
I NTRODUCTION TO

DEC- SYST~M-10:

TIME-SHARING and BATCH

THIRD EDITION

T. w. SZE

PROFESSOR OF ELECTRICAL ENGINEERING

UNIVERSITY OF PITTSBURGH

Copyright ~ 1974, 1977, 1980 by T. W. Sze

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, ~n any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of T. W. Sze, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, U.S.A.

Printed in the United States of America

Library of Congress Cataloging in Publication Data:

Sze, T. W.
Introduction to DEC System -10

Pittsburgh, Pa. : Univ. of Pittsburgh

Library of Congress Catalog Card Number: 80-54311

ii

CONl'ENl'S

Contents

Preface to the Third Edition

Chapter 1

Chapter 2

INTRODOCTION

1.1
1.2
1.3

Batch Processing versus Time-Sharing
Time-Sharing System at Pitt
Computer Service

Remote Terminals

1.4
1.5

1.6
1.7
1.8
1.9
1.10
1.11

Files

1.12

Communication with the Computer
Description of a Remote Terminal,

the DECwriter
The Keyboard
Other Types of Remote Terminals
Sign-On at the Remote 'I'erminal
Password
Disk Storage Quota
Sign-Off Procedure

Basic Concept of Files

Exercises on a Time-Sharing Terminal

References

TEXT EDITOR

2.1 Introduction
2.2 Selected Terminology

A Primer of UPDATE Editor

2.3
2.4

2.5
2.6
2.7
2.8

Movement of Pointer, $TO, $AT and $TRAVEL
Change of Text Material,

$CHANGE, $ALTER and $SUBS'I'ITUTE
Deletion of Lines, $DELETE
Output of Lines, $TYPE
Line Insertion
Completion of an Editing Session,

$ooNE, $END and $FINISH

Other UPDATE Commands and Procedures

2.9
2.10

Line Insertion ~bde
Compounded Editing Commands

iii

iii

x

1

1
4
7

8

8

11
15
18
21
23
23
25

27

27

30

32

33

37

37

3~
4U
41
41

42

43

44
47

Chapter 3

2 11 Move Command, $MOVE
2.12 COPY Command
2.13 Editing-Control-Function Switch Commands
2.14 Editing Function Value-Setting Commands
2.15 Miscellaneous Editing Commands
Selected Advanced Topics in UPDATE

2.16
2.17
2.18

Preparation and Use of Auxiliary Files
Conditional Editing Commands
Editing Programs

A Summary of File Management by UPDATE

2.19
2.20

File management Tasks
Examples of File Editing

Exercises

References

FORTRAN-l 0

Running a FORTRAN Program on DEC System-lO

3.1
3.2
3.3

3.4
3.5

To Enter and Store a FORTRAN Program
To Edit a Stored FORTRAN Program
To Compile, Load and Execute

a Stored FORTRAN Program
Optional Switches
An Example of FORTRAN Processing

A Surnmmary of FORTRAN-IO

3.6
3.7
3.8

3.9
3.10
3.11
3.12

3.13
3.14
3.15
3.16
3.17
3.18
3.19

A Summary of Constants, Variables and Expressions
FORTRAN-IO Statements
A Summary of FORTRAN-IO Compilation

Control Statements
A Summary of Specification Statements
A Summary of Assignment Statements
A Summary of Control Statements
Terminology Used in FORTRAN-lu

INPUT/OUTPUT (I/O) Statements
A Summary of FORTRAN-IO READ Statements
A Summary of FORTRAN-IO WRITE Statements
A Summary of FORTRAN-IO I/O Statements
FORTRAN-IO File Control Statements
Format Statements
FORTRAN-IO Device Control Statements
FORTRAN-IO Subprogram Statements

Subprogram Libraries in FORTRAN

3.20
3.21

3.22
3.23

Selected FORTRAN-IO Subprograms Developed by DEC
Selected Subprograms Developed at

the Pitt Computer Center
The SUBSET Subprogram Package
Comprehensive FORTRAN Subroutine Libraries

iv

49
52
54
58
60
63

63
65
70

72

72
74

77

80

81

82

82
84

85
88
91

93

93
95

97
98
99

100

101
104
105
106
107
110
112
114

117

117

118
123
129

Chapter 4

Chapter 5

3.24
3.25

Array Processor
FORTRAN 77

FORTRAN PROGRAM DEBUGGING

4.1
4.2

Introduction
Types of Errors

Pre-Computer-Run Debugging

4.3
4.4

Walkthrough by Flow Charts
The FORFID Program

Off-Line Debugging by Code Inspection

4.5
4.6
4.7
4.8
4.9

A Checklist for Data Errors
A Checklist for Computation Errors
A Checklist for Logic Errors
A Checklist for Input/Output Errors
A Checklist for Program Readability

On-Line Program Debugging by Diagnostic Reports

4.10
4.11
4.12

Compiler Diagnostics
Run-Time Diagnostics
Dimension OUt-of Bound Errors

On-Line Debugging by Conditional Compiling

4.13 The D-Statement

On-Line Debugging by Tracing Aids

4.14
4.15

The TRACE Program
The MSFLVL Subroutine

On-Line Debugging by an Interactive debugger

4.16
4.17
4.18

The FORDDT Processor
Basic FORDDT Commands
A FORDDT Example

Exercise

References

MODELING AND SIMULATION BY CSMP

Introduction

5.1
5.2
5.3
5.4

Dynamic Modeling of Systems
Differential Equations
Preparation for Digital Computer Solution
CSMP as a High-order Language (HOL)

v

134
135

137

137
138

139

139
142

146

146
149
150
152
152

154

154
155
168

170

170

173

173
173

175

175
176
179

183

184

185

185

185
187
187
189

Chapter 6

A CSMP Pr imer

5.5

5.6
5.7
5.8
5.9
5.10
5.11

Symbols, Constants, Operators,
Functions and Labels

Format of CSMP
Structure of a CSMP Program
SORT and NOSORT Sections
Structure Statements
Data Statements
Control Statements

Running CSMP at pitt

7.12
5.13
5.14

CSMP Job preparation
CSMP Job Execution
Other r<bdeling and Simulation Languages

CSMP Examples

5.15 CSMP Examples

Exercises

References

A PRIMER OF COMPUTER GRAPHICS WITH DEC-IO

6.1 Computer Graphics and Computer Graphics Devices

Graphing and Plotting

6.2
6.3
6.4

Plotting on a Terminal or Printer
Plotting on a Plotter
Preview of Plotter OUtput

General Graphics

6.5
6.6
6.7

Basic principle of a Digital Plotter
A Primer on CalComp Plotter Subroutines
Examples of CalComp Programming

A Primer on Graphics Software for Graphic Terminals

6.8
6.9
6.10
6.11
6.12
6.13

Basic principle of a Graphics Terminal
Terminology
Screen Graphics and Virtual Graphics
A Basic Set of TCS Subroutines
Interactive Graphics
A Surrunary of Other TCS Subprograms

Three Dimensional Displays

6.14 Three Dimenional Displays

Exercises

References

vi

194

194
194
195
195
196
201
2U2

207

207
209
2U9

211

211

221

224

225

225

227

227
236
241

245

245
247
249

259

259
260
261
264
271
275

280

280

282

283

Chapter 7

Chapter 8

SELECTED SERVICE PROGRAMS AND PROCEDURES

PIP

7.1
7.2
7.3
7.4
7.5
7.6
7.7

SORT

7.8

RUNOFF

7.9
7.10
7.11
7.12
7.13
7.14

OPRSTK

7.15
7.16
7.17

Introduction
The Standard PIP Command Structure
Transfer of Multiple Files, the X-Switch
Transfer of Files with Editing
File Directory Management
Multiple PIP Switches
A Summary of PIP Switches

The SORT Prog ram

RUNOFF Operating Procedure
How RUNOFF Works
Basic RUNOFF Commands
Special Text Characters
Sele9ted RUNOFF Switches
A Summary of RUNOFF Commands

Introduction
To Create a Control File
To Submit a BATCH Job at a Terminal

virtual Memory

7.18 The Virtual Memory Procedure

References

OPERATING SYSTEM COMMANDS

8.1 Introduction

Job Initialization and Termination

8.2
8.3
8.4

Job Initiation at a Remote Terminal
Passw:>rd
Job Termination at a Terminal

Communication and Status Reporting

8.5
8.6

Communication in the Time-Sharing System
Status Report Commands

Source File Preparation

8.7 Source File Preparation Commands

vii

285

285

285
289
291
291
294.
294
296

297

297

299

300
301
302
307
308
310

314

314
314
316

317

320

319

320

320

326

326
328
328

330

330
333

335

335

Chapter 9

Chapter 10

Allocation of Facilities

8.8
8.9
8.10
8.11

Facility Allocation by Monitor
Allocation of Unrestricted Devices
Allocation of Restricted Devices
Remote Terminal Control Commands

Program Execution and Control

8.12 Execution and Related Commands

File Management and Control

8.13
8.14
8.15
8.16

File Management Commands
File Output Commands
The QUEUE Command
Operating System Command Locally Enhanced

References

MULTIPROGRAM BATCH

Introduction

9.1
9.2
9.3

Introduction
BATCH Software System
Procedure of Running a Batch Job

Control File

9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12

Batch Control Commands
Sign-on Batch Control Commands
Sign-Off Card, $EOJ
The End-of-Deck Card, $EOD
Batch Control Commands for Disk Storage
Batch Control Commands for Compiling

and Execution
A Summary of Batch Deck Modules
Batch Control Commands for Error Recovery
Miscellaneous Topics in Batch Control Commands

Submitting a Batch Job

9.13
9.14

Submitting Batch Jobs in Cards
Submitting Batch Jobs from a Terminal

References

TAPE HANDLING

10.1
10.2
10.3
10.4
10.5
10.6

Magnetic Tape
DEC tape
Preliminary Proce9ures
Allocation of Tape Drives and Mounting of Tapes
Sequential processing of Magtapes
FORTRAN-lO EXecution-Time Tape Control

viii

336

336
336
339
344

347

347

350

350
354
355
364

366

367

367

367
368
370

37l

37l
37l
374
375
375

376
379
384
385

389

389
389

391

393

393
395
396
398
399
399

Appendix A

Appendix B

Index A

Index B

Tape Service Programs

10.7
10.8
10.9
10.10
10.11

The UARC Program
The ACCESS Program
The ARCHIVE Program
The CHANGE Prog r am
Tape Transfer and Comparison Programs -

M'ICOPY, Dl'COPY and FIIf'CM

References

A SUMMARY OF PIL LANGUAGE

A.l

A.2
A.3
A.4
A.S
A.6
A.7
A.8
A.9
A.IO
A.11
A.12
A.13
A.14

Rules on PIL Variables, Constants
and Expressions

Statement Labels
Some Basic PIL Statements
Loop Statements
Input/Output Statements
Input/Output Format
Subprogram Statements
File Management Statements
File Input/Output
File Control Statements
Execution-time Function and Program Step Input
PIL-FORTRAN Linkage
PIL-oPRSTK Linkage
Other PIL Commands

References

INTERACTIVE ENGINEERING PROGRAM LIBRARY

GENERAL INDEX

COMMANDS, PROGRAMS, AND PROCESSORS

ix

401

401
403
4US
406

408

411

412

412
413
413
416
416
416
417
418
419
419
420
42U
421
421

422

423

438

443

PREFACE OF rrHE THIRD EDITION

Completion of the Third Edition marked the tenth year since the book
project first started. Materials of the First Edition were the results of
organizing the class notes of a freshman course I developed and taught. The
organization of the text was aimed in such a way that (1) materials were
presented in several levels of depth so that a beginner can quickly acquire a
basic skill, and (2) a subjective judgement was exercised in the relevancy of
materials to the intended readers, who will use the computer as a tool in their
fields but have no desire to become professional programmers.

The experience of using these materials, class notes and earlier editions
of the book, seems to bear out this rationale. So the Second Edition simply
updated the progress in the DEC-IO hardware and softwares. However, during the
past few years, there have been very significant changes in the computer
maturity of our student body in Engineering. High school instructions,
microcomputer projects, hobby electronics all have contributed to this. As a
result, the changes in the Third Edition involve a great deal more than just
updating the changes and progress in DEC-IO. Specifically:

(1) Three chapters in PIL and BASIC languages are deleted, and they are
replaced by chapters in Program Debugging, Modeling and Simulation, and Computer
Graphics. Only a summary of PIL is retained as an appendix in the Third
Edition.

(2) The book is now sharply directed to the goal of using the computer as
~ system. Therefore, although FORTRAN is the fW1damental prograrrnning language,
the book is not intended to be a programming manual. At the School of
Engineering, this book was used in a second course, after the students have
their initial instructions in the FORTRAN language.

(3) In using the computer as a system, the book aims to remedy the most
neglected and yet the most important phase of computer processing, namely, the
debugging of a program. Many people still consider that as an art, and cannot
be taught. The Third Edition makes a serious attempt on the s.tudy of program
debugging. An entire chapter is devoted to that subject.

(4) The chapter sequence is re-arranged so that the front. part of the
text would be appropriate as a text, and the latter part as a reference. In
addition, exercise problems have been added to help readers sharpen their
skills.

As in the last two editions, I am most indebted to my family. In spite
of their own busy professional and college schedules, my daughter Deborah and my
son Daniel fOW1d time to read the manuscr ipt and made both technical and
grammatical suggestions. My wife Frances, beside being understanding and
encouraging, took charge of style review and proof reading, and made suggestions
that increased the readability immeasurably. Students and colleagues, too
numerous to list, have been most helpful; their questions, suggestions and
ideas were indispensable. Finally, I wish to acknowledge the Computer Center at
the University of Pittsburgh for providing the facilities and environment that
made this book possible.

November 23, 1980
Pittsburgh, Pennsylvania

x

T. W. Sze

CHAPl'ER 1

INl'RODUCTION

1.1 Batch Processing versus Time-Sharing

Once upon a time, when a computer user wanted to run a program, he \\Quld
have to go through the following steps:

(1) The user submitted his program and data deck to the Computer Center.

(2) The decks of cards submitted by different users were stacked
together to form a batch, each deck with its proper identification.
All jobs in one batch were then executed in one "run", hence the
name "batch processing". The information on the punched cards in a
batch were first copied into a reel of magnetic tape by means of a
small and relatively inexpensive computer. The reason for this was
that the card-input to the main computer was a slow and therefore
expensive process.

(3) The magnetic tape so prepared became the input medium to the main
computer. At the scheduled time, the jobs in the batch were run and
the outputs (printouts, cards, tapes, etc.) were obtained.
SOmetimes the outputs were recorded on another reel of magnetic
tape~ then output printing may be done off-line so as not to slow
down .the computer operation.

(4) The outputs were returned to a designated place of the Computer
Center for the users to pick up.

During the execution of a job in one batch, such as to compile and
execute a FORl'RAN program, each job had the undivided service of the entire
computer, with all of its memory, input and output devices, supporting services
and library routines. When the next job entered the computer, that job in turn
received the total service of the computer for the duration of the job
execution, however brief.

Economics and efficiency considerations have led to the techniques of
multi-programming in batch processing, so that several programs may be executed
interleavingly when devices required for execution are not in demand at the same
time, or if a priority of queuing can be clearly established.

From the point of view of economy and machine efficiency, batch
processing indeed represents the best computer utilization because it can serve
a maximum of users within a given span of time. The prime consideration is then

1

2 CHAPl'ER 1 INl'RODUCTION

the efficient usage of computing resources, even if it is done at the expense of
efficient usage of user resources. Therefore, from the users' point of view,
batch processing has many limitations.

The time interval between submitting a card deck to the Computer Center
and retrieving the results, called the turn-around-time, may vary from several
minutes to several days. Such long intervals are most frustratin9 to a user
during the program preparation and debugging stages. A minor error of an
incorrect punctuation mark in a program can cause a delay of hours or days.
Once the grarranatical errors are removed, it still requires many sllccessive runs
to remove logical errors. These consecutive runs cannot be hastened because the
second run depends on the first, the third depends on the second, and so on.
That made the debugging stage the most tedious and frustrating part of the
program development.

Thus the early work in time-shar ing research was motivated by correcting
the tedious and frustrating process of debugging in the batch mode of operation.
The reasoning that led to time-shar ing was that the human responses and the
output device responses are very slow in comparison to the logic and computing
speeds of the computer; hence, it may be possible to switch the computer from
one user to another and still seem to maintain a continuity at each user's
station.

In the time-sharing mode of operation, a computer will service the jobs
entered at remote terminals by sequentially giving a short period of time,
called a time slice, to each job. Once that time slice is exhausted, that
particular job is returned to the end of the queue to wait for another turn. In
the meantime, a monitor program will perform the necessary ~)kkeeping and
housekeeping tasks so that when that job receives a time slice again from the
computer, the execution will pick up where it was left off.

From early 1960's when the time-sharing system concept was first
developed, this mode of oper ation for a computer became widely accepted as an
augmental mode of operation. However, before very long, it b.~ame quickly
apparent that the major benefit is not the reduction of prograrrane:r frustration,
but an entirely new dimension of problem-solving not possible before, utilizing
a high degree of interaction between man and machine as a team. The language
processors and programs may then be so designed that during the execution of a
program, not only can error messages be sent to the user to aid lhis debugging,
but also the user is able to modify his problem solving tactics and procedure as
he sees the partial results along the way. It is possible then to design
programs subject to modification by the user during execution time to adapt
themselves to the condition of the problem.

Figure 1.1 shows a typical time-shar ing computing system hardware
organization. The configuration consists of a computer located at the Computer
Center and the communication control, transmission and receiving equipment to
connect the computer with the users at the remote terminals. The
data line multiplexer and controller is used to control and direct the schedule
of time-sharing activities. At the user's terminals, each terminal is connected
to a data set or modem (modulator-demodulator) that converts the output signals
from the terminal into a form suitable for tran~ission by the communication
channel. The communication channels are usually commercial telephone networks,
although in many cases telegraph lines and microwave channels are also used.
The data set or modem at the receiving end re-converts the transmitted signals
back to a form suitable for processing by the computer circuits.

It is also of interest to note that the remoteness of remote terminals is
only limited by the quality and the economy of the communication equipment. At
the present level of communication technology, it is commercially practical for

Ii
Ii
II
II
II
Ii
II
II
II
IJ

II

II i DATA LINE

. CENTRAL!I I 'MUL T I PL EXER 'I

icard I reader +---...... ----; ill

til
:;3

co
o
........

PROCESS~ I i AND I
I I
I I I '

l.----.--t I i CONTROLLER I
I
I
I

II Memory
S stems i

I
~ I L ____ ----~-

Digital Computer
--------- - ---

Faci Iities at a Computer Center

modems I

I
~

communication
channels

Figure 1.1 A Typical Time-Sharing System Hardware Configuration

modems terminals

4 CHAPTER 1 INl'RODUCTION

a large, centralized computer to serve on demand users scattered over a wide
area over the world. Thus through the tilne-sharing use of computer, an entirely
new "utility" has emerged, just like electricity, gas, or water, to provide the
users with the computer services when independent ownership of these services
may be out of reach economically to these users.

1.2 Time-Sharing System at pitt

University of Pittsburgh is one of early pioneers in the development of
time-sharing computer system. Through a federal grant in 1965, the tilne-sharing
facilities for the University community were established, using an IBM 360/50
system. Much of the software supporting facilities was developed in the
subsequent years, resulting in a system then known collectively as the pitt
Time-Sharing System, or the PI'SS.

In 1971, the time-sharing
changed to a multiple PDP-l 0
system has been upgraded and
configuration is a dual DEC-1099
the system.

computer at the Pitt Computer Center was
system of Digital Equipment Corporation. This
expanded several tilnes, and the present
system. Figure 1.2 shows the configuration of

As in many silnilar environments, the current software system is a
combination of vendor-supplied software and self-developed facilities. The
readers are referred to the list of references at the end of this chapter for
details of language processors and other software subsystems.

The software system of the tilne-sharing system contains, in addition to
the language processors, a group of service routines. The most ilnportant one
for the tilne-sharing operation is the executive system, also called a ~rviso~
or a monitor. It is a master program which exercises an overall control on the
tilne-sharing activities. It performs the scheduling of users from the queue,
provides users with proper language processor and peripheral facilities as
requested by the users, keeps an account of charges, and provides a variety of
service functions.

Because of the control it exercises, the monitor is the highest-ranking
program in the software system. The monitor controlls and dispatches a group of
processors, collectively called the CUSP (~ommonly Qsed §ystem ~rograms), among
which are the language processors such as BASIC and FORTRAN. In turn, under the
control of each CUSP is a subgroup of routines for the execution and/or
interpreting of the instruction set of the CUSP. Thus the software system has a
distinct hierarchy structure, and this is shown in Figure 1.3.

There are several points regarding the software system structure worthy
of note:

(1) There are three levels of hierarchy: the monitor level, the CUSP
level, and the sub-CUSP level. The monitor level is the highest.

(2) It is a common practice in a tilne-sharing system for the computer to
supply a prompting symbol through the user's terminal to indicate that the
computer is ready to accept a command or input data. In the tilne-sharing system
of DEC-10 system, different hierarchies use different types of prompt symbols:

PITTS DECsystem 10's

SYSTEMS A & B
ALL ACADEMIC AND RESEARCH COMPUTING

8 NINE-TRACK MAGNETIC TAPE DRIVES
f-------j 1 SEVEN-TRACK MAGNETIC TAPE DRIVE ~-----1

(ACCESSIBLE FROM BOTH SYSTEMS)

22 DISK DRIVES WITH 6045 BILLION
BYTES OF RANDOM ACCESS STORAGE

(ACCESSIBLE FROM BOTH SYSTEMS)

Figure 1.2 Configuration of a DEC-I099 System at Pitt

(Each central processing unit is a PDP-IO CPU)

Reprinted by permission, Reference 6
Computer Center, University of Pittsburgh, Pittsburgh, Pa.

SYSTEM C
ALL ADMINISTRATIVE COMPUTING

CONFIGuRATION AS OF JANUARY 1941

111

6

.MON !TOR I eve I

Figure 1.3

Prompt
Symbols

* »

>
?

CHAPl'ER 1 INTRODUCTION

)Sub-CUSP level

* CUSP l'3vel

etc

etc

CUSP fommonly !:!.sed ~ystem ~rogralTls

A Typical Time-Shar ing Software System Organi:~ation

Explanations

A period

An asterisk
Double ">" signs

Greater-than sign
Question mark

Hierarchy Level

M:mi tor level

CUSP level

Sub-CUSP level

(3) When such a prompt symbol appears on the user's terminal, the
computer is ready for a command or information, and the user must type in a
command or data and terminate the typing with a carriage return. However, when

computer Service 7

a program contains a number of such command/input breakpoints, it becomes
difficult for the user to keep track exactly what command/input is expected at
each breakpoint. It is therefore necessary for the program to be designed so
that a statement of instruction or prompting message is printed on the terminal
at each breakpoint in order to guide the user. The following shows a typical
example: (user's typing in itaZics)

ENl'ER OPl'ION NUMBER BEUM:
>35).

NO SOCH OPl'ION, TRY AGAIN!
ENI'ER OPl'ION NUMBER BEUM:
>3 ~
Em'ER NUMBER OF VARIABLES:
>4).

Explanation

~
A prompting statement = ---- Convention ",cd ;n th;, book'

Text in itaZics = user's typing
) = carriage return
Other text = computer printout

Thus, the combination of the prompting statement, the prompting symbol and the
user's response constitutes a man-machine interaction, and is referred to as a
man-machine dialogue. Programs using extensive dialogues to guide the users are
called conversational programs.

(4) It is not possible to transfer directly from one CUSP-level language
processor to another without first returning to the monitor. This transfer can
be made conveniently by providing a special control key on the remote terminal
keyboard. See Section 1.6 for the function of various keys on the keyboard.

1. 3 Computer Service

The computing facilities in an academic institution are generally
provided to serve a combination of instruction, research and administration
functions. When the facilties are shared by different users for different
functions, it is necessary to establish rules and regulations so that the
resources may be most efficiently and equitably utilized. While it is outside
the scope of this book to enumerate these rules and regulations, it is important
for every user to be familiar with them. These include such matters as
application procedures, allocation of computing time and resources, restrictions
placed on the computing services, fiscal arrangements, ethical and legal
stipulations regarding secur ity, propr iety and relevance of work using the
computing resources, and policy on computer abuses.

Application procedures are generally defined by the Computer Center to
determine the eligibility and extent of computer usage of an applicant. The
application requires certain pertinent facts and the usual authorizing
signatures. Readers are referred to their respective Computer Centers for
current procedural details.

When an application is accepted, the applicant is assigned a pair of
identifying numbers:

[m , n 1

where m = a 6-digit (octal) project number, and
n = a 6-digit (octal) programmer (user) number.

The combination of these two numbers, referred to as the
numbers, is often abbreviated either as PPN or as P,PN.
usually enclosed in a pair of square brackets.

project-programmer
Note that a PPN is

8 CHAPI'ER 1 INTRODUCTION

1.4 Communication with the Computer

A remote terminal is used as an input or output device at t~e control of
the user. Generally, it is a typewriter-like device with a keyboard, a typing
or displaying element, and the interface between the user and the system. The
performance of the remote terminals depends to a large extent upon the
cornmunication 1 inkage between the terminals and the computer. Hence, some of
the basic concepts and terminology will be described here to aid the
understanding of a time-sharing terminal.

(1) Transmission line

Depending on the modes of information transmission, the transmission
lines, also called channels, are classified as simplex, half-duplex, and
full-duplex. A simplex channel can transmit information in one direction only.
A half-duplex channel can transmit information in either direction, but only in
one direction at a time. A full-duplex channel can transmit information in both
directions at the same time.

Depending on the physical connections, transmission lines may be
classified as dedicated, shared, hard-wired or dial-up lines. A dedicated line
or channel is one assigned for the exclusive use of the terminal. A shared line
is one assigned to the use of several terminals. A hard-wired line connects
physically from the terminal to the system. A dial-up line is ,i shared line
using the commercial dial telephone network for connection.

(2) Information code

Information to be transferred externally between a tE?rminal and a
computer on the transmission line is represented by character sets consisting of
alphabetic characters, both upper and lower cases, numeric characters,
punctuation marks and special characters. In addition, signals representing
control action of transmission and processing are coded into "control
characters". These information characters and control charactel:s may be coded
into a series of binary digits (called bits) so that infoanation may be
transmitted and processed by the computer and the terminals. Several systems of
codes are in use. The code format used in most U.S.-made non--IBM machines,
including the systems at Pitt, is the ASCII* code, which encodes 128 characters
into 7 binary digits. Table 1.1 shows the ASCII code assignment of characters,
where the code assignments are given in octal numbers. For ex~nple, the upper
case letter "A" is coded as octal 101, or actually as 7-bi t binary
representation of 1000001.

Note that the char acter set shown in Table 1.1 is the ASCII
information-character set, which is a subset of the complete ~:II code of 128
characters. The 32 characters not shown in Table 1.1 are all control
characters. With ASCII code, the words PITT and pitt are then transmitted
respectively as:

lUlOOOOO 1001001 1010100 1010100
10100000 1101001 1110100 1110100

(PITT)
(Pitt)

*Acronym for American Standard Code for Information lnterchange, usually
pronunced as "AS-KEY".

Remote Terminal s

ASC II
Character 7-Bit

Space 040
I 041
" 042
#: 043
$ 044
% 045
& 046

047

050
051

* 052
+ 053

054
055
056

/ 057

o 060
1 061
2 062
3 063
4 064
5 065
6 066
7 067

8 070
9 071

072
073
074
075

t 076
1 077

ASCII
Character 7-Blt

@ 100
A 101
B 102
C 103
D 104
E 105
F 106
G 107

H 110
I 111
J 112
K 113
L 114
M 115
N 116
o 117

P 120
Q 121
R 122
S 123
T 124
U 125
V 126
W 127

X 130
Y 131
Z 132
[133
\ 134
] 135
+ 136

137

ASCII
Character 7-Blt

140
a 141
b 142
c 143
d 144
e 145
f 146
g 147

h 150
I 151
J 152
k 153
I 154
m 155
n 156
o 157

P 160
q 161
r 162
s 163
t 164

165
v 166
w 167

x 170
Y 171
z 172
{ 173
I 174
} 175
rv 176

Delete 177

The code assignments of octal numbers from 000 to 037
are for control characters, and are normally of no concern
to an average user. However, certain control characters
pertain to printer control, and It wi I I be useful to know
their code assignments. These are:

Line Feed
Vertical Tab

012 Form Feed 014
013 Carriage Return 015
Horizontal Tab 021

Table 1.1 ASCI I Character Set
AI I numbers in octal codes.

9

10 CHAPI'ER 1 INl'ROQUCTION

In an actual transmission, each ASCII-coded character is packed together
with additional bits that perform functions of synchronization (START and STOP
of each character), error-checking (parity bit), and filler or dummy bit (to
allow slower mechanical components to catch up with electrical and electronic
components). The result is either an II-bit group (for low-speed transmission)
or a 10-bit group (for higher speed transmission) for each character
transmitted.

Not all computers made in U.S. use the ASCII code. The IBM computers,
such as System/360 and System/370 machines use a code system called EBCDIC
(Extended Binary Coded Decimal Interchange Code) to adapt to its byte-structure
(I byte=8- bits): Hence, output media,- such as magnetic tapes, are not
compatible between ASCII-code machines and EBCDIC-coded machines ~lithout first
going through a code conversion process. Because of wide-spread use of both
code systems, such a code conversion routine is a part of standard service
routines available at the Computer Center. For the same reason, a remote
terminal wired to accept the EBCDIC code cannot be used in the DEC-IO system
unless it is re-wired or it has a switchable option of code selection.

While the ASCII code has been adopted as the American standard for
peripheral communication, it has shortcomings in certain particular
applications. For example, the internal representation of a FO~~ variable
would be very awkward in a machine such as the DEC-10 with a 36-bit memory word
format. Since the standard FORTRAN defines a variable name to contain one to
six characters, an ASCII-coded six-character FORTRAN variable name will require
42 bits or 2 memory words for its storage, a rather inefficient us"ge. As seen
in the Table 1.1, if we forego the difference between the upper and the lower
cases of alphabetic characters, we can omit the right-hand column in that table.
This v.ould reduce the character set to only 64 characters. Since each of the
64-character set may be uniquely defined by a coding scheme of six binary
digits, this results in a Sixbit Code. With each character code only six bits
long, a six-character FORTRAN variable name can now fit snugly into a single
36-bit v.ord. In this coding system, any lower case alphabetic character, when
encountered, will be automatically coded as its upper case equivalent. The code
assignment of each char acter in the Sixbi t Code will not be tabulated here, but
will be given later in Chapter 3 (FORTRAN-10) where its reference will be more
relevant. The derivation of the Sixbit Code of a character from the 7-bit ASCII
code may be obtained simply by dropping the second bit (counting from the left) •
For example, the letLter "A" is coded as 1000001 in ASCII code, and is 100001 in
Sixbit. Alternately, the Sixbit Code can be "computed" from the ASCII code by
either of the following algorithm:

(SIXBIT)
(SIXBIT)

(ASCII) - 040
(ASCII) + 040

in octal arithmetic
in octal arithmetic

and then retain the two least significant octal digits.

Thus, the letter "A" is coded as octal 101 in ASCII, and as octal 41 in
Sixbit.

DECwriter 11

(3) Speed of transmission

The spe~ of transmission of the signal is measured by the rate of
tr ansmission J.n signals per second, expressed in bauds*. In binary
transmission, each signal contain~ one bit of information, and consequently the
speed of signal transmission is numerically the same as the speed of information
transmission. Thus a 300-baud line will transmit information at a rate of 300
bits/second. However, in polyphase modulation, each of the four predetermined
phase-shifts represents two bits of information, and a 300-baud line will
transmit information at a rate of 600 bits/second. Capability of commercial
transmission services, such as telephone or telegraph lines, ranges from 100 to
several hundred thousand bauds. The maximum capability of a "voice grade"
dial-Up telephone line is about 2000 bauds.

In a time-sharing system, information transfer may be initiated or
terminated at the terminal. The ASCII coded 7-bit signals arriving at or
departing from a terminal are packed with additional bits to perform functions
of synchronization and parity error checking. The result is an ll-bit group for
each ASCII character for 110-baud transmission, or a 10-bit group for 150 or 300
baud rate transmission. These transmission speeds are used to match the
terminal output speed of 10, 15 or 30 characters/second respectively.

Since the remote terminals generate and receive information at relatively
low speed, the capability of the transmission line is hardly taxed.
Consequently, various line-sharing techniques are available, one of which
involves the use of a concentrator. A concentrator is usually a minicomputer
which collects information from several terminals in the area at a low speed,
and then packs them and re-transmits. In the reversed direction, a concentrator
receives information and distributes them to different terminals.

1.5 Description of a Remote Terminal, the DEC LA36 DECwriter

For several decades, the most commonly used communication terminals have
been the Automatic Send-Receive Teletypewriter Set (ASR), model 33, 35 or 38.
These are called ASR33-; ASR35, and ASR38, and in most cases, simply Teletype .
In fact, the standard abbreviation for terminal-like device in a computing
system has been uniformly taken as TTY.

Rapid recent advances in technology have produced new generations of
remote terminals. Relay circuits were replaced by transistorized circuits,
which in turn are being replaced by microprocessors or microprogrammed
controller s with semiconductor memory. Mechanical components are improved so
that they are lighter and move faster. Clunsy typing heads with embossed
characters are replaced with matrix wire impact printing, thermal or
electrostatic non-impact printing. While the technological advances have made
new generations of terminals lighter, faster, less expensive and more reliable,
the basic operating principles procedures remain essentially unchanged, thanks
to the tremendous steadying effect of Teletypes as the industry workhorse over
the last three to four decades. It is therefore possible in the present
discussion of remote terminals to deal specifically with one particular terminal
and still retain generality of our discussion. It also means that although this
presentation pertains to only one model of terminal, extension of the discussion

*Named after the French inventor of the telegraph code, Jean-Maurice-Emile
Baudot, 1845-1903

~ Registered trade mark, TELETYPE Corporation, Skokie, Illinois.

12 CHAPI'ER 1 INl'RODUCTION

to another make or model would
concentrate on one particular
subsequent discussion.

be no problem.
terminal, the

This is why we will now
DEC I.A36 DECwriter, for the

A remote terminal contains generally four major parts. '!'hey are the
keyboard unit, the printer unit, the print control unit, and the call control
unit. A simplified block diagram, with the important components within each
part, is shown in Figure 1.4. The arrows in the diagram show the direction of
signal flow and/or control when the terminal is connected to a computer. Its
operation can be described briefly in this manner:

When the user str ikes a key on the keyboard, say the upper case "A", the
keyboard electronics encodes it into the ASCII code of sigrial 1000001. These
electric signals are sent to the transmitter unit, in which additional
start-bit, stop-bit, parity-bit and filler-bit (if needed) are added. The
communication electronics in the transmitter transform these signals into
modulated audio tones, which are transmitted serially through the interface to
the computer over a transmission line. At the computer end, a buffer (or
temporary) memory accepts the character after checking over any transmission
error, repacks the character with start-, stop-, parity- and filler-bits, and
re-transmits back to the terminal. When it reaches the terminal, the receiver
demodulates t~signars- by removing the audio carrier, checks for any
transmission error, and deposits the 7-bit ASCII code of "A" in the buffer
memory.

When the printer unit is ready to accept a
character, controlled by the printer control unit,
the ASCII code inputs are sent to the character
generator :roM (Read Only Memory, at semiconductor
memory chip) which produces seven one-or-zero
signals simultaneously 7 consecutive times. Each
7-signal group, after amplification, selectively
actuates by solenoids vertically arranged wires to
strike an inked ribbon, leaving a vertical column of
selectively placed dots in that column.

This is repeated seven times, each time with the print head moving
slightly to the right, and each time producing a different vertical pattern.
The result is shown here. This is called a 7x7 dot matrix print.

It is interesting to note that the signals generated at the keyboard take
a circuitous route before finally printed on the terminal printer. In fact,
what is pr inted is actually what the computer thought the user has typed. This
is a clever way of involving the user as a part of error-checking system, and is
a standard feature in time-shar ing system called echo pr int.

The individual parts of the DECwriter will now be described next:

(1) Print unit

The print unit is the receiving component of the terminal. It consists
of seven vertically arranged print wires actuated by seven solenoids, which in
turn are controlled by the' char acter generator ROM as explained before. Other
useful information about the print unit are as follows:

DECwriter

Figure 1.4

From
Computer

To
Computer

Keyboard
Uni t

Block Di~r~ of a Typical Remote Terminal

~OJrn[1][]rnmlTIIT1[]][IlQfI][g~E]

III\~ 1~~[!J~[2J[2J~QJ~~rnw~8

8[g 00000000ITlCJ~rnIRCTU~1

I SHIFT 1000.~0GG[3JCJrn B a
I I

Figure 1.5 Standard ANSI Keyboard Layout

l3

14

Paper size:
Print field:
prin t spacing:

Print characters:

Print speeds:

(2) Print control unit

CHAPI'ER 1

3" mmlffium, 14" maximum width
132 characters maximum
10 character/inch horizontal,
6 lines/inch vertical spacings
96 upper/lower case ASCII

INTRODUCTION

7x7 dot matrix (0.07xO.10 inch)
switch selectable at 10, 15 or 30
characters/second with 60 char/sec
catch-up mode*

The print control unit contains a buffer memory that accepts ASCII
character codes received and a control logic unit which is a microprogrammed
controller. Under the control of the microprogram, characters in the buffer are
presented to the character generator on a first-in/first-out basis. The
microprogram activates the carriage servo system and the print head system to
control the mechanical movements. It also detects signals and actuates
mechanisms such as line feed to advance the paper, ring ing the bell for an
error, etc.

(3) Call control unit

The call control unit consists of an asynchronous receiver-transmitter
and a cormnunication interface. It initiates, accepts, controls and completes
the incoming and outgoing transmission of information.

(4) Keyboard

The keyboard is the information-sending component of the terminal. The
mechanical linkages and electrical contacts translate the key action into a
group of electrical signals. The arrangement of keys on the keyboard resembles
that of a conventional typewriter with additional special features. These are
discussed in a later section in this chapter.

Those terminals called ASR's (Automatic Send-Receive Sets) contain, in
addition to the four units mentioned above, one of the following auxiliary
input/output units: paper tape reader/punch, or tape cassette player/recorder,
or floppy disk with read/write electronics. These serve as storage media for
the terminal.

There are several switches placed adjacent to the keyboard which allow a
user to power-up, select the transmission rate, and choose on-line or local
oper ation. In local oper ation, a terminal will function as a typewr iter,
allowing a user to add information to the printout. It also permits maintenance
work and testing of a terminal without disturbing the computer. For ASR-type
terminal with either paper tape, digital cassette or floppy disk, the LOCAL
position permits the ASR to be used as an off-line input/output device for such
task as preparing, editing, reproducing and printing paper tapes, cassette
tapes, or floppy disks.

*While the time-consuming action of carriage return, tab or line feed is taking
place, characters received are stored in the buffer. When mechanical action is
finished, characters in the buffer will empty into the printer unit at 60
char/sec catch-up speed.

Keyboard 15

1.6 The Keyboard

The keyboard arrangement of the DECwriter follows the ANSI (American
National Standard Institute) standard. It has a format very similar to the
conventional typewriter. Figure 1.5 shows a keyboard of the DECwriter.

(1) Alphabetic characters

Key positions of alphabetic characters are identical to those on a
conventional typewriter. Both upper and lower cases are available. However,
transmission of alphabetic characters are generally done in upper cases, unless
specifically commanded to transmit as lower cases. Thus, pressing an alphabetic
key without the shift key will transmit and print an upper case letter.

(2) Numeric and special characters

The character set on the DECwriter keyboard consists of the following:

Alphabetic : ABC D E F G H I J K L M
NOPQRSTUVWXYZ

Numeric:

Special:

(3) Control keys

o 1 2 3 4 5 6 789

+_*/()=" $% I@\
.,;:?[]<>{} - I

(The underscore symbol_ is replaced with the left
arrow symbol ~- on certain keyboards.)

Certain special keys perform control functions:

a. LINE FEED This key will cause the terminal paper to
advance one line. When the terminal is operated on IDCAL, the
carriage return does not automatically advance the paper, and the
LINE FEED key must be pressed to do it.

b. RETURN This key will return the print head and
carriage. When the terminal is on line, returning the carriage
return signifies the end of a unit of information, for example, an
instruction to the computer. The computer will automatically
respond with a line-feed control signal to advance the paper.

c. DELETE This key permits the correction of typing
errors on a line if the carriage has not yet been returned. This
key is marked as RUBOur on some older keyboards. When the DELETE
key is pressed successively for n number of times, the last n
characters typed (including spaces) will be deleted. As a signal to
the user which characters are being deleted, the terminal will print
out the deleted character each time the DELETE key is pressed.
Also, before the first deleted character and after the last deleted
char ac ter, a bac k sl ash "\" is pr in ted. Thus the pair of bac k
slashes serves as delimiters bracketing the string of deleted
characters.

16 CHAPrER 1 INTRODUCTION

For example, if the following has been typed on the terminal:

FOUR SCORE AND SEVIN YE

1
Carriage p:>sition when mis-spelling

in SEVIN is discoverd.

In order to delete the five character "IN YE", five successive
DELETEs are required. Notice that a space or blank is also
considered a character. To correct the typing, the user will DELETE
five times and then retype the corrections. Q1. the printout at the
terminal, it will appear like this:

OUR FATHERS ••.

resume typing

As shown in the example, a pair of back slashes brackets the deleted
characters printed in the order of deletion (from right to left) .

d. REPEAT This key, when operated together with another
char acter key, will cause a repetition of that character to be
printed (for LOCAL operation) , or a repetion of that character to be
transmitted and echo-printed (for on-line operation). For example,
when the REPEAT and K keys are pressed down together, a string of
K's will be sent and printed as long as both keys are held down.

e. SHIFT, SHIFT lOCK These keys have identical functions as those on
a conventional typewriter, and will cause the upper case character
marked on the key to be printed or transmitted.

f. ESC This key, appear ing on older keyboards as an
AIMODE key, directs the computer to treat the next received
character as a command. The precise meaning of the ESC-character
combination is defined by the software system enploying this
function.

g. BACK SPACE Depending on the software processor used at the
tlffie, the back space key either makes the last characber sent to the
computer available for deletion or correction, or makes it possible
to overprint with a different character such as underscoring a
certain text string.

h. TAB This key will direct the computer to advance
the pr int head to the next tab stop.

i. BREAK Used for half-duplex transmission mode to
mterrupt reception of data from the computer. Ignored in ordinary
full-duplex mode.

Control Characters 17

(4) Control characters

The key CTRL, when used together with an alphabetic character key,
generates a code combination for control purposes. Such a combination of CTRL
and alphabetic keys does not have any pr inting function, and therefore the
computer will return an echo signal printed out on the user's terminal to inform
him of the nature of the control function. The echo print has a format of "~,,
(a circumflex) or "i" (an up arrow) followed by the character used, such as ~C
or Tc. These control characters will appear in this book frequently, and they
will be referred to in several ways. For example, the control character C will
be referred to as:

or,

CONl'ROL-C
CTRL-C
~C (or, +C)

Although there are 26 control characters, a beginning user need only be familiar
with a few of them, and they are ~C, ~O, ~U, ~I, ~L, and ~R. Several other
control characters, such as ~S and ~Q, will be explained at appropriate places
where they are used.

a. CTRL-C (~C) The ~C key interrupts the program and returns
the control to the system monitor. If a program execution is in
progress, apply ~C twice or more to interrupt it. The first ~C
stops the execution of the program, and the second one (and the
succeeding ones) returns control to the system monitor. When the
system monitor obtains the control, a prompt symbol (a period) is
printed on the terminal, and the system awaits for a monitor
command.

b. CTRL-0 (~O) The ~O key suppresses the terminal output
without interrupting the execution of a program. For example, when
debugging a program, if you only want to see whether a program
execution reaches the end, you can suppress all or specific parts of
the put in order to avoid time-consuming printing of the results.
Thus any time when output begins to appear, applying CTRL-0 will
suppress the remaining portion of that output.

c. CTRL-U ("U) The ~U key, applied at the end of one line of
typing, will instruct the computer to ignore the entire line and
therefore to perform the function of deleting that line. The system
will respond with a carriage return and a linefeed, but no prompt
symbol.

d. ~(I) Terminal will tab to a pre-set column.

e. CTRL-R (R) Terminal will re-type the current line.

f. CTRL-L (~L) This control character tells the computer to
crlvance the paper to a new page. On a DECwriter terminal, it will
crlvance the paper only 8 lines.

The keys for these functions are summarized in Table 1.2.

18

Special Key

LINE FEED

RETURN

DELETE (or RUBOUTl

REPEAT

CTRL-C

CTRL-O

CTRL-U

CTRL-I

CTRL-R

CTRL-L

Echo Print
I f any

IX

"C

"0

AU

CHAP1'ER 1 INTRQDOCTION

Function

Move paper up one line.

Return the carriage.

Delete character Immediately before.

Repeat a character or a function.

Return to monitor mode.

Suppress current terminal output.

Ignore the current line Input.

Tab to a preset column.

Retype the current line.

Advance paper on terminal 8 lines.

Table 1. 2 Function of Selected Special Keys

1. 7 Other Types of Remote Terminals

The DECwriter terminal as described in the previous section is a
keyboard printer terminal. The majority of remote terminals used in a
time-sharing system are of this type. A var iation of this. type is the portable
terminal, which incorporates in a single carrying case an acoustic coupler (for
connecting the terminal to the computer by a telephone set), a keyboard, a
printer and associated electronics. one ingenious product includes an acoustic
coupler, a keyboard, and associated electronics, but no printer. It makes use
of a conventional television set, and when combined, it becomes a time-sharing
terminal.

As a result of rapid crlvances in MOS/LSI (metal oxide semiconductor and
large-scale integrated circuits) technology, the size, weiqht and cost of
electronic components and systems have been greatly reduced. These advances
have caused rapid developement of other types of terminals, and they are briefly
discussued next:

(1) Cathode ray tube (CRT) terminal

The convenience of a keyboard operating terminal is greatly enhanced if
we use a cathode ray tube (CRT) terminal for the purpose of communication with
the computer, preparation of programs and debugging. This is particularly
useful if the user has an alternate means of producing hard copy as records.

Other Types of Terminals 19

A typical CRT terminal, also called a scope terminal, displays a subset
of ASCII characters (such as upper
cases of alphabet plus symbols) •
The display unit is similar to
that used in an oscilloscope or
television set. Other than the
display unit and its control
memory, it has the same
organization as a keyboard printer
terminal. Figure 1. 6 shows a
block diagram of a typical CRT
terminal. If we compare this with
Figure 1.4, we can see the obvious
resemblance.

From
COr.1puter

CRT
Unit

Figure 1.6

To
Computer

Block diagram of
CRT Terminal

The CRT produces an image
by directing an electron beam
against a phosphor-coated screen
which emits light when struck by
electrons. The control on the
beam intensity can turn the beam
completely off, thus allowing no

Keyboard electrons to strike the screen, a
lin it process called blanking.

positioning the beam in a CRT
terminal is usually done by the
raster scan method. The beam is
first positioned at the upper left

A

corner of the screen; it then
moves across the tube face,
producing a straight line. The
beam is blanked while returning to
the left at a level one line
lower. The blanking is turned

off, and a second line is traced. This is the same method used in a co~~ercial
television set that scans 525 lines/frame and at a rate of 1/30 second per
frame. Forming characters on screen is very similar to the dot matrix print of
a keyboard printer terminal. The scan scheme will position the rectangular area
within which the character is displayed. 'l'he character, through. a character
generator RJM (read-only-memory), formulates a 5x7 dot matrix, with dots
emitting light when the electron beam strikes the tube phosphor. Typically, the
light-emitting period is very brief, ranging from microsecond to millisecond
range. Therefore, a CRT using the scan method requires a refre~.l.!.1n§~ that
stores the display and re-display at a refresh rate large enough to provide a
constant intensity image and to eliminate flicker in the image.

Most CRT terminals are also teletype-compatible, and they are often
interchangeable with keyboard printer type terminals. with no carriage, a CRT
terminal is provided with a cursor, which may blink on and off to indicate the
current position of the beam-.-The associated cursor control enables the user to
move the cursor up, down, left or right, or to erase the screen. Unlike the
teletype, data rolling off the top of a CRT screen are lost to th2 user. The
operations of a CRT terminal and a keyboard printer terminal are very similar.
A person familiar with the operation of a keyboard printer terminal should have
no problem with CRT terminal operation.

This is a terminal which maintains the capability of displaying not only
characters, but also arbitrary figures. All of the man-machine interaction

20 CHAPI'ER I INI'RODOCTION

previously described are retained, and the interaction is expanderl to include
the clarity of graphics.

When a graphics terminal displays characters, it emulates a CRT terminal,
and outwardly it operates just like a CRT terminal. When a graphics terminal
operates in the graphics mode, it provides both control of beam position and
blanking. In the position control, the beam is deflected from a current
position to another. If the blanking is on, only two end points are shown on
the screen. If the blanking is off and if the terminal is equipped with a
"linear interpolation vector generator," the electron beam will trace a straight
line. Repeated programmed positionings of the beam, with blanking on or off as
required, will produce a line drawing.

Graphics terminals normally utilize a cathode ray tube display, but some
low cost units use a storage tube to retain the data which does not require a
refresh memory. The disadvantage of the storage graphics display is that
dynamic display am removing graphic information are not rx)ssible: any
subtractive change of displayed data requires first an erasure of the entire
image, and then a reconstruction of a new image, an event that will take at
least half a secom. Thus a storage tube may display at a maximum rate of about
2 frames per second, not a satisfactory speed to depict motion.. On the other
hand, graphics terminal using refresh memory imposes a heavy burden of memory
and software support for its image generation and constant refresh. The heavy
requirements of memory am software usually call for a minicomputer to provide
the support.

(3) Intelligent terminal

For years, manufacturers have been offering terminal syst~ns with fixed
functional capability. For example, a terminal designed to be compatible with
the IBM systems, which use a different character coding system (EBCDIC Code), is
not compatible to a system using the ASCII code unless extensive re-wiring is
done.

The rapid recent advances in MOS/rBI technology have now made it possible
to incorporate microprocessors and memories, which greatly expand the
flexibility am capability of a terminal. Instead of a simple function of
transmitting and receiving data or programs, a terminal may now have additional
processing power. Acquiring such additional processing po~=r within the
terminal is referred to as "making the terminal more intelligent", and therefore
the name "intelligent terminal." Quite predictably, a te.rminal without
additional built-in intelligence is called a "dumb terminal."

Intelligence in a terminal may take on many forms. It ranges from the
simple ability of changing operating characteristics of the terminal to the
power of a full-scale microcomputer. Intelligent terminals therefore are able
to emulate many different communication line procedures and codes, so that a
terminal may be coded to adjust to an existing line protocol and procedure. For
many other var ious functions, the terminal may be tailored to sui t the need of
the particular user or industry segment by providing specific software for the
intelligent terminal. For example, an editing program may be installed in the
intelligent terminal so that the terminal becomes a word-processing machine.
Word-processing tasks may then be carried out without loading down the central
computer. Another example is an intelligent graphics terminal where the
graphics are processed by a built-in graphic processor in the terminal. Again,
in this way, the central computer will not be loaded down with detailed chores.

The main disadvantage of an intelligent terminal, at the time when the
third edition of this book is being prepared, is its cost, alth~ugh the gap is
rapidly narrowing. In applications where only simple functions are required,

To Sign On 21

dumb terminals are more cost effective. In time, the difference in cost will
become insignificant, and the intelligence of the intelligent terminal will be
greatly expanded. The experiences of the hand calculator industry can very well
be repeated in the remote terminal industry within the next decade. At the
present time, the applications have been limited to such areas as point-of-sale
credit authorization, bank teller systems, stock brokerages, airline reservation
systems, hospital admissions, etc., where distributed data processing is highly
desirable.

1.8 Sign-on at the Remote Terminal

Once a user has a valid pair of ID numbers (the PPN) and has a valid
password, he may now sign on at any remote terminal by following the procedure
outlined below:

Hard-Wired Units

(1) Turn on switches. Press C if
there is no prompt symbol ".".
After the prompt"." appears,
type "I" (for INITIATE) and
the following lines will be
typed out on the terminal:

Dial-Up Units

(1) Turn on switches and dial the
computer number.* If the line
is busy, there is a usugl busy
signal. When the call gets
through, a high-pitch tone can
be heard. Place the phone set
on the seat of the acoustic
coupler. Wait until the READY
or CARRIER light comes on,
type C, and the following two
lines will be typed out on the
terminal:

PITT DEC-I099/A 63A.41B 15:36:41 TTY43 system 1237/1240
PLEASE LOGIN OR ATTACH

where "1099/A" indicates System A, "63A.41B" the monitor version, "15:36:41" the
time of the day in 24-hour clock, "TTY43" the line number assigned. If "1099/B"
appears instead of "1099/A", it means the user is in touch with System B. If
the user finds himself in a wrong system, he requests a change by typing:

~~~~~~~_-' or L~~~~~~~£J 
after the prompt symbol. 

(2) Type the monitor command after the prompt symbol: 

or E--------------a-LOGIN m,n ) 
--- .------ - ----._--"--

LOGIN m/n ) 
~---------.---- -.. ---

where m = project number, 
) = carriage return. 

n = programmer number, 

The difference between "m,n" and "m/n" in the two monitor commands is that the 
latter form will suppress the message of the day from the Computer Center when 
the sign-on procedure is completed. It is possible that you have seen the 
message several times already, and may not care to read it another time. 

*For University of Pittsburgh users, dial (412) 621-5954. 



22 CHAPI'ER 1 INl'RODUCTION 

The carriage return is a standard control signal to i~jicate to the 
computer the termination of a line, a command or a message. To avoid cluttering 
the text and to relieve the typing problem, the carriage return symbol" "will 
be used only in Chapter 1. For the remainder of the book, the readers should 
assume that there is always a carriage return at the end of every line. 

(3) Enter the password when requested. The password will be entered in a 
non-print mode, and the typed password will not appear on the terminal. This is 
to maintain the security of the password. 

If the entered password is an incorrect or invalid one, the system will 
respond with an error message and a request for the PPN. After supplying the 
PPN again, another password request will be made by the computer. The user has 
five chances to sign on correctly. After that number of unsuccessful trials, 
the job is killed, and the user must restart the entire procedure to sign on. 

If the password is found to be valid, the system will respond with 
information on the status of the project, the last sign-on time and date, the 
time of day, and the "message of the day" fran the Computer Center. The last 
item may be suppressed if the user uses the LOGIN command with the min 
specification. 

After all preliminary reports are finished, a prompt symbol is 
printed on a new line, and the computer pauses and waits for input. The user is 
now connected to the computer at the monitor levef, and the sign-on procedure is 
completed. 

The following two cases are examples of sign-on. Explanatory remarks are 
also given along with the remote terminal printout. As used throughout this 
book, those lines entered by the users will be in itaUcs : 

Pr intout on Terminal Remarks 

.INITIATE) INITIATE command 

PITT IEC-I099/A 63A.41B 16:19:17 TTY43 system 1237/1240 Computer"s response 
.TTY SYSTEH B ) Request System B 
PITT IEC-I099/B 63A.41B 16:19:50 TTY43 system 1237/1240 
.LOGIN 115103,320571 ) Sign-On command 
JOB 35 PITT DEC-I099/B 63A.431B TTY43 Wed 7-May-80 1619 
Password: (Your password) ) Supply password 
Last login: 7-May-80 1617 
Usage ratio: 22.13 Units used: 33.5 Password val i'd 
SYS B IXmN 0000-0800 MOO MAY 12 FOR REGUIAR HARI:WARE MAINl'ENAOCE 
SYS B OOWN 0000-0300 TUE MAY 13 FOR REGUIAR SOF'lWARE MAINl'ENAOCE 

DUE 'ID HARIMARE PROBLEMS THE ARRAY PROCESSOR WILL BE 
TEMroRARILY OFF LINE UNl'IL FURTHER NOTICE 

.LOGIN 115103/320571 ) 
JOB 23 PITT DEC-I099/B 63A.41B TTY43 Wed 7-May-80 1815 
Password: (Your password) ) 
Last login: 7-May-80 1619 
Usage ratio: 22.13 Units Used: 33.5 

Message of the day 

System ready! 

Sign-On command 

Supply valid 
password 

System ready! 



Pass\'X)rd 23 

1.9 Pass\'X)rd 

To sign on the" DEC-10 system, the required identifications are a valid 
PPN and the associated pass\'X)rd. Security of PPNs is impossible because they 
are publicly displayed in many places - in DDGIN printout, in the file 
directory, in printout identification, etc. Thus the only real safeguard and 
security of a computer account is the pass\'X)rd. 

The need for protection against unauthorized use of your account by 
another person goes beyond accounting reasons. There have been numerous 
incidents of computer vandali5ll in the past. The most frequent vandali5ll was 
change or erasure of programs or data without the owner's knowledge. 

The only protection against such unauthorized use is to install a 
pass\'X)rd, to keep its security, and to change it frequently. As a matter of 
prudence and necessity, the user should change his pass\'X)rd regularly as a 
standard practice and whenever he suspects the pass\'X)rd is no longer secure. 

Changing a pass\'X)rd at a terminal can only be done at the DDGIN time by 
using either of the following DDGIN format: 

or, E
~---~ ---- ~ DDGIN m,n/PASSWORD 

~~N.---~/tV~~~;;;--
- -'-"-"-"---'-~--

where "m" and "n" are the PPN. The following shows a sign-on session with a 
pass\'X)rd change. Since the process is interactive, the explanation should be 
self-evident: 

.LOGIN 115103/3205?1/password ) 

JOB 16 PITT DEC-1099/B 63A.41B TTY43 Wed 9-May-80 2003 
Pass\'X)rd: (Enter old password) ). 
New Pass\'X)rd: (Enter new password) ) 

Retype for verification 

New Pass\'X)rd: (Enter new password again) ) 
Last pass\'X)rd update: 24-Apr-80 1255 
Last login: 22-Apr-80 1642 
Usage ratio: 0.84 Units used: 33.1 

1.10 Disk Storage Quota 

One of the special features of a time-sharing computing system, as 
compared with a computer for batch processing applications only, is its very 
large capacity for on-line mass storage, such as the disk storage. It is a 
common practice to assign and allocate a part of that mass storage for users to 
store their programs, data or other files. These storage spaces are measured in 
"disk blocks", or simply "blocks". In DEC-10 system, each block contains 128 
data \'X)rds in DEC-10 format. Therefore, each block can hold a maximum of 640 
characters, an equivalent of 8 fully punched cards. 



24 CHAPI'ER 1 INTRODUCTION 

Each authorized user is assigned a quota of disk space in blocks called 
logout quota, in which he may store his files permanently. These files will not 
be removed from the stor~e unless anyone of the following situation occurs: 
(1) when a file is deleted by the user himself, (2) when a file is inactive and 
not accessed for more than a prescribed period (for example, a month), or (3) 
when the project has been cancelled or terminated. 

When a user is DOGINed and on-line, the actual disk space assigned to him 
is five times the logout quota. The extra storage is assigned for storing 
temporary data, non-permanent program or data files needed for the execution of 
the user's \'tUr k while he is on line. Thi s on-line quota of disk space is called 
the login quota. The actual number of blocks assigned as the login quota 
depends on the logout quota and the available system capacity at the time. 

After a user has DOGINed, he may enjoy the larger login quota for his 
on-line \'tUrk. When he is ready to sign-off, he must make sure that his disk 
usage is under the logout quota, otherwise all efforts of signing off \'tUuld 
fail, or else the computer will delete the stored files according to a 
predetermined order of priority until the logout quota requirement is met. In 
the latter case, the computer may very well delete some important files. 

The monitor commands for managing the files are discussed in Chapter 8. 
However, several commands that are necessary in managing the quota will be 
briefly discussed here. For more details of these commands, the readers are 
referred to Chapter 8. 

The monitor command R QUOLST is used to inquire about the current status 
of the disk quota (login, logout, and system status). An example follows. 
Again, lines in italics are typed by the user: 

.R QUOLST ). 

User: 115103,32057l --------
Str used left: (in) (out) (sys) 
USRB: 180 120 -120 182616 

TireSharing ore ClaJs, 0 ~ '--
Ba ch Core ass: 0 I ---

luser's core classes----

Storage device specification 

ExplanC\~i~!1 ____ _ 

User's PPN 

Disk Status: 
System status 
Logout quota status 
Login quota status 
Disk block used 

In this example, the user has a logout quota of 60 blocks and a login 
quota of 300 blocks. At the time of this inquiry, he has used up 180 blocks. 
Therefore, the above printout indicates that he is still 120 blocks under the 
login quota, but he is 120 blocks above the logout quota. Should he wish to 
sign off at this time, he must first delete his files for at least a total of 
120 blocks. So, at this point it is important to him to know how to find out 
what he has in the storage and how he can selectively delete them. Two other 
monitor commands useful for quota management are: 

and ~-·-·~-d·-·-·-·-DIRECT ;; 

DIRECT~ame.ext ; 

When the command DIRECT (for "directory") is given, the terminal will 
print out a list of user's files in the disk storage, along with their names, 



To Sign Off 25 

extensions, file sizes in blocks and other pertinent information. The total 
amount of storage occupied is printed out at the end of the list. A sample 
result of this command is shown below: 

• DIRECT 

TEST OAT 60 <057> l8-MAY-79 USRB: [115103,320571] 
SAMPLE FOR 48 <157> 19-MAY-79 
SAMPLE REL 36 <057> 22-MAY-79 
TEST BAK 36 <057> 24-MAY-79 

TOTAL OF 180 BDOCKS IN 4 FILES ON USRB: [115103,320571] 

The command DIRECT thus gives the user an inventory of files in the disk 
stor age at that time. If he is then ready to sign off from the computer, and if 
he is over the logout quota, this inventory information will enable him to 
decide which file he should erase in order to get below the logout quota limit. 
The monitor command of DELETE is used to erase a file in the storage. If in the 
above exanple, the files TEST.DAT, SAMPLE.REL and TEST.BAK are to be erased, 
then the command issued is : 

• DELETE TEST. DAT ~ SAJtfPLE. REL~ TEST. BAK 

After erasure is completed, the terminal will report the names of the 
erased files and the size of total restored storage. The details of file names, 
extensions and other information about file name structure are given in Section 
1.12. 

1.11 Sign-Off Procedure 

To leave the system, the user must terminate his job by supplying a 
monitor command KJOB ("to kill the job"). The system will respond by requesting 
a code letter for confirmation and file disposition. Thus, the command format 
for signing-off is: 

.KJOB ) 
CONFIRM: (code letter») 

A shortened form of this command is: 

.K/(code letter) ) 

The most commonly used code letters in the KJOB command are: 

F = fast signoff; save all files 

D = fast signoff; delete all files. Computer will respond with A 
confirming question: "DELETE ALL FILES?" Answer YES and return the 
carriage. 

P = preserve all files except temporary files. 

H = HELP! Computer will respond will detailed instructions. 



26 CHAPl'ER 1 INTRODUCTION 

I list file names, one at a time, and apply code letter decision 
individually. The code letters for individual decision are: 

P = preserve the file 

S = save the file 

K = delete the file 

Q = learn if over logout quota on this file 

E = skip to next file and save this file if below l(~out quota for 
this file. If not below logout quota, a message is typed and 
the same file name is repeated. 

H = HELP. Computer will respond -with the above information on code 
letters. 

While files are disposed per user's code letter instruct:Lon, the computer 
will make a check on logout quota, gather all usage and accounting information, 
terminate the user's job and print out a sLll1Ullary of the job. For example: 

.KIF ;2 
JOB 16 [115103,320571] off TTY43 at 2032 9-May-80 Coru1ect=29 Min 
Disk R+w=83+76 Tape 10=0 Saved all files (450 blocks) 
CPU 0:04 Core HWM=llP Units=0.1263 ($9.48) 

The printout indicates that this user, with PPN of 115103, 32057l, was 
assigned line 43 and job 16, signed off at 2032 on May 9, 19130. His terminal 
was connected to the system for 29 minutes, used CPU or computer time for 4 
seconds. He used disk, but not maJnetic tapes. He has 450 blocks of saved 
files. For this job, the highest core area used (HWM=High-Water-Mark) was 11 
pages or 5.5K words, and the charge is 0.1263 unit or $9.48. 

The "unit" is an accounting device which combines all charges of the 
service, including CPU time, disk uSaJe, the length of connect time, the size of 
core used, and time of the day, and a base charge, each wi th an appropr iate 
weighting factor to form an accounting formula. 



Basic Concepts of Files 27 

1.12 Basic Concept of Files 

One of the important and convenient features of a time-sharing system is 
that it is supported by mass storage devices. The need for mass storage during 
the early days of time-shar ing is derived from the fact that only the most 
important service programs and the program being executed at the moment may be 
stored in the high-cost, high-speed magnetic core storage. The mass storage 
serves as a temporary storage for programs and data not being processed at the 
time. When the user's turn comes, his program and data will enter the core 
storage. When his allotted time is finished, the program and data in the core 
return to the mass storage. Such transfer of program and data is an important 
and unique operation in all time-shar ing systems, and is called swapping. The 
portion of the mass storage, magnetic disk and/or magnetic drum, assigned for 
swapping is called a swapping device. 

The space required for swapping is a relatively small portion of the 
storage available in the mass storage devices. Thus a time-sharing system 
generally is characterized by a very high reserve capacity of auxiliary storage. 
The most frequent use of this capacity is to accommodate users' programs and/or 
data. These stored programs and/or data are called files. 

Each language processor in the time-sharing system contains facilities 
for file management and file manipulation, and this information will be 
discussed in various chapters in this book. It will be useful at this point, 
however, to introduce some basic information and concepts. 

The basic unit of information in a file is called a record. If a file is 
visualized as consisting of a deck of punched cards, then each card becomes one 
record. The information content of one record varies from case to case. A 
blank card contains no information, and it is called a null record. A FORl'RAN 
source program record is limited to a maximum of 72 characters/record. For a 
PIL program, there is no practical llinit to the length of a record. 

For the purpose of identification, each file is given a name. Once the 
names are established, the computer will maintain a directory so that users need 
not be concerned with the exact locations or addresses on the disk to locate 
their files. For the DEC System-IO, the format of a complete name of a file is: 

where: 

DEV: NAME.EXT [m,nj <xyz> 

DEV: = name of device on which the file is stored. If this part is 
omitted in the complete name, it is understood that the device is 
user's assigned disk area. 

NAME = file name consisting of one to six letters and/or digits, with no 
embedded blank • 

• EXT = file extension consisting of zero to 3 letters and/or digits with 
no embedded blank. See more explanations below. 

[m,nj = the PPN of the person who created or owned the file. 
use of square brackets. 

Note the 



28 CHAPrER I 

<xyz> = a three-digit (octal) protection code. 
below. Note the use of angular brackets. 

INTRODUCTION 

See mOire explanation 

'!he file extension is the part of file identification used to indicate 
the language or format of the file. The following are the most Erequently used 
file extensions • 

• PIL A PIL (language) program file 
• FOR A FORTRAN source program file 
.REL A relocatable binary file, or the "object deck" 
• BAS A BASIC (language) source program file 
.BAK A backup file 
.DAT A data file 
.TMP A temporary file 

Examples: 

NEWIDN.PIL 
NEW'IDN.FOR 
NEW'IDN. REL 
NEW'IDN.BAS 
FOROI.DAT 

A null extension (no extension) 

A PIL program file named NEWTON. 
A FORTRAN program file named NEwroN. 
An object program compiled from NEWroN.FOR 
A BASIC program file named NEWI'OO. 
A data file named FOROI. 

Symbols "*" and "?" are used as "wild cards" to represent a class of file 
names or extensions. The following examples will demonstrate their use: 

Examples: 

NEWTON. * 

*.FOR 

*.* 

Fn??DAT 

Dl2n .Dn 

DI2n.* 

All files named NEWTON of any extension. 

All FORTRAN files. 

All files. 

All data files whose names are 5 characters 
or less and begin with F. 

A files whose names begin with "D12" and 
contain 5 characters or less, and ~10se 
extensions beg in with the letter D imd con
tain 3 or less characters. 

All files whose names begin with "D12" and 
contain 5 characters or less. 

The protection code is a 3-digit octal number xyz, each digit ranging 
from 0 to 7. Each digit defines a protection level of the file against a 
certain class of users: 

x = protection level against the file owner himself. 

y = protection level against users sharing the same project number. 

z = protection level against the general public. 



Protection Codes 29 

The levels of protection range from 0 to 7, and level 7 is the highest. 
The exact definition of each protection level is given below: 

Code Digit 

7 
6 
5 
4 
3 
2 
1 
o 

________ Ac~c~e=ss Protectio~~* ______________ _ 

No access privileges 
Execute only 
Level 6 + read privilege 
Level 5 + append privilege 
Level 4 + update privilege 
Level 3 + write privilege 
Level 2 + rename privilege 
Levell + change protection privilege 

The access protection can be changed by executing the RENAME or PROTECT 
monitor command (see Chapter 8) or by using the service program PIP (see 
Chapter 7). Since there are 8 levels of protection in each of three classes of 
users, there are 512 different shades of protection-level combinations possible. 
Normally, one need only be concerned with a few corrunonly used codes: 

077,l77 

057,177 

055,155 

___________ ---'-'Ap=p=licatioD~ _____________ _ 

Strictly private and non-sharable, such as 
grade files maintained by an instructor. 

Sharable within a project, for example, a 
program to be shared by all students in a 
course. 

Sharable with the computer conununity, but 
the file may not be modified by anyone 
except the file owner. 

The System assigns a default protection level of 057, set automatically 
by the computer if the person does not specify any protection code when he 
creates the file. In some coursework, instructors may arrange to have the 
default protection level automatically set at 077. In such a case, the 
protection code of a student's file is 077 to his classmates, but is 057 to his 
instructor. 

*Subject to minor 
Pittsburgh, access 
slightly. 

local variations. For example, at the University of 
protection designated by the x-digit has been modified 



30 CHAPI'ER 1 INI'RODUCTION 

EXERCISE ON A TIME-SHARING TERM~ 

For a person with no prior experience with using a computer, it is quite 
natural for him to feel intimidated when he gets on the computer for the first 
time. Beginners should feel assured by the fact that very little they do can 
hurt the computer, except if he gets physically violent and abuses the computer 
equipment. A session on a terminal to become familiar with its function and 
operation is highly recommended. The following is a recommended exercise. 

(1) With a valid PPN and a password, practise sign-on and change-password 
procedures. Warning: IX> not mix up or forget your new password, or else you 
will not get back on the computer a:]ain. 

(2) Once signed on, type any gibberish, return the carriage, and watch 
the error message from the computer. Always wait for the prompt symbol "." to 
appear, then type in your 1 ine. IX>n' t leave a blank or space after the ".", and 
don't forget to return the carria:]e at the end of each line. 

(3) Copy a file into your own disk for the terminal exercise. For 
example, to copy a new bulletin of the System, use the following command: 

.COPY NEWS.DAT=SYS:NEWS 

Note the period in the first column is already furnished by the computer; 
you just type in the rest of the line and return the carria:]e. After this, use 
the DIRECT command the and R C1]OLST command ,to find out the status and quota of 
your disk stora:]e. 

(4) After the file is copied into your stor a:]e, do the following 
exercises: 

a. Print out the file by the command: 

.TYPE NEWS.DAT 

After a few lines are typed out, kill the typing job by either a 
CTRL~ or multiple CTRL-C (twice or more). The ne~iS file is quite 
long and a complete typeout will take a long time.. If you are 
cur ious about what the rest of the news bulletin is, apply the 
following command: 

.PRINI' NEWS.DAT 

and a printer copy will be produced at the printer. The printout 
will have your programmer number printed in big block letters on the 
first page for identification. 

b. There is a group of monitor commands that controls tile functions of 
a terminal. They are discussed in Chapter 8 on (~rating System 
commands. However, several commands may be useful enough to the 
beg inner that they will be given here for exercise: 

• TI'Y WIDI'H n 

This command will set the right margin of the terminal at the nth 
column. The value "n" may range from 17 to 200. ~/fuen you sign-on 



Exp.rcises 31 

it? 

to the System, the right margin is automatically set at 72 • 

• TrY PAGE 

After this corrunand is given, a Cl'RL-S will suspend the output (but 
not kill it), and Cl'RL-Q will resume it. The purpose is to stop the 
output in order to examine the output that has already been 
produced. 

After setting the right margin" at a new value and giving the 
TrY PAGE command, repeat the exercise of typing out NEWS.DAT. Use 
both Cl'RL-S and CTRL-Q to control the printing. 

(5) While still signed on, try to change to another system. Can you do 

(6) Check your logout quota status. If you are still under your quota, 
keep "stuffing" your storage by repeating step 3 above (each time using a new 
file name) , until you have gone over the quota. Confirm that by using the 
R CUOLST and DIRECT commands. Try to sign off in this condition. 

(7) Clean up your disk storage and sign off. 

(8) Repeat steps 1 through 7 by first signing on purposely on the wrong 
system. What are the consequences? What is the warning message from the 
computer? What are the things you cannot do in the wrong system? What are the 
things you can do in either system? 

When you complete this exercise with reasonable facility, you may 
consider yourself granted a beginner's driver license. Congratulations! 



32 CHAPI'ER 1 INl'RODUCTION 

REFERENCES 

1. A PRIMER FOR PITT TIME-SHARING SYSTEM (PI'SS), T. W. Sze, University of 
Pittsburgh, Pittsburgh, Pennsy1vania~ 1970. 

2. INTRODUCTION TO A TIME-SHARING SYSTEM, T. W. Sze, University of 
Pittsburgh, Pittsburgh, Pennsy1vania~ 1972. 

3. ALL ABOur TELEPRINl'ER TERMINAlS, Datapro Research Copor ation, De1r an, New 
Jersey~ 1976. 

4. IA36 DECwriter II USERS MANUAL, Digital Equipnent Corporation, Maynard, 
Massachusetts~ 1974. 

5. INTRODUCTION TO CCMPUTING AT PITT, 
Center, University of Pittsburgh, 
1980. 

DEC-10 Documentation-1, Computer 
Pittsburgh, Pennsy1vania~ April, 

6. UNIVERSITY CCMPUTER CENl'ER, ACADEMIC SERVICES, Computer Center, University 
of Pittsburgh, Pittsburgh, Pennsy1vania~ 1978. 

7. INDEX OF CCMPUTER CENl'ER DOCUMENl'ATION AND SERVICES, Computer Center, 
University of Pittsburgh, Pittsburgh, Pennsy1vania~ September, 1978. 

8. INrRODUCTION TO DECSYSTEM-10: TIME-SHARING AND BArICH, T. W. Sze, 
University of Pittsburgh, pittsburgh, Pennsy1vania~ First Edition, 
1974~ Second edition, 1977. 



CHAPl'ER 2 

TEXT EDITOR 

Everything must have a beginning. From a 
user's point of view, his starting point is to enter 
his program and/or data into the computer. The DEC 
System-l0 is mainly disk-based machine. That means, 
the computer will look in the user's disk area for the 
program a user wants to execute. Therefore, in order 
to do any computer processing, a user must first place 
his program and/or data in the disk. The text editor 
is a system program that will enable the user to 
perform this task. 

2.1 Introductio~ 

The UPDATE (Qniversity of Rittsburgh DAta and !ext §ditor)* is a service 
program with which a user can correct, modify, duplicate, or delete parts of a 
stored program or data file. 

In order to edit a program or data file, it must be one already stored on 
disk, magnetic tape, or DECtape. However, if the source material is on tape, 
using UPDATE will result in an edited copy of material stored on disk, and the 
original material on tape is unchanged. Ultimate changes on tape still require 
the use of another service program, such as PIP (see Chapter 7), to delete the 
old file on tape and Eo transfer the new file from disk to tape. Otherwise, the 
new file is re-copied onto the tape so that the old and the new copies co-exist 
together on the tape. Therefore, for all practical purposes, UPDATE is used as 
a disk-to-disk editor, taking source material from the disk and storing the 
edited copy back on the disk. Discussions in this chapter are based on such 
disk-to-disk editing. 

After the user signs on in the usual way, he can get the service of 
UPDATE by typing the following monitor conunand: 

or .UPDATE ] 

*Developed by Gerald W. Bradley, University of Pittsburgh (Reference 7). 

33 



34 CHAPl'ER 2 TEXT EDITOR 

When the UPDATE editor is assigned, the computer will first ask for the 
name of the input file to be edited in this manner: 

fi UPDATE 
INPill=> 

The user will then type in after the greater-than 
extension, file owner's PPN if the user is not the owner. 

sign the file 
For example: 

.R UPDATE 
INPill=>SANPLE.FOR 

> 

.R UPDATE 

INPill=>SANPLE.FOR[115103,320571] 

> 

name, 

When the greater-than sign is again pr inted by the computer, UPDATE is ready to 
accept editing corrunands, and editing on the specified file can begin. As the 
editing proceeds, whenever UPDATE is ready to accept a command or an insertion, 
a sign ">" is pr inted out as a prompt symbol. The first space after the sign 
should be considered as column No.1. 

The above process may be shortened by using the following formats: 

• UPDATE SA!1PLE. FOR 

> 

2.2 Selected TerminologY 

• UPDATE SAl1PLE. FOR (1151 03, ,320571] 

> 

The following terms will be used quite frequently in the discussion of 
the UPDATE commands: 

(1) Record, or Line 

A record or a line is a basic unit of information in a file. If a file 
consists of a deck of punched cards, each card becomes one record. For a file 
stored on disk, one record actually is a tiny length of track on the disk. The 
information content for one record varies from case to case. In a FORTRAN 
program, each record is limited to a maximum of 72 characters including blanks, 
although each statement may extend for several records if needed. SOmetimes, 
there is no information at all on a record, such as a blank card, and this is 
called a null record. 

(2) Pointer 

Once the input file is specified and loaded, the UPDATE at that time is 
positioned at the first record, or line, of the file. At that point, editing 
commands will refer to text material with that line as a reference point. 
Later, if one wishes to make editing steps at another line, the UPDATE should be 
re-posi tioned by appropr iate commands. For convenience, we shall 1 assume an 
imaginery "pointer" which indicates the position of the record being aligned. 
Thus, such a statement as "moving the p:>inter forward 5 records" should now make 
sense. 

(3) Line Numbers, Absolute and Relative 

A file begins with record No.1, then No.2, etc. Such line numbers 
represent the true p:>sitions of the records in the file, and pre called the 
absolute line numbers. On the other hand, it is often convenient to use as a 



Terminology 35 

reference the line currently pointed to and say, for example, "move forward 5 
lines" or "back up 3 lines". These are then relative line numbers. Absolute 
line numbers are always expressed by unsigned positive integers, and relative 
line numbers by signed integers. Use "+" sign for forward reference arid "-" for 
backward reference in specifying relative line numbers. Note that a file always 
begins at line number 1, and its line numbers are always contiguous. Therefore, 
if lines 4 and 5 are deleted during editing, then line 6 becomes line 4, 7 
becomes 5, etc. 

(4) Delimiter While the pointer indicates the position of a line in a 
text, the position of text within a line is indicated by the use of delimiters. 
These delimiters may be thought of as quotation marks in the English language, 
except that any special character may be used as a delimiter in UPDATE. Thus, 
if one wishes to set off the last three w::>rds of this particular paragraph, he 
may spec ify: 

or 
"he may spec ify: " 
?he may specify:? 

or 
or 

/he may specify:/ 
She may specify:$ etc. 

Because of its similarity with the quotation, the string set off by a pair of 
delimiters will be referred to as a· "quoted string" or simply a "quotation". 
There are several important rules of del imi ter usage in the UPDATE ed i tor: 

A. Use consistent characters as delimiters for a quotation. While any 
special character may be used as a delimiter, the choice of the 
beginning-of-quotation (BOQ) delimiter automatically decides the use 
of the same character as the end-of-quotation (EOQ) delimiter. The 
following examples should be self-explanatory: 

Valid Use of Delimiters 

"quoted text" 
(quoted text ( 

Invalid Use 

(quoted text) 
<quoted text> 

B. If a quoted string contains a special character, that particular 
character should not be used as a delimiter for this quotation. For 
example, if we wish to quote a string "less than $5.00" and use "$" as 
a delimiter, the result will be misinterpreted by UPDATE. 

c. If several quotations are placed in one UPDATE command, the following 
rules apply: 

a. The first BOQ delimiter determines the character to use. 

b. Multiple quotations must all refer to materials on the same 
record. 

c. When multiple quotations are placed together, tw::> adjacent 
delimiters should always be merged into a single one to avoid 
ambiguity. In other w::>rds, a delimiter should not only serve as 
the BOQ delimiter for the following quotation, but also as the EOQ 
delimiter for the preceding quotation. Thus a general appearance 
of a multiple quotation will be something like this: 

/QOOTE l/QUOTE 2/QUOTE 3/ 



36 CHAPI'ER 2 TEXT EDI'lDR 

If this multiple quote is written as: 

/QlJOrE 1/ /QOOTE 2/ /QUOTE 3/ 

it will actually be interpreted by UPDATE as 5 quotations, the 
second and the fourth being null strings. 

D. The contents of a quotation must be exact and unique. When UPDATE 
receives a quoted string, it will try to search in the pointed line 
for a group of characters exactly matching the quotation. In such a 
matching process, the capital letters, the lower CaSE!S, the blanks, 
special characters, and control characters are all legitimate and 
different characters. For this reason, a quoted strinsr must be given 
in the exact way as in the pointed line. 

Example: Suppose we wish to quote the underscored portion below: 

50 Yl = YO + ~ 

Correct Quotation Incorrect Quotation 

/Y 1/ /Yl/ 

E. When UPDATE searches a line text to match a quotation, it begins with 
the character in column one. As the search moves to the right, and a 
match is found, the search is completed. If a quoted str ing appears 
several times in a text line, UPDATE will always pick the string 
nearest to the first column. Therefore, if we wish to sepcify 
non-unique strings further to the right, the string must be expanded 
in front and/or in the back until the string is unique, or else it is 
the first such quotation when the search starts from thE~ left end. 

Example: Suppose we wish to quote the underscored portion below: 

501 IF(Y.LT.0.00Q1) GO 'lD 510 

/0.0001/ 
/.000/ 
/01)/ etc. 

IncorFect Quotation 

/0/ 
/01/ 
/00/ 

F. A single quotation followed immediately by an integer means this 
quotation beg ins from column ind icated . For example, the quotation 
/01/19 means the character string "01" that begins at column No. 19. 

G. All quotations must be bracketed within a pair of delimiters. 
unclosed quotation is an error. 



$TO, $AT & $TRAVEL 37 

A PRIMER OF UPDATE EDITOR 

The text editor UPDATE contains several dozens of editing corrnnands. For 
a beg inner, it WJuld be a mistake to attempt to learn them all at one time. 
Experience has shown that most editings are done with a limited set of editing 
corrmands. Complex corrunand functions can usually be accomplished by applying 
several simpler corrnnands in sequence. For the sake of learning efficiency, it 
WJuld be much more cost effective for a beginner to concentrate on a few basic 
editing functions and corrunands. They are: 

(1) To move a pointer to a designated line. 

(2) To make changes on a pointed line. 

(3) To delete the pointed line or lines. 

(4) To type out the content of the pointed line or lines. 

(5) To insert a line at a designated place. 

(6) To conclude the editing. 

The corrunands given in the following sections pertain to these basic 
functions. All UPDATE corrnnands must have a "$" in the first colunn. The 
spelling of each corrunand may be shortened to just the first tWJ letters. 
Misspelling after the first tWJ letters will be ignored and will not be 
considered an error. 

2.3 Movement of Pointer, $TO, $AT and $TRAVEL 

When the UPDATE first opens an input file, the pointer is always 
positioned at line No. 1. There are three corrunands one may use to move the 
pointer elsewhere, and they are $TO, $AT and $TRAVEL. 

$TO will move the pointer to a specified place, and once there the new 
line is~yped out for verification. 

$AT performs the same function as $TO, but the typing of a new line is 
suppressed. 

$TRAVEL performs the same function as $TO, and the corrnnand is 
"remembered". The same $TRAVEL corrnnand can be executed again later by issuing a 
$GO comnand. 

All three corrnnands have the same corrnnand formats and variations, and 
those for $TO are 1 isted below. Var iations of formats WJuld be the same for the 
other tWJ corrunands, simply by replacing $TO in the following listing by either 
$AT or $TR. 



38 

A. $TO N 

B. $TO +N 

C. $TO -ti 

D. $TO /TEX!'/ 

E. $TO $TEX!'$ 

F. $TO /TEX!'/K 

G. $TO $ 

CHAPI'ER 2 TEX!' EDITOR 

Move the pointer to line N. 

Move the pointer N lines forward. 

Move the pointer N lines backward. 

Move the pointer forward from the present line 
until it encounters a line with the exact string 
/TEX!'/ in it. 

Similar to case D above, with an exception that 
the match will not consider the difference 
between upper and lower case letters, nor will 
it take into account any blank between 
characters. 

Search for the string TEX!' that begins at column 
No. K. 

Move the pointer to the last line. 

Notice the mode of search in cases D, E and F. The search starts from 
the line below the pointed line. If there is a string TEX!' in the pointed line, 
it will n~be found. If one wishes to move to the first appearance of /TEX!'/ 
or $TEX!'$ while he is in the middle section of the file, he should issue the 
corrunand $TO 1 first before giving a $TO/~~, or $TO/TEX!'/K, or $TO $TEX!'$$ 
corrunand. This is so that he will not miss any earlier existences. of the string 
TEX!' in the line? before the pointer. But even so, such a search \\Quld miss 
line 1, unless the user examines the line typed out after the corrunand $TO 1. 
This problem may be solved by inserting a blank line as -line 1 and later 
removing it before finishing the editing job. 

TO move forward one line, t\\Q ways are possible: 
corrunand, or simply return the carriage. 

Either use $TO +1 

TO move backward one line, either use the command $TO -1, or press 
backspace key and then return the carriage. 

While moving the pointer back and forth during the editing job, it will 
become difficult to keep track of the line number of the pointer. The command 
$WHERE will cause a number typed out enclosed in brackets to indicate the 
current pointer line number. 

Example: Suppose you wish to examine every FORMAT statement in your 
FORTRAN program. You will first call the file using .the UPDATE. Then apply the 
following command: 

>$TRAVEL /FORMAT/ 

The first time you apply it this way, it will move the pointer to the first 
FORMAT statement, and print it out. lmy revision of the statement may be done 
there and then. The movement to the subsequent FORMAT statements may be 
accomplished by giving the command: 

>$GO 

Naturally, if a FORMAT statement in the program is misspelled,. the $TRAVEL 
corrunand will not find that statement. 



$CHANGE $ALTER & $SUBSTITUTE 39 

2.4 Change of Text Material, $CHANGE, $ALTER and $SUBSTITUTE 

When the appropriate line is positioned by the $TO, $AT or $TRAVEL 
corrunand, editing changes may be performed using the $CHANGE, or $ALTER corrunand. 
The standard format is: 

$CHANGE IOLD TE}IT/NEW TE}ITI 

For multiple changes on the same line, the corrunand format is: 

$CHANGE IOLD l/NEW 1/OLD 2/NEW 2/0LD 3/NEW 3/." 

The rules of delimiters in multiple quotations have been discussed before and 
are applicable here. Again, the delimiters for multiple quotations must be 
consistent for all quotations. 

As a convenience feature, after the $CHANGE 
entire new line is typed out for verification, 
unchanged. 

corrunand is executed, the 
The pointer position remains 

Examp~: Suppose the indicated changes are required as shown below: 

5y6C" /( /,L..i. Go TO 

3SIF@:PRlm€ol @~ 
The following two ~ines show first the editing command of $CHANGE and then the 
edited text automatically typed out after execution. (Remember our convention 
in this book --- User's input line shown in italics): 

>$CHANGEI515 191(j>I.LT.IGIGO 1.11 
35 IF (IPRINT.LT.O) GO TO 90 

There are, of course, many other ways to write· the above $CHANGE command to 
achieve the same result, 

$AUrER is used in the same way as the $CHANGE corrunand, except that $ALTER 
does not allow multiple changes. Its main usefulness is in the compounded 
editing commands, as will be illustrated in a later section. 

$SUBSTITUTE differs fran $CHANGE or $ALTER in this manner: The command 
$CHANGE or $ALTER is used to change a string in one single line positioned by 
the pointer. The command $SUBSTITUTE is used to alter a string in the entire 
file beginning fran the pointed line. Again, the string of characters to be 
changed must be specified exactly and uniquely. Otherwise, inadvertent changes 
will result at unintended places. For example, if one wishes to change the 
variable X into Y in a certain program, specifying $SUBSTITUTE/x/y1 would change 
every X-character into Y-character. Thus, inadvertently, another variable with 
the name "INDEX" would become "INDEY", and the exponential function name EXP 
would be changed to EYP. 

There are two variations for the command $SUBSTITUTE: 



40 CHAPrER 2 TEXT EDITOR 

A. $SUBSTITUl'E /OIDrEXT,/NEWI'EXT/ 

Starting from the pointed line, this command will search for a 
string /OIDrEXT/ and each time upon finding it, change it into 
/NEWTEXT/ until the end of the file is reached. 

B. $SUBSTITUl'E /OIDrEXT/NEWTEXT/K 

Starting from the pointed line, this command will search for a 
string /OIDrEXT/ that~!!§. at the Kth column, and each time upon 
finding it change it to INEWTE~ until the end of the file is 
reached. After the $SUBSTITUl'E command is executed successfully, 
the pointer will be relocated at the last line of the file. 

2.5 Deletion of Lines, $DELETE 

When a line or a group of consecutive lines are to be deleted, first 
position the pointer to that line or the first line of that group, using either 
the $TO or $AT command. Then depending on what is to be deleted, use the 
command $DELETE in the following ways: 

(1) $DELETE N Delete N lines beginning with the one presently 
pointed to. After the deletion, the pointer moves forward to the line 
immediately after the deleted group. If the deleted group haPfens to be the 
final N lines of the file, the pointer drops back one line and positions at the 
new last line. If N is larger than the number of lines left on the input file, 
a command $DELETE N will delete every line remaining and then type out a "?" to 
indicate error. This feature is actually quite useful when one wishes to delete 
the rest of the text but does not know how many lines there are. Then, he can 
simply issue a command of $DELETE 10000, or any number larger than the number of 
remaining lines. 

This is automatically interpreted as $:DELETE 1. 

(3) $DELETE $ Beginning with the currently pointed line, this 
command will erase the rest of the file. 

$DELETE -N is IDI' a valid command. 

Example: See below for the "Before" and "After" with a ~:DELETE command: 

Tex t AF~~ER A 
Line Number Text BEFORE Command $DE3 

I 11 11 
2 22 y- to be » 5~) 

3 Old 33 I deleted New 66 
4 pointer 44 J pointer 77 
5 55 88 
6 66 99 
7 77 
8 88 
9 99 



$TIPE 41 

Note that although the pointer is positioned at a new line of text, the line 
number of the pointed line remains the same. The line numbers and the text are 
then automatically readj us ted • 

2.6 Output of Lines, $TYPE 

Frequently, it is desirable to display the text of a line on the terminal 
for examination. The UPDATE command for this function is $TYPE. The following 
shows the variations: 

A. $TYPE N 

B. $TYPE 

C. $TYPE $ 

2.7 Line Insertion 

This command will type out N lines beginning with the 
present line. The position of the pointer remains 
unchanged. 

Same as $TYPE 1. 

This command will type out the currently pointed line 
and the last line of the file. Pointer position 
remains unchanged. 

UPDATE will regard any user input as UPDATE command if column 1 is a "$" 
character. Conversely, UPDATE will regar.d any user input as line insertion if 
the line does not begin with a "$" in column 1. When a line is inserted, it 
will always be inserted after the currently pointed line. If you wish to insert 
a line before the pointed line, you must precede 'your insertion by a "$BEFORE" 
command:---when a new line has been inserted, the pointer will move forward one 
line, making the new insertion the currently pointed line. 

Beside adding lines to an old file, this process is particularly useful 
in creating new files. The process of creating a new file is outlined as 
follows: 

(1) Call for UPDATE and give a file name that does not yet exist. For 
example: 

• UPDATE NEW. FOR 

where NEW.FOR is a file name given to the new file to be created. 

(2) The pointer of the blank file called by the UPDATE will be positioned 
at line zero. Type in the new file, one line at a time. Each line is 
terminated by a carriage return in the conventional way of typing. 

(3) While the new file is being created, the editing commands can be 
applied to move the pointer, to type out the lines, to delete or to change the 
contents of a line. 

(4) When all lines are entered, exit from UPDATE by a command $END. 



42 CHAPl'ER 2 TEXT EDI'IDR 

2.8 Completion of an Editing Session, $DqNE, $END and $FINISH 

All three commands signify the end of current editing of the file. They 
differ in how the file should be stored and named. 

When the $DONE corrunand is issued, UPDATE will ask the user to supply a 
file name for the edited file, for example: 

)$DONE 
CATALOG NAME=)S~f1PLE.FOR 
6 BLOCKS WRITTEN ON SAMPLE.FOR[115103,320S71] 

EXIT 

If the file name and the extension given here are exactly the same as 
those of the old file, the old file is replaced by the new filE~. As a safety 
measure, the old file is retained in the storage with the extension changed to 
BAK (for "backup"), in case the user changes his mind about his revisions. If 
either the name or the extension or both are different from those of the old 
file, a new f He is created and stored on disk along with the old file, and the 
old file is not disturbed. If the name and the extension g i VE~n during the 
cataloging are exactly the same with those of some other fHe in the disk 
storage, naming tv.u different files with the same name causes an error, and the 
UPDATE will reject the duplicate name and ask for a new name. This is 
illustrated below: 

)$DONE 
CATALOG NAME=)NEW.FOR 
FILE DSK:E20016.'lMP[llSl03,320S71]to NEW.FOR[llSl03,320S71] 

RENAME error (4) - Already existing file 
CATALOG NAME=>SAMPLE.FOR 
6 BLOCKS WRITTEN ON SAMPLE.FOR[11Sl03,320S71] 

EXIT 

The catalog name can also contain a protection code specification, for 
example, SAMPLE.FOR<lSS). When the protection code is omitted, the UPDATE will 
automatically assign a protection code of OS7. 

When the $END corrunand is issued, a fast ex it is accomplished and the 
edited file will have the same file name, extension and protection code as those 
of the old file. The old file becomes a BAK file. After the storage process is 
completed, UPDATE returns the user to the monitor. 

When the $FINISH corrunand is issued, it will per form the same function as 
$END. However, instead of returning the control to the monitor, the user will 
retain the service of the UPDATE editor and can then start a new' editing job. 
Therefore, this command is equivalent to issuing tv.u successive corrunands: an 
UPDATE command of $END followed by a monitor command of .R UPOA1E. 



I/O Files in Editing 43 

orHER UPDATE COMMANDS AND PROCEDURES 

When UPDATE is called, several events happen: 

(1) The UPDATE program is loaded into the computer memory assigned to the 
user. 

(2) Two disk areas are assigned as working files. One is used as the 
input file labeled as El and the other is used as the output file labeled as E2. 
The actual file names assigned are ElOOxx.TMP and E200yy.TMP respectively, where 
"xx" and "yy" are numbers arbitr ar ily assigned. 

(3) After the input file name is given by the user, as requested by the 
UPDATE, a copy of that file is loaded into El. If no such file name exists, El 
remains a blank file. In either case, E2 is a blank file at this point. 

(4) UPDNrE will read up to 100 lines (which may be specified and modified 
by a $FACTOR command) from El file into the memory. 

The log ic flow 0 f the tex t information dur ing an ed i ting session is shown 
in Figure 2.1. 

Figure 2.1 

El Fi Ie 

Assigned 
Computer 
Hemory 

E2 Fi 1 e 

Editing Input/Ourput Files 

Now, as the editing session 
progresses and the pointer advances 
through the file, more lines are read 
into the memory. When the number of 
lines in the memory is more than 100, or 
whatever value specified by a previous 
$FACTOR command, the lines behind the 
pointer are written into the E2 file. 
Thus, if the pointer keeps advancing 
forward, more lines are transferred into 
E2. When the editing is finally 
completed, all lines in the core, and 
all 'the remaining lines in the El file 
are copied onto the E2 file. The E2 
file is then renamed by a name 
designated by the user, and the El file 
is erased. It is significant to note 
from Figure 2.1 that the movements of 
lines from El to the computer memory, 
then onto the E2 file, is always in one 
direction only. 

Thus, if the pointer is moved backward, there will be complications. If 
the pointer, after moved backward, is pointing to a line still in the core 
memory, events are still normal. If the pointer is positioned at a line no 
longer in the core memory, that line has already been copied onto the E2 file 
and cannot be retr ieved because the tr ansfer between the memory and E2 is 
one-way only, as shown in Figure 2.1. This will set forth a sequence of events 
described as follows: 

First, the lines in the memory and all the remalnlng lines in the El file 
will be copied onto the E2 file. The E2 file is then closed. The El file is 
erased. The E2 file is renamed as the El file. The new El file is read into 
the computer memory containing the line positioned by the pointer. The 
backing-up of the pointer is now finally accomplished. These events resemble a 



44 CHAPl'ER 2 TEXT EDI'IDR 

situation when a driver misses an exit on a one-way urban beltway. In order to 
exit at the missed exit point, he must drive the whole way around the one-way 
highway and gets off at the desired exit. However, such events at the editing 
session are "transparent" to the user, because at the terminal he will be 
unaware of these. But this situation does suggest that backing up in 
positioning a line should be done sparingly. 

When E2 is closed, it is renamed by a name designated by the user if the 
closing command is $DONE, and the input file is not disturbed. If the $END or 
$FINISH command is used, the E2 file is renamed by the same input name, and the 
input file is renamed as a BAK file. 

If the editing involves an auxiliary file as an input or output for the 
editing, another disk file labeled E3 is assigned. This happens with the 
command $ONTO or $FROM (See Section 2.16). 

UPDATE will treat all input lines that start with a $-sign in the column 
1 as an UPDATE command. Conversely, UPDATE will treat any input information 
without a $-sign in column one as a non-command and as infoonation to be 
inserted in the text. 

There are two modes of line insertion: 

(1) Insertion after the pointer 

A. Insertion of lines typed at the terminal 

Any input information to the UPDATE without a dollar sign in column 
one will automatically be inserted :i.rmnediately after the current line. When the 
insertion of one line is completed, the pointer moves forward one number, so 
that it is now positioned ,at the newly inserted line. The next typed line will 
be inserted :i.rmnediately after the previously inserted line, and again the 
pointer moves to the newly created line. This feature makes it very convenient 
to use the terminal keyboard to create a file. 

The insertion mode is suspended whenever an UPDATE corrnnand (with a 
$-sign in the first column) is issued. 

Example: Observe the "Before" and the "After" of an insertion procedure: 

Line 
Number 

1 
2 
3 
4 
5 
6 
7 

Old Text and 
Pointer Position 

11 
22 
33 
44 

User types in: 

AA 
BB 
CC 

New Text and 
Pointer Position 

11 
22 
AA 
BB 
CC 
33 
44 



Line Insertions 45 

So the UPDATE interprets every input line beginning with a $-sign as 
an UPDATE corrunand. This may develop into a dilermna if the user attempts to 
insert a line that begins with a $-sign. For example, consider the statement: 
"$5.00 IS 'J.'CX) MUCH TO PAY". When this statement is inserted, UPDATE will puzzle 
over the meaning of "$5." as an UPDATE corrunand, and the execution results in an 
error report. 

There are several ways to solve this problem: One is to insert a 
line: "X5. 00 IS 'J.'CX) MUCH TO PAY", and then use $CHANGE corrunand to change the 
first "X" into "$". Another way is to insert the line: "$5.00 IS 'J.'CX) MUCH TO 
PAY", leaving a blank in column 1, and then remove it using the $CHANGE command. 
If there are many such statements to insert (for example, in preparing a control 
file for batch processing), the process may be simplified by an UPDATE command: 

$IS # 

where "#" can be any special character except ";". The effect of this command 
is to replace the format of all subsequent editing commands from $XX to #XX, 
therefore allowing insertion of lines beginning with "$", but disallowing 
insertion of lines beginning with "#". A command #IS $ later will restore the 
UPDATE to the normal corrunand format. 

Tb insert a blank line, one should not simply press the carriage 
return, because that action would merely move the pointer forward one line, and 
no insertion of any kind is accomplished. A blank line may be inserted by 
typing (at least) one blank then returning the carriage. 

B. Insertion of a stored file 

If the lines to be inserted are already stored on disk as a file 
whose name is given, for example, as NAME.EXT, by its owner with PPN of [m,n], 
the insertion can be made simply in this manner: 

a. Position the pointer at the line immediately before the 
insertion. 

b. Issue the following UPDATE command: 

$INPUT : NAME.EXT[m,n] 

As usual, if [m,n] are the user I s own numbers, they may be omitted in the 
command. After the insertion, the po inter moves forward to the last inserted 
line. This command is frequently used for merging parts of program or data 
files. 

Al though the inserted lines come from a stored file on the disk, the 
UPDATE ed i tor treats them the same way as if they come from the terminal. And 
hence, the lines in a stored file insertion are subject to the same UPDATE 
editing rules, particularly about the interpretation of the first column 
character. If a file will be used as a straight forward insertion of lines, it 
should be inspected first to see if there is no "$" sign in the first columns. 
If there is any' "$" in the first column, appropriate action, such as "$IS #" 
corrunand, should be taken prior to the insertion. On the other hand, another 
avenue of issuing editing commands in addition to the terminal is now opened up. 
One now may use either the terminal or a stored file to issue editing commands. 



46 CHAPI'ER 2 TEXT EDIroR 

UPDATE is greatly enhanced when a sequence of fixed UPDATE commands, which will 
be executed frequently, is stored as a file. Execution of this sequence of 
commands can be carried out automatically simply by the $INPur command. These 
stored files now become editing programs and can be used over and! over. 

Example: The following is a file ATI'END.DAT that needs updating each 
week. The contents with the column numbers are shown below: 

(Column 
(Numbers 

111111111122222222223 
123456789012345678901234567890 

PERSON A 
PERSON B 
PERSON C 
PERSON D 

PERSON Z 

10110 
10011 
01101 
10111 

00110 

1 
2 
3 
4 

126 

Suppose the requirement of updating 
column-16; shift columns 17-20 to the 
column-20 by zeros. 

the file 
left by 

is as follows. Remove 
one column; and replace 

An "editing program" may be designed and stored as EDIT.PRG that contains 
the folowing statements: 

$ATl 
$SUBSTITurE /1/0/16 
$ATl 
$SUBSTITurE /0//16 
$ATl 
$SUBSTITurE / /0 /20 ( =blank) 

This sequence may be executed as shown below: 

• UPATE ATTEND. DAT 
> SINPUT=EDIT. PRl1 
> SEND 
1 BDDeK WRITI'EN ON ATI'END.DAT[115103,320571] 

EXIT 

When this editing program is executed, columns 17-20 will be shifted to 
the left by one column. 

(2) Insertion before the pointer 

To insert material before the pointer, first apply the command $BEFORE. 
Then all lines with no ($) sign at the column-l will be inserted before the 
pointer. In the meantime, the pointer will move to the last insE~rted line. The 
Insertion mode is terminated by any UPDATE command. See the example below: 



Compounded Editing Commands 

Example: Observe the "Before" and "After": 

Line 
Number 

1 
2 
3 
4 
5 
6 

Old Text and 
Pointer Position 

--11 
22 
33 
44 

2.10 Compounded Ed i ting Conmand s 

User types in: 

$BEFORE 
AA 
BB 

New Text and 
Pointer Position 

M 
-BB 

11 
22 
33 
44 

47 

The UPDATE commands discussed so far have the format of one command per 
command line. When several commands are issued on a single command line, they 
become a compounded command. The general format of a compounded command is: 

$COMMAND 1; Ca.1MAND 2; Ca.1MAND 3; 

The semicolons";" are used to separate the successive commands, and therefore 
no semicolon should appear after the last command in the compounded structure. 
Also, if any of the commands contains a quotation of string, the string must not 
contain any semicolon-character, because it will be misunderstood ,as a command 
delimiter. Note that the dollar sign "$" is needed only for the first command. 
There are several straight-forward rules for constructing a compounded UPDATE 
conmand: 

(1) All commands of a compounded command must fit in a single command 
line. 

(2) The individual commands in the compounded command are executed in 
their natural order from left to right. 

(3) Certain commands may cause ambiguity and error if they are followed 
by other commands in a compounded structure. Consider the following compounded 
command: 

$TO 5; CHANGE /OLD1/NEWl/; TO/TE:>cr'h TYPE 4 

-~'I· 3 --+4 ~ 
.~- 2 ~--+- 3 ---~ 

Interpretation 1: 
4 single commands' 

Interpretation 2: 
3 single commands 

with multiple string 
changes in $CHANGE 

It can be seen that the interpretation is ambiguous and it will be unpredictable 
how this command would be actually executed. To avoid this problem, commands of 
this kind are always regarded as the last command in the structure, even if 
there are more commands after them. If more commands are given after them in a 
compounded command, the added commands are simply ignored, and no error return 



48 CHAPrER 2 TEXT EDI'IDR 

signal is returned. Thus, when the above example is executed, the part 
"'ID /TEXT/; TYPE 4" will not be executed. In order to accomplish the function 
of the above compounded command, the above example should be modified to: 

$'ID 5; ALTER /OLDl/NEWl/; 'ID /TEXT/; TYPE 4 

The ambiguity is now removed because the $ALTER command can allow only one 
change of string. 

There are certain UPDATE commands that must be physically the last 
command in a compounded structure. These commands are listed below: 

Group UPDATE Commands 

Multiple string change CHANGE 

Change of command format IS 

Auxiliary file operations INPur, ON'ID, FROM 

End of editing session END, DONE, FINISH 

Commands appended to any of the above commands in a compounded structure will 
simply be ignored. 

Compounded command structure format provides a convenience for input 
commands. It also is a basis on which a simple and powerful editing program can 
be built, especially when it couples the usage of $TRAVEL and $GO commands in 
the compounded structure: 

Example: 
Function: 

Example: 
Function: 

Example: 
Function: 

$AT 1; TRAVEL /FORMAT/7; WHERE; GO 
Beginning at line 2, search for the string of characters 
"FORMAT" that begins at column-7 • When it is found, type out 
the line itself and the line number. Repeat the function 
until the end of the file is reached. In other words, this 
compounded command will pr int out all FORMAT statements and 
where they are in a FORI'RAN program. Notice this compounded 
command will miss line Ii why? 

$ATl;TR/ /;AL/ / /;AT-l;GO 
Beginning from line 2, all multiple blanks will be reduced to 
single blank. 

$TR/C/l;DE;AT-l;GO 
Remove all Comment Lines in a FORI'RAN program. 



$MOVE 49 

2. 11 Move Corrmand, $MOVii 

This command will move a block of lines to somewhere else in the file. 
There are two general formats: One is a single-corrmand format, the other a 
multiple-corrmand format. 

(1) Single corrmand format 

The merging of $MOVE N and $TO corrunands forms a single-corrunand that will 
move an N-line block to a place designated by the $TO corrunand. Before the move, 
the pointer should always be positoned at the first line of the N-line block. 
Dnmediately after the move, the pointer will always be at the last line of the 
N-line block at its new place. Because of the $TO corrunand, there are many 
variations of the $MOVE N TO commands. They are list~ below: 

A. $MOVE N TO M 

B. $MOVE N TO +M 

C. $MOVE N TO -M 

D. $MOVE N $ 

E. $MOVE N TO /TE}IT..L 

F. $MOVE N TO /TE}IT/K 

Example: $MOVE N TO M 

Line 
Number 

1 
2 
3 
4 
5 
6 
7 

Old Text and 
Pointer Position 

11 

-- 22} 
33 1 
44 : 
55---
66 
77 

Move N-line block to a new position so that 
the first line of the block is now line No. 
M. 

Move an N-line block to a new position 
starting immediately after the line which 
has a relative line number of +M from the 
last line of the block before the move. 

Move an N-line block to a new position 
immediately before the line which has a 
relative line number of -M, relative to the 
first line of the block. 

Move an N-line block to the end of the 
file. 

Move an N-line block and place it 
immediately after the line beyond the 
pointer that has the first appearance of 
the string /TE}IT/. 

Move an N-line block and place it 
immediately after the line beyond the 
pointer that has the first appearance of 
the string /TE}IT/ that starts at the Kth 
column. 

-.-iMOVE Corrunand 

SMOVE 2 TO 3 

New Text and 
Pointer Position -----.-.. ~.--------

11 
44 
22J 

--~33 

55 
66 
77 



50 CHAPl'ER 2 TEXT EDITOR 

Example: $MOVE N TO +M 

Line Old Text and New' Tex t and 
Number Pointer Position $MOVE ~~~and __ Pointer Position -----.--. ---- - -- - --- ---.-

1 11 $110 2 TO +3 11 
2 - 22} 44 
3 33 55 
4 44 66 
5 55 22] 
6 66 ~ - 33 
7 77 77 

Example: $MOVE N TO -M 

Line Old Text and Ne\l7 Tex t and 
Number Pointer Position $MOVE Conunand Pointer Position --.- .. _-" ... _ .•. __ .... - -' .. ---"--- ... - -_.- .-.".- ---_._--- ---... -.. -.-

1 11 $MO 2 TO -3 11 
2 22 -: 55: 
3 33 I ,.. 66J 
4 44 

, 
22 

I 

5 ~ 55"1 , 33 
6 66; ~ 44 
7 77 77 

Example: $MOVE N TO $ 

Line Old Text and New Text and 
Nt.nnber Pointer Position ~_MC?.~C:°Itllll~d Pointer Position 

---'" ... 

1 11 $HO 2 TO $ 11 
2 -22: 44 
3 33J - 55 
4 44 66 
5 55 77 
6 66 I 221 
7 77 I ~ 33 J ... J 

Example: To interchange a [X)inted line with the next line. 

Line Old Text and New Tex t and 
Number Pointer Position $MOVE Conunand Pointer Position -------,._---- ..• -. '---'--

1 11 $1'10 1 TO +1 11 
2 -- ... 22 - l 33 
3 33 .... _J ---- 22 
4 44 44 
5 55 55 
6 66 66 
7 77 77 



$MOVE 

Line 
NLUnber 

1 
2 
3 
4 
5 
6 
7 

Example.: 

Line 
Nt.nnber _.-- .. ---

1 
2 
3 
4 
5 
6 
7 

Example: 

Line 
Nt.nnber 

1 
2 
3 
4 
5 
6 
7 

Tb interchange a pointed line with its preceding line. 

Old Text and 
Pointer Position ---.. -~----

11 
22 -: 
33 .....J 

44 
55 
66 
77 

$MOVE N TO /TEXI'/ 

Old Text and 
Pointer Position ---------.-------.--.--

11 

22} 
33 1 
44 I 
55 .. _.1 

66 
77 

.3~qyr; CC?~~~ __ 

$MO 1 TO -1 

$MO 2 TO '55' 

$MOVE N TO /TEXI'/K 

Old Text and 
Pointer Position -- .. - . ,'- -----

(b=blank) 

_$MOYE . Corrunan~_. 

$MO 2 TO /3b/1 

New Text and 
Pointer Position __ 0.·-- __ -, _ .. __ . __ 

11 
-.~ 33 

22 
44 
55 
66 
77 

New Text and 
Pointer Position 

_ •• • h •• ______ • _ _ 

11 
44 
55 
22' 
33: 
66' 
77 

New Text and 
Pointer Position 

lb 
b2 
3b 

blJ 
2b 
b3 
4b 

51 

The search for /TEXI'/ starts from the next line from the current line. 
Thus the search will omit the current line and all lines prior to that. The 
following example shows an error of search: 



52 CHAPl'ER 2 TEXT EDI'illR 

Example: $MOVE N 'ill /TEXT/ 

Line 
Number 

1 
2 
3 
4 
5 
6 
7 

Old Text and 
Pointer Position 

11 
22 
33 
44 

--~n: 
77t 

(2) Multiple command format 

~MOVE ~?mmand __ 

$HO 2 TO /33/1 

New Text and 
Pointer Position 

11 
22 
33 
44 

,- 77 

(Search unsLlccessful when 
reaching the end of file, 
and moved lines are lost.) 

r-bving an N-line block of text can also be achieved with first a $MOVE N 
command, and then when the destination' is accurately positioned, with another 
$HERE command. What actually happened is that the N-line block is temporar ily 
stored in an auxiliary file E3, and when the $HERE command is given, the lines 
will re-enter the computer memory. The advantage of moving lines in this manner 
is that the procedure becomes less error ptone because of accurate positioning 
of the destination. In the nine examples shown above for the single-command 
format, movements of lines can also be accomplished by a three-step procedure: 
$MOVE N, accurate positioning by $'ill, and then $HERE commands. Observe the 
difference in the line numbers used between the single-corrunand and the 
multiple-command formats. 

2.12 COPY Command 

This command will duplicate a block of lines elsewhere in the file. The 
format of the command is very similar to that of $MOVE, and so are the 
var iations. Instead of using 'ill for positioning in the $MOVE command, $COPY 
uses Nr for positioning the pointer. The variations of $COPY are listed below 
with similar definitions as applied to the $MOVE variations: 

(1) Single command format 

A. $COPY N AT M 

B. $COPY N AT +M 

C. $COPY N AT -M 

D. $COPY N AT LTEXTL 
E. $COPY N AT /TEXT/K 

F. $COPY N AT $ 



$COPY 

(2) Multiple command format 

Accurate positioning command 

These variations are again illustrated by examples: 

Line 
Number 

I 
2 
3 
4 
5 
6. 
7 
8 
9 

Example B: 

Line 
-B..~E_ 

I 
2 
3 
4 
5 
6 
7 
8 
9 

Example C: 

Line 
Number 

I 
2 
3 
4 
5 
6 
7 
8 
9 

$COPY N AT M 

Old Text and 
Pointer Position 

11 

-- ~~};J 
44 
55 
66 
77 

$COPY N AT +M 

Old Text and 
Pointer Position 

11 
'~22} 

33 -I 
44 : 
55 I 
66 __ 1 
77 

$COPY N AT -M 

Old Text and 
Pointer Position 

11 
22 
33 
44 

-~ 55l~1 
66J 
77 

$COPY Command 

$CO 2 AT 3 

$COPY Command -----.-------
$CO 2 AT +3 

$COPY __ Corrmand 

$CO 2 AT -2 

Watch out for 
tr icky minus 
count here. A 
poor feature. 

New Text and 
Pointer Position 

11 
22 
221 

~--.... 33J 
33 
44 
55 
66 
77 

New Text and 
Pointer Position 

11 
22 
33 
44 
55 
66 
22' 

-->- 33j 
77 

New Text and 
Pointer Position 

11 
22 
33 
44 
55 i-c-l 
66 J 1-2 iifle5 

55 --.I 
66 
77 

53 



54 

Example D: 

Line 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

CHAPl'ER 2 

$COFY N AT /TEXT/K 

Old Text and 
Pointer Position 

lb 
---bl' 

2b ;1 
b2 J : 

3b I 

b3-.J 
4b 

(b=blank) 

$COPY Conmand 

$CO 2 AT /3b/l 

TEXT EDI'IDR 

New Text and 
Pointer Position 

lb 
bl 
2b 
b2 
3b 
bl i 

----2b: 
b3 " 
4b 

The four examples above show how $COFY conmand may be used in a 
single-conmand format. If $COFY is used in a multiple-command format, the 
conmands to produce the same results as the above four examples will be: 

Example A 

$CO 2 
$AT 2 
$HE 

Example B 

$CO 2 
$AT+2 
$HE 

Example C 

$CO 2 
$AT -3 
$HE 

Example D 

$CO 2 
$AT/3b/l 
$HE 

Since the pointer will be positioned at a line beyond the line of the copied 
group after each $COFY N command, the counting of lines is different. 
Therefore, observe particularly the number of lines of movement for the pointer 
in the first three cases. 

2.13 Editing-Control-Function Switch Conmands 

There is a group of editing control functions that UPDATE can turn them 
ON or OFF by commands. When a function is switched ON, that function will be in 
force. Such software switches have many similar properties as a hardware 
switch. For example, a function will be OFF unless explicitly turned OFF, or 
vice versa. Turning ON a switch several times in succession is equivalent to 
turn it on just once. 

(1) Functions permanently switched ON or OFF by UPDATE 

The following is a group of editing corrunands that provides a variety of 
control functions during an editing session. It has a general format of 

$KEYWORD = YES 
$KEYWORD = NO 

where KEYWORD represents an option, and YES or m to indicate whether such 
option is to be switched ON or OFF. When a function is switched ON, the effect 
is permanent for the remainder of the editing session or until the function is 
explicitly turned OFF. When UPDATE is first called, all the~~ switches are in 
the OFF condition. 



Editing Control Function Commands 55 

A. $ARROW=YES; $ARRCM=NO When this option is turned on, all 
control characters in the cur

1
ent line can be displaced by the TYPE 

command as either A-character 0 A-character, such as AL or AL, AI or 
AI. 

Example: Often, in entering a text line, the shift key of the terminal 
is used to enter special symbols, such as "*" or "]". If by mistake, the 
control key is used instead of the shift key, the mistake cannot be easily 
detected because a control character will not be echo-printed. Observe the 
following segment of an editing session: 

UPDATE Commands 

>$TYPE 
DIMENSION X(lO) 

>$ARROW=YES 
>$TYPE 

DIMENS
A 

[ION 
>$CHANGE /" [j / 

DIMENSION X(lO) 
> 

Comments 
---------.---~--------------

Printout seems OK 

Hidden non-print character 
Remove it. 
It's gone. 

B. $EDIT=YES; $EDIT=NO When a $EDIT=YES command is given, the 
UPDATE automatically inputs and prints out a "$" sign in column one. 
The user can thus enter the command keyword directly without the "$" 
sign. Unless there is a very heavy volume of UPDATE commands given 
in a session, $EDIT=YES is a command of convenience, sometimes of 
questionable merit. When this option is switched on, UPDATE will 
interpret every line as a command, because the computer already 
receives a "$" sign automatically as the first character. It causes 
a dilemma if you actually wants to insert a line. A command 

$CREATE /TEXT/ 

will cause a line represented by TEXT to be inserted after the 
current line, and may be used for insertion when the $EDIT switch is 
on. 

Example: A segment of editing involving $EDIT switch. 

UPDATE Commands 

>$TYPE 2 
C Illustrative Example 
C Main Program 
>$EDIT=YES 
>$C WRITTEN BY T. W. SZE 
?>$7R/C WRITTEN BY T. W. SZE/ 
>$ 

Comments 
------------.---~---

EDIT switch is OFF. 

Two lines typed out 
EDIT switch is now ON. 
Attempt to insert a line; 
note error return 
"$" automatically given 



56 CHAPrER 2 TEXT EDITOR 

C. $ECHO=YESi $ECHO=NO When this switch is turned on, an 
inserted line will be echo-printed on the teDffiinal right after the 
insertion. This switch is very useful when used in conjunction with 
the case-shifting switch or the tab-setting switch • 

. Example: In the following example, a table is being constructed with 
data ln columns 11-12, 21-22 and 31-32. Tabs are set at 11, 21 and 31. The 
$ECHO=YES switch will echo back entered data at the correct col~ln positions. 

___ U[lQ~T.E_~9.!I!!I_Cl!l~s 

> $TAB=l1~ 21 ~ 31 
>,1ECHO=YES 
> (Tab) 23(tab)55(tab)92 

23 55 
> (Tab) 43 (tab) 12 (tab) 28 

43 12 
> 

92 

28 

Set TAB. 
Set ECHO swi tch ,. 
Enter data. 
Data echoed. 

D. $ERROR=YESi $ERROR=NO When this switch is turned on, an error 
message will be reported on the teDffiinal when an error is corranitted. 
If the switch is turned off, only a "?" symbol i.s reported to 
indicate an error. 

Example: Suppose UPDATE is editing a file that contains: 5 lines. The 
contents of these 5 lines are 11, 22, 33, 44, and 55 respectively for each line 
starting at column-I. The pointer is now at line No.3. ():)serve the errors made 
in the editing session and error message received: 

UPDATE Corrnnands 

>$TYFE 
33 
>$CH/ll/66/ 
?>$ERROR=YES 
>$CH/ll/66/ 
?Sequence not in current line 
>$CH/33/66/ 
66 
>$TO/88/ 
?Reached last line of text 
>$WHERE 
[5] 

Corrnnents 

Display line 3. 

TO make a change. 
"?" symbol returned. Turn on 
error message and try again. 
meaning can't find a :match 
Try again. 
Change verified 
Move {X)inter. 
Can't find /88/. 
Check line number. 

>$DUNE Close the editing. 
?Illegal corranand or structure Incorrect spelling 
>$DONE Try again. 
Catalog name=>DATA.DAT Name DATA.nAT given 
File •••• Already existing file Duplicate name error 
Catalog name=>DATAX.DAT Give another name. 
1 blocks written on DATAX.DAT[115103,32057l] 



Editing Control Function Commands 57 

E. $GAG=YESi $GAG=NO After the commands ro, TRAVEL, CHANGE, 
SUBSTITUTE are executed, the terminal automatically prints out the 
new current line. While it serves as a convenience, it may become a 
nuisance if there is too much output. Tb suppress the printing, use 
$GAG=YES command, and the current line- can only be pr inted out by an 
explicit $TYPE command. This function can be cancelled by a $GAG=NO 
command. 

Tb suppress unwanted verification' printout: 

>$SUBSTITUTE/ITEM1/ITEM2/ 
volume 

>$GAG=YES 
> $SUBSTITUTE'/ITEHl/ITEM2/ 
> 

> 

of 
ver ification 
printout 

F. $LINE=YES: $LINE=NO When a $LINE=YES command is given, the 
line number will be displayed along with the line text in all 
terminal displays. 

Example: 
turned on: 

Observe the difference before and after the LINE switch is 

UPDATE Commands 

> $AT1; TYPE 3 
11 
22 
33 
>$LINE=YES 
> $AT1; TYPE 3 
[1] 11 
[2] 22 
[3] 33 
> 

Comments ----
Type out first 3 lines, 
no line numbers. 

Type out first 3 lines 
with ~heir respective 
line numbers. 

G. $UPPER=YES, $UPPER=NO; $I.DWER=YES, $I.DW=NO 
Many older or inexpenslve terminals are built without capability of 
entering or outputing lower-case letters. Hence, it is often 
desirable to enter upper-case letters but store them as lower-cases. 
Since both $UPPER and $LOWER swtiches affect the cases, the aggregate 
effect depends on the combination of the two switches: 

UPPER llMER Aggregate Eff~ct 

NJ NO Store as entered 
YES NO Store as upper cases 
NJ YES Store as lower cases 
YES YES store as entered 



58 CHAPI'ER 2 TEXT EDI'lDR 

The readers are reminded that all switches ar originally at OFF or ID 
states. However', if there are large volune of text data containing 
both upper and lower cases, such as a report or a thesis, it is not 
practical to use this switch if one has a upper-ca~!-only terminal. 
For such needs, the users are referred to the utility program RUNOFF 
(See Chapter 7) which contains many word-processing procedure 
including case-control. 

(2) Format of functions switched ON temporarily by UPDATI~ 

Frequently, it is desirable to switch certain functions ON only 
momentarily for the duration of one command. While the switch can always be 
turned on or off by commands, it will be convenient to construct a 
"spring-return" switch which will automatically be turned back to OFF after the 
command is executed. UPDATE provides this convenience by a command format in 
parenthesis: 

Examples: 

$LINE=YES 
$TYFE 3 
$LINE=NO 

$COMMAND (SWITCH FUNCTION) Argunent 
$COMMAND (FUNCTION-i) (FUNCTION-2) Argument 
$COMMAND (FUNCTION-l, FUNCTION-2) Argunent 

The following examples show equivalent commands: 

$TYFE(LINE) 3 

--....• ---- .. -~-~-~~.~~-~-~.~----.------
$ERROR=YES 
$TO/XYZ/ 
$ERROR=NO 

$TO(EHROR)/XYZ/ 

Equivalent 

$GA=YES 
$ER=YES 
$SU/XX/YY/ 
$GAG=NO 
$ERROR=NO 

$SU(GA,ER)/XX/yy/ 

2.14 Editing Function Value-Setting Commands 

In this group of commands, the common format is: 

$COMMAND = n 

where "n" is an integer. The meaning of "n" is defined for each function, and 
they are presented as follows: 

A. $FACTOR=:!,! This command will modify the size of the memory 
"window". Normally, there is no need to adjust the window. Only 
when editing a very large file, there may be justification to adjust 
the window to a larger size in order to reduce the overhead 
file-copying when the pointer is backed outside the current window. 



Editing Function Value-Setting Corrmands 59 

This was explained in a previous section in reference to Figure 2.1. 
When $FACTOR is given without an argunent, it is an inquiry for the 
size of memory assigned behind the current line. A number typed out 
on the terminal indicates the size in number of lines. 

B. $LENGl'H==N, and $SIZE==N Either of the commands will set the 
length of each line to N characters long. If the text in a line is 
less than N-character long, spaces after the last character are 
padded with blanks. If the text in a line is more than N-character 
long, the extra characters are simply truncated and removed. 

Complications arise when there are tabs characters in a line. 
Although each tab character counts only as one character in the line 
text, its effect is equal to multiple and variable blanks when it is 
tr anslated. Therefore, if the $LENGl'H or $SIZE command is used to 
prepare a fixed-length record file, it is desirable to let UPDATE 
translate tabs into blanks by $TAB command, so that a correct number 
of characters will be counted. The main usefulness of this conunand 
is to construct a data file in which the record size is uniform for 
every record. If $LENGl'H command is applied without any argument, it 
becomes an inquiry about the length of the current line. The 
computer will respond with a number which is equal to the number of 
characters (including blanks) in the current line. 

C. $SAVE==N T~is is a safety feature that can be very useful 
in long editing sesslOns. If the editing session in progress and the 
System must be re-initialized due to crash, broken communication 
linkage or any other emergency situation, all fruits of labor during 
that editing session are lost. Or, when the connect-time of the 
terminal expires, there will be no allowance for the user to finish 
or to close the editing, and he is forced to sign off immediately. 
The result of the current editing is also lost. If such contigency 
may be likely, it is prudent for a user to apply a command $SAVE==N. 
The following will then qe accomplished: 

When a conunand such as $SAVE==15 is issued, the output file E2 
will be periodically closed, stored, and reopened to continue, for 
every 15 lines output into the E2. Thus, in case of a system 
failure, the user will in his disk a TMP file named E200xx.TMP that 
contains the status of last save. This would cut the loss of 
information to a small amount. The exact name of the TMP file is 
reported on the user I s terminal. Should the editing goes to the 
completion successfully, that TMP file is deleted automatically. The 
disadvantage of such safety measure is that it significantly slows 
down the editing operation because of the extra file operations the 
computer is required to do every N lines. 

D. $TAB==Nl,n2,... When the UPDATE is first called, the tab 
settings are at the system default positions, namely at columns 9, 
17, 25, etc (every 8 columns). Tb reset the values of tab setting to 
a different set, use the command $TAB==nl,n2,... where "nl", "n2", 
etc., are the new tab settings. When a tab key is subsequently 
entered, it will be translated into multiple blanks, the number of 
which depends on where the tab key is entered on the 1 ine • Since tab 
key often causes problem in the count of characters in a line, 
especially in the case of a fixed record-length file, it is useful to 



60 CHAPI'ER 2 TE}IT EDITOR 

use this coaunand even though the tab settings may be the same as the 
system default. 

The chief usefulness of this coaunand is to prepare tables with 
fixed columns, or to prepare a fixed column data file. 

Examp~: Construct a roster of names with last names starting 
on column-5 and initials starting on colurnn-25: 

> $TAB=53 25 
> (T)Doe(T)JD 
> (T)Jones(T)MS 
> (T)Li (T)JG 
> (T) Kong (T) KJ{ 

> (T )Modze"lewski(T )SW 
> (T)Smith (T)YT 
>$AT1; TYPE 6 

> 

Doe 
Jones t 
Li . 
Kong 
Modzelewski 
Snith 

JD 
MS 
JG 
KK 
SW 
YT 

(T) =Tab key 

Example: Prepare a data file that has a FORmAN format of 2 (7X, 13) • 

>$TAB=83 18 
>(T)238(T) 23 
>(T) 12(T)856 
>(T) 44(T)433 

>$AT1; TYPE 3 
234 

12 
44 

> 

23 
856 
433 

(T)=TAB KEY 

2.15 Miscellaneous Editing Commands 

(1) Commands regarding to current line position 

A. $WHERE and $LINE Either of these t\\Q conunands will cause the 
absolute line number reported on the terminal. 

B. $LENGI'H Thi's conunand will cause the ltength of the 
current line in number of characters reported on the terminal. Also 
refer to the conunand $LENGI'H=n command. Note that $LENGI'H is to 
inquire about the length, while $LENGI'H=n is to set the length. 



Miscellaneous Commands 61 

C. $POSITION /TEXT1/TEXT2/.~. This command will type out the 
positions (column numbers) of the first character of each of the 
string TEXT1,TEXT2, .•• in the current line. 

(2) Insertion Commands . While UPDATE will accept any input line 
without the "$" sign in column 1 to be an inserted line, there are occasions 
insertions may be made easier by the following commands: 

A. OVERLAY /TEXT/K, or $K /TEXT/ This command will place a string 
of characters "TEXT" in the current line beginning at the Kth column 
and replacing whatever was there before. 

Example: Observe the effect of a command $4/ABCD/: 

Before 
1234567890 

B. $PLACE/TEXT/K This command will insert the string "TEXT" 
in the current line starting at the Kth column. Unlike the $OVERLAY 
command, the displaced characters do not disappear; they are merely 
pushed back to the right to make room for the inserted string. 

Example: Observe the effect of acommand $PLACE/ABCD/4 and compare it 
with that of the previous example: 

Before After 
1234567890 123ABCD4567890 

C. $REPLACE N When this command is given, the specified number 
of line in the file beggining with the current line is deleted, and 
the same number of lines subsequently typed on the terminal will take 
their palces. This c.ommand is equivalent to a compounded command of 
$DELETE(GAG); AT-l. The command $ REPLACE is equivalent to 
$REPLACE L 

Example: Observe the difference between REPLACE and DELETE commands: 

$DELETE command $REPLACE command 

>$AT1; TYPE 5 >$AT1; TYPE 5 
11 11 
22 22 
33 33 
44 44 
55 55 
>S4T3; DE (GAG) >$AT3; RE 
>XX >XX 
>$AT1; TYPE 5 >$AT1; TYPE 5 
11 11 
22 22 
44 XX 
XX 44 
55 55 



62 CHAPI'ER 2 TEXT EDITOR 

(3) Length-manipulating commands 

The end of a line is indicated by a carriage-return character. The 
number of characters between two carriage return characters, not: counting the 
carriage return characters themselves, is the length of a line. 1'herefore, by 
adding a carriage return some place in a line, it may be broken into two lines. 
Conversely, if the carriage return at the end of a line is removed, that line is 
joined with the next. In manipulating the length in this manner, caution should 
be exercised regarding the blanks at the end of a line. Normally, when there 
are trailing blanks in a line, UPDATE simply ignores them in ord4~r to conserve 
storage spaces. 'lhus, the number of blanks at the joint should be carefully 
observed, otherwise the space at the "seam" will be in error. 'I'he associated 
commands are now discussed next. 

A. JOIN command '!his command will remove the carr iage return 
character at the end of the current line, thereby join it with the 
next line. Because all trailing blanks are deleted, any blanks 
required at the seam must be provided by the leading blanks of the 
second line in the joining process. 

B. $BREAK command This command will insert a carriage return 
character -mba the current line, thereby braking it into two lines. 
It has two formats: 

$BREAK N 

$BREAK /TE)IT/ 

Both "N" and "TE)IT" indicate the end of the first line after the break. Thus, 
the second line after the break:Will begin with the old (N+l)th column as its 
first column, or the colunn irrmediately after the string "TE)IT" as its first 
column. --

Examples: <l:>serve the effect of $JOIN and $BREAK. 
specially to the "seam", before and after the operation. 

>$TYPE 3 
11 

22 
33 
>$JOIN 
11 22 
>SJOIN 
11 2233 
> 

>STYPE 2 
12345 67890 
>SBREAK/5/ 
12345 

67890 
> 

>STYPE 2 
12345 67890 
>SBREAK/5 / 
12345 
67890 
> 

Pay attention 



Auxiliary File Preparation 63 

SELECTED ADVANCED TOPICS IN UPDATE 

The materials presented in the PRIMER (pp.37-42) are for the beginning 
users. The materials presented in the COMMAMDS and PROCEDURES (pp.43-62) are 
for the average users. The combined materials should be more than adequate for 
most editing jobs. Occasionally, there may be special and frequent needs for 
very sophisticated editing and therefore a more complicated set of commands may 
be useful. However, unless you have special needs that require the commands in 
the following sections, your time may be better invested by thoroughly 
familiarizing yourself with the basic material and then going directly to the 
SUMMARY sections (page 72). It should be noted that the objectives 
accomplishable by the complex commands can also be accomplished by simpler 
commands in more steps. Or, it may require getting on and off from UPDATE 
several times. 

Three topics will be presented: auxiliary files, conditional commands, 
and editing programs. 

2.16 Preparation and Use of Auxiliary Files 

Sometimes, it is desirable to construct an auxiliary file which contains 
a selected excerpts from a main file. Or, in creating a new file, certain of 
its lines may be contributed by an already established file. Using only 
commands presented so far, one can take the established file, delete all 
unwanted lines, and the result would be an excerpt. In this section, some 
special UPDATE commands are presented that will facilitate such a tusk. 

(1) Auxiliary output file preparation 

A main file is already in existence and has been called by UPDATE. It is 
required now to make one or more auxiliary files which contain excerpts from the 
main file. Three commands are provided for this purpose: 

A. $ONTO command This command will open an auxiliary file in 
the disk into which excerpts of the main file will be transferred. 
The opened file will be given a filename in the ONTO command format: 

$ONTO = standard file specification 

where the standard file specification will contain a name and an 
extension. 

B. $PUT N command This command will transfer N lines, beginning 
with the current line, from the main file to the auxiliary file 
opene~ by a previous $ONTO command. If N is omitted in the command, 
it 1S equivalent to $PUT 1. CautTon: After the lines are 
transferred to the auxiliary file, those lines are no longer in the 
main file. If the editing session is allowed to end with a normal 
$END or $FINISH command, the new main file will be the old file minus 
those exerpts taken out. If you do not wish to disturb the old main 
file, you must not let the editing session come to a normal end. As 
soon as the auxiliary file preparation is completed and closed, apply 
CTRL-C to abort the editing job. 



64 

C. $CIDSE corrunand 
as a work1ng file~ 
the disk. 

CHAPI'ER 2 TEXT EDITOR 

The corrunand $OmO opens an auxiliary file E3 
$CroSE c~rrunand closes it and stores it away in 

Examples: Two auxiliary files X.OAT and Y.OAT are prepared composed of 
excerpts fran a main file SAMPLE. OAT. Observe the sequence of editing corrunands 
and the "Before" and the "After" conditions of the files: 

(BEFORE) (AFTER) 
SAMPLE. OAT Editi!:.!9 Conmands SAMPLE. OAT X.OAT Y.OAT 

11 • UPDATE SAlfPLE. DAT 44 22 11 
22 11 77 33 
33 >$AT2; ONTO=X.DAT 55 
44 >$PU2; AT+l; PU2; CLOSE 66 
55 >$/lTl; ONTO=Y.DAT 
66 >$PU1; CLOSE; END 
77 

(BEFORE) (AFTER) 
SAMPLE~OAT Edit~ng __ ~J!!lIand_s __ SAMPLE. OA,!, _____ b OA! ____ . _____ .. (~ Q!\..'l' __ 

11 • UPDATE SA HPLE • DAT 11 22 11 
22 11 22 33 
33 >$AT2; ONTO=X.DAT 33 55 
44 >(;PU2; AT+l; PU2; CLOSE 44 66 
55 >$AT1; ONTO=Y.DAT 55 
66 >$PU1; CLOSE 66 
77 >tC 77 

(2) Auxiliary in~t file o~rati9n 

Often, the input insertion to a file is preferred to be lines fran an 
existing file if it is already available. Presumably, that file has been 
checked out already and it is not only convenient to copy those lines but also 
reduces the chances of error. 

A. $FROM conmand While. the $OmO command specifies a 

B. 

destination auxiliary file, the $FROM corrunand specifies a source 
file. Its command format is similar to that of the $Ol~ corrunand: 

$FROM = standard file specification 

If this file resides in another user I s disk area, his PPN should be a 
part of the file specification, such as NAME. EXT [m,n] • 

...!.$.:...:AD::::-iVAN..;.....;;:..;.C"'-E~c~oco.:nm~an~d When the $FROM corrunand is first applied, its 
pointer is positioned at line 1. The $ADVANCE n command is used to 
position the pointer in the auxiliary file specified by the $FROM 
corrunand. AI though n is an unsigned integer, it is interpreted as a 
relative line number.-



Auxiliary File Preparation 65 

C. $GET corrmand Once the pointer of the auxiliary file is 
positioned correctly in the auxiliary file, a command of $GET n will 
transfer n lines, starting with the current line, from the auxiliary 
file to -the main file. After the transfer, the lines in the 
auxiliary file are not erased. 

sometimes, excerpts are taken from several auxiliary files. In changing 
from one auxiliary file to another, it is necessary to disengage the old one 
before engaging the new. For this reason, the command $FROM is designed to 
disengage automatically the old auxiliary file and engage the new file. Each 
time a file is engaged, the pointed will be positioned at line 1. 

Example§.: A file SAMPLE.OAT and t\\Q auxiliary files X.OAT and Y.OAT 
are all available in the disk storage. Their contents are as follows: 

__ i'.i1e_C9.nt.enJ;:,~L.:::=-::-_'~~QRe~~. ___ ._. __ 
SAMPLE. OAT X.OAT Y.OAT 

11 
22 
33 
44 
55 
66 
77 

M 
BB 
CC 
00 
EE 

xx 
yy 
ZZ 
UU 
W 

Another file Z.OAT is now prepared by inserting certain lines from X.OAT 
and Y.OAT into SAMPLE.OAT. This is shown below: 

.UPDATE SAlfPLE.DAT 
11 
>$AT2; FROM=X.DAT 
>$ADVANCE 1; GET 2 
>$AT/55/; FROM=Y.DAT 
>$AD2; GET 2: DONE 

CATALOG NAME=>Z.DAT 
1 BlOCK WRI'lTEN ON Z. OAT 

EXIT 

2.17 Conditional Editing Commands 

___ . __ ... __ . ..Flle.. Contents ... :::::::: . "AFTEIr' __ .. 
_~J.~.&f>.1'_ _~.!J?f>.1'._ _x.!.~1'._ ~!Qf>.J'_ 

11 M XX 11 
22 BB yy 22 
33 CC ZZ BB 
44 00 UU CC 
55 EE W 33 
66 44 
77 55 

ZZ 
UU 
66 
77 

The UPOATE is enhanced in capabiltiy by being able to make "decision" on 
which one of t\\Q alternate groups of editing commands are to be executed. 

The basic structure of decision-making is as follows: First, a question 
is asked to which a true-false answer is stored. This is accomplished by 
issuing a $IF command. If the answer is affirmative, issuing a $THEN command 
will execute a group of "execute-if-true" eiditng commands. (If the answer is 



66 CHAPl'E~ 2 TEXT EDITOR 

negative, issuing a $THEN corranand will receive no response fran them.) If the 
answer is negative, issuing a $ELSE corranand will execute a group of 
"execute-if-false" editing commands. (Similarly, if the answer is affirmative, 
issuing a $ELSE corranand will receive no response fran them.) Such a structure is 
simialr to the conditional structure in many language processors, and is 
graphically illustrated in a flow chart as shown in Figure 2.2. 

$IF command 

One or more 
$ELSE commands 

1 

_I 

I 
I 

I 
: I 

__ L __ [_: 

One or 
more 
$THEN 
commands 

Other Editing Commands 1 
L ______________ . _ .. _. __ ... _. _. _I 

Figure 2.2 Flow Chart of Conditional Editing Corranands 

(1) Single conditional commands 

A. $IF command As illustrated in Figure 2.2, the $IF corranand 
asks a~ue-false question, and its answer is stored away, setting 
the stage for subsequent actions of $THEN and $ELSE cOIIUncmds. Since 
the UPDATE has immediate information only on the current line, the 
question asked must pertain either to the current line number or to 
its content. Therefore, the formats of the $IF conunand are limited 
to the following: 

$IF format 

$IF /TEXT/ 

$IF /TEXT/K 

$IF $TEXT$ 

$IF n 

Is there a string "TEXT" in the current line? 

Is there a string "TEXT" in the current line 
that begins at the Kth cohron? 

Ignoring blanks, tabs, and difference between 
upper and lower cases, is there a str ing 
"TEXT" in the current line? 

Is the current line number equal to n? 



Conditional Commands 67 

Notice that the formats of the first three are very similar to those of 
$'1'0 command s. 

B. $THEN and $ELSE commands The $THEN and the $ELSE commands will 
specify and execute the alternate sets of commands depending on the 
answers to a previously issued $IF command. The command format is as 
follows: 

$THEN / command 1; command 2; ••• / 

$ELSE /command 1; command 2; ••• / 

The commands between the delimiters "/" follow the rules of 
compounded cammand structure, as discussed in section 2.10. 

Function: 

$IF/FORMAT/7; THEN/WHERE; TYPE 2/;ELSE/DELETE 2/ 

Examine the current line. Does it have a string of characters 
"FORMAT" beginning at the 7th column? If yes, print out the 
line number and type two lines. If no, delete 2 lines. 

(2) Nested conditional commands 

Each of $THEN and $ELSE command contains a set of embedded cammands in 
the compounded form. If the embedded commands contain another IF command, we 
now have a nested structure. The following flow chart shows a typical example 
of nested command structure: 

First level 
IF ________ .~ ___ 

/A! ? 

2nd I-e~ I - - - _. - - - - - _. --1 

IF I 2nd level THEN I First level 
-L, I THEN 

'>----..:..1--< /S/ ~_1J ~ 
yes yes 

[TYP~.~~ 
L- __ 

2nd level 
ELSE 

The function of this flow chart is as follows: First examine the current line 
to see if there is a char acter "A". If no, do nothing. If yes, then examine if 
there is also a character "B" in the current line. If yes, type one line; if 
no, type 2 lines. These functions may be accomplished by the following nested 
command : 



68 CHAPI'ER 2 TEXT EDI'lDR 

First level T
$IF/A/: !THEN/JIF~~-::~~lYPEL*: gLS~_*:~~~~~ 

IF - First level actions 

IF -- - L - -- Second level actions Second level 

In using a nested conditional structure, one should be cautioned about 
the following: 

A. '!he main advantage of the nested conditional structure is to 
compress many editing commands into a single cqmpounded one, so that its 
execution will be more efficient. The UPDATE allows a maximum of ten nesting 
levels. The main drawback is that constructing a nested structure is a very 
error-prone process. Furthermore, more levels it goes into, less man-machine 
interaction is available to the user. Therefore, even though the UPDATE is 
machine-effective for high-level nesting, it is a poor practice for a user to go 
much beyond the second level. Otherwise, an editing session will be very likely 
degenerated into a debugging session for editing commands. An exception to this 
advice is when one has some nested commands that will be used repeatedly by the 
user or others. In such a case, it may be justifiable to spend a lot of time to 
debug it and store it for later repeated use. 

B. In addition to the logic involved, the most likely source of error 
in a nest construction is the choice of delimiters. Normally, any special 
symbol pair may be used as delimiters (or as "quotation marks"). Since a nested 
structure is basically a compounded structure, the semicolons";" must be 
reserved to separate the commands. Moreover, there should be no ambiguity 
between the command delimiters of IF, THEN, ELSE at different levels. 
Therefore, it is advisable to assign an unique delimiter symbol for each level. 
See the following illustrative examples; 

Exampl~: Consider the following nested commands with their respecitve 
interpretation of functions by means of flow chart: 

{ 

$IF/A/; THEN/IF*B*/; THEN*TYPE*; ELSE *TYPE 2*/ 

~-§_E_l 
[EYFE-2] 



Conditional Commands 

{ 

$. IF /A/; THEN/IF*B*; THEN*TYPE* /; ElSE *TYPE 2* 

~~ 
~~-~~ 

IF /A/; THEN/IF /B/; THEN/TYPE/ /; ElSE /TYPE 2/ 
Incorrect use of delimiters! 

69 

C. Several nested conunands may be comJ:X)unded together to form a 
comJ:X)unded nested conunand. In doing so, one must be careful about the correct 
placement of the THEN, ElSE commands. Each time when a first-level IF command 
is executed, its true-false answer replaces that obtained in a previous IF 
command. The same goes for the subsequent level IF commands. Thus in the above 
example, the actions of both statements may be combined by this statement: 

$IF/A/; THEN/IF*B*; TH*TY*;EL*TY2*/;TH/IF*B*jTH*TY*/;EL*TY2* 

(3) Conditional with logic connectives 

Consider the following fully-developed two-level nested structure: 

Accomplished by Placing 
Logic Connective the same actions in Box 
Betl'!~~I") __ QJ_~~~_ JlQo ____ Q_L ___ JSL ____ -.!.!. 

LEGEND: T=TRUE 
F=FALSE 

AND 
OR 
NAND 
NOR 
XOR 

x 
X 

X 
X 

X 

X 
X 

X 

X 
X 

By placing identical editing actions in the appropriate boxes as shown in 
the accompanying table, a logical connective between the answers to Ql and Q2 
may be accomplished. For example, if one wants to type the line if either 
character "A" or character "B" (or both) is present, he should place the TYPE 
corrmand in boxes 01, 10 and 11. The resul t is the following conunand: 

$IF /A/; THEN/IF*B*; THEN *TYPE*; ElSE *TYPE* /; ElSE/IF*B*; THEN *TYPE* / 

Actually, one can see that there is an INCLUSIVE OR, or logical union relation 
existed in this case. The UPDATE processor has simplified the matter by 
providing five conunands specifying logic connectives: AND, OR, NAND, IDR and 



70 CHAPI'ER 2 TEXT EDITOR 

XOR. They are respectively for logic intersection, logic union, negation of 
AND, negation of OR, and EXCllJSIVE OR. 'Ihus, the above example can now be 
written as: 

$IF/A!; OR/B/; THEN /TYPE/ 

'!here is one important caution in using the logic connective commands. 
Unl ike the tll.Q-level nested commands, the second-level question does not 
establish an independent answer (True-False) but modifies the first one. 
Therefore, if the first-level question alone is to initiate some THEN or ELSE 
action, it better be done before the answer is changed by the logical connective 
commands. Observe the difference between the following tll.Q editin<J commands: 

$IF /A!; ELSE /TYPE/; OR /B/; THEN /DELETE/ 

$ IF/A!; OR /B/; ELSE/TYPE/; THEN /DELETE/ 

The difference lI.Quld be the execution of ELSE/TYPE/ segment. 

2.18 Editing programs 

In the UPDATE processor, the compounded command structure enables a 
series of command executions in one pass. The TRAVEL, 00, and STOP commands 
result in the looping capability. The conditional command group IF, THEN, EISE, 
and logic connectives yield the decision-making capability. Combining all of 
these, one has the makings of a complete stored editing program. However, it is 
not always desirable to construct editing programs for one-shot. usage as they 
are very wasteful of user resources. Moreover, accuracy of editing requires a 
high degree of user-machine interaction which a complete editing program will 
deprive. Therefore, construction of editing programs should be limited to 
applications of wide and frequent usages. 

Two such program are given as illustrative examples: 

Exampl~: Given a FORmAN program, design an editing prO:;lram that will 
print out all FORMAT statements. AssLnne all FORMAT statements helve the keyll.Qrd 
"FORMAT" beginning at colunn 7, but some of the FORMAT statement may have 
continuation cards. 

The logic of the program may be described by means of a flow chart shown 
on the next page. 

In the compounded structure form, the resulting program (one line) is as 
follows: 

$GAG=YES;AT/FORMAT/7;TYPE;TR+l; IF/C/l;OR/*/l; THEN/m/; IF/ /6; 
THEN/AT-I; AT'FORMAT'7/; TYPE; m 

After this command is completed, all FORMAT statements will have been typed out 
on the user's terminal. An error report sign "?" will also be typed out, 
because when the search reaches the end of file, the $TR+l command will still 
attempt to advance 1 line. If the above program has lUI' commands instead of 
TYPE commands (with CNl'O command issued previously), this program lI.Quld have 
prepared an auxiliary file that contains all FORMAT statements in the FORmAN 
program. 



Editing Programs 

GO 

Search for /FORMAT /7. j 
When found, type It. 

no 

71 

Examp~: The equivalence bet~en the 026 and the 029 key punch code is 
shown below: 

026 Punch 029 Punch 

# 

& 

@ 

% 

< 

Other characters have the same punch codes. 

+ 

$TR+l;IF/ /;TH/AL • • ;AT-l/;OR/&/;TH/AL.&.+.;AT-l/OR/@/;TH/AL.@.'.; 

AT-l.;OR/%/;TH/AL.%.(.;AT-l/;OR/</;TH/AL.<.) .;AT-l/;GO 

Since a single-line compounded command 
characters, two-letter abbreviat~ons are 
above command. 

is limited to a maximlllTl of 150 
used for all UPDATE keywords in the 



72 CHAPI'ER 2 TEXT EDITOR 

A SUMMARY OF FILE MANAGEMENl' BY UPDATE 

2.19 File management Tasks 

(1) To create a new file from a terminal 

When UPDATE receives the input file name, the disk storage directory is 
searched. when the file is found, the file is loaded into the input ~r king 
file. 

However, if the file name supplied by the user is null (represented by a 
carr iage return and nothing else) , or if the file does not exiBt for the name 
given, the input ~rking file is entirely blank. Thus, the only information 
that may go to the output ~rking file ~uld be fran the terminal or fran other 
stored files by insertion mode. In this way, an entirely new file may be 
created fran the user's terminal and stored in the disk. 

(2) To create a new file by batch 

The effectiveness of UPDATE to do editing job is mainly because its 
man-machine interaction. Therefore, UPDATE normally is not suitable for BATCH 
jobs. However, if the source materials are in punched card form, a file may be 
created fran these cards by UPDATE submitted in BATCH. 

Suppose we wish to store a deck of data cards in disk and will name the 
file as DATA.DAT. First, a batch deck of cards is prepared that contains the 
following. Either will do: 

$JOB [m,n] 
_$PAS~ORo··· (pass~~r~f 

_.!. U?QA'I'E: J:ll\TA •. RA'J.'. 

data 
deck 

$$END 
$Eo.f 

_$..:rQBlm1 I11 . . .......... . 
_$PA.SSWORJ)(pass\\'C)~(n 
~.UPOA're. 
,-.1a~l.ar1k.cClr:<l) 

data 
deck 

'--.$$lX)NE • 
DATA.DAT 
$EOJ -

In the above deck setup, the single-$ cards are BATCH 
double-$ cards are UPDATE commands read by BATCH. 
Multiprogram Batch, see Chapter 9. 

commands, 
For more 

and those 
details on 

After the cards are prepared, read the cards in at a ruE card reader. 
The job will be executed by the computer, and the file DATA.nAT is thus created 
from the cards. For card input used in this way, the same precaution should be 
exercised that there should be no n$n character in the first column in the data 
card deck. 



File Management by UPDATE 73 

(3) To copY a file 

A file may be duplicated.and stored in the user's disk area by using the 
UPDATE in the folowing way: 

.UPDATE NAME.EXT[1l5103~320571] 
(UPDATE prints out the first line of NAME.EXT) 
>$DONE 
CATAIDG NAME=> NErv. EXT 

This is equivalnet to a monitor command of: 

.COPY NEW.EXT = NAME.EXT[l15l03,32057l] 

(4) To merge several files into one 

For example, if three files Dl.FOR, D2.FOR and D3.FOR are to be merged 
into one DX.FOR, it can be accomplished in the follwoing way: 

• UPDATE D1. FOR 
(UPDATE prints out the first line of Dl.FOR) 
>$AT $ 
>SIllPUT= D2.FOR 
>$INPUT= m.FOR 
>$DONE 
CATALOG NAME=>DX.FOR 

This is equivalent to applying the monitor command: 

.COPY DX.FOR = Dl.FOR,D2.FOR,D3.FOR 

(5) To prepare an auxiliary file from a source file 

The following is an example where an auxiliary file FORMAT.FOR is 
prepared by extracting all FORMAT statements (some of which may be multiple-line 
statements) from the FORTRAN file SAMPLE. FOR. Assume that all keyword FORMAT of 
the FORMAT statements starts at the 7th column • 

• UDPATE SAlfPLE. FOR 
(UPDATE prints out the first line of SAMPLE. FOR) 
>$BEFORE 
>11 (l1=blank) 
>MNTO=FORl1AT.POR 
>$GAG=YES;AT/PORMAT/7;PU;TR+1;IP/C/1;OR/*/1;TH/GO/;IP/ /6 

TH/AT-1;at'PORMAT'7/;Pu;rro 
one 
line 

?>$CLOSE 
>tC ?=error indication when reaching the end 

of file and still wanting to "GO" 

The logic of the long command line in this example was discussed in Section 
2.18. 



74 CHAPI'ER 2 TEXT EDI'lDR 

2.20 Examples of File Editing 

Two examples of editing a complete file will be given using the UPDATE 
editor. The first one consists of entirely text eidting, while ~~e second one 
is a stored progran in FORI'RAN. The following points will be helpful: 

(1) A careful proof-reading of the old text is essential. It is also 
desirable to do the proof-reading :'off-line" to conserve valuable terminal time. 

(2) To increase the speed and efficiency of editing (and therefore to 
reduce time and cost), all corrections should be marked on the listing, together 
with their line numbers if appropriate. 

(3) Moving from one record to another, the normal operation of the UPDATE 
editior is to go forward. In fact, backing up the pointer to some previous line 
may sometimes be costly because it will involve file re-writing and re-reading. 
Therefore, backing up is generally an inefficient process and should be used 
sparingly in view of processor effic iency. On the other hand, since deletions 
and insertions of lines during editing will change the line numbers of all lines 
of text beyond the pointer, it will be progressively difficult to locate the 
desired line by absolute line numbers. For this reason, in editing the text by 
its absolute line numbers, it is sometimes desirable that the editing be done in 
the reverse direction, starting from the end of the file and w:>rking backwards 
toward the front. In this manner, the deletion and insertion of lines will not 
affect the line numbers of the portions of the file not yet edited. Here we are 
trading off machine and processor efficiency for user convenience. This process 
is desirable only if the user has made preparations as outlined in (1) and (2). 
To improve processor efficiency, he can also readjust and enlarge the window by 
the $FAC'lDR command. 

(4) Only the first tw:> letters of any UPDATE command w:>rd nE~ed be given. 
Incorrect spelling of command is tolerated as long as the first t\'iO letters are 
spelled correctly. 

Example 1: To edit the text taken fran the School of Engineering 
Bulletin, University of Pittsburgh. The draft of text on disk file TEXT.EDr 
along with the revisions on the draft appears as follows: 

THE MICHAREL L. BENEDUM HALL OF ENGINEERING 

STDUENl'S ENROLED IN THE SCHOOOL OF ENGINEERING, UNIVER TY OF 
PITTSBURGH, RECEIVE THEIR EDUCATION IN ONE OF THE COUNTRY'S MOST 
MOOERNAND BEST EQUIPPED ENGINEERING BUILDINGS, THE MICHARL L. BENNEDUM 
HALL OF ENGINEERING. THE BUILDING CCMPLEXX IS NAMED IN HONOR OF 
MICHAEL L. ENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF 
MICHAEL L. ENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF 
THE BENEDUM TREE OIL CCMPNAY. A GRAm FRG1 THE CIAUDE WORl'HINGI'ON 
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE ON WHICH THE ENGINEERS 
COMPLEX IS BUILT. 

The following is a printout of the editing session: 



Examples 

.UPDATE TEXT. EDIT 
THE MICHAREL L. BENEDUM HALL OF ENGINEERING 
>$CH/T/ T/R// 

THE MICHAEL L. BENEDUM HALL OF ENGINEERING 
>$AT+2;CH/L/LL/OOO/OO/R TY/RSITY/ 

SWDENl'S ENROLLED IN THE SCHOOL OF ENGINEERING, UNIVERSITY OF 
>$AT+2;CH/AND/ AND/ARL/AEL/NN/N/ 
MODERN AND BEST EQUIPPED ENGINEERING BUILDINGS, THE MICHAEL L. BENEDUM 
>$AT+ 1; CH/X/ / 
HALL OF ENGINEERING. THE BUILDING CCMPLEX IS NAMED IN HONOR OF 
>$AT+l; CH/EN/BEN/ 
MICHAEL L. BENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF 
).1AT+l; DELETE 
THE BENEDUM TREES OIL CCMPANY. A GRAN!' FRCM THE CLAUDE WORTHINGl'ON 
>$AT+l;CH/CHASE/CHASE THE LAND/ENGINEERS// 
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE THE LAND ON WHICH THE 
>$AT+ 1; PLACE/ENGINEERING /1 
ENGINEERING COMPLEX IS BUILT. 
>$END 
> 
1 Blocks written on TEXT.EDr[33,33] 

EXIT 

The edited file is shown below: 

THE MICHAEL L. BENEDUM HALL OF ENGINEERING 

STUDENl'S ENROLLED IN THE SCHOOL OF ENGINEERING, UNIVERSITY OF 
PITTSBURGH, RECEIVE THEIR EDUCATION IN ONE OF THE COUNl'RY'S MOST 
MODERN AND BEST EQUIPPED ENGINEERING BUILDING, THE MICHAEL L. BENEDUM 
HALL OF ENGINEERING. THE BULDING CCMPLEX IS NAMED IN HONOR OF 
MICHAEL L. BENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF 
THE BENEDUM TREES OIL CCMPANY. A GRAN!' FRCM THE CLAUDE WORTHINGl'ON 
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE THE LAND ON WHICH THE 
ENGINEERING CCMPLEX IS BUILT. 

75 

Example: To edit a stored FORTRAN program. It is suggested that the 
readers follow the running comments marked on the printout • 

• UPDATE SAffPLE. FOR 
[CREATE NEW FILE] 
>C SAl1PLE PROBLEM FOR THE TINE-SHARING NOTES 
> 
> 
> 
> 
> 
> 
> 

READ ( 5~ 10)A~ B~ C~ D~ Xl 
10 FORt1AT(F20.7) 

1 X2=Xl-(A*Xl**3+B*Xl**2+C*Xl+D)/(3~*A*Xl**2+2.*Xl+D) 
f7RITE(6~ 10)X2 
IF(ABS((Xl-X2)/X2-.001)3~3~2 

2 Xl=X2 

> 3 
> 11 
> 

GO TO 10 
WRITE(6~ l1)X2 
FORftMT(/' TilE REAL ROOT = '~F20.7) 
STOP 

> 
>11u)h 

END 

12 



76 CHAPTER 2 

> SAT1; TYPE 12 

C SAMPLE PROBLEM FOR THE TIME-SHARING NOl'ES 
READ(5,10)A,B,C,D,Xl 

10 FORMAT(F20.7) 
1 X2=Xl-(A*Xl**3+B*Xl**2+C*Xl+D) (3,*A*Xl**2+2.*Xl+D) 

WRITE (6 ,10) X2 
IF(ABS((Xl-x2)/X2-.00l) 3,3,2 

2 Xl=SX 
GO TO 10 

3 WRITE(6,11)X2 
11 FORMAT(/' THE REAL Roor == ',F20. 7) 

STOP 
END 

> ST04 

1 X2==Xl-(A*Xl**3+B*Xl**2+C*Xl+D) (3,*A*Xl**2+2.*Xl+D) 
>SCHANGE SD)(3,SD)/3.S2.S2.*BSDSCS 

1 X2==Xl-(A*Xl**3+B*Xl**2+C*Xl+D)/(3.*A*Xl**2+2.*B*Xl+C) 
>SAT+1; CH/W/ W/ 

WRITE (6,10)X2 
> SAT+1; CH/X2-/X2)-/ 

IF(ABS((Xl-X2)/X2-.00l) 3,3,2 
> SAT+1; CH/SX/X2/ 

2 Xl==X2 
> SAT+1; CH/O/ / 

ill TO 1 
> SEND 
1 Blocks written on SAMPLE.FOR[33,33] 

EXIT 

• TYPE SAMPLE. FOR 
C SAMPLE PROBLEM FOR THE TIME-SHARING NOl'ES 

READ(5,lO)A,B,C,D,Xl 
10 FORMAT(F20.7) 
1 X2=Xl-(A*Xl**3+B*Xl**2+C*Xl+D)/(3.*A*Xl**2+2.*B*Xl+C) 

WRITE (6 ,10) X2 
IF(ABS((Xl-X2)/X2-.00l)3,3,2 

2 Xl==X2 
GO TO 1 

3 WRITE(6,1l)X2 
11 FORMAT(/' THE REAL Roor == ',F20.7) 

STOP 
END 

TEXT EDITOR 



Exercises 77 

EXERCISES 

1. (a) Enter the following FORTRAN program in your disk by using UPDATE and 
name the file as PROBl.FOR: 

C PROBLEM 00. 1 
DIMENSION K (10) 
00 5 1=1,10 

5 K(I)=I**2 
WRITE (6 ,10) ((I ,K(I)) ,1=1,10) 

10 FORMAT (217) 
S'lDP 
END 

Purposely make some errors in your typing. For example, omit some commas 
and misspell a few words. 

(b) When you are back at the monitor level, execute the incorrect program by 
a command: 

.EXECUTE PROBl.FOR 

and observe the proceedings. 

(c) Make appropriate corrections, and execute again. Repeat until you get 
the program letter perfect. 

2. What would each of the following UPDATE fragments do? 

(a) $AT 1 
$SUB/XX/YY/ 

(d) $SUB/READ(5,/READ(1,/ 

(b) $AT 1 
$TR/XX/ 
$CH/XX/yy/ 
$AT -1 
$00 

(e) $TR+liIF/READ/7iTHEN/TYPE(LI)/ioo 

(f) $ONTO= READ.FOR 
$TR+ 1 i IF /READ/7 i THEN/PUT/ i 00 
$CIDSE 

3. Three different compounded MOVE commands are given: 

$MOVEi HERE 

$MOVE i AT-l i HERE 

$MOVE i AT$ i HERE 

(c) $AT 1 
$TR/XX/ 
$CH/XX/yy/ 
$00 

For each of these three commands, answer the following questions: 



78 CHAPl'ER 2 TEXT EDITOR 

(a) Where is the line moved to? 

(b) Where will be the pointer after the move? 

4. Verify your answers to problem 3 by actually setting up a file, observing 
the BEFORE and AFTER of each of the above three commands. 

5. Enter Lincoln's Gettisburg Address as a file and name it as ABE.DOC. 
Correct any error in the file. 

6. For each line of ABE.DOC prepared in problem 5, edit the text so that the 
following results are obtained: 

a. Set the left margin at column 1; the right margin at column 45. 

b. The first line of a new paragraph is indented 5 spaces. 

c. Right justify by adding spaces between words. 

d. Space all punctuations so that there is one space after each comma or 
semicolon, and 3 spaces after each period. 

7. After copying the file SYS:NEWS (see Exercise (3) , Chapter 1) into your own 
disk area, use UPDATE and with one compounded instruction, search and type 
out all first lines of news items~at were dated in 1980. 

8. The instructor will furnish for this exercise a long FORTRAN program that 
contains many FORMAT, READ, WRITE and CALL statements. Prepare four 
auxiliary files that will contain the following information: 

(a) File FORMAT.FOR: 
(b) File READ. FOR: 
(c) File WRITE.FOR: 
(d) File SUBR.FOR: 

a record of all FORMAT statements 
a record of all READ statements 
a record of all WRITE statements 
a record of all subroutine CALL statements 

For a simple case, make the following assumptions: 

(1) All characters are upper cases. 
(2) All statement keywords oegin on column 7. 
(3) No continuation statement. 

9. For a more challeging case of problem 8, make the following assumptions and 
then prepare the required auxiliary files: 

(1) Mixed upper and lower cases in the FORTRAN program file. 
(2) A statement may begin anywhere between column-7 and column-72. 
(3) Some of the READ, WRITE or CALL statements may be imbedded in an 

IF statement, e.g., IF(I.EQ.l)READ(5,56)X 
(4) There may be continuation statements. 

You may modify this problem and generate a problem a varying degree of 
difficulty by selecting one or more of these assumptions. 



flPDATE Exercises 79 

10. The source program in FORTRAN-IO on DEC System-lO allows a special use of 
the tab key (or the CTRL-I character) to skip all or part of the label 
field. The purpose is to use a tab-character (1 character) to replace 
multiple spaces (multiple characters) -to save storage space. Rules of 
interpreting a FORTRAN-IO statement using a tab in the initial field are as 
follows: 

(1) If the tab is immediately followed by one of the digits 1 through 9, 
that line is a continuation line of the previous one. The non-zero 
numeric character following the tab is considered in column-6. 

(2) Otherwise, the line is an initial line of a FORTRAN statement, and the 
character following a tab is considered to be in column-7. 

For example, both of the following versions of a source program are 
acceptable by DEC System-lO: 

Version 1 

C SAMPLE ~ROBLEM 
bbbbbbDO 10 1=1,20 
bbbbbbK=I**3 
bbblu TYPE 20, I, 
bbbbblK 
bbb20 FORMAT(2I12) 
bbbbbbEND 

b=blank space 

Version 2 

C SAMPLE PROBLEM 
(T)OO 10 1=1,20 
('f) K=I**3 
10(T)TYPE 20, I, 

(T)lK 
20 (T)FORMAT(2I12) 
(T)END 

(T)=tab 

For a FORTRAN-IO program entered by using the tab-key storage-saving 
technique, repeat problems 8 and 9. 

11. For each of the following functions, write a single-line compounded UPDATE 
command to accomplish it: 

(1) To type out only those lines in a FORTRAN program that have lengths 
longer than 72 columns. The printout should contain absolute line 
numbers, line lengths, and the line itself. Do not print out all lines. 

(2) To insert the word EXERCISE in columns 73-80 of every line in a FORTRAN 
program. 

(3) to print out all subroutine call statements in a FORTRAN program. 

(4) To print out all FORMAT statements. 

(5) To print out all COMMENT statements. 



80 CHAPl'ER 2 TEXT EDI'IDR 

REFERENCES 

1. Pl'SS TEXT EDI'IDR, Class Notes of a Freshman Course "Engineering Analysis 
2", T. W. Sze, University of Pittsburgh, Pittsburgh, l?ennsylvania; 
1969. 

2. A PRIMER FOR PITT TIME-SHARING SYST~ (Pl'SS), Chapter 5, 'rext 
T. W. Sze, University of Pittsburgh, Pittshurgh, Pennsylvan.ia; 

Editor, 
1970. 

3. INI'RODUCTION 'ID A TIME-SHARING SYSTEM, Chapter 6, Text Editor, T. W. Sze, 
University of Pittsburgh, Pittsburgh, Pennsylvania; 1972. 

4. UPDATE Reference Card, Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; June, 1979. 

5. UPDATE/X - UNIVERSITY OF PITTSBURGH DATA AND TEXT EDI'IDR, Computer Center, 
University of Pittsburgh, Pittsburgh, Pennsylvania; 1976. 

6. INTRODUCTION 'ID DEC SYSTEM-10: TIME-SHARING AND BATCH, T. W. Sze, Chapter 
6, Text Editor, University of Pittsburgh, Pittsburgh, Peru1sylvania; 
First Edition, 1974; Second Edition, 1977. 

7. UPDATE, Gerald W. Bradley, Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; 1979. 



CHAPI'ER 3 

FORTRAN-l 0 

FORTRAN is the most widely studied and used 
programming language in the united States. Therefore, 
this chapter is prepared with the assumption that the 
readers already have some background knowledge of the 
language. For those who are not familiar with the 
language, please consul t anyone of many FORI'RAN 
manuals available. Two typical ones are: 

PROGRAMMING WITH FORl'RAN, Byron S. Gottfried, Quantum 
Publishers, New York, 1972 

PROBLEM SOLVING AND STROCTURED PROGRAMMING IN FORI'RAN, 
F. L. Friedman & E. B. Koffman, Addison-Wesley 
Publishing, Reading, Massachusetts; 1977 

INTRODUCTION 

There are not just a few versions of FORI'RAN; there are dozens. Even on 
the DEC System-lO alone, there are several versions available. In attempting to 
unify all versions of FORl'RAN developed in the computer industry, the American 
National Standards Institute (ANSI) in 1966 set up a standard for FORI'RAN, now 
known as the "1966 ANSI Standard."* However, what has happened since is that the 
computer industry has used the Standard only as a minimum standard, and every 
company has extended far beyond that minimum for their own versions of the 
FORl'RAN language. unfortunately, while the ANSI standard part is uniform, the 
enhanced parts among different versions are not. Programs written in one 
enhanced version may require some modifications if run on a machine using a 
different compiler. The version of FORl'RAN covered in this chapter, called 
FORI'RAN-IO by the Digital Equipment Corporation, is a powerful superset of the 
ANSI standard version. A summary of FORl'RAN-IO will be included in this 
chapter. However, readers are encouraged to seek more details from References 3 
and 4. 

*USA Standard FORTRAN (x3.9-1966), American National Standards Institute, 1966 

81 



82 CHAPl'ER 3 FORTRAN-l 0 

RUNNING A FORTRAN POOGRAM ON DEC SYSTEM-IO 

After a FORI'RAN program is written and thoroughly checked for its logic, 
running the program will require tv.u major steps: 

(I) To enter and store the FORl'RAN program as a disk file. 

(2) To compile, load, and execute the stored program. 

The following discussion will be devoted to these tv.u steps. 

3.1 To Enter and Store a FORTRAN Program 

In the DEC System-lO , the source program in FORI'RAN, AL(DL, COBOL or 
MACRO should first be stored as a disk file because the most corrunon way of 
execution is for the System to search in the disk for a specified program. 

There are a number of utility programs available by which a user can 
enter and store his FORI'RAN program. By far the best way is to use the UPDATE 
editor, which enables a user full editing facilities while entering a program. 
The details of UPDATE are given in Chapter 2. In this chapter, only the 
procedure relating to the entering of a FORTRAN program will be demonstrated. 

As an illustration, let us consider tv.u programs: one containing just 
the main program, and the other a main program plus a subroutine. The program 
listings are as follows: 

Program 1 

C SAMPLE PROGRAM 1 
DO 10 1=1,10 
K=I**3 

10 TYPE 20, I,K 
20 FORMAT{2IlO) 

Program 2 

C SAMPLE PROGRAM 2, WITH SUBROurINE 
ACCEPl' 10, M,N 

10 FORMAT (I3) 
CALL CUBE{M,N) 
END 

C SUBROurINE FOR SAMPLE PROGRAM 2 
SUBROurINE CUBE (M,N) 
DO 10 I=M,N 
K=I**3 

10 TYPE 20, I,K 
20 FORMAT (2IlO) 

RETURN 
END 

(I) To enter program by the UPDATE editor 

The UPDATE editor was originally developed for the pitt Time-Sharing 
system (PTSS) using an IBM/360 Model 50 computer, and has since been adapted for 
use on the DEC System-lO. It enables a user not only to enter and store a 
program, but also to correct errors and to edit. The following shows a typical 
session with the UPDATE editor. The user I s typings are shown in italics. 



'J'o Enter and Store a FORmAN Program 83 

At a User I s Terminal CoIl1l\ents 

.R UPDATE Call for the editor 

INPur=> ) ) = RETURN key of terminal 
>C SAMPLE PROGRA11 1 
> DO 10 I=1,20 
> K=I**3 > = prompt from the computer 
> 10 TYPE 20, I,K 
> 20 FORMAT(2I12) Enter FORl'RAN program 
> END 
>$DONE 
CATALOG NAME=>PRG1.FOR 
6 BLOCKS WRITTEN ON PRG1.FOR[115l03,32057l] 

In a similar way, Program 2 may be entered and stored. Let us aSSLUne 
that the main program of Program 2 is stored and named as PRG2.FOR and its 
subroutine as CUBE. FOR. 

If a program requires several subroutines, each subroutine may be entered 
and stored separately as a single file bearing a different name, or they may be 
combined into one file with one filename. At this point of the illustration, 
three files have been stored and they are PRG1.FOR, PRG2.FOR and CUBE. FOR. A 
listing of the programs can be made by using a monitor command: 

.TYPE PRG1.FOR, PRG2.FOR, CUBE.FOR 

The listings produced may be used as records or for proof-reading. 

If the listing shows that the programs have been correctly entered, the 
programs are ready for compiling, loading and execution. 

(2) To enter program via punch cards 

The way to enter and store a program deck is to submit it by a batch job. 
Details of batch jobs are given in Chapter 9. Repeating the example above, the 
control file deck is first assembled as follows: 

$JOB [115103,320571] 
$PASSWORD DEBBIE 
$DECK PRG1.FOR 

Program 1 deck 
$DECK PRG2.FOR 

Main program deck 
Program 2 

$DECK CUBE. FOR 
Subroutine deck 

$EOD 
$EOJ 

$JOB [115103,320571] 
$PASSWORD STEVE 
.UPDATE PRG1.FOR 

Program 1 deck 
$ $ END 
.UPDATE PRG2.FOR 

Main program deck 
Program 2 

$$END 
.UPDATE CUBE.FOR 

Subroutine deck 
$$END 
$EOJ 

There is often a need to enter and store a FORl'RAN program via a punch 
card deck. For example, a card deck may have already been prepared. Perhaps 
the terminals are not available. Although there are more terminals than key 
punches, the latter are often less in demand and hence more available. After 



84 CHAPI'ER 3 FORTRAN-IO 

the deck is assembled as shown in either makeup, the assembled deck is read by a 
system card reader, and the batch job is submitted. After the job is executed, 
there should be files PRG1.FOR, PRG2.FOR and CUBE.FOR in this user's disk area. 

3.2 To Edit a Stored FORTRAN Program 

If any typographical error, missing lines, or duplications are found in 
the listings of stored programs, the UPDATE editor may be used to make 
corrections. Suppose the PRG2.FOR listing is produced as follows and errors 
were found and marked as shown below: 

C S~ PROGRAM 2, WITH SUBROurINE 
~CCEPI' 10, M,N 

I'-'\.".Q 0<0" . 1~RMAT(I3) ) 
o~e S?~~~ CALL CUBE(M,N 

END H:S':'J 

To make corrections, the UPDATE editor may be used either on a terminal 
or in a batch job: 

(1) Using UPDATE at a terminal 

The following represents a terminal session of error correction: 

.UPDATE PRG2. FOR 
C SAMPEL PROGRAM 2, WITH SUBROurINE 
>SCHANGE/PEL/PLE/ 
C SAMPLE PROGRAM 2, WITH SUBROurlNE 
>SAT+2; CHANGE/FOR/ FOR/ 

10 FORMAT(I3) 
>SAT+l; CHANGE/H,JIl/M,N)/ 

CALL CUBE(M,N) 
> END 
> SEND 

After the editing session, the listing should again be typed out for a 
final verification. 

(2) Using UPDATE in a batch job 

Assemble a batch job deck as follows. Notice that the order of the cards 
and their contents are identical to those input lines in the terminal session, 
with the exception that an UPDATE $-command should be punched as a $$-card. 

$JOB [115103,320571] 
$PASSWORD DEBBIE 
• UPDATE PRG2. FOR -
$$CHANGE/PEL/PLE/ 
$$AT+2~ CHANGE/FOR/ FOR/ 
$$AT+l~ CHANGE/M,N/M,N)/ 

END 
$$END 
$EOJ 



To Compile, Load and Execute a FORI'RAN P 85 

There is, of course, a third way: Noting the errors on PRG2.FOR, repunch 
the incorrect cards. Insert any missing card. Resubmit the corrected deck as a 
new batch job. In the batch deck, include a command first to delete the old 
PRG2.FOR before storing the new PRG2. 

3.3 To Compile, Load and Execute a Stored FORTRAN Program 

The sequence of executing a FORTRAN-IO program is as follows: 

(1) To compile the specified source programs and store the binary object 
or relocatable files (with extensions of REL) in the disk. 

(2) To load the REL files of the main program and all subprograms or 
subfunction programs called by the program into the core memory. 

(3) To begin the execution of the loaded object program from an address 
determined by the compiler and the loader. 

All these steps can be accomplished in sequence by a single monitor 
command: 

.EXECUTE list 

where "list" is a list of all FORTRAN programs (or their REL files if available) 
inCluding any other subprogram files needed for execution in one problem. If a 
program belongs to another user but is accessible, the PPN of the owner should 
be specified along with the filename. If the file is on tape which is already 
mounted, then the device name should also be specified. Thus, to execute 
Programs 1 and 2 respectively, issue the following commands: 

.EXECUTE PRG1.FOR 

.EXECUTE PRG2.FOR~ CUBE. FOR 

When an EXECurE command is issued, the computer will go through a 
sequence of compiling, loading and execution. The sequence of operations to 
carry out the command EXECurE PRG2.FOR, CUBE.FOR is represented by the flow 
chart shown in Figure 3.1. Note particularly the processing logic by which any 
unnecessary compiling is avoided. 

When a source FORI'RAN program is compiled for the first time, a REL file 
is created and stored. In the user's file directory, pertinent information are 
also stored, such as the creation time accurate to the minute. When the program 
is executed again and if the program has not been modified in any way, the REL 
file is still valid, and compiling again \',Quld be superfluous. On the other 
hand, if the program has been modified since the last compiling, then the 
existing REL file is not valid, and compiling again during the next execution is 
necessary. The processing logic does it by comparing the creation time between 
the source porgram and its REL file. If the creation time of the source is 
earlier, then the REL file is still valid. If the creation time of the source 
is later, then the REL is not valid, and compiling should be done again. After 
a new REL file is created by the re-compiling, its creation time is updated 
also. '!his logic is handled by the System and the user is spared the decision. 
Execution of Program 1 and Program 2 are given below as illustration: 



86 

~earch in disk for 
the f II es 

PRG2.FOR 
CUBE.FOR 

-- ._------. 
Are al I files listed 
present and available 
(In case belognlng 
to another PPN)? 

CHAPI'ER 3 FORl'RAN-IO 

Are the Are creation time of 
fol lowing files yes files PRG2.REL,CUBE.REL yes 
ava 1.1 ab Ie: newer than PRGi2. FOR & 
PRG2.REL CUBE.FOR creation time 
CUBE. REL respect I ve I yL ____ _ - j no 

[
comj;iie progr-..s and-'tore~t":J 
REL files as new or updated 
PRG2.REL or CUBE.REL. ------1-- --- -- ----

~~O~P-I-II-~~ 

----l-L-_n_o __________ ; 
Load PRG2.REL & CUBE.REL and 
any subprograms cal led by them 
from the System Into useros core. 

{:

;ror 
- message & 

ERROR STOP 

Figure 3.1 Sequence of Operations for "EXECUTE PRG2.FOR,CUBE.FOR" 



To Compile, wad and Execute a FORmAN Program 87 

FORTRAN 5A(62l): PRGl.FOR 
MAIN. OCTAL PROG SIZE=43 
LINK: wad ing 
[LNKXCT PRGI execution] 

1 1 
2 8 
3 27 
4 64 
5 125 
6 216 
7 343 
8 512 
9 729 

10 1000 

End of execution FOROTS 5B(1001) 
CPU time: 0.08 Elapsed time: 1.05 
EXIT 

FORTRAN 5A(62l): PRG2.FOR 
MAIN. OCTAL PROG SIZE=35 
FORTRAN 5A(62l): CUBE.FOR 
CUBE OCTAL PROG SIZE=52 
LINK: wad ing 
[LNKXCT execution] 
> 
> 

1 1 
2 8 
3 27 
4 64 
5 125 
6 216 
7 343 

End of execution FOROTS 58(1001) 
CPU time: 0.05 Elapsed time: 7.50 
EXIT 

The three stages of compiling, 'loading and execution of a FORmAN-l 0 
program are carried out by a single EXECurE command. These steps can also be 
carried out one at a time. 

The monitor command COtfPILE list wiil compile the FORmAN files in the 
list and store the generated REL files, giving them the same filename but with 
an extension of REL. 

The monitor command LOAD list will compile the programs, store the 
generated REL files, and also load them into the core. 

The execution of the stored FORTRAN programs can also be accomplished by 
sutmitting the EXECurE commands in cards. The following are two card assemblies 
for the batch jobs of executing Program 1 and Program 2: 

$JOB [115103,320571] 
$PASSWORD DEBBIE 
.EXECurE PRGl.FOR 
$EOJ 

$JOB[115103,320571] 
$PASSWORD DEBBIE 
• EXECurE PRG2. FOR, CUBE. FOR 

1 
7 

$EOJ 

Once the compiling is done on a FORmAN program, its object program is 
stored on the disk, and subsequent execution of the same program will bypass the 
compil ing stage. In this manner, unnecessary compil ing may be avoided. 
However, if the FORmAN program belongs to another PPN, a user should not only 
ascertain if the FORTRAN program is protected against his access, but he should 
also determine whether he can gain access to a compiled REL file. If a REI file 
is already available and accessible, the command EXECurE will directly access 
the REL files. In many cases, the source programs are proprietary, but the REL 
files are available for public access. 

If a program will be used many times, a more efficient way of loading can 
be done in this way. After the program in the "list" of the "WAD" command are 
loaded, the core content of the user I s area in the core memory may be saved as a 
file with an EXE extension. The monitor commands to save a core image are WAD 



88 CHAPI'ER 3 FORTRAN-l 0 

and SAVE as shown below: 

.WAD list 

.SAVE NAME 

and the saved file will have a name of NAME.EXE. Once that is done, subsequent 
execution of the program may be done by a command of: 

.RUN NAME 

where "NAME" is the the name of the specified EXE file. 

This procedure is particularly advantageous if (1) a program will be used 
repeatedly, or (2) the list of programs in the EXEClJI'E command contains many 
files and many file specifications. Some of the files may reside on slow and 
busy peripherals such as the DECtape. 

3.4 Optional Switches 

The monitor command EXECurE requires the use of three service programs: 
the monitor, the FORl'RAN compiler, and the loader. In each of the three 
processors, options are implemented to allow a user to select somE~ variation of 
services. These options are called switches. Switches are available on all 
three service processors, and they are separately discussed next. 

(1) f.bnitor switches The details of the switches fOI: the command 
COMPILE, WAD and EXECurE will be given in Chapter 8, so only the most 
frequently used switches are listed below. The monitor switch has a form of a 
slash followed linmediately by a word which can be abbreviated. These switches 
and their functions are listed in Table 3.1. 

(2) Compiler switches While the monitor program is s)mewhat uniform 
among the DEC System-10 users, the compilers--particularly the FORl'RAN 
compiler-- may have many versions, and some with local modifications. Selected 
switches which appear on the same command line as those of the compiler switches 
are words enclosed in parentheses. These switches are listed in 'rable 3.2. 

(3) 
sign (%) 
Table 3.3. 

Loader switch The format of a loader switch is a percent 
followed by one or two characters. Three such switches are listed in 

Examp!..E=:.: 
Function: 

Example: 
Function: 

.EXECUTE SAMPLE.POR!LrST 
Compile SAMPLE.FOR, store SAMPLE.REL on disk, load it into 
the core, ·and execute. Also, generate a source 1 isting 
file SAMPLE.LST • 

• EXECUTE SAffPLE. FORI CREF (I) %OM 
Compile (including all D-statements), load, and execute. 
Generate a cross reference file for later CF~F program, and 
produce a loader map at the terminal. 



FORTRAN switches 89 

Mon Itor Sw Itch Function 
~, __ ,_, __ " __ ,_-c:,,,.c=-c-;c:,-::- --=:-;-."."""'.-:-'-'" ---'-'='.-',,-.,,c-_,,~_.="_._ ... :"--. _"'''''==''"-===:'-='''''-'-=-=====--=-==_= __ =1 

/COMPILE To force a compl ling even If there already exists a REL 
fl Ie. The purpose of this switch Is to force the use of 
compiler because certain compiler switches are also 
chosen In the EXECUTE command. Otherwise, the compiler 
Is bypassed If there already exists a val id REL fl Ie 
bearing the same filename. 

r-----.-.-. -. -"- .-.-.---..... -.-..... ---.-....... -------.. ---------.----.---... - .. ·---------·------------1 
/CREF To produce a cross-reference listing fl Ie on the disk 

for each fl Ie compl led for later processing by the CREF 
program. The cross-references Include such Information 
as variable names, statement labels, and their cross 
references. Before the user signs off, he may get a 
printout copy of the cross-reference by another monitor 
command: CREF. If the CRF fl Ie generated during a 
previous session at the terminal stll I Is stored on 
disk, a list may be obtained by running the CREF program 
In the fol lowing ways: 

.R CREF 
*LPT:=NAME.CRF 

.R CREF 
*TTY:=NAME.CTF 

This wi I I produce a copy of listing on the line printer 

I, (the left version) or on the terminal (the version on 
the right). 

'----------_._._._._---- --------_ .. _----_._-_._----_._--------------_ .. --------------

/LIST To generate a disk listing fl Ie for each fi Ie compl led 
with the same filename, but with an extension of LST. 
These files can be listed with the PRINT or QUEUE 
command (see Chapter 8). If a REK fi Ie already exists, 
this switch wi I I be ignored unless a forced compll ing is 
ordered by the /COMPILE switch. 

r------ ------- ... ----.... -- ... ---- - ,,""-- .... -------- ---.--0-.--.. ---- . .. -- --.-.------... ---- -'--

/LIBRARY To select the loading of only those subroutines and 
functions referenced In the programs. Otherwise, the 
entire library fi Ie wi I I be loaded. 

r-------
/DEBUF:BOUNDS 

Example: 
FlU1ction: 

... _-'- --'--
To report If subscripts get out of bounds as defined by 
the DIMENSION statement for that array. This Is one of 
the most common errors. 

Table 3.1 Selected Monitor Switches 

.EXECUTE SAlfPLE. FOR" PRG: Il1SL/LIBRARY 
Compile the source program SAMPLE.FOR and thus generate 
SAMPLE.REL. Then load it along with those subroutines in 
PRG:IMSL that are called by the program SAMPLE. FOR. The 
LIBRARY switch here is absolutely necessary because the 
package PRG:IMSL contains about 400 subroutines. Execute 
when loading is completed. 



90 CHAPl'ER 3 FORTRAN-I 0 

Compiler Switch Funct Ion 
~===============*==--============~--=--=-======~=====--~~==~=-~~-.-~~==========~ 

( INCLUDE) or 
(I) 

I--- ------- -- --

(NOERROR) or 
(NOE) 

To compl Ie the program by regarding al I statements with 
"0" in column 1 as FORTRAN statements. If this switch 
Is not specified, those statements wi I I be regarded as 
comments and bypassed. The frequent uses of this switch 
Is to insert the debugging statement as the 
"D-statements," which are usually output statements to 
type out Intermediate results or to type out tracing 
progress, such as a message "Reaching check point 5." 
Once a program Is comp I ete I y debuggeld, I t can be 
compi led again, but this time without the 
INCLUDE-switch, and al I D-statements wi I I be Ignored. 

---- - - -- ---------------
To suppress error message on user's terminal. The error 
message wi I I only appear on the listing fl Ie If It Is 
requested by the /LIST or the /CREF switch. 

1------ --- - ---- ------- +------------ ---- ---- ------ -- ------------ - --- ------------------------------------
(NOWARNINGS) or To suppress warning messages on the terminal. 
(NOW) 

f-------------------- -- ------

(OPTIMIZE) or 
(0) 

- --- -- ---- ---------- ----- ----------- --- --------------------- --------.----------------

To perform -global optimization of compi ling. 

Table 3.2 Selected FORTRAN Compiler Switches 

__ L~ader=-~w~~~-~ -1~===-~=====~~=:_=~~=_~,-=_===_-"'="'~ __ '""_,_,_;,_:c_~_= ___ '"" __ =--=_--:=_ ,,==,,~=;=======t 
%S 1 To load local symbols used primarily for debugging 

I purpose along wIth the program. 
--------------_ .. _---------+----- -------------_.-.. ---------------- .. --------- - -------------- ----~---

%lM t To type out a loader map at the user's terminal and 
Include local symbols. In a batch Job, the loader map 
with this switch wi I I be Included In the log fi Ie. 

~--------- -------- ---- ----------------------------------- ------------------------------- --------------------1 
%OM To type out a loader map at the useros terminal. In a 

I 
batch Job, this switch wi I I Include the loader map In 
t he log f i Ie. 

Table 3.3 Selected Loader Switches 



An Example 91 

3.5 An Example of FORTRAN Processing 

As an illustration of FORTRAN-l 0 programming and processing on a 
time-sharing system, an example will be carried through in all steps. The 
problem deals with the solution of an equation Ax + Bx + Cx + D = 0 with 
significance to 3 digits. The FORTRAN program for the problem is listed below: 

C SAMPLE PROBLEM FOR FORTRAN-IO 
READ(5,10)A,B,C,D,Xl 

10 FORMAT(F20.7) 
1 X2=Xl-(A*Xl**3+B*Xl**2+C*Xl+D)/(3.*A*Xl**2+2.*B*Xl+C) 

WRITE (6,10)X2 
IF(ABS((Xl-X2)/X2)-0.OOl)3,3,2 

2 Xl=X2 
GO TO 1 

3 WRITE(6,1l)X2 
11 FORMAT(/' THE REAL Roor == " F20.7) 

STOP 
END 

The rest of this section shows a case history of running this problem, 
from entering the program, through debugging and editing and finally executing 
it. Written running comments were added to aid understanding. All text in 
italics represent the user's own typing; all others are the computer's 
printout. 

.UPDATE NEv/TON. FOR 
[CREATING NEW FILE] 
>C SAMPLE PROGRAM FOR FORTRAN-10 
> READ(5~10)A~B~C3D~X1 
> 10 FORMAT(5F) 
> 1 X2=X1-(A*X1**3+B*X1**2+C*X1+D)/(3. *A*X1**2 
> WRITE(6~19)X2 

> IF(ABS((X1-X2)/X2 .001J3~3~2 
> 2 X1=X2 
> GO TO 1 
> 3 YIRITE(6~11)X2 
> 11 FORNAN/' THE REAL ROOT = '3 F20.7) 
> STOP 
> END 
>$END 
1 blocks written on NEWTON.FOR[l15l03,32057l] 

2. *B*X1+C) 

.EXECUTE NEWTON.FOR ______ Mi~s;"j mi .... us ~,j" 

FORTRAN 5A(62l): NEWTON.FOR ~ __ _ 
00006 IF(ABS((Xl-X2)/X2 :001,3,3,2 
?FTNUMP LINE:00006 UNMATCHED PARENTHESES 
00010 .11 FORMAT(/' THE REAL Roor == " F20.7) 
00011 STOP 
?FI'NFWE LlNE:OOOlO FOUND "T" WHEN EXPECTING A END OF STATEMENT 

UNDEF INED LABELS 

19 11 

?FI'NFTL MAIN. 4 FATAL ERRORS AND NO WARNINGS 
LINK: WADING 
[LNKNSA No start address] 
EXIT 

G{se erro< J:a.il1Os:s 
t\\QS5a.~e to WeI? 

();ift, Jeb\AJj ,'''j . 



92 CHAPI'ER 3 

.UPDATE NEWTON. FOR 

C SAMPLE PROGRAM FOR FORTRAN-10 
>STO 6 

IF(ABS(ABS((X1-X2)/X2.001)3,3,2 
)$CHANGE/ .001/)-.001/ 

IF(ABS((X1-X2)/X2)-.001)3,3,2 
) $ TO/8TOP/ 

STOP 
>$CHANGE/STOP/ STOP/ 

STOP 
>$END 
1 blocks written on NEWTON.fOR[115103,320571] 

EXIT 
.EXECUTE fiEf/TON. FOR 
FORTRAN 5A(621): NEWTON.FOR 

UNDEFINED LABELS 

19 11 

?FTNFTL MAIN. 4 FATAL ERRORS AND NO WARNINGS 
LINK: wad ing 
[LNKNSA No start address] 

EXIT 

.UPDATE NE~ITON. FOR 
C SAMPLE PROGRAM FOR FORTRAN-10 
>$TRAVEL/19/ ~ -

WRITE(6,19)X2 
>$CHAFlGE/19/10/ 

WRITE (6,10)X2 
>SGO 
?>$END 
1 blocks written on NEWTON.FOR[115103,320571] 

EXIT 

.EXECUTE HEr/TON. FOR 

FORTRAN 5A(621): NEWTON.FOR } 
MAIN. OCTAL PROG SIZE=145 
LINK: wad ing 
[LNKXCT NEWTON execution] 

b'l.eu,te c:l.Jt1;'1 

Co"""'p;)e C< .... "I /oa.~ $ ... c(.e:;~f.-./,; 

Inr"+ cPr:>.+", fov 

FORI'RAN-10 

1.0 -16.0 65.0 -50.0 16.0 
12.9158000 
11.1082200 

X~- /6:/.1. -t- 6r;':K - So =0 

10.2498400 
10.1173400 
10.0000900 
10.0000000 

THE REAL RCDr = 
STOP 

10.0000000 

End of execution FOROI'S 58(1001) 
CPU time: 0.09 Elapsed time: 23.98 
EXIT 

with /"..,,'-h'o.l +6&>.( ilt?1("'e.. ><.1...= 16 

'X-= /0 



I 

Constants, variables and Expressions 93 

A SUMMARY OF FORTRAN-IO 

This part of the chapter is devoted to a summary of the FORTRAN-1 0 
language, which is an enhancement of the ANSI standard FORTRAN. The enhancement 
may be a new FORTRAN statement, such as the IMPLICIT-statement; or it may be 
some additional features in a standard FORTRAN statement, such as those in the 
DIMENSION-statement. These enhancements will be identified in the summary by a 
heavy vertical line on the left side of the page, for example: 

(5) A debug line A debug line has a character "D" or "d" etc etc etc 

The identification of the enhancement will be useful in the conversion of 
a FORTRAN-IO program to other versions of FORTRAN, or vice versa. 

3.6 A Summary of Constants, Variables and Expressions 

(1) Constants There are nine types of constants in FORTRAN-lO: 
integer constants, real constants, double precision constants, complex 
constants, logical constants, literal constants, octal constants, double octal 
constants, and statement label constants, as summarized in Table 3.4: 

Constant General Form Remarks and Examples 
1===--=-=-=-=-=-=-=--=-=-=:1-= __ =_=_= __ ~ __ ""_=-o-~ __ =_"""" __ = __ = ____ =._._= __ =_= __ =_= __ =._=f==-=--=-=-=--=-=~-==--=--~-=-------.---

Integer constant no decimal point 

Real constant always with a decimal 

Double precision exponent symbol is 0 
constant 

Octal constant 

Ooub Ie oct a I 
constant 

signed or unsigned octal 
preceded by a'''' 

same as single precision 
octal 

Complex constant (x,y) 

Logical constant .TRUE. .FALSE. 

Literal constant 

Statement label 

"-1 "0 

'QUOTE' nHxxxxx 

1 to 5 decimal digits 
preceded by "$" or "&" 

7 to 9-digit precision 
in mantissa 

3.0002=300.0000000000000 
(16-digit precision) 

"567, "-567 

"1234567000123456700 

( 3 • 1 , -4 • 7) for 3. 1 - j 4 • 7 

'TIME' 4HTIME 

$1234 &999 

Table 3.4 A Summary of FORTRAN-IO Constants 



94 CHAPl'ER 3 FORl'RAN-lO 

(2) Variables Variables are specified by names and types. The 
name of a variable consists of one to six alphanumeric characters, the first of 
which must be alphabetic. The type of a variable may be specified explicitly by 
a type declaration statement or implicitly by the IMPLICIT statement. If the 
variable is not specified in this manner, then a first letter of I, J, K, L, M 
or N indicates an integer variable; any other first letter indicates a real 
variable. 

Variable arrays carry subscripts that are integer constants, variables or 
expressions. In addition, the following are permitted in FORl'RAN-I0: 

A. A subscript may contain a non-integer arithmetic expression. 
However, When such a subscript is evaluated, it is. truncated and 
converted to an integer after its eValuation. 

B. A subscript may contain a function reference such as A(lO*SIN(X)). 

C. Subscripted variables may be used as subscripts or nested subscripts 
of subscr ipted variables. 

(3) Expressions Compounded numer ic expressions must be 
constructed according to the following rule. With respect to the numeric 
operators of +, -, *, I, any type of quantity (integer, real, double preclslon, 
complex, logical, literal, octal or statement label) may be opE!rated with any 
other, with one exception: A complex quantity may not be operated with a double 
precision quantity. The result of these mixed mode operations are tabulated in 
Table 3.5. (Mixed mode operations are not allowed in ANSI FORl'RAN.) 

I Operation Type of Argument 2 
-----------~--------~----

Double 
+, - , * , / Integer Real Precision Complex Others 

Integer Integer Real Double complex Integer 
Precision 

~ 
-.------------. -- c- ---- ------

+- Real Real Real Double Complex Real 
c Precision Q) 

E ~---- - - "-0-_--_----------
::l 
OJ Double Double Double Double Not Double L 

<C Precision Precision I Precision Precision Allowed Precision 
'I- f-------------- -- _ .. - ---0 c--- -----------------
Q) Comp lex Comp lex Comp lex Not Complex Complex 
a. 
>- Allowed 
I- f------- ------ --------~--- ---------- ---- -- ------------

All Integer Real Double Complex Octal 
Others Precision 

Table 3.5 Results of Mixed Mode Operations 

For example, if X is real in an expression (3.l,-4.l)*X, the expression will be 
complex after evaluation. 



FORTRAN-10 Statements 95 

The logical operators and relational operators are listed in Table 3.6 
and Table 3.7 respectively. 

Logical Operators Meaning Example Relational Operators Meaning 
---

.NOT. Negat Ion . NOT.P .GT . ) 

.AND. n P.AND.Q .GE. >-

.OR. u P.OR. Q .LT < 

.XOR. ~ P.XOR.Q .LE. ~ 

.EQV. 0 P.EQV.Q .EQ. = 
.NE. lI; 

Table 3.6 Logical Operators Table 3.7 Relational Operators 

A summary of FORTRAN-IO library functions is shown on Table 3.8. 

3.7 FORTRAN-IO Statements 

The field format of a FORTRAN-IO statement follows the general rules of 
FORTRAN-IV statement. There are certain differences associated with a 
FORTRAN-10 line. In FORTRAN-lO, ~here are following different types of 
statement lines: 

(1) An initial line If a FORTRAN-10 statement has 
continuation lines, the first line of the group is called an initial line. 

(2) A continuation line A continuation line is identified by any 
character (except for a blank or zero) placed in column 6. A maximum of 20 
lines are permitted in a FORTRAN-l 0 statement including the initial line. 
Continuation lines may not be interrupted by comment lines. 

(3) A multi-statement line A multi-statement line combines several 
successive statements in a single statement, each component separated from the 
other by a semicolon (;). If the multi-statement carries a statement number, it 
is always associated with the first component. For example, t\'tQ separate 
statements: 

A = B*C 
X = y+z 

can be combined into a single line as: A = B*C; X = y+z 

(4) A Comment line A comment line has one of the characters 
(C,$,/,*,1) placed in column 1. Comments may also be added to any statement in 
the field of columns 7-72, provided that a character (1) precedes the text. For 
example: 

A = B*C X = Y+Z ISTEP NO. 1 

(5) A debug line A debug line has a character "D" or "d" 
in column 1. When the program is compiled, it is ignored unless there is an 
"(INCWDE)" switch in the command. This is used for debugging purposes, such as 
an output line for tracing. 



96 CHAPI'ER 3 FORTAAN-IO 

Tvoe of 
Funct ton Form Def I n It Ion Argument Hesu I t 

Abso I ute va lues: I Rea I ABS Real Real 
Integer 

I 
lABS larg I Integer Integer 

Doub I e DABS 
c = J x').. + l 

Doub I e Doub Ie 
Comp I ex to rea I i CABS Comp lex Real 

Convers Ion: ! Integer Irea I 

I 
FLOAT ~ ~~:;~~~~~gt, Integer Real 

Rea I I Integer IF IX Real Integer 
Real (cmplx) REAL REAL part (cmp I x arg) Comp lex Real 
Imag(cmplx) AIMAG IMAG part(cmplx arg) Complex Real 
Real ICmp Ix CMPLX c=Argl + j Arg2 2 Rea Is Comp I ex 
Cmpx conjugate CONJG c=con j ug ate (cmp I x arg) Comp lex Comp I ex 

Truncat Ion: 
Rea I Irea I AINT Rea I truncat Ion Real Real 
Rea I / Integer INT Integer truncat I on Real Integer 

Rema I nder I ng : 
Real AMOD Rema I nder (arg 1 larg2) 2 Rea I s Real 
Integer MOD Rema I nder (arg 1 larg2) 2 Integers Integer 

-- --~-~~~~-- -----~---f_-

Squ ar e root: 
Rea I SQRT 

M 
Real Real 

Doub I e DS~T Doub I e Doub I e 
Complex CSQRT Comp I ex C()ffi~ 

Logar Ithm: 
Rea I ALOG Ln (arg) Real Real 

ALOGIO Log (arg) Real Real 
Double DLOG Ln (arg) Doub I e Doub Ie 

DLOG! 0 Log (arg) DoU~Double 
Comp lex CLOG Ln (arg) _Comp I ex Comp I ex 

----
Sine: 

I 
Real (radIans) SIN Real Real 
Real (degrees) SIND Real Real 
Double (radians) DSIN 5 In (arg) Doub I e i Doub Ie 
Comp lex CSIN Complex I Comp lex 

Cos I ne: I 

Real (rad I ans) COS Real Real 
Real (degrees) COSD Real Real 
Double (radIans) DCOS cos (arg) Doub Ie Doub Ie 
Comp lex CCOS Complex Comp lex 

Arc sIne AS IN 51n-1 (arg) Real Real 
Arc cos Ine ACOS cos-I (arg) Real Real 
Arc tangent: 

tan-I (arg) Real ATAN Real Real 
Double DATAN t/ln- I (arg) Doub I e Doub Ie 
Two real erg ATAN2 tan-I (argl/arg2) Real Real 

I---
Exponent I III : 

Real EXP Rea I Real 
Double DEXP e(arg) Doub I e Doub Ie 
Complex CEXP Comp lex Comp lex 

Hyperbo I I c : 
SIne SINH sInh (arg) Real Real 
Cos I ne COSH cosh (/lrg) Real Real 
Tangent TANH tanh (arg) Real Real 

Max Imum va I ue: 
Real AMAXI Max(al,a2, ••• ) Reals Real 
Integer MAXO Max(kl,k2, ••• ) Integers Integer 

MinImum velue: 
Reel AMINI Mln(III,e2, ••• ) Reals Real 
Integer MINO Mln(kl,k2, ••• ) Integers Integer 

-- ------- ----
Random number RAN rendom number dummy Rea I 

between 0 and I 

Table 3.8 FORTRAN-IO Library Functions 



FORTRAN Compilation Control Statements 97 

(6) A blank line This is ignored in compiling, but useful 
in making the listing easier to read. 

Various types of FORI'RAN-10 statements will now be discussed. As in all 
versions of the FORTRAN language, the order of the FORTRAN-10 statements is 
important in a program. The proper order of the statements is summarized in 
Table 3.9. 

PROGRAM. FUNCTION, SUBPROGRAM 
or BLOCK DATA statements 

r------"" "--- "" ~--- -_.-+-.-"---, ~------~ -----~--.-

IMPLICIT statements 
c--------

PARAMENTER statemets 

DIMENSION, COMMON, 
EQUIVALENCE, EXTERNAL 
NAMELIST, or TYPE 

COMMENT FORMAT statements Spec I f leat Ion 
statements 

-- -"-""--r---"-"--"--- ---

Statement 
function 

DATA Definitions 
statements 

Executable 
statements 

------ +.-~ .... -- - ------ _ .. _.---- - -- "---- "--- --""" "-""----""- " .--------------
END statement 

Table 3.9 A Summary of FORTRAN-10 Statement Sequence 

The list of statements in each box indicates the order in which these statements 
must appear. The table also indicates that certain statements may be placed 
anywhere in the range shown in the Table. For example, a FORMAT statement may 
be placed anywhere after the PROGRAM statement and before the END statement. 

3.8 A Summary of FORTRAN-10 Compilation Control Statements 

Statement Function 

PROGRAM name This statement Instructs the compiler to assign "name" instead 
of MAIN as the name of a program. ''name'' must be 6 characters 
or less. This statement, If written, must be the first 
statement of a program. 

t-----------"- ------_._- ~--- -------------------"-----------"-- - ---------~.----- --------- --------

INCLUDE 'file' file= standard f i Ie specification. This statement allows an 
Inclusion of a code segment In a program un It. 

---------~-- - f--- ------.. _----_ .. ------ ---------- ----- .. -~----------- -"-"-

END Physically the last statement of a program or a subprogram. 

Table 3.10 A Summary of FORTRAN-10 Compilation Control Statements 



I 

I 

98 CHAPI'ER 3 FORTRAN-10 

3.9 A Summary of Specification Statements 

The specification statements specify the type characteristics, storage 
allocations, and data arrangements. They are summarized in Table 3.11: 

Statement Function 
F--====================~==~"="=-==-='================================'=-========~~~ 

DIMENSION Sl,S2, ... Sn where Si Is an array declarator of either of two form: 

VARIABLE(maxl,max2, .•• ,maxnJ 
VARIABLE(minl:maxl, min2:max2, ... , minn:maxnJ 

and "mlni:max" value represents the lower and upper 
bounds of an array dimension. The symbol colon (:) may 
be replaced by a slash (/) as a delimiter. 

When used In a subprogram, the array dimension may be an 
Integer constant or an Integer variable, thus making the 
dimension adjustable In a subprogram. 

I---------~---- ----.-.-.-.----- ... -.-.-.-------.... --.. --... ---.. --------.----

TYPE list where TYPE may be one of the following: INTEGER, REAL, 
DOUBLE PRECISION, COMPLEX or LOGICAL. Size modifiers are 
acceptable in FORTRAN-l0 but are Interpreted differently: 

type*l = acceptable but Interpreted as a fufl word 
type*2 = ful I word type*4 = ful I word 

I-------:==:-:--,~~_o-._c ___ tY~~!L-=- dO_l!.I?J~...}r::il£l~l~rl __ . _________ . _____ ,_. ____ _ 
IMPLICIT TypE(al,A2 .. J~here Al,A2, .•• ,Bl,B2, ••. are letters. This statement 

TYPE(bl,B2, .. J,... declares the data type of variables and functions 
according to the first letters. A range of letters may 
be specified by a dash between the first and the last 
I etters, for examp Ie: I MPL I CIT INTEGER (A-N) 

.. - •.•.. _--

COMMON /block indentifier/identifier,identifier, ••• identifier 

j

The COMMON statement causes specified variables or arrays 
to be stored In an area available to other programs. By 
means of COMMON statements, the data of a main program 
and/or Its subprograms may share a common storage area. 

- .. --.---.--.-.---.... . .-.~ ... - .... -_ .......... --._---_.- _ ... _-_._--- .. ---.. --------.-.-~ -----_._ .. _ .. _---

EQUIVALENCE (V1,V2, •.• J, (~'Vk+l,···J, ... 

__________ .. _,_.f~~~!~~ ~~;~~~.~~~_;;;_;~~~_~~.~~~~~~~~a~:a~tCt~~~e ~~~! ~b I e ._--

EXTERNAL namel, name 2, ••• 

1----_._-_._----- I
Dlstlngulsh the names as names of subprograms to be used 
as arguments to other subprograms. 

-_.- --_. __ ._---_._-- ------- ~---------------------- -- --
PARAMETER Pl=Cl, P2=C2, .•. 

where PI = a standard user-defined Identifier, 
CI = any type of constant 

This statement defines constants symbol ical Iy during 
compilation. 

DATA Ust/d1,d23"' ./, Ust2/dk,dk+l,· ,,/, '," 

I
The data to be compi led into the object program Is 
specified in this statement. The "I ist" may be a ful I 
array or an partial array In an Impl led DO format. 

Tahle 3.11 A Summary of Specification Statements 



FORTRAN Assignment Statements 99 

3.10 A Summary of Assignment Statements 

The assignment statements are summarized in Table 3.12: 

Statement Function 

VARIABLE = EXPRESSION 
The EXPRESSION _In an assignment statement may be an 
arithmetic or a logical expression. Their formats are the 
same. In an arithmetic expression, mixed mode Is permitted 
In FORTRAN-10. The rules of mixed mode expression results 
depend on the type of VARIABLE In the statement. Note that 
we are dealing with FORTRAN statements here, whl Ie a previous 
Table 3.5 lists the results of mixed mode operations In a 
sub-expression. The rules are now summarized below: 

Mixed Mode Statement 

Expression Variable Type 
~----~-------,--------~------~------~ 

Type Real Integer Complex Double Logical 
--- = 

Real D C R, I H,L D 
1------- ----- ----. 

Integer C D R,C, I H,C,L D 
----- ----.- -------------- r----------- ----.-1----------------

Complex R C,R D - R 
----------- --.------ --------f-------------.---- -------

Double H C,H,L - D H 
----------.. - -------.--- -.------ ------ ---.------------ -----r--------------

Logical D D R, I H,L D,H 
---- ------- ------ --- --t----------

Literal O,H % C,H % D & D & D % 
-------- -----~--------

Legend: 

Note: 

D = direct replacement 
C = conversion with truncation 
R = real part only 
I = Imaginary part set to 0 
H = high order only 
L = low order part set to 0 

% = use of the first part of the literal 
& = use the first two words of the literal 

1---------+-----------------------------------------------; 

ASSIGN n TO I This Is used to assign a statement label constant to a 
variable name, which wi I I become a statement label variable. 

Table 3.12 A Summary of Assignment Statements 



I 

I 

100 CHAPI'ER 3 FORl'RAN-I0 

3.11 A Summary of Control Statements (Table 3.13) 

Statement Function 
1===0--'---=:-"==' 

GO TO n An unconditional transfer statement 
-- -----------

GO TO en1 ,n2 , ••• ,nk ) or GO TO enl ,n2, ••• ,nk ) 

f--________ J __ ~=~~ne~_._G_O_T_O_s_t_a_t_e_m_e_n_t ______________________ _ 

GO TO k OR GO TO k, (Ll ,L2 , •• • Ln ) 
Assign GO TO statement 

f--------------- ---- ------------------------1 
IF (E) L13L23L3 Conventional arithmetic IF statement where E = an arithmetic 

expresssion 
1------- ------- ---- .-.~--- ----- ----------------------.--------1 

IF (E) S 

f--------------------

IF (E) n13n2 

where S Is an executable statement. This Is a conventional 
logical IF statement, where E is a logical expression. 

---- ---------------- -------------------1 

where nl and n2 are two statement labels. This Is a two-exit 
logical IF statement and E = a logical expr"ession. This 
statement wI I I transfer the executIon to statement label nl if 
E equals .TRUE., and to statement n2 if E = .FALSE. In other 
words, this Is an "IF-THEN, OTHERWISE" statement. 

f------_.-.------------.-- --------------------------------------

DO n I = m13 m23 m3 
where n = term i na I statement I abe I 

Note: 

I = index variable 
ml 
m2 
m3 

(1 ) 
(2) 

(3) 

(4) 

= initial parameter 
= termInal parameter 
= increment parameter 

Nested DOos fol low conventional rules. 
Index varIable should not be altered within the loop 
range. Even an inclusIon as a subprogram argument 
may produce a warning message during compi ling. 
The Index varIable may be an Integer or a real 
varIable. The parameters may be Integer or real 
express ions, wh I ch wi I I be ca I cu I a-ted at the 
beginnIng of the DO loops. 
Real, Integer, positive, negative, zero constants 
are all permitted for m13m23m3. Thus the FORTRAN-10 
DO-statements a I low decrements, nega-t i ve i nd ices, 
non-integer numeric indices. 

1----------_.---------- ----------------------------1 
STOP, or STOP 'literal string' ,or STOP n 

1 
Terminal wIll prInt the literal string as a message or n as a 
message. 

1------------ -- .--------- ---------------------------------------t 
PAUSE, or PAUSE literal string, or PAUSE n 

I 
The PAUSE statemnt wi I I cause the fol lowIng message to be 
prInted at the termInal: 
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE 

Table 3.13 A Summary of Control Statements 



I/O Statement Terminology 101 

3.12 Terminology Used in FORTRAN-IO INPur/OurPUT (I/O) Statements 

One powerful feature of FORl'RAN-l.O is that it possesses a set of 
extremely powerful input/output statements, far more powerful than the standard 
set in the 1966 ANSI standard. In order to present the I/O statements, we will 
first get acquainted with some terminology: 

(1) Transfer mode Data transfer between storage and I/O devices or 
between storage locations is done i~several different modes: 

a. Seguenctial mode This is the most common mode, in which the 
records are accessed or transferred in a sequential order 
linmediately following the last accessed or transferrecd record. 

b. Random access mode This permits the access and transfer of 
records from a file in any desired order. The OPEN (see Section 
3.16) statement is required to establish an I/O mode of this kind. 

c. Append mode This is a variation of the sequential 
mode. It permits writing a record imnediately after the last 
record of the accessed file. The OPEN statement is required to 
establish an I/O mode of this kind. 

d. Dump mode 

(2) Keywords of I/O statements (Table 3.14) 

Keyword Transfer of Data 

READ from a peripheral device to the processor storage 
REREAD repeat the last READ 
ACCEPT from a terminal to storage 
FIND to locate the next recoprd to be read during a 

random access READ operation 
DECODE from a specified storage area into the 
WRITE from storage to a peripheral device 
PRINT from storage to a printer 
PUNCH from storage to a card punch 
TYPE from storage to a terminal 
ENCODE to transfer from the variables of a specified 

I/O list Into a specified storage area 
--

Table 3.14 A Summary of Keywords of FORl'RAN-IO I/O Statements 



102 CHAPl'ER 3 

(3) Basic formats and components of READ and WRITE statements 

Basic 
Statement Form Funct Ion 

KEYWORD (u 3 f) list Formatted I/o transfer 

FORl'RAN-10 

-- ------------
KEYWORD (u#R3 f) list Random access formatted I/O transfer 

--- - ---- ---------------- ---- ---------~--------

KEnl0RD (u 3 *) list LIsted-directed I/O transfer 

KEYWORD (u 3 name) NAMELIST-control led I/O transfer 
1-------- ---------------- ---- f-- ------ - ---- ------ ---- -------~-- ------ -------------

KEYWORD (u) list Binary I/O transfer 
---- - ------------ -------

KEYWORD (u#R) list Random access binary I/O transfer 
r------------------L-----~--------------------~ 

where: 

KEYWORD 
u 
f 

list 
#R 

* 
name 

= 
= 
= 
= 
= 

= 
= 

READ or WRITE 
logical unit number 
format statement number 
I/O list 
the delimiter' fol lowed by the number of a record 
in an established (by an OPEN statement) random 
access file 
symbol specifying a list-directed I/O transfer 
the name of an I/O list defined by a NAMELIST 
statement 

In additon, when a unit u Is specified, the optional argument 

ERR=c and END=d 

may be added to any of the READ or WRITE statement. 
'------------ --- ------------' 

Table 3.15 A Summary of READ/WRITE Basic Formats 

(4) Log ical unit number (Table 3.16) 

Unit 
Number xx 

__ , - 4 
~- ____ 5 
.__ 6 

r-----I--
8-30 

Default 
Filenames 

FQRxx.DAT 

1 

c--:::--- -------J.J.E~-.r-----
Tlme-sharlngl Batch 

TTY __ __ _ J,./?T __ 
I-- CPP _ _ gDP~_ 

DSK DSK 

-~~~ ---- f-~~== 
--------~----

Table 3.16 Logical Unit Number Assignments 

These are decimal numbers to identify the physical devices used for most 
FORl'RAN I/O operations. The devices should be explicitly specified in the' OPEN 



I/O Statement Terminology 103 

statement. The definitions of these unit mnnbers as 'Nell as how many are 
allowed are determined by the local installation. The typical DEC definition 
specifies units ranging from 1 to 63 assigned to the devices DSK, DECtapes, 
magtapes, CDR, LPI', Pl'R, Pl'P, etc. However, since a different system of 
peripheral device allocation is used at the University of Pittsburgh, the 
logical unit numbering system is revised and shown in Table 3.16. Installation 
at other institutions may have still diffeent definitions depending on the local 
configurations. 

(5) Formatted and unformatted files Files transferred under the 
control of a format specification are called formatted files. Unformatted files 
are binary files transferred without a reference to a format specification and 
are transferred on an one-to-one correspondence between the source and the 
destination. 

(6) Random access records The random access records are specified by 
an integer preceded by an apostrophe or a pound sign, for example, '123 or #123. 

(7) List directed I/O The asterisk (*) is an I/O statement in 
place of a FORMAT statement number tells the compiler that the specified 
transfer operation is "list-directed." In a list-directed transfer, the data and 
their type are specified by the READ/WRITE I/O list. If a READ statement has an 
asterisk (*) where the FORMAT number usually is, the list-direct I/O will follow 
the rules listed below: 

a. Octal constants in the list-directed I/O are not permitted. 

b. Literal constants must be enclosed in single quotes, such as 
'TIME' • 

c. Blanks and commas are delimiters to separate different items in 
the I/O list. 

d. Complex constants must be enclosed in parentheses. 

e. If an item is inputted as a null (blanks, tabs, carriage returns, 
or linefeeds, but no data), the item will retain a previously 
inputted value. 

f. A slash at anytime will terminate the input operation even if the 
I/O list is not yet satisfied. ' 

g. the repeat of a constant may be written as n*K, which means the 
constant K repeated n times. 

(8) NAMELIST I/O lists The I/O lists are defined by a NAMELIST 
statement (see Section 3.17) in which each I/O list is named by a one- to 
six-character name that may be referenced by a READ/WRITE statement. I/O 
statements with a NAMELIST-defined I/O list cannot contain a FORMAT statement' 
reference or a conventional I/O list. The only type of formatting permitted in 
the NAMELIST-controlled statements is an input record of $NAME varl=valuel, 
var2=value2, ••• $. 



104 CHAPI'ER 3 FORI'RAN-IO 

3.13 A Summary of FORTRAN-IO READ Statements 

Table 3.17 shows a summary of different types of FORI'RAN-IO READ 
statements: 

Statement Funct ion 

Sequential Formatted READ: 

READ (u~f) list 

READ (u,f) 

READ f 

READ f, list 

This is the most frequently used form. It transfer data from 
logical unit u to storage. 

Input data from unit u into either a H-fleld descriptor or a 
literal field descriptor given within the referenced format. 

Same as READ(u,f) where =default unit for a card reader. 

Read data from a card reader Into storage. 

Sequential Unformatted Binary READ: 

READ (u) list 

1======- 1 
Read one record from. unit u into storage. 
previously prepared by a FORTRAN-l0 
statement. 

- - -. - - ----- ---

The record must be 
unformatted WRITE 

Sequential List-Directed READ: 

READ (u,*) list j;ead data from device unit u into storage as values of items 
in the I-1st. If necessary, each item Is converted to the 
type assigned in the list. 

~ _~_li~!_.~~=-_._Read .data from a card reader a list-directed list. 

Sequential NAMELIST-Control led READ: 

READ (u, name) 

F=====-==-=-,,-cc =-==-- I Read data from unit u into storage as the values of the Items 
Identified by the NAMELIST Input specified by the name 

Random Access Formatted READ: 

READ (u#R, f) list II nput data from record R of un It u accord I ng to the 
referenced FORMAT f. The Input files must be previously set 
up either by an OPEN or a DEFINE FILE command. 

- - --- -- - --- -
Random Access Unformatted READ: 

READ (u#R) list Input data from record R of unit u. Place data Into storage 
as values of items in the list. The input file must be a 
binary fi Ie prepared by a previously appl led FORTRAN-l0 
unformatted random access WRITE statements. 

Table 3.17 A Summary of FORI'RAN-IO READ Statements 



FORTRAN WRITE Statements 105 

3.14 A Summary of FORTRAN-IO WRITE Statements 

The WRITE statements resemble the READ statements in formats. Diffeent 
types of FORTRAN-IO WRITE statements are now summarized in Table 3.18: 

Statement ~ Function 
--

Sequential Formatted WRITE: 

WRITE (u~f) list This Is the most commonly used WRITE form. It transfers data 
from storage and outputs It on logical unit u. 

WRITE (u~f) Output the contents of any H-field or literal descriptor 
contained by to the logical unit u. 

WRITE f Same as WRITE(u~f) where u=default unit for a line printer. 

WRITE f~ list Same as WRITE(u~f)list where u=default unit for a line 
printer. 

F=======-=======~-~--===~====~==========-====--=' ====.=-=====-==-=-=.-.-,=~=-=--===--=-==~===.=-=======:~ 

Sequential Unformatted Binary WRITE: 

WRITE (u) list loutput the values of items In the list Into the fi Ie 
associated with logclal unit u. 

f==.=,o=-~.o=;~,,==,~~-=~~~,~~,==·.=~~=====c~,cc~==~c·_=c~=======."",=~:=",-=.~='.'~= 

Sequential List-Directed WRITE: 

WRITE (u~*) list.1 Output data from storage Into logical unit u. 

Sequential NAMEL I ST-Control led WRITE: 

WRITE (u~ name) Output data from storage Into logical unit u with the values 
of items as Identified by the NAMELIST-deflned list specified 
by the name name. 

Random Access Formatted WRITE: 

WRITE(u#R~f)list Output Into unit u the values from the storage identified by 
the contents of list to record R. Only the disk files that 
have been set up by either an OPEN statement or a cal I to the 
subroutine DEFINE FILE may be accessed by a WRITE statement 
of this form. 

Random Access Unformatted WRITE: 

WRITE (u#R) list Output Into unit u the values from the storage Identified by 
the contents of I ist to record R. Only the disk files that 
have been set up by either an OPEN statement or a cal I to the 
subroutine DEFINE FILE may be accessed by a WRITE statement 
of this form. 

Table 3.18 A Summary of FORTRAN-IO WRITE Statements 



I 

106 CHAPl'EP 3 FORTRAN-l 0 

3.15 A summary of FORTRAN-IO I/O Statements 

All FORTRAN-IO I/O statements, including the READjWRI'I'E statements 
already discussed are now summarized together in Table 3.19: 

I/O Statement Formatted Transfer Format Control List -0 i rected 
Unformatted Namellst 

--
READ 

Sequent I a I READ(u3 f) Ust READ(u) Ust READ(u3name) Rl"lAD(u3 *) list 
READ f3 Ust READ *3 list 
READ f 

Random READ(u#R3f) list READ(u#R) Ust 
--f--- --------

WRITE 
Sequential vIRITE(uJ) list WRITE(u) list WRITE(u3name) WRITE(u 3 *) Ust 
or, Append rlRITE f3 list 

~lRITE f 

Random vIRITE(u#R3f) list 
I----------r- - ---------f---------- ----------

REREAD 
Sequential REREAD f3 Us t 

------------+--- -----------~----------------------------~ 

FIND 
Random only FIND (u#R) 

-- ----------------- ------------ ---------------
ACCEPT 

Sequent I a I ACCEPT f3 list 11CCESPT *3 list 
only 

f------------- '-------------- -------------1------------- --------

PRINT 
Sequent I a I PRINT f3 list PRINT *3 list 
only 

1------------ --- ---------- -- ----- -------- --------t-.-------------- -----------1 

PUNCH 
Sequntlal PUNCH f3list PUNCH *3 list 
only PUNCH f 

1------------- -------- ----------------f------------l----------
TYPE 

Sequent I al 
only 

TYPE f3 Ust 
TYPE f 

TYPE \ list 

1------------\-------------+-------------- ----------~--------

ENCODE 
Sequtntlal ENCODE(c3f3s) list 

only -1 
1-------+------- ------+--------+--------

DECODE 
DECODE(c3f3S) list 

1. _______ 1---___________ • ___ _ 
Sequential 

u = logical unit number * = specify Ilst-dlrec1ed I/O 
f = format number #R = lac I a I record pas It ion 

list = I/O list c = number of character·s per 

Legend: 

name = name of specific Internal record 
NAMEL I ST I/O I 1st s = address of first storage 

Table 3.19 A SUImlary of FORTRAN-IO I/O Statements 



OPEN/CLOSE Statements 107 

3.16 FORTRAN-10 File Control Statements 

The FORTRAN-10 file control contains only two statements: OPEN and 
CLOSE. They are, however, among the most powerful and versatile statements in 
specifying the input/output files. The general forms are: 

OPEN(apg1 3apg23 ••• ) 
CLOSE(apg1 3apg23 •.• ) 

The arguments have a genral form of ITEM = value. The power and versatility of 
the OPEN and the CLOSE statements are derived from the many options available as 
the arguments. These arguments are summarized and tabulated in Table 3.20 (A&B) • 

AI though there are many available options, many are special purpose type 
and not frequently used. The simplified version is just to take the most often 
used arguments: "unit", "file", "dispose" and "directory" in the OPEN 
statement, and just the "unit" in the CLOSE statement. Thus, the most often 
used forms are: 

Example: 
Function: 

Example: 
Function: 

Example: 

Function: 

Example: 

Function: 

OPEN(UNIT=u.3PILE='NAHE.EXT'3DISPOSE'value'3DIRECTORY='m3 n ') 

CLOSE (UNIT=u.) 

OPEJ1l(UNIT=53 PILE=' INPUT. DAT') 
The disk file INPUT.OAT is opened on unit 5. If the 
FORTRAN program is written with unit 5as the input unit, 
such as in the READ(5,f)list statement, the OPEN statement 
will change the program execution from TTY input to a file 
input. This is a convenient way of adapting an existing 
program from the TTY input to a disk file input. 

OPEJ1l(UNIT=1 3 PILE='INPUT.DAT'3 DIRECTORY='11510333205?1') 
The disk file IMPUT.OAT[115l03,32057l] is opened on unit 1. 

OPEN(UJ1lIT=33ACCESS='SEQOUT'3PILE='DATA.TfiP') 
WRITE-statements on unit 3 

CLOSE (UNIT=3) 
OPEN (UNIT=1 3 ACCESS= 'SEQIN' 3 PILE='DATA. TliP' 3DISPOSE= 'DELETE') 

READ-statements on unit 1 
CLOSE (UJ1lIT=]) 
An output file is opened on unit 3, to be named as 
OATA.TMP. The file is closed after output statge is 
completed; the file is reopened on unit 1 as an input 
file. The file is deleted from the disk when the CLOSE 
statement is executed. 

OPEN(UNIT=1 3PILE=' INPUT. DAT' 3 ACCESS= 'RANDOf,1' 3!10DE=' ASCII' 3 
1 RECORD SIZE=80~PROTECTION="1??) 

Open on unit 1 a disk file INPUT.OAT for random access I/O 
operation in ASCII mdoe. The records in the file are 80 
characters long. When the CLOSE statement is executed, the 
file will be given a protection code of 177. 



108 CHAPl'ER 3 FORl'RAN-10 

Possible 
Argument Value Function Open* Close* Default Value 

F=~- ~c,_= ===~-== - -->--==-=--~=========f"=9==-"'=F=== -~= 
UNIT ~ Iv,lc To define the logicol unit number. Req Req 

f------------ ------ ----------------1----- -~-----
_D_E_VI_CE:_~ __ ~ IV,lc _::"o_speclfy the J>.hyslcal name_,:,~the logical name of an ~ ___ Op ___ ~ __ 1_~~~11':_"--

ACCE:,';8 = Six 
poss Ib Ie 
val ues 

To sepclfy the type of Input qnd/or output statements Op 
and the file access mode to be used In a specified I/O 
operations. The six possible values ~re: 

I SEQ I N I = to be read In sequant I a I access mode 
'SEQOUT' s to be wr I tten I n sequent I a I access mode 

'SEQINOUT' • data file may be fJrst read, then written 
record-by-record I n a sequent 181 access 
mode. At th I s access, e ViR I TE/READ sequence 
Is Illegal. 

'RANDOM' ~ to specify random access mode In either 
READ or WRITE operation. The RECORD SIZE 
opt I on Is requ I red when th I s access mode Is 
spec I fled. 

'RANDIN' • to specify. read-only random access mode 
with a named file. 

'APPEND' • to specify the APPEND mode. The record 
spec I fled by an assoc lated WR I TE st atement 
I s to be added to the end of a named f II e. 
You must close I t and then reopen the mod 1-
fled file to permit It to be read. 

19 'SEQINOUT' 

f----------- --------- - ------------------------~---f- -- - - - ~-=--
MODE ~ four To define the character set of e file or record. Op Ig 'ASCII' for 

1----------
DISPOSE ~ 

FILE = 

possible Four possible value5 are: formatted fi Ie 
values 

'ASCII' • to specify an A:5CII file 'BINARY' for 
'BINARY' - to speCify a FORTRAN form.tted binary file unformatted 
'IMAGE' = to specify an unfoemated binary file file 
'OUMP' • to specify the file to be handled In 

DUMP mode 
--c---~--- -~----'----------------r___~ ~--------

six To specify the action to be taken regarding a file at Op Op 'SAVE' 
possible the close time. Six values are possible: 
values 

----
11/, Ie 

'SAVE' = to leave the fIle on the device 
'DELETE' ~ to delete the file If It Is on disk or on 

a DECtape. Otherw I se, take no ~ct Ion. 
'PRINT' ~ to queue the file for printing If It Is a 

disk file. Otherwise, take no action. 
'L 1ST' - to queue the file for printing and delete 

It If It Is a disk file. Otherwise, take 
no act 101". 

'PUNCH' - to output on paper tape punch. 
'RENAME' = to change f II ename 

--------------------
To specl Iy the name of the frlle Involved In the OPEN Op ')p 'FORxx.DAT' 

or CLOSE statement, The file name format Is FLNAME.EXT. 

Def au I t cond I t Ions: FLNAME 
FLNAME. 
(null) 

= FLNAME.DAT 
= FLANME. 
- FORxx.DAT 

where xx ,. two-d I 9 I t un I t number 

-- -J-- ----- I f the f II enames of the sam~ f II e I n the OPEN and tho 
CLOSE st atements are d I! !erent. the f I I e I s renamed, 

To specify a protection code. For example: 
PROTECT I ON • "155 

PROTECTION = I oc,l v Op Op "057 

Table 3.20A FORI'RAN-10 OPEN and CLOSE Statements 



OPEN/CLOSE STATEMENTS 109 

Possible 
Argument Val ue* 

DI1<J~'CTORY ~ 

Funct Ion 

To specify the directory of the fl Ie. Most frequent use 
I s to spec I fy the PPN of the f I Ie. To spec I fy a PPN 
of [123456.65432 I J. use any of the three ways: 

(1) Single-precision array: 
OPEIl (u»i t=l, D1 RECTOJ?Y=PM'H, ••• ) 

where PATH and Its elements are: 
DIMC'IISION PATIl (2) 
PA ':11 (1 )="123456 IproJect number 
PATII(2)="654.~2.1 Iprogrammer number' 

(2) Doubl" precision array: 
OPE!I(u»it=l, DIRECTORY=PATH, ••• ) 

,.here PATH and Its elements are. 
DOUBJ,E PRECISION PA':H(2) 
PATII(J )="0000001234560000006054321 
PATIl(2)="0 

(3) LIteral conshnts> 
OPE!l(unit=J, DIRECTORY= '123456, 654321', ••• ) 

ppen* Close* Default Value 
I---'~--- . ~ .... --~--

Op Op User's own 
PPN 

~.~. . _ ... ~~~.-- ---" .. - ----- --~----------~ ~ -- -------t 
BUFFER COUnT = I v.le To spec I fy the number of I (0 buffers to be ass I gned to Op I 9 Monitor defau I t 

t-~-~~--i--- .~ __ ~ __ ~_a~cul.r de~~. __ ._. __ ~ ________ ~ __ ~ ___ I----_._v._I_ue ___ --i 

FILE SIZE = 
t--~~---

VERSION = 
I-~- . 

BLOCK SIZE = 

r----- -.~ 

RECORD SIZE = 

r-----
ASSCJATE 
VARIABLE 

PARITY = 

r----- -
DEl/SIH = 

i-DTALOG .= 

Iv.le To specify disk file size In words Op Ig Monitor default 
I--- -.-~.-~---~-- ~----~. ~ ~.---.--,~ --.----- - -- .-~-~-

oc, Iv To specl fy the vors Ion number of the named f I Ie Op 
~-~---~~-- .~--~-- ... --~ ~ -.- -- -~----.- ~-'~~--~-I----

Iv, Ie To specify block size for 01 I storage media except Op 
disk and DECtape. 

Op 

Ig 

o 
~---~---

Monitor defau It 

~---- ~.-- -.~------- -·--------1-~----t~-t- --~~---

I v. I c To spec I ty record size I n words. Requ I red argument when 
spec I fy I ng random access mode. 

- ----- -- -~~----~~---~-~.--~~--------~ 
Iv In random access mode. It provides storage for the number 

of the record to be accessed next I f the program being 
executed were to cont I nue to sequent I a I access records 
starting from the current READ. For example. If record 
number 3 was read. the ASSOCIATE VARIABLE Is 4. 

c---~----- -,--~--"~'---- -"' -~~-~~----- .. -
two To set the parity check system for magtape operation. 
possible Two possible values are 'ODD' and 'EVEN'. 
values 

Op Ig Monitor default 
value 

- -- --~.----

Op Ig 

._--- ------~ -~-

Op Ig System default 
value 

-- - ----------~---~--.~-----~-- ~- ~- .. -- -~---~ 

five 
val ues 
none 
I v,array 

To set the packing density of magtape. Five values are Op Ig System default 
'200', '556'~ .'8.QO'~-' L6.9Q'~,. aDd~.-'62iO_'_. _____ ~ __ 

The use of this option In an OPEN statement enables you Op 19' 
to l3upersede or defer, at execution time, the values 
prev I ous I y ass I goad to the arguments of the statement. 
The System w II I return a message at the user's term I na I : 

UN I T=n: (ACCESS=SEQ INPUT (MODE=ASC I I 
ENTER NEW FILE SPECS. END WITH AN ESC. 

On I Y the changed f lie specs needed be entered. 
.. ~~- -----f-- -~----

ERR = To go to statement No. s when there Is an error during Op Op Error stop 
the execut Ion of the OPEN or the CLOSE statement. _____ ~ __ ~ ____ .~ __________ ~~ __________ ---''-_ __'. __ L_ ___ ____I 

"l.egend: Ie := Integer constant5 
Ie III literal constant; 
oc := octal consten"t. 

IIp = opt lana I ; 

Iv:;:a Integer variable; 
Iv· literal varl.blel 

19 • Ignored. 

TABLE 3.20B FORTRAN-IO OPEN and CLOSE Statements 



110 

Function: 

CHAPI'ER 3 FORl'RAN-IO 

OPEN(UNIT=1~ FILE='INPUT.DAT') 
Other FORTRAN statements follow. 

CLOSE(UNIT=1~FILE='OLD.DAT') 

Here we have the same unit number for the OPEN and the 
CroSE statements, but they are different file name 
arguments. This is equivalent to renaming a file at the 
CroSE time. The INPur.OAT is renamed as OLD.OAT. 

3.17 Format Statements 

The FORMAT statements in FORl'RAN-IO are in general compliance with the' 
standard FORTRAN. Therefore, only-a brief summary will be given here. 

The FORMAT statement has a general form of 

n FORMAT (S , S , ••• ) 

where n is the statement number and each S is a data field specifier. The 
various data field specifiers are now summarized as follows: 

(1) Ntnneric fields In the following list, "w" is an integer 
specifying the field width; lid" is an integer specifying the number of decimal 
places to the right of the decimal point or, for the G-format, the number of 
significant digits. For the 0, E, F, and G inputs, the position of the decimal 
point in the external field takes precedence over the value of d in the format. 
This means that the decimal point of the input data need not be exactly at the 
specified column of the format. However, the data must be entered within the 
field specified in the format. 

Floating-point type format Fw.d 

ExpnnAnt-type format Ew.d 

Double precision Dw.d 

Genera I format: 

Real & double precision 
Integer & logical 
Comp lex 

I nteger format 

Oct a I format 

GW.d 
Gw 
2Gw.d 

Iw 

Ow 

(2) Ntnneric fields with scale factor Scale factors may be specified 
for 0, E, F and G formats. A scale factor is written as nP where P is the 
identifying character and n is a signed or unsigned integer that specifies the 
scale factor. 

For the F-type conversions (or G-type, if the external field is decimal 
fixed point), the scale factor specifies a power of ten so that: 

External number = (internal number) * lOP 



FORMAT Statements 111 

For the 0, E, and G (external field not decimal fixed point) formats, the 
scale factor multiplies the number by a power of ten, but the exponent is 
changed accordingly leaving the number unchanged ~xcept in form. For example, 
if the statement: FORMAT(F8.3,E16.5) is used to print out two values A and B: 

the same numbers under a format of 
printout of: 

FORMAT(-lPF8.3,2PE16.5) would produce a 

In input operations, the F-type data are the only type affected by the scale 
factor. 

(3) Logical field The logical data field specifier is: 

Lw 

where "w" is an integer specifying the field width. If the format is used in an 
input operation, the first nonblank character in the data field is T or F, the 
value of the logical variable will be stored as TRUE or FALSE respectively. If 
the entire data _field is blank or empty, a value of FALSE is stored. If the 
format is used in an output operation, (w-l) blanks followed by T or F will be 
output if the value of the logical variable is TRUE or FLASE respectively. 

(4) Variable field width The numeric fields may appear in a 
FORMAT statement without the specification of the field width "w" or the number 
of places after the decimal point "d". When this format is used in an input 
operation, the input data can be entered in a "free form" style so long as a 
delimiter is used to separate two neighboring data. Any illegal character in a 
numeric field can be used as a delimiter. However, a good practice is to use 
either a comma (,) or a blank ( ) as a delimiter. For example, input according 
to the format: 

10 FORMAT(2F,E,2I,0) 

might appear as: 

-2.34, 2.345, 0.5623E-Ol, 56, 783, 3.45672345690+01 
If such a format is used in an output operation, FORTRAN automatically assume 
the following field specifiers: 

Format 

o 
E 
F 
G 
I 
o 

(5) Alphanumeric fields 

Aw 

025.16 
E15.7 
F15.7 
G15.7 or G25.16 
115 
015 

The format of an aphanumeric field is: 

or Rw 

The maximum value of "w' is 5 for single precision, 10 for double precision. 
The A-field deals with variables containing left-justified, blank-filled 
characters; the R-field deals with variable containing right-justified, 
zero-filled characters. 



112 CHAPrER 3 FORTRAN-l 0 

(6) Alphanumeric data wit~in a format statement Use nH format or 
enclose the alphanumeric data in single quotes. See examples below: 

10 FORMAT(17H PROGRAM COMPLETE) 
10 FORMAT (' PROGRAM CCMPLETE') 

(7) Complex field Complex guantitites are transmitted as tv,u 
independent real quantities. The format specifier consists of tv,u successive 
real specifiers or one real repeated specifier. For example, the following 
format can accommodate four complex quantitites: 

10 FORMAT(4FlO.4, 2E14.S, FlO.S, FlO.3) 

(8) $ format descriptor A "$" format descriptor at the end of an 
output FORMAT is used to suppress the carriage return (and the associated line 
feed) at the end of the current record, except when the FORMAT is automatically 
repeated when the WRITE statement list contains more items than those in the 
FORMAT. One typical appl ication is shown in the example below: 

Example: 

Function: 

The following is a segment of a FORTRAN-IO program: 

10 FORMAT (' ANSWER YES OR NO '$) 
11 FORMAT (A3) 

WRITE (6,10) 
READ(S,ll) ANSWER 

When this segment of the program is executed, the following 
will appear on the user's terminal: 

ANSWER YES OR NO > (UseI' answeI's YES OJ' !TO here) 

(9) Print control descripto~ When FORTRAN output file is printed on a 
printer or a terminal, the first character of each line (or record) is reserved 
for the carriage control character which controls the spacing operations of the 
printer or the terminal. The FORMAT should have a beginning field of IHa where 
"a" is a desired control character. Table 3.21 lists the FORTRAN-l 0 print 
control characters. 

3.18 FORTRAN-IO Device Control Statements 

The FORTRAN-IO device control statements are normally used for magtape 
operation control, although they also v,urk well with DECtapes and can be used to 
simulate disk devices. These tape control statements provide a set of run-time 
tape control instructions. 

In order to execute these stantements, magtapes must first be MOUNTed, 
and a logical name of be given, where "u" is the logical unit for that tape 
unit in the FORTRAN program. Therefoe, if the device control statements are 
used in a FORTRAN-l 0 program, preliminaries such as the following must be 
carried out before the execution of the FORTRAN program*: 

*Unless a run-time subroutine, such as RMOUNT, is available to mount a tape. 
See Section 3.21. 



Device Control Statements 

Print ASCII 
Control Character Octal Value 

space 012 

l-------------

o zero 012 

1 one 014 

+ plus 

* asterisk 023 

- minus 012 

2 two 020 

3 three 013 

/ slash 024 

period 022 

, comma 021 

"------------'---_._-

--_ .. _-_._------------------, 

Function 

Skip to next line; skip to next page 
(form feed) after 60 lines. 

Sk i P a II ne 

Form feed - go to top of next page 

Suppress skipping - overprint the line 

@Sklp to next line with no formfeecl. 

@Sk i P two I I nes • 

@Space 1/2 of a page. 

Space 1/3 of a page. 

@Space 1/6 of a page. 

@Trlple space with a formfeed after 
every 20 lines printed. 

@Double space with a formfeed after 
every 30 lines printed. 

Table 3.21 FORTRAN-10 Print Control Characters 
@=No effect on a terminal • 

• DRIVE MT9 

.MOUNT MT9:u/WE/VID:B313 

113 

Here, the VID used is for illustration. If there are more than one tape for the 
job, the above preliminaries must be done for every tape unit needed in the 
program. 



114 CHAPI'ER 3 FORI'RAN-IO 

The device control statements are now summarized in Table 3.22: 

Statement Functlon 
F-'-- -=-O='F"'-=="',==-==.======--===:'="'-=.-'==-====O-,",O=C===-.==."-==--O= 

RE~lIND U Move and re-pos it 10n the f 1 I e back to the f 1 rst record • 
. ---

UNLOAD U Rewlnd the source reel so that the tape ls complely off 
the take-up reel. The tape wl I I be ready for unloading. 

t-- .-. 

BACKSPACE u Backspace one record except lf lt is already at record 
No.1. Thls statement cannot be used for files set up 

I for random access, I lst-directed,or NAMEL I ST-control led 
1---- [.1/0 operat ions. __ _ 

ENDFILE u 0_ ~w~1te ~n_ e~d_~_l._lo~ ~~:o~~~n_ t~e _f_lle locate~ ~_ devI~~_u,-- __ 

SKIP RECORD u Sklp one record on devlce u. 

:~:F:~: u~ ·l~;;~~;~;~~~~ t::' :~r-::i~:::r~ ~3~~~:~;;,0:r:~::;:;~::'== '--_______ f 
Table 3.22 FORTRAN-IO Device Control Statements 

3.19 FORTRAN-IO Subprogram Statements 

Subprograms are procedures that are used repeatedly in a program or among 
the users, and therefore it is more convenient to define such common procedures 
so that they may be referenced. The arguments for such a common procedure are 
merle general enough so that the subprograms can be utilized widely. These 
arguments are called dummy arguments. Dummy arguments in a FORI'RAN-IO program 
may be one of the following: (I) variables, (2) array name, (3) subroutine 
identifiers, (4) function identifiers, or (S) statement label identifiers that 
are denoted by the symbol "*", "$", or "&". 



Subprogram Statements 115 

These subprogram statements are now summarized in Table 3.23: 

Statement Function 
~==========~===~=======~==~~,~===========,~==========================,----~ 

NANE(aY'gl,aY'g2, ••• ,aY'gn) expY'ession 

1 This defines an Internal subprogram, where NAME Is the name 
ass I gned, (aY'gl ,ar>g2, ••• ) I s a II st of dummy argume,nts. 

f-----.-----..... ---- .-... _- ------ -. --.... --- -.. --- .- ----------- ------. -'-- -------. -..... - - .. --.-.---

TYPE FUNCTION NAME(aY'gl,aY'g2, ••. ,aY'gn) 

I 
where TYPE = optional type specification such as INTEGER, 
REAL, et. 
(aY'gl,aY'g2, ••• ) = a list of dummy arguments. 

- ----- - - -- - - -- ----- --------_._------
SUBROUTINE NAME(aY'gl,aY'g2, ••• ,aY'gn) 

1--------------------- - ---.. ------

CALL NAlfE(aY'gl,ar>g2, ••• ,aY'gn) 

1--____ .... _. __ ._ .... _ .... _IL __ D_e ... _f_l .. n._I .. t .. __ I._o._n .. ~!~_~ubrout.~~ __ ~nd_~~~.I.lng a subroutine 
._-_._._------- ... _. __ ._--------

ENTRY NAME(aY'gl,aY'g2, ••• ,aY'gn) 

RETURN 

t--.-.----

RETURN k 

Multiple entry specification where: 
NAME = name to be assigned to the desired entry point. 
Rules of multiple entry in a FORTRAN-l0 subroutien are given 
later • 

.. --- ---_ .... 

Return the 
program. 
followl ng 

This Is a 
constant, 
are given 

control form the subroutine to the cal ling 
Next statement executed Is one Immediately 

the cal ling statement In the cal ling program • 
.. _--- --------_ ... -._._- .. --_ ... _ .. _-.-. __ .'- .. -.-.... --.. --.-

multiple-return statement, where k Is an Integer 
variable or expression. Rules of multiple return 

alter. .. 

Table 3.23 A Summary of FORTRAN-IO Subprogram Statements 

Often, many subprograms share a comroon computational procedure. Although 
these comroon procedures can again be made into subprograms to be called by 
subprograms, an alternative is to construct one subprogram with many entrance 
points. In Figure 3.2, a flow chart is shown for three entrance points and one 
exit. The entrance points are labeled as SUB (the front entrance), Pl'A and Pl'B 
(two side entrances). The program segments are represented as Segments 1, 2 and 
3. 



116 

~ 
[

----1----.---
1 Segment 1 i 

)~~ ~;:rded' J 
e 

r~~~:g~:~~e~~-l 
L' 

A,B,C 
Result: X 

--- -, 

e 
I 

,-_._ t __ 

Segment 3--l 
Data needed: 

A,D 
Resu It: Y 

CHAPI'ER 3 

ENTRY PTA(A,B,C,D,X,Yl 

2 

ENTRY PTB(A,D,Yl 

Program 
Segment 3 

RETURN 

Figure 3.2 An Example of Multiple Entry Subprogram 

The following rules on ENTRY should be noted: 

(1) An ENTRY statemnet may not be placed in the main program. 

(2) An ENTRY statement may not be placed in a 00 loop. 

FORrRAN-IO 

(3) There is no need for the arguments of various ENTRY statements to 
agree with each other. 

(4) Value of function must be returned by the use of current ENTRY name. 

The statement RETURN k enables the selection of any labeled statement of 
the calling program as a return point. When the mUltiple returns form of this 
statement is executed, the assigned or calculated value of k specifies that the 
return is to be made to the kth statement label in the argument list of the 
calling statement. The value of k should be a positive integer that is equal to 
or less than the number of statement labels given in the argument list of the 
calling statement. If k is less than 1 or is larger than the number of 
available statement labels, a standard return operation is performed. 



FORTRAN Subprograms - DEC 117 

SUBPOOGRAM LIBRARIES IN FORTRAN 

3.20 Selected FORTRAN-IO Subprograms Developed by DEC (Table 3.24) 

Subprogram 
Name Effect 

t======"-==4c.:======·-'-""'==='===='.="'''':==''''-'-=--'-=···:-:.:=:cCO:====.=.""-=.=-==:.="':::'.=:===::'-='-~=--: 

DATE (ARRAY) 

----_._ .... _.-. 

"ARRAY" is a dimensioned variable In the calling pr50grclm with 2 
elements. The suroutlne wi I I return the values: 

ARRAY(1) = 'DD-Mm', ARRAY(2) = 'm-YY' 
When ARRAY is printed with a 2A5 field format, the result Is 
DD-Mmm-YY, for example, 19-Aug-80, the date when the subprogram 
was executed. To force the "month" part Into al I upper case 
letter, the fol lowing two statements should be Inserted between 
the CALL DATE and WRITE statements: 

ARRAY(1) = ARRAY(1) .AND. "777777777677 
ARRAY(2) = ARRAY(2) .AND. "577777777777 

Then the above date example would be printed as 19-AUG-80. 

TIME(X) or Tn1E(X~Y) 

ERRSET(N) 

----------._-- ._ ...... 
ERRSN8(I~J) 

These subroutines wi I I return a string constant X as 'HH:MM' as 
the current time In a 24-hour clock notation, and' SS.S' for Y, 
where HH=hour, MM=minutes, SS.S=seconds • 

. . -- -.---- .. _- ----------_.----_.-----_._-

To control the typeout of execution-time arithmetic error 
messages. Message Is suppressed after N occurences. 

-------_._---_._-_ .. __ .• _ .... - --... --- ---- -----------------_. ---------.---- .. --------~---

To determine the exact nature of an error on READ, WRITE, OPEN 
and CLOSE that was trapped with the "ERR=s" option In the 
statement. The subroutine wi I I return two Integers I,J. The 
(I,J) combination describes the nature of error according to a 
code table defined by DEC. (See Appendix H of Reference 4.) 

1----- -. -.- -- -- ·--1-·- --··-----------------·--·-----1 

EXIT 
1-----

RELEAS(u) ...-.------ -_.-

SAVRAN(I) 

To terminate the subprogram. 
--------.-~.-. ---- ------- ... --~---.-----.---- -.--------~ 

To release the logical unit u. 

It sets Its argument at the last random number (Interpreted as 
Integer) that has been generated by the function RAN. 

f-------.. --- .. ------- ---1-... -------.. -- - .. --~--------- .... --- -.. ---- -----.-- -----------------.-------\ 

SETRAN(I) The starting value of the function RAN is set to 1. If 1=0, RAN 
uses Its normal starting value. 

r----------------'--------.--- .. -------------- . ----~---.--------------.--

SORT('OUTPUT=INPUT/switches') 
The argument Is a string representing a SORT prgram command. 
The detai Is on the SORT program are given in Chapter 7. Check 
with local Installation whether this subprogram Is Instal led In 
the system. 

Table 3.24 A Selection of FORTRAN-IO Subprograms Developed by DEC 



118 CHAPTER 3 FORTRAN-l a 

3.21 Selected Subprograms Developed at the pitt Computer Center 

A group of subprograms have been -developed and implemented in the 
FORTRAN-l a at the installation of the University of Pittsburgh. These 
subprograms are included for the convenience of pitt users. DEC System-lO 
installation elsewhere would have similar types of subprograms but geared 
particularly to the local needs. These programs are often made available to 
other installations by exchange, leaqe or purchase. Since these suprograms have 
beeen implemented already in the Pitt: FORTRAN-la, no additional monitor commands 
are needed to call them. For users elsewhere, they must confirm first with 
their installation personnel whether such or similar subprograms are available 
in their facilities. 

The subprograms will be outlined according to their general functions: 

(1) Supplementary library functions This group of subprograms are 
all functions and is used to supplement the DEC-supplied l)brary functions (such 
as square root and sine function) which are given in Section 3.6 as Table 3.8. 
These supplementary functions are listed in Table 3.25: 

Type 
Function Form Definition Argument Funct j o-ri---

Tangent 
Real (radians) TAN tan(x) real real 
Real (degrees) TAND tan(x) real real 

-- ------
Cotangent 

Real (radians) COTAN cot (x) real real 
Real (degrees) COT AND cot (x) real real 

~- ------
Gamma function GAMMA (x) real real 

--------------1--------

Error function ERF erf(x) real real 
-----1------

Complementary 
erro function ERFC 1 - erf(x) real real 

---- -------------1-------- --~.---- --------
CPU time XEQTIM CPU time In dummy real 

milliseconds 

Table 3.25 Supplementary FORTRAN-IO Library Functions 
Developed at the University of pittsburgh 

(2) Bit manipulation in a memory word 

A DEC-IO memory word contains 36 bits. The hardware store a 37th bit for 
parity check, but that is of no concern to the user. The bits are numbered from 
a to 35 (from the most significant bit side to the least) aa shown in 
Figure 3.3(a) • 

The group of bit-manipulation subprograms can be used for a wide range of 
applications, such as data re-formatting in data transfer between a magtape and 
disk storage. One particular application is in the area of character-storage 
manipUlation. Since ASCII-coded characters are coded into 7-bit bytes, where a 
"byte" is a unit consisting any number of bits, each memory word can accommodate 



FORTRAN Subprograms - Pitt 119 

rT! lIJ~L IJ~ __ _ .. --,--]] 
-- ------~--~-

o 1 234 567 . . . . 34 35 

(a) Bit Positions 

CH 3 CH 4 CH 5 rol 
__ _ ____ . l ___ J 

-6! 7-13114 .... · ... 20!21 .. ---.. 27128 ..... 34[35 -Bit 
I I I Positions 
(b) ASCI I-Coded Character Storage 

Figure 3.3 DEC-lO ASCII Storage Format 

5 characters with one bit left over. The standard ASCII coded storage format is 
shown in Figure 3.3(b). As a result, bit-35 is always filled with a zero-bit 
when the Y.Qrd is an ASCII -coded Y.Qrd. 

These subprograms are now outlined below: 

Function: 

Function: 

Effect: 

LDB(Kl~ Length~ Z) 

I ~ Source Y.Qrd to be processed 
~ Byte length in bits (integer, 1 to 36) 

-----Starting bit position (integer, 
o to 35) 

LDBN(N~ Length~ Z) 

'L I L Source Y.Qrd to be processed 
Bytesize in bits/byte ( 1 to 36) 

----- Byte number (from left to right) 

Source Y.Qrd Z: 

Returned function 
value: 

~Length-I 

[~: 
o 

E~_ 0 

o 



120 

Subroutine: 

CHAPI'ER 3 

CALL DPB (K1~ 

I Starting bit position----------~ 
Byte length

Destination ....urd -
SOurce ....urd-

FORl'RAN-IO 
______ ._.~r .. _____ ~ ................. 

Length~ 22~ 21) 

, 

_____ J 

Subroutine: CALL DPBN (N~ Length~ 22~ 21) 

Effect 

Example: 

Function: 

Effect: 

Example: 

Starting byte number -
Bits/byte -

Destination ....urd 
SOurce ....urd 

-' j 

_.J 

K1 and Length are integer constants or variables. 

"Before" : 

22: 

21: 

"After": 

22: 

21 : 

r V) 1J 

[y y y 

! 1J 1;) • 

y!u u u u U;2 2 . . . 2: 
I+Lenqth:'-~ 

• 1J 1J Ix x ~ xx 1 
///' -,. 

// Depos i t/
~//bYte __ ///--

y!X x x x x 12 Z •• Z 

• • • • • 1J 1J ~x X X x xi 

Zl is unchanged. Z2 is unchanged except the deposited 
bute field. 

CALL DPB(O~?~22~LDB(?~?~21)) 

Exexution of this call will replace the first character in 
in the ....urd Z2 by the second character in Zl as shown below: 

0 7 ---C_- :1.1 .28 3S' 
Zl L ~. ! -) 1\ 

0 --... 
LDB [- ::l ]:I 

-- zq J<;; 

Z2 

LSH ( 1Jord~ shift ) 

I 
I number of places to be shifted: 
--- +integer=shift left 

-integer=shift right 
--- --- ....urd to be processed 

1Jord: 

L8H(1Jord~+k) 

11 = LSH(IABCDE'~-14) 
The string ....urd 'ABCDE' is shifted right 14 places. The 
shifted-out bits are replaced by O's. Thus, the returned 
function value is M =' ABC', because the ASCII-coded 
character for code 0000000 is null. 



FORTRAN Subprograms - Pitt 

Subroutine: 

Effect: 

Example: 

CALL ZERO( ARRAY(I)~ ARRAY(J) 

First element ------~ I 
Last element ____ J 

Set all elements within the specified range to zero. 
Array may be of any type. 

CALL ZERO( A(l)~ A(100)) 
Set A(l), A(2), •• • A(lOO) to O. L--_________________________ . ________ • ___________ _ 

121 

-------------.-------------------.-.----
Subroutine: 

Effect: 

CALL ASCEND(Z~ KFIRST~ KLAST) 

FirstA~~~~~ =J_ j J 
Last subscript --- - - - --

Sort the Z-array from Z(KFIRST) to Z(KLAST) in an 
ascending order and then store them in the same array 
locations. 

Example: CALL ASCEND(X~ 1~ 100) 
Sort the X-array from X(l) to X(lOO) and store them in 
ascending order as the new X-ar:ay from X(l) to X(IOO). '-----_._._ .. __ • ___ . __ .•.. _.___ ..•. _ .• _____ • ______ •.. ____ . __ ._. __ . ___ ..•. _ •..• __ .•. ::-. __ . ________ ... _._. ___ ._ .. _ •. _ .• _____ .... ___ .• _. __ . ..-1 

Subroutine: 

Effect: 

Example: 

CALL SPRAY ( Z(I)~ Z(J)~ VALUE) 

First element _ .. -............ --.---1
1 J J 

~:o~l:~~~ __ .. _ ----- ,_. 

Set the Z-array of the specified subscript range to equal 
to the VALUE. 

CALL SPRAY(Zl)~Z(100)~1.5) 
Set Z (1), Z (2) , ••• , Z (100) to equal 1. 5. '----_._------._--_ ... _---._ ..... __ .. _-_ .. _ .. _.--_.--_ .• - ._-.. __ . __ .. _--_ .. _-_. ---.•. -'--.---... -, ..... _ ............... -----.. -

Subroutine: 

Effect: 

CALL MOVE (A2(I)~ A2(J) ~ AUK) 

Destination array __ ~ __ ........J! First element of I J I 

Last element of ! 
Destination array ~, .... I 
First element of 

source array ~.--

Copy an array A2 from Al in this manner: 

A2(I) = Al(K) 

A2(J) = Al(K+J-I) 

----~ 

Al and A2 arrays should be of the same type, and avoid 
double precision or complex array because the second \',Urd 
of each tv,u-word element \',Un' t copy. 

~ _____ ~~ __ • __________ ~., _______ ·._N~~'._~~ ____ ~~p __ ~ ________ ~ __ ~ ___ .. __ 



122 CHAPl'ER 3 FORTRAN-l 0 

(4) Device and file specifications 

IIr-------------~----~-

Subroutine: 

Effect: 

Example: 

Subroutine: 

Effect: 

Example: 

CALL RHOUNT ( u , VID , vIE , Label, Ser1:al 

Integer, log ical I 
unit unmber~ 

I 
! 

String constant or ! 
variable, VID: ------------~ 

'WE' (or 0) or 'WL' 

'SL' (or 0) or 'NL' 

Used only if Label='NL' --

A run-time MOUNT instruction for a magtape or DEC'tape. 

CALL RMOUNT(1, 'B313', 0, 0) 
This is equivalent to issuing two monitor commands before 
the execution of the FORTRAN program: 

. DRIVES MT9 

.t10UNT MT9: 1/TtIE/VID:B313 

CALL IFILE (unit, filename, extension, PPN) 
CALL OFILE (unit, filename, extension, PPJIl) 

where unit = integer constant, logical unit number 
filename = 5-character or less string 
extension =3-character or leess string 
PPN = l2-digfit octal constant 

Default extension is 'DAT'. 
Default PPN is user's own PPN. 

These are respectively equivalent to: 

OPEN(unit=u,file='filename,extension',directory='p,pn', 
access='seqin') 

CLOSE(unit=u,file='filename,extension',directory='p,pn', 
access='seqout') 

CALL IFILE(l, 'INPUT') 
Specify user's INPUT.DAT as an input file on unit 1. 
CALL IFILE(2, 'SAMPLE', 'THP', "115103320571) 
Note that although 6-character filename is given, IFILE and 
OFILE will only treat it as a maximum of 5-character string 
(because it is coded as ASCII instead of SIXBIT). Hence 
the search will be for a file SAMPL.TMPin the PPN of 
[115103,320571], instead of the specified file SAMPLE.TMP. 
If there is actually a file named SAMPL.TMP, this wrong 
file will be called. If there is no SAMPL.TMP, execution 
comes to an error stop. 



The SUBSET Package 123 

3.22 The SUBSET Subprogram Package 

Many subprograms have been developed by the faculty, staff and students 
at the University of Pittsburgh. Many of these are };X>lished, optimized, and 
well docLmented. One such v.ork is the SubSET (§!:!!Wrograms to .§implify §ncoding 
!asks) , written by Ronal K. Nicholas* and stored under the PPN of 
[121403,250321]. By permission of Mr. Nicholas, a selection of SUBSET programs 
with their subset properties will be outlined. These subset propertiE~s are so 
chosen as to represent the salient };X>ints in these subprograms. l?or more 
details, the readers are referred to Reference 7, the SUBSET manual. 

(1) Subprograms to report job informatio~ 

Subprogram 
Name 

CORE (IP) 

Fun:::tion or 
Subroutine 

subroutine 

Effect 

Return an integer IP which is equal to the number of 
pages of core memeory for the current pr~}ram with 
the fractions of page rounded to the next higher 
value. 

1--------+-----.-+-.--- ----.-.. -.. - ..... -- - .. -... - .. -. -.. --.--...... -.-.-~--.---.-----
IDENT(ID) Function or 

subroutine 
As a subroutine, it returns the argument ID as 15 
ASCII characters in a 3-word array. The form of the 
ASCII string is '[m,n]' in three v.ords. As a 
function, it also returns with "m" in the left half, 
and "n" in the right half of the returned ~)rd, both 
as 6-digit octal constants. 

1---•.. --•.. -......+.. ..... . .......... -.-.... ... . .... -------1 

LOCATE(L) Function or As a subroutine, it sets the user's job to station L. 
subroutine If used as a function, it returns a functional value 

of .TRUE. if successful. Otherwise, it l:eturns a 
value of .FALSE. 

1--.... -

MYJOB(JOB) 

r--" 

Function or 
subroutine 

MYLINE(LINE) Function or 
subroutine 

r--'- ... 

MYNAME (NAME) subroutine 

WKDAY (TODAY) subroutine 

.-- . _ .... - -_ ..•.... - .. _--
Return a functional value or argLment JOB the job 
number. 

'.".' ...... --
It returns the argument LINE as the user's TI'Y line 
number. If it is a Batch job, the value is negative. 

..... -_ .... _._--_.-
It returns a 3-word array containing E> ASCII 
characters left-justified, which is the u~~r's name 
as stored in the system • 

....•. ••.......• . . . ...• ... . . •. - ..••.... _ ....•.•.. --.. -----

It returns a 3=character string which is the day of 
the day of the week, such as 'Mon', 'Tue', etc. 

(2) Subprograms to manipulate arrays 

These subprograms deal with initializing an array, copying one anay onto 
another, and finding minimum and maximum elements in an array. 

*Ronal K. Nicholas, Research Associate, Division of Research in Medical 
Education, SChool of Medicine, University of Pittsburgh 



124 

Subroutine: 

Effect: 

Example: 

CHAPrER 3 FORTRAN-l 0 

CALL COpy ( Z1~ INCZ1~ Z2~ INCZ2~ NTOTAL) 

First source array element~ I 
Zl-increment--~ 

First destination array element--- ---
Z2-increment ---

Total number of elements--------
to be copied 

JJ J 

Copy the Zl-array by the Z2-array with indicated starting array 
elements and subscript increments. Zl and Z2 are the first array 
elements in the specified copying process. If the first element 
has a subscript of one, the subscript may be omitted, and Zl or 
Z2 may appear as array name. 

CALL COPY(X~1~Y~1~10) 
This is equivalent to: 

CALL COPY(X(2)~2~Y(9)~3~10) 
This is equivalent to: 

00 5 1=1,10 
5 Y(I)=X(I) 

00 5 1=1,10 
5 Y(3*I+6)=X(2*I) L-______________________________________________________________________________ _ 

r-----'-----------------.------------.-------.-------------------; 
Subroutine: 

Effect: 

Example: 

CALL INIT( Z~ NTOTAL ZVALUE) 

Array element or array name------J J ~ 
Total number of Z-element -------- -----

to be initialized 
Corrmon value - --

If Z is an array name, initialization begins from Z(l). If Z is 
an array element, initialization begins from the given element. 
Z must be a single precision, real or integer type. 

Initialize the array by the common value given 

CALL INIT(X~50~ 0.0) 
Set X(l) ,X(2) , ••• X(50) to zero. 

CALL INIT(K(10)~ 50~ KODE) 
set K(lO) ,K(ll) , ••• K(59) to a pre-defined value KODE. 

CALL INIT( POINT~ 132~ , ') 
set POINT(l) ,POINT (2) , ••• POINT(132) as blanks. 

L-______ , ________________________________________ --I 



I 

I 

'I 

I 

The SUBSET Package 125 

Function or 
Subroutine: 

Effect: 

MINX (ITEN(I) -' ITEM(J) -' INDEX 
HAXX (ITEM(I) -' ITEM(J) -' INDEX 
AMINX ( ITEM(I) -' ITEM ( J) -' INDEX 
AMAXX ( REAL (I) -' REAL ( J) -' INDEX 

First element in the specified 
array, integer or real as 
ind icated .------- . 

Last element in the specified 
array, integer or real as 
indicated. 

Order of Min or Max element in 
the specified list. 

As a subroutine, it returns as INDEX the order of thE~ minmax 
mnnber in the given array. The actual subscript of the minmax 
element and the value of that minmax will require additional 
computation: 

subscript of the minmax element = I + INDEX -1 
MINMAX = ITEM (I+INDEX-l) or REAL (I+INDEX-l) 

Example: CALL Al1AXX(X(3) -' X(300) -' INDEX) 
If the subroutine returns a value of INDEX as 59, then the 
maximum of the X-list is X(6l) • 

As a function, it only returns the value of the minmax element.], 
The subprogram is not applicable to double precision or complex 
list. 

'-----.---.... ---______ ~_4~~~_._A __ ~ _____ ~ ___ .. __ ~~ K _____ ________ ~ _~ ___ ~~_7 _________ ~ __ ~ __ ~ __ 

(3) Subprogram to control TTY characteristics 

This subprogram will accomplish at execution-time a control of terminal 
characteristics properties in the same manner of what the monitor command 
"SET TTY" can accomplish at the monitor level. In a monitor command "SET TTY" 
(or "TTY" in its short form), the general form is: TTY keYUJoY'd , where keYUJoY'd 
is either one of a complementary pair of arguments, such as PAGE or NO PAr;E. In 
the subprogram shown here named as SETTTY, the "PAGE" part of the example is 
called a Code Par ameter, and yes-or-no par t is called a IDg ic Par ameter • Thus 
the entire group of TTY commands can be coded into a single subroutine. This is 
shown next. 



128 

Function or 
Subroutine: 

Effect: 

CHAPI'ER 3 FORTRAN-IO 

SIXBIT ( Z~ I~ J ) 

I
i Lnumber of character to be converted to 
i the SIXBIT code 

: ~Destination of character after conversion 
-' ---- Source of ASCII character to be converted 

When used as a subroutine, it returns an array I which is the 
SIXBIT code of Z. If it is used as a function, the first 6 
characters (padded with blanks if necessary) is returned as the 
value of the function. 

Note: Both Z and I are dimensioned variables for the same ASCII 
characters. However, SIXBIT codes contain six characters 
per word, while the ASCII codes contain five characters per 
word. So, the dimensions of Z and I could be different. 

'L EX~_~l:_: _____ ._. __ ~~~~~~~~~;_~;~~~~_~~~~g _~::~~ __ ~~!~_~~_){8IT cod: __ ~_~ __ ~~~ _________ . ___ _ 
! 
i 

p~~~;~utine , CALL RUN(DEVICE~SAVEFILE~PPN) 

! ~ PPN (octal) where file is I 

Effect: 

Example: 

stored. PPN=O if in own disk • 

. - Octal number, SIXBIT code of 
filename of the EXE file to 
be run. 

-SIXBIT code of the device 
(no colon) 

e.g. DSK = "446353000000 
(or = "0) 

DI'AO "446441200000 
SYS = "637163000000 

This is equivalent to STOP for the current program; then apply a 
monitor command of ".RUN DEV:NAME [m,n)". 

If DEVICE='SYS', 'NEW' or 'OLD' in SIXBIT codes, then PPN=O. If 
DEVICE='MT7', 'MT8', or 'MT9' in SIXBIT code, the tape must be 
already properly mounted and positioned. 
The RUN subroutine will drop all files in the old program. If 
files in the old program are dropped without first a CALL RELEAS 
call, the files will be lost if they are output files, and will 
not be available as intermediate data for running the chained 
programs. 

CALL RUN (O~ SIXBIT( 'DEPT' ~ IDW1~ 4) ~ "115103320571) 
This is equivalent to STOP the current program and then issue a 
monitor command of "RUN DEPI' [115103,320571)" 

For the convenience of users and by the permission of Mr. Nicholas, a 
copy of the SUBSET package is stored also in ENG: which is the depository of 
the Engineering Program Library. 



SSP and IMSL Libraries 129 

Since SUBSET is not in the FORTRAN-IO Library but in the user-library the 
EXECUTE command of a FORTRAN program should specifically includes 
"ENG:SUBSET.REL/LIB" in its list, if the program calls any subprogram in the 
SUBSET package. In a batch job, a $INCLUDE card is necessary. For example, the 
following is an execution command for a program that calls the SUBSET 
subprograms: 

.EXECUTE HAIM. FOR, SUB1. FOR, ENG:SUBSET.REL/LIB 

3.23 ComprEhensive FORTRAN Subroutine Libraries 

In an academic user community of the size of the University of 
Pittsburgh, it has been estimated that more than 500 "new" Gaussian Elimination 
programs for simultaneous equations were written, debt.:gged, and run each year. 
Many of these came out of courses in programming, numerical methods, engineering 
analysis, economics, statistics, etc. Most of them are justifiable as they 
provide the students opportunities to sharpen their skill on a familiar problem 
with proven methods of solution. But some were unnecessary exercises to 
"re-invent the wheels" since the elements of student learning are absent in 
those exercises. Such activities are pure waste of human resources and computer 
resources. 

It may be said that computer applications in radically different 
disciplines share a common ground that an application must be first 
mathematically formulated. Once so done, the differences between disciplines 
disappear. For example, the Gaussian El im inat ion method would be appl icable 
whether the problem was orginated from a power system load flow study or a 
regression study from an economics model, so long as the problem is formulated 
as a system of 1 inear simul taneous algebraic equations. Thus a software package 
containing standard solutions to various mathematical problems is a vl~ry useful 
tool to computer users in all disciplines. 

In order for such a software package to serve a large group of users in 
many diversified fields, there are several important requirements that must be 
satisfied: 

(1) These programs should be callable in the forms of subprograms 
(subroutines or functions), so that the user's program remains in conhol. 

(2) These subprograms should be self-contained so that they will not 
require further attention from the userS other than passing the values of the 
subprogram parameters into the subprograms. In particular, there should not be 
any input/output statements in the subprogram. Thus the input/output operations 
become the responsibility of the user's main program. There are exceptions, of 
course. A subprogram may be designed explicitly for input or output operations, 
for example, to list and tabulate a matrix. 

(3) In order to adapt to the need of different users, each subprogram 
should have capability of adjustable dimension size as well as user-controllable 
error level. At least an estimate of error level should be available as a 
return value of the subprogram, so that the user, who has no knowledge of how 
this subprogram was constructed, will know the level of performancE~ of the 
program. 

(4) There should be clear and uniform documentations available to guide 
the users in defining the subprograms, including the dummy parameters, their 
types, array sizes, order in the parameter list, and their meaning. 



130 CHAPI'ER 3 FORl'RAN-10 

At the University of Pittsburgh, two- such packages are available. One is 
the International Mathematical & Statistical Library (IMSL) Which in on-line as 
PRG:IMSL.REL. The other is the IBM Scientific-Subroutine Package (SSP) * , Which 
is not on-line but may be placed on-line by running a UARC program, as it to a 
great extent duplicates the IMSL coverage. Both packages are comprehensive in 
their coverage, and their documentations are excellent but voluminous. However, 
when a user is faced with a big programming job Whose purpose may be mode than a 
programming exercise, it will be cost-effective to use these library facilities, 
even to the extent of modifying the program in order to fit. 

Both IMSL and SPP contain ·several hundred subprograms in the package, and 
therefore are too voluminous to include in this bbok even in a summarized form. 
Only the areas of coverage will be given here to give the readers some idea 
about the comprehensiveness of the package: 

IBM SSP Package: 

Statistics: 

Probit analysis 
Variance analysis 
Correlation analysis 
Multiple linear regression 
Polynomial regression 
Canonical correlation 
Factor anaysis 
Discriminant analysis 
Time series analysis 
Data screening and analysis 
Nonparametric tests 
Random number generation 
Distribution functions 

Mathematics: 

Inversion 
Eigenvalues and eigenvectors 
Simulataneous linear algebraic equations 
Transpositions 
Matrix arithmetics 
Matrix partitioning 
Matrix tabulation and sorting of rows or columns 
Elementary operations on rows or columns of matrices 
Matrix factorization 
Integration and differentiation of given or tabulated functions 
Solution of systems of first-order differential equations 
Fourier analysis of given or tabulated functions 
Bessel and modified Bessel function evaluation 
Gamma function evaluation 
Jacobina elliptic functions 
Elliptic, exponential, sine cosine, Fresnel integrals 
Real roots of a given equation 
Real and complex roots of a real polynomial equation. 
Polynomial arithmetic 
Polynomial evaluation, integration, differentiation 

*For pitt users, the SSP source programs are stored and available on a UARC tape 
84473. See Section 10.7 for the UARC procedure. 



SSP and IMSL Libraries 131 

Chebyshev, Hermite, Laguerre, Legendre polynomials 
Minimum of a function 
Approximation, interpolation, and table construction 

IMSL Package: Chapter headings: 

Analysis of Variance 
Basic Statistics 
Catagorized Data Analysis 
Di'fferential Equations; Quadrature; Differentiation 
Eigensystem Analysis 
Forecasting; Econometrics; Time Series; Transforms 
Generation and Testing of Random Numbers 
Interpolation; Approximation; Smoothing 
Linear Algebraic Equations 
Mathematical and Statistical Special Functions 
Non-Parametric Statistics 
Observation Structure; Multivariate Statistics 
Regression Analysis 
Sampling 
Utility Functions 
Vector, Matrix Arithmetic 
Zeros and Extrema, Linear Programming 

Example: 

Program: 

Suppose we are to solve a system of 50 simultaneous 
equations. In matrix form, the equation is Ax=B. Suppose 
the matrices have been stored as DATA.DAT file with a 
format of (10E12.4). In the file, the first 250 records 
are the A-matrix by rows, and the last 5 records are the 
B-matrix. Obtain the solution by using the IMSL package. 

The first step of this problem is naturally to search 
through the IMSL documentation to see if there is one that 
fits the problem. Such a problem would of course be under 
the category of "Linear Algebraic Equations." When such a 
program is found, the user's task is to prepare a main 
program which calls this IMSL routine. To do so, the main 
program will include the following parts: 

(1) To provide storage (the DIMENSION statement) for all 
variables required for the problem. This not only 
includes the problem variables but also the working 
variables. The IMSL documentation gives detailed and 
exact requirements of DIMENSION. 

(2) To input the data needed by the Library subprogram. 
This includes opening of files, reading of data from 
file or terminal, calculations needed for the 
subprogram parameters, etc. 

(3) To call the IMSL subprogram. 

(4) To output the results. 

IMSL Reference Manual (Reference 10) is a seven-inch 
thick reference book. The content is divided into 17 
chapters, and Chapter L is on Linear Algebraic Equations. 
In going through the routines in that chapter, the routine 



132 CHAI'rER 3 FORTRAN-I 0 

LEQTIF lists the following headings: 

IMSL ROUTINE NAME - LEQTIF 
PURroSE - LINEAR EQUATION SOLUTION - FULL STORAGE 

MODE - SPACE ECONOMIZER SOLUTION 

This seems to satisfy our need. The other information 
listed by the Manual are included below: 

USAGE - CALL LEQTIF(A,M,N,IA,B,IDGT,WKAREA,IER) 

A - Input matrix of dlinension N by N containing the 
coefficient matrix of the equation Ax=B. On 
output, "A" is replaced by the LU decomposition 
of a rowwise permutation of "A". 

M - Number of right-hand matrix columns (input) 
N - Order of "A" and number of rows in "B". 
IA Row dlinension of A and B exactly as specified in 

the DIMENSION statement of the calling program. 
B - Input matrix of dimension NxM containing 

right-hand side of the equation Ax=B. On output, 
the NxM solution X replaces B. 

IDGT - Input option: If IDGT>O, the elements of A and B 
are assumed to be correct to IDGT decimal digits 
and the routine performs an accuracy test. If 
IDGT equals zero, the accuracy test is bypassed. 

WKAREA - Work area of dlinension >= N. 
IER - Error parameter (output). 

Terminal error: IER=129 indicates that matrix A 
is algorithmically singular. 
Warning error: IER=34 indicates that the 
accuracy test failed. The computed solution may 
be in error by more than can be accounted for by 
the uncertainty of the data. This warning can be 
produced only if IDGT is greater them O. 

In checking over these specifications, the following 
should be noted: 

(1) The matrices A and B will be destroyed after the 
execution of the subprogram. If they are needed later, 
protect them by copying them into another set of 
variables, or else later re-read the input data A and 
B. 

(2) The DIMENSION for the storage declaration should be 
A(IA,IA), B(IA,M) . In addition, it is also the 
responsibility of the calling program to dlinension 
WKAREA(IA) • Note that B is dlinensioned as a matrix 
with two subscripts. If B is a vector, as in most 
linear systems, B should be dlinensioned as B(IA,I) . 

(3) Nand IA need not be the same, but N should never 
exceed IA. If N is an input quantity and made to be 
less than lA, such a calling program would be able to 
solve a system of linear algebraic equations of an 
order specified by the user up to lAth order. Such a 
program would increase its flexibility irrunensely. 



SSP and IMSL Libraries 

The program for this problem is listed below: 

DIMENSION A(lOO,lOO) ,B(lOO,l) ,WKAREA(lOO) 
***** DEFINE THE SIZE OF PROBLEM "N" 

WRITE(6,100)~ READ(S,lOl)N 
100 FORMAT (/' ENTER NUMBER OF VARIABLES = '$) 
101 FORMAT (I) 
***** GET INPUl' DATA FOR THE SUBPROGRAM 

OPEN (UNIT=l ,FILE= , DATA.DAT , ,ACCESS='SEQIN') 
102 FORMAT (lOE) 

00 10 I=l,N 
10 READ (1 ,102) (A(I,J) ,J=l,N) 

READ (1 ,102) (B(I,l) ,I=l,N) 
***** CALL IMSL SUBPROGRAM LEQTIF 

M=li IA=lOOi IDGT=O !SUBROUl'INE PARAMETERS 
CALL LEQTIF(A,M,N,IA,B,IDGT,WKAREA,IER) 

***** OUl'PUl' THE RESULTS 
103 FORMAT(/' X(' ,12,') = " E12.4) 

WRITE (6,103) ((I,B(I,l)), I=l,N) 
S'IDP 
END 

133 

Suppose we name the stored program EQUAT.FOR. This 
program may be executed by a monitor command of: 

.EXECUTE EQUAT.FOR, PRG: IMSL/LIB 

with the dimension set up in EQUAT.FOR, it is capable to 
solve a system of up to 100 equations. However, when 
solving a large system, the accuracy requirement may be 
difficult to satisfy because of the accumulation of 
round-off and truncation errors during computations. Then 
the accuracy test would fail in the subroutine execution, 
giving the output IER a non-zero report. 

The following is the computer printout of the execution: 

.EXECUTE EqUAT.FOR3 PRG:IMSL/LIB 
FORl'RAN SA(621): EQUAT.FOR 
MAIN. OCTAL PROG SIZE=24l67 
LINK: Load ing 
[LNKXCT EQUAT execution] 

ENTER NUMBER OF VARIABLES = >100 

X( 1) 

X( 2) 

X( 3) 

X( 4) 

0.9996E+00 

0.1996E+Ol 

0.3000E+00 

0.4000E+00 

etc ••••• 



134 CHAPl'ER 3 FORTRAN-10 

3.24 Array Processor 

In many engineering and scientific applications, the computations often 
involve a relatively simple algorithm done repeatedly on log sequences of data. 
The data may be one-dimensional sequence of numbers (called vectors), or two or 
more dimensional sequences, (called arrays), for example, a matrix. In such 
computations, heavy overhead must be absorbed on such "book-keeping" chores of 
array indexing, loop counting, and data fetching. In conventional computer 
organization, such overhead must be absorbed by incorporating therol sequentiallY 
into the program, thus competing for machine time with the actual computations. 

The concept of parallel processing is to provide hardware so that independent 
computations can be performed at the same time and result in a much faster 
program execution. 

At the DEC-10 installation at the University of pittsburgh, one such parallel 
processor, the Floating Point 190L Array Processor, is attached to the System B. 
The AP190L is a pipe-line machine that allows the calculations of overhead for 
elements up stream to be performed simultaneously with the element computations 
down stream (therefore, the name pipe-line) • 

To the FORTRAN users, the usage of the AP190L means to incorpJrate certain 
AP190L subroutines calls in the main program. Thus, writing a FORI'RAN program 
that uses the array processor to process data follows the general rules of 
FORI'RAN subroutine calls. There are a few exceptions: 

(1) The array processor must be initialized before using other AP190L 
subroutines. 

(2) Data must be transferred from DEC-10 to AP190L main data memory 
before the array processor can operate on it. 

(3) In order to synchronize the AP190L with the DEC-10, .... 'ait calls (in 
FORTRAN subroutine) must be inserted in the program whenver the 
DEC-IO and AP190L interact. 

(4) At the end of array processor execution, data must be transferred 
back to DEC-IO. 

All of these steps are done by calling certain appropriate AP190L 
subroutines. These subroutines are listed and explained in details in 
Reference 11. The AP190L Math Library contains subroutines distributed in the 
following areas: 

(1) Data transfer and control operations 

(2) basic vector arithmetic 

(3) Vector-to-scalar operations 

(4) Vector comparison oPerations 

(5) Complex vector arithmetic 

(6) Data formatting operations 

(7) Matrix operations 



Array Processor 135 

(8) Fast Fourier Transform operations 

(9) Auxiliary operations 

(10) Utility operations 

(11) signal processing operations 

(12) Table memory operations 

Users should consult Reference 12 concerning the usage of the AP190L. 
Specifically, note the following: 

(1) 

(2) 

AP190L is attached to 
Therefore, just as a 
command to reserve it. 

DEC-lO System B as a periperal device. 
tape unit, it requires the "DRIVE" monitor 

See Section 8.10. 

It requires 
allocations. 
batch jobs. 

large core memory, larger than most time-sharing 
Therefore, array processor runs should be submitted as 

See Chapter 9 on how to submit batch jobs. 

3.25 FORTRAN 77 

The FORTRAN programming language is one language that is universally 
available, on computers, large or small, in the United States, Europe or the 
rest of the world. Thus, its greatest contribution is that a program written in 
FORTRAN can be run on any machine, after some minor modifications are made if 
required. 

The ANSI FORTRAN IV, standardized by ANSI in 1966, has exercised a 
powerful influence on the portability characteristics of the language. In the 
past fifteen years, there have been many enhancements of the ANSI standard, and 
FORTRAN-IO is one such enhancement. Varieties of these enhanced versions 
generate a new need for standardization. Thus, an updated standard language was 
announced in 1977, unofficially known as FORTRAN 77, and was formally 
standardized in 197 8 by ANSI (ANSI Standard X3.9-l978). While compliance with 
the ANSI standard is voluntary, it is expected that all FORTRAN languages will 
be in time evolved into this new version. By necessity, programming languages 
must have universal portability, and the ANSI standard has powerful influences. 
FORTRAN-IO already possesses most of the new attributes of FORTRAN 77, but many 
keywords and syntax are different. It is expected that in a few years, 
FORTRAN-l 0 will be replaced by some version of FORTRAN 77. Details of 
FORTRAN 77 are outside the scope of this book. Interested readers are referred 
to References 13 and 14 for more details. 



136 CHAPl'ER 3 FORl'RAN-lO 

REFERENCES 

1. PROGRAMMING WITH FORI'RAN, Byron S. Gottfried, Quantum Publishers, New 
York; 1972. 

2. PROBLEM SOLVING AND STROCTURED PR(X;RAMMING IN FORl'RAN, F. L. Friedman 
and E. B. Koffman, Addison-Wesley Publishing, Reading, Massachusetts; 
1977. 

3. DEC SYSTEM-IO FORTRAN-l 0 , LANGUAGE MANUAL, Second Edition, 
DEC-IO-IFORA-B-D, Digital Equipemnt Corporation, Maynard, Massachusetts; 
1974. 

4. DEC SYSTEN-IO FORTRAN PR(X;RAMMER'S REFERENCE MANUAL, M-0944E-TB, Digital 
Equipemnt corporation, Maynard, Massachusetts; 1977. 

5. FORl'RAN-IO USERS GUIDE, Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; 1977. 

6. PITT Prog rammer Notes, Special FORTI3AN-IO Issue, Vol. 6, No. 
1, 1977, Computer Center, University of Pittsburgh, 
Pennsylvania; 1977. 

5, August 
Pittsburgh, 

7. SUBSET MANUAL, Ronal K. Nicholas, University of Pittsburgh, Pittsburgh, 
Pennsylvania; 1977. 

8. SYSTEM/360 SCIENTIFIC SUBROurINE PACKAGE (360A--cM-03X) PROGRAMMER MANUAL, 
IBM Corporation, White Plains, New York. 

9. Help File PRG:IMSL.HLP, the Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; 1980. 

10. IMSL LIBRARY REFERENCE MANUAL, Edition 7, International Mathematical and 
Statistical Library, Houston, Texas; 1979. 

11. AP MATH LIBRARY MANUAL, Volumes 1,2,3, Floating Point System, Inc.; 1979. 

12. Help File PRG:APU.HLP, Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; 1980. 

13. FORl'RAN 77, FEATURING STROCTURED PR(X;RAMMING, L. 
Organick, Addison-Wesley Publishing Company, 
1980. 

P. Meissner and E. I. 
Reading, Massachusetts; 

14. PROGRAMMING IN STANDARD FORl'RAN 77, A. Balfour and D. H. Marwick, 
North-Holland Inc., New York, New York; 1979. 



CHAPI'ER 4 

FORTRAN PROGRAM DEBUGGING 

4.1 Introduction 

One of the most important but unpleasant stage in the computer usage is 
the necessity to debug a program. The development of programs and the 
subsequent computer execution involve a long chain of events that requires 
error-prone human actions. These errors can be committed by beginners as well 
as by experienced users. The detection and the correction of such errors affect 
seriously the productivity of computer processing applications. These errors 
are colloquially referred to as "bugs", and the process of detecting and 
correcting them as "debugging." 

The following are some typical statistics regarding the productivity of 
professionals in the software industry: 

The average productivity of a professional programmer in U.S. is 
seven (7) FORTRAN statements per working day. 

For the software development done at a commercial software firm, 65% of 
the software cost is attributed to debugging. 

Breakdown of computer processing failures: (From Reference 1) 

Hardware failure 1% 
System software failure 2% 
Operator mistakes 5% 
System failure 2% 
Programming errors 90% 

It becomes increasingly obvious in the commercial software industry that 
debugging is by far the major component of the software cost. Conversely, when 
a software is developed on a fixed budget, the extent of testing and debugging 
becomes the deciding factor for the software product reliability. In the recent 
decade, considerable efforts have been spent on the optimal allocation of 
resources, design of software structure for easy testability and 
maintainability, test and validation procedures for softwares, and various 
diagnostic aids, resulting collectively in a new discipline known as "software 
eng ineer ing • " 

137 



138 CHAPl'ER 4 FORTRAN PROGRAM DEBU3GING 

Unfortunately, in spite of advances in the software engineering 
practices, the degugging of a computer program still depends heavily on the 
user's knowledge and experiences in the problem, the language, and the computer, 
and hence it still remains largely as an art. However, over the years, 
accumulation of expertise and experience has resulted in the formulation of 
reliable guide lines, good programming styles and practices, checklists for 00' s 
and ooN'T's, error reporting and diagnostic facilities in the language 
processors, and on-line debugging tools. It is, therefore, the purpose of this 
chapter to present a summary of these practices, with particular emphasis on 
FORmAN program debugging. 

4.2 Types of Errors 

When a FORTRAN program fails, a very natural inclination of the user is 
to suspect that "the computer is acting up again." Mercifully, the computer 
system hardware and system software failures are quite rare nowadays, and 
program errors can usually be blamed as the culprits. 

Program errors are the most numerous and also the most complicated. They 
may be divided into the following categories: 

(1) Errors in problem definition 
to translate the problem 
requirements. 

They are errors resulted from failures 
requirement faithfully into the ~ 

(2) Coding errors They appear in several different :Eorms: 

a. Transcription errors, such as incorrect punctuations and misspellings. 
Such errors will usually be caught at compiling, but some errors may 
go undetected as perfectly legal program statements and a compiler may 
not always be able to spot them. 

b. Syntax errors, or improper use of FORTRAN statements. Such errors can 
usually be detected by the compiler. 

c. Structural errors or failures to provide correct interaction between 
two parts of a program, for example, failure to pa~is the values of 
parameters from the main program to a subprogram correctly. 

(3) Logic errors. These are failures to sequence the problem 
properly at a detailed level. 

For the remainder of the chapter, we will be mainly concerned in two 
areas of the debugging process: 

(1) How can we reduce the incidence of all types of bugs? 

(2) If a bug exists, how do we detect and correct it? 



Flow Chart Walkthrough 139 

PRE~OMPUTER-RUN DEBtmING 

The most effective way of minimizing program errors is not making them in 
the first place. Since debugging constitutes 60-90% of a user's effort in 
computer processing, it is cost effective to spend extra effort and time in 
keeping good practice of preparing programs so that the debugging time will be 
reduced. 

At this stage, we will assume that the user understands his problem 
thoroughly and translates it faithfully into the program requirements and 
objectives. If a user fails to do that, no amount of debugging effort can 
rectify the situation. Thus, we will focus our attention to the bugs that are 
either the coding errors or the logic errors or both. 

4.3 WalkthrOugh by Flow Charts 

One of the most neglec~ed good practice is the preparation of a flow 
chart, before any coding 1S done, to layout the flow logic of the problem. 
After the problem is coded, the program will be burdened with a jumble of 
statement details, and the problem logic is then obscured. A flow chart is a 
graphical representation of the logic flow, and is a valuable tool as a problem 
record as well as a tool to identify potential errors. 

Basic mechanics of flow charting is a part of introductory training of 
computer programming and will not be repeated here. For more details, the 
readers are referred to any standard FORTRAN manual or References 4 and 5. 

"Walkthrough" check of a problem is to check the flow logic by playing 
the computer in tracing out the steps of computer processing. Playing computer 
in tracing step-by-step in the program is a tedious chore, but the job may be 
made easier by tracing the step~ on a flow chart. 

Figure 4.1 

Let us consider the case of designing a 
subprogram for the Newton-Raphson's method of 
solving for a real root of a polynomial 
equation with no multiple roots. 

Algorithm: Given a polynomial 
equation of order ~: 

n n-l 
f(x) = Anx + An_1X + ••• + A1x + AO= 0 

The iterative formula is: 

Xl = XO - f(XO)/f' (XO) 

To start the iteration, set XO = certain 
trial value. At the end of Xl calculation, 
Xl and XO are compared. If they differ 
negligibly, return the result and exit. If 
they differ substantially, use Xl as the new 
XO, and the Xl is recalculated. And the 
whole process is repeated. 



140 CHAPI'ER 4 FORTRAN PROGR~ DEBUGGING 

This wordy description may be greatly clarified by a flow chart, as shown in 
Figure 4.1. 

Now we are ready to do a flow-chart walkthrough. 

First, we check if all the flow arrows go to the right places. Playing 
the computer, we assume a set of data, then follow and trace the flow of 
computations. 

If there is any discrepancy, 'corrections can be made right there before 
coding the program. If everything seems all right, the next step is the most 
important one. We ask: Under what circumstances can the flow chart go wrong? 

There are many such circumstances. For example: 

(1) EVen-order equation may not have any real root. Under that 
circumstance, this method shows that the computer will keep on iterating without 
end, causing an endless loop trying to find a non-existent real root. Has there 
been any provision in the flow chart for such contingency? Answer: No! 

(2) If XO is set arbitrarily, what if it has a value that will make 
f' (XO)=O? That will create a division-by-zero situation. Has the flow chart 
ind icated how that can be detected and handled? Answer: No! 

(3) Even when the iteration does converge, the flow chart does not show 
any control over its efficiency. For example, if it takes more than 1000 
iterations to converge to a solution, do we want this method, or should we try 
another method? 

We have identified only a few weak spots. There are more when we analyze 
further. For example, this subprogram requires pre-setting a trial value for 
XO. Why not generate it automatically inside the subprogram? But how? One way 
is to compute -A(n-l)/A(n) and call the result first-trial XO. Then what 
happens when A(n)=O, or can it happen? Thus, walking-through the flow chart 
playing a devil' s advocate, we can identify and strengthen the weak spots of the 
logic and substantially improve the reliability of the program generated from 
it. 

Figure 4.2 shows the revised flow char t after the walk-through process. 
It is not perfect yet, but its reliability is much more improved than the first 
one. Block by block, the flow chart blocks are coded into a FORJ~RAN program, 
and this is shown along side with the flow chart. To keep it simple at this 
stage, we use a 4th order polynomial equation as an example. 

There are many other benefits of using flow charts: 

(1) A flow chart can identify more easily the inter-relations between 
parts of a program, and can therefore be used effectively in partitioning the 
program into modules. Later, the testing and the debugging can be made more 
effective by modularizing the complete program. 

(2) A flow chart can serve as a language-independent record of the 
program logic. Should there be any modification or adaptation of the program 
using a different language, the flow char-t can serve as a gener ic specification 
of a computer program. 

(3) A flow chart can be re-generated from a finished or existing 
program. Thus, if we compare the flow chart specification of the problem with 
the flow chart derived from the resulted program, discrepancy and logic error 
can be quickly discovered and corrected without costly computer rW1S. 



r.-:--------------------i 
I I nit i a I i ze: : 
, X(1) = -B/A 

Error bound = 10**C-NPLACE) 
, f ' [X C 1 ) ] ~ "-
~f f'=O, set XCl )=2XC1) "-

r--~4~~ "",,{ 
I t --- -, 
r [xT2;-~;:(1-;-~F-[X (,-l]/F-;CxC1l]l 
I' ! 

r:----~-~ ~--r 
: X(1) - Bound' ~---- 20 L __________________ ~ I 

* 
* 
* 
* 
* 

:IX(2)-XC1)[<Error?1 ve.s ~ I 
.--_--Ln_c~ -- t 1 0 

r--~ 
-l:ROOT=X(2) i _ 

6~\ j 100 e---\ L 
\ f20 

L 

r 
~ 

/' 
L ,/ 

Define fCx) and f'Cx) as FUNC and FUNCP: ,/ 
/' I 

) 
L 

,/ 

FUNC = Ax4 + Bx3 + Cx2 + Dx + E ~/ 

FUNCP= 4Ax3 + 3Bx2 +2Cx + D )r---

To find a real root "ROOT" to an accuracy of "NPLACE" 
decimal places within "ITER" iterations, using the 
Newton-Raphson's method for the equation: 

Ax4 + Bx 3 + Cx2 + Dx + E = 0 

SUBROUTINE NEWTONCA,B,C,D,E, ITER,NPLACE,ROOT) 
DIMENSION X(2) 

XCl )=-B/A 
ERROR=10.**C-NPLACE) 
Fl =FUNCPCA,B,C,D,XC 1» 
IFCF1.EQ.0. )XCl )=2.*XC1) 

DO 1 0 I = 1 , ITER 
X(2)=XC 1 )-FUNCCA,B,C,D,E,XC 1) )/FUNCPCA,B,C,IJ,XC 1» 
IFCABSCCX(2)-XCl »/XCl ».LE.ERROR)GOTO 20 
XCl )=XC2) 
CONTINUE 

WRITEC6,100)ITER 
FORMATC/'*** NO CONVERGENCE WITHIN', 15,' ITERATIONS.') 
RETURN 

ROOT=X(2) 
RETURN 
END 

FUNCTION FUNCCA,B,C,D,E,X) 
FUNC=A*X**4+B*X**3+C*X**2+D*X+E 
RETURN 
END 

FUNCTION FUNCPCA,B,C,D,X) 
FUNCP=4.*A*X**3+3.*B*X**2+2.*C*X+D 
RETURN 
END 

Figure 4.2 Correspondence Between a Flow Chart and a Program 
I-' 
01::> 
I-' 



142 CHAPI'ER 4 FORTRAN PROGEAM DESlmING 

(4) Even if the original flow chart is not available, as is the case 
with most beginners, generating a flow chart from the finished prc~ram will aid 
in inspecting the flow of program logic. Even though a program may be well 
documented am commented, it may be too long am complicated to discover the 
errors easily by just reading the program. 

Generating a flow chart from an existing program manually is also a 
tedious task. Fortunately, most computing facilities have a software facility 
to generate a flow chart by computer. Such a software is available on the 
DEC-IO at pitt. The program description for FORFID is given in the next 
section. 

4.4 The FORFID Program 

The FORFID program is a program stored in the device "PRG:" (the System 
Program Library), and it is used to process a finished FORTRAN source file. It 
has the following capabilities: 

(1) To relabel the statements in a FORTRAN source file. Statements are 
given new numbers as their labels in ascending sequence, and the 
format statements are moved and assembled at the end of the program. 

(2) To create a flow chart of the source program on a listing file. 

(3) To re-format the source program into 80-column records. 

(4) to resequence columns 73-80 of each card. 

Since the FORFID is a System Program Library program, the monitor command need 
to run it is "RUN". Note that programs such as PIP, UPDATE etc are the System 
programs, and use the monitor command "R" to run them. Thus, the command to 
call the FORFID program is: 

• RUN PRG: FORFID 

The System will respond with a message "FORFID V.05 /H FOR HELP." and a 
prompting symbol of "*" At this point, the user may either type "/H" to get 
the HELP-file (5-page long, about 15 minutes typing time), or apply a FORFID 
corrmand. 

where 

The standard format of a F'ORFID command is: 

REVISED-FILE, LISTING-FILE = SOURCE-FILE/Optional Switches 

REVISED-FILE = output file where the revised source pr(~ram will be 
stored. It may be omitted if not needed. 

a comma, required to separate the revised and the 
listing files. 

LISTING-FILE name of the listing file. 

SOURCE-FILE = name of the FORTRAN source file to be processed. 



FORFID Program 143 

Each file has the standard specification of DEV:NAME.EXT. The PPN 
designation [m,n] is allowed in the file specification of the SOURCE-FILE. 
Standard default conditions also apply. Default extension of the REVISED-FILE 
is FOR, and that of LISTING-FILE is LST. 

Either or both of the REVISED-FILE and the LISTING-FILE may be omitted in 
the corrmand. The meaning of omission is as follows: 

(1) If the REVISED-FILE part of the command is omitted, the command 
becomes: 

LISTING-FILE = SOURCE-FILE/Switches 

and the revised file will not be made. 
comma. 

Note the required leading 

(2) If the LISTING-FILE part of the command is omitted, the command 
becomes: 

REVISED-FILE, = SOURCE-FILE/Switches 

and the listing file will not be created. Note the required comma. 
Since the cross reference table and the flow chart are available only 
on a listing file, this command will only revise and store the source 
program, but it will not produce a flow chart or a cross reference 
table. 

(3) If both the REVISED-FILE and the LISTING-FILE are omitted, the FORFID 
will check the source file for those errors that FORFID is able to 
detect, and report the errors on the user's terminal. All other 
functions are omitted. 

Options and variation from the standard format can be specified by including 
optional switches. 1be list of switches and their functions are given in 
Table 4.1. 

Example: The example used in Section 4.3 will 
illustration. The program is stored on disk as NEWTON.FOR. 
the sequence of calling and executing the FORFID program: 

.RUN PRG: FORFLO 

FORFID V. 05 /H FOR HELP. 
*NEW.FOR3 NEW.LST = NEWTON.FOR/Y/100F 
FORFID: NEWTON 
*~C 

be used here for 
The following shows 

The listing file is produced at the printer and then is deleted from the 
user's storage quota by a command: 

.QUEUE NEWTON.LST/DISPOSE:RENAME 

If the user wishes to reproduce the list file on his terminal he can do 
so by a command: 

.TYPE NEWTON.LST/EMULATE:LABELS.CCT 



144 CHAPI'ER 4 FORTRAN PROGRll,M DEBr.x;GLG 

~-------r------------------------------------------r---------'------------1 
Option 
Switch Function 

DE~fau It 
Condition 

F=====t===-=-=--=--==-="'--===,,:.=c"'~'.".-.""-" ---.-..... 

InnnF 

InnnL 

Format reshuffle with user-specified format FORFLO assigns format 
number starting from nnn. number. 

Sequencing of statement labels wi I I be 
consecutive multiples of nnn. 

nnn=10; IL and 10L are 
both treated as 110L. 

1---._--+ .-.-----.-.. ---~.---------
InnnS Put sequence numbers on the REVISED-FILE in 

increments of nnn. These numbers wi I I be in 
columns 73-80. 

nnn=O; no number Is 
placed in col. 73-80. 

~-----+------.. -.--.. --.-.-.---.-.. - .. ---.----.--.--.~ ..... -.--~- ... -~.-.--

IA To make a flow chart (implying 
LISTING-FILE must be specified. 

IC) ; 

~---+-----~ .... -.-.. -.. ------~ ... -.-.--.-.. ~.--~---.-... ----i_---.. ------.. 

Keep the blank lines. 18 j To delete blank I ines in the SOURCE-FILE. 

IC To make a cross reference table between the 

IH To type out the HELP fi Ie. 
-- - ". . - .. - .. -.--... -1,--..... - .. -.---....... -.-.----.-.. -.----1 i

~~~~c-e.-p~ogram and the revised program. 

IK To change 026 punches to 029 punches.
- --_. -"" -"_.- -->

IQ To suppress al I I isting except the flow __ ._+.~.~.~r~ ~_ .. _..._, __ ._. __ ,~_ ... __ .. _. __ ...
IT I No tab convers Ion to blanks. Tab in the source fi Ie

changed to appropriate
number of spaces .

...... --.-...... _ ------... --...... --~.--.-.".-~-.--.".-.- ... - .. ---. - -. _._---_.-------1
IW To suppress warning message

truncation In the revised
encountered.

when I I ne
program Is

Ix Flow chart only; equivalent to the
compounded switches of IL/A/S/T/Q. No
revised program; just the flow chart.

IY Do everything: move formats to the end of
the program, resequence the statement
numbers, and make a flow chart.

Table 4.1 FORFLO Switches

where "IABEIB.CCT" should be a file with a content of "/DC3:1-66:l" in it. This
will allow your terminal to emulate a pr inter and interpret cer tain
printer-carriage control characters. Since terminal typing is slow and the list
file is usually long, this practice should be used sparingly, for example, only
when a printer is not available to you. The flow chart for NEW'IDN.DAT in the
example is reproduced in Figure 4.3. This should be compared with the flow
chart in Figure 4.2 to see if there is any discrepancy.

FORFLO Prog r am

<Entry: NEWIDN >
V
V
V
V

1
SUBROUI'lNE ~ (A,B,C,D,E,lTER,NPLI\CE,IO:Y') I
DIMENSl00 X(2) I
X(l)-B/A I
ERroR=lO.** (-NPLI\CE) I
F1~FrnCP(A.B,C,D,X(l)) I

I IF(Fl.EQ.O.)x(1)=2.*X(1) . I
I --I

V
V
V
V

I I
0»»»»»»»»»)1 DO 10 I-LITER I
. 1--1

V
V
V
V

I
X(2)-X(l)-Fll'IC(A,B,C,D,E,X(1))/Fll'ICP(A,B,C,D,X(1)) I

I IF (ABS ((X(2)-X(1))/X(l)) .IE,ERroR)OOID 20 1)»»»>>>>))))>>)>0
1---1 v

V v
v v
v v
v v

--- V
I V
I X(l)-X(2) I v
I --I V

V V
V V
V V
V

I I
0«<<<<<<<<<<<<<<<<<1 10 COOTlNUE 1 1--1

I
I WRITE(6, 100) ITER

V
V
V
V

1------------------------------------1
V
V
V
V

I I
I ~ I
1---1

v
v
v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v
v
v
V

0««««««««««««««««««««««««««<«<0
v
v

I
I 20 roar-X(2)
1--

v
V
v
v

I I
1 ~ 1
1---1

I I
I 100 FC1lMAT(/'*** 00 CCNVERGEN::E WITHIN' ,IS,' ITERATlOOS.') I
1--1

I I
I ~ 1
1-----------------------------------1

145

146 CHAPI'ER 4 FORTRAN PR03RAM DEBUGGING

OFF-LINE DEBUGGING BY CODE INSPECTION

On-line debugging is an expensive process as it uses substantial amount
of computer resources. As a result, it should be reserved as the last resort in
the sequence of debugg ing process.

One effective off-line debugging process adopted at many software houses
is debugging by team inspection of the code. A typical team consists of four
people, with one person, not the author of the code, acting as the moderator.
At the inspection time, the programmer is to narrate the code, statement by
statement, the logic of the program. The other team members not necessarily are
familiar with the problem, but they have opportunities and time to study the
code. At the inspection period, questions are raised and potential error
sources are pursued. The organization would normally have an error checklist
for common programming errors, and that list is thoroughly gone over.

At the conclusion of such a team inspection period, a list of errors and
suggestions of how to correct them is drawn up. The programmer is then to carry
out the correcrions. The value of team inspection is to inspect the program
with a fresh point of view to avoid the "forest-tree syndrome." ("When you are
in the forest, you don't see the trees.") In an academic environment, a group of
3-4 students can form an inspection team. This is not only an effective
procedure, but also a valuable learning experience from each other.

For the team inspection practice, a valuable aid is a checklist for
historically common programming errors of the particular progrcmming language.
For the remainder of this section, we will go over such lists that pertain to
FORTRAN-IO.

The common programming errors can be categorized into the following
types:

(1) Data errors.

(2) Computation errors.

(3) Logic errors.

(4) Input/Output errors.

The checklists for these types of errors will be outlined next. In these
checklists, we will not deal with any transcription errors, such as incorrect
punctuations, wrong spelling, illegal characters, or anything that violates the
rules of FORTRAN-l 0 language. We assume that proof-reading of the codes has
been done thoroughly by the programmer at this stage, and all "typos" have been
corrected.

4.5 A Checklist for Data Errors

This type of errors pertains to data incorrectly referenced, declared,
typed, initialized, or set. Itemized below are a number of commonly committed
errors presented in the form of a checklist.

Checklist for Data Errors 147

(1) Does any of the array·subscript exceed the bounds specified in the
DIMENSION statement?

Among common prograrmning errors, out-of-bound subscript is probably
one of two most frequently committed errors, by both beginners and
experienced users. If this type of error is not caught at the code
inspection time, it may be very difficult and costly to detect it
later. A principal reason is that an out-of-bound error will cause
an unpredictable error symptoms at execution time. These symptoms
are actually secondary effects of the error. What makes it difficult
to diagnose during the on-line debugging is that a secondary symptom
may not give any hint of an out-of-bound error. Observe the
following example:

One segment of a FORTRAN-IO program is as follows:

DIMENSION K(lOO)
DO 10 1=1,110 !***Subscript out of bound error here

10 K(I)=I
TYPE 50, K(5)

50 FORMAT(/' K(5)= " 13)

The error message from the program execution reported that there is
an illegal character "~@" in the FORMAT statement. This is actually
caused by the invasion of K-values into the FORMAT area in the
execution program. Thus, in a more complicated program, one can
waste a great deal of time and resources trying to track down the
"FORMAT" error, if the error message is taken at its face value
blindly.

(2) Is a variable referenced in a statement previously initialized, set,
and with its type implicitly or explicitly declared?

This is the other one of two most frequently committed prograrmning
errors. FORTRAN-l 0 automatically set a variable storage area to
zero, unless there are DATA statements to set them to other values.
Thus, many such errors go undetected and cause no damage. However,
if that segment of program is used more than once, there will be
initialization errors from the second round on, because the value of
the variable, if not initialized, will be its result value of its
last calculation. Thus the variable is inadvertently initialized to
a wrong value. For FORTRAN-IO, an incorrectly initialized variable
can cause chaos if that happens to be, for example, computed GJ TO
index or a variable used in an IF statement. The following shows an
example of calculating the sum of five integers.

DIMENSION K(5)
1 READ(5,5) (K{I) ,1=1,5)
5 FORMAT (51)

DO 10 1=1,5
10 ISUM=ISUM+K{I) !***I8UM is uninitialized.

TYPE 5, I8UM
OOTO 1
END

Upon executing the program, it can be seen that the first-round
result is correct; but all subsequent results will be wrong. Such
errors in a complicated program will be very difficult to detect just
by looking at the run history and the result. The program will seem

148 CHAPI'ER 4 FORTRAN PRCX::RAM DEBlmING

to run normally, and the resul ts may seem to be off, but not by much.

(3) Is there any negative, zero, or non-integer subscript? If there is,
make sure it is used correctly.

FORTRAN-IO allows negative, zero, or non-integer subscripts. It is
sometimes useful, for example, in the interpolation by integer
increments. It is a dangerous practice. The negative or zero
subscripts would make the array variable out of bound, unless they
are specifically declared in the DIMENSION statement. The
non-integer subscripts, are always truncated (not rounded) into
integers in assigning values.

(4) Is there any "off-by-one" error in the ro-loops, iterations, counters
and indexes?

(5) If more than two variable alias
using an EQUIVALENCE statement,
If they are of different types,
that store a value as one
different alias?

share a common storage, such as by
are these variables of the same type?
does the program contain any steps
variable alias and later use it as a

(6) In coding a subprogram, have all parameter variables been explicitly
declared with their types and dimensions?

(7) In coding a subprogram, are the dimension specifications of array
variables consistent between the main program and the subprogram. If
the subprogram contains an adjustable dimension, make sure that the
original size of the array does not exceed the size of the array
assigned within the subprogram, since the size of an array is not
dynamically expandable.

(8) In using a subprogram, have all parameter-values been established at
the subprogram CALL statement? In the CALL statement, does the
subprogram contain a correct number of parameters in their correct
sequence? Are the parameters identical in types to those defined in
the subprogram?

(9) If a subprogram is called more than once in a program, the referenced
variables in the subprogram should not be initialized by a DATA
statement.

If a subprogram variable is initialized by a DATA statement, it will
be correctly initialized when the subprogram is called for the first
time. At the first conclusion of the subprogram ex·ecution, that
variable value is altered by the subprogram computations. Now, in
the same run, if the subprogram is called for the subsequent times,
the initialized value of that variable will be the result left there
in the previous call. Therefore in a program, if a subprogram is to
be called more than once, the DATA statements in the subprogram
should be used only to set constants, which are not altered in the
subprogram execution. For initializing variables, use explicit
assignment statements.

(10) In passing the values of parameters from the calling program to a
subprogram or function, is the unit system consistent?

For example, the angle computation in the main program may be in
degrees, but the angle parameter in the subprogram may require a
value in radians.

Checklist for Computation Errors 149

(11) Some subprograms are written that the input variables are altered and
returned as the output. Have the input variables been saved
elsewhere (for example, by duplicat~ng them with another variable
name) if later computations require the same inp~t variables?

In many subprogram construction, the output returned from the
subprogram occupies the same storage area as the input to the
subprogram to save storage. For example, the subprogram SUBROUI'INE
INVERS(N,A) may be written as a matrix inversion subprogram for a
square matrix A of NxN size. TO save storage, the A-array will
accommodate the input A-matrix and return the A-inverse as the
output. Thus, if the A-array is used later for other computations,
the A-inverse will actually be used, unless the A-matrix is saved
before calling the INVERS subprogram.

(12) Are the COMMON statements in all subprogram modules defined
consistently?

(13) Are there any variables with very similar names, such as ROOT, ROOTS,
ROOTl, ROOTX, etc?

The similar names are potential source of errors during transcription
and entering the program. They tend to confuse the program and make
the code inspection harder. While it is not necessarily an error, it
is definitely a poor practice, because it sets up an error-prone
situation.

(14) If a data file is referenced by more than one subprogram, do the
different subprograms refer to the data structure consistently?

If a data file is an ASCII file, does it happen that it is referenced
as an ASCII file at one time, but a binary file at another. Although
both may contains numerical data, but the bit pattern interpretations
will be different.

4.6 A Checklist for Computation Errors

(1) Beware of mixed-mode computations.

FORTRAN-10 allows mixed-mode computations. (See Section 3.6)
However, one should be thoroughly familiar with the conversion rules
as given in Table 3.5. For example, when you add a real constant to
an integer constant, the result is a real constant. Thus, a
statement as K=l-O.l would yield K=O, but X=l-O.l would yield X=O.9.

(2) Is it possible for divide-by-zero to occur?

For example, if you are writing a subprogram to solve for the roots
of a quadratic equation: A*x**2+B*x+C=O. Have you included the
possibility that "A" may be zero in the subprogram application?

(3) Does an overflow or underflow situation exist in the program?

SQch situation may exist even though the execution seems to finish to
a valid conclusion. If such situation exists, scaling or other
manipulation may be necessary. For example, consider the statement:

X=(Yl*Y2*Y3*Y4)/(Zl*Z2*Z3*Z4)

150 CHAPI'ER 4 FORTRAN PROGRAM DEBtx;GING

If each of the va~ues has a magnitude in the range of E+lO, the
multiplications ln the numerator and the denominator would cause an
overflow, even though the result may be within the range of the
computer mnnbers. To avoid an intermediate overflow, rewrite the
statement as:

X=Yl/Zl*Y2/Z2*Y3/Z3*Y4/Z4

(4) Have the computations considered the truncation and rOlmd-off errors
in the decimal/binary number conversion?

For example, does the computation expect 100*0.1 to be 10? If a loop
is initiated with a counter set at 0 and increment of 0.1, will the
loop be terminated when 100 increments later the counter reaches 10?
The following trivial program, seeming harmless, will actually create
an endless loop:

X=O.
10 IF(X.EQ.lO.O)STOP

X=X+O.l
GO'ID 10
END

(5) Through the normal computation errors (roundoffs and truncations),
can the value of a variable go beyond a meaningful ran~e?

For exmaple, probability is never negative nor larger than 1; the
argument for of an arc-sine"function is never larger than 1; the
argument for a logarithm function can never be non-positive; and the
values of a rectified voltage cannot be negative. In such cases,
upper and lower bound bias statements will be required in order that
the computations subsequently will be meaningful.

(6) Always check the validity of integer divisions.

Integer arithmetics, except in division, always produces exact
integer results, provided they are within range. Therefore, they are
preferred in such operations as counting the loops and iterations,
computation of subscripts and indexes, etc. When an integer division
is encountered, the resul t is tr uncated r ather than rounded. If
rounded integer result of division is desired, then the expression of
division should be "pre-rounded", as shown below:

IQ= INUM/IDENCM replaced by: IQ= (2*INUM+IDENCM)/(2*IDENCM)

Order of operations in the integer arithmetics is im~)rtant too. The
following two statements may produce different results:

IQ = (Kl*K2)/(K3*K4) versus IQ = Kl/K3*K2/K4

4.7 A Checklist for Logic Errors

Logic decisions in a FORTRAN-IO program are mainly made by decision (IF)
statements with a subsequent object-action statement such as a transfer.
Therefore, many common logic errors derive out of errors of incorrctly using the
decision and object statements.

Checklist for Logic Errors 151

(1) In terminating a loop; is there any "off-by-one" error? This \\QuId
result in an iterations with one loop too many or too few.

(2) Is the comparison done between t\\Q variables/constants of the same
type? Is there any mixed mode comparison?

For example, is a real variable comparing with an integer variable or
constant?

(3) Are logic connectives such as AND, OR, XOR correctly used?

Many people get confused on the difference between AND and OR in the
precise logic meaning. In conunon English, we \\Quld say "the roots of
the equation are 3 and 4": while we actually mean logically "the
roots of the equation are 3 or 4." Also, we often investigate
conditions of "either, or", but fail to investigate the condition of
"both", thus confusing-the case of "OR" with the case of "EXCLUSIVE
OR" or "XOR".

(4) Are the logic operators, such as .Gr., .GE., .LT., and .LE., used
correctly?

An error-prone situation is when the programmer decides to change the
logic from, for example, .GE. to its inverse .LT. Have the actions
based on the comparison decisions been changed correctly?

(5) How exhaustive is a comparison?

For example, suppose aR integer variable is to have only t\\Q values,
1 or 2. In the comparison, can this value ever become other than 1
or 2, for example, by reading an input? If the value is not 1, is it
automatically assumed to be 2? If so, you are really trying to
distinguish l's from non-l's. If the value is neither 1 nor 2, can
the program handle the situation?

(6) In a multi-destination branching statement, such as the COMPUTED or
ASSIGNED 00 TO statement:

GO TO (Nl,N2, ••• NK) K
GO TO K, (Ll,L2, ••• LK)

Can the variable K reach a value that exceeds the number of branching
alternatives?

(7) Make certain that every loop, every subprogram, and every program
eventually will terminate.

Having a STOP or RETURN statement at the end of a program is not an
conclusive evidence that a program will terminate. The program may
never reach the STOP statement. DeSign some informal proof or
program walkthrough, that a program will terminate under all
conceivable condtions.

(8) Is there any portion of the program that will never be executed?

For example, consider the statement:
IF(IQ.LT.O)CALL IQTEST(A,B,C,D)

If IQ never goes negative, the subprogram
called. Is it an oversight? It calls for
for that statement.

IQTEST would never be
a detailed re-examination

lS2 CHAPrER 4 FORTRAN PRCX~ DEBUGGING

4.8 A Checklist for Input/Output Errors

(I) In the OPEN statement for a file, are all parameters given correctly?
For parameters not stated in the OPEN statement, are the default
values satisfactory for the file application? Can the file be shared
with other users during the program execution?

(2) Have all files been properly opened before accessing them?

(3) If the opening of a file is likely to have problem, fOIC example, to
open a shared file, is there a "ERR=" parameter in the OPEN statement
to handle the error situation?

(4) For every READ/WRITE statement, are the listed data perfectly
consistent with the format specifications referred to by them?

(S) Even if the format specifications are consistent, is there any data
truncation caused by the formats?

For example, if as-character alphanumberic variable in a program is
outputed by a format of "A3", the variable is truncated to the
leading three characters. Is this an oversight, or is it done with a
purpose?

(6) In the format specifications for the WRITE statements, has the first
column been reserved for the FORTRAN carriage-control characters?
Therefore, in a typical output format, is the first column blank?

For example, a format of "SIl" for outputing (K{I) ,I=l,S) would cause
unpredictable carriage movements and K{l) deleted in the output. The
correct format should be "IX,SIl".

(7) If file reading is involved in a loop operation, the number of
records to be read by the loops should not be more than the file
contains. The READ statement should have a parameter "END=n"
included to handle end-of-file situation.

Many loops are designed on terminating upon end-of-file condition.
When the file is revised with more or less records, the loops will
still be terminated correctly.

4.9 A Checklist for Program Readability

In order to do the code inspection, it is necessary that f~ople must be
able to read and understand the code in order to correct, modify, and debug it.
Unfortunately, it is often easier to re-write someone else's program than to
modify it.

Conventional languages use punctuation, indentations, paragraphing,
ordering and spacing to improve readability. We should also use these practices
to reduce the chance of misunderstanding. Analogy of good programming style can
be drawn on a good writing style of conventional English langauage. Good style,
of course, is a matter of individual opinion. What is a good style to one
person may be too restrictive to another. Here we will include a checklist for
good style, but one should realize that "good style" is subject to individual
interpretation. The following shows a list of commonly accepted good
programming styles:

Checklist for Program Style

(l) Write the comments as you code.

Details are fresh at coding time.
remember what to be corrunented.
is much easier to read and debug.

153

Later, it will be difficult to
A program with explanatory comments

(2) As blank lines are used in English to separate paragraphs, use blank
lines to separate groups of statements. Also, use a blank line after
an unconditional transfer (GO TO) statement to indicate a break in
the program flow.

(3) Select names to increase readability.

Poor:
Better:

Poor:
Better:

Z == X * Y
VOLT == AMPERE * OHM

SUBROUTINE X001{Xl,X2)
SUBROUTINE PRICE (COST ,PROFIT)

(4) Use a standard rule to define abbreviations (such as for the variable
names)

a. Initial letter must be present.
b. Consonants are more important than vowels.
c. Beginning of a word is more important than the end.
d. Md "I" or "X" prefix to the abbreviation to correct the data

type.

(5) Arrange the name list in alphabetic order and in neat columns,
especially if the list is long. Use tab keys.

Poor:

Better:

INTEGER ARRAY(128) ,PIXEL(128) ,QUOTE(5) ,TAU(128) ,WEIGHT,
lSIGNAL, REQST, RESIST, LAB,GAMMA, BETA

INTEGER ARRAY(128),
1 TAU(128) ,
2 LAB,
3 WEIGHT

PIXEL(128) ,
BETA,
REQST,

QUOTE(5) ,
GAMMA,
SIGNAL,

(6) Sequence the statement labels so that the statements may be quickly
located in a large program.

(7) Paragraphing a fX)-·,loop and an IF-statement group. Use indentations.

Poor:

Poor:

00 20 1==1,1
X{I)==O.O
00 10 J==1,5
Y(I,J)==O.O

10 CONTINUE
20 CONTINUE

IF (KODE.Gr. 3) GO TO 5
CALL STEP1(A,B,C)
CALL STEP2(A,B,C)

5 CALL STEP3(A,B,C)

Better: DO 20 1==1,10
X(I)==O.O
DO 10 J==1,5

Y(I,J)==O.O
10 CONTINUE
20 CONTINUE

Better: IF(KooE.Gr.3)GO TO 5
CALL STEP1(A,B,C)
CALL STEP2(A,B,C)

5 CALL STEP3{A,B,C)

154 CHAPl'ER 4 FORTRAN PROGRAM DEBUGGING

ON-LINE PROGRAM DEBUGGING BY DIAGNOSTIC REPORTS

After an exhaustive off-iine debugging process, correct all detected
errors, and we are now ready for the on-line processing.

For the on-line processing of FORTRAN program, the sequence of computer
processing is first to compile the source program, then to load the object
programs, and finally to execute. Errors may be detected at each stage by the
system processors, and these errors are reported on the user's terminal as the
error diagnostic messages. They are very helpful in identifying the errors
discovered at each stage, and they will be discussed next in some details.

4.10 Compiler Diagnostics

The FORTRAN-10 compiler has an extensive error checking and diagnostic
capability to diagnose and report the errors in the source program. The report
includes such pertinent information as the line number of the malfunctioning
statement in the source, reprinting of the statement, and a brief message
describing and diagnosing the error.

There are tv.D levels of error messages. A "warning message" indicates
either an inconsistency or a tolerable minor error. The compilation will
continue. The "fatal error message" indicates that the error will result in an
incorrectly compiled object program if allowed to continue, and hence, the
compiling is aborted. Thus, a warning message does not necessarily indicate an
error, but often a tolerable bad or unsual practice. Consider the following tv.D
segments of program:

DO 10 1=1,25
10 CALL SUB(A,B,I)

VOLTAGE=CURRENT/RESISTANCE
TYPE 100, VOLTAGE

When the programs containing these segments are compiled, both will produce
warning messages. The segment on the left will be objected by the compiler that
the DO-loop index "I" is being passed to a subprogram, and therefore may be
possibly altered upon its return. The segment on the right is objected by the
compiler because the variable names contain more than six characters. In both
cases compilation continue unless aborted by fatal errors down stream. For the
segment shown on the right half side, the variable names are actually truncated
into six-character names. SOme programmers have a habit of using full variable
names rather than their abbreviations so that the program is easier to read.
This is a good practice so long as the risks are understood. For example, the
variable names VOLTAGE1, VOLTAGE2, VOLTAGE3 will not be different variable names
after being truncated to six characters, and all 3 variables win be treated by
FORTRAN-10 as the var iable VOLTAG. Therefore, only when the warnings are well
understood, then we can ignore them if we are certain no error in the program is
committed •

The diagnostics are derived by examining the error symptoms and
concluding with a most probable diagnosis. Often, the symptoms are secondary or
even tertiary effect from the original error. For example, if an array X(I) is
missing in the DIMENSION statement, or if there is an error in that DIMENSION
statement, the compiler v.Duld not recognize later that X(I) is an array
var iable. It v.Duld take it for granted that it is a function named X with an
argument I. and this error will not be reported at the compiling stage.
Therefore, while the compiler diagnostic reports are extremely helpful in

Compiler Diagnostics 155

identifying the trouble, but one should not be lylled into a false security if
the compiler reports no error.

where:

The error message format is:

?FTN
%FW
XXX
LINE:n
text

?FTNXXX LINE:n text or %F1NXXX LINE:n text

FORTRAN compiler message, fatal error
FORTRAN compiler message, warning
3-letter mnemonic code, meaning of which shown below
line number where error occurs in the source program
explanation of error

Mnemonic Codes for Fatal Errors and Warnings

The fatal error messages on the user's terminal are preceded by "?FTN",
and nonfatal error warnings by "%FW". Tables 4.2 and 4.3 show a selected and
summarized subset of diagnostic m~ssages, along with explanations and examples.

There are many program errors of the type which the compiler cannot
detect. Some of the common errors of this type are as follows:

(1) A part of the program is missing.

(2) Branching the wrong way from an IF statement.

(3) Wrong FORMAT associated with I/O data.

(4) Incorrect dimension or unspecified dimension of array.

(5) Incorrect parameter types in a subprogram.

(6) Array subscript out-of-bound of DIMENSIONed size.

4.11 Run-Time Diagnostics

(1) The FOROTS diagnostics

In the FORTRAN-IO program execution, the tasks of interfacing between the
user's object programs and the DEC-IO monitor during I/O operations are carried
out by a processor called FOROTS (FORTRAN Qbject !ime ~stem). In addition to
the main tasks, other capabilities include job initialization, core management,
error-handling and reporting, file management, data formatting, mathematic
library, user library, specialized applications package, overlay facilites and
FORTRAN IV compatibility. It is specifically the "error-handling and reporting"
aspects of the FOROTS that we will be dealing here.

Code Message Text (AI J Upper Cases) and Explanat ions

ATL ARRAY [name] TOO LARGE

The core required to acccmmodate this array Is larger than the
user's maximum allocatIon.

Statements ... i th Errors: Corrected Statements:

DIMENSION Xll00,100,101

DTI THE DIMENSION Of [arrayname] MUST BE Of THE TYPE INTEGER.

Statements with Errors:

SUBROUTINE SlflIX,Y)
DIMENSION XIY)

Corrected St atements:

SUBROUT INE SlfllX,KI
DIMENSION XIKI

DVE CANNOT USE DlWY VARIABLE IN EQUIVALENCE.

Statements with Errors: Corrected Statements:
f---_+--__ D_IM_E_NS_I O_N_xn 00,100,100)

AWN ARRAY REFERENCE [ndme] HAS WRONG NlMlER OF SlflSCRIPTS. SUBROUTINE SlfllXl,X2,X31
EQUIVALENCE IX1,X2I

SUBROUT INE SlfllXl,X2,X31

X2=Xl
The array Is defined to ha ... e more or felJller dimensions than the
given reference.

Statements .Ith Errors:

DIMENSION X15,5,5)
XII,II=1.0

COl NO CLOS I NG QUOTE IN LI TERAL

Corrected Statements:

DIMENSION X15,5,5)
XI 1,1,1)=1.0

Literal constants should be enclosed In closed quotes.

Statements with Errors: Corrected Statements:

KAR=' NAME KAR= , NAME ,

10 FalMATI' Xl=,F8.2) 10 FalMATI' Xl=',F8.21

DIA 'DO INDEX VARIABLE [n,..e] IS ALREADY ACTIVE.

In any nest of 00 loops, a given index variable may not be
for more than one loop.

Statements with Errors:

DIMENSION Xll0,10)
00 5 1=1,10
00 5 1=1,10

5 XII,II=O.O

Corrected Statements:

DIMENSION Xll0,10)
00 5 1=1,10
DO 5 J=I,10

5 XII,J)=O.O

DID CANNOT INIT IALIZE A DLl+lY PARAMETER IN DATA.

Statements with Errors:

SlflROUTINE SlfllA,BI
DATA All .0/

Corrected Statements:

SUBROLT INE SlfllA,BI
,0.=1.0

DSF ARGlJ4ENT [name] I S SAME AS FUNCT I ON NAME.

used

Statements with Errors: Corrected Statements:

FUNCTION FUNC{FUNC1,FUNCI FUNCTION FUNCIFUNC1,FUNC2)

EID ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP.
-------------------~

~ ~NTRY S-TATEMENT ILLEGAL IN MAIN PROGRAM.

ENF LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A
FORMAT.

Statements with Errors: Corrected Statements:

GO TO 10 GO TO 11

10 FORMATlF8.2)
X=I.0

f----+---

10 FORMATlF8.2)
11 X=1.0

FEE

FNE

FWE

lAC

FOUND [symbol] WHEN EXPECTING EITHER [symbol] al A [symbol].

This Is a general syntax error message. The canpller detects
someth I ng wrong, but not qu I te sure about what I s wrong.

LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE
STATEMENT.

Statements with Errors:

9 X=I.0
~ITE{6,9)X

Corrected Statements:

9 X=I.0
~ITEI6,10)X

10 FalMATlF8.2)

FOUND [symbol] WHEN EXPECTING [symbol].

This is another general purpose syntax error message.

Statements with Errors: Corrected Statements:

X=RA*IFI +F2 X=RA*IF1+F2)

ILLEGAL ASCII CHARACTER [character] IN SOffiCE.
>----------- ---------- ---- ----------,

Sometimes, a non-print ASCI J character may be inadvertently
entered In the source. Since It Is not printed out, Tt rnay not
be easi Iv detectable In the oroof readlnQ orocess.

IAL l~ffiRECT ARGlJIENT TYPE FOR L IBRARY FU~TION [nameJ.

Statements with Errors:

X=SIN(I)

Corrected Statements:

XI=I
X=SIN(XI)

IDN DO LOOP AT LINE: [numberJ IS ILLEGALLY NESTED.

The program attempts to terminate a DO loop before terminating
one or more loops def I ned after the 9 I vben one.

Statements with Errors:

DO 10 1=1,10
X(I)=0.0
DO 20 J=I,5
Y(I,J)=O.O

10 CONTINUE
20 CONTINUE

Corrected St atements :

DOlO 1=1,10
X(I)=0.0
DO 20 J=I,5
Y(I,J)=O.O

20 CONTINUE
10 CONTINUE

ILF ILLEGAL STATEMENT AFTER LOGICAL IF.

Two types of statements may not be the objective statement to a
logical IF. One Is a DO-statement, and the other Is another
logical IF statement.

Statements with Errors: Corrected Statements:

IF(K.EQ.l)DO 10 1=1,10 IF(K.EQ.I)GO TO 5

5D0101=I,10

IF(I.EQ.l) IF(J.EQ.2) IF((I.EQ.l) .AND. (J.EQ.2»
1 GO TO 5 1 GO TO 5 1---+------.--------_. ___ . __________ _

ISD ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATEMENT.

Subscript expressions may be formed only with Implicit DO Indices
and constants ccmblned with +, -, *, or t.

Statements \If j th Errors: Corrected Statements:

DATA (X(I**2),I=I,5)/5'0.0/ DATA (X(I*I),I=I,5)/5*0.0/

ISN ~~~~~-=-~_T __ ~!m~~~p-=-J.: ______________ _

The symbol cannot be used In the attempted manner. For example,
a var I ab I e and a funct i on cannot share the same nane.

IXM ILLEGAL MIXED MOOE ARITffoIETIC.

Ccmplex and double precision operands cannot appear In the same
express Ion.

LAD LABEL [numberJ ALREADY DEFI~ED AT LINE: [numberJ
t---I---

LNI LIST DIRECTED I/O WITH NO I/O LIST.
t-----I- ----- .. - .-._-.

NIO NAMEL I ST DIRECTED I/O WITH I/O LIST.
r--.--.----.

~ ~~-INTE~~._~N~~~/~...:~~~T-.---.-----------___l
~_ .WR()tl(;~_~:_:~..?" ARGlJIENTS FOR LIBRARY FUNCTION [nOOleJ.

I'f'lF NO STATEMENT NlJ4BER ON FORMAT. r---· - - ··-·----·-·-·---.. ----·~·~------------I
NRC STATEMENT NOT RECOGNIZED.

1--1-----------------------------1
OPW OPEN PARAMETER [nOOleJ I S OF WRONG TYPE.

t--.
PIC

1----. -.----.----- .-.----.. ---------------1
Statements with Errors: Corrected Statements:

REAL K INTEGER K
OPEN(UN~T_~K_,_F I_LE.:.'_X . .:..~DA_T'_) _ __.:.OP...:EN(UNIT=K,F ILE='X.OAT')

THE DO PARAMETERS OF [Index nOOleJ MUST BE INTEGER CONSTANTS.

PTL PROffiAM TOO LARGE.

RIC COMPLEX CONSTANT CANNOT BE USED TO REPRESENT THE REAL OR
IMAGINARY PART OF A COMPLEX CONSTANT.

r---r---------------------------~
SOR SUBSCR I PT OUT OF RANGE.

r---t---
UMP UNMATCHED PARENTHESES.
~-r-----------------------------4

USI [symbol typeJ [symbol nameJ USED I~OR_RE __ C_TL_Y _________ __

VSO VARIABLE DIMENSION ALLOWED IN SUBPROffiAMS ONLY.

Note: In the error message text, the nanes, numbers, characters
enc losed I n square brackets correspond to the actua I parameters
used I n the source program.

Table 4.2 Mnemonic CC~2S for Fatal Compiling Errors

158 CHAPI'ER 4 FORTRAN PROGRAM DEBUGGING

Code Message Text (All Upper Cases) and Exp I anat ions

CUO CONSTANT UNDERFLOW OR OVERFLOW

DIM POSSIBLE DO I NDEX MOD I FED INSIDE LOOP.

If a DO loop index Is I nvo I ved i n an ar I t hmet I c express I on, the program may be
compiled I ncorrect I y. The comp i I er 1'1 i I I trans I ate the DO loop I ndex such that the
number of i terat Ions Is ca I cu I ated at the beginning of the loop and Is never
affected by modification of the Index within the loop.

Statements with Errors: Corrected Statements:

DO 10 1=1,10 DO 10 I =1,10
10 CALL READRA(1, I ;tWL) I X= I

10 CALL READRA< 1, I X,KOLl

DO 10 1=1,10 not allowed to alter the index
IF(I.GE.3) 1=1+1
etc

DXB DATA STAEMENT EXCEEDS BOUNDS OF ARRAY
f----- -.------.-~-

FMR MUL T I PL E RETURNS DEF I NED IN A FUNCTION.
I 1----1-

ICC ILLEGAL CHARACTER, CONTINUATION FIELD OF INITIAL LINE.

Cont inuat ion I I nes cannot fo I low comment lines.

ICD INACCESSIBLE CODE. STATEMENT DELETED.

Suct) code may be an overs I ght, or may be a log i c error. Check the flow chart on
flow log ic.

ICS I LLEGAL CHARACTER IN LINE SEQ#.
- -- _.-- - --~---~--~----

IDN OPT - ILLEGAL DO NESTING - OPTIMIZATION DISCONTINUED.
e-~- -

The compi ler contains a code optimizer. When a quest i on ar i ses in the source
program, the optimizer I s bypassed and comp I I er does stra i ght trans I at i on.

------- -- - ---~-------.--

IFL OPT - INFINITE DOOP - OPTIMIZATION DISCONTINUED.
,- - -~--.. -----~----~------~----~--------

The compi ler contains a code optimizer. When a quest I on ar I ses in the source
program, the opt im i zer I s bypassed and comp II er does stra I ght trans I at I on.

-~---

LID I DENT I F I ER [name] MORE THAN S I X CHARACTER
--

Statements with Errors: Corrected Statements:

VOL TAGE=CURRENT IRES I STANCE Actua I statement comp I I ad:
VOL T AG=CURREN/RE S I ST

t------~

MVC NUMBER OF VAR I ABLE DOES NOT EQUAL THE NUMBERS OF CONSTANTS I N DATA STATEMENT.

NED NO END STATEMENT I N THE PROGRAM.
'--- -~ -~-

NOF NO OUTPUT FILE GIVEN.

SOD [name] STATEMENT OUT OF ORDER
f-------- --

VNI OPT - VARIABLE [name] I S NOT INITIALIZED.

Tab e 4.3 Mnemonic Codes for Compiler Warning Messaqes

FOROTS Diagnostics

The errors detected at run-time by FO~S are reported using a format of:

where

%FRSXXX text

%FRS = FOROTS error diagnostic report prefix
XXX 3-letter code as defined in Table 4.4
text = error message

CODE Expalantlons

APR Arithmetic fault errors, generated In calculations.

159

f-------- ---

DAT Data errors, generated in data conversion during an I/O operation.
~-- -------------- --1

DEV Device error, generated by I/O hardware errors.

LIB Library function errors.
f------

OPN Fi Ie OPEN/CLOSE errors.

SYS System errors, generated internally by FOROTS.

Table 4.4 Mnemonic Codes for FOROTS Run-time Errors

(2) Error traceback report

In addition to the FOROTS diagnostics, an error traceback report will
also be printed on the user's terminal to aid him to locate the trouble. TO
fully utilize the FOROTS traceback, use the error report in conjunction with the
compiler listing of the source. For that reason, let us follow a debugging case
history to identify an error.

160 CHAPl'ER 4 FORTRAN PR~~ DEBUGGING

Example: We will take the Newton-Raphson method example, but insert an
out-of-bound error in it so that it cannot be detected during compiling time.
Then write a simple main program to call that subroutine. These source programs
are stored as one file TEST.FOR. The program listing is shown below along with
the line sequence numbers:

00001
00002
00003 10
00004

00001 *
00002
00003
00004
00005
00006
00007
OOOOS
00009
00010
00011
00012 10
00013
00014 100
00015
00016 20
00017
0001S

00001 *
00002
00003
00004
00005

00001 *
00002
00003
00004
00005

CALL NEWTON(1.,-11.,9.,S.,20.,50,3,ROOTl
TYPE 10, ROOT
FORMAT(' ROOT = " FS.2l
END

SUBROUTINE NEWTON(A,B,C,D,E, ITER,NPLACE,ROOTl
DIMENSION X(2l
X(1 l=-B/A
ERROR=10.**(-NPLACEl
Fl =FUNCP(A,B,C,D,E,X(1 l l
IF(Fl.EQ.O. lX(1 l=2.*X(1 l
DO 10 I = 1 , ITER
X(2 l=X(1 l-FUNC(A,B,C,D, E, X(1 0 l l /FUNCP (A,B,C, D ,X(1 l)
IF(ABS((X(2l-X(1)l/X(1)).LE.ERROR)GOTO 20
X(l)=X(2)
CONTINUE
WRITE(6,100lITER
FORMAT(/")f** NO CONVERGENCE WITHIN',15,' ITERATIONS.')
RETURN
ROOT=X(2)
RETURN
END

FUNCTION FUNC(A,B,C,D,E,X)
FUNC=A*X**4+B*X**3+C*X**2+D*X+E
RETURN
END

FUNCTION FUNCP(A,B,C,D,X)
FUNCP=4.*A*X**3+3.*B*X**2+2.*C*X+D
RETURN
END

Note that the line No.OOOOa of the subroutine NEWTON has an out-of-bound
error. X(l) is incorrectly entered as X(lO).

Upon a compiling command, the following pr intout was obtained:

• COf1P ILE TEST. FOR

FORTRAN 5A(621): TEST.FOR
MAIN. OCTAL PROG SIZE=53
FORTRAN 5A(621 l: NEWTON.FOR
NEWTON OCTAL PROG SIZE=211
FUNC OCTAL PROG SIZE=52
FUNCP OCTAL PROG=55

Therefore, it appears that compili~ for the main program and three
subprograms were successful, because there is no error message. Next the
program is executed:

FOROTS Diagnostics 161

EXECUTE TEST. FOR
LINK: loading
[LNKXCT TEST execution]

%FRSAPR Floating overflow at FUNC+16[457]
FUNC[441] cal led from NEWTON+47[322] with 6 args of type F,F,F,F,F,F
NEWTON[253] called from MAIN.+4[161] wJth 8 args of type F,F,F,F,F,I,I,F

(The same report is repeated several times)

%FRSDAT Output field width overflow
Unlt=-l TTY:/ACCESS=SEQINO/MODE=ASCI I
Input record = 0; Output record = 1;
(. ROOT =·,F8.2)
IOLST.[404320] cal led from MAIN.+10[165] with no args

ROOT = ********
End of Execution FOROTS 5B(1001)
CPU time: 0.06 Elapsed time: 0.07

No. of
Errors
1
76

EXIT

Error
Type
Output field width overflow
Floating overflow

It is at this point that many people are overwhelmed. Actually, to a
FORTRAN user, there are much useless information he can simply ignore. For
example, all numbers in square brackets are actual core addresses, and they are
useless to a FORTRAN user. Therefore, focus your attention on the expressions
having the form PROGRAMNAME+NUMBER, such as NEWTON+47, which are memory
locations in relative addresses. PROGRAMNAME is the base address of the program
unit, and NUMBER is the offset indicating the relative address. SO, let us
interpret the trace report without the core addresses:

"%FRSAPR Floating overflow at FUNC+16"
Meaning: Arithmetic error (APR) of floating point overflow occured in
the program unit FUNC, and at a location of relative address 16. If we
have a location map of relative address of FUNC statements, the offending
statement may be quickly identified. This relative address map is on the
compiler listing.

"FUNC cal led from NEWTON+47 with 6 args of type F,F,F,F,F,F"
Meaning: The offending subprogram is called by the statement in the
subprogram NEWTON with a relative address of 47. Again a compiler
listing will quickly identify the calling statement.

"NEWTON cal led from MAIN.+4 with 8 args of the type F,F,F,F,F, I, I,F"
Meaning: The subprogram NEWTON was called by a statement in the MAIN
unit that has a relative address of 4.

The other error report passage indicates the error in I/O processing,
purported to be out of range of the assigned format. The format is printed to
aid the identification.

162

MAIN.

00001
00002
00003
00004

GHAPl'ER 4 FORTRAN PR~~ DEBUGGING

(3) Use compiler listing to locate t~e error

A. How to get a compiler listinq

To get a compiler listing, use a switch /LIST when applying the
command for COMPILE, WAD or EXECurE. However, if the source program
has been previously compiled and a valid REL file already exists,
delete that REL file first. Otherwise, no new compiling will be
done. To compile (or· load, or execute) and produce a compiler
listing, use the command:

.COMPILE FLNAME.FOR/LIST

In addition to producing a FLNAME.REL file, this commru1d will also
create a compiler listing file stored as FLNAME.LST. Carrying on the
example started in the previous part, a compiler listinq is produced
by a command of "COMPILE TEST. FOR/LIST" , and the result is shown on
the next three pages.

Reproduction of Compiler Listin~

TEST.FOR FORTRAN V.5A(621) /KI/L 10-0CT-80 9:51 PAGE

CALL NEWTON (1 . , -11 . ,9. ,8. ,20. , 50,3, ROOT) J . '<' •• ~ TYPE 10, ROOT v,t,
10 FORMAT (, ROOT = , , F8.2) J< .,f' c~-cl-'

END
~"'q(O~

SUBPROGRAMS CALLED }

NEWTON

SCALARS AND ARRAYS [}'*" NO EXPLICIT DECLARATION - "%" NOT REFERENCED -"" SUBS
CRIPTED] N~

srJ).t'i..
*ROOT 1 R ~ ~~~

TEMPORARIES ----.--.~.----- rf-..o 1:-~OfMj \/o..r\o!o\e

LINE NUMBER OCTAL LOCATION MAC)-- L-;ne~2 sto~ i", Locatio"", 5"-10 (oct",l)

o 1~3 456789
---:--------------~--_._-------------

00000 3 5 11

MAIN. OCTAL PROG SIZE=53 [SCALARS/ARRAYS=l + FORMATS=4 + TEMPS/CONS=7 +
CODE=
1 3 + ARGS=24]
[NO ERRORS DETECTED]

FOROTS Diagnostics 163

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

*

10

100

20

SUBROUTINE NEWTON(A,B,C,D,E,ITER,NPLACE,ROOT)
DIMENSION X(2)
X(1)=-B/A
ERROR=10.**(-NPLACE)
Fl =FUNCP(A,B,C,D,E,X(1»
IF(Fl.EQ.O.)X(1)=2.*X(I)

DO 10 1=1, ITER
X(2)=X(1)-FUNC(A,B,C ,D, E, X(1 0» /FUNCP(A,B,C,D,X(1»
I F(ABS((X(2)-X(1))/X(1» .LE.ERROR)GOTO 20
X(1)=X(2)
CONTINUE
WRITE(6,100)ITER
FORMAT(/'*** NO CONVERGENCE WITHIN',15,' ITERATIONS.~)
RETURN
ROOT=X(2)
RETURN
END

SUBPROGRAMS CALLED } 3 S~(·~ ...
cto.\\Cl.b.

ABS. FUNCP FUNC
SCALARS AND ARRAYS [n*n NO EXPLICIT DECLARATION - "%" NOT REFEREN} - " " SUBS
CRIPTED]

\l (IJn~S
*E 1 R *B 2 R *ITER 3 I ~ . ~
*D 4 R *A 5 R o.~~\~
*ROOT 6 R *ERROR 7 R *NPLACE 10
X 11 R *1 13 I

*Fl 14 R *C 15 R ("(1.hJ.

TEMPORARIES

32 1 }

~~e wf~,e,r e)

.SOOOO 30 I .AOOI6 31 R .QOOOO C:tr°'fe

LINE NUMBER/OCTAL LOCATIO~MAP
~ w ~, r

:~!-~-------~--~-:-------~-------:~------::------:~------::------::----_:
43 ~ 00010 : 54 62 64 66 - 72 73 75

NEWTON OCTAL PROG SIZE=211 [SCALARS/A ~_~15 + FORMATS=12 + TEMPS/CONS=6 + CODE
=114 + ARGS=40]
[NO ERRORS DETECTED]

00001 *
00002
00003
00004
00005

FUNCTION FUNC(A,B,C,D,E,X)
FUNC=A*X**4+B*X**3+C*X**2+D*X+E
RETURN
END

SUBPROGRAMS CALLED

!=or ~.xo,w..-r'e > Li~e #, 3 CQtA~

of" WRI T€ (6.100) .!TEtt." IS

st-ofd Gtt loco.t;o~s

,,~ -71.

164 CHAPI'ER 4 FORTRAN PRCX~ DEBUGGING

SCALARS AND ARRAYS [n*n NO EXPLICIT DECLARATION - n%n NOT REFERENCED - n n SUBS
CRIPTED]

*E 1 R *B 2 R *0 3 R
*A 4 R *x 5 R
*C 6 R *FUNC 7 R

TEMPORARIES

.AOO02 lOR .AOO03 11 R

LINE NUMBER/OCTAL LOCATION MAP

: a 2 3 4 5 6 7 8 9
------:---_ .. _-------------

00000 : a 16 35

FUNC OCTAL PROG SIZE=52 [SCALARS/ARRAYS=7 + TEMPS/CONS=2 + CODE=41 + ARGS=O]
[NO ERRORS J!~~~~E_~J. ___ . __

00001 *
00002
00003
00004
00005

FUNCTION FUNCP(A,B,C,D,X)
FUNCP=4.*A*X**3+3.*B*X**2+2.*C*X+D
RETURN
END

SUBPROGRAMS CALLED

SCALARS AND ARRAYS [n*n NO EXPLICIT DECLARATION - n%n NOT REFERENCED - n n SUBS
CRIPTED]

*B
*X
*C

TEMPORARIES

.AOO02
12 R

1 R
4 R
6 R

7 R

*0
*FUNCP

.A0003

LINE NUMBER/OCTAL LOCATION MAP

: a 2 3

2 R
5 R

10 R

4

*A

.A0004

5 6

3 R

11 R .A0005

7 8 9
------:--._--------------
00000 : a 16 35

FUNCP OCTAL PROG SIZE=55 [SCALARS/ARRAYS=6 + TEMPS/CONS=4 + CODE'=43 + ARGS=O]
[NO ERRORS DETECTED]

FOROTS Diagnostics 165

Each program (the main program, each subroutine, each function)
has a complete compiler listing that contains the following parts:

a. The program listing. The program unit is listed with
line sequence numbers assigned in the exact way the source program is
prepared. All comment lines, continuation lines and blank lines will
all be assigned with unique line sequence numbers. They are decimal
numbers.

b. List of subprogram names called by this unit. Library
functions are identified by names followed by a period; user
functions with names only. If there is an unfamiliar function or
subroutine name in the list, it identifies a possible error. The
subprogram name may have been misspelled, or an array variable did
not get DIMENSIONed.

c. "Scalars and Arrays". These are all variable names used in
the program unit. Each variable name listing has a format of:

where:

xNAME n # Type

x = type declaration code:

Code --*-
%

blank

Meaning
variable not declared explicitly
type declared but variable not used
dimensioned as conventional type

NAME variable name

n = relative address in octal number

indicating this is an array

datatype data type codes:

Code
-I-

R
C
D
L

integer
real
complex

Meaning

double precision
logical

By going through the list and cross-checking the program, mis-typing
of data can be quickly identified.

d. "Temporaries". These are temporary variables generated by
the compiler. Ignore this part; they are useless to FORTRAN users.

e. Location map. The map is printed in a matrix form. The
row and column headings together form the line number, and the matrix
element value is the first address (relative) of instruction codes
translated from that line. Let us reproduce the map of the NEWIDN
subroutine of the last part:

166 CHAPfER 4 FORTRAN PROGHAM DEBUGGING

LINE NUMBER/OCTAL LOCATION MAP

: 0 2 3 4 6 7 8 9

------:-------------------------------------~-----------------------------------

- 00000
00010 54 62

o
64

21
66

31
73

34 40
75

43

From this map, we can easily determine the core address
assignment (in relative add esses) for every line of the program
unit. For example, in the pr ram unit NEWIDN, the core assignment
in relative addresses is as f llows:

Line #: 4 21-23 octal
5 24-30
6 31-33
7 34-37
8 40-42

etc etc

f. Program size. The program size is broken into its
components, and their sum is the total program unit. size in octal
number. Program size=53 means, octal 53 DEC-10 words, or decimal 43
DEC-10 words.

B. How to use the compiler listing to locate errors

Once the relative address is known, the line nl~er and the
statement can be quickly identified.

Returning to the last example, FUNC+l6 identifies Line #3 of
FUNC; NEWIDN+47 identifies Line #9 of NEWIDN; and MAIN. +4
identifies Line #1 of the main program. The conclusion of the
tracing report is:

The error is generated by Line No. 3 of the FUNC program, which is
called by Line No. 9 of the NEWION program, which in turn is called
by Line No.1 of the main program.

(4) The ERRSNS subroutine

In addition to the above run-time FOROTS error-reporting
facilities, there is a FORTRAN library subroutine ERR3NS that may be
called by the "ERR=" parameter of READ, WRITE, OPEN and CLOSE
statements in the form:

OPEN(UNIT=1,FILE='INPUT.DAT',ERR=9999)

9999 CALL ERRSNS(I,J)
TYPE 9998, I,J

9998 FORMAT (' READ/WRITE OR OPEN/CLOSE ERROR CODES: " 214)
STOP lor other error handling steps

ERRSNS Subroutine 167

The meanings of tv,u integers "I" and "J" returned by the
error-report subroutine ERRSNS are tabulated in Table 4.5:

r-----r---.-----~-----.-----.----------------.

o o
101

Explanation

no error
completion with no error

1-----+-----4-------... ---.---... -.. ---------------~

23 312 Backspace i I legal for device
f------ ---- .. ----.-.. - - .. -----------... -.- - .-.--..... ----.. -------.1

24 308 Reaching end of fi Ie during READ
1--. . .--.-.--.-.. - ... --.-. - --.--... - .. ---.. -------------

25 opt inval id record number
1---- ----.-- .-.. -.-.. -.-.-- -.-. ---.. ---.. ------

26 opt Sequential fi Ie used as a random access
---f····- .-- .-... _-.. ---.--.--.- .. -.--.. ----------.---.. -.----------

28 opt CLOSE error
254 Rename fi Ie already exists
262 No room, quota exceeded
268 Cannot delete or rename a fi Ie

f------ .. -----\---.--- - . _ __ .. _ .••... _._-------_._------

29 opt no such fi Ie
250 Fi Ie not found

~--+-----I-.-----... ---.---.---.---.-----.----.----.--I

30 opt OPEN fa i lure
240 Record length spec missing for random access
242 Too many devices opened (Max: 15)
245 Device not avai lable
248 I I legal access for device
249 I I legal MODE or MODE switch
251 No such PPN
253 Fi Ie being modified, not avai lable now

1--'--- -. ------- -.... -.. --.... -.-.--... --.-----... ------.. ---... -----.-

31 opt Mixed access modes
315 Random access fi Ie used as sequential

f------ ------ . -.----.--.. -.--.---------.-.---.--.----.. ------.. -

32 239 Inval id logical unit number
\---1--._.-- .-..... - -.-... ---.-.--------.-.. - ... --.-.---.---

39 opt READ error
1--- --.. - .-+.--.. ---....... -...... - .. ---.-.---.------------1

45 opt OPEN statement keyword error
I------+-- .--t---.. -------- --.-----.-.-------------

47 263 Attempt to WRITE on READ-only fi Ie
r---+----+--.-- ------_.-_._--_. __ ._----------

62 opt FORMAT syntax error
301 I I legal character in FORMAT
314 Missing width for A- or R-FORMAT on Input

Table 4.5 Selected Numeric Codes of Error Report Subroutine ERRSNS

168 CRAPI'ER 4 FORTRAN PR~~~ DEBUGGING

4.12 Dimension Out-of Bound Errors

Debugging frustration usually is derived from tv,Q causes: (1) the user
is not familiar with the meaning of the error message, and (2) the user relies
on the error diagnostics blindly. The first cause may be easily rE~edied. The
material presented so far should be helpful in resolving the first cause
somewhat. The second cause will be difficult to remedy, unfortlmately. The
error diagnostics are based on a failure symptom that may be a secondary or
indirect effect of the original offender~ By far the most frequent culprit in
raising the programmer frustration is the dimension out-of-bound ~roe of errors.

When a DIMENSION statement is specified in the source program, the
compiler records the number of reserved storage locations, translate the source
into the object codes, and reserve necessary argument storage and I/O buffers.
These storages form a contiguous entity and later the LOADER will try to find a
contiguous space in the core to fit it. There is no policing at the execution
time to see that an array will not go beyond its assigned space.

As a result of compiling, each array is identified by a base address
where the first element of the array will be stored. If the X-array has a base
address at "ADDX", then X(l) is stored at ADDX, X(2) at (ADDXtl), X(3) at
(ADDX+2), and so on, and X(k) at (ADDX+k-l). The quantity (k-l) is called the
OFFSET, and therefore, the address of an element of array can be identified by
computing (BASE+OFFSET). Access to an element in the array is performed in this
manner. The OFFSET of a multi-dimensioal array is computed on a linear array
basis. Naturally, for correct computations of a K-element array, the OFFSET
should not be larger than (K-l) and should never be negative. Unfortunately, at
the run-time, the OFFSET is not checked with the array size K. Hence, a
dimension out-of-bound error cannot be detected ~ se at run-time but will be
detected by the damage, if any, caused by it.

In a typical core storage for a program execution, in contiguous order
are the storage areas for: data area, formats, temporarily generated codes,
instruction codes, subprogram argument codes, I/O buffer areas, etc. If an
array located in the data area is too large for its assigned locations, the
surplus elements will go to other data storages, or into the instruction codes,
or into the I/O areas, all dependent on the OFFSET calculation. Naturally, in
this process, the information of the invaded area are altered and the result
becomes unpredictable. Thus when the invaded area information is used for a
subsequent execution, anything can happen ..

Suppose the following is a segment of a FORTRAN program:

DIMENSION X(lOO) ,Y(lO)

00 5 1=1,150
5 X(I)=O.O

Let us now analyze the consequences.

(1) The extra X-array elements may only alter other data storages, and
this alternation will makes the result of computation invalid. On the other
hand, the remaining computations may not need the affected values, and the
results may be correct. Therefore, such a program may sometimes produce correct
results, sometimes not. But the program will successfully run to a completion.
This is often a case where a programmer blames on the "temper" of the machine.

Dimension Out-of-Bound Errors 169

(2) The extra values may invade the instruction code area and alter the
contents. The result will be unpredictable. Coincidentally, the alteration may
change a code to another perfectly legitimate code, and the program execution
will take on a new and strange d~rection. Most likely, the alteration will
result in a non-executable instruction, and an error message to that effect
comes back to the puzzled user.

(3) The extra elements may alter some subscript- or index-calculation
code in such way that a very large subscript value is obtained. Its OFFSET may
be so large that it exceeds the boundary of the user's core allocation. Imagine
how the user feels when he sees an error message of "NEED MORE CORE" for his
short program.

(4) If the extra values invade the I/O buffer area where input/output
data are formulated according to a FORMAT, an error message of "AN ILLEGAL
CHARACTER IN THE FORMAT" will send the user on a unproductive wild goose chase.

Thus, while the out-of-bound error is one of the most frequently
committed errors, its detection is far from obvious.

Because of the high incidence of such errors, an effectvie strategy may
be as follows:

(1) After an error diagnostic message is received, the source program is
checked as reported by the diagnosis. Often, these circumstantial evidences
fail to unearth the real trouble. 'rhen, always suspect first there is an
out-of-bound error.* ----

(2) Delete the compiled REL file, and re-execute the source file now
with a /DEBUG:BOUNDS switch. Note that the out-of-bounds error cannot be
detected just by re-compiling even with the DEBUG:BOUNDS switch. That switch
will perform the debugging only when the program is executed.

(3) Insert several core-occupying but meaningless statements in the
suspected source program, for example:

DIMENSION YYYY(lOO)
00 9999 1=1,100

9999 YYYY(I)=1.2345

The purpose is simply to shift the core address assignments. This revised
program is executed again, and another error report is obtained. If a different
set of errors is reported this time, it is highly probable that an out-of-bound
dimension error exists.

(4) When an out-of-bound error is suspected or confirmed, catch that
error first and ignore other reported errors for the time being. Very probably,
many secondary errors will be automatically corrected once the primary error is
caught and corrected.

*The second most probable error source is on uninitialized or unset variable in
cumputations.

l70 CHAPI'ER 4 FORI'RAN PROGRAM DEBUGGING

ON-LINE DEBUGGING BY CONDITIONAL COMPILING

4.13 The D-Statement

In the on-line debugging of a FORI'RAN-IO program, we are mainly trying to
test the program to see (1) if the flow logic goes according to the plan, and
(2) how the computation of data is going. The first means a tracing process,
and the second means to inspect the values of variables at different stages of
their computations. Both of these may be realized by output statements inserted
at strategic places with formats that indicate a tracing and/or data inspection.
For example, use output formats as illustrated below:

FORMAT (, I REACH POINT Ai ALL IS FINE.')
FORMAT (' I REACH POINT B i ALL IS WELL. ')
FORMAT(' AT POINI' Pi X-ARRAY DATA ARE: ',data-forma.t •••)

But there are several problems. Once these statements are inserted, it
will be difficult to distinguish them from the rest. ~1en debugging is
completed, we want to remove these extra statements, and that will be a tedious
and error-prone process. Very likely, new bugs \',Quld be created by such
procedure.

FORI'RAN-IO allows a D-type statement that has a letter "D'" in the first
column. let the program file name be FINAME.FOR. If the following command is
given:

EXECurE FIANEM. FOR (I)

where "(1)" is a compiler switch to include D-statements, the program with all
its regular and D-statements will be compiled and executed. The same program,
if compiled and executed without the (I) switch, will treat the D-statements as
comments and therefore ignore them.

After debugg ing is completed, delete the REL file, and recompile wi thout
the (I) switch.

Example: We will again use the same TEST.FOR but add some
D-statements as shown below:

CALL NEWTON (1 • , -11 • ,9. ,8. , 20 • , 50, 3, ROOT)
TYPE 10, ROOT

10 FORMAT(' ROOT = I, F8.2)
END

*

o
09999

o
09998

SUBROUTINE NEWTON(A,B,C,D,E,ITER,NPLACE,ROOT)
DIMENSION X(2)
X(1)=-B/A
ERROR=10.**(-NPLACE)
F1 =FUNCP(A,B,C,D,E,X(1»
IF(F1.EQ.0.)X(1)=2.*X(1)
DO 10 1=1, ITER
WRITE(6,9999) I,X(1)
FORMAT (/. I TERAT I ON= " I 3, • X (1) = ' , E 1 2 • 4)
X(2)=X(1)-FUNC(A,B,C,D, E,X(1 0» /FUNCP(A,B,C,D,X(1»
WR ITE (6, 9998) I, X (2)
FORMAT(' AFTER ITERATION ',13, 'X(2)=·,E12.4)

D-Satetments 171

IF (ABS((X(2)-X(1))/X(1» .LE . ERROR)GOTO 20
X(l)=X(2)

10 CONTINUE
WRITE(6,100)ITER

100 FORMAT(/'*** NO CONVERGENCE WITHIN', 15,' ITERATIONS.')
RETURN

20 ROOT=X(2)

*

RETURN
END

FUNCTION FUNC(A,B,C,D,E,X)
o WRITE(6,9999) A,B,C,D,E,X
09999 FORMAT{' PARAMETERS PASSED INTO THE FUNC PROGRAM:'/
o 1 EQUATION COEFFICIENTS ARE:' /12X,5E12.4/
o 2 X(l) = ',E12.4)

FUNC=A*X**4+B*X**3+C*X**2+D*X+E
o WRITE(6,9998)FUNC
09998 FORMAT(' RETURNED FROM FUNC, FUNC=',E12.4)

RETURN
END

*
FUNCTION FUNCP(A,B,C,D,X)

o WRITE(6,9999) A,B,C,D,E,X
09999 FORMAT{' PARAMETERS PASSED INTO THE FUNCP PROGRAM:'/
o 1 EQUATION COEFFICIENTS ARE:' ,5E12.4/
o 2 X(l) = ',E12.4)

FUNCP=4.*A*X**3+3.*B*X**2+2.*C*X+D
o WRITE(6,9998)FUNCP
09998 FORMAT(' RETURNED FROM FUNCP, FUNCP=' ,E12.4)

RETURN
END

Next, an EXECurE conunand with the switch (I) is applied. Now a curious
thing happens. The example program was aborted during the regular run but it
runs to a completion with the D-statements. As the D-statements are merely
output and format statements, suspiction should be raised here that the trouble
is illegal data located out of bound. The terminal printout is included here
along with some analysis:

PARAMETERS PASSED INTO THE FUNCP PROGRAM:
EQUATION COEFFICIENTS ARE: 0.1000E+Ol -0.1100E+02 0.9000E+Ol 0.8000E+Ol
X(l) = 0.2000E+02

RETURNED FROM FUNCP, FUNCP= 0.1917E+05

ITERATION= 1 X(l)= 0.1100E+02
PARAMETERS PASSED INTO THE FUNCP PROGRAM:

EQUATION COEFFICIENTS ARE: 0.1000E+Ol -0.1100E+02 0.9000E+Ol 0.8000E+Ol
X (1) = O. 11 OOE +02

RETURNED FROM FUNCP, FUNCP= 0.1537E+04
PARAMETERS PASSED INTO THE FUNC PROGRAM:

EQUATION COEFFICIENTS ARE:
O.1000E+Ol -0.1100E+02 0.9000E+Ol 0.8000E+Ol 0.2000E+02

X(l) = 0.1596E-Ol
RETURNED FROM FUNC, FUNC= 0.2013E+02
AFTER ITERATION 1 X(2)= 0.1099E+02

ITERATION= 2 X(l)= 0.1099E+02
PARAMETERS PASSED INTO THE FUNCP PROGRAM:

EQUATION COEFFICIENTS ARE: 0.1000E+Ol -O.1100E+02 0.9000E+Ol O.8000E+Ol
X(l) = O.1099E+02

172 CHAPTER 4

RETURNED FROM FUNCP, FUNCP= 0.1527E+04
PARAMETERS PASSED INTO THE FUNC PROGRAM:

EQUATION COEFFICIENTS ARE:

FORTRAN PROGRAM DEBUGGING

0.1000E+Ol -0.1100E+02 0.9000E+Ol 0.8000E+Ol 0.2000E+02
X(l) = 0.1596E-Ol

RETURNED FROM FUNC, FUNC= 0.2013E+02
AFTER ITERATION 2 X(2)= 0.1097E+02

(SEVERAL MORE PAGES OF THIS)

ROOT 0.00

End of execution FOROTS 58(1001)
CPU time: 0.12 Elapsed time: 1.58
EXIT

From the analysis shown, the trouble is attributed to the fact that X(l)
is passed into two subprograms FUNC and FUNCP as two different values! Armed
wi th this information, the par ameter lists of FUNC and FUNCP are examined, and
the trouble can be identified quickly.

Note that the debug run actually produced an incorrect resul t of
R:XYr=O.OO! The kind of errors causing computer jobs abortion is actually the
safe kind. The really dangerous kind is an error causin9 not obviously
incorrect resul ts. As the popular saying goes, "Garbage in; garbage out," or
"GIGO," but beware of camouflaged garbage.

Tracing Subprograms 173

ON-LINE DEBUGGING BY TRACING AIDS

Two subprograms are available in the FORTRAN-IO library for the tracing
operations. One is to traceback at a specifed point; the other is to trace the
flow in general. They are now presented next.

4.14 The TRACE Subprogram

The TRACE subprogram may be used as a subroutine without a dummy argument
or a function with a dummy argument. when this subprogram is called at one
point in the program execution, a printout of traceback will be produced at the
user's terminal. 1De TRACE program is also automatically invoked in response to
a PAUSE 'T' statement.

Examp~: Placing a TRACE call between Line #8 and #9 of the NEWTON
subroutine as shown on the compiler listing of Section 4.11, the following
printout was received on the terminal:

TRACE. [415615] called from NEWTON+45 [322] with no args
NEw~N[2551 called from MAIN. +4 [161] with 8 args of type F,F,F,F,F,I,I,F

(many other lines)

Refer to Section 4.11 on how to read these tracings.

4.15 The MSFLVL Subroutine

The MSGLVL subroutine is another FORTRAN-IO library program which does a
dynamic tracing of subprogram calls and returns, and labeled statements. It can
be used to trace an entire program or a portion of it.

The format of the subroutine is:

CALL MSGLVL(N)

where N is defined as:

N 1
N 2
N 3

no tracing, used to turn off tracing.
print out only subprogram calls and returns
N=2 case plus all labeled statement tracings

Thus, at a point in the program where we want to start the tracing, we
insert a statement "CALL MSGLVL(2) " or "CALL MSGLVL(3)". Then at the point
where we want to turn it off, we insert a statement "CALL MSGLVL (1) ".

Users of this routine should be warned that if this routine is called by
a user's subroutine, the tracing is not automatically turned off upon the return
from the subroutine. Thus the tracing may inadvertently extend beyond an
intended range.

After a program is prepared with MSGLVL subroutine calls in it, it should
be executed with a "/TRACE" switch, Le., a command of:

174 CHAPl'ER 4 FORTRAN PFtOGRAM DEBUGGING

• EXECUl'E FINAME. FOR/TRACE

Later, after debugging is completed and program is corrected. ~~he MSGLVL call
statements can be left in by recompiling without the TRACE switch. (Do not
forget to delete the old REL file first.)

Example: The NEWTON subroutine is revised to become the following:

SUBROUTINE NEWTON(A,B,C,D,E,ITER,NPLACE,ROOT)
DIMENSION X(2)
CALL MSGLVL(3) !***Turn on Tracer

1 X(l)=-B/A
2 ERROR=10.**(-NPLACE)
3 Fl =FUNCP(A,B,C,D,E,X(1»
4 IF(Fl.EQ.O.)X(l)=2.*X(1)

CALL MSGLVL(l) !***Turn off tracer
DO 10 1=1, ITER
X(2)=X(1)-FUNC(A,B,C,D, E,X(1 0» /FUNCP(A,B,C,D, X(1»
IF (ASS((X(2)-X(1))/X(1». LE. ERROR)GOTO 20
X(1)=X(2)

10 CONTINUE
WRITE(6,100)ITER

100 FORMAT</'*** NO CONVERGENCE WITHIN',15,' ITERATIONS.')
RETURN

20 ROOT=X(2)
RETURN
END

Other program units, such as the main program, the flmction FUNC and
FUNCP remain the same as those in Section 4.11. Upon execution by the corronand
of "EXECurE TEST/TRACE", the following pr intout was obtained:

<1><2><3>
Call to routine FUNCP from routine NEWTON
Return to routine NEWTON from line 5 of routine FUNCP
<4>

etc.

The statement labels are enclosed between angle brackets: <2> means
Statement labeled "2" (not Line 2), and <2>*6 means Statement labeled "2" 6
times. The advantage of using this routine over TRACE is that the compiler
listing is not needed to determine the line numbers in a program.

FORDIJI' debugger 175

ON-LINE DEBUGGING BY AN INTERACTIVE PROCESSOR

4.16 The FORDIJI' Processor

FORDIJI' is an interactive processor used to debug a FORl'RAN program by
controlling its execution. Using the symbols created by the compiler, FORDIJI'
has the following capabilities:

(1) To examine and modify the data;
(2) To examine, specify or modify a FORMAT;
(3) To set breakpoints;
(4) To trace the source program statement by statement.

Before calling the FORDIJI' debugger, you must prepare REL files that are
compiled with the compiler debugging facilities, such as tracing, accommodations
for breakpoints, dimension checks, etc. This must be done even if there are
already compiled REL files for the programs (but without debugging features).
This is done by a monitor command:

.COMPILE /COMPILE/DEBUG:ALL list

where "/COMPILE" and "/DEBUG" are global switches placed in front of the
programs "list". This will force a new compiling with debugging facilities
loaded. However, do not force a compiling to those programs that don't belong
to you, such as the system library, IMSL, etc. Afterward, FORDIJI' may be called
by:

.DEBUG list, SYS:FORDIJI'

where listis a complete list of files that are needed for execution.
will respond with:

STARTING FORl'RAN DIJI'
»

FORDIJr

where "»" is a prompting signal that FORDIJI' is ready to accept FORDIJI' commands.
The details for the FORDIJr may be found in Appendix E of Reference 9. A basic
set of the FORDIJI' commands is included here with explanation and examples.

Certain prelimianry FORDIJI' rules are first explained:

(1) A FORDIJr command consists of a keyword and optional parameter(s).

(2) Program data may be accessed by refering to their FORl'RAN variable
names.

(3) General array specifications is NAME(Sl,S2, ••• ,Sk).
this specification are:

variation of

NAME
NAME (7)
NAME(K)
NAME (3)-NAME (10)

the entire NAME array
the 7th element in the NAME array
A subscripted element
Elements in a specified range

176 CHAPI'ER 4 FORTRAN PRO]RAM DEBUGGING

(4) Standard numeric convention applies.

(5) Statement number is represented by an unsigned integer, e.g., 100.
The line number mustbe preceded by a pound sign(#), e • .g., #100.

(6) FORDDr can specify numerical mode for data input/output by giving the
"mode identifier." The mode identifier codes are defined as follows:

Code Meaning Exam~

A ASCII (left-justified) /LEFT/
C Complex (1. 234 ,-6.543)
D Double Precision 123.4567890
F Real 1. 2345
I Integer 1234
0 Octal 7777
R RASCII(right-justified) \RIGH'I\

4.17 Basic FORDDr Commands

Of the eighteen commands available in the FORDDr, a subset of eleven
frequently used commands will be present~ below:

Keyword Parameter Explanation

OPEN name To open the named unit (subprogram) and allow all variables
within that unit to be accessible to FOffi)Dr. If name is
omitted, it means to re-open the main program. When FORDDr
is called, the main program is automat.ically opened.
Later, when one open command is applied after a preceding
one, the unit previously opened is automatically closed.
Therefore, at any given time, not more than one program
unit may be opened.

STARr

MODE list

Exampl~

• DEB ex; TEST. FOR,
» (command)
» ...
»OPEN SUBl
»OPEN

Function

SYS:FORDDr
Main program opened for debugging

Open subprogram SUB1; close main program.
Open main program again; close SUBI

To start your program at the main program entry point.

To define the "mode identifiers", or the display formats,
for succeeding TYPE commands of FORDDr, and Ust contains
one or more of the mode identifier codes separated by
commas. The mode identifier codes are those defined in
Section 4.16. The default mode is the floating point
format, and output will return to the defaul t mode with a
"MODE" command with no argument.

FORDr:YI' Corranands

TYPE list

Example

»MODE F,F,I
»TYPE A,B,K
> > MODE

Function

Set MODE for the next TYPE command.
TYPe A,B,K per MODE defined before.
Return to all floating point format.

177

Tb type out values of variables listed in the format
defined by the last MODE command. "Print modifier" may be
used to alter the format temporarily just for the current
TYPE command. A print-modifier has a format of "/code"
where the "code" is a mode identifier. If a print-modifier
is placed after a variable name, only that variable output
format is altered temporarily. If a print-modifier is
placed before a variable name, all variables in that TYPE
command after the modifier are temporarily set except those
with individual modifiers. See examples below:

Example Function

»MODE Reset MODE to default floating point.
»TYPE A,B,C Type A,B,C in floating point.
»TYPE A,B,C/I A,B as real, C in integer format
»TYPE A,/I B,C A as real, Band C as integer format
»TYPE /1 A,B,C All in integer format
»TYPE /1 A,B,C/F,D/O,E/A,K(l)-K(lO)

A & B in integer, C as floating point,
D in octal, and E in ASCII format, K(l)
through K(lO) inclusive in integer format

ACCEPT name/mode value

Tb modify the values of listed variable names, where:

name = the name of the variable, array, array element, or
array element range to be modified. If an array
name is given without a subscript, the entire array
will be modified.

mode format of modifying data. Use mode identifier code
for MODE.

value = new data for the variable

Example:
Function:

Example:
Function:

Example:
Function:

Example:
Function:

Example:
Function:

»ACCEPT A 1. 23
Set A=1.23 (default MODE=floating point)

»ACCEPT B/C (1.2,0.3)
Set B=(1.2,0.3) --- B set in complex mode

»ACCEPT X(2)-X(9) 0.0
Set X(2) through X(9) to O.

»ACCEPT X 0.0
Set the X-array to O.

»ACCEPT FLNAME/A/LONG 'SAMPLE.DAT'
Set FLNAME='SAMPLE.DAT' (2 words)

l78

GROUP n list

PAUSE p

CONTINUE n

REMOVE P

WHAT

STOP

Example:
Function:

CHAPTER 4 FORTRAN PR03RAM DEBlffiING

»ACCEPT 10 (lX,8F8.2)
Set the FORMAT labelled as Statement 10 to the
given new form. WOrk only for clhanging an old
FORMAT to another with equal or shorter field.

To set up a string of text for input to a 'rYPE command,
where:
n group number, 1 through 8.
list = a string of TYPE statemnts to be callej.

Example:
Function:

Example:
Function:

Example:
Function:

»GROUP 1 A,B,C,/I I,J,K
Store "A,B,C,/I I,J,K" as Group 1 data. Future
output FORDDr commands for this group of data
may be simplified into "TYPE /1"

»GROUP 1
List Group 1 data names.

»GROUP
List all stored GROUP lists.

To set a breakFOint at FOint "p", where "p" is any label,
line number, or sunroutine entry in your opened program
unit. A maximum of ten breakFOints may be set at one time.
Each PAU command can set only one breakFOint. When a pause
is encountered, execution is suspended at that FOint and
control is transferred to FORDDr. At that FOint,
examination or modification of data can be made.

Example Function

»PAU 50 Set breakFOint at statement No. 50.
»PAU #50 Set breakFOint at Line No. 50.
»PAU #50 TYPING /2

Set breakFOint at Line#50. When paused
there, type out data group 2. At least
one blank is required between "TYPING"
and "/2".

To ask the program to resume execution after a FORDDr
pause, and the program will run until the nth occurrence of
the given pause or until a different pause-il:; encountered.
The default n is 1.

To remove the pause at "p" from the program set up by a
previous pause command. If "p" is omitted, it will remove
all pauses set up.

To display on the terminal the name of the currently open
program unit and any currently active pause settings.

To terminate the program execution, close all files, and
return to the monitor.

FOROOI' Example 179

4.18 A FOROOI' Example

The example started in Section 4.11 will again be used to illustrate the
FOROOI' usage. The program listing by the program unit names is given below.
Those statements that will be used as breakpoints are marked with check marks
",," .
Program Unit MAIN.

00001
00002
00003
00004

1 0

CALL NEWTON(1.,-11.,9.,8.,20.,50,3,ROOT)
TYPE 10, ROOT
FORMAT(' ROOT = " F8.2)
END

Program Unit NEWTON:
cP(ctP

vll..Q,Yott~e(e
_I.e.c,~ te(~

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

*

10

100

20

{cC!' (fie

vrSUBROUTINE NEWTON(A,B,C,D,E, ITER,NPLACE,ROOT) ~~~~. { s~ DIMENSION X(2) fer) V"
X(l)=-B/A ~~.

ERROR=10.**(-NPLACE) / _Le.~ ~AO'"
./ ,~~ ~J
Y' Fl=FUNCP(A,B,C,D,E,X(l» I Ac,,~P

IF (Fl. EQ.O.)X(1)=2. *X(1) pt.1v F\JtlG-f'
DO 10 1=1, ITER .(6
X(2)=X(1) -FUNC (A,B,C ,D, E,X(1 0» /FUNCP(A,B, C,D, X(1»
IF (ABS«X(2)-X(1))/X(1» .LE .ERROR)GOTO 20
X(1)=X(2) e.1<- tie.

~ CONT I NUE 14 eM, , .,.., tit leo.e-" \e>'Jf
WRITE(6, 100) ITER ~('Ictli""'/~I'I.A df
FORMAT(/'*** NO CONVERGENCE WITHIN', 15,' ITERATIONS.')
RETURN
ROOT=X(2)
RETURN
END

Program Unit FUNC:

00001
00002
00003
00004
00005

Program
00001
00002
00003
00004
00005

*
~FUNCTION FUNC(A,B,C,D,E,X)

FUNC=A*X**4+B*X**3+C*X**2+D*X+E
RETURN
END

Un It FUNCP: sse!i\ e$
* ...,.-: neck: ~ ('" I/o1t-l.

~ FUNCTION FUNCP(A,B,C,D,X) \0 G",(~f"'ete
FUNCP=4.*A*X**3+3.*B*X**2+2.*C*X+D r
RETURN
END

The placement of breakpoints is important. If a statement or a line is
designated as a breakpoint by the PAUSE command, the program execution will
pause ~ the execution of that line or statement. The breakpoints should
be placed strategically at the following places:

180 CHAPI'ER 4 FORTRAN PROGHAM DEBUGGING

(1) Subprogram entry points to check if parameters are bei~J successfully
passed;

(2) Just before returning to the calling prog r am to see what kind of
values are being passed back;

(3) After an input step to see if input operation is successful;

(4) Just before outputing a value if error report indicating a format
overflow;

(5) A sampling point in the OO-loop to see how iterations are going;

(6) Place after a division to check
erorr;

if there is any divide-by-zero

(7) Places you feel to be critical or suspect where errors are being
generated.

If a breakpoint is placed inside a OO-loop, be wary of large amoilllt of FORDDT
outputs. This can be circumvented by applying a FORDDT corrunand "CONTINUE n"
when ready to continue onto that breakpoint. This will allow the execution to
repeat "ignore that breakpoint" for!! times.

The remainder of this section is a reproduction of the terminal printout
with annotations. The user's typings are in italics, and suitable corrunents are
in handwritings.

.DEBUG TEST.FOR/DEBUG:ALL~ SYS:FORDDT
FORTRAN 5A(621): TEST FOR

}--. C~II -fo-v R1R:p'p-r -Iv d.e.~~ Jesr: F'dJ~

MtI'tt.:e S"ul'"e JOU h4ve Cl 1reael7 de/efe.t

Me 0/01 .Ret.. f"/e <¥ 76£1.
MAIN OCTAL PROG SIZE=56
NEWTON OCTAL PROG SIZE=420
FUNC OCTAL PROG SIZE=52
FUNCP OCTAL PROG SIZE=56
LINK: Loading
[LNKDEB DDT execution]

STARTING FORTRAN DDT

»OPEN NEWTON r <':lpen fi..€ l-t",;r N~w"'oAl. Set b-("Ea.k~"h-t".s
»PAUSE ~2 /1 /' / a.t; L·\ e $ 2) Li"e 4f6) a ... J.
»PAUSE it6 TYPING
»GROUP 1 A~B~ C~D~E~X S-t;.:"'\:.en-e,,,t ::# 10.

»PAUSE 10 TYPING /2 l)e/:"e, vo..Mo.h\e o,~~ 1.. q.. 2. as sf.,ovJn.
»GROUP 2 x T'.J
> > OPEN FUNC 1 _~ Ope", -t-he IA ; t Fu I\IL
»PAU #2 r
»OPEN FUNCP 1 _----
»PAU #2 r "Ope il-,e. \.lV\:-t- +=ONe?

»START)- --- ~~;'1 eKec t-:o "'- ~VVA Aeb'"j

PAUSE AT ROUTINE NEWTON
AR GUMENT S ARE:

1 • 000000 VI 1
-11.00000 (8'

9.000000 (t

8. 000000 (1
20.00000 (E

Fi(~t po-.\A.a at- e.V\~"c.e po; t e>:F N~....rto", .
Thrt:ln-.e.;e Values ""' 12 pri -ret:A. OlA..t· a..J-t>"",o.+;cC\.(!)'

;1"\ H~ orJef' of a:-rqu.M.~V\ts .
No \.b,..-:c..iole. y\'C\.fV\e ~ 3'Je ... flY ii~se k-h:,."

FORDDI' Example

50
3

O.OOOOOOOE+OO J
(:r:rel2)
(HPl..RC6)

U<.oor)

[IMPLICIT OPEN NEWTON] -----------_r_ 'L-ia..cnil"le wi((rel s.~ he.re fo Allow

181

it'lspec.:riDv'\ <!)f ~~ta..
»CONTINUE --------------- CC)I?t7~t.-(e e>(E'CG('f:";'.., t-i,,-f'-./ ned .br(i!.or.~,,"r

A 1.000000 Ned- pause a.f- hne ..jI: 6. lJu-k fYlCc f;c C'I-''l4t"
8 -11.00000 /

PAUSE AT L#6 IN NEWTON I
C 9.000000 / CJf Gre>lA.p 1. dcdt:1. dep·ned.
o 8.000000
E 20.00000 These t?re daf-e\. beforld Ccill/~~q H.JNCP
X(l} 11.00000 J
X(2} O.OOOOOOOE+OO

»CONTINUE

PAUSEW AT ROUTINE FUNCP
ARGUMENTS ARE:

1.000000 A
-11.00000 g

9.000000 c:.
8.000000 :D
20.00000 x
11.00000

[IMPLICIT OPEN FUNCP]

»CONTINUE

/Ne~f p::tCAse at en-fy fo;nt-of FUNCP.

/ These ~""e do-fA ~ss€cI /r";--o HIJcP

%FRSSRE Subscript range error on line 9 of NEWTON '
Subscr i pt 1 of array X = 10 /' e,..rt!v- TolA."'o\

}

'P:rY''l.",~iol'"'l e;...J--of - bou",J,

NEWTON[7037] cal led from MAIN.+5[6732] with 8 args f type F,F,F,F,F, I, I,F

PAUSE AT ROUTINE FUNC
ARGUMENTS ARE:

1.000000 A

-11.00000 B
9.000000 c.
8.000000 P
20.00000 '"

-0. 7939503E+32 X(I)

[IMPLICIT OPEN FUNC]

»CONTINlfE

Ne.Kt p","se.. CAt e",t-~ fbi ",t of hlNc.._

Nor~ -th(. ~o-~",;We of XCI)

es~es fro""

%FRSAPR Floating overflow at FUNC+17[7440] / 0

J
/ f;r~~s

FUNC[7421] cal led from NEWTON+12[7151] ith 6 args f type F,F,F,F,F,F
NEWTON[7037] cal led from MAIN.+5[6732] with 8 args of type F,F,F,F,F, I, I,F

(more of similar message)

PAUSE AT 10 IN NEWTON
[IMPLICIT OPEN NEWTON]

X(l} = -0.1106965E+36

Ne)(t' plttAse. o..f- stCl.~...-e .. +- Lo.hi?-I ..1.0) Oy'

o.t ~~ e",J. of + r~t loop.

182 CHAPl'ER 4

X(2) -0.1106965E+36)

»STOP

End of execution FOROTS 5B(1001)
CPU time: 0.65 Elapsed time: 1:41.67

No. of
Errors
9

EXIT

Error
Type
Floating overflow

FORTRAN PROGRAM DEBUXING

After inspecting the debugging printouts, two errors in the subprogram
NEWTON were found:

(1) The argtnnent "E" in line #6 should not be there;

(2) In line #9, X(lO) should be X(l).

After errors are identified, UPDATE editor is used to correct the error,
and the program is run again. The terminal printout is shown below:

.UPDATE TEST. FOR
CALL NEWTON(1.,-11.,9.,8.,20.,50.,3,ROOT)

>$AT/FUNCP(A3 B3 C3 D3 E/; CHANGE/3 E//
F1 =FUNCP(A,B,C,O,X(1»

>$AT/X(10)/; CHANGE/X(10)/X(l)/
X(2)=X(1)-FUNC (A,B,C, 0, E, X(1 » IFUNCP (A,B,C, 0, X(1 »

>$END
2 blocks written on TEST.FOR[115103,320571]

.EXECUTE TEST.FOR
FORTRAN 5A(621): TEST.FOR
MAIN. OCTAL PROG SIZE=53
NEWTON CTAL PROG SIZE=210
FUNC OCTAL PROG SIZE=52
FUNCP OCTAL PROG OUZE=55
LINK: Load i ng
[LNKXCT TEST execution]

ROOT = 10.0

End of execution FOROTS 5B(1001)
CPU time: 0.02 Elapsed time: 0.02
EXIT

Thus, the laborious effort of debugging finally pays off.

MAY YOU CATCH ALL YOUR BUGS.

Exercise 183

EXERCISE

The instructor should select a programming exercise of moderate
difficulty for a problem for which the algorithm is well-understood by the
class. Follow the procedure outlined below to the completion of a successful
programming session:

(1) Set up a flow chart specification of the problem.
correct.

(2) Code the program according to the flow chart.

Check if it is

(3) Generate a flow chart based on the code and using the program FORFLO.
Compare the generated flow chart with the problem specification. If
there is any discrepancy, correct the code.

(4) Compile the program. From the compiler error list, correct all
syntax errors and transcription errors not caught before.

(5) Organize a code-inspection and walkthrough session for a critique,
and correct the errors identified.

(6) Run the program, using a test data set. If the run is not
successful, debug on-line by any or combination of the on-line
debugging techniques and aids covered in this chapter.

184 CHAPI'ER 4 FORTRAN PRa~ DEBUGGING

REF EREOCES

1. PRJGRAM DEBUGGING, A. R. Brown and W. A. Sampson, McDonald & Company,
Ltd., London, Great Britain; 1973.

2. SOFTWARE DEBUGGING FOR MICROCOMPUTERS, Robert C. Bruce, Reston Publishing
Company, Reston, Virginia; 1980.

3. THE ART OF SOFTWARE TESTING, Glenford J. Myers, John Wiley & Sons, Inc.,
New York; 1979.

4. FUNDAMENTALS OF FLOWCHARTING, T. J. Schriber, John Wiley & Sons, Inc.,
New York; 1969.

5. FLOWCHARTING, M •• Farina, Prentice Hall, Inc., Englev,Qod Cliffs, N. J.;
1970.

6. PRJGRAM STYLE, DESIGN, EFFICIEOCY, DEBUGGING AND TESTING, by Daniel Van
Tassel, Prentice-Hall, Inc., Englev,QQd Cliffs, NJ; 1974.

7. FORI'RAN PROVERBS FOR FORI'RAN PROGRAMMERS, by Henry F. Iedgard, Hayden
Book Compnay, Inc., Rochelle Park, NJ; 1975.

8. FORTRAN-10 USERS GUIDE, DEC-10 Documentation-2, Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1977.

9. FORTRAN PROGRAMMER I S REFEREOCE MANUAL,
Append ix E and Append ix F, Dig i tal
Massachusettes; 1977.

No.AA-0944E-TB, Appendix B,
Equipnent Corporation, Maynard,

CHAPl'ER 5

MODELING AND SIMULATION BY CSMP

Modeling and simulation are important tasks in
science and engineering. Instead of the event-type or
discrete-type modeling and simulation, this chapter
will deal with modeling and simulation of a continuous
system. A high-order language simulation program will
be presented: £ontinuous ~stem ~eling Rrogram
(CSMP). This program was originally developed for the
IBM/360, and has since found wide acceptance in its
application and adapted to many other computers
including the DEC System-lO.*

INTRODUCTION

5.1 Dynamic Modeling of Systems

One of the most important tasks in the disciplines of applied sciences
and technology, including engineerlng, is the study of an existing system by
analyzing its characteristics or the study of a proposed system by its synthesis
under a set of prescribed objectives. Under most circumstances, it is not
possible or practical to isolate that system, to dismantle it, and to perform
the study. Therefore, it is necessary to construct a model, and examine the
model performance by subjecting it to varying internal and/or external
conditions.

In all areas of applied sciences, whether they are the physical, life or
social sciences, the tasks of modeling and simulation are important elements of
their analytical studies. Although the fields of disciplines may vary widely,
the task of modeling and simulation may be summarized by the block diagram shown
in Figure 5.1.

Beginning with the laws of nature (physics, chemistry, biology, etc.) and
the laws of society (sociology, economics, law, etc.), the behavior of a model
under various conditions may be described with mathematical language. Such a
description, under most cases, takes on the form of a set of mathematical
equations. The equations may be Boolean logic, algebraic, transcendental,

*Adaptation for the pitt installation by Michael A.
University of Pittsburgh.

Matzek, Computer Center,

185

186 CHAPI'ER 5

Parameter
Ad i ustments __

Readjustments

c--r---- i -- T--- ,-
BnalYtic~1 I LmPirical l ~ Numerical]

Solution I Solution (Computer)
I I Sol ut i on T--- -- J -~ -~ -------r

i ~mb'_'"'t'onl I Expe';ment~~
I L_~ T~e_~ L-=-o~_u~~~
~_, __ J _______________ L

OJ
C

6
+-
ru

::l
E

(/)

,n

~
ru
c

<:(

, _______ ..1_

Figure 5.1 Modeling and Simulation in System Studies

CSMP

c
OJ

UJ
Q)

0

L
0

UJ
G)
.c
+-c
>-

(/)

Dynamic Modeling 187

differential, integral, difference, or combinations of these.
called a mathematical model. .

The result is

A solution of the model can be obtained by many different ways. Applied
mathematicians and analytically inclined scientists and engineers have devoted
to find analytical solutions, where the solutions are preferably expressed in
closed forms. Many engineering practitioners have found it convenient to
develop, in addition to the analytical solutions, empirical ways of
solution --- ways that have no rigorous analytical ground but they work. Other
people find that to them the most effective way is by experiments such as in the
areas of physics, chemistry, metallurgy, etc. With the advent of digital
computers, another way becomes practical, that is, by digital computation. CSMP
modeling and simulation falls into the last category.

Once the solution is obtained, its interpretation and conclusions are
then drawn. Concluded at this point is a process of study called
System Analysis.

When the system is analyzed with reference to a set of prescribed
conditions or objectivess, one must further examine whether the result of the
analysis satisfies these objectives. If not, adjustments of the model, either
in its structure or in its parameter values or both, must be made. The process
of solution ~s then repeated until the objectives are met. Concluded at this
point is a process of system study called System Synthesis or System Design.

The mathematical description of many system processes encountered in
engineering, scientific and societal problems is often made with respect to time
as an independent variable. In such a description, the parameters, their
changes and their rates of changes, etc., can be interpreted by applying the
basic laws of natural sciences and social sciences. Resultant models will
describe the time behaviors of the systems, and hence they are called
dynamic model s.

In most cases, the time behavior of a system may be described by an
equation containing differential quantities, i.e., a differential equation.
Consequently, facility in formulating differential equations and knowledge of
how to obtain their solutions become the most important skills required in the
system studies.

5.2 Differential Equations

When a differential equation is formulated from a real system, more often
than not, it cannot be solved unless simplifying assumptions are made. After
these assumptions are made, the result may be obtained by rigorous mathematical
methods. An alternative is to approximate the differential equation as a
difference equation, which may then be solved by performing a numerical
integration. This is where a computer comes in. Although the result is only an
approximation to the true solution of that equation, the error can be controlled
and kept within a prescribed bound. Shown below are t\t,Q examples of how the
differetial equation model for a system may be formulated.

188 CHAPl'ER 5 CSMP

Example: Consider the following RLC circuit.

The voltage across each element is:

R L vR = R i (Ohm's L:lw) (1)

di 2JC vL = L dt (Lenz I sLaw) (2)

e

v = 1. J idt (Far aday' sLaw) (3) c c

Then, by Kirchoff's Law, we write:

(4)

L di + Ri + 1. J idt = e
dt c (5)

Differentiating both sides, and letting de/dt=f(t) :

L d
2
i R di + 1. i = f(t) dtT + dt c (6)

The differential equation becomes a circuit model, the solution of which will
give the time-behavior of the circuit.

The same circuit may be formulated into a model using the :state variable
approach. Suppose we choose "i" and "v " as the state variab"Les. Then the
equations (3) and (5) may be rewritten as:

di
dt

1 .
(51-

(7)

(8)

These tw:> simultaneous differential equations may be organized into a matrix
form:

(9)

Such a matrix differential equation is then referred to as a :state-variable
model of the circuit.

Differential Equations 189

Example: The following diagram represents a silnplified version of a
Pogo stick, or a landing gear of an aircraft.

Ke~I'\!:'!?'-fO~"r'~ - - -
Consider the mass as a free body, and analyze

the forces that act on it:

or,

Free Body
Diagram

Gravitational: fg = Mg (10)

Spring force: fs =]{x (11)

d:c
Damping force: fd = D dt (12)

Net force in the downward direction = fg - fs - fd

Thus, by Newton I s Second Law:

d 2x d:c
M d);'T = Mg -](x - D dt (13)

(14)

This is a mathematical model for the given mechanical system. Note the
mathematical silnilarity between the models in the two examples given here.

5.3 preparation for Digital Computer Solution

First, consider a first-order differential equation:

(15)

where x is the dependent variable and t is the independent variable.
Equation (15) may be reduced to a general form of:

(16)

Hence, (17)

If the initial condition is known (at t=O, x=xO) , then equation (17) may be
rewritten as:

190 CHAPTER 5 CSMP

t
x = Xo + fo f(x3 t) dt (18)

Therefore, the solution of a first-order differential equation involves
basically a numerical eValuation of an integral. Thus, depending on the method
of numerical integration used, different methods of solution of differential
equation may be derived. The users of CSMP will have options of choosing any
one of the following methods of numerical int~ration:

Fixed-step methods: Rectangular integration
Trapezoidal integration
Simpsoni s rule integration
Adams (second order) integration
4th order Runge-Kutta method, fixed interval

Variable-step methods: 4th order Runge-Kutta method, variable step
5th order Milne method

The details of these methods are available in any standard numerical methods
text. It is sufficient here to say that the numerical solution of a first-order
differential equation is a highly developed and important field in numerical
analysis.

For the high-order equations, the general approach of their numerical
solutions is to reduce each high-order equation to a set of simultaneous
first-order equations. This can be illustrated by an example:

Example: Let us again consider that example of a mechanical system:

2
ft1dx clx « + D dt + K x = M g

(14)

or, (19)

First, define a new set of dependent variables:

and clx &:1
x 2 = dt (or = dt -)

Thus the equation (19) is now changed to two equations (20-21):

(20)

(21)

The original second-order equation is now changed to a set of t~o first-order
equations. Therefore, the first-order equation method of solut.ion can now be
applied.

Computer Solutions 191

This process of reducing a high-order differential equation to a set of
first-order equations may be expanded to a general Qth order equation.

Let the Qth order equation be expressed as:

x(n) = f(x,t,x',x",x''',. .. , x(n-l) (22)

Note that the superscripts are orders of derivatives, not the powers. In the
process of reducing a set of (n) first-order equations, the first (n-l)
equations are simply new definitions of the derivatives.

Define:

and Equation (22) becomes:

=x
n

(or, x
2

= x')

(or, x3 = x")

(or, x = x(n-l)
n

(23)

Students of Circuit Theory, System Theory, Automatic Control System, etc., will
recognize that this is exactly the same as the process of formulating the
state-variable equations. Equations (23) now consist of a set of first-order
equations and the first-order equation methods can now be applied.

Integration of the set of equations (23) yields:

Xl f x 2dt xlo + f; x 2dt

t
f xn dt = x n-

lo
+ fo xndt

t
x + fo f dt

no

(24)

192 CHAPI'ER 5 CSMP

where xi are the initial coditions of x. at t=O. Thus for each equation,
one stepo of numerical integration is tak~n to get a new point of xi. When all
of equations (24) have taken that single step, the sequence is repeated for the
next increment.

If the process of numerical integration can be written as a subprogram,
it would require two parameters: the initial condition and the integrand
function. Suppose such a subprogram is available and defined as:

Y = INTGRL(IC,X)

where IC = initial condition of Y, and X = integrand expression. Then the set
of equations (24) may be written as:

Xl INTGRL(XlO, X2)
X2 INTGRL(X20, X3)

XN == INTGRL (XNMl, F)

The INI'GRL is a CSMP library function. The high-order different.ial equations
may be represented simply as a series of INTGRL function in CSMP language.

5.4 CSMP as a High-0rder Language (HaL)

While the digital computer is a tremendously powerful tool in the studies
of systems, the tasks of programming can be prohibitively tedious and expensive.
In the design of programming languages, a set of hierarchical structure is
established. In the increasing order of hierarchical structure, t.hey are:

1. Machine language

2. Assembly language, such as MACRO-IO

3. Compiler language, such as FORrRAN and COBOL

4. High-order language, such as CSMP, ECAP, CORNAP, etc.

In this hierarchy, the programming efforts in each higher level will be
considerably reduced, but the rigidity of programming is also considerably
increased. Thus we are trading off machine utilization in favor of human
resource utilization. In the computer system software developnent, the machine
util ization has overriding importance, so we would favor languages of a lower
hier archy level, such as the assembly language. Thus, the basic system
softwares, such as the operating system, various language compilers, and utility
routines, are written in assembly language.

However, for applications where human resource utilization may be more
important than an efficient machine utilization, engineers and E~ientists will
use a compiler language or a high-order language to solve their problems.

But FORrRAN programming c~ be very complicated too. In the numerical
solution of differential equations, one could use FORrRAN to program the
solution. But the effort would be mom.nnental if we included many options,
control of accuracy, selection of output formats, etc.

CSMP as a HOL Language 193

High-order languages are therefore designed to ease such problems in the
area of special applications. CSMP (£ontinuous £Ystem ~eling ~rogram) is one
such language.

CSMP was originally developed for the IBM System/360, but has since found
wide acceptance. Modifications of the IBM versions became available for
adaptation to other machines, including '. the DEC System-lO. It is an
application-oriented language that allows a problem to be prepared directly from
either a block-diagram representation of the system or a set of ordinary
differential equations. The language includes a basic set of functional blocks
with which the components of a continuous system may be represented, and accepts
application-oriented statements for defining the connections between these
functional blocks. CSMP also accepts most FORI'RAN statements, allowing the user
to readily handle nonlinear and time-variant problems of considerable
complexity. Both tabular and graphic output formats are available.

A typical CSMP program contains both CSMP statements and FORTRAN
statements; it will also contain both CSMP functions and the conventional
FOR'l'RAN functions. After the CSMP program is prepared, it is first translated
entirely to a FORI'RAN program. This in turn is compiled, loaded, and executed
with all the called CSMP functions and FORTRAN functions from the library.
However, all these steps of translation, compiling, loading and execution are
"transparent" to the user. To him, a single step of submitting a CSMP program
to the CSMP processor is all that is required. That is the major power of a
high-order language.

194 CHAPI'ER 5 CSMP

A CSMP PRIMER

5.5 Symbol s, Cons tan ts, Operator s, Func tions and Label s

(l)~
following exceptions:

CSMP symbols follow the same FORmAN rules with the

A. All variables are real variables (even those beslinning with
I,J,K,etc.). Integer variables require a special declaration using
the "FIXED" statement of CSMP.

B. Subscripted variables may not begin with the letter I, J,. K, L, M, or
N.

C. There is a group of CSMP-reserved names that should not be used by the
user in a CSMP program. See page 66 of Reference 1.

(2) Constants All numeric constants are considered to be real,
regardless of whether a decimal point is used. Only integer variables have
integer constants. Other than this point, the standard rules of FORl'RAN numeric
constants apply. Double precision constants are allowed in CSMP III, but not in
CSMP II.

(3) Operators
CSMP, such as those
parentheses.

The same standard rules of FORmAN operators apply to
for the operators +,-, *, /, **, =, ,and the use of

(4) Functions In addition to the standard FORTRAN library functions,
such as SIN(X) and ADDG(X), there is a group of 34 CSMP functions. This is one
of the most powerful features of the CSMP program. Selected functions will be
discussed in a later section.

(5) Labels The first word of a CSMP data or control statement is a
label word that identifies the purpose of the statement. These labels will be
explained later.

5.6 Format of CSMP

The following are those format rules of CSMP statements that are
different from those of standard FORTRAN:

(1) A CSMP statement may start anywhere within column 1. through 72.
Statement materials outside column 72 will not be processed. A few specific
label words must begin at collEn 1. These exceptions will be singled out as
they occur.

(2) Continuation of a line is done by 3 consecutive periods (•••) at the
end of a line. A character in column 6 does not mean continuation in CSMP as in
FORmAN. A maximum of 8 continuation lines (9, including the first statement)
are allowed.

Example: XDDOT1=COEFF1*XDOT2+QUOtl*X2-COEFF*XDOT1-
QUOT2*X2

Do not split a number or a variable name between a line and its continuation.

CSMP Primer

(3) A "*" character in column 1 means a conunent line.

(4) Blank lines are allowed but ignored in the translation.
usually used to make a program easier to read.

5.7 Structure of a CSMP program

195

It is

Basically, a CSMP program can be divided into 3 segments:
segment, the DYNAMIC segment, and the TERMINAL segment.

the INITIAL

(1) INITIAL segment This segment appears first in a CSMP program,
and is used to define parameters, initial conditions, or calculations that need
to be done only once. It is optional, and may not even be needed in a simple
program. If it is used, there must be an INITIAL label line at the beginning of
the segment.

INITIAL
PARAMETER R=50.0, L=1.25, C=0.25E-4
INCON 10=0.0
CONSTANT PI=3.14159

(2) DYNAMIC segment This is the heart of a CSMP program, and is a
required segment. It contains the system model equations.· If an INITIAL
segment is not specified, the DYNAMIC segment is automatically incorporated, and
no label is required. If an INITIAL segment is specified, the DYNAMIC segment
must be headed with a line with a "DYNAMIC" label.

(3) TERMINAL segment This is the last segment of a CSMP program for
computations performed after the simulation is finished. Or, it may be used to
adjust parameters and reset conditions after one run in order to get ready for
another run of the same problem.

5.8 SORT and NOSORT Sections

One of the most important features of the CSMP program is its sorting
capability. Here, "sorting" does not mean the usual way of sorting by numbers
or letters. Frequently, modeling of a system results in a system of
simultaneous differential equations that must be processed in a particular
order. In FORTRAN programming, the order is sequenced by the way in which the
FORTRAN statements are arranged. In CSMP, we can delegate the responsibility of
sequencing to CSMP by asking it to SORT. As a result, those calculations that
will produce results needed in the later part of the iteration cycle will be
done first. This then allows us to write the modeling equations without concern
for their sequence. Therefore, the SORT capability of CSMP makes the solution
of simUltaneous differential equation by CSMP a virtual parallel operation.

On the other hand, there are computation that must be executed in the
exact order specified, such as a FORTRAN conditional logic (IF) statement or a
branching (ill 'ill) statement. They should be specified as NOSORT so that the
given fixed order will not be disturbed.

196 CHAPI'ER 5 CSMP

The following types of statements should be placed in a roSORI' section:

(1) Conditional logic (the IF statement)

(2) Branching (any type of GOTO) statement

(3) Implicit arithmetic statement, such as X = X+l.O

(4) WRITE and FORMAT statements

The following SORT rules apply to the default conditions:

(1) INITIAL and DYNAMIC segments:
is automatically regarded as SORT.

If not labeled by NOSOR':r, the section

(2) TERMINAL segment: If not labeled by SORT, the section is
automatically regarded as roSORI'.

CSMP STATEMENTS

There are three types of CSMP statements: Structure, Data, and Control
Statements. A structure statement descr ibes a functional relationship between
the variables of the program. A collection of structure statements defines the
system being simulated. A data statement assigns values to a variable. A
control statement controls the operations and the quantities associ.ated with the
program, such as the step size, the print increment, the selection of methods,
etc. These statement are explained below.

5.9 Structure Statements

A structure statement in CSMP is written in the form of:

VARIABLE = EXPRESSION

where the "EXPRESSION" follows the general rules of FORI'RAJ.lI assignment
statements. An expression may be simply a constant, another variable, a
function, or a combination of these linked by arithmetic operators.

One special feature is the CSMP functions - they are the CSMP library
functions available in addition to the standard FORTRAN functions. A complete
list of CSMP functions are listed on pp. 9-16 of Reference 1. Tables 5.lA and
5.lB contain those more commonly used:

CSMP Primer

Name

Integrator

Derivative

CSMP Function Form

Y = INTGRL< IC,X)

Function

t
Y = IC + f X dt

t o

197

~------------------------.-.----.------------------------~
IC = Initial condition; a constant or variable, but not

an expresssion.
X = Integrand; a constant, a variable or an expression.

Laplace form: 1

s

Y = DER I V (I C, X) Y = dX/dt
1------------.------.--

IC = Initial condition of derivative, or •

Laplace form: s

i==~~==c~'co.::; .. ,::c·=i·,-===:,====c,==-:=·,~,==CC"..:·=="'=c=·'c.cc=·c·c:c::c:.co=;-c",.-c:==-cc·::ccccc·",.C,·:==.=:"'C··".=·C·.:.=:CC:::=:===-:-:-:====.=:1._

Delay

Real Pole

Lead-Lag

Complex Pole

Y = DELAY(N,P,X)

N=number of sample points

Laplace form:
-Ps

e

y

I i'lt)
opt

Y(t)=X(t-p) ,OP

y (t}=O t<P

Y = REALPL(IC,P,X) So I ut I on of: P ~~ + Y = X

IC = Initial condition

Laplace form:
1
~

Y = LEDLAG(Pl,P2,X)

Laplace form: (P1)s + 1
(P2)s + 1

L

Y = CMPXPI (IC1, IC2,Pl ,P2,X) Sol ion of:

... - .. _---

+ 2(P1)(P2)~; +(P2)2Y = X

Laplace form: 1/(-;2 + 2(P1)*(P2)*s-;P22) . - .. - -._---

Table S.lA Selected CSMP Library Functions I

198 CHAPl'ER 5 CSMP

Name CSMP Function Form Function

STEP y = STEP(P) II = unit step at P
0 p t-

RAMP Y = RAMP(P) l;{ = unit ramp at P
0 I' !"I-I

IMPULSE Y = IMPULS(Pl,P2)

l+·tl I I t o I";

PULSE Y = PULSE(P,X) ;t f.- \'>-1
= unit height pulse n triggered at time P

t 0
X

1------- --I---
Y

-Ir p]fl' .. SINE Y = SINE(Pl,P2,P3)
1-

fl\ /\--j-t Pl=delay, secords
P2=angular frequency, 0 1r.,V I I

radian/second
I ?:!- :

P3=phase shlft,radlans J'O-- -P1- '
f------------ f----------------_.--------.--- 1---------

Arb Itrary Y = AFGEN(FUNC,X)
Function (Linear Interpolation y

("I."Y.)
Generation between points) ('(.~~'1~

y = NLFGEN(FUNC,X)

(Quadratic Interpola- "'--. tion between points)
l 'A.", y.)

X = Independent variable 0 x
FUNC=functlon name

Table 5.lB Selected CSMP Library Functions II

Much of the CSMP versatility is attributed to two major factors. One is
the specially designed CSMP library functions and statements. The other is the
SORI' and IDSORI' capabilities. The following are examples of how to write
specific CSMP functions:

CSMP Functions 199

(1) INTGRL function

The INTGRL function, among all CSMP functions, is certainly one of the
most frequently used functions. The format:

Y = INTGRL(IC,X)

represents a differential equation model of ~ = X~ so that Y = Ie + It xdt
to

Example: Model the equation ~ = v , with initial condition x(O)=XO.

CSMP Statement: x = INTGRL(XO,V)

Example: Model the simultaneous differential equations:

dv1
(It = v2 - v1

1lf- = 4 v1 - t

Initial conditions: vl(O)=l.O
v2(O)=-2.0

The CSMP statements are:

Vl = INTGRL(1. O,V2-Vl)

V2 = INTGRL(-2.0,4.0*Vl-TIME)

Example: Al thou:Jh the INTGRL function follows the format of any
standard FORTRAN library function, it has one restriction: The function must be
placed at the right-most end of a statement.

Incorrect:

Correct:

Vl = INTGRL(l.O,V2-Vl) + 4.0*V2

Vl = 4.0*V2 + INTGRL(l.O,V2-Vl)

As a result, one CSMP statement may not contain more than one INTGRL function.
They must be broken into several statements.

Incorrect:

Correct:

FUNC = INTGRL(2.3,Vl) + INTGRL(-O.9,Vl-V2)

FUNCl = INTGRL(2.3,Vl)
FUNC = FUNCl + INTGRL(-O.9,Vl-V2)

200 CHAPI'ER 5 CSMP

(2) STEP function

This represents a frequently used signal in finding the transient
response of a system. The unit step function has an amplitude of 1. The
amplitude of a desired step function may be set by a multiplier. The multiplier
may be a constant, and in that case, the resulting function is a step function
of amplitude specified. The multipler may be a time-varying function or
expression, and in that case, the unit step function serves as a "switch" to
turn on a time-varying function.

Examples:

.--.------ t:

y

3.1'\1~~
-- ... ---.----.,.-_ .. -- t

/

Y 10.0 * STEP(1.5)

Single-shot multivibrator:

Y = 10.0*(STEP(1.5)-STEP(4.5))

Single-shot sinusoidal:

Y = 5.0*PULSE(2.0,0.0)*SINE(0.0,
2.0,0.0)

or,

Y = 5.0 (STEP(0.0)-STEP(3.14159)) •••
*SINE(0.0,2.0,0.0)

(3) IMPULS and PULSE functions

These two functions are often used together to produce a pulse train.
See example below:

Example: Generation of a pulse train, 2 pulses per second, pulse width
0.1 second. Wave form is shown below:

s~t n n n ...
0 0·1 0'> 0·6 1.0 1./ /.) 1.6 t

Y = PULSE (0.1, IMPULS(O.O, 0.5))
!

pulse ___ ----l
width

L-.- spacing between pulses

~---- ---... -~-.. - instant when the first
pulse is tr il~Jgered

CSMP Functions

Example:
y

-/.0

201

A square wave generator

Y = 2.0*PULSE(0.5;IMPULS(0.0,1.0))-1.0

A triangular wave generator:

IO- __ ~~,
~ , I. t?. 1 2. 0 t

0<; I I r I

I '
I '
I '

Let the pulse output of the last •
example be P. Then,

P = 2. O*PULSE(O. 5,IMPULS (0.0,1.0))-1.0

Y = 4.0* (-l.O+INTGRL(O.O,Y))
(Question: Why 4.0?)

5.10 Data Statements

Data statements are those that assign numeric constants to variables in
preparation to begin a CSMP run. Therefore, they are likely to appear in the
INITIAL segment.

The format of a data statement begins with a label, followed by the
assignments of numeric constants to certain variables.

INCON To define variables that are used as initial conditions.
Example: IOCON XO=2.5, VO=-4.56

PARAMETER To define values of parameters that may be changed for different
runs of simulation.

CONSTANl'

FUNCTION

Example: PARAMETER vr=160.0, JK=1.5

Multiple parameter definitions may be written for multiple runs:
Example: PARAMETER vr=(160.,161.,162.,163.), JK=1.5

or, PARAMETER vr=(160.,3*1.), JK=1.5
These last two statements are equivalent. Note the repeat
constant "3" must be written without a decimal point.
Specified number of runs will be made for everything up to
the statement of END. Maximum allowed: 50 runs, and one
multiple-PARAMETER statement per sequence.

To define values of variables that do not change values.
Example: CONSTANT PI=3.14159,HERTZ=60.0

To define data points (in pairs of coordinates) of an arbitrary
function. This is used in conjunction with either the
function AFGEN or NLFGEN.
Example: FUNCTION FOT=(O.,O.) ,(.10,2.5) ,(2.0,-3.1) , •••
(3.0,5.6), (4.0,3.2)

Y = AFGEN (FOT ,TIME)

202 CHAPI'ER 5 CSMP

CSMP treats the labels INCON, PARAMETER, CONSTANI' the same way, and therefore
they are interchangeable. However, separating them for their proper purposes
would add to our clarity of program, and less likely to be misunderstood later.

5.11 Control Statements

These statements specify the translation, execution or output of the
simulation. For example, one may use these statements to specify how large
should be each increment in the iteration, in the print-plot diagrcm, or which
method of solution should be used. In general, these statements may be mixed
with the structure and data statements, and may appear in any order. Except for
ENDJOB, CCMMON and ENDDATA statements that must begin at column 1, the
statements may start at any column. There are three kinds of control
Statements:

(1) Translational control statements

INITIAL

DYNAMIC

TERMINAL

END

CCNrINUE

A line with only the label INITIAL in it. This statement marks
the beginning of the INITIAL segment.

This label marks the beginning of the DYNAMIC sE~ment.
segment is terminated by a TERMINAL label.

This

This label marks the end of the DYNAMIC segment and the beginning
of the TERMINAL segment. The TERMINAL segment is terminated by
the first END or CONTINUE statement.

The END statement marks the end of a simulation rlffi. It will
then allow more control statements to start a new run. If the
END statement is followed by a STOP statement, then simulation
runs are terminated. When a new simulation run is star ted by
statements after the END statement, the independent variable TIME
is reset to zero, and all initial cond i tions are reBet.

If a new run of simulation is to continue on the TIME-scale
rather than reset it to zero, then a CONTINUE statement should be
used instead of an END statement. Be careful to distinguish
between a CONTINUE statement in CSMP and a CONTINUE statement in
FORTRAN. Since a CONTINUE in FORTRAN is often used to terminate
a DO-loop, it is always better to label a FOln'RAN CONTINUE
statement with a number.

STOP An END followed by a STOP statement marks the termination of
simulation and no new run is to be initiated.

ENDJOB

RENAME

This is the physical end of a CSMP package.
column 1.

It must beg in at

The standard name for the CSMP independent variable is TIME, and
many reserved CSMP names are time-related names, such as DELT,
DELMIN, FINTIM, PRDEL, and OUTDEL. Often, the independent
variable for a simulation problem is not time. For example, in a
beam deflection problem, the independent variable may be the
linear displacement X. The names for the independent variable
may be changed from TIME to X by "RENAME TIME = X". Then all
reference to the independent variable TIME will be renamed to
those with reference to X.

CSMP Control Statements 203

FIXED

COMMON

This label defines the listed variables on that line as integer
variables. Without this statement, all CSMP variables are
considered as real variables, including those beginning with a
letter I, J, K, L, M or N.
Example: FIXED N,JOB

The statement contains just the label, beginning from column 1.
This statement will make the values assigned for TIME, DELT,
DEIMIN, FINTIM, PRDEL and OurDEL, and the values of those
variables listed on PARAMETER, INCON, and CONSTANT lines
available as a COMMON block available for any user-supplied
FORTRAN subroutines.

PROCEDURE This statement leads off an entity of programs in the DYNAMIC
segment that serves as a user-defined subprogram. Its format is
given in the following example:

MACRO

PROCEDURE our 1 ,0UT2=FUNC (INl, IN2, IN3, IN4)

Label ~ ___ J IL-T T ~-;~pu~ varaibles

OUtput ! i Arbitrary function name,
variables ---- ________ .-J L_ - required but ignored

Listing the output variables is for the purpose of making them
available later for PRINT or PRTPLOT statements. variables not
defined as output variables in a PROCEDURE statement may be used
for later processing, but they will be unavailable for print or
print-plot purposes.
The PROCEDURE statement is then followed by FORTRAN or CSMP
statements, or their combinations.
The termination of a PROCEDURE is marked by a line with the label
of ENDPRO.
The PROCEDURE section may be placed anywhere in the DYNAMIC
segment, and SORT command will place the subprogram at the place
in the order. But the internal sequence of the PROCEDURE
subrpogram will not be sorted, and they will be executed in the
exact order as they are given. As a result, full extent of
FORI'RAN and CSMP statements, including FORTRAN logic and
branching statements, may be used.
Note: When FORTRAN and CSMP statements appear together in a
PROCEDURE, the CSMP continuation rule (3 periods •••) applies for
continuing a statement.

Line with the label MACRO will
has the following format:
MACRO X,Y = RECT(RID,THETA)

L-r-~ T '---[- J

L___ L ____ _

preceed a MACRO function,

Input dummy variable
MACRO function name
OUtput dummy variables

which

The body of the MACRO for this example, and its termination line
are:
X = RHO * COS(THETA)
Y = RID * SIN (THETA)

ENDMAC

204

SORT and
NOSORT

CHAPl'ER 5 CSMP

A MACRO must be placed at the beginning of the CSMP program ahead
of any structure statement in the INITIAL or DYNAMIC segment.
Once a MACRO function is so defined, it may be referenced an
unlimited number of times in the program. The MACRO may contain
FORTRAN or CSMP statements, but it should not contain any FORrRAN
logical, branching, or I/O statements, nor should it contain any
CSMP data and control statements.

In the processing of a CSMP program, calculations of many depen
dent variables are done with respect to the same independent
variable, such as at the same instant of TIME. Such calculations
are referred to as "parallel calculations". In any assignment
statements, however, the r ighthand side cannot be processed until
all the current values of the variables of the righthand side are
known. This implies that these structural statements must be
sequenced in a particular order. This ordering can 'be done
automatically by the CSMP translator, if a label of SORr precedes
the statements.

On the other hand, certain statements, such as the FORrRAN
branching, logical decision and I/O statements must be executed
in the exact order written. A NOSORT label preceding the
statements will suppress the SORT algorithm for thi:3 group.

(2) Execution control statements

TIMER The TIMER label is followed on the same line by various increment
assignments. These increments have reserved names and default
values:

Name Meaning Defaul t Value

DELT Increment for the DELT = + MIN (PRJDEL,OUTDEL)
independent variable.

It is a good practice to
al ways spec ify DgLT.

DELMIN 'IWo methods, MILNE and RKS, use adjust.able steps.
Simulation will halt when:

Adjusted DELT < DELMIN

FINTIM Max value of inde
pendent variable
for the simulation
run.

PRDEL Print output
increment

FINTIM=O if it is not spe
cified, and simulation will
not even get started.
Therefore, FINTli:-1 should
not be omitted.

PRDEL=OUI'DEL if OUTDEL
is given.

PRDEL=FINTIM/IOO if OUTDEL
is not also given.

CSMP Control Statements 20S

FINISH

RELERR
ABSERR

MErHOD

OUTDEL Print-plot output OUTDEL=PRDEL if PRDEL is
given.

Example:
Function:

increment .
OUTDEL=FINTIM/IOO if PRDEL

is not given also.

TIMER DELT=O.l, PRDEL=O.S, FINTIM=lO.O
Specify in the simulation iteration that each
increment of TIME should be 0.1 second. In the
printout table, increment of output is) .S.
Simulation to be terminated when 10.0 seconds on the
TIME scale is reached.

This is a label containing terminating logic conditions to
supplement the FINTIM specification in the TIMER statement.

Example: TIMER FINTIM = 10.0
FINISH VEL = 1000.0, HEIGHT = YMAX

Function: During the simualtion run, the sign of (VEL-IOOO.O)
and the sign of (HEIGHT-YMAX) is monitored at the end
of each iteration. Simulation will be terminated
when either of the three conditions is reached:
reversal of signs of (FINTIM-IO.), (VEL-IOOO.O), or
(HEIGHT-YMAX) •

These two labels respectively specify the relative and the
absolute error bounds in the RKS and the MILNE methods.

Example: RELERR VEL = 1.OE-S
Function: This statement sets the relative error bound at

.00001. When the relative error of VEL is lower than
the bound, the step is adjusted, and the iteration
takes steps of bigger size. These labels are only
applicable to RKS and MILNE mehtods where iteration
steps are adjustable.

This label followed by anyone of the following seven words
specifies the method of numerical integration. The default
method is RKS.

ADAMS
CENTRAL

MILNE

RECT
RKS

SIMP
TRAPZ

Example:

Second-order Adams method
A dummy routine that may be substituted by a
user-supplied subroutine for integration.
Variable-step, fifth-order, predictor-corrector
MILNE method
Rectangular method of integration
Fourth-order Runge-Kutta method with fixed
integration interval.
Integration by Simpson's rule
Integration by trapezoidal rule

METHOD ADAMS

206 CHAPrER 5 CSMP

(3) Output Control Statements

In the following statements, the arguments for the labels are given in
italics. The meaning of the arguments are:

list a list of variables

stping a string of alphanumeric characters

label a CSMP label

TITLE stping To print out the stping as the title of each page of the
print output. No continuation of line is allowed beyond
one line.

LABEL stping To print out the stping as the title of each page of the
printplot output. No continuation of line allowed.

AANGE Hst

PRINT Hst

PRI'PLCYr list
PRI'PLT

PREPARE Hat

RESET label

To print out the values of listed variables at minimum
and maximum values of the independent var iables.

To print (tabulated) listed variables versus
independent variable.

the

To produce plots by printer for the listed variables
versus the independent variable.

The PRI'PLCYr statement is certainly the most frequently
used output statement. There are a number of variations
on how the listed variables may be given to vary the
style of the plot. They are illustrated by examples
below:

Example:
Function:

Example:
Function:

Example:
Function:

Example:
Function:

Example:
Function:

PRI'PLCYr X,Y,Z
Tb produce 3 printer-plots: X versus TIME,
Y versus TIME, and Z versus TIME. (3
separate plots)

PRI'PLCYr X (Y, Z)
To produce 1 plot of X versus TIME, with
values of Y and Z pr inted to the right of
the plot as a table.

PRTPLCYr X(-l.O,l.O,y,Z)
Same as X(Y,Z) except with X-plot clipped at
lower bound and upper bound of -1.0 and +1. a
respectively.

PRI'PLOr X (-1. 0" Y, Z)
Same as X(y,Z) except with the X-plot
clipped at a lower bound of -1.0.

PRTPLOT X(,l.O,Y,Z)
Same as X(Y,Z) except with the X-plot
cl ipped at an upper bound of + L o.

To prepare data for a X-Y plotter.

To reset listed labels that control the increments of
outputs, or increments of iterations.

CSMP Output Statements 207

RUNNING CSMP AT PITT

5.12 CSMP Job Preparation

CSMP is one of the high-order languages, in which the language primitives
are at a high level of sophistication. In the execution of such a program, the
general approach is to translate it successively down into a lower order
language by translators, compilers, assemblers, and finally down to the machine
language level for machine execution. Since FORTRAN compiler and assembler
already exist, it is naturally expedient to design a high-level language that
its associated translator would have the responsibility of only translating the
high-level program to the level of FORTRAN. From that point on, the existing
compiling-assembling mechanism can take over.

When a CSMP program is accepted by the CSMP processor, the processor
first builds a FORTRAN subroutine named UPDATE.TMP and a data file in your disk.
In generating the UPDATE.TMP* file, the processor accomplishes three major
tasks:

(1) The statements in the SORT section are placed in the proper order.

(2) The proper transfer of control for the various segments and sections
is established.

(3) COMMON statements are established to make the proper variables
available between UPDATE and the CSMP modules.

After that, the FORTRAN compiler-loader takes over to build an execution
file in the standard way, and control is then passed over to the main program or
the calling program.

At the University of Pittsburgh, only CSMP II has been implemented on the
DEC-IO, and certain CSMP utilities are yet to be completed. TO run a CSMP
program on the Pitt DEC System-10, a minimum of 26K core is required, and more
for larger programs. Therefore, CSMP programs can only be run as a batch job
unless the user has a sufficently large time-sharing core allocation.

However, this does not mean that a CSMP job cannot be run on a terminal.
As will be explained next, a CSMP batch job may be either submitted in cards at
a card reader, or submitted throught a stored file from a terminal.

Thus, there are three common ways of running a CSMP program and they are:

(1) Card input with a CSMP deck,

(2) Card input a stored CSMP file,

(3) Terminal input with a stored CSMP file.
outlined below:

Their preparations are

*It is named with a TMP (for "temporary") extension so that it may be easily
deleted later without affecting your other FORTRAN files in the disk.

208 CHAPI'ER 5

(1) Card input, with a deck of CSMP program cards

$JOB card
$PASSWORD card
$CSMP

(CSMP deck)

$EOD
$EOJ

Prepare a card deck with a sequence order
shown here. Prepare the CSMP program also
in cards. Submit these cards in the usual
manner through a card reader.

(2) Card input, with stored CSMP program

$JOB card
$PASSWORD card
.R CSMP
*XYZ.CSM
$EOJ

Store a prepared CSMP program on disk, and
name it, for example, as XYZ.CSM.
Prepare a card deck as shown, and submit
the job at a card reader.

(3) To run a CSMP batch job at a terminal

CSMP

Prepare two files and store them on disk. ?ne is the CSMP program file
and name it as, for example, XYZ.CSM. The other IS a control filE~, and name it
as, for example, ABC.CTL. The control file contains the following lines:

$JOB line
.R CSMP
*XYZ.CSM
$EOJ

(See discussion below)

If it is desirable to capture the output data for such purpose as
editing, multiple copy printing, or preparing for plotter output, use the
following control file:

$JOB line ••••
• ASSIGN DSK 6
.R CSMP
*XYZ.CSM
$EOJ

After the execution of the program, the CSMP output will be captured as
FOR06.DAT, and no printer output is produced, unless later the user applies the
QUEUE command, such as:

.QUEUE FOR06.DAT/COPIES:3/FILE:FORT

The last switch /FILE is needed in order to handle the FORTRAN pdnter-control
characters on the file.

Whether to submit a CSMP job from a card reader or from a terminal, the
$JOB card should be specified in this manner:

(1) Make a request for core allocation for at least 26K. L~rger program
will require more.

CSMP Job Preparation 209

(2) Make a request for CPU time allowance- of 2 minutes. The standard
allowance is 30 seconds.

(3) Specify the RJE station where the output is to be produced.

(4) Specify page limit large enough for the output.

Example:

$JOB EXER4[115027,320571]/CORE:26K/TIME:2:00/LOC:IO/PAGES:50

5.13 CSMP Job Execution

For CSMP batch jobs in cards, just read in cards prepared as described in
Section 5.12. Execution will take place when the batch job is executed, and
output is produced in the usual way.

If the CSMP jobs are submitted at the terminal,
submit the job. (See also Chapter 7) Thus,
monitor command:

.OPRSTK name

use OPRSTK command to
at the terminal, issue a

as log as a control file has previously been set up and named as NAME.CTL.

If a user has a time-sharing core allocation of 26K or more, he can run
the CSMP job on the time-sharing system by issuing a command at the terminal:

.R CSMP

When a prompt symbol "*,, appears, give the name of the stored CSMP file. In
this case, the output will be produced on the user's terminal, unless a monitor
command of ".ASSIGN DSK 6" has been previously given. In the latter case, the
output will be stored as FOR06.DAT.

5.14 Other Modeling and Simulation Languages

CSMP is a simulation language mainly for continuous system simulation by
solving dynamic model formulated in terms of a set of ordinary or partial
differential equations. There are other high-order languages that accomplish a
similar purpose, and some of these languages are available for the DEC-IO
machine. Presentations of these languages are outside the scope of this book.
Therefore, they will only be listed as references:

(1) Analog-Computer Emulators These are languages emulating the
simulations formulated for analog computers. They were once very popular in the
1960's when analog computers were still heavily depended on for continuous
system simulation. The emulator MIDAS is one typical example. They are not in
general use now.

(2) Simulation Language mainly for the solution of ordinary differential
equations.

ASCL Initial-value problem solver, run on UNIVAC 1100 machine.

CSSL Continuous System Simulation Language, developed by the control

210 CHAPl'E:R 5 CSMP

Data Corportion for CDC 6600 machine.

DAREP Differential Analyzer Replacement - Portable, University of
Arizona. Coded in FORI'RAN except a few machine dependent
routines. Available for PDP-9, DEC-IO, IBM/360, and CDC6600
machines.

EASY A dynamic analysis language that provides both modular modeling
and modular simulation. Written in FORI'RAN and run on CDC
machines. Versions for DEC and IBM are being developed.

DYNAMO A language developed by the Industrial Dynamics Group at MIT.
In spite of very crude method of differential equation solution
(Euler's method), this language has been very popular among
social scientists because of its simplicity. This language is
available at pitt.

MIMIC CDC-developed language using 4th order Runge-Kutta method with
variable step-size. Rigid coding requirement but inexpensive
to run.

PROSE A simulation language available on the Control Data Cybernet.
It can handle discrete, continuous, or mixed simulation
problems.

(3) Simulation Language mainly for the solution of partial differential
equations.

POEL Linear or nonlinear elliptic and parabolic partial differential
equations in one to three-space dimensions, and hyperbolic
equations in one-dimensional space.

LEANS Solution for elliptic, parabolic, or hyperbolic EDE in one- to
three-dimensional spaces and in orthogonal, cylirrlrical, or
spherical coordinate systems.

DSS Similar to LEANS except for hyperbolic equations. Some of the
solutions use different methods.

POlAN System of parabolic POE and mainly used in meteorology.

There is also a group of lDL simulation language for discrete system
simulation. Among them are SIMSCRIPI', GASP, CSL, SIMULA, andllSPOL. Some of
them ar_e supported at Pitt. However, they are outside the scope of this book.

CSMP Examples 211

CSMP EXAMPLES

5.15 CSMP Examples

Several examples will be given here to illustrate the applications and
procedures of CSMP simulation.

Example 1

A typical DC power supply is based on a full-wave rectified sine wave
connected to a Be-network as a filter. One such circuit is shown below:

t ~
'I c I b 1-.3 ~ :5 V:5

~ ___ ~ 0 ----- t

Let vI' v2 and v3 be the voltages across the capacitors CI' C2' and C3
respectively. Let iI' ~2' and i3 be the respective capacitor current.

For a particular case study, we assume the following parameters:

Rl=10.5 ohms, R2=3.5 ohms, R3=100.4 ohms

Cl=45 mfds, C2=33 mfds, C3=202 mfds

Initital conditions: VlO=O, V20=0, V30=0

Input: full-wave rectified sine wave, 1000 Hz with 5-volt peak

The problem analysis and modeling formulation is shown on the next page.

Capacitor currents: Change to integral form: Their CSMP statements:

· _ dV1 11 - C1 dt v = J i1 dt VI = INTGRL(VIO,Il/Cl) 1 C1

~
i2 = C2 dt v2 = J i2 dt V2 = INTGRL(V20,I2/C2)

C2

dV3
i3 = C3 dt

i3
V3 = INTGRL(V30,I3/C3) v = - dt 3 C3

By Kirchoff's Law of Voltage:

V2 = R3 i3 + v3 i3 = (v2 - v3)/R3 13 = (V2-V3)/R3

V1 = R2 (i2 + i3) + v2 i2 = (v1 - v2 - R2i 3)/R2 12 = (VI-V2-R2*I3)/R2

e = R1 (i1 + i2 + i3) + v1 i1 = (e-v1-R1i2-R1i3)/Ri II = (E-VI-Rl*I2-Rl*I3)/Rl

These are six equations for the circuit model, and six dependent variables are three capacitor
currents and three capacitor voltages. Note that the model may be reduced to three equations only,
containing as dependent variables of either three capacitor voltages or three capacitor currents. '!he
reduction is uncessary in the CSMP simulation, so we will just leave them in the unreduced form.

eC7> ___ A e,(~) e.Ct)

'ru~- -: fbA t *lJ, IT t

The full-wave rectified sine wave may be
s~TIthesized by a multiplication of t~u tL~e
fuinctions:

e(t) = e1 (t) * e2 (t)

where e1 = sine wave I and e2 = square with
Frequency and phase relations as shown.

N
N

0

~
~
~

~

o

~

CSMP Examples

The CSMP program for Example 1 is listed below:

INITIAL
TITLE EXAMPLE 1: FULL-WAVE RECTIFIER FILTER STUDY
PARAMETER Rl=10.5, R2=3.5, R3=lQO.4, ...

Cl=.000045,C2=.000033,C3=.000202
INCON Vl0=0.0, V20=0.0, V30=0.0

DYNAMIC
* FULL-WAVE RECTIFIED SINE WAVE, 1000 HZ, 5 VOLT PEAK

E= (10. O*PULSE (.0005, I MPULS<O. 0, .001)) -5.0)*
SINE(0.0,6.283185E+3,.001)

* CIRCUIT MODEL EQUATIONS
V3=INTGRL(V30,13/C3)
V2=INTGRL(V20,12/C2)
Vl=INTGRL<Vl0, Il/Cl)
13=(V2-V3)/R3
12=(Vl-V2-R2*13)/R2
11=(E-Vl-Rl*12-Rl*13)/Rl

TERMINAL
* T=O TO T=.002 IN FINE INCREMENTS

TIMER DELT=.OOOOl ,OUTDEL=.00005,FINTIM=.002
METHOD RKSFX
PRTPLOT E,V3

* T=.002 TO T=0.4 IN COARSE INCREMENTS
CONTINUE
TIMER OUTDEL=.01,FINTIM=.4
END
STOP

ENDJOB

213

The output is produced in two periods: in fine increments of 0.00005
second for t=O to t=0.002 second, and then in coarse increments of 0.01 from
t=0.002 to t=0.4 second. The purpose of the coarse increments in this study is
to find the level of a steady state DC output, which is obtained from the
printplots as 3.184 volts. The output printout of the CSMP run contains many
parts: (1) a listing of the CSMP program, (2) a liting of the TIMER variables,
(3) problem durations, (4) range of dependent variables (maxmimum and minimum
values with respective time values), and (5) printplots as specified. The
output was rather voluminous. Only the filter output V3 printplots are
reproduced here for illustration, as shown in Figure 5.2. The output data are
also captured on a disk file (see Section 5.12), which are then plotted on a
Calcomp plotter. These plots are shown in Figures 5.4(a) on page 220.

214 CHAPrER 5

FILTER oorPlIT FRINJ:PIDI' FIU>I 'J'<'O TO 1'-0.002 SECOODS:

TIME
O.OOOOE+OO
S.OOOOE-OS
1. 0000E-04
1. SOOOE-04
2.0000E-04
2. SOOOE-04
3.0000E-04
3.S000E-04
4.0000E-04
4 SOOOE-04
S.0000E-04
5. SOOOE-04
6.0000E-04
6.5000E-04
7.0000E-04
7.5000E-04
8.0000E-04
8.5000E-04
9.0000E-04
9.5000E-04
1.0000E-G3
1.0500E-03
1.1000E-03
1.1500E-03
1. 2000E-03
1. 2S00E-03
1. 3000E-03
1. 3500E-03
1.4000E-03
1. 4500E-03
1. 5000E-03
1. 5500E-03
1.6000E-03
1. 6500E-03
1. 7000E-03
1. '500E-03
1. 8000E-03
1.8S00E-03
1.9000E-03
1. 9500E-03
2.0000E-03

V3

Minimun
O.OOOOE+Ou

O.OOOOE+OO
6.3121E-06
8.5250E-OS
3.6"53E-04
9.924"E-04
2.0'l'E-U3
3.668SE-03 -+
5.7B'BE-03 -+
8.3'43E-03 -+
1.131BE-02
1. 4463E-02
1. 7641E-02
2.0'90E-02
2.39BBE-02
2.735'E-02
3.1008E-02
3.5010E-02
3.9377E-02 -------+
4.4060E-02 --------_.--+
4. B960E-02 --------_.---+

V3 versus TIME

S.3930E-02 ----------+
5.880BE-02 -------------+
6.3542E-02 --------------+
6.8216E-02 --------------+
7.2959E-02 -----------------+
'.7B89E-02 ------------------+
8.30BIE-02 ------_.-------------+
8.BS53E-02 -------_.------------+
9.4263E-02 -------_.--------------+
1.0012E-Ol --------------------------+
1.059 "E-Ol -----------------------------+
1.116 'E-Ol ------------------------------+
1.l'16E-Ol --------_.---------------------+
1.2254E-Ol --------_.----------------------+
1. 2'93E-Ol -------_.--------------------------+
1. 3346E-Ol ------.. ---------------------------+

Ma>:imun
1. 63S11E-Ol

1.3921E-Ol ----_.----------------------------+
1.4S19E-Ol ------.---------------------------+
1.513'E-Ol ---------------------------._--------------+
1. 5'66E-Ol ------.. ------------------------------+
1.6391E-Ol -------.. -----------------------------+

FILTER oorPlIT PRIm:PIDI' FIOoI 1'-0.002 TO 0.4 SECOOD:

TIME
2.0000E-03
1. 2000E-02
2.2000E-02
3.2000E-02
4.2000E-02
5.2000E-02
6.2000E-02
7.2000E-02
8.2000E-02
9.2000E-02
1. 0200E-01
1. 1200E-01
1. 2200E-Ol
1. 3200E-01
1. 4200E-Ol
1. 5200E-0l
1. 6200E-0l
1.7200E-Ol
1.B200E-Ol
1. 9200E-G1
2.0200E-01
2.1200E-Ol
2.2200E-01
2.3200E-G1
2.4200E-01
2.5200E-Ol
2.6200E-Ol
2. nOOE-01
2.B200E-0l
2.9200E-Ol
3.0200E-Ol
3. 1200E-Ol
3. 2200E-Gl
3.3200E-0l
3.4200E-01
3. S200E-Ol
3.6200E-01
3. nOOE-01
3.B200E-Ol
3.9200E-Ol

V3

Minimun
1. 6391E-Ol

1. 6391E-Gl

V3

1.21S1E+OO -------------+

versus TIME

1.9041E+OO ---------------------+
2.3520E+OO --------.. ----------------.----+

Maximun
3.1S3"E+OO

2.6430E+OO ---------------------------------+
2.8322E+OO ------------------------------------+
2.9552E+OO ------------------------------------+
3.0352E+OO ---------.. ---------------------------+
3.08'lE+OO --------.--------------------------------+
3.1209E+OO ------.---------------------------------+
3.1428E+OO ---+
3.1S71E+OO ---+
3.1664E+OO ---+
3.1724E+OO ----.----------------------------------+
3.1763E+OO -------.. --------------------------------+
3.1789E+OO ---------------------------------------+
3.1805E+OO -------------------------------------+
3.1B16E+OO ---------------------------------------+
3.1B23E+OO ----.-----------------------------+
3.1828E+OO -------------------------------------+
3.1830E+OO ---------._---------------------------------+
3.1832E+OO ------._-----------------------------+
3. 1834E+OO -----._-------------------------+
3.1834E+OO --------._----------------------------------+
3.1835E+OO -----._--------------------------------+
3.1835E+OO ----------------------------------+
3.1836E+OO ---------------------------------+
3.1836E+OO ---------._-------------.----------------+
3 • 1836E+OO ------._------------------------------------+
3. 1836E+OO ----------------------. ---------------------+
3.1836E+{)O --------.---------------------------------+
3 .IB36E+OO --------._------------------------------------+
3 .1836E+OO --------._-----------------.------------------+
3 • 1836E+OO --------._-------------------------------------+
3. 1836E+OO --------.. ------------------------------------+
3. 1836E+OO ---------._---------------------------------+
3.1836E+OO --------._---------------------------------+
3.1836E+OO -------._-------------------------------+
3.1836E+OO ---------._--------------------------------+
3.1836E+OO --------------------------------------+

Figure 5.2 printp10ts Output for V3 versus TIt-IE

CSMP

CSMP Examples 215

Example 2

A small rocket has an initial weight of 3000 pounds, including 2400
pounds of fuel. It is fired vertically upward. The rocket burns fuel at a
constant rate of 40 pounds/second, which produces a constant thrust of 7000
poinds.

The drag force acts in the opposite direction of the motion, and it is
obtained by two simplifying assumptions: (1) It is proportional to the square
of velocity (D=Kv). (2) The coefficient of aerodynamic resistance K has an
average value of 0.008 lb-sec /ft. Thus,

or,

D = 0.008 (dY)2 for y>O
dt

Therefore, the thrust T may be specified in the following way:

T 7000 for 0~t~60

T 0 for t> 60

In CSMP statement, it may be written as:

T = 7000.0*(STEP(0.0)-STEP(60.0))

The weight of the rocket, W, is also a time-varying function:

Going
up

Coming
down

By Newton's Law,

W = 3000 -40 t for 0~t~60

x = 600 for t>60

In terms of CSMP, W may be written as:

W = 3000.0-40.0*RAMP(0.0)+40.0*RAMP(60.0)

Consider the rocket as a free body. The two
diagrams indicate the forces acting on the free
body. One diagram is for the rocket on its way
UP, and the other is for it on its way OOWN. The
difference is in the direction of the drag force,
which is always opposite to the motion. Let the
"y" be positive in the upward direction.

The net force UPWARD = Tg - Wg ± D

where "+" sign is for downward leg, and
is for the upward leg of the journey.

\,7 d
2

y = Tg _ vJg ± (dy) 2 dt2 0.008 g dt

d 2y _ Tg
dt 2 - W - g ±

dy 2
.008 g (ill)

\,1

"_" sign

Now reduce the second-order equation to a system of two simultaneous
first-order equations:

216 CHAPI'ER 5 CSMP

Let vel = ~
dt

The CSMP statements are:

Then, d(vel),.... F
dt T = INTGRL(O.O,VEL)

where F=Tg/W-g±0.008g(vel)2;W VEL = INTGRL(O.O,EXPR)

and the initial conditions are: EXPR = THRUST*G/WEIGHT - G -
SIGN(1.,VEL)*(.008*G*VEL*VEL)/WEIGHT

y(O)=O and vel(O)=O
where SIGN is a FORI'RAN function.

The complete CSMP program for Example 2 is listed below:

INITIAL
TITLE EXAMPLE 2: ROCKET PROBLEM
CONSTANT G=32.2, K=0.008

DYNAMIC
THRUST=7000.0*(STEP(0.0)-STEP(60.0»
WEIGHT=3000.0-40.0*RAMP(0.0)+40.0*RAMP(60.0)
EXPR=THRUST*G/WEIGHT - G - SIGN(l .O,VEL)*(K*G*VEL*VEL)/WEIGHT
Y=INTGRL(O.O,VEL)
VEL=INTGRL(O.O,EXPR)

TERMINAL
TIMER DELT=.03125,OUTDEL=10.0,FINTIM=60.0
METHOD RKSFX
PRTPLT Y,VEL

CONTINUE
TIMER OUTDEL=1.0,FINTIM=70.0

CONTINUE
TIMER OUTDEL=0.1,FINTIM=120.0

FINISH VEL=-10.0

END
STOP

ENDJOB

The composite diagrams on the next page are the printer-output of the
simulation. From the VEL-TIME and the Y-TIME plots, the rocket reaches a
maximum velocity of 890.39 ft/sec at about 60.0 seconds, and reaches a maximum
height of 43,347 ft at 70.8 seconds.

CSMP Examples 217

Printplots ot Velocity versus 'IiIME:

VEL
O.OOOOE+OO +
4.2446E+02 --------------+
6.8238E+02 -------------------------------+
7.8040E+02 -----------------------------------+

TIME
O.OOOOE+OO
1.OOOOE+01
2.0000E+Ol
3.0000E+Ol
4.0000E+Ol
5.0000E+Ol
6.0000E+Ol 1 ~~;ii~~ ~=~==========~-==================~=0 MttK veJ cC';:j
6.0000E+Ol
6.1000E+Ol
6.2000E+Ol
6.3000E+Ol
6.4000E+Ol
6.5000E+Ol
6.6000E+Ol
6.7000E+Ol
6.8000E+Ol
6.9000E+Ol
7.0000E+01

7.0000E+Ol
7.0100E+Ol
7.0200E+Ol
7.0300E+01
7.0400E+Ol
7.0500E+01
7.0600E+Ol
7.0700E+Ol
7.0800E+Ol
7.0900E+Ol
7.1000E+Ol
7.1100E+Ol
7.1150E+Ol

8.9039E+02 ---------------------------------------+
6. 1995E+02 ---------------------::-------+
4.6363E+02 ----------------+
3. 5941E+O 2 -----------------+
2.8316E+02 --------+
2.2351E+02 ---------+
1. 7436E+02 -----+
1. 320"7E+02 ----+
9.4350E+Ol --+
5.9576E+Ol -+
2.6545E+01 +

2.654 5E+01 ---+
2.3298E+01 --------------------------------------+
2.0058E+01 --------------------------------------+
1.6823E+Ol ------------------------------+
1.3593E+01 -----------------------------+
1.0367E+01 ----------------------+
7.1439E+OO --------------------+
3.9226E+OO -----------------+
7.0229E-01 ------------+

-2. 5176E+OO -------+
-5.7369E+OO ----+
-8. 9545E+OO --+
-1.0562E+01 +

printplots of Height vprsus TIME:
TIME

O.OOOOE+OO
1.0000E+01
2.0000E+01
3.0000E+01
4.0000E+01
5.0000E+01
6.0000E+Ol

6.0000E+Ol
6.1000E+Ol
6.2000E+Ol
6.3000E+01
6.4000E+Ol
6.5000E+Ol
6.6000E+Ol
6.7000E+Ol
6.8000E+01
6.9000E+Ol
7.0000E+01

7.0000E+01
7.0100E+Ol
7.0200E+Ol
7.0300E+Ol
7.0400E+Ol
7.0500E+Ol
7.0600E+Ol
7.0700E+Ol
7.0BOOE+Ol
7.0900E+Ol
7.1000E+Ol
7.1100E+Ol
7.1150E+Ol

y
O.OOOOE+OO
2.1767E+03
7.8895E+03
1. 52B4E+04
2. 332BE+04
3. 1749E+04
4.0495E+04

4.0495E+04
4.1236E+04
4. 17"12E+04
4.21B1E+04
4. 2500E+04
4.2752E+04
4. 2951E+04
4.3103E+04
4.3216E+04
4. 3293E+04
4. 3336E+04

4.3336E+04
4.333BE+04
4. 3341E+04
4.3342E+04
4. 3344E+04
4.3345E+04
4.3346E+04
4.3347E+04
4.3347E+04
~.3347E+04
4. 3346E+04
4. 3346E+04
4.3345E+04

+
--+
------+
----------------+
------------------------+
-----------------------------------+ ---+

-----------+
------------------+
------------------------+ ----------------------------+
----------------------------+ -------------------------------------+ --------------------------------------+ ---------------------------------------+
--+ --+
+
-------+
-------------+
--------------------+
-----------------------------+
------------------------------+
---+
------------------------------------+
--€) M a.l(

====---============================:-+ h € '~ht ---------------------------------+
---------------------------------------+

Figure 5.3 Composite Printplots of Example 2

218 CHAPI'ER 5 CSMP

Example 3

We now conclude with an example which 'MJuld not be normally considered as
an engineering study.

Let us consider a dynamic model of infl uenza epidemic. 'we fir st make
three assumptions: (1) The disease spreads when a susceptible person comes in
contact with a infected person. (2) A person who recovers from the influenza is
normally immune for a certain period of time. (3) Immunity is ultimately lost,
and the person becomes susceptible again to the disease.

In addition, for the sake of model simplicity, we assume no birth and no
death occur to the group of population under study.

So the population under consideration is composed of three groups:

Group

Susceptible population
Infected population
Immuned population

CSMP Variable

SUSP
INFP
IMMP

Define the rates in the following manner:

in no. of pe'rsons
in no. of persons
in no. of persons

IR = Infection rate, no. of persons becoming infected each day
RR = recovery rate, no. of persons recovered each day
LR = loss-of-immunity rate, no. of persons/day who loses immunity

Thus,

similarly,

£I. (SUSP) (LR - IR) lit
increase of susceptible persons per day

d(SUSP) - LR - IR --d-t--

d(INFP) - IR - RR --d-t--

d (IMt1P) = RR - LR
dt

There are three other equations, each defining the relations of the rates
IR, RR, LR. IR is proportional to SUSP and to INFP, and therefore proportional
to their product. Thus,

IR = K * (SUSP) * (INFP)

If the disease requires (PO) days to run its course, then

RR = (INFP) /PO

If the period of immunity lasts for PI~~ days, then

LR = (IMPP)/PIMM

These six equations constitute the dynamic model of the influenza epidemic.

Now let us study one particular case of dynamic simulation. Suppose we
have a population of 1000 persons. On day 0, one person is Eiick, 999 persons
healthy, and nobody immunized. ThiS gives us three initial conditions:

CSMP Examples

SUSP(O) = 999, INf'P(O) = 1-, IMMP(O) = 0

For the last three equations, we assume the following parameters:

K = 0.001, PO = 8 days, and PIMM = 1000 days.
The CSMP program for this example is listed below:

INITIAL
I NCON SUSO=999.0, INFO=l .0, IMMO=O.O
PARAMETER K=0.001,PD=8.0,PIMM=1000.0

DYNAMIC
IR=K*SUSP*INFP
RR=INFP/PD
LR=IMMP/PIMM
SUSP=INTGRL(SUSO,LR-IR)
INFP=INTGRL(INFO-IR-RR)
IMMP=INTGRL(IMMO,RR-LR)

TERMINAL

END JOB

TIMER OUTDEL=1.0,FINTIM=45.0
PRTPLT SUSP, INFP, IMMP
END
STOP

219

The plots are made on the CalComp plotter with the "captured" data from
the CSMP run, and they are shown in Figure 5.4(b) on the next page. From these
plots and those printouts from the CSMP run, the epidemic simulation concludes
that the crisis of the epidemic occurs on the 10th day when 613 out of 1000
persons are sick. After that, crisis passes and the infected population is
reduced to 13 persons on the 45th day.

:1

:1
!;j
~:I
>~l

=j
:i

:i~". • u------..t&
FILTf:R INPUT VOLTRGE

/

.
... ~~~.!. ~"'.-----..-.;

TlnlIHS,lCOND

r ILTER OUTPUT TRRNSIENT r Il It.R UUTPUT TRRNSIENT

(a) CalComp Plotter OUtput of Example I

.
~~

·L \. "II"~II ... 2 n

~uSCEPT1BL(POPU!RJION j,., f-iN {PIIHM\C MOUEL

.
~~~ 

~:I! 
':1 .' !: 

I 

d.~;~. linE i~'" ,:t... ..... ... ... 

1t1"UNIIEOPOPUlRTION INRNf.PIO£M[CMODEl 

~~ 
~. 

i: 
!:~ 

!L ~ 
INfECTEOPQPUlATION IN RN EPIOfMIC MODEL 

(b) CalComp Plotter OUtput of Example 3 

Figure 5.4 CalComp Plotter OUtput of CSMP Examples 

N 
N 
a 

n 

~ 
ttl 
!:O 
VI 

n 
~ 
'"d 



CSMP Exercises 221 

EXERCISES 

1. Write CSMP functions for the the following time-functions, and verify by 
CSMP printouts: 

(a) "I Saw-tooth 
/0 

(c) Trapezoidal pulse train 
y 

(b) Y 
10 

o 

(d) 

y 

/D 

Half-wave rectified sine 

An arbitrary function 

.... . , ... 

2. The following differential equations have known analytical solutions. Use 
CSMP to obtain their computer solutions and verify them with the given 
analytical solutions. Specify different methods and compare the 
accuracy of the results. 

3. 

(a) y' + 3y 
y(O) 

-2t 
X + e 
o 

2 2 
(b) y' = 1 + t + Y + ty 

y(O) 0 
2 -t 

(c) (l-t) y" + ty' - Y = 2 (t-l) e 
y (0) =-0 .5, y' (0) =0 

(d) y'" - y' = t 
y(O) =6. 0, y' (0) =0, y" (0) =1.0 

Solution: " 

Solution: y 

for O<t<l 
Solution: " 

tan (t+t
2 
/2) 

t 1 -t 
-e +2t- ~ (2t-l) 

Solution: 2 
y = 1 + 2e t + 3e-t _ x 

A square wave of 10 volts amplitude is applied to a RiC circuit as shown. 
By CSMP, find the current as a function of time. 

\I (a) R = 1000 ohms 
(b) R = 400 ohms 

10 (c) R = 100 ohms 

--+-----r-----r----;r--~~---- t i~ o O.S" \·0 I. S I)'sec.. 



222 CHAPI'ER 5 CSMP 

4. The circuit shown is a sixth-order circuit, and its behavior is given by a 
matrix equation:* 

L,3 G3 C.s.. 
~~~--.---~--~-~---~r------r---.~--.---------~o~ 

t3

c., . G,

'--____ --L----'------.1.-------.. --.--- _. ___ ._.

Find the
Use: G,

L,
C,
io

r vI1l r *; v~ 0 §L 0 - c.z.

vJ ' I 0

'I 1=, I 0

:; I I ~ z.
i3

,J l ~ I I

'-3 LJ LJ

o o o

o

o o

o o o o

o o u o

o o o o

o o o

current'i , i , and i as functions of time by CS~1P simulation.
.001 mho, G 2. = .002 mho, and G 3 = .01 mho;
.1 h, L~= .5 h, and L3' = 1.0 henry;
10 mfds, C:L. = 25 mfds, and C3 = 100 mfds.
10 mill iamperes.

5. A ball is rolling off the edge of a flat roof 30 feet from the ground.
When it leaves the edge, it was travelling at a speed of 5 feet per
second. When the ball hits the ground, certain fixed percentage of
kinetic energy was absorbed. That percentage depends on the type of
ball: superball 5%, rubber ball 15%, basket ball 55%, iron ball 90%.
Assume the angle of incidence is equal to the angle of reflection when
the ball bounces up. Find the x- and the y-component of the velocity of
the bouncing ball after it leaves the roof. Do this for each of four
kinds of balls.

6. A sinusoidal force (F=12 sin(4t)) applied to the following mechanical
system. Find the displacements x,, x2. and X3 at TIME=2.0. (Answer:
-0.2075, -0.2707, 0.4517)

F

m1x1 + (k1+k2)x1 + exi -k
2

x
2

- ex; = 0

m2x 2 + (k2+k 3)x2 + eX2 -k2x1 -· exi - k3 x 3=O

m3x~ + k3x 3 - k3x2 = 12 sin(4t)

*BASIC CIRCUIT THEORY, by L. P. Huelsman, Prentice-Hall, Inc., 1972; pp.362-366.

CSMP Exercises 223

7. A control system has a transfer function l/(s~+s+l).

8.

(a) Find the transient respo~se to a unit step function.

(b) Find the frequency response over the range of
r ad ians/ second.

0.1 to 10

Suppose a cantilever beam of length 30 inches and weighing 10 lb/in is
subjected to a horizontal tensile force of 100 lb applied at the free
end. Taking the origin at the free end and the y-axis positive upwards,
the equation of the beam is:

where

Ely" := P y - w x'J../2

E := Young's modulus, 30E+06 psi
I := Moment of inertia := 0.01042 in
w := linear weight per length

10 lb/in
P := 100 lb
y':= deflection of beam

r- 30"

r
~ y

p

The beam is so placed that at x:=O, y(O):=O, and Y'(30\:=O. Find the
maximum deflection at the end of the beam.

9. When a bomb is dropped from an airplane, it encounters an air resistance
proportional to the square of the velocity, and acquires a velcity of
125 ft/sec in falling a distance of of 343 feet, find the time elapsed
and the limiting velocity.

Note to the Instructor:

The purpose of this group of exercise problems is to familiarize with the
CSMP programming and execution. The derivation of models, however important, is
not the main goal of these exercises. In this context and depending on the
background of the class, additional problems may be found from many standard
texts in physics, circuits, mechanics, control systems, etc., where dynamic
behaviors are discussed.

224 CHAPl'ER 5 CSMP

REFERENCES -----

1. IBM CH20-0367-4: SYSTEM/360 CONTINUOUS SYSTEM MODELING PROGRAM USER'S
MANUAL, Program No. 360A-CX-16X; Fifth Edition, 1972.

2. A GUIDE TO USING CSMP - THE CONTINOOUS SYSTEM MODELING PROGRAM, Frank
Speckhar and Walter Green, Prentice-Hall, Inc.; 1976.

3. APPLIED NUMERICAL METHOD FOR DIGITAL COOPUTATION WITH FORI'HAN AND CSMP,

4.

5.

6.

Second Edition, M. L. James, G. M. Smith and J .. C. Wolford,
chapter 6, pp. 569-636, Harper and Row Company; 1977.

DEC-IO System Help File: SYS:CSMP.HLP,
Pittsburgh, Pittsburgh, Pennsylvania;

computer Center,
1978.

University of

MODELING AND SIMULATION BY CSMP, Class Notes for EE45
Application I) , T. W. Sze, University of Pittsburgh,
Pennsylvania; 1980.

A CSMP PRIMER, Class Notes for EE45 (Computer Applications 1),
University of Pittsburgh, Pittsburgh, Pennsylvania; 1980.

(Computer
Pittsburgh,

T. W. Sze,

7. ENGINEERING SIMULATION USING SMALL SCIENTIFIC COOPUTERS, l>lanesh J. Shah,
Prentice-Hall, Inc., Englewood Cliffs, NJ; 1976.

8. MATHEMATICAL MODELING WITH COOPU'rERS, Samuel L. S. Jacoby and Janusz S.
Kowalik, Prentice-Hall, Inc., Englev.Qord Cliffs, New Jersey; 1980.

CHAPI'ER 6

A PRIMER OF COMPUTER GRAPHICS WITH DEC-IO

Computer graphics is defined as "the art and the science of producing
gr aphical images with the aid of a computer." (Reference 1)

For many year s, the computer field has tr ied to break out the bottleneck
of computer-human communications by using pictures rather than printouts. 'rhe
idea is an old one. After all, "a picture is worth ten thousand words." Hence,
earliest use of computer graphics was simply to present data in graphical form.
But earlier computer graphics was very expensive. Hardware was costly, but far
worse was the software cost. They were machine-dependent and programming was on
the assembler language level. Much of the acceptance of the present-day
computer graphics is attributed to these developments:

(1) Development of user-accessible software of computer graphics in the forms
of FORTRAN callable subroutines. This puts the application of computer
graphics at the user's hand, rather than at the hand of a professional
programmer.

(2) The time-sharing mode of computer operations is further enhanced by the
computer graphics with its cl~rity of man-machine interaction.

(3) LSI and microprocessor development has rapidly brought down the cost of
computer graphics hardware.

Computer graphics, of course, can do much more than plotting nowadays.
In fact, it becomes a branch of computer processing that has most caught the
imagination of the non-computer world. We find its applications in
computer-aided design and manufacturing, simulation of training environment, and
science fiction motion pictures and many other widely different fields.

6.1 Computer Graphics and Computer Graphics Devices

Using the definitions of Ivan E. Sutherland, a pioneer in computer
graphics, there are two types of computer graphics systems now in common use:
rasterized systems and calligraphic systems.

The rasterized systems make picture the same way a television set does.
It is drawn in a fixed sequence, usually from the left to the right and from top
to bottom. It has the advantage of simpler and less expensive implementation,

225

226 CHAPI'ER 6 COMPUTER GRAPHICS

as it is compatible with the conventional mass-produced display devices such as
terminals, pr inters or video display sets. Implementation of compUiter graphics
of this type, however, requires much computer effort in sorting the display
information in the sequential display, a process called rasterization. If the
display data are altered, the graphic data \\Quld require another rasterization.

The calligraphical systems, on the other hand, will construct a picture
in any sequence of plotting given by the computer. The picture-drawing element
is a mechanically moved pen of a plotter or an electronically controlled
electron beam in a cathode-ray-tube (CRT) display. The pen or the electron beam
is moved from one f.X)int to another at the command of the computer. When the pen
is held down on paper, or when the beam is turned on, it traces a line on the
paper or the screen during its movement. When the pen is up, or when the beam
is blanked, it moves the picture-drawing element to another f.X)int without
leaving a trace. This is exactly the same process of preparing a line drawing
manually. The advantage of using a calligraphic device is that the information
on sequence of tracing can be stored in the computer in any order. !my
alteration of the display data can be simply made by revising the ~jtored data.

The decade of 1970 I S has been a period of time that brou:jht in the
large-scale integrated circuit (LSI) into digital electronics. As a result, the
computer graphics enjoyed a phenominal growth both in hardware developnent and
in applications. Unfortunately, there has been very little coordination in the
growth. As a result, different types of graphic hardwares use different
software packages, most of which are not compatible to each other. Al thou:jh
energetic efforts have been made in the United States and abroad to standardize
the graphics field (References 3 and 4), progress has been slow.

In this chapter, the introduction to the computer graphics will be by
necessity restricted to the available hardware/software packages for the DEC-lO
at a local installation. For this reason, readers should check with their own
installation regarding the available graphic hardware and software. The
hardware graphic devices are listed as follows:

1. Rasterized devices

Terminals
Line printers
Image display devices

2. Calligraphic devices

Plotters
Graphics terminals

For the graphics usage on DEC-IO, the materials will be presented in
three parts. In each of these parts, certain devices in the above list will be
employed. The parts are:

1. Graphing and plotting

2. General graphics

3. 3-Dimensional graphics

Pr inter Plots 227

GRAPHING AND PLOTrING

Let us consider the steps we take in plotting a graph after the x-y array
data have been determined:

(1) Assign dependent and independent variables respectively to the x and
y axis.

(2) Determine the range of the ordinates and abscissas.

(3) Since the plotting field is usually fixed, we map the range of
abscissa and ordinates onto the fixed paper ranges. This is called virtual
graphics, a term we will use very often later. Its explanations will also be
left for latter treatment.

(4) After the range is determined, choose a scale factor.

(5) As the independent variable is incremented, we determine a dependent
variable value for that point, and then determine by scale factor the position
of that point on the plot. When this step is repeated as x-variable
incremented, points are joined by either straight lines, or a smooth (French)
curve, or a best-fit curve.

We will now consider the plotting and graphings on both the rasterized
and the calligraphic devices.

6.2 Plotting on a Terminal or Printer

Both the terminals and the printers are rasterized devices. There is
only one direction the paper may be advanced. We are excluding certain more
costly terminals that has paper movement control (forward and backward) built
into the device.

Plotting and graphing on a terminal or
sequential outputing of a character-print line.

a printer is basically the
Let us consider a typical case.

Consider a FORTRAN format of (lOlAl) for use by a character array LI(I)
with I runs from 1 to 101. Thus there are 101 print positions from 0 to 100.
Now, the data point values are generated and the maximum and the minimum values
of the ordinates can be determined. The range for the ordinates (Ymax-Ymin) can
then be calculated. with the bounds of the ordinates established, any value
within the bound can be mapped into a proportional value within the print
position bounds of 0 to lOU. This will then establish a print position for that
particular ordinate. Thus, if the LI-array is initialized as blank (Octal word
code "20UOOOOOOOOO), the LI-element at the print position, say at position KK,
is set to an ASCII character of a plot symbol, such as a "*". Thus, LI(KK)='*",
while LI-element is blank everywhere el.se. When this array is now printed with
a (lOlAl) format, a symbol of n*" is pr inted as a scaled ordinate. The LI-array
is then re-initialized to all blanks, and the process is repeated for the next
ordinate value.

228 CHAPl'ER 6 COMPUTER GRAPHICS

There are many amenities that can be built into such a plotting routine.
For example:

a. Scale factor printed along with the graph;
b. Choice of scale factor liinitea to 1,2, or 5 or their integer

(positive or negative) powers of ten;
c. Graph with or without grid lines;
d. Multiple curves on one plot;
e. Cartesian plots, semilog plots, log plots, or polar plots;
f. Curves occupy 60-90% of graphing space for neat looking plot.

Terminal or pr inter plots have the advantages of being inexpensive and
fast turn-around. Unlike a plotter plot, they can be immediately produced on
the user's terminal or an accessible printer, and the turn-around time is very
short. However, there is at most about 101 print positions, so the resolution
of a plot is not good. The WDrst case WDuld be a curve that is almost
horizontal or almost vertical. An almost horizontal curve \vill have an
appearance of a staircase such as shown below:

------------ **********

,~***

A Straight Line Line as appeared on a Printer Plot

Thus, the chief usefulness of a terminal or printer plot is to provide a
quick and inexpensive way of graphical output, when high resolution and polished
drafting quality are not as iinportant requirements.

Consequently, it WDuld not be cost effective for any user to design and
implement his own plotting routine, except as a format-exercise, because there
are so many already available, and because its plot quality is poor.

For the remaining portion of the discussion of plotting and graphing,
materials will be devoted to the presentation of several typical available
plotting softwares that are either FORTRAN-callable subroutines, or stand-alone
interactive programs. In both cases, the users are spared from the drudgery of
laborious construction of axes, determination of scale factors, marks on the
axes, design of mapping formula, and so on.

For the terminal or printer plot routines, several FORTRAN subroutines in
the Engineering Program Library will be presented below. 1hese graphical
routines are available for user's call under the collective name of
ENG:GRAPH.REL. Thus the standard way of calling a library routine in conjuction
of your main program (assuming named as PRGM.FOR) is to issue a monitor command
of:

.EXECUTE PRGM, ENG:GRAPH/LIB

PLOTS Subroutine 229

(1) The PLOTS Subroutine

The subroutine call is: CALL PLOTS (Y,NF,NP,Xl,XINC)

where the parameters are defined as follows:

Y a 2-dimensional real array Y(I,J)" for the ith function and ith
value. Maximum size is S functions. The calling program must
have the Y-array dimensioned at Y(NF,NP). The Y-array will be
altered upon the return of this subroutine.

NF number of functions to be plotted; max NF= S.

NP number of points to be plotted for each function. Max=151.

Xl value of the first abscissa

XINC value of X-increment. This subroutine is for a plot that the
x-increment is constant.

A terminal or printer-constructed plot is produced. The
positive direction of the independent variable is taken as
downward on the printed page. The symbols for up to 8 curves are
assigned as:

Function: 1 2
+

3

4
x

5
o

6 7 S
Symbol: *

If points of different functions occupy the same print
position, the joint symbol at that print position is a "$". For
convenience, the numercial values of the first function are
printed along the left edge.*

Example: Graph three functions, whose data are stored respectively
in DA.DAT, DB.DAT, and DC.DAT. Each data file contains a
Y-array of the same number of elements (NP=46). Also,
Xl=O, and XINC=l.O. The program (named as SAMPLE.FOR) that
calls the subroutine is listed below:

REAL Y(3,46)
CALL IFILE (1, 'DA')
CALL IFILE(2,'DB')
CALL IFILE(3,'DC')

50 FORMAT (F)
00 10 1=1,3

READ(I,50) (Y(I,J) ,J=1,46)
CALL PLOTS(Y,3,46,0.O,1.0)

10 CONTINUE
END

The execution cormnand is: ".EXECurE SAMPLE,ENG:GRAPH/LIB" The output of
this program is shown on Figure 6.1 on the next page.

*If this output is produced on a terminal, a right margin setting should be
preset by a monitor cormnand of "TTY WIDrH 132".

The Scale Factor of Ordinate: I Dlvlsion= 0.20000E+02 N
W

The Scale Factor of Abscissa: I Dlvlslon= O.IOOOOE+OI a
First Abscissa Value: X(1)= O.OOOOOE+OO

NOTE: In Interpreting the plot, X-axis starts with X{l) value.
Other XiS can be computed from X(l) and abscissa scale factor.

Values of (Mult Iply by Scale Factor 0.20000E+02>
Funct ion 1 -10 10 20 30 40 50 60 70 80 90

0.9990E+03
0.9974E+03
0.9936E+03
0.9846E+03 +,
0.9637E+03 X(5)+ + ,
0.9173E+03 I + 1
0.8232E+03 I
0.6642E+03
0.4617E+03 I I"
0.2781E+03 X(10)+
0.1538E+03 I 1
0.8353E+02 1
O.4658E+02 ,
O.273OE+02 + I
0.170IE+02 X(15)+ , +

O.1134E+02 I I
0.8111E+OI ,

(")
0.6236E+Ol , s; 0.514IE+Ol I ,
0.4519E+Ol X(20)+ I ~ 0.4195E+Ol I I t<:!
0.4070E+Ol I ::>:l
0.4063E+Ol , +
0.4197E+Ol 1 + Cl'I

0.4387E+Ol X(25)+ I
0.4539E+Ol I I +
0.4942E+Ol , +
0.5288E+Ol I
0.5673E+Ol I +
O.6092E+Ol X(30)+ I +
0.6543E+Ol I · ,
0.7024E+Ol I • I 0.7532E+OI I • I
O.6066E+OI I • I 0.8625E+OI X(35)+ · ,
0.9207E+OI I · ,
O.98IIE+OI • I
0.1044E+02 .,

(")
0.1108E+02 S

~ O.ii/5E+02 X\ 40)+ ~
0.1243E+02
0.1 313E+02
0.1 385E+02 t<:!
0.1458E+02 ::>:l
0.1533E+02 X(45)+

~
0.1609E+02 I

+---------+---------+---------+---------.f----------+---------+---------+---------+---------+---------+
-10 10 20 30 40 50 50 70 80 90

(Multiply by Scale Factor 0.20000E+02) H
(")

Figure 6.1 Output from the Subroutine PLOT8 en

ENG:GRAPH Package

HELP file for ENG:GRAPH Package:

* SUBROurINE PLOT8 *

* * SUBROurINE PLOT8 (Y , NF , NP, Xl, XINC)
* * Subroutine to plot up to "NF" curves on the same plot
* with automatic scaling and choice of best scale factor
*
*
*
*
*
*
*
*
*

Y

NF
NP

Xl
XINC

2-dimensional real array Y(i,j) for the ith function,
and jth value. Max i=8, max j=151.

number of functions to be plotted, max =8
number of points for each function, max=151
Each function must have the same NP.
first abscissa value
increment of X's

* Ordinates of the first function will be tabulated on the left
* side of the plot. When points from different curves coincide,
* they will be plotted as a single point marked with "$" symbol.
* * By T. W. Sze, December 10, 1972; single curve plot
* Revised TWS, October 8, 1977; multiple-curve plot
*
*
*

* SUBROurINE XYPLOT *

* * SUBROurINE XYPLOT(X,Y,ND)
* * Subroutine to plot a x-y plot with automatic scaling and choice
* of the best scale factor. The increments of abscissa may be
* unequal, the x-array need not be in ascending order, nor need
* they be unique from each other. Therefore, this routine may
* be used to plot a multi-valued function, such as a complete
* circle.
* * This is also the backbone routine for polar plots, semilog - log
* plots. In polar plots, polar coordinates are first transformed
* into Cartesian coordinates. In log plots, logarithmic trans-
* formation is done on the values first. After transformation
* of data, calling XYPLOT routine \\Quld produce a polar or log
* plot.
*
*
*
*
*
*
*
*
*
*

X,Y
ND

NSX
NSY
NNP

one-dimensional array X(i) , Y(i) , with max i= ND
number of points for the function

maximum abscissa scale value used in the plot
maximum ordinate scale value used in the plot
total range of values of the acscissa scale desired for
the plot.

* By T. W. Sze, October 20, 1980
*

231

SlJBlU1rINE P[illij(Y,NF,NP,Xl,XU':')
RFAL Y(NF,NP) ,YM(2)
INTEGER L(ll) ,Ll (101) ,SYMBOL(B)

JB=blank is used in IF statement. requiring precise definition.
lD....er case ax· code is -740000000000, left justified.
lDwer case ·0· cede is -674000000000, left justified.

lJA.TA IN,JP,JI,JZI'-', '+', 'I', '$'1 ,JB/"2000000000001
DATA SYMBOL/'" ,'+',' ',"740000000000,"674000000000,
1 "'-' '~'I
YM(I)~i.OE~36, YM(2)~ 1.0E+36

To establish range of Y's
III 10 I~l,NF

III 10 J~I,NF
YM(I)sAHAXl(YM(I) ,Y(I,J», YM(2)~AMIN1(YM(2) ,Y(I,J))

10 ("(NfINlE
AANGE~YM(1)-YM(2)

To establish the best scale factor for Y I 5
("ALL SC"ALE(AANGE,YM(2) ,SF ,NS)
WRITE(b,lOOO)SF, WRITE(6,lOlO)XH(, WRITE(6,l020)Xl
WRITE (6,1030) , WRITE(6,1040)

Star t plottirg

NsO
Print ordinate scale

III 20 l~l,ll
20 L(I)slO*I-llO+NS

WRITE(6,lOSO)SF: WRITE (6 , 1060) (L(I) ,I~l,ll)
C'onstroct ordinate graph line

!I>=O
III 30 I~l,lO

ND=tID+l; LI (NO)=JP
00 30 J~1,9

ND=tID+ 1, LI (NO) =IN
30 CCNrINlE

40

so

LI(lOl)=JP
WRITE (6,1070) LI
XNS"'NS
Q)T090

Change mnerical data to symbols at right print p:>sitions

00 50 I~l,NF
KK~Y(I,N)/SF + 101.4999 - XNS
IF(KK.GE.I01) KK~lUl
IF(KK.LE.l)KK~l
IF(LI (KK) .NE.JB) Ll (KK)=JZ
IF(LI (KK) .E1J.JB) Ll (KK)~SYMBOL(I)

CCN!'INUE

To calculate the lergth of a pr int line

00 60 1-1,101
IX~IOZ-1

IF(LI(IX).NE.JB)= 70
60 CCNrINlE
70 LEoom~IX

IF(Kll(N,S) .E1J.O)GJ TO BO
WRITE(6,10BO)Y(1,N) ,(LI(I) ,I~l,LENGl'!l)
GJTC 9C

Ill! WRITE(6,l090)Y(l,N) ,N,JP,(LI(I) ,I~l,LENGl'!l)

Reset the line to all blanks, and begin next plot line

90 00 100 I~l,lOl
100 Ll (I)sJB

N--N+l
IF(N.LE.NP)= 40

Erx1 of gra{:tling, construct bottan Y-axis
ND=O
00 110 1~1,10

ND=tID+ 1, LI(NO) =JP
00 110 J~l,9

ND=tID+l
LI(NO)~

110 CCN!'INlE
LI(lOl)=JP
WRITE(6,1070)Ll
00 120 1~1,11

L(I)~10·I-ll0.fNS

120 CCNrINlE
WRITE (6 ,1110) (L(l) ,Isl,ll), WRITE(6,llOO)SF; WRITE(6,1040)
RETrnN

1000 FOOMATV45X,42H'!be Scale Factor of O<dinate: 1 Divisio~, E12.S)
1010 FORMAT{45X, I The Scale Factor of Absc:issa: 1 Division=' ,EI2.S)
1020 FOOMAT(S3X, , First Abscissa Value: X(l)~' ,E12.S)
1030 FOP.MAT(/4DX,'NOI'E: In interpreting the plot, x-axis starts with'

1,' X(l) value.',/45X,' Other X',lH','s can be canp...lted I,

2 I from X (l) and absc issa scale factor. I)

1040 FOOMAT V)
1050 FORMAT('* ValleS of',40X,' (r-llitiply by Scale Factor '.E12 .. 5,')')
1060 FOOMAT('. Function l' ,6X,ll (IS,5X»
1070 FOOMAT(lH*,3X, ,-------, ,9X,lOlAl)
lOBO FOOMAT('* ',EIZ.4,2X,' l',lOlAl)
1090 FOOMAT('* ',EIZ.4,' X(',I3,')',Al,lOlAl)
1100 FOOMAT('*',S2X,' (Multiply by Scale Factor' ,EIZ.S, ') ')
1110 FOOMAT('*' ,19X,ll(IS,5X))

END

10

SlBOOUl'INE XYP!.ar(X, Y ,NO)
REAL X (NO) ,Y(NO)
INTEGER L(ll) ,LI (101) ,SYMBOL
lJA.TA SYMBOL,JN,JP,JI,Jz/'*' ,'-', '+',' I' ,'$' 1 ,JB/"ZOOOOOOOOOOOI
NI:M=ND-l

Arrarge data in ascen:H.l'l3 order of X

III 10 I-l,NE!!
IA~l+l

III 10 J~lA,M)
IF(X(l) .LE.X(J»= 10
T91P=X(I): X(I)~X(J); X(J)=TmP
TEMP=Y(l); Y(I)~Y(J); Y(J)=TmP

CrnrINtE

To establish the ran:je of Y'5

YMAX~1.0E+36; YM~1.0E+36
XMIN~X(l)

00 ZO I-I,M)
IF(Y(I).Gl'.YMAX) YMAX~(I)
IF(Y(I) .LT.YMIN) YMIN~Y(I)

20 ("(NflNUE
AANGEX~X (NO) -x (l); AANGEY~YMAX-YMIN
('.all: SC'A...LE{AAN:;f.X:XM.INrS:LX~NSX}
CALL s("ALE(IlANGEY,YMIN,s("LY,NSY)
WRITE (6 , 1000) SC"LX,X(l) ,X(NO)
WRITE (6,1010) &:Ui, YMIN, YMAX
WRITE(6,1060)
WRITE(6,lOZO)&:Ui
00 40 1=1 W

,,«(t:) =-Y(I)lScl-"("; X.CL)::: (X(Z)- XMIN.)/S"'C."-,X

40 c...or-riiNOe.

Listing for ENG: GRAPH. FOR

N
W
N

~
~
0'0

~
§
~

~
~
[Jl

NNP=lUO; NSX=lUU; LENGl'H=lUl
NP=lUO; XNP=WU.U; XNS=IUU.O; YNS=N$Y

Print ordinate scale figures

IX) 6U 1=1,11
60 L(l)=lU*1-110+NSY

WRITE(6,1030)L

Blank out all print characters

IX) 70 1=1,101
70 Ll (l)=JB

Start Plottirg

N=O;K=l

Prepare pc int line for the y-axis

80 NQ=O
£Xl 90 1=1,10

NQ=NQ+ I; LIINQ) =JP
£Xl 90 J=I,9

NQ=NQ+l
LI(NQ)=JN

90 CCNrlNUE
Ll(IOl)=JP
IF(N.NE.O)roro 110

Scale abscissa data

100 NX=X (K) '0 .6-XNS+XNP+O. 499999; NX= ll\BS (NX)

** Cbeck to see if data is sorted for current abscissa value

IF{NX.EQ.O)roro 110
IF(NX.Cll'. NP) NX=NP

no IF((NX.NE.N) .AND. (N.EQ.O))roro 130
IF((NX.NE.N) .AND. (N.NE.O»roro 120

Scale ordinate data

KK=Y (K) +l01.499999-YNS
IF(KK.Ill'.I)LI (l)=JZ
IF(KK.Cll' .101)LI (IOI)=JZ
IF((KK.Gl.l) .AND. (KK.LE.lOl»Ll (KK)-SYMBOL
K=K+l
IF(K.LE.ND)roro 100

120 £Xl 112 13 1,101
IX=102-1
IF(LI (IX) .NE.JB)roro 114

112 CCNrINUE
114 LEOO!'Il=IX

IF(N/6.Cll'. (N-l)/6)roro 130

Print line and data without abscissa label

WRlTE(6,1040) (Ll (I) ,I=l,LEOOnI)
rorol40

13() NN=(N*10)/6+NSX-HiP

** Print line and data with abscissa label

WRITE(6,1050)NN, (LI (I) ,I=l,LEOOl'Il)
140 IFIK.Gl.NDlroro 160

ISO
co 15u 1=1,101
Ll(l)=JB

Set up abscissa graph lines

LI{l)=JI
IF{N/6.Cll'.IN-I)/6)Ll (l)=JP
r0r0110

160 NQ=O
£Xl 170 1=1,10

NQ=NQTl; LI(NQ)=JP
£Xl 170 J=1,9

NQ=NQTl
LI (NQ)=JN

170 CCNrlNUE
LI(101)=JP
WRITE(6,1040)LI
£Xl 180 1=1,11

180 L(I)=10'I-llO+NSY
WRITE(6,1030)L
WRITE (6, 1020)SC"LY
WRITE(6,1060)
WRITE (6,1060)
RIITlJRN

1000 f'CRotAT(/lH*124X,' The Scale Factor of Abscissa: 1 Division-',
1 E12.5/IH' ,32X,' First point at " El2.5/
2 IH*,32X,' Last p::>int at " E12.5)

1010 FORMAT (lH*/lH* ,24X, I The SCale Factor of Ordinate: 1 Division=',
1 E12.5/1H' ,32X,' Rar>:je of O!:dinates: YuUn=' ,E12.5,
2 /IH',55X,'Ymax=' ,EI2.5)

1020 f'O!l!oIAT(IH',29X,'Y-Axis ("'-l.tiply by Scale Factor' ,El2.5,')')
1030 FORMAT('" ,11 (I4,6X))
1040 fQ1MAT(" , ,IOlAl)
1050 FORMAT (IH* ,14,lOlAl)
1060 FORMAT (///)

END

10
20

3()

40

50

60

70
80

90

SUBROUI'INE SC"AIE(ZAANGE,ZHIN,ZSF,NSZ)
YPO=ZAANGE/90 .; NYPD=YPD
IF(NYPO.Cll'.O)roro 60
£Xl 10 1=1.25

YPD=IO.*YPD; NYPD=YPD
IF(NYPO.Cll'.O)roro 20

CCNr1NLE
llSF=10.'*(-I+I); YPD=.5*YPD; NYPD=YPD
IF(NYPO.Cll'.O)roro 40
ZSF=.2*RSF
CD TO 90
YPD=.4*YPD: NYPD=YPD
IF(NYPO.Cll'.O)roro 50
ZSF=.5*RSF
CD TO 90
ZSF=RSF
CD TO 90
ro 70 1=2,25

YPlFYPD/10.; NYPD=YPD
1F(NYPO.LE.O)roro 80

CCNrINUE
RSF=10.*' (I-I); YPD-S.*YPD; NYPIJaYPD
IF (NYPO.Cll'.0)40, 30
NSZ=IOO+I0* (IF1X(ZMIN/ZSF) /10-1)
RE'I'mN
f2Il

Listing for ENG:GRAPH.FOR

~
~
til

~
;><;"

~
ro

N
W
W

234 CHAPl'ER 6 COMPUTER GRAPHICS

The subroutine PLOT8 has the following limitations:

a. Each function must be single-valued. Therefore, this routine will
not be suitable to plot a multi-valued function, such as a circle. Thus it
could not be used for such appl ications as root locus, Nyquist plots, etc.

b. X-increments must be constant. Thus, the routine is unsuitable for
data point array that does not have equally spaced x-increments.

(2) The XYPLOT Subroutine

The routine XYPLOT is designed to plot either a single-'valued or a
multi-valued function, with equal or unequal x-increments. It also has
built-in optimal selection of scale factors. In addition, this routine
is a building block in implementing a polar plot routine or a logarithmic
plot routine.

The call and the parameter definitions are shown below:

CALL XYPLOT(X,Y,ND)

where the parameters are explained below:

X,Y each a one-dimensional array X(I), Y(I) with Max I =, 200.
arrays will be altered upon return from the subroutine.

Both

ND number of data points to be plotted.

Example: The following program shows the generation of plotting data
for a parabola:

Y**2 = 4*X + 5

The program (again named as SAMPLE. FOR) listing is as
follows:

REAL X(150) ,Y(150)
00 10 1=1,150,2

XI=I-l;J=I+l
X(I)=XI
X(J)=XI
Y(I)=SQRT(4.*XI+5.)
Y(J)=-Y(I)

10 CONl'INUE
CALL XYPLOT(X,Y,150)
END

Use the command" .EXECurE SAMPLE,ENG:GRAPH/LIB" to execute.

The output for this example is shown in Figure 6.2. The help file
and the program listings for these two programs are al&) included for
user's reference.

There are other plotting routines in the ENG:GRAPH package. They
will be only mentioned here, and further details may be found in the
help-file ENG: GRAPH. HLP. The contents of ENG:GRAPH are as follows:

ENG:GRAPH Package

*
*
*
*
*
*
*
*
*
*
* * -30 -20 -10

235

The SCale Factor of Abscissa: 1 Division= 0.20000E+Ol
First point at O.OOOOOE+OO
Last point at 0.14800E+03

The SCale Factor of Ordinate: 1 Division= O.lOOOOE+Ol
Range of Ordinates: Ymin=-0.24434E+02

Ymax= 0.24434E+02

Y-Axis (Multiply by SCale Factor O.lOOOOE+Ol)
o 10 20 30 40

* 0+---------+---------+-------*-+-*-------+---------+---------+---------+----.
* I ** **
* I
* I
* I
* I
* 10+
* I
* I
* I
* I
* I
* 20+
* I
* I
* I
* I
* I
* 30+
* I
* I
* I
* I
* I
* 40+
* I
* I
* I
* I
* I
* 50+
* I
* I
* I
* I
* I
* 60+
* I
* I
* I
* I
* I
* 70+

*
*
*

**
*

*
*
*

*
*

**
*
*

**
*
*
*

*
*
*

*
*

**
*
*

*
*

"
*

*
**
*
*

*
**
*

*
**

**
*

** **
*
**
**
*
*
**
*
*
**
*
*
*
*
*
*
*
*
**
*
*
*
*
*
*
*
**
*
*
**
*
*
*
*
*
*
*
*
*
**
*

* I * *
* I * *
* +---------+---------+---------+---------+---------+---------+---------+--
* -30 -20 -10 0 10 2030 40

Figure 6.2 Output from the Subroutine XYPLOT

236 CHAPTER 6 COMPUTER GRAPHICS

PLOT 8 (Y.NF,NP,Xl,XINC) Plot up to 8 functions.

PRINT 8 (Y,NF,NP,Xl,XINC) Tabulate up to 8 functions.

XYPLOT(X,Y,ND) Plot x-y data.

XYPRNT(X,Y,ND) Tabulation of x-y array data with x-array sorted
internally in an ascending order.

SEMLOG(X,Y,ND,KODE) Plotting with one axis on log scale.
KODE==l x-axis on log scale
KODE==2 y-axis on log scale

LOGLOG(X,Y,ND) Plotting of x-y array on log-log scales

POLAR (RHO, THETA, ND) Polar plot for rho-theta array; theta in degrees

The users will also find that other plotting routines are available in
almost every canned software package.*

6.3 Plotting on a Plotter

A plotter has a mounted pen that can be controlled for its movement as
small as 1/500 inch. Therefore, it is capable to produce superb ~~ality graphs
and plots. Basically, a plotter makes a figure by moving the f~n from one
position on the paper to another either with the pen UP or with the pen DOWN.
These movements are controlled by incorporating in the main program a series of
.FORTRAN subroutines, which translate the user's requirements into detailed pen
movement instructions. A set of basic FORTRAN-callable subroutins will be taken
up later when we get to the CalComp section of the chapter. At this point, we
will look at two types of software routines that are used in prcducing plots
quickly on the Calcomp plotter. One is a group of "quick" plot subroutines that
can be incorporated into user's FORTRAN program; the other is a group of
stand-alone interactive programs.*

It should be noted that the plotter is a very slow device, Therefore,
plots must be queued. After the execution of the program, the software only
produces a plotter-file; it does not produce a plot ~ se. After the plotter
file is produced, it will take another monitor command "PLOT filE!" to actually
queue a plotting job, such as:

.PLOT *.PLT

*At University of Pittsburgh, in addition to the routines presented here, also
available are a group of printer plot subroutines in PRG.Gf~H.REL and a
stand-alone CalComp routine named PRG:GRAFIC.EXE. See References ~) and 6.

.uick Plot Subroutines 237

(1) The Quick Plot Subroutines

Two "quick" plot subroutines, QIKPLT AND QIKLOG, will be presented
here. They are both developed at the pitt Computer Center. The
subroutine QIKPLT will plot th~ x-y array data on a linearly scaled plot;
the subroutine QIKLOG will plot the x-y array data either on a semi-log
or a log-log plot. Both subroutines were developed at the Pitt Computer
Center. They produce plots that will fit into standard 8.5-by-ll inch
letter-size paper. The input parameters of the subroutines, beside the
required x-y array data and number of data points, will include the
following:

(1) Title of the x-axis

(2) Title of the y-axis

(3) Title of the plot

(4) Option of which symbol (or no symbol) to represent every nth
data point.

(5) Option of whether to join the points by lines.

(6) Option of placing grid lines (or omit them) on the plot.

The calling sequence is as follows:

CALL QIKPLT(Pl,P2,P3,P4,P5,P6,P7,P8,P9,PlU,Pll)
CALL QIKLOG(Pl,P2,P3,P4,P5,P6,P7,P8,P9,PlO,Pll,P12)

The parameters are explained as follows:

PI X-array, real, dimensioned at least 2 more than the value of P3.

P2 Y-array, real, dimensioned at least 2 more than the value of P3.

P3 Number of data points to be plotted, integer constant/variable. If
you want grid lines on the plot, specify a negative number of
points. positive P3 will omit grid lines.

P4 X-axis title. If expressed in ASCII string, it will have the form
of characters enclosed within single quotes, such as 'Time in
Seconds'. If expressed dimensioned variable, they have literal
constant values, such as "rime " 'in Set, 'conds' for
(KARAC(I) ,1=1,3). They must be in (A5) format. Maximum length of
string is 45 characters or (9AS) format.

P5 Y-axis title. Same definition as in P4. Maximum is 57 characters.

P6 Title of the plot; same definition as P4. No maximum.

P7 Number of characters in x-axis title, including embedded blanks.
Integer constant/variable; maximum value is 45. x-axis title is
omi tted if p7=O.

238

P8

CHAPI'ER 6

Number of characters in y-axis title,
Integer constant/variable; maximun
y-axis title.

COMPUTER GRAPHICS

incltrling embedded blanks.
value is 57. P8=0 means no

P9 Nunber of characters in the plot title, incltrling embedded blanks.
Integer. P9=0 means no title for the plot.

PIO Signed integer code for opt~ons of how to join points by lines:

PIO = positive integer, say n. Lines will join every nth data
point by a symbol specified by the PH parameter.

PIO 0: The points are joined by lines with no symbols. PH
value, if given, is ignored.

PIO negative integer, say -no The points are marked by a symbol,
specified by the parameter PH, every!!.th data point. No
line is drawn to join them.

PH Integer code for the symbol choice to mark a data point:

PH Code ~ PH Cod .§Jnnbol

0 Q] 8 z
1 C> 9 y

2 6- 10)4

3 -I H "*
4 x 12 :x
5 (} 13
6 l' 14 ~

7 It

P12 Option code for log plot routine:

PI 2=-1
P12= 0
P12=+1

to request a semi -log plot, wi th x on log scale
to request a log-log plot
to request a semi-log plot, with y on log scale.

The process of using these quick subroutines is quite straight forward:
In the main program, be sure to dimension X and Y arrays at a dimension t\\Q more
than actually needed by the array. Also, dimension those ASCII variables- that
are needed for the titles. Then:

(1) Read, or generate, or calculate the x-y arrays.

(2) Call the quick plot routine

Example:

CALL QIKPLT(X,y,-50,'Time in Seconds' ,'Voltage in Volts',
1 'FILTER RESPONSE' ,15,16,15,-1,4)

This subprogram call will produce a plot of 50 data points not
joined by lines, but each point is marked by a X symbol. ~fue titles are
supplied as indicated in the parameter list.

Interactive Plot Programs 239

Example:

Here we will recount how the plots in Figure 5.4 were made (see Page
220) • The data from the CSMP run were saved as three files DATAl.DAT,
DATA2.DAT and DATA3.DAT and in a a format of (2E).

The following program was prepared:

REAL X(lOO) ,Y(lOO)
OOUBLE PRECISION FINAME(3)
DATA FLNAME/' SUSP. DAT' , , IMMP. DAT' , , INFP. DA'I' , /
00 500 K=1,3

OPEN(UNIT=l,FILE=FLNAME(K))
00 10 1=1,1000

READ(1,50,END=20)X(I) ,Y(I)
10 CONTINUE

S'IDP
20 NPT=I-l
*

*

IF(K.EQ.l)CALL QIKPLT(X,Y,NPT,
1 'Time in Seconds' ,'Voltage in Volts',
2 'FILTER INPUT VOLTAGE' ,15,16,20,0,0)

IF(K.GE.2CALL QIKPLT(X,Y,NPT,
1 'Time in Seconds' ,'Voltage in Volts',
2 'FILTER OUTPUT TRANSIENT' ,15,16,22,0,0)

CLOSE (UNIT=l) ,

500 CONTINUE
50 FORMAT(lX,2F15.4)

S'IDP
END

The output from this program has been previously shown in the last
chapter as Figure 5.4(a) •

(2) The Interactive Plot programs

Although the quick plot routines are very convenient to use, they
both have long lists of parameters, and they tend to be error-prone.
Therefore, convenience can be enhanced by incorporating the graphic
routines into an interactive program, in which the plot routine
parameters will be entered and guided by an interactive dialogue.

Two programs using this approach will be presented here:

The CALPUr program in ENG:

One of the program unit in ENG: is C'ALPLT, an interactive program
for CalComp plotting. By interactive dialogue, the user enters inputs,
such as the data filename, and all titles. The counting of characters is
done automatically within the program. The listing of the program is
shown. To invoke and execute the program, use the standard Engineering
Library call:"PIL ENG:CALPLT". For other Library programs, see
Appendix B.

240 CHAPrER 6

'* ***********************************

ENG: CALPLT • FOR

* **** *******************************
Interactive program to do a CaIc~p plotter job
Require data set file with one point per line (2 real constants

in either (2E) or (2F) format.
Will produce as an output a plotter file XXXXXX.PLT ready to queue.
Option of linear, semi-log, or log-log plot
Maximum 200 data points

REAL X(202) ,Y(202)
OOUBrE PRECISION FINAME
INI'EGER XTITIE (12) ,YTITrE (12) ,GI'ITLE (12)
DATA XTITLE/12*' 'I, YTITLE/12*' 'I ,GI'ITLE/12*' 'I
DATA KARE,KARF/' E' ,'F' I
WRITE(6,80); READ(5,90)KOP
WRITE(6,100); READ(5,llll)FINAME
OPEN (UNIT=l ,FIIE=FINAME)
WRITE(6,120): READ (5 ,130) KKK
00 10 1=1,1000

IF (KKK. EQ. KARE) READ (1 ,140 ,END=20)X (I) ,Y (I)
IF (KKK. EQ.KARF) READ (1 ,150 ,END=20) X (I) ,Y (I)

10 CONTINUE
STOP

20 NPT=I-1
30 WRITE(6,160): READ (5 ,130) (XTITIE(I) ,1=1,12)

CALL KAMC(XTITLE,LX): IF (LX. GI' .45)WRITE(6, 170) : IF (LX.GI' .45)GOTO 30
40 WRITE (6 ,180) : READ (5 ,130) (YTITLE(I) ,1=1,12)

CALL KAMC(YTITIE,LY): IF (LY .GI'. 57) WRITE (6 ,170) : IF(LY.GI' .5"')GOTO 40
WRITE (6 ,190) : READ(5,130) (GI'ITLE(I) ,1=1,12)
CALL KAMC(GI'ITLE,U;)
IF (KOP.EQ.1)CALL QIKPLT (X, Y ,NPT,XTITLE, YTITLE,GI'ITLE,

1 LX,LY,U;,O,O)
IF (KOP. EQ. 2) WGT-1
IF (KOP. EQ. 3) WGT=l
IF(KOP.EQ.4) WGT=O
IF(KOP.GI'.l)CALL QIKlDG(X, Y ,NPT ,XTITLE, YTITLE,GI'ITLE,

1 LX,LY,U;,O,O,WGr)
80 FORMAT(/' PLOT OPTIONS: OPTION = 1 FOR LINEAR PLOT' ,

1 /1 7X,'OPTION = 2 FOR SEMI-LOG PLOT, X-AXIS LOG SCALE',
2 117X, 'OPTION = 3 FOR SEMI-lDG PLOT, Y-AXIS LOG SCALE',
3 I17X, 'OPTION = 4 FOR LOG-LOG PLOT. 'II
4 ' ENI'ER OPTION = '$)

90 FORMAT (I)
100 FORMAT (/' INP{J[' FIIENAME=' $)
110 FORMAT (AlO)
120 FORMAT(/' DATA FORMAT IN EITHER 2E OR 2F FORMAT YOUR '

1 'FILE, E OR F?'$)
130 FORMAT (12A5)
140 FORMAT (2E)
150 FORMAT (2F)
160 FORMAT (/' X -AXIS TITLE=' $)
170 FORMAT(/' TITLE TOO WNG, TRY AGAIN.')
180 FORMAT (/' Y-AXIS TITrE=' $)
190 FORMAT(/' PLOT TITLE='$)

END

* SUBROUrINE KAMC *

To count number of character in an ASCII variable array
SUBROrJrINE KAMC (ASCII, IENGI'H)
INI'EGER ASCII (12)
DATA JB/321
00 10 1=1,12

IX=13-I
00 10 J=1,5

JX=6-J: JBIT=(JX-l)*7: JKAR=LDB(JBIT,7,ASCII(IX))
IF(JKAR.NE.JB)GOTO 20

10 COOTINUE
LENGrH=O; RETURN

20 LE:l\K:;1'H~5*(IX-1)+JX: RETURN
END

Listing for ENG:CALPLT.FOR

COMPUTER GRAPHICS

USL:PLOTIT Program 241

The PLOTIT program in USL:

An excellent and convenient interactive program with many plot
options is available in the User Library USL: It was developed at the
University of Pittsburgh by Professor Frederick Gottlieb of the
Biological Sciences Department. It has options of entering the data by
stored files, or by typing in the data at the terminal. It allows the
user to choose, among others, number of curves on one plot (6 maximum) ,
x- or y-axis as the "long" axis or else a square plot, labels and titles,
tic marks, data point symbols, smooth (French curve fit) or
connecting-line curves. Perhaps, the best way to show how this
interactive program works is to reproduce the interactive dialogue of an
actual run.

Therefore, the data files DA.DAT, DB.DAT, and DC.DAT that produce
Figure 6.1 are used again for illustration. As in the consistent
practice in this book, the user's response in a dialogue is re-typed with
italics and underscored.

6.4 Preview of Plotter Output

The plotter is a very slow device, and therefore when a plotter job is
queued, there is generally a long turn-around time. If a mistake is made, or if
subsequent processing is dependent on the graphic output result, the delay here
represents a serious bottleneck. Typing or printing out a plot file will be
useless, because it contains codes that can be understood only by the plotter.

At the University of Pittsburgh, both the CalComp Plotter and the
Tektronix 4010-series graphics terminals are available and supported. A program
TEKPLT has been implemented by the Computer Center staff to display a plotter
file on the Tektronix graphic terminal, thus providing an opportunity to preview
the plotter output. TEKPLT may be called and executed by a monitor command of:

.R TEKPLT

The system will respond with a request for the plotter file name:

Enter file name >

If you don't know the name of the plot file, use a DIRECTORY command to
find out, for example:

• DIRECT *. PLT

The filenames of all plot files will be printed out.

After the filename of the plotter file is supplied, TEKPLT will draw the
plot on the Tektronix screen, and will automatically adjust the size to fit the
screen. If the long and narrow dimension of the plot fits the wrong way, give a
TEKPLT command of "I" (without carriage return) to rotate the plot 90 degrees.
Other TEKPLT commands are detailed in References 7 and 8.

.RUN USL:PWfIT

Welcome to PWfIT (Rev. 9 Jan 80.)
This progrElll will call existing data sets and plot them with up to
6 curves per plot (i.e., axis set), and upper/lower case notation.
It is suggested that you use JOI'rER to wr i te the data sets for plotting.

D:l you want the FORMAT details for data sets which are canpatible
with PWfIT? (Answer yes or no.) >/r.~c;

The data set lines must be in the format (lx,3fl5.), where the first t~ value
s are X am Y coordinate values -
and the third value is an error bar value - usually the standard error of the me
an of Y- am will have the value of
zero if no error bars are to be drawn.
Data sets should not exceed 200 X, Y am Error values.

D:l you want to write a data set?(answer yes or no»!!!!...

D:l you want to plot now? (Answer 'yes or no) > YF'8

Please give me a nEllle for this plot file.
(6 character maximun»~

How many curves on this plot? (answer with an integer between I am 6»2-

Whet is the nane am extension of the first data file? (name.ext) >. ~

What is the nane am extension of the second data file? (name.ext) >!l!i.:..!.!:11

What is the nane am extension of the third data file? (name.ext) >. De. DA:"

Which is the long axis? (Type x or y or s [for a square box plot) >2:

Want plot with nunbers am labels?>'.')?S

Is either axis a log axis? (answer yes or no) >.!!.5.!..

What is the value at the x-origin?>.Q.

What is the highest axis value of x?>~

How many scale units between labeled tics on x?> J.!!..

Want tics between labeled x tics?(answer yes or nol>YES

How many tics between labeled tics? (integer between' 1 am 9» ~

What is the value at the y-origin?> 2...

What is the highest axis value of y?>. J 000

I How many scale units between labeled tics on y?> Y22..

I

Want tics between labeled y tics? (answer yes or no) >. ~T::

How many tics between labeled tics? (integer between' I am 9) > J...

Type the x-axis label (30 character maximun)
Label will be in u~r am lower case, the symbol "-,, will plot as "+",
enter the label with a "@" after the last character -

:<-------30 characters------>: (ie, between the t~ ":")
>'lUf4BER ()P lJAY8r

Type the y-axis label (30 character maximun)
Label will be in u~r am lower case, the symbol "-,, will' plot as "+",
enter the label with a "@" after the last character -
:<-------30 characters----->: (ie,between the tw:> ":")
)lIl11NRFH OF T'ER:;(JNS.'l

How many decimal places in the x tags? (O,I,2,etc. or 9=integer»£.

How many decimal places in the y tags? (O,I,2,etc. or 9=integer»E-

D:l you want to alter the size of the output plot? Answer yes or no'''L

You may shr ink the plot to as small at 0.25 x; or you may expand up to 2.llUx
The 8 1/2 x 11 inch page- 'box will be anitted.
Please choose a magnification factor between 0.25 am 2.00>~

I Do you want a ticked upper am right axis also? A!1swer yes or no.>~

First Curve

How many data points to be ploted? (enter an integer between I am 20U) >. 411

Want symbols at data points? (answer yes or no}) YES

please choose your symbol for this plot.
type the appropriate t~ letter code fran this list:
Code Letters Symbol

oc open circle
fc filled circle
ad open diElllOnd
fd filled diamond
os open square
fs filled square
ot open tr iangle
ft filled triangle
cr cross (x)

Which symbol do you want?>!£

D:l you want a smoothed french curve fit?(answer yes or no».fl2.

Answer yes or no!>.vr::;

tv
01:>0
tv

~
~
0'\

()

~

~
~

~
~
(f)

Secord Curve

How many data [Xlints to be ploted? (enter an integer between 1 arrl 200) >~

Want symbols at data [Xlints? (answer yes or no))YJ::S

Which symbol do you want?> I'D

Do you want a smoothed french curve fit? (answer yes or no) > YES

'filird Curve

How many data [Xlints to be ploted? (enter an integer between 1 arrl 200»~

Want symbols at data [Xlints? (answer yes or no) >.1!l!l..-

Which symbol do you want?> 11:.

Do you want a smoothed french curve fit?(answer yes or nopvE::

'file plot file SAMPLE.plt is now in your directory.

want to draw another graph now? answer yes or no)NO

Then we' 11 stop now, Have a good day.
S'KlP

Errl of execution FOROl'S 5B(1001)
cru time: 4.70 Elapsed time: ':25.28
EXIT

·DIRFC:" *. PUI'

SAMPLE PLT 48 <057> 29-0ct-80 USRB: [115036,320571J

)IT:):/: :;:1·~J'PLF.pr/~

Total of 2 minutes in 1 file in PLT request / Sequence nI.IlIber 10045

(j)

z
0
(j)

a:
w
Q...

LL
0

a:
w
CO
:::2
=>
z

1000

900

800

700

600

500

400

300

200

100

0
0

Figure 6.3

10 20 30 40 50

NUMBER OF DAYS

Plot Produced by PLOTIT

@
F.'

~
~
~
S
H

~

tv

"'" w

244 CHAPI'ER 6 COMPUTER GRAPHICS

Figure 6.4 includes a group of reproductions of hardcopies of the
TEKTRONIX-40l0 displays for the PLOTIT runs that prepared FigurE! 6.3. During
the run, some mistakes were inadvertently made in the input phase of PLOTIT.
With the preview capability of the TEKPLT program, these mistakes were evident
in the preview displays. Valuable time and plotter resources were saved. After
a preview session, only the satisfactory plot file was submitted for the actual
plotter job.

Some DEC-10 installations have developed simulator programs that will
print out a CalComp plot on a printer for preview purpose. Users should check
with their local installation about their availability.

0.

'"t

..

100

600

"00

400

300

200

.00

10 20 JO .0 50

Y-axis scale error

'* C
D

0..

- 10 0 10 20 30 40 ~o

Nu .. ber 01 Days

Labeling all messed up

1000

900

800

700

600
~OO

400
300

200

100

a

V>

t:
V>

5
0-

....
D

CJ:'
w
a::::I
::IE
:::>
:z

0 10 20 30 40

1000

900

800

700

600

500

400

300

200

100

NUlllbel' of DOlJs

Y-axis too short

NUI.mER OF DfWS

Chosen for Figure 6.3

Figure 6.4 Plots Previewed Using TEKPLT Program

50

Preview of CalComp Plots 245

GENERAL GRAPHICS

In the general graphics applications using a plotter or a graphic
terminal, software becomes very much hardware-dependent. The result is that if
two DEC-IO facilities have different graphic hardwares, their software may not
necessarily be compatible. Two types of graphics hardware will be considered
here: one is to produce hardcopy and is essentially a plotter; and the other
is to produce soft copy and is essentially a CRT terminal. Selected for
inclusion in this part of the chapter are the discussions on two software
packages: the CalComp subprograms, and the Tektronix PLOT-IO System. Both are
in the forms of FORTRAN-callable subroutines.

A PRIMER FOR THE CAI£OMP PLOTTER

6.5 Basic Principle of a Digital Plotter

There are many different luanufacturers of digital plotters. Probably the
most commonly used type is the CalComp plotter, manufactured by California
Computer Products, Inc., Anaheim, California. Actually, the basic principle for
all digital plotters is very similar.

In a digital plotter, the pen is attached to a ribbon or wire and can
move along a linear guide. This is the- y-direction movement. To the right
angle of the pen guide, the x-axis movement is provided by either of two ways as
shown in Figure 6.5.

Flatbed Type Plotter Drum Type Plotter

Figure 6.5 Two Basic Types of Digital Plotters-

In a flat-bed type plotter, the movement of another linear guide
perpendicular to the y-movement provides the x-movement. In a drum-type
plotter, the pen can only travel in the y-direction, but the drum may turn. Its
rotation, or the relative motion with respectt to the pen, provides the
x-movement.

246 CHAPI'ER 6 ca~PUTER GRAPHICS

Movements in each direction are· controlled by precision servo
step-motors, and each "step" movement is translated by a reduction gear train to
a precise pen movement in the x- or y-direction. This incremental pen movement
defines the basic resolution of a plotter. Commercial incremental digital
plotter ranges from 1/40 inch to 1/500 inch or better.

Since the x- and y-movements are incremental, each step of pen movement
is a combination of the x-y increments. As a result, there are only eight
possible ways that a pen can move in one increment.

(a) Basic Incremental
Pen Movements

I

A

Figure 6.6

~~ 1 pZotter> incr>ement, 1/40 to 1/500"

b) Drawing a "Straight" Line
(Enlarged approxL~ately 75 times)

Incremental Pen Movements

B

As shown in Figure 6.6(a), the eight possible ways of incremental pen
movement, borrowing the term from the points of a compass, are E, NE, N, NW', W,
SW, S, and SE. Thus, to move linearly from point A to point B, the actual path
of the pen, and therefore the trace it draws, is actually a zig2:ag step line as
shown in Figure 6.6. (b). Fortunately, the resolution of the plotter is fine
enough that the zigzags will not be visually noticeable.

In addition to the x- and y-movements, the pen can be lifted or lowered
on paper. When the pen is lowered and moved, it traces aline. When the pen is
lifted and moved, there is no line. This simple pen ability is necessary in
order to skip from one point to another.

Therefore, a basic plotter instruction is rather primitive. It tells the
plotter to lift or lower the pen, or keeps the pen position as is. It tells the
plotter one of the eight directions of incremental pen motion. Such raw
instructions are too cumbersome for application. Therefore, a plotter
manufacture usually provides a basic plotter language that incllnes a set of
plotter instructions. Thus, CalComp has CalComp language; Gould has Gould
language; Hewlett-Packard has its language. The list goes on. To compound the
proliferation, each local installation then develops its own high-level
(FORTRAN-callable) subroutines based on the plotter language. Hence, the
subroutines used at one installation may not be run at another. When a user
faces this situation, there are two options. One way is to obtain a software
package from the installation, where the language was develoPE~, by purchase,
lease, or exchange. The other way is to develop a simulator which translates
the foreign subroutine calls into the local subroutine calls.

Next, let us plan a drawing as shown in Figure 6.7. To obtain a
perspective, the figure is superimposed on a coordiante grid lines, with the
lower left corner being the origin (0,0).

Primer on CalComp Subroutines 247

Pen positions and movements can be
planned to draw the figure:

,_._-

:-
I

~<,~ L~; i_

(0,0)
r1c"'j

Figure 6.7 Drawing a Figure

Pen Position
(UP or OOWN)

up
down
down
down
down
down
down
down
down
down
up
down
up
down
down
down

STOP

Pen Movement
Destination

(1,5)
(2,8)
(6,8)
(7,5)
(7,3)
(5,2)
(5,5)
(1,5)
(1,2)
(5,2)
(5,5)
(6,8)
(3,5)
(3,3)
(2,3)
(2,5)

In the presentation that follows, the materials will be based on the set
of plotter routines that were either furnished by CalComp or developed at the
University of Pittsburgh.

6.6 A Primer on CalComp Plotter Subroutines

At the University of Pittsburgh, a CalComp 936 metric digital pen plotter
is installed with the DEC System-lO. A number of the plotter routines are
supplied by California Computer Products, Inc., the manufacturer of the plotter,
and many were developed by the Computer Center staff. Collectively, these
FORTRAN-callable subroutines are stored as PRG:PLTLIB.REL, which is also
incorportated into the FORTRAN system library. Thus when a program PRGM.FOR
containing plotter routines is to be executed, the monitor command issued should
be:

• EXECUTE PRGM. FOR
or, .EXECUTE PRGM.FOR, PRG:PLTLIB/LIB

When the execution is completed, there is a plot-file (with an extension PLT)
generated in the user's disk. A PLOT monitor command for that plot file will
queue the plot-job, and a plotter output will be made.

Among the CalComp subroutines, many parameters pertain to the lengths and
coordinates. It may be set to either the English system (in inches) or the
Metric system (in centimeters) by calling the subroutine METRIC:

where:

CALL METRIC (LOGIC)

LOGIC==. TRUE.
LOGIC==.FALSE.

for linear measurements in centimeters.
for linear measurements in inches.

248 CHAPl'ER 6 COMPUTER GRAPHICS

'This subroutine may be placed anywhere in a program, and the
measurement selection takes effect after that subroutine call.
subroutine is called, the default system is Metric.

system of
If no such

Thus, one can not only select the system but also switch the system from
one to another at will. In the presentation of the Plotter Primer of
Subroutines that follows, all linear measurements will be in centimeters for
reason of consistency. If a user wishes to use these subroutines in English
system (in inches), a "CALL METRIC(.FAISE.)" FORTRAN statement should be given
first.

'The selected CalComp subroutines are divided into six groups:

(1) Initializing and terminating a plot
(2) Re-defining the new origin and scales
(3) Basic pen movements
(4) Annotation of symbols and numbers
(5) Axis and scales
(6) Lines and Curves

'They are now presented next.

(1) Initializing and terminating a plot

When a plot job is initialized, three major events will be performed:
Plot area bounds will be established; a plot file is opened in your diSk; and
all options are assigned with default values.

When a plot job is finished, that plot-file must be closed. Even within
the same program, one should always terminate (close) one plot-file before
enbarking on another plot job. Failing to that \'X)uld get a drawing with several
drawings superimposed on each other.

'The subroutines of this group are shown in Table 6.1.

(2) Redefining the origin and the scales

When a plot job is initialized, the ong In is set at the lower le ft
corner of the plot area, and scale is set to the actual centimeters or inches.
This may be very inconvenient. Allowing redefining the new origin and new
scales are a group of subroutines as shown in Table 6.2.

(3) Basic pen movements

This is perhaps the most fundamental plotter routine. It rnoves the pen
from the current position to another specified position, leaving on the paper
with or without a tracing. All plotting routines in the CalComp software are
built upon this routine. Thrs--is shown in Table 6.3.

(4) Annotation of symbols and numbers

Annotations in text are represented in ASCII string constant or in string
array variable with AS formats. Symbols are defined according to a coding
table, where each symbol is represented by the decimal equivalent of its ASCII
code. The codes for symbols are shown in Table 6.4. 'The subroutines for
annotation are shown in Table 6.5.

CalComp programming Examples 24Y

(5) Axis and scales

Among the most useful routines are those which automatically scales and
draws the axis, either linear type or logarithmic type. The axis can be labeled
with symbols and numbers and tic marks. The group of routines that draw axis
and scale them are shown in Table 6.6.

(6) Lines and curves

In this group are routines that plot lines in cartesian or polar
coordinates, in linear or logarithmic scales. Option of smoothing is available.
Higher order routines of drawing common geometric patterns, such as circles,
ellipses and polygons are provided. These routines are grouped in Table 6.7 and
Table 6.8.

6.7 Examples of CalComp Programming

Example 1: Write a program to draw the figure as
shown in Figure 6.7.

FORTRAN program:

CALL GRAPH(lO.O,lO.)
CALL PLOT(1.O,5.0,3)
CALL PLOT(2.0,8.0,2)
CALL PLOT(6.0,8.0,2)
CALL PLOT(7.0,5.0,2)
CALL PLOT(7.0,3.0,2)
CALL PLOT(5.0,2.0,2)
CALL PLOT(5.0,5.0,2)
CALL PLOT(1.O,5.0,2)
CALL PLOT(1.O,2.0,2)
CALL PLOT(5.0,2.0,2)
CALL PLOT(5.0,5.0,3)
CALL PLOT(6.0,8.0,2)
CALL PLOT(3.0,5.0,3)
CALL PLOT(3.0,3.0,2)
CALL PLOT(2.0,3.0,2)
CALL PLOT(2.0,5.0,2)
CALL ENDPAG
END

After the execution of the program, find out what is the
computer-assigned name of the plot-file by a command ".DIREC'IDRY * .PLT".
Suppose the directory shows a "QRUS3.PLT" file created. Then submit a plotter
queue job by another command ".PLOT QRUS3.PLT".

The series of monitor command given to go through the sequence was:

.EXECUTE PRGM,PRG:PLTLIB/LIB

.PLOT *.PLT

250

Subroutine:

Function:

Parameters:

wwrH
HEIGHT

Subroutine:

Function:

Parameters:

Subrout ine:

CHAPTER 6 C'O~1PurER GRAPHICS

CALL S~PH(WIDTH, FEIGHT)

To initialize a plot by: setting the plot area limit, opening an output
plot-file in the user's disk, and moving the pen (UP) to the lower left corner

,of the plot area (coordinate 0,0). This call must precede all other plotter
subroutines.

width of plot area permitted, ranging from I to 130 centimeters.
Height of plotting area permitted, ranging from I to 80 centimeters.

CAL!' E!1!JPAG

To terminate the plot and to close the plot-file. This call must ~ given ~
the end Qf .'!~; otherwise, no plot-file will bestOrecr:--'

None

CALL GRAPH2

Function: To re-initialize another plot in the same program. The plot size remains the
same as defined by a previous GRAPH subroutine call. If there is no previous
GRAPH call, the size is set to a defaul t size of 30. 5cm (width) by 23cm (height) •

Parameters: None

Table 6.1 CalComp Subroutines - Initial izing and 'I'erminating a Plot

Subrout ine:

Function:

Parameters:

XNEW,YNEW

I Subrout ine:

Function:

Parameters:

(']4LL ORIr;n7(i(JllE~1, YNEfl)

To translate the origin to a new point with the coordinates (XNEW,YNEW) with
respect to the lower left corner of the plot area defined by the subroutine
GRAPH call. When the plot is first initialized, the origin i:, set to that
point.

The coordinates of the new origin with respect to the lower left corner of the
plot as defined by GRAPH.

CALL PSCALE(XCALE, YSCALE)

To change the size of the plot.

XSC'ALE, YSC'ALE The x- and y-scale factors respectively applied to the abscissa and ordinate
values.

Subroutine:

Function:

Parameters:

CALL WRGIN(XLORGN, YWRGll)

To specify a logical origin if the size of a plot is changed by the subroutine
PSC'ALE call.

XIJ)RQ'J,YLORGN The logical origin with coordinates with reference to the previously defined
,)RIGIN.

Table 6.2 CalComp Subroutines - Redefining Origin and Scales

CalComp Subroutines

Subroutine:

Function:

Parameters:

XEND,YEND
KODE

Subroutine:

Subroutine:

Function:

Parameters:

Subroutine:

Function:

Parameters:

XEND,YEND
KODE

Subroutine:

Function:

Parameters:

XEND,YEND
DPSH

CALL PLOT (XEND, YEND, KODE)
To move the pen frem the present position to (XEND,YEND) with the pen UP/row
position defined by KODE.

The coordinates of the destination point.
Pen code: 3 for pen UP.

2 for pen row
0,1 for no change

'ltlis is the basic subroutine upon which all other plotting routines are based
on.

CALL PENDN

CALL PENUP

To lower or to lift the pen, no x-y movement.

None

CALL S1100T(XEND, YEND, KODE)

To plot a smooth curve using a spline-fit technique.

As defined in PIDT or as below.
Initial call of SMoar must have KODE=O or -1 to place it in the "smoothing
mode. II

KODE Meaning
-0- Define (XEND,YEND) as an initial point. 'ltle last point

and the intial point will not be joined later. This is
to draw an open curve.

-1 Define (XEND,YEND) as an initial point on the curve.
'ltle last and the first point will be joined later.
This is to draw a closed curve.

After the initialization of smoothing mode, other values of KODE may be
applied and interpreted as:

KODE
--::r

-3
+2,+3

Meaning
Plot smoothed line, pen row.
Move the pen along the smoothed line, pen UP.
Interpreted the same way as in PIDT subroutine.

CALL DASHP(XEND, YEND, DASH)

To draw a dash line frem the cur rent position to (XEND, YEND) •

The coordinates of the destination point
The length of each dash.

Table 6.3 CalComp Subroutines - Basic Pen Movement

251

252 CHAPTER 6 COMPUTER GRAPHICS

I
G [!] I' 20 - 40 60
1 C!) 21 1\ 41 61
2 A I 22 v 42 * 62
3 -I 123 J, 43 + 63
4 x 24 A 44 64
5 ~ j 25 t 45 - 65

6 + 26 46 166

·~-80-p-- 1 08

=,81 Q 101
> I 82 R 102
? I 83 5 103
@ 84 T 104
R 85 U 105
B 86 V 106
C 87 W 107
o 88 X 108
E 89 Y 109

.---+--- --.---- --------

o 122
E 121

F 1'122
G 1 123
H : 124
I 125
J 126
K 127
L
M ~j ~ t~j .~. _}i L~~~

1

10)!(! 30 ! 50 2 I 713 F
11 lIE 131 i51 3:71 G

Z 110 N
[1 1 1 0
\ 112 P
] 113 Q

12 x I 32 i 52 4 I 72 H
13 I 133 1 I 53 5 I 73 I
14 • 34 .. I 54 6 74 J
15 - 35 #! 55 7 75 K

t 114 R
+- 115 5
@ 116 T
R 11 7 U
B 118 V

x
Y
l
[

\
J
t

U
!6 I 36 $ I 56 8 76 L

1 7~ [37 % I 57 9 77 M
18 ~ 138 8. 58 78 N
19 ~. 39 • I 59 i 79 0

90
91
92
93
94
95
96
97
98
99 C 11 9 vJ _______ 1_~_._---,

'['able 6.4 Cz.1Comp Symbol Table

Omitting those code numbers from 0 to 31, this code table is also known
as the ADE (ASCII DECIMAL EQUIVALENI') code.

CalComp Subroutines

Subrout ine : CALL SYMBOL(XBEGIN~ YBEGIN~ HEIGHT~ KARAC~ ANGLE~ KODE)

Function: To draw the title text or a .sYJllb?l.

Parameters:

XBEGIN,YBEGIN The coordinates of the lower left corner of the first character to be drawn.
HEIGHT The height of each character or symbol.
ANGLE Angle in degrees at which the characters are drawn. For example:

KODE, HEIGHT

Subroutine:

Function:

Parameters:

~ (gOo)

w
15
E-< TIME IN SECONDS

S(~~O()~~S NI 31U.1 ~ (00)

Defined as follows:

KODE
+n

O,-n

~
H
2:
Ul (270°)
t'l
()

Meaning
KODE = number of characters in the KARAC parameter
KARAC = Character string to be drawn: in ASCII constant

(enclosed in single quotes) or as ASCII array
variable. Array variable must be dimensioned in the
calling program and in AS format.

KODE = -2: Center the symbol, Pen OCMN.
KODE = -1: Center the symbol, Pen UP.
KODE = 0: Symbol not centered, Pen UP.
KARAC = an integer code of plotter symbol as defined in
Table 6.4.

CALL N[}MBER(XBEGIN~ YBEGIN~ HEIGHT~ FLOAT~ ANGLE~ KODE)

To draw a number in FORl'RAN F-format (floating point) format.

XBEGIN,YBEGIN,HEIGHT,ANGLE As defined in the subroutine SYMBOL.
FWAT Real constant/variable for the floating point number to be drawn.
KODE As defined below:

KODE Meaning
+i1 Number of digits to the right of decimal point.

o Rounded integer, drawn with a decimal point.
-1 Rounded integer, drawn without a decimal point.
-n P-Format scaling by the formula: FWAT* (10** (KODE+l}). The

constant is then rounded am drawn without a decimal point.

253

Subroutine: CALL PLTSYf1(XBEGIN~ YBJi)GIN~ HEIGHT~ RARAC~ ANGLE~ NCHAR~ NAME)

Function:

Parameters:

To plot symbols am characters whose positions are controlled by a user-supplied
subprogram.

XBEGIN,YBEGIN,HEIGHT,KARAC,ANGLE As defined in the subroutine SYMBOL.
OCHAR Number of characters.
NAME Name of the user-supplied subprogram.

Table 6.5 CalComp Subroutines - Annotations with Symbols and Numbers

254

Subroutine:

Subroutine:

Function:

Par ameters:

CHAPI'ER 6

CALL SCALE (ARRAY. AXLEN, NPT, INC)

CALL sCALG(ARRAY, AXLEN, NP~, INC)

COMPUTER GRAPHICS

To determine the scale factor, mlnber of data units per unit length (an or inch)
along the specified axis.
SCALE:-----linear scale
SCAI.G:-----lJ:lg scale
Use this subroutine to scale separately the x-array and the y-array.

AFFAY The first array element of the data point array. The arrray must be dimensioned
in the calling program at least (NPT+2). On return from this subroutine (when
INC'=1) :

AFFAY(NPT+l} = ·First value = FIRSTV used in subroutine AXIS or LGl\.XS
AFFAY(NPT+2} = scale factor = DELTAV used in subroutine AXIS or LGl\.XS

AXLEN Length of the axis
NPT Number of data values contained in the array AFFAY.
INC' Increment with which data values are selected. INC=2 means every other point.

Subroutine:

Subroutine:

Function:

Parameters:

CALL AXIS (XBEGIN, YBEGIN, KARAC, NeHAR, AXLEN, AlJGLE, FIRST V, DELTA V)

CALL LGAXs(XBEGIN, YBEGIN, KARAC, NCHAR, AXLEN,ANGLE, FIRsTV, DELTA V)

To plot a linear axis (AXIS), or log axis (LGl\.XS) and annotate it with labels,
title and tic marks.

XBEGIN, YBEGIN, KARAC As defined in SYMBOL subroutine.
NCHAR Signed nunber of characters in KARAC. If there is no title, KAAAC='

NCHAR=l.
AND

If NCHAR=positive, the annotation is placed on the counter-clockwise side of the
axis. (for Y-axis title) If NCHAR=negative, the annotation is placed on the

AXLEN
ANGLE
FIRSTV
DELTAV

Subroutine:

Function:

Parameters:

XBEGIN, YBEGIN
DX
DY
NBLKX
NBLKY

clockwise side of the axis. (for x-axis title)
As defined in subroutine SCALE.
As defined in subroutine SYMBOL.
First value drawn at the first tic mark, obtained from SCALE subroutien.
Number of data units per unit length, obtained from SCALE subroutine.

CALL GRID(XBEGIN, YBEGIN, DX, DY, NBLKX, NBLKY)

To draw a linear and rectangular grid.

The lower left corner coordinates of the grid.
Displacement between grid lines along the x-axis.
Displacement between drig lines along the y-axis.
Number of blocks in the completed grid in the x-direction.
Number of blocks in the completed grid in the y-direction.

Table 6.6 CalComp Subroutines - Axis, Scales and Labels

CalComp Subroutines

Subroutine:

Subroutine:

Subroutine:

Subroutine:

Function:

Parameters:

){ARRAY, YAFIlAY
RARRAT, TAFIlAY
NPT
INC
LINC'OD

SYMBOL
KODE

RNAX

CALL LINE (XARRAY ~ YARRAY ~ NPT, INC~ LINCOD, Sy/1BOL)

CALL DASHL(XARRAY~YARRAY~NPT,INC)

CALL LGLIN(XARRAY~YARRAY .. NPT .. INC .. LINCOD,SYHDOL~KODE)

CALL POLAR(RARRAY .. ,),ARRAY .. NPT .. INC .. BINCOD .. SYHDOL .. RNAX .. DR)

To draw a curve through the data points.
LINE: ------To plot a linear plot wi th sol id line.
I:W3HL: -----To plot a 1 inear plot wi th dash 1 ine.
ffiLIN: -----To plot a semi-log or log-log plot.
POlAR: -----To plot a polar plot.

Data point arrays in Cartesian coordinates.
Data point arrays in Rllar coordinates.
NLHTIber of data po ints to be plotted.
Increment between data points.
Line code as defined below:

LINC'OD
-0-

1
2

Meaning
Line plotted but no symbol.
Line and symbols at every data point.
Line and symbols at every other point.
Line and symbols at every nth point.

-n Symbols at every nth point-; no line.
An integer value specifying the symbol-as defined in Table 6.4.
Code for log plot type:

KODE
---=r

o
1

Meaning
Semi-log plot, X in log scale.
Log-log plot
Semi-log plot, Y in log scale.

Maximum radius in acr:Ual centimeters or inches needed for the plot. If RMAX 1S

zero or negative, the parameter DR is used as a scale factor.

255

DR Scale factor for the plot. If RMAX is positive, DR is computed by the subroutine
POlAR. If RMAX is zero or negative, the user must supply a computed DR.

Table 6.7 CalComp Subroutines - Lines and Curves Plotting

Exampl~:
shown below:

Either of two following programs will produce a grid as

10

20

CALL GRAPH(12.0,12.0)
CALL ORIGIN(l.O,l.O)
Y=-O.l
00 10 1=1,101

Y=Y+O.l; I10=MOD(I-l,10)
CALL PLOT(10.0,Y,2)
IF(I10.NE.0)GOTO 10
CALL PLOT(lO.03,Y+.03,3)
CALL PLOT(0.03,Y+.03,2)

CONTINUE
X==-O.l
00 20 1=1,101

X=X+O.l; I10=MOD(I-l,10)
CALL PLOT(X,0.0,3)
CALL PLOT(X,10.0,2)
IF(I10.NE.10)GOTO 20
CALL PLOT(X+.03,10.0,3)
CALL PLOT(X+.03,O.0,2)

CONTINUE
CALL ENDPAG
END

CALL GRAPH(12.0,12.0)
CALL GRID(O.l,O.l,l.O,l.O,lOO,lOO)
CALL GRID(1.03,1.03,1.0,1.0,10,10)
CALL ENDPI\G
END

- t--· I ~_

Figure 6.9

I
-1

Plotting a Gr id

256

Subroutine:

Function:

Parameters:

XBEG1N, YBEGIN
THO
THF
ro
RF
DI

Subroutine:

Function:

Parameters:

XBEGIN, YBEGIN
RMAJ,RMIN
ANGLE
THO,THF
KODE

Subroutine:

Function:

Parameters:

XBEGIN, YBEGIN
llEI'rH,WIDTH
ANGLE
KODE

Subroutine:

Function:

Parameters:

CHAPrER 6 COMPUTER GRAPHICS

CALL CIRCL(XBEGIN, YBEGI:l, THO, THF, RO, RF, DI)

To plot a circular arc.

The coordinates of the starting point of the circular arc.
Radial angel at the start of the arc, in degrees
Radial angle at the eoo of the arc, in degrees
Starting radius of the arc
Ending radius of the arc.
DI=O.O for solid line: D1=0.5 for dashed line.

CALL ELIP8(XBECJIN, YBE'GIN, RMAJ, RNIN, ANGLE, THO, THF, KODE)

To plot an elliptical arc.

The coordinates of the starting p:>int of the elliptical arc.
Lengths of the semi-major am the semi-minor axis respectively.
Angle in degrees between the major axis am the x-axis.
Relative to the ANGLE, radial angles of starting am eooing point:> of the arc.
Pen control code:

KODE
-3-

2

Meaning
Pen UP from the cur rent position to (XBEGIN, Yl3EGIN) .
Pen DJWN from the current position to (XBEGIN,YBEGIN).

CALL RECT(XBEGIN, YBEGITv, DEPTH, iVIDTH, ANGLE, KODE)

To plot a rectangle.

Coordinates of the lower left corner of the rectangle before rotation.
The y-x measurements of recitangle size, before rotation.
Angle of rotation in degrees about the point (XBEGIN, YBEGIN) •
Pen control code:

KOllE
-3-

2

Meaning
Pen UP before moving to the starting point.
Pen DJWN before moving to the starting p:>int.

CALL POLY (XBEGIN, YBEGIN~ SIDE', NSIDE, ANGLE)

To draw an equilateral NSlDE-side ,p:>lygon.

XBEGIN,YBEGIN Coordinate of the starting vertex the p:>lygon.
SIDE Length of each side of the equilateral polygon.
NSIDE Number of sides.
ANGLE Angle in degrees of the first side with respect to the x-axis.

Table 6.8 CalComp Subroutines - Simple Geometric Patterns

CalComp Examples 257

Example 3: Example of AXIS calls and their outputs are shown in
Fi~Jure 6.9:

-Iv -r-
(f) gJ. II AXIS(O.O,O.O, 'VOLTAGE IN VOLTS', 16, 10. O,§O. O,FY,DY)

~~ l-~/~/~""'
'tc·:~ IOGM r ~~
:~ 'Ll~~~~
DCSl 1---! ~IS(O.O,O.O, 'TINE IN SECONDS',-lS.10.0,0.0,FX,DXJ

.~~ t~//:J~'~ ,--- -\---7""r c

"'"

~ tt~ -"CM-·· .£1 \
CSle .00 10.00 20.00 313.00 40,.00 50.00J

TIME IN SECONDS" i _____________ -·~O"

Figure 6.9 Result of the AXIS Subroutine

Example 4: A set of x-y data has been saved as DA.DAT from a CSMP
run. The data format is (2E), one x-y coordinates per record. There are 46
data points. Plot a curve and label the x-axis with "TIME IN MILLISECONDS", and
y-axis with "VOLTAGE IN VOLTS".

Program:

REAL X(48) ,Y(48)
OPEN(ill~IT=l,FILE='DA.DAT')
READ(l,lOO) ((X (I) ,Y(I)) ,1=1,46)

DIMENSION 2 more than array size

Read in data
100 FORMAT (2E)
*

CALL GRAPH(15.0,15.0) Initialize plotter
CALL ORIGIN(2.0,2.0) Move origin
CALL SCALE(X,10.0,46,1) Scale x-axis
CALL SCALE(Y,lO.O,46,1) SCale y-axis
FIRSTX=X(47); DELTAX=X(48) Scale factor for x-axis
FIRSTY=Y(47); DELTAY=Y(48) I Scale factor for y-axis
CALL AXIS(O.O,O.O,'TIME IN MILLISECONDS', I Plot x-axis, label

1 -20,10.0,O.,FIRSTX,DELTAX) below x-axis
CALL AXIS(O.O,O.O,'VOLTAGE IN VOLTS', Plot y-axis, label to

1 16,10.0,90.0,FIRSTY,DELTAY) the left of y-axis
CALL LINE(X,Y,46,1,O,0) Plot the curve
CALL SYMBOL(4.0,10.0,O.5, Plot the title

1 'FILTER OUTPUT' ,0.,13)
CALL ENDPAG Job done; terminate
END

After applying the execution command and the plot command afterwards, the
output was obtained from the plotter as shown in Figure 6.10.

258

_ C[\\J~
o/S
o
o
o
~

o
(f)~
1- 0
--1(1)
o
>0

o
z· o
>-t~

w
c.:JO
«~
1-0
--1(\J
o
>
,""'0

CHAPrER 6 COMPUTER GRAPHICS

o
+-----~~~~--====T======r==~_,

("c~\;t'
)

20.00 30.00 40.00 50.00
IN MILL I SECONDS -" __ ~:1f'

- - --- - -',.j'

[\v\\ /1-/
(,\\ '

Figure 6.10 CalComp Plotter Output of Example 4, Page 257

Subroutine Names Show Their Respective Results.

Graphic Terminal 259

A PRIMER OF GRAPHICS SOFTWARE FOR GRAPHICS TERMINALS

Since there has not yet been any standardization of graphics software,
selection of a software for the PRIMER must depend on how widely its compatible
graphics hardwares are available. While there ~re many manufacturers in the
graphics area, perhaps the most widely used products are the Tektronix graphic
terminals such as Models 4006, 4010, 4012/4013 or 4014/15. Serving these
terminals is a collection of Tektronix-supplied software called the PLOT-IO
system. It includes a basic set of graphics terminal subroutines called the
Terminal Control System (TCS) , an Advanced Graphing II System (AG II), the
Interactive Graphing Package, The "Easy Graphing" Package, the Interactive
Graphic Library (IGL) , and utility routines. The TCS contains a group of
FORTRAN-callable subroutines that is the basic building blocks for graphic
operations and is supported at the University of Pittsburgh. The PRIMER part
will only cover the TCS system. When a FORTRAN program, assuming named as
PRGM.FOR, containing the TCS calls is executed, the execution command is:

.EXECurE PRCN, PRG:TEKLIB/LIB

where PRG:TEKLIB is the PLOTIO library (incuding AG II package) stored. This
command must be given on a Tektronix graphics terminal (such as model 4010), or
on a PLOT-IO compatible terminal.

6.8 Basic principle of a Graphics Terminal

A typical graphics terminal is the Tektronix model 4010-1 (with various
suffix designations). Standard interface makes the terminal compatible to the
computer like a conventional terminal. Thus the communication between the
computer and 4010 is in the ASCII codes. The graphics terminal can also be
operated as a graphics display d~vice when a special control signal is given.
Thus a 4010 can operate in (1) "alpha mode" or "(2) graphics mode.

In the alpha mode, the 4010 operates as a conventional CRT terminal.

In the graphic mode, the 4010 directs an electronic beam to any of the
1024 addressable points in each axis.

... (f!",-'~jl ____ ~ _ !.I"E,~)~)
I . I
: AJJre~s~ble and I
I Non-vIsIble Area I
I

(0,1f1t) (1013,760

Addressable and Visible

LLo 0) (102-3 ~)

Figure 6.10
Screen Size and Coordinates

Thus the screen area has a
coordinate system of 1024xl024 as shown
in Figure 6.10. In the Y-axis, only a
range of ordinate of 0-780 is within
viewing area. An ordinate of 781-1023
range is addressable, but it cannot be
displayed. Thus each of the abscissa
and ordinate information will require 10
binary digits. Since the codes for
communication between the computer and
the terminals are ASCII codes, these
binary coordinates information needed
for display must be "camouflaged" as
ASCII coded characters. As each ASCII
character is coded in 7 bits, 4010 uses
two ASCII characters (14 bits, with 4
bits to spare) to code the x-abscissa,
and another two for the ordinate.

260 CHAPI'ER 6 COMPUTER GRAPHICS

Thus, for every coordinate information, 4 ASCII characters are
transmitted from the computer to the graphics terminal.

When the terminal is in the graphics mode, the hardware will take a
four-character group, strip away the most significant 2 bits from each
character, and combine the remaining bits into the ordinate and the abscissa
data. Figure 6.11 shows how a four-character group "SPACE", "[", "=", and
"DELETE" is decoded into a coordinate of (959,27).

ASCII 5-bit
Character Code Byte Decoded Coordinates

SPACE 0100000 00000

1011011 11011 Y 0000011011 = Decimal 27

0111101 11101

DELETE 1111111 11111 X = 1110111111 = Decimal 959

Figure 6.11 Decoding of ASCII codes into Screen Coordinates

The x-y informat~on is then fed to the deflecting circuits of the CR'I' to
move the beam. It 1S apparent that the coding and decoding of graphic
information is very tedious. FortW1ately, the coding of graphic information for
tr ansmission to the terminal is done by the PwrlO software, and the decoding
for display is done by the graphics terminal hardware. Also, unfortW1ately,
these software and hardware in the graphics industry are not yet standardized.

Example: Set the graphics terminal on LOCAL.
(1) Press PAGE key to erase the screen.
(2) Enter into graphic mode by pressing CTRL-SHIFT-M key.

(3 keys pressed down together)
(3) Enter the following 4-character groups:

(each key pressed in sequence)
SPACE DELETE SPACE @ (Y=3l and X=O)
7 DELETE SPACE @ (Y=767 and X=O)
7 DELETE? (Y=767 and X=1023)
SPACE DELETE? (Y=31 and X=1023)
SPACE DELETE SPACE @ (Y=31 and X=O)

These steps should trace a diagonal cross on the screen.

To switch from the alpha-mode to graphics mode, the computer will send an ASCII
character CONTROL-SHIFT-M; to switch back to the alpha-mode, an ASCII code of
ESC-FORMFEED.

6.9 TerminologY

In the presentation of the PRIMER that follows, some terminology will be
explained here first.

(1) A/N This is an abbreviation for "alphanumeric."

(2)
position.

A/N cursor A blinking marker to show the
This is the same as in any CRT terminal.

next character print

Screen and Virtual Graphics 261

(3) Graphic cursor The graphic cursor on 4010 is a cross-hair cursor
that may be controlled by two thumb wheels. This is used as positional input
during graphic mode.

(4) Home position The upper-left corner screen location at which the
first character of a page is normally printed. Same as a conventional CRT
terminal.

(5) Origin The coordinate represented by (0,0). The screen orIgIn is
located at the lower-left corner. Virtual space has its origin at its center.

(6) Raster unit The distance between two adjacent points on the
screen. This is the basic resolution element of the terminal.

(7) Screen coordinates The set of points which constitutes the
screen. Range of the screen coordiantes is from 0 to 1023 for both x and y.
The visible range for y is from 0 to 780.

(8) Storage tube A CRT which will maintain a display, once written,
for an indefinite priod unitl it is er.ased. The Tektronix 4010 is of such type.
The stored display may be appended by additional display on the same picture.
It cannot accommodate a subtraction of displayed information. Therefore, to
even make a very minor non-appending modification of a display, the current
display must be erased and redrawn.

(9) Vector When the beam is moved from one point to another, the
changes in the coordinates are translated into the voltage changes that applied
to the deflection plates of the CRT. The changes are made into a linear
function of time, and therefore the movement of the beam on the screen will be a
straight line. This is called a hardware vector generator. 'I'he vector is then
a line segment. A vector may be generated with the beam either ON or OFF, which
is analogous to a plotter pen position DOWN or UP.

(10) Absolute coordinates and relative coordiates The absolute
coordinates use either the screen orIgIn or the virtual space orIgIn as
reference. The relative coordinates are incremental values in x and y (positive
or negative) , using the current point as a reference.

(11) ADE (ASCII Decimal Equivalent) Code These are same as the
conventional ASCII codes, except that they are represented in decimal integers.
For example, upper case "A" is coded as dec imal 65. See Table 6.4 (Chapter 6).

6.10 Screen Graphics and Virtual Graphics

First, let us establish an analogous situation. When we use a graph
paper to plot a curve, the graph paper size is fixed. Yet it will be capable to
plot values of any range merely by defining two things: (1) the ranges of x and
y, and (2) the scale factor for x and y. This is equivalent to "zoom" the
real-world scale onto the graph paper size. Thus the measurenent of data
directly on the graph paper would be referred to as "dj rect graphics", and the
zooming process is the virtual graphics. In the graphics terminal, we use the
uterm "screen graphics" for the term direct graphics. The process of the
virtual graphics involves a normalization and scaling of all data points and
translating them into actual screen coordinates for the actual hardware display.
This process is not difficult, but it is exceedingly laborious because it must
be applied to all axis, all labels, all data points location, and all drawings.
These laborious chores are spared by the virtual graphics software. Throught
the use of the virtual graphics, it is possible to increase or decrease the

262 CHAPl'ER 6 COMPUTER GRAPHICS

apparent picture size without having to change the data values. This
effectively provides an elementary "zooming" capability mentioned above. Now we
are ready to define a few more terms:

(1) Screen space and screen coordinates
section 6.9.

These are as defined in

(2) Screen window A rectangular section of the screen space. It is
usually the section into which the virtual window is scaled and translated.

(3) Virtual space this is a user-defined, data-structured rectangular
display area which is independent of the terminal.

(4) Virtual window
into the virtual space.

The translation of the screen window translated

(5) Virtual coordinates This is a set of point coordinates that
constitues virtual space. Figure 6.12 shows the basic viewportin91 principle of
zooming from the screen to virtual graphics.

Note that in the virtual graphics, the sizes of the screen space, virtual
space, screen window, and virutal window may be individually specified.
Furthermore, in each rectangular specification, the width and thE! height can
also be individually specified. This capability leads a wide flexibility of
graphics display, some of which are shown in Figure 6.13. Note that an inerease
in the window specification decreases the apparent picture size (zoom-out), and
vice versa. Also note that when the window width and height are set not in
proportion between the screen window and the virtual window, there will be a
distortion of display. This distortion may not be objectional because it simply
implies a scale change respectively in the x- and y-d irections. If we are
drawing scaled models, then this will result in a objectionable di:3tortion.

Vi "b",a.(Space , _________ 1,

I I<:eol WoY"ld :

I I-
I -
I I\r-;? -- - -- I
'A- ___ I
I - - -- -----
I I
, I

I- - -L-- - -- ---J
-- User- Spec/Fed

Vi,.-tual W};')d6W

I
LLo",~)__ ___ __ _

Use"-S;eclf'ed \
Screen /J;'nc:ftiw _\

\

Figure 6.12 The Basic Viewporting principle

Virtual Graphics 263

4

,-' -- - -1
I

L._ ,

~'1indow width and height varied proportionally

[-~ fffil [---'--1 r---"'-l

0 i I Q_J L __ ... _J ~~~ .. '- ~----j i~1 L__ -I

1 2 3 4

l'7indow width and heiCJht not varied proportionallv

(a) Fixed Virtual Snace (Size not shown). Variable Virtual t'1indmv

3

2 r- --
! 1 m rn

I 1 ; .

~rn-l~ Ii.
L -- ,J

3 r---j

tLJ

4
r------;
i I

b_J
(a) Fixed Virtual tVindow (Iilindow 1), Variable Virtual Space

Figure 6.13 Projections by Virtual Graphics

264 CHAPrER 6 COMPU'I'ER GRAPHICS

6.11 A Basic Set of TCS Subroutines

The PLDTIO software has a hierarchial structure. At the most primitive
and lowest level is a set of basic TCS soubroutines. These subroutines define
the fundamental operations of the graphics. Building upon these pr imitive
subroutines are other more advanced TCS routines. Then the advcillced graphing
package and other graphics software are higher-level subroutines that use the
TCS routines as building blocks.

The basic TCS routines are presented in the following categories and they
are respectively tabulated in five tables: (1) function control (Table 6.9) ,
(2) screen (direct) graphics (Table 6.10), (3) virtual graphics (Table 6.11),
(4) utility routines (Table 6.12), and (5) cursor operations (Table 6.13) •

Subroutine:

Function:

Parameters:

IBAUD

Subroutine:

Function:

Par ameter s:

IX,IY

Subroutine:

Subroutine:

Subroutine:

Function:

Parameters:

CALL INITT(IBAUD)

To initialize the Tektronix terminal for a graphics session.
It will turn the terminal to the graphics m~le, clear the
screen, set all graphic parameters to default values, set the
transmission filler characters based on the baud rates, and
move the beam to the screen origin.

the transmission rate in characters/second. IBAUD=10,15,30,
120 for 110, 150, 300 and 1200 bauds respeci tvely.

CALL FIN ITT (IX .. IY)

To terminate the graphics session and reset it to
alphanumeric mode. Move the beam to a screen coordinate of
(IX,IY). Typically (IX,IY) is the coordinate of the A/N home
position (0,767).

final screen coordinate of the beam position to be set

CALL ERASE

CALL BELL

CALL HDCOPY

ERASE --- To erase the screen
BELL --- To sound an audible alarm to alert the user.

Usually used as a non-displaying prompt signal.
HDCOPY --- To produce a hardcopy of the screen display

None

Table 6.9 PLDTIO TCS Subprograms - Function Control

PLOTIO Subroutineses

Subroutine:

Subroutine:

Subroutine:

Subroutine:

Parameters:

CALL DRWARC;:IX .. IY)

CALL !10VABS (IX .. IY)

CALL PllTABS (IX .. IY)

CALL DSHABS(IX .. IY .. L)

Screen graphics with absolute screen coordinates:

DRWABS -- To draw a vector from the current position to (IX,IY)
MOVABS -- To move the beam from the present position to (IX,IY)
PNTABS -- to plot a point at the position (IX,IY)
DSHABS --- To draw a dash line from the present position to (IX,IY)

IX,IY the screen coordinates of the destination point
L dash line codes:

Subroutine:

Subroutine:

Subroutine:

Subrout ine :

Function:

Par ameter s:

1 5 raster units, visible
2 5 raster units, invisible
3 10 raster units, visible
4 10 raster units, invisible
5 25 raster units, visible
6 25 raster units, invisible
7 50 raster units, visible
8 50 raster units, invisible

L is a dash line code that is a concatenation of the above code mooers. For
example, when L=3454, the dash line will be drawn in the pattern of
345434543454... where each code number is defined as above.

When L is given as a single digit, it is interpreted as follows:

-1 causes a move
o causes a draw
1 al ternate visible and invisible segments between data points.

CALL DRFREL(IX .. IX)

CALL MOVREL(IX .. IY)

CALL PNTREL(IX .. IX)

CALL DSHREL(IX .. IY .. L)

Screen graphics with relative screen coordinates:

DRWREL -- To draw a line from current position to another point with a known
displacement from the current position.

MOVREL -- To move the beam from current position to another point with known
displacements

PNTREL -- To plot a point at a screen displacement of (IX,IY) from the current
point

[sHREL -- to draw a dash line from the current position to another point with a
known x- and y-displacements

IX,IY the x- and the y-displacements (in raster units) from the current position
L the dash line code as defined above

Table 6.10 PLOTIO TCc C:ubrxograms - Screen Graphics

265

266 CHAPTER 6 COt1PUTER GRAPHICS

Example:
following steps:

Screen graphics is simple to implement. It consi.sts of the

(1) Initialize.
(2) Move the beam ("Pen UP" fashion) to the first point.
(3) Start drawing. FORTRAN statements for calculating the data points

may be intermi.xed with the graphics statements in their natural
order.

(4) Terminate the graphics session.

Figure 6.14 Hardcopy of the Output

The following program, when
executed, will produce a drawing as
shown in Figure 6.14.

*

10

Example for screen graphics
DIMENSION IX(13) ,IY(13)
DATA IX/500, 900,700,,300,100, 80u,

1 800,200,200,600,600,500,500/
DATA IY/40u,4UO,600,60G,400,400,

1 100,100,400,400,200,200,400/
CALL INITT (30)
CALL MOVABS(IX(l) ,IY(l))
DO 10 1=2,13
CALL DRWABS(IX(I) ,IY(I))
CALL FINITT(0,76~)
END

Be careful not to let screen coordinates overflow. If either of the
coordinates is specified with an integer larger than 1023, the true coordinate
plotted on some graphic terminals will be the residue number of modulo 1024.
Thus it produces a wrap-around effect. On some graphic terminals, the segment
beyond the screen area will not be displayed. Furthermore, when the beam
returns to the display area, it will return at the place where it goes out of
bound, thus traces an incorrect line. If the line goes out of bound but still
within the addressable area (i.e. Y>780 and Y<1024), the picture will be clipped
for those parts outside the visible display area. These common errors are
illustrated in Figure 6.15.

r-------------
I "I..nv,'.s;b!e b'<.t .. \ (Goo, lOOt>)

I Aelt>I ress .. Me ./ ...
A~Gl _-

Display produced by: (Picture clipped)

CALL MOVABS(200,600)
CALL DRWABS(600,lOOO)
CALL DRWABS(900,200)

Display prcduced by:

CALL MO~BS(800,500)
CALL DR\\fPBS (1500, 30G)
CALL DRWPBS(100,200)

(Incorrect display)

Figure 6.15 Screen Coordinate OVerflow Errors

Virtual Graphics 267

Subroutine: CALL W<1INDO(XI1IN3 XRANGE3 YNIl73 YRANGE)

Subroutine: CALL Df-IINDO(XNIN
3 XNAX3 Yf1IN3 YNAX)

Subroutine: CALL SWINDOO1IllX3 LENX3 !1IHY3 LENY)

Subroutine: CALL TvlINDO(tfINX
3 I1AXX3 MIl'lY3 f1AXY)

Function: To define the windows:

VWINOO and ~INOO --- To define a virtual window
SWINOO and '!WINOO -- To define a screen window

Parameters:

XMIN,XMAX the minimun and the maximlJll virtual x-coordinates
YMIN,YMAX the minimlJll and the maximlJll virtual y-coordinates

I

XRAQ.lE, ¥RANGE the horizontal and the vertical extents of the window

~ "INX'""""'MruY'~i~~~':'~ e.:,_cooy a<e in,",:::", _","~e:i=_:"=~i~~. ______ _

I
I ::::~~:

Subroutine:

I Subroutine:

Functions:

Parameters:

X,Y
L

Subroutine:

Subrout ine :

Subroutine:

Subroutine:

Functions:

Parameters:

X,Y

L

CALL

CALL

CALL

CALL

DRAVIA(X3 X)

110 TfEA(X3 Y)

POINTA(X3 Y)

Virtual graphics in absolute virtual coordinate:

DRAWA -- To draw a line from current position to virtual coordinate (X,Y)
l>KNEA - To move the beam from current position to virtual coordinate (X,Y)
FOINl'A -- To plot a point at the virtual coordinate (X, Y)
DASHA - To draw a dash line from the current position to virtual coordinate

(X,Y). The dash line code is given in Table 6.10.

the absolute virtual coordinates of the destination point
the dash line code as defined in Table 6.10

CALL DRAftlR(X3 Y)

CALL lfOVER(X3 Y)

CALL POIN'J'R(X3 Y)

CALL DA8HR(X3 Y3 L)

Virtual graphics in relative virtual coordinate:

DRAWR - To draw a line from current position with a virtual displacement
M:NE1t - To move the beam from current position with a virtual displacement
OOINl'R -- To plot a point at a virtual displacement from the current point
DASHR - To draw a line form current position with a virtual displacement

the horizontal and vertical displacement respectively of the destination point
from the current point.
the dash line code as defined in Table 6.10

Table 6.11 PLOT10 TCS Subprograms - Virtual Graphics

268

way:

CHAPTER 6 COMPUTER GRAPHICS

Example: Graphics in the virtual space may be implemented in a similar

(1) Initialize the graphics.
(2) specify the screen window (omitted if the entire screen is the

window) and the virtual window.
(3) Move the beam to the first point using virtual coordinate.
(4) Start drawing. Statements for calculating the data points may be

intermixed with the graphics statements in their natural order.
Screen graphics and virtual graphics can also be intermixed.

The following program will project the drawing of Figure 6.14 and
reproduce it within several virtual windows as shown in Figure 6.16.

* Example for virtual graphics
DIMENSION IX(13) ,IY(13) ,X(13) ,Y(13)

10

20
50

DATA IX/500,900,800,300,100,800,800,200,200,600,600,500,500/
DATA IY/400,400,600,600,400,400,100,100,400,400,2:00,200,400/
CALL INITT(30)
CALL DWINDO(50.,950.,50.,650.)
DO 10 1=1,13
X(I)=FLOAT(IX(I))i Y(I)=FLOAT(IY(I))

CONTINUE
DO 50 K=1,3

IF(K.EQ.l)CALL TWINDO(600,800,300,500)
IF(K.EQ.2)CALL TWINDO(100,200,lOO,600)
IF(K.EQ.3)CALL TWINDO(100,8()O,lOO,200)
CALL MOVER (X (1) ,Y(l))
DO 20 1=2,13

CALL DRAWA(X(I) ,Y(I))
CONTINUE

CALL FINITT(O,767)
END

_ t.

(

I

I

~
'I

(

-/

-1

Figure 6.16 Virtual Graphics Example

"."_ .• I

PUJrlO Subroutines 269

Subroutine:

Function:

Parameters:

CALL ANMODE

To set the terminal to A/N output rather than having to use
FORTRAN READ and WRITE statements, thus remaining in the
graphics mode. -

None

~--.--.----.-------.-------------------------

Subroutine:

Subroutine:

Function:

Parameters:

ICHAR

OCHAR
NADE

CALL ANCHO(ICHAR)

CALL ANSTR(NCHAR~NADE)

TO produce an ASCII output on the screen. The beam position
is updated after the writing.

ANCHO --- To output one single character.
ANSTR --- To output a string of characters

an integer representing a 7-bit ASCII character; not a
control-character.
number of characters in the string
an array containing the ASCII decimal integer equivalent for
the characters in the string

---.--------
Subroutine:

Subroutine:

Subroutine:

Subroutine:

Subroutine:

Subroutine:

Function:

CALL NEWLIN

CALL CARTN

CALL LINEF

CALL BAKSP

CALL HOME

CALL NEWPAG

To provide utility functions of the terminal

NEWLIN --- To generate a line feed and carriage return
LINEF --- To generate a line feed alone, no carriage return
CARTN --- To generate a carriage return, no line feed
HOME --- To move the A/N cursor to the home position
BAKSP --- To generate a backspace
NEWPAG --- To erase the screen and return the A/N cursor to

the home position

Parameters: None

Table 6.12 PLOT10 TCS Subprograms - Utility Routines

270 CHAPrER 6 C()!I1PlJrER GRAPHICS

.---------------------------------------
Subroutine:

Subroutine:

Function:

Parameters:

ICHAR

IX,IY

Subroutine:

Function:

Parameters:

ICHAR

GALL SGURSR(ICHAR, IX, IY)

CALL DCURSR(ICHAR, IX, IY)

To retrieve the screen coordinates of the graphic cursor.
Calling the SCURSR or OCURSR will activate the graphic
cursor, a cross-hair line. 'IWo thumb wheels may be used to
move the line in order to position a point on the screen.
The cursor position is transmitted to the computer when a
keyboard character is struck. The subroutine returns with
IX,IY indicating the screen coordinates of the cursor.
SCURSR and OCURSR are identical routines.

a keyboard character; an decimal integer equivalent of its
ASCII code -
the screen coordinates of the graphic cursor returned by the I
subroutine _______________________ ~

CALL VGURSR(ICHAR,X,Y)

To retrieve the virtual coordinates of the graphic cursor
I

I
a keyboard character, represented by its ASCII code in the I
decimal equivalent 1

~~~ _________ ~:~_~al coord-=-~~~~~_ th~ graphic _~~rsor ____________ _ 

Table 6.13 PIDrlO TCS Subprograms - Cursor Operations 

I 

I 
I 

I 

IA-~ 
I / "Y."'O ~"/,..,, 
1 ____ . 

Figure 6.17 OVerflow Errors 
in Virutal Graphics 

OVerflow errors in virtual graphics 
will appear as clipped picture at the 
edges of the virtual window. A more 
serious and difficult to detect error is 
committed when the beam is moved outside 
the virtual window by virtual 
coordinates and then mov-ed back inside 
the window by screen coord inates. The 
re-entry point will be where the beam 
left the virtual window. Because there 
will not be a clipped figure, the error 
is difficult to detect but the re-entry 
line will be incorrectly drawn. This is 
illustrated in Figure 6.17 on the left. 



Interactive Graphics 271 

6.12 Interactive Graphics 

Time-sharing mode of computer operation puts a user in direct contact 
with the computer. Now graphics opens a new world with its clarity of 
information. Interactive graphics is then a natural result of combining the 
best of these two operational modes. 

There are some problems in"constructing the computer-user dialogues in 
the graphic mode, however. In a conventional terminal, the dialogues are 
constructed by READ/WRITE statements and the decision (IF) statements following 
the dialogue to determine the next step. All these dialogues are displayed on 
the user's terminal. -

In a graphics terminal, such dialogues are still applicable when the 
terminal is in an alphanumerical mode. Once it gets into the graphics mode, the 
drawing will be in progress, and dialogues should not appear on the screen 
because they will spoil the picture. One possible remedy is to move the beam 
outside the visible region; return to the A/N mode; tell the computer your 
part of the conversation (by a FORTRAN READ statement); then return to the 
graphics mode. Another is to use the ASCII input subroutines, such as TINSTR or 
TINPUT, which will be explained in a later section. The most effective way is 
by using the "menu" graphics for the interaction. 

Let us use the 4010 screen for illustration. Suppose we arbitrarily 
assign the vertical area at the right edge of the screen as the "menu" area. 
Within the menu area, subsections are assigned to pre-designed options and/or 
decisions. By calling the cursor and moving it to within the desired 
subsection, the user's intention is transmitted to the computer without spoiling 
the picture. In addition, the bell can be used as an audible prompt signal to 
alert the user. "Menu graphics" basically makes the use of these ingredients. 
Now we will illustrate by means of an example on the Tektronix 4010: 

Example: Design an interactive graphics program that will make a logic 
circuit diagram consisting of all NAND gates. In other words, the screen will 
be used as a drawing board, the cursor as a pen. 

(~ 7&0 '> 

(0,0 ) 

Drawing Area 

I 
1-
~--

I [P co 
I ~) [- - ~ 

I • ~ c 
r PeN ~ 
1 UP 
r--
I RIO-
f<cl£ 

Figure 6.18 Menu Design 

First, set aside the area on the 
right edge of the screen as the menu 
area. The menu area is a rectangle with 
the upper left corner at the screen 
coordinate (900,780) and the lower right 
corner at (1023,0). Then the menu area 
is equally divided horizontally into 
five subsections. This is shown in 
Figure 6.18. Five options are designed 
into the program: 

(1) Option 1 Draw a solid line. 
(2) Option 2 Draw a l~ symbol. 
(3) Option 3 Draw a small dot, as 

interconnecting point of two lines. 
(4) Option 4 Move the beam to a new 

position. 
(5) Option 5 Make a hardcopy of the 

screen display and recycle the 
program. 



272 CHAPrER 6 COMPUTER GRAPHICS 

To simplify the drawing, we will set up a defaul t option. If the graphic 
cursor is positioned outside the menu area, the option is the same as the one 
chosen previously, and the cursor position specifies the end beam position. 
Thus only when the option is to be different from the last choice for the cursor 
to return to the menu area. 

The design specification of the interactive program can then be 
summarized into the following steps of operations: 

(1) The program is initialized by blanking the screen, and draw the menu. 
The cursor appears on the screen, and the beam is in PEN-UP mode (or, 
OPrION=4). Move the cur sor, us ing two thumb wheel s on the keyboard, 
to a point in the dr'awing area and mark this position by pressing the 
carriage return (CR) key. The beam is now positioned at the starting 
point of the diagram. 

(2) The bell beeps to alert the user to make a choice of next option. 

a. Cursor will reappear. 
b. Move and position the cursor ,to the menu area, and press CR key 

to select an option. 
c. Move the cursor to the drawing area, and press the CR key to 

execute the option. 

If the option chosen is the same as the last one, the steps "a" 
and "b" may be omitted. Repeat step 2 until the drawin<~ is finished. 

(3) When the drawing is finished, make a hardcopy by pressing the HOCOPY 
swi tch on the terminal. Choose option 5 (RECYCLE) to make the next 
drawing, or press CTRL-C to exit. 

The program listing is shown below: 

* *********************************** 
* * * FILENAME: DRAW. FOR * 
* * 
* *********************************** 
* 
* 
* 
* 
* 
* 

An interactive menu graphics program to draw an 
All-NAND logic circuit diagram 

Implemented for Tektronix 4010 series terminals 

CALL INITT(30) 
10 CALL START 

JOBO=4 
20 CALL OPrION(JOB1,IX,IY) 

IF(JOBl.EQ.O)GOTO 50 
IF(JOBl.EQ.5)GOTO 10 
CALL BELL 
CALL SCURSR(13,IX,IY) 

50 IF(JOBl.GT.l)CALL MOVABS(IX,IY) 
IF (JOBl.EQ. 1) CALL DRWABS(IX,IY) 
IF (JOBl.EQ. 2) CALL NAND(IX,IY) 
IF(JOBl.EQ.3)CALL DOT(IX,IY) 
JOB 1 =JOB 0 
GOTO 20 
END 



Interactive Graphics 

************************ 
* SUBROUTINE START * 
************************ 
* * TO INITIATE THE MENU GRAPHICS 
* 

SUBROUTINE STAR!' 
DIMENSION K1(6) ,K2(7) 
DATA K1/ I pI, I E I , I N I , I I, I U I., I P I / 

DATA K2/ I R I , I E I , I C I , I Y I , I C I , I L I , I E '/ 
CALL NEWPAG 
CALL MOVABS(900,780) 
CALL DRWABS(1023,780) 
CALL DRWABS(1023,0) 
CALL DRWABS(900,0) 
CALL DRWABS(900,780) 
IY1=780 
00 10 1=1,4 
IYl=IYl-156 
CALL MOVABS (900, IY1) 
CALL DSHABS(1023,IY1,12) 

10 CONTINUE 
CALL MOVABS(925,702) 
CALL DRWABS(1000,702) 
CALL NAND(950,546) 
CALL DOT(960,390) 
CALL MOVABS(910,220) 
CALL A10UT (6 , K1) 
CALL MOVABS(910,65) 
CALL AlOUT (7 , K2) 
RETURN 
END 

************************ 
* SUBROUTINE OPTION * 
************************ 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Menu selection of options 
Returned values: 

JOB 1 0 Same job as before 
JOB 1 1 Draw line 
JOB1 2 Draw an NAND symbol 
JOB1 3 Draw a dot 
JOB 1 4 Move beam, no drawing 

* IX,IY information needed for JOB1=0 
* 

SUBROUTINE OPTION (JOB1, IX, IY) 
CALL BELL 
CALL OCURSR(13, IX, IY) 
IF(IX.LT.900)JOB1=0 
IF(IX.LT.900) RETURN 
IF(IY.GT.624)JOB1=1 
IF(IY.LE.614) .AND.(IY.GT.468))JOB1=2 
IF((IY.LE.468) .AND.(IY.GT.312))JOB1=3 
IF((IY.LE.312) .AND.(IY.GT.156))JOB1=4 
IF(IY.LE.156)JOB1=5 
RETURN 
END 

************************ 
* SUBROUTINE NAND * 
************************ 
* 

273 

* To draw an NAND symbol at (IX,IY) 
* 

SUBROUTINE NAND(IX,IY) 
INTEGER INX(16) ,INY(16) 
DATA INX/0,13,9,3,1,3,3,1,-1, 

1 -3,-3,-1,-3,-9,-13,0/ 
DATA INY/-25,3,9,13,3,1,-1,-3, 

1 -3,-1,1,3,13,9,3,-25/ 
CALL MOVABS (IX,IY) 
00 10 1=1,16 

10 CALL DRWREL(INX(I) ,INY(I)) 
CALL MOVABS (IX, IY) 
RETURN 
END 

************************ 
* SUBROUTINE DOT * 
************************ 
* * To draw a intersecting dot 
* 

SUBROUTINE DOT(IX,IY) 
INTEGER INX(8) ,INY(8) 
DATA INX/-1,-2,-2,-1,1,2,2,1/ 
DATA INY/2,1,-1,-2,-2,-1,1,2/ 
CALL MOVABS (IX, IY) 
CALL PNTABS (IX, IY) 
00 10 K=1,3 
IK=K 
CALL MOVABS (IK+IX,IY) 
CALL DRWREL(-IK,IK) 
CALL DRWREL(-IK,-IK) 
CALL DRWREL(IK,-IK) 
CALL DRWREL(IK,IK) 

10 CONTINUE 
00 20 1=1,8 

20 CALL DRWREL(INX(I) ,INY(I)) 
CALL MOVABS(IX,IY) 
RETURN 
END 



274 C'HAPI'ER 6 COl'lPUTER GRAPHICS 

• 

F'Etl UP 

f.:F r· ... : 1..1 

Figure 6.19 Output from the Interactive Progr~n 

Figure 6.19 shows a s~ple of the result from this interactive progr~. 

This ex~ple shows a very simple case of menu graphicG. In a more 
advanced application, both the software and the hardware support will become 
more sophiscated. The thumb-wheel controlled cur sor will be replaced by a light 
pen, a joystick or a trackball. The menu will not occupy the srune screen as the 
display. Some terminal has several display xy-plane (in the z--axis), and it 
becomes possible 1:0 put the display on one plane, and the menu and the cursor on 
another. The display planes are super imposed on the screen sur face. Some 
graphic system has separate digital grphic tablet that has the s~e coordinate 
ranges as those of the screen, and the tablet may be used as a graphic 
positional input device. The menu in such a case may be designed as an overlay 
that has a drawing of the menu on it and is placed on top of the tablet. A 
light ,pen or a mechanical cursor device may be used to make a selection of 
options. 



More PLOTIO Subroutines 275 

6.13 A Summary of Other TCS Subprograms 

In addition to the basic set of TCS subprograms presented in the last 
section, there are other subprograms tht are useful. They are again divided 
into several categories for summarizing tabulations: (1) rescaling graphic 
output (Table 6.14) , (2) virtual graphics and beam status (Table 6.15) , 
(3) output utilities (Table 6.16), (4) coordinate transformation (Table 6.17), 
and (5) ASCII input/output (Table 6.18). 

These tables now follow. 

Subroutine: 

Function: 

Parameters: 

FACTOR 

---------

Subroutine: 

Function: 

Parameters: 

DEGREE 

Subroutine: 

Subroutine: 

Function: 

CALL RSCALE(PACTOR) 

To rescale a virtual display by a virtual factor 

the rescaling factor relative to the original size of the 
display 

CALL RROTAT(DEGREE) 

To rotate a virtual display by an angle relative to its 
original display position. 

angle in degrees for the rotation 

CALL RESET 

CALL RECOVR 

RESET --- same as INITT, but no erasure of screen 
RECOVR --- To update the terminal hardware to match the 

terminal status values 

Parameters: None 

Table 6.14 PLOTIO TCS Subporgrams - Rescaling the Graphic OUtput 



276 CHAPI'ER 6 COMPUTER GRAPHICS 

Subroutine: CALL SEETW01INX~ !1AXX~ NINY ~ , NAXY) 

Subroutine: CALL SEEmV(Xf1IN~ X!1AX~ YMIN~ YNAX) 

Function: SEE'lW To find the current values of the screen window 
SEEm To find the current values of the virtual window 

Parameters: These are returned parameters: 

MINX,MAXX,MINY,MAXY 
the screen coordinates that define a screen window 

XMIN ,)(MAX, YMIN , YMAX 

Subroutine: 

Function: 

Par ameters: 

RCOS 
RSIN 
SCALE 

-----.-._----

Subroutine: 

Function: 

Parameters: 

XFAC,YFAC 
KEY 

Subroutine: 

Function: 

Parameters: 

IX,IY 

Table 6.15 

the virtual coordinates that define a virtual window 

'--.--~'--."".--"--.-'-----'-----"--------------

CALL SEEREL(RCOS~ RSIN~ SCALE) 

To return the,values of the corrunon variables used by the 
relative virtu~l routine to scale and rotate vectors. 

the cosine of the rotatin9 angle 
the sine of the rotating angle 
the multiplier used for scaling 

....... -.-._- _ .. __ .. "" .. _-._ •..•. _ .. _- --_._ .... ------.. ~----------.. ---... -

CALL SEETRN(XFAC~ YFAC~ KEY) 

TO return the values of the corrunon variables set by the 
window and transformation routines 

the x and y scale factors respectively 
the transformation code: l=linear; 2=log; 3=polar 

CALL SEELOC(IX~ IY) 

TO locate on the screen the last positin of the graphic beam 

the screen coordinates of the beam 

PLOT10 TCS Subprograms - Virtual Graphics and Beam Status 



More PLOT10 Subroutines 277 

r------------------------.----.. ----------.---.-.-.--~----"._ .. -_ .. -
Subprogram: 

Subprogram: 

Input Prameters: 

NCHAR 
NLlNE 

variable = LINWDT(NCHAR) 

variable = LINHGT(NLINE) 

number of characters 
number of lines 

OUtput Parameters: 

LINWDl' 
LINHGr 

Subprogram: 

Subprogram: 

Input Parameters: 

RIN,RCM 

width measurement in raster units 
height measurement in raster units 

variable = KIN(RIN) 

variab le = KCN (RCN) 

input parameters in inches or centimeters respectively 

OUtput Parameters: 

KIN 
KeM 

Subroutine: 

Function: 

Parameters: 

MIEFT ,MRIGHT 

number of raster units equivalent to the input RIN 
number of raster units equivalent to the input RCM 

CALL SETMRG(f.1LEFT~t1RIGHT) 

To set the left and right margins 

screen coordinates for 
respectively 

the left and right margins 

Table 6.16 PLOT10 TCS Subprograms - Output Utilities 



278 

Subroutine: 

Function: 

Parameters: 

Subroutine: 

Function: 

Parameters: 

KEY 

COMPUfER GRAPHICS 

CALL LINTRN 

To reset to linear scaling (from log or polar scaling) 

None 

-~-'---------~--~------------'------'-----------'-

CALL LOGTRN(KEY) 

To define a semi-log or a log-log scale 

code for the log scal ing : 
KEY=l semi-log, x-axis on log scale 
KEY=2 semi-:log, y-axis on log scale 
KEY=3 log-log scale 

r---------- -.---~-----.--.----------~.--.. -.--- .. -~_._ .. _. __ . ___ . ___ _ 

Subroutine: CALL POLTRN(ANGHIN" ANGNAX" RSPRS) 

Function: To set up polar virtual window 

Parameters: 

ANGMIN,ANCMAX the minimtnn and the maximtnn angles relative to the horizontal 
for the display 

RSUPRS the radius suppression factor 

t------.-.-----.--.----- - ---.. - ---- .-.------. -- . __ .. _--- .. _._---_ .. -.-_._--_._ .... -._-

Subroutine: 

Subroutine: 

Subroutine: 

Subroutine: 

Function: 

Parameters: 

X,Y 
RX,RY 
L 

CALL DRAWSA(X" Y) 

CALL DRAWSR(RX" RY) 

CALL DASHSA(X" Y) 

CALL DASHSR(RX" RY" L) 

To drawline segment while 'the polar coordinate transformation 
is in effect: 

DRAWSA --- To draw a segment of line, given a virtual 
coordinates of the end point 

DRAWSR --- To draw a line segment given the virtual relative 
coordinates to the current beam position. 

DASHSA --- Same as DRAWSA except in dash line 
DASHSR --- Same as DRAWSR except in dash line 

virtual coordinates of the end point of the line 
virtual coordinates relative to the present be&n position 
the dash line code (See Table 6.10) 

Table 6.17 PLOTIO TCS Subprograms - Coordinate Transfonnations 



More PLOTIO Subroutines 

I 
j 

I 
r 
I 
I 

Subroutine: CALL ANS'!'R01CHAR3 AVES) 

Function: The ASCII characters are given in ADE codes. 

Parameters: 

AlE an integer constant, representing the AlE code of the character. 'llIe character 
must not be a control-character. 

ADES an integer array, with each an AlE code for a character. 'llIe array contains no 
control-cahracters. 

OCHl\R nl.lllber of characters 

Subroutine: 

Subrout ine : 

Function: 

Par ameter s: 

OCHl\R 

ASClS 
ASC5S 

Subroutine: 

Subroutine: 

Function: 

Parameters: 

OCHAR 
ADE 
ADES 

_._ .. _ .. --_ .... -" 

Subroutine: 

Subroutine: 

Function: 

Parameters: 

CALL A10U'}'(NCHAR3 ASC1S) 

CALL AOUTST(lJCHAR3 ASC5S) 

ASCII characters are given in FORTRAN "A" format. Not for crRL-characters. 

nl.lllber of characters. For Al format, OCHl\R = nl.Illber of characters. For AS 
format, OCHl\R = 5* (nl.Illber of elements in the array). 
an ASCII an ay, wi th each element in Al format 
an ASCII array, with each element in AS format, left-justified 

CALL TOUTPT(AVE) 

CALL '}'OUTST(NCHAR3 AVES) 

Characters are given in AlE codes. For crRL-characters only, because the beam 
does not move after the output. 

number of characters 
an integer constant, representing the control-character in ADE code 
an integer ar ray, each element a control-char acter in ADE code 

To Store Input ASCII Characters fran Keyboard 

CALL AlIN(flCHAH3 ASC1S) 

CALL AINST(NCHI1R3 ASC5S) 

To accept ASCII inputs fran the keyboard and store them as variable or array 
values in FORTRAN "A" format. 

OCHAR,ASC.lS ,ASC5S defined the same way as in AlOm and IIOmST subroutines above. 

Subroutine: 

Subroutine: 

Function: 

Parameters: 

OCHAR, ADE, ADES 

CALL TINPUT( AVE) 

CALL TINSTR(lTCHAR3 AVES) 

To accept ASCII inputs fran the keyboard, and store them as variable or array 
values as integer AlE codes. 

defined in the same way as in 'IOUI'PT and 'IOUI'ST above. 
L-_________________________________________ .. ________________________________ ___ 

Table 6.18 PLOTIO TCS Subprograms - Input/Output of ASCII Characters 

279 



280 CHAPI'ER 6 COl'lPUTER GRAPHICS 

THREE DIMENSIONAL DISPLAYS 

Three-dimensional graphics is one of the most challenging topics in the 
computer graphics research and applications. It involves a study of surfaces 
and solids, their geometrical formulations, their interrelationship expresssion 
by means of some language description, perspective, projection and hidden 
surface identifications. 

The discussion here will only concern with a very simple and small aspect 
of the field. We will simply be concerned with how to display a two-dimensional 
function in the general form of z=f(x,y) for a range of x's and a range of y's. 
For example, a relief map would be a display model showing the height as a 
function of longitudes and latitudes. 

6.14 Three Dimenional Displays 

In the materials covered in this chapter, the display was mainly in two 
dimensions. In other words, the mathematical formulation of the function is 
y=f(x) , x=f(y) , or f(x,y)=constant. 

For the type of function z::f (x ,y), a 3-dimensional display is required, 
and the z-axis is need to display liZ". 

There are several ways to display such functions. One is displaying it 
as a contour or relief map, with x,y to be spatial coordinates. Figure 6.20 
shows two outputs available on DEC-10. 

4t&~f;F:. 
;. 

(a) 2-Dimensional Fourier Spe,:::trum 
Sample Output from VERPLT (Ref.18) 

(b) 1970 U.S. Census 
Sample Output from ASPEX (ReL16) 

Figure 6.20 3-D Displays by Contour Plottinq 



3-D Graphic Displays 281 

The other way is to interprete z's as light intensities and plot the 
z-function as an image. Figure 6.21 shows some samples of image output on 
DEC-I0. The gray scales (the gradation of shades) in the output are 
accomplished either by an over-print techniques (on a conventional printer) or 
by a dot-matrix technique (on a dot matrix printer, such as the VERSATEC 
printer) • 

(a) Over-print Technique 

I, 

Z-function values in the circle: 

158 188 182 177 176 170 163 158 
161 164 158 141 108 166 174 138 
151 142 129 121 III 151 156 105 
142 132 119 125 100 115 131 97 
114 93 106 104 81 90 132 62 

95 55 83 58 61 64 104 70 
66 51 71 54 54 49 81 53 
45 52 57 47 48 45 56 25 

(b) Dot-matrix Technique 

Z-Value Overprint Dot-matrix 

105 X-

25 M W X 

Figure 6.21 3-D Displays by Image Plots 



282 CHAPl'ER 6 CCMPUTER GRAPHICS 

EXERCISES 

1. Reproduce your signature on a CalComp plotter. Write a subprogram so that 
you may sign your plots. There should be control on where the signature 
should start (specify starting point coordinates) , how high it should be 
and how wide it should be. 

2. Repeat problem I on the Tektronix 4010. 

3. Write and implement a subroutine CIRC(X,Y,R) for (a) printer graphics, (b) 
CalComp graphics, and (c) Tektronix 4010. The parameter X,Y are virtual 
coordinates for the center, and R is the radius. 

4. Set up a data file for about 50 data points. Use the data file to produce 
plots on the printer, on the CalComp plotter, and on the Tektronix 4010. 
The data file may be generated by taking a function and calculating its 
values for a range of the independent variable. 

5. Design an interactive graphic program so that you may use the cursor of 
Tektrnoix to draw a transistor circuit diagram. Design a menu so that you 
have selections of symbols of transistors, diodes, resistors, inductors, 
and capacitors. 

6. Reproduce the University logo on the printer, on the 
Tektronix 4010. Write it up as a subroutine 
size-control. 

7. Practice on various type of axis constructions: 

logarithmic axis, using some arbirtrary data set. 

8. Produce a graphic creative design on a graphic device. 

plotter and on the 
with parameters of 

linear axis and 

Note: CalComp plotter is a slow device, and a typical plotting job takes 
minutes. Therefore, most installations have restrictive regulations for 
student usage and require special arrangement or request from the 
instructor. Consult your local rules and regulations for instructional 
usages. 



References 283 

REFERENCES 

1. 'lUI'ORAIL: COOPUTER GRAPHICS, Kellogg S. Booth, E'ditor, IEEE Catalog 
EHO-147-9, The Institute of Electrical and Electronics Engineers, Inc., 
New York, New York; 1979. 

2. "Computer Displays," by Ivan E. Sutherland, Scientific American, Vol. 
222, No.6 (June, 1970), pp. 36-41. 

3. "A PROroSED GRAPHICS STANDARD CORE SYSTEM", by SIGGRAPH Corrunittee, ACM, 
Computing Surveys, Volume 10, No.4, December, 1978. 

4. METHOOOLOGY IN COOPUTER GRAPHICS, R. A. Guedj and H. A. Tucker, E'ditors, 
North-Holland Publishing Company, New York, New York; 1979. 

5. Help File PRG:GRAPH.HLP, the Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; 1980. 

6. Help File PRG:GRAFIC.HLP, the Computer Center, University of Pittsburgh, 
Pittsburgh, Pennsylvania; 19xx. 

7. WORKSHOP NOTES ON COOPUTER GRAPHICS, T. W. Sze and A. R. Madar ressi , 
SChool of Engineering, University of Pittsburgh, Pittsburgh, 
Pennsylvania; April, 1975. 

8. INTRODUCTION TO THE CALCOOP PLOTTER, DEC-IO Pitt SOftware-2, the 
Center, University of Pittsburgh, Pittsburgh, Pennsylvania; 
1976. 

Computer 
October, 

9. INTRUCTION MANUAL FOR DIGITAL INCREMENTAL PLOTTER, Model 936, California 
Computer Products, Inc., Anaheim, California; 1979. 

10. CAMCOOP PLOTTER SUBROUTINES, the Computer Center, 
Pittsburgh, Pittsburgh, Pennsylvania; October, 1973. 

University of 

11. CAICOMP PROGRAMMING FOR DIGITAL PLOTTER, by R. T. DeIDrm and L. Kersten, 
University of Nebraska Press, Lincoln, Nebraska. 

12. 4010 AND 4010-1 USERS MANUAL, Tektronix, Inc., Beaverton, Oregon; 1972. 

13. PIm'-lO TERMINAL CONTROL SYSTEM, USER'S MANUAL, 
Beaverton, Oregon; April, 1980. 

Tektronix, Inc. , 



284 CHAPrER 6 COMPurER GRAPHICS 

14. PLOT-10 ADVANCED GRAPHING II, USER'S MANUAL, Tektronix, Inc., Beaverton, 
Oregon. 

15. INTERACTIVE COMPurER GRAHICS, 
Englewood Cliffs, New Jersey; 

Wolfgang K. Giloi, 
1978. 

Prentice-Hall Inc. , 

16. ASPEX USER'S REFEREOCE MANUAL, Mar k 
Graphics and Spatial Analysis, 
Massachusetts; 1978. 

Hanson, Laboratory for Computer 
Harvard University, Cambridge, 

17. Technical Report 'IM-7801, IMAGE PROCESSING PROGRAMS, 
John Todhunter, Pattern Recognition Laboratory, 
Pittsburgh, Pittsburgh, Pennsylvania; 1978. 

Mike M. Lee and 
University of 

18. VERSATEC 3-D PLOTTING ROUI'INE, Herbert Y. H. Yang, Pattern Recognition 
Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania; 1979. 

19. IMPROC HELP FILE, An Image processing System for 
University of Pittsburgh, Pittsburgh, Pennsylvania; 

DEC-10, 
1980. 

T. W. Sze, 



CHAPrER 7 

SELECTED SERVICE PROGRAMS AND PROCEDURES 

Several service programs and procedures will be 
presented in this chapter. They are: PIP (Peripheral 
lnterchange Rrogram) , SORT, RUNOFF, OPRSTK (QEe£ation 
Stacker), and the Virtual Memory. These programs and 
procedures perform a variety of service functions. 

7.1 Introduction 

The PIP (Peripheral Interchange Program) program transfers data and 
program files from one standard input/ouput device to another. Unless 
explicitly specified to be deleted, a file at the source remains unchanged and 
undisturbed. During these operations, simple file editing and magnetic tape 
control may be performed. It is undoubtedly one of the most useful serVice 
programs. Since it deals with devices and files, several related terms should 
be reviewed first: 

(1) Physical device name Each input or output peripheral device 
associated with the System has a standard physical device name so that it can be 
referred to consistently. The format of a physical device name is: 

where: 

DEVnnn: 

DEV ; three-character abbreviation assigned to a class of devices, 
for example, LPT for all line printers in the system. 

nnn zero to three-digit number indicating the numerical designation 
for a particular unit in a class of devices, such as "DTA010:" 
for DECtape drive Number 010. 

a colon, an integral and terminating part of the device name. 

If there is only one device in a particular class, the part "nnn" may be 
omitted. For example, "PLT:" is used to represent the system plotter, "PRG:" 
the Program Library, and "SYS:" the System Library. It may also be omitted in a 
multi-unit device name if only one such unit is assigned and available for 
gener al usage, such as "DSK:". A 1 ist of physical names of selected system 
devices is shown in Table 7.1. 



286 

nevice 

Array processor unit 

Card Punch 

Card Reader 

DEC tape Drive 

Disk 

Line Printer 

Magtape Drives 

Operator's Terminal 

Plotter 

System Library 

Prog ram Libr ary 

Engineering Library 

Terminals 

CHAPl'ER 7 SERVICE PROGRAMS 

Physical Names 

APU: 

CDP: 

CDR: 

Dl'A: 
Dl'AOlO:, Dl'AOll:, etc. 

DSK: 

LPT: 
LPT03:, LPT06:, LPTlO:, etc. 

MT7: (7-track drive) 
MT8: (9-track drive, 800/1600 BPI) 
MT9: (9-track drive, 1600/6250 BPI) 
MTAOlO:, MTAOll:, etc. 

CPR: or TTYO: 

PLT:, PLTOlO: 

SYS: 

PRG: 

ENG: 

TTY: 
TTYO:, TTY16:, TTY63:, etc. 

Table 7.1 System Devices and Their Physical Names 

(2) Logical device name The user may also define the device with 
a name of his choice by the monitor cormnand ASSIGN or MOUNT (Bee Chapter 8). 
Such a user-chosen name is called the logical device name. Once a logical name 
is assigned, a device may be referred to by either its physical 0], logical name. 
In case there is a confl ict between a log ical name and a physical name, the 
conflict may be resolved by the System which gives the logical name precedence. 
The format of a logical device name is: 

LOGDEV: 

where DOGDEV is an one to six-character alphanumeric string, and the colon is an 
integral and terminating part of the name. 

(3) PIP switch In using the PIP program, all tasks are 
interpreted in terms of file transfer with a single command format. Variations 
of the tasks may be designated in the command structure by adding switches. 
There are two acceptable forms of PIP switches: a code letter preceded by a 
slash or a code letter enclosed in parentheses -- for example, /X or (X). 
Multiple switches may also be given in either form -- for example, /B/X or 
(BX). A PIP switch may be placed anywhere in a PIP command. 



Device Names and Files 287 

(4) File specification For the purpose of identifying a file, each 
file is given a name. Once the names are established, the system will maintain 
a directory so that users need not be concerned with the exact location on the 
disk for their files. For the OEC System-lO, the format of a complete file 
specification is: 

where: OEV: 

OEV: NAME.EXT [m,n] <xyz> 

name of device on which the file is stored. 
omitted in the complete specification, DSK: 
to users) is assumed. 

If this part is 
(the disk assigned 

NAME = filename consisting of one to six alphanumeric characters with 
no embedded blanks. 

• EXT 

[m,n] 

<xyz> 

file extension consisting of zero (0) to three alphanumeric 
characters with no embedded blanks. If it contains zero 
character, it is called a null extension. The period is an 
integral part of the extension. 

the PPN of the person who created and owns the file. the 
default PPN is the current job's PPN. Note the use of square 
brackets. 

= a three-digit protection code. Note the use of angular 
brackets. 

The file extension is a part of file identification, used to indicate the 
type or language of the file. Although any zero to three-character combination 
can be used as a file extension for any file, the following are some of the most 
frequently used file extensions, and their meanings are recognized by the 
System. 

Examples: 

NEWION.PIL 
NEWTON. FOR 
NEWTON.REL 
NEWroN. BAS 
FOROl.OAT 

A PIL program file named NEWTON. 
A FORl'RAN program file named NEWIDN. 
An object program compiled from NEWTON.FOR 
A BASIC program file named NEWTON. 
A data file named FOROI. 

Symbols "*" and "?" are used as "wild cards" to represent a class of file 
names or extensions, as illustrated by the following examples: 

Examples: 

NEWION.* 

*.FOR 

*.* 

F?n?OAT 

01211 .on 

All files named NEWIDN of any extension. 

All FORTRAN files. 

All files. 

All data files whose names are 5 characters 
or less and begin with F. 

All files whose names begin with "012" and 



288 

D12??* 

CHAPrER 7 SERVICE PR03RAMS 

contain 5 or less characters, and whose 
extensions beg in with the letter D and con
tain 3 or less characters. 

All files whose names begin with "D12" and 
contain 5 characters or less. 

The protection code is a 3-digit octal· number xyz, each digit ranging 
from 0 to 7. Each digit defines a protection level of the file against a 
certain class of users: 

x = protection level against the file owner himself. 

y = protection level against users sharing the same project number. 

z = protection level against the general public. 

The level of protection ranges from level 0 to 7, and level-7 is the 
highest. The exact definition of each protection level is given b~low: 

Code Digit 

7 
6 
5 
4 
3 
2 
1 
o 

Access Protection* 

No access privileges 
Execute only 
Level 6 + Read privilege 
Level 5 + append privilege 
Level 4 + update privilege 
Level 3 + write privilege 
Level 2 + rename privilege 
Levell + change protection privilege 

Access protection can be changed by executing RENAME or PROTECT monitor 
conmand (see Chapter 6) or the PIP program (see Chapter 7). Since there are 8 
levels of protection in each of three classes of users, there are 512 different 
shades of protection-level combinations possible. Normally, one need only be 
concerned with a few commonly used codes: 

Protection Codes Appl ications 

077,177 

057;177 

055,155 

Strictly private and non-sharable, such as 
grade files maintained by an instructor. 

Sharable within a project, for example, a 
program to be shared by all students in a 
course. 

Sharable with the computer community, but 
the file may not be modified by' anyone 
except the file owner. 

The System assigns a default protection level of 057, set automatically 
by the computer if the person does not specify any protection code when he 
creates the file. In some coursework, instructors may arrange to have the 
defaul t protection level automatically set at 077 • In such a case, the 

*Subject to 
Pittsburgh, 
slightly. 

minor 
access 

local variations. For 
protection designated 

example, at the University of 
by the x-digit has been modified 



The PIP Program 289 

protection code of a student's file is 077 to his C1assmates, but is 057 to his 
instructor. 

(5) Directory and non-directory devices 

While the PIP program deals mainly with transfer of files, many transfers 
are really input/output operations. For example, transferring a file from the 
disk to a line printer is actually an output operation of printing out a disk 
file. Therefore, if we ignore these input/output operations, we need only 
consider three major devices for the "true" transfer. They are the disk, the 
DECtapes, and the magnetic tapes. 

For the purpose of file references, the disk and the DECtapes are called 
directory devices and the magnetic tapes are non-directory devices. In a 
directory device, the files are identified by their file specifications, and 
there is no need to know the actual physical locations of these files on the 
devices. However, on a non-directory device, a file can only be identified and 
located by its physical location or sequence, for example, file No.3. 

7.2 The Standard PIP Command Structure 

The PIP program may be called at the monitor level by the command: 

After PIP is loaded, a prompt character "*" is printed at the terminal, and PIP 
is ready to accept PIP commands. 

The PIP command has a standard and simple structure: 

~~~~tin~~~ = Source(s) 

where: Destination = device and/or file which is to receive the transferred
data. This portion contains only one file specification.
(Note: One file specification may imply multiple files if
a wild card is used.)

an equal sign separating the source and the destination.
It may be substituted by a left arrow available on some
terminals.

Source(s) = one or more file specifications of the origin(s) of
transfer.

Both the destination and the source specification are of the standard
form DEV: NAME.EXT[m~n]<xyz>. Rules of default conditions and wild card
construction apply as given in Section 6.1.

Exit from the PIP program to the monitor may be accomplished by pressing
ei ther the crRL-C or crRL-Z key.

Various uses of the PIP commands are shown in the following examples:

290

Example

J? PTP

*'J'TY :=CURVE. POR

*

(Program listing
follows here.)

*1z

CHAPrER 7 SERVICE PROGRAMS

Function

Call for PIP

Transfer a disk file to TTY. In other words,
list the file on TTY.

Transfer completed; PIP is ready for ru10ther
command.

Exit from PIP.

The whole sequnece is equivalent to issuing a monitor command TYPE CURVE.POR.
In fact, the monitor TYPE command actually activates and runs the PIP program.

Other examples and explanations are given below:

Example:
Function:

Example:
Function:

Example:
Function:

Example:

Function:

Example:
Function:

Example:

Function:

* LPT: = CURVE. paR
List the file CURVE.FOR on the line printer.

*LPT: = *.POR
List on the line printer (of the station where the terminal
of the user belongs) all FORTRAN-IO files stored on disk.

* DOUBLE. POR = CURVE. POR
Copy the disk file CURVE.FOR and name the copy as
OOUBLE. FOR •

• DRIVE DTA
.l10UNT DTA:T1/WE/VID:A1004
.R PIP
*T1:DOUBLE.FOR = CURVE.POR[l151033 320571]
*tZ
.DISHOUNT T1
.UNDRIVE

Copy a file CURVE.FOR that belongs to another PPN onto a
DECtape registered under the number Al004. the name of
copied file on the DECtape is OOUBLE.FOR. Message
printouts are not shown.

LPT: = Mt9:

Print everything on the magnetic tape currently' mounted on
the tape drive •

• R PIP

*DSK: SAMPLT.POR = TTY:

A=1.2345
WRITE(63 10):'A

10 PORNAT(P10.5)

END This CTRL-Z is an end-of-file mark,
tz therefore terminates TTY input. The
*1'Z second CTRL-Z is to exit fran PIP.
Use PIP to enter a source program. A possible but not a
recommended way, because no editing is possible.

PIP Switches 291

7.3 Transfer of Multiple Files, the X-Switch

When there is more than one file in the source specification, transfer
may be done in two ways: to transfer collectively as one combined file, or to
transfer files singly and retain individual identifications. In the former
case, it is a natural application for merging several files together. In the
latter case, an X-switch in the command will make the transfer of multiple files
singly and each transferred file will be given a unique name, as specified in
the comnand string.

File transfer between one directory device to another is a simple matter
since both the destination and the sources are identified by file
specifications. File transfer between non-directory and directory devices are
more complicated since the filenames must sometimes be arbitrarily generated.

The examples below demonstrate many salient points of multiple-file
transfer, with and without the X-switch:

Example:
Function:

Example:
Function:

*DTA1: IX = DSK: *.* OP DTA1:IX=
These two commands perform the same way. They transfer all
disk files to DrAOIO and retain individual filenames and
extensions. When the right side of the equal sign is
blanked, the default conditions simply mean "everything
from my disk".

*DTA1: HESS.NT9 = MT9: *
Transfer all files combined on the magtape MT9 to a
DECtape. Name the result MESS.MT9. Since no X-switch is
used, all files are merged into a single file after the
transfer.

*DTA1: MESS.NT9Ix = NT9: *
Transfer all files from MT9 to DrAOIO, retaining the
individual filename and extension of each file. However,
since only one filename and one extension are specified on
the destination side, individual filenames and extensions
must be generated by PIP. The rule of filename generation
is as follows: The format of the generated filename is
XYZnnn where:

XYZ = the first three characters in the specified
destination filename. If none is specified, the
three-character chosen is xxx.

nnn = a three-digit number, from 001 to 999.
The extension is retained and shared by all generated file
specifications. Thus, for this example, if MT9 contains 15
files, the transferred files on DrAOIO will have names of
MESOOl.MT9, ••• , MES015.MT9.

7.4 Transfer of Files with Editing

Certain editing functions can be incorporated into the transfer of files.
A list of selected switches for this purpose is shown in Table 7.2 on the next
page. The carriage control characters created by the Ip switch will instruct a
line printer to perform certain actions as listed in Table 7.3:

292 CHAPI'ER 7 SERVICE PROGRAMS

-r------r------.. ----.. -------- --

Switch Function
__ =""0'0 • .1 .. _~._.~c~.,=_c,,~,,~, .. ".'C~".".o:=_"'~.~,,="'~o=,.c· .. ,,~ .. '''=.~."~=" .. ,:,.'=c~=,.=~.- .. - .. - .. ~.~,.==.,~=.====."=

To generate or delete sequence numbers ..
--_ __ . __ .. _ _ ..• __ ._._ .. _._--_ ---'''- -- -. -_ ..

IS To insert sequence numbers. At the start of each I ine of a fi Ie, a
sequence number is computed and inserted. These sequence numbers
assigned by PIP are five-digit numbers starting from 00010 and ranging
through 99990 in increments of 10.

IN

Example: Source f i Ie:

A=1.2345
WRITE{6,10)

10 FORMAT<F10.5)
END

Destination file after IS switch:

00010
00020
00030
00040

A=1.2345
WRITE{6,10)

10 FORMAT{Fl0.5)
END

Same as IS, except that the increment is 1.

To delete sequence numbers from the fi Ie.

IE To replace characters in columns 73-80 in each I ine by spaces, and to
ignore the sequence number on each I ine. The E-switch may be used for
any input device but is most commonly used in a card reader.

To delete trai I ing spaces on each I ine to save storage space:

Ie To delete trai I ing spaces in each input I ine and to convert multiple

IT

spaces into tabs. Its main purpose is to conserve storage space by
making the fi Ie more compact.

To delete trai I ing spaces on each line.
spaces to tabs.

No conversion of multiple

To perform "I ine-blocking" of input data fi les:

IA To "I ine-block" the fi Ie so that each buffer contains an integral
number of I ines, and no I ines are spl it between physical output
buffers. Such spl itting may cause unpredictable read-errors. This Is
a necessary step If the Input data files, prepared by an editor such
as the UPDATE, are for a FORTRAN F40 program. For FORTRAN-l0 (FlO)
line-blocking of Input data files Is no longer necessary.

To prepare a FORTRAN output fi Ie for printer output:

IP To convert a FORTRAN output fi Ie containing printer control
into one that wi I I activate the carriage control of the I ine printer.
Without such conversion, the printer wi I I simply print out the control
characters as characters without taking any action. The FORTRAN
carriage control character Interpretation Is shown on Table 7.3.

Table 7.2 PIP Switches for Transfer of Files with Fdit:ing

PIP Switches

Carriage Control
Character

293

Line Printer Action
i:========~d.·,.-======~==,=.",_-,-"==_-cc=-=",,==.=_====-.,,-,,,c.,=--=

blank

*

+

, (comma)

• (per i od)

/

0

2

3
~-

Table 7.3

Normal single space p'rinting. FORM FEED (advance
to a new page) every 60 lines.

Normal single space printing. No FORM FEED, even
when the bottom of a page is reached. This is used
when continuous printing is desired, such as in a
chart, a graph, or a long tabulation.

To overprint the previous line, such as to
underscore part of the text.

To skip to the next 1/30 of page.

To skip to the next 1/20 of page.

To skip to the next 1/6 of page.

To skip two I ines (triple space)

To skip one I ine (double space)

To skip to the top of the next page (FORM FEED)

To skip to the next 1/2 page

To skip to the next 1/3 page

FORTRAN Carriage Control Characters

For example, a file containing the following:

(Column 1)
1
2

1
REPORT TITLE

will print out the "REPORT TITLE" at the middle of the page, and the subsequent
materials will begin at the next page.

294 CHAPl'ER 7 SERVICE PR()3RAMS

7.5 File Directory Management

PIP switches in this group will handle directory management, such as
reporting on the directory content, changing the file specifications, file
deletions, etc. Althought the PIP cormnand still conforms with the general
format of source and destination, no actual transfer takes place. Switches in
this group are listed in Table 7.4 on the next page.

7.6 Multiple PIP Switches

More than one switch may be given in a single PIP comnland to get a
cumulative effect. This is illustrated by the examples below:

Example:
Function:

Example:
Function:

*DTA1: (ZDX) = *.LST~ *.LPT
This command is the same as the three successive PIP
commands:
*DTAl :/Z =
DTA1:/X = DSK:.*
*DTA1:/D = *.LST~ *.LPT
The net result is: Clear the DEC tape now mounted on Dl'AOIO
and copy everything from the disk onto Dl'AOIO except *.1ST
and *.LPI'.

*DSK:NEWTON.REL/B/P = DPAl :NEvlTON.REL
This command will copy a FORTRAN binary filE~ from a DECtape
onto a disk in order to insert a control v.urd into each
physical buffer. If buffer sizes are the same, the
P-switch is not needed. Also, FORTRAN-IO binary files need
no p-switch.

PIP Switches 295

Function

To list the directory:
1--------- '-.-.-.-- . ---.-.-... - .. -- --------.--'--.... -:----.---.-.---,.-.--, ... -.--.-.-----.- ----,-----

/L To list the directory of the source devices and fi les. The directory
wi I I include filenames, extensions, protection codes, number of
blocks, creation dates and total blocks.

Examples: Explanations:
*TTY: = DSK:/L List the disk fi Ie directory on TTY.
*TTY: = DTA010:/L List DTA010 directory on TTY.
*TTY: = *.FOR/L List al I disk FORTRAN fi les on TTY.
*LPT: = *.PIL~ *.FOR/L List directory on line printer.
LIST.DIR=DSK:.*/L Store directory as a fl Ie named.

1------_. . .. --... -.. -.-.. ----.----.--.-- .. ---.. --.--..... --... --... -.-- ... -.----.--...... - ---.,.-.---- ,.-.-.-.-.------

/F Fast listing of directory giving filenames and extensions only.

To change the fl Ie specifications:
. - - ---.. - .. --_._._- --_._. __ . -----_ _.-

/R To rename the source fi le(s) In the manner Indicated in the
destination fl Ie specification. Only one or one class of files (wi Id
card construction) may be renamed In one p~p command.

Examples: Explanations:
*NEvl.F'OR<15B> = OLD.BAK Straight copying of a file; OLD.BAK

retained after copying.
*NEvl.FOR<155>/R = OLD.BAK Rename; OLD.BAK no longer exists

after renaming.
NEW./R = OLD. * Change al I filenames of OLD to NEW,

and retain al I extensions.
**.*<177>/R = Change the protection codes of disk

f I I es to 1 77 •

To delete files:
-----_._-

/0 To delete the specified source fl Ie from the destination device. Only
one source device Is permitted, and it Is Initially assumed to be the
same as the destination device.

Examples:
*DSK:/D = OLD.FOR~ *.REL

*Tl:/D = Tl: FILE1.DAT

Explanations:
Delete from the disk al I REL files
and the fi Ie OLD.FOR.
Delete a fi Ie named FILEI .DAT from a
DECtape which has been mounted and
given a logical name of Tl.

/Z To zero out (erase) the directory of the output device. If the output
device Is the disk, an attempt Is made to delete al I the fi les whose
names are found in the directory specified. If It Is not possible to
delete some of the files, the request wi I I be terminated after as many
files as possible have been deleted.

Example:
*!JTAOll : /z =

Explanation:
Clear the DECtape mounted on the
drive DTAOll.

~------~--.-

Table 7.4 PIP Switches for Directory Management

296 CHAPl'ER 7 SERVICE PROGRAMS

7.7 A Summar v of PIP Switches

A summary of the selected PIP switches is given in Table 7.5 below:

Switch Function

A Line blocking.

B Binary processing.

C Suppress trailing blanks, convert multiple spaces to tabs.

D Delete fl Ie.

E Treat (card) columns 73-80 as spaces.

F Fast I isting of directory.

N Delete sequence numbers.

o Same as IS switch, except increment = 1.

P FORTRAN output assumed. Convert format control characters
for LPT I isting. Use IB/P for copying binary fi les.

R Rename fi Ie.

S Sequence the fl Ie with sequence numbers, increment 10.

T Suppress trail ing blanks.

W Convert tabs to multiple spaces.

x Copy specified fi les.

Z Zero out the directory.
~--- ---.------

Table 7.5 A Summary of Selected PIP Switches

The SORT Program 297

7.8 The SORT Program

SORT is a "stand-alone" program from the COBOL processor. It is used to
sort a file according to the contents in a specified field of each record. The
sorting may be done either numerically or alphabetically, in ascending or
descending order. Since the program was developed as a part of the COBOL
processor, many of its features are COBOL-related. Here, only a simplified
version will be presented so that the application is confined to ASCII-coded and
non-COBOL files. We shall see that even with such a restriction, there is a
wide range of applications. The SORT program may be called at the monitor level
by a command:

when the terminal types out a prompt symbol
There is only one command format:

11*" , sorting commands may be issued.

~--.--.- .. ---.---.-----------.- -------.... ---.•... -

I OUTPUT FILE SPEC = INPUT FILE SPEC/switch ~switch K
L ____________ _ .. _ ___ . __ ... ________ .. _. __ _ .. _ __ ... _ .. _._ .. _. __ .. _ .. .

where OUTPUT FILE SPEC file specification of the sorted result.

of:

INPUT FILE SPEC file specification of the original file.

Switch R, Switch K two of many SORT switches available in the COBOL
processor. They are defined in the following way:

(1) The R-Switch

The RECORD or R-Switch defines the length of each record and has a format

/RECORD:n or /R:n

where n=record length in number of columns. If "n" specified is smaller than
the actual record length, the columns beyond the nth column will be deleted in
the result. This switch must be given, and its omission is an error.

(2) The K-Switch

The KEY or K-switch defines the field in each record about which the file
is to be sorted. It has a general format of:

/KEY:begin:size:order or /K:b:s:o

where: begin = an integer, representing the beginning column of the sorted
field.

size an integer, representing the size (number of columns) for the
sorted field.

298 CHAPI'ER 7 SERVICE PROGRAMS

order a character, "A" (for ascending order) or "0" (for descending
order). If the order is ascending, the "order" parameter may be
omi tted in the key.

Any number of /KEY switches may be given. If there is more than one
K-switch, then the first one is the primary sort key, followed by the secondary
sort key, the tertiary sort key, etc •. For example, suppose we sort a student
roster in Engineering first by departments, then in each department by last
names, and then by initials if last names are the same. Here we use three
K-switches: the primary sort for the department, the secondary sort for the
last names, and the tertiary sort for the initials. In the SORT conmand string,
the leftmost K-switch is the primary key, and the key-hierarchy de~~ends as you
move toward the right.

Example: A grade file GRADE.OAT is stored on disk, and its content is:

123
123456789012345678901234567890

ABBor, W. E.
OOE, J. Q.
QUINCY, T. C.
RIM, E. O.
TIMMONS, E. E.
YANG, R. Y.

.R SORT

67
75
83
47
66
88

*Gl.DAT = GRADE. DAT/D: 22: 2/R: 23

(Computer run message)

(Column Numbers)

Comments

Sort GRADE. OAT according to
descending order of grades.

Example:
of 80-column wide.

Suppose roSTER.OAT is a student roster file. Each record
Information contents are stored in the followi~J columns:

Columns 1- 3
Columns 6-20
Columns 21-25
Colllllns 26-30

Initials
Last names
Department names abbreviated
School names abbreviated

is

'!he following SORT command will sort the file: first according to the
school, then within the same school according to the departments" then within
the same department according to the alphabetic order of last names" and if the
last names are the same, according to the alphabetic order of their initials:

*ROSTER.DAT = ROSTER.DAT/K:26:5/K:21:5/K:6:15/K:l:3/R:80

The RUNOFF Program 299

INl'RODUcrION

RUNOFF is a utility program which facilitates the word-processing
applications on the DEC-IO, such as for preparing manuals, reports, theses and
dissertations, etc. The general procedure is as follows:

(1) A file is prepared by the user that contains text materials.

(2) Interspersed in the text file are appropriate RUNOFF commands that
specify the case and formatting instructions. The file containing
both text and RUNOFF commands is called a RUNOFF source file. For
experienced RUNOFF users who are also their own typists, these first
two steps are often merged into one.

(3) When such a source file is run, RUNOFF will take the file and
reproduce it on the line printer, on a terminal, or into another
file. In so doing, it also performs the formatting and case
shifting as directed. If specified, it will also perform margin
changes, line justification, page numbering, titling of each page,
compiling index terms, etc.

The following example shows some typical resul ts of RUOOFF.
r·----.-·.---

CHAPl'ER 1

UlrROooC'r ION

1.1 Batch Processing ver sus l' ime-Shar ~

Once up:m a time, when a canputer user wanted to nUl d program, he went
through the following steps:

(1) The user submitted his program and data deck to the Computer Center.

(2) The decks of cards submitted by dlfterent usursere stacked
together to form a batch, each deck Wl th its proper Identification.
All jobs 1n one batch ¥.ere tnen execuled 1n one II run ll

, hence the
name 1I~"~ch proc~_~~!..~II: 'l'he information on. the puncht.">(] can]s In a
batch were fust copied Into a reel of md]nctlc tape by means of a
small and relatlvely inexpem~ive computer. 'Itle reason for this was
that the card- input to the main computer was a slow and therefore
expensive process.

(3) The m~netic tape so prcp.Jred became the input. 1f18(ilun to the main
computer. At the s<:hedul.ed llffiE', th(~ jobs in the batch ~re run and
the outputs (printouts. cards, til}X'S, etc.) were obtained.
Sometimes the outputs ~re rt:.."'Corded on another reel of mClj'nctic
tapej then output printing may be done ofC-line so as not to slow

L. .. __ . _ do~ .. ~~~e computer opariltion.

The chief benefit of RUNOFF is that the source file may be easily edited
and modified by a text editor. Materials may be deleted or added. Formatting
rules may be changed regarding margins and spacing. These changes normally
result in a catastrophe dreaded by every typist and student because the material
must be re-typed and re-paged. Now, the RUNOFF program is simply rerun with the
revised source file, and a new copy is obtained properly revised and paginated.
Thus, docunentations, theses and dissertations may be updated and revised as
necessary without requiring extensive re-typing.

300 CHAPrER 7 SERVICE PROGRAMS

7.9 RUNOFF Operating Procedur~

RUNOFF can be called by a monitor command:

when the terminal types out a pranpting "*" symbol, RUNOFF is ready to accept a
command. The general format of a RUNOFF command is:

where the output specification may be a standard DEC-IO name for one of the
following:

Line pr inter such as LPI'10:

Terminal such as TrY:

Another file such as THESIS.DOC

Exampl~: The source file that contains a textual manuscript and RUNOFF
commands has been prepared and stored as MAN.RNO in the user's disk. "RNO" is
the default extension of a RUNOFF source file.

Conmands

• r runoff

*LPTIO : =MAN

*TrY: =MAN/PAUSE

* MAN • DOC=MAN. RNO

* MAN

comments

Call for RUNOFF •

To produce a copy of finished manuscript
on the line printer No. 10

To produce a copy of manuscript on the
user's terminal. Pause at the beginning
of each page to allow alignment of
paper.

To produce a file MAN.DOC that is a copy
of the finished manuscript.

To produce a file MAN.MEM fran a RUNOFF
source file MAN.RNO. Here file names
are the same and extensions are default
extensions.

RUNOFF Pr imer 301

Several operating hints may be useful:

(1) If the manuscript is reproduced on a terminal, make sure the
terminal settings are adequate. The terminal is normally set at a
set of default values, such as tabs at 9,17,25 ••• , right margin at
72, characters at upper cases, etc. If the manuscript requires
non-standard settings, appropriate commands must be given to pre-set
the terminal. The following are some typical and useful TTY
commands applied before a RUNOFF session:

• TTY WIDTH 132

.TTY PAGE

.TTY LC

Set right margin at 132. Right margin can
be set at anywhere between 17 and 200.

This will enable the control functions of
CTRL-S and CTRL-Q keys. CTRL-S will suspend
the output (but not kill it), and CTRL-Q will
resume it. Suspension of output gives you a
chance to inspect the output. This is very
important if you are using a CRT terminal.

Normally your terminal is set for upper case,
even if it has lower case capability. TO
prepare a source file in both upper and lower
cases, the lower case must be activated.

(2) If the manuscript contains upper and lower cases, find out which
printer in the System has a lower case capability. Otherwise, all
lower cases will be forced into upper cases, a situation that may be
objectionable on occasion.

A RUNOFF PRIMER

7.10 How RUNOFF WOrks

The complete RUNOFF utility on the DEC-lO contains between 80-90 commands
altogether. However, only a handful is in frequent use and is therefore
essential. Hence, it is possible and advisable for a beginning user in RUNOFF
to master this small set so as to quickly utilize the RUNOFF capability.

When the RUNOFF is called, certain modes and formatting instructions are
already set up, and these are the standard default RUNOFF status:

(1) Print page numbers on every page except the first.

(2) Single space with left margin set at 0, right margin at 60. This
means that all text reproduced by RUNOFF will be left-justified at
column-l and right-justified at column-60.

(3) Paper size is assumed to be 60-character wide and 58-lines long.

(4) Tab stops are set at DEC-lO default values, namely, at 9, 17, 25,
33, 41, 49, 57, 65, etc.

302 CHAPl'ER 7 SEFlVICE PROGRAMS

As the RUNOFF proceeds to reproduce the source file, it cons,tructs a line
by copying words and leaving one blank between words, two blanks after a period,
until adding another word would overshoot the right margin. This process is
called filling. After a line is filled, blanks are added as necessary between
words on that line until the last character on that line is aligned with the
right marg in. This process is called justifying.

Therefore, if there is no RUNOFF command at all in a textual file, RUNOFF
will reproduce it into a document, using only defaul t formats and modes. The
document produced will have an appearance as shown below:

60 Spaces Wide

Xx xxxx xxx ... xx, xxxxx
xx. Xxx, xx ... xxx. Xxx
xxxx xx. Xxxxxx 58 lines
x .. x per page
xx. Xxx, xx ... xxx. Xxx
xx, xxxxx xx, xxxxx.

The RUNOFF detects the entity of a word by marking off word-delimiters.
A word is delimited in RUNOFF by one of the following: space(s), tab(s),
linefeed or carriage return. Multiple and consecutive delimitE!rs, such as
multiple spaces, count as a single delimiter. Thus the source file can be
prepared without worrying about the width of each line and the numr~r of spaces
between words, because RUNOFF will now treat a carriage return betYTeen two words
and spaces between two words the same way. One exception is when a carriage
return is followed by a space:--that is, when a line begins with a space at
column 1. When the "automatic paragraph" mode is on, a space at column 1 is
regarded as the beginning of a new paragraph, and RUNOFF initiates a specified
format for a new paragraph, such as line spacings and indentation. On the other
hand, punctuation marks such as ","', "?" , etc are not recoc:rnized as word
delimiters. Thus, the text "delimiters,and" is treated as one word, while
"delimiters, and" is treated as two words. If you have a typinq habit of not
leaving a space after a punctuation mark, beware. -

The use of the terms "space", "vertical
likely to be ambiguous and confusing, and
subsequent presentation in this chapter.

space", and "line space" is
needs to be clarified for the

The term space, when used alone, will denote the horizontal space on a
line. Most terminals and printers are set at a horizontal scale of
10 character/inch, and a space will measure 1/10 inch. For terminals with
"Elite" type, each space measures 1/12 inch. The term "~~rtical ~~"
typically measures 1/6 inch in the vertical direction of typing. ~~rms such as
"single-space" and "double-space" refer to the vertical spacings. The term
"line space" corresponds to the spaces between lines. Thus, if the default page
size is 60 horizontal-spacings by 58 vertical-spacings, there is room for 58
line spacings for single-spacing output, but only 29 line spacings for
double-spacing output. with these definitions, there could be a difference in
saying "skip 2 lines" versus saying "skip 2 vertical spaces".

7.11 Basic RUNOFF Commands

Interspersed in the text file are the RUNOFF commands which are
identified by a period in column 1. Thus, to avoid misinterpretation by
RUNOFF, the text itself should not permit a period in column 1.

RUNOFF Pr imer 303

There are four types of RUNOFF commands according to their functions. A
complete summary of the RUNOFF commands in these four classifications will be
deferred to Section 7.14. Here, a limited set of basic commands will be
presented. Each command is presented in its complete form and its abbreviation,
and the lower case part of each command denotes an argument or a parameter.

Before getting to the basic set of RUNOFF commands, one important
implicit command will be explained first. This command is rarely used as an
explicit command in the source file, yet it is often built into other commands.
Thus its action is often implied and included.

• BREAK
.BR

This command will cause a BREAK, i.e. the
current line will be output with no justification,
and the next word of the source text will be
placed at the beginning of the next line.

(1) To set margins, geacings, and page size

These are commands to set the left and rigllt margins, vertical spacings,
and the page size to values other than the current ones.

.LEFT MARGIN n
• 1M n

.RIGHT MARGIN n
• RM n

.PAPER SIZE n,m
• PAGE SIZE n,m
.PS n,m

.SPACING n

.SP n

Set the left margin to n. "n" must be less than
the right margin but not less than O. Default=O •

Set the right margin to n. "n" must be greater
than the left margin. The default setting is 60 •

Set the size of page n lines by m columns. The
default setting is 58,60 •

Set a ratio between vertical spacing and line
spacing. The n can be from 1 to 5. The default
setting is 1. ".SP 1" is for single-spacing~
".SP 2" is for double-spacing.

Examples: The following shows the commands in the source file and
their effect on the output. The RUNOFF commands are highlighted in italics:

Source File

.1M0 .RM20
X XX XXX XXXX XXXXX XXXXXX XXXXXX
XXXXX XXXXX XXXX XXXX XXX XXX XX.
.1M8
YYYYY. YYYYY. yyyy yyyy yyy YYY,
yy yy Y.
.1MS .RMIS
ZZZ ZZ ZZZZZ ZZZ zz
zz ZZZ.

OUtput

X XX XXX XXXX XXXXX
XXXXXX XXXXXX XXXXX
XXXXX XXXX XXXX XXX
XXX XX.

YYYYY. YYYYY.
yyyy yyyy
yyy YYY, yy
yy Y.

ZZZ ZZ
ZZZZZ ZZZ
ZZ ZZ ZZZ.

304 CHAPI'ER 7 SERVICE PROGRAMS

(2) To set text format

The following commands set the text paragraphing formats:

• AUTOPARAGRAPH
.AF

• IDAUTOPARAGRAPH
• NAP

.PARAGRAPH n,v,t

.P n,v,t

.BLANK n

.B n

.CENTER nitext

.C nitext

This command causes a blank line or any line
starting with a space to be considered as the
start of a new paragraph. Format of a new
paragraph is specified by a specified or a default
" • PARAGRAPH" command.

This command cancels the AUIDPARAGRAPH mode •

causes a BREAK action and takes the
a new line and the beginning of a
In the meantime, the formats of the

This command
next line as
paragraph.
subsequent
v, t:

paragraphs are set by the parameters n,

n = number of indented spaces. The default value
is 5, and n can also be negative. Negative
indentation means a paragraph beginning to the
left of the left margin of paraqraph, such as
this paragraph here.

v = number of line spaces between paragraphs. It
can range from 0 to 5.

t argument in
which is
paragraphing.

the • TEST PARAGRAPH t corrunand ,
automatically executed when

This command will cause a BREAK action and insert
n blank line spaces after the last line. The
parameter n can be negative to move the line to n
lines from the end of the page. Note that the
actual number of blank vertical spaces is equal to
(n*spacing per line).

This command will cause a BREAK and center the
"text" in the source file. The cent'~ring is over
column n/2, independent of the setting of the left
and right margins. If n is not qiven, it is
assumed to be the page width.

RUNOFF Pr imer 305

Example: The following shows the paragraphing control:

Source File

.IMO .RM20

.AF

.P3,1,1

.C20;EXAMPLE

OUtput

EXAMPLE

X XX XXX XXXX

X XX XXX XXXX XXXXX XXXXXX XXXXXX
XXXXX XXXXX XXXX XXXX XXX XXX XX.

yyyyy yyyyy yyyy yyyy yyy YYY,

XXXXX XXXXXX XXXXXX
}{}{XXX }{}{XXX XXXX
XXXX XXX XXX XX.

yy yy Y.
.IM5 .P-3,1,1

ZZZ ZZ ZZZZZ ZZZ ZZ
ZZ ZZZZ ZZZ ZZZZ
ZZZZZZ ZZZ.

yyyyy yyyyy yyyy
yyyy yyy YYY, yy yy
Y.

zzz ZZ ZZZZZ ZZZ
ZZ ZZ ZZZZ ZZZ
ZZZZ ZZZZZZ
ZZZ.

Note that if in the above example, paragraphing were to go back to
".IMO.P3,1,1", the RUNOFF corrunand should be ".P3,1,1 .IMO" rather than
".IMO .P3,1,1". At the end of the above example, the paragraphing is set at
negative indentation of 3 spaces. Thus if" .IMO" is applied while negative
indentation is still in effect, you will be telling RUNOFF that the paragraph
should begin to the left of column 11

(3) To control upper and lower cases

• UPPER CASE
.UC

• [[MER CASE
.LC

ThIs command sets the output mode to upper case •
All alphabets in the source file, upper or lower
cases, will be forced into upper case in the
output.

This command sets the output mode to lower case •
All alphabets in the source file, whether upper or
lower cases, will be forced into lower cases in
the output.

If .UC and.LC corrunands are both applied, the text cases will be
reproduced as they are in the source file.

To exert control of upper or lower case on individual characters, RUNOFF
uses special symbols. This is discussed in Section 7.12.

(4) To control filling and justifying

RUNOFF assumes that the source file is to be filled and justified, and
hence considers them default actions. However, on occasion, you may wish to
reproduce the text exactly as given -- for example, a tabulation by columns.
Therefore, it is necessary that you should be able to enable and disable the
filling and justification process by corrunands. They are listed below:

306 CHAPrER 7 SERVICE PROGRAMS

.FILL This conunand sets RUNOFF to a filling mode to add
successive \'.Qrds from the source text until adding
one more \'.Qrd will exceed the riqht margin. It
also sets the justification mode sp~cified by the
last appearance of a JUSTIFY or NOJUSTIFY corrunand.

.F

.00 FILL
• NF

This conunand will disengage the FIlL.L and the
JUS'rIFY modes •

• JUSTIFY
.J

.NOJUSTIFY

.NJ

This conunand sets the JUSTIFY mode that will
increase spaces between \'.Qrds until the last \'.Qrd
exactly meets the right margin.

This conunand turns off the JUSTIFY mode, but the
FILL mode is unchanged. An output line is filled
but not justified, giving a ragged JCight margin.

The FILL and the JUS'rIFY modes and their disabling corrunands have
interacting influences. Turning off FILL would also tum off JUSTIFY,
but turning off JUSTIFY does not affect the FILL. Because of this,
note the following:

a. The OOFILL-NOJUSTIFY mode need be used only whE~re there are
several lines of material to be copied exactly. If there is only
one line, it is nut necessary to use this mode if there is a BREAK
before and after the line.

b. Normally, FILL and OOFILL are used to turn both filling and
justification on and off. It is usually desirable to do both. A
subsequent appearance of a justification corrunand win override the
fill corrunand.

c. A combination of FILL and NJJUSTIFY corrunands will produce a ragged
right margin.

d. A combination of OOFILL-JUSTIFY will expand each line to justify,
but this mode has doubtful utility. If this is applied, a JUSTIFY
corrunand should be given after every OOFILL corrunand.

RUNOFF Pr imer 307

Example: The following example shows the difference between a
justified and a ragged-right margin:

Orig inal '!'ex t

This command sets
RUNOFF to a FILL
mode to add
successive words
from the source
text until
the adding of one
more word will
exceed the right
margin. It also
sets the justification
mode to be that specified
by the last appearance
of JUSTIFY
or NOJUSTIFY command.

7.12 Special Text Characters

RUNOFF Output

This command
sets RUNOFF to a
FILL mode to add
successive words
from the source text
until the adding of
one more word will
exceed the right
margin. It also
sets the
justification mode
to be that specified
by the last
appearance of
JUSTIFY or NOJUSTIFY
command.

'!his command
sets RUNOFF to a
FILL mode to add
successive words
from the source text
until the adding of
one more worn will
exceed the right
margin. It also
sets the
justification mode
to be that specified
by the last
appearance of
JUSTIFY or NOJUSTIFY
command.

A number of text characters, when placed in conjuction with
material, exercise a change of the case and the mode operations.
listed below, with examples following:

the text
They are

(1) Ampersand (&) This character is used to speci~y
underscoring of text. The character placed immediately after a "&" (no space ln
between) will be reproduced in the output as underscored. The underscoring can
be turned on and locked by a double character ""&", and turned off and locked by
"\&".

(2) Circumflex (") and Back-slash (\) These two characters act
as the up-shift and the down-shift keys of a typewriter. '!hus, when a ,,"" is
placed before a letter of the alphabet, that letter is reproduced in upper case.
Similarly, a "\" in front of a letter of the alphabet causes the letter to be
reproduced as a lower case. Also, """,, will lock the shift key at upper case,
and "\ \" will lock the shift key at lower case.

(3) Number sign (#) Occasionally, it is necessary to include a
fixed number of spaces in the text which should not be treated as word
separaters. '!he character (#) is used by RUNOFF as a "quoted space" or a
mandatory space that can neither be reduced nor expanded. Thus, if a fixed
number of spaces is required in the output, those spaces may be reserved by a
specified number of its. For example, "Section 2.13" may be reproduced as
"Section 2.13", "Section 2.13", "Section 2.13", etc, depending on filling
and justification of that line. These two words may even be split between two
lines. However, "Section#2.13" can only be reproduced as "Section 2.13" on the
same line.

(4) Less-than sign «) If a RUNOFF command of "FLAG CAPITALIZE" has
been given at the beginning of the source file, then a less-than sign «) placed
immediately before a word will capitalize that whole word.

308 CHAPrER 7 SEFtVICE PROGRAMS

(5) Greater-than sign (» If a RUNOFF command of "FLAG UiIDEX" has been
given at the beginning of the source file, then a greater-than si.gn (» placed
immediately before a word will place that word in the index buffer memory. At
the end of the source file, a command of "00 INDEX" will produce an index
section, where all indexed terms are sorted in alphabetical order cmd each with
page reference.

(6) Exclamation mark (1) This character marks the t~inning of
comments or the end of footnote lines.

(7) Semicolon (i) This symbol indicates multiple commands.

(8) Underscore (_) The above listed special characters are
recognized by RUNOFF for having certain special control functions. Hence, these
special characters will not be reproduced in the output. If a special character
is to be reproduced as it is, its control function may be temporarily disengaged
by placing an underscore () in front of that character. For example,
"MP Stores" and "A &P Stores" will be reproduced respectively as "AP Stores"
and "MP Stores". The underscore sign can also be used to specify -its own
reproduction. For example, a () and a () text will be reproduced as ()
and (_) respectively in the output. -- -

Examples: The following shows the functions of special characters and
their effect on the output:

~~:~terN~;~~~::::------
. f-T=~comp .. u .. t.-e-r.i.z:d &Tomog r aphy

~&,\& [&RUNOFF\&

!. r.c- . .

\
\\

I~UNITED ~srATES
I~~UNITED STATES\ \

1.oc
~RICA
r\\MERICA

fro W. Sze
IT.#w.#sze

L#Footnote:
I#Footnote: --... --r----~--~~.~~~--.~

< .FLAG CAPITALIZE
If numberl<number2,
If numberl <number2,
If <numberI_«umber2,

'-------'------------_ ... __ ._-

7.13 Selected RUNOFF Switches

RUNOFF OUtput

Nth derivative
C~omputerized l'omography

United States
UNITED STATES

AMERICA
America

T. W. Sze
T. W. Sze

#Footnote:

Footnote: j --. -- ---.- -- .--- -_.-.. --.--.-.-

If numberlNUMBER2.r

If numberl<number2,
If NUMBERl <NUMBER2,

The switch is an optional part of the RUNOFF execution command string:

Output Spec = Input Spec/Switches

RUNOFF Switches 309

The switches are indicator~, each consisting of a slash and a keyword, plus an
optional argument. These switches are used to set or select program options.
Many switches perform similar functions as the RUNOFF commands for setting or
selecting modes and formats. In these cases, a switch would have the same
effect as including a RUNOFF command at the beginning of the source file. Thus,
if the function of a switch is already specified by either the default
conditions or by specific commands in the source file, that switch would be
superfluous. Therefore, the usefulness of a switch is to augment a source file
for those functions not specified or different from the default conditions.
Therefore, the function of a switch should be regarded as setting an initial
mode or condition. Whether that initial mode or condition will hold for the
entire output depends on whether that mode or condition will be revised by
commands downstream in the source file.

A selected group of RUNOFF switches are tabulated next:

Switches

/NOAUI'OPARAGRAPH

/CASE: IDWER
/CASE:UPPER

/OOWN:n

/LINES:n

/PAUSE

/RIGHT:n

/SEIJjENCE

I

Functions

A leading space in column I initiates format for
a new paragraph.

Turn off auto-paragraph mode.

Execution starts in lower case mode.
Execution starts in upper case mode.
UPPER is the default condition.

Move down text of each page by n lines.
Defaul t n=O.

Initial page size in n lines. Default n=58.

Pause between pages (to allow paper changes).

Move to the right text of each page n spaces.
Defaul t n=O.

List record number of source file at the left of
the RUNOFF output.

/SIMULATE 1 Advance to the next page by form feeds.

/SPACING:n - Start with vertical spacing setting n.-----------------
Defaul t n=l.

-- ----------- ------------------------,

310 'CHAPI'ER 7 SERVICE PROGRAMS

A SUMMARY OF RUNOFF COMMANDS

7.14 A Summary of RUNOFF Commands

RUNOFF commands fall in four categories: (1) Text formatting, (2) Page
formatting, (3) Mode setting, and (4) Parameter setting. They are listed below:

(1) Text formatting commands:
...-----------,------r-------------------------------

Command &
Abbrev i at Ion

.BLANK

.B

• BREAK
.BR

.CENTER

.CENTRE

.C

• COMMENT

. FIGURE

.FG

.FIGURE DEFERRED

• FOOTNOTE
.FN

• LIST
.LS

• LIST ELEMENT
.LE

• END LIST
.ELS

• INDENT
.1

• NOTE
• NT

• PARAGRAPH
.P

• SKIP
.S

Argument

n

n

text

n

n

n

n

n

text

n,v,t

n

Function

To skip n lines

To start a new line of output •

To center the next line around column n/2

Comment, ignored by RUNOFF execution •

To reserve a space for an n-I ina figure •

To defer an n-I I ne figure to this next page If
there Is no room In the current page.

To start an n-line footnote .
(I nput footnote I I nes unt I I "I" in co I .1 •)

To start a list of Items with spacing n .

To start I isting items •

To end a list •

To indent the next line n spaces .

To start an Indented note with the heading
"text" centered •

To start a new paragraph.
Equivalent to: . I n .S v .TP t

To skip n*spaclng vertical spacings •
L---________ -'-____ --'-_________________________________ -'

Table 7.6 RUNOFF Text Formatting Commands

RUNOFF Surmnary 311

(2) Page formatting commands:

r-----------,-----,---------------------------.
Command &

Abbreviation

. APPENDIX (.AX)

• CHAPTER (.CH)

• DO INDEX (.DX)

.END SUB PAGE

.ES

. F IRST TITLE

.FT

• HEADER LEVEL
.HL

• HEADER (.HD)

• INDEX

• NO HEADER (.NHD)
• NO NUMBER (.NNM)
. NO PAGING (.NPA)
• NO SUBTITLE (

. NUMBER APPENDIX

• NUMBER CHAPTER

. NUMBER INDEX

. NUMBER PAGE

. NUMBER (. NM)

• NUMBER SUBPAGE

.PAGE (.PG)

.PAGING (.PA)

. PRINT INDEX

.PX

.SUBPAGE (.SPG)

• SUBTITLE (.ST)

.TEST PAGE

.TP

. TITLE (. T)

Argument

n

case

n

n

n

ch

n

Function

Start next appendix with rest of I ine as name •

Start a new chapter with rest of I ine as name .

Output index with rest of I ine as title .

Stop subpage numbering

Include title on the first page .

Start section at level n(=l to 5); the rest is
the name.

Issue "page" in case(=UPPER,LOWER,MIXED,or NONE)

Insert rest of this I ine in Index .

Suppress page header .
Suppress page numbering .
Stop spl iting into pages •
Suppress subtitles .

Set appendix to Appendix n •

Set chapter number to n .

Set chapter heading to "INDEX" •

Resume page numbering at page n •

Set subpage number to ch (A-z) •

Start a new page.

Resu~~ _~~e~~_I_"l.!L~:t_~_P_~g~_~ ___________________ _

Start printing the index •

Use the rest of the I ine as the subtitle •
~--~.---.. --- .---."- .. _._ .. _--_.-

Skip to a new page if fewer than n I ines are
I eft. ______________________________________ _

Use the rest of the I ine as the title •
'-----------'-------'-----------------------------

Table 7.7 RUNOFF Page Formatting Commands

312 CHAPI'ER 7 SERVICE PROGRAMS

(3) Mode setting Corrmands:

• NO JUSTIFYING
.NJ

stop justifying .

.LITERAL Treat the fol lowing lines exactly as they

.LT appear, Including special characters .

• END LITERAL Terminate LITERAL treatment of text •
• EL

• LOWER CASE
.LC

.UPPER CASE

.UC

.PERIOD

.PR

.NO PERIOD

.NPR

.FLAG

.FL
ch

Lock in the lower case mode (~~) •
I

Lock in the upper case mode (OC)-- -------1

--I ~~:~~k:w~ . : : ~~~~ after these~u~~;;~t,~"--_-~~_j
-[StoPt-he P~R' DOmode. I

I T~~~ (6~~T T ~~ I ~~~~~~i~gL :~N6~~o;~~~E-~~ii~i~~~- ------]--
LOWERCASE,QUOTE,SPACE,SUBINDEX,UNDERLINE,
UPPERCASE) .

. ~--~~.--.~------- ,--- ----.-.~ <-'-'--~-'-"----'--"-------~'---

,--~_~_~_; __ :_·~_j_~_A-_LL_~_-~-_---,---__ C_h __ ---'--_~_~~_:_~_:_:_a_~_~e_, :_:_' :_;_~_:_:_::_:_P_t_(_'_I_) _. __ --_ -~---~-~
_ .NFL

Table 7.8 RUNOFF Mode Setting Commands

RUNOFF Summary

(4) Parameter Setting Commands:

Command &
Abbreviation

• AUTOPARAGRAPH
. AP

• NOAUTOPARAGRAPH
.NAP

• AUTOTABLE
• AT

.LEFT MARGIN

.LM

.RIGHT MARGIN

. RM

Argument

n

Function

Accept line with leading spaces as the
beginning of a new paragraph •

Deactivate AUTOPARAGRAPH .

Accept lIne wIthout leading space as the
begInnIng of a new table •

Set left margIn at nth column.
on the n+1th column.

Text begIns

Set rIght margIn at nth column. Text stops
at the nth column .

.PAGE SIZE
• PS

n,m Set the page sIze to n lInes by m columns •

Set vertIcal spacing between lInes as n.

Set standard setup wIth wIdth of n columns.

Table 7.9 RUNOFF Parameter Setting Commands

313

314 CHAPI'ER 7 SERVICE PROGRAMS

OPRSTK

7.15 Introduction

The DEC System-10 is so designed that a batch job may be submitted either
in cards at a card reader or by a disk-stored control file at a remote terminal.
In both cases, the output printouts are returned only at the operating station,
usually at a line printer, and results of terminal-submitted batch processing
jobs are not printed at the terminals unless they are done as described in
Section 7.17. Terminal-submitted batch jobs have serious dra~roacks. On one
hand, the prime advantage of man-machine interaction is lost~ on the other, the
turn-around-time is not improved. In the meantime, it retains the high overhead
of using the time-sharing system, and is therefore more expensive.. However, on
occasions, submitting batch jobs at a terminal may be the only ~lay to get your
job done. A user may be located at a remote place when batch jobs are to be
submitted, and a terminal may be the only input device accessible to him. Or,
since in general a time-sharing user has a smaller core allocation than a batch
user, submitting his job as a batch job may be the only way he can run a large
program.

DEC System-10 has monitor commands of SUBMIT and QUEUE INP: for
submitting batch jobs at a terminal. However, at the Universit~of pIttsburgh,
these two commands are disabled to allow a unification of all queue processes,
including the batch queue. A service program called OPRSTK (QEeEation StacJ5.er)
is implemented which replaces the DEC's CDRSTK (Card Reader StackE!r) program.

To submit a batch job at a terminal, the following steps should be taken
after the user has signed on at the terminal:

(1) Create a control file using an editor such as the UPDATE (see
Chapter 2). Save the file on disk and give it a name with an extension of CTL,
such as NAME.CTL.

(2) Run the OPRSTK program by either of the two monitor con:nnands:

or simply,

--------------l
.R OPRSTK

ENl'ER FILE SPECIFICATION> NAME.eTL I

.OPRSTK NAME
----j

After the job is queued, the system will respond with a verification message.
Output results are printed at the system facilities, but no result will be
available at the uSE!r's terminal.

The details of SE!lected batch commands will be given in Chapter 9. We
will only deal with the creation of a control file and its submission here.

7.16 To Create a Control File

Creation of a control file on disk by the UPDATE editor is no different
from creating any other file. Only one point should be remembered. Such a
control file will contain a number of BATCH commands which begin with a U$" in

The OPRSTK Program 315

column-I. When such a line is created by UPDATE, it will be misinterpreted by
the editor as an UPDATE corrnnand. The problem may be solved either by starting
the U$ U at colunn-2 and once entered, removing the blank in colunn-l by a
$CHANGE conmand, or by using an UPDATE corrnnand of $IS # at the beginning of the
editing session. In the latter case, only those lines beginning with u#u in
colunn-l will be taken as UPDATE corrnnands.

Two examples will be given here, to be carried out from the creation of
control files through their submission and execution as batch jobs. Both are
examples used in this book---solution of a cubic equation by the Newton-Raphson
method, one example by FORTRAN programming, and the other by PIL programming.
We assume that these two programs have already been stored in the disk and named
as NEWTON.FOR and NEWTON.PIL respectively, and their contents are:

NmroN.FOR

READ(5,10)A,B,C,D,Xl
10 FORMAT (F21. 7)
1 X2=Xl-(A*Xl**3+B*Xl**2tC*Xl+D)/(3.*A*Xl**2+2.*B*XltC)

WRITE (6,10)X2
IF (ASS((XI-X2)/X2-0.001)3,3,2

2 Xl=X2
GO TO 1

3 WRITE (6,11)X2
11 FORMAT (/ I 'TIlE REAL ROOT = I, F20. 7)

STOP
END

NE.WroN.PIL

1.1 DEMAND A,B,C,D,Xl
1.2 SET X2=Xl-(A*Xl**3+B*Xl**2tC*Xl+D)/(3*A*Xl+2*B*XltC)
1.3 TYPE X2
1.4 IF ASS OF ((XI-X2)/X2) $LE 0.001, TO STEP 1.6
1.5 SET Xl=X2
1.51 TO STEP 1.2
1.6 TYPE IN FORM 1, X2
1. 7 STOP
FORM 1.

'TIlE REAL ROOT = ---.----1111

The example was run with a given equation of:

Thus the input data are 1, -16, 65, -50 and 16 respectively for A,B,C,D,Xl. The
control files needed are:

FORTRAN Control File FORT.CTL

$JOB[115103,320571]
$DATA
1.
-16.
65.
-50.
16.
$EOD
• EXECUTE NEWIDN. FOR
$EOJ

PIL Control File PIL.CTL

$JOB[l15103,320571]
.PIL NEWIDN
00 PARI' 1
1
-16
65
-50
16
$EOJ

316 CHAPrER 7 SERVICE PROGRAMS

7.17 To Submit a BATCH Job at a Terminal

Once the control file is prepared, submission of a batch job is simply to
supply the control file name in running the service program OPRSTI<' The
proceedings are given next as illustrations:

Example: Control files have been prepared as FORT.CTL and PIL.CTL.

(LOGIN proceedings here)

.OPRSTK PIL
$JOB[115103,320571]
; ;; END OF JOB AFTER 10 CARDS /SEQUENCE NUMBER IS 7264
EXIT
.OP FORT
$JOB[115103,320571]
'" END OF JOB AFTER 10 CARDS / SEQUENCE NUMBER IS 7266

The job logs of both jobs are included in Chapter 9, where the details of
batch jobs will be given.

If a user wishes to capture the output data to type it out on his
terminal, to print multiple copies, or to use it as an input in the subsequent
processing, he may do the following:

.ASSIGN DSK: 6
• OPRSTK FORI'. CTL

(Wait until the batch job is done.
to inquire about the job status.

• TYPE FOR06. DAT

Use QUEUE command
See Chapter 8)

The OPRSTK Program 317

VIRl'UAL MEMORY

7.18 The Virtual Memory Procedure

In a multi-programming and multi-processing system, it is often not
possible to accommodate all the programs and data in the main memory at the same
time. Those programs and data not being executed at the time are moved out of
the memory and stored temporarily in the fast mass storage. Then as the user is
assigned his time slice, his programs and data are moved back into the main
memory. This is a standard and unique operation, called swapping, in a
time-sharing system where the main memory is shared by many users and many
programs. The mass storage in this case is called a swapping device.

The principal mechanism of the swapping process is the techique of
.memory map, which translates the addresses produced by the processor into
addresses in the physical memory. With the memory map handling the address
translation, the user is free from the task of keeping track of memory locations
before and after swapping.

The main memory is allocated to the user in units of "!s" or "Rs", where
lK memory is equal to 1024 words, and IP (P for page) is 512 words. Each user
is allocated a physical memory, whose size is limited by the user's memory limit
or memory request, whichever is smaller. When the program and/or data are too
large for the allocated size, the program will attempt to access memory outside
the allocated area, causing a fatal memory access error called a "memory fault."
The job is then aborted. In such a case, the user must scale down his problem
or apply certain special techniques such as overlays and chaining of programs.

The techniques of swapping can now be extended to the user's program
execution. A part of the user's program and/or data will be in his memory in
the usual way; the rest is in the mass storage. When a "memory fault" occurs,
the fault manager (a software unit) will take note of the fault. It will then
bring into the main memory a page from the mass storage, and take out a page
from the memory (back into the mass storage) to make room. Thus, a memory
access fault may cause some time delay due to the swapping (called the
overhead), but it will not cause the job to abort. Here from the view point of
the user, the mass storage is in effect, although not in fact, a part of his
memory allocation. Therefore, such a memory is then called the virtual m~~~.
In contrast, the actual memory allocated to the user is the physical memory.

Assuming that the virtual memory will be used only in a batch job, the
procedure of using the virtual memory technique is outlined as follows:

(1)
request.
job.

(2)

The $JOB card should include a CORE switch specifying the core
Without this switch, the system default allocation applies for the

Set the physical core limit by a monitor command:

.SET PHYSICAL LIMIT mK

where mk is the core size in K-words. If this is omitted, the physical limit is
assumed to be that requested in the $JOB card.

(3) Prepare a core image (a.SAVor EXE file) of the programs and save it
as a SAVor EXE file. This may be done by using the LINK-IO loader by either of

318 CHAPrER 7 SE:RVICE PROGRAMS

the two following ways*:

• WAD/LINK list

.SAVE flname

or, .wAD/LINK flname/SAVE, list

where list contains a list of programs to be loaded, and flname is the name of
the EXE file to be saved. Note that the /LINK switch must be placed in front of
the list of program names.

(4) Request virtual memory facility by setting its limit:

.SET VIRTUAL LIMIT nK

The virtual memory limit must not be more than twice the physical limit, or
n~ 2m. Also, after the current job is finished, the virtual limit should be
reset back to zero.

(5) Run the program, using the EXE file just saved:

.RUN FLNAME

Although the virtual memory facilities are available, users should
exercise considerable restraint in using them, because they expa~j the memory at
a great expense to efficiency. Some installations make a policy of using the
virtual memory as a last resort. When a user does use the technique, he should
examine his program very carefully and modify it if necessary. The general
principle is that the execution should have access to contiguously stored data
or prograrruned steps. For example, the order of subscripts as indexes becomes
critically important in a multiple-dimension array processing. Also, the
program should try to avoid branching statements, such as GO TO. In any event,
this facility is available only by special permission or arragement.

*If the LINK loader is the default loader of the system, the "/LINK" switch
shown below will not be needed.

virtual r~emory Procedure 319

REFERENCES

1. DEC SYSTEM-10 UTILITY MANUAL, DEC-10-UTlLA-A-D,
Corporation, Maynard, Massachusetts; 1975

Digital Equipment

2. SORT AND CSORT, DEC-10 Notes, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; June, 1979.

3. DEC System-10 SORT/MERGE USER'S GUIDE, DEC-AA-0997D-TB, Digital Equipment
Corporation, Maynard, Massachusetts; 1977.

4. OPRSTK, DEC-10 Notes, Computer Center,
Pittsburgh, Pennsylvania; May, 1980.

University of Pittsburgh,

5. PDPll/IAS RUNOFF, DECUS, Maynard, Massachusetts; August, 1977.

6. INI'RODUCTION '1D THE VIRTUAL MEMORY,
Pittsburgh, Pittsburgh, Pennsylvania;

Computer Center,
March, 1977.

7. The HELP Files: SYS;PIP.HLP, SYS:SORT.HLP,
SYS:RUNOFF.HLP, SYS:RUNOFF.INS, Computer Center,
Pittsburgh, Pittsburgh, Pennsylvania; 1980.

University of

SYS:OPRSTK.HLP,
University of

8. INTRODUCTION 'ill DEC SYSTEM-10 : TIME-SHARING AND BATCH, T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; First Edition,
September, 1974, Second Edition, September, 1977.

CHAPl'ER 8

OPERATING SYSTEM COMMANDS

8.1 Introduction

The software system of the DEC System-lO contains language processors and
a variety of service programs. The most important one is the ~~rating system,
also called the executive system, the sUpervisor or the monitor. It is a master
program M1ich exercises an overall control on the entire Systerrl. It performs
the scheduling of user s from the queue, suppl ies them with proper language
processors and other system resources when requested, keeps account of charges,
and performs many other service functions. An operating system command may be
issued only when the user is in the monitor mode, which is indicated by the
appearance of a prompt symbol "." (a period) on the terminal output. If the
user is not yet in the monitor mode, he can get there simply by pressing the
CTRL-C (~C) key on the terminal.

Before going into some details of the operating system conmands, it is
necessary to get acquainted with some terminology.

(1) Job The entire sequence of steps, beginning from the
signing-on step and ending with the signing-off step, is called a~. Each
job, while active, is assigned by the System with a job n~nber, such as
"Job 16". Within each job, the user can perform many functions, such as calling
on system resources like tapes and disks, preparing and running programs, and
communication with the System or other users.

(2) System device name Each system peripheral device has two names,
its physical device name and its logical device name. They are eKplained below:

A. Physical device name Each input or output peripheral
device associated with the System has a standard physical device name so that it
can be referred to consistently. The format of a physical device name is:

where:

320

DEVnnn:

DEV := three-character abbreviation assigned for a class of devices,
for example, LPT for all line printers in the system.

nnn zero to three-digit number indicating the numerical designation
for a particular unit in a class of devices, such as "DTAOlO:"
for DEC tape drive Number 010.

a colon, an integral and terminating part of the device name.

Physical and Logical Device Names 321

If there is only one device in a particular class, the part "nnn" may be
omitted. For example, "PLT:" is used to represent the system plotter, "PRG:"
the Program Library, and "SYS:" the System Library. It may also be omitted in a
multi-unit device name if only one such unit is assigned and available for
gener al usage, such as "DSK:". A 1 ist of physical names of selected system
devices is shown in Table 8.1.

Device Physical Names

Array processor unit APU:
--.---.. ------- ---------._-------------------1

Card Punch CDP:

Card Reader CDR:

DECtape Drive DrA:
DrAOIO:, DrAOll:, etc.

~----.---.. ------
Disk DSK:

Line Printer LPT:
LPTS3:, LPTS6:, LPTS10:, etc.

Magtape Drives MT7: (7-track drive)
MT8: (9-track drive, 8uO/16uO BPI)
MT9: (9-track drive, 1600/6250 BPI)
MTAOIO:, MTAOll:, etc.

Operator's Terminal CPR: or 1TYO:

Plotter PL'r:, PLT010:

System Library SYS:

Program Library PRG:

Engineering Library ENG:

Terminals TTY:
1TYO:, TTY16:, TTY63:, etc.' ----'------------_ .. _----------'

Table d.l System Devices and Their Physical Names

B. Logical device name The user may also define the device with a
name of his choice, which mayor may not be the same as the device's standard
physical name. Such a user-chosen name is called the logical device name. A
logical device name may be assigned by either the ASSIGN command or the MOUNT
command, as descr ibed in this chapter. Once a log ical name is assigned, a
device may be referred to by either its physical or logical name. Since the
logical name may be chosen arbitrarily, the name chosen may already exist as a
physical name of a different device. The conflict is resolved by the System
that gives the logical name assignments precedence. Sometimes, it is beneficial
to purposely cause such a conflict. For example, suppose a programming project
has been completed after a great deal of effort on its preparation, debugging,
compiling and documentation writeup. Suppose the program is designed to produce

322 CHAPI'ER 8 OPERi~TING SYSTEM

its output on a line printer. Suppose now you wish to run this program, but you
want a disk file output rather than a printer output. Instead of making
extensive changes on the program and re-compiling it, you can simply call the
disk a "printer" by giving the disk a logical name of the printer. Then, when
you run the program, the System would take the disk as the "printer" and produce
the output there.

The format of a logical device name is':

LOGDEV:

where LOGDEV is an one to six-character alphanumeric string, and the colon is an
integral and terminating part of the name.

(3) Switch In most operating system commands, options or
variations within each command are available. For example, to print a file on a
line printer, a user can have a choice of printing it in single-space,
double-space or triple-space, or specifying the number of copies he wants.
'rhese options are built into the operating system commands as option switches or
simply switches. There are two general formats of switches:

/KEYWORD
/KEYWORD:argument

In the first format, the option does not require any other information, such as
/FAST, /FORTRAN, etc. In the second forma't, the option will require a parameter
specification, such as /SPAC'ING:OOUSLE or /SINCE:22-JUL-l980 or /PROTECTION:l55.
Generally, these switches may be placed anywhere at the command keyword, and the
order of the multiple switches is optional. However, when there is a list given
in an Input/Output command, the placement of a switch in the command structure
will make it either a "global switch" or a "local switch". The effect of a
local switch only applies to the file it specifies. The effect of a global
switch will extend to the rest of the command structure, unless its effect is
overriden temporarily by a local switch or permanently by another global switch.
When the following command is applied:

.PRINT PRGI.FOR,/COPIES:2 PRG2.FOR, PRG3.FOR, PRG4.FOR/COPIES:l, PRG5.FOR

1 copy each of PRGI.FOR and PRG4.FOR and 2 copies each of PRG2.FOR, PRG3.FOR and
PRG5.FOR will be printed.

(4) DEFAULT CONDITION When an operating system command is executed,
it runs a particular system program. Early in that program, if options are
allowed, a set of initial conditions is established for these options. These
initial conditions will remain unless they are replaced by the specified
switches in the user-issued command. Thus, if user's option is the same as the
initial conditions, there is no need for him to include such a Bwitch in the
command. Or, if the user is not familiar with the available options of a
particular command, the command will be executed according to the established
initial condition set. These conditions established by the System are called
the default conditions of the switches. They are judiciously chosen to
represent what an average user would want in a typical case. For example, in
listing a file on the printer, single-spacing will be assumed if spacing option
is not specified. Many default conditions are locally defined by a process
called operating system generation, at which time the conditions are fixed
according to such considerations as the installed system capacity, institutional
operating policy, all aspects of the user population, and many local
circumstances. Therefore, these default conditions may vary from one
installation to another. Even at the same installation, they may vary from one
time to another.

File Specifications 323

(5) File specification For the purpose of identifying a file, each
file is given a name. Once the names are established, the system will maintain
a directory so that users need not be concerned with the exact location on the
disk for their files. For the DEC System-IO, the format of a complete file
specification is:

where: DEV:

DEV: NAME. EX'!' [m,n] <xyz>

name of device on which the file is stored.
omitted in the complete specification, DSK:
to users) is assumed.

If this part is
(the disk assigned

NAME filename consisting of one to six alphanumeric characters with
no embedded blanks.

• EXT

[m,n]

<xyz>

file extension consisting of zero (0) to three
characters with no embedded blanks. If it
characters, it is called a null extension. The
integral part of the extension.

alphanumeric
contains zero

period is an

the PPN of the person who created and owns the file. The
default PPN is the current job's PPN. Note the use of square
brackets.

a three-digfit protection code. Note the use of angular
brackets.

The file extension is a part of file identification, used to indicate the
type or language of the file. Although any zero to three-character combination
can be used as a file extension for any file, the following are some most
frequently used file extensions, and their meanings are recognized by the
System.

Examples:

NEWIDN.PIL
NEW'IDN.FOR
NEW'IDN. REL
FOROI.DAT

A PIL program file named NEWIDN.
A FORTRN~ program file named Nb~N.
An object program compiled from NEWIDN.FOR
A data file named FOROI.

Symbols "*" and "?" are used as "wild cards" to represent a class of file
names or extensions, as illustrated by the following examples:

Examples:

NEWIDN.*

*.FOR

.

F????DAT

All files named NEWTON of any extension.

All FORTRAN files.

All files.

All data files whose names are 5 characters
or less and begin with F.

324

D12??D??

Dl2?? .*

The protection code is
from 0 to 7. Each digit

CHAPrER 8 OPE HATING SYSTEM

All files whose names begin with "D12" Clnd
contain 5 characters or less, and whoi~
extensions begin with the letter D and con
tain 3 or less characters.

All files whose names begin with "D12" and
contain 5 characters or less.

a 3-digit octal number xyz, each digit ranging
defines a protection level of the file against a

certain class of users:

x = protection level against the file owner himself.

y protection level against users sharing the same project number.

z = protection level against the general public.

The level of protection ranges from level 0 to -', and level-7 is the
highest. The exact definition of each protection level is given below:

Code Digit

7
6
5
4
3
2
1
o

Access Protection*

No access privileges
Execute only
Level 6 + Read privilege
Level 5 + append privilege
Level 4 + update privilege
Level 3 + write privilege
Level 2 + rename privilege
Levell + change protection privilege

Access protection can be changed by executing RENAME or PHa:~ECT monitor
command (see Chapter 6) or the PIP program (see Chapter 7). Since there are 8
levels of protection in each of three classes of users, there are 512 different
shades of protection-level combinations possible. Normally, one need only be
concerned with a few commonly used codes:

Protection Codes Applications

077,177

057,177

055,155

Strictly private and non-sharable, such as
grade files maintained by an instructor.

Sharable within a project, for example, a
program to be shared by all students in a
course.

Sharable with the computer community, but
the file may not be modified by anyone
except the file owner.

The System assigns a default protection level of 057, set automatically
by the computer if the person does not specify any protection code when he

*Subject to
Pittsburgh,
slightly.

minor
access

local variations. For
protection designated

example, at the University of
by the x-digit has been modified

File Specifications 325

creates the file. In some course work, instruct~rs may arrange to have default
protection level automatically set at 077. In such a case, the protection code
of a student's file is 077 to his classmates, but is 057 to his instructor.

The Operating System of a computer is the most important and extensive
software system. For DEC System-10, its Opetating System contains more than a
hundred commands, and some of its commands contain more than two dozen switches
in each command. Studying and mastering the full set of commands can be an
overwhelming task.

In the sections that follow in this chapter, a judiciously selected
subset of these commands and a selected subset of their respective switches will
be included. Since not every operating system comnand will be useful or
meaningful to an average user, nor need he know every switch or available
option, these subsets are chosen on the basis of what the author believes to be
the most important and frequently used ones. The readers are referred to
Reference 1 for a complete description of the operating system commands and
their respective switches.

The discussions of the operating system commands will be functionally
divided into six groups:

(1) Job initiation and termination commands

(2) Communication and status reporting commands

(3) Source file preparation commands

(4) Allocation of facilities commands

(5) Program execution and control commands

(6) File management commands

They are presented in the following sections.

326 CHAPI'ER 8 OPBRATING SYSTEM

JOB INITIATION AND 'rERMlNATION

8.2 Job Initiation at a Remote Terminal

The sign-on procedure to initiate a job has been discussed
Section 1.8. For the purpose of completeness, they are again included here.

in

Once a user has a valid pair of ID numbers (the PPN) and has a valid
password, he may now sign on at any remote terminal by following the procedure
outlined below:

Hard-Wired Units

(1) Turn on switches. Press C if
there is no prompt symbol ".".
After the prompt "." appears,
type "I" (for INITIATE) and
the following lines will be
typed out on the terminal:

Dial-Up Units

(1) Turn on switches and dial the
computer number.* If the line
is busy, there is a usual busy
signal. When the call gets
through, a high-pitch tone can
be heard. Place the phone set
on the seat of the acoustic
coupler. Wait until the READY
or CARRIER light comes on,
type fC, and the following two
lines will be typed out on the
terminal:

PITT DEC-1099/A 63A.41B 15:36:41 TTY43 system 1237/1240
PLEASE LOGIN OR ATTACH

where "1099/A" indicates System A, "63A.41B" the monitor version, "15:36:41" the
time of the day in 24-hour clock, "TTY43" the line number assigned. If "1099/8"
appears instead of "1099/A", it means the user is in touch with System B. If
the user finds himself in a wrong system, he requests a change by typing:

TTY SYSTEM B or TTY SYSTEl'~
after the prompt symbol.

(2) Type the monitor command after the prompt symbol:

LOGIN m,n

or LOGIN min]
where m = project number, n = programmer number.

The difference between "m,n" and "m/n" in the two monitor commands is that the
latter form will suppress the message of the day from the Comput.er Center when
the sign-on procedure is completed. It is possible that you have seen the
message several times already, and may not care to read it anothelr time.

(3) Enter the password when requested. The password will be entered in a
non-pr int mode, and the typed password will not appear on the terminal. This is
to maintain the security of the password.

*For University of Pittsburgh users, dial (412) 621-5954.

illGIN and PASSWORD 327

If the entered password is an incorrect or invalid one, the system will
respond with an error message and a request for the PPN. After supplying the
PPN again, another password request will be made by the computer. The user has
five chances to sign on correctly. After that number of unsuccessful trials,
the job is killed, and the user must restart the entire procedure to sign on.

If the password is found to be valid, the system will respond with
information on the status of the project, the last sign-on time and date, the
time of day, and the "message of the day" from the Computer Center. The last
item may be suppressed if the user uses the illGIN command with the min
specification.

After all preliminary reports are finished, a prompt symbol is
printed on a new line, and the computer pauses and waits for input. The user is
now connected to the computer at the monitor level, and the sign-on procedure is
completed.

The following two cases are examples of sign-on. Explanatory remarks are
also given along with the remote terminal printout. As used throughout this
book, those lines entered by the users will be in italics:

Printout on Terminal

. I

PITT DEC-1099/A 63A.41B 16:19:17 TTY43 system 1237/1240
• TTY SY8TEM B
PITT DEC-1099/B 63A.41B 16:19:50 TTY43 system 1237/1240
.LOGIN 115103~320571
JOB 35 PITT DEC-1099/B 63A.431B TTY43 Wed 7-May-80 1619
Password: (passl;)ord)
Last login: 7-May-80 1617
Usage ratio: 22.13 Units used: 33.5

Remarks

To initiate
Computer response
Ask for System B
System B response
Sign-on command

Enter password

Password valid

SYS B OOWN 0000-0800 MON MAY 12 FOR REGULAR HARI:WARE MAINl'ENANCE
SYS B OOWN 0000-0300 TUE MAY 13 FOR REGULAR SOFTWARE MAINl'ENANCE

DUE TO HARDWARE PROBLEMS THE ARRAY PROCESSOR WILL BE
TEMPORARILY OFF LINE UNTIL FURTHER NOTICE

.LOGIN 115103/320571
JOB 23 PITT DEC-1099/B 63A.41B TTY43 Wed 7-May-80 1815
Password: (your passl;)ord)
Last login: 7-May-80 1619
Usage ratio: 2.13 Units used: 33.5

Message of the day

Sign-on command

Supply a password

()n 1 i ne

328 CHAPrER 8 OPERATING SYSTEM

8.3 Password

To sign on the DEC-10 system, the required identifications are a valid
PPN and the associated password. ~ecurity of PPNs is impossible because they
are publicly displayed in many places in LOGIN printout, in the file
directory, in printout identification, etc. Thus the only real safeguard and
security of a computer account is the password.

The need for protection against unauthorized use of your account by
another person goes beyond accounting reasons. There have been numerous
incidents of computer vandalism in the past. The most frequent vandalism was
change or erasure of programs or data without the owner's knowledge.

The only protection against such unauthorized use is to install a
password, to keep its secur ity, and to change it frequently. As a matter of
prudence and necessity, the user should change his password regularly as a
standard practice and whenever he suspects the passv.Drd is no longer secure.

Changing a password at a terminal can only be done at the UCGIN time by
using either of the following LOGIN format:

or,

LOGIN m,n/PASSWORD]

IDGIN min/PASSWORD __ _

where "m" and "n" are the PPN. The following shows a sign-on seBsion with a
password change. Since the process is interactive, the explanation should be
self-evident:

.LOGIN 115103/3205?1/PASSflORD

JOB 16 PITT DEC-1099/B 63A.41B TTY43 Wed 9-May-80 2003
Password: Your old passUJord
New Password: Your nee·) passulOrd

Retype for verification

New Password: Your new passUJord again
Last passv.Drd update: 24-Apr-80 1255
Last login: 22-Apr-80 1642
Usage ratio: 0.84 Units used: 33.1

8.4 Job Termination at a Terminal

To leave the system, the user must terminate his job by supplying a
monitor command KJOB ("to kill the job"). 'lhe system will respond by requesting
a code letter for confirmation and file disposition. Thus, the corrunand format
for signing-off is:

.KJOB
CONFIRM: Code Letter

KILL-JOB Command 329

A shortened form of this command is:

• KI Code tetter>

The most commonly used code letters in the KJOB command are:

F = fast signoff; save all files

D = fast signoff; delete all files. Computer will respond with A
confirming question: "DELETE ALL FILES?" Answer YES and return the
carriage.

P = preserve all files except temporary files.

H HELP! Computer will respond with detailed instructions.

I list file names, one at a time, and apply code letter decision
individually. The code letters for individual decision are:

P preserve the file

S save the file

K delete the file

Q = learn if over logout quota on this file

E = skip to next file and save this file if below logout quota for
this file. If not below logout quota, a message is typed and
the same file name is repeated.

H HELP. Computer will respond with the above information on code
letters.

While files are disposed per user's code letter instruction, the computer
will make a check on logout quota, gather all usage and accounting information,
terminate the user's job and print out a summary of the job. For example:

.KIF
JOB 16 [115103,320571) off TTY43 at 2032 9-May-80 Connect=29 Min
Disk R+W=83+76 Tape IO=O Saved all files (450 blocks)
CPU 0:04 Core HWM=llP Units=0.1263 ($9.48)

The printout indicates that this user, with PPN of 115103,320571, was
assigned line 43 and job 16, signed off at 2032 on May 9, 1980. His terminal
was connected to the system for 29 minutes, used CPU or computer time for 4
seconds. He used disk, but not magnetic tapes. He has 450 blocks of saved
files. For this job, the highest core area used (HWM=High-Water-Mark) was 11
pages or 5.5K words, and the charge is 0.1263 unit or $9.48.

The "unit" is an accounting device which combines all charges of the
service, including CPU time, disk usage, the length of connect time, the size of
core used, and time of the day, and a base charge, each with an appropriate
weighting factor to form an accounting formula.

330 CHAP1'ER 8 OPE HATING SYSTEM

COMMUNICATION AND STATUS REPORTING

8.5 Communication in the Time-Sharing System

Communication with the Computer Center staff and other m;ers in the
System is provided by several commands:

(1) SEND Command The SEND command enables a user to send a message
from his terminal to another, including the system operator's terminal. The
command format is as follows:

or,

where

or,

and

-;] SEND dev: message
SEND job n message

~~.------~-- ... --------- .---

dev: = TTYM:, the physical name of the destination terminal and M is
its line number, e.g., TTY43:, TTY66:, etc.

= OPR: (for operator, same as 1TYO:)

n = job number at the destination

Example:
station TTY40:

Suppose at a remote station TTY20:, a message is sent to

.SEND TTY40: MEET YOU FOR LUNCH IN TEN MINUTES?

At the destination TTY40, the message will interrupt the job and is printed out:

iiTTY20:- MEET YOU FOR LUNCH IN TEN MINUTES?

The user can determine his own terminal line number by examinin9 the LOGIN
printout message or by issuing a command "PJOB." The command SYSTEM/J will print
out the system active job status at the moment, including job numbers and line
numbers.

(2) R MEMO Command This is a command for the user to commL~icate with
the Computer Center staff for questions, suggestions, and complaints. When he
completes his message, he terminates it by pressing the CTRL-Z (the CTRL and Z
keys together) keys, and the user's terminal is returned to the monitor mode.
If the message is long and pre-stored as a disk file, a user can load his stored
message file by using an indirect file specification when message is requested
in the program. An indirect file specification has a prefix of "@" before the
standard file specification.

MAIL/POST Commands

Example:

.R MEMO

Your [p,pn), TTY number, and the current date and time are automatically
recorded with your message. A written response will be mailed to you
within one week. Please provide a campus address, if possible.

Your Name: T. fl. S7,F,
Phone: 5418
Address: 339 BEH

Please type your message or indirect file spec. End it with a control Z.
Message goes in here ••••
~Z

EXIT

331

(3) To Send or Receive "Mail" The SEND command transmits message from
one active terminal to another. Message can be sent to another user, whether or
not he is currently on-line, by a "post office" system developed at the
University of Pittsburgh.

In order to join this "post" system, a user must make some initial
preparations. When he first joins the system, he should issue a monitor command
of "R MAIL" which will respond, naturally, with a message of "NO MAIL ruS'l'ED."
It will then go into the mail-sending'sequence, which can be shorted out by a
CTRL-Z or CTRL-C key. However, in doing so, a file is automatically prepared in
the user's disk area with a file name of MAIL.BAG<144>. This is the user's mail
box, without which he can send but cannot receive mail.

In this post system, the address of the receiver is his PPN. If the mail
is directed to the Computer Center staff, the address may be one of the
following, depending on the nature of the communication:

ACCOUNTING CSMP MACRO REPAIR SPSS
AIffiL CTLYST MAIL RUNOFF SSCRI
BASIC FORTRAN OPERATOR SIMOLA SYSTEM
BATCH FlO PIL SITGO TAPE
COpy HELPER PPN SNOBOL TAPE LIBRARIAN
('REF LINK PROG SOW TECHNICIAN
COBOL LISP PROGLIBRARIAN SORT TECO
COMPIL WADER PROG L SOS UPDATE

To send a message through the post system, use the monitor command:

R ruST

The procedure of sending mail is illustrated by the example below: The text in
italics is typed by the user:

.R POST

TO: 1147133 320571
SUBJ: HOMEWORK DUE DATE

TYPE IN MESSAGE. END WITH Z
WHEN IT ASSIGNMENT NO. 5 DUE? tZ
TO: tZ

332 CHAPI'ER 8 OPERATING SYSTEM

The CTRL-Z closes the "letter" which is then stored in the receiver's
file MAIL.BAG along with the information of sender's PPN, name, time of the day
and the date. When one letter is completed by the CTRL-Z signal, the system
responds with another "ID:" for the next letter, and the above process may be
repeated for another letter. If there is no further letter to pJst, the user
returns to the monitor mode by again pressing the CTRL-Z key.

To read these letters, issue a monitor command:

R MAIL

All new messages since the previous reading of mail will then be printed on the
user's terminal. At the completion of the printout, the messages just read are
emptied into another file MAIL.OLD and a new blank file MAIL. BAG is created to
accept future mail. In the meantime, the system switches to the beginning of
the POST sequence by typing out "ID:". The user at this point may send message
out should he wish to answer his mail at that time.

The following is an illustration of how the person in the previous
example might read and answer his mail:

.R HAIL

[122345,765432) *DOE

SUBJ: HOMEWORK DUE DATE

WHEN IS ASSIGNMENT NO. 5 DUE?

TO:
SUBJ:

122345, ?65432
HOMEWORK DUE DATE

TYPE IN MESSAGE. END WITH ~Z

14:28. JULY 27, 1980

MY DEAR BOY, IT WAS DUE TWO WEEKS AGO. tZ

ID: tZ

If a user just wants to know if there is any new mail waiting since he
checked it last time, he can issue this command:

I R MAILX

The system will respond with a message of "MAIL WAITING •.. ", or just another
prompt period, to signify whether or not there is mail waiting.

(4) The Computer Center also "posts" bulletins of general interest.
These are stored in the physical device "SYS:" as news files. 'rhe files are
updated frequently to announce the changes, bugs, new developnents in some
particular processor. As a result, new items may be added, and some old and
non-newsworthy items may disappear. The user may check the directory of the
news file by a monitor command of "DIRECIDRY SYS:* .NWS" and the system will
respond by listing a complete list of news :Eiles available in the device SYS:.
A copy of the bulletin may be obtained on the user's terminal by issuing a
monitor command "TYPE SYS:xxxxxx.NWS", or on the printer by issuinq a command
"PRIm SYs:xxxxxx.NWS", where "xxxxxx" is the name of the file chosen.

The System also maintains a set of files which contains helpful
information on various programs and commands. They are called HELP-files and
are generally quite voluminous. One can find out what HELP·-files (with

Status Report Commands 333

extension of HLP) are available by a command _of "DIREC'IDRY SYS:* • HLP" , and a
complete directory of HELP-files will be typed on the user's terminal. The use~
can then use "TYPE" or "PRINT" command to get a copy of the selected file.

8.6 Status Report Commands

The DEC System-lO keeps a wealth of data and records on its own operation
and those of the users. some of these information may be useful to a user 3nd
can be made available by certain commands. 'l'hese are listed below:

Command
Short
Form Explanation and Examples

1===':0:0.-==_ C:C=-,=' =="'======,,==-00,=-== .""C:=-===,==.=="-"'_~=7~========"---:===I
PJOB PJ

NJOB N

C

To print out user's job number.
Example: .PJ

16

TO print out total number of active jobs on the system
Example: .N

24

To type out the date and time in the format of:
day-month-year hour:minute:second

Example: .DA
16-JUL-80 16:56:59

To type out the following items:
1. Total running time since the last TIME command.
2. Total running time and connect time of the job.
3. Total core usage in kilo-care-second

Example: .TI
0.38
0.38
kilo-core-second=3, Minutes connected=3

TO type user's current usage status
Example: .C

Usage ratio = 0.45
CPU allowance in this connect
Current hour ends in 24 min
CPU time remaining = :01:55

hour :02:00

1---.. ----------- -.- .-------.----.. --"-----------.. ------------ .. -. _____________ . __ . __ _

USE STAT TT To type out six items of user usage information:
1. incremental day time in seconds
2. incremental run time in seconds
3. incremental read and write disk in blocks
4. name of program running
5. core size used
6. program counter address

:tTPle
:

DAY::13:43RUN:6.30RD:66WR:7 HELP 2P+IP~C SW PC:400672
Note: "incremental" means the differential since the last

USESTAT command.

334

HELP HE

----~-

SYSTAT SYS

--- ----.

R CUOLST

RESOURCES RES

f---- ----

WHERE W

CHAPl'ER 8 OPE HATING SYSTEM

There a re three HELP formats:

l. HELP

2. HELP

3. HELP

dev:*

NAME

Outputs the instruction for the
receiving information.
Output both names of features that
have available on-line documentation
(HELP-files) and names of monitor
commands. If dev: is DSK:, it can
be omitted from the command format.
Same as TYPE SYS:NAME.HLP

-----_._---- --

romand format is: The co SYSTAT/switch

If the
be t
and i

switch is not given, the entire system status will
yped out on the terminal. If switch is given

ncluded in the command, a subset of system status
t will be typed accord ing to the following codes: repor

ISwitc h

IB
IJ
IR
IS
Ix
I.
In
I#n

Subset Information to Be Printed

Busy device status
Job status
Remote station status
Short job-status report
Read the explanation of
User's job status
Status of job n
Status of TTYn

recent crash

l[m,nJ Status of jobs submitted
by specified PPNs. l[m,*J

1[* ,nJ "*" is wild card.
-_ ..

To prin
See Sec

To print
TTY's a

. - -.-~-

t out the status of user's disk usage and quota.
tion 1.10 of Chapter 1 for details.

out the names of all available device~;, except
nd Pry's, unless they are down,busy,non-existent.

plete format is: WHERE dev: The com
It outp uts the station number at which the sp~cified

1S located. device
------.-- -------_._--_ ...

Source File preparation 335

SOURCE FILE PREPARATION

8.7 Source File Preparation Commands

Although there are many editing processors available on DEC System-IO,
only one editor is presented in this book. It is called the UPDATE (University
of Pittsburgh DAta and Text Editor) • The monitor command calling -for this
processor is: - --

~AT~.~~_~X; ___ J
If NAME.EXT is a non-existent file, the command opens a new blank file on disk
for creation, later to be named as NAME. EXT. If the file NAME.EXT already
exists, this command opens that file for editing with the UPDATE editor.
Commands and procedures of using the editor UPDATE are presented in Chapter 2.

There are other editors available on the System, such as the TECO. The
monitor command to call for the TECO editor is "R TEeO" •

336 CHAPl'ER 8 OPERATING SYSTEM

ALLOCATION OF FACILITIES

8.8 Facility Allocation by Monitor

The monitor allocates peripheral devices, file structure storage, and
core memory to users on request and protects these allocated facilities from
interference by other users. It maintains a pool of peripheral devices divided
into two groups: unrestricted devices and restricted devices. Among the
unrestricted devices are line printers, paper tape reader and punch, and disk.
They are allocated on request at a when-available basis, and request for their
allocation is really a reservation for their use. Actual usage of these devices
is shared with other users on a queuing basis. On the other hand, restricted
devices, such as magtape drives, will allow exclusive usage of the device when
allocated. The exclusive usage continues until the device is returned to the
pool. Therefore, a user must possess certain qualifications in order to be
allocated with restricted devices. For example, he must have fossession of a
registered tape in order to use the tape drive.

Many of these peripheral devices are non-sharable at the SErne time. When
a non-sharable device is assigned to a job, it is taken out of the monitor's
pool and it will not be available to other users. Since non-sharable devices
are scarce resources, the user should return them to the pool as soon as he
completes his tasks with these devices. At any time, a user may find out what
is available in the pool by a monitor command of:

I RESO~CES ___ -,

and the System will respond with the list of devices available by their physical
device names. See example below:

• RESOURCES
D200,USRA,USRB,PLT010,MTA010,Oll,015,DTA010,Oll,012,013

Therefore, for all users in the general community, two tYf~s of commands
are used for allocation of facilities: one for the unrestricted devices, and
another for the restricted devices. In the latter, operator intervention is
buil t into the command process to check on certain user qualifications. They
are now discussed in some detail.

8.9 Allocation of Unrestricted Devices

An unrestricted device may be allocated upon a user's monitor command of:

ASSIGN DEV: IDGDEV:

where DEV: physical device name, and
LOGDEV: logical device name, optional in the format.

The physical and the logical names of devices have been defined and discussed in
Section 8.1. Logical names of different devices must be different from each
other, but a logical ncrne may duplicate a physical ncrne (not necessarily

Unrestricted Device Assignment 337

representing the same device) •
precedence over a physical name.
issued:

In the latter case, the logical name will take
For example, when the following command is

ASSIGN CDP: LPI':

the name "LPr:" now serves as both the logical name of the card punch and the
physical name of the line printer. Since logical name takes precedence, system
output will now be re-channeled into the card punch file preparation, even
though the program executed after the ASSIGN command was originally designed for
line printer output. Such an assignment command then becomes a convenient way
of re-designating input/output devices of a program without having to modify the
program itself. An alternate way is to intercept the output file before it is
sent to the output device, rename it with an appropriate extension (e.g., COP
extension for card punch output), and then apply appropriate monitor command to
produce the output. See more details on output command in Section 8.14.

Since the System already has assigned certain unrestricted devices as the
standard input/output devices in the time-sharing mode, it is not necessary for
a user to request their allocation. Therefore, the ASSIGN command is generally
used for two purposes only: (1) to request a non-standard input/output device,
or (2) to rename a device by a logical name which is referred to in an existing
program.

A very useful variation to FORTRAN users is the ASSIGN command of the
following format:

ASSIGN DEV: nn ~

where nn = device unit number in the READ/WRITE statements of a FORTRAN program.
If a stored disk file is assigned this way, then OEV: is DSK:, and the filename
must be FORnn.DAT, where "nn" ranges from 00 to a number depending on system
installation. In FORTRAN-la, the upper range is 63.

Example: Suppose a FORTRAN program has been prepared in which the
READ/WRITE statements are of the form: READ(S,f)list and WRITE(6,f)list. 'l'his
program is now stored on the disk as SAMPLE. FOR. The following different cases
show how a user can run the program and pre-select certain devices as input or
output media:

.EXECUTE SA/1PLE.POR

.ASSIGN LPT: 6
• EXECUTE SAMPLE.POR
• PRINT *. LPT

.ASSIGN DSK: 6

.ASSIGN DSK: 5
• EXECUTE SAMPLE.POR

Remarks

Input/output devices will be standard devices,
namely, the remote terminal of the user.

Obtain the output from the printer. Input is still
via the user's terminal •

During execution, input data will be from a stored
file FOROS.DAT, and after the execution, output
will be stored in a new file named FOR06.0A'I' •

In the batch mode, the selection of non-standard devices is much more
limited. Aside from the standard devices, selection of unrestricted devices is
essentially limited to the "DSK:", and the procedure outlined in Table 8.2 for

338 CHAPrER 8 OPERATING SYSTEM

"DSK:" will also apply for the batch mode.

De
. ~_____ Time-Shar in~ System ~Signmen~_~-__ . _____ . ______ _

Vlce
Name , Unit 5 Unit 6

r:==='--~""'C'-~~=======-C==~';'='=--' ".===---=.==~=-- ==
TTY: Standard assignment Standard assignment

1-------- .--.----.. -.-.------.. -----.. --- .-.. --------.. -.-.---... -----------

CDR: Procedure: Not applicable

1. Prestore cards as a file,
named as XXX.CDR, where
XXX=l to 3-character name.

2. Issue monitor commands:
ASSIGN CDR: 5

I I SET CDR XXX

, I 3. Execute FORTRAN program. ---1;--------------- .---- .--.. ----.-.. ----"--'''-'--''-' --.. ----... ----.----.-~---
LPl': ill' Not applicable p:~::;;:~ m~ ;o~ comnand,

I

2. Execute FORTRAN program.

3. Output will be stored as a
disk file Q????LPT, where
"????" are four characters
arbitrarily assigned by the
System.

c----~--- - -
DSK: Procedures:

4. Use either of the following
monitor commands to get the
printer output:

PRINT *.LPT
QUEUE *.LPT

.----.-----.... - f-- ''''-'-'' .. - ----- ----- .. --..... -. -.- ---.-------.--

Procedures:

1. Prepare ahead a data
input file, which must
be named as FOR05. DAT

2. Issue a command:
ASSIGN DSK: 5

3. Execute Fortran program.

1. Issue a monitor command:
ASSIGN DSK: 6

2. Execute FORTRAN program.
The output will be stored on
disk as FOR06.DAT. If there
was a previous FOR06.DAT on
disk, the new file will re
place it without warning.
BEWARE!

Table 8.2 Assignment of Unrestricted Devices for FORTRAN
Program Execution in the Time-Sharing Mode

Restricted Device Allocation 339

A device, once ASSIGNed, will remain assigned, until the user issues a
command of DEASSIGN to release it. The format of the DEASSIGN is:

DEASSIGN DEV:
or, DEASSIGN

where DEV: =either the logical or physical device name of the specified device.
If it is not specified, all devices assigned to the user's job, except the
remote terminal, will be released.

8.10 Allocation of Restricted Devices

A restricted system device is one where an operator intervention during
its usage is necessary in order to determine whether the requesting user is
eligible for the device. There are two types of restricted devices that may be
of interest to the readers of this book: the DEC tape drives and the magtape
drives. The latter includes both 7-track and 9-track drives.

In general, when a user uses tapes in his processing, he goes through the
following steps:

Tape Processing Steps
----------.-------------

(1) Reserve the necessary number of tape drives.

(2) Ask the operator to
designated reel of
drive.

mount physically a
tape on a reserved tape

(3) After the completion of tape processing of the
reel, ask the operator to remove the reel
from the tape drive. User will still retain
the usage of the tape drive at this point.

Monitor Commands*

DRIVES

MOUNT

DISMOUNT

(4) If the user has further tape processing to do, MOUNT & DISMOUNT
he will repeat step 2 and step 3. cycles

(5) When the tape tasks are finished, the user will
release the reservation of tape drives and
return them to the system pool.

For more details of
referred to Chapter 10.
perform these steps.

tape processing and handling, the readers are
We will now discuss the monitor commands required to

*These commands are enhancement of monitor of the standard DEC-IO software, and
~re developed by the staff of the pitt Computer Center. DRIVES and the
UNDRIVES commands are new, and MOUNT command contains additional access
restriction enforcement not available in the original DEC version.

340 CHAPTER 8 OPERATING SYSTEM

(1) DRIVES and UNDRIVES Commands

To request reservation of tape drives, a PITT-developed monitor command
should be issued which has a format of:

[DRIVES -DEV(n), DEV(~~
------.-------~~~

where DEV = physical name (without colon) of a restricted device, which is
any of the following:

and (n)
the command.

IJrA DEC tape drive
MT7 7-track magtape drive
Mr8 9-track magtape drive, 800 or l6UO bpi only
MT9 9-track magtape drive, 1600 or 6250 bpi only

number of dr ives requested. If n=l, "(n)" may be omitted from

To return the devices to the system pool, the command UNDRIVES has a
similar format:

TO avoid accidental release of tape drives, the command llliDRIVES OeV(n)
will be ignored if the said drives still have tapes mounted on them, and if no
DISMOUNT commands have been issued yet.

The commands DRIVES and UNDRIVES can be issued without any argument, and
they will have somewhat different meanings:

DRIVES and UNDRIVES Commands
____ ~it~ . .E~._~g~e~ __

DRIVES

UNDRIVES

Function

To report the status of the user's current
allocation of tape drives.

To release all tape drives regardless of whether
there are-tapes still mounted on them or not.
Such a command will force a DISMOUNT action on
all tapes, and return all drives to the system
pool. This is also a standard procedure in
the KJOB to allow a quick exit from the
System.

The following points will also be helpful in using the DRIVES and
UNDRIVES commands:

A. The DRIVES command is not accumulative. If two or more DRIVES DEV
commands are given in succession;-only the last one will be in force, because
any DRIVES DEV command always cancels out the previous one. Therefore, the
d rives needed for one tape task should always be requested in one single DRIVES
command, and not piecemeal in several commands. Note the differEmce between the
two following cases:

MOUNT and DISMOUNT Commands

Case 1:

Case 2:

• DRIVES DTA(2) 3HT9
MTA013,DrAOIO,DrAOll ALLOCATED

.DRIVES DTA(2)
DTAOIO,DrAOll ALLOCATED
.DRIVES MT9
MTA013 ALLOCATED
• DRIVES
MTA013 ALLOCATED

341

In case 2, the second DRIVES command cancels out the first one. At the
end, only the second request by itself is honored.

B. The System will not make a partial allocation to a DRIVES request.
If there Is not a sufficient number of requested devices currently free in the
pool, the System will respond with a message as shown below:

.DRIVES DTA3 MT9(2)
DRIVES NOT AVAIIABLE NCMT, WAITING •••• (~CC TO EXIT)

At this point, the user has two options: One is to wait. Then he is not able
to do anything at the terminal. The other is to cancel the request by pressing
the CTRL-C key twice or more, and the user can submit another request sometime
later. Naturally, such options are not available to BATCH users because they
will not have the opportunity of such interactions.

C. Unlike the DRIVES DEV command, the UNDRIVES DEV is accumulative.
For example, suppose a user has acquired 4 DEC tape drives by a-previous DRIVES
command. If he issues a command UNDRIVES DrA, he will be left with 3 drives if
the release request is successful. If he then issues another command UNDRIVES
DTA(2) , he will be left with just one drive.

D. Whether a release command UNDRIVE DEV will be successfully executed
depends on whether there are still tapes mounted on the referred drives. Let us
denote those devices being "idle" if there are no tapes mounted on them at the
time. The result of the command UNDRIVES DEV(n) depends on the number of idle
devices at the time, because with that command only the idle devices are
released.

a. If n number of idle specified device, all such devices are
released.

b. if n<number of idle specified device, the UNDRIVES command will
arbitrarily release n idle devices, but the user will not know which ones have
been released unless he issues a new DRIVES command with no argument to inquire
about the new allocation status.

c. If n>number of idle specified device, the UNDRIVES command will
release all idle devices. Again no message is returned, and the user must use
the DRIVES command to find out about the new allocation status.

(2) MOUNT and DISMOUNT Commands

By a MOUNT command, a user requests the operator to mount a tape at a
designated tape drive. It has a form of:

MOUNT DEV:LOGDEV/switches

342

where

CRAPI'ER 8

DEV: = the physical name of the tape drive, and
LOGDEV = the logical name assigned by the user

OPERATING SYSTEM

The following are several more frequently used switches:

Switches Explanations

/VID:Xnnnnnn Visual identification. At the University of Pittsburgh, tape
registry numbers are used as visual ID. TIley are decimal
numbers (six digits maximum) with A-prefix for DEC tape s and
B-prefix for magtapes, for examples: A1234 and B313. This
is the only way a user can specify which tape he wants.

/WENABLE

/WLOCK

For "Write-enable". The tape will be available for both read
and write operations. Its short form is "/WE".

For "Write-lock". The tape will be for read-purpose only. Its
short form is "WL".

Mounting of tape is a manual procedure, and the operator has only the
visual ID to tell whether he has the right tape. Since human errors do occur,
there is always a chance of an operator mounting a wrong tape, and the
subsequent read-wr ite operation will cause irreversible damages to the
information storage. Each computer installation generally desi.gns additional
security measures to reduce the chance. At the University of Pittsburgh,
additional security of tape access is implemented through a standardized tape
registry, tape labeling and a modification of the MOUNIT' command.

The visual ID of each tape is standardized as a tape registry number, in
the form of Xnnnnnn, where "X" is either "A" (for DECtapes) or "B" (for
magtapes), and "nnnnnn" is a decimal number of maximum six-digits. During a
"labeling" process, the numerical part of registry is recorded on the first file
of a DEC tape or a 9-tr ack magtape. In executing the MOUNT command (PITT
modified version), not only the operator will search for the right tape by the
VID identification, but also the first file will be read by the System. Thus
the number read from the first file may be compared with a 'VID given by the
user. If the two numbers do not agree, the tape job is aborted. Details of how
a tape may be "labeled" are given in Chapter lU.

With these modifications, the MOUNT command used at the PITT facility has
the following additional switches:

/SL Standard label. This switch will instruct the System to check the

/NL

label against the VID given. Actually this is a standard operation,
even if no switch is specified. In other words, this is the default
switch.

No label. This switch informs
labeled, for example, as
institution.

the
the

Sys tem tha t the
tape is brought

tape
from

is not
another

Tape users should be aware that this security system is not applicable to
7-track magtape because of difference in recording techniquNl. When a switch
relating to label is given in using a 7-track tape drive, the lcbel switch will
simply be ignored.

MOUNT and DISMOUNT Commands 343

To dismount a tape from the drive, a user may issue a command of:

DISMOUNT dev:

where dev: = previously MOUNTed device name, either physical or logical.
After a DISMOUNT command is issued, the tape mounted will be removed by the
operator and returned to its storage. The user, however, retains the use of the
tape drive, and he may mount another tape for further processing.

Example: The following shows a typical case of tape processing:

Comments

• RESOURCES To check on availability of devices
D200,PLTOIO,MTAOIO,013,015,DrAOIO,Oll,012,013

.DRIVES DTA(2)
DrAOIO,DrAOll ALLOCATED

.MOUNT DTA:T1/~1E/VID:A1004
Request queued
Waiting ••• ACAC to exit

.MOUNT DTA:t2/WE/VID:Al005
Request queued
Waiting ••• ACAC to exit

tC
tC

[MNI' - DrAOlO (TI) mounted]
[MNr - IJI'AOll (T2) mounted]

(Tape Processing
done here)

• DISMOUNT T1

Tl Dismounted

• DISMOUNT T2

T2 Dismounted

To request2 IJI'As. DrAOlO and DrAOll are
available and assigned.

To mount tape AI004 on one tape drive, and
name it as TL
Either wait or issue 2 AC to get back
to the monitor

'Ib mount another tape, and name it as T2.

Mounting Tl message
Mounting T2 message

Dismount Tl. Colon is optional.
Returned message •

Dismount T2.

(More MOUNT and DISMOUNT sequence)

.UNDRIVES To return the DrAs to the System.

344 CHAPrER 8 OPERATING SYSTEM

8.11 Remote Terminal Control Commands

A remote terminal is the most important peripheral device to a
time-sharing user. Its principal characteristics were described in Chapter 1.
When a terminal is connected to the System, a number of its operating conditions
are initialized automatically, such as the right margin, the tab t~sitions, etc.
These conditions, however, may not always \'.Urk well with certain terminals,
because there are a wide varieties of terminals the System can sLlpport. Even on
the same terminal, one user's requirements may not be the same as those of
another.

The SET TTY (short form TTY) command allows a user to declare properties
of his terminal, and it has the form of:

TTY keyword or SET TTY keyword]

where keyword = either of the complementary pair of keywords for 1~Y properties.
Table 8.3 shows a list of keY\'.Urds in the TTY command •

Example:
Function:

Example:
Function:

• TTY WIDTH 132
Set the right marg in of the remote terminal at col umn 132.

.TTY FILL 2
Some terminals suffer from timing problems at 300 bauds
speed. The symptons are missing char acten; or overpr ints
at the beginning of each line. The remedy is to delay the
transmission of information after each long carriage or
paper movement, such as carriage return or form feed, by
inserting dummy or "filler" non-print characters. The
fillers do nothing except to take up time. 1~he idea is to
allow the print head enough time to get into position when
the transmission of information is resumed. The number of
filler characters falls into four classes: Class 0, 1, 2,
and 3 with the higher classes having more filler
characters. Reference 1 gives a detaileC:i table on the
exact number of fillers in each class for every carriage or
paper movement action. Since inserting fillers will slow
down the pr int throughput, the filler class should be
chosen just high enough to overcome the timi.ng problem, if
one exists. This can be easily determined by experimenting
with each class.

TrY Corrrnand s

TrY
Keyword

ALTMODE

00 AL'IMODE

345

system
oef3.ul t Explanations

X Converts AL'IMODE codes of octal 1~5 & 1~6 to ASCII
code of 033.

No conversion
~----------1--------r----------------- ---------------------------------

BIANKS x
00 BIANKS

CRLF X

00 CRLF

---------- -- ----------

ECHO X
00 ECHO

Allows blank line printout.
Suppress blank lines. Useful in CRT terminal to

increase output that fits on the screen.
--1
When a line reaches the right margin, the carriage

will automatically return and advance one line.
Suppress carriage return even when the right margin

has been reached.
--------- -------------------- - -- -------------------
Terminal will echo print the input characters.
Suppress the echo print.

r-------- --- -----~f___------------ ----------------

FILL n n=O Insert filler characters after each carriage-return
or tabbing operation to correct timing problems.
Filler insertion is of class n. See more explanation
in the example below.

00 FILL X Same as n=O

GAG
1- -- --- - ---------- ------------- -- ---- --------

Message transmitted by SEND command cannot be
received at this terminal. I

Opposi te of OC
~_GT\G - - -1--~ ---

00 LC I

Opposite of GT\G.
- - -------------- -- -- -------- - ------ ----------

X Transmits all lower cases as upper cases.
c---------- t -------;----------------------------- ---------- ----------1

PAGE After this command is issued, the user will have the
ability to temporarily suspend system typeout without
losing it. The key CTRL-S suspends the typeout, and
CTRL-Q restores it.

00 PAGE X Disables the CTRL-S and CTRL-Q keys.
1------- --

TAB X System sets up standard tab settings. Actual settings
vary with each installation.

00 TAB The monitor simulates TAB output from program by
sending the necessary number of SPACES.

-------~-------------------- ---- -------------------

UC
OOOC

f-------- -- -- -

WIDTH n

------.-
SYSTEM A
SYSTEM B

X Same as 00 LC
Same as LC

--~----- -------- --------------

'2 The carriage width (the point at which a free carriage
return is inserted) is set to n. "n" ranges from
l' to 200.

-------------- --~----------- - -- - -- -- -. - ----------------1

Appl ied before IDGIN command to select one of the
tw systems.

Table 8.3 TrY Command Keywords

346

Example:
Function:

Example:
Function:

Example:

Function:

Example:
Function:

CHAPI'ER 8 OPERATING SYSTEM

.TTY GAG

After this command is given, the user's terminal cannot
print out messages sent by other users' SEND commands.
This is useful when the user has an important output to
prepare and he does not want any pr inted messages to spoil
his output •

• TTY PAGE

This is particularly useful in a CRT terminal application
to allow temporary suspension of output so that the user
can read it before it rolls off and disappears from the
screen. It is also useful in conventional terminal to
create a pause dur ing the typeout to allow the user to make
some manual adjustment of the terminal, for example, to
advance the paper to the next page •

• TTY PAGE
.TTY GAG
• TTY WIDTH 132

Unless one keyword
previously given
accumulative effect •

• TTY LC

cancels
keyword,

out
the

the effect of
Try command s

another
have an

For terminals having lower-case capabilities, this command
will set the terminal at the lower-case mode, and the
terminal acts like a conventional typewriter. The upper
case character may be generated only if the shift key is
depressed at the same time.

COMPILE,LOAD,EXECUTE Commands 347

PROGRAM EXECUTION AND CONTROL

8.12 Execution and Related Commands

To execute a source program stored on disk, such as a program written in
FORTRAN, the program is first compiled and an object program is generated and
stored on disk. This object program, called a relocatable binary file, or a REL
file, is then loaded into the user's core along with any subprograms of the
System called by the program. Execution will then begin at an address of the
core determined by the compiler and the loader. Therefore, the execution
process goes through three stages: the compiling, the loading, and then the
execution. Similarly, the loading goes through tv.D stages: the compiling and
the loading. Of course, the user may also request just the compiling to be
done. The monitor commands to perform these functions are listed next. The
"list" in the command format may be either a single file specification or a list
of files separated by commas.

Command Format

COMPILE list

LOAD list

EXECUTE list

STARr

Explanations

TO compile the source program(s) and store the REL
file(s) on disk. No execution.

To compile if necessary, and then to load the REL files
and the needed System subprograms and user-supplied
subprograms in user's core. No execution.

TO compile the source program(s) if necessary; store
the REL file(s); load them along with all needed
subprograms into the core; then execute.

TO begin execution after a REL file has been LOADed. A
LOAD command followed by a START command is equivalent
to an EXECUTE command.

When a file is created for storage on disk, the directory carries the
information of its creation date and time. When a command COMPILE, LOAD or
EXECUTE is issued, the System will first search in the user's disk area to see
if there is a REL file bearing the same name. If there is such a REL file on
disk and if its creation date and time is newer than that of the source program,
the compiling is simply bypassed because the REL file is still valid. The
purpose is to avoid unnecessary compiling which can be quite costly.

A number of command switches are available, and a selected subset is
listed below. As seen in Table 8.4, these switches are common for the commands
listed except the LIBRARY switch.

348

Switch
C'orrunand

I COMP rtOAD' EXEC
~-

/COMPILE x X X

CHAPTER 8 OPERATING SYSTEM

_. __ .. - --------------------------,

Function

To ~orce a compiling of the file even if a REL
file already exists with a newer date and time

~
~ than that of the source file.

/CRE;----- f-;-I- X X ;~- pr~~c~-~-~ross~ref~-renc~;isti~I---file~ the
I disk for each compiled file for later processing

r;Flo-l ; II' ~--r·-~-- -1;:--:::-:=:-~~~o co~;;~~---~-j~-~~~~fault
1/ switch at Pitt.

r;;;~-- X [- X t X - 110-U~~--~~~-~4-;-CO~~~-;~~~---·-------------------
I -.------ ---.------ -.--. --------------

X I X To load the files in library search mode. See

X

statement. I ~
as defined for the array in the DIMENSION

. ~- ..

Table 8.4 Selected Switches for the EXECUTE Command

Example: Suppose a REL file has been prepared that contains fifty
subprograms needed in a course. However, at any single application, only a few
are really needed. Suppose this package is now named as COMMON.REL. At each
application, a user will prepare a main program, in which he calls certain
subprograms from the package. In executing his program the user should issue
either of these two commands:

• EXECUTE MAIN. FOR 3 COMNON. REL

or, • EXECUTE MAIN.FOR3 COMMON.REL/LIBRARY

With the former command, the entire COMMON. REL is loaded into the user's
core--all fifty routines--even though only one or two may be needed by the main
program. In the latter form, only those routines needed by the main program are
loaded. When a libr ary package is 1 arge, the use of the LIBRARY switch will
spell the difference of whether there is enough core to run the user's job.

When a program has been thoroughly debugged, and if the program will be
run many times or shared by many people, the following is a more efficient way
of executing it.

The program and its subprograms will be compiled and loaded in the usual
way by a WAD corrunand. After the WAD operation, the "core image" may be saved
as a file bearing an extension of EXE by issuing the command:

SAVE NAME

and the save file will have a name of NAl1E. EXE. Any subsequent execution of the
program may be done by issuing the command:

RUN and R Commands 349

[iUN NAME[m .. n~

where [m,n] is the PPN of the file owner, and may be omitted if the user has the
file in his own disk area.

The main advantage of executing a program this way is to eliminate all
preliminaries of compiling and loading. Besides, only one file name ~fter the
RUN command need be specified.

Example: Observe the following sequence with comments given:

Comments

.LOAD MAIN.FOR .. SUB1.FOR .. SUB2.FOR .. SUB3.FOR .. SUB4.FOR .. COMMON.REL/LIBRARY
(Compiling of each FORTRAN program takes place here.)
(Loading of all REL files takes place next.)

.SAVE MESS
Job Saved
.START
(Execution follows)

Save the core image as MESS.EXE

Execute the program

Subsequent execution of the same program:

.RUN MESS

The same idea is extended to running the System program by using the R
command of the form:

where NAME is an EXE file of the System. Thus, the commands "R UPDATE", "R
PIL", etc. are among the appl ications of the R-command.

Programs submitted for batch job execution may be submitted through the
time-sharing terminal by a command developed at Pitt:

~-------'-"-'-----'-J OPRSTK NAME. EXT
---~-----.-.,.~-.--------

where NAME.EXT is the name of the control file. See Chapter 9 for details.

350 CHAPI'ER 8 OPERATING SYSTEM

FILE MANAGEMENT AND CONl'ROL

8.13 File Management Commands

In the general specification of a file:

DEV: NAME.EXT [m,nl <xyz>

all comp:ments in the form except "NAME" part may be omitted.
part is omitted, it has the following default interpretation:

When a certain

Q1\itting

dev:

• EXT

[m,nl

<xyz>

Means:

The device is DSK:

The file has a null extension .

The file belongs to the user.

A file is uniquely specified without
a protection code designation.
However, if a file is created
without specifying a protection
code, a default code of 057 is 9iven
to it.

In addition, the character "*" and "?" serve as the "wild cards" in the format
of file specifications, as was discussed in Section 8.1.

Various file management commands will be discussed next.

(1) DIRECT (DIR) Command This command will output a listing in file
specifications, sizes in blocks, protection codes, structure nemes, creation
dates, etc. The complete form of the command is:

DIRECT 9UTPUT = input list/switches

where "GUrPUT=" (including the equal sign) is the output device andl file name,
and "input list" is a single file or a str ing of files. If the TTY is the
output device, the part "GUrPll=" may be omitted. If an output file name is
given, the default device is DSK: If an output file is not given and one is
needed, the default file name is HHMMSS.DIR where HHMMSS is the time of the day
when the DlREC'IDRY command is given. Several examples are shown below:

.DIRECT Print out a directory of all stored files •

• DIRECT NAME. * Directory of all files with the name NAME •

• DIR *.EXT Directory of all files with the extension EXT •

• DIR FL1.EX1,FL2.EX2,... Directory of individual files.

DIRECTORY Corranand 351

A typical printout of the directory is shown below:

~ __ Name
I Extension
I I File length in blocks -

I

, 1 I Protection code

:;:

creation date

J

i ~torage structure name
1 Owner's --1

T ST T 10 <157> 18- Y-80 SRB, [115103,3205711
SAMPLE FOR 48 <057> 20-MAY-80
SAMPLE REL 36 <057> 2l-MAY-80
TEST BAK 36 <057> l8-MAY-80
TOTAL OF 180 BLOCKS IN 4 FILES ON USRB: [115103,320571]

The last line is a surranary line of the files in the DIRECTORY command. Switches
provide a user a wide selection of file categories and printout formats. Some
of the switches are included below:

Switch Argument Directory Printed

/BEFORE: date:ti~e I --------
/SINCE: date:timej Files created during the specified time.
----- -------.1-------_.- -----.- .---------.--.---.--------- ---.------- ... -.------.----- - -.---- '--- - .---.------

7.::~-~--t·: ~: ~:~ ;U:~~:_ :~:i:~~:~~~ :l00~U~.__ __ .. ----
/NORMAL To print a normal form.
/SLOW Tb print out a full listing.

1---- - ------- -- ----- - ------ ---- --------- -- -------------.-. ---.- .. ----.------ -'-

/HELP I To print out all available switches.
I----------I----------t-------- -- - ----------------- . ---------.----.------------.. -.. - --- .. ---. -.- ------

~~!.~..:.- ___ }____ __ _ ___ ~--- TO_~~:~ __ t:~~_d~~_~t:0 .. ~ .. ~~. _ the 1 ine pr inter.

~~Y -----------1 To print out just the s~:: .. y __ l~_~~. ___ _ ____________ .. _

/WIDTH: N I Tb output several entries on a single line to make output
~-column wide. Default N is 64.

----- 1--.--.---------- .. --.. -.----- "------''''-'--' .--

/OORDS To print out the size of files
blocks.

in words instead of in

~------~------~---

Example:
Function:

Example:
Function:

Example:

• DIRECT LIST. DIR = *. DIR
Store the directory of all FORTRAN files as LIST.DIR.

.DIRECT *.FOR/FAST/WIDTH
Print out the directory of all FORTRAN files on user's
terminal with a format of names and extensions only, four
entries per line.

Suppose a DEC tape has been mounted by a MOUNT command, and
it has been named with a logical name of Tl. The following
command will list all FORTRAN files stored on that tape:
,DIRECT Tl: *. FOR

352 CHAPI'ER 8 OPERATING SYSTEM

(2) DELETE (DEL) Command This command will delete one or more files
from the disk or the DECtape, and remove their entries from the directory. It
has a similar format as that of the DIRECT command, namely:

[-----------.-.--J
DELETE list

-------_.- ---~~----.---

where "list" = a single file or a group of files. As in the case of DIRECT
command, the following are some of the most frequently used forms:

DELETE FLl.EXl, FL2.EX2, ..•
DELETE NAME. *
DELETE *.EXT
DELETE *.*

After the deletion of files is completed, computer will respond with a report of
the file names, extensions, and total disk storage blocks recovered •

Example:
Function:

• DEL *.TMP, *.BAK
Delete all tempor ary and backup files created after a
successful editing session using UPDATE editor, or after
these files have served their usefulness.

(3) RENAME (REN) Comrnand This command will change one or more items
of the file specifications on the disk or DECtape. The items that may be
changed by this comrnand are filename, extension, protection code, or
combinations thereof. The form of the command is:

RENAME newl=old1 3 nev2=old23 •••

When this command is executed, the file specificai ton of "oldl" is changed to
"newl", "01d2" to "new2", etc.

The old and the new file specifications must bear or imply a one-to-one
correspondence, especially when there is a "wild card" representation. For
example, the command ".RENAME NEW.FOR=*.FOR" wuuld be an incorrect command.

Example:
Function:

Example:
Function:

Example:
Function:

.RENNfE ISSAC. FOR = NET-ITON.FOR
To rename a file from the name NEWTON. FOR to ISSAC. FOR, and
keep the same protection code.

.RENAftfE *.FORd5?> = *.FOR
to give all FORTRAN files a protection code of 157. If a
file already has a protection code of 157, the command is
still executed despite being superfluous.

.REN Tl:*.FOR = Tl:*.F4
To rename all extensions of F4 to FOR for files stored on
DECtape, previously MOUNTed and given a logical name of Tl.

DELETE, RENAME, PROTECT, PRESERVE 353

(4) PRaI'ECT (PROT) Corrunand This command will alter the protection codes
of specified files. Its format is:

fiZel<xyz>, fiZe2<xyz>, .~

where "xyz" is the new protection code assigned. This command is equivalent to
"RENAME filel<xyz>==filel,fie12<xyz>==file2, ••• " In fact they are executed by the
same prog ram.

(5) PRESERVE (PRE) Corrunand This corrunand will rename the file to change
its protection code from <xyz> to either <157> or to <lyz> depending on the
local installation practice. The purpose of "preserving" a file is to raise its
protection level relative to others in the disk. In a batch run, if the disk
storage is over the logout quota (See Section 1.10) at the end of a batch job,
the System will kill off excess files ruthlessly according to an established
order of priority as given in Section 8.4. However, preserving a file merely
makes it less vulnerable--it does not make it untouchable. If all files are
PRESERVEd in the disk, the idea of relative protection level is lost, and one
file is just as vulnerable as another. In general, all source language files
should be preserved, and all files that can be re-generated (by re-compiling or
by re-running the source program) need not be preserved unless it will be costly
to re-generate them. The corrunand format of the PRESERVE corrunand is:

I;~SERVE - Ust =oJ L ________ _

where "list" is a list of file specifications to be preserved.

(6) COpy (COP) Corrunand This command will duplicate as a single file
from one or more source components. The format of the corrunand is as follows:

~
----.. -----'------.--------J

COpy output fiZe spec = inputl, input2, .•.
---,------.,--,--------------~-------.-----.--.-

where the file specifications on both sides of the equal sign have the standard
form. The equal sign is required in the format, as it separates the destination
side from the source side. 'llhe files at the source may_ have wild card
construction, and they must be accessible to the user if they are stored under
other PPNs. The order of input files is important, because they will be merged
into an output file in the precise order listed in the command.

The six file management monitor corrunands are among the most frequently
used corrunands. Actually, all of these commands except DIRECT run a system
service program PIP and utilize some of its salient features. The PIP program
can do a great deal more than that presented here, and it is one of the most
versatile and important service programs. Details of PIP were given in
Chapter 7.

There are a number of points that may be of interest:

A. When a file of another PPN is included in the file management
corrunand, that PPN must be specified. If several files have the same PPN
specification, command structure can be simplified by moving the [m,n] part in
front of these files. Thus the following two corrunands are equivalent:

354 CHAPI'ER 8 OPERATING SYSTEM

B. In a multi~user time-sharing and batch system, the security of
stored files has increasingly become such a serious problem that legislations
are being considered at the federal level. TO copy a copyrighted file without
permission can lead to civil court action. TO discourage "snoopin9" and abuses,
file management commands are often modified and curtailed when another user's
PPN is specified in the command. For example, when a user has log ined under his
own PPN of [ml ,nl], the following commands will be rejected by the System and
considered as "snooping" abuses:

• DIRECT
• DIRECT
• DIRECT
• COpy
• COpy
etc.

[m2 .. n2]
*. FOR [m2 .. n2]
X???REL[m2 .. n2]
. - *.*[m2,n2]
.BAB = ,.BAS[m2 .. n2]

C. While the examples of these commands have mainly concentrated on
the management of disk files, they are equally applicable to DEC tape file
management. However, before these commands may be appl ied to DEC tape files, the
tapes must be mounted by the DRIVE and the MOUNT commands. The following shows
a typical session of DECtape file management. Computer message pr intout is
omitted to save space:

.DRIVES DTA

.MOUNT DTA:Tl/~lE/VID:A1004

.RENAlfE Tl:NAME1.FOR = Tl:NAME2.FOR

.COPY BAMPLE.DAT = DATA1.DAT .. Tl:DATA2.DAT

.DELETE Tl:DATA2.DAT

.DISMOUNT Tl

.UNDRIVE

8.14 File Output Commands

A file on disk or DEC tape can be reproduced as an output via. one of many
output devices. These output monitor commands are now tabulated below:

File Output
Monitor Command

TYPE list

PRINT list

CPUNCH list

TPUNCH list

PIDr list

Function

To produce a typed copy of files listed in tne list on the
user's terminal.

To produce a printed copy of files listed in the list on
the line printer.

To produce a punched card deck of files listed in the list
on the system card punch.

TO produce a roll of punched paper tape of the files 1 isted
in the list at the system paper tape punch unit.

To produce a plot of files listed in the list on the system
Calcomp plotter.

where "list" is a single file specification or a series of file specifications.
Except for the TYPE command which produces the output at the user's terminal,

QUEUE Corrunand 355

all other corrunands listed above use the system output facilities. As the
facilities are shared by all users, by necessity a traffic control scheme must
be established for orderly execution. Priority rules must be set up so that the
facilities will not be monopolized by large-output jobs. These considerations
led to the idea of setting up a queuing line of output jobs, and the design of a
strategy of assigning priorities to jobs in the queuing line. Furthermore, the
need for establishing priority and queuing also exits for batch jobs.
Therefore, one single monitor corrunand may be used to request output, and the
corrunand will substitute for the above listed commands (all except TYPE). The
corrunand QUEUE will be presented next.

8.15 The QUEUE Corrunand

The QUEUE corrunand allows the user to make entries in several system
queues the input queue for the batch system* and the output spooling queues
for the line printer, the card punch, the paper tape punch, and the plotter.
The QUEUE corrunand with appropriate switches also reports or modifies the status
of the queue entries.

The general form of a QUEUE corrunand is as follows:

E -----·----J
QUEUE QLlNE:JOBNAME = NAME. EXT/Switches

--.--.-~-.--~~-- .. --:..-......... -- _-----_ .. _----
The QLINE parameter selects the queuing line. At the University of Pittsburgh,
there are five queuing lines incorporated into the QUEUE corrunand: the batch
queue, the line printer queue, the card punch queue, the paper tape punch queue
and the plotter queue. They are discussed in detail next.

*At the University of Pittsburgh, the capability of the QUEUE command to submit
an input batch job is disabled. The entry of input queue in the batch system is
now done by the OPRSTK command (see Chapters 7 and 9). However, the QUEUE
corrunand may still be used to inquire about or modify the status of batch jobs in
the input queues.

356 CHAPl'ER 8- OPKRATING SYSTEM

First, the QLINE: parameters are outlined below:

QLINE: Short Form Explanations

INP: I:

LPT: L:

COP: C:

PTP: PT:

PLT: PL:

------------------- -----------------------------
Batch input queue.

Line printer output queue. For printer jobs, station
number can be specified to designate a particular
printer in the form of LPTSn: This QLINE is optional
for all pr int jobs, except when the file extension is
any of: COP, PTP, or PLT.

Card punch output queue. 'llhis QLINE is optional if the
file extension is COP.

Paper tape punch output queue. This QLINE is optional
if the file extension is P'I'P.

Plotter output queue. This QLINE is optional if the
file extension is PLT.

Other parameters in the co~nand string are:

JOBNAME

NAME. EXT

/Switches

name of the job being entered into the queue. This part is
optional. If omitted, the jobname given by the System is the
name of the first file in the request.

file specifications which may include [m,n] for other PPN.
Wild card construction is also allowed.

switches that control the action of the command.

The main advantage of using a QUEUE command is that it unifies and
replaces many input/output monitor commands. If the rule on the file extension
is observed (namely, "The extensions COP, PTP, and PLT are exclusively reserved
for output files of card punch, paper tape punch, and plotter, respectively"),
the following substitution of commands may be made:

Monitor Command

SUBMIT
PRINT
CPUNCH
TPUNCH
PIm

list*
list
list
list
list

May be Substituted By:

QUEUE
QUEUE
QUEUE
QUEUE
QUEUE

list
list
list
list
list

Thus, if a file is named with an appropriate extension, the C~UE command
will automatically enter it in the proper output queue and the QLINE in the
command structure may be omitted.

*"SUBMIT list" command for submitting batch jobs is disabled at Pitt.

CUEUE Command

There are three types of CUEUE switches:

(1) Queue operation swithces These switches define the
oper ations. anI y one of this type may be pI aced in a CUEUE command.
appear anywhere in the command string.

357

queue
It may

(2) General queue switches These switches generally affect the
scheduling of the queue entries. Each switch of this type may appear only once
in a command string but it affects the entire request. It may appear anywhere
in the command string.

(3) File-control switches These switches affect the individual
files in a request and must be adjacent to the file specification in the command
string. Different placements of these switches in the command string have
different meanings. Normally, such a switch is placed immediately after a file
specification, and that switch only controls that particular file. ~such a
switch is placed immediately before a group of file specifications, that switch
will control all files that follow until restored or changed by another switch.
See the following examples:

Examples ----------------
FI.EXT,F2.EXT/COPIES:2,F3.EXT

/COPlES:2 Fl.EXT,F2.EXT,F3.EXT

Remarks

Requesting 2 copies of F2, 1 copy of
Fl and F3

Requesting 2 copies of Fl,F2,F3

/COPlES:2 Fl.EXT, F2.EXT, F3.EXT/COPlES:l
Requesting 2 copies of Fl and F2, 1

copy of F3

Actually, this is also true for a device name, a PPN, or a file extension.

The number of switches with their respective arguments is quite large.
However, not everyone will be useful or meaningful to an average user.
Consistent with the purpose of this book, only a judiciously chosen subset of
these switches will be presented, along with appropriate remarks, examples, and
explanations. For complete information, the readers are referred to References
1, 2, and 6.

Note that if an argument of a switch is omitted, a default value is
assumed only if the colon is also omitted. Otherwise, the value of the argument
will be assumed by the System as zero, not the default value. For this reason,
it may be more prudent to consider the colon to be a part of the argument,
rather than a part of the switch. The selected switches are now given in three
tables, categorized in the types mentioned above as Table 8.5, 8.6 and 8.7. The
keyword for each switch may be shortened. The underscored part of the switch is
the minimum that should be designated. For example, /LlST may also be given as
/L, /Ll, /LlS or /LIST. -

358 CHAPI'ER 8 OPERATING SYSTEM

Examples of Listing the Queues:

Example: .Q [115103,320571]/LIST
Function: List all jobs entries submitted by [115103,320571]. A

a~~job typical printout is shown below: ! enhie$ '3"0'<> yw'""e..

i INPUT C;UEUE AT 14:10:33 31~. ~/ Se~ e.."\ce J'l-'""ber o..$S;'3"e.J., +0 ti-,e..jo\.

DEV PPN [JOB I rsOO"-r,k TIME CORE PRI
INP 115103, 320571 L'1'~STl_ (.3.281.1 *S~l 00: 02: 00 8K 0

/

'iINE PRINTER QUEUE AT 14: l'i: 33 ~':JUL-80
! DEV PPN SYSIJ'oBl rSEcfl NAME
~ LPI'~+-q#l15103, 320571 B ~'tJ llQU.6J *SZE

O~t~~io~ Flag sign: none = job still waiting
el'\tr~s J'@jobbeingtransferredtothefrontend

s-/-; t-" ..-.be JI: job having been transferred to the front end
'" .,,~... r * job being processed

Example: ·8 [115103,320571]/FAST
Function: ---- For the same queue inquiry, this switch will yield the

following:

INP 115103,320571 TESTI 3287 *SZE
LPI'SlO 115103,320571 B TEST 10116 *SZE

Example: .Q [115103,320571]!SU~f!1ARY

00:02:00 8K 0
3

Function: This conunand will yield a printout format giving the batch
input queue inforamtion as well as the pr inter queue. A
typical printout is as follows:

QUEUE SUMMARY Nr 13:22:17 31-JUL-80 PITT DEC-I099/B 63A.44A

EXECUTION QUEUES PRINT QUEUES (STD FORMS)

LIMIT AV. AGE OLDEST JOBS TIME * OLDEST JOB

30SE(00:00:00 00:00:00
2MIN 00:00:00 00:00:00

10MIN 00:00:00 00:00:00
20MIN 00:00:00 00:00:00
30MIN 00:00:00 00:00:00
1 HR 00:00:00 00:00:00

LPQ 00:00:00 00:00:00
OTHER 00:01:31 00:01:31

* WHERE <16 PGS ALL JOBS PGS
o 00:00:00 *
o 00:00:00 *
o 00:00:00 *
o 00:00:00 *
o 00:00:00 *
o 00:00:00 *
o 00:00:00 *
1 00:02:00 *

Example: .Q INP:U15103,320571]jLIST
.SUBMIT [115103,320571]/LIST

Function: Both conunands will pr int out the status of batch jobs
submitted by [115103,320571].

QUEUE Switches

Example:

Function:

Example:

Function:

Example:
Function:

.0 IPT: [115103~320571]/SUMMARY
. PRINT [115103~ 320571]jSUNMARY
Either one will print out the PPN's printer job status.

.Q INP:/LIST
• SUBMIT/LIST
Print out all batch jobs entries in the System.

.Q LPTS10:/LIST
Print out all printer jobs at station No. 10.

359

If the queued jobs have been completed when an inquiry is made, the
System will return a message of: "The queues are empty."

Examples of changing the queues

Two switches may be used to change the queues: /MODIFY and /KILL. In ~
selective modification or deletion, the jobs must be identified by either the
/SEQ:n switch or by the JOBNAME assigned. If /KILL is applied without a
selective identification, every job fitting the specification will be deleted.

Example:
Function:

Example:
Function:

Example:
Function:

Example:
Function:

Example:

Function:

.Q LPT:=/KILL or • PRINT/KILL
Delete all printer jobs.

.Q LPTS10:=/KILL
Delete all printer jobs submitted to Station No. 10
printer.

• Q INP: TEST=/KILL or • SUBMIT TEST=/KILL
Delete a batch job whose jobname is TEST.

.Q LPT:=/SEQ:l0116/KILL or .PRINT/SEQ:l0116/KILL
Delete a print job which has been assigned a sequence
mnnber of 10116.

.Q LPT:=/SEQ:l0116/fI0D/BREAK:llllll/LOC:6

.PRINT /SEQ:l0116/f10D/BREAK:llllll/LOC:6
Modify a print job, whose· sequence number is 10116, by
re-routing it to Station No.6 and programmer number 111111
as the receiver of the output.

Note: At the University of Pittsburgh, the command ".QUEUE INP:=" and ".SUBMIT"
may be used for queue modification, but not for submitting batch jobs. The
batch jobs are submitted by a Pitt-developed command of ".OPRSTK".

360

Example:

Function:

CHAPI'ER 8

.(] INP:=/SEQ:3287/MOD/CORE:16

.SUBMIT /SEQ:3287/HOD/CORE:16

OPERATING SYSTEM

Change a batch job, whose sequence number is 3287, to a new
core request (from whatev~.r was before) of 16K.

The following examples show certain applications of the switches:

Example:
Function:

Example:
Function:

Example:
Function:

• Q NE~lTON.POR/LOC:l O/COPIES: 3/SPACING: DOUBLE
This command will submit a request to print 3 copies of
NEWTON.FOR in the user's own disk area, double spaced, at
the printer in Station No.IO. Note that if the file is
already double-spaced (with a blank line as every alternate
line), the result with this command would be quadruple
space •

• QUEUE POR01.DAT/PILE:ASCII
A file with an extension of OAT is printed with an
assumption it has the FORI'RAN carriage control character
format, because the /FILE:FORTRAN is the default switch for
all files with the extension of OA'r. ']~herefore, the
FORI'RAN data files are always prepared by reserving the
first column of every line blnak except for carriage
control characters. If a data file is not prepared this
way, or if it has an unknown origin, it would be prudent to
include the /FILE:ASCII swithc in the print request.
Otherwise, for example, every time the printer encounters a
line beginning with a "1" in column 1, the printer will
take as an instruction to a new page •

• QUEUE PROB1.CDP/COPIES:2/DIS:REN
Punch two copies of PROBl.COP in cards*, and remove the
file from the owner's disk area immediately.

*Note to pitt users: pitt does card punch jobs outside the University. The
punch job files are collected on tape once a week from the disk. A user should
either keep his COP file at least another week after he submits the punch
request or use the /OISPOSE:RENAME switch.

QUEUE Switches

Switch Argument

/CHECK

/fAST

/~IST :1

:2

/SUMMAR

361

:::~::.j~~~~:;i~~:!:::~;,~:~\J,,;g~~~!~
short format. Same as /LIST except no I

;;;i;;o;;;~~;i]~ ~~ :~~~!~£~~£ til··' : 1 .~
in this Section. I

i I More detailed listing

Most detailed listing ! --.~
Route the output to the specified printer I n=station I
at station No. n. Each station printer I number

, has a page limit, and long jobs can be Iii of RJE I
I
I pr inted only at certain printers. Also,
only certain printers have lower case

8;:~;;:~~ji~Q;~~wr~~~~f~~ t~e~~~ I -1
I

in the command, only the specified jobs are I I
killed. Otherwise, all jobs in the I ,'I

' specified queue are deleted.

Used in combinat·i·~~·~i~h another switch to . 1
change the value of that switch for a job !
already in the queue. The job to be I
modified must be identified either by a
/SEQ:n switch or by the JOBNAME in the I
command. The specification of a previously
submitted job may be modified by using the
/~DDIFY switch in conjunction with another I
QUEUE switch. To change the specification
of a previously submitted batch job,use the
following switches with the MODIFY switch: 'I

/CORE:n To change core limt to nK I
/OUTPUT:n To change the batch job OUTPUT

parameter to n. I
/PAGES:n To change the page limit I

:;~:~~~;~:s;o change job priority J. ____•. j -- To change CPU time 1 imi t
- - - - ~ -- - -

To print out a summary of jobs in the
queue.
-~--.-.-~-----~~--~- ~--~------ -~-----------~

Table 8.5 Selected Queue Operation Switches of the QUEUE Command

l~ote: Underscored characters correspond to the short forms of the switches
and the arguments.

362

Switch Argument

/~TER

:HHMM

:+HHMM

CHAPI'ER 8 OPE~RATING SYSTEM

Explanation

Job will not be processed until after the
specified time:

After _HHMM (using a 24-hour
HH=hour, and MM=minutes)

clock,

"HH" hours and "MM" minutes from now or
later

D2fault
Argument

HHMM=OOOO

1----+------1------------------------------------ -------

/BREAl< :N

/FORM :ll'

Route the output to user whose prograrrnner N=own
is N. PPN

Route a print job to a pr inter that can
print lower case characters.

STD Print job on standard form, a default
condition.

- .. - -----------.\---------------- -------------- -.-------------- --------
/LIMIT :n

------1------ --

/SEQ :n

Limit the output to the specified number
of pages, cards, or feet of paper tape.

1--------------------------------- ______________ _ ____ --___________ _

The sequence number identifies a
particular job in a queue. This switch
is normally used in combination with the
/MODIFY or the /KILL switch to change or
delete a seleted entry in the queue.

-------~------~----------------------.-----------.--------.---

Table 8.6 Selected General Queue Switches of the QUEUE Command

Note: Underscored characters correspond to the short forms of the switches
and the arguments •

Example:
Function:

Example:
Function:

Example:
Function:

• SUBMIT/SEQ:10l16/MODIFY/CORE:32K
Tb change a previously submitted batch job (identified by
its sequence number) core request to 32K •

• PRINT/MODIFY/LOC:6/FO:ll'
To re-route all printer jobs already :submitted to
10cation-6 and ask for lower-case printing •

• PRINT /M/A:OOOO/LOC:3
Tb re-route all printer jobs to printer-3 and do it after
midnight.

Enhanced TYPE Corrunand 363

Default
Switch Argument Explanations Argument

~=

/COPIES :N To generate n copies of the output, but :1
not larger than given in this table:

Device Maximum II nil

LPT 63
CDP 3
PTP 63
PLT 3

-~.----- -

/DISroSE : DELETE Files to remain in the owner's disk area, : PRESERVE
but to be deleted after processed.

: PRESERVE Files to remian in the owner's disk area,
except those defaulting to
/DISroSE:RENAME.

: RENAME Files to be irrunediately removed from the
owner's disk area and placed in a system
disk area, where it is neither accessible
by the owner nor counted agains this disk

I quota. The file is deleted after
I spooling. This is the default for files

I
with extensions of LST and TMP and if
protection code is <Oyz>, and extension
one of these: CDP, LPT, PLT or PTP.

~--

/IILE : ASCII To specify that the file contains ASCII
text. This is the default for all files
except those with the extension of DAT.

: FORTRAN To specify that the file contains in
column-l of each line a FORTRAN carriage
control character. This is the default
for all files with the extension of DAT.
Applied only to printer jobs.

- ____ " ____ ~ __ 4_ .. __ ._ -----_ --_. __ ..• . - ------ --~---- ------
/SPACING : SINGLE To print the file in single space. : SINGLE

:!pUBLE To print the file in double space.

: TRIPLE To print the file in triple space.

Table 8.7 Selected File-Control Switches of the QUEUE Corrunand

Not2: Underscored characters correspond to the short forms of the switches and
the arguments.

364 CHAPl'ER 8 OPERATING SYSTEM

8.16 Operating System Command Locally Enhanced

While the Operating system is a part of the system software supplied by
the computer vendor, local installations often modify certain commands to
enhance their operations. At the University of Pittsburgh, there are a number
of system commands enhanced to fit the local needs. Many take on different
forms and keyv,urds, such as DRIVE, . QUEUE, and OPRSTK. These various
enhancements have been presented also in this chapter. Users at other
installations should consult with their own Computer Center staff and
documentations with respect to the local system enhancement. ln some cases, it
is an upward-compatible enhancement so that a user not familiar with the
enhancement may still use the command with the standard format and functions.
One such command is the TYPE command. In the normal way, the TYPE command would
run the PIP program and construct a command from the list suppliEc in the TYPE
command. Thus no switches are allowed other than the standard default values of
the PIP program.

At the University of Pittsburgh, a "TYPE" program is implemented and
acti vated as a monitor command. The complete format for the command is:

where:

~
--~-_._._ ... _-_ ... __ - __ , - - -.. -.-.-.-.-..• ---.. -.-.. - .. ----.-----.. -.--~

.TYPE /global-switches Output-spec = input list/local-·switches
--."., -~. _., .. -_.--_ _- ~ "-... ,~".---.. -.-.. - ~-.~- -~-~~.,-.. --~---.... -.<.-.,,,---~ .. - ... - ~- . _.--_._- ._.-.- .. --._- .. - . __ .. _ •. _, ----

global-switch
local-switch

swi tches appl ied to all files in the 1 ist:
switches applied to aspecific file

The simplest form of the command would be with no switch, or:

[
-.................... : .. -.. -.. _ -. '-I

. TYPE lnput-llst I
_. ____ .. _ ____ .. __ -----J

Thus in its simplest form·the TYPE command is the same as the DEC-10
monitor command TYPE.

The switches and their functions are tabulated in Table 8.8 ..

Example:
Function:

Example:
Function:

Exampl~:
Function:

• TYPE SYS:TYPE.HLP/PAGES:2-2/IND:4
Type out Page 2 of the file SYS:TYPE.HLP with left margin
at column 5 •

• TYPE NEWTON.FOR/COLUMNS:1-72/HEADER/PAUSE
Type out columns 1-"72 of the file NEWTON. FOR on user's
terminal with a header. At the beginning of each page
(including the first), the terminal beeps and pauses.
This would allow a change of paper or alligrunent of typing
position •

• TYPE FCHARI'. LST/EMULATE: LABELS. CCT
Many programs are designed for printer output only. One
such program is the FORFID program discussed in Ch&pter 4
(section 4.4). When a printer is not accessible, for
example for a dial-up user, the output may be produced on
the user's terminal by emulating his terminal as a printer.
"LABEL.CCT" is the stored "printer carriage control tape."
For this example, the FORFID program uses CTRL-S to

TYPE Switches 365

--- ---1- ~-----------.- ---.. ---.---~-----.------- ... --.----.-~- -- .-. ""--" '~f~~i't--

Swi tch jArgument Explanation Argument
-"'-''''t-'o.- .. _o_c,,'c,=-_~_-_'"'"'=:, ."'.=_"'.-,--"'=,_,-_c~'''~_~·_',.'".:c_=, "c·"_"",.o,c"o-_",=-='''-·,-.'·_,.,~,,,_ ."=.c'-o~~,"-,.,=,_',_","-.c,=._'=c,,'=· .-

/ALIGN ! Pause to allow alignment of paper before the
first page. A carriage return resumes the
typing.

/PAUSE

--· .. -i
/BIDCKS .

/COLUMNS!

I
i

"'r

:n-m
:m

Terminal will pause for paper alignment between
every page. Carriage return resumes typing.

t---·------ ---.-.-- .. --.- --- .. -... -.----.--.... --..... -.. ---- -.--- .. ---.. ---....... -... -..... ---....... ----.~
I Process only the gth through !!).th blocks. all
I Process first m blocks of the file. This switch I blocks

__ l~s applicable onl~ to disk files. -.. l------
:n-m iproces only the nth through mth columns. : all

::iles!>'c 1::~e::~:~i:~r:~h;tco::ns~::p::Ch d:~::: is to l ::::~
',emUlate a line printer. The file specification I settings
is of the standard form, which contains I

; information of a non-standard carriage control I
I tape, or CCT. The detail content of the CC'!' file I
i is given below. I

.- .. J.------ --...... -.- ----.. -- .. -.. - -.. -.... ----.- .. -.-----.----.-.... +---- ---------
! Treat the input file as ASCII text. I :ASCII

J;;;;~~~~l;:~~~_;t?~~~_~~._~~_~~te;~rst column a t....-----J
I i I

I
, n=U: Quit the file processing information block. I :0. if no I
n=l: Type out the information block at the J sWltch;

beginning of the file. I n=l if
n=2: Type out only the information block at the! argument

/INDENT ! :n

I !

SpeCif:~::n~::~~:~;::~~::e~~~~~-~-•. Max n 63.11::~-i~g

I/~;~~s
/PAGES

/PRINT

/TALLY

:n-m
:m

:n-m
:m

:AR:Ra'1

: ASCII
: OCTAL
: SUPPRESS

If column-l has tab character in it, the
indentation may be incorrect. i

- ---~-...

Process only the nth through mth lines. I all
Process the first-m lines of the file: _______ . ___ ... t~i~~S

Process only the nth through mth pages.
Process the first-!!). pages of the file.

Type out control characters as up-arrow
characters.
Treat the file as straight ASCII file.
Each word is converted to 12-digit octal number.
Suppress all multiple-line spacing.

Type out the total number of pages of the file.

I all
, pages

:ASCII

Table 8.8 Switches for the Enhanced TYPE Command

366

Example:
Function:

CHAPI'ER 8 OPERATING SYSTEM

suppress formfeed, and the user should have a file
lABELS.CCT containing just one record "/OC3:l-66:1". The
flow chart shown on page 145 was produced on a terminal in
that way •

• TYPE SAMPLE.DAT
Output the file SAMPLE.DAT on user's terminal.

REFERENCES

1. DEC SYSTEM-IO OPERATING SYSTEM COMMAND MANUAL, DEC #DEC'-lO-oSCMA-A-D,
Digital Equipuent CorpJration, Maynard, Massachusetts; 1974.

2. Update Notes to DEC
#DEC-IO-oSCMA-AI'tU,
Massachusetts; 1976.

SYSTEM-IO OPERATING SYSTEM COMMAND MAl.\lUAL, DEC
Digital Equipuent CoqX)ratioln, Maynard,

3. OPERATING SYSTEM COMMANDS, Reference Card, Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1978.

4. GETTING STARTED WITH TOP-10 COMMANDS, Digital Equipuent Corporation,
Maynard, Massachusetts; 1976.

5. Various System HELP-files, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980.

6. The (VEUE COMMAND, DEC-10 Notes, Computer Center,
Pittsburgh, Pittsburgh, Pennsylvania; October, 1980.

University of

CHAPI'ER 9

MULTIPROGRAM BATCH

INI'RODUCTION

9.1 Introduction

The conventional batch operation of a computer will dedicate all system
resources to a current job. When this job is completed, the system resources
are then reassigned to the next job.

The DEC System-lO is a multiprogramming system. It allows multiple
independent jobs to reside in the core simultaneously and to run concurrently,
by sharing the core and by switching the central processor from one job to
another when the processor becomes available. Using this approach, the DEC
batch enables the execution of up to 14 jobs concurrently with time-sharing
jobs*. Thus the multiprogram batch (MPB) is a hybrid mode of operation between
the conventional batch and the conventional time-sharing modes.

As a hybrid operation, the MPB operations often retain the advantages and
the disadvantages of both modes. Its chief advantages are:

(1) Computer resources are used more efficiently to increase throughput,
namely, more users served in a given length of time.

(2) Programs and data can be prepared on key punches, which are less in
demand than the terminals. The prepared card deck serves as a permanent storage
in user's possession unrestricted by disk allocation quota and unthreatened by
the prospect of a system crash.

(3) Jobs may be run by an operator, or by user using a self-service card
reader at a remote job entry station. Output may be retrieved later at the
user's convenience.

(4) Batch jobs have larger core allocations. Some large and long jobs
can only be run in the batch mode.

*Five jobs only from the user's standpoint.

{h7

368 CHAFrER 9 BATCH

On the other hand, the major disadvantage of the MPB mode is the loss of
interaction between the user and the computer.

Since a job can normally be run on DEC-lO either as a batch job or as a
time-sharing job, a judicious choice should be made by the user to maximize the
advantages and to minimize the disadvantages. For example, a prc:>SIram deb1..lgged
in the time-shar ing mode and run in the batch mode w:>uld combine the best of tw:>
w:>rlds.

mode:
In general, the following types of jobs are best suited for the batch

I '"'J

(1) Production runs of a program already deb1..lgged.

(2) Large and long jobs.

(3) Jobs requiring large amount of input data and/or producing large
amount of output data.

(4) Jobs requiring no interaction between the user and the computer at
the execution time.

(5) Jobs of users who have difficulties to gain access to time-sharing
fac il i ties.

9.2 BATCH Software System

For the purpose of illustrating the MPB system, a very brief description
of the BATCH software system will be given here.

There are four major components in the MPB software system. They are the
Stacker, the Queue Manage£, the Batch Controller, and the OUtput~. Each
is a service program, and their interaction and control functions are shown in
Figure 9.l.

The Stacker program performs the service of reading the input from the
input devices and entering the job i.1to a batch queue. Since each installation
of DEC-lO system has variation of input device configuration, the Stacker is
primarily oriented toward the card reader input, but it allows jobs to be
entered from any input device that is code-compatible. In some installations,
this w:>uld include the terminal and/or the disk*. Once the information is
entered, appropr iate data files are set up, monitor commands are Slener ated that
will later execute the job, and a job log file is set up to record the case
history of the job. The log file is a part of the standard output a user
receives after his batch job is completed, whether successful or not.

The Queue Manage£ program schedules the job, both for the jobs in the
batch controller I s input queue and the output job queue. When a job request
reaches the Queue Manager, its pr iority is computed by a formula based on such
job parameters as the CPU time requested, core size requested, etc. The
priority is further upjraded from time to time as the job ages :Ln the queue.
When the batch input job is completed, the Manager sends forward a request of

*At the University of Pittsburgh installation, a modified Stacker called the
Oper ation Stacker (OPRSTK) is implemented to replace the DEC Stacker in order to
unify all input/output device queues under a single queuing control.

BATCH Software System

Input
Devices
Request

Controller
for Batch
job queuing
and output
queueing

System
Output
Queues

Temporary
Disk
storage

User's Program
on Disk

QUEUE MANAGER

Batel1
Input
Queue

OUTPUT SPOOLERS, for Paper Tape Punch,
Line Printer, Card Punch, and Plotter.

Figure 9.1 BATCH Software System

369

370 CHAPI'ER 9 BATCH

scheduling to the OUtput Oleue. After the output is canpleteel, the Queue
Manager scratches the job entry from the queue.

The Batch Controller program processes the batch jobs by passing the
monitor commands, generated by the Stacker, onto the executive system for
action. Here one should observe that the batch jobs processed by the Batch
Controller are not distinguishable regarding the sources of these jobs. Jobs
originated fran the remote terminals, fran the card readers or from any
code-compatible input device will appear the same to the Batch Controller.
Therefore, the time-sharing and the batch jobs . can share the seuue operating
system and the non-resident software commands, and it is unnecesselry for a user
to learn t\>,Q different sets of command languages, one for time-sharing and one
for batch. Also, so long as the input codes are compatible, any input device
may subnit a batch job. However, since a user can sign on the System only with
the card reader or with the terminal, our discussion of batch jobs will be
limited to these t\>,Q sources only.

The OUtput Spooler program allows the output to be stored temporarily on
a system disk at a queue priority assigned by the Queue Mana(]er. When the
specified output device becomes available, the appropriate spooling program
processes the output job. Note in Figure 9.1, the batch system output devices
do not include the remote terminals, and hence the terminal users, while it is
possible for them to submit batch jobs at the terminals, will not receive the
job output at their terminals. They must obtain the batch output at the System
output devices.

9.3 Procedure of Running a Batch Jo~

At this point, we shall assume that the program has been written and
prepared either as a card deck or as a stored file, the data assembled and
prepared, and the user is ready. The procedure of running a batch job includes
the following steps:

(1) First, a control file should be made up, which contains the program,
the data, the monitor commands and/or the BA'lCH commands in a proPE~r composition
and sequence. The control file made up can be either a complete deck of cards
or a stored disk file.

(2) Secondly, submit the batch job for the run. This can bl~ done either
through a card reader (for control file punched on cards) or throu~h a terminal
(for control file stored on disk) •

(3) Thirdly, retrieve the output results and interpret the results. If
there are errors, detect and correct them, and resubmit.

These procedures will now be discussed in details next.

$JOB Card 371

CONl'ROL FILE

9.4 Batch Control Commands

The batch control commands are commands whose functions are recognized by
the Stacker in the Batch software system so that appropriate commands can be
generated. These control commands. are all characterized by a dollar sign ($) in
the first column and the command keyword starting at the second column. A
selected set of batch control commands is presented next.

where

The general format of a batch control command is:

"$" the command symbol ~ must be in the first column~

KEYWORD = the batch command keyword~
column~

must start from the second

/swk a switch or option specifying certain parameters (for
example, core size, cru time limit, paper page limit, etc.)

If ~ particular switch is not used in the command, the system automatically
asslgns a prescribed and safe option for the command. For example, a user may
use the page limit (of the printer output) option to specify the limit up to 999
pages. If that option is not specified in the command, the system automatically
assigns 15 as the page limit. Such automatically assigned option is called the
default condition of the switch.

The control commands presented here will often be referred to as "command
cards," even if they need not be always in card forms physically. Since they
always have a dollar sign ($) in the first columns, they are also called the
$-cards.

9.5 Sign-Gn Batch Control Commands

These command will generate the monitor command UDGIN with specifications
of job requirements. Local installations often have variations and options of
these corranands. Users should confirm with the personnel at their local
installation.

(1) $SEQUENCE Card This command will specify a unique sequence number
for the job. It mayor may not be required at a local installation*. If it is
required, it must always be the first card in the control file.

(2) $JOB Card This command will generate the UDGIN corranand and
make specification and limits of job requirements. Its form is:

[-~-;-;-~~[~~~/;~~_-/;,~_~~.~ /swn -~~~

*At the University of Pittsburgh, the $SEQUENCE card is not needed.

372

where

CHAPI'ER 9 BA'I'C'H

J8NAME the optional job name given by the user. If this is omitted,
the System assigns an arbitrary name such as JOBAA. The
purpose of the J8NAME of a job is for its identification.

[m,n] user I s PPN; must not be omitted.
When the $JOB card is prepared by an IBM key punch, which
does not have the II [II and the II] II punches, the PPN may be
punched either as ¢ m,n! or as (m,n) •

/swk = JOB switches. A list of selected JOB switches is shown in
Table 9.1.

If the default conditions are satisfactory in an application, the simplest form
of the $JOB card could be simply:

~-;;-~-:~lJ

which will tell BA'K:H: (1) to login with a PPN of [m,n], (2) to require no
service of card punch, paper tape punch, or plotter, (3) to request the regular
amount of core size, regular level of priority, and regular CPU time limit, and
(4) to return the output at the station where the BA'K:H run is submitted. In
the meantime, a job name may be arbitr ar ily assigned by the System.

At the University of Pittsburgh, a short form of JOB card i.s permitted in
the form of:

[;:;~B-;~--~~,n] (t~e ,p~es ,core ,cards ,feet0
~----.. -------------~-~~

The parameters of switches are given inside the parentheses and must be given in
that specific order. If the default value is used, that parameter may simply be
left blank, but the conuna must be retained, unless it is a trailing conuna.
Additonal switches may be appended after the parentheses are closerl.

The two following JOB cards are equivalent:
$JOB NEW'IDN [115103, 32057l]/TIME: 1: OO/CORE: 12K
$JOB NEWTON [115103, 320571] (1:00,,12K)

The two following JOB cards are equivalent:
$JOB [115l03,32057l]/CORE:12K/PRIORITY:0
$JOB [115103,320571] (,,12K)/PRIORITY:0

When a batch job is submitted from a time-sharing terminal J' the PPN of
the user is already known to the System. Therefore, such jobs are allowed to
have PPN containing a wild card construction such as [* ,32057l], [115103,*], or
[* ,*J • 'llle advantage of such a construction is that one copy of such control
file need be stored and it can be shared by many projects for the same user, or
many users in the same project, or by anybody. When such a job is submitted,
the system will substitute the known PPN for the 11*11 part of the ~JOB card.

Many of the JOB card switch parameters pertain to the est:lmated maximum
usage of system resources, such as the CPU time, the core storage, and the
output volumns that are required for the job. The user should try to estimate
with a margin as close as possible above all of his requirements. If the
requirements are under-estimated, either the job may not run, or the output may
be cut off before it is completed. On the other hand, although overestimates
will not cause a waste in the System resources (because they are allocated only
when actually needed in execution), it will cause a drop of the job ranking in
the Batch queue, and the turn-around time will suffer. A useful guide for a
reasonable estimate is to look at the KJOB printouts of past s:imialr jobs, to

$JOB Card Switches 373

DefauTt
Switch Argument Explanation ~gument

I====~=- =,= =-=,====b====~====--,=~-==.=,=~ .. =~~""",--.·~·~·==,====t-~--"'=-""~=-~=

/AFTER

/CORE

Job will not be processed until after the
specified time:

:HHMM After HHMM (using a 24-hour clock, HHMM=OOOO
HH=Hour, and-MM=minutes)

:+MM "MM" minutes later
:DD-MM-YY HHMM Process the job after HHMM on the

:nK
:n
:nP

specified day. For example, 8-AUG-80 1350
means 1:50PM, August 8, 1980.

Estimated maximum core request required Consult
for the job: your
core in K-words local
core in K-words (1 K = 1024 words) rules.
core in P-pages (1 P = 512 words)

1--. __ .. ---.-- -.-.-.-.---

/WCATE

/ourPUr

--'-

/SITGO
---_._-

/TlME
-.

/UNlQUE

:Snn
:nn
: name

:n

Route the printed output to a specified Same Snn as
ruE station. ruE

,nn = station number

I

'name = station name
- .. -----. -_._.-. -"._--_ .. --- _ .. _--.---_ .. _- .. _- --_.-

Control the automatic
output at the end of a
is listed below:

queuing of
job. Argument

n File Queued

o no queuing
1 only LOG file pritned
2 Log file plus spooled output

the
lin"

3 Log file, spooled output, *.LST

n=4
.---

4 Same as 3 I
_.5 _ All e~~~~=~:~_~:'_' _____________ j ___ " _____ . __ _

Estimated maximum number of printed pages
- - -- '--'. --- -- - ... -_._--- _.. _ - ------.... -_ ... _------ -----------
Set the priority level of the job to "n": n=2

n=3 for high priority (HPQ)
n=2 for normal priority (NPQ)
n=l for low priority (LPQ) at lower rate
n=O for no priority (NPQ) at bargain rate

- ... _--- _-.- - _ ... _ ... _-----_ .. _ .. __ ... _-_ .. _------_ _ _._----.--_ .. _ ... _ ... _ _--\--------- ---.. ---~

Job is to be run under the SITGO batch.
-_ ------_ .. .

:HH:MM:SS Estimated maximumum CPU time required 30 sec
..._------ . __ ._-----_._---------_ .. _--------- -_ .. __ ... _-- ---------_._.-- -------.----

:n n=O: Job may be run simultaneously with n=l
other jobs of the same PPN.

n=l: One job per PPN at a time.

Table 9.1 A List of Selected $JOB Card Switches

374 CHAPI'ER 9 BATCH

see oow much cru time was used, and to see what was the maximun cOlee area used
in that job (called the HWM core, or the "high-water-mark" core), and then add
10%.

(3) $PASSWORD card This card has a format of:

$PASSWORD password

where "password" is the user I s password consisting of zero to six characters
that have been stored with his PPN. The $PASSWORD card must follow immediately
after the $JOB card, and these two together identify the batch user to the BATCH
processor and initiate the creation of necessary temporary files for the job.
If the password given is not valid, the job is terminated right there.

When a batch job is submitted from a terminal, the $PASSWORD card is not
needed. The mere fact that the user is operating the terminal at the time is
proof enough that he has a valid password. In this case, the system simply
retrieves the stored password of the user.

Thus the simplest version of job sign-on at the beg inning of each batch
job is shown below:

$SEQ d $JOB [m,n]
$PASSWORD pass~ord

$JOB [m,n]
or

$PASSWORD password

where the "$SEQ" card is optional depending on the local
conditions.

installation

9.6 Sign-Off Card, $EOJ

The sign-off card is placed at the end of a Batch deck to tell BATCH that
it has reached the end of a job. The design of the sing-off card varies with
local installations. Two differenet cards are described below:

(1) The End-of-File Card 'Ibis is the standard sign-off card
recognized by the DEC-IO BATCH system. It is a card with punches in colunns 1
and 80 in rows 12,11,0,1 and rows 6,7,8,9 leaving rows 2,3,4,5 blcmk. While it
is possible to produce these punches on a key punch, it is quite difficult to
reproduce that card as a record on a disk file, and thus causing problem in
indicating the end-of-job when submitting the job through a terminal. This
sign-off procedure is not used at the University of Pittsburgh.

(2) The $EOJ Card The $EOJ card is implemented to replace the
end-of-file card at the University of Pittsburgh installation. It will generate
the monitor command KJOB and sign off the user with appropriatE! printout of
usage data. It should be physically the last card in every BATCH deck. If this
card is omitted, the end-of-job may still be determined by the prE!sence of $JOB
card of a following job, assuning that the user of the following job provides a
correctly prepared $JOB card. If there is no job following, or if the following
job card has error in it, difficulties may arise. Therefore, although it may
not be always needed, it is prooent to use two $EOJ cards at the end, just in
case there should be any read-error by the card reader.

$EOJ, EOD, DECK Cards 375

9.7 The End-of-Deck Card, $EOD

During the batch run, a number of batch control commands will tell BATCH
to copy all cards following the command card into a disk file. Such copying of
cards may be terminated only on two conditions: (1) when another $-card is
encountered, or (2) when an end-of-deck card $EOD is encountered. The format
for the latter is:

As we shall see later, not every command card in the Batch deck is a $-card, it
will be prudent to end every program and every group of data with a $EOD card,
even thoUJh it may often be unnecessary. If each of the $card followed by the
program or data to be copied ends with a $EOD card, this becomes a stand-alone
module in the Batch deck. In this way, when the modules are moved or removed,
or when additonal commands are inserted into the Batch deck at a later time, one
can always be certain that these modules in the Batch deck have already been
properly terminated.

9.8 Batch Control Commands for Disk Storage

The Batch control command $DECK placed in front of a deck of program
and/or data cards will tell BATCH to copy it into a disk file, and do not delete
it at the conclusion of the batch run. Its form is:

I $DECK NAME.EXT/switches]

Switches for the $DECK card are the same as those for the $DATA card,
except for the IGNHOL switch, and they are listed in Table 9.2:

~J Arg~nt "+_. Expl:na~~ons ~;:~~t
/WIDTH r :N I To read the first!!. colunns of each card as n=80

r----------~+- ------1 the data_~o~~~~. __ ~n~_~~) _____ ~ _______ ~ ________ _

/SUPPRESS I' :ON To suppress the trailing blank of each card.
:OFF To read the trailing blanks of each data card

as data columns.
:ON

1--------- --------- -- -~---------- - ---------------------- -------- ---- ---

/LINEBIDCK To "lineblock" a data file so that it may be
read by a FORTRAN F40 program. Lineblocking
is not required in a FORI'RAN-IO program.

----- -- -- ----

/IGNHOL

I
This is a switch for the $DECK card only. It
is used to ignore the Hollerith errors in a
deck of cards. Any colunn containing a

file can then be edited to correct the
errors. [

Hollerith error is replaced by a backslash
(\) before being stored on disk. The disk

I ______ ---L---____________________ ~ ________ ~ __________________ _'____ ___ ~

Table 9.2 Swi tches for the $DECK and the $DATA Cards

376 CHAPTER 9

The disk storage module in a batch job deck has the
composition:

$DECK NAME. EXT
1-------------

program
or data

1--- - ---- --_ .. __ ---------

$EOD

9.9 Batch Control Commands for Compiling and Execution

BA'K'H

following

When the BA'K:H processes a FORmAN job, it will assign a FORmAN compiler
and set aside disk area for temporary storage for these files: (1) the source
programs (programs in source language such as FORmAN) and their compiled binary
files (with extensions of REL), (2) REL files that are already on disk, (3) data
cards. When all files are stored as temporary files, the programs are then
executed. The Batch control commands presented below will generate necessary
monitor commands that will perform these tasks.

(1) Compiling command for source language programs Batch commands in
this group will tell BATCH to generate a monitor command COMPILE to process the
source program deck that follows the command card. Since then~ are several
language processors that can be processed by the COMPILE command in DEC
System-lO (AIillL, COBOL, FORmAN, MACRO, BLISS and SIMULA), six Batch control
commands for compiling are provided. They are $AIIDL, $COBOL, $FORmAN, $MACRO,
$BLISS and $SIMULA. Although the discussion in this section are directed to the
corrmand $ FORTRAN, one may extrCl.polate the discussions to AIillL, COBOL or MACRO
since they share the similar formats, similar functions and the same switches.

The format of the $FORTRAN card is:

$FORTRAN NAME.EXT/switches

where NAME.EXT is the name of the temporary file to be created to store the
FORTRAN cards that follow. When the $FORTRAN card is folloW9d by a FORmAN
source progran deck, three events will take place: (a) The FORTRAN deck is
copied onto the disk and named as "NAME. EXT" as designated in the $FORTRAN card;
(b) the source program is compiled; and (c) the compiled result is stored on
disk as NAME.REL. In the meantime, a temporary listing file is also prepared.
The name NAME.EXT can often be omitted, and BA'K:H will create an arbitrary name
for the program file, such as DECKAA.FOR, DECKAB.FOR, etc. All files stored are
temporary, and they will be deleted at the end of the Batch run. Threrefore,
$FORTRAN card should not be used if the user wishes to compu,e and store the
files. -- ---

The simplest version of the $FORTRAN card is simply:

I $FO~ __ J
which tells the BA'K:H processor: (1) to copy the FORmAN program into a
temporary file, (2) to assign it a name (DECKAA.FOR), (3) to reaj 72 columns of
each card following the $FORTRAN card as a FORmAN program, (5) no CREF
lisitng, (5) to produce a listing of the program when the job is done, and (6)
to use the FORmAN-lO compiler. AI though simple in form, it is the most useful
form of the $FORTRAN card.

$FORTRAN Card 377

The following is a list·of selected switches for the $FORTRAN card:

/CREF

Explanations
Default
Argument

n=72

TO create a cross-reference listing of the No CREF
FORTRAN program when compiled. listing --..... ---. --- -- .--.--. ----.. - .. -.-- ... --.-.. -.-.... -.. --.. -.. ---.----... - ... -- --.-----r-----

/F40
1--'.-' .. ' -. - -.-.... - _-.---

/FIO

No listing of the program is to be prepared. Listing

Use the FORTRAN F40 compiler. /FIO
.- -_ ...•.. _._.-_._ ... _ ... - .. _--_ _-..... __ ._--.•.• - _ _ ... __ .. _.------.-

Use the FORTRAN-I 0
compiler at Pitt.

compiler, a standard

~~I±S.T.-.-.

k--___ __ __ ~ __ ~ ______ ~

Table 9.3 Switches for the $FORTRAN Card

Two limitations of the $FORTRAN card should be noted. One is that it
will list, compile but not execute the program. '!be other is that although
files will be created to store the source programs and the compiled binary REL
programs, they are all temporary and will be deleted at the end of the job. If
one wishes to keep the FORTRAN or its REL files as permanent files for later
use, $FORTRAN would be a wrong command to use. Instead, one should use the
$DECK card to store, and the monitor command CCMPILE to compile and create the
REL files.

The gener al composition of a compil ing module in a Batch deck is as
follows:

$FORTRAN

FORTRAN source
program{s)

$EOD

When a FORTRAN program consists of a main program and one or more subprograms,
it can be compiled either together in a deck as one module, or compiled
separately in individual decks, each requiring one such module. As mentioned
before, the $EOD card may be omitted if the first card of the next module is a
$card. However, if the deck is modified in the future and a non-$card is
inserted at the end without a $EOD terminating the FORTRAN module, the inserted
command will be interpreted as a part of the FORTRAN program and causes an error
termination of job when the program is canpiled. Therefore, it is prudent to
provide always a $EOD card at the end of the module as a standard practice.

(2) Inclusion command for other REL files Not all components in a
FORTRAN job are source programs. Many are binary relocatable REL files, which
are already compiled from certain source programs and stored on disk.
Sometimes, it is preferable to use the REL file because it will save time not to
re-compile. Other times, the source language programs may not even be available

378 CHAPTER 9 BATCH

except the REL files. Since $FORTRAN card can only handle programs in source
language, another command called $INCLUDE should be used to inclLrle the REL
files needed for later execution. The function of $INCLUDE card is to find the
specified REL files and copy them onto the disk as temporary files. It has a
form of:

$INCLUDE NAME.REL[m,n]/switches

where NAME.REL is a list of REL files to be inclLrled. The PPN follows the
conventional rule and is omitted if it is user's own PPN. The switches of the
$INCLUDE card are shown on Table 9.4.

Switch Explanations

/LIBRARY The REL file referenced usually contains many subprograms. Not all
of them are needed in the job. The LIBRARY-switch will specify a
search mode and include only those subprograms called by the main
program. Therefore, the $INCLUDE card with the LIBRARY switch
should be placed after the program calling the subprogrram.

--------- - --------------- ------ ----------- ----- -----------------------
/PRCXiLIB The REL file specified by this switch is stored in the Program

Library (PRG:). The two following commands are equivalent:

$INCLUDE NAME.REL/PRCXiLIB
$INCLUDE PRG:NAME.REL

1------+ -------------------------------- ------ - --- - ------------------------ ---- --------------------

/SYSTEM The REL file specified by this switch is stored in the System
Library (SYS:).

Table 9.4 Switches for the $INCLUDE Card

(3) Execution command The Batch control command $DATA is placed in
front of the data cards to tell BATCH to copy the data into a disk file and to
insert a monitor command EXECurE into the control file. When the job is run,
any FORTRAN program or programs that have been entered before the $DATA card,
and any REL files that were included by the $INCLUDE card will be executed.
Since the $DATA card generate an EXECurE command, it is requir~l for execution
even if the program run needs no "data". In such a case, a $DATA alone with no
data card following should be used for execution.

The general form of the $DATA card is as follows:

$DATA XXX.CDR/switches ~

where XXX.CDR is the optional 3-character file name specified by the user. If
this is omitted, BATCH creates a unique name for the data fil,?, for example,
QAA.CDR. The switches for the $DATA card are the same as those of $DECK card as
shown in Table 9.2, with the exception of the IGNHOL switch.

The simplest version of the $DATA card is simply "$DATA", which tells
BATCH to copy the data into a file, to assign a unique name with an extension of
CDR such as QAA.CDR, to read all 80 columns of each card as data, to delete the
trailing blanks when copying them into a file, and then to execube.

SDATA Card 379

Each $DATA card gener ates only one EXEC(JI'E corranand. Hence, if you wish
to execute a progran several times with different sets of data, several $DATA
cards are required, each followed by the appropriate set of data cards. Thus,
the composition of an execution module in a Batch deck is shown below:

A $DATA module followed by another $DATA module without intervening $FORTRAN
will load and execute the same program again. However, if a $FORTRAN card
follows a previous $DATA card, this terminates the previous program run and
starts a new program run. Any subsequent $DATA will execute the new program.
Therefore, the $DATA card should be placed in the Batch deck at such a place
where all required FORTRAN programs have been compiled and all required REL
files have been included.

9.10 A Summary of Batch Deck M:Xiules

The Batch control commands presented are now summarized in the form of
deck modules:

$JOB JBNAME[m,n]/sw
$PASSWORD password

$EOJ

$DECK NAME.EXT/sw

program or data

$EOD

$FORTRAN NAME.EXT/sw

FORTRAN programs

$EOD

$INCLUDE NAME.REL/sw i

$DATA XXX.CDR/sw

data cards

$EOD

Sign-Qn module

Sign-Off module

Disk-Storage module

Compiling module

Inclusion module

Execution module

380 CHAPI'ER 9 BATCH

construction of a control file then becomes a task of aS9~bling these
modules in a proper order with appropriate contents. Examples are now presented
next.

In the following examples, we shall assune that the user has a PPN of
[115103,320571] and his pass\>,Qrd is DEBBIE. Previous remarks on $gOD cards also
apply here.

Example 1: Copy a card deck (program) into a disk file and name it as
SAMPLE. FOR.

$JOB [115103,320571]
$PASSWORD DEBBIE

~----------------------

$DECK SAMPLE. FOR

card deck to
be copied

$EOD
f------------ ------

$EOJ

The sign-on module.

'!be storage module

The sign-off module

A card deck, consisting of cards in the order as shown :is assembled.
When this deck is put through a card reader, a Batch job of copying a program
deck onto the disk is submitted. At the conclusion of the job, thE~re will be a
disk file named SAMPLE.FOR in the disk area of the user [115103,320571].

Example 2:
data:

List, compile and execute a FORl'RAN program which need no

$JOPB [115103,320571]
$PASSWORD DEBBIE

$FORTRAN

FORl'RAN source
program deck

$EOD

$DATA

$EOJ

--

--

The sign-on module

'!be listing and
compiling modulE~

The execution module

The sign-off module

In this example, although several temporary files are created during the job, no
permanent file remains after the job.

BA'ICH Examples 381

Example 3: List, compile. and execute a FORTRAN program with t\OK) sets of
data. Note large amount of core and printout pages requested in the $JOB card:

$JOB [l15l03,32057l]/CORE:24K/TIME:2:00/pAGES:lOO J
$PASSWORD DEBBIE The s1gn-on module

$FORTRAN

FORTRAN The compil ing and
program deck listing module

$EOD

$DATA
Data deck #l Execution module, fir st run.

$EOD

$DATA
Data deck #2 Execution module, sec ond run.

$EOD
--

$EOJ The sign-off module

Example 4: Execute a FORTRAN program with several separate decks of
subprograms. The main program and the subprograms are MAIN.FOR, SUBl.FOR and
SUB2.FOR respectively. In addition, the program calls for subroutines that are
a part of a library package ENG:SUBSET.REL.

$JOB [ll5l03, 32057l]/CORE: 12K/TIME: 2: OO/PRIORrTY: 0 I
$PASSWORD DEBBIE The s1gn-on module

$FORTRAN MAIN.FOR Listing and compiling module
MAIN. FOR dec k

$EOD
I------------.--.-------~

$FORTRAN SUBl.FOR Listing and compiling module
SUBl.FOR deck

$EOD
r---------------------

$FORTRAN SUB2.FOR Listing and compiling module
SUB2.FOR deck

$EOD
-------------------------1

$INCLUDE h~G:SUBSET.REL/LIB Inclusion module
I--~-------------.-.-----t

$DATA Execution module
data deck

f-----_.-----------------------

$EOJ Sign-off module

382 CHAPl'ER 9 BATCH

Example 5: The major functions of several batch control corrunands are to
store the decks temporarily and to issue the corrunands COMPILE or EXECurE. If
the files are already stored on disk, these $cards may be replaced by suitable
monitor corrunands. In such cases, the corrunand card should begin with a period
(.) in the first column. Moreover, any monitor corrunand, with the exception of
those irrelevant for batch operation such as the SEND comamnd, may be included
in the control file. Examples 2, 3 and 4 are now repeated below llsing monitor
corrunands replacing some of the $cards:

$JOB[l15103,320571]
$PASSWORD DEBBIE

• UPDATE SAMPLE. FOR

FORI'RAN source
program deck

$$END

• EXECurE SAMPLE. FOR

$EOJ

;U ternate Batch Deck for
Example 2

$JOB[1l5103,320571]/switches
$PASSWORD DEBBIE

~----------------------------

.UPDATE SAMPEL.FOR
FORI'RAN source
program deck

$$END
1--------------------

• EXECurE SAMPLE. FOR
Data deck #1

1-----------------------------

$EOJ

Al ternate Batch Deck for
Example 3

$JOB [115103,320571]/CORE: 12K/TIME: 2: OO/PRIORITY: 0
$PASSWORD DEBBIE

$DECK PRGwl. FOR
MAIN.FOR deck
SUBl.FOR deck
SUB2.FOR deck

$EOD

.EXECurE PRQv1.FOR, ENG:SUBSET.REL/LIB
Data deck

1----------------- ------------------ --------------

$EOJ

Alternate Batch Deck for Example 4

The main difference between these alternate Batch decks from the original
solutions given is that the FORI'RAN files and their compiled REL files are now
all permanently stored in the user's disk area.

The Batch Controller controls all jobs that enter the BATCH system. It
reads each line in the control file and determines its destination by
interpreting the character in the first two columns. The interpretations by
BATCH for these characters are tabulated in Table 9.5.

Thus, by combining the monitor corrunands and the CUSP cormnands, a Batch
deck may be constructed without any special Batch control card e){cept those to
sing-on and to sign-off. Examples below illustrate this flexibility:

CollIDlIl 1 Column 2 Intespretation Example

$ Alphabet Batch control command (or $card) $JOB - batch command $JOB

------'!-N-um-e-r-l-'c---111-~~--~-~~~;~~ co~umn -1--------

1

1

1

$123.95 - interpreted as a data
$ I or special

I character

1---$--+-$------+1-(C-O-l-umn--l----l--'-s-----s--u-p-p-~~~~:-- -~~--~-~~~--~;~-~~~~-'-II -$$JOB IS A BATCH CCMMAND- interpreted

L as data beginning from column 2. Used to - as "$JOB IS A BATCH CCMMAND", a string

_~~~~~~~~~::~i~
~ _____ !f--N_O_n __ -_n_um_er_ic i Dat~ncluding C01_~! _______________ L .1095 - interpreted as a data

*! I CLSP level""""",,, I .R BASIC To run a BASIC

~----t---------------------------------- ---J-:~~~~ =:.~_am __ ed ______ --i
I

Comment I jCONl'INUE
% I------f----------f-------------------- -----------------------------

Alphabet Control-character AC interpreted as Control-C
f------f--------+------------------ --------------------------------- -----------------------------------/

Multiple A in succession counted AAAAC interpreted as Control-C

Table 9.5 A Summary of Line Interpretation by the Batch Controller
w
OJ
W

384

Example 6:
disk.

Example 7:

CHAPTER 9 BATCH

Execute a FORTRAN NEWTON.FOR which is already stored on

$JOB [115103, 320571]
PASSWORD ~~1i6J_E._

• EXECOl'E NEWTON. FOR
______ m~.~1!I_~!:!.~~.(L9{i1::{i_. r~i"~~~~~FOR
$EOJ

Enter a PIL program, run it and save it as NEWTOO.PIL

$JOB[115103,320571]
__ §_J,>~~9@ .. P~BBI~ .. _" ______________ . ". ___ _

.R PIL
(PIL program deck)
(Program begins with Part 1)

00 PARI' 1
(Data deck)

Jl\~ .. ~_~I!il?WIDN'~J_l\1J._FARl'S , __ ML~_
$EOJ

9.11 Batch Control Commands for Error Recovery

Normally, when an error occurs in the job, BATCH will report the error on
the log file and terminate the job. Error recovery means to provide the user
with an alternative should the error occurs. The formats of the error recovery
control commands are:

$ERROR statement

$NOERROR statement

The conmands are interpreted this way by the BATCH processor: If the command
keyword (ERROR or NJERROR) is "true", execute the "statement" following the
conmand. Otherwise, execute the next line in the control file. Thle "statement"
in the command is another command to the monitor, to a system program or a
special BATCH command such as .GOTO or .BACKTO as an error branchin~ command.

'!he Batch commands of .GOTO and .BACKTO have the form:

.GOTO statement label

.BACKTO statement label

where the "statement label" is the label of a line in the control file. The
label can contain from 1 to 6 alphabetic characters and must be followed by a
double colon (::) when it is labeling a line.

The .GOTO command will transfer the control of BATCH fon't'ard to the
reference line which contains the label. The .BACKTO command CTO'e"s the similar
thing except it transfer the control of BATCH backward to a reference line
containing the label. If the search for the reference line with the specified

Pitt BATCH Cards 38S

label is not successful, the BATCH terminates the job.

Example: The new version of an old program OLD. FOR has been prepared as
NEW. FOR. Both are stored on disk. The user now wishes to run the batcn in this
manner: If the new version works, use the new version. If the new version
still has bugs, then use the old version.

The problem logic may be represented as a flow chart as shown in
Figure 9.2. Each of the flow chart blocks is numbered, and these numbered
blocks correspond directly with the modules of the Batch deck assembled as shown
in Figure 9.3.

9.12 Miscellaneous Topics in Batch Control Commands

(1) Batch control commands developed at pitt At each local
installation, often additional $cards are created to handle local needs, such as
a particularly heavy demand of certain "canned" programs, or some special
procedures instituted at a local installation. A group of $cards created at the
University of Pittsburgh are presented here:

$Card Explanations and Examples
-~=_=-=7"~·.C=.~'-===_-'--==~-' ·C_C'_"~'~_'ccC_~"~-=.~~='=·c.=~-,'.o=~·.".·.'=~o=o,,-~=_7~'=C"'==_'cc~.=_=-"","-==="'--C=

$BMD (xxx)/switches

$CSMP / swi tches

1-------.- ..

$DRlVES DEV(n) •••

$EOJ

The BMD (BioMeDical Computer Programs) is a canned

I
program package- developed originally at UCLA. Readers

I

are referred to the References for more details. "xxx"
is the last three characters of the name of the desired
BMD program.

I

Example: $JOB [l15l03,32057l]/CORE:32K/TlME:2:00
$PASSWORD DEBBIE
$BMD (07B)

BMD control cards and input data cards

-- .~ .. ------------ -----?-~~ ------------.--- -_._---- .. ----.--.

I
I

I

The CSMP (~ontinuous .§ystem ~eling E,rogram) is a canned
program originally developed by IBM. This $card is
placed immediately before the CSMP source deck.
Example: $JOB [lI5l03,32057l]/CORE:28K/TlME:2:00

$PASSWORD DEBBIE
$CSMP

CSMP source deck
$EOJ

To request allocation of tape drives. "DEV" is one of the
following tape drives:
MT7 7-track magtape drive
MT8 9-track magtape drive (800/1600 BPI)
MT9 9-track magtape drive (1600/6250 BPI)
DTA DECtape drive
n number of drives required for the job. If n is 1,

it may be omitted along with the parentheses-

This $card may be placed anywhere after the $PASSWORD
card. It is required for batch jobs that use tapes.

It must be physically the last card in the Batch deck.
See Section 9.6 for details.

386 CHAPl'ER 9 BNOCH

~~;----- --··----1~~~ir~~~~·:lCH iio i~~f0u~:.~;-~~~;i~io~:~--~~:~~:;~
Section 9.9.

t-... -- ... --.--.... ---... --.. -.--.- .. .-.-.--- -.- --- -- -.----..... - - ... -------------.. ------.-------.-.--- .'--" .-.--------... ------

$RUN DEV:NAME.EXE[m,n]/switches

$SPSS/switches

This card is placed directly in front of data cards when
running a program previously saved as an EXE file,
created by a SAVE command.
Example: The core image of a program has been

previously saved as SAMPLE.EXE

$JOB [115103, 320571]/CORE: l5K/Tlt'IE: 2: 00
$PASSWORD DEBBIE
$RUN SAMPLE

Input data deck for the progrc~
$EOJ

-_._ .. __ •.. _--_.--_ .• - _.-_.- .-... - . -_.-._._---_._._---_._._. ---_ .. -

This switch is used to run the SPSS (Statistical Package
for the Social SCiences) program, and is -placed
immediately before the control cards and input data
cards.
Example: $JOB [115l03,32057l]/CORE:28K/TI~ffi:2:UO

$PASSWORD DEBBIE
$SPSS

SPSS control cards and data cards
$EOJ

(2) A summary of switches for the $cards The $cards have many options
by using the form of switches. These have been described previously in this
chapter accompanying the associated $card. Options need not always be
exercised. When a switch available is not specified in a $card, the System
assigns a "default value" for the option. The default conditions of all
swi tches for the Batch Control Corrunands are tabulated on Table 9.6"

Figure 9.2 Flow Chart Logic

o
CD
CD

$JOB [1151U3,320571]
$PASSWORD DEBBIE

$FORl'RAN NEW. FOR

program deck
of NEW.FOR

$EOD

$ERROR .CDI'O A

.CDI'O B

A: :; CONTINUE

$FORl'RAN OW. FOR

prgram deck
of OW.FOR

$EOD

B: :; CONTINUE

$DATA FOROl.DAT

data deck

$EOD

$EOJ

Figure 9.3 Batch Run Deck

$Card
Switch

/026
/D026
/ASCII

$LANGUAGE

X
X
D

$DATA

X
X
D

$DECK

X
X
D

I $BMD

+--
X
X
D

$CSMP

X
X
D

, $INCLUDE

i

I
!
i

$RUN $SPSS

x X
X X
D D

______________ ~I-----X--~:----D--~---X----~i----D---~i---D----~l _______ +il ___ D __ -+ ___ D __ ~
I X ; i I

/LlNEBU:X:K

__ +--. _____ ~: _______ +-I ----+,1 I-+-
~ __ /WIDI' ___ H_:n___ i note 1 I n=80 I n=80 n=80 I n==80 i

/SUPPRESS:XX :, note 2 +1 XX~~~+-,. XX~ ! XX=OFF[XX=OFF I

/LIST D' , 1, i II

/NOLIST ! X I Ii:

/CREF

n=80 n==80

! XX=OFF I XX=OFF

/SYSTEM I - ii-t-----------+-----------rx I X

r------------t-------~ I -L-___ ~----_--__+_i -----i-------i =..: t---t-~~t-~. ·~--i-~-t-·-i---:----+i---x---+------1
Legend: D == The option chosen by the $card if a switch is omitted.

X = The switch is valid on that card type.
Blank == the switch is invalid on that card type, and the job will be cancelled.

Note 1: n==80 for $AIillL and $MACROi n==72 for $COBOL and $FORI'RAN
Note 2: XX=OFF for $FORTRANi XX=ON for $AIillL, $COBOL and $MACRO

Table 9.6 Default Conditions for the Selected Switches of Batch Control Commands

w
(Xl
(Xl

Submitting BATCH Job at a Terminal 389

SUBMITTING A BATCH JOB

9.13 Submitting Batch Jobs in Cards

Submitting Batch jobs in cards is the most common procedure of running
the batch jobs. After the Batch deck is prepared and assembled, the deck is
submitted for reading into the Batch qu~ue by a card reader. In some
installations, the deck is submitted to the personnel of the Computer Center.
In other installations, the users operate self-service card readers to read in
their jobs at a remote job entry station.

9.14 Submitting Batch Jobs from a Terminal

To submit a Batch job from a terminal, the user must first prepare a
control file and store it on disk. The details of how to prepare a control file
for a job have been given in the earlier part of this chapter. From that point
on, there are several ways to run the Batch jobs from the terminal. These
various ways are not always all available at a local installation. It is
necessary for the user to confirm which way is used at his installation.

(1) B¥ using monitor commands SUBMIT or QUEUE INP: The monitor
commands SUBMIT and QUEUE INP: are used to place entries into the input queue
for the Batch system. Their formats are as follows:*

where

SUBMIT JBNAME = NAME.CTL, log file
QUEUE INP: JBNAME = NAME.CTL, log file

JBNAME = name of the job being entered into the queue.

NAME.CTL= name of the control file. This file contains all
monitor-level and Batch control commands for processing by
the Batch Controller.

log file= name of the log file. This file is used by the Batch
Controller to record the case history of the job
processing.

(2) B¥ using Specially implemented service program At each local
installation, there is a configuration of peripheral devices that are
specifically assembled for its needs. Since these peripheral devices share
common computer resources, it is extremely important to establish an orderly
traffic control. The result is the Queue Manager in the Batch Software System
as described in Section 9.2. DEC System-lO provides a service program called
CDRSTK to provide these functions. At the University of Pittsburgh, the CDRSTK
program has been modified and enriched, and the result is called the Operation
Stack (OPRSTK) program. Description of this program and its use has been
covered in Chapter 7. For the purpose of completeness, some pertinent portions
of its details will again be given here.

To submit a Batch job at a terminal, the following steps should be taken:

*Disabled at the University of Pittsburgh and replaced by the OPRSTK program

390 CHAPl'ER 9 BATCH

A. Sign on at a terminal.

B. Create a control file using an editor. Save the file and name it
wi th an extenison of CTL.

C. Run the OPRSTK program by either of the followinJ t\I,Q monitor
command forms:

.R OPRSTK
EN1'ER FILE SPECIFICATION> NAHE.CTL

r-------------- --------------------- -----

or simply, .OP NAME

If the control file has an extension of CTL, the extension part may be omitted
in the command format. The System will respond with the job card identification
and assign a sequence number for identification.

Example: We will now repeat the program used several times in this book
as illustration, a problem to solve for a real root of a cubic equation by
Newton-Raphson method: Ax3 + bx2 + Cx + D = 0 with an initial trial
value x=Xl. Progran in FORTRAN is written and stored as NE:Wl'ON.FOR. The
program listing is shown below:

NE.WroN. FOR

READ(S,lO)A,B,C,D,Xl
10 FORMAT (SF)

1 X2=Xl-«A*Xl**3+B*Xl**2+C*Xl+D)/(3.*A*Xl**2+2.*B*Xl+C)
IF(ABS«Xl-X2)/X2)-0.001)3,3,2

2 Xl=X2
GO TO 1

3 WRITE(6,1l)X2
11 FORMAT(/' THE REAL Roor =', F20.7)

STOP
END

In the exanple shown below, we will attempt to solve the equation:

x3 - l6x2 + 6Sx - SO = 0 with Xl=16

Thus, the input data are 1, -16, 6S, -SO and 16 respectively for A,B,C,D,Xl.
The control file made up is FORl'.CTL::

FORl'.CTL:

$JOB[11Sl03,320S7l]
$DATA

1.0 -16.0 6S.0 -SO.O 16.0
$EOD
• EXECllE NE.WroN. FOR
$EOJ

Note that the $PASSWORD card is omitted in the control file because it is
unnecessary when the batch jobs are submitted from a terminal.

Submitting BATCH Job at a Terminal 391

Once this preparatory work is done, submitting a Batch job is simply
issuing a monitor command of OPRSTK (abbreviated as "OP") at the user I s
terminal:

$JOB[115l03,32057l]
; n END OF JOB AFTER 6 CARDS / SEQUEOCE NUMBER IS 3678

The output is just a one-liner : "THE REAL ROO!' = 10.0". The log file
showing the job time history is attached here with comments and annotations.

REFEREOCES

1. BEGINNERS GUIDE TO MULTIPROGRAM BATCH (DEC number DEC-lO-oMPBA-C-D), third
edition, Digital Equipnent Corporation, Maynard, Massachusetts;
December, 1974.

2. DEC SYSTEM-lO OPERATING SYSTEM COMMANDS (DEC number DEC-lO-oSCMA-A-D),
Chapter 3: "Batch System Commands", pp. 3.1-3.54, Digital Equipnent
Corporation, Maynard, Massachusetts; 1974.

3. OPRSTK, DEC-l 0 NOTES, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; May, 1980.

392 CHAPI'ER 9 BATCH

16:39:27 BAJOB BATCON version 13(1071)-2 running JOBAAA seq:6839 user:*SZE

16:39:27 BASUM Time:00:00:30 Core:12K Unlque:YES Restart:YES Prlorlty:2

16 39:27 MONTR
16 39:27 MONTR
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 USER
16 ~9:28 USER
16 39:28 USER
16 39:28 USER
16 39:28 MONTR
16 39:28 MONTR

16 39:28 MONTR
16 39:29 MONTR
16 39:29 MONTR

16 39:29 MONTR
16 39:30 USER
16 39:30 USER
16 39:30 USER

16 39 30 USER
16 39 30 USER
16 39 30 USER
16 39 30 MONTR
16 39 30 MONTR
16 39 30 MONTR

16 39 30 BLABL
16 39 30 MONTR
16 39 31 USER
16 39 31 USER
16 39 31 USER
16 39 31 MONTR
16 39 31 MONTR

16 39 31 MONTR
16 39 32 USER
16 39 32 USER
16 39 33 MONTR
16 39 33 MONTR
16 39 33 MONTR

JOB 5 PITT DEC-1099/B 63A.45B TTY35 Man 28-Jul-BO 1639
.LOGIN 115103,320571/LOCATE:6 ~

[LGNJSP Other Jobs same PPNJ e,,,,tcJ. I<!><]s i ... he.. je>b.
Last loqln: 28-Jul-80 1629
Usage ratio: 0.00 Units used: 19.0
SYS B DOWN 0000-0800 MON AUG 04 FOR REGULAR HARDWARE MAINTENANCE
SYS B DOWN 0000-0300 TUE JUL 29 FOR REGULAR SOFTWARE MAINTENANCE

DUE TO HARDWARE PROBLEMS THERE IS ONLY ONE DISK DRIVE AVAILABLE
FOR PRIVATE USER PACKS.

* PLEASE READ THE FOLLOWING INFORMATION:
* FILE SUBJECT
* SYS: NEWS No fee for 1022 usage
* NEW: TEKLIB.HLP New Tektronix software

*

*
*

$JOB[115103,320571J/OUTPUT:5/LOC:6 ------ F'{sf Ii".?.;" fl,.eco,,~., f:lc<>
$DATA
• SET CDR QAA ; created by OPRSTK } "St-O"fe. ;"p""t ,~o:rt\.
~- .. _ tv-o"rt-.N (.q-M.M<.......A

J~"'4!.r ... kJ.. h:3 :¢'DATA
$EOD
.EXECUTE NEWTON.FOR
LINK: Loading
[LNKXCT NEWTON executionJ

16:39:30 USER STOP

End of execution FOROTS 5B(1001)
CPU time: 0.13 Elapsed time: 0.65
EXIT

$EOJ
%FIN:
.DEL SPL:QAA.CDR
Files deleted:
QAA.CDR
18 Blocks freed

~ ;created by OPRSTK
---------~ > h'lOrl'- -hN c.ON>>'A,,, J.,S

- b'J $. EOT

; ;; END Qf~.~JoB~A;T~R 6 CARDS ",
.KJOB~p[:JOBAAA.LOG=/W/B/Z:5/VR:2/VS:6839/VL:15/VC:0/VT:O/VD:R/VJ:
Total of 1 block In 1 fl Ie in LPTS6 request / Sequence number 6839
other Jobs same PPN
Job 5 [115103,320571J off TTY357 at 1639 28-Jul-80 Connect=l Min
Disk R+W=66+28 Tape 10=0 Saved al I files (18 blocks)
CPU 0:00 Core HWM=13P Unlts=0.0079 ($0.59)

TOG File for the JOB FORT

CHAPI'ER 10

.TAPE HANDLING

10.1 Magnetic Tape

The simplest and the least expensive medium for mass storage is the
magnetic tape. It is a plastic tape coated with iron oxide which may be
magnetized to record information. A typical 10.5-inch reel of magnetic tape is
one-half inch wide and up to 2400 feet long. The width of the tape is divided
into either 7 or 9 tracks, one of which. is reserved for parity bit track to
detect transmission error. Hence, a 7-track tape has six information tracks and
a 9-track tape has eight. Characters are written across the width of the tape.
Figure 10.1 shows the present industry standard of the magnetic tape format.

To read from or to write onto a magnetic tape, the tape reel is first
mounted on a tape transport, also called a ta drive. There is a take-up reel,
and a capstan pulling the tape past the read write heads. Information is
written on the tape by sending current through the write-heads to magnetize the
tracks; information is read from the tape by sensing the induced voltage as the
read-heads pass over the recorded (and magnetized) tracks.

Access speed is essentially a function of the tape speed and the packing
density of information. Tape speeds of commercially available tape drives range
from 10 to 200 IPS (inches per second). The standard packing densities of a
7-track tape are 200, 556 and 800 BPI (bits per inch), and those of a 9-track
tape are 800, 1600 and 6250 BPI. High tape speed coupling with high p~cking
density result in a requirement for higher-speed synchronization, both
mechanically and electronically, and such tape drives would be more costly.
Typical recording and access rates are 30 to 320 kilo-characters per second.

Magnetic tapes are not inherently designed for a specific packing
density, but is usually certified by their manufacturers at a particular BPI.
The certification implies that the manufacturer has recorded test patterns at
that density and successfully read back the data at or below an allowable error
rate. Seven-track and nine-track recordings can be made on the same type of
half-inch wide tapes. However, tapes recorded on a 7-track tape drive cannot be
played back on a 9-track trape drive, and vice versa. On the other hand, once a
tape is erased, it may be used again on either type of drive.

Generally, there are two techniques for synchronization of writing
characters on a tape. One requires that the tape has a pre-recorded timing
track, which is a track containing alII's to indicate each character position
in the tape. The other is to use an internal clock generator during the write

393

394

7-track
tape

9-track
tape

CHAPl'ER 10

data 1 __

;=i~!±_~=---==~==~~=-___ ~ ____ ~==
t-____ data 4
T-_-=-d=at.:..;a=---c:5'---___ ._. _____ . ______ ~~ ____ _
f-- data 6

lateral parity track

_ ... d~rta 4 ___ _
~.--

_.dat.a Q __
__ dgtaJ
_datal

___ LateraJ parity track
___ <iat.Q..3. ______ ~ _____ . __ . _______ _

data 7.
data 5

TAPE HANDLING

-r--
0.5"

_ 1 __

0.5"

end of tape
reflecting strip

\

beginning of tape
reflective strip

I [[recordll recor1 ci ~
1-- record gap ~ .75" In 7-track tape

.6" In 9-track tape

Records have variable lengths. The Industry standard
format has 7-track tape records containing from 24 to
4008 characters, and 9-track tape records from 18 to
2048 characters.

Figure 10.1 Magtape Format

operation. When a clock generator is used, it is nearly impossible to guarantee
that the tape moves at exactly the same speed between t\\U successive operations,
and hence inserting a modified record between t\\U existing records is normally
not possible. This necessitates strictly a sequential use of the tape, and
modifying a tape really means copying the material with changes onto another
part of the tape or onto another tape.

As shown in Figure 10.1, at the beginning of each reel of tape, there is
a sensing strip to denote the start of information~ at the end there is another
strip signaling the end of tape, which prevents the drive mechanism from pulling
the tape off its reel. These are respectively the beginning am the end of tape
marks (BOT/EOT). Files written on a tape are separated by an end-of-file

Magtape and DECtape 395

mark (EOF) which may be written or sensed by program. In addition, a gap about
.75" (for 7-track tapes) or .60" (for 9- track tapes) is inserted between t\\U
successive records, not only to delimit t\\U records, but also to allow time for
the tape to accelerate or decelerate before the heads reach the beginning of a
record.

Many operating system requires that the "files be delimited by identifying
records, called header labels and trailer labels. These labels are in addition
to the end-of-file marks. A typical header label \\Uuld contain the name (or
number) of the file and certain physical characteristic of the file. Programs
can be designed to check and verify that the correct tape and correct file have
been mounted on the tape unit for use.

10.2 DECtape ®
During the early sixties, one nonstandard tape system was developed for

small computer systems by the Massachusetts Institute of Techriology. Digital
Equipnent Corporation adapted this system and call it DECtape. It is a highly
successful magnetic tape and is used extensively on all DEC computers as well as
in many minicomputers. It provides a low-cost and highly reliable auxiliary
memory. DECtape utilizes a 10-track read/write head. Reliability of storage is
accomplished by redundant recording of all data. As shown in Figure 10.2, the
track format shows t\\U identical sets of tracks. Redundant recording of each
characters bit on non-adjacent tracks greatly reduces bit dropouts and minimizes
the effect of skew. The timing and mark tracks are pre-recorded, and they
control the timing of operations within the control unit and establish the
format of the data contained on the information tracks. Since the tape drive
operations and many control function lock-step with the timing-track signals,
wide variations of tape speed do not affect its performance.

The data tracks of a DECtape are located in the middle of the tape, where
the effect of skew is minimum. The data is one bit position of each track is
called a line or a character. Since twelve lines make a \\Urd, the tape can
record 36-bit data \\Urds. During normal data writing, the system disassembles a
36-bit \\Urd and distributes the bits so that they are recorded as twelve 3-bit
characters.

A 260-foot reel of DECtape is divided into three major areas: end zones,
extension zones, and the information zones. The t\\U end zones, each
approximately 10 feet, mark the physical ends of the tape and are used for
winding the tape around the heads and onto the take-up reel. These zones never
contain data. The extension areas mark the end of the information region of the
tape. Their length is sufficient to ensure that once the end zone is entered
and tape motion is reversed, there is adequate distance for the drive to come up
to a proper tape speed before entering the information area. The information
area consists of blocks of data. The standard length is 578 blocks, each
containing 128 data \\Urds nominally. In the DEC System-lO applications, part of
the information area is used as file directory, and total usable information
area is 574 blocks. The file directory can accommodate a maximun of 22
filenames. Therefore, the capacity of a DECtape used in DEC System-lO is either
22 files or 574 blocks, whichever limit is reached first. Since each block
format is symmetric with the block number at both ends, search of blocks may be
done in either direction. the DECtape serves not only as a data storage medium,
but also as a random access device.

®Registered trademark, Digital Equipnent Corporation, Maynard, Mass.

396

I r

--- --r
I

3/4"

1

-~

CHAPrER 10

tlnlJJ:lgtr-_Cl~
ffigrkjTack
__ . __ (tg~l A
___ data..2PL

___ Q9tl,L2A_
_QatcL tr::aJ;;:JLL __________ _

__ dar a tcack2_
___ ilata_trac_k ~

__ mgcl$.trgc;:k
tlmln t

-------total length - 260 feet------

TAPE HANDLING

} d"p I I ".te tr ecks

end: -;;xtenslon[bIOCklb~~I bl;;;,~mr~-i;;;:r~~~ten~;"1 end

trt
'OO":lne ~_~ _____ L_ I _J ___ are~ zone

,I I I r- in format Ion area - 240 feet ~ I

DECtapes used for DEC System-l0 have a capacity
of 574 Information blocks, and its f~le directory
has a capacity of 22 filenames. A DECtape
reaches the limit of Its capacity when either of
these two limits Is reached.

Figure 10.2 DECtape Format

In comparison, DECtape has higher-performance, and is more reliable and
convenient to use than the magnetic tape. Being a directory device, it may be
used in the same way as the disk, but with more storage capacity for individual
users. On the other hand, it storage capacity is puny by comparison: A
2400'-reel magtape at 6250 BPI can store about 125 millions characters, while a
DEC tape reel can only store about 300,000 characters.

10.3 Preliminary Procedures

After a user acquires reels of magtape (coined word for magnetic tape) or
DECtape, there are certain preliminary procedures that should be, performed. A
typical Computer Center installation stores at its premise hundreds or thousands
of reels of tapes. Among the magtapes, some are 7-track tapes, and some are
9-tracks. Even for the same type of magtapes, they may have different packing
density. Although the system installation can handle all various combinations,
it will be extremely important to reduce the chance of human error of mounting a
wrong tape, however rare the chance may be.

~reliminary Procedure 397

Each computer installation' will generally develop a security verfication
procedure for tape mounting. These procedures vary from one installation to
another. The procedure described below is implemented at the University of
Pittsburgh. Users at other installations should inquire at their Computer
Center.

Two preliminary steps are involved:

(1) Registration of tapes This is a clerical step of registration of
tapes wi th the personnel of the Computer Center. A Pitt VID (yisual
Identification) is issued upon registration. The VID is a serial number with
eIther an A-prefix or a B-prefix. They are respectively for DECtapes and
magtapes • For example, Al004 and B313 are the VIDs of a DECtape and a magtape
respectively. Once a VID number is assigned, it is displayed outside of the
tape reel. The VID is an essential part of identification that must be given in
a MJUNT conunand.

(2) Labeling of tapes For DECtapes and 9-track magtapes, an
additional means of safeguarding the identification of tapes is available. The
numerical part of the VID is recorded in the first file of the tape. When the
tape is mounted, not only the operator will seek the right reel with the
specified VID, the system will read the first file to get the recorded VID and
verify that against the VID given by the user in his MOUNT command. The
labeling process does not apply to 7-track tapes. The process of labeling tapes
is accomplished by calling a program named TAPLBL, after the tape has been
mounted. Call for the TAPLBL is done by a monitor command:

R TAPLBL

When a prompt symbol returns, apply a labeling conunand of the format:

DVNAME: /density switch

where DVNAME: = physical or logical name of the tape drive;

/density switch = a switch to specify packing density.

Acceptable density switches are:

/8 800 BPI for MT8:
/1 1600 BPI for MT8: or MT9:
/6 6250 BPI for MT9: only

The density switch is not applicable to the DECtapes or 7-track magtapes.
One caution should be exercised in using the TAPLBL program: It will write the
label onto the first file on the tape. If the tape is a DECtape or a blank
magtape, it does not matter. If the tape contains some stored information
already, using the TAPLBL would destroy the first file. Therefore, in labeling
a magtape with stored information, a scratch tape should be used to copy the
files. After the labeling process, the contents of the scratch tape may be
copied back. These are now illustrated by three examples below:

398 CHAPl'ER 10 TAPE HANDLING

Example: To label a IECtape whose VID is Al004 which is already
mounted on the IECtape drive with a logical name of Tl:

.DRIVES DTA

.MOUNT DTA:Tl/v/E/VID:A1004/NL

.R TAPLBL
*Tl:
• DISMOUNT
.UNDRIVE

Example: To label a 9-track blank magtape for 800 BPI. Assune the
VID to be B313 and the logical name of the tape drive to be Tl:

.DRIVES MTB

.MOUNT MT8:Tl/WE/VID:B313/NL

.R TAPLBL
*Tl :/8
• UNDRIVE (UNDR I VE will fo rce a DISMOUNT.)

Example Magtape B123 has prestored information, and magtape B124 is a
scratch tape. The following shows first to "park" the content of B123 in B124.
After the label is made, the information is copied back:

.DRIVES MT9(2)

.MOUNT MT9:Tl/WE/VID:B123/NL

.MOUNT MT9:T2/WE/VID:B124/NL

.R MTCOPY
*T2:=Tl: Park infor. of TI in T2 temporarily
.R TAPLBL
*Tl: Make I abe I on T1
.R MTCOPY
*Tl:=T2: Copy back info from T2 to TI •
• DISMOUNT Tl:
.DISMOUNT T2:
.UNDRIVES

With a tape thus registered and labeled, the user is now ready to process
his tape.

10.4 Allocation of Tape Drives and fobunting of Tapes

The reservation for tape drives and the mounting of a user's tape
precedes the actual tape processing. Tape drives are restricted devices and are
made available to user only at a reservation request (by the command DRIVES).
Mounting of a tape requires a physical effort from the machine operator, since
these tapes are stored off-line at the Computer Center premise. A monitor
corrmand MOUN!', along wi th its associated swi tches, will tell the operator to
mount the user's tape. Details of the t\'tU important conunands DRIVES and MOUN!',
and their companion conunands lNDRIVES and DISMOUNT, have been covered in
Chapter 8 (Sections 8.8,8.9,8.10)

Sequential Processing 399

10.5 Sequential Processing of Magtapes

The DECtape is a directory device, in which files are represented by the
standard file specification of DEV:NAME.EXT. The users need not be concerned
with the physical location of the read/write heads with respect to the tape
track at any time. From the user usage point of view, a file on a DEC tape is no
different from one on disk. There is a difference in access time, of course.
But as far as canmands and instructions are concerned, what can be applied to a
disk file can also be applied to a DECtape file, that is, once the DECtape is
mounted.

The magtape unit, however, is quite different. There is no directory or
filenames. Records are separated from each other by the end-of-record mark, and
the files are separated from each other by the end-of-file mark. The only
identity a tape file has on a tape is that it occupies a certain sequential file
position, such as file No.4. Therefore, the principal way of locating some
information on a magtape is to start at some reference point (such as at the
beginning of a tape) then to go forward (or sometimes go backward) certain
nllTlber of records or certain nUllber of files. Hence, processing of tapes deals
a great deal with the sequential positioning of the tape. The following are
several PIP commands with magtape switches and their monitor command
equivalents:

Equivalent Monitor
PIP Command Function Corranand

-
*Ml'9: (M#NA) = Advance the tape N files .SKIP MT9: N FILES

*Ml'9: (M#ND) = Advance the tape N records .SKIP MT9: N RECOROO
1------------ -------- t--------------------

*Ml'9: (M#NT) = Advance to the end of tape .SKIP MT9: EO!'
1--------------- -- -------------------------t----

*MT9: (M#NB) = Backspace N files .BACKSPACE MT9: N FlIES
-------------------------------- ---------------------

*MT9: (M#NP) = Backspace N records • BACKSPACE MT9: N ROCOROO
f------- ~----.-~---- -

*MT9: (MF) = Mark end-of-file .EOF MT9:
r------

*DEV: (l4'l) = Rewind the device, where .REWIND DEV:
DEV = DTA,MT7,MT8,or MT9

If the command indicates 1Mr9:", that canmand also applies to MT7: and
MT8: In a typical application, a magtape is used only as a means of mass
storage. Data on tape will normally be transferred to the disk first for
processing, and results will then be copied back to the tape.

10.6 FORTRAN-IO Execution-Time Tape Control

The foregoing discussions deal t with sequential tape processing using a
processor such as PIP to handle file management tasks. If the tapes are used as
the data files for input/output, there must be commands in the language
processor to perform these tape handling tasks at execution time. FORTRAN-IO
has a subroutine RMOUNT (developed at Pitt) to mount the tape and a group of
tape handling FORTRAN statements. They are outlined below:

400 CHAPrER 10 TAPE HANDLING

Subroutine: CALL RMOUNT (u 3 VID 3 WE 3 LabeZ , SeriaZ)

Effect:

Example:

~i~~eg~i~o~=~):J
VIO, string constant ~

or var iable --

Write-able, 'WE' (or 0), JI J
or write-lock, 'WL'

St:df:ei~~:SL' _ (or~~~_or _____ _

Used only if Label=iNL'

This is a run-time instruction for MOUNTing a magtape or a
DECtape.

CALL RMOUNT(1, 'B313', 0, 0)
This is equivalent to issuing two monitor commands before the
start of the current FORTRAN program:

• DRIVES MT9
.MOUNT MT9:1/WE/VID:B313

Once the tapes are properly mounted, the FORTRAN-l 0 tape control
statements may be applied to control these devices.

The device control statements are now summar ized below which has been
presented before in Chapter 3 as Table 3.22.

Statement Function
==--,,_=-===--_:::-c:.- -=-===:-=:=:c=:--,--=--==--===c=_-=--co--==o.--=~==~_=-,===,=--:..==
REWIND u M:>ve and re-position the file back to the first record.

---.-- - - ~---- - ---- ---~~--------.-------.--------------------- -------------------------
UNLOAD u Rewind the source reel so that the tape is complely off

the take-up reel. The tape will be ready for unloading.
---- --~-- ---- -~ ----~---------------- ------------ --------------------------------_.-

BACKSPACE u Backspace one record except if it is already at record
No.I. 'Ibis statement cannot be used for files SE!t up
for randan access,list-directed,or NAMELIST-controlled

I/O operations.
--~--------------- - -----------~~~----------------- --------------------

ENDFILE u Write an endfile record in the file located on device u.
--------~- ---~--------------------------------~-----;

SKIP RECORD u Skip one record on device u.
~-------r_------ -----.---------------~--------------

SKIP FILE u Skip one file which follows immediately the current one.
f--------+-------------------------~--------~----

BACKFILE u Backspace to the first record of the file preceding the
current one.

In all above statements, "u" specified logical unit number.

The UARC Program 401

TAPE SERVICE PROGRAMS

Several tape service programs will be included here in summarized forms.
In the cases where a magtape or a DECtape is involved, it will be assumed that
the proper preliminaries of getting a tape drive, mounting the tape and
assigning a logical name have already been done. In the examples, we will use
the VID of Al003, Al004, ••• , 8313, 8314, etc., as the tape registry numbers.
The log ical names used will be Tl:, T2:, etc., except in the case of the UARe
program.

10.7 The UARC Program

The UARC (User ARChive) program is a service program for maintaining disk
files by copying-them-oDto a user's UARC tape for safekeeping. When the user's
magtape is being MOUNTed, it is required that its logical name be given as UARC.
Thus the preliminaries of using this program should be two monitor commands as
given below:

.DRIVES MT9

.MOUNT MT9:UARC/WE/VID:B313

The UARC program may be called by the monitor command:

.R UARC
(message)
*

After a brief message, the terminal types out a prompting "*" and UARC is ready
to accept commands. Use CTRL-Z to exit.

Example:
Function:

Example:
Function:

Example:
Function:

Example:

Function:

Example:

*DIRECTORY *.POR
List on the terminal all FORTRAN files on the UARC tape.

*DIRECTORY LPT: = *.POR
List on the line printer all stored FORTRAN files on the
UARC tape.

*DIRECTORY UARC.DIR = *.*
Prepare a disk file UARe.DIR that has a directory of the
UARe tape.

*PREEZE *.POR
*THAW NEWTON.POR
Copy all FORTRAN disk files onto the tape. If the tape
already stored certain FORTRAN files with the same names,
copying will not be done if the disk files are older (in
creation dates). The THAW command recalls to the disk a
tape file named NEWTON.FOR.

The following sequence shows how to "clean up" a UARe tape
by erasing all oldet versions of the same program. Two
tape drives and two tapes are required.

402 CHAPI'ER 10 TAPE HANDLING

Items Explanations and Examples
I=========_~== __ ======_=_ c====_ ------
Program Name UARC

t----------- ~------- ---- ------- ----- ------ --------------------------

Cal ling Sequence .R UARC
*command/swltches

1--------------- -

Functions
- ---- -------------------- - ---------------- -----------------

(1) To store backup copies of disk files on user"s UARC tape.
(2) To recal I UARC back copies of files back to the disk.
(3) To report the content of the UARC tape.

t----- ------- --- -- ------------------------- ---------------------------.-- ----------.---

Commands *CLEAR SERNO = Bxxxx

To clear the tape of al I previous files and write a tape
I abe I of "UARC" I n the first f I Ie. Th I sis requ I red
preliminary of tape preparation for UARC appl katlon.
Bxxxx = tape serial number.

* DIRECTORY output file spec = input file list
Similar to the monitor DIRECT. Wild card construction Is
permitted for the Input fl Ie list.

* FREEZE list

To copy the disk f II es I n the" II st" onto the UARC tape
without deleting them. If there Is already a fl Ie of the
same name on the UARC tape, copying wi I Ibe clone only If
the creation date of the disk file Is more recent.

* THAW list
To restore files from the tape to the disk. If there Is
already a file on disk with the same name, restoration wi I I
be done only If the creation date of the tape fl Ie Is more
recent.

* UPDATE
To store on the UARC tape al I new and newer versions of
disk f II es.

~--
* COPY SERNO = Bxxxx

When a second tape Is MOUNTed and Is named as UCOPY:, this
command wi I I make It a UARC tape and further commands copy
al I current files onto It. This is the only way a UARC
tape may be cleaned up and 0 I d use less f II es clmy be erased.
See example below.

* SA VE TAPE. DIR
* RESTORE TAPE. DIR

To save the current UARC directory on disk for thawing.
----------- ---- ------------ --
Switches * DIRECTORY/ALL Include all old versions In the· report.

* FREEZE/CHECK *THAW/CHECK *UPDATE/CHECK
Report the files that would be transferred.

* FREEZE/VERIFY *UPDATE/VERIFY *COPY/VERIFY
Report successful transfers

Table 10.1 StmUlIary of the UARC Program

The ACCESS Program

~DRIVE MT9(2)
.MOUNT MT9:UARC/WE/VID:B313
.MOUNT MT9:UCOPY/WE/VID:B314
.R UARC
*COPY SERNO = B314 .
It+Z
.R MTCOPY
*UARC: = UCOPY:
*+Z
.DISMOUNT UARC:
.DISMOUNT UCOPY:
.UNDRIVE

10.8 The ACCESS Program

403

The ACCESS program is a tape maintenance program developed at the
University of Pittsburgh. It allows the owner of tapes to specify and modify
the access protection, to add or delete PPNs for authorized access, to attach
comments to any tape, to request removal of tape from the library either
temporarily or permanently, and to report the status and directory of tapes.

Calling and execution of this program does not actually involve
physically with any tape. Therefore, no preliminaries of reserving a tape drive
or mounting a tape is required.

The calling sequence for the program is as follows:

.R ACCESS
(message)
*command/switches

Use CTRL-Z to exit from the program.

The commands and the switches of the ACCESS program are summarized in
Table 10.2. Note the notations used for PPN:

PPN = owner IS PPN under which the tape is reg istered.
AUXPPN = PPN authorized by the owner to have access to the tape.

The tape directory has wide print format. If the directory will be
listed on the terminal, a monitor command of "TTY WIDI'H 132" should fir st be
applied.

Example:
Function:

Example:
Function:

Example:
Function:

*DIRECTORY
List on the terminal all tape status registered to the PPN.

*DIRECTORY/ON:LPT:
Print the status report on a line printer.

*TAPE/ADD/AUXPPN:[123456,654321]/PROTECT:PPPP/VID:Al003
Add an auxiliary PPN [123456,654321] to have access to the
DEC tape Al003 with an access authorization of PPPP.

406 CHAPrER 10 TAPE HANDLING

Items Explanations

Program Name ARCHIVE

Call ing Sequence .R ARCHIVE
*command/switch

Functions (1) To store a disk fl Ie on the ARCHIVE tape and remove the
disk file from the disk.

(2) To restore a frozen fl Ie on the ARCHIVE tape back to the
disk.

(3) To report the directory of the frozen f i I es.

Commands *DIRECTORY output = input list

To I ist the directory of frozen f II es. Simi lar format as
the monitor command DIRECT.

* FREEZE list

To move the disk fi les in the "I ist" to the ARCHIVE
system.

*THAil list

To restore as disk fi les those in the "I ist".

* DELETE list

To delete the listed fi les from the ARCHIVE tape.

* PROTECT fiZe<xyz>

To change protection code of a frozen f II e 1'0 < xyz >.

Switches /L I ST Used wit h THAW, FREEZE , PROTECT and DELETE to
I ist the pending request. --

/KILL Used wit h THAW, FREEZE , PROTECT and DELETE to
delete the pending requests.

Table 10.3 A Surrmary of ARCHIVE Commands and Swi tche:s

10.10 The CHANGE program

The CHANGE program is a tape-translation program that converts the files
on a magtape of one format to an output (usually a disk) of another format. The
prog r am is called by a monitor conunand:

RUN PRG:CHANGE

After the CHANGE program is called, command may be applied which has the format
of:

Output spec/output switches := Input spec/input switche~;

The CHANGE Program 407

Switch Argument Explanation

/BUFFERS :n n = number of buffers to be set up

/ADVANCE :n Advance or backspace n fi les before processing.
/BACKSPACE :n

1------+-----1---.--------------.. --------------.--... ---------------1
/BLOCK :n n = blocking factor In number of records per block

1--------+----+ -----.-----... --.. --.----.-... :.-- .---.- . - ----.---.----------.----.---.-.---.. --
/RECORD :n n = number of characters per record
---.--- ----_.- _._------_._---_._--_._. __ ._------._---_.--_ ... _---_._. __ ._---_.--
/DENSITY :BPI BPI = tape density In BPI: 556,800,1600,or 6250

/LABEL

1----- --

/MODE

.-.----- .-------------------------~

:arg The argument "arg,j""Is one of the following: none, DIGITAL,
BURROUGHS, IBM, or. -CE635.

--.. --.--.--... ------- ... ----.--.~--------.----------------I

:arg The argument "arg"~Is one of the fol lowing:

ASCII
HPASCII
IMAGE
EBCDIC

7-blt ~SCII code
8-b It. ASC I I
36-blt DEC-l0 word
EBCDIC code

------.- .- -------.----.---------------- -------1

/PARITY :arg The argument "arg" Is either ODD or EVEN.
--------------.--.. ---------------------~

/INDUSTRY Initialize for Ind~stry compatible 9-track tape.
/NOINDUSTRY Turn off INDUSTRY switch •

...... -.--------1--- .--------.----.----.-.- -_.---_._-----

/SCAN
/NOSCAN

Scan fl Ie for fl Ie named
Turn off SCAN switch •
. -----------.- --.------------.---------------~

/ERROR
/NOERROR
----_._-

Report parity and checksum errors.
Turn off ERROR switch

/REWIND :arg The argument "arg" Is one of the fol lowing:

BEFORE
AFTER
ALWAYS
OMIT

Rewind before processing.
Rewind after processing.
Rewind always
Rewind neither before nor after.

1-----------_._----1-----+-------_._---_._._-_.-.-._.-- - - - ------- ---------------

/LIST
/NOLIST

List the dev ice di rectory.
Turn off the LIST switch.

f-------------- ----------1-.. --.. ----

/FLIST
/NOFLIST

f-------.

/CRLF
/NOCRLF

List the device directory, fl Ie names only.
Turn off the FLIST switch.

ASCI I fi Ie has CR-LF after every record.
Turn off the CRLF switch.

Table 10.4 A Summary of Selected CHANGE Switches

.---------

_. __ .. _ .. _--

408 CRAPrER 10 'I'APE HANDLING

The magtape is the most frequently used low-cost];X)rtable bulk storage
medium. Unfortunately, there are many different tape formats and tape produced
on one type of computer generally cannot be directly run on another type. There
are differences in coding method, block sizes, word sizes, tape density, parity
system, etc. When a tape containing data or program is obtained from another
installation that has a different type of computer, the tape IT1USt be first
translated to the local format before it may be used. Thus, when the CHANGE
program is used for the translation, the input \\Quld be the MOUNTed "foreign"
tape, and the output \\Quld frequently be a'disk file. The same set of switches
is applicable for both the input and the output. Selected switches are
tabulated in Table 10.4. A complete description of the CHANGE program, with
commands and switches, is given in Reference 6 •

• DRIVE MT8
.MOUNT MT8:Tl/WL/NL/VID:B313
.RUN PRG:CHANGE
CHANGE 08:44 11/18/80
READY.
> DISK.FOR/MODE:ASCII/RECORD:80/BLOCK:l0-
MT8: /MODE: EBCDIC/RECORD: 80/BLOCK: 1 O/INDUSTRY-,
/LABEL:IBM

Function: This procedure will convert a foreign tape produced from an
IBM/360 or 370 to a ASCII disk file named DISK. FOR. A dash
at the end of a CHANGE command line indicates that the
command is to be continued on the next line. In res];X)nse,
CHANGE returns a different "#" prompt symbol on the next
line.

10.11 Tape Transfer and Comparison Programs - MI.'COPY, IJ.l'COPY and FILCCXv1

Three service programs associated with tape-to-tape
comparison tasks are included here:

MTCOPY: magtape-to-magtape transfer

IJ.l'COPY: DECtape-to-DECtape transfer

FILCCXv1: Verification of transfer by file comparison

They are summarized in Tables 10.5, 10.6 and 10.7.

transfer and

Tape Transfer Programs 409

Explanations

1-----.-.-... --.'-- -..... -.--... ---.. -- .. -- .. -- .-.-.-.----.-.--.---.--.. -.--- ... ---.--.---.-------... -.--

Cal ling Sequence .R MTCOPY
*outtape:/outswitches = intape:/inswitches/funcswitches

where outtape: = physical/logical name of destination tape.
Intape: = phylscal/loglcal name of source tape.

outswitch = switch for output tape characteristics

funcswltch = function switch

I

Inswltch = switch for Input tape characteristics

~.-.. - ... -.- - --------- __ . __ .. _._._--.-.-.. _ ... _.--_._--_ .. _._. __ ._-_ .. _------_ .. _---
Function To copy the contents of an Input tape onto an output tape.

1-----.- -- -- . -f--.---.-------. ---.-.----... -- .. -...... -.. -.. - --.--.-.. ------.----.---.-
Input switches I Must be placed on the proper side of the command.
Output sw Itches I /6

I-- --.-... - .---- _ ..

6250 BPI (9-track tape only)

I

/1 1600 BP I (9-track tape on I y)
/2 200 BPI (7-track tape only)
/5 556 BPI (7-track tape only)

I /8 800 BP I (7 or 9-track tape)

I
/A:N Advance N files before operation
/B:N Backspace N files before operation
/E even parity
/1 IBM compatible mode
/R Rewind before and after operation (default)
/U Unload after operation
/Z Suppress monitor error recovery on READ errors

'-"-

Function Switches May be placed on either side In the command.

/C:N Copy N files
/C Copy to double end-of-fl Ie marks
/G Proceed on errors
/M:NNNN Set maximum blockslze permitted to NNNN
/N Suppress automatic rewind
/V:N Verify to double end-of-fl Ie marks

1--. __ "--"-'--'---'-" --.---.-.- ----- - --- .. -.-----.------- -.- .. _-_ .. _---
Default
conditions:

1-----_._ --- .-.--.-.-.-.-.

Examples:

What wi I I happen If no switch Is placed on the command:

1. Density Is 6250 BPI for 9-track, 800 BPI for 7-track
unless there Is a SET DENSITY monitor command appl led.

2. Odd parity, DEC-compatible, maximum blockslze=1024.
3. Copy and verify tape. Rewind before copying and

verifying. Stop on errors.
-_ .. _---_._-------_.-.--- -'.' ._---------------

*TP1: = TP2:/8
Copy a tape at 800 bpi. New tape is on TP1:

*NEW:/R/A:3 = OLD:/R/A:2/C:3/V
Copy files No.3,4,5 on OlD: onto the NEW: tape as files
No.4,5,6.

Table 10.5 A Summary of MTCOPY Program

410 CHAPI'ER 10 TAPE HANDLING

Items Explanations

Program Name DTCOPY

Calling Sequence .R DTCOPY
~UTPUT: = INPUT:/switches

where OUTPUT: = physical/logical name of the ded i nat i on DTA.
INPUT~ =, physical/logical name of the source DTA

Function 1. To copy the entire content of one DECtape onto another.
2. To clear the output DECtape.
3. To compare word by word two DECtapes.
4. To load a bootstrap loader.

Switches /C Copy a II blocks.
/N No directory listing.
/V Comapre two DECtapes (verifying) word by 'IIord.
/Z Zero out the output DECtape.

Table 10.6 A Summary of DTCOPY Program

Items Explanations

Program Name F ILCOM
-- .~ f- --

Cali ing Sequence .R FILCOM
*output = inputl, input2/switches

where OUTPUT = output f i Ie specs; default is TTY:
i nputl, i nput2 = two input fi Ie specifications

Function To comapre two versions of a fi Ie and output the differences.

'-------------- -----------
Switches /0 Print out the message "?FILE ARE DIFFERENT," but do not

I ist the differences.
/A Compare two f i I es in ASCII codes.
/8 Do not disregard blank lines.
/S Ignore spaces and tabs in the comparisons.

Table 10.7 A Summary of FILCCM Program

Tape Transfer Programs 411

REFERENCES

1. OPERATING SYSTEM COOMAND MANUAL, DEC-IO-OSCMA-A-D, Digital Equipnent
Corporation, Maynard, Massachusetts; 1974

2. TAPE tJrILITY PROORAMS, the
Pittsburgh, Pennsylvania;

Computer Center,
Apr il, 1980.

University of Pittsburgh,

3. TAPE PURCHASE, REGISTRATION AND REMOVAL, the Computer Center, University
of Pittsburgh, Pittsburgh, Pennsylvania; March, 1977.

4. PDPll PERIPHERAL HANDBOOK, Digital Equipnent Corporation,
Massachusetts; 1975

Maynard,

5. tJrILITY MANUAL, DEC-IO-UTILA-A-D, Digital Equipnent Corporation, Maynard,
Massachusetts; 1975

6. System HELP files and Program Library HELP-files:
(May 19,1980), SYS:MTCOPY.HLP (August 20,1979),
(August 22,1978), PRG:CHANGE.HLP (October 24,1980),
Pittsburgh, Pittsburgh, Pennsylvania.

SYS : ACCESS • HLP
SYS:FIICOO.HLP

University of

APPENDIX A

A SUMMARY OF PIL LANGUAGE

PIL ("Pittsburgh Interpretive Language) is a conversational language
which contains extensive man-machine interactive facilities to provide
assistance in error diagnosis and error recoveries. It is much more
error-tolerant than the conventional algebraic languages such as FORTRAN. PIL
was included in the First and the Second Editions of this book (b,o chapters).
With the rise in computational maturity of the user community, even for the new
users, PIL becomes less important than before. Therefore, only a summary will
be included in the Third Edition of the book. Users interested in more details
should consult either Reference 5 or Reference 6.

The PIL processor may be called by a monitor command:

R PIL

The computer will respond by typing out at the terminal:

READY:
*

The PIL processor is now ready to process the user's program or commands.

A.l Rules on PIL Variables, Constants and Expressions

(1) PIL variables:

a. Variable name must begin with a letter, and must not be longer than
ten characters.

b. Upper and lower cases are different variables.
beware)

c. All numerical variables are real variables.

(2) Constants

(FORTRAN users,

a. There are 3 types of PIL constants, numeric, string and Boolean.

b. Numeric constants are real constants, ranging from E-42 to E+34 with
8 decimal digit precision.

c. String constants are enclosed in quotes, such as "TIME--8HARING"

d. Two values for Boolean: THE TRUE and THE FALSE.

Basic PIL Statements 413

(3) Subscripted variables:

a. There is no practical limit of dimension of subscripts.

b. Subscripts may be positive, zero, or negative.

c. No declaration statement is needed for dimension.

(4) Expressions:

a. Arithmetic expressions: PIL arithmetic expressions follow the same
rules as those for the FORTRAN language. The PIL library functions
are tabulated in Table A.l.

b. Boolean expression: Expressions that are really true-false
questions. Boolean operatiors are tabulated in Table A.2.

c. String expressions:
operations:

Concatenation:
Masking:
String multiplication:

String variables may have the

For example, "ABC"+"xyz"="ABCxyz"
By use of SUBS function.
Same as multiple concatenation.

Table A.3 shows a list of PIL string functions.

A.2 Statement Labels

following

In a stored PIL program, each statement carries a numerical label for
identification. The label has a format of "mmmm.nnnn" where mmmm is a four
digit part number and "nnnn" is another four-digit step number. Thus the label
takes on a form of a decimal number, and as in conventional practice, the
leading and the trailing zeros are omitted. For example, the label of 1.25
means Part 1, step 2500.

A.3 Some Basic PIL Statements

Substitution:

Transfer:

Execution:

Termination:

SET X=E
SET Xl=El,X2=E2,X3=E3, •••

where X=variable, and E's=expressions.

TO step m.n
TO part m

where m.n is the statement label.

00 step m.n
00 part m

ooNE
STOP
EXIT
woour

EX:fi1ples
Subprogram Format Meaning

Format Value

ASS OF x, \x\ Absolute value of x __ ~~ OF -3 12 \-3.12\ i 1?
SQRI' OF x JX ~OF 2_,_l _________ 1.4491376

f-_SIN OF x __ s_tD_l' ___________ SIN OF 0.32
~-

0.31456656
COO OF x i cos X COO OF Q.32 0.95923542
SIN OF x/COO OF x tan x ~_ SIN OF 0.32LCOO OF 0.32 0.33138940
~~ OFx--- - --:=--~_ ---_~ ______ t~:.__'_~ _________ '---__ ATAN OF 1.5 0.98279374

IDG OF x lOCI '" x IDG OF 2 0.30102998
IN OF x 10Cl",_ x IN OF 2 0.69314718
ANI'IIDG OF x 10" or _antil<29.LQ_ x I ANI'IIDG OF 2 100.0
EXP OF x e" EXP OF (-2) 0.13533528
~_ OF l' _____ -________ f----___ InJ~_~..r~t Q~_mnnber x IP OF 3.21 3.0

~~- ~ -~~-=--~~
__ 1'!.9~!=:.:!:2.~rt 0t_~_r:!.umber_x ____ I-JP.oF 3!..~l. _________ -+ - o.-w
______ ~ml).~Ilt~L}:l ______________ __ ~_Qf._lU_L ___ .. _ --. ----.---.. --f-------~.

DP OF x Digit of x __ f-- DP OF 12.34 I 1. 234
MAX OF (a,b,c, •••) Maximum value of a set of MAX OF (1,2,3) 3.0

number s _Q .. !::4C-l_OJLL ________ 1-----
~; OF (a,b,c, •••) Minimum value of a set of MIN OF (1,2,3) 1.0

RN OF x Assign a random nunber bet~en RN OF x x=0.65302564
0 and 1 to the variable x

'!he argument of the subprogr am RN OF must be a var iable. The argument of
any other above subprogram may be a constant, a variable or an arithmetic
expression.

Table A.l PIL Arithmetic Library Functions

PIL Library Functions 415

PIL Operators
--~----.-------t Meaning Examples
short Form Long Form

Table A.2 PIL Boolean Operators

String Functions
Meaning Examples

short Form Long Form
---.- .. --- ,==,-~~===~-===~=====t===========~==-,.---'=

L OF X LENGTH OF X length of a string L OF "ABCDEF" = 6.0
~------ ._. -'. --_._._ _- -- -. __ .. _--_._--------_ .. _---- -.--------.-.----.---~

UPPER OF X UPPER CASE OF X Force all letters in UPPER OF "abcde" = "ABCDE"
X to upper cases.

1------- .- .-------. --.------~------------------

WWER OF X IDWER CASE OF X Force all letters in WWER OF "ABCDE" = "abcde"
X to lower cases.

1---. __ .- ---"--- ------- .-- .-... ----.- - - - ----- -----.------.. - -------.-----------.---.-

n $FC X THE FIRST n masking 2 $FC "ABeD" = "AB"
CHARACTERS OF X

---------------_._. _ .. _--_. __ ._---- - ._---... _----

n $LC X THE lAST n masking 2 $LC "ABeD" = "CD"
CHARACTERS OF X

~----.- ... __ ._--_._----'-- ----._--_._-_._--- ----------_._--_. __ .- -'-

THE VALUE OF X To convert a string THE VALUE OF "3.1" = 3.1
of numerical
characters to
numerical values.
---._._----_._._---- ---- -----.-- - ----- .. ----------.. -

THE BCD VALUE To conver t a string 0 THE BCD VALUE OF 3.1 = "3.1"
OF X numerical value to a

numerical character
string.

------ -.. -- ---------f-----------.. - .---... -, ,,-- .. --

SUBS OF SUBSTRING OF To mask a string S SUBS OF ("TIMESHARING",3,4)
(S,A,L) (S,A,L) from its Ath char.

for a length of L = "MESH"
characters.

Table A.3 PIL String Library Functions

416 APPENDIX A

Conditional: m.n IF b, OS

where m.n=statement label of this statement
b=Boolean expression

OS=an object statement

variations:

m.n IF b, OSl; ELSE OS2
m.n IF b, OSl; OS2

A.4 Loop Statements

(1) Specified indexes: FOR i=ml,m2, •.• ,mn: OS

(2) Unity increment: FOR i=m to n: OS

(3) Specified increment: FOR i=m to n by p: OS

(4) Specified decrement or special terminating condition:

FOR i = m by p UNTIL b: OS

FOR i = m by p WHILE b: OS

A.5 Input/Output Statements

(1) General form:

Demand list

TYPE list

DEMAND IN FREE FORM, list

where "list" contains the variables in the input list.

(3) Input/output with format

DEMAND IN FORM i, list

TYPE IN FORM i, list

A.6 Input/Output Format

Format specification:

FORM i.
(Specify format field on the second line.)

PIL SUMMARY

PIL Statement Summary 417

F-type and I-type:

E-type:

Combined format:

Str ing field: ########

Field separation and termination: U\U symbol, for example:
---- _._-\--_._---

Variable field length:

%######## % •

A.7 Subprogram Statements

where:

Subprogram defining statement:

PROCEDURE XXXXXX[Xl,X2, ••• ,Xn] PART m

PROCEDURE

xxxxxx

a PIL keyword to specify a subprogram

name of the subprogram, and also the name of the
whose value is computed by the subprogram,
execution of subprogram, returned to the main
All intermediate results are deleted after the
of subprogram.

variable
and after

program.
execution

If the subprogram is to return mul tiple value answer, for
example,roots of an equation, xxxxxx will then be an array
and represented by a subscripted variable.

[Xl,X2, ••• ,Xn] = a set of dummy parameters passed to the subprogram.

PART m
Use square brackets.
the part specified as the subprogram.
written that Xl,X2, ••• Xn are the
XXXXXX is the computed result.

Subprogram execution statement:

00 PROCEDURE XXXXXX[Al,A2, ••• ,An]

Part m must be so
input parameters and

where Al,A2, ••• ,An are the input parameters to be passed to the subprogram.

41B APPENDIX A

A.B File Management Statements

where:

To save a Er~ram:

SAVE as "FINAME", list

To delete a file:

DELETE FILE "FINAME"

To edit aErogram:

CHANGE "OLD" TO "NEW" IN STEP m.n

CHANGE "OLD" TO "NEW" IN FORM i

To change a stee or a ~rt number:

REDEFINE STEP ffi.n TO p.q

REDEFINE PART m TO n

REDEFINE FORM M TO n

To delete items in the Erogram:

DELETE list

To load a Er~ram:

WAD "FINAME.EXT[m,nj"

FINAME
EXT

[m,nj

file name
extenison of file.
PPN of file owner.

To attach a file:

Default extension is PIL.
Defaul t is user's own PPN.

ASSIGN "FINAME.EXT[m,nj" AS "FN"

ASSIGN "SCRA'lCH FILE" AS "FN"

ASSIGN DEV-NAME AS "FN"

To delete an assignment:

DELETE ASSIGNMENl' "FN"

DELETE ALL ASSIGNMENl'S

PIL SUMMARY

PIL Statement Summary

A.9 File Input/Output

File InEut:

READ FRCM "FN", list

READ FRCM "FN" , IN FORM i, list

READ FRCM "FN" , IN FREE FORM, list

File OutEut:

WRITE ON'ID "FN", list

WRITE ONTO "FN" , IN FORM i, list

A.IO File Control Statements

To mark the end-of-file on a file:

MARK FILE "FN"

To rewind a file:

REWIND "FN"

To forward or backsEace a file:

FORWARD SPACE n RECORDS ON "FN"

BACK SPACE n RECORDS ON "FN"

To §p€cify end-of-file action:

ON FILEMARK "FN", 00 PARI' m

To cancel an end-of-file action already specified:

ON FILEMARK "FN"

To store an assignment:

CATALOG "FN" AS "FINAME. EXT"

419

420 APPENDIX A PIL SUMMARY

A.ll Execution-time Function and program Step Input

To furnish a program step at execution time, such as the step "m.n SET
X=A":

ENTER "m.n SET X=A"

or, IX) STRING "SET X=A"

A.12 PIL-FORTRAN Linkage

PIL language provides the advantage of conversational mode and free form
input format. Error recoveries and error diagnostic provisions further enhance
its uses. Consequently, a PIL program is very suitable for the input phase of a
program, where the man-machine interaction is at its highest.

once execution starts, PIL program exhibits an excruciatingly slow speed
of execution. It is primarily because PIL is an interpretive language. ~ery
time a PIL statement is to be executed, it must first be translated. Thus ln a
PIL program, the program is interpreted and executed at the speed of one
statement at a time. Error detection for debugging becomes simple because the
program will stop at the step where error occurs.

On the other hand, the entire FORTRAN program is compiled at one time,
and execution takes place after the compiling. If a FORTRAN program is already
compiled, the compiling stage is omitted. Thus a FORTRAN program is generally
much faster to run than a PIL program. FORTRAN, however, has its drawback.
Man-machine interaction can be implemented only at the expense of core storage
for many printout formats, and an interactive program tends to be larger. Also,
formats in FORTRAN are more restrictive.

All of these adds to the fact that PIL is superior in interaction but
inferior in speed, while FORTRAN is just the opposite. Thus, a compromise is to
use a PIL program for the data-input phase, store the data as disk files, and
then switch to a FORTRAN program for execution, which will read the stored data
file as inputs.

The PIL statements for the PIL-FORTRAN linkage are:

EXECIJrE "FINAME"

or, RUN "PRGM"

where FINAME = the name of the FORTRAN (with FOR or REL extension) program, and

PRGM = the name of the execution file with EXE extension.

One such application is the Interactive Engineering Program Library. The
Programs in the Library are so structured that the PIL phase handles the input
of data and problem definition, and the FORTRAN phase handles the execution.
The details of the Library are given in Appendix B.

422 APPENDIX A PIL SUMMARY

REFERN::ES

1. PIL, Class Notes for Engineering Analysis II, T. W. Sze, University of
Pittsburgh, Pittsburgh, Pennsylvania; 196B.

2. PIL/L PITT INl'ERPRETIVE IANGUAGE FOR THE IBM/360 MODEL 50, the Computer
Center, University of Pittsburgh, Pittsburgh, Pennsylvania.; 1969.

3. A PRIMER FOR PITT TIME-SHARING SYSTEM(PTSS), Chapter 3, T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1970.

4. PIL REFEREN:E CARD, the
Pittsburgh, Pennsylvania;

Computer
1977.

Center, University of Pittsburgh,

5. INTRODOCTION TO DEC SYSTEM-IO: TIME-HARING AND BNOCH, First and second
Editions, Chapters 2 and 3, T. W. Sze, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1974 and 1977.

6. PIL, PITT INl'ERPRETIVE IANGUAGE, Brent J. Ermlick, the Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1979.

APPENDIX B

INTERACTIVE ENGINEERING PROGRAM LIBRARY

A time-sharing interactive program library has been set up and in
operation successfully to serve the faculty and the students in the School of
Engineering since 1967. It has been one of the major tools in the
computer-aided analysis/design instructions and research in the School. These
progr ams were all designed to operate in the conversational mode, in modular
form, and they are application-independent. Thus a differential equation solver
program can serve those who are doing work in a wide variety of fields, such as
circuit analysis, control system, vibration, structural analysis, process
control, etc. In this regard, these programs should also be useful to those in
natural, medical and social sciences who require the same type of mathematical
techniques but in a different field.

For the Interactive Engineering Program Library, a user with little or no
prior computer experience can select and use a program in the Library to solve
his problem after a short practice session at a terminal. All instructions of
using a program, once its execution begins, will be supplied at the user's
terminal during execution. Thus there is no need for the user to study
voluminous manual materials in order to use the program.

The structure of each of the Library program utilizes the PIL-FORTRAN
linkage technique discussed in Appendix A •. Using one of the Library program
REALEQ (Simultaneous Linear Equations with Real Coefficients) as an
illustration, the linkage works this way:

(1) The user calls for the ENG:REALEQ.PIL program.

(2) Interacitvely the user inputs the data, defines the problem and
selects the options, if any.

(3) PIL program then stores these data and options in a disk file
QZXZQ.DAT. If there is a user-defined function in some programs (for
example, a numerical integration program), the PIL program writes a
FORTRAN subprogram and store it as QZXZQ.FOr.

(4) Using the PIL command EXECUTE or RUN, the PIL program automatically
passes the control to the monitor to execute a designated program
ENG:REALEQ.REL. If there is a QZXZQ.FOR prepared for a user-defined
function, it is compiled and included. The PIL program function is
now completed, and the execution file automatically takes over.

(5) The execution program ENG:REALEQ.REL reads the data and options
stored in QZXZQ.DAT.

(6) Based on the input data and option selected, ENG:REALEQ.REL executes
and outputs the results on the user's terminal.

(7) The Library program will generally allow the user to repeat the same
problem but using a different method. If the user declines to
repeat, the execution is concluded.

A memorandum by the author was distributed to the faculty and the students in
1969 concerning the Library. The memorandum has been revised and updated many
times, most recently in 1980. The text of the memorandum of the most recent
version is given in the following pages to complete the details of the Library.

423

424

University of Pittsburgh
SCHOOL OF ENGINEERING
Department of Electrical Engineering

APPENDIX B

MEMO'lD: Faculty and Students, School of Engineering

FROM:

DATE:

T. W. Sze

June 1, 1969;
First Revision, November 1, 1970;
Second Revision, January 18, 1972;
Third Revision, July 1, 1974;
Fourth Revision, January 31, 1977;
Fifth Revision, September 1', 1980.

ENGINEERING LIBRARY

SUBJOCT: Interactive Engineering Program Library on Device ENG:

INTRODUCTION

The use of computers in the Engineering curricultnn is now a standard
practice.

One serious problem, however, has always been the time-constnning work of
preparing computer programs, debugging and executing them. Although libraries
of subroutines of general interest are available, such as the IMSL package, the
process of incorporating them in a course is a major task. It usually involves
a search through a thick catalog for a program fitting the problem, learning the
algorithm, finding out the particular input and output requirements and types.
In some cases, special arrangements of large memory authorization, long
execution time, or special periperal equipment are necessary in order to use
these programs. Such laborious procedure has a discouraging effect to faculty
and students using the computer effectively and extensively.

Thus, when the computer usage is included in a course, a very undesirable
situation may sometimes emerge. Homework and projects can often be degenerated
into long programming exercises that force the students (and instructors) to
spend more time and efforts in getting their programs to run than to try to
understand the course materials.

348 BENEDUM ENGINEERING HALL, PITTSBURGH. PA. 1 S261 (412) 624-5387

Engineering Library on ENG: 425

The Interactive Engineering Prog+am Library was set up to overcome these
three limitations. In general, the Library will attempt to accomplish

objectives:

1. The programs are designed efficiently so that the core assignment
and execution time stay within those authorized for the student
users, even for relatively large size problems. Therefore, no
special arrangement or authorization is necessary. with the easy
use of the Library, the computer will indeed become an important
day-to-day tool.

2. The user will not spend time in preparing programs.
required to study lengthy program documentations;
will be no distraction from the course materials.

He will not be
and thus there

3. When the time and effort on the "dog work" is drastically reduced
(see the Appendix section of this memo), it will then be possible to
upgrade the quality and the ~evel of all engineering courses.

The Library is currently installed on-line in all three systems (A, Band
C) and is given a device name. of ENG: It contains a group of programs of
general interest to engineering faculty and students. By man-machine
interaction, a problem is shaped as the user specifies the data and the option.
Suitable instructions and comments are printed out as prompting remarks along
the way to guide the user. All programs, regardless of their progranuning
languages, are written in "conversational mode" so that the user will be guided
in how to use the program. Hence, it is not essential for a user of the Library
to have any in-depth knowledge of the program, the language, or the algorithm
once he learns the simple procedure of calling and executing the Library
program.

Furthermore, these programs in the Library are mathematical-technique
oriented rather than problem- and application-oriented. For example, a
differential equation solution program can be used for circuit analysis, process
control, vibration and stress analysis, material and energy balance equations
for chemical dynamics, system stability studies, etc.

Although helpful, an in-depth knowledge of any progranuning or progranuning
language is not a prerequisite to be a user of the Library.* A user will have an
option to choose which algorithm and program for his problem. If he does not
have any opinion, the program will pick up one that has proven general utility.

When a Library program begins its execution, the user's function will be
to enter numerical data and to answer YES/NO to the computer's inquiries. When
any input data are called for, prompting information of what sort of data and in
what format will be printed out at the user's terminal to guide him. The user
will then supply data as asked, or answer questions posed.

* As a matter of information, a Library program consists of an interactive
problem-defining and input stage in PIL language, but will switch
automatically to a REL or an EXE file for execution. The REL file or the EXE
file is prepared from a FORTRAN program.

426 APPENDIX B ENGINEERING LIBRARY

LIBRARY USAGE PROCEDURE

Currently, all Library programs are stored in the device "ENG:" in
Systems A, B and C. Procedure for Library usage includes three slinple steps:

Step 1: To get on the computer, either System A, B or C ..

Step 2: To call and execute a chosen Library program.

Step 3: To get off the System.

If there is more than one problem or more than one rW1, Step 2 is
repeated. thus, only the step-2 will be explained in some details.

To Call and Execute a Library Program

Suppose the name of the Library program chosen is WXYZ. Call and execute
the program by entering a command*: (must be entered right after the prompting
symbol) •

.PIL ENG:WXYZ

The computer will respond with a printout of "READY:", and will then load the
chosen program and start the execution. The memory requr iement is
self-adjusting (another built-in feature of the Library programs) and the user
need not be concerned with it, unless he attempts to enter a problem too large
for the program. Once the execution of a program begins, the user follows the
pr inted instructions to enter numer ical data and to answer YES-NO questions to
complete the input phase, after which computer switches to a machine program
execution to a completion.

* The old way of ".PIL WXYZ [33,33]" will still be valid for some p~riod of time
in order to allow orderly transition and revisions of departmental
instructional materials.

Libr ary Catalog 427

A CONDENSED CATAIDG OF THE LIBRARY

Basic mathematic techniques of the following areas are included in the
Library:

Polynanial equation solution, real and canplex roots.

Transcendental equation solution, real roots only.

Linear simultaneous equations, real or canplex coefficients.

Basic real/canplex matrix operations: +,-,* or inversion.

Generalized inverse of a matrix.

Other matrix operations, including determinants, Eigen values,state
transition matrix, and characteristic equation.

Numerical integration, with user-specified accuracy.

least square fits: linear, quadratic, cubic, and exponential fits.

Ordinary differential equations, first order and second order,
linear or nonlinear.

Ordinary differential equations, nth order, max n=8.

Optimization of a nonlinear function, constrained or unconstrained

Linear programming

Fourier analysis

Fast Four ier Transform

Oomputer-aided logic design

Simulators and cross assemblers of microprocessors.

Graphic plots.

Course grooe management (an information management system)

General utilities

In each of these, options of methods are available for. the user I s choice.
At the conclusion of a solution, the programs ~re usually recycled so that the
user may repeat the problem with a different method without repeating the input
phase.

428 APPENDIX B ENGINEERING LIBRARY

PRCGRAM NAME PROGRAM FUNCTIONS

BASMAT Matrix operat~ons to calculate any of the following:
determinant, lnver se , Eigen values, state transition matrix,
characteristic equation, and state resolvent matrix.

----.~~--------

BODE To calculate and plot the frequency response (Bode diagram)
from a transfer function given as a ratio of t\>,Q polynomials.
Output in tabular plus plot form.

CMIS To prepare class roster, enter test grades, calculate test
statistics, grade opti-scan exams, determine final term grades
according to an instructor-specified formula.

~-

COMEQ Solution for linear simultaneous equations with complex
coefficients, 10 complex unknowns maximum, double-precision
computation. Crout's elimination method.
--~------.--~--.-- ----~

COGGIN Cogg in's method for maximum/minimum search of a single variable
function, unconstrained.

~-----~- --~-------------

CSMP To prepare a control file and submit automatically as a batch
job.

---------- - -.- ------.-~ -- --~-.-- _. -_._--- - ----- - -------------_ .. _------

DF1 Solution of first order ordinary differential equation.
Algorithm oEtions:

(1) fudified Euler's method
(2) Runge-Kutta method, 4th order
(3) Milne's method
(4) Adam-Maul ton method
(5) Hamming's method

OutEut Erint oEtions:
(1) Output in tabular form only
(2) Output in tabular form and plots

- -- ---- -- ----- ~

DF2 Solution of a second order ordinary differential equation.
Same algorithm and output options as the program DFl.

~~------- -------------------

DFN SOlution of an nth order
Algorithm oEtions:

(max n==8) ordinary diff equation.

(1) fudified Euler's method
(2) Runge-Kutta method, 4th order
(3) Adam-Moul ton method

OutEut Erint oEtions:
(1) Output in tabular form only
(2) Output in tabular form and plots

~~- ---~ ----~---.------ ----- -~ ---------_ .. -_._----------_._----_.- ---~ ----
DIRECT To type out the most recent directory of the Library.
-~.--. ------ -------- ----.---------------------.-----~-------------- .--~---

EZLP To solve student-oriented linear programming problems. Help
file available as ENG:EZLP.HLP

Library Catalog

FFT

FIBON

429

Fast Four ier Tr ansform for a set of samples, using the
Coo1ey-Tukey algorithm.

Minlinization of a single variable, nonlinear function by
Fibonacci search algorithm.

r-----.--------~--------------~--~~---------------------------------~

FIT Least square fit for
(1) Linear fit:
(2) Quadratic fit:
(3) Cubic fit:

n data points. Options available are:
y = a*x + b
y = a*x**2 + b*x +c

(4). Exponential fit:
y = a*x**3 + b*x**2 + c*x +d
y = a + b*exp(c*x)

~----------.---~

FOUR Fourier analysis on a periodic waveform.
~------- .. - --

HELP To print out a copy of the file ENG:ENG.HLP
~---------- --

HOOKE

IMAGE

Hooke-Jeeves method of pattern search optlinization

Utility package of linage processing to a standard 128xl28x8
image file. Options include image print, image pixel value
listing, transpose, linear combination, noise mixing. More
options are in preparation.

~--------.. ----+--I
M8080

MA'IDP

MINILP

MUX

NI

PLOT

A simulator for a multi-processor system employing INTEL
8080's. Help file available as ENG:M8080.HLP

Basic operations for real or complex matrices:
subtraction, multiplication and inversion.

Linear programming, interactive input phase.

addition,

A computer-aided logic design program of using multiplexer IC
chip in a combinational circuit design.

Numerical integration, Simpson's Rule, with user specified and
controlled accuracy.

To plot a curve on rectangular coordinates.
Input options for y=f(x):

(1) f(x) to be specified by the user as a FORTRAN expression.
(2) f(x) data points already stored as a disk file.
(3) f(x) data points to be entered via the terminal.

Output options:
(1) Output on the terminal or the line printer.
(2) Output from the Calcomp plotter.

~---------------+---------------------------- .. --- ----.-~--.---- ... -------

FOLY Real and complex roots of a polynomial equation.
Algorithm options

(1) Mairstow's method
(2) Modified Newton-Raphson's method
(3) Lin's method

Normally, option 1 is recommended.

430 APPENDIX B ENGINEERING LIBRARY

<JJINE Quine-McCluskey's method of Boolean function minimization, 12
variables maximum. OUtput options of either
summation-of-products, or product-of-sums, or both.

RE'AIEQ Linear simultaneous equations with real coefficients, 30
var iables maximum. Double-precision calculations in all cases.
Algorithm oEtions:

(1) Gauss elimination
(2) Gauss-Seidel iteration
(3) Matrix inversion
(4) Crout's elimination
(5) Cramer's rule

Input data may be entered via a disk file or the terminal.

REeO Generalized inverse of a matrix with real elements. Maximum
number of rows is 9.

f----------------.-. ------ -- -------------------- --------_._---- -.-------

S8080 A single INTEL 8080 simulator program, inclooing a built-in
editor. Help file available as ENG:S8080.HLP.

--------.-.---.~~-----.---- -~- ---------

SCAMP A simulator and cross assembler for the National Semiconductor
SC/MP micropr ocessor trainers. Help files available as
ENG:SCAMPl.HLP and ENG: SCAMP2. HLP.

- --- ~ -- - -~--------------.-.--

SEAOCH An optimization package of search methods to find the optimal
values of a constrained or unconstrained, single or
multiple-variable, nonlinear function.

------.-----~-----.---

STATUS Same as the program DIRECT

TRANEQ Newton-Raphson method of transcendental equation solution, real
root only. Use Stirling formula for numer ical differentiation.

--
TRUTH To generate a truth table, or a Karnaugh map, from a given

Boolean function in the form of summation-of-products or
product-of-sums.

--.-.-~-.- ---"--' .. _- _._ .. - .--- ----_.".

CALPLT To plot a curve on the CalComp plotter.

FORTRAN-CALIABLE SUBROUI'INE LIBRARY

A group of FORTRAN-callable subroutine packages are also available in the
device ENG: Their names and their current status are outliend below:

EE45 Subroutines from the EE45 text: COMPUTER METHODS FOR
MATHEMATICAL Ca-wuTATIONS, by G. E. Forsythe, [VI. A. Malcolm,
and C. B. Moler, Prentice-Hall Inc., 1977.

IMPROC An image processing package, inclooing
tr ansformation, tr anspose , etc. Applied
file size. Developed by T. W. Sze. Help
ENG: IMPROC. HLP.

image fil ter ing ,
to 128x128x8 image

file available as

Library Catalog 431

SUBSET A utility subroutine set developed by Ronal K. Nicholas,
included in the Engineering Library by permission. For
reference, see: SUBSET MANUAL, by Ronal K. Nicholas,
University of Pittsburgh, 1977 (available at the Book Center) •

SIPROC A group of signal processing subroutines. For reference, see:

GRAPH

PROGRAMS FOR DIGITAL SIGNAL PROCESSING, Edited by the Digital
Signal Processing Committee, IEEE Acoustic, Speech, and Signal
Processing SOciety. Published by IEEE Press, Institute of
Electrical and Electronics Engineers, New York, 1979.

A group of data plotting and tabulation subroutines.
reference, see ENG: GRAPH. HLP.

ACKNCMLEDGEMENl'S

For

The Engineering Program Library project was initiated in 1969 when I
developed and taught the course ES2 (Engineering Analysis II). Later, the
project was maintained and expanded with the help of the Engineering staff of
the Benedum RJE site. I wish to ackowledge the assistance rendered me by
Mr. Wayne Baughman, and many groouate assistants involved in this project,
particularly Drs. Richard Hsia, M.S. Nataraja, A.R. Modarressi, K.D. aka, and
Messrs. T. Goss and H.R. Anada. Credits are also due to Mr. Frank Heyn, who
adapted the IEEE tape and modified it into the SIPROC package of the Library.
Last but not the least, assistance is acknowledged to Mr. Michael A. Matzek of
the Pitt Computer Center to shift the old call-PPN of [33,33] into the device of
"ENG:"

The full content of this memo, minus the Appendix, is stored as a disk file, and
may be reproduced on a line printer by a command:

.Q ENG:MEMO.OOC

432 APPENDIX B ENGINEERING LIBRARY

APPENDIX ILLUSTRATIVE EXAMPLES

Several examples are included here to illustrate the procedure of using
the LIBRARY programs. On the reproduction of the printouts, those text that
were typed by the user were underl ined, and those typed by the terminal were not.
In addition, comments are added as brief explanations.

Example 1
and complex:

Given the following polynomial equation, find all roots, real

x7 -80x6 + 20xS -2200x4 +1350x 3 + 1350x2 - 1200x + 800 - 0

The program chosen was POLY, and all three methods were run. The modified
Newton's method turned out to be divergent, but the other two methods worked
okay for this problem. It took 3 minutes on the terminal for thiis problem.

Example 2 Solve for the solution of a system of simultaneous equations with
complex number coefficients. The equations in matrix form are:

[20+j30 -5-j 3 -15+j 16 O+jO 0- j 43

{~l
[IOO+JO 1 -5- j3 11- j3 O+jO -6+j8 O+jO 200+j100

-15+j 16 O+jO 42- j 32 8+j16 -15+j 10 O+jO

O+jO -6+j8 -12+jI6 23- j 42 -5+j 18 O+jO

0-j43 O+jO -15+jlO -5+ j 18 20+ j 15 O+jO

Observe particularly the error-recovery procedure built in the proqram COMEQ.
When certain input data were incorrectly entered, the program allo\~s the user
to check the data and make corrections. This avoids repeating thl~ input of
large amount of data, which would have to be done if the problem must be aborted.

Example 3 Plot a curve represented by

y = .359 e-O• Ix sin (0. Ix) sin(0.5x)

for the range from x=O to x=30 with an increment of unity. The program PLOT
was used for this example, and the plot was reproduced on the terminal. Total
time consumed on the terminal for this problem was 6 minutes. The same problem,
using an increment of O.t. was also plotted on the Calcomp plotter, and the result
is also shown.

,_::.rd:
"rllt.';,. Ti'a..::Jir.in::$ l.a-;t lo~in: 111~ 4-'Jan-77

1 t.',} 7 -..lori' 77 l" i"~

• lplL. alG: POL.'f t
: . ~.,~.: ',: :

.,,: ~ t.,':l [AL [QUAl1f1N. INICW\ClIVE r'f([;Gf,AM
: '.:;.~.~;J~; T:![r·:~nf~[\:'t1 •••

lq,l • To c _~ e4-'a -

UL P'V"'"

; :;:;:, IN TII[CIWLf, or [:n;cuwIt:::; 1'0\.11"[,:;, r.OEFr CILNTS fir rACIl T::r~N
i :i;~'h u For,: HI!-,~I~~O TCr,t1. USE r:~r:: rL.1t,\M.~T

/~ '. 1)

:0 ~':,'OO 13~0 13~0 12()0 1300

ALL CCU rICrCNH::
1. G'-100

:.(;'i :.: no .. (}(',oo
." ~) :"'0.0000
• '.(4) -2:'OO.O()()O
I~(5) 13!".JO.OO~)O

~) l~~O.OOOv
.. (/) -l:·~OO.GO()O

'" 'J> = 8()().OOOO

.'.f'! ,~I.L COrFnCIEtHS Uln
{:'s. UI, NO? ;yrG

ll!l~t.r· ~[rllOfI!:; ARL b\,t;'llAf=i...L:
Ill' [lOU 1 ~ 1,{.H'::;·:lJ~'!:; IIETllllD
cr'l IDN 2 = 1I01llf l[D NIlJTOW S i1[TlIQ[1

/' r. ~~f" JaG. • ...1

4"' fJocrf ... s •

I/nJv/;.,J it-Itt. «rC JA_

~ _wer '1,-J '1 ik.
UIiU.

:J;MI/J;;~~~~r~ ~J~{;:~~;T~~(~~;~:' OPTlOII 1 IS R[CUlI~ENlIED.

: "':: i .u~ cor,£:
L;>.,.: tlJ rJo,,~

0.96(.41::+00
0.1011E+01
0.2017UOO
O.2U17[·'OO

-0.::4'13[100
-0.3473[+00
0.8009Ei02

IMAG PART

o .~.3t:1[1 00
-O.~:;,~13[-I()u

0.5306001
-0. :;306Ei 01

lJlINl TO TRY At/UTlleR HETIIOD FOR TIlE SANE PROBl.EN?
II" YES. TYPE NEW OPTION NUNB[R. F NO. TYPE 0:
;'1.
!leWTON'S NETHOD IS DIVER(;ENT. TRY ANOHIER NETHOD.

V ¥- to IWf"4t ~. "...u. ...
WAIn TO TRY ANOHlEII NETHOD FOR THE SANE Pf;ODLEN? !i YES. TYPE NEW U~'TION NUMBER. F NO. TYP£ 0:

-'~
SOLUfION BY LIN'S NETIUlill

I;UOT NO. RE.'IL f-ART ItlAG PART

0.2Ul7E+OQ 0.5313EtOO
0.281/£·1·00 -0.5313EtOO

3 -O.'J'6l..4E'IOO
4 0.1011EtOI
5 -0.3492£+00 0.5306EtOl
6 -0.3492£tOO -0.:;306Et01
7 0.OO09Ei02

WANl TO TRY ANOTHER NEntOD FOR THE SANE PI;ODLEM1
II" YES. TYPE NEW OPTION NUMBER. IF NO. TYPE 0:
)0
filar'

[N[I OF EXECUTIOIl
CPU nNE: 1.08 ELAPCEO T IliE I 43.23
EXIT

I __________ sn, 3 I Ie set- off iI.e f1s!"" 0-
Jol> 31 [1151()30132341J 01'1' TTY63 at 1122 7-Jan-77 Cor.nect.=3 tlu.
Disk RtW=210t33 Tap" 10=0 Saved all fi les (12 blacks)
CF'U 0:04 Care IIWN=10P Units=O.0130 ($0.93)

11111C _~ ware i\-; • .l fG, 0. Ja3"a.7 poly_",io.' e.1",,:t"_.

Tot" i;i ... , o.t ~& tC1'",." ... 1 ': 3 M; fu

Co"" .. ·*-.. tiM, ,",se", = .. seclll4ll,

434 APPENDIX B ENGINE:ERING LIBRARY

J~ ,l,~7:o~(r'.~~!!ft 1.1El.7'l.A TTY6l 'n, 1: To , ... ~ , 'Jlt.-.
1-''''1~IoI~l'''rt:

Hr." uni.t." "PItt:tU'r'i,..... L la.inS 1644 27-Jln-17
1,"'51 ~7".J.1r.-1'J Thyr

S~I.' T.o.." .. -'e.:
UI.';--:J ,..,

&tttllt.1ANfI)US [nU~T'ONfj !.11TH r.Ot1F'L£X COEfFICIeNTS OF FO"'" AX-.
114. sllr I~ I') UN'''OWNS. OPTION OF "RINTI OUT A INVERSE

I.Olt'.ltJG THE ff'«(JIi~A" NO"" •••

HOLf "At4Y UN".N",W,·jS, H-?

" c)ol..

HI!) cr'T ttl"~ OF'" r,Art, rm'UT A~''': AV"IL.,.ftLE:
urft!)N I • It t\ Lt It 1't."lR'C'~ SlJf'f'lolt:D F'r.:Or1 THIS TE"="I"'Al.
opr lOt' , • A AtH. FI rt .. rRlr.CS SUPtl.IED "no", A STOrii[.[I F'tL[

!Nf'UT O.'\TA lWI InN,.)l.

It' HF.F. rOf?f'h rtnrr< fllf' vAlt,;f1 OF' cnttrtrx £l "[HT! OF ThF. "'~"ATR(X
py ~(jlllr.. 1'1 1.'~ srfUll··'r.~ .)..- F'Ef.Ll,I~At;J,R[L..:!,I""G~, ••• f.\EAHN,r"AON.

f ~f fl£R :5 [! t.~1 '4 rs Uf ."114,.' [X I ~fI ')AI UlS, :: 1 ~r :t ~n 14 ;;, ~ r,:~ -.q it· .. :\9 ~§t~) 21 :r~:~e~~!.
lH ,.~[[: ,.mUff ,·NTFR THE. V4Lurs flF' Co,..f'LEJC EL ,..ENTI or THE ,..ATRIX.
ONE ELEHENT (2 VALUES) F'Ei< LINE ONLY.

£"Tfl> 5 LUMENTS OF ~-HAT~U UO VAI.UES) I

'~ ~i"t.r'i",..tJ .. t..
.. ~
~

.!.:...Jl
~--

r," YOII WISH TO CIOECK AN~ CORrcECT THE INPUT I. TA? YES Olt NO.
'HI';jWiR.}~

f'. Ittf1JT [JATA tHEe" •••

,I-P'AlRIXI

ROW

II

21

II

IlEAl. 1""0 RE~

2.00000£+01 3.00000E+01 -5.000 0[+00 -l.OOOO~f+OO
-l.SOOMOI)I 1.60000£+01 O.MO OE'OI) 0.00000£'00

0.00000£+00 ·".JOOOO[fdl

-5.001)00£"-"0 -1.00QOO£+QO 1.lOOft)EtOl -3.00000[+00
O.O"~\)Oi.'+(IO n.OOO"OE t,)O "6.00tl)OE+OO B.OOOOOF:+OO
o.ooooor.+oo .a.Oo,Of,OE+OO

-1.50000['01 1.60000£+01 0.00000£+00 O.OOOO~Hoo
4.~OOOI,)E+Ol "'3.:!OOOt1EtOI •• 00';[\)(+00 1.6000")£+01

-1.50uOUI£+Ot u.oOUOOf+oo

O'.O~OOOF+OO O.OOO.>OE+OO -6.00~ OEtOO 9.00000£+00
-1.::O\\t}~E+(\1 1.60000[h)1 2.l0CrOE+01 -4.l00.ovl::tOI
-:.~!.. (\"..:~~C'ot~ "po , • F'I\l·1t'1.,... tnt

O.IlOOOOF"'OO -".1')00U£>+01 0.\)0")1)t!tOO O.OOOO.1E.I)O
"'l.~Ij")'")l·.OI 1.M)Oo,)QF+(\1 -J.oor"IQCtOO 1.&::0000£,.01

2 •• ,..,iIO .. E.01 1.~"OV"·:+Ol ~

:>~:~::::. ~~.~::. '""'" ... ,," I YES Ott NO.

,"J1("1[R ,"II ')3

I.: (';:LUW IN Flirr ,'O~I" H'E ROW liND COLUMN NU"'.ERS OF' [IICN INCORRECT ~
F.t ~_"qH
t··,· f"0.1 "NI) r.n'.IIKN HUI1!,t:R F""I~ PEr< L 1.,£

'L!L
~
E.J.

rt.U7U l"fJRkfI7YU'I A-EL["[NTS ft[LOWI
A\ ~·I;» '.)J..R.
t\'''.'U • >..:s:.a..
.. \~:.,n • "..::1-
1oI.",tI1 hit: Lct.:ftt.i.:r;.[, A-I'tAU'UX 1<r.TVrr.E' OUT f"Ok CMECI\ING HOw"
Yf':; liR , • .,?

~-"AIRIX C'IEC~1

kOW

\I
21
II
41
:il

REIIL IMD

I. OOrt·)OC .02 O. OOOOO[tOO
2.onor,br to:! 1.00000[.,12
O.OOOO()(,OO O.QOOOOEtOO
o.ooonot:.oo O.OOOf)O£.OO
O.OOOOOEtOO 0.000)00[+00

ME /ILL n-tLE"CtlTS CORRECT? ANSIJER 1[5 OR NOI
ANSIJEf(· !!J

1.0 YOU YANT THE INVERSE OF' A-MATRIX PRli TED OUT? YES OP NO"
AHS"[R.)~ -er
HOY SWITCHINO TO FORTRAN EXECUTION •••

LOAOINO

COrtEO lK COIlE
UECUTION

A· TRIXI

ROil II

ROw 21

ROW 31

ROW 41

ROW 51

t·" .. TRIXI

ROW \I

ROW 21

ROW 31

ROW 41

ROW 51

O.::'OOOE+O:! O.lOOOt'+O:!
-o.I~OOr.t02 O.1600F:+O:!

O.OOOOl"tOO -0.4l00EtO:!

-0.5000[+01 -0.3000ft01
O.Ot)OOl:tOO O.OOGOttOO
o.OOOO£tOO O.OOOOF:+OO

-0.1:00Ct4l:! O.l600L'tO:!

_:::;~~~:~; -::~~~~!g; I

O.OOooE+OO 0.0000C+00
-0.1~oor.()2 O.1600(tO~
-0.::;000£+01 0.1800£+02

O.OOO,'E+OO -0.4JOOC+O:!
-O.t'SOOE+O:! o.aOOOt"tO::.!

0.2001,)£+02 0.1500Et02

0.1000E+03 0.0000£+00

0.2000£+03 0.1000£+03

O.OOOOEtOO O.OOOOEfOO

0.0000£'+00 o.oooO£tOO

O.OooOEoOO O.ooOOE+OO

-O.!.:OOOEtOI ,,0. ll,)t)"r401
0.0000£+00 O.OOOe-r.t\)\)

O.IlOOE to:: -0. JOOOrtoJt
"0. booor .0 J o. 9{\,I()E" \) 1

O.OOOO~+I,)O o.oovortoo
O.8000Et01 O.1606E,~

-0.6000E+01 0.90~OE+OI
O.2300EtO:! -O.4::!OO(tO:!

O.('It)OO£tOO O.O('lOO['tOi)
-0.5000[tOI 0.1800[+02

:-- P,I"e-t of
~Iol~ c..J:tl

-:--
SOLUTION Of' THF: CO"PLEX SIHULTANEOUS Eo·'nTiONG.

REAL. P~RT IMGIH~RY PAR nAGNITUDE PHASE ANGLE' DEG)

XC \I • 11.:179755 -3.2819.- 12.03~96 -15.82

X(2l • 27.542859 8.38943 :!8."'221 16.9.

X(3» • 7.169136 -7.04257 10.56035 -41.83

X(4 •• 12.l17659 -1.68985 12."3~90 -7./11

)1'(5~ • 9.04006.- -2.60017 9.40U79

-~ tr
-~

rlir. 0,.- EXf:CurtOH
.:1'"41 TIf1F.t OHiO U.flf'SE" TI"£I 55.115
tiXlr o $+",. 3. 1'0 'le. cff t1" S1'n.. .
,.~,,;'I Joio tJl~tl('H'I.C~HIJ nIt rlY63 .t. 16~6 :n"J .. ,.,-11 COf,,.~C't·'" ,..."
(tuk NtY.'''9t.1I Tdl'~ 10"0 ~;.",~fj.11 f'l1~" (It) oloe)
CPU 0:07 en li"'I1"I:!" Unitt •• O.OI70 UI.:',))

ba ... ple .3

lLOS1N 1'51., v 13:->-H1 t
_<l.l, :'0 1"111 W:C 1077/8 618.72A TTY63

I··:,~.=:w('lrd:

1'.'~·~ ur,lt-:. renlaining
l ~.d.-) 27-Jan-77

Last logir': 1"'~1 27-Jar,-77
Thur

.jPIL e:Nii':PI.OT I

IN 1[f;i;r:TIVE PLOTTING PROGRAM •

s-l:., 1: 10 C<ll1I &)<a_iIa
1I.t. V'L. P--,'""-

~:t,XlMUH C"F'ACIlY: PLOTTING A CURVE OF 151 DATA POINTS.
I t·t.lllrH; THr f'kOGt<AH NOW, •••

n;RI f Il~'TJONS ARE AVAILAIILE:
,WII,IN 1 = TO PLOT A CUINE FOR YeF(X) WIIlCH WILL BE SUPPLIED BY YOU,
Or-TION ::' = TO PLOT A CURVE WITH COORllINA1ES ALREADY STORED ON FILE.
OrTION 3 = TO F'LOT A CURVE WIlH DA1A TO BE ENTERED AT THIS TERltINAL.

(IF'11ON = >.1

Wi:> rn-cs (IF PLOTS ARE AVAILA1'lE:
Ti;'r 1 -: PLor f'RIJfIlICfr, ON TERMINAL OR LINE PRINTER
n PE ::' ~ 1'[OT PI,orJlJCE[I ON CALCOMP PL01TER

(1.\1 (AI< UBI':'IN THE PRINTER OR TTY PLOT RIGHT AFTER EACH RUN. BUT YOU
r,,";1 W·'fT IItHIl THE NEXT DAY TO Gt::T TilE CALCOMP PLOT. ON THE OTHER
11(,''11. r:r..LCOMP PLOT IS or MUCH SUPERIOR QUALITY.

"IlII.)S£ [In: rYPE OF f'lOT YOU WANT:
:t1'I:.:..; '>'L

"""' Mr,rH hlINTS TO BE Pl.OTTED <NPT=';'>?
l.1I NO r r.ON[liSE NlinDER OF INCREMENTS WITH NUMBER OF POINTS. IF YOU
::,,'.'[too INCREMENTS. YOU SHOULD SF'EClfY 101 POINTS. AS AN EXAMPLE.

"IIIIH I~ "IHE VALUE OF THE FIRST X (Xl=';') ?

"l ~ -',2

(,HU IS THF VALUE OF THE LAST X (X2=';') ?
.. ·.l '::' ;. ro

rYf'E TIlE f'w,n,AN EXPRESSION OF F(X). SUCH AS:
3.12~EXP(-3.5*X)*SIN(377. *X)

f'~T[AT: FlIIHR;'N EXF'RESSION. NOT PIl EXPRESSION.

::111 Et': r(x I
;: (,<)~ >(; .159*EXP(-. UX)*SIN(O. UX)*SIN(0.5*X)

NOW READY TO SWITCH TO FORTRAN EXECUTION •••

FORTRAN I QZXZQ
F'CN
1.0AIJINr.

PLOT 61\ cor<E
EXECUTION

TYPE THIS COKMAND TO RECEIVE YOUR OUTPUT ON LINE PRINTERI

Q PLOT.LPT/FILEIFORTRAN

TYPE TIllS THIS COKMAND TO RECEIVE OUTPUT ON YOUR TERMINALI
TTY WlillH 132
TYPE PLOT .LPT

YOU KUST GET YOUR OUTPUT DEFORE NEXT PLOT RUN.
OTHERWISE, THIS OUTPUT WlI.L BE ERASED AND REPLACED DY NEW PLOT OUTPUTS.

STOP

END OF EXECUTION
CPU TIllE: 0.73 ELAPSED TIKE: 53
EXIT

436 APPENDIX B ENGINEERING LIBRARY

• i ry IJr'llll ~ 3?

.r (IT PI (IT. L [. r . }

HIE SCALf FACIOR OF OIWINAlfl i [lIVIGION= 0.500001'-02

TltE SCALE FAC10fI OF Al'SCISSA: 1 [lIVISION~ 0.10000EtOI

fIl<ST AF<SCISSA VALUE X(1)= O. OOOOOUOO

Norr:: IN INTI~F"Pfll:TlNf; Tltt PLlH, X-AXIS STARTS WITII X(l) VAllIE.
SUBSEllUENI X CAN BE COMf'UTf.[I filUM)/(1) ANll ABSCISSA SCALF: FACTOr,.

(MUL TIPL Y [tY SCALE f-ACTOR O. 50000E-02)
-:10 -20 -10 0 10 20 30 40 50 60 70

t -- - - - --- - -t--·----- ---+- ---- - ---- t- - -------t --------- -~---------t - -------- t --------- t- ------ ---I ---------t
I *
I
I

I *
5>+ *

'*

I
I
I
I

10) ~
I
I
I
I

15)"
I
I

U(20)-1
I
J
I

, I
'f<X(25)t

I
I
I

* *

:I<

* *
* * * >I' I *

.x (30) t *
I *

* *

t ---------+ -"--- --- --- - -t--- --- ----- t---------t ---------- t - --------t---------t ---------+ -------- --1--------- -+
-30 -20 -10 0 10 20 30 40 50 60 70

(MULTIPLY [IY SCALE FACTOR 0.50000E-02)

.0--------- step oS • ro :Jet off {I.e sysfl.,._
Jntl 26 [1 15103, 13~341] off TTY63 at 1541 27-Jan-77 Conr.ect,=6 Hin
I'i"'~_ RtW=23·H57 Tape IO~O SdVf!cj ,,11 files (IB blocks)
CPU 0:08 Cor" HWM=16P IJnit'i=0.0195 ($1.46)

T.t.v ~t""'; ... \ ~...... 6 ... ;" .. tes
-T.tAI c.. ... p ... ~ .. t;"". - 9 "u

Examples

(Q

CS)

N

CS)

co
~
CS)

~

~
CS)

CS)

~
>-~

~

~
CS)
1

co
~
CS)

1

N

~
1

(Q

CS)

10 •00 6.013

calcomp plotter output of Example 3

10.00 16.1313
X

20.130

EXRMPLE 3

437

26.013 313.130

INDEX A

A
ACCESS program, 403
ANSI standard, 81
ARCHIVE program, 405
ASCII code, 8
ASPEX Program, 280
Array processor, 134

B
BATCH, 367-392

compiling and execution
commands, 376-379

disk storage control
commands, 37-376

end-of-deck command, 375
error recovery commands, 384,387
examples, 380-388
inclusion command, 377
line interpretation, 383
sign-off command, 374

Batch, switches, 388
sign-on c~ands, 371

Batch jobs, to submit
via OPRSTK, 83,208,349,389
via cards, 72,84,389
via terminal, 83,208,349,389

Batch processing, 1
Batch modules, 374-379

compiling module, 377,379
disk storage module, 376,379
execution module, 378,379
inclusion module, 378,379
sign-off module, 374,479
sign-on module, 374,379

Batch software system, 368-370
Batch controller, 370
Queue manager, 368
Output spooler, 370
Staker, 368

Bauds, 11

c
CUSP, 4

438

GENERAL INDEX

CalComp subroutines, 247-270
annotations with symbols

and numbers, 253
axis, scales and labels, 254
basic pen movements, 251
initializing and terminating, 250
lines and curves plotting, 255
redefining or ig in and scale, 250
simple geometric patterns, 256
symbol table, 252

Calcomp Plotter primer, 247-270
CHANGE program, 406
Checklist:

computation errors, 149
data errors, 146
data errors, 146
input/output errors, 152
logic errors, 150
program readability, 15:2

Codes:
ADE, 252, 261
ASCII, 8
CalComp Symbol, 252
EBCDIC, 10
Sixbit, 10
protection, 28

Compiler diagnostics, 154
mnemonic code for warnings, 158
mnemonic codes, 156

Computer graphics, 225-284
Control characters, 17-18

CTRL-C, 17
CTRL-I, 17
CTRL-O, 17
CTRL-R, 17
CTRL-U, 17

Control file, 370,371
to create, 314
to submit, 316

Conversational program, 7
Coordinate:

direct, 262
screen, 262
user's, 262
virtual, 262

CSMP, 185-224
a primer, 185-206
DYNAMIC segment, 195
INITIAL segment, 195
SORT and IDSORT sections, 195
TE~~INAL segment, 195
data statements, 201
examples, 211

Gener al Index

D

execution control statements, 204
format, 194, 176
job execution, 209
job preparation, 207
library functions, 197
output control statements, 206
structure statements, 196
symbols, constants, operators, 194
translation control statements,202

D-statement, 170
bata line multiplexer, 2
DECtape, 395
DECwriter, 11-18
Del imi ter, 35
Device:

logical name, 286,321,338
physical name, 285,320,338
system, 320,338

Diagnosi tics:
compiler, 154
run-time, 155-167

Dial-up line, 8
Differential equations, 187-189

numerical solution, 189
Direct Graphics, 261
IJl'COpy program, 408

E
EBCDIC code, 10
Editing programs (UPDATE), 70
Editor, text, 33-80
ENG: device, 228-236,239,423-437
Engineering program library, 423-437-
Errors:

checklists, 146,149,150
coding, 138
dimension out-of-bound, 168
logic, 138
problem definition, 138

Executive system, 4

F
FILCOM program, 408
Files, 27

basic concept, 27
control, 370,371
specifications, 27

Flow chart, walkthrough, 139

FORDIJr program, 175-182
corrnnands
example, 179

FORFID program, 142
switches, 144

FOROTS diagnostics, 155,159
FORTRAN 77, 135
FORTRAN debugg ing, 137
FORTRAN format, 110-112

alphanumeric field, III
complex, 112

439

logical field, III
numeric field, 110
scale factor, 110
variable field width, III

FORTRAN program,
FORTRAN program, to enter, 82
FORTRAN program, to load, 85-90
FORTRAN program, to execute, 85-90
FORTRAN-IO, 81-184

alphanumer ic format field, 111
assignment statements, 99
blank 1 ine, 97
corrnnent line, 95
compilation control corrnnands, 97
compiler listing, 162
constants, 93
continuation line, 95
control statemetns, 100
debug line, 95
DEC subroutines, 117
device control statements, 112
expressions, 94
file control statements, 107
FORMAT statements, 110
input-ouput statement surrnnary, 106
input-output keywords, 101
library functions, 96
list directed input-output, 103
loader switches, 90
logical field format, III
logical units, 102
mUlti-statement line, 95
multiple-entry subprogram, 115
namelist, 103
numeric field format, 110
OPEN/CIDSE statements, 108
Pitt subroutines, 118
print carriage control

characters, 113
random access records, 103
READ statements, 104
specification statements, 98
statement sequence, 97
statements, 95
subprogram statements, 114
transfer modes, 101
variable field width, III
variables, 94
WRITE statements, 105

Full-duplex, 8

440 INDEX A GENERAL INDEX

G
Graphic devices:

calligraphic, 226
rasterized, 226

Graphics terminal, 19, 259
Graphics:

H

direct, 261
interactive, 271
menu, 271
screen, 261
virtual, 261

Half-duplex, 8
High-order language, 192
How to:

change mind on output, 359
change protection code, 352
change your password, 23,328
check computation errors, 149
check data errors, 146
check input/output errors, 152
check logic errors, 150
choose a system, 326
communicate with others, 330-333
compile a stored FORTRAN

program, 85,376
copy a file, 73,353
copy a tape, 408-410
create a file by batch, 72,375
create a file from a terminal, 72
debug a FORTRAN program, 137-184
delete a file, 352
do management of files, 294,350-354
do word-processing jobs, 299-313
draw a picture on DEC-IO, 245-279
edit a FORTRAN program, 84
enter a FORTRAN program, 82
enter a program/data file, 33-80
execute a stored FORTRAN

porgram, 85,378
get system status reports, 333
label a tape, 397
link between a PIL job and

a FORTRAN job, 420
link between a PIL job and

a batch job, 421
load a stored FORTRAN program, 85
manage your file by UPDATE, 72-74
merge several file into one, 73,353
operate a terminal, 8-26
plot a curve on DEC-IO, 227-244
prepare a flow chart, 142

register a tape, 397
safekeep a program/data

file, 401,405
set character istics of

a terminal, 344-34!)
set right marg in of terminal, 344
sign-off, 25,328
sign-on, 21, 326
sort alphabetically/mnnerically,

297-298
submit a batch job, 72,83-84,208,

349,389
submit for output, 355-365
trace program execution, 173-174
transfer files, 291-293
understand diagnostic messages,

154-167
use Engineering Program Library,

424-437
use a tape, 393-410
use disk as virtual memory, 317
use tape drives, 336-343

IMSL Package, 131

K
Keys:

L

backspace, 16
control characters, 17-18
control, 15
delete, 15
ESC, 16
linefeed, 15
repeat, 16
retrun, 15
shift, 16
special characters, 15-16
tab, 16

Labels, header, 395
Labels, trailer, 395
Language, simulation and modeling ,209
Line number, UPDATE, 34

absolute, 34
relative, 34

Line, transmission, 8
ded icated, 8
dialup, 8
hardwired, 8
shared, 8

General Index

M
MPB, multi-program batch, 367
M'ICOPY program, 408
Model ing, dynamic, 185
Modeling, mathematical, 187
Modem, 2
Monitor, 4
Monitor commands, 320-366

communication, 330
facility allocation, 336-343
file management, 350-354
file output, 354
job initiation, 326
job termination, 328
program compiling, loading

and execution, 347-349
QUEUEing for output, 355-363
source file preparation, 335
status report, 333
TTY control, 344-346

Multi-programming, 1
Multiprogramming system, 1,367
Multprogram Batch, 367-392

o
Operating Systems, 320-366
OPRSTK program, 314-316,

p
Password, 23,328,374

to change, 328
PIL, 412-422

constants, 412
expressions, 413
library functions, 414-415
subscripted variables, 413
var iables, 412

PIL statements, 413-421
conditional, 416
execution, 413
file control, 419
file management, 418
input and output, 416
input/output format, 416
labels, 413
loop, 416
subprog ram, 417
substitution, 413
termination, 413
transfer, 413

PIL-FORTRAN linkage, 420,423
PIL-oPRSTK linkage, 421

PIP program, 285-296
PIP switches, 286, 291-296

X-switch, 291
compunded, 294

441

file directory management, 294-295
transfer with editing, 291-293

PLOTIO Package, 264
Ploter output preview, 241
Plotter, digital, 245
Plotting,

on a graphic terminal, 264
on a plotter, 236
on a printer, 227
on a terminal, 227

Pointer (UPDATE), 34
PPN, 7
Protection code, 28

Q
QUEUE switches, 361-363' .
Quota, disk storage, 23-25

login, 24
logout, 24

R
Rasterization, 226
Record, 27,34
RUNOFF program., 299-313
RUNOFF command s:
RUNOFF conunands, 302,312

basic, 302-306
mode setting, 312
page formatting, 311
parameter setting, 313
text formatting, 310

RUNOFF swithces, 308-309
Run-time diagnostics, 155-167

s
Screen Graphics, 261
sign-Off, 25
Sign-On, 21
Simplex, 8
Sixbit code, 10
SORT program, 297-298
SSP Package, 130
SUBSET package, 123
Supervisor, 4
Swapping device, 27
Symbol, prompt, 6

442 INDEX A

T
Tape, 393-411

labeling, 397
DEC tape , 395
drive, 393
labeling of, 397
magnetic, 393
mounting and dismounting

of, 337-343,398
registration of, 397
sequential processing commands,399
tracks, 393
transport, 393

TAPLBL program, 397
Tape service programs, 401-410

ACCESS program, 403
ARCHIVE program, 405
CHANGE program, 406
DTCOPY program, 409
M'ICOPY, 409
UARC, 401-2

Teletype, 11
TEKPLT program, 241
Terminal Control System (PLOTlO), 264
Terminal, 8-26,259

CRr, 18
dumb, 20
graphics, 19,259
intelligent, 20
keyboard, 15

Time slice, 2
Time-shar ing, 1
Turn-around-time, 2
TYPE command, 364

u
UARC program, 401
UPDATE, 33-80

auxiliary file, 63
completion commands, 42
compounded commands, 47
conditional editing commands, 65
copy command, 52
editing control commands, 54
file management by, 72
length-control commands, 62
line deletion command, 40
line insertion mode, 44
line insertion, 41
line-output command, 41
move command, 49
parameter-setting commands, 58
pointer-movement commands, 37
text-changing commands, 39

v
VERPLT program, 280
Virtual Graphics, 261
Virtual memory, 317-318

w
Wild card, 28
Windows, 362

screen, 262
virtual, 262

$
$-cards, 371

GENERAL INDEX

INDEX B QUICK REFEREOCE OF Ca-1MANOO AND PROGRAMS

This INDEX incllrles a list of conunands or subprograms for rapid
reference. The legend of entr ie"s is:.

Conunand or Subprogram Name (Processor Name) , Page number

For example, the entry "SCALE (CALCOOP), 252" means a subprogram named SCALE for
the CalComp Plotter processor, and its description may be found on page 252.
The following processors are incllrled in the Quick Reference:

Conunands in the Batch processor BA'lCH
CALCOOP Subprograms in the CalComp Plotter Subprogram Package

PRG: PLTLIB. REL

A

Engineering
FORTRAN
MONITOR
PIL
PLOTIO
SUBSET

UPDATE
USL

Library Library programs in the device ENG:
Subroutines in the System FORTRAN Library
Conunands in the System r-t:mitor
Commands in the PIL Processor
Subroutines in the Tektronix Graphic Package PLOTIO
Subprograms of the SUBSET package, developed by

Ronal K. Nicholas.
Commands in the UPDATE text editor
User Program Library

B
BACK SPACE (PIL), 419
To-4

AlIN (PLOTIO), 279
AIOUT (PLOTIO), 279
ACCESS program, 403-405
ACQUIRE (PIL), 421
ADVANCE (UPDATE), 64
AINST (PLOTIO), 279
ALTER (UPDATE), 39

BACKFILE (MCNITOR), 400
BACKSPACE (MCNITOR), 399,400
BACKTO (BA'lCH), 384

AMAXX (SUBSET), 124
AMINX (SUBSET), 124
ANCHO (PLOTIO), 269
ANCHO (PLOTIO), 279
ANMODE (PLOTIO), 269
ANSTR (PLOTIO), 269
ANSTR (PLOTIO), Y
AOUTST (PLOTIO), 279
ARCHIVE program, 405-406
ARROW (UPDATE), 56
ARROW(UPDATE), 55
ASCEND (FORTRAN), 121
ASPEX program, 280
ASSIrn (MCNITOR), 336
ASSIrn (PIL), 418
AT (UPDATE), 37
AXIS (CALCOOP), 252

BAKSP (PLOTIO), 269
BASMAT (Library ENG:), 428
BELL (PLOTIO), 264
BMD (BA'lCH), 385
BODE (Library ENG:), 428
BREAK (UPDATE), 62

c
CALPLT (Library ENG:), 430
CARTN (PLOTIO), 269
CATALOG (PIL), 419
CHANGE (PIL), 418
CHANGE (UPDATE), 39
CHANGE program, 406-407
CIRCL (CALCOOP), 256
CMIS (Library ENG:), 428

443

444

COGGIN (Library ENG:), 428
COMEQ (Library ENG:), 428
COMPILE (MONITOR), 347
COpy (MONITOR), 352
COpy (SUBSET), 124
COpy (UPDATE), 52
CORE (SUBSET), 123
CPUNCH (MONITOR), 356
CSMP (BATCH), 385
CSMP (Library ENG:), 428
CURRENT (MONITOR), 333

o
DASHA (PLOTI0), 267
DASHL (CALCOMP), 255
DASHP (CALCOMP), 251
DASHR (PLOTI0), 267
DASHSR (PLilll0), 278
DATE (FORTRAN), 11 7
DAYTIME (MONITOR), 333
DCURSR (PLOTI0), 270
DEASSIGN (MCNITOR), 339
DECK (BATCH), 375
DELETE (MONITOR), 352
DELETE (PIL), 418
DELETE (UPDATE), 40
DEMAND (PIL), 416
DFI (Library ENG:), 428
DF2 (Library ENG:), 428
DFN (Library ENG:), 428
DIRECT (Library ENG:), 428
DIRECT (MCNlTOR), 350
DISMOUNT (MONI'rOR), 343
00 (PIL), 413
ooNE (PIL), 413
ooNE (UPDATE), 42
DPB (FORTRAN), 120
DPBN (FOR'l'RAN), 120
DRAWA (PLOTI0), 267
DRAWR (PLOTI0), 267
DRAWSA (PLOTI0), 278
DRAWSA (PLOTI0), 278
DRAWSR (PLOTI0), 278
DRIVES (MCNITOR), 340
DRWABS (PLOTI0), 265
DRWREL (PLOTI0), 265
DSHABS (PLOTI0), 265
DSHREL (PLOTI0), 265
DTCOPY program, 408-410
DWINoo (PWl'10), 267

E
ECHO (UPDATE), 56
EDIT (UPDATE), 55

TNDEX B QUICK REFERENCES

EE45 (Library ENG:), 430
ELIPS (CALCOMP), 256
ELSE (UPDATE), 67
END (UPDATE), 42
ENDPAG (CALCOMP), 250
EOD (BATCH), 375
EOF (MONITOR), 399,40U
EOJ (BATCH), 374
ERASE (PillrlU), 264
ERROR (BATCH), 384
ERRSET (FORTRAN) ,. 117
ERRSNS (FORTRAN) ,. 117
ERRSNS (FORTRAN) II 166
EXECUTE (MONITOR), 347
EXECUTE (PIL), 420
EXIT (FORTRAN), 117
EXIT (PIL), 413
EZLP (Library ENG:), 428

F
FACTOR (UPDATE), 58
FFT (Library ENG:), 42~
FIBON (Library N~G:), 429
FILCOM pro:Jram, 408-410
FINISH (UPDATE), 42
FINITT (PLOTI0), 264
FIT (Library ENG:), 429
FOR (PIL), 416
FORDDT program, 175-182
FORFID program, 142
FORM (PIL), 416
FOROTS pro:Jram, 155
FORTRAN (BATCH), 376
FORWARD SPACE (PIL), 419
FOUR (Library ENG:) , 429
FROM (UPDATE), 64

G
GAG (UPDATE), 57
GET (UPDATE) 65
GOTO (BATCH), 384
GRAPH (CALCOMP), 250
GRAPH (Library ENG:), 231
GRAPH (Library ENG:), 431
GRAPH2 (CALCOMP), 250
GRID (CALCOMP), 252
HDCOPY (PLOTI0), 264

H
HELP (Library ENG:), 429
HELP (MONITOR), 334

Quick References

HOME (PLOTI0), 269
HOOKE (Library ENG:), 429

IDENT (SUBSET), 123
IF (PIL), 416
IF (UPDATE), 65
IFILE (FORTRAN), 122
IMAGE (Library ENG:), 429
IMPROC (Library ENG:), 430
INCLUDE (BA'ICH), 378
IN IT (SUBSET), 124
INITIATE (MONITOR), 327
INITT (PLOTI0), 264
INPUT (UPDATE), 45
IS (UPDATE), 45

J
JOB (BA'ICH), 371
JOIN (UPDATE), 62

K
KCM (PLOTI0), 277
KIN (PLOTI0), 277
KJOB (MONITOR), 328

L
LDB (FOR'rRAN), 119
LDBN (FORTRAN), 119
LENGrH (UPDATE), 59
LGAXS (CALCOMP), 252
LGLIN (CAICOMP), 255
LINE (C'.AIJ:OMP), 255
LINE (PIL), 421
LINE (UPDATE), 57
LINEF (PLOTI0), 269
LINHGr (PLOTI0), 277
LINTRN (PLOTI0), 278
LINWDT (PLOTI0), 277
WAD (MONITOR), 347
WAD (PIL), 418
LOCATE (SUBSET), 123
LOGIN (MONITOR), 326
WGIDG (ENG:GRAPH), 236
WOOUT (PIL), 413
LOGTRN (PLOTI0), 278
WRGIN (CALCOMP), 250
LOWER (UPDATE), 57

LSH (FORrRAN), 120

M
M8080 (Library ENG:), 429
MARK FILE (PIL), 419
MATOP (Library ENG:), 429
MAX}{ (SUBSET), 124
METRIC (CALCOMP), 247
MINILP (Library ENG:), 420
MINX (SUBSET), 125
MOUNT (MONITOR), 341
MOVABS (PLOTI0), 265
MOVE (FORTRAN), 121
MOVE (UPDATE), 49
MOVEA (PLOTI0), 267
MOVER (PLOrl0), 2b7
MOVREL (PLOTI0), 265
MSFLVL (FORTRAN), 173
MTCOPY program, 4UB-409
MUX (Library ENG:), 429
MYJOB (SUBSET), 123
MYLINE (SUBSET), 123
MYNAME (SUBSET), 123

N
NEWLIN (PLOTI0), 69
NEWPAG (PLOrlO), 269
NI (Library ENG:), 429
NJOB (MONI1~R), 333
NOERROR (BATCH), 384
NUMBER (CAICOMP), 251

o
OFILE (FORTRAN), 122
ON FILEMARK (PIL), 419
ON SIZE (PIL), 421
ONTO (UPDATE), 63
OPRSTK (MONITOR), 349
OPRSTK (PIL), 421
OPRSTK program, 314-316
ORIGIN (CALCOMP), 250
OVERLAY (UPDATE), 61

p
PAGES (PIL), 421
PASSWORD (BA'ICH), 374
PENON (CAICOMP), 251
PENUP (CAICOMP), 251

445

446

PIP program, 285-296
PJOB (MONITOR), 333
PIACE (UPDATE), 61
PLOT (CALCOMP), 251
PLOT (Library ENG:), 429
PLOT (MONITOR), 236,356
PLOT8 (ENG:GRAPH), 229,231
PLOTIT (USL:), 241
PLOTIT program, 241-243
PLTLIB (CAICOOP) processor,

247-258
PLTSYM (CALCOMP), 251
PNTABS (PLOT10), 265
PNTREL (PLOT10), 265
POINl'A (PLOT10), 267
POINl'R (PLOT10), 267
POLAR (CALCOMP), 255
POLAR (ENG:GRAPH), 236
POLTRN (PLOT10), 278
POLY (CAICOMP), 256
POLY (Library ENG:), 429
POSITION (UPDATE), 61
POST (MONITOR), 331
PRESERVE (MONITOR), 352
PRINl' (MONITOR), 356
PRINl'8 (ENG:GRAPH), 236
PROCEDURE (PIL), 417
PRarECT (MONITOR), 352
PSCALE (CALCOOP), 250
PUT (UPDATE), 63

Q

QIKLOG (FORTRAN), 237
QIKPLT (FORTRAN), 237
QUEUE (MONITOR), 352
QUINE (Library ENG:), 430

R
R (MONITOR), 349
READ FROM (PIL), 419
REALEQ (Library ENG:), 430
RECO (Library ENG:), 430
RECOVR (PLOT10), 275
RECT (CALCOMP), 256
REDEFINE (PIL), 418
RELEAS (FORTRAN), 11 7
RENAME (MONITOR), 352
RESET (PLOT10), 275
RESOURCE (MONITOR), 334
REWIND (MONITOR), 399,400
REWIND (PIL), 419
RMOUNT (FORTRAN), 122,400
RROTAT (PLOT10), 275
RSCALE (PLOT10), 275

INDEX B QUICK REFEREOCES

RUN (BA'ICH), 386
RUN (MCNITOR), 349
RUN (PIL), 420
RUN (SUBSET), 128
RUNOFF program, 299-313

s
S8080 (Library ~~G:), 430
SAVE (MCNITOR), 348
SAVE (PIL), 418
SAVE (UPDATE), 59
SAVRAN (FORTRAN), 117
SCALE (CALCOMP), 252
SCALG (CALCOMP), 252
SCAMP (Library ~~G:), 430
SCURSR (PLOT10), 270
SEARCH (Library ENG:), 430
SEEOO (PLOT10), 276
SEELOC (PLOT10), 276
SEEREL (PLOT10), 276
SEETRN (PLOT10), 276
SEE'IW (PLOT10), 276
SEMIOG (ENG:GRAPH), 236
SEND (MCNITOR), 330
SEQUEOCE (BA'ICH), 371
SET (PIL), 413
SETMRG (PLOT10), 277
SETRAN (FORTRAN), 117
SETTTY (SUBSET), 126
SIPROC (Library IlliG:), 431
SIXBIT (SUBSET), 128
SKIP (MONITOR), 399, 4(jO
SMOOT (CALCOMP), 251
SORT (FORTRAN), 117
SORI' program, 297-298
SPRAY (FORTRAN), 121
SPSS (BA'ICH), 386
STARr (MCNITOR), 347
STATUS (Library I::NG:), 430
STOP (PIL), 413
SUBMIT (MCNITOR) ,I 356
SUBSET (Library IlliG:), 434
SUBSTITurE (UPDA~m), 39
SWINDO (PLOT10), 267
SYMBOL (CAICOMP) ,I 251
SYSTAT (MCNITOR) II 334

t
TAB (UPDATE), 59
TEKPLT (PLOT10) processor,

259-279
TEKPLT program, 241-244
THEN (UPDATE), 65
TIME (FORTRAN), 11 7

Quick References 447

TIME (MONITOR), 333
TINPUT (PLOT10), 279
TINSTR (PLOT10), 279
TO (PIL), 413
TO (UPDATE), 37
TOurPI' (PLOT10), 279
TOurST (PLOT10), 279
TPUNCH (MONITOR), 356
TRACE (FORTRAN), 173
TRANEQ (Library ENG:), 430
TRAVEL (UPDATE), 37
TRurH (Library ENG:), 430
TTY (MONITOR), 344
TWINOO (PLOT10), 267
TYPE (MONITOR), 364
TYPE (PIL), 416
TYPE (UPDATE), 41
TYPE program, 364-366

u
UARC program, 401-403
UNDRIVES (MONITOR), 340
UPDATE (MONITOR), 335
UPPER (UPDATE), 57
USESTAT (MONITOR), 333

v
VCURSR (PLOT10), 270
VERPLT program, 280
VWINOO (PLOT10), 267

w
WHERE (MONITOR), 334
WHERE (UPDATE), 60
WKDAY (SUBSET), 123
WRITE ONTO (PIL), 419

x
XYPLOT (ENG:GRAPH), 231,234
XYPRNl' (ENG:GRAPH), 236

z
ZERO (FORTRAN), 121

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447

