
COBOL-74
Language Manual

Order NUl1)ber AA-5059A-TK

January 1979

This manual reflects the software of version 12 of the
COBOL-74 compiler (CBL74), version 12 of the object
time system (C740TS), and version 4A of SORT.

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, January 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979, by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II

DECsystem-IO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTF.M-20
RTS-8

3/79-14

MASSBtJS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-II
ITPS-IO

PREFACE

ACKNOWLEDGMENT

PART 1

PART 2

CHAPTER 1

1.1
1.1.1
1.1.1.1
1.1.1.2
1.1.1.3
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2
1.2.4
1.2.4.1
1.2.4.2
1.2.5
1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.4
1.4.1

CHAPTER 2

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10

CONTENTS

INTRODUCTION TO THE COBOL-74 SYSTEM
AND THE STRUCTURE OF THE MANUAL

COBOL-74 LANGUAGE REFERENCE MATERIAL

INTRODUCTION TO COBOL-74 LANGUAGE

SYMBOLS AND TERMS
Symbols
Underline
Brackets and Braces
The Ellipsis
COBOL Terms

ELEMENTS OF COBOL LANGUAGE
Program Structure
COBOL-74 Character Set
Words
Reserved Words
User-Defined Words
Literals
Numeric Literals
Alphanumeric Literals
Separators

SOURCE PROGRAM FORMAT
Card-type Format
Terminal-type Format
With Line Numbers
Without Line Numbers

THE COBOL LIBRARY FACILITY
The COpy Statement

THE IDENTIFICATION DIVISION

THE ENVIRONMENT DIVISION

ENVIRONMENT DIVISION CLAUSE FORMATS
CONFIGURATION SECTION
SOURCE-COMPUTER
QBJECT-COMPUTER
SPECIAL-NAMES
INPUT-OUTPUT SECTION
FILE-CONTROL
SELECT
RESERVE
ORGANIZATION
ACCESS MODE

iii

Page

xii

xiii

1-1

1-1
1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-5
1-5
1-9
1-10
1-10
1-11
1-11
1-13
1-14
1-15
1-15
1-16
1-19
1-19

2-1

3-1

3-2
3-2
3-:-3
3-4
3-6
3-9
3-10
3-14
3-16
3-17
3-19

3.1.11
3..1.12
3.1.13
3.1.14
3.1.15

CHAPTER 4

4.1
4.1.1
4.1.2
4.1.3
4.2
4.3
4.4
4.5
4.6
4.6.1
4.7
4.8
4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
4.9.6
4.9.7
4.9.8
4.9.9
4.9.10

4.9.11
4.9.12
4.9.13
4.9.14
4.9.15
4.9.16
4.9.17
4.9.18
4.9.19
4.9.20
4.9.21
4.9.22
4.9.23
4.9.24
4.9.25
4.9.26
4.9.27
4.9.28
4.9.29
4.9.30
4.9.31
4.9.32
4.9.33
4.9.34

CONTENTS (CONT.)

RECORD KEY
RELATIVE KEY
RECORDING MODE/DENSITY/PARITY
FILE STATUS
I-O-CONTROL

THE DATA DIVISION

FILE SECTION
Record Descriptions
Elementary Items and Group Items
Level Numbers

SCHEMA SECTION
COMMUNICATION SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION
REPORT SECTION

Format Of Report Section
QUALIFICATION
SUBSCRIPTING AND INDEXING
DATA DIVISION CLAUSES

File Description (FD)
BLOCK CONTAINS
CODE-SET
DATA RECORD
FD File-name
LABEL RECORD
RECORD CONTAINS
REPORT
SD File-name
VALUE OF
IDENTIFICATION/DATE-WRITTEN/USER-NUMBER
DATA DESCRIPTION ENTRY
BLANK WHEN ZERO
Condition-name (level-88)
Data-name/FILLER
JUSTIFIED
Level-number
OCCURS
PICTURE
REDEFINES
RENAMES (level-66)
SIGN
SYNCHRONIZED
USAGE
VALUE
Report Description (RD)
CODE
CONTROL
Report Group Description
COLUMN NUMBER
GROUP INDICATE
LINAGE
LINE NUMBER
NEXT GROUP
RESET

iv

Page

3-20
3-21
3-22
3-26
3-34

4-1

4-2
4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-6
4-7
4-9
4-9
4-13
4-14
4-16
4-17
4-18
4-19
4-20
4-22
4-23
4-24

4-25
4-29
4-31
4-32
4-34
4-35
4-37
4-38
4-40
4-54
4-56
4-58
4-60
4-62
4-68
4-70
4-72
4-73
4-74
4-77
4-78
4-79
4-81
4~83
4-84

4.9.35
4.9.36
4.9.37

CHAPTER 5

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.3

5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4
5.5.3
5.5.3.1
5.5.4
5.5.5.1
5.5.5
5.5.6
5.5.7

5.5.8

5.6

5.6.1
5.6.2
5.7
5.8

5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.9.7
5.9.8
5.9.9

CONTENTS (CONT.)

SOURCE
SUM
TYPE

THE PROCEDURE DIVISION

SYNTACTIC FORMAT OF THE PROCEDURE
DIVISION

Statements
Sentences
Paragraphs
Sections

SEQUENCE OF EXECUTION
SEGMENTATION AND SECTION-NAME PRIORITY
NUMBERS
ARITHMETIC EXPRESSIONS

Arithmetic Operators
Formation and Evaluation Rules

CONDITIONAL EXPRESSIONS
Relation Condition
Format of a Relation-Condition
Relational Operators
Comparison of Numeric Items
Comparison of Nonnumeric Items
Class Condition
Format of a Class Condition
Restrictions
The ALPHABETIC Test
The NUMERIC Test
Condition-Name Condition
Format of a Condition-Name Condition
Sign Condition
Format of a Sign Condition
Logical Operators
Formation and Evaluation Rules
Combined and Negated Combined
Conditions
Abbreviated Combined Relation
Conditions

COMMON OPTIONS ASSOCIATED WITH THE
ARITHMETIC VERBS

The ROUNDED Option
The SIZE ERROR Option

THE CORRESPONDING OPTION
DETERMINATION OF USAGE IN ARITHMETIC
COMPUTATIONS
PROCEDURE DIVISION VERB FORMATS

ACCEPT
ADD
ALTER
CALL
C1\NCEL
CLOSE
COMPUTE
DELETE
l)ISJ?_L~Y

v

Page

4-85
4-86
4-87

5-1

5-2
5-2
5-4
5-4
5-4
5-5

5-5
5-6
5-6
5-6
5-7
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-11
5-11
5-11
5-11

5-15

5-16

5-17
5-17
5-17
5-18

5-18
5-19
5-20
5-21
5-23
5-24
5-26
5-27
5-31
5-32
5-33

CONTENTS (CONT •)

Page

5.9.10 DIVIDE 5-34
5.9.11 ENTER 5-36
5.9.12 ENTRY 5-37
5.9.13 EXIT 5-38
5.9.14 EXIT PROGRAM 5-39
5.9.15 FREE 5-40
5.9.16 GENERATE 5-43
5.9.17 GO TO 5-45
5.9.18 GOBACK 5-46
5.9.19 IF 5-47
5.9.20 INITIATE 5-49
5.9.21 INSPECT 5-50
5.9.22 MERGE 5-54
5.9.23 MOVE 5-56
5.9.24 MULTIPLY 5-58
5.9.25 OPEN 5-59
5.9.26 PERFORM 5-64
5.9.27 READ 5-68
5.9.28 RELEASE 5-71
5.9.29 RETAIN 5-72
5.9.30 RETURN 5-78
5.9.31 REWRITE 5-79
5.9.32 SEARCH 5-80
5.9.33 SET 5-83
5.9.34 SORT 5-84
5.9.35 START 5-87
5.9.36 STOP 5-89
5.9.37 STRING 5-90
5.9.38 SUBTRACT 5-95
5.9.39 TERMINATE 5-97
5.9.4,0 TRACE 5-98
5.9.41 UNSTRING 5-100
5.9.42 USE 5-108
5.9.43 WRITE 5-111

PART 3 COBOL-74 USAGE MATERIAL

CHAPTER 6 COMPILER COMMAND STRINGS 6-1

CHAPTER 7 COBOL-74 UTILITY PROGRAMS 7-1

7.1 ISAM - INDEXED-SEQUENTIAL FILE
MAINTENANCE PROGRAM 7-2

7.1.1 Building an Indexed-Sequential File 7-4
7.1.2 Maintaining an Indexed-Sequential

File 7-7
7.1.3 Packing an Indexed-Sequential File 7-9
7.1.4 Ignoring Errors 7-10
7.1.5 Reading and Writing Magnetic Tape

Labels 7-11
7.1.6 Indirect Commands 7-12
7.1.7 Using Indexed-Sequential Files 7-13
7.2 LIBARY - SOURCE LIBRARY MAINTENANCE

PROGRAM 7-15
7.2.1 Library File Format 7-15
7.2.2 Invoking The Library Utility 7-15
7.2.3 Command String Defaults 7-17
7.2.4 LIBARY Switches 7-18

vi

7.2.5
7.2.6
7.2.6.1
7.2.6.2
7.2.6.3
7.2.6.4
7.2.6.5
7.3

7.3.1
7.3.2
7.3.3

7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.3.3.5
7.4

7.4.1
7.4.2

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.6.1
8.2.6.2
8.2.6.3
8.3
8.4
8.5
8.5.1
8.5.2
8.5.3
8.6
8.6.1
8.6.2

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.4.1
9.1.4.2

CONTENTS (CONT.)

Running LIBARY
LIBARY Commands
Group Mode Commands
Edit Mode Commands
Edit Commands
LIBARY-Directing. Commands
Example of Command Usage

COB DDT - PROGRAM FOR DEBUGGING COBOL
PROGRAMS

Loading and Starting COBDDT
COBDDT Commands
Obtaining Histograms of Program
Behavior
Initializing the Histogram Table
Starting the Histogram
Stopping the Histogram
Obtaining Histogr~m Listing
Using the Histogram Feature

RERUN - PROGRAM TO RESTART COBOL-74
PROGRAMS

Operating RERUN
Examples of Using RERUN

FILE FORMATS

RECORDING MODES
ASCII Recording Mode
SIXBIT Recording Mode
EBCDIC Recording Mode
BINARY Recording Mode

FILE FORMATS
Fixed-Length ASCII
Variable-Length ASCII
Fixed-Length SIXBIT
Variable-Length SIXBIT
EBCDIC File Formats
BINARY File Formats
COBOL ASCII Mixed-Mode Binary
COBOL SIXBIT Mixed-Mode Binary
COBOL EBCDIC Mixed-Mode Binary

FILE ORGANIZATION AND ACCESS
SEQUENTIAL FILES
RELATIVE FILES

Sequential Access Of Relative Files
Random Access Of Relative Files
Dynamic Access Of Relative Files

INDEXED-SEQUENTIAL FILES
Data File
Index File

SIMULTANEOUS UPDATE

PROGRAMMING CONSIDERATIONS
The OPEN Statement
The RETAIN Statement
The FREE Statement
Accessing Sequential Files
Basic Reading
Basic Writing

vii

Page

7-18
7-;19
7-19
7-20
7-20
7-21
7-21

7-22
7-23
7-24

7-27
7-28
7-28
7-29
7-29
7-31

7-31
7-32
7-33

8-1

8-1
8-1
8-2
8-2
8-3
8-3
8-4
8-5
8-8
8-10
8-12
8-19
8-20
8-21
8-22
8-23
8-23
8-23
8-24
8-25
8-25
8-27
8-27
8-28

9-1

9-3
9-4
9-8
9-11
9-12
9-12
9-12

9.1.4.3
9.1.4.4

9.1.5
9.1.6

CHAPTER 10

CHAPTER 11

11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.1.1
11.2.1.2
11.2.2
11.2.3
11.2.4
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

CHAPTER 12

12.1
12.2

CHAPTER 13

13.1

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5'
13.2
13.2.1
13.2.1.1
13.2.1.2
13.2.1.3
13.2.1.4
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5

CONTENTS (CONT.)

Basic Updating
Sophisticated Access to Sequential
Files
Accessing Relative Files
Accessing Indexed-Sequential Files

REPORT WRITER

PROGRAM SEGMENTS, SUBPROGRAMS, AND
OVERLAYS

PROGRAM SEGMENTS
Section-Names and Segment Numbers
Examples

SUBPROGRAMS
Inter-Program Communication
The Calling Program
The Called Subprogram
Loading a Subprogram Structure
Object Libraries and Searches
Examples

OVERLAYS
When to Use Overlays
Over1ayab1e COBOL Programs
Defining Overlays
The /SPACE Switch to LINK
The CANCEL Statement
Examples

CALLING NON-COBOL SUBPROGRAMS

CALLING FORTRAN SUBPROGRAMS
CALLING MACRO SUBPROGRAMS

IMPROVING PERFORMANCE OF COBOL-74
PROGRAMS

HOW TO PROCEED WITH PROGRAM
OPTIMIZATION

Where to Begin
What Tools are Available
What Method or Procedure to Use
Evaluating Performance
Documentation

LISTING THE TOOLS
COBDDT
The ENTRIES Column
The CPU Column
ELAPSED Column
OVERHEAD

USING THE CORRECT DATA TYPE
DISPLAY Data Types
EBCDIC
ASCII
SIXBIT
COMPUTATIONAL

viii

Page

9-13

9-13
9-16
9-17

10-1

11-1

11-1
11-1
11-2
11-3
11-4
11-4
11-5
11-6
11-6
11-7
11-8
11-8
11-8
11-9
11-11
11-13
11-14

12-1

12-2
12-3

13-1

13-3
13-3
13-3
13-4
13-5
13-5
13-6
13-6
13-7
13-7
13-8
13-8
13-8
13-8
13-8
13-9
13-10
13-10

PART

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

GLOSSARY

INDEX

FIGURE

13.4
13.4.1
13.4.2
13.4.3
13.5
13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6
13.5.7
13.5.8

4

A

B

C

0

E

1-1 (a)
l-2(a)
l-3(a)
4-1
4-2
4-3
4-4
5-1

5-2

5-3
5-4
7-1
8-1
8-2
8-3
8-4
8-5
8-6
8-7

CONTENTS (CONT.)

DATA EFFICIENCIES
Counter, Indexes, Subscripts
File Storage
Blocking Data

EFFICIENT CODING CONVENTIONS
Alignment
Usage of Subscripts
Incrementing Counters
The PERFORM Statement
Use of the INSPECT Statement
Data Movement
Ordering Statements
Asking the Correct Question

APPENDIXES, GLOSSARY, INDEX

DIFFERENCES BETWEEN COBOL-68 AND
COBOL-74

COBOL RESERVED WORDS

ASCII, SIXBIT, AND EBCDIC COLLATING
SEQUENCES AND CONVERSIONS

ALTERNATE NUMERIC TEST

DEFINING LOGICAL NAMES UNDER TOPS-20

Page

13-10
13-11
13-11
13-11
13-12
13-12
13-12
13-13
13-13
13-14
13-14
13-15
13-15

A-I

B-1

C-l

D-l

E-l

Glossary-l

Index-l

FIGURES

Card-type Format
Terminal-type Format with Line Numbers
Terminal-type Format without Line Numbers
Direct Subscripting/Indexing
Relative Subscripting/Indexing
Qualified Direct Subscripting/Indexing
Picture String Charcter Chart
Order"of Evaluation of a Conditional
Expression
Order of~ Evaluation of a
Compound-conditional Expression
PERFORM Cycle Logic - Two Variables
PERFORM Cycle Logic - Three Variables
COBOL-74 ISAM File Environment
ASCII Recording Mode
SIXBIT Recording Mode
EBCDIC Recording Mode
EBCDIC Recording Mode - Industry-Compatible
Binary Recording Mode
Fixed-Length ASCII
COBOL Fixed-Length ASCII

ix

1-14
1-15
1-16
4-11
4-11
4-11
4-53

5-13

5-14
5-66
5-67
7-3
8-1
8-2
8-2
8-2
8-3
8-4
8-5

TABLE

8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21

8-22

8-23

8-24

8-25
8-26

8-27
9-1
9-2
9-3

9-4
9-5
9-6
9-7
11-1
13-1

3-1
3-2
3-3
4-1
5-1
5-2
5-3

5-4
6-1
C-l

C-2
C-3

CONTENTS (CONT.)

Variable-Length ASCII
COBOL Variable-Length ASCII
Fixed-Length SIXBIT
COBOL Fixed-Length SIXBIT
Variable-Length SIXBIT
COBOL Variable-Length SIXBIT
Fixed-Length EBCDIC
COBOL Fixed-Length EBCDIC
Variable-Length EBCDIC
COBOL Variable-Length EBCDIC
COBOL Blocked Fixed-Length EBCDIC
Blocked Variable-Length EBCDIC
COBOL Blocked Variable-Length EBCDIC
COBOL Standard Binary ana ASCI
Mixed-Mode Binary
COBOL Standard Binary and SIXBIT
Mixed-Mode Binary
COBOL Standard Binary and EBCDIC
Mixed-Mod~ Binary
Statments Used to Sequentially Access
a Relative File
lSAM Data File Structure
Locating a Record in an
Indexed-Sequential File
ISAM Index File Structure
The Problem of Buried Update
The Problem of Deadly Embrace
Projecting Resources For Simultaneous
Update
The OPEN Statement
Competing For Program Access to Files
The RETAIN Statement
The FREE Statement
Example of an Overlay Structure
Sample COBDDT Histogram

TABLES

Recording Modes
Monitor File Status Bits
Monitor Error Codes
Standard Label for Magtapes
Procedure Verb and Statement Categories
Types of Segments
Conditions, Logical Operators, and
Parentheses Combinations
CLOSE Options and File Types
COBOL Switch Summary
ASCII and SIXBIT Collating Sequence and
Conversion to EBCDIC
ASCII to SIXBIT Conversion
EBCDIC Collating Sequence and
Conversion to ASCII

x

Page

8-6
8-7
8-8
8-9
8-10
8-12
8-13
8-13
8-14
8-15
8-16

8-19

8-20

8-21

8;..22

8-26
8-28

8-29
8-30
9-2
9-3

9-4
9-5
9-8
9-9
9-11
11-9
13-6

3-25
3-30
3-31
4-21
5-3
5-5

5-15
5-30
6-3

C-l
C-5

C-5

PREFACE

This manual describes COBOL-74 as it has been implemented on the
TOPS-IO and TOPS-20 operating systems. Part 1 of this manual outlines
the topics to be covered in each chapter. Part 2 describes the
COBOL-74 compiler and presents the vocabulary and syntax of the
language. Part 3 provides the information necessary to use the COBOL
system, including performance improvement, utilities, and various
features of COBOL-74. Part 4 contains appended material. Several
appendixes and a glossary of COBOL-74 terms have also been included.
Appendix A is a list of differences between· COBOL-74 and COBOL-68.
Appendix B contains a list of all COBOL-74 reserved words. Appendix C
lists the character collating sequences. Appendix D describes an
alternative form of numeric test which may be elected at system
installation time.

It is assumed that the reader has a knowledge of the COBOL language.
This manual is intended primarily for reference and is not a tutorial
guide for beginning COBOL programmers. Those wishing to learn the
COBOL language are referred to the following books.

Carl Feingold, Fundamentals of COBOL Programming (Dubuque, Iowa,
William C. Brown Company, 1977).

Daniel D. McCracken, A Simplified Guide to Structured COBOL
Programming (New York, John Wiley and Sons, Inc., 1976).

Daniel D. McCracken and Umberto Garbassi, A Guide to COBOL
Programming, Second Edition (New York, John Wiley and Sons, Inc.,
1970) •

The COBOL programmer should be familiar with the operating system
commands and ~he editing language for the system in question. For
users of the TOPS-IO operating system, the manuals which contain this
information are:

• Operating System Commands Manual

• TECO programmer's Reference Manual

Other manuals which contain information useful to TOPS-IO COBOL-74
programmers are:

• Monitor Calls Manual

• Hardware Reference Manual

• LINK Reference Manual

xi

For users of TOPS-20, the information concerning the operating system
commands and the system editing language is contained in the following
manuals:

• DECSYSTEM-20 User's Guide

• EDIT Reference Manual

Other manuals which contain information useful to TOPS-20 COBOL-74
programmers are:

• Monitor Calls Reference Manual

• Hardware Reference Manual

• LINK Reference Manual

xii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover,. no
responsibility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the Univac (R) I and II, Data Automation Systems copyrighted
1958, 1959 by Sperry Rand Corporation;

IBM Commercial Translator Form No. F 28-8013, copyrighted 1959
by IBM;

FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material, in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.

xiii

INTRODUCTION TO THE COBOL-74 SYSTEM
AND THE STRUCTURE OF THE MANUAL

The typical COBOL program follows a fairly simple series of steps from
the human-readable format in which it is written to the
machine-readable format in which it is executed. The following flow
chart shows the basic steps which all programs take.

Introduction-l

COBOL-74
COMPI·LER

Relocatable (.REL)
Object Module

LINKER

Executable (.EXE)
Program

USER PROGRAM

I
I

88

Library File (.LlB)
created by LIBARY

Compilation
Listing
(.LST)

Simultaneous
Update

C740TS

Report
Writer

MR-S.{)17·79

The program first sees the light of day as a source file which is
either created with a text editor or entered into the system by some
other means (for example, it could be punched into cards and loaded
through a ca~d reader). This file is usually given a filename whose
extension is .CBL, and it is identified in the flow chart by this
extension.

The COBOL-74 compiler then translates the source file into a
relocatable object module. In order to do this, the compiler may
sometimes copy text from user libraries which contain often-used
pieces of code. These libraries, identified in the chart by the
extension of .LIB, are created by the LIBARY utility. The output from
the compiler, the relocatable object module, is usually given an

Introduction-2

extension of .REL, and is identified by this extension in the flow
chart. The compiler can optionally produce a file which contains the
compilation listing of the source program. This file is identified by
its extension, .LST.

At this point the program is given to the system linker, which
produces the executable version with the extension .EXE. (This manual
does not contain any information on the system linker~ Users of
TOPS-lO should refer to the LINK Reference Manual and the LOAD command
in the Operating System Commands Manual for more information about
LINK. Users of TOPS-20 should refer to the the LINK Reference Manual
and the LOAD command in the DECSYSTEM-20 user's Guide.)

The .EXE version of the program runs in conjunction with the
object-time system, C740TS. Among other things, the object-time
system handles I/O and calls routines from the COBOL-74 library to be
used at runtime. The user program is now in a format which can be
executed, but there is no guarantee that it will produce the correct
results. Most programs must still be debugged after they compile
error-free. The. COBOL-74 system provides an on-line debugging
facility called COBDDT to assist the programmmer in finding out what
the program is really doing. COBDDT runs along with the user program
and the object-time system, and allows the steps which the program
executes to be monitored by the programmer.

Many COBOL programs use indexed files during their execution. These
files are convenient for many applications. The COBOL-74 system
provides a program, called ISAM, to create and maintain indexed files.

There are times when the user program is running and the system
operator has to shut down the system unexpectedly. Some programs are
written to be restartable, but many are not. The RERUN utility is
provided with COBOL-74 to help in this situation. RERUN can save
enough information to allow the program to be restarted after the
system is brought back up, even though no provision was made in the
program for the restart.

Thus, the COBOL-74 system, in conjunction with the operating system,
provides complete facilities for the creation and execution of a COBOL
program. The rules regarding the creation of a COBOL-74 program, and
the syntax to be used in the program, are described in Part 2,
COBOL-74 Language Reference Material. The individual units of the
COBOL-74 system are enumerated below.

1. The Compiler -

The compiler copies text from user libraries and translates
the COBOL-74 program into a relocatable object module.
Running the COBOL-74 compiler is described in Part 3, Chapter
6.

2. The OTS -

The object-time system runs the COBOL-74 program and allows
the program to use such facilities as simultaneous update and
Report Writer. Information on the file formats which the OTS
accepts may be found in Part 3, Chapter 8. The simu~taneous
update facility is described in Part 3, Chapter 9, and Report
Writer in Part 3, Chapter 10. Subprograms, segmentation and
overlaying are covered in Part 3, Chapter 11. Chapter 12 of
Part 3 contains information on calling non-COBOL subprograms.

Introduction-3

3. The utilities -

The COBOL-74 utilities - LIBARY, COBDDT, RERUN and ISAM - are
described in Part 3, Chapter 7. Information on the use of
COBDDT in improving the performance of COBOL-74 programs may
be found in Part 3, Chapter 13.

Part 4 of this manual contains appended material which may be of
interest to some users of COBOL-74. Appendix A presents a list of
differences between DIGITAL's COBOL-68 and DIGITAL's COBOL-74.
Appendix B is the list of COBOL-74 reserved words. Appendix C
provides ASCII, SIXBIT, and EBCDIC collating sequences, along with
conversion charts for these three codes. An alternate to the usual
numeric test, which may be elected at the time of installation of
COBOL-74, is described in Appendix D. Finally, Appendix E contains a
short description of the process of defining a logical name for
TOPS-20 users of the COBOL-74 utilities.

Introduction-4

CHAPTER 1

INTRODUCTION TO COBOL-74 LANGUAGE

This chapter describes the symbols, special terms, language elements,
and source program formats acceptable to COBOL-74. The source
language statements are discussed in subsequent chapters.

NOTE

In this manual the word COBOL
refers to COBOL-74. Any
documentation concernlng
DECtapes can be ignored if your
system does not have them.

1.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual
are necessary to describe the language or are commonly used COBOL
terms. The single exception to this statement is the term
BIS-compiler. This term refers to compiler implementations that
compile COBOL-74 using the Business Instruction Set (BIS). All users
of TOPS-20 get BIS code. Users of TOPS-lO who have a KS or KL central
processing unit get BIS code as the default, but the compiler may be
installed without the BIS option. TOPS-lO users who have a KI central
processor will usually not get the BIS option on their compilers. The
KI processor will not execute the BIS instructions; however, the KI
will run the compiler which produces BIS code should there be a need
for it (for more information, see the COBOL-74 Installation
Procedures.) You can tell if your compiler is producing BIS code by
checking a listing of a compiled program. If your compiler is
producing the BIS instructions, the letters BIS will follow the
version and edit numbers on top of the page.

1.1.1 Symbols

The symbology used in this manual to illustrate the various COBOL
statement formats is essentially the same as that used in other COBOL
language manuals. Its basis is the system of symbols used in the
American National Standard and developed by CODASYL.

1-1

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.1.1 Underline - The underline is used to denote reserved key
words. Key words (uppercase underlined words) are required when you
~se a function of which they are a part. The absence of an underline
in an uppercase word denotes that the word is optional; you may use
or omit the word at your discretion.

NOTE

Uppercase words, whether underlined or
not, must be spelled correctly.

1.1.1.2 Brackets and Braces - When brackets, [],
a general format, they denote an optional portion
or omitted as needed. When braces, {}, enclose a
format, you must select one of the options
Consider the following figure.

[
MEMORY SIZE integer I ~~~~!CTERS J J t MODULES }

enclose a portion of
that may be included
portion of a general
within the braces.

The brackets indicate that the entire clause is optional. The braces
indicate that a choice of one of the words vertically stacked within
the braces must be specified.

Wherever a choice is
stacked either within
example.

required,
brackets

[{ SYNCHRONIZED} [LEFT JJ
SYNC RIGHT

the possibilities are vertically
or braces. Consider the following

The outside brackets indicate that the entire clause is optional. Th~
braces indicate that if the clause is used, a choice of a word
vertically stacked within the braces must be made. The inside
brackets indicate that you may optionally select a vertically stacked
word within.

NOTE

When possibilities are vertically
stacked between brackets, you have the
option of overriding a default
condition. The default condition is
described in the general rules for the
clause.

1.1.1.3 The Ellipsis - The ellipsis (•••) indicates that you may
repeat the item preceding it. The preceding item is usually enclosed
either by brackets or braces to remove any ambiguity as to which item
may be repeated. Consider the following example.

[SAME [RECORD] AREA FOR file-name-l [file-name-2] •••] •••

The final ellipsis indicates that the entire clause, if used, may be
repeated. The initial ellipsis indicates that the item file-name-2
may also be repeated within the clause.

1-2

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.2 COBOL Terms

The terms block, record, and item have special meanings when used in
relation to a COBOL program.

Term

Block

Record

Item

Meaning

Signifies a logical grouping of records. This term
commonly refers to a logical block of records on some
storage medium.

NOTE

The term "block" as defined here does not refer
to a "disk block", which is 128 words of
storage space on a·disk.

Signifies a logical unit of information. In relation
to a data file, a record is the largest unit of logical
information that can be accessed and processed at a
time. Records can be subdivided into fields or items.

Signifies a logical field or group of fields within a
record. A group item is one that is further broken
down into subitems (for example, a group item called
TAX might be broken down into subitems called FED-TAX
and STATE-TAX). Subitems can be further broken down
into other subitems. An item that has no subitems is
called an elementary item.

1.2 ELEMENTS OF COBOL LANGUAGE

1.2.1 Program Structure

A COBOL program consists of four divisions. Each division is made up
of source language statements. Some statements are required in every
program; most of them are optional.

Division

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

DATA DIVISION

PROCEDURE DIVISION

Meaning

Identifies the source program.

Describes the computer on which the
source program is to be compiled,
the computer on which the object
program is to run, and certain
relationships between program
elements and hardware devices.

Describes the data to be processed
by the object program.

Describes the actions
performed on the data.

1-3

to be

INTRODUCTION TO COBOL-74 LANGUAGE

NOTE

The COBOL-74 compiler will recognize
source line numbers up to and including
8184. If your program (including
library routines) exceeds this maximum,
the compiler will start numbering again
at 0001. Since this causes two or more
lines to have a single line number, you
should exercise caution when debugging
your program. The cross-reference
listing may be confusing. However, the
compiler will generate correct code
regardless of how many lines are in the
program or how they are numbered in the
cross-reference listing.

1.2.2 COBOL-74 Character Set

Within a source program statement, all ASCII characters are valid
except:

1. null, delete, and carriage return (which are ignored)

2. line feed, vertical tab, form feed, and the printer control
characters (20(8) through 24(8», which mark the end of a
source line

3. CTRL/Z (32(8», which marks the end-of-file

The compiler translates the lowercase ASCII characters to uppercase
characters except when they appear in nonnumeric literals.

Of this character set, 37 characters (the digits 0 through 9, the 26
letters of the alphabet, and the hyphen) can be used by the programmer
to form COBOL user-defined words, such as data-names, procedure-names,
and identifiers.

The remaining ASCII characters which are acceptable to the COBOL-74
compiler are listed below.

Punctuation characters include:

f1 (space)

(comma)

(semicolon)

(per iod)

II or I

1-4

(quotation mark)

(left parenthesis)

(right paren,thesis)

(horizontal tab)

INTRODUCTION TO COBOL-74 LANGUAGE

Special editing characters include:

+ (plus sign) * (check protection symbol)

(minus sign) Z (zero suppression)

$ (dollar sign) B (blank insertion)

(comma) 0 (zero insertion)

(decimal point) CR (credit)

/ (slash) DB (debit)

Special characters used in arithmetic expressions include:

+ (addition) / (division)

(subtraction) ** (exponentiation)

* (multiplication) t (exponentiation)

Special characters used in conditional (IF) statements include:

(equal)

1.2.3 Words

> (greater than) < (less than)

NOTE

These special characters will not
necessarily be underlined when they
appear in formats. For example, an
underlined minus sign might easily be
confused with an equal slgn. However,
they are usually required items. You
may not omit them, unless you are
specifically told otherwise.

A COBOL word is a character string which has not more than 30
characters and is either a user-defined word or a reserved word. For
COBOL-74, as for most COBOL compilers, a word may be either
user-defined or reserved, but not both.

1.2.3.1 Reserved Words - A reserved word is a COBOL word that is one
of a specific list that may be used in COBOL source programs as
specified in the general formats. You cannot use a reserved word as a
user-defined word; the two types are mutually exclusive. (See
Appendix B for a complete list of COBOL reserved words).

1-5

INTRODUCTION TO COBOL-74 LANGUAGE

There are six types of reserved words:

1. Key words

A key wo~d is required when the format in which the word
appears 1S used in a source program. Within each format, key
words are uppercase and underlined. Consider the following
example.

COMPUTE identifier-l [ROUNDED] identifier-2 [ROUNDED]] .••

=arithmetic-expression [ON SIZE ERROR imperative-statement]

In this case, the words COMPUTE, ROUNDED, SIZE, and ERROR are
key words.

2. Optional Words

Within each format, uppercase words that are not underlined
are optional words included for readability. You may use or
omit these words indiscriminately. The presence or absence
of an optional word does not alter the semantics of the COBOL
program in which it appears. Consider the following example.

LINAGE IS integer-l LINES [WITH FOOTING AT integer-2]

[LINES AT TOP integer-3]

In this case, the words IS, LINES, WITH, and AT are optional
words.

3. Connectives

There are three types of connectives:

a. Qualifier connectives that associate a data-name, a
condition-name, or a text-name with its qualifiers: OF,
IN (See Section 4.7, Qualification.) An example of this
type is

b.

COpy ACTREC OF COBLIB.

Series connectives that link
operands: separator comma,
example is

two or
separator

more consecutive
semicolon. An

GO TO PARTl, PART2, PART3 DEPENDING ON COUNTERI.

c. Logical connectives that are used in the formation of the
following conditions: AND, OR, AND NOT, OR NOT. An
example is

IF HOURS-WORKED IS GREATER THAN ZERO AND NOT
DEDUCTION-TIME PERFORM PRINT-CHECK.

4. Figurative Constants

A few specific constant values are used frequently and in
enough different ways to make it useful to have names for
them. The names given to them are called Figurative
Constants. These names are reserved words and are listed
below.

1-6

INTRODUCTION TO COBOL-74 LANGUAGE

The values represented by figurative constants are generated
by the compiler and referenced through the use of the
reserved words given below. These words must not be bounded
by quotation marks when used as figurative constants. The
singular and plural forms of figurative constants are
equivalent and may be used interchangeably to increase
readability.

The values which the compiler generates for you, and the
reserved words that name them, are as follows:

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represent the value '0', or one or more of the
character '0', depending on context.

Represent one or more of the character
"space".

Represent one or more of the character that
has the highest ordinal position in the
computer's collating sequence (in ASCII code,
this is octal 177).

Represent one or more of the character that
has the lowest ordinal position in the
computer's collating sequence (in ASCII this is
octal 000).

Represent one or more occurences of the quote
character, usually'''' (double quote).

Represents one or more repetitions of the
string of characters which compose the literal.
The literal must be either an alphanumeric
literal or a figurative constant other than
ALL. When a figurative constant is used, the
word ALL is redundant and is an option. You
may use it for readability if you wish.

Frequently a figurative constant represents a string of
characters whose length is not explicitly stated. When this
happens, the compiler determines the length of the string
from context. The figurative constant may be associated with
another data item by the context, as in the following
statements:

MOVE SPACES TO WORK-RECORD

IF AMOUNT-OWED EQUALS ZERO PERFORM CLOSE-ACCOUNT

Alternatively, the figurative constant may stand by itself
with no relation to any data item, as in:

DISPLAY "BALANCE IS" ZERO

STRING DAY-CODE, SPACE, "_", SPACE, MONTH-CODE
DELIMITED BY SIZE INTO DSPLY-DATE

In cases where the figurative constant is associated with a
data item, the compiler assumes that the string of characters
represented by the figurative constant has the same number of
characters as the associated data-item. In the case of the
figurative constant ALL literal, the literal is repeated from
left to right and truncated on the right, if necessary.

1-7

INTRODUCTION TO COBOL-74 LANGUAGE

Thus, if WORK-RECORD in the above example contains 128
characters, the figurative constant SPACES represents a
string of 128 spaces. If AMOUNT-OWED is an eight-character
numeric field with two decimal places, ZERO represents the
value 000000.00. In the following example:

MOVE ALL "ABC" TO HOLD-AREA

if HOLD-AREA is a ten-character alphanumeric field, its
contents after the MOVE will be

If you associate a JUSTIFIED clause with the data item, the
character repetition and truncation will take place before
any justification.

When the figurative constant is not associated with a data
item, as in the second set of examples above, the length of
the character string is one character, or one occurrence of
the literal in the case of ALL literal. This is true even if
you use the plural form instead of the singular. That is,
all of the following statements cause the same display:

DISPLAY ZERO.
DISPLAY ZEROS.
DISPLAY ALL ZEROS.

In each case, one zero will be displayed.

A figurative constant may be used whenever a literal appears
in a format. However, if the literal is restricted to
numeric characters, the only figurative constants permitted
are ZERO (ZEROS, ZEROES), LOW-VALUE (LOW-VALUES), and
HIGH-VALUE (HIGH-VALUES).

Each reserved word that is used to reference a figurative
constant value is a distinct character string with the
exception of the construction ALL literal, which is composed
of two distinct character strings.

5. Special Registers

COBOL-74 recognizes four reserved words as special registers:
DAY, DATE, TIME, an9 LINAGE-COUNTER. All special registers
have implied data descriptions of unsigned elementary
integers. The lengths of DAY, DATE, and TIME are fixed; the
length of LINAGE-COUNTER depends upon the file description
statement that generates the register.

DAY is five digits long. Its value represents the number of
the current day of the year. Its format is:

YYDDD

where YY is the year of the century, and

DDD is the number of the day of the year.

1-8

INTRODOCTION TO COBOL-74 LANGUAGE

DATE is six digits long. Its value represents the current
date. Its format is:

YYMMDD

where YY is the year of the century,

MM is the number of the month, and

'DD is the number of the day.

TIME is eight digits long. Its value represents the current
elapsed time since midnight on a twenty-four-hour basis. Its
format is:'

HHMMSShh

where HH is the hours,

MM is the minutes,

SS is the seconds, and

hh is the 1/100ths of a second.

DAY, DATE, and TIME may be accessed by ACCEPT statements in
the Procedure Divisioh. See Section 5.9.1 for the correct
format to use with the ACCEPT verb.

The LINAGE-COUNTER special register is generated whenever the
file description of a sequential file includes the LINAGE
clause. The contents of a LINAGE-COUNTER represent the
current line number within the current page of output. The
contents of a LINAGE-COUNTER are updated automatically by
WRITE statements referring to the associated sequential file.
The LINAGE clause and LINAGE-COUNTER are fully explained in
Section 4.9.31.

6. Special-Character Words

The arithmetic operators +, -, *, I, **, A, and the relation
characters <,), and = are special-character reserved words.

1.2.3.2 User-Defined Words - A user-defined word is a COBOL word
which is supplied by the user to satisfy the format of a clause or
statement. The characters which may be used to form user-defined
words are the letters of the alphabet, the digits 0 through 9, and the
hyphen. The hyphen may not be used as the first or last character in
the user-defined word.

There are 17 types of user-defined words:

1. alphabet-name

2. cd-name

3. condition-name

4. data-name

1-9

INTRODUCTION TO COBOL-74 LANGUAGE

5. file-name

6. index-name

7. level-number

8. library-name

9. mnemonic-name

10. paragraph-name

11. program-name

12. record-name

13. report-name

14. routine-name

15. section-name

16. segment-number

17. text-name

Each of these user-defined word types is described in the Glossary
which appears at the end of this manual.

1.2.4 Literals

A literal is a character string whose value is determined by the
ordered set of characters of which it is composed. You can also use a
figurative constant as a literal. There are two types of literals:
numeric and alphanumeric.

1.2.4.1 Numeric Literal - A numeric literal is a character string of
from 1 to 20 characters selected from the digits 0 through 9, the plus
sign, the minus sign, and the decimal point. The rules for the
formation of numeric literals are as follows:

1. A literal must contain at least 1 digit and no more than 18
digits.

2. A literal must not contain more than one sign character. If
a sign is used, it must appear as the leftmost character of
the literal. If the literal is unsigned, it is considered
positive.

3. A literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
,character. If the literal contains no decimal point, the
literal is considered an integer.

NOTE

The word integer, appearing in a· general
represents a nonnegative numeric literal
decimal point.

1-10

format,
with no

INTRODUCTION TO COBOL-74 LANGUAGE

If a literal conforms to the rules for the formation of
numeric literals but is enclosed in quotation marks, it is
considered an alphanumeric literal and is treated as such by
the compiler.

4. The value of a numeric literal is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric. (See Section 4.10.16,
The PICTURE Clause.) The size of a numeric literal is equal
to the number of digits specified by the user, including
leading zeros, if any.

1.2.4.2 Alphanumeric Literals - An alphanumeric literal is a
character string representing from 1 to 120 characters, delimited on
both ends by quotation marks and consisting of any allowable character
in the computer's character set. An opening quotation mark must be
immediately preceded by a space or left parenthesis. A closing
quotation mark must be immediately followed by one of the separators
(space, comma, semicolon, or right parenthesis) or by the terminator,
period.

NOTE

You may use either the single quote
character (') or the double quote (").
Whichever one you use, you must be sure
to pair them correctly - do not try to
pair a single quote with a double quote
or vice versa.

To represent one quotation-mark character within an alphanumeric
literal, two contiguous quotation marks must be used. The value of an
alphanumeric literal in the object program is the string of characters
itself, except that:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other punctuation
alphanumeric literal,
category alphanumeric.

1.2.5 Separators

characters are part of the value of the
not separators. All alphanumeric literals are
(See Section 4.9.18, The PICTURE Clause.)

A separator is a string of one or more punctuation characters. The
rules for forming separators are:

1. Space

a. Anywhere a space is used as a separator, more than one
space may be used.

b. A space may immediately precede all separators except the
closing quotation mark. Here the space is considered
part of an alphanumeric literal, not a separator.

1-11

INTRODUCTION TO COBOL-74 LANGUAGE

c. A space may immediately follow any separator except the
open quotation mark. In this case, a following space is
considered part of an alphanumeric literal, not a
separator.

2. Comma and Semicolon

The punctuation characters, the comma and semicolon, are
separators. You may insert these separators only where
explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence definitions, or
by source program format rules.

3. Right Parenthesis and Left Parenthesis

Right parenthesis and left parenthesis are separators only
when used in balanced pairs to delimit subscripts or indexes.

4. Quotation Marks

Quotation marks may be used only in balanced pairs to delimit
alphanumeric literals or in adjacent pairs to pass one
quotation mark in an alphanumeric literal. (See note
concerning quotation marks in Section 1.2.4.2, Alphanumeric
Literals.)

5. Horizontal Tab

The horizontal tab character is governed by the same rules
that goverti the space character. It is normally used to
vertically align statements or clauses on successive lines of
the source program listing. The compiler, upon encountering
a tab character, generates one or more space characters
consistent with the tab character position in the source
line.

6. Pseudo-text Delimiter

Pseudo-text delimiters set off textual matter in the COpy
statement from 'the rest of the sentence. Each delimiter
consists of two contiguous equal signs (==). The opening
pseudo-text qelimiter must be immediately preceded by a
space; the closing delimiter must be immediately followed by
one of the separators space, comma, semicolon, or period.
These delimiters' may appear only in balanced pairs delimiting
pseudo-text.

NOTE

There are certain rules for writing
source programs which supersede these
general rules. For a discussion of
source program formats see Section 1.3.

1-12

INTRODUCTION TO COBOL-74 LANGUAGE

1.3 SOURCE PROGRAM FORMAT

There are two basic types of source program formats in which you may
write your COBOL-74 programs. These two types arise from the methods
of entering the source program into the system. The first is
conventional card-type format. You should use this type if you wish
your COBOL-74 program to be compatible with other compilers. The
second is the standard DEC format which is designed for easy use on
terminals. This format is the one to us~ for those erograms which are
to be entered into the system through a terminal using a text editor.
The compiler will assume that the source program is written in
terminal-type format unless the /S switch is included in the command
string to the compiler (refer to Appendix C).

Certain margins which begin the areas used for writing COBOL-74
statements are standard for source programs. The standard names for
these margins are Margins L, A, B, and R. As you might expect,
Margins Land R are the left and right marglns of the line,
respectively. Margins A and B mark the beginning of two areas, Areas
A and B. Area A is where all division-names, section-names,
paragraph-names, and FD (File Description) entries must begin. All
other entries must begin in Area B. Although the actual character
position which marks each of these margins changes from format to
format, the function of each area is the same; in other words, you
must begin your division-names at Margin A no matter what format you
use, no matter where Margin A happens to be placed in that format.

NOTE

These rules agree with the 1974 ANSI
standard for source program formats.
Programs written according to the rules
will be more readable and transportable.
The COBOL-74 compiler, however, does not
do complete syntax checking to determine
if you have followed all rules, and will
not always issue an error message if you
violate them. Thus, you are encouraged
to conform to the rules to avoid
unpredictable results.

Some of the rules for using source program formats remain constant
regardless of which format you use. These rules are given below.
Refer to them for all types of formats.

1. Continuation Area - If you wish to split a word or literal
across two lines, you must use this area to indicate your
wish to the compiler. To do this, write the first line up to
the point at which you wish to split it, then place a hyphen
(-) in the continuation area of the next line and continue
the second line beginning at or after Margin A. If you are
splitting a word or numeric literal you may leave spaces
between the last character in the first line and the end of
the spurce statement area. (This area ends at the
identification area, when it exists; otherwise it ends at
Margin R.) However, if you wish to split an alphanumeric
literal you must not leave spaces after the last character of
the first line, since the compiler will assume that those
spaces are part of the literal. If you wish only to continue
a sentence on the next line without splitting any words, you
may simply write the first line, then continue on the next
line; do not use the continuation column for this purpose.

1-13

INTRODUCTION TO COBOL-74 LANGUAGE

2. Comment Lines - You may insert comment lines into your
COBOL-74 program by using the continuation area. If the
compiler finds an asterisk (*) in that area it will list the
remainder of the line as a comment on the next line. If
there is a slash (/) instead of an asterisk a new page will
be started and the comment will be listed at the top of the
new page.

NOTE

All formats may be used with any input
medium. The names of the types of
formats refer to their origins, not
their uses.

1.3.1 Card-type Format

You should use card-type format if you wish to compile your program
under an operating system other than TOPS-lO or TOPS-20. Your program
may be punched on an off-line card punch or created with an on-line
text editor. This format uses card sequence numbers which must be
created by the user. The layout of a line in this format is shown in
Figure 1-1. The numbers refer to card columns or character positions.

CARD·TYPE FORMAT

6 7 8 12

~l
73 80

1 ~ I
~,'

r
V-

L C A B I MR-S-018-79

Figure 1-1 (a) Card-type Format

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 80. Margin A is between positions 7 and 8
and begins the area labeled A in the figure. Margin B is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by the user who creates the file on a terminal or
a card punch.

2. Debug Lines - You may insert debug lines into your program by
putting a ~D" in the continuation area (column 7). The
compiler will recognize it and print it on the source listing
with the spacing similar to a comment line.

1-14

INTRODUCTION TO COBOL-74 LANGUAGE

3. Identification Area - This area is marked I in the figure
(positions 73 through aD). These eight character positions

may hold identifying information which can be composed of any
eight characters. This information will be printed on the
source listing, and can be used to identify the card deck (if
the source code is in fact on cards).

NOTE

The card sequence numbers are not the
same as the line numbers created by a
line editor. The numbers supplied by an
editor are not acceptable to COBOL-74
when you specify card-type format.

The examples in Figure l-l(b} illustrate these rules. The first two
.lines are simple statements, with a line number in area L, COBOL-74
statements in areas A and B, and the identification area containing
the name of the program. The third line shows how the continuation
column is used to split a word across two lines. Note that t~e word
may be written right up to the end of area B.

1.3.2 Terminal-type Format

If you are writing your program using a text editor and a terminal to
input the source code, terminal-type format is your best choice.
There are two types of terminal-oriented formats, one with line
numbers and one without. Layouts and examples of each type are shown
in the figures which follow.

1.3.2.1 With Line Numbers - This format is suitable if you use a
line-oriented editor such as EDIT or SOS. The format is shown in
figure 1-2(a).

TERMINAL-TYPE FORMAT - WITH LINE NUMBERS

6 7 8 12 I 105

~--~I~I~--~--~/',~{ ______ ~
~~~--~v~ __ ~~-v--v-~----------------v~--------------~J 

L z c A B MR-S,819-79 

Figure 1-2(a) Terminal-type Format with Line Numbers 

In this format, margin L is to the left of position 1 and margin R is 
to the right of position 105. Margin A is between positions 7 and a 
and begins the area labeled A. Margin B is between positions 11 and 
12 and begins the area labeled B. 

1-15 



INTRODUCTION TO COBOL-74 LANGUAGE 

The following rules pertain to the use of this source format: 

1. Line Numbers - These are placed in area L (positions 1 
through 5) either by the line editor or by the user. If you 
are using an editor which supplies line numbers you must not 
add numbers yourself - one set is enough. 

2. Position 6 - This position (marked Z in the figure) remains 
blank. The editor may insert a tab here for purposes of 
making your text more readable~ if so, the compiler will 
read the tab as a space. 

3. Continuation Area - To use the continuation area, type -, *, 
, or / as the first character of the line. However, if you 
do not wish to use the continuation area, you may ignore it 
altogether - you do not need to type a space at the beginning 
of the line. If you do type a space as the first character 
of a line, the compiler will assume that you meant the space 
to be part of the line. 

4. Debug Lines - Debug lines can be inserted in your program 
with this format if you type "\D" {backslash D) as the first 
two characters on the line. If you use "D" as in card-type 
format, the compiler will read the liD" as the first character 
of a word beginning in area A. 

The examples in figure l-2{b) illustrate the use of this format. The 
first two lines are simple COBOL-74 statements with the five-character 
line number in area L and areas Z and C blank. The third line shows 
how a word is split across two lines. Note that you may leave spaces 
between the last letter of the word and margin R without confusing the 
compiler. 

1.3.2.2 without Line Numbers - If you decide to use a terminal to 
enter your program but your editor (such as TECO) does not supply line 
numbers (or you requested that. the edi tor remove th~m when you 
finished editing), this is the simplest format to use. The format is 
shown in figure l-3{a). 

TERMINAL-TYPE FORMAT - NO LINE NUMBERS 

105 o 5 
~~--------~r---------------~I ,~(----------------~ 

~~--------~--------------~/ I~'------------------~ 
-v-~~, ______ --------~~~----""",, __ ~~ 
CAR MR-S'()20-79 

Figure l-3(a) Terminal-type Format without Line Numbers 

In this format, margin L is to the left of position 0, if it exists, 
or position 1, if position a does not exist. Margin R is to the right 
of position 105. Margin A is to the left of position 1 and begins the 
area labeled A. Margin B is between positions 4 and 5 and begins the 
area labeled B. 

1-16 



INTRODUCTION TO COBOL-74 LANGUAGE 

The following rules pertains to the use of this source format: 

1. Continuation Area - If you wish to use the continuation area, 
type the character you wish to enter (-, *, \, /) as the 
first character of the continued line. If the compiler finds 
one of these characters at the beginning of a line it will 
assume that the line has a position 0 - in other words, a 
continuation area. Otherwise, each line starts in position 1 
and there is no position O. 

2. Debug Lines - Debug lines may be inserted into the program. 
To do this type a "\D" (backslash D) as the first two 
characters on the line. 

The examples in Figure l-3(b) show this format's simplicity. The 
first two lines are the same simple COBOL-74 sentences as above. Note 
that the paragraph-name starts in the very first character position. 
The third line shows how to tell the compiler that the line you enter 
is a continuation (or a comment) line. The first half of the line is 
entered beginning in the first position of Area B, while the second 
half begins with a hyphen and continues from the second position. 

1-17 



.... 
I .... 

(X) 

00 
00 

00 
00 
00 

00 
00 

00 
00 

PIR 

-

10 00 PR olc ES s- n-A IX. T~ XA C~ T~ 
10 10 IMla VE ITH IS -P ER 10 OS -IT AX Te iliA X- pll 10. T~ XA C TG 

10 2P SIT RI NG MO ST -IR EC EN T- Mlv NIT H , SP AC E , "- II SP PC E , MO ~T -R EC EN T- OA Y , TA XA CC TG , 
10 30 SP AC E , 11- II SP IA C E, IMO ST -R EC EN T- YE ~iR OE LI 1M I !TE BY SI ZE IN TO 10 I SP LT AX ~C TG , 
10 4P 'AY -~ At!" E. 

--

MR-5-021-79 

Figure 1-1 (b) 

lPO PR PC E~ s~ T~ x. 
110 M VE TH IS -P ER 10 o~ -T AX T TA X~ p~ 10. 

120 ST RI NG 1M 0 ST I-R EC EN :1'- MO NT H , ~p AC E , "- II SP IA C E , MO ~T -R ,-C EN T- O~ ~ , ~P AC E, "- II SP , , 
1 3 o - ACE,MO~!l-IRECENT-YEIAR DE IMITED BY ~IZE IN[O DISP~AY-DA~t. 

MR-S-022-79 

Figure 1-2 (b) 

OC ES Ie:; - iTiA I~ • 
~~Ie !~IE 1H IS -IF IE R 110 10 " 1-11 IA ~ 10 ITIA ~- PA lie. 

SI1 !~ I NG itJ 0 S1 -R Ele Efl 111- IMC IN 1 H , Isip Iplc E , "- II SP J A'c E , Mlc Sl -fR Ele EN 1- DA Y , SP lAC E , "- II Sip 'A e E , I~IOS 
111- IR E CE !~ 1 -~ lEA IR iD E IL I ItJ I IT E D BIY IS I ZE IN ITO 01 SP IL A ~- jeA IT E. 

MR-5-023-79 

Figure 1-3 (b) 

.... 
Z 
toi 

~ o c:: 
(') 
toi .... 
~ 
toi o 
(') 

o 
ttJ o 
t"t 
I ...., 
~ 

t"t 

~ 
Gl c:: 
>' 
Gl 
tzl 



INTRODUCTION TO COBOL-74 LANGUAGE 

1.4 THE COBOL LIBRARY FACILITY 

You can use the COBOL Library Facility to copy part of your program 
from a COBOL source library at compile time. This can be useful if, 
for example, you need to describe a complex file to be used in several 
different programs, and you wish to write the file description only 
once. You can insert the file description into the library (for 
directions and further description see the COBOL-74 Usage Material, 
Part 3 of this manual), and whenever the description is needed you can 
simply copy it from the library into the program you are writing. The 
following statement is used to accomplish this. 

1.4.1 The COpy Statement 

Function 

The COPY statement incorporates text from a COBOL library into a COBOL 
source program. (For a complete description of COBOL libraries, see 
the COBOL-74 Usage Material, Part 3 of this manual.) The COpy 
statement may also be used to replace specified text in the source 
text being copied. 

General Format 

COP Y t ext - n am e [ {~ q 1 i bra r y - n a me ] 

~ {1
==pseUdo_text-l==1 

1
==pseUdo-text-2==l J J 

REPLACING i?entifier-l 
llteral-l BY identifier-2 

literal-2 ... 

Technical Notes 

word-l word-2 

NOTE 

In the technical notes which follow, the 
term string-l is used to denote the 
character string which is used in place 
of pseudo-text-l, identifier-I, 
literal-I, or word-I. The term string-2 
is similarly used. 

1. If more than one COBOL library is available during 
compilation, text-name must be qualified by the library-name 
identifying the COBOL library in which the text associated 
with text-name resides. 

Within one COBOL library, each text-n'ame must be unique~ 

1-19 



INTRODUCTION TO COBOL-74 LANGUAGE 

,2. The COpy statement must be preceded by a space and terminated 
by the separator period. The entire statement, including the 
period, will be removed when thel text is copied from the 
library. 

3. String-l must not be null, nor may it consist solely of the 
character space(s), nor may it consist solely of comment 
lines. 

4. String-2 may be nUll. 

5. Character-strings within string-l and 
continued. However, both characters 
delimiter must be on the same line. 

string-2 may be 
of a pseudo-text 

6. A COpy statement may occur in the source program anywhere a 
character-string or a separator may occur except that a COpy 
statement must not occur within a COpy statement. 

7. The effect of processing a COpy statement is that the library 
text associated with text-name is copied into the source 
program, logically replacing the entire COpy statement, 
beginning with the reserved word COpy and ending with the 
punctuation character period, inclusive. The compilation of 
a source program containing COpy statements is logically 
equivalent to processing all COpy statements prior to the 
processing of the resulting source program. 

8. If the REPLACING phrase is not specified, the library text is 
copied unchanged. If the REPLACING phrase is specified, the 
library text is copied and each properly matched occurrence 
of string-l in the library text is replaced by the 
corresponding string-2. 

9. The comparison operation to determine text replacement occurs 
as follows: 

a. Any separator comma, semicolon, and/or space(s) preceding 
the leftmost library text-word is copied into the source 
program. Starting with the leftmost library text-word 
and the first string-l that was specified in the 
REPLACING phrase, the entire REPLACING phrase operand 
that precedes the reserved wora BY is compared to an 
equivalent number of contiguous library text-words. 

b. String-l matches the library text if, and only if, the 
ord~red sequence of text-words that forms string-l is 
equ~l, character for character, to the ordered sequence 
of library text-words. For purposes of matching, each 
occurrence of a separator comma or semicolon in string-l 
or in the library text is considered to be a single space 
except when string-l consists solely of either a 
separator comma or semicolon, in which case it 
participates in the match as a text-word. Each sequence 
of one or more space separators is considered to be a 
single'space. 

c. If no match occurs, the comparison is repeated with each 
next successive string-I, if any, in the REPLACING phrase 
until either a match is found or there is no next 
successive REPLACING operand. 

1-20 



INTRODUCTION TO COBOL-74 LANGUAGE 

d. When all the REPLACING phrase operands have been compared 
and no match has occurred, the leftmost library text-word 
is copied into the source program. The next successive 
library text-word is then considered as the leftmost 
library text-word, and the comparison cycle starts again 
with the first string-l specified in the REPLACING 
phrase. 

e. Whenever a match occurs between string-l and the library 
text, the corresponding string-2 is placed into the 
source program. The library text-word immediately 
following the rightmost text-word that participated in 
the match is then considered as the leftmost library 
text-word. The comparison cycle starts again with the 
first string-l specified in the REPLACING phrase. 

f. The comparison operation continues until the rightmost 
text-word in the library text has either participated in 
a match or been considered as a leftmost library 
text-word and participated in a complete comparison 
cycle. 

10. When you use the REPLACING phrase, you must treat any picture 
strings in the library text as complete pieces of text. That 
is, if you wish to replace XiS in the picture string 

EXAMPLE-ITEM PICTURE IS XXX. 

with 9's, you must replace the entire PICTURE clause, not 
just the three XiS, with the form shown below: 

COpy EXAMPLE-TEXT FROM LIBARY REPLACING ==PICTURE IS 
XXX== BY ==PICTURE IS 999==. 

11. For purposes of matching, a comment line which occurs in the 
library text and string-l is interpreted as a single space. 
Comment lines which appear in string-2 and library text are 
~opied into the source program unchanged. 

12. Debugging lines are permitted within library text and 
string-2. Debugging lines are not permitted within string-l~ 
text-words within a debugging line participate in the 
matching rules as if the '0' did not appear in the indicator 
area. If a COpy statement is specified on a debugging line, 
then the text that is the result of the processing of the 
COpy statement will also appear as though it were specified 
on debugging lines with the following exception: comment 
lines in library text will' appear as comment lines in the 
resultant source program. 

13. The text produced as a result of the complete processing of a 
COpy statement must not contain a COpy statement. 

14. The syntactic correctness of the library text cannot be 
independently determined. The syntactic correctness of the 
entire COBOL source program cannot be determined until all 
COpy statements have been completely processed. 

1-21 



INTRODUCTION TO COBOL-74 LANGUAGE 

15. Library text must conform to the rules for COBOL source 
program format. {See Section 1.3.} You may copy text from a 
library without worrying about what format your program is 
in, however. 

16. For purp?ses of compilation, text-words after replacement are 
placed ln the source program according to the rules for 
source program format. 

1-22 



CHAPTER 2 

THE IDENTIFICATION DIVISION 

The Identification Division is required in every source program. It 
identifies the source program and the output from compilation. In 
addition, it may contain other documentary information such as the 
name of the program's author, the name of the installation, the dates 
on which the program was written and compiled, any special security 
restrictions, and any miscellaneous remarks. 

General Structure 

{ t%ENTI FI CATION} DI VISION. 

[PROGRAM-I D. program-name.J 

[ AUTHOR. comment-entry ... J 
r=INSTALLATION. comment-entry 

[DATE-WRITTEN. comment-entry 

~DATE-COMPILED. comment-entry 

[SECURITY. comment-entry ... J 

Technical Notes 

.. J 

..J 
... J 

1. The Identification Division must begin with the reserved 
words IDENTIFICATION DIVISION followed by a period and a 
space. Note that in COBOL-74 the reserved word ID may be 
substituted for IDENTIFICATION in the division header. 

2. The PROGRAM-IO paragraph contains the name identifying the 
program. The program-name may have up to six characters, and 
must contain only letters, digits, and the hyphen. It can be 
enclosed in quotation marks. The program-name cannot be a 
reserved word and must be unique. It cannot be the same as a 
section, paragraph, file, data, or subprogram name. This 
paragraph is optional. If it is not present, the name MAIN 
is assigned to the program. 

2-1 



THE IDENTIFICATION DIVISION 

3. The remaining paragraphs are optional and, if used, may 
appear in any combination and in any order. A comment 
paragraph consists of any combination-of characters from the 
COBOL character set organized to conform to COBOL sentence' 
and paragraph format. All text appears as written on the 
output listing, except the DATE-COMPILED paragraph which will 
be replaced by the current date. Reserved words can be used 
in any comment ppragraph. 

2-2 



THE IDENTIFICATION DIVISION 

GENERAL FORMAT FOR IDENTIFICATION DIVISION 

{ t%ENTIFICATION} DIVISION. 

[PROGRAM-I D. program-name.J 

[ AUTHOR. comment-entry ... J 
~INSTALLATION. comment-entry 

~DATE-WRITTEN. comment-entry 

~DATE-COMPILED. comment-entry 

[SECURITY. comment-entry ... J 

.. .J 

.. ] 
... ] 

2-3 





CHAPTER 3 

THE ENVIRONMENT DIVISION 

The Environment Division allows you to describe the particular 
computer configurations you wish to use for program compilation and 
execution. In this division you also specify the files and devices 
you will use for input and output. The clauses used to do these 
things are presented on the following pages. 

3-1 



THE ENVIRONMENT DIVISION 

CONFIGURATION SECTION 

3.1 ENVIRONMENT DIVISION CLAUSE FORMATS 

3.1.1 CONFIGURATION SECTION 

The Configuration Section allows you to describe the computers used 
for program compilation and execution, and to assign mnemonic-names 
for input/output devices. The Configuration Section consists of the 
section name (CONFIGURATION SECTION.) followed by one or more of the 
following paragraphs: 

SOURCE-COMPUTER. (See Section 3.1.2) 

OBJECT-COMPUTER. (See Section 3.1.3) 

SPECIAL-NAMES. (See Section 3.1.4) 

Technical Notes 

1. This section is optional. 

2. All commas and semicolons are optional. 
terminate the entire entry. 

3-2 

A period must 



THE ENVIRONMENT DIVISION 

SOURCE-COMPUTER 

3.1.2 SOURCE-COMPUTER 

Function 

The SOURCE-COMPUTER paragraph describes the computer on which the 
program is to be compiled. 

General Format 

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] • 

Technical Notes 

1. This paragraph is optional. 

2. Computer-name must be one of the 
DECSYSTEM-20, PDP-lO, or PDP-integer-l. 
the range 1000 to 1099. 

list DECsystem-lO, 
Integer-l must be in 

3. If the WITH DEBUGGING MODE clause is specified, all debugging 
lines are compiled. If it is not specified all debugging 
lines are treated as if they were comment lines. In either 
case all USE FOR DEBUGGING statements are compiled as if they 
were comments. This is because COBDDT accomplishes what is 
otherwise done with debugging statements. 

Examples 

SOURCE-COMPUTER. DECSYSTEM-l055. 

SOURCE-COMPUTER. DECSYSTEM-20 WITH DEBUGGING MODE. 

3-3 



THE ENVIRONMENT DIVISION 

OBJECf -COMPUTER 

3.1.3 OBJECT-COMPUTER 

Function 

The OBJECT-COMPUTER paragraph describes the computer on which the 
program is to be executed. 

General Format 

OBJECT-COMPUTER. computer-name 

[ 1 
WORDS ~ MEMORY SIZE integer CHA'RACTERS ( 
MODULES , 

~PROGRAM COLLATING SEQUENCE IS alPhabet-name~ 

~SEGMENT-LIMIT ~ segment-number~ 

Technical Notes 

1. This paragraph is optional. 

2. Computer-name must. be one of the following: PDP-IO, 
PDP-integer-l, DECsystem-lO, or DECSYSTEM-20. Int~ger-l must 
be a number in the range 1000 through 1099. The number 
specified is for documentary purposes only and has no direct 
bearing on the object code generated" by the compiler. If the 
compiler was installed to take advantage of the KL central 
processing unit's Business Instruction Set (BIS), the 
BIS-code will be generated automatically. (See the COBOL-74 
Installation Procedures.) 

3. The optional MEMORY SIZE clause specifies the maximum memory 
size of SORT's work area during a SORT operation. If the 
MEMORY SIZE clause is omitted, 262,144 WORDS are assumed. If 
it appears, the following ranges are applicable. 

CHARACTERS 

WORDS 

MODULES 

Up to 1,572,864 (262,144 words x 6 
characters/word) 

Up to 262,144 

Up to 256 (1 module equals 1024 
words) 

COBOL-74 presently ignores the MEMORY SIZE clause. SORT will 
use its default algorithms to determine the amount of memory 
needed to execute a sort. (Refer to the SORT User's Guide 
for more information.) 

3-4 



THE ENVIRONMENT DIVISION 

OBJECT-COMPUTER (Cont.) 

4. The PROGRAM COLLATING SEQUENCE clause specifies a collating 
sequence for a program. When you use the PROGRAM COLLATING 
SEQUENCE clause the collating sequence is the one associated 
with alphabet-name. When you do not use the PROGRAM 
COLLATING SEQUENCE clause the collating sequence is ASCII. 
The program collating sequence determines: 

1. the results of explicit comparisons in 
relation-conditions and in condition-name conditions 

2. the results of implicit comparisons in CONTROL clauses of 
report description entries 

3. the order of records processed by SORT and MERGE 
statements which do not specify another collating 
sequence with the COLLATING SEQUENCE phrase 

4. the values of the figurative constants HIGH-VALUE and 
LOW-VALUE 

(See the alphabet-name IS clause in the SPECIAL-NAMES 
paragraph for information on how to associate a collating 
sequence with alphabet-name.) 

5. If you use the SEGMENT-LIMIT clause, only those segments 
having segment numbers from a up to but not including the 
value of integer-3 are treated as resident segments of the 
program. Integer-3 must be a positive integer in the range 1 
to 49. 

If you omit the SEGMENT-LIMIT clause, segments having segment 
numbers from a through 49 are considered as resident segments 
of the program (that is, SEGMENT-LIMIT IS 50 is assumed). 
More on segmentation can be found in Sections 5.3 and 11.1. 

6. The DISPLAY clause is optional. If you include it in your 
program, the compiler will use the DISPLAY type you specify 
as the default in determining the recording mode for external 
files and for items described in the Data Division as 
DISPLAY. This allows you to change the default usage inside 
the program without using compiler switches. The effect of 
specifying DISPLAY IS DISPLAY-9 is the same as that of 
including a IX switch in the command string to the compiler. 
However, the IX switch will always override the DISPLAY 
clause. For example, if you include in your program the 
following statement 

Example 

DISPLAY IS DISPLAY-7 

all items described in the Data Division as USAGE IS DISPLAY 
will be considered DISPLAY-7 items. 

~BJECT-COMPUTER. DECSYSTEM-l077 
MEMORY 50000 WORDS 
SEGMENT-LIMIT IS 35 
PROGRAM COLLATING SEQUENCE IS NATIVE 
DISPLAY re DISPLAY-7. 

3-5 



THE ENVIRONMENT DIVISION 

SPECIAL-NAMES 

3.1.4 SPECIAL-NAMES 

Function 

The SPECIAL-NAMES paragraph provides a means of assigning mnemonic 
names to input/output devices, code sets, and collating sequences. 
This paragraph may also define the character used as a currency slgn, 
and may specify the interchange of decimal point and comma functions 
in the program. 

General Format 

[SPECIAL-NAr.1ES. 

alphabet-name IS 

STANDARD-l 
NATIVE 

literal-l THRU llteral-2 
[ 

{
THROUGH} . 

ALSO ,1 iteral-3 [ALSO 1 iteral-4 ] 

literal-5 THRU llteral-6 

.J 
[ [ 

{
THROUGH} . 

ALSO literal-7 [ALSO literal-S] . .. ] 
r=literal-9 ~ mnemonic-name~ 

~CURRENCY SIGN ~ literal-l0~ 

[DECIMAL-POINT Ii COMMA- ] .J 
Technical Notes 

1. This paragraph is optional. 

2. The reserved word CONSOLE refers to the user's terminal. The 
assigned mnemonic-name may be used with the ACCEPT and 
DISPLAY verbs in the Procedure Division to input data from 
and output data to the terminal. 

3. The name CHANNEL refers to a channel on the line-printer 
control tape. m and n represent any integer from 1 to Sand 
refer to anyone of the eight channels on the tape. Control 
tape channels can be referred to in the. ADVANCING clause of 
the WRITE' verb in the Procedure Division to advance the paper 
form to the desired channel position. (Refer to the Hardware 
Reference Manual for a description of printer control 
~apes.) For example, if the entry 

CHANNEL (1) IS TOP-OF-PAGE 

3-6 



THE ENVIRONMENT DIVISION 

SPECIAL-NAMES (Cont.) 

is included in this paragraph, the following procedure 
statement will print the line and then skip to the top of the 
next page. 

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD 
BEFORE ADVANCING TOP-OF-PAGE. 

4. The alphabet-name IS clause associates a user-specified name 
with a sequence of characters that may be used as a character 
code set, a collating sequence, or both. This character 
sequence may be either one of the two sequences provided by 
the compiler or a sequence specified by the user. 

A character code set is specified by referencing 
alphabet-name in the CODE-SET clause of a file description. 
When defining a character code set, the alphabet-name IS 
clause is restricted to STANDARD-I, NATIVE, ASCII, or EBCDIC. 
A collating sequence is specified by referencing 
alphabet-name either in the PROGRAM COLLATING SEQUENCE clause 
of the OBJECT-COMPUTER paragraph or in the COLLATING SEQUENCE 
phrase of a SORT or MERGE statement. 

When STANDARD-I, NATIVE, or ASCII appear in an alphabet-name 
IS clause, the character code set and collating sequence 
specified is ASCII. When EBCDIC appears in an alphabet-name 
IS clause, the character code set and collating sequence 
specified is EBCDIC. 

When the literal phrase appears in an alphabet-name IS 
clause, the literals define an ascending collating sequence 
in the order of their appearance in the phrase. Numeric 
literals represent the ordinal number of the character within 
the ASCII character set and must be in the range from 1 
through 128. Nonnumeric literals in an alphabet-name IS 
clause represent themselves. If the literal contains 
multiple characters, they are assigned successive ascending 
positions within the collating sequence, starting with the 
leftmost character. Characters whose positions are not 
explicitly defined by the literal phrase are assigned 
positions higher than the specified characters and in their 
normal ASCII sequence. 

When you specify the THROUGH phrase, the set of contiguous 
ASCII characters beginning with the character specified by 
literal-l and ending with the character specified by 
literal-2 are assigned successive ascending positions in the 
collating sequence. The characters specified by a THROUGH 
phrase may be in either ascending or descending order. 

When you specify the ALSO phrase, the characters specified by 
literal-I, literal-3, literal-4, •.• , are all" assigned to the 
same position in the collating sequence. 

The highest character in the collating sequence, regardless 
of how it is specified, becomes the figurative constant 
HIGH-VALUE. If more than one character occupies this 
position, the last character specified becomes HIGH-VALUE. 
The lowest character in the collating sequence, regardless of 
how it is specified, becomes the figurative constant 
LOW-VALUE. If more than one character occupies this 
position, the first character specified becomes LOW-VALUE. 

3-7 



THE ENVIRONMENT DIVISION 

SPECIAL-NAMES (Cont.) 

5. The clause literal-l IS mnemonic-name-5 specifies the CODE 
value for a particular report (refer to the CODE clause in 
Section 4.9.26). Literal-l must be an alphanumeric literal 
enclosed in quotation marks, and can be from 1 through 120 
characters in length. 

6. If you use the CURRENCY SIGN clause in the SPECIAL-NAMES 
paragraph, you· must use the literal you specify (instead of 
the $ character) in PICTURE clauses in the Data Division. 
For instance, if you wish to insert a currency sign at the 
front of a field which is to be printed on your report, you 
must use the literal you specified - not the $ character - as 
the editing symbol. 

This literal is limited to a single printable character and 
must not be one of the following characters: 

digits 0 through 9 

alphabetic characters A, B, C, 0, P, R, S, V, X, Z 

special characters * + - , . , ( ) " 

7. If you use the DECIMAL-POINT IS COMMA clause, then the 
functions of the comma and period are interchanged for all 
PICTURE clauses and numeric literals. 

Example 

SPECIAL-NAMES. CONSOLE IS MYTERM 
CHANNEL (1) IS TOP-OF-PAGE. 

3-8 



THE ENVIRONMENT DIVISION 

INPUT-OUTPUT SECTION 

3.1.5 INPUT-OUTPUT SECTION 

The Input-Output Section names the files and exiernal media required 
by the object program and provides information required for 
transmitting and handling data during execution of the object program. 
This section consists of the section header (INPUT-OUTPUT SECTION.) 
followed by one or more of the following paragraphs: 

FILE-CONTROL. (See Section 3.1.6) 

I-O-CONTROL. (See Section 3.1.15) 

Technical Notes 

1. This section is optional. 

2. All semicolons and commas are optional. 
statement in the FILE-CONTROL paragraph 
period. The entire entry in the I-O-CONTROL 
end with a period. 

3-9 

Each SELECT 
must end with a 
paragraph must 



THE ENVIRONMENT DIVISION 

FILE-CONTROL 

3.1.6 FILE-CONTROL 

Function 

The FILE-CONTROL paragraph names each file, identifies the file 
medium, and allows logical hardware assignments. 

General Format 

FORMAT 1: 

SELECT [OPTIONAL] fi 1 e-name 

ASSIGN TO device-name-l [devi ce-name-2 ] 

[ 
. [AREA II RESERVE lnteger-l AREAS-!j 

~ORGANIZATION IS SEQUENTIAL~ 

~ACCESS MODE IS SEQUENTIAL~ 

RECORDING tODE IS ~YTE MODE] 

ASCI I 
SI XBIT 
BINARY 
-F--

V 
STAN DARD-ASCI I 
STAN DARD ASCI I 

{ 
FI LE-STATUS} IS data-name-l 
FI LE STATUS data-name-2 data-name-3 [:ata-name-4 

~a.ta-name-5 Gata-name-6 Gata-name-7 [itata-name-SJ1]]] 

3-10 



THE ENVIRONMENT DIVISION 

FORMAT 2: 

SELECT file-name 

ASSIGN TO 'device-name-l ~ 

~RESERVE integer-l [~~~:~~ 
ORGANIZATION IS RELATIVE 

[

(SEQUENTIAL 

ACCESS MODE IS )t {RANDOM } 
DYNAMI C 

RECORDING tODE IS ~YTE MODE] 

device-name-2 

RELATI VE KEY 

RELATI VE KEY IS 

ASCI I 
S I XB IT 
BINARY 
-F--

V 
STANDARD-ASCI I 
STAN DARD AS ell 

FILE-CONTROL (Cont.) 

] 

IS data-name-l n 
data-name-l U 

{ 
FILE-STATUS t IS data-name-l 
FI LE STATUS f data-name-2 data-name-3 [:ata-name-4 

~ata-name-5 Gata-name-6 Gata-name-7 [data_name-8JJ~ 

3-11 



THE ENVIRONMENT DIVISION 

FILE-CONTROL (Cont.) 

FORMAT 3: 

SELECT fil e-name 

ASSIGN TO device-name-l [ devi ce-name-2 ] ... 

~RESERVE integer-l [:~:~~S~ 
ORGANIZATION IS INDEXED 

IACCESS MODE IS ~ ~!~~6~TIAL jn L l DYNAMIC U 
RECORD KEY IS data-name-l 

RECORDING ~ODE IS ~YTE MODE] 

ASCII 
S I XB I T 
BINARY 
F 
'1 
STAN DARD-AS CII 
STANDARD ASCII 

{ 
FI L E -S T AT US } I S d a t a -n a me - 1 
FILE STATUS data-name-2 data-name-3 [:ata-name_4 

~ata-name-5 ~ata-name-6 ~ata-name-7 [data-name-a=LIIll 

3-12 



THE ENVIRONMENT DIVISION 

FILE-CONTROL (Cont.) 

Technical Notes 

1. This section is optional. 

2. All semicolons and commas are optional. Each SELECT clause 
must end with a period. 

3. The SELECT and ASSIGN statements must appear before any other 
clause shown, and the SELECT statement must precede the 
ASSIGN statement. Every file described in the Data Division 
must be named in a SELECT clause in the Environment Division. 
Thus, the following clause must be specified for every such 
file: SELECT file-name ASSIGN TO device-name. 

4. The individual clauses are described on the following pages 
in the order shown above. 

3-13 



THE ENVIRONMENT DIVISION 

SELECT 

3.1.7 SELECT 

Function 

The SELECT statement names each file that is to be described in the 
Data Division, and assigns each file to a particular device. 

General Format 

SELECT file-name 

ASSIGN TO device-name-l [ devi ce-name-2 ] 

Technical Notes 

1. Each file described in the Data Division must be named once 
and only once as a file-name in a SELECT statement. 
Conversely, each file named in a SELECT statement must have a 
File Description entry in the Data Division. Each file-name 
must be unique within a program. 

2. The key word OPTIONAL is required for input files that are 
not necessarily present each time the object program is run. 
When your program tries to open a file which you have 
declared to be OPTIONAL, the question IS file-name PRESENT? 
is typed on the operator's console and the operator responds 
with YES or NO. If the response is YES, the file is 
processed normally; if the response is NO, the first READ 
statement executed for that file will immediately take the AT 
END or INVALID KEY path. 

3. 

NOTE 

ISAM files may not be optional. They must be present 
at program start-up, even if only as dummy files. 
(Refer to the COBOL-74 Usage Material, Part 3 of this 
manual, for more information on ISAM.) 

The ASSIGN 
Device-names 
device-names. 

clause specifies the device for a file. 
can be either physical device-names or logical 

Physical device-names are fixed mnemonic-names that refer to 
specific peripheral devices. When specified in an ASSIGN 
clause, a physical device-name assigns the associated file to 
that device. Physical device-names are described in the 
TOPS-IO Operating System Commands Manual and the TOPS-20 
User's Guide. 

3-14 



THE ENVIRONMENT DIVISION 

SELECT (Cont.) 

Logical device-names are names created by the programmer. 
They can contain up to six characters, and can consist of any 
combination of letters and digits. At object execution time, 
each logical device-name must be assigned to a physical 
device by means of a monitor command (refer to the COBOL-74 
Usage Material, Part 3 of this manual~ for an explanation of 
the commands). 

4. You may assign more than one device to a file to avoid delay 
when switching from one reel or unit to the next. When you 
specify more than one device the object program automatically 
uses the next device, in a cyclic manner, when an end-of-reel 
condition is detected. This applies only to tape devices and 
SORT and ISAM files, and it is unconditional for tapes. For 
SORT/MERGE, any number of devices may be assigned. If the 
disks are specified generically, SORT/MERGE will use its 
internal algorithm to determine which physical devices to 
use. Otherwise, all devices specified will be used in a 
round-robin fashion. For ISAM files you may assign not more 
than two devices. 

5. If the access mode is INDEXED and two devices are assigned, 
the first device is assumed to contain the index portion of 
the file and the second to contain the data portion of the 
file. If one device is specified, it is assumed to contain 
both the index portion and the data portion of the file. 

6. For ISAM and random files, the devices must be random-access. 

Examples 

SELECT INFIL ASSIGN TO MTA1. 

SELECT SRTFIL ASSIGN TO DSK, DSK, DSK. 

3-15 



THE ENVIRONMENT DIVISION 

RESERVE 

3.1.8 RESERVE 

Function 

The RESERVE clause allows you to specify the actual number of 
input/output buffer areas for the compiler to allocate to this file. 

General Format 

~ESERVE integer-l [ AREAJO AREAS 

Technical Notes 

1. If you specified the organization for this file as RELATIVE 
or INDEXED, this clause is ignored and only one buffer area 
is assigned. 

2. If you did not specify RELATIVE or INDEXED organization, the 
integer specifies the number of buffer areas for the compiler 
to assign. 

3. If you omit this clause for a sequential file, two areas will 
be assigned. 

4. Integer-l does not have a maximum, but you may run out of 
available memory if you request too many areas res~rved. You 
may also make your program run slower if you request a large 
number of areas, since the program will be that much bigger. 

Example 

SELECT INFIL ASSIGN TO DSK 
RESERVE 1 AREA. 

3-16 



THE ENVIRONMENT DIVISION 

ORGANIZATION 

3.1.9 ORGANIZATION 

Function 

The ORGANIZATION clause specifies the way in which a file will be 
organized. 

General Format 

!SEQUENTIAL 
ORGANIZATION IS RELATIVE 

INDEXED 

Technical Notes 

{ 
DEFERRED } 

. CHECKPOINT 

1. The ORGANIZATION clause 
indexed-sequential files. 
files. 

OUTPUT I 
is required for 

It is ignored 
relative and 

for sequential 

2. If ORGANIZATION IS SEQUENTIAL and the file is on a 
random-access device, records are obtained or placed 
sequentially. That is, the next logical record is made 
available from the file on a READ statement execution, and an 
output record is placed into the next available area on a 
WRITE statement execution. Thus sequential-access processing 
on a random-access device is functionally similar to the 
processing of a magnetic tape file. 

3. If ORGANIZATION IS RELATIVE, the contents of the data item 
associated with the RELATIVE KEY specifies which record, 
relative to the beginning of the file, is made available by a 
READ statement, or where the record is to be placed by a 
WRITE statement " or which record is to be deleted by a DELETE 
statement, or which record will be replaced by a REWRITE 
statement. 

4. If ORGANIZATION IS INDEXED, the contents of the data item 
associated with the RECORD KEY specifies which record is made 
available by a READ statement, or where the record is to be 
placed by a WRITE statement, or which record is to be deleted 
by a DELETE statement, or which record will be replaced by a 
REWRITE statement. 

5. The DEFERRED OUTPUT option of the ORGANIZATION IS INDEXED 
clause causes the object-time system to output a block of an 
indexed-sequential file only when another block must be 
brought into memory. Normally, to ensure integrity for the 
file, a block is output every time a record is written, even 
if re'cords are written successively in the same block. When 
a file is opened for simultaneous update, the DEFERRED OUTPUT 
clause is ignored. Refer to the OPEN statement, Section 
5.9.25. 

3-17 



THE ENVIRONMENT DIVISION 

ORGANIZATION (Cont.) 

6. If you are using ISAM files sequentially, DEFERRED OUTPUT 
provides the advantage of running faster. However, your file 
is also more easily damaged if the system crashes. Thus, its 
use is advantageous if file integrity is not important. 

7. If you use the ORGANIZATION IS INDEXED clause, you may also 
specify the CHECKPOINT OUTPUT option (instead of DEFERRED 
OUTPUT). If you specify this option, the object-time system 
will force the buffers to be written out, and all pointers 
internal to the file to be updated, after every WRITE 
statement. This will naturally make your program run much 
more slowly. However, it will also safeguard your file 
against system crashes, since the file will have been updated 
after the last WRITE before the crash. 

Example 

SELECT INFIL ASSIGN TO DSK, DSK 
ORGANIZATION IS INDEXED DEFERRED OUTPUT. 

3-18 



THE ENVIRONMENT DIVISION 

ACCESS MODE 

3.1.10 ACCESS MODE 

Function 

The ACCESS MODE clause specifies the method used to access the file in 
question. 

General Format 

[ 
J SEQUENTIAL ~ 

ACCESS MODE IS ) RANDOM 
~ DYNAMIc ) 

Technica"l Notes 

1. If you do not specify the ACCESS MODE clause, ACCESS MODE IS 
SEQUENTIAL is assumed regardless of the organization of the 
file. 

2. If you specify ACCESS MODE IS DYNAMIC you may access the file 
either sequentially or randomly. 

3. When you specify ACCESS MODE 'IS SEQUENTIAL, the records in 
your file are accessed in the sequence dictated by the file 
organization. Sequential files are accessed in the same 
order they are added to the file. Relative files are 
accessed in ascending relative record number order. Indexed 
files are accessed in ascending record key order. 

4. If you choose random access mode, the relative key (for 
relative files) or the record key (for indexed files) 
indicates the record to be accessed. 

Example 

SELECT INFILE ASSIGN TO DSK 
ORGANIZATION IS INDEXED 
ACCESS MODE IS DYNAMIC 
RECORD KEY IS RECKEY. 

3-19 



THE ENVIRONMENT DIVISI(;)N 

RECORD KEY 

3.1.11 RECORD REY 

Functian 

The RECORD KEY clause specifies the record in an indexed-sequential 
file that is to be read, written, deleted, or rewritten. 

General Format 

RECORD KEY IS data-name-l 

Technical Notes 

1. The RECORD KEY clause is valid only for files whose access 
mode is INDEXED; it must be specified for those files (refer 
to the READ statement, Section 5.9.27). 

2. You must define the RECORD KEY data-name as an item in the 
record area of the file to which it pertains. Though the 
RECORD KEY is described in only one of the records, it is 
assumed to occupy the same position in all records for that 
file. 

3. The RECORD KEY is required to describe the location in the 
record area of the key for the file. The contents of the 
RECORD KEY data-item must be unique for each record in the 
file and cannot be equal to LOW-VALUES (refer to, the READ, 
WRITE, REWRITE, and DELETE statements in Section 5.9). 

Example 

SELECT INFIL ASSIGN TO DSK, DSK 
ORGANIZATION IS INDEXED 
RECORD KEY IS RECKEY. 

3-20 



THE ENVIRONMENT DIVISION 

RELATIVE KEY 

3.1.12 RELATIVE KEY 

Function 

The RELATIVE KEY clause specifies which record is read or written in a 
random-access file. 

General Format 

RELATIVE KEY IS data-name-l 

Technical Notes 

1. The RELATIVE KEY clause is valid only for a file whose 
organization is RELATIVE; it must be specified for this type 
of file. This clause cannot be used for a file whose 
organization is INDEXED or SEQUENTIAL. 

2. The RELATIVE KEY data-name must be defined in the Data 
Division as a COMPUTATIONAL item of ten or fewer digits. The 
PICTURE can contain only the characters Sand 9 or their 
equivalent,. for example S9(10). 

Example 

SELECT INFIL ASSIGN TO DSK 
ORGANIZATION IS RELATIVE 
ACCESS MODE IS RANDOM 
RELATIVE KEY IS RKEY. 

3-21 



THE ENVIRONMENT DIVISION 

RECORDING MODE/DENSITY/PARITY 

3.1.13 RECORDING MODE/DENSITY/PARITY 

Function 

The RECORDING clause specifies the recording mode, tape density, and 
parity for a magnetic tape file. 

General Format 

RECORDING tODE IS ~YTE MOD~ 
ASCI I 
SIXBIT 
BINARY 
F 
V 
STAN DARD-AS CI I 
STAN DARD ASCI I 

Technical Notes 

1. The RECORDING MODE clause allows the user to record data on 
the device in a format other than that used in memory. The 
following recording modes are acceptable. 

ASCII - The file will be read/written as ASCII records, five 
7-bit characters per 36-bit ~ord. Bit 35 (the 
rightmost bit) is ignored. 

SIXBIT - The file will be read/written as SIXBIT records, six 
6-bit characters per 36-bit word with record 
headers. 

BINARY - The file will be read/written as binary records, 36 
bits per word. 

F - The file will be read/written as fixed-length EBCDIC 
records, four 9-bit characters per 36-bit word. 
However, for industry-compatible magnetic tape 
(9-track, with at least 800 bpi density), the file 
will be read/written with four 8-bit characters per 
36-bit word. If more than one record description is 
given in the FD entry, the record length must be'the 
same for all of them. 

3-22 



THE ENVIRONMENT DIVISION 

RECORDING MODE/DENSITY/PARITY (Cont.) 

V - The file will be read/written as variable-length 
EBCDIC records, four 9-bit characters per 36-bit 
word with record and block headers. However, for 
industry-compatible magnetic tape (9-track, with at 
least 800 bpi density) , the file will be 
read/written with four 8-bit characters per 36-bit 
word. If a file whose recording mod~ is V is open 
for INPUT-OUTPUT and the user overwrites a record, 
the record being written must be the same size as 
the overwritten record. A file whose recording mode 
is V cannot be opened for simultaneous update. 

STANDARD-ASCII (STANDARD ASCII) -
The five 7-bit bytes in each word in memory are 
transferred to five 8-bit bytes on the tape and bit 
35 is stored in bit 0 of ·the fifth byte on tape. 
The character set and the character encodings are 
the same as those of ASCII recording mode. This 
enables interchanges with other manufacturers' ASCII 
data files. 

The format of records for each recording mode is given in 
Sections 8.1 and 8.2 of this manual. 

2. The recording mode of a file is determined by a number of 
factors besides the recording mode specified in the RECORDING 
MODE clause. These factors are: 

a. If the device can only accept ASCII data (for example, a 
line printer), the object-time system will always use 
ASCII as the recording mode no matter what recording mode 
is specified. 

b. If the ADVANCING or POSITIONING clause is included in the 
WRITE statement, the object-time system will always use 
ASCII as the recording mode no matter what recording mode 
is specified. 

c. If the file descriptor (FD) has a REPORT clause, the 
object-time system will always use ASCII as the recording 
mode no matter what recording mode is specified. 

d. The recording mode specified in the RECORDING MODE clause 
is compareQ to the USAGE clause for the record. 
Normally, the recording mode specified is used. However, 
if the recording mode is not specified, the default 
recording mode will depend on the usage mode. If neither 
the recording mode nor the usage mode is specified, and 
the /X switch is not included in the command string to 
the compiler, the default recording mode is SIXBIT. If 
the /X switch is present, the default recording mode is 
F. 

3-23 



THE ENVIRONMENT DIVISION 

RECORDING MODE/DENSITY/PARITY (Cont.) 

When the recording mode is not declared, it is inferred from 
the usage mode for the record according to the rules given 
above. However, the reverse is not true; that is, when the 
recording mode is declared and no usage mode is given for a 
record, the presence of the RECORDING MODE clause serves only 
to specify the recording mode of the file. The usage mode of 
the records in the file may default to another character set, 
with undesirable results (see the USAGE clause in Section 
4.9.23). Table 3-1 shows the resulting recording mode when 
the recording mode declared in the RECORDING MODE clause is 
compared to the usage mode declared in the USAGE clause. 

3. The DENSITY and PARITY clauses are valid only for magnetic 
tape and are ignored for all other devices. If the DENSITY 
clause is not present, tapes are recorded in the density 
standard for the installation. The density for a job can be 
modified by system commands which are described in the 
Operating System Commands Reference Manual for users of 
TOPS-lO, and in the TOPS-20 User's Guide for users of 
TOPS-20. Remember that not all drives will handle all 
densities. You should verify that the drive you plan to use 
will accept the density you specify. If the PARITY clause is 
omitted, ODD is assumed. Care must be taken when using even 
parity: if nulls are written into a file that is recorded in 
even parity, the file cannot be read properly. Nulls can be 
written into a file without a user being aware of them; that 
is, when SYNCHRONIZED data items appear in an item, the word 
preceding the word in which the item is synchronized could 
contain nulls. 

4. If BYTE MODE is used, the exact number of bytes is written on 
the tape. (It does not round up to a word boundary.) This 
is only valid on magnetic tape, and applies only to users of 
TOPS-IO. Its purpose is to enable interchanges with other 
manufacturers' equipment. 

Example 

SELECT INFIL ASSIGN TO MTAI 
RECORDING MODE IS V 
DENSITY IS 800 
PARITY IS ODD. 

3-24 



THE ENVIRONMENT DIVISION 

RECORDING MODE/DENSITY/PARITY (Cont.) 

Table 3-1 
Recording Modes 

RECORDING MODE USAGE RECORDING MODE 
Clause Clause Actually Used 

none DISPLAY-6 SIXBIT 

none DISPLAY-7 ASCII 

none DISPLAY-9 EBCDIC 

none none SIXBIT (no IX) 

none none EBCDIC (IX) 

SIXBIT D~SPLAY-6 SIXBIT 

SIXBIT DISPLAY-7 SIXBIT 

SIXBIT DISPLAY-9 SIXBIT 

ASCII DISPLAY-6 ASCII 

ASCII DISPLAY-7 ASCII 

ASCII DISPLAY-9 ASCII 

F or V DISPLAY-6 EBCDIC 

F or V DISPLAY-7 EBCDIC 

F or V DISPLAY-9 EBCDIC 

BINARY DISPLAY-6 BINARY 

BINARY DISPLAY-7 BINARY 

BINARY DISPLAY-9 BINARY 

NOTE 

The object-time system automatically 
makes the conversions necessary to have 
~he recording mode conform to the usage 
mode of the records. (These conversions 
may cause your program to run more 
slowly. ) 

3-25 



THE ENVIRONMENT DIVISION 

FILE STATUS 

3.1.14 FILE STATUS 

Function 

The FILE STATUS clause specifies data-items into which the object-time 
system places values when an I/O error or warning message occurs on 
the file specified by the SELECT clause. A user-written USE procedure 
may then examine and alter these values as part of a recovery process. 

General Format 

{
FILE-STATUS} IS data-name-l 
FI LE STATUS data-name-2 data-name-3 [:ata-name-4 

~ata-name-5 Gata-name-6 ~ata-name-7 [data_name-aJJJ] 

Technical Notes 

1. Data-name-l is required if you specify this clause, but 
data-name-2 through data-name-8 are optional. If you specify 
fewer than eight data-names, the compiler assumes that the 
data-names are specified starting with data-name-l and 
continuing in order. Therefore, if you wish to specify 
data-name-8, you must also specify data-name-l through 
data-name-7. 

3-2-6 



THE ENVIRONMENT DIVISION 

FILE STATUS (Con t.) 

2. You must define the data-names in the Working Storage Section 
of the Data Division in the following form. 

data-name-1 
data-name-2 
data-name-3 
data-name-4 
data-name-5 
data-name-6 
data-name-7 
data-name-8 

PIC 9(2). 
PIC 9(10). 
USAGE INDEX. 
PICX(9). 
USAGE INDEX. 
USAGE INDEX. 
PICX(30). 
USAGE INDEX. 

3. After a fatal I/O error, the FILE STATUS items contain the 
fo11bwing values. 

data-name-1 contains the file status. 
data-name-2 contains a 10-digit error number. 
data-name-3 contains the action code, which is set to zero. 
data-name-4 contains the VALUE OF ID. 
data-name-5 contains the current block number. 
data-name-6 contains the current record number. 
data-name-7 contains the file name. 
data-name-8 contains the file-table pointer. 

The file status, which is stored in data-name-1, is set to one of the 
following 2-character codes. 

00 the I/O was successful. 
10 no next logical record; that is, there is no next record in 

the file. The AT END path is taken. 
22 duplicate key; that is, an attempt was made to write a 

record into a record position that is already occupied. The 
INVALID KEY path is taken. 

23 no record found on READ, REWRITE, DELETE; that is, when an 
indexed-sequential file was accessed, an empty record 
position was found. The INVALID KEY path is taken. 

24 boundary violation, that is, the random file's actual key 
violated the file limits. The INVALID KEY path is taken. 

30 permanent error; that is, a successful hardware operation 
cannot be done without a hardware error signal. 

34 permanent error; that is, more space on the media cannot be 
obtained to extend the file for output operations. 

The 10-character error number stored in data-name-2 has the form: 

ABCDEFGHIJ 

where the code has the meanings shown below. 

AB contains a value indicating the COBOL verb that caused the error. 

o no COBOL verb error 
1 OPEN 
2 CLOSE 
3 WRITE 
4 REWRITE 
5 DELETE 
6 READ 

3-27 



THE ENVIRONMENT DIVISION 

FILE STATUS (Cont.) 

CD contains a value indicating the monitor call (UUO) that caused the 
error. 

o no UUO error 
1 INPUT 
2 OUTPUT 
3 LOOKUP 
4 ENTER 
5 RENAME 
6 INIT 
7 FILOP 

EF contains a value indicating the type of file being accessed when 
the error occurred. 

o None of the following 
1 ISAM index file 
2 ISAM data file 
3 a sequential file 
4 a random file 

G contains a value indicating the ISAM block type that was being 
accessed when the error occurred. 

o None of the following 
1 ISAM statistics block 
2 ISAM SAT block 
3 ISAM index block 
4 ISAM data block 

HIJ contains a value indicating an error number on INPUT or OUTPUT. 

If CD is 0, HIJ contains an error number. The numbers and their 
meanings are listed below. Note that these are the same as the 
messages issued by LIBOL after an error or warning occurs. 

o None of the following 
1 SYMBOLIC-KEY MUST NOT EQUAL LOW-VALUES 2 NO MORE INDEX LEVELS 

AVAILABLE 
3 INSUFFICIENT MEMORY WHILE ATTEMPTING TO SPLIT THE TOP INDEX 

BLOCK 
4 VERSION NUMBER DISCREPANCY 
5 ALLOCATION FAILURE - ALL BLOCKS ARE IN USE 
6 THE MAXIMUM RECORD SIZE MAY NOT BE EXCEEDED 
7 CANNOT EXPAND MEMORY WHILE SORT IS IN PROGRESS 
8 INSUFFICIENT MEMORY FOR BUFFER REQUIREMENTS 
9 BLOCKING-FACTOR DIFFERS BETWEEN INDEX FILE AND FILE-TABLE 

10 FILE CANNOT BE OPENED, ALREADY OPEN 
11 LOCKED FILE CANNOT BE OPENED 
12 FILE CANNOT BE OPENED SHARES BUFFER AREA WITH OPENED FILE 
13 FILE CANNOT BE OPENED DEVICE IS NOT AVAILABLE TO THIS JOB 
14 FILE CANNOT BE OPENED DEVICE IS ASSIGNED TO ANOTHER FILE 
15 FILE CANNOT BE OPENED DEVICE CANNOT INPUT/OUTPUT 
16 FILE CANNOT BE OPENED DEVICE CANNOT INPUT 
17 FILE CANNOT BE OPENED DEVICE CANNOT OUTPUT 
18 FILE CANNOT BE OPENED DEVICE IS NOT A DEVICE 
19 FILE CANNOT BE OPENED DIRECTORY DEVICE MUST HAVE STANDARD 

LABELS 
20 FILE CANNOT BE CLOSED BECAUSE IT IS NOT OPEN 

3-28 



THE ENVIRONMENT DIVISION 

FILE STATUS (Cont.) 

21 FILE CANNOT BE CLOSED 
THE CLOSE "REEL" OPTION MAY NOT BE USED WITH A 
MULTI-FILE-TAPE 

22 FILE IS NOT OPEN FOR OUTPUT 
23 ZERO LENGTH RECORDS ARE ILLEGAL 

FILE CANNOT DO OUTPUT 
24 "AT END" PATH HAS BEEN TAKEN 

FILE CANNOT DO INPUT 
25 ENCOUNTERED AN "EOF" IN THE MIDDLE OF A RECORD 

FILE CANNOT DO INPUT 
26 RECORD-SEQUENCE-NUMBER n SHOULD BE m 

FILE CANNOT DO INPUT 
27 file-name ON device-name SHOULD BE REORGANIZED, THE TOP INDEX 

BLOCK WAS JUST SPLIT 
28 NOT USED 
29 EITHER THE ISAM FILE DOES NOT EXIST OR THE VALUE OF ID 

CHANGED DURING THE PROGRAM 
30 ATTEMPT TO DO I/O FROM A SUBROUTINE CALLED BY A NON RESIDENT 

SUBROUTINE. FILE CANNOT BE OPENED 
31 I/O CANNOT BE DONE FROM AN OVERLAY. FILE CANNOT BE OPENED 
32 READ AN "EOF" INSTEAD OF A LABEL 
33 CLOSE REEL IS LEGAL ONLY FOR MAGNETIC TAPE 
34 FILE IS NOT OPEN FOR INPUT 
35 NOT ENOUGH FREE MEMORY BETWEEN .JBFF AND OVERLAY AREA 
36 INSUFFICIENT MEMORY WHILE ATTEMPTING TO SPLIT THE TOP INDEX 

BLOCK 
37 STANDARD ASCII RECORDING MODE AND DENSITY OF 1600 BPI REQUIRE 

THE DEVICE TO BE A TU70 
38 TAPOP. FAILED - UNABLE TO SET STANDARD-ASCII MODE 
39 GOT AN EOF IN MIDDLE OF BLOCK/RECORD DESCRIPTOR WORD 
40 BLOCK DESCRIPTOR WORD BYTE COUNT IS LESS THAN FIVE 
41 ERROR - GOT ANOTHER BUFFER INSTEAD OF "EOF" 
42 ERROR - RECORD EXTENDS BEYOND THE END OF THE LOGICAL BLOCK 
43 IT IS ILLEGAL TO CHANGE THE RECORD SIZE OF AN EBCDIC I/O 

RECORD 
44 THE TWO LOW-ORDER BYTES OF A BLOCK/RECORD DESCRIPTOR WORD 

MUST BE ZERO 

If CD is set to 1 or 2, HIJ contains the number of an I/O error status 
bit. The I/O error status bits, their mnemonics, and their meanings, 
are shown in Table 3-2. 

3-29 



FILE STATUS (Cont.) 

Bit Mnemonic 

18 IO. IMP 

19 IO.DER 

20 IO.DTE 

21 IO.BKT 

22 IO.EOF 

23 IO.ACT 

29 IO.WHD 

30 IO.SYN 

31 Io.uwe 

32-35 IO.MOD 

THE ENVIRONMENT DIVISION 

Table 3-2 
Monitor File Status Bits 

Meaning 

Improper Mode. Attempt to write on a 
software write-locked file structure, or a 
software redundancy failure occurred. This 
bit is usually set by the monitor. The 
user cannot set this bit. 

Hardware device error. The disk unit is in 
error, rather than the data on the disk. 
However, data read into memory or written 
on the disk is probably incorrect. The 
user does not usually set this bit. 

Hard data error. The data read or written 
has incorrect parity as detected by the 
hardware. The user's data is probably 
unrecoverable even after the device has 
been fixed. This bit is usually not set by 
the user. 

Block too large. A disk data block is too 
large to fit into the buffer; or a block 
number is too large for the disk unit; or 
DSK has been filled; or the user's quota 
on the file structure has been exceeded. 
This bit is usually not set by the user. 
This error is also returned when the user 
tries to close a file that has open locks 
associated with it (via Enqueue/Dequeue). 

End-of-file. The user program has 
requested data beyond the last block of the 
file with an IN or INPUT call; or USETI 
has specified a block beyond the last data 
block of the file. When IO.EOF is set, no 
data has been read into the buffer. This 
bit is usually not set by the user. 

I/O Active. The disk is 
transmitting or receiving data. 
is always set by the monitor for 
use. 

actively 
This bit 
its own 

Write disk-pack headers. This is used in 
conjunction with the SUSET. monitor call to 
format a disk pack. (Not used in COBOL) 

Synchronous mode I/O. Stop disk after 
every buffer is read or written. (Not used 
in COBOL) 

User word count, supplied by the user in 
each buffer. 

Data mode of the device. 



THE ENVIRONMENT DIVISION 

FILE STATUS (Cont.) 

For the file status for each device, refer to the Monitor Calls 
Manual. 

If CO is set to 3, 4, 5, or 7, HIJ contains the error code for LOOKUP, 
ENTER, RENAME, or FILOP errors. "Table 3-3 gives these codes and their 
meanings. 

Code 

o 

1 

2 

3 

4 

5 

Table 3-3 
Monitor Error Codes 

Explanation 

File not found, illegal filename (0,*), 
filenames do not match, or RENAME after a LOOKUP 
failed. 

UFO does not exist on specified file structures. 
(Incorrect project-programmer number) 

Protection failure or directory full on DTA. 

File being modified. 

Filename already exists (RENAME) or filename is 
different (ENTER after LOOKUP) or requested 
supersede (on a non-superseding ENTER). 

Illegal sequence of UUOs (RENAME with neither 
LOOKUP nor ENTER, or LOOKUP after ENTER). 

6 1. Transmission, device, or data error. 

7 

2. Hardware-detected device or data error 
detected while reading the UFO RIB or UFO 
data block. 

3. Software-detected data inconsistency error 
detected while reading the UFO RIB or file 
RIB. 

Not a saved file. (Not expected to occur) 

10 Not enough memory. 

11 Device not available. 

12 No such device. 

13 No 2-register relocation 
expected to occur) 

capability. (Not 

14 No room on this file structure or quota exceeded 

15 

16 

(overdrawn quota not considered). 

Write-lock error. 
structure. 

Cannot write on 

Not enough table space in free memory 
monitor. 

3-31 

file 

of 



FILE STATUS (Cont.) 

Code 

17 

20 

21 

22 

23 

THE ENVIRONMENT DIVISION 

Table 3-3 (Cont.) 
Monitor Error Codes 

Explanation 

Partial allocation only. 

Block not free on allocated position. 

Cannot supersede an existing directory. 

Cannot delete a nonempty 
expected to occur) 

directory. 

Subdirectory not found (some 
specified path was not found). 

SFD 

(Not 

in the 

24 Search list empty (LOOKUP or ENTER was performed 
on generic device DSK and the search list is 
empty) ~ 

25 Cannot create a SFD nested deeper than the 
maximum allowed level of nesting. (Not expected 
to occur) 

26 No file structure in the job's search ~ist has 
both the no-create bit and the write-lock bit 
equal to zero and has the UFD or SFD specified 
by the default or explicit path (ENTER on 
generic device DSK only). 

27 GETSEG from a locked low segment to a high 
segment which is not a dormant, active, or idle 
segment. (Segment not on the swapping space) 
(Not expected to occur) 

30 Cannot update file. 

31 Low segment overlaps 
expected to occur) 

high segment. 

32 Not logged in. (Not expected to occur) 

(Not 

4. The FILE STATUS items are the paths of communications between 
the object-time system and a USE procedure. A USE procedure 
specifies a recovery process executed when an error or 
warning occurs during an I/O operation. A USE procedure 
determines the error or warning type from the error-number 
placed into data-name-2 by the object-time system. Control 
returns to the object-time system at the conclusion of the 
USE procedure. The object-time system action is determined 
by the error number and by the contents of the action-code 
placed into data-name-3 by the USE procedure. If the 
action-code is set to 1, the object-time system ignores the 
error and continues the run. If the action-code is left set 

3-32 



THE ENVIRONMENT DIVISION 

FILE STATUS (Cont.) 

to 0, the object-time system issues an error message and 
terminates the run. If the error-number is 17, the 
object-time system continues the run independent of the 
action-code setting. If the action-code is not 0 or 1, the 
object-time system action is undefined. 

When the program comes to a normal termination and you have 
requested (by loading a "1" into the action-code) that errors 
be ignored, the object-time system issues the following 
message: 

%n ERRORS IGNORED 

5. Refer to the USE statement in Section 5.9.42 for details of 
writing USE procedures. 

6. If you did not specify the FILE STATUS statement, I/O error 
recovery processing cannot be performed. If you specify the 
FILE STATUS statement with only data-name-l included, you can 
examine the status of the file, but you cannot specify that 
the object-time system ignore the error because you cannot 
set the action code (data-name-3). You also cannot examine 
the error number (data-name-2). 

Example 

SELECT INFIL ASSIGN DSK, DSK 
ORGANIZATION IS INDEXED 
ACCESS MODE IS RANDOM 
RECORD KEY IS RECKEY 
RECORDING MODE IS ASCII 
FILE STATUS IS FILSTAT, ERRNUM, ACTCODE, VID, 
BLKNUM, RECNUM, FILNAM, FILPNTR. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
77 FILSTAT PIC 9(2). 
77 ERRNUM PIC 9(10). 
77 ACTCODE INDEX. 
77 VIP PIC X(9). 
77 BLKNUM INDEX. 
77 RECNUM INDEX. 
77 FILNAM PIC X(30). 
77 FILPNTR INDEX. 

3-33 



THE ENVIRONMENT DIVISION 

I-O-CONTROL 
3.1.15 I-O-CONTROL 

Function 

The I-O-CONTROL paragraph specifies the points at which a RERUN DUMP 
is to be performed, the memory area that is to be shared by different 
files, and the location of files on a multiple-file reel. 

General Format 

[I - 0- CONTROL. 

[RERUN EVERY 
f END DF {~m} l integer-l RECORDS 

I OF fil e-name-l ] 

~AME [

RECORD J SORT 
SORT-MERGE 

AREA FOR file-name-2 { fil e-name- 3 } .. J 
~ULTIPLE FILE TAPE CONTAINS file-name-4 [POSITION integer-3] 

~ile-name-5 ~POSITION integer-~~ ... ~. ~ 

Technical Notes 

1. This paragraph is optional. 

2. The RERUN clause specifies when a rerun dump is to be 
performed. 

The dump is always written onto a disk file, using the 
program's low segment name as the filename, and an extension 
of CKP. If the program has no filename because it was neler 
saved, the program name (from the PROGRAM-ID paragraph in the 
Identification Division) is used as a filename, with the 
extension CKP. 

If you use the END OF UNIT option, a rerun dump is taken at 
the end of each input or output reel of the specified REEL 
file. 

If you use the integer-l RECORDS option, a rerun dump is 
taken whenever a number of logical records equal to a 
multiple of integer-l is either read or written for the file. 

3-34 



THE ENVIRONMENT DIVISION 

I-O-CO:NTROL (Cont.) 

A rerun dump is not taken if any files are open for 
input/output (updating), or if any file is open on a device 
other than magnetic tape, disk, line printer, or terminal, or 
if an indexed-sequential (ISAM) file is open. Therefore, do 
not attempt to have a rerun dump taken while a sort is in 
progress. Also, RERUN cannot be used if overlays are used or 
if files are open for simultaneous update. 

3. The SAME AREA clause specifies that two or more files are to 
use the same area during processing; this overlapping 
applies to all buffer areas and the record area. However, 
unless the RECORD option is used, only one of the named files 
can be open at one time. 

If you specify the RECORD option, the files share only the 
record area (that is, the area in which the current logical 
record is processed). All of the files mentioned in the SAME 
RECORD AREA clause may be open at the same time. A logical 
record in the SAME RECORD AREA is considered to be a logical 
record of each opened output file whose name appears in the 
SAME RECORD AREA clause, as well as the most recently read 
input file whose name is specified. Since the various 
DISPLAY usages are represented differently in memory, you 
must keep track of the usage of the record in the SAME RECORD 
AREA. You may use the record in any way you would otherwise 
use it. However, you must be sure that you have a record of 
the expected usage in the SAME RECORD AREA. If, for example, 
you plan to use a DISPLAY~7 record in your processing, you 
must have a DISPLAY-7 record in the SAME RECORD AREA, not a 
DISPLAY-6 record. You will not get an error message if you 
attempt to use a DISPLAY-6 record as if it were DISPLAY-7. 

The SORT option is used for sort files. However, this option 
need not be specified because all sort files always use the 
same sort area. 

4. The MULTIPLE FILE clause is required when several files share 
the same physical reel of tape. This clause is invalid for 
media other than magnetic tape. 

Example 

Regardless of the number of files on a single reel, only 
those files defined in the program may be listed. If all 
files residing on the tape are listed in consecutive order, 
the POSITION option need not be given. If any file on the 
tape is not listed, the POSITION option must be included; 
integer-2, integer-3, and so forth, specify the position of 
the file relative to the beginning of the tape. All files on 
the same reel of tape must be ASSIGNed to"the same device in 
the FILE-CONTROL paragraph. 

No more than one file on the same reel of tape can be open at 
one time. 

I-O-CONTROL. 
RERUN EVERY 300 RECORDS OF INFIL 
SAME RECORD AREA FOR INFIL, OUTFIL 
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4. 

3-35 



THIS PAGE INTENTIONALLY LEFT BLANK. 



THE ENVIRONMENT DIVISION 
VERB FORMATS 



THE ENVIRONMENT DIVISION 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] . 

OBJECT-COMPUTER. computer-name 

~EMORY SIZE integer ! ~CTERS II L { MODULES jJ 
~PROGRAM COLLATING SEQUENCE IS alPhabet-name] 

~SEGMENT-LIMIT ~ segment-number~ 

[SPECIAL-NM1ES. 

alphabet-name IS STAN DARD- 1 
NATIVE 

[ 
{

THROUGH} . 
literal-I THRU llteral-2 

ALSO literal-3 [ALSO literal-4] 

literal-5 THRU llteral-6 
[ [ 

{
THROUGH} . 

ALSO literal-7 [ALSO literal-S] 

.J 
.J] 

r=literal-9 ~ mnemonic-name~ 

[CURRENCY SIGN li literal-IO] 

[DECIMAL-POINT Ii COMMA] . ] 

3-36 



THE ENVIRONMENT DIVISION 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

~INPUT-OUTPUT SECTION. 

FI LE- CONTROL. 

{ fi 1 e-control-entry } 

[I -0- CONTROL. 

[RERUN EVERY 
j END OF {REEL} I ) UNIT 
~ integer-l RECORDS 

OF fil e-name-l ] 

[ [

RECORD J SAME SORT 
. SORT-MERGE 

AREA FOR file-name-2 {file-name-3} ... :] 

~UL TI PLE FILE TAPE CONTAI NS fi 1 e-name-4 [POSITION integer-3] 

[ril e-name-5 [POSITION integer-~ ... J. JJ 

3-37 



THE ENVIRONMENT DIVISION 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

FORMAT 1: 

SELECT [OPTIONAL] fi 1 e-name 

ASSIGN TO device-name-l [devi ce-name-2 ] 

[ 
. [AREA II RESERVE lnteger-l AREAS~ 

~ORGANIZATION IS SEQUENTIAL~ 

~ACCESS MODE IS SEQUENTIAL ~ 

RECORDING tODE IS ~YTE MODE] 

ASCI I 
SIXSIT 
BINARY 
F 
~ 
STANDARD-ASCI I 
STANDARD ASCII 

{ 
FI LE-STATUS} IS data-name-l 
FI LE STATUS data-name-2 data-name-3 [:ata_name-4 

Gata-name-5 ~ata-name-6 Gata-name-7 [data-name-nJJ]] 

3-38 



THE ENVIRONMENT DIVISION 

GEN~RAL FORMAT FOR ENViRONMENT DIVISION 

FORMAT 2: 

SELECT fil e-name 

ASSIGN TO device-name-l ~ 

~RESERVE integer-l [~~~~~~ 
ORGANIZATION IS RELATIVE 

[ 

( SEQUENTIAL 

ACCESS MODE IS {{ RANDOM } 
~ DYNAMI C 

RECORDING tODE IS ~YTE MODE] 

device-name-2 

RELATI VE KEY 

RELATIVE KEY IS 

ASCI I 
S I XB I T 
B I NARY 
F 
Ii 
STAN DARD-AS CI I 
STANDARD ASCII 

] 

IS data-name-l n 
data-name-l U 

{
FILE-STATUS} IS data-name-l 
FILE STATUS data-name-2 data-name-3 [:ata-name-4 

~ata-name-5 ~ata-name-6 ~ata-name-7 [ctata-name-8J~~ 

3-39 



THE ENVIRONMENT DIVISION 

GENERAL FORMAT FOR ENVIRONMENT DIVISION 

FORMAT 3: 

SELECT file-name 

ASSIGN TO device-name-l 

~RESERVE integer-I [:~~~~S~~ 
ORGANIZATION IS INDEXED 

IACCESS MODE IS ) ~!~~6~TIAL In L l DYNAMIC U 
RECORD KEY IS data-name-l 

RECORDING tODE IS ~YTE MODE] 

[ devi ce-name-2 ] 

ASCI I 
S I XB I T 
BINARY 
F 
'{ 
STANDARD-ASCI I 
STANDARD ASCII 

tENSITY IS } ~~~ ~ ~ARITY IS {ODD ~ ) 800 -- EVEN 
~1600 

{ 
FI LE-STATUS} IS data-name-l 
FI LE STATUS data-name-2 data-name-3 ~ata-name_4 

~ata-name-5 ~ata-name-6 ~ata-name-7 [data_name-8J~~:J 

3-40 



CHAPTER 4 

THE DATA DIVISION 

The Data Division, which is required in every COBOL program, describes 
the characteristics of the data to be processed by the object program. 

This data can be divided into six major types: 

1. Data contained in files, both input and output 

2. Data contained in a database and accessed through the Data 
Base Management System 

3. Data to be sent to or received from the Message Control 
System or the Transactional Processing System 

4. Data which is used by the program in the process of executing 
(This data can be constant or variable, and may be stored as 
part of the program or computed by the program during its 
operation.) 

5. Data in a subprogram that is passed from the program calling 
it 

6. Data to be printed in a report, and the format used to print 
such data 

To handle these types of data, the Data Division consists of the 
following sections: 

1. The File Section, which describes the characteristics and the 
data formats for each file processed by the object program 

2. The Schema Section, which names the sub-schema and schema 
that link a program or subprogram to the Data Base Management 
System 

3. The Communication Section, which 
items that link a program or 
Control System (MeS-lO) or the 
System (TPS-20) 

defines the special data 
subprogram to the Message 
Transactional Processing 

4. The Working-Storage Section, which contains any fixed values 
and the working areas in which intermediate data can be 
stored 

5. The Linkage Section, which describes the data in a subprogram 
that is available from a calling program 

6. The Report Section, which describes the data and format of a 
report 

4-1 



THE DATA DIVISION 

Unused sections of the Data Division may be omitted. However, the 
sections which are included must be in the following order: 

FILE SECTION. 
SCHEMA SECTION. 
COMMUNICATION SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
REPORT SECTION. 

4.1 FILE SECTION 

The File Section begins with the section-header FILE SECTION. If 
present, it must be the first section in the Data Division. In the 
File Section, the characteristics of each file to be processed are 
described by two types of entries, the file description and the record 
description. 

The first type of entry, the file description, describes the physical 
aspects of the file. These aspects include: 

1. How the logical data records of the file are physically 
grouped into blocks on the file medium 

2. The maximum length of a logical record, which cannot exceed 
4095 characters 

3. Whether or not the file contains header and trailer labels 
and, if so, whether the format of these labels is standard or 
nonstandard 

4. The names of the records contained in the file 

5. The names of any reports in the file 

The second type of entry, the record description, describes the data 
formats of the logical records in the files. 

4.1.1 Record Descriptions 

Following the FD file-name entry for a file, or the SO file-name entry 
for a sort file, a record description is given for each different 
record format in the file. A record description consists of a set of 
data description entries which describe a particular logical record. 
Each data description entry consists of a level-number followed by a 
data-name (or FILLER) which is followed, as required, by a series of 
descriptive clauses. The general format of a data description entry 
can be found in Section.4.9.1l. 

A record description begins with a level-Ol entry: 

01 data-name 

A complete record description may be as simple as 

01 data-name PICTURE picture-string. 

or it may be more complex, where the Ol-level is followed by a long 
series of data description entries of varying hierarchies that 
describe various portions and subportions of the record. A Ol-level 

4-2 



THE DATA DIVISION 

data-name in the File Section cannot be explicitly redefined using the 
REDEFINES clause. However, because a file has only one record area, 
if more than one data-name is specified, they implicitly redefine the 
first data-name. 

4.1.2 Elementary Items and Group Items 

The basic user-defined datum in a COBOL program is called an 
elementary item; it may be referenced directly only as a unit. An 
elementary item may combine with contiguous elementary items to form 
sets of data items called group items. Group items may combine with 
other group items and/or elementary items to form more inclusive group 
items. Thus, an elementary item may be contained within one or more 
group items, and a group item may contain more than one elementary 
item. 

4.1.3 Level Numbers 

Level numbers indicate a hierarchy of data items. The highest level 
is 01, which signifies that the data item is a record within a file 
named in an FD clause (or is a contiguous area in the Working-Storage 
Section) . Level numbers of 02 through 49 indicate items that are 
subordinate to a Ol-level data item. For example, an employee record 
can be described in the following manner: 

01 EMPLOYEE-RECORD. 
02 NAME. 

03 FIRST-NAME PICTURE IS A(6). 
03 MIDDLE-INITIAL PICTURE IS A. 
03 LAST-NAME PICTURE IS A(20). 

02 BADGE-NUMBER PICTURE IS X(5). 
02 SALARY-CLASS PICTURE IS X(2). 

within a record description, the level numbers indicate which items 
are contained within higher-level items. In the above example, the 
items that have a 03 level are subordinate to NAME, which has a 02 
level, which is in turn subordinate to EMPLOYEE-RECORD, which has a 01 
level. The example also shows elementary items (those that contain 
PICTURE clauses) contained within group items. In this example, 
EMPLOYEE-RECORD is a group item, NAME is a group item contained within 
a group item, and FIRST-NAME is an elementary item contained within 
the group item NAME. An item at 01 level is not required to be a 
group item; it may be an elementary item as long as it is referenced 
as a unit. For example: 

01 EMPLOYEE-RECORD PICTURE IS X(34) .. 

shows the same record as above, but in this case the record is always 
operated on as a single entity. 

Three other level numbers are available to the COBOL programmer: 77, 
66, and 88. 

Items with a level number of 77 are noncontiguous elementary data 
items that are defined only in the Working-Storage Section to define 
constant values or to store intermediate results. Defining a level-77 
item is the equivalent of defining a level-Ol elementary item. 

Level-66 data items are 
specified portion of a 

those 
record 

items that contain an explicitly 
already defined, or even the whole 

4-3 



THE DATA DIVISION 

record. A data item with a level number of 66 is used in a RENAMES 
clause to regroup items within a record. After a record is described, 
a level-66 item RENAMES a portion of that record. The level-66 data 
item can be a regrouping of the whole record, a group within the 
record, or a combination of group and elementary items. For example: 

01 EMPLOYEE-RECORD 
02 NAME 

03 FIRST-NAME .•• 
03 MIDDLE-INITIAL ••. 
03 LAST-NAME .•• 

02 BADGE-NO •.• 
02 SALARY-CLASS ••• 
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO. 
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS. 

When the level-66 item PAY-REC is referenced, the items LAST-NAME, 
BADGE-NO, and SALARY-CLASS are referenced as a unit. The programmer 
can thus regroup portions of a record for differing purposes. 

Level-88 items are condition-names that cause a value or a range of 
values to be associated with a data item. The condition-name may then 
be used in place of the relation condition in conditional expressions 
in the Procedure Division. For example: 

03 BADGE-NO •.• 
88 FIRST-BADGE VALUE IS A0001. 
88 LAST-BADGE VALUE IS Z9999. 

In a comparison, the following statements would then be equivalent: 

Conditional Variable 

IF BADGE-NO IS EQUAL TO A0001 ... 
IF BADGE-NO IS EQUAL TO Z9999 .•. 

4.2 SCHEMA SECTION 

Condition-Name 

IF FIRST-BADGE •.• 
IF LAST-BADGE .•. 

In the Schema Section, either an INVOKE statement or an ACCESS 
statement specifies the names of the sub-schema and schema to be 
processed. 

The Schema Section begins with the section-header SCHEMA SECTION and 
must follow the File Section, if present. 

If the installation does not include DBMS, the Schema Section cannot 
be used. 

A description of the contents of the Schema Section will be found in 
the Data Base System Programmer's Procedures Manual. 

4.3 COMMUNICATION SECTION 

The Communication Section contains the definitions of input and output 
communication-description entries. 

CD entries define records called CD records which contain special data 
items used to link the program to the Message Control System for users 
of TOPS-10 or the Transactional Processing System for users of 
TOPS-20. 

4-4 



THE DATA DIVISION 

The Communication Section begins with the section-header COMMUNICATION 
SECTION and must follow the File Section and precede the Report 
Section. The Communication Section must also follow the Schema 
Section if both are present. 

If your TOPS-IO installation does not include MCS, or your TOPS-20 
installation does not have TPS, the Communication Section cannot be 
used. 

Details of the Communication Section entries will be found in the 
Message Control System programmer's Procedures Manual for users of 
TOPS-lO, and the Transactional Processing System Programmer's 
Procedures Manual for users of TOPS-20. 

4.4 WORKING-STORAGE SECTION 

The Working-Storage Section defines (1) data that is stored when the 
object program is loaded, and (2) areas used for intermediate results. 
The Working-Storage Section is similar to the File Section, except 
that the Working-.Storage Section can contain level-77 items and cannot 
contain FD, SD, RD, CD, or SCHEMA entries. 

The Working-Storage· Section 
WORKING-STORAGE SECTION. 

begins with the section-header 

The maximum size of a record in Working Storage is 4095 characters. 

4.5 LINKAGE SECTION 

The Linkage Section describes data available from a calling program 
and can appear only in a subprogram. The structure is the same as 
that of the Working-Storage Section with the following restrictions: 

1. The VALUE clauses can only be used in condition-name entries. 

2. The data-names used in the VALUE OF IDENTIFICATION (or ID), 
the VALUE OF DATE-WRITTEN, and the VALUE OF USER NUMBER 
cannot appear in this section. 

3. The OCCURS clause with the DEPENDING phrase cannot be defined 
in this section. 

4. The RECORD KEY and RELATIVE KEY data items cannot be defined 
in this section. 

Data described in the Linkage Section of a subprogram is not allocated 
storage space. Instead, at link-time, the LINK program sequentially 
equates the Linkage Section identifiers (listed in the USING clause of 
the ENTRY statement within the subprogram or in the USING clause of 
the Procedure Division beader within the subprogram) to the calling 
program identifiers (listed in the USING clause of the CALL statement 
within the calling program). Thus, when the Procedure Division of a 
subprogram executes, references to the Linkage Section data refer 
instead to the calling program data. 

4-5 



Thus: 

CALLING PROGRAM 

DATA DIVISION. 
FILE SECTION. 
FD •.. 
01 MAIN •.. 
02 MAINl .. . 
02 MAIN2 .. . 

PROCEDURE DIVISION. 

THE DATA DIVISION 

CALL ENTRPT USING MAIN, 
MAINl, MAIN2. 

CALLED PROGRAM 

DATA DIVISION. 
FILE SECTION. 
LINKAGE SECTION. 
01 SUB .•• 
02 SUBl ... 
02 SUB2 ..• 

PROCEDURE DIVISION. 
ENTRY ENTRPT USING SUB, 

SUBl, SUB2. 

EXIT PROGRAM. 

The identifier MAIN is defined in the File Section of the calling 
program~ the identifier SUB is defined in the Linkage Section of the 
called program. When the Procedure Division of the called program 
executes, references to SUB refer instead to MAIN, references to SUBI 
refer to MAINl, and so on through the list. See the COBOL-74 Usage 
Material, Part 3 of this manual, for more information about 
subprograms. 

Each 01- or 77-level item in the Linkage Section must have a unique 
name because it cannot be qualified. Also, each 01- and 77-level item 
must correspond to a word-aligned item of the same size or larger in 
the calling program. Word-aligned items start at the beginning of a 
computer word. All 01- and 77-level items fulfill this requirement; 
any items that do not can be made to do so by means of the 
SYNCHRONIZED LEFT statement. 

4.6 REPORT SECTION 

The Report Section defines reports by describing the physical 
appearance of the particular format and data rather than by specifying 
the procedure used to produce the report. 

The data for a report can be read from a file or another part of the 
program or can be summed within the Report Section. The format of the 
report is given in the record description and report group entries in 
the Report Section. 

The Report Section begins with the section-header REPORT SECTION, and 
must follow the File Section, the Working-Storage Section and the 
I,.inkage Section. 

4-6 



A r , 
'i.O.ol Format Of Report 

THE DATA DIVISION 

.... __ .&...!_-
i:)t::\";~.1.UI1 

The Report Section contains the descriptions of one or more reports 
and the report groups that make up each report. 

Report groups are the basic elements of a report. Each report group 
is divided into report lines, which are in turn divided into fields. 
The report groups that can appear in a report are: 

REPORT HEADING 

REPORT FOOTING 

PAGE HEADING 

PAGE FOOTING 

DETAIL 

CONTROL HEADING 

CONTROL FOOTING 

printed once at the beginning 

printed once at the end 

printed at the beginning of each page 

printed at the end of each page 

printed for each set of report data 

printed at the beginning of each detail 
report group when a control break occurs 

printed at the end of each detail report 
group when a control break occurs 

The detail report groups contain the data items that constitute the 
report. Data items within a detail group can be designated by the 
programmer as controls. These control items are in descending order 
of rank from final, through major, intermediate, to minor. Each time 
a control item changes, a control break is said to occur; the control 
footings for the detail group are printed, and control headings for 
the next detail group are printed before the next detail group is 
printed. A FINAL control break occurs twice during the generation of 
a report, before the first detail line is printed and after the last 
detail line is printed. The most major control break happens least 
often and the most minor control break happens most often. If the 
most minor control field breaks, the control footing for that control 
field is generated, and the control heading for the next detail group 
for that control is generated. If a more major control field breaks, 
the control footings for all fields more minor than that which broke 
are generated, starting with the most minor and continuing up to the 
control footing for the control that broke. The control headings are 
then printed starting with the control field that broke and continuing 
through the most minor control field. An example of a skeleton report 
follows. 

4-7 



THE DATA DIVISION 

REPORT HEADING 
PAGE HEADING 
CONTROL HEADING (FINAL) 
CONTROL HEADING (MAJOR) 
CONTROL HEADING (MINOR) 
DETAIL GROUP 

CONTROL FOOTING (MINOR) (control break occurred) 
CONTROL HEADING (MINOR) 
DETAIL GROUP 

CONTROL FOOTING (MINOR) 
CONTROL FOOTING (MAJOR) (control break occurred) 
CONTROL HEADING (MAJOR) 
CONTROL HEADING (MINOR) 
DETAIL GROUP 

CONTROL FOOTING (MINOR) 
CONTROL FOOTING (MAJOR) 
CONTROL FOOTING (FINAL) (control break occurred) 
PAGE FOOTING 
REPORT FOOTING 

Within a report file, more than one report can be written. If more 
than one report is written in a file, the names of all the reports 
must be specified in the REPORTS clause of the file description entry, 
and a unique code must be specified for each report by means of the 
CODE clause in the Report Description of each report. The code must 
also be identified in the SPECIAL-NAMES section of the Environment 
Division. 

To print one of the reports within a report file, you enter the 
filename and the code of the desired report into the print queue using 
the PRINT command and specifying the code with the REPORT switch, as 
follows: 

PRINT file-specifier/REPORT:code 

Only the first 12 characters of the code will be accepted in the PRINT 
command string. 

Included in the description of a report are the number of lines on a 
report page, where headings should begin on the page, where footings 
should end, the column on the page where each item in a rep6rt group 
should be placed, and the number of lines which should be left between 
report groups. 

To cause a report to be printed, in addition to specifying its format 
and data in the Data Division, you must include certain verbs in the 
Procedure Division. These verbs are: INITIATE, which initializes the 
report and sets sum counters to zero; GENERATE, which causes report 
groups to be generated on specified control breaks; and TERMINATE, 
which ends the report. An additional statement, USE BEFORE REPORTING, 
causes programmer-specified procedure to be performed before a report 
group is produced. 

4-8 



A "'7 
"'J:. I 

THE DATA DIVISION 

QUALIFICATION 

Any data item that is to be referenced must be uniquely identified. 
This unique identification can be achieved by the assignment of a 
unique name to each item. However, in many applications this is 
tedious and inconvenient (1) because of the large number of names 
required, and (2) because items containing the same type of 
information in different records would have different names. 
Therefore, qualification is introduced to allow similar items and 
certain records to have identical names. 

Qualification means giving enough information about the item to 
specify it uniquely. In COBOL, this information is the name of the 
group items containing it, in order of increasing inclusiveness. It 
is not necessary to name each group containing it, but only enough 
groups so that no other item with the same name as the original item 
could be identically qualified. It is also unnecessary to name each 
successively higher group containing the item until a unique 
qualification is made. Any set of names that uniquely describe the 
item is sufficient. 

Example: 

01 
02 

RECORD-I. 

03 
04 

ITEM-I. 
SUB-ITEM. 

·FIELD PIC X. 

01 
02 

RECORD-2. 
ITEM-2. 

03 
04 

SUB-ITEM. 
FIELD PIC X. 

FIELD in the left-hand example can be referenced uniquely in any of 
the following ways: 

FIELD OF SUB-ITEM OF ITEM-I OF RECORD-I. 
FIELD OF SUB-ITEM OF ITEM-I. 
FIELD OF SUB-ITEM IN RECORD-I. 
FIELD IN ITEM-l OF RECORD-I. 
FIELD IN RECORD-I. 
FIELD IN ITEM-I. 

The connectives OF and IN are equivalent 
interchangeably. 

and may be used 

The only data items which need to have unique names are level-77 items 
a~d records not associated with files, since they are not contained in 
any higher level data structure. Records associated with files may be 
qualified by the file name, as may any item contained within the 
record. File names must be unique. 

Level-66 items may be qualified only (1) by the name of the record 
with which they are associated and (2) by the name of any file with 
which that record is associated. 

4.8 SUBSCRIPTING AND INDEXING 

It may sometimes be more convenient for you to specify a set of data 
values as a table rather than assign a name to each element of the 
set. A table (or array) is a set of homogeneous items stored together 
in memory for use by the program. You define the table elements in 
the program by specifying an OCCURS clause in the description of a 
data item. The data item thus defined represents not one item but a 
set of items having the identical format. Subscripting and indexing 
are used to refer to one of the elements of the set. In DIGITAL 
COBOL-74, subscripting and indexing are identical in use and can be 

4-9 



THE DATA DIVISION 

used interchangeably. However, the manner in which they are defined 
differs. Subscripting is defined simply by the fact that an item has 
an OCCURS clause in its description. For example, 

01 RATE-TABLE. 
02 VOLUME OCCURS 25 TIMES. 

describes VOLUME as 25 elements of RATE-TABLE. If you wish to refer 
to one of the elements of this set you must qualify the data-name with 
a subscript. Thus, VOLUME(lO) is the tenth element (or occurrence) of 
VOLUME. A subscript can be either an integer or a data-name to which 
an integer value has been assigned. Thus, when DIST has been assigned 
to value 10, VOLUME(DIST) is the same as VOLUME (10) . 

To specify indexing you must add the INDEXED BY option to the OCCURS 
clause. Thus, 

01 RATE-TABLE. 
02 VOLUME OCCURS 25 TIMES INDEXED BY IND. 

defines VOLUME as 25 elements of the table and defines IND as the 
index by which each element of the table can be indexed; that is, 
VOLUME (IND) is an element in the table. The index-name IND is 
treated exactly like the data-name DIST because the compiler 
recognizes an index-name as being exactly the same as a data-name. An 
item defined ,as an index in an OCCURS clause has an implicit usage of 
INDEX, and is equivalent to a data item that is declared USAGE INDEX. 
However, this usage is included in DIGITAL COBOL for compatibility 
with other comRilers because an item whose usage is INDEX (implicit or 
explicit) is treated as if its usage were COMPUTATIONAL. In fact, a 
data-name that is used as a subscript can be explicitly declared as 
USAGE INDEX; it will be treated as a COMPUTATIONAL data item by the 
compiler. 

COBOL-74 tables can be one, two, or three dimensions. The number of 
dimensions is defined by the number of subscripts or indexes required 
to refer to an individual item. For example, 

C(l,3) 

represents the item located in the first row and third column of a 
2-dimensional table which is defined by the Data Division entries 

01 TABLEA. 
02 ROW OCCURS 20 TIMES. 

03 COLUMN OCCURS 5 TIMES. 

The subscript/index must be enclosed in parentheses and must appear 
immediately after the terminal space that follows the data-name. 
Multiple subscripts/indexes are separated by a comma or by a space. 
No spaces can appear immediately following the left parenthesis or 
immediately preceding the right parenthesis. When referring to 
elements in multi-dimensional tables, subscript/indexes are written 
from left to right in the order of major (subscript/index varying 
least rapidly), intermediate, and minor (subscript/index varying most 
rapidly). The major index corresponds to the item written with the 
smallest level-number, that is, the most inclusive item. As an 
illustration, consider a table having a major element occurring 10 
times, an intermediate element occurring 5 times within each 
occurrence of the major element, and a minor element occurring 3 times 
within each intermediate element. The last major element of the table 
is referred to by the subscript form (10,1,1), while the final element 
of the table is referred to by (10,5,3). 

4-10 



THE DATA DIVISION 

There are two forms of sUbscripting/indexing: direct and relative. 
Direct subscripting/indexing means that the subscript/index refers 
directly to the desired element. Relative subscripting/indexing means 
that the element of the table is referred to indirectly by a 
subscript/index to which an integer is added or subtracted. The form 
for direct subscript/indexing is shown in Figure 4-1. 

data-name ( I subs cri pt 
index I [I ,.s ubs cri pt 

, index I] ... ) 

Figure 4-1 Direct Subscripting/Ipdexing 

In relative subscripting/indexing, the subscript/index is followed by 
the operator plus (+) or minus (-) followed by an unsigned integer 
numeric literal all enclosed in the parentheses immediately 
following the terminal space of the data-name. The form for relative 
subscripting/indexing is shown in Figure 4-2. 

data-name ({ 
~ ubscript } 
lndex integer [{ 

,subscript 
, index 

Figure 4-2 Relative Subscripting/Indexing 

integer J ... ) 
When you use relative subscripting/indexing, the element of the table 
that you refer to is not the one to which the subscript/index refers, 
but the element to which the subscript/index plus or minus the integer 
refers. That is, if the item 

VOLUME (IND + 2) 

is specified, and IND is set at 3, the fifth occurrence of VOLUME is 
referred to, not the third. However, the value of the subscript/index 
is not changed by relative subscripting/indexing; the value of IND 
remains 3. 

When you need to qualify a table element for uniqueness, you should 
use the format for direct subscripting/indexing shown in Figure 4-3. 

data-name [I ~~ I data-na~-l J ... (I ~ubscript I lndex [I ,subscript IJ ) ,index ... 

Figure 4-3 Qualified Direct Subscripting/Indexing 

4-11 



THE DATA DIVISION 

For example, to refer to ANAME in the following sample: 

01 ARECI. 
02 AGROUPl OCCURS 5. 

03 ASUBGROUPI OCCURS 10. 
04 ANAME PIC XeS) OCCURS 20. 

you could specify the following: 

ANAME OF ASUBGROUPI OF AGROUPI OF ARECI (I,J,4) 

NOTE 

Subscripts may not be subscripted. 

4-12 



THE DATA DIVISION 

4.9 DATA DIVISION CLAUSES 

The clauses which make up the Data Division are presented in the 
following pages. The function, syntax, and details of each clause are 
described, and the general format of the clause is' included. The 
clauses are presented in the order in which they appear in the general 
formats at the end of this chapter, that is, in the order in which 
they occur in the Data Division. The formats of some clauses contain 
other clauses. When this is the case each clause which is subordinate 
is described separately on succeeding pages. 

4-13 



THE DATA DIVISION 

FILE DESCRIPTION (FD) 

4.9.1 File Description (FD) 

Function 

The File Description (FO) furnishes information concerning the 
physical structure, identification, and record names pertaining to a 
given file. 

General Format 

DATA DIVISION. 

[FI LE SECTION. 

[FD fil e-name 

~LOCK CONTAINS 

~RECORD CONTAINS 

[i nteger-l T'U 

Qnteger-3 TO] 

integer-2 
{ 

RECORD(S) }O 
CHARACTERS 

integer-4 CHARACTER~ 

{ 
RE.'CORD IS } I STANDARD I 

LABEL RECORDS ARE OMITTED 
record-name-l 

IVALUE OF 11 IDENTIFICATION ~ IS {d~ta-name-l}~ L-- U ill J llteral-l ~ 

rDATE-WRITTEN IS {d~ta-name-2 fllusER-NUMBER IS l llteral-2 U L {
. data-name-3 tJ 
1 iteral-3 J 

Ir { RECORD IS } 
~ATA RECORDS ARE data-name-4 [data-name-5J .. J 
ILINAGE IS {~ata-name-6 t l-- 1 nteger-5 f LINES ~WITH FOOTING AT 

ILINES AT TOP .{ ~ata-name-8}] 'UNES AT BOTTOM L - lnteger-7 l 

[CODE-SET IS al phabet-name ] 

{ 
~ata-name-7 D 
lnteger-6 U 

{ ~ata-name-9 D~ 1 nteger-8 f!J 

[ {
REPORT IS } 
REPORTS ARE report-name-l G-eport-name-~ .. -] 

4-14 



THE DATA DIVISION 

FILE DESCRIPTION (FD) (Cont.) 

RECORDING 

ASCI I 
SI XBIT 
BINARY 
L 
V 
STANDARD-ASCI I 
STANDARD ASCII 

The clauses shown in the General Format appear in alphabetical order 
on the following pages. 

Technical Notes 

1. An FD entry must be present for each file-name selected in 
the FILE-CONTROL paragraph of the Environment Division. 

2. All semicolons and commas are optional. The entire FD entry 
must terminate with a period. 

3. The clauses may appear in any order within the 
Description entry. 

File 

4. The ability to place the RECORDING MODE clause in the FD has 
been provided for compatibility with other manufacturers. If 
you specify the RECORDING MODE clause for a file in the FO, 
you cannot also specify it in the File-Control paragraph for 
that file in the Environment Division. Also, if you wish to 
use the RECORDING DENSITY and RECORDING PARITY clauses, you 
must put them in the File-Control paragraph in the 
Environment Division, even if the RECORDING MODE clause is in 
the FD. The description of the RECORDING MODE clause can be 
found in Section 3.1.13. 

5. The maximum number of files that can be open at one time is 
16. ISAM files count as two files: one index (.IDX) file 
and one data (.IDA) file. 

4-15 



THE DATA DIVISION 

BLOCK CONTAINS 

4.9.2 BLOCK CONTAINS 

Function 

The BLOCK CONTAINS clause specifies the size of a logical block. 

'General Format 

~lOCK CONTAINS 

Technical Notes 

[i nteger-l TQ] i nteger-2 
{ 

RECORD( S) }~ 
CHARACTERS iJ 

1. If you do not include this clause, or if 
integer-2 is zero, the file will not 
logical blocks when it is written. Rather, 
be placed in the file with no empty space. 

you specify 
be organized 
all records 

The file is 
considered to be "unblocked ll or "blocked zero". 

that 
into 
will 
then 

2. If you use the CHARACTERS option, you specify the logical 
block SIze in terms, of the number of character posi tions 
required to contain the record. If the recording mode is 
ASCII (that is, all records for the file are described, 
explicitly or implicitly, as USAGE DISPLAY-7), the compiler 
assumes that the size is specified in terms of ASCII 
characters. If the recording mode is SIXBIT (that is, the 
records for the file are all described, explictly or 
implicitly, as DISPLAY-6), the compiler assumes that the size 
is specified in terms of SIXBIT characters. If the recording 
mode is F or V (that is, the data is recorded on the medium 
as EBCDIC characters), the compiler assumes that the size is 
specified in terms of EBCDIC characters, either fixed- or 
variable-length. When variable-length EBCDIC records are 
used (that is, the recording mode is V), the number of 
records in a block is also variable. If the blocking factor 
is not zero, the number of records in a block is determined 
by dividing the block size in characters by the number of 
characters in the longest record as specified by the FD 
statement. For example, if the FD statement specifies a 
maximum record length of 248 characters and the BLOCK 
CONTAINS 2400 CHARACTERS clause is used, the number of 
records in a block will be 9. 

3. Integer-l and integer-2 must be positive integers. If you 
specify only integer-2, it represents the exact size of the 
logical block. If you specify both integer-l and integer-2, 
integer-l is ignored and integer-2 is used as the blocking 
factor. 

4. Files whose organizations are RELATIVE or INDEXED must have a 
nonzero blocking factor. 

4-16 



THE DATA DIVISION 

CODE-SET 

4.9.3 CODE-SET 

FUNCTION 

The CODE-SET clause specifies the character code set uSed to represent 
data on the external media. 

General Format 

[CODE-SET IS al phabet-name J 

Technical Notes 

1. When you specify the CODE-SET clause for a file, 
describe all data in that file as USAGE IS DISPLAY. 
also describe any signed numeric data with the 
SEPARATE clause. 

you must 
You must 
SIGN IS 

2. The alphabet-name clause referenced by the CODE-SET clause 
must not specify the literal phrase. 

3. You may specify the CODE-SET clause only for files not 
residing on mass storage media. 

4. The CODE-SET clause is included only for compatability, since 
ASCII is the only alphabet-name allowed, and ASCII is also 
the default. 

5. If you include the CODE-SET clause, alphabet-name specifies 
the character code convention used to represent data on the 
external media. It also specifies the algorithm for 
converting the character codes on the external media from or 
to the native character codes. This code conversion occurs 
during the execution of an input or output operation. 

6. If you omit the CODE-SET clause, the ASCII character set is 
assumed for data on the external media. 

4-17 



THE DATA DIVISION 

DATA RECORD 

4.9.4 DATA RECORD 

Function 

The DATA RECORD clause cross-references the record-name with its 
associated file. 

General Format 

Ir { RECORD IS t 
L!ATA RECORDS AREf 

Technical Notes 

data-name-4 [data-name-5J ... ] 

1. This clause is Qptional because all records in the FD entry 
are assumed to be data records. 

2. All records within a file share the same area. 

3. All record-names must be specified in Ol-level data entries 
subordinate to this FD entry. The presence of more than one 
such record-name indicates that the file contains more than 
one type of data record. These records may have different 
descriptions. The order in which they are listed is not 
significant. 

4-18 



THE DATA DIVISION 

FD File-name 

4.9.5 FD File-name 

Function 

The FD file-name clause identifies the file to which this file 
description entry and the subsequent record descriptions relate. 

General Format 

[JFo file-name~ 

Technical Notes 

1. This entry must begin each file description. 

2. The file-name must appear in a SELECT statement in the 
File-Control paragraph of the Environment Division. 

4-19 



THE DATA DIVISION 

LABEL RECORD 

4.9.6 LABEL RECORD 

Function 

The LABEL RECORD clause specifies whether or not labels are present on 
the file and, if they are, identifies the format of the labels. 

General Format 

{ 
RECORD IS } ~ STANDARD I 
RECORDS ARE ) OMITTED 

( record-name-l 

Technical Notes 

1. If you omit the clause, LABEL RECORDS ARE STANDARD is 
assumed. 

2. You should use the OMITTED option when the file has no header 
or trailer labels. 

3. You should use the STANDARD option when the file has header 
and trailer labels that conform to the standard format. If 
the file you are describing is on disk or DECtape, you must 
either specify LABEL RECORDS ARE STANDARD, or omit the clause 
altogether allowing the default to take over. See the VALUE 
OF IDENTIFICATION clause for the association between the 
label and the filename on disk or DECtape. 

The standard label for DECtape and disk is the directory 
block used by the monitor. For magnetic tape, if the file is 
recorded in SIXBIT, the standard label 1S 78 SIXBIT 
characters in length and is written in a separate physical 
record from the data. If the recording mode is ASCII, the 
label contains 78 ASCII characters, plus carriage return and 
line feed, for a total of 80 characters. Table 4-1 shows the 
contents of each character in a standard label for 
nonrandom-access devices. 

Magnetic tapes are the only devices with ending labels. Each 
ending label is preceded by and followed by an end-of-file 
mark. 

4. Files whose recording mode is F or V (fixed- or variable
length EBCDIC) must have LABELS RECORDS ARE OMITTED if they 
are on magnetic tape. If they are on disk or DECtape, they 
are assumed to have DECsystern-lO standard labels. 

4-20 



THE DATA DIVISION 

LABEL RECORD (Cont.) 

5. If PULSAR is running on your TOPS-10 system, you must perform 
a MOUNT to get a tape. PULSAR writes labels in a different 
format from the label format explained here. (Refer to the 
reference material provided with PULSAR for more 
information.) PULSAR labeling depends on the type of 
labeling you specify at MOUNT time. It is recommended that 
you make the LABEL RECORD clause and the value specified for 
the /LABELS: switch on the mount agree. 

LABEL RECORDS can have two values: STANDARD and OMITTED. 
These values have the following equivalents in PULSAR 
labeling: /LABELS:STANDARD; /LABELS:NONE. You must specify 
the PULSAR label on the mount and the COBOL label in your 
program. 

If you use STANDARD in your program, that is equivalent to 
/LABELS:STANDARD in PULSAR. 

If you use OMITTED in your program, that is equivalent to 
/LABELS:NONE in PULSAR. 

Characters 

1-4 

5-13 

14-21 

22-27 

28-31 

32-41 

42-47 

48-78 

79-80 

Table 4-1 
Standard Label for Magtapes 

Contents 

HDRI = Beginning File 
EOFI = Ending file 
EOVI = Ending reel 

Value of identification 

Always spaces 

Not used 

Reel number; the first reel is always 0001 

Not used 

Creation date; two characters each for the 
year, month, and day, respectively 

Not used 

Carriage-return/line-feed if file is ASCII (Note 
that this is on the label only; it is not kept 
internally. ) 

4-21 



THE DATA DIVISION 

RECORD CONTAINS 

4.9.7 RECORD CONTAINS 

Function 

The RECORD CONTAINS clause specifies the size of the data records in 
the file to which it refers. 

General Format 

[RECORD CONTAINS Qnteger-3 TO] integer-4 CHARACTER~ 

Technical Notes 

1. Since the record description entry completely defines the 
size of the data re~ord, this clause is never required. 
However, if you use it, it replaces the record description 
entry in setting the size of the record. 

2. Integer-l and integer-2 must be positive integers. Integer-2 
may n.ot be less than the size of the largest record but 
cannot exceed 4095, which is the limit on the size of a 
record. Integer-2, if specified, must be larger than 
integer-I. 

3. The data record size is equal to the number of character 
positions required to contain the record. 

4-22 



THE DATA DIVISION 

REPORT 

4.9.8 REPORT 

Function 

The REPORT clause specifies the name of each report that is associated 
with the file. 

General Format 

[ { 
REPORT IS } report-name-l 
REPORTS ARE ~eport-name-~ .. J 

Technical Notes 

1. This clause is optional; it is used only when Report-Writer 
statements cause output to be written on the file. 

2. Report-name-l and report-name-2 must be the names of Report 
Descriptor items in the Report Section. 

3. If you use this clause, you may omit the data record 
description because the name of the data record is not 
referred to directly in the Procedure Division. When the 
data record description is omitted, the compiler 
automatically assumes a l32-character record. 

4-23 



THE DATA DIVISION 

SD File-name 

4.9.9 SD File-name 

Function 

The SD file-name clause identifies the sort file to which this file 
description entry and the subsequent record description relate. 

General Format 

[SD fil e-name 

[RECORD CONTAINS [i nteger-l TOJ i nteger-2 CHARACTER~ 

" {RECORD IS } ~DATA RECORDS ARE data-name-l ~ata-name-2J 00'] 

[record-descri ption-entry} 00 oJ 00 oJ 
Technical Notes 

1. The SD entry must begin each sort file description. 

2. The file-name must appear in a SELECT statement in the 
FILE-CONTROL paragraph of the Environment Division. 

3. The DATA RECORD and RECORD CONTAINS clauses are the only 
descriptive clauses allowed. 

4-24 



THE DATA DIVISION 

VALUE OF iDENTiFiCATiON/DATE-WRITTEN!USER-NUMBER 

4.9.10 VALUE OF IDENTIFICATION/DATE-WRITTEN!USER-NUMBER 

Function 

The VALUE OF IDENTIFICATION clause provides specific data for an item 
within the label records associated with a file. The VALUE OF 
DATE-WRITTEN clause specifies a date which the file label must contain 
to be processed by the program. The VALUE OF USER-NUMBER clause 
provides a project-programmer number to be checked against the file 
label before processing. 

General Format 

{ 
data-name-3 (lJ 
1 i te ra 1 - 3 f J 

Technical Notes 

1. ID may be substituted for IDENTIFICATION. 

2. The VALUE OF IDENTIFICATION clause is required only if label 
records are standard; it is ignored in all other cases. The 
VALUE OF DATE-WRITTEN and the VALUE OF USER-NUMBER are always 
optional. 

3. The three clauses can be written in any order, but only one 
of each can be specified for a file. 

4.. IDENTIFICATION represents the file-name and extension of a 
file with standard labels. If a data-name is specified, it 
must be associated with a DISPLAY, DISPLAY-6, DISPLAY-7, or 
DISPLAY-9 data item nine characters in length. If a literal 
is specified, it must be a nonnumeric literal nine characters 
in length. The first six characters are taken as the 
file-name, and last three characters are taken as the 
extension. The programmer must provide spaces as required to 
conform to this convention. The period which the system 
prints between the file-name and the extension must not be 
included in the VALUE OF IDENTIFICATION clause. 

4-25 



THE DATA DIVISION 

VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER (Cont.) 

Examples: 

a. VALUE OF IDENTIFICATION IS "COST TST" 

b. VALUE OF IDENTIFICATION IS FILE-I-NAME 

(WORKING-STORAGE SECTION.) 

77-FILE-I-NAME PICTURE IS X(9). 

5. DATE-WRITTEN represents the date that a file (with STANDARD 
labels) was written. If a data-name is specified, it must be 
associated with a DISPLAY, DISPLAY-6, DISPLAY-7 or DISPLAY-9 
data item six characters in length. If a literal is 
specified, it must be a nonnumeric literal six characters in 
length. The first two characters are taken as year, the next 
two as month, and the last two as day. The DATE-WRITTEN 
clause is ignored when the file is OPENed for output; 
instead, the current date is used. 

Examples: 

a. VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS 
760112 

b. VALUE OF IDENTIFICATION IS "DATA 
FILE-I-DATE 

(WORKING-STORAGE SECTION.) 
77 FILE-I-DATE PICTURE IS 9(6). 

" DATE-WRITTEN IS 

6. USER-NUMBER represents the project-programmer number of the 
owner of a disk file; it is ignored for all other devices. 
Data-name-3 must be a COMPUTATIONAL item of 10 or fewer 
digits in which the project-programmer number is stored. 
Literal-3 and literal-4 are numeric literals of six or fewer 
digits that are treated as octal. Literal-3 is the project 
number and literal-4 is the programmer number. 

7. For input files the VALUEs specified are checked against the 
file when it is opened. ISAM files are checked as soon as 
your program is run. For output files, the VALUE OF 
IDENTIFICATION is written when the file is opened. If the 
specified values do not match a file on the selected medium, 
a run-time error message is issued. 

8. If the access mode is INDEXED and data-name-l is used in the 
VALUE OF IDENTIFICATION clause, data-name-l must contain the 
tilename and extension of the index-file for the 
indexed-sequential file being referenced. The contents of 
data-name-l may not be altered during program execution. You 
need not specify the identification for the data file of an 
indexed-sequential file because this identification is stored 
in the index file. 

4-26 



THE DATA DIVISION 

VALUE OF IDENTIFICATIONjDATE-WRITTEN!USER=NUMBER (Cont.) 

9. If data-name-3 is used to represent the project-programmer 
number, you must be aware that the value of data-name-3 is 
treated as decimal, even though the project-programmer number 
is octal. The data-name-3 value will be translated from 
decimal to binary by the COBOL conversion routine. Thus, the 
project-programmer will not be accurate unless you provide a 
conversion routine in your program to convert your octal 
project-programmer number to its decimal equivalent so that 
it will be converted to the correct binary number. The 
following example is a suggested method for performing the 
conversion. 

77 
77 
77 
77 
01 

ERR-FLAG PIC 9, USAGE COMPo 
HALF-NUM, PIC S9,(7) , USAGE COMPo 
OCTAL-PPN, PIC S9 (10) , USAGE COMPo 
DIGIT, PIC 9. 
PP-NUMBER. 
02 PROJ-NUMBER, PIC 9 (6) . 
02 PROG-NUMBER, PIC 9 (6) . 
02 EITHER-NUM, PIC 9(6). 
02 X REDEFINES EITHER-NUM. 

03 PP-DIGIT, PIC 9, OCCURS 6 TIMES, INDEXED BY I. 

ACCEPT PROJ-NUMBER, PROG-NUMBER. 
SET ERR-FLAG TO ZERO. 
MOVE PROJ-NUMBER TO EITHER-NUM. 
MOVE ZERO TO HALF-NUM. 
PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL 1>6. 
IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR. 
COMPUTEOCTAL-PPN = HALF NUM * 262144. 
MOVE PROG-NUMBER TO EITHER-NUM. 
MOVE ZERO TO HALF-NUM. 
PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL 1>6. 
IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR. 
COMPUTE OCTAL-PPN = OCTAL-PPN + HALF-NUM. 

CONVERT. 

IF PP-DIGIT (I) = 8 OR 9, SET ERR-FLAG UP BY 1. 
COMPUTE HALF-NUM = 8 *HALF-NUM + PP-DIGIT (I). 

* THIS ROUTINE INVALID FOR PROJECT NUMBERS LARGER THAN 
* 77777. 

4-27 



THE DATA DIVISION 

'VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER (Cont.) 

If the access mode is INDEXED and data-name-3 is used to 
represent the project-programmer number, the following rules 
must be observed: 

a. Data-name-3 must have a value that is the decimal 
equivalent of an octal project-programmer number, and 
that project-programmer number m,ust contain a file with 
the name used in the VALUE OF IDENTIFICATION clause. 

b. Data-name-3 may be altered during program execution only 
if all files referenced have identical parameters. 

c. If several files will be read through the same File 
Description, data-name-3, should point to the file with 
the largest number of levels of index (this is usually 
the largest file). 

10. None of the data-names in the VALUE OF clauses can appear in 
the Linkage Section. 

4-28 



THE DATA DIVISION 

D.A.T,,4,. DESCRIPTION ENTRY 

4.9.11 DATA DESCRIPTION ENTRY 

Function 

A data description entry describes a particular item of data. 

General Format 

FORMAT 1: 

1 evel-number { 
data-name-l} 
FILLER 

[REDEFINES data-name-2 ] 

[ { 
PI ClURE } . ] PIC . IS character-stnng 

USAGE IS 

COMPUTATIONAL 
cm~p 

COMPUTATIONAL-l 
COMP-l 
COM'PITfATIONAL-3 
COMP-3 
DISPLAY 
DISPLAY-6 
DISPLAY-7 
DISPLAY-9 
INDEX 
DAfABASE-KEY 
DBKEY 

'OCCURS {~nteger-l TO integer-2 TIMES DEPENDING ON data-name-3} L-- , nteger-2 TIMES 

[{ ~~~~~~~~~G} KEY IS data-name-4 [}ata-name-u .. .J 
~INDEXED BY index-name-l C=index-name-2~ ... ~~ 

[{ ~HRONIZED} [~~~~TJJ 
[{:ll FlED }{ ~~~~T D 

4-29 



THE DATA DIVISION 

DATA DESCRIPTION ENTRY (Cont.) 

FORMAT 2: 

66 data-name-1 RENAMES data-name-2 ~{ ~UGH} data-name-3~ 

FORMAT 3: 

88 condition-name {
VALUE IS } 
VALUES ARE 1 itera 1-1 [{ ~UGH} 1 itera 1-~ 

The clauses shown in the General Format appear in alphabetical order 
along with the other Data Division clauses on the following pages. 

Technical Notes 

1. Each data description entry must be terminated by a period. 
All semicolons and commas are optional. 

2. The clauses may appear in any order, with one exception: the 
REDEFINES clause, when used, must immediately follow the 
data-name being redefined. 

3. The VALUE clause must not appear in a data description entry 
which also contains an OCCURS clause, or in an entry which is 
subordinate to an entry containing an OCCURS clause. The 
latter part of this rule does not apply to condition-name 
(level-SS) entries. 

4. The PICTURE clause must be specified for every elementary 
item, except a USAGE INDEX, COMP-I item, DATABASE-KEY, or 
DBKEY. 

5. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN 
ZERO can be specified only at the elementary level. 

4-30 



THE DATA DIVISION 

, BLANK WHEN ZERO 

4.9.12 BLANK WHEN ZERO 

Function 

The BLANK WHEN ZERO clause causes the blanking of an item when its 
value is zero. 

General Format 

[]LANK WHEN ZERO] 

Technical Notes 

1. When the BLANK WHEN ZERO option is used and the item is zero, 
the item is set to blanks. 

2. BLANK WHEN ZERO can be specified only at the elementary level 
and only for numeric or numeric-edited items whose usage is 
DISPLAY-6, DISPLAY-7, or DISPLAY-9. 

3. An asterisk used as a zero suppression symbol in a PICTURE 
clause may not appear in the same entry with the BLANK WHEN 
ZERO clause. More comprehensive editing features are 
available in the PICTURE clause. 

4. When the BLANK WHEN ZERO clause is used for an elementary 
item whose PICTURE is numeric, the category of the item is 
considered to be numeric-edited. 

4-31 



THE DATA DIVISION 

Condition-name (level-88) 

4.9.13 Condition-name (level-SS) 

Function 

The condition-name (level-88) entry assigns a name to a value or range 
of values of the associated data item. 

General Format 

88 condition-name {
VALUE IS } 
VALUES ARE 

lite al-l rJ{ THROUGH} 
r lJ THRU 1 iteral-~ 

[iteral-3 D =UGH} literal-4] 

Technical Notes 

1. Each condition-name requires a separate level-88 entry. This 
entry contains the name assigned to the condition, and the 
value or values associated with that condition. 
Condition-name entries must immediately follow the data 
description entry with which the condition-name is to be 
associated. 

2. A condition-name entry can be associated with any elementary 
or group item except 

a. another condition-name entry, or 

b. a level-66 item. 

3. Some examples of possible level-88 entries are given below. 

a. 05 B-FIELD PICTURE IS 99. 
88 Bl VALUE IS 3. 
88 B2 VALUES ARE 50 THRU 69. 
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37. 
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95. 

b. 02 C-FIELD PICTURE IS XXX. 
88 C-YES VALUE IS "YES". 
88 C-NO VALUE IS liND ". 

4. The data item with which the condition-name is associated is 
called a conditional variable. A conditional variab~e may be 
used to qualify any of its condition-names. If references to 
a conditional variable require iQdexing, subscripting, or 
qualification, then reference to its associated 
condition-names also require the same combination of 
indexing, subcripting, or qualification. 

4-32 



THE DATA DIVISION 

Condition-name (levelQ 88) (Cont.) 

5. A condition-name is used in conditional expressions as an 
abbreviation for the related condition. Thus, if the above 
Data Division entries (Note c) are used, the statements in 
each pair below are functionally equivalent. 

Relational Expression 

a. IF 8-FIELD IS EQUAL TO 3 •.•• 

b. IF 8-FIELD IS GREATER THAN 
49 AND LESS THAN 70 .••• 

c. IF 8-FIELD IS EQUAL TO 20 OR 
EQUAL TO 25 OR EQUAL TO 28 
OR GREATER THAN 30 AND 1 
LESS THAN 38 ..•• 

d. IF 8-FIELD IS GREATER THAN 69 
AND LESS THAN 76 OR GREATER 
THAN 79 AND LESS THAN 86 OR 
GREATER THAN 89 AND LESS 
THAN 96 •••• 

e. IF C-FIELD IS EQUAL TO "YES" •. 

Condition-Name 

IF 81 ..•• 

IF B2 •••• 

IF B3 •••• 

IF B4 .... 

IF C-YES 

6. Litera1-1 must always be less than 1iteral-2, and 1iteral-3 
less than 1iteral-4. The values given must always be within 
the range allowed by the format given for the conditional 
variable. For example, any condition-name values given for a 
conditional variable with a PICTURE of 999 must be in the 
range of 000 to 999. 

4-33 



THE DATA DIVISION 

Data-name/FILLER 

4.9.14 Data-name/FILLER 

Function 

A data-name specifies the name of the data being described. The word 
FILLER specifies an unreferenced portion of the logical record. 

General Format 

level-number { 
da ta- name-I} 
FI LLER 

Technical Notes 

1. A data-name or the word FILLER must immediately follow the 
level-number in,each data description entry. 

2. A data-name must be composed of a combination of the 
characters A through Z,'O through 9, and the hyphen. It must 
contain at least one alphabetic character and must not exceed 
30 characters in length. It must not duplicate a COBOL 
reserved word. Refer to Section 1.2.3.2, User-Defined Words, 
for further information. 

3. The key word FILLER is used to name an unreferenced item in a 
record (that is, an item to which the programmer has no 
reason for assigning a unique name). A FILLER item cannot, 
under any circumstances, be referenced directly in a 
Procedure Division statement. However, it may be indirectly 
referenced by referring to a group-level item of which the 
FILLER item is a part. FILLER can be used at any level, 
including· the 01 level. 

4-34 



THE DATA DIVISION 

JUSTIFIED 

4.9.15 JUSTIFIED 

Function 

The JUSTIFIED clause specifies nonstandard positioning of data within 
a receiving data item. 

General Format 

[{ 
JUSTI FlED} { RIGHT}~ 
JUST LEFT U 

Technical Notes 

1. The JUSTIFIED clause cannot be specified at a group level, or 
for numeric or edited items. If neither RIGHT nor LEFT is 
specified, RIGHT is assumed. 

2. An item subordinate to one containing a VALUE clause cannot 
be JUSTIFIED. 

3. DISPLAY, DISPLAY-6, DISPLAY-7 and DISPLAY-9 items can be 
JUSTIFIED. 

4. The standard rules for positioning data within an elementary 
data item are as follows: 

a. The receiving data item is described as numeric or 
numeric-edited (see definition in Notes 7 and 10 under 
the PICTURE clause, Section 4.9.18.) 

A numeric or numeric-edited item is justified according 
to the following rules, thus the JUSTIFIED clause cannot 
be used. 

The data is aligned by decimal point and is moved to the 
receiving character positions with zero fill or 
truncation on either end as required. 

If an assumed decimal point is not explicitly specified, 
the data item is treated as if it had an assumed decimal 
point immediately following its rightmost character, and 
the sending data is aligned according to this decimal 
point. 

b. The receiving data item is described as alphanumeric or 
alphabetic (see definition in Notes 6 and 8 under the 
PICTURE clause, Section 4.9.18). 

The data is moved to the receiving character positions 
and aligned at the leftmost character position with space 
fill or truncation at the right end as required. 

4-35 



THE DATA DIVISION 

JUSTIFIED (Cont.) 

5. When a receiving item is described as JUSTIFIED LEFT, 
positioning occurs as in 4a above. 

6. When a receiving data item is described with the JUSTIFIED 
RIGHT clause and is larger than the sending data item, the 
data is aligned at the rightmost character position in the 
receiving item with space fill at the left end. 

When a receiving data item is described with the JUSTIFIED 
RIGHT clause and is smaller than the sending data item, the 
data is aligned at the rightmost character position in the 
receiving item with truncation at the left end. 

Examples are given below. 

03 ITEM-A PICTURE IS 
X(8) VALUE IS "ABCDEFGH". 

03 ITEM-B PICTURE IS 
X(4) VALUE IS "WXYZ". 

03 ITEM-C PICTURE IS X(6). 

03 ITEM-D PICTURE IS X(6). 
JUSTIFIED RIGHT. 

Procedure Division statement Contents of Receiving Field 

MOVE ITEM-A TO ITEM-C,. AIBlclDIE F 

MOVE ITEM-A TO ITEM-D. CIDIEIFIG H 

MOVE ITEM-B TO ITEM-C. WIXIYIZI~ ~ 

MOVE ITEM-B TO ITEM-D. ~I~IWIXIY Z 

4-36 



THE DATA DIVISION 

4.9.16 Level-number 

Function 

The level-number shows the hierarchy of data within a logical record. 
In addition, special level-numbers are used for condition-names 
(level-88), noncontiguous Working-Storage items (level-77), and the 
RENAMES clause (level-66). 

General Format 

level-number { data-name-l} 
FILLER 

Technical Notes 

1. A level-number is required as the first element in each data 
description entry. 

2. Level-numbers may be placed anywhere on the source line, at 
or after margin A. 

3. Level-number 88 is described under "condition-name 
(level-88)", Section 4.9.13, and level-number 66 is described 
under "RENAMES (level-66)", Section 4.9.20. 

4. A further description of level-numbers and data hierarchy can 
be found in the introduction to this chapter. 

4-37 



THE DATA DIVISION 

OCCURS 

4.9.17 OCCURS 

Function 

The OCCURS clause eliminates the need for separate entries for 
repeated data, and supplies information required for the application 
of subscripts and indexes. 

General Format 

'OCCURS {~nteger-l TO i nteger-2 TI MES DEPENDI NG ON data-name-3 }] 
~----- lnteger-2 TIMES 

Technical Notes 

1. This clause cannot be specified in a data description entry 
that has a 66 or 88 level-number, or in one that contains a 
VALUE clause. 

2. The OCCURS clause is used 
homogeneous sets of repeated 
used, the associated data-name 
must always be subscripted 
Procedure Division statements. 

to define tables or other 
data. Whenever this clause is 
and any subordinate data-names 
or indexed when used in all 

3. All clauses given in a data description that includes an 
OCCURS clause apply to each repetition of the item. 

4. The integers must be positive. If integer-l is specified, it 
must have a value less than integer-2. No value of a 
subscript can exceed integer-2; in addition, if the 
DEPENDING option is specified, no subscript can exceed the 
value of data-name-l at the time of subscripting. 

5. The value of data-name-l is the count of the number of 
occurrences of the item described by the OCCURS clause; its 
value must not exceed integer-2. 

6. If the DEPENDING option is specified, the integer-l TO phrase 
must be included. The DEPENDING option must immediately 
follow TIMES. Data-name-l must be a positive integer, and 
for efficiency should be either USAGE INDEX or USAGE COMP. 
It cannot be subcripted, and if the clause appears in the 
Linkage Section, data-name-l must be either USAGE INDEX or 
USAGE COMP. 

7. The KEY IS option indicates that you have sorted the repeated 
data into either ascending or descending order according to 
the values associated with data-name-2, data-name-3, and so 
forth. The data-names are listed in order of decreasing 
significance. Note that you must sort the data - it will not 
be sorted automatically. 

4-38 



THE DATA DIVISION 

OCCURS (Cont.) 

8. Data-name-2 must be either the name of the entry containing 
the OCCURS clause, or the name of an entry subordinate to the 
entry containing the OCCURS clause. Data-name-3, etc., must 
be the name of an entry subordinate to the group item that is 
the subject of this entry. 

9. An index-name defined in a OCCURS clause must not be defined 
elsewhere; its appearance in the INDEXED option is its only 
definition. There can be no items of the same name defined 
elsewhere. The USAGE of each index-name is assumed to be 
INDEX. 

10. Subscripting and indexing are described in Section 4.8. 

11. The entire record containing the OCCURS clause must not 
exceed 32,767 characters in size; that is, if the record 
were completely full of data, the number of characters 
required to contain the record would have to be less than or 
equal to 32,767. 

4-39 



THE DATA DIVISION 

PICTURE 

4.9.18 PICTURE 

Function 

The PICTURE clause describes the general characteristics and editing 
requirements of an elementary item. 

General Format 

[ { 
PI CTURE } . ] PIC .. IS character-stnng 

Technical Notes 

1. A PICTURE clause may be specified only for an elementary data 
item. It may not be used with an item described as USAGE 
INDEX, CaMP-I, or DATABASE-KEY (DBKEY). 

2. PIC may be substituted for PICTURE in the format. 

3. A picture string consists of certain allowable combinations 
of characters in the COBOL character set used as symbols. 
These symbols are as follows: 

a. Symbols representing data characters 

9 represents a numeric character (0 through 9) 
A represents an alphabetic character (A through Z, tab, 

and space) 
X represents an alphanumeric character (any allowable 

character) 

b. Symbols representing arithmetic signs and assumed decimal 
point positioning 

V represents the position of the assumed decimal point 
P represents an assumed decimal point scaling position 
S represents the presence of an arithmetic sign 

c. Symbols representing zero suppression operations 

Z represents standard zero suppression (replacement of 
leading zeros by spaces) 

* represents check protection (replacement of leading 
zeros by asterisks) 

d. Symbols representing insertion characters 

$ represents a dollar sign (this SigIl floats from left to 
right and replaces the rightmost leading zero when more 
than One $ appears)l 

1 If the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES 
paragraph, the symbol specified by the literal must be used in all 
~nstances in place of the $. 

4-40 



THE DATA DIVISION 

, represents an insertion comma l 

• represents an actual decimal point l 

B represents an insertion blank 
o represents an insertion zero 
/ represents an insertion slash 

PICTURE (Cont.) 

e. Symbols representing editing sign-control symbols 

+ represents an editing plus sign 
- represents an editing minus sign 
CR represents an editing Credit symbol 
DB represents an editing Debit symbol 

The plus and minus signs (+ and -) float when more than 
one appear, and replace the rightmost leading zeroes. 

f. Consecutive repetitions of a picture symbol can be 
abbreviated to the symbol followed by (n), where n 
indicates the number of occurrences. However, some 
editing symbols may not be used more than once in a data 
item: "S", "V", ".11, ItCR", and "DB". 

4. A maximum number of 30 symbols can appear in a picture 
string. Note that the number of symbols in a picture string 
and the size of the item represented are not necessarily the 
same. There are two reasons for this discrepancy. First, 
the abbreviated form for indicating consecutive repetitions 
of a symbol may result in fewer symbols in the picture string 
than character positions in the item being described. For 
example, a data item having 40 alphanumeric character 
positions can be described by a picture string of only 5 
symbols: 

PICTURE IS X(40). 

The second reason is that some symbols are not counted when 
calculating the size of the data item being described. These 
symbols include the V (assumed decimal point), P (decimal 
point scaling position), and S (arithmetic sign); these 
symbols, with one exception, do not represent actual physical 
character positions within the data item. The exception 
involves the use of the SIGN IS SEPARATE clause, which causes 
the S (arithmetic sign) to take up a character position. If 
the clause is omitted, the character-string 

S999V99 

represents a 5-position data item. However, if the SIGN IS 
SEPARATE clause is included, the character-string would 
represent a 6-position item. 

Other size restrictions for numeric and numeric-edited items 
are given under the appropriate headings below. 

5. There are five categories of data that can be described with 
a PICTURE clause: alphabetic, numeric, alphanumeric, 
alphanumeric-edited, and num~ric-edited. A description of 
each category is given in the notes below. 

1 If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES 
paragraph, the function of the comma and decimal point is reversed. 

4-41 



THE DATA DIVISION 

PICTURE (Cont.) 

6. Definition of an Alphabetic Item 

a. Its picture string may contain only the symbol A or B. 

b. It may contain only the 26 letters of the alphabet and 
the space. 

7. Definition of a Numeric Item 

S. 

a. Its picture string may contain only the symbols 9, P, S, 
and V. It must contain at least one 9. 

The picture string must have from 1 to 18 digit 
positions. 

b. It may contain only the digits 0 through 9 and an 
operational sign. 

Definition of an Alphanumeric Item 

a. Its picture string can consist of all Xs, or a 
combination of the symbols A, X, and 9 (except all 9s or 
all As). The item is treated as if the character-string 
contained all xs. 

b. It,s contents can be any combination of characters from 
the complete character set (see Section 1.2.2). 

9. Definition of an Alphanumeric-Edited Item 

a. Its picture string can consist of any combination of As, 
Xs, or 9s (it must contain at least one A or one X), plus 
at least one of the symbols B, 0 or I. 

b. Its contents can be any combination of characters from 
the complete character set. 

10. Definition of a Numeric-Edited Item 

a. Its picture string must contain at least one of the 
following editing symbols: 

, . * + - 0 B CR DB $ 

It may also contain the symbols 9, V, or P. If you use 
the CURRENCY SIGN IS clause, the new currency sign you 
specify replaces the $ in the above list. 

The allowable sequences are determined by certain editing 
rules for each symbol and can be found in Note 11. 

The picture string must have from 1 to IS 
positions. 

digit 

b. The contents can be any combination of the digits 0 
through 9 and the editing characters. 

4-42 



THE DATA DIVISION 

PICTURE (Cont.) 

11. The symbols used to define the category of an elementary item 
and their functions are as follows: 

A Each A in the picture string represents a character 
position which can contain only a letter of the alphabet 
or a space. 

B Each B in the 
position into 
during editing. 

picture string represents a character 
which a space character will be inserted 

Examples: (A-FLD contains the value 092469) 

B-FLD picture string Result 

MOVE A-FLD TO B-FLD 99B99B99 1019111121411116191 

MOVE A-FLD TO B-FLD 9999BBBB 101912141111111111111 

Also see Note 15, Simple Insertion Editing. 

PEach P in the picture string indicates an assumed decimal 
point scaling position and is used to specify the 
location of an assumed decimal poin~ when the point is 
outside the positions defined for the item. Ps are not 
counted in the size of the d~ta item. They are counted 
in determining the maximum number of digit positions (18) 
allowed in numeric-edited items or numeric items. Ps can 
appear only to the left or right of the picture string 
and must appear together. The assumed decimal point is 
assumed to be to the left of the string of ?s if the Ps 
are at the left end of the picture string and to the 
right of the string of Ps if the Ps are at the right end 
of the picture string. If the V symbol is used in this 
case, it must appear in either of those positions; in 
either case, it is redundant. 

Examples: 

PPP9999 (or VPPP9999) defines a data item of four 
character positions whose contents will be treated as 
.000nnnn during any decimal point alignment operation 
(such as in a MOVE or ADD). 9PPP (or 9PPPV) defines a 
data item of one character position whose contents will 
be treated as nOaa during any decimal point alignment 
operation. 

S An S in a picture string indicates that the item has an 
operational sign and will retain the sign of any data 
stored in it. The S must be written as the leftmost 
character in the picture string. If S is not included, 
all data will be stored in the item as an absolute value 
and will be treated as positive in all operations. The S 
symbol is not counted in the size ~f the data item unless 
the SIGN IS SEPARATE clause is included, in which case it 
occupies one character position. 

4-43 



THE DATA DIVISION 

PICTURE (Cont.) 

V A V in a picture string indicates the location of the 
assumed decimal point and may appear only once in a 
picture string. The V does not represent a physical 
character position and is not counted in the size of the 
data item. If the assumed decimal point position is at 
the right of the rightmost character position of the 
item, the V is redundant (that is, 9999 is functionally 
equivalent to 9999V). 

X Each X in a picture string represents a character 
position which can contain any allowable character from 
the complete character set. 

Z Each Z in a picture string represents the leftmost 
leading numeric character positions in which leading 
zeros are to be replaced by spaces. Each Z is counted in 
the size of the item. 

* Each * in a picture string represents the leftmost 
leading numeric character positions in which leading 
zeros are to be replaced by *. Each * is counted in the 
size of the item. 

Examples: (A-FLD contains the value 00305) 

B-FLD picture string Result 

MOVE A-FLD TO B-FLD 999999 01 0 1 0 1 3 0 5 

MOVE A-FLD TO B-FLD ZZ9999 l11l11013 0 5 

MOVE A-FLD TO B-FL~ ZZZZZZ l11l11l113 0 5 

MOVE A-FLD TO B-FLD ZZZZ.ZZ Il1 310 151. 0 0 

Also see Note 19, Zero Suppression Editing. 

9 Each 9 in a picture string represents a character 
position which can contain a digit. Each 9 is counted in 
the size of the item. 

o Each 0 in a picture string represents a character 
position into which a zero will be inserted. It is 
counted in the size of the item. The 0 symbol works in 
the same manner as the B symbol. 

Each , in a picture string represents a character 
position into which a comma will be inserted. The comma 
is counted in the size of the item. 

/ Each / in a picture string represents a character 
position into w~ich the slash will be inserted. The 
slash is counted in the size of the item. 

4-44 



~Rl OB 

THE DATA DIVISION 

PICTURE (Cont.) 

Examples: (A-FLO contains 362577) 

B-FLO picture string Result 

MOVE A-FLO TO B-FLO 9,999,999 

MOVE A-FLO TO B-FLO z,zzz,zzz 
\01,\3\61 2[,1 517171 
I ~1~1316121' \5\71 7\ 

Also see Note 15, Simple Insertion Editing. 

A • (period) in a picture string is an 
that represents an actual decimal point. 
decimal point alignment and also indicates 
(.) is to be inserted. This symbol is 
size of the item. Only one • may appear 
string. 

Examples: (A-FLO contains 3526
A
99)1 

B-FLO picture string 

editing symbol 
It is used for 
where a period 
counted in the 
in a picture 

Result 

MOVE A-FLO TO B-FLO 99,999.99 10131,1512161.1919\ 
MOVE A-FLO TO B-FLO ZZ,ZZZ.ZZ 1~131 ,1512161.19191 
MOVE A-FLO TO B-FLO 99999.9999 10131512161.191910101 

See Note 4 under the MOVE clause, Section 5.9.23, for a 
clarification of the rule governing the third example. 

Also see Note 16, Special Insertion Editing. 

Each of these symbols is used as an editing sign-control 
symbol. When used, they represent the character 
position(s) into which the editing sign-control symbol 
will be placed. Only one of these symbols can appear in 
a character-string. 

The + and - symbols can appear either at the beginning or 
at the end of a picture string. The CR and OB symbols 
can appear only at the end of a picture string. 

+ The character position containing this symbol will 
contain a + if the sending field either was unsigned 
(absolute) or had a positive operational sign; it will 
contain a if the sending field had a negative 
operational sign. 

The character position containing this symbol will 
contain a space if the sending field either was unsigned 
(absolute) or had a positive operational sign; it will 
contain a if the sending field had a negative 
operational sign. 

1 The caret ( ~ ) symbol is used to indicate the location of the 
assumed decimal point. 

4-45 



THE DATA DIVISION 

PICTURE (Cont.) 

CR} OB 
Each of these symbols requires two character positions. 
The character positions containing either of these 
symbols will contain spaces if the sending field either 
was unsigned (absolute) or had a positive operational 
sign; they will contain the symbol specified if the 
sending field had a negative operational sign. 

Examples: 
.3456~5) 1 

MOVE A-FLO 

MOVE B-FLO 

MOVE A-FLO 

MOVE B-FLO 

MOVE A-FLO 

MOVE B-FLO 

MOVE A-FLO 

MOVE B-FLO 

MOVE B-FLO 

(A-FLD contains 345625, B-FLO contains 
;0., 

C-FLO picture string Result 

TO C-FLO 9999.99BCR 1 3141s161 .1 215 ~I~I~I 
TO C-FLO 9999.99BCR 13141s161·121s ~ ci RI 

TO C-FLO +9999.99 \+131 4 Is I6 1·12 S 

TO C-FLO +9999.99 1-1 3 4 S 6 · 2 S 

TO C-FLO -9999.99 I~ 3 4 S 6 · 2 S 

TO C-FLO -9999.99 1- 3 4 S 6 · 2 S 

TO C-FLO 9999.990B 3 4 S 6 · 2 sl~I~1 
TO C-FLO 9999.990B 3 4 sl6 · 2 slolBI 

TO C-FLO $9999.99+ 1$ 3 4\s16 · 2 sl-I 

Also see Note 17, Fixed Inserting Editing. 

The + and can also be used to perform floating 
insertion editing, a combination of zero suppression and 
symbol insertion. Floating insertion editing is 
indicated by the occurrence of two or more consecutive + 
or - symbols at the beginning of the picture string. The 
total number of significant positions in the editing 
field must be at least one greater than the number of 
significant digits in the data to be edited. The 
floating + or - moves from left to right through any 
high-order zeros until a decimal point or the picture 
character 9 is encountered. (In order for floating to go 
past decimal point, all numeric positions of the item 
must be represented by the floating insertion symbol.) 

The caret ( ~ ) symbol is used to indicate the location of the 
assumed decimal point. 

4-46 



Examples: 
-00S6}S) 

MOVE A-FLD 

MOVE B-FLD 

MOVE ZERO 

MOVE ZERO 

MOVE A-FLO 

MOVE B-FLD 

MOVE ZERO 

MOVE ZERO 

THE DATA DIVISION 

(A-FLO contains 

C-FLO picture 

TO C-FLD ++999.99 

TO C-FLD ++++9.99 

TO C-FLD ++999.99 

TO C-FLD +++++.++ 

TO C-FLD --999.99 

TO C-FLD --999.99 

TO C-FLD ---99.99 

TO C-FLD --------

00S6",2S; 

string 

PICTURE (Cont.) 

B-FLD contains 

Result 

I~\+\O S 6 .\2\S 1 

I~I~I- S 6 ·1 2 IS \ 

1~1+10 0 0 .10101 

I~I~\~ ~ 6 ~16\~\ 

\6 6\0\S 6\.\2\S\ 

16 -lois 61·\2\sl 
\6 61 ~ 1 0 01 .1 010 I 

16 61~16 ~I~I~I I 
Also see Note 18, Floating Insertion Editing. 

Note that the + and - symbols are distinct from the S 
(operational sign) symbol. Normally, the + and - symbols 
are used to describe display items that are to appear on 
some printed report; they provide visual sign indication 
and cannot be used with items appearing as operands in 
arithmetic statements. 

$ A $ (or the symbol specified by the CURRENCY SIGN clause 
in the SPECIAL-NAMES paragraph) represents the character 
position into which a $ (or the currency symbol) is to be 
placed. This symbol is counted in the size of the item. 

Example: (A-FLO contains 34S6JS) 

B-FLO character-string Result 

MOVE A-FLO TO B-FLD $9,999.99 \$\31,\4ISI6\.17\S\ 

MOVE A-FLD TO B-FLD $999,999.99 1$10\0\31,\4\516\.\7\S\ 

Also see Note 17, Fixed Insertion Editing. 

The $ symbol can also be used to perform floating 
insertion editing. Floating insertion editing is 
indicated by the occurrence of two or more consecutive $ 
symbols at the beginning of the character string. The 
total number of significant positions in the editing 
field must be at least one greater than the number of 
significant digits in the data to be edited. The 
floating $ symbol floats from left to right through any 
high-order zeros until a decimal point or the picture 
character 9 is encountered. 

4-47 



THE DATA DIVISION 

PICTURE (Cont.) 

Examples: (A-FLD contains 005625) 

B-FLD picture string Result 

MOVE A-FLD TO B-FLD $$9,999.99 I bl $1 0 I, 10 15 16 .1 2 15 

MOVE A-FLD TO B-FLD $$$,$$$.99 Ibl blbllll$1516 .1 2 15 

MOVE ZERO TO B-FLD $$$,999.99 Iblblbl$IOIOlo .1 0 10 

MOVE ZERO TO B-FLD $$$,$$$.$$ [Alb(bJbllllblll blill b 

Also see Note 18, Floating Insertion Editing. 

12. There are two general methods of performing editing in the 
PICTURE clause: 

a. insertion, or 

b. suppression and replacement. 

There are four types of insertion editing available: 

a. Simple insertion 

b. Special insertion 

c. Fixed insertion 

d. Floating insertion 

There are two types of suppression and replacement editing: 

a. Zero suppression and replacement with spaces 

b. Zero suppression and replacement with asterisks 

13. The type of editing that may be performed upon an item 
depends on the category to which the item belongs. 

Category Type of Editing Allowed 

Alphabetic Simple insertion: B only 

Numeric None 

Alphanumeric None 

Alphanumeric-edited Simple insertion: 0, Band / 

Numeric-edited All (except for the restriction given in 
Note 14) 

4-48 



THE DATA DIVISION 

PICTURE (Cont.) 

14. Floating insertion editing and zero suppression/replacement 
editing are mutually exclusive in a PICTURE clause. Only one 
type of replacement can be used with zero suppression in a 
PICTURE clause. 

15. Simple Insertion Editing (, B 0 /) 

The , (comma), B (space), 0 (zero), 
constitute those editing symbols 
editing. These insertion characters 
position in the item into which 
inserted. These symbols are counted 

16. Special Insertion Editing (.) 

and / (slash or stroke) 
used in simple insertion 
represent the character 
the character will be 

in the size of the item. 

The • (decimal point) symbol is used in special insertion 
editing. In addition to its use as an insertion character, 
it also represents the position of the decimal point for 
decimal point alignment. This symbol is counted in the size 
of the item. The symbols . and V (assumed decimal point) are 
mutually exclusive in a PICTURE clause. Since the . cannot 
be the last symbol in the character-string, it must be 
immediately followed by one of the line-ending characters, 
either space or carriage return. 

17. Fixed Insertion Editing ($ + - CR DB) 

The currency symbol ($) and the editing sign control 
characters (+ CR DB) constitute the characters used ln 
fixed insertion editing. Only one $ and one of the editing 
sign control characters can be used in a PICTURE 
character-string. When the symbols CR or DB are used, they 
represent two character positions in determining the size of 
the item. The symbols + or - when used must be the leftmo$t 
or rightmost character positions to be counted in the size of 
the item. The $ when used must be the leftmost character 
position to' be counted in the size of the item, except that 
it can be preceded by a + or - symbol. A fixed insertion 
editing character appears in the same character position in 
the edited item as it occupied in the PICTURE 
character-string. 

When the $ is used as a floating insertion editing character, 
the picture string must contain at least one $ more than the 
maximum number of significant digits in the item to be 
edited. If you use a comma and the $ simultaneously for 
editing, there must always be at least two $ to the left of 
the comma because one $ will always be printed; there is no 
place for a significant digit to the left of the comma if you 
have used only one $. (If the i tern has a picture of $, $$$ 
then no digit will ever appear to the left of the comma; a $ 
will always be there.) A comma is omitted only when what 
appears to its left consists only of zeroes. (With the 
picture string $,$$$ the comma is never omitted.) 

4-49 



THE DATA DIVISION 

PICTURE (Cont.) 

Editing sign control symbols produce the following results 
depending on the value of the data being edited. 

Editing Symbol in Result 
PICTURE Data positive Data 
character-string 

+ + -
- space -

CR 2 spaces CR 

DB 2 spaces DB 

18. Floating Insertion Editing ($$ ++ --) 

The $ and the editing sign control symbols + and 
floating insertion editing characters and are 
exclusive in a given PICTURE string. 

Negative 

are the 
mutually 

Floating insertion editing is indicated in a PICTURE 
character-string by using a string of at least two of the 
allowable insertion characters to represent the leftmost 
numerip character positions into which the insertion 
characters can be floated. Any of the simple insertion 
characters embedded in the string of floating insertion 
characters or to the immediate right of this string are part 
of the floating string. 

In a PICTURE character-string, there are only two ways of 
representing floating insertion editing: 

a. Representing any two or more of the leading numeric 
character positions on the left of the decimal point by 
the insertion character. The result is that a single 
insertion character will be placed in the character 
position immediately preceding the leftmost nonzero digit 
of the data being edited or in the character position 
immediately preceding the decimal point, or in the 
character position represented by the rightmost insertion 
character, whichever is encountered first. 

b. Representing all numeric character positions in the 
character-string by the insertion character. If the 
value is not zero, the result is the same as when the 
insertioi character appears only to the left of the 
decimal point. If the value is zero, the entire item is 
set to spaces. 

A picture string containing floating insertion characters 
must contain at least one more floating insertion 
character than the maximum number of significant digits 
in the item to be edited. For example, a data field 
containing five significant digit positions requires an 
editing field of at least six significant positions. 

,All floating insertion characters are counted in the size 
'of the item. 

4-50 



THE DATA DIVISION 

PICTURE (Cont.) 

19. Zero suppression Editing (Z *) 

The suppression of leading zeros and commas in a data field 
is indicated by the use of the Z or the * symbol in a picture 
string. These symbols are mutually exclusive in a given 
picture string. Each suppression symbol is counted in the 
size of the item. If a Z is used, the replacement character 
is a space. If an * is used, the replacement character is an 
* Zero suppression and replacement is indicated by a string 
of one or more Zs or *s to represent the leading numeric 
character positions which are to be replaced when the 
associated character position in the data contains a leading 
zero. Any of the simple insertion characters embedded in 
this string of zero suppression symbols or to the immediate 
right of this string are part of the string. 

If the zero suppression symbols appear only to the left of 
the decimal point, any leading zero in the data that 
corresponds to a zero suppression symbol in the string is 
replaced by the replacement character. 

Suppression terminates at the first nonzero digit in the data 
represented by the suppression symbol in the string or at the 
decimal point, whichever is encountered first. 

If all numeric character positions in the picture string are 
represented by the suppression symbol and the value of the 
data is not zero, the result is the same as if the 
suppression characters were only to the left of the decimal 
point. If the value is zero, the entire item (including any 
sign) will be set tb the replacement character (with the 
exception of the decimal point if the suppresson symbol is an 
*) • 

The * and the clause BLANK WHEN ZERO may not appear in the 
same entry. 

4-51 



THE DATA DIVISION 

PICTURE (Cont.) 

Example: 

(A-FLD contains 023456, B-FLD contains 001200) 

R-FLD Result 
PICTURE of MOVE 
String 

MOVE A-FLD TO R-FLD ****.** *234.56 

MOVE B-FLD TO R-FLD xxxx.xx **12.00 (1) 

MOVE A-FLD TO R-FLD zzzz.zz 234.56 (l) 

MOVE B-FLD TO R-FLD zzzz.zz 12.00 

MOVE ZERO TO R-FLD ****.** ****.** (2) 

MOVE ZERO TO R-FLD ZZZZ.ZZ D.D.D.D.D.D.D. (3) 

MOVE ZERO TO R-FLD +****.** *****.** (4) 

MOVE ZERO TO R-FLD +ZZZZ.ZZ D.D.D.D.D.D.D.D. (5) 

(1) Zero supression does not take place to the right of 
the decimal point. 
(2) Decimal point is not suppressed. 
(3) Decimal point is replaced by a space. 
(4) Plus sign ( +') is replaced by a space. 
(5) Both sign and decimal point are replaced by space. 

20. The symbols + - * Z and $ when used as floating replacement 
characters are mutually exclusive within a given picture 
string. 

21. Figure 4-4 shows the order of precedence of the various 
picture string symbols. Each "Y" on the chart indicates that 
the symbol in the top row directly above can precede the 
symbol at the left of the row in which the "Y" appears. 

{ }indicate that the symbols are mutually exclusive. 

The P and the fixed insertion + and - appear twice. 

P9, +9, and -9 represent the case where these symbols appear 
to the left of any numeric positions in the string. 

9P, 9+, and 9- represent the case where these symbols appear 
to the right of any numeric positions in the string. 

The Z, *, and the floating ++, --, and $$ also appear twice. 

Z., *., $$., and --. represent the case where these symbols 
appear before the decimal point position • 

. z, .*, .$$, .++, and .-- represent the case where these 
symbols appear following the decimal point position. 

4-52 



z 
o 
i= 
0::: 
w 
V") 

Z 

Cl 
w 
X 
u: 

~ 
UJ 
:c 
I-o 

B 

0 

, 

+9J 
-9 

t9~ 9-

~~ 
$ 
A 
X 

P9 

9P 

S 

V 

~:.J 

t:} 
9 

C~} 
[~~ 
$$. 

.$$ 

B 0 

Y Y 

y y 

y y 

y y 

Y Y 

Y Y 

Y Y 

Y y 

Y Y 

y y 

y y 

Y Y 

y y 

y y 

y y 

y y 

THE DATA DIVISION 

PICTURE (Cont.) 

FIXED INSERTION OTHER 

(+~ ~~ f~:} $ A P9 9P S V {:J l:} 9 Ir++.} :~~} $$. .$$ , -~ X Il-- . 

Y Y Y Y y y y y y y y y y y 

y y y y y y y y y y y y y y 

y y y y y y y y y y y y y 

y y y y y y y y 

Y Y 

Y Y Y Y Y Y Y Y Y Y Y 

Y Y Y Y Y Y Y Y Y Y Y 

Y Y Y 

Y Y 

Y Y Y Y Y 

y y y y y y y y y y y 

Y Y Y Y Y Y Y Y Y Y Y 

y y y y 

y y y y y y y y 

y y y y y y y y y y y y 

y y y 

y y y y y y y 

y y y 

y y y y y y y 

MR-S-024-79 

Figure 4-4 Picture String Character Chart 

4-53 



THE DATA DIVISION 

REDEFINES 

4.9.19 REDEFINES 

Function 

The REDEFINES clause allows the same memory area to be allocated to 
two or more data items. 

General Format 

[REDEFINES data-name-2 ] 

Technical Notes 

1. The REDEFINES clause, when used, must immediately follow 
data-name-l. 

2. The level-numbe~s of the data-name-l and data-name-2 must be 
identical. 

3. This clause must not be used for level-number 66 or 88 items. 
Also, it must not be used for level-Ol entries in the File 
Section: implicit redefinition is provided by specifying 
more than one data-name in the DATA RECORDS ARE clause in the 
FD. However, the REDEFINES clause may be used to redefine an 
item whose picture contains the OCCURS clause. 

4. When the level-number of the data-names is other than 
level-Ol, the storage area for data-name-2 should be of the 
same size as data-name-l. FILLER items may be used to comply 
with this rule. 

5. The REDEFINES entry must immediately follow the entries 
describing data-name-2. 

6. The redefinition entries cannot contain VALUE clauses. 

7. Data-name-2 must not be qualified. 

8. The following example illustrates the use of the REDEFINES 
entry. The entries shown cause AREA-A and AREA-B to occupy 
the same area in memory. 

03 AREA-A USAGE DISPLAY-6. 
04 FIELD-l PICTURE IS X(7). 
04 FIELD-2 PICTURE IS A(l3) • 
04 FIELD-3. 

05 SUBFIELD-l PICTURE IS 
S999V99 USAGE IS COMPo 

05 SUBFIELD-2 PICTURE IS 
S999V99 USAGE IS COMPo 

03 AREA-B REDEFINES AREA-A USAGE DISPLAY-6. 
04 FIELD-A PICTURE IS X(22). 
04 FIELD-B PICTURE IS X(S). 
04 FILLER PICTURE IS X(9). 

4-54 



THE DATA DIVISION 

REDEFINES (Cont.) 

Note how the length of each area is calculated so that AREA-B 
can be defined so that its size is equal to that of AREA-A. 

AREA-A: FIELD-l 7 6-bit characters (DISPLAY-6 
assumed) 

FIELD-2 13 6-bit characters (DISPLAY-6 
assumed) 

FIELD-3 4 6-bit characters (not used 
because COMP items must start 
at a new word boundary) 

SUBFIELD-l 6 6-bit characters (COMP items 
occupy one word, or six 6-bit 
character positions) 

SUBFIELD-l 6 6-bit characters (COMP items 
occupy one word, or six 6-bit 
character positions) 

Total 6-bit characters 36 

AREA-B: FIELD-A 22 6-bit characters (DISPLAY-6 
assumed) 

FIELD-B 5 6-bit characters (DISPLAY-6 
assumed) 

FILLER 9 6-bit characters (needed to 
make AREA-B size equal to 
AREA-A) 

Total 6-bit characters 36 

4-55 



THE DATA DIVISION 

RENAMES (level-66) 

4.9.20 RENAMES (level-66) 

Function 

The RENAMES clause permits alternate, possibly overlapping, groupings 
of elementary items. 

General Format 

66 data-name-l RENAMES data-name-2 ~{ ~UGH} data-name-3~ 

Technical Notes 

1. All RENAMES entries associated with items in,a given record 
must immediately follow the last data description entry for 
that record . 

2. 

. 01 data-name-a 

(data description entries) 

(level-66 entries associated with this logical record) 
01 data-name-b. 

Data-name-l cannot 
qualified only by 
associated with it. 

be used as a qualifier, and can be 
the names of the level-Ol or FD entries 

3. The words THRU and THROUGH are equivalent. 

4. Data-name-2 and data-name-3 must be the names of items in the 
associated logical record and cannot be the same data-name. 

Neither data-name-2 nor data-name-3 can have a level-number 
of 01, 66, 77, or 88. Neither of these data-names can have 
an OCCURS clause in its data description entry, nor be 
subordinate to an item that has an OCCURS clause in its data 
description entry. 

Data-name-2 must precede data-name-3 in the record 
description, and data-name-3 cannot be subordinate to 
data-name-2. If there is any associated redefinition 
(REDEFINES), the ending point of data-name-3 must logically 
follow the beginning point of data-name-2. When data-name-3 
is specified, data-name-l is a group item that includes all 
elementary items starting with data-name-2 (if data-name-2 is 
an elementary item) or the first elementary item in 
data-name-2 (if data-name-2 is a group item) and concluding 
with data-name-3 (or the last elementary item in 
data-name-3) • 

4-56 



THE DATA DIVISION 

RENAMES (ievel-66) (Cont.) 

If data-name-3 is not specified, data-name-2 can be either a 
group item or an elementary item. If it is a group item, 
data-name-l is treated as a group item and includes all 
elementary items in data-name-2; if data-name-2 is an 
elementary item, data-name-l is treated as an elementary item 
with the same descriptive clauses. 

5. The following examples illustrate the use of the RENAMES 
entry. 

01 RECORD-NAME. 
02 FIRST-PART. 

03 PART-A. 
04 FIELD-l PICTURE IS 
04 FIELD-2 PICTURE IS 
04 FIELD-3 PICTURE IS 

03 PART-B. 
04 FIELD-4 PICTURE IS 
04 FIELD-S. 

05 FIELD-SA PICTURE IS 
05 FIELD-58 PICTURE IS 

03 SECOND-PART. 
03 PART-C. 

04 FIELD-6 PICTURE IS .•• 
04 FIELD-7 PICTURE IS .•• 

66 SUBPART RENAMES PART-B THRU PART-C. 
66 SUBPARTI RENAMES FIELD-3 THRU SECOND-PART. 
66 SUBPART2 RENAMES FIELD-SB THRU FIELD-7. 
66 AMOUNT RENAMES FIELD-7. 

4-57 



THE DATA DIVISION 

SIGN 

4.9.21 SIGN 

Function 

The SIGN clause specifies the position and the mode of representation 
of the operational sign. 

General Format 

Technical Notes 

1. The optional SIGN clause, if present, specifies the position 
and the mode of representation of the operational sign for 
the numeric data description entry to which it applies, or 
for each numeric data description entry subordinate to the 
group to which it applies. The SIGN clause applies only to 
numeric data description entries whose PICTURE contains the 
character S; the S indicates the presence of an' operational 
sign. However, it does not indicate the representation or 
the position of the sign. 

2. The numeric data description entries to which the SIGN clause 
applies must be described as USAGE IS DISPLAY. 

3. At most one SIGN clause may apply to any given numeric data 
description entry. 

4. If the CODE-SET clause is specified, any signed numeric data 
description entries associated with that file description 
entry must be described with the SIGN IS SEPARATE clause. 

5. A numeric data description entry whose PICTURE contains the 
character S, but to which no optional SIGN clause applies, 
has an operational sign which is associated with the trailing 
digit position of the elementary item. 

6. If the optional SEPARATE CHARACTER phrase is not present, the 
following rules apply: 

a. The operational sign will be presumed to be 
with the trailing digit position of the 
numeric data item. 

associated 
elementary 

b. The letter ~ in a PICTURE character-string is not counted 
in determining the size of the item (in terms of standard 
data format characters). 

4-58 



THE DATA DIVISION 

SIGN (Cont.) 

7. If the optional SEPARATE CHARACTER phrase is present, the 
following rules apply: 

a. There is no default condition for the operational sign in 
this case. You may specify the SEPARATE CHARACTER phrase 
only when either LEADING or TRAILING is also specified. 

b. The letter S in a PICTURE character-string is counted in 
determining the size of the item (in terms of standard 
data format characters). 

c. The operational signs for positive and negative are the 
standard data format characters + and -, respectively. 

d. The various possiblities for the SIGN and SEPARATE 
CHARACTER clauses are illustrated below: (value is -Ill) 

Options 

none 
SIGN LEADING 
SIGN TRAILING 
SIGN LEADING SEPARATE 
SIGN TRAILING SEPARATE 

SIXBIT 
Representation 

0000001lJ 
]00000111 
0000001lJ 

-000000111 
000000111-

8. Every numeric data description entry whose PICTURE contains 
the character S is a signed numeric data description entry. 
If a SIGN clause applies to such an entry and conversion is 
necessary for purposes of computation or comparisons, 
conversion takes place automatically. 

4-59 



THE DATA DIVISION 

SYNCHRONIZED 

4.9.22 SYNCHRONIZED 

Function 

The SYNCHRONIZED clause specifies the positioning of an elementary 
item within a computer word (or words). 

General Format 

[{ 
SYNCHRONIZED} 
SYNC 

Technical Notes 

[
LEFT JD 
RIGHT ~ 

1. This clause can appear only in the data description of an 
elementary item. 

2. This clause is optional. If you omit it the default is 
SYNCHRONIZED LEFT. 

3. This clause specifies that the item being defined is to be 
placed in an integral number of computer words and that it is 
to begin or end at a computer word boundary. No other 
adjacent fields are to occupy these words. The unused 
positions, however, must be counted when calculating: 

a. the size of any group to which this elementary item 
belongs, and 

b. the computer memory allocation when the item appears as 
the object of a REDEFINES clause. However, when a 
SYNCHRONIZED item is referenced, the original size of the 
item (as indicated by the PICTURE clause) is used in 
determining such things as truncation, justification, and 
overflow. 

4. SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to 
be positioned in such a way that it will begin at the left 
boundary of a computer word. 

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is 
to be positioned in such a way that it will terminate at the 
right boundary of a computer word. 

5. When the SYNCHRONIZED clause is specified for an item within 
the scope of an OCCURS clause, each occurrence of the item is 
SYNCHRONIZED. 

6. Any FILLER required to position the item as specified will be 
automatically generated by the compiler. The content of this 
FILLER is indeterminate. 

4-60 



THE DATA DIVISION 

SYNCHRONIZED (Cont.) 

7. COMP(UTATIONAL), COMP(UTATIONAL)-l, and INDEX items are 
always implicitly SYNCHRONIZED RIGHT, and therefore cannot be 
SYNCHRONIZED LEFT. 

8. An item subordinate to one containing a VALUE clause cannot 
be SYNCHRONIZED. 

9. Only DISPLAY, DISPLAY-6, DISPLAY-7, DISPLAY-9, or COMP-3 
items can be SYNCHRONIZED. 

4-61 



THE DATA DIVISION 

USAGE 

4.9.23 USAGE 

Function 

The USAGE clause specifies the format of a data item in computer 
storage. 

General Format 

COMPUTATIONAL 
cm~p 

COMPUTATIONAL-l 
COMP-l 
CQMi5'ITf A TI ONAL- 3 
COMP-3 

USAGE IS DISPLAy 
DISPLAY-6 
DISPLAY-7 
DISPLAY-9 
INDEX 
DATABASE-KEY 
DBKEY 

Technical Notes 

1. This clause specifies the manner in which a data item is 
represented within computer memory. 

2. The USAGE clause can be written at any level. If it is 
written at a group level, it applies to each elementary item 
in the group. The USAGE clause of an elementary item cannot 
contradict the USAGE clause of a group to which the item 
belongs. 

3. 

The recording mode of a file determines how the data is 
recorded on the external medium. The recording mode may be 
inferred from the usage mode of the data records, but the 
reverse is never true. The usage of a data record is never 
inferred from the declared recording mode of the file. 

The implied USAGE of a group item is DISPLAY-7 if the first 
elementary item subordinate to it is declared as DISPLAY-7, 
or DISPLAY-9 if the first elementary item subordinate to it 
is declared as either DISPLAY-9 or COMP-3; otherwise, its 
USAGE is DISPLAY-6. However, if the Ix switch is included in 
the compiler command string, the default USAGE is DISPLAY-9. 

Usages of DISPLAY-6, DISPLAY-7, and DISPLAY-9/COMP-3 cannot 
be mixed. However, USAGES of COMP, COMP-I and INDEX can be 
mixed with the aforementioned usages. 

All group items are treated as 
DISPLAY-6, DISPLAY-7, or DISPLAY-9. 
such item is 4,096 characters. 

4-62 

DISPLAY items, either 
The maximum size for any 



THE DATA DIVISION 

USAGE (Cont.) 

4. COMPUTATIONAL (COMP) 

a. COMP is equivalent to COMPUTATIONAL. 

b. 

c. 

A COMPUTATIONAL item represents a 
computations and must be numeric. 
contain only the symbols: 9 S 
represented as a binary number 
point. 

value to be used in 
Its picture string can 
V P. Its value is 

with an assumed decimal 

If a group 
elementary 
However, the 
be used as 
Note 3 above. 

item is described as COMPUTATIONAL, the 
items in the group are COMPUTATIONAL. 
group itself is not COMPUTATIONAL and cannot 

an operand in arithmetic computations. See 

d. COMPUTATIONAL items of 10 or fewer decimal positions will 
be SYNCHRONIZED RIGHT in one computer word. 
Computational items of more than 10 decimal positions 
will be SYNCHRONIZED RIGHT in two full computer words. 
The maximum size of a COMP item is 18 digits. 

e. The following illustrations give the format 
COMPUTATIONAL item. 

t r---- sign 

I I 
o 

I-WORD COMPUTATIONAL ITEM 35 

t--- sign 

I I 
o I 35 E not used 

o I 
2-WORD COMPUTATIONAL ITEM 35 

5. COMPUTATIONAL-l (COMP-l) 

a. COMP-l is equivalent to COMPUTATIONAL-I. 

of a 

b. A COMPUTATIONAL-l item can contain a value, in floating 
point format, to be used in computations. It must be 
numeric. A COMP-l item must not have a PICTURE. 

c. If a group item is described as COMPUTATIONAL-I, the 
elementary items within the group are COMPUTATIONAL-I. 
However, the group item itself is not COMPUTATIONAL-l and 
cannot be used as an operand in arithmetic computations. 
See Note 3 above. 

d. COMPUTATIONAL-l items will be SYNCHRONIZED in one full 
computer word. 

4-63 



THE DATA DIVISION 

USAGE (Cont.) 

e. The following illustration gives the format 
COMPUTATIONAL-l item. 

f sign 

I I hinary 
mantissi.l exponent 

0 9 35 

of a 

6. COMPUTATIONAL-3 (COMP-3) 

I 
0 

a. COMP-3 is equivalent to COMPUTATIONAL-3. 

b. A COMP-3 item's picture string can contain only the 
symbols 9, S, V, P. Its value 1S represented as a packed 
decimal number with an assumed decimal point. 

c. If a group item is declared as COMP-3 the elementary 
items in the group are COMP-3.However, the group item 
itself is not COMP-3 and cannot be used as an operand in 
arithmetic computations. See Note 3 above. 

d. The maximum size of a COMP-3 item is 18 decimal digits . 
• 

e. The following illustration gives the format of a COMP-3 
item. Note that bits 0, 9, 18 and 27 of the word are not 
used. 

~ I I 
4 89 13 17 18 22 2627 31 35 

f. COMP-3 items may be SYNCHRONIZED LEFT or SYNCHRONIZED 
RIGHT. 

g. COMP-3 items may share a computer word with other COMP-3 
items or with DISPLAY-9 items. However, COMP-3 items 
will always begin at one of the following bit positions 
in a word: 1, 10, 19, 28. 

h. .The actual size of a COMP-3 item in memory is at least 
four bits larger and may be nine bits larger than the 
number of character positions because the sign is! stored 
in the last four bits of the item and the item is stored 
right justified on a nine-bit byte boundary. 

i. The octal values 12, 14, and 16 represent plus signs and 
the octal values 13 and 15 represent minus signs. The 
octal value 17 represents the nonprinting plus sign. 
Although octal 12, 14 and 16 represent plus signs, the 
sign given to the positive result of any arithmetic 
operation will be 14. Similarly, the minus sign given to 
the negative result of any arithmetic operation will be 
15. 

4-64 



THE DATA DIVISION 

USAGE (Cont.) 

The nonprinting plus sign is actually an absolute value 
indicator. Any positive or negative number which is 
moved into an item with this sign will receive this sign. 
In arithmetic computations and numeric editing 
operations, items containing the nonprinting plus sign 
are treated as positive. 

7. DISPLAY 

a. DISPLAY is equivalent to DISPLAY-6. However, you may 
change DISPLAY to be DISPLAY-7 or 9 with the DISPLAY IS 
clause. You may also cause the compiler to consider all 
DISPLAY items to be DISPLAY-9 by using the IX switch when 
compiling your program. 

8. DISPLAY-6 

a. DISPLAY is equivalent to DISPLAY-6 when the Ix switch is 
not given in the compiler command string. 

b. A DISPLAY-6 item represents a string of 6-bit characters. 
Its picture string may contain any picture symbols. 
Refer to Appendix C for the SIXBIT collating sequence. 

c. DISPLAY-6 items may be SYNCHRONIZED LEFT or SYNCHRONIZED 
RIGHT, as desired. Otherwise, they may share a computer 
word with other DISPLAY-6 items. 

d. The illustration below given the format of a DlSPLAY-6 
word. 

o 6 12 18 24 30 35 

e. If the IX switch has not been included in the compiler 
command string, and the USAGE clause is omitted for an 
elementary item, its USAGE is assumed to be DISPLAY-6. 

9. DISPLAY-7 

a. A DISPLAY-7 item 
characters. Its 
symbols. 

represents a string of 7-bit ASCII 
picture string may contain any picture 

b. DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED 
RIGHT, as desired; otherwise, they may share a computer 
word with other items. If the item is SYNCHRONIZED 
RIGHT, the last character of the item will end in bit 34 
of a computer word. 

c. Bit 35 of a word represented in this format is never 
used. 

d. The maximum length of a DISPLAY-7 item 
characters. 

4-65 

is 4,096 



THE DATA DIVISION 

USAGE (Cont.) 

e. The illustration below gives the format of a DISPLAY-7 
word. 

o 7 14 21 28 3S 

10. DISPLAY-9 

I 
o 

a. DISPLAY is equivalent to DISPLAY-9 when the Ix switch is 
included in the command string to the compiler. 

b. A DISPLAY-9 
characters. 
symbol. 

item 
Its 

represents a string of EBCDIC 
picture string may contain any picture 

c. DISPLAY-9 items may be SYNCHRONIZED LEFT or SYNCHRONIZED 
RIGHT as desired; otherwise, they may share a computer 
word with ather DISPLAY-9 or COMP-3 items. If the item 
is SYNCHRONIZED RIGHT, the last character of the item 
will end in bit 35 of a computer word. 

d. The maximum length of a DISPLAY-9 item 
characters. 

is 4,096 

e. The illustration below gives the format of a DISPLAY-9 
item. Note that bits 0, 9, 18, and 27 are not used. 

I I I 
89 1718 2627 3S 

f. If the USAGE clause is omitted for an elementary item and 
the IX switch has been included in the compiler command 
string, its USAGE is assumed to be DISPLAY-9 • 

11. INDEX 

a. An elementary item described as USAGE INDEX is called an 
index data-item. It is treated as a COMP item with 
PICTURE S9(5) and can be used as a COMP item. 

b. An index data-item must not have a PICTURE. 

c. If a group item is described as INDEX, the elementary 
items within the group are treated as INDEX. However, 
the group item itself is not INDEX and cannot be used as 
an operand in arithmetic statements. 

'd. Index data items and index-names (defined in the OCCURS 
clause by the INDEXED BY option) are equivalent. 

e. If an index-name ,is defined in an OCCURS clause, it 
cannot be defined elsewhere. 

4-66 



THE DATA DIVISION 

USAGE (Con t.) 

12. DATABASE-KEY 

a. DATABASE-KEY and DBKEY are equivalent and 
interchangeable. 

b. An item described as USAGE DATABASE-KEY is treated as a 
COMP item with PICTURE S9{lO) and can be used as a COMP 
item. 

c. The item with USAGE DATABASE-KEY must not have a PICTURE. 

d. An item with USAGE DATABASE-KEY is primarily used in 
programs accessing data bases through the TOPS-IO Data 
Base Management System (DBMS-IO), or the TOPS-20 Data 
Base Management System (DBMS-20). This item can be used 
to store the value of a data base key. All data base 
keys are assigned by DBMS and you cannot change them. 
Refer to the DBMS-IO Programmer's Procedures Manual for 
more information about DBMS-IO, or the DBMS-20 
programmer's Procedures Manual for DBMS-20. 

4-67 



THE DATA DIVISION 

VALUE 

4.9.24 VALUE 

Function 

The VALUE clause defines the initial value of Working-Storage items, 
and the values associated with condition-names (level-88). 

General Format 

Format 1: 

[VALUE IS literal] 

Format 2: 

[
f VALUE 
1 VALOIs 

IS } 
ARE literal-l [THRU literal-2 ] 

[ literal-3 [THRU literal-4] ] ... J 
Technical Notes 

1. Format 2 can be specified only for level-88 items. 

2. The words THRU and THROUGH are equivalent. 

3. In the File Section and the Linkage Section, the VALUE clause 
can be used only with level-88 items. In the Working-Storage 
Section, it can be used at all levels except level-66. It 
must not be stated in a data description entry that contains 
an OCCURS clause or that is subordinate to an entry 
containing an OCCURS clause. Also, it must not be stated in 
an entry that, contains a REDEFINES clause or that is 
subordinate to an entry that contains a REDEFINES clause. 

4. If the VALUE clause is used at a group level, the literal 
must be a figurative constant or a nonnumeric literal. The 
group item is initialized to this value without consideration 
for the individual elementary or group items contained within 
this group. No VALUE' clauses can appear at subordinate 
levels within the group. 

5. If no VALUE clause appears for a Working-Storage item, the 
initial value of the item is unpredictable. 

6. More information concerning Format 2 can be found under 
Condition-name (Level-88) in Section 4.9.13. 

4-68 



THE DATA DIVISION 

VALUE (Cont.) 

7. The VALUE clause must not conflict with other clauses in the 
data description entry or in the data description entries 
within the hierarchy of the item. The following rules apply: 

a. If the category of an item is numeric, all literals in 
the VALUE clause must be numeric. All literals in a 
VALUE clause must have a value within the range of values 
indicated by the PICTURE clause; for example, an item 
with PICTURE PPP9 may have only the values in the range 
.0000 through .0009. 

b. If the category of the item is alphabetic or 
alphanumeric, all literals in the VALUE clause must be 
nonnumeric literals. The literal will be aligned 
according to the normal alignmen~ rules (see the 
JUSTIFIED clause, Section 4.9.15) except that the number 
of characters in the literal must not exceed the size of 
the item. 

c. If the category of an item is numeric-edited or 
alphanumeric-edited, no editing of the value is performed 
in the VALUE clause. 

d. The USAGE of the literal agrees with the USAGE of the 
item. Thus, if the item has USAGE DISPLAY-6, the literal 
also has USAGE DISPLAY-6 and its value must contain legal 
SIXSIT characters. 

8. The figurative constants SPACE (S), ZERO(E) (8), QUOTE (8) , 
LOW-VALUE (8) , and HIGH-VALUE (8) may be substituted for a 
literal. If the item is numeric, only ZERO(E) (8), 
LOW-VALUE (8) , and HIGH-VALUE(8) are allowed. 

4-69 



THE DATA DIVISION 

Report Description (RD) 

4.9.25 Report Description (RD) 

Function 

The Report Description furnishes information concerning the physical 
structure for a report. 

General Format 

RD report-name 

[CODE mnemonic-name ] 

CONTROL IS 
CONTROLS ARE I { FINAL 

identifier-l [identifier-21 
FINAL identifier-l [identifier-21 ... } ] 

[ PAGE J LIMIT I S I 1 LIMITS ARE integer-l J LINE I 1 LI NES 

[ HEADING integer-2J [FIRST DETAIL integer-3 ] 

[ LAST DETAI L integer-4] [FOOTING integer-5]] .'-

Technical Notes 

1. The order of appearance of the 
immaterial. 

optional clauses is 

2. A fixed data-name PAGE-COUNTER is automatically generated for 
each RD entry. 

Its function is to contain the current page number of a 
report. It is a COMPUTATIONAL item; its size is equal to 
the size of the largest field that refers to it in a SOURCE 
clause. The contents of the PAGE-COUNTER are set to 1 by the 
INITIATE statement. 

3. The fixed data-name LINE-COUNTER is automatically generated 
for each RD entry. Its function is to contain the current 
line number within a report page. It isa COMPUTATIONAL 
item; its size is based on the number of lines specified in 
the PAGE-LIMIT clause. 

4-70 



THE DATA DIVISION 

Report Description (RD) (Cont.) 

4. PAGE-COUNTER or LINE-COUNTER may be referenced as if it were 
any data-name. It must be qualified by the report-name if 
more than one RD entry is present in the program. 

5. Each of the above clauses appears in this chapter separately, 
in alphabetical order. 

4-71 



THE DATA DIVISION 

CODE 

4.9.26 CODE 

Function 

The CODE clause defines a unique string of one or more characters that 
is affixed to each line of the report. 

General Format 

~CODE mnemonic-name~ 

Technical Notes 

1. This clause is necessary only if more than one report is to 
be written in a single file. 

2. Mnemonic-name is defined in the SPECIAL-NAMES paragraph of 
the Environment Division, described in Section 3.1.4. 

3. The character string represented by mnemonic-name is affixed 
to the beginning of each report line, and is used to uniquely 
define the lines of separate reports written in one file. 

4. The number of characters represented by mnemonic-name must be 
the same for the codes of all reports in the same file. 

4-72 



THE DATA DIVISION 

CONTROL 

4.9.27 CONTROL 

Function 

The CONTROL clause indicates the identifiers that control the printing 
of totals in the report. 

General Format 

rf{ CONTROL IS} l2 CONTROLS ARE 

Technical Notes 

{

FINAL 
identifier-l [identifier-2]", 
FINAL identifier-l [identifier-2] u 

1. The CONTROL clause is required when CONTROL HEADING or 
CONTROL FOOTING report groups are specified. 

2. The identifiers specify the control hierarchy for this 
report. They are listed in order from major to minor; FINAL 
is the highest level of control, identifier-l is the major 
control, identifier-2 is the intermediate control, etc. The 
last identifier specified is the minor control. 

3. Identifiers must be defined in the File or Working-Storage 
Section of the Data Division. They cannot be subscripted or 
indexed. 

4-73 



THE DATA DIVISION 

Report Group Description 

4.9.28 Report Group Description 

Function 

The Report Group Description entry specifies the characteristics and 
format of a particular report group. 

General Format 

Format 1 

01 [ d at a - n arne -1 ] 

[ LI NE NUMBER { 
integer-1 } ] IS PLUS integer-2 
NEXT PAGE 

[ { 

integer-3 
NEXT GROUP IS PLUS in teger-4 

NEXT PAGE 

REPORT HEADING 
RH 
PAGE HEADING 

}] 

PH {CONTROL HEADING } { identifier-1 } 
-- CH FINAL 

TYPE IS DETAIL 

Qf {~~NTROL FOOTING } { ~~~~~ifier-2 } 

PAGE FOOTING 
PF 
REPORT FOOTING 
RF 

[ [USAGE IS] { 

DISPLAY 
DISpLAv-6 
DISPLAY-7 
DISPLAY-9 

4-74 



THE DATA DIVISION 

Report Group Description (Con t.) 

Format 2 

level-number [data-name-l ] 

[BLANK WHEN ZERO ] 

[COLUMN NUMBER IS integer-I] 

[GROUP INDICATE] 

[ I JUSTIFIED 
JUST ) RIGHT ] 

[LINE NUMBER 
{ integer-2 }] IS PLUS integer-3 

NEXT PAGE 

[ I PICTURE 
PIC ) IS character-string ] 

[RESET ON I i de n t if i er -1 ) ] 
FINAL 

{ 

SOURCE IS identifier-2 
SUM identifier-3 [identifier-4] 
VALUE IS literal-l 

[UPON data-name-2]} 

[ I DISPLAY I] DISPLAY-6 
[USAGE IS ] DISPLAY-7 -=-

DISPLAY-9 

4-75 



THE DATA DIVISION 

Report Group Description (Cont.) 

Technical Notes 

1. Except for the data-name, which when present must immediately 
follow the level-number, the clauses may be written in any 
order. 

2. In order for a report group to be referred to by a Procedure 
Division statement, it must have a data-name. 

3. All elementary items must have both a PICTURE clause and one 
of the clauses SOURCE, SUM, or VALUE. 

4. For a detailed description of the BLANK WHEN ZERO, JUSTIFIED, 
PICTURE, VALUE, and USAGE clauses, see the pages following 
the Data Description Entry, which is Section 4.9.11. 

5. The data-name need not appear in an entry unless it is 
re,ferred to by a GENERATE or USE statement, or reference is 
made to the SUM counter. 

6. If the Ol-level item is elementary, the clauses in Format 2 
may be used in addition to the clauses in Format 1. 

7. The remaining clauses are described in detail on the 
following pages. 

4-76 



THE DATA DIVISION 

COLUMN NUMBER 

4.9.29 COLUMN NUMBER 

Function 

The COLUMN NUMBER clause indicates the column on the printed page in 
which the high-order (leftmost) character of an item will be printed. 

General Format 

[}OLUMN NUMBER IS i nteger-l] 

Technical Notes 

1. Integer must have a positive value less than 512. 

2. This clause is valid only for an elementary item. 

3. Within a report group and a particular LINE NUMBER 
specification, COLUMN NUMBER entries must be indicated from 
left to right. 

4. If the COLUMN NUMBER clause is omitted, the elementary item, 
though included in the description, is suppressed when the 
report group is produced at object time. 

4-77 



THE DATA DIVISION 

GROUP INDICATE 

4.9.30 GROUP INDICATE 

Function 

The GROUP INDICATE clause indicates that this elementary item is to be 
produced only on the first occurrence of the item after any CONTROL or 
PAGE breaks. 

General Format 

[GROUP INDI CATE] 

Technical Notes 

1. This clause can only be used at the elementary level within a 
TYPE DETAIL report group. 

2. A GROUP INDICATEd item is presented in the first detail line 
of a, report after any control breaks and after any page 
breaks; it is suppressed at all other times. 

4-78 



THE DATA DIVISION 

LINAGE 

4.9.31 LINAGE 

Function 

The LINAGE clause specifies the size of a logical page in terms of 
number of lines. It can also specify the size of the top and bottom 
margins on the logical page and the line number, within the page body, 
at which the footing area begins. 

General Format 

IUNAGE IS {~ata-name-6} L--- lnteger-5 
LINES ~WITH FOOTING AT 

ILINES AT TOP {~ata-name-8}] I LINES AT BOTTOM L - lnteger-7 L 

Technical Notes 

{ 
~ata-name-7 r 
lnteger-6 U 

{ ~ata-name-9 nl 
1 nteger-8 U J 

1. The logical page size is the sum of the values referenced by 
each phrase except the FOOTING phrase. (There is no 
necessary relationship between the size of the logical page 
and the size of a physical page.) If the LINES AT TOP or 
LINES AT BOTTOM phrases are not specified, the values for 
these functions are zero. 

2. Data-name-l, data-name-2, data-name-3 and data-name-4 must 
reference elementary unsigned numeric integer data items. 
The value of integer-l must be greater than zero: the value 
of integer-2 must not be greater than integer-I: the value 
of integer-3 and integer-4 may be zero. 

3. The number of lines on the logical page is equal to the value 
of integer-l or the data item referenced by data-name-l. The 
page body is that part of the logical page in which lines can 
be written and/or spaced. 

4. The line number within the page body at which the footing 
area begins is equal to the value of integer-2 or the data 
item referenced by data-name-2. The value must not be 
greater than the value of integer-I, or the data item 
referenced by data-name-l. The footing area is the area of 
the logical page between the line represented by the value of 
integer-2 (or the data item referenced by data-name-2) and 
the line represented by the value of integer-l (or the data 
item referenced by data-name-l) inclusive. 

5. The number of lines that constitute the top margin on the 
logical page is equal to the value of integer-3 or the data 
item referenced by data-name-3. 

4-79 



THE DATA DIVISION 

LINAGE (Cont.) 

6. The number of lines that constitute the bottom margin on the 
logical page is equal to the value of integer-4 or the data 
item referenced by data-name-4. 

7. When an OPEN statement with the OUTPUT option is executed, 
all of the data-names or integers you have specified will 
refer to the areas and positions of the first logical page. 
When a WRITE statement with the ADVANCING PAGE options is 
executed, or when a page overflow condition occurs, the 
data-names or integers you have specified will refer to the 
next logical page. 

8. The presence of a LINAGE clause in the FD entry for a file 
causes the compiler to generate a LINAGE-COUNTER. The value 
in the LINAGE-COUNTER at any given time represents the line 
number at which the device is positioned within the current 
page body. The rules governing the LINAGE-COUNTER are as 
follows: 

a. The compiler supplies a separate LINAGE-COUNTER for each 
file described in the File Section whose file description 
entry contains a LINAGE clause. 

b. You may reference LINAGE-COUNTER, but you may not modify 
it, with Procedure Division statements. Since more than 
one LINAGE-COUNTER may exist in a program, you must 
qualify LINAGE-COUNTER by file-name when- necessary. 

c. During the execution of a WRITE statement, LINAGE-COUNTER 
is automatically modified according to qow and whether 
you have specified the ADVANCING clause, as follows: 

1) When you specify the ADVANCING PAGE phrase of the 
WRITE statement, the LINAGE-COUNTER is automatically 
reset to one (I). 

2) When you specify the ADVANCING identifier-2 or 
integer phrase of the WRITE statement, the 
LINAGE-COUNTER is incremented by integer or the value 
of the data item referenced by identifier-2. 

3) When you omit the ADVANCING phrase of the WRITE 
statement, the LINAGE-COUNTER is incremented by the 
value one (I). 

4) For each of the succeeding logical pages, the value 
of LINAGE-COUNTER is automatically reset to one (I) 
when the device is repositioned to the first line 
that can be written on. 

d. When an OPEN statement is executed, the LINAGE-COUNTER 
associated with that file is initialized to one (I). 

9. Each logical page is contiguous to the next, with no 
additional spacing provided. 

4-80 



THE DATA DIVISION 

LINE NUMBER 

4.9.32 LINE NUMBER 

Function 

The LINE NUMBER clause indicates the absolute or relative line number 
entry in reference to the page or the previous entry. 

General Format 

GINE NUMBER IS 

Technical Notes 

{ 
i nteger-l 0 
PLUS integer-2 
NEXT PAGE -- --

1. Integer-l and integer-2 must be positive integers with values 
less than 512. Integer-l must be within the range specified 
by the PAGE LIMITS clause in the RD entry. 

2. The LINE NUMBER clause must be given for each report line of 
a report group, and must be specified at or before the first 
elementary item that contains a COLUMN clause of each report 
line. If an item does not contain a COLUMN clause and the 
LINE NUMBER clause is specified for it, no printing will be 
done, but the LINE NUMBER clause will cause vertical spacing 
to be done. 

3. If a LINE NUMBER clause is specified for an item, all entries 
following that item, up to but not including the next item 
with a LINE NUMBER clause, are presented on the same line. 

4. A LINE NUMBER at a subordinate level may not contradict a 
LINE NUMBER at a group level. 

5. Integer-1 indicates that the current line is to be presented 
at that line number. 

6. PLUS integer-2 indicates that the LINE-COUNTER is to be 
incremented by the value of integer-2, and that the current 
line is to be presented on the line specified by the new 
value of the LINE-COUNTER. 

4-81 



THE DATA DIVISION 

LINE NUMBER (Cont.) 

7. NEXT PAGE is used to indicate an automatic skip to the next 
page before the current line is presented. If there is no 
PAGE-LIMIT clause, there will only be a skip to the top of 
the next page. However, if there is a PAGE-LIMIT clause, 
after skipping to the next page, the Report writer will then 
space as follows. 

Type of Line Space To 

Detail, control heading, First detail line 
control footing 

Report heading, report Heading line 
footing, page heading 

Page footing Footing line 

4-82 



THE DATA DIVISION 

NEXT GROUP 

4.9.33 NEXT GROUP 

Function 

The NEXT GROUP clause specifies the spacing condition following the 
last line of the report group. 

General Format 

NEXT GROUP 
integer-l } 
PLUS i nteger-2 
NEXT PAGE . 

Technical Notes 

1. The NEXT GROUP clause may appear only at the 01 level of a 
report group. 

2. Integer-l and integer-2 must be positive integers with values 
less than 512. Integer-l cannot exceed the number of lines 
specified by the PAGE LIMIT clause. 

3. Integer-l indicates a line number to which the LINE-COUNTER 
is set after the group is presented. 

4. PLUS integer-2 indicates a relative line number that 
increments the LINE-COUNTER by the value of integer-2 after 
the group is presented. Integer-2 is the number of lines 
skipped following the last line of the report group. 

5. NEXT PAGE indicates an automatic skip to the next page after 
the group is presented. 

4-83 



THE DATA DIVISION 

RESET 

4.9.34 RESET 

Function 

'fhe RESET clause indicates the CONTROL data-item that causes the SUM. 
counter to be reset to zero on a control break. 

General Format 

RESET ON .1 identifier-I) 
-- FINAL 

Technical Notes 

1. Identifier must be one of the identifiers associated with the 
CONTROL clause in the RD entry. 

2. The RESET clause may be used only in conjunction with a SUM 
clause at a CONTROL FOOTING elementary level. 

3. Identifier must 
identifier than 
report group. 

be a higher level (more major) control 
the control identifier associated with this 

4. After a TYPE CONTROL FOOTING report group is presented, the 
sum counters associated with that group are automatically set 
to zero, unless an explicit RESE~ clause directs that the 
counter be cleared at a higher level. 

4-84 



THE DATA DIVISION 

SOURCE 

4.9.35 SOURCE 

Function 

The SOURCE clause indicates the source of the data for a report item. 

General Format 

SOURCE IS identifier 

Technical Notes 

1. The SOURCE clause can only be given at the elementary level. 

2. Identifier must reference an item that appears in the File or 
Working-Storage Section. 

3. The identifier cannot be subscripted or indexed. 

4. When the report group is presented, the contents of this 
report item are replaced by the contents of identifier. 

4-85 



THE DATA DIVISION 

SUM 

4.9.36 SUM 

Function 

The SUM clause indicates the items to be summed to produce the source 
of data for a report item. 

General Format 

SUM identifier-l [identifier-2 ] [UPON data-name-l ] 

Techn'ical Notes 

1. A SUM clause may appear only in a TYPE CONTROL FOOTING report 
group. 

2. Each identifier must indicate a SOURCE item in a TYPE DETAIL 
report group, or a SUM counter in a TYPE CONTROL FOOTING 
report group. 

3. If the SUM counter is referred to by a Procedure Division or 
Report Section statement, a data-name must be specified for 
the item. The data-name then represents the summation 
counter automatically generated by the Report Writer; that 
data-name does not represent the report group item itself. 

4. A summation counter is incremented just before the 
presentation of the identifiers. Any editing of the SUM 
counters is done only when the sum item is presented; at all 
other times it is treated as a numeric item. 

5. If higher-level report groups 
hierarchy, each lower level 
summed into the higher level 
reset: that is, counters 
reset operation. 

are indicated in the control 
that is figured into the sum is 
before each lower level is 

are rolled forward prior to the 

6. The UPON option is required to obtain selective summation for 
a particular data item that is named as a SOURCE item in two 
or more TYPE DETAIL report groups. Identifier-l and 
identifier-2 must be SOURCE data items in data-name-l; 
data-name-l must be the name of a TYPE DETAIL report group. 

7. When the UPON option is used, summation occurs only when a 
GENERATE statement references data-name-l. It does not occur 
during summary reporting (refer to the GENERATE statement, 
Section 5.9.16.) 

8. The identifiers cannot be subscripted or indexed. 

4-86 



THE DATA DIVISION 

TYPE 

4.9.37 TYPE 

Function 

The TYPE clause specifies the particular type of report group that is 
described by this entry and indicates the time when the report group 
is generated. 

General Format 

TYPE IS 

REPORT HEADING 
RH 
PAGE HEAD I NG 

PH I CONTROL 
- CH 
DETAIL 

DE J CONTROL 
- l CF 
PAGE FOOTING 
PF 
REPORT FOOTING 
RF 

HEADING ) I identifier-n ) 
FINAL 

FOOTING) J identifier-n ) 
l FINAL 

Technical Notes 

1. RH is an abbreviation for REPORT HEADING. 
PH is an abbreviation for PAGE HEADING. 
CH is an abbreviation for CONTROL HEADING. 
DE is an abbreviation for DETAIL. 
CF is an abbreviation for CONTROL FOOTING. 
PF is an abbreviation for PAGE FOOTING. 
RF is an abbreviation for REPORT FOOTING. 

2. If the report group is described as TYPE DETAIL, the GENERATE 
statement in the Procedure Division directs the Report Writer 
to produce the named report group. 

3. The REPORT HEADING entry indicates a report group that is 
produced only once at the beginning of a report, during the 
execution of the first GENERATE statement. There may be only 
one report group of this type in a report. 

4. The PAGE HEADING entry indicates a report group that is 
automatically produced at the beginning of each page of the 
report. There may be only one report group of this type in a 
report. 

5. The CONTROL HEADING entry indicates a report group that is 
produced at the beginning of a control group for a designated 
identifier. In the case of FINAL, it is produced once before 
the first control group during the execution of the first 
GENERATE statement. There may be only one report group of 
this type for each identifier and for FINAL. 

4-87 



THE DATA DIVISION 

TYPE (Cont.) 

6. The CONTROL FOOTING entry indicates a report group that is 
produced at the end of a control group for a designated 
identifier, or that is produced only once at the termination 
of a report in the case of FINAL. There may be only one 
report group of this type for each identifier and for FINAL. 
In order to produce any CONTROL FOOTING report groups, a 
control break must occur. 

7. The PAGE FOOTING entry indicates a report group that is 
automatically produced at the bottom of each page of the 
report. There may be only one report group of this type in a 
report. 

8. The REPORT FOOTING entry indicates a report group that is 
produced only once, at the termination of a report. There 
may be only one report group of this type in a report. 

9. Each identifier, as well as FINAL, must be one of the 
identifiers associated with the CONTROL clause in the RD 
entry. 

4-88 



THE DATA DIVISION 

GENERAL FORMAT FOR DATA DIVISION 

DATA DIVISION. 

[rILE SECTION. 

[}D fil e-name 

~LOCK CONTAINS 

[RECORD CONTAINS 

[i nteger-l TQ] 

Qnteger-3 TOJ 

integer-2 
{ 

RECORD(S) tl 
CHARACTERS fJ 

i nteger-4 CHARACTER~ 

{ 
RECORD IS } ~ STANDARD l 

LABEL RECORDS ARE ) OMITTED ( 
{ record-name-l, 

IVALUE OFfJ'IDENTIFICATION} IS {d~ta-name-l}~ L-- U l.Q llteral-l ~ 

IDATE-WRITTEN IS j d~ta-name-2 }fllusER-NUMBER IS l tllteral-2 UL { 
da t a - n a me - 3 {l ] 
literal-3 fJ 

Ir { RECORD IS } 
L!ATA RECORDS ARE data-name-4 [data-name-5J .. J 
ILINAGE "IS {?ata-name-6} l-- 1 nteger-5 

LINES ~ITH FOOTING AT 

ILINES AT TOP {?ata-name-8 l] I LINES AT BOTTOM L - lnteger-7 L 

[CODE-SET IS al phabet-name ] 

{ 
?ata-name-7 r 
1 n teger-6 .u 

{
data-name-9 nl 
1 nteger-8 U J 

[ { ~g~~is I!RE l report-name-l Geport-name-~ .. .] 

\ RECORDING 

4-89 

ASCI I 
SIXBIT 
BINARY 
L 
V 
STAN DARD-ASCI I 
STANDARD ASCII 



THE DATA DIVISION 

GENERAL FORMAT FOR DATA DIVISION 

[so file-name 

[RECORD CONTAINS [integer-l TO] integer-2 CHARACTERs] 

~ {RECORD IS } 
~OATA RECORDS ARE data-name-l 

ITrecord-ctescri pt i on-entry I ... J ... J 
C:WORKING-STORAGE SECTION. 

[
77-1 evel-descri pti on-entry] ... J 
record-description-entry 

C:LINKAGE SECTION. 

\77-1 eve1-descri pti on-entry] ] 

~ecord-descriPtion-entry ... 

~OMMUNICATION SECTION. 

~ommunication-description-entry 

[!ecord-description-entry] .. J .. J 

~ata-name-2J 

4-90 

.. J 



THE DATA DIVISION 

GENERAL FORMAT FOR DATA DIVISION 

REPORT SECTION. 

RD report-name 

[CODE mnemonic-name ] 

[ 1 CONTROL IS I {;~~~tifier-l [identifier-2] ... }] CONTROLS ARE FINAL identifier-l [identifier-2] ... 

[ PAGE LIMIT IS 
LHlITS ARE I . J LINE I lnteger-l \ LINES 

[ HEADING integer-2J [FIRST DETAIL integer-3 ] 

[ LAST DETA I L i nte ger-4] [FOOT! NG i nteger-5 ] ] "-

{record-descr; pt; on-entry} ••• ] ••• ] 

4-91 



THE DATA DIVISION 

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

FORMAT 1: 

level-number { 
data-name-l } 
FI LLER 

[REDEFINES data-name-2 ] 

[ {~TURE } IS character-string] 

USAGE IS 

COMPUTATIONAL 
cm~p 

COMPUTATIONAL-l 
COMP-l 
COMPOT A TI ONAL - 3 
COMP-3 
DISPLAY 
DISPLAY-6 
DISPLAY-7 
DISPLAY-9 
INDEX 
BATABAS[- KEY 
DBKEY 

[[SIGN IS] { ~~~~~~~G } [SEPARATE CHARACTE~ 

'OCCURS {~nteger-l TO integer-2 TIMES DEPENDING ON data-name-3 } L-- 1 nteger-2 TIMES 

[{
ASCENDING } 
DESCEN DI NG 

KEY IS data-name-4 [data-name-~ 

[INDEXED BY index-name-l 

[{~HRONIZED} [~~~~TJJ 
[{ :fIFIED }{ ~~~T D 

[]LANK WHEN ZERO] 

~ALUE IS literall 

[i ndex-name-2] .. J] 

4-92 

.. .J 



THE DATA DIVISION 

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

FORMAT 2: 

66 data-name-l RENAMES data-name-2 ~{ ~UGH} data-name-3~ 

FORMAT 3: 

88 condition-name 
{

VALUE IS { 
VALUES ARE) 

l "t 1-1 ~{ THROUGH} 
1 era ~ THRU 

[iteral-3 a =UGH} literal-4] 

4-93 

1 iteral-2] 



THE DATA DIVISION 

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY 

Format 1 

01 [ d a t a - name - 1 ] 

[ 
LI NE NU~1BER IS { ~~0~ge~~ieger-2 }] 

NEXT PAGE 

[ { 

integer-3 
NEXT GROUP IS PLUSinteger-4 

NEXT PAGE }] 

TYPE IS 

REPORT HEADING 
RH 
PAGE HEADING 

PH {CONTROL HEADING} { identifier-I} 
-- CH FINAL 

DETAIL 

DE {CONTROL FOOTI NG } { i dent i fi er-2 } 
-- CF FINAL 

PAGE FOOTING 
PF 
REPORT FOOTING 
RF 

DISPLAY 
DISPlAY-6 
DISPLAY-7 
DISPLAY-9 



THE DATA DIVISION 

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY 

Format 2 

leve l-number [ data-name-l ] 

[BLANK WHEN ZERO] 

[COLUMN NUMBER IS integer-I] 

[GROUP INDICATE] 

[ { JUSTIFIED 
JUST ) RIGHT ] 

[LINE NUMBER 
{ integer-2 }] IS PLUS integer-3 

NEXT PAGE 

[ { PICTURE 
PIC ) IS character-string ] 

[RESET ON { identifier-I) ] 
FINAL 

{ 

SOURCE IS identifier-2 
SUM identifier-3 [identifier-4] 
VALUE IS literal-l 

[UPON data-name-2)} 

[
[USAGE IS] I mmb I]...:... 

DISPLAY-9 

4-95 





CHAPTER 5 

THE PROCEDURE DIVISION 

The Procedure Division specifies the processing to be performed on the 
files and file data described in the Environment and Data Divisions. 
The Procedure Division contains a series of COBOL procedure statements 
which describe the processing to be done. Statements, sentences, 
paragraphs, and sections are described in Section 5.1. Sections are 
optional and permit a group of consecutive paragraphs to be referenced 
by a single procedure-name; sections can also be used for 
segmentation purposes (see Section 5.3, Segmentation). If any section 
appears in the Procedure Division, then all paragraphs must appear 
within a section. 

The first entry in the Procedure Division of a source program must be 
the division-header. The next entry must be either the DECLARATIVES 
header (see the USE statement, Section 5.9.42), or a paragraph-name or 
section-name. 

PROCEDURE DIVISION ~SJNG data-name-J ~ata-name-2J ..J 
[DECLARATI VES. 

{ section-name SECTION [segment-number]. 

[!aragraPh-name. [sentence] ... ] ... } 

END DECLARATIVES~ 
{ sect ion-name SECTION li.egment-n umber] 

~aragraPh-name . [sentence] ... ] } 

declarative-sentence 

Only in a subprogram can USING clauses appear in the PROCEDURE 
DIVISION header. 

When a program-name is specified in a CALL statement in a calling 
program, control is transferred to the beginning of the executable 
code in the subprogram (that is, the Procedure Division). 

The identifiers in the USING clause indicate those data items in the 
called program that may reference data items in the calling program. 
The order of identifiers in the CALL statement of the calling program 
and in the PROCEDURE DIVISION header of the called program is 
critical. The items in the USING clauses are related by their 
corresponding positions, not by name. Corresponding identifiers refer 
to a single set of data that is available to both the calling and the 
called programs. 

5-1 



THE PROCEDURE DIVISION 

The number of identifiers in the USING clause in the PROCEDURE 
DIVISION header must be less than or equal to the number of 
identifiers in the USING clause in the CALL statement in the calling 
program. 

5.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION 

The Piocedure Division consists of a series of procedure statements 
grouped into sentences, paragraphs, and sections. By grouping the 
statements in this manner, reference can be made to them via a 
procedure-name (that is, a paragraph-name or a section-name). The 
order in which procedure statements are executed can be controlled by 
using the sequence-control verbs ALTER, GO TO, and PERFORM. 

5.1.1 Statements 

Statements fall into three categories: imperative, conditional, and 
compiler-directing, depending upon the verb used. Verbs, in turn, are 
also classified into certain categories. These categories and their 
relationship to the three statement categories are given in Table 5-1. 

5-2 



THE PROCEDURE DIVISION 

Table 5-1 
Procedure Verb and Statement Categories 

Verb Verb Category Statement Category 

ADD ARITHMETIC IMPERATIVE 
COMPUTE 
DIVIDE 
MULTIPLY 
SUBTRACT 
INSPECT 

ALTER SEQUENCE-CONTROL IMPERATIVE 
CALL 
ENTER 
ENTRY 
EXIT PROGRAM 
GOBACK 
GO TO 
PERFORM 
STOP 

ACCEPT DATA MOVEMENT IMPERATIVE 
INSPECT 
MOVE 
SET 
STRING 
UNSTRING 

CANCEL MISCELLANEOUS IMPERATIVE 
FREE 
INSPECT 
MERGE 
RELEASE 
RETAIN 
RETURN 
SEARCH 
SORT 
TRACE 

GENERATE REPORT IMPERATIVE 
INITIATE 
TERMINATE 

ACCEPT 1-0 IMPERATIVE 
CLOSE 
DELETE 
DISPLAY 
OPEN 
READ 
REWRITE 
WRITE 

IF CONDITIONAL CONDITIONAL 

COpy COMPILER-DIRECTING COMPILER-DIRECTING 
ENTER 
USE 

5-3 



THE PROCEDURE DIVISION 

5.1.2 Sentences 

A statement or sequence of statements terminated by a period forms a 
sentence. Sentences are classified into the sd~e three categories as 
statements. 

An imperative sentence consists solely of one or more imperative 
statements. Except for imperative sentences containing one of the 
sequence-control verbs, control passes to the next procedural sentence 
following execution of the imperative sentence. If a GO TO or STOP 
RUN statement is present in an imperative sentence~ it must be the 
last statement in the sentence. 

A conditional sentence performs some test and, on the basis of the 
results of that test, determines whether a "true" or a "false" path 
should be taken. A conditional sentence is one that contains the 
conditional verb (IF) or one of the option clauses ON SIZE ERROR (used 
with arithmetic verbs), AT END (used with the READ verb), or INVALID 
KEY (used with the READ verb for mass storage devices). 

A compiler-directing sentence consists of a single compiler-directing 
statement. Compiler-directing sentences are used to indicate the end 
point of a PERFORM loop (EXIT), to copy library entries (COPY), and to 
specify procedures for input-output errors (USE). Generally, 
compiler-directing sentences generate no object-program coding. 

5.1.3 Paragraphs 

A single sentence or a group of sequential sentences can be assigned a 
paragraph-name for reference. The paragraph-name must begin in Area A 
(see Section 1.3, Source Program Format) and terminate with a period. 
The first sentence of the paragraph can begin after the space 
following this period or it can begin on the next line, beginning in 
Area B. 

A paragraph-name must be unique within its section, but need not be 
unique within the program. A non-unique paragraph-name must be 
qualified by its section-name except when it is referenced from within 
its own section. 

5.1.4 Sections 

A single paragraph or a group of sequential paragraphs can be assigned 
a section-name for reference. The section-name must begin in Area A 
and be followed by the word SECTION followed by a priority number, if 
desired, followed by a terminating period. 

section-name SECTION nne 

If the section-name is in the Declaratives portion, it may not have a 
priority number. A USE statement may appear following the terminating 
space after the period. 

The section-name applies to all paragraphs following it until another 
section-header is encountered. 

All section-names must be unique within a program. Sections are 
optional within the Procedure Division, but if a Declaratives portion 
is used there must be a named section immediately following the END 
DECLARATIVES statement. 

5-4 



THE PROCEDURE DIVISION 

When a section-name is referenced, the word SECTION is not allowed in 
the reference. 

5.2 SEQUENCE OF EXECUTION 

In the absence of sequence-control verbs, sentences are executed 
consecutively within paragraphs, paragraphs are executed consecutively 
within sections, and sections are executed consecutively within the 
Procedure Division (with the exception of sections within the 
Declaratives portion, which are executed individually when the related 
condition occurs). 

5.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS 

COBOL source programs can be written to enable certain portions of the 
Procedure Division code to share the same memory area at object run 
time, thus decreasing the amount of memory required to run the object 
program. The method used to achieve this reduction is called 
segmentation. 

Segmentation consists of dividing the Procedure Division sections into 
logically related groupings called segments. You can define a segment 
by assigning the same priority-number (a priority-number follows the 
word SECTION in the section-header, and can be in the range 00 through 
99) to all the sections you wish included in that segment; these 
sections need not appear consecutively in the source program. 

Segments are classified into three groups, depending upon their 
priority-number. These three groups are described in Table 5-2. 

Priority Number 

None, or 00 up to 
SEGMENT-LIMIT 
minus I 

SEGMENT-LIMIT 
up to 49 

50 through 99 

Table 5-2 
Types of Segments 

Type 

Resident 
Segment 

Nonresident; 
ALTERed GO 
TOs retained 

Nonresldent; 
ALTERed GO 
TOs reset 

5-5 

Description 

This segment is always resi
dent in memory and is never 
overlaid. 

These segments are non
resident and are brought 
into memory when needed. 
Any ALTERed GO TOs retain 
their most recently set 
values. 

These segments are also non
resident and are brought 
into memory when needed. 
Any ALTERed GO TOs do not 
retain their latest values, 
but are reset to their 
original setting each time 
the segment is reloaded into 
memory. 



THE PROCEDURE DIVISION 

In addition to the resident segment, all data areas described in the 
Data Division are resident at all times. Thus, memory can be thought 
of as being divided into two parts: 

1. A resident area, in which reside all data areas and the 
resident segment, and 

2. A nonresident area, equal to the size of the largest 
nonresident segment, into which each nonresident segment is 
read when needed. Since each nonresident segment reads into 
the same memory area, any previous nonresident segment in 
that area is overlaid and must be brought in again when it is 
to be executed again. 

The resident segment should consist of those sections that constitute 
the main portion of the processing. Infrequently used sections can be 
allocated to the nonresident segments. 

5.4 ARITHMETIC EXPRESSIONS 

An arithmetic expression is an identifier of a numeric elementary 
item, or a numeric literal, or such identifiers and literals separated 
by arithmetic operators. 

Algebraic negation can be indicated by a unary minus symbol. 

5.4.1 Arithmetic Operators 

There are five arithmetic operators that may be used in arithmetic 
expressions. They are represented by specific character symbols that 
must be preceded by a space and followed by a space. 

Arithmetic Operator 

+ 

* 
/ 
** 

Meaning 

Addition or unary plus 
Subtraction or unary minus 
Multiplication 
Division 
Exponentiation 
Exponentiation 

5.4.2 Formation and Evaluation Rules 

The following rules for information and evaluation apply to arithmetic 
expressions. 

1. Parentheses specify the order in which elements within an 
arithroetic expression are to be evaluated. Expressions 
within parentheses are evaluated first. Within a nest of 
parentheses, the evaluation proceeds from the elements within 
the innermost pair of parentheses to the outermost pair of 
parentheses. When parentheses are not used, or parenthesized 
expressions are at the same level of inclusiveness, the 
following hierarchal order of operations is implied: 

5-6 



THE PROCEDURE DIVISION 

First: 
then 
then 

unary +, unary -
** and ~ (exponentiation) 

(multiplication and division) 
(addition and subtraction) 

* and / 
and then + and -

2. When the order of a sequence of operations on the same 
hierarchal level (for example, a sequence of + and 
operations) is not completely specified by use of 
parentheses, the order of operations is from left to right. 

3. An arithmetic expression may begin with one of the following: 

(- + variable 

and may end only with one of the following: 

) variable 

4. There must be a one-to-one correspondence between left and 
right parentheses ln an arithmetic expression; each left 
parenthesis must precede its corresponding right 'parenthesis. 

5.5 CONDITIONAL EXPRESSIONS 

A conditional expression causes the object program to select between 
alternate paths (called the true path and the false path) of control 
depending upon the truth value of a test. Conditional expressions can 
be used in conditional (IF) statements and in PERFORM statements 
(formate 3 and 4). A conditional expression can be one of the 
following types: 

Relation condition 
Class condition 
Condition-name condition 
Sign condition 

(greater than, equal to, less than) 
(numeric or alphabetic) 
(level-aa condition-names) 
(positive, negative, zero) 

Each of these types is discussed below. 

5.5.1 Relation Condition 

A relation condition causes a comparison of two operands, each of 
which may be an identifier, a literal, a figurati~e constant, or an 
arithmetic expression. Comparison of two numerlC operands is 
permitted regardless of their formats as described by their respective 
USAGE clauses. Comparison of two operands is permitted if each is 
DISPLAY-6, DISPLAY-7, or DISPLAY-9. 

A numeric-edited operand may not be compared to a numeric operand. An 
alphanumeric operand may not be compared to a numeric operand unless 
the alphanumeric operand contains no characters other than numeric 
digits. For example, the statement: 

IF NUM < "2". 

is permissible but the statement: 

IF NUM < "2.0". 

is not. 



THE PROCEDURE DIVISION 

5.5.1.1 Format of a Relation-Condition - The general format for a 
relation condition is 

literal-l I identifier-l I 
. literal-2 

I 
identifier-2 I 

relatlonal-operator arithmetic-expression-2 arithmetic-express ion-l 
figurative-constant-l figurative-constant-2 

The first operand is called the subject of the condition; the second 
operand is called the object of the condition. Either the subject or 
the object must be an identifier or an arithmetic expression. 

5.5.1.2 Relational Operators - Relational operators specify the type 
of comparison to be made in the relation condition. Relational 
operators must be preceded by a space and followed by a space. 

Relational Operator Meaning 

IS [NOT] GREATER THAN Greater than, not greater than 
IS [NOT] > THAN 

IS [NOT] LESS THAN Less than, not less than 
IS [NOT] < THAN 

IS [NOT] EQUAL (EQUALS) TO Equal to, not equal to 
IS [NOT] = TO 

5.5.1.3 Comparison of Numeric Items - A comparison between two 
numeric items determines that the algebraic value of one item is less 
than, equal to, or greater than the algebraic value of the other item. 
The length of the operands is not significant. Zero is considered a 
unique value; +0 and -0 are equal. Unsigned operands are considered 
positive. Blanks and tabs are ignored when a numeric item is compared 
to zero. Since blanks and tabs make an item nonnumeric, a true zero 
condition may be established by a nonnumeric test followed by a 
comparison with zero. 

5.5.1.4 Comparison of Nonnumeric Items - For operands whose category 
is nonnumeric (or where one operand is numeric and the other is 
nonnumeric), a comparison results in the determination that one of the 
operands is less than, equal to, or greater than the other operand 
with respect to a specified collating sequence of characters (see 
Appendix C). The size'of an operand is the total number of characters 
in the operand. Blanks and tabs are not ,ignored when a nonnumeric 
item is compared to ZERO. The presence of either blanks, tabs, or 
both in the operand will cause the test result to be NOT EQUAL. 

There are three cases to consider: operands of equal size, operands 
of unequal size, and operands with differing justification. 

5-8 



THE PROCEDURE DIVISION 

1. Operands of equal size - If the operands are of equal size,· 
characters in corresponding character positions of the two 
operands are compared, starting at the higher-order 
(leftmost) end and continuing through the low-order end. If 

2. 

all pairs of characters compare equally through the last 
pair, the operands are considered to be equal. If they do 
not all compare equally, the first pair of unequal characters 
encountered is compared to determine their relative position 
in the collating sequence. The operand containing the 
character that is positioned higher in the collating sequence 
is considered to be the greater operand. 

Operands of unequal size - If the operands are of unequal 
size, the comparison of characters proceeds from the 
high-order end to the low-order end until either 

a. A pair of unequal characters is encountered, or 

b. One of the operands has no more characters to compare. 

If a pair of unequal characters 
comparison is determined in the 
equal-sized operands. 

is encountered, 
manner described 

the 
for 

If the end of one of the operands is encountered before 
unequal characters are encountered, this shorter operand is 
considered to be less than the longer operand unless the 
remaining characters in the longer operand are spaces, in 
which case the two operands are considered equal. 

3. If one operand is right-justified and the other is 
left-justified, they are compared just as they appear in the 
record. That is, PICTURE XXX, VALUE "BII and PICTURE XXX, 
VALUE liB II , JUSTIFIED RIGHT are not equal because'the first 
appears in the record 'as B and the second as B. 

5.5.2 Class Condition 

The class condition tests the contents of an item for being wholly 
alphabetic or wholly numeric. 

5.5.2.1 Format of a Class Condition 

i de n t i fie r IS I ALPHABETIC) 
NUt~ERI C 

5.5.2.2 Restrictions - The item named by identifier must be 
described, implicitly or explicitly, as DISPLAY, DISPLAY-6, DISPLAY-7, 
or DISPLAY-9. The NUMERIC test cannot be applied to an item described 
as alphabetic. The ALPHABETIC test cannot be applied to an item 
described as numeric. A compiler diagnostic will result if either of 
the two previously mentioned tests are attempted. 

5-9 



THE PROCEDURE DIVISION 

5.5.2.3 The ALPHABETIC Test - The ALPHABETIC test result is true when 
the item consists of characters from the alphabet (A through Z) and 
the space or tab. 

5.5.2.4 The NUMERIC Test - The NUMERIC test result is true under the 
following conditions: 

1. For nonnumeric and unsigned numeric items, each character 
must be a digit (0 through 9). No signs are permitted. 
Spaces and tabs cause the test result to be false. 

2. For signed numeric items, the sign must have one of the four 
following representations: a leading graphic sign ("+" or 
"-"), a trailing graphic sign, a leading embedded sign, or a 
trailing embedded sign. All other characters must be digits. 
Spaces or tabs cause the test result to be false. 

NOTE 

An alternative form of NUMERIC test, 
which causes leading and trailing blanks 
and tabs to be ,ignored, may be selected 
by a switch setting during system 
installation. This alternative form is 
described in Appendix De 

5.5.3 Condition-Name Condition 

In a condition-name condition, a conditional variable is tested to 
determine whether or not its value is equal to one of the values 
associated with a condition-name (level-88). 

5.5.3.1 Format of a Condition-Name Condition - The general format for 
a condition-name is 

~NOTJ condition-name 

If the condition-name is associated with a range of values, then the 
conditional variable is tested to determine whether or not its value 
falls within this range, including the end values. 

The rules for comparing a conditional variable with a condition-name 
value are the same as those specified for relation conditions. 

The result of the test is true if one of the values associated with 
the condition-name equals the value of its associated conditional 
variable. 

5-10 



THE PROCEDURE DIVISION 

5.5.4 Sign Condition 

'The sign condition determines whether or not the algebraic value of a 
numeric operand is less than, greater than, or equal to zero. 

5.5.5.1 Format of a Sign Condition - The general format for a sign 
condition follows. 

{ identifier } [NOT] { 
POSITIVE 

} arithmetic-expression IS NEGATIVE 
ZERO 

The POSITIVE test result is true if the identifier or 
arithmetic-expression is algebraically greater than zero. The 
NEGATIVE test result is true if the identifier or 
arithmetic-expression is algebraically less than zero. The ZERO test 
result is true if the identifier or arithmetic-expression is equal to 
zero or contains all spaces, all tabs, or a combination of spaces and 
tabs. However, any spaces or tabs will make an item nonnumeric. 

5.5.5 Logical Operators 

The interpretation of any of the above conditions is reversed by 
preceding the condition with the logical operator NOT. Any of the 
above types of conditions can be combined by either of two logical 
operators. A logical operator must be preceded by a space and 
followed by a space. 

Logical Operator 

OR 

AND 

NOT 

Meaning 

Entire condition is true if either 
or both of the simple conditions 
are true. 

Entire condition is true if both of 
the simple 'conditions are true. 

Entire condition is true if the 
simple condition is false. 

5.5.6 Formation and Evaluation Rules 

A conditional expression can be composed of either a simple-condition 
or a compound-condition. A simple-condition is one that performs a 
single test. A compound-condition is one that contains a string of 
simple-conditions connected by the logical operators AND and/or OR. A 
compound-condition can contain any combination of types of conditional 
expressions (relational, class, condition-name, and sign). 

5-11 



THE PROCEDURE DIVISION 

The evaluation rules for conditions are analogous to those given for 
arithmetic expressions, except that the following hierarchy applies: 

"arithmetic-expressions 
all relational operators 
NOT 
AND 
OR 

Parentheses may be used either to improve readability or to override 
the effects of the hierarchy given above. Each set of conditions 
within a pair of parentheses is reduced to a single condition. When 
this is accomplished, reductions which cross parentheses are done. 

You may use parentheses in arithmetic expressions to specify the order 
in which elements are to be evaluated. Expressions within parentheses 
are evaluated first~ within nested parentheses, evaluation proceeds 
from the least inclusive set to the most inclusive set. In the 
absence of parentheses or when parenthesized expressions are at the 
same level of inclusiveness, the following hierarchical order of 
execution is implied: 

1st - Unary plus and minus 
2nd - Exponentiation 
3rd - Multiplication and division 
4th - Addition and subtraction 

Examples 

NOTE 

The" precedence of unary minus over 
exponentiation is different from 
algebraic notation, and from some other 
programming languages. If the 
data-names A and B have the values 3 and 
2 respectively, then the COBOL statement 

COMPUTE C= - A ** B 

yields C as 9 (not -9 as in algebra). 

1. Using parentheses for ease of reading 

The following expression 

A = B OR C > D AND F < G AND H IS ALPHABETIC OR I IS 
NEGATIVE" 

can be parenthesized for readability without changing its 
effect as shown below. 

(A = B) OR (C > D AND F < G AND H IS ALPHABETIC) OR (I 
IS NEGATIVE) 

If all the 
parentheses 
is true. 

conditions within any of the three sets of 
are true, then the entire conditional expression 

Figure 5-1 illustrates the effect of this statement and the 
order of evaluation. 

5-12 



THE PROCEDURE DIVISION 

>---------------------------------~~~ 

True 

MR-S-025-79 

Figure 5-1 Order of Evaluation of a Conditional Expression 

2. Using parentheses to override normal order of evaluation 

To illustrate this usage, a compound-conditional is shown in 
three forms in Figure 5-2, each accompanied by a flow diagram 
showing the result of each. 

5-13 



THE PROCEDURE DIVISION 

Fl = F2 AND F3 '" F4 OR F5 = F6 AND F7 = F8 

Fl = F2 AND (F3 = F4 OR F5 = F6 AND F7 = F8) 

>---------r--------~~ False 
Path 

False False 

True True 

Fl=F2 AND ((F3 = F4 OR F5 = F6) AND F7 = F8) 

>------------r--.----.c ~:~~e 

False 

MR-5-026-79 

Figure 5-2 Order of Evaluation of a Compound-conditional Expression 

5-14 



THE PROCEDURE DIVISION 

5.5.7 Combined and Negated Combined Conditions 

A combined condition results from connecting conditions with one of 
the logical operators 'AND' or 'OR'. The general format of a combined 
condition follows: 

condition { { ~~D } condition} 

"Condition" may be one of the following: 

1. A simple condition 

2. A negated simple condition 

3. A combined condition 

4. A negated combined condition: that is, the 'NOT' logical 
operator followed by a combined condition enclosed within 
parentheses. 

5. Combinations of the above, specified according to the rules 
summarized in Table 5-3 Combinations of Conditions, Logical 
Operators, and Parentheses. 

Although parentheses need never be used when either 'AND' or 'OR' (but 
not both) is used exclusively in a combined condition, parentheses may 
be used to effect a final truth value when a mixture of 'AND', 'OR' 
and 'NOT' is used. (See Table 5-3 Combinations of Conditions, Logical 
Operators, and Parentheses.) 

Table 5-3 indicates the ways in which conditions and logical operators 
may be combined and parenthesized. There must be a one-to-one 
correspondence between left and right parentheses so that each left 
parenthesis occurs to the left of its corresponding right parenthesis. 

Table 5-3 
Conditions, Logical Operators, and Parentheses Combinations 

In a left-to-right sequence of elements: 

Location in Element, when not Element, when not 
Given the conditional first, may be last, may be 
following expression immediately pre- immediately fol-
element First Last ceded by only: lowed by only: 

simple- Yes Yes OR, NOT, AND, ( OR, AND, ) 
condition 

OR or AND No No simple-condition, ) simple-condition, 
NOT, ( 

NOT Yes No OR, AND, ( simple-condition, ( 

( Yes No OR, NOT, AND, ( simple~condition, 
NOT, ( 

) No Yes simple-condition, ) OR, AND, ) 

5-15 



THE PROCEDURE DIVISION 

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' 
is not permissible; 'NOT' is permissible while 'NOT NOT' is not 
permissible. 

5.5.8 Abbreviated Combined Relation Conditions 

Simple or negated simple relation conditions can be combined with 
logical connectives in a consecutive sequence. When a succeeding 
relation condition contains a subject or subject and relational 
operator that is common with the preceding relation condition, and no 
parentheses are used within such a consecutive sequence, then any 
relation condition except the first may be abbreviated by one of the 
following: 

1. The omission of the subject of the relation condition 

2. The omission of the subject and relational operator of the 
relation condition 

The format for an abbreviated combined relation condition follows: 

rel ation-condition {{ ~~D} eNOT] G-el ati ona l-operato~ object } 

Within a sequence of relation conditions both of the above forms of 
abbreviation may be used. The effect of using such abbreviations is 
as if the last preceding stated subject were inserted in place of the 
omitted subject, and the last stated relational operator were inserted 
in place of the omitted relational operator. The result of such 
implied insertion must comply with the rules of Table 5-3, 
Combinations of Coriditions, Logical Operators, and Parentheses. This 
insertion of an omitted subject and/or relational operator terminates 
once a complete simple condition is encountered within a complex 
condition. 

The interpretation ~pplied to the use of the word 'NOT' in an 
abbreviated combined relation condition is as follows: 

1. If the word immediately following 'NOT' is 'GREATER', I)', 

'LESS', '<I, 'EQUAL', or '=', then the 'NOT' participates as 
part of the relational operator; otherwise 

2. The 'NOT' is interpreted as a logical operator and, 
therefore, the implied insertion of subject or relational 
operator results in a negated relation condition. 

Some examples of abbreviated combined ~nd negated combined relation 
conditions and expanded equivalents follow. 

Abbreviated Combined 
Relation Condition 

a ) b AND NOT < c OR d 

a NOT EQUAL b OR c 

NOT a = b OR c 

5-16 

Expanded Equivalent 

«a) b} AND (a NOT < c)} OR (a 
NOT < d) 

(a NOT EQUAL b) OR (a NOT EQUAL 
c) 

(NOT (a = b}) OR (a = c) 



THE PROCEDURE DIVISION 

NOT (a GREATER b OR < c) NOT «a GREATER b) OR (a < c)) 

NOT ««a NOT> b) AND (a NOT> 
c)) AND (NOT (a NOT> d)))) 

NOT (a NOT > bAND c AND NOT d) 

5.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS 

Associated 
MULTIPLY, 
SIZE ERROR 
necessity 
verbs. 

with the five arithmetic verbs (ADD, COMPUTE, DIVIDE, 
and SUBTRACT) are two options: the ROUNDED option and the 
option. These two options are described here to avoid the 
of including their descriptions with each of the arithmetic 

5.6.1 The ROUNDED Option 

If the ROUNDED option is specified, the absolute value of the item is 
increased by 1 if the leftmost truncated digit is greater than or 
equal to 5. 

Example: 
value: 
resultant-identifier picture: 
stored result without 
ROUNDED option: 
stored result with 
ROUNDED option: 

567~8756 
999V99 

567A87 

When the low-order positions in a resultant-identifier are represented 
by the symbol P in "the PICTURE associated with the 
resultant-identifier, rounding or truncation occurs relative to the 
rightmost integer position for which storage is allocated. 

Example: 
resultant-identifier picture: 
stored result without 
ROUNDED option: 
stored result with 
ROUNDED option: 

5.6.2 The SIZE ERROR Option 

value: 5388 
99PP 

53 

54 

If, after decimal point alignment, the number of signitlcant digits in 
the result of an arithmetic operation is greater than the number of 
integer positions provided in the result-identifier, a size error 
condition occurs. Division by zero always causes a size error 
condition. The size error condition applies to both the intermediate 
results and the final result of an arithmetic operation. If the 
ROUNDED option is specified, rounding takes place before checking for 
size error. When such a size error does occur, the subsequent action 
depends upon whether or not the SIZE ERROR option is specified. 

If the SIZE ERROR is not specified and a size error condition occurs, 
the value of the resultant-identifier is unpredictable, and no 
additional actiqn is taken. 

If SIZE ERROR is specified, and a size error condition occurs, then 
the values of the resultant-identiiier(s) affected by the size errors 

5-17 



THE PROCEDURE DIVISION 

are not altered. Values for resultant-identifier(s) for which no size 
error condition occurs are unaffected by size errors that occur for 
other resultant-identifier(s). After completion of the execution of 
the arithmetic operation, the statement(s) after SIZE ERROR is 
executed. 

Example ADD A TO B ON SIZE 
A: 
B: 
Result: 

ERROR GO TO OVERFLW 
954 
PICTURE IS 999; VALUE 954. 
The contents of B are left unchanged and 
control is transferred to the paragraph 
or section named OVERFLW 

5.7 THE CORRESPONDING OPTION 

The CORRESPONDING option is 
arithmetic verbs (ADD and 
verb. 

used in the formats of two of the 
SUBTRACT) ano in the format of the MOVE 

For the purpose of this discussion, del) and d(2) represent 
identifiers that refer to group items. A pair of data items, one from 
del) and one from d(2), correspond if the following conditions exist: 

1. A data item in del) and a data item in d(2) have 
data-name and the same qualification up to, 
including, del) and d(2). 

the 
but 

same 
not 

2. Both of the data items are elementary numeric data items in 
the case of an ADD or SUBTRACT statement with the 
CORRESPONDING option. 

3. Neither del) nor d(2) may be data items with level-number 66, 
77, or 88. 

4. Each data item subordinate to del) or d(2) that contains a 
RENAMES, a REDEFINES or an OtCURS clause is ignored. 
However, del) and d(2) may have REDEFINES or OCCURS clauses 
or be subordinate to data items with REDEFINES or OCCURS 
clauses. 

See the sections ADD, MOVE, and SUBTRACT for information on the 
specific formats and results of the use of the CORRESPONDING option. 

5.8 DETERMINATION OF USAGE IN ARITHMETIC COMPUTATIONS 

If a programmer describes a numeric field as having USAGE DISPLAY-6, 
DISPLAY-7~ DISPLAY-9, or COMP-3, the compiler converts this data to 
fixed-point binary when performing arithmetic computations with it. 
If the field contain~ 10 or fewer digits, it is converted to 
single-precision fixed-point binary. Conversion to double-precision 
fixed-point binary is performed if the field contains more than 10 
digits_ A field described as COMPUTATIONAL (or INDEX) is fixed-point 
binary, and single-precision for 10 or fewer digits, double-precision 
for more than 10 digits. A field de~cribed as COMPUTATIONAL-l is 
single precision floating-point binary. 

When any arithmetic computation is performed, the arithmetic usage 
(single-precision fixed-point, double-precision fixed-point, or 
floating-point) used for each operation is determined from the usages 
of the two operands of the computation. If either operand is 

5-18 



THE PROCEDURE DIVISION 

floating-point, the operation is performed in floating-point 
arithmetic. If neither operand is floating-point, but one operand is 
double-precision fixed-point, the operation is performed in 
double-precision fixed-point arithmetic. Otherwise, the operation is 
performed in single-precision fixed-point arithmetic. If both 
operands are constants, the operation IS performed in single- or 
double-precision fixed-point arithmetic, as appropriate. 

If any nonnumeric characters appear in the DISPLAY-6, DISPLAY-7, or 
DISPLAY-9 field that is to be converted, the compiler attempts to 
convert them to binary; however, in many cases, undefined results can 
occur. When DISPLAY-6, DISPLAY-7, and DISPLAY-9 characters are 
converted to binary, the following rules apply. 

o through 9 

A through I 

? , [ , { 

J through R 

:,!,],} 

Nulls 

Leading spaces 
and tabs 

+ and -

need no conversion. 

are converted to 1 through 9. 

are converted to o. 

are converted to 1 through 9, and the field 
is made negative if they are found in the 
high-order or low-order digit, unless an 
explicit sign is present. 

are converted to 0, and the field is made 
negative if it is found in the high-order or 
low-order digit unless an explicit sign is 
present. 

are ignored. 

are ignored. 

are treated as sign characters. 

Scanning of a field proceeds from left to right, stopping when one of 
the following conditions is met: 

1. The entire field has been scanned. 

2. A trailing space, tab, plus, or minus is seen. 

If both leading and trailing signs appear in the field, the trailing 
sign will be ignored. 

5.9 PROCEDURE DIVISION VERB FORMATS 

The format of each Procedure Division verb is given on the following 
pages. The verbs are presented in alphabetical order. 

The word "identifier" is a data-name followed, as required, by 
qualification, subscripts, and/or indexes necessary to make 
data-name unique. 

5-19 

any 
the 



THE PROCEDURE DIVISION 

ACCEPT 

5.9.1 ACCEPT 

Function 

The ACCEPT statement causes low-volume data to be read from the user's 
terminal. 

General Format 

ACCEPT identifier-l identifier-2 ... ~fROM mnemonic-name~ 

~ DATE I ACCEPT identifier FROM) DAY 
l TIME 

Technical Notes 

1. The ACCEPT statement causes the next set of data available 
from the terminal to replace the contents of the items named 
by identifier-I, identifier-2, •.•. 

2. If the FROM 
appear in 
paragraph. 

option is specified, 
the CONSOLE IS clause 

the 
of 

mnemonic-name must 
the SPECIAL-NAMES 

3. When the data to be read for one or more ACCEPT statements is 
numeric, a comma (,), space, or tab is used as a delimiter 
separating the data items. 

4. When the data to be read for one or more ACCEPT statements is 
alphanumeric, each data item is delimited by.a line-feed, 
altmode, form-feed, or vertical tab. 

5. The ACCEPT statement will read a maximum of 1023 characters 
into each identifier. 

6. The ACCEPT statement places characters into an alphanumeric 
item from left to right, filling any remaining characters of 
the item with blanks up to a maximum of 1023 positions. 

7. If an alphanumeric item is longer than 1023 characters, only 
the leftmost 1023 characters are replaced or blanked; the 
remaining characters of the item are not altered. 

5-20 



THE PROCEDURE DIVISION 

ADD 

5.9.2 ADD 

Function 

The ADD statement computes the sum of two or more numeric operands and 
stores the result. 

General Format 

ADD {i denti fi er-l 
- literal-l [

i dent i fi er-2] 
literal-2 TO identifier-m QOUNDE~ 

[identifier-n [ROUNOE~ .•. [ON SI ZE ERROR i mperati ve-statemen~ 

ADD {i~enti fier-l } 
- llteral-l { 

i denti fi er-2} [i denti fi er-3] 
literal-2 literal-3 

GIVING identifier-m [ROUNOE~ ~dentifier-n 
[ON SIZE ERROR i mperati ve-s tatementJ 

[}OUNOEO~ 

AD[} {CORRESPONDING}- identifier-l TO identifier-2 rROUNDED] 
CORR L:: 

[ON SIZE ERROR imperative-statement] 

Technical Notes 

1. Each ADD st~tement must contain at least two operands (that 
is, an addend and an augend). In formats 1 and 2, each 
identifier must refer to an elementary numeric item, except 
that identifiers appearing to the right of the word GIVING 
may refer to numeric-edited items. In format 3, each 
identifier must refer to a group item. 

Each literal must be a numeric literal; 
constant ZERO is permitted. 

the figurative 

2. The composite of all operands (that is, the data item 
resulting from the superimposition of all operands aligned by 
decimal point) must not contain more than 19 decimal digits 
for the standard compiler and not more than 36 digits for the 
BIS-compiler. In either case, a maximum of 18 digits can be 
stored in the receiving field. (See Section 1.1 for a 
definition of the BIS-compiler.) 

5-21 



THE PROCEDURE DIVISION 

ADD (Cont.) 

3. Format 1 causes the values of the operands preceding the word 
TO to be algebraically summed. The resultant sum is then 
added to the current value of identifier-m and this result 
replaces the current value in identifier-me If other 
identifiers follow, the same process is repeated for each of 
them. 

4. Format 2 causes the values of the operands preceding the word 
GIVING to be algebraically summed. The resultant sum then 
replaces the current contents of identifier-me If other 
identifiers follow, their contents are also replaced by this 
resultant sum. The current values of identifier-m, 
identifier-n,... do not enter into the arithmetic 
computation. 

5. Format 3 causes the data items in the group item associated 
with identifier-l to be added to the current value of the 
corresponding data items associated with identifier-2, and 
each result replaces the value of the corresponding 
data-items associated with identifier-2. The criteria used 
to determine whether two items are corresponding are 
descr ibed in Section ,5. 7, The CORRESPONDING Option. 

6. The ROUNDED and SIZE ERROR options are d~scribed in Section 
5.6, Common.Options Associated with Arithmetic Verbs. 

5-22 



THE PROCEDURE DIVISION 

5.9.3 ALTER 

Function 

The ALTER statement changes the object of one or more GO TO 
statements. 

General Format 

ALTER procedure-name-l TO ~ROCEED TO] procedure-name-2 

~procedure-name-3 TO [fROCEED TO~ procedure-name-4 ] 

Technical Notes 

1. During execution of the object program, the ALTER statement 
modifies the GO TO statement in the paragraph named 
procedure-name-l, procedure-name-3, ••• replacing the object 
of the GO TO by procedure-name-2, procedure-name-4, ••• , 
respectively. 

2. Each procedure-name-l, procedure-name-3, •••• must be the name 
of a paragraph that contains nothing but a single GO TO 
statement without the DEPENDING option. 

3. Each procedure-name-2, procedure-name-4, ••• must be the name, 
of a paragraph or section within the Procedure Divisio~. 

4. A GO TO statement in a section whose priority is greater than 
Jr equal to 50 must not be referred to by an ALTER statement 
in a section with a different priority. 

5. An ALTER statement in a procedure not in the DECLARATIVES 
portion of the program may not reference a procedure name 
within the DECLARATIVESi conversely, an ALTER statement 
within the DECLARATIVES may not reference a procedure-name 
not in the DECLARATIVES. 

6. Restrictions similar to those in Note 5 also apply to the 
input procedures and to the output procedures associated with 
SORT and MERGE verbs. 

7. For program segments with priorities of 50 and greater, the 
changes made by ALTER statements will be lost when segments 
are overlaid. 

5-23 



THE PROCEDURE DIVISION 

CALL 

5.9.4 CALL 

Function 

The CALL statement is used to transfer control to a subprogram. 

General Format 

CALL program-name L!S ING data-name-l 

1 
identifier-I} r. 
entry-name 

[data-name-2] .. J 
~ON OVERFLOW imperative-statemen~ 

Technical Notes 

1. Program-name is a one to six character name (PROGRAM-ID) of 
the subprogram to be called. Entry-name is a one to six 
character name of an entry point in the subprogram. Either 
name can be enclosed in quotation marks, but can contain only 
letters and digits. 

2. If the program-name is used, the entry point will be at the 
beginning of the executable code in the subprogram. 

3. Called programs can call other subprograms, but a called 
program cannot call, either directly or indirectly, any part 
of itself or the program that called it. 

4. The number of operands in the USING clause of the CALL 
statement must be greater than or equal to the number of 
operands in the ENTRY Statement or PROCEDURE DIVISION header 
in the subprogram. 

5. Each of the operands in the USING clause may be any item 
defined in the File, Working-Storage, or Linkage section of 
the calling program. However, these items must be 
word-aligned; that is, they must begin on a word boundary. 
01- and 77-level items are always word-aligned. Any other 
item can be word-aligned by means of the SYNCHRONIZED LEFT 
clause. 

6. The identifiers in the USING clause indicate those data items 
in the calling program that may be referenced (or whose 
subordinate parts may be referenced) in the called program. 
The order of the identifiers in the CALL statement in the 
calling program and in the PROCEDURE DIVISION header or ENTRY 
statement of the calling program is critical. The items in 
the USING clause are related by their corresponding 
positions, not by name. Corresponding identifiers refer to a 
single set of data that is available to both the calling and 
called programs. 

5-24 



THE PROCEDURE DIVISION 

CALL (Cont.) 

7. The first time a called program is entered, its state is that 
of a fresh copy. Subsequently, if the subprogram is not in a 
LINK overlay, its state when entered is exactly as it was 
left after the last exit from it. That is, all internal 
variables, altered GO TOs, and the like are exactly as they 
were left. However, external data (that is, data described 
in the Linkage Section) may have been changed since the last 
exit. 

If the subprogram is in a LINK overlay and it is entered 
again, its state is exactly as it was left after the last 
exit from it provided that the subprogram has not been 
cancelled or overlaid. If the subprogram has been cancelled 
or overlaid, its state is that of a fresh copy. 

8. The CALL identifier clause works only when, the following 
conditions are met: 

a. There is only one subprogram per overlay. 

b. Each subprogram has only one entry point. 

c. The overlay name is the same as the subprogram name. 

9. Refer to the COBOL-74 Usage Material, Part 3 of this manual, 
for more information on subprograms. 

5-25 



THE PROCEDURE DIVISION 

CANCEL 

5.9.5 CANCEL 

Function 

The CANCEL statement releases the memory areas occupied QY the 
programs named in the clause. 

General Format 

CANCEL {identifier-I} 
subprogram-l 

Technical Notes 

[
i denti fi er-2] 
subprogram-2 

1. The CANCEL statement can be used either to reload a segment 
of a segmented COBOL program or to cancel a subprogram that 
has been loaded into an overlay link by LINK. (Refer to the 
COBOL-74 Usage Material, Part 3 of this manual, for 
information,on specifying LINK overlays and on subprograms.) 
Note 2 describes the first case while the remaining notes 
describe the second. 

2. When you cancel a segment of a program you cause the 
object-time system to read your .EXE file and copy an 
initialized version of the segment into memory. 

3. After a subprogram has been cancelled, a subsequent call to 
the subprogram will cause a freshly initialized copy to be 
brought into memory. 

4. Cancellation of a subprogram causes the entire link in which 
it resides and all lower-level links to be cancelled. 

5. A subprogram in the root link or higher in the current 
overlay structure cannot be cancelled. If an attempt is made 
to do so, the CANCEL statement will be ignored and a warning 
message issued at runtime. 

6. A subprogram cannot cancel itself or any subprogram that 
resides in an overlay link with it. An attempt to do either 
will result in the CANCEL statement being ignored and a 
warning message issued at runtime. 

7. Cancellation of a subprogram higher in the current calling 
sequence is also an illegal operation. But, if the 
subprogram being cancelled is in a lower-level link and 
higher in the calling sequence, it could be cancelled without 
being detected as an error. This would cause the return from 
the program to reach an undef~ned location. 

5-26 



THE PROCEDURE DIVISION 

CLOSE 

5.9.6 CLOSE 

Function 

The CLOSE statement terminates the processing of input and output 
files, reels, or units. 

General Format 

o ~~i~ ~ rO REWIND}} 
{WITH 

LOCK 
CLOSE file-name-l DELETE 

FOR REMOVAL 

LOCK 
fi 1 e··name-2 U~~i~ B { WITH DELETE 

ro REWIND}} 

FOR REMOVAL 

CLOSE fil e-name-l I!ITH LOCK] ~i1 e-name-2 [WITH LOCK]] 

Technical Notes 

1. Each filename must appear as the subject of an FD entry in 
the File Section of the Data Division. 

2. The DELETE option applies only to disk and DEC tape files. If 
this option is included, the file will be deleted from the 
device. 

3. The REEL, UNIT, and NO REWIND options apply only to magnetic 
tape files; UNIT is synonymous with REEL. 

4. The FOR REMOVAL option unloads magnetic tape. The file 
cannot be re-open~d without intervention by the operator. 

5. For' the purpose of showing the effect of various CLOSE 
options as applied to the various storage media, all input, 
output, and input-output files are divided into the following 
three mutually exclusive categories: 

a. NON-REEL A file whose device is such that the concepts 
of REWIND, REEL, or UNIT have no meaning. 
This category includes files residing on 
disk, punched cards, paper tape, line 
printer, and terminal. 

5-27 



THE PROCEDURE DIVISION 

CLOSE (Cont.) 

b. SINGLE REEL A file that is entirely contained on one reel 
or unit. 

c. MULTI-REEL A file that may be contained on more than one 
reel or unit. 

The results of each CLOSE option for each of the above types 
of files are summarized in Table 5-4. The definitions for 
the symbols used in this table are given below. Where the 
definition depends upon whether th~ file is an input or 
output file, alternate definitions are given; otherwise, the 
single definition given applies to both input and output 
files. 

Codes Used in Table 5-4 

A Any subsequent reels of this file will not be processed. 

B The current reel is not rewound. 

C Standard CLOSE File Procedure is followed: 

INPUT and 1-0 Files 

An input file is considered to be at the end-of-file if 
the imperative-statement in the AT END clause of a READ 
for the file has been executed, and no CLOSE statement 
for the file has been executed. 

OUTPUT Files 

If LABEL RECORDS are STANDARD, an ending label is 
created and written on the output medium. 

D The current reel is rewound and unloaded. 

E Any attempt to subsequently OPEN this file will result 
in an error message being typed and the run terminated. 

F Standard CLOSE REEL Procedure is followed: 

INPUT Files 

1. If the file is assigned to more than one device, the 
next device specified in the ASSIGN clause becomes 
the current device. If no other device is 
specified, the first device mentioned becomes the 
curr"ent device. 

2. The standard beginning reel label procedure is 
performed for the new reel. 

OUTPUT and 1-0 Files 

1. The standard ending reel label procedure is 
performed. 

5-28 



THE PROCEDURE DIVISION 

CWSE (Cont.) 

2. If the file is assigned to more than one device, the 
devices are swapped. A halt occurs to allow the 
operator to mount an available reel. 

3. The standard beginning reel label procedure is 
performed. 

G The tape is rewound. 

H The file is deleted from the device. However, if the 
file is a sequential file on disk that is open for 
output in supersede mode, the original file will remain 
intact (that is, the originaL file will not be 
superseded nor deleted). 

X Illegal. This is an illegal combination of a CLOSE 
option and a file type. 

6. If a file is OPENed but not CLOSEd before the STOP RUN 
statement is executed, the file will be automatically CLOSEd. 
Any records still retained by a RETAIN statement will 
automatically be freed by a CLOSE statement. 

7. If the file has been specified with an OPTIONAL clause in the 
File-Control Paragraph of the Environment Division and the 
file was not present for this run, the CLOSE has no effect. 

8. If a CLOSE statement without the REEL or UNIT option has been 
executed for a file, a READ, WRITE, or CLOSE statement for 
that file must not be executed until another OPEN for that 
file has been executed. 

5-29 



THE PROCEDURE DIVISION 

CWSE (Cont.) 

Table 5-4 
CLOSE Options and File Types 

CLOSE File Type 
Options 

SINGLE 
NON-REEL REEL/UNIT MULTI-REEL 

CLOSE C C,G C,G,A 

CLOSE C,E C,G,E C,G,E,A 
WITH LOCK 

CLOSE WITH X C,B C,B,A 
NO REWIND 

CLOSE REEL X X F,G 

CLOSE REEL X X F,D 
WITH LOCK 

CLOSE REEL 
FOR REMOVAL X X F,D,G 

CLOSE REEL X X F,B 
WITH NO 
REWIND 

CLOSE WITH C,H X X 
DELETE 

5-30 



THE PROCEDURE DIVISION 

COMPUTE 

5.9.7 COMPUTE 

Function 

The COMPUTE statement assigns to a data item the value of a numeric 
data item, literal, or arithmetic expression. 

General Format 

O 
i denti fi er-2 } U 

COMPUTE identifier-l [ROUNDED] li~eral. . [JOUNDEDJ 
arlthmetlc-expresslon 

j IS EQUAL TO ~ I :QUAL5 f arithmeti c-express i on [ON 51 ZE ERROR imperati ve-statemeniJ 

Technical Notes 

1. The COMPUTE statement allows you to combine arithmetic 
operations without the restrictions on the composite of 
operands and/or recelvlng data items imposed by the 
arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE. 
If the composite operand exceeds 19 decimal digits, the 
composite is converted to COMP-l format. This will lead, 
however, to a loss of precision. 

2. Identifier-l must be 
numeric-edited item. 

an elementary numeric or 

3. Identifier-2 must be an elementary numeric item. Literal-2 
must be a numeric literal. 

The identifier-2 and literal-l options provide a method for 
setting the value of identifier-l equal to identifier-2 or 
literal-I. 

4. The rules for forming arithmetic expressions and the order 
of evaluation are given in Section 5.4, Arithmetic 
Expressions. 

5. The ROUNDED and SIZE ERROR options are described in Section 
5.6, Common Options Associated with the Arithmetic Verbs. 

5-31 



THE PROCEDURE DIVISION 

DELETE 

5.9.8 DELETE 

Function 

The DELETE statement removes a specified record from a file whose 
organization is RELATIVE or INDEXED. 

General Format 

DELETE file-name RECORD [jNVALID KEY imperative-statement] 

Technical Notes 

1. Record-name must be a record associated with a file whose 
organization is RELATIVE or INDEXED. 

2. When the DELETE statement is executed, the object-time 
system removes from the file the record which has a key 
equal in value to the RELATIVE KEY (for relative files) or 
the RECORD KEY (for indexed files). If no such record 
exists, the statement(s) associated with the INVALID KEY 
clause is executed. 

3. At the time that the DELETE statement is executed, the file 
must be open for OUTPUT or INPUT-OUTPUT. 

4. The INVALID KEY clause must not be specified for a DELETE 
statement that 
sequential-access 
statement that 
sequential-access 
specified. 

references a file that is in 
mode. It must be specified for a DELETE 

references a file that is not in 
mode, and for which no USE procedure is 

5. For files in the sequential-access mode, the last 
input-output statement executed for file-name prior to the 
execution of the DELETE statement must have been a 
successfully executed READ statement. The OTS logically 
removes from the file the record that was accessed by that 
READ statement. 

6. The execution of a DELETE statement does not affect the 
current record pointer or the contents of the record area 
associated with file-name. The execution of the DELETE 
statement causes updating of the value of any specified 
FILE STATUS data item associated with file-name. 

5-32 



THE PROCEDURE DIVISION 

DISPLAY 

5.9.9 DISPLAY 

Function 

The DISPLAY statement causes low-volume data to be written to the 
user's terminal. 

General Format 

DISPLAY {i?entifier-l} ~i?entifier-2·r ... r UPON mnemonic-nam~ !wITH NO ADVANCING! 
llteral-l ~11teral-2 iJ ~ ~ ~ ~ 

Technical Notes 

1. The contents of each operand are written on the user's 
terminal in the order listed. 

2. Each of the literals can be numeric or nonnumeric, or one 
of the figurative constants. If a figurative constant is 
specified as one of the operands, only a single occurrence 
of that constant is written on the device. 

3. The mnemonic-name must appear in the CONSOLE clause in the 
Special-Names paragraph of the Environment Division. 

4. If WITH NO ADVANCING is specified, the terminal does not 
Qdvance to the next line. Thus, printing or type-in can 
continue on the same line. If you do not specify the WITH 
NO ADVANCING clause, the terminal will advance to the next 
line after printing the text of the DISPLAY statement. 

5-33 



THE PROCEDURE DIVISION 

DIVIDE 

5.9.10 DIVIDE 

Function 

The DIVIDE statement divides one numeric item into others and sets 
the value of specified data item(s) equal to the quotient and the 
remainder. 

General Format 

DIVI DE { ; 1~~~! i~ ~r-l} INTO i dentifi er-2 [!OUNDEDJ 

[i denti fier-3 [lOUNDEDJ] '" [ON 51 ZE ERROR imperative-statement] 

DIVIDE { 
i dent i fi er-l } 
1 i tera 1-1 

INTO {i~entifier-2} GIVING identifier-3 'ROUNDED' 
-- 11teral-2 LJ U 

tdenti fier-4 [ROUNDEr[]] [ON SIZE ERROR imperative-statemen!J 

{
identifier-I} 

DIVIDE 1itera1-1 BY { 
i denti fi er-2 } [J II 1iteral-2 GIVING identifier-3 ROUNDE~ 

~entifier-4 [ROUNDEq:lJ ~N SIZE ERROR imperative-statemen~ 

DIVIDE { 
identi fier-l} 
1itera1-1 

INTO {i~entifier-2} GIVING identifier-3 UOUNDEDI 
-- 11teral-2 U 

REMAINDER i dent i fi er-4 \IN SIZE ERROR i mperat i ve-statemenu 

{ 
identifier-I} BY 
1itera1-1 - { 

i denti fi er-2 } [J ill 1iteral-2 GIVING identifier-3 ROUNDE~ 

REMAINDER identifier-4 C=ON SIZE ERROR imperative-statemen~ 

Tecnnical Notes 

1. In all formats which include the INTO keyword, identifier-l 
is the divisor and identifier-2 is the 9ividend. In 
formats which include the BY 'keyword, identifier-l is the 
dividend and identifier-2 the divisor. In formats 1 and 2, 
the resulting quotient replaces the value of identifier-2. 
In format~ 3 and 4, the resulting quotient replaces the 
value of identifier-3 and any data items which follow 
identifier-3. 

5-34 



2. 

THE PROCEDURE DIVISION 

Each DIVIDE statement must contain two 
dividend and a divisor) • Both 
(identifier-l and identifier-2) must 
numeric items. Identifier-3 may be an 
numeric-edited item. Each literal-lor 
numeric literal. Identifier-4 may be 
or numeric-edited item. 

DIV1DE (Cont.) 

operands (that is, a 
of these operands 

refer to elementary 
elementary numeric or 
literal-2 must be a 
an elementary numeric 

3. The ROUNDED and SIZE ERROR options are described in Section 
5.6, Common Options Associated with Arithmetic Verbs. 

4. If the REMAINDER clause is used, the resulting remainder 
replaces the value of identifier-4. 

5. The data item resulting from the divide operation (that is, 
the sum of the digits in the dividend and the digits in the 
fractional part of the divisor) must not contain more than 20 
decimal digits for the non-BIS compiler and not more than 36 
digits for the BIS-compiler. In either case, a maximum of 18 
digits can be stored in the receiving field. (See Section 
1.1 for a definition of the BIS-compiler.) 

6. The remainder is checked for a size error after the quotient 
is checked, whether or not the quotient has a size error. If 
either the quotient or the remainder has a size error, the 
object-time system follows the procedure described in Section 
5.6, Common Options Associated with Arithmetic Verbs. 

7. The ROUNDED option does not apply to the remainder; the 
remainder is always truncated. 

5-35 



THE PROCEDURE DIVISION 

ENTER 

5.9.11 ENTER 

Function 

The ENTER statement allows the execution of MACRO and FORTRAN 
subroutines in conjunction with the COBOL program. 

General Format 

ENTER FORTRAN ~ 
1 

MACRO ) 

COBOL , 
~SING 

Technical Notes 

~ identifier-l I 
literal-l t procedure-name-l ~ i denti fi er-2 ~~ 

literal-2 
~ procedure-name-2 ) 

1. MACRO refers to MACRO-IO or MACRO-20 assembly language and 
FORTRAN to the TOPS-IO or the TOPS-20 FORTRAN language. 

2. The program-name can be enclosed in quotation marks. 

3. The ENTER statement generates a subroutine call and specifies 
the address where the items associated with the USING clause 
are located. (Refer to the COBOL-74 Usage Material, Part 3 
of this manual, for more information on the ENTER statement.) 

4. ENTER COBOL is equivalent to CALL. 

5-36 



THE PROCEDURE DIVISION 

ENTRY 

5.9.12 ENTRY 

Function 

The ENTRY statement establishes an entry point in a subprogram. 

General Format 

ENTRY ent ry- name [us I NG i den t ifi e r-l 0 dent ifi e r-:[] •. J . 
Technical Notes 

1. The ENTRY statement can only be used in a subprogram. 

2. Control is passed to the entry point by a CALL statement in a 
calling program. 

3. Entry-name is a one to six character name that can contain 
only letters and digits. It can, however, be enclosed in 
quotation marks. This name must not be the same as any other 
entry-name or PROGRAM-ID in any program with which the 
subprogram containing it is loaded. 

4. The identifiers listed in the USING clause must be defined as 
01- or 77-level i~ems in the Linkage Section of the 
subprogram containing the ENTRY statement. 

5. The number of operands in the USING clause 
statement must be less than or equal to 
operands in any CALL statement referencing 
statement. 

of an ENTRY 
the number of 
that ENTRY 

6. The identifiers in the USING clause indicate those data items 
in the called program that may reference data items in the 
calling program. The order of identifiers in the CALL 
statement in the calling program and in the ENTRY statement 
in the called program is critical. The items in the USING 
clauses are related by their corresponding positions, not by 
name. Corresponding identifiers refer to a single set of 
data that is available to both the calling and called 
programs. 

7. At runtime, ENTRY statements are ignored unless there are 
specific calls to them. 

8. Refer to the COBOL-74 Usage Material, Part 3 of this manual, 
for more information on subprograms. 

5-37 



THE PROCEDURE DIVISION 

EXIT 

5.9.13 EXIT 

Function 

The EXIT statement provides a common end point for a series of 
routines executed by a PERFORM or USE statement. 

General Format 

paragraph-name. EXIT. 

Technical Notes 

1. EXIT must be the only sentence in the paragraph. 

2. The EXIT statement may be used at the end of a section in the 
Declaratives, or to provide an end point for a series of 
paragraphs that are performed. When you use EXIT at the end 
of the range of a PERFORM or USE, you can provide a variety 
of exits from the performed procedure by making" each point at 
which an exit is required a transfer to the EXIT paragraph. 
However, unless EXIT is specified as the end of the range of 
a PERFORM or USE or is placed as the last paragraph in the 
range of a PERFORM or USE, it is ignored. 

Example: 

PERFORM TAX-ROUTINE THROUGH EXIT-RTE. 

TAX-ROUTINE. 
IF TOTAL-TAX IS EQUAL TO OR GREATER THAN TAX-LIMIT 
GO TO EXIT-RTE. 
MULTIPLy .•••• 

DEDUCTION-RTE. 
IF NO-OF-DEPENDENTS IS EQUAL TO ZERO 
GO TO EXIT-RTE. 
MULTIPLY NO-OF-DEPENDENTS BY DEP-DEDUCT •••• 

EXIT:"RTE. EXIT. 

3~ If control reaches an EXIT statement and no associated 
PERFORM or USE statement is active or if EXIT is not the last 
paragraph in the range of a PERFORM or USE statement even if 
the PERFORM or USE statem'ent is active, control passes 
through the EXIT paragraph to "the first statement of the next 
paragraph. 

5-38 



THE PROCEDURE DIVISION 

EXIT PROGRAM 

5.9.14 EXIT PROGRAM 

Function 

The EXIT PROGRAM statement is used to return control from a subprogram 
to its calling program. 

General Format 

Technical Notes 

1. EXIT PROGRAM can only appear in a subprogram. 

2. When an EXIT PROGRAM statement is executed, control is 
returned to the calling program at the statement immediately 
following the CALL statement. 

3. If an EXIT PROGRAM statement is encountered in a subprogram 
that is operating as a main program, it is i.gnored. 

4. Refer to the COBOL-74 Usage Material, Part 3 of this manual, 
for more information on subprograms. 

5-39 



THE PROCEDURE DIVISION 

FREE 

5.9.15 FREE 

Function 

The FREE statement explicitly frees records that have been retained in 
a RETAIN statement. 

General Format 

FREE 

fi1e-name-1 
{

RECORD 

EVERY RECORD 

[ file-name-2 { 

EVERY RECORD 

identifier-1 
1 i tera 1-1 

RECORD [KEY J identifier-2 1 1iteral-2 

EVERY RECORD 

[NOT RETAINED statement-l [statement-21 ... ] ~ 

Technical Notes 

1. Filename-I, filename-2 ••• are the names of files containing 
records that have been retained. Thus, they are files that 
have been opened for simultaneous update. 

2. Identifier-l, identifier-2... and literal-I, literal-2 ••• 
specify the value of a key. This key refers to the record to 
be freed in the file. 

3. Statement-I, statement-2 ••• are any valid COBOL statements. 

4. The FREE statement is needed to explicitly free records that 
have not been implicitly freed by an I/O statement. This 
could occur when the RETAIN statement contains the UNTIL 
FREED phrase, when an I/O statement is not issued after the 
RETAIN statement, or when the FOR clause of the RETAIN 
statement specifies ANY VERB. Refer to the RETAIN statement, 
Section 5.9.29, for a description of its function and syntax. 

5-40 



THE PROCEDURE DIVISION 

FREE (Cont.) 

5. The EVERY RECORD phrase is used to free all records retained 
or to free all records retained in a specific file. 

6. The NOT RETAINED phrase specifies the COBOL statements to be 
executed . when one or more records to be freed are not 
currently retained. If the NOT RETAINED phrase is not 
included and the records to be freed are not currently 
retained, the program proceeds and you are not notified of 
the possible error. 

7. When an EVERY RECORD phrase is used, the statements in the 
NOT RETAINED phrase are executed only if no records are 
currently retained or only if no records are currently 
retained in the specified file. 

8. If the FREE statement includes a file that was not opened for 
simultaneous update, the NOT RETAINED statements, if present,· 
are executed. Otherwise, the program continues and you are 
not notified of the error. 

9. You can mix records from sequential, relative, and 
indexed-sequential files in the same FREE statement. 

10. All records of a file are freed automatically when the file 
is closed including those records that were retained with an 
UNTIL FREED clause in the RETAIN statement. 

11. The record to be freed, whether or not the KEY phrase is 
specified, depends on the organization of the fil~. Each 
organization is described separately below. 

a. 

b. 

Sequential Files 

If the KEY phrase is specified, the value of the key 
refers to the record with that value in the RETAIN 
statement. That is, a KEY value of 6 in the FREE 
statement frees the record defined with a KEY value of 6 
in the RETAIN statement. 

If the KEY phrase is not specified, the record freed is 
that record defined with a KEY value of 0 in the RETAIN 
statement. 

The value of a key can 'be specified by any identifier, 
which can be subscripted and/or qualified, provided that 
its USAGE is COMPUTATIONAL or INDEX. The value of the 
key can also be specified by a positive integer numeric 
literal containing ten or fewer digits. 

Random Files 

If the KEY phrase is specified, the value of the key 
refers to the record with that value in the RETAIN 
statement. For example, a KEY value of 0 in the FREE 
statement frees the record defined with a KEY value of 0 
in the RETAIN statement. 

If the KEY phrase is not specified, the record freed is 
that record defined by the ACTUAL KEY of the file. 

5-41 



THE PROCEDURE DIVISION 

FREE (Cont.) 

Examples 

The value of a key can be specified by any identifier, 
which can be subscripted and/or qualified, provided that 
its USAGE is COMPUTATIONAL or INDEX. The value of a key 
can also be specified by a positive integer numeric 
literal containing ten or fewer digits. 

c. Indexed-Sequential Files 

If the KEY phrase is specified, its value refers to the 
record with that value in the RETAIN statement. That is, 
a key identified with a value of "ABC" in the FREE 
statement frees the record identified as "ABC" in the 
RETAIN statement. If LOW-VALUES is used as the value of 
the key, it refers to the next record after the current 
record, which is not necessarily the record identified by 
LOW-VALUES in the RETAIN statement. This is because the 
current record is changed by an I/O statement and 
LOW-VALUES always refers to the record following the 
current record. 

The value specified in the KEY phrase must normally be an 
identifier that, specifies a field that agrees with the 
RECORD KEY defined for the file in size, class, usage, 
and number of decimal places. However, if the RECORD KEY 
of the file is USAGE COMPUTATIONAL or INDEX, a positive 
integer' numeric literal of ten or fewer digits can be 
used as the value~n the KEY phrase. 

If the KEY phrase is not specified, the record freed is 
that record defined by the RECORD KEY of the file. If 
the RECORD KEY contains LOW-VALUES, it refers to the next 
record after the current record, which is not necessarily 
the record specified by LOW-VALUES in the RETAIN 
statement. This is because the current record is changed 
by an I/O statement and LOW-VALUES refers to the record 
following the current record. 

Sequential File 

RETAIN HISTORY KEY 0 FOR READ-WRITE UNTIL FREED, 
HISTORY KEY 1 FOR READ-WRITE UNTIL FREED, 
HISTORY KEY 2 FOR READ-WRITE. 

READ HISTORY, AT END STOP RUN. 
FREE HISTORY EVERY RECORD. 

Random File 

RETAIN PART KEY 0 FOR ANY VERB. 
READ P~RT, INVALID KEY GO TO ERR. 
WRITE ~ARTREC. 
FREE PARK KEY O. 

Indexed-Sequential File 

MOVE "'B" TO RECORD-KEY. 
RETAIN LETTERS FOR READ. 
FREE LETTERS. 

5-42 



THE PROCEDURE DIVISION 

GENERATE 

5.9.16 GENERATE 

Function 

The GENERATE statement causes the Report-Writer to execute all 
automatic report operations, and, if required, to produce one or more 
report groups. 

General Format 

GENERATE {
data-name } 
report-name 

Technical Notes 

1. If identifier is the name of a TYPE DETAIL report group, the 
GENERATE statement performs all the automatic report 
operations, and produces an output detail report group on the 
output file. This is called detailed reporting. 

2. If the identifier is the name of an RD entry, the GENERATE 
statement performs all the automatic report operations, but 
does not produce an output detail report group. This is 
called summary reporting. 

3. A GENERATE statement performs the 
operations: 

following automatic 

a. It steps and tests the LINE-COUNTER and/or PAGE-COUNTER 
to produce, if necessary, any PAGE FOOTING and PAGE 
HEADING report groups. 

b. It recognizes any specified control breaks to produce 
appropriate CONTROL FOOTING and CONTROL HEADING report 
groups, and resets appropriate summation counters. 

c. It accumulates into the summation counters all specified 
identifiers. 

d. It executes any routines defined by a USE statement. 

e. In detailed reporting, it produces the detailed report 
group. 

4. During the execution of the first GENERATE statement for a 
report, the following groups, if specified, are produced: 

a. Report Heading 

b. Page Heading 

c. All Control Headings, in the order major to minor 

d. The detail report group, in detailed reporting 

5-43 



THE PROCEDURE DIVISION 

GENERATE (Cont.) 

5. Data is moved to the data item in the Report Group 
Description Entry according to the same rules for movement 
described for the MOVE statement. 

6. A GENERATE statement for a particular report may not be 
executed until an INITIATE statement has been executed for 
that report. In addition, if a TERMINATE statement has been 
executed for that report, a GENERATE statement may not be 
executed until an intervening INITIATE statement is executed 
for the report. 

5-44 



THE PROCEDURE DIVISION 

GO TO 

5.9.17 GO TO 

Function 

The GO TO statement causes control to be transferred from one part of 
the Procedure Division to another. 

General Format 

GO TO [procedure-name-l] 

GO TO procedure-name-l ~procedure-name-2J procedure-name-n 

DEPENDING ON identifier 

Technical Notes 

1. Each procedure-name is the name of a paragraph or section in 
the Procedure Division of the program. 

2. Format 1 causes transfer of control to the specified 
procedure-name, or to some other procedure-name if the GO TO 
has been previously altered. 

In order to be alterable, format 1 must appear as the first 
sentence in a paragraph. 

If procedure-name-l is not specified, the GO TO must be 
alterable and an associated ALTER statement must be executed 
prior to executing this GO TO. 

When this form of GO TO appears in an imperative sentence, it 
must appear as the last or only statement in the sentence. 

3. Format 2 causes transfer 'of control to procedure-name-l, 
procedure-name-2,... or procedure-name-n depending on 
whether the value of the identifier is 1, 2, or n, 
respectively. 

The identifier must refer to an elementary numeric 
having no positions to the right of the decimal point. 
item may not be USAGE COMPUTATIONAL-I. 

item 
The 

If the value of the identifier is other than the positive 
integers 1, 2, •.. or n, the GO TO statement is by-passed. 

5-45 



THE PROCEDURE DIVISION 

GOBACK 

5.9~l8 GOBACK 

Function 

The GOBACK statement is used in a subprogram to return control to the 
calling program. 

General Format 

GOBACK. 

Technical Notes 

1. The GOBACK statement can only be used in subprograms. 

2. When control reaches 'a GOBACK statement, control is returned 
to the calling program at the statement immediately following 
the CALL statement. 

3. If a GOBACK statement is encountered in a subprogram that is 
operating as a main program, it is treated as a STOP RUN 
statement. 

4. Refer to the COBOL-74 Usage Material, Part 3 of this manual, 
for more information on subprograms. 

5-46 



THE PROCEDURE DIVISION 

5.9.19 IF 

Function 

The IF statement causes a conditional expression to be evaluated and 
subsequent operations to be determined as a result of this evaluation. 

General Format 

IE condition {
statement-l } 
NEXT SENTENCE {

statement-2 }] 
NEXT SENTENCE 

Technical Notes 

1. Conditional expressions are discussed in Section 5.5 in this 
chapter. 

2. The subsequent action of the program is determined by whether 
the conditional expression is true or false. 

a. If the conditional expression is true and statement-l and 
any following statements are given, statement-l and any 
following statements are executed and, provided that they 
do not contain a GO TO or STOP RUN, control passes to the 
next sentence. If the conditional expression is true and 
NEXT SENTENCE is given, control passes to the next 
sentence. 

b. If the conditional expression is false and statement-3 
and any following statements are given, statement-3 and 
any following statements are executed and, provided that 
they do not contain a GO TO or STOP RUN, control passes 
to the next sentence. 

If the conditional expression is false and either ELSE 
NEXT SENTENCE is given or the entire ELSE clause is 
omitted, control passes to the next sentence. 

3. The length of compared data-items in the conditional 
expression of an IF statement is limited to 2047 characters. 

4. Statement-I, statement-2, statement-3, and statement-4 may 
include any statement or sequence of statements, including 
other IF statements. IF statements included within other IF 
statements are nested. Nested IF statements are paired IF 
and ELSE combinations and may continue up to 12 levels deep. 
Each ELSE encountered is paired with the nearest preceding IF 
not already paired with an ELSE. The pairing process begins 
with the innermost IF .•. ELSE pair and proceeds outw~rds. 

5-47 



IF (Cont.) 

Example: 

THE PROCEDURE DIVISION 

(c=conditionis=statement) 

,...L1 i I I 

IF col IF c-2 s-2 ELSE IF c-3 s-3 ELSE s4 ELSE s-5, 1 L' , 

5-48 

MR-8-027-79 



THE PROCEDURE DIVISION 

INITIATE 

5.9.20 INITIATE 

Function 

The INITIATE statement is used to initialize all counters before a 
report is produced. 

General Format 

INITIATE report-name-l [report-name- 2] 

Technical Notes 

1. Each report-name must be defined by an RD entry in the Report 
Section of the Data Division. 

2. The INITIATE statement resets all data-name entries that 
contain SUM clauses associated with a report. 

3. The PAGE-COUNTER is set to 1 during the execution of an 
INITIATE statement. If a different starting value for the 
PAGE-COUNTER is desired, it may be reset following the 
INITIATE statement before the execution of the first GENERATE 
statement. 

4. The LINE-COUNTER is set to 0 during execution of the INITIATE 
statement. 

5. The INITIATE statement does not open the file with which the 
report is associated. An OPEN statement must be executed 
prior to the execution of the INITIATE statement. 

6. A second INITIATE statement for a particular report-name may 
not be executed until a TERMINATE statement for that 
report-name is executed. 

5-49 



THE PROCEDURE DIVISION 

INSPECT 

5.9.21 INSPECT 

Function 

The INSPECT statement counts, replaces, or counts and replaces the 
number of occurrences of a given character or groups of characters in 
a data item. 

General Format 

INSPECT identifier-l TALLYING 

{i denti fi er-2 FOR! {{~~~DING} 
~ CHARACTERS 

{i ~enti fi er-3}}IJBEFORE} {i denti fi er-411} I 
llteral-l IJAFTER INITIAL literal-2 fJ .,. . .. 

INSPECT identifier-l REPLACING 

(

CHARACTERS BY {i~entifier-6} ~BEFORE} INITIAL {i~entifier-7}] 
~;.;..;;....;.;~~ - llteral-4 LlAFTER llteral-5 J 

{ { ~~~DING} {{i ~enti fi er-5} BY {i ~enti fi er-6} ~{BEFORE} INITIAL 
FIRST llteral-3 --- llteral-4 ~AFTER 

INSPECT identifier-l TALLYING 

{ 
{{{

ALL } identifier-3}} [JBEFORE} 
identifier-2 FOR LEADING literal-l lAFTER INITIAL 

CHARACTERS 

REPLACING 

{identifier-7 l]1 I J literal-5 f. ... • .. 

{identifier-4}J} I literal-2 •.• . .• 

( 

C,HARACTERS BY {i ~enti fi er-6} 
~--- - llteral-4 

j {~~~DING} }{i~entifier-5} t ~ { llteral-3 

[{BEFORE} INITIAL 
AFTER {~~~~;!f~,~r-7}] J 

[{BEFORE} {identifier-7}]) I 
AFTER INITIAL literal-5 ; ...... . 

BY {identifier-6} 
--- literal-4 

Technical Notes 

(The Lollowing rules apply to Formats 1, 2 and 3: 

1. Each literal must be nonnumeric and may be any figurative 
constant except ALL. 

2. The usage of all identifiers must be DISPLAY, implicitly or 
explicitly. Identifier-l must reference either a group item 
or any category of elementary item. Identifier-3 ••• 
identifier-n must reference either an elementary, alphabetic, 
alphanumeric or numeric item. 

5-50 



THE PROCEDURE DIVISION 

INSPECT (Cont.) 

The following rules apply to Format 1: 

3. Identifier-2 must reference an elementary numeric data name. 
If either literal-lor literal-2 is a figurative constant, it 
refers to an implicit one-character data item. 

4. The contents of the data item referenced by identifier-2 is 
not initialized by the execution of the INSPECT statement. 

5. The rules for tallying are as follows: 

a. If the ALL phrase is specified, the contents of the data 
item referenced by identifier-2 is incremented by one (1) 
for each occurrence of literal-l matched within the 
contents of the data item referenced by identifier-I. 

b. If the LEADING phrase is specified, the contents of the 
data item referenced by identifier-2 is incremented by 
one (1) for each contiguous occurrence of literal-l 
matched within the contents of the data item referenced 
by identifier-I, provided that the leftmost such 
occurrence is at the point where comparison began in the 
first comparison cycle in which literal-l was eligible to 
participate. 

c. If the CHARACTERS phrase is specified, the contents of 
the data item referenced by identifier-2 is incremented 
by one (1) for each character matched, within the 
contents of the data item referenced by identifier-I. 

The following rules apply to Format 2: 

6. The size of the data referenced by literal-4 or identifier-6 
must be equal to the size of the data referenced by literal-3 
or identifier-5. When a figurative constant IS used as 
literal-4, the size of the figurative constant is equal to 
the size of literal-3 or the size of the data item referenced 
by identifier-5. 

7. When the CHARACTERS phrase is used, literal-4, literal-5, or 
the size of the data item referenced by identifier-6 or 
identifier-7 must be one character in length. 

8. When a figurative constant is used as literal-3, the data 
referenced by literal-4 or identifier-6 must be one character 
in length. 

9. The required words ALL, LEADING and FIRST are adjectives that 
apply to each succeeding BY phrase until the next adjective 
appears. 

10. The following rules for replacement are as follows: 

a. When the CHARACTERS phrase is specified, each character 
matched in the contents of the data item referenced by 
identifier-l is replaced by literal-4. 

b. When the adjective ALL is specified, each occurrence of 
literal-3 matched in the contents of the data item 
referenced by identifier-l is replaced by literal-4. 

5-51 



THE PROCEDURE DIVISION 

,INSPECT (Cont.) 

c. When the adjective LEADING is specified, each contiguous 
occurrence of literal-3 matched in the contents of the 
data item referenced by identifier-l is replaced by 
literal-4, provided that the leftmost occurrence is at 
the point where comparison began in the first comparison 
cycle in which literal-3 was eligible to participate. 

d. When the adjective FIRST is specified, the leftmost 
occurrence of literal-3 matched within the contents of 
the data item referenced by identifier-l is replaced by 
literal-4. 

The following rules apply to Format 3: 

11. Identifier-2 must reference an elementary numeric data item. 

12. If either literal-lor literal-2 is a figurative constant, 
the figurative constant refers to an implicit one-character 
data item. 

13. The size of the data referenced by literal-4 or identifier-6 
must be equal to the size of the data referenced by literal-3 
or identifier-5. When a figurative constant is used as 
literal-4, the size of the figurative constant is equal to 
the size of literal-3 or the size of the data item referenced 
by identifier-5. 

14. When the CHARACTERS phrase is used, literal-4, literal-5, or 
the size of the data item referenced by identifier-6 or 
identifier-7 must be one character in length. 

15. When a figurative constant is used as literal-3, the data 
referenced by literal-4 or identifier-6 must be one character 
in length. 

16. A Format 3 INSPECT statement is interpreted and executed as 
though two successive INSPECT statements specifying the same 
identifier-l had been written with one statement being a 
Format 1 statement with TALLYING phrases identical to those 
specified in the Format 3 statement, and the other statement 
being a Format 2 statement with REPLACING phrases identical 
to those specified in the Format 3 statement. The general 
rules given for matching and counting apply to the Format 1 
statement and the general rules given for matching and 
replacing apply to the Format 2 statement. 

5-52 



Examples 

THE PROCEOURE OIVISION 

INSPECT (Cont.) 

The field TXT-FLO contains "PSYCHOANALYSIS". 

INSPECT TXT-FLO TALLYING COUNTER-l FOR CHARACTERS BEFORE 
INITIAL "A". 

COUNTER-l contains 6 

INSPECT TXT-FLO REPLACING "A" BY "X" BEFORE INITIAL "N". 

TXT-FLO ends with "PSYCHOXNALYSIS" 

INSPECT TXT-FLO TALLYING COUNTER-l FOR CHARACTERS 
INITIAL "S", REPLACING ALL "S" BY HZ". 

TXT-FLO ends with "PZYCHOANALYZIZ" 
COUNTER-l contains 12 

5-53 

AFTER 



THE PROCEDURE DIVISION 

MERGE 

5.9.22 MERGE 

Function 

The MERGE statement combines two or more identically sequenced files 
on a set of specified keys. During the MERGE process records are made 
available, in merged order, to an output procedure or to an output 
file. 

General Format 

MERGE [WITH SEQUENCE CHECK] file-name-l ON {ASCENDING} KEY data-name-l - DESCENDING [ data-name-2] 

[
ON {ASCENDING} KEY data-name-3 

DESCENDING [ data - name-4] .. J .. 
~COLLATING SEQUENCE IS alPhabet-name~ 

USING file-name-2 file-name-3 [file-name-4] 

j 0 UTPUT PROCE DURE ISs ect i on - n ame-l [n~:~UGH} sect i on-n ame-2 ] l 
l GIVING file-name-5 

Technical Notes 

1. File-name-l must be described in an SD file description entry 
in the Data Division. Each data-name must represent data 
items described in records associated with file-name-l. Note 
that file-name-l is actually a dummy file whose file 
description applies to all the files to be merged. However, 
file-name-2, file-name-3, file-name-4, and file-name-5 are 
real files. File-name-2, file-name-~, and fil~-name-4 are 
the files to be merged, and file-name-5 is the file into 
which the merged records will be written. 

2. File-name-2, file-name-3, file-name-4, and file-name-5 must 
be described in an FD file description, not an SD file 
description. All records associated with file-name-2, 
file-name-3, and file-name-4 must be large enough to contain 
all the KEY data-names. 

3. The data-names following the word KEY are listed in order of 
decreasing significance without regard to how they are 
divided into KEY clauses. 

4. The data-names may be qualified but not subscripted. 

5-54 



THE PROCEDURE DIVISION 

MERGE (Cont.) 

5. MERGE statements may appear anywhere in the Procedure 
Division except in the DECLARATIVES portion or in an INPUT or 
OUTPUT PROCEDURE associated with a SORT, or an OUTPUT 
PROCEDURE associated with another MERGE. 

6. When the ASCENDING clause is used, the input files must be in 
sequence from the lowest values to the highest values; when 
the DESCENDING clause is used, the input files must be in 
sequence from the highest values to the lowest values. 

7. The OUTPUT PROCEDURE, if present, must consist of one or more 
sections or paragraphs that appear contiguously in the source 
program and do not form a part of any INPUT- PROCEDURE. The 
OUTPUT PROCEDURE must contain at least one RETURN statement 
in order to make MERGEd records available for processing. 

8. ALTER, GO, and PERFORM statements in the OUTPUT PROCEDURE may 
not refer to procedure-names outside the OUTPUT PROCEDURE in 
which they appear. 

9. If you specify an OUTPUT PROCEDURE, it is performed by the 
MERGE statement. You must observe all rules relating to the 
range of a PERFORM. 

10. If WITH SEQUENCE CHECK is present then the input files are 
checked to make sure that the records are in sequence with 
respect to the merge keys (that is, that the files were 
presorted.) A warning message is glven for each record out 
of order. 

11. If you specify the GIVING option, all the merged records in 
file-name-l are automatically transferred to file-name-5. 
File-name-5 must not be open when the MERGE statem~nt is 
executed. Any USE PROCEDURES associated with file-name-5 
will be executed as appropriate. The GIVING option is 
equivalent to the following OUTPUT PROCEDURE: 

L4. OPEN OUTPUT file-name-5. 
L5. RETURN sort-file INTO record-name-5; AT END GO TO L6. 
WRITE record-name-5. 
GO TO L5. 
L6. CLOSE file-name-5. 

Refer to the SORT/MERGE User's Guide for more information on 
MERGE. 

5-55 



THE PROCEDURE DIVISION 

MOVE 

5.9.23 MOVE 

Function 

The MOVE statement transfers data in accordance with the rules of 
editing, from one data area to one or more data areas. 

General Format 

{
identifier-I} 

MOVE 1 i tera 1 TO i dent i fi er-2 [ i dentifi er-3] 

MOVE {CORRESPONDING} identifier-I TO identifier-2 CORR 

Technical Notes 

1. CORR may be interchanged with CORRESPONDING. 

2. Identifier-l (or literal-I) represents the data to be moved 
and is called the sending item. Identifier-2, identifier-3, 

represent the receiving data items. 

3. In format 1, the data contained in identifier-lor literal-l 
is moved first to identifier-2, then to identifier-3, etc. 

In format 2, data items within the group item associated with 
identifier-l are moved to corresponding data items within the 
group item associated with identifier-2. The results are the 
same as if you had referred to each pair of corresponding 
identifiers in separate MOVE statements. The criteria used 
to determine whether two items are corresponding are 
described in Section 5.7, The CORRESPONDING Option. 

4. The following rules apply to both group and elementary items; 
a group item is treated as a single field. 

a. A numeric-edited, alphanumeric-edited, or alphabetic data 
item must not be moved to a numeric or numeric-edited 
data item. 

b. A numeric or numeric-edited item must not be moved to an 
alphabetic data item. 

c. A numeric item whose implicit decimal point is not 
immediately to the right of the least significant digit 
must not be moved to an alphanumeric or 
alphanumeric-edited item. 

d. All other moves are legal. 

5-56 



THE PROCEDURE DIVISION 

MOVE (Cont.) 

5. The following rules apply to all legal moves. 

a. When an alphanumeric, alphanumeric edited, or alphabetic 
item is the receiving item: 

1. If the size of the sending field is greater than the 
size of the receiving field, the least significant 
(rightmost) characters are truncated if the receiving 
field is not described by a JUSTIFIED RIGHT clause; 
the most significant (leftmost) characters are 
truncated if the receiving field is described as 
JUSTIFIED RIGHT. 

2. If the size of the sending field is less than the 
size of the receiving field, spaces are placed in the 
remaining rightmost characters of the receiving field 
if the recelvlng field is not described by Q 

JUSTIFIED RIGHT clause; spaces are placed in the 
remalnlng leftmost characters of the receiving field 
if the receiving field is described by a JUSTIFIED 
RIGHT clause. 

3. If the sizes of the sending and receiving field are 
equal, no truncation or filling with spaces takes 
place. 

b. When a numeric or numeric-edited item is the receiving 
item, the sending and receiving fields are aligned by 
decimal point. If the sending field is not numeric, the 
decimal point is assumed to be on the right. Any 
necessary zero filling takes place before editing. If 
the recelv1ng item has no operational sign, the absolute 
value of the sending item is stored. If the receiving 
item has fewer digits to the left or right of the decimal 
point than does the sending item, the excess digits are 
truncated. If the sending item contains any nonnumeric 
characters, the result is unpredictable. 

c. Any necessary conversion of data from one form of 
internal representation to another is performed 
automatically during the move, along with any editing 
specified by the PICTURE of the receiving item. 

6. Any move that is not an elementary move (that is, neither the 
sending or receiving items are elementary items) is called a 
group move. A group move is treated as if it were an 
alphanumeric-to-alphanumeric elementary move except that 
there is no conversion of data from one form of internal 
representation to another. In other words, the individual 
data descriptions o~ the items within the sending group item 
and the receiving group item are completely ignored and both 
items are treated as though they were described by a PICTURE 
IS X(n) clause, where n is the number of character positions 
in the particular item. 

5-57 



THE PROCEDURE DIVISION 

MULTIPLY 

5.9.24 MULTIPLY 

Function 

The MULTIPLY statement causes numeric data items to be multiplied and 
sets the values of data items equal to the results. 

General Format 

MUl TIPl Y {; 1~~;! i~ ~r-l} .!!.y i dentifi er-2 [ROUN OED] 

[i denti fier-3 [ROUNDED]] [ON SIZE ERROR imperative-statement] 

MULTIPLY {identifier-I} BY {identif-ler-2} GIVING identifier-3 [ROUNDED] 
literal-I -- liter.al-2 

[identi fier-4 [ROUNDED]] ... [ON SIZE ERROR imperative-statement] 

Technical Notes 

1. Each MULTIPLY statement must contain at least two operands (a 
multiplicand and a multiplier). Each identifier must refer 
to an elementary numeric item, except that identifier-3 in 
format 2 may refer to either a numeric or a numeric-edited 
item. Each literal must be a numeric literal; the 
figurative constant ZERO is permitted. 

2. Format 1 causes the value of identifier-lor literal-l to be 
multiplied by the value of identifier-2. The resultant 
product replaces the value of identifier-2. The same process 
happens again, with identifier-3 replacing identifier-2, then 
identifier-4 replacing identifier-3, until all multipliers 
have been used. 

3. Format 2 causes the value of identifier-lor literal-l to be 
multiplied by the value of identifier-2 or literal-2. The 
resultant product is stored in identifier-3, identifier-4, 
and so on. 

4. The ROUNDED and SIZE ERROR options are described in Section 
5.6, Common Options Associated with Arithmetic Verbs. 

5~ Despite the possiblity of sequential multiplication taking 
place, there can never be more than two operands in use at 
one time. The total number of digits in both opera~ds must 
not be more than 18 decimal digits for the st~ndard compiler 
and not more than 36 digits for the BIS-compiler. In either 
case, a maximum of 18 digits can be stored in the receiving 
field. (S,ee Section 1.1 for a defini tion of the 
BIS-compiler.) 

5-58 



THE PROCEDURE DIVISION 

OPEN 

5.9.25 OPEN 

Function 

The OPEN statement initiates the processing of files and, where 
necessary, performs the checking and writing of labels. It also 
specifies your covenants for opening a file for simultaneous update. 

General Format 

{
INPUT } . [ REVERSED [. [ REVERSED JJ 
OUTPUT flle-name-l WITH NO REWIND flle-name-2 ~JITH NO REWIND 

[ 

} ~~~~ITE I t ~ ~~~~ITE (] 
{ i~~UT-OUTPUT} file-name-3 FOR t WRITE ) AND l WRITE ~ 

DELETE DELETE 
ANYVE RB ANYVf RB 

[

ALLOWING OTHERS I~~~~ITE llANO -- WRITE -
DELETE 
ANY VERB I ~~~~ITE ] 00 oj] WRITE . 

DELETE 
ANY VERB 

OPEN 

[ file-name-4 
[ 

} READ }[ REWRITE 
FOR {WRITE AND 

DELETE 
ANYVERB 

{

READ )] 
REWRITE ( 
WRITE ) ... 
DELETE 
ANYVERB 

[ ALLOWING OTHERS 

I

NONE If INONE II 1 READ READ 
REWRITE AND REWRITE 
WRITE - WRITE .. 0 

DELETE DELETE 
A:NYVE RB ANYVE RB 

[ EXTEND ] fi 1 ename- 5 [fil ename-6 ] o' 0 

[ UNAVAILABLE statement-l [ statement-2 ] . o. ] ~ 

5-59 



THE PROCEDURE DIVISION 

OPEN (Cont.) 

Technical Notes 

1. The OPEN statement must be executed for a file prior to the 
execution of any I/O verbs, such as READ, WRITE, DELETE, 
REWRITE, SEEK, or CLOSE. 

2. A second OPEN statement for a file cannot be executed prior 
to the execution of a CLOSE statement for that file. 

3. An OPEN statement does not obtain or release the first record 
of a file. A READ statement must be executed to obtain the 
first record (or a WRITE statement must be executed to 
release the first record). 

4. The maximum number of files that can be opened at a time is 
16. When indexed-sequential files are being used, each 
indexed-sequential file is treated as two files: the index 
file and the data file. If the program is segmented, one 
less file can be open; similarly, if the RERUN option is 
being used, one less file can be open. The key word INPUT, 
OUTPUT, INPUT-OUTPUT, or 1-0 applies to each subsequent 
filename until another such key word is encountered or until 
the end of the OPEN statement is reached. 

5. The NO REWIND option has meaning only for magtape files and 
is ignored for all other devices. If the NO REWIND clause is 
not specified for a tape file, the tape is rewound to the 
beginning of the tape. 

6. If a file has been described with LABEL RECORDS ARE STANDARD, 
standard label checking or label writing is performed. If a 
file has been described as LABEL RECORDS ARE OMITTED, no 
label checking or writinq is performed. 

7. If an INPUT file is described as OPTIONAL (in the 
FILE-CONTROL paragraph), the object-time system will type the 
message 

IS file-name PRESENT? 

and wait for the operator to type YES or NO. If he types NO, 
the first READ statement for this file causes the 
imperative-statement at the AT END or INVALID KEY clause to 
be executed. 

8. The 1-0 or INPUT-OUTPUT options permit the opening of a file 
on a random-access device for both input and output 
processing. When the 1-0 option is specified, the execution 
of the OPEN statement causes the standard beginning label 
procedures to be executed. If the file does not exist when 
it is opened for INPUT-OUTPUT, an empty file is created. 

9. A file is opened for simultaneous update if the ALLOWING 
OTHERS clause is present in the OPEN statement. It must be 
opened in 1-0 mode and cannot have a recording mode of V 
(variable-length EBCDIC). 

5-60 



THE PROCEDURE DIVISION 

OPEN (Cont.) 

10. If the first user of a file opens it for simultaneous update, 
all subsequent users of the file must also open it for 
simultaneous update or for input only. If the file is 
currently open for simultaneous update, any subsequent users 
attempting to open the file for output or I-O will be denied 
access to the file. If the first user of a file opens it for 
output or I-O only and subsequent users attempt to open that 
file for simultaneous update, the simultaneous update users 
will be denied access to the file until the first user closes 
it. 

11. After the keyword FOR, you must give one or more verbs that 
you intend to execute while you have your file open. You can 
only execute those verbs that you have specified. Following 
the keywords ALLOWING OTHERS, you must give one or more verbs 
that you will allow other users to execute when they open the 
file. You can also specify that others not be allowed to· 
execute any verbs when they open the file. Specification of 
ANY VERB means that all verbs legal for the file are 
permissible. If the ALLOWING OTHERS cloause is not present, 
the file is not opened for simultaneous update. 

12. Once you have opened at least one file for simultaneous 
update, you cannot open any other files for simultaneous 
update until all files you previously opened for simultaneous 
update are closed. Thus, all files that must be open 
concurrently for simultaneous update must be opened in the 
same OPEN statement. However, files that are not to be . 
opened for simultaneous update can be opened at any time. 

° 13. Files can be opened for INPUT, OUPUT, and just INPUT-OUTPUT 
(that is, not for simultaneous update) in the same OPEN 
statement as files opened for simultaneous update. 

14. When more than one file is to be opened in one OPEN statement 
and at least one of the files is to be opened for 
simultaneous update, no files will be opened if the 
simultaneous update file cannot be opened. Simultaneous 
update files cannot be opened if they are not available in 
the modes specified by both the FOR and ALLOWING clauses. If 
the files cannot be opened for this reason, your program is 
suspended until all files are available, unless the 
UNAVAILABLE clause is specified. If the UNAVAILABLE clause 
is specified and one or 'more simul taneous update files are 
unavailable, control passes to the UNAVAILABLE clause. Note 
that the availability of the simultaneous update files is 
always checked before any files are opened. After the 
simultaneous update files are checked for availability, the 
files are opened. A failure during the actual opening 
process on any of the files will not cause the UNAVAILABLE 
path to be taken, but will cause an error to be returned. 
You can choose to ignore the error by using the FILE STATUS 
clause in the Environment Division (see Section 3.1.14, FILE 
STATUS) • 

15. Any valid COBOL statements (including OPEN) can be used in 
the UNAVAILABLE clause. 

5-61 



THE PROCEDURE DIVISION 

OPEN (Cont.) 

16. If a user program wishes to open a file for simultaneous 
update and the file is not available to it, the open request 
is queued for the file on a first-come/first-served basis. 
However, if a user program wishes to open more than one file 
for simultaneous update and at least one of the files is not 
available, the program is queued for those files that are 
available as well as the ones that are not available. This 
is because the program cannot open one file without opening 
all files in the same OPEN request. The requests for files 
remain in the queue for the files until all of the files are 
available. 

17. A user pr~gram that violates its simultaneous update 
covenants 1S aborted. That is, if the program opens a file 
for READ and then issues a WRITE statement for that file, the 
program will be aborted. 

18. Once a file is open for simultaneous update, you must issue a 
RETAIN statement before you execute any I/O on that file. 
Refer to the RETAIN statement, Section 5.9.29. 

19. The EXTEND option may be specified only by users of TOPS-IO. 

20. When the EXTEND phrase is specified, the OPEN statement 
positions ~he file immediately following the last logical 
record of that file. Subsequent WRITE statements referencing 
the file will add records to the file as though the file had 
been opened with the OUTPUT phrase. 

21. When the EXTEND phrase is specified and the LABEL RECORDS 
clause indicates label records are present, the execution of 
the OPEN statement includes the following steps: 

a. The beginning file labels are processed only in the case 
of a single reel file. 

b. The beginning reel labels on the last existing reel are 
processed as though the file was being opened with the 
INPUT phrase. 

c. The existing ending file labels are processed as though 
the file is being opened with the INPUT phrase. These 
labels are then deleted. 

d. Processing then proceeds as though the file had been 
opened with the OUTPUT phrase. 

22. The REVERSED option may only be used on TU45 and TU70 
tape drives. If you specify this option for a file, the 
file will be opened and the tape positioned at the end of 
the file. A READ statement will cause the final block of 
the file to be grabbed by the monitor. This can be 
slightly tricky because the record which is actually made 
available to you is the first record of the last block, 
which may not be the last record. For e~ample~ if your 
file is blocked 2, the r~cord made available by the READ 
statement will be the next to last record in the file, 
not the last one. 

5-62 



THE PROCEDURE DIVISION 

Examples 

OPEN INPUT INFIL. 

OPEN 1-0 TRANSACTION FOR READ AND WRITE, 
ALLOWING OTHERS READ AND WRITE. 

OPEN OUTPUT LOG, LIST, 
INPUT-OUTPUT MASTER FOR READ AND REWRITE, 

OTHERS ANY 
DET FOR READ, 

OTHERS READ AND WRITE, 
ACCOUNT FOR ANY 

OTHERS NONE, 
INPUT DAILY WITH NO REWIND. 

5-63 

OPEN (Cont.) 



THE PROCEDURE DIVISION 

PERFORM 

5.9.26 PERFORM 

Function 

The PERFORM statement is used to depart from the normal sequence of 
execution in order to execute one or more procedures and then return 
control to the normal sequence. 

General Format 

PERFORM procedure-name-l [ { i~~~UGH } procedure-name-2 ] 

PERFORM procedure-name-l [ { THROUGH 
THRU } procedure-name-2 ] {identifier-l 

i nteger-l } TIMES 

PERFORM procedure-name-l [ { THROUGH 
THRU } procedure-name-2 ] UNTIL condition-l 

PERFORM [ {THROUGH procedure-name-l THRU } procedure-name-2 ] 

{~dentifier-2} FROM f dentifi er-3} 
VARYING index-name-2 

1 ndex-name-l -- literal-I 

BY tdentifi er-4} 
literal-3 UNTIL condition-l 

[ AFTER t dent ifi er- 5} r dentifi er-6} 
index-name-3 FROM index-name-4 

literal-3 

BY {identi fier-7} 
literal-4 UNTIL condition-2 

[AFTER t denti fi er-a} 
i denti fi er-9 

index-name-5 FROM index-name-6 
literal-5 

BY {i dentifi er-IO} 
literal-6 UNTIL condition-3 JJ 

5-64 



THE PROCEDURE DIVISION 

PERFORM (Cont.) 

Technical Notes 

1. Each procedure-name is the name of a section or paragraph in 
the Procedure Division. Each identifier must refer to a 
numeric elementary item described in the Data Division. Each 
literal must be either a numeric literal or the figurative 
constant ZERO. 

2. When the PERFORM statement is 
transferred to the first statement 
automatic return to the statement 
statement is established as follows. 
constitute the range of the PERFORM. 

executed, control is 
of procedure-name-l. An 

following the PERFORM 
The procedures executed 

a. If procedure-name-l is a paragraph-name and 

b. 

procedure-name-2 is not specified, the return is after 
the last statement of procedure-name-l. 

If procedure-name-l is a section-name and 
procedure-name-2 is not specified, the return is after 
the last statement in the last paragraph in 
procedure-name-l. 

c. If procedure-name-2 is a paragraph-name, the return is 
after the last statement in that paragraph. 

d. If procedure-name-2 is a section-name, the return is 
after the last statement in the last paragraph of that 
section. 

3. There is no relationship between procedure-name-l and 
procedure-name-2, except that the sequence of operations 
beginning at procedure-name-l must eventually end with the 
execution of procedure-name-2 in order to effect the return 
at the end of procedure-name-2. Any number of GO TO and/or 
PERFORM statements may occur between procedure-name-l and 
procedure-name-2. 

4. If control passes to these procedures by means other than a 
PERFORM statement, control passes through the return point to 
the following statement as though no return mechanism were 
present. 

5. No PERFORM statement may terminate until all 
statements that it has executed have terminated. 
statement may be executed which terminates at 
procedure-name as another active PERFORM. 

PERFORM 
A PERFORM 
the same 

6. Format 1 causes the PERFORM range to be executed once, 
followed by a return to the statement immediately following 
the PERFORM. 

5-65 



THE PROCEDURE DIVISION 

PERFORM(Cont.) 

7. Format 2 causes the PERFORM range to be executed the number 
of times specified by identifier-lor integer-I. The value 
of identifier-lor integer-l must not be negative; it may be 
zero. Once the PERFORM statement has been initialized, any 
modification to the contents of identifier-l has no effect on 
the number of times the range is executed. 

8. Format 3 causes the PERFORM range to be executed until the 
condition specified in the UNTIL clause is true. If this 
condi tion _is true at the time the PERFORM statement is 
initialized, the range is not executed. Conditions are 
explained in Section 5.5, Conditional Expressions. 

9. Format 4 is used to augment the value of one or more 
identifiers during the execution of a PERFORM statement. In 
format 4, when only one identifier is varied, identifier-l is 
set equal to identifier-2 or literal-2 when the PERFORM 
statement is initialized. If the condition specified is 
determined to 'be false at this point, the PERFORM range is 
executed once. Then the value of identifier-l is augmented 
by identifier-3 or literal-3 and the rest of the_condition is 
done again. This cycle continues until condition-l is true; 
at this point, control passes to the statement following the 
PERFORM statement. If condition-l is true at tbe beginning 
of the execution of the PERFORM, control immediately passes 
to the statement following the PERFORM. 

The flow chart in Figure 5-3 illustrates the logic of the 
PERFORM cycle when two identifiers are varied. 

ENTRANCE 

• Set identifier-2 and identifier-5 
to current F ROM values 

t 
Condition-1 

True 
Exit 

~ False 

True 
Condition-2 

! t False 

Execute procedure-name-1 Set identifier-5 to its 
THRU procedure-name-2 current F ROM value 

• • Augment identifier-5 with Augment identifier-2 with 
-------, .. current BY value current BY value 

J 
MR-S-028-79 

Figure 5-3 PERFORM Cycle Logic - Two Variables 

5-66 



THE PROCEDURE DIVISION 

PERFORM (Cont.) 

The flow chart in Figure 5-4 illustrates the logic of the PERFORM 
cycle when three identifiers are varied. 

ENTRANCE 

+ 
Set 

identifier-2, identifier-5, identifier-8 
to current FROM values , 

Condition-l 
True 

Exit 

t False 
True 

Condition-2 

t False 

~ Condition-3 
True 

! • False 

Execute Set Set 

procedure-name-l identifier-8 identifier-5 

TH RU procedure- to its current to its current 

name-2 FROM value FROM value 

+ t 
Augment Augment Augment 

identifier-8 identifier-5 identifier-2 
i--

with current with current with current 

BY value BY value BY value 

I 
MR·S-059·79 

Figure 5-4 PERFORM Cycle Logic - Three Variables 

10. When a procedure-name in a segment with a priority number 
greater than 49 is referred to by a PERFORM statement 
contained in a segment with a different priority number, the 
segment referred to is made available in its initial state 
(that is, with all alterable GO TOs set to their initial 
setting) for each execution of the PERFORM statement. 

11. A PERFORM statement in a section not in the DECLARATIVES may 
have as its range procedures wholly contained within the 
DECLARATIVESi however, a PERFORM statement in a section 
within the DECLARATIVES may not have any non-DECLARATIVE 
procedures within its range. 

12. A PERFORM statement within an INPUT or OUTPUT PROCEDURE 
associated with a SORT or MERGE verb may not have within its 
range any procedures outside of that INPUT or OUTPUT 
PROCEDURE. 

5-67 



THE PROCEDURE DIVISION 

READ 

5.9.27 READ 

Function 

The READ statement makes available a logical record from an input file 
and allows performance of a specified imperative statement when 
end-of-file or invalid key is detected. 

General Format 

READ fi 1 e-name [NEXT] RECORD [INTO i denti fi erJ 

[AT END imperative-statement] 

READ file-name RECORD [INTO identifier] [INVALID KEY imperative-statement] 

READ fil e-name RECORD [INTO i denti fi erJ 

[KEY IS data-name] 

[INVALID KEY imperative-statement] 

Technical Notes 

1. An OPEN INPUT or OPEN 1-0 statement must be executed for the 
file prior to execution of the first READ statement for that 
file. 

2. The AT END clause is valid only for those files whose 
organization is SEQUENTIAL (explicitly or implicitly). For 
those files, the AT END phrase must be specified if no 
applicable USE procedure is specified for file-name. 

The INVALID KEY clause is valid only for those files whose 
access mode is RANDOM or DYNAMIC. 

For files whose organization is RELATIVE or INDEXED, the 
INVALID KEY phrase or the AT END phrase must be specified if 
no applicable USE procedure is specified for file-name. 

If an end-of-file condition is encountered during the 
execution o'f a READ statement for a sequential file, any 
statements specified in the AT END clause are executed, and 
no logical record is made available. 

The logical end-of-file depends upon the type of device on 
which the file resides (users of TOPS-IO should see the 
Monitor Calls Manual, and users of TOPS-20 should see the 
Monitor Calls Reference Manual). 

After execution of the imperative-statement(s) in the AT END 
clause, no further READ statements can be executed for that 
file without first executing a CLOSE statement followed by an 
OPEN statement for the file. 

5-68 



THE PROCEDURE DIVISION 

READ (Cont.) 

When a READ statement is executed for a file whose 
organization is RELATIVE, the object-time system makes 
available the record whose relative record number is equal to 
the contents of the data item named in the RELATIVE KEY 
phrase. If no such record exists, the INVALID KEY statements 
are executed and no record is made available. For relative 
files whose access mode is DYNAMIC, the NEXT phrase must be 
specified if you wish to read the file sequentially. If you 
specify the NEXT phrase the record made available will be the 
next logical record after the one most recently read, unless 
there has not been a READ statement since the last OPEN or 
START statement. If this is the case, the record made 
available is the first record, in the case of OPEN, or the 
record specified in the START statement, whether the EQUAL, 
GREATER THAN, or NOT LESS THAN option is used. 

When a READ statement is executed for a file whose" 
organization is INDEXED, a search of the file is made to find 
the record that has a key equal to the contents of the RECORD 
KEY associated with the file. If that record is found, it is 
moved to the record area for the file; if it is not found, 
the statements associated with the INVALID KEY clause are 
executed, and no record is made available. When a READ NEXT 
statement is executed for a file whose organization is 
INDEXED, the first logical record having a key higher than 
the last record processed (by a READ, WRITE, REWRITE, or 
DELETE statement) is made available. The next higher key is 
used regardless of whether or not the previous I/O operation > 

caused the INVALID KEY path to be taken. If a START 
statement was the last" reference to the file, the record made 
available is the one specified in the START statement, or the 
first of the specified range. That is, if your program 
contains the following sentence: 

START MYFILE KEY IS GREATER THAN MIN-KEY INVALID KEY GO 
TO DISPLAY-ERROR 

the record made available to your program is the first 
logical record with a key value greater than MIN-KEY. If no 
such record exists (that is, you have reached end-of-file), 
the INVALID KEY statements are executed, and no record is 
made available. If the file has been opened but no READ, 
WRITE, REWRITE, DELETE or START statement has been executed, 
the first record of the file is made available. 

3. If a file described by an OPTIONAL clause is not present, the 
imperative-statement(s) in the AT END or INVALID KEY clause 
is executed on the first READ for that file. Any specified 
USE procedures are not performed. 

4. If logical end-of-reel is recognized during execution of a 
READ statement, the following operations are carried out. 

a. The reel is rewound. 

b. If the file is assigned to more than one device, the 
devices are advanced. The previous reel is rewound and 
th~ next reel is initialized. 

5-69 



THE PROCEDURE DIVISION 

READ (Cont.) 

c. The standard beginning label procedure is executed. 

d. The first data record on the new reel is made available. 

5. If a file consists of more than one type of logical record, 
these records automatically share the same storage area. 
This is equivalent to an implied REDEFINE for the record 
area. Only information in the current record is accessible. 

6. If the INTO identifier option is specified, the READ 
statement is then equivalent to a READ without the INTO 
option, followed by a MOVE of the record area associated with 
the filename to identifier. 

5-70 



THE PROCEDURE DIVISION 

RELEASE 

5.9.28 RELEASE 

Function 

The RELEASE statement transfers records to the initial phase of the 
sort operation. 

General Format 

RELEASE record-name [FROM ; dent; f; erJ 

Technical Notes 

1. A RELEASE statement may be used only in an input procedure 
associated with a SORT or MERGE statement for a file whose SD 
description contains record-name. 

2. If the FROM option is used, the contents of identifier are 
moved to record-name, then the contents of record-name are 
released to the sort ~ubroutines. 

3. After the RELEASE statement is executed, the contents of 
record-name 'may no longer be available. 

5-71 



THE PROCEDURE DIVISION 

RETAIN 

5.9.29 RETAIN 

Function 

The RETAIN statement specifies your intent to access one or more 
records in a file that is open for simultaneous update. 

General Format 

RETAIN fil e-name-l f RECORD [KEY 

{NEXT RECORD 
{identifier-I}] l 
1 i tera 1-1 

FOR { 

READ 
REWRI TE 
READ- REW RI TE 
DELETE 
WRITE 
ANY VERB 

} [UNTI L FREED ] 

fil e-name-2 ! RECORD [KEY { i ~~~;! i~~r-2} ] I 
NEXT RECORD 

{ 

~~C~ITE } 
FOR ~~~~T~EWRI TE [ UNTI L FREE 0 J ... 

WRITE 
ANY VERB 

[UNAVAILABLE statement-l [statement-2 ] ... ] 

5-72 



THE PROCEDURE DIVISION 

RETAiN (Cont.) 

Technical Notes 

1. Filename-I, filename-2 ... must be the names 
previously opened for simultaneous update. 

2. Identifier-I, identifier-2 .•. and 
literal-2 •.. specify keys that refer to records 

of files 

literal-I, 
in the file. 

3. Statement-I, statement-2 ... are any valid COBOL statements. 

4. The RETAIN statement must be given before any record is 
accessed in a file opened for simultaneous update. If it is 
given for a file not open for simultaneous update, the 
program will be terminated. 

5. The RETAIN statement does not cause any change in the record 
area or any change in the positioning in the file. You must 
explicitly issue I/O statements for these changes to be 
performed. Thus, the RETAIN statement will not cause an 
end-of-file condition. 

6. The action performed by any I/O operation is logically the 
same as if the file were not opened for simultaneous update. 
That is, a sequential file is always read/written/rewritten 
sequentially; the RELATIVE KEY is examined to determine the 
record to be read/written/rewritten/deleted in a relative 
file; and the RECORD KEY is examined to determine the record 
to be read/written/rewritten/deleted in an indexed-sequential 
file. The only difference is that a check is made to 
ascertain that the record has been retained. Thus, retaining 
a record does not cause that record to become the current 
record of the file. Only I/O operations can cause a record 
to become the current record of the file. 

7. You can retain nonexistent records in a file, but you will 
receive an error if you attempt to perform I/O on these 
nonexistent records. 

8. It is possible to mix requests for records from 
random, and indexed-sequential files in the 
statement. 

sequential, 
same RETAIN 

9. When you retain a record for READ, other users are also 
allowed to read that record, but cannot perform any other 
form of I/O on that record (WRITE, REWRITE, or DELETE). When 
you retain a record for any use other than READ, all other 
users are banned completely from accessing that record. 

10. The statement included in the FOR clause in the RETAIN 
statement must agree with at least one statement in the FOR 
clause in the OPEN statement for the file. If ANY VERB is 
specified in the FOR clause in the RETAIN statement, the file 
must have been explicitly opened for ANY VERB. 

5-73 



THE PROCEDURE DIVISION 

RETAIN (Cont.) 

11. The record or records named in the RETAIN statement are 
automatically freed upon execution of the statement or 
statements (except ANY VERB) in the FOR clause of the RETAIN 
statement. If you do not issue an I/O statement for the 
record, or if the UNTIL FREED phrase is used, you must 
explicitly free the record with the FREE statement. If a 
record is not freed, you cannot retain any more records in 
any of your files open for simultaneous update. 

12. The UNTIL FREED phrase allows you to retain several logically 
related records for processing without their being freed 
automatically by the I/O statements. Instead, the records 
are retained until they are explicitly freed by means of the 
FREE statement. 

13. The KEY phrase allows you to specify a particular record or 
to specify more than one record in a file. 

14. All records to be retained concurrently, whether in one or 
several files, must be retained in the same RETAIN statement. 
Once records in any file have been retained, no other records 
in any open file can be retained until the currently retained 
records have all been freed. This rule prevents a deadly 
embrace situation. 

NOTE 

Deadly embrace occurs when two users 
make conflicting demands upon a file 
resource and neither is willing or able 
to yield to the other. The result is 
that both programs hang or stall waiting 
for the resource to become available. 

15. When attempting to retain records, the program will be 
suspended if anyone of the records is not available. If you 
wish the program to perform other processing, rather than be 
suspended, you can include an UNAVAILABLE phrase in the 
RETAIN statement. Any valid COBOL statement can be used in 
the UNAVAILABLE phrase. 

16. Use of the RETAIN 
organization of the 
separately below. 

statement differs according to the 
file. Each type of file is described 

17. Sequential files 

a. Records in a sequential file can be retained for READ, 
WRITE, READ-REWRITE, or ANY VERB. For sequential files 
ANY VERB means READ, WRITE, and REWRITE. 

5-74 



THE PROCEDURE DIVISION 

RETAIN (Cont.) 

b. When the KEY phrase is specified, KEY 0 refers to the 
next record in the file. The next record in the file 
depends on the last I/O operation performed (READ, WRITE, 
or REWRITE) and the I/O operation for which the record is 
to be retained. If the last record was written, the next 
record to be retained for READ, WRITE, or READ-REWRITE is 
defined to be the one following the record just written. 
Similarly, if the last record was read, the next record 
to be retained for READ is defined to be the one 
following the one just read. However, the next record to 
be retained for REWRITE is defined to be the record just 
read. 

c. Subsequent KEY values (1, 2, 3 •.• ), refer to records 
relative to the record designated by a KEY value of O. 

d. If the KEY phrase is not included, the record retained is 
always the record designated by a KEY value of O. 

e. The value of a key can be specified by any identifier. 
The identifier must be numeric, and can be subscripted or 
qualified or both. Its USAGE should be COMPUTATIONAL or 
INDEX for the sake of efficiency. The value of the key 
can also be specified by a positive integer numeric 
literal containing ten or fewer digits. 

f. It is recommended that, when performing simultaneous 
updating on sequential files, you retain several records 
at a time so that the input/output overhead will be 
reduced. If records are retained singly, each record 
must be brought into memory from the device (even if it 
is already in memory) so that you have the latest copy of 
the record. When you free a record (either implicitly or 
explicitly), you must write the record out to the device 
so that other users have access to the latest copy of 
that record. 

Ekample 

OPEN INPUT-OUTPUT HISTORY FOR READ AND REWRITE 
ALLOWING OTHERS READ AND REWRITE 

RETAIN HISTORY KEY 0 FOR READ-REWRITE UNTIL FREED, 
HISTORY KEY 1 FOR READ-REWRITE UNTIL FREED, 
HISTORY KEY 2 FOR READ-REWRITE; 

READ HISTORY, AT END STOP RUN. 

18. Relative files 

a. Records in a relative file can only be retained for READ, 
WRITE, READ-REWRITE, or ANY VERB. For relative files, 
ANY VERB means READ, WRITE, and READ-REWRITE. 

5-75 



THE PROCEDURE DIVISION 

RETAIN (Cont.) 

b. When the KEY phrase is specified, the value of the key 
designates a specific record in the file, just as the 
RELATIVE KEY of the file does. Thus, record 1 is always 
the first record in the file. If you specify the NEXT 
option, however, the record retained is the next 
sequential record in the file. The next record in the 
file depends on the last I/O operation performed (READ, 
REWRITE or WRITE) and the I/O operation for which the 
record is to be retained. If the last record was 
written, the next record to be retained for READ, WRITE, 
or READ-REWRITE is defined to be the one following the 
record just written. Similarly, if the last record was 
read, the next record to be retained for READ is defined 
to be the one following the record just read. However, 
the next record to be retained for REWRITE is defined to 
be the record just read. Note that the next record 
actually read or written depends on the value of the 
RELATIVE KEY, not on the record specified in the RETAIN 
statement. 

c. If you wish to read/rewrite the file sequentially, you 
should select the NEXT option in the RETAIN statement, 
and use the READ NEXT syntax so that you are performing 
I/O on the same records that you are retaining. If you 
wish to read/rewrite the file randomly, you should set 
the RELATIVE KEY to the desired record and either use the 
same value in the KEY in the RETAIN statement or use no 
KEY value in the RETAIN statement. 

d. If the KEY phrase is not specified, the value used for 
the key is taken from the RELATIVE KEY specified for the 
file. 

e. The value of a key can be specified by any identifier. 
The identifier must be numeric, and may be subscripted or 
qualified or both. For the sake of efficiency, its USAGE 
should be COMPUTATIONAL or INDEX. The value of the key 
can also be specified by a positive integer numeric 
literal containing ten or fewer digits. 

Example 

OPEN 1-0 PART FOR READ AND REWRITE ALLOWING OTHERS 
NONE. 
MOVE 64 TOPART-ACTUAL-KEY 
RETAIN PART FOR READ. 
READ PART, INVALID KEY GO TO ERR. 

RETAIN PART KEY 0 FOR REWRITE, 
PART KEY 35 FOR READ AND REWRITE. 

REWRITE PARTREC. 
MOVE 35 TO PART-ACTUAL-KEY. 
READ PART, INVALID KEY GO TO ERR. 
REWRITE PARTREC. 

5-76 



THE PROCEDURE DIVISION 

RETAIN (Con t.) 

19. Indexed-sequential files 

a. Records in an indexed-sequential file can be retained for 
READ, WRITE, REWRITE, DELETE, READ-REWRITE, and ANY VERB. 
For indexed-sequential files, ANY VERB means READ, WRITE, 
REWRITE, DELETE, and READ-REWRITE. 

b. When the KEY phrase is specified, the value of the key 
refers to a specific record in the file, just as the 
RECORD KEY does. 

c. The value specified in the KEY phrase must normally be an 
identifier that specifies a field that agrees with the 
RECORD KEY defined for the file in size, class, usage, 
and number of decimal places. However, if the RECORD KEY 
of the file is numeric, a positive numeric literal of ten 
or fewer digits can be used as the value in the KEY 
phrase •. For the sake of efficiency the key should be 
USAGE COMPUTATIONAL or INDEX. 

d. If the KEY phrase is not specified, the value used for 
the key is taken from the current RECORD KEY for the 
file. 

e. If NEXT 
following 
statement 
statement. 

is specified, the record retained is that 
the last record referenced in the same RETAIN 
or by a READ, WRITE, REWRITE, or DELETE 

Example 

OPEN 1-0 LETTERS FOR READ ALLOWING OTHERS READ AND 
REWRITE. 
MOVE "B" TO RECORD KEY. 
RETAIN LETTERS FOR READ. 
READ LETTERS INVALID KEY GO TO ERRS. 

5-77 



THE PR0CEDURE DIVISION 

RETURN 

5.9.30 RETURN 

Function 

The RETURN statement obtains sorted records from the output phase of a 
SORT or MERGE operation. 

General Format 

RETURN file-name RECORD [INTO identifier] AT END imperative-statement 

Technical Notes 

1. File-name must be described by an SD file descriptor. 

2. A RETURN statement may be used only in an output procedure 
associated with a SORT or MERGE statement for file-name. 

3. If the INTO phrase is specified, the current record is moved 
from the record area associated with file-name to identifier. 

4. The AT END path is automatically taken when there are no more 
records to be returned. After executing the statement(s) in 
the AT END clause, no RETURN statements may be executed until 
another SORT or MERGE is executed. 

5-78 



THE PROCEDURE DIVISION 

REWRITE 

5.9.31 REWRITE 

Function 

The REWRITE statement replaces an already existing record in a file. 

General Format 

REWRITE record-name [FROM identi fieCJ [INVALID KEY imperative-statement] 

Technical Notes 

1. Record-name must be a record associated with a file whose 
organization is RELATIVE or INDEXED. 

2. When the REWRITE statement is executed, a record in the file 
is located whose key value is equal to the contents of the 
RECORD KEY associated with the file, and the contents of the 
record are then replaced with the contents of record-name. 
If no such record exists in the file, the statement(s) 
associated with the INVALID KEY clause is executed. 

3. At the time'the REWRITE statement is executed, the file must 
be open for OUTPUT or INPUT-OUTPUT. 

4. If the FROM option is used, the statement is equivalent to: 

MOVE identifier TO record-name 
REWRITE record-name (without the FROM option) 

5. The INVALID KEY phrase must not be specified for a REWRITE 
statement that references a file in sequential mode. This is 
because a REWRITE may only be done on a file in 
sequential-access mode after a successful READ statement is 
executed. 

6. The INVALID KEY phrase must be specified in the REWRITE 
statement for files in the random- or dynamic-access mode for 
which an appropriate USE procedure is not specified. 

5-79 



THE PROCEDURE DIVISION 

SEARCH 

5.9.32 SEARCH 

Function 

The SEARCH statement is used to search a table until a specified 
condition exists. 

General Format 

[ { 
identifier-2 }l r .. ] 

S~ARCH identifier-l VARYING index-name-l ~ ~T END lmperatlve-statement-l 

WHEN condition-l { imperative-statement-2 } NEXT SENTENCE 

[ WHEN condition-2 { imperative-statement-3 } ] ... NEXT SENTENCE 

SEARCH ALL identifier-l [AT END imperative-statement-l] 

f data-name-l {~~ EQUAL 
WHEN ) 

~ condition-name-l 

TO} {identifier-3 } } literal-l 
arithmetic-expression-l 

[AND { 
data-name-2 {IS EQUAL TO} {i denti fi er-4 } } J IS = literal-2 
condition-name-2 arithmetic-expression-2 

{ 
imperati ve-statement-2 } 
NEXT SENTENCE 

Technical Notes 

1. If any of the optional clauses are present, they must appear 
in the order shown. 

2. Identifier-l must not be subscripted or indexed, but its 
description must contain an OCCURS clause with an INDEXED BY 
option. In format 2, identifier-l must also contain a KEY 
option in its OCCURS clause. 

3. Identifier-2 must be an index, or an elementary numeric item 
with no places to the right of the decimal point. 

5-80 



THE PROCEDURE DIVISION 

SEARCH (Cont.) 

4. In format 1, condition-I, condition-2, etc., can be any 
condition described in Section 5.5. 

5. In format 2, condition-l must consist of a relation condition 
incorporating the EQUAL TO or equal sign, or a condition-name 
condition where the VALUE clause contains only a single 
literal, or a compound condition consisting of two or more 
such simple conditions connected by AND. 

A data-name that appears in the KEY clause of identifier-l 
must appear as the subject or object of a test, or be the 
name of the data-item with which the tested condition-name is 
associated. However, all preceding data-names in the KEY 
clause must also be included within condition-I. 

6. If the AT END clause is not present, AT END NEXT SENTENCE is 
assumed. 

7. If the VARYING option is not specified, the first index 
specified in the INDEXED BY option for identifier-l is used. 

If the VARYING option is used and identifier-2 is the name of 
an item specified in the INDEXED BY option for identifier-I, 
then identifier-2 is used as the index. If identifier-2 is 
not specified in the INDEXED BY option for identifier-I, the 
first index-name in the INDEXED BY option is used as the 
index, and identifier-2 will contain the value of the index 
at each step of the search. 

8. If format 1 of the SEARCH verb is used, a serial type of 
search takes place, starting with the current index setting. 

If, at the start of execution of the SEARCH statement, the 
index contains a value that is not positive or is greater 
than allowed (greater than the number of occurrences or 
greater than any DEP~NDING item), the statement(s) specified 
in the AT END statement is executed. 

If, at the start of execution of the SEARCH statement, the 
index is within the allowed range of values, the WHEN 
conditions are evaluated one at a time. If any condition is 
true, the associated statement(s) is executed. If no 
condition is true, the index is incremented by 1, and the 
search operation is executed again. 

The contents of the index are always left as they were when 
the search is terminated, either by a WHEN condition, or the 
AT END condition. 

9. If format 2 of the SEARCH verb is used, a binary search takes 
place. All the keys in the table must be in order (ascending 
or descending) and all the elements in the table must be 
filled. It is up to you to ensure that the keys associated 
with the table are in order and the table filled. If the 
keys are not in order, or if there are empty elements in the 
table being searched, the SEARCH may take the AT END path 
even if the key being searched for is there. If the table is 
not going to be filled, using the DEPENDING ON clause with 
OCCURS effectively shortens the table. 

5-81 



THE PROCEDURE DIVISION 

SEARCH (Cont.) 

The initial contents of the index are ignored; instead, the 
table is examined until the WHEN condition is satisfied (in 
which case statement-3 and any following statements are 
executed) or until the entire table is examined (in which 
case the AT END statement(s) is executed). 

When the search is terminated, the contents of the index 
reflect the occurrence number of the entry that satisfied the 
WHEN condition if it was satisfied, or is arbitrary if it was 
not satisfied. 

10. In either format, after any WHEN or AT END statement(s) is 
executed, control is transferred to NEXT SENTENCE unless that 
statement contained a GO TO. 

11. If identifier-l is a data item subordinate to a data item 
that contains an OCCURS clause (that is, this is a 
multidimensional table), only the index associated with 
identifier-l is modified during the search. To search an 
entire multidimensional table, the SEARCH statement must be 
executed several times. 

Example 

01 TABLE. 
02 TABLI OCCURS 200 TIMES INDEXED BY I, 

ASCENDING KEYS A, B. 
03 A, PICTURE XXX. 
03 FOO, PICTURE X(20). 
03 B, PICTURE 9(4). 
03 DES, PICTURE X(40). 
03 AM, PICTURE S9(5)V99. 

SEARCH ALL TABLl, AT END GO TO WHAT-HAPPENDED; 
WHEN A(I) = "XYZ" AND B(I) = 350 GO TO GO-ONE. 

5-82 



THE PROCEDURE DIVISION 

SET 

5.9.33 SET 

Function 

The SET statement allows a data-item to be incremented, decremented, 
or set to a value. 

General Format 

SET {identifier-l 
index-name-l 

SET index-name-4 

Technical Notes 

[i denti fi er-2 ] 
[index-name-2 ] 

[i ndex-name-5] 

} { 
identifier-3} 

TO ~ndex-name-3 
1 nteger-l 

{ 
UP BY } {i denti fi er-4 } 

... DOWN BY integer-2 

1. All identifiers must be numeric elementary items described 
without any positions to the right of the assumed decimal 
point. 

2. All literals must be integers, or the figurative constant 
ZERO. 

3. The SET statement causes identifier-I, identifier-2,... to 
be set (TO), incremented (UP BY), or .decremented (DOWN BY) 
the value of identifier-3 or literal-I. 

5-83 



THE PROCEDURE DIVISION 

SORT 

5.9.34 SORT 

Function 

The SORT statement orders a file or files of records according to the 
contents of the user-specified keys within each sorted record. 

General Format 

SORT file-name-l ON {ASCENDING} 
DESCENDING 

{
ASCENDING } 
DESCENDING 

KEY data-name-l 

KEY data-name-3 

[COLLATING SEQUENCE IS alPhabet-name] 

{

INPUT PROCEDURE IS section-name-l 

USING file-name-2 [file-name-3] 

j OUTPUT PROCEDURE IS 

{GIVING file-name-4 

Technical Notes 

section-name-3 

[{
THROUGH} 
THRU 

[{
THROUGH} 
THRU 

[ data-name-2] 

[ data-name-4] .. J .. 

sect i on-name-2] } 

section-name-4] I 
1. File-name-l must be described in an SD file description entry 

in the Data Division. Each data-name must represent data 
items described in records associated with file-name-l. 

2. File-name-2, file-name-3, and file-name-4 must be described 
in an FD file description. All records associated with these 
files must be large eno~gh to contain all of the KEY 
data-names. You can use any number of input files with a 
SORT statement. 

3. The data-names following the word KEY are listed in order of 
decreasing significance without regard to how they are 
organized in the SD record description. 

4. The data-names may be qualified but not subscripted. 

5. SORT statements may appear anywhere in the Procedure Division 
except in the DECLARATIVES portion or in an input or output 
procedure associated with a sort, or an output procedure 
associated with a merge. 

5-84 



THE PROCEDURE DIVISION 

SORT (Cont.) 

6. When the ASCENDING clause is used, the sorted sequence is 
from the lowest value to the highest value; when a 
DESCENDING clause is used, the sorted sequence is from the 
highest value to the lowest value. 

7. The input procedure, if present, must consist of one or more 
sections or paragraphs that appear contiguously in the 
program and do not form a part of any output procedure. The 
input procedure must contain at least one RELEASE statement 
in order to transfer records to the sort subroutine. 

8. The output procedure, if present, must consist of one or more 
sections or paragraphs that appear contiguously in a source 
program and do not form a part of any input procedure. The 
output procedure must contain at least one RETURN statement 
in order to make sorted records available for processing. 

9. ALTER, GO and PERFORM statements in the input procedure are 
not permitted to refer to procedure-names outside the input 
procedure; similarly, ALTER, GO and PERFORM statements in 
the output procedure. are not permitted to refer to 
procedure-names outside the output procedure. 

10. If an input or output procedure is specified, those 
procedures are PERFORMED by the SORT statement, and all rules 
relating to the range of a PERFORM must be observed. 

11. If the USING option is specified, all records in file-name-2, 
file-name-3, ... , are automatically transferred to the SORT 
subroutine. File-name-2, file-name-3, ... , must not be open 
when the SORT statement is executed. Any USE PROCEDUREs 
associated with file-name-2, file-name-3, ... , will be 
executed as appropriate. The USING option is equivalent to 
the following INPUT PROCEDURE: 

Ll. OPEN INPUT file-name-2 
L2. READ file-name-2 INTO sort-record; AT END GO TO 

L3. RELEASE sort-record. 
GO TO L2. 

L3. CLOSE file-name-2. 

12. If the GIVING option is specified, all the sorted records in 
file-name-l are automatically transferred to file-name-4. 
File-name-4 must not be open when the SORT statement is 
executed. Any USE PROCEDURES associated with file-name-4 
will be executed as appropriate. The GIVING option is 
equivalent to the following OUTPUT PROCEDURE: 

L4. OPEN OUTPUT file-name-4. 
L5. RETURN sort-file INTO record-name-4;AT END GO TO L6. 

WRITE record-name-4. 
GO TO L5. 

L6. CLOSE file-name-4. 

5-85 



THE PROCEDURE DIVISION 

SORT (Cont.) 

13. An ISAM file cannot be sorted directly using the non-COBOL 
standalone SORT. 

ISAM files are by definition a sorted set. In designing the 
file you should use the order in which the file will be most 
often accessed. If you wish to access it in a different 
order, write a program with an input procedure that reads the 
ISAM file. The input procedure can release records to the 
sort. You can read the file in two ways - sequentially using 
READ NEXT, or randomly by selecting the desired record and 
inserting the key value in the RECORD KEY. Usually, reading 
the file sequentially and allowing SORT to order the records 
is much faster. If you wish to use an ISAM file as output, 
you must have an empty ISAM file for output, return records 
from the sort and write them into the new ISAM file. 

14. The collating sequence for the comparison of the specified 
nonnumeric key data items is determined in the following 
order: 

a. First, the collating sequence 
COLLATING SEQUENCE phrase, if 
statement. 

established by the 
specified, in the SORT 

b. Second, the collating sequence established as the program 
collating sequence. 

15. Refer to the SORT User's Guide for more information on SORT. 

5-86 



THE PROCEDURE DIVISION 

5.9.35 START 

Function 

The START statement provides for logical positioning within 'a relative 
or indexed file, for subsequent sequential retrieval of records. 

General Format 

START file-name 
{

IS EQUAL TO } IS ---
IS GREATER THAN 
IS ) 
IS NOT LESS THAN 
IS NOT ( 

[INVALID KEY imperative-statement] 

Technical Rules 

data-name 

1. File-name must be the name of a file with sequential or 
dynamic access. 

2. Data-name may be qualified. 

3. The INVALID KEY phrase must be the data item specified if no 
applicable USE procedure is specified for file-name. 

4. The file associated with file-name must be open in the INPUT 
or 1-0 mode at the time the START statement is executed. 

5. If you omit the KEY phrase, you imply the phrase IS EQUAL TO 
data-name, where data-name refers to the RECORD KEY of an 
indexed file or the RELATIVE KEY of a relative file. 

6. If the file associated with file-name is a relative file, and 
you include data-name, data-name must be the data item 
specified in the RELATIVE KEY phrase of the file control 
entry. If the file is an indexed one and you include 
data-name, data-name must be either the data item specified 
as the record key, or an "approximate key". An "approximate 
key" is a part of a key, whose leftmost character position is 
the same position as the leftmost position of the RECORD KEY 
but which is not the entire key. Suppose, for example, you 
have an ISAM file whose key is of the form 

YY-MM-DD-XX 

5-87 



THE PROCEDURE DIVISION 

START (Cont.) 

where YY is the year, MM the month, DO the day, and XX the 
charge sequence number. If you wished to begin pr~essing 
the file at the first record of July 1978, you could write 
the following code: 

SELECT CHARGE-FILE 
ASSIGN TO DSK 
ORGANIZATION IS INDEXED 
ACCESS MODE IS DYNAMIC 
RECORD KEY IS CHG-REC-KEY. 

MOVE "78-07-" TO CHG-REC-KEY. 
START CHARGE-FILE KEY IS GREATER THAN CHG-REC-KEY, 

INVALID KEY GO TO ERR-RTN. 

The effect of this would be to find the first record in the 
file whose key collates higher than 78-07- and then position 
the record pointer in front of that record. If you specified 
NOT LESS THAN instead of GREATER THAN the pointer would be 
positioned in front of the record whose key is 78-07-~~~~~ if 
such a record existed; otherwise the pointer would be 
positioned as in the actual example. Note that only indexed 
files may use the "approximate key", and that the leftmost 
positions of the record key and the "approximate key" must be 
the same character position in the record, not simply contain 
the same character. 

7. If the comparison is not satisfied by any record in the file, 
the INVALID KEY condition exists, the execution of the START 
statement is unsuccessful, and your logical position in the 
file is undefined. When this is the case, the 
imperative-statements following the INVALID KEY phrase are 
executed. 

8. The execution of the START statement causes the value of the 
FILE STATUS data item, if any, associated with file-name to 
be updated. 

5-88 



THE PROCEDURE DIVISION 

STOP 

5.9.36 STOP 

Function 

The STOP statement halts the object program. 

General Format 

{
RUN } 
literal 

Technical Notes 

1. The literal may be numeric or nonnumeric or may be any 
figurative constant except ALL. 

2. If the literal is numeric, it must be an unsigned integer. 

3. If the literal option is used, the literal is 
the user's terminal. The literal may be 
constant; in this case, a single character 
The program waits for the operator to type 

CONTINUE 

displayed on 
a figurative 

is displayed. 

Following receipt of this message, the program continues 
execution at the statement following the STOP. 

4. If the RUN option is used, all files currently open are 
closed, and execution of the program is terminated. 

5-89 



THE PROCEDURE DIVISION 

STRING 

5.9.37 STRING 

Function 

The STRING statement is used to concatenate the partial or complete 
contents of several data items into a single data item. 

General Format 

STRING {i ~ent i fi er--l} [i ~enti fi er-2J 
llteral-l 11teral-2 DELIMITED BY 

( i dent i fi e r- 3 l 
~literal-3 ( 
{SIZE , 

DELIMITED BY 
\ 

i ~enti fi er-6 l] 
llteral-6 ( ... 
i!1I , 

INTO identifier-7 [WITH POINTER identifier-8] 

[ON OVERFLOW imperative-statement] 

Technical Notes 

1. Source Items 

a. The data items referenced by identifier-I, 
identifier-2, •.. are called source data items. 

b. A numeric source item is moved (according to the rules 
for numeric transfers) to an intermediate unsigned 
numeric data item of the same size as the source whose 
USAGE is the same as that of identifier-7 , and then it 
is treated as alphanumeric. 

c. If subsc~ipting or indexing is needed to identify a 
source data item, the values of the required subscripts 
and/or indexes and the depending items, if any, just 
prior to the transfer of that particular source item are 
used. 

d. Literal-I; literal-2 •.• 
Source literals must 
alphanumeric figurative 
modifier. 

are called source literals. 
be alphanumeric literals or 

constants without the ALL 

e. If a source literal is a figurative constant, it refers 
to a single-character literal of the specified type. 

5-90 



THE PROCEDURE DIVISION 

STRING (Cont.) 

2. Delimiter Items 

a. Each series of source items specified in the STRING 
statement must be followed by a DELIMITED BY phrase. 
This phrase specifies the delimiter condition to be 
associated with each source item in that series. 

b. The data items referenced by identifier-3 and 
identifier-6 are called delimiter data items. 

c. A numeric delimiter item is moved (according to the rules 
for numeric transfers) to an intermediate unsigned 
numeric data item of the same size as the delimiter whose 
USAGE is the same as that of identifier-7 and then 
treated as alphanumeric. 

d. If subscripting or indexing is needed to identify a 
delimiter data item, the values of the required 
subscripts and/or indexes and the depending items, if 
any, just prior to the transfer of the source item 
corresponding to that particular delimiter item are used. 

e. Literal-3 and literal-6 are called delimiter literals. 

f. 

Delimiter literals must be alphanumeric literals or 
alphanumeric figurative constants without the ALL 
modifier. 

If a delimiter 
refers 'to a 
type. 

literal is a 
single-character 

figurative constant, it 
literal of the specified 

g. If a delimiter data item or a delimiter literal is 
specified, either the content of the data item during the 
execution of the STRING statement or the value of the 
literal is the delimiter string for each source item 
corresponding to that delimiter item. 

In this case, the delimiter condition for each of the 
corresponding source items is the first occurrence in the 
source item of a character string that matches the 
delimiter string. If there is not such character string 
in the source item, the delimiter condition is the 
rightmost boundary of that source item. 

NOTE 

Two character strings match if, and only if, they 
are of equal length and each character of the 
first string is equivalent, according to the 
rules for code conversion, to the corresponding 
character of the second string. 

h. If the DELIMITED BY SIZE phrase is specified, the only 
delimit~r condition for each of the corrsponding source 
items is the rightmost boundary of the source item. 

5-91 



THE PROCEDURE DIVISION 

STRING (Cont.) 

3. Destination 

a. The data item referenced by identifier-7 is called the 
destination. The destination must be an unedited 
alphanumeric data item. It cannot be justified (that is, 
the JUSTIFIED clause cannot be used for this item). 

b. If subscripting or indexing is needed to identify the 
destination, the values of the required subscripts and/or 
indexes and the depending items, if any, just prior to 
the execution of the STRING statement are used. 

4. Pointer 

a. The data item referenced by identifier-8 is called the 
pointer. The pointer must be an unedited integer data 
item of sufficient size to contain a value one greater 
that the size of the destination. 

b. The pointer serves as a character index 
destination. 

for the 

c. If subscripting or indexing is needed to identify the 
pointer, the values of the required subscripts and/or 
indexes and the depending items, if any, prior to the 
execution of the STRING statement are used. 

d. If the POINTER phrase is specified, the pointer is 
directly available to you. It must be initialized before 
the execution of the STRING statement to a value greater 
than zero and not greater than the size of the 
destination. 

e. If the POINTER phrase is not specified, the STRING 
statement is always executed as if you have specified a 
pointer and set the initial value to 1. In this case, 
the pointer is not directly available to you. 

f. The STRING statement is executed as if the initial value 
of the pointer were stored in a temporary location. This 
temporary location is used as the pointer during the 
execution of the STRING statement. The value in this 
temporary location is stored in the real pointer item 
before any subscripting is done and at the end of 
execution of the STRING statement. 

5. Execution 

a. When the STRING statement is executed, each source item 
in turn, starting with the first source item specified, 
is transferred to the destination character by character, 
beginning at the leftmost character position of the 
source item and continuing to the right, until the 
delimiter condition corresponding to that source item has 
been encountered or the destination has been filled. 

5-92 



THE PROCEDURE DIVISION 

STRING (Cont.) 

b. If a delimiter item was specified for a source item and a 
string of characters is found in the source item matching 
the delimiter string, all characters of the source item 
preceding the matching string are used in the transfer to 
the destination, but none of the characters that are in 
the matching string and no characters following it in the 
source item are used in the transfer. 

c. If no delimiter item was specified for a source item or 
no string of characters is found in the source item 
matching the delimiter string, all characters of the 
source item are used in the transfer to the destination. 

d. During the execution of the STRING statement, characters 
are transferred to the destination from the source items 
as if the destination were a table of single-character 
data items indexed by the pointer, which is automatically 
incremented after each character transfer. 

e. The first character transferred is stored in the 
character position of the destination indicated by the 
initial value of the pointer. The nth character 
transferred is stored in the character position indicated 
by the initial value of the pointer plus n-l. 

f. The transfer of characters ends when one of the following 
conditions occur. These conditions are specifically 
checked for in the order stated. 

1. The initial value of the pointer is not 
integer less than or equal to the 
destination. 

a positive 
size of the 

2. All appropriate characters of all source items have 
been transferred to the destination. 

3. A character has been transferred to the last 
character position of the destination, though not all 
appropriate characters of all source items have been 
transferred. 

g. If the transfer of characters to the destination is 
terminated because of condition 2 of note f, those 
character positions of the destination to which 
characters were not transferred, if any, will retain the 
values they contained before the execution of the STRING 
statement. That is, remaining character positions in the 
destination are not space-filled. 

h. After the transfer of characters to the destination has 
ended, the pointer is set to a value one greater than the 
ordinal number of the last character position of the 
destination to which data was transferred. If no data 
was transferred to the destination, the pointer is 
unchanged. 

5-93 



THE PROCEDURE DIVISION 

STRING (Cont.) 

6. Overflow 

a. If the transfer of characters to the destination is 
terminated because of either condition 1 or condition 2 
of note f, the STRING statement is considered to have 
caused an overflow. 

b. If the ON OVERFLOW phrase is not specified, after the 
execution of the STRING statement, regardless of whether 
or not there was an overflow, control passes to the point 
in the program immediately following the STRING 
statement. 

c. If the ON OVERFLOW phrase is specified, after the 
transfer of characters has ended and the pointer has been 
set to the appropriate value, the flow of control of the 
program depends on whether or not there was an overflow. 

1. If an overflow did not occur, control passes to the 
point in the program corresponding to the end of the 
sentence containing the STRING statement (following 
all the statements in the ON OVERFLOW phrase). 

2. If an overflow did occur, control passes to the point 
in the program corresponding to the beginning of 
statement-I. 

5-94 



THE PROCEDURE DIVISION 

SUBTRACT 

5.9.38 SUBTRACT 

Function 

The SUBTRACT statement is used to subtract one" or the sum of two or 
more, numeric items from one or more numeric items and set the values 
of one or more items to the result. 

General Format 

SUBTRACT ~identifier-lt [identifier-2] [ ] tliteral-l ~ literal-2 ... FRm~ identifier-m ROUNDED 

[:identifier-n [ROUNDED]:] [ON SIZE ERROR imperative-statement] 

SUBTRACT {i~entifier-lt [i~entifier-il 
llteral-l ~ llteral-2 J {

i denti fi er-m} 
1 i tera l-m 

GIVING identifier-n [ROUNDED] [identifier-o [ROUNDED]] ... 

~ON SIZE error imperative-statement] 

SUBTRACT {=ESPONDING} i dentifi er-l FROM i dentifi er-2 [ROUNDED] 

[ON SIZE ERROR imperative-statement] 

Technical Notes 

1. Each SUBTRACT statement must contain at least two operands 
(that is, a subtrahend and a minuend). In formats 1 and 2, 
each identifier must refer to an elementary numeric item, 
except that identifiers to the right of the word GIVING may 
refer to numeric edited items. In format 3, each identifier 
must refer to a group item. 

Each literal must be a numeric literal or the figurative 
constant ZERO. 

2. The composite of all operands (that is, the data item 
resulting from the superimposition of all operands aligned by 
decimal point) must not contain more than 18 decimal digits 
for the standard compiler and not more than 36 digits for the 
BIS-compiler. In either case, a maximum of 18 digits can be 
stored in the receiving field. (See Section 1.1 for a 
definition of the BIS-compiler.) 

J. Format 1 c~uses the values of the operands preceding the word 
FROM to be added together, and this sum to be subtracted from 
the values of identifier-m, identifier-n, and so forth. 

5-95 



THE PROCEDURE DIVISION 

SUBTRACT (Cont.) 

4. Format 2 causes the values of the operands preceding the word 
FROM to be added together, the sum subtracted from 
identifier-m or literal-m, and the result stored as the new 
values of identifier-n, identifier-p, and so forth. The 
current values of identifier-n, identifier-p, and so forth, 
do not enter into the computation. 

5. Format 3 causes the data items in the group item associated 
with identifier-l to be subtracted from and stored into 
corresponding data items in the group item associated with 
identifier-2. The criteria used to determine whether two 
items are corresponding are described in Section 5.7, The 
CORRESPONDING Option. 

6. The ROUNDED and SIZE ERROR options are described in Section 
5.6, Common Options Associated with Arithmetic Verbs. 

5-96 



THE PROCEDURE DIVISION 

TE~~INATE 

5.9.39 TERMINATE 

Function 

The TERMINATE statement ends the processing of a report. 

General Format 

TERMINATE report-name-l [report-name-2~ 

Technical Notes 

1. Each report-name must be defined by an RD entry in the Report 
Section of the Data Division. 

2. All control footings associated with the report are produced 
as if a control break had occurred at the highest level. In 
addition, the last PAGE FOOTING and any REPORT FOOTING report 
groups are produced. 

3. A second TERMINATE statement for a particular report may not 
be executed until another INITIATE statement is executed for 
that report. 

4. The TERMINATE statement does not close the file associated 
with the report; a CLOSE statement must be executed after 
the TERMINATE statement is executed. 

5-97 



THE PROCEDURE DIVISION 

TRACE 

5.9.40 TRACE 

Function 

The TRACE statement causes the complier to trace paragraphs or to stop 
tracing paragraphs. When a paragraph is traced, its name, enclosed in 
angle brackets «», is typed each time that the paragraph is entered. 

General Format 

Technical Notes 

1. The TRACE statement works with the COBDDT utility to help you 
debug your COBOL-74 program. 

2. The compiler generates trace calls for each paragraph in the 
program if the IP switch is not included in the command 
string. If the IP switch is included in the command string, 
the trace calls are not generated. 

3. Although the compiler generates trace calls when the IP 
switch is not present, tracing is not performed unless the 
user includes the TRACE ON statement in his program. 

4. The TRACE ON statement causes all ensuing paragraphs to be 
traced; that is, their names, enclosed in angle brackets 
«», are typed each time they are entered. Tracing 
continues until either the end of program is reached or a 
TRACE OFF statement is encountered. 

5. The TRACE OFF statement stops tracing of all ensuing 
paragraphs until either the end of program is reached or a 
TRACE ON statement is encountered. 

6. When compiling for a production run, you should include the 
IP switch in the command string so that trace calls will not 
be generated and TRACE statements in the program will be 
ignored. The following example shows paragraphs with TRACE 
OFF and TRACE ON statements included. 

5-98 



THE PROCEDURE DIVISION 

PROCEDURE DIVISION. 
PARA. 

TRACE ON. 
PARB. 

TRACE OFF. 
PARCo 

TRACE ON. 
PARD~ 

TRACE (Cont.) 

Paragraph PARB and PARD are traced. Paragraph PARC is not 
traced because the TRACE OFF statement is included 
immediately before it. If the IP switch is included in the 
command string when, this program is compiled, the TRACE 
statements will be ignored and trace calls will not be 
generated. 

5-99 



THE PROCEDURE DIVISION 

UNSTRING 

5.9.41 UNSTRING 

Function 

The UNSTRING statement is used to split 
example, a text string) into several 
occurrence of specified delimiters, and 
separate data items where they may be 
COBOL program. 

a single data item (for 
parts, depending on the 

to store the parts into 
more easily accessed by the 

General Format 

UNSTRING identifier-I 

[DELIMITED BY [ ALL] {i?entifier-2} 
- llteral-I [

OR [ALL] {i ?enti fi er-3}] ... J - -- llteral-2 

INTO identifier-4 [DELIMITER IN identifier-5][COUNT IN identifier-6] 

[i dentifi er-7 [DELIMITER IN i dentifi er-a] [COUNT IN i denti fi er-g] ] 

[WITH POINTER identifier-IO][TALLYING IN identifier-II] 

[ON OVERFLOW imperative-statement] 

Technical Notes 

1. Source Items 

a. The data item referenced by identifier-l is called the 
source item. The source item must be a DISPLAY-6, 
DISPLAY-7, or DISPLAY-9 data item. A numeric source item 
is moved to an intermediate unsigned numeric data item of 
the same size according to the rules for numeric 
transfers and then is treated as alphanumeric. 

b. If subscripting or indexing is needed to identify the 
source, the values of the required subscripts and/or 
indexes and the depending items, if any, just prior to 
the execution of the UNSTRING statement are used. 

2. Destination Items 

a. The data items referenced by identifier-4, 
identifier-7, •.• , are called destination items. 
Destination items can be any kind of data items. 

b. If subscripting or indexing is needed to identify a 
destination item, the values of the required subscripts 
and/or indexes and the depending items, if any, just 
prior to the transfer of data to that destination item 
are used. 

5-100 



THE PROCEDURE DIVISION 

UNSTRING (Cont.) 

3. Delimiter Items 

a. The data items referenced by identifier-2, 
identifier-3, .•. , are called delimiter data items. 

b. A numeric delimiter item is moved (according to the rules 
for numeric transfers) to an intermediate unsigned 
numeric data item of the same size as the delimiter whose 
USAGE is the same as that of identifier-l and then is 
treated as alphanumeric. 

c. If subscripting or indexing is needed to identify a 
delimiter data item, the values of the required 
subscripts and/or indexes and the depending items, if 
any, just prior to the transfer of data to each 
successive destination item are used. 

d. Literal-I, literal-2, ... , are called delimiter literals. 

e. 

Delimiter literals must be alphanumeric literals or 
alphanumric figurative constants without the ALL 
modifier. 

If a delimiter 
refers to a 
type. 

literal is a 
single-character 

figurative constant, it 
literal of the specified 

f. If a delimiter data item or a delimiter literal is 
specified, the contents of the data item or the value of 
the literal is a delimiter string for the source. 

g. If more than one delimiter item is specified, the 
delimiter items are separated by the connective OR. In 
this case, the several delimiter strings are ordered by 
the order in which the delimiter items specifying them 
occur in the UNSTRING statement. 

h. If the ALL phrase is specified with a delimiter item, the 
delimiter string which that item specifies is considered 
to consist of as many occurrences of that simple 
delimiter string as can be found contiguously stored in 
the source. 

i. A delimiter condition is an occurrence in the source of a 
character string, not contained in the portion of the 
source that has already been scanned, that matched one of 
the delimiter strings, or the rightmost boundary of the 
source. 

4. Delimiter Storage Items 

a. A DELIMITER IN phrase may be specified only if the 
DELIMITED BY phrase is specified. 

b. The data items referenced by identifier-5 and 
identifier-8 are called delimiter storage items. 

c. If subscripting or indexing is needed to identify a 
delimiter storage item, the values of the required 
subscripts and/or indexes and the depending items, if 
any, just prior to the transfer of data to the 
destination item corresponding to that delimiter storage 
item are used. 

5-101 



THE PROCEDURE DIVISION 

UNSTRING (Cont.) 

5. Count Storage Items 

a. A COUNT IN phrase may be specified only if the DELIMITED 
BY phrase is specified. 

b. The data items referenced by identifier-6 and 
identifier-9 are called count storage items. Count 
storage items must be unedited integer data items of 
sufficient size to contain a value equal to the size of 
the source. 

c. If subscripting or indexing is needed to identify a count 
storage item, the values of the required subscripts 
and/or indexes and the depending items, if any, just 
prior to the transfer of data to the destination item 
corresponding to that count storage item are used. 

d. A count storage item is used to store the number of 
characters of the source that were examined during the 
execution of the UNSTRING statement and approved for 
transfer to the destination corresponding to that count 
storage item. 

NOTE 

This'is not necessarily the same as the 
number of characters that were actually 
transferred, because the destination may 
be too small to hold all that were 
approved for transfer. 

6. Pointer 

a. The data item referenced by identifier-IO is called the 
pointer. The pointer must be an unedited integer data 
item of sufficient size to contain a value one greater 
than the size of the source. 

b. The pointer serves as a character index for the source. 

c. If subscripting or indexing is needed to identify the 
pointer, 'the values of the required subscripts and/or 
indexes and the depending items, if any, just prior to 
the execution of the UNSTRING statement are used. 

d. If the POINTER phrase is specified, the pointer is 
directly available to you. It must be initialized before 
the execution of the UNSTRING statement to a value 
greater than zero and not greater than the size of the 
source. 

e. If the POINTER phrase is not specified, the UNSTRING 
statement is always executed as if you have specified a 
pointer and set the initial value to 1. In this case, 
however, the pointer is not directly available to you. 

5-102 



THE PROCEDURE DIVISION 

UNSTRING (Cont.) 

7. Destination Counter 

a. The data item referenced by identifier-II is called the 
destination counter. The destination counter must be an 
unedited integer data item of sufficient size to contain 
a value equal to the number of destination items 
specified in the UNSTRING statement. 

b. The destination counter is used to store the number of 
destination items to which data was transferred by the 
execution of the UNSTRING statement. 

c. If subscripting or indexing is needed to identify the 
destination counter, the values of the required 
subscripts and/or indexes and the depending items, if 
any, just prior to the execution of the UNSTRING 
statement are used. 

d. If the TALLYING phrase is specified, the destination 
counter is directly available to you, and it must be 
initialized before the execution of the UNSTRING 
statement. 

e. If the TALLYING phrase is not 
statement is always executed 
destination counter and set the 
this case, the destination 
available to you. 

specified, the UNSTRING 
as if you had specified a 
initial value to O. In 

counter is not directly 

8. Execution 

a. The execution of the UNSTRING statement is an interactive 
process. There is one iteration for each destination 
item specified in the UNSTRING statement, starting with 
the first destination item specified and continuing in 
order through the series of destination items. However, 
the iteration process will be stopped after all the data 
in the source has been used, even if not all destination 
items have been used. During execution of the UNSTRING 
statement, the pointer and an increment to be added to 
the destination counter are kept in temporary locations. 
At the start of execution of the UNSTRING statement, the 
real pointer is stored in the temporary pointer and the 
temporary destination count is set to zero. When it 
becomes necessary to move these items to the real pointer 
and real destination items, the internal pointer is moved 
into the real pointer, the internal destination counter 
is added to the real destination counter, and the 
internal destination counter is set to zero again. 

b. Each iteration of the process involved in 
of the UNSTRING statement consists of 
steps: 

the execution 
the following 

1. Select a set of characters from the source. 

2. If ~he destination it~m, delimiter storage item, or 
count storage item is subscripted, store the internal 
pointer into the real pointer item and update the 
real destination counter. 

5-103 



THE PROCEDURE DIVISION 

UNSTRING (Cont.) 

3. Move a representation of these characters to the 
destination item for that iteration. 

4. Move some characters to the delimiter 
corresponding to that destination 
specified. 

storage item 
item, if one is 

5. Set the count storage item corresponding to that 
destination item, if one is specified. 

6. Advance the internal pointer to indicate a new 
position in the source. 

7. Increment the internal destination counter. 

c. During the execution of the UNSTRING statement, the 
source is treated as if it were a table of 
single-character data items indexed by the pointer. The 
character position of the source indicated by the 
pointer, during each iteration of the UNSTRING process, 
is called the pointer-indicated position for that 
interation. Only the pointer-indicated position for an 
iteration and those source character positions to its 
right are used during that iteration. Character 
positions to the left of that position are not involved 
in that iteration in any way. 

d. During each iteration of the UNSTRING process, a scan of 
the source is done to determine which characters of the 
source will be selected as the character set to be moved 
to the appropriate destination item. This scan begins at 
the pointer-indicated position and continues to the right 
in the source. 

e. When the source is scanned, 
detected depending on whether 
phrase is specified. 

certain conditions are 
or not the DELIMITED BY 

1. If the DELIMITED BY phrase is specified, the scan 
ends when either of the following conditions occurs. 

a. A string of contiguous characters in the source 
that matches one of the delimiter strings is 
found. 

b. The rightmost boundary of the source is found. 

2. When the DELIMITED BY phrase is not specified, the 
scan ends when either of the following conditions 
occurs. 

a. A number of characters sufficient to completely 
fill the destination is found. 

b. The rightmost boundary of the source is found. 

When the scan ends, the set of characters to be moved to 
the destination item is then known. 

5-104 



THE PROCEDURE DIVISION 

UNSTRING (Cont.) 

f. The source scan proceeds in one of two ways~depending on 
whether or not the DELIMITED BY phrase is specified. 

1. If the DELIMITED BY phrase is specified, the scan 
proceeds as follows: 

2. 

a. Each character position of the source, starting 
at the pointer-indicated position and continuing 
to the right, is first checked to see if any 
source character-string beginning at that 
position matches the delimiter-string specified 
by the first delimiter item in the UNSTRING 
statement. If such a string is found, condition 
a of Note el is satisfied. 

b. If no such string is found, the same character 
position is then checked to see if any source 
character-string beginning at that position 
matches the second specified delimiter-string. 
This process is repeated using each succeSSlve 
delimiter-string until either condition a of Note 
el is satisfied or all specified delimiters have 
been tried. 

c. If condition a of Note el is not satisfied for 
the source character position under consideration 
and one of the specified delimiter-strings, that 
character position is then selected as part of 
the source to be moved to the current destination 
item. 

d. The above process continues until no more source 
character positions remain (condition b of Note 
el) • 

If the DELIMITED BY phrase is not specified, the 
source scan proceeds until one of the following 
conditions occurs. 

a. Enough successive character positions of the 
source have been selected to entirely fill the 
destination item (conditon a of Note e2). 

b. No more source character 
(Condition b of Note e2). 

positions remain 

g. During each iteration of the UNSTRING process, the set of 
contiguous source character positions selected by the 
process described in Note f is considered to be a 
complete individual data item, and is moved to the 
current destination item according to the rules for the 
MOVE statement, including any class of usage conversion 
that might be necessary. You should note that truncation 
or fill may occur during the execution of the MOVE 
statement. This data item may contain no character 
positions at all ·if the pointer-indicated position 
satisfied condition a of Note el or it may contain as 
much as the entire source. 

5-105 



THE PROCEDURE DIVISION 

UNSTRING (Cont.) 

h. If a count storage item is specified with the destination 
item for an iteration of the UNSTRING process, the number 
of source characters that were examined during the 
execution of the UNSTRING statement and approved for 
transfer to the destination item is stored in that count 
storage item. 

i. If there is a delimiter storage item specified for a 
particular iteration of the UNSTRING process, then: 

1. If the selection of source character positions 
described in Note f is terminated because condition a 
of Note el holds, the str ing of contiguous· source 
character positions that contain the match for a 
delimiter string is treated as a complete individual 
data item and is moved to the delimiter storage item 
according to the rules for the MOVE statement, 
including truncation if necessary. 

If the delimiter string that was matched .is described 
with the ALL phrase, the set of source character 
positions containing a match for the simple delimiter 
string, plus every immediately succeeding set of 
contiguous source character positions containing a 
match for the same delimiter string, are used in the 
data item that is moved to the delimiter stroage 
item. 

2. If the selection of source character positions 
described in Note f is terminated because of 
condition b of Note el, spaces are moved to the 
specified delimiter storage item. 

j. In an iteration of the UNSTRING process, after the 
appropriate data has been stored in the destination item, 
the delimiter storage item, and the count storage item, 
the pointer is set to a value one more than the ordinal 
number of the last source character position that 
participated in the selection process. This includes all 
character positions that were selected as part of the 
source to be moved to the destination item and, if a 
DELIMITED BY phrase is specified, all character positions 
that were used in the successful match of a delimiter 
string. 

k. When the UNSTRING statement has been executed, the real 
destination counter is updated using the internal 
destination counter and the internal pointer is stored 
into the real pointer. 

5-106 



THE PROCEDURE DIVISION 

iJNSTRING (Cont.) 

9. Overflow 

a. If the initial value of the pointer is less than one or 
greater than the size of the source, execution of the 
UNSTRING statement is aborted before any data is 
transferred, the real pointer's value is unchanged, and 
the UNSTRING statement is considered to have caused an 
overflow. 

b. If, during the execution of an UNSTRING statement, data 
has been transferred to all of the destination items in 
accordance with Note g, but the updated pointer still 
contains a value less than or equal to the size of the 
source (that is, not all of the source character 
positions have been used in the UNSTRING process), the 
UNSTRING statement is considered to have caused an 
overflow. 

c. If the ON OVERFLOW phrase is not specified, after the 
execution of the UNSTRING statement, regardless of 
whether or not there was an overflow, control passes to 
the point in the program immediately following the 
UNSTRING statement. 

d. If the ON OVER~LOW phrase is specified, after the 
transfer of characters has ended and the pointer and 
destination counter are set to the appropriate values, 
the flow of control of the program depends on whether or 
not there was an overflow. 

1. If an overflow did not occur, control passes to the 
point in the program corresponding to the end of the 
sentence containing the UNSTRING statement (following 
all the statements in the ON OVERFLOW phrase) . 

2. If an overflow did occur, control passes to the point 
in the program corresponding to the beginning of 
statement-I. 

5-107 



THE PROCEDURE DIVISION 

USE 

5.9.42 USE 

Function 

The USE statement specifies procedures for error handling that are in 
addition to the standard procedures provided by the input-output 
control system. 

General Format 

USE AFTER STANDARD ) EXCEPTION t PROCEDURE ON t ERROR t ! 
fil e-name-l OPEN 
INPUT 
OUTPUT 
y:-o-
EXTEND 

[fil e-name-2 ] OPEN 

USE BEFORE REPORTING identifier. 

Technical Notes 

1. USE statements may appear only in the Declaratives portion of 
the Procedure Division. The Declaratives portion follows 
immediately after the PROCEDURE DIVISION header and begins 
with the word 

DECLARATIVES. 

The Declaratives portion ends with the words 

END DECLARATIVES. 

Following this must be a section-header as the first entry of 
the main portion of the Procedure Division. 

The DECLARATIVES portion itself consists of USE sections, 
each consisting of a section-header, followed by a USE 
statement, followed by the associated procedure paragraphs. 

5-108 



THE PROCEDURE DIVISION 

USE (Cont.) 

The general format for the DECLARATIVES portion is given 
below. 

PROCEDURE DIVISION. 

DECLARATIVES. 

section-name-l SECTION. USE •..... 
paragraph-name-Ia. (statement) 
[paragraph-name-Ib. (statement)] 

[section-name-2 SECTION. USE .•.... ] 

END DECLARATIVES. 

section-name-m SECTION. 

2. The USE statement may follow on the same line as the 
section-header and must be terminated by a period followed by 
a space. The remainder of the section must consist of one or 
more procedural paragraphs that define the procedures to be 
used. 

3. The USE statement itself is never executed, rather it defines 
the conditions calling for the execution of the USE 
procedures. 

4. Format 1 causes the designated procedures to be executed 
after completing the standard input-output error routine. 

5. There must not be any reference to any non-DECLARATIVES 
procedure within a USE procedure. Conversely, there must be 
no reference to procedure-names that appear within the 
DECLARATIVES portion in the non-DECLARATIVES portion, except 
that PERFORM statements may refer to a USE section or to a 
procedure contained entirely within such a USE section. 

6. No input/output can be performed other than ACCEPT and 
DISPLAY statements during execution of a USE procedure. 

7. Format 1 causes the associated procedures to be executed 
after the standard input-output error routine has been 
executed. If the INPUT option is used, the procedures will 
be executed for all INPUT files; if the OUTPUT option is 
used, they will be executed for all OUTPUT files; if the 1-0 
or the INPUT-OUTPUT option is used, they will be executed for 
all INPUT-OUTPUT files; if the filename-l format is used, 
they will be executed only for that particular file. If more 
than one USE procedure could apply in a situation, only one 
will actually be executed. The procedure to be used will be 
the one which is most restrictive, that is, the one which 
applies most closely to the situation in question. For 
example, suppose you specify the file-name-l option and the 
OPEN option, and you get an error when you attempt to open 
file-name-l. The procedure you specified for the file-name-l 
option will be executed, but the procedure for the OPEN 
option will not, because it is less restrictive. 

5-109 



THE PROCEDURE DIVISION 

USE (Cont.) 

If the filename-l OPEN format is used, the system performs 
the associated procedures only if a "FILE BEING MODIFIED" 
error occurs when an attempt is made to open an output file. 
After performing the procedure, the system automatically 
"tries again to open the file, repeating this process until 
the file is opened. This option allows you to suspend your 
job until it can access a file that another user" is 
modifying. 

8. Identifier-l in Format 2 represents a report group named in 
the Report Section of the Data Division. An identifier must 
not appear in more than one USE statement. The report group 
must not be TYPE DETAIL. 

5-110 



THE PROCEDURE DIVISION 

l\~ITE 

5.9.43 WRITE 

Function 

The WRITE statement transfers a logical record to an output file. 

General Format 

WRITE reco rd-name [FROM i denti fi er-l] 

[{ l{ i denti fi er-2 } [LINE Jl] 
BEFOREt ADVANCING integer LINES 
AFTER J {mnemOnic-name} 

PAGE 

[ {
END-OF-PAGE}.. ] AT EOP lmperatlve-statement 

WRITE reco rd-name [FROM i dent i fi erJ [I NVALI D KEY i mpe rat i ve-s tatementJ 

Technical Notes 

1. An OPEN OUTPUT, OPEN 1-0, OPEN INPUT-OUTPUT or OPEN EXTEND 
statement must be executed for the file prior to the 
execution of the WRITE statement. 

2. After the WRITE is executed, the data in record-name-l may no 
longer be available. 

3. Record-name-l must be the name of a logical record in a DATA 
RECORDS clause of the File Section of the Data Division. 

4. Format 1 is valid for any file currently open for output with 
ACCESS MODE IS SEQUENTIAL. The ADVANCING clause allows 
control of the vertical positioning of the paper form for 
print files as follows: 

a. 

b. 

If the ADVANCING 
recording mode is 
assumed. 

clause 
ASCII, 

is . not 
BEFORE 

specified 
ADVANCING 

If, identifier-2 or integer-l 
represent a positive integer 
advanced the number of lines 
identifier-2 or integer-I. 

5-111 

is specified, 
or zero. The 

equal to the 

and the 
1 LINE is 

it must 
form is 

value of 



THE PROCEDURE DIVISION 

WRITE (Cont.) 

5. 

c. If mnemonic-name is specified, the form is advanced until 
the specified channel is encountered on the paper-tape 
format control loop. Mnemonic-name must be defined by a 
CHANNEL clause in the SPECIAL-NAMES paragraph of the 
Environment Division. 

d. If the BEFORE option is used, the record is printed 
before the form positioning. 

e. If the AFTER option is used, the record is printed after 
form positioning occurs, and no form positioning takes 
place after the printing. 

If end-of-reel is encountered while writing on magtape, the 
WRITE statement performs the following operations 

a. A file mark is written, and the tape is rewound. 

b. If the file was assigned to more than one tape unit, the 
units are advanced. 

c. If labels are not OMITTED, a label is written on the new 
tape. 

If the END-OF-PAGE phrase is specified, the LINAGE clause 
must be specified in the file description entry for the 
associated file. The words END-OF-PAGE and EOP are 
equivalent. 

6. The ADVANCING mnemonic-name phrase cannot be specified when 
writing a record to a file whose file description entry 
contains the LINAGE clause. 

7. The POSITIONING clause allows control of the vertical 
positioning of the paper form for print files. The record is 
written after the printer page is advanced according to the 
following rules: 

a. If identifier-2 is specified, it must be described as a 
one character alphanumeric item; that is, with PICTURE 
X. The valid values that identifier-2 can contain and 
their interpretations are as follows. 

blank 
o 

+ 
1-8 

Single spacing 
Double spacing 
Triple spacing 
Suppress spacing 
Skip to channels 1 through 8 respectively 
on the paper-tape format control loop 

5-112 



THE PROCEDURE DIVISION 

WRITE (Coot.) 

Note that the object-time system interprets the value in 
identifier-2, substituting the proper positioning 
characters into the ASCII file. The character stored in 
the field named identifier-2 is not stored in the output 
file. 

b. If integer-l is specified, it must be unsigned, and m.ust 
be one of the values 0, 1, 2, or 3. The values have the 
following meanings. 

a 

1 
2 
3 

Skip to channel 1 of next page (carriage 
control "eject") 
Single spacing 
Double spacing 
Triple spacing 

8. Either ADVANCING or POSITIONING can be specified for a file, 
but not both. Also, if either is specified, the recording 
mode of the file will be ASCII, regardless of the recording 
mode specified in the RECORDING MODE clause. 

9. When a WRITE statement is executed for a file whose access 
mode is RANDOM and the RELATIVE KEY contains a value of 0, 
records will be written sequentially in the file (that is, no 
records will be left null). If the previous operation 
performed on the file was by a READ statement, the previous 
record will be replaced (that is, the record will be 
updated) • 

The statement(s) in the INVALID KEY clause is executed when 
the RECORD KEY contains a value equal to the key of an 
already existing record in an INDEXED file (refer to the 
REWRITE statement, Section 5.9.31). 

10. When executing a WRITE statement for a SEQUENTIAL file opened 
for INPUT-OUTPUT, the logical record is placed on the file as 
the next logical record if the previous input-output 
operation was a WRITE, or it replaces the previous record if 
the previous input-output operation was a READ. 

~ 

11. The INVALID KEY phrase must be specified if an applicable USE 
procedure is not specified for the associated file. 

12. If the FROM option is used, the statement is equivalent to: 

MOVE identifier-l TO record-name-l 
WRITE record-name-l (without the FROM option) 

Note that identifier-l must be a data-name and cannot be a 
figurative constant (for example, SPACES), because it is 
syntactically equivalent to a literal. 

5-113 



THIS PAGE INTENTIONALLY LEFT BLANK. 



THE PROCEDURE DIVISION 
VERB FORMATS 



THE PROCEDURE DIVISION 

GENERAL FORMAT· FOR PROCEDURE DIVISION 

PROCEDURE DIVISION ~SING data-name-I ~ata-name-2~ 
UECLARATI VES. 

.. J 
{ section-name SECTION C=segment-number~ declarative-sentence 

~a ragraph-name. [sentence] ... ] ... } 

END DECLARATIVES~ 

{ section-name SECTION ~egment-numberJ 

[:aragraPh-name . [sentence] ... ] } 

5-114 



THE PROCEDURE DIVISION 

GENEP~L FORMAT FOR VERBS 

ACCEPT identifier-I identifier-2 ... [fROM mnemonic-name] 

j DATE l 
ACCEPT i denti fi er FROM ) DAY 

~ TIME 

ADD {identifier-I 
- literal-l [

i denti fi er-2] 
1 i teral-2 TO identifier-m QOUNDEDJ 

[i dentifi er-n [ROUNDE:gf] " • [ON SIZE ERROR imperati ve-statemen~ 

ADD {i~entifier-I} {identifier-2} [identifier-3] 
- llteral-I literal-2 literal-3 

GIVING i dentifi er-m [ROUNDE~ ~ dent i fi er-n [}OUNDED~ 
[ON SI ZE ERROR imperati ve-statementJ 

ADD {CORRESPONDING} i denti fi er-I TO i denti fi er-2 fROUNDEOJ 
- CORR L.:: 

[ON SIZE ERROR imperative-statement] 

ALTER procedure-name-I TO ~ROCEED TOJ procedure-name-2 

~procedure-name-3 TO ~ROCEED TO~ procedure-name-4 :J 

CALL program-name ~SING data-name-I 

1 
identifier-Il r, 
entry-name 

[ data-name-2 ~ .. J 
~ON OVERFLOW imperative-statemen~ 

5-115 



CANCEL {identifier-I} 
subprogram-I 

THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

[
i denti fi er-2] 
subprogram-2 

CLOSE file-name-l 
o ~~~~ D ~ WITH { 

NO REWIND}} LOCK 
DELETE 

fi 1 e-·name-2 

{FOR 

~ WITH 

{ FOR 

REMOVAL 

{ 
NO REWI ND }} LOCK 
DELETE 

REMOVAL 

CLOSE fil e-name-1 [?ITH LOCK] ~il e-name-2 [WITH LOCK J] 

COMPUTE i dentifi er-1 [ROUNDED J ~; ~;~;! ji ~r-2 . (IJ.OUNDEDJl ". LJ arlthmetlc-expresslon ~ ~ 
j IS EQUAL TO ~ 
( :QUALS I arithmetic-expression [ON SIZE ERROR imperative-statement] 

DELETE file-name RECORD [INVALID KEY imperative-statement] 

{ 
i denti fi er- 1.} ~i dent,i fi er-2 r I, .:l It:; :--, 

DISPLAY literal-l llliteral-2 fJ""" LUPON mnemonlc- nam:.JL1ITH NO ADVANCIN~ 

5;...116 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

{
identifier-I} In J DIVIDE 1itera1-I INTO identifier-2 ~OUNDED 

[; denti fier-3 [30UNDEDJ] ... [ ON SIZE ERROR imperati ve-statementJ 

01 VI DE 
{ 

identifier-I} 
1itera1-I 

INTO {i~entifier-2} GIVING identifier-3 'ROUNDED! 
-- 11 teral-2 L1 U 

tdenti fi er-4 [ROUNDEI[]] [ON SIZE ERROR imperative-statemen!J 

{
identifier-I} BY 
1itera1-I {

identifier-2} [J II 1iteral-2 GIVING identifier-3 ROUNDED~ 

Edenti fi er-4 [ROUNDEQ] ~N SIZE ERROR imperati ve-statemen~ 

DIVIDE -- { 
identifier-I} 
1itera1-I 

INTO {i~entifier-2} GIVING identifier-3 [JROUNDEDI 
-- 11teral-2 U 

REMAINDER identifier-4 IJN SIZE ERROR imperative-statemenQ 

{ 
identifier-I} BY 
1itera1-1 -- {

identifier-2} Ii: =)J 
1iteral-2 GIVING identifier-3 L!0UNDE~ 

REMAINDER identifier-4 [ON SIZE ERROR imperative-statemenI] 

{

MACRO ) 
ENTE R FORTRAN} 

COBOL , ~~ING ~ identifier-l 1 
1itera1-1 

t procedure-name-l ~ ; denti fi er-2 ~~ 
1 iteral-2 

~ procedure-name-2 ) 

ENTRY ent ry- name [US I NG i de nt ifi er-l [) dent i fi e r-;[J .. J 

EXIT. 

EXIT [lROGRAMJ • 

5-117 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

fi1e-name-l 
{

RECORD [KEY J i~entifier-l I ] } - 1 lltera1-1 

EVERY RECORD 

FREE 

EVERY RECORD 

[ 

,fi le-name-2 { RECORD [ KEY 1 
EVERY RECORD 

identifier-2 
1 i tera 1-2 

[NOT RETAINED statement-l [,statement-2] ... ] ~ 

GENERATE {
data-name } 
report-name 

GO TO procedure-name-l [procedure-name-2] procedure-name-n 

DEPENDING ON identifier 

GOBACK. 

1£ condition {
statement-l } 
NEXT SENTENCE [ELSE {

statement-2 }] 
NEXT SENTENCE 

INITIATE report-name-l [report-name-2] 

5-118 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

INSPECT identifier-l TALLYING 

INSPECT identifier-l REPLACING 

(

CHARACTERS BY {i~entifier-6} fJ{SEFORE} INITIAL {i~entifier-7}1 
.:::..:.:..:.:..:.:...:~:..:.:.::. - llteral-4 ~AFTER llteral-5 J 

I { ~~~DING} ~{i ~enti fi er-5} BY {i ~enti fi er-b} ~{BEFORE} INITIAL 
FIRST t llteral-3 -- 'lteral-4 U~FTER {identifier-7}]1 I 1 "literal-5 .... .. 

INSPECT identifier-l TALLYING 

{ 
i dentifi er-2 FOR!{{~~~DING} ~ 1~~;:f~ ~r-3}} [{~~;~:E} INITIAL 

~ CHARACTE RS ---
{i dentifi er-4}J} I literal-2 .,. .., 

REPLACING 

.=.;.;,:...;;,;..;.;..;.;;..":,,..=.,;..;,.:; -- llteral-4 

(

CHARACTERS BY {i ~enti fi er-6} [{
BEFORE} 
AFTER 

INITIAL 

~ {~~~DIN(} ~ {i ~enti fi er-5} BY 
{ ~ { llteral-3 {

identifier-6} 
literal-4 

{~1~~;!f~~r-7}J 1 
[{BEFORE} INITIAL {i~entifier-7}J' I 

AFTER llteral-5 f'" ... 

MERGE [WITH SEQUENCE CHE CKJ fil e- name-l ON {ASCENDING } 
DESCENDING KEY data-name-l 

[ON 
{ASCENDING } 

DESCENDING KEY data-name-3 

~COLLATING SEQUENCE IS alPhabet-name~ 
USING file-name-2 file-name-3 [file-name-4] 

OUTPUT PROCEDURE IS section-name-l THROUGH 
THRU section-name-2 

GIVING file-name-5 

5-119 

[ data -name-2 ] 

[ data-name-4] .. J .. 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

{
i dent i fi er-l} MOVE literal TO identifier-2 [ identifier-3] 

MOVE {CORRESPONDING} identifier-l TO identifier-2 
-- CORR 

MUL T1PL Y {~~~~;! i~ ~r-l} !y i dentifi er-2 [ROUNDED] 

[i dentifi er-3 [ROUNDED]] [ON SIZE ERROR i mperati ve-statement] 

~~ULTIPLY {i?entifier-l} BY {i?entif-;oer-2} GIVING identifier-3 [ROUNDED] llteral-l -- llteral-2 

[identifier-4 [ROUNDED]] •.. [ON SIZE ERROR imperat.ive-statement] 

PERFORM [ { THROUGH procedure-name-l THRU } procedure-name-2 ] 

PERFORM [ { THROUGH procedure-name-l THRU } procedure-name-2 ] {identifier-l 
i nteger-l } TIMES 

PERFORM [{ THROUGH procedure-name-l THRU } procedure-name-2 ] UNTIL condition-l 

5-120 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

PERFORM procedure-name-l [{=UGH } procedure-name-2 ] 

VARYING {~dentifier-2} FROM 
1 ndex-name-l -- {

i denti fi er-3} 
index-name-2 
literal-l 

BY 
{
identifier-4} UNTIL condition-l 
literal-3 

[AFTER t denti fi er-5} 
index-name-3 FROM 

BY t denti fi er-7} 
literal-4 UNTIL 

[
AFTER {~dentifier-8} FROM 

1 ndex-name-5 --

BY {
i denti fi er-lO} 
literal-6 UNTIL 

f dentifi er-6} 
index-name-4 
literal-3 

condition-2 

i denti fi er-9 
index-name-6 
literal-5 

co n d it ion - 3] ] 

READ fi 1 e-name [NEXT] RECORD [INTO i denti fi erJ 

[AT END imperative-statement] 

READ file-name RECORD [INTO identifier] [INVALID KEY imperative-statement] 

READ file-name RECORD [INTO identifier] 

[KEY IS data-name] 

~INVALID KEY imperative-statement] 

RELEASE record-name [FROM i denti fi erJ 

5-121 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

SEARCH identifier-l [VARYING { ~ dent i fi er- 2 }l rAT EN 0 i mperati ve-s tatement-1] 
1 ndex-name-l ~ ~ - . 

WHEN condition-1 { imperative-statement-2 } NEXT SENTENCE 

[ WHEN conditi on-2 { imperative-statement-3 } ] ... NEXT SENTENCE 

SEARCH ALL identifier-1 [AT END imperative-statement-1] 

J data-name-l {i~ EQUAL 
WHEN ) 

{ condition-name-1 

TO} {i denti fi er-3 } } 
1 i tera 1-1 
arithmetic-expression-1 

[AND {dt 
2 { IS EQUAL TO} {identifier-4 }}] a a-name- IS = 1iteral-2 

d : .. , 2 arithmetic-expression-2 con ll-lon-name-

{ 
imperati ve-statement-2 } 
NEXT SENTENCE 

SET {identifier-1 
index-name-1 

SET in dex- name-4 

[ i denti fi er-2 ] 
[index-name-2 ] 

[index-name-5] 

{ 

i denti fi er-3 } 
} TO ~ ndex-name-3 

lnteger-1 

{ 
UP BY } {i denti fi er-4 } 

.•. DOWN BY integer-2 

5-122 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

SORT file-name-l ON {ASCENDING} KEY data-name-l [data-name-21 
DESCENDING ~J 

{
ASCENDING } 
DESCENDING KEY data-name-3 

[COLLATING SEQUENCE IS alPhabet-name] 

f
NPUT PROCEDURE IS section-name-l [{THROUGH} THRU 

USING flle-name-2 [fil e-name-3] I OUTPUT PROCEDURE IS section-name-3 [ {THROUGH} 
THRU 

GIVING file-name-4 

IS ---

[ data-name-4] .. J .. 

secti on-name-2] } 

section-name-4] I 

START file-name KEY 
{

IS EQUAL TO } 

IS GREATER THAN 
IS ) data-name 

IS NOT LESS THAN 
IS NOT "( 

[INVALID KEY imperative-statement] 

{RUN } STOP i"Tteral 

STRI NG {i ~ent i fi er-l} [i denti fi er-2] 
llteral-l literal-2 DELI MI TE D BY 

DELIMITED BY 

INTO identifier-7 [WITH POINTER identifier-8] 

[ON OVERFLOW imperative-statement] 

5-123 

(i denti fi er-3) 
{literal-3 } 
\SIZE , 

{ 
i ~enti fi er-6 lJ 
llteral-6 ( ... 
SIZE , 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

SUBTRACT '{i~entifier-It [i~entifier-2J ... 
llteral-I ~ llteral-2 FRm~ identifier-m [ROUNDED] 

[identifier-n [ROUNDED]] [ON SIZE ERROR imperative-statement] 

SUBTRACT {i~entifier-I} [i~entifier-2l 
llteral-I llteral-2 ~ {

i dent i fi er-m} 
1 i tera 1 -m 

GIVING identi fier-n [ROUNDED] [i denti fi-er-o [ROUNDED J] ... 
~ON SIZE error imperative-statement] 

SUBTRACT {:ESPONDING} identifier-l FROM identifier-2 [ROUNDEQ] 

[ON SIZE ERROR imperative-statement] 

TERMINATE report-name-I [report-name-2] 

TRACE {~~F} 
UNSTRING identifier-I 

[DELIMITED BY [ ALL] {identifier-2} 
literal-I [

OR [ALL] {i ~enti fi er-3}] ... J - - llteral-2 

INTO identifier-4 [DELIMITER IN identifier-5][COUNT IN identifier-6] 

[i denti fi er-7 [DELIMITER IN i dentifi er-a] [COUNT IN i dentifi er-g] ] 

[WITH POINTER identifier-I~[TALLYING IN identifier-II] 

r=ON OVERFLOW imperative-statement~ 

5-124 



THE PROCEDURE DIVISION 

GENERAL FORMAT FOR VERBS 

USE AFTER STANDARDI{~~~6:TION t PROCEDURE ON. OUTPUT • 

'{ fi 1 e-name-I OPEN[fil e-name-2 ]OPEN .•. } 
INPUT 

,-- t 1-0 
EXTEND 

USE BEFORE REPORTING identifier. 

WRITE record-name [FROM identifier-I] 

[{
BEFORE t ADVANCING l{:~~~~!~i er-2 } [ti~~sJIJ 
AFTER f {mnemOnic-name} 

PAGE 

[ {
END-OF-PAGE}.. ] AT EOP lmperatlve-statement 

WRI TE record-name [FROM i dent i fi erJ [INVALI D KEY imperat i ve-statementJ 

5-125 





CHAPTER 6 

COMPILER COMMAND STRINGS 

The general form of the compiler command string is as follows: 

relfil,lstfil= libfil/l, srcl,src2, •.. 

where: 

relfil 

lstfil 

libfil 

srcl,src2 

is the file that is to hold the generated code. 
If no generated code is desired, the file 
description for relfil is replaced by a hyphen. 

Example: -,lstfil=srcl,src2 ••. 

is the file that is to hold the generated listing. 
If no listing is desired, the file description for 
Istfil is replaced by a hyphen. 

Example: relfil,-=srcl,src2, •.. 

is the optional library file referenced by COpy 
verbs in the source files. 

are one or more source files required to form one 
input program. 

Each file description has the following form: 

device:file.ext [project,programmer]/switch/switch 

where: 

device 

file 

ext 

project 

programmer 

switch 

is the name of a physical or logical device. 
The name is composed of 6 or fewer letters 
and/or digits. 

is the name of a file. The name is composed 
of 6 or fewer letters and/or digits. 

is the filename extension. It is composed of 
3 or fewer letters and/or digits. 

is a user's project number. 

is a user's programmer number. 

is any of the switches shown in Table 6-1. 

6-1 



COMPILER COMMAND STRINGS 

Users of TOPS-20 who wish to specify a directory other than 
the default may run the TRANSLATE program to determine the 
correct project-programmer number. (See the TOPS-20 User's 
Guide for information on how to do this.) For an alternative 
which is generally more useful, see Appendix E, Defining 
Logical Names under TOPS-20. 

Certain default assignments are made by the compiler whenever 
terms are omitted from the command strings or the file 
descriptions. 

1. If the device is omitted in any output file description, 
DSK is assumed. If the device is omitted in an input 
file description, either the preceding device or DSK (if 
no preceding device is specified) is assumed. 

2. If the filename for relfil and/or lstfil is omitted, the 
filename of the first source file is used. 

3. If the filename extension is omitted from relfil, .REL is 
assumed; if it is omitted from lstfil, .LST is assumed. 
If the extension is omitted from the source file 
descriptor, the compiler looks in the file area for the 
named file with the extension .COB. If that file is not 
found, the compiler looks for the named file with the 
extension .CBL. If that file is not found, the compiler 
looks for the named file without an extension. If the 
extension is omit~ed from the library file description, 
.LIB is assumed •. 

4. If the [project,programmer] option is 
file, ~he user's default path is used. 
connected directory is used. 

Examples: 

omitted on any 
On TOPS-20, the 

MTAl:RELOUT.A/W,LPT:=DSK:SRCIN.C [27,36]/M/S 

The compiler compiles the program found in the file SRCIN.C 
in the area reserved for project-programmer 27,36. It treats 
columns 1-6 of the source as a sequence number (/S). The 
generated code is written on MTAl, after the tape is rewound 
(/W). The listing, including maps (1M) is put on the LPT. 

=LIBl/L,PROG/A 

The compiler compiles the program found in PROG.CBL (CBL is 
assumed because the filename extension is omitted from the 
source file descriptor) on the disk, using LIBl.LIB whenever 
a COpy verb is seen (/L). The generated code goes into the 
file DSK:PROG.REL, and the listing onto the file 
DSK:PROG.LST. The generated code is listed (/A). 

-=LIBl/L,PROG/A 

This is identical to the preceding example, with the 
exception that no generated code is produced because the file 
descriptor for the file has been replaced by a hyphen. 

6-2 



Switch 

A 

B 

C 

D:nnnnnn 

E 

H 

I 

J 

L 

M 

N 

o 

P 

Q 

R 

S 

U 

COMPILER COMMAND STRINGS 

Table 6-1 
COBOL Switch Summary 

Action by Compiler 

List the machine code generated in the lstfil. 

Generate code for all DEBUG lines (those with /D 
in col. 7) which otherwise would be treated as 
comments. 

Produce a cross-reference table of all 
user-defined symbols. 

Increment, in octal words, to be added to the 
object time push down list size. 

Check program for errors, but do not generate 
code. 

Type description of COBOL-74 command strings and 
switches. 

Suppress output of start address (program is to 
be used only by CALL's). 

Force output of start address in spite of the 
presence of 'subprogram syntax. 

Use the preceding source file as a library file 
whenever a copy verb is encountered. If the 
first source file is not a /L file, LIBARY.LIB 
is used as the library file until the first /L 
file is encountered. (The default extension for 
library files is ".LIB".) 

Include a map of the user defined items in the 
lstfil. 

Do not type compilation errors on the user's 
terminal. 

Optimize the object code. 

Production mode. Omit debugging features from 
relfil. 

Quick mode. DO.not range check PERFORMs, also 
turn on /0 and /P. 

Produce a two-segment object program. The high 
segment will contain the procedure division; 
the low segment all else. 

The source file is in "conventional" format 
(with sequence numbers in cols. 1-6 and 
comments starting in col. 73). 

Produce a one-segment object program. 

6-3 



Switch 

W 

X 

Y 

Z 

COMPILER COMMAND STRINGS 

Table 6-1 (Cont.) 
COBOL Switch Summary 

Action by Compiler 

Rewind the device before reading 
(magtape only). 

Give a usage of DISPLAY-9 to items 

or 

whose 
is either omitted or declared as DISPLAY. 

writing 

usage 

Flag DIGITAL extensions to ANS-74 standard. 

Zero the directory of the device before writing 
(DECtape only) . 

6-4 



CHAPTER 7 

COBOL-74 UTILITY PROGRAMS 

COBOL-74 provides several utility programs that allow you to perform 
certain operations within your COBOL program. These utility programs 
are: 

• ISAM - Indexed-Sequential File Maintenance Program 

ISAM provides you with the ability to create and 
maintain indexed-sequential files (see section 7.1). 

• LIBARY - Source Library Maintenance Program 

LIBARY provides you with the facility to create, 
modify, and delete statements or groups of statements 
in a library file (See Section 7.2). 

• COBDDT - Program For Debugging COBOL Programs 

COBDDT provides you with the ability to: 

1. Look for areas of error by setting breakpoints 

2. Trace the activity of procedures 

3. Display and, if necessary, change the contents of 
data-items 

4. Determine time spent in sections of the program 
by analyzing a histogram (see Section 7.3) 

• RERUN - Program to Restart COBOL-74 Programs 

RERUN provides you with the ability to restart a 
COBOL-74 program after an abnormal termination has 
occurted (See Section 7.4). 

7-1 



COBOL-74 UTILITY PROGRAMS 

NOTE 

Many of the examples in this chapter are 
written for only one operating system -
that is, they have either the TOPS-IO 
prompt (.) or the TOPS-20 prompt (@) 
alone. However, unless you are told 
otherwise, the examples apply to both 
TOPS-IO and TOPS-20. Thus, in this 
chapter you may substitute 

.R (program name) <RET> 
for 

@(program name) <RET> 

and vice versa. 

7.1 ISAM - INDEXED-SEQUENTIAL FILE MAINTENANCE PROGRAM 

Indexed-sequential files are created, maintained, and compacted for 
backup storage by means of the ISAM program. ISAM performs the 
following functions: 

1. Builds an indexed-sequential file from a sequential file 

2. Maintains an indexed-sequential file by reorganizing it 

3. Packs an indexed-sequential file into a sequential file for 
backup storage 

ISAM has the following switches which you may use to perform these 
functions: 

B Build an indexed file from a sequential one 

I Ignore errors in packing a file (this switch may only be used 
with the P switch) 

L Read or write standard tape labels (this switch may only be 
used with the B or P switches) 

M Maintain your indexed file by reorganizing it 

P Pack your indexed file for backup storage 

Figure 7-1 shows the COBOL-74 ISAM File Environment. 

7-2 



COBOL-74 UTILITY PROGRAMS 

(INPUT SEQUENTIAL 
DATA FILE) 

R ISAM 

(BUILD) 

RUN 
MYPROG 

'USER'S APPLICATION PROGRAM' / 

~_ RISAM / 

~ (PACK) 

Figure 7-1 

(OUTPUT SEQUENTIAL 
BACKUP FILE) 

COBOL-74 ISAM File Environment 

7-3 

G 
t 

R ISAM 

(MAINTAIN) 

MR-S-029-79 



COBOL-74 UTILITY PROGRAMS 

7.1.1 Building an Indexed-Sequential File 

To build an indexed-sequential file you must provide a sequential file 
in which the record keys are arranged in ascending order. The ISAM 
program will use this file to create an indexed-sequential data file 
with a user-specified number of empt~ records and blocks. ISAM then 
creates the index file according to the description of the data file. 

To run the ISAM program and select the option for building the 
indexed-sequential file, type the following: 

.R ISAM<RET> for users of TOPS-IO 

or 

@ISAM~RET> for users of TOPS-20 

*devl:indfil.ext[ppnl] ,dev2:datfil.ext=dev3:seqfil.ext[ppn2]/B 

where: 

devl, dev2, and dev3 are the devices for the index, data, and 
input sequential file. Devl and dev2 must be disk. The default 
for devl, dev2, and dev3 is DSK. 

indfil.ext is the name and extension of the index file. If the 
filename is not specified, the name of the input file is assumed. 
If the extension is omitted, .IDX is assumed. 

datfil.ext is the name and extension of the data file. If the 
filename is omitted, the name of the index file is assumed. If 
the extension is omitted, .IDA is assumed. 

seqfil.ext is the name and extension of the input sequential 
file. This filename must be specified, but the extension can be 
omitted. If it is omitted, .SEQ is assumed. 

[ppnl], [ppn2] specify directories for the index file and the 
input file, respectively. If either is omitted, then the 
directory of the logged-in user is assumed. The data file must 
reside in the same directory as the index file. Users of TOPS-20 
who wish to specify a directory other than the default may run 
the TRANSLATE program to determine the correct project-programmer 
number. (See the TOPS-20 User's Guide for information on how to 
do this.) For an alternative which is generally more useful, see 
Appendix E, Defining Logical Names under TOPS-20. 

/B is the switch signifying that ISAM will be used to build an 
indexed-sequential file. If the switch is omitted from the 
command string, /B is assumed. The equal sign (=) can be omitted 
if the specifications for the output files are omitted. 

After reading the command string, ISAM asks a series of questions, 
which are described below. Every question must be answered. 

MODE OF INPUT FILE: 

Reply with S, A, F, V, or ST according to the mode of the input file. 
S means SIXBIT, A means ASCII, F means fixed-length EBCDIC, V means 
variable-length EBCDIC, and ST means STANDARD-ASCII. 

7-4 



COBOL-74 UTILITY PROGRAMS 

MODE OF DATA FILE: 

Specify S, A, F, or V according to the mode in which the ISAM data 
file is to be recorded. S means SIXBIT, A means ASCII, and both F and 
V mean EBCDIC, as above. If the mode of the input file differs from 
that of the data file, characters will be converted in the same manner 
as they are converted in standard COBOL-74 operations. 

MAXIMUM RECORD SIZE: 

Specify the size of the largest record in the input file in bytes. 
For ASCII records you should not count the carriage return and line 
feed that are appended to each ASCII record. 

KEY DESCRIPTOR: 

Describe the key upon which the file is to be indexed using a code 
that has the form: 

[s] [x]m.n 

where: 

s designates· the sign of the key: 

S - the key is signed 

U - the key is unsigned 

x indicates the key type: 

X - the key is nonnumeric 

N - the key is numeric display 

C - the key is COMPUTATIONAL 

F - the key is COMPUTATIONAL-l 

P - the key is COMPUTATIONAL-3 

m specifies the number of the character in the record where the 
key begins. 

n specifies the size of the key in characters for types X and N 
or in digits for types C and P. If nis less than or equal to 
10 for type C, one word is used. If n is greater than 10, two 
words are used. n is ignored for type F because' it is always 
one word long. 

The following rules apply to the key descriptor: 

1. The key type is optional: if S or U are specified the 
default is N. Otherwise, the default is X. 

2. The key sign is optional; the default is S if the key type 
is not X. 

3. The sign designators S or U cannot be 
conjunction with type X. 

4. m and n must be specified. 

7-5 

specified in 



COBOL-74 UTILITY PROGRAMS 

RECORDS PER INPUT BLOCK: 

Give the blocking factor of the input file. If the file is unblocked, 
o should be specified. 

TOTAL RECORDS PER DATA BLOCK: 

Give the total number of records to be contained in each block of the 
data file. 

EMPTY RECORDS PER DATA BLOCK: 

Specify the number of records that are to be initially left empty in 
each block of the data file. 

TOTAL ENTRIES PER INDEX BLOCK: 

Specify the total number of index entries to be contained in each 
block of the index file. 

EMPTY ENTRIES PER INDEX BLOCK: 

Specify the number of index entries that are to be initially left 
empty in each index block. Note that at least two entries must be 
available in each index block, so that the number of total entries 
minus the number of empty entries must equal or exceed two. 

PERCENTAGE OF DATA FILE TO LEAVE EMPTY: 

Give, as a percentage of the total number of blocks, the number of 
blocks to be initially left empty in the data file. 

PERCENTAGE OF INDEX FILE TO LEAVE EMPTY: 

Give, as a percentage of the total number of blocks, the number of 
blocks to be initially left empty in the index file. 

MAXIMUM NUMBER OF RECORDS FILE CAN BECOME: 

Reply with the maximum number of records that the data file can 
possess before the file is next maintained. This number sets the 
upper limit of the size of the data file. It is required because 
storage allocation tables must be set up in the index when the file is 
created. There is no harm in making this number excessively large 
because the index data blocks are allocated in the storage allocation 
tables, but not actually assigned until needed. 

Example - Building an indexed-sequential file 

.R ISAM 
*TEST.IDX, TEST.IDA=TEST.SEQ /B 
MODE OF INPUT FILE: SIXBIT 
MODE OF DATA FILE: SIXBIT 
MAXIMUM RECORD SIZE: 40 
KEY DESCRIPTOR: SN37.4 
(The key is signed numeric display; it begins in the 
thirty-seventh byte; and it is four bytes long.) 

RECORDS PER INPUT BLOCK: 3 
TOTAL RECORDS PER DATA BLOCK: 2 
E,MPTY RECORDS PER DATA BLOCK: 1 
TOTAL ENTRIES PER INDEX BLOCK: 3 
EMPTY ENTRIES PER INDEX BLOCK: 1 
PERCENTAGE OF DATA FILE TO LEAVE EMPTY: 60 
PERCENTAGE OF INDEX FILE TO LEAVE EMPTY: 10 
MAXIMUM NUMBER OF RECORDS FILE CAN BECOME: 12000 

7-6 



COBOL-74 UTILITY PROGRAMS 

7.1:2 Maintaining an Indexed-Sequential File 

The ISAM program allows you to maintain an existing 'ISAM file after 
the file has become crowded. More empty space may be added to the 
file and the number of index levels may be decreased. That is, the 
files are rearranged and indexes are streamlined. The input is the 
indexed-sequential file and the output is a new indexed-sequential 
data and index file. The command string for the ISAM maintain option 
is as follows: 

.R ISAM<RET> for users of TOPS-IO 

or 

@ISAM<RET> for users of TOPS-20 

*devl:indfil.ext[ppnl] ,dev2:datfil.ext=infil.ext[ppn2]/M<RET> 

where: 

devl, and dev2, are disk devices on which the files are stored. 
If any of the devices is omitted, DSK is assumed. 

indfil.ext is the name and extension of the new index file. If 
the name is omitted, the name of the input file is assumed. If 
the extension is omitted, .IDX is assumed. 

datfil.ext is the name and extension of the new data file. If 
the name is omitted, the name of the new index file is assumed. 
If the extension is omitted, .IDA is assumed. 

infil.ext is the name and extension of the index file of the old 
indexed-sequential file. The name of the file must be specified, 
but the extension can be omitted. No extension is assumed if the 
extension is omitted. 

[ppnl], [ppn2] specify directories for the new index file and the 
old index file, respectively. If either is omitted, the 
directory of the logged-in user is assumed. The new data file 
must reside in the same directory as the new index file. Users 
of TOPS-20 who wish to specify a directory other than the default 
may run the TRANSLATE program to determine the correct 
project-programmer number. (See the TOPS-20 User's Guide for 
information on how to do this.) For an alternative which is 
generally more useful, see Appendix E, Defining Logical Names 
under TOPS-20. 

1M is the switch indicating that the maintain option is being 
requested. The switch must be specified. 

If the output file specifications are not included in the command 
string, the equal sign (=) can be omitted. 

After the command string has been scanned, ISAM asks a series of 
questions about values for the new indexed-sequential file. The mode 
of the file, the record size, and the key cannot be changed. The 
values from the old file are given in parentheses with the question. 
If you wish to change a value, enter the new value; if you do not 
wish to change a value, press the RETURN key. All questions refer to 
the output file. 

7-7 



COBOL-74 UTILITY PROGRAMS 

TOTAL RECORDS PER DATA BLOCK (n): 

Specify the total number of records to be contained in each block of 
the data file. 

EMPTY RECORDS PER DATA BLOCK (n): 

Give the number of data records that are to be initially left empty in 
each data block. 

TOTAL ENTRIES PER INDEX BLOCK (n): 

Give the total number of index entries to be contained in each block 
of the index file. 

EMPTY ENTRIES PER INDEX BLOCK (n): 

Specify the number of index entries that are to be initially left 
empty in each index block. 

PERCENTAGE OF DATA FILE TO LEAVE EMPTY (n): 

Give, as a percentage of the total number of blocks, the number of 
blocks to be initially left empty in the data file. 

PERCENTAGE OF INDEX FILE TO LEAVE EMPTY (n): 

Give, as a percentage of the total number of blocks, the number of 
blocks to be initially left empty in the index file. 

MAXIMUM NUMBER OF RECORD FILES CAN BECOME (n): 

Specify the maximum number of records that can be contained in the 
file. This number sets the upper limit on the size of the data file. 
It is required because storage allocation tables must be set up when 
the file is created. 

Example - Maintaining an indexed-sequential file 

.R ISAM(RET) 

*test.idx, test.ida=test 1m 
total records per data block (2): 
empty records per data block (1): 
total entries per index block (3): 32 
empty entries per index block (1): 10 
percentage ,of data file to leave empty (60): 50 
percentage of index file to leave empty (10): 40 
maximum number of recor~s file can become (12000) 25000 

7-8 



COBOL-74 UTILITY PROGRAMS 

7.1.3 Packing an Inde&ed-Sequential File 

Packing an indexed-sequential file is the reverse of building one. An 
indexed-sequential file is copied into a sequential file in the order 
specified by the index. This option is used primarily to compact an 
indexed-sequential file for backup storage, although the resulting 
sequential file can be treated as any other sequential file. The 
command string for the packing option of ISAM is as follows: 

.R ISAM<RET> for users of TOPS-IO 

or 

@ISAM<RET> for users of TOPS-20 

*devl:seqfil.ext[ppnl]=dev2:indfil.ext[ppn2] IP<RET> 

where: 

devl and dev2 are the devices on which the sequential file is to 
be stored and the index file resides, respectively. The input 
file must be on disk. If neither device is specified, DSK is 
assumed. 

seqfil.ext is the name and extension of the output sequential 
file. If the name is omitted, the name of the input file is 
assumed. If the extension is omitted, .SEQ is assumed. 

indfil.ext is the name and extension of the index file of the 
indexed-sequential file. The name must be specified, but the 
extension can be omitted. If the extension is omitted, no 
extension is assumed. 

[ppnl] [ppn2] are directories for the new sequential file and the 
old index file, respectively. If either is omitted, the 
directory of the logged-in user is assumed. Users of TOPS-20 who 
wish to specify a directory other than the default may run the 
TRANSLATE program to determine the correct project-programmer 
number. (See the TOPS-20 User's Guide for information on how to 
do this.) For an alternative which is generally more useful, see 
Appendix E, Defining Logical Names under TOPS-20. 

IP is the switch signifying that the packing option is being 
requested. It must be included. 

If the output file specification is omitted, the equal sign (=) can be 
omitted. 

After the command string has been processed, ISAM asks the following 
questions. 

MODE OF THE OUTPUT FILE: 

Specify SIXBIT (or S), ASCII (or A), F, V, or ST according to the mode 
in which the sequential file is to be recorded. V is variable-length 
EBCDIC, and F is fixed-length EBCDIC, and ST is STANDARD-ASCII. 

RECORDS PER OUTPUT BLOCK: 

Give the blocking factor that you want for the sequential file (i.e., 
the number of records per logical block). If the file is to be 
unblocked, the user answers O. 

7-9 



COBOL-74 UTILITY PROGRAMS 

Example - Packing an indexed-sequential file 

.R ISAM 
*MTA2:TEST.SEQ=TEST.IDX IP 
MODE OF THE OUTPUT FILE: SIXBIT 
RECORDS PER OUTPUT BLOCK: 0 

7.1.4 Ignoring Errors 

When packing an indexed-sequential file into a sequential file, you 
can include the II switch in the command string to force ISAM to 
ignore certain fatal errors. This switdh causes ISAM to try to 
recover as much data as possible from a damaged indexed-sequential 
file. 

Including the II switch in the command string to ISAM causes the 
program to make nonfatal those errors that concern duplicate keys or 
keys out of order. The messages for these errors are preceded by a 
percent sign (%) rather than a question mark (?) so that ISAM will 
continue the packing operation. The II switch can be used only with 
the IP switch. It cannot be used alone. 

The command string when using the II and IP switches is as follows: 

.R ISAM<RET> for users of TOPS-IO 

or 

@ISAM<RET> for users of TOPS-20 

*devl:seqfil.ext[ppnl]=dev2:indfil.ext[ppn2]/P/I<RET> 

where: 

devl and dev2 are the devices on which the sequential and index 
files reside, respectively. The input file must be on disk. If 
neither device is specified, DSK is assumed. 

seqfil.ext is the name and extension of the output sequential 
file. If the name is omitted, the name of the input file is 
assumed. If the extension is omitted, .SEQ is assumed. 

indfil.ext is the name and extension of the index file of the 
indexed-sequential file. The name must be specified, but the 
extension can be omitted. If the extension is omitted, no 
extension is assumed. 

[ppnl], [ppn2] are directories for the new sequential file and 
the old index file, respectively. If either is omitted, the 
directory of the logged-in user is assumed. Users of TOPS-20 who 
wish to specify a directory other than the default may run the 
TRANSLATE program to determine the correct project-programLler 
number. (See the TOPS-20 User's Guide for information on how to 
do this.) For an alternative which is generally more useful, see 
Appendix E, Defining Logical Names under TOPS-20. 

7-10 



COBOL-74 UTILITY PROGRAMS 

IF is ~ne sw~~cn signifying that 
requested. It must be included. 

.1-"-_ _ __ 1.":__ __.&-': __ 
\,,11\::: pCl\,;I\. J.uy Vj:J~J.VH 15 

II is the switch signifying that some fatal errors are to be 
ignored. It may be included only with the Ip switch. 

The equal sign (=) can be omitted if 
specification is omitted. 

7.1.5 Reading and Writing Magnetic Tape Labels 

the output file 

When building or packing an indexed-sequential file, you can include 
the IL switch to cause ISAM to read or write labels on magnetic tape. 
The IL switch, when used with the IB switch, causes ISAM to read 
COBOL-74 standard tape labels on the input magnetic tape. When used 
with the IP switch, the IL switch causes ISAM to write standard tape 
labels on the output magnetic tape. The IL switch can only be used on 
magnetic tape files whose recording mode is not F or V. 

The command string when using the IL switch with the IB switch is as 
follows: 

.R ISAM<RET> for users of TOPS-10 

or 

@ISAM<RET> for users of TOPS-20 

*devl:indfil.ext[ppn] ,dev2:datfil.ext=MTAn:seqfil.ext/B/L<RET> 

where: 

devl, dev2, and MTAn are the devices for the index, data, and 
input sequential file. Devl and dev2 must be disk devices. The 
default disk for devl and dev2 is DSK. 

indfil.ext is the name and extension of the index file. If the 
filename is not specified, the name of the input file is assumed. 
If the extension is omitted, .IDX is assumed. 

datfil.ext is the name and extension of the data file. If the 
filename is omitted, the name of the index file is assumed. If 
the extension is omitted, .IDA is assumed. 

seqfil.ext is the name and extension of the input sequential 
file. This filename must be specified, but the extension can be 
omitted. If it is omitted, .SEQ is assumed. 

[ppn] specifies the directory for the index file. If it is 
omitted, the directory of the logged-in user is assumed. The 
data file must reside in the same directory as the index file. 
Users of TOPS-20 who wish to specify a directory other than the 
default may run the TRANSLATE program to determine the correct 
project-programmer number. (See the TOPS-20 User's Guide for 
information on how to do this.) For an alternative which is 
generally more useful, see Appendix E, Defining Logical Names 
under TOPS-20. 

IB is the switch signifying that ISAM will be used to build an 
indexed-sequential file. If the switch is omitted from the 
command string, 18 is assumed. 

7-11 



COBOL-74 UTILITY PROGRAMS 

IL is the switch signifying that ISAM will read standard tape 
labels. It must be included. 

The equal sign (=) can be omitted if the file specifications for the 
output files are also omitted. 

The command string when using the IL switch with the IP switch is as 
follows: 

.R ISAM<RET> for users of TOPS-IO 

or 

@ISAM<RET> for users of TOPS-20 

*MTAn:seqfil.ext=devl:indfil.ext[ppn]/P/L<RET> 

where: 

MTAn: and devl are the devices on which the sequential file is 
to be stored and the index file resides, respectively. The input 
file must be on disk. If the name of devl is not specified, DSK 
is assumed. 

seqfil.ext is the name and extension of the output sequential 
file. The name and extension can both be omitted because 
filenames are not used on magnetic tape. 

indfil.ext is the name and extension of the index file of the 
indexed-sequential file. The name must be specified, but the 
extension can be omitted. If the extension is omitted, no 
extension is assumed. 

[ppn] is a directory for the old index file. If it is omitted, 
the directory of the logged-in user is assumed. Users of TOPS-20 
who wish to specify a directory other than the default may run 
the TRANSLATE program to determine the correct project-programmer 
number. (See the TOPS-20 User's Guide for information on how to 
do this.) For an alternative which is generally more useful, see 
Appendix E, Defining Logical Names under TOPS-20. 

IP is the switch signifying that the packing option is being 
requested. It must be included. 

IL is the switch signifying that ISAM will write standard tape 
labels. It must be included. 

7.1.6 Indirect Commands 

The ISAM program accepts command strings and dialogue responses from 
indirect command files. 

The command string to direct ISAM to read an indirect command file is: 

.R ISAM<RET> for users of TOPS-IO 

or 

@ISAM<RET> for users of TOPS-20 

*@dev:cmdfil.ext[ppn]<RET> 

7-12 



COBOL-74 UTILITY PROGRAMS 

where: 

@ indicates that this is an indirect command file. 

dev is the device on which the command file is stored. If it is 
omitted, DSK is assumed. 

cmdfil.ext is the name and extension of the command file. The 
name must be specified. If you omit the extension, .CMD is 
assumed. 

[ppn] is the directory in which the command file is stored. If 
it is omitted, the directory of the logged-in user is assumed. 
Users of TOPS-20 who wish to specify a directory other than the 
default may run the TRANSLATE program to determine the correct 
project-programmer number. (See the TOPS-20 User's Guide for 
information on how to do this.) For an alternative which is 
generally more useful, see Appendix E, Defining Logical Names 
under TOPS-20. 

After ISAM reads the command string, it reads the command file and 
performs the processlng specified within it. The command file must 
contain the complete command string and all dialogue responses for a 
single ISAM operation exactly as they would be typed if you were 
giving them directly to the ISAM program. Nothing else can be present 
in the command file. 

7.1.7 Using Indexed-Sequential Files 

Indexed-sequential files can be read and written, and individual 
records within them can be rewritten or deleted. You can perform any 
actions on the records in an indexed-sequential file by specifying the 
desired record key in the RECORD KEY field. To use an 
indexed-sequential file, the following statements are employed: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

1. SELECT ISAM-FILE ASSIGN TO DSK 
2. ORGANIZATION IS INDEXED 
3. ACCESS MODE IS DYNAMIC 
4. RECORD KEY IS ISAM-RECORD-KEY. 

DATA DIVISION. 
FILE SECTION. 
FD ISAM-FILE 

5. BLOCK CONTAINS 13 RECORDS 
6. VALUE OF IDENTIFICATION IS "ISAMFLIDX". 

01 ISAM-RECORD. 
02 FILLER PIC X(12}. 

4. 02 ISAM-RECORD-KEY PIC X(3}. 
02 FILLER PIC X(75}. 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT-OUTPUT ISAM-FILE. 

7-13 



COBOL-74 UTILITY PROGRAMS 

7. READ ISAM-FILE, INVALID KEY GO TO ERRPROC. 

8. WRITE ISAM-RECORD, INVALID KEY GO TO ERRPROC. 

9. DELETE ISAM-RECORD, INVALID KEY GO TO ERRPROC. 

10. REWRITE ISAM-RECORD, INVALID KEY GO TO ERRPROC. 
11. READ ISAM-FILE NEXT RECORD, INVALID KEY GO TO ENDFILE. 

The notes in the following list are keyed to the numbers to, the left 
of the lines in the preceding program. 

1. The indexed-sequential file must reside on disk. 

2. The ORGANIZATION clause is required. 

3. The ACCESS MODE clause is required if you wish to access the 
file in random fashion, since the ACCESS MODE defaults to 
sequential. When DYNAMIC is specified, as here, either 
random or sequential access may take place. 

4. The RECORD KEY clause is required in the Environment Division 
and refers to the data-item designated as the record key 
which appears in the Data Division within the FD area record 
description for the indexed-sequential file. 

5. An indexed-sequential file must be blocked. 

6. The VALUE OF IDENTIFICATION clause is required. It 
designates the filename and extension of the index file 
rather than that of the data file. The name of the related 
data file is stored within the index file. The VALUE OF 
IDENTIFICATION must be specified because the name of th~ file 
must be present at initialization time so that the buffer and 
storage space can be allocated. 

7. The READ statement reads the indexed-sequential file to find 
the record whose key as written on the file matches the 
record key. If no match is found, the INVALID KEY path is 
taken. 

8. The WRITE statement writes the record that has a key that 
matches the record key. If the record whose key matches the 
record key is already in the file, the INVALID KEY path is 
taken. 

9. 

10~ 

The DELETE statement causes a search to be made of the 
to find the record whose key matches the record key. 
the record is found, it is deleted. If the record is 
found, the INVALID KEY path is taken. 

file 
When 

not 

The REWR~TE statement causes searching of the file to find 
the record whose key matches the record key. When the record 
is found, it is replaced with the contents of the record 
specified in the REWRITE statement. If the record is not 
found in the file, the INVALID KEY path is taken. 

7-14 



COBOL-74 UTILITY PROGRAMS 

11. This snows ~ne method used to read an indexe~-sequential file 
sequentially. When the READ statement 1S executed, the 
record accessed is the first record whose record key has a 
value higher than the last record processed by a READ, WRITE, 
REWRITE or DELETE statement. If the file has been opened but 
no READ, WRITE, DELETE or REWRITE statement has been 
executed, the first record of the file is read. 

7.2 LIBARY - SOURCE LIBRARY MAINTENANCE PROGRAM 

LIBARY provides a facility for creating or maintaining COBOL library 
files on disk or DECtape (TOPS-IO only). Library files contain COBOL 
source-language text organized into statement groups. Specifically, 
the LIBARY program has the capability of adding source-language text 
to the library file, replacing and/or deleting lines or whole 
statement groups, and providing a listing of the file. It allows you 
to specify those data descriptions or procedures used in many programs 
and to place them in a common file for use by the COBOL compiler. The 
statement groups in the library file are included in a COBOL program 
through the use of the COpy verb. (See Part 2, Section 1.4, for 
information on the COpy verb.) 

7.2.1 Library File Format 

A library file is a collection of COBOL source-language statement 
groups, each identified by a unique 1- to 8-character library-name. 
The library file must be on a directory device. Each statement group 
is a set of ordinary COBOL language statements conforming to the use 
of the COpy verb. The statement groups are kept in alphabetic order 
according to their library names. The maximum number of statement 
groups that can appear in a library is 3869. 

The library file is in a binary format that is recognizable only by 
LIBARY and the COBOL compiler. You, however, need not concern 
yourself with the format of the actual entries in the file. You enter 
them as ASCII text; LIBARY stores them in the appropriate format 
automatically. 

7.2.2 Invoking The Library Utility 

To invoke the library utility program, enter R LIBARY in response to 
the TOPS-IO prompt (.) or LIBARY in response to the TOPS-20 prompt 
( @). Th a tis, 

.R LIBARY<RET> for users of TOPS-IO 

or 

@LIBARY<RET> for users of TOPS-20 

7-15 



COBOL-74 UTILITY PROGRAMS 

When LIBARY is ready to process commands, it issues an asterisk 
prompting character and waits for you to enter a file specification 
command line. The file specification command line identifies the 
library files being either created or used as input. It also 
identifies the listing file if a listing is required. Enter the file 
specification command line according to the following format: 

*output-library,listing=input-library<RET) 

where: 

output-library - is the file specification for the library file 
being generated. 

listing - is the file specification for the file that is 
to receive the output listing. 

input-library - is the file specification for the library file 
being used as input. 

Each file specification has the following format: 

dev:filename.ext[ppn]/sw 

where: 

dev: 

filename 

.ext 

[ppn] 

/sw 

- is the logical device name for the unit on which 
the desired file is mounted. The default 
assignment is DSK:. 

- is the name of the file consisting of from one 
to six SIXBIT characters. Filename must be 
specified for at least one library file. 

- is the filename extension consisting of a period 
followed by zero to three characters. It is 
used to indicate the type of information in the 
file. 

is the directory area in which the file is 
stored. The directory specification, enclosed 
in brackets, contains the project-programmer 
number of the file's owner. Users of TOPS-20 
who wish to specify a directory other than the 
default may run the TRANSLATE program to 
determine the correct project-programmer number. 
(See the TOPS-20 User's Guide for information on 
how to do this.) For an alternative which is 
generally more useful, see Appendix E, Defining 
Logical Names under TOPS-20. 

- is one ASCII character preceded 
specifying a LIBARY switch option. 
7.2.4, LIBARY Switches.) 

by a slash 
(See Section 

After you have invoked LIBARY and given it a file specification 
command line, it automatically creates a scratch file to contain the 
output file generated by the LIBARY run. When you are through working 
on your library file and enter the END command (See Section 7.2.6.4, 
LIBARY Directing Commands), LIBARY renames the scratch file with the 
proper output name (after any necessary renaming of the input file). 

7-16 



COBOL-74 UTILITY PROGRAMS 

If an error occurs causing ~ne execution of LIBARY to be aborted, the 
input file, if specified, will be unchanged and the scratch file will 
be deleted. If the error occurred after the input file has been 
renamed, the original input file has an extension of .BAK. 

7.2.3 Command String Defaults 

The following default values are assumed by LIBARY if any part of any 
file specification is omitted. 

1. If any device is not specified, DSK is assumed. 

2. If the file specification for the listing file is omitted, no 
listing will be produced. 

3. If the name of the listing file is omitted, the name of the 
input file is assumed. 

4. If the extension of the listing file is omitted, .LST is 
assumed. 

5. If the file specification for the output file is omitted, it 
is assumed that there is no output file to be produced. 

NOTE 

If you are omitting the output file because you want 
to run LIBARY to obtain a listing only, the listing 
file specification, the input file specification, and 
the /L switch must be specified. 

6. If the name of the output file is omitted, the name of the 
input file is assumed. 

7. If the extension of the output file is omitted, .LIB is 
assumed. 

8. If the file specification of the input file is omitted, it is 
assumed that there is no input file and that a library is 
being created. Thus, only commands for insertion can be 
used. 

9. The filename for the input file cannot be omitted if the file 
specification is present. 

10. If the extension of the input file is omitted, .LIB is 
assumed. 

11. If any project-programmer number is omitted, it is assumed to 
be that of the logged-in user. Users of TOPS-20 who wish to 
specify a directory other than the default may run the 
TRANSLATE program to determine the correct project-programmer 
number. (See the TOPS-20 User's Guide for information on how 
to do this.) For an alternative which is generally more 
useful, see Appendix E, Defining Logical Names under TOPS-20. 

12. If the input and output files have the same name and 
extension, and are both on disk, the extension of the input 
file is changed to .BAK at the completion of the operation. 

7-17 



COBOL-74 UTILITY PROGRAMS 

7.2.4 LIBARY Switches 

The following switches can be included in the command string to 
LIBARY. 

/D - List on the user terminal all of the library-names contained 
on the input library file. 

/H - List on the user terminal all of the commands available with 
LIBARY. 

/L - Create only a listing file of the entire input library. The 
output file specification must be omitted. 

/S - Put the input statement group into conventional format. 

/W - Rewind (for magnetic tape only). 

/Z - Clear an output directory (for DEC tape only). 

7.2.5 Running LIBARY 

Running LIBARY consists of specifying commands in response to the 
LIBARY asterisk prompting character (*). Each command causes'LIBARY 
to move forward in the file. Because LIBARY cannot move backward in 
the fiie, you should plan your interaction with LIBARY so that you 
create or modify your files in alphabetical order by statement group. 
This will keep you from having to restart LIBARY and reprocess your 
file. 

LIBARY is organized so that you can optionally create new library 
files, insert or delete statement groups into an existing file, or 
make line-by-line changes to an existing file. It has, therefore, two 
major modes of operation: group mode or edit mode. Group mode 
provides a means of inserting, replacing, extracting, and deleting 
entire statement groups; edit mode provides a means of inserting new 
lines or deleting or modifying existing ones. 

NOTE 

Edit mode in" LIBARY acts as a fext 
editor for the library. However, this 
editor is not as powerful or as useful 
as the text editors provided with the 
operating system (such as TECO and 
EDIT) • LIBARY edit mode is there for 
historical reasons and its use is not 
recommended. 

7-18 



COBOL-74 UTILITY PROGRAMS 

7.2.6 LIBARY Commands 

The following sections describe the commands available with LIBARY. 
LIBARY commands are divided into three classes of commands: 

• Group mode 

• Edit mode 

• LIBARY~directing 

(See Section 7.2.6.1) 

(See Section 7.2.6.2) 

(See Section 7.2.6.4) 

These commands may be abbreviated as long as you supply a unique 
abbreviation. 

7.2.6.1 Group Mode Commands - Group mode commands allow you to 
insert, replace, extract, and delete entire statement gro~ps. The 
group mode commands are: 

NOTE 

For the remainder of this chapter, the 
words "line number" refer to the line 
numbers generated by a system standard 
editor~ the words "COBOL line number" 
refer to the conventional line numbers 
as described in Part 2, Section 1.3, 
Source Program Format. 

DELETE, library-name 

Delete the statement group identified by library-name from the 
library file. The library-name itself is also deleted. LIBARY 
moves forward through the input library file. It copies each 
statement it finds onto the output file until it encounters the 
library entry specified by library-name. When library-name is 
reached, LIBARY positions itself at the next sequential library 
entry and waits for another command. 

EXTRACT, library-name, file-specification 

Extract the complete library entry specified by library-name from 
the input library file and generate a new file named file-name. 
LIBARY searches the input library file for the library entry 
specified by library-name. When library-name is found, it 
creates a file or overwrites an existing file with the attributes 
specified by file-name and copies the library entry onto it. The 
input library file remains unchanged. 

INSERT, library-name, file-specification 

Insert the statement group contained on the file specified ~y 
file-name into the output library file. The statement group 1S 
inserted alphabetically according to the name specified ~by 
library-name. The file specified by file-name must be an ASCII 
file. LIBARY assumes that the entire file is to be inserted 
under library-name. If you want to insert many entries, you must 
create a separate file for each and execute a separate INSERT 
command for each. If there are line numbers in the file, they 
are included when the file is merged. If there are no line 
numbers, LIBARY generates them starting with 10 and incrementing 

7-19 



COBOL-74 UTILITY PROGRAMS 

by 10. If the library entry being inserted contains COBOL line 
numbers, the /S switch must be specified. (See Section 7.2.4, 
LIBARY Switches.) 

REPLACE, library-name, file-specification 

Replace the library entry identified by library-name with the 
statement group contained on the file specified by file-name. 
The file specified by file-name must be an ASCII file. LIBARY 
assumes that the entire file is to replace the statements 
currently associated with library-name. If you want to replace 
many library entries, you must create a separate file for each, 
and execute a separate REPLACE command for each. If there are 
line numbers in the file, they are included. If there are no 
line numbers, LIBARY generates them starting with 10 and 
incrementing by 10. The /S switch must be specified for files 
having COBOL line numbers. (See Section 7.2.4, LIBARY Switches.) 

7.2.6.2 Edit Mode Commands - Edit mode commands allow you to create a 
library file or modify an existing one with line-by-line edits from 
your terminal. To edit your file, you must first specify one of the 
following commands to enter edit mode; after which, you can enter an 
appropriate edit command to affect the actual editing you wish to 
perform: 

CORRECT, library-name 

positions LIBARY to the group of statements specified by 
library-name and enters edit mode. Any of the commands described 
in Section 7.2.6.3, Edit Commands, can be entered at this time. 
If the /N switch is specified, LIBARY puts new line numbers on 
the output (corrected) statements. (See Section 7.2.4, LIBARY 
Switches.) 

INSERT, library-name 

positions LIBARY at the place in the library file that the 
specified library-name will be inserted. It then enters edit 
mode and waits for you to enter statements that will compose the 
module. The I command, described in Section 7.2.6.3, is used for 
this purpose. 

REPLACE, library-name 

positions LIBARY at the statement group specified by library-name 
and deletes it. It then enters edit mode and waits for you to 
insert source lines by means of the I comm~nd. (See Section 
7.2.6.3, Edit Commands.) 

7.2.6.3 Edit Commands - The commands given in this section allow you 
to insert, delete, and replace individual source lines in a statement 
group. Source lines should be edited in numeric order within a 
statement group because LIBARY can only move forward in the file. The 
following edit commands are provided: 

Dnnnnnn 

Delete the line specified by nnnnnn. The line number can be 
entered without leading zeros. That is, you need not enter six 
characters unless there are that many characters actually in the 
line number. 

7-20 



COBOL-74 UTILITY PROGRAMS 

Innnnnn COBOL statement 

Insert the COBOL statement into the statement group according to 
the line number specified by nnnnnn. The line number can be 
entered without leading zeros. A space or tab must be included 
between the line number and the COBOL statement; the space will 
not be included in the statement, but the tab will. 

Rnnnnnn COBOL-statement 

Replace the source line identified by nnnnnn with the specified 
COBOL-statement. The line number can be entered without leading 
zeros. A space or tab must be included between the line number 
and the statement; the space will not be included in the 
statement, but the tab will. 

7.2.6.4 LIBARY-Directing Commands - LIBARY-directing commands allow 
you to end or restart library processing. The LIBARY-directing 
commands are: 

END 

Copy any remaining statement groups from the input to the output 
file, close both the input and output files, and rename the input 
file-with the extension .BAK, if necessary. 

RESTART 

Copy any remaining statement groups from the input to the output 
files, close both the input and output files, rename the input 
file with the extension .BAK, and reopen the output file as the 
new input. Any changes made prior to issuing the RESTART command 
are in the new input file. 

NOTE 

LIBARY maintains source modules in 
ascending order. Line numbers within 
modules are also in ascending order. If 
you want to go back in processing to a 
line previously passed, use the RESTART 
command. 

7.2.6.5 Example of Command Usage - A library on disk contains the 
routines PAYCOMP, FIND-MP, and MP-DESCR. This example shows you how 
to do the following: 

1. Insert a new routine called JOB-DESC 

2. Correct MP-DESCR 

3. Delete PAYCOMP 

These tasks must be undertaken in this order because LIBARY deals with 
code units in alphabetic order only. The MP-DESCR routine contains 
the following source statements: 

000010 
000020 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS MP-RECORD. 

7-21 



COBOL-74 UTILITY PROGRAMS 

The dialogue at the terminal might appear as follows: 

.R LIBARY 
*LIBARY.NEW=LIBARY.OLD 
*INSERT JOB-DESC 
*IlO LABEL RECORDS ARE STANDARD; 
*I20 VALUE OF ID IS "JOBS DAT"; 
*I30 DATA RECORD IS JOB-RECORD. 
*CORRECT MP-DESCR/N 
*I5 BLOCK CONTAINS 5 RECORDS 
*DELETE PAYCOMP 
*END 

The file LIBARY.NEW now contains the following: 

1. FIND-MP 

2. JOB-DESe 

3. MP-DESCR, altered to appear as follows: 
000010 BLOCK CONTAINS 5 RECORDS 
000020 LABEL RECORDS ARE OMITTED 
000030 DATA RECORD IS MP-RECORD. 

To insert one or more files in a library, you can issue the following 
commands to LIBARY . 

• R LIBARY 
*ALIB,ALIB= 
*INSERT AFIL,AFIL 
*INSERT BFIL,BFIL 
*END 

The file ALIB.LIB contains two statement groups (AFIL and BFIL) and 
the file ALIB.LST contains the following information. 

A F I L COBOL LIBRARY 01-DEC-78 09:52 

000010 DISPLAY "A". 

B F I L COBOL LIBRARY 01-DEC-78 09:52 

000010 DISPLAY "B". 

7.3 COBDDT - PROGRAM FOR DEBUGGING COBOL PROGRAMS 

COBDDT is an interactive program that is used to debug COBOL programs 
at tun-time. With COBDDT, you can: 

1. Change the contents of a data-name 

2. Set up to 20 breakpoints in a program 

3. Continue fro~ a breakpoint to any other breakpoint 

4. Display the contents of a data-name 

7-22 



COBOL-74 UTILITY PROGRAMS 

5. Trace paragraphs and sections 

6. Obtain a histogram of program behavior 

7.3.1 Loading and Starting COB DDT 

COBDDT is run after it is loaded and started with a compiled program. 

NOTE 

The program being debugged must not have 
been compiled with the /P switch. The 
/P switch suppresses the user symbols 
that are necessary for COBDDT. 

The program and COBDDT can be loaded by either the monitor LOAD 
command or direct commands to LINK. In either case, LINK must load 
user symbols along with the program and COBDDT. The /LOCALS switch in 
the LINK command string causes the necessary user symbols to be 
loaded. After loading, the user issues a monitor command to start the 
program. The monitor command DEBUG can also be used to load and start 
COBDDT with a COBOL program. You can specify the name of the source 
file or the relocatable binary file. If the program cannot be 
recognized as a COBOL program (i.e., its extension is not .CBL), the 
/COBOL switch must be included in the DEBUG command string. When 
COBDDT is loaded with the user program, COBDDT is started, not the 
program. The three methods of loading and starting are shown below. 
Although all system prompts shown are for TOPS-IO, TOPS-20 acts 
exactly the same way. 

1. .LOAD % "LOCALS" file spec, SYS:COBDDT<RET> 
.START<RET> 

2. .DEBUG file spec [/COBOL]<RET> 

3. .R LINK<RET> 
*/LOCALS file spec, SYS:COBDDT /GO<RET> 
.START<RET) 

When the program is started, COBDDT is entered. This is shown by the 
message: 

STARTING COBDDT 
* 

You can now issue any COBDDT command (described below). If you want 
to run your program at this time, enter the PROCEED command. This 
will cause your program to run to completion or until a fatal error is 
encountered. If an error. is encountered that would normally cause 
abortion of execution, COBDDT is entered automatically and the 
message: 

?ENTERING COBDDT FROM: <paragraph-name) 

gives the name of the paragraph in which the error occurred. COB DDT 
can then be used to check data values at the time of the failure. The 
program cannot proceed after COBDDT has been entered due to an error. 

7-23 



COBOL-74 UTILITY PROGRAMS 

If the COBOL program is in a loop and is not reaching a breakpoint, 
you can enter COBDDT by typing CTRL/C two times followed by REENTER. 
For example: 

~C~C REENTER 

This will cause COBDDT to display the following message: 

DO YOU WANT TO ENTER COBDDT (Y or N) 

If you enter Y, COBDDT will be entered at the next TRACE entry in the 
COBOL program. If you enter N, however, your COBOL program will be 
reentered at the reenter address. 

7.3.2 COB DDT Commands 

The commands to COBDDT are described below. Only the first letter of 
each command needs to be typed for COBDDT to recognize the command. 
Data-names and section-names need not be typed in full as long as each 
name or portion of the name is unique in the program. Paragraph-names 
may be qualified by section-names, and data-names may be qualified by 
higher-level data-names or subscript values or both. The subscripts 
for a qualified data-name must appear immediately after the first 
data-name. Subscripts must be numeric integers. Section-names and 
data-names cannot be qualified by program-names because COBDDT uses 
the names in the program specified in the MODULE command. 

ACCEPT 

BREAK 

The ACCEPT command allows you to change the contents of a data 
item. The new contents of the data item are typed on the next 
line. The ACCEPT command has the forms: 

ACCEPT 
ACCEPT data-name 

If the data-name is not specified, the last name specified in a 
DISPLAY or another ACCEPT command is assumed. 

Example: 

ACCEPT VAR1<RET> 
16.2S<RET> 

The BREAK command sets a breakpoint (or pause) at the beginning 
of the specified paragraph. A breakpoint cannot be set on a 
section. The form of the BREAK command is: 

BREAK paragraph-name 

Not more than 20 
Breakpoints cannot 
program. 

breakpoints 
be set in 

can be set in a program. 
the high segment of a reentrant 

Breakpoints can be set in nonresident COBOL segments, whether or 
not the segment is in memory. If more than one module is in 

7-24 



COBOL-74 UTILITY PROGRAMS 

memory, the name of the module in which the break 
typed with the paragraph and section names. 
breakpoints in LINK overlays, but all breaks in the 
cleared when the overlay is overlaid or cancelled. 

occurred 
You can 
overlay 

lS 
set 
are 

Example: 

BREAK PARI IN COMPUTING 

CLEAR 

The CLEAR 
paragraph. 

command removes the breakpoint 
The CLEAR command has the forms: 

CLEAR paragraph-name 
CLEAR 

at a specified 

If the paragraph-name is not specified, all breakpoints that have 
been set in the program are removed. 

Example: 

CLEAR PARI IN COMPUTING 

DISPLAY 

The DISPLAY command causes the contents of 
displayed on the user's terminal. The 
command are: 

a data item to be 
forms of the DISPLAY 

DISPLAY 
DISPLAY data-name 

If no data-name is specified, COB DDT uses the last data-name 
specified in an ACCEPT or DISPLAY command. 

Example: 

DISPLAY ALPHA 

MODULE 

The MODULE command causes COBDDT to look 
procedure names in the specified program. 
command is: 

for data names and 
The form of the MODULE 

MODULE [program-name] 

If the name is omittea, COBDDT types the name of the current 
module followed by the names of all modules currently in memory. 

Normally, within a run unit containing more than 
COBDDT searches for data names and procedure names 
program. The MODULE command changes the program 
search will take place. All subsequent searches 
and procedure names will be within the specified 
another. MODULE command is issued. 

7-25 

one program, 
in the current 
in which the 
for data names 
program until 



COBOL-74 UTILITY PROGRAMS 

If the current module is cancelled or overlaid, the main program 
becomes the current module. 

Example: 

MODULE MYPROG 

OVERLAY 

The OVERLAY command either causes a break 
entered or clears the breakpoint. The 
command are: 

OVERLAY ON 
OVERLAY OFF 

when an overlay is 
forms of the OVERLAY 

OVERLAY ON causes COBDDT to break the first time that a LINK 
overlay is entered each time it is brought into memory. The 
break only occurs once for each time the overlay is brought into 
memory. COBDDT types the following message when the break 
occurs: 

BREAK UPON ENTRY TO name 

where name is the name of the entry point. Following the 
message, COBDDT types t~e name of the current module and a list 
of th~ modules currently in memory. 

OVERLAY OFF causes COBDDT not to break when a LINK overlay is 
entered and not to type the information described above. OVERLAY 
OFF is the initial default. 

PROCEED 

STOP 

The PROCEED command causes the program either to be started or to 
continue execution after a breakpoint caused it to pause. The 
PROCEED command has the forms: 

PROCEED 
PROCEED n 

After a PROCEED command is executed, the program runs either to 
completion or until another breakpoint is reached. If an integer 
is included with the command, the program runs until the n(th) 
occurrence of the preceding breakpoint has been reached. Thus 
PROCEED I is equivalent to PROCEED. 

Example: 

PROCEED 3 

The STOP command is equivalent to the COBOL STOP RUN statement. 
All files that are open are closed and program execution is 
terminated. The STOP command has the form: 

STOP 

7-26 



COBOL-74 UTILITY 'PROGRAMS 

TRACE 

WHERE 

The TRACE command either starts or stops tracing, depending on 
the form of the command. The forms of the TRACE command are: 

TRACE ON 
TRACE OFF 

TRACE ON causes tracing of all paragraphs and sections as they 
are executed. Whenever a paragraph or section is entered, its 
name, enclosed in angle brackets «», is typed on the user's 
terminal. 

For each depth of subprogram, COBOOT types an exclamation point 
(!) before each paragraph or section n~me. For each depth of a 
PERFORM statement, CO BOOT also types an asterisk (*) before each 
paragraph or section name. The maximum length of the string 
printed is 35 characters. Note that the exclamation point and 
asterisk are printed for each depth of subprogram or PERFORM. 

Example: 

TRACE ON 
!!*!**<PARA> 

When a LINK overlay is brought into memory, COBOOT types the 
names of any modules overlaid and the names of the modules in the 
new overlay. When a LINK overlay is cancelled, COBOOT types the 
names of the modules in that overlay. 

TRACE OFF causes COBOOT to stop tracing procedures until either 
execution is terminated or another TRACE ON command is executed. 

The WHERE 
paragraphs 
command is: 

WHERE 

command causes COBOOT to list the names of all 
at which breakpoints were set. The form of the WHERE 

If more than one module is in memory, the module name is included 
with the paragraph name. 

7.3.3 Obtaining Histograms of Program Behavior 

The histogram facility in COBOOT allows you to obtain a report of the 
number of times each section and paragraph in your COBOL program was 
entered as well as the total amount of processor time and elapsed time 
spent in each section and paragraph. The commands for using this 
feature are described in the following sections., 

Both words of the histogram commands can be shortened to their unique 
abbreviations. None of the commands can be abbreviated to just Hi 
the first letter of the second word of the command must be present; 
for example, H I, H B, and H E are legal. 

7-27 



COBOL-74 UTILITY PROGRAMS 

7.3.3.1 Initializing the Histogram Table - The HISTORY INITIALIZE 
command causes cOBDDT to set up and initialize the histogram table in 
which are stored the statistics for the histogram. The form of this 
command is: 

HISTORY INITIALIZE [filespec] ['title'] 

The file specification is the device, filename, extension, and 
project-programmer number of the output histogram report 
(dev:file.ext[p,pn]). If the entire file specification is omitted, 
the user's terminal is assumed. If the device is omitted but the 
filename is included, DSK is assumed. If the extension is omitted, 
.HIS is assumed. If the project-programmer number is omitted, that of 
the logged-in user is assumed. Users of TOPS-20 who wish to specify a 
directory other than the default may run the TRANSLATE program to 
determine the correct project-programmer number. (See the TOPS-20 
User's Guide for information on how to do this.) For an alternative 
which is generally more useful, see Appendix E, Defining Logical Names 
under TOPS-20. 

The title is the one that will be printed as the second line of the 
histogram report. It must be enclosed in single quotation marks and 
can have a maximum length of 70 characters. 

Once you specify a file specification and/or title, it becomes the 
default for any subsequent reports until explicitly changed. 

It is not necessary to use this command, but it is advisable to qo so 
if only a portion of the program's statistics are to be recorded. The 
table can also be reinitialized by means of the HISTORY INITIALIZE 
command to begin a new histogram. 

7.3.3.2 Starting the Histogram - The HISTORY BEGIN command causes 
COB DDT to start gathering statistics for each section and paragraph 
entered after this command is issued. This command has the form: 

HISTORY BEGIN [filespec] ['title'] 

The file specification is the device, filename, extension, and 
project-programmer number of the output histogram report 
(dev:file.ext[p,pn]). If the entire file specification is omitted, 
the user's terminal is assumed. If the device is omitted but the 
filename is included,DSK is assumed. If the extension is omitted, 
.HIS is assumed. If the project-programmer number is omitted, that of 
the logged-in user is assumed. Users of TOPS-20 who wish to specify a 
directory other than the default may run the TRANSLATE program to 
determine the correct project-programmer number. (See the TOPS-20 
User's Guide for information on how to do this.) For an alternative 
which is generally more useful, see Appendix E, Defining Logical Names 
under TOPS-20. 

The title is the one that will be printed as the second line of the 
histogram report. It must be enclosed in single quotation marks and 
can have a maximum length of 70 characters. 

Once you specify a file specification and/or title, it becomes the 
default for any subsequent reports until explicitly changed. 

The HISTORY BEGIN command implies a HISTORY INITIALIZE command if one 
has not already been issued and if a histogram has not already been 

7-28 



COBOL-74 UTILITY PROGRAMS 

started. If a histogram already exists, HISTORY BEGIN will add data 
to that histogram. The statistics collected are: 

The number- of times each paragraph or section is entered 
The CPU time spent within each paragraph or section 
The elapsed time spent within each paragraph or section 
The elapsed time and CPU time for overhead 
The elapsed time and CPU time that is unaccounted for 

7.3.3.3 Stopping the Histogram - The HISTORY END command causes 
COB DDT to stop gathering statistics for the histogram. This command 
has the form: 

HISTORY END 

If you wish to gather statistics throughout the entire execution of 
the program, you need not use the HISTORY END command. However, if 
you wish to stop gathering statistics for the histogram before the 
program finishes, you must set a breakpoint at the appropriate 
paragraph and, when the break occurs, use the HISTORY END command. 

7.3.3.4 Obtaining Histogram Listing - The HISTORY REPORT command 
causes COBDDT to list the available statistics in a report. This 
command has the form: 

HISTORY REPORT '[file specification] ['title'] 

The file specification is the device, filename, extension, and 
project-programmer number of the output histogram report 
(dev:file.ext[p,pn]). If the entire file specification is omitted, 
the user's terminal is assumed. If the device is omitted but the name 
is included, DSK is assumed. If the extension is omitted, .HIS is 
assumed. If the project-programmer number is omitted, that of the 
logged-in user is assumed. Users of TOPS-20 who wish to specify a 
directory other than the default may run the TRANSLATE program to 
determine the correct project-programmer number. (See the TOPS-20 
User's Guide for information on how to do this.) For an alternative 
which is generally more useful, see Appendix E, Defining Logical Names 
under TOPS-20. 

The title is the one that will be printed as the second line of the 
histogram report. It must be enclosed in single quotation marks and 
can have a maximum length of 70 characters. 

Once you specify a file, specification and/or title, it becomes the 
default for any subsequent reports until explicitly changed. 

The format for the histogram report is shown below. The heading is 
printed for each module that is in memory at the time the report is 
printed, even if the module was never entered. If the report is 
printed while a module for which statistics were gathered is not in 
memory, the statistics for that module are not printed. 

COBDDT HISTOGRAM FOR module-name 
title 

PROCEDURE 
-section-name
paragraph-name 

OVERHEAD: 
UNACCOUNTED: 

ENTRIES 
integer-2 
integer-3 

ELAPSED:time-S 
ELAPSED:time-7 

7-29 

CPU 
time-l 
time-3 

CPU:time-6 
CPU:time-8 

REPORT: integer-l 

ELAPSED 
time-2 
time-4 



module-name 

integer-l 

title 

section-name 

integer-2 

time-l 

time-2 

paragraph-name 

integer-3 

time-3 

time-4 

time-5 

time-6 

time-7 

time-8 

COBOL-74 UTILITY PROGRAMS 

is the name of the module, taken from the 
PROGRAM 10 clause. 

is the report number. It starts at I and is 
incremented by I for each report produced in 
a run. 

is the title that the user specified in one 
of the HISTORY commands. 

is the name of a section into which control 
was transferred or passed. Each paragraph in 
the section to which control was passed is 
given with the section. 

is the number of times control was passed 
directly to the section. 

is the amount of CPU time spent in the 
section. 

is the amount of elapsed time spent in the 
section. 

is the name of a paragraph to which control 
was transferred or passed. 

is th~ number of times control was passed to 
this paragraph. 

is the amount of CPU time spent in this 
paragraph. 

is the amount of elapsed time spent in this 
paragraph. 

is the elapsed time spent entering and 
exiting from subprograms and PERFORM 
statements. If this time is 0, the line is 
not printed. 

is the CPU time spent entering and exiting 
from subroutines and PERFORM statements. 

is the elapsed time that could not be charged 
to any section or paragraph. If this time is 
0, the line is not printed. 

is the CPU time that could not be charged to 
any section or paragraph. For example, when 
a subprogram is entered, the time accrued 
until the first paragraph or section is seen 
is charged to unaccounted. 

If control is never passed to a particular section or paragraph, 
nothing is printed for that section or paragraph. When a PERFORM 
statement or subprogram is entered, the current paragraph or section 
is saved on a stack so that COBOOT can continue to charge time to the 
correct section or paragraph when the return is done. The size of the 
stack 'is 20 locati'ons. After a depth of twenty calls or PERFORM 
statements is reached, time is charged to unaccountable. 

7-30 



COBOL-74 UTILITY PROGRAMS 

A sample histogram report is shown below. 

COBDDT HISTOGRAM FOR CASHX REPORT: 1 

PROCEDURE ENTRIES CPU ELAPSED 

-GENERATED-SECTION-NAME- 0 1.360 21.707 
START 721 0.008 2.641 
ST-l 1 0.000 0.000 
START-2 721 0.385 5.616 
INITIAL-SETUP 1 0.016 0.233 
END-INITIAL-SETUP 1 0.000 0.017 
CONVERT-RECORDS 721 0.400 5.575 
END-CONVERT-RECORDS 721 0.167 2.146 
RATE-IT 721 0.178 2.086 
END-RATE-IT 721 0.206 3.393 

7.3.3.5 Using the Histogram Feature - To use the histogram feature, 
issue the following commands upon entering COBDDT for the first time. 

HISTORY INITIALIZE 
HISTORY BEGIN 

At any time when you are stopped at a breakpoint, you can stop 
gathering statistics for the histogram by issuing the HISTORY END 
command. If you issue a HISTORY BEGIN command after a HISTORY END 
command, the histogram will continue from the point where the HISTORY 
BEGIN command was issued. However, if after a HISTORY END command you 
issue a HISTORY INITIALIZE and a HISTORY BEGIN command, the previous 
statistics will be lost and a new histogram begun. To get the 
previous histogram, issue a HISTORY REPORT command before the HISTORY 
INITIALIZE command. 

If a histogram file already exists with the same file specification as 
the one given, the histogram report is appended to the existing file. 
If the file specification is different, COBDDT starts a new histogram 
file. 

7.4 RERUN - PROGRAM TO RESTART COBOL-74 PROGRAMS 

The RERUN program is used to restart a COBOL program that has been 
terminated abnormally due to a system failure, a device error, or an 
exceeded disk quota. RERUN uses checkpoint files, which are similar 
to memory-image dump files. They are created in one of two ways: 

• By including RERUN statement(s) in the COBOL program itself 

• By typing CTRL/C twice followed by REENTER during program 
execution 

The COBOL system creates a checkpoint file by writing a memory-image 
dump file of the program onto disk and adding some other information 
to allow a later restart of the program. At the same time, the COBOL 
system closes and reopens all disk and magnetic tape output files. 
The dump is not performed, however, if any files are open for 
input/output (updating), if an indexed-sequential file is open when 
the dump is requested, or if a sort is in progress. Each time the 
checkpoint file is written, the COBOL system types the message DUMP 
COMPLETED on the user's terminal. 

7-31 



COBOL-74 UTILITY PROGRAMS 

If the COBOL program is interrupted during execution, you can restart 
the program by means of the RERUN program. The RERUN program reads 
the dump file back into memory, restores the files to their state at 
the time the checkpoint file was written, and then passes control to 
the COBOL program so that it can continue processing to completion. 
RERUN assumes that the operating environment at the time the COBOL 
program was interrupted is the same as the environment at the time the 
checkpoint file was written. Thus, the files must be associated with 
the same types of devices, and devices must have the same logical 
names. 

7.4.1 Operating RERUN 

To restart a COBOL program from the last checkpoint file written 
before execution stopped, type R RERUN in response to the operating 
system prompt (users of TOPS-20 may respond RERUN). For example: 

.R RERUN<RET> for users of TOPS-IO 

or 

@RERUN<RET> for users of TOPS-20 

The program responds with the message: 

TYPE CHECKPOINT FILENAME 

Type the name of the checkpoint file in which the core-image dump is 
stored. 

When a checkpoint dump is being written, the COBOL system uses the 
filename of the program as the name of the checkpoint file and adds 
the extension .CKP. If the COBOL program does not have a filename 
because it was not saved, the COBOL system takes the checkpoint 
filename from the PROGRAM-ID in the program and adds the extension 
.CKP. If the program has been divided into a 2-segment file, the 
high-segment filename must be the same as the low-segment filename. 
Thus, when you respond with the checkpoint filename you are in effect 
telling RERUN the program name as well. 

If a logical device name is encountered in the program, RERUN types 
the following message: 

ASSIGN device name 
TYPE CONTINUE WHEN DONE 

and exits to monitor command level. The appropriate ASSIGN command 
should be given to assign the logical device to a specific one. Then 
a CONTINUE monitor command will reenter RERUN. 

7-32 



COBOL-74 UTILITY PROGRAMS 

7.4.2 Examples of Using RERUN 

In the following example, the user has a COBOL program that was 
terminated by a system failure. Checkpoints had been inserted in the 
program by means of RERUN statements. The program has a filename of 
ACCNT; thus, the checkpoint filename is ACCNT.CKP. Instead of 
running the program again from the beginning, the user employs the 
RERUN program to restart his program from the last checkpoint written 
before the program stopped. He types: 

.R RERUN<RET> 

and RERUN responds: 

TYPE CHEC~POINT FILENAME 

The user types: 

ACCNT.CKP<RET> 

RERUN loads the checkpoint file into memory, reopens and repositions 
the magnetic tape and disk files, and passes control to the COBOL 
program so that it can continue processing to completion. 

In the example below, a user running a COBOL program is notified that 
the system is going down. He does not have any RERUN statements in 
his program, yet he wishes to create a checkpoint file so that the 
processing done by his COBOL program up to that point is not wasted. 
He creates the checkpoint file by typing CTRL/C twice and then typing 
REENTER. The checkpoint file is written by the COBOL system onto disk 
with a filename of PROGl3 (taken from the PROGRAM-ID) and an extension 
of .CKP. After the system is restored, the user can restart the 
program by running the RERUN program. The dialogue is as follows: 

@RERUN<RET> 
TYPE CHECKPOINT FILENAME 
PROGl3.CKP<RET> 

The program PROGl3 is loaded into memory, its files are reopened, and 
it continues running to completion. 

7-33 





CHAPTER 8 

FILE FORMATS 

8.1 RECORDING MODES 

The recording mode specifies the byte size of the data and, except for 
binary mode, also specifies the character set used. The four 
recording modes and their respective byte sizes are: 

RECORDING MODE 

ASCII 
SIXBIT 
EBCDIC 
Binary 

BYTE SIZE 

7 bits 
6 bits 
8 bits 
36 bits (1 word) 

The following sections describe the recording modes in more detail. 

8.1.1 ASCII Recording Mode 

An ASCII word consists of 5 characters left justified in the word. 
Each character is represented by a 7-bit byte: 

ASCII RECORDING MODE 

BITNU 

BINAR 
REPRE 

MBER __ 0 1 234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Y --SENTATION 

DATA . 
BYTES: 5 

• 0 o 0 

A 

• = on bit 
o = off bit 

00. 

X = unused bit 

o • • 0 0 0 • 
1 

• 0 0 0 0 • 0 0 • • 0 

B 

Figure 8-1 ASCII Recording Mode 

NOTE 

0 • 
2 

A variant form of ASCII, line-sequence 
ASCII, sets bit 35 of the line-sequence 
word to 1. 

8-1 

0 

28 29 30 31 32 33 34 35 

• 0 0 0 0 • • x 

C 

MR-S-030-79 



FILE FORMATS 

8.1.2 SIXBIT Recording Mode 

SIXSIT is a compressed form of ASCII in which lowercase letters and a 
few special characters are not used. A SIXBIT word consists of 6 
characters per word, with each character represented by a 6-bit byte: 

BITN UMBER ___ 

Y BINAR 
REPR ESENTATION -

DATA . 
BYTES: 6 

o 1 2 3 

• 0 o 0 

A 

• = on bit 
o = off bit 

SIXBIT RECORDING MODE 

456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

o • o • 000 • • 0 0 0 • 0 0 • 0 0 • 0 • 
1 B 2 

Figure 8-2 SIXBIT Recording Mode 

8.1.3 EBCDIC Recording Mode 

25 26 27 28 29 30 31 32 33 34 35 

0 0 0 • • 0 • 0 0 • • 
C 3 

MR·S·031·79 

An EBCDIC word consists of 4 characters per word. Each byte is 9 bits 
long, but the first bit in each byte is unused. Each character is 
represented by 8 bits: 

BITNU MBER 0 1 2 3 4 
Y __ 

SENTATION X 
BINAR 
REPRE • • • 0 

DATA . 
BYTES: 4 

• = on bit 
o = off bit 

A 

X = unused bit 

EBCDIC RECORDING MODE 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

o 0 o • X • • • • 0 b 0 • x • • • 0 0 0 

1 B 

Figure 8-3 EBCDIC Recording Mode 

25 26 27 28 29 30 31 32 33 34 35 

• 0 x • • • • 0 0 • 0 

2 

MR·S-032·79 

A variant form, used only for magnetic tape, is industry-compatible 
EBCDIC. In this form of EBCDIC, there are 4 characters per word, left 
justified within the word. Each character is represented by an 8-bit 
byte. The last 4 bits in the word are unused: 

INDUSTRY·COMPATIBLE EBCDIC RECORDING MODE 

BITNU MBER 0 1 234 567 

Y BINAR 
REPRE SENTATION -- • • • 000 o • 

DATA .. 
BYTES: 4 

A 

• = on bit 
o = off bit 

8 9 10 11 12 

• • • • 0 

1 

13 14 HI 16 17 18 19 20 21 22 23 

0 0 • • • • 0 0 0 • 0 

B 

24 25 26 27 28 29 30 

• • • • 0 0 • 
2 

Figure 8-4 EBCDIC Recording Mode - Industry-Compatible 

8-2 

31 32 33 34 35 

0 X X X X 

MR·S-033·79 



FILE FORMATS 

8.1.4 BINARY Recording Mode 

Unlike the recording modes previously mentioned, binary mode does not 
specify a character set for the data. In binary mode, the entire 
36-bit word is interpreted as a single byte of binary data: 

BINARY RECORDING MODE 

BIT N UMBER--- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

Y -- 000 o 0 o 00 • • • 0 0 • 0 • • • • 0 0 0 0 0 0 
BINAR 
REPR ESENTATION 

000 0 0 0 • 0 0 0 • 
DATA 

BYTES: 1 

.. 

• = on bit 
o = off bit 

2,739,136 

MR·S-034·79 

Figure 8-5 Binary Recording Mode 

8.2 FILE FORMATS 

The file format specifies the structure of the record used to store 
the data. The following sections describe all major file formats. 
Each section includes a diagram of the file format and a COBOL code 
segment that will generate the file format. 

The following conventions are used in the diagrams:. 

1. Alphanumeric or numeric character data in a word is shown 
with each individual character enclosed in a box. The box 
represents 1 byte. Thus, a word of ASCII data would be shown 
as follows: 

2. Binary data in a word (fixed- and floating-point numbers) is 
shown by a number in the word: 

132156.101 
3. EBCDIC packed-decimal values are shown as two decimal digits 

per EBCDIC byte. The right half of the rightmost byte 
contains the sign. Neither the digits nor the sign are 
EBCDIC characters. 

4. COBOL signed numeric data, such as produced by PIC S9(n), is 
shown wi th the over-punched character, .if the sign is 
negative. For example, -12345 is shown as l234N, with the N 
representing both the negative sign and the value 5. 
DIGITAL's COBOL does not use over-punched characters for 
positive sign representation, so diagrams depicting positive, 
signed numeric data do not show a sign. 

5. Italicized characters in a diagram do not depict data; 
label or clarify parts of the diagram: 

RDW301 ° 

8-3 

they 



FILE FORMATS 

6. Heavy vertical lines are used to delimit individual fields 
within a record: 

7. Padding, the use of blanks or nulls to force the next record 
to begin on some boundary (for example, a word or disk-block 
boundary), is shown by white space in the word: 

You cannot consider padding as part of a record field, nor can you use 
padding as part of a key field. However, the length of any padding 
must be taken into account when calculating record length and key 
starting position. 

8.2.1 Fixed-Length ASCII 

A fixed-length ASCII file consists of records containing five 
characters per 36-bit word, with each group of 5 characters 
left-justified within the word. Fixed-length ASCII records must end 
with a carriage-return/line feed. The following diagram illustrates 
the format of fixed-length ASCII records: 

WORD 

I A 

2 F 

3 B 

4 G 

5 C 

6 CID 

D 

8 GD 

B C D E 

G G!!) GO A 

C D E F 

G!!) CD A B 

D E F G I 
GD A B C 

E F G CID 

CID CARRIAGE RETURN 
~ LINE FEED 

RECORD 

2 

3 

4 

MR·S·035·79 

Figure 8-6 Fixed-Length ASCII 

8-4 



FILE FORMATS 

CODE SEGr·1ENT; 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS A~CII. 

DATA DIVISION. 
FILE SECTION. 

FD filename VALUE OF ID 'DATA FIL'. 
01 record-i DISPLAY-7. 

02 field-l PIC X(6) VALUE "AB12EF". 
02 field'-2 
02 field-"3 
02 field-A 
02 field--5 

PIC A(3) VALUE -GHI". 
PIC 9(4) VALUE 3249. 
PIC S9(6) VALUE -~81253. 
PIC 99(6) V9999 VALUE +31458.5012. 

Figure 8-7 illustrates the record produced by the code segment shown 
above: 

WORD 

I A B 1 2 E 

2 F G H I 3 

3 2 4 9 4 8 

4 1 2 5 L 0 

5 3 1 4 5 8 

6 5 0 1 2 G!) 

7 GO 

MR-5'()36·79 

Figure 8-7 COBOL Fixed-Length ASCII 

8.2.2 Variable-Length ASCII 

Variable-length ASCII consists of records containing five characters 
per 36-bit word, with each group of 5 characters left-justified within 
the word. Variable-length ASCII records must end with some 
combination of the following control characters: 

l~ carriage return 

2. line feed 

3. vertical tab 

4. form feed 

8-5 



FILE FORMATS 

The following diagram illustrates the format of variable-length ASCII 
records: 

I A 

2 F 

3 C 

4 H 

5 A 

6 A 

7 F 

B C D E 

GD G!:) A B 

D E F G 

I J GD C!D 

E G!D CD C!D 

B C D E 

G!D G!:) 

(ill) =CARRIAGE RETURN 
G!:) = VERTICAL TAB 
C!!:) = FORM FEED 
~ =LlNE FEED 

2 

3 

4 

MR -S-03 7-79 

Figure 8-8 Variable-Length ASCII 

8-6 



CODE SEGMENT~ 

FILE FORMATS 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE--CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS ASCII. 

FILE SECTION. 

FD filename VALUE OF ID 'DATA FIL'. 
01 record-1 DISPLAY-7. 

02 field-1 PIC X(7) VALUE 'AB13521 1
• 

02 field-2 PIC S9(7) V99 VALUE -3269.02. 
02 field-3 PIC A(3) VALUE 'ILM'. 
02 field-4 PIC 9(4) VALUE 1359. 

01 record-2 DISPLAY-7. 
02 field-1 PIC X(7) VALUE 'EFGHI95 1

• 

02 field-2 PIC 99(7) V99 VALUE 42553.40. 
02 field-3 PIC A(3) VALUE 'LMN'. 
02 field-4 PIC 9(7) VALUE 3712536. 

PROCEDURE DIVISION. 

WRITE record o-1. 
WRITE recoJ'd-2. 

Figure 8-9 illustrates the record produced by the code segment shown 
above: 

WORD 

A B t 3 5 

2 2 t 0 3 2 

3 6 9 0 K I 

4 L M t 3 5 

5 9 GD GO E F 

6 G H I 9 5 1 
4 2 5 5 3 

8 4 0 L M N I 
9 3 7 t 2 5 

10 3 6 GD GO 
MR-5.o38·79 

Figure 8-9 COBOL Variable-Length ASCII 

8-7 



FILE FORMATS 

8.2.3 Fixed-Length SIXBIT 

In a SIXBIT file, characters are stored six per 36-bit word, and a 
SIXBIT record must start and end on a word boundary. The left half of 
the first word in the record contains one of the following: 

1. The record sequence number of COBOL magnetic tape records 

2. Data specific to COBOL ISAM records 

3. Binary zeros 

The right half of the first word contains the number of characters in 
the record. To ensure that the record ends on a word boundary, the 
last word in the record is padded with blanks, if necessary. When 
determining the size of the record for memory considerations, you must 
take into account the first word of the record (containing file-access 
information and a character count) and the possible existence of 
padding characters (blanks) to enable the record to end on a word 
boundary. 

The following diagram illustrates the format of fixed-length SIXBIT 
records. Note that the character count is the same for each record: 

WORD 

2 

3 

4 

5 

6 

FAD 

A B C 

G H ...... 
FAD 

A B C 

G H ...... 

FAD = FILE ACCESS DATA 
CC = CHARACTER COUNT 

CC 

D 

...... 
CC 

D 

...... 

8 I 
I E I F 

...... ...... 

8 I 
I E I F 

...... ...... 

...... = BLANK (USED AS PADDING CHARACTER) 

Figure 8-10 Fixed-Length SIXBIT 

8-8 

2 

MR·S-039·79 



FILE FORMATS 

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS SIXBIT. 

DATA DIVISION. 
FILE SECTION. 

FIt filename VALUE OF ID 
01 record-1 IIISPLAY--6. 

02 field-l PIC X(4) 
02 field-2 PIC A(S) 
02 field-3 PIC 9(10) 
02 field-4 PIC X(2) 
02 field-5 PIC 9(11) 
02 field'-6 PIC 9(4) 
02 field-7 PIC 9(5) 
02 field-8 PIC 9(11) 

'DATA 

VALUE 
VALUE 

COMP 
VALUE 

COMP 
VALUE 
COMp .... 1 

COMP 

FIL'. 

'Al~5B' • 
• CJ)[FG' • 
VALUE: <}6~:j4El:39::.~ 1 B. 

• HI • • 
VAl.UE: 34~.'j679B2:':H·1. 

1289. 
VAL.UE 123.45. 

VAL.UE 1 :~398·7::.'i69f:l3. 

Figure 8-11 illustrates the record produced by the code segment shown 
above: 

WORD 

FA'D CC 60 

I A 1 3 B I c I D 

E F G 

3 9654839218 I 
4 H I 

5 
I-- 34567982314 

I 6 

7 1 2 8 9 I 
8 123.45 

9 
I-- 12398756983 

I 10 

MR·S.()40·79 

Figure 8-11 COBOL Fixed-Length SIXBIT 

8-9 



FILE FORMATS 

8.2.4 Variable-Length SIXBIT 

This format is the same as fixed-length SIXBIT, except that the 
character count may vary from record to re~ord. The following diagram 
illustrates the format of variable-length SIXBIT records: 

2 I 
3 

4 

5 I 
6 

FAD 

A B C 

G H '-' 

FAD 

A B C 

G H I 

FAD = FILE ACCESS DATA 
CC = CHARACTER COUNT 

CC 8 

D E F 

'-' '-' '-' 

CC 11 

D E F 

J K 

'-' .. BLANK (USED AS PADDING CHARACTER) 

2 

MR-S-041-79 

Figure 8-12 Variable-Length SIXBIT 

8-10 



FILE FORMATS 

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-·-CONTROL., • 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS SIXBIT. 

DATA DIVISION. 
FILE SECTION. 

FD filenal'lle VALUE OF 1[1 
01 record-1 DISPLAY--6. 

02 field-1 PIC 9(7) 
02 field-2 F'IC X(3) 
02 field-3 PIC A(3) 
02 field-4 PIC 9(3) 
02 field-5 PIC 9(10) 
02 field-6 F'IC 9(11) 
02 field-7 PIC X(2) 

'DATA 

COMP--·1 
VALUE 
VALUE 
VALUE 

COMP 
COMP 

VALUE 

FIL' • 

VALUE 123.4567. 
-A3C- • 
-DEF- • 
--55. 
VALUE 1234567809. 
VALUE 98765432108. 
-A2-. 

02 field-8 PIC 9(5) COMP VALUE 32571. 

01 ,'ecord-2 [.ISPLAY-6. 
02 field-1 PIC 
02 field-2 PIC 
02 field-3 F'IC 
02 field--4 PIC 
02 field-oS PIC 
02 field-6 PIC 
02 field-7 PIC 
02 field-8 PIC 

PROCEDURE DIVISION. 

WRITE record-1. 
WRITE record-2. 

9(7) COMP-l 
X(3) VALUE 
A(3) VALUE 
9(3) VALUE 
9(10) COMP 
9(11) COMP 
X(2) VALUE 
9(11) COMP 

8-11 

VALUE 1395.678. 
-B5L-. 
-LMN- • 
79. 
VALUE 8176596821. 
VALUE 18976532150. 
-M5-. 
VALUE: 12~~57986183 • 



FILE FORMATS 

Figure 8-13 illustrates the record produced by the code segment shown 
on the previous page. 

WORD 

FAD CC 48 

123.4567 

2 A 3 C D I E I F 

3 0 5 N 

4 1234567809 

5 
'-- 98765432108 --, 6 

A 2 

8 32571 

FAD CC 54 

1395.678 

2 B 5 L L I M I N 

3 0 7 9 

- --~ 

4 ~II?!596821 

5 
'-- 18976532150 

I 6 

7 M 5 

L 12357986183 

I 
8 

9 

MR-5-042·79 

Figure 8-13 COBOL Variable-Length SIXBIT 

8.2.5 EBCDIC File Formats 

On disk and in memory, the characters in an EBCDIC file are 
represented by 8 bits right-justified in 9-bit bytes. On tape, the 
characters in an EBCDIC file are represented by 8-bit bytes, and 4 
bytes occur per 36-bit word. Within a given file, records may be 
either fixed or variable length, and may be either blocked or 
unblocked. Thus, there are four types of EBCDIC files: 

1. Fixed-length 

2. Variable-length 

3. Blocked fixed~length 

4. Blocked variable-length 

8-12 



FILE FORMATS 

In a file written in fixed-length EBCDIC, records all have the same 
record length and the records need not begin or end on a word 
boundary. The following diagram illustrates the format of 
fixed-length EBCDIC records in an unblocked file: 

WORD RECORD 

I A B C D 

2 E F A B 2 

3 C D E F I 
4 I A B C D 3 

5 E F 

MR·S-043·79 

Figure 8-14 Fixed-Length EBCDIC 

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS F. 

DATA DIVISION. 
FILE SECTION. 

FII filer'B"If? VALUE OF III 
01 record-'l [IISPLAY-·9. 

02 field--1 PIC 9(3) 
02 field-2 PIC X(5) 
02 field-3 PIC A(2) 
02 field-4 PIC 9(9) 

'DATA 

VALUE 
VALUE 
VALLIE 
COMp .... 3 

FIL' • 

123. 
-AIICDE". 
-I...M-. 

VAl.UE 137958795. 
02 field-5 PIC S9(6) COMP--3 VAl.UE -,351235. 

Figure 8-15 illustrates the record produced by the code segment shown 
above: 

I 1 2 3 A 

2 B C D E I 
I 

7 19 L M 1 :3 3 

5 lS 
, 

5:+ 3 7 :9 , 4 

5: 1 
I 

5 :-2:3 5 

MR·S-044·79 

Figure 8-15 COBOL Fixed-Length EBCDIC 

In a file written in variable-length EBCDIC format, the record lengths 
may vary from record to record. Each record contains a 4-byte Record 
Descriptor Word (RDW) at the head of the record. The left half-word 
of the RDW specifies a value equal to the number of bytes in the 

8-13 



FILE FORMATS 

record plus 4 (to allow for the length of the RDW itself). The 
rightmost 2 bytes of the RDW must be zero; if they are nonzero, they 
indicate spanned records, which are unsupported. The following 
diagram illustrates the format of variable-length EBCDIC records in an 
unblocked file: 

WORD RECORD 

L ROW 12 0 I 
2 A B C D 

3 E F G H 

4 I ROW 16 0 I 2 

5 A B C D 

6 E F G H 

7 I J K L 

8 L ROW 12 0 I 3 

9 A B C D 

10 E F G H 

ROW = RECORD DESCRIPTOR WORD 

MA-S-045-79 

Figure 8-16 Variable-Length EBCDIC 

8-14 



CODE SEGMENT: 

FILE FORMATS 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
I::'ILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS V. 

I'ATA DIVISION. 
FILE SECTION. 

FD filename VALUE OF ID 
01 record-1 DISPLAY-9. 

02 field·--l PIC ~;9 ("7) 
02 field-2 PIC 89 (I) 
02 field-3 PIC 9(3) 
02 field--4 PIC A(2) 
02 field-oS PIC X(S) 

01 record-2 DISPLAY---(l. 
o=~ field-l PIC 89("7) 
02 field-2 PIC 89(8) 
02 field-3 PIC 9(3) 
02 field-4 PIC .A( 2) 

'DATA FIL , . 
COMP--·3 VALUE 
COMP---3 VALUE 

VALUE ~:j96. 

VALUE • AB· • 
VALUE ·A13DE·. 

COMP--3 VALUE 
COMP--·3 VAL.UE 

VALUE 593. 
VALUE ·MN·. 

·--1390569. 
5763~)93"l. 

5~569"l8"l. 

-538(»6156. 

02 field-5 PIC X(B) VALUE • I L.H5MLXY • • _ 

PROCEDURE DIVISION. 

WRITE record--j_. 
WRITE rec(:lrd---2. 

Figure 8-17 illustrates the record produced by the code segment shown 
above: 

WORD 

RDW 23 0 

1 :3 
I 

5 :6 9 :-
I 

9:8 
I I 

2 :5 I 

3 :5 7 :6 9 :3 

I 
9 6 I 7 1+ 5 

I 
3 

4 A B A 1 

5 3 D E RDW 

26 0 5 '3 
1 

6 19 7 :8 7 1+ 15 
I I 

I 
I 

1,2 

3 !8 9:6 
I 

6:- I 1 15 
I 

2,3 

3,4 5 9 3 M 

4,5 N I L H 

5,6 5 M L X 

6 Y 

MR·S'()46-79 

Figure 8-17 COBOL Variable-Length EBCDIC 

8-15 



FILE FORMATS 

Fixed-length EBCDIC records may also be blocked. In this file format, 
fixed-length EBCDIC records are written in groups (or blocks). Each 
new block begins on a disk-block boundary. For tapes, each block 
starts a new physical magtape record. 

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
F I L.E "CONTROL • 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS F. 

[lATA DIVISION. 
FIL.E SECTION. 

FD fj, lenC:Jm€~ VALUE 
BLOCK CONTAINS 

OF II) "DATA 
:1. F~EC()F<[lS • 

01 ,'eco rd-'l DISPLAY····(» • 
02 fiE-'ld"'l PIC 9(3) VI!'.)I ... UE 
02 field-·2 PIC X(5) VALUE 
02 field'''3 PIC A(2) VALUE 

FIt..' 

"1.94", 
"BDEFG" • 
"MN". 

02 field'-4 PIC 9C:» COMp .... :3 VALUE 13?9l) • 
02 field'''S PIC 89(4) COMp·-3 VALUE 

02 record-2 DISPLAY-9. 
02 field-l PIC 9(3) VALUE "762". 
02 field-2 PIC xes) VALUE "LANBH". 
02 field-3 PIC A(2) VALUE "AB". 

1 <?fJ5. 

02 field-4 PIC 9(5) COMP-3 VALUE 76543. 
02 field-S PIC 89(4) COMP-:3 VALUE -9764. 

PROCEDURE DIVISION. 

WRITE record-·i. 
WRITE l"eco,'d"'2. 

Figure 8-18 illustrates the record produced by the code segment shown 
above: 

WORD BLOCK 
BLOCK 1 I 1 9 4 B 

2 D E F G I 
3 

I 

719 M N 1: 3 
I I 

4 61+ I I I 5:+ 11 918 
I I I 

I I 
~ 

~ I 7 6 2 L I 2 

2 A N B H I 
3 A B 7i6 5;4 I I 

I I I 

4 3 1+ I :9 7:6 4 I-I 
1 I 1 I I I I I 

-------~ 
MR·S-047-79 

Figure 8-18 COBOL Blocked Fixed-Length EBCDIC 

8-16 



FILE FORMATS 

Variable-length EBCDIC records may be blocked as well. In this file 
format, the record length may vary from record to record. Each record 
contains a I-word Record Descriptor Word (ROW) at the head of the 
record. This word contains (in the left half-word) a count of all 
bytes in the record and in the ROW itself. The right half of the ROW 
must be zero. The records are read and written in groups called 
blocks. The actual number of records in a block depends on the 
blocking factor specified when the file was created. Each block of 
records contain a I-word Block Descriptor Word (BOW) which contains a 
count (in the left half-word) of the bytes in the block. That is, the 
bytes of data and the bytes of the ROW for each record in the block 
and the 4 bytes of the BOW itself are included in the block count. 
The following illustrates the format of blocked variable-length EBCDIC 
records: 

WORD 

2 

3 

4 

5 

201 

202 

203 

204 

205 

206 

207 

BOW 20 0 

ROW 10 0 

A B C D 

E F ROW 6 I 
0 0 A B 

L 
,..--

BOW 28 0 

ROW 6 0 

A B ROW 10 

0 A B 

C D E F 

I ROW 8 0 J 
A B C D 

BOW = BLOCK DESCRIPTOR WORD 
ROW = RECORD DESCRIPTOR WORD 

RECORD BLOCK 

2 

2 

3 

4 

5 

MR-S-048-79 

Figure 8-19 Blocked Variable-Length EBCDIC 

8-17 



FILE FORMATS 

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

'SELECT filename ASSIGN TO DSK 
RECORDING MODE IS V. 

DATA DIVISION. 
FILE SECTION. 

FD filename VALUE OF ID 'DATA FIL' 
BLOCK CONTAINS 1 RECORDS. 

01 record-l DISPLAY-9. 
02 field-l PIC S9(7) COMP-3 VALUE +9356127. 
02 field-2 PIC 9(7) COMP~3 VALUE 3987156. 
02 field-3 PIC 9(3) VALUE -198-. 

01 

02 field-4 PIC A(2) VALUE -MN-. 
02 field-5 PIC S9(9) COMP-3 VALUE -569138279. 
02 field-6 PIC X(6) VALUE -ABCDEF-. 

record-2 DISF'LAY-9. 
02 field-l PIC S9(7) COMP-3 VALUE -3:;~95865 • 
02 field-2 PIC 9(7) COMp··-3 VALLIE 937E)::';18. 
02 field-3 PIC 9(3) VALUE -196 - • 
02 field-4 PIC A(2) VALUE - Al .. - • 
02 field-5 PIC 9(9) COMP-3 VALLIE 569138279. 
02 field-6 PIC X(9) VALUE -ABCDEFGHI-. 

PROCEDURE DIVISION. 

WRITE record-1. 
WRITE record-2. 

8-18 



FILE FORMATS 

Figure 8-20 illustrates the record produced by the code segment shown 
on the previous page. 

BOW 32 0 

ROW 28 0 

9!3 5:6 
I 

7;+ 112 
I I I I 

2 
I 

8:7 1 :5 
I 

3 1 9 6:+ : 1 : I 

3 1 9 8 M 

I I I 

N 5:6 9: , 3:8 
I I 

4 

5 2j7 9!- A B 

6 C 0 E F 

~ ..;...- -
BOW 35 0 2 

RDW 31 0 

3!2 
I I 

5 !-9:5 8:6 
I i 

2 9:3 : 7:8 5', : 
! 

8:+ 

3 1 9 6 A 

5:6 
I 

3:8 L 9p 
I I 

4 

2:7 
I 

9:+ A B 5 
I I 

6 C 0 E F 

7 G H I 

~""'l.. __ 
~-

MR-S-049-79 

Figure 8-20 COBOL Blocked Variable-Length EBCDIC 

8.2.6 BINARY File Formats 

Binary records consist of contiguous 36-bit words. Each record starts 
and ends on a word boundary. Binary is the only recording mode which 
does not have a character set associated with it, and standard binary 
records may only be interpreted as COMPUTAtIONAL and COMPl binary 
numbers. However, it is possible to associate a character set with 
binary records by writing ~ixed-mode records. COBOL programs are 
capable of writing three mixed-mode binary formats. Each format is 
shown on the following pages. 

8-19 



FILE FORMATS 

8.2.6.1 COBOL ASCII Mixed-Mode Binary -

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
SELECT filename ASSIGN TO D8K 

RECORDING MODE IS BINARY. 

DATA DIVISION. 
FILE SECTION. 

FD filename VALUE OF 'DATA FIL I. 
01 BINARY--REC IHSPLAY---7. 

02 field-1 PIC 89(10) CDMF' VALUE 12:"54~)(') 70910. 
02 field-2 PIC 89(10) COMP--- :I_ VALUE :I_ 246.597892. 
02 field-3 PIC x ("7) VALUE • AIICDE 1.2· • 
02 field--4 PIC 9( 11> COMP VALUE 123456789~_)4 • 
02 field-oS PIC <J (3) VALUE 1532-. 
02 field---6 PIC 9(t4) CDMP VALUE 12345678954. 
02 field---7 PIC A (~!) VALUE • Lt1· • 

Figure 8-21 illustrates the record produced by the code segment shown 
above: 

WORD 

1234568910 

2 1246.597892 

3 A B C E 

4 2 

5 
12345678954 

6 

7 5 

8 
12345678954967 

9 

10 

MR-S.()50-79 

Figure 8-21 COBOL Standard Binary and ASCII Mixed-Mode Binary 

8-20 



FILE FORMATS 

8.2.6.2 COBOL SIXBIT Mixed-Mode Binary -

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
SELECT filename ASSIGN TO DSK 

RECORDING MODE IS BINARY. 

DATA DIVISION. 
FILE SECTION. 

FD filename VALUE OF 'DATA FIL'. 
01 BINARY-REC DISPLAY-6. 

02 field-l PIC S9(10) COMP VALUE 12345678910. 
02 field-2 PIC S9(10) COMFL··1 VALUE 1234.592:1. n). 
02 field-3 PIC X(7) VALUE 'ABC[lEI2 1 • 
02 field-4 PIC 9(11) COMP VALUE 123456'78954. 
02 field-5 PIC 9(3) VALUE 15321. 
02 field-6 PIC 9(14) COMP VALUE 1 ;?34:7j678954967. 
02 field-7 PIC A(2) VALUE 'LM 1 • 

Figure 8-22 illustrates the record produced by the code segment shown 
above: 

WORD 

12345678910 

2 1234.592175 

3 A BI c 1 DIE I 1 

4 2 

L 12345678954 

l 
5 

6 

7 5 3 I 21 

8 
- 12345678954967 

l 9 

10 L M I 
MR-S.Q51-79 

Figure 8-22 COBOL Standard Binary and SIXBIT Mixed-Mode Binary 

8-21 



FILE FORMATS 

8.2.6.3 COBOL EBCDIC Mixed-Mode Binary -

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
I=- I LE -CONTROL. 
SELECT filename ASSIGN TO DSK 

RECORDING MODE IS BINARY. 

DATA DIVISION. 
FILE SECTION. 

FD filename VALUE OF 'DATA FIL'. 
01 BINARY-REC DISPLAY-9. 

02 field-1 PIC 89(10) COMP VALUE 12345678910. 
02 field-2 PIC S9(10) COMP-l VALUE 1246.597861. 
02 field-3 PIC X(7) VALUE ·ABCDE12·. 
02 field-4 PIC 9(11) COMP VALUE 12345678954. 
02 field-5 PIC 9(3) VALUE 8532-. 
02 field-6 PIC 9(14) COMP VALUE 12345678954967. 
02 field-7 PIC A(2) VALUE ·lM-. 
02 field-8 PIC 59(5) COMP-3 VALUE -72539. 
02 field-9 PIC 9(8) COMP-3 VALUE 36193586. 

Figure 8-23 illustrates the record produced by the code segment shown 
above: 

12345678910 

2 1246.597861 

3 A B C D 

4 E 1 2 

L 12345678954 

l 
5 

6 

7 5 3 2 

8 
"'- 12345678954967 

J 9 

I L M 7:2 5 :3 
I 

10 

9 :- :3 
I 

9 :3 
I 

6: 1 11 

I 
6:+ 5:8 12 

MR-S-052-79 

Figure 8-23 COBOL Standard Binary and EBCDIC Mixed-Mode Binary 

8-22 



FILE FORMATS 

8.3 FILE ORGANIZATION AND ACCESS 

File organization refers to the manner in which the records are 
arranged in the file. Three types of file organization are available 
with COBOL-74: sequential, relative, and indexed-sequential. File 
organization is specified in a COBOL program by means of the 
ORGANIZATION clause. 

COBOL-74 provides three methods by 
sequential, random, and dynamic. 
which records from a file are read 
access for a file is specified in 
clause. The chart below shows file 
which they can be accessed. 

File Organization Method of 

Sequential Sequential 

Relative Sequential 
Random 
Sequential 

Indexed Sequential 
Random 
Sequential 

which files can be 
File access refers to 

and/or written. The 
a COBOL program by the 
organizations and the 

accessed: 
the way in 
method of 

ACCESS MODE 
methods by 

Access ACCESS MODE 

SEQUENTIAL 

SEQUENTIAL 
RANDOM 

and Random DYNAMIC 

SEQUENTIAL 
RANDOM 

and Random DYNAMIC 

In the following sections, file organizations are described along with 
the methods by which they can be accessed and the manner in 'which 
these methods are specified. 

8.4 SEQUENTIAL FILES 

Sequential files are those files that can only be read or written 
sequentially, that is, starting at the first record in the file and 
continuing with each subsequent record until the end of the file. 
Sequential files can reside on any file medium: qards, paper tape, 
DECtape, magnetic tape, and disk. If the file contains a large amount 
of data that is read and written frequently, it should be stored on 
magnetic tape or disk. Since tape storage is normally less expensive 
than disk storage, magnetic tape is often used for such files. 
However, if it is necessary to have rapid access to the data, disk 
storage may be preferable to tape storage. Sequential files on disk 
or DEC tape should not be blocked unless they are to be open for 
input/output. When the files are stored on magnetic tape, they should 
be blocked to reduce wasted space caused by inter-record gaps. 

A sequential file can be open for input/output (updating), but it must 
be blocked for this purpose and must reside on disk. If a sequential 
file is open for input/output, a write to the file causes writing of 
either the last record read (if the last operation was a READ) or the 
record after the last record written (if the last operation was a 
WRITE) • 

8.5 RELATIVE FILES 

Relative files are arranged like sequential files, but differ from 
sequential files in the method by which they are accessed and by the 

8-23 



FILE FORMATS 

devices on which they must be stored. The following requirements must 
be fulfilled for a file to be relative: 

1. It must be on a random-access device. 

2. It must be blocked. 

You can use the ACCESS MODE clause in the SELECT statement of the 
Environment Division to specify the access method. 

You must also specify the RELATIVE KEY in the Environment Division. 
The data-name specified by the relative key must be described in the 
Working-Storage section as a COMPUTATIONAL item of 10 or fewer 
characters. Its picture can only contain the characters Sand 9 (or 
their equivalent, such as S9(4». The RELATIVE KEY specifies to the 
object-time system the location of a record relative to the beginning 
of the file. That is, the first record in the file is record 1 and 
the last record in the file is l+n where n is the number of remaining 
records in the file. 

Some records may be zero-length, that is, they d~ not have anything 
written in them because the file was created randomly. These records 
have RELATIVE KEYs and can be written but cannot be read until 
information is placed into them. If an attempt is made to read 
zero-length records, the INVALID KEY path will be taken. 

A relative file can be created in one of two ways randomly or 
sequentially. To create a file randomly (that is, by writing into 
scattered or random records), you need only open the file, move an 
integer value into the RELATIVE KEY for each record to be written 
randomly, and write each record. To create a relative file 
sequentially, open the file for output and begin writing records. The 
RELATIVE KEY will default to the next record in the file, and the 
records will be entered sequentially. No zero-length records will be 
in the file if it is written sequentially. 

8.5.1 Sequential Access Of Relative Files 

A file with relative organization may still be atcessed sequentially 
if you specify ACCESS MODE IS SEQUENTIAL i~ the File Control 
paragraph. Read operations on such a file will retrieve succeeding 
records, starting with the first non-zero-length record on the file, 
and continuing with each successive non-zero-length record. Any 
zero-length records are skipped by the sequential read operation. A 
file opened for input or I/O may be repositioned using the START 
statement. An existing record may be updated using the REWRITE 
statement, assuming the file was opened for I/O and the immediately 
preceding I/O operation was a READ. A sequential READ or WRITE will 
update the file's RELATIVE KEY value to indicate the current record 
position. 

The AT END or INVALID KEY condition occurs if: 

1. A READ is made to a non-existant record 
End-of-File 

this is logical 

2. A WRITE is made to a location .containing a non-zero-length 
record 

3. A REWRITE is made to a zero-length record, or a REWRITE is 
not the first I/O operation after a READ 

8-24 



FILE FORMATS 

8.5.2 Random Access Of Relative Files 

A relative file may be accessed at scattered locations by specifying 
the clause ACCESS MODE IS RANDOM. In this case the record accessed is 
the one indicated by the current value of the RELATIVE KEY. The first 
record on the file is assigned the relative key of 1, with succeeding 
records numbered 2, 3, 4, •••• Therefore, before you execute a random 
I/O operation, you must specify the record by moving the value you 
desire into the RELATIVE KEY for the file. Non-zero-length records 
may be updated by the use of the REWRITE clause, assuming that the 
file is open for I/O and that the previous I/O operation was a READ to 
the file. 

The INVALID KEY condition occurs if: 

1. A READ is made to a zero-length record 

2. A WRITE is made to a non-zero-length record 

3. A REWRITE is made to a zero-length record, or the last I/O 
operation before the REWRITE was not a valid READ to the file 

8.5.3 Dynamic Access Of Relative Files 

Often you will want to access a file both randomly and sequentially. 
You may accomplish this by in'dicating that your file's ACCESS MODE IS 
DYNAMIC. If you specify this mode, you may read your relative file 
randomly in the normal way, then issue a READ NEXT command and switch 
to sequential access., This READ statement acts just as it would in 
sequential access mode, obtaining the next non-zero-length record. As 
in sequential mode, the RELATIVE KEY will be reset to indicate the 
relative location of the record just obtained. The first READ NEXT 
you issue will use the current value of the RELATIVE KEY as its 
starting point. You may alter this by using the START verb to 
position the record pointer in the file. You may also update records 
using the REWRITE verb, with the same considerations as before. 
Figure 8-24 presents an example program which positions the file 
pointer to a starting location and updates records sequentially 
thereafter. ' 

8-25 



ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

FILE FORMATS 

SELECT RELOUT ASSIGN TO DSK 
ORGANIZATION IS RELATIVE 
ACCESS MODE IS DYNAMIC 
RELATIVE KEY IS RELKEY. 

DATA DIVISION. 
FILE SECTION. 
FD RELOUT BLOCK CONTAINS 8 RECORDS DATA RECORD IS RELREC 

VALUE OF ID IS "RELFILDAT" 
01 RELREC PIC X(80) 

WORKING-STORAGE SECTION. 
77 RELKEY PIC 9(10) VALUE IS 1. 

PROCEDURE DIVISION. 
START. 

OPEN INPUT-OUTPUT RELOUT. 

UPDATE. 
MOVE 5 TO RELKEY. 
START RELOUT, INVALID KEY GO TO STRT-ERR. 
READ RELOUT NEXT, AT END GO TO FINISH. 

REWRITE RELREC, INVALID KEY GO TO ERROR. 
GO TO UPDATE. 

FINISH. 
CLOSE RELOUT, STOP RUN. 

ERROR. 
DISPLAY "ERROR REPLACING RECORD", DISPLAY RELREC. 
GO TO FINISH. 

STRT-ERR. 
DISPLAY "ERROR IN START - KEY=", RELKEY. 
GO TO FINISH. 

Figure 8-24 Statements Used to Sequentially Access a Relative File 

A relative file can be treated as a sequential file. That is, you can 
declare its. ACCESS MODE as SEQUENTIAL and read or write the file 
sequentially. However, the file cannot be read or written randomly 
when it has been declared as· ACCESS MODE SEQUENTIAL. If you wish to 
be allowed to access the file both randomly and sequentially you 
should specify the ACCESS MODE IS DYNAMIC option. 

8-26 



FILE FORMATS 

8.6 INDEXED-SEQUENTIAL FILES 

Indexed-sequential files (also called ISAM files) are files in which 
records are accessed through a hierarchy of indexes according to a key 
within each data record. This file organization is commonly used for 
applications in which the programmer wishes to identify and access 
records by the contents of a data field (the key) rather than the 
relative location of the record within the file. Some examples of 
applications for which this file organization is commonly used are: 

o payroll (key is employee number) 

o inventory control (key is part number) 

o production control (key is job or batch number) 

An indexed-sequential file consists of two files: the data file 
containing the actual data and the index file containing pointers to 
record keys within the data file. The location of the record key 
within each record is specified when the file is built. To build an 
indexed-sequential file, you must provide a sequential file and some 
necessary information to the ISAM program. (See Section 5.9, 
ISAM - Indexed-Sequential File Maintenance Program.) ISAM then copies 
the data from the sequential file and creates a data file and an index 
file to reference the data file. 

All reading and writing of the index file is performed by the 
object-time system; you need not be concerned with this function. 
When using indexed-sequential files, you need only specify 'which 
record is to be read, written, rewritten, or deleted. The object-time 
system performs all searching, insertion, deletion, and updating of 
both the index and data files. 

Indexed-sequential files must be accessed from disk. Also, because 
each indexed-sequential file is actually two files, two software I/O. 
channels are required - one for the data file and one for the index 
file. 

8.6.1 Data File 

The data file can be recorded in EBCDIC, SIXBIT or ASCII; in any 
mode, the file must be blocked. When building an indexed-sequential 
file (by means of the ISAM utility program), you must provide a 
sequential file that contains record keys in the same relative 
location in each record. You are advised to sort the file in advance 
to insure that the most efficient index is built. Each record must 
have a unique key and the keys must be arranged in ascending order 
(numeric, alphabetic, or alphanumeric). You can indicate to the ISAM 
program that some records in each block are to be left empty and some 
empty blocks should be added to the file. The empty records and 
blocks are to allow for insertion or addition of new records in the 
file. 

When a program processes the indexed-sequential file, insertions and 
additions are made by the object-time system. Records are inserted in 
a block in ascending order. When there are no empty record slots in 
the block, the bLock is split into two more or less equal blocks, and 
the record is added to the appropriate block. New blocks created by 
insertions or additions are placed in the empty blocks that were 
allocated when the file was built. If empty records and blocks were 
not provided when the file was built, the object-time system will 
request additional blocks from the monitor as needed. If the monitor 

8-27 



FILE FORMATS 

cannot allocate additional blocks (that is, because the user's quota 
on the file structure is exceeded or the system's limit was reached), 
an error message is issued. 

The format of the data file is similar to that of relative and 
sequential files, with the following exceptions. 

1. The right half of the header word contains the size of the 
record in bytes. The left half contains a version number. 
Only the version number of the first record of a block has 
any meaning; it pertains to all records for that block. All 
records (ASCII, SIXBIT, and EBCDIC) have a header word. 

2. All records are line-blocked; they occupy an integral number 
of words. ASCII records always end with a single carriage 
return/line feed pair. 

3. For ASCII records, the left half of the header word contains 
a version number, bits 18 through 34 contain the size of the 
record in bytes, and bit 35 is always 1. 

Figure 8-25 shows the structure of an ISAM data file. 

IN .IDA FILE 

.IDA BLOCK STRUCTURE 

I 0: A: T : A: : R : E : C : 0 : R : D : S I 
DATA RECORD STRUCTURE 

HEADER WORD 

DATA WORDS 

8.6.2 Index File 

BLOCK NUMBER NO. OF CHARACTERS 
(SIXBIT OR ASCII) 

SIXBIT OR ASCII DATA (NOTE ON PADDING CHARACTERS 
ZEROES FOR ASCII, AND SPACES FOR SIXBIT) 

Figure 8-25 ISAM Data File Structure 

MR-S.Q53-79 

The index file is created by the ISAM program from the description of 
the input data file and parameters specified by the user. It contains 
up to ten levels of indexes, the lowest of which contains pointers to 
the record keys in the data file. Each successive level of index 
points to all of the blocks containing the next lower-level index. 
The highest level index is contained in one block and points to the 
blocks containing the next lower-level index. Index levels are 
provided so that the entire index need not be searched each time that 
a record key is accessed. When a record key is accessed, the 
Object-time system reads the highest level index to find which 
lower-level index contains a pointer to the approximate location of 
that key. The block of the next lower-level index that contains the 

8-28 



FILE FORMATS 

approximate location of the key is then searched. If this is the 
lowest level index, it points to the first record of the data block in 
which the record is stored. The data block is then searched for the 
appropriate record key, and the record is made available. If this is 
not the lowest level index, the next lower-level is searched until the 
lowest level is reached. Figure 8-26 illustrates the search. 

POINTERS 
TO NEXT 

LEVEL 
USERS 
REQUESTS 
RECORD WITH rKEYS 

KEY L t"""--T"""'-""""'" 

POINTERS 
TO NEXT 

LEVEL 

POINTERS 
TO DATA 
BLOCKS 

1 * 

2 D 

3 G 

INDEX BLOCK 1 

---.. 4 * ~-----II--I 2 J~---..l 4 J 

5 R 

INDEX BLOCK 6 
INDEX LEVEL 2 

(HIGHEST) 

*=LOW VALUES 

INDEX BLOCK 4 

3 R 

INDEX BLOCK 5 
INDEX LEVEL 1 
(INTERMEDIATE) 

INDEX FILE 

5 M 

6 P 

INDEX BLOCK 2 

7 R 

8 V 

9 Y 

INDEX BLOCK 3 
INDEX LEVEL 0 

(LOWEST) 

A 

B 

C 

DATA BLOCK 1 

D 

E 

F 

DATA BLOCK 2 

G 

H 

DATA BLOCK 3 

I\,~ 

I J 

K 

L 

DATA BLOCK 4 

DATA FILE 

MR·S'()54·79 

Figure 8-·26 Locating a Record in an Indexed-Sequential File 

8-29 



FILE FORMATS 

The format of the index file is more complex than that of the data 
file. Figure 8-27 shows the structure of the index file. 

IN .IDX FILE 

I STATS 
BLOCK I SAT TABLE 

.IDX BLOCK STRUCTURE 

HEADER WORD 1 

HEADER WORD 2 

INDEX ENTRIES 

INDEX LEVEL NO. OF CHARS IN BLOCK 
(AS IF SIXBIT) 

I VERSION NO. OF THIS BLOCK 

I AS SPECIFIED IN ISAM DIALOG 

INDEX ENTRY STRUCTURE 

WORD 1 

WORD 2 

WORDS 3 ·11 

I POINTER TO NEXT LOWER LEVEL OF INDEX OR DATA 

I VERSION NO. OF BLOCK POINTED TO 

VALUE OF KEY COMPUTATIONAL IF NUMERIC 
OR SIXBIT CHARACTERS 

MR·S-055·79 

Figure 8-27 ISAM Index File Structure 

Each index block in an indexed-sequential.file is written as if it 
were a block of a SIXBIT file. The format of the block is: 

header word 1: 

header word 2: 

is the header word. The right half contains 
the size of the index block in characters, as 
if it were SIXBIT (that is, six characters 
per word). The left half contains a number 
representing the level of the index (the 
lowest level is 0). 

contains the version number. This is 
initially set to 0 by the ISAM program, and 
is incremented by 1 whenever this block is 
divided due to the insertion of an entry when 
a WRITE is executed. 

Following word 2 are the index entries. Each entry has the format: 

word 1: 

word 2: 

contains the pointer to a data block (if this 
is index level 0) or a pointer to the next 
lower-level index block (if this is index 
level 1 or higher). 

contains the version number of the index or 
data block to which the index entry points. 

8-30 



FILE FORMATS 

words 3-11: contain the value of a key. If the key is 
nonnumeric, it extends over as many words as 
are necessary. If the key is numeric, it is 
kept in COMPUTATIONAL form (even if the 
record key for the file is DISPLAY). It is 
one word if 10 or fewer digits are in the 
key; it is two words if 11 or more digits 
are in the key. If the key is 
COMPUTATIONAL-l (floating point), it is one 
word. 

NOTE 

Take special care to describe your key 
fields in exactly the same way in both 
the ISAM program and your COBOL program. 
For example, if you describe your key 
field as S9(lO) DISPLAY to ~SAM, you 
should describe it the same way in your 
COBOL program. By using the same 
descriptions you will ensure that the 
same amount of storage is generated in 
both the ISAM file and its record area 
in memory. 

Within the index file, in addition to the index blocks, are two other 
blocks: the statistics block and the storage allocation table~The 
statistics block is a header containing all the necessary information 
about the index file and the data file. Included in these statistics 
are: the name and extension of the data file, the number of levels in 
the index, the blocking factor, and a description of the record key. 
The storage allocation table shows which data blocks are in use and 
which are free. There are as many blocks of this table as are 
necessary to contain this information. 

In general, an indexed-sequential file should be constructed so that 
it does not require more than three levels of index because the more 
levels of index the slower the access of the data will be. Indeed, it 
is usually a simple matter to restrict a file of moderate size to two 
levels of index. For example, if the maximum file is to be 200,000 
records, the blocking of the data file could be 20 records per block 
and that of the index file 100 entries per block. Since 

100*100*20 = 200,000 

the file will never need more than two levels 
occasionally maintained using the ISAM program. 

8-31 

of index if it 
(See Section 7.1) 

is 





CHAPTER 9 

SIMULTANEOUS UPDATE 

The COBOL-74 simultaneous update facility allows sequential, relative, 
or indexed-sequential data files to be updated concurrently by two or 
more running jobs. That is, it is possible for several truly 
independent jobs to modify, insert, and delete records in the same 
data files without loss of information or file integrity. 
Simultaneous update, under the control of COBOL-74, allows multiple 
users to share resources at the file level while having exclusive 
control of a portion of that resource at the record level. 

You should also refer to Part 2 of this manual, COBOL-74 Language 
Reference Material, for the simultaneous update features of the OPEN, 
RETAIN, and FREE statements. To declare in your program that a file 
is being processed concurrently with other programs, use the 
appropriate syntax available with the OPEN statements. (See Section 
9.1.1, The OPEN Statement.) The OPEN statement identifies the file as 
being open for simultaneous update and ~xcludes 
non-simultaneous-update users from accessing it until you are willing 
to release it. The file is not released until you expressly close it 
by issuing a CLOSE statement. 

To gain exclusive control of individual records within the file, use 
the RETAIN statement. (See Section 9.1.2, The RETAIN 
Statement.) This statement inhibits any other user from accessing the 
retained records until you have finished processing them. Records can 
be released either: 

• Explicitly, by issuing a FREE statement (see Section 9.1.3, 
The FREE Statement). 

• Implicitly, by exhaustion of the verb selection specified on 
the preceding RETAIN statement. 

You are advised to make careful use of the RETAIN statement in order 
to avoid the two most common problems that can occur using 
simultaneous update. The first, buried update, occurs when two users 
are updating the same record concurrently and one user's update is 
overlaid by the other's. (See Figure 9-1, The Problem of Buried 
Update.) The second is deadly embrace. It occurs when two users make 
conflicting demands upon the file resources and neither is willing or 
able to yield to the other. This results in both users being stalled 
waiting for the other to relinquish control. (See Figure 9-2, The 
Problem of Deadly Embrace.) Both of these problems can be avoided by 
carefully declaring the resources'needed with a RETAIN statement prior 
to performing any I/O operations on a shared file. 

9-1 



SIMULTANEOUS UPDATE 

FILE RESOURCE IS AVAILABLE TO ALL USERS INDISCRIMINANTL Y 

1. PROGRAM A 

ACCEPT KEY·A 
READ FILE·A 

2. 
PROGRAM B 

ACCEPT KEY·A 
READ FILE·A 

3. 
PROGRAM A 

REWRITE RECORD·A 

4. 
PROGRAM B 

REWRITE RECORD·A 

NOTE: PROGRAM A'S UPDATE IS NOW LOST. 

MR·S'()56·79 

Figure 9-1 The Problem of Buried Update 

9-2 



1. 

2. 

3. 

4. 

SIMULTANEOUS UPDATE 

INDIVIDUAL FILE RESOURCES ARE AVAILABLE TO ONLY ONE USER ATN 
ONE TIME. 

PROGRAM A 

ACCEPT KEY-A 
READ FILE-A WITH LOCK 

PROGRAM B 

ACCEPT KEY·8 
READ FILE·8 WITH LOCK 

PROGRAM A 

ACCEPT KEY·8 
READ FILE-8 WITH LOCK 

(PROGRAM A IS DENIED ACCESS TO KEY·8 OF FILE·8) 

PROGRAM 8 

ACCEPT KEY·A 
READ FILE-A WITH LOCK 

(PROGRAM 8 IS DENIED ACCESS TO KEY·A OF FILE-A) 

NOTE: PROGRAMS A AND 8 ARE NOW STALLED. AS EACH HAS A LOCK ON A 
RESOURCE THAT THE OTHER WANTS. AND NEITHER CAN GIVE UP THE 
RESOURCE THAT THEY ALREADY HAVE A LOCK ON. 

Figure 9-2 The Problem of Deadly Embrace 

9.1 PROGRAMMING CONSIDERATIONS 

MR·S.oS7·79 

Simultaneous update allows you to project the usage you want at both 
the file and record level. It also allows you to project the usage 
you will allow others to have while you have control of the file. A 
central clearing house in the COBOL-74 object-time system correlates 
these projections and takes one of three actions with respect to the 
intent of each user: 

• Allows the process to proceed 

• Suspends the process until the required resource is available 

• Returns with a message to the effect that the process cannot 
proceed at this time 

You project file usage by specifying which of the COBOL-74 
input/output verbs you will execute during your tenure of the file or 
record and which you will allow others to execute. Once allowed to 
proceed, you are bound by the object-time system to act within the 
scope of your projections and are stopped if you attempt to do 
otherwise. For example, if you open a file for a read operation and 
then issue a ~rite you will be stopped from doing so. See Figure 9-3 
for an outline of how resources can be projected for simultaneous 
update. 

9-3 



PROCEDURE DIVISION. 
BEGIN-PARAGRAPH. 

SIMULTANEOUS UPDATE 

OPEN 1-0 FILE-NAME-l FOR [verb selection] 
ALLOWING OTHERS [verb selection] 

UNAVAILABLE [Object statements]. 

LOOP-PARAGRAPH. 
[Generate key values for records to be 

retained] 
RETAIN FILE-NAME-l RECORD KEY ••. 

FOR [verb selection] 
UNTIL FREED 

UNAVAILABLE [Object statement]. 

1-0 verb selection as appropriate. 
Including READ, WRITE, DELETE, 
REWRITE. 

FREE [appropriate file records]. 
GO TO LOOP-PARAGRAPH. 

END-OF-JOB. 
CLOSE FILE-NAME-l •.• 

(File-wide spec
ification of 
resources) 

(Specification 
of record re
sources to be 
retained and 
manipulated 
within the 
context of a 
user-defined 
transaction) 

(Release of 
file-wide 
resource) 

Figure 9-3 Projecting Resources For Simultaneous Update 

9.1.1 The OPEN Statement 

The OPEN statement is the vehicle by which you declare a file is being 
used for simultaneous update. It allows you to specify: 

• Your projected usage of the file in terms of the I/O 
operations you wish to perform 

• The projected usage you are willing to allow others in terms 
of the I/O operations they are allowed to perform 

Figure 9-4 shows the general format of the OPEN statement. 

9-4 



OPEN 

SIMULTANEOUS UPDATE 

{ 
b~TP~~T t . [ REVERSED r. [ REVE:RSED Jl , fll e-name-l WITH NO REWIND L' fll e-name-2 WITH NO REWIND J 

[ { 

:~C~ITE } [ {:~C~ITE }] 
{ ~N~UT-OUTPUT} file-name-3 FOR WRITE AND WRITE •.• 

DELETE DELETE 

[ fil e-name-4 

ANVVE RB AiWVf RB 

[ (

NONE l[ (NONE ] READ READ 
ALLOWING OTHERS REWRITE AND REWRITE 

WRITE - WRITE 
DELETE DELETE 
ANY VERB ANY VERB 

[ 
{

READ J[ REWRITE 
£QR WRITE AND 

DELETE 
ANYVERB 

[ ALLOWING QTHERS 

{

READ }] REWRITE 
WRITE ... 
DELETE 
ANYVERB 

(

NONE If (NONE II READ READ 
REWRI TE AN D REWRITE 
WRITE - WRITE 
DELETE DELETE 
ANYVE RB ANYVERB 

[ EXTEND] fi 1 ename-5 [fil ename-6 ] .,. 

[ UNAVAILABLE statement-l [,statement-2 ] ... J...:.. 

Figure 9-4 The OPEN Statement 

9-5 

... J 



SIMULTANEOUS UPDATE 

The following rules apply to the use of an OPEN statement for files 
being processed under simultaneous update: 

1. To open a file under simultaneous update, the ALLOWING OTHERS 
clause must be specified. 

2. Every user, that is, every program expecting to process the 
file concurrently, must either open the file under 
simultaneous update or for input only. Other uses will be 
denied access. 

NOTE 

File access is determined on a first 
come first served basis. Therefore, if 
the first user opens a file for 
simultaneous update all others must 
likewise open it under simultaneous 
update. Conversely, if a file is open 
for normal processing, users attempting 
to open it under simultaneous update 
will be denied access. See Figure 9-5, 
Competing For Program Access to Files. 

3. The file must be OPEN in I/O mode. 

4. The COBOL-74 I/O verbs you intend to execute must be entered 
following the key word FOR. 

5. The COBOL-74 I/O verbs you are willing 
execute must be entered following 
OTHERS. 

to allow others to 
the key words ALLOWING 

6. All files to be opened for simultaneous update must be opened 
in the same OPEN statement. Multiple OPEN statements for 
simultaneous update are not allowed. Therefore, before 
another file can be opened for simultaneous update, the 
previously opened files must be closed. This prevents deadly 
embrace at the file level. 

7. You can use the same OPEN statement to open files for 
simultaneous update as well as for normal processing. 

8. A maximum of sixteen (16) files can be opened by a single 
OPEN statement. 

9. If one or more of the files being opened for simultaneous 
update is not available in the mode specified, the program 
requ~sting the OPEN is suspended until the requested file is 
available. Those files, if any, that were opened during the 
process remain open. Control is not returned to the program 
until all of the requested files are open. If the 
UNAVAILABLE clause is specified, no file is opened, even 
though available, until all of the requested files are 
available. In this case, the statements following the 
UNAVAILABLE clause are executed. 

10. The I/O verbs specified in the OPEN statement are the qnly 
verbs that can be used to process the file. Likewise, the 
I/O verbs you allow others to use are the only ones available 
to them. Any attempt to use verbs other than the ones 
specified will cause the object-time system to abort the 
program. 

9-6 



SIMULTANEOUS UPDATE 

Example 9-1 

OPEN I/O FILE-A FOR READ AND WRITE, 

ALLOWING OTHERS READ AND WRITE. 

Example 9-2 

OPEN OUTPUT FILE-A, LIST, 

INPUT-OUTPUT FILE-B FOR READ AND REWRITE, 
OTHERS ANY 

FILE-C FOR READ, 
OTHERS READ AND REWRITE, 

FILE-D FOR ANY, 
OTHERS NONE, 

INPUT FILE-E WITH NO REWIND, 

1-0 FILE-F, FILE-G FOR WRITE. 

Example 9-3 

OPEN 1-0 FILE-A FOR READ AND WRITE, 
OTHERS ANY, 

UNAVAltABLE OPEN 1-0 FILE-A FOR READ, 
OTHERS ANY, 
UNAVAILABLE STOP RUN. 

9-7 



SIMULTANEOUS UPDATE 

WITH AND WITHOUT SIMULTANEOUS UPDATE 

1. 
PROGRAM A 

OPEN FILE·A FOR 

~ 
SIMULTANEOUS UPDATE 

2. () PROGRAM B 

FILE·A OPEN FILE·A FOR 
INPUT ONLY 

/ 3. 
PROGRAM C 

OPEN FILE·A WITHOUT 
SIMULTANEOUS UPDATE 

1. 
PROGRAM C 

OPEN FILE·A WITHOUT ~ 

.--__ S_IM_U_L_TA_N_E_O_US_U_P_D_A_TE---, ;;( FI LE.A 

PROGRAM A ----t'. 
() 2. 

OPEN FILE·A UNDER 
SIMULTANEOUS UPDATE 

MR·S·058·79 

Figure 9-5 Competing For Program Access to Files 

9.1.2 The RETAIN Statement 

The RETAIN statement allows you to gain exclusive control of 
individual records within a file that was previously opened for 
simultaneous update. Figure 9-6 shows the general format of the 
RETAIN statement. 

9-8 



SIMULTANEOUS UPDATE 

RET AI N fil e-name-l ~ RE COR D [KEY 

l NEXT RECORD 

(identifier-I}] ) 
lliteral-l f 

READ 
REWRITE 
READ- REW RI TE 
DELETE 
WRITE 
ANY VERB 

} [UNTIL FREED] 

fil e-name-2! RECORD [KEY { i d'enti fi er-2 } ] 
literal-2 

NEXT RECORD 

{ 

~~C~ITE } 
FOR ~~~~T~EWRITE [UNTIL FREED J ... 

WRITE 
ANY VERB 

[UNAVAILABLE statement-l [statement-2 J' ... ] 

I 

Figure 9-6 The RETAIN Statement 

The following general rules apply to the use of the RETAIN statement. 
For a description of how the RETAIN statement is used for the 
individual file types (sequential, relative, indexed-sequential) see 
Sections 9.1.4, 9.1.5, and 9.1.6 respectively. (See also the COBOL-74 
Language Reference Material, Part 2 of this manual.) 

1. The file(s) named in a RETAIN statement must 
previously opened under simultaneous update. 
object-time system will abort the program. 

have been 
If not, the 

2. A RETAIN statement must be given before any record on a file 
opened for simultaneous update can be accessed. 

3. You can use the same RETAIN statement to reserve records on 
sequential, relative, or indexed-sequential files. The I/O 
verbs selected, however, must conform to those allowed for 
the file. 

4. All r~cords to be retained concurrently must be retained with 
the same RETAIN statement. Once records have been retained, 
no other records may be retained until the currently retained 
records are freed. 

9-9 



SIMULTANEOUS UPDATE 

5 •. The retention of records is purely a logical operation and 
does not involve any actual I/O. You may, in fact, retain 
nonexistent records. Obviously, any attempt to read or 
rewrite any of these records could result in an I/O error 
that could cause your program to be terminated. (See note 
6. ) 

6. A RETAIN statement, consistent with note 5, will not cause an 
AT END condition. This can only be caused by a READ 
statement. The RETAIN statement in this case merely retains 
a nonexistent record after the last one in the file. 

7. If you retain a record for a READ operation, other users are 
allowed concurrent access to that record for READ. If you 
retain a record for any other type of I/O, all other users 
are denied access until you have freed it. 

8. The I/O usage you specify·in a RETAIN statement must agree 
with the usage you specified in the OPEN statement for the 
file. For example, if you want to retain a record for a 
WRITE operation, you must have specified WRITE in the OPEN 
statement for the file. This holds true as well for the ANY 
VERB option. The key words ANY VERB must appear in the OPEN 
statement if you want to use them in a RETAIN statement. 

9. The records named in the RETAIN statement are automatically 
freed upon execution of the I/O verbs specified in the FOR 
clause. The only exceptioQs are: 

a. If the ANY VERB option is specified in the FOR clause, a 
FREE statement must be issued to release a record. 

b. If the UNTIL FREED option is specified, a FREE statement 
must be issued to release a record. 

NOTE 

The UNTIL FREED option allows you to 
retain several logically related 
records for processing without their 
being automatically freed by the I/O 
verbs. 

c. If an I/O verb is specified in a RETAIN statement but 
that verb is not executed, the record will not be freed 
until a FREE statement is issued. 

10. The KEY phrase allows you to specify a particular record or 
more than one record in a file. If no key is provided, KEY 0 
is assumed. 

11. The value of the key may be specified by any identifier that 
can be subscripted, qualified, or both. Its usage, however, 
must be COMPUTATIONAL. For example: 

RETAIN FILE-A RECORD 
KEY PAY-REC OF RECORD-KEYS 
FOR READ-REWRITE. 

9-10 



SIMULTANEOUS UPDATE 

It may also be a positive numeric literal contalnlng from 1 
to 10 digits. You can, for example, enter: 

RETAIN FILE-A-RECORD 
KEY 123 
FOR READ-REWRITE. 

12. The optional word RECORD may be used as a reminder that you 
are retaining records, not files. For example: 

RETAIN FILE-A RECORD FOR READ. 

retains the next record in FILE-A. 

9.1.3 The FREE Statement 

The FREE statement explicitly frees records that have been retained 
for simultaneous update. Figure 9-7 shows the general format of the 
FREE statement. 

FREE 

fi1e-name-l 
{

RECORD 

EVERY RECORD 

[ file-na~-2 { 

EVERY -RECORD 

[NOT RETAINED statement-l 

identifier-l 
1 i tera 1-1 

RECORD [KEY J identifier-2 1 1 i tera 1-2 

EVERY RECORD 

statement-2] . .• ] .!.. 

Figure 9-7 The FREE Statement 

The following general rules apply to the use of the FREE statement. 
For a description of how the FREE statement is used- with the 
individual file types, sequential, relative, and indexed-sequential, 
see Sections 9.1.4, 9.1.5, and 9.1.6 respectively. (See also the 
COBOL-74 Language Reference Material, Part 2 of this manual.) 

1. The FREE statement is required to explicitly release records 
that have not been implicitly released by an I/O statement. 
This could occur when: 

a. The RETAIN statement contains the UNTIL FREED phrase 

b. An I/O statement is not issued after the RETAIN statement 

c. The FOR clause of the RETAIN statement specifies ANY VERB 

9-11 



SIMULTANEOUS UPDATE 

2. The EVERY RECORD phrase allows you to free all of the records 
retained or just those of a particular file. It saves you 
from having to issue a separate FREE statement for every 
record that was retained. 

3. When the EVERY RECORD phrase is used, the NOT RETAINED 
condition will occur only if no records are currently 
retained or if no records in a specific file are retained. 

4. The NOT RETAINED phrase specifies the COBOL statements to be 
executed in the event that one or more of the record(s) you 
are attempting to free have not been retained. If this 
phrase is not specified, the program continues and you are 
not notified of any possible error. 

5. A FREE statement issued to a file that was not opened for 
simultaneous update will cause the statements following the 
NOT RETAINED phrase, if present, to be executed. If the NOT 
RETAINED phrase was not specified in this case, the program 
continues and you are not notified of a possible error 
condition. 

6. A single FREE statement can be used to free records retained 
from all open files, regardless of file type. 

7. All records, regardless of how they were retained, are 
automatically freed when the file is closed. 

9.1.4 Accessing Sequential Files 

The following sections describe how to use the RETAIN and FREE 
statements to access records in a sequential file. 

9.1.4.1 Basic Reading - The simplest way to read a sequential file 
opened for simultaneous update is to execute pairs of statements like 
this: 

RETAIN FILE-A FOR READ. 

READ FILE-A AT END GO TO EOJ. 

The RETAIN statement projects your intent to read the next record of 
FILE-A. The READ statement delivers the next record to the file's 
record area in memory, and automatically frees it for use by other 
users. 

9.1.4.2 Basic Writing - Basic writing of a sequential file opened for 
simultaneous update is analogous to basic reading. For example, you 
could use code that looks like this: 

RETAIN FILE-A FOR WRITE. 

WRITE FILE-A-RECORD. 

In this case, FILE-A-RECORD is written out to FILE-A and automatically 
freed for access by other users. 

9-12 



SIMULTANEOUS UPDATE 

9.1.4.3 Basic Updating - ~o update the nex~ record in a file open for 
simultaneous upate, you can use statements that look like this: 

RETAIN FILE-A FOR READ-REWRITE. 

READ FILE-A AT END GO TO EOJ. 

REWRITE FILE-A-RECORD. 

FILE-A-RECORD is automatically released upon execution of the REWRITE 
statement because both verbs named in the RETAIN statement have been 
executed. If only one or none of the verbs were executed, the record 
would not have been freed and any attempt to RETAIN any other records 
would fail. 

If, however, your application is such that you mayor may not want to 
update a record once it has been read, code of this nature could be 
used: 

RETAIN FILE-A FOR READ-REWRITE. 

READ FILE-A AT END GO TO EOJ. 

IF CHANGED REWRITE FILE-A-RECORD 
ELSE FREE FILE-A. 

9.1.4.4 Sophisticated Access to Sequential Files - There are two 
reasons why the basic reading, writing, and updating of sequential 
files as outlined in Sections 9.1.4.1, 9.1.4.2, and 9.1.4.3 will not 
be sufficient for some applications: 

1. Performance 

2. Logically related records 

Each time you retain a record and that record happens to be already in 
your buffer, it is necessary to refill that buffer from mass storage 
to make sure that you have the very latest copy. Similarly, each time 
a record that you have written or rewritten is implicitly or 
explicitly freed, you must be certain that it is the very latest copy, 
and that no other user has updated that record in the interim. These 
considerations have little effect on the performance of relative or 
indexed-sequential files accessed randomly, but the effect on 
sequentially processed files is profound. Processing a file with a 
blocking factor of ten as suggested in Sections 9.1.4.1, 9.1.4.2, or 
9.1.4.3, would require an order of magnitude more input/output 
overhead than it would if you were not using simultaneous update mode. 
This is the performance reason for using more sophisticated coding 
techniques. 

Sometimes, several records in a file are logically related and must be 
updated together. For example, a header record and subsequent trailer 
records might be logically related in such a way that the trailer 
records cannot be changed unless the header record remains static. 
But with the basic techniques outlined in Sections 9.1.4.1, 9.1.4.2, 

9-13 



SIMULTANEOUS UPDATE 

and 9.1.4.3, only a single record can be retained at a time. 
the logically-related-records reason for more sophisticated 
techniques. 

This is 
coding 

The first step in providing for more sophisticated code is the 
introduction of a notation for addressing the records of a sequential 
file. The notation is this: record 0 is defined as the next record 
to be read or written. Records 1, 2, 3, through n are defined 
relative to record O. 

NOTE 

If you have just written a record, the 
next record to be written is the one 
following it. If you have just read a 
record, however, the next record to be 
written is the one just read. 
Therefore, if you have just read a 
record and then you retain record 0 for 
WRITE, you have in effect retained the 
record just read. If, however, you have 
just read a record and then you retain 
record 0 for READ-WRITE, you have 
effectively retained the next record in 
the file. 

Sequential file users should cpde for performance by retaining several 
records at a time. Performance is optimal if the number of records 
retained is a multiple of the blocking factor and the execution of the 
RETAIN statement is synchronized with logical block boundaries. A 
RETAIN statement for 'a file whose blocking factor is 5 might look like 
this: 

RETAIN FILE-A KEY 0 FOR READ, 

FILE-A KEY 1 FOR READ, 

FILE-A KEY 2 FOR READ, 

FILE-A KEY 3 FOR READ, 

FILE-A KEY 4 FOR READ. 

This would then be followed by READ and/or FREE statements until all 
records have been freed. Subsequent FREE statements use the same 
notation for freeing records as was used for retaining them. Thus 

RETAIN FILE-A KEY 0 FOR READ. 

FILE-A KEY 1 FOR READ. 

READ FILE-A AT END GO TO EOJ. 

FREE FILE-A KEY 1. 

causes the second record of the pair to be freed, not the next one in 
the file. 

9-14 



SIMULTANEOUS UPDATE 

Providing a notation foe referencing several records of a sequential 
file is not enouqh for updating several logically related records 
together. It is also necessary to retain a record, even though you 
are through with it, until all of the related records have been 
processed. The UNTIL FREED phrase is provided for this purpose. It 
allows you to defeat the automatic freeing of records and retain them 
until you are ready to expressly free them. Also, to facilitate the 
freeing of multiple records, the EVERY RECORD phrase is provided. It 
allows you to free every record retained or every record in a 
particular file. Thus, to update three logically related records in a 
particular file, you can code: 

RETAIN FILE-A KEY 0 FOR READ-WRITE 
UNTIL FREED, 

FILE-A KEY I FOR READ-WRITE 
UNTIL FREED 

FILE-A KEY 2 FOR READ-WRITE. 

READ FILE-A AT END GO TO EOJ. 

WRITE FILE-A-RECORD. 

READ FILE-A AT END GO TO EOJ. 

WRITE FILE-A-RECORD. 

READ FILE-A AT END GO TO EOJ. 

WRITE FILE-A-RECORD. 

FREE FILE-A EVERY RECORD. 

You could also use the ANY VERB phrase to accomplish the same results. 
For example: 

RETAIN FILE-A KEY 0 FOR ANY VERB 

results in your having to expressly free the record when you have 
finished with it. 

When retaining records, the program will normally be suspended if any 
of the requested files or records are unavailable. You will not be 
notified of this suspension unless you have provided the UNAVAILABLE 
phrase as part of the RETAIN statement. The UNAVAILABLE phrase allows 
you to specify a procedure to be followed in the event a record or 
file is unavailable at the time your program attempts to access it. 
For example: 

RETAIN FILE-A KEY 0 FOR ANY VERB 
UNAVAILABLE PERFORM UNAVAIL-RTN. 

This instructs the object-time system to execute the statement 
following the word UNAVAILABLE in the event that the file (FILE-A) or 
the next record in the file is unavailable at the time the RETAIN 
statement is executed. 

9-15 



\ 

SIMULTANEOUS UPDATE 

Similarly, if you execute a FREE statement for a record or records 
that are not currently retained by your program, the object-time 
system will proce~d to the next instruction in your program as though 
the condition did not exist. If you wish to be informed of this 
condition, you must provide the NOT RETAINED phrase in the FREE 
statement. The NOT RETAINED phrase causes the object-time system to 
execute the procedures immediately following the words NOT RETAINED. 
A FREE statement of this kind might look like this: 

FREE FILE-A KEY 0 NOT RETAINED 
GO TO ERROR-RTN. 

9.1.5 Accessing Relative Files 

Accessing records in a relative file is similar to 
sequential file records. (See Section 9.1.4.) 
these differences: 

the accessing of 
There are, however, 

1. If a key is not specified, the RELATIVE KEY specified in the 
FD for the file is used. 

2. positive keys, whether specified directly or via RELATIVE 
KEY, designate fixed (absolute) records of the file (as 
opposed to designating records relative to the current 
record) • Thus, record 1 is always the first record of the 
file, not the next record. A zero key, on the other hand, is 
interpreted in the same way as for sequential files: that 
is, record 0 is defined as the next record to be read or 
written. 

3. A RETAIN statement, by virtue of its not performing any 
actual I/O, cannot generate an INVALID KEY condition. 

Example 9-4 demonstrates reading a relative file sequentially. 

Example 9-4 

A. RETAIN FILE-A FOR READ. 

READ FILE-A NEXT RECORD; INVALID KEY GO TO ERROR-RTN. 

GO TO A. 

Example 9-5 shows how a file can be processed randomly. Note that the 
UNTIL FREED clause is used to insure that no one can access the record 
until it is written. 

9-16 



SIMULTANEOUS UPDATE 

Example 9-5 

A. PERFORM RELATIVE-KEY-GENERATION. 

RETAIN FILE-A KEY GENERATED-KEY 
FOR READ-WRITE UNTIL FREED 

READ FILE-A INVALID KEY GO TO ERR-RTN . 

. 
WRITE FILE-A-RECORD. 
FREE FILE-A RECORD. 
GO TO A. 

Example 9-6 shows how to use a field within a record as the RELATIVE 
KEY for processing a chain of related records in a relative file. 
Procedure A initializes processing with record number 64. Procedure B 
insures that record 64 is stable, that is, that it has not been 
changed by some other user after you read it and that it will not be 
changed while you are processing it. 

Example 9-6 

A. MOVE 64 TO FILE-A-REL-KEY. 

RETAIN FILE-A FOR READ. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

B. RETAIN FILE-A FOR READ-REWRITE 

FILE-A KEY NUMBER OF FILE-A-RECORD 
FOR READ-REWRITE. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

IF (record not stable) FREE FILE-A EVERY RECORD. 
GO TO B. 

C. (process record 64 and record pointed to ,by NUMBER) 

9.1.6 Accessing Indexed-Sequential Files 

Accessing records in an indexed-sequential 
accessing of sequential file records. 
are, however, these differences: 

file is similar to the 
(See Section 9.1.4.) There 

1. You may retain records for REWRITE, DELETE, and READ-REWRITE, 
in addition to READ, WRITE, and ANY VERB. You may not retain 
a record for READ-WRITE. 

2. If no key is specified, the RECORD KEY defined in the SELECT 
statement for the file is used. 

9-17 



SIMULTANEOUS UPDATE 

3. If a key is supplied, it must be specified with an identifier 
that agrees with the file's RECORD KEY in size, class, usage, 
and number of decimal places. The only exception is a key 
whose usage is COMP; in this case, a positive numeric 
literal of ten or fewer digits may be used. 

4. Retaining or freeing records does not affect the "remembered" 
key of the file; that is, the record which would be read by 
a READ NEXT statement would be the same before and after a 
RETAIN or a FREE statement. 

Example 9-7 demonstrates how an indexed-sequential file can be 
processed sequentially. 

Example 9-7 

A. RETAIN FILE-A KEY FILE-A-KEY 
FOR READ. 

READ FILE-A NEXT RECORD; INVALID KEY GO TO ERR-RTN. 

GO TO A. 

Example 9-8 shows the random processing of an indexed file. Note how 
the UNTIL FREED statement is used to insure the stability of the 
record. 

Example 9-8 

A. ACCEPT DATA~KEY • . 
RETAIN FILE-A KEY DATA-KEY 

FOR READ-REWRITE UNTIL FREED. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

DISPLAY FILE-A-RECORD. 

B. (process and update record if the user wishes) 

C. FREE FILE-A-RECORD. 

GO TO A. 

9-18 



CHAPTER 10 

REPORT WRITER 

The COBOL compiler offers a report writing facility, REPORT WRI~ER. 
Using this facility can make it easy to format printed reports. 

The example program on the following pages shows how to use the major 
features of REPORT WRITER. The full formats and available options for 
each statement are discussed in detail in the COBOL-74 Language 
Reference Material, Part 2 of this manual. 

10-1 



REPORT WRITER 

PRO G RAM REP E X M COBOL-74 l2{60l) BIS 
20-0CT-78 11:16 PAGE 1 

REPORT.CBL 20-0CT-78 11:16 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 

ID DIVISION. 
PROGRAM-ID. REPEXM. 

* ************************************************************** 
* * * This program is an example of the use of REPORT WRITER. * 
* * The program generates two reports: one is a list of 
* customers by city and state; the other is a list of 
* totals for each state. 
* 

* 
* 
* 
* 
* * The two reports are generated at one time and into one * 

* file. The line printer spooler can separate them at the * 
* time they are to be printed. * 
* * 
* ************************************************************** 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SPECIAL-NAMES. 

* ************************************************************** 
* * * Report Codes (Line 37) * 
* * * The following entry in the SPECIAL-NAMES paragraph of the * 
* CONFIGURATION SECTION defines the codes 'A' and 'B' for * 
* the two reports we are going to generate. The line printer * 
* spooler can separate them when we use the /REPORT switch * 
* with the system QUEUE command. For example, to print * 
* both reports, we would use 
* * 
* 
* 

Q LL:=CUSTMR.LPT/REPORT:A,CUSTMR.LPT/REPORT:B * 
* 

* ************************************************************** 

'A' IS BY-CITY-CODE;'B' IS STATE-TOTALS-CODE. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT CUSTOMER-FILE; ASSIGN TO DSK; 
RECORDING MODE IS ASCII. 

10-2 



REPORT WRITER 

0043 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 2 

REPORT.CBL 20-0CT-78 11:16 

0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 

* ************************************************************** 
* * * Report file SELECTion and ASSIGNment (Line 55) * 
* * * Like any file, the file for the report must be SELECTed and * 
* ASSIGNed. Here we're using a disk file, but any device is * 
* legal. * 
* * 
* ************************************************************** 

SELECT PRINTER-FILEi ASSIGN TO DSKi 
RECORDING MODE IS ASCII. 

SELECT SORT-FILEi ASSIGN TO DSK,DSK,DSK,DSK,DSKi 
RECORDING MODE IS ASCII. 

DATA DIVISION. 
FILE SECTION. 

SD 
01 

SORT-FILE. 
SORT-RECORD. 
02 SORT-NAME 
02 SORT-CITY 
02 SORT-STATE 
02 SORT-STREET 
02 SORT-SALES 

PIC X(24) USAGE DISPLAY-7. 
PIC X(20) USAGE DISPLAY-7. 
PIC XX USAGE DISPLAY-7. 
PIC X(20) USAGE DISPLAY-7. 
PIC S9(10) USAGE COMPo 

FD CUSTOMER-FILE 
VALUE OF IDENTIFICATION IS 'CUSTMRDAT'. 

01 CUSTMR-RECORD. 
02 CUSTMR-NAME PIC X(24) USAGE DISPLAY-7. 
02 CUSTMR-STREET PIC X(20) USAGE DISPLAY-7. 
02 CUSTMR-CITY PIC X(20) USAGE DISPLAY-7. 
02 CUSTMR-STATE PIC XX USAGE DISPLAY-7. 
02 CUSTMR-SALES PIC S9(10)V99. 
02 FILLER PIC X(302). 

10-3 



REPORT WRITER 

0081 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 3 

REPORT.CBL 20-0CT-78 11:16 

0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 

* ************************************************************** 
* * 
* The FD for the Report File (Lines 100 - 103) * 
* * 
* Here we give the file for the report the name CUSTMR.LPT. * 
* * 
* The REPORTS ARE clause names the RD entries that we'll * 
* define in the REPORT SECTION and names the reports to be * 
* written in the file. * 
* * 
* The record named in the 01-leve1 entry must be large enough * 
* to contain the largest line written (including a 1-character* 
* code. In our example, we never refer to PRINTER-RECORD in * 
* the PROCEDURE DIVISION, so we could omit this; the default * 
* size for PRINTER-RECORD is 132 characters. * 
* * 
* ************************************************************** 

FD PRINTER-FILE; 
REPORTS ARE STATE-TOTALS-ONLY,BY-CITY 
VALUE OF IDENTIFICATION IS ·CUSTMRLPT'. 

01 PRINTER-RECORD PIC X(70) USAGE DISPLAY-7. 

WORKING-STORAGE SECTION. 

01 
01 

01 

THIS-DATE 
TD-REDEFINED 
02 TD-MONTH 
02 TD-HYF-1 
02 TD-DAY 
02 TD-HYF-2 
02 TD-YEAR 

UNEDITED-DATE. 
02 UE-YEAR 
02 UE-MONTH 
02 UE-DAY 

PICX(8). 
REDEFINES THIS-DATE. 
PIC Z9. 
PIC X. 
PIC 99. 
PIC X. 
PIC 99. 

PIC 99. 
PIC 99. 
PIC 99. 

77 TEMP PIC S999 USAGE COMPo 
77 NR-OF-CITIES PIC S999 USAGE COMPo 
77 NR-OF-STATES PIC S999 USAGE COMPo 

77 ONE-COUNT PIC S9 USAGE COMP VALUE 1. 
77 CURRENT-STATE PIC XX. 
77 CURRENT-CITY PIC X(20) USAGE DISPLAY-7. 

10-4 



REPORT WRITER 

0128 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 4 

REPORT.CBL 20-0CT-78 11:16 

0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 

* ************************************************************** 
* * * The REPORT SECTION Statement (Line 139) * 
* * * The REPORT SECTION is in the DATA DIVISION. It must be the * 
* last section of the division. In the REPORT SECTION, we * 
* define the formats for the reports. * 
* * 
* ************************************************************** 

REPORT SECTION. 

* ************************************************************** 
* * * The RD for a Report (Lines 160 - 453) * 
* 
* 
* 
* 
* 
* 
* 
* 

The RD is the report description for each report. We need 
an RD for each report; one is here and the other is below. 

The CODE clause of the RD gives the mnemonic-name of the 
code assigned to the report. This is the same code given 
by the literal in the SPECIAL-NAMES paragraph of the 
ENVIRONMENT DIVISION above. 

* 
* 
* 
* 
* 
* 
* 
* 

* * * The CONTROL clause specifies the break fields in order from * 
* most important to least important. FINAL is a special case * 
* in which a control break will occur at the end of the * 
* report. * 
* * 
* ************************************************************** 

RD STATE-TOTALS-ONLY 
CODE STATE-TOTALS-CODE 
CONTROLS ARE FINAL, SORT-STATE. 

10-5 



REPORT WRITER 

0163 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 5 

REPORT.CBL 20-0CT-78 11:16 

0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 

-0214 

* ************************************************************** 
* * * The TYPE Statement (Line 266 and throughout the ROs) * 
* * * The TYPE statement defines the type of each record and * 
* where it appears in the report. The record need not be * 
* named unless it is referenced in the PROCEDURE DIVISION. * 
* * * There are seven types of records: * 
* * * REPORT HEADING (or RH) is a heading that will appear at * 
* the beginning of the report. * 
* * * REPORT FOOTING (or RF) is a footing that will appear at * 
* the end of the report. * 
* * * PAGE HEADING (or PH) is a page heading that will appear * 
* at the top of each page of the report. * 
* * * PAGE FOOTING (or PF) is a page footing that will appear * 
* at the bottom of each page. * 
* * * CONTROL HEADING (or CH) is a heading that will appear * 
* immediately before any detail lines whenever a * 
* control break occurs, and after the page heading of * 
* the first page. The name of the control break is * 
* specified in the CONTROL clause, and tells REPORT * 
* WRITER which field to test for a control break. * 
* * * CONTROL FOOTING (or CF) is a footing that will appear * 
* immediately after the last detail line before a * 
* control break. * 
* 
* 
* 
* 
* 

DETAIL (or DE) is a detail line that is printed each 
time a GENERATE statement is executed in the 
PROCEDURE DIVISION. 

* 
* 
* 
* 
* 

* ************************************************************** 

* ************************************************************** 
* * * The NEXT GROUP Clause (Lines 266 and 424) 

* 
* 
* * The NEXT GROUP clause given the line-number of the line for * 

* the beginning of the next group written. The argument for * 
* NEXT GROUP can be a number; for example, NEXT GROUP IS 15 * 
* places the next group on line 15 of the page. The argument * 
* can also be relative; for example, NEXT GROUP IS PLUS 2 * 
* places the next line two lines below the current line. * 
* * 
* ************************************************************** 

10-6 



REPORT WRITER 

0215 PRO G RAM REP E X M 
20-0CT-78 11:16 

COBOL-74 12(601) BIS 
PAGE 6 

REPORT.CBL 20-0CT-78 11:16 

0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 

* ************************************************************** 
* * 
* The LINE Clause (Line 267 and throughout the ROs) 

* 
* 
* 

* The LINE NUMBER IS clause (which can be abbreviated to LINE)* 
* tells on which line of .the page a report entry should be * 
* written. The LINE clause applies to the item containing it * 
* and continues to apply until the end-of-record or until * 
* another LINE clause is found. * 

* * 
* The LINE clause can take three kinds of arguments: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

1. An integer that specifies the line number. 
For example, LINE NUMBER IS 25 specifies line 25. 
If the number is smaller than the current line, a 
new page is begun. 

2. PLUS with an integer that specifies how many lines 
below the current line to print the current entry. 
For example, LINE PLUS 3 means to skip two lines 
before printing the current entry. 

3. NEXT PAGE, which specifies the next page. If the 
record is a page header, it will be printed on 
line 1; otherwise it will be printed on line 2. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* ************************************************************** 

* ************************************************************** 
* 
* The COLUMN Clause (Line 267 and throughout the RDs) 
* 

* 
* 
* 

* The COLUMN NUMBER IS clause (we can omit NUMBER IS) tells * 
* REPORT WRITER which column is the first for a record or * 
* field. If a record or field does not have a COLUMN entry, * 
* it will not be printed. * 
* * 
* ************************************************************** 

10-7 



REPORT WRITER 

0254 PRO G RAM REP E X M COBOL-74 12(601) SIS 
20-0CT-78 11:16 PAGE 7 

REPORT.CBL 20-0CT-78 11:16 

0255 
0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 
0305 

* ************************************************************** 
* 
* 
* 

The SOURCE Clause (Line 269 and throughout the RDs) 
* 
* 
* * The SOURCE IS clause (we can omit IS) specifies the source * 

* for an item. The source item must have been defined in the * 
* FILE or WORKING-STORAGE SECTION. Its value is moved into * 
* the report item before the item is written in-the file. * 
* * 
* ************************************************************** 

01 TYPE PH NEXT GROUP PLUS 2. 
02 LINE 1 COLUMN 22 PIC X(25) USAGE DISPLAY-7 

VALUE 'State Totals of Customers'. 
02 LINE 2 COLUMN 31 PIC X(8) SOURCE THIS-DATE. 
02 LINE 5 COLUMN 1 PIC X(5) USAGE DISPLAY-7 

VALUE ·State'. 
02 LINE 5 COLUMN 10 PIC X(19) USAGE DISPLAY-7 

VALUE 'Number of Customers'. 
02 LINE 5 COLUMN 44 PIC X(5) USAGE DISPLAY-7 

VALUE 'Sales'. 

* ************************************************************** 
* * * The SUM Clause (Line 309 and throughout the RDs) 
* * The SUM clause in the second following line specifies that 
* the data-item will be summed. The data-item summed can be 
* either a SOURCE item from a TYPE DETAIL line (for example, 
* SORT-SALES in this program), or a summation counter (for 
* example, CITY-COUNT). 
* * When either the SOURCE item or the summation counter is 
* used, the value of the item is added to a compiler-
* generated accumulator and this accumulator is moved to the 
* report item before writing. The summation counter need 
* not be named unless it is referenced directly in the 
* PROCEDURE DIVISION or in another REPORT SECTION statement. 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

A SUM clause can appear only in a TYPE CONTROL FOOTING * 
record. The accumulator is zeroed after being moved to the * 
report item. * 

* 
You can selectively sum portions of a data-item by using * 
the UPON option with the SUM clause. In that case, summing * 
occurs only when the item is refe~enced by a GENERATE * 
statement. The individual items to be summed'must be * 
SOURCE items within a data-name specified as a TYPE DETAIL * 
report group. 

* 
* ************************************************************** 

10-8 



REPORT WRITER 

0306 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 8 

REPORT.CBL 20-0CT-78 11:16 

0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 
0325 
0326 
0327 
0328 
0329 
0330 
0331 
0332 
0333 
0334 
0335 
0336 
0337 
0338 
0339 
0340 
0341 
0342 
0343 
0344 
0345 
0346 
0347 
0348 
0349 
0350 
0351 
0352 
0353 

01 TYPE CF SORT-STATE LINE PLUS 1. 

01 

02 COLUMN 3 PIC XX SOURCE CURRENT-STATE. 
02 COLUMN 15 PIC ZZ,ZZ9 SUM ONE-COUNT. 
02 COLUMN 35 PIC ZZ,ZZZ,ZZZ,ZZ9 SUM SORT-SALES. 

TYPE CF FINAL 
02 COLUMN 1 

VALUE 
02 COLUMN 15 
02 COLUMN 35 

LINE PLUS 2. 
PIC X(5) USAGE DISPLAY-7 

'Total'. 
PIC ZZ,ZZ9 SUM ONE-COUNT. 
PIC $$,$$$,$$$,$$9 SUM SORT-SALES. 

* ************************************************************** 
* * 
* Missing COLUMN Clause (Lines 330 - 331) * 

* * 
* The following lines illustrate the fact that a report * 
* item will not be written in the report (even if directly * 
* specified in a GENERATE statement) unless the item has a * 
* COLUMN NUMBER clause. * 
* * 
* ************************************************************** 

01 TYPE DETAIL. 
02 
02 

PIC S9(5) SOURCE ONE-COUNT. 
PIC S9(lO) SOURCE SORT-SALES. 

* ************************************************************** 
* 
* The PAGE LIMIT Clause (Line 351) 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
The PAGE LIMIT clause specifies the number of lines that * 
can be written on one page of the report. If a line is * 
written that would exceed PAGE LIMIT, page footings are * 
written, a new page. is begun, and page headings are written.* 

* 
The PAGE LIMIT clause can contain additional options to * 
control placement of p'age headings and footings, and the * 
placement of first and last TYPE DETAIL lines. * 

* * 
* ************************************************************** 

RD BY-CITY 
CODE BY-CITY-CODE 
CONTROLS ARE FINAL SORT-STATE,SORT-CITYi 
PAGE LIMIT IS 58 LINES 

HEADING 1, FOOTING 58, FIRST DETAIL 6, 
LAST DETAIL 55. 

10-9 



REPORT WRITER 

0354 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 9 

REPORT.CBL 20-0CT-78 11:16 

0355 
0356 
0357 
0358 
0359 
0360 
0361 
0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0373 
0374 
0375 
0376 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
0396 

01 REPORT-HEADER TYPE REPORT HEADING LINE 25. 
02 COLUMN 27 PIC X(27) USAGE DISPLAY-7 

VALUE 'Customers By City and State'. 
02 LINE 29 COLUMN 36 PIC X(8) SOURCE THIS-DATE. 

01 REPORT-FOOTER TYPE REPORT FOOTING LINE PLUS 2. 
02 COLUMN 30 PIC X(19) USAGE DISPLAY-7 

VALUE '** End of Report **'. 

* ************************************************************** 
* * * The PAGE-COUNTER (Line 384) 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

The compiler generates a data-item called PAGE-COUNTER for 
each report descriptor (RD) item. It is set to 1 by the 
INITIATE statement, and incremented by l' for each new page. * 

* 
* 

* 
If you define more than one report in the same program, you * 
must qualify a reference to PAGE-COUNTER by using the name * 
of the repor t. * 

* 
* ************************************************************** 

01 PAGE-HEADING TYPE PAGE HEADING. 

-01 

02 LINE 1 COLUMN 1 PIC X(33) USAGE DISPLAY-7 
VALUE 'Customers By City and State'. 

02 LINE 1 COLUMN 62 PIC X(4) USAGE DISPLAY-7 
VALUE 'Page'. 

02 LINE 1 COLUMN 66 PIC ZZZ9 
SOURCE PAGE-COUNTER OF BY-CITY. 

02 LINE 2 COLUMN 1 PIC X(8) SOURCE THIS-DATE. 

STATE-HEADING TYPE CONTROL HEADING SORT-STATE 
LINE PLUS 2. 

02 COLUMN 1 PIC X(9) USAGE DISPLAY-7 
VALUE 'Customer'. 

02 COLUMN 30 PIC X(5) USAGE DISPLAY-7 
VALUE 'State' . 

02 COLUMN 36 PIC X(4) USAGE DISPLAY-7 
VALUE 'City'. 

02 COLUMN 65 PIC X(5) USAGE DISPLAY-7 
VALUE 'Sales'. 

10-10 



REPORT WRITER 

0397 PRO G RAM REP ~ A M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 10 

REPORT.CBL 20-0CT-78 11:16 

0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 
0409 
0410 
0411 
0412 
0413 
0414 
0415 
0416 
0417 
0418 
0419 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
0428 
0429 
0430 
0431 

01 

01 

01 

01 

DETAIL-LINE-1 TYPE DETAIL LINE PLUS 2. 
02 COLUMN 1 PIC X(24) USAGE DISPLAY-7 

SOURCE SORT-NAME. 
02 COLUMN 32 PIC X(2) USAGE DISPLAY-7 

SOURCE SORT-STATE. 
02 COLUMN 36 PIC X(20) USAGE DISPLAY-7 

SOURCE SORT-CITY. 
02 COLUMN 56 PIC ZZ,ZZZ,ZZZ,ZZ9 

SOURCE SORT-SALES. 
02 PIC ZZ,ZZ9 SOURCE ONE-COUNT. 

DETAIL-LINE-2 TYPE DETAIL LINE PLUS 1. 
02 COLUMN 1 PIC X(20) USAGE DISPLAY-7 

SOURCE SORT-STREET. 

CITY-FOOTING TYPE CF SORT-CITY LINE PLUS 3. 
02 CITY-COUNT COLUMN 4 PIC ZZ,ZZ9 USAGE DISPLAY-7 

SUM ONE-COUNT. 
02 COLUMN 11 PIC X(17) USAGE DISPLAY-7 

VALUE 'customers in city'. 
02 COLUMN 36 PIC X(20) USAGE DISPLAY-7 

SOURCE SORT-CITY. 
02 CITY-SALES COLUMN 56 PIC $$,$$$,$$$,$$9 

SUM SORT-SALES. 

STATE-FOOTING TYPE CF SORT-STATE LINE PLUS 3 
NEXT GROUP NEXT PAGE. 

02 STATE-COUNT COLUMN 4 PIC ZZ,ZZ9 USAGE DISPLAY-7 
SUM CITY-COUNT. 

02 COLUMN 11 PIC X(18) USAGE DISPLAY-7 
VALUE 'customers in state'. 

02 COLUMN 32 PIC X(2) SOURCE SORT-STATE. 
02 STATE-SALES COLUMN 56 PIC $$,$$$,$$$,$$9 

SUM CITY-SALES. 

10-11 



REPORT WRITER 

0432 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 11 

REPORT.CBL 20-0CT-78 11:16 

0433 
0434 
0435 
0436 
0437 
0438 
0439 
0440 
0441 
0442 
0443 
0444 
0445 
0446 
0447 
0448 
0449 
0450 
0451 
0452 
0453 

01 FINAL-FOOTING TYPE CF FINAL LINE PLUS 1. 
02 COLUMN 3 PIC X(5) USAGE DISPLAY-7 

VALUE 'Total'. 
02 COLUMN 15 PIC X(5) USAGE DISPLAY-7 

VALUE 'Total'. 
02 COLUMN 25 PIC X(5) USAGE DISPLAY-7 

VALUE 'Total'. 
02 COLUMN 45 PIC X(5) USAGE DISPLAY-7 

VALUE 'Total'. 
02 LINE PLUS 1 COLUMN 1 PIC X(9) USAGE DISPLAY-7 

VALUE 'Customers'. 
02 COLUMN 15 PIC X(6) USAGE DISPLAY-7 

VALUE 'States'. 
02 COLUMN 25 PIC X(6) USAGE DISPLAY-7 

VALUE 'Cities'. 
02 COLUMN 45 PIC X(5) USAGE DISPLAY-7 

VALUE 'Sales'. 
02 LINE PLUS 2 COLUMN 1 PIC ZZ,ZZ9 SUM STATE-COUNT. 
02 COLUMN 16 PIC ZZ9 SOURCE NR-OF-STATES. 
02 COLUMN 26 PIC ZZ9 SOURCE NR-OF-CITIES. 
02 COLUMN 36 PIC $$,$$$,$$$,$$9 SUM STATE-SALES. 

10-12 



REPORT WRITER 

0454 PRO G RAM REP E X M 
20-0CT-78 11:16 

REPORT.CBL 20-0CT-78 11:16 

PROCEDURE DIVISION. 

'OTC 
U.l. .... 

PAGE 12 

0455 
0456 
0457 
0458 
0459 
0460 
0461 
0462 
0463 
0464 
0465 
0466 
0467 
0468 
0469 
0470 
0471 
0472 
0473 
0474 
0475 
0476 
0477 
0478 
0479 
0480 
0481 
0482 
0483 
0484 
0485 
0486 
0487 
0488 
0489 
0490 
0491 
0492 
0493 
0494 
0495 
0496 
0497 

* ************************************************************** 
* * The USE BEFORE REPORTING Verb (Line 470) 
* * You can include the USE BEFORE REPORTING verb in the 
* DECLARATIVES SECTION of the PROCEDURE DIVISION. A report 
* record is specified in the USE statement to indicate when 
* the USE procedure is to be performed. It is performed 
* immediately before the report record is written. 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* ************************************************************** 

DECLARATIVES. 
EOR SECTION. USE BEFORE REPORTING REPORT-FOOTER. 
EOR-A. DISPLAY 'END OF REPORTS'. 
END DECLARATIVES. 

MAIN SECTION. 

START-PROC1. 
SORT SORT-FILE ON ASCENDING KEY 

SORT-STATE,SORT-CITY,SORT-NAME 
INPUT PROCEDURE IS IN-PROCEDURE 
OUTPUT PROCEDURE IS OUT-PROCEDURE. 
STOP RUN. 

IN-PROCEDURE SECTION. 

START-PROC2. 

LOOP. 

OPEN INPUT CUSTOMER-FILE. 

READ CUSTOMER-FILE AT END GO TO DONE-INPUT. 
COMPUTE SORT-SALES ROUNDED = CUSTMR-SALES. 
MOVE CUSTMR-NAME TO SORT-NAME. 
MOVE CUSTMR-STATE TO SORT-STATE. 
MOVE CUSTMR-STREET TO SORT-STREET. 
MOVE CUSTMR-CITY TO SORT-CITY. 
RELEASE SORT-RECORD. 
GO TO LOOP. 

DONE-INPUT. CLOSE CUSTOMER-FILE. 

10-13 



REPORT WRITER 

0498 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 13 

REPORT.CBL 20-0CT-78 11:16 

0499 
0500 
0501 
0502 
0503 
0504 
0505 
0506 
0507 
0508 
0509 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0518 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0528 
0529 
0530 
0531 
0532 

OUT-PROCEDURE SECTION. 

* ************************************************************** 
* * OPEN the Report File (Line 511) 

* 
* 

* * * The report file must be OPENed before any records can be * 
* written in it. * 
* * 
* ************************************************************** 

START-PROC3. 
OPEN OUTPUT PRINTER-FILE. 
ACCEPT UNEDITED-DATE FROM DATE. 
MOVE UE-DAY TO TO-DAY; MOVE UE-MONTH TO TO-MONTH; 

MOVE UE-YEAR TO TD-YEAR 
MOVE ,_, TO TD-HYF-1,TD-HYF-2. 

* ************************************************************** 
* * INITIATE the Reports (Lines 531 - 532) 

* 
* 

* * * The INITIATE statement causes the counters and accumulators * 
* to be initialized. The summation counters are set to 0; * 
* the PAGE-COUNTER is set to 1. * 
* * * Each report written must be named in an INITIATE statement. * 
* The output file for the report must be OPENed before any * 
* INITIATE statement is executed. * 
* * 
* ************************************************************** 

INITIATE BY-CITY. 
INITIATE STATE-TOTALS-ONLY. 

10-14 



REPORT WRITER 

U~jj PRO G RAM REP E X M 
20-0CT-78 11:16 

COBOL-74 12(601) BIS 
PAGE 14 

REPORT.CBL 20-0CT-78 11:16 

0534 * ************************************************************** 
0535. * * 
0536 * GENERATE Report Records (Lines 577 - 578) * 
0537 * * 
0538 * The GENERATE statement causes testing of control fields and * 
0539 * writes any required control headings and footings. If the * 
0540 * argument to the GENERATE statement is a TYPE DETAIL record, * 
0541 * the record is written after any control breaks. If the * 
0542 * argument is a report descriptor (RD), the detail lines are * 
0543 * set up but not printed, so that a summary report is written.* 
0544 * * 
0545 * In this program, both types of reports are generated. The * 
0546 * GENERATE DETAIL-LINE statement causes a detail report to be * 
0547 * written; the GENERATE STATE-TOTALS-ONLY statement causes a * 
0548 * summary report to be written. * 
0549 * * 
0550 * A GENERATE statement performs the following operations: * 
0551 * * 
0552 * 1. Increments and tests the PAGE-COUNTER and produces * 
0553 * any required page footings and headings. * 
0554 * , 
0555 * 2. Tests for any control breaks and produces any * 
0556 * required control footings and headings. * 
0557 * * 
0558 * 3. Adds all specified identifiers to summation counters. * 
0559 * * 
0560 * 4. Executes any routines defined by USE statements. * 
0561 * * 
0562 * 5. If the argument to the GENERATE statement is a TYPE- * 
0563 * DETAIL record, writes the detail report group. * 
0564 * * 
0565 * During the first execution of a GENERATE statement, all * 
0566 * required report headings, page headings, control headings, * 
0567 * and detail report groups are written. * 
0568 * * 
0569 * ************************************************************** 
0570 
0571 
0572 
0573 
0574 
0575 
0576 
0577 
0578 
0579 
0580 
0581 
0582 

LOOP. 
RETURN SORT-FILE: AT END GO TO DONE-REPORTS. 
IF CURRENT-STATE NOT EQUAL SORT-STATE 

ADD 1 TO NR-OF-STATES. 
IF CURRENT-CITY NOT EQUAL SORT-CITY 

ADD 1 TO NR-OF-CITIES. 
GENERATE DETAIL-LINE-l. 
GENERATE DETAIL-LINE-2. 
GENERATE STATE-TOTALS-ONLY. 
MOVE SORT-STATE TO CURRENT-STATE. 
MOVE SORT-CITY TO CURRENT-CITY. 
GO TO LOOP. 

10-15 



REPORT WRITER 

0583 PRO G RAM REP E X M COBOL-74 12(601) BIS 
20-0CT-78 11:16 PAGE 15 

REPORT.CBL 20-0CT-78 11:16 

0584 
0585 
0586 
0587 
0588 
0589 
0590 
0591 
0592 
0593 
0594 
0595 
0596 
0597 
0598 
0599 
0600 
0601 
0602 
0603 
0604 
0605 
0606 
0607 
0608 
0609 
0610 

* ************************************************************** 
* * TERMINATE the Reports (Line 609) 

* 

* 
* 
* * The TERMINATE statement completes the processing for a * 

* report. When the TERMINATE statement is executed, breaks * 
* occur for all control fields and all control footings are * 
* written; all page footings and report footings are also * 
* written. If a program writes more than one report in the * 
* same file, each report must be named in a TERMINATE * 
* statement. * 
* * 
* ************************************************************** 

* ************************************************************** 
* * * CLOSE the Report File (Line 610) * 
* * * The CLOSE statement closes the report file. All reports * 
* written in the file must be TERMINATEd before the CLOSE * 
* statement is executed. * 
* * 
* ************************************************************** 

DONE-REPORTS. 
TERMINATE BY-CITY,STATE-TOTALS-ONLY. 
CLOSE PRINTER-FILE. 

NO ERRORS DETECTED 

10-16 



CHAPTER 11 

PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

You may find it convenient to organize your program into parts to make 
the programming task easier, to allow the program to run more 
efficiently, or both. A COBOL programming task can be organized into 
program segments, into subprograms, or into an overlay structure. 

11.1 PROGRAM SEGMENTS 

You can divide the Procedure Division of a COBOL program into parts 
called program segments. By doing this, you cause the system to run 
your program with some segments in memory only when they are needed; 
when they are not needed, they are on disk storage. Thus, the amount 
of memory required for execution is reduced. 

You can define program segments in a main program or in a subprogram, 
but only one segmented program is allowed in a single load. 

11.1.1 Section-Names and Segment Numbers 

A program segment is made up of one or more sections, each of which 
begins with a SECTION statement of the form 

section-name SECTION nne 

where nn is a two-digit segment number in the range 00 to 99. A 
section extends from its SECTION statement to the next SECTION 
statement, or to the end of the program, whichever is first. All 
sections having the same segment number are in the same segment. 

A program segment is either resident or nonresident, and writeable or 
nonwriteable, depending on its segment number, and on the setting of 
the segment-limit. (The SEGMENT-LIMIT IS nn statement in the 
Environment Division defines the segment limit, which is the smaller 
of nn and 49; if nn is omitted or nn is 0, the segment-limit is 49.) 

A segment with a segment number of 50 or greater is nonresident and 
nonwriteable; it is brought into memory only when it is needed for 
execution. Further, such a segment loses any changes made by ALTER 
statements when it leaves memory. It is in its original state each 
time it enters memory. 

A segment with a segment number in the range SEGMENT-LIMIT 
nonresident, but writeable; it retains changes made 
statements. 

11-1 

to 
by 

49 is 
ALTER 



PROGRAM SEGMENTS, SUBPROGRAMS, AND ·OVERLAYS 

A segment with a segment number less than the SEGMENT-LIMIT (or with 
no segment number) is a resident and writeable segment; it is always 
in memory during execution. 

Nonresident segments are suitable for routines that are executed 
infrequently, run for a long time once begun, and require large 
amounts of memory. For example, a program that has four maln tasks 
that are executed sequentially is an ideal application for nonresident 
segmentation. Placing each task in a nonresident segment allows the 
program to run with only one of the segments in memory at a time. 

On the other hand, a frequently used routine should be pla~ed in a 
resident segment to avoid the overhead of bringing it into memory time 
after time. 

11.1.2 Examples 

In the following sample program, there are nine program SECTIONs 
forming six program segments. (Recall that sections having the same 
segment numbers are in the same segment.) 

PRO G RAM S E G M N T 
24-0CT-78 09:22 

SEGMNT.CBL 24-0CT-78 09:22 

0001 IDENTIFICATION DIVISION. 
0002 PROGRAM-ID. SEGMNT. 
0003 
0004 ENVIRONMENT DIVISION. 
0005 CONFIGURATION SECTION. 
0006 OBJECT-COMPUTER. DECSYSTEM-20 
0007 SEGMENT-LIMIT IS 25. 
0008 
0009 DATA DIVISION. 
0010 
0011 PROCEDURE DIVISION. 
0012 SECTI SECTION 20. 
0013 CALL A. 
0014 SECT2 SECTION 65. 
0015 CALL A. 
0016 SECT3 SECTION 22. 
0017 CALL A. 
0018 SECT4 SECTION 20. 
0019 CALL A. 
0020 SECTS SECTION 60. 
0021 CALL A. 
0022 SECT6 SECTION 30. 
0023 CALL A. 
0024 SECT7 SECTION 35. 
0025 CALL A. 
0026 SECT8 SECTION 35. 
0027 CALL A. 
0028 SECT9 SECTION 60. 
0029 CALL A. 
0030 STOP RUN. 

NO ERRORS DETECTED 

11-2 

COBOL-74 12(601) BIS 
PAGE 1 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

In the example above, the segments are as follows: 

1. Segment 20 contains the sections SECTI and 
SEGMENT-LIMIT IS 25 statement causes this 
resident and writeable. 

SECT4. The 
segment to be 

2. Segment 22 contains section SECT3; 
writeable. 

it is resident and 

3. Segment 30 contains section SECT6. Since its segment number 
is above the SEGMENT-LIMIT but less than 50, it is 
nonresident and writeable; changes made to the segment are 
preserved even if it leaves and returns to memory. 

4. Segment 35 contains sections SECT7 and SECT8. 
nonresident and writeable. 

It 

5. Segment 60 contains sections SECTS and SECT9. Since 
segment number is above 50, it is nonresident 
nonwriteable; changes made to the'segment are lost when 
leaves and returns to memory. 

is 

its 
and 
it 

6. Segment 65 contains section SECT2. 
nonwriteable. 

It is nonresident and 

11.2 SUBPROGRAMS 

A COBOL subprogram is written and compiled as a separate program, but 
is meant to be executed together with other programs. When several 
programs are loaded and executed together, the program in which 
execution begins is called the main program; the other programs are 
called subprograms. 

A large programming task can become more manageable if the program is 
divided into subprograms. Each subprogram can perform a few 
relatively simple tasks and each can be written and tested separately 
by using "dummy" main programs. 

Using subprograms will also permit you to define an overlay structure 
at load time. (See Section 11.3 for a discussion of overlays.) 

A subprogram can open files, perform I/O for them, and close them; 
but no COBOL subprogram can perform I/O for files in another program. 
Any COBOL subprogram which will perform I/O must be linked to the main 
program. That is, there must be a link, consisting of CALL 
statements, or a series of CALL statements through a series of 
subprograms, from the main COBOL program to any COBOL subprogram which 
wishes to do I/O. The CALL statement does not have to be executed to 
provide a link - in fact, it may be in such a position that it will 
never be executed. This requirement will of course be met by any 
group of subprograms all of which are written in COBOL. If, however, 
you wish to call a non-COBOL subprogram, you must make sure that any 
COBOL routines which are called by the non-COBOL subprogram have a 
link to the main COBOL program if the COBOL routines wish to do any 
I/O. 

The COBOL compiler recognizes a subprogram by its use of LINKAGE 
SECTION, ENTRY, GOBACK, or the presence of the USING clause in the 
Procedure Division header. If a program has none of these, the 
compiler treats it as a main program. 

11-3 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

The compiler generates a start address for a main program, but not for 
a subprogram. This start address is the address of the beginning of 
the Procedure Division, that is, the address where the first 
executable instruction is generated. This start address tells LINK 
and, in turn, the system where to begin execution of the program. 

You can force the compiler to generate a start address for a 
subprogram by using the IJ switch. You can prevent the compiler from 
generating a start address for a main program by using the II switch. 

NOTE 

A subprogram can be treated as a main 
program (that is, can cont~ln a start 
address) only if no statements in the 
Procedure Division refer to data in the 
Linkage Section. This is because in a 
main program only Data Division 
statements can allocate memory 
locations. There is no space in memory 
for data in the Linkage Section. 

11.2.1 Inter-Program Communication 

Main programs and subprograms communicate by transfering execution 
control and by sharing data. The shared data may be in files, but it 
is often more useful for them to share data that is already in memory. 

11.2.1.1 The Calling Program - In the calling program, a CALL 
statement transfers execution control to a subprogram and optionally 
makes a list of data-items available to the called subprogram. The 
CALL statement has the form: 

CALL {program- or entry-name} [USING identifier-l [,identifier-2] ... ]. 

The program- or entry-name specifies the point to which execution 
control is to be passed in a subprogram. If a program-name is given, 
it is the PROGRAM-ID name in the subprogram, and control 1S 
transferred to th~ beginning of the subprogram's Procedure Divisi6n. 
If an entry-name is -given, it is the name given by an ENTRY statement 
in the subpiogram, and control is transferred to that statement. 

Each program-name and entry-name must be unique among all those loaded 
together. 

The identifiers specified in the CALL statement give a list of 
data-items in the calling program. The memory locations associated 
with them ar~ then available for use in the called subprogram. If you 
omit the USING clause, no memory locations in the calling program are 
available to the called subprogram. 

Each identifier must be defined in the File Section, Working-Storage 
Section, or Linkage Section of the calling program. Eachdata-item 
must be word-aligned. (Items at the 01 and 77 levels and COMP items 
are already word-aligned; others may be aligned by using the 
SYNCHRONIZED LEFT clause.) 

11-4 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

11.2.1.2 The Called Subprogram - A subprogram can begin execution at 
any of its entry points. The beginning of the Procedure Division is 
always an entry point. Its entry-name is the name given in the 
subpr'ogram's PROGRAM-ID statement. 

You can name data-items to be available to the called program with a 
USING clause in the PROCEDURE DIVISION statement. This statement has 
the form: 

PROCEDURE DIVISION [USING identifier-l [,identifier-2] .•• ]. 

You can define additional entry points using the ENTRY statement, 
which has the form: 

ENTRY entry-name [USING identifier-l [,identifier-2] ••• ]. 

The specified entry-name is defined for 
calling programs and must be unique 
program-names loaded together. 

use by 
among 

CALL statements 
all entry-names 

in 
and 

The USING clause of the calling program's CALL statement may have 
defined data-items to be made available to the called subprogram. If 
so, the USING clause of the entry-point statement (PROCEDURE DIVISION 
or ENTRY) may give identifiers to be used as local names for the 
shared memory. 

The identifiers in the called subprogram's USING clause are assigned 
data-items in the shared memory from left to right. The lengths of 
the data-items in the called subprogram need not match those in the 
calling program; but the total length of the data-items in the called 
program must not exceed that in the calling program. 

The identifiers in 
subprogram's Linkage 
identifiers. 

the USING 
Section 

clause must be defined in the 
and they must be level-Ol or level-77 

When a subprogram is called, execution proceeds in it as in any 
program. Control leaves the subprogram at the first executed GOBACK, 
EXIT PROGRAM, or STOP statement. 

If the subprogram does any I/O there must be a link to the main 
program consisting of COBOL subprograms. You may not have a COBOL 
subprogram doing I/O which is called by a non-COBOL subprogram. 

Execution of a GOBACK or EXIT PROGRAM statement in a subprogram 
returns control to the calling program. Execution of the calling 
program resumes at the statement immediately following the CALL 
statement that called the subprogram. Any changes to the data-items 
specified in USING clauses at the entry point are preserved on return 
to the calling program. 

The forms of the GOBACK and EXIT PROGRAM statements are: 

GOBACK. 

EXIT PROGRAM. 

Execution of a STOP statement halts execution of the entire loaded 
program. The STOP statement has the form: 

STOP {RUN or literal}. 

11-5 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

The STOP RUN statement ends program execution; there is no return to 
the calling program. The STOP literal statement causes a pause in 
program execution and the literal is typed on the user terminal. If 
you then type CONTINUE, execution continues at the statement following 
the STOP literal. 

11.2.2 Loading a Subprogram Structure 

There are two ways to load a subprogram structure: 

1. For simple loads, you can use the COMPILE-class commands. 

2. For more complex loads, you must use LINK directly. 

In either case, the following special considerations for loading 
subprogram structures apply: every entry point (program-name or 
entry-name) referenced in a CALL statement anywhere in the loaded 
program must be satisfied by loading a program containing the 
program-name or entry-name. If some referenced entry points are 
missing, a fatal LINK error occurs at load time. 

11.2.3 Object Libraries and Searches 

An object library is a file having one or more object modules; when 
LINK searches an object library, a module is loaded from the file only 
if it satisfies an unresolved global reference. (COBOL global 
references are created by the CALL or ENTER statement in a program; 
additional global references to routines in the object-time system are 
created by the COBOL compiler.) 

NOTE 

Object libraries are very different from 
source libraries. The source library is 
built using the COBOL utility program 
LIBARY and is accessed by the COpy 
statement in a COBOL program. The 
object library is built using the system 
program MAKLIB and is accessed by LINK 
command strings or by COMPIL-class 
system commands. 

The /SEARCH and /NOSEARCH switches turn on and off LINK's library 
search mode. When the library search mode is off (the initial 
default), LINK loads each input file you specify. When the library 
search mode is on, LINK searches each specified input file as a 
library. 

If the /SEARCH switch is appended to a file specification, then the 
switch is automatically turned off after that file is searched. For 
example: 

MYCOBL/SEARCH, COB4 

searches MYCOBL.REL, but loads all of COB4.REL. 

11-6 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

If the /SEARCH switch is not appended to a file specification, then 
the switch remains on until end-of-line or until a /NOSEARCH switch is 
found, whichever is earlier. For example, 

COBO,/SEARCH MYLIBl,MYLIB2,/NOSEARCH COBI 

loads CaBO, searches MYLIBI and MYLIB2, and loads COBI. 

The system library C74LIB.REL is searched automatically when LINK 
loads programs compiled with COBOL. This search occurs at the end of 
loading. 

You can change this normal search procedure by using LINK switches. 
The /SYSLIB switch requires LINK to search specified system libraries 
no matter what kind of modules were loaded. The /NOSYSLIB switch 
forbids search of specified system libraries. Using these two 
switches, you can select the time for searching system libraries. 

The /USERLIB switch specifies that for modules from a specified 
translator, a given user library must be searched before the 
corresponding system library. For example, using the switch 
MYCOBL/USERLIB:COBOL requires LINK to search MYCOBL.REL before 
searching C74LIB.REL. The /NOUSERLIB switch can suspend the effect of 
a /USERLIB switch. 

Using combinations of these search-related switches gives you precise 
control of library searches. All LINK switches are described in 
detail in the LINK Reference Manual. 

11.2.4 Examples 

Section 11.3 contains program listings of seven programs. The first 
of these is called CBLO; it is a main program. The remaining six 
programs are subprograms. Each has a Linkage Section that defines 
data items named in USING clauses of PROCEDURE DIVISION or ENTRY 
statements. The program CBL2 has two entry points defined by ENTRY 
statements. 

The following example shows how to load, save, and run these programs. 
The LOAD system command loads the programs; the SAVE command creates 
a file (CBLO.EXE) for the loaded program; the RUN CBLO command 
executes the program. All text between the RUN and EXIT lines were 
written by the executed program. The example is shown with a TOPS-IO 
system prompt character (.), but the TOPS-20 system prompt (@) could 
be there instead. TOPS-20 responds the same way to the LOAD command • 

. LOAD CBLO,CBLl,CBL2,CBL3,CBL4,CBLS,CBL6 
COBOL: CBLO [CBLO.CBL] 
COBOL: CBLI [CBLl.CBL] 
COBOL: CBL2 [CBL2.CBL] 
COBOL: CBL3 [CBL3.CBL] 
COBOL: CBL4 [CBL4.CBL] 
COBOL: CBLS [CBLS.CBL] 
COBOL: CBL6 [CBL6.CBL] 
LINK: Loading 
EXIT 
. SAVE 
CBLO saved 

11-7 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

.RUN CBLO 
We're at level 0 in program CBLO 
CBLO calling CBL2A 

We're at level 1 in program CBL2 at CBL2A 
CBL2 calling CBLS 

We're at level 2 in program CBLS 
CBLS doesn't call anything 

Returned to CBL2 
CBL2 calling CBL6 

We're at level 2 in program CBL6 
CBL6 calling CBL3 

We're at level 3 in program CBL3 
CBL3 doesn't call anything 

Returned to CBL6 
Returned to CBL2 

Returned to CBLO 
CBLO calling CBL4 

We're at level 1 in program CBL4 
CBL4 calling CBLI 

We're at level 2 in program CBLI 
CBLI calling CBL2B 

We're at level 3 in program CBL2 
CBL2B doesn't call anything 

Returned to CBLI 
Returned to CBL4 

Returned to CBLO 
Execution ends in CBLO 
EXIT 

11.3 OVERLAYS 

at CBL2B 

If your loaded program would be too large to execute in one piece, you 
can define an overlay structure for it. This permits the system to 
execute the program with only some parts in your virtual address space 
at one time. (See the chapter on overlays in the LINK Reference 
Manual.) 

11.3.1 When to Use Overlays 

You do not need an overlay structure unless your program is too large 
for your virtual address space. If the program can fit in your 
virtual space, you should not define an overlay structure for it; the 
monitor's page-swapping facility is faster than overlay execution. 

11.3.2 Overlayable COBOL Programs 

A COBOL subp~ogram structure is overlayable if it observes the 
following rules: 

1. If a subprogram contains I/O verbs other than ACCEPT and 
DISPLAY 7 it must be placed in the root link. (The other I/O 
verbs are CLOSE, DELETE, OPEN, READ, REWRITE, START, and 
WRITE.) Further, the subprogram that does I/O must have a 
chain of calls from the main program entirely within the root 
link; the chain of calls cannot contain calls to subprograms 
in other links. 

11-8 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

2. The subprogram structure must not contain RERUN statements. 

3. The subprogram structure must not contain reentrant code 
(compiled with /R under TOPS-IO or compiled without switches 
under TOPS-20 - thus users of TOPS-20 must use the /U switch 
to avoid reentrant code). 

To insure proper execution of a COBOL overlay, observe the following 
rules: 

1. After bringing the overlay into memory (by a LOAD command), 
run it using the RUN command (not the START command). 

2. Be sure that enough free memory is in the root link for the 
program to execute. (See Section 11.3.4.) 

A subprogram loaded into a nonroot link is not writeable. 
the link comes into memory, it is in its original state. 

11.3.3 Defining Overlays 

Each time 

A program overlay has a tree structure. The tree is made up of links, 
each containing one or more program modules. These links are 
connected by paths. Using LINK switches, you define each link and 
each path. 

At the top of the tree is the root link, which must contain the main 
program. First-level links are below the root link; each first-level 
link is connected to the root link by one path. 

Second-level links are below the first-level links, and each is 
connected by a path to exactly one first-level link. A link at level 
n is connected by a path to exactly one link at level n-l. 

Notice that a link can have more than one downward path (to successor 
links), but only one upward path (to ancestor links). 

Figure 11-1 shows a diagram of an overlay structure with 5 links. The 
root link is TEST; the first-level links are LEFT and RIGHT; the 
second-level links are LEFTI and LEFT2. 

TEST 

Figure 11-1 Example of an Overlay Structure 

11-9 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

Defining an overlay structure allows your program to execute in a 
smaller space. This is because the code in a given link is allowed to 
make reference to memory only in links along a direct upward or 
downward path. 

In the structure in Figure 11-1, the link LEFT can reference memory in 
itself, in the root link TEST, or in its successor links LEFTI and 
LEFT2. More generally, a link can reference memory in any link that 
is vertically connected to it. 

Referencing memory in any other link is illegal; for example, a path 
from LEFTI to LEFT2 is not a direct upward or downward path. 

Because of this restriction on memory references, only one complete 
vertical path (at most) is required in the virtual address space at 
anyone time. The remaining links can be stored on disk while they 
are not needed. 

LINK has a family of overlay-related switches for defining overlays. 
These switches are described in detail in the LINK Reference Manual. 
The following example shows command strings for defining the overlay 
diagrammed in Figure 11-1. 

TEST/LOG/LOGLEVEL:2 
/ERRORLEVEL:5 
TEST/OVERLAY 
TEST/MAP 
LPT:TEST/PLOT 
CBLO,CBLI/LINK:TEST 

/NODE:TEST CBL2,CBL3/LINK:LEFT 
/NODE:LEFT CBL5/LINK:LEFTI 
/NODE:LEFT CBL6/LINK:LEFT2 

/NODE:TEST CBL4/LINK:RIGHT 
TEST/SAVE 
/E/GO 

;Define TEST. LOG 
;Important messages 
;Define TEST.OVL 
;Define TEST.MAP 
;Request diagram 
;Root link ' 
;Left branch 
;Left-left branch 
;Left-right branch 
;Right branch 
;Define TEST.EXE 
;Execute now 

The first command string above defines the .LOG file for the overlay. 
TEST/LOG specifies that the file is named TEST.LOG. The /LOGLEVEL:2 
switch directs that only LINK messages at level 2 or greater be 
written in the .LOG file. 

In the second command string, the /ERRORLEVEL:5 switch directs that 
messages below the level of 5 be suppressed for terminal typeout. The 
third command string, TEST/OVERLAY, tells LINK that an overlay 
structure is to be defined and that the file for the overlay is to be 
TEST.OVL. 

The fourth command string, TEST/MAP, defines the file TEST.MAP for 
overlay symbol maps. 

The next command string, LPT:TEST/PLOT directs that a diagram of the 
overlay links be printed on the line printer. 

The next command string, CBLO,CBLI/LINK:TEST, loads the files CBLO.REL 
and CBLl.REL into the root link. The /LINK:TEST switch tells LINK 
that no more modules are to be in the root link and that the link name 
is TEST. 

Each of the next four lines defines one link with a string of the 
form: 

/NODE:linkname filenames/LINK:linkname 

11-10 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

where: 

/NODE:/linkname 

filenames/LINK:linkname 

specifies the previously defined link 
to which the present link is an 
immediate successor. 

names the files in the current link 
and specifies the name of the link. 

The first of these four lines begins with /NODE:TEST, which tells LINK 
that the link being defined is to be an immediate successor to TEST, 
the root link. Then (on the same line) , the string 
CBL2,CBL3/LINK:LEFT loads the files CBL2.REL and CBL3.REL, ends the 
link, and names the link LEFT. 

The next line, /NODE:LEFT CBL5/LINK:LEFTl, defines a link named LEFTI 
containing the file CBL5.REL, and this link is an immediate successor 
to the link LEFT. 

The next line, /NODE:LEFT CBL6/LINK:LEFT2, defines another immediate 
successor to LEFT, this time containing the file CBL6.REL and called 
LEFT2. 

The last link is defined in the next line, /NODE:TEST CBL4/LINK:RIGHT. 
This string defines the link RIGHT, which is an immediate successor to 
TEST and contains the file CBL4.REL. 

The next-to-last line in the example, TEST/SAVE, directs LINK to 
create the saved file TEST.EXE. The last line, /E/GO, specifies that 
the loaded program is to be executed and that all commands to LINK are 
completed. 

11.3.4 The /SPACE Switch to LINK 

For a COBOL overlay structure to execute properly, it must have free 
memory in its root link for the following uses: 

1. General-purpose I/O buffers 

2. I/O buffers and file tables for sorting 

3. Label record area for multireel files 

4. File index blocks for split index blocks of ISAM files 

The /SPACE switch to LINK reserves free memory. It has the form: 

/SPACE:n 

where n is the decimal number of words to be reserved. 

The /SPACE switch is used in the root link. For example, to allocate 
5000 words of free memory in the overlay example above, you would 
type: 

CBLO,CBLI/SPACE:5000/LINK:TEST 

There are two types of space needed in the root link of a COBOL 
overlay: space for buffers and space for dynamic allocation. 

11-11 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

Use the following guidelines to compute the free memory needed for 
buffers: 

1. Two buffers are needed for each sequential file and one 
additional buffer is needed for each extra area used in the 
program. 

For an unblocked sequential file (on disk or magnetic tape), 
each buffer is 128 words. For example, the buffer space 
needed for one sequential file on disk with one alternate 
area is 3*128 = 384 words. 

For a blocked sequential file on magnetic tape, the buffer 
size is the blocksize (record-size*records/block). For 
example, the buffer space needed for one blocked sequential 
file with 100 records per block and records of 100 words each 
is 2*100*100 = 20000 words. 

2. One buffer is needed for each random-access file and one for 
each file that is open for I/O. The buffer size is the 
number of l28-word blocks needed to hold the logical block, 
plus seven words. 

For example, a random-access file with logical blocks of 25 
10-word records has a block size of 250 words. The smallest 
number of 128-word blocks containing 250 words is 2 (= 256 
words). Therefore the buffer size is 256 + 7 = 263 words. 

3. Indexed-sequential files require one buffer for each file. 
The buffer size is the sum of the following: 

a. Enough l28-word blocks to contain a logical block for 
each level of the index file. 

b. Enough l28-word blocks to contain a logical block of 
data. 

c. A number of l28-word blocks equal to the number used in 
an index block. These are used for storage allocation 
tables. 

d. One 128-word block for the statistics block. 

e. One 128-word block for the index table. 

f. A number of words equal to the largest index key-size, 
plus two words. 

g. A number of words equal to the largest blocking factor of 
all the indexed-sequential files in the program. For 
example, if the largest blocking factor is 10, then 10 
words are required in the buffer. 

h. Enough l28-word blocks to contain the largest of the data 
or index blocks in all indexed-sequential files in the 
program. 

11-12 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

For example, to compute the buffer SIze for an indexed 
sequential file with four levels, with l28-word index 
blocks and 256-word data blocks, compute as follows: 

Total 

512 Four l28-word index blocks 
256 One 256-word data block 
128 One l28-word storage allocation table 

block 
128 One l28-word statistics block 
128 One l28-word index table block 
256 Two l28-word blocks for the largest of 

all data or index blocks 
2 Two words for the largest blocking factor 
4 2-word index key plus two words 

1414 Buffer size (in words) 

Use the following guidelines to compute the amount of free memory 
needed for dynamic allocation during program execution: 

1. The size of the label-record area for a multireel file. This 
size is 16 words for standard labels. For nonstandard 
labels, the size is the number of characters in the label 
divided by 5. 

2. The size of the index block of an indexed-sequential file if 
the top index block is split. 

3. The size of the sort I/O buffers if sorting is used in the 
program. This size is calculated as the number of devices 
assigned to the sort file in the SELECT clause times two (for 
two buffers for each file) plus 26 words for each file table 
for each device. 

For example, for a sort file with four assigned devices, calculate 
buffers as follows: 

4 * 128 words *2 + (4 * 26 words) 1128 words 

NOTE 

This calculation reflects only the 
requirements needed by COBOL. See also 
the SORT User's Guide for sort 
requirements. 

If you do not allocate sufficient free memory with the /SPACE switch, 
either your program will not begin execution or it will fail during 
execution. 

11.3.5 The CANCEL Statement 

You can use the CANCEL statement 
structure to reduce memory size 
statement has the form: 

in a 
during 

CANCEL subprogram-l [,subprogram-2] •••• 

COBOL subprogram overlay 
program execution. This 

where each named subprogram is in one of the overlay links. 

11-13 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

The CANCEL statement creates a call to the REMOV. Overlay Handler 
subroutine. This directs removal from core of the links containing 
the named subroutines, along with all their successor links. The 
Overlay Handler attempts to return the recovered memory. 

A CANCEL statement cannot direct removal of its own link or of any of 
its ancestor links, including the root link. 

In the overlay structure diagrammed in Figure 11-1, for example, a 
subprogram loaded into the link LEFT can CANCEL subprograms in link 
LEFTl, LEFT2, or both. But it cannot CANCEL subprograms in its own 
link, LEFT, or in the root link, TEST. 

11.3.6 Examples 

The following pages show terminal listings of files associated with 
the example above. These pages are: 

1. COBOL listing files for the programs used in the overlay 
(seven pages) 

2. Terminal copy of the interactive use of LINK to define and 
execute the overlay (two pages) 

3. The file TEST.MAP, generated by LINK, which shows symbol maps 
for the overlay (eight pages) 

11-14 



..... ..... 
I ..... 

U1 

.TY SEGPRG.TTY 
PRO G RAM C B L 0 

26-0CT-78 10:59 
CBLO.CBL 22-NOV-77 19:00 

0001 10 DIVISION. 
0002 PROGRAM-ID. CBLO. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 INFO. 

COBOL-74 12(600) BIS 
PAGE 1 

0006 02 LEVMSG PIC X(15) USAGE IS DISPLAY-7 VALUE "We're at level" 
0007 02 LEVEL PIC 9V VALUE O. 
0008 02 PGMMSG PIC X(12) USAGE IS DISPLAY-7 VALUE" in program" 
0009 02 CALMSG PIC X(9) USAGE IS DISPLAY-7 VALUE" calling ". 
0010 02 RETMSG PIC X(12) USAGE IS DISPLAY-7 VALUE "Returned to " 
0011 02 B PIC X(8) VALUE" 
0012 01 PGMNAM PIC X(6) VALUE "CBLO". 
0013 01 ENDMSG PIC X(18) USAGE IS DISPLAY-7 VALUE ;'Execution ends in 
0014 PROCEDURE DIVISION. 
0015 DISPLAY LEVMSG,LEVEL,PGMMSG,PGMNAM. 
0016 DISPLAY PGMNAM,CALMSG,"CBL2A". 
0017 CALL CBL2A USING INFO. 
0018 DISPLAY RETMSG,PGMNAM. 
0019 DISPLAY PGMNAM,CALMSG,"CBL4". 
0020 CALL CBL4 USING INFO. 
0021 DISPLAY RETMSG,PGMNAM. 
0022 DISPLAY PGMNAM,CALMSG,"CBL2B" . 
0023 CALL CBL2B USING INFO. 
0024 DISPLAY RETMSG,PGMNAM • 
0025 DISPLAY ENDMSG,PGMNAM. 
0026 STOP RUN. 

NO ERRORS DETECTED 

to 

~ 
G') 

~ 
3: 

til 
tzj 
G') 
3: 
tzj 

2: 
8 
til 

til 
C 
D' 
to 

~ 
G') 

~ 
3: 
til 

>-
2: 
t7 

o 
< 
tzj 

::c 
t'1 
>
to< 
til 



.... .... 
I .... 

0'\ 

SUB C B L 1 
26-0CT-78 10:59 

COBOL-74 12(600) BIS 
PAGE 1 

CBL1.CBL 22-NOV-77 19:00 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 

ID DIVISION. 
PROGRAM-ID. CBL1. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PGMNAM PIC X(6) VALUE "CBL1". 
LINKAGE SECTION. 
01 INFO. 

02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
02 LEVEL PIC 9V. 
02 PGMMSG PIC X(12) USAGE IS DISPLAY-7. 
02 CALMSG PIC X(9) USAGE IS DISPLAY-7. 
02 RETMSG PIC X(12) USAGE IS DISPLAY-7. 
02 B PIC X(8). 

PROCEDURE DIVISION USING INFO. 
ADD 1 TO LEVEL. 
DISPLAY B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
DISPLAY B,B,"CBL1 doesn't call anything" 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

NO ERRORS DETECTED 

ItI 
~ o 
(j) 

~ 
3: 

rn 
tzl 
(j) 
3: 
tzl 
Z 
t-3 
rn 

rn 
c 
tJ:I 
ItI 

~ 
(j) 

~ 
3: 
rn 

~ o 
o 
< 
tzl 
~ s: 
"< rn 



..... ..... 
I ..... 
~ 

SUB C B L 2 
26-0CT-78 10:59 

COBOL-74 12(600) BIS 
PAGE 1 

CBL2.CBL 22-NOV-77 19:00 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBL2. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 PGMNAM PIC X(6) VALUE "CBL2". 
0006 01 ENTNAM PIC X(6). 
0007 01 ENTMSG PIC X(4) USAGE IS DISPLAY-7 VALUE" at " 
0008 LINKAGE SECTION. 
0009 01 INFO. 
0010 02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
0011 02 LEVEL PIC 9V. 
0012 02 PGMMSG PIC X(12) USAGE IS DISPLAY-7. 
0013 02 CALMSG PIC X(9) USAGE IS DISPLAY-7. 
0014 02 RETMSG PIC X(12) USAGE IS DISPLAY-7. 
0015 02 B PIC X(8). 
0016 PROCEDURE DIVISION. 
0017 ENTRY CBL2A USING INFO. 
0018 ADD 1 TO LEVEL. 
0019 MOVE "CBL2A" TO ENTNAM. 
0020 DISPLAY B,LEVMSG,LEVEL,PGMMSG,PGMNAM,ENTMSG,ENTNAM. 
0021 DISPLAY B,PGMNAM,CALMSG, "CBL5". . 
0022 CALL CBL5 USING INFO. 
0023 DISPLAY B,RETMSG,PGMNAM . 
0024 DISPLAY B,PGMNAM,CALMSG,"CBL6" . 
0025 CALL CBL6 USING INFO . 
0026 DISPLAY B,RETMSG,PGMNAM. 
0027 SUBTRACT 1 FROM LEVEL. 
0028 GOBACK. 
0029 ENTRY CBL2B USING INFO. 
0030 ADD 1 TO LEVEL. 
0031 MOVE "CBL2B" TO ENTNAM. 
0032 DISPLAY B,LEVMSG,LEVEL,PGMMSG,PGMNAM,ENTMSG,ENTNAM. 
0033 DISPLAY B,"CBL2B doesn't call anything". 
0034 SUBTRACT 1 FROM LEVEL. 
0035 GOBACK. 

NO ERRORS DETECTED 

ttl 

~ 
(j) 

~ 
3: 

til 
tzl 
(j) 
3: 
tzl 
2: 
~ 
til 

til 
C 
tJ3 
ttl 

~ 
(j) 

~ 
3: 
til 

)II 
2: o 
o 
< 
tzl 
~ 

§: 
t< 
til 



...... 

...... 
I 

I-' 
CO 

SUB C B L 3 
26-0CT-78 11:00 

COBOL-74 12(600) BIS 
PAGE 1 

CBL3.CBL 16-NOV-77 19:00 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
"0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 

ID DIVISION. 
PROGRAM-ID. CBL3. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PGMNAM PIC X(6) VALUE "CBL3". 
LINKAGE SECTION. 
01 INFO. 

02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
02 LEVEL PIC 9V. 
02 PGMMSG PIC X(12) USAGE IS DISPLAY-7. 
02 CALMSG PIC X(9) USAGE IS DISPLAY-7. 
02 RETMSG PIC X(12) USAGE IS DISPLAY-7." 
02 B PIC X(8). 

PROCEDURE DIVISION USING INFO. 
ADD 1 TO LEVEL. 
DISPLAY B,B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
DISPLAY B,B,B,"CBL3 doesn't call anything". 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

NO ERRORS DETECTED 

to 

~ en 
~ 
3: 

til 
tEl en 
3: 
tEl 
2: 
t-3 
til 

til 
o 
tJ:I 
to 

~ en 
~ 
3: 
til 

> 
2: o 

~ 
tEl 
~ 

f;: 
to< 
til 



..... ..... 
I ..... 

\0 

SUB C B L 4 
26-0CT-78 11:00 

COBOL-74 12(600) BIS 
PAGE 1 

CBL4.CBL 16-NOV-77 19:00 

0001 
0002 
0003 
0004 
0005 
0006 
0.007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 

ID DIVISION. 
PROGRAM-ID. CBL4. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PGMNAM PIC X(6) VALUE "CBL4". 
LINKAGE SECTION. 
01 INFO. 

02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
02 LEVEL PIC 9V. 
02 PGMMSG PIC X(12) USAGE IS DISPLAY-7. 
02 CALMSG PIC X(9) USAGE IS DISPLAY-7. 
02 RETMSG PIC X(12) USAGE IS DISPLAY-7. 
02 B PIC X(8). 

PROCEDURE DIVISION USING INFO. 
ADD 1 TO LEVEL. 
DISPLAY B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
DISPLAY B,PGMNAM,CALMSG,"CBL1". 
CALL CBL1 USING INFO. 
DISPLAY B,RETMSG,PGMNAM. 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

NO ERRORS DETECTED 

"0 

~ 
G') 

~ 
3: 

til 
tz.:I 
G') 
3: 
tz.:I 
Z 
t-3 
til 

til 
c:: 
'" "0 

~ 
G') 

~ 
3: 
til 

)II 
Z 
t1 

o 
<: 
tz.:I 
~ 

§;: 
to< 
til 



..... ..... 
I 
tv 
o 

SUB C B L 5 
26-0CT-78 11:00 

COBOL-74 12(600) BIS 
PAGE 1 

CBL5.CBL 16-NOV-77 19:00 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 

ID DIVISION. 
PROGRAM-ID. CBL5. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PGMNAM PIC X(6) VALUE "CBL5". 
LINKAGE SECTION. 
01 INFO. 

02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
02 LEVEL PIC 9V. 
02 PGMMSG PIC X(12) USAGE IS DISPLAY-7. 
02 CALMSG PIC X(9) USAGE IS DISPLAY-7. 
02 RETMSG PIC X(12) USAGE IS DISPLAY-7. 
02 B PIC X(8). 

PROCEDURE DIVISION USING INFO. 
ADD 1 TO LEVEL. 
DISPLAY B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
DISPLAY B,B,"CBL5 doesn't call anything". 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

NO ERRORS DETECTED 

ttl 

~ 
(j) 

~ ::: 
til 
t!j 
(j) 
::: 
t:rJ 
l2: 
8 
til 

til 
o 
tl' 
ttl 

~ 
(j) 

~ ::: 
til 

)1/ 
l2: 
t=' 

o 
<: 
t:rJ 
l:O 

~ 
to< 
til 



I--' 
I--' 
I 

tv 
I--' 

SUB C B L 6 
26-0CT-78 11:00 

COBOL-74 12(600) BIS 
PAGE 1 

CBL6.CBL 16-NOV-77 19:00 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 

ID DIVISION. 
PROGRAM-ID. CBL6. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PGMNAM PIC X(6) VALUE "CBL6 1t

• 

LINKAGE SECTION. 
01 INFO. 

02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
02 LEVEL PIC 9V. 
02 PGMMSG PIC X(12) USAGE IS DISPLAY-7. 
02 CALMSG PIC X(9) USAGE IS DISPLAY-7. 
02 RETMSG PIC X(12) USAGE IS DISPLAY-7. 
02 B PIC X(8). 

PROCEDURE DIVISION USING INFO. 
. ADD 1 TO LEVEL. 

DISPLAY B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
DISPLAY B,B,PGMNAM,CALMSG,"CBL3". 
CALL CBL3 USING INFO. 
DISPLAY B,B,RETMSG,PGMNAM. 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

NO ERRORS DETECTED 

~ 

~ 
Cl 

~ 
3: 

til 
tzl 
Cl 
3: 
tI!I 
~ 
toi 
til 

til 
c::: 
l:J' 
~ 

~ 
Cl 

~ 
3: 
til 

)II 
~ 

'=' 
~ 
tzl 
~ 

~ 
to< 
til 



~ 
I-' 
I 

N 
N 

@R LINK 
*TEST/LOG/LOGLEVEL:S 
*/ERRORLEVEL:S 
*TEST/OVERLAY 
*TEST/MAP 
*CBLO,CBLI/LINK:TEST 
[LNKLMN Loading module CBLO] 
[LNKLMN Loading module CBLI} 
[LNKLMN Loading module OVRLAY] 
[LNKLMN Loading module LILOWS] 
[LNKLMN Loading module CON012] 
[LNKLMN Loading module TRACED] 
[LNKLMN Loading module USRDSL] 
[LNKELN ~nd of link number 0, name TEST} 
* /NODE~TEST CBL2,CBL3/LINK:LEFT 
[LNKLMN Loading module CBL2] 
[LNKLMN Loading module CBL3] 
[LNKELN End of link number I, name LEFT} 

Define TEST.LOG 
Important msgs 
Define TEST.OVL 
Define TEST.MAP 
Root link 

;Left branch 

* INODE:LEFT CBLS/LINK:LEFTI ;Left-left branch 
[LNKLMN Loading module CBLS} 
[LNKELN End of link number 2, nameLEFTI] 
* /NODE:LEFT CBL6/LINK:LEFT2 ;Left-right branch 
[LNKLMN Loading module CBL6} 
[LNKELN End of link number 3, name LEFT2] 
* /NODE:TEST CBL4/LINK:RIGHT ;Right branch 
[LNKLMN Loading module CBL4} 
[LNKELN End of link number 4, name RIGHT] 
*TEST/SAVE 
*/E/GO 
[LNKXCT CBLO Execution] 

tV 

8 
~ 
fJl 
tZJ 
til 
3: 
tZJ 
2: 
foi 
fJl 

fJl 
C 
t:D 
tV 

~ 
til 

~ 
3: 
fJl 

>' 
2: 
C 

~ 
tZJ 
l:O 

~ 
t< 
fJl 



...... 

...... 
I 

tv 
W 

We're at level 0 in program CBLO 
CBLO calling CBL2A 

We're at level I in program CBL2 at CBL2A 
CBL2 calling CBLS 

We're at level 2 in program CBLS 
CBLS doesn't call anything 

Returned to CBL2 
CBL2 calling CBL6 

We're at level 2 in program CBL6 
CBL6 calling CBL3 

We're at level 3 in program 
CBL3 doesn't call anything 

Returned to CBL6 
Returned to CBL2 

Returned to CBLO 
CBLO calling CBL4 

We're at level I in program CBL4 
CBL4 calling CBLI 

We're at level 2 in program CBLI 
CBLI doesn't call anything 

Returned to CBL4 
Returned to CBLO 
CBLO calling CBL2B 

We're at level I i~ program CBL2 at CBL2B 
CBL2B doesn't call anything 

Returned to CBLO 
Execution ends in CBLO 

EXIT 
@ 

CBL3 
to 
!:tI 
0 
G'l 

~ 
3: 

en 
tr:J 
G'l 
3: 
tr:J 
Z 
Jo3 
en .. 
en 
c:: 
tJ:I 
to 
!:tI 
0 
G'l 

~ 
3: 
en .. 
:r-z 
0 

0 
< 
tlIl 
!:tI 
§;: 
t< en 



LINK symbol map of TEST version 12(600) page 1 
Produced by LINK version 4(765) on 6-Dec-78 at 13:31:10 

Overlay no. 0 name TEST 
Low segment starts at 0 ends at 3106 length 3107 = 4P 
High segment starts at 0 ends at 3462 length 3463 = 4P 
Control Block address is 3047, length 30 (octal), 24. (decimal) 
441 words free in Low segment, 211 words free in high segment 
322 Global symbols loaded, therefore min. hash size is 358 
Start address is 400010, located in program CBLO 

************* "0 
~ 
0 

JOBDAT-INITIAL-SYMBOLS Gl 

Zero length module ~ 
3: 

************* (Jl 
~ 

LIBOL-STATIC-AREA Gl 
3: 

Low segment starts at 140 ends at 1477 length 1340 (octal) , 736. (decimal) ~ 
Z 

.COMM. 140 Common length 736. .COMM. 140 Common length 736. t-3 
m 

************* 
m 

t-J CBLO from DSK:CBLO.REL[4,70} created by COBOL-74 on 6-Dec-78 at 13:29:00 C 
..... Low segment starts at 1500 ends at 1747 length 250 (octal) , 168. (decimal) tJ::J 
I "0 

f',J High segment starts at 400010 ends at 400214 length 205 (octal) , 133. (decimal) ~ .a:. 
CBLO 400022 Entry Relocatable Gl 

~ 
************* 3: 

m 
CBLI from DSK:CBL1.REL[4,70} created by COBOL-74 on 6-Dec-78 at 13:30:00 

Low segment starts at 1750 ends at 2167 length 220 (octal) , 144. (decimal) )II 
High segment starts at 400215 ends at 400440 length 224 (octal), 148. (decimal) Z 

~ 
CBLI 400217 Entry Relocatable 

0 

************* < 
~ 
~ 

OVRLAY from SYS:OVRLAY.REL[l,4} created by MACRO on 28-Aug-78 at 14:38:00 t"t 
)II 

Low segment starts at 2170 ends at 2671 length 502 (octal), 322. (decimal) ~ 
High segment starts at 400441 ends at 403462 length 3022 (octal), 1554. (decimal) m 

BOUT 104000000051 Global Absolute CLOSF 104000000022 Global Absolute 
-ERJMP 320700000000 Global Absolute ERSTR 10400000001I Global Absolute 
GCVEC 104000000300 Global Absolute GETOV. 402026 Entry Relocatable 
GTJFN 104000000020 Global Absolute HALTF 104000000170 Global Absolute 
INlOV. 402016 Entry Relocatable JFNS 104000000030 Global Absolute 
LOGOV. 402617 Entry Relocatable OPENF 104000000021 Global Absolute 
PBOUT 104000000074 Global Absolute PSOUT Hl4000000076 Global Absolute 
REMOV. 402045 Entry Relocatable RMAP 104000000061 Global Absolute 
RPACS 104000000057 Global Absolute RUNOV. 402065 Entry Relocatable 
RUNTM 104000000015 Global Absolute SFPTR 104000000027 Global Absolute 



LINK symbol map of TEST version 12(600) page 2 
OVRLAY 

SIN 104000000052 Global Absolute SOUT 104000000053 Global Absolute 
TIME 104000000014 Global Absolute %OVRLA 400000037 Global Absolute Suppressed 
.FHSLF 400000 Global Absolute Suppressed .OVRLA 2171 Entry Relocatable' 
.OVRLO' 2176 Global Relocatable .OVRLU 402346 Entry Relocatable 
.OVRWA 2175 Global Relocatable 

************* 

LILOWS from SYS:C74LIB.REL[l,4l, created by MACRO on 24-0ct-78 at 8:39:00 
ttl 

Zero length module ~ 
0 
G'l 

************* ~ 
CON012 from SYS:C74LIB.REL[l,4] created by MACRO on 24-0ct-78 at 8:39:00 3: 

Low segment starts at 2672 ends at 3036 length 145 (octal), 10l. (decimal) til 
tIJ 

CN.12 2672 Entry Relocatable COBST. 2672 Global Relocatable G'l 
GJ%OLD 100000000000 Global Absolute Suppressed GJ%SHT 1000000 Global Absolute Suppressed 3: 

tIJ GT%ADR 200000 Global Absolute Suppressed JS%DIR 70000000000 Global Absolute Suppressed 2: 
JS%GEN 70000000 Global Absolute Suppressed JS%NAM 7000000000 Global Absolute Suppressed 1-3 
JS%PAF 1 Global Absolute Suppressed JS%TYP 700000000 Global Absolute Suppressed {Jl 

PA%PRV 200000000 Global Absolute Suppressed 
til .... ************* C .... ttl 

I TRACED from SYS:C74LIB.REL[l,4] created by MACRO on 24-0ct-78 at 8:39:00 ttl 
IV 

~ U1 Low segment starts at 3037 ends at 3046 length 10 (octal) , 8. (decimal) 
G'l 

BTRAC. 3042 Entry Relocatable C.TRCE 3037 Entry Relocatable ~ CBDDT. 3044 Entry Relocatable CNTRe. 3042 Entry Relocatable 3: HSRPT. 3042 Entry Relocatable PTFLG. 3045 Global Relocatable til 
SBPSG. 3042 Entry Relocatable SFOV. 3042 Entry Relocatable 
TRPD. 3043 Entry Reiocatable TRPOP. 3042 Entry Relocatable 

>' 
************* 2: 

t::I 

USRDSL from SYS:C74LIB.REL[l,4] created by MACRO on 24-0ct-78 at 8:39:00 0 
< 

Zero length module tIJ 
~ 
t'1 

************* >' 
I< 
til 



~ 
~ 
I 

t-.J 
0\ 

Index to LINK symbol map of 

Name 

CBLO 
CBLI 

Page 

1 
1 

Name Page 

CON012 2 
LILOWS 2 

TEST version 12(600) 

Name Page 

OVRLAY 1 
TRACED 2 

Name Page 

USRDSL 2 

page 3 

~ 

~ 
til 

~ 
:J: 

til 
tIJ 
Cil 
3 
tIJ 
Z 
t-3 
til 

til 
c::: m 
~ 

~ 
til 

~ 
:J: 
til 

)II 
Z 
0 

0 
< 
tIJ 
~ 

s: 
t< 
til 



..... 

..... 
I 
~ 
...,J 

CBL2 

CBL3 

LINK symbol map of TEST 

Overlay no. 1 name LEFT 
Low segment starts at 
High segment starts at 
Control Block address is 
Path is 0 

7107 ends at 
3463 ends at 

7577, length 

version 12(600) #1 page 4 

7642 length 534 = IP 
4466 length 1004 = 2P 

30 (octal), 24. (decimal) 

93 words free in Low segment, 211 words free in high segment 
23 Global symbols loaded, therefore min. hash size is 26 

************* 

from DSK:CBL2.REL[4,70] created by COBOL-74 on 6-Dec-78 at 13:30:00 
Low segment starts at 7107 ends at 7356 length 250 (octal), 
High segment starts at 403463 ends at 404226 length 544 (octal), 

168. (decimal) 
356. (decimal) 

CBL2 
CBL2B 

403465 
403766 

Entry 
Entry 

Relocatable 
Relocatable 

CBL2A 403503 Entry 

************* 

from DSK:CBL3.REL[4,701 created by COBOL-74 on 6-Dec-78 at 13:30:00 
Low segment starts at 7357 ends at 7576 length 220 (octal), 
High segment starts at 404227 ends at 404466 length 240 (octal), 

CBL3 404231 Entry Relocatable 

************* 

144. (decimal) 
160. (decimal) 

Relocatable 

"d 

~ 
G) 

~ 
3: 

til 
tlIJ 
G) 
3: 
t!J 
2: 
~ 
til 

til 
c:: 
07 
"d 

~ 
G) 

~ 
3: 
til 

)II 
2: o 

~ 
t!J 
~ 

§: 
t< 
til 



..... 
..... 
I 

N 
co 

CBLS 

LINK symbol map of TEST version 12 (600) *2 page S 

Overlay no. 2 name LEFTI 
Low segment starts at 7643 ends at 10110 length 246 = IP 
High segment starts at 4467 ends at 4712 length 224 = IP 
Control Block address is 10063, length 16 (octal), 14. (decimal) 
Path is 0, 1 
439 words free in Low segment, 211 words free in high segment 
18 Global symbols loaded, therefore min. hash size is 21 

************* 

from DSK:CBLS.REL[4,70] created by COBOL-74 on 6-Dec-78 at 13:30:00 
Low segment starts at 7643 ends at 10062 length 220 (octal), 
High segment starts at 404467 ends at 404712 length 224 (octal), 

CBLS 404471 Entry Relocatable 

************* 

144. (decimal) 
148. (decimal) 

to 

~ 
Cil 

e 
{Jl 
tZJ 
Cil 
3: 
tZJ 
Z 
Jo3 
{Jl 

{Jl 
C 
t:X' 
to 

~ 
Cil 

~ 
3: 
{Jl 

~ 
~ 

o 
<: 
tZJ 
l:C 
§: 
t< 
{Jl 



~ 
~ 

I 
I\) 

\0 

CBL6 

LINK symbol map of TEST 

Overlay no. 3 
Low segment starts at 
High segment starts at 
Control Block address is 
Path is 0, 1 

name LEFT2 
7643 ends at 
4467 ends at 
10065, length 

437 words free in Low segment, 211 words 
19 Global symbols loaded, therefore min. 

************* 

version 12 (600) n page 6 

10112 length 250 = IP 
5204 length 516 = IP 

16 (octal), 14. (decimal) 

free in high segment 
hash size is 22 

from DSK:CBL6.REL{4,70] created by COBOL-74 on 6-Dec-78 at 13:30:00 
Low segment starts at 7643 ends at 10064 length 222 (octal), 
High segment starts at 404713 ends at 405204 length 272 (octal), 

CBL6 404715 Entry Relocatable 

************* 

146. (decimal) 
186. (decimal) 

to 

~ 
G'l 

~ 
3: 

til 
tzl 
G'l 
3: 
tzl 
Z 
8 
til 

til 
C 
03 
to 

~ 
G'l 

~ 
3: 
til 

~ 
Z 
tj 

o 
<: 
tzl 
l:O 
t"" 
~ 
t< 
til 



..... ..... 
I 

w 
o 

CBL4 

LINK symbol map of TEST 

Overlay no. 4 
Low segment starts at 
High segment starts at 
Control Block address is 
Path is 0 

name RIGHT 
7107 ends at 
3463 ends at 

7331, length 

273 words free in Low segment, 211 words 
19 Global symbols loaded, therefore min. 

************* 

version 12(600) it4 page 7 

7356 length 250 = IP 
5454 length 1772 = 2P 

16 (octal), 14. (decimal) 

free in high segment 
hash size is 22 

from DSK:CBL4.REL[4,70] created by 'COBOL-74 on 6-Dec-78 at 13:30:00 
Low segment starts at 7107 ends at 7330 length 222 (octal), 
High segment starts at 405205 ends at 405454 length 250 (octal), 

CBL4 405207 Entry Relocatable 

************* 

146. (decimal) 
168. (decimal) 

"0 

~ 
G) 

~ 
3: 

rn 
t%J 
G) 
3: 
t%J 
z: 
~ 
rn 

rn 
c:: 
0::1 
"0 

~ 
G) 

~ 
3: 
rn 

> z: 
t:J 

o 
< 
t%J 
::0 

~ 
I< rn 



I-' 
I-' 
I 

w 
I-' 

Index to overlay numbers of TEST 

Overlay Page Overlay Page 

#0 3 #2 5 
U 4 

Index to overlay names of TEST 

Name Page Name Page 

LEFT 4 LEFT2 6 
LEFTl 5 

[End of LINK map of TEST] 

version 12(600) 

Overlay Page Overlay Page 

#3 6 #4 7 

version 12(600) 

Name Page Name Page 

RIGHT 7 TEST 3 

page 8 

"0 

~ 
G') 

~ 
!!: 

til 
t:I:J 
G') 
!!: 
t:I:J 
Z 
t-3 
til 

til 
c: 
IlJ 
"0 

~ 
G') 

~ 
!!: 
til 

~ 
Z 
o 
o 
<: 
t:I:J 
~ 
t"1 
~ 
t< 
til 





CHAPTER 12 

CALLING NON-COBOL SUBPROGRAMS 

Some programming tasks are more conveniently accomplished in a 
language other than COBOL. You can write non-COBOL subprograms for 
these tasks, and then call the subprograms from COBOL programs. 

To call a non-COBOL subprogram, use the ENTER verb in the PROCEDURE 
DIVISION. The call has the form: 

ENTER language entry-name [USING string-l [,string-2] •.• ]. 

where: 

language 

entry-name 

string 

is the name of the compiler that generated the 
subprogram. 

is the name of the entry point you want to call. 

is one or more 
procedure-names. 

identifiers, literals, or 

The compilers that can generate COBOL-callable subprograms are COBOL, 
FORTRAN, and MACRO. The phrase ENTER COBOL is equivalent to CALL and 
is not discussed further here. 

The entry point used in the ENTER statement must be an entry-name 
symbol generated by the compiler for the called program. COBOL 
generates an entry-name for each ENTRY statement and program-name. 
FORTRAN generates an entry-name for each SUBROUTINE, FUNCTION, and 
ENTRY statement. MACRO generates an entry-name for each ENTRY 
statement. 

NOTE 

You can use the "weaker" MACRO statement 
INTERN instead of ENTRY if you 
explicitly load the MACRO module. ENTRY 
is required only if the module must be 
loaded in a library search. 

In the USING clause, using an identifier passes the value of the 
identifier to the called subprogram; uSlng a literal passes the 
literal to the subprogram; using a procedure-name passes the address 
of the beginning of the named procedure, which can be used for 
alternate returns. FORTRAN cannot accept DISPLAY-6 (SIXBIT) , 
DISPLAY-9 (EBCDIC), or COMP-3 (packed-decimal) data. 

12-1 



CALLING NON-COBOL SUBPROGRAMS 

12.1 CALLING FORTRAN SUBPROGRAMS 

When the COBOL compiler finds an ENTER FORTRAN statement, it generates 
a call for the named subprogram. If the ENTER statement contains a 
USING clause, the values indicated by the given identifiers, literals, 
and procedure-names are passed to the subprogram. 

FORTRAN programs called by COBOL programs should not use blank COMMON, 
even among themselves. Doing so can overwrite storage in the COBOL 
program. 

In the following example, the COBOL program CFSQRT calls the FORTRAN 
subprogram FSQRT to perform a square-root operation. The following 
list shows how values are passed from the .main program to the 
subprogram: 

Use of COBOL FORTRAN 
Value Identifier Variable 

Input number INPUT-NUMBER INPUT 

Answer ANSWER ANSWER 

Error message location ERROR-MESSAGE ERRMSG 

Exit message location EXIT-MESSAGE EXMSG 

The following is the source file for the COBOL program CFSQRT: 

ID DIVISION. 
PROGRAM-ID. CFSQRT. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 INPUT-NUMBER USAGE COMP-l. 
01 ANSWER USAGE COMP-l. 
PROCEDURE DIVISION. 
LOOP. 

DISPLAY 'Type a positive integer. '. 
ACCEPT INPUT-NUMBER. 
ENTER FORTRAN FSQRT USING INPUT-NUMBER,ANSWER, 

ERROR-MESSAGE,EXIT-MESSAGE. 
DISPLAY ANSWER. 
GO TO LOOP. 

ERROR-MESSAGE. 
DISPLAY 'No negative numbers, please. '. 
GO TO LOOP. 

EXIT-MESSAGE. 
DISPLAY 'Thank you. '. 
STOP RUN. 

The following is the source file for the FORTRAN program FSQRT: 

SUBROUTINE FSQRT(INPUT,ANSWER,*,*) 
REAL INPUT 
INTEGER ERRMSG,EXMSG 
ERRMSG=l 
EXMSG=2 
IF(INPUT.LT.O) RETURN ERRMSG 
IF(INPUT.EQ.O) RETURN EXMSG 
ANSWER=SQRT(INPUT) 
RETURN 
END 

12-2 



CALLING NON-COBOL SUBPROGRAMS 

In the following lines, these two source programs are executed. Each 
positive integer input yields its square root; a negative number 
yields an error message at an alternate return in the COBOL program; 
o yields the exit message at another alternate return. Note that the 
TOPS-IO system prompt could be replaced by the TOPS-20 prompt (@) 
without altering the example - the programs run exactly the same way 
under TOPS-20 . 

. EX CFSQRT.CBL,FSQRT.FOR 
FORTRAN: FSQRT 
FSQRT 
COBOL: CFSQRT [CFSQRT.CBL] 
LINK: Loading 
[LNKXCT CFSQRT Eexcution] 
Type a positive integer. 
4 
2.0EO 
Type a positive integer. 
3 
1.7320508EO 
Type a positive integer. 
2 
1.4l42l36EO 
Type a positive integer. 
1 
1.OEO 
Type a positive integer. 
-1 
No negative numbers, please. 
Type a positive integer. 
o 
Thank you. 

EXIT 

12.2 CALLING MACRO SUBPROGRAMS 

When the COBOL compiler finds an ENTER MACRO statement, it generates 
the standard calling sequence: 

MOVEI l6,arglist 
PUSHJ l7,entry point 

where arglist is the address of the first word of the argument list, 
and entry point is an entry-name symbol. 

If the ENTER statement contains a USING clause, the compiler creates 
an argument list containing an entry for each identifier or literal in 
the clause. The word immediately preceding the argument list is of 
the form: 

-length"O 

where length is the number of arguments in the list. If no USING 
clause appears in the ENTER statement, the length of the list is 0 
(but the length word still appears). 

12-3 



CALLING NON-COBOL SUBPROGRAMS 

Each entry in the argument list is.a 36-bit storage word of the form: 

1=======================================================1 
1 0 1 Code I Effective Address (E) 1 

1=======================================================1 
o 8 9 12 13 35 

where code is a 4-bit code (described below), and bits 13-35 contain 
the effective address (E) of the first word of the argument. 

If the passed argument is a I-word COMP item, the code is 2 and E is 
the location of the argument. 

If the passed argument is a 2-word CaMP item, the code is 11 (octal) 
and E is the location of the first word of the argument: the second 
word of the argument is at E+l. 

If the passed argument is a COMP-l item, the code is 4 and E is the 
location of the argument. 

If the passed argument is a DISPLAY-6 or DISPLAY-7 item, the code is 
15 (octal) and E is the location of a 2-word descriptor for the 
argument. The first word of the descriptor is a byte pointer word 
pointing to the argument. Its byte size is 6 for DISPLAY-6 or 7 for 
DISPLAY-7. 

The second word of the descriptor is of the form: 

bit 0 

bit 1 

bit 2 

bit 3 

bits 4-11 

bit 12 

bits 13-17 

bits 18-35 

numeric flag 

signed number flag 

figurative constant flag 

literal flag 

reserved 

flag for Ps preceding decimal point in PICTURE 

number of decimal places (if bit 12 is 0), or 
number of Ps (if bit 12 is 1) 

number of bytes in the item 

If the passed argument is a procedure-name (not allowed in a call to a 
COBOL subprogram), the code is 7 and E is the location of the first 
word of the procedure. 

In the following example, the COBOL program CMSQRT calls the MACRO 
subprogram MSQRT to perform a square-root operation. (The subprogram 
uses the FORLIB routine SQRT to take the square root.) 

The argument list generated by the ENTER MACRO statement is as 
follows: 

-4,,0 
ARGLST: Z 4,address 

Z 4,address 
Z 7,address 
Z 7,address 

:-Arglength"O 
:<4B12>&<Address of 1st COMP-l item> 
:<4B12>&<Address of 2nd COMP-l item> 
:<7B12>&<Address of 1st procedure> 
:<7B12>&<Address of 2nd procedure> 

12-4 



CALLING NON-COBOL SUBPROGRAMS 

The following is the source 
.c __ 

the COBOL program loV1-

ID DIVISION. 
PROGRAM-ID. CMSQRT. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 INPUT-NUMBER USAGE COMP-l. 
01 ANSWER USAGE COMP-l. 
PROCEDURE DIVISION. 
LOOP. 

DISPLAY 'Type a positive integer. '. 
ACCEPT INPUT-NUMBER. 
ENTER MACRO MSQRT USING INPUT-NUMBER,ANSWER, 

ERROR-MESSAGE,EXIT-MESSAGE. 
DISPLAY ANSWER. 
GO TO LOOP. 

ERROR-MESSAGE. 
DISPLAY 'No negative numbers, please. '. 
GO TO LOOP. 

EXIT-MESSAGE. 
DISPLAY 'Thank you. '. 
STOP RUN. 

The following is the source file for the MACRO program MSQRT. Notice 
that the entry-name MSQRT must be declared ENTRY and that the FORLIB 
routine SQRT, which is to be called, must be declared EXTERNAL. 

Notice also that at NEG and ZERO, the return address in the stack is 
replaced by a procedure-nam~ (address) to set up the alternate 
returns. At POS, the pointer to the argument list must be saved 
before calling SQRT. 

TITLE MSQRT 
ENTRY MSQRT 
EXTERN SQRT 

MSQRT: SKIPN 1,@O(16) 
JRST ZERO 
JUMPL 1,NEG 

POS: MOVEM 1,ARG 
MOVEM l6,SAVPTR 
MOVEI 16,1+[-1,,0 

Z 4,ARG] 
PUSHJ 17,SQRT 
MOVE 16,SAVPTR 
MOVEM 0,@l(16) 
POPJ 17, 

ZERO: MOVEI 1,@3(16) 
MOVEM 1,0(17) 
POPJ 17, 

NEG: MOVEI 1,@2(16) 
MOVEM 1,0(17) 
POPJ 17, 

ARG: BLOCK 1 
SAVPTR: BLOCK 1 

END 

;Skip if not zero 
;To zero routine 
;To negative routine 
;Fall into positive routine 
;Save arg in reg 1 
;Save return address 

;Set up arg for SQRT 
;FORLIB square root routine 
;Restore return address 
;Set up return arg 
;Return 
;Set up alternate return 

for zero arg 
;Return 
;Set up alternate return 
; for negative arg 
;Return 

In the following lines, these two source programs are executed. Since 
neither program is a FORTRAN program, FORLIB must be explicitly 
searched. 

12-5 



CALLING NON-COBOL SUBPROGRAMS 

Each positive integer input yields its square root; a negative number 
yields an error message at an alternate return in the COBOL program; 
o yields the exit message at another alternate return. Note that the 
execution of these programs will yield the same output if run under 
TOPS-IO. 

@EXE CMSQRT.CBL,MSQRT.MAC,SYS:FORLIB.REL/SEARCH 
COBOL: CMSQRT [CMSQRT.CBL] 
MACRO: MSQRT 
LINK: Loading 
[LNKXCT CMSQRT Excution] 
Type a positive integer. 
4 
2.0EO 
Type a positive integer. 
3 
1.7320508EO 
Type a positive integer. 
2 
1.4l42l36EO 
Type a positive integer. 
1 
1.OEO 
Type a positive integer. 
-1 
No negative numbers, please. 
Type a positive integer. 
o 
Thank you. 

EXIT 

@ 

12-6 



CHAPTER 13 

IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

Normally, the code generated by the COBOL-74 compiler is adequately 
efficient. However, since there are certain COBOL-74 constructions 
for which efficient code is not generated, it is possible to write 
programs that perform poorly. If your programmed application performs 
inefficiently, you are left with the following alternatives: 

1. Assume that a higher-performance version of 
compiler will solve the problem 

2. Purchase new or faster hardware 

3. Redesign the entire program 

4. Rewrite only the bad portions of the program 

Assuming that you are unwilling to wait for an 
purchase new or faster hardware, let us 
alternatives. 

improved 
consider 

the COBOL-74 

compiler or 
the remaining 

Although redesigning the entire program or application is possible, it 
is expensive and is generally not done. Like any system rewrite, 
however, it does offer the opportunity to add new features and 
eliminate old, out-of-date ones. It is a good alternative, in the 
long run. 

The much cheaper solution is to determine why a program is performing 
poorly and rewrite only the inefficient portions. This normally does 
not require a large effort since most COBOL programs spend 90% of the 
time executing only 10% of their code. The biggest task involves 
determining why a program is inefficient. 

Most programs lend themselves to some improvement. There have been 
many instances where a program used less than half the CPU time after 
improvement than it did before. Most often, the gain is in the range 
of 30%. Most significant is the fact that the reprogramming generally 
involved only 20 lines or less. 

Because some optimization techniques may be contrary to programming 
standards, it is necessary' to use discretion when choosing which 
programs to improve and how much to improve them. It is, therefore, 
not recommended that all programs be optimized. For example, little 
is gained if a weekly application has its CPU time cut from 10 to 5 
minutes. A program that runs for 2 hours a day, on the other hand, 
probably should be investigated. 

Program optimization is usually done on an as-needed basis: the 
greater the resource consumption by a program, the greater the 
priority for optimization. Therefore, your installation's programming 
standards should guide programmers towards efficient, partially 
optimized programs. 

13-1 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

Each computer system is different. Therefore, it is likely that 
installation programming standards will reflect, to some extent, 
practices which promote efficient use of the presently installed 
system. On some systems, for example, the size of a program, the 

.number of files open, and the type of devices used will affect a 
program's performance. On other systems, emphasis is placed on data 
types, coding practices, and data patterns. It is normal for a 
programming standard to reflect those practices that normally produce 
efficient results without impairing reliability or maintainability. 

The standard, therefore, could stipulate that all counters, indexes, 
and subscripts be described as COMPUTATIONAL. It could also, as is 
the case with most TOPS-IO and TOPS-20 installations, standardize 
around DISPLAY-6 files because of file space economics. Another 
standard practice is to request that an analysis of the data be made 
and that the program be written to efficiently process it. For 
example, the following program statements make some decisions based on 
the value of a particular item: 

IF ABLE > BAKER GO TO CHARLIE. 
IF ABLE < BAKER GO TO DOG. 
IF ABLE BAKER GO TO ECHO. 

If the value of ABLE is normally equal to BAKER, the program should be 
reordered with the following statement first: 

IF ABLE BAKER GO TO ECHO. 

Programming techniques of this type will promote efficiency on 
virtually every system and should be encouraged. 

Any programmer who can write COBOL programs can optimize them. Most 
of the programming tools currently available require minimal knowledge 
of anything other than COBOL. The optimization tools and techniques 
described in this chapter plus the techniques described in your 
installation standard provide most of the information needed to 
improve most COBOL programs. 

It is easy to apply already known optimizations to a program. It 
becomes more difficult to make programs more efficient, however, when 
the known optimization techniques are not applicable. The person who 
can be most successful will be one who understands a little about the 
code generated by the compiler and can read assembler code. By using 
the /A switch option to obtain a listing of the assembly language code 
generated for the program, he/she can determine, from the code 
generated, which alternatives produce the best results. 

There are many ways to make a program more efficient. The best 
results come from good program design. Minimizing disk access, 
segmenting programs into small well-defined pieces, and keeping 
irrelevant information out of records are some ways to gain more 
efficiency. Discussion of these techniques, because they are 
applications-specific, are beyond the scope of this chapter. They are 
mentioned here in order that you will take them into consideration 
when designing your individual applications. The remainder of this 
chapter deals with program improvements. It is a collection of 
techniques that have been used to good advantage by various 
installations. 

13-2 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

13.1 HOW TO PROCEED WITH PROGRAM OPTIMIZATION 

The actual coding required to optimize a program is usually minimal 
and not time-consuming. The largest component of time is spent 
learning the nature of the problem, that is, determining where and how 
much time is being spent by the program. Therefore, once a program 
has been selected for investigation, it is advisable to form a plan or 
procedure to be followed. This plan should consist of a series of 
small steps each designed to improve a small portion of the program. 
As one portion of the program is improved, begin on the next, and so 
on until the entire program has been improved to your satisfaction. 

NOTE 

Do not attempt program optimization 
until the program has been debugged and 
runs correctly! 

13.1.1 Where to Begin 

Begin by gathering together the following material and information: 

1. An understanding of the goal (lower elapsed or CPU time) 

2. Copies of the source program and supporting software 

3. Enough data to make this program run long enough to measure, 
and short enough to endure: 10 to 15 minutes is usually 
sufficient. 

4. Files for output verification 

5. Access to the measurement tools (see Section 13.1.2) 

6. A notebook to record all observations, measurements, and 
results (see Section 13.1.5). 

13.1.2 What Tools are Available 

There are some tools that are part of the system software; you may 
have others at your installation; and some are available through 
DECUS and other agencies. This chapter discusses those that are part 
of the system software and are commonly used and understood. These 
tools are: 

• COB DDT - For users of TOPS-IO and TOPS-20 
7.3 and 13.2 

see Sections 

• SET WATCH - For users of TOPS-IO only see the TOPS-IO 
Operating System Commands Manual 

13-3 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

13.1.3 What Method or Procedure to Use 

Once you have gathered all of the information and materials required, 
and are familiar with the various tools at your disposal, it is time 
to decide upon a course of action. The following procedure is 
provided as a guide. You can expand or shorten it as benefits your 
application or installation. 

1. Generate a version of the program and its data that will use 
10 to 15 minutes elapsed time. Remove anything from the 
program (terminal interaction, logical names, etc.) that make 
it difficult to run. 

2. Schedule your machine time to coincide with periods when the 
system is lightly loaded. This will enable you to make 
better use of the elapsed time statistics. 

3. Run the unaltered (original) program and determine the 
following statistics: 

a. Amount of CPU time used 

b. Elapsed time 

c. Amount of idle time on the system 

d. Amount of disk I/O, swapping, etc. 

e. Use SET WATCH to observe the program during its 
execution. SET WATCH will aid you in determining CPU 
time, peripheral usage, etc. 

Some of these statistics are not too meaningful on a system 
with even a moderate work load. Only the person conducting 
the test can determine to what extent the system work load 
may bias the measurement. However, even if the system is 
loaded, CPU time is normally a good indication of how the 
program performs. If the program runs with idle time, 
determine the reason for it (disk wait, tape wait, etc.). 
Often, additional buffering can lower the elapsed time. (See 
Section 13.1.4, Evaluating Performance.) 

4. Run a COBDDT histogram to determine its runtime statistics. 
The histogram will aid you in spotting potential problem 
areas in the program. 

5. If other tools are available, use them. 

6. Save the output from this first run for verification. 

7. Analyze the results and make any changes you believe will 
improve the program. 

8. Recompile, link, and execute the program using the tools and 
techniques mentioned above. 

9. Compare the statistics from this run with those of the 
previous or original run. 

10. write down all observations, facts, and hunches. (See 
Section 13.1.5, Documentation.) 

13-4 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

11. Repeat steps 7 through 10 until you are satisfied with the 
results. 

The last step, repeat until satisfied, is very important. 
easy to get carried away with program optimization. 
premise, for example, "I will be satisfied with a 30% 
When you reach this level of performance, stop. 

13.1.4 Evaluating Performance 

It is very 
Start with a 

improvement". 

Generally the best criteria for evaluating performance is the one that 
led you to be suspicious of the program in the first place. Most 
generally, CPU time is used. It is easy to measure and easy to 
reproduce. You simply observe the CPU time in the original program, 
make changes as appropriate, rerun the program and observe it again. 
If the CPU time decreases, the changes were effective. 

NOTE 

Because CPU time can vary with the load 
on the system, only changes in excess of 
5% can be considered relevant. 

Another, more effective, way to determine performance is to measure 
the amount of work done per second of CPU time. By counting the 
number of records processed per second or minute, you have a good way 
to document a program's performance. Thus, if a program can normally 
process 100 records per CPU minute, and the volume increases by 1000 
records per run, the effect is easily predictable. 

13.1.5 Documentation 

It is a good practice to document everything you have done during 
program optimization. You will want to improve other programs, and 
the notes you take for the first attempt will aid you in saving time 
and effort on each succeeding attempt. The documentation kept should 
be simple and should include the following information: 

1. The name of the program, the time and date of the run, and 
the name of the programmer 

2. The amount of data used by the test program, for example, 
1000 records for a 10-minute run 

3. The time (CPU and elapsed) used by the original program 

4. The level of performance desired 

5. The optimization techniques utilized 

6. The results obtained, both positive and negative 

7. COB DDT histogram 

8. Any observations about system performance 

13-5 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

9. Any other statistics collected, feelings, hunches, and other 
perceptions 

The documentation need not and should not be elegant. It should, 
however, be permanent. You might even tape portions of the console 
log into your notebook as a quick way of recording timings. 

13.2 LISTING THE TOOLS 

This section discusses the tools most commonly used by COBOL 
programmers for program optimization: COBDDT and SET WATCH. You are 
advised to read Section 7.3, COBDDT, before reading this section. The 
write-up on SET WATCH in the TOPS-IO Operating System Commands manual 
is also recommended for users of TOPS-IO.. This section will not 
attempt to redo anything that has already been done. It attempts only 
to present information relevant to program optimization. 

13.2.1 COBDDT 

This section discusses COBDDT as used for evaluating program 
performance. Therefore, only the histogram feature is described. The 
COB DDT histogram provides you with the following information for each 
procedure that was executed in your program (see Figure 13-1, Sample 
COBDDT Histogram): 

• Procedure name 

• The number of times the procedure was entered (ENTRIES) 

• The CPU time the procedure used (CPU) 

• The elapsed time the procedure used (ELAPSED) 

COBDDT HISTOGRAM FOR XDDT04 REPORT: 1 
XDDT4B.HIS 

PROCEDURE ENTRIES CPU ELAPSED 

1ST 1 0.336 1.649 
P12 5 0.251 1.239 
PP3 1 0.028 0.333 
PP4 1 0.005 0.005 
PP5 2 0.045 0.065 

2ND 3 0.123 0.398 
2PO 3 0.013 0.029 
2Pl 7 0.032 0.065 
2P3 7 0.030 0.152 
2PlO 7 0.030 0.047 

3RD 10 0.115 0.380 
3PO 10 0.050 0.108 

XDDT4B.HIS 

OVERHEAD: ELAPSED: 0.002 CPU: 0.002 

Figure 13-1 Sample COB DDT Histogram 

13-6 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

13.2.1.1 The ENTRIES Column - The infoLmation listed in the ENTRIES 
column of the histogram helps you to set your priorities for program 
improvement. Very high counts relative to others establishes the 
paragraph as one which needs further investigation. For example: 

1. Why is it entered so often? 

2. Is anything done there that could be done more effectively 
elsewhere? 

3. Can it be rewritten to do less? (See Section 13.5, Efficient 
Coding Conventions.) 

Often, the numbers will guide you into understanding how to order your 
decision lists. For example: 

Suppose P-l was entered 1000 times, P-2 was entered 500 times, 
and these paragraphs are chosen via a decision list that looks 
like this: 

S-l. IF A " " GO TO P-2. 

S-2. IF A "00" GO TO P-l. 

It is apparent, then, that the order of S-l and S-2 should be 
reversed because A is usually 00. 

Also, based on the number of records processed, unexpected counts in 
certain paragraphs should be accounted for. 

Do not be afraid to add new paragraph names to the program. Not only 
does this technique allow you to break large paragraphs up into 
smaller ones, it also enables you to better understand exactly where 
the program spends its time. 

13.2.1.2 The CPU Column - The histogram's CPU column lists the amount 
of CPU time each paragraph used up. Generally, if you can cut the CPU 
time, the elapsed time will also drop and the application will perform 
more efficiently. By analyzing this column, you can easily identify 
the big spenders - those procedures that eat up most of the CPU time. 
One approach is to rank the paragraphs in terms of CPU time and to 
look for paragraphs that spend more time per entry than others. Then, 
proceeding in rank order, determine what each paragraph is doing, if 
it has to do it, and if a better coding technique is in order. 
Usually only a few paragraphs need be examined. 

NOTES 

1. CPU time for a paragraph also 
includes time spent in paragraphs 
performed or routines called. 
Therefore, the sum of the CPU time 
is greater than the total time 
actually spent within this 
paragraph. (See Section 13.2.1.4.) 

2. CPU time also includes time spent in 
the object-time system and the 
monitor. 

13-7 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

If after examining the list of the most time-consuming paragraphs, you 
determine that all can be explained, it is unlikely that changing any 
particular thing will improve performance. Either the program cannot 
be improved any further, or other techniques are needed. 

13.2.1.3 ELAPSED Column - In a lightly loaded system, the elapsed 
time can be a guide to the effective blocking of records. Some 
experiences with programs that seemed I/O-bound indicated that they 
were spending a great deal of time in the paragraphs that dealt with 
relative or ISAM reads and updates. Inspection of the blocking 
revealed that while the files were blocked to conserve disk space, 
large amounts of data was being transferred (1 block) when the desired 
object was to update 1 record. Therefore, if a disproportionate 
amount of time is spent in some paragraphs, there could be a problem 
in processing. These paragraphs should definitely be investigated. 

13.2.1.4 OVERHEAD - This entry in the histogram, (see Figure 13-1) 
represents the time spent for PERFORM or CALL overhead. Look at this 
entry to evaluate the cost of PERFORM loop control mechanisms. If 
this figure is high, then some very short paragraph is being performed 
a large number of times. If this is the case, a more efficient method 
of loop control is probably in order. 

13.3 USING THE CORRECT DATA TYPE 

Understanding the various data types available is extremely important 
because there are so many of them. COBOL-74 offers you three 
different DISPLAY types and several COMPUTATIONALS. Each data type 
will offer some advantages and some disadvantages. It is necessary to 
understand these in order to maximize the efficiency of a particular 
application. 

13.3.1 DISPLAY Data Types 

There are 3 display data types used within COBOL. 

EBCDIC 
ASCII 
SIXBIT 

EBCDIC and ASCII are character codes which occupy 8 and 7 bits per 
character respectively. The representations for each character are 
defined by industry standards. SIXBIT is a 6-bit BCD code which is 
defined by DIGITAL. 

13.3.2 EBCDIC 

The 8-bit EBCDIC code allows 256 different characters. It is 
compatible with IBM and thus is a natural where data interchange with 
360s and 370s is necessary. EBCDIC files may contain a mixture of 
EBCDIC and COMPUTATIONAL-3 data. EBCDIC is packed into the computer's 
memory, 4 characters per word. 

13-8 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

EBCDIC processing is going to be somewhat slower tnan either A~Cil or 
SIXBIT because of amount of space that each character takes up. As an 
example, a 120-character record would occupy: 

1. 30 words in EBCDIC 

2. 24 words in ASCII 

3. 20 words in SIXBIT 

Since movement of data is roughly linear with volume (it takes twice 
as long to move twice as much), it can be seen that SIXBIT and ASCII 
are 33% and 20% more efficient than EBCDIC respectively. 

The amount of file storage is also proportional to the byte size. For 
example, five ASCII records or 6 SIXBIT records can be stored in the 
same space taken by only 4 EBCDIC records. 

Thus the usage of EBCDIC should be restricted to those cases where: 

1. The ASCII and SIXBIT character set is too small (128 and 64 
characters respectively compared with 256 for EBCDIC). 

2. The transmittal of data to and from EBCDIC systems is a major 
part of the application. 

3. The application depends on the collating sequence (numerics 
after alphabetics). 

4. The existance of many redefined records with mixtures of 
EBCDIC and COMP-3 make reprogramming unthinkable. 

In summary, it suffices to say that EBCDIC is a useful data type 
available to the COBOL user. For whatever its benefit, you must 
realize that it is slower and that a 33% increase on throughput could 
be realized by going to SIXBIT. 

13.3.3 ASCII 

Seven-bit ASCII is the coding sequence utilized by the unit record 
peripherals and terminals. Any other data type (EBCDIC or SIXBIT) 
will have to be converted to ASCII if it is to be sent to one of these 
devices. 

In memory, the usage of ASCII will make the movement of data proceed 
faster than EBCDIC but slower than SIXBIT because of the number of 
characters per word. On the disk, all ASCII records are variable 
length as defined by industry standards, the end of an ASCII record is 
defined by the existance of a "vertical form" (normally a line feed) 
character (or several such characters). Thus when reading ASCII 
files, it is necessary to read them a character at a time in order to 
find the end-of-record character. This implies that ASCII records can 
be variable length and efficiently stored on the disk. It also 
implies that moving such records to or from memory is more costly than 
the other data types which can be moved via the block transfer 
instruction. 

ASCII is the standard data type for "text files". Files created by 
editors which contain arbitrary length records can be stored 
economically and processed easily using the ASCII data type. Cards 
from a reader can be "trailing blank suppressed" so that they can be 
stored economically and are easily manipulated using ASCII. However, 

13-9 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

unless the full character set capabilities of ASCII (128 with 
lowercase plus line control) are necessary or the data is coming from 
or going to an ASCII peripheral, conversion to SIXBIT files is 
probably preferable. 

13.3.4 SIXBIT 

By far the most efficient DISPLAY code is SIXBIT. Six characters can 
be packed per word. Each record on disk or tape is preceded by a word 
with a character count allowing for block transfers of data. And the 
transmission time for moving the data around memory is less than any 
other data type. 

The only problem with SIXBIT is the number of characters possible 
within the 6-bit code. Basically, 64 characters allows for uppercase, 
numerics, and punctuation. It does not allow for lowercase, device 
control characters, or special graphics. 

Most installations put the bulk of their files into SIXBIT due to the 
storage economy and the processing efficiency. It is highly 
recommended wherever possible. 

13.3.5 COMPUTATIONAL 

There are several flavors of computational data types available to the 
COBOL programmer including: 

1. COMPUTATIONAL-3, the four bit complement of EBCDIC 

2. COMPUTATIONAL, internal binary (35 bits plus sign) 

3. Double-word COMPUTATIONAL, 
number of digits desired 
sign) 

automatically invoked when the 
is greater than 10 (70 bits plus 

4. COMPUTATIONAL-I, floating point (the hardware supports double 
precision floating point, but COBOL does not) 

Aside from the usage of COMP-3 as an adjunct to EBCDIC, the most 
useful data type is COMPUTATIONAL. This is normally used for indexes, 
counters, and subscripts. If other data types are used for these 
purposes, there will be continual conversion taking place since all 
arithmetic is done in binary. 

You can read arbitrary files by defining them as BINARY mode and then 
use the data as desired. 

13.4 DATA EFFICIENCIES 

Programming standards should insist on using the corect data types for 
certain operations. Using COMPUTATIONAL for counters will work better 
on almost any machine. 

13-10 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

13.4.1 Counter, Indexes, Subscripts 

In DIGITAL COBOL indexes and subscripts are not different (this is not 
the case with some systems). They are, in fact, the same as 
COMPUTATIONAL. A data item that will be used as a counter or 
subscript should be declared: 

77 THE-NAME PICTURE S9(10) COMPUTATIONAL. 

COMPUTATIONAL items are always word-aligned no matter at what level 
they are defined and thus are equally efficient. However, there are 
some things which must be observed. 

1. If the number of digits is greater than 10, it will become 
double-word computational, and all arithmetic will be done 
with calls to the object-time system. However, it is still 
faster and more efficient than DISPLAY. 

2. It is important that the variable be signed. If it is not, 
much less efficient code is generated in order to insure that 
it is never negative. 

13.4.2 File Storage 

SIXBIT files are the best for file storage and data manipulation 
efficiencies. Not only do they require less space than ASCII or 
EBCDIC, but they are efficient to move about. Each SIXBIT record is 
preceded by a "length descriptor" which provides the information 
necessary to do block transfers of data in memory rather than 
character by character. Also, since SIXBIT records are always word 
aligned, they can be transferred with block transfer instructions. 

ASCII is good for text which is of variable length (for example those 
created by EDIT) and for line control. It suffers from the necessity 
to process each character to determine the end of the record. 

EBCDIC is necessary if more than 128 characters is needed and if data 
transfer to systems using EBCDIC is necessary. It is also necessary 
to read files character by character since EBCDIC records (fixed 
length) need not necessarily be word aligned. It may be somewhat more 
efficiently processed than ASCII however since a specified number of 
characters is always transferred rather than an arbitrary number. 

13.4.3 Blocking Data 

Processing data from disk is more efficient if it is not blocked. 
This allows the system to pack information as tightly as possible on 
the disk with no slack bytes between blocks. Blocks always start on 
one of the disk's 128-word sector boundaries. Thus blocking 
inefficiently could waste considerable space. 

If you block disk records, remember to count the 
words on SIXBIT' and variable length EBCDIC records. 
two data types are also word aligned. 

13-11 

length descriptor 
Records for these 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

13.5 EFFICIENT CODING CONVENTIONS 

This section contains a listing of some practical coding practices 
which have proven efficient. Any of these can be demonstrated 
beneficial by writng short programs which execute these sequences a 
large number of times. It is also possible to look at the MACRO 
expansion of the program to see why things are different. 

13.5.1 Alignment 

When the addresses of the data items are known at compile time the 
compiler may generate efficient in-line code. This code may include 
the usage of the block transfer instruction where the two data items 
are aligned and of the same type. When they are not aligned, or when 
conversion is necessary, an object-time system routine may be called. 

The simplest way to insure that data will be aligned is to define it 
at either the "77" level or at the "01" level. It is possible by 
counting characters or by using the COBOL data map to also determine 
alignment. 

Alignment simply means that the first byte of each item begins in the 
same position in the beginning word, that the items are the same 
length, and that they are of the same type. 

13.5.2 Usage of Subscripts 

Avoid the usage of subscripts whenever possible. Subscripts are 
recomputed every time they are used, they are never remembered. If 
you use a subscripted item more than once, it is more efficient to 
move it into a simple variable and then use that. For example: 

01 THE-TABLE OCCURS 200 TIMES 
02 THE-COUNT PIC S9(10) COMP. 
02 THE-DATA PIC XXXXXXXX. 

77 THE-TABLE-COUNT PIC S9(10) COMP. 

The sequence 

MOVE THE-COUNT(IDX) TO THE-TABLE COUNT. 
IF THE-TABLE-COUNT 3 GO TO P-l. 
IF THE-TABLE-COUNT = 4 GO TO P-2. 

is more efficient if it is likely that the count is not 3, than the 
following: 

IF THE-COUNT(IDX) 3 GO TO P-l. 
IF THE-COUNT(IDX) = 4 GO TO P-l. 

13-12 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

It is usually advantageous to move the whole entry from a LdOie into 
some Ol-level structure which contains similar items rather than to 
process the data from the table via subscripts. For example: 

01 THE-TABLE OCCURS 20 TIMES. 
02 THE-CNT PIC S9(10) COMPo 
02 THE-DATA PIC XXXXXXX. 

01 THE-TABLE-ENTRY. 
02 THE-TABLE-CNT PIC S9(10) COMPo 
02 THE-TABLE-DATA XXXXXXX. 

MOVE THE-TABLE(IDX) TO THE-TABLE-ENTRY. 
IF THE-TABLE-CNT = 5 DISPLAY THE-TABLE-DATA. 

In this example, only one subscript had to be calculated, and one 
unsubscripted move performed. Savings in often-referenced paragraphs 
(in a loop) can be quite large. Simply remember that there is 
additional overhead here and it pays to eliminate it. 

13.5.3 Incrementing Counters 

COBOL-74 provides three ways of incrementing counters. Each performs 
the same function in different ways. For example: 

77 COUNTER PIC S9(10) COMPo 

This counter can be modified in the following ways: 

SET COUNTER UP BY 1. 

ADD 1 TO COUNTER. 

COMPUTE COUNTER = COUNTER +1. 

The first two examples are equivalent, the third is much slower and, 
therefore, not recommended. 

Keep in mind that computational counters should always be signed even 
when they logically will never become negative. If they are not 
signed, additional instructions will be generated to make sure they do 
not become neiative. 

13.5.4 The PERFORM Statement 

The PERFORM statement provides an essential element of structured 
programming. It provides implicit loop control and it makes listings 
easy to follow. 

However, it suffers from the fact that it requires some information to 
be posted upon entry to a routine and cleared upon exit from that 
routine. COBOL-74 is fussy about the nesting of PERFORMs so that 
there is a concept of level. Each time a PERFORM statement is 
encountered, the level counter is incremented by 1. Each time a 
performed routine exits, it is decremented by 1. The level counter 
must have the same value at exit time as it has at entry or else there 
is an error in the program. 

Here are a few known ways to improve the efficiency of programs which 
use PERFORMs. 

13-13 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

Example 13-1 

SET lOX TO 0 PERFORM PARI 100 TIMES. 

PARI. SET lOX UP BY 1. 
IF TABLE(IOX) ABLE MOVE 6 TO FOO. 

is more efficient than: 

PERFORM PAR2 VARYING lOX FROM 2 BY 1 
UNTIL lOX> 100. 

When a loop or PERFORM is done repeatedly, the loop should do 
everything possible on each iteration. This minimizes the expense of 
the loop control mechanism. Thus: 

PERFORM F-l 1000 TIMES. 
PERFORM F-2 1000 TIMES. 

should be rewritten so that both functions of F-l and F-2 can be 
accomplished by a single PERFORM. This is most meaningful when the 
word being accomplished by each paragraph is small. 

13.5.5 Use of the INSPECT Statement 

Use of the INSPECT statement is preferable to doing 
in other ways. You should understand all the 
REPLACING) so that the power of the statement can 
information on the INSPECT statement see Part 
Reference Material. 

13.5.6 Data Movement 

the same process 
options (including 
be applied. For 

2, COBOL Language 

This is just an observation on data movement. On a character-oriented 
machine, there is generally a machine instruction with a name 
something like MVC (for move characters). On such a system, there is 
a fixed cost for picking up the instruction, plus a variable cost 
which is a function of the number of characters. TOPS-IO and TOPS-20 
act similarly, but the fixed cost is higher. 

Especially if data conversion is implied (ASCII to SIXBIT), then it is 
more efficient to change all fields in a record with one move 
statement than to move the data field by field. If the compiler 
recognizes that data conversion is not necessary, and that the records 
are aligned, then efficient in-line code can be generated. Because 
the fixed cost to move any number of characters is higher on TOPS-IO 
and TOPS-20 than on some systems, programmers should try to avoid 
loops where small numbers of characters are continually being 
transferred. If it is impossible to avoid such situations, then make 
sure that the data is aligned. 

13-14 



IMPROVING PERFORMANCE OF COBOL-74 PROGRAMS 

13.5.7 Ordering Statements 

All programs should be written so 
numbers of useless instructions. 

IF AB = " " GO TO FOO. 
IF CD "1" GO TO FOO-l 
IF EF "2" GO TO FOO-2. 

IF GH = "3" GO TO FOO-3 

that they avoid executing large 
Thus classic decision lists like: 

should be ordered by expected frequency. The following type of coding 
should be avoided if it is in a highly used spot: 

IF AB 
IF AB 
IF AB 

" " 
"1" 
"2" 

MOVE Z TO DOD. 
MOVE Z TO FFF. 
MOVE Z TO GGG. 

In this type of code all statements get executed each time, even 
though only one actually does anything useful. 

13.5.8 Asking the Correct Question 

Some small efficiencies can be gained by asking the correct questions. 
Thus the following example is inefficient. 

LOOP. 
SET X TO 1. 
MOVE B(X) TO C(X). 
SET X UP BY 1. 
IF X > 1000 GO TO ZIP. 
GO TO LOOP. 

While this is not bad coding, the program will only go to ZIP one time 
in a 1000. Some better code is developed if the statement were 
rewritten: 

IF X < 1001 GO TO LOOP ELSE GO TO ZIP. 

The first option is the one that happens the most often. 

13-15 





APPENDIX A 

DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

The terms COBOL-68 and COBOL-74, which are used in the following text, 
refer to DIGITAL's implementation of ANS-68 and ANS-74 COBOL, 
respectively. Any references to ANS COBOL will be made clear by the 
use of the initials "ANS". 

COBOL-74 differs from COBOL-68 in the following ways: 

1. A stroke (slash, "/", virgule) in the continuation area 
(seventh character position) of a line causes page ejection 
of the compilation listing. (The line is treated as a 
comment.) <lNUC (1) New feature to COBOL-74> 

2. Two contiguous quotation marks may be used to represent a 
single quotation mark character in a nonnumeric literal. 
<lNUC (1) New feature.> 

3. REMARKS paragraph is deleted. <lNUC (2) Function was 
replaced by the comment line.> 

4. Continuation of Identification Division comment-entries must 
not have a hyphen in the continuation indicator area. <lNUC 
(2» 

5. PROGRAM COLLATING SEQUENCE clause specifies that the 
collating sequence associated with alphabet-name is used in 
nonnumeric comparisons. <lNUC (1) New feature.> 

6. 

7. 

SPECIAL-NAM~S paragraph: ilL", II /", and 
specified 1n the CURRENCY SIGN clause. 
restriction did not exist in X3.23-l968.> 

"=" may not be 
<2NUC (2) This 

Alphabet-name clause relates a 
specified collating sequence or 
native, or implementor-specified). 

user-defined name to a 
character code set (ANSI, 
<lNUC (1) New feature.> 

8. Alphabet-name clause: the literal phrase specifies a 
user-defined collating sequence. <2NUC (1) New feature.> 

9. All items which are immediately subordinate to a group item 
must have the same level-number. <lNUC (2» 

10. Object of a REDEFINES clause can be subordinate to an item 
described with an OCCURS clause, but must not be referred to 
in the REDEFINES clause with a subscript or an index. <lNUC 
(1) New feature.> 

11. An asterisk used as a zero suppression symbol in a PICTURE 
clause and the BLANK WHEN ZERO clause may not appear in the 
same entry. <lNUC (2» 

A-l 



DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

12. Alphabetic PICTURE character-string may contain the character 
B. <lNUC (1) New feature.> 

13. Stroke (/) permitted as an editing character. <lNUC (1) New 
feature.> 

14. SIGN clause' allows the specification of the sign position. 
<lNUC (1) New feature.> 

15. In the Procedure Division a section may contain zero or more 
paragraphs and a paragraph may contain zero or more 
sentences. <lNUC (1) New feature.> 

16. In relation and sign conditions, arithmetic expressions must 
contain at least one reference to a variable. <lNUC (2» 

17. Comparison of nonnumeric operands: If one of the operands is 
described as numeric, it is treated as though it were moved 
to an alphanumeric item of the same size and the contents of 
this alphanumeric item were then compared to the nonnumeric 
operand. <lNUC (3» 

18. Abbreviated combined relation condition: When any portion is 
enclosed in parentheses, all subjects and operators required 
for the expansion of that portion must be included within the 
same set of parentheses. <2NUC (2) No such restriction 
appeared in X3.23-1968.> 

19. Abbreviated combined relation condition: If NOT is 
immediately followed by a relational operator, it is 
interpreted as part of the relational operator. <2NUC (2) In 
X3.23-1968, NOT was a logical operator in such cases.> 

20. Class condition: The numeric test cannot be used with a 
group item composed of elementary items described as signed. 
<lNUC (3» 

21. In an arithmetic operation, the composite of operands must 
not contain more than 18 decimal digits. However, if your 
COBOL-74 compiler makes use of the Business Instruction Set, 
the maximum is 36 digits. <lNUC (2) X3.23-1968 specified 
limits only for ADD and SUBTRACT.> 

22. ACCEPT identifier FROM DATE/DAY/TIME allows the programmer to 
access the date, day, and time. <2NUC (1) New feature.> 

23. COMPUTE statement: the identifier series. 
feature.> 

<2NUC (1) New 

24. DISPLAY statement: If the operand is a numeric literal, it 
must be an unsigned integer. <lNUC (2» 

25. DIVIDE statement: the INTO identifier series and the GIVING 
identifier series. <lNUC (2» 

26. DIVIDE statement: the remainder item can be numeric-edited. 
<2NUC (1) New feature.> 

27. GO TO statement: the word TO is not required. <lNUC (1) 

28. 

X3.23-1968 requires the word TO.> 

EXAMINE statement and the special 
deleted. <lNUC (2) Function was 
statement.> 

A-2 

register TALLY were 
replaced by the INSPEC~ 



29. 

DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

INSPECT statement provides ability to count or replace 
occurrences of single characters or groups of characters. 
<lNUC (1) New feature.> 

30. MOVE statement: A scaled integer item (i.e., the rightmost 
character of the PICTURE character-string is a P) may be 
moved to an alphanumeric or alphanumeric-edited item. <lNUC 
(I) New feature.> 

31. MULTIPLY statement: the BY identifier series and the GIVING 
identifier series. <2NUC (1) New feature.> 

32. PERFORM statement: There is no logical - difference to the 
user between fixed and fixed overlayable segments. <lNUC (1) 
X3.23-l968 did not permit fixed overlayable segments to be 
treated the same as a fixed segment.> 

33. PERFORM statement: Control is passed only once for each 
execution of a Format 2 PERFORM statement (i.e., an 
independent segment referred to by such a PERFORM is made 
available in its initial state only once for each execution 
of that PERFORM statement). <lNUC,lSEG (3» 

34. STOP statement: If the operand is numeric literal, it must 
be an unsigned integer. <lNUC (2» 

35. A data description entry with an OCCURS DEPENDING clause may 
be followed within that record only by entries subordinate to 
it. That is, only the last part of the record may have a 
variable number of occurrences. <2TBL (2) This rule did not 
appear in X3.23-l968.> 

36. When a group item, having subordinate to it an entry that 
specifies Format 2 of the OCCURS clause, is referenced, only 
that part of the table area that is defined by the value of 
the operand of the DEPENDING phrase will be used in the 
operation. That is, the actual size of a variable length 
item is used, not the maximum size. <2TBL (2» 

37. The subject of the condition in the WHEN phrase of the' SEARCH 
ALL statement must be a data item named in the KEY phrase of 
the table; the object of this condition may not be a data 
item named in the KEY phrase. <2TBL (2) X3.23-l968 specified 
that either the subject or object could be a data item named 
in the KEY phrase.> 

38. SORT statement: COLLATING SEQUENCE phrase provides the 
ability to override the program collating sequence. <2SRT 
(1) New feature.> 

39. No more than one file-name from a multiple file reel can 
appear in a SORT statement. <2SRT (2» 

40. Segment-numbers permitted in DECLARATIVES. <lSEG (1» 

41. ACCESS MODE IS DYNAMIC clause: provides ability to access a 
file sequentially or randomly in the same program. 
<2REL,2INX (l) New feature.> 

42. ACTUAL KEY clause deleted. «2» 

43. RELATIVE KEY clause added for relative organization. 
(1).New featue.> 

A-3 

<IREL 



DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

44. FILE-LIMITS clause deleted. «2» 

45. PROCESSING MODE clause deleted. «2» 

46. ORGANIZATION IS RELATIVE clause. <lREL (2) New feature.> 

47. ORGANIZATION IS SEQUENTIAL clause. <lSEQ (2) New feature.> 

48. ORGANIZATION IS INDEXED clause. <lINX (2) New feature.> 

49. MULTIPLE REEL/UNIT clause deleted. «2» 

50. RESERVE •.• ALTERNATE AREAS deleted. «2» 

51. RESERVE integer AREAS to allow the user to specify the exact 
number of areas to be used. <lSEQ,lREL,lINX (1) New 
feature.> 

52. The data-name option of the LABEL RECORDS clause was deleted. 
<lSEQ,lREL,lINX (2) X3.23-l968 provided for user-defined 
label records.> 

53. LINAGE clause permits programmer definition of logical page 
size. <2SEQ (1) New feature.> 

54. CLOSE •.. FOR REMOVAL statement. <2SEQ (1) New feature.> 

55. DELETE statement. <lREL (1) New feature.> 

56. OPEN REVERSED positions the file at its end. <2SEQ (2» 

57. OPEN EXTEND statement adds records to an existing file. 
<2SEQ (1) New feature.> 

58. The OPEN REVERSED statement applies to all devices that claim 
support for this function. <2SEQ (1) X3.23-l968 restricted 
the application of this phrase.> 

59. READ statement: AT END phrase required only if no applicable 
USE AFTER ERROR/EXCEPTION procedure specified. 
<lSEQ,lREL,lINX (1) New feature."> 

60. READ statement: INVALID KEY phrase required only if no 
applicable USE AFTER ERROR/EXCEPTION procedure specified. 
<lREL,lINX (1) New feature.> 

61. READ ••• NEXT statement: used to retrieve the next 
record from a file when the adcess mode is dynamic. 
2INX (1) New feature.> 

62. REWRITE statement. <lSEQ,lREL (1) New feature.> 

63. SEEK statement was deleted. «2» 

logical 
<2REL, 

64. START statement provides for logical positioning within a 
relative or indexed file for sequential retrieval of records. 
<2REL, 2INX (1) New feature.> 

65. USE statement: the label processing options were deleted. 
<lSEQ,lREL,lINX (2) X3.23-l968 provided for the processing of 
user-defined labels.> 

A-4 



e:.e:. vv. 

DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

USE .•• ERROR/EXCEPTION statement; 
feature.> 

<lSEQ;lREL:IINX (1 ) New 

67. Recursive invocation 
<lSEQ,lREL,lINX (2» 

of USE procedures prohibited. 

68. WRITE statement: 
applicable USE 
<lREL,lINX (1» 

INVALID KEY phrase required only if no 
AFTER ERROR/EXCEPTION procedure specified. 

69. WRITE statement: BEFORE/AFTER PAGE phrase provides ability 
to skip to top of a page. <lSEQ (1» 

70. WRITE statement: 
feature.> 

END-OF-PAGE phrase. <2SEQ 

71. CALL identifier statement. <lIPC (1) New feature.> 

A-5 

(1) New 



DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

Note A. (RELATIVE files) 

The RANDOM file access method of COBOL-68 has been replaced by 
the RELATIVE file organization in COBOL-74. This means a number 
of syntactic changes, but in addition it means some important 
semantic changes as well. 

In the Environment Division, the syntactic changes include the 
substitution of an ORGANIZATION IS RELATIVE clause for the old 
ACCESS IS RANDOM clause, and the substitution of the ACCESS IS 
SEQUENTIAL / RANDOM / DYNAMIC for the old PROCESSING IS 
SEQUENTIAL clause. The FILE LIMITS clause goes away. The ACTUAL 
KEY clause is replaced by the RELATIVE KEY clause, although the 
meaning of the key value is identical to that in COBOL-68. 

The Data Division is unchanged. 

The Procedure Division verbs are changed considerably. Of EN , 
CLOSE and the USE ON ERROR procedures are unchanged. The WRITE 
statement is unchanged in syntax, but its meaning is restricted 
to writing a record into an "empty" position in the file. If the 
record position in the file into which the record is being 
written is already "occupied", the WRITE must not alter the 
existing contents of the record position, but must instead take 
the INVALID KEY path (or execute a USE procedure). In order to 
change the contents of an "occupied" record position one either 
has to REWRITE it or DELETE and WRITE it. Attempting to DELETE 
or REWRITE a record position which is already "empty" causes the 
INVALID KEY path to be taken. In other words, each record 
position of the relative file must have an "occupied" state, 
which can be recognized by the object time I/O routines. There 
is also a START verb which can be used to position at or beyond a 
given record position. Then sequential READs or WRITEs may be 
done. The sequential READ is done with a READ NEXT statement, 
whereas the random READ is just a READ statement. The sequential 
READ uses the AT END phrase (which is optional) and the random 
READ uses the INVALoD KEY phrase (also optional). Thus, there 
are not only many syntactic changes in existing verbs, but new 
verbs, and a markedly different approach to the file's contents. 

Note B. (INDEXED files) 

The INDEXED I/O module of COBOL-74 is fairly similar to that of 
COBOL-68. There are syntactic differences in the Environment 
Division and in the Procedure Division. 

COBOL-68 had a SYMBOLIC KEY clause to designate the key used in 
READ, WRITE, REWRITE and DELETE statements. COBOL-74 does not 
have a SYMBOLIC KEY clause. The random READ statement has a "KEY 
IS identifier" phrase which supplies a key value. The WRITE 
statement uses key values from the record being written, and the 
DELETE and REWRITE statements must follow a successfully executed 
READ and use the "remembered" key from that operation. 

COBOL-74 includes a START statement in the Procedure Division 
which positions the record pointer in the file specified. Also, 
the READ NEXT statement is used to do sequential reading through 
the existing records of the file. 

Note C. (Segmentation and PERFORM rules) 

In COBOL-74, sections in the Procedure Division can have segment 
numbers (called "priority numbers" in COBOL-68) that range from 
00 to 99. Segments with numbers 50 and above are called 

A-6 



DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

"independent" segments. Also, the programmer can specify a 
SEGMENT LIMIT IS clause with a value between 00 and 49. This 
divides the segments with numbers below 50 into two groups. Thus 
all segments fall into one of three groups: 

1. Below the segment limit, called "fixed permanent", that is, 
always resident~ 

2. From the segment limit to 49, called "fixed overlayable", 
that is, each segment number defines an overlay and the code 
in such a segment is brought into memory only as needed. Any 
GO TOs which have been ALTERED will retain their most 
recently set values when they are brought into memory. 

3. From 50 up, called "independent", that is, each segment 
number defines an overlay and the code is brought into memory 
only as needed. Any GO TOs which have been altered will be 
reset each time the segment is brought into memory. 

The restrictions on the ALTER and PERFORM verbs have not really 
changed from ANS-68 COBOL to ANS-74 COBOL but they have become 
more explicit. COBOL-74 implements the restrictions on the ALTER 
statement correctly (by either standard) but implements the 
restrictions on PERFORM in a manner different from either 
standard. COBOL-74 uses the segment-limit value as the dividing 
line for the PERFORM restrictions, whereas the standards use the 
segment number 50 as the dividing line. When you do not specify 
a segment limit value the compiler supplies 50 as the default, 
making the restrictions the same for COBOL-74 and the standards. 
However, when you do supply the segment limit value, COBOL-74 
applies the rules in such a way as to make all overlayable 
segments behave the same. 

(In the Journal of Development, the ALTER statement has been 
abolished and segment numbers are restricted to 00 to 49, hence 
all these rules go away, but the JOD change occurred after the 
ANS-74 COBOL standard was frozen for publication.) 

Note D. (CALL and CANCEL rules) 

There are many differences between COBOL-74's implementation of 
CALL and CANCEL and the ANS-74 COBOL standard. 

1. The syntax is different for both statements in that COBOL-74 
interprets a user-word as a program-name with or without 
quotes around it, whereas ANS-74 COBOL interprets a user-word 
as a data-name in which is stored the program-name. 

2. In ANS-74 COBOL there is an ON OVERFLOW clause for 

3. 

handling instances in which there is insufficient memory 
space available to load the c'alled subprogram. This does not 
exist in COBOL-74. 

COBOL-74 allows alternate entry points to 
allowed in ANS-74 COBOL, and COBOL-74 
(MACRO/FORTRAN) statement to allow the 
subprograms written in those languages. 

subprograms, not 
uses the ENTER 
user to call 

4. The semantics are very different. COBOL-74 uses LINK to 
construct a tree-structured overlay scheme from user-supplied 
commands to LINK. When a subprogram is CALLed, the branch of 
the tree up to that subprogram is loaded along with the 
sub.program. Likewise, when a subprogram is CANCELled, the 
entire tree beyond that subprogram is cancelled. ANS-74 

A-7 



DIFFERENCES BETWEEN COBOL-68 AND COBOL-74 

COBOL recognizes no such tree structure, and allows loading 
and cancelling to occur strictly on a subprogram basis. In 
addition, LINK allows more than one subprogram to be linked 
into a single overlay, with the effect that a cancel of one 
of the subprograms in the overlay results in a cancel of all 
subprograms in that overlay. 

Note E. (COpy statement) 

The double equal sign (==) is a syntactic element new to ANS-74 
COBOL (but not new to users of COBOL-68 version 12) used to set 
off pseudo-text. This notation is used to delimit pieces of text 
which you wish to replace or insert with the COpy verb. It is 
not necessary to use the double equal sign if your text-string is 
a literal or a data-name, but if you wish to replace complex 
pieces of text the double equal sign will serve as a clear 
delimiter, and you may include the notation any time you wish 
without risk of confusing the compiler. 

A-8 



APPENDIX B 

COBOL RESERVED WORDS 

In the listing below, words not preceded by symbols are reserved in 
both ANSI-74 Standard COBOL and in DECsystem-lO and DECSYSTEM-20 
COBOL. Words preceded by '*' are reserved in ANSI-74 Standard COBOL 
but not reserved in DECsystem-lO and DECSYSTEM-20 COBOL. Words 
preceded by '**' are reserved in DECsystem-lO and DECSYSTEM-20 COBOL 
but not reserved in ANSI-74 Standard COBOL. Reserved words may not be 
used as user-created names. 

A 

ACCEPT ACCESS ACTUAL 

ADD *ADDRESS ADVANCING 

AFTER ALL **ALLOWING 

ALPHABETIC ALSO ALTER 

ALTERNATE AND **ANY 

ARE AREA AREAS 

ASCENDING **ASCII ASSIGN 

AT AUTHOR 

B 

BEFORE BEGINNING **BINARY 

BLANK BLOCK BOTTOM 

BY BYTE 

C 

**CALL **CANCEL CD 

CF CH **CHANNEL 

CHARACTER CHARACTERS **CLASS 

*CLOCK-UNITS CLOSE COBOL 

CODE CODE-SET COLLATING 



COBOL RESERVED WORDS 

COLUMN COMMA **COMMUNICATION 

COMP **COMP-l **COMP-3 

**COMPILE COMPUTATIONAL **COMPUTATIONAL-l 

**COMPUTATIONAL-3 COMPUTE CONFIGURATION 

**CONSOLE CONTAINS CONTROL 

CONTROLS COpy CORR 

CORRESPONDING **COUNT **CURRENCY 

CURRENT 

D 

DATA **DATABASE-KEY **DATE 

**DATE-COMPILED DATE-WRITTEN **DBKEY 

DE *DEBUG-CONTENTS *DEBUG-ITEM 

*DEBUG-LINE *DEBUG-NAME *DEBUG-SUB-l 

*DEBUG-SUB-2 *DEBUG-SUB-3 DEBUGGING 

DECIMAL-POINT DECLARATIVES **DECSYSTEM-IO 

**DECSYSTEM-20 **DECSYSTEMIO **DEFERRED 

**DELETE DELIMITED DELIMITER 

**DENSITY DEPENDING **DEPTH 

DESCENDING DESTINATION DETAIL 

DISABLE DISPLAY **DISPLAY-6 

**DISPLAY-7 **DISPLAY-9 DIVIDE 

DIVISION DOWN **DUP 

**DUPLICATE DUPLICATES DYNAMIC 

E 

**EBCDIC EGI ELSE 

EMI **EMPTY ENABLE 

END END-OF-PAGE ENDING 

ENTER **ENTRY ENVIRONMENT 

EOP **EPI EQUAL 

**EQUALS ERROR ESI 

**EVEN EVERY EXCEPTION 

B-2 



**EXCL 

EXTEND 

F 

FD 

FILE-STATUS 

**FIND 

FOR 

**FREE 

G 

GENERATE 

GO 

GROUP 

H 

HEADING 

I 

I-O 

IDENTIFICATION 

INDEX 

INITIAL 

INPUT-OUTPUT 

INSTALLATION 

**INVOKE 

J 

**JOURNAL 

K 

KEY 

L 

LABEL 

LEFT 

COBOL RESERVED WORDS 

**EXCLUSIVE 

FILE 

FILLER 

FIRST 

**FORTRAN-IV 

**FREED 

**GET 

**GOBACK 

HIGH-VALUE 

I-O CONTROL 

IF 

INDEXED 

INITIATE 

**INSERT 

INTO 

IS 

JUST 

KEYS 

LAST 

LENGTH 

B-3 

EXIT 

FILE-CONTROL 

FINAL 

FOOTING 

**FORTRAN 

FROM 

GIVING 

GREATER 

HIGH-VALUES 

**ID 

IN 

INDICATE 

INPUT 

INSPECT 

INVALID 

JUSTIFIED 

LEADING 

LESS 



COBOL RESERVED WORDS 

LIMIT LIMITS LINAGE 

LINAGE-COUNTER LINE LINE-COUNTER 

LINES **LINKAGE LOCK 

LOW-VALUE LOW-VALUES 

M 

**MACRO **MEMBER **MEMBERS 

MEMORY MERGE MESSAGE 

MODE **MODIFY MODULES 

MOVE MULTIPLE MULTIPLY 

N 

NATIVE NEGATIVE NEXT 

NO **NOMINAL **NONE 

NOT NUMBER NUMERIC 

0 

OBJECT-COMPUTER OCCURS **ODD 

OF OFF OMITTED 

ON **ONLY OPEN 

**OPT OPTIONAL OR 

ORGANIZATION **OTHERS OUTPUT 

OVERFLOW **OWNER 

P 

PAGE PAGE-COUNTER **PARITY 

**PDP-IO PERFORM PF 

PH PIC PICTURE 

PLUS **POINTER POSITION 

**POSITIONING POSITIVE PRINTING 

**PRIOR **PRIVACY PROCEDURE 

PROCEED PROCEDURES PROCESSING 

**PROGRAM PROGRAM-ID **PROT 

**PROTECTED 

B-4 



COBOL RESERVED WORDS 

Q 

QUEUE QUOTE QUOTES 

R 

RANDOM RD READ 

*READ-REWRITE *READ-WRITE RECEIVE 

RECORD **RECORDING RECORDS 

REDEFINES REEL REFERENCES 

RELATIVE RELEASE REMAINDER 

REMARKS REMOVAL **REMOVE 

RENAMES REPLACING REPORT 

REPORTING REPORTS RERUN 

RESERVE RESET **RETAIN 

**RETAINED **RETR **RETRIEVAL 

RETURN REVERSED REWIND 

REWRITE RF RH 

RIGHT ROUNDED RUN 

**RUN-UNIT 

S 

SAME **SCHEMA SD 

SEARCH SECTION SECURITY 

SEGMENT SEGMENT-LIMIT SELECT 

**SELECTIVE SEND SENTENCE 

SEPARATE **SEQUENCE SEQUENTIAL 

SET **SETS SIGN 

**SIXBIT SIZE SORT 

SORT-MERGE SOURCE SOURCE-COMPUTER 

SPACE SPACES SPECIAL-NAMES 

STANDARD STANDARD-l **STANDARD-ASCII 

START STATUS STOP 

**STORE STRING SUB-QUEUE-l 

**SUB-QUEUE-2 **SUB-QUEUE-3 **SUB-SCHEMA 

B-5 



COBOL RESERVED WORDS 

SUBTRACT SUM **SUPPRESS 

**SWITCH SYMBOLIC SYNC 

SYNCHRONIZED 

T 

TABLE TALLY TALLYING 

TAPE TERMINAL TERMINATE 

TEXT THAN THROUGH 

THRU TIME TIMES 

TO TOP **TRACE 

TRAILING **TRANSACTION TYPE 

U 

* *UNAVAI LABLE UNIT UNSTRING 

UNTIL UP **UPDATE 

**UPDATES UPON USAGE 

**USAGE-MODE USE **USER-NUMBER 

USING 

V 

VALUE VALUES VARYING 

**VERB **VIA 

W 

WHEN WITH **WITHIN 

WORDS WORKING-STORAGE WRITE 

Z 

ZERO ZEROES ZEROS 

B-6 



APPENDIX C 

ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

Table C-l shows the ASCII and SIXBIT collating sequence and the 
conversions from ASCII to EBCDIC, SIXBIT to ASCII, and SIXBIT to 
EBCDIC. If the ASCII character does not convert to the same character 
in EBCDIC, the EBCDIC character is shown in parentheses next to the 
EBCDIC code. Note that the first and last 32 characters do not exist 
in SIXBIT. Also, the characters in the first column (NUL, SOH, STX, 
and so forth,) are control characters, which are nonprinting. 

Table C-l 
ASCII and SIXBIT Collating Sequence and Conversion to EBCDIC 

ASCII EBCDIC ASCII EBCDIC 
Character 7-bit 9-bit Character SIXBIT 7-bit 9-bit 

NUL 000 000 Space 00 040 100 
SOH 001 001* ! 01 041 132 
STX 002 002* il 02 042 177 
ETX 003 003* # 03 043 173 
EOT 004 067 $ 04 044 133 
ENQ 005 055* % 05 045 154 
ACK 006 056* & 06 046 1·20 
BEL 007 057* , 07 047 175 
BS 010 026 ( 10 050 115 
HT 011 005 ) 11 051 135 
LF 012 045 * 12 052 134 
VT 013 013* + 13 053 116 
FF 014 014* , 14 054 153 
CR 015 025* (NL) - 15 055 140 
SO 016 006*(LC) . 16 056 113 
SI 017 066*(UC) / 17 057 141 
DLE 020 044* (BYP) 0 20 060 360 
DCl 021 024 * (RES) 1 21 061 361 
DC2 022 064* (PN) 2 22 062 362 
DC3 023 065* (RS) 3 23 063 363 
DC4 024 004*(PF) 4 24 064 364 
NAK 025 075* 5 25 065 365 
SYN 026 027*(IL) 6 26 066 366 
ETB 027 046*(EOB) 7 27 067 367 
CAN 030 052* (CM) 8 30 070 370 
EM 031 031* 9 31 071 371 
SUB 032 032*(CC) : 32 072 172 
ESC 033 047* (PRE) . 33 073 136 I 

FS 034 023* (TM) < 34 074 114 
GS 035 041* (SOS) = 35 075 176 
RS 036 040*(DS) > 36 076 156 
US 037 042*(FS) ? 37 077 157 

C-l 



ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

Table C-1 (Cont.) 
ASCII and SIXBIT Collating Sequence and Conversion to EBCDIC 

ASCII EBCDIC ASCII EBCDIC 
Character SIXBIT 7-bit 9-bit Character 7-bit 9-bit 

@ 40 100 174 
, 

140 171 
A 41 101 301 a 141 201 
B 42 102 302 b 142 202 
C 43 103 303 c 143 203 
D 44 104 304 d 144 204 
E 45 105 305 e 145 205 
F 46 106 306 f 146 206 
G 47 107 307 g 147 207 
H 50 110 310 h 150 210 
I 51 III 311 i 151 211 
J 52 112 321 j 152 221 
K 53 113 322 k 153 222 
L 54 114 323 1 154 223 
M 55 115 324 m 155 224 
N 56 116 325 n 156 225 
0 57 117 326 0 157 226 
p 60 120 327 P 160 227 
Q 61 121 330 q 161 230 
R 62 122 331 r 162 231 
S 63 123 342 s 163 242 
T 64 124 343 t 164 243 
U 65 125 344 u 165 244 
V 66 126 345 v 166 245 
W 67 127 346 w 167 246 
X 70 130 347 x 170 247 
y 71 131 350 Y 171 250 
Z 72 132 351 z 172 251 
[ 73 133 255 1 

\ 74 134 340 
] 75 135 275 

76 136 137 

1 
173 300 1 

174 117 
{ 175 320 
,... 176 241 

77 137 155 Delete 177 007 

These EBCDIC codes either have no equivalent in the 
ASCII or SIXBIT character sets, or are referred to by 
different names. They are converted to the indicated ASCII 
characters to preserve their uniqueness if the ASCII 
character is converted back to EBCDIC. 

C-2 



ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

Table C-2 shows the conversion of ASCII eoae to SIXBIT code. The 
table does not show ASCII codes 000 through 037 because they all 
convert to SIXBIT 74 (\), except 11 (TAB) which converts to SIXBIT 00 
(space) • 

Table C-2 
ASCII to SIXBIT Conversion 

ASCII ASCII 
Character 7-bit SIXBIT Character 7-bit SIXBIT 

Space 040 00 @ 100 40 
! 041 01 A 101 41 
" 042 02 B 102 42 
# 043 03 C 103 43 
$ 044 04 D 104 44 
% 045 05 E 105 45 
& 046 06 F 106 46 , 047 07 G 107 47 

( 050 10 H 110 50 
) 051 11 I III 51 
* 052 12 J 112 52 
+ 053 13 K 113 53 
, 054 14 L 114 54 
- 055 15 M 115 55 . 056 16 N 116 56 
/ 057 17 0 117 57 

0 060 20 p 120 60 
1 061 21 Q 121 61 
2 062 22 R 122 62 
3 063 23 S 123 63 
4 064 24 T 124 64 
5 065 25 U 125 65 
6 066 26 V 126 66 
7 067 27 W 127 67 

8 070 30 X 130 70 
9 071 31 y 131 71 
: 072 32 Z 132 72 . 073 33 , [ 133 73 
< 074 34 \ 134 74 
= 075 35 ] 135 75 
> 076 36 t 136 76 
? 077 37 +- 137 77 

C-3 



ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

ASCII 
code 

140 
141 
142 
143 
144 
145 
146 
147 

150 
151 
152 
153 
154 
155 
156 
157 

160 
161 
162 
163 
164 
165 
166 
167 

170 
171 
172 
173 
174 
175 
176 
177 

Table C-2 (Cont.) 
ASCII to SIXBIT Conversion 

ASCII SIXBIT 
character code 

... 
74 

a 41 
b 42 
c 43 
d 44 
e 45 
f 46 
9 47 

h 50 
i 51 
j 52 
k 53 
1 54 
In 55 
n 56 
0 57 

P 60 
q 61 
r 62 
s 63 
t 64 
u 65 
v 66 
w 67 

x 70 
Y 71 
z 72 
{ 73 
I 74 
} 75 

"" 74 
delete 74 

C-4 

SIXBIT 
character 

\ 
A 
B 
C 
D 
E 
F 
G 

H 
I 
J 
K 
L 
M 
N 
0 

P 
Q 
R 
S 
T 
U 
V 
W 

X 
y 
Z 
[ 
\ 
] 
\ 
\ 



ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

Table C-3 shows the EBCDIC collating sequence and the conversion from 
EBCDIC to ASCII. When conversion is from EBCDIC to SIXBIT, it is as 
if the code was converted to ASCII and then from ASCII to SIXBIT. 

Table C-3 
EBCDIC Collating Sequence and Conversion to ASCII 

EBCDIC EBCDIC ASCII ASCII EBCDIC EBCDIC ASCII ASCII 
code character code character code character code character 

000 NUL 000 NUL 050 134 \ 
001 SOH 001 SOH 051 134 \ 
002 STX 002 STX 052 SM 030 CAN 
003 ETX 003 ETX 053 cuz 134 \ 
004 PF 024 DC4 054 134 \ 
005 HT 011 HT 055 ENQ 005 ENQ 
006 LC 016 SO 056 ACK 006 ACK 
007 Delete 177 Delete 057 BEL 007 BEL 

010 134 \ 060 134 \ 
011 134 \ 061 134 \ 
012 SMM 134 \ -62 134 \ 
013 VT 013 VT 063 134 \ 
014 FF 014 FF 064 PN 022 DC2 
015 CR 134 \ 065 RS 023 DC3 
016 SO 134 \ 066 UC 017 SI 
017 SI 134 \ 067 EOT 004 EOT 

020 DLE 134 \ 070 134 \ 
021 DCl 134 \ 071 134 \ 
022 DC2 134 \' 072 134 \ 
023 TM 034 FS 073 134 \ 
024 RES 021 DCI 074 CU3 134 \ 
025 NL 015 CR 075 DC4 025 NAK 
026 BS 010 BS 076 NAK 134 \ 
027 IL 026 SYN 077 SUB 134 \ 

030 CAN 134 \ 100 Space 040 Space 
031 EM 031 EM 101 134 \ 
032 CC 032 SUB 102 134 \ 
033 CUI 134 \ 103 134 \ 
034 IFS 134 \ 104 134 \ 
035 IGS 134 \ 105 134 \ 
036 IRS 134 \ 106 134 \ 
037 IUS 134 \ 107 134 \ 

040 DS 036 RS 110 134 \ 
041 SOS 035 GS III 134 \ 
042 FS 037 US 112 ¢ 134 \ 
043 134 \ 113 . 056 
044 BYP 020 DLE 114 < 074 < 
045 LF 012 LF 115 { 050 { 
046 ETB 027 ETB 116 + 053 + 
047 ESC 033 ESC 117 I 174 I 

C-5 



ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

Table C-3 (Cont.) 
EBCDIC Collating Sequence and Conversion to ASCII 

EBCDIC EBCDIC ASCII ASCII EBCDIC EBCDIC ASCII ASCII 
code character code character code character code character 

120 & 046 & 170 134 \ 
121 134 \ 171 140 
122 134 \ 172 : 072 : 
123 134 \ 173 # 043 # 
124 134 \ 174 @ 100 @ 

125 134 \ 175 , 47 , 
126 134 \ 176 = 075 = 
127 134 \ 177 " 042 II 

130 134 \ 200 134 \ 
131 134 \ 201 a 141 a 
132 ! 041 ! 202 b 142 b 
133 $ 044 $ 203 c 143 c 
134 * 052 * 204 d 144 d 
135 t 051 t 
136 073 

205 e 145 e 
206 f 146 f 

137 137 \ 207 9 147 9 

140 - 055 - 210 h 150 h 
141 / 057 / 211 i 151 i 
142 134 \ 212 134 \ 
143 134 \ 213 134 \ 
144 134 \ 214 134 \ 
145 134 \ 215 134 \ 
146 134 \ 216 134 \ 
147 134 \ 217 134 \ 

150 134 \ 220 134 \ 
151 134 \ 221 j 152 j 
152 134 \ 222 k 153 k 
153 , 054 , 223 1 154 1 
154 % 045 % 224 m 155 m 
155 137 225 n 156 n 
156 > 076 > 226 0 157 0 

157 ? 077 ? 227 P 160 P 

160 134 \ 230 q 161 q 
161 134 \ 231 r 162 r 
162 134 \ 232 134 \ 
163 134 \ 233 134 \ 
164 134 \ 234 134 \ 
165 134 \ 235 134 \ 
166 134 \ 236 134 \ 
167 134 \ 237 134 \ 

C-6 



ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES AND CONVERSIONS 

Table C-3 (Cont.) 
EBCDIC Collating Sequence and Conversion to ASCII 

EBCDIC EBCDIC ASCII ASCII EBCDIC EBCDIC ASCII ASCII 
code character code character code character code character 

240 134 \ 310 H 110 H 
241 176 ........... 311 I 110 I 
242 s 163 s 312 134 \ 
243 t 164 t 313 134 \ 
244 u 165 u 314 134 \ 
245 v 166 v 315 134 \ 
246 w 167 w 316 134 \ 
247 x 170 x 317 134 \ 

250 y 171 Y 
251 z 172 z 

320 175 } 
321 J 112 J 

252 134 \ 322 K 113 K 
253 134 \ 323 L 114 L 
254 134 \ 324 M 115 M 
255 [ 133 [ 325 N 116 N 
256 134 \ 326 0 117 0 
257 134 \ 327 p 120 P 

260 175 { 261 134 
330 Q 121 Q 
331 R 122 R 

262 134 \ 332 134 \ 
263 134 \ 333 134 \ 
264 134 \ 334 134 \ 
265 134 \ 335 134 \ 
266 134 \ 336 134 \ 
267 134 \ 337 134 \ 

270 134 \ 340 134 \ 
271 134 \ 341 134 \ 
272 134 \ 342 S 123 S 
273 134 \ 343 T 124 T 
274 134 \ 344 U 125 U 
275 ] 135 ] 345 V 126 V 
276 134 \ 346 W 127 W 
277 134 \ 347 X 130 X 

300 173 { 350 y 131 y 

301 A 101 A 351 Z 132 Z 
302 B 102 B 352 134 \ 
303 C 103 C 353 134 \ 
304 D 104 D 354 134 \ 
305 E 105 E 355 134 \ 
306 F 106 F 356 134 \ 
307 G 107 G 357 134 \ 

360 0 060 1 370 8 070 8 
361 1 061 1 371 9 071 9 
362 2 062 2 372 134 \ 
363 3 063 3 373 134 \ 
364 4 064 4 374 134 \ 
365 5 065 5 375 134 \ 
366 6 066 6 376 134 \ 
367 7 067 7 377 134 \ 

C-7 





APPENDIX D 

ALTERNATE NUMERIC TEST 

LIBOL as normally assembled will include the ANSI standard NUME~IC 
test. However, a switch has been provided to allow the installation 
manager to replace this with the ALTERNATE NUMERIC test at 
installation time. 

The ALTERNATE NUMERIC test result is TRUE under the following 
conditions: 

1. For alphanumeric and unsigned numeric items, each character 
must be a digit (0 through 9). Leading and trailing spaces 
and leading and trailing tabs are ignored. No signs are 
permitted. 

2. For signed numeric items, the sign may have only one of the 
three following representations: a leading graphic sign ("+" 
or "-"), a trailing graphic sign, or a trailing embedded 
sign. Leading and trailing spaces and leading and trailing 
tabs are ignored. All other characters must be digits. 

D-l 





APPENDIX E 

DEFINING LOGICAL NAMES UNDER TOPS-20 

Most of the file specifications for the COBOL compiler and the 
utilities associated with COBOL-74 use project-programmer numbers to 
identify areas on the disk. Users of TOPS-20 do not normally deal 
with project-programmer numbers; named directories are used instead. 
However, the compiler and the utilities often will not accept named 
directories in the command strings. There are two ways for TOPS-20 
users to specify a directory to be searched. One is to use the TRANSL 
command to translate a named directory to a project-programmer number. 
This way is perfectly functional, but usually inconvenient. The other 
way is to define a logical name and use it in the command string in 
place of the device name and the project-programmer number. The 
TRANSL and DEFINE commands are described in the DECSYSTEM-20 User's 
Guide. Refer to that manual for more information on these two 
commands. A short description of the DEFINE command has been included 
here for convenience. 

The DEFINE command has the following format: 

where: 

logname: 

filespecs 

@DEFINE (LOGICAL NAME) logname: (AS) filespecs 

is the logical name being defined. It consists 
to 6 alphanumeric characters (A-Z and 0-9 
followed by a colon. 

of up 
only) 

is a list of file specifications (separated by commas) 
that define the logical name. A file specification may 
contain any combination of a structure name, device 
name, directory, file name, file type, generation 
number, and wildcards. If you wish to remove a logical 
name, you should leave the filespecs entry blank. 

The following characteristics of the DEFINE command should be noted. 

1. The DEFINE command is used at TOPS-20 monitor level (or in a 
batch or command file). The command does not alter any 
program and leaves you at monitor level. 

2. Some programs may expect certain logical names to be defined 
certain ways. You should exercise caution in deciding on a 
character string to use as a logical name. See the 
INFORMATION command in the DECSYSTEM-20 User's Guide for a 
description of how to determine what logical names are 
already defined. 



DEFINING LOGICAL NAMES UNDER TOPS-20 

Example: 

DEFINE PR: <PAYROLL> 

will allow you to type the following command to the COBOL-74 
compiler: 

PR:FEDTAX=TESTFT.CBL 

This command string will take a file in your connected directory 
named TESTFT.CBL and compile it, writing the .REL file in the 
directory <PAYROLL>. As written, the command string would also 
write the .LST file to your connected directory. If you wish to 
have it in the <PAYROLL> directory you must use the following 
command: 

PR:FEDTAX,PR:FEDTAX=TESTFT.CBL 

E-2 



GLOSSARY 

The terms in this glossary are defined in accordance with COBOL' as 
used in this document. Therefore, these terms may not have the same 
meanings in other languages. 

These definitions are also intended to serve either as reference 
material or as introductory material to be reviewed before reading the 
detailed language specifications that follow. For this reason, these 
definitions are, in most instances, brief and do not include detailed 
syntactical rules. 

Abbreviated Combined Relation Condition 
The combined condition that results from the explicit omission of 
a common subject, or a common subject and common relational 
operator in a consecutive sequence of relation conditions. 

Access Mode 
The manner in which records are to be operated upon within a 
file. 

Actual Decimal point 
The physical representation (decimal point characters period (.) 
or comma (,» of the decimal point position in a data item. 

Alphabet-Name 
A user-defined word in the SPECIAL-NAMES paragraph of the 
Environment Division that assigns a name to a specific character 
set and/or collating sequence. 

Alphabetic Character 
A character that belongs to the following set of letters: A, B, 
C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, 
Y, Z, and space. 

Alphanumeric Character 
Any character in the computer's character set. 

Alternate Record Key 
A key, other than the prime record key, whose contents identify a 
record within an indexed file. 

Glossary-l 



Arithmetic Expression 
An arithmetic expression can be an identifier or a numeric 
elementary item, a numeric literal, such identifiers and literals 
separated by arithmetic operators, two arithmetic expressions 
separated by an arithmetic operator, or an arithmetic expression 
enclosed in parentheses. 

Arithmetic Operator 
A single character, or a fixed 2-character combination that 
belongs to the following set: 

Character 

+ 

* 
/ 
** 

Meaning 

addition 
subtraction 
multiplication 
division 
exponentiation 

Ascending Key 
A key upon the values of which data is ordered starting with the 
lowest value of key up to the highest value of key in accordance 
with the rules for comparing data items. 

Assumed Decimal Point 
A decimal point position that does not involve the existence of 
an actual character in a data item. The assumed decimal point 
has logical meaning but no physical representation. 

At End Condition 

Block 

A condition caused: 

1. during the execution of a READ statement for a sequentially 
accessed file. 

2. during the execution of a RETURN statement, when no next 
logical record exists for the associated sort or merge file. 

3. during the execution of a SEARCH statement, when the search 
operation terminates without satisfying the condition 
specified in any of the associated WHEN phrases. 

A physical unit of data that is normally composed of one or more 
logical records. For mass storage files, a block may contain a 
portion of a logical record. The size of a block has no direct 
relationship to the size of the file within which the block is 
contained, or to the size of the logical record(s) that are 
either continued within the block or that overlap the block. The 
term is synonymous with physical record. 

Body Group 
Generic name for a report group of TYPE DETAIL, CONTROL HEADING, 
or CONTROL FOOTING. 

Called Program 
A program that is the object of a CALL statement combined at 
object time with the calling program to produce a run unit. 

Glossary-2 



Calling Program 
A program that executes a CALL to another program. 

Cd-Name 
A user-defined word that names an MCS interface area described in 
a communication description entry within the Communication 
Section of the Data Division. 

Character 
The basic indivisible unit of the language. 

Character position 
A character position is the amount of physical storage required 
to store a single standard data format character described as 
usage is DISPLAY. Further characteristics of the physical 
storage are defined by the implementor. 

Character-String 
A sequence of contiguous characters that form a COBOL word, a 
literal, a PICTURE character-string, or a comment-entry. 

Class Condition 
The proposition, for which a truth value can be determined, that 
the content of an item is wholly alphabetic or is wholly numeric. 

Clause 
A clause is an ordered set of consecutive COBOL character-strings 
whose purpose is to specify an attribute of an entry. 

COBOL Character Set 
The complete COBOL character set consists of the 51 characters 
listed below: 

Character 

0,1, ••. ,9 
A,B, .•. ,Z 

+ 

* 
/ 

$ 

" 
( 
) 
> 
< 

Meaning 

digit 
letter 
space (blank) 
plus sign 
minus sign (hyphen) 
asterisk 
stroke (virgule, slash) 
equal sign 
currency sign 
comma (decimal point) 
semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

Glossary-3 



COBOL Word 
(See Word.) 

Collating Sequence 
The sequence in which the characters that 
computer are ordered for purposes of 
comparing. 

are acceptable in a 
sorting, merging, and 

Column 
A character position within a print line. 
numbered from 1, by 1, starting at the 
position of the print line and extending 
position of the print line. 

Combined Condition 

The columns are 
leftmost character 
to the rightmost 

A condition that is the result of connecting two or more 
conditions with the 'AND' or the 'OR' logical operator. 

Comment-Entry 
An entry in the Identification Division that may be any 
combination of characters from the computer character set. 

Comment Line 
A source program line represented by an asterisk in the indicator 
area of the line and any characters from the computer's character 
set in area A and area B of that line. The comment line serves 
only as documentatl0n in a program. A special form of comment 
line represented by a stroke (/) in the indicator area of the 
line, and any characters from the computer's character set in 
area A and area B of that line, causes page ejection prior to 
printing the comment. 

Communication Description Entry 
An entry in the Communication Section of the Data Division that 
is composed of the level indicator CD, followed by a cd-name, and 
then followed by a set of clauses as .required. It describes the 
interface between the Message Control System (MCS) and the COBOL 
program. 

Communication Device 
A mechanism (hardware or hardware/software) capable of sending 
data to a queue and/or recelvlng data from a queue. This 
mechanism may be a computer or a peripheral device. One or more 
programs containing communication description entries and 
residing within the same computer define one or more of these 
mechanisms. 

Communication Section 
The section of the Data Division that 
areas between the MCS and the program. 
of one or more CD description entries. 

Compile Time 

describes the interface 
This section is composed 

The time at which a COBOL source program is translated by a COBOL 
compiler to a COBOL object program. 

GlosSary-4 



Compiler Directing Statement 
A statement beginning with a compiler-directing verb that causes 
the compiler to take a specific action during compilation. 

Complex Condition 
A condition in which one or more logical operators act upon one 
or more conditions. (See Negated Simple Condition, Combined 
Condition, Negated Combined Condition.) 

Computer-Name 
A system-name that identifies the computer upon which the program 
is to be compiled or run. 

Condition 
A status of a program at execution time for which a truth value 
can be determined. Where the term 'condition' (condition-I, 
condition-2, .•. ) appears in these language specifications in or 
in. reference to 'condition' (condition-I, condition-2, ..• ) of a 
general format, it is a conditional expression consisting of 
either a simple condition optionally parenthesized, or a combined 
condition consisting of the syntactically correct combination of 
simple conditions, logical operators, and parentheses, for which 
a truth value can be determined. 

Condition-Name 
A user-defined word assigned to a specific value, set of values, 
or range of values, within the complete set of values that a 
conditional variable may possess; or the user-defined word 
assigned to a status of an implementor-defined switch or device. 

Condition-Name Condition 
The proposition, for which a truth value can be determined, that 
the value of a conditional variable is a member of the set of 
values attributed to a condition-name associated with the 
conditional variable. 

Conditional Expression 
A simple condition or a complex condition specified in an IF, 
PERFORM, or SEARCH statement. (See Simple Condition and Complex 
Condition.) 

Conditional Statement 
A conditional statement specifies that the truth value of a 
condition is to be determined, and that the subsequent action of 
the object program is dependent on this truth value. 

Conditional Variable 
A data item of which one or more values has a condition-name 
assigned to it. 

Configuration Section 
A section of the Environment Division that describes overall 
specifications of source and object computers. 

Glossary-5 



Connective 
A reserved word that is used to: 

1. Associate a data-name, paragraph-name, condition-name, or 
text-name with its qualifier. 

2. Link two or more operands written in a series. 

3. Form conditions 
Operator.) 

Contiguous Items 

(logical connectives). (See Logical 

Items that are described by consecutive entries in the Data 
Division, and that bear a definite hierarchical relationship to 
each other. 

Control Break 
A change in the value of a data item that is referenced in the 
CONTROL clause. More generally, a change in the value of a data 
item that is used to control the hierarchical structure of a 
report. 

Control Break Level 
The relative position within a control hierarchy at which the 
most major control break occurred. 

Control Data Item 
A data item, in whose contents a change may produce a control 
break. 

Control Data-Name 
A data-name that appears in a CONTROL clause and refers to a 
control data item. 

Control Footing 
A report group that is presented at the end of the control group 
of which it is a member. 

Control Group 
A set of body groups that is presented for a given value of a 
control data item or of FINAL. Each control group may begin with 
a CONTROL HEADING, end with a CONTROL FOOTING, and contain DETAIL 
report groups. 

Control Heading 
A report group that is presented at the beginning of the control 
group of which it is a member. 

Control Hierarchy 
A designated sequence 
positional order of 
clause. 

of report subdivisions defined by the 
FINAL and the data-names within a CONTROL 

Glossary-6 



Counter 
A data item used for storing numbers or number representations in 
a manner that permits these numbers to be increased or decreased 
by the value of another number, or to be changed or reset to zero 
or to an arbitrary positive or negative value. 

Currency Sign 
The character '$' of the COBOL character set. 

Currency Symbol 
The character defined by 
SPECIAL-NAMES paragraph. 
in a COBOL source program, 
the currency sign. 

Current Record 

the CURRENCY SIGN clause in the 
If no CURRENCY SIGN clause is present 

the currency symbol is identical to 

The record that is available in the record area associated with 
the file. 

Current Record Pointer 
A conceptual entity that is used in the selection of the next 
record. 

Data Clause 
A clause that appears in a data description entry in the Data 
Division and that provides information describing a particular 
attribute of a data item. 

Data Description Entry 
An entry in the Data Division that is composed of a level-number 
followed by a data-name, if required, and then followed by a set 
of data clauses, as required. 

Data Item 
A character or a set of 
either case, literals) 
program. 

Data-Name 

contiguous characters (excluding, in 
defined as a unit of data by the COBOL 

A user-defined word that names a data item described in a data 
description entry in the Data Division. When used in the general 
formats, 'data-name' represents a word that cannot be 
subscripted, indexed, or qualified unless specifically permitted 
by the rules for that format. 

Debugging Line 
A debugging line is any line with 'D' in the indicator area of 
the line. 

Debugging Section 
A debugging section is a section that contains a USE FOR 
DEBUGGING statement. 

Glossary-7 



Declaratives 
A set of one or more special-purpose sections, written at the 
beginning of the Procedure Division, the first of which is 
preceded by the key word DECLARATIVES, and the last of which is 
followed by the key words END DECLARATIVES. A declarative is 
composed of a section header, followed by a USE 
compiler-directing sentence, followed by a set of zero, one, or 
more associated paragraphs. 

Declarative-Sentence 
A compiler-directing sentence consisting of a 
statement terminated by the separator period. 

single USE 

Delimiter 
A character or a sequence of contiguous characters that identify 
the end of a string of characters and separate that string of 
characters from the following string of characters. A delimiter 
is not part of the string of characters that it delimits. 

Descending Key 
A key upon the values of which data is ordered starting with the 
highest value of key down to the lowest value of key, in 
accordance with the rules for comparing data items. 

Destination 
The symbolic identification of the receiver of a transmission 
from a queue. 

Digit position 
A digit position is the amount of physical storage required to 
store a single digit. This amount may vary depending on the 
usage of the data item describing the digit position. Further 
characteristics of the physical storage are defined by the 
implementor. 

Division 
A set of 
division 
specific 
program: 

zero, one, or more section~ of paragraphs, called the 
body, that are formed and combined in accordance with a 

set of rules. There are four divisions in a COBOL 
Identification, Environment, Data, and Procedure. 

Division Header 
A combination of words followed by a period 
indicates that beginning of a division. 
are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 

and a space that 
The division headers 

PROCEDURE DIVISION [USING data-name-l [data-name-2] ••• ] • 

Dynamic Access 
An access mode in which specific logical records can be obtained 
from or placed into a mass storage file in a nonsequential manner 
(see Random Access), and obtained from a file in a sequential 
manner (see Sequential Access), during the scope of the same OPEN 
statement. 

Glossary-8 



Editing Character 
A single character or a fixed 2-character combination beloriging 
to the following set: 

Character 

B 
o 
+ 

CR 
DB 
Z 

* 
$ 

/ 

Meaning 

space 
zero 
plus 
minus 
credit 
debit 
zero suppress 
check protect 
currency sign 
comma (decimal point) 
period (decimal point) 
stroke (virgule, slash) 

Elementary Item 
A data item that is described as not being further logically 
subdivided. 

End of Procedure Division 

Entry 

The physical position in a COBOL source program after which no 
further procedures appear. 

Any descriptive set of consecutive clauses terminated by a period 
and written in the Identification Division, Environment Division, 
or Data Division of a COBOL source program. 

Environment Clause 
A clause that appears as part of an Environment Division entry. 

Execution Time 
(See Object Time.) 

Extend Mode 
The state of a file after execution of an OPEN statement with the 
EXTEND phrase specified for that file, and before the execution 
of a CLOSE statement for that file. 

Figurative Constant 

File 

A compiler-generated value referenced through the use of certain 
reserved words. 

A collection of records. 

Glossary-9 



File Clause 
A clause that appears as part of any of the following Data 
Division entries: 

File description (FD) 
Sort-merge file description (SD) 
Communication description (CD) 

FILE-CONTROL 
The name of an Environment Division paragraph in which the data 
files for a given source program are declared. 

File Description Entry 
An entry in the File Section of the Data Division that is 
composed of the level indicator FD, followed by a file-name, and 
then followed by a set of file clauses as required. 

File-Name 
A user-defined word that names a file described in a file 
description entry or a sort-merge file description entry within 
the File Section of the Data Division. 

File Organization 
The permanent logical file structure established at the time that 
a file is created. 

File Section 
The section of the Data Division that contains file description 
entries and sort-merge file description entries together with 
their associated record descriptions. 

Format 
A specific arrangement of a set of data. 

Group Item 
A named contiguous set of elementary or group items. 

High Order End 
The leftmost character of a string of characters. 

I-O-CONTROL 
The name of an Environment Division paragraph in which object 
program requirements for specific input-output techniques, rerun 
points, sharing of same areas by several data files, and multiple 
file storage on a single input-output device are specified. 

1-0 Mode 
The state of a file after execution of an OPEN statement, with 
the input-output phrase specified, for that file and before the 
execution of a CLOSE statement for that file. 

Glossary-IO 



Identifier 
A data-name followed as required by the syntactically correct 
combination of qualifiers, subscripts, and indexes necessary to 
make unique reference to a data item. 

Imperative Statement 
A statement that begins with an imperative verb and specifies an 
unconditional action to be taken. An imperative statement may 
consist of a sequence of imperative statements. 

Implementor-Name 

Index 

A system-name that refers to a particular feature available on 
that implementor's computing system. 

A computer storage position or register, the contents of which 
represent the identification of a particular element in a table. 

Index Data Item 
A data item in which the value associated with an index-name can 
be stored in a form specified by the implementor. 

Index-Name 
A user-defined word that names an index associated with a 
specific table. 

Indexed Data-Name 
An identifier that is composed of a data-name followed by one or 
more index-names enclosed in parentheses. 

Indexed File 
A file with indexed organization. 

Indexed Organization 
The permanent logical file structure in which each record is 
identified by the value of one or more keys within that record. 

Input File 
A file that is opened in the input mode. 

Input Mode 
The state of a file after execution of an OPEN statement with the 
INPUT phrase specified for that file, and before the execution of 
a CLOSE statement for that file. 

Input-Output File 
A file that is opened in the input-output mode. 

Input-Output Section 
The section of the Environment Division that names the files and 
the external media required by an object program, and that 
provides information required for transmission and handling of 
data during execution of the object program. 

Glossary-II 



Input Procedure 
A set of statements that is executed each time a record is 
released to the sort file. 

Integer 
A nonnegative numeric literal or a numeric data item that does 
not include any character positions to the right of the assumed 
decimal point. Where the term 'integer' appears in general 
formats, integer must not be a numeric data item, and must not be 
signed or zero, unless explicitly allowed by the rules of that 
format. 

Invalid Key Condition 

Key 

A condition at object time caused when a specific value of the 
key associated with an indexed or relative file is determined to 
be invalid. 

A data item that identifies the location of a record, or a set of 
data items that serve to identify the ordering of data. 

Key of Reference 
The key, either prime or alternate, currently being used to 
access records within an indexed file. 

Key Word 
A reserved word whose presence is required when the format in 
which the word appears is used in a source program. 

Language-Name 
A system-name that specifies a particular programming language. 

Level Indicator 
Two alphabetic characters that identify a specific type of file 
or a position in hierarchy. 

Level-Number 
A user-defined word that indicates the position of a data item in 
the hierarchical structure of a logical record or that indicates 
special properties of a data description entry. A level-number 
is expressed as a 1- or 2-digit number. Level-numbers in the 
range 1 through 49 indicate the position of a data item in the 
hierarchical structure of a logical record. Level-numbers in the 
range 1 through 9 may be written either as a single digit or as a 
zero followed by a significant digit. Level-numbers 66, 77, and 
88 identify special properties of a data description entry. 

Library-Name 
A user-defined word that names a COBOL library that is to be used 
by the compiler for a given source program compilation. 

Glossary-12 



Library Text 

Line 

A sequence of character-strings and/or separators in a COBOL 
library. 

(See Report Line.) 

Line Number 
An integer that denotes the vertical position of a report line on 
a page. 

Linkage Section 
The section in the Data Division of the called program 
describes data items available from the calling program. 
data items may be referred to by both the calling and 
program. 

that 
These 

called 

Literal 
A character-string whose value is implied by the ordered set of 
characters constituting the string. 

Logical Operator 
One of the reserved words AND, OR, or NOT. In the formation of a 
condition, both or either of AND and OR can be used as logical 
connectives. NOT can be used for logical negation. 

Logical Record 
The most inclusive data item. The level-number for a record is 
01. (See Report Writer Logical Record.) 

Low Order End 
The rightmost character of a string of characters. 

Mass Storage 
A storage medium on which data may be oganized and maintained in 
both a sequential and nonsequential manner. 

Mass Storage Control System (MSCS) 
An input-output control system that directs or controls the 
processing of mass storage files. 

Mass Storage File 

MCS 

A collection of records that is assigned to a mass storage 
medium. 

(See Message Control System.) 

Merge File 
A collection of records to be merged by a MERGE statement. The 
merge file is created and can be used only by the merge function. 

Glossary-13 



Message 
Data associated with an end of message indicator or an end of 
group indicator. (See Message Indicators.) 

Message Control System (MCS) 
A communication control system that supports the processing of 
messages. 

Message Count 
The count of the number of complete messages that exist in the 
designated queue of messages. 

Message Indicators 
EGI (end of group indicator), EMI (end of message indicator), and 
ESI (end of segment indicator) are conceptual indications that 
notify the MCS that a specific condition exists (end of group, 
end of message, end of segment). 

Within the 
equivalent 
equivalent 
terminated 
terminated 

hierarchy of EGI, EMI, and ESI, an EGI is conceptually 
to an ESI, an EMI, and an EGI. An EMI is conceptually 
to an ESI and an EMI. Thus, a segment may be 

by an ESI, an EMI, or an EGI. A message may be 
by an EMI or an EGI. 

Message Segment 
Data that forms a 
associated with 
Indicators.) 

logical 
an end 

subdivision 
of segment 

of a message normally 
indicator. (See ~essage 

Mnemonic-Name 

MSCS 

A user-defined word that is associated in the Environment 
Division with a specified implementor-name. 

(See Mass Storage Control System.) 

Native Character Set 
The implementor-defined character set associated with the 
computer specified in the OBJECT-COMPUTER paragraph. 

Native Collating Sequence 
The implementor-defined collating sequence associated with the 
computer specified in the OBJECT-COMPUTER paragraph. 

Negated Combined Condition 
The 'NOT' logical operator immediately 
parenthesized combined condition. 

Negated Simple Condition 

followed by a 

The 'NOT' logical operator immediately followed by a simple 
condition. 

Glossary-14 



Next Executable Sentence 
The next sentence to which control will be transferred after 
execution of the current statement is complete. 

Next Executable Statement 
The next statement to which control will be transferred after 
execution of the current statement is complete. 

Next Record 
The record that logically follows the current record of a file. 

Noncontiguous Items 
Elementary data items in the Working-Storage and Linkage Sections 
that bear no hierarchical relationship to other data items. 

Nonnumeric Item 
A data item whose description permits 
of any combination of characters 
character set. Certain categories of 
formed from more restricted character 

Nonnumeric Literal 

its contents to be composed 
taken from the computer's 
nonnumeric items may be 

sets. 

A character-string bounded by quotation marks. The string of 
characters may include any character in the computer's character 
set. To represent a single quotation mark character within a 
nonnumeric literal, two contiguous quotation marks must be used. 

Numeric Character 
A character that belongs to the following set of digits: 
2, 3, 4, 5, 6, 7, 8, 9. 

0, l, 

Numeric Item 
A data item whqse description restricts its contents to a value 
represented by characters chosen from the digits '0' through '9'; 
if signed, the item may also contain a '+', '-' or other 
representation of an operational sign. 

Numeric Literal 
A literal composed of one or more numeric characters that also 
may contain eith.er a decimal point, or an algebraic sign, or 
both. The decimal point must not be the rightmost character. 
The algebraic sign, if present, must the leftmost character. 

OBJECT-COMPUTER 
The name of an Environment Division 
computer environment, within which 
executed, is described. 

Object of Entry 

paragraph in 
the object 

which 
program 

the 
is 

A set of operands and reserved words within a Data Division entry 
that immediately follows the subject of the entry. 

Glossary-IS 



Object Program 
A set or group of executable- machine language instructions and 
other material designed to interact with data to provide problem 
solutions. In this context, an object program 1S generally the 
machine language result of the operation of a COBOL compiler on a 
source program. Where there is no danger of ambiguity, the word 
'program' alone may be used in place of the phrase 'object 
program. ' 

Object Time 
The time at which an object program is executed. 

Open Mode 
The state of a file after execution of an OPEN statement for that 
file, and before the execution of a CLOSE statement for that 
file. The particular open mode is specified in the OPEN 
statement as either INPUT, OUTPUT, 1-0, or EXTEND. 

Operand 
Whereas the general definition of operand is 'that component that 
is operated upon,' for the purposes of this publication any 
lowercase word (or words) that appears 1n a statement or entry 
format may be considered to be an operand and, as such, is an 
implied reference to the data indicated by the operand. 

Operational Sign 
An algebraic sign associated with a numeric data item or a 
numeric literal, which indicates whether its value is positive or 
negative. 

Optional Word 
A reserved word that is included in a specific format only to 
improve the readability of the language and whose presence is 
optional to the user when the format in which the word appears is 
used in a source program. 

Output File 
A file that is opened in either the output mode or the extend 
mode. 

Output Mode 
The state of a file after execution of an OPEN statement, with 
the OUTPUT or EXTEND phrase specified for that file, and before 
the execution of a CLOSE statement for that file. 

Output Procedure 
A set of statements to which control is given during execution of 
a SORT statement after the sort function is completed, or during 
execution of a MERGE statement after the merge function has 
selected the next record in merged order. 

Glossary-16 



Page 
A vertical division of a report representing a physical 
separation of report data, the separation being based on internal 
reporting requirements and/or external characteristics of the 
reporting medium. 

Page Body 
That part of the logical page in which lines can be written 
and/or spaced. 

Page Footing 
A report group that is presented at the end of a report page as 
determined by the Report Writer Control System. 

Page Heading 
A report group that is presented at the beginning of a 
page and determined by the Report writer Control System. 

Paragraph 
In the Procedure Division, a paragraph-name followed by a 
and a space, and by zero, one, or more sentences. 
Identification and Environment Divisions, a paragraph 
followed by zero, one, or more entries. 

Paragraph Header 

report 

period 
In the 
header 

A reserved word followed by a period and a space that indicates 
the beginning of a paragraph in the Identification and 
Environment Divisions. The permissible paragraph headers are: 

In the Identification Divisio~: 

PROGRAM-ID. 
AUTHOR.
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 
SECURITY. 

In the Environment Division: 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
I-O-CONTROL. 

Paragraph-Name 
A user-defined word that identifies and begins a paragraph in the 
Procedure Division. 

Phrase 
A phrase is an ordered set of one or more 
character-strings that form a portion of 
statement or of a COBOL clause. 

Glossary-17 

consecutive COBOL 
a COBOL procedural 



Physical Record 
(See Block.) 

Prime Record Key 
A key whose contents uniquely identify a record within an indexed 
file. 

Printable Group 
A report group that contains at least one print line. 

Printable Item 
A data item, the extent and contents of which are specified by an 
elementary report entry. This elementary report entry contains a 
COLUMN NUMBER clause, a PICTURE clause, and a SOURCE, SUM, or 
VALUE clause. 

Procedure 
A paragraph or group of logically successive paragraphs, or a 
section or group of logically successive sections, within the 
Procedure Division. 

Procedure-Name 
A user-defined word that is used to name a paragraph or section 
in the Procedure Division. It consists of a paragraph-name 
(which may be qualified) or a section-name. 

Program-Name 
A user-defined word that identifies a COBOL source program. 

Pseudo-Text 
A sequence of character-strings and/or separators bounded by, but 
not including, pseudo-text delimiters. 

Pseudo-Text Delimiter 
Two contiguous equal sign (=) characters used to 
pseudo-text. 

Punctuation Character 
A character that belongs to the following set: 

Character 

" 
( 
) 

Meaning 

comma 
semicolon 
period 
quotation mark 
left parenthesis 
right parenthesis 
space 
equal sign 

Glossary-18 

delimit 



Qualified Data-Name 
An identifier that is composed of a data-name followed by one or 
more sets of either of the connectives OF and IN followed by a 
data-name qualifier. 

Qualifier 

Queue 

1. A data-name that is used in a reference together with another 
data-name at a lower level in the same hierarchy. 

2. A section-name that is used in a reference together with a 
paragraph-name specified in that section. 

3. A library-name that is used in a reference together with a 
text-name associated with that library. 

A logical collection of messages awaiting transmission or 
processing. 

Queue Name 
A symbolic name that indicates to the MCS the logical path by 
which a message or a portion of a completed message may be 
accessible in a queue. 

Random Access 
An access mode in which the program-specified value of a key data 
item identifies the logical record that is obtained from, deleted 
from, or placed into a relative or indexed file. 

Record 
(See Logical Record.) 

Record Area 
A storage area allocated for processing the record described in a 
record description entry in the File Section. 

Record Description 
(See Record Description Entry.) 

Record Description Entry 
The total set of data description entries associated with a 
particular record. 

Record Key 
A key, either the prime record key or an alternate record key, 
whose contents identify a record within an indexed file. 

Record-Name 
A user-defined word that names a record described in a record 
description entry in the Data Division. 

Glossary-19 



Reference Format 
A format that provides a standard method for describing COBOL 
source programs. 

Relation 
(See Relational Operator.) 

Relation Character 
·A character that belongs to the following set: 

Character 

> 
< 

Relation Condition 

Meaning 

greater than 
less than 
equal to 

The proposition for which a truth value can be determined that 
the value of an arithmetic expression or data item has a specific 
relationship to the value of another arithmetic expression or 
data item. (See Relational Operator.) 

Relational Operator 
A reserved word, a relation character, a group of consecutive 
reserved words, or a gr?up of consecutive reserved words and 
relation characters used In the construction of a relation 
condition. The pe~missible operators and their meanings are: 

Relational Operator Meaning 

IS [NOT] GREATER THAN 
Greater than or not greater than 

IS [NOT] > 
IS [NOT] LESS THAN 

Less than or not less than 
IS [NOT] < 
IS [NOT] EQUAL TO 

Equal to or not equal to 
IS [NOT] 

Relative File 
A file with relative organization. 

Relative Key 
A key whose contents identify a logical record in a relative 
file. 

Relative Organization 
The permanent logical file structure in which each record is 
uniquely identified by an integer value grater than zero, which 
specifies the record's logical ordinal position in the file. 

Report Clause 
A clause in the Report Section of the Data Division that appears 
in a report description entry or a report group description 
entry. 

Glossary-20 



Report Description Entry 
An entry in the Report Section of the Data Division that is 
composed of the level indicator RD followed by a report name, 
followed by a set of report clauses, as required. 

Report File 
An output file whose file description entry contains a REPORT 
clause. The contents of a report file consist of records that 
are written under control of the Report Writer Control System. 

Report Footing 
A report group that is presented only at the end of a report. 

Report Group 
In the Report Section of the Data Division, an 01 level-number 
entry and its subordinate entries. 

Report Group Description Entry 
An entry in the Report Section of the Data Division that is 
composed of the level-number 01, the optional data-name, a TYPE 
clause, and an optional set of report clauses. 

Report Heading 
A report group that is presented only at the beginning of a 
report. 

Report Line 
A division of a page representing one row of horizontal character 
positions. Each character position of a report line is aligned 
vertically beneath the corresponding character position of the 
report line above it. Report lines are numbered from 1, by 1, 
starting at the top of the page. 

Report-Name 
A user-defined word that names a report described in a report 
description entry within the Report Section of the Data Division. 

Report Section 
The section of the Data Division that contains one or more report 
description entries and their associated report. group description 
entries. 

Report Writer Control System (RWCS) 
An object-time control system provided by the implementor that 
constructs reports. 

Report Writer Logical Record 
A record that consists of the 
associated control information 
vertical positioning. 

Report Writer print line and 
necessary for its selection and 

Glossary-21 



Reserved Word 
A COBOL word specified in the list of words that may be used in 
COBOL source programs, but that must not appear in the programs 
as user-defined words or system-names. 

Routine-Name 
A user-defined word that identifies a procedure written in a 
language other than COBOL. 

Run unit 

RWCS 

A set of one or more object programs that function at object time 
as a unit to provide problem solutions. 

(See Report writer Control System.) 

Section 
A set of zero, one, or more paragraphs or entries, called a 
section body, the first of which is preceded by a section header. 
Each section consists of the section header and the related 
section body. 

Section Header 
A combination of words followed by a period and a space that 
indicates the beginning 6f a section in the Environment, Data, 
and Procedure Division. 

In the Environment and Data Divisions, a section header is 
composed of reserved words followed by a period and a space. The 
permissible section headers are: 

In the Environment Division: 

CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

In the Data Division: 

FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
COMMUNICATION SECTION. 
REPORT SECTION. 

In the Procedure Division, a section header is composed of a 
section-name followed by the reserved word SECTION, followed by a 
segment-number (optional), followed by a period and a space. 

Section-Name 
A user-defined word that names a section in the Procedure 
Division. 

Segment-Number 
A user-defined word that classifies sections in the Procedure 
Division for purposes of segmentation. Segment-numbers may 
contain only tqe characters '0', '1', ••. , '9'. A segment-number 
may be expressed either as a 1- or 2-digit number. 

Glossary-22 



Sentence 
A sequence of one or more statements, the last of which is 
terminated by a period followed by a space. 

Separator 
A punctuation character used to delimit character-strings. 

Sequential Access 
An access mode in which logical records are obtained from or 
placed into a file in a consecutive predecessor-to-successor 
logical record sequence determined by the order of records in the 
file. 

Sequential File 
A file with sequential organization. 

Sequential Organization 
The permanent logical file structure in which a record is 
identified by a predecessor-successor relationship established 
when the record is placed into the file. 

Sign Condition 
The proposition, for which a truth value can be determined, that 
the algebraic value of a data item or an arithmetic expression is 
either less than, greater than, or equal to zero. 

Simple Condition 
Any single condition chosen from the set: 

Sort File 

relation condition 
class condition 
condtion-name condition 
switch-status condition 
sign condition 
(simple-condition) 

A collection of records to be sorted by a SORT statement. The 
sort file is created and can be used by the sort function only. 

Sort-Merge File Description Entry 
An entry in the File Section of the Data Division that is 
composed of the level indicator SD, followed by a file-name, and 
then followed by a set of file clauses, as required. 

Source 
The symbolic identification of the originator of a transmission 
to a queue. 

SOURCE-COMPUTER 
The name of an Environment Division 
computer environment, within which 
compiled, is described. 

Glossary-23 

paragraph in 
the source 

which 
program 

the 
is 



Source Item 
An identifier designated by a SOURCE clause that provides the 
value of a printable item. 

Source Program 
Although it is recognized that a source program may be 
represented by other forms and symbols, in this document it 
always refers to a syntactically correct set of COBOL statements 
beginning with an Identification Division and ending with the end 
of the Procedure Division. In contexts where there is no danger 
of ambiguity, the word 'program' alone may be used in place of 
the phrase 'source program.' 

Special Character 
A character that belongs to the following set: 

Character 

+ 

* 
/ 

$ 

" 
( 
) 
> 
< 

Special-Character Word 

Meaning 

plus sign 
minus sign 
asterisk 
stroke (virgule, slash) 
equal sign 
currency sign 
comma (decimal point) 
semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

A reserved word that is an arithmetic operator or a relation 
character. 

SPECIAL-NAMES 
The name of an Environment Divi~ion paragraph in which 
implementor-names are related to user-specified mnemonic-names. 

Special Registers 
Compiler-generated storage areas whose primary use is to store 
information produced in conjunction with the user of specific 
COBOL features. 

Standard Data Format 
The concept used in describing the characteristics of data in a 
COBOL Data Division under which the characteristics or properties 
of the data are expressed in a form oriented to the appearance of 
the data on a printed page of infinite length and breadth, rather 
than a form oriented to the manner in which the data is stored 
internally in the computer, or on a particular external medium. 

Statement 
A syntacti'cally valid combination of words and symbols written in 
the Procedure Division and beginning with a verb. 

Glossary-24 



Sub-Queue 
A logical hierarchical division of a queue. 

Subject of Entry 
An operand or reserved word that appears immediately following 
the level indicator or the level-number in a Data Division entry. 

Subprogram 
(See Called program.) 

Subscript 
An integer whose value identifies a particular element in a 
table. 

Subscripted Data-Name 
An identifier that is composed of a data-name followed by one or 
more subscripts enclosed in parentheses. 

Sum Counter 
A signed numeric data item established by a SUM clause in the 
Report Section of the Data Division. The sum counter is used by 
the Report writer Control System to contain the result of 
designated summing operations that take place during production 
of a report. 

Switch-Status Condition 
The proposition, for which a truth value can be determined, that 
an implementor-defined switch, capable of being set to an 'on' or 
'off' status, has been set to a specific status. 

System-Name 

Table 

A COBOL word that is used to communicate with the operating 
environment. 

A set of logically consecutive items of data that are defined in 
the Data Division by means of the OCCURS clause. 

Table Element 
A data item that belongs to the set of repeated items comprising 
a table. 

Terminal 
The originator of a transmission to a queue r or the receiver of a 
transmission from a queue. 

Text-Name 
A user-defined word that identifies library text. 

Text-Word 
Any character-string or separator, except space, in a COBOL 
library or in pseudo-text. 

Glossary-25 



Truth Value 
The representation of the result of the evaluation of a condition 
in terms of one of two values 

true 
false 

Unary Operator 

Unit 

A plus (+) or a minus (-) sign that precedes a variable or a left 
parenthesis in an arithmetic expression, and that has the effect 
of multiplying the expression by +1 or -1, respectively. 

A module of mass storage the dimensions of which are determined 
by each implementor. 

User-Defined Word 
A COBOL word that must be supplied by the user to satisfy the 
format of a clause or statement. 

variable 

Verb 

Word 

A data item whose value may be changed by execution of the object 
program. A variable used in an arithmetic expression must be a 
numeric elementary item. 

A word that expresses an action to be taken by a COBOL compiler 
or object program. 

A character-string of not more than 30 characters that forms a 
user-defined word, a system-name, or a reserved word. 

Working-Storage Section 
The section of the Data Division that describes working storage 
data items, which is composed either of noncontiguous items or of 
working storage records or of both. 

77-Level-Description-Entry 
A data description entry that describes a noncontiguous data item 
with the level-number 77. 

Glossary-26 



Abbreviated combined 
relation condition, 
5-16 

Absolute line number, 4-81 
ACCEPT, 5-20 
Access, 

Competing for file, 9-8 
Dynamic, 8-23 
File, 8-23 
Random, 8-23 
Sequential, 8-23 

ACCESS MODE, 3-19 
Action code, 3-27, 3-32, 

3-33 
Actual decimal point, 4-45 
ADD, 5-21, 5-22 
ADVANCING, 3-6 
Alignment, 13-12 
ALL literal, 1-7 
Alphabet-name, 1-9 
Alphabet-name IS, 3-5, 3-7 
Alphabetic item, 4-42, 4-48 
ALPHABETIC test, 5-10 
Alphanumeric item, 4-42, 

4-48 
Alphanumeric literals, 1-11 
Alphanumeric-edited item, 

4-42, 4-48 
ALTER, 5-23 
AND, 5-11, 5-15 
Approximate key, 5-87 
Area A, 1-13, 1-15, 1-16 
Area B, 1-13, 1-15, 1-16, 

1-17 
Area C, 1-16 
Area L, 1-15, 1-16 
Area Z, 1-16 
Arithmetic characters, 

Special, 1-5 
Arithmetic computations, 

Usage in, 5-18 
Arithmetic expressions, 5-6 

Evaluation of, 5-6 
Formation of, 5-6 

Arithmetic operators, 5-6 
Arithmetic signs, 

Symbols for, 4-40 
Arithmetic verbs, 5-17 
Array, 4-9 
ASCII, 

Fixed-length, 8-4, 8-5 
Line-sequence, 8-1 
Variable-length, 8-5, 8-6, 

8-7 
ASCII characters, 

Valid, 1-4 

INDEX 

ASCII mixed-mode BINARY, 8-20 

ASCII recording mode, 3-22, 
8-1, 13-8, 13-9, 13-10 

Assigments, 
Logical hardware, 3-10 

ASSIGN, 3-13, 3-14 
Assumed decimal point, 4-43, 

4-44 

BINARY, 8-19 
ASCII mixed-mode, 8-20 
EBCDIC mixed-mode, 8-22 
SIXBIT mixed-mode, 8-21 

BINARY recording mode, 3-22, 
8-3 

BIS instructions, 1-1 
BIS-code, 3-4 
BIS-compi1er, 1-1 
BLANK WHEN ZERO, 4-31, 4-51 
Block, 1-3 

Logical, 4-16 
BLOCK CONTAINS, 4-16 
Block type, 

ISAM, 3-28 
Blocked EBCDIC, 

Fixed-length, 8-16 
Variable-length, 8-17, 

8-18, 8-19 
Blocked zero, 4-16 
Blocking data, 13-11 
Bottom margin of report, 

4-79, 4-80 
Braces, 1-2 
Brackets, 1-2 
Breakpoints, 7-22, 7-24, 

7-26, 7-31 
Removing, 7-25 

Buffer areas, 
Input/output, 3-16 

Building ISAM files, 7-4, 
7-5, 7-6 

Bur ied, update, 9-1, 9-2 
Business instruction set, 

3-4 
BYTE MODE, 3-24 
CALL, 5-24, 5-25, 5-37, 

11-4, 11-5 
Called subprograms, 11-5 
Calling program, 11-4 
CANCEL, 5-26, 11-13, 11-14 
Card sequence numbers, 1-15 
Card-type format, 1-14 
Category of elementary item, 

4-43 
Causing a report to be 

printed, 4-8 

Index-l 



Cd-name, 1-9 
CHANNEL, 3-6, 5-112 
Character chart, 

Picture string, 4-53 
Character code set, 3-7, 

4-17 
Character set, 

COBOL-74, 1-4 
Characters, 

Floating replacement, 
4-52 

Over-punched, 8-3 
Punctuation, 1-4 
Special arithmetic, 1-5 
Special conditional, 1-5 
Special editing, 1-5 
Valid ASCII, 1-4 

Checkpoint files, 7-31, 
7-32, 7-33 

CHECKPOINT OUTPUT, 3-18 
Class condition, 5-7, 5-9 
Class condition format, 5-9 
CLOSE, 5-27 
CLOSE options and file 

types, 5-30 
COBDDT, 5-98, 7-1, 7-22, 

13-5, 13-6, 13-7, 13-8 
Entering, 7-24 
Linking programs with, 

7-23 
Loading, 7-23 
Starting, 7-23 
Commands, 7-24, 7-25, 

7-26, 7-27 
COBOL language, 

Elements of, 1-3 
COBOL library facility, 

1-19 
COBOL line number, 7-19 
COBOL programs, 

Debugging, 7-1, 7-22 
Restarting, 7-1, 7-31, 

7-32 
COBOL symbols, 1-1 
COBOL terms, 1-1, 1-3 
COBOL-74 character set, 1-4 
COBOL-74 compiler switch 

summary, 6-3, 6-4 
COBOL-74 utility programs, 

7-1 
CODASYL, 1-1 
CODE, 4-72 
Code set, 

Character, 3-7, 4-17 
CODE-SET, 4-17, 4-58 
Collating sequence, 3-7 
COLLATING SEQUENCE, 3-7 
Collating seq~ence, 

Sort key, 5-86 

INDEX (Cont.) 

COLUMN NUMBER, 4-77 
Combined condition, 5-15 

Negated, 5-15 
Combined condition format, 

5-15 
Combined relation condition, 

Abbreviated, 5-16 
Combining files, 5-54 
Comma, 1-12, 3-6 
Command string, 

Compiler, 6-1, 6-2 
Command string defaults, 

LIBARY, 7-17 
Commands, 

COBDDT, 7-24, 7-25, 7-26, 
7-27 

LIBARY, 7-19 
LIBARY edit, 7-20 
LIBARY edit mode, 7-20 
LIBARY group mode, 7-19 
LIBARY-directing, 7-21 

Comment lines, 1-14 
Comment paragraph, 2-2 
Communication, 

Inter-program, 11-4 
COMMUNICATION SECTION, 4-1, 

4-4, 4-5 
COMP, 4-63 
COMP-l, 4-63, 8-19 
COMP-3, 4-64, 5-18 
Comparison of nonnumeric 

items, 5-8, 5-9 
Comparison of numeric items, 

5-8 
Competing for file access, 

9-8 
Compiler command string, 

6-1, 6-2 
Compiler-directing sentence, 

5-4 
Compiler-directing 

statement, 5-2 
Compiling for production, 

5-98 
COMPUTATIONAL, 4-63, 5-18, 

8-19 
COMPUTATIONAL data types, 

13-10, 13-11 
COMPUTATIONAL-I, 4-63, 5-18 
COMPUTATIONAL-3, 4-64 
Computations, 

Usage in arithmetic, 5-18 
COMPUTE, 5-31 
Computer-name, 3-3, 3-4 
Concatenating items, 5-90 
Condition, 5-15 

Index-2 

Abbreviated combined 
relation, 5-16 

Class, 5-7, 5-9 



Condition (Cont.) 
Combined, 5-15 
Condition-name, 5-7, 5-10 
Negated combined, 5-15 
Object of, 5-8 
Relation, 5-7 
Sign, 5-7, 5-11 
Subject of, 5-8 

Condition format, 
Class, 5-9 
Combined, 5-15 
Condition-name, 5-10 
Relation, 5-8 
Sign, 5-11 

Condition-name, 1-9, 
4-33 

Condition-name condition, 
5-7, 5-10 

Condition-name condition 
format, 5-10 

Condition-name (level-88), 
4-32 

Conditional characters, 
Special, 1-5 

Conditional expressions, 
5-7 

Evaluation of, 5-11, 5-12, 
5-13 

Formation of, 5-11 
Conditional sentence, 5-4 
Conditional statement, 5-2 
Conditional variable, 4-32 
Conditional expressions, 

5-47 
CONFIGURATION SECTION, 3-2 
Connectives, 1-6, 4-9 
CONSOLE, 3-6, 5-20, 5-33 
Continuation area, 1-13, 

1-14, 1-16, 1-17 
CONTROL, 3-5, 4-73, 4-88 
Control break, 4-7, 4-73, 

4-78, 4-84, 5-43, 5-97 
Control break, 

FINAL, 4-7 
CONTROL FOOTING, 4-7, 4-87, 

4-88 
CONTROL HEADING, 4-7, 4-87 
Control tape, 

Line printer, 3-6 
Conversion, 

Data, 13-14 
COPY, 1-19, 1-20, 1-21, 

1-22 
CORRESPONDING option, 5-18 
Counter, 

SUM, 4-84, 4-86 
Counters, 13-11, 13-13 
Counters, 

Summation, 5-43 

INDEX (Cont.) 

Creating library files, 
7-18, 7-20 

CURRENCY SIGN, 3-8, 4-47 

Damaged ISAM files, 
Recovering, 7-10 

Data, 
Rules for positioning, 

4-35 
Data Base Management System, 

4-1, 4-67 
Data characters, 

Symbols for, 4-40 
Data conversion, 13-14 
Data Description entry, 4-2, 

4-29, 4-56 
Signed numeric, 4-59 

DATA DIVISION, 1-3, 4-1, 
4-13 

Data efficiencies, 13-10 
Data file, 

ISAM, 8-27, 8-28 
Data movement, 13-14 
DATA RECORD, 4-18 
Data record, 

Usage of, 4-62 
Data types, 

COMPUTATIONAL, 13-10, 
13-11 

DISPLAY, 13-8 
Understanding, 13-8 

Data-name, 1-9, 4-34 
DATABASE-KEY, 4-67 
DATE, 1-8, 1-9 
DATE-COMPILED, 2-2 
DATE-WRITTEN, 

VALUE OF, 4-26 
DAY, 1-8 
DBKEY, 4-67 
DBMS, 4-4 
Deadly embrace, 5-74, 9-1, 

9-3 
Debug lines, 1-14, 1-16, 

1-17, 3-3 
Debugging COBOL programs, 

5-98, 7-1, 7-22 
DEBUGGING MODE, 3-3 
DECIMAL PQINT, 3-8 
Decimal point, 3-6 

Actual, 4-45 
Assumed, 4-43, 4-44 

Decimal points, 
Symbols for, 4-40 

DECLARATIVES, 5-4 
DECLARATIVES format, 5-109 
DECLARATIVES section, 5-1, 

5-108, 5-109 

Index-3 



DECtape and disk, 
Standard labels for, 4-20 

Default condition notation, 
1-2 

DEFERRED OUTPUT, 3-17, 3-18 
Defining overlays, 11-9, 

11-10, 11-11 
DELETE, 5-32 
Deleting library source 

lines, 7-20 
Deleting library statement 

groups, 7-18, 7-19 
Delimiter, 

Pseudo-text, 1-12 
DETAIL, 4-7, 4-87 
Device, 6-1 
Device-names, 

Logical, 3-14, 3-15 
Physical, 3-14 

Direct indexing, 4-11 
Qualified, 4-11 

Direct subscripting, 4-11 
Qualified, 4-11 

Disk, 
Standard labels for 

DECtape and, 4-20 
DISPLAY, 3-5, 4-65, 5-33 
DISPLAY data types, 13-8 
DISPLAY-6, 4-65, 5-18 
DISPLAY-7, 4-65, 5-18 
DISPLAY-9, 4-66, 5-18 
DIVIDE, 5-34, 5-35 
Documenting optimization 

techniques, 13-5, 13-6 
Dollar sign, 4-47 
Double-precision 

fixed-point usage, 5-18, 
5-19 

Dynamic access, 8-23 

EBCDIC, 
Blocked fixed-length, 

8-16 
Blocked variable-length, 

8-17, 8-18, 8-19 
Fixed-length, 8-13 
Industry-compatible, 8-2 
Variable-length, 8-13, 

8-14, 8-15 
EBCDIC formats, 

Types of, 8-12 
EBCDIC mixed-mode BINARY, 

8-22 
EBCDIC packed-decimal, 8-3 
EBCDIC recording mode, 8-2, 

13-8, 13-9 
EDIT, 1-15 ' 

INDEX (Cont.) 

Editing, 
Fixed insertion, 4-49 
Floating insertion, 4-46, 

4-47, 4-49, 4-50 
Insertion, 4-48 
Replacement, 4-48, 4-49 
Simple insertion, 4-49 
Special insertion, 4-49 
Suppression, 4-48 
Zero suppression, 4-49, 

4-51 
Editing allowed, 

Type of, 4-48 
Editing characters, 

Special, 1-5 
Editing sign control, 

Symbols for, 4-41, 4-45, 
4-50 

Efficiencies, 
Data, 13-10 

Efficient coding 
conventions, 13-12 

Elementary item, 4-3 
Category of, 4-43 

Elements of COBOL language, 
1-3 

Ellipsis, 1-2 
End-of-reel, 5-112 
Ending labels for magnetic 

tape, 4-20 
ENTER, 5-36, 12-1 
Entering COBDDT, 7-24 
ENTRY, 4-5, 5-37 
Entry point, 11-4, 11-5 
ENVIRONMENT DIVISION, 1-3, 

3-1 
Error, 

I/O, 3-26, 3-27 
Error codes, 

Monitor, 3-31, 3-32 
Error handling, 5-108 
Error number, 3-27, 3-28, 

3-29, 3-33 
Error status bits, 

I/O, 3-29 
Evaluating performance, 

13-5 
Evaluation, 

Overriding normal order 
of, 5-13 

Evaluation of arithmetic 
expressions, 5-6 

Evaluation of conditional 
expressions, 5-11, 5-12, 
5-13 

Execution, 
Sequence of, 5-5 

EXIT, 5-38 
EXIT PROGRAM, 5-39 

Index-4 



INDEX (Cont.) 

Expressions, 
Arithmetic, 5-6 
Conditional, 5-7 
Conditional, 5-47 
Evaluation of arithmetic, 

5-6 
Evaluation of conditional, 

5-11, 5-12, 5-13 
Formation of arithmetic, 

5-6 
Formation of conditional, 

5-11 
External media for object 

program, 3-9 
Extracting library 

statement groups, 7-19 

F recording mode, 3-22 
FD filename, 4-19 
Figurative constants, 1-6 
File access, 8-23 

Competing for, 9-8 
File description (FD), 4-14 
File description, 4-2 
File formats, 8-3 
File medium, 3-10 
File organization, 8-23 
FILE SECTION, 4-1, 4-2 
FILE STATUS, 3-26 
File status, 3-27 
File status bits, 

Monitor, 3-30 
FILE STATUS items, 3-27, 3-32 
File storage, 13-11 
File type, 3-28 
FILE-CONTROL, 3-9, 3-10 
File-name, 1-10 
File-table pointer, 3-27 
Files required by object 

program, 3-9 
FILLER, 4-34 
FINAL control break, 4-7 
Fixed insertion editing, 

4-49 
Fixed-length ASCII, 8-4, 

8-5' 
Fixed-length EBCDIC, 8-13 

Blocked, 8-16 
Fixed-length SIXBIT, 8-8, 

8-9 
Fixed-point usage, 

Double-precision, 5-18, 
5-19 

Single-precision, 5-18, 
5-19 

Floating insertion editing, 
4-46, 4-47, 4-49, 4-50 

Floating replacement 
characters, 4-52 

Floating-point usage, 5-18, 
5-19 

Format control loop, 
Paper-tape, 5-112 

Formation of arithmetic 
expressions, 5-6 

Formation of conditional 
expressions, 5-11 

FORTRAN, 12-1 
FORTRAN subprograms, 5-36, 

12-2, 12-3 
FREE, 5-40, 5-41, 5-42, 

9-11, 9-12 

GENERATE, 4-8, 5-43, 5-44 
GO TO, 5-23,' 5-45 
GOBACK, 5-46 
GROUP INDICATE, 4-78 
Group items, 4-3 

Hardware assigments, 
Logical, 3-10 

Header labels, 4-2 
HIGH-VALUE, 1-7, 3-5, 3-7 
HIGH-VALUES, 1-7 
Histogram, 7-23, 7-30, 13-5, 

13-6, 13-7, 13-8 
Listing, 7-29 
Obtaining, 7-27 
Sample, 7-31 
Starting, 7-28 
Stopping, 7-29 
Using, 7-31 

Histogram table, 
Initializing, 7-28 

Horizontal tab, 1-12 

I-a-CONTROL, 3-9, 3-34 
I/O error, 3-26, 3-27 
I/O error status bits, 3-29 
Identification area, 1-15 
IDENTIFICATION DIVISION, 

1-3, 2-1 
Identifier, 5-19 
IF, 5-47 
Ignoring ISAM errors, 7-10 
Imperative sentence, 5-4 
Imperative statement, 5-2 
Improving performance, 13-1, 

13-2, 13-3, 13-4, 13-5 
IN, 4-9 

Index-5 



INDEX, 4-66, 5-18 
Index file, 

ISAM, 8-28, 8-29, 8-30, 
8-31 

Index file structur~, 
ISAM, 8-30, 8-31 

Index-name, 1-10 
Indexed-sequential 

organization, 8-23 
Indexes, 4-38, 13-11 
Indexing, 4-9, 4-10 

Direct, 4-11 
Qualified direct, 4-11 
Relative, 4-11 

Indirect commands to ISAM, 
7-12, 7-13 

Industry-compatible EBCDIC, 
8-2 

Initializing histogram 
table, 7-28 

INITIATE, 4-8, 5-49 
INPUT-OUTPUT SECTION, 3-9 
Input/output buffer areas, 

3-16 
Inserting library source 

lines, 7-20 
Inserting library statement 

groups, 7-18, 7-19 
Insertion characters, 

Symbols for" 4-40 
Insertion editing, 4-48 

Fixed, 4-49 
Floating, 4-46, 4-47, 

4-49, 4-50 
Simple, 4-49 
Special, 4-49 

INSPECT, 5-50, 5-51, 5-52, 
13-14 

Integer, 1-10 
Inter-program communication, 

11-4 
Invoking LIBARY, 7-15 
ISAM, 7-1, 7-2 

Indirect commands to, 
7-12, 7-13 

ISAM block type, 3-28 
ISAM data file, 8-27, 

8-28 
ISAM errors, 

Ignoring, 7-10 
ISAM file environment, 7-3 
ISAM files, 8-27 

Building, 7-4, 7-5, 7-6 
Maintaining, 7-7, 7-8 
Packing, 7-9, 7-10 
Recovering damaged, 7-10 
Simultaneous use of, 9-17, 

9-18 
Using, 7-13, 7-14 

INDEX (Cont.) 

ISAM index file, 8-28, 8-29, 
8-30, 8-31 

ISAM index file structure, 
8-30, 8-31 

ISAM switches, 7-2 
Item, 1-3 

JUSTIFIED, 4-35, 4-36 

Key words, 1-6 

LABEL RECORD, 4-20 
Label records, 5-62 

Standard, 4-25 
Labels, 

Header, 4-2 
Magnetic tape, 7-12 
Reading magnetic tape, 

7-11 
Trailer, 4-2 
Writing magnetic tape, 

7-11 
Labels for DECtape and disk, 

Standard, 4-20 
Labels for magnetic tape, 

Ending, 4-20 
Standard, 4-20, 4-21 

Level numbers, 4-3 
Level-66, 4-3, 4-4 
Level-66 items, qualified, 

4-9 
(level-66) , 

RENAMES, 4-56, 4-57 
Level-77, 4-3, 4-5 
Level-77 items, 

Unique names for, 4-9 
Level-88, 4-3, 4-4 
Level-88 item, 4-68 
(level-88) , 

Condition-name, 4-32 
Level-number, 1-10, 4-2, 

4-37 
LIBARY, 7-1, 7-15, 7-16, 

7-17 
Invoking, 7-15 
Running, 7-18 
Using, 7-22 

LIBARY command string 
defaults, 7-17 

LIBARY commands, 7-19 
LIBARY edit commands, 7-20 
LIBARY edit mode commands, 

7-20 

Index-6 



LIBARY group mode commands, 
7-19 

LIBARY modes of operation, 
7-18, 7-19 

LIBARY switches, 7-18 
LIBARY-directing commands, 

7-21 
Library, 

Object, 11-6 
Searching an object, 11-6, 

11-7 
Source, 11-6 

Library facility, 
COBOL, 1-19 

Library file format, 7-15 
Library files, 6-1, 7-15 
Library files, 

Creating, 7-18, 7-20 
Modifying, 7-20 

Library maintenance program, 
7-1, 7-15 

Library source lines, 
Deleting, 7-20 
Inserting, 7-20 
Replacing, 7-20 

Library statement groups, 
Deleting, 7-18, 7-19 
Extracting, 7-19 
Inserting, 7-18, 7-19 
Replacing, 7-19 

Library-name, 1-10 
Limit on record size, 4-22 
LINAGE, 4-79, 4-80 
LINAGE-COUNTER, 1-8, 1-9, 

4-80 
LINE NUMBER, 4-81 
Line number, 7-19 

Absolute, 4-81 
COBOL, 7-19 
Relative, 4-81 

Line numbers, 1-14, 1-15, 
1-16 

Source, 1-4 
Line printer control tape, 

3-6 
LINE-COUNTER, 4-71, 5-43, 

5-49 
Line-sequence ASCII, 8-1 
LINK program, 4-5 
LINKAGE SECTION, 4-1, 4-5, 

4-6 
Linking programs with 

COBDDT, 7-23 
Listing file from compiler, 

6-1 
Listing histogram, 7-29 
Literals, 1-10 

Alphanumeric, 1-11 
Numeric, 1-10 

INDEX If"',.... .... ~ \ 
\ '-vu \.. • ) 

Loading COBDDT, 7-23 
Loading subprograms, 11-6 
Logical block, 4-16 
Logical device-names, 3-14, 

3-15 
Logical hardware assigments, 

3-10 
Logical operators, 5-11, 

5-15 
Logical page, 

Size of, 4-79 
Logical positioning in 

files, 5-87 
Logically related records, 

9-13 
LOW-VALUE, 1-7, 3-5, 3-7 
LOW-VALUES, 1-7 

MACRO, 12-1 
MACRO subprograms, 5-36, 

12-3, 12-4, 12-5, 
12-6 

Magnetic tape, 3-24, 8-2 
Ending labels for, 4-20 
Standard labels for, 4-20, 

4-21 
Magnetic tape labels, 7-12 

Reading, 7-11 
Writing, 7-11 

Maintaining ISAM files, 7-7, 
7-8 

Maintenance program, 
Source library, 7-1, 7-15 

Margin A, 1-13, 1-14, 1-15, 
1-16 

Margin B, 1-13, 1-14, 1-15, 
1-16 

Margin L, 1-13, 1-14, 1-15, 
1-16 

Margin of report, 
Bottom, 4-79, 4-80 
Top, 4-79 

Margin R, 1-13, 1-14, 1-15, 
1-16 

Maximum number of statement 
groups, 7-15 

MCS, 4-1, 4-5 
Media for object program, 

External, 3-9 
Memory for overlays, 

Reserving, 11-11, 11-12, 
11-13 

MEMORY SIZE, 3-4 
MERGE, 3-5, 3-7, 5-54, 5-55, 

5-78 
Message Control System, 4-1, 

4-4 

Index-7 



Methods of program 
optimization, 13-4, 
13-5 

Mixed-mode BINARY, 
ASCII, 8-20 
EBCDIC, 8-22 
SIXBIT, 8-21 

Mixed-mode records, 8-19 
Mnemonic-name, 1-10 
Modifying library files, 

7-20 
Monitor call, 3-28 
Monitor error codes, 3-31, 

3-32 
Monitor file status bits, 

3-30 
MOVE, 5-56, 5-57 
Multi-dimensional tables, 

4-10 
Multi-reel file, 5-28 
MULTIPLE FILE, 3-35 
MULTIPLY, 5-58 

Negated combined condition, 
5-15 

NEXT GROUP, 4-83 
NEXT PAGE, 4-82 
Non-COBOL subprograms, 12-1 
Non-reel file, 5-27 
Nonnumeric items, 

Comparison of, 5-8, 5-9 
Nonresident segments, 5-6, 

11-1, 11-2 
Nonwriteable segments, 11-1, 

11-2 
Normal order of evaluation, 

Overriding, 5-13 
NOT, 5-11, 5-16 
Numeric data description 

entry, 
Signed, 4-59 

Numeric item, 4-48 
Numeric items, 4-42 

Comparison of, 5-8 
Numeric literals, 1-10 
NUMERIC test, 5-10 
Numeric-edited item, 4-42, 

4-48 

Object library, 11-6 
Searching an, 11-6, 11-7 

Object of condition, 5-8 
Object program, 

External media for, 3-9 
Files required by, 3-9 

INDEX (Cont.) 

OBJECT-COMPUTER, 3-2, 3-4 
Obtaining histogram, 7-27 
OCCURS, 4-38, 4-39 
OF, 4-9 
OPEN, 5-59, 5-60, 5-61, 

5-62, 9-4, 9-5, 9-6, 
9-7 

Operational sign, 4-43 
Operations, 

Order of, 5-7 
Optimization, 

Methods of program, 13-4, 
13-5 

Program, 13-1, 13-2 
Tools for program, 13-3, 

13-6 
Optimization techniques, 

Documenting, 13-5, 13-6 
Optional files, 5-60 
Optional words, 1-6 
Options and file types, 

CLOSE, 5-30 
OR, 5-11 
Order of evaluation, 

Overriding normal, 5-13 
Order of operations, 5-7 
Ordering statements, 13-15 
ORGANIZATION, 3-17, 3-18 
Organization, 

File, 8-23 
Indexed-sequential, 8-23 
Relative, 8-23 
Sequential, 8-23 

Over-punched characters, 
8-3 

Overlay structure, 11-8, 
11-9 

Overlays, 5-25, 5-26, 11-1, 
11-8, 11-13, 11-14 

Defining, 11-9, 11-10, 
11-11 

Reserving memory for, 
11-11, 11-12, 11-13 

Overriding normal order of 
evaluation, 5-13 

Packed-decimal, 
EBCDIC, 8-3 

Packing ISAM files, 7-9, 
7-10 

Padding, 8-4 
Page, 

Size of logical, 4-79 
Page breaks, 4-78 
PAGE FOOTING, 4-7, 4-87, 

4-88 
PAGE HEADING, 4-7, 4-87 

Index-8 



PAGE-COUNTER, 4-71, 5-43, 
5-49 

Paper-tape format control 
loop, 5-112 

Paragraph-name, 1-10, 
5-4 

Paragraphs, 5-4 
Parentheses, 1-12, 5-6, 5-7, 

5-12, 5-13, 5-15 
PERFORM, 5-64, 5-65, 5-66, 

5-67 
PERFORM cycle logic, 5-66, 

5-67 
PERFORM statement 

efficiency, 13-13 
Performance, 

Evaluating, 13-5 
Improving, 13-1, 13-2, 

13-3, 13-4, 13-5 
Physical device-names, 3-14 
PICTURE, 4-40 
Picture string, 4-41 
Picture string character 

chart, 4-53 
Positioning data, 

Rules for, 4-35 
Positioning in files, 

Logical, 5-87 
Printer control tape, 

Line, 3-6 
Priority numbers, 

Section-name, 5-5 
PROCEDURE DIVISION, 1-3, 

5-1 
Verb formats, 5-19 

Production, 
Compiling for, 5-98 

PROGRAM COLLATING SEQUENCE, 
3-5, 3-7 

Program format, 
Source, 1-13 

Program optimization, 13-1, 
13-2 

Methods of, 13-4, 
13-5 

Tools for, 13-3, 
13-6 

Program segments, 11-1, 
11-2, 11-3 

Program structure, 1-3 
PROGRAM-ID, 2-1 
Program-name, 1-10 
Project-programmer number 

conversion, 4-27 
Projecting resource usage, 

9-3, 9-4 
Pseudo-text delimiter, 1-12 
PULSAR, 4-21 
Punctuation characters, 1-4 

INDEX (Cont.) 

QUALIFICATION, 4-9 
Qualified, 

Level-66 items" 4-9 
Qualified direct indexing, 

4-11 
Qualified direct 

subscripting, 4-11 
Quotation mark, 1-11, 1-12 
QUOTE, 1-7 
QUOTES, 1-7 

(RD) , 
Report description, 4-70 

Random access, 8-23 
READ, 5-68, 5-69, 5-70 
Reading magnetic tape 

labels, 7-11 
Record, 1-3 
RECORD CONTAINS, 4-22 
Record description, 4-2 
RECORD KEY, 3-20, 4-5 
Record size, 

Limit on, 4-22 
Record-name, 1-10 
RECORDING DENSITY, 3-22, 

3-24 
RECORDING MODE, 3-22, 3-23, 

3-24, 4-15 
Recor~ing mode, 4-62, 8-1, 

ASCII, 3-22, 8-1, 13-8, 
IJ-9, 13-10 

BINARY, 3-22, 8-3 
EBCDIC, 8-2, 13-8, 13-9 
F, 3-22 
SIXBIT, 3-22, 8-2, 13-8, 

13-10 
STANDARD-ASCII, 3-23 
V, 3-23 

Recording modes, table of, 
3-25 

RECORDING PARITY, 3-22, 
3-24 

Recovering damaged ISAM 
files, 7-10 

REDEFINES, 4-54 
Relation condition, 5-7 

Abbreviated combined, 
5-16 

Relation condition format, 
5-8 

Relational operators, 5-8 
Relative files, 8-23, 8-24, 

8-25, 8-26 
,Simultaneous use of, 9-16, 

9-17 
Relative indexing, 4-11 
RELATIVE KEY, 3-21, 4-5 

Index-9 



Relative line number, 4-81 
Relative organization, 8-23 
Relative subscripting, 4-11 
RELEASE, 5-71 
Releasing records, 9-1 
Removing breakpoints, 7-25 
RENAMES (level-66), 4-56, 

4-57 
Replacement characters, 

Floating, 4-52 
Replacement editing, 4-48, 

4-49 
Replacing library source 

lines, 7-20 
Replacing library statement 

groups, 7-19 
REPORT, 3-23, 4-23 
Report, 4-1, 4-2, 5-97 

Bottom margin of, 4-79, 
4-80 

Top margin of, 4-79 
Report description (RD), 

4-70 
Report file, 4-8 
REPORT FOOTING, 4-7, 4-87, 

4-88 
Report group, 4-7, 5-110' 
Report group description, 

4-74 
REPORT HEADING,. 4-7, 4-87 
Report lines, 4-7 
REPORT SECTION, 4-1, 4-6, 

4-8 
Format of, 4-7 

Report to be printed, 
Causing a, 4-8 

REPORT WRITER, 5-43,10-1 
Report-name, 1-10 
RERUN, 7-1, 7-31 

Operating, 7-32 
Using, 7-32, 7-33 

RERUN DUMP, 3-34 
RESERVE, 3-16 
Reserved words, 1-5 
Reserving memory for 

overlays, 11-11, 11-12, 
11-13 

RESET, 4-84 
Resident segments, 5-6, 

11-1, 11-2 
Resource usage, 

Projecting, 9-3, 9-4 
Restarting COBOL programs, 

7-1, 7-31, 7-32 
RETAIN, 5-72, 5-73, 5-74, 

5-75, 5-76, 5-77, 9-8, 
9-9, 9-10, 9-11 

Retaining records, 9-1 
RETURN, 5-78 

INDEX (Cont.) 

REWRITE, 5-79 
ROUNDED option, 5-17 
Routine-name, 1-10 
Rules for positioning data, 

4-35 
Running LIBARY, 7-18 

SAME AREA, 3-35 
SAME RECORD AREA, 3-35 
Sample histogram, 7-31 
SCHEMA SECTION, 4-1, 4-4 
SD filename, 4-24 
SEARCH, 5-80, 5-81, 5-82 
Searching an object library, 

11-6, 11-7 
Section-name, 1-10, 5-4, 

11-1 
Section-name priority 

numbers, 5-5 
Sections, 5-1, 5-4 
Security restrictions, 2-1 
Segment numbers, 3-5, 11-1, 

11-3 
SEGMENT-LIMIT, 3-5 
Segment-name, 1-10 
Segmentation, 5-5 
Segments, 5-26 

Nonresident, 5-6, 11-1, 
11-2 

Nonwriteab1e, 11-1, 11-2 
Program, 11-1, 11-2, 11-3 
Resident, 5-6, 11-1, 11-2 
Types of, 5-5 
Writeab1e, 11-1, 11-2 

SELECT, 3-13, 3-14 
Semicolon, 1-12 
Sentences, 5-4 
Separators, 1-11 
Sequence numbers, 

Card, 1-15 
Sequence of execution, 5-5 
Sequential access, 8-23 
Sequential files, 8-23 

Simultaneous use of, 9-12, 
9-13, 9-14, 9-15, 9-16 

Sequential organization, 
8-23 

SET, 5-83 
SET WATCH command, 13-6 
SIGN, 4-58 
Sign, 

Operational, 4-43 
Sign condition, 5-7, 5-11 
Sign condition format, 5-11 
Sign control', 

Symbols for editing, 4-41, 
4-45, 4-50 

Index-10 



SIGN IS SEPARATE, 4-41, 
4-43 

Signed numeric data 
description entry, 4-59 

Signs, 
Symbols for arithmetic, 

4-40 
Simple insertion editing, 

4-49 
Simultaneous update, 5-60, 

5-61, 5-62, 5-72, 5-73, 
5-74, 9-1 

Simultaneous update 
programming, 9-3 

Simultaneous use 
of ISAM files, 9-17, 
9-18 
of relative files, 9-16, 
9-17 
of sequential files, 
9-12, 9-13, 9-14, 9-15, 
9-16 

Single reel file, 5-28 
Single-precision 

fixed-point usage, 5-18, 
5-19 

SIXBIT, 
Fixed-length, 8-8, 8-9 
Variable-length, 8-10, 

8-11, 8-12 
SIXBIT mixed-mode BINARY, 

8-21 
SIXBIT recording mode, 3-22, 

8-2, 13-8, 13-10 
SIZE ERROR option, 5-17 
Size of logical page, 4-79 
SORT, 3-4, 3-5, 3-7, 5-71, 

5-78, 5-84, 5-85, 5-86 
Sort key collating sequence, 

5-86 
SOS, 1-15 
SOURCE, 4-85 
Source file, 6-1, 6-2 
Source library, 11-6 
Source library maintenance 

program, 7-1, 7-15 
Source line numbers, 1-4 
Source lines, 

Deleting library, 7-20 
Inserting library, 7-20 
Replacing library, 7-20 

Source program format, 1-13 
SOURCE-COMPUTER, 3-2, 

3-3 
Space, 1-11 
SPACE, 1-7 
SPACES, 1-7 
Special arithmetic 

characters, 1-5 

INDEX (Cont.) 

Special conditional 
characters, 1-5 

Special editing characters, 
1-5 

Special insertion editing, 
4-49 

Special registers, 1-8 
SPECIAL-NAMES, 3-2, 3-6 
Standard label records, 

4-25 
Standard labels for DEC tape 

and disk, 4-20 
Standard labels for 

magnetic tape, 4-20, 
4-21 

STANDARD-ASCII recording 
mode, 3-23 

START, 5-87, 5-88 
Starting COBDDT, 7-23 
Starting histogram, 7-28 
Statement, 

Compiler-directing, 5-2 
Conditional, 5-2 
Imperative, 5-2 

Statement categories, 
Verb and, 5-3 

Statement groups, 
Deleting library, 7-18, 

7-19 
Extracting library, 7-19 
Inserting library, 7-18, 

7-19 
Maximum number of, 7-15 
Replacing library, 7-19 

Statements, 5-2 
Status items, 

FILE, 3-32 
STOP, 5-89 
Stopping histogram, 7-29 
STRING, 5-90, 5-91, 5-92, 

5-93, 5-94 
String pointer, 5-92 
Structure of program, 1-3 
Subject of condition, 5-8 
Subprograms, 4-1, 4-5, 5-1, 

5-25, 5-26, 5-39, 5-46, 
11-1, 11-3, 11-4, 11-6, 
11-8 

Subprograms, 
Called, 11-5 
FORTRAN, 5-36 
Loading, 11-6 
MACRO, 5-36 
Non-COBOL, 12-1 

Subscripting, 4-9, 4-10 
Subscripting, 

Direct, 4-11 
Qualified direct, 4-11 
Relative, 4-11 

Index-II 



Subscripts, 4-38, 13-11, 
13-12, 13-13 

SUBTRACT, 5-95, 5-96 
SUM, 4-86 
SUM counter, 4-84, 4-86 
Summation counters, 5-43 
Suppression editing, 4-48 

Zero, 4-51 
Switch summary, 

COBOL-74 compiler, 6-3, 
6-4 

Switches, 
ISAM, 7-2 
LIBARY, 7-18 

Symbols, 
COBOL, 1-1 

Symbols for arithmetic 
signs, 4-40 

Data characters, 4-40 
Decimal points, 4-40 
Editing sign control, 

4-41, 4-45, 4-50 
Insertion characters, 

4-40 
Zero suppression, 4-40 

SYNCHRONIZED, 4-60, 4-61 

Tab, 
Horizontal, 1-12 

Tables, 4-9, 4-10, 4-38, 
5-80, 5-81 

Mu1ti.-dimensiona1, 4-10 
Tape, 

Ending labels for 
magnetic, 4-20 

Line printer control, 3-6 
Magnetic, 3-24, 8-2 
Standard labels for 

magnetic, 4-20, 4-21 
Tape labels, 

Magnetic, 7-12 
Reading magnetic, 7-11 
Writing magnetic, 7-11 

TECO, 1-16 
Terminal-type format, 1-15 

Line-numbered, 1-15, 1-16 
Unnumbered, 1-16 

TERMINATE, 4-8, 5-97 
Terms, 

COBOL, 1-1, 1-3 
Text files, 13-9 
Text-name, 1-10 
TIME, 1-8, 1-9 
Tools for program 

optimization, 13-3, 
13-6 

Top margin of report, 4-79 

INDEX (Cont.) 

TPS, 4-1, 4-5 
TRACE, 5-98, 5-99 
Trace paragraphs, 7-23, 

7-27 
Trailer labels, 4-2 
Transactional Processing 

System, 4-1, 4-4 
TYPE, 4-87 
Type of editing allowed, 

4-48 
Types of EBCDIC formats, 

8-12 
Types of segments, 5-5 
Types of user-defined words, 

1-9 

UNAVAILABLE, 5-61 
Unblocked, 4-16 
Underline, 1-2 
Understanding data types, 

13-8 
UNSTRING, 5-100, 5-101, 

5-102, 5-103, 5-104, 
5-105, 5-106, 5-107 

USAGE, 4-62 
Usage, 

Double-pr~cision 
fixed-point, 5-18, 5-19 

Floating-point, 5-18, 
5-19 

Single-precision 
fixed-point, 5-18, 5-19 

In arithmetic 
computations, 5-18 

Of data record, 4-62 
USE, 5-108, 5-109, 5-110 
USE BEFORE REPORTING, 4-8 
Use of ISAM files, 

Simultaneous, 9-17, 9-18 
Use of relative files, 

Simultaneous, 9-16, 9-17 
Use of sequential files, 

Simultaneous, 9-12, 9-13, 
9-14, 9-15, 9-16 

USE procedure, 3-26, 3-32, 
3-33 

User-defined words, 1-4, 
1-9 

Types of, 1-9 
USER-NUMBER, 

VALUE OF, 4-26 
USING, 4-5, 5-1, 5-24 
Using histogram, 7-31 
Using ISAM files, 7-13, 

7-14 
Using LIBARY, 7-22 
Using RERUN, 7-32, 7-33 

Index-12 



utility programs, 
COBOL-74, 7-1 

V recording mode, 3-23 
Valid ASCII characters, 1-4 
VALUE, 4-68 
VALUE OF DATE-WRITTEN, 4-5, 

4-25, 4-26 
VALUE OF ID, 3-27, 4-5 
VALUE OF IDENTIFICATION, 

4-25, 4-28 
VALUE OF USER-NUMBER, 4-5, 

4-25, 4-26 
Variable-length ASCII, 8-5, 

8-6, 8-7 
Variable-length EBCDIC, 

8-13, 8-14, 8-15 
Variable-length EBCDIC, 

Blocked, 8-17, 8-18, 
8-19 

Variable-length SIXBIT, 
8-10, 8-11, 8-12 

Verb and statement 
categories, 5-3 

Verb formats, 
Procedure Division, 5-19 

Verbs, 
Arithmetic, 5-17 

INDEX (Cont.) 

Warning message, 3-26 
Words, 1-5 

Key, 1-6 
Optional, 1-6 
Reserved, 1-5 
Types of user-defined, 

1-9 
User-defined, 1-4, 

1-9 
WORKING-STORAGE SECTION, 

4-1, 4-5 
WRITE, 5-111, 5-112, 

5-113 
Writeab1e segments, 11-1, 

11-2 
Writing magnetic tape 

labels, 7-11 

ZERO, 1-7 
Zero suppression, 4-44 

Symbols for, 4-40 
Zero suppression editing, 

4-49, 4-51 
ZEROES, 1-7 
ZEROS, 1-7 

Index-13 





· ~ .= 

READER'S COMMENTS 

COBOL-74 
Language Manual 
AA-5059A-TK 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. If you require a written reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the 
page number. 

Please indicate the type of reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 
[] Other (please specify) ____________________________________ __ 

Name Date ______________________ ___ 

Organization ________________________________ Telephone __________________ _ 

Street __________________________________________________________________ __ 

City. ____________________________ State _____________ Zip Code ____________ _ 

or 
Country 



.------------------------------------------------------------Fold lIere------------------------------------------------------------

.-------------------------... -------------------- Do Not Tear· Fold'lIere and Staple ----------------... ----..... -----------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

mamaoma 
Software Documentation 
200 Forest Street MRI-2/E37 
Marlborough, Massachusetts 01752 

FIRST CLASS 
PERMIT NO. 152 

MARLBOROUGH. MA 
01752 


