| | | | | | | | interof fice

ld]iJalift]all]
| | | | | | | | memorandum
e T +
To: Distribution Date: 20 Mar 83
From: Mike Uhler
CC: UIf Fagerquist Dept: L.S.E.G.
Peter Hurley DTN: (8-)231-6L448
Jupiter Engineering List Loc/Mail stop: MRO1-2/E85
Jupiter Management List Net mail: UHLER at 10

Subject: Minutes of the Jupiter brainstorming meeting

Distribution:

Jim Flemming Judy Hall Don Hooper
John Kirchoff Arnold Miller Dan Murphy
John Murray David Nixon Pat Sullivan

Page 2

1.0 Introduction

Since we are in the replanning stage for Jupiter 11, it seemed
appropriate to reconsider some of the design decisions that were
made for Jupiter |. To do this, a meeting was held on March 3,
1983 to discuss ideas for the Jupiter |1 CPU.

Those attending were: J. Flemming, J. Hall, D. Hooper,
J. Kirchoff, A. Miller, D. Murphy, J. Murray, D. Nixon,
P. Sullivan, and M. Uhler

2.0 1 Multiprocessing configurations

There was considerable discussion about the multiprocessing
strategy with Jupiter. SMP configurations that exist with KL10
systems are not currently possible with Jupiter because of the

tightly coupled MBOX and memory. To implement SMP, we would need
to do the following:

o Design a multi-port memory.

o Add some cache consistency hardware to keep the caches on all
processors in agreement.

o Design a clocking system so that all processors and the memory
run synchronously.

o Design some sort of inter-processor communications capability.

Because the memory is multi-ported, it would probably have to be
in a separate cabinet that could be placed between all the

processor cabinets. A four processor configuration might look
something like:

e +-=t
I |
|CPU| |CPU|
I |
s T +--—+
| MEM |
e +-—t
| | .
|CPU| |CPU|
[I
+--—+

There were several questions raised about such a configuration.
How do we connect 1/0 to the system? Is it done through
independent ports on each CPU as we do now, or is there some sort
of system interconnection that could be done?

In addition, there was concern that the current 25-bit physical
memory address (32 Mwords) might not be enough to support four

Page 3

processors. |t seemed possible to increase the physical address
to 27 bits to allow addressing of up to 128 Mwords of memory.

Such a configuration could also be used in a loosely coupled mode
if the memory could be segmented into individual chunks for each
processor that could not be referenced by other processors.

SMP and LCS/CFS each have their advantages and disadvantages and
there was some discussion about whether we should indeed implement
SMP capability in Jupiter Il. The general feeling seemed to be
that it would be useful if we could get memory and all processors
into one cabinet, but that the usefulness decreased if that
couldn't be done.

Iin addition, there is a possibility that the addition of SMP
capability could slow down the cycle time and memory access time
of the single processor configuration.

While SMP is an attractive option, TOPS-20 is committed to LCS/CFS
and there seemed to be a feeling that SMP was seconday to support
for LCS/CFS. In particular, there was a request for a low
overhead inter-processor communications bus for the loosely
coupled case. CFS could incur quite a bit of overhead going
through multiple levels of protocol getting onto the Ci.

3.0 External array processors

There was some discussion about the possibility of connecting an
external array processor to the machine. Array processors similar
to that made by Floating Point Systems have been successful on the
KL10 because they could be connected directly to external memory
ports. With Jupiter |I, the MBOX and memory are tightly coupled
and there are no external memory ports available.

The only obvious way to connect an array processor to the machine
is via the 10 bus to the MBOX. At a clock speed of 28ns, the
maximum throughput is one word every 336 ns. |t wasn't known if
this was sufficient to support an array processor.

4.0 COBOL performance

There was concern about the performance of COBOL on Jupiter. It
seems unlikely that we will be able to make the EXTEND
instructions as they exist today run four times a KL10 without
adding a large amount of special purpose hardware.

There seem to be two possibilities for improving the performance
of COBOL. The first is to convert the code that now uses EXTEND
to routines that use other instructions in an attempt to take
advantage of the pipeline. The other possibility is to define new

Page &4

instructions which don't allow the full generality of the EXTEND
instructions in an effort to make them faster.

I't seems that it would be possible to implement hardware that
could handle the simple byte-move case often seen with MOVSLJ. It
wasn't felt that this alone would help all that much without
compare and convert instructions also.

One interesting possibility to speed up the translate function of
some of the EXTEND instructions is to put some number of the most
common transliate tables into RAM to avoid a memory reference on
each byte. The RAM would be loadable on microcode load and have
translate tables that could be defined by each installation. The
translate functions that weren't RAM resident would then run much
slower.

In the absence of any firm consensus, we were left with the
exercise of trying to determine how fast we could make a
MOVSLJ-equivalent that takes two one-word global byte pointers, a
single count, and doesn't have to store back updated byte pointers
at the end.

5.0 Performance measurement hooks

Given the current attempt to extract performance information from
the KL10, there was some desire to add some features to Jupiter to
make it easier the next time around. The KL10 meter board is a
fine example of a performance measurement feature which is very
useful, but which most customers probably don't know (or care)
that they have.

One suggestion for Jupiter was to bring the signals that we are
interested in onto the backplane and to a spare module slot (if we
have one) where they would be terminated by a dummy module.
Performance measurement could then be done by building a few meter
boards and plugging them into the spare slot in the backplane of
the machine to be measured.

In addition to the meter board, we'd also like to have a
low-overhead way of gathering opcode histograms, address traces
and PC traces. With current RAM densities, it doesn't seem
unreasonable to put opcode histogram hardware directly into the
EBOX and allow it to count at full CPU speed. Similarly, it seems
possible to put a small amount of buffering into the MBOX for
address and PC traces and have the MBOX microcode write the buffer
into memory when it fills up.

Finally, it would be very useful to be able to count the number of
micro page faults that have happened.

Page 5

6.0 Translation buffer organization

Because of the probiems with the KLI10O translation buffer
organization, there was quite a bit of interest in the Jupiter TB
organization. At present, the TB is implemented as a 2K, l-way
associative, 1-word block size cache in the MBOX. Given available
RAM technology, the following organizations seem possible:

2K, 1-way associative, 1-word block size (total of 2K entries)
LK, 1-way associative, 1-word block size (total of 4K entries)
1K, 2-way associative, 1-word block size (total of 2K entries)
256, L-way associative, l-word block size (total of 1K entries)

An additional possibility was to implement separate user and exec
tables, where each table was 1K, 2-way associative, and had a
1-word block size. This organization seemed to be the best of all
possible worlds, followed by the 1K, 2-way associative single
table. There was some question about the ability to implement the
former organization given the timing constraints.

There was some interesting discussion about the possibility of
including a wuser process context number in the TB and with every
reference from the CPU. The user process context number would be
a small (8 bits was suggested) number that would be unique for
each user process. The advantage is that the TB need not be
flushed on a context switch. Since the user process context
number isn't of infinite size, the monitor would have to cause a
full TB flush when it reassigned a number.

There was a request to provide a single physical page sweep
function for the TB. This function would cause the TB to be swept
looking for mappings to a specified physical page. If any are
found, the mappings are marked invalid. At present, the monitor
must do a full TB flush when the state of a physical page changes.
This function would replace the full flush. Avoiding a full TB
flush could be a real win if there are multiple user process
contexts contained in the TB.

In order to make any rational decisions about TB organization, we
need real address traces that we can run through a cache
simulator. No one knows how to generate such traces for a running
system without building some special hardware to monitor a KL10.
We will try to solve this problem. To provide some preliminary
guidance, Dan agreed to provide data from our in-house systems on
process interaction, working set size, etc.

7.0 1/0 strategy

There was considerable concern about the 1/0 strategy for Jupiter.
The primary areas of concern are:

o |/0 bandwidth, |Is the |/0 bandwidth sufficient to handle the
projected traffic for a machine that is 4-5 times a KL107?

Page 6

o Dependence on corborate front-ends. Is it wise to totally
depend on corporate front-ends for all !/0 when the groups
responsible for the front-ends may have other interests?

o Performance impact of using front-ends for 1/0. Front-ends
are usually touted as off-loading work from the processor. In
reality, they quite often add work through the use of
expensive protocols [Cf. Dan's 24-Jan-83 memo on System |0
Architecture]. Will we be creating a performance bottleneck
in the front-ends?

There was considerable discussion about potential solutions to
some of these concerns. One popular suggestion was to build a
UNIBUS adapter for the machine in addition to the existing CI/NI
adapters. The advantages of this scheme include the following:

o We aren't totally dependent on corporate front-ends,
especially comm front-ends, for all 1/0.

© We can immediately take advantage of any corporate advances in
UNIBUS peripherals without having to wait for a front-end
group to support them.

o There is potential for shortening the overall schedule since
we may not have to implement assorted levels of protocol to
talk to the front-ends.

In order to take full advantage of the UNIBUS adapter, it must
have the capability of being a bus master so that an -11 is not
required outboard of the adapter.

There was also a question of whether we should build an SI adapter
to allow us to connect directly to the new corporate smart disks.
Doing so would allow us an alternative to the CI/HSC connection to
the disks. Arguments analogous to those listed for the UNIBUS
adapter apply to the S| adapter.

One novel suggestion for a solution to the "front-ends don't off
load anything'" problem was the addition of a small -10 instruction
set processor to handle 1/0. Such a configuration might look
something like:

Page 7

That is, there would be a small -10 instruction set processor
between the MBOX and the 1/0 replacing the 10BOX and possibly the
ports. This processor would run normal monitor code from an
on-board RAM loaded from main memory during monitor load and
handlie all 1/0 for the main CPU. Since the meeting Dan has
indicated that such a scheme might offload up to 20% of the normal
monitor overhead spent doing not only 1/0 but also scheduling,
etc.

Finally, there was the question of encryption on the NI. There
was consensus that we must have encryption at least up to the
level that is available on the UNIBUS.

