

Module 11 - Security

11-18. Authorizations and Privileges

Exec'ing a File

process

.H2596 11-18. © 1991 Hewlett-PIckard

Exec'ing a File

Privilege sets are represented as bit vectors. Associated with each process are four such bit vectors, for the base
privilege set, the kernel authorization set, the effective privilege set, and the potential set.

Each inode contains bit vectors for the granted and potential sets.

When a user execs a program provided by another user, we have two mutually suspicious parties. Each party,
i.e., the owner of the process and the owner of the executable fIle, provides an initial set of privileges that form the
initial effective set of this joint venture. This effective set may be enlarged, but only subject to constraints
provided by both parties. Privileges can be added to the effective set that are either in the potential set or the base
set The base set can itself be enlarged, but only be adding to it privileges that are in both the kernel authorization
set and the potential set This protects both parties in the event that another file is exec' d. The base set used with
this new fIle would contain only those privileges allowed by both parties. This technique prevents privileges from
being combined in unforeseen ways.

11-23

Module 11 - Security

11-19. Authorizations and Privileges

Privilege Set Relationships

K: kernel authorizations
B: base privilege set
E: effective privilege set

.H2S96 11-19_

Privilege Set Relationships

G: granted set
P: potential set

© 1991 Hewlett-Paclwd

A set of kernel authorizations defmes the limit of what privileges this process is allowed to have. It is a subset of
the privileges available to the user. The potential set limits the privileges of a process executing the program
contained in a file.

B~ K

E~ (pu B)

G~ P

11-24

Module 11 - Security

11-20. Authorizations and Privileges

Principle of Least Privilege

Trusted applications use the smallest effective privilege sets possible

.H2S96 11-20. 350 © 1991 Hewlett-Pacbrd

Principle of Least Privilege

Good practice dictates that the effective privilege set should be kept as small as possible. The setpriv system call
allows a process to adjust its sets K, B, and E, subject to the constraints:

K'~ K

B' ~ (K (J P) u B

E'~ PuB

(where K', B', and E' are the sets K, B, and E after a setpriv request).

11-25

"

Module 11 - Security

11-21. Authorizations and Privileges

Operations on File Privilege Sets

Processes that have the chpriv privilege may change a file's granted and potential sets

.H2S96 11-21. 351 © 1991 Hewlett-Packard

Operations on File Privilege Sets

Using the chprv system call, a process may propagate to files only those privileges for which the process is
authorized:

P'~K

0' ~ PnK

If an executable file is modified, then all privileges are removed from its granted and potential sets. This is
analogous t(' the effects of modifying a setuid rue in standard UNIX.

11-26

Module 11 - Security

11-22. Living with Security

Living with Security

• Secure systems are inherently slower than non-secure systems

- OSF/I can be configured to be either C2 or BI

- the degree of auditing can be set by the system administrator

.H2S96 11-22. 352 © 1991 Hewlett-Packard

Living With Security

Not all installations will desire the BI security features in OSF/I. The system can be configured to be either C2 or
B I. This decision is implemented as a compile-time option; it is not a run-time option because too many tests
would be necessary. However, the degree of auditing is selectable at run time.

11-27

Module 11 - Security

Exercises:

1. a. To which security class are most UNIX systems probably compliant?

b. To which security classes can aSF!1 be made compliant?

c. What is the difference between compliant and certified?

2. a. In whose context is audit information collected?

b. How is audit information collected in an audit fIle?

3. a. In what ways are ACLs more flexible than standard UNIX file protection?

b. If DAC and MAC disagree on an access decision, how is the issue resolved?

c. How is it determined whether a particular subject has the desired access to a particular object with respect
to a particular access control policy?

4. a. Explain the difference between how an authorization is implemented and how a privilege is implemented.

b. The effective privilege set is restricted to be a subset of the potential set unioned with the base privilege
set Why isn't the kernel authorizations set used instead of the base privilege set?

c. List the kernel data structures that were modified to support the aSF!1 security features.

5. Why isn't security compliance a run-time or boot-time option?

11-28

Appendix - Answers to Exercises

Module 1

1. topic 1-1

2. topic 1-5

3. topic 1-7

4. a. topic 1-10

b. topics 1-6 and 1-7

c. topic 1-8

d. topic 1-9

e. topic 1-12

5. topics 1-18 through 1-22

6. Mach provides the facilities to allow the efficient transfer and sharing of information across address
space boundaries. This is particularly useful for efficient communication with servers. In addition,
Mach provides support for multiple threads of control within an address space.

7. OSF/l includes the logical volume manager, support for dynamic configuration, support for shared
libraries and dynamic loading, and Bl-level security.

Module 2

1. a. topic 2-3

b. topic 2-3

c. topics 2-4, 2-5, 2-6

d. topic 2-4

2. topics 2-7 through 2-11

3. a. topic 2-20

b. topic 2-19, topic 2-28

A-I

Appendix - Answers' to Exercises

c. topic 2-29

d. topic 2-24

4. a. topic 2-33

b. topic 2-34

c. topic 2-34

d. topic 2-37

5. a. topic 2-38

b. topic 2-39

c. topic 2-41

6. a. topic 2-45

b. topic 2-45

c. topic 2-49

d. topic 2-43

e. topic 2-43

7. a. topic 2-51

b. topic 2-51

8. topic 2-52

9. Separate u _ task and proc structures are maintained in OSF 11 primarily because the separateness of
these two structures is inherent in the Berkeley UNIX source code. There is no particular reason
that they could not be merged, but there is no compelling reason to go to the effort of doing so.

10. OSF/1's kernel threads are cheaper than UNIX's kernel processes because kernel threads have no
private address space associated with them. Thus the system can switch from the context of any task
into the context of a kernel thread without changing address maps.

11. a) There are three primary reasons for nonpreemptibility in kernel mode. The first, which is not a
problem in multiprocessor-safe operating systems such as OSF 11, is that certain data structures, if
not accessed in the interrupt context, might have no synchronization to protect them other than the
assurance that any thread in kernel mode will not be preempted. A second problem, which does
affect OSF 11, is that a thread might be updating a data structure that can be accessed in the
interrupt context and thus has a class of interrupts masked off. H this thread is preempted (because
the mechanism causing preemption, e.g. clock interrupts, has not been masked off), then one of two
things might happen, both of them bad. (1) Interrupts remain masked off when the system switches
to the preempting thread; this is not good because the interrupt will be masked off much too long

A-2

Appendix - Answers to Exercises

and may perhaps interfere with interrupt-masking done by the preempting thread. (2) Interrupts
become unmasked as the system enters the preempting thread's context; thus the system might now
enter the previously masked interrupt context and access the data structure that was in the midst of
modification by the preempted thread. This data structure, being in the middle of an update, is in an
inconsistent state that is totally unexpected by the interrupt handler. The third reason is also a .
problem with OSF II: if the preempted thread is holding a spin lock, the preempting thread might
attempt to take this lock. This thread will of course spin, with no hope of taking the lock, until the
preempted thread is allowed to execute again.
b) The constraints on preemption points are: they must be executed only in the context of a thread,
this thread must not be holding any locks, and no interrupts may be masked.

Module 3

1. a. topic 3-3

b. topic 3-3

2. a. topic 3-6

b. topics 3-7, 3-8

c. topics 3-7, 3-8

d. topics 3-7, 3-8

e. topics 3-7, 3-8

f. topics 3-11 through 3-13

3. a. topics 3-14, 3-15

b. topics 3-14, 3-15

4. The main problem with utilizing copy-on-write techniques to improve the implementation of UNIX
system calls such as write is that the best use of these techniques requires page alignment of data
structures such as buffers. Since typical UNIX programs are not written with such alignment
requirements in mind, it is unlikely that very many buffers would actually be properly aligned. If
such alignment problems could be dealt with, then any UNIX system call that transfers large
amounts of data could be improved. In particular, this means I/O-related system calls operating on
files, devices, sockets, and streams.

Module 4

1. a. topics 4-2, 4-29

b. topic 4-2

A-3

Appendix - Answers to Exercises

2. a. topic 4-5

b. topics 4-6, 4-11

c. topic 4-29

d. topic 4-5

3. a. topic 4-23

b. topic 4-23

c. topic 4-25

d. topic 4-18

e. topics 4-16-4-21

f. topic 4-18

g. topic 4-27

h. topic 4-28

4. a. topics 4-29-4-50

b. topics 4~30-4-31

c. topic 4-38

d. topics 4-43-4-48

e. topic 4-49

5. a. topic 4-54

b. topic 4-54

c. topics 4-54-4-57

d. topics 4-54-4-59

6. If we want to enjoy the advantages of lazily evaluating the allocation of backing store, then we must
deal with the problem that a thread's execution may fail at an arbitrary point in time. The best we
can hope for is that the extent of the damage be limited:· for example, that it be necessary to
terminate only one task. H this sort of behavior is intolerable, we may have to use a more
conservative preallocation backing-store policy.

7. The primary difficulty in replacing the vnode pager with an external pager is that this external pager,
being the "pager of last resort," must never encounter page faults itself. Thus one technique might be
to wire the external pager's pages into primary memory.

A-4

Appendix - Answers to Exercises

Module 5

1. topic 5-3

2. a. topics 5-7, 5-8

b. topics 5-11, 5-12

c. topic 5-14

3. a. topic 5-16

b. topic 5-19

c. topics 5-25-5-30

4. a. topic 5-37

b. topic 5-39

5. a. topic 5-43

b. topics 5-46-5-47

6. a. topic 5-50

b. topic 5-51

c. topic 5-56

d. topic 5-60

7. a. topic 5-62

b. topic 5-64

c. topic 5-66

d. topic 5-68

e. topic 5-73

f. topic 5-77

8. All three locks are necessary. The lock on the file table entry is necessary to protect the offset stored
there from being used prematurely by another thread. This ensures that I/O system calls executed by
threads sharing a file table entry are atomic. The lock on buffers from the buffer cache is necessary
to prevent a buffer from being stolen for some other purpose while one thread is using it. A simple
lock is required for updates to the vnode because, for example, two threads concurrently reading the
same file, but using different file table entries, might update the access time of the vnode.

A-5

Appendix - Answers to Exercises

9. One might argue that, if it is known that a directory is being searched and the result of this search
will be used very soon as part of a delete operation, the directory should be searched while holding a
write lock. The primary reason that this is not done is that it is highly unlikely that there will be two
concurrent updates to the same directory. Thus the optimistic approach described on page 5-75
works out very well in what is by far the more usual case. The fact that concurrent updates, if they
occur, can be quite expensive is thus of little consequence.

Module 6

1. a. topic 6-3

b. topic 6-4

2. a. topic 6-6

b. topic 6-6

3. topic 6-8

4. a. topic 6-18

b. topic 6-20

c. topic 6-23

Module 7

l. a. topics 7-3-7-5

b. topics 7-8, 7-9

c. topics 7-10, 7-11

2. a. topics 7-15-7-17

b. topic 7-15

c. topics 7-12, 7-13

3. a. topic 7-19

b. topic 7-20

4. a. topic 7-21

b. topic 7-24

5. a. topic 7-25

A-6

Appendix - Answers to Exercises

b. topic 7-29

c. topics 7-25-7-29

6. The use of synchronization queues has no effect on the order of message processing within a streams
module: the synchronization queues preserve the order of calls to the module's procedures, and thus
any ordering constraints imposed on messages by the code within a streams module is preserved.
However, it is certainly the case that with synchronization queues there might be more messages
within a streams pipeline than there would be without such queues. For example, while one thread is
executing within a module, other threads might queue more requests on this module's
synchronization queue than are allowed by the high-water limit on the module's normal streams
queue. In practice this is unlikely to be a problem: the only situation in which it could be a problem
is if the rate at which messages are processed by a module is slower than the rate at which tmessages
are arriving to the module. Given that streams threads execute nonpreemptively and without
blocking, this situation is highly unlikely.

Module 8

1. topic 8-3

2. a. topic 8-5

b. topic 8-10

c. topic 8-2

3. a. topic 8-13

b. topic 8-16

1. pages topic 8-18

Module 9

1. a. topic 9-2

b. topics 9-6-9-11

2. a. topics 9-9, 9-13

b. topic 9-9

3. a. topic 9-13

b. topic 9-11

c. topic 9-15

A-7

Appendix - Answers to Exercises

d. topic 9-16

4. Only two data structures in the UFS file system depend upon the size of the entire file system: the
superblock and the cg summary. These of course must be modified to reflect the larger file system
and the modified superblock must be copied to all of its alternative locations.

Module 10

1. topic 10-2

2. a. topics 10-5-10-8

b. topic 10-8

3. a. topics 10-7-10-9

b. topic 10-10

4. a. topic 10-11

b. topics 10-11, 10-12

5. topic 10-13

a. topic 10-14

Module 11

. 1. a. topic 11-3

b. topic 11-5

c. topic 11-4

2. a. topic 11-6

b. topic 11-7

3. a. topic 11-8

b. topic 11-13

c. topic 11-13

4. a. topic 11-14

b. topic 11-18

5. topic 11-22

A-8

Bibliography

Allen, L., H. Singh, K. Wallace, M. Weaver. 1991. "Program Loading in OSF/l." Conference Proceedings of
1991 Winter USENIX Technical Conference. -

AT&T. 1989. UNIX System VI386 Release 3.2: Streams Programmer's Guide. Englewood Cliffs, NJ: Prentice
Hall.

Bach, Maurice J. 1986. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice Hall.

Black, D., R. Rashid, D. Golub, C. Hill, and R. Baron. 1989. "Translation Lookaside Buffer Consistency: A
Software Approach." Proceedings of Third International Conference on Architectural Support for Programming
Languages and Operating Systems.

Black, D. 1991. "Processors, Priority, and Policy: Mach Scheduling for New Environments." Conference
Proceedings of 1991 Winter USENIX Technical Conference.

Comer, Douglas E. 1991. Internetworking with TCPIIP, Vol. 1: Principles, Protocols, and Architecture.
Englewood Cliffs, NJ: Prentice Hall.

Golub, D., R. Dean, A. Forin, R. Rashid. 1990. "UNIX as an Application Program." Conference Proceedings of
1990 Summer USENIX Technical Conference.

Juszczak, Chet 1989. "Improving the Perfonnance and Correcbless of an NFS Server." Conference Proceedings
of 1989 Winter USENIX Technical Conference.

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quartennan. 1989. The Design and
Implementation of the 4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley Publishing Company.

Macldem, R. 1991. "Lessons Learned Tuning the 4.3BSD Reno Implementation of the NFS Protocol."
Conference Proceedings of 1991 Winter USENIX Technical Conference.

Open Software Foundation. 1989. Application Environment Specification (AES): Operating System
Programming Interfaces Volume. Englewood Cliffs, NJ: Prentice Hall.

Open Software Foundation. 1990a The Design of the OSFll Operating System. Cambridge, MA: Open
Software Foundation.

Open Software Foundation. 1990b. System Extension Guide. Cambridge, MA: Open Software Foundation.

Tevanian, A., R. Rashid, D. Golab, D. Black, E. Cooper, and M. Young. 1987. "Mach Threads and the UNIX
Kernel: The Battle for Control." Conference Proceedings of 1987 Summer USENIX Technical Conference.

B-1

I Bibliography

/

B-2

Glossary

address space a set of virtual locations, such as those locations that can be referenced by a task
or process.

authorizations indications of whether a particular user is allowed to use a particular command or
subsystem, perform a particular role, or gain a particular privilege.

blocking lock a lock which a thread waits for by yielding the processor.

bogus memory type of memory in a parallel architecture that does not guarantee atomicity of
reads of aligned words.

buffer cache the collection of buffers maintained in the kernel for use in accessing files and
block special devices.

channel address of a relevant data structure that specifies an awaited event.

concurrency multiple threads are in progress at one time; their execution might be multiplexed
on a single processor.

cooked mode a terminal mode in which input lines can be edited, and certain characters cause
signals to be sent to the process group.

copy-on-write optimization using lazy evaluation in which copying is postponed until a task
actually modifies a page.

devices hardware.

disposition indicates whether or not the sleep is interruptible by a signal.

exceptions deviations to a thread's flow of control that are caused by actions of the thread
itself (such as addressing errors, arithmetic errors, etc.).

external outside the kernel.

tile handle data that is used to identify a file. After a client opens a fIle, the server gives it a
fIle handle, which the client gives to the server to speed subsequent accesses.

funnel a kernel data structure used to represent the parallel/sequential constraints of a
particular subsystem.

handoff scheduling a form of thread scheduling in which one thread gives its processor to another.

G-1

Glossary

idempotent when the effect of perfonning an operation once is the same as performing it
multiple times, the operation is idempotent.

inode the (ondisk and incore) data structure that describes a file (both S5 and UPS).

internal inside the kernel.

lazy evaluation technique of postponing everything until the last possible moment, since if you
put it off long enough, maybe you won't have to do it.

local port port that the message comes back through.

logical volume an abstraction that behaves like a disk drive to file system code, but is in fact a
collection of separate regions of real disk drives (physical volumes).

lookup cache cache of the most recent component-name-to-vnode translations.

memory object a "thing" that can be mapped into a task's address space. It might be temporary
storage (e.g., UNIX's BSS and stack), a flle, or an object defmed by user-provided
servers.

memory object manager responsible for supplying initial values for a range of virtual memory and for
backing up virtual memory when the physical memory cache becomes full. One
may be used, for example, to map flles into the address spaces of tasks, to provide
shared memory in a distributed system, or to implement a
transaction-management system.

message a collection of data to be sent through a port to the task that has receive rights for
the port.

microkemel a simple, pure Mach kernel with no built-in UNIX (or other operating system)
functionality. Such functionality would be provided by user tasks.

mmap a system call that is used either to map a file into a process's address space or to
create an anonymous memory region.

multithreaded composed of a number of threads.

NICFREE number of inc ore free blocks. Equal to lOO.

package an abstraction of a library.

parallelism the simultaneous execution of multiple threads; requires multiple processors.

parallelization the act of making a system parallelized.

physical volume a real disk drive or a portion of a disk drive.

G-2

Glossary

pmap the data structure and code encapsulating the architecture-dependent portion of the
virtual memory system.

port a protected queue of messages or an object reference.

port set two or more ports whose message queues have been consolidated into a single
queue by the server task.

priority depression option to the thread_switch system call; a calling thread's priority is "depressed"
to the worst possible value for a given period of time, and is then restored.

privileges properties of a process that gain it special treatment by the operating system.

process an address space, one or more threads of control and additional information
necessary to represent a UNIX context

processor allocation distributing the processors of a multiprocessor among the various applications.

processor set mechanism for processor allocation.

processor sharing scheduling or multiplexing processors.

raw mode the terminal mode in which incoming characters are passed immediately to user
threads and outgoing characters are sent to the terminal with no further
processing.

read-ahead reading the next unit of data at the same time as the current unit of data.

read-write lock a lock that can be taken as either a read lock, allowing multiple readers by no
writers, or as a write lock, allowing a single writer and no readers.

remote port port for sending messages.

search cache a cache in the inode that contains the offset at which the last search terminated. _

sharing what one is taught in nursery school.

simple lock a spin lock.

socket a data structure representing the end point of a communication

spin lock a lock which a thread waits for by repeatedly testing a bit

stream the kernel analog of a shell pipeline.

submap a data structure representing a portion of the kernel address space which is
probably managed by a single subsystem.

G-3

Glossary

swapping unwiring or wiring the kernel stack.

task a holder of capabilities, such as address space and communication channels.

thread usual notion of thread of control.

thread pool a collection of threads used to hand~e events generated in the interrupt context.

timed pause .when a thread calls thread_switch with the wait option, it can be suspended for a
fIXed period of time and then automatically woken up.

translation-lookaside butTer a hardware cache which translates virtual addresses to real addresses.

upcall a call from a lower level of a system to a higher level (e.g. from kernel mode to
user mode).

virtual copy an optimized copy operation.

virtual file system the abstraction of the file system concept: the layer of the kernel which provides
the standard interface to the real file systems.

vnode an abstraction of a fIle; it contains generic information about files and refers to the
fIle-system-specific information on individual fIles. It also refers to an array of
entry points called vnodeops, which provides access to the various operations.

write-behind delaying the update of a fIle until sometime after the write system call has been
completed.

write-through cache a buffer cache that requires that the data it buffers be written onto the disk before
the system call returns.

zone a collection of fIXed-size blocks: a separate zone is created for each kernel data
structure that is so managed. A zone is initialized with a pre-allocated free list, an
allocation size, and a maximum size.

G-4

A
Access control, 11-18

Access control list (ACL), 11-18

Access permissions, in NFS, 5-151

Active list, 4-71

Addressspace,2-6,4-2,4-~8
growth, 4-34

Address space layout, 10-34

Aliases, 6-8

ASCII character set, 6-46

Attach, 6-20

Attributes, 11-26

Audit daemon, 11-14

Audit device driver, 11-14

Auditing, 11-14-11-16

Authcrizations, 11-32-11-34

B
Backing storage allocation, 4-65

Backup ports, 3-26-3-28

Bad-sector remapping, 9-12

Base priority, 2-116

bdevsw table, 6-6, 6-15

bdevsw_add,6-15

Block interface, 6-~-9

Block skip section (BSS), 4-32

Blocked threads, 2-84

Blocking locks, 5-54,5-144

Blocking threads, 2-5~2-52

Bogus memory, 5-144, 5-204

Boctblock, 5-106

Boctstrap port, 1-34

bp,6-34

buf structures, 5-46

Buffer cache, 5-6, 5-36
access to, 5-44
finding a block, 5-~5-62
getting a new buffer, 5-64-5-66
maintenance of, 5-40
server's, 5-168

c
Can queue, 6-58-6-62

Capabilities, 1-26, 5-88

cdevsw table, 6-6, 6-15

cdevsw _add, 6-15

Character interface, 6-~-6

Client-side caching, 5-162

Clipping, "4-96

Close. 6-20,6-26

Cluster pool, 8-18

cmd,6-36

Collapsing objects, 4-98

Compliance, UNIX, 1-6

Compliant vs. certified, 11-10

Concurrency, 1-18, 5-82

Configure, 6-20

Configure entry point, 6-14

Consistency
devices, 6-9
file systems, 5-48-5-52

Continue signal, 6-49

copen, 5-30

Copy link, 4-108

Copy object, 3-30

Copy-on-write, 4-77, 4-102

Crash recovery, 9-10, 9-40
in NFS, 5-150

Crashes,serve~5-18~5-188

Credentials structures, 5-166

Cylinder group block, 5-123

Cylinder group summary, 5-122

D
Data, 6-36

dblk,7-34

Deadlock, 2-82
avoiding, 2-80

Debugging, 2-90

Default memcry object manager, 4-41

Dev, 6-22, 6-26, 6-30, 6-36, 6-40

Index-l

Device drivers, 6-2, 6-59

Device 110, flow of control, 6-6

Device module switch table, 7-50

Device number, 6-4

device_inuse, 2-36

Devices, 6-4, 6-8

Directory path searching, 5-72
complications in, 5-74

Discretionary access control (DAC), 11-18

Disk I/O perfonnance, 5-120

Disk map, 5-98

Disposition, 2-32

Distributed computing environoment (DCE), 5-155

Drain routine, 8-26

Driver entry points, 6-20
close, 6-26
interrupt, 6-40
ioctl,6-36
q:>en,6-22
read/write, 6-30
strategy, 6-34

Dup,5-12

Duplicate detection, 5-202

Dynamic configuration, 6-12-6-18
interrupt handler, 6-18

Dynamic loader, 1 0-3~ 10-38

Dynamic loading, drivers, 6-14

E
Eighth-bit character sets, 6-46

Events, 2-70

Exceptioo handling, in Mach, 2-92

Exceptioo port, 1-34, 2-94

Exceptioos, 2-86, 2-94

Exported symbol table, 10-14, 10-20, 10-26

Extensible loader, 1-3

External events, 2-86

External memory object managers, 1-44

F
Family, 2-6

File handles, 5-158

File module switch table, 7-54

File-system-independent data structures, 5-2~5-28

Flags, 4-17, 4-25, 6-22-6-26, 6-36

Flow of cootrol, 3-30-3-32
LVM,9-32
open and create, 5-30
read and write, 5-32

Fonnat-dependent loader, 10-26

Forward-mapped segmented-paged architecture, 4-132

Fragments, cost of, 5-12~5-132

Free block list, 5-11 0

Free list, 4-71

Free-space hint, 4-21

Funnels, 2-130

G
Gangs, 2-108

getnewbuf, 5-62

Global run queue, 2-112

H
Handler, 2-86, 2-92

handler_add, 6-14

handler_enable, 6-14

Hard mount, 5-180

Hardware device number, 6-40

Hint, 4-21

I
I/O request, 6-34

I-list, 5-107, 5-112

Idle thread, 2-112

Imported symbol table, 10-8, 10-26

Inactive list, 4-71

Indirect block, 5-98

Index-2

Inode, 5-26,5-96,5-112
generation number, 5-158

Internationalization, 6-44, 6-~-48

Interrupt, 6-40

Interrupt dispatcher, 6-18

Interrupt handler, dynamic configuration of, 6-18

Interrupt priocity level (lPL), 2-34, 2-82

Interruptible hard mount, 5-180

Interrupts, protection from, 2-34

intr,6-20

ioctl, 6-20, 6-36

itable, 6-18

K
Kernel loading, 10-38

Kernel memory allocation, zones, 2-134

Kernel mode, 2-10

Kernel pert structure, 3-14

Kernel stack, 2-10

Kernel stream, 7-4

Kernel thread pools, 2-132

Kernel/daemon communication, 11-16

Kernel-loader server, 10-38

Known module list, 10-22

Known package table (KPT), 10-16

L
Latency time, minimization of, 5-120,5-138;-5-140

Lazy evaluation, 1-40,4-4,4-61,4-77

ld, 10-14

Libraries, 10-12

Line discipline, 6-30, 6-44, 6-56-6-58, 6-65

Loaded package table (LPT), 10-16

Loader
functions, 10-4
role of, 10-4-10-8
with exec, 10-6-10-8

Local port, 3-6

Local run queue, 2-112

lock_ waictime, 2-75

Locks, in interrupt context, 2-82

Logical track group (LTG), 9-28, 9-36

Logical volume manager (LVM), 1-3
flow of control, 9-32
mirrocing, 9-10
organization, 9-6

longjmp, 2-32, 2-84

Lookup cache, 5-88

M
Mach, 1-2, 1-8

Mach abstractions, 1-26

Mach Interlace Generator (MIG), 2-28

Mach/UNIX interaction, 1-14

Mandatory access control (MAC), 11-22

mblk,7-34

mbufs, 8-10
from mbc1usters, 8-22
structure of, 8-12-8-14

mc1refcnt array, 8-18-8-22

Memory object management, interlaces, 4-44

Memory object managers, 4-41
default, 4-41

Memory object pert, 4-67

Memory objects, 1-27,4-40

Memory shatages, 8-26

Message descriptor, 3-7

Message flow, 7-24

Messages, 1-26, 1-42, 3-4-3-6
data structures, 3-6
in Mach, 1-29
receiving, 3-32
sending, 3-30

Microkemel project, 1-9, 1-14

Mirroc consistency manager, 9-32

Mirroc consistency record (MCR), 9-28, 9-36

Mirroc write coosistency cache (MWC), 9-36

mmap,5-68

Mode
cbreak, 6-58

Index-3

cooked, 6-58
raw, 6-58

Mode bits, 5-144

Module record, 10-22

Mount point, 5-78

Mount protocol, of NFS, 5-170

Mount structure, 5-18, 5-26, 5-78

Mounting file systems, 5-22-5-24

Multi-buffered 110, 5-38

Multilevel directory, 11-23

Multiple file systems, 5-16
directory path searching in, 5-76

Multithreaded processes, 1-8, 1-24
server, 1-22
signals, 2-8
standard libraries, 2-8
system calls, 2-8

N
Namei,5-78

Netisr threads, 8-29

Network shared memory, 1-46, 1-48, 1-50, 1-52, 1-54

NFS,5-148

nfsbioo processes, 5-164

nfsd processes, 5-166

nfsnooe,5-28,5-162

nice routine, 2-116

Non-homogeneous mUltiprocessors, 2-109

Non-parallelized cooe, 2-130

Nonidempotency, problems with, 5-190-5-196

Notify port, 1-33

o
Object cache, 3-22

Object creation, lazy evaluation, 4-61

Object manager, 4-12

Object references, 1-26

Objects, 11-4

Open, 6-20, 6-22

Open file data structures, 5-6-5-14

Open files, 2-6

Orange Book, 11-6

Orphaned process groups, 6-52

Orphaned processes, 6-49

Out queue, 6-59-6-62

.p
Packages, 10-12

substitution of, 10-20

Page tables, 4-136

Pagein, 4-48, 4-50

Pageout, 4-53, 4-55, 4-57

Pageout daemon, 4-71

Pager, 4-24

pager_file structure, 4-63

Pages, 1-40
locating, 4-36
replacement of, 4-71
representation of in primary memory, 4-28

Parallelism, 1-20

Parallelization
file systems, 5-54
NFS,5-204
sockets, 8-38
streams, 7-60-7-70
UPS, 5-144

Physical layer, 9-33

Physical volume reserved area (PVRA), 9-18

Physical volumes, 9-14

Physio, 6-30

Pmaps, qlerations, 4-128,4-130

pmaps, 4-12, 4-20, 4-124, 4-132
qlerations, 4-126-4-130

Port names, 3-16
interpretation of, 3-20
translation of, 3-18

Port sets, 3-12, 4-67

Ports, 1-26, 1-31,3-10
backup,3-26-3-28
destruction of, 3-24

POSIX threads (Pthreads), 2-104

Priority depression, 2-127

Index-4

Privileged mode, 2-10

Privileges, 11-32, 11-38
and exec, 11-44
operatiens en file privilege sets, 11-50
principle of least privilege, 11-48
set relationships, 11-46
use of, 11-42

Probe, 6-20

Proc structure, 2-10

Process data structures, 2-14

Process group, 6-48--6-52

Processes, 2-6,2-10

Processor allocation, 2-108

Processor sets, 2-108

prog.o, 10-14

Protocol control blocks, 8-36

Pseudo device drivers, 6-64, 11-16

Pseudo tenninals, 6-64

Pthreads, 2-104

Ptrace, 2-90

PV list, 4-134

R
Race conditien, 2-36, 2-46, 2-62,5-9,5-62, 7-70

Raw queue, 6-58--6-62

Read,6-20

Read/Write, 6-30

Read-aheads, 5-164

Read-write locks, 2-74

Reaper thread, 2-102

Reference count, 4-21, 4-24, 5-8,.8-18, 8-20

Reference ports, 6-2

Remexe mounting, 5-172, 5-174, 5-176

RPC protocol, 5-154, 5-164

Run-time image, 1 0-3~ 1 0-34

Run-time loader, 10-22, 10-36

s
S5 file system, 5-94

directory fonnat, 5-104
directory structure, 5-102
layout, 5-106

sched_average, 2-118

Scheduler layer, 9-32

Scheduler priority, 2-116

Scheduling, 2-106
influencing, 2-126

Scheduling policies, 2-116
fixed priority, 2-116
time shared, 2-116

Search cache, 5-92

Security
in OSF/l, 11-12
policy architecture, 11-30

Security switch, 11-30

Seek time, minimization of, 5-120, 5-136

Sensitivity level, 11-20

Serialization, 9-32

Session control, 6-44

Sessions, 6-48-6-52

setjmp, 2-84

Shadow chain, 4-98

Shadow vnocies, 6-9

Share map, 4-90

Shared libraries, 10-30

Shared memory, 1-26

Shared-memory mUltiprocessor, 1-24

Sharing,4-~94

Sharing pages, 4-136

Shell pipeline, 7-4

Shift-JIS, 6-46

Signal state, 2-6

Signal subsystem, 2-130

Signals, 2-84
and multithreading, 2-88
in UNIX, 2-86

Simple locks, 2-44, 5-144

Slave threads, 4-67

Sleep, 2-3~2-32
UNIX-style, 2-62

Index-5

with unlock, 2-46

Sockets, 8-4--8-8
and streams, 8-40-8-42
data structure, 8-32
implementation of, 8-28
types of, 8-6
virtual copy, 8-16
writing with, 8-8

Soft mount, 5-180

specalias structure, 6-8

Special files, 6-4-6-9

specinfo structures, 6-8

Speed,5-86

Spin locks, 2-44

STH structure, 7-50

STHT structure, 7-50

Stop signal, 6-49

Strategy, 6-20, 6-34

Strategy layer, 9-32

Streams, 1-3
cloning, 7-56
definition of, 7-4
driver, 7-10
implementation of, 7-44
linking, 7-16-7-19
message queues, 7-36, 7-44
message types, 7-40
module, 7-6
multiplexing, 7-20
push,7-14
representing an open, 7-48
service procedures, 7-28
setup, 7-12
stream head, 7-8, 7-46
synchronization, 7-64--7-68
TCP/IPexample, 7-22
virtual copy, 7-38

Subjects, 11-4

Submaps, 4-30

Superblock, 5-106, 5-112, 5-122

Suspending threads, 2-56

Swapping, 4-75

Symbol resolution, 10-8-10-20

Symbol substitution, 10-31

Symbolic links, 5-80

Symmetric mUltiprocessor, 6-2

Synchronization
calls, 2-78, 2-84
Mach/UNIX, 2-42, 2-78
OSF/l,2-40
reader-writer type, 2-74
UNIX, 2-30--2-32

sleep/wakeup, 2-36

Syscall, 2-20

System calls, 2-18
Mach,2-28
UNIX, 2-20--2-24

System configuration, 6-12

System mode, 2-10

System stack, 2-10

T
Tag pool, 11-28

Task kernel port, 1-33

Task/local table (TL table), 3-18

Task/port table (TP table), 3-18

Tasks, 1-26, 1-33,2-10
system calls, 1-34

Tempocary memory objects, 4-63

Terminals
data structures, 6-54
110,6-44
110 data structures, 6-62
110 flow, 6-58

Thread exception port, 1-37, 2-94

Thread kernel poct, 1-37

Thread pools, 2-132

Thread reply port, 1-37

Threads, 1-26, 1-37,2-10,2-98
creation, 2-98
dispatching, 2-112
states, 2-58
suspension, 2-100
switching, 4-126
system calls, 1-38
tennination, 2-102

Threads and parallelism, 1-18

Time measurement, 2-122

Time slicing, 2-124

Index-6

Time-shared threads, 2-118

Timestamp, 4-21~ 5-62,9-22,9-26

TLB shoexdown algorithm, 4-142

Trace bit, 2-90

Translation entry, 3-18

Translation entry chain, 3-18

Traslation-lookaside buffers (TLBs). 4-138

Trusted computing base (TeB). 11-7

ttread routine. 6-58

tty line discipline. 6-58

tty structures, 6-56, 6-58

ttyinput routine, 6-58

ttyoutput routine, 6-58

ttywrite routine. 6-59

Type, 6-22, 6-26

u
u_task component, 2-11

u_thread component, 2-11

UDP protocol, 5-154

UFS file system, 5-114
directcry fannat, 5-116
layout, 5-122

Uio structure, 5-32, 5-34, 5-144, 6-30

UNIX master, 2-112

UNIXlMach interaction, 1-14

UNIX_master, 2-130

Unlock, with sleep, 2-46

Upcall, 11-16

User mode, 2-10

User stack, 2-10

User stack pointer (USP), 2-22

User structure. 2-10

v
VFS,5-16

vfsops array, 5-18

Victim thread, 2-92, 2-102

Virtual address space, 1-40

Virtual buffers, 5-46

Virtual copy, 4-77-4-89, 4-102
copy_call,4-122
copy_delay, 4-108-4-118
copy_none, 4-120
optimization of, 4-106

Virtual memory, in Mach, 1-40

Virtual memory (VM), 4-2

VM components, 4-6, 4-12-4-16

VM maps, 4-14

VM objects, 4-2

vm_map, 4-12, 4-20

vm_map_entry,4-12-4-16

vm_object, 4-12,4-24

Vnode, 5-20, 5-78,5-88

Vnode pager, 4-41

Vnode pager task, 4-67
address space, 4-69

vnode_pager_set, 4-67

vnodeops, 5-20

Volume group descriptor area (VGDA), 9-22

Volume group reserved area (VGRA), 9-20

Volume group status area (VGSA), 9-26

vs_pmap, 4-63

vstruct structure, 4-63

w
Wait-result field, 2-67

Wakeup, 2-30-2-32

Wakeup rootines, 2-66

Waking up, 2-66

Write, 6-20

Write-behinds, 5-164

x
XDR pr~ocol, 5-154

XTISO,8-42

z
Zones, 2-134

Index-7

Index-8

** For HP Internal Reference Only **

. Manufacturing Part Number

customer Order Number H2S96-90001

NONE

Printed in USA
I IIIIIIII~ IIIIII~II~ ~III~ Ilnnlmlll . I

