
HP Computer/Instrument Systems
Training Course

OSF/1 Internals

Student Workbook

~D'I HEWLETT
a:'~ PACKARD

H2596-90001
Printed In U.S.A. 05/91

Notice
. L ,~.L, .. "

The inforpw.~8.s~~ed ,in this d~Q~~~~ !~:~u~Ject t~ ~~~~~thout notice.

HEWLETT·PACKARD PROVIDES'THIS MiTEIiIAL ,~ IS" AND MAKES NO WARRANTY OF ANY KIND,
E~~S~E.~ 9.;~J¥PLIED, .~. ,L Ltl)PIN.:P,):~U~ NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERC~ABJLt'1X,~D ·.FJ~S$.'FORKPARTICULAR·PURPOSE. HEWLETT-PACKARD SHALL NOT

~~~~~~~=~~~~O~~H~~~~~~=g,E~RMANCE 
OR USE OF THIS MATERIAL WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL 
THEORY. 

/~ :11.:: .. '\ ,',', 'J( ~} ,:; r ':,i(,)'I.:.\'::.t' '~~~;.~:;.~ .. ('" '""r:"::. ~:J ~. 'C" ~~:~} / ) ~)fl:' t -,- -'; 

Some states do not allow the exclusion of implied warranties or the limitation or exclusion of liability for 
incidental or consequential damages, so the above limitations and exclusion may not apply to you. This warranty 
gives you specific legal rights, and you may also have othe:r;"rights which vary from state to state. 

~J' . : 1_ 

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not 
furnished by Hewlett-Packard. 

This document contains proprietary infonnation which is protected by copyright. All rights reserved. No part of 
this document may be photocopied, reproduced or translated to another language without the prior written 
consent of Hewlett-Pac~ Company. 

. 'f};' ? ' 

Copyright© 1991 by HEWLETT-PACKARD COMPANY 

Product Development 
Application Support Division 
100 Mayfield Avenue 
Mountain View, CA 94043 U.S.A. 



© Copyright 1990, 1991 Open Software Foundation, Inc. All Rights Reserved. 

This documentation or any other copies thereof may not be riovid~dt bthetWite nUlde avattable to ahy~~er~n: ~'No\'titl6\'t 
to and ownership of the documentation is hereby transferred. 

The information in this documentation is for training purposes and is'>~~bJ~H (fgfiilii~e :~ithb~t nbti6e aIid-'Sh6iirdfHlf~ll 
construed as a commitment by Open Software Foundation, Inc., or its third-pJ.lftry ~~ppliers. 

Open Softw.are Foundation, Inc. ~d i~s thifd.-party s~pplie:s, as~~~e ~orespo~~~lt~\!or't1(e"use rin~~ip'\~}~~,,~~:-'arifbflt~~; 
documentation. OSF documentatIon IS provIded "as IS" WIthOut warranty pr any.k~p, 'andJt~F ~~rtSSJY,;df~~IfWP.s :~1; 
implied warranties, including but not limited to the implied warranties of rilerchartAlbjJity ~d~fi~n~sJQi',,a,Rarticulat,.puip~,e: 

-' . , ,~ 

All rights reserved. 

No part of this documentation may be photocopied, reproouced, or translated into another language without the prior written 
consent of Open Software Foundation, Inc.' -', '>' '", 

Open Software Foundation is a trademark of The Open SoftwareFoiindatioIi;~IncJ1 

OSF is a trademark of Open Software Foundation, Inc. 

OSF/l is a trademark of Open Software Foundation, Inc. 

AIX is a trademark of International Business Machines Corporation. 

AT&T is a registered trademark. of American Telephone & Telegraph Company in the U.S. and other countries. 

Encore is a trademark of Encore Computer Corporation. 

Ethernet is a registered trademark of the Xerox Corpcration. 

Mach is a trademark of Carnegie Mellon University. 

Multimax is a trademark of Encore Computer Corpcration. 

NFS is a registered trademark of Sun Microsystems, Inc. 

POSIX is a trademark of the Institute of El~ctronical and Electronics Engineers. 

S~ is a registered trademark of Sun Microsystems, Inc. 

X/Open is a trademark of the X/Open Company Ltd. in the United Kingdom and other countries. 

UNIX is a registered trademark of UNIX System Laboratories in the United States and other countries. 



iv 



Contents 

Overview ...... ~ ..................................................................... . 
Course Description ................................................................. . 
Prerequisites ....................................................................... . 
Audience ......................................................................... . 
Course Goals ...................................................................... . 
Exercises ......................................................................... . 
Agenda ........................................................... ~ ............... . 
Reconunended Readings ............................................................. . 
Slide Conventions .................................................................. . 

Module 1 - Intn>duction .............................................................. . 
1-1. What is OSF/l? ........................••...........••....•...••..........•..... 
1-2. What is OSFI I? ............................................................... . 
1-3. What is OSF/l? .....................................•.....•...............•.... 
1-4. Organization of the OSF/l Kernel ................................................ . 
1-5. Organization of the OSF/l Kernel ................................................ . 
1-6. TIlreads and-Parallelism ........................................................ . 
1-7. TIlreads and Parallelism ........................................................ . 
1-8. TIlreads and Parallelism ........................................................ . 
1-9. TIlreads and Parallelism ........................................................ . 
1-10. Introduction to Mach 
1-11. Introduction to Mach 
1-12. Introduction to Mach 
1-13. Introduction to Mach 
1-14. Introduction to Mach 
1-15. Introduction to Mach 
1-16. Introduction to Mach 
1-17. Introduction to Mach 
1-18. The Extensible Kernel 
1-19. The Extensible Kernel 
1-20. The Extensible Kernel 
1-21. The Extensible Kernel 
1-22. The Extensible Kernel 

.... ., ..................................................... . 

Exercises: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

v 

1 
1 
1 
1 
2 
2 
2 
3 
4 

1-1 
1-2 
1-6 
1-8 

1-12 
1-14 
1-18 
1-20 
1-22 
1-24 
1-26 
1-30 
1-32 
1-34 
1-38 
1-42 
1-44 
1-46 
1-48 
1-50 
1-52 
1-54 
1-56 
1-58 



M6dule 2 - The Process Abstraction .................................................... . 
2-1. The Big Picture .................. i ••••••••••••••••••••••••••••••••••••••••••••• 

:"2-2. Processes ................. .; ....•.............................................. 
'2-3. Processes ..................... .; ............................................... . 

,:; :·2' '.:.4. ' n..oce ses ri' S ••••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••• 

n '::2-5. Processes ................ ~ .... 0; : ••••••••••••••••••••••••••••••••••••••••••••••• 

2-6. Processes .. ~ ............. ~ . .; •.... ; ............................................. . 
;:,: '2-7. System Calls in OSFI I ...................... ' ................................... . 

2...;.g. System Calls' in OSF/l ......................................................... . 
2-9. System Calls in OSF/l ......................................................... . 
, 2-1 O~ 'System Calls in OSF/l •......................................................... 

. f-11. "System Calls in OSF/l ......................................................... . 
7-12. Synchronization and Thread Management .......................................... . 
2;-13. 'Synchronization and Thread Management .......................................... . 

<' ,~':'14. Synchronization and Thread Management .......................................... . 
~: : 2.i-15. Synchronization and Thread Management .......................................... . 
, .2.-16. Synchronization and Thread Management .......................................... . 

. ~-17. SynchroniZation and Thread Management .......................................... . 
2.-18. 'Synchronization and Thread Management .......... ' ................................ . 
'~2-19. Synchronization and Thread Management .......................................... . 
:~2:"20. Synchronization and Thread Management .......................................... . 
2-21. Synchronization and Thread Management .......................................... . 
2-22. Synchronization and Thread Management ........... : .............................. . 
2-23. Synchronization and Thread Management .......................................... . 
2-24. Synchronization and Thread Management ...................................... ' .... . 
2-25. Synchronization and Thread Management .......................................... . 
2-26. Synchronization and Thread Management .......................................... . 
2-27. Synchronization and Thread Management .......................................... . 
2-28. Synchronization and Thread Management .......................................... . 
2-29. Synchronization and Thread Management .......................................... . 
2-30. Synchronization and Thread Management .......................................... . 
2-31. Synchronization and Thread Management .......................................... . 
2-32. Signals and Exception Handling .................................................. . 
2-33. Signals and Exception Handling .................................................. . 
2-34. Signals and Exception Handling .................................................. . 
2-35. Signals and Exception Handling .................................................. . 
2-36. Signals and Exception Handling .................................................. . 
2-37. Signals and Exception Handling .................................................. . 
2-38. TIlreads ........................... '" ........................................ . 
2-39. TIlreads .................. ' ................. ' .................................. . 
2-40. TIlreads .................................... '.' .................................. . 
2-41. TIlreads ...................................................................... . 
2-42. Scheduling ................................ ' ................................... . 
2-43. Scheduling ................................................................... . 
2-44. Scheduling ................................ '.' ................................. . 

vi 

2-1 
2-4 
2-6 
2-8 

2-10 
2-14 
2-16 
2-18 
2-20 
2-22 
2-24 
2-28 
2-30 
2-32 
2-34 
2-36 
2-40 
2-42 
2-44 
2-46 
2-48 
2-50 
2-52 
2-56 
2-58 
2-62 
2-66 
2-70 
2-74 
2-78 
2-80 
2-82 
2-84 
2-86 
2-88 
2-90 
2-92 
2-94 
2-98 

2-100 
2-102 
2-104 
2-106 
2-108 
2-112 



2-45. Scheduling ............................................ ~: .. \ ........... '.· .... '.,f. "., .. ,.. .. ;' ,2?:11~.~f1. 
2-46. Scheduling ......................................................... . ".'~ ' ..•.. :; . /'~'.:.. ~-:118 

2-47. Scheduling ........................................ 0,',' ••••••••••••• ' .• /~ ..• '. ,': •• ,.:.: •• 2-122 
2-48. Scheduling ....................................... ~ ........................ ,.' ..... .. 2-1-24 
2-49. Scheduling ................................... ~ ... ~ ................... ::~ ;;.~':"""'':'" 2.~126 

2-50. Scheduling ......................................... ~ ! ••••••••••••••• ' .... !~ .:" ~. "f.' •• 2-J-30 
2-51. Thread Pools . ........................................ ~ ............... '.' .': . ... ~" .. 2-:132 
2-52. Zoned Memory Allocation .. .......................................... .. -9' ••••••••• 2:134 
Exercises: ....... ................................................ '~ .. ' ..... ~:~'.!' • ...,........ ..... •• ~::,136 

Module 3 - Messages and Ports .............................. ~ ... : ... ..... ... '.' .. , .. : t . '/' . ", .. , ~-1 
3-1. The Big Picture . ....................................... : . : ....... ',' '.' .' ... ":.'~:., ~':. : \.: "'3-2 
3-2. Messages ............................................... ~ . : '.' .. ,.,:: .. ,.'c~:;:.~~:;~'>~"' .. ,:'-~-4 
3-3. Messages .................................................... ~ ...... ', .. : ....... ; .0- 3-6 

_ --".~" )' ~~~ .. r:r~:.f '.' ' ~-r /. "~.'.' 

3-4. Ports ................................................... '0' ............. ~ • ~'. : . • "'.. 3-10 
3-5. Ports ................................................... .... ~ .... ...: .. ' ..... ': ".·":i' ', .. : ,.~. ~.~. '. 3~12 
3-6. Ports ....................................................... ' . '.' ...... '. ~ ' .. ',,' .. "-.' . "- 3'': 14 
3-7. Ports ..................................................... '.' 0 • •• '.' •••••••• ~" •• ": 3:16 
3-8. Ports ................................................ '~::.' ... :':'.~ ... ~ .....• :':'. ':.. '3'.;;18 
3-9. Ports ................................................... ~ ......... .. i., .... ,' •• ~~:~)'. ~::':" '3'~20 
3-10. Ports ................................................................. . "~.: .. ~~ . . r:: '::'3r~22 
3-11. Ports ................................................................ ~ .:: .. ~- .~? .('!:~~ ~24 
3-12. Ports ........................................................................ 3-26 
3-13. Ports ........................................................................ 3-28 
3-14. Flow of Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 
3-15. Flow of Control. . .... .. . .. . . . . . . . . . . .. . . ... .. . .. . . . ... . . . .. .. .. . . . . . . .... . .. .. . 3-32 
Exercises: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34 

Module 4 - Virtual Memory ........................ '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
4-1. The Big Picture ................ ' . .......................................... ~ . . . .. 4-2 
4-2. Lazy Evaluation ......... ~ . . . .. . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
4-3. VM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 
4-4. VM Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
4-5. VM Components ................. . '. . ... . ... .. .. .... .. . . . . . ..... . .. . .. . ... . . . ... 4-12 
4-6. VM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 
4-7. VM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 
4-8. VM Components. . ... ... .. . . . . . ... . . . .. . . .. . . . . . .. . ... . . . . . . .. . .. . . . . . . ... . . . ... 4-20 
4-9. VM Components..... ... .... . . ............. .... ......... ..... ..... ....... ... ... 4-24 
4-10. VM Components. . .. . .. . .. . . . . .... . . ... . . . . . ........ .. .. . .. .. . . . . . . . . . ... .. . . .. 4-28 
4-11. VM Components ........... . '. . . . . . . . .. . . .. . . . . . .... . .. . . . . . .. . .. . .. . . . ... . . . . .. 4-30 
4-12. VM Components ................ '.' ... ',' ............. '.' . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 
4-13. VM Components .................. 0 •••.••••••••••••• '.' • • • • • • • • • • • • • • • • • • • • • • • • • • 4-34 
4-14. VM Components .............. ...................... '.' . . . . .. .. .. . . . . . . . ... . .. .. . 4-36 
4-15. Memory Objects .................. " ',' ........... ',' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40 
4-16. Memory Objects. . .. . . . . .. . . . . ... ... .. . . . .. . . .. .. .. .. . . . . . . .. . . . . . . . . . ... . . . . . . 4-44 
4-17. Memory Objects ............. ',' ... " . ',' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48 

vii 



,; "4--18. Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-50 
~ 4--19. Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-54 

4--20. Memory Objects ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-56 
, .4--21. Memory Objects .......... '. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58 
: ... "4--22. Memory Objects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62 

4--23. Memory Objects .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-64 
'4--24. Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-66 
4--25. Memory Objects. . . ... . ... . .. . . . . . . . .. . . . . . . . . . .. .. . . . . . . . . .. . . . .. . . . . .. . . . . . .. 4-68 
4--26. Memory Objects ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-70 
4--27. Memory Objects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-72 
4--28. Memory Objects . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-76 
4--29. Copying and Sharing ........................................................... 4-78 
'4--30. Copying and Sharing ........................................................... 4-80 
4--31. Copying and Sharing ........................................................... 4-82 
4--32. Copying and Sharing ........................................................... 4-84 

. 4--33. Copying and Sharing ........................................................... 4-86 
. ~ 4-34. Copying and Sharing ........................................................... 4-88 

4-35. Copying and Sharing ........................................................... 4-90 
4-36. Copying and Sharing ........................................................... 4-92 

,. ~37. Copying and Sharing ........................................................... 4-94 
4-38. Copying and Sharing ........................................................... 4-96 
4-39. Copying and Sharing ........................................................... 4-98 
4-40. Copying and Sharing ........................................................... 4-100 
4441. Copying and Sharing ........................................................... 4-104 
4442. Copying and Sharing ........................................................... 4-108 
4443. Copying and Sharing ........................................................... 4-110 
4444. Copying and Sharing ........................................................... 4-112 
4445. Copying and Sharing ........................................................... 4-114 
4446. Copying and Sharing ........................................................... 4-116 
4447. Copying and Sharing ...................•....................................... 4-118 
4--48. Copying and Sharing ..................•........................................ 4-120 
4449. Copying and Sharing ........................................................... 4-122 
4--50. Copying and Sharing ...•....................................................... 4-124 
4--51. The PIIlap M<>Clule . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-126 
4--52. The PIIlap M<>Clule . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-128 
4--53 .. The PIIlap M<>Clule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . .. 4-130 
4--54. The PIllap M<>Clule . . . . . . . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . .. 4-132 
4--55. The PIIlap M<>Clule . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-134 
4--56. The PIllap M<>Clule . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-136 
4--57. The PIllap M<>Clule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-138 
4--58. The PIllap M<>Clule . . . . . . . . . . . . . . . . . . . . . • . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-140 
4--59. The PIllap M<>Clule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-144 
Exercises: . . . . . . . . . . . . . . .. ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-146 

viii 



Module 5 -File Systems ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,-1 
5-1. The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 
5-2. Representing an Open File ............. ',' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 
5-3. Representing an Open File ....................................................... 5-8 
5-4. Representing an Open File.. . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . ... . . . . . . 5-12 
5-5. Representing an Open File.. . . . . . . . . . . .. . . . . . . . . . .. . . .. . .. . . . .. . . . . . . . . . ... . . . . .. 5-14 
5-6. Virtual File SysteIIlS ............................................................ 5-16 
5-7. Virtual File SysteIIlS ............................................................ 5-18 
5-8. VIrtual File SysteIIlS ............................................................ 5-20 
5-9. VIrtual File SysteIIlS ............................................................ 5-22 
5-10. Virtual File SysteIIlS ............................................................ 5-24 
5-11. Virtual File SysteIIlS ............................................................ 5-26 
5-12. Virtual File SysteIIlS ............................................................ 5-28 
5-13. Virtual File SysteIIlS ............................................................ 5-30 
5-14. Virtual File SysteIIlS .......................................................... '.. .5-32 
5-15. Virtual File SysteIIlS ............................................................ ' 5;;.34 
5-16. The Buffer Cache. . . . . . ... . . . . . . . . . . .. . . . . .. . . . .. . . . . . . . . . . ... . . . . . . . . ... . . . . .. 5~36 
5-17. The Buffer Cache. . . . . .. .. . . . . . . . . . . .. . . . . .. . . . .. . . . . . . . . . . .. . . . . . . . . . ... . . . . . . 5-38 
5-18. The Buffer Cache ................................................................ 5:-40 
5-19. The Buffer Cache ............................................................... 5' .. 44 
5-20. The Buffer Cache ............................................................ :.. . 5-46 
5-21. The Buffer Cache. . . . . .. .. . .. . . . . . . . .. . . . . .. . . . .. . . . .. . . . . . .. . . . . . . . . . ... . . . . . . 5-48 
5-22. The Buffer Cache. .. . . . . .. . .. . . . . . . . .. . . .. . . . . . .. . . . . . . . . . . ... . . . . . . . . ... . . . . .. 5-50 
5-23. The Buffer Cache .............................................................. 5-52 
5-24. The Buffer Cache .............................................................. 5-54 
5-25. The Buffer Cache. . . .. .. .. ... . . . .. . . .. . . . . .. . . . .. . . .. . . . .. . .. . .. . . . . . . ... . . . . . . 5-56 
5-26. The Buffer Cache .............................................................. 5-58 
5-27. The Buffer Cache........... .. . ... ... ...... . .... ..... ... .. . ......... ......... .... 5-60 
5-28. The Buffer Cache ............................................................... 5-62 
5-29. The Buffer Cache .............................................................. 5-64 
5-30. The Buffer Cache .............................................................. 5-66 
5-31. The Buffer Cache. . .. . . ... . . . . . . .. . . .. . . . . .. . . . ... . . .. . .. . . .... . . . . . . . ... . . . . .. 5-68 
5-32. Directory Pam Searching ........................................................ 5-72 
5-33. Directory Pam Searching ........................................................ 5-74 
5-34. Directory Pam Searching ......................................................... 5-76 
5-35. Directory Pam Searching ........................................................ 5-78 
5-36. Directory Pam Searching ........................................................ 5-80 
5-37. Directory Pam Searching ........................................................ 5-82 
5-38. Directory Pam Searching ........................................................ 5-86 
5-39. Directory Pam Searching ........................................................ 5-88 
5-40. Directory Pam Searching ........................................................ 5-92 
5-41. S5 File System ................................................................ 5-94 
5-42. S5 File System ................................................................ 5-96 
5-43. S5 File System. . . . . . . . . .. ... .. . . . . . . . . .. . .. . . . .. . . ... . . . .. .. . .. .. . . . . .. . . ... . . . 5-98 
5-44. S5 File System ................................................................ 5-102 

ix 



5-45. S5 File System ................................................................ 5-104 
5-46. S5 File System ..........................•..................................... 5-1 ()6 
5--47. S5 File System ................................................................ 5-110 
5-48. S5 File System ................................................................ 5-112 
5--49. UPS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-114 
5-50. UPS File System ............................................................... 5-116 
5-51. UPS File System ............................................................... 5-120 
5-52. UPS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-122 
5-53. UPS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-126 
5-54. UPS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-128 
5-55. UPS File System ............................................................... 5-130 
5-56. UPS File Systenl ............................................................... 5-132 
5-57. UPS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-136 
5-58. UPS File System ............................................................... 5-138 
5-59. UPS File System ............................................................... 5-140 
5-60. UPS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-144 
5--61. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-148 
5--62. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-150 
5-63. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-154 
5-64. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-158 
5--65. NFS File System ............................................................... 5-162 
5--66. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-164 
5--67. NFS File System ............................................................... 5-166 
5--68. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-168 
5-69. NFS File System ............................................................... 5-170 
5-70. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-172 
5-71. NFS File System ............................................................... 5-174 
5-72. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-176 
5-73. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-180 
5-74. NFS File System ............................................................... 5-184 
5-75. NFS File System ............................................................... 5-188 
5-76. NFS File System ............................................................... 5-190 
5-77. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-194 
5-78. NFS File System ........................................ " ....................... 5-196 
5-79. NFS File System ............................................................... 5-198 
5--80. NFS File System ...................................... ' . . . . . . . . . . . . . . . . . . . . . . . .. 5-202 
5-81. NFS File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-204 
Exercises: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-2()6 

Module 6 - Device Drivers and Terminal VO .............................................. 6-1 
6-1. The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
6-2. Special Files .................................................................. 6-4 
6-3. Special Files .................................................................. 6-6 
6--4. Special Files .................................................................. 6-8 
6-5. Dynmnic Configuration ......................................................... 6-12 

x 



~. DynaIDic Configuration ........................................................ . 
6-7. DynaIDic Configuration ........................................................ . 
6-8. Device Drivers ............................................................... . 
6-9. Device Drivers ............................................................... . 
6-10. Device Drivers ............................................................... . 
6-11. Device Drivers ............................................................... . 
6-12. Device Drivers 
6-13. Device Drivers 
6-14. Device Drivers ............................................................... . 
6-15. Tellllinal 110 ................................................................. . 
6-16. Tellllinal 110 ................................................................. . 
6-17. Tellllinal 110 ................................................................. . 
6-18. Tellllinal 110 ................................................................. . 
6-19. Tellllinal 110 ................................................................. . 
6-20. Tellllinal 110 ................................................................. . 
6-21. Tellllinal 110 ................................................................. . 
6-22. Tellllinal 110 ................................................................. . 
6-23. Tellllinal 110 ................................................................. . 
Exercises: ......................................................................... . 

Module 7 - Streams .................................................................. . 
7-1. The Big Picture ............................................................... . 
7-2. StreaIllS Concepts ............................................................. . 
7-3. StreaIllS Concepts ............................................................. . 
7-4. StreaIllS Concepts ............................................................. . 
7-5. StreaIllS Concepts ............................................................. . 
7--6. StreaIllS Concepts ............................................................. . 
7-7. StreaIllS Concepts ............................................................. . 
7-8. StreaIllS Concepts ............................................................. . 
7-9. StrearIlS Concepts ............................................................. . 
7-10. StreaIllS Concepts ............................................................. . 
7-11. StrearIlS Concepts ............................................................. . 
7-12. Message Flow .................................. ~ ............................. . 
7-13. Message Flow ................................................................ . 
7-14. Message Flow ................................................................ . 
7-15. Message Flow ................................................................ . 
7-16. Message Flow ................................................................ . 
7-17. Message Flow ................................................................ . 
7-18. Message Flow ................................................................ . 
7-19. Implementation of Streams ...................................................... . 
7-20. IlIlplementation of Streams ...................................................... . 
7-21. Implementation of Streams ...................................................... . 
7-22. IlIlplementation of Streams ...................................................... . 
7-23. IIIlplementation of Streams ...................................................... . 
7-24. Implementation of Streams ...................................................... . 

xi 

6-14 
6-18 
6-20 
6-22 
6-26 
6-30 
6-34 
6-36 
6-40 
6-44 
6-46 
6-48 
6-52 
6-54 
6-56 
6-58 
6-62 
6-64 
6-68 

7-1 
7-2 
7-4 
7-6 
7-8 

7-10 
7-12 
7-14 
7-16 
7-18 
7-20 
7-22 
7-24 
7-28 
7-32 
7-34 
7-36 
7-38 
7-40 
7-44 
7-46 
7-48 
7-50 
7-54 
7-56 



~ 
7-25. Parallelization ................................................................ . 7-60 
7-26. Parallelization ................................................................ . 7-64 
7-27. Parallelization .................................................... ~ ........... . 7-66 
7-28. Parallelization ................................................................ . 7-68 
7-29. Parallelization ................................................................ . 7-70 
Exercises: ......................................................................... . 7-74 

Module S--S()Ckets .................................................................... . 8-1 
8-1. The Big Picture ............................................................... . 8-2 
8-2. Sockets ..................................................................... . 8-4 
8-3. Sockets ..................................................................... . 8-6 
8-4. Sockets ..................................................................... . 8-8 
8-5. Mbufs ...................................................................... . 8-10 
8-6. Mbufs ...................................................................... . 8-12 
8-7. Mbufs ...................................................................... . 8-14 
8-8. Mbufs ...................................................................... . 8-16 
8-9~ Mbufs ...................................................................... . 8-18 
8-10. Mbufs ...................................................................... . 8-20 
8-11. Mbufs ...................................................................... . 8-22 
8-12. Mbufs ...................................................................... . 8-26 
8-13. IIllplementation ............................................................... . 8-28 
8-14. IIllplementation ............................................................... . 8-32 
8-15. IIllplementation ............................................................... . 8-36 
8-16. IIllplementation ............................ ' ................................... . 8-38 
8-17. Sockets and Streams ........................................................... . 8-40 
8-18. Sockets and Streams ........................................................... . 8-42 
Exercises: ......................................................................... . 8-46 

Module 9 - wgical Volume Manager .................................................... . 9-1 
9-1. The Big Picture ............................................................... . 9-2 
9-2. Role of tile LVM .............................................................. . 9-4 
9-3. Role of the LVM .............................................................. . 9-6 
9-4. Role of the LVM .............................................................. . 9-10 
9-5. Role of tile LVM .............................................................. . 9-12 
9-6. Data Structures ............................................................... . 9-14 
9-7. Data Structures ............................................................... . 9-18 
9-8. Data Structures ............................................................... . 9-20 
9-9. Data Structures ............................................................... . 9-22 
9-10. Data Structures ............................................................... . 9-26 
9-11. Data Structures ............................................................... . 9-28 
9-12. Data Structures ............................................................... . 9-30 
9-13. COIllponents and Flow of Control ................................................. . 9-32 
9-14. COIIlponents and Flow of Control ................................................. . 9-36 
9-15. CoIllponents and Flow of Control ................................................. . 9-40 
9-16. CoIllponents and Flow of Control ................................................. . 9-44 
9-17. CoIllponents and Flow of Control ................................................. . 9-48 
Exercises: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-52 

xii 



Module 10 - wader .................................................................. . 
10-1. The Big Picture ............................................................... . 
10-2. Role of me wader ............................................................ . 
10-3. Role of me wader ............................................................ . 
10-4. Role of me wader ............................................................ . 
10-5. Symbol Resolution ............................................................ . 
10-6. Symbol Resolution ............................................................ . 
10-7. Symbol Resolution ............................................................ . 
10-8. Symbol Resolution ............................................................ . 
10-9. Data Structures and Flow of Control .............................................. . 
10-10. Data Structures and Flow of Control ............................................. . 
10-11. The Run-time Image .......................................................... . 
10-12. The Run-time Image .......................................................... . 
10-13. Dynamic Loading ............................................................ . 
10-14. Dynamic Loading ............................................................ . 
Exercises: ......................................................................... . 

Module 11 - Security ................................................................. . 
11-1. The Big Picture ............................................................... . 
11-2. Security Concerns ............................................................. . 
11-3. Security Concerns ............................................................. . 
11--4. Security Concerns ............................................................. . 
11-5. Security Concerns ............................................................. . 
11-6. Auditing .................................................................... . 
11-7. Auditing .................................................................... . 
11-8. Access Control ............................................................... . 
11-9. Access Control ............................................................... . 
11-10.Access Control 
11-11. Access Control ............................................................... . 
11-12.Access Control ............................................................... . 
1 I-I 3. Access Control ............................................................... . 
11-14.Autllorizations and Privileges .................................................... . 
11-15.Autllorizations and Privileges .................................................... . 
11-16.Autllorizations and Privileges .................................................... . 
11-17.Autllorizations and Privileges .................................................... . 
11-18.Autllorizations and Privileges .................................................... . 
11-19.Autllorizations and Privileges .................................................... . 
11-20.Autllorizations and Privileges .................................................... . 
11-21.Autllorizations and Privileges .................................................... . 
11-22.Living wim Security ........................................................... . 
Exercises: ......................................................................... . 

xiii 

10-1 
10-2 
10-4 
10-6 
10-8 

10-12 
10-14 
10-16 
10-20 
10-22 
10-26 
10-30 
10-34 
10-36 
10-38 
10-40 

11-1 
11-2 
11-4 
11-6 

11-10 
11-12 
11-14 
11-16 
11-18 
11-20 
11-22 
11-26 
11-28 
11-30 
11-32 
11-34 
11-38 
11-42 
11-44 
11-46 
11-48 
11-50 
11-52 
11-54 



Appendix - Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-I 

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0-1 

Bibliography ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 

Index ............................................................................. Index-l 

xiv 



Overview 

Course Description 

aSF/l Internals is a four-day course designed to introduce the fundamentals of the aSF/l operating system. The 
course does not contain source-code level material. It offers students a deep technical introduction to the aSF/l 
kernel. 

Prerequisites 

The aSF/l Internals course is not a beginning operating systems course. It assumes familiarity with operational 
principals of the following: 

• virtual memory 

• one or more of the following file systems: 

UPS 

NFS 

System V 

• UNIX execution environment 

Familiarity with the operational principals of the following is recommended: 

• sockets 

• streams 

• system-level C programming 

Audience 

The intended course audience is made up of system programmers, system support personnel, application 
engineers, system administrators, and customer support staff. The course assumes that the student is familiar with 
UNIX and C programming at the system call level. No knowledge of Mach is assumed. 

1 



Overview 

Course Goals 

After completing this course the student should be able to demonstrate an understanding of OSP/ 1 Internals by 
describing: 

• how OSP/1 enhances traditional UNIX 

• how Mach is utilized in OSP/1 

• how OSP/1 exploits parallel architectures 

• the security features of OSP/1 

Exercises 

At the end of each module are two sets of exercises. The fIrst set tests the student's perfonnance with respect to 
each of the major objectives. The second set tests for a deeper understanding of the material: these exercises may 
require the student to synthesize the knowledge gained from the course, and, in some cases, require that the 
student delve into other materials. These questions should be considered optional. They may be used by the 
student as a means for studying the material at a level deeper than is presented in this course. 

The answers to the exercises are given in the appendix at the end of the book. The answers to the fIrSt set of 
exercises consists merely of a reference to the topics in the book where the answer can be found. The answers to 
the second set of exercises is sketched out in the appendix; they are not fully developed. 

Agenda 

The following schedule will vary depending on the number of questions raised or the level of interest shown by 
the students. . 

Day 1: Module 1 through Module 3 

Day 2: Module 4 through Module 5 

Day 3: Module 6 though Module 8 

Day 4: Module 9 through Module 11 

2 



Overview 

Recommended Readings 

A discussion of most of the topics covered in this course can be found in Open Software Foundation, 1990a (this 
and other bibliographic citations appear in the bibiography). Two recommended books on UNIX are Bach, 1986 
and Leffler, 1989 (the latter covers Berkeley UNIX and is thus the most relevant). A description of the 
programmer's interface to OSFIl can be found in Open Software Foundation 1989. 

3 



Overview 

Slide Conventions 

I ] 
helvetica font 

pon 

task 

task has send rights 

task has receive rights 

a task with an unspecified number of additional 
vm _map _ entrys. 

thread 

disk 

encloses an indirect reference to a routine 

system call 

4 



Overview 

indicates the flow of control 

boxes with square comers contain all of the incore 
pages 

boxes with rounded comers contain all of the pages 
assocated with the vm _object 

bug 

5 



Overview 

6 



Module 1 - Introduction 

Module Contents 

1. What is OSP/l? ....................................................................... 1-2 
The components of the OSP/I package 
What the course covers 
Where the technology originated 
Why this technology was chosen 

2. Organization of the OSP/I Kernel ......................................................... 1-7 

3. Threads and Parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-10 
Concurrency vs. parallelism 
Types of hardware for OSP/I 

4. Introduction to Mach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-14 
Pundamental abstractions 
Basic system calls 

5. The Extensible Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-25 
Network shared memory 

Module Objectives 

In order to demonstrate an awareness of the components of OSP/l, including its Mach functionality, the student 
should be able to: 

• list the components of OS PI 1 

.• describe the functionality that OSP/I supplies that is supplied neither by traditional UNIX nor Mach 

• explain how Mach and UNIX coexist within the OSP/I kernel 

• list the five fundamental abstractions of Mach and briefly describe each 

• give an example of how the OSP/I kernel can be easily extended to provide functionality not found in the 
traditional UNIX kernel 

1-1 



Module 1 - Background and Introduction 

1-1. What is OSF/l? 

What is OSF/l? 

• Parallelized 4.4BSD UNIX 

• Mach kernel 

• Streams-

• Extensible loader 

• Dynamic configurability 

• B I-compliant 

.H2596 1-1. © 1991 Hewlett-PIckard 

What is OSF/l? 

OSF!I's UNIX technology is derived from the latest version of Berkeley UNIX--4.3renoBSD (the test version of 
4. 4BSD). This code has been modified by Encore so that it can efficiently exploit multiprocessors: all user and 
kernel processing (with minor exceptions) can take place in parallel on multiple processors. OSF!1 supports all 
the major UNIX file systems: the S5 file system (derived from that of AT&T), the UPS fue system (derived from 
4.3renoBSD), and the NFS fue system (derived from a totally new implementation done at the University of 
Guelph). The latter two fue systems have been parallelized. 

Mach is intended to be a foundation for further operating-system development. It is a simple, extensible kernel 
that can be used to construct the sort of functionality expected of normal operating systems, such as processes, fue 
systems, etc. Unlike many operating systems, Mach was designed from the ground up for parallel and distributed 
environments. 

1-2 



Module 1 - Background and Introduction 

Mach is relatively easy to port to many different architectures (there are Mach implementations on most of today's 
major architectures). 

OSFIl's logical volume manager (derived from IBM's AIX operating system) allows file systems to span 
volumes, thus eliminating a major restriction on their use, as well as providing additional reliability through disk 
mirroring when desired. The streams implementation (derived from technology supplied by the Mentat 
Corporation) is compatible with that of SVR3, but is transparently parallelized: existing streams code can be 
made to run in parallel without modification. The extensible loader allows multiple load formats, shared libraries, 
and run-time loading, as well as other useful capabilities. The loader lets the user load modules into the kernel 
dynamically. Thus device drivers, streams modules, file systems, and protocols can be added to a running system. 

OSFIl can be compiled to be either C2- or B I-compliant, depending on the user's security requirements (this 
technology is derived from that supplied by Secure Ware). 

1-3 



Module 1 - Background and Introduction 

1-2. What is OSF/l? 

UNIX 

• Compliance 

- POSIX 1003.1 ~ 

- SVID Issue 2 (goal) -~ 
- XPG Issue 3 

• 4.4BSD framework ~~ 

~",. ~'S 
- processes "l~~ 1> ~~) 

~. ('~ 
- file systems ~\\ 

- tenninals ~ 
- sockets 

.H2S96 1-2. 2 © 1991 Hewlett-Packard 

UNIX 

The UNIX portion of OSF/l includes both traditional UNIX functionality and new functionality implemented 
within the UNIX framework. OSF/l is fully compliant with all of the standards given on the slide; the fmal 
arbiter in the face of conflicting specifications is the AES. Compliances are described in detail in the Open 
Software Foundation, 1989. 

The base technology for UNIX is 4.4BSD. OSF changed the code in a number of places, primarily for integration 
with Mach and for parallelization. A very good description of Berkeley UNIX can be found in Leffler, 1989. 
Required System-5 functionality that is not in BSD has been added. In particular, OSF/I includes an 
SVR3-compatible streams package, which allows transparent parallelization of streams modules. 

1-4 



Module 1 - Background and Introduction 

1-3. What is OSF/l? 

Mach 

UNIX support 

• tasks and threads 

• extended UNIX processes 

• scheduling 

• multiprocessing primitives 

• virtual memory 

Extensibility 

• microkemel architecture 

.H2S96 1-3. © 1991 Hewlett-Packard 

Mach 

The primary function of Mach in OSF!! is to support UNIX. UNIX processes are built from the Mach notions of 
tasks and threads. Unlike traditional single-threaded UNIX processes, OSF!! processes can be multithreaded. 
Mach is responsible for scheduling the various threads. OSF!! allows users to select from a number (currently 
two) of scheduling policies and, on multiprocessors, it allows user control of processor allocation. 

Traditional UNIX event-oriented synchronization has been extended and made safer in Mach; Mach supplies 
varieties of interprocessor locks to support multiprocessor synchronization. 

Mach's virtual memory system completely replaces that of UNIX. It provides efficient and portable support for 
all of UNIX's VM needs as well as extensibility for future requirements. 

1-5 



Module 1 - Background and Introduction 

A key point to remember is that Mach fosters continued improvements. In particular, as part of the microkernel 
project, all non-Mach portions of the system will be moved from the kernel to various user-level tasks, to produce 
a very simple, pure Mach kernel in which user tasks provide many of the operating-system functions. 

An example of the easy extensibility obtained with Mach is the network memory server (discussed soon), which 
provides the abstraction of shared memory among threads running on different processes. 

1-6 



Module 1 - Background and Introduction 

1-4. Organization of the OSF/l Kernel 

OSF/l 

1::::::::::::::::1 Mach 

El UNIX 
.H2S96 1-4. 4 © 1991 Hewlett-Packard 

OSF/l 

1-7 



Module 1 - Background and Introduction 

1-5. Organization of the OSF/l Kernel 

UNIX with Mach 

• UNIX in the kernel 

• UNIX in a single task 

,~ 
• UNIX as a set of tasks Q. ~~ 

"~c!f!\ 

.H2S96 1-5_ © 1991 Hewlen-Pacbrd 

UNIX with Mach 

The aSF/l implementation of UNIX coexists with Mach in the kernel, allowing the Mach-based technology to 
provide both performance and functional enhancements to standard UNIX technology. Unlike earlier versions of 
UNIX with Mach, the aSF/l version is, except for a few infrequently executed subsystems, fully parallelized. 

Current research at CMU, aSF, and elsewhere is directed towards providing UNIX functionality efficiently with 
user-level tasks supported by a "pure" Mach kernel. The fIrst approach provided the UNIX functionality in a 
single task. This arrangement provided a pageable, interruptible, multithreaded UNIX, but it lacked much support 
for extensibility. Work at CMU and aSF is proceeding on a more extensible approach, the microkernel 
architecture, in which a set of tasks provides UNIX functionality. By breaking up UNIX along functional 
boundaries, various components can be replaced or UNIX components can be used to build other systems. 

If this approach is successful, then not only UNIX but also other operating system interfaces can be implemented 
on top of the microkernel. By breaking up UNIX along functional boundaries, certain UNIX modules can be 

1-8 



Module 1 - Background and Introduction 

reused to implement other interfaces, and the UNIX interface can be improved or modified by substituting for 
certain modules. . 

For further discussion see Golub, 1990. 

1-9 



Module 1 - Background and Introduction 

1-6. Threads and Parallelism 

Concurrency 

processor scheduler threads 

J,W 

.... -----J,W 

J,W 

.H2S961-6. 6 © 1991 Hewlett·Plckard 

Concurrency 

Concurrency means that multiple threads are in progress at one time; on a single processor, their execution might 
be multiplexed. 

1-10 



Module 1 - Background and Introduction 

1-7. Threads and Parallelism 

Parallelism 

processors threads 

.H2S96 1-7. 7 © 1991 Hewlett-Packard 

Parallelism 

Parallelism means that multiple threads are executing simultaneously: parallelism requires multiple processors. 
The architecture assumed in OSF/l is a shared-memory processor, i.e., all processors have equal access to 

memory. ,LJr . If ~~: PO S 't..~l~~, 
{Uu!!M V 



Module 1 - Background and Introduction 

1-8. Threads and Parallelism 

Multithreaded Process: Server 

.H2S961-8. 

Multithreaded Process: Server 

___ ----1 client 1 1 
-----1 client 21 

I client 31 

© 1991 Hewlett-Packard 

A typical example of the use of multithreaded processes in a uniprocessor environment is a server that deals with 
multiple clients concurrently. Rather than having to multiplex the clients explicitly, it can make use of the kernel's 
multiplexing of multiple threads. 

1-12 

. I 



Module 1 - Background and Introduction 

1-9. Threads and Parallelism 

Multithreaded Processes: Exploiting a 

Shared-Memory Multiprocessor 

n p 

m n 

x --

A B 

• m x p inner products to be computed 

• t processors available 

Jl2S96 1-9. 9 

p 

m 

c 

© 1991 Hewlett-PIckard 

Multithreaded Processes: Exploiting a Shared-Memory Multiprocessor 

An example of the use of a shared-memory multiprocessor is the computation of the product of two matrices. 
With a simple algorithm, this would involve computing a number of inner products. One can utilize all processors 
of shared-memory multiprocessors by creating a multithreaded process with one thread per processor. If m x p 
inner products need to be computed and we have t processors, then each thread would compute (m x p) / t inner 
products. 

1-13 



Module 1 - Background and Introduction 

1-10. Introduction to Mach 

Mach 

Fundamental abstractions 

• tasks 

• threads 

• memory objects 

.H2S96 1-10. 10 © 1991 Hewlett-Packard 

Mach 

A task is a holder of capabilities, such as address space and communication channels. These capabilities are 
represented as ports, and the kernel itself is viewed as a task. 

A thread is the usual notion of a thread of control. The equivalent of a UNIX process is one task containing a 
single thread. In Mach (and in OSF/l), however, a task may have multiple threads. Tasks may have disjoint 
address spaces or they may share memory with each other. 

Threads can communicate by exchanging messages. (Any two threads can communicate this way, although it is 
more efficient for threads in the same task to communicate using shared memory.) 

Ports have two purposes: they represent communication channels and they are object references. Unlike sockets 
in BSD, which are the endpoints of a communication channel, a port is the entire channel. An object holding a 
reference to the output end of a port is securely named by references to the input side. 

1-14 



Module 1 - Background and Introduction 

Memory objects are "things" that can be mapped into a task's address space. These things might be temporary 
storage (e.g., UNIX's BSS and stack), fIles, or objects dermed by user-provided servers. 

1-15 



Module 1 - Background and Introduction 

1-11. Introduction to Mach 

Mach Messages 

System calls: 

mS9_send(header, options, timeout) 

mS9_reeeive(header, options, timeout) , I 
mS9_rpc(header, options, send_size, rev_size, send_timeout, ,~J 

rev _ timeout),\:~l 

~ 
\\ 

. ~,""""')'\ ,:;' " 

.H2596 1-11. 11 © 1991 Hewlett-Packard 

Mach Messages 

A message is represented by a header that names the port, gives the type of the message (e.g. integer or real, or a 
port), and either contains a small amount of data or refers to a larger amount of data. 

1-16 



Module 1 - Background and Introduction 

1-12. Introduction to Mach 

Ports 

.H2S961-12 

Ports 

tasks with 
send rights 

12 © 1991 Hewlett-PIckard 

A task may have either send and receive rights to a port or just send rights. However, while only one task may 
have receive rights, any number may have send rights. Thus one task -can provide a service to multiple clients. 

Ports in aSP/l are most commonly used as object references: send rights on a port represent the name of the 
associated object 

System calls: 

• port_allocate (task , port_name): create a port, giving task both send and receive rights 

• port_deallocate(task, port_name): eliminate task's rights to the named port 

1-17 



Module 1 - Background and Introduction 

1-13. Introduction to Mach 

Tasks 

----------------. 

kernel 

r-------------------~, 

..... __ ~11o.I bootstrap pat name server I 
I. ___________________ ... J 

.H2S96 1-13. 13 © 1991 Hewlett-Pacbrd 

Tasks 

Tasks are the basic unit of protection: threads wi~~ task share all of the task's capabilities (ports) and thus are 
not protected from one another. . ,i"~D \ } 
Each task has four ports associated with it I( ~ 

1. Task kernel porr. essentially the name of the task. In order to perform a system call that affects a task, the 
calling thread must have send rights to the task kernel port of this task. Thus threads in other tasks may issue 
system calls on a task's behalf if their tasks have send rights to the target task's task kernel port. This ability 
is particularly useful for debuggers. The special call task_self returns send rights for the current task. 

2. Notify porr. the kernel sends messages through this port to notify the task of various kernel events, such as 
the destruction of ports. Each task is given receive rights on its own notify port. 

J j ~t 
.. ~ ~/ .#~ -~f :r~ 'b 
~'.~ /~ -18 ~. 

-------



Module 1 - Background and Introduction 

3. Exception port. used to implement the exception mechanism (discussed in Module 2). Each task inherits 
from its parent send rights to an exception port. 

4. Bootstrap port. used by the threads in a task to send requests (to a name server) to obtain other ports. A task 
is given send rights to a bootstrap port. This port is available in OSFIl but not used. 

System calls: 

• task_create(parent_task, inherit_memory, child_task): the OSFIl kernel does not currently export this 
call, although a pure Mach kernel would. Instead, one uses the UNIX fork system call, which creates both a 

, task and a thread within that task. 

• task_terminate(target_task): also not currently exported. 

• task_suspend(target_task): suspends all threads within a task. 

• task_resume(target_task): resumes all threads within a task. 

1-19 



Module 1 - Background and Introduction 

1-14. Introduction to Mach 

Threads 

.H2S96 1-14. 

Threads 

Threads are the basic unit of scheduling. 

Each thread has three ports associated with it: 

14 

exception 
handler 

© 1991 Hewlett-PacUrd 

1. Thread kernel port: represents the name of a thread. When a thread is· created, its task is given send rights to 
the thread's kernel port. Threads in tasks holding send rights on this port may use these rights to issue system 
calls on the target thread's behalf. A thread can discover its own kernel port by calling thread_self. 

2. Thread reply port: used for receiving initialization messages and responses from early RPC calls. When a 
thread is created, its task is given receive rights to this port. 

3. Thread exception port: part of the implementation of exception handling (described in Module 2). When a 
(--. thread is created, its task is given send ri~~ the task's exception port. 

~ ~ ~ ~!~. c~ \\ 

~ ~1 , !,~_.~J~20 
. ~~ / 



Module 1 - Background and Introduction 

Ports, like threads, exist within a task: all of a task's ports are accessible by all of the task's threads. 

System calls: 

• thread_create (parent_task , child_thread) 

• thread_terminate(target_thread) 

• thread_suspend (target_th read) 

• thread_resume(target_thread) 

1-21 



Module 1 - Background and Introduction 

1-15. Introduction to Mach 

Virtual Memory in Mach 

System calls: 

vm_allocate(target_task, address, size, anywhere) 

vm_deallocate(target_task, address, size) 

vm_read(target_task, addressf data, data_count) 

vm_write(target_task, address, data, data_count) 

vmJ)rotect(target_task, address, size, set_maximum, newJ)rotection) 

~ vnUnherit(targeUask, address, size, newjnheritance) 

.H2S96 I-IS. IS © 1991 Hewlett-Packard 

Virtual Memory in Mach 

Virtual memory is a property of the task. 

Each task has a (possibly sparse) virtual address space. 

Tasks may inherit virtual memory from their parents, either shared or copied. 

Pages are backed up by memory objects, which may be either temporary (traditional paging/swapping space) or 
permanent 

Lazy evaluation is the pervasive implementation technique. 

1-22 



Module 1 - Background and Introduction 

1-16. Introduction to Mach 

Messages Revisited 

map map 

kernel task 

.H2S96 1-16. 16 © 1991 Hewlett-Packard 

Messages Revisited 

Longer messages are fIrst mapped (copy-on-write) into the kernel's address space. When the message is received, 
it is remapped into the receiver's address space. Thus the receiver gains not only the data of the message, but new 
valid locations in its address space. These locations may be deallocated using vrn_deallocate. 

1-23 



Module 1 - Background and Introduction 

1-17. Introduction to Mach 

External Memory Object Managers 

.H2S96 1-17. 

user 
address 

space 

kernel 
memory 
objects 

backing store 

External Memory Object Managers 

17 

• The Mach kernel nonnally manages the backing store for virtual memory 

• Users may supply external memory object 11Ulnagers to perfonn this chore 

external 
memory 
object 

© 1991 Hewlett-Packu'd 

External object managers are responsible for supplying initial values for a range of virtual memory and for 
backing up virtual memory when the physical memory cache becomes full. Such managers may be used, for 
example, to map files into the address spaces of tasks, to provide shared memory in a distributed system, and to 
implement a transaction-management system. 

1-24 



Module 1 - Background and Introduction 

1-18. The Extensible Kernel 

Network Shared Memory, part 1 

site 3 

.H2S96 1-18. 18 © 1991 Hewlett-Packard 

Network Shared Memory, part 1 

This example shows how the Mach facilities of aSF/l might provide the abstraction of shared memory to threads 
running on different machines. Here, site ~ and site 2 are two different machines; the coordinator, the provider of 
the "shared memory," might be on a third machine. 

Two sites share memory by mapping it from the coordinator. A thread uses the vm_map system call to inform its 
kernel that it wishes to map a particular object into its task's address space. The kernel, in turn, forwards a 
notification to the coordinator (a memory_object_init message), telling it that yet another site is using one of its 
objects. 

Note that at this point no pages have been transferred. 

1-25 



Module 1 - Background and Introduction 

1-19. The Extensible Kernel 

Network Shared Memory, part 2 

site 3 

3: memory object 
data yrovided( read -only) 

.H2S96 1-19. 

2: memory_object_ 
data_request (read-only) 

Network Shared Memory, part 2 

19 

site 2 

© 1991 Hewlett-Packard 

A thread running on site 1 attempts to read from one of the pages in the object maintained by the coordinator. 
Since the page is not resident at its site, a page fault occurs. The local kernel handles the fault and forwards it to 
the coordinator (by sending the coordinator an memory_abject_data _request message). 

The coordinator sends a copy of the page back to the kernel on site 1 (via amemory_object_datayrovided 
message), but marks it read-only. 

The kernel then puts this page in its memory cache and allows the original thread to resume execution. 

1-26 



Module 1 - Background and Introduction 

1-20. The Extensible Kernel 

Network Shared Memory, part 3 

site 1 

.H2S96 1-20. 

Network Shared Memory, part 3 

site 3 

2: memory object 
data _request (read-only) 

20 

3: menwry object 
data yrovided( read-only) 

© 1991 Hewlett-Packard 

A thread running on site 2 attempts to read the same page that was just read on site 1. As before, the coordinator 
gives site 2 a read-only copy of the page. Thus threads on both sites effectively share this page, though at the 
moment they are only reading it. 

1-27 



Module 1 - Background and Introduction 

1-21. The Extensible Kernel 

Network Shared Memory, part 4 

5: memory object 
lock request -
(read-write) 2: memory_object_data_ 

unlock (read-write) 

.82596 1-21. 

Network Shared Memory, part 4 

site 3 

21 

4: memory_object_ 
lock_completed 

3: memory object 
lock request (flush) 

© 1991 Hewlett-Packard 

A thread on site 1 now attempts to modify the page of which both sites have a read-only copy. The local kernel 
handles the resulting protection fault by sending a request to the coordinator (a memory_object_data_unlock 
message), asking to upgrade its permissions for this page from read-only to read-write. 

The coordinator must arrange that all subsequent reads of this page by any site obtain the modified version of the 
page. To accomplish this, it sends a request to site 2 (a memory_object _lock _request message) asking it to flush 
the page from its cache. After it has done so, site 2 sends a memory_object_lock_completed message back to the 
coordinator. After the coordinator receives this message, it sends a message to site 1 (a 
memory_object _lock_request message) granting it read-write permission for the page. Thus threads on site 1 are 
now free to modify the page. 

1-28 



Module 1 - Background and Introduction 

1-22. The Extensible Kernel 

Network Shared Memory, part 5 

3: memory object 
lock request -

(read-ODIy, clean) 

site 3 

5: memory object 
lockyrovided(read-only 

4: memory object lock 
completed (read-only, clean) 

2: memory object 
data_request (read-oDIy) 

.H2S96 1-22. 22 © 1991 Hewlett-Packard 

Network Shared Memory, part 5 

If a thread on site 2 attempts to access the page, a page fault occurs, since the page is no longer resident, and a 
request (memory_object _data _request) is sent to the coordinator for a copy of the page. 

To obtain the current contents of the page, the coordinator must send a message to site 1 
(memory object lock request) asking for the latest version. To make certain that this version continues to be the - --
latest version, this message tells site 1 to turn off write pennission. 

1-29 



Module 1 - Background and Introduction 

Exercises: 

1. List the components of OSFI 1. 

2. Explain how Mach and UNIX coexist within the OSF/l kernel. 

3. Characterize the multiprocessor architectures supported by OSF/l. 

4. a. List the fundamental abstractions of Mach. 

b. What is the difference between concurrency and parallelism? 

c. Give an example of how concurrency as provided by threads simplifies the design of an application even 
on a uniprocessor. 

d. Explain how threads may be used to exploit the multiprocessor. 

e. Explain how ports may be used for both object references and interprocess communication. 

5. Can network-shared memory be implemented on other UNIX systems without kernel modifications? 

Advanced Questions: 

6. What functionality does Mach supply that Berkeley UNIX does not? 

7. What functionality does OSFI I supply that is supplied by neither Berkeley UNIX nor Mach? 

1-30 



Module 2 - The Process Abstraction 

Module Contents 

1. Processes ............................................................................ 2-4 
Extending traditional processes to multithreaded processes 
Representing processes in aSP/1 

2. System Calls in aSP/I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-10 
UNIX system calls 
Mach system calls 

3. Synchronization and Thread Management ................................................. 2-16 
Synchronization in standard UNIX 
The problems introduced by multiprocessors 
Synchronization primitives in aSP/1 
Managing threads through state transitions 

4. Signals and Exception Handling ......................................................... 2-43 
Integrating signals into multithreaded processes 
The Mach exception mechanism 

5. Threads ............................................................................ 2-50 
The system call interface 
Utilizing threads with the POSIX-threads library 

6. Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-54 
Scheduling policies 
Multiplexing of threads 
Processor sets 

7. Thread Pools ........................................................................ 2-67 

8. Zoned Memory Alloca~on 2-68 

Module Objectives 

In order to demonstrate an understanding of the differences between the aSP/1 process and the traditional UNIX 
process and the implementation of the process in aSP/I, the student should be able to: 

• list the UNIX system calls that are difficult to adapt for use by threads within a multithreaded process and 
describe the difficulty 

2-1 



Module 2 - The Process Abstraction 

• explain how the proc and user structures of older UNIX implementations must be modified for use with 
multithreaded processes 

• explain the conceptual difference between UNIX and Mach system calls 

• list and explain the need for the kernel synchronization routines 

• for each of two types of signals explain how it is detennined which thread receives the signal 

• explain Mach implementation of exception handling and how exceptions are converted into signals 

• explain the rationale for using the POSIX threads library 

• describe the scheduling policies used in OSF/ I 

• explain the rationale of processor sets 

• describe the purpose of thread pools and which subsystems use them 

• explain the advantage of the zone memory allocation technique 

2-2 



Module 2 - The Process Abstraction 

2-1. The Big Picture 

The Process Abstraction 

~~ 

.H2S96 2-1. 

The Process Abstraction 

23 

1::::::::::::::::1 Mach 

,<>«. UNIX 

© 1991 Hew1ett-Packard 

The material in this module is partially covered in Open Software Foundation, 1990a, chapters 4 and 5. 

2-3 



Module 2 - The Process Abstraction 

2-2. Processes 

The UNIX Process: Beyond Tasks 

Identification 

• user and group 

Open files 

• which are open? 

Signal state 

• how handled? 

• which are masked? 

• which are pending? 

.825962-2_ 

The UNIX Process: Beyond Tasks 

24 

Family 

• parent 

• children 

- alive 

- tenninated 

- stopped 

Address space 

• limits to growth 

© 1991 Hewlett-Packard 

The UNIX process embodies much more than what is in a Mach task. Associated with a task is the address space 
and a collection of port rights. Associated with the UNIX process are additional concepts such as userid and 
group ids, open files, signal information, .and relationships between parents and children. Since this information is 
not part of the task concept, it must be represented separately. 

2-4 



Module 2 - The Process Abstraction 

2-3. Processes 

Mqltithreading the UNIX Process 
( ~~ ~ 

~j,. \ System calls: V 
~~j~ • fork ~ t:)~I:~I.~ 

~r' • exec ------ ~ I 6' IJr \\ ' 

~, ~ ~ 
• error codes / ,\ ~ 

Signals: ~(' ~ ~ "l 
• who gets them? ~ Q) _ ~.( //~~ , \ 

• sigpause/sigsuspend ~//----~'_/ ~~ ~r Mal" 
&~ \Y\ ,} 

Standard libraries: / "0 

• return pointers to static data (e.g. gethostbyname) ~ 

• access shared data structures (e.g. stdio)-

.H2S962-3. 2S © 1991 Hewlett-Packard 

Multithreading the UNIX Process 

2-5 



Module 2 - The Process Abstraction 

2-4. Processes 

Threads, Tasks, and Processes 

• The thread abstraction 

- a single thread of control 

- represented by a thread structure 

~ • The task abstraction 

- holds capabilities and an address space 

~y' 
~\ 

JI:\¥ 
~ f ~~' r Q 

- represented by a task structure 

• The process abstraction 

- combines thread and task abstractions: a UNIX concept 

.H2S962-4. 26 

Threads, Tasks, and Processes 

© 1991 Hewlett-Packard 

A user thread nonnally executes in user mode. While it is in a system call, however, it executes in system mode 
(or kernel mode or privileged mode). The operating system must maintain a separate context for each mode (user 
and system modes): for example, a thread has both a user stack and a system stack (or kernel stack). 

Threads and tasks are represented in Mach by their thread and task data structures. In traditional UNIX, each 
process is represented by two data structures: the proc structure, which is allocated from the kernel's address 
space, and the user structure, which is allocated at a fixed location in the private address space of the process. 

OSP/l represents a UNIX process with both the Mach data structures and most of the information contained in the 
traditional UNIX data structures. Ideally, the UNIX data structures should be basically unchanged from 4.4BSD 
so that no significant changes to the UNIX code are necessary. 

2-6 



Module 2 - The Process Abstraction 

However, extending the single-threaded UNIX process into a multithreaded process requires some significant 
changes. Most of the information in the proc structure is a property of the task, but the user structure contains 
both task information and thread information. Thus each thread within the task requires its own copy of the 
thread portion of the user structure: the user structure is divided into au_task component and (multiple) u _thread 
components. 

Both types of components are allocated from the system address space, not the process address space (the original 
UNIX scheme of allocating user structure at a fixed location in the process address space is not possible because 
of the multiple u_thread components). 

A slight problem arises here: UNIX kernel code refers to components within the user structure as, for example, 
u . .xxx. OSF/l copes with this simply by using the C preprocessor to convert such references into either 
u_task->xxx or u_thread->xxx. 

These issues are discussed in A. Tevanian, 1987. 

2-7 



Module 2 - The Process Abstraction 

2-5. 

Process Data Structu es 

shared 
kernel 

address 

UNIX 

space liiiiiiiiiiiiiiiiliiiiiiiiiii __ 

private 
process 
address 

space Iiiiiiiiiiiiii~ 

.H2S96 2-5. 

Process Data Structures 

2-8 

shared kernel 
address space 

shared kernel 
address space 

shared kernel 
address space 

shared kernel 
address space 

© 1991 Hewlett-Packard 



Module 2 - The Process Abstraction 

2-6. Processes 

Thread and Task Structures 

task 
structure 

.H2S962-6. 28 

Thread and Task Structures 

thread 
structure 

2-9 

thread 
structure 

© 1991 Hewlett-Pacbrd 



Module 2 - The Process Abstraction 

2-7. System Calls in OSF/l 

System Calls 

• Mach system calls 

• UNIX system calls 

.H2S962-7_ 29 © 1991 Hewlett-Packard 

System Calls 

System calls are the sole interface between the user and the operating system. From the user's point of view, a 
system call is a subroutine call, but the body of this subroutine call involves a switch from unprivileged user mode 
to privileged system mode. Accomplishing this switch requires an architecture-specific trap construction. 

Most system calls issued on an OSF/l system are UNIX system calls, but Mach system calls are used as well. The 
UNIX system-call interface is implemented differently from the Mach system-call interface. 

2-10 



Module 2 - The Process Abstraction 

2-8. System Calls in OSF/l 

UNIX System Calls 

user kernel 

.H2S962-S. 

mamO{ 
int x, y; 

y-read( ... ); 

exit(O); 
} 

int 
read( ... ) { 

trap 
if(error) { 

} 

errno
error_code 

return(-l) 
} else { 
return(result) 

} 

UNIX System Calls 

main 
stack frame 

local variables 

read 
stack frame 

main's registers 
return address 

user stack 

30 

locore 
stack frame 

user's registers 

syscall 
stack frame 

locore's registers 
local variables 
return address 

handler 
stack frame 

syscall's registers 
local variables 
return address 

locore: 

syscallO; 

rei 

syscall( ... ) { 

handler( ... ) 

} 

© 1991 Hewlett-Packard 

To the C programmer, system calls are calls to subroutines provided by the C library. The bodies of these library 
routines fIrst execute whatever machine construction is required to generate a trap. The trap is handled in kernel 
mode (but in the context of the calling process) via a call to syscall. 

Syscall copies the arguments of the system call to the process's u _thread structure, then calls the appropriate 
system call handler in the kernel. 

On return, syscall deals with errors, and arranges for results to be returned to user mode. 

Finally, the original C library routine passes either an error indication or a result back to the caller. 

2-11 



Module 2 - The Process Abstraction 

2-9. System Calls in OSF/l 

UNIX System Calls: Passing of Arguments 

user kernel 
.H2S962-9. 31 © 1991 IVw1ett-Packard 

UNIX System Calls: Passing of Arguments 

How arguments are passed from the user to the kernel depends upon the architecture, but what is described here is 
typical. We use the write system call as an example. 

As part of calling the write library routine, the arguments are pushed onto the user stack (the end of the stack is 
pointed to by the user stack pointer-USP). When a trap occurs, all of the user's registers, including the USP, are 
saved on the kernel stack. 

The syscall routine in the kernel determines which system call is being made and how many arguments it expects. 
Then, following the saved USP, it fmds the arguments on the user stack and copies them to the u _thread structure. 
Copying must be done with care: the user supplies the value of the USP to the kernel. The kernel has no reason 
to believe that the user has supplied a legitimate value-it might point into the kernel. Thus the kernel must fIrst 
validate locations pointed to by the USP before copying them to the u _thread structure. 

2-12 



Module 2 - The Process Abstraction 

2-10. System Calls in OSF/l 

UNIX System Calls: Returning to User Mode 

Q . Successful completion 

- return result to user 

Q · Unsuccessful completion 

- return error indication and error code 

.H2S96 2-10. 32 © 1991 Hewlett-Packard 

UNIX System Calls: Returning to User Mode 

Again, the details here depend upon the architecture; what follows is typical. Assume a calling convention in 
which functions return their results in register O. 

On return from the trap instruction, if the system call completed successfully, the system arranges for the value to 
be returned to appear in the user's register O. This is accomplished by copying this value into the saved copy of 
register 0 in the kernel stack before returning to user mode. The C library code leaves this value where it is and 
returns to its caller, which sees the system call returning the appropriate value. 

If an error occurred in the system call, UNIX requires that the library routine (e.g. write) return -1 and that the 
error code be found in the global variable e"no. This is achieved via cooperation between the operating system 
and the library routine: the carry bit of the program status word is used to indicate whether the system call 
succeeded or not This word is saved on the kernel stack as part of the trap; the operating system sets the carry bit 

2-13 



Module 2 - The Process Abstraction 

in it accordingly before control is returned to user mode, and the program status word is restored from the kernel 
stack. 

If there was an error, the carry bit is set to 1 and the error code is placed in register O. When control returns to the 
library code, if it finds the carry bit is set it copies the value of register 0 to errno, puts a -1 into register 0, and 
then returns. 

Note that this does not work well with multithreaded processes! 

2-14 



Module 2 - The Process Abstraction 

2-11. System Calls in OSF/l 

Mach System Calls 

status = thread_create(parent_task, child_thread) 

.H2S96 2-11. 

Mach System Calls 

c~l 

kernel 
thread_create routine 

33 

user 

kernel 

© 1991 Jew1ett-Plcbrd 

In the UNIX system call interface, the functional value returned by the system call is overloaded with either an 
error indication or the result of a call. Mach avoids the clumsy type problems associated with this style by using 
an output parameter to return the result of the system call, so that the functional value of the call is solely an 
indication of success or error (and if an error, what sort of error). 

A Mach system call is essentially a remote procedure call to a procedure provided in a kernel task. These 
procedural requests are actually transmitted to the kernel as messages. The result obtained by the kernel is sent 
back to the user as another message. Thus a system call, from the user's point of view, is implemented as a 
mS9_rpc call. The stub routines that convert the procedure calls into messages are produced by MIG (the Mach 
Interface Generator). 

The implementation of the Mach system call is optimized: it is not the case that special threads exist in the kernel 
for the purpose of receiving these system call messages. Instead, the user thread generating the Mach system call 
traps into the kernel (i.e., switches to kernel mode) and receives its own message and processes its own system 
call. 

2-15 



Module 2 - The Process Abstraction 

2-12. Synchronization and Thread Management 

UNIX Synchronization: Putting a Process to Sleep 

.H2S96 2-12. 

• Many operations (e.g. 110 requests) result in the suspension of a process's 
execution 

• To effect this suspension, a process executes a sleep call (which is a 
kernel-level subroutine) 

• At some later time, a wakeup call is issued to resume the execution of the 
process 

34 © 1991 Hew1ett-~d 

UNIX Synchronization: Putting a Process to Sleep 

UNIX synchronization is a very simple, event-driven mechanism. A process (in kernel mode) puts itself to sleep 
by calling sleep. Its state is then set to sleeping, and control is passed to swtch, which fmds another runnable 
process and resumes its execution. 

A call to wakeup resumes the execution of all processes waiting on a particular event Such processes' states are 
changed to runnable, and when the scheduler chooses them they resume execution. 

2-16 



~~_o_d_u_l_e_2_--__ T_h_e_P_r_o_c_es_s_A_b_s_t_ra_c_n_·o_n __________________ ~I~ 

2-13. Synchronization and Thread Management -YbP 
'l. ,;P, I =tr 

,....-----------..~,)K 
UNIX Synchronization: Sleep and Wakeup. / ~ 

~ • 'A. vJ(}~f 1 

.H2S96 2-13. 

~ 1J.l'r" ~ _ ,~~ ~+~J 
• sleep(channel, diSPOSiti0 ~ ~ ~11 be VV"""'lftp1 \ 

y? . / f~);_.JJ) 
\i' l~L?v. • wakeup(channel) 

35 © 1991 Hewlett-Pacbrd 

UNIX Synchronization: Sleep and Wakeup 

The integer channel specifies the awaited event By convention, this channel is the address of some relevant data 
structure. 

A number of things are overloaded on top of disposition: 

1. It represents the scheduling priority to be taken on by the process when it is awakened (low values are good 
priorities, high values are poor priorities). 

2. It indicates whether or not the sleep is interruptible by a signal. If it is less than or equal to the fIXed value 
PZERO, then the sleeping process may not be awakened by a signal. 

3. It indicates what happens if the sleep is interrupted by a signal. The call to sleep either longjmps back to an 
exception handler or returns a value indicating that there was a signal. 

(N.B.: This is done differently in OSP/l, as will be seen.) 

2-17 



Module 2 - The Process Abstraction 

2-14. Synchronization and Thread Management 

Protection from Interrupts 

.82596 2-14_ 36 © 1991 Hewlett-PIckard 

Protection from Interrupts 

Interrupt protection is very architecture-dependent. The UNIX (and aSP/I) model is based on the PDP-II 
architecture: the devices and processor connect via a bus. A device interrupts a processor by raising a line on the 
bus corresponding to a particular interrupt priority (or bus request [evel). If the processor's current interrupt 
priority level (IPL) is less than the bus request level, then the request interrupts the processor's current 
computation. The processor receives the interrupter's interrupt priority; after the processor returns from the 
interrupt, it regains its previous priority level. 

A call to splnnn, where nnn identifies the interrupt priority level, disables an entire class of interrupts by raising 
the processor's IPL. This call returns the previous priority, which can be restored via a call to splx. 

2-18 



Module 2 - The Process Abstraction 

2-15. Synchronization and Thread Management 

UNIX Synchronization: Sleep/Wakeup Example 

s == splbioO; 1* disable a class of interrupts */ 
while (device_inuse) 

sleep(&device_data_structure, priority); 
device_inuse++; 
splx(s); /* enable interrupts */ 

/* in some other thread (or interrupt handler) */ 

device_inuse == 0; 
wakeup ( &device _data_structure); 

.H2596 2-15. 37 

UNIX Synchronization: Sleep/Wakeup Example 

© 1991 Hewlett-Packard 

In this example, various threads wish to obtain mutually exclusive access to a device. They check device _inuse to 
see if the device is in use. If it is, they then put themselves to sleep. After the thread using the device fmishes 
with it, the thread clears the device,-inuse flag and then wakes up all threads waiting for the device. 

A potential race condition must be guarded against between testing the device _inuse flag and calling sleep, an 
interrupt handler might issue a wakeup. (Since wakeups are not remembered, if no thread is sleeping when a 
wakeup occurs, nothing happens.) Thus, if a thread goes to sleep and the one and only wakeup that would ever 
wake it up has already been issued, the thread sleeps forever. 

The solution is straightforward: interrupts must be disabled while the flag is tested and the thread is put to sleep. 
The call to splhio disables (disk) interrupts and returns the previous IPL. Thus interrupts are disabled through the 
call to sleep. 

2-19 



Module 2 - The Process Abstraction 

Inside of sleep, after the thread has been effectively put to sleep, the IPL is reduced back to zero so that interrupts 
may occur. However, the IPL set by spZhio is remembered as part of the thread's context When the thread is 
woken up and returns from sleep, this IPL is restored and the thread can then make the test (and possibly put itself 
to sleep again, immune from interrupts). Once it has taken the device, it can restore the original IPL (probably 0) 
by a call to splx. 

2-20 



Module 2 - The Process Abstraction 

2-16. Synchronization and Thread Management 

OSF/l Synchronization 

while (device_inuse) 
sleep( ... ) 

device_inuse++; 

device_inuse == 0; 
wakeup( ... ); 

thread running on processor I thread running on processor 2 

.H2S96 2-16. 38 © 1991 Hewlett-Packard 

OSFIl Synchronization 

OSFIl synchronization must be able to cope with the effects of multiprocessors. Masking interrupts is not 
sufficient protection on a (shared-memory) multiprocessor. Any operation that might be affected by actions of 
other processors must be protected. 

2-21 



Module 2 - The Process Abstraction 

2-17. Synchronization and Thread Management 

Synchronization Primitives in OSF/l 

read-write locks 

simple locks 

r-, mit nex parallelized interruptibility and timeout are options L_.I 

~ interruptibility is an option D interruptibility is nex an option 

.H2S96 2-17. 39 © 1991 Hewlett-Packard 

Synchronization Primitives in OSFn 

A good discussion of synchronization in OSF/1 can be found in Open Software Foundation, 1990b, chapter 8. 

2-22 



Module 2 - The Process Abstraction 

2-18. Synchronization and Thread Management 

Simple Locks 

.H2S96 2-18. 

simple _lock_init(lock) 

simple _lock(lock) 

simple _ unlock(lock) 

simple _lock_ try(1ock) 

Simple Locks 

40 © 1991 Hewlett-Packard 

Simple locks are used in many cases where mutual exclusion is required. They are implemented as spin locks; 
i.e., a thread or interrupt handler sets a lock by setting a bit and waits for a lock by repeatedly testing the bit until 
the holder of the lock clears it. Because of this active involvement on the part of the processor, simple locks 
should be held only briefly. 

Although simple locks are normally acquired in a synchronous manner, an additional request is provided in which 
the lock is taken if it is not already taken and otherwise returns failure. 

2-23 



Module 2 - The Process Abstraction 

2-19. Synchronization and Thread Management 

Combining Unlock with Sleep, part 1 

.H2S96 2·19. 

simple _lock( ... ); 

ir (should_sleep) { 

simple _ unlock( ... ); 

sleep( ... ); 

}eJse 

simple _unlock( ... ); 

or 

simple _lock( ... ) 

wakeup( ... ) 

simple _unlock( ... ) 

41 

Combining Unlock with Sleep, part 1 

simple _lock( ... ); 

ir (should_sleep) { 

sleep( ... ); 

simple _ unlock( ... ); 

}eJse 

simple_unlock( ... ); 

© 1991 Hewlett· Packard 

To avoid a race between one thread doing a sleep and another thread doing a wakeup, it is necessary to use a lock. 
However, as illustrated in the slide, it is not clear when the thread calling sleep should unlock the lock. In the 
code fragment in the top left, a thread ftrst takes a lock to guarantee that no thread does a wakeup while there is 
the possibility that the fIrst thread may go to sleep. It then discovers that it indeed should go to sleep, so it 
unlocks the lock and then calls sleep. However, another thread running on another processor might call a wakeup 
at the instant that the lock is unlocked (before the frrst thread calls sleep). Thus we still have the race condition 
we are trying to eliminate. 

Another approach, as illustrated in the upper right, might be to switch the calls to sleep and simple_unlock. But 
now, though we eliminate the race condition, we introduce a deadlock. A thread attempting to do a wakeup won't 
be able to do so until the lock is released, but the thread holding the lock won't release it until after the wakeup 
has been performed. 

2-24 



Module 2 - The Process Abstraction 

2-20. Synchronization and Thread Management 

Combining Unlock with Sleep, part 2 

assert_ wait( ... ); 

simple _ unlock( ... ); = simple_unlock + sleep 

thread _ block( ... ); 

.H2S96 2-20. 42 © 1991 Hewlett-Pacbrd 

Combi~ing Unlock with Sleep, part 2 

The solution is to fmd a way to combine sleep and simple _unlock. One approach might be to add an extra 
argument to sleep indicating which lock to unlock after the calling thread is effectively asleep. The approach 
taken, however, is to split sleep into two parts. The fIrSt part, assert_wait, announces that the thread is about to go 
to sleep. The second part, thread _block, actually puts the thread to sleep. A call to simple _unlock may be safely 
placed between the calls to assert_wait and thread_block. 

2-25 



Module 2 - The Process Abstraction 

2-21. Synchronization and Thread Management 

Blocking Threads 
simple _lock(&object.lock); 

while (object. in_use) { 

assert_wait(&objectwait); 

1* indicate intent to wait *1 

simple _unlock( &objectlock); 

thread _ block(); 

1* give up the processor-however, the thread might return inunediately 
if a wakeup has already happened *1 

simple_lock(&objectlock); 

} 

object in_use = I; 

simple _ unlock( &objectlock); 

.H2S962-21. 43 © 1991 Hewlett-Paclwd 

Blocking Threads 

In this example, threads desire mutually exclusive access to object. Associated with the object is a simple lock, 
which a thread takes so that it can safely determine if another thread is using the object If the object is in use, 
then the thread attempting to take the object declares its intention to block by calling assert_wait; it then unlocks 
the simple lock and calls thread_block to yield the processor. If this thread is woken up before it yields the 
processor, the call to thread_block does not put the thread to sleep but, at worst, puts the thread on the run queue. 

2-26 



Module 2 - The Process Abstraction 

2-22. Synchronization and Thread Management 

Blocking Threads Example 

t2 

thread A 

object object object object object object 

eeoooo 
thread B thread B thread B thread B thread B thread B 

.H2S96 2-22 44 © 1991 Hewlett-Packard 

----s>~ 
Blocking Threads Example 

Initially thread B is using the object (has set its in_use field) and both thread A and thread B are running (or 
runnable). Thread A is attempting to use the object but fmds by examining the in_use field that the object is being 
used by another thread. It indicates its intention to wait for the object by calling assert_wait. This sets the wait 
bit in thread A's state vector and queues thread A on the list of those threads waiting for the object Since thread 
A has not called thread _block, it continues to run. 

In the meantime, thread B fmishes with the object, so it clears the in_use field and then calls wakeup to wake up 
those threads waiting for the object 

The effect of thread B's call to wakeup is to wake up thread A. However, thread A has not gone to sleep yet, so 
the wait bit is cleared in its state vector. Thread A subsequently calls thread_block. Since the wait bit is no longer 
set, thread A returns from thread_block inunediately (if the call to wake up thread B had not taken place, then the 

2-27 



Module 2 - The Process Abstraction 

call by thread A to thread_block would have put thread A to sleep-the run bit of its state vector would have been 
cleared, leaving only the wait bits set). Thread A now can test the in_use bit, see that it is clear, and set it itself. 

2-28 



Module 2 - The Process Abstraction 

2-23. Synchronization and Thread Management 

Suspending Threads 

.H2S96 2-23. 

thread 1 running 
on processor A 

Suspending Threads 

4S 

thread 2 running 
on processor B 

© 1991 Hewlett-Packard 

The effect of suspending a thread is not necessarily immediate. In this picture, threads I and 2 are running on 
different processors, and thread I issues a thread _suspend call on thread 2. This call marks thread 2 to be 
suspended, but nothing is done to make this suspension happen immediately. Thread 2 's processor will eventually 
switch to kernel mode, because of an interrupt or trap. The thread will then notice that it is marked to be 
suspended and suspend it accordingly. In general, the kernel will notice that a thread is to be suspended when that 
thread calls thread_block (which is done when the thread is about to return from kernel mode to user mode). 

2-29 



Module 2 - The Process Abstraction 

~/ 'V~\9I 
'\~ (~" 

2-24. Synchronization and Thread Management 

Thread States 

____ ~ _____ ~~.!!!P __ ... RUN+WAIT 
, ,assert walt .. ~ ..... 

, , , , ,~ ~~llthrea{UIOCk 
, / It ' , /.. I 

'~s~' I wakeup ~. I 
--------.. RUN+WAIT+SUSPENDED 

4 I" I 

RUN+ • ______ -

SUSPENDED 1+' ,~ssert -,walt 
I ' , I 

thread block 1 ' ;' , 
- 1 I 

1 
1 
L~-

thread_block 1+ Wake~ I 
esume 

I wakeup I / 
I (uninterruptible) I /;, 
I "" Ires~ 

WAIT 

I wakeun"- I, , SUSPENDED ______________ tll._. WAIT +SUSPENDED 
(in1rruptible) 

.H2S96 2-24. 46 © 1991 Hewlett-Packard 

Thread States 

Represented as three bits in the thread structure: RUN, WAIT, and SUSPENDED 

• RUN 

- thread is either runnable or running 

• WAIT 

- thread is blocked, waiting for an event (it is on a wait queue) 

- both interruptible and noninterruptible waits are supported (represented by another bit) 

• SUSPENDED 

- thread is suspended and thus not on any queue 

2-30 



Module 2 - The Process Abstraction 

- nested suspends are supported via a suspend count 

- usually the result of a thread_suspend system call 

• RUN+WAIT 

- thread has just performed an assert_wait, either it will do a thread _block and switch to WAIT, or another 
thread will wake it up (before the thread_block) and switch it to RUN 

• RUN+SUSPENDED 

- thread has been set to be suspended; it will switch to SUSPENDED as soon as it either calls thread_block or 
returns to user mode 

• WAIT+SUSPENDED 

a call to thread _resume switches thread to WAIT; if the wait is interruptible, the thread switches to 
SUSPENDED when it wakes up; otherwise it switches to RUN+SUSPENDED (Le., the effect of the 
thread _suspend is delayed) 

• RUN+WAIT+SUSPENDED 

a call to thread_block switches thread to WAIT+SUSPENDED, a thread_resume switches it to RUN+WAIT, 
a wakeup switches it to RUN+SUSPENDED 

2-31 



Module 2 - The Process Abstraction 

2-25. Synchronization and Thread Manage~~~ 

\/) 
\t,""\ " 

UNIX-Style Sleep ,~ /~ ~ 
\ '~J ~ ~ 

" \",i .CY'\ ~ 
\,,"\ 'U n ~ 

.H2S96 2-25. 

X~~~ , , -~~ (, r 
/ ~CY' r~ 

sieep(chan, diSPOSition)~ ____ f 
tsleep(chan, disPositi~~ 
mpsleep(chan, disposition, wmesg, timeout, lockp, flags) 

47 

UNIX-Style Sleep 

© 1991 Hewlett-Packard 

UNIX-style sleeps involve waiting for "one-shot" events. Traditionally, the kernel provided only a sleep call, but 
starting with 4.4BSD a tsleep (timed sleep) call was added as well. Sleeps instigated by calls to sleep are not 
interruptible (i.e. by signals). Calls to tsleep can be interruptible; interruptibility is specified by setting the 
PCATCH flag in the disposition argument Unlike other UNIX implementations, the disposition argument has no 
other use in OSF/I. 

As discussed earlier, a lock is necessary on multiprocessors to prevent a race between a wakeup and a sleep or 
tsleep, but, since there is no clear position for the unlock, these routines can only be used in unparallelized code, 
i.e., only in situations where all relevant activities are guaranteed to take place on the same processor. Mpsleep is 
a multiprocessor-safe version of sleep and tsleep that takes a pointer to a lock as an argument Mpsleep contains 
calls to assert_wait and thread _block, and the lock is unlocked between these calls. 

2-32 



Module 2 - The Process Abstraction 

The wmesg argument to tsleep and mpsleep is a character string indicating why the thread is sleeping. Its only 
purpose is for display when a user types control-T to see the states of the foreground processes. 

2-33 



Module 2 - The Process Abstraction 

2-26. Synchronization and Thread Management 

Waking Up 

.H2S96 2-26. 

clear _wait(thread, result, interruptible_only) 

thread_wakeup _ one( event) 

thread_wakeup _ with_result( event, result) 

Possible results: 

THREAD":'AWAKENED 

THREAD_TlMED_OUT 

THREAD_INTERRUPTED 

THREAD_SHOULD_ TERMINATE 

THREAD_RESTART 

48 

Waking Up 

Wakeup routines: 

© 1991 Hewlett-Pacbrd 

• clear _ wait: wakes up a panicular thread. If the interruptible-only flag is set, then the thread is awakened only 
if it is in an interruptible sleep (this flag is used, for example, to wake up a thread conditionally in response to 
a signal). 

• thread_wakeup _one: wakes up the flfSt thread waiting for a particular event, and sets the wait _result to 
THREAD_AWAKENED. 

• thread_wakeup _with_result: wakes up all threads waiting for a particular event, and sets their wait _results to 
the second argument 

2-34 



Module 2 - The Process Abstraction 

Whenever a thread is woken up, the cause of the wakeup is put in the wait _result field of the thread's thread 
structure. The five standard results are as follows: 

1. THREAD_AWAKENED: returned if the event for which the thread was waiting actually occurred. 

2. THREAD_TIMED_OUT: returned if the timeout period expired (e.g. as set in tsleep). 

3. THREAD_INTERRUPTED: returned if the thread was interrupted by a signal, and this caused the wakeup. 

4. THREAD_SHOULD_TERMINATE: returned ifa signal forces the termination of the thread. 

5. THREAD_RESTART: returned if a thread was waiting for some event that turns out to be no longer relevant, 
e.g. a thread is waiting on a condition involving a leaf of a tree, but a structural change occurs higher up in the 
tree. This result notifies the thread that it should reevaluate its circumstances. 

2-35 



Module 2 - The Process Abstraction 

2-27. Synchronization and Thread Management 

Events 

.H2596 2-27. 

event 

happened! 
hasn't happened 

queue of 
waiting 
threads 

Events 

49 © 1991 Hewlett-Packard 

Events provide an improvement of the common case of the UNIX sleep call. A thread can test whether an event 
has been posted and, if it has not, then wait for the event to be posted. When the event is posted, it stays posted 
until explicitly cleared. 

Kernel subroutines: 

• event_c[ear(event): mark an event as hasn't happened 

• event yosted(event): return whether the event has happened 

• event_wait(event): wait until the event has happened 

• eventyost(event): mark the event as has happened 

2-36 



Module 2 - The Process Abstraction 

Note that the implementation guarantees that there will not be a race between event yost and event_wait: a thread 
calling event_wait returns soon (if not inunediately) after event yost is called. 

As an example, consider operations on a buffer. One thread starts 110 to fIll the buffer, but before doing so, clears 
the event that would indicate the buffer is filled. Other threads might test for this event, fInd that the event has not 
been posted, and thus wait (inside of event_wait). When the fIrst thread fInishes fIlling the buffer, it then posts the 
event, which both wakes up all threads waiting for the buffer and marks the buffer as fIlled for any subsequent 
thread that needs its contents. 

2-37 



Module 2 - The Process Abstraction 

2-28. Synchronization and Thread Management 

Read-Write Locks ___ evp~d 

.H2S96 2·28. 

lock_init(lock) 

lock_read(lock) 

lock_ write(1ock) 

Read-Write Locks 

lock_try _ write(1ock) 

lock_try _read(1ock) 

© 1991 Hewlett· Packard 

Read-write locks provide reader-writers-type synchronization, i.e., any number of threads may hold a lock for 
reading, but if a thread holds a lock for writing, no other thread may hold it for either reading or writing. A 
read-write lock may be configured to be either a blocking lock or a spin lock. In most cases, it is a blocking lock, 
i.e., threads waiting for the lock will yield their processor. But, particularly when it is used in the interrupt 
context, it may be a spin lock. 

In some situations, it may be convenient to use a read-write lock recursively, i.e., a thread may "take" a lock even 
if it already has it This notion is useful in situations in which a thread possesses a lock but is calling a routine that 
causes it to take the lock again (if the lock is not set to be recursive, this produces an inunediate deadlock 
situation). 

2-38 



Module 2 - The Process Abstraction 

On multiprocessors, threads do not immediately block while waiting for a lock. Instead, they test the lock for a 
number of times equal to the value of lock_wait_time (a global variable whose value is typically set to 1(0) and 
then yield their processor, if necessary. 

2-39 



Module 2 - The Process Abstraction 

2-29. Synchronization and Thread Management 

Synchronization in OSF/l: Summary 

read-write locks 

simple locks 

r-, fD nct parallelized interruptibility and timeout are options L_.I 

~ interruptibility is an option D interruptibility is nct an option 

.H2S96 2-29. 51 © 1991 Hewlett-Packard 

Synchronization in OSFI1: Summary 

This diagram sununarizes synchronization in the aSP/l kernel and shows the layering. Note that simple locks are 
not used on uniprocessors. 

2-40 



Module 2 - The Process Abstraction 

2-30. Synchronization and Thread Management 

Avoiding Deadlock 

.H2S96 2-30. 52 © 1991 Hewlett-Packard 

Avoiding Deadlock 

In many cases it is necessary to hold two or more locks. Unless these locks are taken with care, there is a potential 
for deadlock. To avoid deadlock, locks are usually taken in a prescribed order by all threads (typically 
"downwards"). However, it is occasionally necessary to take locks out of order. Deadlock is avoided in this case 
by using conditional requests for locks. For example, if the prescribed order is "take lock A, then take lock B," 
but one has lock B and desires lock A, then one should make a conditional request for lock A. If the request fails, 
then one should release lock B (thus avoiding deadlock) and try again. 

2-41 



Module 2 - The Process Abstraction 

2-31. Synchronization and Thread Management 

Taking Locks in the Interrupt Context 

.H2S962-31. 53 © 1991 Hewlett-Packard 

Taking Locks in the Interrupt Context 

Locks can be taken in the interrupt contex~ but only with some care. The picture illustrates a situation to be 
avoided. A thread is interrupted after it has taken a lock. The interrupt handler (executing in the interrupt 
context) then attempts to take the same lock, and deadlock results: the interrupt handler cannot return from the 
interrupt context until it takes the lock, and the thread cannot release the lock to the interrupt handler until the 
interrupt handler returns and lets the thread have the processor. 

The solution to this problem is straightforward. If a lock can be taken in the interrupt context at an 
interrupt-priority level of n, then whenever the lock is taken in any other contex~ the interrupt-priority level must 
be at least as high as n. 

2-42 



Module 2 - The Process Abstraction 

2-32. Signals and Exception Handling 

Signals and Blocked Threads 

.H2S962-32 54 © 1991 Hewlett-Packard 

Signals and Blocked Threads 

All UNIX synchronization calls (tsleep, etc.) return to their caller even if they have been interrupted by a signal. 
The tsleep call (which is interruptible only if PCATCH is set) returns one of four possible values: 

VALUE EVENT 

0 normal wakeup 
) 

EINTR interrupted and the system call should return the EINTR error code 

ERESTART interrupted and the system call should be restarted 

EWOULDBLOCK the sleep timed out 

2-43 



Module 2 - The Process Abstraction 

2-33. Signals and Exception Handling 

Signals 

• Synchro~ous signals 

- exceptions 

• Asynchronous signals 

- interrupts 

• Different animals-same mechanism 

.H2S96 2-33_ 55 © 1991 Hewlett-Packard 

Signals 

Signals serve a dual purpose in UNIX. They are used to infonn processes about exceptions (e.g. addressing 
errors), and they are used to infonn processes about external events (e.g. the typing of an interrupt character, a 
signal sent from another process). For each signal, a process may set up a handler (catch the signal), ignore the 
signal, or chose the default action (which may be to abort the process, stop the process, resume the process, or 
ignore the signal). 

2-44 



Module 2 - The Process Abstraction 

2-34. Signals and Exception Handling 

Signals and Multithreaded Processes 

• Signals were designed for single-threaded processes 

• Extending the concept to multithreaded processes: 

- synchronous signals: delivered to the causing thread 

- asynchronous signals: delivered to the fIrst thread 

.H2S96 2-34. 56 © 1991 Hewleu-Pacbrd 

Signals and Multithreaded Processes 

Most of the signal-handling state is kept with the process (as opposed to the thread): signal mask, signal 
disposition, and vector of pending signals. Per-thread signal disposition is kept for synchronous signals. There is 
no universally accepted semantics for generalizing signals for multithreaded processes. 

It is clear to whom a synchronous signal (i.e. exception) should be sent What is not so clear is to whom an 
asynchronous signal (i.e. interrupt) should be sent In OSP/I, such signals are delivered to the fIrst thread that was 
created within the process (if this thread has tenninated, then to the second thread, etc.). 

2-45 



Module 2 - The Process Abstraction 

2-35. Signals and Exception Handling 

Debugging with Ptrace 

.H2S96 2-35. 

parent 
"debugger" 

Debugging with Ptrace 

57 

child 
"debuggee" 

# 

© 1991 Hewldt-Paclurd 

A process may "allow" its parent to debug it by the use of the ptrace system call. A child issues a ptrace with an 
argument of zero, thereby turning on the trace bit in its proc structure. From that point on, whenever it receives a 
signal, it stops so that its parent (the debugger) may examine and possibly modify it 

The parent debugger process may wait for a child to stop via the wait system call. The parent may send requests 
to the child by issuing ptrace calls with positive arguments. With ptrace, it may examine and modify the child's 
memory and registers, and control the child's response to signals. The data transfer is performed using Mach 
facilities for reading and writing to another task's address space. 

2-46 



Module 2 - The Process Abstraction 

2-36. Signals and Exception Handling 

Exception Handling in Mach 

raise exception - catch exception -
clear exception 

continue or vanish - or - tenninate victim 

victim handler 

.H2S96 2-36. 58 © 1991 ""'lett-Packard 

Exception Handling in Mach 

Components of exception handling: 

1. victim thread: raise the exception 

2. victim thread: wait for handler to complete 

3. handler: catch the exception, i.e. receive notification of the exception and perfonn appropriate actions 

4. handler: either clear the exception, i.e. resume the waiting victim, or terminate the victim thread 

2-47 



Module 2 - The Process Abstraction 

2-37. Signals and Exception Handling 

Exceptions: Exporting the Interface 

to victim 

tl victim 

t2 
victim 

t3 
victim 

.H2S96 2-37. © 1991 Hewlett-Packard 

Exceptions: Exporting the Interface 

Each task has send rights to an exception port that it inherits from its parent The receive rights for the default 
task's exception port are held in the kernel by a routine that converts exceptions into UNIX signals. Associated 
with a thread may be a thread exception port, to which the task has send rights. By default, there is no such port, 
but a thread may establish one. If the thread exception port exists, it is used instead of the task's exception port 

The slide illustrates the sequence of events during exception handling with the default task exception handler: 

to. the victim raises an exception (e.g., divides by zero); a message is sent through the exception port 

t1. an exception reply port is created if one does not already exist, and an exception message is received by the 
(single) thread in the kernel exception task, which is a subtask of the kernel task. 

t2. the thread in the kernel exception task translates the exception into the UNIX signal and marks this signal as 
pending in the victim. 

2-48 



Module 2 - The Process Abstraction 

t3. the thread in the kernel exception task sends a clear exception message through the exception reply port; this 
has the effect of waking up the victim, which then discovers that it has a signal and deals with it in its own 
context 

2-49 



Module 2 - The Process Abstraction 

2-38. Threads 

Creating a Thread 

1. thread_create 

2. thread_set_state 

3. thread_resume 

.H2S96 2-38. 60 © 1991 Hewlen-Pacbrd 

Creating a Thread 

Creating a thread takes a surprising number of system calls. 

1. The thread_create call establishes the kernel context of a thread, but leaves the establishment of the user 
context to the caller. Thus the new thread is created in the suspended state. 

2. The user then establishes a user context for the thread with the thread_set_state call. This may involve 
giving initial values for all of the general-purpose registers in the thread's user context, which has the effect 
of giving the thread a user stack and an initial value for its program counter. Thus the management of stack 
space, and the semantics of what a new thread should do, are left to the user. 

3. The fmal step is for the user to put the thread into a runnable state by calling thread_resume. 

2-50 



Module 2 - The Process Abstraction 

2-39. Threads 

Suspending a Thread 

1. thread_suspend 

2. thread_abort 

3. thread_resume 

.H2596 2-39_ 61 © 1991 Hewlett-Packard 

Suspending a Thread 

Simple suspension and resumption are straightforward: the user just calls the appropriate system calls. Changing 
the suspended thread's behavior is more difficult the thread might be suspended in the kernel (in mid-system call 
or in some other sort of trap), but the user can only directly modify the thread's user context. When the thread is 
resumed, the user state might be modified as part of completing the trap, thus overriding any changes made to the 
user state. 

To allow the detenninistic modification of a thread's user context, the system must suspend the thread at the point 
at which it is about to return to the user, i.e., after any modifications to its user context have been made within the 
trap. However, if the thread is blocked, i.e. in the WAIT state, at the time at which it is suspended, then the thread 
must be forced to go to the point at which it is just about to return to user mode. 'This forcing is accomplished by 
the thread_abort system call. The effect of this call is to wake the target thread up if it is waiting interruptibly. 
This thread will then do any necessary cleanup and then effectively abort the system call. 

2-51 



Module 2 - The Process Abstraction 

2-40. Threads 

Terminating a Thread 

thread_terminate 

• murder is easy 

• suicide is tough 

.H2596 2-40. 62 © 19911Ww1ett-lUkard 

Terminating a Thread 

Terminating another thread is straightforward: the victim thread is stopped at a clean point, i.e., a point at which it 
is holding no locks, and then eliminated. 

Terminating oneself presents a problem. Part of tennination involves freeing a thread's kernel stack and thread 
structure. However, doing so requires a call to a subroutine, and calls to subroutines in the kernel involve the use 
of the caller's kernel stack. On a multiprocessor, the instant that a stack is freed it may be allocated to some other 
thread. The suicidal thread is still using its stack as it returns from the stack liberation routine, but now a new 
thread is using the same stack, and total chaos ensues. 

Thus a thread cannot terminate itself directly. Instead. the thread is put on a queue that is examined by the 
special-purpose kernel reaper tbread, which cleans up the suicidal thread after that thread has yielded the 
processor. 

2-52 



Module 2 - The Process Abstraction 

2-41. Threads 

user 

kernel 
thread thread thread 

.H2S962-41. 63 © 1991 Hewlett-Packard 

Pthreads 

The intended programmer interface to multithreaded processes is provided by the POSIX threads (Pthreads) 
package, which is implemented as a user-level library. Though the OSP/1 kernel interface for threads mayor may 
not become standard, it is used to support the Pthreads interface, which is standard. 

The intent is that the programmers manage threads using Pthreads. Pthreads maintains a cache of kernel threads. 
When a Pthreads thread is terminated, the underlying kernel thread is merely suspended, and can be reused to 
support the next Pthreads thread. 

2-53 



Module 2 - The Process Abstraction 

2-42. Scheduling 

Scheduling 

Concerns: 

• processor allocation 

• processor sharing 

.82.596 2·42. 64 © 1991 Hewlett· Packard 

Scheduling 

Processor allocation involves user-controlled partitioning of the processors to satisfy application requirements. 

Processor sharing deals with two concerns: processors must be shared equitably among the running threads, but 
preferential treatment must be given to "imponant" threads. 

2-54 



Module 2 - The Process Abstraction 

2-43. Scheduling 

Processor Sets 

• processors 

JJJ1 threads 

.H2S96 2-43. 6S © 1991 Hewlett-Packard 

Processor Sets 

Processor sets are a mechanism for processor allocation supplied in the OSFIl kernel. The intent is that a 
(privileged) user-level server should supply the policy for processor allocation. The user-level server will 
establish processor sets and manage their contents in response to requests from ordinary threads. 

Processors are partitioned into containers called processor sets: each container holds zero or more processors, 
and each processor is in exactly one container. Threads are also assigned to these containers: threads may run 
only on a processor and its container (processor set). By default, there is exactly one processor set containing all 
processors and threads. 

Examples of use: 

• Gangs. A set of cooperating threads can be given a set of processors for their exclusive use. 

2-55 



Module 2 - The Process Abstraction 

• Non-homogeneous multiprocessors. Multiprocessor might have two classes of processors, one with 
floating-point hardware, one without Processor sets could be used to run those threads with extensive 
floating-point requirements on the appropriate processors. 

For further discussion, see Black, 1991. 

2-56 



Module 2 - The Process Abstraction 

2-44. Scheduling 

Dispatching Threads for Execution 

running 
threads 

clock_tick 
quantum mairlten~lIlcel 
time COOSium}:ltion 

local run 
queues 

.H2S96 2-44. 

global run 
queue 

Dispatching Threads for Execution 

66 © 1991 Hewlett-Packard 

OSP/1 maintains two types of run queues: a global run queue (one per processor set) for threads with no 
processor affmity (the usual case), and local run queues for threads with processor affmity (e.g., threads involved 
in unparallelized UNIX system calls and in device handling on unsymmetric hardware). Currently, the processor 
known as the UNIX master has the only local run queue. This queue is used solely to support those few parts of 
the kernel that have not been parallelized. 

When a processor needs work, it fIrst checks its local run queue (if any) and then its global run queue; finally, if it 
finds no work to do, it runs a special kernel idle thread. 

An important case is the dispatching of a runnable thread when there are idle processors. To speed this dispatch, 
the system maintains a list of the idle processors. If this list is not empty when a thread is made runnable, then the 
agent making the thread runnable selects the fIrst processor in the idle list and quickly dispatches that processor to 

the n,e~IY runnable thread. J.r}J;l L') 
~~ ~ I"'~' 01 \. J 

I~ l %'V .;J'V ;Y 
1\ ~~0 I)fv <~( 2-57 

~ ~l\';.~tY vX' 



Module 2 - The Process Abstraction 

A further optimization applies to those architectures in which it is advantageous that a newly runnable thread 
resume execution on the processor on which it last ran. (This technique is conditionally compiled into the kernel: 
it is used only when architecturally relevant) Associated with each thread is a reference to its last processor; this 
processor is chosen, if available, when the thread runs again. 

2-58 



Module 2 - The Process Abstraction 

2-45. Scheduling 

Scheduling Policies 

.H2S96 2-45. 

POLICY_TIMESHARE 

POLICY _FIXEDPRI 

Scheduling Policies 

67 © 1991 Hewlett-Packard 

1\vo scheduling policies are supported: a time-shared policy and a fixed-priority policy. These are properties both 
of the thread, i.e., how it is scheduled, and of the processor set, i.e., which policies are allowed. The primary goal 
of the time-shared policy is the equitable sharing of the processors among the various threads. The goal of the 
fixed-priority policy is to provide preferential treatment to particular threads. 

Each thread has a base priority and a scheduler priority, both in the range between 0 and 31. The base priority is 
fixed for each thread-it represents the thread's "importance" (as is usual in UNIX, numerically low priorities are 
"better" than numerically high priorities). The scheduler priority is equal to the base priority for fIXed-priority 
threads. However, for time-shared threads, the scheduler priority is computed from the base priority by adding a 
(positive) value based on processor usage. 

UNIX's nice routine (which uses the (UNIX) getpriority and setpriority system calls) affects the calling thread's 
base priority. 

2-59 



Module 2 - The Process Abstraction 

2-46. Scheduling 

Time-Shared Threads 

.H2S96 2-46. 

• Priority is a measure of importance and of CPU utilization V 0 
- relative importance, represented by the base priority. depends upon ./ 

whether the thread belongs to the system or to the user 

- CPU utilization is an exponential average of CPU use weighted by 
system load 

68 © 1991 Hewlett-JlW:brd 

Time-Shared Threads 

The basis for computing the weighted average of a thread's CPU usage is the following formula: 

sched_average .. current_usage * load + (5/8) * sched_average 

'1:>" 
/ 

where current_usage is the CPU time used in the past second and load is the current (averaged) measure of load 
(based on the length of the run queue). 

The effect of the weighted average is that CPU seconds are more costly the more they are in demand. 

OSP/I uses a distributed approach to compute this average efficiently: the sched_average computation is done in 
the clock-interrupt context for the currently running threads. Every two seconds all threads in the global run 
queues are haged" by multiplying their sched _averages by (5/8)n, where n is the number of seconds since this 
computation was last performed (each thread has a private count of seconds that is compared with the system 

2-60 



Module 2 - The Process Abstraction 

count of seconds, maintained in the global variable). Threads joining the run queue have their priorities 
recomputed so as to "catch up." 

The sched _average decays to 0 after 30 seconds of no processor use. Thus a thread's scheduler priority reverts to 
the thread's base priority after the thread has been idle for more than 30 seconds. 

No floating-point arithmetic is involved in these computations: numbers are scaled and arithmetic is performed 
using shifts and adds. No floating point is ever used in the kernel; thus floating-point registers need not be saved 
across system calls. 

2-61 



Module 2 - The Process Abstraction 

2-47. Scheduling 

Measuring Time 

"master" processor 

.82596 2-47. © 1991 Hewlett-Packard 

Measuring Time 

The basic unit of time is given as hz number of clock ticks per second. The number of clock ticks per second is 
architecture-dependent, but is typically 100. 

• On a uniprocessor: hz clock interrupts/second 

• On a multiprocessor: the master processor's clock interrupts hz times a second; the other processors' clocks 
may be set to interrupt at an integral multiple slower (but their clock interrupt rates in the Encore Multimax 
reference port is identical to that of the master processor) 

• On some architectures, hardware timers are used to measure per-thread processor time accurately 

• On the others, per-thread processor time is a count of clock ticks 

2-62 



Module 2 - The Process Abstraction 

2-48. Scheduling 

Time Slicing 

.H2S96 2-48. 

• A thread is assigned a processor for a particular time period (or time 
quantum) 

• During this period, it is not preempted unless a thread with a better 
scheduler priority is made runnable 

• Threads are not preempted while executing in kernel mode 

• For a multiprocessor, an adjustable quantum is used 

70 © 1991 Hewlett-Packard 

Time Slicing 

The quantum for fIXed-priority threads is settable for each thread. However, for time-shared threads, the time 
quantum is typically 1/10 of a second. While a thread is running, it cannot be preempted by threads that have been 
on the run queue since the beginning of the quantum. However, if a thread with a better priority becomes 
runnable, then it preempts the currently running thread. Currently, preemption does not take place immediately 
for threads running in kernel mode: a thread is not preempted unless it is running in user mode (or "voluntarily" 
gives up the processor by a call to thread _block). The effect of a quantum expiration in kernel mode is delayed 
until the running thread returns to user mode (or blocks). 

For a multiprocessor, an adjustable time quantum is used for time-shared threads. If there are more processors 
than runnable threads then there is no preemption-it is not needed. If, however, there are more runnable threads 
than processors, then the individual time quanta are set so that the average time between quantum ends, over all 
processors, is 1/10 of a second. E.g., for 11 threads competing for 10 processors, the per-thread time quantum is 
set to one second. Thus there is an average of 1/10 of a second between quantum expirations. The scheduler 
adjusts the quanta so that quantum expirations are never in sync. 

2-63 



Module 2 - The Process Abstraction 

2-49. Scheduling 

Influencing the Scheduler 

• Handoff scheduling 

• Timed pause 

• Priority depression 

.H2S96 2-49. 71 © 1991 Hewlett-Packard 

Influencing the Scheduler 

An application can exert some local influence over scheduling decisions through the thread_switch system call. 
One application of thread_switch is when a thread is in effect making a synchronous request of some other 
thread. To avoid delays, it may "give" its processor to this other thread (as long as the thread is within its 
processor set). If both threads are time-shared, the new thread receives the remainder of the current time 
quantum. Otherwise, the new thread gets a new quantum. 

The other two options of thread_switch arise when, for example, a thread is spinning on a lock in user mode, 
waiting for another thread to release that lock. To avoid this perhaps wasteful use of processor time, it might be 
advisable to yield the processor by blocking. However, in user mode, this would require at least two system calls: 
one call executed by the thread itself to put itself to sleep, and another executed by another thread to wake it up. 
In certain situations, we can reduce this system call overhead to just one system call. If the duration of the wait is 
known, a thread can issue the thread_switch system call with the wait option, requesting that it be suspended for 
a fixed period of time and then automatically woken up. 

2-64 



Module 2 - The Process Abstraction 

Another approach to the same problem uses the priority depression option to thread_switch. This system call 
"depresses" the calling thread's priority to the worst possible value for a given period of time and then restores it. 
After depressing its priority, the caller might then start spinning on a lock. If there is no competition for its 
processor, then it uses otherwise idle processor cycles by spinning. Otherwise, if there is competition for the 
processor, then the thread yields to the competition because of its depressed priority. 

The swtch system call returns an indication of whether another runnable thread is waiting to use the caller's 
processor. The swtchJ)ri system call is a special case of the thread_switch system call in which priority 
depression is requested with a fixed time period (set to the time quantum for time shared threads-I/IO of a 
second). 

2-65 



Module 2 - The Process Abstraction 

2-50. Scheduling 

Non-ParallelizedCode 

- force thread to "master processor" 

• Funnels 

- subject thread to constraint of subsystem 

.H2S96 2-50. 72 © 1991 Hewlett-Packard 

Non-Parallelized Code 

When a thread enters an unparallelized subsystem within the kernel, it calls UNIX_master to force itself to run on 
the master processor (i.e. it joins that processor's local run queue). When it completes its execution of the 
unparallelized subsystem, it calls UNIX _release to allow itself to run on other processors. The signal subsystem is 
one of the few such unparallelized subsystems. -

The notion of funnels is intended as a generalization of the UNIX _11Ulster concept. Associated with a subsystem, 
for example a device driver, might be afunnel data structure that describes the constraints of that subsystem. E.g., 
for an asymmetric I/O architecture, it might indicate to which processors a particular I/O device is accessible. 
Calls to the driver for that device would then be "funneled" to a processor of that set. Currently, funnels are used 
only to force processing to take place on the UNIX_master. 

2-66 



Module 2 - The Process Abstraction 

2-51. Thread Pools 

Kernel Thread Pools 

.H2S96 2-51. 

interrupt 
source 

Kernel Thread Pools 

73 © 1991 Hewlett-Packard 

Kernel thread pools are used in a number of places to perform actions in a thread context that would otherwise be 
perfonned in the interrupt context These pools are particularly useful for multiprocessors but may be used for 
uniprocessors as well. 

In the interrupt context, the interrupt handler places a request for action on a callout queue and directs a wakeup 
call to a pool of kernel threads. One of these threads pulls the request off the queue and services it 

This technique is used in the logical volume manager, in the networking subsystem, and for device drivers (for 
multiprocessors ). 

2-67 



Module 2 - The Process Abstraction 

2-52. Zoned Memory Allocation 

Kernel Memory Allocation: Zones 

lock 

elements in use 

list of free elements , 
current size - -- -maximum size 

element size 

allocation size 

flags 

struct zone 

.H25962-S2 74 © 1991 Hewlett-Packard 

Kernel Memory Allocation: Zones 

Zones provide a technique for fast allocation and liberation of storage in the kernel. A zone is a collection of 
fixed-size blocks: a separate zone is created for each kernel data structure that is so managed (e.g., task and 
thread structures, etc.). 

A wne is initialized with a pre-allocated free list, an allocation size, and a maximum size. Allocations are taken 
from the free list until it is exhausted; then additional memory (of allocation size) is allocated from the virtual 
memory system and added to the free list (Zones may be paged or wired: currently they are always wired.) 

2-68 



Module 2 - The Process Abstraction 

Exercises: 

1. a. Which UNIX system calls can be adapted simply for use by threads within a multithreaded process? 

b. Which UNIX system calls are difficult to adapt for use by threads within a multithreaded process? 

c. Explain how the proc and user structures of older UNIX implementations must be modified for use with 
multithreaded processes. 

d. Why is it not sufficient to represent a multithreaded process with the Mach task and thread structures? 

2. Explain the conceptual difference between UNIX and Mach system calls. 

3. a. Explain why two routines in aSP/I, assert_wait and thread_block, are needed in place of the typical 
sleep routine in older UNIX systems. 

b. What is the difference between a simple lock and a read-write lock? 

c. Why are conditional lock requests (e.g., simple_lock_try) necessary? 

d. Explain what is meant when a thread is in the state RUN+WAIT+SUSPENDED. 

4. a. What is the difference between a synchronous signal and an asynchronous signal? 

b. When an asynchronous signal is sent to a process, which thread within the process receives the signal? 

c. Which aspects of signal handling state information are kept with the thread and which are kept with the 
process as a whole? 

d. How is an exception converted into a signal? 

5. a. How does a user-level program create a thread? 

b. What is the function of the thread_abort system call? 

c. What is the difference between a thread as supported by the paSIX library and a thread as supported by 
the asP/ I kernel? 

6. a. What scheduling policies are used in aSP/I? 

b. What is the difference between a thread's scheduling priority and its base priority? 

c. Explain the meaning and use of handoff scheduling and priority depression. 

d. What might processor sets be used for? 

e. Why might there be threads in a processor set but no processors? 

7. a. What are thread pools used for? 

2-69 



Module 2 - The Process Abstraction 

b. Which subsystems use them? 

8. Why is zoned memory allocation used instead of dynamic storage allocation techniques such as the "buddy 
system"? 

Advanced Questions: 

9. Since the original UNIX user structure is" now split into two structures, u_task and u_thread, and both are now 
located in the kernel address space, why is it necessary to maintain separate u _task and proc structures? 

10. In what ways are OSP/l 's kernel threads cheaper than UNIX's kernel processes? 

11. a. Why can't OSP/l be preemptible in kernel mode? 

b. Some versions of UNIX have added preemption points in the kernel at which a thread in kernel mode 
may yield to more important threads. If such preemption points were added to OSP/ I, what would be the 
constraints on where they might be placed? 

2-70 



Module 3 - Messages and Ports 

Module Contents 

1. Messages ............................................................................ 3-3 
Representation 
Contents 

2. Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-6 
Representation 
Port sets 
Naming ports 
Ports as object references 
Port destruction 
Backup ports 

3. Flow of Control ...................................................................... 3-16 
Sending a message 
Receiving a message 

Module Objectives 

In order to demonstrate an understanding of the use of messages and ports in OSP/ 1, the student sh~uld be able to: 

• describe how a message header would be set up to represent a C structure and differentiate between the header 
created for a msg_send system call and the header created for a msg_rpc system call 

• describe how port rights are represented both within a user task and within the kernel 

• describe the flow of control and data within the msg_send and msg_receive system calls. 

3-1 



Module 3 - Messages and Ports 

3-1. The Big Picture 

Messages and Ports 

I::::::::::::::::. Mach 

c:::J UNIX 
.H2S96 3-1. 75 © 1991 Hewlett-Packard 

Messages and Ports 

The material in this module is covered in Open Software Foundation, 1990a, chapter 3. 

3-2 



Module 3 - Messages and Ports 

3-2. ~essages 

Messages 

• Contents 

- variable amount of typed data 

- destination port 

- return port 

• Fonn 

- simple messages 

- complex messages 

.H2S96 3-2. 76 © 1991 Hewlett-Packard 

~essages 

A message is a collection of data to be sent through a port to the task that has receive rights for the port. The data 
is typed, allowing the kernel or intennediate tasks to interpret it as necessary. For example, the kernel must know 
if a data item is a port right (send or receive) so that it can deal with it accordingly. If the data is to be transferred 
from one machine to another in a heterogeneous environment, then the kernel must know the type of application 
data, so that it can convert the data to the target machine's representation. (The use of ports for inter-machine 
communication is not supported in OSF/l.) 

The message must contain a reference to the destination port, which is the port through which the message is 
transferred, and may contain a reference to a return port through which a reply can be sent 

Simple messages contain no out-oj-line data, and they are copied directly into and out of the kernel. This 
technique is used if the message is small and does not contain port rights. Otherwise the message is deemed to be 
complex and requires additional processing by the kernel. Port rights must be interpreted by the kernel, as 
discussed later. The transfer of out-of-line data is optimized using copy-on-write techniques. 

3-3 



Module 3 - Messages and Ports 

3-3. Messages 

Message Data Structure 

message header simple? 

rjVl 

.H2S96 3-3. TI /. © 1991 Hewlett-PIckard 

£-8;;1/~ 

PnH Message Data Structure 19> ~ iF .@ 
A message consists of a header followed by zero or more data items, each headed by a descriptor. 

Message header: 

• simple? no ports or out-of-line data? ~-~ 
J-~DJ.~ 

• size: total bytes (except for out-of-line data) /' ;t!v 

• local port. optional port through which a reply might be sent 

• remote port: port for sending message 

3-4 



Module 3 - Messages and Ports 

• id: application-specific id 

Message descriptor: 

• type: send right, receive right, int 

• size: bits per item 

• number: number of items 

• i: inline (data follows) or out-of-line (pointer follows) 

• 1: longfonn-type, size, number follow 

• d: deallocate port right or memory 

3-5 



Module 3 - Messages and Ports 

3-4. Ports 

Ports 

messages 
task 1 task 2 

task 1 port task 2 

.H2S96 3-4. 78 © 1991 Hewlett·Plckard 

Ports 

A port may be used either as a protected queue of messages or as an object reference. When a port is used as an 
object reference, the task with receive rights manages the object, and send rights to the port are effectively 
references to the object. 

3-6 



Module 3 - Messages and Ports 

3-5. Ports 

Port Sets 

task 1 portA 

task 2 portB server task 

task 3 porte 

.H2S96 3-5. 79 © 1991 Hewlett·Packard 

Port Sets 

The server task, which has receive rights for ports A, B, and C, can consolidate them into a port set The effect of 
this is to merge the message queues of all the ports into a single queue. The server can then receive messages 
from the port set, and thus receive messages from any of ports A, B, or C. 

3-7 



Module 3 - Messages and Ports 

3-6. Ports 

The Kernel Port Structure 

object 

.H2S963-6. 80 © 1991 Hewlett-Packard 

Kernel Port Structure 

A port is represented in the kernel by a structure of type kern yort _to The fIrst parts of this structure, of type 
port _ obj and port_object, refer to a kernel object if this port represents such a reference. (The source code often 
uses the typesport_obj and kernyort interchangeably. This works only because the port_obj is the fIrst 
component of the kernyort structure.) The next portion of the structure, the port_messages structure, represents 
the queue of messages for the port and the queue of receivers waiting for a message to arrive (of course, only one 
of these queues can be non-empty at a time). Even though only one task can hold receive rights to the port, there 
may be multiple blocked receivers, since this task may have multiple threads. 

The remaining important fields of the kemyort structure include a queue of blocked senders, a reference to the 
task holding receive rights to the port, and a reference to the port's backup port. 

3-8 



Module 3 - Messages and Ports 

3-7. Ports 

Port Names 

.H2596 3-7. 81 © 1991 Hewlett-Packard 

Port Names 

Internally, a port is named by the address of its kernyort structure. Externally (Le., in user tasks), a strictly local 
name is used. These local names (of type port _t) are just integers. They are analogous to fIle descriptors in 
UNIX: one task's port names mean nothing to another task; when these names are passed to the kernel, they must 
be converted to the internal form (analogous to the address of a file-table entry). However, unlike UNIX file 
descriptors, if two local port names within a task are different, then they necessarily refer to different ports. 

3-9 



Module 3 - Messages and Ports 

3-8. Ports 

Port Name Translation 

.H2596 3-8. 82 © 1991 Hewlett· Packard 

Port Name Translation 

The frrst two lists are doubly linked and are used just to keep track of the port rights associated with each object 
The second two lists are actually hash tables and are used for efficient translation from external to internal names 
and vice versa 

Each time aport right is added to a task's name space, a translation entry is created. Each such entry is put on 
four lists: 

• The task's translation entry chain 

• The port's translation entry chain 

• The taskllocal name table (TL table) 

• The tasklport table (TP table) 

3-10 



Module 3 - Messages and Ports 

3-9. Ports 

Port Name Interpretation 

task 

.H2S96 3-9. 83 

Port Name Interpretation 

3-11 

translation en try 
(port_hash_t) 

© 1991 Hewlett·Packard 



Module 3 - Messages and Ports 

3-10. Ports 

Object Cache 

port name 

object 

object cache 

.H2S96 3-10. 84 © 1991 Hewlett-Packard 

Object Cache 

To speed the translation from the local name of a port to the object it identifies, each task has an object cache. 
This cache is a simple array indexed by the low-order bits of the local name of the port. If the translation is in the 
table, it is found immediately. 

3-12 



Module 3 - Messages and Ports 

3-11. Ports 

Port Destruction 

© 1991 Hewlett-Packard 

Port Destruction 

If a port with no backup port has its receive rights deallocated, then the port is marked dead. All tasks with send 
rights to this port receive aport_deleted message and lose their rights. All threads that were blocked and queued 
on the port's queue of blocked senders are woken up and their mS9_send system calls return with an error status. 

3-13 



Module 3 - Messages and Ports 

3-12. Ports 

Backup Ports, part 1 

.82596 3-12. 86 © 1991 Hewlett-Packard 

Backup Ports, part 1 

If a task deallocates a port's receive rights, then these rights are transmitted to some other task through the port's 
backup port. Send rights to the backup port are effectively held by the port itself. Receive rights are held by the 
task that is to provide the backup function. 

3-14 



Module 3 - Messages and Ports 

3-13. Ports 

Backup Ports, part 2 

.H2S96 3-13. 87 © 1991 Hewlett-Packard 

Backup Ports, part 2 

Task 1 has vanished; its receive rights to port A have been transferred to task 2 via the backup port. 

3-15 



Module 3 - Messages and Ports 

3-14. Flow of Control 

• msg_ copyin 

.H2S96 3-14. 

- transfer message to kernel 

• use copyin to transfer header 
and inline data 

• use vm _map _ copyin to map 
the out-of-line data into copy 
objects 

- convert to internal form 

• use object _ copyin to deal with 

ports in ~;r~~ 
/.Jv,?1 

88 

- if kernel is the receiver, call 
mach_msg, which transfers to 
appropriate kernel routine 

- handle flow control 

- if a thread is waiting for a 
message, then transfer control 
to it immediately (handoff 
scheduling) 

- otherwise, queue message 

© 1991 Hewlett-Packard 

Sending a message involves two steps. First, the message has to be transferred into the kernel. Then it has to be 
disposed of: either queued on the port's message queue or innnediately handed off to a waiting receiving thread. 

Out-of-line data is not directly mapped into the kernel's address space, but instead is represented by a copy object, 
which has the effect of a vm_ map_entry but does not occupy kernel address space. The purpose of the copy 
object is to maintain a copy of the out-of-line data that can be later mapped into a receiving task's address space. 

3-16 



Module 3 - Messages and Ports 

3-15. Flow of Control 

• msg receive 

.H2S96 3-15. 

- check queue for message, 
possibly block 

- when a message is consumed, 
wake up blocked senders 

• wake up one blocked sender 
for each message received 

• generate notify message if 
necessary 

89 

• msg_ copyout 

- convert ports from internal to 
external representation with 
object _ copyout 

- use vm _map _ copyout to 
transfer out-of-line data 

- use copyout to copy header to 
user 

© 1991 Hewlett-Packard 

Receiving a message is also a two-step process. The fIrst step is to remove the next message from the port's 
message queue. If there is no message, then the following thread is queued on the queue of waiting procedures. 
If there is a message and there are blocked senders (i.e., the message queue was full), then the fIrst blocked sender 
is woken up. If the sender of the message requested it, a notify message is sent to inform it of the message's 
consumption. 

The second step in message reception is to transfer the message from the kernel to the user task .... ~,". __ .~~~:y" =.g._--=;:;:;= 

-=-~-~=-pctt,c=r?·····;;;;;iitM:.·.:fiJJ1-';; ·~~=-:-~f ... 
('f (\ V ~ 'c/;-tlJIO f • • A ,NAiJJ fJtjP'4 . rfrA~ f ~~. 

vlu 
.. ~ 1eri cpvQf. 

3-17 



Module 3 - Messages and Ports 

Exercises: 

1. a. How does the contents of a message header created for a mS9-send system call differ from that created 
for a mSQ_rpc system call? 

b. Describe how a message header would be set up to represent a C structure. 

2. a. What is contained in the kernel port structure? 

b. How are a task's rights to a particular port represented within the task? 

c. How are such external references to a port converted by the kernel into the address of the kernel port 
structure? 

d. When the task receives a port right via a message, how is it added to the task's port space? 

e. What happens when a task deallocates its send rights to a port? 

f. What happens when a task deallocates its receive rights to a port? 

3. a. Explain how out-of-line data is passed from one task to another. 

b. Explain how flow control is implemented as part of the mS9-send and mSQ_receive system c~s. 

Advanced Question: 

4. Messages and ports are not heavily used in OSF/l, in part because the UNIX standards that dictate the 
user/system interface make no mention of message- and port-like constructs. However, messages and ports 
could be used to aid the implementation of a number of UNIX system calls. For example, in the write system 
call, the buffer could be transferred from the user's address space to the kernel's address space as part of a 
message, allowing copy-on-write techniques to be used to minimize the actual copying of data. What 
problems would be associated with doing this? What other UNIX system calls and facilities could benefit 
from the use of messages and ports? 

3-18 



Module 4 - Virtual Memory 

Module Contents 

1. Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3 

2. VM Components ...................................................................... 4-4 
Data structures 
Representing an address space 
Separating architecture-independent from architecture-dependent aspects 

3. Memory Objects ..................................................................... 4-21 
Vnode pager 
External memory object managers 
Paging and swapping 

4. Copying and Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-41 
Virtual copy operation 
Read/write sharing 
Permanent memory objects 
External memory objects 

5. The Pmap Mooule .................................................................... 4-64 
Required functionality 
A typical architecture 
TLB shootdown 

Module Objectives 

In order to demonstrate an understanding of virtual memory within aSP/I, the student should be able to: 

• explain the concept of lazy evaluation and give four examples of how it is used in OSP/l 

• list the data structures in the architecture-independent portion of OSP/l and explain their purpose 

• describe the interface between the memory object manager and the virtual memory kernel 

• describe the implementation of memory objects within the vnooe pager 

• explain the use of shadow objects and copy objects in optimizing virtual copy operations 

• explain what must be done at the architecture-dependent level to implement the virtual copy operation 

4-1 



Module 4 - Virtual Memory 

4-1. The Big Picture 

Virtual Memory 

.H2S96 ~l. 

4-2 

Virtual Memory 

90 

I~::::::::::::::I Mach 

1<::' UNIX 

© 1991 Hewlett-Pacbrd 

A task's address space consists of a number of either private or shared virtual memory objects. The address space 
may be large and sparse. Objects such as files can be mapped into the address space. 

The VM model is independent of the underlying architecture; primary storage is a cache of pages belonging to the 
VM objects. The architecture's address-translation mechanism maps references to cached pages. The 
architecture-dependent code and the architecture-independent code are separate. 

User code can access the interface between the kernel's page cache and memory object managers, and thus 
memory object management can be performed outside of the kernel. 

The material in this module is covered in Open Software Foundation, 1990a, chapters 7,8,9, and 10. 

4-2 



Module 4 - Virtual Memory 

4-2. Lazy Evaluation 

Lazy Evaluation 

.H2S96 4-3. 

Postpone everything until the last possible 
moment: if you put it off long enough, 
maybe you won't have to do it. 

91 

Lazy Evaluation 

© 1991 Hewlett-Packard 

The technique of lazY evaluation is pervasive; it's used throughout the VM system. It is an effective optimization, 
since many operations, such as copying, often turn out not to be really necessary. 

Examples of the use of lazy evaluation: 

• no physical address maps are created until they are needed to satisfy a reference 

• no pages are allocated until they are needed 

• no page is copied until two copies are necessary 

• no backing store is allocated until it is needed 

4-3 



Module 4 - Virtual Memory 

4-3. VM Components 

VM Rough Sketch 

address space 

VMkernel 

.H2S964-4. 92 

VM Rough Sketch 

hardware 
translation 

facility 

© 1991 Hewlett·Pacbrd 

A process's address space is managed by the kernel, which is responsible for setting up the hardware address 
translation facilities as required, for responding to page faults. and for detennining which pages should be kept in 
primary memory. This kernel functionality is divided into two pieces, a machine-independent piece and a 
machine-dependent piece. The former is by far the larger, and it is responsible for maintaining a description of 
each process's address space. The size of the latter depends upon the architecture, but is typically much smaller 
than the former. 

There is a third component of the VM subsystem, which is the manager of the backing store. It is responsible for 
supplying the initial values of pages and for holding on to pages that have been paged out 1\vo possibilities are 
available to the progranuner. A special subtask of the kernel known as the vnode pager is the default manager of 
backing store. It uses the flie system for its backing storage. An alternative is to provide a user-level backing 
store manager (known as an external memory object manager or an external pager). It can be used to back 
objects that the user has mapped into its address space via the vm_map system call; what it does with the pages is 
entirely up to the application. 

4-4 



Module 4 - Virtual Memory 

4-4. VM Components 

Mapping Objects into an Address Space 

address space 

.H2S96 4-5. 93 © 1991 Hewlett-Packard 

Mapping Objects into an Address Space 

Mapping an object into an address space involves a number of issues. First of all, what is the nature of the object? 
It might be: 

1. temporary: it has no name and hence no pennanent existence. 

2. afile: it has a name and hence a pennanent existence, but should changes made to the address space be 
reflected to the fIle? 

3. a user-provided object: a user process provides the contents of the object and manages its modifications. 

Second, how might the pages obtained from the object be shared among multiple processes? For example: 

1. the pages are not shared 

4-5 



Module 4 - Virtual Memory 

2. the pages are shared read-only (and if they are modified, copies are made) 

3. the pages are shared read-write 

4-6 



Module 4 - Virtual Memory 

4-5. VM Components 

VM Components 

page 
lists 

task A taskB 

o 
J# ©'.f991,.,'.He~.,/' ...... ""kard j ,,1 ~ '\I ./'.' r7 j/\1tll;';:f-

VM Components ~ E' (II~ l~lr 
.H2S96 4-6. 

Each task has a map to represent its address space, consisting ofabeader,1he vm_map.~tru.E ~!le,.\~.?.a lipked list 
of structures, each a vm_ map_entry representing a continuous range of addresses. ,~~!~ P(: .+'A~1A~ 

Ijg.i Mflr? "it, ~ CfI WV"t]vrv t 

Each such range is mapped to a memory object represented internally as a vm_object. Each vm_object may refer 
to other vm_objects (via the shadow chain, which will soon be discussed). In addition, it represents a set of virtual 
pages, some of which may currently be in primary storage. Those pages in primary memory are represented by 
vmyage structures and are linked to the vm_object. The vm_object may refer to a memory object (via a port 
reference), which represents those pages stored elsewhere (in backing store) and managed by a memory object 
manager. This object manager may be supplied by either the kernel or a user task. 

The pmap data structure encapsulates of the architecture-dependent portion of the VM subsystem. It represents 
the architecturally required memory mapping structures and related information. 

~ v-~:~ '~ 
~~ 1'0~ 4-7 



Module 4 - Virtual Memory 

4-6. VM Components 

VMMaps 

.H2596 4-7. 9S © 1991 Hewlett-Packard 

VMMaps 

A VM map, mapping a range of virtual addresses to vm_objects, is represented as a doubly linked list of 
vm_map_entry structures headed by a vm_map structure. The mapping may be sparse, i.e., many if not most 
addresses in the range may not be represented. The VM map represents either the address space of a task or a 
range of addresses shared by a number of tasks. 

4-8 



Module 4 - Virtual Memory 

4-7. VM Components 

.H2S964-8. 96 © 1991 Hewlett-Packard 

vm map entry - -
• Previous entry, next entry: 

- links in chain of vm_ map _ entrys 

• Start address, end address: 

- range of addresses represented in this entry 

• Inheritance: 

- how this range should be inherited by a child (i.e., via a fork) 

- share, copy, or none (not inherited at all) 

4-9 



Module 4 - Virtual Memory 

• Maximum protection, current protection: 

specifies maximum and currently pennined accesses 

some combination of read, write, and execute; not all combinations may be possible 

- (RWX) > (RX) > ( ) 

• Object: 

- reference to an object, which may be a vm_object or a vm_map 

• Object type: 

- share map, submap, and vm_object 

• Offset: 

- offset into object 

• Flags: 

- copy-on-write infonnation 

• WIred count: 

- this is incremented by one to indicate that the range of addresses must not be paged out; thus pages in this 
range may only be paged out if the wired count is 0 (which is the usual value) 

4-10 



Module 4 - Virtual Memory 

4-8. ·VM Components 

.H2S96 4-9 • 97 © 1991 Hewlett-Packard 

• Size: 

- virtual size of mapped region 

• Number of entries: 

- number of vm_ map _ entrys in list 

• Mainmap? 

- whether it is the top-level map of a task 

• Pmap: 

4-11 



Module 4 - Virtual Memory 

- pointer to pmap for this mapping 

• Lock: 

- a blocking lock protecting this data structure 

• Timestamp: 

- time of last change to map (used to detennine if anything has changed since the object was unlocked) 

• Reference count 

• Hint 

- pointer to last vm_map _entry that was encountered in a lookup (a good place to start for the next lookup) 

• Free-space hint: 

- pointer to the flfst hole in the address space 

4-12 



Module 4 - Virtual Memory 

4-9. VM Components 

.H2S96 4-10. 98 © 1991 Hewlett-Packard 

• Memory list 

- list of incore pages assigned to this object 

• Reference count 

• Pager: 

- the memory object manager 

• send rights to memory object port 

• offset into the memory object 

4-13 



Module 4 - Virtual Memory 

• Shadow object: 

- link to backing object for copy-on-write 

• Copy object: 

- link to object that should receive copies of the modified pages (used for copy-on-write with pennanent 
memory objects) 

• Size: 

- object's size if it's an internal object 

• Page count: 

- number of incore pages 

• Lock: 

- a simple lock for mutual exclusion 

• Flags: 

- various 

4-14 



Module 4 - Virtual Memory 

4-10. VM Components 

Representing Pages in Primary Memory 

• • • pageq • • • 
• • • hashq • • • 
• • • listq • • • 

flags 

etc. 

vm_page 

.H2S96 4-11. 99 

Representing Pages in Primary Memory 

--

active, inactive, 
or free-page-list 

header 

I 

vm_objectloffset 

© 1991 Hewlett-Packard 

Each page in primary storage is represented by a 56-byte vmyage data structure, which is used to represent the 
page in a number of lists. Attached to each vm _object is a list of all the vm yage structures for inc ore pages 
associated with the object If the underlying page is pageable, then the vm yage structure is attached to one of 
three lists managed by the pageout daemon (the active, the inactive, or the free-page list). In order to fmd a 
particular page, there is a system-wide hash table headed by the array vmyage _buckets. This hash table is keyed 
by the address of the vm_object and the page's offset within the virtual memory represented by the object 

4-15 



Module 4 - Virtual Memory 

4-11. VM Components 

Submaps 

.H2S96 4-12 100 © 1991 Hewlett-Packard 

Submaps 

Since the list of vm _map _ entrys is typically not very long, sequential search is reasonable for user tasks. 
However, the kernel task's address space representation can become fairly complicated. To simplify searching, 
special submaps are used (only in the kernel) to represent a range of addresses. 

Note that this representation is used only in the kernel. 

4-16 



Module 4 - Virtual Memory 

4-12. VM Components 

UNIX VM on OSF/l 

.H2S96 4-13. 101 © 1991 Hewlett-Packard 

UNIX VM on OSF/l 

This picture shows how the address space is initially set up for a UNIX process. A vm_object for an executable 
file is mapped into both the text and the data sections. The executable portion of the fIle is mapped in the text 
region, and then the initialized data from the file is mapped on the data region. 

Since the data region of the process may be modified but the file should not be, the fIle pages representing data 
are mapped copy-on-write. The kernel creates a temporary memory object to back up the modified copies of data 
pages. Since threads in the process cannot modify the text region, the kernel need not allocate any additional 
backing store for the text 

Two vm_objects representing temporary storage are set up for the BSS (block skip section or, less cryptically, 
uninitialized data) and the stack regions. 

4-17 



Module 4 - Virtual Memory 

4-13. VM Components 

UNIX VM on OSF/l: Expansion 

.H2S96 4-14. 102 © 1991 HewIett·Plckard 

UNIX VM on OSF/l: Expansion 

This picture shows the effect of growing the UNIX address space. The UNIX process issues an sbrk system call 
to increase the size of BSS by 20K bytes. Internally, this is converted into a vm _allocate request, which 
detennines that an existing vm _map_entry can simply be extended to include the new address space. 

4-18 



Module 4 - Virtual Memory 

4-14. VM Components 

Locating Pages 

pmap 

access 

location 
20170 

.H2S96 4-15. 

page table 

Locating Pages 

103 © 1991 Hewlett-Packard 

A page fault occurs when a page is referenced that is not mapped by the hardware. The page-fault handler must 
detennine if this is a legitimate reference; if so, it must allocate primary storage for the page and put data into the 
real memory. 

1. The page-fault handler fIrst scans the list of vm_ map _entrys for an entry whose range includes this page. To 
speed this search, the hint field of the vm _ map structure points to the last vm _ map _entry referenced by this 
task; successive page faults often occur on pages within the same vm _ map_entry. 

a. If a containing vm _map _entry is not found, then the reference is invalid and an exception is generated. 

2. If a containing vm_map_entry is found, then the page-fault handler checks to see whether the desired access is 
allowed. 

4-19 



Module 4 - Virtual Memory 

a. If access is not allowed (e.g., an attempt to modify a page in a read-only region), then, again, an exception 
is generated. 

3. If the access is allowed, then the page-fault handler follows the pointer to the vm _object. Associated with the 
object is a hash table representing virtual pages belonging to the object 

a. If the desired page belongs to the object, then its contents are fetched from the associated memory object 
(as described later). 

b. If the page is not present in this vm_object, then the page-fault handler checks the next vm_object (which 
this one shadows). (We discuss what this means and why it occurs in the following pages.) 

c. If no vm_object claims ownership of the page, then the page is created, filled with zeros, and given to the 
topmost vm_object. 

4-20 



Module 4 - Virtual Memory 

4-15. ' Memory Objects 

Memory Objects 

kernel task 
memory object manager 

.H2596 4-16. 104 © 1991 Hewlett-Packard 

Memory Objects 

A memory object is an abstraction representing what is mapped into virtual memory. The object might be a file, 
temporary storage, or something implemented by a user task (such as the network memory server). 

A memory object is implemented (managed) either in the kernel or in a user task. It is represented by three ports: 

• memory object port: effectively the name of the object-used to transmit requests to the manager. The 
memory object manager holds the receive rights to this port. 

• memory object control port: a path from the manager to the vm_object used to transmit requests from the 
(external) memory object manager. The kernel holds the receive rights to this port. 

4-21 



Module 4 - Virtual Memory 

• memory object name port: created by the kernel and used to name an object in the kernel's response to the 
vm_regions system call (it provides a means for showing that an object exists without giving away rights to 
iO. 

Memory object managers (also known as pagers) manage the objects that may be mapped in~o tasks' address 
spaces. A pager's duties are to respond to a kernel's requests for pages (in response to page faults) and to store 
pages on some sort of backing store in response to pageout requests. 

The default memory object manager, known as the vnode pager, is implemented as a separate task running in 
kernel mode. (Its address space is implemented as a submap of the kernel map, as we will discuss later.) The 
vnode pager supports both temporary memory objects and permanent memory objects. The former are used to 
back up virtual memory that will exist only as long as tasks have it mapped into their address spaces. This is used, 
for example, to back up BSS and stack, as well as to back up a process's private modifications to permanent 
objects that the process has mapped copy-on-write, such as initialized data. 

Permanent memory objects have names in the file system and thus can continue to exist even if no process has 
them mapped (i.e., permanent object are files). Examples are text, initialized data, and memory-mapped files. 

Memory object interactions typically involve three parties: 

• the memory object manager (pager)-manages one 'or more memory objects 

• the kernel-maintains the page cache and responds to page faults 

• the client-one or more user threads; maps memory objects into its address space 

4-22 



Module 4 - Virtual Memory 

4-16. Memory Objects 

Memory Object Management: Interfaces 

Memory object management 

• client to kernel 

• kernel to pager 

• pager to kernel 

.H2S96 4-17. lOS © 1991 Hewlett-Packard 

Memory Object Management: Interfaces 

• Client to pager 

- obtain memory object (i.e. a port); no fonnal interface 

• Client to kernel 

- map memory object into address space; use either mmap (for fIles) or vm_map (for Mach objects). 

• Kernel to pager 

- initialize memory object 

- request a data page 

- write back a modified data page 

4-23 



Module 4 - Virtual Memory 

- upgrade pennissions 

• Pager to kernel 

- provide a data page (either in response to a request or gratuitously) 

- indicate that a page is not available (will be zero-filled) 

- restrict access to cached data (e.g. write-protect or read-and-write protect) 

- clean or flush cached data 

- set persistence and virtual copy attributes 

4-24 



Module 4 - Virtual Memory 

4-17. Memory Objects 

Pagein, part 1 

.H2S96 4-18. 

Pagein, part 1 

list of vm yage 
structures 
(representing 

incore pages) 

need this 
page 

106 © 1991 Hewlett-Packard 

When a page fault occurs, the kernel's page fault handler frrst determines that the desired page is not incore. It 
consults the vmyage hash table to check if a vmyage structure for the desired page exists. If one does not, it 
must fetch the page from the associated pager. 

4-25 



Module 4 - Virtual Memory 

4-18. Memory Objects 

Pagein, part 2 

user task 

memory object_data error 

.H2S96 4-19. • 107 © 1991 Hewlett-Packard 

Pagein, part 2 

1. The kernel creates a vm yage structure for the desired page (page 2 in the example) and marks this page 
absent (indicating that a value for the page has not been found yet) and busy (indicating that an operation on 
the page is in progress). 

2. The faulting thread requests the desired page by sending a memory_object _data _request message to the pager 
through the pager's memory object port (send rights for which are found in the vm_object). 

3. The faulting thread blocks, awaiting a response. 

4. The pager, using the memory object control port, either: 

a. returns the desired page (via a memory_object_datayrovidedmessage) and then turns off the absent 
indication in the vm yage structure. 

4-26 



Module 4 - Virtual Memory 

b. indicates that it does not have the desired page (by sending a memory_object _data _unavailable message), 
marks the page no longer busy, and wakes up the waiting threads. 

c. indicates that an error occurred while fetching the page (by sending a memory_object _data_error 
message), marks the page no longer busy, and wakes up the waiting threads. 

A "short -circuit" approach is used with the default pager, i.e., the vnode pager. Since this pager exists in the 
kernel, it does not need to be sent a message; it can be called directly. Thus a call is made to it in the context of 
the faulting thread and the page 110 occurs in this thread's context. Instead of sending a return message, the 
thread merely returns. 

4-27 



Module 4 - Virtual Memory 

4-19. Memory Objects 

Pageout, part 1 

.H2596 4-20. 

Pageout, part 1 

user task 

vm yage structures pageout 
(representing 
incore pages) 

lOS © 1991 Hewlett-~ 

Pageouts are perfonned in the context of a special kernel thread called the pageout daemon (as will be discussed). 
It selects a page to be freed and then contacts the appropriate pager. 

4-28 



Module 4 - Virtual Memory 

4-20. Memory Objects 

Pageout, part 2 

user task 

new object 

.H2S96~21. 109 © 1991 Hew1ett-PacIwd 

Pageout, part 2 

The page out daemon then: 

1. locks the vm_ object to prevent any other thread from manipulating the page in question 

~. creates a new object 

3. assigns to this new object the vmyage structure for the page to be paged out 

4. assigns a new vmyage structure (marked "fictitious") to the original vm_object in place of the page being 
paged out 

a. this structure blocks any attempt to page the page in while it is being paged out 

5. unlocks the original vm _object 

4-29 



Module 4 - Virtual Memory 

4-21. Memory Objects 

Pageout, part 3 

user task pager task . 

new object 

.H2S96 4-22. 110 © 1991 Hewlett-PIckard 

Pageout, part 3 

The new object is sent to the pager as part of a memory_object _data_write message and is mapped into the pager 
task on receipt The pager is now responsible for copying the page to some permanent storage. After it has done 
so, it issues a vm_deallocate system call to deallocate the page and thereby indicate that it has dealt with it 

Once the memory_object_data_write message has been successfully queued, the fictitious page is removed. The 
purpose of this page is to serialize pageins with pageouts: we must make certain that pageins are dealt with after 
the pageout has been completed so that the most recent version of the page will be fetched. The fictitious page is 
placed in the original vm _object, forcing any thread that faults on this page to block until the fictitious page is 
removed. At this point the faulting thread sends a memory_object _data _request message that is queued after the 
memory_object _data_write message, thus serializing the messages and leaving it to the pager to maintain 
serialization. 

4-30 



Mod'ule 4 - Virtual Memory 

The original page is put into a new object just in case the pager does not complete the pageout quickly enough. 
The pager for this new object is set to be the vnode pager and the outgoing page is returned to the domain of the 
pageout daemon. If the page is not deallocated soon enough, then the pageout daemon will give the page to the 
vnode pager for a sure pageout. ' 

The interface to the vnode pager is identical to that of other pagers. However, the pageout daemon is assured that 
the vnode pager will always complete a pageout. Thus the page being paged out is not returned to the domain of 
the pageout daemon, but instead is "wired," assuring that the pageout daemon will keep its hands off of it until the 
vnode pager has paged it out and deallocated it 

The vnode pager needs additional synchronization for serialization with a concurrent pagein request. Since 
pagein requests are short-circuited (are done in the context of the faulting thread as opposed to being handled by 
sending a message to the pager), this serialization, based on message order as described above, doesn't happen 
here. Instead, the vnode pager maintains a hash table of pageouts in progress. When a pagein of an outgoing 
page is attempted, the pagein thread must block until the pageout has been completed so that it does not page in 
stale data. The vnode pager normally pages to ordinary files (via the buffer cache). Thus a pageout effectively 
completes as soon as the page is copied into the buffer cache. 

4-31 



Module 4 - Virtual Memory 

4-22. Memory Objects 

Lazy Evaluation of Object Creation 

.H2S96 4-23. 

> 

list of incore 
pages 

III 

Lazy Evaluation of Object Creation 

> 

vnode pager task 

© 1991 Hewlett· Packard 

Memory objects and vm_objects are both created using lazy evaluation techniques. A vm_allocate system call 
creates a vm _ TrUlp _entry, not a vm _object. The vm _object is created only when a page is actually accessed. Only 
then does the system set up the vm_object and link to it a vmyage structure for the accessed page. The vnode 
pager does not allocate a memory object until the pageout daemon issues a page out request. 

4-32 



Module 4 - Virtual Memory ~ 

Tempor~:-l Memory Objects 

f.~ 
Ytlj 

vstruct structure 
(vnode yager _t) 

.H2S96 4-24. 

.. 
Temporary Memory Objects 

vsymap 

',.f 
(~-) t<·'.o~ pager Jile 

\y/ structure 

112 © 1991 Hewlett-Packard 

In a typical configuration, a fairly small number of paging files is set up for use by the vnode pager to back the 
pages of temporary memory objects. Each of these files is represented by a pager Jile structure, which, among 
other things, gives the vnode for the file and a limit on its size. Each memory object is represented by a vstruct 
structure that indicates on which paging fIle the object is backed. 

vs ymap structures are used to indicate where pages of the object have been stored in the paging file. If the 
object's size is no more than 512 pages, then a single vs ymap is used to map each of the pages to the paging file. 
For larger objects a two-level scheme is used: the frrst vs ymap points to up to 512 vs ymaps, each of which 
contains up to 512 pointers to where pages have been backed in the paging file. 

Note that lazy evaluation is used as much as possible, so that the vsymaps (and space in the paging fIles) are 
allocated only when necessary to back up a page. 

4-33 



Module 4 - Virtual Memory 

4-24. Memory Objects 

Allocating Backing Storage 

------------------~? 

.H2S96 4-25. 

pages in primary 
memory 

Allocating Backing Storage 

Is there room? 

113 

backing store 

© 1991 Hewlett-Plcbrd 

OSP/l takes a liberal approach to the allocation of the backing store: backing store is allocated only when 
necessary, i.e., when a page must be written out This approach differs from the conservative approach used in 
earlier versions of UNIX, in which backing store and virtual memory are allocated at the same time. 

To see the difference between the two approaches, consider an extreme example: a system has 100Mb of primary 
storage and 10Mb of backing store. With the conservative approach, since all virtual memory must have backing 
store allocated for it, at most 10Mb of the primary store can be used. With the liberal approach, a total virtual 
address space of 110Mb can be used: 100Mb in primary memory and 10Mb on backing storage. 

Unfortunately, with the liberal approach one may fmd out at a rather inopportune moment that there is no more 
backing store. Recovery from running out of backing store is not currently handled gracefully. 

4-34 



Module 4 - Virtual Memory 

4-25. Memory Objects 

Vnode Pager Task: Slave Threads 

vstruct 

vstruct 

.H2596 4-26. 114 © 19911Ww1ett-Packard 

V node Pager Task: Slave Threads 

A number of threads (termed "slave threads") exists within the vnode_pager task. Each such thread is responsible 
for a set of memory objects and deals with all requests coming on the memory objects ports for its memory t 

objects. Given a request from a particular port, it looks this port up in the vnodeyort_hash_tabZe to detennine 
the memory object's associated vstruct structure. 

When a memory object is created it must be assigned to a slave thread. This is done by randomly Ch.~ osingg~ an 
index into the array vnode yager _sets. Each entry of this array contains a port set (described in th~module) 
to which the memory object's memory object port is added. Using the port set mechanism, the slave thread 
receives messages sent through any of its memory _ objectyorts. 

4-35 



Module 4 - Virtual Memory 

4-26. Memory Objects 

Vnode Pager Task: Address Space 

kernel map 

pager submap 

.H2S96~27. llS © 1991 Hewiett·Plcbrd 

Vnode Pager Task: Address Space 

The vnode pager is implemented as a very special task. It has a task structure, au_task structure, and contains 
threads, but its address space is the kernel address space. It has access to all of the kernel address space, though 
its private data structures are segregated within a special submap. 

4-36 



Module 4 - Virtual Memory 

4-27. Memory Objects 

Page Replacement 

active list inactive list free list 

.H2S96 4-28. 116 © 1991 Hewlett-Packard 

Page Replacement 

Unlike the architecture-independent address space representation, page replacement is very simple. Each unwired 
page is on one of three lists, each maintained in FIFO order: 

• free list 

• inactive list 

• active list 

Whenever there is a memory shortage, a single kernel thread, the pageout daemon, is woken up by whichever 
thread in the kernel notices the memory shortage. It transfers enough pages from the inactive list to the free list to 
increase the size of the free list to a threshold. It examines each page in turn on the inactive list: if the page's 
reference bit is set, it transfers the page to the end of the active list; otherwise it transfers it to the end of the free 

4-37 



Module 4 - Virtual Memory 

list. If a page's modified bit is set, then the pageout daemon writes the page out to its memory object before it 
transfers the page to the free list ' 

After transferring pages to the free list, the pageout daemon checks to see if the inactive list has enough pages. If 
it does not, it transfers pages from the active list to the inactive list. As it does so, it turns off the pages' reference 
bits. The intent is that, once a page has been placed on the inactive list, it must be proved that this page is needed. 
The proof comes when a thread accesses the page, thus turning on the reference bit Thus non-referenced pages 
eventually go to the free list; referenced pages go back to the end of the active list. 

Pages on the free list may be reclaimed if they are referenced by a page before they are used for some other 
purpose. 

If the hardware does not support a reference bit, a slightly different strategy is used. The translation entries for 
pages on the inactive list are marked invalid, thus forcing a page fault to occur when these pages are referenced. 
The page fault thus proves that the page is needed. These faulted pages are then moved to the end ~f the active 
list. 

4-38 



Module 4 - Virtual Memory 

4-28. Memory Objects 

/Swapping ,/ 

Swapout 

Swapin 

• fetch and wire the kernel stack 

.H2S96 4-29. 117 © 1991 Hewlett·Packard 

Swapping 

Swapping is handled by two kernel threads: a swapout thread and a swapin thread. The page out daemon wakes 
up the swapout thread in response to memory shortages (but no more than once a minute). The swapout thread 
scans the list of all threads and swaps out those nonrunnable, interruptible threads that have been idle for more 
than 10 seconds. 

The OSP/l notion of "swapping out" is somewhat unusual: the thread is marked "swapped out" and its kernel 
stack is unwired. Nothing else happens to the thread immediately. Eventually, however, the pageout daemon will 
claim the pages of this thread. Since its kernel stack is unwired, these pages will be freed as well. 

The swapin thread is responsible for swapping in threads. The swapin thread "swaps in" threads by wiring the 
thread's kernel stack. A swapped-out thread becomes a candidate to be swapped in when it is made runnable. 
Runnable swapped-out threads are placed on a swapin list, the swapin thread is woken up whenever a thread is 
placed on this list. 

4-39 



Module 4 - Virtual Memory 

4-29. Copying and Sharing 

Virtual Copy 

pages belonging 
to vm_object 

.H2596 4-30. 

Virtual Copy 

task A 

> copy 

task A 

pages belonging 
to vm _object 

118 

taskB 

© 1991 Hewlett·Paclwd 

There are many situations in which it is necessary to make a logical copy of a range of pages. For example, after 
a UNIX fork system call, the child process has a copy of the parent's address space. When a task sends a message 
to another task, the recipient receives a copy of the message. A very useful optimization is copy-on-write, in 
which the "copying" is lazily evaluated, i.e., postponed in hope that it will not be necessary. 1\\'0 tasks holding 
logical copies of a page can share the same physical page until one of them modifies it, at which point the 
modifier obtains a copy of the page to modify. 

A thread in task A has just executed a fork system call, creating task B. We focus our attention on a range of 
addresses represented by a single vm _ map_entry in task A, which is "copied" into task B. As long as neither task 
modifies any of the pages in this range, the pages are shared. 

4-40 



Module 4 - Virtual Memory 

4-30. Copying and Sharing 

Virtual Copy Redux 

task A taskB task A taskB taske 

> copy 

.H2S96~31. 119 © 1991 Hewlett-Packard 

Virtual Copy Redux 

Suppose that task B from page NO TAG executes a fork system call, creating task C. If none of tasks A, B, and C 
has modified any pages within the range, then they will continue to share all the pages. 

4-41 



Module 4 - Virtual Memory 

4-31. Copying and Sharing 

Virtual Copy and Modified Pages, part 1 

task A taskB 

.H2S96 4-32. 120 © 1991 Hewlett-Packard 

Virtual Copy and Modified Pages, part 1 

This picture shows the situation of page NO TAG after a thread in task A has modified page 1. To represent the 
pages that a task has modified, and thus those pages that are now private to the task, the system creates a shadow 
object. 

The picture shows the architecture-independent representation of the address spaces for tasks A and B: task A has 
its private version of page 1, but uses the original versions of pages 2 and 3; task B uses the original versions of 
pages 1, 2, and 3. 

4-42 



Module 4 - Virtual Memory 

4-32. Copying and Sharing 

Virtual Copy and Modified Pages, part 2 

task A taskB 

.H2S96 4-33. 121 © 1991 Hewll!tt-Packard 

Virtual Copy and Modified Pages, part 2 

This picture shows the situation in the previous picture after a thread in task B has modified page 2. Another 
shadow object has been created, this time to represent those pages which are private to task B. 

4-43 



Module 4 - Virtual Memory 

4-33. Copying and Sharing 

Virtual Copy and Modified Pages, part 3 

task A taskB taske 

4-34. 122 © 1991 Hewlett-Packard 

Virtual Copy and Modified Pages, part 3 

In this picture, task B has executed a fork system call, creating task C. As long as neither task B nor task C 
modifies any pages, the situation will be as shown here: the two tasks share the version of page 2 referred to by 
the shadow object and use the versions of pages 1 and 3 referred to by the original object. 

4-44 



Module 4 - Virtual Memory 

4-34. Copying and Sharing 

Virtual Copy and Modified Pages, part 4 

task A taskB task C 

.82596 4-35. 123 © 1991 Hewlett-Packard 

Virtual Copy and Modified Pages, part 4 

A thread in task B has further modified page 2, necessitating the creation of still another shadow object to 
represent what are now task B's private pages. 

4-45 



Module 4 - Virtual Memory 

4-35. Copying and Sharing 

Virtual Copy and Modified Pages, part 5 

task A taskB taskC 

.JD596 4-36. 124 © 1991 Hewlett-PicUrd 

Virtual Copy and Modified Pages, part 5 

A thread in task C has modified page 1, resulting in the creation of yet another shadow object 

~ ~ ~ 

;n':l'U I ~ :J 
. . ~''\~ ~~ ~ ~. . .. -
''t t'::: '~ ~ 
~ :1 f I: \1 I 1§-; 
\~:J ~~ ~ tv] 
~ <~ ~ 

4-46 



Module 4 - Virtual Memory 

4-36. Copying and Sharing 

Sharing 

task A 

.H2S96 4-37. 125 © 1991 Hewlett-Packard 

Sharing 

Multiple tasks occasionally share portions of their address spaces with one another. The most straightforward 
representation of this would be for the appropriate vm_map _entry of each task to point to the one vm_object 
representing the shared memory. However, this representation is already taken: it is used for copy-on-write. A 
separate memory map, called the share map, represents the shared memory. This map consists of a vm _map 
structure heading a linked list ofvm_map_entrys, each of which points to a vm_object. The vm_map_entrys of the 
tasks sharing this memory point to the share map (not to vm_objects). 

4-47 



Module 4 - Virtual Memory 

4-37. Copying and Sharing 

Share Then Copy, part 1 

I -

task A task B task C 

.H2S96 4-38. 126 © 1991 Hewlett-Packard 

Share Then Copy, part 1 

Fairly complex memory representations can be achieved by performing numerous copy and share operations. In 
the picture, the original object is shared by tasks A and B. Task B has created a child task C, but this portion of 
the address space is (virtually) copied into task C. 

4-48 



Module 4 - Virtual Memory 

4-38. Copying and Sharing 

Share Then Copy, part 2 
task A task B task C 

.H2S96 4-39. 127 © 1991 Hewlett-Packard 

Share Then Copy, part 2 

Task C has modified page 2 and either task A or task B has modified page 1. 

This picture illustrates why a separate map is needed when tasks share a portion of their address space. An 
alternative representation might be for the vm_map _entrys of tasks A and B to point directly to the vm_object. 
However, this would complicate the creation of the shadow object needed in this model to represent the modified 
copy of page 1. Without a share map, it would be necessary to track down all of the vm _map _ entrys that point to 
a vm _object and then change them to point to the new shadow object. 

4-49 



Module 4 - Virtual Memory 

4-39. Copying and Sharing 

Clipping: Changing Attributes 

> 

.H2S96 4-40. 128 © 1991 Hewlen-PlcbJd 

Clipping: Changing Attributes 

Programmers do not see the organization of the address space imposed by the vm_ map _ entrys. Instead, they see 
the address space as a collection of pages; i.e., the only important boundary is the page boundary (a system call is 
available to detennine the page size). 

In particular, programmers can adjust the protection on arbitrary ranges of pages by using the vmyrotect system 
call. The use of this call might well result in the creation of new vm _map _ entrys to represent the new view of the 
address space. 

This picture illustrates the effect of using vmyrotect to set a range of pages, previously read-write, to be 
read-only. The affected pages span two vm _map _ entrys, each of which must be split in two to allow a read-write 
portion and a read-only portion. 

4-50 



Module 4 - Virtual Memory 

4-40. Copying and Sharing 

Collapsing Objects 
task 2 

.H2S96 4-41. 

Collapsing Objects 

> 

129 

task 1 task 2 

© 1991 Hewlett-PIckard 

Shadow chains can become fairly lengthy after a series of virtual copy operations. A couple of simple rules are 
employed to reduce their length. 

The fIrst rule is that if a vm_object is pointed to by only a single vm_object via a shadow link, then it is not 
necessary to have both objects: they may be combined into a single object 

The second rule is a bit more complicated. If a shadow chain links three vm _objects and all pages of the middle 
object are shadowed by the objects above it, then the middle object is unnecessary and can be eliminated: the top 
object's shadow link is changed to point directly at the bottom object To apply this rule, no pages in either 
vm_ object can be paged out (otherwise it is too cumbersome to determine if the upper object completely shadows 
the lower). 

4-51 



Module 4 - Virtual Memory 

Due to complications with locking, these optimizations can be perfonned only in the context of one task at a time. 
They are done when the shadow links are being traversed anyhow, for instance while a page fault is being 
handled. 

4-52 



Module 4 - Virtual Memory 

4-41. Copying and Sharing 

The Virtual Copy Operation: Permanent Objects 

task A taskB 

vm write - > 

.H2S96 4-42. 130 © 1991 Hewlett-Packard 

The Virtual Copy Operation: Permanent Objects 

As mentioned previously, the virtual copy operation is extremely important It is used as part of: 

• fork 

• message passing 

It is essential that a virtual copy be quick. However, if a permanent object is involved, the standard copy-on-write 
optimization must be performed with care: all changes to the associated virtual memory must be reflected back 
into the pennanent object. 

4-53 



Module 4 - Virtual Memory 

Suppose that a thread in task A uses vrn_write to copy data from its address space into a portion of task B's 
address space, into which a pennanent object (e.g., shared mappings of memory-mapped ftIes or an external 
memory object) has been mapped. If it weren't for the fact that the object was permanent, the vm_write could be 
easily optimized using copy-on-write techniques. For example, task B's vm_ map_entry could be set to point 
directly to the vm_object of task A. However, the copy-on-write optimization will not work in this case because it 
would effectively unmap the permanent object from task B. The system must ensure that changes to this portion 
of task B's address space get back to the permanent memory object 

4-54 



Module 4 - Virtual Memory 

4-42. Copying and Sharing 

Optimizing the Virtual Copy Operation 

.82596 4-43. 

• Three parties are involved: 

- the server (Le. the memory object manager) 

- the client (Le. the task that maps the permanent memory object) 

- the copier (Le. the task that is the target of the virtual copy) 

• From the copier's viewpoint, the mapped object should be a snapshot of its 
state taken at the time of the virtual copy 

131 © 1991 Hewlett-Packard 

Optimizing the Virtual Copy Operation 

Suppose now that we are making a virtual copy of a portion of an address space into which a pennanent object has 
been mapped; the virtual copy is a temporary object, not a pennanent object 

Immediately after a virtual copy operation takes place, both the client and the copier should "see" the original 
value of the object. However, the copier's changes to the object should have no effect on the object itself, but 
should change only the copier's private view of the object. The client's changes to the object, however, must 
affect the object, so that all other clients that have mapped the same memory object see the changes. Furthermore, 
any changes made by any of these other clients, even if they reside on other computers, will be seen by this client 
The major problem is determining whether such changes occurred before or after the virtual copy, and thus 
whether or not they should affect the copier. 

4-55 



Module 4 - Virtual Memory 

4-43. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COPY_DELAY, part 1 

client client 

copy 

copy link 

.82596 4-44. 132 

copier 1 

copy 
object 

© 1991 Hewlett-Packard 

Virtual Copy from Permanent Objects: COPY_DELAY, part 1 

In the simplest case, the memory object manager and all of its clients are on the same machine. Thus the kernel is 
immediately aware of any change made to the object The major concern here is to make certain that all changes 
clients make to the object are reflected in the object itself. The representation of memory after a virtual copy is 
necessarily asymmetric, since the copier's changes to the object are reflected only in the copier's view and backed 
up by a temporary memory object, while the client's changes to the object are sent to the original object 

After a virtual copy, the client's view of the object is unchanged except that, whenever it modifies a page of the 
original object, the kernel must flI'St copy the original version of the page to a copy object in the copier's view. 
The kernel fmds the copy object by following a special copy link. Thus the copier is always assured of seeing the 
original version of the object 

4-56 



Module 4 - Virtual Memory 

4-44. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COPY_DELAY, part 2 

client client copier 1 

copy 

.H2S96 4-45. 133 © 1991 Hewlett-Packard 

Virtual Copy from Permanent Objects: COPY_DELAY, part 2 

In this picture the client has modified page 2, so the original value of page 2 is fIrst copied to the copy object and 
the client now modifies the original. 

4-57 



Module 4 - Virtual Memory 

4-45. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COpy j>ELAY, part 3 
client copier 1 

shadow link 

copy link 

.H2S96~46. 134 © 1991 Hewlett-Packard 

Virtual Copy from Permanent Objects: COPY_DELAY, part 3 

The copier now modifies page 1. A new shadow object is created for the copier and a copy of page 1 is attached 
to it. 

4-58 



Module 4 - Virtual Memory 

4-46. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COPY_DELAY, part 4 

client copier 2 copier 1 

shadow link 

copy link 

.H2S96~47. 135 © 1991 Hewlett-Packard 

Virtual Copy from Permanent Objects: COPY_DELAY, part 4 

The copier OfPage~has executed a fork system call, creating copier 2. 

4/ t/~ 

4-59 



Module 4 - Virtual Memory 

4-47. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COPY_DELAY, part 5 
client copier 3 copier 2 copier 1 

shadow link 
shadow link 

copy link 

.H2S96 4-48. 136 © 1991 Hewlett-Packard 

Virtual Copy from Permanent Objects: COPY_DELAY, part 5 

Starting from the previous picture, the client has fork'd once again, creating copier 3, which must start with the 
same view of the object as that of the client. 

4-60 



Module 4 - Virtual Memory 

4-48. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COPY_DELAY, part 6 
client copier 3 copier 2 copier 1 

shadow link 

copy link 

.H2S96 4-49. 137 © 1991 Hewlett· Packard 

Virtual Copy from Permanent Objects: COpy ~ DELAY, part 6 

The client now modifies page 3. In order to preserve the views of all of the copiers', copies of page 3 are 
propagated across the copy links to each of the copy objects. 

4-61 



Module 4 - Virtual Memory 

4-49. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COpy NONE 
server 

[ object ] 

.H2S96 4-50. 138 © 1991 Hewlett-Packard 

Virtual Copy from Permanent Objects: COpy NONE 

The COPY_DELAY technique does not work if clients on other machines are modifying the objects. The 
problem is that the local kernel does not know whether such changes took place before or after the virtual copy. 
Only the server knows for sure. If the server is not prepared to deal with this uncenainty, then the virtual copy 
must be implemented as a physical copy. That is, we ensure that the copier sees a snapshot of the object taken at 
the time of the copy by physically copying all of its pages at that moment 

4-62 



Module 4 - Virtual Memory 

4-50. Copying and Sharing 

Virtual Copy from Permanent Objects: 

COpy CALL 

[ object 

.H2S96 4-51. 

server 

] 

139 

copy of 
object 

Virtual Copy from Permanent Objects: COpy CALL 

© 1991 Hewlett-Packard 

This technique augments the interface between the kernel and the server so that the server can manage the 
snapshot views of the various copiers.of the object Each time a virtual copy is performed, the kernel notifies the 
server. The server then receives rights to a port that it uses to represent the snapshot. All pages of the object that 
are in primary memory are marked read-only so that the server can handle each write-fault. Thus the server is 
given enough information to allow it to perform the job that the kernel performs with the COpy _DELAY option. 

4-63 



Module 4 - Virtual Memory 

4-51. The Pmap Module 

Pmaps 

.82596 4-52. 

Pmaps 

• The machine-dependent part of the VM system 

• Functions 

-'~,M:::t,,/' ,':"',taini, • 'ng'~e virtual-to-physical mapping for each address space 
(~~~ requIred by the hardware 

- manipulating unmapped physical memory 

140 © 1991 Hewlett-Packard 

The pmap module maintains whatever hardware-mandated data structures are required to map virtual to physical 
addresses. These mappings need not be complete: all that is required is that enough mapping information be 
available to the hardware to satisfy the current reference. 

Following the principle of lazy evaluation, physical mapping information is typically set up on demand, i.e., when 
it is needed to satisfy a reference. As threads within a task reference virtual memory, physical mapping 
information continues to be built up. However, this information may be' deallocated when necessary, for example, 
to cope with shortages of memory. 

The other function of the pmap module is to manipulate physical memory directly. For example, n the kernel 
must copy into an unmapped address space, it must call upon the pmap level to perform this operation. 

4-64 



Module 4 - Virtual Memory 

4-52. The Pmap Module 

Operations Involving Pmaps: Thread Switching 

.H2S96~S3. 

• Leave the context of one thread and enter the context of another 

- trivial if both threads are in the same task 

- otherwise, must leave the old address space (via a call to 
pmap _deactivate) and enter the new address space (via a call to 
pmap _activate) 

141 © 1991 Hewlett-Packard 

Operations Involving Pmaps: Thread Switching 

Calls to pmap _activate and pmap _deactivate must be implemented for each particular architecture. The 
pmap _deactivate call might involve saving some context and, for multiprocessors, removes this processor from 
the list of processors using this pmap. The pmap _activate call might involve setting a hardware register to point 
to a new page table and, for multiprocessors, puts this processor on the list of processors using the new pmap. 

4-65 



Module 4 - Virtual Memory 

4-53. The Pmap Module 

Operations on Pmaps: A Single Address Space 

- insert a physical page at a particular virtual address 

- remove a range of addresses 

• pmap yrotect 

- set the protection attributes for a range of pages 

.H2596 4-54. 142 © 1991 Hewlett-Packard 

Operations on Pmaps: A Single Address Space 

This set of operations affects the address space of a single task. 

• pmap _enter: called as part of the response to a page fault. A new page allocated for the task must be entered 
into the address map immediately, so that a reference to this page can now be completed. 

• pmap _remove: called as part of a vm_deallocate request to ensure that address faults result if the given range 
of addresses is accessed. 

• pmap yrotect: called as part of a vm.J>rotect request to set the desked protection at the hardware level. 

4-66 



Module 4 - Virtual Memory 

4-54. The Pmap Module 

Operations on Pmaps: Physical Pages 

- remove write pennission on all maps to a particular page 

- remove a page from all maps and indicate whether the page has been 
modified 

.H2S96~SS. 143 © 1991 Hewlett-PIckard 

Operations on Pmaps: Physical Pages 

This set of operations affects a physical page and all of the pmaps in which it appears. A pmap _copy_on _write 
message would be called as part of a virtual copy operation to implement copy-on-write semantics. It makes 
certain that write permission is not allowed for this page in all of the maps in which it appears. 

A pmap _remove_all message might be called as part. of a pageout operation. The page is to be removed from all 
pmaps but pmap _remove_all must check to see if the page has been modified via any of these pmaps. If it has, 
the modification is indicated by setting a bit in a global array. 

4-67 



Module 4 - Virtual Memory 

4-55. The Pmap Module 

Forward-Mapped Segmented-Paged Architecture 

pmap 

.H2S96 4-56. 

I segment # 

10 

segment table 
(fully allocated) 

page # offset 
10 12 

144 

Forward-Mapped Segmented-Paged Architecture 

virtual address 

pages 
© 1991 Hewlett-PacUrd 

As an example of a pmap module, we look at a forward-mapped segmented-paged architecture. Virtual addresses 
are divided into three parts: a 12-bit offset within a page (i.e., a page size of 4K), a 10-bit page number (i.e., a 
page table size of lK entries), and a lO-bit segment number (i.e., a segment table size of lK entries). Thus the 
hardware-required memory-mapping structures for an address space are headed by a segment table. Eachpmap 
points to a unique segment table that is fully allocated when the pmap (and hence address space) is created. Page 
tables and pages are allocated as needed. 

4-68 



Module 4 - Virtual Memory 

4-56. The Pmap Module 

PV List 

.H2S96 4-S7. 

PV List 

pv headers 
(pv entry[]) 

pmap 

145 

pmap 

© 1991 Hewlett·Packard 

Operations on physical pages need to be able to fmd all of the pmaps mapping each page. The pv list contains the 
location of each page's pmaps. Given a physical address, an index into the pv _headers array is computed. This 
array is an array of pv _ entrys. Each pv _entry points to a pmap (i.e., one mapping the associated physical page), 
contains the virtual address of this physical page within the pmap-described address space, and points to the next 
pv _entry (if any) referring to another pmap that maps this physical page. 

4-69 



Module 4 - Virtual Memory 

4-57. The Pmap Module 

Pmaps: Sharing Pages 

pmap 
segment table 

pmap 

segment table page table 
.H2S96 4-58. 1<16 

Pmaps: Sharing Pages 

page 
(Physical location 

100(0) 

© 1991 Hewlett-Plclwd 

In our example architecture, page tables are not shared. Thus a page shared by two or more pmaps has multiple 
page-table entries pointing to it If this page is being shared using copy-on-write semantics, then each of the 
page-table entries specifies read-only pennission. 

4-70 

I 



Module 4 - Virtual Memory 

4-58. The Pmap Module 

TLB Shootdown 

.H2S96 4-59. 147 © 1991 Hewlett-Packard 

TLB Shootdown 

Most architectures employ translation-lookaside buffers (TLBs) to speed the translations from virtual address to 
physical address. If the architecture also uses a primary-memory resident data structure (e.g., page table) as the 
source of TLB entries, then the operating system must take care to keep the TLB and this mapping structure 
consistent. In a typical architecture, one might change a memory map by modifying the primary-memory data 
structure, but since the hardware accesses the TLB fIrSt, one must also arrange that the TLB be changed as well. 
This is usually accomplished by invalidating all or part of the TLB, thus forcing a miss when the hardware 
accesses this translation in the TLB and hence forcing a lookup in the mapping structure. 

On a shared-memory mUltiprocessor, one must also be concerned about the consistency of the TLBs on other 
processors. This is an issue when threads of the same task are running simultaneously on different processors or 
when threads of tasks sharing memory are running simultaneously on different processors. The problem is that 
each of these threads may be modifying the memory map, and such changes must be propagated to all TLBs. 

4-71 



Module 4 - Virtual Memory 

With most such multiprocessors, this is not easy: there is usually no notion of interprocessor TLB access. Thus to 
propagate changes to other TLBs one must use interprocessor interrupts to notify software to make these changes. 

Two potential race conditions must be avoided when TLBs are modified across a multiprocessor: 

• if one invalidates a processor's TLB before changing the global page table, and if a thread continues to run on 
that processor, the hardware might reload the TLB from the (unmodified) page table before the page table is 
updated. 

• if the page table is modified fIrst, and if the unmodified affected entry is in the TLB of some other processor, a 
thread accessing another page might force the writeback of the unmodified TLB entry to the page table, thus 
undoing the modification to the page table. 

These race conditions are avoided by "stalling" the other processors long enough to make the changes. 

A detailed discussion of the TLB shootdown algorithm can be found in Black, 1989. 

4-72 



Module 4 - Virtual Memory 

4-59. The Pmap Module 

TLB Shootdown Algorithm 

Initiator: 

lockpmap 

send interrupts to all processors using 
thepmap 

spin on all-processor bit vector, waiting 
for others to acknowledge 

invalidate TLB 

update translation map 

unlockpmap 

.H2S96~. 

TLB Shootdown Algorithm 

148 

Responders: 

clear bit in vector 

wait (spin) for pmap unlock 

invalidate TLB 

return from interrupt 

© 1991 Hewlett-Packard 

The algorithm is actually very simple: fIrst the pmap is locked. This prevents any other thread from making 
changes to the translation map and it prevents any thread using this pmap from entering the running state. 
Attached to the pmap is the list of processors that are currently using the associated address space-these 
processors are running a thread from the pmap's task. Each of these processors (the "responders") is sent an 
interrupt, which it acknowledges by clearing a bit; then they spin, waiting for the pmap to be unlocked (they don't 
lock the pmap themselves, but merely wait for it to be unlocked). Once the fIrst processor (the initiator) 
detennines that all responders have responded, then it can safely invalidate its own TLB and modify the 
translation map (referred to by the pmap). It then unlocks the pmap, notifying the responders that they can 
invalidate their TLBs. 

Note that if multiple tasks are sharing the affected page, this procedure must be repeated for each pmap. 

4-73 



Module 4 - Virtual Memory 

Exercises: 

1. a. 

b. 

2. a. 

b. 

c. 

d. 

3. a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

4. a. 

b. 

c. 

d. 

e. 

5. a. 

b. 

c. 

Under what circumstances is "lazy evaluation" a viable technique? 

Give four examples of how lazy evaluation is used in OSP/I. 

List the components of the VM system. 

What are the three uses of a vm_ map? 

Why might two vm_map_entrys point to the same vm_object? 

What is the purpose of the pmap data structure? 

How is an internal memory object represented? 

When is it created? 

In whose context are pages written to a paging file? 

In whose context are pages fetched from the paging file? 

Is there any difference between the interface to the vnode pager and the interface to an external pager? 

What optimizations are employed to improve the performance of the vnode pager (as opposed to external 
memory object managers)? 

What is an "inactive" page? 

Explain what happens when a thread is swapped out and when it is swapped in. 

How is lazy evaluation used in conjunction with the fork system call? 

When a copy-on-write page is modified, the copy is assigned to the topmost vm_object. Why is it not 
assigned to a lower vm_object? 

Why is it necessary to have share maps, e.g., why not represent read/write sharing by having multiple 
references to the same vm _object? 

Which virtual copy technique is used with objects set up by the mmap system call? Why? 

Under what circumstances does COpy _DELAY not work? 

Explain what must be done at the pmap level in response to a virrual copy operation. 

Explain what must be done at the pmap level in response to a pageout operation. 

Give a detailed answer for the above two questions in terms of the architecture-dependent data structures 
used for the forward-mapped segmented-paged architecture discussed in the notes. 

4-74 



Module 4 - Virtual Memory 

d. Suppose that we have a shared-memory multiprocessor that employs TLBs and forward-mapped 
segmented-paged virtual address translation. Explain what must happen in response to a vm_deallocate 
system call. 

Advanced Questions: 

6. What is the correct response to running out of backing store? 

7. What difficulties would be encountered in replacing the vnode pager with an external pager? 

8. Select an architecture different from the forward-mapped segmented-paged architecture discussed in the 
notes. Sketch the implementation of its pmap module. 

4-75 



Module 4 - Virtual Memory 

4-76 



Module 5 -File Systems 

Module Contents 

1. Representing an Open File ............................................................... 5-4 
Open file data structures 
Coping with parallelism 

2. VIrtual File Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-9 
Representing multiple file system types 
Mounting file systems 
File-system-independent data structures 
File-system-independent flow of control 

3. The Buffer Cache ..................................................................... 5-19 
Multibuffered 110 
Representing the cache 
Maintaining consistency 
Parallelizing the cache 
Interaction with mmap 

4. Directory Path Searching ............................................................... 5-37 
Coping with multiple types of file systems 
Mount points 
Symbolic links 
Concurrency 
Speed 

5. S5 File System ....................................................................... 5-48 
Inodes 
Disk map 
S5 organization 

6. UPS File System ..................................................................... 5-58 
Directories . 
Disk layout 
Parallelization 

7. NFS File System 
NFS semantics 
Server and client implementation 
Mount protocol 
Effects of crashing 
Reliability 
Parallelization 

5-75 

5-1 



Module 5 - File Systems 

Module Objectives 

In order to demonstrate an understanding of the virtual-file-system interface and of OSF!1 's implementations of 
the S5, UPS, and NFS file systems, the student should be able to: 

• explain the use of the reference count in the system file table entries 

• explain the roles of the vfsops and vnodeops data structures and the abstraction of the file system concept 

• describe how the buffer cache has been parallelized 

• describe how directories are protected from concurrent updates 

• give the size constraints on files in the S5 and UPS file systems 

• explain how two threads may simultaneously extend the. size of two different files within the same UPS file 
system 

• explain why it is necessary for a NFS server to main$ a queue of recent NFS requests 

5-2 



Module 5 - File Systems 

5-1. The Big Picture 

File Systems 

.H2S96 5-1. 

File Systems 

149 

Mach 

UNIX 
© 1991 Hewlett-Packard 

The file subsystem is part of the UNIX portion of OSF!I. The user interface to the file subsystem is that of UNIX. 
The implementation is primarily based on that of 4.4BSD. What has been added in OSF!1 is the parallelization of 
the file system. 

The VFS implementation is from BSD but has been parallelized. The S5 implementation is from SVR3 and has 
not been parallelized; it is included mainly for compatibility purposes. The UPS implementation is, of course, 
from BSD and has been parallelized. The NFS implementation was originally done at the University of Guelph in 
Canada. It was modified by Berkeley and has been parallelized. 

Some of the material of this module is discussed in chapter 11 of Open Software Foundation, I990a. 

5-3 



Module 5 - File Systems 

5-2. Representing an Open File 

Representing an Open File, part 1 

fil bl system 1 eta e 

· · · · · · · · · · · · 

ref accessbrt: :\ode coun se 

disk 

.H2S96 S-2. ISO 

Representing an Open File, part 1 

active 
vnode table 

- Q; if ~ijJ- b~ 
. \~' ~ 

buffer cache 

© 1991 Hewlett-Packard 

The set of open files is a property of the process as a whole. Thus, while in traditional UNIX the file descriptor 
table appears in the user structure, in OSF!! it appears in the u _task structure. This structure is used to map file 
descriptors representing open files to system fIle table entries. Each system file table entry represents an open fIle. 
As discussed later, each active ftIe (i.e., a fIle that is open or otherwise being used) is represented by a vnode that 
is entered in the active vnode table. Files are accessed via a kernel-supported buffer cache and the file itself is, of 
course, kept on disk. 

5-4 



Module 5 - File Systems 

5-3. Representing an Open File 

Representing an Open File, part 2 
('tMJ<) " 

fIle . table m file table 
o· fdtw i :::.::: .... 
3 : 
4 

n· 

fdrw .. open("x", rw) 

.H2S96 5-3. 

countaccessoffsetvnode 

disk 

lSI 

Representing an Open File, part 2 

In this picture we illustrate what happens when a rtIe is opened. 

© 1991 Hewlett-Paclwd 

The lowest-numbered available file descriptor is allocated from the rtIe descriptor table. Next, an entry in the 
system file table is allocated, and the rtIe descriptor table entry is set to point to the system file table entry. A 
vnode for the rtIe is allocated (or found if it already exists) and the system rtIe table entry is set to point to it 
Additional fields of the system file table entry are initialized, including: 

• a reference count 

• the allowed access (i.e., how the rtIe was opened-read-only, read-write) 

• the offset (i.e., the location within the rtIe at which the next transfer will start) 

5-5 



Module 5 - File Systems 

In a multithreaded environment like OSF/l 's, the reference count takes on particular importance. A reference 
count of 0, of course, means that the entry. is no longer being used. Race conditions, for instance one thread 
closing the file while another thread within the same task accesses the file, must be guarded against. In addition, 
data structures such as the system file table entry must not be deallocated while they are in use. 

To avoid these problems, when the file is open the reference count is set to 2 (1 for the file descriptor table entry 
and I for the thread perfonning the open system call). When the thread returns from the call, it removes its 
reference, reducing the reference count to 1. 

If two threads of the same task concurrently close and write the file, the reference count fIrst goes from 1 to 2 (1 
for the file descriptor table entry and 1 for the thread within the write system call; the file table's reference count 
is incremented by I at the beginning of each 110 system call, except for the close system call). If the close 
system call completes fIrSt, the reference count will be reduced by 1, to eliminate the file descriptor table entry's 
reference. But there still is a reference corresponding to the thread performing the write system call, so the file 
table entry remains allocated and the file remains open until this thread returns from the call. Thus the reference 
count enables the kernel to ensure that the file table entry and file exist as long as a thread is using them. 

Another race condition that must be dealt with concerns the ·individual file descriptor table entries: when a file is 
being opened, we need to ensure that the file is not accessed by any other thread until the open has completed. To 
accomplish this, the file descriptor table entry is not made to point to the allocated file table entry until the open 
completes. However, we must make certain that this file descriptor table entry is not allocated by some other 
thread. Thus, when the file descriptor table entry is allocated it is marked as reserved. Only when the open 
completes is it set to point to the file table entry. 

5-6 



Module 5 - File Systems 

5-4. Representing an Open File 

Representing an Open File, part 3 

fdrw 

fdrw2 -.-.t: 

fdrw == open("x", rw) 
fdrw2 == dup(fdrw) 
write(fdrw, buf, 20) 

.H2S96 5-4. 

ref access" tvnode 
count ouse 

disk 

152 

Student Notes: Representing an Open File, part 3 

active 
vnode table 

© 1991 Hewlett-PIckard 

\ 

Dup was invented to deal with the following problem. By convention, file descriptors 1 and 2 are used for 
processes' normal and diagnostic output Nonnally they both refer to the display, and thus diagnostic output is 
intermingled with normal output Suppose, however, one wanted to redirect both file descriptors so that all 
output, normal and diagnostic, was sent to a file. One might open this file twice, once as file descriptor 1 and 
again as file descriptor 2, thereby creating two system file table entries. As fIle descriptor 1 receives output, the 
offset field of its file table entry advances with each write. After 1000 bytes have been written (sequentially), the 
offset field is set to 1000, representing the current end-of-fIle. 

If at this point a diagnostic message is written to fIle descriptor 2, it will start at the beginning of the file, 
overwriting the data already there, since fIle descriptor 2's fIle table entry's offset is still at O. This outcome is 
certainly not desirable. 

To solve this problem, the dup system call makes file descriptors 1 and 2 both refer to the same file table entry 
and hence. share the offset 

5-7 



Module 5 - File Systems 

5-5. Representing an Open File 

Representing an Open File, part 4 

fdtw 

fdtw2-~ 

fdr-.... :::: 

accessoff: etvnode 
count S 

fdrw ~ open("x", rw) 
fdrw2 - dup(fdrw) 
write(fdrw, buf, 20) 
fdr - open ("x ", r) 
read(fdr, buf, 10) 

.H2596S-S. 

Representing an Open File, part 4 

disk 

153 

In this slide we see the effect of two opens of the same file within the same task. 

5-8 

© 1991 Hewlett-Packard 



Module 5 - File Systems 

5-6. Virtual File Systems 

Generalizing the File System Concept 

.H2S96 5-6. 154 © 1991 Hewlett-Packard 

Generalizing the File System Concept 

In the beginning, UNIX supported only one type of file system. Modem UNIX systems now support multiple f.tle 
system types. To represent different file system types, generalizations of the standard f.tle system data structures 
are used. The scheme adopted in OSP/l is based on Sun's virtual file system (VFS) technology (though the code 
has been entirely rewritten-it is adapted from 4.4BSD). 

5-9 



Module 5 - File Systems 

5-7. Virtual File Systems 

Virtual File Systems (VFS) 

.H2S96 5-7. 

Virtual File Systems (VFS) 

root 

quotactl 

statfs 

sync 

fhtovp 

vptofh 

init 

155 © 1991 Hewlett-Packard 

VFS is the abstraction of a fIle system that provides a common interface to many different file systems. OSP/l 
currently supports the local UNIX fIle systems (S5 and UPS) and a reimplementation of Sun's NFS. 

Each instance of a file system is represented by a mount structure. The interface to the file system is represented 
by an array of entry points, the vjsops array, that is attached to the mount structure and defines operations on the 
file system as a whole. 

5-10 



Module 5 - File Systems 

5-8. Virtual File Systems 

Vnodes 

vnodeops 
'" 

.H2S96 5-8. 156 © 1991 Hewlett-Packard 

Vnodes 

Vnodes are the abstractions of files. They represent individual files; they contain generic infonnation about files 
and refer to the file-system-specific information on files (to inodes for UNIX files and to nfsnodes for NFS files). 
They also provide access to the various operations on the files--each vnode refers to an array of entry points 
called vnodeops. 

5-11 



Module 5 - File Systems 

5-9. Virtual File Systems 

Mounting File Systems,part 1 

unix etc usr mnt 

.H2S965-9. 157 

Mounting File Systems, part 1 

dev 

ftIe system 
2 

© 1991 Hewlett· Packard 

To place a file system in the tree structure directory hierarchy, one must mount it A ftIe system as a whole is a 
device that is named as a special file in the / dev directory. In order that the contents of this device be treated as 
files, they must be made to appear in the directory hierarchy. 

5-12 



Module 5 - File Systems 

5-10. Virtual File Systems 

Mounting File Systems, part 2 

unix etc usr 

.H2S96 5-10. IS8 

Mounting File Systems, part 2 

mnt dev 

file system 
2 

mount ldev/fl1esystem2 lusr 

© 1991 Hewlett-Packard 

The contents of the file system are placed in the directory hierarchy when one issues the mount command. The 
mount command superimposes the root directory of the file system on top of the directory given in the mount 
command. Any attempt to follow a path to this directory leads one instead to the root directory of the file system. 
Thus the prior contents of the mounted-upon directory become invisible. 

5-13 



Module 5 - File Systems 

5-11. Virtual File Systems 

f\. 

File System Data Structures, part 1 f; , 

) 

t '~.~.'.".~.' .. "~ 
.~~~ v~ ~-
~// 

( ufsmount 
structure 

.H2S96 5-11. 

File System Data Structures, part 1 

159 

vnodes 

© 1991 Hewlett-Pacbrd 

The data structures in this picture show a single mounted file system, the root file system, which happens to be a 
UPS fIle system. The field rootfs points to the mount structure of the root file' system. The mount structure 
points to a file-system-specific mount structure, in this case the UPS mount structure. Each active file within this 
fIle system is represented by a vnode that in tum points to the mount structure. Attached to the vnode is a 
file-system-specific per-file data structure, in this case the inode. The inode represents the file within the UPS file 
sy;tem and is stored pennanently on disk. 

5-14 



Module 5 - File Systems 

5-12. Virtual File Systems 

File System Data Structures, part 2 

mount 
structure 

File System Data Structures, part 2 

160 

Here we see the effect of mounting an NFS file system in the root fIle system of the previous picture. The mount 
structure for this file system is linked to the mount structure of the root fIle system. The mounted file system's 
mount structure also points to the file-system-specific mount structure, in this case the NFS mount structure. The 
vnode of the mounted-upon directory is set to point to the mounted ftIe system's mount structure to represent 
where the file system has been mounted. This mount structure in turn points back to the vnode. Attached to the 
vnodes of the active files of the mounted file system are nfsnode data structures, which represent the remote files. 

5-15 



Module 5 - File Systems 

5-13. Virtual File Systems 

Open and Create: Flow of Control 

.H2S96 5-13. 161 © 1991 Hewlett-Paclwd 

Open and Create: Flow of Control 

Copen is called in the kernel in response to create and open system calls. As shown in the picture, eopen calls 
~, which then calls ulaUoe. On return from these, i.e., after the open rue data structures have been set up, 
eopeliCans vm_open to initiate locating the file in the directory hierarchy. vn_open calls namei, which for each 
directory in the path calls the lookup routine associated with the directory's rue system. The boxes with heavy 
outlines represent indirect references to a routine via a vector such as vnodeops. In particular, VOP _LOOKUP 
means to call the lookup routine listed in the vnodeops array attached to the vnode. 

5-16 



Module 5 - File Systems 

5-14. Virtual File Systems 

Reading and Writing: Flow of Control 

re buffer, count) 

.H2S96 5-14_ 

system file 
table 

162 

Reading and Writing: Flow of Control 

file ops 

rwuio 
set up uio 
structure 

IJIII .. ----111 vn write 

© 1991 Hewlett-Packard 

Most of the work performed in reading and writing a file occurs within the file system. However, some of the 
work occurs at the fIle-system-independent level. The first step in any 110 request is to copy the parameters of the 
110 request into the uio structure (see the next slide). The next step is to fmd the file table entry and the vnode 
and to verify that the user has permission to perform the desired operation. 

An important next step for regular fIles and directories is to lock the file offset in the fIle table entry (using a 
blocking read-write lock) so as to make the operation atomic. This is done to avoid a race condition in which two 
threads that share the same file table entry concurrently access the file. (Locking has been done incorrectly in 
some versions of UNIX.) 

5-17 



Module 5 - File Systems 

5-15. Virtual File Systems 

The Uio Structure 

--~ start aQ(lfe:ss ...... - ..... 

length 

start aQ(lres~s-l--~ 

length • 
• • • • 

• 
start address .... ---I~" ·'l;~ff~r"'s~g~~~~ .~ "":::::::::::::::::::::::::: 

t' t t ~ . It' . ,. t ' ,I' . t ", "t . " t • r 11' t I' • " ' • t,t' 1111111"1111111'111111"1 

struct uio 
length 

struct iovec 

.H2S96 5-15. 163 © 1991 Hewlett-Packard 

The Uio Structure 

The uio structure represents a logical 110 request Its contents represent what needs to be done to complete an 110 
request; these contents are updated as the 110 request progresses through the system. The buffer may, in general, 
be composed of multiple segments, and hence an array of iovec structures is needed to refer to each of the pieces 
of the buffer. This organization is made necessary by the ready and writev system calls, which use such 
multicomponent buffers. 

5-18 



Module 5 - File Systems 

5-16. The Buffer Cache 

The Buffer Cache 

user process 

buf 

.H2S96 5-16. 164 © 1991 ""'lett-Packard 

The ButTer Cache 

The buffer cache has two primary functions. The frrst, and most important, is to make possible concurrent 110 and 
computation within a UNIX process. The second is to insulate the user from physical block boundaries. 

From a user thread's point of view, 110 is synchronous. By this we mean that when the 110 system call returns, the 
system no longer needs the user-supplied buffer. For example, after a write system call, the data in the user buffer 
has either been transmitted to the device or copied to a kernel buffer-the user can now scribble over the buffer 
without affecting the data transfer. Because of this synchronization, from a user thread's point of view, no more 
than one I/O operation can be in progress at a time. Thus user-implemented multibuffered 110 is not possible (in a 
single-threaded process). In OSF/I, however, the user can utilize multiple threads within a task to program 
concurrent 110 and computation. 

The buffer cache provides a kernel implementation of multibuffering 110, and thus concurrent 110 and 
computation are possible even for single-threaded processes. 

5-19 



Module 5 - File Systems 

5-17. The ButTer Cache 

Multi-Buffered 110 

last block 

.H2S96 5-17. 

Multi-ButTered YO 

fetch fIrst fetch second 

~ ~(read-ahead) 

current block 

165 

probable 
next block 

© 1991 Hewlett-Packard 

The use of read-aheads and write-behinds makes concurrent I/O and computation possible: if the block currently 
being fetched is block i and the previous block fetched was block i-1, then block i + 1 is also fetched. Modified 
blocks are normally not written out synchronously but are instead written out sometime after they were modified, 
asynchronously. 

5-20 



Module 5 - File Systems 

5-18. The Buffer Cache 

Maintaining the Cache 

----.. ~~ buffer requests 

free buffers 

~ retu1J1s of no-longer-active buffers 

oldest 

active buffers 

YOlmgest returns of active buffers 

.H2S96 5-18. 166 © 1991 Hewlett-Packard 

Maintaining the Cache 

Active buffers are maintained in least-recently-used (LRU) order in the system-wide LRU list Thus after a buffer 
has been used (as part of a read or write system call), it is returned to the end of the LRU list The system also 
maintains a separate list of hfree·' buffers called the aged list Included in this list are buffers holding 
no-longer-needed blocks, such as blocks from truncated files. 

Fresh buffers are taken from the aged list If this list is empty, then a buffer is obtained from the LRU list, as 
follows. If the fIrst buffer (least recently used) in this list is clean (i.e., contains a block that is identical to its copy 
on disk), then this buffer is taken. Otherwise (i.e., if the buffer is dirty), it is written out to disk asynchronously 
and, when written, is placed at the end of the aged list The search for a fresh buffer continues on to the next 
buffer in the LRU list, etc. 

When a fue is deleted, any buffers containing its blocks are placed at the head of the aged list Also, when 110 
into a buffer results in an 110 error, the buffer is placed at the head of the aged list 

5-21 



Module 5 - File Systems 

In BSD, buffers that have been read (or written) in their entirety are placed at the end of the aged list. The 
assumption is that, since files are nonnally accessed sequentially, these buffers won't be, needed for a while. This 
technique has not been found to improve perfonnance and thus is not used in aSF/I. 

5-22 



Module 5 - File Systems 

5-19. The Buffer Cache 

Accessing the Cache 

vnode block # 

.H2S96 5-19_ 

Accessing the Cache 

buckets 
(array of hash
chain headers) 

167 © 1991 Hewlett-Packard 

Buffers in the cache are accessed via a hash table. In older versions of UNIX, buffers in the cache were identified 
by fIle-system number and block number (within the file system). With remote fIle systems such as NPS, the 
client does not know the block number within the file system, but only knows the block number relative to the 
beginning of the fIle. aSP/l thus uses the address of the vnode and the block number relative to the beginning of 
the fIle to identify blocks of files of not only remote but also local file systems. 

This approach does not work for the indirect blocks and other metadata structures of UNIX fIle systems (both S5 
and UPS). These are identified by the address of the vnode of the underlying file system (i.e. block special fIle) 
and the block number relative to the beginning of the file system. (A possible consistency problem that would 
arise when blocks of open fIles in a mounted fIle system are accessed via the block special interface is prevented 
by not allowing the block special interface to a mounted fIle system to be accessed.) 

In order to improve the performance of operations such as fsync that affect the cached blocks of a particular fIle, 
each vnode heads a list of incore clean buffers and incore dirty buffers. 

5-23 



Module 5 - File Systems 

5-20. The ButTer Cache 

Virtual Buffers 

bufsize - 2K 
bcount - 1.5K 

----------. 
~!!!I!I!![I 

P--... ---tllllla--.. ------. bufsize - 0 
bcount - 0 t---...oI"MI\iilii:il 

..... _--_...... .._--------------_. 
bufsize - 8K 
bcount - 7.5K 

bufsize .... 4K 
bcount= 4K 

bufsize - .5K 
bcount- .5K 

.H2S96 5-20. 

Virtual ButTers 

168 © 1991 Hewlen-Pacbrd 

If buffers were all of the same size and flIes were allocated in fixed-size blocks, then allocating a buffer would be 
trivial. However, the UPS file system allows different fue systems to have different block sizes and, within a file 
system, it allows the last block of a rue to be smaller than the others. 

Each but structure is assigned a maximum-block-size amount of virtual memory (MAXBSIZE .. 8K) for its 
buffer. 

The total amount of real memory allocated for buffers is divided up among the but structures; a possible result is 
that not all buffers will have the maximum 8K of real memory backing them up. If such an underendowed buffer 
is allocated when a full allotment of real memory is needed, space is "stolen" from another but structure's buffer 
(by remapping the memory). Bufstructures without real memory for their buffers are placed on an empty list. If a 
but structure is allocated whose buffer is larger than is needed, its extra space is given to a but structure on the 
empty list. 

5-24 



Module 5 - File Systems 

5-21. The ButTer Cache 

File System Consistency, part 1 

1) 

2) 

3) 

.H2S96 5-2l. 169 © 1991 Hewlett-Packard 

File System Consistency, part 1 

In the event of a crash, the contents of the fIle system may well be inconsistent with any view of it the user might 
have. For example, a progranuner may have carefully added a node to the end of the list, so that at all times the 
list structure is well-fonned. 

5-25 



Module 5 - File Systems 

5-22. The Buffer Cache 

File System Consistency, part 2 

1) 

2) not on disk yet 
r"""",,,,,,,," ... ",,",,,,,,, 

li:.~~t~...L' - ----
3) 

4) CRASH!!! 

5) --~garbage 

.H2S96 5-22 170 

File System Consistency, part 2 

© 1991 Hewlett-Packard 

But, if the new node and the old node are stored on separate disk blocks, the modifications to the block containing 
the old node might be written out fIrSt; the system might well crash before the second block is written out 

5-26 



Module 5 - File Systems 

5-23. The BufTer Cache 

Keeping It Consistent 

.H2S96 5-23. 

Keeping It Consistent 

write this ftrst 

then 

171 © 1991 Hewlett-Packard 

To deal with this problem, system data structures are written out synchronously and in the correct order (i.e., the 
block containing the target of a pointer is updated before that containing the pointer). This is done for directory 
entries, inodes, indirect blocks, etc. 

No such synchronization is done for user data structures: not enough is known about the semantics of user 
operations to make this possible. However, a user process called update executes a sync system call every 30 
seconds, which initiates the writing out to disk of all dirty buffers. Alternatively, the user can open a file with the 
synchronous option so that all writes are waited for; i.e, the buffer cache acts as a write-through cache (N .B. that 
this is expensive !). 

5-27 



Module 5 - File Systems 

5-24. The ButTer Cache 

Parallelizing the ButTer Cache 

Locks: buf structure (blocking) 

free lists (LRU and aged) (spin) 

hash chains (spin) 

Precedence: buf structure> free list 

buf structure> hash chain 

.H2S96 5-24. 172 

Parallelizing the ButTer Cache 

© 1991 Hewlett·Plckard 

The buffer cache is parallelized by using blocking locks on the buffers. Thus many operations may proceed 
simultaneously, as long as they involve different buffers. To avoid race conditions when updating the free lists 
and hash table, spin locks are employed. A partial precedence order on these locks is used, as shown on the slide. 

5-28 



Module 5 - File Systems 

5-25. The ButTer Cache 

Block YO Read 

I thread I 
t 

read I interrupti 

t 
getblk - " 

disk driver -bread find buffer interrupt handler 
(block read) 

-- strategy 

" start I/O 
biodone 

- biowait event "yost(b _ iocomplete) 

- event _ wait(b _ iocomplete) 

.H2S96 5-25_ 173 © 1991 Hewlett-Packard 

Block YO Read 

Note that the use of events avoids the race condition between the biodone and the biowait. the interrupt could be 
handled on a different processor from the one on which the thread calling biowait is running. 

5-29 



Module 5 - File Systems 

5-26. The ButTer Cache 

Block YO Read (pseudocode) 

bread(vnode, bUrno) 

buffer II: getblk(vnode, blkno) 

if (event_posted(buffer ->b_iocomplete)) 

.H2596 5-26. 

retum(buffer) 

VOP _STRAlEGY(vnode, buffer) 

event_ wait(buffer->b_iocomplete) 

retum(buffer) 

174 

Block 110 Read (Pseudocode) 

5-30 

© 1991 Hewlett-Pacbrd 



Module 5 - File Systems 

5-27. The Buffer Cache 

Finding a Block in the Cache 

lock o lock - D - D lock --- - - ... 
event 0 event 0 

hash chain headers 

.H2596 5-27. 175 © 1991 Hewlett-Packard 

Finding a Block in the Cache 

First the thread takes the lock on the hash chain header (simple lock). If it fmds the desired buffer, then it unlocks 
the header and takes the lock on the buffer (blocking lock). If, after the thread waits for the lock, it fmds that the 
buffer no longer contains the desired block, then the thread repeats the procedure from the beginning. 

5-31 



Module 5 - File Systems 

5-28. The ButTer Cache 

Finding a Block in the Cache (pseudocode) 

getblk(vnode, blkno) 

hash(vnode,blkno) 

restart: lock(hash chain) 

.H2S96 5-28. 

for each buffer in chain { 

} 

if (buffer.blkno - blkno) { 

unlock(hash chain) 

lock(buffer) 

} 

if (buffer.blkno :1= blkno) 

unlock(buffer) 

goto restart 

} 

return (buffer) 

1* block is not in cache *1 

unlock (hash chain) 

176 

buffer - getnewbuf( ) 

1* has someone else just now allocated a different 
buffer for the same block? *1 

lock(hash chain) 

if (hash chain has been modified) {/*(check 
timestamps) *1 

} 

if (blkno is in hash chain) { 

return buffer to free list 

unlock (hash chain) 

goto restart 

} 

insert (buf, hash chain) 

unlock (hash chain) 

return (buffer ) 

© 1991 Hewlett-Packard 

Finding a Block in the Cache (Pseudocode) 

Associated with each hash chain is a timestamp that is incremented by one when the hash chain is modified (a 
buffer is either inserted or removed). 

There is a potential race condition when getnewbuf is called: two threads may simultaneously discover that a 
particular block is not in the cache, and both call getnewbufto allocate a buffer for it (and two buffers are indeed 
allocated). Due to the lock on the hash chain, one buffer will be inserted in the hash table [11'st. To prevent both 
buffers (representing the same block) from being inserted, a check has to be made to insure that the buffer being 
inserted is not a duplicate. This check would involve searching the hash chain (again). To minimize the number 
of times this must be done, the current value of the timestamp on the hash chain is compared with its value when 
it was originally ascertained that the block was not present Only if the timestamps are now different is the hash 
chain searched. 

5-32 



Module 5 - File Systems 

5-29. The ButTer Cache 

Getting a New Buffer 

.H2S96 5-29. 

LRU or aged list 
header (free list) 

lock D 

Getting a New Buffer 

177 

D lock 

event D 

D lock. 

event D 

D lock 

event D 

• 
• 
• 

© 1991 Hewlett-Packard 

First the thread takes the lock on the header (simple lock). Then it conditionally takes the lock on the buffer. If 
the buffer is already locked, then the thread skips it and tries the next one. If no buffers are available, then the 
thread sleeps until one is. 

5-33 



Module 5 - File Systems 

5-30. The ButTer Cache 

Getting a New Buffer (Pseudocode) 

.82596 5-30. 

getnewbuf( ) 

lock (free list) 

for each buffer in free list { 

if (lock_try (buffer)) 

break; 

} 

remove buffer from free list 

unlock (free list) 

event_clear (buffer->h_iocomplete) 

retum(buffer) 

178 

Getting a New ButTer (Pseudocode) 

5-34 

© 1991 Hewlen-Plcbrd 



Module 5 - File Systems 

5-31. The Buffer Cache 

Mmap 

address space 

.H2S96 5-31. 

Mmap 

179 

5#:::~~ 
~r-

© 1991 Hewlett-Packard 

The mmap system call is used either to map a rue into a process's address space or to create an anonymous 
memory region. Anonymous memory is shared with all of the process's descendants. 

A mapped file may be private, meaning that changes to the mapped memory are not shared with other processes 
and are not reflected back to the file. 

A mapped file may be shared, meaning that changes to the mapped memory are shared with other processes that 
have a shared mapping of the file, and these changes are reflected back to the file. 

Two important issues arise with mmap. First, does a process that has a private mapping of a rue "see" the 
changes made by processes with shared mappings? In aSF/l, the answer is no. 

5-35 



Module 5 - File Systems 

The other issue involves the simultaneous access of a ftle via mmap and read/write system calls. In the current 
implementation there is a consistency problem, since two copies of blocks of the ftIe may exist in primary 
memory: one in the buffer cache and one in a page frame to which a virtual page has been mapped. 

5-36 



Module 5 - File Systems 

5-32. Directory Path Searching 

Directory Path Searching 

.H2S96 5-32. 

start with root vnode or current-directory vnode 

while (not at end of path) { 

} 

search for next component in file represented by current vnode 

if not found 

terminate 

fetch associated vnode, assign it to current vnode 

ISO 

Directory Path Searching 

© 1991 Hewlett-Packard 

Following directory paths would seem to be quite trivial. The basic algorithm is shown in the picture. However, 
as will be discussed, the actual procedure is fairly complex, and this subsystem is a very important part of the 
operating system. 

5-37 



Module 5 - File Systems 

5-33. Directory Path Searching 

Complications in Directory Path Searching 

.H2S96 5-33_ 

• Multiple file system types 

_. Mount points 

• Symbolic links 

• Concurrency 

• Speed 

181 

Complications in Directory Path Searching 

5-38 

© 1991 Hewlett-Packard 



Module 5 - File Systems 

5-34. Directory Path Searching 

Multiple File Systems 

• The top-level path-searching routine is namei 

• Namei breaks the path into components and, for each component, calls the 
appropriate file system (via VOP _LOOKUP) to look it up in the current 
directory 

.H2S96 5-34. 182 © 1991 Hewlett-Packard 

Multiple File Systems 

One might think that a more efficient technique for following a path would be to give the fIle system lookup 
routine all of the remaining portion of the path so that it can follow it as far as possible. This technique is not 
easy, however, for a number of reasons. 

In NFS, it is up to the client to determine which character separates components; the server is not involved. For 
example, UNIX clients use "I" as the component separator, whereas MS-DOS uses '~'. Only the client can break 
a patbname into its components (though one might argue that the client could pass the component-separator as an 
argument to the server). But, furthermore, mount points are interpreted strictly by the client, and server mount 
points mean nothing to the client. 

5-39 



Module 5 - File Systems 

5-35. Directory Path Searching 

Mount Points 

mount 
structure 

.H2S96 5-35. 

Mount Points 

183 © 1991 Hewlett-Paclwd 

Mount points are encoded in the vnode and mount structures. This system makes it not only possible but 
obligatory that clients view a file system independent of mounts done by the server. Namei tests each directory it 
encounters to determine if it is a mount point; if it is, namei calls the mounted file system's VFS_ROOT routine to 

obtain its root vnode. 

A related scenario is following "'0" links out of a mounted file system. In this case, namei consults the mounted 
file system's mount structure to fmd the address of the vnode that it covers, and then it follows that directory's " .. " 
link of the directory represented by that vnode. 

5-40 



Module 5 - File Systems 

5-36. Directory Path Searching 

Symbolic Links 

/B/C/G c:::::::»/ AIE/F/G 

.H2S96 5-36. 184 © 1991 Hewlett·Pacbrd 

Symbolic Links 

If a vnode marked as a symbolic link is encountered, then the file system's VOP _READLINK routine is called to 
get the link. The routine replaces that portion of the path that has already been followed with the value of the 
symbolic link, and then restarts the search from the beginning of the newly modified path name. 

To avoid loops caused by careless placement of symbolic links, no one path may be composed of more than 
MAXSYMLINKS (32) symbolic links. 

5-41 



Module 5 - File Systems 

5-37. Directory Path Searching 

Concurrency 

Must guard against two types of race conditions: 

• a directory is modified while it is being searched 

• . a directory is modified after a lookup, but before the result is acted upon 

.H2S96 5-37. 185 © 1991 Hewlett-Plclwd 

Concurrency 

OSF/l deals with the fIrSt case by requiring that a thread hold a read lock on a directory while searching it and 
hold a write lock on the directory while modifying it 

TImestamps are used to deal with the second case. Each time a thread modifies a directory, it increments the 
directory's timestamp by one. When a thread searches a directory it records the directory's current timestamp. 
Before the thread modifies a directory, it compares the timestamp it obtained in the lookup request to the 
directory's current timestamp. If the timestamps are different, then the directory must have been modified since 
the lookup, and the thread repeats the lookup. If the lookup fails a second time, then the operation fails. 

For example, suppose two threads issue concurrent delete requests for the same directory entry. The net result 
should be that one succeeds and the other fails. Both threads do a successful lookup of the entry and one thread 
succeeds in deleting the entry. The other thread will note before it attempts to remove the entry that the timestamp 
has changed. It will thus repeat the lookup, the lookup will fail, and so the delete system call will fail. 

5-42 



Module 5 - File Systems 

An example of the destructive effects of the second race condition is the following set of operations, each 
perfonned by a separate thread: 

thread 1: nn IA 

thread 2: nn IA 

thread 3: cp Ie IB 

The two rms are executed concurrently: both threads do a successful lookup to detennine that I A exists; as a side 
effect the lookup returns the position of the component A within the I directory. This lookup is performed while 
holding a read lock; thus both threads can do it in parallel. Modifying the directory to delete the entry A, 
however, requires an exclusive write lock. Thus one thread blocks while the other thread removes the entry A. 
However, it happens that innnediately after thread 1 removes entry A, thread 3 creates the entry B in the directory 
slot just vacated by A. When thread 2 wakes up and completes its operation, it removes what it thinks is entry A 
but is in fact entry B. 

5-43 



Module 5 - File Systems 

5-38. Directory Path Searching 

Speed 

• Fancier file-naming facilities result in longer lookup times 

• Solution: more caching 

.H2S96 5-38. 186 © 1991 Hewlett-Packard 

Speed 

4.2BSD added many new facilities not present in.earlier versions of UNIX. One result of these additions was that 
4.2BSD was considerably slower than 4.1BSD. Kernel profiling showed that approximately 250/0 of system time 
spent in the kernel was spent in routines translating directory paths. This was much too much time for such 
chores, so to speed things up, two forms of caching were introduced. Both forms were designed for use with the 
UPS fIle system, but may be used with any file system. With the addition of the two types of caching, the system 
time devoted to name translation dropped from 25% to less than 10%. 

5-44 



Module 5 - File Systems 

5-39. Directory Path Searching 

The Lookup Cache 

lookup cache 

vnode table 
.H2S96 5-39. 187 © 1991 Hewlett-Packard 

Lookup Cache 

The lookup cache is a cache of the most recent component-name-to-vnode translations. Searching a directory for 
a component name can be expensive, so the most recent lookups are kept in a cache. (Note that this is not a cache 
of path names, but merely of component names.) 

A vnode reference presents a problem in representing the result of a translation. If the cache contains actual 
"reference-counted" references to the vnode, then the reference count on vnodes themselves remains positive, and 
incore vnodes are not freed. (SVR4 actually does employ this technique: when the system is low on available 
vnodes, it makes a pass through the cache and frees those vnodes whose only reference is due to the cache.) 

The aSP/l cache, derived from 4.4BSD, contains "soft" references to vnodes, i.e. references that do not show in 
the reference count The problem here is that if a file is deleted and its vnode reused for another file, the cache 
continues to contain a reference to the vnode in its previous incarnation, since there is no indication in the vnode 
that a cache entry refers to it To deal with this, vnodes and the cache contain capabilities (version 

5-45 



Module 5 - File Systems 

numbers)-32-bit integers. Each vnode has an assigned capability. When the vnode is invalidated, the version 
nu~ber is incremented by one. Each cache translation also contains a version number, which is set equal to that 
of the vnode. If the version numbers do not match when the translation is accessed, then the cache entry is 
considered invalid and is flushed. Berkeley's figures indicate that this cache has a "hit rate" of 70-800/0. 

5-46 



Module 5 - File Systems 

5-40. Directory Path Searching 

The Search Cache 

i 

.H2S96 5-40. 188 © 1991 Hewlett-Packard 

The Search Cache 

The second fonn of caching deals with repeated lookups of one directory. Consider a command such as Is -1: its 
implementation involves reading the contents of the directory, then performing a stat system calIon each entry. It 
takes time proportional to i to search for the ith entry, since the search always starts at the beginning of the 
directory. Thus, for n entries, time proportional to n2 is needed to fmd each entry in the directory. For a large 
directory this could be rather significant 

By storing in the inode the offset of where the last search terminated, a linear algorithm for Is -1 (and others) can 
be devised, since the search for the next item in the directory will start where the previous item was found. 

Note that 4.2BSD and 4.3BSD stored the offset in the user structure. This approach seems better, especially if 
multiple threads are each doing the equivalent of Is -Ion the same directory. However, storing the offset in the 
inode makes this technique work when Is -1 is applied to directories other than the current directory (i.e., when 
each directory lookup involves searching a path). 

The search cache has a "hit rate" of 5-15%. 

5-47 



Module 5 - File Systems 

5-41. S5 File System 

The S5 File System 

The original UNIX file system: 

• extremely simple 

• no attempt to optimize the layout of files 

.H2S96S-41. 189 © 1991 Hewlett-Packard 

The S5 File System 

The S5 fIle system, provided primarily for compatibility reasons, is generally always slower than the UPS file 
system. However, it has a few things in common with the UPS fIle system, in particular the notion of inodes 
(including the disk map). 

5-48 



Module 5 - File Systems 

5-42. S5 File System 

Inodes 

inode 

t{ : 
I ----f> :. 

1 

o~· 
~I~ 

.H2596 5-42. 190 © 1991 Hewlett-Packard 

Inodes 

Inodes are the focus of all file activity, i.e., every access to a file must go through the inode. Every file has a 
inode on pennanent storage; this on-disk inode is of type struct dinode in the S5 file system. All open files, 
current directories, mounted-on directories, and the root have incore inodes of type struct S5inode. Once brought 
into primary storage, an inode stays there until its associated file is deleted or its storage is needed for some other 
purpose. 

5-49 



Module 5 - File Systems 

543. S5 File System 

Disk Map 

.H2S96 S-43. 

Disk Map 

The purpose of the disk-map portion of the inode is to map block numbers relative to the beginning of a fIle into 
block numbers relative to the beginning of the file system. An S5 file system may be configured with a 512-byte, 
lK-byte, or 2K-byte block size. We assume a lK block size from here on. 

The disk map consists of 13 pointers to disk blocks, the fIrst 10 of which point to the fIrst 10 blocks of the file. 
Thus the fIrst 10Kb of a file are accessed directly. If the file is larger than 10Kb, then pointer number 10 points to 
a disk block called the indirect block. This block contains up to 256 (4-byte) pointers to data blocks (i.e., 256Kb 
of data). If the file is bigger than this (256K + 10K - 266K), then pointer number 11 points to a double indirect 
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data blocks (64Mb of 
data). If the file is bigger than this (64Mb + 256Kb + 10Kb), then pointer number 12 points to a triple indirect 
block containing up to 256 pointers to double indirect blocks, each of which contains up to 256 pointers pointing 
to single indirect blocks, each of which contains up to 256 pointers pointillg to data blocks (potentially 16Gb, 
although, as will be discussed, the real limit is either 2Gb or 4Gb). 

5-50 



Module 5 - File Systems 

The structure of the UPS file system is similar, except that the block size is either 4K or 8K and the disk map 
consists of 15 pointers, the fIrst 12 of which point to the fIrst 12 data blocks. Because of the larger block size, the 
triple indirect block is unusable, since the double indirect block can represent a file size larger than 4Gb. A hard 
limit on file size for 32-bit architectures is 4Gb (or perhaps 2Gb, depending on one's feelings about sign bits), 
since the offset into a file must fit in a word! 

This data structure allows the efficient representation of sparse files, i.e., files whose content is mainly zeros. 
Consider, for example, the effect of creating an empty file and then writing one byte at location 2,000,000,000. 
Only four disk blocks are allocated to represent this file: a triple indirect block, a double indirect block, a single 
indirect block, and a data block. All pointers in the disk map, except for the last one, will be zero. If the file is 
read, all bytes up to the last one will read as zero. This is because a zero pointer is treated as if it points to a block 
containing all zeros: a zero pointer to an indirect block is treated as if it points to an indirect block filled with zero 
pointers, each of which is treated as if it points to a data block filled with zeros. However, one must be careful 
about copying such a file, since conunands such as cp and tar actually attempt to write all the zero blocks! (The 
dump command, on the other hand, copes with sparse files properly.) 

The units of the pointers in the disk map in the S5 file system are in blocks (IK). For the UPS file system, the 
units are in fragments that can be any multiple of 512 bytes, "from 512 bytes to 8K bytes (this value is fixed for 
each instance of the file system). 

5-51 



Module 5 - File Systems 

5-44. SS File System 

Directory Structure 

.82596 5-44. © 1991 Hewlett-Packard 

Directory Structure 

·5-52 



Module 5 - File Systems 

5-45. S5 File System 

S5 Directory Format 

inode number I component name I 
directory entry 

117 unix 

4 etc 

18 u 

36 mnt 

93 dev 

.H2S96 5-45. 193 

S5 Directory Format 

© 1991 Hewlett-Packard 

The S5 directory consists of an array of pairs of inode number and component number. An important restriction is 
that the component name may be no longer than 14 bytes, thereby making a fIxed length fonnat possible. Note 
that identifying a fIle requires a reference to the flie system as well as the inode number, but only the latter is 
supplied in each directory. The fIle system is assumed to be the one that contains the directory. Thus the only 
way a path can cross a ftIe system boundary is via mount points. 

5-53 



Module 5 - File Systems 

5-46. S5 File System 

File System Layout 

Superblock 

Bootblock 

.H2S96 5-46. 194 © 1991 Hewlett-PIckard 

File System Layout 

• Bootblock 

- used on some systems to contain a bootstrap program 

• Superblock 

- describes the file system: 

• total size 

• size of inode list (I-list) 

• header of free-block list 

• list of free inodes 

5-54 



Module 5 - File Systems 

• modified flag 

• read-only flag 

• number of free blocks and free inodes 

• resides in a buffer borrowed from the buffer cache while the file system is mounted 

• I-list 

- area for allocating inodes 

• Data region 

- remainder of file system is for data blocks and indirect blocks 

A problem with this organization is that the I-list and the data region are separated from each other. Since one 
must always fetch the inode before reading or writing the blocks of a fIle, the disk head is constantly moving back 
and forth between the I-list and the data region. 

5-55 



Module 5 - File Systems 

5-47. S5 File System 

Free Block List 

1/ 
\~ 

mC~l~ ________ ~ 

mCArn~lc:::::::=r------~. 

(and free block) 

.H2S96 5047. 195 © 1991 Hewlett-P.cbrd 

Free Block List 

Free disk blocks are organized as shown in the picture. The superblock contains the address of up to NICFREE (-
1(0) free disk blocks. The last of these disk blocks contains NICFREE pointers to additional free disk blocks. 
The last of these pointers points to another block containing up to NICFREE free disk blocks, etc., until all free 
disk blocks are represented. Thus most requests for a free block can be satisfied by merely getting an address 
from the superblock. When the last block reference by the superblock is consumed, however, a disk read must be 
called to fetch the addresses of up to 100 more free disk blocks. Freeing a disk block results in reconstructing the 
list structure. 

This organization, though very simple, scatters the blocks of files allover the surface of the disk. When allocating 
a block for a rue, one must always use the next block from the free list; there is no way to request a block at a 
specific location. No matter how carefully the free list is ordered when the file system is initialized, it becomes 
fairiy well randomized after the file system has been used for a wpj!e. 

5-56 



Module 5 - File Systems 

5-48. S5 File System 

Managing Inodes 

s inode 

superblock 

.H2S96 5-48. 

15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

196 

mode 
0 

0 
0 
0 

0 

0 

0 

I-list 

© 1991 Hewlett-Packard 

Inodes are allocated from the I-list. Free inodes are represented simply by zeroing their mode bits. The 
superblock contains a cache of indices of free inodes in an array called s _inode (of size NICINOD). When a free 
inode is needed (i.e., to represent a new file), its index is taken from this cache. If the cache is empty, then the 
I-list is scanned sequentially until enough free inodes are found to refill the cache. 

To speed this search somewhat, the cache contains a reference to the inode with the smallest index that is known 
to be free. When an inode is free, it is added to the cache if there is room, and its mode bits are zeroed on disk. 

5-57 



Module 5 - File Systems 

5-49. UFS File System 

The UFS File System 

.H2596 5-49. 

• The goal is to layout files on disk so that they can be accessed as quickly 
as possible and so that no more than a minimal amount of disk space is 
wasted 

• Component names of directories can be much longer than in the S5 ftIe 
system 

• Fully parallelized 

197 © 1991 Hewlett-PIckard 

The UFS File System 

5-58 



Module 5 - File Systems 

5-50. UFS File System 

UFS Directory Format 

record length 
(multiple of 4) 

directory block 

.H2S96 5-50. 198 

UFS Directory Format 

inode number 
string length 
component name 

© 1991 Hewlett-Packard 

UPS allows component names to be up to 255 characters long, thereby necessitating a variable-length field for 
components. Directories are composed of 512-byte blocks and entries must not cross block boundaries. This 
design adds a degree of atomicity to directory updates. It should take exactly one disk write to update a directory 
entry (512 bytes was chosen as the smallest conceivable disk sector size). If it takes two disk writes to modify a 
directory entry, then clearly the disk will crash between the two disk writes! 

Like the S5 directory entry, the UPS directory entry contains the inode number and the component name. Since 
the component name is of variable length, there is also a string length field (the component name includes a null 
byte at the end; the string length does not include the null byte). In addition to the string length, there is also a 
record length, which is the length of the entire entry (and must be a multiple of four to ensure that each entry starts 
on a four-byte boundary). The purpose of the record length field is to represent free space within a directory 
block. Any free space is considered a part of the entry that precedes it, and thus a record length longer than 
necessary indicates that free space follows. IT a directory entry is free, then its record length is added to that of the 

5-59 



Module 5 - File Systems 

preceding entry. However, if the fIrst entry in a directory block is free, then this free space is represented by 
setting the inode number to zero and leaving the record length as is. 

Compressing directories is considered to be too difficult Free space within a directory is made available for 
representing new entries, but is not returned to the fIle system. However, if there is free space at the end of the 
directory, the directory may be truncated to a directory block boundary. 

5-60 



Module 5 - File Systems 

5-51. UFS File System 

How to Do Disk 110 Quickly 

1. Transfer as much as possible with each I/O request 

2. Minimize seek time (i.e. reduce head movement) 

3. Minimize latency time 

Jl2S96 S-Sl. 199 © 1991 Hewlett-Packard 

How to Do Disk YO Quickly 

The UPS file system uses three techniques to improve 110 performance. The fIrst technique, which has perhaps 
the greatest payoff, maximizes the amount of data transferred with each 110 request by using a relatively large 
block size. UPS block sizes may be either 4K bytes or 8K bytes (the size is fixed for each individual file system). 
A problem with using a large block size is the wastage due to internal fragmentation: on the average, half of a 
disk block is wasted for each fIle. To alleviate this problem, blocks under certain circumstances may be shared 
among files. 

The second technique to improve performance is to minimize seek time by attempting to locate the blocks of a fIle 
so that they are near to one another. 

Finally, UPS attempts to minimize latency time, i.e. to reduce the amount of time spent waiting for the disk to 
rotate to bring the desired block underneath the desired disk head (many modem disk controllers make it either 
impossible or unnecessary to apply this technique). 

5-61 



Module 5 - File Systems 

5-52. UFS File System 

UFS Layout 

~ 
me system ~ 

cy linder group 

.H2S96S-S2 200 © 1991 Hewlett-PKbrd 

UFS Layout 

• Superblock (struct Is) 

- incore while the file system is mounted 

- contains the parameters describing the layout of the file system 

- for paranoia's sake, one copy is kept in each cylinder group, at a rotating track position 

• Cylinder group sununary (struct csum, one for each cylinder group) 

- incore while the file system is mounted 

- contains a sununary of the available storage in each cylinder group 

- allocated from the data section of cylinder group 0 

5-62 



Module 5 - File Systems 

• Cylinder group block (struct cg) 

- resides in the buffer cache "as needed" 

- contains free block map and all other allocation information 

Note: the superblock contains two sorts of information, static and dynamic. The static infonnation describes the 
layout of the entire fIle system and is essential to make sense of the fIle system. The dynamic infonnation 
describes the file system's current state and can be computed from redundant ·information in the ftIe system. If the 
static portion of the superblock is lost, then the file system cannot be used. To guard against this, each cylinder 
group contains a copy of the superblock Gust the static information needs to be copied). 

A possible (though unlikely) failure condition might be that the entire contents of one surface are lost, but the 
remainder of the disk is usable. However, if this surface contains all copies of the superblock, then the rest of the 
disk would be effectively unusable. To guard against this, the copy of the superblock is placed on a different 
surface in each cylinder group. Of course, the system must keep track of where these copies are. This 
information is kept in the disk label (along with information describing how the physical disk is partitioned). 

5-63 



Module 5 - File Systems 

5-53. UFS File System 

Minimizing Fragmentation Costs 

.H2596 5-S3. 

• A fIle system block may be split into fragments that can be independently 
assigned to files 

- fragments assigned to a file must be contiguous and in order 

• The number of fragments per block (1, 2, 4, or 8) is fIXed for each fIle 
system 

• Allocation in fragments may only be done on what would be the last block 
of a file, and only if the file does not contain indirect blocks 

201 © 1991 Hewlett-Pacbrd 

Minimizing Fragmentation Costs 

5-64 



Module 5 - File Systems 

5-54. UFS File System 

The Use of Fragments, part 1 

.82596 5-54. 202 

The Use of Fragments, part 1 

file A 

~ fileB 

© 1991 Hewlett-Packard 

This example illustrates a difficulty associated with the use of fragments. The fIle system must preserve the 
invariant that fragments assigned to a file must be contiguous and in order, and that allocation of fragments may 
be done only on what would be the last block of the fIle. In the picture, the direction of growth is downwards. 
Thus file A may easily grow by up to two fragments, but file B cannot easily grow within this block. 

In the picture, file A is 18 fragments in length, file B is 12 fragments in length. 

5-65 



Module 5 - File Systems 

5-55. UFS File System 

The Use of Fragments, part 2 

II file A 

~ fileB 

.H2S96 5-55. 203 © 1991 Hewlett-Pacbrd 

The Use of Fragments, part 2 

File A grows by one fragment 

5-66 



Module 5 - File Systems 

5-56. UFS File System 

The Use of Fragments, part 3 

file A 

file B ~
"""" 

. I ',:. ':, .,1, n '.' 

• ,.' I' ,f .I, 

I l' • I,' , 

.H2S96 5-56. 204 © 1991 Hewlett-Packard 

The Use of Fragments, part 3 

File A grows by two more fragments, but since there is no space for it, the file system allocates another block and 
copies ftIe A's fragments into it. How much space should be available in the newly allocated block? If the newly 
allocated block is entirely free, i.e., none of its fragments are used by other fIles, then further growth by fIle A will 
be very cheap. However, if the fIle system uses this approach all the time, then we do not get the space-saving 
benefIts of fragmentation. An alternative approach is to use a "best-fit" policy: fmd a block that contains exactly 
the number of free fragments needed by file A, or if such a block is not available, find a block containing the 
smallest number of contiguous free fragments that will satisfy file A's needs. 

Which approach is taken depends upon the degree to which the file system is fragmented. If disk space is 
relatively unfragmented, then the fJrst approach is taken ("optimize for time"). Otherwise, i.e., when disk space is 
fragmented, the file system takes the second approach ("optimize for space"). 

5-67 



Module 5 - File Systems 

The points at which the system switches between the two policies is parameterized in the superblock: a certain 
percentage of the disk space, by default 10%, is reserved for superuser. (Disk allocation techniques need a 
reasonable chance offmding free disk space in each cylinder group in order to optimize the layout of fIles.) If the 
total amount of fragmented free disk space (i.e., the total amount of free disk space not counting that portion 
consisting of whole blocks), increases 'to 8% of the size of the file system (or, more generally, increases to 2% less 
than the reserve), then further allocation is done using the best-fIt approach. Once this approach is being used, if 
the total amount of fragmented free disk space drops below 5 % (or half of the reserve), then further allocation is 
done using the whole-block technique. 

5-68 



Module 5 - File Systems 

5-57. UFS File System 

Minimizing Seek Time 

• The principle: 

- keep related infonnation as close together as possible 

- distribute infonnation sufficiently to make the above possible 

• The practice: 

- attempt to put new inodes in the same cylinder group as their directory 

- put inodes for new directories in cylinder groups with "lots" of free space 

- put the beginning of a fIle (direct blocks) in the inode's cylinder group 

- put additional portions of the fIle (each 2Mb) in cylinder groups with 
"lots" of free space 

.H2S96 5-57. 20S © 1991 Hewlett-Packard 

Minimizing Seek Time 

The defmition of "lots of free space" is a greater than average amount of free space, a quantity that is easily 
computed from the (incore) cylinder group sununary. 

5-69 



Module 5 - File Systems 

5-58. UFS File System 

Minimizing Latency, part 1 

.H2S96 5-58. 206 © 1991 Hewlett·Packard 

Minimizing Latency, part 1 

-\ naive way of laying out consecutive blocks of the fIle on a track would be to put them in consecutive locations. 
lle problem with this is that some amount of time passes between the completion of one disk request and the start 

of the next During this time, the disk rotates a certain distance, probably far enough so that the disk head is 
positioned after the next block. Thus it will be necessary to wait for the disk to rotate almost a complete 
revolution for it to bring the beginning of the next block underneath the disk head.· This delay could cause a 
significant slowdown. 

5-70 



Module 5 - File Systems 

This technique is perhaps not as useful today as in the past, since many disk controllers buffer entire tracks and 
hide the relevant disk geometry. 

5-72 



Module 5 - File Systems 

5-59. UFS File System 

Minimizing Latency, part 2 

.H2S96 5-59. 207 

Minimizing Latency, part 2 

stacks of rotationally 
equivalent blocks 

© 1991 Hewlett-Pacbrd 

A better technique is not to layout the blocks on the track consecutively, but to leave enough space between them 
so that the disk will rotate no further than to the position of the next block during the time between disk requests. 

It may be that when a new block is allocated for a flle, the optimal position for the next block is already occupied. 
If so, one may be able to fmd a block that is just as good. If the disk has multiple surfaces (and multiple heads), 
then we can make the reasonable assumption that the blocks underneath each head can be accessed equally 
quickly. Thus the stack of blocks underneath the disk heads at one instant are said to be rotationally equivalent. 
If all of these blocks are occupied, then the next stack of rotationally equivalent blocks in the opposite direction of 
disk rotation is almost as good as the fIrst If all of these blocks are taken, then the third stack is almost as good, 
and so forth all the way around the cylinder. If all of these are taken, then any block within the cylinder group is 
chosen. 

5-71 



Module 5 - File Systems 

5-60. UFS File System 

Parallelization of UFS 

simple lock for updates III 
.. 

"bogus memory" locking for reads 

RW lock for access to file 
simple lock for update of inode 
"bogus memory" locking for reads of inode 

cylinder group 
cgblock protected via lock on buffer (from cache) 

cylinder summary simple lock for updates 
superblock "bogus memory" locking for reads 

.H2S96 5-60. 208 © 1991 Hewlett-Packard 

Parallelization of UFS 

Two sorts of locking are used with UFS, blocking RW locks and simple locks (spin locks): 

1. blocking RW locks (on inodes): used to protect the file across logical operations. I.e., synchronization is 
supplied at the granularity of the operations described by uio structures. As a special case, cg blocks reside in 
the buffer cache and are locked via the blocking lock on the buffer from the cache. 

2. simple locks (spin locks): used to protect important system data structures (inodes, vnodes, and superblocks). 
Modifications to these data structures are always synchronized with simple locks. However, on many 
architectures, such synchronization is not necessary for reads: if the architecture guarantees that 32-bit, 
aligned items can be read atomically, then no locking is required. Thus, for example, a thread can read the 
mode bits from the inode and be guaranteed that they make sense. 

Parallel architectures that do not supply such atomicity guarantees are deemed to have bogus memory. These 

5-73 



Module 5 - File Systems 

cases are dealt with in the source code with the BM macro: BM(lock(x)) expands to lock(x) on bogus-memory 
machines and expands to the null string on other machines. Thus locking is compiled conditionally. 

5-74 



Module 5 - File Systems 

5-61. NFS File System 

Network File System (NFS) 

.H2S96 5-61. 209 

Network File System (NFS) 

, ... ---------~, 
I I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

VFS 

I 
I 

I ,~~ 

,~-----------~ 

© 1991 Hewlett-Packard 

5-75 



Module 5 - IFile Systems 

5-62. NFS File System 

NFS ffighlights 

Servers are stateless: 

• server crash recovery is trivial 

• NFS does not support full UNIX semantics 

• NFS is '"easilf' supported on other operating systems 

.H2S96 5-62. 210 © 1991 Hew1~-Packard 

NFS Highlights 

Since servers contain no infonnation about their clients, crash recovery is trivial in NFS: there is no information to 
be recovered after a crash.. However, some state infonnation is required for implementing certain UNIX 110 calls, 
and thus NFS cannot duplicate UNIX semantics exactly. 

For example, a common technique for creating a temporary fue is for a process to create a fue and then to unlink 
the newly created fue. Since the file is open, it continues to exist even though it has a zero link count (the 
reference count on its vnode is positive). The file is removed only when it is closed. 

If this technique is practiced over NFS, the server does not know that the file is open (since this would be state 
information), and thus removes the fIle as it is unlinked. Since a number of important applications use this 
technique for creating a temporary file, the method must be accommodated. The client-side NFS code (executing 
in the kernel) converts unlink requests into rename requests, changing the name of the file to a temporary name. 
When the client application fmally closes the file, the close is converted into an unlink and the file is removed. 

5-76 



Module 5 - File Systems 

Another example of the difference between UNIX and NFS semantics arises when an application changes the 
access pennissions of an open file. Access checks for UNIX files are perfonned only when the file is opened. 
Thus, if the user successfully opens a file for read-write access and subsequently changes the pennissions to 
read-only, write access to the already open file is still allowed. However, since the NFS server must check access 
permissions with each access to a file, write access would be denied in this case. 

aSF/} (and other UNIX implementations ofNFS) provides only a partial solution to this problem. The NFS 
server allows the owner of a fIle read-write-execute access regardless of the pennissions associated with the file; 
the NFS client filters requests to the NFS server on the basis of how the file was opened. Thus if the file was 
opened successfully for read-write access, then the client side allows read and write calls to be processed. 
However, if the fIle was opened as read-only, then the client side denies write requests. 

A further difference between UNIX and NFS semantics is caused by the fact that NFS clients cache blocks from 
files provided by NFS servers. This means that processes on different machines do not necessarily have a 
consistent view of shared fIles. 

5-77 



Module 5 - File Systems 

5-63. NFS File System 

NFSandRPC 

Issues 

• reliability 

• security 

_______ RPC ____ ~~ 

XDR 

.H2S96 5-63. 211 © 1991 Hewlett-~brd 

NFSandRPC 

The client and server communicate via Sun's RPC protocol. The XDR protocol copes with the heterogeneous 
environment The two major issues are reliability and security. 

The transport protocol is typically UDP, an unreliable protocol. Thus NFS itself must provide reliability. NFS 
accomplishes this by taking advantage of the request/response semantics of the client-server interaction. 

For example, suppose that a client issues a write request but receives no response. The client will repeat the 
request under the assumption that the original request was lost 

However, suppose that it was the response that was lost, and not the request Now the server receives the write 
request twice. This usually presents no problems, because most NFS requests, such as write, are idempotent, 
meaI'ljng that t.h.e effect of performing the request twice is the same as performing it once. The write request is 

5-78 



Module 5 -,File Systems 

idempotent since it contains the location in the fIle to which the data is to be written. However, there are 
additional problems with reliability, as will be seen. 

Security has always been a problem in NFS. The model for authentication is essentially "Trust me." Each NFS 
RPC request contains as part of its header the numeric user id of the caller. Servers refuse requests from the 
superuser but will trustingly honor any other requests. Sun uses an enhanced authentication technique for RPC 
involving a combination of DES and public-key encryption. OSF will deal with such problems through its 
distributed computing environment (DCE). 

5-79 



Module 5 - File Systems 

5-64. NFS File System 

File Handles 

client server 

.H2S96 5-64. 212 © 1991 Hewlett-~brd 

File Handles 

When a rtIe is opened, it is identified by its path name. The NFS server verifies that the file exists, checks that the 
desired access is currently allowed, and returns afile handle that the client will use to identify the file on 
subsequent accesses. Using the file handle for subsequent accesses thus avoids expensive path traversal for each 
access. This file handle is of an opaque data type meant not to be interpreted by the client but only to be passed 
back to the server. 

UNIX servers pass back a handle consisting of: 

• rtIe system number 

• inode number 

• inode generation nwnber 

5-80 



Module 5 - File Systems 

The generation number copes with the confusion that could arise from the reuse of inodes. One client may open a 
file, another delete it, and a third might reuse the inode when it creates an entirely new file. When the fIrst client 
attempts to access the original file, the server must be able to determine that the desired file no longer exists. So, 
when a client reuses an inode, the inode receives a new generation number to distinguish its current use from past 
uses. When a client accesses a no-longer-extant file, a "stale file handle" error message is returned to the client 
The generation number is stored on disk in the inode. 

5-81 



Module 5 - File Systems 

5-65. NFS File System 

Client-Side Caching 

server 

Client C 
.H2S96 5-65. 213 © 1991 Hewlett-PIckard 

Client-Side Caching 

Remote disk blocks are cached in the client's buffer cache. If multiple clients use the same fIle, there may be a 
consistency problem. While it is considered too expensive to keep the various caches consistent, an attempt is 
made to keep things from being too inconsistent In each nfsnode is a copy of the associated remote file's 
attributes (i.e., what is obtained from a stat system call-information such as the fIle's modification time). Every 
time the attributes are fetched from the server, an expiration time of some number of seconds is set (five seconds 
in aSF!I). If the fIle is accessed before the attributes expire, then it is assumed that any locally cached blocks of 
the fIle are valid. If the attributes have expired, the new attributes must be obtained from the server and, if the file 
has been modified, then the locally cached blocks are flushed. (Modified cached blocks are written to the server.) 

The cache is cleaned in response to close, sync, and fsync system calls (fsync is performed synchronously over 
NFS). 

5-82 



Module 5 - File Systems 

5-66. NFS File System 

nfsbiod Processes 

• Concurrent 110 and computation require asynchronous read-aheads and 
write-behinds 

• NFS's RPC requests are synchronous 

• Solution: use additional kernel threads 

.H2S96 5-66. 214 © 1991 Hewlett-Packard 

nfsbiod Processes 

When a process accesses fIles through the buffer cache, concurrency between 110 and computation is achieved by 
exploiting read-aheads and write-behinds. This is easy to do for 110 for local fIles, because the interface to the 
device driver is asynchronous. For example, when reading a fIle sequentially, one can start 110 read requests for 
the current block and the next block without waiting for the request to the latter. When writing a block, the user 
process merely modifies the buffer cache and the file itself is modified later, asynchronously. 

The interface between the client and the NFS server is synchronous, since RPC requests are inherently 
synchronous. To achieve the desired concurrency, separate threads are used on the client to perform many NFS 
client RPC calls. These threads are pre-created and are known as nfsbiod processes (these are user processes that 
have executed the async_daemon system call). Whenever an asynchronous 110 request is desired, the client 
checks to see if an nfsbiod process is available. If so, then the request is given to it to perform in its own context. 
Otherwise, the caller performs the request in the caller's context (and blocks until the request is completed). 

5-83 



Module 5 - File Systems 

5-67. NFS File System 

nfsd Processes 

• Kernel processes that handle NFS requests on the server 

• Must deal with "authentication" and access checking 

.82596 5-67. 215 © 1991 Hewlett-PIcard 

nfsd Processes 

Each server has a number of nfsd processes that handle the incoming RPC requests for NFS. (These are user 
processes that have executed the nfssvc system call.) Unlike the nfsbiod processes, the nfsd processes are 
essential. NFS requests are handled only in their context on the server. When such a process receives a request, it 
acts on behalf of the caller and temporarily assumes its identity. This is accomplished through the use of 
credentials structures, which contain groupids and a userid and are passed to the access-checking routines. 

5-84 



Module 5 - File Systems 

5-68. NFS File System 

Server's Buffer Cache 

update request 

write-through 

server 

.H2S96 5-68. 216 © 1991 Hewlett-Packard 

Server's ButTer Cache 

The server's buffer cache is used for handling client requests, but it is treated as a write-through cache: when an 
nfsd process handles a write request, not only is the cache modified but also the data is written to the disk 
inunediately and the RPC call does not return until the disk-write completes. This technique is consistent with the 
idea that NFS servers are stateless: data that is in the cache but not on disk is state information that the client 
would not want the server to lose if the server were to crash. The client is assured that, when an NFS RPC request 
returns, any requested changes to a file have been reflected on disk. 

5-85 



Module 5 - File Systems 

5-69. NFS File System 

The NFS Mount Protocol 

q 

.H2S96 5-69. 217 © 1991 Hewlett-Packard 

The NFS Mount Protocol 

Like local file systems, in UNIX a remote file system must be mounted in the client's directory hierarchy in order 
to be used. 

In OSF!!, the mount shell command makes an RPC request to the server's mountd process to obtain a file handle 
for the mount point. The mountd process is a user process that implements the server side of the mount protocol 
(the mount shell command implements the client side). Each server maintains in the fetefexports file a list of 
exported file systems and the clients to which they are exported. The mountd process fIrSt makes certain that the 
client is allowed to mount the requested fIle system, then returns to it the file handle for the root of the file system. 
The mount shell conunand then issues a mount system call, passing to the kernel the fue handle and the path 
name of the mount point. 

5-86 



Module 5 - File Systems 

5-70. NFS File System 

. Remote Mounting, part 1 

.H2596 5-70. 

nancy 

/usr/src nancy 
/usr/man nancy 

sluggo:/etc/exports 

Remote Mounting, part 1 

sluggo 

218 © 1991 Hewlett-Packard 

In this picture we have two machines, nancy and sluggo. Sluggo exports two file systems to nancy, identified as 
/usr/src and /usr/man. 

5-87 



Module 5 - File Systems 

5-71. NFS File System 

Remote Mounting, part 2 

nancy sluggo 

nancy% mount sluggo:/usr/man /usr/man 

.H2S96S-71. 219 © 1991 Hewlett-Packard 

Remote Mounting, part 2 

Nancy mounts sluggo's lusT/man on its own lUST/man directory. 

5-88 



Module 5 - File Systems 

5-72. NFS File System 

Remote Mounting, part 3 

nancy 

---------------------------

nancy% mount sluggo:/usr/man lusr/man 

nancy% mount sluggo:/usrlsrc lusr/osrc 

.H2596S-72 220 

Remote Mounting, part 3 

sluggo 

© 1991 Hewlett-Packard 

Nancy now mounts sluggo's lusrlsrc on nancy's lusrlosrc. On sluggo, lusrlsrclsys is a mount point: another file 
system, X, has been mounted here and, from sluggo's point of view, the root directory of this file system is 
superimposed on top of the directory lusrlsrclsys (thus the original contents of this directory are invisible to 
sluggo). However, nancy does not see this mount point. 

The directory (on nancy) I usrl osrcl sys is not mounted upon. Unlike sluggo, nancy sees the actual contents of this 
directory. If it is desired that this mount point exist in nancy's view as it does in sluggo's, then nancy could 
explicitly mount file system X on top of the directory lusrlosrclsys. 

The reasons for not having a client use the server's mount points are partly for security, but mainly for simplicity. 
Suppose on server B, fIle system Y (from server C) is mounted on a directory within file system X and file system 
Z (on the same server as X) is also mounted within fIle system X. If client A mounts X (and thus appears in B's 
/etc/exports list), what would be required for it to be able to follow the mount point to Y on server C? A must 

5-89 



Module 5 - File Systems 

appear in C's /etc/exports list But C has only verified that B is there. If B were to pass on A's requests to C, it 
would have to ensure that C approves of A. Rather than do this complicated checking, the convention is that A 
must mount Y itself. 

Note that it wouldn't be very difficult for B to allow A to follow the mount point to Z, but, again, for simplicity, 
this is not done. 

5-90 



Module 5 - File Systems 

5-73. NFS File System 

When the Server Crashes ••• 

• Hard mounts 

• Soft mounts 

• Interruptible hard mounts 

.H2S96 5-73_ 221 © 1991 Hewlett-Packard 

When the Server Crashes ••• 

The client's response to server crashes depends upon an option specified when the remote file system was 
mounted. If the client specified a hard mount, then any system call involving a rlle on the remote machine blocks 
until the machine comes back up (whether this takes seconds or weeks). Such system calls block uninterruptibly, 
so there is no way to abort the process making the system call. This can be very annoying. 

Another option is the soft mount. Any system calls involving files on the dead remote machine will return 
(eventually) with the error code ETIMEDOUT. This option might seem a good idea, but there are difficulties. A 
number of UNIX applications pay no attention to error returns on 110 system calls (if the open succeeded, there 
could not possibly be any problems with reads and writes ... ). Thus damage may be done because the client is 
unaware of the crash. 

A more reasonable way of mounting the remote rlle system is the interruptible hard mount. With this option, as 
before, system calls involving a rlle on the remote machine block until the machine comes back up, but the wait is 

5-91 



Module 5 - File Systems 

interruptible (Le., by signals). However, the interrupt is not immediate: the underlying RPC layer perfonns many 
retries before checking to see if a signal is pending. 

5-92 



Module 5 - File Systems 

5-74. NFS File System 

More on Server Crashes, part 1 

.H2S96 5-74. 222 © 1991 Hewlett-Packard 

More on Server Crashes, part 1 

Here moe, larry, and curly are the names of NFS servers. Each contains a fIle system that has been mounted, 
respectively, in InjslA, In/siB, and InjslC (i.e., the client has set up its directory hierarchy so that all NFS mounts 
are in one directory). Suppose one's current directory is in the root directory of curly's file system and one 
executes the pwd command. The result should be In/SiC. How does the pwd command work? It determines the 
inode of the current directory (". "), and then searches the parent directory (" .. ") until it fmds the component name 
associated with the matching inode number. It then repeats this procedure backwards along the· path until it 
reaches the root directory. 

However, when a mount point is encountered, the parent directory of the mount point does not contain the inode 
number of the root directory of the mounted file system. Instead, the pwd command must issue the stat system 
call for each entry of the parent directory until it finds the entry that refers to the mounted file system. 

5-93 



Module 5 - File Systems 

Back to our example. Suppose that NFS server moe is down. When the pwd command is executed starting with 
curly's root directory, it will be necessary to stat each of the entries in the In/s directory to determine which of 
them refers to curly. But, since moe is down, the stat call will hang when it is applied to In/sIA. Thus it will be 
impossible to complete the pwd command until machine moe comes back up, even though there is no logical 
connection between the path In/sIC and the machine moe. 

This is especially annoying because both csh and ksh perform a pwd when starting up. 

5-94 



Module 5 - File Systems 

5-75. NFS File System 

More on Server Crashes, part 2 

© 1991 Hewlett-Packard 

More on Server Crashes, part 2 

This picture illustrates a safer NFS mount technique. An extra level of directories has been added so as to avoid 
the problems with pwd. 

5-95 



Module 5 - File Systems 

5-76. NFS File System 

The Problem of (Non)Idempotency 

client 

.H2S96 S-76. 

- remove fIle --------__ 

lost ... 4------ done -

- retransmit of remove fIle ---....... 

... ----------what fIle? -

224 

The Problem of (Non)Idempotency 

server 

© 1991 Hewlett-Packard 

As previously mentioned, NFS is typically implemented on top of an unreliable protocol and thus must implement 
reliability guarantees itself. To accomplish this, it exploits the request/response nature of its interaction: if a client 
receives no response to its request, it assumes that the request was lost and repeats it However, difficulties can 
occur if it was the response that was lost, not the request 

This situation should be no problem as long as the requests are idempotent, as was discussed on page 5-78. 
Certain requests, however, are known to be nonidempotent. For example, suppose that a remove file request is 
repeated because the frrst response was lost The response to the second request indicates an error because the fIle 
no longer exists. But, other than the error, the desired effect has been achieved-the fIle has been removed, 
though the programmer may end up somewhat confused. 

With some cooperation by the server, this sort of nonidempotency, known as nondestructive nonidempotency, can 
be made transparent In the original reference port for NFS, the server maintains a queue of completed 

5-96 



Module 5 - File Systems 

nonidempotent requests and their responses. If a non idempotent request fails, the server checks this queue to see 
if this is a repeat of an earlier request (the RPC headers contain a transmission id (xid) to facilitate this duplicate 
detection). If it is, then the server repeats the previous response. 

However, as the next slide shows, there are other, more subtle cases that are not dealt with. 

5-97 



Module 5 - File Systems 

5-77. NFS File System 

A Problem Case* 

Time Client Activitv 
to process starts 

t1 transmit creat request (CO) 

t2 wait for creat response 

t3 retransmit creat request (Cl) 

t4 receive creat response; process resumes 

t5 transmit write request CWO) 

t6 wait for write response 

t7 wait for write response 

t8 receive write response; process completes 

t9 receive creat response-discard it 

idle 

idle 

Server Activitv 

receive CO; schedule nfsdl 

nfsdl: complete CO, truncate file, send creat response 

receive Cl; schedule nfsdl 

nfsdl: starts but blocks on a system resource 

receives WO, schedules nfsd2 

nfsd2: complete WO, send write response 

nfsdl: complete C 1 , truncate file, send creat response 

idle 

• from "Improving the Performance IDd Co~1 of an NFS Server," by Cbet Juszcrak, Conf~1ICe Prouedi,.gs of 1989 Willie,. USENlX TeclmiCilI Conference. 
Used with permission. 

.H2S96 5-77. 225 © 1991 Hewlett-Packard 

A Problem Case 

A side effect of a creat request is to truncate the fIle to zero length if it already exists. In this example, the 
intention was to truncate the file and then write to it, but the result was the opposite: the file was written to, then 
truncated. The problem is that, though the write request and the creat request are by themselves idempotent, more 
complicated interactions have occurred. TIlat is, idempotency itself is not sufficient. 

5-98 



Module 5 - File Systems 

5-78. NFS File System 

Fixing the Problem 

.H2S96 5-78. 

receive 
request 

petfonn 
request 

Fixing the Problem 

petfonn 
request 

discard 

discard 

226 

yes repeat original 
reply 

© 1991 Hewlett-Packard 

aSF!! solves this problem by using the technique described in the paper referenced on the previous slide. The 
NFS server maintains a cache of active and completed requests. Items stay in this cache for a fmite period (2 
seconds). When the server receives a request, it immediately checks if it is a duplicate of a request still in the 
cache. If it is, and if the original is still in progress, then the duplicate is discarded, i.e. the client timed out 
prematurely. If the original completed successfully, the duplicate is again discarded. (Here we are assuming that 
the response was not lost but that the client again timed out prematurely-from observation, this is the usual case.) 

If the response was indeed lost, the client will continue to retry the request; eventually the original request will 
have been removed from the cache, so that a retry will not be recognized as such and will actually be retried. The 
problem outlined in the previous slide will not occur, since the client does not move on to its next request until it 
finally gets a response from its current request. If the original failed, the server retries the duplicate (there is no 
particular rationale for retrying the duplicate other than that this is the behavior of the original implementation of 
NFS). 

5-99 



Module 5 - File Systems 

5-79. NFS File System 

Optimizing NFS Writes in OSF/l 

buffer 
(from cache) 

.H2S96 s-79. 2Z7 © 1991 Hewlett-Packard 

Optimizing NFS Writes in OSF/l 

Normally (i.e., when using a local fue system), when one writes to a file a span of data that does not fill an entire 
buffer from the cache, the block 110 subsystem frrst reads a whole block, then modifies the desired portion of the 
block. To eliminate the need for these (expensive) reads when writing to an NFS file, the block 110 subsystem 
keeps track of what portion of a buffer has been modified (using two new fields in the buf structure: b _dirtyof/ 
and b _dirtyend). Thus when the buffer is "cleaned," just the modified portion is written to the server. 

This presents a problem if the entire buffer is read by an application before the modified portion is sent to the 
server: consider a situation in which bytes 2048 through 8191 of a file are modified on the client, and no blocks of 
the fue currently reside in the client's cache. An 8K buffer is allocated on the client, but only locations 2048 
through 8191 are written. At this point, a thread on the client attempts to read the entire 8K portion of the file. 
Rather than complicate the client-side code so that it will recognize that it must frrst fetch bytes 0 through 2047 
from the server, the client, whenever it reads from an NFS fIle that it has recently written to, frrst cleans its buffer 

5-100 



Module 5 - File Systems 

cache of blocks from this file (by sending dirty blocks to the server). Then it checks the attributes of the file with 
the server and fetches the block from the server if necessary. 

For further discussion about this implementation of NFS, see Macklem, 1991. 

5-101 



Module 5 - File Systems 

5-80. NFS File System 

Duplicate Detection 

- request---------..... : 

client 

.H2S96 5-80. 

lost ..... __ --- response -

- retransmit ----------[ 

228 

Duplicate Detection 

selVer 

© 1991 Hewlett-Packard 

As mentioned previously, duplicate detection relies on an xid supplied by the RPC level. However, 
retransmissions are perfonned by a pair of nested loops. In the inner loop, retransmissions are done by the RPC 
layer, which does not modify the value of the xid. However, after this loop is perfonned a fmite number of times, 
control passes to the outer loop, which is perfonned by the NFS layer (client side). In the original reference port, 
at each iteration of this loop the xid would change. OSF/ I (which does not have separate NFS and RPC layers, 
but combines them into'a single layer) fixes this by ensuring that the xidnever changes during retransmissions. 

5-102 



Module 5 - File Systems 

5-81. NFS File System 

Parallelization of NFS 

simple lock for updates 
"bogus memory" locking for reads 

RW lock for access to file 
simple lock for update of njsnode 
"bogus memory" locking for reads of nfsnode 

.H2S96 5-81. 229 © 1991 Hewlett-Packard 

Parallelization of NFS 

At the higher levels, the parallelization is very similar to that of UPS: there are blocking RW locks on njsnodes to 
protect access to files at the level of operation described by uio structures. Simple locks are used to synchronize 
updates to vnodes and njsnodes. Reads of these data structures need only be protected on architectures with 
"bogus memory." 

Simple locks are used at lower levels for synchronization of NFS data structures. For example, the client side 
maintains a queue of NFS RPC requests (which are waiting for responses). The server side maintains a table of 
active and completed requests, accessed via a hash table. 

5-103 



Module 5 - File Systems 

Exercises: 

1. Explain the use of the reference count in the system iIle table entries. 

2. a. 

b. 

c. 

3. a. 

b. 

c. 

4. a. 

b. 

5. a. 

b. 

What are the roles of the vjsops and vnodeops data structures in the abstraction of the file system 
concept? 

Some versions of UNIX maintain a "mount table" in the kernel, representing in tabular fonn which file 
systems are mounted where. How is this sort of information represented in OSP/ 1 ? 

Why is it necessary for a thread to hold a lock over the entire period during which it is using the offset 
field of the system file table entry? 

How does the buffer cache facilitate concurrent I/O and computation? 

Why are blocks in the buffer cache identified by vnode and block number? 

What happens when two threads simultaneously access a fIle block that is not currently in the cache? 

How are directories protected from concurrent conflicting updates? 

Explain the concept and use of capabilities in the directory lookup cache. 

What aspects of the operating system limit the maximum possible size of the file? 

What are the performance problems inherent in the standard S5 file system? 

6. a. How is free space represented in a UPS directory? 

b. List the techniques used in the UPS fIle system to improve performance. 

c. What are the two different policies for allocating fragments for a file? Under what circumstances is each 
policy used? 

d. Suppose that two threads are extending the size of two different files within the same file system. What 
data structures need to be protected from concurrent access? What types of locks are employed for this 
protection? Under what circumstances can the two threads proceed without one having to wait for the 
other? 

7. a. List three differences between NFS semantics and UNIX semantics. 

b. Explain how generation numbers are used. 

c. What is the function of nfsbiod processes? 

d. Why is the server's buffer cache accessed in a synchronous write-through fashion? 

e. What are the differences between hard mounts, soft mounts, and interruptible hard mounts? 

5-104 



Module 5 - File ,Systems 

f. Why is it necessary for the server to maintain a queue of recent NFS requests? 

Advanced Questions: 

8. A thread executing an 110 system call involving an ordinary file must obtain blocking locks on the file table 
entry and on buffers in the buffer cache. On a multiprocessor, a simple lock is needed for operations on the 
vnode. Why are all of these locks necessary? Could fewer be used? 

9. On page 5-42, we discuss the use of timestamps to avoid a race condition. Why isn't this race condition dealt 
with by combining the lookup and delete operations into a single operation? 

5-105 



Module 5 - File Systems 

5-106 



Module 6 - Device Drivers and Terminal YO 

Module Contents 

1. Special Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-3 
Identifying devices and drivers 
Flow of control 
Data structures 

2. DynarIlic Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-7 

3. Device Drivers ....................................................................... 6-11 
Sununary of the interface 

4. Tellllinal 110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-23 
Line disciplines 
POSIX session management 
Data structures 
Flow of control 
Pseudo tellllinals 

Module Objectives 

In order to demonstrate an understanding of device drivers and terminal 110, the student should be able to: 

• explain the problem of aliasing in special files and how it is dealt with in OSF/1 

• list the steps necessary to dynamically add a module to the operating system 

• list what has been done in the OSF/l kernel to support internationalization 

• list the data structures supporting tellllinals and sessions 

6-1 



Module 6 - Device Drivers and Terminal YO 

6-1. The Big Picture 

Device Drivers 

I::::::::::::::::' Mach 

c::I UNIX 
.H2S966-1. 230 © 1991 Hewlett-Packard 

Device Drivers 

OSF/l does not provide any device drivers itself, since they are necessarily extremely machine-dependent. 
Device drivers are, however, supplied with the reference ports, and they can be used as a guide for constructing 
one's own device drivers. OSF has added the dynamic configurability and loading of device drivers. In 
particular, one of the reference ports is for a symmetric multiprocessor, and its device drivers provide an example 
of how other device drivers may be parallelized. 

This material is discussed in chapters 17 and 18 of Open Software Foundation, 1990a. 

6-2 



Module 6 - Device Drivers and Terminal YO 

6-2. Special Files 

Devices 

• Accessed via special files 

- block interface ~ 

- character interface ~ 

/ /.--~,. Identified by device number 

/ JJ t\M,~ . ... . /~. , '\ 
. ~ ~I';\P J~ major portIOn Identifies drIver 

/1!J rF OJ / 
~ IJ' . -_ minor portion interpreted by driver 

/ 

.H2S966-2. 

Devices 

I r,.' < ~ I' 
~)

(Jr tf) 
,,1I 

231 

g' ~ l t1 
j 

)'1/ 
\~' 

{)Sf 
~'Lli 

© 1991 Hewlett-Packard 

.. ;h 

. fe' 

Devices are treated as a special fonn of a file in that they are named by paths in the directory hierarchy. A device 
may be accessed via two different interfaces: the block interface, meaning that all access is through the buffer 
cache, and the character interface, meaning that the buffer cache is not used. 

A device is identified by a device number that has two parts: the major portion, identifying the driver, and a minor 
portion to be interpreted by the driver but usually identifying the device, among other things. 

6-3 



Module 6 - Device Drivers and Terminal YO 

6-3. Special Files 

Device YO: Flow of Control 

.H25966-3. 232 © 1991 Hewlett-PacDrd 

Device YO: Flow of Control 

Special flIes are represented by inodes in both the S5 and UFS file systems. However, the vnode set up for the 
inode refers to the vnode operations for special files. Thus, for example, a write system call results in a call to 

spec_write. 

These special fue vnode operations must identify the device driver that controls the device. They do so by using 
the major portion of the device number as an index into the cdevsw table for the character interface and the 
bdevsw table for the block interface. (However, for the block interface, the driver is actually called from the block 
110 routines.) Each entry in the cdevsw and bdevsw tables is a structure containing entry points of the associated 
driver. 

6-4 



Module 6 - Device Drivers and Terminal YO 

6-4. Special Files 

Aliases and Shadows 

specalias 

list 

specinfo specinfo 

si_shadowvp _....,'-..a.. ______ J 

.H2S96 6-4. 233 © 1991 Hewlett·Packard 

Aliases and Shadows 

A difficulty with devices is that one device might have multiple names (speciaZfiZes). This arrangement could 
lead to problems: for example, when a device driver's close routine is called, the driver must be assured that this 
is the last close of the device, regardless of the name used to open it For accesses to a device via its block 
interface, we must ensure that, no matter which name of the device is used, all accesses use the same buffers in the 
cache. 

All vnodes (representing open files) of the same device are linked on a chain headed by a speca/ias structure. The 
actual links are contained in specinj'o structures, which are allocated along with the vnodes when the underlying 
inodes are brought into primary memory. 

Another problem occurs when one block device has multiple names. Since blocks in the buffer cache are 
identified by the pair of vnode address (of the block device) and block number, there would be multiple names for 
each block of the device, one for each of the device's path names. Thus, depending upon which special file is 

6-5 



Module 6 - Device Drivers and Terminal YO 

used to access a particular block, the block would be identified differently in the cache. This problem is avoided 
though the use of shadow vnodes. 

If a device is opened via its block interface, then the system allocates a shadow vnode. If the same device is 
subsequently opened via its block interface but with a different name, then the same shadow vnode is used. This 
vnode is used to refer to the device in all accesses to the buffer cache, thus ensuring consistency. 

A related problem might occur when a mounted file system is accessed via its block special interface. In this 
situation, a single block might have two identities in the cache; it is a block within an ordinary file and it is a block 
within the block device. This problem is dealt with by prohibiting access to a mounted ftle system via its block 
device interface. 

6-6 



Module 6 - Device Drivers and Terminal 110 

6-5. Dynamic Configuration v 
-~ <~/, 

System Configuration ())'JYi . (fr-l.. ,( 

"jIIlP ~5V ? (pIA 
oV:/}/i ,.! Q/ 

(J? I if\// 
/' 'U 1/1 

B ... f' (S /' \ ~J • oot-Ume aCUvatIon 0 driver B D) U) 

• Dynamic loading and configuring of subsystems (OSF/ 1) , 
;;:=- \ 

J 

.H2S96 6-S. 234 © 1991 Hewlett-Packard 

System Configuration 

In BSD-sty Ie autoconfiguration, device drivers are statically linked into the kernel. At boot time, 
autoconfiguration code detennines which devices are present and "activates" the appropriate drivers. 

OSF/l supports dynamic configuration of: 

• device drivers 

• file systems 

• streams modules and drivers 

• network protocols 

Drivers and other modules may be loaded into or unloaded from a running system. 

6-7 



Module 6 - Device Drivers and Terminal YO 

6-6. Dynamic Configuration 

Dynamically Adding a Driver 

file system 

.H2S96~. 235 

Dynamically Adding a Driver 

configure daemon script 

load driver 
configure( ... ) 
mknod( ... ) 

kernel 

© 1991 Hewlett-Packard 

A driver is loaded into the operating system with the aid of the run-time loader, as will be discussed in Module 10. 
The run-time loader links the driver to the rest of the operating system, but the loaded driver is responsible for 
linking the rest of the operating system to itself. 

Each dynamically configurable driver has a configure entry point that is called after it has been loaded. The 
bottom half of the driver, i.e. that portion of the driver that responds to interrupts, must link its interrupt handler 
into the rest of the kernel. It accomplishes this linkage by calling a pair of routines: 

• handler_add registers a new interrupt handler 

• handler _enable "turns on" a registered interrupt handler 

6-8 



Module 6 - Device Drivers and Terminal YO 

The top half of the driver, i.e. that part of the driver called in the thread context in response to system calls, must 
make itself known to the rest of the kernel. It does this by creating entries in one or both of the cdevsw and the 
bdevsw by calling: 

• cdevsw add 

• bdevswadd 

In both cases, the caller either supplies a major device number or is assigned one. 

For further information on dynamic configuration, see chapters I through 6 in Open Software Foundation, 1990a. 

6-9 



Module 6 - Device Drivers and Terminal YO 

6-7. Dynamic Configuration 

Configuring the Interrupt Handler 

itable handlers 

.H25966-7. 236 © 1991 Hewlett-PIckard 

Configuring the Interrupt Handler 

In the BSD kernel, the notion of interrupt vectoring is "wired into" the kernel; i.e., there is no convenient 
technique for adding interrupt handlers dynamically. OSF/l provides an approach for adding and removing 
interrupt handlers dynamically, though the method involves some very machine-dependent facilities and must be 
tailored for each architecture. 

When an interrupt occurs, an interrupt dispatcher is invoked in some machine-dependent fashion. The dispatcher, 
using machine-dependent techniques, consults the itable for the appropriate handler and forwards the interrupt to 
it (i.e. calls it). 

A typical it able might be an array indexed by the interrupt level, as shown in the picture. Each element of the 
array would head a linked list of handlers for interrupts at that level. Chosing the correct handler would depend 
upon machine-dependent information, such as a vector address. 

6-10 



Module 6 - Device Drivers and Terminal YO 

6-8. Device Drivers 

Major Driver Entry Points 

configure 

probe 

attach 

open 

close 

read, write 

strategy 

ioctZ 

intr 

.H2S96 6-8. 

called after a driver has been dynamically loaded to link itself into the rest 
of the kernel 

called at boot time to determine if the device is present; used with 
BSD-style autoconfiguration 

called at boot time after it is known that the device exists to perform device 
initialization; used with BSD-style autoconfiguration 

called on every open of a special file (device) 

called on the last close of a special file 

called to initiate transfers for character special files 

called to initiate transfers represented by buf structures 

called to handle miscellaneous requests to the driver 

called in response to interrupts 

237 © 1991 Hewlett-Packard 

Major Driver Entry Points 

The probe and attach routines are called only at boot time and only with BSD-sty Ie autoconfiguration. If they are 
used, then configure is not needed, and vice versa. 

6-11 



Module 6 - Device Drivers and Terminal 110 

6-9. Device Drivers 

Driver Entry Points: Open 

open(dev, flag, type) 

.H2S966-9. 238 

Driver Entry Points: Open 

• dev: device number (major and minor) 

• flag: flags parameter from the open system call 

- O_RDONLY, O_RDWR, O_NDELAY, etc. 

© 1991 Hewlett-Packard 

• type: indicates whether the character or block interface is being used (this argument is new and rarely used) 

Possible actions: 

• initialize per-device state infonnation 

• "turn on" device 

6-12 



Module 6 - Device Drivers and Terminal YO 

• wait for device to be ready (e.g. wait for carrier-detect) 

• check device status (e.g. opening for write, but no write ring on a tape drive) 

• etc. 

Requirements: return 0 if everything is ok, error code otherwise (e.g. ENXIO if device does not exist, EBUSY if 
device must be used exclusively but is busy) 

6-13 



Module 6 - Device Drivers and Terminal YO 

6-10. Device Drivers 

Driver Entry Points: Close 

close(dev, flag, type) 

·.H2S96 6-10. 239 © 1991 Hewlett-PIckard 

Driver Entry Points: Close 

• dev: device number (major and minor) 

• flag: flags parameter from the open system call 

• type: indicates whether the character or block interface is being used (this argument is new and rarely used) 

Possible actions: 

• tum device "off" 

• hang up phone line 

6-14 



Module 6 - Device Drivers and Terminal YO 

• etc. 

Requirements: none 

6-15 



Module 6 - Device Drivers and Terminal YO 

6-11. Device Drivers 

Driver Entry Points: ReadlWrite 

read( dey, uio), write ( dey, uio) 

.H2S96 6-11. 240 © 1991 Hewlett-PIckard 

Driver Entry Points: ReadlWrite 

• dev: device number (major and minor) 

• uio: pointer to the uio structure describing the request 

Actions: 

• does 110 directly in simplest drivers 

• for terminal 110 drivers: calls line discipline transfer routine 

• for drivers which transfer directly into or out of the buffer provided by the user: calls physio (which fetches 
and wires the user's buffer into primary memory), which then calls strategy 

6-16 



Module 6 - Device Drivers and Terminal YO 

Requirements: 

• if this routine is doing the transfer, it should set uio-> uio _resid to the number of bytes not transferred 

• returns 0 if no errors, or returns an error code (e.g. EIO for an 110 error, EFAULT if an invalid address was 
given for a buffer) 

6-17 



Module 6 - Device Drivers and Terminal 110 

6-12. Device Drivers 

Driver Entry Points: Strategy 

strategy(bp) 

.H2S96 6-12. 241 © 1991 Hewlett-Packard 

Driver Entry Points: Strategy 

• bp: pointer to the buf structure describing the request 

- either initiates the 110 request or queues it for eventual action 

6-18 



Module 6 - Device Drivers and Terminal 110 

6-13. Device Drivers 

Driver Entry Points: loctl 

ioctl(dev, cmd, data, flag) 

.H2S96 6-13. 242 © 1991 Hewlett-Packard 

Driver Entry Points: Ioct) 

• dev: device number (major and minor) 

• cmd: command code (second argument of the ioetl system call) 

- encoded in this command code is a description of the data that needs to be transferred from user to system 
or from system to user; this allows the higher-level code to perform this transfer for all drivers 

• data: pointer to the argument (either in or out) of the ioetl; these are intetpreted differently by each driver 

• flag: flags parameter from the open call 

Possible actions: 

6-19 



Module 6 - Device Drivers and Terminal YO 

• tum tenninal modes 

• rewind a tape drive 

• etc. 

Requirements: return an appropriate error code (usually ENOITY if the command makes no sense) 

6-20 



Module 6 - Device Drivers and Terminal YO 

6-14. Device Drivers 

Driver Entry Points: Interrupt 

intr(dev) 

.H2596 6-14. 243 © 1991 Hewlett-Packard 

Driver Entry Points: Interrupt 

• dev: the hardware device number of the interrupting device, not its major and minor device numbers 

Possible actions: 

• check for and react to errors 

• wake up threads waiting for the 110 completion 

• acknow ledge the interrupt in the controller registers 

Requirements: 

6-21 



Module 6 - Device Drivers and Terminal YO 

• be quick! 

• don't sleep; execution is in the interrupt context and not in the context of any thread 

6-22 



Module 6 - Device Drivers and Terminal YO 

6-15. Terminal YO 

Terminals 

• Internationalization 

• Session control 

• Line discipline technology 

.82596 6-15. 244 © 1991 Hewlett-Packard 

Terminals 

6-23 



Module 6 - Device Drivers and Terminal 110 

6-16. Terminal YO 

Internationalization 

• 8-bit clean 

• Shift-nS support for Asian character sets 

.H2S96 ()'16. 24S © 1991 Hewlett-Packard 

Internationalization 

Earlier versions of UNIX were designed strictly for use with the ASCn character set. This is a seven-bit character 
set and, progranuners being progranuners, the extra eighth bit was used for a variety of purposes. The 
seven-bitJeight-bit problem has been cleaned up in OSP/I, and the entire kernel and all of the libraries are 
eight-bit clean: no special use is made of the eighth bit in characters, and thus eight-bit character sets can be 
supported. 

A much more difficult problem is dealing with character sets in which characters are larger than bytes. OSP/l 
includes support for Shift-nS, but this is not considered the fmal word on the subject and more will be available in 
Release 1.1. 

6-24 



Module 6 - Device Drivers and Terminal 110 

6-17. Terminal YO 

Sessions 

.H2S96 6-17. © 1991 Hewlett-Packard 

Sessions 

POSIX introduced the concept of sessions to clean up the BSD notion of job control. A session is a tenninal 
session, and hence a collection of processes sharing a tenninal. Traditionally there has been the notion of 
foreground processes and background processes: foreground processes are affected by signals generated by key 
strokes, background processes are not Job control is a means for moving processes back and forth between the 
foreground and the background. 

The picture shows three process groups whose names are the process id of their fIrst and founding members. 

• Process A formed the session and spawned processes B, C, and D 

- process A is in its own process group 

- process B formed a new process group with itself as leader (giving its name to the group) and C as another 
member 

6-25 



Module 6 - Device Drivers and Terminal YO 

- process D fonned another new process group and spawned two children that stayed in the group 

• Each process group fonns a "job" that can be suspended or placed in the foreground or background 

• A stop signal suspends a process group 

sent by a thread in another process (usually an ancestor) 

sent by the kernel due to actions on the tenninal (e.g., a background process reading from a terminal) 

all threads within each process of the process group are suspended (using task_suspend) 

• A continue signal (usually from an ancestor) resumes a stopped process 

- if an orphaned process receives a stop sign&l because of actions on the terminal (if, say, it is a background 
process and is reading from the terminal, and thus receives the SIGTIIN signal), it is unlikely that any 
thread will send it a continue signal; such a stop signal should be ignored (the 110 system call will return the 
error EIO). Note that this differs from BSD's solution-in BSD the process would have been sent the 
SIGKILL signal (and hence would have been tenninared) 

the generalization of the orphaned process is the orphaned process group: a process group whose members 
have no parents within the session 

6-26 



Module 6 - Device Drivers and Terminal 110 

6-18. Terminal VO 

Orphaned Process Groups 

.H2S96 6-18. 247 © 1991 Hewlett-Packard 

Orphaned Process Groups 

• If process D tenninates, then the init process adopts processes E and F 

- process group D is thus an orphan, since it has no processes with a parent in the session 

- processes E and F receive the EIO error if they attempt to read from their tenninal 

A process group is considered an orphan if none of its members have an ancestor that is the session leader. Thus 
in the picture, if process C is moved to process group D, then process group D is no longer an orphan. 

6-27 



Module 6 - Device Drivers and Terminal YO 

6-19. Terminal YO 

Terminal Data Structures 

number of process groups vnode structure 
controlling terminal 

leader 
character queues 

session structure state information 

line discipline 

tty structure 

proc structure proc structure 

pgrp structure 
.H2S96 6-19. 248 © 1991 Hewlett-Packard 

Terminal Data Structures 

The jobc qualification field of the pgrp structure is used to indicate whether or not the process group is an orphan 
(and hence not qualified to receive job control). The field contains a count of the number of processes in the 
process group whose parents are both outside of the process group and qualified for job control. 

6-28 



Module 6 - Device Drivers and Terminal YO 

6-20. Terminal YO 

Line Discipline 

.H2S96 6-20. 

Line Discipline 

array of tty 
structures 

(in the device driver) 

linesw 

© 1991 Hewlett-Packard 

This slide illustrates how the device number (from the vnode structure) is used to identify the tty structure and 
hence to identify the entry points into the tenninal's line discipline. Each teoninal device driver maintains a table 
mapping minor device numbers into pointers to tty structures. 

6-29 



Module 6 - Device Drivers and Terminal YO 

6-21. Terminal YO 

Terminal YO Flow 
keyboard 

.H2S96 6-21. © 1991 Hewlett-~brd 

Terminal YO Flow 

When a character is typed on the keyboard, the driver's read interrupt routine (rint) is called (in the interrupt 
context). It determines which line discipline is being used by consulting the tty data structure associated with the 
tenninal. In this example we assume that the standard tty line discipline is being used. Thus control is passed to 
the ttyinput routine. This routine looks at the tty structure to determine the tenninal's mode. If it is in cooked 
mode, then the incoming characters are interpreted as parts of lines of text which may be edited. Characters are 
frrst placed on the raw queue, where they may be edited in response to edit characters. Once a line delimiter (e.g., 
carriage return) is received, the line of text is copied to the can (canonical) queue. Otherwise, if the tenninal is in 
either raw mode or cbreak mode, incoming characters cannot be edited, and are left on the raw queue. If echoing 
is enabled, then the ttyinput routine calls the ttyoutput routine to echo the characters. Since this processing occurs 
in the interrupt context, the intenupted context is resumed after ttyinput returns. 

In the context of a thread performing a read system call; control enters the device driver's read routine which 
consults the tty structure and, in our case, calls the tty line discipline's ttread routine. This routine detennines the 

6-30 



Module 6 - Device Drivers and Terminal YO 

mode of the terminal. If the terminal is in cooked mode, ttread looks in the can queue for characters. Otherwise it 
looks in the raw queue. If there are no characters in the appropriate queue and if blocking is permitted, the calling 
thread blocks until characters are received. If characters are available then they are copied to the user's buffer. 

In the context of a thread performing a write system call, control enters the device driver's write routine, which, in 
our case, calls the line discipline's ttywrite routine. This routine copies characters into the kernel from the user's 
buffer. Those characters requiring no special processing are appended to the out queue. Characters requiring 
special processing are processed by the ttyoutput routine (the primary purpose of this routine is to deal with 
characters not present in the terminal's character set; this routine is rarely needed in modem systems). 

The device driver, usually executing in the interrupt context, transfers characters from the out queue to the device. 

6-31 



Module 6 - Device Drivers and Terminal YO 

6-22. Terminal 110 

Terminal YO Data Structures 

struct clist 

struct cblock struct cblock struct cblock 

.H2596 6-22. 251 © 1991 Hewlett-PIckard 

Terminal 110 Data Structures 

The raw queue, can queue, and out queue of the previous slide are instances of data structures known generically 
as clists, which represent queues of 8-bit characters. The fonnat of the list, shown in the accompanying picture, 
consists of a header followed by a number of fixed-size cbIocks. The cblocks are typically 64 bytes in length, 
with 12 bytes of overhead and 52 bytes of data (c_inj'o). 

Of particular interest is the c_quote, which is used to indicate which characters within c_inj'o have been "quoted," 
meaning that they are not to be interpreted as providing any sort of special function such as erasing a character or 
suspending the process group. In earlier versions of UNIX, such quoting was done by setting the eighth bit of a 
character. However, this technique only works with English character sets. 

6-32 



Module 6 - Device Drivers and Terminal YO 

6-23. Terminal YO 

Pseudo Terminals 

.82596 6-23. © 1991 Hewlett-Packard 

Pseudo Terminals 

Pseudo terminals are used to present a terminal interface to an application that is not connected to a real tenninal. 
As an example, consider a remote-login-type application. In the top portion of the picture, the real terminal is 
connected to machine A, and the user is running rlogin so as to run an application on machine B. This application 
might be an editor, which might attempt to make changes to the terminal's mode, e.g., switch from cooked mode 
to cbreak mode. However, such attempts would fail because it is actually connected to a communication line that 
is different from a terminal and does not respond to requests to change modes. 

One can think of two approaches to this problem. The fIrSt would be to forward the terminal-oriented system calls 
to the machine to which the terminal is connected. The other would be to run the line-discipline code on the 
application's machine (machine B in this example). Berkeley UNIX, and hence OSF/I, use the latter approach. 

A pseudo device driver or a pseudo terminal is set up in machine B's kernel. It appears to the rest of the operating 
system to be a pair of ordinary device drivers, but the pair of drivers communicate with each other instead of with 

6-33 



Module 6 - Device Drivers and Terminal YO 

devices. A user process, in this case the rlogind, communicates with rlogin via the communication line. 
Incoming bytes are written to one of the pseudo devices-the control device. Output through this device is made 
to reappear as input from the slave device, i.e. as if a character had just been received from a terminal. This 
character is then processed by the line discipline code discussed on page 6-30: characters are queued on either the 
raw queue or the can queue. When the application issues a read system call, it receives these characters after 
they have been processed by the line discipline. Output from the application is processed by the line discipline as 
if the characters were being sent to a real terminal, but instead they are made to appear as incoming characters in 
the control pseudo device. These characters are read by the rlogind, which sends them across the communication 
line to rlogin. 

6-34 



Module 6 - Device Drivers and Terminal 110 

Exercises: 

1. a. Is there any difference between a special file whose inode is in an S5 file system and one whose inode is 
in a UPS file system? 

b. Why are the specalias and specinJo structures necessary? 

2. a. List the steps necessary to add a module to the operating system dynamically. 

b. Why is it necessary that dynamically loadable modules have configure routines (for example, why 
couldn't the work performed by the configure routine be performed by user-level code?)? 

3. What are the differences between BSD device drivers and aSP/1 device drivers? 

4. a. What is an "orphaned" process group? 

b. How is it determined what a tenninal's line discipline is? 

c. Explain the relationship between pseudo terminals and device drivers. 

6-35 



Module 6 - Device Drivers and Terminal YO 

6-36 



Module 7 - Streams 

Module Contents 

1. StreaIllS Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-3 
StreaIllS components 
Pipelines 
Multiplexers 

2. Message Flow ....................................................................... 7-17 
Messages 
Standard entry points 
Flow of control 

3. Implementation of StreaIIls ............................................................. 7-23 
Standard data structures 
OSPI I-specific data structures 
Representing an open streaIIl 
Cloning 

4. Parallelization ....................................................................... 7-31 
Synchronization options 
Data structures 
Flow of control 

Module Objectives' 

In order to demonstrate an understanding of the concept of streaIllS and their implementation in OSFI 1, the student 
should be able to: 

• list the three types of streams components 

• list and show the interconnections between the data structures used to represent a streaIllS message 

• explain why it is necessary for streaIIls-oriented service calls to be serialized 

• list the data structures used to represent and access an open stream 

• explain the purpose of cloning 

• list the synchronization options available in the OSP/I implementation of streaIllS 

7-1 



Module 7 - Streams 

7-1. The Big Picture 

Streams 

I::::::::::::::::. Mach 

,::<.:, UNIX 

.H2S96 7-1_ 253 © 1991 Hewlett-Packard 

Streams 

The best general introduction to streams is AT&T, 1989. The OSF/l implementation of streams is discussed in 
chapter 13 of Open Software Foundation, 1990a. 

7-2 



Module 7 - Streams 

7-2. Streams Concepts 

Streams 
. r ~ 

\J'W 

.H2S96 7-2_ 

Streams 

• Kernel analog of the shell concept of a pipeline 9) 
• aSP/l streams are a reimplementation of SVR3 streams, with the 

important addition of parallelization 

254 © 1991 Hewlett-Packard 

A shell pipeline is a unidirectional stream of bytes processed by one or more fllters. A kernel stream is a 
bidirectional stream of messages being processed in one or more modules. The endpoints of a kernel stream can 
be in two user processes, or, most commonly, one endpoint may be in a user process and the other in a device 
driver. 

In shell pipelines, each filter is implemented as a separate process. This technique could be extended to kernel 
streams through the use of kernel threads. However, the original designer of streams, Dennis Ritchie, felt that so 
many streams modules would be active at once that, even with very lightweight kernel threads, a thread per 
module would be too expensive. Thus each module is a collection of procedures that can be called in a variety of 
contexts. Associated with each module are data structures to contain its state, so that the module's execution can 
be started in the context of one caller aIld continued in the context of another. 

7-3 



Module 7 - Streams 

7-3. Streams Concepts 

Stream Components, part 1 

.H2S96 7-3. 25S © 1991 Hewlett-Packard 

Stream Components, part 1 

Each module consists of a set of routines to process data and (possibly) a pair of queues, one for each direction. 

A simple example of a module is one that capitalizes all characters going in either direction. A more complicated 
module might be one that encrypts data going downstream and decrypts data going upstream. 

7-4 



Module 7 - Streams 

7-4. Streams Concepts 

Stream Components, part 2 

_ ~~ I~.te" 
1)v1JY '0;)AJ~ 

.H2S96 7-4. 2S6 © 1991 Hewlett-Packard 

Stream Components, part 2 

Stream head is a special case of a stream module: it supplies the interface to the system-call layer, converts system 
calls into messages sent down a stream, and converts messages arriving from the stream into responses to system 
calls. 

7-5 



Module 7 - Streams 

7-5. Streams Concepts 

Stream Components, part 3 

.H2S96 7-5. 257 © 1991 Hewlett-Packard 

Stream Components, part 3 

A streams driver can be an interface to a real device or can be an interface to other streams, as will be seen. 

7-6 



Module 7 - Streams 

7-6. Streams Concepts 

Stream Setup 

fd = open("/dev/stream_device", O_RDWR); 

.H2S96 7-6. 258 © 1991 Hewlett-Packard 

Stream Setup 

A stream may be created by opening a streams device. 

Streams devices appear as character special devices, i.e., they are identified as special files and have entries in the 
cdevsw. 

A streams device may be read from and written to immediately after being opened, but, at this point, it doesn't 
supply much additional functionality over non-streams devices. 

7-7 



Module 7 - Streams 

7-7. Streams Concepts 

Stream Push 

ioctl(fd, I_PUSH, "module name"); 

.H2S96 7-7. © 1991 Hewlett-Packard 

Stream Push 

A module may be inserted at the top (pushed) by executing an ioetl with the I_PUSH command. Data being sent 
in either direction through the stream will now be processed by the module. 

7-8 



Module 7 - Streams 

7-8. Streams Concepts 

Linking Streams, part 1 

fdtop = open("/dev/top", O_RDWR); 
fdbottom = open("/dev/bottom", O_RDWR); 

.H2S96 7-8. 260 

Linking Streams, part 1 

© 1991 Hewlett-Packard 

In this picture the streams driver module top is a multiplexer; i.e., it is an interface between a stream and other 
streams, not an interface between a stream and a device. 

7-9 



Module 7 - Streams 

7-9. Streams Concepts 

Linking Streams, part 2 

ioctl(fdtop, I_LINK, fdbottom); 

.H2S967-9. 261 © 1991 Hewlett-Plclwd 

Linking Streams, part 2 

The bottom pipeline of the previous picture has been linked beneath the streams driver top. The streams driver 
top now has an upper and a lower part. Part of top's function will be to transfer data from the upper part to the 
lower part and vice versa 

7-10 



Module 7 - Streams 

7-10. Streams Concepts 

Multiplexing Streams, part 1 

fdbottom2 = open("/dev/bottom2", O_RDWR); 
ioctl(fdtop, I_LINK, fdbottom2); 

.H2S96 7-10. 262 

Multiplexing Streams, part 1 

© 1991 Hewlett-PIckard 

In this picture the driver for top is responsible for the multiplexing/demultiplexing of messages coming up from 
below or going down from above. For messages going downwards, code supplied in the top module must decide 
through which lower stream the data should be sent It uses its own criteria for doing so, but is likely to base its 
decision on the contents of the message itself. 

Here top is a one-to-many multiplexer. 

7-11 



Module 7 - Streams 

7-11. Streams Concepts 

Multiplexing Streams, part 2 

Jl2S96 7-11. 263 © 1991 Hewlett-Packard 

Multiplexing Streams, part 2 

In this example we show a more complicated arrangement of multiplexers. TCP is a many-to-one multiplexer. IP 
in the picture is a one-to-many multiplexer, though in practice it is a many-to-many multiplexer. 

To create this arrangement, fll'St the IP, ether, and token streams are opened, and then the latter two streams are 
linked to IP. Then the TCP stream is opened and the IP stream linked beneath it. Each stream connected to the 
top of the TCP module represents a separate TCP connection. 

(N.B.: in OSP/I, the TCP/IP protocols are implemented not in the streams framework, but in the socket 
framework. TCP/IP is used here merely as an example.) 

7-12 



Module 7 - Streams 

7-12. Message Flow 

Stream Message Flow 
j ~~ 

[\ Ij}', Y.--J> 
({tP r;;.,f;:J'&'~ ~:: 

~o~ (Q.I 
'() ,0 A 

v p,\\J "{ rJ 
}'~ 

\::J} 11111111111111111111111111111111111111111111111111111111111111111111111111111 

() 11111111111111111111 ............... • ...... • ............. ·11111111111111111111 

~ 11111111111111111111 queue 11111111111111111111 

Q lJ \l'1II1I1I1I1I1II1I1I1II1I1I1I1I1I1I1II11II11II1II1I1I11I1II1I1I1I1I1II1I1II1I1I 

\ "'. '\:;.{ 11111111111111111111111111111111111111111111111111111111111111111111111111111 

,.} \£ .. _-----' & 

.H2S96 7·12. 

Stream Message Flow 

wput 

264 

canput? 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111 .................................... ·11111111111111111111 

11111111111111111111 queue 11111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

© 1991 Hewlett·Packard 

Each module defines (usually) a wput routine and an rput routine to be called when a message arrives from above 
(wput) or below (rput). From within a module, the appropriate put procedure of the next module is called by 
calling the routine putnext. 

Simple modules modify incoming messages in-place and pass them on to the next module (by calling putnext). 
Other modules may need additional resources to process a message, or may need to defer processing. These 
modules have the ability to queue messages. Associated with these queues (one for each direction) is a size limit 
known as the high-water 11Ulrk. 

Because of the fmite capacities of these queues, flow control must be established. A module that is itself capable 
of queueing must check for queue space ahead of it (by calling canput) before sending the message. The can put 
routine looks ahead for the fIrst module that is capable of queueing and returns true if and only if there is room for 
another message in that queue. If there is no room, then the calling module must put the message in its own queue 

7-13 



Module 7 - Streams 

(the previous module's canputroutine checked that there was room on the queue before it sent the message). A 
module may also defer the processing of a message by placing the message at the end of its queue (in either case, 
enqueuing is accomplished by callingputq). 

Note that if flow control propagates upwards to the stream head, threads issuing write system calls will eventually 
block waiting for space. However, if flow control propagates downwards to a streams driver serving as an 
interface to a real device, then incoming data will be lost since there is no more buffer space and no notion of 
blocking the source of the data. 

1-14 



Module 7 - Streams 

7-13. Message Flow 

Stream Service Procedures 

.H2S96 7-13, 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

111111111111111111111"""'"'''''''''''''''''''''''''''11111111111111111111 

111111111111111111111 queue 11111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

readsrv 

Stream Service Procedures 

26S 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111""""""""""'''''''''''''''''11111111111111111111 

11111111111111111111 queue 11111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111111111111111111 

© 1991 Hewlett-Packard 

A module that may defer the processing of a message must have a service procedure that can be called when 
further processing is possible. Processing may be deferred because of: 

• flow control 

• yielding to more important processing 

• shortage of buffer space 

To cause a service procedure to be called sometime in the future, it is enabled, which puts it on a list of enabled 
service procedures. Enabled service procedures are called by members of a special streams thread pool. 

7-15 



Module 7 - Streams 

A service procedure is automatically enabled whenever putq is called (and the queue was previously empty) and 
whenever a getq is called that removes sufficient messages from a forward queue that the queue size falls below 
the queue's low-water mark. 

7-16 



Module 7 - Streams 

7-14. Message Flow 

Messages in Streams 

A message as viewed by the designer of a protocol: 

.82596 7-14. 266 © 1991 Hewlett-Packard 

Messages in Streamns 

The simplest stream module merely passes its input to the next module in the stream. This transfer is very 
efficient, since the data is represented by a linked list of message blocks and is passed by reference. A message 
consists of a linked list of message blocks, each of which points to a data block, each of which points into a 
variable-length buffer. The justification for the data blocks is that they allow multiple message blocks to refer to 
the same data block and avoid the overhead of copying (the data block contains a reference count). Representing 
a message as a sequence of message blocks makes it easy, for example, to add headers or trailers to messages (and 
to strip them off). 

The message shown in the picture would be implemented as a linked list of three submessages, one for the header, 
one for the data, and one for the trailer. Stripping off the header and trailer or appending additional information is 
then very easy. 

7-17 



Module 7 - Streams 

7-15. Message Flow 

Messages 
mblk dblk 

.H2S96 7-1S. 267 © 1991 Hewlett-Packard 

Messages 

A message is represented as a linked list of mblks. Each mblk indirectly refers to a buffer via a dblk. The dblk, as 
is discussed further on page 7-20, contains the reference count and other infonnation about the buffer. The mblk 
contains a pair of pointers pointing directly into the buffer. These pointers allow the easy representation of 
consuming data from the buffer and putting data into the buffer. 

7-18 



Module 7 - Streams 

7-16. Message Flow 

Message Queue 
~---b next-------.. 

message 1 message 2 

.82596 7·16. 268 © 1991 Hewlett·Packard 

Message Queue 

A queue of messages is represented by linking together the f11"st mblks of each message. 

7-19 



Module 7 - Streams 

7-17. Message Flow 

Virtual Copy (Streams Style) 

mblk mblk ..... -----... :EJ:: ... ::~----... 
~----~ ~------

;r 

.H2S96 7-17. 269 © 1991 Hewlett-Packard 

Virtual Copy (Streams Style) 

In many situations, it is necessary for a streams module both to pass a reference to data and to retain a reference to 
the same data. For example, the TCP protocol would send data to be transmitted to the IP protocol, but wouk. 
retain a copy of the data just in case it is never acknowledged and thus must be retransmitted. This "virtual copy" 
is implemented with reference counts: each buffer's dblk contains the buffer's reference count Creating a virtual 
copy of the buffer merely involves incrementing the reference count Freeing a buffer causes its reference count 
to be decremented; if the reference count is reduced to 0, then the storage is actually liberated. 

7-20 



Module 7 - Streams 

7-18. Message Flow 

Types of Messages 

• Ordinary message types: • Priority message types: 

- M_DATA - M_PCPROTO 

-M_PROTO - M_ERROR 

- M_IOCfL - M_HANGUP 

-M_CTL - M_IOCACK 

-M_BREAK - M_IOCNAK 

-M_DELAY - M_FLUSH 

- M_PASSFP - M_PCSIG 

- M_SETOPTS - M_START 

- M_SIG - M_STOP 

.H2S96 7-18. 270 © 1991 Hewlett-Packard 

Types of Messages 

Each message block is assigned a type that streams modules use to determine what sort of processing is required. 
There are two classes of messages: those that are subject to flow control (ordinary messages) and those that are 
not (priority messages). 

Since priority messages are not subject to flow control, they are forwarded even if subsequent queues are full. 

For example, an ioctl system call might be implemented within a streams component. In this case, a message is 
created whose fIrst mblk points to a dblk of type M_IOCTL, which points to a buffer containing the command. 
Subsequent mblks of this message point to dblks of type M_DATA, which point to buffers containing the 
associated data. This message is passed down the pipeline until it reaches a component that recognizes the ioctl 
request. This component performs the desired action and sends back a priority message whose fIrst mblk points to 
a dblk of type M_IOCACK. Being a priority message, it is passed up to the stream head immediately without 
being queued, and thus it is dealt with at the stream head before any ordinary messages that might be in the 

7-21 



Module 7 - Streams 

queues. This prioritized delivery is necessary because the thread perfonning the ioctl system call does not move 
on to make, for example, read system calls until the ioctl system call completes. 

If no component recognizes the ioctl request, then the last component, a streams driver, sends back a priority 
message of type M_IOCNAK. 

7-22 



Module 7 - Streams 

7-19. Implementation of Streams 

Queue Structure 

private 
data 

message 
queue 

.H2S96 7-19. 

Queue Structure 

next 

other 

other 

271 

next 

private 
data 

message 
queue 

© 1991 Hewlett-Packard 

Each instance of a streams component, whether stream head, module, or driver, is represented by a pair of queue_t 
structures. Each such structure links the component to the next component in the pipeline, points to the associated 
queue of messages, and points to two types of data structures. 

The fIrst type of data structure, the qinit structure, contains information shared by all instances of the component. 
It contains the addresses of the put and service procedures for either the read or write half of the component and 
points to the module info structure, which gives the default values for various parameters. 

The second type of data structure, pointed to by qytr, contains infonnation that is private to each instance of a 
component The contents of this data structure depend upon the component 

7-23 



Module 7 - Streams 

.7-20. Implementation of Streams 

Stream Head 

ioctl read write 

OSRQs ••• ••• • 
.H2S96 7-20. 

Stream Head 

~===:-:-:; -------~ 
- ____ .... 11111111111111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111 , 

111111111111111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111 I 

272 

111111111111111111111111111111111111111111111111111 111111111111111111111111111111111111111111111111111 I 
111111111111111111111111111111111111111111111111111 

111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111 

111111111111111111111111111111111111111111111111111 I 
111111111111111111111111111111111111111111111111111 I 
111111111111111111111111111111111111111111111111111 I 
111111111111111111111111111111111111111111111111111 

111111111111111111111111111111111111111111111111111 I 
I 

I queues I 

~------------~ 

© 1991 Hewlett-PIckard 

The stream-head module provides the interface between system calls and the stream. It is the only portion of 
streams in which threads may block: a thread making a system call must necessarily block until it can return. 

The module is represented by a STH (stream head) structure. It contains various pieces of information about the 
stream and refers to the stream-head queue data structures. 

Multiple threads may access the stream concurrently. Three types of system calls involve messages and streams: 
ioctls, reads and getmsgs, and writes and putmsgs. A user thread (executing a streams system call) creates an 
operating system request (OSR) structure to represent the system call. If the request cannot be satisfied 
immediately, then the OSR is queued on one of the STH's OSRQs (one queue for each system call type). 

7-24 



Module 7 - Streams 

7-21. Implementation of Streams 

Representing an Open Stream 

file descriptor 

.H2S96 7-21. 273 

Representing an Open Stream 

cdevsw 

stream-head 
entry points 

© 1991 Hewlett-Packard 

An open stream appears to the rest of the operating system as if it were a character special file. The cdevsw entry 
contains not the addresses of the streams driver's entry points but the entry points of the more general stream-head 
routines. This is important since the interface to the system-call layer is at the stream head and not at the streams 
driver. The stream-head code itself fmds the desired stream by accessing the STH structure. 

7-25 



Module 7 - Streams 

7-22. Implementation of Streams 

Device Module Switch Table 

minor(dev) 

.H2S96 7-22. 274 

Device Module Switch Table 

array 
of 

STHs 

==== 
::::::::::::: 
==:::::: 

upper read 

upper write 

lower read 

lower write 

© 1991 Hewlett-Packard 

The device module switch table is an array of dmodsw structures, one for each type of streams driver. It is 
accessed by the major portion of the device number and refers to the device's streamtab structure. This structure 
contains the addresses of the qinit structures for each portion of the device (the device may be a multiplexer, so 
the streamtab structure refers to the qinit structures for the lower-side queues as well). 

Each dmodsw entry also refers to an STHT (stream header table) structure, which is an array of STH structures, 
one per minor device. The STH structure, as we have seen, represents the stream head of a particular stream and 
is allocated when the stream (i.e. minor device) is opened. 

Each stream appears to the rest of the operating system as if it were a character-special device. Thus associated 
with each streams device is an entry in the cdevsw table. However, this entry refers not to the entry pointS of the 
streams driver, but to L'1e general stream-head entry points. Additional infonnation is needed to fmd the entry 
points of the streams device itself and to fmd the STH structure identifying the specific instance of the stream. 

7-26 



Module 7 - Streams 

This information is obtained from the dmodsw structure as we have just seen. The major portion of the device 
number is used twice: once to index the cdevsw table to determine that this is a stream, and again to index the 
dmodsw table to fmd the streamtab data structure and the STHT. Finally, the minor portion of the device number 
is used to index the STHT to fmd the STH that identifies the actual instance of the stream. 

7-27 



Module 7 - Streams 

7-23. Implementation of Streams 

File Module Switch Table 

module _--I~ 
name 

read 
~==== write 

.H2S96 7-23. 275 © 1991 Hewlett-PIckard 

File Module Switch Table 

The file module switch table is an array of fmodsw structures. It is accessed by the module name and refers to 
each module's streamtab structure, which in tum refers to the module's qinit structures. Thus individual streams 
modules are identified through the fIle module switch table. 

7-28 



Module 7 - Streams 

7-24. Implementation of Streams 

Cloning a Stream 

file descriptor 

.H2S96 7-24. 276 

Cloning a Stream 

stream head 
entry points 
clone open 

© 1991 Hewlett-Packard 

The notion of cloning is an important concept that was introduced in SVR3 for the support of streams and has 
been extended in OSFI I for use in any character-special file. Cloning is used in situations in which there is a 
varying nwnber of logical devices. 

For example, each connection over a streams implementation of TCP/IP is a logical device; each such logical 
device is represented by a separate minor device. Since the user of the logical device does not really care which 
minor device member is chosen, it is inconvenient to represent each logical device as a separate special fIle (in the 
Ide v directory). Cloning allows one to use just one special fIle to represent the major device, and to have the 
minor device nwnbers automatically produced internally in response to opening the major device. 

A clonable device is represented by a special file whose major device nwnber is that of the clone driver and 
whose minor device nwnber is equal to the major device nwnber of the clonable device. Opening this special file 
results in a call to the open entry point of the clone driver, clone_open, which returns the error code ECLONEME. 

7-29 



Module 7 - Streams 

The caller of this routine, spec_open, then calls spec_clone, which creates a new vnode, and then calls the open 
routine given in cdevsw as indexed by the original minor device number (i.e., the major device number of the 
clonable device). 

For the case of streams, the call to open results in a call to osr _open, which sets up a stream head and the device 
driver module, and calls the device driver open routine with the clone flag set. The device driver then fmds an 
available minor device number and returns it to the caller and the caller's caller, and so forth, who will eventually 
put this in the new vnode. The effect then is that all further 110 requests use the newly created vnode and access 
the newly created stream. 

7-30 



Module 7 - Streams 

7-25. Parallelization 

Parallelization of Streams 

• Transparent 

S hr 
... ~& t 

-. ync omzauon ~ 

- queue-level 

.H2S96 7-25. '1:77 

Parallelization of Streams 

~~? 
~ 

© 1991 Hewlett-Packard 

A-~ 
/~ 

Streams are parallelized in a fully transparent manner: streams modules from an SVR3 system can be put into an 
OSF/l kernel so as to allow fully parallel execution with essentially no changes to the code. Certainly some 
synchronization is necessary. This synchronization is implemented within the standard routines that are called for 
communication between streams and modules. The fmest degree of parallelization is at the individual-queue level 
(SQLVL_QUEUE). Associated with the queue is a lock; only one thread may execute within the queue at a time. 
One may also request synchronization across a pair of queues within a module (SQLVL_QUEUEPAIR), across all 
instances of a module (SQLVL_MODULE), and across a group of modules (SQLVL_ELSEWHERE). For 
debugging purposes, one may request a single lock for the entire streams system, i.e. only one thread at a time 
may be executing anyplace (SQLVL_GLOBAL). 

We ftrst look at queue-level synchronization. Whenever a module is entered (e.g. via putnext) , a check is made to 
see if the queue is locked. If so, then instead of waiting for the queue to be unlocked, the request is queued on a 
synchronization queue, and the call returns immediately. Thus while a thread operates within a module, further 

7-31 



Module 7 - Streams 

requests to enter that module queue up on the synchronization queue. When the thread leaves the module, it must 
check if there are any requests in the synchronization queue and then handle each of these requests as if it had 
made them itself. 

The synchronization queue is headed by an SQH data structure, which, for queue-level synchronization 
(SQLVL_QUEUE), is in the queue data structure. This contains a pair of simple locks, one that is the lock on the 
entire queue, and the other that is the lock for operations on the synchronization queue. Each request in the queue 
is represented by an SQ data structure, which refers to the queue being accessed, the routine being called, and the 
message being transmitted. The SQ data structure itself is allocated within the mblk data structure. 

The technique for single-queue parallelization can be extended for coarser parallelization. To achieve queue-pair 
synchronization (SQLVL_QUEUEPAIR), one effectively merges the synchronization queues of the two individual 
queues. This is accomplished through the use of the sqyarent field of the SQH data structure. This field 
normally points to the SQH data structure itself, but it may point to another SQH data structure. In the latter case, 
the target SQH structure is used instead of the source SQH structure. So, for queue-pair parallelization, the 
write-side queue's SQH structure points to that of the read-side queue, and there is one set of blocks and one 
synchronization queue for both queues of the module. 

For module-wide synchronization (SQLVL_MODULE), each queue in each instance of the module refers to an 
SQH structure in the module'sjinodsw structure (or the dmodsw structure if it is a driver). 

7-32 



Module 7 - Streams 

7-26. Parallelization '-

SQLVL_QUEUE 

.H2596 7-26. 

SQLVL_QUEUE 

,------------------, I 1 I . . . . . I 
I I 
I I 
I I 
I I 
I 
I 

278 © 1991 Hewlett-Packard 

In this picture queue-level synchronization is used. There is space in each queue _t for an SQH structure, which 
heads the queue's synchronization queue. For queue-level synchronization, each of the synchronization queues is 
totally independent of the others. Thus each queue may have no more than one thread active at a time, but there 
may be two active threads within each instance of the streams component 

7-33 



Module 7 - Streams 

7-27. Parallelization 

SQLVL_QUEUEPAIR 
-_._---'---------------, ..: 1 

I 
I 
I 
I 
I 

: I 
J.-!::~=-.--.!!=:~ .. :: J ----~ 

.H2S96 7-27. 

SQLVL_ QUEUEPAIR 

© 1991 HewleU-~brd 

This picture illustrates queue-pair-Ievel synchronization. The sqyarent field of one queue's SQH structure points 
to the other SQH structure, effectively merging the two synchronization queues. Thus we are assured that only 
one thread can be in either queue at a time. 

7-34 



Module 7 - Streams 

7-28. Parallelization 

SQLVL_MODULE 

...---------------. ( , 
I I 
I I 
I I 

I 
I 
I 
I 

I 1iil:==::U I 
l l J ---------------- ---------------

.H2596 7-28. 280 © 1991 Hewlett-Packard 

This picture shows module-level synchronization. The sqyarent fields of each queue's SQH structure points to 
the SQH structure stored in thefinodsw structure (modules) or the dmodsw structure (drivers). Thus the 
synchronization queues for all queues within all instances of a module are effectively merged: at most one thread 
can be active in any instance of the module at a time. 

7-35 



Module 7 - Streams 

7-29. Parallelization 

Implementation of Synchronization Queues 

.H2S96 7-29. 

call put 
procedure 

call 
csq_lateral 

281 

Implementation of Synchronization Queues 

-yes call 
csq_acquire 

© 1991 Hewlett-Packard 

In order to enter a streams module (for example, as part of a putnext request), a thread encodes a request in the 
message's SQ strucwre and calls the csq_lateral routine. This routine checks the lock on the appropriate 
synchronization queue. If the lock is taken, the routine puts the request on the synchronization queue and returns. 
When a thread fInishes a request inside of the module, as mentioned earlier, it checks the synchronization queue 
and handles any queued requests. 

This arrangement could result in a race condition. The calling thread might detennine that the queue is busy, but, 
before it can enqueue an SQ on the synchronization queue, the thread that owned the streams queue detennines 
that the synchronization queue is empty and releases the lock. Thus the SQ will soon be enqueued, but no thread 
will be available to process it To deal with this, csq_lateral checks the lock after it has enqueued the SQ, and, if 
it has been released, then processes the SQ itself. 

7-36 



Module 7 - Streams 

When a user thread (executing in kernel mode in response to a system call) operating within a stream head calls 
putneXf to send a message to the frrst module, it calls csq_ acquire instead of csq_lateral. This routine blocks 
waiting for the lock. When the thread holding the lock is fmished with its operation, instead of processing the 
synchronization queue itself, it hands the work over to the user thread blocked in csq_ acquire. 

7-37 



Module 7 -·Streams 

Exercises: 

1. a. List the three types of streams components. 

b. What happens when one stream is linked to another stream? 

c. What are the functions of a multiplexer? 

2. a. What is the purpose of the dblk data structure? 

b. How is data prep ended to the beginning of a message? 

c. From what routines is a module's put procedure called? In whose context are service procedures called? 

3. a. When are queue _t structures allocated? 

b. Explain why it is necessary for streams-oriented system calls to be serialized. What mechanism is used to 
perform this serialization? 

4. a. When a read or write system call is issued to an open stream, at what point does the flow of control fIrst 
differ from the flow when an ordinary character-special device is called? 

b. Explain the role of the streams device driver in cloning. 

5. a. List the synchronization options available in streams. 

b. When is it permissible for a thread to block within a streams call? 

c. Explain how synchronization queues differ from ordinary streams queues. 

Advanced Question: 

6. Synchronization queues add another set of queues to a streams pipeline. Explain what effects this might have 
on data in the pipeline. For example, does the use of synchronization queues affect the order of messages? 
Does it affect the number of messages that may exist within a pipeline? 

7-38 







Module 8-Sockets 

Module Contents 

1. Sockets ............................................................. 0 ••• 0 ••• 0 • 0 0 • 0 • •• 8-3 
Types of sockets 
Integrations into the operating system 

2. Mbufs 0 0 0 0 • 0 •• 0 ••• 0 0 0 ••• 0 0 ••• 0 •• 0 •• 0 •• 0 • 0 • 0 • 0 •••••• 0 ••••••••••• 0 •••• 0 •• 0 ••••• 0 0 0 • • • •• 8-6 
Representing messages 
Memory allocation and liberation 

3. Implementation ........ 0 •••••••••••• 0 • 0 •••••••••••••••••• 0 •• 0 ••••• 0 ••• 0 •• 0 •• 00 •••• 0 o. 8-15 
Protocol integration 
Socket data structure 
Parallelization 

4. Sockets and Streams 0 0 0 • 0 ••••••••• 0 • 0 0 0 0 0 •• 0 ••• 0 0 • 0 •• 0 ••••• 0 0 0 • 0 ••• 0 ••• 0 0 ••• 0 •••••••• 0 8-21 

Module Objectives 

In order to demonstrate an understanding of sockets and their use in supporting networking in OSF/ 1, the student 
should be able to: 

• explain the difference between communication using datagram sockets and communication using stream 
sockets 

• describe how messages are represented by mbu[s 

• list the set of actions that may be taken when the list of free mbu[s is exhausted 

• explain how kernel threads are used in the socket networking subsystem 

• explain how OSP/l supports both a streams and a socket interface to networking 

8-1 



Module 8 - Sockets 

8-1. The Big Picture 

Networking in OSF/l 

1::::::::::::::::1 Mach 

c:::J UNIX 
.H2S968-l. 282 © 1991 Hewlett-Packard 

Networking in OSF/l 

OSP/I uses Berkeley's socket model to implement its communication protocols. The code is a parallelized 
version of that in 4.4BSD. The recommended user interface for networking is the XlOpen Transport Interface 
(XTI), which is an enhancement of AT&T's Transport Layer Interface (TI.,I). While user code can communicate 
directly with the socket layer, XTI is more likely to be portable. 

OSP/I implements XTI in a user-level library that communicates with the operating system via the streams 
interface. Since OSF/l implements the network protocols in the socket framework rather than in the streams 
framework, the system provides a conversion layer. This conversion layer is a stream whose device driver 
converts stream requests into socket requests. 

Some of the material in this module is discussed in chapter 14 of Open Software Foundation, 1990a. 

8-2 



Module 8 - Sockets 

8-2. Sockets 

Interprocess Communication with Sockets 

• Sockets are an extension of the 110 interface for general-purpose 
interprocess conununication 

• Sockets support a number of conununication styles, as implemented by a 
variety of protocols 

( 

.H2S968-2. 283 © 1991 Hewlett-Packard 

Interprocess Communication with Sockets 

8-3 



Module 8 - Sockets 

8-3. Sockets 

Socket Types 

.H2S96 8-3_ 

• Datagram 

- unreliable 

- order not guaranteed 

- allows broadcast 
(connectionless) 

- record-oriented 

Reliable packet 

- reliable 

- order not guaranteed 

- connection-oriented 

- record-oriented 

Socket Types 
284 

- guaranteed order 

- connection-oriented 

- record-oriented 

• Stream 

- reliable 

- guaranteed order 

- connection-oriented 

- record boundaries not 
preserved 

© 1991 Hewlett-Packard 

OSP/l includes only protocols supporting datagram and stream-type sockets. The UNIX domain contains both a 
datagram and a stream protocol, as does the Internet domain. (UDP is the datagram protocol; TCP is the streams 
protocol.) 

8-4 



Module 8 - Sockets 

8-4. Sockets 

Writing with Sockets 

.H2S968-4. © 1991 Hewlett-Packard 

Writing with Sockets 

In Module 5 we saw that the JiZeops array contained the vector of entry points for operations on fIles. In this case 
it contains the vector of entry points for operations on sockets. 

The protosw contains the entry points into the selected protocol. 

8-5 



Module 8 - Sockets 

8-5. Mbufs 

Data Management 

• Streams 

- data passed by reference using mblks 

• Sockets 

- data passed by value and by reference using mbufs 

.H2S96 8-5. 286 © 1991 Hewlett-PIckard 

Data Management 

As with streams, data structures must be provided to facilitate the efficient movement of data through the various 
layers of the system. The data structures used with sockets, known as mbufs, are very similar to the data structures 
used with streams (mblks). The major difference is that while with mblks all data is passed by reference, with 
mbufs small amounts of data can be passed by copying (though larger amounts of data are passed by reference). 

8-6 



Module 8 - Sockets 

8-6. Mbufs 

The mbuf Structure, part 1 

m hdr 

~~kthdT 
~) 

y. 
J 

myktdat 

.H2S96 8-6. 

ftrst mbuf in packet; 
data in mbuf 

The mbuf Structure, part 1 

287 

m hdr 

m dat 

subsequent mbuf in packet; 
data in mbuf . 

© 1991 Hewlett-Packard 

Mbufs either contain a small amount of data (up to 108 bytes) or refer to a larger amount of data. As with mblks, a 
packet is represented by chaining a sequence of mbufs, and a queue of packets is represented by chaining the fIrst 
mbuf of each packet. The header of each mbuf, besides containing the links in the various chains, describes the 
contents of the mbuf and includes a pointer to the fIrSt byte of data, wherever it may be. The fIrst mbuf contains 
additional information: the length of the entire packet and possibly a reference to the network interface from 
which the packet came, or to which it is going. 

8-7 



Module 8 - Sockets 

8-7. Mbufs 

The mbuf Structure, part 2 

m hdr,' 

mykthdr " ' 
(filled in if 1 st mbuf) 

m ext' 

.H2S96 8-7. 

The mbuf Structure, part 2 

288 

buffer 

© 1991 Hewlett-Packard 

If an mbuf does not contain its data but instead refers to it, then the mbuf contains an m _ ext structure to refer to the 
buffer. 

8-8 



Module 8 - Sockets 

8-8. Mbufs 

Virtual Copy (Socket Style) 

m hdr 

mykthdr mykthdr 

m ext 

mbuf mbuf 

.H2S96S-S. 289 © 1991 Hewlett-Packard 

Virtual Copy (Socket Style) 

Buffers may be passed by reference; different layers of the protocol may each contain references to the same 
buffer. 

8-9 



Module 8 - Sockets 

8-9. Mbufs 

The Cluster Pool and Reference Counts 

melrelent 

.H2S96 8-9. 

• 
• 
• 

Lmelfree·~ --

290 

The Cluster Pool and Reference Counts 

b 1 1 m e uster 000 

--

" ,... -

" 

© 1991 Hew1ett-~kard 

The system maintains a pool of mbclusters, which are buffers to which mbujs may refer. Thus, for example, to 

buffer data going to the network, the system allocates mbclusters to hold the data and mbujs to hold the protocol 
headers. 

Free mbelusters are linked together in a free list headed by melfree. The melrelent array contains the reference 
counts to the mbclusters. A reference count of 0 indicates no references to a particular mbcluster. A reference 
count of -1 indicates that no real memory is backing up the associated virtual address. 

8-10 



Module 8 - Sockets 

8-10. Mbufs 

Maintaining References 

buffer 

.H2S96 8-10_ 291 © 1991 Hewlett-Packard 

Maintaining References 

Buffers need not be allocated from the mbcluster pool. In panicular, the streams system can allocate buffers and 
pass them on to the socket system via the XTISO driver. The only difficulty in doing this is maintaining the 
reference count The mclrefcnt array cannot be used, since these buffers are not coming from the mbcluster pool. 

All mbufs referring to the same buffer are doubly linked via their m _ext structures. Each m _ ext structure contains 
the address of a storage liberation routine to be called when the last reference to a buffer goes away. 

8-11 



Module 8 - Sockets 

8-11. Mbufs 

Mbufs from Mbclusters 

.H2S96 8-11. 

Mbufs from Mbclusters 

:: ....... :':.:. T·:.::::::::·-::··~ 

:>:.:<::: «:)::::: .... 

:.: •.• : ...... : :: .. :.::.... :<>}::::} 
::<::: :.: :: :/:} :: 

.::: :::::.,:: ::: .:<'::: 
:::C·::::>::{.:; 

mbcluster 

292 © 1991 Hewlett-Packard 

The system allocates a fixed amount of virtual memory and a smaller amount of real memory for the pool of 
mbclusters. Free mbclusters (backed up with real memory) are linked into a free list. When the supply of free 
mbclusters becomes too low, it is replenished with pages from the free page list. 

Mbufs are obtained by allocating mbclusters and breaking them up into mbufs. Free mbufs are linked together. 
When this supply of mbufs becomes too low, more mbufs are allocated from mbclusters. 

The system invokes a garbage collector every five seconds to examine the mbufJmbcluster situation and free up 
storage when necessary: if there are more than enough mbufs, then some are coalesced back into mbclusters and 
returned to the free mbcluster list. If there ~e more than enough mbclusters, then some are deallocated by 
returning their pages to the free page list. ' 

8-12 



Module 8 - Sockets 

The mclrefcnt array is used to aid the coalescing mbujs into mbclusters. When an mbcluster is on the free list, its 
reference count is O. When it is broken up into mbujs, its reference count is set to 1. When an mbuf is allocated 
from the free list of mbujs, the reference count of the associated mbcluster is incremented by 1 (and decremented 
by 1 when the mbuf is freed). 

8-13 



Module 8 - Sockets 

8-12. Mbufs 

Responding to Memory Shortages 

drain 

.H2S968-12 293 © 1991 Hewlett-Packard 

Responding to Memory Shortages 

Many protocols hold on to data maintained in mbufs for a period of time. For example, the IP protocol maintains 
a reassembly queue to hold on to pieces of fragmented packets. When further pieces arrive the IP protocol 
reassembles them into a whole packet If the operating system is extremely short of real memory, it calls each 
protocol's drain routine to ask the protocol to liberate as much memory as possible. In response to a call to its 
drain routine, the IP protocol releases the mbufs in all of its reassembly queues. 

8-14 



Module 8 - Sockets 

8-13. Implementation 

IPClNetworking Control Flow 

e 
usrreq 

.H2S96 8-13. 294 © 1991 Hewlett-Packard 

IPClNetworking Control Flow 

In a typical protocol stack, the top-level protocol might be Tcp, the bottom-level protocol IP, and the network 
interface an ethernet interface. A user thread making a system call enters the socket layer and calls the top-level 
protocol's us"eq entry point. Control may continue via a call to the next level of protocol, which may then queue 
an output request by calling the network interface. 

Packets coming from the network are dealt with in the interrupt context by the network-interface module, and then 
queued for processing by the bottom-level protocol. A kernel thread, one of a number of netisr threads, calls the 
bottom-level protocol's intr entry point and then processes the queued packets. The kernel thread might then 
continue by calling the top-level protocol's input entry point This protocol processes the data, which is queued 
on the socket either immediately or sometime later. 

8-15 



Module 8 - Sockets 

The protocols will also be called periodically by netisr threads to handle timeouts. Because the netisr threads may 
block, there should be a few more of them than there are processors (so as to maximize the utilization of the 
available processors). 

8-16 



Module 8 - Sockets 

8-14. Implementation 

Socket Data Structure 

so_type so_options 
so_linger so_state 

so_pcb 
so_proto sb_cc sb_hiwat 
so_head sb_mbcnt sb_mbmax 
so_qO sb_Iowat sb_timeo 

so_qOlen sb_mb 
so_q sb_sel 

so_qlen so_qlim sb_flags 
so_timeo so_error sb_wakeup ~ 

so_oobmad so_pgrp sb_wakearg 
so_rcv 
so_snd struct sockbuf 

~!" so_lock 

struct socket 

.H2S96 8-14. 295 © 1991 Hewlett-Packard 

Socket Data Structure 

All of the fields of the socket data structure are illustrated in the picture. Of particular importance to this 
discussion are the socket send and receive queues (so _snd, so _rcv) of type struct sockbuf. This data structure 
contains: 

1. a byte count 

2. a high-water mark (the maximum allowable size of the queue) 

3. a message count 

4. a maximum message count 

5. a low-water mark (used for flow control: any thread blocked waiting for a space in the queue is woken when 
the queue size drops below the low-water mark) / 

8-17 



Module 8 - Sockets 

6. a pointer to the queue itself (a linked list of mbufs) 

7. the address of a routine to be called to wake up anyone blocked on the queue 

In addition, there is a blocking lock on the entire socket structure. 

8-18 



Module 8 - Sockets 

8-15. Implementation 

pr~~/control Blocks 

~~ 

Jl2S96 8-15. 

Internet 
PCB 

Protocol Control Blocks 

IntemetPCB 

local and foreign 
addresses 

routing info 
IPoptions 

TCPPCB 

sequencing queue 
state infonnation 
timers 
out-of-band data 

296 

TCP 
header 
PCB 

Internet 
PCB 

© 1991 Hewlett-Facbrd 

This picture illustrates the protocol control blocks used by TCP/IP. Each connection is represented by a pair of 
protocol control blocks: an Internet PCB and a TCP PCB. The Internet PCBs of all the active TCP connections 
are doubly linked (necessitating a sequential search to associate a packet with a connection). 

8-19 



Module 8 - Sockets 

8-16. Implementation 

Parallelizing TCPIIP 

.H2S96 8-16_ 

• Each domain may supply afunnel to specify processor constraints 

- the OSF/l implementation of the Internet protocols has no such 
constraints 

• Blocking locks on socket and Internet PCB structures, simple locks on 
interface queues 

© 1991 Hewlett-Packard 

Parallelizing TCPIIP 

Associated with each family of protocols (domain) is afunnel structure, as discussed on page NO TAG. 

The Internet family of protocols (TCP/UDPIIP, etc.) have been parallelized. Blocking locks are in the socket and 
Internet PCB structures. The locking order is flfst to acquire the socket lock and then, when necessary, acquire the 
Internet PCB lock. Since these locks are blocking locks, they must be acquired by threads. 

Simple locks are used on data structures such as the interface queues, which must be accessed in the interrupt 
context 

8-20 



Module 8 - Sockets 

8-17. Sockets and Streams 

Sockets and Streams 

user 

.H2S96 8-17. 

streams 
implementation 

Sockets and Streams 

user 

298 

(JS,c J)flfA/tJ 

()./~ 

streams 
implementation 

© 1991 Hewlett-Pacbrd 

A perhaps unfortunate fact of life is that there are two competing network interfaces: streams and sockets. There 
are probably more applications currently built on sockets than on streams, but this may be changing. A modem 
UNIX system should be able to support both interfaces. 

SVR4 does so by providing a socket emulation library (in user mode). aSF!I, which supports both sockets and 
streams in the kernel, has no need for an emulation library, but instead provides a means whereby a protocol 
implemented in the socket framework can be accessed via the streams interface. 

8-21 



Module 8 - Sockets 

8-18. Sockets and Streams 

XTISO 

user mode kemelmode 

l'jl::::~~:::::lli 

.H2S96 8-18. 299 © 1991 Hewlett-Packard 

XTISO 

XTIko (XIOpen Transport Interface to Soc~~t.s a technique for supporting a streams-based @brary with a 
;~~t-based protocol implementation. The XT~O stream consists of a standard stream-head mOdule, a fairly 
simple timod module, and the XTISO driver module, which is the interface to the socket level. The XTISO driver 
takes transport interface (TPI) messages and converts them into operations on sockets. This transformation 
requires converting messages represented as mblks into messages represented as mbufs. These messages are 
passed to the socket layer by calling the socket code as if a socket system call had just been made. 

Messages coming up from the transport layer are queued on the socket's receive queue. Normally the next step is 
to wake up any process waiting for this message. What happens instead is that the XTISO driver·s read service 
procedure is enabled. This procedure is called to pull messages represented as mbufs from the socket's receive 
queue, converts them into messages represented as mblks, and converts these into a TPI message which is sent 
upstreanl. 

8-22 



Module 8 - Sockets 

The timod module converts messages sent to it from the XTI library via the stream head into the TPI format. This 
conversion primarily involves changing IOCTL-type messages into PROTO-type messages. Upstream messages 
are converted from PROTO-type into IOCACK-type as required. 

8-23 



Module 8 - Sockets 

Exercises: 

1. What are the differences between communication through datagram sockets and conununication through 
streams sockets? 

2. a. Why do some mbufs contain data while others point to data that is external to the mbu/? 

b. How is it detennined whether any mbufs refer to a buffer? 

c. List the set of actions that may be taken when the list of free mbufs is exhausted. 

3. a. How are kernel threads used in the socket and networking subsystem? 

b. Which socket/networking data structures need locks? What types of locks are required? What is the 
precedence relation of these locks? 

4. How does the XTISO driver serve as an interface between streams and sockets? 

8-24 



Module 9 - Logical Volume Manager 

Module Contents 

1. Role of me LVM ...................................................................... 9-3 
Physical volume spanning 
Mirroring 
Logical volume resizing 
Bad-sector remapping 

2. Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-8 
Logical volumes 
Physical volumes 

3. Components and Flow of Control .... , .. '.................................................. 9-17 
Request serialization 
Consistency management 
Logical-to-physical mapping 
Request scheduling 
Handling bad sectors 

Module Objectives 

In order to demonstrate an understanding of the concepts and implementation of the logical volume manager, the 
student should be able to: 

• list me functionality provided by the LVM but not provided by me standard fIle systems and disk device 
drivers 

• explain how me LVM can be certain that it has an accurate description of a volume group, even when some of 
the underlying physical volumes are inaccessible 

• list me benefits of mirroring 

9-1 



Module 9 - Logical Volume Manager 

9-1. The Big Picture 

Logical Volume Manager 

.H2S969-1. 

Logical Volume Manager 

300 

1::::::::::::::::1 Mach 

1<:::1 UNIX 

This material is discussed in chapter 15 of Open Software Foundation, 1990a. 

9-2 

© 1991 Hewletl-Plcbrd 



Module 9 - Logical Volume Manager 
, 

AfX 

9-2. Role of the LVM 

Logical Volume Manager (LVM) 

• A layer fitting between physical volumes and file systems 

- presents a device-driver interface to the file system 

• Provides the notion of a logical volume: 

- logical volumes may span multiple physical volumes ~> • or< I ~ 
- logical volumes may be mirrored on multiple physical volumes ~ - j..f l/~/~ 

;J! lkl ~- logi~~ volumes may grow and shrink under the control of the 
/ Ipi~ admmlstrator 

~J ~ - logical volumes support software bad-sector remapping ~ r etJ./ -~~ 
()7 1

,/ /l0vn "'('1' ~ 

i;;);sY/J, ~ IVa(. /.I) 
.H2S969-2. 301 © 1991 Hewlett-Packard 

Logical Volume Manager (LVM) 

UNIX files have always been limited by their inability to span multiple volumes. Since logical volumes can span 
multiple physical volumes, this restriction is pretty much removed in asP/ I. 

9-3 



Module 9 - Logical Volume Manager 

9-3. Role of the LVM 

Logical Volume Manager Organizatio"n 

volume group 

physical extent 

logical extent _--_~ /dev/rzllc 

/dev/vgl61lvoll 

/dev/rzl2c 

/dev/vg16/lvoI2 
/dev/rzI3c 

logical volumes physical volumes 

.H2S969-3. 302 © 1991 Hewlett-Pacbrd 

Logical Volume Manager Organization 

Logical volumes are organized within volume groups that contain both logical volumes and physical volumes. 
Logical volumes are divided into logical extents, the size of which may be any power of 2 between 1Mb and 
256Mb. Each logical extent is mapped to one, two, or three physical extents on physical volumes. The size of 
physical extents is equal to the size of logical extents, which is the same throughout a volume group. Logical 
volumes appear to be real devices to most of the system, so they have a name as a special fIle within the /dev 
directory. 

Each logical volume contains a single fIle system. The size of the logical volume may be easily changed by 
adding or removing logical extents and associating with them physical extents. In OSP/l release 1, neither the S5 
nor the UPS rue system supports the notion of growth or shrinkage in a fIle system's underlying volume. 
However, in OSP/l release 1.1 these fIle systems will be "growable." 

9-4 



Module 9 - Logical Volume Manager 

If set up properly, the organization of logical volumes will not interfere with the organization of the UPS fIle 
system. Each UPS file system is built with the assumption that each cylinder group is composed 'of contiguous 
cylinders, but there is no built-in assumption that adjacent cylinder groups are actually near one another. Thus the 
UFS disk-allocation strategies will continue to work as long as cylinder groups do not cross logical extent 
boundaries. 

9-5 



Module 9 - Logical Volume Manager 

9-4. Role of the LVM 

Mirroring 

logical volume 

physical volumes 
.H2S969-4. 303 © 1991 Hewlett-Packard 

Mirroring 

There are two motivations for mirroring: speed and crash recovery. 

Mirroring can be used to speed read accesses to a logical volume: read requests to a mirrored logical extent can be 
translated into reads of a physical extent on the least busy physical volume. This approach is particularly useful 
for logical volumes that are "read-mostly," such as a logical volume containing binaries. 

Most importantly, disk mirroring provides sufficient redundancy to survive crashes. If a physical volume is lost, 
the data contained in it can be recovered from copies maintained in other physical volumes-the mirrors. It is 
very important to insure that all mirrors containing the same data are identical. If an update was in progress at the 
time of a crash, only one mirror may have been updated. Recovery procedures are needed to reestablish the 
consistency of the data. Since it may not be known which mirror is the most recent, the recovery procedures 
select one mirror and copy it to the others. Thus the primary goal of recovery is to regain consistency among the 
mirrors. 

9-6 



Module 9 - Logical Volume Manager 

9-5. Role of the LVM 

Bad Sector Remapping 

• Augments remapping provided by the device and its driver 

• Hard errors 

- offending sector is remapped 

- sector copied from mirror if possible 

• Soft errors 

- offending sector is verified and remapped if necessary 

.H2S969-S. 304 © 1991 Hewlett-Packard 

Bad Sector Remapping 

The logical volume manager (LVM) augments the bad-sector remapping provided by the hardware. For mirrored 
volumes, the LVM can fix newly detected bad sectors by relocating the sector, reading the mirror, and writing the 
data into the relocated sector. 

If a "soft" read error occurs (an error that was detected and corrected by the disk controller), the data is rewritten 
and verified. If a "hard" error now occurs, then the offending sector is remapped. Errors are not passed back to 
the ftIe system unless a hard error occurs on a read from an unmirrored physical extent 

9-7 



Module 9 - Logical Volume Manager 

9-6. Data Structures 

Logical Volume Manager: Physical Volumes 

physical volume 

physical volume reserved area 
volume group reserved area 

user data 

common bad-sector relocation pool 

.H2S969-6. lOS © 1991 Hew1ett-Pacbrd 

Logical Volume Manager: Physical Volumes 

A physical volume may be either an entire physical disk or a portion of a partitioned disk. That is, physical drives 
may be partitioned as they have always been in UNIX, or volume groups can effectively partition the physical 
volumes. By physical volume, from here on, we mean either a portion of a partitioned disk drive or the entire disk 
drive, depending upon how the drives are organized. 

A certain amount of overhead is required within each physical volume. This consists of: 

• physical volume reserved area 

- this describes the individual physical volume 

• volume group reserved area (VGRA) 

- this describes the entire volume group 

9-8 



Module 9 - Logical Volume Manager 

• common bad-sector relocation pool 

As an option, space for bad sectors may be reserved at the end of each physical extent. This reduces the long 
seeks that would otherwise be required for remapping. 

9-9 



Module 9 - Logical Volume Manager 

9-7. Data Structures 

Physical Volume Reserved Area (PVRA) 

sector 
physical volume ID 

0 
reserved volume group ID 

8 LVMrecord last sector number 
9 

bad-sector extent size 
directory 

64 
reserved 

tctal number of extents 

72 backup LVM record 
LVMrecord 

73 
backup bad-

127 
sector directory 

PVRA 

.H2S969-7. 306 © 1991 Hewlett-Pacbrd 

Physical Volume Reserved Area (PVRA) 

• Identifies the physical volume 

• Gives its size 

• Gives layout of rest of volume 

• Contains bad-sector directory 

/ 9-10 



Module 9 - Logical Volume Manager 

9-8. Data Structures 

Vol~me Group Reserved Area (VGRA) 

volume group reserved area 

.H2S969-S. 307 © 1991 Hewlett-Packard 

Volume Group Reserved Area (VGRA) 

• Volume group descriptor area (VGDA) 

- identifies all physical and logical volumes in volume group 

- gives mapping (for entire volume group) of physical extent to logical extent 

• Volume group status area (VGSA) 

- lists missing/present status of each physical volume 

- lists stale/ok status of each physical volume's physical extents 

• Mirror consistency record (MCR) 

- lists updates in progress 

9-11 



Module 9 - Logical Volume Manager 

9-9. Data Structures 

Volume Group Descriptor Area (VGDA) 

VODA 

.H2S969-9. 308 © 1991 Hewlett-PIckard 

Volume Group Descriptor Area (VGDA) 

Usually each physical volume contains two copies of the VGOA, one of which is up to date. However, if there are 
many physical volumes in the volume group, it would be excessively redundant for each physical volume to 
contain copies of the VGOA, so some may have no copies of it 

Each copy of the VGOA contains a timestamp. The copy with the most recent timestamp is considered to be the 
valid copy. When the VGOA is to be modified, the older copy of the two (per physical volume) is modified and 
thus becomes the newer version. To protect against failures while updating the VGOA, two timestamps are used, 
one at the beginning and one at the end of the area The sectors containing the VGOA are written out 
synchronously and in order. When the VGDA is read, if the beginning timestamp and the ending timestamp are 
not equal, then a failure must have occurred during the update, and this copy of the VGOA is invalidated. 

9-12 



Module 9 - Logical Volume Manager 

To guarantee consistency with the volume group, a quorum (more than halt) of physical volumes must have 
identical VGDAs. If such a quorum is not available (i.e. some physical volumes are "down"), then no operations 
are permitted that would result in updating the VGDAs. 

9-13 



Module 9 - Logical Volume Manager 

9-10. Data Structures 

Volume Group Status Area (VGSA) 

.H2S96 9-10. 309 © 1991 Hewlett-Packard 

Volume Group Status Area (VGSA) 

Each physical volume that has a VGDA has two copies of a volume group status area (VGSA) indicating whether 
tlK physical volume is available or missing. Like the VGDA, each of these copies is timestamped at the 
beginning and end. The VGSA is of particular importance after the system resumes operation following a crash, 
since the system must determine which of the volumes that had been available are now missing. In addition, this 
area indicates, for each physical extent within each volume, whether it is stale or ok. A physical extent on an 
available volume marked stale must be made ok by copying into it an ok version of its data. 

9-14 



Module 9 - Logical Volume Manager 

9-11. Data Structures 

Mirror Consistency Record (MCR) 

.H2S96 9-11. 310 © 1991 Hewlett-Packard 

Mirror Consistency Record (MeR) 

The mirror consistency record (MeR), like the VGSA, is maintained to help restore consistency following a crash. 
It indicates which portions of the logical volume were being modified at the time of the crash. Each physical 
extent is divided into logical track groups, as will be discussed. 

9-15 



Module 9 - Logical Volume Manager 

9-12. Data Structures 

Representing a Logical Volume Group in Primary 

Memory 

secondary 

struct pvol 

.H2S96 9-12. 311 © 1991 Hewlett-~brd 

Representing a Logical Volume in Primary Memory 

The extent maps are the inverse of those provided in the VGDAs, i.e., they provide mappings from the logical 
extent to the physical extent. 

The struct pvo[s contain status infonnation about each of the physical volumes and their physical extents. 

9-16 



Module 9 - Logical Volume Manager 

9-13. Components and Flow of Control 

Flow of Control 

top half 

bottom half 

.H2S96 9-13. 312 © 1991 Hewlett-Packard 

Flow of Control 

The primary purpose of the strategy layer is to synchronize requests with respect to changes in progress at lower 
levels. For example, while a sector is being relocated, the strategy layer blocks all further requests for that sector. 
This sort of synchronization is accomplished by serializing requests at the strategy layer: whenever a new request 
arrives, it is held up until all earlier requests to overlapping sectors have been completed. When administrative 
commands change information in the VGDA regarding a particular logical volume, all operations on that volume 
are held up until the change is complete. 

The mirror consistency manager maintains the consistency of mirrors. It keeps a list of update operations in 
progress, so that it can regain consistency in the event of a crash. 

The scheduler layer is responsible for translating logical requests into physical requests. If the logical volume is 
mirrored, then each logical request may correspond to two or more physical requests. 

9-17 



Module 9 - Logical Volume Manager 

The physical layer is responsible for bad sector relocation. It communicates directly with the real device driver 
and responds to disk errors by relocating sectors. 

9-18 



Module 9 - Logical Volume Manager 

9-14. Components and Flow of Control 

Consistency Management 

update 
request: 

.H2S969-J4. 

mirror write 
consistency cache (MWC) 

(in primary memory) 

313 

Consistency Management 

MCR 
(on a physical volume holding a physical 

extent containing IvaI 2, Itgl7) 

© 1991 Hewlett-Packard 

The basic approach to consistency management is to maintain a record on disk of the write operations currently in 
progress to mirrored extents. Thus, after a crash, those operations that were in progress can be identified and the 
mirrors involved can be made consistent with one another. A straightforward but amazingly expensive 
application of this approach would be to update this MCR before and after each disk write. The approach taken 
instead minimizes the number of extra disk writes at the expense of a longer crash recovery procedure. 

An up-to-date listing of updates in progress is kept incore. The on-disk record, however, lists update operations as 
being in progress for some time longer than they actually are in progress. 

The incore data structure for representing update operations in progress is the mirror write consistency cache 
(MWC). This cache contains 62 entries. Each active entry is marked either "clean" or "dirty". The clean entries 
are arranged in LRU (least recently used) order. Whenever an update operation starts, an entry representing a 
logical track group (LTG) in a logical event is allocated in the MWC and marked "dirty". Each physical volume 

9-19 



Module 9 - Logical Volume Manager 

contains a recent copy of the MWC called the mirror consistency record. These copies are timestamped; the copy 
with the most recent timestamp is the valid one. Whenever a new entry is added to the MWC, the contents of the 
MWC are copied to the MCR of at least one of the physical volumes involved in the update. The MCRs contain 
no indication of "dirty" or "clean"; thus all entries marked "clean" in the MWC are interpreted as "dirty" in the 
MCR. 

Each physical extent is divided into logical track groups of 32 pages' each, where a "page" here is the disk block 
size. Each entry in the MWC and the MCRs corresponds to an LTG. Before any portion of an LTG is modified, 
an entry for it is allocated in the MWC and marked "dirty," and a new MCR reflecting the updated MWC is 
written. When the update completes (to all mirrors), the MWC entry is marked "clean" but no new MCR is 
written (thus if the system were to crash at this moment, the MWC would disappear and the most recent mirror 
consistency record would indicate that an update to this LTG is still in progress). If the LTG is updated again, 
then the MWC entry is changed to "dirty" but, again, no new MCR needs to be written. At some point there will 
be a period of no updates to the LTG, andits MWC entry will become the least recently used clean entry. When 
the next update request arrives for any other LTG, this entry is used to represent the new LTG and a new MCR 
will reflect this change, with the effect that the original LTG is no longer indicated as having an update in progress 
in the most recent MCR. 

9-20 



Module 9 - Logical Volume Manager 

9-15. Components and Flow of Control 

Consistency Management: Crash Recovery 

.H2S96 9-15. 

update 
request 

" 

CRASH!! 

or 

? 

314 

Consistency Management: Crash Recovery 

© 1991 Hewlett-Packard 

When a crash occurs, some number of update operations may be in progress. If a mirrored volume was in the 
process of being updated, the crash may cause the mirrors to be different The mirror consistency manager must 
restore consistency, i.e. make mirrors identical with one another. 

Crash recovery begins with locating the most recent MCR, which contains a list of the LTGs that were being 
modified. Since it is not known which mirror of each LTG contains the most recent information, the mirror 
consistency manager chooses one arbitrarily (actually, it issues a read request to the logical volume: the scheduler 
layer, using its rules for read scheduling, reads the data from a single LTG) and copies this LTG onto each of the 
others. 

Another possible problem is that a physical volume may become unavailable (e.g., because of controller or media 
failures). This physical volume might contain only the most recent version of the MeR. If this volume was lost 
in a crash, then it cannot be known whether or not it contained the most recent MCR, so we must assume that it 

9-21 



Module 9 - Logical Volume Manager 

did. To cope with this, OSF!! assumes the worst case: that every LTG on the volume was being modified at the 
time of the crash. We then must indic~te that all associated mirrors may be inconsistent This is done at the 
physical-extent level by marking all physical extents of this volume as "stale" in the VGSAs. Then, for all logical 
extents that were double-mirrored, resynchronization is done by copying one of the accessible physical extents to 
the other (the second physical extent is also marked stale). If the logical extent was single-mirrored, then only one 
accessible physical extent remains, which by defmition is consistent. (Due to the drastic steps taken for recovery 
when a physical volume becomes unavailable (e.g., an entire disk might be copied), this procedure is performed 
only if explicitly permitted by the operator.) 

9-22 



Module 9 - Logical Volume Manager 

9-16. Components and Flow of Control 

The Scheduler Layer 

physical 
requests: 

.H2S96 9-16. 

logical 
request: 

The Scheduler Layer 

315 © 1991 Hewlett-Packard 

The scheduler layer converts the logical request represented by a but structure into one or more physical requests 
represented by pbut structures. For a write request, all mirrors must be modified; in a read request it is only 
necessary to access a single mirror. Two general policies are used for scheduling the requests: a parallel and a 
sequential policy. 

In the parallel policy, a read request is always sent to the physical volume with the fewest outstanding 110 
operations. Write requests are issued in parallel to the physical volumes. 

In the sequential policy, a read request is performed by attempting reads from mirrors in a predefmed order. If 
the first read succeeds, then the operation completes; otherwise a read from the next physical volume is 
attempted, and so on. Write requests are performed sequentially; a write request to one physical volume is 
complete before a write request to the next physical volume begins. 

9-23 



Module 9 - Logical Volume Manager 

Clearly, the parallel policy is more efficient tHan the sequential policy. However, the sequential policy is safer. 
For example, if the system crashes in the middle of an update, the updates of each of the mirrors are affected with 
the parallel policy, while with the sequential policy, only the update of one of the mirrors is affected. 

9-24 



Module 9 - Logical Volume Manager 

9-17. Components and Flow of Control 

The Physical Layer 

316 

The Physical Layer 

buffer 

contiguous 
sectors 

partitioned 
buffer 

© 1991 Hewlett-Packard 

The physical layer's main responsibility is to handle bad-sector remapping. It must examine each physical request 
for references to any known bad sectors. If a request does refer to a bad sector, then (assuming only a single bad 
sector for ease of exposition) the physical layer breaks the request into three pieces: the fIrst piece for the request 
up to the bad sector, the second piece for the relocated bad sector, and the third piece for the remaining portion of 
the request The pieces are then treated as separate requests and are processed sequentially. 

The device driver detects new bad sectors during an 110 operation and reflects the error back to the physical layer. 
There are essentially two types of errors: soft errors and hard errors. Soft errors have been detected and corrected 
by the disk controller. The physical layer attempts to test the sector by sending a "write-verify" request to the disk 
driver. If this succeeds, then nothing else need be done. However, if it fails, the sector is remapped. 

9-25 



Module 9 - Logical Volume Manager 

If a non-mirrored read operation encounters a hard error, then there is no choice but to reflect the error to the 
caller. However, an entry is made in the bad-block directory indicating that relocation is desired and this is done 
the next time this sector is written. 

If a mirrored read operation encounters a hard error, the scheduler layer performs a read to a mirror, then sends a 
write request to the original sector specifying that hardware relocation is desired. The physical layer passes this 
on to the device driver. If hardware relocation fails or is not supported, then software relocation is performed. 

9-26 



Module 9 - Logical Volume Manager 

Exercises: 

1. a. What functionality does the LVM provide that the standard file systems and disk device drivers do 
not? 

b. Which LVM-related infonnation is replicated over most of the physical volumes? Which is only 
maintained on a single physical volume? 

2. a. What is the purpose of timestamps in the on-disk data structures? 

b. How can the LVM be certain that the volume group descriptor information is valid even when some 
physical volumes are inaccessible? 

3. a. Why is it necessary to serialize overlapping requests? 

b. What information is contained in the MCR? 

c. Suppose that, as part of crash recovery, it is discovered that the MCR contains a single entry and this 
entry pertains to a doubly mirrored volume. Assuming that all physical volumes are present, list the 
actions taken as part of the recovery of the logical volume group. 

d. Explain the differences between the parallel and sequential scheduling policies. 

Advanced Question: 

4. What must be changed in the UPS file system so that it can exploit the ability of logical volumes to grow? 

9-27 



Module 9 - Logical Volume Manager 

9-28 



Module 10 - Loader 

Module Contents 

1. Role of me wader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-3 
wader functions 
Interaction with exec 
Shared libraries 

2. Symbol Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-7 
Packages and libraries 
Known package tables 

3. Data Structures and Flow of Control ..................................................... 10-12 
Format -independent aspects and format-dependent aspects 

4. The Run-time Image ................................................................. 10-16 
Relocation and shared libraries 
Address space layout 

5. Dynamic wading ................................................................... 10-19 
wading into the current process 
Loading into the kernel 

Module Objectives 

In order to demonstrate an understanding of shared libraries, dynamic loading, and symbol resolution, the student 
should be able to: 

• describe the functionality provided by the OSF/l loader that is not provided by traditional Id and exec 

• explain me role of packages in symbol resolution 

• explain me phases of the run-time load procedure 

• list me three techniques for implementing shared libraries and meir advantages and disadvantages 

• describe me differences between loading into me current process and loading into the kernel 

10-1 



Module 10 - Loader 

10-1. The Big Picture 

The OSF/l Loader 

I::::::::::::::::. Mach 

c::J UNIX 
.H2S96 10-1. 317 © 1991 Hew1ett-Packard 

The OSF/l Loader 

The material in this module is discussed in chapter 6 Open Software Foundation, 1990a. Additional information 
about the OSF/1 loader can be found in Allen, 1991. 

10-2 



Module 10 - Loader 

10-2. Role of the Loader 

Loader Goals 

• Shared libraries 

• Dynamic loading (via explicit call) 

• Dynamic kemelloading 

.H2S96 10-2. 318 © 1991 Hewlett-Packard 

Loader Goals 

A library is a collection of modules contained in a file. A module is a component of an executable image. For 
example, a module might be a result of compiling or assembling a file containing a program in source fonn. 

10-3 



Module 10 - Loader 

10-3. Role of the Loader 

The exec System Call and the Loader . 

• Standard exec 

• Run-time loader 

Jl2S96 10-3. 319 © 1991 Hewlett-Pacbrd 

The exec System Call and the Loader 

As in any UNIX system, the exec system call can invoke a program. In older UNIX systems, such a program 
must have been fully bound and relocated. While OSP/l certainly supports this mode of operation, the system 
also allows much of the binding and relocation to be postponed until run time. 

When a program is exec' d, the system-call handler examines the program: if the program is in a recognizable 
load fonnat, is fully relocated and contains no unresolved references, then it is loaded directly and control is 
passed to it on return to user mode (as usual). Otherwise, exec loads the (user-mode) run-time loader into the 
address space and passes control to it on return to user mode, giving it the name of the program to be loaded. The 
run-time loader then completes the load process. It copes with load fonnats unrecognized by the kernel, linking 
the image to shared libraries, loading additional modules as required, and relocating the entire image as necessary. 

10-4 



Module 10 - Loader 

10-4. ROleOfth~ 

Constructing an Executable Image 

.H2S96 10-4. 

• Linking 

- matching symbols to packages 

• Loading 

- symbol resolution 

• pull in all necessary modules 

- relocation 

320 

Constructing an Executable Image 

© 1991 Hewlett-Packard 

The fIrSt step in the creation of an executable image is the construction of the component modules. These 
modules are created by linking together the object code produced by compilers and assemblers. Some of the 
symbols referenced in the resulting module might not be dermed there, but are instead dermed in some library. In 
older UNIX systems, the routines from the libraries that define these symbols would be copied and bound into the 
resulting module. With the OSPJ 1 loader, the linker may merely augment the symbol name with the library name 
(package name) that dermes it, and postpone until later fetching the routine defming the symbol. Thus the result 
of linking is to create an imported symbol table that contains a list of unresolved symbol-nameJpackage-name 
pairs. 

The loading procedure may be completed at run time. The fIrSt step involves fmal symbol resolution. All of the 
packages mentioned in the imported symbol table must be tracked down and the routines containing the 
unresolved symbols must be extracted. This is in general an iterative procedure, since the routines so extracted 

10-5 



Module 10 - Loader 

may have their own imported symbol tables, causing further symbol resolution. As symbol resolution is 
perfonned, relocation is also performed. 

10-6 



Module 10 - Loader 

10-5. Symbol Resolution 

Packages and Libraries 

• Two-dimensional name space 

- package name/symbol name 

• Packages are mapped to libraries at run time 

- binaries need not contain path names 

.H2S96 10-5. 321 © 1991 Hewlett-Packard 

Packages and Libraries 

The concept of packages was invented to deal with the following issues: 

• symbols should not be bound to library path names, since libraries may move 

• naming conflicts may occur between symbols of different libraries 

• symbol resolution should be flexible: the user should be able to alter resolution at compile, link, and load time 

Packages are the abstraction of libraries: they normally correspond to libraries, but the programmer is free to split 
a library into sub-libraries by breaking it up into a number of packages. Currently, package names are assigned to 
symbols only at link time, but with sufficient compiler support they could also be assigned at compile time. 

10-7 



Module 10 - Loader 

10-6. Symbol Resolution 

Symbol Reso~ tv). ~ rfr/~ 
, / 

S t. / / r/:;I' 
',:>0 

libc.a' prog.o 
unported symbol table 

prog 
unported symbol table 

name: printf 
pkg:null 
value: null 
name: getewd 
pkg:null 
value: null 

name: printf 

~ ~~;e~t~~~l 
name: getewd 

t----.. ~.. pkg: libe 
. value: null 

--
--

exported symbol table 
name: printf 
pkg: stdio 
value: null 
name: getewd 
pkg: libe 
value: null 

link time 

--------------------~-------------------

.H2S96 10-6. 

Symbol Resolution 

name: printf 
pkg: stdio 
value: Ox400000 
name: getewd 
pkg:libe 
value: Ox400500 

322 

load time 

© 1991 Hewlett-Packard 

Prog.o is produced by the compiler. Its imported symbol table contains the names of unresolved symbols, but 
little is known about these symbols. At link time, the ld program fmds defmitions for the symbols in libraries, but 
instead of extracting the code, it augments the imported symbol table by filling in the package for each of the 
symbols listed. Finally, at load time, the Id program somehow brings the desired packages into the address space 
and fills in the value fields of the imported symbol tables with the addresses of the component routines. 

10-8 



Module 10 - Loader 

10-7. Symbol Resolution 

Known Package Tables (KPTs) 

I) 

LPf 

2) 

private KPT 

3) 

global KPT 
.H2596 10-7. 

Known Package Tables (KPTs) 

packages loaded 
by this process 

libraries from parent 

system libraries 

323 © 1991 Hewlett-Packard 

Known package tables (KPTs) contain mappings from package names to actual code. They are used to translate a 
package-name/symbol-name pair into a symbol within a particular library. Each process has a sequence of KPTs 
which it searches to resolve a particular package-name/symbol-name pair. The order of search is: 

1. loaded package table (LPf): a per-process table referring to packages from modules that have been explicitly 
loaded into the program; this includes the loader itself, the "main" module (whose name was given in exec), 
modules loaded because they are dependencies of other modules, and modules that have been dynamically 
loaded 

2. private known package table (private KPT): maintained by the user and inherited copy-on-write from the 
parent process (this is contained in anonymous memory that is retained across execs) 

10-9 



Module 10 - Loader 

3. global known package table (global KPT): a system-wide table maintained by the system administrator (used 
to derme the standard system libraries) 

10-10 



Module 10 - Loader 

10-8. Symbol Resolution 

Package Substitution 

prog.o 
imported symbol table 

prog 
imported symbol table 

name: printf name: printf 
pkg:null - pkg: stdio -- --value: null value: null 
name: getewd name: getewd 
pkg:null - pkg: libe -- -value: null value: null 

Uhc.a 
exported symbol table 

name: printf 
pkg: stdio 
value: null 
name: getewd 
pkg:libe 
value: null 

link tim e 
-------------------- --------------------

" 
load tim e 

name: printf 
~ mylib.a pkg: stdio 

value: Ox300600 exported symbol table 
name: getewd name: printf 
pkg:libe pkg: stdio 
value: Ox400500 value: null 

.H2S96 10-8. 324 © 1991 Hewlett-Packard 

Package Substitution 

By modifying the contents of the private KPT, the user can effect changes in symbol resolution. In this example, 
by inUhing myUh.a, we have created a private package containing a redefInition of print/. Since at link time the 
symbol print/in our program has been associated with the package stdio, we have to call our private package stdio 
as well, so that it is used to defme the print/ mentioned in our program. Our private stdio package, containing 
only printf, will appear in the private package table. 

At load time, since the program searches the private KPT before the global KPT, it uses the new version of printf, 
However, any reference to any other member of the standard stdio package is satisfied via the global KPT, since 
we have only replaced print! of the standard stdio package. 

10-11 



Module 10 - Loader 

10-9. Data Structures and Flow of Control 

The Run-Time Loader 

known 
context module 

list 

LPT 
exported 
packages 

loader 

main 
,loaderl 

exported 
packages 

13 
t-........ module 

..... -... record 

obalKPT 

libc t----I .. module 
record 

stdio 

libx exported packages 

~ 
.H2S96 10-9. 

The Run-Time Loader 

• . 
exported packages • 

'tEl 
315 

record 
exported 
packages 

,mYlibl 

exported 
packages 

~ 
I]Ej 

© 1991 Hewlett-Packard 

This picture gives a simplified view of the data structures used by the loader. There is a context structure for each 
image maintained by the loader. lYPically there will be just one context structure, representing the image in the 
current address space. However, the kemelloader, for example, would have a context structure for another 
image-the kernel image. The context structure is initialized to refer to the global KPf and the inherited private 
KPT. The LPT is initialized to refer to the loader itself. Each module loaded into the address space is represented 
by a module record structure, which is linked into the known module list, which is headed by the context structure. 
Each module record points to an array listing all of the packages contained in the module and made available to 
other modules (exported). Associated with the private and global KPTs are module records for each of the 
modules supplying packages for the associated KPT. Unlike the module records in the known module list, which 
contain detailed infonnation about the module such as the imported symbol table, these module records only list 
the exported packages of the module. 

10-12 



Module 10 - Loader 

Initially the known module list contains a module record for the loader. The next step is to append a module 
record for the main routine, i.e., the one given in the exec system call. The goal of the loader is now to build a 
complete known module list, containing all modules that are required for the image. It does this by identifying for 
each module record in the list the additional modules it needs and adding the record for these additional modules 
to the known module list. 

The packages exported by these modules are added to the loaded package table. Modules are added to the known 
module list when they are needed to resolve symbols listed in a module's imported symbol table. Module records 
for these modules are appended to the end of the known module list. In some load formats, the names of these 
modules are supplied explicitly. The tec;hnique intended is that the symbol-name/package-name pairs given in the 
imported symbol table will be looked up in the loaded package tables, as discussed on page 10-9. The next step 
is for the loader to traverse the known module list and to map in (if not already mapped) the regions (e.g., text, 
data, BSS) of each module. At the same time the loader can determine the values of each module's exported 
symbols. 

Finally, the loader traverses the known module list again and performs relocation in each module. 

In summary, run-time loading consists of three phases: 

• discovery--locating the desired modules based upon translating symbol-name/package-name pairs to routines 
in libraries 

• mapping-map the modules into memory 

• relocation---convert symbolic reference to actual addresses 

10-13 



Module 10 - Loader 

10-10. Data Structures and Flow of Control 

Multiple Load Formats 

• Fonnat-dependent loader 

- fonnat recognition 

- construction of imported symbol table 

- provision of exported symbol table 

- mapping of regions 

- relocation 

- unloading 

.H2S96 10-10. 326 © 1991 Hewlett-Packard 

Multiple Load Formats 

Associated with each object fonnat is a set of routines known as the format-dependent loader. Adding a new 
object fonnat merely involves writing another version of these routines. The primary duties of these routines 
include: 

1. format recognition: whenever the loader encounters a new module, it calls upon each of the format-dependent 
loaders in turn, essentially asking them "Is this one of yours?" 

2. construction of imported symbol table: each module's fonnat-dependent loader is called upon to rIll its 
imported symbol table 

3. provision of exported symbol table: each module provides a list of exported symbols in fonnat-dependent 
fonn. Thus each module also provides a routine to return the value of each of the symbols it defmes 

10-14 



Module 10 - Loader 

4. mapping of regions: each module's fonnat -dependent loader maps the regions of the module into memory as 
required 

5. relocation: the fonnat-dependent loader performs all necessary relocation 

6. unloading: if the module is to be unloaded, the format-dependent loader performs the necessary chores 

A detailed discussion on the format-dependent portion of the loader can be found in chapter 7 of Open Software 
Foundation, 1990b. 

10-15 



Module 10 - Loader 

10-11. The Run-time Image 

Shared Libraries 

A ss B 

,---+-- printf\ ... ) 

printf\ ... J-+---,"", 

.H2S96 10-11. 327 © 1991 Hewlett-PIckard 

Shared Libraries 

Shared libraries is one of the most important features of the OSF!l loader. There are a variety of ways to share 
code. The simplest is merely to map the shared routine into the address space. If relocation is required, the 
routine may be mapped copy-on-write and then appropriately modified to effect the relocation. However, if 
appreciable relocation is required, this technique cuts down on the amount of sharing that actually takes place. 

Another approach is to use position-independent code (PIC) to eliminate the need for pre-relocation. This 
technique is not currently supported by the OSF!l compilers, but might be supplied by vendor-supplied compilers. 

What OSF!l does is to use pre-relocated shared libraries. Such libraries are combined into a single image which 
is pre-relocated to fit at a fIXed location in the address space. They are thus available for linking to programs 
without any further relocation. The standard libraries are provided in this format and are linked in this form (as 
described on page l0-9) with the standard UNIX conunands. 

10-16 



Module 10 - Loader 

Note that symbol substitution is still possible, e.g., an alternative version of print! can be substituted at load time 
for the version in the shared library. Also, because fmal symbol resolution can occur at load time, the locations to 
which shared routines have been pre-relocated can be changed without the need for relinking. 

10-17 



Module 10 - Loader 

10-12. The Run-time Image 

Typical Address Space Layout 

fIxed addresses 

.H2S96 10-12. 328 © 1991 Hewlett-Packard 

Typical Address Space Layout 

10-18 



Module 10 - Loader 

10-13. Dynamic Loading 

Run-Time Loading and Unloading 

transistor 
emulator 

, 

circuit 
emulation 

.H2S96 10-13. 329 © 1991 Hewlett-Packard 

Run-Time Loading and Unloading 

Modules may be explicitly loaded into or unloaded from a running program. For example, a user of a CAD/CAM 
application might put a transistor into a diagram. The CAD/CAM application might then call upon the loader to 
load a transistor-emulation module into the program. If the user subsequently decides to remove the transistor 
from the diagram, then the CAD/CAM application would call the loader to unload the emulation module as well. 

To make this possible, the run-time loader remains in the address space even after the program starts up. The user 
program can call the loader via its load and unload entry points; all of the loader's data structures still exist, and 
they are updated by the loader to reflect the presence of the new module. 

10-19 



Module 10 - Loader 

10-14. Dynamic Loading 

Kernel Loading / ~ ~ ,,-tt 

• Handled by kernel loader server 

- maintains loader data structures for the kernel 

- maps modules into its own address space but relocates with respect to 
kernel's address space 

- copies relocated module into kernel via special system call 

.82596 10-14. 330 © 1991 Hewlett-Packard 

Kernel Loading 

The aSPJ 1 loader can be used to load modules into or unload modules from the kernel. This feature is used in 
conjunction with dynamic configuration to support loadableJunloadable device drivers, streams modules and 
drivers, file systems, and protocols. Kernel loading is managed by a privileged user-mode task, the kernel-loader 
server. This server maintains the data structures describing the kernel address space (i.e., the same types of data 
structures that describe a user task). 

Loading into the kernel is essentially identical to loading into a user task, except that the actual loading is done 
remotely: modules to be loaded into the kernel are mapped into the server's address space, but are relocated with 
respect to their fmal position in the kernel address space. Special system calls perfonn the actual loading into the 
system address space (such modules go into wired memory) and call the module's configure routine (so that it can 
link itself into kernel tables). 

10-20 



Module 10 - Loader 

Exercises: 

1. What functionality is provided by the OSP/l loader that is not provided by the standard Id and exec? 

2. a. Explain the role of packages in symbol resolution. 

b. How can one replace a routine supplied by a system library? 

3. a. Why can't the LPT and the private KPT be combined into a single table? 

b. Why is it necessary to separate the format-dependent loaders from the format-independent loader? 

4. a. List three techniques for implementing shared libraries. 

b. Why are loader text, data, and BSS kept separate from the standard text, data, and BSS? 

5. a. List the actions taken to load a module into a running program. 

b. In what ways is loading into the kernel treated differently from loading into the current process? 

10-21 



Module 10 - Loader 

10-22 



Module 11 - Security 

Module Contents 

1. Security Concerns .................................................................... 11-3 
Orange-book model 
Security in OSP/I 

2. Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-8 

3. Access Control ....... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-10 
Discretionary access control 
Mandatory access control 
Implementation architecture 

4. Authorizations and Privileges .......................................................... 11-17 
Representing authority 
Principle of least privilege 
Using and transferring privileges 

5. Living with Security ..................................... i • • • • • • • • • • • • • • • • • • • • • • • • • •• 11-27 

Module Objectives 

In order to understand security in the OSP/I environment, the student should be able to: 

• describe how OS PI I is compliant with the Orange Book security model 

• describe how audit infonnation is collected 

• explain how it is determined whether a particular subject has the desired access to a particular object 

• explain how authorizations and privileges exceed traditional security measures 

11-1 



Module 11 - Security 

11-1. The Big Picture 

Security 

1::::::::::::::::1 Mach 

E:J UNIX 
.H2S9611·1. 331 © 1991 Hewlett·~d 

Security 

11-2 



Module 11 - Security 

11-2. Security Concerns 

Security Concerns 

• Protect objects from subjects 

- subjects: users and processes 

- objects: files and processes 

.H2S96 11-2. 332 © 1991 Hewlett-Packard 

Security Concerns 

11-3 



Module 11 - Security 

11-3. Security Concerns 

The "Orange Book" Model 

• division D: minimal protection 

• division C: discretionary protection 

- class C 1: discretionary security protection 

- class C2: controlled access protection 

• division B: mandatory protection 

- class B 1: labeled security protection 

- class B2: structured protection 

- class B3: security domains 

• division A: verified protection 

- class AI: verified design 

.H2S96 11-3. 333 © 1991 Hewlett-PIckard 

The "Orange Book" Model 

The U. S. Department of Defense (DoD) trusted-computer-evaluation criteria, known as the "Orange Book" 
model (so called because of the color of its cover), defme criteria for classifying computer systems according to 
their degree of protection. 

Division D contains those systems whose security features have been evaluated and have flunked. 

Division C, a very minimal level of security, contains two classes. To be in class Cl, a system must provide 
controls so that users can protect private information and keep others from accidentally reading or destroying 
data. The model is of cooperating users processing data at the same levels of security. Most UNIX systems 
should fit within this class easily. -

11-4 



Module 11 - Security 

To be in class C2, a system must meet all of the requirements for class C 1 and, in addition, users of the system 
must be individually accountable for their actions through login procedures, auditing, and resource isolation. 
UNIX systems may relatively easily aspire to be in this class. 

If a system is certified to be in division B, then it must be realistically considered secure. To be in class B I, a 
system must meet all the requirements for class C2. In addition, it must have an informal statement of the security 
model and must provide data labeling and mandatory access control·over named subjects and objects. The 
capability must exist for accurately labeling exported infonnation (e.g., in a defense environment, Top Secret 
printouts must be clearly labeled as such). 

To be in class B2, a system must meet all the requirements for class B 1 but, instead of an infonnal statement of 
the security policy model, there must be a clearly defmed and documented formal security policy model. The 
discretionary and mandatory access controls of B I must extend to all subjects and objects, much more thorough 
testing and review is required, and very stringent configuration management controls are necessary. 

To be in class B3, a system must meet all requirements for class B2. In addition, its trusted computing base 
(TCB), i.e. that portion of the system that runs in privileged mode, must be small enough to be subjected to 
rigorous analysis and test All accesses of subjects to objects must be mediated, the system must be tamper-proof, 
a security administrator must be supported, audit mechanisms must be expanded to signal security-relevant 
events, and detailed system recovery procedures must be in place. 

The primary difference between class Al and and class B3 is that the formally specified design must be formally 
verified. Going beyond class AI, if such classes were defmed, might involve a fonnally verified implementation, 
which is considered beyond the state of the art. 

11-5 



Module 11 - Security 

11-4. Security Concerns 

Compliant vs. Certified 

• Certification requires a (lengthy) fonnal evaluation process 

- platforms, not operating systems, are certified 

.H2S961l-4. 334 © 1991 Hewlett-PIckard 

Compliant vs. Certified 

Certification requires a formal evaluation process. It is not merely the operating system that is being evaluated, 
but also the implementation of the operating system on a particular architecture with a given set of options. OSF 
supplies most of the voluminous documentation required for certification. 

The "Orange Book" criteria are strictly for stand-alone systems. A system that is networked cannot be secure 
under these criteria. Thus, for example, a B I-certified system cannot contain NFS. 

11-6 



Module 11 - Security 

11-5. Security Concerns 

Security in OSF/l 

• OSF/l can be compiled to be C2-compliant, Bl-compliant, or neither 

.H2S96 11-5. 

• Components: 

- auditing 

- discretionary access control (DAC) 

- mandatory access control (MAC) 

- authorizations and privileges 

335 

Security in OSF/l 

11-7 

© 1991 Hewlett-Packard 



Module 11 - Security 

11-6. Auditing 

Auditing 

• system calls 

-I/O 

-exec 

- fork 

-etc. 

• user events 

-login 

-su 

-etc. 

.H2S96 11~ 336 © 1991 Hewlett-PIckard 

Auditing 

Auditing may be used selectively; i.e., under the control of the system administrator, selected system calls and 
user events may be recorded. 

Stub routines inserted in the control path collect infonnation for system calls. The status of each system call is 
maintained in the audit info structure, which is allocated on the kernel stack. When an audited system call 
completes, the audit info structure is put into a buffer maintained by the audit device driver. This driver makes 
the information available to the audit daemon, which compacts it and stores it in a database. 

11-8 



Module 11 - Security 

11-7. Auditing 

KernellDaemon Communication 

user 

kernel 
upcalls 

.H2S96 11-7. 337 © 1991 Hewlett-Packard 

KernellDaemon Communication 

A fair amount of the processing performed by the security system is done within user-level daemons. The 
security architecture was designed for general UNIX systems: it does not assume the communication facilities of 
OSP/l. Thus communication between the daemons and the kernel must be implemented in a way that can be 
easily ported to any UNIX system. The interface chosen is that of a pseudo device. The security daemons may 
perform standard read, write, and ioctl system calls on their associated pseudo devices. These devices are 
represented in the kernel as pseudo-device drivers. 

Upcalls, e.g. requests sent to the daemons by the kernel, are implemented by having the daemon make a read 
system call. The call blocks until the pseudo-device driver has an upcall to make. When the read returns in the 
daemon, the result contains the upcall request. 

11-9 



Module 11 - Security 

11-8. Access Control 

Discretionary Access Control (DAC) 

.H2S96 11-8. 

read 
access? 

NO! 

338 

Discretionary Access Control (DAC) 

ACL 

avd:rw 
jvva:r 
kha:r 
dcab: r 

© 1991 Hewlett-PIckard 

By discretionary access control we mean the ability of an object's creator/owner to specify who has what sort of 
rights to the object In OSF/I, the traditional UNIX security policy (a discretionary policy) has been augmented 
with the use of access control lists (ACLs). Associated with each object (i.e. file) is a list of all users allowed to 
access it and what their access rights are. ACLs extend the nonna! UNIX discretionary policy by increasing its 
flexibility. For example, with ACLs it is easy to prohibit access to certain individuals. 

11-10 



Module 11 - Security 

11-9. Access Control 

Mandatory Access Control (MAC) 

.H2S96 11-9. 

read 
access? 

NO! 

Mandatory Access Control (MAC) 

339 

ACL 
avd:rw 
jvva:r 
kha:r 
dcab:r 
twd:r 

© 1991 Hewlett-Packard 

Mandatory access control involves enforced restrictions on objects that cannot be changed at the discretion of the 
creator or owner or user. Subjects are assigned levels of trust (clearances) and objects are assigned degrees of 
sensitivity. Both notions are represented with sensitivity labels and combine a hierarchical classification with a 
non-hierarchical set of categories (or comparnnents). 

DoD security classifications are an example of a hierarchical classification-Unclassified < Confidential < Secret 
< Top Secret < Eyes-Only. Combined with this is the non-hierarchical notion ~f compartments, e.g. NATO, 
NORAD. Thus, to view a Top Secret NATO document, it is not enough to be cleared for Top Secret; one must 
also be working within NATO. 

Various rules are established governing access to information. For example, one cannot modify a Secret file while 
executing in a Top Secret domain, but one can read a Secret document while in a Top Secret domain. 

11-11 



Module 11 - Security 

11-10. Access Control 

Mandatory Access Control: Multilevel Directories 

invisible 

.H2S96 11-10. © 1991 Hewlett-Packard 

Mandatory Access Control: Multilevel Directories 

Public directories (such as /tmp) need special treatment when used in conjunction with the mandatory access 
control policy. For example, various programs such as the C compiler use the /unp directory to hold their 
temporary files. Even though the contents of these files may be securely protected, the existence of a temporary 
file as well as its name could be easily discovered by anyone perfonning an Is on the /tmp directory. Such 
information about Top Secret temporaries, for example, should not be known to those operating in the Secret 
domain. 

Furthennore, if a direcdtory is, for example, Top Secret, then a process whose sensitivity level is Secret wouldn't 
be able to add files to it, since this would require modifications to the directory. If the directory was Secret, then a 
Top Secret process couldn't write to it, because this would allow the leakage of infonnation to a lower sensitivity 
level. 

11-12 



Module 11 - Security 

One approach to dealing with this problem might be to change all applications so that they do not use public 
directories but instead fmd directories at appropriate security levels. A better approach is to deal with the problem 
transparently. A directory such as Itmp may be set up as a multilevel directory. It is then transparently split into a 
number of subdirectories, one for each security classification. Thus a reference to the file /tmp/xyz by a process 
executing as Top Secret would be translated into a reference to the file Itmp/topsecretlxyz. 

11-13 



Module 11 - Security 

11-11. Access Control 

Attributes 

• Examples: 

- UID/GID 

- security classification 

- security comparttnent 

- access control list 

• Each is represented by a 32-bit tag 

.H2.S96 11-11. 341 © 1991 Hewlett-Packard 

Attributes 

Each security policy must deal with a set of attributes on subjects and objects. These attributes can be very 
complicated; for example, an ACL can be arbitrarily long. A direct representation of such attributes would be too 
complex for the kernel to manipulate easily. Instead, each attribute is represented by a 32-bit tag (thus when a 
new ACL is used, a new 32-bit tag is created). 

Every security policy has a policy daemon that is responsible for translating tags to attributes and vice versa. 
Each such daemon maintains a database to aid this process; it must ensure that tags are unique. Inside the kernel, 
the policy modules deal only with tags. Since they are not capable of interpreting the tags, they can only make 
equality comparisons; any other manipulation must be forwarded to the user-level policy daemon. 

11-14 



Module 11 - Security 

11-12. Access Control 

Tag Pools 

.H2S96 11-12. 

Tag Pools 

• Each security policy uses a fixed set of attribute types 

- DAC uses one each for subjects and objects (UID/GID, ACL) 

- MAC uses two for subjects (sensitivity level, clearance level) and one 
for objects (sensitivity level) 

• Each subject's and object's tags are organized into a tag pool 

342 © 1991 Hewll!tt-Packard 

Each subject and object must be associated with its attributes with respect to each security policy. In OSP/ I, each 
subject must have three tags (one for DAC and two for MAC) and each object must have two tags (one each for 
DAC and MAC). The collection of tags associated with a subject or an object is known as a tag pool. 

11-15 



Module 11 - Security 

11-13. Access Coritrol 

Security Policy Architecture 

security_switch 

.H2S96 11-13. 343 © 1991 Hewlett-Packard 

Security Policy Architecture 

Whenever a security decision has to be made or action taken, each security policy must be consulted. In OSP/l, 
there are two such policies, DAC and MAC. Thus, for example, if a process attempts to open a file, both DAC 
and MAC are consulted to ensure that both will allow the access. If either says no, the access is denied. 

The security decisions are implemented through the security switch. Each security policy provides a policy 
module in the kernel whose entry points are contained in the security switch. When a subject attempts to access an 
object, the macro SP _ACCESS is called, which calls the access entry point of each policy (via the security 
switch), passing to the policy module the subject's attributes and the object's attributes. Each policy module 
maintains a cache of recent security decisions, which consists of relations on attributes as represented by tags. If 
the decision cannot be made based upon the contents of the cache, then the policy module forwards the request via 
an upcall to its policy daemon, which then makes the decision. 

11-16 



Module 11 - Security 

11-14. Authorizations and Privileges 

Authorizations and Privileges 

.H2596 11-14. 

• Authorizations 

- command authorizations are used to restrict certain subsystems and 
commands to designated users 

- kernel authorizations grant certain security policy overrides to trusted 
applications 

• Privileges 

- rights to access operating-system functions 

- used partly to implement kernel authorizations 

344 © 1991 Hew1ett-Packard 

Authorizations and Privileges 

A manage of an object fmds out if the subject process is authorized by checking a list of authorized subjects, 
whereas a privilege is an actual property of the process, stored with the process. 

11-17 



Module 11 - Security 

11-15. Authorizations and Privileges 

Authorizations 

• Command authorization 

- specific 

- role 

- subsystem 

.H2S96 11-15. © 1991 Hewlett-Packard 

Authorizations 

Command authorizations are associated with particular users and are maintained by user-level code and databases. 
These authorizations are broken into the following categories: 

• specific 

- allows the user to execute a conunand to perfonn a specific functions. E.g., the mknod authorization allows 
the user to invoke the mknod conunand to create special files 

• role 

- allows the user to perfonn tasks associated with some specific system role. E.g., the isso authorization 
allows the user to administer the security system 

11-18 



Module 11 - Security 

• subsystem 

- grants the user additional rights in certain subsystems. E.g., the lp authorization allows the user to use the 
administrative and command options of the lp subsystem 

11-19 



Module 11 - Security 

11-16. Authorizations and Privileges 

Privileges 

• Root replacements 

• UNIX mode 

• Trusted mode 

• Trusted function 

.H2596 11-16. 346 © 1991 Hewlett-PIckard 

Privileges 

Instead of the superuser/mere-mortal dichotomy of UNIX, aSP/l uses a much rmer breakdown of privileges, 
dividing them into the following categories: 

• root replacements 

- a breakdown of the privileges once reserved for the root into a set of rights that can be individually granted; 
e.g., the sysattr privilege allows one to invoke system calls that change system attributes such as the time of 
day . 

• UNIXmode 

- privileges that ordinary users have in UNIX but may be restricted in aSP/I; e.g., one must have the execsuid 
privilege to execute SEThlD programs. 

11-20 



Module 11 - Security 

• trusted mode 

- privileges allowing a process to operate in modes that gain it special treatment with respect to trusted system 
features; e.g., the suspendaudit privilege allows a process to stop the kernel from collecting audit records. 

• trusted function 

- privileges allowing a process to derme new trusted functions; e.g., the writeaudit privilege allows a process 
to append records to the audit trail. 

11-21 



Module 11 - Security 

11-17. Authorizations and Privileges 

Use of Privileges 

Associated with the process: 

• base privilege set 

• kernel authorizations set 

• effective privilege set 

Associated with the executable file: 

• potential set 

• granted set 

.H2S96 11-17. 347 © 1991 Hewlett-Packard 

Use of Privileges 

The base privilege set is the set of privileges that is always granted to a process when it execs a ftle. 

The kernel authorization set is the set of privileges for which the process's user is authorized. 

The effective privilege set is the set of privileges that are currently being used when the kernel checks for 
privileges. 

The potential set is the set of privileges that a program may use. 

The granted set is the set of privileges that is placed in a process's effective privilege set when the ftle is exec' d. 

11-22 



Module 11 - Security 

11-18. Authorizations and Privileges 

Exec'ing a File 

process 

.H2596 11-18. © 1991 Hewlett-PIckard 

Exec'ing a File 

Privilege sets are represented as bit vectors. Associated with each process are four such bit vectors, for the base 
privilege set, the kernel authorization set, the effective privilege set, and the potential set. 

Each inode contains bit vectors for the granted and potential sets. 

When a user execs a program provided by another user, we have two mutually suspicious parties. Each party, 
i.e., the owner of the process and the owner of the executable fIle, provides an initial set of privileges that form the 
initial effective set of this joint venture. This effective set may be enlarged, but only subject to constraints 
provided by both parties. Privileges can be added to the effective set that are either in the potential set or the base 
set The base set can itself be enlarged, but only be adding to it privileges that are in both the kernel authorization 
set and the potential set This protects both parties in the event that another file is exec' d. The base set used with 
this new fIle would contain only those privileges allowed by both parties. This technique prevents privileges from 
being combined in unforeseen ways. 

11-23 



Module 11 - Security 

11-19. Authorizations and Privileges 

Privilege Set Relationships 

K: kernel authorizations 
B: base privilege set 
E: effective privilege set 

.H2S96 11-19_ 

Privilege Set Relationships 

G: granted set 
P: potential set 

© 1991 Hewlett-Paclwd 

A set of kernel authorizations defmes the limit of what privileges this process is allowed to have. It is a subset of 
the privileges available to the user. The potential set limits the privileges of a process executing the program 
contained in a file. 

B~ K 

E~ (pu B) 

G~ P 

11-24 



Module 11 - Security 

11-20. Authorizations and Privileges 

Principle of Least Privilege 

Trusted applications use the smallest effective privilege sets possible 

.H2S96 11-20. 350 © 1991 Hewlett-Pacbrd 

Principle of Least Privilege 

Good practice dictates that the effective privilege set should be kept as small as possible. The setpriv system call 
allows a process to adjust its sets K, B, and E, subject to the constraints: 

K'~ K 

B' ~ (K (J P) u B 

E'~ PuB 

(where K', B', and E' are the sets K, B, and E after a setpriv request). 

11-25 



" 

Module 11 - Security 

11-21. Authorizations and Privileges 

Operations on File Privilege Sets 

Processes that have the chpriv privilege may change a file's granted and potential sets 

.H2S96 11-21. 351 © 1991 Hewlett-Packard 

Operations on File Privilege Sets 

Using the chprv system call, a process may propagate to files only those privileges for which the process is 
authorized: 

P'~K 

0' ~ PnK 

If an executable file is modified, then all privileges are removed from its granted and potential sets. This is 
analogous t(' the effects of modifying a setuid rue in standard UNIX. 

11-26 



Module 11 - Security 

11-22. Living with Security 

Living with Security 

• Secure systems are inherently slower than non-secure systems 

- OSF/I can be configured to be either C2 or BI 

- the degree of auditing can be set by the system administrator 

.H2S96 11-22. 352 © 1991 Hewlett-Packard 

Living With Security 

Not all installations will desire the BI security features in OSF/I. The system can be configured to be either C2 or 
B I. This decision is implemented as a compile-time option; it is not a run-time option because too many tests 
would be necessary. However, the degree of auditing is selectable at run time. 

11-27 



Module 11 - Security 

Exercises: 

1. a. To which security class are most UNIX systems probably compliant? 

b. To which security classes can aSF!1 be made compliant? 

c. What is the difference between compliant and certified? 

2. a. In whose context is audit information collected? 

b. How is audit information collected in an audit fIle? 

3. a. In what ways are ACLs more flexible than standard UNIX file protection? 

b. If DAC and MAC disagree on an access decision, how is the issue resolved? 

c. How is it determined whether a particular subject has the desired access to a particular object with respect 
to a particular access control policy? 

4. a. Explain the difference between how an authorization is implemented and how a privilege is implemented. 

b. The effective privilege set is restricted to be a subset of the potential set unioned with the base privilege 
set Why isn't the kernel authorizations set used instead of the base privilege set? 

c. List the kernel data structures that were modified to support the aSF!1 security features. 

5. Why isn't security compliance a run-time or boot-time option? 

11-28 



Appendix - Answers to Exercises 

Module 1 

1. topic 1-1 

2. topic 1-5 

3. topic 1-7 

4. a. topic 1-10 

b. topics 1-6 and 1-7 

c. topic 1-8 

d. topic 1-9 

e. topic 1-12 

5. topics 1-18 through 1-22 

6. Mach provides the facilities to allow the efficient transfer and sharing of information across address 
space boundaries. This is particularly useful for efficient communication with servers. In addition, 
Mach provides support for multiple threads of control within an address space. 

7. OSF/l includes the logical volume manager, support for dynamic configuration, support for shared 
libraries and dynamic loading, and Bl-level security. 

Module 2 

1. a. topic 2-3 

b. topic 2-3 

c. topics 2-4, 2-5, 2-6 

d. topic 2-4 

2. topics 2-7 through 2-11 

3. a. topic 2-20 

b. topic 2-19, topic 2-28 

A-I 



Appendix - Answers' to Exercises 

c. topic 2-29 

d. topic 2-24 

4. a. topic 2-33 

b. topic 2-34 

c. topic 2-34 

d. topic 2-37 

5. a. topic 2-38 

b. topic 2-39 

c. topic 2-41 

6. a. topic 2-45 

b. topic 2-45 

c. topic 2-49 

d. topic 2-43 

e. topic 2-43 

7. a. topic 2-51 

b. topic 2-51 

8. topic 2-52 

9. Separate u _ task and proc structures are maintained in OSF 11 primarily because the separateness of 
these two structures is inherent in the Berkeley UNIX source code. There is no particular reason 
that they could not be merged, but there is no compelling reason to go to the effort of doing so. 

10. OSF/1's kernel threads are cheaper than UNIX's kernel processes because kernel threads have no 
private address space associated with them. Thus the system can switch from the context of any task 
into the context of a kernel thread without changing address maps. 

11. a) There are three primary reasons for nonpreemptibility in kernel mode. The first, which is not a 
problem in multiprocessor-safe operating systems such as OSF 11, is that certain data structures, if 
not accessed in the interrupt context, might have no synchronization to protect them other than the 
assurance that any thread in kernel mode will not be preempted. A second problem, which does 
affect OSF 11, is that a thread might be updating a data structure that can be accessed in the 
interrupt context and thus has a class of interrupts masked off. H this thread is preempted (because 
the mechanism causing preemption, e.g. clock interrupts, has not been masked off), then one of two 
things might happen, both of them bad. (1) Interrupts remain masked off when the system switches 
to the preempting thread; this is not good because the interrupt will be masked off much too long 

A-2 



Appendix - Answers to Exercises 

and may perhaps interfere with interrupt-masking done by the preempting thread. (2) Interrupts 
become unmasked as the system enters the preempting thread's context; thus the system might now 
enter the previously masked interrupt context and access the data structure that was in the midst of 
modification by the preempted thread. This data structure, being in the middle of an update, is in an 
inconsistent state that is totally unexpected by the interrupt handler. The third reason is also a . 
problem with OSF II: if the preempted thread is holding a spin lock, the preempting thread might 
attempt to take this lock. This thread will of course spin, with no hope of taking the lock, until the 
preempted thread is allowed to execute again. 
b) The constraints on preemption points are: they must be executed only in the context of a thread, 
this thread must not be holding any locks, and no interrupts may be masked. 

Module 3 

1. a. topic 3-3 

b. topic 3-3 

2. a. topic 3-6 

b. topics 3-7, 3-8 

c. topics 3-7, 3-8 

d. topics 3-7, 3-8 

e. topics 3-7, 3-8 

f. topics 3-11 through 3-13 

3. a. topics 3-14, 3-15 

b. topics 3-14, 3-15 

4. The main problem with utilizing copy-on-write techniques to improve the implementation of UNIX 
system calls such as write is that the best use of these techniques requires page alignment of data 
structures such as buffers. Since typical UNIX programs are not written with such alignment 
requirements in mind, it is unlikely that very many buffers would actually be properly aligned. If 
such alignment problems could be dealt with, then any UNIX system call that transfers large 
amounts of data could be improved. In particular, this means I/O-related system calls operating on 
files, devices, sockets, and streams. 

Module 4 

1. a. topics 4-2, 4-29 

b. topic 4-2 

A-3 



Appendix - Answers to Exercises 

2. a. topic 4-5 

b. topics 4-6, 4-11 

c. topic 4-29 

d. topic 4-5 

3. a. topic 4-23 

b. topic 4-23 

c. topic 4-25 

d. topic 4-18 

e. topics 4-16-4-21 

f. topic 4-18 

g. topic 4-27 

h. topic 4-28 

4. a. topics 4-29-4-50 

b. topics 4~30-4-31 

c. topic 4-38 

d. topics 4-43-4-48 

e. topic 4-49 

5. a. topic 4-54 

b. topic 4-54 

c. topics 4-54-4-57 

d. topics 4-54-4-59 

6. If we want to enjoy the advantages of lazily evaluating the allocation of backing store, then we must 
deal with the problem that a thread's execution may fail at an arbitrary point in time. The best we 
can hope for is that the extent of the damage be limited:· for example, that it be necessary to 
terminate only one task. H this sort of behavior is intolerable, we may have to use a more 
conservative preallocation backing-store policy. 

7. The primary difficulty in replacing the vnode pager with an external pager is that this external pager, 
being the "pager of last resort," must never encounter page faults itself. Thus one technique might be 
to wire the external pager's pages into primary memory. 

A-4 



Appendix - Answers to Exercises 

Module 5 

1. topic 5-3 

2. a. topics 5-7, 5-8 

b. topics 5-11, 5-12 

c. topic 5-14 

3. a. topic 5-16 

b. topic 5-19 

c. topics 5-25-5-30 

4. a. topic 5-37 

b. topic 5-39 

5. a. topic 5-43 

b. topics 5-46-5-47 

6. a. topic 5-50 

b. topic 5-51 

c. topic 5-56 

d. topic 5-60 

7. a. topic 5-62 

b. topic 5-64 

c. topic 5-66 

d. topic 5-68 

e. topic 5-73 

f. topic 5-77 

8. All three locks are necessary. The lock on the file table entry is necessary to protect the offset stored 
there from being used prematurely by another thread. This ensures that I/O system calls executed by 
threads sharing a file table entry are atomic. The lock on buffers from the buffer cache is necessary 
to prevent a buffer from being stolen for some other purpose while one thread is using it. A simple 
lock is required for updates to the vnode because, for example, two threads concurrently reading the 
same file, but using different file table entries, might update the access time of the vnode. 

A-5 



Appendix - Answers to Exercises 

9. One might argue that, if it is known that a directory is being searched and the result of this search 
will be used very soon as part of a delete operation, the directory should be searched while holding a 
write lock. The primary reason that this is not done is that it is highly unlikely that there will be two 
concurrent updates to the same directory. Thus the optimistic approach described on page 5-75 
works out very well in what is by far the more usual case. The fact that concurrent updates, if they 
occur, can be quite expensive is thus of little consequence. 

Module 6 

1. a. topic 6-3 

b. topic 6-4 

2. a. topic 6-6 

b. topic 6-6 

3. topic 6-8 

4. a. topic 6-18 

b. topic 6-20 

c. topic 6-23 

Module 7 

l. a. topics 7-3-7-5 

b. topics 7-8, 7-9 

c. topics 7-10, 7-11 

2. a. topics 7-15-7-17 

b. topic 7-15 

c. topics 7-12, 7-13 

3. a. topic 7-19 

b. topic 7-20 

4. a. topic 7-21 

b. topic 7-24 

5. a. topic 7-25 

A-6 



Appendix - Answers to Exercises 

b. topic 7-29 

c. topics 7-25-7-29 

6. The use of synchronization queues has no effect on the order of message processing within a streams 
module: the synchronization queues preserve the order of calls to the module's procedures, and thus 
any ordering constraints imposed on messages by the code within a streams module is preserved. 
However, it is certainly the case that with synchronization queues there might be more messages 
within a streams pipeline than there would be without such queues. For example, while one thread is 
executing within a module, other threads might queue more requests on this module's 
synchronization queue than are allowed by the high-water limit on the module's normal streams 
queue. In practice this is unlikely to be a problem: the only situation in which it could be a problem 
is if the rate at which messages are processed by a module is slower than the rate at which tmessages 
are arriving to the module. Given that streams threads execute nonpreemptively and without 
blocking, this situation is highly unlikely. 

Module 8 

1. topic 8-3 

2. a. topic 8-5 

b. topic 8-10 

c. topic 8-2 

3. a. topic 8-13 

b. topic 8-16 

1. pages topic 8-18 

Module 9 

1. a. topic 9-2 

b. topics 9-6-9-11 

2. a. topics 9-9, 9-13 

b. topic 9-9 

3. a. topic 9-13 

b. topic 9-11 

c. topic 9-15 

A-7 



Appendix - Answers to Exercises 

d. topic 9-16 

4. Only two data structures in the UFS file system depend upon the size of the entire file system: the 
superblock and the cg summary. These of course must be modified to reflect the larger file system 
and the modified superblock must be copied to all of its alternative locations. 

Module 10 

1. topic 10-2 

2. a. topics 10-5-10-8 

b. topic 10-8 

3. a. topics 10-7-10-9 

b. topic 10-10 

4. a. topic 10-11 

b. topics 10-11, 10-12 

5. topic 10-13 

a. topic 10-14 

Module 11 

. 1. a. topic 11-3 

b. topic 11-5 

c. topic 11-4 

2. a. topic 11-6 

b. topic 11-7 

3. a. topic 11-8 

b. topic 11-13 

c. topic 11-13 

4. a. topic 11-14 

b. topic 11-18 

5. topic 11-22 

A-8 



Bibliography 

Allen, L., H. Singh, K. Wallace, M. Weaver. 1991. "Program Loading in OSF/l." Conference Proceedings of 
1991 Winter USENIX Technical Conference. -

AT&T. 1989. UNIX System VI386 Release 3.2: Streams Programmer's Guide. Englewood Cliffs, NJ: Prentice 
Hall. 

Bach, Maurice J. 1986. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice Hall. 

Black, D., R. Rashid, D. Golub, C. Hill, and R. Baron. 1989. "Translation Lookaside Buffer Consistency: A 
Software Approach." Proceedings of Third International Conference on Architectural Support for Programming 
Languages and Operating Systems. 

Black, D. 1991. "Processors, Priority, and Policy: Mach Scheduling for New Environments." Conference 
Proceedings of 1991 Winter USENIX Technical Conference. 

Comer, Douglas E. 1991. Internetworking with TCPIIP, Vol. 1: Principles, Protocols, and Architecture. 
Englewood Cliffs, NJ: Prentice Hall. 

Golub, D., R. Dean, A. Forin, R. Rashid. 1990. "UNIX as an Application Program." Conference Proceedings of 
1990 Summer USENIX Technical Conference. 

Juszczak, Chet 1989. "Improving the Perfonnance and Correcbless of an NFS Server." Conference Proceedings 
of 1989 Winter USENIX Technical Conference. 

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quartennan. 1989. The Design and 
Implementation of the 4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley Publishing Company. 

Macldem, R. 1991. "Lessons Learned Tuning the 4.3BSD Reno Implementation of the NFS Protocol." 
Conference Proceedings of 1991 Winter USENIX Technical Conference. 

Open Software Foundation. 1989. Application Environment Specification (AES): Operating System 
Programming Interfaces Volume. Englewood Cliffs, NJ: Prentice Hall. 

Open Software Foundation. 1990a The Design of the OSFll Operating System. Cambridge, MA: Open 
Software Foundation. 

Open Software Foundation. 1990b. System Extension Guide. Cambridge, MA: Open Software Foundation. 

Tevanian, A., R. Rashid, D. Golab, D. Black, E. Cooper, and M. Young. 1987. "Mach Threads and the UNIX 
Kernel: The Battle for Control." Conference Proceedings of 1987 Summer USENIX Technical Conference. 

B-1 



I Bibliography 

/ 

B-2 



Glossary 

address space a set of virtual locations, such as those locations that can be referenced by a task 
or process. 

authorizations indications of whether a particular user is allowed to use a particular command or 
subsystem, perform a particular role, or gain a particular privilege. 

blocking lock a lock which a thread waits for by yielding the processor. 

bogus memory type of memory in a parallel architecture that does not guarantee atomicity of 
reads of aligned words. 

buffer cache the collection of buffers maintained in the kernel for use in accessing files and 
block special devices. 

channel address of a relevant data structure that specifies an awaited event. 

concurrency multiple threads are in progress at one time; their execution might be multiplexed 
on a single processor. 

cooked mode a terminal mode in which input lines can be edited, and certain characters cause 
signals to be sent to the process group. 

copy-on-write optimization using lazy evaluation in which copying is postponed until a task 
actually modifies a page. 

devices hardware. 

disposition indicates whether or not the sleep is interruptible by a signal. 

exceptions deviations to a thread's flow of control that are caused by actions of the thread 
itself (such as addressing errors, arithmetic errors, etc.). 

external outside the kernel. 

tile handle data that is used to identify a file. After a client opens a fIle, the server gives it a 
fIle handle, which the client gives to the server to speed subsequent accesses. 

funnel a kernel data structure used to represent the parallel/sequential constraints of a 
particular subsystem. 

handoff scheduling a form of thread scheduling in which one thread gives its processor to another. 

G-1 



Glossary 

idempotent when the effect of perfonning an operation once is the same as performing it 
multiple times, the operation is idempotent. 

inode the (ondisk and incore) data structure that describes a file (both S5 and UPS). 

internal inside the kernel. 

lazy evaluation technique of postponing everything until the last possible moment, since if you 
put it off long enough, maybe you won't have to do it. 

local port port that the message comes back through. 

logical volume an abstraction that behaves like a disk drive to file system code, but is in fact a 
collection of separate regions of real disk drives (physical volumes). 

lookup cache cache of the most recent component-name-to-vnode translations. 

memory object a "thing" that can be mapped into a task's address space. It might be temporary 
storage (e.g., UNIX's BSS and stack), a flle, or an object defmed by user-provided 
servers. 

memory object manager responsible for supplying initial values for a range of virtual memory and for 
backing up virtual memory when the physical memory cache becomes full. One 
may be used, for example, to map flles into the address spaces of tasks, to provide 
shared memory in a distributed system, or to implement a 
transaction-management system. 

message a collection of data to be sent through a port to the task that has receive rights for 
the port. 

microkemel a simple, pure Mach kernel with no built-in UNIX (or other operating system) 
functionality. Such functionality would be provided by user tasks. 

mmap a system call that is used either to map a file into a process's address space or to 
create an anonymous memory region. 

multithreaded composed of a number of threads. 

NICFREE number of inc ore free blocks. Equal to lOO. 

package an abstraction of a library. 

parallelism the simultaneous execution of multiple threads; requires multiple processors. 

parallelization the act of making a system parallelized. 

physical volume a real disk drive or a portion of a disk drive. 

G-2 



Glossary 

pmap the data structure and code encapsulating the architecture-dependent portion of the 
virtual memory system. 

port a protected queue of messages or an object reference. 

port set two or more ports whose message queues have been consolidated into a single 
queue by the server task. 

priority depression option to the thread_switch system call; a calling thread's priority is "depressed" 
to the worst possible value for a given period of time, and is then restored. 

privileges properties of a process that gain it special treatment by the operating system. 

process an address space, one or more threads of control and additional information 
necessary to represent a UNIX context 

processor allocation distributing the processors of a multiprocessor among the various applications. 

processor set mechanism for processor allocation. 

processor sharing scheduling or multiplexing processors. 

raw mode the terminal mode in which incoming characters are passed immediately to user 
threads and outgoing characters are sent to the terminal with no further 
processing. 

read-ahead reading the next unit of data at the same time as the current unit of data. 

read-write lock a lock that can be taken as either a read lock, allowing multiple readers by no 
writers, or as a write lock, allowing a single writer and no readers. 

remote port port for sending messages. 

search cache a cache in the inode that contains the offset at which the last search terminated. _ 

sharing what one is taught in nursery school. 

simple lock a spin lock. 

socket a data structure representing the end point of a communication 

spin lock a lock which a thread waits for by repeatedly testing a bit 

stream the kernel analog of a shell pipeline. 

submap a data structure representing a portion of the kernel address space which is 
probably managed by a single subsystem. 

G-3 



Glossary 

swapping unwiring or wiring the kernel stack. 

task a holder of capabilities, such as address space and communication channels. 

thread usual notion of thread of control. 

thread pool a collection of threads used to hand~e events generated in the interrupt context. 

timed pause .when a thread calls thread_switch with the wait option, it can be suspended for a 
fIXed period of time and then automatically woken up. 

translation-lookaside butTer a hardware cache which translates virtual addresses to real addresses. 

upcall a call from a lower level of a system to a higher level (e.g. from kernel mode to 
user mode). 

virtual copy an optimized copy operation. 

virtual file system the abstraction of the file system concept: the layer of the kernel which provides 
the standard interface to the real file systems. 

vnode an abstraction of a fIle; it contains generic information about files and refers to the 
fIle-system-specific information on individual fIles. It also refers to an array of 
entry points called vnodeops, which provides access to the various operations. 

write-behind delaying the update of a fIle until sometime after the write system call has been 
completed. 

write-through cache a buffer cache that requires that the data it buffers be written onto the disk before 
the system call returns. 

zone a collection of fIXed-size blocks: a separate zone is created for each kernel data 
structure that is so managed. A zone is initialized with a pre-allocated free list, an 
allocation size, and a maximum size. 

G-4 



A 
Access control, 11-18 

Access control list (ACL), 11-18 

Access permissions, in NFS, 5-151 

Active list, 4-71 

Addressspace,2-6,4-2,4-~8 
growth, 4-34 

Address space layout, 10-34 

Aliases, 6-8 

ASCII character set, 6-46 

Attach, 6-20 

Attributes, 11-26 

Audit daemon, 11-14 

Audit device driver, 11-14 

Auditing, 11-14-11-16 

Authcrizations, 11-32-11-34 

B 
Backing storage allocation, 4-65 

Backup ports, 3-26-3-28 

Bad-sector remapping, 9-12 

Base priority, 2-116 

bdevsw table, 6-6, 6-15 

bdevsw_add,6-15 

Block interface, 6-~-9 

Block skip section (BSS), 4-32 

Blocked threads, 2-84 

Blocking locks, 5-54,5-144 

Blocking threads, 2-5~2-52 

Bogus memory, 5-144, 5-204 

Boctblock, 5-106 

Boctstrap port, 1-34 

bp,6-34 

buf structures, 5-46 

Buffer cache, 5-6, 5-36 
access to, 5-44 
finding a block, 5-~5-62 
getting a new buffer, 5-64-5-66 
maintenance of, 5-40 
server's, 5-168 

c 
Can queue, 6-58-6-62 

Capabilities, 1-26, 5-88 

cdevsw table, 6-6, 6-15 

cdevsw _add, 6-15 

Character interface, 6-~-6 

Client-side caching, 5-162 

Clipping, "4-96 

Close. 6-20,6-26 

Cluster pool, 8-18 

cmd,6-36 

Collapsing objects, 4-98 

Compliance, UNIX, 1-6 

Compliant vs. certified, 11-10 

Concurrency, 1-18, 5-82 

Configure, 6-20 

Configure entry point, 6-14 

Consistency 
devices, 6-9 
file systems, 5-48-5-52 

Continue signal, 6-49 

copen, 5-30 

Copy link, 4-108 

Copy object, 3-30 

Copy-on-write, 4-77, 4-102 

Crash recovery, 9-10, 9-40 
in NFS, 5-150 

Crashes,serve~5-18~5-188 

Credentials structures, 5-166 

Cylinder group block, 5-123 

Cylinder group summary, 5-122 

D 
Data, 6-36 

dblk,7-34 

Deadlock, 2-82 
avoiding, 2-80 

Debugging, 2-90 

Default memcry object manager, 4-41 

Dev, 6-22, 6-26, 6-30, 6-36, 6-40 

Index-l 



Device drivers, 6-2, 6-59 

Device 110, flow of control, 6-6 

Device module switch table, 7-50 

Device number, 6-4 

device_inuse, 2-36 

Devices, 6-4, 6-8 

Directory path searching, 5-72 
complications in, 5-74 

Discretionary access control (DAC), 11-18 

Disk I/O perfonnance, 5-120 

Disk map, 5-98 

Disposition, 2-32 

Distributed computing environoment (DCE), 5-155 

Drain routine, 8-26 

Driver entry points, 6-20 
close, 6-26 
interrupt, 6-40 
ioctl,6-36 
q:>en,6-22 
read/write, 6-30 
strategy, 6-34 

Dup,5-12 

Duplicate detection, 5-202 

Dynamic configuration, 6-12-6-18 
interrupt handler, 6-18 

Dynamic loader, 1 0-3~ 10-38 

Dynamic loading, drivers, 6-14 

E 
Eighth-bit character sets, 6-46 

Events, 2-70 

Exceptioo handling, in Mach, 2-92 

Exceptioo port, 1-34, 2-94 

Exceptioos, 2-86, 2-94 

Exported symbol table, 10-14, 10-20, 10-26 

Extensible loader, 1-3 

External events, 2-86 

External memory object managers, 1-44 

F 
Family, 2-6 

File handles, 5-158 

File module switch table, 7-54 

File-system-independent data structures, 5-2~5-28 

Flags, 4-17, 4-25, 6-22-6-26, 6-36 

Flow of cootrol, 3-30-3-32 
LVM,9-32 
open and create, 5-30 
read and write, 5-32 

Fonnat-dependent loader, 10-26 

Forward-mapped segmented-paged architecture, 4-132 

Fragments, cost of, 5-12~5-132 

Free block list, 5-11 0 

Free list, 4-71 

Free-space hint, 4-21 

Funnels, 2-130 

G 
Gangs, 2-108 

getnewbuf, 5-62 

Global run queue, 2-112 

H 
Handler, 2-86, 2-92 

handler_add, 6-14 

handler_enable, 6-14 

Hard mount, 5-180 

Hardware device number, 6-40 

Hint, 4-21 

I 
I/O request, 6-34 

I-list, 5-107, 5-112 

Idle thread, 2-112 

Imported symbol table, 10-8, 10-26 

Inactive list, 4-71 

Indirect block, 5-98 

Index-2 



Inode, 5-26,5-96,5-112 
generation number, 5-158 

Internationalization, 6-44, 6-~-48 

Interrupt, 6-40 

Interrupt dispatcher, 6-18 

Interrupt handler, dynamic configuration of, 6-18 

Interrupt priocity level (lPL), 2-34, 2-82 

Interruptible hard mount, 5-180 

Interrupts, protection from, 2-34 

intr,6-20 

ioctl, 6-20, 6-36 

itable, 6-18 

K 
Kernel loading, 10-38 

Kernel memory allocation, zones, 2-134 

Kernel mode, 2-10 

Kernel pert structure, 3-14 

Kernel stack, 2-10 

Kernel stream, 7-4 

Kernel thread pools, 2-132 

Kernel/daemon communication, 11-16 

Kernel-loader server, 10-38 

Known module list, 10-22 

Known package table (KPT), 10-16 

L 
Latency time, minimization of, 5-120,5-138;-5-140 

Lazy evaluation, 1-40,4-4,4-61,4-77 

ld, 10-14 

Libraries, 10-12 

Line discipline, 6-30, 6-44, 6-56-6-58, 6-65 

Loaded package table (LPT), 10-16 

Loader 
functions, 10-4 
role of, 10-4-10-8 
with exec, 10-6-10-8 

Local port, 3-6 

Local run queue, 2-112 

lock_ waictime, 2-75 

Locks, in interrupt context, 2-82 

Logical track group (LTG), 9-28, 9-36 

Logical volume manager (LVM), 1-3 
flow of control, 9-32 
mirrocing, 9-10 
organization, 9-6 

longjmp, 2-32, 2-84 

Lookup cache, 5-88 

M 
Mach, 1-2, 1-8 

Mach abstractions, 1-26 

Mach Interlace Generator (MIG), 2-28 

Mach/UNIX interaction, 1-14 

Mandatory access control (MAC), 11-22 

mblk,7-34 

mbufs, 8-10 
from mbc1usters, 8-22 
structure of, 8-12-8-14 

mc1refcnt array, 8-18-8-22 

Memory object management, interlaces, 4-44 

Memory object managers, 4-41 
default, 4-41 

Memory object pert, 4-67 

Memory objects, 1-27,4-40 

Memory shatages, 8-26 

Message descriptor, 3-7 

Message flow, 7-24 

Messages, 1-26, 1-42, 3-4-3-6 
data structures, 3-6 
in Mach, 1-29 
receiving, 3-32 
sending, 3-30 

Microkemel project, 1-9, 1-14 

Mirroc consistency manager, 9-32 

Mirroc consistency record (MCR), 9-28, 9-36 

Mirroc write coosistency cache (MWC), 9-36 

mmap,5-68 

Mode 
cbreak, 6-58 

Index-3 



cooked, 6-58 
raw, 6-58 

Mode bits, 5-144 

Module record, 10-22 

Mount point, 5-78 

Mount protocol, of NFS, 5-170 

Mount structure, 5-18, 5-26, 5-78 

Mounting file systems, 5-22-5-24 

Multi-buffered 110, 5-38 

Multilevel directory, 11-23 

Multiple file systems, 5-16 
directory path searching in, 5-76 

Multithreaded processes, 1-8, 1-24 
server, 1-22 
signals, 2-8 
standard libraries, 2-8 
system calls, 2-8 

N 
Namei,5-78 

Netisr threads, 8-29 

Network shared memory, 1-46, 1-48, 1-50, 1-52, 1-54 

NFS,5-148 

nfsbioo processes, 5-164 

nfsd processes, 5-166 

nfsnooe,5-28,5-162 

nice routine, 2-116 

Non-homogeneous mUltiprocessors, 2-109 

Non-parallelized cooe, 2-130 

Nonidempotency, problems with, 5-190-5-196 

Notify port, 1-33 

o 
Object cache, 3-22 

Object creation, lazy evaluation, 4-61 

Object manager, 4-12 

Object references, 1-26 

Objects, 11-4 

Open, 6-20, 6-22 

Open file data structures, 5-6-5-14 

Open files, 2-6 

Orange Book, 11-6 

Orphaned process groups, 6-52 

Orphaned processes, 6-49 

Out queue, 6-59-6-62 

.p 
Packages, 10-12 

substitution of, 10-20 

Page tables, 4-136 

Pagein, 4-48, 4-50 

Pageout, 4-53, 4-55, 4-57 

Pageout daemon, 4-71 

Pager, 4-24 

pager_file structure, 4-63 

Pages, 1-40 
locating, 4-36 
replacement of, 4-71 
representation of in primary memory, 4-28 

Parallelism, 1-20 

Parallelization 
file systems, 5-54 
NFS,5-204 
sockets, 8-38 
streams, 7-60-7-70 
UPS, 5-144 

Physical layer, 9-33 

Physical volume reserved area (PVRA), 9-18 

Physical volumes, 9-14 

Physio, 6-30 

Pmaps, qlerations, 4-128,4-130 

pmaps, 4-12, 4-20, 4-124, 4-132 
qlerations, 4-126-4-130 

Port names, 3-16 
interpretation of, 3-20 
translation of, 3-18 

Port sets, 3-12, 4-67 

Ports, 1-26, 1-31,3-10 
backup,3-26-3-28 
destruction of, 3-24 

POSIX threads (Pthreads), 2-104 

Priority depression, 2-127 

Index-4 



Privileged mode, 2-10 

Privileges, 11-32, 11-38 
and exec, 11-44 
operatiens en file privilege sets, 11-50 
principle of least privilege, 11-48 
set relationships, 11-46 
use of, 11-42 

Probe, 6-20 

Proc structure, 2-10 

Process data structures, 2-14 

Process group, 6-48--6-52 

Processes, 2-6,2-10 

Processor allocation, 2-108 

Processor sets, 2-108 

prog.o, 10-14 

Protocol control blocks, 8-36 

Pseudo device drivers, 6-64, 11-16 

Pseudo tenninals, 6-64 

Pthreads, 2-104 

Ptrace, 2-90 

PV list, 4-134 

R 
Race conditien, 2-36, 2-46, 2-62,5-9,5-62, 7-70 

Raw queue, 6-58--6-62 

Read,6-20 

Read/Write, 6-30 

Read-aheads, 5-164 

Read-write locks, 2-74 

Reaper thread, 2-102 

Reference count, 4-21, 4-24, 5-8,.8-18, 8-20 

Reference ports, 6-2 

Remexe mounting, 5-172, 5-174, 5-176 

RPC protocol, 5-154, 5-164 

Run-time image, 1 0-3~ 1 0-34 

Run-time loader, 10-22, 10-36 

s 
S5 file system, 5-94 

directory fonnat, 5-104 
directory structure, 5-102 
layout, 5-106 

sched_average, 2-118 

Scheduler layer, 9-32 

Scheduler priority, 2-116 

Scheduling, 2-106 
influencing, 2-126 

Scheduling policies, 2-116 
fixed priority, 2-116 
time shared, 2-116 

Search cache, 5-92 

Security 
in OSF/l, 11-12 
policy architecture, 11-30 

Security switch, 11-30 

Seek time, minimization of, 5-120, 5-136 

Sensitivity level, 11-20 

Serialization, 9-32 

Session control, 6-44 

Sessions, 6-48-6-52 

setjmp, 2-84 

Shadow chain, 4-98 

Shadow vnocies, 6-9 

Share map, 4-90 

Shared libraries, 10-30 

Shared memory, 1-26 

Shared-memory mUltiprocessor, 1-24 

Sharing,4-~94 

Sharing pages, 4-136 

Shell pipeline, 7-4 

Shift-JIS, 6-46 

Signal state, 2-6 

Signal subsystem, 2-130 

Signals, 2-84 
and multithreading, 2-88 
in UNIX, 2-86 

Simple locks, 2-44, 5-144 

Slave threads, 4-67 

Sleep, 2-3~2-32 
UNIX-style, 2-62 

Index-5 



with unlock, 2-46 

Sockets, 8-4--8-8 
and streams, 8-40-8-42 
data structure, 8-32 
implementation of, 8-28 
types of, 8-6 
virtual copy, 8-16 
writing with, 8-8 

Soft mount, 5-180 

specalias structure, 6-8 

Special files, 6-4-6-9 

specinfo structures, 6-8 

Speed,5-86 

Spin locks, 2-44 

STH structure, 7-50 

STHT structure, 7-50 

Stop signal, 6-49 

Strategy, 6-20, 6-34 

Strategy layer, 9-32 

Streams, 1-3 
cloning, 7-56 
definition of, 7-4 
driver, 7-10 
implementation of, 7-44 
linking, 7-16-7-19 
message queues, 7-36, 7-44 
message types, 7-40 
module, 7-6 
multiplexing, 7-20 
push,7-14 
representing an open, 7-48 
service procedures, 7-28 
setup, 7-12 
stream head, 7-8, 7-46 
synchronization, 7-64--7-68 
TCP/IPexample, 7-22 
virtual copy, 7-38 

Subjects, 11-4 

Submaps, 4-30 

Superblock, 5-106, 5-112, 5-122 

Suspending threads, 2-56 

Swapping, 4-75 

Symbol resolution, 10-8-10-20 

Symbol substitution, 10-31 

Symbolic links, 5-80 

Symmetric mUltiprocessor, 6-2 

Synchronization 
calls, 2-78, 2-84 
Mach/UNIX, 2-42, 2-78 
OSF/l,2-40 
reader-writer type, 2-74 
UNIX, 2-30--2-32 

sleep/wakeup, 2-36 

Syscall, 2-20 

System calls, 2-18 
Mach,2-28 
UNIX, 2-20--2-24 

System configuration, 6-12 

System mode, 2-10 

System stack, 2-10 

T 
Tag pool, 11-28 

Task kernel port, 1-33 

Task/local table (TL table), 3-18 

Task/port table (TP table), 3-18 

Tasks, 1-26, 1-33,2-10 
system calls, 1-34 

Tempocary memory objects, 4-63 

Terminals 
data structures, 6-54 
110,6-44 
110 data structures, 6-62 
110 flow, 6-58 

Thread exception port, 1-37, 2-94 

Thread kernel poct, 1-37 

Thread pools, 2-132 

Thread reply port, 1-37 

Threads, 1-26, 1-37,2-10,2-98 
creation, 2-98 
dispatching, 2-112 
states, 2-58 
suspension, 2-100 
switching, 4-126 
system calls, 1-38 
tennination, 2-102 

Threads and parallelism, 1-18 

Time measurement, 2-122 

Time slicing, 2-124 

Index-6 



Time-shared threads, 2-118 

Timestamp, 4-21~ 5-62,9-22,9-26 

TLB shoexdown algorithm, 4-142 

Trace bit, 2-90 

Translation entry, 3-18 

Translation entry chain, 3-18 

Traslation-lookaside buffers (TLBs). 4-138 

Trusted computing base (TeB). 11-7 

ttread routine. 6-58 

tty line discipline. 6-58 

tty structures, 6-56, 6-58 

ttyinput routine, 6-58 

ttyoutput routine, 6-58 

ttywrite routine. 6-59 

Type, 6-22, 6-26 

u 
u_task component, 2-11 

u_thread component, 2-11 

UDP protocol, 5-154 

UFS file system, 5-114 
directcry fannat, 5-116 
layout, 5-122 

Uio structure, 5-32, 5-34, 5-144, 6-30 

UNIX master, 2-112 

UNIXlMach interaction, 1-14 

UNIX_master, 2-130 

Unlock, with sleep, 2-46 

Upcall, 11-16 

User mode, 2-10 

User stack, 2-10 

User stack pointer (USP), 2-22 

User structure. 2-10 

v 
VFS,5-16 

vfsops array, 5-18 

Victim thread, 2-92, 2-102 

Virtual address space, 1-40 

Virtual buffers, 5-46 

Virtual copy, 4-77-4-89, 4-102 
copy_call,4-122 
copy_delay, 4-108-4-118 
copy_none, 4-120 
optimization of, 4-106 

Virtual memory, in Mach, 1-40 

Virtual memory (VM), 4-2 

VM components, 4-6, 4-12-4-16 

VM maps, 4-14 

VM objects, 4-2 

vm_map, 4-12, 4-20 

vm_map_entry,4-12-4-16 

vm_object, 4-12,4-24 

Vnode, 5-20, 5-78,5-88 

Vnode pager, 4-41 

Vnode pager task, 4-67 
address space, 4-69 

vnode_pager_set, 4-67 

vnodeops, 5-20 

Volume group descriptor area (VGDA), 9-22 

Volume group reserved area (VGRA), 9-20 

Volume group status area (VGSA), 9-26 

vs_pmap, 4-63 

vstruct structure, 4-63 

w 
Wait-result field, 2-67 

Wakeup, 2-30-2-32 

Wakeup rootines, 2-66 

Waking up, 2-66 

Write, 6-20 

Write-behinds, 5-164 

x 
XDR pr~ocol, 5-154 

XTISO,8-42 

z 
Zones, 2-134 

Index-7 



Index-8 





** For HP Internal Reference Only ** 

. Manufacturing Part Number 

customer Order Number H2S96-90001 

NONE 

Printed in USA 
I IIIIIIII~ IIIIII~II~ ~III~ Ilnnlmlll . I 


