

Arguments

prior
The prior state of alert delivery (enabled or disabled).

Description

This routine restores the alert delivery state (enabled or disabled) that was
saved in the prior argument in a previous call to cma alert disable asynch,
cma_alert_disable_general,orcma_alert_enable_general. -

For example, if general delivery of alerts is enabled when you call
cma alert disable general, the enabled setting is stored in prior.
Subsequently calling cma alert restore and passing the prior value returned
by cma alert disable general-causes the enabled setting to be restored, and
general delivery of alerts is again enabled.

This routine cannot restore the state of alert delivery that existed before a
call to cma alert enable asynch. When you call cma alert enable asynch,
asynchronous delivery of -;lerts is enabled before the ~all returns. Therefore,
return values might not be accurate.

This routine is not alertable. Because this routine is not alertable, an alert
that is already pending will remain pending after this call returns. If a
pending alert should be delivered immediately, follow a call to this routine with
a call to an alertable routine such as cma alert test.

cma-9

Exceptions

cma-10

cma_e_alert_nesting
cma_e_badparam

Requests delivery of a pending alert to the current thread.

Syntax

C Binding

void
cma_alert_test ();

Arguments

None

Description

This routine requests delivery of a pending alert to the current thread. The
alert is delivered only if an alert is pending for the current thread and alert
delivery is not currently disabled.

This routine is useful when called within very long loops to ensure that a
pending alert is noticed within a reasonable amount of time.

This routine is alertable.

Exceptions

cma_e_alerted

cma-11

Syntax

Creates an attributes object.

cma_attr_create (new_attr, attr)

Argument Data Type

opaque cma_t_attr

opaque cma_t_attr

Access

write

read

C Binding

void
cma_attr_create (
cma_t_attr *new_attr,
cma_t_attr *attr);

Arguments

new_attr
Variable that receives the new attributes object.

attr
Handle of an attributes object used to specify attributes of the new attributes
object. If you specify cma c null for the attr argument, default attributes are
used. - -

Description

cma-12

This routine creates an attributes object that can be used to specify the
attributes of DECthreads objects when they are created.

The individual attributes (internal fields) of the attributes object are set to
default values. (The default values of each attribute are discussed in the

descriptions of the following routines.) Use the following routines to change
the individual attributes:

cma_attr_set_guardsize
cma attr set inherit sched
cma-attr-set-mutex kInd - - - -cma_attr_set_priority
cma attr set sched
cma-attr-set-stacksize

When an attributes object is used to create an object (for example, a thread or
mutex), the values of the individual attributes determine the characteristics
of the new object. Attributes objects act like additional arguments to object
creation. Changing individual attributes does not affect any objects that were
previously created using the attributes object.

When you set the scheduling policy or priority, or both, in an attributes object,
you must disable scheduling inheritance before the scheduling attributes are
used.

Exceptions

cma_e_existence
cma_e_use_error

cma-13

Deletes an attributes object.

Syntax

Argument Data Type Access

attr modify

C Binding

void
cma_attr_delete (
cma_t_attr *attr);

Arguments

aUr
Handle of the attributes object deleted.

Description

cma-14

This routine deletes an attributes object. Call this routine when an attributes
object no longer needs to be referenced through the handle supplied by the
cma attr create routine.

The effect of this routine is to give permission to reclaim storage for the
attributes object. The attributes object is marked for deletion, and the attr
argument is set to the value cma c null. Specifying cma c null for the attr
argument is legal and has no effect. Objects that were created using this
attributes object are not affected by the deletion of the attributes object.

The results of calling this routine are unpredictable if the handle specified by
the attr argument refers to an attributes object that does not exist (unless it is
cma c null.)

Exceptions

cma_e_existence
cma_e_use_error

cma-15

Syntax

Obtains the guardsize attribute of thread creation.

cma_attr_geCguardsize (attr, guardsize)

Argument

attr

guardsize

Data Type

opaque cma_cattr

opaque cma_Cnatural

Access

read

write

C Binding

void
cma_attr_get_guardsize (
cma_t_attr *attr,
cma_t_natural *guardsize);

Arguments

attr
Handle of the attributes object whose guardsize attribute is obtained.

guardsize
Value of the guardsize attribute. The guardsize argument specifies the
mimi mum size (in bytes) of the guard area for the stack of a thread.

Description

cma-16

This routine obtains the minimum size (in bytes) of the guard area for the
stack of a thread that is created using the attributes object specified by the attr
argument.

A guard area helps to detect stack overflows by preventing memory access
beyond the thread's stack. Large guard areas are necessary when threads
might allocate large structures on the stack.

Exceptions

cma_e_existence
cma_e_use_error

cma-17

Syntax

Obtains the inherit scheduling attribute of thread creation.

cma_attcgeUnheritsched (attr, setting)

Argument

attr

setting

Data Type

opaque cma_cattr

opaque cma_t_sched_inherit

Access

read

write

C Binding

void
cma_attr_get_inherit_sched (
cma_t_attr *attr,
cma_t_sched_inherit *setting);

Arguments

aUr
Handle of the attributes object whose inherit scheduling attribute is obtained.

setting
Receives the value for the inherit scheduling attribute. Refer to the description
of cma attr set inherit sched for valid values. - - - -

Descri ption

cma-18

This routine obtains the inherit scheduling attribute of thread creation. The
inherit scheduling attribute specifies whether threads created using the
attributes object inherit the scheduling attributes of the creating thread, or
use the scheduling attributes stored in the attributes object that is passed to
cma thread create.

The default value of the inherit scheduling attribute is cma _ c _sched _inherit.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cma-19

Syntax

Obtains the mutex type attribute.

Argument

attr

kind

Data Type

opaque cma_Cattr

opaque cma_t_mutex_kind

Access

read

write

C Binding

void
cma_attr_get_mutex_kind (
cma_t_attr *attr,
cma_t_mutex_kind >''<kind);

Arguments

attr
Handle of the attributes object whose mutex type is obtained.

kind
Value of the mutex type attribute. The kind argument specifies the type
of mutex that is created. Valid values are cma c mutex fast (default),
cma c mutex recursive, and cma c mutex nonrecursive. (See Section 2.4.1
for definition~ of the types of mut;x~s.) -

Description

This service obtains the mutex type attribute that is used when a mutex is
created. See the cma attr set mutex kind description for information about
mutex type attribute~. - - -

Exceptions

cma-20

cma_e_existence
cma_e_use_error

Obtains the initial execution priority attribute of thread creation.

Syntax

Argument

attr

priority

C Binding

void
cma_attr_get_priority (
cma_t_attr *attr,
cma_t_priority *priority);

Arguments

attr

Data Type

opaque cma_t_attr

opaque cma_Cpriority

Access

read

write

Handle of the attributes object whose priority attribute is obtained.

priority
Receives the value of the priority attribute. Refer to the description of
cma_attr_set_priority for valid values.

Description

This routine obtains the initial execution priority of threads created using
the attributes object specified by the attr argument. The default value of the
priority attribute is cma _ c _prio _through_mid.

Exceptions

cma_e_existence
cma_e_use_error

cma-21

Syntax

Obtains the scheduling policy attribute of thread creation.

Argument

attr

policy

Data Type

opaque cma_Cattr

opaque cma_Csched_policy

Access

read

write

C Binding

void
cma_attr_get_sched (
cma_t_attr *attr,
cma_t_sched_policy *policy);

Arguments

attr
Handle of the attributes object whose scheduling policy attribute is obtained.

policy
Receives the value of the scheduling policy attribute. See the description of
cma attr set sched for valid values. - - -

Description

This routine obtains the scheduling policy of threads created using the
attributes object specified by the attr argument. The default value
of the scheduling attribute is cma _ c _ sched _ defaul t (which maps to
cma _ c _ sched _ throughput).

Exceptions

cma-22

cma_e_existence
cma_e_use_error

Syntax

Obtains the stacksize attribute of thread creation.

cma_attr_getstacksize (attr, stacksize)

Argument

attr

stacksize

Data Type

opaque cma_Cattr

opaque cma_Cnatural

C Binding

void
cma_attr_get_stacksize (
cma_t_attr *attr,
cma_t_natural *stacksize);

Arguments

attr

Access

read

write

Handle of the attributes object whose stacksize attribute is obtained.

stacksize
Value of the stacksize attribute. The stacksize argument specifies the
mimimum size (in bytes) of the stack needed for a thread.

Description

This routine obtains the minimum size (in bytes) of the stack needed for a
thread created using the attributes object specified by the attr argument.

Exceptions

cma_e_ln_use
cma_e_use_error

cma-23

Syntax

Changes the guardsize attribute of thread creation.

cma_attcseCguardsize (attr, guardsize)

Argument

attr

guardsize

Data Type

opaque cma_Cattr

opaque cma_Cnatural

Access

read

read

C Binding

void
cma_attr_set_guardsize (
cma_t_attr *attr,
cma_t_natural guardsize);

Arguments

attr
Handle of the attributes object modified.

guardsize
New value for the guardsize attribute. The guardsize argument specifies the
mimimum size (in bytes) of the guard area for the stack of a thread.

Description

cma-24

This routine sets the minimum size (in bytes) of the guard area for the stack
of a thread that is created using the attributes object specified by the attr
argument.

A guard area helps to detect stack overflows by preventing memory access
beyond the thread's stack. Large guard areas might be necessary when threads
allocate large structures on the stack.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cma-25

Syntax

Changes the inherit scheduling attribute of thread creation.

cma_attcseUnheriCsched (attr, setting)

Argument

attr

setting

Data Type

opaque cma_t_attr

opaque cma_t_sched_inherit

Access

read

read

C Binding

void
cma_attr_set_inherit_sched (
cma_t_attr *attr,
cma_t_sched_inherit setting);

Arguments

attr
Handle of the attributes object modified.

cma-26

setting
New value for the inherit priority attribute. Valid values are as follows:

cma c sched inherit

cma c sched use default

This is the default value. The created
thread inherits the current priority and
scheduling policy of the thread calling
cma thread create. - -
The created thread starts execution with the
priority and scheduling policy stored in the
attributes object.

Description

This routine changes the inherit scheduling attribute of thread creation. The
inherit scheduling attribute specifies whether threads created using this
attributes object inherit the scheduling attributes of the creating thread, or
use the scheduling attributes stored in the attributes object that is passed to
cma thread create.

The initial thread in an application, which is not created by a call to
cma thread create, has an initial priority of cma c prio through mid and a
scheduling policy of cma c sched other. See the cma attr set priority and
cma attr set sched routines for-more information 0; valid priority values and
valid scheduling policy values, respectively.

Inheriting scheduling attributes (instead of using the scheduling attributes
stored in the attributes object) is useful when a thread is creating several
helper threads-threads that are intended to work closely with the creating
thread to cooperate in solving the same problem. For example, inherited
scheduling attributes allow you to ensure that any helper threads created in a
sort routine execute with the same priority as the calling thread.

Note

You must set scheduling inheritance to cma c sched use default if
you want to create threads with a scheduli;-g policy Qi. priOrity different
from the creating thread.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cma-27

Syntax

Specifies the mutex type attribute.

Argument

attr

kind

Data Type

opaque cma_Cattr

opaque cma_Cmutex_kind

C Binding

void
cma_attr_set_mutex_kind (
cma_t_attr !kattr,
cma_t_mutex_kind kind);

Arguments

attr
Handle of the attributes object modified.

kind

Access

read

read

New value for the mutex type attribute. The kind argument specifies the
type of mutex that is created. Valid values are cma c mutex fast (default),
cma_c_mutex_recursive, andcma_c_mutex_nonrecursive. -

Description

This rouine sets the mutex type attribute that is used when a mutex is created.
A mutex can be fast, recursive, or nonrecursive. See Section 2.4.1 for more
information on the types of mutexes.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cma-28

Syntax

Changes the initial execution priority attribute of thread creation.

cma_attr_seCpriority (attr, priority)

Argument

attr

priority

Data Type

opaque cma_t_attr

opaque cma_t_priority

Access

read

read

C Binding

void
cma_attr_set_priority (
cma_t_attr *attr,
cma_t_priority priority);

Arguments

attr
Handle of the attributes object modified.

priority
New value for the priority attribute. The priority attribute is dependent upon
scheduling policy. Valid values are as follows:

Low

cma_c_prio_fifo_min

cma_c_prio_rr_min

cma_c_prio_through_
min

cma_c_prio_back_min

Mid

cma_ c_prio _fifo _mid

cma_c_prio_rr_mid

cma_c_prio_through_
mid

cma_c_prio_back_mid

High

cma_c_prio_fifo_max

cma_c_prio_rr_max

cma_c_prio_through_max

The default priority is cma c prio default mid. (This symbol maps to
cma _ c _prio _through _ mid.r - - -

cma-29

Description

This routine sets the initial execution priority of threads that were created
using the attributes object specified by the attr argument. The default value of
the priority attribute is cma _ c _prio _ defaul t _mid.

Note ________________________ __

You must set scheduling inheritance to cma c sched use default if
you want to create threads with a scheduling policy or priOrity different
from the creating thread.

An application should specify priority only to express the urgency of executing
the thread relative to other threads. Priority should not be used to control
mutual exclusion when accessing shared data. With a sufficient number of
processors executing, all ready threads, regardless of priority, can be executing
simul taneously.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cma-30

Changes the scheduling policy attribute of thread creation.

Syntax

cma_attr_seCsched (attr, policy, priority)

Argument Data Type

attr opaque cma_Cattr

policy opaque cma_Csched_policy

priority opaque cma_Cpriority

C Binding

void
cma_attr_set_sched (
cma_t_attr *attr,
cma_t_sched_policy policy,
cma_t_priority priority);

Arguments

attr
Handle of the attributes object modified.

policy

Access

read

read

read

New value for the scheduling policy attribute. Valid values are as follows:

cma c sched fifo
cma c sched rr - - -cma c sched throughput
cma=c=sched=background

See Section 2.3.3.2 for a description of the scheduling policies.

cma-31

priority
New value for the priority attribute. The priority attribute is dependent upon
scheduling policy. Valid values are as follows:

Low

cma_c_prio_fifo_min

cma_c_prio_rr_min

cma_c_prio_through_
min

cma_c_prio_back_min

Mid

cma_c_prio_fifo_mid

cma_c_prio_rr_mid

cma_c_prio_through_
mid

cma_c_prio_back_mid

High

cma_c_prio_fifo_max

cma_c_prio_rr_max

cma_c_prio_through_max

The default priority is cma c prio default mid. (This symbol maps to
cma_c_prio_through_mid.)- - - -

Description

This routine sets the scheduling policy and priority of a thread that is created
using the attributes object specified by the attr argument. The default value
of the scheduling policy attribute is cma c sched default. (This symbol
is mapped to the cma c sched throughput scheduling policy.) The default
scheduling priority is-the midrange of the default scheduling policy.

Note

You must set scheduling inheritance to cma c sched use default if
you want to create threads with a scheduling policy Or priOrity different
from the creating thread.

Exceptions

cma-32

cma_e_badparam
cma_e_existence
cma_e_use_error

Changes the stacksize attribute of thread creation.

Syntax

Argument

attr

stacksize

C Binding

void
cma_attr_set_stacksize (
cma_t_attr *attr,

Data Type

opaque cma_Cattr

opaque cma_t_natural

cma_ t_na tural stacksize);

Arguments

attr
Handle of the attributes object modified.

stacksize

Access

read

read

New value for the stacksize attribute. The stacksize argument specifies the
mimimum size (in bytes) of the stack needed for a thread.

Description

This routine sets the minimum size (in bytes) of the stack needed for a thread
created using the attributes object specified by the attr argument.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_stackovf
cma_e_use_error

cma-33

Wakes all threads that are waiting on a condition variable.

Syntax

cma_cond_broadcast (condition)

Argument Data Type Access

condition opaque cma_Ccond read

C Binding

void
cma_cond_broadcast (
cma_t_cond *condition);

Arguments

condition
Handle of the condition variable broadcast.

Description

This routine wakes all threads waiting on a condition variable. Calling this
routine implies that data guarded by the associated mutex has changed so that
it might be possible for more than one waiting thread to proceed. If only one
waiting thread might be able to proceed, call cma _ cond _ signal.

You can call this routine when the associated mutex is either locked or
unlocked.

Exceptions

cma-34

cma_e_existence
cma_e_use_error

Syntax

Creates a condition variable.

Argument

new_condition

attr

Data Type

opaque cma_t_cond

opaque cma_Lattr

Access

write

read

C Binding

void
cma_cond_create (
cma_t_cond *new_condition,
cma_t_attr *attr);

Arguments

new_condition
Variable that receives the handle for the new condition variable.

attr
Handle of the attributes object that defines the characteristics of the condition
variable being created.

Description

This routine creates and initializes a condition variable. A condition variable
is a synchronization object used in conjunction with a mutex. A mutex controls
access to shared data; a condition variable allows threads to wait for that data
to enter a defined state. The state is defined by a predicate.

A condition variable can be signaled or broadcast to indicate that a predicate
might have become true. The broadcast routine indicates that all waiting
threads should resume and reevaluate the predicate. The signal routine can be
used in the special case where only one waiting thread can continue.

cma-35

If a thread that holds a mutex determines that the shared data is not in the
correct state for it to proceed (the associated predicate is not true), it can
wait on a condition variable associated with the desired state. Waiting on the
condition variable automatically releases the mutex so that other threads can
modify or examine the shared data. When a thread modifies the state of the
shared data so that a predicate might be true, it signals or broadcasts on the
appropriate condition variable so that threads waiting for that predicate can
continue.

It is important that all threads waiting on a particular condition variable at
any time hold the same mutex. At any time, an arbitrary number of condition
variables can be associated with a single mutex, each representing a different
predicate of the shared data protected by that mutex.

Condition variables are not owned by a particular thread. Any associated
storage is not automatically deallocated when the creating thread terminates.

Exceptions

cma-36

cma_e_existence
cma_e_use_error

Deletes a condition variable.

Syntax

cma_cond_delete (condition)

Argument Data Type Access

condition modify

C Binding

void
cma_cond_delete (
cma_t_cond *condition);

Arguments

condition
Handle of the condition variable deleted.

Description

This routine deletes a condition variable. Call this routine when a condition
variable is no longer referenced. The effect of calling this routine is to give
permission to reclaim storage for the condition variable.

When the condition variable is deleted, the condition argument is set to the
value crna c null. Specifying crna c null for condition is legal and has no
effect. - - - -

The results of this routine are unpredictable and the crna e existence
exception is raised if the handle specified in condition refers to a condition
variable that does not currently exist (unless it is cma _ c _null).

The results of this routine are unpredictable and the crna e in use exception
is raised if there are threads waiting for the specified corulition-variable to be
signaled or broadcast when it is deleted.

cma-37

Exceptions

cma-38

cma_e_existence
cma_e_in_use
cma_e_use_error

Wakes one thread that is waiting on a condition variable.

Syntax

cma_cond_signal (condition)

Argument Data Type Access

condition opaque cma_Ccond read

C Binding

void
cma_cond_signal (
cma_t_cond *condition);

Arguments

condition
Handle of the condition variable signaled.

Description

This routine wakes one thread waiting on a condition variable. Calling this
routine implies that data guarded by the associated mutex has changed so that
it might be possible for a single waiting thread to proceed. Call this routine
when any thread waiting on the specified condition variable might find its
predicate true, but only one thread should proceed.

You can call this routine when the associated mutex is either locked or
unlocked.

If you want to signal a thread from interrupt level, use cma_cond_signal_int.

Exceptions

cma_e_existence
cma_e_use_error

cma-39

Syntax

Wakes one thread that is waiting on a condition variable. This routine can
only be called from interrupt level.

cma_cond_signal (condition)

Argument Data Type Access

condition read

C Binding

void
cma_cond_signal_int (
cma_t_cond *condition);

Arguments

condition
Handle of the condition variable signaled.

Description

cma-40

This routine wakes one thread waiting on a condition variable. This routine
can only be called from interrupt level. Calling this routine implies that it
might be possible for a single waiting thread to proceed. Call this routine
when any thread waiting on the specified condition variable might find its
predicate true.

This routine does not cause a thread blocked on a condition variable to resume
execution immediately. A thread resumes execution after the interrupt handler
returns.

You can call this routine when the associated mutex is either locked or
unlocked. (Note that you should never try to lock a mutex from an interrupt
handler.)

Note ________________________ _

This routine allows you to signal a thread from a software interrupt
handler. Do not call this routine from noninterrupt code. If you
want to signal a thread from the normal noninterrupt level, use
cma_cond_signal.

Exceptions

cma_e_existence
cma_e_use_error

cma-41

Syntax

Causes a thread· to wait for a condition variable to be signaled or broadcast for
a specified period of time.

status = cma_cond_timed_wait (condition, mutex, expiration)

Argument Data Type Access

status opaque cma_Cstatus write

condition opaque cma_Ccond read

mutex opaque cma_t_mutex read

expiration opaque cma_Cdate_time read

C Binding

cma_t_status
cma_cond_timed_wait (
cma_t_cond *condition,
cma_t_mutex *mutex,
cma_t_date_time *expiration);

Arguments

status

cma-42

Variable that receives the return status. Valid values are cma s normal and
cma s timed out.

condition
Handle of the condition variable on which the thread waits.

mutex
Mutex associated with the condition variable specified in condition.

expiration
Absolute time at which the wait should expire, if the condition has not yet been
signaled or broadcast. (See the cma time get expiration routine, which can
be used to obtain a value for this ai"gument.) -

Description

This routine causes a thread to wait until:

• A condition variable is signaled or broadcasted.

• The current system clock time is greater than or equal to the time specified
by the expiration argument.

This routine is identical to cma cond wait except that this routine can return
before a condition variable is signaled or broadcast, specifically, when a
specified time expires.

If the wait is completed normally by a signal or broadcast on the condition
variable, the return status is cma 8 normal. If the wait completes because the
expiration time has passed, the return status is cma _8 _timed_out.

If the current time equals or exceeds the expiration time, this routine returns
immediately, without causing the current thread to wait. Your code should
check the return status whenever this routine returns and take the appropriate
action. Otherwise, waiting on the condition variable can become a non-blocking
loop.

Call this routine after you have locked the mutex specified in mutex. The
results of this routine are unpredictable if this routine is called without first
locking the mutex.

Exceptions

cma_e_alerted
cma_e_existence
cma_e_use_error

cma-43

Syntax

Causes a thread to wait for a condition variable to be signaled or broadcast.

cma_cond_wait (condition, mutex)

Argument

condition

mutex

Data Type

opaque cma_Ccond

opaque cma_t_mutex

Access

read

read

C Binding

void
cma_cond_ wait (
cma_t_cond *condition,
cma_t_mutex *mutex);

Arguments

condition
Handle of the condition variable on which the thread waits.

mutex
Mutex associated with the condition variable specified in condition.

Description

cma-44

This routine causes a thread to wait for a condition variable to be signaled or
broadcasted. Each condition corresponds to one or more predicates upon the
data. The calling thread waits for the data to reach a particular state (for a
particular predicate to become true).

Call this routine after you have locked the mutex specified in mutex. The
results of this routine are unpredictable if this routine is called without first
locking the mutex.

This routine atomically releases the mutex and causes the calling thread to
wait on the condition. If the wait is satisfied as a result of some thread calling
cma cond signal or cma cond broadcast, the mutex is reacquired and the
routine returns. --

As a general rule, a thread that has changed the state of storage protected by
the mutex in such a way that a predicate associated with a condition variable
might now be true must call either cma cond signal or cma cond broadcast
for that condition variable. If neither cah is made, any thread wafting on the
condition variable continues to wait.

This routine is alertable. Alertable means that a pending alert is noticed
during the wait on the condition variable. This helps ensure that all long waits
can be canceled by alerting the thread.

You must disable asynchronous delivery of alerts in contexts where this routine
is used.

If the cma e alerted exception is raised, the mutex is reacquired before the
exception is raised.

This routine might (with low probability) return when the condition variable
has not been signaled or broadcast. When a spurious wakeup occurs, the mute x
is reacquired before the routine returns. (To handle this type of situation, this
routine should always be enclosed in a loop that tests for the desired shared
data state.)

Exceptions

cma_e_alerted
cma_e_existence
cma_e_use_error

cma-45

Invokes the DECthreads internal debugger.

Syntax

C Binding

void
cma_debug (void);

Arguments

None

Description

This routine invokes the DECthreads internal debugger as a callable function.
It takes no arguments and does not return a value. It enters the internal
debugger parsing loop. Type exit to return to the program.

To pass a list of debugging commands to DECthreads, call cma _ debug_ cmd.

Exceptions

None

cma-46

Passes a list of cma _debug commands to DECthreads.

Syntax

Argument Data Type Access

command character string read

C Binding

void
cma_debug_cmd (char *cmd);

Arguments

command
cma debug command string. Null terminated string, commands separated by
semicolons.

Description

This routine passes a list of debugging commands to DEC threads. Each
command is executed in sequence. Any output is written to standard output.
This routine returns when the final command (or Exit command) is executed.

For a list of cma _ debug commands, see the appendix specific to your system.

Following are two examples of calling this routine:

cma debug cmd ("thread -bi mu -lqi cond -wq")i
cma = debug= cmd (" att ") i

If you want to invoke the debugger for interactive commands, call cma _ debug.

Exceptions

None

cma-47

cma_delay

Syntax

Causes a thread to wait for a specified period of time before continuing
execution.

cma_delay (timejnterval)

Argument Data Type Access

time_interval single precision floating point read

C Binding

void
cma_delay (
cma_t_interval interval);

Arguments

interval
N umber of seconds that the calling thread waits before continuing execution.
Specify a value greater than or equal to O.

Description

This routine causes a thread to delay execution for a specified period of elapsed
time. The period of time the thread waits is at least as long as the number of
seconds specified in the time_interval argument.

If you specify a value for time_interval that is less than 0, the cma e badparam
exception is raised. Specifying 0 for time_interval is allowed and can-result in
the thread giving up the processor or delivering a pending alert.

This routine is alertable.

Exceptions

cma-48

cma_e_alerted
cma_e_badparam

Syntax

Assigns a handle to an object.

cma_handle_assign (handle1, handle2)

Argument

handle1

handle2

Data Type

opaque cma_Lhandle

opaque cma_Lhandle

Access

read

write

C Binding

void
cma_handle_assign (
cma_t_handle *handlel,
cma_t_handle *handle2);

Arguments

handle1
Handle that is assigned to handle2.

handle2
Handle that receives the value from handlel.

Description

This routine assigns the value of a handle, or name, to an object. Handles are
allocated by the user application. This routine allows you to copy a handle
from one object to another.

When an object is created, the storage for the object is allocated and initialized,
and a handle for the object is returned. The handle is the only means of
referring to an object and performing routines on the object. Because objects
are only accessed through handles, you can usually think of the handle as if it
were the object itself.

cma-49

Handles are meaningful only within a single process address space.
Attempting to access an object from a process other than the one in which
it was created-for example, by means of multiply mapped memory-can
result in unpredictable results (it is incorrect, but the error is not necessarily
checked).

Exceptions

None

cma-50

cma_handle_equal

Syntax

Compares one handle to another handle.

equal = cma_handle_equal (handle1, handle2)

Argument

equal

handle1

handle2

Data Type

Boolean cma_Cboolean

opaque cma_Chandle

opaque cma_t_handle

Access

write

read

read

C Binding

cma_t_boolean
cma_handle_equal (
cma_t_handle *handlel,
cma_t_handle *handle2);

Arguments

equal
Boolean value that specifies whether handlel and handle2 designate the same
object.

handle1
The first handle to be compared.

handle2
The second handle to be compared.

Description

This routine compares one handle to another handle. (This routine does not
check whether the objects that correspond to the handles currently exist.) The
value cma c true is returned if the handles have values indicating that they
designate the same object. If the values do not designate the same object, the
value cma c false is returned.

cma-51

Exceptions

None

cma-52

Initializes the DECthreads routines.

Syntax

cmajnit

C Binding

void
cma_init 0;

Arguments

None

Description

This routine initializes the internal storage and process-wide state that is
necessary to support DECthreads routines.

Note

Call this routine before calling any other cma routine.

Calling this routine can result in changes to the execution environment that
cause a single-threaded process to appear as a DECthreads thread.

If this routine is called more than once, the second and subsequent calls are
ignored. If a second call to this routine is made while the first call is still in
progress, the exception cma _ e _ inialrpro is raised.

Exceptions

cma_ e _inialrpro

cma-53

Syntax

Generates a unique per-thread context key value.

cma_key_create (key, aUr, destructor)

Argument

key

attr

destructor

Data Type

opaque cma_Ckey

opaque cma_Cattr

procedure cma_Cdestructor

Access

write

read

read

C Binding

void
cma_key _create (
cma_t_key *key,
cma_t_attr *attr,
cma_t_destructor destructor);

Arguments

key
Receives the value of the new per-thread context key.

attr
Handle of the attributes object that defines the characteristics of the per-thread
context key being created.

destructor
Procedure called to destroy a context value associated with this key when the
thread terminates.

Description

cma-54

This routine generates a unique per-thread context key value. This key value
identifies a per-thread context, which is an address of memory generated by
the client containing arbitrary data of any size.

Per-thread context is a mechanism that allows client software to associate
context information with the current thread. (This mechanism can be thought
of as a means for a client to add its own unique fields to the thread control
block.)

This routine generates and returns a new key value. Each call to this routine
within a process returns a key value that is unique within an application
invocation. Keys must be generated from initialization code that is guaranteed
to be called only once within each process. (Refer to the description of cma once
for more information.) -

When multiple facilities share access to per-thread context, the facilities must
agree on the key value that is associated with the context. The key value must
be created only once, and should be stored in a location known to each facility.
(It may be desirable to encapsulate the creation of a key, and the setting and
getting of context values for that key, within a special facility created for that
purpose.)

When a thread terminates, per-thread context is automatically destroyed. For
each per-thread context currently associated with the thread, the destructor
routine associated with the key value of that context is called.

Exceptions

cma_e_existence
cma_e_use_error

cma-55

Syntax

Obtains the per-thread context associated with the specified key.

cma_keY_geCcontext (key, contexCvalue)

Argument

key

context_val ue

Data Type

opaque cma_Ckey

opaque cma_Caddress

Access

read

write

C Binding

void
cma_key _get_context (
cma_t_key key,
cma_t_address *context_value);

Arguments

key
Context key value that uniquely identifies the context value obtained. This key
value must have been obtained from cma _key_create.

context_val ue
Variable that receives the address of the current per-thread context value
associated with the specified key.

Description

This routine obtains the per-thread context associated with the specified key
for the current thread. If a context has not been defined for the key in this
thread, the null pointer cma_ c _ null_ptr is returned in context_value.

The exception cma _ e _ badparam is raised if the context key is invalid.

Exceptions

cma_e_badparam

cma-56

Syntax

Sets the per-thread context associated with the specified key for the current
thread.

cma_key-seCcontext (key, contexCvalue)

Argument

key

contexC value

Data Type

opaque cma_Ckey

opaque cma_Caddress

Access

read

read

C Binding

void
cma_key _set_context (
cma~t_key key,
cma_t_address context_value);

Arguments

key
Context key value that uniquely identifies the context value specified in
context_value. This key value must have been obtained from cma_key_create.

context_value
Address containing data associated with the specified key for the current
thread; this is the per-thread context.

Description

This routine sets the per-thread context associated with the specified key for
the current thread. If a context has been defined for the key in this thread (the
current value is not null), the new value is substituted for it.

The exception cma _ e _ badparam is raised if the context key is invalid.

cma-57

cma_key _set_context

Exceptions

cma_e_badparam

cma-58

Locks the global mutex.

Syntax

C Binding

void
cma_Iock~lobal ();

Arguments

None

Description

This routine locks the global mutex. If the global mutex is currently locked by
another thread when a thread calls this routine, the calling thread waits for
the global mutex to become available.

The thread that has locked the global mutex becomes its current owner and
remains the owner until the same thread has unlocked it. This routine returns
with the global mutex in the locked state and with the current thread as the
global mutex's current owner.

Use the global mutex when calling a library package that is not designed to
run in a multithreaded environment. (Unless the documentation for a library
function specifically states that it is compatible with multithreading, assume
that it is not compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that isn't known
to be reentrant uses the same lock. This prevents dependencies among threads
calling library functions and those functions calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global
mutex can relock it without deadlocking. (The locking thread must call
cma unlock global as many times as it called this routine to allow another
thread to lock the global mutex.)

cma-59

Exceptions

cma-60

cma_e_existence
cma_e_use_error

Creates a mutex.

Syntax

Argument Data Type

opaque cma_Cmutex

opaque cma_t_attr

Access

write

read

C Binding

void
cma_mutex_create (
cma_t_mutex *new_mutex,
cma_t_attr *attr);

Arguments

new_mutex
Receives a handle for the mutex.

attr
Handle of the attributes object that defines the characteristics of the mutex
created. If you specify cma _ c _ null, default attributes are used.

Description

This routine creates a mutex. A mutex is a synchronization object that allows
multiple threads to serialize their access to shared data.

The mutex is created and initialized to the unlocked state.

If the thread that called this routine terminates, the created mutex is not
automatically deallocated because it is considered to be shared among multiple
threads.

cma-61

Exceptions

cma-62

cma_e_existence
cma_e_use_error

Deletes a mutex.

Syntax

Argument Data Type Access

mutex modify

C Binding

void
cma_mutex_delete (
cma_t_mutex *mutex);

Arguments

mutex
Handle of the mutex deleted. After the call to this routine, the mutex argument
is set to the value cma c null.

Description

This routine deletes a mutex and should be called when a mutex is no longer
referenced. Calling this routine reclaims storage for the mutex object.

After the mutex is deleted, the mutex argument is set to the value cma c null.
Calling this routine and specifying a value of cma c null for the mutex -
argument is legal and has no effect. - -

Do not delete a mutex that has a current owner (in other words, is locked). If
you try to delete a mutex that is locked, the cma _ e _ in_use exception is raised.

The results of this routine are unpredictable if the handle specified in the
mutex argument refers to a mutex object that does not currently exist (unless
it is cma c null).

cma-63

Exceptions

cma-64

cma_e_existence
cma_e_in_use
cma_e_use_error

Syntax

Locks a mutex if the mutex is unlocked. If the mutex is locked, causes the
thread to wait for the mutex to become available.

cma_mutexJock (mutex)

Argument Data Type Access

mutex opaque cma_Cmutex read

C Binding

void
cma_mutex_lock (
cma_t_mutex *mutex);

Arguments

mutex
Handle of the mutex locked.

Description

This routine locks a mutex. If the specified mutex is already locked when a
thread calls this routine, the thread waits for the mutex to become available.

The thread that has locked a mutex becomes its current owner and remains
the owner until the same thread (and only that thread) has unlocked it. This
routine returns with the mutex in the locked state and with the current thread
as the mutex's current owner.

If you specified a fast mutex, a deadlock can result if the current owner of
a mutex calls this routine in an attempt to lock the mutex a second time. If
you specified a recursive mutex, the current owner of a mutex can relock the
same mutex without blocking. If the current owner of a nonrecursive mutex
calls this routine in an attempt to lock the mutex a second time, the exception
cma e in use is raised. See cma_attr_set_mutex_kind for information about
fast~ recursive, and nonrecursive mutexes.

Before you lock a mutex, disable asynchronous alert delivery.

cma-65

Exceptions

cma-66

cma_e_existence
cma_e_in_use
cma_e_use_error

Syntax

Locks a mutex. If the mutex is already locked, the calling thread does not wait
for the mutex to become available.

status = cma_mutex_tryJock (mutex)

Argument

status

mutex

Data Type

Boolean cma_Cboolean

opaque cma_Cmutex

Access

write

read

C Binding

cma_t_boolean
cma_mutex_try_Iock (
cma_t_mutex *mutex);

Arguments

status
Boolean value that specifies whether the element was successfully locked.
Valid values are cma c true and cma c false.

mutex
Handle of the mutex to be locked.

Description

This routine locks a mutex. If the specified mutex is already locked when a
thread calls this routine, the calling thread does not wait for the mutex to
become available.

When a thread calls this routine, an attempt is made to immediately lock the
mutex. If the mutex is successfully locked, the Boolean value cma c true is
returned. The current thread is then the mutex's current owner. --

If the mutex is already locked when this routine is called (even if it was
previously locked by the current thread), the Boolean value cma c false is
returned and the thread does not wait to acquire the lock. - -

Before you lock a mutex, disable asynchronous alert delivery.

cma-67

Exceptions

cma-68

cma_e_existence
cma_e_use_error

Unlocks a mutex.

Syntax

Argument Data Type Access

mutex opaque cma_Cmutex read

C Binding

void
cma_mutex_unlock (
cma_t_mutex *mutex);

Arguments

mutex
Handle of the mutex unlocked.

Description

This routine unlocks a mutex. If there are no threads waiting for the mutex,
the mutex becomes unlocked with no current owner. If one or more threads are
waiting to lock the specified mutex, calling this routine causes one thread to
unblock and try to acquire the mutex .

The results of calling this routine are unpredictable if the mutex specified in
mutex is already unlocked. In that case, the exception cma e use error is
raised. - - -

The results of calling this routine are also unpredictable if the mutex specified
in mutex is currently owned by a thread other than the calling thread. In that
case, the exception cma _ e _ in _use is raised.

Exceptions

cma_e_existence
cma_e_in_use
cma_e_use_error

cma-69

Syntax

Calls an initialization routine that can be executed by only one thread, a single
time.

cma_once (iniCblock, iniCroutine, arg)

Argument Data Type Access

iniCblock opaque cma_Conce read

iniCroutine opaque cma_CiniCroutine read

arg opaque cma_Caddress read

C Binding

void
cma_once (
cma_t_once *iniCblock,
cma_t_init_routine *init _routine,
cma_t_address arg);

Arguments

init_block

cma-70

Address of a record that defines the one-time initialization code. Each one-time
initialization routine must have its own unique cma_t_once.

init_routine
Address of a procedure that performs the initialization. This routine is called
only once, regardless of the number of times it and its associated in it_block are
passed to cma _ once.

arg
Argument passed to the init_routine.

Description

This routine calls an initialization routine that can be executed by only one
thread, a single time. This routine allows you to create your own initialization
code that is guaranteed to be run only once, even if called simultaneously by
multiple threads.

For example, a mutex or a per-thread context key must be created exactly once.
Calling cma once prevents the problem that occurs when the code that creates
a mutex or per-thread context can be called by multiple threads. Without this
routine, the execution must be serialized so that only one thread performs the
initialization. Other threads that reach the same point in the code would be
delayed until the first thread is finished.

This routine initializes the control record if it has not already been initialized,
and then determines if the client one-time initialization routine has already
executed once. If it has not executed, then this routine calls the initialization
routine specified in init_routine. If the client one-time initialization code has
already executed once, then this routine returns.

Because the init_routine accepts an argument (arg), a single initialization
routine can be used to initialize any number of objects. For example, an
initialization routine that creates a global mutex might take the address of a
cma_Cmutex variable, which receives the handle of a new mutex. Note that
you cannot make every call to the initialization routine using the same control
block; it would only be called once. Effectively, each value of arg must be
associated with its own contol block.

Note ________________________ _

If you specify an init_routine that directly or indirectly results in a
recursive call to cma once specifying the same init_block argument, the
recursive call will result in a deadlock.

The in it_block must be declared static (for example, either extern or static in
the C language), and it must be initialized at compile time. In the C language,
using cma. h, initialize an init_block using the cma once ini t macro. In other
languages, you must initialize a cma t once block-to a value of three integer
zeroes. In C, that corresponds to the-fOllowing:

static cma_t_once block = {O,O,O};

The result of this routine is unpredictable and the cma e badparam exception is
raised if the init_block is not a properly initialized one~ime initialization block.

cma-71

cma_once

Exceptions

cma_e_badparam

Example

cma-72

The following C code segment declares a one-time initialization section that
creates a mutex for later use:

#include <CMA.H>
static cma t once make my mutex = cma once init; C»
static cma-t-mutex - -my_mutex; ~ -

void initialize mutex (cma t address arg) { t)
cma mutex create (&my_mutex, &cma_c_null);
} - -

cma once (&make_my_mutex, initialize mutex, 0); t)

C» Declare the cma t once that defines the particular one-time initialization
code. - -

8 Declare the mutex to be initialized.

t) Declare the initialization routine that will create the mutex.

t) Call cma once with the initialization control block and routine. If no thread
has already executed the initialization routine, it will be called. Otherwise,
cma once returns.

Syntax

Determines whether sufficient space exists on the current thread's stack to
allocate the requested number of bytes of local storage.

status = cma_stack_checkJimiCnp (size)

Argument

status

size

Data Type

Boolean cma_Lboolean

opaque cma_Linteger

Access

write

read

C Binding

cma_t_boolean
cma_stack_check_Iimit_np (
cma_t_integer size);

Arguments

status
Boolean value that specifies whether the requested size can be allocated
without overflowing the current thread's stack.

size
N umber of bytes requested. DECthreads determines whether a stack allocation
of the specified size extends beyond the end of the thread's stack.

Description

This routine determines whether sufficient space exists on the current thread's
stack to allocate the requested number of bytes of local storage. If the
requested size fits (if it does not extend beyond the current thread's stack),
cma c true is returned. If the requested size extends beyond the end of the
staCk,-cma _ c _false is returned.

cma-73

A DECthreads stack consists of the following three parts:

• A green zone, which is the normal area where procedure activation
frames and stack automatic variables are allocated.

• A reserved zone, which is available for allocation but indicates that the
thread has almost reached the end of the stack. (A thread should not
use the reserved zone; it has been set aside for use by error handling
mechanisms.)

• A guard zone, which is normally protected with no access so that an
attempt by the thread to read or write will fail with a hardware error.

If the thread does not use the cma stack check limit np routine, it is possible
for a thread to skip over the guard zone of its stack by~for example, allocating
a very large array on the stack. If the thread writes to the part that overlaps
the other stack before attempting to access the part in its own guard zone, it
could corrupt another thread's stack. This results in unpredictable behavior
of the application and is difficult to debug. The cma stack check limit np
routine recognizes that situation and returns cma _ c '=-false:- - -

When cma stack check limit np is called from the main thread that is
running on the default process stack, cma stack check limit np attempts to
access each page that would fall within the requested ailocation. It returns
cma c true unless the system is unable to expand the process stack to the
needed size.

Exceptions

cma-74

cma_e_existence
cma_e_use_error

Cancels thread execution.

Syntax

Argument Data Type Access

thread opaque cma_Cthread read

C Binding

void
cma_thread_alert (
cma_t_thread *thread);

Arguments

thread
Handle of the thread that receives an alert.

Description

This routine sends an alert to the specified thread. Issuing an alert does not
guarantee that the alerted thread will receive or handle the alert. The alerted
thread can. delay processing the alert after receiving it. For instance, if an alert
arrives during an important operation, the alerted thread can continue if what
it is doing cannot be interrupted at the point where the alert is requested.

Because of communication delays, the calling thread can only rely on the
fact that an alert will eventually become pending in the designated thread
(provided that the thread does not terminate beforehand). Furthermore, the
calling thread has no guarantee that a pending alert will be delivered because
delivery is controlled by the designated thread.

The results of this routine are unpredictable, and the cma e existence
exception is raised if the value specified in thread is cma c-null, or if it refers
to a thread that does not currently exist. - -

This routine is not alertable.

cma-75

Exceptions

cma-76

cma_e_existence
cma_e_use_error

Syntax

Creates a thread object and thread.

cma_thread_create (newJhread, attr, start_routine, arg)

Argument

new_thread

attr

start_routine

arg

Data Type

opaque cma_Cthread

opaque cma_Cattr

cma_t_start_routine

pointer

Access

write

read

read

read

C Binding

void
cma_thread_create (
cma_t_thread *new _thread,
cma_t_attr *attr,
cma_t_start_routine start_routine,
cma_t_address arg);

Arguments

new_thread
Variable that receives a handle for the thread object.

attr
Handle of the attributes object that defines the characteristics of the thread
being created. If you specify cma _ c _null, default attributes are used.

start_routi ne
Function executed as the new thread's start routine. This argument is the
address of a routine that takes one argument of type cma t address, and
returns a value of type cma _ t _ addre s s. - -

arg
Address value that is copied and passed to the thread's start routine.

cma-77

Description

cma-78

This routine creates a thread object and a thread. The thread routine is a
function of type cma t start routine. The function accepts a single argument
of type cma t address-and returns a function value of type cma t address.
For exam pie , the following routine coded in Ada, is compatible with the
cma _ t _start_routine type:

function START ROUTINE (
ARG

The same example coded in C, is as follows:

cma t address
start-routine (

cma t address arg);

Calling this routine sets into motion the following actions:

• An internal thread object is created to describe the thread.

• The associated executable thread is created with attributes specified by the
attr argument (or with default attributes if cma _ c _null is specified.)

• The new _thread argument receives the handle of the new thread.

• The start_routine function is called.

The thread is created in the ready state and therefore might immediately
begin executing the function specified by the start_routine argument. The
newly created thread will begin running before cma thread create completes
if the new thread follows the cma c sched rr or cma c sChed fifo scheduling
policy or has a priority higher than-the creating thread, or both. Otherwise,
the new thread begins running at its turn, which might also be before
cma thread create returns.

The start_routine is passed a copy of the arg argument. The value of the arg
argument is specified by the calling application code.

The thread object exists until the cma thread detach routine is called and the
thread terminates, whichever occurs iast. -

Synchronization between the caller of cma thread create and the newly
created thread is done through the use of the cma thread join routine (or any
other mutexes or condition variables they agree to' use). - /

Exceptions

cma_e_existence
cma_e_use_error

cma_th read_create

cma-79

cma_thread_detach

Marks a thread object for deletion.

Syntax

cmaJhread_detach (thread)

Argument Data Type Access

thread opaque cma_Cthread modify

C Binding

void
cma_thread_detach (
cma_t_thread *thread);

Arguments

thread
Handle of the thread object marked for deletion.

Description

cma-80

This routine indicates that storage for the specified thread can be reclaimed
when the thread terminates. If the thread object is no longer needed by
the thread, then the thread object is deallocated immediately. The thread
argument is set to the value cma _ c _null.

Call this routine when no other threads are interested in joining with the
thread. Call this routine where appropriate for every thread that is created to
ensure that storage for thread objects does not accumulate.

Once this routine has been called, other threads cannot join with the detached
thread.

Calling this routine for a value for thread of cma c null is legal and has no
effect. - -

The results of this routine are unpredictable if the value of thread refers to a
thread object that does not currently exist.

Exceptions

cma_e_existence
cma_e_use_error

cma-81

Terminates the current thread when an error occurs.

Syntax

C Binding

void
cma_thread_exit_error ();

Arguments

None

Description

This routine terminates execution of the current thread within an arbitrary
routine when an error occurs. Normally, a thread terminates when the start_
routine argument to cma _ thread_create returns.

Call this routine only when an error occurs that requires thread termination
and you do not want to signify the error by raising an exception. (Raising an
exception is the preferred means of indicating errors however, an unhandled
exception will terminate the program.)

Exceptions

None

cma-82

Terminates the current thread when successful completion occurs prematurely.

Syntax

cma_thread_exiCnormal (result)

Argument Data Type

result opaque cma_Caddress

C Binding

void
cma_thread_exit_normal (
cma_t_address result);

Arguments

result

Access

read

Address value that is copied and returned to the caller of cma _thread join.

Description

This routine terminates execution of the current thread within an arbitrary
routine when successful completion occurs prematurely.

Normally, a thread terminates when the start_routine argument to
cma thread create returns. Call this routine when it is not necessary or
convenient [0 allow the thread's start routine to return normally to its caller.

Exceptions

None

cma-83

Syntax

Obtains the current priority of a thread.

cma_thread_geCpriority (thread, priority)

Argument

thread

priority

Data Type

opaque cma_t_thread

opaque cma_Cpriority

Access

read

write

C Binding

void
cma_thread_get_priority (
cma_t_thread thread,
cma_t_priority *priority);

Arguments

thread
Handle of the thread whose priority is obtained.

priority
Variable that receives the current priority value of the thread specified in
thread. Refer to the description of cma _thread _ set_prior i ty for valid values.

Description

cma-84

This routine obtains the current priority of a thread. The current
priority can be different from the initial priority of the thread if the
cma thread set priority routine has been called, or if the thread's scheduling
poli~y dynamically modifies thread priorities.

The exact effect of different priority values is dependent upon the scheduling
policy assigned to the thread.

Exceptions

cma_e_existence
cma_e_use_error

cma-85

Syntax

Obtains the current scheduling policy of a thread.

cma_thread_geCsched (thread, policy)

Argument

thread

policy

Data Type

opaque cma_Cthread

opaque cma_Csched_policy

Access

read

write

C Binding

void
cma_thread_get_sched (
cma_t_thread *thread,
cma_t_sched_policy *policy);

Arguments

thread
Handle of the thread whose scheduling policy is obtained.

policy
Variable that receives the current scheduling policy value of the thread
specified in thread. Refer to the description of cma thread set sched for valid
values. - --

Description

This routine obtains the current scheduling policy of a thread. The current
scheduling policy of a thread can be different from the initial scheduling policy
if the cma thread set sched routine has been called.

Exceptions

cma-86

cma_e_existence
cma_e_use_error

Obtains the handle of the current thread.

Syntax

Argument

thread

C Binding

void
cma_thread_get_self (
cma_t_thread *thread);

Arguments

thread

Data Type

opaque cma_Cthread

Variable that receives the handle of the current thread.

Description

Access

write

This routine allows a thread to obtain its own handle. This value becomes
meaningless when the thread object has been deleted-that is, when the
thread has terminated its execution and cma thread detach has been called.

Exceptions

None

- -

cma-87

cma_threadjoin

Syntax

Causes the calling thread to wait for the termination of a specified thread.

cma_threadjoin (thread, exitstatus, result)

Argument

thread

exiCstatus

result

Data Type

opaque cma_t_thread

opaque cma_CexiCstatus

pOinter

Access

read

write

write

C Binding

void
cma_threadjoin (
cma_t_thread *thread,
cma_t_exit_status *exit_status,
cma_t_address *result);

Arguments

thread

cma-88

Handle of the thread whose termination is awaited by the caller of this routine.

exit_status
Variable that receives a value indicating whether the thread specified by thread
successfully terminated. Valid values are as follows:

Value

cma c term normal
cma c term error

cma c term alert

result

Description

Normal termination

Error termination (result of calling
cma_thread_exit_error())
Alert termination

Address value that is optionally returned by the start_routine of the thread
specified by the thread argument in its call to cma _thread_create.

cma_threadjoin

Description

This routine causes the calling thread to wait for the termination of a specified
thread. A call to this routine returns after the specified thread has terminated.

The value returned as the exit_status argument indicates whether the thread
terminated normally, because of an error, or because of an alert.

The value returned as the result argument is the address that the specified
thread generates as its result. The thread's result is normally returned as the
value of the start_routine argument in its call to cma thread create. In order
for the result argument to be valid, the following must occur:

• The exit_status argument must have the value cma _ c _ term_normal.

• The start-routine function for the specified thread must return a value.
(Returning a value is optional for the start routine.)

Any number of threads can call this routine. All threads are awakened when
the specified thread terminates. If the thread is already terminated, this
routine returns immediately.

If the current thread calls this routine, a deadlock results if it is detected by
the implementation.

The results of this routine are unpredictable if the value for thread refers to
cma c null or a thread that has been detached.

This routine is alertable.

Exceptions

cma_e_alerted
cma_e_existence
cma_e_ use_error

cma-89

Syntax

Changes the current priority of a thread.

cma_thread_setpriority (thread, priority)

Argument

thread

priority

Data Type

opaque cma_Cthread

opaque cma_Cpriority

C Binding

void
cma_thread_set_priority (
cma_t_thread *thread,
cma_t_priority priority);

Arguments

thread
Handle of the thread whose priority is changed.

priority

Access

read

read

New value of the priority attribute. The priority attribute is dependent upon
scheduling policy. Valid values are as follows:

cma-90

Low

cma_c_prio_fifo_min

cma_c_prio_rr_min

cma_c_prio_through_
mIn

cma_c_prio_back_min

Mid

cma_c_prio_fifo_mid

cma_c_prio_rr_mid

cma_c_prio_through_
mid

cma_c_prio_back_mid

High

cma_c_prio_fifo_max

cma_c_prio_rr_max

cma_c_prio_through_max

The default priority is cma c prio default mid. (This symbol maps to
cma _ c _prio _through _ mid.f - - -

Description

This routine changes the current priority of a thread. A thread can change its
own priority.

Changing the priority of a thread can cause it to start executing or to be
preempted by another thread. The exact effect of setting different priority
values depends on the scheduling priority assigned to the thread. The
scheduling priority is set by calling the cma _attr _set_priority routine.

An application should specify priority only to express the urgency of executing
the thread relative to other threads. Priority should not be used to control
mutual exclusion when accessing shared data. With a sufficient number of
processors executing, all ready threads, regardless of priority, can be executing
simul taneously.

This routine is different from cma attr set priority in that cma attr set
priority sets the priority attribute that is used to establish the priority of a
new thread when it is created. However, this routine changes the priority of an
existing thread.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_unimp
cma_e_use_error
exc_e_nopriv

cma-91

Changes the current scheduling policy and priority of a thread.

Syntax

cma_thread_set_sched (thread, policy, priority)

Argument Data Type Access

thread opaque cma_Cthread read

policy opaque cma_t_sched_policy read

priority opaque cma_t_priority read

C Binding

void
cma_thread_set_sched (
cma_t_thread *thread,
cma_t_sched_policy policy,
cma_t_priority priority);

Arguments

thread

cma-92

Handle of the thread whose scheduling policy is changed.

policy
New scheduling policy value of the thread specified in thread. Valid values are
as follows:

cma c sched fifo
cma c sched rr - - -
cma_c_sched_throughput
cma_c_sched_background

See Section 2.3.3.2 for a description of the scheduling policies.

priority
New priority value of the thread specified in thread. The priority value is
dependent upon scheduling policy. Valid values are as follows:

Low

cma_c_prio_fifo_min

cma_c_prio_rr_min

cma_c_prio_through_
min

cma_c_prio_back_min

Mid

cma_ c_prio_fifo _mid

cma_c_prio_rr_mid

cma_c_prio_through_
mid

cma_c_prio_back_mid

High

cma_c_prio_fifo_max

cma_c_prio_rr _max

cma_c_prio_through_max

The default priority is cma c pr io default mid. (This symbol maps to
cma_c_prio_through_mid.)- - - -

Description

This routine changes the current scheduling policy and priority of a thread.
You can call this routine to change both the priority and scheduling
policy of a thread at the same time. To change only the priority, call the
cma _ thread _set _pr ior i ty routine.

A thread can change its own scheduling policy and priority. Changing the
scheduling policy or priority, or both, of a thread can cause it to start executing
or to be preempted by another thread.

This routine is different from cma attr set priority and cma attr set sched
in that those routines set the prio-rity and scheduling policy attribut;s th"it are
used to establish the priority and scheduling policy of a new thread when it is
created. This routine, however, changes the priority and scheduling policy of
an existing thread.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_unimp
cma_e_use_error
exc_e_nopriv

cma-93

Obtains a cma_t_date_time value representing a desired expiration time.

Syntax

cmaJime_geCexpiration (expiration, interval)

Argument

expiration

interval

Data Type

opaque cma_Cdate_time

opaque cma_Cinterval

C Binding

void
cma_time_get_expiration (
cma_t_date_time *expiration,
cma_t_interval interval);

Arguments

expiration

Access

write

read

Variable that receives the cma _ t _date _time value representing the expiration
time.

interval
Number of seconds to add to the current system time. The result is the time
that the timed wait should expire.

Description

This routine adds a specified interval to the current absolute system time
and returns a new absolute time. This new absolute time can be used as the
expiration time in a call to cma _ cond _timed _ wai t.

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cma-94

Unlocks a global mutex.

Syntax

C Binding

void
cma_unlock_global

Arguments

None

Description

This service unlocks the global mutex when each call to cma lock global
has been matched by a call to this routine. For example, if you called
cma lock global three times, cma unlock global unlocks the global mutex
when yoU-call it the third time. - -

If no threads are waiting for the global mutex, it becomes unlocked with no
current owner. If one or more threads are waiting to lock the global mutex, one
thread is unblocked and trys to acquire the global lock again. The scheduling
policy is used to determine which thread acquires the global mutex.

The results of calling this routine are unpredictable if the global mutex is
already unlocked. The results of calling this service are also unpredictable if
the global mutex is owned by a thread other than the calling thread.

Exceptions

cma_e_existence
cma_e_use_error

cma-95

Syntax

Notifies the scheduler that the current thread is willing to release its processor
to other threads of the same priority.

C Binding

void
cma-yield ();

Arguments

None

Description

cma-96

This routine notifies the scheduler that the current thread is willing to release
its processor to other threads of the same priority. (A thread generally will
release its processor to a thread of a higher priority without calling this
routine.)

If the current thread's scheduling policy (as specified in a call to erna attr set
sehed or erna thread set sehed) is erna e sehed rr or erna e sehed fifO, this
routine yields the processor to other threads of the same priority. If no threads
of the same priority are ready to execute, the thread continues.

This routine allows knowledge of the details of an application to be used to
increase performance. It can increase performance of access to the processor
by removing the current thread from the processor. It can also increase
performance of access to shared resources by removing the current thread from
the processor as soon as it is finished with the resource.

As a general guideline, consider calling this routine when a thread is executing
code that could deny access to other threads on a uniprocessor if the scheduling
policy is "run current thread until blocked" (erna _ e _sehed _fifo).

Use this routine carefully and sparingly, because misuse can cause unnecessary
context switching, which in turn can increase overhead without increasing
fairness. For example, it is counter-productive for a thread to yield while it has
a needed resource locked.

Exceptions

None

cma-97

Part IV
DECthreads Library Reference (OpenVMS

and DEC OSF/1 Systems Only)

Part IV provides detailed descriptions of the DECthreads Library routines,
which are part of the Digital Proprietary Interface to DECthreads.

The DECthreads Library consists of routines that allow you to create and
control higher-level objects.

To indicate errors, the DECthreads Library routines raise exceptions. See
Appendix C for exception descriptions.

Note ___________ _

You can call the DECthreads Library routines from programs running
on Open VMS and DEC OSF/1 systems only.

Syntax

Creates a library attributes object.

cmaJib_attccreate (new_attr, attr)

Argument Data Type

opaque cma_lib_Cattr

opaque cma_lib_Cattr

Access

write

read

C Binding

void
cma_lib_attr_create (
cma_lib_t_attr *new_attr,
cma_lib_t_attr *attr);

Arguments

new_attr
Variable that receives a handle for the new attributes object.

attr
Handle of the attributes object used to control attributes of the new attributes
object. If you specify cma c null for the attr argument, default attributes are
used. - -

Description

This routine creates an attributes object that is used to specify the attributes
of objects when they are created in routines with the cma _lib_prefix.

The queuesize attribute is the only currently defined DECthreads library
routines attribute. Use the cma lib attr set queuesize routine to change
the queuesize attribute. - - - -

Delete an attributes object by calling the cma lib attr
delete routine when it is no longer needed to create objects.

cmalib-3

Exceptions

cmalib-4

cma_e_existence
cma_e_use_error

Deletes a library attributes object.

Syntax

Argument Data Type Access

attr read, write

C Binding

void
cma_lib_attr_delete (
cma_lib_t_attr *attr);

Arguments

attr
Handle of the attributes object deleted.

Description

This routine deletes a library attributes object. The attributes object is marked
for deletion, and the attr argument is set to the value cma c null. SpecifYing
cma c null for the attr argument is legal and has no effect. -Objects that were
created using this attributes object are not affected by the deletion of the
attributes object.

The results of calling this routine are unpredictable if the handle specified by
the attr argument refers to an attributes object that does not exist (unless it is
cma c null.)

Exceptions

cma_e_existence
cma_e_use_error

cmalib-5

Syntax

Obtains the maximum number of elements available on an atomic queue
attribute that is used when a queue is created.

cmaJib_attr_geCqueuesize (attr, queuesize)

Argument

attr

queuesize

Data Type

opaque cmaJib_Cattr

opaque cma_Cnatural

Access

read

write

C Binding

void
cma_Iib_attr_get_queuesize (
cma_Iib_t_attr *attr,
cma_t_natural *queuesize);

Arguments

attr
Handle of the library attributes object whose queuesize is obtained. This value
is returned by cma_lib_attr_create.

queuesize
Variable that receives the current value of the queuesize attribute.

Description

This routine obtains the queuesize attribute that is used when a queue is
created. The queuesize attribute specifies the maximum number of elements
allowed on a queue. The default queuesize attribute is 128.

Exceptions

cmalib-6

cma_e_existence
cma_e_use_error

Syntax

Specifies the attribute for the maximum number of elements allowed on an
atomic queue that is used when a queue is created.

cmaJib_attr_seCqueuesize (attr, queuesize)

Argument

attr

queuesize

Data Type

opaque cma_lib_Cattr

opaque cma_Cnatural

Access

read

read

C Binding

void
cma_lib_attr_set_queuesize (
cma_lib_t_attr *attr,
cma_t_natural queuesize);

Arguments

attr
Handle of the library attributes object to be modified. This value is returned
by cma _lib _ attr _ create.

queuesize
New value for the queue size attribute. The default value is 128.

Description

This routine sets the queuesize attribute that is used when a queue is created.
The queuesize attribute specifies the maximum number of elements allowed on
a queue.

A queue contains a fixed number of available queue items. Call this routine if
you want to increase or decrease the queue size of new queues when they are
created.

cmalib-7

cma_'ib_attr _set_queuesize

Exceptions

cma_e_badparam
cma_e_existence
cma_e_use_error

cmalib-8

cma_lib_queue_create

cma_lib_queue_create

Syntax

Creates an atomic queue.

Argument

new_queue

attr

Data Type

opaque cma_lib_t_queue

opaque cma_lib_Cattr

Access

write

read

C Binding

void
cma_Iib_queue_create (
cma_Iib_t_queue *new_queue,
cma_Iib_t_attr *attr);

Arguments

new_queue
Variable that receives the handle of the atomic queue created.

attr
Library attributes object used when creating the queue.

Description

This routine creates an atomic queue. Unlike mutexes and condition variables,
an atomic queue implements interthread communication that is not explictly
dependent on synchronization. A queue can communicate information among
threads or within a single thread (for example, between an interrupt routine
and the normal thread code).

The primary characteristic of an atomic queue is that any operation on the
queue is guaranteed to complete before any other operation on that same queue
can begin.

The created queue is not affected by termination of the thread that created it.
It remains valid until explicitly deleted by cma _lib_queue _delete.

cmalib-9

cma_lib_queue_create

Exceptions

cmalib-10

cma_e_existence
cma_e_use_error

Deletes an atomic queue.

Syntax

Argument Data Type

queue

C Binding

void
cma_Iib_queue_delete (
cma_Iib_t_queue *queue);

Arguments

queue
Handle of the queue to be deleted.

Description

Access

read, write

This routine deletes the specified atomic queue. After deletion, the handle
is set to cma c null. A queue remains valid until explicitly deleted by
cma_lib_queue~delete.

A queue must be empty for it to be deleted. If the queue is not empty when
you call this routine, the exception cma _ e _ in_use is raised.

Exceptions

cma_e_existence
cma_e_in_use
cma_e_use_error

cmalib-11

Syntax

Removes the first element from an atomic queue.

cmaJib_queue_dequeue (queue, element)

Argument

queue

element

Data Type

opaque cma_lib_Cqueue

opaque cma_Caddress

Access

read

write

C Binding

void
cma_lib_queue_dequeue (
cma_lib_t_queue *queue,
cma_lib_t_address *element);

Arguments

queue
Handle of the queue from which the element is removed.

element
Variable that receives the address of the removed queue element.

Description

This routine removes the first element from an atomic queue. If the queue is
empty, the calling thread is blocked until an element is inserted into the queue.
When the element is enqueued the calling thread resumes, the new element is
removed, and this routine returns.

Call cma lib queue try dequeue to remove an element from a queue and
return a -stat~s code-(instead of blocking) if the queue is empty.

Exceptions

cmalib-12

cma_e_existence
cma_e_use_error

Syntax

Inserts an element at the end of an atomic queue.

cmaJib_queue_enqueue (queue, element)

Argument

queue

element

Data Type

opaque cma_lib_Cqueue

opaque cma_Caddress

Access

read

read

C Binding

void
cma_lib_queue_enqueue (
cma_lib_t_queue *queue,
cma_lib_t_address element);

Arguments

queue
Handle of the queue to which the element is inserted.

element
Address of the queue element inserted.

Description

This routine inserts an element at the end of a queue. If the queue is full,
the calling thread is blocked until an element is removed from the queue.
When the element is de queued the calling thread resumes, the new element is
inserted, and this routine returns.

Call cma lib queue try enqueue to insert an element into a queue and return
a status code-(instead of blocking) if the queue is full.

Exceptions

cma_e_existence
cma_e_use_error

cmalib-13

cma_lib_queue_requeue

Syntax

Inserts an element at the front of an atomic queue.

cmaJib_queue_requeue (queue, element)

Argument

queue

element

Data Type

opaque cma_lib_Cqueue

opaque cma_Caddress

Access

read

read

C Binding

void
cma_Iib_queue_requeue (
cma_lib_t_queue *queue,
cma_lib_t_address element);

Arguments

queue
Handle of the queue to which the element is inserted.

element
Address of the queue element inserted.

Description

cmalib-14

This routine inserts an element at the front of a queue. If the queue is full,
the calling thread is blocked until an element is removed from the queue.
When the element is dequeued the calling thread resumes, the new element is
inserted, and this routine returns.

Call cma lib queue try requeue to insert an element at the front of a queue
and retu-;;n a ~tatus code -(instead of blocking) if the queue is full.

This routine allows you to replace an element that was erroneously removed
from a queue. For example, a queue might hold information of various types.
In that case a thread can remove the oldest (first) element of the queue, check
its type, and requeue the element if it is not the desired type (rather than
enqueuing it, which would place the element at the end of the queue).

Exceptions

crna_e_existence
crna_e_use_error

cma_lib_queue_requeue

cmalib-15

cma_lib_queue_try _dequeue

Syntax

Removes the first element from an atomic queue.

status = cmaJib_queue_try_dequeue (queue, element)

Argument

status

queue

element

Data Type

Boolean cma_Cboolean

opaque cma_lib_t_queue

opaque cma_Caddress

Access

write

read

write

C Binding

cma_t_boolean
cma_Iib_queue_dequeue (
cma_lib_t_queue *queue,
cma_lib_t_address *element);

Arguments

status
Boolean value that specifies whether the element was dequeued.

queue
Handle of the queue from which the element is removed.

element
Variable that receives the address of the removed queue element.

Description

cmalib-16

This routine removes the first element from an atomic queue. If the queue is
empty, the calling thread does not wait for an element to be enqueued. Instead,
the routine returns with the status cma c false. If the queue is not empty,
the first element value is returned to e("iment, and the routine returns with the
status cma c true.

Call cma lib queue dequeue if you want to remove an element from a queue
but cause the calling thread to block if the queue is empty.

Exceptions

cnrra_e_existence
cnrra_e_use_error

cmalib-17

Syntax

Inserts an element at the end of an atomic queue.

status = cmaJib_queue_try_enqueue (queue, element)

Argument

status

queue

element

Data Type

Boolean cma_t_boolean

opaque cma_lib_Lqueue

opaque cma_Laddress

Access

write

read

read

C Binding

cma_t_boolean
cma_Iib_queue_try _enqueue (
cma_Iib_t_queue *queue,
cma_lib_t_address element);

Arguments

status
Boolean value that specifies whether the element was enqueued.

queue
Handle of the queue to which the element is inserted.

element
Address of the queue element inserted.

Description

cmalib-18

This routine inserts an element at the end of a queue. If the queue is full, the
calling thread does not wait for an element to be removed. Instead, the routine
returns with the status cma c false. If the queue is not full, the element
is inserted at the end of the-q'iieue and the routine returns with the status
cma c true.

Call cma lib queue enqueue if you want to insert an element into a
queue but cause the calling thread to block if the queue is full. Call
cma lib queue try enqueue int if you want to insert an element into a
queue from int;rru¢ level. -

Exceptions

cma_e_existence
cma_e_use_error

cmalib-19

Syntax

Inserts an element at the front of an atomic queue.

status = cmaJib_queue_try_requeue (queue, element)

Argument

status

queue

element

Data Type

Boolean cma_Cboolean

opaque cma_lib_Cqueue

opaque cma_t_address

Access

write

read

read

C Binding

cma_t_boolean
cma_lib_queue_requeue (
cma_lib_t_queue *queue,
cma_Iib_t_address element);

Arguments

status
Boolean value that specifies whether the element was requeued.

queue
Handle of the queue to which the element is inserted.

element
Address of the queue element inserted.

Description

cmalib-20

This routine inserts an element at the front of a queue. If the queue is full,
the calling thread does not wait until an element is removed from the queue.
Instead, the routine returns with the status cma c false. If the queue is not
full, the element is added to the front of the quffite and the routine returns
with the status cma c true.

Call cma lib queue requeue if you want to insert an element into a queue but
cause the calling thread to block if the queue is full.

This routine allows you to replace an element that was erroneously removed
from a queue. For example, a queue might hold information of various types.
In that case a thread can remove the oldest (first) element of the queue, check
its type, and requeue the element if it is not the desired type (rather than
enqueuing it, which would place the element at the end of the queue).

Exceptions

cma_ e_ existence
cma_e_use_error

cmalib-21

Syntax

Inserts an element at the end of an atomic queue from interrupt level.

status = cmaJib_queue_try_enqueuejnt (queue, element)

Argument

status

queue

element

Data Type

Boolean cma_Cboolean

opaque cma_lib_Cqueue

opaque cma_Caddress

Access

write

read

read

C Binding

cma_t_hoolean
cma_lih_queue_try _enqueue_int (
cma_Iih_t_queue *queue,
cma_lih_t_address element);

Arguments

status
Boolean value that specifies whether the element was enqueued.

queue
Handle of the queue to which the element is inserted.

element
Address of the queue element inserted.

Description

cmalib-22

This routine inserts an element at the end of a queue from interrupt level. If
the queue is full, the calling thread does not wait for an element to he removed.
Instead, the routine returns with the status cma c false. If the queue is not
full, the element is inserted at the end of the queu~ and the routine returns
with the status cma c true.

Note ________________________ _

This routine allows you to add elements to a queue from a software
interrupt handler. Do not call this routine from non-interrupt code. If
you want to add elements to a queue from the normal noninterrupt
level without blocking, use cma _lib_queue _try_enqueue.

Exceptions

cma_e_existence
cma_e_use_error

cmalib-23

A
Considerations for Systems Based on

UNIX Software

This appendix discusses DECthreads issues specific to systems based on the
UNIX operating system.

A.1 DEC OSF/1 Systems
The DEC OSF/l operating system supports multiple concurrent streams of
execution within a process using the Mach kernel. DECthreads utilizes these
kernel execution contexts to implement user threads.

Because all services provided directly by the kernel are automatically thread
synchronous and reentrant, programming is easier than in other DECthreads
implementations based on user-mode thread context switching. For example,
unlike on ULTRIX systems, files remain in normal blocking mode unless you
set them to nonblocking mode.

Many language run-time routines are provided in thread-reentrant versions.
For example, reentrant versions of C run-time routines are provided in the
libc r package. In general, any entry point provided in libc r is reentrant.
However, you still need to provide your own mutual exclusion-using the
DECthreads global lock for many library routines that are not provided by
libc_r. (See Section 3.2 for information on how to accomplish this.)

DECthreads provides jacket routines for the kernel routines fork(2) and
sigaction (2). DECthreads also provides compile time jackets implementing
the atfork(2) routine and the sigwait(2) routine specified by the POSIX
l003.4a draft standard. These jackets are described in Section A.3 in more
detail. DECthreads also provides (at load time) thread-reentrant versions of
the malloc (3), free (3), realloc (3), calloc (3), and cfree (3) routines.

Considerations for Systems Based on UNIX Software A-1

A.1.1 Compiling Multithreaded Applications: Static or Shared Libraries
Multithreaded applications can be compiled using either static or shared
libraries. For a discussion about static and shared libraries, see the DEC
OSFll Programmer's Guide.

Table A-I contains the libraries supported for multithreaded programming.

Table A-1 DEC OSF/1 Static and Shared Libraries for Multithreaded
Programs

libmach.a

libmach.so

libpthreads.a

libpthreads.so

Static version of the base system threads interface. Not recom
mended to be called directly

Shared version of the base system threads interface. Not
recommended to be called directly

Static version of the base pthreads package. Requires libmach.a and
libc_r.a

Shared version of the base pthreads package. Requires libmach.so
and libc_r.so

Static version of reentrant libc routines. Contains reentrant versions
of libc routines

Shared version of reentrant libc routines. Contains reentrant
versions of libc routines

Compile a multithreaded application using static versions of libmach,
libpthreads, and libc _ r as follows:

% cc -non_shared -0 myprog myprog.c -threads

Compile a multithreaded application using shared versions of libmach,
libpthreads, and libc _ r as follows:

% cc -0 myprog myprog.c -threads

A.1.2 Support for the DEC OSF/1 Realtime Options
DECthreads supports the DEC OSF/I real-time kernel. This allows you to set
the scheduling policy and priority of threads. In order to do this, the
DEC OSF/I Realtime Options must be installed on the system and a real-time
kernel must be configured. See the DEC OSF I 1 Installation Guide for more
information on installing the Realtime Options.

Programs that use threads with real-time policy or that use priorities higher
than the default process priority must be executed with root privileges. For
more information, see the DEC OSF 11 Realtime Programming Guide.

A-2 Considerations for Systems Based on UNIX Software

If you are not running the real-time kernel or your program lacks necessary
privileges, attempting to call the following routines returns -1 and results in
errno being set to the EPERM or ENOSYS error value:

pthread_attr _setprio

pthread_attr_setsched

pthread_setprio

pthread_setscheduler

(Error returned by pthread_create at thread creation)

(Error returned by pthread_create at thread creation)

If you are not running the real-time kernel or your program lacks necessary
privileges, attempting to call the following routines raises the ema e unimp or
exe _ e _ nopriv exceptions: - -

cma_attr_set_priority

cma_attr_set_sched

cma_thread_set_priority

cma_thread_set_sched

A.2 ULTRIX Systems

(Exception raised by cma_thread_create at thread creation)

(Exception raised by cma_thread_create at thread creation)

On the ULTRIX operating system, DECthreads emulates thread-synchronous
versions of the kernel I/O routines, using compile-time jacket routines. It
accomplishes this by setting the files into nonblocking mode and transparently
blocking threads on condition variables until the I/O operation can be
completed. This has the following important implications for threaded
programs:

• There may be small delays (latency) between the time when the file
becomes ready and the time DECthreads actually retries a blocked I/O.
This is because DECthreads cannot continually monitor the state of all
files.

• All m~dules performing I/O should include the ema. h or pthread. h header
file, even if they perform no explicit DECthreads operations; this is because
the header enables the compile-time jacket routines. I/O operations
from modules not compiled with a DECthreads header file may not work
correctly.

DECthreads also provides jacket routines for fork(2) and sigaetion(2) and
provides the routines sigwait(2) and atfork(2).

Considerations for Systems Based on UNIX Software A-3

On ULTRIX systems, the DECthreads library is called libcma. a. Because
DECthreads uses the internationalized message catalog routines, it requires
libi. a. To build a program using DECthreads, you need to specify both of
these libraries to Id or cc, as follows:

% ee -0 myprog myprog.e -lema -Ii

A.3 Jacketed UNIX Routines
The following sections discuss the jacketed UNIX routines provided by
DECthreads.

A.3.1 Thread-Synchronous I/O
On ULTRIX systems, DECthreads supplies compile-time jacket routines that
emulate thread-synchronous I/O (only the thread performing the I/O operation
is blocked). These routines have the same calling interface as the standard
UNIX routines. Several important differences are detailed in Section A.2, but,
in general, the use of these jackets is transparent to the calling program.

A.3.2 Forking a New Process from a Thread
Because the child process created by fork(2) inherits the address space of the
parent but not all of the threads, DECthreads must perform some initialization
within the child. This is accomplished through the fork jacket routine. Any
module within a threaded program that calls fork (2) must include the cma. h
or pthread. h header file.

A.3.2.1 The fork() Jacket Routine
A jacket is provided for the fork() system call. A specific thread environment
must exist in the forked process when it resumes (begins) execution. This
jacket routine allows code to be executed in the context of the new process
before the user code resumes execution in it.

The jacket routine initializes the internal DECthreads state in the child
process. In the child process, all mutexes are unlocked, there are no threads
waiting on condition variables, and all user threads except the thread that
called fork() have been destroyed.

A-4 Considerations for Systems Based on UNIX Software

A.3.2.2 The atfork() Jacket Routine
The atfork () jacket routine helps to address unpredictability with the
semantics of the fork() routine in a multithreaded environment. Using
fork() from a threaded application or from an application that uses threaded
libraries, can be unpredictable. For example, one thread has a mutex locked
and the state covered by that mutex is inconsistent while another thread
calls fork(). In the child, the mutex will be in the locked state locked by a
(nonexistent) thread and thus can never be unlocked. Having the child simply
reinitialize the mutex is unsatisfactory since this approach does not resolve the
question of how to correct the inconsistent state in the child.

The atfork() jacket routine provides a means for threaded applications or
libraries to protect themselves when a fork() occurs. The atfork() routine
allows you to set up routines that will run at the following times:

• Prior to the fork() in the parent process

• After the fork() in the child process

• Mter the fork() in the parent process

Within these routines you can ensure that all locks are locked prior to fork()
and that they are unlocked after fork()-thereby protecting any data or
resources associated with the mutexes. You can register any number of sets of
at fork () routines; that is, any number of libraries or user programs can set
up atfork() routines and they will all execute at fork() time.

Note

Using atfork() can potentially cause a deadlock if two applications,
subsystems, or libraries call into one another using calls that require
locking. Specifically, when these component's routines use atfork() to
run prior to the fork() in the parent process, a deadlock may occur
when these routines are executing.

A.3.2.3 Compiling Code with Jacketed System Calls
You do not have to rename your system calls to take advantage of the jacket
routines. The jacket routines are put into place when you compile your
program by macros that rename instances of the jacketed system calls to
the name of the DECthreads jacket routine. Therefore, a reference to a
DECthreads jacket routine is compiled into your code instead of a reference to
the system call. When the code is executed, it calls the jacket routine, which
then calls the system on your code's behalf.

Considerations for Systems Based on UNIX Software A-5

If you do not want to use any of the jacket routines, you can add the following
line to your program before any of the thread header files:

#define eMA NOWRAPPERS - - -
By adding this definition, you prevent the jacket routines from being
substituted for the real routines.

If you want to use most of the jacket routines but do not want to use a
specific jacket routine, you can undefine a specific jacket routine by adding
the following definition after the thread header files:

#undef routine name

For example, to prevent the fork() jacket routine from being substituted for
the real fork() routine, add the following definition after the thread header
files:

#undef fork

Digital does not recommend un defining jacket routines, but in some cases it
may be necessary. Note that most jacket routines are not implemented on the
DEC OSF/1 operating system and might not be implemented on future versions
of the ULTRIX operating system.

A.4 Using Signals
This section discusses the types of signals, DECthreads signal handling, and
alternatives to using signals.

A.4.1 Types of Signals
Signals are delivered as a result of some event. UNIX signals are grouped into
the following four categories of pairs that are orthogonal to each other:

• Terminating and synchronous

• N onterminating and asynchronous

• N onterminating and synchronous

• Terminating and asynchronous

The action that DECthreads takes when a particular signal is delivered
depends on the characteristics of that signal.

A-6 Considerations for Systems Based on UNIX Software

A.4.1.1 Terminating Signals
Terminating signals result in the termination of the process by default.
Whether a particular signal is terminating or not is independent of whether it
is synchronously or asynchronously delivered.

A.4.1.2 Nonterminating Signals
N onterminating signals do not result in the termination of the process by
default.

Nonterminating signals represent events that can be either internal or external
to the process. The process might desire notification about or ignore these
events. When a nonterminating asynchronous signal is delivered to the
process, DECthreads awakens any threads that are waiting for the signal.
This is the only action that DECthreads takes, because, by default, the signal
has no effect.

A.4.1.3 Synchronous Signals
Synchronous signals are the result of an event that occurs inside a process
and are delivered synchronously with respect to that event. For example,
if a floating point calculation results in an overflow, then a SIGFPE (floating
point exception signal) is delivered to the process immediately following the
instruction that resulted in the overflow.

Synchronous, terminating signals represent an error that has occurred in the
currently executing thread.

A.4.1.4 Asynchronous Signals
Asynchronous signals are the result of an event that is external to the
process and are delivered at any point in a thread's execution when such an
event occurs. For example, when a user running a program types the interrupt
character at the terminal (generally CtrIlC), a SIGINT (interrupt signal) is
delivered to the process.

Asynchronous~ terminating signals represent an occurrence of an event that
is external to the process, and, if unhandled, results in the termination of the
process. When an asynchronous terminating signal is delivered, DECthreads
catches it and checks to see if any threads are waiting for it. If threads are
waiting, they are awakened, and the signal is considered handled and is
dismissed. If there are no waiting threads, then DECthreads terminates the
process in a manner similar to the unhandled behavior of the signal.

Considerations for Systems Based on UNIX Software A-7

A.4.2 DECthreads Signal Handling
DECthreads provides the POSIX l003.4a sigwait(2) and sigaction(2)
services to allow threads to perform activities similar to signal handling
without having to deal with signals directly.

DECthreads does not support handlers for the following UNIX signals:

Signal

SIGKILL and SIGSTOP

SIGTRAP

Reason Handler Is Not Provided

These signals cannot be caught by user mode code.

Catching this signal interferes with debugging.

A.4.2.1 The POSIX sigwait Service
DECthreads implementation of the POSIX l003.4a sigwai t service allows any
thread to block until one of a specified set of signals is delivered. A thread
waits for any of the asynchronous signals except for SIGKILL and SIGSTOP.

A thread cannot wait for a synchronous signal. This is because synchronous
signals are the result of an error during the execution of a thread, and if
the thread is waiting for a signal, then it is not executing. Therefore, a
synchronous signal cannot occur for a particular thread while is it waiting,
and so the thread will wait forever.

POSIX stipulates that the thread must block the signals it will wait for before
calling sigwait. When any thread issues a sigwait request for a signal,
DECthreads may declare its own handler for that signal. This handler remains
current until no threads are waiting for the signal.

A.4.2.2 The POSIX sigaction Service
The DECthreads implementation of the POSIX sigaction service allows for
per-thread handlers to be installed for catching synchronous signals. The
sigaction (2) service only modifies behavior for individual threads and will
only work for synchronous signals. Setting the signal action to SIG DFL for
a specific signal will restore the thread's default behavior for that Signal.
Attempting to set a signal action for an asynchronous signal is an error.

A.4.3 Signal Alternatives Using the sigwait Routine
Avoid dealing with UNIX signals directly by using signal handler routines in
multithreaded programs. DECthreads provides alternatives to signal handling.

A-a Considerations for Systems Based on UNIX Software

One alternative to using asynchronous signals directly is to use the sigwait()
routine defined by the POSIX l003.4a draft standard. The sigwai t () routine
takes a signal mask (POSIX.l sigset t type) as an argument and returns the
number of a signal (int). The sigwaft () routine causes the calling thread to
block (without affecting other threads) until one of the signals in the sigset t
is received. The routine will then return with the number of that signal. -

For example, you can create a thread that blocks on a sigwait() routine for
SIGINT, rather than handling a CtrllC in the normal way. This thread could
then alert (cancel) other threads to cause the program to shut down the current
activities.

The prototype for sigwait() is as follows:

int sigwait (sigset_t *set);

Following are two reasons for avoiding signals:

• Signals cannot be used in a modular way in a multithreaded program.

• Signals, used as an asynchronous programming technique, are unnecessary
in a multithreaded program.

In a multithreaded program, signals cannot be used in a modular way because,
on most current implementations of UNIX, signals are inherently a process
construct. There is only one instantiation of each signal and of each signal
handler routine for all of the threads in an application. If one thread handles
a particular signal in one way, and a different thread handles the same signal
in a different way, then the thread that installs its signal handler last handles
the signal.

Do not use asynchronous programming techniques in conjunction with threads,
particularly those that increase parallelism such as using timer signals and
110 signals. These techniques are complicated and error-prone; they are also
unnecessary because threads provide a mechanism for parallel execution that
is simpler and less error-prone. Furthermore, most of the threads services
are not supported for use in interrupt routines (such as signal handlers), and
portions of run-time libraries cannot be used reliably inside a signal handler.

A.5 Software Interrupts and Exceptions
From a portable point of view, it is difficult to determine in which thread a
software interrupt handler runs. It is also difficult to determine what happens
if an exception propagates out of a software interrupt handler.

A software interrupt handler must not allow an exception to propagate out
of it. If this happens, the exception might be caught by another thread's
exception handler and results in unpredictable behavior.

Considerations for Systems Based on UNIX Software A-9

Therefore, it is best to avoid complicated coding in a software interrupt routine.
If you write a software interrupt handler, you should release a waiting thread
or enqueue an action item.

This has the advantage of minimizing the code in the software interrupt, which
benefits the application by reducing the latency and increasing the throughput
for such interrupts. For more information on exceptions, see Chapter 4.

A.6 Signals Reported as Exceptions
The following sections list UNIX signals that are reported as DECthreads
exceptions.

A.6.1 Synchronous Terminating Signals
Table A-2 shows the UNIX signals that are considered synchronous
terminating on common UNIX platforms and the DECthreads exceptions
that are associated with those signals.

Table A-2 Synchronous Terminating Signals

Signal

SIGILL

SIGIOT

SIGEMT

SIGFPE

SIGBUS

SIGSEGV

SIGSYS

SIGPIPE

SIGXCPU

SIGXFSZ

Exception

exc_illinstr_e

exc_SIGIOT_e

exc_SIGEMT_e

exc_aritherr_e

exc_illaddr_e

exc_illaddr_e

exc_SIGSYS_e

exc_SIGPIPE_e

exc_SIGXCPU _e

exc_SIGXFSZ_e

A.6.2 Arithmetic Error Signals
The signal code for arithmetic errors (SIGFPE) is decoded by the exception
package handlers so that each specific type of arithmetic error can be reported
as a distinct exception. The exc ari therr e exception is raised only if the code
is not one of these known valueS. The DECthreads Exception Package does not
distinguish between faults and traps; such a distinction would be of no value to
an application, since exceptions are terminating.

A-10 Considerations for Systems Based on UNIX Software

A.6.3

Table A-3 shows the arithmetic error signals and the DECthreads exceptions
that are associated with those signals.

Table A-3 Arithmetic Error Signals

Signal Exception

FPE_INTOVF _TRAP exc_intovCe

FPE_INTDIV _TRAP exc_intdiv _e

FPE_FLTOVF_TRAP exc_fltovCe

FPE_FLTDIV _TRAP exc_fltdiv _e

FPE_FLTUND _TRAP exc_fltund_e

FPE_DECOVF _TRAP exc_decovCe

FPE_SUBRNG_TRAP exc_subrng_e

FPE_FLTOVF_FAULT exc_fltovCe

FPE_FLTDIV _FAULT exc_fltdiv _e

FPE_FLTUND _FAULT exc_fltund_e

Illegal Instruction Signals
The signal code for illegal instruction errors (SIGILL) is decoded so that each
specific type of instruction error can be reported as a distinct exception. The
exc illinstr e exception is raised only when none of these known codes
apply. -

Table A-4 shows the illegal instruction signals and the DECthreads exceptions
that are associated with those signals.

Table A-4 Illegal Instruction Signals

Signal

ILL_RESAD_FAULT

ILL_PRIVIN_FAULT

ILL_RESOP _FAULT

Exception

exc_resaddr_e

exc_privinsCe

exc_resoper_e

Considerations for Systems Based on UNIX Software A-11

A.7 Debugging Threads
At the dbx prompt, enter the following command:

print cma_debug()

The following prompt appears:

DEC threads debug>

Note

Some versions of dbx also allow you to enter call cma _debug ().

Enter any of the DECthreads debugging commands and qualifiers listed in
Table A-5.

Table A-5 DECthreads Debugging Commands and Qualifiers

Command Qualifier

threads

-c

-r

-a

-b

-t

-i

conditions

-w

-q

mutexes

-1

-q

Function

List known threads

Currently running thread

Ready queue (in order)

All threads (DECthreads internal threads
are otherwise omitted)

Blocked threads

Terminated threads

An alternate view of threads with more
detailed information

List known condition variables

List conditions with waiters

List waiting thread sequence numbers

List known mutexes

List locked mutexes

List waiting thread sequence numbers

(continued on next page)

A-12 Considerations for Systems Based on UNIX Software

Table A-5 (Cont.) DECthreads Debugging Commands and Qualifiers

Command

attributes

help

exit

Qualifier Function

List known attributes objects

List all thread debugging commands and
qualifiers

Exit cma_debug

You can abbreviate the cma debug commands. All commands accept a numeric
argument (for example, t 1) as the sequence number of an object to be listed.
Specifying a sequence number causes DECthreads to ignore any selection
switches on the command. For example:

m -1 3

Mutex 3 is listed even if it is not locked.

Type Exit or enter CtrllD to exit.

Considerations for Systems Based on UNIX Software A-13

B
Considerations for OpenVMS Systems

This appendix discusses DECthreads issues and restrictions specific to the
Open VMS operating system.

B.1 Using DECthreads with Asynchronous System Trap
(AST) Routines

An AST is an Open VMS mechanism for reporting an asynchronous event to
a process. Following are three restrictions concerning the use of ASTs with
DECthreads:

• Avoid blocking ASTs for an extended period of time. DECthreads depends
on ASTs internally for several functions; for example, blocking them for an
extended period of time can disrupt thread scheduling.

• Do not call any DECthreads routines with ASTs blocked; this may result in
unexpected behavior.

• Do not call DECthreads routines, except those that have the int
(interrupt) suffix in their names, from within an AST routine. -Calling any
other DECthreads routines from code running in an AST can be unreliable
or cause unexpected behavior.

B.2 Declaring an OpenVMS Condition Handler
This section discusses a restriction on declaring an Open VMS condition
handler while using DECthreads exceptions and DECthreads behavior when a
condition occurs.

Following are three ways to declare an Open VMS condition handler:

• Calling VAXC$ESTABLISH (from a program written in C)

• Calling LIB$ESTABLISH (from a program written in MACRO or BLISS)

• Placing the address of the condition handler directly into the stack frame
(from a program written in VAX MACRO or VAX BLISS)

Considerations for OpenVMS Systems 8-1

Do not declare an Open VMS condition handler within a DECthreads TRY
/ENDTRY exception block. Doing so deletes without notification any handler
that exists for the current procedure. If your code declares a condition handler
within the TRY /ENDTRY block, DECthreads exceptions fail until the next TRY
statement is executed. The TRY statement restores the DECthreads condition
handler.

You can declare an Open VMS VAX condition handler outside of a TRY /ENDTRY
block with no restrictions.

If an OpenVMS VAX condition handler is declared when you execute a TRY
statement, DECthreads saves the handler address and reestablishes it when
the TRY block exits. When DECthreads receives a condition it does not handle
(including SS$ UNWIND, SS$ DEBUG or a condition code that does not have a
SEVERE severity), DECthreads invokes the saved OpenVMS VAX condition
handler.

B.3 Linking OpenVMS Images
The DECthreads Open VMS calling standard interface (routine names that
begin with cma$, such as cma$mutex lock or cma$lib queue enqueue) are
resolved by the linker automatically-and do not require explicit shareable
image references in an Open VMS Linker options file. However, if your
image references the DECthreads open interface (routine names that begin
with cma or pthread , such as cma mutex lock, cma lib queue enqueue or
pthread mutex lockfyou must link against the appropriate images, using
an OpenVMS Linker options file. Function names beginning with cma lib
(DECthreads Library Services routines, including the atomic queue operations)
are defined in the image SYS$SHARE:CMA$OPEN_LIB_SHR.EXE. Other
functions beginning with cma ,as well as the PI003.4a and PI003.4a exception
interfaces, are defined in the image SYS$SHARE:CMA$OPEN_RTL.EXE.

DECthreads is supplied only as shareable images. It is not supplied as object
libraries.

B.4 Including DECthreads Header Files
Include one of the following DECthreads header files in your program to call
the appropriate DECthreads library. These header files and their associated
routine libraries are listed in Table B-l.

8-2 Considerations for OpenVMS Systems

Table 8-1 DECthreads Header Files

Header File

cma.h

cma$defs.h

pthread.h

pthread_exc.h

8.5 Debugging Threads

Routine Library

cma routines (cma_)

cma routines (cma$)

pthread routines with status-returning interface

pthread routines with exception-returning interface

Following are two methods you can use to debug your multithreaded program,
and they can be used separately or in combination:

• Calling the erna _ debug routine from the Open VMS Debugger

• U sing Open VMS Debugger tasking support

8.5.1 Calling the cma_debug Routine
If you are programming using the open interface to DECthreads (erna routine
names), at the OpenVMS Debugger prompt, enter the following command:

DBG> call @cma_9_debu9

If you are programming using the Open VMS calling standard interface to
DECthreads ((erna$ routine names), at the OpenVMS Debugger prompt, enter
the following command:

DBG> call @cma$9_debu9

The DEC threads debugging commands are listed in Table B-2.

Table 8-2 DECthreads Debugging Commands and Qualifiers

Command Qualifier

Threads

-c

-r

-a

Function

List known threads

Currently running thread

Ready queue (in order)

All threads (null thread is otherwise
omitted)

(continued on next page)

Considerations for OpenVMS Systems 8-3

Table 8-2 (Cont.) DECthreads Debugging Commands and Qualifiers

Command Qualifier

-b

-t

Conditions

-w

-q

Mutexes

-1

-q

Attributes

Help

Exit

Function

Blocked threads

Terminated threads

List known condition variables

List conditions with waiters

List waiting thread sequence numbers

List known mutexes

List locked mutexes

List waiting thread sequence numbers

List known attributes objects

List all thread debugging commands and
qualifiers

Exit cma_debug

You can abbreviate the crna debug commands. All commands accept a numeric
argument (for example, t iT as the sequence number of an object to be listed.
Specifying a sequence number causes DECthreads to ignore any selection
switches on the command. For example:

m -1 3

Mutex 3 is listed even if it is not locked.

Type Exit or enter CtrllZ to exit.

8.5.2 Using OpenVMS Debugger Tasking Support
The OpenVMS Debugger includes support for multithreaded programs. This
support enables you to perform functions such as the following:

• Display thread information

• Modify thread characteristics to control thread execution, priority, state
transitions, and so on

• Monitor thread-specific events and state transitions

8-4 Considerations for OpenVMS Systems

The Open VMS Debugger contains no new commands or qualifiers for
multithreaded (tasking) support. However, the following commands, which
are task-related, have been enhanced to provide the new support:

• SET TASK, SHOW TASK

• SET EVENT_FACILITY (specify THREADS)

• SHOW EVENT FACILITY

• SET BREAK/EVENT, SET TRACE/EVENT (THREADS events are defined)

See the Open VMS Debugger Manual for complete information about these
commands and qualifiers.

Considerations for QoenVMS SYstems 8-5

c
DECthreads Exceptions

Table C-llists the DECthreads exceptions and gives an explanation of each
exception. It also contains the recommended action you should take if an
exception occurs.

Table C-1 DECthreads Exceptions

Exception Explanation and User Action

Thread execution was alerted

Explanation: A thread was requested to terminate by
either the crna thread alert or pthread cancel
routine. DECthreads uses an alert to request that a thread
terminate after first performing cleanup and shutdown
operations.

User Action: If you do not want threads to terminate
at the point where this alert is being delivered, you can
use several routines (crna alert disable general,
crna alert disable asynch, cma alert-restore,
pthread setcancel~andpthreadrsetasynccancel)to
specify pmnts in the thread process where alerts cannot be
delivered to the thread.

Improper nesting of alert scope

Explanation: An attempt was made to restore an inner
scope after an enclosing outer scope had already been
restored.

(continued on next page)

DECthreads Exceptions C-1

Table C-1 (Cont.) DECthreads Exceptions

Exception

C-2 DECthreads Exceptions

Explanation and User Action

User Action: Examine the code to determine where
the incorrect alert state variable was passed to the
cma alert restore routine.

Parameter to DECthreads operation is invalid

Explanation: A parameter passed to a DECthreads routine
is improper; for example, the value is of the wrong type or
is out of range.

User Action: Determine which routine raised the exception.
Then consult the documentation to determine the correct
parameters and value ranges. Update your code accordingly
and retry the operation.

If you continue to have problems, report it to Digital,
including a small test program that reproduces the problem.

Exception raised; Open VMS condition code follows

Explanation: The EXC_HANDLING.H package, which
provides portable exceptions for the C language, raised an
exception. The accompanying Open VMS condition code
identifies the error.

User Action: See the documentation for the software
that your program is calling to determine the reason
for this exception. Correct the problem or use the EXC_
HANDLING.H package to provide an exception handler.

Exception raised; some information lost

(continued on next page)

Table C-1 (Cont.) DECthreads Exceptions

Exception

cma_e_exception

cma_e_existence

Explanation and User Action

Explanation: An exception was raised using an old
mechanism that does not preserve all exception information.
The exception message displays, but argument values are
not substituted in the message text.

User Action: None required. However, you can recompile
the code that raised the exception to allow it to use the new
mechanism that preserves the exception information.

Exception raised; address of exception object is object
address

Explanation: The EXC_HANDLING.H package, which
provides portable exceptions for the C language, was used to
raise an exception.

User Action: See the documentation for the software
that your program is calling to determine the reason
for this exception. Correct the problem or use the EXC_
HANDLING.H package to provide an exception handler.

Object referenced does not currently exist

Explanation: A DECthreads routine was requested to
operate on an object that does not exist.

User Action: Consult the documentation for the DECthreads
routine that issued this message to determine the conditions
that caused it. Also check the program where the call is
issued to determine which object or objects that are being
passed as parameters do not currently exist.

Current thread was requested to exit

(continued on next page)

DECthreads Exceptions C-3

Table C-1 (Cont.) DECthreads Exceptions

Exception

C-4 DECthreads Exceptions

Explanation and User Action

Explanation: The cma thread exit routine was called to
force the thread to shut down in an orderly fashion. This
message notifies all active exception handlers to perform
any necessary cleanup activities.

User Action: None

DECthreads initialization is already in progress

Explanation: A call was made to the DECthreads
initialization routine cma ini t while DECthreads was
still trying to initialize itself on a prior call. DECthreads
initialization must be complete before any DECthreads
routines are used. Once DECthreads is fully initialized, all
calls to cma _ ini t complete successfully.

User Action: Remove the offending concurrent call to the
cma ini t routine or delay it until the first call to cma ini t
has completed. -

Object referenced is already in use

Explanation: The DECthreads operation cannot be
performed on the specified object because it is already in
use; for example, the routine is attempting to delete a
mutex that is locked.

User Agion: Determine which routine caused the error
and make sure the object is in an appropriate state before
attempting the operation.

No space is currently available to create a new stack

(continued on next page)

Table C-1 (Cont.) DECthreads Exceptions

Exception

cma_e_stackovf

Explanation and User Action

Explanation: A call to cma thread create or another
DECthreads routine requires that a-new stack be created,
but there is insufficient space to create it.

User Action: Reduce the size of thread stacks previously
created, so that additional stacks may be created.
Alternatively, adjust system or user quotas to allow the
allocation of more virtual memory.

Attempted stack overflow was detected

Explanation: A thread overflowed its stack.

User Action: Recreate the thread with a larger stack or
redesign the code to require less stack space; for example,
nest your calls less deeply or allocate less storage on the
stack.

The specified DECthreads feature is not implemented

Explanation: You attempted to use a feature that is not
implemented in the version of DECthreads that you are
running. This error can occur when a program developed
on a system running a higher version of DECthreads is
executed on a system that is running a lower version of
DECthreads.

User Action: Use a higher version of DECthreads that
supports the feature or do not attempt to use the feature
with a lower version of DECthreads.

(continued on next page)

DECthreads Exceptions C-5

Table C-1 (Cont.) DECthreads Exceptions

Exception

C-6 DECthreads Exceptions

Explanation and User Action

Uninitialized exception raised

Explanation: Code using the EXC_HANDLING.H package,
which provides portable exceptions for the C language,
attempted to raise an exception that has not been
initialized.

User Action: Check the error messages to determine the
program location where the uninitialized exception'is being
raised. Use the EXCEPTION_INIT macro defined in the
EXC_HANDLING.H package to initialize the exception.

Unknown exception reported

Explanation: A status exception was raised for which
DECthreads is unable to provide a meaningful text
translation.

User Action: Check the value of the status with which the
exception object was initialized to make sure it has a proper
text translation.

Requested operation is inappropriate for the specified object

Explanation: The state or type of an object is inappropriate
for the operation; for example, the operation attempts to
unlock a mutex that is not locked.

User Action: Determine which routine caused the error and
consult the documentation to learn which object states are
appropriate for the routine.

Wrong mutex specified in condition wait

(continued on next page)

Table C-1 (Cont.) DECthreads Exceptions

Exception Explanation and User Action

Explanation: A thread attempted to wait for a condition
variable that already has at least one thread waiting and
that thread has specified a different mutex. DECthreads
requires that all threads concurrently waiting for a
condition variable specify the same mutex.

User Action: Design your code so that each condition
variable represents a particular state of shared data that is
protected by a given mutex.

See Table 4-1 for a list of pthread exceptions. Most pthread exceptions
correspond directly to a cma interface exception.

DECthreads Exceotions C-7

D
DECthreads Nonstandard Types for the

POSIX 1003.4a Interface

Table D-l lists the DECthreads nonstandard data types that correspond to the
types specified by the PI003.4a standard, with an explanation of each type.

The types you choose depend on your goals. If you want to strictly code to the
PI003.4a standard, use the PI003.4a types. If you want to run your program
on a C compiler that is not fully ANSI C-compliant, using the DECthreads
types may be the better choice. (The DECthreads types are designed to select
the appropriate existing types provided by the C compiler.)

Table D-1 DECthreads Nonstandard Data Types

OECthreads Type P1003.4a Type

pthread_addr_t or "void *"
any_t

pthread_startroutine_t "void * (*) (void *arg)"
or pthread_func_t

pthread_cleanup_t "void (*) (void * arg) "

pthread_destructor_t "void (*) (void *arg)"

Explanation

Unspecified type used for
passing thread arguments,
return values, and thread
specific data values.

The type of a thread start
routine (which is passed to
pthread _create).

The type of a routine
specified for a cleanup
routine (which is passed to
pthread _cleanup_push).

The type of a routine used
for a thread-specific data
destructor function.

(continued on next page)

DECthreads Nonstandard Types for the POSIX 1003.4a Interface 0-1

Table D-1 (Cont.) DECthreads Nonstandard Data Types

OECthreads Type P1003.4a Type

"void (*) (void)"

Explanation

The type of a routine used
to initialize data with
pthread _once.

0-2 DECthreads Nonstandard Types for the POSIX 1003.4a Interface

Glossary

alert

See cancel.

alertable routine

See cancelable routine.

AST

Mechanism that signals an asynchronous event to a process.

asynchronous cancelability

If enabled, allows a thread to receive a cancelation request at any time (not
only at cancelation points). See also general cancelability.

asynchronous signal

Signal that is the result of an event that is external to the process and is
delivered at any point in a thread's execution when such an event occurs. See
also synchronous signal.

atomic queue

DECthreads Library object that can be used to communicate information
among threads or among routines in a single thread.

attributes

Individual components of the attributes object. Attributes specify detailed
properties about the objects to be created. See also attributes object.

attributes object

Object used to describe DECthreads objects (thread, mutex, condition variable,
queue, or attributes object). This description consists of the individual
attribute values that are used to create an object. See also attributes.

Glossary-1

cancel

Mechanism by which one thread requests termination of another thread (or
itself).

cancelable routine

Routine where general (synchronous) cancel ability can occur only at specific,
well-defined points.

cancelation point

DECthreads routine that, when called by a routine, can determine whether a
cancel is pending for that routine, and if so, can deliver the cancel.

condition variable

Object that allows a thread to block its own execution until some shared data
reaches a particular state.

deadlock

Occurs when a thread holding a resource is waiting for a resource held by
another thread, while that thread is also waiting for the first thread's resource.

dynamic memory

Memory that is allocated by the program as a result of a call to some memory
management function, and that is referenced through pointer variables. See
also static memory and stack memory.

exception

Object that describes an error condition.

exception scope

Block of code where exceptions are handled.

fast mutex

Mutex that is locked exactly once by a thread. If a thread tries to lock the
mutex again without first unlocking it, the thread waits for itself to release the
lock and deadlocks. See also mutex.

general cancel ability

If enabled, allows a thread to receive a cancelation request at specific
cancelation points. If disabled, the thread cannot be canceled. See also
asynchronous cancelability.

Glossary-2

global lock

Single recursive lock used by all threads in a program when calling routines
or code that is not thread-safe to ensure serialization and exclusivity of the
unsafe code.

guard area

Reserved area designed to help prevent or detect, or both, overflow of the
thread's stack.

guardsize attribute

Minimum size (in bytes) of the guard area for the stack of a thread.

handle

Storage, similar to a pointer, that refers to a specific DECthreads object.

inherit scheduling attribute

Attribute that specifies whether a newly created thread inherits the scheduling
attributes (scheduling priority and policy) of the creating thread or uses the
scheduling attributes stored in the attributes object. See also thread attributes
object.

lifetime

Length of time memory exists.

multithreaded programming

Division of a program into multiple threads that execute concurrently.

mutex

Meaning mutual exclusion, an object that multiple threads use to ensure
the integrity of a shared resource that they access (most commonly shared
data) by allowing only one thread to access it at a time. See also fast mutex,
nonrecursive mutex, and recursive mutex.

mutex attributes object

Attribute that allows you to specify values other than the defaults for mutex
attributes when you create a mutex.

mutex type attribute

Attribute that specifies whether a mutex is fast, recursive, or nonrecursive.

Glossary-3

nonrecursive mutex

Mutex that can be locked exactly once by a thread, like a fast mutex. If a
thread tries to lock the mutex again without first unlocking it, the thread
receives an error instead of deadlocking. See also mutex.

nonterminating signal

Signal that does not result in the termination of the process by default. See
also terminating signal.

per-thread context

See thread-specific data.

predicate

Boolean expression that defines a state; threads wait on a condition variable
for data to enter the defined state. See also condition variable.

priority inversion

Occurs when interaction among three or more threads blocks the highest
priority thread from executing.

queuesize attribute

N umber of elements allowed on a queue. See also atomic queue.

race condition

Occurs when two or more threads perform an operation, and the result of the
operation depends on unpredictable timing factors.

recursive mutex

Mutex that can be locked more than once by a given thread without causing a
deadlock. See also mutex and deadlock.

scheduling policy attribute

Attribute that describes how the thread is scheduled for execution relative to
the other threads in the program. See also thread attributes object.

scheduling priority attribute

Attribute that specifies the execution priority of a thread, expressed relative to
other threads in the same policy. See also thread attributes object.

scope

Areas of a program where code can access memory.

Glossary-4

stacksize attribute

Minimum size (in bytes) of the memory required for a thread's stack.

stack memory

Memory that is allocated by code generated by the language compiler at run
time, generally when a routine is initially called. See also dynamic memory
and static memory.

static memory

Any variable that is permanently allocated at a particular address for the life
of the program. See also dynamic memory and stack memory.

synchronous signal

Signal that is the result of an event that occurs inside a process and is
delivered synchronously with respect to that event. See also asynchronous
signal.

terminating signal

Signal that results in the termination of the process by default. See also
nonterminating signal.

thread

Single, sequential flow of control within a program. Within a single thread,
there is a single point of execution.

thread attributes object

Object that allows you to specify values for thread attributes other than the
defaults when you create a thread.

th read-reentrant

Routine that functions normally despite being called simultaneously or
sequentially in different threads.

thread-safe

Routine that can be called simultaneously from multiple threads without risk
of corruption.

thread-specific data

User-specified fields of arbitrary data that can be added to a thread's context.

Glossary-5

timeslicing

Mechanism that ensures that every thread is allowed time to execute by
preempting running threads at fixed intervals.

Glossary-6

A
Ada compiler

generating reentrant code 3-5
Alert '

asynchronous delivery and exception
handlers, cma-6

delivery, cma-75
disabling asynchronous delivery of,

cma-3
disabling delivery of, cma-5
enabling asynchronous delivery of, cma-6
enabling delivery of, cma-8
requesting delivery of, cma-ll
sending to a thread, cma-75
using asynchronous delivery with external

routines, cma-3
Alert delivery state

restoring, cma-9
Alertable

definition of, cma-3
ensuring for matrix multiplication,

cma-6
API errors, reporting, 3-12
ASTs (asynchronous system traps)

restrictions on use, B-1
Asynchronous cancelability, 2-19
Asynchronous execution

designing code for, 3-1
Asynchronous programming techniques

using in a multithreaded program, A-9
Asynchronous signals, A-7

Index

Asynchronous user interface example 5-9
Atomic queue, 2-23 '
Attributes

See also Attributes object
condition variable, 2-9
guard size, 2-9, pthread-7, pthread-16,

cma-16, cma-24
inherit scheduling, 2-6
mutex kind, cma-20, cma-28
mutex type, 2-9
priority, pthread-ll, pthread-20,

cma-21, cma-29
queue size, cmalib-6, cmalib-7
scheduling, pthread-9, pthread-18,

cma-18, cma-26
scheduling policy, 2-6, p,.thread-13,

pthread-22, cma-22, cma-31
scheduling priority, 2-7
stack size, 2-8, pthread-15, pthread-24,

cma-23, cma-33
thread, 2-5

Attributes object

B

creating, 2-4, pthread-3, cma-12
definition of, 2-4
deleting, 2-5, cma-14

Background scheduling, 2-6
BLISS compiler

generating reentrant code, 3-5
Boss/worker model, 1-6

work queue variation, 1-6

Index-1

Broadcasting a wake~up, pthread-36,
cma-34

c
C compiler

generating reentrant code, 3-5
Cancel

asynchronous delivery and exception
handlers, pthread-94

delivery, pthread-26
enabling and disabling asynchronous

delivery of, pthread-94
enabling and disabling delivery of,

pthread-96
obtaining non~cancelable versions of

cancelable routines, pthread-96
possible dangers of disabling, pthread-96
requesting delivery of, pthread-106
sending to a thread, pthread-26

Cancelability
asynchronous, pthread-94
general, pthread-96

Canceling a thread
See Thread, canceling

CATCH exception, 4-5
CATCH_ALL exception, 4-11
Characteristics of created condition variable

specifying, pthread-32
Characteristics of created mutex

specifying, pthread-73
Characteristics of created object

specifying, pthread-3, cma-12
Cleanup routine

establishing, pthread-30
executing, pthread-28

Client, 1-4
cma.h, B-2
cma_debug, cma-46, B-3
cma_t_once data structure, cma-70
COBOL compiler

generating nonreentrant code, 3-5
Combination model, 1-8

Index-2

Comparing two handles, cma-51
Compilers

generating nonreentrant code, 3-5
generating reentrant code, 3-5

Condition handlers
declaring, B-1

Condition variable, 2-12
comparing to mutex, 3-10
creating, pthread-39, cma-35
definition of, pthread-39
deleting, pthread-37, cma-37
signaling, 3-11
waiting for, pthread-47, cma-44
waiting for a specified time, pthread-45,

cma-42
Condition variable attributes, 2-9
Condition variable attributes object

creating, pthread-32
deleting, pthread-34

Context
generating key value for, pthread-69,

cma-54
obtaining, pthread-65, cma-56
per~thread, 2-18
setting, pthread-104, cma-57
uses for, pthread-69, cma-54

Copying a handle, cma-49
Creating

attributes object, cma-12
condition variable attributes object,

pthread-32
mutex attributes object, pthread-73
thread attributes object, pthread-3

Creating a condition variable, pthread-39,
cma-35

Creating a mutex, pthread-83, cma-61
Creating a thread, pthread-49, cma-77

guardsize attribute, pthread-7,
pthread-16, cma-16, cma-24

inherit scheduling attribute, pthread-9,
pthread-18, cma-18, cma-26

priority attribute, pthread-11,
pthread-20, cma-21, cma-29

scheduling policy attribute, pthread-13,
pthread-22, cma-22, cma-31

Creating a thread (cont'd)
stacksize attribute, pthread-15,

pthread-24, cma-23, cma-33
Creating per-thread context key value,

pthread-69, cma-54

D
Data

thread-specific, 2-18
Data structures

cma_t_once, cma-70
pthread_once_t, pthread-91

Deadlocks
how to avoid, 3-11

Debugging a multithreaded program,
cma-46, cma-47

Debugging threads
on Open VMS systems, B-3
on systems based on UNIX software,

A-12
DEC OSF/1, A-1
Declaring a condition handler, B-1
Delaying execution of a thread, pthread-52,

cma-48
Deleting

attributes object, cma-14
condition variable attributes object,

pthread-34
mutex attributes object, pthread-75
thread attributes object, pthread-5

Deleting a condition variable, pthread-37,
cma-37

Deleting a mutex, pthread-81, cma-63
Deleting a thread, pthread-54, cma-80
Delivery of alerts

disabling, cma-5
disabling asynchronous delivery of,

cma-3
enabling, cma-8
enabling asynchronous delivery of, cma-6
requesting, cma-11

Delivery of cancels
enabling and disabling, pthread-96
enabling and disabling asynchronous

delivery of, pthread-94

Delivery of cancels (cont'd)
requesting, pthread-106

Dequeue, 2-23
Disabling asynchronous delivery of alerts,

cma-3
Disabling asynchronous delivery of cancels,

pthread-94
Distributed system

using threads in, 1-4
Dynamic memory, 3-7

E
Enabling asynchronous delivery of alerts,

cma-6
Enabling asynchronous delivery of cancels,

pthread-94
Enqueue, 2-23
Error termination of a thread, pthread-49,

cma-77, cma-82
Errors, reporting, 3-12
Example programs

asynchronous user interface, 5-9
prime number search, 5-1

Exceptions, A-9
CATCH, 4-5
catching, 4-5
CATCH_ALL, 4-11
condition handler causing to fail, B-1
declaring and initializing, 4-4
defining a region of code to catch, 4-5
defining epilogue actions, 4-8
definition of, 4-2
determining current, 4-9
ENDTRY, 4-5
exc_get_status, 4-9
exc_matches, 4-10
exc_report, 4-10
exc_set_status, 4-9
exporting error status, 4-9
FINALLY, 4-8, 4-14
importing error status, 4-9
introduction to, 4-2
invoking the exception-returning interface,

4-2
matching, 4-10

Index-3

Exceptions (cont'd)
naming convention for, 4-13
raising, 4-4
reporting, 4-10
RERAISE, 4-7, 4-11, 4-15
reraising, 4-7
rules for modular use of, 4-13
signals reported as, A-10
table listing pthread exceptions and

meanings, 4-15
THIS_CATCH, 4-9
TRY, 4-5

Expiration time
obtaining, pthread-59, cma-94

F
Fast mutex, 2-10, pthread-79, cma-28
FIFO (first-inlfirst-out) scheduling, 2-6
FINALLY exception, 4-8, 4-14

G
General cancelability, 2-19
Global lock, 3-5

using to avoid nonreentrant software,
3-5

Global mutex
locking, pthread-71, cma-59
unlocking, pthread-107, cma-95

Guardsize attribute, 2-9, pthread-16,
cma-16, cma-24

obtaining, pthread-7

H
Handlers

declaring a condition handler, B-1
Handles, 2-4

assigning to an object, cma-49
comparing, cma-51
copying, cma-49
obtaining for thread, cma-87

Header files, B-2

Index-4

Identifiers
comparing, pthread-56

Images
linking to OpenVMS, B-2

Inherit scheduling attribute, 2-6, cma-18
obtaining, pthread-9
usefulness, pthread-18, cma-26

Initialization
one-time, pthread-91, cma-70

Initialization routines
one-time, 2-17

Initializing a condition variable, pthread-39,
cma-35

Initializing threads routines, cma-53
INT suffix on DECthreads routines, B-1
Internal errors, reporting, 3-12
Interrupt, pthread-43, cma-40
Interrupt handler

J

inserting a queue element from,
cmalib-22

Jacket routines
compiling code with, A-5

K
Kernel threads

effects of context switching, 3-1
Key value

generating for per-thread context,
pthread-69, cma-54

obtaining per-thread context for,
pthread-65, cma-56

setting per-thread context for,
pthread-104, cma-57

L
Lifetime

definition of, 3-6
Linking to Open VMS Images, B-2
Lock

global, 3-5
Locking a global mutex, pthread-71,

cma-59
Locking a mutex, pthread-85, pthread-87,

cma-65, cma-67

M
Memory

dynamic, 3-7
setting for a thread's stack, 2-8, 2-9
stack, 3-7
static, 3-7
types of, 3-7

Multithreaded programming
introduction, 1-1
potential problems, 1-8

complexity, 1-8
deadlocks, 3-11
nonreentrant routines, 1-9
priority inversion, 3-9
race conditions, 3-10

software models, 1-6
boss/worker, 1-6
combination, 1-8
pipelining, 1-7
work crew, 1-6

Mutex, 2-10
comparing to condition variable, 3-10
creating, pthread-83, cma-61
definition of, pthread-83
deleting, pthread-81, cma-63
fast, 2-10, pthread-79, cma-28
locking, pthread-85, pthread-87,

cma-65, cma-67
locking before signaling condition variable,

3-11
nonrecursive, 2-11, pthread-79

Mutex (cont'd)
obtaining kind, cma-20
recursive, 2-11, pthread-79, cma-28
setting kind, cma-28
types of, 2-10
unlocking, pthread-89, cma-69

Mutex attributes object
creating, pthread-73
deleting, pthread-75

Mutex type attribute, 2-9

N
Names

See Handles
Nonrecursive mutex, 2-11, pthread-79,

cma-28
Nonreentrant code

compilers that generate, 3-5
Nonreentrant library packages

calling, pthread-71, cma-59, cma-95
Nonreentrant software

using global lock to avoid, 3-5
using thread-specific data to avoid, 3-6

Nonterminating signals, A-7
Normal termination of a thread,

pthread-49, pthread-58, cma-77,
cma-83

o
One-time initialization routines, 2-17
OSF/l, A-I

p
PASCAL compiler

generating reentrant code, 3-5
Per-thread context, 2-18

generating key value for, pthread-69,
cma-54

obtaining, pthread-65, cma-56
setting, pthread-l04, cma-57
uses for, pthread-69, crna-54
using to avoid nonreentrant software,

3-6

Index-5

Pipelining model, 1-7
POSIX

sigwait service, A-8
Prime number search example, 5-1
Priority

obtaining for thread, pthread-61, cma-84
setting for thread, pthread-98,

pthread-101, cma-90, cma-92
Priority attribute, pthread-11, pthread-20,

cma-21, cma-29
Priority inversion

avoiding, cma-65
how to avoid, 3-9

Processors
causing thread to release control of,

pthread-108, cma-96
Programming errors, sychronization

list of, 3-2
pthread.h, B-2
pthread_exc.h, B-2
pthread_once_t data structure, pthread-91

Q
Queues, 2-23

creating, cmalib-9

R

creating an attributes object for,
cmalib-3

deleting, cmalib-11
deleting an attributes object for, cmalib-5
inserting an element at the end of,

cmalib-13, cmalib-18, cmalib-22
inserting an element at the front of,

cmalib-14, cmalib-20
obtaining size of, cmalib-6
removing an element from, cmalib-12,

cmalib-16
setting size of, cmalib-7

Race conditions
how to avoid, 3-10

Index-6

RAISE exception, 4-4
Recursive mutex, 2-11, pthread-79, cma-28
Reentrant code

See also thread-reentrant code
compilers that generate, 3-5
necessary for multithreaded program,

1-5
nonreentrant routines (avoiding), 1-9

Reporting errors, 3-12
API, 3-12
internal, 3-12

Requeue, 2-23
RERAISE exception, 4-7,4-11,4-15
RR (round-robin) scheduling, 2-6

s
Scheduling policy

obtaining for thread, pthread-63, cma-86
setting for thread, pthread-101, cma-92

Scheduling policy attribute, 2-6,
pthread-22, cma-31

obtaining, pthread-13, cma-22
Scheduling priority attribute, 2-7
Scheduling thread, 2-21
Scope

definition of, 3-6
Servers, 1-4
Shared memory, 3-8
Shared variables, 3-6
Signal handlers

installing for UNIX signals, A-8
Signaling a wake-up, pthread-41,

pthread-43, cma-39, cma-40
Signals

alternatives to using, A-8
arithmetic error, A-10
asynchronous, A-7, A-10
illegal instruction, A-11
nonterminating, A-7
reasons to avoid in a multithreaded

program, A-9
reported as exceptions, A-10
synchronous, A-7
terminating, A-7, A-10

Signals (cont'd)
types of, A-6

Software interrupts
exceptions, A-9

Stack guard area
location of, cma-16, cma-24

Stack limit
checking, cma-73

Stack memory, 3-7
Stacks, 3-8

changing mimimum size of, cma-33
changing mimimum size of guard area,

cma-24
changing minimum size of, pthread-24
obtaining mimimum size of, pthread-15,

cma-23
obtaining mimimum size of guard area,

cma-16
overflow, 3-8
preventing and detecting overflow,

cma-16, cma-24
routines for, cma-73
sizing, 3-9

Stacksize attribute, 2-8, pthread-24,
cma-23, cma-33

obtaining, pthread-15
Static memory, 3-7
Storage

types of, 3-7
Synchronization

mutex, pthread-83, cma-61
Synchronization objects

atomic queue, 2-23
condition variable, 2-12
join, 2-17
mutex, 2-10

Synchronization, asynchronous
coding for, 3-1

Synchronous signals, A-7

T
Terminating signals, A-7
Termination

waiting for, pthread-67, cma-88
Termination of a thread

error, pthread-49, cma-77, cma-82
events that cause, pthread-49, cma-77
normal, pthread-49, pthread-58,

cma-77, cma-83
premature successful completion,

pthread-58, cma-83
without raising an exception, cma-82
without returning from start routine,

pthread-58, cma-83
THIS_CATCH exception, 4-9
Thread

See also Multithreaded programming
Thread attributes, 2-5
Thread attributes object

creating, pthread-3
deleting, pthread-5

Thread creation
guard size attribute, pthread-7,

pthread-16, cma-16, cma-24
inherit scheduling attribute, pthread-9,

pthread-18, cma-18, cma-26
priority attribute, pthread-ll,

pthread-20, cma-21, cma-29
scheduling policy attribute, pthread-13,

pthread-22, cma-22, cma-31
stacksize attribute, pthread-15,

pthread-24, cma-23, cma-33
Threading library

asynchronous, 3-1
Threads

alerting, 2-19
canceling, 2-19, pthread-26

asynchronous cancelability, 2-19
general cancelability, 2-19

creating, 2-1, pthread-49, cma-77
definition of, 1-1
delaying execution of, pthread-52,

cma-48

Index-7

Threads (cont' d)
deleting, 2-3, pthread-54, cma-80
error termination, pthread-49, cma-77,

cma-82
events that cause termination,

pthread-49, cma-77
initializing, cma-53
nonreentrant routines (avoiding), 1-9
normal termination, pthread-49,

pthread-58, cma-77, cma-83
obtaining current priority of, pthread-61,

cma-84
obtaining current scheduling policy of,

pthread-63, cma-86
obtaining handle of, cma-87
obtaining identifier of, pthread-93
per-thread context of, pthread-69,

cma-54
reentrant code necessary, 1-5
releasing processor, pthread-108, cma-96
scheduling, 2-21

inherit scheduling attribute, 2-6
scheduling policy attribute, 2-6
scheduling priority attribute, 2-7

setting current priority of, pthread-98,
cma-90

setting current scheduling policy and
priority of, pthread-101, cma-92

starting, 2-1
states, 1-5
terminating, 2-1, cma-75

error termination, 2-3
normal termination, 2-2

waiting for a mutex, pthread-85, cma-65
waiting for another to terminate, 2-3
waiting for the termination of,

pthread-67, cma-88
waking, pthread-36, pthread-41,

pthread-43, cma-34, cma-39, cma-40
yielding processor to another thread,

pthread-108, cma-96
Threads identifier

comparing, pthread-56

Index-8

Threads-reentrant code
definition of, 3-3

Threads-safe code
definition of, 3-3

Threads-specific data, 2-18
using to avoid nonreentrant software,

3-6
Throughput (default) scheduling, 2-6
Time

adding interval to current time,
pthread-59, cma-94

obtaining expiration, pthread-59, cma-94
Timeslice

definition of, 2-6
TRYIENDTRY block

restriction, B-1

u
ULTRIX systems, A-3
UNIX services

atfork(), A-5
fork(), A-4

UNIX signals
installing signal handlers for, A-8
SIGINT, A-7
SIGKILL, A-8
SIGQUIT, A-8
SIGSTOP, A-8
SIGTRAP, A-8
SIGTSTP, A-8

Unlocking a global mutex, pthread-107,
cma-95

Unlocking a mutex, pthread-89, cma-69

w
Waiting for condition variable, pthread-45,

pthread-47, cma-42, cma-44
Waking a thread, pthread-36, pthread-41,

pthread-43, cma-34, cma-39, cma-40
Windowing system

using threads in, 1-4

Work crew model, .1-6
Work queues

variation of boss/worker model, 1-6

y
Yielding to another thread, pthread-108,

cma-96

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQON 19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
Guide to DECthreads

AA-Q2DPA-TK

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Excellent
D
D
D
D
D
D
D
D

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

Good
D
D
D
D
D
D
D
D

What version of the software described by this manual are you using?

__________________ Dept.

Fair
D
o
D
D
D
D
D
D

__________________________ Date
Name/Title
Company
Mailing Address

Email Phone

Poor
D
D
D
D
D
D
D
D

---- DoNot Tear - Fold Here and Tape .---

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

111 ••••• 11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1 •• 1.1 ••• 1.11 •• 1

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotte4
Line

Reader's Comments DEC OSF/1
Guide to DECthreads

AA-Q2DPA-TK

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

Excellent
o
o
o
o
o
o o
o

Good
o
o
o
o
o
o o
o

Fair
o
o
o
o
o
o o
o

Poor
o
o
o
o
o
o o
o

What do you like best about this manual? __________________ _

What do you like least about this manual? __________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title
Company
Mailing Address

Email

Dept.

__________ Phone

Date ____ _

---- DoNot Tear - Fold Here and Tape .--

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111 1111111 Ih 1IIIIIIIIIIIhllllllllili hllllllllill

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Aloll
Dott
Line

