
April 1981

XPORT
Programmer's Guide

A Tutorial and Reference Manual
Order No. AA-J201 A-TK

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

VAX/VMS V2.2
TOPS-10 V7.01
TOPS-20 V4.0

XPORT V1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, April 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright CD 1981 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

The postage-paid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DEC DECsystem-lO PDT
DECUS DECSYSTEM-20 RSTS
DIGITAL DECwriter RSX
PDP DIBOL VMS
UNIBUS Edusystem VT
VAX lAS ~D~DDmD DECnet MASSBUS

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6

CHAPTER 2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2. 1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.5

CHAPTER 3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2

CONTENTS

INTRODUC '1'1 ON

APPLICABILITY OF XPORT FACILITIES
PROGRAM TRANSPORTABILITY •

• • • • • 1- i
• • • • . • • 1-2

FILE TRANSPORTABILITY .•• · • • •. 1-3
SYMBOL NAMING CONVENTIONS • • . •
COMPILATION ERROR MESSAGES .

. . •. •• 1-3
· • • • • 1-4

SMALL SAMPLE PROGRAM • • • • • • • • 1-5

TRANSPORTABLE DATA STRUCTURES

IN'I'RODUC'I'ION •
The Problem
The Solution •
Simple Example
Terminology

• • • • • • 2-1

$FIELD DECLARATION AND $FIELD_SET_SIZE •

· 2-1
2-2

• 2-3
· • 2-5

• 2-5
$FIELD Declaration • • • • • • • • • • • • 2-5

• 2-6 Transportable .Field-Types •••..
Nontransportable Field-Types • • • .
Guidelines for Individual Field-Types
$FIELD SET SIZE Usage

• • • • • • 2-8

SUPPLEMENTARY FEATURES • • • • • • • •
Field-Positioning Features •
Literal-Defining Eeatures
Value-Display Feature
Subfield Referencing Feature

TRANSPORTABILITY CONCERNS • • • •
Field Size •••••.•••
Integer Value Range •.••

• • • • • 2-8
2-12
2-12
2-12
2-14
2-15
2-16

• • •• 2-20
2-20
2-21
2-21 Use of $BYTES for Character Strings

EFFICIENCY CONCERNS ••••••••. • • • •• 2-22

INPUT/OUTPUT FACILITIES

INTRODUCTION • • • . • • • • • • • • • • 3-1
General Characteristics •.•••••
Specific Functions ••••••••

• • 3-2
• • 3-3

CAPABILITIES • • • • • • • • • • . • 3-3
File Level Capabilities
Input/Output Capabilities ••
File Specification Resolution

• • • • • • • 3- 3
• • • • • • 3- 5

I/O RE LA'I'ED MACROS • . . • • • • •
General Format and Common Parameters .
File-Level Macros •••• • • . • . .

iii

· • 3-8
· 3-9
3-10

· • •. 3-11

3.3. 3
3.4
3.4.1
3.4.2
3.5
3.6
3.6.1
3.6. 2
3.7
3.8

CHAPTER 4

4. 1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3

CHAPTER 6

6.1
6. 1. 1
6.1.2

6.1.3

6.1.4
6.1.5
6.1.6
6.2
6.3
6.3. 1
6.3.2
6.4
6.5
6.5.1
6.5. 2
6.5. 3

Input/Output Macros . . . • •
INPUT/OUTPUT CONTROL BLOCKS

Creating and Initializing lOBs
Using lOB Fields and Values •••••.•.•

STANDARD I/O DEVICES • • • • • •. •••••
FILE SPECIF'ICATION PROCESSING ••••

File Specification Resolution
File Specification Parsing

I/O COMPLETION CODES •
I/O ACTION ROUTINES • • • •

MEMORY MANAGEMENT FACILITIES

· . .'

3-15
3-18
3-18
3-19
3-22
3-23
3-23
3-26
3-27
3-28

INTRODUCTION • . • • • • • .
CAPABILITIES . • • • • • •

• • • • • • 4-1
• • • • . 4-1

MEMORY MANAGEMENT MACROS • •••.
$XPO GET MEM - Allocating Dynamic Memory
$XPO-FREE MEM - Releasing Dynamic Memory •
Dynamic Memory Elements . • • •

• 4-2
• 4-2
• 4-3

• • 4-4
COMPLETION CODES • • • • • • 4- 4
ACTION ROUTINES • • • • . • • • • • • • 4- 4

OTHER SYSTEM SERVICES

INTRODUC'I'ION • • 5-1
$XPO PUT MSG • • • •

Completion Codes •
Act ion Ro uti nes

$XPO TERMINATE

• • • • 5-1
5-3

• 5-3
• • 5-3

STRING HANDLING FACILITIES

STRING DESCRIPTORS • • • • • • • • • • • • • 6-1
$STR DESCRIPTOR -- Creating a String Descriptor 6-2
$S'I'R-DESCRIPTOR -- Compile-Time Descriptor
InitIalization .••••.•.••.•.•••• 6-2
$STR DESC INIT -- Run-Time String Descriptor
InitTalization •••••••••
String Descriptor formats
String Descriptor Usage Rules
Descriptor Data Types ••••

STRING DESCRIPTOR STRUCTURE REFERENCES • • • • .
STRING MODIFICATION • • • . . ••.

$STR COPY Operation . . • • .
$STR=APPEND Operation .••.

STRING COMPARISON • • •• .•••
STRING SCANNING • • • •

$STR SCAN Overview ••.
$STR-SCAN FIND - Find a Character Sequence
$STR-SCAN SPAN - Match a Set of Characters

iv

• 6-3
6-4

• 6-6
• 6-8
• 6-9

6-9
6-10
6-11
6-12
6-14
6-14
6-15
6-16

6.S.4
6.S.S
6.S.6
6.6
6.6.1

6.6.2

6.6.3

6.6.4

CHAPTER 7

7.1
7.2
7.2. 1

7.2.2

7.2.3

7.2.4

APPENDIX A

A.l
A. 1. 1
A.l.2
A.2
A.2.1
A.2.2
A.2.3
A.2.4
A.2.S
A.3

A.3.1
A.3.2
A.3.3
A.3.4
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.S
A.S
A.S.l
A.S.2

$STR SCAN STOP - Search for a Set of Characters 6-16
$STR SCAN - Returning a Substring 6-17
$STR -SCAN - "Scanning Through" a BOUNDED Str ing 6-17

STRING -CONVERSION · · · · · · · · · . · · · . . 6-18
$STR CONCAT and $STR FORMAT - ASCII to ASCII
String Conversions

- 6-18 · · · · · · · · · · $STR ASCII - Binary-Data to ASCII String
Conver sion . . . · · · · · · · · · · · 6-19
Nesting $STR ASCII, $STR _CONCA'l', $STR FORMAT
Pseudo-FunctTons

- 6-21 · · · · · · · · · · · · $STR BINARY - ASCII Str i ng to Binary-Data
Conversion . . . · · · · · · · · · · · · 6-22

BINARY DA'lA DESCRIPTORS

INTRODUCTION • • • • • . • • . • • • • • • • • • • 7-1
BINARY DATA DESCRIP'l'OR CREATION AND INITIALIZA'l'ION 7-2

$XPO DESCRIPTOR -- Creating a Binary Data
Desc~iptor • • • • • . • • • • • • • • •• • 7-2
$XPO DESCRIPTOR -- Compile-Time Descriptor
InitTalization • • • • • • • • • • • • • • 7-2
$XPO DESC INIT -- Run-Time Data Descriptor
InitTaliz~tion •••••••• ~ .••••••. 7-3
Classes Of Descriptors .•••••.• • 7-4

MACRO DESCRIPTIONS

AND CONVENTIONS • • • • • • • A-I DESCRIPTIVE NOTATION
Syntax Notation
Character-String and

• • • • . • . • • . • • • • A-I
Binary-Data Parameters •• A-2
String A-4 $STR APPEND - Append a

Sy~tax • • • • • • •
Restrictions •.•••
Parameter Semantics
Operational Semantics
Completion Codes •••.

$STR ASCII - Binary-to-ASCII Conversion

• A-4
• A-4

. • A-4
A-S

• A-6

Pseudo-Function . • •• ..•. A-7
Syntax • • • • • • • • A-7
Restrictions. • • • • . ••••.•••. A-7
Parameter Semantics • • • • • • • • . . • A-7
Usage Guidelines.. . ••••••••..• A-8

$STR BINARY - Convert ASCII to Binary .. A-9
Sy~tax . • • • • • • . A-9
Restrictions. • • • • ••• A-9
Parameter Semantics • • • • A-I0
Usage Guidel ines • • A-I0
Completion Codes • • • • • •• •••• A-II

$STR COMPARE - String Comparison A-12
Sy~tax • • •• •••• A-12
Restrictions. • . • • . • • • • . . • • • A-12

v

A.5.3 Parameter Semantics · · · · · · · · · · · · · A-12
A.5.4 Operational Semantics · · · · · · · · · A-13
A.5.5 Completion <;:odes · · · · · · A-13
A.6 $STR CONCAT - String Concatenation

Pseudo-Function · · · · · · · · · · · A-14
A.6.1 Syntax • . • · · · · · · · · A-14
A.6.2 Restrictions · · · · · · · · · · · · · · · · · A-14
A.6.3 Parameter Semantics · · · · · · · · A-14
A.6.4 Usage Guidelines · · · · · · · A-15
A.7 $STR COPY - Copy a String · · · · A-16
A.7.1 Syntax · · · · · · · · · A-16
A.7.2 Restrictions · · · · · · · · · · · · · · · A-16
A.7.3 Parameter Semantics · · · · A-16
A.7.4 Operational Semantics · · · · · · A-17
A.7.5 Completion Codes · · · · · · · · A-18
A.8 $STR DESCRIPTOR - Declare a String Descriptor A-19
A.8.1 Syntax . • • · · · · · · · · A-19
A.8.2 Restrictions · · · · · · · · · · · · · · · · · A-19
A.8.3 Parameter Seman tic s · · · · · · · · · · · · · A-19
A.9 $STR DESC INIT - Initialize a String Descriptor A-21 - -
A.9.1 Syntax • • • · · · · · · · · · A-2I
A.9.2 Restrictions · · · · · · · · · · · · · · A-21
A.9.3 Parameter Semantics · · · · A-21
A.9.4 Completion Code · · · · · · · · A-22
A.IO $STR EQL - String Equality Compar ison A-23
A. 10. 1 Syntax • • • · · · · · · · · · · · · · · · A-23
A. 10. 2 Restrictions · · · · · · A-23
A. 10. 3 Parameter Semantics A-23
A. 10. 4 Operational Semantics · · · · A-24
A. 10. 5 Completion Codes · · · · · · · · · · · · · A-25
A.ll $STR FORMAT - Str ing Fo rmat ti ng Pseudo-Function A-26
A.ll.l Syntax · · · · · · · · · · · · A-26
A.II.2 Restrictions · · · · · · · A-26
A.ll.3 Parameter Semantics · · · · · A-27
A.ll.4 Usage Guidelines · · · · · · · A-27
A.12 $STR GEQ - String Greater-Than-or-Equal

Comparison · · · · · · · · · · · · A-29
A.12.1 Syntax · · · · · · · · · · · · A-29
A.12.2 Restrictions · · · · · · · · · · A-29
A.12.3 Parameter Semantics A-29
A.12.4 Operational Semantics · · · · A-30
A.12.5 Completion Codes · · · · · · · · · · · · · · · A-3I
A.13 $STR GTR - String Greater-Than Compar ison A-32
A.13.1 Syntax • . . · · · · · · · · · · · · · · · · · A-32
A.13.2 Restrictions · · · · · · · · · · · · · · · A-32
A.13.3 Parameter Semantics · · · · · · · · · · A-32
A.13.4 Operational Semantics · · · · · · · · · A-33
A.13.5 Completion Codes · · · · · · · · · A-34
A.14 $STR LEQ - String Less-Than-or-Equal Comparison A-35
A. 14.1 Syntax · A-35
A. 14. 2 Restrictions · · · · · · · · · · A-35
A. 14. 3 Parameter Semantics · · · · · · · · A-35
A. 14. 4 Operational Semantics · · · · · · · · · A-36

vi

A.14.5
A.15
A. 15.1
A. 15. 2
A.15.3
A.15.4
A. 15. 5
A.16
A.16.1
A.16.2
A. 16. 3
A. 16.4
A. 16.5
A.17
A.17.1
A.17.2
A.17.3
A.17.4
A.17.5
A.18
A.18.1
A.18.2
A.18.3
A.18.4
A.18.5
A.19
A.19.1
A.19.2
A.19.3
A.19.4
A.20
A. 20. 1
A. 20.2
A. 20 . 3
A.21
A. 21. 1
A. 21. 2
A. 21. 3
A.22
A. 22. 1
A.22.2
A.22.3
A.23
A.23.1
A.23.2
A.23.3
A.23.4
A.24
A. 24 • 1
A.24.2
A. 24. 3
A. 24 • 4
A.25

Completion Codes i • • • • ••••••••••

$STR_LSS - String Less-Than Comparison
Syntax •
Restrictions • • • • • • • • •. • •..•
Parameter Semantics .•••
Operational Semantics
Completion Codes • • • • • • • • •

$STR_NEQ - Str-ing Inequality Comparison ••••
Syntax • • • • • • • • •
Restrictions ••••.•••••
Parameter Semantics
Operational Semantics .•.•• •
Completion Codes •

$STR_SCAN - String Scanning
Syntax • • • • • • •
Restrictions •••••••••••
Parameter Semantics
Operational Semantics
Completion Codes • • • • • • • • • • • • • • •

$XPO BACKUP - Preserve an Input File
Syntax • • • • • • •
Parameter Semantics
Usag e Gu idel ines
Completion Codes
Example •• • • • •

$XPO CLOSE - Close a File
Syntax . •
Parameter Semantics
Usage Guidelines.
Completion Codes • • • •

$XPO DELETE - Delete a File
Sy~tax • • • • • • •
Parameter Semantics
Completion Codes . . • • • • • • • • • •

$XPO_DESCRIPTOR - Declare a Data Descriptor
Syntax • • • . • • • • • • • . • • . . •
Restrictions ••••••••••.••••
Parameter Semantics •• . • • • • . • • • • •

$XPO DESC INIT - Initialize a Data Descriptor
Syntax -: • • • • • • • • . • • • • • • • •
Parameter Semantics ••• • • . • • • . . • •
Completion Code •••••••.•••••••

$XPO FREE MEM - Release a Memory Element .
Sy~tax -: • . . • • • . . • • . . • •
Restrictions .•••
Parameter Semantics
Completion Codes •

$XPO_GET - Read From a Eile
Syntax • • • • . . •
Parameter Semantics
Usage Guidelines .••
Completion Codes • • . • . .

$XPO_GET_MEM - Allocate Dynamic

vii

.
Memory Element

A-37
A-38
A-38
A-38
A-38
A-39
A-40
A-41
A-41
A-41
A-41
A-42
A-43
A-44
A-44
A-44
A-45
A-46
A-47
A-48
A-48
A-48
A-49
A-49
A-50
A-51
A-51
A-51
A-52
A-52
A-54
A-54
A-54
A-55
A-57
A-57
A-57
A-57
A-59
A-59
A-59
A-60
A-61
A-61
A-61
A-61
A-62
A-63
A-63
A-63
A-64
A-65
A-67

A.25.1
A. 25. 2
A. 25. 3
A. 25. 4
A.26
A. 26. 1
A. 26. 2
A. 26. 3
A.27
A. 27 • 1
A. 27 . 2
A. 27 . 3
A. 27 • 4
A.28
A. 28. 1
A. 28. 2
A. 28.3
A.29
A.29.1
A.29.2
A.29.3
A.30
A. 30 . 1
A.30.2
A.30.3
A. 30. 4
A.30.5
A.31
A.31.1
A. 31 . 2
A. 31. 3
A.32
A.32.1
A.32.2
A.32.3
A.33

A. 33. 1
A.33.2
A.34
A. 34. 1
A. 34. 2
A.34.3

APPENDIX B

B.l
B.2
B.3
B.4

Syntax • • . • • • . •
Restrictions ••.••
Parameter Semantics
Completion Codes • • •

$XPO lOB - Declare an lOB
Syntax • . • • • • • • . • • • • •
Parameter Semantics .•••
Exampl~es • • • • • • • • • • •••

$XPO lOB INIT - Initialize an lOB •••.
Syntax-••••••••••••••••••
Restrictions. . • • • • •••••
Parameter Semantics ••••
Completion Code ••••

$XPO_OPEN - Open a File •••.

A-67
A-67
A-67
A-68
A-70
A-70
A-70
A-70
A-71
A-71
A-71
A-71
A-72
A-73
A-73
A-74
A-77
A-79
A-79
A-79
A-80
A-81
A-81
A-81
A-82
A-82
A-82
A-84
A-84
A-84
A-85
A-86
A-86
A-87
A-89

Syntax • • • • • . • . • • • •
Parameter Semantics • • • .
Completion Codes • • • • • • •

$XPO PARSE SPEC - Parse a File Specification
Syntax .-. • • • . • • • • •. . •••
Parameter Semantics • . • • • • • .
Completion Codes • • • • • . • • • •

$XPO PUT - Write to a File • . •••
Syntax . • • • • • • • • •• ••••
Restrictions ••••••••••
Parameter Semantics
Usage Guidelines •..
Completion Codes •.•

$XPO PUT MSG - Send a Message
Syntax-. • • • • • . •
Parameter Semantics
Completion Codes • • • . • •

$XPO RENAME - Rename a File
Syntax • • • • • • •
Parameter Semantics
Completion Codes • •

$XPO SPEC BLOCK - Declare a File Specification
Block - ••••

Syntax • . • • • • • • • • • • . • .
Examples • • • • • . . • • • • • • •

$XPO TERMINATE - Terminate Program Execution
Syntax . • • •
Parameter Semantics
Routine Value

CONTROL BLOCKS

INPUT/OUTPUT BLOCK (lOB)
STRING DESCRIPTORS
BINARY DATA DESCRIPTORS
FILE SPECIFICATION PARSE BLOCK .

viii

A-90
A-90
A-90
A-91
A-91
A-91
A-91

• • B-2
• B-4

• • B-5
B-6

APPENDIX C

APPENDIX D

APPENDIX E

E.l
E.l.l
E.l.2
E.2
E.3

APPENDIX F

F.l
F.2
F.3

APPENDIX G

G.l
G.l.l
G.l.2
G.l.3
G • 1. 4

G.2

G.2.1
G.2.2

APPENDIX Z

Z.l
Z.2
Z.3
Z. 3. 1
Z.3.2
Z.3.3
Z.3.4
Z.3.5
Z.3.6
Z.4
Z .4. 1
Z • 4. 2
Z. 4. 3
Z.4.4
Z.4.5

COMPLETION CODES

SAMPLE PROGRAM

AC'l'ION ROUTINES

ACTION-ROUTINE CALLS AND RETURNS •
Action Routine Calls ••••••.
Action Routine Return Values •••••.

XFAIL.BLI FAILURE-ACTION ROUTINE LISTING •
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING •

COMPILING AND LINKING

DEFINING A TRANSPORTABLE LOGICAL DEVICE
COMPILING . . • • •

• E-l
· . E-l

• E-3
· . E-4

E-15

· • F-l
· • F-2

LINKING •• • • • • • • . • • • • • . . . • • • . F-3

XDUMP UTILITY PROGRAM

XDUMP - XPORT DATA STRUCTURE DISPLAY UTILITY
Running the XDUMP Utility •••..
Compiling a Structure Display Module ••••
Linking a Structure Display Module •
Displaying a User Declared Structure While

· G-l
· . G-l
· • G-2

• G-3

Debugging • • • • • . • •• . •• G-3
XDESC, XIOB, and XSPEC - XPORT STRUCTURE DISPLAY
MODULES • • • • • • . . • • . • • . . • • • • G-3

Linking an XPORT Structure Display Module
Displaying an XPORT Structure While Debugging

• G-3
• G-4

EASY-TO-USE I/O PACKAGE (EZIO)

OVERVIEW . • • . • . .
LIMITATIONS • • • • • • .
FUNCTIONAL DESCRIPTION .

The FILOPN Routine
The FILIN Routine
The FILOUT Routine
The FILC LS Ro ut i ne • .
Restrictions •••
Example •••••

• • • • . • Z-l
• • • • •• • Z-1
• • • • • • • • • Z - 2

• • • • •• .• Z-2
• • • • • • Z-4

• • • • • • Z-4
• • • • • • • • • Z - 5

• • • • • • • • • • Z - 5
• • • Z-6

LOADING EZIO WITH USER PROGRAM •. • • • • • Z-7
EZIOFC - File Services 11 (RSX-IIM)
EZIORT - RT-ll • . ••...•••••
EZIOIO - TOPS-IO .•••.•••••.
EZI020 - TOPS-20 .•••....•••.
EZIOVX - VAX/VMS. • • . • •••

ix

Z-7
Z-8
Z-8
Z-8
Z-8

Z.5 PACKAGING Z-8

x

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6

INTRODUCTION

APPLICABILITY OF XPORT FACILITIES . • . . • 1-1
PROGRAM TRANSPORTABILITY • • . • • . • 1-2
FILE TRANSPORTABILITY . • • • • • 1-3
SYMBOL NAMING CONVENTIONS . • . . . • 1-3
COMPILATION ERROR MESSAGES • • • • . . . 1-4
SMALL SAMPLE PROGRAM . • • • . • . • • • • 1-5

CHAPTER 1

INTRODUCTION

This manual describes a collection of transportable, source-level
programming tools for use with the BLISS language. These tools
provide extensive input/output facilities, a uniform interface for
obtaining operating-system services - such as dynamic memory, and aids
for data structuring and string handling.

Stand-alone BLISS utility programs, such as PRETTY or BLSCRF, are not
described in this manual.

The Transportable Programming Tools package is informally referred to
as XPORT - for "transportable" - which indicates the design emphasis
on source-level transportability across all BLISS target systems, as
well as on ease-of-Iearning and ease-of-use. (Transportability is
discussed in further detail below.)

1.1 APPLICABILITY OF XPORT FACILITIES

Except for the data-structure definition aids described in Chapter 2,
the facilities described in this manual are intended for use in
development of 'application' programs, that is, programs that can make
use of operating-system services, as opposed to the programs that make
up the operating system itself. (The BLISS language, of course, is
intended for implementation of programs in both categories.)

In the system-software context, an 'application' might be a compiler,
linker, or utility program. The use of XPORT for such implementations
offers programming convenience, maintainability, and transportability
in the system-services area, combined with the efficiency and
reliability obtainable through the use of BLISS.

1-1

Introduction
APPLICABILITY OF XPORT FACILITIES

The data-structuring facilities do not involve calls on underlying
target-system services (as do the other XPORT facilities), and thus
can be used in any type of program development.

1.2 PROGRAM TRANSPORTABILITY

With a very few exceptions, the XPORT programming tools are fully
transportable. This means that, used in accordance with the
guidelines given in this manual, the same XPORT source code will
produce identical or equivalent results on each BLISS target system.

XPORT provides a small number of system-specific features deemed
mandatory for some programs on a particular target system. An example
of this type of feature is a field type, $SIXBIT, that relates to the
SIXBIT string encoding. Some programs for the TOPS-IO environment may
require its use.

XPORT also provides a few discretionary features that allow you to
take advantage of the storage characteristics of a particular system,
e.g., to possibly eke out a bit more storage efficiency in certain
situations.

Use of the discretionary type of non-transportable feature is strongly
discouraged except in very unusual situations. In the majority of
cases only a very little storage will be saved at the cost of
transportability, which may turn out to be a very serious cost at some
point in the product's lifecycle. Also, compaction of storage beyond
that provided by default may incur a significant execution-speed
penalty.

Obviously the use of XPORT will not make an otherwise non
transportable BLISS program into a transportable one. And as in the
case of Common BLISS constructs, features of XPORT that are in
themselves transportable can be used in completely non-transportable
ways. This is due to the very significant architectural differences
that exist among the several target-system families.

In order to use either Common BLISS constructs or XPORT features in a
transportable fashion, these crucial differences must be recognized at
the outset and kept constantly in mind. (One such difference is in
the range of integer values possible on the 16-bit systems versus the
32- or 36-bit systems.) Just as with BLISS itself, transportable
programming using XPORT is primarily a matter of design rather than of
coding.

1-2

Introduction
PROGRAM TRANSPORTABILITY

Throughout this manual we have tried to provide transportability
guidelines and warnings concerning all "problematic" features of
XPORT. Transportable BLISS programming in general is discussed in the
"Transportability Guidelines" chapter of the several BLISS User's
Guides.

1.3 FILE TRANSPORTABILITY

There are two aspects of XPORT file transportability. The first
concerns the transportability of I/O operations at the source-program
level. With very few exceptions (clearly noted), the XPORT I/O
functions behave the same in all environments.

The second aspect of file transportability concerns the ability to
move XPORT-created files themselves from one environment to another.
It is not a goal of XPORT to provide this· kind of file
transportability. Instead, standard file-interchange utilities
provided as a part of each target system - must be used to move files
from system to system.

1.4 SYMBOL NAMING CONVENTIONS

The names used in the XPORT package are formed in accordance with
VAX/VMS operating-system conventions. The names so formed are
somewhat unwieldy in a few cases, but they all have the virtues of
consistency and clarity. After you have learned the few simple
patterns involved, you can easily identify the kind of entity (macro,
completion code, control-block field, etc.) represented by any given
name.

VAX/VMS-compatible names are formed of facility codes, dollar signs,
underscores, and alphanumeric strings. The facility codes assigned to
the XPORT package are the following (more may be added in future):

o XPO - I/O, memory, and host-system service facilities

o lOB - I/O control block definitions

o STR - String-handling facilities.

Names formed according to the convention begin with one of the
facility codes listed above. Arbitrarily, we will use the facility
code XPO in the name formats and most of the examples given below.

1-3

Introduction
SYMBOL NAMING CONVENTIONS

The name formats used in XPORT are as follows:

o $XPO xxxx Macro name
Example: $XPO PUT

o XPO$xxxx Global symbol, usually a routine name
Example: XPO$FAILURE

o XPO$ xxxx Completion code (special case of a literal name)
Example: XPO$_NORMAL

o XPO$c xxxx Variable or field name

where c is a data-type code, as follows:

c = A
B
G
H
K
T
V
z

Address/pointer value
Byte value (9-bit field on -10/20 systems)
General value (fullword integ er)
Short value (two bytes)
Literal (Ilkonstant ll

)

Text string (STR descriptor)
Arbitrary field (usually one or more bits)
Other

Examples:
IOB$T STRING a string descriptor sub-block,

which includes the fields:

IOB$H STRING -- a two-byte count value
IOB$A-STRING a character-string pointer

Two other farms are used for internal names, some of which you may
encounter in listings and compiler diagnostics:

XPOxxxx and $XPO$$xxxx

In Chapter 2, the macros associated with the data-structuring facility
have simple names of the form II$XXXXIl, such as $FIELD, $INTEGER,
$TINY INTEGER, $DESCRIPTOR, and $OVERLAY. This is so because the
data-structuring facility has no facility code assigned to it; the
names otherwise adhere to the naming convention.

1.5 COMPILATION ERROR MESSAGES

The use of XPORT facilities usually implies the expansion of many
macros during compilation. Macro expansion following the occurence of
a source-language error can result in the generation of spurious error
messag es.

1-4

Introduction
COMPILATION ERROR MESSAGES

Once an error-level diagnostic (prefixed %ERR) has been generated, the
compilers stop performing most expression evaluations. This causes
the object file to be discarded and, assuming there are macros in the
source program, sometimes results in erroneous macro expansions and
the consequent generation of spurious error messages.

If the cause of a compiler
(especially one referring
diagnostic has already been
correct all known source
messages will "go away"
eliminated.

1.6 SMALL SAMPLE PROGRAM

diagnostic is not immediately evident
to a macro expansion) and an error-level

issued, ignore the diagnostic in question,
errors, and recompile. Any spurious error
when the preceding actual errors are

As an initial "taste" of XPORT coding, we present below a minimal
sample program consisting almost entirely of XPORT macro calls. This
program is a simple file-copy utility, called LISTER.

Appendix D contains a much more extensive programming example which
illustrates the use of many XPORT features in a completely realistic
context.

MODULE LISTER (MAIN

BEGIN
1+

SAMPLE PROGRAM

LISTER) =

1 This program asks for a file name, opens the named file,
1 and copies the file to the terminal.
1-

LIBRARY 'BLI:XPORT'i XPORT definitions

OWN
terminal iob: $XPO IOB(),
file iob-: $XPO_IOB()i

ROUTINE LISTER
BEGIN

Open the user's terminal and ask for a file name.

$XPO_OPEN(IOB=terminal iob, FILE_SPEC=$XPO_INPUT)i

$XPO_GET(IOB=terminal iob,
PROMPT= 'Enter name of file to be listed: ');

1-5

Introduction
SMALL SAMPLE PROGRAM

Open the files

$XPO_OPEN(IOB=file iob, FILE_SPEC=terminal iob[IOB$T_STRING]);

Process each line.

END

WHILE $XPO GET(IOB=file iob) DO
$XPO_PUT(IOB=terminal_iob, STRING=file iob[IOB$T_STRING]);

$XPO_CLOSE(IOB=file iob);

$XPO_PUT(IOB=terminal_iob, STRING= '*** End of file ***');

$XPO_CLOSE(IOB=terminal iob

END;

ELUDOM

Note: $XPO INPUT is the transportable name for the standard input
device. It-is, for example, equivalent to "TTY:" on some systems.

1-6

CHAPTER 2

2.1
2. 1. 1
2. 1. 2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.4.1
2.2.4.2
2.2.4.3
2.2.4.4
2.2.4.5
2.2.5
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.2
2.3.2.1
2.3.3
2.3.3.1
2.3.4
2.3.4.1
2.3.4.2

2.3.4.3
2.3.4.4
2.4
2.4. 1
2.4.2
2.4.3
2.5

TRANSPORTABLE DATA STRUCTURES

INTRODUCTION • • • • • . . • •• • 2-1
The Problem . • • • . • • • • • • 2-1
The Solution • • . • • • • • • 2-2
Simple Example • • • . • • • . •••• 2-3
Terminology • . • • • • • • • • • 2-5

$FIELD DECLARATION AND $FIELD_SET_SIZE •.•... 2-5
$FIELD Declaration • • • • • . . • • • 2-5
Transportable Field-Types •.••• . 2-6
Nontransportable Field-Types • • • • • . . 2-8
Guidelines for Individual Field-Types ••• 2-8

$ADDRESS vs. $POINTER Usage ••••••••. 2-8
Coding the $SUB BLOCK Field-Type • . . • 2-9
Cod ing the $DESCRIPTOR Fi eld-rrype 2-10
Coding the $REF DESCRIPTOR Field-type 2-11
Coding the $STRING Field-Type 2-11

$FIELD SET SIZE Usage 2-12
SUPPLEMENTARY FEATURES • • • • • • • • 2-12

Field-Positioning Features. 2-12
$ALIGN Usage • • • • • • • • •. 2-13
$OVERLAY and $CONTINUE Usage 2-14

Literal-Defining Features . . • . 2-14
$LITERAL and $DISTINCT Usage • • ...• 2-15

Value-Display Feature •••••••••••• 2-15
$SHOW Usage •• • • • •• •••. 2-15

Subfield Referencing Feature•.• 2-16
Subfield Referencing Using a BIND Declaration 2-17
Subfield References Using General Structure
References • • • • • • • • • • • • • • •
Subfield References Using $SUB FIELD .
Using $SUB FIELD with $OVERLAY-..••.

TRANSPORTABILITY CONCERNS • • • •
Field Size. • • • . • •• . •.•
Integer Value Range •.••••••..•.•
Use of $BYTES for Character Strings . . • • .

EFFICIENCY CONCERNS •..••.••••••••

2-18
2-19
2-19
2-20
2-20
2-21
2-21
2-22

CHAPTER 2

TRANSPORTABLE DATA STRUCTURES

2.1 INTRODUCTION

This chapter describes a high-level aid for defining BLOCK-type data
structures in a convenient and transportable manner.

2.1.1 The Problem

The specification of reasonably compact, non-uniform data structures
-- typically control blocks -- for use across target systems poses a
difficult transportability problem. The difficulty is caused by the
basic architectural differences found among the BLiSS target systems,
as discussed in Chapters I and III of the BLISS Language Guide.

Briefly, the differences are found
characteristics:

in the

o The size of the fullword (or BLISS value) :

following system

16, 32, or 36 bits

o The size of the addressable unit: 8 bits vs. 36 bits

o The ability to access fields that cross fullword boundaries:
VAX-II only

These differences affect the transportable design of all types of data
segments, scalar or structured, to some extent. But in particular,
the difficulty of defining BLOCK and BLOCKVECTOR structures
transportably, using standard BLISS declarations, is such that the
programmer often ducks the issue altogether and resorts to separate
sets of FIELD and data declarations for each target system.

2-1

Transportable Data Structures
INTRODUCTION

The numeric notation ordinarily used in the standard FIELD declaration
e.g., [1,0,16,1] while powerful, is inconvenient to code and

modify and is quite error-prone, in addition to being
nontransportable.

2.1.2 The Solution

The XPORT structure-definition facility is a collection of macros that
provides a solution to these problems. It allows you to define
efficient BLOCK structures in a way that is both convenient and, for
the most part, system independent. The facility consists principally
of a replacement for the standard BLISS FIELD declaration, using the
keyword $FIELD.

The facility also includes several groups of supporting features,
namely:

$<field-types> }
$FIELD_SET_SIZE} Block-defining features

$ALIGN }
$OVERLAY } Field-positioning features
$CONTINUE }

$LITERAL }
$DISTINCT } Literal-defining features

$SHOW Value-display feature

$SUB FIELD Subfield-referencing feature

The overall strategy of the structure-definition facility is to allow
you to name the kind of field required for each block component, as
opposed to specifying its (necessarily machine dependent) position and
size, and to have the compiler calculate the appropriate structure
reference values and the aggregate block size for each target system.
A "kind of field" or field-type (e.g., $SHORT INTEGER) generally
implies not only the size but also the alignment and sign-extension
mode required.

In addition to transportability, this facility offers a
coding convenience (and consequent ease of modification)
justifies its use.

2-2

degree of
that alone

Transportable Data Structures
INTRODUC TI ON

CAVEAT

The XPORT structure-definition facility
cannot solve all transportability
problems. Particularly, it cannot of
itself solve the kind of
transportability problem that is often
encountered when transporting a program
between a 32- or 36-bit system on one
hand and a 16-bit system on the other,
caused by the large discrepancy in
BLISS-value size between those two
system groups. Section 2.4 discusses
such transportability problem areas in
some detail.

2.1.3 Simple Example

The following example of a fairly simple block structure called XCB
(for Xample Control Block), gives the general flavor of the XPORT
structure-definition facility:

$FIELD
XCB FIELDS

SET
XCB 1
XCB-2
XCB-3
XCB-4
XCB-S
TES

LITERAL
XCB SIZE

OWN
XCB ALPHA

[$ADDRESS] ,
[$TINY INTEGER],
[$B YTE],
[$SHORT INTEGER],
[$POINTER]

$FIELD SET SIZE - -

BLOCK[XCB_SIZE] FIELD (XCB_FIELDS)

If the XPORT data-structure macros were not used, the following sets
of equivalent, system-specific declarations would be required for each
BLISS dialect:

2-3

FOR BLISS-16 =)

FIELD

FOR

FOR

OWN

XCB FIELDS
SET
XCB 1
XCB-2
XCB-3
XCB-4
XCB-S
TES ;

XCB ALPHA

BLISS-32 =)

FIELD
XCB FIELDS

SET
XCB 1 -
XCB 2 -
XCB 3 -
XCB 4

-
XCB S
TES ;

OWN
XCB ALPHA

BLISS-36 =)

FIELD
XCB FIELDS

SET
XCB 1 -
XCB 2 -
XCB 3 -
XCB 4 -
XCB S
TES ;

OWN
XCB ALPHA

Transportable Data Structures
INTRODUCTION

[0,0,16,0],
[1,0,8,1],
[1,8,8,0],
[2,0,16,1],
[3,0,16,0]

BLOCK[4] FIELD(XCB_FIELDS)

[0,0,32,0],
[1,0,8,1],
[1,8,8,0],
[1,16,16,1],
[2,0,32,0]

BLOCK[3] FIELD(XCB_FIELDS)

[0,0,18,0],
[0,18,9,1],
[0,27,9,0],
[1,0,18,1],
[2,0,36,0]

BLOCK[3] FIELD(XCB_FIELDS)

2-4

Transportable Data Structures
INTRODUC TI ON

2.1.4 Terminology

The coined term "fullword" stands for "word" on the PDP-II, for
"longword" on the VAX-II, and for "word" on the DEC-IO/20 systems, and
corresponds to the size of a BLISS value on all target systems~

The BLISS predefined literal name %BPVAL is used in subsequent
descriptions to denote the number of bits in a fullword (i.e., ~its
per BLISS value) for any target system. That is, %BPVAL implies the
value 16, 32, or 36 for BLISS-16, BLISS-32, or BLISS-36 respectively.

The BLISS predefined literal name %UPVAL is used in subsequent
descriptions to denote the number of addressable units in a fullword
(i.e., units per BLISS value) for any target system. That is, %UPVAL
implies the -value 2,---4, or 1 for BLISS-16, BLISS-32, or BLISS-36
respectively.

Also, the abbreviation "DEC-IO/20" is used to stand for "DECsystem-lO
or DECSYSTEM-20". It denotes the entire 36-bit family of target
systems.

2.2 $FIELD DECLARATION AND $FIELD SET SIZE

The XPORT $FIELD declaration is used in place of the BLISS FIELD
declaration to define the structure-reference actuals for fields of a
BLOCK structure. The $FIELD SET SIZE feature is used to calculate the
size of a block defined via $FIELD.

2.2.1 $FIELD Declaration

The general form of a $FIELD declaration is:

$FIELD field-set-name =

SET
field-name-l
field-name-2

field-name-n
TES;

[field-type] ,
[field-type] ,

[field-type]

2-5

Transportable Data Structures
$FIELD DECLARATION AND $FIELD SET SIZE

where field-set-name and field-name-i are user-chosen names, as in a
FIELD declaration

field-type is one of the (macro) names defined in the following
two subsections.

The XPORT $FIELD declaration is used in much the same way as the
standard FIELD declaration. The major differences are summarized
below.

o A field-type name must be used instead of the conventional
list of numeric values in each field-definition. The
field-type names are actually macro calls (as is the
, k e yw 0 r d' $ FIE L D its elf) •

o The $FIELD keyword indicates the beginning of a new
block-structure description (the macro call generates
counter-initializing code as well as a "FIELD" lexeme). This
implies that, in normal usage, each $FIELD declaration will
contain exactly one field-set-definition.

o The ordering of the individual field-definitions within the
declaration is significant. That is, the order in which the
fields are specified determines the physical ordering of the
corresponding block components. Fields are packed as densely
as possible, and thus several fields may be allocated within
one fullword.

o The $ALIGN feature can be used preceding a field-definition
to force a non-default boundary alignment for that field.
The use of $ALIGN is described in Section 2.3.1.

o The $OVERLAY and $CONTINUE features can be used within the
declaration to create overlapping field-definitions; the use
of these features is described in Section 2.3.1.

2.2.2 Transportable Field-Types

The following field-types can be used with any BLISS compiler:

Field Type

$BIT

$BITS(n)

Definition

Single bit field

Specified number of bits - transportability
limited if n>16 (see Section 2.4.1)

2-6

Transportable Data Structures
$FIELD DECLARATION AND $FIELD SET SIZE - -

$BYTE Unsigned field: eight bits on a PDP-ll or
VAX-ll; nine bits on a DEC-10/20

$BYTES(n) Unsigned field: specified number of bytes -
transportability limited if n>2 (see Section
2.4.1). Not to be used for character strings;
see Section 2.4.3.

$INTEGER Signed fullword integer (iwo bytes on a PDP-ll,
four bytes on a VAX-ll or a DEC-10/20)

$TINY INTEGER Signed one-byte integer

$SHORT INTEGER Signed two-byte integer

$LONG INTEGER Signed four-byte integer - transportability
limited for PDP-ll (see Section 2.4.1)

$ADDRESS Address of a memory location (fullword on a
PDP-ll or VAX-ll, two bytes on a DEC-10/20)

$POINTER Pointer to a character position in memory (a
fullword on all target systems; to be used with
CH$PTR)

$SUB_BLOCK(len) Fullword-aligned beginning of a substructure
within the current structure, where the length
len is specified in fullwords. (The resulting
field description may have a zero length.) See
Section 2.2.4.2 for usage guidelines.

$DESCRIPTOR(class)
Fullword aligned, standard character-string or
binary-data descriptor sub-block, the length of
which varies according to the class of
descriptor requested. The class may be FIXED,
BOUNDED, DYNAMIC, DYNAMIC BOUNDED, or UNDEFINED.
See Section 2.2.4.3 for usage guidelines.
Descriptors in general are discussed in Chapter
6.

$REF_DESCRIPTOR Address of a character-string or binary-data
descriptor (see Section 2.2.4.4)

$STRING(n) Specified number of ASCII character positions,
i.e., a character-position sequence (eight bits
per character for PDP-ll or VAX-ll, seven bits
per character for DEC-10/20), addressable-unit
aligned. See Section 2.2.4.5 for usage
guidelines.

2-7

Transportable Data Structures
$FIELD DECLARATION AND $FIELD SET SIZE

2.2.3 Nontransportable Field-Types

An additional nontransportable field-type, BLISS-36 only, is provided
for the sake of completeness:

Field Type

$SIXBIT(n)

Definition

Specified number of 6-bit characters, where n
must be a multiple of three (DEC-lO/20 only)

2.2.4 Guidelines for Individual Field-Types

The use of the bit, byte, and integer form of XPORT field-type is
straightforward and does not require further discussion, except under
the heading of "Transportability Concerns" (Section 2.4). The proper
use of $ADDRESS, $POINTER, $SUB BLOCK, $DESCRIPTOR, $REF DESCRIPTOR,
and $STRING, however, may not- be completely obvious. These
field-types are discussed individually below.

2.2.4.1 $ADDRESS vs. $POINTER Usage

On the PDP-II and VAX-II, the $ADDRESS and $POINTER field-types
produce the same size field, a fullword in each case. In the
DEC-IO/20 environment (without extended addressing), however, these
two field-types produce quite different-sized fields: 18 bits vs. 36
bits respectively. It is important to understand the distinction
between these two related types of field, and their intended usage.

An address is simply the storage address of a binary data item or
structure. A pointer is a 'character address' that designates a
position in a BLISS character-position sequence, as interpreted by the
BLISS character-handling (CH$xxxx) functions. For example, a pointer
to the nth character of a character string beginning at a known
address can be calculated using the BLISS CH$PTR function. Thus,
"pointer" denotes a specialized, transportable kind of address value
for string data.

In a 36-bit environment without extended addressing, an address can be
represented by only 18 bits (half a BLISS fullword), but a pointer
requires 36 bits (an entire BLISS fullword). In a 16-bit or 32-bit
environment, an address and a pointer have the same internal
representation, each requiring an entire BLISS fullword.

2-8

Transportable Data structures
$FIELD DECLARATION AND $FIELD SET SIZE

2.2.4.2 Coding the $SUB_BLOCK Field-Type

The intended purpose of the $SUB BLOCK field-type is to signify the
beginning of a related group of fields within a block structure. This
field-type can be used in one of two ways:

1. As a "placeholder" only. In the form $SUB BLOCK() or
$SUB_BLOCK(O), it identifies a specific point in-a block but
reserves no space. When used in this form, the next
field-definition defines a field beginning at the same point
as that identified by the "name = [$SUB BLOCK()]" definition.
(Fullword alignment is implicit for-this field-type.) For
example, consider the following $FIELD-declaration fragment:

SET

STATUS CELLS
COMP CODE
RETRY STATUS
UPDATE STATUS

TES;

[$ S UB BLOC K 0] ,
[$B YTE] ,
[$BITS (3)],
[$BIT] ,

In the block structure defined by this declaration, the field
COMPL CODE begins at the fullword also identified by the
field=name STATUS CELLS. The implicit fullword alignment for
field-name STATUS CELLS ensures that that the positions
identified by these two names will in fact coincide, on any
system and no matter what definitions precede the ones shown.

A field description generated by $SUB BLOCKO always has a
size-value of zero, and thus can only be used in a context
that does not specify or imply indirection, that is, in a
non-fetch/non-store context.

2. As a "spaceholder". In the form $SUB BLOCK(len) , where len
is the length of the sub-block Tn addressable units,-rt
identifies a specific point in a block and reserves a
specified amount of space. When used in this-iorm, the next
field-definition defines a field that begins immediately
following the sub-block being defined. Consider the
following coding fragment:

2-9

Transportable Data Structures
$FIELD DECLARATION AND $FIELD SET SIZE - -

SET

INPUT lOB [$SUB BLOCK(IOB$K LENGTH)],
OUTPUT lOB [$SUB-BLOCK(IOB$K-LENGTH)],
TEMP lOB [$SUB-BLOCK (IOB$K-LENGTH)] ,
SERVICE CODE = [$BYTE], -

TES;

In this example three separate sub-blocks, each
'IOB$K LENGTH' units long, are defined in sequence. The
SERVICE CODE field follows the sub-block TEMP lOB.

A field description generated by $SUB BLOCK(n) where n is
either 0 or greater than %UPVAL has a size-value of zero, and
can only be used in an address (i.e., non-fetch, non-store)
context.

The field-positioning features $OVERLAY and $CONTINUE are
often used in combination with this field-type, to define
individual fields within the sub-block. The use of these
features is shown in a later example (Section 2.3.1.2).

2.2.4.3 Coding the $DESCRIPTOR Field-Type

The purpose of the specialized $DESCRIPTOR(class) field-type is to
define the beginning and extent of a standard XPORT sub-block, called
a descriptor, within a larger block structure. The size of this sub
block varies according to the class of descriptor specified; the
class keywords are FIXED, BOUNDED, DYNAMIC, DYNAMIC BOUNDED, and
UNDEFINED. Section 6.1 of this manual describes the properties of the
different classes, as well as descriptor usage in general.

The $DESCRIPTOR field-type is actually equivalent to the "spaceholder"
form of $SUB BLOCK, that is, to $SUB BLOCK(len) where the value of len
is implied by a class keyword. As for $SUB BLOCK, fullword alignment
is implicit. Also, the field descripti~n generated by $DESCRIPTOR
always has a size-value of zero, and can only be used in an address
context. The default class is FIXED for a field definition of the
form $DESCRIPTOR().

The field-positioning features $OVERLAY and $CONTINUE can be used in
combination with this field-type, to define individual fields within
the descriptor. The use of these positioning features is shown in a
later example (Section 2.3.1.2).

2-10

Transportable Data Structures
$FIELD DECLARATION AND $FIELD_SET_SIZE

The various string and binary-data descriptors included within the
XPORT I/O control block (lOB), described in Section 3.4 and Appendix
B, provide an actual instance of descriptors used as sub-structures
(as opposed to independent block structures) •

2.2.4.4 Coding the $REF_DESCRIPTOR Field-type

The purpose of the specialized $REF DESCRIPTOR field-type is to define
a field that is the address of eTther a character-string or binary
data descriptor. (See Chapters 6 and 7 for general information on
descriptors.) For the purposes of field declaration, the
$REF DESCRIPTOR field-type is equivalent to $ADDRESS.

Use of the $REF_DESCRIPTOR field-type has two benefits, however: (1)
the field declaration in which it is used is more self-documenting,
and (2) the XDUMP utility can provide a more symbolic field display
during program debugging. (See Appendix G for a description of
XDUMP.)

2.2.4.5 Coding the $STRING Field-Type

The $STRING(n) field-type reserves space for an ASCII
character-position sequence of length n. Each character position
occupies eight bits on the PDP-ll or seven-bits on the DEC-IO/20. The
BLISS character-handling (CH$xxxx) functions, described in Chapter 20
of the BLISS Language Guide, are specifically designed to access and
manipulate such sequences in a completely transportable fashion. For
example, a pointer to the beginning (first character position of) a
transportable string field defined as, e.g.,

STRING BUFFER = [$STRING(80)]

should be constructed with the function CH$PTR(address) , for example,
CH$PTR(IOBLOCK[STRING_BUFFER]).

The field description generated by a $STRING(n) definition has a zero
size value if n specifies a character-position sequence whose length
exceeds %BPVAL bTts (or if n is 0). In usual practice, however, this
is of no consequence because the field-name is only used to generate a
character-position pointer as described above. A $STRING field is
aligned to the nearest (higher order) addressable-unit boundary: A
byte boundary for the PDP-ll or VAX-ll, or a word boundary for the
DEC-IO/20. (This ensures that the field-reference implied by the
field name is usable as a primary expression, i.e., as an address
val ue .)

2-11

Transportable Data Structures
$FIELD DECLARATION AND $FIELD_SET_SIZE

The $FIELD SET SIZE feature calculates the length, in fullwords, of a
block defTned- with the $FIELD declaration. You would ordinarily use
this feature in a LITERAL declaration following a $FIELD declaration,
to obtain the number of fullwords needed to accomodate the fields
defined in that declaration. (The usual placement is immediately
following the $FIELD declaration, since $FIELD SET SIZE implicitly
refers to the last such declaration.) For example:- -

$FIELD
field-set-name
SET

TES;

LITERAL literal-name = $FIELD_SET_SIZE;

The example given at the beginning of this chapter amply illustrates
the use of this feature and its transportability aspects. As
demonstrated by that example, $FIELD_SET_SIZE produces the exact
number of fullwords needed to allocate a BLOCK structure.

2.3 SUPPLEMENTARY FEATURES

The supplementary features of the XPORT structure-definition facility
are described below under several different functional categories.
Like the rest of the structure-definition facilities, these features
are implemented as macro calls.

2.3.1 Field-Positioning Features

The field-positioning features $ALIGN, $OVERLAY, and $CONTINUE
are used within the $FIELD declaration and allow you to alter the
default positioning of a field within a structure.

By default, the only boundary alignment performed by the $FIELD
declaration is the minimum required by the respective machine
architectures. For example, the PDP-II and DEC-IO/20 systems cannot
fetch from or store into a field that spans a fullword boundary.
Therefore, for those systems $FIELD provides fullword alignment for
such fields that would otherwise cross that boundary. On the VAX-II,
however, no such restriction exists and no boundary alignment is
performed for a fetchable field (i.e., any field of up to %BPVAL bits
in length).

2-12

Transportable Data Structures
SUPPLEMENTARY FEATURES

2.3.1.1 $ALIGN Usage

The $ALIGN(mode) feature forces a specified mode of alignment for the
immediately following field-definition. The alignment modes are BYTE,
WORD, UNIT, and FULLWORD. $ALIGN(xxx) causes the subsequently defined
field to begin at the next xxx-type boundary point assuming that it is
not already at such a boundary by default. The precise meaning of the
mode keywords are as follows:

o BYTE indicates alignment to the next (8-bit) byte boundary for
a PDP-II or VAX-II; or to the next 9-bit byte position on a
DEC-IO/20 system, that is, to the next bit that is a multiple
of 9.

o WORD indicates alignment to the next even-numbered byte
boundary for a PDP-II or VAX-II; or to the next fullword or
halfword boundary for a DEC-IO/20 system, whichever is
encountered first.

o UNIT indicates alignment to the next addressable-unit: to a
byte boundary on a PDP-II or VAX-II, or to a word boundary on
a DEC-IO/20.

o FULLWORD indicates alignment to the next fullword boundary on
any system.

For example:

$FIELD
FIELDSET A
SET
FIELD Al = [$SHORT_INTEGER],
FIELD-A2 = [$BYTE],

$ALIGN(FULLWORD)
FIELD A3 = [$ADDRESS],

TES;

The use of $ALIGN here ensures that field FIELD A3 will fallon a
fullword boundary on any system. It also ensures that this alignment
is insensitive to any changes that may be made to preceding field
definitions. (See Section 2.4 on efficiency considerations.)

2-13

Transportable Data Structures
SUPPLEMENTARY FEATURES

2.3.1.2 $OVERLAY and $CONTINUE Usage

The $OVERLAY(field) feature causes the next field to begin at the same
point in the structure as the named field, which itself must be
defined by a preceding field-definition. Essentially it allows you to
create alternate definitinns for a portion of a structure.

The $CONTINUE feature is used after a $OVERLAY and, as its name
implies, allows you to end a sequence of overlapping definitions and
continue defining fields at the "end" of the structure. That is, it
causes the field defined subsequent to it to start at a point
following the highest-order position already occupied by any
previously defined field.

Consider the following coding fragment:

STATUS [$B ITS (16)] ,
$OVERLA Y (STATUS)

INITIAL [$BIT],
OPEN [$BIT],
ERROR = [$BIT],
EOF = [$BIT],

$CONTINUE
NEXTFIELD = [$INTEGER],

In this example, the INITIAL, OPEN, ERROR, and EOF bit fields all
overlap the 16-bit field named STATUS, while NEXTFIELD starts beyond
the STATUS field, or indeed beyond the furthermost field yet defined.
The STATUS field has 12 high-order bits that, presumably, are reserved
for future use.

2.3.2 Literal-Defining Features

The literal-defining features $LITERAL and $DISTINCT are used in
con j un c t ion wit h (but 0 u t sid e 0 f) a $ FIE L D dec 1 a rat ion. Th e y allow
you to define a sequence of literal values in a convenient and easily
maintainable fashion.

2-14

Transportable Data Structures
SUPPLEMENTARY FEATURES

2.3.2.1 $LITERAL and $DISTINCT Usage

These two features are used together to generate members of the
integer set 1,2,3,4, •.• and assign them in ascending order to literal
names. This is useful, for example, for defining an arbitrary but
dense set of status-code values and assigning names to those values.

The $LITERAL 'keyword' essentially provides a modified form of the
BLISS LITERAL declaration, in which the $DISTINCT feature may be used.
The general form of this declaration is:

$LITERAL
literal-name-l
literal-name-2
literal-name-3
literal-name-4

$DISTINCT,
$DISTINCT,
$DISTINCT,
$DISTINCT,

literal-name-n = $DISTINCT;

$LITERAL initializes an internal "value counter" to 0; $DISTINCT
bumps that counter by 1. Thus the literal names are given the values
1 through n in the order of their declaration.

Although this feature has no specific transportability aspect, it is a
coding convenience that particularly facilitates the modification or
maintenance task when such a set of literals needs to be altered.

2.3.3 Value-Display Feature

The $SHOW feature allows the numeric values generated by the XPORT
$<field-type>, $FIELD_SET_SIZE, and $DISTINCT macros to be displayed
in the program immediately following each macro call. It also allows
the supression of any informational-level messages (prefixed %INFORM)
concerning $FIELD usage.

2.3.3.1 $SHOW Usage

$SHOW is used anywhere in a module to enable or disable the display of
subsequent XPORT-generated field definitions, literal values, and
informational messages related to $FIELD usage. The general form of
the $SHOW macro is

$SHOW (display-keyword , ••.)

2-15

Transportable Data Structures
SUPPLEMENTARY FEATURES

where the display-keywords are:

FIELDS or NOFIELDS

LITERALS or NOLITERALS
INFO or NOINFO

ALL

NONE

- Display/don't display field
definitions

- Display/don't display literal values
- Give/suppress informational messages

concerning field definitions
- Display both definitions and values,

and give informational messages
- Don't display any definitions, and

suppress informational messages.

The initial (default) $SHOW options are NOFIELDS, NOLITERALS, and
INFO.

An example of the $SHOW macro is

$SHOW(FIELDS, NOLITERALS)

which would cause the actual field-definition values generated by any
subsequent $FIELD declaration to appear in the source listing. The
values are displayed immediately following the source line to which
they correspond. (Any $FIELD-related informational messages would be
reported by default, assuming no prior setting of NOINFO.)

2.3.4 Subfield Referencing Feature

(Note to readers: If this manual were organized according to levels
of difficulty, the following material would be presented under
"Advanced Features". Therefore, if the material in this section seems
obscure to you, it is likely that you have not yet experienced the
need for a subfield-referencing capability.)

The $SUB FIELD feature provides a convenient and clear means of
referring to a subfield; that is, to a field within a substructure.
This feature can be used instead of, or in addition to, methods of
subfield referencing involving BIND declarations or the use of
general-structure-references.

The need for a subfield-referencing mechanism arises when a data
structure is defined in a composite fashion, using separate "building
blocks", as shown in the subsequent example. The building blocks can
be either explicit $FIELD declarations or can be implicit (predefined)
XPORT descriptor structures; see the $DESCRIPTOR field-type and
Section 6.1.

2-16

Transportable Data Structures
SUPPLEMENTARY FEATURES

The following declarations provide a context for discussion and
examples of subfield referencing. The XCB structure definition given
in Section 2.1.3 is referred to in the first declaration, and forms a
part of the context.

$FIELD
COMPOSITE BLOCK

SET
X CHAIN
X-CONTROL
X-NAME
X-BUFFER
TES;

[$ADDRESS] ,
[$SUB BLOCK(XCB SIZE)],
[$DESCRIPTOR(FIXED)] ,
[$DESCRIPTOR(BOUNDED)]

LITERAL COMP_BLK_SIZE = $FIELD_SET_SIZE;

OWN
X PROCESS

GLOBAL
X REPORT

BLOCK[COMP BLK_SIZE] FIELD(COMPOSITE_BLOCK);

BLOCK [COMP_BLK_SIZE] FIELD(COMPOSITE_BLOCK);

The structure described by the COMPOSITE BLOCK field-set consists of a
single address field and three sub-blocks. The format and size of
each of the sub-blocks are defined at some point prior to this code
fragment (see Section 2.1.3 and Appendix B.2).

Note carefully at this point that, given the preceding declarations,
the ordinary-structure-references

and

would be incorrect because the subfield names are not defined relative
to the origin of the entire block.

2.3.4.1 Subfield Referencing Using a BIND Declaration

To facilitate references to X CONTROL subfields within the X PROCESS
block, for example, you could-write the declaration

BIND
PROCESS CTL X_PROCESS[XCONTROL]: BLOCK[] FIELD(XCB_FIELDS);

2-17

Transportable Data Stru~tures
SUPPLEMENTARY FEATURES

Then, within the scope of this declaration, you would be able to use
the following fetch expression:

(The subfields XCB 2, XCB_3, etc., could also be referred to in the
same way, of cours~.)

Similar references to X CONTROL subfields of the X REPORT block would,
however, require an additional BIND declaration,-as would references
to X NAME or X BUFFER subfields of either block. For example,
ordinary-structure-references to X BUFFER subfields of the X REPORT
block would require a governing declaration of the form

BIND
REPORT_BUF = X_REPORT[X_BUFFER]: $STR_DESCRIPTOR();

where $STR DESCRIPTOR() is an XPORT macro, described in Chapter 6,
that provIdes a structure-attribute and field-attribute for standard
XPORT string descriptors. Within the scope of this BIND declaration,
you would be able to use expressions such as

2.3.4.2 Subfield References Using General Structure References

Sub- field references equivalent to those shown above can be
using a general-structure-reference, as shown in the
parallel examples of fetch expressions:

.BLOCK[X_PROCESS[X_CONTROL],XCB 1]

.BLOCK[X_REPORT[X_BUFFER],STR$H_LENGTH]

achieved
following

These expressions are more verbose than their equivalents in the
preceding subsection, but have the advantage of not requiring the BIND
declarations when only one or two references to each substructure are
to be made. The syntax of a general-structure-reference does,
however, leave something to be desired in the way of clarity and
simplicity.

2-18

Transportable Data Structures
SUPPLEMENTARY FEATURES

2.3.4.3 Subfield References Using $SUB_FIELD

The $SUB FIELD feature offers the same advantage as the general
structure-reference for subfield references, and in addition provides
clarity of intent and a simpler syntax. The general form of a
$SUB FIELD reference is

$SUB_FIELD(substructure-name, field-name)

where the definition of <field-name> and the definition of
<substructure-name> occur in different $FIELD declarations.

The following fetch expressions, using $SUB FIELD, are equivalent to
the fetch expressions given in the preceding two subsections:

• X_PROCESS [$SUB_FIELD(X_CONTROL,XCB_l)]

• X_REPORT [$SUB_FIELD(X_BUFFER,STR$H_LENGTH)]

2.3.4.4 Using $SUB_FIELD with $OVERLAY

When a particular subfield of a structure will be referred to
frequently, it is common practice to provide an explicit definition of
that subfield within the overall structure definition. The following
alternative definition of the COMPOSITE BLOCK structure demonstrates
the use of $SUB_FIELD with $OVERLAY in order to declare an "explicit
subfield":

$FIELD
COMPOSITE BLOCK

SET
X CHAIN [$ADDRESS],
X-CONTROL [$SUB BLOCK(XCB SIZE)],
X-NAME [$DESCRIPTOR(FIXED)],
X-BUFFER [$DESCRIPTOR(BOUNDED)],

$OVERLAY($SUB FIELD(X BUFFER,STR$H_MAXLEN)
X MAX BUFF SIZE = [$BYTES(2)]

$CONTINUE
TESj

Thus the following two references to the subfield in question would be
equivalent:

. X_PROCESS [X_MAX_BUFF_SIZE]

. X_PROCESS [$SUB_FIELD(X_BUFFER,STR$H_MAXLEN)]

2-19

Transportable Data Structures
TRANSPORTABILITY CONCERNS

2.4 TRANSPORTABILITY CONCERNS

Two related problem areas cause most of the transportability concerns
that arise in connection with XPORT data structures: field size, and
integer value range. Another, lesser problem is the possible
confusion of $BYTES(n) with $STRING(n) as a means of transportably
defining a character-string field. These potential problem areas are
discussed individually below.

2.4.1 Field Size

Several of the XPORT field-types can cause a transportability problem
with respect to field size (assuming that the field being defined is
to be fetched from or stored into). The problem stems from the fact
that a fetchable/storable field cannot exceed a fullword (%BPVAL bits)
in length on any system. The problematic field-types are:

1. $LONG INTEGER. This field-type is not fully transportable to
the PDP-II, since no more than two bytes can be
fetched/stored on that system. If compiled for that system,
it will reserve four bytes in the data structure but the
corresponding field description will have a zero size value
and will be useful in an address context only. (Note here
that the field-type $INTEGER will produce the exact same
effect as $LONG INTEGER on the VAX-II and DEC-IO/20, and is
fully transportable to the PDP-II albeit with a radical
reduction in integer value range, as discussed below.)

2. $BITS (n). If the value of n exceeds 16, this field type is
not fully transportable across all target systems, for the
reasons given under item (1) above. (This field-type,
however, is often used as a "spaceholder" for a collection of
bits that is not typically fetched or stored as a whole.)

3. $BYTES (n). If the value of n exceeds 2, this field-type is
not fully transportable aGross all target systems, for the
reasons given under item (1) above.

Observe that we have not included either $SUB BLOCK or $STRING in the
above list, on the assumption that fields defined with these
field-types are typically longer than a fullword and are 'pointed to'
in some fashion rather than accessed directly. If, however, $STRING
were used (e.g.) to define a character-string field that was to be
fetched directly, anything over two character positions would not be
fully transportable.

2-20

Transportable Data Structures
TRANSPORTABILITY CONCERNS

In all cases, if a longer-than-fullword field is generated by a field
type other than $SUB BLOCK or $STRING, it is the user's responsibility
to align it to an addressable boundary (with $ALIGN(UNIT)) if its
address is to be used.

2.4.2 Integer Value Range

Transportation of programs between the two larger BLISS target-system
families (i.e., VAX-II and DEC-lO/20) does not usually present a
problem with regard to range of integer values, since each system
accomodates a fullword value of the same order of magnitude. However,
unless considerable care is taken at the design stage, the potential
problems involved in moving a program from a system with 32 or 36 bits
per value to a system with only 16 bits can be very troublesome
indeed. The discrepancy between the maximum values that can be
hand.led is enormous. For example, $INTEGER defines a field on the
VAX-II or the DEC-lO/20 that can accomodate a value in excess of two
billion or 34 billion respectively. On the PDP-II, however, the
maximum (positive) value that a $INTEGER field can hold is 32,767.

Obviously, this problem can only be resolved by a design that ensures
that no calculated value need exceed the value limit of the smallest
system to which the program is to be transported.

2.4.3 Use of $BYTES for Character Strings

The $BYTES field-type is not intended for the transportable definition
of character-string fields. Although it will serve the purpose on the
PDP-II and VAX-II, where each ASCII character position occupies an
8-bit byte, on the DEC-lO/20 it will define a sequence of 9-bit bytes
whereas a sequence of 7-bit character positions is required.

The BLISS transportable character-handling functions assume a 7-bit
character size on the DEC-lO/20. The $STRING field-type is intended
expressly for this purpose. It provides the correct space allocation
in each case, and also provides automatic alignment of the field to an
addressable-unit boundary, which is required in order that the field's
address may be passed (or otherwise used as an address) .

2-21

Transportable Data Structures
EFFICIENCY CONCERNS

2.5 EFFICIENCY CONCERNS

On some systems, a certain amount of speed advantage can be gained
from having fields begin on a major addressable boundary. The $ALIGN
feature allows you to request this alignment. By default XPORT
produces maximally packed fields, on the assumption that space
efficiency will more often be desired.

As a case in point, the VAX-ll system allow fetchable/storable fields
to cross fullword boundaries, and therefore XPORT will begin most
fields (addresses, integers, byte sequences) at any point in a VAX
longword. As an extreme example, an address field may begin at bit 31
of a given word and extend through bit 30 of the following word. A
considerable amount of efficiency would be gained (assuming, of
course, that the address value is used with some frequency) if the
field began on a fullword boundary. In general it can be said that,
on the byte-oriented architectures, a field that corresponds to a
standard allocation unit (BYTE, WORD, LONG) should, for maximum
efficiency, start on an address boundary that is 'natural' for its
size. On a PDP-II system this alignment of fields tends to occur
"automatically" in XPORT data structures as a result of the PDP-Il
field-reference restrictions (discussed above). On the VAX-Il however
this alignment is the user's responsibility.

Another potential candidate for alignment consideration is a two-byte
(lS-bit) field on a DEC-IO/20, which can be very efficiently accessed
from either a word or half-word boundary. By default XPORT will align
such a field to a fullword boundary only if it would otherwise span a
fullword boundary. JUdicious use of the BYTE option of $ALIGN can
achieve the desired positioning in this case.

On the whole, however, the real probability of significant speed gains
can only be determined by a study of the target-system architectures
in relation to the program's use of the fields in question.

2-22

CHAPTER 3

3.1
3. 1. 1
3. 1. 2
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.3
3.3
3.3.1
3.3.2
3.3. 3
3.3.3.1
3.4
3.4. 1
3.4.2
3.5
3.6
3.6.1
3.6.1.1
3.6.2
3.7
3.8

INPUT/OUTPUT FACILITIES

INTRODUCTION • . • • •• .••....•..• 3-1
General Characteristics • • • • . . . •• . 3-2
Specific Functions • • • •• 3-3

CAPABILITIES . • • • • • . • . . . • • . 3-3
File Level Capabilities • • • • 3-3

OPEN • • • ••• • 3-4
CLOSE • • • • • • • • 3-4
BACKUP • • • • • • • • • • • • • •• ••• 3-4

Input/Output Capabilities • 3-5
Opening Concatenated Input Files . 3-6
Output File Opening Options .•• 3-7
Devices Openable for Both Input and Output .. 3-8

File Specification Resolution •• .• . .. 3-8
I/O RELATED MACROS • • • • • . • • • • • 3-9

General Format and Common Parameters • . • •• 3-10
File-Level Macros ••• • • • •. .•.• 3-11
Input/Output Macros ••••• • • • 3-15

Use of Pointers Vs. Addresses in Macro Calls 3-17
INPUT/OUTPUT CONTROL BLOCKS 3-18

Creating and Initializing IOBs • 3-18
Using IOB Fields and Values 3-19

STANDARD I/O DEVICES • • • • • • 3-22
FILE SPECIFICATION PROCESSING • • •• 3-23

File Specification Resolution 3-23
Rules for File Specification Resolution 3-24

File Specification Parsing 3-26
I/O COMPLETION CODES • • • . • • • • • • • • •• 3-27
I/O ACTION ROUTINES • . • . • . • •• 3-28

CHAPTER 3

INPUT/OUTPUT FACILITIES

This chapter describes the input/output-related portions of the XPORT
Programming Tools Facility. The description given here is intended to
present concepts rather than give complete details in all cases.
Appendix A contains complete, detailed descriptions of all XPORT macro
calls in a form designed for concise reference.

3.1 INTRODUCTION

The BLISS language does not provide built-in I/O capabilities. Among
other services, the XPORT facility provides easy-to-use, transportable
input/output support, via macro calls, for application programs that
do not have particularly stringent or sophisticated I/O requirements.

XPORT I/O is a system-independent service package that supports
sequential I/O operations in record, character-stream, and binary
mode, and provides basic file-level functions. The file-level
functions include, for example, file deletion and renaming as well as
opening and closing.

The XPORT I/O facility actually consists of a separate
source-and-object package for each target operating system and file
system. However, the source-program interface to each of these
packages is identical, and the results are equivalent. Thus the I/O
support provided is fully transportable except where clearly noted.

3-1

Input/Output Facilities
INTRODUCTION

3.1.1 General Characteristics

The program interface is implemented as a set of BLISS keyword-macros,
of the form $XPO xxxx(••.). For example, $XPO PUT is the name of the
write operation; -a typical call for writing out the content of a
character-string buffer might look as follows:

$XPO PUT(lOB = output file,
- STRING = (:char count, .line_pointer))

where the lowercase names are user-defined.

Central to the operation of the I/O macros is the I/O control block,
or lOB. The lOB is a standard BLISS block structure, for which an
extensive set of field names is defined. As will be shown, the lOB
fields can be accessed either by standard structure-references or, in
many cases, by means of macro keywords. The lOB field names are of
the form IOB$x xxxx; for example, IOB$T STRING names a string
descriptor sub-block of the lOB. (See Section 2.2.3 concerning sub
blocks.) The corresponding macro keywords are similar to the xxxx
portion of the field names, e.g., STRING.

Each system-dependent implementation of XPORT consists essentially of
two parts: a set of BLISS declarations (macro, literal, and field),
and a set of object-time service routines. The source declarations,
many of which define routine calls, are obtained from the XPORT
library file for the target system, which must be named in a LIBRARY
declaration in your source program. An example of such a declaration
is

LIBRARY 'BLI:XPORT'

The relevant service routines are linked with your object program. An
example of an appropriate command to perform such linking in the
VAX/VMS environment is

$ LINK user-module-name, SYS$LISRARY:XPORT/LIBRARY

(Appendix F gives additional examples for other target systems.)

The names of the required source-and object-time files for each target
system are given in Appendix F, along with suggested methods of
referring to those files in a transportable manner.

3-2

Input/Output Facilities
INTRODUC TI ON

3.1.2 Specific Functions

XPORT I/O comprises the following I/O and file-manipulation functions:

OPEN prepa res
pre pa res
(output) •

an existing file
either a new or

for reading (input), or
existing file for writing

CLOSE terminates the processing of an input or output file,
flushing any I/O buffers as necessary.

GET returns the address and length of character or binary
data read from an opened input file. Logical
concatenation of several input files can be automatically
performed when an intermediate end-of-file is reached.

PUT writes character or binary data to an opened output file.

DELETE deletes an existing file.

RENAME changes the name of an existing file.

BACKUP provides a mechanism for preserving a copy of an input
file when a program creates a new version of that file
(typically used by editor-type applications).

PARSE parses a file specification into its component parts.

Each of these functions is represented by a macro name;
$XPO RENAME. There are also several other related
creating and initializing various XPORT control blocks.

3.2 CAPABILITIES

for example
macros, for

XPORT I/O provides sequential input and output for standard I/O
devices on the user's target system. In addition, a number of
file-level operations are available for named files. The specific
capabilities are discussed below.

3.2.1 File Level Capabilities

XPORT allows the user to delete, rename, and 'backup' named files, as
well as to open and close files (and devices) for input/output. While
the general result of a file delete or rename operation should be
reasonably familiar and not in need of further elaboration, the XPORT
open, close, and backup operations require some further discussion.

3-3

3.2.1.1 OPEN

Input/Output Facilities
CAPABILITIES

The open operation incorporates a feature called file-specification
resolution which IS somewhat unusual in a high-level language
facility. This feature is essentially a file-specification defaulting
mechanism. It allows the end user, for example, to give an incomplete
file specification which, at open time, is automatically combined with
program- and system-supplied default components to make up a full file
specification. File-specification resolution is discussed in detail
in Section 3.6.1. (DELETE and RENAME also perform file-specification
resolution when necessary.)

3 • 2. 1 • 2 C LO S E

The close operation provides a REMEMBER option that preserves the
file-attribute information .in the corresponding lOB for subsequent
operations: reopening, deletion, renaming, or backup. When the
REMEMBER option is used, any subsequent operations which would
ordinarily perform file-specification resolution do not do so, but
take the already resolved (and 'remembered') file specification from
the lOB. When a file is closed without the REMEMBER option, all
fields of the corresponding lOB are reinitialized.

3.2.1.3 BACKUP

The backup operation is intended for applications that produce an
output file that is, in some sense, an "upgraded" version of the input
file; typically an editor-type application. The presumption upon
which the operation is based is that the output, or new, file is to
take the name of the input, or old, file, but also that the new file
is to be "backed up" by the old file for safety's sake (e.g., for
recovery purposes). For example, the BLISS Language Formatter,
PRETTY, produces a reformatted version of the input source file as its
output file, and the output file name defaults to the input file name.

On each host system, the new file is renamed by the backup operation
with the old file name. The old file is "backed up," or preserved, in
either of two ways depending upon the file-system capabilities of -the
host system. On host systems such as VAX/VMS which support multiple
file-version numbers, the new file is simply given the old-file name
with the next higher version number and the old file is not renamed.
On systems that do not support multiple version numbers, however, such
as TOPS-IO, the new file takes the old-file name and the old file is
given a different file type (or extension). The default file type for
backup operations is ".BAK".

3-4

Input/Output Facilities
CAPABILITIES

Note that the new output file
typically an XPORT temporary
$XPO TEMPORARY in Section 3.5.

involved in
file prior

a
to

backup operation is
its renaming; see

The backup operation requires that, prior to its invocation, both of
the files involved have been opened, and then closed with the REMEMBER
option (see above). (Presumably the input and output files are
processed to completion in the interval.)

3.2.2 Input/Output Capabilities

XPORT provides a get and a put operation, which perform sequential
input and output respectively. The get operation works in "locate" -
as opposed to "move" -- mode; that is, it reports the location (and
length) of the data read in, rather than reading the data into a
user-specified location. (The put operation takes its output data
from a user-specified location, per usual practice.)

The data read or written by these operations can be in one of three
basic forms:

1. A logical record, consisting of a variable (or sometimes
fixed) amount of character-string data (RECORD mode) •

2. A stream of characters of user-specified length (STREAM
mode) • The character stream is not differentiated by XPORT
as to control characters vs. non-control characters.

3. A user-specified number of of binary values (BINARY mode).
The number of binary values to be read or written can be
specified in terms of either BLISS values (FULLWORDS) or
addressable units (UNITS), although specification of the
latter normally limits program transportability.

The mode keywords RECORD, STREAM, and BINARY are file-level attributes
that must be specified when opening a given file. Another such
keyword, SEQUENCED, implies RECORD and further specifies that an
output file is to be sequence numbered; i.e., that a sequence number
is to be associated with each logical record written. This type of
file is produced by the SOS text editors, for example. (For a
sequenced input file, the SEQUENCED indicator in the lOB is set by the
open operation if the file is opened in RECORD mode.)

3-5

Input/Output Facilities
CAPABILITIES

For character-encoded (e.g., ASCII) files, RECORD mode is normally
used. In this mode, terminal-control-character (TCC) sequences are
not passed to the program on input, and are automatically supplied by
XPORT on output as appropriate for the host system involved. Note,
also, that the program does not specify the number of characters to be
read in this mode; the size of an input record is determined from
information contained in the file.

Character-string files can also be processed in STREAM mode, in which
all of the data read (plus, in some cases, the TCC sequences implied
by the file format) is passed to the program as an undifferentiated
stream of characters, and on output, no TCC sequences are supplied by
XPORT. In other words, the user is "in full control" in this mode,
and must have a detailed knowledge of the file formats and conventions
of each host system for which the program is intended. The amount of
data to be read, as well as the amount to be written, must be
specified in each I/O call. STREAM mode is provided on a caveat
programmator basis for the relatively few kinds of applications
needing this capability.

BINARY mode is used to read and write files of binary data. The
amount of data to be read, as well as the amount to be written, must
be speci~ied in each I/O call. The specification of an input or
output datum size in terms of FULLWORDS allows source program
transportability, assuming that CPU word size is not a limiting
factor. The use of UNITS, on the other hand, allows transportability
between the 16-bit and 32-bit environments with identical results, but
drastically reduces the likelihood of transportability between the
16/32-bit environments and the 36-environment.

3.2.2.1 Opening Concatenated Input Files

A sequence of input files can be treated as a single file through use
of the XPORT "concatenated input" feature. Concatenation is indicated
to XPORT by giving a file specification of the form

file-spec-l + file-spec-2 + ••• + file-spec-n

in an OPEN call. This requests that when the end of each file is
reached, the next file in the specified sequence of input files is to
be opened and read (in a way that is completely transparent to the
reading program).

3-6

Input/Output Facilities
CAPABILITIES

The only file in the sequence that is explicitly opened by the program
is the first one. All GET operations on the entire sequence are
requested by reference to the same lOB. The file attributes and other
parameters specified in the OPEN call are assumed for all of the files
in the sequence. Actually, when a concatenated file needs to be
opened, the following actions take place:

o Th e cur r en t 1 Y 0 pe n ed f i 1 e (e. g ., the i nit i a 1 f i 1 e) i scI 0 sed ,

o The file-specification information for the next file is
resolved, using default and related-file information, if any,
from the lOB, and

o The new resultant file specification is placed in the lOB,
replacing the previous one. (File specification resolution
is described in detail in Section 3.6.1.)

o The concatenated file is then opened and read. Thus the
associated GET call refers to the same lOB throughout the
processing of an entire input-file sequence.

Note that the concatenated input-file capability can be completely
automatic and transparent to the user program. That is to say, the
logic and structure of a program need not be affected by the fact that
multiple input files may be processed. Detailed $XPO GET completion
codes do, however, allow the program to monitor concatenated-input
processing (see Section A.8.3).

3.2.2.2 Output File Opening Options

In addition to the OUTPUT file-processing option itself, the options
applicable to output files are APPEND and OVERWRITE.

APPEND means that, if the specified file already exists, the initial
write operation is to begin at the current end-of-file, that is, the
file is to be extended. OVERWRITE means that, if the specified file
already exists, the initial write operation is to begin at the current
beginning-of-file, overwriting the existing file content. (Neither of
these options have significance if the named file does not already
exist.) Both of these options imply the OUTPUT option.

If the OUTPUT option alone is specified, XPORT will attempt to create
the file even if the indicated file already exists. If this cannot be
done (i.e., the host system doesn't support file versions, the user
has specified a verSlon number matching that of the existing file,
etc.), the open operation will fail. In all cases, if the indicated
file does not already exist, it will be created if possible.

3-7

Input/Output Facilities
. CAPABILITIES

In RECORD mode, a "RECORD SIZE = n" parameter may be specified for a
file that is to contain flxed-length records. Records 'put' to such a
file that are shorter or longer that n are padded (with ASCII spaces)
or truncated respectively. An error indication is returned in the
truncation case. RECORD SIZE = VARIABLE is the default.

A fixed physical-block size may also be specified for appropriate
devices, such as magnetic tape, or for file formats to which it is
applicable. (For RMS ISAM files, for example, this parameter is
converted into an RMS "bucket size".)

If no file-processing option is specified for a file by file-opening
time, INPUT is assumed. The INPUT and OUTPUT (as well as APPEND and
OVERWRITE) options are mutually exclusive except for non-file
structured devices; see the following subsection.

3.2.2.3 Devices Openable for Both Input and Output

A communications (as opposed to file-storage) device that can be both
read and written is opened for input and output by default. (The user
can specify that the device be opened either for input or output
only.) Such devices include all standard interactive-user terminals
and DECnet communication links. Note that all devices, including
interactive terminals, must be expLicitly opened in order to be used.

3.2.3 File Specification Resolution

XPORT file-specification resolution, which is performed by the open,
delete, and rename operations, provides a general-purpose mechanism
for defaulting various components of a file specification.
Specifically, it is the process of augmenting a partial file
specification (possibly only a filename) with default information
provided by both the program and the host file system, in order to
arrive at a complete file specification for the system in question.

For an input file, the program typically provides a default file type,
and the host file system provides a default file-version number, if
any. For an output file, the program may provide both a default file
name and file type, with the system providing the version number if
any. For both input and output files, the host file system (through
XPORT) provides a default for the network-node, logical- or physical
device, and directory (or PPN) components, as applicable for the
system in question.

3-8

Input/Output Facilities
CAPABILITIES

The "initial" file specification with which the process begins is
typically one given by the end user (e.g., through direct interaction
with the program), and is called the primary file specification. The
program can also specify a

o Default file specification, usually only a file type, used
for both input and output files, and a

o Re 1 at ed f i 1 e s pe c if i cat ion (a 'r e 1 at ed' in pu t - f i 1 e s pe c , for
example)~rmally used only for output files.

There is a descriptor sub-block in the lOB for each of these
specifications, and each has a corresponding keyword parameter (e.g.,
FILE SPEC, DEFAULT) in the appropriate macro calls. The result of the
resolution process is called the resultant file specification, for
which there is also a descriptor in the lOB (IOB$T_RESULTANT).

The order of application, or precedence, of file-specification
components is as follows:

1. The primary file specification

2. The default file specification

3. The related file specification

4. System-prov ided defaults.

In addition, for output files there is a special convention concerning
the related file specification (involving the use of an asterisk in
either the primary or default specification) which "forces" file
specification components to be copied from the related file
specification. The actual coding details and precise rules for using
file-specification resolution are given in Section 3.6. That section
also contains a discussion of the 'parse' operation and its macro
call, $XPO_PARSE_SPEC.

3.3 I/O RELATED MACROS

This section discusses the file-level and I/O macro calls, mostly by
way of typical usage examples. Other macros are discussed in later
sections and chapters: lOB creation and initialization macros are
covered in Section 3.4.1; the macros concerned with file
specification parsing in Section 3.6.2. String- and data-descriptor
creation macros are described in Chapter 6.

3-9

Input/Output Facilities
I/O RELATED MACROS

Four parameters are common to most· of the macros calls; we will
describe these first, along with the general macro format, to avoid
subsequent repetition.

3.3.1 General Format and Common Parameters

The general format of an XPORT I/O macro call is given in the
following syntax diagram. (The notational conventions of the BLISS
Language Guide apply here as well: lowercase indicates syntactic
variables, uppercase indicates syntactic literals, and so on.)

+--+
\ \ \

\ i/o-macro-call \ $XPO function (parameter , .•.) \
\ \ - \

+--+
\ \ \

\ function \ BACKUP \ CLOSE \ DELETE \
\ \ GET \ OPEN \ PUT \ RENAME \
\ \ \

+--+
\ \ {keyword user-defined-string-or-value }\
\ parameter \ {keyword (user-defined-string-or-value, .••) } \
\ \ {keyword secondary-keyword } \
\ \ { k e yw 0 r d (s e con dar y - k e yw 0 r d ,...) } \
+-------------------------------------~------------------------------+

Examples of parameter keywords are FILE SPEC, STRING, PROMPT, and
OPTIONS. Examples of secondary keywords are INPUT, APPEND, RECORD,
and SEQUENCED.

The four commonly occuring parameters are the following:

o lOB = address of iob
This required parameter specifies the address of the lOB
upon which or through which the operation is to be
performed. (Note: BACKUP requires two lOB addresses.)

o FAILURE = address of a failure-action routine
This optional parameter specifies the address of a
routine to which XPORT is to pass control in the event
of a failure condition (i.e., an exception or error).
If this parameter is not specified, a default
failure-action routine is supplied by XPORT, as
discussed in Section 3.8.

3-10

Input/Output Facilities
I/O RELATED MACROS

o SUCCESS = address of a success-action routine
This optional parameter specifies the address of a
routine to which XPORT is to pass control following
successful completion of the requested operation. If
this parameter is not specified, no success-action
routine is called, and control returns directly to the
call site. (This parameter is rarely used.)

o USER = user-defined fullword value
This optional parameter specifies a value to be placed
in the IOB$Z USER field of the lOB involved. This value
is not interpreted or used by XPORT in any way; the
parameter is provided simply for the user's convenience.
It might be used, for example, to maintain a count of a
given operation, or to hold an address or value to be
passed to the user's failure-action routine.

The next two subsections discuss specific examples of the file-level
and I/O macro calls.

3.3.2 File-Level Macros

Typical examples of the $XPO OPEN macro call follow. In these
examples, user-defined names are shown in lower case for the sake of
clarity. (Case is irrelevant, of course, outside of quoted strings.)

$XPO OPEN lOB = user terminal ,
FILE SPEC ~ $XPO INPUT - -

This call opens an interactive end-user's terminal for both input and
output (by default), through an lOB named "user terminal" with the
symbolic file specification "$XPO INPUT". This symbolic specification
(actually a macro call) indicates-the standard -- or system default -
input device; see Section 3.5. (For a batch job, of course, this is
simply the job's input stream, which would be opened for input only.)

A second example of the OPEN call,

$XPO OPEN lOB = change file ,
FILE SPEC = user terminal [IOB$T_STRING] ,
DEFAULT = '.UPD'-)

opens an input file through the lOB named "change file". (Recall that
OPTIONS=INPUT is the default for files.) The file specification is
given indirectly, via the IOB$T STRING descriptor in the user-terminal
lOB. This string descriptor- describes the most recent record read
from the user's terminal, presumably a file specification. A default
file specification consisting of the file type ".UPD" is specified.

3-11

Input/Output Facilities
I/O RELATED MACROS

This will be combined with the primary file specification if it lacks
a file type.

A further OPEN example:

$XPO OPEN lOB = output file ,
FILE SPEC = user terminal [IOB$T_STRING] ,
DEFAULT = '*.MAS' ,
RELATED = change file[IOB$T RESULTANT] ,
OPTION = APPEND ~ -
ATTRIBUTE = SEQUENCED) ;

In this case, the file is opened for output and is to be extended if
it already exists (APPEND). Like the input file, the primary file
specification is to be read from the user-terminal lOB, but if the
terminal response is null (or contains one or more asterlsks), the
missing components are obtained from the related file specification,
which is the resultant file specification for the input (change) file.
Prior to application of components from the related file
specification, however, the default file type ".MAS" is applied if
needed, since a default file specification has precedence over a
related file specification. Finally, each logical record written to
this file is to have a record sequence number. (This number must be
provided by the user as we will see in a subsequent PUT example).
Note that, because the file is being opened for APPENDing, if the file
already exists and is not sequence numbered, the SEQUENCED option is
ignored.

Several examples of the $XPO CLOSE macro call follow.

$XPO CLOSE (lOB = user terminal) ;

This example is self-explanatory; the user's terminal is closed and
all fields in the associated lOB are reinitialized.

A further example:

$XPO CLOSE lOB = change_file ,
OPTIONS = REMEMBER)

In this case, the input file controlled by the change file lOB is
closed with the REMEMBER option, possibly because it is going to be
renamed or deleted, or is to be reopened for reprocessing. The
REMEMBER option causes all file-Iattribute information in the lOB to
be retained. All file-processing options, on the other hand, are
'forgotten' in any case, including the REMEMBER option.

3-12

Input/Output Facilities
I/O RELATED MACROS

An example of the DELETE call:

$XPO _DE LET E lOB = arbitrary file ,
FILE SPEC = terminal input [IOB$T_STRING]) ;

Here we assume that the file has never been opened (or has been closed
without the REMEMBER option); i.e'., that the resultant file
specification field of the lOB is empty. The call relies on end-user
input to supply a complete file specification (except for system
supplied defaults), since no default or related-file parameters are
specified. In contrast, the call

$XPO_DELETE (lOB = change_file

relies on the fact that a resultant file specification has been
retained in the lOB for a file previously closed with the REMEMBER
option. Thus no file-specification information is required.

An example of the RENAME call (which assumes that the immediately
preceding DELETE example has not been executed):

$XPO RENAME rOB = change file ,
NEW_SPEC = (- .spec_length , .spec_ptr))

Here the call relies, as before, on the fact that a resultant file
specification is still in the lOB (identifying the "current" name of
the closed file); thus no FILE SPEC parameter is given. For the new
name, the call supplies a length value and pointer to a character
position sequence, which presumably contains a file specification
determined by the program.

As the basis for another example of RENAME, assume that the program
elicits from the end-user's terminal (1) a 'current' file
specification and (2) a 'new' file specification. When response (1)
is read, the program moves the string to an area pointed to by, say,
.old name ptr, then reads response (2) and executes the following
call: -

$XPO RENAME lOB = arbitrary file ,
FILE SPEC = (.oldname length, .oldname_ptr
DE FAULT = '. DA T', -
NEW SPEC = terminal input[IOB$T STRING] ,
NEW-DEFAULT = '*. NEW') -

Here the default file type is ".DAT" for the current file
specification and "*.NEW" for the new file specification. Also,
because no NEW RELATED parameter is given, XPORT assumes the current
file specification (described in IOB$T RESULTANT) as the value of the
new-related file specification. -

3-13

Input/Output Facilities
I/O RELATED MACROS

Thus if the new-file-spec response from the user's
for any reason, the rename operation will use
specification but with the default type ".NEW".

terminal is null
the current file

Note that the program cannot specify a NEW RELATED parameter that has
the same effect as the default assumption made by XPORT. That is, a
RENAME parameter of the form

NEW RELATED = the-same-iob[IOB$T_RESULTANT]

will cause execution errors, since the description of the new-related
file specification is determined before the 'old' resultant file
specification is actually created.

The following example of a BACKUP call is shown in-context, in order
to illustrate the proper usage of this operation. For this example,
assume that the content of the input file is modified in some way
(processing not shown) to produce the output file.

$XPO OPEN

$XPO OPEN

lOB = input file ,
FILE SPEC =-input-spec-descriptor
lOB ~ output file ,
FILE_SPEC = $XPO_TEMPORARY , •••)

, ...

The input and output files are
now processed to completion.

$XPO CLOSE
$XPO-CLOSE

lOB
lOB

input file , OPTIONS = REMEMBER) ;
output_file , OPTIONS = REMEMBER) ;

$XPO_BACKUP (OLD_lOB = input_file , NEW_lOB = output_file

Note that both files are closed with the REMEMBER option. The purpose
of this is to preserve the resultant file specifications in the
respective lOBs. (Recall that BACKUP does not perform file
specification resolution.)

Following the backup operation, if the host file system supports file
version numbers, the new file has the same file specification as the
old file but with a higher version number.

If the host file system does not support multiple file versions, the
new file will have the old file specification and the old file will be
renamed with the file type ".BAK" (by default). Some other file type
may be specified; the macro keyword is, naturally enough, FILE TYPE.
In either case, all fields of the two lOBs involved in the operation
are reinitialized -- set to zeros or other initial value -- following
the backup procedure.

3-14

Input/Output Facilities
I/O RELATED MACROS

In order to do any further processing through these lOBs, they must be
reopened as if they had just been initialized (see $XPO_IOB_INIT,
Section 3.4.1).

3.3.3 Input/Output Macros

Examples of the $XPO GET and $XPO PUT macro calls follow. Note that
the particular lOB names used have no special significance other than
to suggest or reflect some contextual aspect of the example. A
typical call for input from an interactive terminal, including a
prompt message, would look like:

$XPO GET lOB = user terminal ,
PROMPT = 'INPUT FILE NAME: ') ;

Th i s call res u 1 ts ina ' pr om pt ed rea d ' 0 pe rat ion; t hat is, the
specified prompt string is written to the terminal opened through the
lOB named user terminal, and then the terminal is placed in input
status (without intervening carriage/cursor movement). The same call
without the prompt parameter results in a simple read operation. The
length and location of the input string read from the terminal are
available in the IOB$T STRING sub-block of the lOB, the input
character-string descriptor, described further in Section 3.4.2.

A call to read a logical record from a file opened with the RECORD
file-processing attribute is simply the following:

$XPO_GET (lOB = input_file) ;

Again, the length and location of the record read from the file are
available in the descriptor IOB$T STRING. The pertinent fields of
this sub-block are IOB$H STRING, which contains the number of
characters in the record (in binary), and IOB$A_STRING, which contains
a pointer to the record.

A call to read a stream of characters from a file opened with the
STREAM attribute is not much more complicated:

$XPO GET lOB = stream file ,
CHARACTERS :-SO)

The result of this call is to read the next SO characters of data,
including any terminal-control-character (TCC) sequences, from the
indicated file (assuming that many characters are left in the file).
The number-of-characters value can, of course, be any BLISS primary
expression, as well as a numeric literal as shown. As before, the
string that is read in is described by the IOB$T STRING descriptor.

3-15

Input/Output Facilities
I/O RELATED MACROS

A call to read a given number of ful~words of data from a file opened
with the BINARY attribute is as follows:

$XPO GET IOB = binary file ,
FULLWORDS = :how much

This call results in reading the requested number of fullwords, i.e.,
BLISS values, from the indicated file. The data is read into an XPORT
internal buffer; the size and location of the data read are available
in the IOB descriptor IOB$T DATA, the pertinent fields of which are
IOB$H UNITS (size in addressable-units) and IOB$A DATA (address of
first- data element). The field immediately following the IOB$T DATA
descriptor, and closely associated with it, is IOB$H FULLWORDS, which
contains the datum size in fullwords. -

A PUT call to write a character string to a terminal is as follows:

$XPO PUT IOB user terminal ,
STRING = 'Beginnin~ 3rd-phase processing.')

Note that, if the user terminal IOB were opened with no file
processing attribute (presumed to be the case here), RECORD mode is
assumed. XPORT automatically provides carriage/cursor control, i.e.,
appropriate TCC sequences, for RECORD-mode operations. Effectively,
XPORT appends a carriage-return/line-feed sequence to each string
(logical record) written. Thus the user need not supply control
characters for anything other than special cases (e.g., multiple
spacing and formfeeds).

A call to write a logical record or stream of characters to a file (in
RECORD or STREAM mode respectively) might look like this:

$XPO PUT

or

$XPO PUT

IOB = output file ,
STRING = (.out rec size, .out_rec_ptr

IOB = output file ,
STRING = out-rec descr

The first version directly specifies a string-length and string
pointer value, which together identify the data to be written. The
second version specifies the address of an XPORT string descriptor
(discussed in Chapter 6), which in turn contains the needed length and
pointer values, as well as other information.

3-16

Input/Output Facilities
I/O RELATED MACROS

A call to write a logical record to a sequenced (SOS format)
as follows:

$XPO PUT lOB = sequenced file ,
STRING = out rec descr ,
SEQUENCE_NUMBER -;; .current_line)

An alternative version of the sequence-number parameter is

SEQUENCE NUMBER = .sequenced_file[IOB$G_SEQ_NUMB] + 1

file is

A simple method of making output sequence numbering conditional upon
whether the related input file is sequenced numbered, e.g., for file
copying purposes, is shown in a later section.

A call to write, say, twenty fullwords of data to a file opened with
the BINARY attribute is as follows:

$XPO PUT (lOB = binary file ,
- BINARY_DATA -;; (20, outbuffer, FULLWORDS)) ;

Observe here that an address value, rather than a pointer, is used to
give the location of binary data, as suggested by the name "outbuffer"
used without a fetch operator. Also, the keyword FULLWORDS
(alternative to UNITS) is shown for the sake of completeness, although
it is the default. An alternative form of the binary-data parameter
is

BINARY DATA = out buf descr

which specifies the address o.f an XPORT data descriptor containing the
data size and address information.

3.3.3.1 Use of Pointers vs. Addresses in Macro Calls

In all of the foregoing examples of character-oriented operations
(those implying the RECORD or STREAM attribute), a data-location
subparameter is shown as a fetched value, e.g., ".out rec ptr". This
is meant to indicate that a character-position pointer, rather than an
address, is required to identify the initial position of a character
string. Such a pointer is created by the CH$PTR function, and is
manipulated by other function of the BLISS character-handling package.

String-location information returned by XPORT, such as in the lOB
field IOB$A STRING for a GET operation, is also a pointer value. See
the discussion of pointers and addresses in Section 2.2.3.1 for
transportability considerations.

3-1 7

Input/Output Facilities
I/O RELATED MACROS

As indicated in the final PUT example, the location of binary data is
given (and returned) simply as an address value.

3.4 INPUT/OUTPUT CONTROL BLOCKS

Each file or concatenated file sequence processed by XPORT must be
described by an XPORT input/output block (lOB). This control block,
created by means of the $XPO lOB macro, contains the following
information by the time the file-is opened:

o The file specifications associated with the file the
primary file specification, a default file specification, if
any, possibly a related file specification, and the resolved
(i.e., resultant) file specification.

o File attributes, such as the physical block size.

o Record attributes, such as the record format (e.g., sequence
numbered), the maximum record length, and -- after an I/O
operation -- the current record length and address and the
sequence number, if any, of the current record.

o File status information that indicates whether the file is
open or closed, whether it has ever been opened, etc.

o Internal information such as the current function code, the
completion code of the last operation, and length of the lOB.

It is important to understand that the information in an lOB reflects
the current state of processing of a file rather than the state of the
file itself. This distinction is significant when two open lOBs refer
to the same file. For example, if the same file is opened for input
using two lOBs, input operations on the two lOBs proceed
independently, just as if two different files were being read.

3.4.1 Creating and Initializing lOBs

An lOB is created by use of the $XPO lOB macro as an attribute in a
data declaration, e.g., in an OWN or-LOCAL declaration. If created in
permanent storage, the lOB is automatically initialized. For example:

grundoon: $XPO_IOB() ;

(Currently the $XPO lOB macro does not take any parameters.) The
effect of this de~laration is to declare the data segment "grundoon"
as a block structure of appropriate size, and to associate a set of
field names with that structure.

3-18

Input/Output Facilities
INPUT/OUTPUT CONTROL BLOCKS

The effect is just as if an appropriate structure- and field-attribute
had been used in the data declaration. The field names associated
with the lOB, of the form IOB$x abc, identify the various sub-blocks
and individual fields of the structure.

In this example (permanent-storage allocation), the lOB is also
initialized by the $XPO lOB macro to a "new lOB" state. That is, the
many fields of the OWN data segment allocated for the lOB are preset,
mostly to zero values. This automatic initialization is also
performed for lOBs allocated in GLOBAL storage.

If an lOB is created in either temporary (e.g.,
dynamically-acquired storage, however, it
initialized by means of the $XPO_IOB_INIT macro
that is, before any other reference to it.
executable code that dynamically initializes all
For example:

LOCAL
temp_iob

LOCAL)
must be

before it
This macro
fields of

$XPO lOB INIT (lOB = temp iob)
$XPO-OPEN (lOB temp_iob- FILE SPEC . .. ,...)

storage or
explicitly
is used,

results in
the lOB.

This macro also accepts most OPEN, GET, PUT, CLOSE, DELETE, and RENAME
parameters, for optional 'presetting' of lOBs as described above for
the $XPO lOB macro.

3.4.2 Using lOB Fields and Values

An lOB is used (1) to pass information from the user program to an
XPORT I/O routine and (2) to return information to the program upon
completion of the I/O operation.

As previously stated, when an lOB is allocated a set of predefined
BLISS field-names is implicitly associated with it. Appendix B
describes the format of the lOB and each of the lOB fields, plus some
related literal values that may be of interest. You have already seen
several lOB field names, however, in preceding macro examples. These
field names can, of course, be used in ordinary BLISS structure
references. (Similarly, the lOB-related literal names can be used in
other types of BLISS expressions.)

3-19

Input/Output Facilities
INPUT/OUTPUT CONTROL BLOCKS

For example, consider the use of the field name IOB$H STRING in the
following program fragment. The IOB$H_STRING field contains the
length of the character string last read by a GET operation:

OWN
g rundoon: $XPO lOB () ,
pogo: $XPO_IOB();

$XPO_GET(lOB = grundoon);

Test for a non-null input string.

IF .grundoon[IOB$H STRING] NEQ 0
THEN -

BEGIN

(filled in below)

END;

The I/O macros provide keyword parameters that set up appropriate lOB
fields before calling the I/O function. One related group of such
fields is the output-string descriptor IOB$T OUTPUT. This descriptor
contains the fields IOB$H OUTPUT (length) and IOB$A OUTPUT (pointer),
which are set up by the STRING parameter of $XPO_PUT~

As shown in previous examples, the STRING parameter takes several
forms of string description, one being simply the address of a
descriptor. Thus one descriptor, i.e., set of fields, can be set up
by means of the contents of another. IOB$T STRING is another such
descriptor, comprising the subfields IOB$H STRING (length) and
IOB$A STRING (pointer), among others. This is the input-string
descrTptor set by $XPO GET. Different forms of reference to these two
sets of fields are shown and discussed below.

(Standard string and data descriptors can also be created by the user;
see $STR_DESCRIPTOR and $STR_DESC_INIT in Chapter 6.)

In the following sample code, the data read from the "grundoon" input
file (see above) is written twice to the "pogo" output file, first
using explicit BLISS expressions to set up the pertinent lOB fields,
then using keyword parameters in the $XPO PUT macro call to do the
same thing. (The second setup of the lOB 1S actually unnecessary
since the relevant lOB fields are not modified by the first write
ope rat ion.)

3-20

BEGIN

Input/Output Facilities
INPUT/OUTPUT CONTROL BLOCKS

pogo[IOB$A OUTPUT] = .grundoon[IOB$A STRING] ;
pogo[IOB$H-OUTPUT] = .grundoon[IOB$H-STRING] ;
pogo[IOB$H-PAGE NUMB] = .grundoon[IOB$H PAGE NUMB]
pogo[IOB$G-SEQ NUMB] .grundoon[IOB$G SEQ NUMB]
$XPO_PUT(lOB ~ pogo) ; - -

$XPO_PUT{ lOB = pogo,
STRING = grundoon[IOB$T STRING] ,
PAGE NUMBER = .grundoonTIOB$H PAGE NUMB] ,
SEQUENCE_NUMBER .grundoon[IOB$G_SEQ_NUMB]

END ;

Note that when used as a STRING parameter value (second PUT call),
just the address of the input-string descriptor is sufficient to set
up the subfields of the output descriptor in the "pogo" lOB. When
direct structure references are used, however, the individual subfield
values themselves must be fetched and stored. (The expression
.grundoon[IOB$T STRING] is not valid, since this field name represents
only the beginning of a multifield sub-block of the lOB; see Section
2.2.3, under $SUB_BLOCK.)

Clearly, implicit referencing of lOB fields via keyword parameters is
the more economical method, when information is to be stored in the
lOB. When information has to be retrieved, however (an input-string
description, for instance), explicit structure references must be
used.

As a final example of much that has been discussed up to this point,
consider the following simple but realistic file-copy loop. This
example includes a "preview" of the use of completion codes, discussed
further in Section 3.7. The details of file-specification handling
are omitted, since these are quite application dependent.

OWN
input file : $XPO lOB () ,
output_file: $XPO IOB() ;

$XPO lOB INIT (lOB input file) ;
$XPO=IOB=INIT(lOB = output_file) ;

$XPO_OPEN(lOB = input file,
F I L E _ S PE C = - • ••) ;

Make output file SEQUENCED only if the input file is.

output_file[IOB$V_SEQUENCED] • input_file [IOB$V_SEQUENCED]

3-21

Input/Output Facilities
INPUT/OUTPUT CONTROL BLOCKS

$XPO_OPEN(lOB = output file,
FILE SPEC = : •• ,
OPTIONS = OUT PUT) ;

WHILE $XPO GET(lOB = input file) DO
$XPO_PUT(lOB = output file,

STRING = input file(IOB$T STRING] ,
PAGE NUMBER = :input file[IOB$H PAGE NUMB] ,
SEQUENCE_NUMBER = • input_file (IOB$G_SEQ_NUMB]

$XPO CLOSE (lOB
$XPO=CLOSE (lOB

in pu t f i 1 e) ;
output_file) ;

Since one cannot conditionalize the SEQUENCED attribute keyword within
the OPEN call, the relevant lOB field, IOB$V SEQUENCED, is set outside
the call with the value of the same field in-the input lOB, after the
latter has been opened. This makes output-file record sequencing
conditional upon the input file format, in a handy, 'automatic'
fashion.

The DO loop controlling the GET and PUT operations depends upon the
fact that all XPORT routines return a completion code that can be
tested for 'true', successful completion, or for 'false', failure,
with a standard low-bit test. Input end-of-file is considered a
failure, but not an error, condition. (This distinction becomes
important when default failure-action routines are described in
Section 3.8.)

3.5 STANDARD I/O DEVICES

All operating systems support the concept of default, or standard,
input and output devices (e.g., the user's terminal, the system-output
line printer). However, the way in which these standard devices are
named varies from system to system (e.g., TTY:, TI:, SYS$INPUT). The
XPORT I/O facility provides four macros which represent the names of
these standard devices.

$XPO INPUT - standard input device
$XPO-OUTPUT - standard output device
$XPO-ERROR - standard error message device
$XPO=TEMPORARY - a unique temporary work file

Note that using a standard XPORT device does not eliminate the need to
open the file; i.e., all files except concatenated input files must
be ex pI i cit 1 Y 0 pe n ed .

3-22

Input/Output Facilities
STANDARD I/O DEVICES

The use of $XPO TEMPORARY results in a uniquely named disk file having
a file type Tor extension) that indicates it is temporary, e.g.,
".TMP". (Some target file systems delete these files at end of
session.)

3.6 FILE SPECIFICATION PROCESSING

File specification processing commonly includes the use of two
services provided by XPORT:

o File-specification resolution, performed during open, delete,
and rename operations, and

o File-specification parsing, provided via the $XPO_PARSE_SPEC
macro.

This section discusses the reasons for, and use of, these services.

3.6.1 File Specification Resolution

Applications that process files are usually written so that the end
user can in some way specify the names of the files to be read,
written, renamed, etc. In order to make such an application easier to
use by allowing the user to give partial (or null) specifications,
defaults for certain file-specification components are generally
provided. XPORT supports a defaulting technique that provides the
most frequently required capabilities.

A complete file specification consists of a network node name, a
device name, a directory name or project/programmer number, a file
name, a file type (or extension), and sometimes a file version.
During file opening, renaming, or deletion, the XPORT facility,
working in conjunction with the host file system, automatically
constructs a complete file specification, using information contained
in the lOB and information provided by the host system. It does this
by selecting the necessary components from the following sources:

1. The primary file specification string, usually provided by
the end user; described in the lOB. This string might
consist only of a file name, or might even be null.

2 • A de f a u 1 t f i 1 e s p e c i f i c at ion (t yp i c all y a f i 1 e
provided by the program; described in the lOB.

3-23

type) ,

Input/Output Facilities
FILE SPECIFICATION PROCESSING

3. A related file specification (normally used only for output
files), provided by the program; described in the lOB.

4. System and user defaults (node, device, directory, and file
version) supplied by the host file system.

Generally speaking, default components are taken from these sources in
the order listed, although the rules for selection of certain
components from the related file specification are a bit more
complicated (see below) •

Input file specifications are typically constructed from a
user-specified file name, a default file type, and system defaults.
Likewise, output file specifications are frequently constructed from a
related file name (taken from the resultant file specification of an
associated input file), a default file type, and system defaults.

The program controls the resolution process essentially by using the
primary, default, and related file-specification parameters of the
file-level macros in a way that, according with the selection rules
given below, achieves the desired effect.

3.6.1.1 Rules for File Specification Resolution

Although there are minor differences from system to system, all
current target systems support a subset or variant of the following
file-specification format:

node::device:<directory>filename.filetype.version

When a file is to be opened, renamed, or deleted, a resultant file
specification is constructed by selecting tokens from the file
specification(s) described in the lOB and from system defaults,
according to the rules summarized in Table 3.1. If a token exists in
more than one source for a given file~specification component, the
first occurring token is used. "First occurrence" is determined by
traversing the decision table from top to bottom in accordance with
the selection rules.

3-24

Input/Output Facilities
FILE SPECIFICATION PROCESSING

Table 3.1
File-Specification Resolution Semantics

+--+
I I
I DECISION TABLE I
I I
+--+
I I node device I directoryl fil e I fil e I file I
I So urce I name name I spec I namel type lversion I
+--------------------- ------ ----------------------- ---------------+
I Primary file-spec X X X X X I X
I Default file-spec (X) (X) (X) X X I (X)

I Related file-spec I
I Open for input X X X X X I
I Open for output U U I U
I Delete X X X X X I
I Rename - old name X X X X X I
I Rename - new name U U I u'
I System/user defaults I
I Open for input A A A I H
I Open for output A A A I H+l
I Rename A A A I H
I Delete A A A I H
+--+

TOKEN SELECTION RULES

A token can be an actual file-specification component or an
or an asterisk (*).
X This token is always used if it exists.

(X) This token is seldom specified but is used if it exists
U This token is used if the corresponding primary or default,

U'

A
H

H+l

token is an asterisk (*) or missing.
This token is used only if the corresponding primary or
default token is an asterisk (*).
This token is always defined and is used if necessary.
Highest existing version is used.
Highest existing version plus 1 is used.
Not used.

+--+

3-25

Input/Output Facilities
FILE SPECIFICATION PROCESSING

3.6.2 File Specification Parsing

XPORT provides file-specification parsing, i.e., the division of a
file specification into its component parts together with a syntax
check, v ia the $XPO _PARSE _S PEC macro. In order to use
$XPO PARSE SPEC, you must also use the macro $XPO SPEC BLOCK. This
supporting-macro, used as an attribute of a data declaratTon, creates
a file specification block whose address is a parameter of the
$XPO PARSE SPEC macro along with a file-spec-string description. (The
format of a file specification block is given in Appendix B.)

A $XPO_PARSE_SPEC call might look as follows:

$XPO_PARSE_SPEC(FILE SPEC = input file[IOB$T RESULTANT] ,
SPEC-BLOCK = input_fs_block f ;

This example assumes that a file specification was previously resolved
in the input file lOB, and that the $XPO SPEC BLOCK macro was used to
allocate the data segment input_fs_block.

The $XPO PARSE SPEC macro essentially does two things. Firstly, it
checks all non-null components of the indicated file-specification
string for valid syntax (for the host system) and, secondly, it places
those components in the appropriate fields of the specified file
specification block, together with an indication of a 'wild card'
character (*) as one of the components. (The asterisk is the only
character recognized by XPORT as a 'wild card' character and must
appear by itself, i.e., must represent an entire file-specification
component.) If one or more of the components is syntactically invalid,
the macro returns an error completion code that identifies the faulty
component (the first one encountered if more than one) •

The $XPO PARSE SPEC macro accepts resolved or unresolved file
specifications, and recognizes null and 'wild card' components as
valid along with actual components. The components described by the
file specification block include the attendant punctuation characters,
e.g., angle brackets or square brackets in the case of a directory,
UIC, or PPN component.

TRANSPORTABILITY WARNING

It must be observed here that, as with a few other XPORT
features, use of the file-specification parsing feature is
not likely to result in a fully transportable program unless
it is used with a considerable amount of care and
forethought.

3-26

Input/Output Facilities
FILE SPECIFICATION PROCESSING

This is so not only because of the system-dependent aspects
of the file-specification format, e.g., the "punctuation"
characters, but also because of the substantive differences
that exist from system to system, for example the
conventional file type ".LST" employed on some systems
versus ".LIS" on others, both used for the same purpose.

The file specification block contains, along with descriptors for each
of the components, a set of bits which indicate, individually:

o Whether a directory-name or a
specified,

PPN/UIC component was

o Whether or not a 'wild card' occurred anywhere in the file
specification, and

o Which component(s) consist of a 'wild card'
any.

character, if

PPN/UIC component values are contained within the file specification
block (as binary integers); all other components are described by
standard XPORT string descriptor sub-blocks within the file
specification block.

3.7 I/O COMPLETION CODES

The BLISS value of a macro that calls an XPORT I/O routine is the
completion code returned by that routine. Note that in most cases
there are several failure completion codes for a given routine and, in
some cases, more than one success completion code.

The completion code of an XPORT routine can simply be tested for
success/failure status (i.e., standard BLISS low-bit test), or can be
compared with expected values for more detailed testing. XPORT
provides a complete, transportable set of completion-code literals
(described with each macro call in App~ndix A) expressly for this
purpose. Thus the programmer need not be aware of the actual
(possibly system-dependent) numeric completion-code value in any case.
The 'unqualified success' completion code literal, indicating
successful completion with no exception condition, is XPO$_NORMAL.

Note that a warning code, as is returned for input end-of-file, is
considered a failure completion code, and as such invokes a failure
action routine. The default failure-action routine, however, treats a
warning code differently than failure codes having an error or fatal
severity.

In addition to a primary completion code being returned as the value
of the routine call, this completion code is also returned in the rOB
field IOB$G COMP CODE.

- -

3-27

Input/Output Facilities
I/O COMPLETION CODES

Some completion codes (e.g., XPO$ BAD lOB) have an
secondary completion code which 1s returned in the
10B$G 2ND CODE. This secondary completion code field is
XPORT-upon return from a call if it is not used.

3.8 I/O ACTION ROUTINES

associated
lOB field
zeroed by

Each macro that results in a call to an XPORT I/O routine allows the
programmer to specify the address of another routine to be called upon
completion of the requested function. Separate routines can be
specified for successful and abnormal completion. As seen previously,
the macro parameter keywords are SUCCESS and FAILURE respectively.
These optional user-provided routines, called action routines, are
typically used to intercept and possibly correct error conditions.

An action routine must be declared in each XPORT routine call to which
it applies; that is, action-routine addresses cannot be preset in the
lOB as can most other I/O parameters. (No corresponding lOB fields
exist, in fact.) Such presetting would in any case tend to obscure
control flow within the program.

A success or failure action routine, if any, is called by XPORT just
before returning to the caller of the I/O operation. The action
routine is passed, as one of its calling parameters, the address of
the lOB specified in the original call. The action routine may
examine and/or change lOB fields and may perform any appropriate I/O
operation using the passed lOB or another lOB. For example, a failed
operation could be retried after possible lOB modification. The
action routine may modify the completion code returned to the caller.

A listing of the default I/O failure-action routine provided by XPORT,
XPO$FAILURE, appears in Appendix E. This routine is the default for
the FAILURE parameter in I/O macro calls. It issues a multiple-line
error message and then terminates program execution for all I/O
failures except input end-of-file. (The input-EOF condition has only
a 'warning' severity.)

An optional I/O failure-action routine, XPO$10 FAILURE, is provided to
allow standard XPORT error message processing without terminating
program execution. Instead, control -- and the initial completion
code -- is returned to the caller. (This routine is itself called by
XPO$FAILURE and is included in the same module; see Appendix E.)
There is no default success-action routine; such routines are rarely
used. See Appendix E for information about writing action routines.

3-28

CHAPTER 4

4.1
4.2
4.3
4.3. 1
4.3.2
4.3.3
4.4
4.5

MEMORY MANAGEMENT FACILITIES

INTRODUCTION • • • • • • • • • • • • • • • • •
CAPABILITIES • • • • • • • • • • • • .
MEMORY MANAGEMENT MACROS • • • • . •

$XPO GET MEM - Allocating Dynamic Memory •
$XPO-FREE MEM - Releasing Dynamic Memory
Dynamic Memory Elements •••. . •••

COMPLETION CODES • • • • • •
ACTION ROUTINES • • • • •

· • 4-1
4-1

· . 4-2
· 4-2
· 4-3

• • 4-4
• 4-4

• • 4-4

CHAPTER 4

MEMORY MANAGEMENT FACILITIES

This chapter describes the memory-management portion of
Programming Tools Facility. The description given here is
present concepts rather than give complete details in
Appendix A contains complete, detailed descriptions of all
calls in a form designed for concise reference.

4.1 INTRODUCTION

the XPORT
intended to
all cases.
XPORT macro

The XPORT memory management facilities provide the ability to acquire
and release memory space during program execution, as the program's
needs expand and contract, in a simple and fully transportable manner.
Dynamically acquired main-storage space, often referred to simply as
"dynamic memory", is typically used for data buffers and control
blocks.

Dynamic and dynamic-bounded string/data descriptors
conjunction with the memory management facilities;
in Chapters 6 and 7.

4.2 CAPABILITIES

may be used in
they are described

XPORT currently provides the following system-independent memory
management functions:

o Allocation of a specified amount of dynamic memory

o Release of a dynamically-allocated memory element.

The size of a dynamically allocated element of memory can be specified
in terms of characters, fullwords, or addressable units, though use of
the latter will probably limit program transportability.

4-1

Memory Management Facilities
MEMORY MANAGEMENT MACROS

4.3 MEMORY MANAGEMENT MACROS

Dynamic memory allocation and release is requested by means of the
$XPO GET MEM and $XPO FREE MEM macros respectively. Both result in a
call-to an XPORT MEMORY function.

4.3.1 $XPO_GET_MEM - Allocating Dynamic Memory

The get-memory function stores a character-position pointer or address
value into a user-specified location (or descriptor field) if the
requested allocation is successful. Typical usage examples are given
below.

The following code fragment illustrates the acquisition of a large
character-string buffer:

OWN
bigbuff ptr

$XPO_GET_MEM(CHARACTERS = 1028,
RESULT = bigbuff ptr,
FILL = %C' •) ;-

Upon successful execution of the get-memory call, a memory element
large enough to contain 1028 character positions is allocated, and a
pointer to the first character position is stored in location
bigbuff ptr. The optional FILL parameter causes the element to be
initially blank-filled (any ASCII character code may be specified).
Note that the standard BLISS character size is assumed for all target
systems, i.e., 8-bit characters in the 16/32-bit envirionments and
7-bit characters in the 36-bit envirionments.

Alternatively, a dynamic or dynamic-bounded descriptor can be used in
conjunction with the $XPO GET MEM macro to achieve the same result, as
shown in the following code fragment:

LOCAL
bigbuff_desc $STR DESCRIPTOR (CLASS

$STR DESC INIT(DESCRIPTOR = bigbuff desc,
CLASS = DYNAMIC); -

$XPO GET_MEM(CHARACTERS
DESCRIPTOR
FILL = %C'

1028,
bigbuff desc, .); -

4-2

DYNAMIC);

Memory Management Facilities
MEMORY MANAGEMENT MACROS

In this case, on the successful completion of the get-memory function,
the string descriptor is updated to describe the allocated memory
element (See Section 6.1 for a discussion of descriptor usage.)

To illustrate acquisition of dynamic memory in terms of fullwords,
assume that you want to get space in which to construct a 'dynamic'
lOB -- for reading a REQUIRE-type file, for example. The XPORT
literal IOB$K LENGTH defines the length (in BLISS values) of a
standard lOB structure. The following declaration and macro call
would be appropriate:

LOCAL
dynamic iob REF $XPO IOB()

$XPO_GET_MEM(FULLWORDS = IOB$K LENGTH,
RESULT = dynamic_lob) ;

Upon successful allocation, the location dynamic_iob will contain the
address of the requested memory element.

Note that for each of
failure-action routine
parameter.

the macro calls shown above, the default
XPO$FAILURE is assumed, in lieu of a FAILURE=

4.3.2 $XPO_FREE_MEM - Releasing Dynamic Memory

In order to release the memory elements acquired in the first and
third examples above, the following $XPO FREE MEM calls would be used:

$XPO_FREE_MEM(STRING = (1028, .bigbuff_ptr)) ;

$XPO_FREE_MEM(BINARY_DATA = (IOB$K_LENGTH, .dynamic_iob))

For either a string or binary-data element, if the element is
described by an XPORT descriptor at the time of its release, only the
descriptor address need be specified, as in the following example:

bigbuff_desc)

Optionally, a FILL parameter may be used in any form of $XPO FREE MEM
call to request memory clearing at release time. Also, FAILURE-and
SUCCESS action-routine parameters may be specified in either the
$XPO_GET MEM or $XPO_FREE_MEM macros, as described in Section 4.5.

4-3

Memory Management Facilities
MEMORY MANAGEMENT MACROS

4.3.3 Dynamic Memory Elements

The $XPO GET MEM and $XPO FREE MEM macros result in alLocation or
release of space in multiples of fullwords, regardless of the terms in
which the element is described. (Any necessary "rounding up" is done
by both functions, and thus can be ignored by the user.)

Dynamically acquired memory must be released in entire elements; that
is, you may not release a portion of an allocated element. The result
of releasing a partial element on any given target system is
undefined.

4.4 COMPLETION CODES

The $XPO GET MEM and $XPO FREE MEM macros generate a call to an XPORT
memory management routine that returns a value via the standard BLISS
routine-value mechanism. Like the XPORT I/O routines, the get-memory
and free-memory routines return a success or failure completion code
as their routine value, as well as passing that code to any action
routine called by the operation. (For the memory functions, however,
there is no analogue of the lOB in which the completion code can be
stored.)

As with all other XPORT completion codes, the memory-management
completion codes can be tested for simple success or failure status
with a low-bit test (set for success, cleared for failure). The
specific failure completion codes are given, in terms of transportable
XPORT literals, in Appendix A as part of the description of the
respective macros.

4.5 ACTION ROUTINES

The XPORT memory-management macros allow the programmer to specify the
address of a routine to be called at the completion of the requested
function. Separate routines can be specified for successful and
abnormal completion. These optional user-provided routines, called
action routines, are typically used to intercept and possibly correct
error conditions.

A success or failure action routine, if any, is called just before
returning to the caller of the requested operation. The action
routine is passed an XPORT function code in this case a code
identifying the specific memory-management function (XPO$K GET MEM or
XPO$K FREE MEM), the completion code of the current operation, -and a
functIon-specific parameter: the address of the XPORT descriptor
associated with the particular request.

4-4

Memory Management Facilities
ACTION ROUTINES

An understanding of the usage of these parameters is best gained from
inspection of an actual action routine. A listing of the default
XPORT failure action routine, XPO$FAILURE, appears in Appendix E.
(The memory-management specific routines called by XPO$FAILURE are
XPO$GM FAILURE and XPO$FM FAILURE, which appear in the same module.)
This ~outine is assumed-if no FAILURE parameter is specified in your
$XPO GET MEM or $XPO FREE MEM call. This routine issues an error
message for all memory-management failures. Program execution is then
terminated.

Optionally, the failure action routine XPO$GM FAILURE (for a get
memory failure) or XPO$FM FAILURE (for a free=memory failure) can be
specified directly (in your-macro call) to allow standard XPORT error
reporting without terminating program execution. Instead, control is
returned to the caller. See Appendix E for information about writing
action routines.

4-5

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3

OTHER SYSTEM SERVICES

INTRODUCTION . • • •
$XPO PUT MSG • • • •

Completion Codes •
Action Ro uti nes

$XPO TERMINATE

· • 5-1
• • • 5-1

• • 5-2
• • 5-3

• 5-3

CHAPTER 5

OTHER SYSTEM SERVICES

This chapter describes the "miscellaneous services" portion of the
XPORT Programming Tools Facility. The description given here is
intended to present concepts rather than give complete details in all
cases. Appendix A contains complete, detailed descriptions of all
XPORT macro calls in a form designed for concise reference.

5.1 INTRODUCTION

The services in the "miscellaneous" category perform commonly needed,
but not necessarily related, functions such as error/exception message
generation, and orderly program termination. The services are
provided in a simple and uniform manner across all target operating
systems.

It is expected that this collection of services will grow with time as
the need for additional transportable functions is perceived.

5.2 $XPO PUT MSG - -

The $XPO PUT MSG macro allows you to issue single-line or multiple
line messages without naming or having opened an output device. A
standard message text is automatically generated for any completion
codes specified in the call.

Required 'input' to the macro is either a completion code (CODE
parameter), e.g., one returned by another XPORT operation, or a
message-string description (STRING parameter). Each of these
parameters represents a single "line" of the message, and either can
be given any number of times in one call, in any combination. Thus,
"mixed" multi-line messages can be produced. Consider the following
example:

5-1

Other System Services
$XPO_PUT_MSG

$XPO PUT MSG(CODE = XPO$ END FILE,
- - STRING = 'No End-of-Data Sentinel Encountered');

The message that would be produced for this call under TOPS-IO, for
example, would look as follows:

? end-of-file has been reached
No End-of-Data Sentinel Encountered

Another possible input to the macro is a severity-level keyword
(SEVERITY parameter). The range of severity levels is SUCCESS,
WARNING, ERROR, and FATAL. If nn SEVERITY parameter is given, the
severity level defaults to the severity associated with the condition
code specified, if the first parameter is CODE, Qr to ERROR if the
first parameter is STRING.

To illustrate, the severity level associated with the XPO$ END FILE
code is only WARNING. One might, for example, want to raise the
severity level of the sample message given above, as follows:

$XPO PUT MSG(CODE = XPO$ END FILE,
- - SEVERITY = ERROR ,

STRING = 'No End-of-Data Sentinel Encountered');

The destination device(s) are automatically determined by the severity
level, assuming that differing assignments for the standard output
devices ($XPO OUTPUT and $XPO ERROR) are in effect for a given program
application. - All messages -are sent to the standard output device
($XPO OUTPUT), whatever their severity level. Messages having a
sever Tty level other than SUCCESS are also sent to the standard error
logging device ($XPO_ERROR).

Furthermore, issuance of a message sequence with an implied or
explicit FATAL severity level causes automatic program termination,
immediately following the message processing.

The standard XPORT messages are listed in Appendix C.

5-2

5.2.1 Completion Codes

Other System Services
$XPO PUT MSG

The put-message operation returns a completion code both directly
(i.e., by routine value) and to any action routine called by the
operation (see below). Just as for I/O and message-management return
values, the completion code can be tested for success/failure status
with a simple low-bit test, or can be compared with completion code
literals for more detailed testing. Specific completion codes are
given in Appendix A together with the macro description.

Depending upon the target system, an $XPO PUT MSG call may implicitly
invoke $XPO PUT to perform message 170. - In this case, a failure
completion c~de returned by the latter is "passed back" as the
completion code of $XPO PUT MSG. Any detailed error testing must take
this into account. --

5.2.2 Action Routines

Optionally, success and failure action routines may be specified for a
put-message operation, just as for I/O and message-management macro
calls (see Chapter 3 or 4). XPORT provides the default failure-action
routine XPO$FAILURE, which issues a message (if possible) for any
message processing failure and terminates program execution.

Alternatively, you may specify the failure-action routine
XPO$PM FAILURE (itself called by XPO$ FAILURE), which returns control
to the call site after issuing a- message unless the failure
completion-code severity is FATAL.

See Appendix E for a listing of the default failure-action routines
and for information about writing action routines.

5.3 $XPO TERMINATE

The $XPO TERMINATE macro causes program termination immediately
following- the issuance of a termination message to the end user. In
its simpler form, e.g.:

$XPO_TERMINATE() ;

the assumed program-termination code is XPO$ TERMINATE. The message
text for this code is "program terminated du~ to program request".

5-3

Other System Services
$XPO TERMINATE

You can, however, specify a program-termination code with a call of
the form:

$XPO_TERMINATE(CODE = completion-code)

The standard XPORT message text for the completion code is issued
instead of the standard termination message.

Completion codes and corresponding message texts are listed in
Appendix C.

5-4

CHAPTER 6

6.1
6. 1. 1
6.1.2

6.1.3

6.1.4
6.1.5
6.1.6
6.1.6.1
6.1.6.2
6.2
6.3
6.3. 1
6.3.2
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.6
6.6. 1

6.6.1.1
6.6.1.2
6.6.2

6.6.3

6.6.4

STRING HANDLING FACILITIES

STRING DESCRIPTORS • • • • • • • • • • • • • 6-1
$STR DESCRIPTOR -- Creating a String Descriptor 6-2
$STR-DESCRIPTOR -- Compile-Time Descriptor
InitTalization ••••••••••••••. 6-2
$STR DESC INIT -- Run-Time String Descriptor
Initraliz~tion • • • • • • • . . • •• 6-3
String Descriptor Formats .•••.•••••• 6-4
String Descriptor Usage Rules •.••••••. 6-6
Descriptor Data Types • • • . • • • • • . 6-8

Character String Data Type (STR$K DTYPE T) 6-8
Binary Data Type (STR$K DTYPE Z): - •• 6-9

STRING DESCRIPTOR STRUCTURE-REFERENCES • • • • . • 6-9
STRING MODIFICATION . • • • . • 6-9

$STR COPY Operation . . • • • • 6-10
$STR-APPEND Operation • • • • • • • • 6-11

STRING-COMPARISON • • • • . • • • . 6-12
STRING SCANNING . • . • . • • • • • . . • • . • 6-14

$STR SCAN Overview • • . • • • • • • . . • 6-14
$STR-SCAN FIND - Find a Character Sequence 6-15
$STR-SCAN SPAN - Match a Set of Characters 6-16
$STR-SCAN STOP - Search for a Set of Characters 6-16
$STR-SCAN - Returning a Substring 6-17
$STR-SCAN - "Scanning Through" a BOUNDED String 6-17

STRING-CONVERSION • • • • • • • • • . . • • •• 6-18
$STR CONCAT and $STR FORMAT - ASCII to ASCII
String Conversions .-. • • . • • • • •. 6-18

$STR CONCAT • • • • . • • • • • • • . • •• 6-18
$STR-FORMAT • • • • • • • • • . • . • • •• 6-19

$STR ASCII - Binary-Data to ASCII String
Convirsion • • • • • • • • • • . • • . • • •• 6-19
Nesting $STR ASCII, $STR CONCAT, $STR FORMAT
Pseudo-Functions ••.• -. • • . • • • • • 6-21
$STR BINARY - ASCII String to Binary-Data
Convirsion • • • • • . . • . • • • . • • • 6-22

CHAPTER 6

STRING HANDLING FACILITIES

This chapter describes tools related to the manipulation of character
strings. See also Appendix A for reference descriptions of the macros
discussed here.

6.1 STRING DESCRIPTORS

A string descriptor is a small control structure that facilitates the
interchange of character data between two procedures (e.g., between
two BLISS routines). The XPORT descriptors are closely modelled on
the VAX/VMS descriptor convention. The XPORT I/O and memory
management facilities make extensive use of such descriptors
internally, and fully support their use by the programmer -- a
descriptor address is always a valid form of string parameter, for
example.

Two macros are provided for string-descriptor
initialization: $STR DESCRIPTOR and $STR DESC INIT.
concerning binary-data-descriptors.) -

creation and
(See Chapter 7

Terminology: The term "length" always means "number of
character positions", in the transportable-BLISS sense.

ASCII

Descriptors essentially provide a mechanism for communicating
nonscalar data between independent procedures in an indirect, uniform,
and controlled fashion. They not only describe the location and
extent of an item, but also describe its "class". By convention the
class of an item reflects (1) the nature of its allocation and (2) a
discipline to be observed when 'writing' such an item, i.e., when
modifying the item and updating the descriptor accordingly. This
discipline mainly applies to the recipient of a descriptor, that is,
to a routine to which a descriptor address is passed.

6-1

String Handling Facilities
STRING DESCRIPTORS

The descriptor classes are: FIXED, BOUNDED, DYNAMIC, DYNAMIC_BOUNDED,
and undefined. The specific usage conventions implied by each of
these classes are described in Section 6.1.5. It should be noted
here, however, that for the purposes of reading an item (i.e.,
fetching via the descriptor) all classes of descriptors are
equivalent to FIXED.

6.1.1 $STR_DESCRIPTOR -- Creating a String Descriptor

A string descriptor can be created using the $STR DESCRIPTOR macro as
an attribute of a data declaration (of an OWN or LOCAL declaration,
for example). The macro expands to an appropriate structure-attribute
and field-attribute for the class of descriptor desired. A class may
either be specified or may be defaulted to FIXED. For example, the
declaration

OWN
my_desc: $STR_DESCRIPTOR();

declares a FIXED descriptor, by
declaration

LOCAL

default. Al ternatively,

output_string: $STR_DESCRIPTOR (CLASS = DYNAMIC);

the

declares a DYNAMIC string descriptor, for use in conjunction with
dynamically allocated storage.

6.1.2 $STR_DESCRIPTOR -- Compile-Time Descriptor Initialization

A descriptor must be initialized prior to its first use. A descriptor
created in permanent storage (OWN or GLOBAL) can be statically
initialized by means of parameters of the $STR DESCRIPTOR macro.
Several examples follow:

OWN
eo f tex t: $STR _DESCR 1 PTOR (S'I'R ING = 'End-o f- f i 1 e reached'),

composi te_string $STR_DESCRIPTOR(CLASS = DYNAMIC,
STR ING = (0,0));

Note that a DYNAMIC descriptor in permanent storage can be initialized
to point to 'no storage' (only) at compile time.

6-2

String Handling Facilities
STRING DESCRIPTORS

Further examples of static initialization:

OWN
message-buffer: VECTOR[CH$ALLOCATION(132)],

message: $STR DESCRIPTOR(CLASS = BOUNDED,
- STRING = (132, CH$PTR(message_buffer)));

NOTE: A descriptor created in temporary (LOCAL) or dynamic storage
must be dynamically initialized via the $STR DESC IN IT macro.

6.1.3 $STR_DESC INIT -- Run-Time String Descriptor Initialization

The executable $STR DESC INIT macro dynamically initializes all fields
of a descriptor. -This-macro must be used for descriptors created in
temporary or dynamic storage.

Following are several examples of initializing the first descriptor
'declared' in the previous section:

$STR_DESC INIT(DESCRIPTOR = my_desc);

The named descriptor is initialized as class FIXED by default, and the
string length and pointer fields are set to indicate a null string
value (i.e., a string of zero length).

A string value can be preset with a STRING parameter, as follows:

$STR_DESC INIT(DESCRIPTOR my desc,
STRING = (length-exp, pointer-exp));

Alternatively, a string literal may be given as the STRING parameter
val ue :

$STR_DESC_INIT(DESCRIPTOR = my desc,
STRING = 'Who struck John?');

The dynami6 descriptor 'declared' in the previous section might be
initialized as follows:

$STR DESC INIT(DESCRIPTOR = output string,
CLASS = DYNAMIC); -

The named descriptor is initialized as the descriptor of a string
created in dynamic memory during a subsequent operation (e.g.,
$XPO GET MEM, $STR COPY). Without a STRING parameter, the length and
address fields are-set to indicate a null string value.

6-3

String Handling Facilities
STRING DESCRIPTORS

Note particularly that the class that is specified (or defaulted) in
the $STR DESC INIT macro must match the class specified or defaulted
in the $STR DESCRIPTOR macrO:--(The CLASS= parameter may be omitted in
either or -both macros only in the case of a FIXED descriptor.) Also,
the class of a descriptor cannot be changed "in mid-stream", that is,
without reinitialization.

6.1.4 String Descriptor Formats

All string descriptors contain the following common fields:

o A length field, named STR$H_LENGTH,

o A pointer field, named STR$A_POINTER,

o A class field, named STR$B_CLASS, and

o A data-type field, named STR$B_DTYPE.

In addition to these fields, BOUNDED and DYNAMIC BOUNDED descriptors
also contain the following:

o A prefix-length field, named STR$H_PFXLEN, and

o A maximum-length field, named STR$H_MAXLEN.

Figure 6.1 shows the format a FIXED or DYNAMIC descript~r; figure 6.3
shows the format of a BOUNDED or DYNAMIC BOUNDED descriptor. Note
that a BOUNDED descriptor is simply an- extension of a FIXED
descriptor.

Figures 6.2 and 6.4 show the format of the strings described by these
descriptors.

Figure 6.1
Format of a FIXED or DYNAMIC Descriptor

+--+
I 1 I 1
1 STR$B CLASS 1 STR$B DTYPE 1 STR$H LENGTH I
1 - 1 - 1 1

1--I
1 1
1 STR$A POINTER 1

1 1
+--+

6-4

String Handling Facilities
STRING DESCRIPTORS

Figure 6.2
Format of a FIXED or DYNAMIC String

+-----------STR$A POINTER
1 -

V
+---+
1 1
1 This is a sample FIXED or DYNAMIC string. 1
1 1
+---+
1 1
1 <--------------STR$H_LENGTH---------------> 1

Figure 6.3
Format of a BOUNDED or DYNAMIC_BOUNDED Descriptor

+--+
1 1 1 1
1 STR$B CLASS 1 STR$B DTYPE 1 STR$H_LENGTH 1
1 - 1 - 1 1
1--I
1 1
1 STR$A POINTER 1
1 1
1--I
1 1 1
1 STR$H PFXLEN 1 STR$H MAXLEN 1
1 1 1
+--+

Figure 6.4
Format of a BOUNDED or DYNAMIC_BOUNDED String

+-----------STR$A POINTER
1 -

V
+---+
1 1 1 1
1 1 This is a BOUNDED string. 1 1
1 1 1 1
+---+
1 1 1 1
I<---STR$H PFXLEN--->I<-------STR$H LENGTH------->1 1
1 - - 1

1 <----------------------STR$H_MAXLEN----------------------->1

6-5

String Handling Facilities
STRING DESCRIPTORS

6.1.5 String Descriptor Usage Rules

For each class of descriptor, the usage rules specify which fields may
be modified, and which fieLds may not, by a procedure that is not the
"owner" of the descriptor.

Such a procedure is typically a routine that is passed a descriptor
address as one of its calling parameters. Moreover, the rules only
apply where the descriptor is passed in order that the called routine
can either modify information already described by the descriptor or
can return new information to the caller via the descriptor.
(Obviously, when a descriptor is used simply to pass information for
reading only, no descriptor fields need be modified by the recipient.
All descriptor classes are, in fact, equivalent to FIXED for purposes
of reading, i.e., fetching data via the descriptor.)

The UNDEFINED class -- which is actually sort of a 'non-class' has
no rules associated with it and is for intra-program use only.

Table 6.1 gives the usage rules for each class of descriptor.

Table 6.1
String Descriptor Usage Rules

+--+
1
1 Can recipient modify descriptor field?
1

+---------------1-------------------------- ------------ ------------
1 Current 1 String Prefix Maximum

Descriptor 1 Length 1 Pointer Length Length
Class ISTR$H LENGTHISTR$A POINTER STR$H PFXLEN STR$H MAXLEN

---------------1-----=------1-----=------- ------------ ------------
FIXED 1 NO 1 NO (n.a.) (n.a.)
---------------1------------1------------- ------------ ------------
BOUNDED 1 YES 1 YES YES NO
---------------1------------1------------- ------------ ------------
DYNAMIC 1 YES* 1 YES* (n.a.) (n.a.)
--------------- 1------------1------------- ------------ ------------
DYNAM IC BOUNDED 1 YES 1 YES * YES YES *
-------=------- 1------------1------------- ------------ ------------
UNDEFINED 1 1

NOTE: It is always valid (with respect to these rules) to modify
content, that is, to change the data described by the des
criptor, within the limits set by these rules.

+--+
* Requires interaction with $XPO_FREE_MEM and $XPO_GE'I'_lVIEM.

6-6

String Handling Facilities
STRING DESCRIPTORS

The rules in Table 6.1 give rise to the following generalizations
about descriptor classes (keep in mind that they do not necessarily
apply to the "owner" of the descriptor) :

o A FIXED descriptor describes a string, whose location and
extent may not be changed.

This class of descriptor is typically used to pass a
to another routine, and is seldom (almost never)
describe space.

string
used to

o A BOUNDED descriptor describes a fixed-length buffer that
contains a string of varying length. The string may begin at
any point in the buffer and may extend to the end of the
buffer. The buffer location and length may not be changed
(presumably it is allocated in OWN, GLOBAL, or LOCAL
storage); the string, however, may be moved, shortened
and/or lengthened within the limits of the fixed-length
buffer.

This class of descriptor is typically used to describe a
space in which to construct or update a string which, by its
nature, will not exceed a specific maximum length.

In addition to describing a bounded string, a BOUNDED
descriptor implicitly describes three additional strings -
the "container string", a "prefix string", and a "remainder
string". The container string is the entire buffer and thus
includes the bounded string. The prefix string is the
portion of the container string (possibly null) that precedes
the bounded string. The remainder string is the portion of
the container string (possibly null) that follows the bounded
string.

o A DYNAMIC descriptor describes a moveable string whose length
may vary from 0 to 64K characters. It is generally used for
a string to be returned by a called routine.

Note that this class implies the use of dynamic memory, since
the storage described is always assumed to be releasable.
(See Chapter 4 concerning dynamic-memory facilities.)

o A DYNAMIC BOUNDED descriptor describes a moveable buffer
containing a string of varying length. The string may begin
at any point in the buffer and may extend to the end of the
buffer.

As its name implies, this class is a generalization of both
the BOUNDED and DYNAMIC classes. It can be used to avoid the
maximum-length restriction imposed by BOUNDED; it can also
be used for a very volatile string, to avoid much of the
memory-management overhead implied by DYNAMIC (i.e., storage
need be reallocated only when the buffer becomes too small).

6-7

String Handling Facilities
STRING DESCRIPTORS

Note that this class also implies the use of dynamic memory,
since the storage described is always assumed to be
releasabl~. (See Chapter 4 concerning dynamic-memory
facilities.)

The term "moveable" implies that the allocated storage (if any)
described by a passed descriptor can be released and newly-acquired
string storage be described in its place.

Following are some typical uses for the four string descriptor
classes:

FIXED -

BOUNDED -

DYNAMIC -

To describe a standard message-text string.

To describe a LOCAL print-line buffer with a maximum
length of 132 characters; or to describe a substring
of a FIXED or DYNAMIC string.

To describe a dynamically-created character string.
For example, XPORT I/O uses a DYNAMIC descriptor
(located in the lOB) to describe the resultant file
specification, i.e., IOB$T_RESULTANT.

DYNAMIC BOUNDED -
To describe a character string whose length is
continually changing, e.g., an unlimited print-line
buffer. XPORT I/O uses this class of descriptor to
describe its input-string buffer, i.e., IOB$T_STRING.

6.1.6 Descriptor Data Types

The data type field in a descriptor identifies the type of item
described by the descriptor. Although VAX/VMS defines a multitude of
possible data types, only two of these are relevant to transportable
descriptor usage: STR$K_DTYPE_T and STR$K_DTYPE_Z.

6.1.6.1 Character String Data 'I'ype (STR$K_DTYPE_T)

This data type identifies XPORT-compatible ASCII character strings.
The length field (STR$H LENGTH) of a character string descriptor
specifies the number of characters in the string. The pointer field
(STR$A POINTER) contains a BLISS character pointer which points to the
first character of the string. A character string descriptor may be
used in conjunction with all XPORT I/O, dynamic memory management and
string processing functions.

6-8

String Handling Facilities
STRING DESCRIPTORS

6.1.6.2 Binary Data Type (Sr:£'R$K_DTYPE_Z)

This data type identifies XPORT-compatible binary data.
described in Chapter 7, "Binary Data Descriptors".

6.2 STRING DESCRIPTOR STRUCTURE REFERENCES

It is

An XPORT string descriptor is actually a transportable XPORT data
structure. A reference description of this structure appears in the
Appendix section B.2.

The individual fields of a string descriptor may be referred to
conventional BLISS field references. As an example of
references, consider the following routine which returns the
character of a string or a null (indicating a null string).

ROUTINE first_character(string) =
BEGIN
MAP string: REF $STR_DESCRIPTOR();

IF .string[STR$H_LENGTH] EQL 0
THEN

RETURN %CHAR(O)
ELSE

RETURN CH$RCHAR(.string[STR$A_POINTER]
END;

using
such

first

This sample routine (which does not distinguish
string and a NUL first character) will work
character strings in all target environments.

between the null
for all classes of

6.3 STRING MODIFICATION

The $STR COPY and $STR APPEND functions permit convenient modification
of a strIng value regardless of the class of the string.

The $STR COPY function replaces a current string value with a new
val ue. -The $STR APPEND function adds characters to the end of an
existing string. The following sample routine illustrates the use of
these string modifications functions.

6-9

String Handling Facilities
STRING MODIFICATION

ROUTINE echo
BEGIN
OWN

terminal
message

$XPO lOB () ,
$STR DESCRIPTOR (CLASS = DYNAMIC BOUNDED,

STRING = (0,0));

$XPO_OPEN(lOB = terminal, FILE SPEC $XPO_INPUT);

WHILE $XPO_GET(lOB = terminal,

END;

PROMPT = IEnter a string: I) DO
BEGIN
$STR COPY (STRING = IECHO: II I, TARGET message) ;
$STR=APPEND(STRING terminal[IOB$T STRING],

TARGET = message); -
$STR APPEND(STRING = 1111, TARGET = message);
$XPO-PUT(lOB = terminal, STRING = message)
END -

The actual processing performed by the $STR COPY and $STR APPEND
functions depend on the class of the target string descriptor, as
described in the following two sections.

6.3.1 $STR_COPY Operation

The string copy operation acts on the various classes of target
strings as follows:

o FIXED target string: The source string is copied to the
target string, replacing any previous content. If the source
string is shorter than the target string, the target is
padded with trailing blanks.

If the source string is longer than the target string, it is
either truncated (if requested by the user) or the operation
fails. Optional truncation is specified by the parameter
OPT I ON=TRUNCATE.

o DYNAMIC target string: If the source and target strings are
the same length, the source string is copied to the target
string, replacing any previous content.

If the source string is either shorter or longer than the
target string, the dynamic memory occupied by the target
string is freed, a new dynamic-memory element is allocated,
and the source string is copied to it. The target string
descriptor is updated to reflect the new length and storage
location.

6-10

String Handling Facilities
STRING MODIFICATION

o BOUNDED target string: If the source string will fit within
the bounded-pIus-remainder portion of the target container
string, the source string is copied to the target string and
and the length field of the target string descriptor is
updated to reflect the new bounded-string length.

o

If the source string is longer than the bounded-plus
remainder portion of the target container string, it is
either truncated (if requested by the user) or the operation
fails. Optional truncation is specified by the parameter
OPTION=TRUNCATE.

The prefix portion, if any, of the target container string is
never modified by the copy operation.

DYNAMIC BOUNDED target string: If the source
within the bounded-pIus-remainder portion
container string, the source string is copied
string and and the length field of the
descriptor is updated to reflect the new
length.

string will fit
of the target
to the ta rg et
target str ing
bounded-string

If the source string is longer than the bounded-plus
remainder portion of the target container string, a new
dynamic-memory element is allocated, the prefix portion of
the original target string plus the new source string is
copied to it, and the original dynamic-memory element is
freed. The target string descriptor is updated to reflect
the new bounded-string length, storage location, and maximum
(i.e., container string) length.

The prefix portion, if any, of the original target container
string is never modified by the copy operation.

6.3.2 $STR_APPEND Operation

The string append operation acts on the various classes of target
strings as follows:

o FIXED target string:
for a FIXED target
ex tended.

An append operation is not permitted
string since a FIXED string cannot be

o DYNAMIC target string: The source string is logically
concatenated with the target string and the result is copied
into a newly allocated dynamic-memory element. The dynamic
memory allocated for the original target string (if any) is
then freed, and the target string descriptor is updated to
reflect the new length and storage location.

6-11

String Handling Facilities
STRING MODIFICATION

o BOUNDED target string: If the source string will fit within
the remainder portion of the target container string, the
source string is added to the end of the target string and
and the length field of the target string descriptor is
updated to reflect the new bounded-string length.

If the source string is longer than the remainder portion of
the target container string, it is either truncated (if
requested by the user) or the operation fails. Optional
truncation is specified by the parameter OPTION=TRUNCATE.

The prefix portion, if any, of the target container string is
never modified by the append operation.

o DYNAMIC BOUNDED target string: If the source string will fit
within the remainder portion of the target container string,
the source string is added to the end of the target string
and and the length field of the target string descriptor is
updated to reflect the new bounded-string length.

If the source string is longer than the remainder portion of
the target container string, a new dynamic-memory element is
allocated, the source string is logically concatenated with
the prefix-pIus-bounded portion of the original target
string, and the result is copied to the new memory element.
'rhe original dynamic-memory element is then freed. 'l'he
target string descriptor is updated to reflect the new
bounded-string length, storage location, and maximum (i.e.,
container string) length.

The prefix portion, if any, of the original target container
string is never modified by the append operation.

6.4 STRING COMPARISON

The BLISS language provides a collection of built-in character
comparison functions (CH$xxx) which can be used to compare two
character string values. Each of these functions uses pairs of length
and pointer values to describe the characters strings. The XPORT
string comparison functions provide a similiar set of functions which
are based on implicit or explicit string descriptors.

The basic form of all of the XPORT string comparison functions is as
follows:

$STR relation(STRINGI
STRING2
{, FILL

string-info,
string-info
char-value-expression })

6-12

String Handling Facilities
STRING COMPARISON

The "string-info" value can be the address of a string descriptor, a
literal ASCII string, a string length/pointer pair, or an XPORT string
pseudo-function (see Section 6.6). The "char-value-expression" can be
any expression that produces a value between a and 127 (decimal)
inclusive.

The following string comparison functions are provided:

Function

$STR_NEQ

$STR LSS

$STR GTR

$STR COMPARE

Meaning

String-l and string-2 are equal, i.e., both
strings are the same length and have the same
value.

String-l and string-2 are not equal.

The value of string-l is less than the value
of string-2.

The value of string-l is less than or equal
to the value of string-2.

The value of string-l is greater than or
equal to the value of string-2.

The value of string-l is greater than the
value of string-2.

Compare string-l for a less-than, equal-to,
or greater-than relationship to string-2.

With the exception of $STR COMPARE, these functions return a value of
1 if the comparison is- satisfied, a value of a (zero) if the
comparison is not satisfied, or an error completion code if either of
the string descriptors is invalid. $STR COMPARE returns values of -1,
0, or +1 for less-than, equal-to, or greater-than, respectively.

In order to compare as equal, two strings must be equal in length as
well as content. If requested with the FILL= parameter, the shorter
of the two character strings is extended by adding "fill characters"
to make the two strings the same length.

The relationship between two string values (e.g., less than) depends
on the ordering of the characters within the two strings. That
ordering is determined by the ASCII collating sequence.

6-13

String Handling Facilities
STRING COMPARISON

The following sample routine, which determines whether a keyword
begins with a capital letter, illustrates the use of the string
comparison functions.

ROUTINE keyword test(keyword_desc) =
BEGIN -
IF $STR LSS(STRINGI = .keyword desc, STRING2

$STR=GTR(STRINGI = .keyword-desc, STRING2
'A') OR
'z ' ,

THEN
RETURN a

ELSE
RETURN 1

END;

6.5 STRING SCANNING

FILL = 'Z') -

6.5.1 $STR SCAN Overview

The $STR SCAN function performs three different types of string
scanning:

o It can locate a specific sequence of characters within a
string (FIND mode) •

o It can match a stream of specific characters (SPAN
mode) .

o It can search for one of a set of specific characters
(STOP mode) .

Each of these scanning operations determines a unique substring of the
string being scanned.

There are several possible results of
operations:

these string

o A completion code is returned which indicates whether
the operation was successful.

o A substring descriptor (FIXED or BOUNDED only) can be
fill ed in.

o A copy of the resulting substring can be returned.

6-14

scanning

String Handling Facilities
STRING SCANNING

o The character that terminated the search can be
ret urned •

For the purpose of presenting meaningful string scanning examples
further on, imagine a simple application which reads and scans data
records which have the following syntax:

keyword {=value} , •••

Following are sample data records which conform to this syntax:

BEGIN
COPIES=5
SUB TOTALS, TOTALS, GRAND TOTAL
END-

Each of the string-scanning code fragments presented later on is
assumed to appear in the following routine:

ROUTINE data scan(data line) =
BEGIN -
BIND

line = .data line $S'I'R _DESCR I PTOR () i

OWN
keyword: $STR_DESCRIPTOR(STRING=(O,O)),
keyword_copy: $STR DESCRIPTOR (CLASS = DYNAMIC,

- STRING = (0,0)),

$STR_DESC INIT(DESCRIPTOR = line, CLASS
STRING = .data line)i

6.5.2 $STR_SCAN FIND - Find a Character Sequence

BOUNDED,

The following code fragments illustrate the use of the $STR SCAN FIND
operation to locate a specific sequence of characters within a string,
and to modify a descriptor to isolate that sequence (if found).

6-15

String Handling Facilities
STRING SCANNING

IF $STR SCAN(STRING
THEN -

line, FIND , : = I

BEGIN
$XPO PUT MSG(STRING

STRING
RETURN a
END;

'Obsolete syntax in following line',
line) ;

6.5.3 $STR SCAN SPAN - Match a Set of Characters

The $STR SCAN SPAN operation determines the longest substring which
(1) begIns at the start of a string and (2) consists solely of a
specified set of characters. A successful-sFAN operation may result
in a null substring, i.e., zero characters spanned.

The following code fragment illustrates the creation of ~ substring
descriptor for the first keyword of a data record.

$STR_SCAN(STRING = line,
SPAN = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 '
SUBSTRING keyword,
DELIMITER = keyword_delim);

This scan call will isolate any upper-case symbol occuring at the
beginning of the data line, will modify the descriptor named "keyword"
to describe that symbol, and will also return the character
immediately following the symbol in the data-segment named
"keyword delimIt.

6.5.4 $STR SCAN STOP - Search for a Set of Characters

The $STR SCAN STOP operation determines the longest substring which
(1) begIns at the start of a string and (2) does not contain any of a
specified set of characters. A STOP operation may result in a null
substring.

The following code fragment illustrates an alternate method for the
creation of a substring descriptor. It is d~signed to pick up any
substring delimited by a comma or an equal sign.

$STR_SCAN(STRING line,
STOP = ',=',
SUBSTRING keyword,
DELIMITER = keyword_delim);

6-16

String Handling Facilities
STRING SCANNING

6.5.5 $STR_SCAN - Returning a Substring

A copy of a substring determined by any type of scan operation (i.e.,
FIND, SPAN, or STOP) can be created automatically through use of the
TARGET= parameter. The target descriptor must be FIXED or DYNAMIC
class only.

The following code fragment illustrates the creation of a target
descriptor for a copy of the first keyword of a data record.

$STR_SCAN{ STRING line,
SPAN = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 '
TARGET = keyword_copy);

This scan call will isolate any upper-case symbol occuring at the
beginning of the data line, will make a copy of that symbol, and will
modify the descriptor named "keyword_copy" to describe the copy.

6.5.6 $STR_SCAN - "Scanning 'l'hrough" a BOUNDED String

In the general case, the $STR SCAN functions make conventional use of
the source string descriptor (specified with the STRING= parameter) •
That is, the STR$H LENGTH and STR$A POINTER fields of the descriptor
determine the string to be scanned.-

However, if a BOUNDED or DYNAMIC BOUNDED descriptor is specified in a
REMAINDER= parameter, the remainder string (rather than the bounded
string) is scanned. In order to use this form of string scanning, a
bounded descriptor must be declared and initialized:

LOCAL
scan line: $STR_DESCRIPTOR{ CLASS

$STR_DESC INIT{ DESCRIPTOR = scan_line,
CLASS = BOUNDED,
STRING = .data line);

BOUNDED) ;

Moreover, if the same BOUNDED or DYNAMIC BOUNDED descriptor is
specified for both~e REMAINDER= and SUBSTRING= parameters, the
special operation of "scanning through a string", one field at a time,
is achieved in a greatly simplified fashion. For example, the
following two code fragments each skip past the sequence of commas and
spaces which can precede the next keyword.

$STR_SCAN{ REMAINDER = scan_line,
SPAN = " "
SUBSTRING scan line);

6-17

String Handling Facilities
STRING SCANNING

This fragment is equivalent to:

BEGIN
LOCAL temp desc: $STR DESCRIPTOR();
$STR_DESC_INIT(DESCRIPTOR = temp_desc, CLASS = FIXED);

$STR_SCAN(STRING = (.scan line[STR$H MAXLEN] -
.scan line[STR$H LENGTH] -

.scan line[STR$H PFXLEN],
CH$PLUS{.scan-line[STR$A-POINTER],

.scan_line[STR$H_LENGTH]» ,
SPAN = I, I,
SUBSTRING = temp_desc);

scan line[STR$H_PFXLEN]

scan line[STR$H LENGTH]
scan-line[STR$A-POINTER]
END;- -

6.6 STRING CONVERSION

.scan line[STR$H PFXLEN] +
.scan line[STR$H LENGTH];

.temp desc[STR$H LENGTH];
.temp_desc[STR$A_POINTER];

6.6.1 $STR CONCAT and $STR_FORMAT - ASCII to ASCII String Conversions

The simplest form of string conversion is to (logically) modify the
form of an ASCII string. The pseudo-functions which perform this type
of conversion are $STR CONCAT and $STR FORMAT. These pseudo-functions
may only be used in conjunction with the STRING= parameter and similar
parameters of XPORT I/O and String Handling functions.

Wherever possible,
(modifications of)

the examples in this section
examples presented earlier.

6.6.1.1 $STR CONCAT

are built upon

The $STR CONCAT pseudo-function allows two or more strings to be
logically concatenated to form a single logical string.

The following code fragment illustrates the use of the $STR CONCAT
pseudo-function to specify a single logical string which consists of
two literal strings and a variable string (that is, an lOB string
descriptor address; cf. Chapter 3).

6-18

String Handling Facilities
STRING CONVERSION

$XPO_PUT(lOB = terminal,
STRING = $STR_CONCAT('ECHO: "I,

terminal [IOB$T_STRING],
, "'));

6.6.1.2 $STR FORMAT

The $STR FORMAT pseudo-function provides a means of specifying
non-standard string characteristics or processing. For example, a
string can be converted to upper-case as part of an append operation.

$STR_APPEND(STRING $STR FORMAT(terminal[IOB$T_STRING], UP_CASE),
TARGET = message);

Likewise, the case of a
comparison or scanning
transformation.

IF $STR_EQL(STRINGI
STRING2

THEN

string could
operation, by

be 'ignored'
means of the

in a string
same logical

$STR FORMAT(keyword, UP CASE),
'YES')

The length and alignment of a string can also be specified using
$STR FORMAT:

$STR_COPY(STRING = $STR FORMAT (keyword, LENGTH=20, RIGHT JUSTIFY),
TARGET = message);

$XPO_PUT(lOB = terminal,
STRING = $STR_FORMAT('Hello User!', LENGTH=80, CENTER));

6.6.2 $STR_ASCII - Binary-Data to ASCII String Conversion

The $STR ASCII pseudo-function provides a means of easily creating an
ASCII string representation of a single binary value. This pseudo
function, like the $STR CONCAT and $STR FORMAT pseudo-functions, may
only be used in conjunction with the STRING= parameter and similar
parameters on XPORT I/O and String Handling functions.

The following sample routine illustrates the use of the $STR ASCII
pseudo-function to output an ASCII number to the user's terminal:

6-19

ROUTINE put ascii
BEGIN -
OWN

number
negative
terminal

String Handling Facilities
STRING CONVERSION

NOVALUE

INITIAL(1234),
INITIAL(-44),
$XPO_IOB();

IF NOT .terminal[IOB$V OPEN
THEN -

$XPO_OPEN(lOB = terminal, FILE SPEC $XPO OUTPUT);

$XPO_PUT(lOB = terminal,
STRING = $STR_ASCII(.number));

RETURN;
END;

A variety of $STR ASCII conversion options permit the user to specify
the exact form of binary to ASCII conversion desired. For example,
the following list shows the terminal output which would result on
VAX/VMS from the substitution of various $STR ASCII calls in the
previous code fragment.

STRING=

$STR ASCII (.number)
$STR-ASCII (.number,BASEIO)
$STR-ASCII (.number,BASE8)
$STR-ASCII(.number,BASE8,LENGTH=4)
$STR-ASCII(.number,BASE16)
$STR-ASCII(.number,BASE2,LENGTH=12)
$STR-ASCII(.number,BASE8,LEADING BLANK)
$STR-ASCII (.number,BASEIO,LEADING ZERO)
$STR-ASCII (.number,BASE10,LENGTH=8)
$STR-ASCII (.negative)
$STR-ASCII(.negative,BASEIO)
$STR-ASCII(.negative,BASE8)
$STR-ASCII(.negative,BASE16)
$STR-ASCII(.negative,BASE8,SIGNED)
$STR=ASCII (.negative,BASE10,UNSIGNED)

Terminal Output

1234
1234
00000002322
2322
000004D2
010011010010
2322
0000001234

1234
-44
-44
37777777724
FFFFFFD4
-00000000054
4294967252

Table 6.2 shows the possible $STR ASCII integer conversion options and
indicates the option defaults.- Note that the defaults for BASE10
conversion are opposite from the defaults for BASE2, BASE8 and BASE16.

6-20

String- Handling Facilities
STRING CONVERSION

Table 6.2
$STR ASCII Integer Conversion Options

+------------------------~---+
I

Option Type Option I Default

Result radix BASE2, BASE8
BASElO, BASE16

Integer type SIGNED,
UNSIGNED

Nonsignificant LEADING BLANK,
digit LEADING-ZERO

String length LENGTH=constant

I

BASEIO

If BASEIO then SIGNED,
else UNSIGNED

If BASEIO then LEADING_BLANK,
else LEADING ZERO

If LEADING BLANK then
LENGTH=minimum,

else LENGTH=large enough for
maximum value

+--+

6.6.3 Nesting $STR_ASCII, $STR_CONCAT, $STR_FORMAT Pseudo-Functions

The $STR ASCII, $STR CONCAT, and $STR FORMAT pseudo-functions may be
nested as desired; that is, a $STR ASCII, $STR CONCAT, or $STR FORMAT
pseudo-function may be the string argument of eTther a $STR CONCAT or
$STR_FORMAT pseudo-function. -

The following sample routine illustrates nesting of string conversion
pseudo-functions. This routine formats and outputs a single line of
sequence-numbered text (created by an SOS editor) •

ROUTINE put_sos(number, page, text)
BEGIN
$XPO PUT(lOB = terminal,

STRING = $STR CONCAT($STR ASCII (.number,LENGTH=5,LEADING ZERO),

END;

I 11,- -
$STR ASCII (.page,LENGTH=3,LEFT JUSTIFY),
$STR=FORMAT(.text,LENGTH=123,TRUNCATE))

6-21

String Handling Facilities
STRING CONVERSION

The output of this routine will have the following format:

00150/2 a single line of text

where "00150" is a line sequence number (always 5 digits with leading
zeros) and "2" is a page number (left justified with no leading
zeros) •

6.6.4 $STR_BINARY - ASCII String to Binary-Data Conversion

The $STR BINARY function provides a means of easily converting an
ASCII string value into a corresponding binary value.

The following sample routine illustrates the use of $STR BINARY to
convert a string value into a binary value.

ROUTINE echo test NOVALUE
BEGIN
LOCAL echo count;
OWN termTnal $XPO IOB();

$XPO_OPEN (lOB terminal, F1LE SPEC $XPO INPUT);

$XPO GET(lOB = terminal,
-PROMPT = 'Enter number of times to echo each string');

$STR_BINARY(STRING
OPTION
RANGE
RESULT

terminal[IOB$T STRING],
BASEIO, -
(1,999),
echocount);

WHILE $XPO_GET(lOB = terminal,

END;

PROMPT = 'Enter string: ') DO
INCR counter FROM 1 TO .echo count DO

$XPO PUT(lOB = t~rminal~
- STRING = terminal [IOB$T_STRING]);

6-22

CHAPTER 7

7.1
7.2
7.2.1

7.2.2

7.2.3

7.2.4

BINARY DATA DESCRIPTORS

INTRODUCTION . • . • . • • . . • . • • . • • • • . 7-1
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION 7-2

$XPO DESCRIPTOR -- Creating a Binary Data
Desc~iptor • . . • • • • • . •• •• 7-2
$XPO DESCRIPTOR -- Compile-Time Descriptor
InitTalization • • . • • • • . . • • • •• . 7-2
$XPO DESC INIT -- Run-Time Data Descriptor
InitTalization••.•....•••. 7-3
Classes Of Descriptors ••••••••.•..• 7-4

CHAPTER 7

BINARY DA'l'A DESCRIPTORS

This chapter describes macros related to the manipulation of binary
data (i.e., non-character-string data). They are used in conjunction
with the XPORT I/O and memory-management facilities described in
Chapters 3 and 4 respectively. See also Appendix A for reference
descriptions of the macros discussed here.

7.1 INTRODUCTION

A binary-data descriptor is a small block structure used to describe a
binary data item. (These descriptors are modelled on a VA,X/VMS
convention. The string descriptor concept, as described in Chapter 6,
is extended here to include binary data as well.) The XPORT I/O and
memory-management facilities make extensive use of such descriptors
internally, and fully support their use by the programmer -- a
descriptor address is always a valid form of binary data parameter,
for example.

Two macros are provided for data-descriptor
initialization: $XPO DESCRIPTOR and $XPO_DESC INIT.

creation and

Descriptors essentially provide a mechanism for communicating
nonscalar data between independent procedures in an indirect, uniform,
and controlled fashion. They not only describe the location and
extent of an item, but also describe its "class". By convention the
class of an item reflects (1) the nature of its allocation and (2) a
discipline to be observed when 'writing' such an item, i.e., when
modifying the item and updating the descriptor accordingly. This
discipline mainly applies to the recipient of a descriptor, that is,
to a routine to which a descriptor address is passed.

The descriptor classes are: FIXED, BOUNDED, DYNAMIC, DYNAMIC BOUNDED,
and undefined. The specific usage conventions implied by each of
these classes are described in Section 7.2.3. It should be noted
here, however, that for the purposes of reading an item (i.e.,
fetching via the descriptor) all classes of descriptors are
equivalent to FIXED.

7-1

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZA'I'ION

7.2 BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

7.2.1 $XPO_DESCRIPTOR -- Creating a Binary Data Descriptor

A binary data descriptor can be created using the $XPO DESCRIPTOR
macro as an attribute of a data declaration (of an OWN or LOCAL
dec~aration, for example). The macro expands to an appropriate
structure-attribute and field-attribute for the class of descriptor
desired. For example, the declaration

OWN
data buffer: $XPO_DESCRIPTOR();

declares a FIXED descriptor, by default. In contrast, the following
declaration

GLOBAL
integer_array: $XPO_DESCRIPTOR (CLASS BOUNDED);

explicitly declares a BOUNDED data descriptor.

As a further example, the declaration

LOCAL
temp_work area: $XPO DESCRIPTOR{ CLASS = DYNAMIC);

declares a DYNAMIC data descriptor for use in conjunction with
dynamically allocated storage.

7.2.2 $XPO_DESCRIPTOR -- Compile-Time Descriptor Initialization

A binary data descriptor must be initialized prior to its first use.
A descriptor created in permanent storage (OWN or GLOBAL) can be
statically initialized by means of parameters of the $XPO DESCRIPTOR
macro. Several examples follow: -

OWN
$XPO DESCRIPTOR{ CLASS = DYNAMIC,

- BINARY_DATA = (0,0));

The descriptor is initialized as class DYNAMIC and the data-item size
and address fields of the descriptor are set to indicate a null item
(zero size and address). Note that a DYNAMIC descriptor created in
permanent storage can only be initialized to point to 'no storage' at
~ompile time; that is, the only dynamic-storage initialization value
acceptable at compile time is BINARY DATA = (0,0).

7-2

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

A FIXED (or BOUNDED) descriptor created in permanent storage can be
preset with a non-null data-item value, as shown in the following
example:

OWN
set of data
set-desc

VECTOR[lOO],
$XPO_DESCRIPTOR(BINARY DATA =

(lOO~set of_data));

(100) is interpreted as being
opposed to addressable units).

could be indicated as being
shown in the following example

By default, the size expression
expressed in BLISS fullwords (as
Alternatively, the size expression
expressed in addressable units, as
(BLISS-16/32 only):

OWN
VECTOR[lOOO,BYTE] ,
$XPO DESCRIPTOR(BINARY DATA =

many bytes
byte=desc

- (1000, many_bytes, UNITS));

Note that, in the interests of program clarity (and for purposes of
reinitialization), the alternative keyword FULLWORDS can also be
specified explicitly, although it is assumed by default.

A descriptor created in temporary (LOCAL) or dynamic storage must be
dynamically initialized via the $XPO DESC IN IT macro.

7.2.3 $XPO_DESC INIT -- Run-Time Data Descriptor Initialization

The executable $XPO DESC INIT macro dynamically initializes all fields
of a binary data descriptor. This macro must be used for descriptors
created in temporary or dynamic storage.

The dynamic descriptor 'declared'
initialized as follows:

in Section

$XPO_DESC_INIT(DESCRIPTOR = temp work area,
CLASS = DYNAMIC); -

7 • 2. 1 might be

The named descriptor is initialized as a descriptor of dynamic binary
data. In the absence of a BINARY DATA parameter, the size and address
fields are set to indicate a null value. A descriptor created in
temporary storage could be initialized to describe an area of local
storage, as follows:

7-3

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

LOCAL
resul t val ues
result-desc

BLOCK[result size],
$XPO_DESCRIPTOR();

$XPO DESC INIT(DESCRIPTOR = result desc,
- - BINARY_DATA = (result_size, result_values));

Note particularly that the class that is specified (or defaulted) in
the $XPO DESC INIT macro must match the class that is either specified
or defaulted Tn the $XPO DESCRIPTOR macro. (That is, the CLASS
parameter may be omitted Tn either or both macros only in the case of
a FIXED descriptor.) Also, the class of a descriptor cannot be changed
"in mid-stream", that is, without reinitialization.

7.2.4 Classes Of Descriptors

All data descriptors contain the following common fields:

0 A si ze field, named XPO$H LENGTH,
-

0 A address field, named XPO $A _ADDRESS,

0 A class field, named XPO$B _CLASS, and

0 A data-type field, named XPO$B DTYPE.

In addition to these fields, BOUNDED and DYNAMIC BOUNDED descriptors
also contain the following:

o A prefix-size field, named XPO$H_PFXLEN, and

o A maximum-size field, named XPO$H_MAXLEN.

Figure 7.1 shows the format a FIXED or DYNAMIC descriptor; figure 7.3
shows the format of a BOUNDED or DYNAMIC BOUNDED descriptor. Note
that a BOUNDED descriptor is simply an- extension of a FIXED
descriptor.

Figures 7.2 and 7.4 show the format of the data items described by
these descriptors.

Figure 7.1
Format of a FIXED or DYNAMIC Descriptor

+---+
I I I
I XPO$B CLASS I XPO$B DTYPE I
I - I - I

XPO$H LENGTH

+---+
I I
I XPO$A ADDRESS I
I I
+---+

7-4

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

Figure 7.2
Format of a FIXED or DYNAMIC Data Item

+-----------XPO$A POINTER
1 -

v
+---+
1 1
IxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI
1 1
+---+
1 1
1 <--------------XPO$H_LENGTH---------------> 1

Figure 7.3
Format of a BOUNDED or DYNAMIC_BOUNDED Descriptor

+--+
1 1 1 1
1 XPO$B CLASS 1 XPO$B DTYPE 1 XPO$H LENGTH 1
1 - 1 - 1 1
1--I
1 1
1 XPO$A ADDRESS 1
1 1
1--I
1 1 I
1 XPO$H PFXLEN 1 XPO$H_MAXLEN 1
1 1 1
+--+

Figure 7.4
Format of a BOUNDED or DYNAMIC BOUNDED Data Item

+----------XPO$A POINTER
1 -

V
+---+
1 1 1 1
1 IxxxxxxXXXXXXXXXXXXXXXXXXXXXI 1
1 1 1 1
+---+
1 1 1 1
I(---XPO$H PFXLEN--->I<------XPO$H LENGTH------->1 1
1 - - 1

I<------------------------XPO$H MAXLEN----------------------->1

7-5

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

For each class of descriptor, the usage rules specify which fields
may be modified and which fields may not, by a procedure that is
not the "owner" of the descriptor.

Such a procedure is typically a routine that is passed a
descriptor address as one of its calling parameters. Moreover,
the rules only apply where the descriptor is passed in order that
the called routine can either modify information already described
by the descriptor or can return new information to the caller via
the descriptor. (Obviously, when a descriptor is used simply to
pass information for reading only, no descriptor fields need be
modified by the recipient. All descriptor classes are, in fact,
equivalent to FIXED for purposes of reading, i.e., fetching data
via the descriptor.)

The UNDEFINED class -- which is actually a 'non-class' -- has no
rules associated with it and is for intra-program use only.

Table 7.1 gives the usage rules for each class of descriptor.

Table7.1
Descriptor Usage Rules

+--+
1
1
1

Can recipient modify descriptor field?

+---------------1------------ ------------+
1 1 Current ITEM Prefix Maximum
1 Descriptor 1 Length Address Length Length
1 Class IXPO$H LENGTH
1---------------1-----=------

XPO$A ADDRESS XPO$H_PFXLEN XPO$H MAXLEN

IFIXED 1 NO NO (n.a.) (n.a.)
1---------------1------------
1 BOUNDED 1 YES NO YES NO
1---------------1------------
IDYNAMIC 1 YES* YES* (n.a.) (n.a.)
1---------------1------------
IDYNAMIC BOUNDEDI YES YES* YES YES*
I-------~-------I------------
IUNDEFINED 1

+--+
1 1
1 NOTE: It is always valid (with respect to these rules) to modify 1

1 content, that is, to change the information described by thel
1 descriptor, within the limits set by these rules. 1

+--+
* Requires interaction with $XPO FREE_MEM and $XPO_GET_MEM.

7-6

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

The rules in Table 7.1 give rise to the following generalizations
about descriptor classes (keep in mind that they do not necessarily
apply to the "owner'l of the descriptor):

o A FIXED descriptor describes a data item, whose location and
extent may not be changed.

This class of descriptor is typically used to pass an item to
another routine, and is seldom (almost never) used to
describe space.

o A BOUNDED descriptor describes a fixed-length data buffer
that contains an item of varying length. The item may begin
at any addressable point in the buffer and may extend to the
end of the buffer. The buffer location and size may not be
changed (presumably it is allocated in OWN, GLOBAL, or LOCAL
storage); the item, however, may be moved, shortened and/or
lengthened within the limits of the fixed-size buffer.

o

This class of descriptor is typically used to describe a
space in which to construct or update an item which, by its
nature, will not exceed a given maximum size.

In addition to describing a bounded item, a BOUNDED
descriptor implicitly describes three additional data items -
the "container item", a "prefix item", and a "remainder
item". The container item is the entire buffer and thus
includes the bounded item. The prefix item is the portion of
the container item (possibly null) that precedes the bounded
item. The remainder item is the portion of the container
item (possibly nUll) that follows the bounded item.

A DYNAMIC descriptor describes a
size may vary from 0 to 64K
generally used for an item to
routine.

moveable data
addressable

be returned

item
units.
by a

whose
It is

call ed

Note that this class implies the use of dynamic memory, since
the storage described is always assumed to be releasable.
(See Chapter 4 concerning dynamic-memory facilities.)

o A DYNAMIC BOUNDED descriptor describes a moveable data buffer
containinij an item of varying size. The item may begin at
any addressable point in the buffer and may extend to the end
of the buffer.

As its name implies, this class is a generalization of both
the BOUNDED and DYNAMIC classes. It can be used to avoid the
maximum-size restriction imposed by BOUNDED; it can also be
used for a very volatile item, to avoid much of the memory
management overhead implied by DYNAMIC (i.e., storage need be
reallocated only when the buffer becomes too small).

7-7

Binary Data Descriptors
BINARY DATA DESCRIPTOR CREATION AND INITIALIZATION

Note that this class also implies the use of dynamic memory,
since the storage described is always assumed to be
releasable. (See Chapter 4 concerning dynamic-memory
facilities.)

The term "moveable" implies that the allocated storage (if any)
described by a passed descriptor can be released and newly-acquired
storage be described in its place.

7-8

APPENDIX A

A.l
A.l.l
A.l.2
A.l.2.1
A.2
A.2.1
A.2.2
A. 2.3
A.2.4
A.2.S
A.3

A.3.1
A.3.2
A.3.3
A. 3.4
A.4
A. 4. 1
A.4.2
A.4.3
A.4.4
A.4.S
A.S
A.S.l
A.S.2
A.S.3
A.S.4
A.S.S
A.6

A.6.1
A.6.2
A.6.3
A.6.4
A.7
A.7.1
A.7.2
A.7.3
A.7.4
A.7.S
A.8
A.8.1
A.8.2
A.8.3
A.9
A.9.1
A.9.2
A.9.3
A.9.4
A .10
A. 10 • 1
A. 10 • 2
A. 10. 3
A. 10.4

MACRO DESCRIPTIONS

DESCRIPTIVE NOTATION AND CONVENTIONS • • . • • • • A-I
Syntax Notation •• . • • • . . . • • • ••
Character-String and Binary-Data Parameters

String and Data Descriptors .••.

A-I
A-2
A-3

$STR APPEND - Append a String
Syntax •.•• - .•••
Restrictions •.••••..•••
Parameter Semantics

· • • • • A-4
• • • . . A-4

Operational Semantics
Completion Codes ..••

$STR ASCII - Binary-to-ASCII Conversion
Pseudo-Function . • • •

Syntax . • • . . • • . • • • • • • •
Restrictions ••••••••••••••
Parameter Semantics .•••
Usage Guidelines. •. • •.•••••

$STR BINARY - Convert ASCII to Binary
Syntax • • • . • • . • .
Restrictions •••••
Parameter Semantics
Usage Guidelines ..•.
Completion Codes •• •••.

$STR_COMPARE - String Comparison

· • A-4
• A-4
· A-S
• A-6

· • A-7
• A-7
• A-7

. • • A-7
• A-8
· A-9

• • A-9
• • A-9

A-IO
A-IO
A-II
A-12

Syntax • . • . • • • • •
Restrictions •.•.•
Parameter Semantics
Operational Semantics •••.

• • • • A-12
· • • • A-12
• . • • A-12

Completion Codes . ..• ••
A-13

• • • . A-13
$STR CONCAT - String Concatenation
Pseudo-Function .•• . • • • . . • • • .

Syntax • • • • • • • . • • .
Restrictions. . •• • ••••.
Parameter Semantics
Usage Guidelines

$STR_COPY - Copy a String
Syntax . • • • • • •
Restrictions .•••••
Parameter Semantics
Operational Semantics
Completion Codes ••••

$STR_DESCRIPTOR - Declare a String Descriptor
Syntax • . . • . • • • • • • • • • •
Restrictions ••.•••.••.•••••••
Parameter Semantics •••• • • • • • • • • •

A-14
A-14
A-14
A-14
A-IS
A-16
A-16
A-16
A-16
A-17
A-18
A-19
A-19
A-19
A-19
A-21
A-21
A-21
A-21
A-22
A-23
A-23
A-23
A-23
A-24

$STR DESC INIT - Initialize a String Descriptor
Syntax -:- • . • • • • • • • •
Restrictions ••.•.••
Parameter Semantics
Completion Code •• . ••

$STR EQL - String Equality Comparison
Syntax . • • . • • • •
Restrictions ••.•.•••••
Parameter Semantics ••• .
Operational Semantics

A. 10.5
A.ll
A. 11 • 1
A. 11. 2
A. 11. 3
A. 11.4
A.12

A. 12. 1
A. 12. 2
A.12.3
A. 12.4
A.12.5
A.13
A.13.1
A.13.2
A.13.3
A.13.4
A.13.5
A.14
A. 14. 1
A. 14.2
A. 14.3
A. 14.4
A. 14. 5
A.15
A. 15. 1
A. 15 . 2
A. 15. 3
A. 15. 4
A. 15.5
A .16
A. 16. 1
A. 16. 2
A. 16. 3
A. 16. 4
A. 16. 5
A.17
A.17.1
A.17.2
A.17.3
A.17.4
A.17.5
A.18
A.18.1
A.18.2
A.18.3
A. 18.4
A.18.5
A.19
A.19.1
A.19.2
A.19.3
A.19.4
A.20
A. 20. 1

Completion Codes••.•••••••
$STR FORMAT - String Formatting Pseudo-Function

Syntax • • • • • • • . . . • . •
Restrictions •••.
Parameter Semantics ••••
Usage Guidelines. • • . •••

$STR GEQ - String Greater-Than-or-Equal
Com par ison . . • • • • . • • • . . . • • •

Syntax • . • . • . • . .
Restrictions •••.••••••.••••
Parameter Semantics
Operational Semantics
Completion Codes . • •

$STR GTR - String Greater-Than Comparison
Syntax • • . . • . • • •
Restrictions •..••.
Parameter Semantics . • • .
Operational Semantics .•••
Completion Codes •••.••••..••••.

$STR LEQ - String Less-Than-or-Equal Comparison
Syntax . . . • • • . •
Restrictions ••.••..••••.
Parameter Semantics
Operational Semantics •••.
Completion Codes • • • • . .••

$STR LSS - String Less-Than Comparison
Syntax • . . . • . . • • • • .
Restrictions • • . • • • . • •. . .•••
Parameter Semantics . • • •• . •.•
Operational Semantics ..••••
Completion Codes •••

$STR NEQ - String Inequality Comparison
Syntax • • • . . . • . .
Restrictions •••...
Parameter Semantics
Operational Semantics
Completion Codes ..•.

$STR SCAN - String Scanning
Syntax • • • • • • • . •
Restrictions ..•..
Parameter Semantics .••.
Operational Semantics ..••••••••
Completion Codes • • . . . ••

$XPO BACKUP - Preserve an Input File .
Syntax • . • • ••••
Parameter Semantics
Usage Guidelines.
Completion Codes •
Example •.••

$XPO CLOSE - Close a File
Syntax • . . . • • .
Parameter Semantics
Usage Guidelines .•.
Completion Codes .

$XPO DELETE - Delete a File
Syntax

A-25
A-26
A-26
A-26
A-27
A-27

A-29
A-29
A-29
A-29
A-30
/1.-31
A-32
A-32
A-32
A-32
A-33
A-34
A-35
A-35
A-35
A-35
A-36
A-37
A-38
A-38
A-38
A-38
A-39
A-40
A-4l
A-41
A-41
A-41
A-42
A-43
A-44
A-44
A-44
A-45
A-46
A-47
A-48
A-48
A-48
A-49
A-49
A-50
A-51
A-51
A-51
A-52
A-52
A-54
A-54

A. 20 • 2
A. 20. 3
A.21
A. 21 • 1
A. 21 • 2
A. 21. 3
A.22
A. 22. 1
A. 22. 2
A. 22 • 3
A.23
A. 23.1
A.23.2
A. 23.3
A. 23. 4
A.24
A. 24. 1
A. 24. 2
A. 24. 3
A. 24. 4
A.25
A. 25. 1
A. 25 • 2
A. 25. 3
A. 25. 4
A.26
A. 26. 1
A. 26. 2
A. 26. 3
A.27
A. 27 • 1
A. 27 • 2
A. 27 • 3
A. 27 • 4
A.28
A. 28. 1
A. 28. 2
A. 28. 3
A.29
A.29.1
A.29.2
A. 29. 3
A.30
A.30.1
A. 30. 2
A.30.3
A.30.4
A.30.5
A.31
A. 31 • 1
A. 31 • 2
A. 31. 3
A.32
A. 32. 1
A. 32. 2
A .• 32. 3

Parameter Semantics •.••••.••••
Completion Codes • • . • • . • • . • . . .

$XPO DESCRIPTOR - Declare a Data Descriptor
Syntax • • • • • . • • • • •
Restrictions ••••••.•...••.•
Parameter Semantics •• • • . . • • . • •

$XPO DESC INIT - Initialize a Data Descriptor
Sy~tax ~ • • • • • • • •
Parameter Semantics •.•.•..•.
Completion Code •.•.••••••..

$XPO FREE MEM - Release a Memory Element .
Syntax ~ • • . • . •
Restrictions ••...
Parameter Semantics
Completion Codes .

$XPO GET - Read From a File
Sy~tax • • • • • • • • • • • • •
Parameter Semantics
Usage Guidelines ..•
Completion Codes •. • •••

$XPO GET MEM - Allocate Dynamic Memory Element .
Sy~tax-•.•.••••.••.
Restrictions •...•.
Parameter Semantics ••••
Completion Codes • •

$XPO lOB - Declare an lOB
Sy~tax . • . • . • • • . • • • .
Parameter Semantics
Examples • • . • . • • •

$XPO lOB INIT - Initialize an lOB •••• - -
Syntax . • • . . • .
Restrictions •••••
Parameter Semantics ••......••
Completion Code

$XPO OPEN - Open a File
Syntax • • • . . . • • .
Parameter Semantics . . • • • • .
Completion Codes • • • • • .

$XPO PARSE SPEC - Parse a File Specification
Syntax .-. . . . • • • • • . .•••
Parameter Semantics . • • • . • . .
Completion Codes • • . • . • • • • . . • .

$XPO PUT - Write to a File. • . ••.
Syntax . • . • • . •• •••.
Restrictions ••••
Parameter Semantics
Usage Guidelines ••••
Completion Codes • • .

$XPO PUT MSG - Send a Message
Syntax -. • . . • • . • • •
Parameter Semantics••..•.
Completion Codes . • • • • . • • . .

$XPO RENAME - Rename a File
Syntax • . • • . . .
Parameter Semantics
Completion Codes . . • .

A-54
A-55
A-57
A-57
A-57
A-57
A-59
A-59
A-59
A-60
A-61
A-61
A-61
A-61
A-62
A-63
A-63
A-63
A-64
A-65
A-67
A-67
A-67
A-67
A-68
A-70
A-70
A-70
A-70
A-71
A-71
A-7l
A-71
A-72
A-73
A-73
A-74
A-77
A-79
A-79
A-79
A-80
A-81
A-8l
A-81
A-82
A-82
A-82
A-84
A-84
A-84
A-85
A-86
A-86
A-87
A-89

A.33

A. 33. 1
A.33.2
A.34
A. 34. 1
A. 34 • 2
A. 34. 3

$XPO SPEC BLOCK - Declare a File Specification
Bloc~ - .•••

Syntax . . . • • • • • • . • • • • •
Examples . . • • • . . . ••••••

$XPO TERMINATE - Terminate Program Execution
Syntax • . • • • • • • . • • • •
Parameter Semantics ••••
Routine Value .•••.•.••••

A-90
A-90
A-90
A-9l
A-9l
A-9l
A-9l

APPENDIX A

MACRO DESCRIPTIONS

This appendix presents a detailed description of the macros
input/output, memory management, target-system services,
handling. It is intended for reference purposes. A
discussion of these macros and their use is given in
through 6 of this manual.

related to
and string

tutorial
Chapters 3

A.J DESCRIPTIVE NOTATION AND CONVENTIONS

A.I.l Syntax Notation

The notational conventions used in the subsequent macro syntax
definitions are the following:

Notation

UPPERCASE TEXT

lowercase text

required-parameter

primary-parameter

Meaning

must be coded exactly as shown.

must be replaced by an appropriate
user-chosen value.

denotes a macro parameter that must be
specified or a compilation error will
result.

denotes a parameter that affects
nature of the requested operation,
which should be specified unless
corresponding XPORT lOB field
already been set up or the user
certain that the default (if any)
acceptable.

A-I

the
and
the
has
is
is

Macro Descriptions
DESCRIPTIVE NOTATION AND CONVENTIONS

optional-parameter

nothing

{ alternativel
{ alternative2

ABCIDEFlvalue

{ parameter }

, ...

denotes a parameter that need not be
specified in many cases. These
parameters can be used (1) to provide
optional information in a request or
(2) to set up an XPORT lOB field for
use in a later I/O operation.

indicates the null alternative, i.e.,
shows that the programmer may omit the
associated item.

braces enclosing a vertical list of
items indicate syntactic alternatives;
one of the items must be selected.
The braces are not coded.

vertical bars within braces separate
mutually exclusive alternatives; that
is, only one of the items displayed in
this manner can be selected for any
given use of the macro in question. A
default, if any, is underlined. The
braces and the vertical bar are not
coded.

braces enclosing a single syntactic
element indicate that the element is
optional. The braces are not coded.

indicates that the preceding item may
be repeated. Commas must appear
between the items. The periods are
not coded.

Any other punctuation must be coded exactly as shown.

A.l.2 Character-String and Binary-Data Parameters

Many of the macros described in this appendix require character-string
or binary-data information as ·parameters. Such parameters are
indicated in the syntax diagrams as "char-string-info" or
"binary-data-info".

A-2

Macro Descriptions
DESCRIPTIVE NOTATION AND CONVENTIONS

The following list describes the forms in which character-string
information can be specified:

Syntax

address

'ascii text'

(count , pointer)

Meaning

The address of a string descriptor
(see below)

A literal ASCII text string,
by apostrophes, i.e.,
quoted-string

enclosed
a BLISS

The number of characters in a string
and a pointer to the string, enclosed
in parentheses and separated by a
comma.

The following list describes the forms
information can be specified:

in which binary-data

Syntax

address

Meaning

The address of a data descriptor (see
below)

size, address { ,FULLWORDS I ,UNITS I nothing})
A specification of the size of a
collection of'~inary data, the address
of the data, anCt--,an optional keyword
that indicates the terms in which the
size is expressed.

A.l.2.l String and Data Descriptors

Many XPORT functions use a standard block structure called a
descriptor to describe input or output character strings or binary
data. (These transportable descriptors are patterned after
corresponding VAX/VMS standard descriptors.)

Such descriptors can be created and initialized by the programmer
through the use of the $STR DESCRIPTOR and $STR DESC IN IT macros,
respectively, described in this appendix. A detailed dIscussion of
descriptor usage appears in Section 6.1.

A-3

Macro Descriptions
$STR APPEND - Append a String

A.2 $STR APPEND - Append a String

The $STR APPEND macro calls the XPORT STRING facility to append a copy
of a specified source string to a target string. The precise behavior
of the operation depends to some extent on the class of the target
string, which must be described by a descriptor. See Section A.5.4
for further detail.

A.2.1 Syntax

+--------------------+---+
I I I
I str ing-append I $STR APPEND (parameter ,... I
I I - I
+--------------------+---+
I I { required-parameter} I
I parameter I { optional-parameter } I
+--------------------+---+
I I { STRING = char-string-info } I
I required-parameter I { TARGET = address of a string descriptor} I
+--------------------+---+
I I { OPTION = TRUNCATE } I
I optional-parameter I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine } I
+--------------------+---+
! I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (length , pointer) } I
I I { string conversion pseudo-function } I
+--------------------+---+

A.2.2 Restrictions

A string descriptor, where specified, must describe a standard XPORT
string; that is, the data type must be STR$K_DTYPE T, and the
descriptor class must be STR$K_CLASS_F', _D, _B, or DB.

The target string must not be a r'IXED string.

A.2.3 Parameter Semantics

STRING = char-string-info
describes the source character
target string. The source
parameter must be specified.

A-4

string
string

to be appended to
may be of any class.

the
This

Macro Descriptions
$STR APPEND - Append a String

TARGET = address of a descriptor
specifies the address of the target string descriptor.
parameter must be specified.

OPTION = TRUNCATE

This

indicates that (the copy of) the source string is to be truncated
as necessary if the entire string cannot be accomodated within
the target container string, in. the case of a BOUNDED target
string only. (In any other case this parameter is ignored.) If
this parameter is not specified and the target string is BOUNDED,
the append operation will fail and return a warning completion
code (see below) if the source string is longer than the target
remainder sub-string.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the requested operation. If this
parameter is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
requested operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

A.2.4 Operational Semantics

The $STR APPEND operation extends an existing (possibly null) target
string Ey adding a copy of the input string. The manner in which the
target string is extended varies according to the class of the target
string, as follows:

o FIXED target string

The string-append operation is invalid for FIXED target
strings. (By definition, FIXED strings cannot be extended.)

o BOUNDED target string

The target prefix sub-string is preserved and the remainder
sub-string is overwritten as necessary. If the source string
is longer than the target remainder sub-string, the append
operation either fails or truncates the source string to fit
within the container string, as requested by the user.

A-5

Macro Descriptions
$STR APPEND - Append a String

o DYNAMIC target string

Dynamic memory is reallocated in order to accomodate the
extended target string. If the source string is the null
string, however, memory is not reallocated.

o DYNAMIC_BOUNDED target string

The target prefix sub-string is preserved and the remainder
sub-string is overwritten as necessary. If the source string
is longer than the target remainder sub-string, dynamic
memory is reallocated in order to accomodate the extended
target string.

In no case is the input "source string" or its descriptor modified in
any way.

A detailed discussion of the descriptor/string classes (FIXED,
DYNAMIC, BOUNDED, and DYNAMIC-BOUNDED) appears in Section 6.1.

A.2.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
STR$ NORMAL

Error Codes:
STR$ BAD SOURCE +
STR$-BAD-TARGET +
XPO$-FREE MEM +
XPO$-GET MEM + - -

The string-append operation was successful.

The source string is invalid.
The target string is invalid.
Dynamic memory deal location error occured.
Dynamic memory allocation error occured.

A-6

Macro Descriptions
$STR ASCII - Binary-to-ASCIIConversion Pseudo-Function

A.3 $STR ASCII - Binary-to-ASCII Conversion Pseudo-Function

The $STR ASCII pseudo-function produces an ASCII string representation
of a bInary field value (fullwor"d or smaller). This pseudo-function
interprets its value argument as a signed or unsigned integer, as
requested, and produces an ASCII string that expresses the value in a
user-specified radix and format.

The "value" of a $STR ASCII pseudo-function is the address of a
temporary string descriptor and can only be used as a string argument
wlthin other XPORT macro calls.

A.3.1 Syntax

+--------------------+---+
I I I

I binary-to-ASCII- I $STR_ASCII (value { ,parameter , ••. }) I

I conversion I I

I I I

+--------------------+---+
I parameter I { integer-keyword} I

I I { string-Iength-parameter } I

+--------------------+---+
I I { BASE2 I BASE8 I BASEIO I BASEl6 } I

I integer-keyword I { SIGNED I UNSIGNED } I

I I { LEADING ZERO I LEADING BLANK} I

+--------------------+----------=--------------=---------------------+
I string-Iength- I LENGTH = length-expression I

I parameter I I

+--------------------+---+

A.3.2 Restrictions

The keyword alternatives shown on a single line in the syntax diagram
are mutually exclusive.

A.3.3 Parameter Semantics

val ue
is any primary expression that, after evaluation, gives a value
to be converted and returned in string form. This parameter is
required.

A-7

Macro Descriptions
$STR ASCII - Binary-to-ASCII Conversion Pseudo-Function

BASE2, BASE8, BASElO, or BASEl6
indicates that the binary value is
octal, decimal, or hexadecimal
string representation. If this
BASEIO is assumed.

SIGNED or UNSIGNED

to be expressed as a binary,
number, respectively, in the
parameter is not specified,

indicates that the fullword result of the value-expression
evaluation is to be interpreted as a signed or unsigned integer
respectively. (Note that this parameter does not affect the mode
of extension of any field value involved in tne evaluation.) If
this parameter is not specified, SIGNED is assumed if the result
radix is BASEIO; otherwise UNSIGNED is assumed.

LEADING BLANKS or LEADING ZEROS
indicates whether non-significant digits are to be represented by
blanks or by zeros in the result string. If this parameter is
not specified, LEADING BLANKS is assumed if the result radix is
BASElO; otherwise LEADING ZEROS is assumed.

LENGTH = length-expression
specifies the length of the resulting string, i.e., number of
character positions. If the specifi~d string length is less than
the number of significant characters in the converted value, the
result string is set to all asterisks (a la FORTRAN). If this
parameter is not specified, the mlnlmum number of characters
required to represent the significant portion of the binary value
is assumed if the string format is LEADING BLANKS; otherwise the
number of characters required to represent all digits of the
converted value is assumed.

A.3.4 Usage Guidelines

The $STR_ASCII pseudo-function may be used in the following contexts:

o As the value
parameter of
macros

of a STRING= parameter or other similar
most XPORT I/O, message, and string-processing

o As the string argument of a $STR_CONCAT or $STR FORMAT
pseudo-function.

That is, it can be used as char-string-info except where specifically
restricted. In general, $STR ASCII cannot be used in XPORT structure
declaration or initialization macros.

A-8

Macro Descriptions
$STR BINARY - Convert ASCII to Binary

A.4 $STR_BINARY - Convert ASCII to Binary

The $STR BINARY macro calls the XPORT STRING facility to convert an
ASCII string value into a binary value.

The macro accepts a string
interpretation options, and
specified location.

A.4.1 Syntax

argument and one or more string
stores the converted result at a user-

+--------------------+---+
I I I

I ascii-to-binary I $STR BINARY(parameter ,... I

I I - I
+--------------------+---+
I I { r'equired-parameter } I

I parameter I { optional-parameter} I
+--------------------+---+
I I { STRING = char-string-info } I
I required-parameter I { RESULT = address-expression} I

+--------------------+---+
I I { OPTION = integer-radix-keyword } I
I optional-parameter I { RANGE = (min-value-exp, max-value-exp) } I

I I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I integer-radix- I { BASE2 I BASE8 I BASEIO I BASEl6 } I

I keyword I I

+--------------------+---+
I I { address of a string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (Ie ng th , po in t e r) } I
I I { string conversion pseudo-function } I

+--------------------+---+

A.4.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K_DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A-9

Macro Descriptions
$STR BINARY - Convert ASCII to Binary

A.4.3 Parameter Semantics

STRING = char-string-info
describes the numeric character string to be converted to a
binary integer value. This parameter must be specified.

RESULT = address-expression
specifies the address of the location
converted value. The expression must
is large enough to contain any value
default value range for the conversion
must be specified.

OPTION = integer-radix-keyword

that is to receive the
denote a data segment that
within the specified or
operation. This parameter

indicates that the character string is to be interpreted as a
binary (BASE2), octal (BASE8), decimal (BASEIO), or hexadecimal
(BASE16) number. If this parameter is not specified,
OPTION=BASEIO is assumed.

RANGE = (min-value-exp, max-value-exp
specifies two inclusive limiting values for the result of an
integer conversion operation. The converted value is tested
against the values yielded by the mlnlmum and maximum value
expressions. If the result is out of range, the conversion
operation fails. If this parameter is not specified, the numeric
value represented by the ASCII string must lie within the value
range of a fullword on the target system. That is, the value, i,
must lie in the range

-(2**(%BPVAL-l)) < i < {2**%BPVAL)-1

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the requested operation. If this
parameter is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
requested operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

A.4.4 Usage Guidelines

It is possible, in the RESULT parameter, to specify a result field
that is not large enough to accomodate some of the values that fall
within the range of values indicated by the RANGE parameter. In that
case, the too-large value will be truncated when stored (i.e., high
order significance will be lost) .

A-lO

Macro Descriptions
$STR_BINARY - Convert ASCII to Binary

It is the user's responsibility to specify a result field large enough
to contain the largest value expected.

A.4.5 Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
STR$ NORMAL

Etror Codes:
STR$ BAD REQ +
STR$=BAD=SOURCE +

The ASClI-to-binary conversion was successful.

The XPORT request was invalid.
The source string is invalid.

A-II

Macro Descriptions
$STR COMPARE - String Comparison

A.5 $STR COMPARE - String Comparison

The $STR COMPARE macro calls the XPORT STRING facility to compare two
character strings; that is, to report whether the "value" of a given
string is less than, equal to, or greater than the "value" of another
given string, in the sense of their relative rank in the ASCII
collating sequence.

A.5.1 Syntax

+--------------------+---+
I I I
I compare-strings I $STR COMPAREe parameter ,... I
I I - I
+--------------------+---+
I I { requi red-parameter } I
I parameter I { optional-parameter } I
+--------------------+---+
I I { STRINGI = char-string-info } I
I required-parameter I { STRING2 = char-string-info } I
+--------------------+---+
I I { FILL = char-value-expression } I
I optional-parameter I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (length , pointer) } I
I I { string conversion pseudo-function } I
+--------------------+---+

A.5.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_F, ~D, _B, or _DB. -

A.5.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared. The value of the
string described by the STRINGI parameter is compared for a less
than, equal-to, or greater-than relationship to the value of the
string described by the STRING2 parameter. These parameters must
be specified.

A-12

Macro Descriptions
$STR COMPARE - String Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the requested operation. If this
parameter is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
requested operation is not successful, due to an abnormal
condition (see A.7.S). Note that, by its nature, an $STR COMPARE
comparison cannot fail. If FAILURE=O is specified, no failure
action routine is called. If this parameter is not specified,
FAILURE=STR$FAILURE is assumed (see Appendix E).

A.S.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
length and the content, if any, of a string. The value of the null
string, for example, having a length of zero, is not the same as the
value of a string consisting of a NUL character.

No automatic adjustment for strings of unequal length is performed.
Optionally, however, the shorter of two unequal-length strings can be
logically padded "on the right" with a specified fill character.

A.S.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Codes:
-1

o
+1

Error Codes:
STR$ BAD STRNGI +
STR$=BAD=STRNG2 +

String-l compared less than string-2.
String-l compared equal to string-2.
String-l compared greater than string-2.

The primary string is invalid.
The secondary string is invalid.

A-13

Macro Descriptions
$STR CONCAT - String Concatenation Pseudo-Function

A.6 $STR CONCAT - String Concatenation Pseudo-Function

The $STR CONCAT pseudo-function accepts as arguments any combination
of strings, and produces a single logical string consisting of the
concatenation of these elements. $STR ASCII and $STR_FORMAT pseudo
functions are also accepted as $STR_CONCAT string arguments.

The "value" of a $STR CONCAT pseudo-function is the address of a
temporary string descriptor and can only be used as a string argument
wIthIn other XPORT macro calls.

A.6.1 Syntax

+--------------------+---+
I I I

I string- I $STR_CONCAT(parameter, parameter , •.• }) I

I concatenation I I

I I I

+--------------------+---+
I parameter I char-string-info I

+--------------------+---+
I I { address of a string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (length, pointer) } I

I I { string conversion pseudo-function } I

+--------------------+---+

A.6.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.6.3 Parameter Semantics

Each parameter specifies an element of the logical concatenation to be
produced as the "output string" of the pseudo-function. The elements
are concatenated in the order of their specification.

A-14

Macro Descriptions
$STR_CONCA'II

- String Concatenation Pseudo-Function

A.6.4 Usage Guidelines

The $STR_CONCAT pseudo-function may be used in the following contexts:

o As the value
parameter of
macros

of a STRING= parameter or other similar
most XPORT I/O, message, and string-processing

o As the string argument of a $STR CONCAT or $STR FORMAT
pseudo-function.

That is, it can be used as char-string-info except where specifically
restricted. In general, $STR CONCAT cannot be used in XPORT structure
declaration or initialization-macros.

A-15

Macro Descriptions
$STR COPY - Copy a String

A.7 $STR COPY - Copy a String

The $STR COpy macro calls the XPORT STRING facility to copy a
specified source string to a target string; that is, to replace the
contents of the target string by that of the source string. The
target string (possibly null) must be described by a descriptor.

A.7.1 Syntax

+--------------------+----------------_._-----------------------------+
I I I
I string-copy I $STR COPY (parameter ,... I
I I - I
+--------------------+---+
I I { required-parameter} I
I parameter I { optional-parameter } I
+--------------------+---+
I I { STRING = char-string-info } I
I required-parameter I { TARGET = target-string-info } I
+--------------------+---+
I I { OPTION = TRUNCATE } I
I optional-parameter I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (I eng th , po in te r) } I
I I { string conversion pseudo-function } I
+--------------------+---+
I I { address of a string descriptor } I
I target-string-info I { (length, pointer) } I
+--------------------+---+

A.7.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K_DTYPE_T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.7.3 Parameter Semantics

STRING = char-string-info
describes the source character string to be copied to the target
string. (The source string may be of any class.) This parameter
must be specified.

A-16

Macro Descriptions
$STR COpy - Copy a String

TARGET = target-string-info
describes the target string. If the length/pointer notation is
used, the target string is assumed to be FIXED. This parameter
must be specified.

OPTION = TRUNCATE
indicates that (the copy of) the source string is to be truncated
as necessary if the entire string cannot be accomodated within
the target string, in the case of a FIXED target string, or if
the entire string cannot be accomodated within the target
container string, in the case of a BOUNDED target string. (In
any other case this parameter is ignored.) If this parameter is
not specified and the target string is either FIXED or BOUNDED,
the copy operation will fail if the source string cannot be
accomodated by the target string as described above.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the requested operation. If this
parameter is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
requested operation is not successful. If FAILURE=Q is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

A.7.4 Operational Semantics

The semantics of the $STR COPY operation is as follows:

o FIXED target string

Replace the contents of the target string with the source
string. If the source string is smaller than the target
string, fill the remainder of the target string with blanks.
If the source string is longer than the target string, the
copy operation either fails or truncates the source string to
fit, as requested ,by the user.

o DYNAMIC target string

If the source string is the same size as the target string,
simply replace the target string value with the source string
value. Otherwise, free the dynamic memory occupied by the
target string, create a copy of the source string in dynamic
memory, and update the STR$H LENGTH and STR$A POINTER fields
of the target string descriptor.

A-17

Macro Descriptions
$STR COPY - Copy a String

o BOUNDED target string

If there is sufficient space in the target bounded and
remainder strings, replace the bounded string value with the
source string value and adjust the STR$H LENGTH field of the
target string descriptor. If there is Tnsufficient space in
the target bounded and remainder strings, the copy operation
either truncates the source string to fit the container
string or returns an error completion code, as requested by
the user. The prefix portion of the target container string
is not modified by the copy operation.

o DYNAMIC BOUNDED target string

If there is sufficient space in the target bounded and
remainder strings, replace the bounded string value with the
source string value and adjust the STR$H LENGTH field of the
target string descriptor. If there is Insufficient space in
the target bounded and remainder strings, create a larger
container string in dynamic memory, copy the prefix portion
from the original container string and the source string into
the new container string, free the original container string,
and update the STR$H LENGTK, STR$A POINTER and STR$H MAXLEN
fields of the target-string descriptor. -

A detailed discussion of the descriptor/string classes (FIXED,
DYNAMIC, BOUNDED, and DYNAMIC-BOUNDED) appears in Section 6.xxxxx.

A.7.5 Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
comp~etion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
XPO$ NORMAL

Error Codes:
STR$ BAD SOURCE +
STR$-BAD-TARGET +
XPO $-FREE MEM +
XPO $-GET MEM +

The string-copy operation was successful.

The source string is invalid.
The target string is invalid.
Dynamic memory deallocation error occured.
Dynamic memory allocation error occured.

A-I8

Macro Descriptions
$STR DESCRIPTOR - Declare a String Descriptor

A.B $STR DESCRIPTOR - Declare a String Descriptor

The $STR DESCRIPTOR macro generates an attribute list for a string
descriptor within an OWN, GLOBAL, LOCAL, MAP or BIND declaration.
These attributes (1) indicate that the descriptor is a BLOCK structure
of a given length, (2) specify the set of field-names that can be used
tor e fer en c e po r t ion s 0 f the d esc rip tor , and (3) s p e c i f yin i t i a 1
descriptor-field values.

A detailed description of the four types of descriptors (fixed,
dynamic, bounded, and dynamic-bounded) appears in Section 6.1.

A descriptor must be initialized before it can be used. If the
descriptor is declared within an OWN or GLOBAL declaration, the
descriptor can be statically initialized. Otherwise, it must be
initialized by use of the $STR_DESC IN IT macro.

A.B.l Syntax

+--------------------+---+
I I I

I declare-a-string- I $STR_DESCRIPTOR({optional-parameter , •.• }) I

I descriptor I I

I I I

+--------------------+---+
I optional-parameter I { CLASS = class-keyword} I

I I { STRING = char-string-info } I

+--------------------+---+
I class-keyword I { FIXED I DYNAMIC} I

I I { BOUNDED I DYNAMIC BOUNDED} I

+--------------------+--------------------=--------------------------+
I char-string-info I { 'literal ascii string' } I

I I { (count , pointer) } I

+--------------------+---+

A.B.2 Restrictions

The STRING parameter may only be specified within an OWN or GLOBAL
declaration.

A.B.3 Parameter Semantics

CLASS = class-keyword
indicates the class of descriptor being declared. See Section
6.1 for a complete description of the descriptor classes. If
this parameter is not specified, CLASS=FIXED is assumed.

A-19

Macro Descriptions
$STR DESCRIPTOR - Declare a String Descriptor

STRING = char-string-info
describes the character string to be described by the descriptor.
If this parameter is not specified, the descriptor is not
statically initialized.

A-20

Macro Descriptions
$STR_DESC_INIT - Initialize a String Descriptor

A.9 $S'I'R_DESC_INIT - Initialize a String Descriptor

The $STR DESC INIT macro dynamically initializes a string
that is~ thTs macro generates the executable code
initialize all of the fields of a given descriptor.

A.9.1 Syntax

descriptor;
necessary to

+--------------------+---+
I I I
I setup-a-descriptor I $STR DESC INIT(parameter , ••.) I
I I - - I
+--------------------+---+
I parameter I { requi red-parameter } I
I I { optional-parameter } I
+--------------------+---+
I required-parameter I DESCRIPTOR = address of descriptor I
+--------------------+---+
I I { CLASS = class-keyword} I
I optional parameter I { STRING = char-string-info } I
+--------------------+--------------------------~--------------------+
I class-keyword I { FIXED I DYNAMIC} I
I I { BOUNDED I DYNAMIC BOUNDED } I
+--------------------+--------------------=--------------------------+
I I { address of a descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (count , pointer)} I
+--------------------+---+

A.9.2 Restrictions

The STRING parameter may not be used when initializing a DYNAMIC or
DYNAMIC BOUNDED descriptor.

A.9.3 Parameter Semantics

DESCRIPTOR = address of descriptor
specifies the address of the descriptor to be initialized.
parameter must be specified.

CLASS = class-keyword

This

indicates the class of descriptor being initialized. See Section
6.1 for a complete description of the descriptor classes. If
this parameter is not specified, CLASS=FIXED is assumed.

A-21

Macro Descriptions
$STR DESC INIT - Initialize a String Descriptor

STRING = char-string-info
describes the character string to be described by the descriptor.
If this parameter is not specified, the corresponding descriptor
fields are not initialized.

A.9.4 Completion Code

Success Code:
XPO$_NORMAL The descriptor was successfully initialized.

A-22

Macro Descriptions
$STR_EQL - String Equality Comparison

A.ID $STR_EQL - String Equality Comparison

The $STR EQL macro calls the XPORT STRING facility to compare two
character strings for equality; that is, to report whether or not two
specified strings are identical in "value". Unequal length strings
are not automatically adjusted for length.

A.ID.I Syntax

+--------------------+---+
I I I
I compare-for-equal I $STR EQL (parameter ,... I
I I - I
+--------------------+---+
I I { requi red-parameter } I
I parameter I { optional-parameter } I
+--------------------+---+
I I { STRINGI = char-string-info } I
I required-parameter I { STRING2 = char-string-info } I
+--------------------+---+
I I { FILL = char-value-expression } I
I optional-parameter I { SUCCESS = address of action routine } I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of a string descriptor} I
I char-str ing- info I { I literal asc i i str ing I } I
I I { (length , pointer) } I
I I { string conversion pseudo-function } I
+--------------------+-----~---+

A.ID.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.ID.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared for equality.
These parameters must be specified.

A-23

Macro Descriptions
$STR_EQL - String Equality Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the comparison operation. If this
parameter is not specified, no success action routine is assumed.

NOTE: A comparison failure is considered to be a successful
ope rat ion.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
comparison operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

NOTE: A $STR_EQL operation will fail only if an input string or
FILL value is invalid. An unsuccessful comparison does not
constitute an operation failure.

A.IO.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
length and the content, if any, of a string. The value of the null
string, for example, having a length of zero, is not the same as the
value of a string consisting of a NUL character.

No automatic adjustment for strings of unequal length is performed.
Optionally, however, the shorter of two unequal-length strings can be
logically padded "on the right" with a specified fill character.

The comparison operation returns
comparison is satisfied, and a
unsatisfied.

a val ue of
value of 0

1 if the requested
if the comparison is

If the comparison operation itself fails (e.g., due to an invalid
string descriptor), the operation returns an error completion code
(which always has a low-bit value of 0), unless program execution is
automatically terminated by a failure-action routine.

A-24

Macro Descriptions
$STR_EQL - String Equality Comparison

A.IO.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
I

Warning Code:
o

Error Codes:
STR$ BAD STRNGI +
STR$=BAD=STRNG2 +

The comparison was successful.

The comparison was not successful.

The primary string is invalid.
The secondary string is invalid.

A-25

Macro Descriptions
$STR FORMAT - String Formatting Pseudo-Function

A.II $STR FORMAT - String Formatting Pseudo-Function

The $STR FORMAT pseudo-function accepts a string argument and produces
a reformatted or otherwise transformed logical string as a result.
$STR ASCII and $STR CONCAT pseudo-functions are also accepted as
$STR=FORMAT string arguments.

The "value" of a $STR FORMAT pseudo-function is the address of a
temporary string descriptor and can only be used as a string argument
within other XPORT macro calls.

A.II.I Syntax

+--------------------+---+
I I I

I string-formatting I $STR FORMAT(string-param, format-param, •••) I

I I - I

+--------------------+---+
I string-param I char-string-info I

+--------------------+---+
I format-param I { editing-keyword} I

I I { string-Iength-parameter } I

+--------------------+---+
I editing-keyword I { LEFT JUSTIFY I CENTER I RIGHT JUSTIFY } I

I I { UP CASE -} I

+--------------------+-----=---+
I string-Iength- I LENGTH = length-expression I

I parameter I I

+--------------------+---+
I I { address of a string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (length, pointer) } I

I I { string conversion pseudo-function } I

+--------------------+---+

A.II.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_Fu _D, _B, or DB.

The keyword alternatives shown on a single line in the syntax diagram
are mutually exclusive.

A-26

Macro Descriptions
$STR FORMAT - String Formatting Pseudo-Function

A.II.3 Parameter Semantics

string-param
specifies the string that is the pseudo-function's
string".

LEFT JUSTIFY, CENTER, or RIGHT JUSTIFY
indicates a string positioning.option, as follows:

"input

o LEFT JUSTIFY indicates that the first non-blank character of
the "input string" is to begin in the first character
position of the logical output string. Any unused trailing
character positions are blank-filled.

o CENTER indicates that the non-blank portion of the "input
string" is to be centered in the logical output string, with
unused leading and trailing character positions blank-filled.

o RIGHT JUSTIFY indicates that the rightmost non-blank
character of the "input string" is to appear in the last
character position of the logical output string. Any unused
leading character positions are blank-filled.

If a positioning option is to be meaningful, the result string
must be longer than the input string (see LENGTH=). If a
positioning option is not specified, LEFT_JUSTIFY is assumed.

UP CASE
indicates that all alphabetic characters in the "input
are to appear as uppercase in the logical output string.
option is not specified, no case conversion is performed.

LENGTH = length-expression

string"
If this

specifies the length of the logical output string, i.e., the
number of character positions to be produced in the result. If
the specified output-string length is less than the input-string
length, the output string is set to all asterisks (~ la FORTRAN).
If this parameter is not specified, the output string is assumed
to be th€ same length as the input string.

A.II.4 Usage Guidelines

The $STR_FORMAT pseudo-function may be used in the following contexts:

o As the value
parameter of
macros

of a STRING= parameter or other similar
most XPORT I/O, message, and string-processing

A-27

Macro Descriptions
$STR FORMAT - String Formatting Pseudo-Function

o As the string argument of a $STR_CONCAT pseudo-function.

That is, it can be used as char-string-info except where specifically
restricted. In general, $STR FORMAT cannot be used in XPORT structure
declaration or initialization-macros.

A-28

Macro Descriptions
$STR_GEQ - String Greater-Than-or-Equal Comparison

A.12 $STR_GEQ - String Greater-Than-or-Equal Comparison

The $STR GEQ macro calls the XPORT STRING facility to compare two
character strings for a greater-than-or-equal relationship; that is,
to report whether or not the "value" of a given string is either
greater than or equal to the "value" of another given string, in the
sense of their relative rank in the ASCII collating sequence. Unequal
length strings are not automatically adjusted for length.

A.12.1 Syntax

+--------------------+---+
I

compare-for
greater-or-equal

I $STR GEQ(parameter , •••
I -
I

+--------------------+---+
I I { requi red-parameter } I
I parameter I { optional-parameter } I

+--------------------+---+
I I { STRINGI = char-string-info } I

I required-parameter I { STRING2 = char-string-info } I
+--------------------+---+

I I { FILL = char-value-expression } I

I optional-parameter I { SUCCESS = address of action routine } I
I I { FAILURE = address of action routine } I

+--------------------+---+
I I { address of a string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (length , pointer) } I
I I { string conversion pseudo-function } I

+--------------------+---+

A.12.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.12.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared. If the value of
the string described by the STRINGI parameter is greater than or
equal to the value of string described by the STRING2 parameter,
the comparison is satisfied; otherwise the comparison is not
satisfied. These parameters must be specified.

A-29

Macro Descriptions
$STR_GEQ - String Greater-Than-or-Equal Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the comparison operation. If this
parameter is not specified, no success action routine is assumed.

NOTE: A comparison failure is considered to be a successful
operation.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
comparison operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

NOTE: A $STR_GEQ operation will fail only if an input string or
FILL value is invalid. An unsuccessful comparison does not
constitute an operation failure.

A.12.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
length and the content, if any, of a string. The value of the null
string, for example, having a length of zero, is not the same as the
value of a string consisting of a NUL character.

No automatic adjustment for strings of unequal length is perform~d.
Optionally, however, the shorter of two unequal-length strings can be
logically padded "on the right" with a specified fill character.

The comparison operation returns
comparison is satisfied, and a
unsatisfied.

a value of
value of 0

1 if the requested
if the comparison is

If the comparison operation itself fails (e.g., due to an invalid
string descriptor), t.he operation returns an error completion code
(which always has a low-bit value of 0), unless program execution is
automatically terminated by a failure-action routine.

A-30

Macro Descriptions
$STR_GEQ - String Greater-Than-or-Equal Comparison

A.12.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
I

Warning Code:
o

Error Codes:
STR$ BAD STRNGI +
STR$=BAD=STRNG2 +

The comparison was successful.

The comparison was not successful.

The primary string is invalid.
The secondary string is invalid.

A-31

Macro Descriptions
$STR GTR - String Greater-Than Comparison

A.I3 $STR GTR - String Greater-Than Comparison

The $STR GTR macro calls the XPORT STRING facility to compare two
charactei strings f~r a greater-than relationship; that is, to report
whether or not the "value" of a given string is greater than the
"value" of another given string, in the sense of their relative rank
in the ASCII collating sequence. Unequal length strings are not
automatically adjusted for length.

A.13.1 Syntax

+--------------------+---+
I I I
I compare-for- I $STR_GTR (parameter ,... I
I greater-than I I
I I I
+--------------------+---+
I I { required-parameter} I
I parameter I { optional-parameter} I
+--------------------+---+
I I { STRINGI = char-string-info } I
I required-parameter I { STRING2 = char-string-info } I
+--------------------+---+
I I { FILL = char-value-expression } I
I optional-parameter I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (length , pointer) } I
I I { string conversion pseudo-function } I
+--------------------+---+

A.13.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K_DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.13.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared. If the value of
the string described by the STRINGI parameter is greater than the
value of string described by the STRING2 parameter, the
comparison is satisfied; otherwise the comparison is
unsatisfied. These parameters must be specified.

A-32

Macro Descriptions
$STR GTR - String Greater-Than Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the comparison operation. If this
parameter is not specified, no success action routine is assumed.

NOTE: A comparison failure is considered to be a successful
operation.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
comparison operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

NOTE: A $STR_GTR operation will fail only if an input string or
FILL value is invalid. An unsuccessful comparison does not
constitute an operation failure.

A.13.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
length and the content, if any, of a string. The value of the null
string, for example, having a length of zero, is not the same as the
value of a string consisting of a NUL character.

No automatic adjustment for strings of unequal length is performed.
Optionally, however, the shorter of two unequal-length strings can be
logically padded "on the right" with a specified fill character.

The comparison operation returns a value of
comparison is satisfied, and a value of 0
unsatisfied.

1 if the requested
if the comparison is

If the comparison operation itself fails (e.g., due to an invalid
st ring desc r i pto r), the ope ra t ion ret urns an e r ro r compl et ion code
(which always has a low-bit value of 0), unless program execution is
automatically terminated by a failure-action routine.

A-33

Macro Descriptions
$STR GTR - String Greater-Than Comparison

A.13.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
1

Warning Code:
o

Error Codes:
STR$ BAD STRNGI +
STR$-BAD-STRNG2 +

The comparison was successful.

The comparison was not successful.

The primary string is invalid.
The secondary string is invalid.

A-34

Macro "Descriptions
$STR_LEQ - String Less-Than-or-Equal Comparison

A.14 $STR_LEQ - String Less-Than-or-Equal Comparison

The $STR_LEQ macro calls the XPORT STRING facility to compare two
character strings for a less-than-or-equal relationship; that is, to
report whether or not the "value" of a given string is less than or
equal to the "value" of another given string, in the sense of their
relative rank in the ASCII collating sequence. Unequal length strings
are not automatically adjusted for length.

A.14.1 Syntax

+--------------------+---+
I I I
I compare-for-Iess- I $STR_LEQ(parameter ,... I
I than-or-equal I I
I I I
+--------------------+---+
I I { requi red-parameter } I
I parameter I { optional-parameter } I
+--------------------+---+
I I { STRINGI = char-string-info } I
I required-parameter I { STRING2 = char-string-info } I
+--------------------+---+
I I { FILL = char-value-expression } I
I optional-parameter I { SUCCESS = address of action routine } I
I I { FAILURE = address of actio~ routine } I
+--------------------+---+
I I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (length , pointer) } I
I I { string conversion pseudo-function } I
+--------------------+---+

A.14.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _8, or DB.

A.14.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared. If the value of
the string described by the STRINGI parameter is less than or
equal to the value of string described by the STRING2 parameter,
the comparison is satisfied; otherwise the comparison is
unsatisfied. These parameters must be specified.

A-35

Macro Descriptions
$STR_LEQ - String Less-Than-or-Equal Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the comparison operation. If this
parameter is not specified, no success action routine is assumed.

NOTE: A comparison failure is considered to be a successful
operation.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
comparison operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

NOTE: A $STR LEQ operation will fail only if an input string or
FILL value Is invalid. An unsuccessful comparison does not
constitute an operation failure.

A.14.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
length and the content, if any, of a string. The value of the null
string, for example, having a length of zero, is not the same as the
value of a string consisting of a NUL character. No automatic
adjustment for strings of unequal length is performed. Optionally,
however, the shorter of two unequal-length strings can be logically
padded "on the right" with a specified fill character.

The comparison operation returns
comparison is satisfied, and a
unsatisfied.

a value of
value of 0

1 if the requested
if the comparison is

If the comparison operation itself fails (e.g., due to an invalid
str i ng desc r i pto r), the ope ra t ion ret urns an e rro r compl et ion cod e
(which always has a low-bit value of 0), unless program execution is
automatically terminated by a failure-action routine.

A-36

Macro Descriptions
$STR_LEQ - String Less-Than-or-Equal Comparison

A.14.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
I

Warning Code:
o

Error Codes:
STR$ BAD STRNGI +
STR$-BAD-STRNG2 + - -

The comparison was successful.

The comparison was not successful.

The primary string is invalid.
The secondary string is invalid.

A-37

Macro Descriptions
$STR LSS - String Less-Than Comparison

A.IS $STR_LSS - String Less-Than Comparison

The $STR LSS macro calls the XPORT STRING facility to compare two
character strings for a less-than relationship; that is, to report
whether or not the "value" of a given string is less than the "value"
of another given string, in the sense of their relative rank in the
ASCII collating sequence. Unequal length strings are not
automatically adjusted for length.

A.IS.I Syntax

+--------------------+--,-------+
I I I
I compare-for-Iess- I $STR_LSS { parameter ,... I
I than I I
I I I
+--------------------+---+
I I { required-parameter} I
I parameter I { optional-parameter} I
+--------------------+---+
I I { STRINGI = char-string-info } I
I required-parameter I { STRING2 = char-string-info } I
+--------------------+---+
I I { FILL = char-value-expression } I
I optional-parameter I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (length, pointer) } I
I I { string conversion pseudo-function } I
+--------------------+---+

A.IS.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
str ing; tha tis, the data type must be STR$K_DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.IS.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared. If the value of
the string described by the STRINGI parameter is less than the
value of string described by the STRING2 parameter, the
comparison is satisfied; otherwise the comparison is
unsatisfied. These parameters must be specified.

A-38

Macro Descriptions
$STR LSS - String Less-Than Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the comparison operation. If this
parameter is not specified, no success action routine is assumed.

NOTE: A comparison failure is considered to be a successful
ope ration.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
comparison operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

NOTE: A $STR LSS operation will fail only if an input string or
FILL value Is invalid. An unsuccessful comparison does not
constitute an operation failure.

A.1S.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
length and the content, if any, of a string. The value of the null
string, for example, having a length of zero, is not the same as the
value of a string consisting of a NUL character. No automatic
adjustment for strings of unequal length is performed. Optionally,
however, the shorter of two unequal-length strings can be logically
padded "on the right" with a specified fill character.

The comparison operation returns
comparison is satisfied, and a
unsatisfied.

a value of
value of 0

1 if the requested
if the comparison is

If the comparison operation itself fails (e.g., due to an invalid
string descriptor), the operation returns an error completion code
(which always has a low-bit value of 0), unless program execution is
automatically terminated by a failure-action routine.

A-39

Macro Descriptions
$STR LSS - String Less-Than Comparison

A.IS.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
I

Warning Code:
a

Error Codes:
STR$ BAD STRNGI +
STR$-BAD-STRNG2 +

- -

The comparison was successful.

The comparison was not successful.

The primary string is invalid.
The secondary string is invalid.

A-40

Macro Descriptions
$STR_NEQ - String Inequality Comparison

A.16 $STR_NEQ - String Inequality Comparison

The $STR NEQ macro calls the XPORT STRING facility to compare two
character strings for a not-equal relationship; that is, to report
whether or not the "values" of two given string are not equal to each
other. Unequal length strings are not automatically adjusted for
leng th.

A.16.1 Syntax

+--------------------+---+
I

compare-fo r-not
equal

I $STR NEQ(parameter , •••
I -
I

+--------------------+---+
I I { requi red-parameter } I

I parameter I { optional-parameter } I

+--------------------+---+
I I { STRINGI = char-string-info } I

I required-parameter I { STRING2 = char-string-info } I

+--------------------+---+
I I { FILL = char-value-expression } I

I optional-parameter I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I I { address of a string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (length , pointer) } I

I I { string conversion pseudo-function } I

+--------------------+---+

A.16.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_F, _D, _B, or DB.

A.16.3 Parameter Semantics

STRINGI = char-string-info
STRING2 = char-string-info

describe the character strings to be compared for inequality. If
the value of the two strings are not equal, the comparison is
satisfied; otherwise the comparison is unsatisfied. These
parameters must be specified.

A-41

Macro Descriptinns
$STR_NEQ - String Inequality Comparison

FILL char-value-expression
specifies an ASCII character-code value to be used to (logically)
fill out the shorter of the two strings if they are of unequal
length, prior to the comparison. The expression value must be
between 0 and 127 (decimal), inclusive. If this parameter is not
specified, no string extension is performed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the comparison operation. If this
parameter is not specified, no success action routine is assumed.

NOTE: A comparison failure is considered to be a successful
ope ra t ion".

FAILURE = address of action routine
specifies the address of an action routine to be called if the
comparison operation is not successful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=STR$FAILURE is assumed (see
Appendix E).

NOTE: A $STR NEQ operation will fail only if an input string or
FILL value IS invalid. An unsuccessful comparison does not
constitute an operation failure.

A.16.4 Operational Semantics

The notion of "value" in the string-handling context includes both the
1 eng th an d th e con ten t, i fan y, 0 f a s t ring • Th e val u e 0 f the null
string, for example, having 8 length of zero, is not the same as the
value of a string consisting of a NUL character. No automatic
adjustment for strings of unequal length is performed. Optionally,
however, the shorter of two unequal-length strings can be logically
padded "on the right" with a specified fill character.

The comparison operation returns
comparison is satisfied, and a
unsatisfied.

a value of
value of 0

1 if the requested
if the comparison is

If the comparison operation itself fails (e.g., due to an invalid
string descriptor), the operation returns an error complet.ion code
(which always has a low-bit value of 0), unless program execution is
automatically terminated by a failure-action routine.

A-42

Macro Descriptions
$STR_NEQ - String Inequality Comparison

A.16.S Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
I

Warning Code:
a

Error Codes:
STR$ BAD STRNGI +
STR$-BAD-STRNG2 + - -

The comparison was successful.

The comparison was not successful.

The primary string is invalid.
The secondary string is invalid.

A-43

Macro Descriptions
$STR_SCAN - String Scanning

A.17 $STR SCAN - String Scanning

The $STR SCAN macro calls the XPORT STRING facility to scan a string
in order to determine a given portion, or substring, of that string.
The substring to be determined can be specified by different types of
pattern strings.

A.17.I Syntax

+--------------------+---+
I I I
I scan-string I $STR SCAN(parameter ,... I
I I - I
+--------------------+---+
I parameter I { requi red-parameter } I
I I { optional-parameter} I
+--------------------+---+
I required-parameter I {source-string } I
I I { pattern-string } I
+--------------------+---+
I source-string I { STRING = char-string-info } I
I I { REMAINDER = address-of-a-descriptor } I
+--------------------+---+
I I {FIND char-string-info} I
I pattern-string I { SPAN = char-string-info } I
I I { STOP = char-string-info } I
+--------------------+---+
I I { resul t-parameter } I
I I { DELIMITER = address } I
I optional-parameter I { SUCCESS = address of action routine } I
I I { FAILURE = address of action routine} I
+--------------------+---+
I result-parameter I { SUBSTRING = descriptor address } I
I I { TARGET = descriptor address} I
+--------------------+---+
I I { address of a string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (length , pointer) } I
I I { string conversion pseudo-function } I
+--------------------+---+

A.17.2 Restrictions

A string descriptor, if specified, must describe a standard XPORT
string; that is, the data type must be STR$K DTYPE T, and the
descriptor class must be STR$K_CLASS_r', _D, _B, or DB.

The char-string-info of the STRING= parameter must not be a string
conversion pseudo-function if the SUBSTRING= parameter is specified.

A-44

Macro Descriptions
$STR SCAN - String Scanning

If REMAINDER is specified, the source-string descriptor class must be
BOUNDED or DYNAMIC BOUNDED only.

The STRING= and SUBSTRING= parameters must not point to the same
descriptor.

The STRING= and TARGET= parameters must not point to the same
descriptor.

If SUBSTRING= is specified, the substring descriptor class must be
FIXED or BOUNDED only.

The pattern string must not be the null string
string.)

A.17.3 Parameter Semantics

STRING = char-string-info

(i.e., a zero-length

describes the character string to be scanned. The precise
semantics of the scan operation is determined by the
pattern-string parameter employed. Either this parameter or the
REMAINDER parameter must be specified.

REMAINDER = descriptor address
specifies the address of the descriptor of a bounded or dynamic
bounded string of which the remainder portion is to be scanned.
The precise semantics of the scan operation is determined by the
type of pattern-string parameter employed. Either this parameter
or the STRING parameter must be specified.

FIND = char-string-info
specifies a particular sequence of characters to be located
within the source string. If the specified character sequence is
found anywhere in the string the scan operation is successful.
Otherwise, the operation is not successful. Either a FIND, SPAN,
or STOP parameter must be specified.

SPAN = char-string-info
specifies the list of characters that may occur in the substring
to be located within the source string. The semantics of the
SPAN-type scan operation is given in Section A.17.4. Either a
SPAN, FIND, or STOP parameter must be specified.

STOP = char-string-info
specifies the list of characters that may not occur in the
substring to be located within the source string. The semantics
of the STOP-type scan operation is given in Section A.17.4.
Either a STOP, FIND, or SPAN parameter must be specified.

A-45

DELIMITER = address

Macro Descriptions
$STR SCAN - String Scanning

specifies a location in which to store the character that
"stopped" the scan operation; that is, the character immediately
following the substring determined by the operation. If the
string scan operation fails, the delimiter location is unchanged.
If the substring extends to the end of the source string, a NUL
character is returned. If this parameter is not specified, the
delimiter character is not reported.

SUBSTRING = descriptor address
specifies a descriptor that is to be modified
substring determined by the scan operation.
operation fails, the substring descriptor is
this parameter is not specified, substring
reported. The use of the SUBSTRING parameter
the use of the $STR DESC INIT macro.

TARGET = descriptor address

to describe the
If the string scan
not changed. If
information is not
is equivalent to

specifies the descriptor that is to describe a copy of the
substring obtained by the scan operation. If the string scan
operation fails, the target descriptor is not changed. If this
parameter is not specified, no copy of the substring is provided.
The use of the TARGET parameter is equivalent to the use of the
$STR COpy macro.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the scan operation. If this parameter
is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
scan operation is not successful due to an abnormal condition
(see Section A.17.5). Note that an unsuccessful scan does not
trigger a failure-action routine. If FAILURE=Q is specified, no
failure action routine is called. If this parameter is not
specified, FAILURE=STR$FAILURE is assumed (see Appendix E).

A.17.4 Operational Semantics

If the patt~rn-string parameter keyword is FIND, the scan operation
attempts to find a match for the specified pattern anywhere in the
source string, beginning with the first character position of the
string. If such a match is found, the scan operation returns a low
bit value of 1 (STR$ NORMAL, or STR$ END STRING if the scan ends at
end of line). If no match is found~ the operation returns a value of
Q.

A-46

Macro Descriptions
$STR_SCAN - String Scanning

If the pattern-string parameter keyword is SPAN, the scan operation
determines the longest substring that (1) begins at the first
character position of the string and (2) consists of anyone or more
of the characters specified in the pattern string and only of those
characters. The SPAN-type scan operation may validly determine a
substring of zero length, that is, the null string. This scan
operation always returns a low-bit value of 1 (STR$ NORMAL, or
STR$ END STRING if the scan ends at end of line), unless the operation
itself fails due to an abnormal condition (see Section A.17.5).

If the pattern-string parameter keyword is STOP, the scan operation
determines the longest substring that (1) begins at the first
character position of the string and (2) does not contain any of the
characters specified in the pattern string. The STOP-type scan
operation may validly determine a substring of zero length, that is,
the null string. This scan operation always returns a low-bit value
of 1 (STR$ NORMAL, or STR$ END STRING if the scan ends at end of
line), unless the operation itself fails due to an abnormal condition
(see Section A.17.5).

If the same BOUNDED or DYNAMIC BOUNDED descriptor is specified as both
a REMAINDER= and a SUBSTRING= parameter, the typical operation of
"scan thru a string" can be achieved.

A.17.5 Completion Codes

A primary completion code is returned as the routine-call value. A
secondary completion code (if any) is available only in a
failure-action routine associated with the function. Secondary
completion codes, where applicable, are indicated by a plus sign (+)
following the corresponding primary code in the listing below.

Success Code:
STR$ NORMAL
STR$=END_STRING

Warning Code:
STR$_FAILURE

Error Codes:
STR$ BAD PATTRN +
STR$-BAD-SOURCE +
STR$-BAD-TARGET + - -

The scan operation was successful.
The scan operation was successful, and the

SPAN-type operation ended at end-of-line.

The scan operation was unsuccessful.

The pattern string is invalid.
The source string is invalid.
The target string is invalid.

A-47

Macro Descriptions
$XPO BACKUP - Preserve an Input File

A.IB $XPO BACKUP - Preserve an Input File

The $XPO BACKUP macro calls the XPORT I/O facility to perform a "file
backup" -operation in a transportable manner. This capability is
intended for applications which create an output file with the same
name as the input file from which it was created (e.g., an editor).

If the host operating-system supports multiple versions of a file
(e.g., VAX/VMS, RSX-IIM), the output file is renamed to be the same as
the input file except that its version number is one greater than the
highest existing version. The input file is not renamed.

If the host system does not support multiple versions of a file (e.g.,
TOPS-la, TOPS-20, RT-II), first, a previous backup file, if any, is
deleted. The input file is then renamed by changing the file
extension/type. Finally, the output file is then renamed to be the
same as the original name of the input file.

A.IB.I Syntax

+--------------------+---+
"I 1 1
1 preserve a file 1 $XPO BACKUP (parameter , •••) 1
1 1 - 1

+--------------------+---+
1 parameter 1 { requi red-parameter } 1

1 1 { optional-parameter } 1

+--------------------+---+
1 required-parameter 1 { OLD lOB = address of iob } 1

1 1 { NEW=IOB = add ress 0 f iob } 1

+--------------------+---+
1 1 { FILE TYPE = char-string-info } 1
1 optional-parameter I { SUCCESS = address of action routine } I

I 1 { FAILURE = address of action routine} I

+--------------------+---+
I 1 { address of character-string descriptor} I

I char-string-info I { 'literal ascii string' } I
I I { (count , pointer) } I
+--------------------+---+

A.IB.2 Parameter Semantics

OLD lOB = address of lOB
specifies the address of the lOB that describes the input file.
This file must be in a closed state, and must have been closed
with the REMEMBER option. The resultant-file-specification field
of this lOB is cleared on completion of the backup operation.
This parameter must be specified.

A-4B

Macro Descriptions
$XPO BACKUP - Preserve an Input File

NEW lOB = address of lOB
specifies the address of the lOB that describes the output file.
This file must be in a closed state, and must have been closed
with the REMEMBER option. The resultant-file-specification field
of this lOB is cleared on completion of the backup operation.
This parameter must be specified.

FILE TYPE = character-string-info
-describes a file type, or extension, to be used for input-file

renaming if the input file cannot be preserved using version
numbers. The file-type string must include the 'dot' (.) and may
not contain any other parts of a file specification. If this
parameter is not specified, FILE_TYPE=' .BAK' is assumed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the backup operation. If this parameter
is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
backup operation is unsuccessful. If FAILURE=O is specified, no
failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.S).

A.IS.3 Usage Guidelines

The backup operation requires a valid resultant-file-specification
field in both lOBs. This requirement can be satisfied by using the
REMEMBER option of the CLOSE- operation (see A.19). Note that REMEMBER
is implied for a file specified as $XPO_TEMPORARY.

The backup operation is invalid for files that have never been opened.

A.IS.4 Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the IOB$GCOMP CODE field of the lOB. A
secondary completion code (if any) Is available in the IOB$G 2ND CODE
field of the lOB. Secondary completion codes, where applicable~ are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

A-49

Macro Descriptions
$XPO BACKUP - Preserve an Input File

Success Code:
XPO$ NORMAL

Error Codes:
XPO$ BACKUP +
XPO$-BAD RSLT +
XPO $-BAD-TYPE
XPO$-DELETE +
XPO $-NOT CLOSED
XPO$-RENAME NEW +
XPO$-RENAME-OLD + - -

Fatal Error Codes:
XPO$ BAD lOB +
XPO$-BAD-LOGIC

- -

A.IB.S Example

The file backup was successful.

File could not be backed up.
The old or new file-spec is invalid.
The backup file-type is invalid.
Error deleting a previous backup copy.
One of the lOBs was not closed.
Error renaming the output file.
Error renaming the input file.

One of the lOBs is invalid.
An XPORT logic error was detected.

The following BLISS coding example illustrates the sequence of
operations which should be followed in using $XPO BACKUP.

$XPO OPEN (lOB = input-iob, FILE SPEC = input-spec, .••);
$XPO=OPEN(lOB = output-iob, FILE_SPEC = $XPO_TEMPORARY,);

Process information from the input file, and
write it to the (temporary) output file.

$XPO CLOSE(lOB = input-iob, OPTIONS = REMEMBER);
$XPO=CLOSE(lOB = output-iob);

$XPO_BACKUP(OLD lOB = input-iob, NEW lOB output-iob);

A-50

Macro Descriptions
$XPO CLOSE - Close a File

A.19 $XPO CLOSE - Close a File

The $XPO CLOSE macro calls the XPORT I/O facility to terminate the
processing of an input or output file and flush any internal XPORT I/O
buffers. If a program terminates without closing a file, the
resulting state of the file is unpredictable.

A.19.1 Syntax

+--------------------+---+
I I I

I close a file I $XPO CLOSE(parameter , ••.) I

I I - I

+--------------------+---+
I parameter I { required-parameter} I

I I { optional-parameter} I

+--------------------+---+
I required-parameter I lOB = address of iob I

+--------------------+---+
I I { OPTIONS = option-keyword } I

I optional-parameter I { USER = user-defined value } I

I I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I option-keyword I REMEMBER I

+--------------------+---+
NOTE: The keyword OPTIONS may be shortened to OPTION.

A.19.2 Parameter Semantics

lOB = address of lOB
specifies the address of the lOB that describes the file to be
closed. This parameter must be specified.

OPTIONS = option-keyword
indicates a processing option to be applied to the file being
closed.

Option

REMEMBER

Meaning

Remember relevant file attributes (e.g.,
resultant file specification) so that
the file can be reprocessed (e.g.,
reopened, renamed, deleted, backed up).
This option is assumed by default when a
temporary file is closed (see Section
3.5) •

A-51

Macro Descriptions
$XPO CLOSE - Close a File

File processing options (including this
option) are not remembered, whether or
not this option-Ts specified. If this
option is not specified by file close
time, the lOB is reset to an initialized
state after a successful file close.

If this parameter is not specified, the lOB option field is not
chang ed.

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$Z USER. If this parameter is not specified,
the lOB user field is ~ot changed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the CLOSE operation. If this parameter
is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
CLOSE operation is unsuccessful. If FAILURE=O is specified, no
failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

A.19.3 Usage Guidelines

If a files is closed with the REMEMBER option, a subsequent OPEN,
DELETE, or RENAME operation will not perform file-specification
resolution for the file, but will instead use the 'remembered'
resultant-file-specification string described in the lOB.

A.19.4 Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the IOB$G COMP CODE field of the lOB. A
secondary completion code (if any) Is available in the IOB$G_2ND_CODE
field of the lOB. Secondary completion codes, where applicable, are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

Success Code:
XPO$ NORMAL The file was successfully closed.

A-52

Error Codes:
XPO$ CLOSED
XPO $-F ILE LOCK
XPO$-FREE-MEM +
XPO$-IN USE
XPO$-IO-ERROR +
XPO$-NETWORK +
XPO$-NO ACCESS +
XPO$-NO-C LOSE
XPO $-NO-IVIEMORY
XPO $-NO-S PACE
XPO$-NO-SUPPORT +
XPO$-NO-WRITE
XPO$-NOT EXPIRE
XPO $-NO'I'-ONLINE
XPO$-NOT-OPEN

- -

Fatal Error Codes:
XPO$ BAD lOB +
XPO$-BAD-LOGIC

- -

Macro Descriptions
$XPO CLOSE - Close a File

The file has alr~ady been closed.
JFN is locked; file cannot be closed.
Error freeing lOB-related memory.
The file is currently in use.
A hardware-level I/O error occurred.
A network error has occurred.
The file cannot be accessed.
The file cannot be closed by this process.
Insufficient dynamic memory space.
Quota exceeded or disk full.
The requested function is not supported.
The file is write-protected.
The file-expiration date is not past.
The device was not ready.
The file was not open.

The lOB is invalid.
An XPORT logic error was detected.

A-53

Macro Descriptions
$XPO DELETE - Delete a File

A.20 $XPO DELETE - Delete a File

The $XPO DELETE macro calls the XPORT I/O facility to delete an
existing- file. This operation, like OPEN and RENAME, performs
file-specification resolution as necessary.

A. 20.1 Syntax

+--------------------+---+
I I I
I delete a file I $XPO DELETE(parameter , .••) I
I I - I
+--------------------+---+
I I { required-parameter} I
I parameter I { pr imary-parameter } I
I I { optional-parameter} I
+--------------------+----------------_._-----------------------------+
I required-parameter I rOB = address of iob I
+--------------------+----------------_._-----------------------------+
I primary-parameter I FILE SPEC = char-string-info I
+--------------------+-----=---+
I I { DEFAULT = char-string-info } I
I I { RELATED = char-string-info } I
I optional-parameter I { USER = user-defined value } I
I I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of character-string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (co un t , po in t e r) } I
+--------------------+-----------~-----------------------------------+

A.20.2 Parameter Semantics

lOB = address of rOB
specifies the address of an lOB for the file to be deleted. This
lOB must be initialized, but it must not be open when the DELETE
call is made. This parameter must be specified.

FILE SPEC = character-string-info
-describes the file specification given by the end user. Unless

the lOB was previously closed with the REMEMBER option, this file
specification is combined with the default and related file
specifications, if any, to form the resultant file specification
(see Section 3.6.1). rf this parameter is not specified, the
corresponding lOB fields are not changed.

A-54

Macro Descriptions
$XPO DELETE - Delete a File

DEFAULT = character-string-info
describes a default file specification. During
file-specification resolution, this file specification is
combined with the user and related file specifications, if any,
to form the resultant file specification (see Section 3.6.1). If
this parameter is not specified, the corresponding rOB fields are
not changed.

RELATED = character-string-info
describes a file specification that is related to the file being
deleted. During file-specification resolution, this file
specification is combined with the user and default file
specifications, if any, to form the resultant file specification
(see Section 3.6.1). If this parameter is not specified, the
corresponding lOB fields are not changed.

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$Z USER. If this parameter is not specified,
the lOB user field is not changed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the delete operation. If this parameter
is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
delete operation is unsuccessful. If FAILURE=O is specified, no
failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

A.20.3 Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the IOB$G COMP CODE field of the lOB. A
secondary completion code (if any) Is available in the IOB$G_2ND_CODE
field of the lOB. Secondary completion codes, where applicable, are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

Success Code:
XPO$ NORMAL The file was successfully deleted.

A-55

Error Codes:
XPO$ BAD ACCT
XPO$-BAD-ATTR
XPO$-BAD-DELIM
XPO$-BAD-DEVICE
XPO$-BAD-DFLT +
XPO$-BAD-DIRECT

- -

XPO $ BAD NAME
XPO$-BAD-PROT
XPO$-BAD-REQ +
XPO$-BAD-RLTD +
XPO$-BAD-RSLT +
XPO$-BAD-SPEC +
XPO $-BAD-TEMP
XPO$-BAD-VER
XPO$-CHANNEL +
XPO $-CORRUPTED
XPO$-FREE MEM +
XPO $-GET MEM +
XPO$-IN USE
XPO$-IO-ERROR +
XPO$-NETWORK +
XPO$-NO ACCESS +
XPO $-NO-CHANNE L
XPO$-NO-CONCAT
XPO$-NO-DELETE
XPO $-NO-DIRECT
XPO $-NO-F ILE
XPO $-NO-S PACE
XPO $-NO-S UBDIR
XPO$-NO-SUPPORT +
XPO$-NO-WRITE
XPO$-NOT EXPIRE
XPO $-NOT-ONLINE
XPO $-0 PEN
XPO$-PROTECTED

Fatal Error Codes:
XPO$ BAD lOB +
XPO$-BAD-LOGIC

Macro Descriptions
$XPO DELETE - Delete a File

Invalid account field.
Invalid attribute field in file spec.
Invalid punctuation used in a quoted string.
A nonexistent device was specified.
The default file specification is invalid.
Directory-access privilege required, or invalid

directory format.
No filename was specified.
Invalid protection field.
The XPORT request was invalid.
The related file specification is invalid.
The resultant file specification is invalid.
The user file specification is invalid.
Multiple ";T"s specified.
Generation number not numeric.
A channel-assignment error occurred.
Invalid FDB format, or FDB not found.
Error freeing lOB-related memory.
A memory-allocation error occured.
The file is currently in use.
A hardware-level I/O error occurred.
A network error has occurred.
The file cannot be accessed.
No I/O channel was available.
Concatenated file-spec not allowed.
The file cannot be deleted.
The indicated directory was not found.
The file does not exist.
Disk working space is exhausted.
The sub-directory does not exist.
The requested function is not supported.
The file is write-protected.
The file-expiration date is not past.
The device was not ready.
The file is currently open.
Access to the file is denied.

The lOB is invalid.
An XPORT logic error was detected

A-56

Macro Descriptions
$XPO DESCRIPTOR - Declare a Data Descriptor

A.21 $XPO DESCRIPTOR - Declare a Data Descriptor

The $XPO DESCRIPTOR macro generates an attribute list for a binary
data descriptor within an OWN, GLOBAL, LOCAL, MAP or BIND declaration.
These attributes (1) indicate that the descriptor is a BLOCK structure
of a given length, (2) specify the set of field-names that can be used
to reference portions of the descriptor, and (3) specify initial
descriptor-field values.

A detailed description of the four types of descriptors (fixed,
dynamic, bounded, and dynamic-bounded) appears in Section 7.1.

A descriptor must be initialized before it can be used. If the
descriptor is declared within an OWN or GLOBAL declaration, the
descriptor can be statically initialized. Otherwise, it must be
initialized by use of the$XPO_DESC INIT macro.

A.21.1 Syntax

+--------------------+---+
declare-a-data

descriptor

I
I $XPO DESCRIPTOR({optional-parameter , .•• })
I -
I

+--------------------+---+
I optional-parameter I { CLASS = class-keyword } I

I I { BINARY DATA = binary-data-info } I

+--------------------+---------=-------------------------------------+
I class-keyword I { FIXED I DYNAMIC} I

I I { BOUNDED I DYNAMIC_BOUNDED} I

+--------------------+---+
I I { , FULLWORDS } I

I bin a r y-d a t a - in f 0 I (s i z e , add res s { , UN ITS }) I

I I { nothing} I

+--------------------+---+

A.21.2 Restrictions

The BINARY DATA parameter may only be specified within an OWN or
GLOBAL declaration.

A.21.3 Parameter Semantics

CLASS = class-keyword
indicates the class of descriptor being declared. See Section
7.1 for a complete description of the descriptor classes. If
this parameter is not specified, CLASS=FIXED is assumed.

A-57

Macro Descriptions
$XPO DESCRIPTOR - Declare a Data Descriptor

BINARY DATA = binary-data-info
d~scribes the binary data item to be described by the descriptor.
If this parameter is not specified, the size and length fields of
the descriptor are not statically initialized.

A-58

Macro Descriptions
$XPO_DESC INIT - Initialize a Data Descriptor

A.22 $XPO DESC INIT - Initialize a Data Descriptor

The $XPO DESC INIT macro dynamically initializes a binary data
descriptor; that is, this macro generates the executable code
necessary to initialize all of the fields of a given descriptor.

A.22.1 Syntax

+--------------------+---+
I I I
I setup-a-data- I $XPO_DESC_INIT(parameter , •.•) I
I descriptor I I
I I I
+--------------------+---+
I parameter I { required-parameter} I
I I { optional-parameter} I
+--------------------+---+
I required-parameter I DESCRIPTOR = address of descriptor I
+--------------------+---+
I optional parameter I { CLASS = class-keyword } I
I I { BINARY DATA = binary-data-info } I
+--------------------+---------=-------------------------------------+
I class-keyword I { FIXED I DYNAMIC} I
I I { BOUNDED I DYNAMIC BOUNDED } I
+--------------------+--------------------=--------------------------+
I I { address of binary data descriptor } I
I I { { , FULLWORDS}} I
I bin a r y - d a t a - in f 0 I { (s i z e , add res s { , UN ITS })} I
I I { { nothing }} I
+--------------------+---+

A.22.2 Parameter Semantics

DESCRIPTOR = address of descriptor
specifies the address of the descriptor to be initialized.
parameter must be specified.

CLASS = class-keyword

This

indicates the class of descriptor being initialized. See Section
7.1 for a complete description of the descriptor classes. If
this parameter is not specified, CLASS=FIXED is assumed.

BINARY DATA = binary-data-info
describes the binary data item to be described by the descriptor.
If this parameter is not specified, the corresponding descriptor
fields are not initialized.

A-59

Macro Descriptions
$XPO DESC INIT - Initialize a Data Descriptor

A.22.3 Completion Code

Success Code:
XPO$ NORMAL The descriptor was successfully initialized.

A-60

Macro Desdriptions
$XPO FREE MEM - Release a Memory Element

A.23 $XPO FREE MEM - Release a Memory Element

The $XPO FREE MEM macro calls the XPORT MEMORY facility to
previously allocated element of memory. The memory
optionally be cleared before it is released.

A.23.1 Syntax

release a
element may

+--------------------+---+
I I I
I release memory I $XPO FREE MEM (parameter , •••) I

I I - - I

+--------------------+---+
I parameter I { requi red-parameter } I
I I { optional-parameter} I
+--------------------+---+
I required-parameter I { STRING = char-string-info} I
I I { BINARY DATA = binary-data-info } I
+--------------------+---------=-------------------------------------+
I I { FILL = memory clearing value } I
I optional-parameter I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I char-string-info I { address of character string descriptor} I

I I { (count , pointer) } I
+--------------------+---+
I I { address of binary data descriptor } I

I I { { , FULLWORDS}} I
I binary-data-info I { (size, address { , UNITS })} I
I I { { nothing }} I
+--------------------+---+

A.23.2 Restrictions

The STRING and BINARY DATA parameters are mutually exclusive. As
indicated in the syntax diagram, a literal-string is not valid as a
character-string-info parameter in this macro.

A.23.3 Parameter Semantics

STRING = char-string-info
describes a character-string memory element to be released. The
element described must begin on a BLISS fullword boundary; its
length is rounded up, if necessary, to the next fullword
boundary. If a string descriptor is specified, the count and
pointer fields are zeroed to reflect the memory released. Either
this parameter or the BINARY DATA parameter must be specified.

A-61

Macro Descriptions
$XPO FREE_MEM - Release a Memory Element

BINARY DATA = binary-data-info
describes a binary-data memory element. The data area described
must begin on a BLISS fullword boundary; its length is rounded
up, if necessary, to the next fullword boundary. If a
binary-data descriptor is specified, the size and pointer fields
are zeroed to reflect the memory released. Either this parameter
or the STRING parameter must be specified.

FILL = memory clearing value
specifies a fullword binary value which is to be
overwrite the memory element before it is released.
parameter is omitted, no memory clearing is performed.

SUCCESS = address of action routine

used to
If this

specifies the address of an action routine to be called upon
successful completion of the release memory operation. If this
parameter is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
release memory operation is unsuccessful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is nDt specified, FAILURE=XPO$FAILURE is assumed (see
Section 3.8).

A.23.4 Completion Codes

Success Code:
XPO$ NORMAL

Error Codes:
XPO$ BAD ADDR
XPO $-BAD-ALIGN
XPO$-BAD-DESC

- -

Fatal Error Code:
XPO$ BAD LOGIC - -

The element was released.

The element is not in allocated dynamic memory.
Invalid string/data alignment.
Invalid string/data descriptor.

An XPORT logic error was detected.

A-62

Macro Descriptions
$XPO GET - Read From a File

A.24 $XPO GET - Read From a File

The $XPO GET macro calls the XPORT I/O facility (1) to read the next
logical -record in an input file, 6r (2) to read a specified amount of
character or binary data.

At the completion of a successful $XPO GET operation, the lOB is
updated to reflect the data that has been read into an internal XPORT
buffer. Note that $XPO GET is a "locate mode" operation; that is,
the data is not read into a caller-provided buffer.

A.24.1 Syntax

+--------------------+---+
I I I

I read from a file I $XPO GET(parameter, •.•) I

I I - I

+--------------------+---+
I parameter I { requi red-parameter } I

I I { optional-parameter } I

+--------------------+---+
I required-parameter I lOB = address of iob I

+--------------------+---+
I I { PROMPT = char-string-info } I

I I { CHARACTERS = number of characters } I

I I { FULLWORDS = number of binary fullwords } I

I optional-parameter I { UNITS = number of binary units } I

I I { USER = user-defined value } I

I I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I I { address of character-string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (co un t , po in t e r) } I

I I { string conversion pseudo-function } I

+--------------------+---+

A.24.2 Parameter Semantics

lOB = address of lOB
specifies the address of the lOB that describes the file to be
read. This parameter must be specified.

PROMPT = char-string-info
describes a terminal input-prompt string. This parameter is
ignored if the input device is not a terminal. If this parameter
is not specified, the lOB prompt descriptor is not changed.

A-63

Macro Descriptions
$XPO GET - Read From a File

CHARACTERS = number of characters
FULLWORDS = number of binary fullwords
UNITS = number of binary units

specify the amount of data to be read. Only one of these
parameters may be specified. The CHARACTERS parameter must be
given for character-stream GET operations (see ATTRIBUTES=STREAM
in A.28). This parameter specifies the number of characters to
be read. The FULLWORDS or UNITS parameter must be given for
binary GET operations (see ATTRIBUTES=BINARY in A.28). These
parameters specify the amount of data to be read in terms of
BLISS fullwords (FULLWORDS) or addressable units (UNITS).
Specifying UNITS limits program transportability; that is, a
program usually will not behave correctly in both the 36-bit and
l6/32-bit environments if UNITS is specified. These parameters
are ignored for record-mode GET operation~ (see ATTRIBUTES=RECORD
in A.28). If no I/O length parameter is specified, the lOB I/O
length field is not changed.

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$Z USER. If this parameter is not specified,
the lOB user field is not changed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the $XPO GET operation. If this
parameter is not specified, no success-action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
$XPO GET operation is unsuccessful. If FAILURE=O is specified,
no failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

A.24.3 Usage Guidelines

The following lOB fields are updated at the completion of an $XPO GET
character operation:

IOB$T STRING
IOB$A-STRING
IOB$H-STRING.
IOB$H-PAGE NUMB
IOB$Z=SEQ_NUMB

Character string descriptor:
pointer to the character string
number of characters read

Page number (sequenced file only)
Record sequence number (sequenced file only)

or record number (non-sequenced file)

The following lOB fields are updated at the completion of an $XPO GET
binary operation:

IOB$T DATA Binary data descriptor:

A-64

10B$A DATA
10B$H-UNITS
lOB $H-F ULLWORDS

Macro Descriptions
$XPO GET - Read From a File

address of the binary data
number of addressable units read
number of fullwords read

A.24.4 Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the 10B$G COMP CODE field of the lOB. A
secondary completion code (if any) 1s available in the 10B$G_2ND_CODE
field of the lOB. Secondary completion codes, where applicable, are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

Success Code:
XPO$ NORMAL

XPO $ INC OMPLETE

XPO$_NEW_FILE

XPO$ NEW PAGE
warning-Code:

XPO$ END FILE - -

Error Codes:
XPO$ BAD PROMPT +
XPO$-BAD-RECORD +
XPO$-BAD-REQ +
XPO$-FREE MEM +
XPO $-GET MEM +
XPO$-10 BUFFER +
XPO$-10-ERROR +
XPO$-NETWORK +
XPO$-N.,.P MEMORY
XPO $-NO-S PACE
XPO$-NO-SUPPORT +
XPO $-NO-WRITE
XPO$-NOT INPUT
XPO $-NOT-ONLINE
XPO$-NOT-OPEN
XPO $-REC-LOC K

Fatal Error-Codes:
XPO$ BAD lOB +
XPO$-BAD-LOGIC

- -

The $XPO GET operation was successful - the lOB
data pointer and length fields describe the
data which has just been read.

An incomplete amount of data has been read
(STREAM or BINARY mode only).

The first read on a concaten~ted input file was
successful - implies new page.

The first read on a new page was successful.

No more data exists in the input file, i.e.,
attempt to read past end-of-file.

The input prompt is invalid.
An invalid record was encountered.
The I/O request is invalid.
Error freeing lOB-related memory.
A memory allocation error occurred.
An I/O buffering error occurred.
An I/O error occurred reading the file.
A network error has occurred.
Insufficient dynamic memory space.
Quota exceeded or disk full.
The requested function is not supported.
The file is write-protected.
The file is not open for input.
The device was not ready.
The file is not open.
A record is locked by another task.

The lOB is invalid.
An XPORT logic error was detected.

A-65

Macro Descriptions
$XPO GET - Read From a File

If input-file concatenation is in effect (see Section 3.2.2.1), OPEN
or CLOSE failure codes are returned if either of these automatic
operations fails.

A-66

Macro Descriptions
$XPO_GET_MEM - Allocate Dynamic Memory Element

A.2S $XPO GET MEM - Allocate Dynamic Memory Element

The $XPO GET MEM macro calls the XPORT MEMORY facility to allocate an
element of dynamic memory. An allocated memory element may optionally
be ini tial i zed.

A.2S.1 Syntax

+--------------------+---+
I I I
I allocate memory I $XPO GET MEM (parameter , •••) I
I I - - I
+--------------------+---+
I parameter I { requi red-parameter } I
I I { optional-parameter} I
+--------------------+---+
I required-parameter I size-parameter I
I I result-parameter I
+--------------------+---+
I I { CHARACTERS = number of characters} I
I size-parameter I { FULLWORDS = number of fullwords } I
I I { UNITS = number of addressable units} I
+--------------------+---+
I result-parameter I { RESULT = address for result } I
I I { DESCRIPTOR = address of descriptor} I
+--+
I I { FILL = memory initialization value} I
I optional-parameter I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine} I
+--------------------+---+

A.2S.2 Restrictions

The CHARACTERS, FULLWORDS, and UNITS
exclusive.

A.2S.3 Parameter Semantics

CHARACTERS = number of characters
FULLWORDS = number of fullwords
UNITS = number of addressable units

parameters are mutually

specify the size of the memory element to be allocated. One, and
only one, of these parameters must be specified.

A-67

Macro Descriptions
$XPO GET MEM - Allocate Dynamic Memory Element

RESULT = address of result
specifies the address of an area in which the allocation
operation (if successful) will store a pointer to the allocated
string element, or will store the address of the allocated
binary~data element, respectively. Note that the RESULT
parameter or the DESCRIPTOR parameter must be specified.

DESCRIPTOR = address of descriptor

FILL

specifies the address of a DYNAMIC or DYNAMIC BOUNDED descriptor.
If the allocatiDn operation is successful, the descriptor is
updated to describe the allocated string or binary-data element.

The following indicates the descriptor fields that are changed:

STR$H LENGTH or XPO$H LENGTH:
size of element if-DYNAMIC and zero if DYNAMIC BOUNDED

STR$H MAXLEN or XPO$H MAXLEN:
size of element only if DYNAMIC BOUNDED

STR$A POINTER or XPO$A ADDRESS: -
element POINTER or ADDRESS

Note that the DESCRIPTOR parameter or the RESULT parameter must
be specified.

= memory initialization value
specifies an appropriate value to be used to initialize each
character, fullword, or unit in an allocated memory element. If
this parameter is not specified, the content of an allocated
memory element is unpredictable.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the memory allocation operation. If
this parameter is not specified, no success action routine is
assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
memory allocation operation is unsuccessful. If FAILURE=Q is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=XPO$FAILURE is assumed (see
Section 3.8).

A.25.4 Completion Codes

Success Cod~:
XPO$ NORMAL The memory element was successfully allocated.

A-68

Macro Descriptions
$XPO_GET_MEM - Allocate Dynamic Memory Element

Error Codes:
XPO$ NO MEMORY
XPO$-BAD DESC

- -

Fatal Error Code:
XPO$ BAD LOGIC - -

Insufficient memory to satisfy request.
Invalid string/data descriptor.

An XPORT logic error was detected.

A-69

Macro Descriptions
$XPO lOB - Declare an lOB

A.26 $XPO lOB - Declare an lOB

The $XPO lOB macro is used, in a data- or bind-data-declaration, to
create and possibly initialize an XPORT I/O control block (lOB). The
$XPO lOB macro generates a structure-attribute and field-attribute for
an lOB data-segment name, and causes the data segment to be
initialized if it is allocated in permanent storage.

The macro itself is specified as an attribute in an OWN, GLOBAL,
LOCAL, MAP or BIND declaration. The generated attributes (I) indicate
that the lOB is a BLOCK structure of a given length, and (2) define
the field-names that can be used to reference portions of the lOB.

An lOB that is created in temporary storage (LOCAL declaration) or in
dynamic storage must be explicitly initialized with the $XPO lOB INIT
macro before it can be used. (See Section A.25.)

A. 26.1 Syntax

+--------------------+---+
I I I
I declare an iob I $XPO lOB () I
I I I
+--------------------+---+

A.26.2 Parameter Semantics

The $XPO lOB macro takes no parameters at the present time.

A.26.3 Examples

OWN
input iob :
output iob :

LOCAL -
t em po r a r y _ i 0 b

MAP

$XPO lOB () ,
$XPO IOB{);

dynamic iob: REF $XPO IOB{);
BIND

selected iob iobset[.index, 0,0,0,0]

A-70

$XPO lOB ()

Macro Descriptions
$XPO lOB INIT - Initialize an lOB

A.27 $XPO lOB INIT - Initialize an lOB - -

The $XPO lOB INIT macro dynamically initializes an XPORT lOB; that
is, it -generates the executable code necessary to initialize all of
the fields of an lOB. Dynamic initialization is necessary for lOBs
created in temporary storage (i.e., declared as LOCAL) or in
dynamically-acquired storage.

The user-related lOB fields are initialized to a user-specified value
(for subsequent operations), or to zeroes if no values are specified.

A.27.1 Syntax

+--------------------+---+
I I I

I setup an iob I $XPO lOB INIT(parameter , •••) I

I I I

+--------------------+---+
I parameter I { required-parameter} I

I I { optional-parameter } I

+--------------------+---+
I required-parameter I IOB=address of iob I

+--------------------+---+
I I { USER = user-defined value } I

I I { $XPO CLOSE parameters} I

I I { $XPO-DELETE parameters } I

I optional-parameter I { $XPO-GET parameters} I

I I { $XPO-OPEN parameters} I

I I { $XPO-PUT parameters} I

I I { $XPO-RENAME parameters } I

+--------------------+-------=---------------------------------------+

A.27.2 Restrictions

The SUCCESS and FAILURE parameters may not be specified (as optional
parameters of the other macros listed above). In addition, the
parameters that are unique to the $XPO RENAME macro NEW_SPEC,
NEW_DEFAULT, and NEW RELATED -- may not be specified.

A.27.3 Parameter Semantics

lOB = address of lOB
specifies the address of the lOB to be initialized.
parameter must be specified.

A-71

This

Macro Descriptions
$XPO lOB INIT - Initialize an rOB

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$Z USER. rf this parameter is not specified, no
user value is assumed.

$XPO CLOSE parameter
$XPO-DELETE parameter
$XPO-GET parameter
$XPO-OPEN parameter
$XPO-PUT parameter
$XPO-RENAME parameter

-initialize rOB fields for subsequent r/o operations.

A.27.4 Completion Code

Success Code:
XPO$ NORMAL The rOB was successfully initialized.

A-72

Macro Descriptions
$XPO_OPEN - Open a File

A.28 $XPO_OPEN - Open a File

The $XPO OPEN macro calls the XPORT I/O facility to prepare a file for
reading -or writing. Before a file is opened, the lOB defaults are
established and an lOB validity check is made. When a file is opened
for input, the file attributes are checked against those specified in
the lOB to ensure against a conflict (e.g., RECORD vs. BINARY, see
below) • This operation performs file-specification resolution as
necessary.

A.28.1 Syntax

+--------------------+---+
I I I
I open a file I $XPO OPEN (parameter , ••.) I
I I - I
+--------------------+---+
I I { required-parameter} I
I parameter I {primary-parameter } I
I I { optional-parameter } I
+--------------------+---+
I required-parameter I lOB = address of iob I
+--------------------+---+
I I { FILE SPEC = char-string-info } I
I primary-parameter I { OPTIONS = (option-keyword, •••) } I
I I { AT T RIB UT E S = (at t rib u t e- k e ywo r d , •••)} I
+--------------------+---+
I I { DEFAULT = char-string-info } I
I I { RELATED = char-string-info } I
I I { RECORD SIZE = fixed length of record } I
I I { RECORD-SIZE = VARIABLE } I
I I { BLOCK SIZE = fixed length of block} I
I optional-parameter I { USER ~ user-defined value } I
I I { SUCCESS = address of action routine} I
I I { FAILURE = address of action routine} I
I I { any $XPO CLOSE parameter } I
I I { any $XPO-GET parameter } I
I I { any $XPO-PUT parameter } I
+--------------------+-----------=-----------------------------------+
I I { address of character string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (co un t , po in t e r) } I
+--------------------+---+
I I { IN PUT} I
I option-keyword I { OUTPUT} I
I I { OVERWRITE I APPEND } I
+--------------------+---+
I continued on the next page I
+--+

A-73

Macro Descriptions
$XPO_OPEN - Open a File

+--------------------+---+
I attribute-keyword I { RECORD I STREAM I BINARY } I
I I { SEQUENCED} I
+--------------------+---+
NOTE: The keywords OPTIONS and ATTRIBUTES may be shortened to OPTION
and ATTRIBUTE respectively.

A.28.2 Parameter Semantics

lOB = address of lOB
specifies the address of the lOB that describes the file to be
opened. This parameter must be specified.

FILE SPEC = character-string-info
-describes a file specification provided by an end user. Unless

the lOB was previously closed with the REMEMBER option, this user
file specification is combined with the default and related file
specifications, if any, to form the resultant file specification
(see Section 3.6.1). Unless otherwise specified by file open
time, a null user file specification is assumed.

OPTIONS = (option-keyword , •••)
indicates the processing options that apply to the file being
opened. One or more of the options described in the following
table can be specified. Note that some of these options are
mutually exclusive; any errors will be detected at file open
time.

Option

INPUT

OUTPUT

OVERWRITE

APPEND

Description

The file is opened as an input file
(default option) •

The file is opened as an output file.
If neither OVERWRITE nor APPEND is
specified, a new output file is created.
If this is not possible, the file
opening will fail.

If a file being opened for output
already exists, it is overwritten from
the beginning. If this option is
specified, OUTPUT is assumed.

If a file being opened for output
already exists, it is appended to rather
than overwritten. If this option is
specified, OUTPUT is assumed.

A-74

Macro Descriptions
$XPO_OPEN - Open a File

A device that is not file-structured and that can be both read
and written (e.g., terminal, DECnet link), may be opened for both
INPUT and OUTPUT, and will be so opened by default; for all
other devices, the INPUT and OUTPUT options are mutually
exclusive. Unless otherwise specified by file open time,
OPTIONS=INPUT is assumed.

ATTRIBUTES = attribute-keyword , •••
indicates the attributes that apply to the file described by the
lOB. One or more of the attributes described in the following
table can be specified. Note that some of these attributes are
mutually exclusive; any errors will be detected at file open
time.

Attribute

RECORD

STREAM

SEQUENCED

BINARY

Description

Character data is read and written in
terms of logical records.

Character data is read and written as
streams of characters. (Control
characters, e.g., CR, LF, VT, may be
read and written in this mode). GET
operations in STREAM mode require
specification of the CHARACTERS=
parameter (see A.24).

All output
associated
attribute
assumed.

records are to have
sequence number. If

is specified, RECORD

The file contains binary data.

an
this

is

Unless otherwise specified by file open time, ATTRIBUTES=RECORD
is assumed.

DEFAULT = character-string-info
describes a default file specification. During
file-specification resolution, this file specification is
combined with the user and related file specifications, if any,
to form the resultant file specification (see Section 3.6.1).
Unless otherwise specified by file open time, no default file
specification is assumed.

RELATED = character-string-info
describe a file specification that is related to the file being
opened. For example, an application that creates an output file
as a modification or "update" of an input file, e.g., a text
editor, will typically treat the input file as a related file.

A-75

Macro Descriptions
$XPO_OPEN - Open a File

During file-specification resolution, a related file
specification is combined with the user and default file
specifications, if any, to form the resultant file specification
(see Section 3.6.1). Unless otherwise specified by file open
time, no related file specification is assumed.

RECORD SIZE = fixed length of record
specifies the size of a record in an output file. This parameter
should only be specified for fixed-length, record-oriented output
files (see ATTRIBUTES=RECORD above). The record length is
expressed in terms of characters. Unless otherwise specified by
file open time, "RECORD_SIZE = VARIABLE" is assumed.

RECORD SIZE = VARIABLE
specifies that an output-file record is of variable length .•
This parameter is the RECORD SIZE default for record-oriented
output files (see ATTRIBUTES=RECORD above) .

BLOCK SIZE = fixed length of block
specifies the physical block size of an output file. It has
meaning only for those devices which support a user-specified
block size (e.g., magnetic tape). On a system which uses
Files-II disk-file structure, this block-size parameter
corresponds to the "RMS bucket size". This parameter should only
be specified for output files. A block size is expressed in
terms of "bytes" (i.e., 9 bits on a PDP-IO, 8 bits on a PDP-II or
VAX-II). Unless otherwise specified by file open time, a
device-dependent block size is assumed.

/REVIEWERS: SHOULD THE BLOCK-SIZE VALUE BE FULLWORDS OR BYTES?/

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$Z USER. If this parameter is not specified,
the lOB user field is not changed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the OPEN operation. If this parameter
is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
OPEN operation is unsuccessful. If FAILURE=O is specified, no
failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

any $XPO CLOSE parameter
any $XPO-GET parameter
any $XPO-PUT parameter

initialize lOB fields for subsequent I/O operations.

A-76

Macro Descriptions
$XPO_OPEN - Open a File

A.2S.3 Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the IOB$G COMP CODE field of the lOB. A
secondary completion code (if any) IS available in the IOB$G_2ND_CODE
field of the lOB. Secondary completion codes, where applicable, are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

Success Code:
XPO$ NORMAL
XPO$-CREATED

Error Codes:
XPO$ BAD ACCT
XPO$-BAD-ATTR
XPO$-BAD-DELIM
XPO $-BAD-DEVICE
XPO$-BAD-DFLT +
XPO$-BAD-DIRECT - -

XPO$ BAD FORMAT
XPO $=BAD=IO _OPT

XPO $ BAD NAME
XPO$-BAD-ORG
XPO$-BAD-PROT
XPO $-BAD-RECORD
XPO$-BAD-REQ +
XPO$-BAD-RLTD +
XPO$-BAD-RSLT +
XPO$-BAD-SPEC +
XPO $-BAD-TEMP
XPO $-BAD-VER
XPO$-CHANNEL +
XPO $-CORRUPTED
XPO $-E XISTS
XPO$-FILE LOCK
XPO$-FREE-MEM +
XPO $-GET MEM +
XPO$-IN USE
XPO$-IO-ERROR +
XPO$-NETWORK +
XPO$-NO ACCESS +
XPO $-NO-CHANNE L
XPO$-NO-CREATE +
XPO $-NO-DIRECT
XPO$-NO-FILE

The file was successfully opened.
The file was created and successfully opened.

Invalid account field.
Invalid attribute field in file spec.
Invalid punctuation used in a quoted string.
An invalid device was specified.
The default file specification is invalid.
Directory-access privilege required, or invalid

directory format.
The record format is invalid.
An invalid I/O option was specified (e.g.,

binary terminal I/O).
No filename was specified.
The file organization is invalid.
Invalid protection field.
An invalid record was encountered.
The XPORT request was invalid.
The related file specification is invalid.
The resultant file specification is invalid.
The user file specification is invalid.
Multiple ";T"s specified.
Generation number not numeric.
A channel-assignment error occurred.
The file header contains invalid information.
The file already exists.
The file is locked.
Error freeing lOB-related memory.
A memory-allocation error occured.
The file is currently in use.
A hardware-level I/O error occurred.
A network error has occurred.
The file cannot be accessed.
All I/O channels are currently in use.
The file could not be created.
The indicated directory was no found.
The file does not exist.

A-77

XPO$ OPEN
XPO $-NO SPACE

XPO$ NO SUBDIR
XPO$-NO-SUPPORT +
XPO$-NO-WRI'I'E
XPO$-NOT EXPIRE
XPO $-NOT-ONLINE
XPO$-PROTECTED

Fatal Error Codes:
XPO$ BAD lOB +
XPO$-BAD-LOGIC

Macro Descriptions
$XPO_OPEN - Open a File

The file has already been opened.
Insufficient space on the requested or implied

device.
The sub-directory does not exist.
The requested function is not supported.
The file is write-protected.
The file-expiration date is not past.
The device was not ready.
Access to the file is denied.

The lOB is invalid.
An XPORT logic error was detected.

A-78

Macro Descriptions
$XPO_PARSE_SPEC - Parse a File Specification

A.29 $XPO PARSE SPEC - Parse a File Specification

The $XPO PARSE SPEC macro calls the XPORT I/O facility to parse a
file-specification string into its component parts (e.g., device name,
file name, file version). The parsing operation includes a target
system-dependent syntax check of the file specification.

A failure completion code indicates that an invalid component was
encountered in the parsing operation. The results of the parse,
including any diagnostic information, is stored in a user-supplied
File Specification Block (see the $XPO SPEC BLOCK macro, Section
A. 31) •

A.29.1 Syntax

+--------------------+---+
I I I
I parse a file-spec I $XPO PARSE SPEC(parameter , ..•) I
I I - - I
+--------------------+---+
I parameter I { requi red-parameter } I
I I { optional-parameter} I
+--------------------+---+
I required-parameter I { FILE SPEC = char-string-info } I
I I { SPEC-BLOCK = address of file-spec block} I
+--------------------+-------=---------------------------------------+
I optional-parameter I { SUCCESS = address of action routine } I
I I { FAILURE = address of action routine } I
+--------------------+---+
I I { address of character string descriptor} I
I char-string-info I { 'literal ascii string' } I
I I { (co un t , po i n t e r) } I
+--------------------+---+

A.29.2 Parameter Semantics

FILE SPEC = character-string-info
-describes the file specification to be parsed.

must be specified.
This parameter

SPEC BLOCK = address of file-spec block
-specifies the address of an XPORT File Specification Block

A.31) that is to receive the results of the parsing.
parameter must be specified.

A-79

(see
This

Macro Descriptions
$XPO PARSE_SPEC - Parse a File Specification

SUCCESS = address of action routine
specifies the address of an action routine to be called upon the
successful completion of the PARSE SPEC operation. If this
parameter is not specified, no success-action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
PARSE SPEC operation is unsuccessful. If FAILURE=O is specified,
no faIlure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

A.29.3 Completion Codes

Success Code:
XPO$ NORMAL

Error Codes:
XPO$ BAD DELIM
XPO$-BAD-DEVICE +
XPO$-BAD-DIRECT +
XPO$-BAD-NAME +
XPO$-BAD-NODE .+
XPO$-BAD-TYPE +
XPO$-BAD-VER +

- -

The file specification was successfully parsed.

Invalid delimiter.
Invalid device name.
Invalid directory specification.
Invalid file name.
Invalid node name.
Invalid rile type (or extension).
Invalid file version.

A-80

Macro Descriptions
$XPO PUT - Write to a File

A.30 $XPO PUT - Write to a File

The $XPO PUT macro calls the XPORT I/O facility to write data to an
output flle at its current position. See the OPTIONS parameter of the
$XPO OPEN macro (A.28) for information about initial positioning of an
output file.

A.30.1 Syntax

+--------------------+----------------------------,-------------------+
I I I

I write into a file I $XPO PUT(parameter , .••) I

I I - I

+--------------------+---+
I I { required-parameter} I

I parameter I {primary-parameter } I

I I { optional-parameter} I

+--------------------+---+
I required-parameter I IOB = address of iob I

+--------------------+---+
I primary-parameter I { STRING = char-string-info } I

I I { BINARY DATA = binary-data-info } I

+--------------------+---------=-------------------------------------+
I I { USER = user-defined value } I
I optional-parameter I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I I { address of character string descriptor} I
I char-string-info I { 'literal ascii string' } I

I I { (count , pointer) } I

I I { string conversion pseudo-function } I

+--------------------+---+
I I { address of binary data descriptor } I
I I { { , FULLWORDS}} I

I binary-data-info I { (size, address { , UNITS })} I
I I { { nothing }} I
+--------------------+---+

A.30.2 Restrictions

The character-string parameters (STRING, PAGE NUMBER, SEQUENCE_NUMBER)
and the BINARY DATA parameter are mutually exclusive.

A-81

Macro Descriptions
$XPO PUT - write to a File

A.30.3 Parameter Semantics

lOB = address of lOB
specifies the address of the lOB that describes the file being
written. This parameter must be specified.

STRING = character-string-info
describes an output record or stream composed of characters. If
this parameter is not specified, the lOB character-output-string
descriptor is not changed.

BINARY DATA = binary-data-info
describes an output binary data stream. If this parameter is not
specified, the lOB binary-output-data descriptor is not changed.

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$2 USER. If this parameter is not specified,
the lOB user field is not changed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the $XPO PUT operation. If this
parameter is not specified, no success-action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
$XPO PUT operation is unsuccessful. If FAILURE=O is specified,
no failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

A.30.4 Usage Guidelines

For a character-stream PUT operation (see ATTRIBUTES=STREAM in
$XPO OPEN, A.28) no carriage return, line feed, or any other
formit-control characters are supplied by XPORT in the output record.
In this mode, it is the user's exclusive responsibility to supply in
the character string any and all control character that might be
desired in the output record.

A.30.S Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the IOB$G COMP CODE field of the lOB. A
secondary completion code (if any) IS aviilable in the IOB$G_2ND_CODE
field of the lOB. Secondary completion codes, where applicable, are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

A-82

Macro Descriptions
$XPO PUT - write to a File

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

Success Code:
XPO$ NORMAL

Error Codes:
XPO$ BAD REQ +
XPO$-CORRUPTED
XPO$-FREE MEM +
XPO $-GET MEM +
XPO$-IO ERROR +
XPO $-NETWORK +
XPO$-NO ACCESS +
XPO $-NO-S PACE
XPO$-NO-SUPPORT +
XPO$-NO-WRITE
XPO$-NOT ONLINE
XPO $-NOT-OPEN
XPO$-NOT-OUTPUT
XPO$-REC-LOCK
XPO$-TRUNCATED

Fatal Error Codes:
XPO$ BAD lOB +
XPO$=BAD=LOGIC

The record was successfully written.

The I/O request is invalid.
The file header contains invalid information.
Error freeing lOB-related memory.
A memory-allocation error occurred.
An I/O error occurred writing the file.
A network error has occurred.
The file cannot be accessed.
The file cannot be extended, device is full.
The requested function is not supported.
The file is write-protected.
The device was not ready.
The file is not open.
The file is not open for output.
A record is locked by another task.
A truncated record was successfully written.

The lOB is invalid.
An XPORT logic error was detected.

A-83

Macro Descriptions
$XPO PUT MSG - Send a Message

A.31 $XPO_PUT_MSG - Send a Message

The $XPO PUT MSG macro calls the XPORT MESSAGE facility to send a
single- or multiple-line message to the user of the program.

The routing of a message depends on its associated severity. All
messages, regardless of severity, are sent to the standard XPORT
output device ($XPO OUTPUT), normally the user's terminal in the case
of an interactive- program. Messages with a severity other than
SUCCESS are also sent to the standard XPORT error device ($XPO ERROR)
if that device is different from the standard output d~vice.

Sending a FATAL message will result in automatic program termination
at the completion of message processing.

A.31.1 Syntax

+--------------------+---+
1 1 1
1 send a message 1 $XPO PUT MSG(parameter , ••.) 1
1 1 - - 1

+--------------------+---+
1 1 { required-parameter} 1
1 parameter 1 {primary-parameter } 1
I, 1 { optional-parameter} I
+--------------------+---+
1 required-parameter 1 { CODE = completion code } 1
1 1 { STRING = char-string-info } 1

+--------------------+---+
1 primary-parameter 1 SEVERITY = { SUCCESSIWARNINGIERRORIFATAL} 1

+--------------------+---+
1 optional-parameter 1 { SUCCESS = address of action routine} 1
1 1 { FAILURE = address of action routine } 1

+--------------------+---+
1 1 { address of character string descriptor} 1
1 char-string-info 1 { 'literal ascii string' } 1
1 1 { (count , pointer) } 1

+--------------------+---+

A.31.2 Parameter Semantics

CODE completion code
specifies an XPORT completion code. The message text
corresponding to this completion code is retrieved and sent to
the appropriate devices (see SEVERITY below). This parameter may
be specified more than once in a single macro call; each
occurence results in a single message. Either this parameter or
the STRING parameter must be specified.

A-84

Macro Descriptions
$XPO PUT MSG - Send a Message

STRING = character-string-info
describes a message string. This parameter may be specified more
than once in a single macro call; each occurence results in a
single message. Either this parameter or the CODE parameter must
be specified.

SEVERITY = severity-level keyword
specifies the severity to be associated with the message. A
FATAL level will result in automatic program termination. If
this parameter is not specified and CODE is specified, the
severity code is determined from the completion code. Otherwise,
if this parameter is not specified, SEVERITY=ERROR is assumed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the message output operation. If this
parameter is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
message output operation is unsuccessful. If FAILURE=O is
specified, no failure action routine is called. If this
parameter is not specified, FAILURE=XPO$FAILURE is assumed (see
Section 3.8).

A.31.3 Completion Codes

Success Code:
XPO$ NORMAL

Error Codes:
XPO$ BAD ARGS
STR$-BAD-SOURCE

- -

Fatal Error Codes:
XPO$ BAD LOGIC - -

The message was successfully processed.

The message argument list is invalid.
The string descriptor is invalid.
(Failure completion codes from $XPO GET MEM.)
(Failure completion codes from $XPO-PUT~ see

below.) -

An XPORT logic error was detected.

Note that $XPO_PUT may be used to output messages to the standard
XPORT output and/or error devices. If the $XPO PUT operation fails,
the failure completion code from that operation is passed back as the
$XPO_PUT_MSG completion code.

A-85

Macro Descriptions
$XPO RENAME - Rename a File

A.32 $XPO RENAME - Rename a File

The $XPO RENAME macro calls the XPORT I/O facility to change one or
more of- the following attributes of an existing file: directory
specification, file name, file extension (or type), and file version
(if any). After a successful file renaming, the lOB user and
resultant file specifications are updated to reflect the changes that
were made.

This operation, like OPEN and DELETE, performs file-specification
resolution as necessary.

A. 32. I Syntax

+--------------------+---+
I I I

I rename a file I $XPO RENAME (parameter , ••.) I

I I - I

+--------------------+---+
I I { requi red-parameter } I

I parameter I { pr imary-parameter } I

I I { optional-parameter } I

+--------------------+---+
I required-parameter I IOB=address of iob I

+--------------------+---+
I primary-parameter I { FILE SPEC = char-string-info } I

I I { NEW SPEC = char-string-info } I

+--------------------+------~--+
I I { DEFAULT = char-string-info } I

I I { NEW DEFAULT = char-string-info } I

I I { RELATED = char-string-info } I

I optional-parameter I { NEW RELATED = char-string-info } I

I I { OPTIONS = option-keyword } I

I I { USER = user-defined value } I

I I { SUCCESS = address of action routine } I

I I { FAILURE = address of action routine } I

+--------------------+---+
I I { address of character string descriptor} I

I char-string-info I { 'literal ascii string' } I

I I { (count , pointer) } I

+--------------------+---+
I option-keyword I REMEMBER I

+--------------------+--------'---------------------------------------+
NOTE: The keyword OPTIONS may be shortened to OPTION.

A-86

Macro Descriptions
$XPO RENAME - Rename a File

A.32.2 Parameter Semantics

lOB = address of lOB
specifies the address of an lOB for the file to be renamed. This
lOB must be initialized, but it must not be open when the RENAME
call is made. This parameter mvst be specified.

FILE SPEC = character-string-info
-describes a file specification provided by the end user. Unless

the lOB was previously closed with the REMEMBER option, this user
file specification is combined with the default and related file
specifications, if any, to form the resultant file specification
(see Section 3.6.1). If this parameter is not specified, the
corresponding lOB string-descriptor field is not changed.

NEW_SPEC = character-string-info
describes the new file specification, typically also provided by
the end user. This new file specification is combined with the
new-default and new-related file specifications, if any, to form
the resultant new file specification (see Section 3.6.1). If
this parameter is not specified, the corresponding lOB
string-descriptor field is not changed.

DEFAULT = character-string-info
describes a default file specification. During
file-specification resolution, this file specification is
combined with the user and related file specifications, if any,
to form the resultant file specification. If this parameter is
not specified, the corresponding lOB string-descriptor field is
not changed.

NEW DEFAULT = character-string-info
- describes a default for the new file specification. This

specification is combined with the new and new-related
specifications, if any, to form the resultant new
specification. If this parameter is not specified,
corresponding lOB string-descriptor field is not changed.

RELATED = character-string-info

file
file
file

the

describes a file specification that is related to the file being
renamed. During file-specification resolution, this file
specification is combined with the user and default file
specifications, if any, to form the resultant file specification.
If this parameter is not specified, the corresponding lOB
string-descriptor field is not changed.

A-87

Macro Descriptions
$XPO RENAME - Rename a File

NEW RELATED = character-string-info
describes a file specification that is related to the new file
specification for the file being renamed. This file
specification is combined with the new and new-default file
specifications, if any, to form the resultant new file
specification. If this parameter is not specified, the resultant
old file specification is assumed as the new-related file
specification.

OPTIONS = option-keyword
indicates a processing option to be applied to the file being
renamed.

REMEMBER

Meaning

Remember relevant file attributes (e.g.,
resultant file specification) so that
the file can be reprocessed (e.g.,
opened, read, written, backed up). File
processing options (including this
option) are not remembered, whether or
not this option-is specified. If this
option is not specified by file rename
time, the lOB is reset to an initialized
state after successful renaming.

If this parameter is not specified, the lOB option field is not
changed.

USER = user-defined value
specifies an application-dependent fullword value to be placed in
the lOB field IOB$2 USER. If this parameter is not specified,
the lOB user field is not changed.

SUCCESS = address of action routine
specifies the address of an action routine to be called upon
successful completion of the rename operation. If this parameter
is not specified, no success action routine is assumed.

FAILURE = address of action routine
specifies the address of an action routine to be called if the
rename operation is unsuccessful. If FAILURE=O is specified, no
failure action routine is called. If this parameter is not
specified, FAILURE=XPO$FAILURE is assumed (see Section 3.8).

A-88

Macro Descriptions
$XPO RENAME - Rename a File

A.32.3 Completion Codes

A primary completion code is returned as the routine-call value, and
is also available in the IOB$G COMP CODE field of the lOB. A - -secondary completion code (if any) is available in the IOB$G 2ND CODE
field of the lOB. Secondary completion codes, where applicable~ are
indicated by a plus sign (+) following the associated primary code in
the listing below. The secondary completion codes are listed and
described in Appendix C.

NOTE: Some of the completion codes listed below may not apply to all
operating systems.

Success Code:
XPO$_NORMAL

Error Codes:
XPO$ BAD ACCT
XPO$-BAD-ATTR
XPO$-BAD-DELIM
XPO$-BAD-DEVICE
XPO$-BAD-DIRECT +
XPO$-BAD-DFLT +
XPO$-BAD-NAME
XPO$-BAD-NEW +
XPO$-BAD-PROT
XPO$-BAD-REQ +
XPO$-BAD-RLTD +
XPO$-BAD-TEMP
XPO$-BAD-VER
XPO$-BAD-RSLT +
XPO$-BAD-SPEC +
XPO$-CHANNEL +
XPO$-FREE MEM +
XPO$-GET MEM +
XPO$-IO ERROR +
XPO$-NO-ACCESS +
XPO$-NO-CHANNEL
XPO$-NO-DIRECT
XPO $-NO-F ILE
XPO$-NO-RENAME +
XPO $-NO-S PACE
XPO$-NO-SUBDIR
XPO$-NO-SUPPORT +
XPO $-NO-WRITE
XPO$-NOT ONLINE
XPO$-OPEN
XPO$-PROTECTED

Fatal Error Codes:
XPO$ BAD lOB +
XPO$-BAD-LOGIC - -

The file was successfully renamed.

Invalid account field.
Invalid attribute field in file spec.
Invalid punctuation used in a quoted string.
An invalid device was specified.
Error entering filename in directory.
The default file specification is invalid.
No filename was specified.
The new file specification is invalid.
Invalid protection field.
The XPORT request was invali6.
The related file specification is invalid.
Multiple ";T"s specified.
Generation number not numeric.
The resultant file specification is invalid.
The user file specification is invalid.
A channel-assignment error occurred.
Error freeing lOB-related memory.
A memory-allocation error occured.
A hardware-level I/O error occurred.
The file cannot be accessed.
No I/O channel was available.
The indicated directory was not found.
The file does not exist.
The file cannot be renamed.
File space exhausted.
The sub-directory does not exist.
The requested function is not supported.
The file is write-protected.
The device was not ready.
The file is currently open.
Access to the file is denied.

The lOB is invalid.
An XPORT logic error was detected.

A-89

Macro Descriptions
$XPO SPEC BLOCK - Declare a File Specification Block

A.33 $XPO SPRC BLOCK - Declare a File Specification Block

The $XPO SPEC BLOCK macro generates an attribute list for an XPORT
file specification block allocated within an OWN, GLOBAL, LOCAL, MAP
or BIND declaration. These attributes (1) indicate that the file
specification block is a BLOCK structure of a given length, and (2)
define the field-names that can be used to reference portions of the
block.

A file specification block is
$XPO PARSE SPEC macro (see A.27).
block is gTven in Appendix B.

used in conjunction with the
The format of a file specification

A.33.l Syntax

+--------------------+----------------_._-----------------------------+
I I I
I declare spec-block I $XPO SPEC BLOCK I
I I - - I
+--------------------+---+

A.33.2 Examples

OWN
input spec blk :
output_spec_blk

LOCAL
temp_spec blk

MAP
passed_spec blk

$XPO SPEC BLOCK,
$XPO_S PEC_B LOCK;

$XPO SPEC_BLOCK;

A-gO

Macro Descriptions
$XPO TERMINATE - Terminate Program Execution

A.34 $XPO TERMINATE - Terminate Program Execution

The $XPO TERMINATE macro terminates program execution after sending
the user a termination message. The message that is issued is
determined by the completion code associated with the macro call.

A.34.1 Syntax

+--------------------+---+
I I I
I terminate program I $XPO TERMINATE({optional-parameter}) I
I I - . I
+--------------------+---+
I optional-parameter I CODE = completion code I
+--------------------+---+

A.34.2 Parameter Semantics

CODE completion code
specifies an XPORT completion code. This code is used to select
the program termination message that is sent to the user. If
this parameter is not specified, CODE = XPO$_TERMINATE is
assumed.

A.34.3 Routine Value

This XPORT function does not return a value or a completion code since
it results in program termination. However, the specified or assumed
completion code becomes the program termination code.

A-91

APPENDIX B

B.l
B.2
B.3
B.4

CONTROL BLOCKS

IN PUT lOUT PUT BLOCK (lOB) • • B-2
STRING DESCRIPTORS • • • • • • • B-4
BINARY DATA DESCRIPTORS • • • • • • • • • • B-5
FILE SPECIFICATION PARSE BLOCK. • • • • • • B-6

APPENDIX B

CONTROL BLOCKS

This appendix presents a detailed description of the control blocks
that are involved in the use of XPORT facilities. This appendix is
intended for reference use. A tutorial discussion of these control
blocks and their usage is given earlier in this manual, beginning with
Chapter 3.

B-1

Control Blocks
INPUT/OUTPUT BLOCK (lOB)

B.l INPUT/OUTPUT BLOCK (lOB)

The following table describes the lOB fields and literals that may be of interest to an XPORT I/O
user. The entries under the columns "Used By" and "Set By" indicate which XPORT I/O functions use
the corresponding field value (typically set by macro keyword parameters), and which functions set
the corresponding field value.

+-----------------+---------+------------+------------+--+
I Symbol I Type I Used By* ! Set By* I Description I
+-----------------+---------+------------+------------+--+

IOB$H LENGTH
10B$T=:RESULTANT

10B$A_ASSOC lOB

10B$B FUNC'I'ION
IOB$K-OPEN
10B$K-CLOSE
10B$K-DELETE
IOB$K-RENAME
10B$K-BACKUP
lOB $K-GET
10B$K=:PUT

10B$V OPTIONS
10B$V-INPUT
10B$V-OUTPU'I'
lOB $V-OVERWRITE
10B$V-APPEND
IOB$V-REMEMBER
lOB $V=:MA X_V ERS I

IOB$V ATTRIBUTE
IOB$V=:BINARY

10B$V_STREAM

IOB$V_RECORD

lOB $V _S EQUENCED

10B$V STATUS
10B$V-OPEN
10B$V-EOF
10B$V-CLOSED
10B$V-AUTO CONC
10B$V-TERMINAL
lOB $V=:TEM PORARY

lOB $V _CONC_S PEC

lOB $V _CH_ASSIGN

10B$T STRING
10B$H-STRING
10B$A=:STRING

10B$T_DATA

10B$H_UNITS

10B$A_DATA

10B$H_FULLWORDS

I
integer I all
desc I close,

address

byte
1
2
3
4
5
6
7

16 bits
bit
bit
bit
bit
bit
bit

16 bits
bit

bit

bit

bit

16 bits
bit
bit
bit
bit
bit
bit

bit

bit

desc
2 bytes
pointer

desc

2 bytes

add ress

2 bytes

backup

backup,
rename

all

open, get
open, put
open-out
open-out
close
open,

rename

open, get,
put

open, get,
put

open, get,
put

open-out,
put

all
get, put
open
open
get, put
open,

close
close

open,
delete,
rename

get-stream

get-bin

init
open,

delete,

open-in

open
get, put
close
get-conc
open
open

open

open,
delete,
rename

get-char
get-char

get-bin

get-bin

get-full

Length of lOB (number of elements)
Resultant file specification descriptor

Address of associated lOB

I/O function code:
open file
close file
delete file
rename file
create backup copy of input file
get record (locate mode)
put record (move mode)

I/O option flags:
open for input
open for output
overwrite existing output file
append to existing output file
file will be reprocessed after close
maximize file version number

(internal)

File attributes:
binary data

stream-oriented character data

record-oriented character data

sequence-numbered records

Current file status:
file is open
end-of-file detected
file is closed
input file switching in progress
I/O device is a terminal
XPORT temporary file

primary file-spec is a concatenated
file-spec

channel has been assigned

Character input string descriptor:
length of the character string
pointer to the character string

Binary input data descriptor (overlays
IOB$T STRING):
lengtn of the data in addressable

units
address of the data

length of the data in BLISS fullwords

+-----------------+---------+------------+------------+--+
I continued on the next page I
+--+

B-2

Control Blocks
INPUT/OUTPUT BLOCK (lOB)

+-----------------+---------+------------+------------+--+
I Symbol I Type I Used By* I Set By* I Description I
+-----------------+---------+------------+------------+--+

IOB$H PAGE NUMB
IOB$G-SEQ NUMB
IOB$G=PREV_REC

lOB $G REC NUMB
IOB$G=REC=SIZE

lOB $G_B LK _S IZE

IOB$G COMP CODE
IOB$G=2ND_CODE

IOB$Z USER
IOB$G=USER CODE

IOB$A BUFFER CB
IOB$A-RMS FAB
IOB$A-RMS-RAB
IOB$A=FCS=FDB

IOB$A_RSTS_CB

IOB$H_CHANNEL

I I I
integer I get-seq I Current page number I
integer I put-seq get I Sequence number of current record I
integer I I Number of last direct record read or I

I I written (future) I
integer I I Direct-access record number (future) I
integer I open-out open I ~ixed record size (0 = variable length I

I I records) I
integer I open-out open I Block size

I I
integer I all I Completion code of current operation
integer I all I Secondary completion code

integer
integer

address
address
address
address

address

integer

I

get, put
close
get, put
get put

close
get put

close
get put

close

open
open
open
open

open

open

User-defined value
User-defined completion code

Address of TOPS-IO buffer control block
Address of RMS FAB (system-specific)
Address of RMS RAB (system-specific)
Address of FCS FDB (system-specific)

Address of RSTS control block

I/O channel number (system-specific)

+-----------------+---------+------------+------------+--+
* Code-names for XPORT I/O functions:

all
init
open
open-in
open-out
open-conc
close
get
get-char
get-stream
get-conc
get-bin
get-full
put
put-seq
delete
rename
backup

Declaration macro:

All I/O functions
lOB initialization
Open either input file or output file
Open input file
Open output file
Automatic open of concatenated input file
Close file
All binary and character get operations
Get character string
Get character stream data
Get with automatic input concatenation
Get binary data
Get binary fullwords
All binary and character put operations
Put sequenced output record
Delete file
Rename file
Backup file

Initialization macro: $XPO_IOB INIT

B-3

Control Blocks
STRING DESCRIPTORS

B.2 STRING DESCRIPTORS

The following table describes the fields of a string descriptor (see
Section 6.1), and the literals associated with these descriptors.

+-----------------+---------+--+
I Symbol I Type I Description I
+-----------------+---------+--+
I
I S'l'R$H LENG'l'H
I
I S'I'R$B DTYPE
I STR$K-D'l'YPE XXX
I S'lR$K=DTYPE=T
I
I
I
I
I
I
I
I
I

S'l'R$B CLASS
S'l'R$K-C LASS Z
STR$K-CLASS-F'
STR$K-CLASS-D
STR$K-CLASS-B
STR$K-CLASS-DB
S'l'R $K=C LASS=XT

I S'lR$A POINTER
I
I S'l'R$H MAXLEN
I STR$H-PF'XLEN
I

2 bytes

byte
o
14

byte
o
1
2
3
190
189

pointer

2 bytes
2 bytes

Number of characters in the string

Atomic data type code:
Erroreous XPORT temporary string
ASCII text string

Descriptor class
unspecified
fixed str ing
dynamic string
bo und ed str i ng
dynamic bounded
XPORT tempo ra ry

code:

string
string (dynamic)

Pointer to the character string

Length of the container string
Length of the prefix string

+-----------------+---------+--+
Declaration macro: $STR DESCRIPTOR

Initialization macro: $STR DESC INIT

B-4

Control Blocks
BINARY DATA DESCRIPTORS

B.3 BINARY DATA DESCRIPTORS

The following table describes the fields of a binary data descriptor
(see Section 7.1), and the literals associated with these descriptors.

+-----------------+---------+--+
I Symbol I Type I Description I
+-----------------+---------+--+

XPO$B DTYPE
XPO$K=DTYPE_BU

XPO$B CLASS
XPO $K-C LASS Z
XPO$K-CLASS-F
XPO $K-C LASS-D
XPO $K-C LASS-B
XPO $K=C LASS=DB

XPO$A_ADDRESS

XPO $H MAXLEN
XPO$H=PFXLEN

I
2 bytes I Length of the binary data units

byte
2

byte
o
1
2
3
190

I
I Atomic data type code:
I XPORT binary data (binary units)
I
I
I
I
I
I
I
I

Descriptor class code:
unspecified
fixed binary data
dynamic binary data
bounded binary data
dynamic bounded binary data

pointer I Address of the binary data
I

2 bytes I Maximum length of the binary data
2 bytes I Length of the binary data prefix

I
+-----------------+---------+--+
Declaration macro: $XPO DESCRIPTOR

Initialization macro: $XPO DESC INIT - -

B-5

Control Blocks
FILE SPECIFICATION PARSE BLOCK

B.4 FILE SPECIFICA1ION PARSE BLOCK

The following table describes all XPORT File Specification Parse Block
fields and literals (see Section 3.6.2).

+-----------------+---------+--+
I Symbol I Type I Description I
+-----------------+---------+--+

XPO$V SPEC STAT
XPO $V-DIR N"Alv'lE
XPO$V-PPN
XPO$V-SFD
XPO$V-WILD CARD
XPO $V-WILD-NODE
XPO$V-WILD-DEV
XPO$V-WILD-DIR
XPO$V-WILD-NAME
XPO $V-WILD-TYPE
XPO$V-WILD-VER
XPO$V=WILD=ATTR

XPO$T NODE
XPO$H-NODE
XPO$A-NODE

XPO$T DEVICE
XPO $H-DEVICE
XPO$A-DEVICE

XPO$T DIRECT
XPO $H-DIREC'l'
XPO$A-DIRECT

XPO$H PROJ NUMB
XPO$H-PGMR-NUMB

- -

XPO $1' FILE NAME
XPO$H-FILE-NAME
XPO $A -F' ILE-NAME

- -

XPO$T FILE TYPE
XPO$H-FILE-TYPE
XlJO$A-FILE-TYPE - -

XPO$T FILE VER
XPO$H-FILE-VER
XPO$A=FILE=VER

16 bits
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

desc
2 bytes
pointer

desc
2 bytes
pointer

desc
2 bytes
pointer

2 bytes
2 bytes

desc
2 bytes
pointer

desc
2 bytes
pointer

desc
2 bytes
po inter

I
I
I
I

File specification indicators:
<directory-name> specified
[proj ect, prog rammer] spec i f ied
[, ,SFD] specified (TOPS-IO only)
wild-card somewhere in file-spec
wild-card node name
wild-card device name
wild-card in directory name
wild-card file name
wild-card file type (extension)
wild-card file version number
wild-card file attributes

Network node name descriptor:
length of the node name
pointer to the node name

Device name descriptor:
length of the device name
pointer to the device name

Directory specification descriptor:
length of the directory spec
pointer to the directory spec

Project number (binary)
Programmer number (binary)

File name descriptor:
length of the file name
pointer to the file name

File type (extension) descriptor:
length of the file type
pointer to the file type

File version number descriptor:
length of the file version
pointer to the file version

+-----------------+---------+--+
I continued on the next page I
+--+

B-6

Control Blocks
FILE SPECIFICATION PARSE BL0CK

+-----------------+---------+--+
I Symbol I Type I Description I
+-----------------+---------+--+
I I I I
I XPO$T FILE PROT I desc I File protection descriptor (RSTS I
I - - I I onl y) : I
I XPO$H FILE PROT I 2 bytes I length of the protection I
I XPO$A-FILE-PROT I pointer I pointer to the protection I
I - - I I I
I XPO$T EXTRA I desc I File 'EXTRA' information descriptor: I
I XPO$H-EXTRA I 2 bytes I length I
I XPO$A-EXTRA I pointer I pointer I
I I I I
+------~----------+---------+--+

Declaration macro: $XPO SPEC BLOCK - -

Initialization macro: Not needed

B-7

APPENDIX C

COMPLETION CODES

The following table lists all XPORT completion codes together with
their numeric values and corresponding message texts. Note that the
numeric values are given for debugging purposes only; they should not
be 'hard-coded' into a program.

C-l

()

I
N

Completion
Code Name

S'l'RS FAILURE
STRS-NORMAL
XPO S-NORMA L
XPO S-CREATED
XPOS-INCOMPLETE
XPOS-NEW FILE
XPOS-NEW-PAGE
STRS-END-STRING
S'l'RS-TRUNCATED
STRS-NOT TEMP
XPOS-END-FlLE
XPO $-BAD-A DDR
XPOS-BAD-ALIGN
XPO S-BAD-ARGS
XPO S-BAD-C ONCAT
XPOS-BAD-OELIM
XPO S-BAD-DESC
XPO S-BAD-OEVICE
XPOS-BAD-OFLT
XPOS-BAD-OIRECT
XPO S-BAD-DTYPE
XPOS-BAD-FORMAT
XPOS-BAD-IO OPT
XPOS-BAD-LENGTH
XPOS-BAD-NAME
XPOS-BAD-NEW
XPOS-BAD-NODE
XPOS-BAD-ORG
XPO S-BAD-PROMPT
XPO S-BAD-RECORD
XPOS-BAD-REQ
XPO S-BAD-R LTD
XPOS-BAD-RSLT
XPOS-BAD-SPEC
XPO S-BAD-TYPE
XPOS-BAD-VER
XPOS-CHANNEL
XPO S-C LOSED
XPOS-CONFLICT
XPOS-CORRUPTED
XPOS-EXISTS
XPOS-F ILE LOCK
XPO S-FREE-MEM
XPO S-GET MEM
XPO()N USE

Severity

warning
success
success
success
success
success
success
success
success
success
warning
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error

Code Val ue
BLISS-16/36 I BLISS-32

o
1
1
9

17
25
33

2049
2057
2065
4096
8194
8202
8210
8218
8226
8234
8242
8250
8258
8266
8274
8282
8290
8298
8306
8314
8322
8330
8338
8346
8354
8362
8370
8378
8386
8394
8402
8410
8418
8426
8434
8442
8450
8458

%0'000000'
%0'000001'
%0'000001'
%0'000011'
%0'000021'
%0' 000031'
%0' 000041'
%0'004001'
%0'004011'
%0 '004021'
%0'010000'
%0' 020002'
%0'020012'
%0' 020022'
%0'020032'
%0' 020042'
%0'020052'
%0'020062'
%0'020072'
%0'020102'
%0' 020112'
%0' 020122'
%0'020132'
%0'020142'
%0'020152'
%0 '020162'
%0' 0201 72'
%0'020202'
%0'020212'
%0' 020222'
%0'020232'
%0' 020242'
%0'020252'
%0'020262'
%0' 020272'
%0' 02030 2'
%0'020312'
%0'020322'
%0'020332'
%0' 020342'
%0'020352'
%0' 020362'
%0' 020372'
%0' 02040 2'
%0'020412'

2129920
2129921
2129921
2129929
2129937
2129945
2129953
2394113
2394121
2394129
2134016
2138114
2138122
2138130
2138138
2138146
2138154
2138162
2138170
2138178
2138186
2138194
2138202
2138210
2138218
2138226
2138234
2138242
2138250
2138258
2138266
2138274
2138282
2138290
2138298
2138306
2138314
2138322
2138330
2138338
2138346
2138354
2138362
2138370
2138378

%X'208000'
%X'208001
%X'208001'
%X'208009'
%X'208011'
%X'208019'
%X'208021'
%X'248801'
%X'248809'
%X '248811'
%X' 209000'
%X'20A002'
%X'20AOOA'
%X'20A012'
%X' 20A01A'
%X'20A022'
%X'20A02A'
%X'20A032'
%X' 20A03A'
%x'20A042'
%X'20A04A'
%X'20A052'
%X'20A05A'
%X'20A062'
%X '20A06A'
%X'20A072'
%X'20A07A'
%X'20A082'
%X'20A08A'
%X'20A092'
%X' 20A09A'
%X' 20AOA2'
%X'20AOAA'
%X'20AOB2'
%X' 20AOBA'
%X'20AOC2'
%X' 20AOCA'
%X '20AOD2'
%X'20AODA'
%X '20AOE2'
%X'20AOEA'
%X'20AOF2'
%X'20AOFA'
%X'20AI02'
%X'20AI0A'

Message Text

unsuccessful completion
normal completion
normal completion
file was successfully created and opened
incomplete amount of data read
first read on concatenated file was successful
first read on a new page was successful
end of string reached
string was truncated
not a temporary string
end-of-file has been reached
invalid memory address
memory element not on a fullword boundary
invalid argument list
invalid concatenated file specification
invalid punctuation
invalid descriptor
invalid device
invalid default file specification
invalid directory
invalid data type
invalid record format
invalid I/O option
invalid length
invalid file name
invalid new file
invalid node
invalid file organization
invalid prompt
invalid record
invalid request
invalid related file specification
invalid resultant file specification
invalid file specification
invalid file type
invalid file version
I/O channel assignment error
file is already closed
conflicting options or attributes
file is corrupted
file already exists
file is locked
dynamic memory deallocation error
dynamic memory allocation error
file is currently in use

continued on the next page

()

o :s:
I"tJ
t""
~
1-3
H
o
Z

()

o
o
~
(fl

()

I
w

Completion
Code Name

XPO$ 10 BUFFER
XPO $-1 O-ERROR
XPO$-MISSING
XPO$-NETWORK
XPO $-NO ACCESS
XPO $-NO-BACKUP
XPO $-NO-CHANNEL
XPO$-NO-CLOSE
XPO $-NO-C ONCAT
XPO$-NO-CREATE
XPO$-NO-DELETE
XPO$-NO-DIRECT
XPO$-NO-FILE
XPO $-NO-MEMORY
XPO$-NO-OPEN
XPO $-NO-READ
XPO $-NO-RENAME
XPO $-NO-S PACE
XPOS-NO-S UBDIR
XPO $-NO-S UPPORT
XPO $-NO-WRITE
XPOS-NOT CLOSED
XPO $-NOT-E XPIRE
XPO $-NOT-INPUT
XPOS-NOT-ONLINE
XPOS-NOT-OPEN
XPO S-NOT-OUT PUT
XPO$-OPEN
XPO$-PREV ERROR
XPOS-PRIVILEGED
XPOS-PROTECTED
XPOS-PUT MSG
XPO S-REC-LOC K
XPO$-RENAME NEW
XPO$-RENAME-OLD
XPO $-TRUNCATED
X?OS-WILDCARD
XPOS-BAD ACCT
XPO$-BAD-ATTR
XPO$-BAD-DA'I'A
XPO $-BAD-MEDIA
XPO S-BAD-MEMORY
XPO()AD=PROT

Severity

error
error
error
error
error
error
error
error
error
erro.r
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error

Code Va] ue
BLISS-16/36 I BLISS-32

8466
8474
8482
8490
8498
8506
8514
8522
8530
8538
8546
8554
8562
8570
8578
8586
8594
8602
8610
8618
8626
8634
8642
8650
8658
8666
8674
8682
8690
8698
8706
8714
8722
8730
8738
8746
8754
8762
8770
8778
8786
8794
8802

%0' 0204 22'
%0' 0204 32'
%0'020442'
%0'020452'
%0'020462'
%0'020472'
%0'020502'
%0'020512'
%0'020522'
%0'020532'
%0'020542'
%0'020552'
%0'020562'
%0'020572'
%0'020602'
%0' 020612'
%0'020622'
%0'020632'
%0'020642'
%0'020652'
%0'020662'
%0'020672'
%0'020702'
%0'020712'
%0' 020722'
%0'020732'
%0'020742'
%0'020752'
%0'020762'
%0'020772'
%0' 021002'
%0'021012'
%0'021022'
%0' 0210 32'
%0' 021042'
%0' 0210 52'
%0'021062'
%0'021072'
%0'021102'
%0' 021112'
%0'021122'
%0'021132'
%0'021142'

2138386
2138394
2138402
2138410
2138418
2138426
2138434
2138442
2138450
2138458
2138466
2138474
2138482
2138490
2138498
2138506
2138514
2138522
2138530
2138538
2138546
2138554
2138562
2138570
2138578
2138586
2138594
2138602
2138610
2138618
2138626
2138634
2138642
2138650
2138658
2138666
2138674
2138682
2138690
2138698
2138706
2138714
2138722

%X '20A112'
%X' 20AllA'
%X'20A122'
%X '20A12A'
%X '20A132'
%X '20A13A'
%X '20A142'
%X '20A14A'
%X'20A152'
%X'20A15A'
%X'20A162'
%X'20A16A'
%X '20A172'
%X'20A17A'
%X '20A182'
%X '20A18A'
%X '20A192'
%X '20A19A'
%X '20AIA2'
%X'20AIAA'
%X '20AIB2'
%X'20AIBA'
%X '20AIC2'
%X'20AICA'
%X'20AID2'
%X'20AIDA'
%X'20AIE2'
%X'20AIEA'
%X'20AIF2'
%X '20AlFA'
%X' 20A202 '
%X' 20A20A'
%X '20A212'
%X' 20A21A'
%X '20A222'
%X '20A22A'
%X '20A232'
%X '20A23A'
%X '20A242 '
%X'20A24A'
%X '20A252'
%X '20A25A'
%X '20A262'

Message Text

I/O buffering error
I/O error
required parameter, option or attribute missing
network error
file cannot be accessed
file cannot be backed up
all I/O channels are in use
file cannot be closed
concatenated file specification not allowed
file cannot be created
file cannot be deleted
directory does not exist
file does not exist
insufficient dynamic memory
file cannot be opened
file cannot be read
file cannot be renamed
insufficient space
sub-directory does not exist
requested function not supported
file cannot be written
file has not been closed
expiration date has not been reached
file is not open for input
device is not online
file has not been opened
file is not open for output
file is currently open
program terminated due to previous error
privileged operation
file protection denies access
message output error
record is locked
new file cannot be renamed
old file cannot be renamed
record was truncated
wildcard error
invalid account attribute
invalid attribute
invalid data
disk/tape cannot be read/written
free storage chain is invalid
invalid protection attribute

continued on the next page

()

o
3:
'i:l
l'
t'l
1-3
H
o
Z

()

o
t:l
t'l
(f)

(")
I
~

Completion
Code Name

XPO$ BAD PTR
XPO $-BAD-RECNUM
XPO$-BAD-SIZE
XPO$-BAD-TEMP
XPO $-CHAN USED
XPO$-HOST-ERROR
XPO$-NO NODE
XPO$-NO-STACK
XPO$-SYS ERROR
XPO$-BAD-C LASS
XPO$-NO TEMP
XPO$-FOREGROUND
XPO$-NO APPEND
XPO$-NO-SEQ
XPO $-BAD ORDER
XPO$-BAD-SYNTAX
S TR $-BAD-C HAR
STR$-BAD-C LASS
STR$-BAD-DESC
STR$-BAD-DTYPE
STR$-BAD-LENGTH
STR$-BAD-MAXLEN
STR$-BAD-PATTRN
STR$-BAD-PTR
STR$-BAD-REQ
STR$-BAD-SOURCE
STR$-BAD-STRNG 1
STR$-BAD-STRNG2
STR$-BAD-TARGET
STR$-CONFLICT
STR$-NO SPACE
STR$-NO-STRING
STR$-NO-S UP PORT
STR$-NO-TEMP
STR$-NULL STRNG
STR$-OUT RANGE
XPO$-BAD-IOB
XPO $-BAD-LOG IC
XPO$-TERMINATE
STR()AD_LOGIC

Severity

error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
fatal
fatal
fatal
fatal

Code Value
BLISS-16/36 I BLISS-32

8810
8818
8826
8834
8842
8850
8858
8866
8874
8882
8890
8898
8906
8914
8922
8930

10242
10250
10258
10266
10274
10282
10290
10298
10306
10314
10322
10330
10338
10346
10354
10362
10370
10378
10386
10394
16388
16396
16404
18436

%0 '021152'
%0'021162'
%0' 0211 72'
%0' 02120 2'
%0'021212'
%0'021222'
%0'021232'
%0' 02124 2'
%0'021252'
%0'021262'
%0' 021272'
%0'021302'
%0'021312'
%0'021322'
%0' 021332'
%0' 02134 2'
%0' 024002'
%0'024012'
%0' 0240 22'
%0' 0240 32'
%0' 024042'
%0' 0240 52'
%0'024062'
%0'024072'
%0' 024102'
%0' 024112'
%0' 024122'
%0'024132'
%0' 02414 2'
%0' 024152'
%0 '024162'
%0' 0241 72'
%0'024202'
%0'024212'
%0'024222'
%0'024232'
%0'040004'
%0'040014'
%0'040024'
%0'044004'

2138730
2138738
2138746
2138754
2138762
2138770
2138778
2138786
2138794
2138802
2138810
2138818
2138826
2138834
2138842
2138850
2402306
2402314
2402322
2402330
2402338
2402346
2402354
2402362
2402370
2402378
2402386
2402394
2402402
2402410
2402418
2402426
2402434
2402442
2402450
2402458
2146308
2146316
2146324
2410500

%X' 20A26A'
%X' 20A272'
%X' 20A27A'
%X' 20A282'
%X' 20A28A'
%X '20A292'
%X' 20A29A'
%X' 20A2A2'
%X' 20A2AA'
%X'20A2B2'
%X '20A2BA'
%X' 20A2C2'
%X' 20A2CA'
%X '20A2D2'
%X' 20A2DA'
%X '20A2E2'
%X' 24A802 '
%X' 24A80A'
%X'24A812'
%X'24A81A'
%X'24A822'
%X' 24A82A'
%X' 24A832 '
%X '24A83A'
%X'24A842'
%X'24A84A'
%X'24A852'
%X' 24A85A'
%X'24A862'
%X' 24A86A'
%X '24A872 '
%X'24A87A'
%X'24A882'
%X'24A88A'
%X' 24A892'
%X'24A89A'
%X' 20C004 '
%X'20COOC'
%X '20C014 '
%X' 24C804 '

Message Text

invalid character pointer
invalid record number
invalid size
invalid temporary file attribute
I/O channel is currently in use
host operating system error
network node does not exist
insufficient stack space
unexpected operating system error
invalid descriptor class
temporary file not permitted
foreground jobs not permitted
append function not permitted
sequenced files not permitted
field is misplaced or duplicated
invalid syntax
invalid character
invalid descriptor class
invalid string descriptor
invalid descriptor data type
invalid string length
invalid maximum string length
invalid pattern string
invalid string pointer
invalid string request
invalid source string
invalid primary string
invalid secondary string
invalid target string
conflicting string function arguments
insufficient space
no string specified
requested function not supported
temporary string not permitted
null string not permitted
integer value out of range
invalid lOB
XPORT logic error detected
program terminated due to program request
XPORT string logic error detected

(")

o
3:
"tJ
r
J:1j

>-3
H

o
Z

(J

o
o
J:1j

en

APPENDIX D

SAMPLE PROGRAM

This appendix presents a programming example that uses most of the
XPORT facilities in a realistic context. The program reads a BLISS
source file and merges into it the contents of any REQUIRE files
referred to in the original.

D-l

Sample Program

MODULE MERGER (IDENT = 'Vl.O-l', %TITLE 'BLISS REQUIRE File Merger'
MAIN = MERGER
%BLISS32(,ADDRESSING MODE (EXTERNAL=LONG_RELATIVE))
) = -

BEGIN

1++
I

F'ACILITY: BLISS User Program Library

ABSTRACT:

This program "merges" the contents of any REQUIRE files declared
in a primary source file into that primary file. It also provides
a visually-distinctive header for each segment of REQUIRE-file
code. •

ENVIRONMENT: User Mode with XPORT Faciliity; system independent.

AUTHORS: Ed Williams and Ward Clark, CREATION DA'lE: 21 June 1979

1--

1 TABLE OF CONTENTS:
I

FORWARD ROUT INE
MERGER,
REQUIRE DECL,
OPEN_REO_FAIL;

INC LUDE FILES:

LIBRARY 'BLI:XPORT';

I MACROS:

MACRO
ski P (s t ring) =

(%STRING(%CHAR(cr), %CHAR(lf), string» %;

EQUATED SYMBOLS:

LI'l'ERAL
true = 1,
fal se = 0,
ht %0'11',
cr %0'15',
1 f %0' 12 ' ,
ff %0'14';

OWN STORAGE:

OWN
term inal : $XPO lOB () ,
primary file : $XPO lOB () ,
require-file: $XPO-IOB(),
output_Tile: $XPO_IOB () ;

I EXTERNAL REFERENCES:

D-2

Primary file merging control routine
REQUIRE declaration parser
Open failure action routine

XPORT definitions

lOB for terminal I/O
lOB for primary input file
lOB for current REQ file
lOB for output file

Sample Program

ROUTINE MERGER Program entry point

1++
I
I FUNCTIONAL DESCRIPTION:
I
I
I
I
I
I

This routine performs all of file merging except for the parsing
of BLISS source statements (see the REQUIRE DECL routine) and trying
alternate REQUIRE file default file-types (see the OPEN REQ FAIL
action routine). - -

I FORMAL PARAMETERS:

None

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

COMPLETION CODES:
I
I XPO$_NORMAL Successful completion
I
I SIDE EFFEC'l'S:
I
I None
I
1--

BEGIN
1+
I Open the user's terminal for input/output and greet the user.
1-
$XPO_OPEN (lOB = terminal, InLE_SPEC = $XPO_INPUT);

$XPO PUT(lOB = terminal, STRING = skip('BLISS REQUIRE File Merger'));
1+ - .
I Ask the user for a BLISS source file-spec and open the file.
1-
WHILE 1 DO 1 Loop until the user gives a valid file-spec.

1+

BEGIN
IF ~OT $XPO GET(lOB = terminal,

- PROMPT = skip('Enter name of BLISS source file (.BLI assumed): '))
THEN

RETURN XPO$_NORMAL; 1 Exit if the user types ~Z.

IF $XPO_OPEN(lOB = primary file,
FILE SPEC =-terminal [IOB$T STRING],

THEN
EXITLOOP;

END;

DEFAULT '.BLI' , -
FAILURE = XPO$IO_FAILURE

I Ask the user for an output file-spec and open the output file.
1-
IF NOT $XPO GET(lOB = terminal,

-PROMPT = skip('Enter name of output file (*.BLl assumed): '))
THEN

RETURN XPO$_NORMAL; Exit if the user types ~Z.

output file[IOB$V SEQUENCED] Make the output file sequenced
.primary_file[IOB$V_SEQUENCED]; if the input file is sequenced.

IF .terminal[IOB$H STRING] GTR 0 If the user gave a file-spec,
THEN -

$XPO OPEN(lOB = output file, open the specified file for output.
- FILE SPEC = ter~inal[IOB$T STRING],

DEFAULT = '*.BLI' , -
RELATED = primary file [IOB$T RESULTANT],
OPTION = OUTPUT)- -

ELSE
$XPO_OPEN(lOB = output file, Otherwise, open a temporary output file.

FILE SPEC = $XPO TEMPORARY,
OPTION = OUTPUT);

1+
I Primary input file processing loop.
1-
WHILE $XPO GET(lOB = primary file) DO

BEGIN - -
Read until end-of-file.

IF NOT REQUIRE_DECL() If this line is not a REQUIRE statement,

D-3

1+

1-

'l'HEN

1+
I
1-
ELSE

Sample Program

$XPO PUTt lOB = output file, copy the line into the output file.
STRING = primary fTle[IOB$T STRING],
SEQUENCE_NUMBER ~ .primary_file[IOB$G_SEQ_NUMB]

REQUIRE file processing loop.

BEGIN
WhILE I DO

IF $XPO OPEN(lOB
-FAILURE

'lHEN
EXI'l'LOOP;

require file,
OPEN_REQ_FAIL)

$XPO_PUT(lOB = output file,
STRING = %STRING(%CHAR (ff)),
SEQUENCE_NUMBER = 0);

I REQUIRE DECL sets up FILE SPEC= and DEFAULT=.
Action routine sets up alternate file types.

Put an SOS page mark before the REQUIRE file.

WHILE $XPO GET(lOB = require file) DO 1 Copy the entire REQUIRE file
$XPO PU'l' (lOB = output file, 1 into the output file.

- STRING = require file[IOB$T STRING],
SEQUENCE_NUMBER ~ .require_file[IOB$G_SEQ_NUMB]);

$XPO_PUT(lOB = output file, 1 Put an SOS page mark after the REQUIRE file.
STRING = %STRING(%CHAR(ff)),
SEQUENCE_NUMBER = 0);

$XPO CLOSEt lOB = require_file); Then close the REQUIRE file
END;-

END; and continue processing the primary source file.

Cleanup after reaching the end of the primary source file.

$XPO_CLOSE(lOB = primary file,
OPTION = REMEMBER);

Close the source file and remember its name.

$XPO_CLOSE(lOB = output_file);

1+

Close the output file (Note: its name will be
remembered if it is a temporary file).

Rename the output file and backup the input file if the user
did not provide an output file specification.

1-
IF .output file[10B$V TEMPORARY]
THEN - -

1+

$XPO BACKUP (OLD lOB = primary file,
- NEW_lOB ~ output_file);

Tell the user that the file merging was successfully completed.
1-
$XPO PUTt lOB = terminal,

- 5'l'RING = skip('REQUIRE file merging successfully completed'));

$XPO_CL05E (lOB = terminal);

RETURN XPO$_NORMAL
END;

D-4

ROUTINE REQUIRE_DECL

1++
I
I FUNCTIONAL DESCRIPTION:
1

Sample Program

1 This routine determines whether the current source line is a REQUIRE file declaration.
1
1 FORMAL PARAMETERS:
1
1 None
1
1 IMPLICIT INPUTS:
1
1 primary_f.ile[IOB$T_STRING] current source line descriptor
I
1 IMPLICIT OUTPUTS:
1
1 require_file[IOB$A_FILE SPEC] address of REQUIRE file name descriptor
1
1 COMPLETION CODES:
I
1 true - line is a REQUIRE declaration
1 false - line is not a REQUIRE declaration
1
1 SIDE EFFECTS:
1
1 None
1
1--

BEGIN
OWN

statement $STR_DESCRIPTOR(CLASS

$STR_DESCRIPTOR(CLASS

DYNAM IC, STR ING

BOUNDED) ,

(0,0)),

spaces $STR_DESCRIPTOR(STRING = %STRING(' ',%CHAR(ht)));
1+
1 Create a local, upper-case version of the BLISS statement.
1-
$STR COpy (STRING = primary_file[IOB$T_STRING], TARGET = statement, OPTION
1+ -

Initialize the BLISS source line descriptor.
1-

UP CASE);

$STR DESC INIT(DESCRIPTOR = line scan, CLASS = BOUNDED, STRING statement) ;
1+ - -

Bypass any leading spac~s and/or tabs.
1-
$STR SCAN(REMAINDER = line_scan, SPAN = spaces, SUBSTRING line_scan);
1+ -
1 Test for a REQUIRE statement.
1-
$STR SCAN(REMAINDER = line scan, STOP = spaces, SUBSTRING = line_scan);
IF' NOT $STR EQL (STRING] line_scan, STRING2 = 'REQUIRE')
THEN -

RETURN false;
1+
1 Locate the name of the REQUIRE file in the source line.
1-
IF $STR SCAN(REMAINDER = line scan, STOP = "", SUBSTRING line_scan) NEQ STR$_END_STRING
THEN

1+

BEGIN
line scan[STR$H LENGTH] .line scan[STR$H LENGTH] + 1;
IF $STR SCAN(REMAINDER line_scan, STOP ~ "", SUBSTRING line scan) NEQ ST'R$_END STRING
THEN -

BEGIN
1+

Put the REQUIRE file name into the REQUIRE-file lOB.
1-
$XPO lOB IN IT (lOB = requi re_file, FILE_SPEC
1+ -
1 Return a success code to the caller.
1-
RETURN true
END;

END;

line_scan, DEFAULT '.REQ');

1 Tell the user about an invalid REQUIRE declaration and terminate program execution.
1-
$XPO PUT MSG(STRING = 'Cannot find a file-spec in the following BLISS REQUIRE statement:',

- - STRING = primary file[IOB$T STRING],
SEVERITY = FATAL-) - ! NOTE: Fatal message terminates prog ram ..

END;

D-5

Sample Program

ROUTINE OPEN_REQ_FAIL(function_code, primary_code, secondary_code, iob)

1++
!
! 'FUNC'l'IONAL DESCRIPTION:

This failure action routine is used to supply a series of default
file types to open a REQUIRE file.

FORMAL PARAMETERS:

function code - action routine function code - ignored
primary code - primary $XPO OPEN failure completion code
secondary code - secondary $XPO OPEN failure completion code
iob - address of the REQUIRE file lOB

IMPLICIT INPUTS:

iob[IOB$~_USER] - number of times this routine has been called

IMPLICIT OUTPUTS:

None

COMPLETION CODES:

XPO$_NORMAL - alternate REQUIRE file successfully opened

SIDE EFF'EC'l'S:

1--

END

This routine terminates program execution if a REQUIRE file
cannot be successfully opened.

BEGIN

MAP
iob REF $XPO IOB();

BIND
recursion level iob[IOB$Z USER];

EXTERNAL ROUTINE
XPO$FAILURE; ! Default I/O failure action routine

!+
Perform default file type sequencing only for "file not found" errors.

IF .primary code NEQ XPO$_NO_FILE
THEN -

!+

!-

BEGIN
XPO$FAILURE{ .function code, .primary_code, .secondary_code, .iob);
RETURN .primary code
END; -

Increment the recursion counter.

recursion_level = .recursion_level + 1;
!+

Try a new default file type for the REQUIRE file.
1-
CASE .recursion level FROM 1 TO OF

SET -
1 iob[IOB$A DEFAULT] %ASCID'.R16';
2 iob[IOB$A-DEFAULT] %ASCID'.R32';
3 iob[IOB$A-DEFAULT] %ASClD'.R36';
4 iob[IOB$A-DEF'AULT] %ASCID'.BLI';
5 iob[IOB$A-DEF'AULT] %ASClD' .B16';
6 iob[IOB$A-DEF'AULT] %ASClD'.B32';
7 iob[IOB$A-DEF'AULT] %ASCID'.B36';
8 $XPO PUT ~SG(STRING = 'cannot open the file named in the following REQUIRE declaration:',

- STRING = primary file[IOB$T STRING],
SEVERITY = F'ATAL-); NOTE: Fatal message terminates program.

'rES;
!+

Return the primary failure completion code to the caller.
1-
RETURN .primary_code
END;

ELUDOM

D-6

APPENDIX E

E.I
E.I.I
E.I.2
E.2
E.3

ACTION ROUTINES

ACTION-ROUTINE CALLS AND RETURNS • • . •
Action Routine Calls • • • • • • • • . • •••
Action Routine Return Values •••.••

XFAIL.BLI FAILURE-ACTION ROUTINE LISTING •
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING.

E-I
• E-I
• E-3

E-4
E-15

APPENDIX E

ACTION ROUTINES

This appendix contains information related to the coding of user
supplied action routines, and presents the XPORT default failure
action routines, XPO$FAILURE and STR$FAILURE, as examples of and
models for such routines.

This appendix is intended for reference use.
action routines and their usa is given
beginning with Chapter 3.

E.I ACTION-ROUTINE CALLS AND RETURNS

A tutorial discussion of
earlier in this manual,

Any action routine that applies to a given operation is called by the
XPORT function in question just before it returns control to the
original caller. The routine is passed several values related to the
operation. (A success-action routine is called in the case of a
success completion code; a failure-action routine is called for any
other code including a warning code.)

On completing its processing, the action routine returns a value to
its caller that becomes the completion code returned to the original
call site.

E.I.l Action Routine Calls

All action routines called by XPORT functions are passed parameters
which describe the function, its arguments, success or failure
completion codes, etc. Although the number of parameters and the
meaning of each parameter varies somewhat depending on the calling
function, the general format of an action-routine call is:

routine-address(function-code, primary-code,
secondary-code, action-argument,

Table E.l describes the action-routine arguments that are actually
passed by each XPORT function.

E-l

+-----------------
F'unc tion

$XPO OPEN
$XPO-CLOSE
$XPO-GET
$XPO-PUT
$XPO-DELETE
$XPO-RENAME
$XPO-BACKUP

$XPO PARSE SPEC

1

1

1 1

Act ion Ro uti n e s
ACTION-ROUTINE CALLS AND RETURNS

Table E.l
Action Routine Arguments

--+
Argument Description 1

--1

1: XPO$K 10
2: Primary completion code
3: Secondary completion code
4: Address of rOB

1: XPO$K PARSE
2: Primary completion code
3: Secondary completion code
4: Address of file-spec string descriptor

1

1

1

1

1

1

1-----------------1--
1 1
1 $XPO_GET_MEM 1

1 1
1 1
1 1
1 1

1: XPO$K GET MEM
2: Primary completion code
3: Secondary completion code
4: Address of memory-request descriptor

1----------------- --
1

$XPO FREE MEM - -

$XPO PUT MSG
- -

$STR EQL
$S'I'R-NEQ
$STR-LSS
$STR-LEQ
$STR-GEQ
$STR-GTR
$STR-COMPARE

1: XPO$K FREE MEM
2: Primary completion code
3: Secondary completion code
4: Address of allocated-memory descriptor

1: XPO$K PUT MSG
2: Primary completion code
3: Secondary completion code
4: Serverity of first message

1: STR$K COMPARE
2: Primary completion code
3: Secondary completion code
4: Address of relationship string descriptor
5: Address of primary-string descriptor
6: Address of secondary-string descriptor

+------------------------------------_._------------------------------+

E-2

+-----------------
1 Function
1-----------------
1

1 $STR COPY

$STR APPEND

$STR SCAN

$STR BINARY

Action Ro uti nes
ACTION-ROUTINE CALLS AND RETURNS

Table E.l (Continued)
Action Routine Arguments

--+
Argument Description 1

--/
1: STR$K COPY
2: Primary completion code
3: Secondary completion code
4: a
5 :
6 :

Address of source-string descriptor
Address of target-string descriptor

1: STR$K APPEND
2: Primary completion code
3: Secondary completion code
4: a
5: Address of source-string descriptor
6: Address of target-string descriptor

1: STR$K SCAN
2: Primary completion code
3: Secondary completion code
4: Internal $STR SCAN function code
5: Address of source-string descriptor
6: Address of pattern-string descriptor

1: STR$K BINARY
2: Primary completion code
3: Secondary completion code
4: Internal $STR BINARY. function code
5: Address of source-string descriptor
6: Address of internal result area

I
I
I
1

I
1

I
/

+--+

E.I.2 Action Routine Return Values

An action routine must have a return value. This value is returned to
the original call site as the final completion code of the XPORT
function.

E-3

Action Routines
ACTION-ROUTINE CALLS AND RETURNS

Action routines for I/O functions are passed the primary and secondary
I/O completion codes in the associated lOB as well as in the action
routine argument list. The corresponding lOB fields are
IOB$G COMP CODE and IOB$G 2ND CODE respectively. XPORT updates the
contents of IOB$G COMP CODE-(only) to agree with the completion code
returned by the- actIon routine -- assuming it differs from the
original. The action routine may modify the content of IOB$G 2ND CODE
as necessary before returning. - -

E.2 XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

The source module XFAIL, reproduced below, contains the default XPORT
failure-action routine XPO$FAILURE, together with the four function
specific routines called by XPO$FAILURE. These supporting routines
are XPO$IO FAILURE for I/O functions, XPO$GM FAILURE for the get
memory function, XPO$FM FAILURE for the free-memory function, and
XPO$PM_FAILURE for the put-message function.

Note that XPO$FAILURE terminates program execution for any error
condition, after calling one of the function-specific routines. The
function-specific routines simply issue appropriate error messages.
Since these routines have the same parameter list as XPO$FAILURE, any
of them can be used directly in place of the default failure-action
routine (e.g., FAILURE = XPO$IO_FAILURE for I/O calls).

E-4

Action Routines
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

MODULE XFAIL (IDENT = 'Vl.O-14' %TITLE 'XPO$FAILURE - Default Failure Action Routine'
%BLISS32(,ADDRESSING MODE (EXTERNAL=LONG RELATIVE))
%BLISS36(,ENTRY(XPOSFAILURE, XPO$IO FAILURE, XPO$PS FAILURE, XPO$GM FAILURE,

XPO$FM_FAILURE, XPO$PM_FAILURE),OTS=") -
) =

BEGIN

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

1++
1
1 FACILITY: BLISS Library
1
1 ABSTRACT:
1
1 This module is the default XPORT failure action routine.
1
1 ENVIRONMENT: User Mode - system-independent
1
1 AUTHOR: Ward Clark, CREATION DATE: 11 July 1978
1
1--

TABLE OF CONTENTS:

FORWARD ROUTINE
XPO$FAILURE;

%IF %BLISS(BLISS16) %THEN
EXTERNAL ROUTINE
%ELSE
FORWARD ROUTINE
%FI

XPO$IO FAILURE,
XPO$PS-FAILURE,
XPO$GM-FAILURE,
XPO$FM-FAILURE,
XPO$PM=FAILURE;

INCLUDE FILES:

LIBRARY 'XPORT';
LIBRARY 'XPOSYS';

MACROS:

EQUATED SYMBOLS:

PSECT DECLARATIONS:

E-S

1 Failure action routine dispatcher

XPORT I/O failure action routine
$XPO PARSE SPEC failure action routine
$XPO-GET MEM failure action routine
$XPO-FREE MEM failure action routine
$XPO=PUT_MSG failure action routine

Public XPORT control block and macro definitions
Internal XPORT macro definitions

Declare XPORT PSECT names and attributes

Action Ro ut i nes
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

OWN STORAGE:

See each function-specific failure action routine.

EXTERNAL REFERENCES:

See each function-specific failure action routine.

E-6

Action Routines
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE XPO$FAILURE(function_code, primary_code, secondary_code, action_argument

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1

This rO,utine dispatches a failure action routine call to the
appropriate processing routine for the function which failed.

1 FORMAL PARAMETERS:
1
1
1
1
1
1

function code - XPORT failure action routine function code
primary code - primary failure completion code
secondary code - secondary failure competion code
action_argument - function-specific action routine argument

1 IMPLICIT INPUTS:
1
1
1

None

1 IMPLICIT OUTPUTS:
1
1
1

None

1 ROUTINE VALUE:
1
1
1

.primary_code - primary completion code passed by caller

1 SIDE EFFECTS:
1
1
1
1

This routine returns to the caller if the completion code
severity is SUCCESS or WARNING. If the severity is ERROR or
FATAL, this routine terminates program execution.

1
1--

BEGIN

LOCAL
action_routine;

Select the appropriate failure processing routine •

action_routine = (CASE • function code FROM 1 to XPO$K_PUT_MSG OF
SET -

Call the action routine.

[XPO$K 10 1 :
[XPO$K-PARSE 1
[XPO$K-GET MEM 1 :
[XPO$K-FREE MEM 1 :
[XPO$K-PUT MSG 1 :
TES); - -

XPO$IO FAILURE
XPO$PS-FAILURE
XPO$GM-FAILURE
XPO$FM-FAILURE
XPO$PM=FAILURE

(.action_routine) (.function_code, .primary_code, .secondary_code, .action_argument);

Terminate program execution or return to the caller.

IF .primary code OR
.primarY code<O,3,O> EQL XPO$_WARNING

THEN -
RETURN .primary code

ELSE -
$XPO_TERMINATE(CODE XPO$_PREV_ERROR

END;

$XPO_MODULE(XFAILI)

E-7

If the completion code is a success code
or has a WARNING severity,

return the input completion code to the caller.

Otherwise, terminate program execution.

Action Ro ut i nes
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE XPO$IO_FAILURE(function_code, primary_code, secondary_code, iob)

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

error opening 'file-spec' as input
primary completion code message
secondary completion code message

1 FORMAL PARAMETERS:
1
1
1
1
1
1

function code - failure action routine function code (XPO$K_IO)
primary code - primary I/O failure completion code
secondary code - secondary failure competion code
iob - address of the associated lOB

1 IMPLICIT INPUTS:
1
1
1

None

1 IMPLICIT OUTPUTS:
1
1
1

None

1 COMPLETION CODES:
1
1
1

.primary_code - primary completion code passed by caller

1 SIDE EFFECTS:
1
1
1

None

1--

BEGIN

MAP

BIND

OWN

iob REF $XPO_IOB();

file spec .iob[IOB$A FILE SPEC]: $STR DESCRIPTOR(),
resultant - iob[IOB$T_RESULTANT] $STR_DESCRIPTOR();

initial text: $STR DESCRIPTOR(STRING 'error'),
open text: $STR DESCRIPTOR(STRING· 'opening'),
close text: $STR DESCRIPTOR (STRING = 'closing'),
delete text $STR DESCRIPTOR (STRING = 'deleting'),
rename=text $STR-DESCRIPTOR(STRING = 'renaming'),
backup text: $STR-DESCRIPTOR(STRING = 'backing up ,),
put_text: $STR DESCRIPTOR(STRING = 'writing to '),
get text: $STR-DESCRIPTOR(STRING = 'reading from'),
auto open text :- $STR DESCRIPTOR(STRING = 'auto-opening'),
auto-close text: $STR DESCRIPTOR (STRING = 'auto closing'),
bad tunc text: $STR DESCRIPTOR(STRING = 'invalid operation on '),
input text: $STR DESCRIPTOR(STRING = ' for input'),
and output text: -$STR DESCRIPTOR(STRING = ' and output'),
output text: $STR DESCRIPTOR(STRING = , for output'),
to_text: $STR_DESCRIPTOR(STRING = , to ');

EXTERNAL ROUTINE
XST$INIT MSG
XST$STRING :

NOVALUE,
NOVALUE,
NOVALUE;

Failure message initialization routine
Append string to failure message routine

XST$QUOTED :

EXTERNAL
XST$MESSAGE;

Don't issue a message for SUCCESS or WARNING conditions.

IF .primary code OR
.primarY code<O,3,O> EQL XPO$_WARNING

THEN -
RETURN .primary_code;

Create the initial function-specific message.

E-8

Append quoted string to failure message routine

Failure message string descriptor

If this is a SUCCESS or WARNING condition,

return without doing anything.

Action Ro uti nes
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

IF .iob[IOB$B FUNCTION] LEQ IOB$K PUT
"error". - -

THEN
XST$INIT_MSG(initial_text);

CASE .iob[IOB$B FUNCTION]
FROM IOB$K OPEN TO IOB$K PUT OF
SET - -

OUTRANGE]: XST$INIT MSG(bad func text);
IOB$K OPEN]: XST$STRING(open text);
IOB$K-CLOSE] : XST$STRING(close text);
IOB$K-DELETE] XST$STRING(delete text);
IOB$K-RENAME] : XST$STRING(rename-text);
IOB$K-BACKUP]: XST$STRING(backup-text);
IOB$K-PUT] : XST$STRING(put text);
IOB$K-GET] :

TES;

IF ~iob[IOB$V AUTO CONC]
THEN --

ELSE

IF .iob[IOB$V OPEN]
THEN -

XST$STRING(auto_close_text)
ELSE

XST$STRING(auto_open_text

XST$STRING(get_text);

IF .resultant[STR$H LENGTH] NEQ 0
THEN -

XST$QUOTED(resultant
ELSE

XST$QUOTED(file_spec);

SELECTONE .iob[IOB$B FUNCTION] OF
SET -

IOB$K OPEN, IOB$K CLOSE] :
IF ~iob[IOB$V INPUT]
THEN -

BEGIN
XST$STRING(input text);
IF .iob[IOB$V OUTPUT]
THEN -

END
ELSE

XST$STRING(and output_text);

XST$STRING(output_text);

IOB$K RENAME] :
BEGIN
BIND

new_iob = .iob[IOB$A_ASSOC lOB] :
$XPO IOB(),

new_result = new iob[IOB$T RESULTANT]
SSTR_DESCRIPTOR();

XST$STRING(to_text);

IF .new result[STR$H LENGTH] NEQ 0
THEN - -

XST$QUOTED(new result)
ELSE -

XST$QUOTED(.new_iob[IOB$A_FILE SPEC]);

Send a multi-line failure message to the user.

TES;

IF .iob[IOB$G COMP CODE] EQL XPO$ BAD NEW
AND .iob[IOB$G-2ND CODE] EQL 0

THEN - -

END;

BEGIN
$XPO PUT MSG(STRING = XST$MESSAGE,

CODE-= XPO$ BAD NEW,
CODE = .new-iobTIOB$G COMP CODE],
CODE = .new-iob[IOB$G-2ND CODE],
FAILURE = 0-); --

RETURN .primary_code
END;

$XPO PUT MSG(STRING = XST$MESSAGE,
CODE • iob [IOB$G COMP CODE] ,
CODE = .iob[IOB$G=2ND_CODE],

E-9

1 All messages except "invalid function" start with

Use the XPORT function code to select
the next part of the message.

If input switching is in progress,
special open and close text will be needed.

1 Otherwise, use the normal input failure text.

Put the best file name into the message:

resultant file-spec (if one exists)

user file-spec

Special OPEN/CLOSE message suffix:
Indicate whether this is an
input or an output file.

Special RENAME message suffix:

Add the new resultant file-spec

or the new primary file-spec.

Test for special linked RENAME messages.

RENAME-specific message:
"invalid new file"
primary new file completion code
secondary new file completion code

Return after a special RENAME message.

Function-specific message
Primary completion code
Secondary competion code, if any

Action Ro uti nes
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

FAILURE = 0);

Return to the caller.

RETURN .primary_code I Return the original completion code to the caller.

END;

$XPO_MODULE(XFAIL2)

E-IO

Action Routines
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE XPO$PS_FAILURE(function_code, primary_code, secondary_code, file_spec)

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

error parsing 'file-spec'

1 FORMAL PARAMETERS:

primary completion code message
secondary completion code message

1
1
1
1
1
1

function code - failure action routine function code (XPO$K PARSE)
primary code - primary $XPO PARSE SPEC failure completion code
secondary code - secondary failure competion code
file_spec-- address of file-spec string descriptor

1 IMPLICIT INPUTS:
1
1
1

None

1 IKPLICIT OUTPUTS:
1
1
1

None

1 COMPLETION CODES:
1
1
1

.primary_code - primary completion code passed by caller

1 SIDE EFFECTS:
1
1
1

None

1--

BEGIN

initial_text $STR_DESCRI PTOR(STRING

EXTERNAL ROUTINE
XST$INIT MSG NOVALUE,
XST$QUOTED: NOVALUE;

EXTERNAL
XST$MESSAGE;

Create the initial function-specific message.

XST$INIT MSG(initial text);
XST$QUOTED(.file_spec);

Send a multi-line failure message to the user.

$XPO_PUT MSG(STRING = XST$MESSAGE,
CODE ~ .primary code,
CODE = .secondary code,
FAILURE = 0); -

Return to the caller.

RETURN .primary_code

END;

$XPO_MODULE(XFAIL3)

'error parsing');

Failure message initialization routine
Append quoted string to failure message routine

Failure message string descriptor

Tell the user that $XPO PARSE SPEC failed
and what the failure was. -

! Return the original completion code to the caller.

E-ll

Action Ro uti nes
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE XPO$GM_FAILURE(function_code, primary_code, secondary_code, descriptor)

!++
I

FUNCTIONAL DESCRIPTION:

This routine sends the user a message sequence similar to the following:

dynamic memory allocation error
primary completion code message
secondary completion code message

FORMAL PARAMETERS:

function code - XPORT failure action routine function code (ignored)
primary code - primary $XPO GET MEM failure completion code
secondary code - secondary failure competion code
descriptor - address of $XPO_GET_MEM request descriptor

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

COMPLETION CODES:

.primary_code - primary completion code passed by caller

SIDE EFFECTS:

None

BEGIN

MAP
descriptor REF $STR_DESCRIPTOR();

Send a three-line error message to the user.

$XPO_PUT MSG(CODE = XPO$ GET MEM,
CODE = .primary code,
CODE = .secondary code,
FAILURE = 0); -

RETURN .primary_code

END;

$XPO_MODULE(XFAIL4)

E-12

Redefine the descriptor argument.

Tell the user that $XPO GET MEM failed
and what the failure was. -

Return the original completion code to the caller.

Action Routines
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE XPO$FM_FAILURE(function_code, primary_code, secondary_code, descriptor)

1++

1 FUNCTIONAL DESCRIPTION:

This routine sends the user a message sequence similar to the following:

dynamic memory deal location error
primary completion code message
secondary completion code message

FORMAL PARAMETERS:

function code - XPORT failure action routine function code (ignored)
primary code - primary $XPO FREE MEM failure completion code
secondary code - secondary failure competion code
descripto! - address of $XPO_FREE MEM request descriptor

IMPLICIT INPUTS!

None

IMPLICIT OUTPUTS:

None

COMPLETION CODES:

.primary_code - primary completion code passed by caller

SIDE EFFECTS:

None

1--

BEGIN

MAP
descriptor REF $STR_DESCRIPTOR();

Send a three-line error message to the user.

$XPO_PUT MSG(CODE = XPO$ FREE MEM,
CODE = .primary code,
CODE = .secondary code,
FAILURE = 0); -

RETURN .primary_code

END;

$XPO_MODULE(XFAIL5)

Redefine the descriptor argument.

Tell the user that $XPO FREE MEM failed
and what the failure was. -

1 Return the original completion code to the caller.

E-13

Action Routines
XFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE XPO$PM_FAILURE(function_code, primary_code, secondary_code, actual severity

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

message output error

1 FORMAL PARAMETERS:
1

primary completion code message
secondary completion code message

1 function code - XPORT failure action routine function code (ignored)
primary code - primary $XPO PUT MSG failure completion code
secondary code - secondary failure competion code
actual_severity - actual severity of 1st message

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

COMPLETION CODES:

.primary_code - primary completion code passed by caller

1 SIDE EFFECTS:
1
1 None
1
1--

BEGIN

Send a three-line error message to the user.

$XPO PUT MSG(CODE = XPO$ PUT MSG,
- - CODE = .primary code,

CODE = .secondary code,
FAILURE = 0); -

RETURN .primary_code

END;
END
ELUDOM

Tell the user that PUT MESSAGE failed
and what the failure was

(blocking failure recursion).

1 Return the original completion code to the caller.

E-14

Action Routines
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

E.3 SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

The source module SFAIL, reproduced below, contains the default XPORT
failure-action routine STR$FAILURE, together with the five function
specific routines called by STR$FAILURE. These supporting routines
are STR$X FAILURE for comparison functions, STR$C FAILURE for the copy
function,-STR$A FAILURE for the append function, STR$S FAILURE for the
scan function~ and STR$B FAILURE for the conversion-to-binary
function. -

Note that STR$FAILURE terminates program execution for any error
condition, after calling one of the function-specific routines. The
function-specific routines simply issue appropriate error messages.
Since these routines have the same parameter list as STR$FAILURE, any
of them can be used directly in place of the default failure-action
routine (e.g., FAILURE = STR$X_FAILURE for string-comparison calls).

E-15

Action Routines
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

MODULE SFAIL (IDENT = 'Vl.0-8' %TITLE 'STR$FAILURE - String Failure Action Routine'
%BLISS32(,ADDRESSING MODE (EXTERNAL=LONG RELATIVE))
%BLISS36(,ENTRY(STR$FAILURE, STR$X FAILURE,

STR$C FAILURE, S~R$A FAILURE,
STR$S=FAILURE, STR$B=FAILURE),OTS="

) =
BEGIN

COPYRIGH~ (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ~CCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEIREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED ••

THE INFORM~ION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

1++
1
1 FACILITY: BLISS Library
1
1 ABSTRACT:
1
1 This module includes all standard String Handling failure
1 action routine processing.
1
1 ENVIRONMENT: User mode - multiple host operating/file systems
1
1 AUTHOR: Ward Clark, CREATION DATE: 28 February 1980
1
1--

TABLE OF CONTENTS:

FORWARD ROUTINE
STR$FAILURE;

'IF %BLISS(BLISS16) %THEN
EXTERNAL ROUTINE
%ELSE
FORWARD ROUTINE
tFI

STR$X FAILURE,
STR$C-FAILURE,
STR$A-FAILURE,
STR$S-FAILURE,
STR$B=FAILURE;

INCLUDE FILES:

LIBRARY 'BLI:XPORT'
LIBRARY 'XPOSYS';

MACROS:

EQUATED SYMBOLS:

PSECT DECLARATIONS:

$XPO_PSECTS

E-16

1 Failure action routine dispatcher

String comparison failure action routine
$STR COPY failure action routine
$STR-APPEND failure action routine
$STR-SCAN failure action routine
$STR=BINARY failure action routine

Public XPORT control block and macro definitions
Internal XPORT macro definitions

I Declare XPORT PSECT names and attributes

Ac tion Ro uti nes
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

OWN STORAGE:

See each function-specific failure action routine.

EXTERNAL REFERENCES:

See each function-specific failure action routine.

E-17

Action Routines
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE STR$FAILURE(function_code, primary_code, secondary_code, action_argl, action_arg2,
action_arg3 I =

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1

This routine dispatches a failure action routine call to the
appropriate processing routine for the function which failed.

1 FORMAL PARAMETERS:
1
1
1
1
1
1

function code - String Handling failure action routine function code
primary code - primary failure completion code
secondary code - secondary failure completion code
action_argl,2,3 - function-specific action routine arguments

1 IMPLICIT INPUTS:
1
1
1

None

1 IMPLICIT OUTPUTS:
1
1
I

None

I ROUTINE VALUE:
I
I
I

primary completion code (value passed as a formal parameter)

1 SIDE EFFECTS:
1
1
I
I

This routine returns to the caller if the completion code
severity is SUCCESS or WARNING. If the severity is ERROR or
FATAL, this routine terminates program execution.

I
1--

BEGIN

LOCAL
action_rout ine; 1 Address of action routine to be called

Select the appropriate failure processing routine.

action_routine = (CASE

Call the action routine.

.function code FROM
SET -
[STR$K COMPARE
r STR$K-COPY 1
[STR$K-APPEND
[STR$K-SCAN 1
r STR$K-B INARY
TES); -

TO STR$K_BINARY OF

STR$X FAILURE;
STRSC-FAILURE;
STR$A-FAILURE;
STR$S-FAILURE;
STR$B::::rAILURE;

(.action rout ine) (• function_code, .pr imary_code, .secondary_code, .action_argl, .action_arg2,
.action_arg3-) ;

Terminate program execution or return to the caller.

IF .primary code OR
.primarY code<O,3,O> EQL XPO$_WARNING

THEN -
RETURN .primary code

ELSE -
$XPO_TERMINATE(CODE XPO$_PREV_ERROR

END;

$XPO_MODULE(SFAILl)

E-18

If the completion code is a success code
or has a WARNING severity,

return the input completion code to the caller.

Otherwise, terminate program execution.

Action Routines
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE STR$X_FAILURE(function_code, primary_code, secondary_code, relation, stringl, string2)

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

comparison error: 'stringl' equal to 'string2'
primary completion code message
secondary completion code message

1 FORMAL PARAMETERS:
1
1
1
1
1
1
1
1

function code - action routine function code (STR$K COMPARE)
primary code - primary completion code -
secondary code - secondary completion code
relation = comparison relationship string (e.g., , compared to ')
stringl - address of primary string descriptor
string2 - address of secondary string descriptor

1 IMPLICIT INPUTS:
1
1
1

None

1 IMPLICIT OUTPUTS:
1
1
1

None

1 COMPLETION CODES:
1
1
1

.primary_code - primary completion code passed by caller

1 SIDE EFFECTS:
1
1
1

None

1--

BEGIN

initial text

EXTERNAL ROUTINE
XST$INIT MSG
XST$STRING :
XST$QUOTED :

EXTERNAL
XST$MESSAGE;

$STR_DESCRIPTOR(STRING

NOVALUE,
NOVALUE,
NOVALUE;

Create the initial function-specific message.

XST$INIT MSG(initial text);
XST$QUOTED(.stringl);
XST$STRING(.relation);
XST$QUOTED(.string2);

Send a mUlti-line failure message to the user.

$XPO PUT MSG(STRING = XST$MESSAGE,
- - CODE = .primary code,

CODE = .secondary code,
FAILURE = 0); -

Return to the caller.

RETURN .primary_code

END;

$XPO_MODULE(SFAIL2)

'comparison error: ');

E-19

! Failure message initialization routine
Append string to failure message routine
Append quoted string to failure message routine

Failure message string descriptor

Function-specific message
Primary failure completion code
Secondary failure completion code

Action Routines
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE STR$C_FAILURE(function_code, primary_code, secondary_code, dummy, string, target)

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1 This routine sends the user a message sequence similar to the following:
1

error copying 'string'

FORMAL PARAMETERS:

primary completion code message
secondary completion code message

function code - action routine function code (STR$K_COMPARE)
primary code - primary completion code
secondary code - secondary completion code
dummy - dummy argument (not used)
string - address of source string descriptor
target - address of target string descriptor

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

COMPLETION CODES:

.primary_code - primary completion code passed by caller

SIDE EFFECTS:

None

!--

BEGIN

OWN
initial text $STR_DESCRIPTOR(STRING

EXTERNAL ROUTINE
XST$INIT MSG NOVALUE,
XST$QUOTED: NOVALUE;

EXTERNAL
XST$MESSAGE;

Create the initial function-specific message.

XST$INIT MSG(initial text);
XST$QUOTED(.string)~

Send a multi-line failure message to the user.

$XPO_PUT MSG{ STRING = XST$MESSAGE,
CODE = .primary code,
CODE = .secondary code,
FAILURE = 0); -

I Return to the caller.

RETURN .primary __ code

END;

$XPO_MODULE(SFAIL3)

'error copying');

E-20

I Failure message initialization routine
I Append quoted string to failure message routine

I Failure message string descriptor

Function-specific message
Primary failure completion code
Secondary failure completion code

Action Routines
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE STR$A_FAILURE(function_code, primary_code, secondary_code, dummy, string, target)

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

error appending 'string' to 'target'
primary completion code message
secondary completion code message

1 FORMAL PARAMETERS:
1
1
1
1
1
1
1
1

function code - action routine function code
primary code - primary completion code
secondary code - secondary completion code
dummy - dummy argument (not used)
string - address of source string descriptor
target - address of target string descriptor

1 IMPLICIT INPUTS:
1
1
1

None

1 IMPLICIT OUTPUTS:
1
1
1

None

1 COMPLETION CODES:
1
1
1

.primary_code - primary completion code passed by caller

1 SIDE EFFECTS:
1
1
1
1--

None

BEGIN

initial text: $STR DESCRIPTOR(STRING = 'error appending'),
to_text-: $STR_DESCRIPTOR(STRING = ' to ');

EXTERNAL ROUTINE
XST$INIT MSG
XST$STRING :
XST$QUOTED :

EXTERNAL
XST$MESSAGE;

NOVALUE,
NOVALUE,
NOVALUE;

Create the initial function-specific message.

XST$INIT MSG(initial text);
XST$QUOTED(.string);
XST$STRING(to text);
XST$QUOTED(.target);

Send a multi-line failure message to the user.

$XPO_PUT MSG(STRING = XST$MESSAGE,
CODE = .primary code,
CODE = .secondary code,
FAILURE = 0); -

Return to the caller.

RETURN .primary_code

END;

$XPO_MODULE(SFAIL4)

E-21

Failure message initialization routine
Append string to failure message routine
Append quoted string to failure message routine

Failure message string descriptor

Function-specific message
Primary failure completion code
Secondary failure completion code

Ac tion Ro uti nes
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE STR$S_FAILURE(function_code, primary_code, secondary_code, scan_function, string, pattern)

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

error scanning 'string' to find 'pattern'
primary completion code message
secondary completion code message

1 FORMAL PARAMETERS:
1
1
1
1
1
1
1
1

function code - action routine function code (STR$K_COMPARE)
primary code - primary completion code
secondary code - secondary completion code
scan function - $STR SCAN function code
string - address of source string descriptor
pattern - address of pattern string descriptor

1 IMPLICIT INPUTS:
1
1
I

None

I IMPLICIT OUTPUTS:
I
I
I

None

I COMPLETION CODES:
I
I
I

.primary_code - primary completion code passed by caller

I SIDE EFFECTS:
I
I
I

None

1--

BEGIN

OWN
initial text: $STR D'ESCRIPTOR(STRING = 'error scanning'),
find text $STR DESCRIPTOR(STRING 'to find'),
span-text: $STR-DESCRIPTOR(STRING spanning'),
stop=text: $STR=DESCRI PTOR(STRING = stopping at ');

EXTERNAL ROUTINE
XST$INIT MSG
XST$STRING :
XST$QUOTED :

EXTERNAL
XST$MESSAGE;

NOVALUE,
NOVALUE,
NOVALUE;

Create the initial function-specific message.

XST$INIT MSG (ini tial tex t);
XST$QUDTiD(.string)~

CASE .scan function FROM STR$K_FIND TO STR$K_STOP OF
SET
[STR$K FIND
[STR$K-S PAN
[STR$K-STOP
TES; -

XST$STRING(find text);
XST$STRING(span-text);
XST$STRING (stop=text);

XST$QUOTED(.pattern);

Send a multi-line failure message to the user.

$XPO PUT MSG(STRING = XST$MESSAGE,
- - CODE = .primary code,

CODE = .secondary code,
FAILURE = 0); -

Return to the caller.

E-22

Failure message initialization routine
Append string to failure message routine
Append quoted string to failllre message routine

Failure message string descriptor

Function-specific message
Primary failure completion code
Secondary failure completion code

Action Ro uti nes
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

RETURN .primary_code

END;

$XPO_MODULE(SFAIL5)

E-23

Action Ro uti nes
SFAIL.BLI FAILURE-ACTION ROUTINE LISTING

GLOBAL ROUTINE STR$B_FAILURE(function_code, primary_code, secondary_code, convert_function, string, result
) =

1++
1
1 FUNCTIONAL DESCRIPTION:
1
1
1
1
1
1
1

This routine sends the user a message sequence similar to the following:

? error converting 'string' to binary
primary completion code message
secondary completion code message

1 FORMAL PARAMETERS:
1
1
1
1
1
1
1
1

function code - action routine function code
primary code - primary completion code
secondary code - secondary completion code
convert function - $STR BINARY function code
string = address of source string descriptor
result - address of result area

(STR$K_COMPARE)

1 IMPLICIT INPUTS:
1
1
1

None

1 IMPLICIT OUTPUTS:
1
1
1

None

1 COMPLETION CODES:

.primary_code - primary completion code passed by caller

SIDE EFFECTS:

1
1--

None

BEGIN

OWN
initial text:
binary_text :

$STR DESCRIPTOR(STRING = 'error converting
$STR_DESCRIPTOR (STRING = ' to binary');

,),

EXTERNAL ROUTINE
XST$INIT MSG
XST$STRING :
XST$QUOTED :

EXTERNAL
XST$MESSAGE;

NOVALUE,
NOVALUE,
NOVALUE;

Create the initial function-specific message.

XST$INIT MSG(initial text);
XST$QUOTED(.string);
XST$STRING(binary_text);

Send a multi-line failure message to the

$XPO_PUT MSG(STRING = XST$MESSAGE,
CODE = .primary code,
CODE = .secondary code,
FAILURE = 0); -

Return to the caller.

RETURN .primary_code

END;
END
ELUDOM

user.

E-24

Failure message initialization routine
Append string to failure message routine
Append quoted string to failure message routine

Failure message string descriptor

Function-specific message
Primary failure completion code
Secondary failure completion code

APPENDIX F

F.l
F.2
F.3

COMPILING AND LINKING

DEFINING A TRANSPOR~ABLE LOGICAL DEVICE F-l
COMPILING . . . • . . . • . • • • . . F-2
LINKING . • • . • . • . . • • • . • • F-3

APPENDIX F

COMPILING AND LINKING

This appendix contains information related to the compilation and
linking of BLISS programs that contain references to the programming
tools described in this manual. It contains the relevant source and
object file specifications for all target systems on which these tools
are currently implemented. It also suggests an operational technique
that facilitates both transportable compilation and more convenient
program linking.

F.I DEFINING A TRANSPORTABLE LOGICAL DEVICE

For purposes of both transportability and operational convenience, we
suggest that you define, on each development system, a 'logical device
name' -- say BLI -- that stands for the device, directory, etc., in
which the XPORT files reside on that particular system. The uses of
such a name are illustrated in subsequent sections.

The system-level command that would be used to define a logical name
on several BLISS-development systems are as follows:

0 TOPS-IO (No user command available; see below)

0 TOPS-20 @DEFINE B LI: partial-file-spec

0 VAX/VMS $ DEFINE BLI partial-file-spec
or

$ ASSIGN partial-file-spec BLI

This type of command would normally be executed from your login
command file; see below.

F-l

Compiling and Linking
DEFINING A TRANSPORTABLE LOGICAL DEVICE

A typical example of such a command on TOPS-20 might be:

@DEFINE BLI: PS:(SUBSYS>

and for VAX/VMS:

$ DEFINE BLI SYS$LIBRARY:

In order to fill in the "partial-file-spec" in the formats given
above, you must find out where in your system the XPORT files have
been installed. You can do this either by inspection, i.e., by
'looking through' the file system, or by asking your system manager.

The reason that we suggest the name BLI is that, in many cases, the
system manager will already have appropriately defined that name on a
system-wide basis. If this is the case, you do not have to perform
the definition yourself, of course. (You cannot under TOPS-IO in any
case.)

Since the commands described above are only effective for the duration
of the session in which they are executed, it is strongly recommended
that the appropriate command be placed in your command file that is
automatically executed at login time, e.g., LOGIN.COM (VMS), LOGIN.CMD
(TOPS-20).

F.2 COMPILING

Assuming that a definition exists for the logical name BLI as
discussed in Section F.I, include the following LIBRARY declaration in
your BLISS source modules:

LIBRARY 'BLI:XPORT' ;

Given appropriate definitions of BLI, this single declaration will
work for all BLISS compilers; the relevant XPORT.Lnn Library file
will be selected by default in each case: XPORT.L32, or XPORT.L36.

The source-time portion of the XPORT package, containing macro,
literal, and control-block definitions, is provided in two forms. One
is the BLISS Library file just discussed, XPORT.Lnn, which is intended
for use in normal compilations. The other is a BLISS Require file,
XPORT.REQ, which is provided only for non-standard uses such as the
construction of a user Library file that contains XPORT source as well
as other code, in precompiled form. (Use of Require files rather than
Library files in standard compilations incurs a significant increase
in compilation cost.)

F-2

F.3 LINKING

Compiling and Linking
LINKING

A standard (default) XPORT object file is provided on each BLISS
development system. Use of this file presumes that the development
system and the intended target system are one and the same. The name
of this file is either XPORT.OLB (for VAX) or XPORT.REL (for TOPS-IO
and TOPS-20). A LINK command of the general form

LINK program, BLI:XPORT [•••

(or its equivalent) will incorporate the standard XPORT object file
for the system in use.

Additional object files are provided where necessary for debugging
(36-bit systems only) and for cross-linking, that is, linking for a
target system other than the development system. Also, an object file
named specifically for the host system (and identical to the default
object file) is provided on each system; for example, XPOTIO.REL is
the same as XPORT.REL on a TOPS-IO system.

The special debug objects provided on the 36-bit systems, which have
the file-type .DBG, are for use with the SIXl2 Debugger. Note that
they can only be used if the module containing the program entry point
has been compiled with the /DEBUG switch.

A listing of the currently available object
(-» preceding the file names indicate
identical in content.

o On a TOPS-IO system:

-) XPORT.REL and XPORT.DBG
-) XPOTIO.REL and XPOTIO.DBG

o On a TOPS-20 system:

-) XPORT.REL and XPORT.DBG
XPOTIO.REL and XPOTIO.DBG

-) XPOT20.REL and XPOT20.DBG

o On a VAX/VMS system:

-) XPORT.OLB
-) XPOVMS.OLB

files
which

follows. Arrows
pairs of files are

Note that special debug object files are not required for 32-bit
target systems.

F-3

Compiling and Linking
LINKING

Typical program-linking command sequences for the several development
systems are shown below. These command sequences assume that the
logical name BLI has been defined as discussed in Section F.l.

o On a TOPS-IO system:

.R LINK
*program, BLI:XPORT/SEARCH/GO
• SAVE

o On a TOPS-20 system:

@LINK
*program, BLI:XPORT/SEARCH/GO
@SAVE

o On a VAX/VMS system:

$LINK program, BLI:XPORT/LIBRARY/NOTRACEBACK [/DEBUG]

F-4

APPENDIX G

G.l
G.l.l
G.l.2
G.l.3
G.l.4

G.2

G. 2.1
G.2.2

XDUMP UTILITY PROGRAM

XDUMP - XPORT DATA STRUCTURE DISPLAY UTILITY
Running the XDUMP Utility ••••••.••
Compiling a Structure Display Module •.••
Linking a Structure Display Module •••••
Displaying a User Declared Structure While

• G-l
• • G-l

G-2
G-3

Debugging • • • • • • • •• •• • G-3
XDESC, XIOB, and XSPEC - XPORT STRUCTURE DISPLAY
MODULES • • • • • • • • • • • • • • • • • •

Linking an XPORT Structure Display Module
Displaying an XPORT Structure While Debugging

• G-3
• G-3
· G-4

APPENDIX G

XDUMP UTILITY PROGRAM

This appendix describes the use of the XbUMP Utility program during
debugging of user programs that employ the XPORT data-structuring
facilities (see Chapter 2).

G.l XDUMP - XPORT DATA STRUCTURE DISPLAY UTILITY

The XP.oRT XDUMP utility generates an executable BLISS module that can
be called during program debugging to symbolically display the
contents of a specific program data structure.

G.l.l Running the XDUMP Utility

The XDUMP utility is provided in executable form as part of an XPORT
release. Although its location on your system is determined by your
system manager, it will typically be located in the standard system
executable-image library (e.g., SYS$SYSTEM on VAX/VMS).

To invoke the XDUMP utility, enter a command similar to the following
VAX/VMS DCL command:

$ RUN XDUMP

XDUMP will then ask for the name
includes the definition of the
follows:

of a BLISS REQUIRE file which
desired program data structure, as

BLISS REQUIRE file name (default = .REQ)?

XDUMP will then ask for the name of the desired data structure:

Name of structure?

XDUMP then searches the REQUIRE file for a BLISS comment statement of

G-l

XDUMP UTILITY PROGRAM
XDUMP - XPORT DATA STRUCTURE DISPLAY UTILITY

the form

structure-name .

where "structure-name" is an arbitrary name which you assign to your
structure. This comment statement may include text following the
structure name.

NOTE

It is recommended that a structure-name be no more
than six characters long since this name will
become the name of the generated display module
and the name of the display routine within this
module.

The data structure must be defined using the XPORT Transportable Data
Structure definition facilities (see Chapter 2). If the desired
structure definition is not the last structure definition in the
REQUIRE file, a comment statement of the following form must follow
the structure definition:

End of structure-name

Upon completion of XDUMP processing, the name of the generated display
module will be reported, as follows:

structure-name.BLI display module generated

G.I.2 Compiling a Structure Display Module

To compile the structure display module generated by the XDUMP
utility, enter a command similar to the following VAX/VMS DCL command:

$ BLISS structure-name

This compilation command assumes that the logical device BLI: has
been defined to point to the device and directory in which the XPORT
LIBRARY file exists (see Appendix F).

G-2

XDUMP UTILITY PROGRAM
XDUMP - XPORT DATA STRUCTURE DISPLAY UTILITY

G.I.3 Linking a Structure Display Module

The structure-display object module can be included in a linked
program image in the same manner as any other program subroutine. For
example, a command similar to the following VAX/VMS DCL command should
be entered:

$ LINK main-program, structure-name, •.• , BLI:XPORT/LIBRARY/DEBUG

G.I.4 Displaying a User Declared Structure While Debugging

While debugging, the current contents of a data structure can be
displayed by entering a command similar to the following VAX/VMS DEBUG
command:

DBG)CALL structure-name (address-of-structure)

NOTE

Some current debuggers (e.g., DDT, ODT) do not
include a CALL-type command and are therefore not
compatible with the XDUMP utility.

The contents of specified structure will be displayed, one field per
line, in a form similar to the following:

field-name = symbolic-field-value

where "field-name" is the name of the field in the structure
definition and "symbolic-field-value" is the current contents of the
field displayed in symbolic form based on the "type" of the field.

G.2 XDESC, XIOB, and XSPEC - XPORT STRUCTURE DISPLAY MODULES

G.2.l Linking an XPORT Structure Display Module

The XPORT distribution includes structure display modules which can be
used durin~ program debugging to display an XPORT descriptor, an XPORT
lOB structure, or an XPORT File Specification Parse Block.

If any of these standard XPORT display modules (XDESC, XIOB, XSPEC) is
desired during debugging, each must be explicitly requested during
program linking. For example, on a VAX/VMS system:

$ LINK program, BLI:XPORT/LIBRARY/INCLUDE=XIOB/DEBUG

G-3

XDUMP UTILITY PROGRAM
XDESC, XIOB, and XSPEC - XPORT STRUCTURE DISPLAY MODULES

Alternatively, you can include any of the statements shown below in
your program to force automatic inclusion of these standard XPORT
display modules in your program image:

EXTERNAL ROUTINE XDESC;
EXTERNAL ROUTINE XIOB;
EXTERNAL ROUTINE XSPEC;

G.2.2 Displaying an XPORT Structure While Debugging

While debugging, the XPORT data structures (i.e., XDESC, XIOB, XSPEC)
can be displayed by entering a command similar to the VAX/VMS DEBUG
command shown in Section G.l.4.

DBG)CALL XIOB (name of lOB)

APPENDIX Z

Z.1
Z.2
Z.3
Z. 3. 1
Z.3.2
Z.3.3
Z.3.4
Z. 3. 5
Z.3.6
Z.4
Z.4.1
Z.4.2
Z. 4. 3
Z.4.4
Z.4.5
Z.5

EASY-TO-USE I/O PACKAGE (EZIO)

OVERVIEW • • • • . • . . • Z-1
LIMITATIONS • • . • • . . . • • • . • • • • . • • Z-1
FUNCTIONAL DESCRIPTION • . Z-2

The FILOPN Routine • • • • • • • • • . . Z-2
The FILIN Routine • • • • • • • • • • Z-4
The FILOUT Routine ••••••••.•••• Z-4
The FILCLS Routine ••••••. • • Z-5
Restrictions .••••••••.•••••••• Z-5
Example •••• • • . • • • • . • • • • • • • • Z-6

LOADING EZIO WITH USER PROGRAM ••.••••.•• Z-7
EZIOFC - File Services 11 (RSX-IIM) Z-7
EZIORT - RT-ll •••••••••••..•••• Z-8
EZIOI0 - TOPS-IO • • • • • • • • • • • •• • Z-8
EZI020 - TOPS-20 • • . • • • • . Z-8
EZ IOVX - VAX/VMS . • . • . . • • • • • • • • • • Z-8

PACKAGING • • • • • • • . • • • Z-8

APPENDIX Z

EASY-TO-USE I/O PACKAGE (EZIO)

Z.l OVERVIEW

EZIO is a very basic I/O package for BLISS programs that predates the
development of XPORT. (It is documented here for historical reasons
only; it is not a supported product.)

EZIO provides only sequential character-string I/O, such as line input
and line output. It is functionally the same on all major Digital
operating systems.

EZIO was intended for the BLISS programmer who wanted to write a
'throwaway' program, e.g., a prototype or a temporary tool, both
transportably and with a minimum of effort. (Prior to the development
of XPORT I/O, the only alternative for I/O was direct monitor calls.)
That is to say, EZIO was intended to be a disposable tool. It is very
easy to use, but is not a particularly capable tool.

Z.2 LIMITATIONS

The EZIO package does not provide a complete set of I/O facilities for
any system. More specifically, the following functionality is not
provided:

o Binary I/O

o Sequenced files (record and page numbers, as with SOS)

o Random I/O

o More than 3 file I/O channels open concurrently.

o Concurrent use of monitor calls for I/O processing (which may
be precluded due to the way that EZIO does file I/O).

Z-l

Easy-to-Use I/O Package (EZIO)
LIMITATIONS

The maximum number of I/O channels that may be opened can be increased
in most implementations by modifying and recompiling the EZIO sources;
see Section Z.3.S.

Z.3 FUNCTIONAL DESCRIPTION

The EZIO package provided in the BLISS Library is a set of routines
that are called to perform I/O operations. The routines are:

1. FILOPN - Opens a specified file on a logical channel.

2. FILIN - Reads a line of
specified channel. It
actually transferred.

text from a
returns the

file opened on the
number of characters

3. FILOUT - Transfers data from a string to a file opened on the
specified channel.

4. FILCLS - Closes the file on a specified channel.

With the exception of FILIN, all the functions return 1 to indicate a
successful completion of the operation, or 0 to indicate a failure.
FILIN returns a negative value to indicate a failure to complete its
operation, or a positive value (possibly zero) to indicate the number
of characters read.

All of the routines take a logical channel number as a parameter.
(This is not guaranteed to correspond to any logical unit number of
the underlying file system). The channel number should be within the
range of -1 to the maximum number of channels supported by EZIO,
normally the range [-1, 0, 1, 2] (see Section Z.3.S).

Channel -1 is reserved for terminal operations. All calls using this
channel do a minimum of buffering, and use operating-system primitives
for communicating with the terminal (if such exist).

Z.3.1 The FILOPN Routine

This routine call requires four parameters. The first specifies a
logical channel that the file is to be opened on. The second
parameter specifies the length of the file-spec string. The third is
a character-string pointer to the file-spec (constructed by CH$PTR or
equivalent). The last parameter specifies either 0 or 1 to indicate
that the file is to be opened for input or output respectively.

Z-2

Easy-to-Use I/O Package (EZIO)
FUNCTIONAL DESCRIPTION

For example, to open a file for output whose file-spec was dynamically
constructed:

FILOPN(1, .NAMLEN, CH$PTR(FILNAM), 1)

The value returned by the routine is 1 if the file was opened and
subsequent I/O can be done to its channel; 0 otherwise. A return
value of 0 usually indicates that either the file is not present,
there was an error in the syntax of the file-spec, or the file could
not be accessed in the specified mode.

The following conventions apply to programs containing "hard coded"
file-specs that may be transported to other systems:

1. File names should consist of a maximum of six characters, and
contain only the characters A-Z (upper or lower case is
permitted, but lower will be converted to upper) and 0-9.

2. File types (extensions) should consist of a maximum of three
characters, and contain only the characters A-Z and 0-9.
Also, they should follow the file name and be separated from
the file name by a period. (The same rule applies to case as
for file names.)

3. Hard coded device names should be avoided since they differ
across operating systems. The default device is disk for I/O
to channels 0 through 2. All I/O to channel -1 will go to
the terminal.

4. Account information (e.g., PPNs or directory names) should
not be specified if a program is to be fully transportable.
In all implementations, the default is to use the directory
established as the default when EZIO is first invoked (e.g.,
the logged in directory).

An example of a transportable file-spec is:

UP LIT ('F I LE . EXT')

Note that all of the above can be avoided if the program asks the user
to enter his file rather than storing them as static data in the
module. The user can then type in a file-spec in the host system's
own syntax because EZIO uses the system file-spec parser in all
implementations except TOPS-IO (where the parser is PIP like) •

For all implementations, the character string specifying the file-spec
should not exceed a length of 127 characters. However, there may be
other restrictions for specific operating systems.

Z-3

Easy-to-Use I/O Package (EZIO)
FUNCTIONAL DESCRIPTION

Z.3.2 The FILIN Routine

This routine call requires three parameters. The first specifies the
logical channel associated with the file to be read from. The second
parameter specifies the maximum number of characters that will fit
into the destination string. The last parameter is a character-string
pointer to the string that will rpceive the data read in.

The value of the routine is -1 if a read beyond the end-of-file was
attempted. -2 is returned if any I/O error occured. Otherwise, an
integer value greater than -1 is returned to indicate the number of
characters transferred to the destination string.

For example, to read a line of text from the file opened on channel 1
and to put it in string BUFFR:

LEN = FILIN(1, 80, CH$PTR(BUFFR));

In this example, the variable LEN is set with the number of characters
actually put in the string at BUFFR.

A "line of text" is a string of ASCII characters delimited according
to the host file system's conventions. Any delimiting factors (i.e.,
length field, vertical motion characters, etc) will act as a stream
"break" and will be stripped on input. On output, the format expected
by the system's principal editors will be used.

NOTE

On some systems, there is more than one
way to delimit a line of text, and an
effort has been made to use the methods
of the principal editors in each case.

Z.3.3 The FILOUT Routine

This routine call has three parameters. The first specifies the
logical channel associated with the file to be written on. The second
parameter specifies the number of characters that will be transferred
to the file. The last parameter is a character string pointer to the
string that is to be written.

For example, to write a line from string TITLE to the file open on
channel 2:

FILOUT(2, .TITLIN, CH$PTR(TITLE));

Z-4

Easy-to-Use I/O Package (EZIO)
FUNCTIONAL DESCRIPTION

Of course, if there were any doubt that
complete successfully, an IF statement

the operation might not
could be used to check the

indicating success and 0 return value of the call; the value I
indicating failure.

The string is output as a line of text. That is to say, the host
system's conventions are used to output the string so that it will
appear as one line when printed. (Some systems delimit lines with
CRLF, 9thers store it as a counted string.) In all cases, EZIO should
be able to read files that it creates.

Z.3.4 The FILCLS Routine

This routine call has one parameter, which is the logical channel
associated with the file to be closed.

The FILCLS routine ensures that all EZIO buffers containing data are
written out before informing the file system that all data transfers
to/from the file are complete.

For example:

F' I LC LS (-1);

Of course, the call could be included in a condition~l expression to
determine whether the operation succeeded or failed (e.g., the case of
not enough disk space) •

Z.3.5 Restrictions

There are no logical restrictions in the EZIO package. However,
because EZIO is dependent on them, the restrictions of the underlying
file systems and of BLISS apply to all programs using the EZIO
package.

There are physical constraints on the number of EZIO channels that can
be open at anyone time. The maximum as distributed is three plus
channel -1 for terminal I/O. The reason is to reduce the number of
buffers and tables within EZIO.

NOTE

The maximum number of channels that can
be concurrently opened is controlled by
the compile-time literal MAXCHANS in
most of the implementations. The user
may change this parameter to change the
number of channels to his/her liking.

Z-5

Z.3.6 Example

Easy-to-Use I/O Package (EZIO)
FUNCTIONAL DESCRIPTION

This example program prints a file on the terminal:

MODULE LISTER (MAIN = LSTR)
1+

This program asks for a filename, opens the named file,
and copies the file to the terminal.

1--
BEGIN

EXTERNAL ROUTINE
F ILOPN,

OWN

FILC LS,
FILOUT,
FILIN;

BUF
1 Holds one line of text

VECTOR[CH$ALLOCATION(120)];

MACRO
MSGS(S)

EZ 10 open
Ezro Close
EZIO Output
EZrO Input

FILOUT(-l, %CHARCOUNT(S), CH$PTR(UPLIT(S))) %;

ROUTINE LSTR
BEGIN

LOCAL
LEN,
PTR;

Open the TTY. Note: no filespec

F I LO PN (-1, 0, 0, 0);
PTR = CH$PTR(BUF);
MSG('Enter file name');
LEN = FILIN(-l, 60, .PTR);

Open the file on channel o.

IF NOT FILOPN (0, • LEN, • PTR, 0)
THEN

BEGIN
M S G ('0 pen fa i 1 ed . ') ;
RETURN;
END;

Z-6

Length of string
Pointer to buf

Get pointer
Prompt
Get file name

Op en fa i 1 ed •

Process each line

WHILE 1 DO
BEGIN

Easy-to-Use I/O Package (EZIO)
FUNCTIONAL DESCRIPTION

LEN = F I LIN (0, 120, • PT R) i
IF • LEN EQL -1
THEN

EXITLOOPi
FILOUT (-1, • LEN, • PTR) i
END;

F ILC LS (0) ;
MSG ('DONE') ;
END;

END
ELUDOM

Z.4 LOADING EZIO WITH USER PROGRAM

End of file
Output the string

The procedures shown below describe the steps necessary to load EZIO
with a user program on each system. These examples assume that the
user's object program is in a file named TEST which has the proper
file type or extension for the system in question.

Z.4.1 EZIOFC - File Services 11 (RSX-IIM)

1. Run the Task Builder:

MCR>TKB TEST=TEST,EZIOFC,EISLIB

The TEST to the left of the equal sign is the name of the
task-image file. 'l'he TEST to the right of the equal sign is
the object module of the main program. EZIOFC is the object
module of Ezro. And EISLIB is the EIS BLISS-16 library of
runtime routines.

2. When TKB finishes, give the run command to invoke the
program:

MCR>RUN TEST

Z-7

Easy-to-Use I/O Package (EZIO)
LOADING EZIO WITH USER PROGRAM

Z.4.2 EZIORT - RT-ll

For RT-ll, simply use the DCL command EXECUTE:

.EXECUTE TEST,EZIORT,EISLIB

Z.4.3 EZI010 - TOPS-10

After your program has been compiled with BLISS-36, use the TOPS-10
EXECUTE command:

.EXECUTE TEST.REL,BLI:EZI010

Note that a library file does not have to be specified (BLISS-36
generates a load request automatically) .

Z.4.4 EZI020 - TOPS-20

After your program has been compiled by BLISS-36 (with the /TOPS-20
compilation switch, if necessary), simply use the EXECUTE command:

@EXECUTE TEST,BLI:EZI020

Note that a library file does not have to be specified (BLISS-36
generates a load request automatically) •

Z.4.5 EZIOVX - VAX/VMS

After your program has been compiled with BLISS-32, use the VAX/VMS
LINK command, as follows:

$ LINK TEST,SYS$LIBRARY:EZIOVX

Z.5 PACKAGING

EZIO is distributed as several files: EZIOFC for a Files-ll based
system, EZIORM for a RMS-ll based file system, EZIORT for programs
that run under RT-ll, EZIOVX for the VAX/VMS operating system, EZI010
for TOPS-10 and EZI020 for TOPS-20.

Z-8

Easy-to-Use I/O Package (EZIO)
PACKAGING

EZIOFC, EZIORM and EZIORT are to be compiled using BLISS-16. EZIOVX
must be compiled using BLISS-32. And EZIOIO and EZI020 must be
compiled with BLISS-36 using the /TOPSIO and /TOPS20 switches
respectively. Some of the EZIO sources have REQUIRE statements.
These require the various system-interface modules also distributed in
the BLISS Library, which must be present in order to successfully
modify the sources.

Z-9

$ADDRESS field-type, 2-7
usage guidelines, 2-8

$ALIGN, 2-2
usage, 2-13

$BIT field-type, 2-6
$BITS(n) field-type, 2-6
$BYTE

f ield- type, 2-7
See al so BYTE

$BYTES vs. $STRING usage, 2-21
$BYTES(n) field-type, 2-7
$CONTINUE, 2-2

usage, 2-14
$DESCRIPTOR(class) field-type,

2-7
usage guidelines, 2-10

$DIST INCT, 2-2
usage, 2-15

$FIELD declaration
example of, 2-3
general form of, 2-5
usage rules, 2-6

$FIELD keyword, 2-2
$field-types, 2-2
$FIELD SET SIZE, 2-2

usage, i=12
$INTEGER field-type, 2-7
$LITERAL, 2-2

usage, 2-15
$LONG INTEGER field-type, 2-7
$OVERLAY, 2-2

usage, 2-14
$POINTER field-type, 2-7

usage guidelines, 2-8
$REF DESCRIPTOR field-type, 2-7
$SHORT INTEGER field-type, 2-7
$SHOW,-2-2
$SIXBIT(n) field-type, 2-8
$STR APPEND macro

completion codes, A-6
definition of, A-4

$STR ASCII macro
definition of, A-7

$STR BINARY macro
completion codes, A-II
definition of, A-9

INDEX

$STR COMPARE macro
completion codes, A-13
definition of, A-12

$STR CONCAT macro
definition of, A-14

$STR COPY macro
completion codes, A-18
definition of, A-16

$STR DESC INIT macro
completIon codes, A-22
definition of, A-21
examples of, 6-3

$STR DESCRIPTOR macro
definition of, A-19
examples of, 6-2

$STR EQL macro
completion codes, A-25
definition of, A-23

$STR FORMAT macro
definition of, A-26

$STR GEQ macro
completion codes, A-31
definition of, A-29

$STR GTR macro
completion codes, A-34
definition of, A-32

$S'I'R LEQ macro
completion codes, A-37
definition of, A-35

$STR LSS macro
completion codes, A-40
definition of, A-38

$STR NEQ macro
completion codes, A-43
definition of, A-41

$STR SCAN macro
completion codes, A-47
definition of, A-44

$STRING vs. $BYTES usage, 2-21
$STRING(n) field-type, 2-7

usage guidelines, 2-11
$SUB BLOCK(len) field-type, 2-7

usage guidelines, 2-9
$S UB FIELD, 2-2
$TINY INTEGER field-type, 2-7
$XPO_BACKUP macro

Index-l

completion codes, A-49
definition of, A-48
example of, 3-14

$XPO CLOSE macro
completion codes, A-52
definition of, A-51
examples of, 3-12

$XPO DELETE macro
completion codes, A-55
definition of, A-54
examples of, 3-13

$XPO DESC IN IT macro
completTon codes, A-60
definition of, A-59
examples of, 7-3

$XPO DESCRIPTOR macro
definition of, A-57
examples of, 7-2

$XPO ERROR
standard message device, 3-22

$XPO FREE MEM macro, 4-2
completIon codes, A-62
definition of, A-61

$XPO GET macro
completion codes, A-65
definition of, A-63
examples of, 3-15

$XPO GET MEM macro, 4-2
definition of, A-67

$XPO INPUT, 3-11
standard input device, 3-22

$XPO lOB macro
definition of, A-70
examples of, A-70

$XPO lOB INIT macro
completion codes, A-72
definition of, A-7l

$XPO OPEN macro
completion codes, A-77
definition of, A-73
examples of, 3-11

$XPO OUTPUT
standard output device, 3-22

$XPO PARSE SPEC macro
completion codes, A-80
definition of, A-79
use of, 3-26

$XPO PUT macro
completion codes, A-82
definition of, A-8l

examples of, 3-16
$XPO PUT MSG macro

completion codes, A-85
definition of, A-84
example of, 5-1

$XPO RENAME macro
completion codes, A-89
definition of, A-86
examples of, 3-13

$XPO SPEC BLOCK macro, 3-26
detinitTon of, A-90
examples of, A-90

$XPO TEMPORARY
temporary work file, 3-22

$XPO TERMINATE macro
definition of, A-9l
example of, 5-3

$XPO xxxx macro calls
format of, 3-10

Action routines
I/O, 3-28
memory management, 4-4
put-message, 5-3

Addresses vs. pointers, 2-8,
3-17

ALIGN - See $ALIGN
APPEND option, 3-7, 3-12
Asterisk character (*)

See Wild-card character, 3-26
Automatic file concatenation,

3-6
Automatic program termination,

5-2

BACKUP function, 3-4
BACKUP macro call

see $XPO BACKUP
Backup operation

explanation of, 3-4
Binary descriptor, 7-1
BINARY mode, 3-6

GET example, 3-16
PUT example, 3-17

Block size, fixed, 3-8
BLOCK structures, transportable

difficulties with, 2-1
efficiency considerations,

2-22
example of, 2-3

Index-2

problem areas, 2-20
Boundary alignment

by de f a ul t, 2 -1 2
efficiency considerations,

2-22
BOUNDED descriptor, 6-7, 7-7
BYTE alignment keyword, 2-13

Caveats
on file-spec parsing, 3-26
on use of STREAM mode, 3-6
on use of UNITS (I/O), 3-6

Character string
See String

Character-string fields
coding of, 2-21

Classes of descriptors, 6-4, 7-4
See also Descriptors

CLOSE function, 3-4
CLOSE macro call

see $XPO CLOSE
Completion-codes

I/O, 3-22, 3-27
program termination, 5-4
put-message, 5-1, 5-3

Concatenated input files, 3-6
Concatenation of strings, logical,

A-14
CONTINUE - See $CONTINUE
Conversion

ASCII to ASCII, A-26
binary to ASCII, A-7
logical string concatenation,

A-14
Conversion pseudo-functions

definition of
$STR ASCII, A-7
$STR-CONCAT, A-14
$STR=FORMA'I', A-26

Data descriptors, 6-1, 7-1
See also Descriptors

Data parameter formats, A-2
Data structures, transportable

difficulties with, 2-1
efficiency considerations,

2-22
example of, 2-3
field positioning, 2-12
literal definition, 2-14

problem areas, 2-20
DECnet links, 3-8
Default action routines

for I/O, 3-28
memory management, 4-5
put-message, 5-3

Default file specification, 3-9
Defaulting technique

for file-specs, 3-23
Defaults

file-type for BACKUP, 3-14
for descriptor class, 6-2, 7-2
for file specifications, 3-8
for NEW RELATED, 3-13

DELETE macro call
see $XPO DELETE

Descriptor-usage, 3-11,
3-15 to 3-17, 3-20

Descriptors
BOUNDED, 6-6, 7-6
classes of, 6-2, 7-1

details, 6-4, 7-4
typical uses, 6-8
usage rules for, 6-6, 7-6

compile-time initialization of,
6-2, 7-2

creation of, 6-2, 7-2
DYNAMIC, 6-6, 7-6
DYNAMIC BOUNDED, 6-6, 7-6
FIXED, 6-6, 7-6
initialization of, 7-3
introduction to, 6-1, 7-1
run-time initialization of,

6-3
typical uses of, 6-8
UNDEFINED, 6-6, 7-6

DISTINCT - See $DISTINCT
DYNAMIC descriptor, 6-7, 7-7
Dynamic memory, 4-1
DYNAMIC BOUNDED descriptor,

6-7, 7-7

Editing of strings, A-26
End of file (EOF)

on concatenated input, 3-6
Error correction, I/O, 3-28
Error message generation, 5-1

FAILURE parameter, 3-10
Failure-action routines

Index-3

I/O, 3-28
memory management, 4-4

FATAL severity level, 5-2
FIELD - See $FIELD
Field al ignment

by default, 2-12
efficiency considerations,

2-22
FIELD declaration, standard, 2-2
Field positioning, 2-12
Field positioning features

$ALIGN, 2-13
$CONTINUE, 2-14
$OVERLA Y, 2-14

Field-names
lOB, 3-19

Field-type usage guidelines
$ADDRESS, 2-8
$DESCRIPTOR, 2-10
$ PO IN T E R , 2 - 8
$STRING, 2-11
$SUB BLOCK, 2-9

Field-Type, nontransportable

File-spec resolution
detailed discussion of, 3-23
general description, 3-8
introduction, 3-4
rules for, 3-24

FILL parameter, memory,
4-2 to 4-3

FIXED descriptor, 6-7, 7-7
Freeing memory

examples of, 4-3
r ul e fo r, 4-4

FULLWORD alignment keyword, 2-13
Fullword, definition of, 2-5

GET macro call
see $XPO GET

Get operations
concatenated input files, 3-7
in BINARY mode, 3-5
in RECORD mode, 3-5
in STREAM mode, 3-5

Getting memory, examples, 4-2

$SIXBIT(n), 2-8 I/O action routines, 3-28
Field-types, transportable, 2-6 I/O capabilities
FIELD SET SIZE - See $FIELD SET SIZE concatenated input files, 3-6
File backup operation, 3-4 - - get and put
File concatenation, input, 3-6 BINARY mode, 3-6
File specification in general, 3-5

default, 3-9 RECORD mode, 3-6
primary, 3-9 STREAM mode, 3-6
related, 3-9 I/O completion codes, 3-22, 3-27
resultant, 3-9 I/O control block - See "lOB"

File specifications I/O control blocks
concatenated input files, 3-6 description of, 3-18
defaults for, 3-8, 3-23 introduction to, 3-2
parsing of, 3-26 I/O devices, standard, 3-22
processing of, 3-23 I/O functions, summary of, 3-3
remembered, 3-4 I/O macros, 3-9
resolution of, 3-8, 3-23 common parameters, 3-10
rules for resolution, 3-24 examples of, 3-15

File-copy coding example, 3-21 general format, 3~10
File-level capabilities, 3-3 I/O routine exa~ple, 3-21
File-level functions I/O services

BACKUP, 3-4 characteristics, 3-2
CLOSE, 3-4 file-level capabilities, 3-3
OPEN, 3-4 implementation, 3-2
summary of, 3-3 input/output capabilities, 3-5

File-level macros introduction, 3-1
examples of, 3-11 keyword macros, 3-2

Index-4

linking with program, 3-2
I/O transportability, 3-1
Input & output devices, 3-8

standard error, 3-22
standard input, 3-22
standard output, 3-22

Input file concatenation, 3-6
INPUT option, default, 3-8
Input/Output - See "I/O"
Interactive terminals, 3-8
lOB (control block)

creation of, 3-18
description of, 3-18
field names, 3-2
fields

function of, 3-19
usage example, 3-20 to 3-21

initialization of, 3-19
introduction to, 3-2

lOB keyword parameter, 3-10
IOB$G 2ND CODE field, 3-28
IOB$G=COMP_CODE field, 3-27

Keyword parameters, I/O, 3-10
examples of use, 3-20

LIBRARY declaration, 3-2
LINK command example, 3-2
LITERAL - See $LITERAL
Literal-defining features

$DISTINC'l', 2-14
$LITERAL, 2-14

Macro calls
definitions of, A-4, A-19,

A-57
general format for I/O, 3-10

Macros
See $STR xxxx
See $XPO-xxxx

Memory management
action routines, 4-4
introduction, 4-1
routine values, 4-4

Miscellaneous services, 5-1
Mode keywords, I/O, 3-5

NEW_RELATED default, 3-13
Notation for macro definitions,

A-I

OPEN function, 3-4
OPEN macro call

see $XPO 0 PEN
Opening

concatenated input files, 3-6
defa ul ts, 3-8
for both input and output, 3-8
interactive terminal, 3-11
output files, 3-7

Output files, opening of, 3-7
OUTPUT option, 3-7
OVERLAY - See $OVERLAY
OVERWRITE option, 3-7

Parameter keywords, I/O, 3-10
Physical block size, fixed, 3-8
Placeholder $SUB BLOCK usage,

2-9 -
Pointers vs. addresses, 2-8,

3-17
Primary file specification, 3-9
Program

brief example, 1-5
Program termination

automatic, 5-2
requested, 5-3

Prompted read operation, 3-15
PUT macro call

see $XPO PUT
Put operations

in BINARY mode, 3-5
in RECORD mode, 3-5
in STREAM mode, 3-5

Put-Message function, 5-1

RECORD mode, 3-6
GET example, 3-15
PUT example, 3-16

RECORD SIZE parameter, 3-8
Related file specification, 3-9
Releasing memory

rule for, 4-4
REMEMBER file-close option,

3-4 to 3-5
REMEMBER option, 3-12 to 3-14
Remembered file specifications,

3-4
RENAME macro call

see $XPO RENAME
Resultant file specification,

Index-5

3-9
Routine values

I/O, 3-27
memory management, 4-4

Sample program
brief, 1-5

SEQUENCE NUMBER parameter, 3-17
SEQUENCED attribute, 3-5, 3-12,

3-22
Sequenced file

PUT example, 3-17
SEVERITY parameter

put-message, 5-2
Spaceholder $SUB BLOCK usage,

2-9 -
STREAM mode, 3-6

caveat regarding, 3-6
GET example, 3-15
PUT example, 3-16

String concatenation, logical,
A-14

String conversion
see also Conversion

String conversion pseudo-functions
definition of

$STR ASCII, A-7
$STR-CONCA'l', A-14
$STR-FORMAT, A-26

String descriptors, 6-1
See also Descriptors

String editing, A-26
String parameter formats, A-2
Structures - See Data structures
Sub-fields - See $SUB FIELD
Sub-structures - See $SUB BLOCK
SUCCESS parameter, 3-11 -
Success-action routines

I/O, 3-28
memory management, 4-4

Syntax notation, A-I

Temporary files, 3-23
Terminal I/O, 3-22
Termination function, 5-3
Transportability problem areas,

2-20
Transportable BLOCK structures

see BLOCK structures
Transportable data structures

see Data structures
Transportable field-types, 2-6

see also Field-type
Transportable I/O services, 3-1

UNDEFINED descriptor, 6-6, 7-6
UNIT alignment keyword, 2-13
Usage guidelines

$XPO BACKUP macro, A-49
$XPO-CLOSE macro, A-52
$XPO=PUT macro, A-82

USER parameter, 3-11

Wild-card character (*), 3-26
WORD alignment keyword, 2-13

XPO$ NORMAL
completion code, 3-27

XPO$ TERMINATE code, 5-3
XPO$FAILURE routine, 3-28, 4-5,

5-3
XPO$FM FAILURE routine, 4-5
XPO$GM-FAILURE routine, 4-5
XPO$IO-FAILURE routine, 3-28
XPO$PM-FAILURE routine, 5-3
XPORT I/O devices

standard, 3-22
XPORT I/O facilities - See "I/O"

.
CI)
c

C)
c
o
c

"5
o
CI)
ell
C
CI)

a..

XPORT Programmer's Guide
AA-J201A-TK

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer
[] Other (please specify) ______________________________________ __

Name Da te ________________ _

Organization ___________________________________ _

Street ___ __

C i ty ____________________ S ta te ___________ zip Code ____________ _
or

Country

- - Do Not Tear - Fold Here and Tape

~DmDDmD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK 1-3/ J3-5
DIGITAL EQUI'PMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage

Necessary
if Mailed in the

United States

-I

I
I

-- - - Do Not Tear - Fold Here -I

I

I
I

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-001
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-001
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-001
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-001
	5-01
	5-02
	5-03
	5-04
	6-001
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-001
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-001
	A-002
	A-003
	A-004
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	A-73
	A-74
	A-75
	A-76
	A-77
	A-78
	A-79
	A-80
	A-81
	A-82
	A-83
	A-84
	A-85
	A-86
	A-87
	A-88
	A-89
	A-90
	A-91
	A-92
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-001
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	F-001
	F-01
	F-02
	F-03
	F-04
	G-001
	G-01
	G-02
	G-03
	G-04
	Z-001
	Z-01
	Z-02
	Z-03
	Z-04
	Z-05
	Z-06
	Z-07
	Z-08
	Z-09
	Z-10
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB

