
F36P

1VLAC RO ~~~~MR~L~
INTERNAL OPERATIONS MANUAL

PRELIMINARY PRAFT O~$,C~IPTIO~N
FOR INTERNAL USE ONLY

,

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

MACRO

ASSEMBLY PROGRAM

INTERNAL OPERATIONS MANUAL

Prepared by: Robert A. Saunders

Introduction

Input Tape Handler

Initial ization and Title Sequence

Reset Sequence

Symbol Generator

Symbol Processor

Storage Words

CONTENTS

SECTION 1

SECTION 2

3

5

5

6

7

7

8

11

11

Location Assignments 0 • 0 • 0 •• , • 11

Variables and Symbol Definition .. 0 0.............................. 12

Pseudo-instructions

Constants

SECTION 3

Macro Instructions

~Aacro Instruction Tab les ... " 0 0 • 0 0 •••••••• 0 ••••••••••••••••••••••••••

/\A.a c ro Ins t ru c t ion De fin i t ion s .. 0 0 , • • • • 0 • • • • • 0 , • • 0 •

Macro Instruction Usage , 0 ••• 0 •••••••••••••••••••••••••••••••••••••••

~Aacros Within Macros GO C CI • ~ • • .. 0 " 0 0 "" • ~ :) I!') • 8 G Q () • • • 3 II 0 e • 8 • • • • • • • • • • • • • I. • • • • • • • • •

SECTION 4

Error Alarms

14

17

19

19

20

22

24

25

29

29

Start Over Sequence ,., 0 • • • • • • • • • • • • • • • • • • • 29

Symbol Package 0 •••••••••••••••• 0 ••• 0 • 29

Conclusion 33

APPENDIX 1

Macro Program Listing 35

APPENDIX 2

Macro Instruction Example 105

INTRODUCTION

MACRO FlO-DEC is based on MACRO III, an assembly program for the TX-O computer at

the Massachusetts Institute of Technology 0 The TX-O was built at Lihcoln Laboratory and

is now on loan to the Electrical Engineering Department at MIT. Since the PDP-l is very

similar in its logical design to the TX-O, it was thought worthwhile to prepare a version of

the MACRO assembly program for use on the PDP-l. The program was written in MACRO

language, and originally was assembled on the TX-O. An elementary version of DDT

(see DECUS distribution MIT -2) was also prepared and was used in debugging MACRO. The

present version incorporates a number of improvements over the original, and has been in

use in its present form for several months at MIT.

The program is a two-pass assembler, with a macro-instruction facility which generctes

words from encoded stored model statements. With one minor exception, it is a linear scan

character processor, exam in ing each character once in order on each pass. In order to

reduce wear and tear on input-output equipment, both input and output are buffered. The

tape reading routine has an optional parity check, but except for this, and stripping the

parity bits, the tape handl ing routines are essentially transparent to the rest of the program.

'Ne shall begin our discussion with an investigation of these routines.

3

4

SECTION

INPUT TAPE HANDLER

Each time the main program requires a character, rch is called. Characters are stored three

to a word, and fwd is a counter which indicates which of the three characters is to be read

out next. When a word is exhausted, the next is picked up at rc8, and saved in fwb.
--- ---

Normally, control drops through the tests immediately following, fwd is reset to 3, and the

next character is stripped off at rc 1. The character is saved in.!! rcp, and the AC. The

subroutine then returns to the main program.

When the last word is fetched, special treatment is necessary, for as will be seen later, it

may not have three characters in it. The precise number is to be found in nfc, from which

fwd is set when the program reaches rc3.

The next time through rc8, it wi II be found that no more words remain in the buffer, and

control passes to rfb. The buffer indices are reset, and the program commences reading.

Tape will be read until a stop code is encountered, a carriage return is encountered during

filling the last 24 words of buffer, or a parity error is found. Deletes are filtered out, but

all other characters are stored. Sense switch 6 is examined to see if parity is to be checked,

and if it is off, parity is checked. The character is planted in a rotate instruction, which

rotates according to the number of ones in the instruction. Thus, executing this on a word

of alternate ones and zeroes generates a parity. If an error is found, a diagnostic is printed,

and the character as read is displayed in the 10. The type symbol subroutine (tys) is used

for typing. Continue causes the character to be accepted by going to rfa. Start ignores

the character by returning to the read instruction (rf2). Note that the action on Start, if

not otherwise conditioned by the test word, is determined by~. This will be dealt with in

detail later.

The characters are assembled into words directly into storage. The previous contents of the

buffer words are lost by being shifted off the end of the word at rf3. Next we check for

whether the remaining stop conditions are met. Stop codes go to rf6, where the last word has

its characters correctly aligned for the readout routine. The end checks are set up, and

control returned to rc8. If the buffer is within 24 (octal) words of being full, rf4

is set to exit to rf6 on the next carriage return. Since, in the usual MACRO-language

5

typescript, the next character after a carriage return is almost always an ignored tab, no great

harm will be done if the reader cannot stop before the next character.

INITIALIZATION AND TITLE SEQUENCE

From ps2 to pte is initialization for starting or continuing a pass. Complete discussion of the

initialization will mostly be confined to a general description, with specifics being related

at the initialized routines.

The initial entry to the program is at ps5. The program stops at ps 1-1, and on Continue goes

through ps 1, which sets for Pass 1; np 1, which sets up to begin a pass; and through np2, which

sets up to begin processing a single tape. At np2 is a sequence which detects whether there

is a tape in the reader and the reader is turned on. An rpa is given without a wait, and if no

character has appeared in the 10 within about 80 milliseconds, the reader is assumed to be not

ready and the program stops. When the reader is ready, the tape reading routine is initialized

such that the buffer will appear completely empty, and tape will be read as soon as rch is

called.

At pte, flag 5 is off iff (if and only if) a title is to be punched. If it is off, some blank tape

is fed before anything else is done. Next the characters comprising the title are read. Lead

ing stop codes are ignored; and also leading spaces, to prevent blank tape from being consider

ed as spaces in the event that parity is not being checked. Leading carriage returns are also

ignored. The first non-ignored character sets Hag 6, so that spaces will no longer be ignored;

and if the character is a middle dot, flag 5 is set to discontinue punching the title. The

character is typed with completion requested but no in-out wait, and if the character is to be

punched, this is done whi Ie the typewriter is typing. It has been found empirically that six

I ines can be punched during typing one character with negl igible I ikel ihood of the typewriter

completion appearing before punching is done.

The carriage return following the title is detected at pt5, and when it has been found, pass 1

or pass 2 is typed out, followed by punching the input routine, if this is necessary. The

input routine on the MACRO tape, as read into storage, is used as data. Some more

tape is fed, and control passes to .rst.

6

RESET SEQUENCE

The terminating character switches determine MACRO's treatment of the terminating characters

tab, comma, equals, slash, and left parenthesis. The macro-instruction definition indicator

mii determines the setting of these switches. If mii is on (-0), these switches are set to

appropriate parts of the macro-instruction definition routine.

Indicators for each word are reset at rsk and rsw. At rsk, the left and right parenthesis switch

es are reset, and the dummy-symbol pushdown counter prs is set to 00 At rsw I the accumulated

word value wrd is zeroed; the polysyllabic word indicator ~is turned off by clearing flag 5;

the temporary storage nsm, asa, and ~ is cleared (these are used by the slash routine for

determining the symbolic location after a location assignment); the defined indicator def is

turned on; and the dummy symbol indicator, flag 6, which is used by the macro definition

routines, is turned off. At sp, the indicators for each syllable are cleared: the sign of the

next syllable is set positive, the symbol letter indicator is cleared, and so are the overbar

indicator, the syllable value num, the symbol storage sym, and the character counter chc.

Control then falls into the main character processing loop, which begins at ~:

SYMBOL GENERATOR

There are three kinds of symbols which are developed in the main character loop: integers,

pseudo-instructions, and "symbols," which term we shall reserve for sequences of one, two,

or three letters or numerals containing at least one letter 0 Letters and numerals are dispatched

on at !:.., and go to 2 and ~ respectively. Numerals are combined into ~ at~. The current

radix control at ~ multipl ies the preceding digits by eight or ten for octal or decimal. So

that 777777 (octal) yields minus rather than plus zero, a check at n3 does a special treatment

of zero. Letters turn on the letter indicator let and also letters-in-upper liu if in upper case. -- ---
Letter and number flow combines at In where the character count chc is stepped and the first

-- ---
three characters are combined into a symbol sym at g. If a fourth character is encountered,

~is checked; if a letter has occurred, it is a pseudo-instruction, and otherwise it is merely

a number of four or more digits. Pseudo-instructions cause the P-I name to be saved in api

for error printing purposes, and reset various indicators preparatory to picking up possible

arguments. Additional characters are read until a break character (space, plus, minus, tab,

or carriage return) is encountered, which ends the pseudo-instruction name, and the second

three characters are saved in syn. At the break character, control is transferred to search

7

for the pseudo-instruction name at spm.

SYMBOL PROCESSOR

Symbols are combined by addition or subtraction as indicated by plus or minus signs, which

go to f and ~ on dispatching. All routines which are called at the end of a symbol go to evl,

which evaluates any symbol and performs the indicated arithmetic.

The symbol system is based on the idea that a symbol will be defined relatively infrequently,

but will be used quite often. It is reasonable to spend a relatively long time defining a

symbol if this will make it possible to evaluate it quickly. The symbol table is therefore kept

sorted at all times, and a binary or logarithmic search is used to evaluate symbols. For those

not famil iar with the idea, the remainder of this paragraph is devoted to a discussion of the

principle. Consider a dictionary, in which it is desired to locate a word, say pen. First

look in the center of the book, and determine whether the word found there is before pen,

after pen, or pen itself. If the word is before pen, which is I ikely to be the case, look next

in the center of the back half of the book. Suppose the word found to be tree. Now pen is

known to be before tree, so we next look in the center of the preceding quarter. The process

is repeated, dividing the word list by two each time until the word is found. It is apparent

that if there are two to the nth words, a maximum of n lookups are required, and the average

number will be n-1.

To secure an alphabetic ordering of the symbol table, it is necessary to modify the codes of

the letters so that the concise code is converted to alphabetic order. The easiest way to do

this is by "inverting the zone bits," i.e., complementing the highest bit of each character if

the next highest is a 1. This is done at the permute zone bits subroutine per, which also

complements the sign bit. The transformation is reciprocal, i. e., permuting a permuted

C:"n"IbOI Iln_nern"lllt.c~c: it Thic: fort ic: IIC:COrl hy the corror nrint routinco
<J/I.I • v •• ,., •••• VI"' '.., II. II •• ..., t __ I • .." """..., "-"1 IIoJ Ii" ,' I •• 1' ~

Returning to evl, we see the symbol permuted, followed by a check of the macro-instruction

indicator mii. If it is on, control is transferred to wsp to check for dummy symbols. If it is

off, .!.:! is checked; if it is on, a symbol table search is necessary, otherwise the number

(integer) is combined into wrd. It is also combined into amn, which accumulates the numeric

part, if any, of a word for determining the new symbol ic location in the event of a location

ass ignment.

8

Location assignments are also dealt with at ~~ where the symbol, if any, to be used in a

symbolic location is determired, There is a three state indicator ~~~, which is initially + 0,

and is set to + 1 after the first symbol of a word, and to -1 after any other symbol, It is also

set to - 1 in the event of a symbol preceded by a minus sign, for such a symbol cannot be the

symbolic port of a symbolic location, Further discussion of this point will be postponed until

a complete investigation of location assignments"

The logcrithmic search begifls at e20 There is a shift counter...!2. which constructs the repeated

increments to the address in the symbol table 0 The table is stored from register 7750 down,

with the symbols in even-numbered reg isters and val ues in the next higher odd-numbered

registers, Register 7750 is called ~ow and contains lac the lowest address in the symbol table,

T~e first location examined is that contained in low, and hence the lowest entry in the table.

Succeeding addresses are computed as necessary, but the contents thereof are not examined

until it is determined that the address does in fact lie in the symbol table, The decision as to

whether to go up or down is seen to involve the overflow indicator (initially cleared at

e2+ 2) _ This is Q consequence of the fact that the symbols can assume all possible arithmetic

values_ Here the reason for complementing the sign bit becomes apparent 0 The table is

arranged in numeri ca I order, with the most negative number, orig ifla II y the sma II est positive

number! at the bottom, It will be seen that if an overflow occurred, the sign of the result

will be exactly the opposite of what it should be to move the search in the correct direction.

Thus we do a skip on no overflow, and overflow causes a complement 0 Next we do a three

way branch to move the search UP, down, or exit on finding the symbol in the table, The

remaining portion of the routine at eqt is related to variables and will be discussed later.

It will be seen that the maximum size of the symbol table must be a power of 2, since the

shift counter is halved at each iteration and the search must always move an integral number

of registe r ,_ The maximum corresponding to the initial value of the shift counter will never

be real ized '1'1 practice, for the symbol table would first coil ide with the top of the macro

instruction or constant table, The top of the latter tobles is kept in register hih, and a

col! ision results in an alarm of storage capacity exceeded,

Also in evl is a subroutine ed whose purpose is to frustrate the PDP circuitry that filters out
--- --

minus zeroes on addition _ Additions to wrd are done throug!l i-his subroutine" This assures

that when on expression such as (777776+ 1) appears in a source program, minus'ero and

"'0 t P II.J ~ z e tOw I II be the res U Ito

9

10

SECTION 2

STORAGE WORDS

The storage word term ination routine places words in the punch buffer, counts the location

counter and determines when punching should take place. Control is passed to the punch rou

tine on Pass 2 whenever the location gets to a multiple of 100. This results in convenient

sized binary blocks. There is a subroutine sch which checks ~ and chc to see whether any

thing occurred since the last tab, carriage return or other terminator; if something has, the

next instruction is skipped; otherwise the terminator is redundant and is ignored, since the

next instruction returns control to r.

This routine is used as a subroutine by the macro-instruction processor and constant routine.

LOCATION ASSIGNMENTS

The location assignment character <I> enters at b. If preceded by a word terminator, it de

notes the beginning of a comment, and control passes to itc to ignore characters until the

next tab or carriage return. Otherwise, evl is ca lied and the new location is set up. First

the symboiic iocation is constructed according to the following rule: A symbolic location

exists if the location can be expressed as symbo I + number, where th.e number may be o. In

the event that the assignment is expressed as the sum of symbols, the old symbolic location,

if any, is retained. If the assignment is purely numeric, asi is turned off (-0) and asm and

ami are cleared, since asa and ~ will contain zero. Otherwise, the alarm symbol indi

cator is left on (+0), and asm contains the symbolic part of the location, and ami the

numeric part.

If, on Pass 1, a location assignment contains an undefined symbol, the location is considered

indefinite, which fact is denoted by a negative number in loc. If the location is definite,

loc is set from wrd at bnp. The location is taken modulo machine size, while the sign bit is

preserved to retain whether or not the location is definite.

On Pass 2, an undefined symbol in a location assignment causes an alarm, but the location

does not become indefinite, for the undefined symbol is simply ignored. If the assignment is

defined, or on recovery from an alarm stop, wrd is taken modulo machine size and compared

11

with loc, If the two are identical, it is not necessary to start a new block, and the routine

exits to b",p, if they are different, control passes to pun, with the new location saved in wrd

wh i I e pun uses the old one to punch out the block.

At El!~.f the location is compared with the block origin to determine whether there are any

words in the punch buffer. if there are not, it exits at once to bnp to set up the next block.

It also exits if the punch indicator pun is off. If punching is to be done, the first and last ad

dress me punched, followed by the contents of the punch buffer, fol iowed by a checksum

which is the sum of all other words in the block. Register ~ is a counter which counts through

the buffer I and the checksum is kept in ck 1. Punching of each word is done by a subroutine

E~b which displays the origin of each block in the AC as punching is done, enabling the oper

ator to observe the progress of the assembly. Five lines of blank tape are punched at the

beginring of each block.

After the block is completed, the new block origin is taken from wrd, where it was saved,

and put into org 0 The punch buffer index ts is reset, and the routine normally exits to rnw.

VARIABLES AND SYMBOL DEFINITiON

There are three basic ways to define symbols in MACRO: by parameter assignment, by ad

dress tag, and by variable definition. The appearance of a comma directs control to the

address tag routine. If the location is indefinite, the routine exits at once; otherwise, evl IS

called 0 if the word preceding the comma is defined, its value is compared with the location

counter; if they differ I an error is flagged at mdt. The symbol field on the error printout

contains the tag if the tag consisted of one symbol; otherwise sym is cleared before the error

is called, After retufl", or if the definition was correct, the new symbolic location is

determil1ed. In the event that the tag was polysyllabic, the old symbolic location is re-

taired 0

Should the word preceding the comma be undefined, the routine exits at once if the tag was

polysyllabic; otherwise the symbol is defined at vsm, and the new symbolic location is deter

mined as before 0

Parameter assignments go to the parameter assignment routine at the occurrence of the equal

12

root bear an overbar, l.f these requirements are met, the symbol is saved in scn (which is also

used by the macro-instruction processor), and the terminating character switches (bt for bar

(slash) l .9~ for equal sign, ct for comma, .!! for tab and carriage return) are set so that any ter

minator other than tab or cr causes an alarm. The routine then exits to rnw to await the

expression for the value.

When the terminator occurs, the routine exits in the event nothing has appeared; and other

wise calls evl, If it is well defined, control passes to q2 which saves the value, and then sets

up indicators so that evl may be used to determine whether the symbol on the left of the equal

sign was defined 0 If it was, the new value replaces the old one. If it was not, it is defined

by vsm and the routine goes to reset. If the expression on the right was undefined, the

attempted defin ition is ignored on Pass 1, and causes an error comment on Pass 2.

Variables are handled at evl by a variety of routines. The logic is that we must first have a

symbol 0 If the symbol is defined, nothing further is done unless it has an overbar. If it is

defined as -0, on Pass 1 we act as if it were really undefined and exit, and on Pass 2 we re

define it to the correct value which is the sum of the variables origin (as determined by the

location of the pseudo- instruction variab les on Pass 1) and the variab les counter I wh ich

counts the different variables as they are defined. If it is defined as other than -0, on

Pass 1 we give an error alarm (for this implies it was defined in a conflicting manner else

where) I and on Pass 2 we ignore it, assuming that a previous occurrence has caused it to be

defined correctlyo Thus, on Pass 1, we go defining all variables as -0, and on Pass 2 we

redefine them to their correct values as they occur? The scheme avoids requiring a separate

list of variables, as they are stored in the main symbol table at all times, but has the dis- I

advantage that the first appearance must have an overbar, or the variable will be incorrect

I y eva luated as -0.

The actual defining of symbols is handled by the vsm routine. Since the symbol table is

maintained sorted at all times, vsm must locate the correct place for the new symbol and

move all lower symbols d:)wn two registers to make room for it. The routine starts at the

bottom of the symbol table and works its way up, using the overflow indicator in the same

way that it is used in the logarithm ic search, At the outset a check is made to see whether

all of storage has been used; if it has, an err'Of comment is made.

13

PSEUDO-!NSTRU(nONS

The pseudo-instruction system uses a form of list structure in the principal table, which begins

at mai. There are two relevant registers, mai and psi, which contain indices to the table.
--- --- --

From mai-f-l to npi-l are the system pseudo-instructions arranged in a three-entry table. The

first two entries are the name of the pseudo- instruction and the last is the location to which

control is to be transfer~'ed in the event one is found. Index psi is a pointer to the last pseudo

instruction name in the table 0 If there are macro-instructions defined, it points to the last

macro name. At npi the macro storage begins. Each macro block begins with three registers,

of which again the first two contain the name, but the third entry is now a pointer back to

the beginning of the previous macro or pseudo name. These po inters contain law in the in

struction part, and the negative sign is used to distinguish these pointers from pseudo

instruction locations. These considerations dictate the form of the search for the pseudo or

macro name.

First we load the 1-0 with mdi, which is an indicator which is on (negative) if this name is

that of a macro-instruction to be defined. Then we look at the last name defined, via the

po inter psi 0 !f the first three characters match, the second three are checked. If these

match also, we either go to the mdm alarm if we are trying to define a macro of this name, or

go to the appropriate routine 0 If the sign of the pointer is negative, we have a macro name,

compute tile beginning of the macro information storage and go to mac. If it is positive, the

pointer addresses the location containing the location to which control is to be transferred.

If the first three match but the second three do not, it is recorded in flag 2 that at least one

approximation to the correct name has been found, and the location is retained in sp5. The

search is continued until either the correct name is found or the table is exhausted. If no

name is found, and the name being searched is the name of a macro being defined, controi

passes to dmi, define macro instruction; if an approximation has been found, we go to the ap

propriate routine as before. If all the preceding fail, the name is undefined and causes an

alarm at 'p~.

The va r ious pseude= ins~ruc Hens are fa iii y straightforward in the ir execution. Charae ter and

Flexo treat their arguments in an obvious manner. Text checks rqc, which is negative in the

14

which is saved in t2. Register tl counts the characters in each word. Until the terminating

character is matched, complete words are sent to the storage word routine, or to the storage

word part of the macro processor if in a macro definition. When the terminator is matched, the

last word is filled out with zeros (spaces) as necessary, and after it is disposed of, the routine

exits through the storage word routine to ~.

The pseudo-instruction Repeat sets all terminating switches to illegal format except comma, tab,

and carriage return and then exits to pick up the count. The term ination of the count goes to

rql, which checks definiteness and for a positive or zero count. If all is well, the pointers for

the readout of the flexo I ist are saved in private temporary storage, and carriage returns are

arranged to trap. The routine exits to reset. Each succeeding carriage return is counted until

the count runs out; until it does, the flexo pointers are restored to their old values and the

character reader re-reads the characters. When the count runs out, the carriage return switch

is restored and the routine exits. The reason Text is not allowed in a Repeat is to ensure that

all characters required by the Repeat are in storage. Otherwise, rfb might have stopped read

ing tape on a carriage return in the Text (and therefore, inside the RepeatL and the trick of

restoring the po inters wou Id not work.

Start causes a complaint if it occurs in a repeat or macro definition and otherwise sets the

terminating switches to pick up the starting address. The address termination returns to ..:'

where on Pass 1 the program is stopped ready to begin Pass 2, and on Pass 2, if everything is

definite, the address is saved and the punch buffer dumped. The origin for a continuation

tape is set up from loc, and the program stops. Continue punches a start block if pch is on,

preceded and followed by some blank tape. The program again stops, and Continue begins

Pass 1 anew retaining all symbol definitions. The contents of soy control action on Start.

The variables pseudo-instruction is considered illegal if in a macro definition or in a region

of indefin ite location. Because of lim ited storage, variabl es may be used onl yonce. If re

peated usage were allowed, two entries would be required for each use; as it is, the two

numbers are kept in val and va2 which are the beginning of, and the first free register after,
-- --

the variab les storage. AI though a count of variab les is kept on Pass 2, it is necessary to

record the first free register, because in the event that the operator should desire to repeat

Pass 2, the variables count would be zero as all variables would be correctly defined on the

15

first Pass 2. On Pass 2, a check is made to see that the pseudo-instruction location agrees with

that found on Pass 1, and if it does not, there is an alarm. If all is well, a location assignment

is simulated to leave room for the variables, and the program continues.

The pseudo-instruction dimension causes symbols to be defined as variables, with the variables

counter being advanced according to the size of the array. Term inating switches are set up so

that ,commas are ignored, left parens save the symbol in ten (and check flag 5 to make sure

only one symbol appeared), and right parens do all the work. The array size is evaluated and

checked for defini teness. The saved symbo I is then looked up. On Pass 1 contro I goes to di3

wh ich, if the symbol is undefined, defines it as -0. On Pass 2, the correct defin ition is con

structed. On both passes, the variables counter is suitably advanced and the routine exits.

The terminators are restored when a carriage return or tab is encountered.

The pseudo-instruction constants is quite similar to variables in its operation. The values of

the constants are stored in order in the macro-instruction table above the last macro defini

tion, starting at a register whose address is kept in~. On Pass 1, the location is advanced

according to the total usage of parenthesis operators, whether or not any identical constants

occur, and the location of the beginning of the constants storage is saved in the first entry of

the constants origin table. On Pass 2, the stored constants are dumped into the punch buffer

via the storage word routine. There is no ambiguity as to how far to advance the location

counter, as the number of parentheses, which is kept in nca, must be the same on both

passes. The number or different constant values is determined by nco, which will generally

be less than nca. Storing the constants on top of the macro definitions has both advantages

and disadvantages. The primary advantage is economy of space in the assembler, for all of

the available table space must be used before the tables collide, and any saving in one table

is automatically available to the others. The major disadvantage is that an unnecessarily

large block of space may be reserved for constants in the assembled program. To avoid this,

it would be necessary to save the values of constants on both Pass 1 and Pass 2, leaving one

register in the reserved storage area for each constant which is undefined at its appearance on

Pass 1, plus whatever is required for the defined ones. Since in general there will be con

stants used before all the macros are defined, putting the constants on top of the macro table

is not feasible in this scheme. The constants are placed in the constants table by the con

stant table search routine which wiii be discussed iater.

16

Although it is not done here, it is quite possible to check for agreement of location of the

pseudo-instruction constants on Pass 1 and Pass 2. If they disagree, it is clear that the result

on the assembled program would be disagreeable, as all preceding constant syllables would

have been incorrectly assembled. It should be pointed out that the second entry in the cor

table is set up on Pass 2 and is used only by the symbol package for printing out the constants

areas.

CONSTANTS

Constants syllables are enclosed in parentheses. Left parentheses norma Ily go to .i.e., and

right parens go to !:.! from which they go to .p unless there is no matching left paren, In

which case control goes to ilf. There is a four entry table (cvl-cv4) in which are stored the

macro-instruction dummy symbol pushdown counter (described later), wrd, the sign preceding

the left paren, and whether wrd is defined. There is a subroutine pi which handles the

indices on the cv tables which is called here to move the pointers up one level. If the table

overflows, control goes to tmc for an alarm. The first left paren saves all the terminating

character switches in private temporary storage and sets them to go to the constant evaluating

routine or ilf. In either case, control then goes to rsw to reset all storage associated with

words and syllables. The value of the constant is then accumulated.

Right parens now go to rp, which evaluates the constant, and if not in a macro definition,

calls co which files the constant in the constant list and returns the location in which it will

be stored. The appropriate sign is applied, and the value is added to the previous value of

wrd. Again pi is called, this time to move the pointers down one level. The indicators for -- -
syllables are then reset, and if the routine was entered from a right paren, the routine exits

to process the next character in sequence. The word terminators comma, tab and cr also

enter at rp, but when finished they go around again until the level is reduced to zero. The

check for carriage retum at rp3 is a patch that was put in to fix a bug in the repeat logic.

When the level is reduced to zero, the term inating character switches are restored to their

original values and the routine exits to the appropriate switch.

The co routine is straightforward. The constants appearance counter nca is stepped, and on

Pass 1 the routine exits at once return ing -0. On Pass 2 def is checked, and if any undefined

17

symbols appeared, an alarm is flagged. The search for a matching constant begins at the bot

tom of the constant table, to which con points. If a matching value is found, at co6 the

position in the table is found, added to the current constant origin, and returned as the value

of the syllable. If the search is exhausted unsuccessfully, the pointer to the top of the table

nco is increased by one and, if there is any storage left, the new constant is added to the

list. The value of the syllable is then constructed as before.

There is a fairly large amount of initialization for the constants routines at np 1. The top of

the macro instruction I ist is used to determ ine con, and nco po ints to it unti I there are con

stants in the table. The constants appearance counter ~ is cleared, and the constant ori

gin indices are set to zero. The pseudo-instruction constants also clears nca and nco and -- --
advances the constant origin indices.

18

SECTION 3

MACRO iNSTRUCT,ONS

The macro instruction facility in MACRO is both the strongest and weakest part of the program.

It is the strongest in the sense that it is thot part of the program which contributes most toward

ease of programming, especially in setting up tables of specialized format. It is the weakest

in that it is quite inflexible and does not incorporate any of the more significant improvements

in assembler technology that have occurred since the logic was first written in 19570

There are two frequently used ways of organizing macro instruction storage: either the input

characters comprising the definition are stored away, with dummy symbols usually marked in

some special way, or the input characters are partially assembled, and the assembled words

are stored with provision for inserting the dummy symbol values when the macro is used. The

first scheme requires a relatively large amount of storage for macro definitions and has con

siderable complication in the treatment of dummy symbols if macro calls are permitted within

macro defi n i tions. However, the rest of the assembl er can be used as a subrouti ne when the

macro is called, and considerable flexibility is available in the use of dummy symbols, since

an entire character string can be inserted as, say, part of a macro to print a message on the

on-line typewriter. The second scheme realizes some economies in macro instruction storage,

particularly if macro calls within macro definitions are relatively infrequent, and has a

slightly less involved treatment of dummy symbols. The principal disadvantage is that dummy

symbols can not supply other than numerica I va I ues to the compiled instructions without a

large amount of involved coding 0 It is the second scheme which is used here.

Before delVing into the mechanics of macro operation, we should consider some implications

of macro calls within macros. Firstly, a macro definition within a macro definition is not

allowed. Macro calls within macro definitions are allowed, and dummy symbols from the

definition are allowed to be used in the macro call, A macro call cannot have any effect

on the macro being defined except possibly to insert additional storage words into the def

inition, Thus it is not possIble to have a macro call a macro which does nothing but, say,

double an argument of the first macrou Calling a macro within a macro definition causes

t"'e data for the called macro to be re-copied into the data for the macro being defined,

19

with no change except such as may be required for the proper translation of dummy symbols.

With this background, we can examine the macro processor in detail .

MACRO INSTRUCTION TABLES

The best place to start is with an examination of the macro-instruction table structure. The

principal table is mai" After the pseudo-instruction data, the first word is a code word con

sisting of code bits which are read from left to right. The other entities in the table are

identified by these bits 0 The code combinations are as follows:

o denotes a storage word 0

10 denotes a dummy symbol specification.

110 denotes a constant.

1110 denotes a dummy symbol parameter assignment.

1111 marks the end of the macro definition.

Subsidiary combinations are used after these identifiers as necessary.

The 'order of entities is as follows: First wi II appear any relevant dummy symbol specifications.

Next will appear one of the other entities, with which all of the dummy symbol specifications

are associated 0 Parameter assignments and storage words are the lowest order, and they may

incl ude constants 0 If a storage word or parameter assignment contains constants, and both the

word or assignment and the constants contain dummy symbols, the dummy symbols within each

constant appear first, followed by the constant designator, followed by dummy symbols for

the word or assignment, followed by the word or assignment data.

Each dummy symbol specification code bit pair is immediately followed by seven more bits

which specify the dummy symbol sign and the dummy symbol number. The six bits for the

number are written in reverse order. A!! these bits are written into the table by seQ and

scz, store code bit one and store code bit zero. The writing of the dummy symbol specifi

cation uses an additional routine wro which calls sco and scz. There is a corresponding

routine ~ which reads dummy symbol specifications.

Storage words store one additional bit which is zero or one depending on whether the word

is zero or non~zero, respectively. If the word is non-zero, it is stored in the macro instruction

table 0

20

Constants and parameter assignments are very similar in that both have associated a value

and a dummy symbol number. The val ue is treated as it is in storage words. The dummy

symbol number is treated as in dummy symbol specifications, except that the sign bit is

used to tell whether this is a new dummy symbol (denoted by a 0) or a redefinition of an

old one (denoted by a 1). Constants behave like parameter assignments in that their effect

is to define a new dummy symbol whose value will ultimately be the location of the stored

constant.

The net result in the mai table is an assortment of codewords and value words. The type of

any particular word is determined by the preceding codeword in an el ementary manner: the

first word is a codeword, in which one writes bits until it is full; then one starts on a new

codeword. Any value words which occur in the meantime are stored in order after the code

word, and the new codeword is put in the next available space. As there are routines for

writing code bits, so is there a routine for testing them: tcb, which is used when a macro is

ca II ed. Its operation wi II be considered later.

Also used by the macro processor is a set of erasable tables. First there is dsm, the dummy

symbol table, which has the flexo codes of defined dummy symbols. Each dummy symbol

has a number which is its position in this table. Dummy symbols are numbered sequentially

in order of definition starting with R, which is always defined and is dummy symbol number 1 .

Next there is dss, the dummy symbol specification table, which is used when defining a new

macro-instruction in terms of an old one. The ~th entry in dss , gives the dummy symbol in

the macro being defined corresponding to dummy symbol '2.. in the one previousl y defined.

The first entry is always 1, since dummy symbol R always transforms into itself. An entry

of -0 means that there is no dummy symbol in the new definition corresponding to one in the

old definition because the value of the old dummy symbol has been determined by some means;

for example, if first A had been defined, and second had been defined as first 1, there is no

dummy symbol in second corresponding to A in first, because A now has a definite value,

i 0 eo, 1.

Next in the list is dsv, the dummy symbol value table. It contains the values of all the dummy

symbols when a macro instruction is used.

21

Finally there is pdl, the dummy symbol pushdown list. The pdl table is used to ensure that

the order of dummy symbols fed into the mai table corresponds to that described above.

Pointers to this list occur in cv]. As constant levels build up because of left parentheses,

pointers in cvl mark the beginning of each level. When left parentheses reduce the level,

all the dummy symbol specifications down to the next level are stored and a constant assign

ment defines a single dummy symbol on the lower level whose value is the loca~ion of the

constant. The dummy symbol specifications in pdl are stored by prs, prepare specifications;

and all specifications at anyone level are stored in mai by ~, store specifications.

Since we have doubtless by now left the reader in a sea of confusion, without further ado

we will enter into a description of how all this is done in the hope that some clarity may

yet be ach ieved 0 The reader is advised to construct some macro definitions and examine

the resul ting mai tabl e in an actual assembl y for further examples of how all of this works.

An example is given here in Appendix 20

MACRO INSTRUCTION DEFINITIONS

The appearance of the pseudo-instruction define marks the beginning of a macro definition.

Control passes to dfn, where the first test is for whether a macro definition is already in

progress. If it is not, terminating switches are set so that equals and comma are illegal,

slash for anything other than a comment is illegal, and tab or carriage returns other than

redundant ones are illegal. The location counter is saved in ~ and zeroed. The symbol ic

location is killed, and the macro define indicator mdi is turned on. The macro instruction

pointer is boosted to leave room for the pseudo-instruction information, and the routine

exits to ~ to await the name of the macro being defined. When this has been read and

checked for multiple definition (see Search for Pseudo-instruction), control passes to dmi .

Here the name and other pseudo-instruction data is set up, but psi is not stepped as yet as

recursive definitions are not allowed. The macro define indicator is turned off, and the

macroinstruction indicator is turned on. The dummy symbol counter is set to zero, the

specification pushdown counter is set to zero, and the terminators are set to pick up

dummy symbols. Dummy symbols terminated by tab and carriage return go to pdl and pds,

respectivel y. Checks are made to see that legitimate dummy symbols are used, and if all

is well, the dummy symbol is filed in the dummy symbol table at dd. The last dummy

22

symbol, followed by a carriage return, sets the define exit to go to reset terminating character

switches. It is possible to check for duplicately defined dummy symbols, but it is not done

in th is version of the program.

Reset terminating character switches sets the switches to go to the appropriate macro definition.

routines. Dummy symbols appearing in expressions are detected at wsp, which is logically

part of evl. Search for dummy symbol sds is called after the sign is set up, and the next

instruction is skipped iff the symbol is defined. Subroutine E: enters the specification for

the dummy symbol in the dummy symbol pushdown list.

Storage word terminators (tab and :..r) go to sw. If there are undefined symbols in the word,

there is an alarm, otherwise, the alarm location and location counter are stepped and control

goes to~, wh i ch stores the dummy symbols from the pushdown list, and then to smb to store

the word after the code bits are written. Final exit is to rnw. Register tea is a temporary

for subroutine exit addresses (hence the name) .

The equal sign in a dummy symbol parameter assignment goes to da. I f the symbol to the

left of the equal sign is in good order it is saved in ten and the terminators are set to pick

up the expression for the value. The terminator traps to dal where the usual checks are

made. The saved symboi is then looked up in the dummy symbol table. If it is defined,

a negative sign is attached to flag this as a redefinition; otherwise dd is called to define

a new dummy symbol. Note that sds returns the dummy symbol in the 10 where it is used

by dd. Next~p is called, which writes the appropriate entries in the mai table. Final

ex it is to rs t to res e t th e te rm i na to rs .

Constants in a macro definition go to JJ: and ~ as before, but are treated differently at

~. Instead of calling co, control passes to rp8, which first calls ~c to write a constant

entry in the mai table, and then defines a new dummy symbol (whose flexo name is zero)

whose number is used to complete the entry in the mai table. A specification for the newly

created dummy symbol is written on the specification pushdown list, from which it will be

filed in the mai table preceding the entry for the entity in which the constant has been used.

After this, we go back to rp5 to move the pointers and restore the terminators if necessary.

The macro definition is ended by the pseudo-instruction terminate. This is illegal if not

23

in a macro definition. The location counter is restored, the symbolic location cleared,

.nd the macro~instruction indicator turned off. The pseudo-instruction index is set to

include the new definition, and four ones written into the codeword. The last codeword

is rotated around into the correct position and stored in the mai table. The routine then

exits to rst to set the terminating characters to normal assembl y position.

To conclude this part of the macro definition procedure, let us turn to the code bit routines.

The two entries sco and scz both save the return address, and save the bit to be stored in

~ which cannot be in use at the same time. The bit counter ~ is stepped, and until it

overflows, control goes to sc4 where the new bit is added to the current codeword which

is stored in sew 0 When a codeword overflows, it is stored in the mai table at sc3, and then

sm, store word in mai is called. It does not store anything useful, however; it merely is

used to locate the point in the mai table at which the NEXT codeword will be stored. The

reason for th is is of course that the codeword must precede any va I ue words wh i ch may be

associated with it. The lio i sc3 makes the code bit routine transparent to the 10, which

fact is used by ~.

MACRO INSTRUCTION USAGE

We will defer until later any discussion of macro calls within a macro definition. Assume

a macro has been called, and mii is off 0 The pseudo-instruction search routine goes to

~, where the address of the first word of macro data, as determined by spm, is saved

in ~I which is the general pointer for reading out of the mai table 0 The terminating

switches are set to pick up the arguments (if any)! and the dsv table is cleared .Control

now passes to ~ to pick up the arguments.

Commas terminating arguments go to ae 1, from whence evl is called, and if the argument

is defined, its value is stored in the dsv table at ae4. The routine exits at ae6 until the

last argument is terminated, when control passes to al1'l"'.

Assemble macro-instruction into program (~) reads and dispatches on the principal code

bits. The code bit tester returns to one after the call if the codebit is a one, and goes to

the address in the AC if the codebit is a zero. Stordge words go to awm. There are two

nested subroutines here: rw, read word, which gets the next word out of the mai table;

24

and~, which checks the zero-nonzero codebit and calls rw if necessary. Note that rw

leaves the number in the AC, the 10 f and in ~. It is added into wrd by the ed add routine,

and if not in a macro definition, the complete word is filed in the punch buffer by the stor

age word routine.

Dummy symbol specifications go to.5::' where the dummy symbol number is read. The sign

bit is saved in ~ and used to set up the sign operation at as6. When not in a macro def

inition, the dummy symbol value is read next and added into wrd by ed. The routine then

exits to am 1 to read the next principal code bits.

Constants go to~, where the value word is read and, if mii (which ~ returns in the 10)

is off, ~ is ca II ed and the location of the s,tored constant put in wrd. The new dummy

symbol which represents this constant is then stored in the dsv table. The routine then

exits to ami, which clears wrd. The expression in which the constant syllable was used

will have a dummy symbol specification for the associated dummy symbol, and it is by this

means that the correct value of the constant syllable will appear in the expression. This

obtains complete generality with respect to usage of dummy symbols within and without

constant syllables of arbitrary depth.

MACROS WITHIN MACROS

We are now prepared to deal with the question of macro calls within macro definitions.

The macro being defined will in general have associated dummy symbols. The index to

these symbols is saved in dsl as soon as control gets to mac. In addition to clearing the

dsvtable, we now clear the dss table in order to make the routines work in the event of

unsuppl ied arguments, which are taken as zero. Now the arguments are picked up. These

may contain dummy symbols, which by the time the terminator occurs, wi II have been en

tered on the pushdown I ist and wi II have set the dummy symbol i ndi cator. If th is has oc

urred, a new dummy symbol will be defined which represents the argument dummy symbol or

symbols, and a parameter assignment will be written into the mai table to signify this fact

by the routi ne at ae7 . Furthermore, the number of th is dummy symbol as it wi II be used

in the macro being defined is entered in the dss table in the position corresponding to the

dummy symbol used in the previously defined macro. If an argument contains no dummy

25

symbols, the dss entry is made -0 to signify that no new dummy symbol need be included

when reading specifications for old ones. The old dummy symbol may be said to be

inactive 0 Constant syllables appearing in arguments are treated as elsewhere: a new

dummy symbol is defined whose val ue wi" be that of the constant. Th is is taken care

of by the ~ and.!:£.. routines as we have seen before. Note that this is done whether

or not the constant syllable contains dummy symbols. After the arguments are completed,

control goes to am as usua I .

At~, we insure that the specification pointer is reset and start reading codebits. Storage

words go to mw instead of tb3 after reading out of mai, and thus get stored back into mai

for the new definition. Arguments, after reading the sign and dummy symbol number, go

through as8 instead of skipping to as5 and examine the dss entry. If it is zero, there is

no new dummy symbol to worry about and the dummy symbol value is picked up as usual.

If it is not zero, there is a dummy symbol, which has the proper sign applied and then is

entered on the pushdown I ist. I f the dummy symbol number is 1, then the va I ue is added

into wrd, as this is the onl y way that the location counter as used in the macro being de

fined can get into the macro being read. If it is anything else, the dummy symbol value

must not be added in at this point, for it will be included when the macro being defined

is ultimately used. To see this, recall that 1) if the argument included dummy symbols,

a dummy symbol assignment was written which included the value, and 2) if the argument

di d not i ncl ude dummy symbols, the dss entry is zero and the va I ue wi II be added here.

Constants go to ~, where, after reading the value! we call mc to rewrite the value for

the new definition and then go to ac 1 0 Here we read the associated dummy symbol

number which we will then look up in dss. If the sign is positive, this is a new dummy

symbol and dd is called; the new dummy symbol number is then entered in the dss table.

If the sign is negative this is a dummy symbol redefinition and the old dss entry is ex

amined to determine whether this dummy symbol was active before 0 If it was, nothing

more need be done, as the old dss entry is correct; if it was not, a new dummy symbol

must be defined 0 In any case we leave cc with an active dummy symbol. The new dummy

symbol number is then written in the mai table to complete the constant entry, and we

return to ami 0 It would appear that the dummy symbol value should be entered in the

26

dsv tabl e, but in fact th is is not necessary, as the dummy symbol wi II be referred to onl y

once in whatever the constant is used in, and this reference will not refer to the dsv table

since the corresponding dss entry is not 0 or 1. (See discussion of as above for elaboration

of this point.)

Dummy symbol assignments read the dummy symbol value from the mai table, then enter

it in the dsv table 0 If the dummy symbol defined includes no dummy symbols in its value,

we go to aa 1 where we clear the associated dss entry to signify this. If it does, we call

~ as was done with constants to activate a suitable dummy symbol. A pardmeter assignment

for this dummy symbol is then written into the mai table, and the routine exits to ami.

Encountering the code for the end of the macro definition restores the dummy symbol counter

dsk to its old value, effectively undefining all dummy symbols associated with the called

macro 0 Control then passes to rst to reset and continue with the definition 0

27

28

SECTION 4

ERROR ALARMS

We have seen that a fairly large amount of error checking is done during the assembly pro

cess, and we should consider briefly the diagnostic routine. Most errors transfer control to

an appropriate calling routine which determines the point to which to return, the particu

lar routine to which to go, and the name of the error 0 The error routine proper has two

entries, one for errors which print in the fifth field of the error listing and one for those

which do not. The return point is put into sov and the name of the error picked up and

printed out 0 Next the absolute location is printed if definite, or ind is printed if it is not.

Next the alarm symbol indicator is tested, and if there is a symbol ic location it is printed.

Next the last pseudo-instruction used is printed. If there is a fifth field, it is printed at

also Completion of an alarm printout is followed by a carriage return. Next the test word

is checked to see whether immediate continuation is desired, and if it is not the machine is

stopped 0 Continuation returns to the appropriate routine. There is some extra coding to

make sure that the columns line up correctly if the symbolic location or api fields are

vacant 0

START OVER SEQUENCE

The first rcutine in the program is the sequence that determines action on depressing the

start key 0 We have seen that sov contains the address to which control is transferred on

Start unless test word switch 0 is on. If it is on, the switches are placed in the 10 and the

first five registers of temporary storage are set in order to 1 or -0 depending on whether

the associated switch is 1 or O. If the continue pass bit was on, control g08S to np2,

otherwise r.ontrol goes to ps 1 or ps4 for Pass 1 or Pass 2, respectively.

SYMBOL PACKAGE

The symbol package is a six I ink chain. The routines sit in the temporary tables and use

appropriate parts of the main program as necessary 0 The first I ink is symbol punch. If sense

switch 1 is off or gets turned off, the routine exits to the input routine to read in the next

I ink. If it is on, we first feed some tape and then I isten for characters from the on-I ine type

writer. These are punched by the title puncher in the main program which returns control

29

to Is. A tab termination goes to .!.:? which I istens for ~ or ~ for symbols or macros. If

symbols are to be punched sps-l will have imp sps which will punch the symbol table and

then go to the macro puncher if flag 5 is off signfying macros are wanted too. If just macros

are wanted, we go at once to the macro routine.

Both the symbol and macro punchers use the end subroutine which copies the appropriate

storage into the punch buffer and transfers control to pun+6 when the buffer is fu II or the

end of the macro or symbol table is reached. When punching a block is done, control returns

to pcb+ 1. Flag 4 gets set on the last block, and finding it on causes the subroutine to exit

through psx.

The macro punch will punch macros only if some have been defined. If some have, end is

called. At the end of the job some blank tape is fed, followed by punching a start block.

Some more tape is fed, and the routine goes back to the input routine.

The next link contains a text printing subroutine, the initial symbol table, and the con

stants area printer which will run if either switch 2 or switch 3 is on. A pointer to the

cor table is checked to see whether any constants areas were designated, and if none were,

the routine exits to the input routine. Otherwise, pss is checked, and constants origins

are dumped on Pass 1, and the entire cor table on Pass 2. Flag 5 is used as a pass

indi cator. When fin ished I contro I returns to the input routine.

The alphabetic symbol print is the next link, which runs if sense switch 2 is on. It uses

the symbol table and text printer which remain in storage from the preceding I ink. Since

the symbol table is ordered alphabetically I the logic is simple enough. Each symbol is looked

for in the initial symbol table, and if it is not there, it is printed ouL When done, the head

ing for numeric symbol print is written if switch 3 is on, and then control goes back to the

input routine,

The numeric symbol print is the most complex part of the symbol package. A floor register

(tl) and a ceiling register (0 are kept, with the floor initially containing zero. Successive

passes are made through the symbol table comparing the value words with the floor and ceil ing.

If a symbol is less than the floor, it is discarded, and if it is equal, it is printed out if not in

the initial symbol table, If it is larger than the floor, it is compared with the ceiling and if

it is greater, it is discarded. If it is less, the ceiling is set from the symbol value. Thus at

the end of each pass t the floor represents the value of the symbols just printed, and the cei i ing

30

represents the value of the symbol or symbols next in I ine to be printed. Therefore, the

ceiling is moved into the floor and the ceiling is set to -0 (777777), and the process is repeated

until -0 is found in the floor, wh ich insures that a I i symbols have been printed.

Now let us follow the coding. Pointers to the initial symbol table sy3 and sy4 are set up,

the ceiling (!) is zeroed, and a carriage return typed. We then drop into the main loop.

The cei I ing is moved to the floor, -0 put into the ceil ing, and the symbol table pointers

initialized. Now we start comparing values with the floor. Note that overflow will be a

problem, for either number can vary over the whole range of values from 0 to 777777.

Thus a simple subtraction will not yield a meaningful difference. Furthermore, it turns out

not to be convenient to use the overflow indicator, which is better suited for use when

the range of values is from 400000 (smallest) to 377777 (largest). Therefore we proceed

in the following way. The numbers are xor'ed and the sign of the result examined. If it is

positive, the numbers are of the same sign and a meaningful subtraction can be performed,

and this is done at sql. If it is negative, the number with the negative sign is the larger.

In either event, going to syi discards the number, while going to sq2 starts doing pre

cisely the same sort of comparison with the ceiling. Identity between the floor and value

goes to syc where the check against the initial symbol table is made.

At syc the symbol location is put into syz for printing purposes. Now the value is com

pared with the value of the present symbol on the initial symbol list. If they are equal, the

symbols are compared "at syf, and if these are equal also, this is an initial symbol and con-

trol passes to syi. If the initial symbol value is less than or equal to the symbol table value,

the initial symbol table pointers are moved upward until this is no longer true. Note that the

initial symbol table is arranged in numerical order. Thus it is not necessary to compare the

symbol table symbol with all the initial symbols, bu"t only with the next one which it is expected

that will be found.

At syi the main symbol table pointers are moved up. When the top of the symbol table is

reached, the floor is checked for -0, and when this is found, the routine exits to the input

routine after waiting for the last carriage return.

The next link in the chain is restore, called by sense switch 4. This routine resets the macro

instruction indices, then uses vsm and the initial symbol table to reconstruct the initial

symbol table from scratch. When this is done, we go once again to the input routine to read

the last I ink.

31

The final routine determines where to return control in the main program after the symbol pack-

age is done. If restore was run, control goes to ps5. Otherwise, pss and flag 6 are

checked to return control to the appropriate place in the start routine, ready to begin or con

tinue the assembly.

32

CONCLUSION

This completes our discussion of the MACRO assembly program. The version described here

does not use sequence break and will run on any PDP-l. Enterprising programmers may wish

to make changes to the routine to incorporate sequence break or make other improvements.

It is hoped that this memo will facilitate this. We strongly suggest that no fundamental

changes be incorporated, particularly those affecting the source language, for source

language compatibility, and to a lesser extent, operating compatibility, are desirable goals.

However, this should not be interpreted as rul ing out any changes. We recognize that the

program is not in any sense ideal or perfect. Nonetheless, it will give satisfactory service

for its intended purpose.

33

34

APPENDIX 1

MACRO PROGRAM LISTING

35

36

MACRO FIO-DSC • part 1, 2-13-62

ncn=10

',r;ilo / '-tc:.. /

def'ine

."'\ :'
'0/

'-.b ."+'1 rVI /
1

;_' J. -'- /....!...

"i'""'lx+nfw/
dsr'l+~~;ds /
ds;+~dS/
dsv+nds/
~~QJ l+li CO~ / 1'-' J. - -,

(;'11+1'1cl!/

nds=30

)bf,
fIx.,
dsm,
dss _~

dsv,_
pdl,
cv1,
cv2,
cv3,
cv4,
cor,

I

c.or'+l'l cY'_+.;_/

err. '''''en+'1 ;' ell ~J../

c.k1+i/
org+1/
pSi+1,/
rn,c-.'"~ /
{ I >~'/

xy=l

cr2,

ck1,
orb,
pSl,
ma:',
low,

one=(1

error ROU,RET,NfJ(
law R2:T
.. 'da HOD
NAI<
ter~11inate

nc.d=20 Dcl= 0

/punch buffer
/ flexo input buffer
Id1 'm""'; ,. s··mb 0' s / v. ll~lt_./ •. Y l~ -L

/argument translat50n ~!ndica tors
/m-::t argument val1..~es
/dummy symbol specifications
/constants dUffifflJ/ s~/mbol levels
/eonstants value levels
:./ cons tan t signs
/co~stants definite on this level
jlist of constant origins

/seeond constants orig:'n

/ cl1.ecksum
/1~oioc1.r ori 0'~ y, -'- n. -b.l..~-

/pse1;.do instruction index
;~a0ro -.L·ns~r"c~l·O~ ~~o-_~~/e / J.l~ 'V _. V V. v 1.:. ~ --."

/ sj·m.boJ. table end

37

/start

sov,

so1,

s04,

over entry

lat
sma
jmp xy

swap
init s03,pss

ril is
clc
spi
law 1

s03, d&..c xy

s05,

index s03,(dac pss+5,s04
lac npa.
sma
jmp np~

lac pss
spa
jmp psi
jr;:p ps4

38

/reset terminating character switches

rst, lattJ rsk
rsI, dap rsx

lio mii
ini t bs, row,_,
init ct,c .
init dtb+57, lp
spi

. jmp rsm
dio mdi
init bt,b
init qt, q
law tab
jmp rsi

rsm, 'init bt,df2
init qt,da
law sw

rSi, dap tt
rsx, jmp xy

/reset to convert next word

rsk,
rnw, init Ipi,cv1

init prs,pdl
i~1t rt,ilf

rsw, dzm wrd
elf 5 /syl
dzm nsm
dzm amn
d:.:.;r;l asa
elf 6 /dsi
law 1
dae dar
la\v r

rss, 110 (opr

sp, dio sgn
dap spx
dzm let
elf 4 /liu
dzm ovb
dzm num
dzm sym
dzm cha

spx, jmp xy

39

/read and dispatch on one character

r, jsp rch
add (dtb
dap .+2
clc
jrnp xy

Ire-dispatch on last character read

r2, lac rcp
jrnp r+1

/dispatch table

dtb, jmp p jmp n /space, 1
jmp n jmp n /2, 3
jmp n jmp n /4, 5
jmp n jrnp n /6, 7
jmp n jmp n 18, 9
Jmp il jmp r Ii, stop code
jmp 11 jmp il
jmp il jmp il

jmp n bt, jmp . /space, +
jmp 1 jrnp 1 Is, t
jmp 1 jmp 1 /u, v
jmp 1 jrnp 1 Iw, x
jmp 1 jmp 1 /y, z
jmp il jmp cqt Ii, comma
jmp r jmp r Icolor

tt, jmp 0 jmp 11 /tab

jmp il jmp 1 /middle dot, ~

J
jrnp 1 jrnp 1 /k, 1
jmp 1 jrnp 1 1m, n
jrnp 1 jmp 1 /0, p
jmp 1 jmp 1 Iq, r
jrnp i1 -jmp 11
jmp pm jrnp rt 7,-')
jmp OVr jmp 1p , (
jmp il jmp 1 la
jmp 1 jmp , /b, c ...L

jrnp 1 jmp 1 Id, e
jmp 1 jmp 1 If, g
jmp 1 jrnp 1 Ih, i
jmp rcd jmp r1 /1. c. , period
jmp rcu jmp 11 /u. c., backspace
jmp 11 dtc,jmp tt /car ret

rcu, stf 3
jmp r

rcd, clf 3
.!-- r J lUJ:J

40

Icase dependent characters

cqt, szf 3
qt, jmp q
ct, jmp c

pm, szf 3
jmp p
jmp m

Iprocess alphabetic or numeric character

"I, dac let
szf 3 Icas
stf 4 !liu
jmp In

12, lac sym
ral 6s
ior t
dac sym
jmp r

n, law 17
and t
dac ti

n2 .. lac num
ra1 3s
xct .+1

ni, xx /opr=octal .. add num=decimal
dac num
add ti
sza
jrnp n3
lac ti
xor num

n3, dac num

In, idx chc
sub (3
spq
jmp 12
lac let
sma
jmp r
dzm num
dzm let
dzm chc
stf 5 /syl
lac sym
dac api

41

/read three more characters for p-i or m-i

ln4,

lac t
dac syn
setup t1,3
jsp rch

sza i
,-jep s-om
sad (54
,jmlJ spm
sad (36
,-1mp s l)Ill
sad (;~/7
,_:~mp SiJD1

sad (~r~
.... J~

jmp rCfl+1

lSP t1
jmp .+2
Jnp rcl-:+l
lac syn
ral 6s
ior t
dac syn
jmp rch+i

lover bar indicator

ovr, law 1
dcc oVb
jrnp r

/space

/minus

/tab

/tcolor change

42

/search for pseudo or macro instruction

spm, clf 2
lac psi
110 mdi

sp2, dap spi
lac sym

~pi, sad •
jmp sp3
idx spi

sp7, idx spi
lac i spi
spa

sp3,

sp5,

'sp4,

jmp sp2
law i 5
add spi
sas (sad mai-2
jrnp sp2
spi
jmp drni
szf 2
jmp sp4
jmp ipi

stf 2
idx spi
dap sp5
lac syn

sas •
jmp sp7
spi
jmp mdm

idx sp5
dap sp8
lac i sp5
sma

sp8, jmp 1 •
idx sp5
jmp mac

43

/address tag routine (comma)

c, lac loc
spa
jmp rnw
jsp evl /def in 10 on return
spi
jmp c1
lac loc
sad wrd
jmp c2
szf 5 /syl
dzm sym
.jsp mdt:

c2, szf 5
jmp rnw

c3, dzm asi
dzm amI
move sym, asm
jrop rnw

c1, szf 5
iron v ~ rnw
lac loc
dac t3
jsp vsm
jmp c3

44

/parameter assignment (equal sign)

q,

qq,

lac let
szf 5
jsp ipa
sza i
jsp ipa
lac ovb
sza
jsp ipa
lio sym
dio scn
init bt,ilf
dap qt
dap ct
init tt,qq
jrnp rnw

jsp sch
jrnp rst
jsp evl
spi i
jmp q2
spq
jrnp rst
jsp usq

q2, 110 scn
dio sym
move wrd,scn
clc
dac let
law 1
dac def
jsp evl
lac def
spq
jmp q1
lac scn
dac i ea
jmp rst

" ql, move scn, t3
jsp vsm

sch,

jmp rst

dap sck
szf 5
jmp .+3
lac chc
szm
idx sck

sck, jmp xy

/syl

/def in io pssin ac

/syl

45

levaluate syllable and accumulate word value

evl, dap ex
lac sym
jda per
dac sym
lac mii
spa
jmp wsp

ev2, lac let
spa
jmp el
add nurn

sga, xct sgn
add anm
dac anm

en, lac num
sgn, xx

jda ed

evx, lac pss
110 def

ex, jmp .
ndf, clc

dac def
dac t3
jda ed
lio sym
dio Ius
lac ovb
sub pss
sas one
jmp evx
jsp vsm
idx vct
jmp evx

e1, lac sgn
sad (opr
jmp eli

e12; law i 1
dac nsm
jmp e2

ell, lac nsm
szm
.!...,...,,~ e12 lif +1 "";UJ.tJ

sza
jmp e2 lif -1
law 1
dac nsm
mO\le sym, asa

46

/evaluate symbol (logB:~ithmiC search)

.e2" law 4000
dac t1
clo
lac low
jmp e1+1

edn" lac (sub
dip e1
lac t1
rar is
dac t1
sad (1
jmp ndf
lac ea

e1, t1
dac ea
sub low
spa
jmp eup
lac ea
sub (lac low-1
srna+sza-skp
jmp edn

ea" lac •
sub syrn
szo
cma
sma+sza-skp
jmp edn

.eqt" sza
jmp eup
idx ea
lac i ea
dac num
lac ovb
sza i
jmp en
lac num
lio pss
cma
sza
jmp evk
spi
jmp ndv
lac vct
add vc1
dac num
dac i ea
idx vet
jmp en

47

eup, lac (add
jmp edn+l

ndv, clc
dac der
move sym,lus
jmp en

evk, spi i
jmp en
move sym,lus
error alu, en, flex mdv

ed, 0
dap edx
lac ed
add wrd
sza
jmp ed1
lac ed
xor wrd

ed1, dac wrd
edx, jmp xy

48

/insert symbol in symbpl table

vsm, dap vsx
law i 2
add low
dac low
dap vi
add one
sad hili
jsp sce
clo

vSi, lac vi
dap v2
add one
dap v4
add one
dap vi
add one
dap v3
sas (lio low+~
jmp vs2

vs3, lac sym
dac i v2
lac t3
dac i v4

vsx, jmp xy

vs2, lac i vi
sub sym
szo
cma
spq-i
jmp vs3

vi, lio xy /10w+2+1
v2, dio xy /loW+I
v3, lio xy /1 ow+3+I
v4, dio xy /low+1+1

jmp vsi

49

/pseudo-1nstruction repeat

rpt, lac rqc
spa
jsp irp
init bt,:L.lf
dap qt ·
init ct, rq1
dap tt
jmp rsk

rq1, jsp evl
spi

rq2,

rq3,

rq4,

jsp usr
lac wrd
spq
jmp rq4
cma
dac rqc
init dtc,rq2
move fwd,rqx
move rc8,rqy
move fwb,rqz
jmp rst

count rqc,rq3
init dtc,tt
jrnp tt

move rqx, fwd
move rqy,rc8
move rqz,fwb
jmp tt

sza
jmp
jsp
sas
jmp
jmp

irp
rch
(77
rch+1
rst

irp, error aIm, rq4+2, flex ilr

rqc, 0
rqx, 0
rqy, 0
rqz, 0

/pseudo-instruction character

ch, jsp rch
11Q ~rar 6s
sad 51
jrnp chi /r
110 ~~r sad 4
jmp chi /m
lio ch2
sas (43
jsp 11f /1

chi, dio ch3
jsp rch

ch2, ral 6s
ch3, xx

dac nurn
jrnp r

/pseudo-instruct1on f1exo

fx, dzm num
setup t1,3
jsp rch
lac num
ral 65
ior t
dac num
count t1,rch+1
jrnp r

51

/pseudo-instruction text

txt, lac rqc
spa
jsp ilf
load txv;.law txq
init txx,rch+l
jsp rch
dac t2

txq, dzmwrd
setup tl,3

txw, jsp rch
sad t2
jrnp txk

txa, lac wrd
ral 6s
ior t
dac wrd
isp tl

txx., jmp xy

txv, xx
dap bs
lio mii
spi
jmp mw
jmp tb3

txk, load txv,law rnw
init txx,txa
init bs,rnw
lac t1
sad (-3
jmp rnw
dzm t
jmp txa

52

/syllable separation charact-ers (plus, minus, space)

p, jsp sch· -
jmp r

m, jsp ev1
stf 5
lac t
lio (opr
sza i
jmp m1
szf i 3
110 (cma

mi, law r
jmp sp

/relative address

rl, la'c chc
lio sgn
sma

r13,

lio (opr
dio r13
lac loc

xx
add wrd
dac wrd
stf 5
lac mil
sma
jmp r
rir 9s
law 10
rcr 3s
jda pr
jmp r

/syl

syllable (.)

/opr or cma

/syl

53

/storage word termination characters tab and carr ret)

tab, jsp sch
jmp rnw
jsp evl
spi+sma-skp
jsp ust

tb3, idx aml

tb4, idx loc
tb2, lac wrd
ts, dac •

idx ts
lac loc
dac wrd
and (77
szm
jmp bs
lac pss
spq
jmp bnp
jrnp pun

/location assignment termination character

b1, lac der
sma
jmp bnp
lac (400000
jmp b3

b, jsp sch
jmp itc

. jsp evl
lac nsm
sad (-1
jmp bal
dzm asi
lio (-0
sza i
dio asi
move asa, asm
move amn, am1

bal, lac pss
spq
jrnp b1
lac der
spq
jmp usb

b5, law 7777
and wrd
dac wrd
sad loc
jrnp bs

start

Macro FlO-DEC part 2

/punch binary block

pun, lac org
sad loc
jmp bnp
lac pch
spq
jmp bnp
cli
repeat 5, ppa
lac org
add (dio
dac ck1
jda pnb
lac loc
add (dio
jda pnb .
load t,dac pbf

pub, lac i t
jda pnb
lac i t
add cld
dac cld
idx t
sas ts
jmp pub
lac ckl
add loc
add (dio
jda pnb

/form origin-for next block

bnp, lac wrd
and (407777
dac org

b3, dac 10c
init ts, pbf

bs, jmp •

loc, 0

55

/pseudo-1nstruct1on start

sta,

s,

s6,

1st,

lac mi1
ior rqc
spa
jsp 11s
in1t bt,i~f
dap qt
dap ct
1nit tt,s'
jmp r2

lac pss
spa
jmp 1st
jsp evl
spi
jmp uss

move ~Td, tcn
init bs,s4
move loc,wrd
jmp pun

init sov,np2
hlt+cla+c1i+clf+6-opr-opr-opr
lac pch
spa
jmp s6
law 1 40
jda fee
lac tcn
add (jmp
jda pnb
law 1 240
jda fee

in1t sov,np2
110 (-0
hlt+clc+stf+6-opr-opr
jmp psl

in1t sov,np2
hlt+cla+cli+stf+6-opr-opr-opr

;
1 pss

-0
I 1

~ -~

f1g 6
o
o
1
1

tag
s5
s4
1st
s6

/init1alize for new pass

ps2, law 1
dac pss
dac pch
dac tit
move ini,inp

ps4, move psb,ps1
lac mai

ps5,
ps3,

move psa, rnai
jmp np1

move mai,p$a
move psi,psb

55, init sov,ps2
clc
dac pss
hlt+c1 i+clf+6-opr.opr

psi, clc
dac pss
dac pch
law 1
dac ini
move psi,psb
lac rnai
dac psa·

np1, dac hih
add (sad-lac+1
dac con
dac neo
dzm nea
dzm as1
law 4
dac org
dac loc
law 1
dac mii
dzm vai
dzm vet
load ni, opr
init cn6,cor
in1t cn7,er2

~7

/in1t1al entry

np2, load t, -4000
rpa-i
spi 1
jmp .+5
isp t
jmp .-3
hlt+clc+c11-opr-opr
jmp np2
dzm api
dzm fwd
init ts pbf
init rc8,flx+nfw+2
dzm rqc-
init dtc,tt
clc+clf 7+cli-opr-opr
add pss
add pch
add tit
sas (3
stf 5

/print

pte,

ptl,

pta,

pt1,

pt2,

pt3,

pt6,

pt7,

pt5,

and punch title

law i 40 ..
szf 1 5
jda fee
jmp ptl+i

lot i
jsp rch .
sad (13
jrnp rch+1
sza
jmp pto
szf i 6
jrnp rch+1
sad (77
jmp pt5
stf 6
sad (40
stf 5
ral is
add (ftp
dap pt2
dap pt3
idx pt3

110 t
iot 4003
szf 5
jrnp ptl

lac •
repeat 3, jda pt6
lae •
repeat 3, jda pt6
jrnp ptl

0
dap pt7
lac pt6
eli
rel 6s
ppa
jrnp ·
szf 1 6
jrnp ptl+i
dzrn tit

jayne on typewriter

/stop code

/tyo with nac but no ioh .

59

/print pass 1 and 2

pps, jsp spc
lac (723554
jda tys . .
jsp spc
lac (flex pas

/punch

jda tys
·-..,yo
jsp spc
law 1
add pss
jda tys
law 3477
jda tys

input routine

law i 1
add pss
add pch
spq
jmp rst

pf2, law i 40
jda fee
lac inp
spq
jmp rst

pi2, load pt6,dio 7751

/ 1

/black

pi3, lac pt6
jda pnb
lac i pt6
jda pnb
index pt6,(dio 7776,p13
lac (jmp 7751
jda pnb
dzm inp
jmp pf2

spc, dap .+3
cli
tyo
~mp ,

/lc"red, -

carret

/pseudo instruction terminate

ter, lac mii
spq-i
jsp ilf
lac tlo
dac loc
clc
dac asi
law 1
dac mii
lac dm3
dap psi
jsp sco
jsp sco
jsp seo
jsp seo
lio sew
'jrnp .+2
ril is
isp sen
jmp .-2
di0 1 sc3
jmp rst

6l

/pseudo instruction define

dfn, lac mii
spq
jsp ilf
la.w ill'
dap qt
dap ct
law df1
dap tt
law df2
dap bt
1io loc
dio tlo
dzrn Icc
clc
dac asi
dac mdi
idx rnai
dap drn3
idx mai
dap dm1
idx rnai
dap dm2
sub low
sma
jmp sce
jrnp rnw

df1, jsp sch
jrnp r
jsp ilf

if2, jsp sch
jmp itc
jsp ilf

62

/define macro instructiop

dmi, lio sym
dm3, dio •

lio syn
dm1, dio •

clc+clf 4~opr /11u
clf 5 '!syl
dac mii
dzm sym
dzm sew
law 1
dac mdi
lac psi

dm2, dac .
idx mai
dap sc3
law i 23
dac scn
init prs, pdl
init dsk,. dsm+1
init ddx, rsk
init ct, pd1
init tt, pds
jrnp r2

/pick up dummy symbol

pds, law rst Itab
dap ddx
lac chc
spq
jrnp rst

pd1, lac sym /c~mma
jda per
dae sym
szf 5. Isyl
jmp pd2-1
lac let
sza i
jmp pd2-1

/liu szf i 4
jsp ids

pd2, lio sym
jmp dd+l

63

/search for dummy symbol

sds, 0
dap sdx
dap sdy
idx sdy
1nit sd1,dsm

sd2, lac sds
sd1, sad xy

jmp sd4
index sd1,dsk,sd2
lio sds

eWe, jmp xy

sd4, lac sd1
SUD (sad dsm-1

sdy, jmp xy

/def1ne new dummy symbol

dd, dap ddx
dio 1 dsk
idx dsk
sad (sad dsm+nds-1
jsp tmp
sub (sad dsm

ddx, jmp •

/macro instruction constant

mc, dap tea
dzm num
stf 6
jsp ss
jSp sco
jsp sco

: ;.

mea., law smb
jmp scz

/ds1

/macro .instruction storage word

SW, jsp sch
jmp rnw
jsp evl
sma+spi-skp
.jsp usm

swE, law rnw
mw, dap tea

1dx aml
idx loc
law mca
jmp ss

64

/dumrny symbol assignment

da, szf i 4 /liu
jsp ilf
szf 5 /syl
jsp ipa
lac sym
jda per
dac ten
init bt,ilf
.dap qt
dap ct
init tt,da1
.Jmp- rnw

·da1, jsp seh
'jmp rnw
jsp evl
sma+spi-skp
jsp usd

da3, lac ten
jda sds
jmp dab
add (400000

daa, jda mp
jrnp rst

mp, 0
dap mpx
jsp ss
jsp seo
jsp seo
jsp seo
jsp scz
init tea,mp1
jmp smb

mp1, lac mp
jda wro

mpx, jmp xy

dab, law daa lif under
jmp dd

65

/macro instruction usage

mac, dap aw
move dsk,dsl
init bt,ilf
dap qt
dzm tcn
init tt,aev
init ct,ae1
init ae6,rsk
init ae4,dsv
clear dsv,dsv+nds-1
lac loc
dac dsv
lac mii
sma
jmp r2
clear dss+1,dss+nds-1

mai, jmp r2

/evaluate macro instruction arguments

aev, init ae6,am
ae1, jsp evl

sma+spi-skp
jsp usp

ae3,

ae4,

ae5,
ae6,

idx ae4
add (dss-dsv
dap ae5
sad (dio dss+nds-1
jsp tmp
lio wrd
dio xy
szf i 6
jmp ae5-1
lac mii
spq
jmp ae7
clc
dac xy
jmp xy

ae7, eli
jsp dd
dac i ae5
jda mp
jmp ae6

!dsv
!dsi

G0

/assemble M-I into program

am,

ami,

am5,

lac pss
dac def
in it prs,pdl
clf 6 ·
dzm wrd
lawawm
jda tc
law as
jda tc
law ac
jda tc
law aa
jda tc
lac dsl.
dap dsk
jmp rst

/ds1

/assemble M-I storage word into progr. ·or mal

awm, law aw3

ar, dap ary
law ar5
jda tc
law an

rw,
aw,

rw.x,

dap rwx
lio xy
idx aw
dio t
iac t
jmp xy

an, jda eO.
ar5, lio mi1
ary, jmp xy

aw3, law ami
spi
jmp rnw
dap bs .
jmp tb3

/ma1

.67

/assemble argument (dummy symbol) into M-I word

as, jsp rro .
add (dsv-1
dap as5

asS,

as5,
as6,

as7,

add (dss-Q.sv
dap as8
and (777000
dac tc
lio (cma·
sma
110 (opr
dio aso
lio mii
spi i
jmp as5

lac xy
szm
jmp as7
lac xy
xx
jda ed
~lTlP ami

xor tc
jda pr
lac i as8
sas one
jmp ami
jmp as5

/sgn

/dss

/dsv

,- r:

/assemble constant

ac, jsp ar
lavl ac1
spi
jmp me
jsp co
dae wrd
law ami

sv, dap svx
jsp rro
add (dsv-1
dap sv1
lio wrd

sv1, dio xy
sub (dsv-1

svx, jmp xy

ac1, jsp rro
jda cc
jda wro
jmp ami

ec, 0
dap ccx
lac cc
add (dss-1
dap cc2
spa
jmp cc1

cc5, cli
jsp dd

cc2, dac xy
ccx, jmp xy

ce1, lac i cc2 idss
spq
jmp cc5
add (400000
jmp ccx

69

/assemble assignment

aa, jsp ar
jsp sv
lio mii
spi i
jmp ami
szf i 6 /ds1
jmp aal
jda cc
jda mp
jmp ami

aal, add (dss-1
dap aa2
clc

aat, dac xy /dss
jrnp ami

/write durnrny symbol specification

wsp,

/prepare

pr,

prx,

szf i 4 /liu
jmp ev2
lac (-200000
xct sgn
sub (-200000
dac tl
lac sym
jda sds
jsp uds
add t1.
jda pr
jmp evx

dummy symbol specifications

o
lio pr
dio •
dap prx
idx prs
sad (dio pdl+ncd
jsp tmp
stf 6
jmp xy

Idsi

/store dummy symbol specification

ss, dap ssx
lac prs
dap sst
lac i Ip1.
dap prs ·
sub one
dap ssl
jmp ss2

ss3, jsp seo
jsp scz

ssl, lac xy /pdl
jda wro

5s2, index ss1,sst,ss3

ssx, jmp xy

sst, lac xy

/store word in rnai

smb, lac 'to.J'rd
sza
jmp sm7
lac tea
jmp sez

sm7, jsp seo
lio wrd
lac tea

sm, dap SffiX
idx mai
dio i mai
lio pss
spi i
jmp sm2
dae hih
sad low
jsp see

sm2, cIa
smx, jrnp •

71

/encode du!MlY symbol specification

wro, 0
dap wrx
lio wro
lavl i 7 ..
dac t3

wrO, law wr2.
spi
jrnp sco
jrnp scz

wr2, rir 1s
isp t3
jrnp wrO

wrx, jrnp .
/decode dumrny symbol specification

rro, dap rrx
dzrn t2
setup t3,7

rrO, law rri
jda tc
law 100

rrl, add t2
rar ls
dac t2
isp t3
jrnp rrO
lac t2
lio t2

rrx, jmp xy

/store code bit

sea, dap scx
lac (400060
jmp sc1

scz, dap scx
cIa

se1, dac tc
isp sen
jmp se4
lac sew

se3, dac .
lac te
ral 1s
dae scw
jsp sm
lac mai
dap sc3
lio i se3
setup sen,22
jmp sex-1

5c4, lac tc
ior sew
ral 1s
dac sew
ela

sex, jmp xy
I. • /t;es"C code bit

te, 0
dap tex
isp ten
jmp te3
jsp rw
setup ten,22
jmp te5

te3, 1io tee
ri1 1s

te5, dio tee
c1a
spi

tcx, jmp xy
jmp i te

start

Nacro FlO-DEC part 3

/set to pick up constant

Ip,

Ipl,

Ip2,

Ip3,

Ip4,

ttt,
tct,
tqt,
tbt,

jsp evl
law 1
jda pi .
sad (dio cv4+ncl
jsp tmc
1io prs
dio xy
1io wrd
dio xy
110 sgn
dio xy
lio def
dio xy
sas (dio cv4+1
jmp rsw
move tt,ttt
move ct,tct
move qt,tqt
move bt,tbt
init tt,rp
dap rt
dap ct
init qt,ilf
dap bt
jmp rsw

o
o
o
o

/save constant and reduce level

rt,

rp,

rp5, .

rp3,

rp8,

jmp xy

jsp evl
lac mif·
spq
jmp rp8
jsp co.·

xct i Ip3
add i Ip2
dac wrd
law 1
dac def
law i 1
jda pi
sas (dio cv4
jmp rp3
move ttt,tt
move tct,ct
move tqt,qt
move tbt,bt
init rt,ilf
stf 5

jsp rss
lac t
sad (55

. jmp r
sas (77
jmp r2
jmp tt

jsp mc
jsp dd
jda wro

lac (-200000
xct i Ip3
sub (-200000
add wro
jda pr
cIa
jmp rp5

pi, 0
dap pix
lac pi
add Ip1
dap Ip1
add (cv2-cv1
dap Ip2
add (cv3-cv2
dap Ip3
add (cv4-cv3
dap Ip4

pix, jmp x.y

/syl

fright paren

7S

/constant table search

co,

jmp co4+1

co2,
c03,

c04,

c06,

coS,
cox,

dap cox
~idx nca
lac psst
spq
jmp coB
lac def
spq
jsp usc
lac con
dap co3

lac wrd
sad xy
jmp co6
index c03, nco, co2
add one
dac nco
add (lac-sad+1
dac hih
sad low
jsp sce
110 wrd
dio 1 c03

lac c03
sub con
add i cn6
and (7777
dac num
jmp xy

Icar table (first)

76

/pseudo-instruction constants

cns, lac mii
spq

cn6,

cn3,

cn4,

cn8,

cn7,
cn5,

cn1,

jsp il~
lac lac'
dac xy leor table (first)
dac tlo
lac nca.
add aml laml is "alarm location"
dac aml
lac pss
spq
jmp cn5
init bs,cn4
lac con
dap cn3
jmp cn8
lac xy /const. list
dac wrd
jmp tb4

idx cn3
add (sad-lac
sas nco
jmp cn3
lac lac
dac cr2 Isto cor table (second)
lac tlo
add nca
dac wrd
init bs,cn1
jmp ba1

init bs,rnw
move con,nco '
dzm nca
idx cn6
index cn7,(dac cr2+nen,rnw

tme, error aIm, alh, flex tmc

77

/pseudo-instruetion "dimension lf

dim, init rt, di2
init dtb+57, d11
init et, rsw
init bt,·, 11£
dap qt
init tt, rst
jmp rsw .

dil, ,move sym, ten
szf 5
jsp il£
jmp rsw

di2, jsp evl
spi
jsp usp
move ten, sym
move wrd, ten
ele
dae let
jsp evl
spa
jmp di3
spi
jmp mdd
lae vet
add vel
dae i ea

di4, lac vet
add ten
dac vet
jmp rsw

di3, spi i
jmp mdd
dac t3
jsp vsm
jmp di4

mdd, move sym, Ius
error alu, rsw, flex mdd

73

/pseudo-instruetion variables

var, lac mii
spa
jrnp ilf
lac loe
spa
jmp ilf
lio vai
spi
jmp tmv
load vai, -0
1io pss
spi
jrnp vaa
sas vel
jmp vld

vae, lac ve2
dac wrd
jmp b5

vaa, dac vel
add vet
dae ve2
lac aml
add vet
dae amI
jmp vac

79

/read characters from. flexo buffer

reh, dap rez
isp r\1d
jmp rei

re8 p lio xy /flx list
dio fwb
idx re8
sub rf3
sza i
jmp re3
sma
jmp rfb /refill buffer
law i 3

re4) dac fwd

rei, 110 fwb
cIa
reI 6s
dio fwb
dae t
dac rep

rez, jmp xy

re3, lac nrc
jmp re4

rep, 0

/refill flexo buffer

rfb, init rcB~flx
dap rf3

rfS,
rf1,
rf2,

add

rfa,

rf3,

rf4,

(1000

law rf4+1

dap rf4'
setup nfc,3
rpa
dio t
rir 7s
spi
jrnp rf2
sense 6
jmp rfa
lac t
sza 1
.jmp rf2

dap .+2
law 5252
rar
spa
jmp 11p

cla
lio t
rcr 6s
lio xy
reI 6s
dio i rf3
rcr 6s
sad (130000
jmp rf6
sad (770000
jrnp xy
count nfc,rf2
index rf3,(lio
law rf6
jmp rfS

rf6, rcl 6s
isp nfc
ril 6s
isp nfc
ril 6s
dio i rf3
law i 2
sub nfc
dac nfc
idx rf3
jrnp reB

ilp, law 7143
jda tys
law 4777
jda tys
1nit sov, rf2
110 t
hlt+clc-opr
jmp rfa

17th code=delete

Icheck parity

/flx list

/stop code

Icar ret
/.+1 or rf6

flx+nfw-24,rf1

/pseudo-instructions octal, decimal, expunge and nOinput

oct"

dec,

de2,

nOi,

xp,

lae (opr
jmp dec+l'
lac (add num
dac nl
elf 5
jmp r2
clc
dac ini .
jmp de2

lio pss
law low
spi
dap low
jmp de2

/ignore to tab or car ret

itt, jsp rsl

itc, elf 5
dzm wrd
jsp rss
lae rep
jmp .+2

itl,

itx,

jsp rch
sad (36
jmp itx
sas (77
jmp itl
jmp r2

/syl

82

/feed subroutine

fee, 0
dap fex
eli
ppa
isp fee
jrnp .-2

fex, jrnp •

/puneh routine

pnb, 0
lio pnb
dap pnx
lac loc
ppb
ril 6s
ppb
ril 6s
ppb

pnx, jmp •

/oet7znt subroutine

opt,

op1,

o
dap opx
lio (100000
lac opt
elf 1
-rer 9s
rer 6s
sza
jrnp op2
law 20

op3, swap
szf 1
tyo
sad (10000
stf 1
ell
sas (100000
jrnp op1 -

opx, jrnp x.y

op2, stf 1
jrnp op3

83

/type subroutine

tys, xx
dap tyx
law i 3
dac opt

tyl, lac tys
and (770000,
sza 1
jmp tyc
reI 6s
tyo

tyc, lac tys
ral 6s
dac tys
isp opt
jmp tyl

tyx, jmp •

/tab typer

tb, dap .+3
law char r /tab
jda tys
jmp •

/permute zone bits

per, 0
dap pex
lac per
eli
rcr 6s
sza
jmp .-2
dio per
lac per
and (202020
ral 1s
xor per
xor {400oo0

pex, jmp •

84

/error print routines.

ust, error alu:, tb3, flex usw

usb, error alu,b5,flex usl

usq, error alu,rst,flex usp

uss, error alu,s2,flex uss

usm, jda alu
flex usm

usc, jda alu
flex usc

usr, error alu,rst,flex 'lisr

usp, jda alu
flex usa

usd, jda alu
flex usd

uds, dio lus
error alu,evx,flex uds

il, error alm,r,flex ich

ilf, error alm,itt,flex 1lf

ipi, error alrn,itc,flex 1p1

mdt, move sym,lus
error alu,rnw,flex mdt

mdm, error alm,dmi,flex mdm

ipa, error alm,itt,flex 1pa

lds, dzm sym
jda aIm
flex 1ds

lIs, error alm,alh,flex 11s

see, error alm,alh,flex see

tmp, error alm,alh,flex tmp

vld, error alm,rnw,flex vld

tmv, error alm,rnw,flex tmv

85

/error print routine

alu, 0
move alu,alm
jmp alb

aIm, 0
dzm Ius

alb, dap .+3
lac aIm
dap sov
lac xy
jda tys
jsp tb
lac loc

spa
jmp a11
jda opt
jmp a12

a11, lac (flex ind
jda tys

a12, jsp tb
lac asi

. spa
jrnp a16
lac asm
jda per
jda tys
lac amI
sza i
jmp a16
110 amI
lac (flex +
spi

law char r-
jda tys
lac amI
spa
cma
jda opt

a,t::
"","v, lac api

sza" i
jmp a19

86

a17, jsp tb
lac api
jda tys
lac syn
jda' tys
lac Ius
sza 1
jmp a18

als, jsp tb
lac Ius
jda per
jda tys

a18, la.w 77 le.r.
jda tys
lat
rar 1s
1io (-0
sma

alh, clc+hlt-opr
dio pch
jmp SOY

a19, lac Ius
sza i
jmp ala
jsp tb
jmp als

87

/title punch table

ftp, 0 0 /spaee
004277 400000 /1
625151 514600 /2
224145. 453200 ~~ 141211 · 771000
274545 453100 ~g 364545 453000
010171 050300 ~~ 324545 453200
065151 513600 19
0 0
0 0
0 0
0 0
0 0
0 0
364141 413600 Izero
000047 000000 Is 2245 5 .453000
0101r7 010100 It
3740 0 403700 /u
073060 300700 ~~ 376014 603700
412214 224100 Ix
010274 020100 ~~ 615141 454300
0 0
141414 141400 1=
0 0
0 0
0 0
0 0
0 0
204040 403700 ~~ 771014 224100
774040 404000 /1
770214 027700 1m
770214 207700 In
364141 413600 /0
771111 110600

~ 364151 215600
771111 314600
0 0
0 0
101010 101000 ~) 000041 221400
101074 101000 +
001422 410000 I(
0 0
761111 117600 /a
774545 453200 /b
364141 412200 /e
774141 413600 /d
774545 414100 Ie
770505 OiOl00 I,.

II
364151 513000 ~~ 771010 107700
004177 410000 /i
010300 010300 /elose quotes
000060 600000 I.
030200 030200 /open quotes

/Indicators and-variable st.orage'

vai, 0
vc1, 0
vc2, 0
vet, 0
ovb, 0
pss, 0
npa, 0
pch, 0
inp, 0
tit, 0
psa, 0
psb, 0
ini, 0
hih, 0
nfc, 0
Ius, 0
fwd, 0
fwb, 0
wrd, 0
num, 0
sym, 0
def, 0
ehe, 0
let, 0
api, 0
asi, 0
asm, 0
amI, 0
nsm, 0
asa, 0
amn, 0
con, 0
nco, 0
nea, 0
tIo, 0
mii, 0
mdi, 0
syn, 0
tea, 0
scn, 0
sew,. 0
ten, 0
tcc, 0
dsk, sad x:y
dsI, 0

+- 0 v,
t2, 0

!variables pseudo-instruction indicator
!beginning of variables
lend of variables
/variables counter

.. /overbar indicator, 1= on, O~' off
/-0 = pass 1, +1 =-pass 2
1-0 = begin pass, +1= continue pass
/-0 = do not punch, +1 = punh if pass 2
1-0 = suppress input routine, +1 = punch input routine
1-0 = suppress title, +1 = punch title
lend of psuedo-instruction list) at beginning
lend of macro-instruction list) of pass 1
faux. input routine indicator
lupper limit of macro instruction and constant .list
Itest word for end of flexo word list
Ilast undefined symbol
/flexo word from input tape
/flexo word from list .
Ipartial sum of. syllables of word
(number = value of syllable.
/symbol = flexo word for symbol.
1-0 = indefinite word, +1 = definite
/character count of characters in syllable -
/0 = no letters in syllable, -0 = at least one letter
Ilast psuedo-instruction for error stop
!relative location-+O = yes, -1 = no
/alarm symbol for relative location .
/location relative to above symbol (asm)
I(for establishing above symbolic relative
I(location from location .
!(assignment
/current address in constant list
Inumber of distinct constant values
/number of constant syllables
/temporary for current location
Imacro instruction mode indicator
Idefine indicator
/second three characs of M-I name
/temporary subroutine exit address

I for code. '.
I! temporaries

I word
I subroutines .
!durnmy symbol count
/temporary for durn sym count

t1,
t3,

o·
o

89

/temporary
/registers

constants

/pseudo instruction list and macro names and definitions

psi/

mail

npi,

dSs/
dsm/
cvi!

1 ow/

law npi-3

lac npi.:.i

text .repeat.
text .charac.
text .fIe xo.
text .tex t.
text .sta rt.
text .termin.
text .define.
text .consta.
text .oct ale
text .decima.
-text .noinpu.
text .expung.
text .variab.
text .dimens.

1
110000
pdl

lac low

start ps5

rpt
ch
fx
txt
sta
ter
dfn
ens
oct
dec
noi
xp
var
dim

90

SYMBOL PACKAGE - macro fio-dec

/MACRO P SYMBO PL~CH.10-27-61

flx/

1sb, clf 5
senses 1001
jmp 7751

law i 20
jda. fee

1s, listen
swap
senses 1001
jrnp 7751
sad (77
jrnp ls3
sas (36
jmp ptl-5

1s2, listen
swap

1s3, senses 1001
jrnp 7751
lio !jmp sps
sad char rm
1io jmp mps
sad char rs
stf 5
dio sps-l
lio ls3+2
dio .-2
sas (77
jmp 1s2
law i 40
jda fee
lac end-l
jda pnb
la~'l i 40
jda fee
xx

sps, lac low
dap bpp
law low+l
jda ,end
szf 5
jrnp pse
law i 40

. jda fee

mps, law psi
dap bpp
add (2
,jda end
init bpp,npi
lac mai
add (law-lac+l
sad .-4

jmp pse
dap end
jsp pst

pse, law i 3.0
jda fee'
lac (jmp ps5
jda pnb
law i 240
jda fee
jmp 7751

end, 0
pst, dap pSX

clf 4
bpp, law xy
psr, dac org

dap sor
and ~-77
add 100
dac loc
law pbf
dap .+2

psu, lac. 1 sor
dac •
1dx .-1
dap ts
idx sor
sad end
jmp .+4
sad loc
jmp psc
jmp psu
dac loc
stf 4

pcb, jmp 4sc
szf

pSX, jmp xy
lac loc
jmp psr

psc, senses 1001
jmp 7751
jmp pun+6

sor, xy

constants

bnp/ jmp pcb+l
ptl/ jmp pt1+4
pt6-1/ jmp Is

start lsb

92

RESTORE

bnp/ lac wrd
pt1/ lio t
pt6-1/ jmp ptl

/Text printer

pbf/

txp, 0
dap txu

txu, lio .
ril 6s
tyo
ril 6s
tyo
ri1 6s
tyo
idx txu
sub (liO
sas txp
jmp txu
jmp i txp

constants

93

/init .. sym. val

1st, flex 1s 1
flex 28 3
flex 3s 7
flex lJ.s 17
flex :3s 37
flex 6s 77
flex 7s 177
flex 8s 377
flex 9s 777

char Ii 10000

flex and 020000
flex ior 040000
flex xor 060000
flex xct 100000
flex jfd 120000
flex cal 160000
flex jda 170000
flex lac 200000
flex lio 220000
flex dac 240000
flex dap 260000
flex dip 300000
flex dio 320000
flex dzm 340000
flex add 400000
flex sub 420000
flex idx 440000
flex isp 460000
flex sad 500000
flex sas 520000
flex mus 540000
flex dis 560000
flex jmp 600000
flex jsp 620000

flex skp 640000
flex szf 640000
flex szs 640000

flex sza 640100
flex spa 640200
flex sma 640400
flex szo 641000
flex spi 642000

94

flex ral 661000
flex ril 662000
flex reI 663000
flex sal . 665000
flex sil 666000
flex scI 667000
flex rar' 671000
flex rir 672000
flex rcr 673000
flex sar 675000
flex sir 676000
flex scr 677000

flex law 700000
flex iot 720000
flex tyi 720004
flex rrb 720030
flex cks 720033
flex Ism 720054
flex esm 720055

flex cdf 720074
flex cfd 720074

flex rpa 730001
flex rpb 730002
flex tyo 730003
flex ppa 730005
flex ppb 730006
flex dpy 730007

flex elf 760000
flex nop 760000
flex apr 760000

flex stf 760010
flex cIa 760200

flex hIt 760400
flex xx 760400

flex cma 761000
flex cle 761200
flex lat 762200
flex eli 764000

iyi, -0 -0

95

ICONSTANTS PRINTER

yc,

ych,

szs i 30
szs 20
jmp ych
jmp 77~

lac cn7
sad (dac cr2
jmp 7751
dap yct
law yc2
jda txp
357774 Ired, c.r., u.c.
637246 Ic, l.c., 0
text .nstants area.

yc2,

from

lac pss
spa
jmp yc3
law ye4
jda tX

7
D

text ,
tl

yc4, stf 5

yc7, law cor
dap ycm
law cr2

yer, dap ycn
yeu, sad yet

jmp 7751

ycm,

yen,

yeq,

yek, _

yc3,

lac •
spa
jmp
jda
szf
jmp

·law
jda
la"'vV'

ycp
opt
i 5
yeq
36
tys
..!l .,
...L. ~

add .
jda opt

law 77
jda tys
idx ycm
idx yen
jmp ycu

inclusive
char 10+3477

Icor

Iset to print

/cr2

la,,,, yc6
jda txp
text I origil flex ns +34

yc6, elf 5
jmp yc7

77

yet, add •

yep, law yeo
jda txp'
357145 Ired, -1, n
flex def
char 1'~+3477

yeo, jmp yck

constants

start yc

97

ALPHA SYMBOL PRINTER

ye/
yes, szs i 20 ..

jmp syx
law yel
jda txp ..
3577
text /Defined Symbols ALPHA/
3477 .

yel, lac low
sad .-1
jmp syx
dap ye8
lio (77
iot 4003

yey, law ist
dap yea

yea, lac • list
jda per

ye8, sad • / symbol
jmp yeb
idx yea
idx yea
sas (lac iy1
jmp yea
elf 5

yez, iot i

ye1,

szs i 20
jmp syx
lae i ye8
jda per
jda tys
jsp tb
idx ye8
lae i ye8
jdaopt
szf i 5
jmp yc1
jsp tb
lac i yea
jda opt
lio (77
iot 4003
jmp yev

Isymbol

/value

/set if print

98

ycb,

ycc,
ycv,

syx,

text

syy,

idx ycS
idx yea
lac i yeS
sad i yca
jmp ycc.
stf 5
law i 1
add yeS
dac ycS·
jmp ycz

idxycS
sas (sad low
jrnp ycy
iot i

szs i 30
. 77, '=)1 Jmp ..,
law syy
jda txp
357777

/Defined Symbols NUMERIC/
3477
jmp 7751

constants

start ycs

/value

NUMERIC SYMBOL PRINT

yc/
, sy, szs 30 i

jmp 7751
dzm t ,

init SYa"ist
init sy ,ist+1
lio (77
tyo-4000

sya, lac t
dac tl
clc
dac .I-

l"

lac low
dap syb
idx syb

syb, lac xy /value
lio i syb
xor t1
spa
jmp sq5
sza i
jmp syc
xor tl
sub tl

sql, spa
jmp syi

sq2, lac t
xor i syb
spa
jll~P sq3
lac i syb
sub t

sq4, spa
dio t

syi, idx syb
idx syb
sas (lac low+l
jmp syb
lac t1
cma
sza
jmp sya
iot ~
jmp 7751

sq5, lac t1
jrnp sql

,,100

sq3, lac t
jmp sq4

syc, law i 1
add syb.
dap syz'

Sy~,
sy , lac xy list value

xor i syb
spa
jmp sy5
sza i
jmp syf
lac i syb
sub i sy4

syl, spa
jmp syp

syd, idx sy4
dap sy3
idx sy4
jmp syg

sy5, lac i sy4
jrnp syl

syp, iot i
szs i 30
jmp 7751

Ima1 symbol syz, lac xy
jda per
jda tys
jsp tb
lac i syb
jda opt
lio (77
tyo-4000
jrnp syi

syf,
sy3, lac xy 11st table

jda per
sas i syz
jmp syp
idx sy4
dap sy3
idx sy4
jmp syi

constants

start sy

101

/restore macro

dsm/
rm, szs 40 i
jmp 7751

load mai,lac npi-1
load PSi, law npi-3
load low,lac low
init rm2,ist-2

rm4, idx rm2
idx rm2
add (1
dap rm3

rm2, lac xy
sad iyi
jmp 7751
jda per
dac sym

rm3, lac xy
dac t3
jsp vsm
jmp rm4

constants

start rm

102

/final uwhere to go routine"

dsm/ 110000
szs 40
jmp ps5
lac pss
sma+szf"6-skp
jmp. s6
sma
jmp s4
szf 6
jmp 1st
jmp s5

dss/ 1
eVil pdl

start dsm+1

/permuted char lr

104

APPENDIX 2

MACRO INSTRUCTION EXAMPLE

105

106

Appendix·2; r"Iacro Instruction-·ExampTe-----··

The sample program on the next page is analyzed in

detail to illustrate most of the features of the macro
. -.

processor. We illust~ate first how a programmer might analyze

the macros. Each successive level of macro expansion is

indented one column from its predecessor.

On the next page is listed an English transliteration

of the macro structure from r~cRols point of view. Internal

dummy symbol numbers correspond to the letters used as shown

by the chart below. The most important changes to the dss table

are shown also, but the reader should remember that any dummy

symbol parameter assignment will in general alter the dss

table. Note particularl~T how the extra argument of second

is lost.

Finally there is an octal and binary dump of the mai

table for these macros. The octal numbers are in the left hand

coluwn, and on the right appear the binary forms of the same

numbers divided off according to their significance. Numbers

in parentheses are value words associated with the zero-nonzero

indicator bits immediately preceding them. Periods represent

word boundarys, and semicolons represent statement boundarys.

Each statement corresponds precisely with one entry in the mai

table as listed on the preceding page. The pseudo-instruction

data is shown also.

Table of Dummy S;ymbols

1 R
2 fI, r.

3 B
4 c
5 D
6 E
7 F

10 G
11 H
12 J
13 K'
14 L

Sample programa June, 1962, RAS.

define

define

define

a,

b,
c,
d,

const

start a

first A, B, C
law A
add B
dac C
term

. .

second X, Y
2=105 -
dac 2
X=X+(Y
first 1, (X, X+X
lac 2
Z=X
add Z
term

third J, K
second 100, J+(K+200, K
term

first a, b, c
second 1, 2
third 10000, (40000
dac d
hIt
o
o
o

108

Expansion of S8..L"Tlple Program

Source tape Intermediate results vJord Location

a, first 4 25, 26 .,
law 4 4 . . add 25 5 ..
dac 26 6

second 1, 2
z=105
dac z dac 105 7
X=1+(2)
x=1+30
x=31
first 1, (31), 62
first 1, 31, 62

law 1 10
add 31 11
dac 62 12

lac z lac 105 13
z=x
z=31
add z add 31 14

third 10000, (40000)
third 10000, 32

second 100, 10000+(32+200), 32
second 100, 10000+33, 32
second 100, 10033, 32

z=105
dac z dac 105 15
x=100+(10033)
x=100+34
x=134
first 1, (134) , 270
first 1, 35, 270

law 1 16
add 35 17
dac 270 20

lac z lac 105 21
z=x
z=134
add z add 134 22

dac d dac 27 23
hIt hIt 24

b, 0 0 25
c, 0 0 26
d, 0 0 27

const 2 30
31 31
40000 32
232 33
10033·' 34
134 35

- " ' _."

Sample Program Macros as Seen by ~ACRO

English

define

term

define

term

define

term

input

first A,
law A
add B
dac C

second A,
C=105
dac C
A=A+(B)

first 1,

lac C
C=A
add C

Read from mai

B, C

B

(A), A+A

A+700000
B+400000
c+240000

third A, B
second 100, A+(B+200), B

C=105
c+240000
D=(B+O)
A=A+D+O

E=(A+O)
F=E+O
G=A+A+O
700001
F+400000
G+240000
C+200000
C=A+O
c+4ooooo

stored into mai

A+700000
B+4ooooo
C+240000

C=105
C+24oooo
D=(B+O)
A=A+D+O

sets dss[2] to 0
- E=(A+O)

F=E+O
sets dss[3] to 7 [F]

- G=A+A+O
sets ~[4] to 10 [G]

700001
F+400000
G+2400oo

C+200aoo
C=A+O
c+400000

sets dss[2] to 0
- C=(B+200)

D=A+C+O
sets dss[3] to 5 [D)

- E=B+O
sets dss[4] to 6 [E)

sets dss[4J to 0
- 240105

F=(D+O)
G=F+_OO

sets dss[2]to 10 [G)

H=G+O
J=H+O
K=G+G+O
700001
J+400000
K+240ooo
200105
L=G+O
L+400000

Octal and Binary Dlli~P of mai Table

667151
002223
705026
420314
700000
060417
400000
240000
400000

226563 .
464564
705031
721041

105
031414
240000
242102
243450
210303
043070
704204
207004

'316060
700001
400000
214163
240000
200000
041622
102076
400000

FIRST
fir
st

[pointer]
10 0010000 0 1(700000), 10 01100.00

o 1(400000)J 10 0001000 0 1(240000), 111.1/

SECOND
sec
ond
[pointer]
1110 1(105) 0001000, 10 0001.000

o 1(240000), 10 0110000 110 0.(0)

01010003 10 0010000 10.
0101000 1110 O(O} 101000.0,
10 0010000 110 O{O) 0011.000g
10 0011000 1110 0(0) 0.111000;
10 0010000 10 0.010000
1110 0(0) 0000100.j
o 1(700001), 10 0111000 0 1(400000), 10 000.0100

o 1(240000), 10 0001000 G 1(200000),

1.0 0010000 1110 0(0) 10010.00;
10 0001000 0 1(400000), 1111/

237071
005164
705042
460642

200
104102
161211
416060
624307
240105
047072

100
044046
111111
605101
101161
506121
700001
400000
464260
240000
200105
234062
061740
400000

THIRD
thi
rd

[pointer]
10 0110000 110 1(200) 00010.003

10 00100bO 10 00010.00
1110 0(0) 0101000y 10 01.10000
1110 0(0) 0011000;
o. 1(240105)3 10 0101000 110 0(0) 0111.000;

10 0111000 1110 1(100) 0.000100;

10 0000100 110.
0(0) 0100100, 10 0100100
1.110 0 (0) 00.10100, 10 00001.00
10 0000100 1110 0(0) 01.10100,
o 1(700001)~ 10 0010100 0 1.(400000),

10 0110100 0 1. .. (240000), 0 1 (200105) ~

10 000.0100 1110 0(0) 0001100j
10. 0001100 0 1(400000), 1111/

.'.~ .. 2

extended pdp-1 ops and macros, jan 1962

lap=cla 100
ioh=iot 1
clo=6S1600
spq=6S0500
szm=640500

define

. .

sensewitch A
repeat 3, A-A+A
szs A
term

define
initialize A, B
law B
dapA
term

define
index A,
idx A

B, ,C

sas B
jmp C
term

define
listen
cla+c11+clf 1-opr-opr
szf 1 1
jmp .-1
tyi
term

define
swap
rel 98
rcl 98
term

define
load A, B
lio (B
dio A
term

define
setup A, B
law i B
dacA
term

define
count A, B
isp A
jmp B
term

113

define

define

start

.
move A, B'
110 A
dl0 B
term

clear A, B
lnlt .+2, A
dzm
index .-1, (dzm B+1, .-1
;erm

114

F36 P 500-7/62

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	xBack

