
TOPS-10 
LINK Reference Manual 

AA-09880-TB, AO-09880-T1, AO-09880-T2 

April 1986 

This document describes LlNK-l0, the linking loader for 
TOPS-10. 

This document updates the document of the same name, 
order number AA-0988D-TB, published March 1983. 

OPERATING SYSTEM: 

SOFTWARE: 

TOPS-l0 V7.03 

LlNK-l0 V6.0 

Software and manuals should be ordered by title and order number. In the United States. send orders 
to the nearest distribution center. Outside the United States. orders should be directed to the nearest 
DIGITAL Field Sales Office or representative. 

Northeast/Mid-Atlantic Region Central Region Western Region 

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation 
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center 
Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive 
Telephone:(603)884-6660 Schaumburg, Illinois 60195 Sunnyvale. California 94086 

Telephone:(312)640--5612 Telephone:(408)734-4915 

digital equipment corporation. marlboro. massachusetts 



First Printing, May 1973 
Revised, July 1974 
Revised, December 1975 
Revised, April 1978 
Updated, June 1978 
Revised, March 1983 
Updated, January 1985 
Updated, April 1986 

Copyright ©1973, 1983, 1986 by Digital Equipment Corporation. All Rights Reserved. 

The information in this document is subject to change without notice and should not 
be construed as a commitment by Digital Equipment Corporation. Digital Equipment 
Corporation assumes no responsibility for any errors that may appear in this document. 

The software described in this document is furnished under a license and may be 
used or copied only in accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment that is 
not supplied by Digital Equipment Corporation or its affiliated companies. 

The following are trademarks of Digital Equipment Corporation: 

DEC 
DECmate 
DECsystem-lO 
DECSYSTEM-20 
DECUS 
DECwriter 
DIBOL 

MASSBUS 
PDP 
P/OS 
Professional 
Q-BUS 
Rainbow 
RSTS 

RSX 
RT 
UNIBUS 
VAX 
VMS 
VT 
Work Processor 

The postpaid READER'S COMMENTS form on the last page of this document requests 
the user's critical evaluation to assist us in preparing future documentation. 



CHAPTER 1 

1.1 
1.1.1 
1.1.2 
1.1.3 
1.2 
1.3 
1.4 
1.5 

CHAPTER 2 

2.1 
2.2 
2.3 

CHAPTER 3 

3.1 
3.2 
3.2.1 
3.2.2 
3.3 
3.4 

CHAPTER 4 

4.1 
4.2 
4.2.1 
4.2.1.1 
4.2.2 
4.2.3 
4.2.4 
4.3 
4.4 

CHAPTER 5 

5.1 
5.1.1 
5.1.2 
5.2 
5.2.1 
5.2.2 
5.3 
5.3.1 
5.3.2 
5.4 
5.4.1 
5.4.2 
5.4.3 
5.5 
5.6 
5.7 

CONTENTS 

INTRODUCTION TO LINK 

INPUT TO LINK . • • . • . . • . 1-1 
Object Modules • 
Commands to Link 
Libraries •••• 

OUTPUT FROM LINK • • • • • 
LINK'S OVERLAY FACILITY 
LINK AND EXTENDED ADDRESSING • 

• 1-1 
• 1-2 

• • • • • 1-2 
1-2 
1-3 

• 1-3 
USING LINK • • • • • • • • • • • . . . . . . . . . 1-4 

USING LINK AUTOMATICALLY 

COMMAND FORMATS •••••••••• 
COMMAND SWITCHES • • • • • • • • • • • 
EXAMPLE OF USING LINK AUTOMATICALLY 

USING LINK DIRECTLY 

COMMAND STRING FORMAT 
SWITCHES TO LINK • • • 

Command Scanner Switches • 

• • • • • 2-1 
• 2-2 

• • 2-3 

• 3-2 
• • 3-3 

3-3 
Link Switches ••••••••• 

LIBRARIES AND SEARCHES • • • 
EXAMPLES USING LINK DIRECTLY • 

. . . . . • . • 3-4 
• • •• 3-81 

3-81 

OUTPUT FROM LINK 

THE EXECUTABLE PROGRAM • • • • • • • 4-1 
OUTPUT FILES • • • • • • • • • • • • • • •• • 4-1 

Executable Files • • • • • • • • • ••••• 4-2 
Format of Sharable Save Files • • • • • 4-2 

LOG Files •••• • • • • • • • 4-5 
Map files ••••• • •••••• 4-5 
Symbol Files • • • • • 4-5 

SYMBOL TABLE VECTOR • • • • • 4-5 
MESSAGES • • • • • • • • • • • • • 4-7 

OVERLAYS 

OVERLAY STRUCTURES • • • • • • 
Defining Overlay Structures 
An Overlay Example • • • • • 

WRITABLE OVERLAYS • • • • • • 

• • • 5-1 
• • • • • • 5-2 

Writable Overlay Syntax 
Writable Overlay Error Messages 

RELOCATABLE OVERLAYS • • • • • • • • • • 
Relocatab1e Overlay Syntax • • • • • • • • 
Relocatable Overlay Messages • • • • • • 

RESTRICTIONS ON OVERLAYS • • • • • 

• 5-4 
5-10 
5-10 
5-10 
5-11 
5-11 
5-11 
5-12 
5-12 Restrictions on Absolute Overlays 

Restrictions on Re1ocatab1e Overlays • 
Restrictions on FORTRAN Overlays 

• • •• 5-13 

SIZE OF OVERLAY PROGRA~S • • 
DEBUGGING OVERLAYED PROGRAMS 
THE OVERLAY HANDLER • • • • 

iii 

5-13 
5-14 

• • • •• 5-14 
5-14 

April 1986 



5.7.1 
5.7.2 
5.7.3 
5.7.4 
5.8 
5.8.1 
5.8.2 
5.8.3 
5.8.4 

CHAPTER 6 

6.1 
6.2 
6.2.1 

APPENDIX A 

APPENDIX B 

B.l 
B.2 
B.3 

APPENDIX C 

INDEX 

TABLES 

Calls to the Overlay Handler 
Overlay Handler Subroutines 
Overlay Handler Messages . · · The FUNCT. Subroutine 

THE OVERLAY (OVL) FILE · . · · The Directory Block 
The Link Number Table · · The Link Name Table · · · The Overlay Link . . · . 

PSECTs 

LOADING PROGRAMS WITH PSECTs • • 
PSECT ATTRIBUTES • • • • • • • • • • 

CONCATENATED and OVERLAID 

REL BLOCKS 

LINK MESSAGES 

DESCRIPTION OF MESSAGES 
LIST OF MESSAGES 
INDEXED MESSAGES • • • • 

JOB DATA AREA LOCATIONS SET BY LINK 

· · · · 5-15 
5-16 

· · · 5-21 

· · · · · 5-24 

· 5-30 

· · · · 5-31 

· · · · · · 5-32 

· · · · · · 5-32 

· · · · 5-33 

6-1 
• 6-3 

• • • • 6-3 

• B-1 
• • • B-4 

B-32 

2-1 Switches for System Commands • • • • • • •• • 2-2 
5-1 Example of an Overlay Structure • • • • • • 5-2 
B-1 Severity Codes • • • • • • • • • • ••••• B-2 
B-2 Special Message Segments • • • • • • • •• • • B-3 

iv April 1986 



PREFACE 

This manual is the reference document for LINK, the TOPS-IO linking 
loader. The manual is aimed at the intermediate to highly-experienced 
applications programmer, and contains complete documentation of LINK. 

Chapter I provides a general introduction to LINK. 

Chapter 2 describes automatic use of LINK through one of the system 
commands DEBUG, EXECUTE, or LOAD. This chapter is sufficient for most 
loading tasks. 

Chapter 3 describes direct use of LINK. This discussion is useful for 
large or complicated loads. This chapter also discusses libraries and 
library searches. 

Chapter 4 describes output from LINK~ executable programS, most 
output files, and LINK messages. Included are descriptions of the 
internal format of save (.EXE) files. 

Chapter 5 discusses overlays, including overlay structures, 
overlay-related output files, the overlay handler and its messages, 
and the FUNCT. subroutine. This chapter has an extensive example of 
an overlay load. Many of the elements of this example are of interest 
outside the context of overlays. 

Appendix A gives a technical description of the output from the 
language translators, which is in the form of REL Blocks. 

Appendix B lists all LINK messages. 

Appendix C describes the job data area. 

The current copies of TOPS-IO documents are also useful: 

TOPS-IO Utilities Manual 

TOPS-IO Operating System Commands Manual 

TOPS-IO MAKLIB User's Guide 

TOPS-IO/TOPS-20 MACRO Assembly Reference Manual 

TOPS-IO/TOPS-20 COBOL-68 Language Manual 

TOPS-IO/TOPS-20 COBOL-74 Language Manual 

TOPS-IO/TOPS-20 SPEAR Manual 

TOPS-IO/TOPS-20 ALGOL Programmer's Guide 

TOPS-IO/TOPS-20 FORTRAN Language Manual 

Update 

DECsystem-IO/DECSYSTEM-20 
Processor Reference Manual 

v 





CHAPTER 1 

INTRODUCTION TO LINK 

LINK is the TOPS-IO's linking loader. It merges independently 
compiled or assembled modules into a single executable program. 

This merging process requires LINK to perform the following functions: 

1. Perform the relocation calculations by converting relocatable 
addresses to virtual addresses, and by binding segments and 
PSECTs to addresses. 

2. Resolve global symbol references by global chain fixups, 
Polish fixups, and library searches. 

3. Produce an executable program by providing some JOBDAT 
information and a DDT runtime symbol table. 

The virtual address space used for loading your program is not 
hardware memory. During loading and execution, the system simulates 
this virtual space by swapping code between disk and hardware memory 
as required. For simplicity, we will refer to the virtual address 
space as memory. 

1.1 INPUT TO LINK 

The primary input to LINK is the output from the language translators; 
it is a binary file containing machine language code corresponding to 
your program, called object modules. Other input may include your 
commands to LINK, and libraries containing object modules. 

1.1.1 Object Modules 

An object module is output from a language translator; it is part of 
a binary file (REL file) containing machine language code 
corresponding to your program. This file is formatted into blocks, 
called REL Blocks, that LINK recognizes and can handle appropriately. 
The format of each REL Block Type is described in Appendix A. 

Most object modules contain relocatable code. This means that the 
addresses in the module are relative to the zero address. LINK loads 
the relocatable code at an arbitrary memory address, but adds a 
constant to each address referenced in the program. This resolves 
relative addresses to absolute addresses. 

1-1 



I 
INTRODUCTION TO LINK 

Using relocatable code simplifies your programming task. Your 
programming task is simpler because you need not worry about the 
loading addresses of your programs. 

Besides relocating and loading your object modules, LINK resolves 
values for global symbols: those that are defined in one module and 
used in others. LINK also resolves references to entry name symbols 
when modules containing these symbols are loaded. 

Using symbols in your programs makes your programming simpler. If you 
need to revise a program, it is much easier to change the value of a 
symbol than to change each occurrence of the value. This is 
especially important for global symbols. You need only change the 
value in the defining module; the other modules do not need 
retranslation. 

1.1.2 Commands to Link 

LINK is controlled during loading by the command strings you give. 
Commands consist of file specifications and switches. LINK command 
strings are discussed in Chapter 3. 

1.1.3 Libraries 

A library is a file containing object modules that may be needed to 
resolve references ln your program. For example, the FORTRAN library 
FORLIB contains subroutines that may be referenced by the output from 
the FORTRAN compiler. When loading FORTRAN-compiled code, LINK 
usually searches this library to satisfy any unresolved subroutine 
calls. Most language translators have their own libraries. 

You can construct your own libraries, and have LINK 
necessary subroutines. Libraries and searching 
Section 3.4. 

1.2 OUTPUT FROM LINK 

search them for 
are discussed in 

The primary output from LINK is the executable program, called the 
core image. In the core image, all addresses are resolved to absolute 
memory locations, and all symbols (including subroutine calls) are 
resolved to absolute values or addresses. 

This core image may be executed immediately or saved as a sharable 
save (.EXE) file. The .EXE file may be created automatically by LINK. 
This occurs if you specify /SSAVE when you run LINK, or if the program 
is too complex to be left in core with LINK. 

You can also execute the core image under the control of a debugging 
program. 

During its processing, LINK generates messages, which are output to 
your terminal or a log file. Some of these give information about 
LINK's operation; some warn you about possible problems; some 
identify errors. LINK messages are described in Appendix B. 

1-2 



INTRODUCTION TO LINK 

At your option, LINK can generate three special files: the map file, 
the log file, and the symbol file. The map file contains information 
about symbols in your program modules. The log file records LINK's 
messages so that you can save them. The symbol file contains a symbol 
table for the load and has a file extension of .SYM. LINK's output 
files are described in Chapter 4. 

1.3 LINK'S OVERLAY FACILITY 

If your program is larger than your available memory, you can use 
LINK's overlay facility to make it fit in memory. To do this, you 
define a tree structure for the program's modules. Then, at execution 
time, only part of the tree is in memory at one time. This reduces 
the amount of memory needed for execution. See Chapter 5 for a 
discussion of overlays. 

1.4 LINK AND EXTENDED ADDRESSING 

The KL Model B processor is capable of using an address space 
consisting of 32 sections, each containing 512 pages. As of TOPS-10 
Version 7.03, programs have been able to reference this expanded 
address space. For information on using extended addressing with a 
specific programming language, consult the documentation for that 
language. 

To load a program into a particular section, use the appropriate 
monitor command with the IUSE switch. Refer. to the TOPS-10 Operating 
System Commands Manual for more information. 

Use PSECTs to load a program into a nonzero section. See Section 6.1 
for information on loading PSECTs. 

When loading a program that uses extended addressing, pay particular 
attention to the use of l8-bit and 30-bit addresses. If a program 
uses 30-bit addresses and you reference a 30-bit address as an l8-bit 
address, LINK truncates the 30-bit address and notifies you with the 
following message: 

%LNKFTH Fullword value [symbol] truncated to halfword 

LINK issues this warning if the truncation results in the loss of a 
section number. Refer to Appendix B for more information about this 
message. 

While writing an extended addressing program, keep the following 
restrictions in mind: 

• Programs that use overlays cannot use nonzero sections. 

• Programs should not store executable code into locations 0 
through 17 of nonzero sections. However, you can store data 
that is not executed in these locations. If you store data 
in locations 0 through 17, use global addresses to reference 
the locations. If you use local addresses, ACs 
(accumulators) are referenced instead. In Section 1, 
locations 0 through 17 refer to ACs. 

LINK V6.0 1-3 April 1986 



INTRODUCTION TO LINK 

1.5 USING LINK 

You have two ways to use LINK: 

1. You can use LINK automatically by means of the LOAD, EXECUTE, 
or DEBUG system commands. This is the easiest and best way 
to load many programs. Chapter 2 describes automatic use of 
LINK. 

2. You can run LINK directly by typing R LINK to the monitor. 
This is necessary only for very large or complicated loads, 
such as those involving overlays. Chapter 3 discusses direct 
use of LINK. 

1-4 April 1986 



CHAPTER 2 

USING LINK AUTOMATICALLY 

The system commands LOAD, EXECUTE, and DEBUG invoke LINK 
automatically. Each of these commands uses a simple command string; 
the system converts the string into more complicated LINK commands. 

This discussion of the LOAD, EXECUTE, and DEBUG commands does not 
attempt to describe them completely. Only those switches applying 
directly to loading will be discussed here. For a full discussion, 
see the TOPS-IO Operating System Commands Manual. 

These system commands invoke LINK: 

• The LOAD command uses LINK to load your object modules into 
memory, but does not execute the program. Before loading, 
your source files are compiled, if necessary; this 
compilation will occur if there are no object modules for the 
specified source files, or if the object files are older than 
their source files. 

• The EXECUTE command uses LINK to load your program, and then 
executes the loaded program. Before loading, your source 
files are compiled, if necessary. 

• The DEBUG command works like the EXECUTE command, except that 
your program is executed under the control of a debugging 
program. The debugging program that is loaded depends on the 
type of program being loaded. See the /TEST switch for a 
list of languages. The system uses the file extension to 
determine the language in which the program is written. 
Therefore, it is highly recommended that you use standard 
file extensions when naming the files of your programs. 
Standard file extensions are listed in the appropriate 
Commands Manual for the operating system. 

2.1 COMMAND FORMATS 

The formats for the LOAD, EXECUTE, and DEBUG commands are the same. 
Each can accept a list of input file specifications and switches. The 
format for these commands is: 

.command/switches input-spec/switches, input-spec/switches, ... 

Where the command is one of the three system commands (LOAD, EXECUTE, 
or DEBUG), input-spec is the file specification of the program you 
want to load, and the switches are any of the valid switches for the 
command. 

2-1 



I 

I 

I 

USING LINK AUTOMATICALLY 

If you separate the input file specifications with commas, each source 
file will be compiled into a separate object file. If you separate 
the input file specifications with plus signs, they will be compiled 
into a single object file. 

Section 2.3 shows examples of using LINK automatically. 

2.2 COMMAND SWITCHES 

You can use switches with the LOAD, EXECUTE, and DEBUG commands to 
control LINK's loading. Table 2-1 briefly describes some of the 
command switches that apply to LINK. Refer to the TOPS-IO Operatins 
System Commands Manual for complete descriptions of the switches for 
these commands. 

Switch 

/COMPILE 

/DDT 

/DEBUG 

/MAP 

/NOCOMPILE 

/NODEBUG 

/NOSEARCH 

/SEARCH 

Table 2-1 
Switches for System Commands 

Meaning 

Forces compilation of source files even if a 
sufficiently recent REL file exists. 

Loads DDT. 
selection, 
extension of 
string. 

This supersedes the default debugger 
which is usually based on the 

the first file in the command 

Causes the FORTRAN 
debugging information. 

compiler to generate 
/NODEBUG is the default. 

Produces a map file at the end of loading. This 
file shows all global symbols loaded. 

Compiles source files only if their REL files 
are older than the source files. /NOCOMPILE is 
the default. 

Prevents the FORTRAN compiler from generating 
debugging information. 

Suspends the effect of an earlier global/SEARCH 
switch. This is the default action. 

Loads only the modules from the specified 
library file that satisfy global references in 
the program. 

You can use any LINK program switches with the system commands 
EXECUTE, or DEBUG by using a special switch format. This 
requires that you use a percent sign (%) instead of the usual 
(/), and that the entire switch specification be enclosed in 
quotation marks ("). For example, you can pass the /ERRORLEVEL 

LOAD, 
format 
slash 

double 
switch 

to LINK by using the command: 

.EXECUTE MYPROG %"ERRORLEVEL:O" 

2-2 



USING LINK AUTOMATICALLY 

Used directly with LINK, the command strings would include: 

*MYPROG/ERRORLEVEL:O I 

If you give more than one switch in this format, succeeding switches 
within the quotation marks must have the usual slashes: 

.EXECUTE MYPROG%"ERRORLEVEL:O/SEGMENT:LOW" 

LINK program switches are described in Section 3.2. 

2.3 EXAMPLE OF USING LINK AUTOMATICALLY 

For this example, the following program, named MYPROG.FOR, is used: 

TYPE 10 
10 FORMAT (' This is written by MYPROG') 

STOP 
END 

The following example shows an interactive execution of the program 
using the EXECUTE command: 

. EXECUTE MYPROG. FOR ~ 
FORTRAN: MYPROG 
MAIN. 
LINK: Loading 
[LNKXCT MYPROG execution] 
This is written by MYPROG. 
CPU time 0.16 Elapsed time 0.28 

EXIT 

The following example shows how to load a program for debugging using 
the DEBUG command: 

.DEBUG MYPROG.FOR~ 
FORTRAN: MYPROG 
MAIN. 
LINK: Loading 
[LNKDEB FORDDT execution] 

STARTING FORTRAN DDT 

»START 
This is written by MYPROG. 
CPU time 0.16 Elapsed time 0.42 

EXIT 

2-3 





CHAPTER 3 

USING LINK DIRECTLY 

If you have a loading task that cannot be handled conveniently by the 
EXECUTE, LOAD, or DEBUG system commands (such as loading overlays or 
PSECTs), you can load your program by using LINK directly. To do 
this, you must already have compiled or assembled all required object 
modules. 

To use LINK directly, type R LINK to the system. 
with an asterisk: 

.R LINK ~ 

* 

LINK will respond 

Continue typing command strings, ending each one with a carriage 
return. For example, 

.R LINK~ 
*/OVERLAY ~ 
*TEST/LINK: TEST ~ 
* /NODE:TEST SPEXP/LINK:SPEXP~ 
* 

A command string consists of file specifications and switches. You 
can continue a command string to the next line by typing a hyphen 
immediately before pressing carriage return; LINK continues the line 
by responding with a number sign (#). For example, 

.R LINK ~ 
*MYPROG , MYMAP /MAP /CONTENTS : ALL- G£D 
#/ERRORLEVEL:O/LOG/LOGLEVEL:5~ 

* 
The use of continuation lines is more efficient as the command scanner 
must be invoked for every distinct command string. 

You can include a comment on a command line by beginning the comment 
with a semicolon; the remaining text on the line is not processed by 
LINK. 

When LINK sees the end of the command string (a carriage return), it 
processes the entire string, then prints an asterisk to begin the next 
line. This processing continues until one of the following occurs: 

1. LINK finds a /GO switch in a command string. It then 
completes loading and exits to system command level (if you 
did not specify execution), or passes control to the loaded 
program for execution. 

3-1 



I 

I 

I 

I 

USING LINK DIRECTLY 

2. A fatal error occurs. LINK prints an error message and exits 
to system command level. 

3. A /RUN switch is encountered. 

4. Either /EXIT or ~z is encountered. 

3.1 COMMAND STRING FORMAT 

A LINK command string can contain file specifications, LINK switches, 
and command scanner switches. Command scanner switches are described 
in Section 3.2.1. LINK switches are described in Section 3.2.2. 

Some LINK switches take 
switches are suffixed 
specifications specify 
command string tells 
generate a saved output 

output file specifications as arguments; some 
to output file specifications. Other file 
input files. For example, the following 

LINK to use an input file called MYREL.REL to 
file called MYEXE.EXE: 

*MYREL,MYEXE/SAVE/GO 

LINK supplies the missing parts of the file specifications from its 
defaults. 

DEFAULTS 

For output files, the defaults are: 

device DSK: 

file name name of last module with start address or, if none, 
then nnnLNK where nnn is your job number with leading 
zeros if necessary 

extension 

directory 

log file 
map file 
overlay file 
plotter file 
executable file 
symbol file 

your current path, i.e. 

For input files, the defaults are: 

device DSK: 

extension REL 

directory your current path, i.e. 

LOG 
MAP 
OVL 
PLT 
EXE 
SYM 

[30,5526,LINK,TEST] 

[30,5526,LINK,TEST] 

You can change these defaults by using the /DEFAULT switch (see 
Section 3.2.2). 

You can have LINK read command strings from an indirect command file. 
To do this, prefix an at-sign (@) to the command file specification. 
For example, the following commands tell LINK to read all command 
strings from the file LNKPRG.CCL. (.CCL is the default file extension 
for indirect command files, but if .CCL is not found, .CMD will be 
tried.) : 

. R LINK0!D 
*@LNKPRG0!D 

3-2 



USING LINK DIRECTLY 

3.2 SWITCHES TO LINK 

LINK's handling of files depends on your use of LINK switches. There 
are two sets of switches to LINK. The first set of switches (command 
scanner switches) are optional switches that define your request to 
the system command scanner. These are described in Section 3.2.1. 
The second set of switches are switches to LINK that you can use to 
control and modify the linking and loading process. These are 
described in Section 3.2.2. 

3.2.1 Command Scanner Switches 

The system SCAN module scans command lines for various system 
programs, one of which is LINK. You can include SCAN switches in your 
command strings for LINK; however, none of these switches is required 
in order to run LINK. 

The following SCAN switches are meaningful to LINK. The remaining 
SCAN switches, which are listed in LINK's HELP file, are ignored by 
LINK. 

Like LINK switches, SCAN switches are preceded by a slash (I), and can 
be abbreviated up to their first unique characters. 

Switch 

IESTIMATE:n 

IEXIT 

IHELP:arg 

IMESSAGE:keyword 

INOOPTION 

SCAN Switches Meaningful to LINK 

Meaning 

Reserves n 128-word disk blocks for the 
specified output file. This does not work 
globally, but only on the file for which it is 
specified. By default, disk space is 
automatically allocated, as required, for files 
output to disk. This allocates blocks 
contiguously on the disk, thus providing 
improved access times. 

Exits, but leaves LINK's core image in place. 

Displays the HLP:LINK.HLP file. Specifying 
IHELP:SWITCHES types LINK and SCAN switches with 
no explanations. 

Displays messages in the format specified by 
keyword. The keywords and their meanings are: 

PREFIX 

FIRST 

CONTINUATION 

Ignores any LINK 
DSK:SWITCH.INI[,] 

3-3 

Displays only the message code 
from SCAN or LINK which are of 
the forms SCNxxx, or LNKxxx. 

Displays the prefix and a 
short message. 

Displays the prefix and a 
longer message. 

switches found in the file 

I 

I 



I 

I 

Switch 

/OPTION:name 

/PROTECTION:n 

/RUN:file 

/RUNOFFSET:n 

USING LINK DIRECTLY 

Meaning 

Reads default LINK switches from the file 
SWITCH.INI, on the line that begins with 
LINK:name. If you use the /OPTION switch, it 
must appear in the first command string to LINK. 

Assigns the 3-digit octal number n as the 
protection for the specified output file. 

Runs the specified program after loading is 
finished. This switch is ignored if you have 
specified program execution. 

Begins execution of the program given by 
/RUN switch at the address n locations after 
normal start address. If you omit n, 
default is 1. If you omit /RUNOFFSET, 
default is O. 

the 
the 
the 
the 

/TMPFIL:file:"str" Creates a TMPCOR file with the specified name. 

3.2.2 Link Switches 

The name must be a 3-character filename. 
Usually, the string given in quotation marks is 
a command string to be executed by the program 
given in the /RUN switch when it is started one 
location after its normal start address (by 
/RUNOFFSET:l) . 

This section lists the switches that may be used to instruct LINK to 
take special action while loading your programs. The switches are 
described in this section in alphabetical order, and for each switch 
the following information is shown, if appropriate: 

FORMAT 
FUNCTION 
EXAMPLES 
OPTIONAL NOTATIONS 
RELATED SWITCHES 

Switches can be abbreviated to save typing. However, in most cases, 
the switch must include enough characters to make it unique from other 
switches. For example, the switch /NOSYMBOL cannot be abbreviated to 
/NOSY, because this result in a conflict with the switch /NOSYSLIB. 
However, /NOSYM is a unique set of characters, and thus is a legal 
abbreviation for /NOSYMBOL. 

I Certain switches that can be abbreviated to a single letter are: 

I 

/D for 
/E for 
/G for 
/Hfor 
/L for 
/M for 
/N for 
/S for 
/T for 
/U for 
/V for 

/DEBUG 
/EXECUTE 
/GO 
/HELP 
/LOCALS 
/MAP 
/NOLOCAL 
/SEARCH 
/TEST 
/UNDEFINE 
/VERSION 

3-4 



USING LINK DIRECTLY 

Many switches accept a value that may be specified in decimal 
is the default) or octal. If the value can be specified in 
this is noted in the OPTIONAL NOTATIONS section of the 
description. To specify an octal value, type a number sign (#) 
the octal number. For example, /ARSIZE:39 can be specified in 
as /ARSIZE:#47. 

(which 
octal, 
switch 
before 
octal 

Some switches accept a value that specifies an amount of memory area. 
This value is interpreted as the number of pages, by default. 
However, this value may be specified as nK, where n IS the number 
l024-word blocks of memory (lK=2P). Where this is valid, it is noted 
in the OPTIONAL NOTATIONS section of the switch description. Some 
switches can be used either locally or globally (in particular, 
/LOCALS, /NOLOCAL, /NOSTART, /SEGMENT, /INCLUDE, /ONLY, /SEARCH, 
/START and /NOSEARCH). This means that if the switch is suffixed to a 
file specification, it applies only to that file; if it is not 
suffixed to a file specification, it applies to the files that follow 
on that command line. For example, in the following command strings 
/SEARCH is used both locally and globally: 

1. *FILEl,FILE2/SEARCH,FILE3 

2. *FILE4,/SEARCH FILE5,FILE6 

In the first line, /SEARCH is suffixed to the file specification 
FILE2; only that file is loaded in search mode. In the second line, 
/SEARCH is not suffixed to a file specification; all the remaining 
files named in the command string are to be searched. 

In general, a switch used globally is disabled at the end of its 
command string, unless it is overridden by another switch. The second 
switch, if used locally, will override the first only for the local 
file. If the second switch is used globally, it will persist for the 
following files. For example, in the following command string, a 
globally-used switch (/SEARCH) is overridden by a locally used switch: 

*/SEARCH FILEl,FILE2/NOSEARCH,FILE3 

In this command string, FILEI and FILE3 will be loaded in search mode, 
but FILE2 will be loaded normally. 

NOTE 

The effects of a global switch on the 
same line as a /GO switch persist beyond 
the /GO switch and apply to any modules 
loaded during library searches. 
However, for certain languages default 
switches may override user-specified 
global switches. 

The following pages contain the switches and their descriptions, 
listed in alphabetical order. 

3-5 

I 
I 
I 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

/ARSIZE 

/ARSIZE:n 

Where n is a positive decimal integer. 

Sets the size of the overlay handler's table of 
multiply-defined global symbols. Use this switch if you 
have received LNKARL, LNKTMA, and LNKABT messages in a 
previous attempt to load your program. These messages 
will give instructions for the argument to the /ARSIZE 
switch. 

*/ARSIZE:39 G!D 
* 
Allocates 39 words for the multiply-defined global symbol 
table in each link of an overlay structure. 

You can specify the table size in octal. 

3-6 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/BACKSPACE 

/BACKSPACE:n 

Where n is a positive decimal integer. 

Backspaces over n files on the current tape device. 
switch is ignored for non-tape devices.) 

*MTAO: /BACKSPACE: 3 ~ 
* 
Backspaces magtape MTAO: by three files. 

If you omit n, it defaults to 1. 

/MTAPE, /REWIND, /SKIP, /UNLOAD 

3-7 

(The 



I 

FOR1~AT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

LINK V6 .. 0 

USING LINK DIRECTLY 

/COMMON 

/COMMON:name:n 

Where name is up 
characters. 

to six SIXBIT-compatible ASCII 

n = a positive decimal integer. 

Allocates n words of labeled COMMON storage for FORTRAN 
and FORTRAN-compatible programs. The COMMON label is a 
name, which becomes defined as a global symbol. 

For unlabeled COMMON storage, use .COMM. as the name, or 
simply omit the name. 

You cannot expand a given COMMON area during loading. If 
your program modules define a given COMMON area to have 
different sizes, the module giving the largest definition 
must be loaded first. If the /COMMON switch gives the 
largest definition, it must precede the loading of the 
modules. 

*/COMMON:A: 1000 G!D 
* 
Creates a labeled COMMON area of 1000 words. 

*/COMMON: .COMM.: 1000 ~ 

* 
Creates an unlabeled COMMON area of 1000 words. 

*/COMMON:: 1000 G!D 
* 
Creates an unlabeled COMMON area of 1000 words. 

You can specify the number of words in octal. 

/PSCOMMON 

3-8 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/CONTENTS 

/CONTENTS: (keyword, ... ,keyword) 

Each keyword gives a symbol type to be included in the map 
file if the file is generated. To generate the map file, 
use the /MAP switch. 

The keywords ALL, NONE, and DEFAULT reset all symbol 
types. Otherwise, using the /CONTENTS switch resets only 
those symbol types specified by keywords. In the 
following list of keywords, the defaults are in boldface: 

ABSOLUTE 
ALL 
COMMON 
DEFAULT 
ENTRY 
GLOBAL 
LOCALS 

NOABSOLUTE 
NOCOMMON 
NOENTRY 
NOGLOBAL 
NOLOCAL 

I~clude absolute symbols. 
Include all symbols. 
Include COMMON symbols. 
Reset to LINK's defaults. 
Include entry-name symbols. 
Include global symbols. 
Include local symbols. The 
symbols cannot be included in 
file unless the /LOCALS switch 
given. 
Exclude absolute symbols. 
Exclude COMMON symbols. 
Exclude entry-name symbols. 
Exclude global symbols. 
Exclude local symbols. 
Exclude all symbols. 
Exclude relocatable symbols. 
Exclude undefined symbols. 

local 
the map 
is also 

NONE 
NORELOCATABLE 
NOUNDEFINED 
NOZERO Exclude symbols in zero-length 

programs. (a zero-length program 
contains no code or data; it contains 
only symbol definitions, e.g., 
JOBDAT. ) 
Include relocatable symbols. 
Include undefined symbols. 

RELOCATABLE 
UNDEFINED 
ZERO Include symbols in zero-length 

programs. 

Only those symbols that satisfy all conditions 
keyword list will appear in the .MAP file. For 
if both the NOGLOBAL and RELOCATABLE settings 
force, all global symbols are excluded regardless 
relocatabilit.y. 

*/CONTENTS: (NOCOMMON,NOENTRY) ~ 
* 
Excludes COMMON and entry-name symbols. 

* /CONTENTS : ALL ~ 

* 
Includes all symbols. 

in the 
example, 
are in 

of their 

You can omit parentheses if you give only one keyword. 

/MAP 

3-9 

I 

I 

I 



I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/CORE 

/COFE:nP 

Where n is a positive decimal integer. 

Gives the initial low segment core size 
core size given with /CORE should not be 
given with the /MAXCOR switch; if it is 
will be allocated initially, but the 
expands core size, the allocation will be 
size given by /MAXCOR. 

* /CORE : 1 7P G!D 
* 

for LINK. 
larger than 
not, the 
first time 

reduced to 

The 
that 
core 
LINK 

the 

Allocates l7P (lP=5l2 words) of core for the initial low 
segment. 

You can specify the core size in octal. 
You can also specify the argument in K instead of P. 

/FRECOR, /MAXCOR, /RUNCOR 

3-10 



FORMAT 

FUNCTION 

EXAMPLES 

LINK V6.0 

USING LINK DIRECTLY 

/COUNTERS 

/COUNTERS 

Displays information about relocation counters on the 
terminal. A relocation counter is an address counter that 
LINK uses while loading relocatable code. 

/COUNTERS returns the name, initial value, current value, 
and limit value of each counter. /COUNTERS first prints 
the following header: 

Reloc. ctr. 

where: 

Reloc. ctr. 

initial value 

current value 

limit value 

initial value current value limit value 

gives the name of relocation counter. 

is the origin of the relocation counter. 

is the address of the next free location 
after the relocation counter has been 
loaded. 

is an upper bound that you set using 
/LIMIT or that LINK sets by default for 
the relocation counter. This upper 
bound defines a point the relocation 
counter should not load beyond. If 
/LIMIT is used and the counter loads 
beyond this bound, LINK returns 
messages. See /LIMIT for more 
information. 

/COUNTERS may be used to determine the size of overlays 
when loading programs that might be too for the allocated 
memory space. Refer to Section 5.4 for more information. 

You can also use /COUNTERS to determine the size of PSECTs 
when loading extended addressing programs or programs that 
use PSECTs to conserve memory space. Refer to Chapter 6. 

The following examples illustrate the various /COUNTERS 
displays. 

The following display results from loading a module that 
does not contain code. 

*/COUNTERS GD 
[LNKRLC No relocation counters set] 

* 
The following display results from loading only absolute 
code. 

*ABCODE/COUNTERS GD 
[LNKRLC No relocation counters set 
Absolute code loaded] 

* 

3-11 April 1986 



RELATED 
SWITCHES 

LINK V6.0 

USING LINK DIRECTLY 

The following display results from loading only PSECT 
code. 

*PSCODE/COUNTERS ~ 

[LNKRLC Reloc. ctr. initial value current vaLue limit value 
PSCODE 20 25 1000000] 

* 
The following display results from loading code that 
contains both absolute and PSECT code. 

*MIXED/COUNTERS ~ 
[LNKRLC Reloc. ctr. 

* 

PSECTA 
PSECTB 
PSECTC 
Absolute code 

initial 
1400000 
2500000 
3600000 

loaded] 

value current value 
1400001 
2500001 
3600001 

limit value 
4000000 
4000000 
4000000 

The following display results from loading two-segment 
formatted code. 

*TWOPRT/COUNTERS~ 
[LNKRLC Reloc. ctr. 

.LOW. 

.HIGH. 
* 

initial value 
o 
400000 

/NEWPAGE, /SET, /LIMIT 

3-12 

current value 
1642 
400753 

limit value 
1000000 
1000000] 

April 1986 



FORMAT 

FUNCTION 

EXAMPLE 

OPTIONAL 
NOTATIONS 

/CPU:keyword 

Keyword: 

USING LINK DIRECTLY 

KAl0 
KIl0 
KLl0 
KSl0 

/CPU 

This switch is used to override LINK's handling of the 
processor information found in the .REL files being 
loaded. (See the description of the type 6 block in 
Appendix A). Ordinarily LINK prints a warning if all .REL 
files being loaded together do not have identical CPU 
types. This switch can be used either to make LINK flag 
certain modules built for a specific CPU type (by 
specifying all but that CPU type as keywords to /CPU) or 
to suppress LINK's warning message (by specifying all the 
CPU types associated with the .REL files being loaded). 

*/CPU:KI10<RET) 

* 
Will cause LINK to issue the %LNKCCD message if any 
modules with the KLl0 CPU type are encountered. 

/CPU: (keyword,keyword) 

3-12.1 April 1986 



USING LINK DIRECTLY 

THIS PAGE INTENTIONALLY LEFT BLANK. 

3-12.2 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/DDEBUG 

/DDEBUG:keyword 

Specifies a default debugging program to be loaded if the 
/DEBUG or /TEST switch appears without an argument. 

The permitted keywords and 
specify are listed below. 
are supported by DIGITAL. 

the debugging programs they 
Only those printed in boldface 

ALGDDT Specifies 
ALGOL Specifies 
COBDDT Specifies 
COBOL Specifies 
DDT Specifies 
FAIL Specifies 
FORDDT Specifies 
FORTRAN Specifies 
MACRO Specifies 
PASCAL Specifies 
PASDDT Specifies 
SAIL Specifies 
SDDT Specifies 
SIMDDT Specifies 
SIMULA Specifies 

*/DDEBUG:FORTRAN ~ 

* 

ALGDDT as the default. 
ALGDDT as the default. 
COBDDT as the default. 
COBDDT as the default. 
DDT as the default. 
SDDT as the default. 
FORDDT as the default. 
FORDDT as the default. 
DDT as the default. 
PASDDT as the default. 
PASDDT as the default. 
~he SAIL debugger as the default. 
the SAIL debugger as the default. 
SIMDDT as the default. 
SIMDDT as the default. 

I 

I 

I 

Specifies FORDDT as the default debugging program for the 
/DEBUG 0 r /TE&T swi tch. I 
/DEBUG, /TEST 

3-13 



I 

I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/DEBUG 

/DEBUG:keyword 

Requests loading of a debugging program and sets the start 
address for execution as the normal start address of the 
debugging program. The /DEBUG switch also sets the 
/EXECUTE switch because it is assumed that the program is 
to be executed. The /GO switch is still required to end 
loading and begin execution. 

The /DEBUG switch turns on the /LOCALS switch for the 
remainder of the load. You can override this by using the 
/NOLOCAL switch, but the override lasts only during 
processing of the current command string. 

Local symbols for the debugging program itself are never 
loaded. 

If debugging overlaid programs, you must specify /DEBUG 
when loading the root node. (Refer to Section 5.4 for 
more information.) 

The permitted keywords and the programs they load 
printed in boldface listed below. Only those 

supported by DIGITAL. 

ALGDDT Loads ALGDDT. 
ALGOL Loads ALGDDT. 
COBDDT Loads COBDDT. 
COBOL Loads COBDDT. 
DDT Loads DDT. 
FAIL Loads SDDT. 
FORDDT Loads FORDDT. 
FORTRAN Loads FORDDT. 
MACRO Loads DDT. 
PASCAL Loads PASDDT. 
PASDDT Loads PASDDT. 
SAIL Loads the SAIL debugger. 
SDDT Loads the SAIL debugger. 
SIMDDT Loads SIMDDT. 
SIMULA Loads SIMDDT. 

are 
are 

If you give no keyword with /DEBUG, the default is either 
DDT or the debugging program specified by the /DDEBUG 
swi tch. 

*/DEBUG:DDT ~ 

* 
Loads DDT, sets the /EXECUTE switch, and specifies that 
the execution will be controlled by DDT. 

Abbreviate /DEBUG to /D. 

/DDEBUG, /TEST 

3-14 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

/DEFAULT 

/DEFAULT:keyword filespec 
filespec/DEFAULT:keyword 

Changes default specifications for input or output files. 
The defaults specified remain in effect until changed by 
another /DEFAULT switch. 

The keywords allowed are: 

For 

For 

INPUT 

OUTPUT 

input files, 

device 
extension 
directory 

output files, 

device 
filename 
directory 

Specifies the defaults for input file 
specifications. 

Specifies the defaults for output file 
specifications. 

the initial defaults are: 

DSK: 
REL 
User's connected directory 

the initial defaults are: 

DSK: 
Name of main program 
User's connected directory 

* /DEFAULT: INPUT . BIN C@ 

* 
Resets input file default extension to BIN. 

*/DEFAULT:OUTPUT MTAO: ~ 

* 
Resets output file default device to MTAO:. 

If you omit the keyword, INPUT is assumed. 

3-15 

I 



I 

I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 

NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/DEFINE 

/DEFINE: (symbol:value, ... ,symbol:value) 

Assigns each symbol the decimal value following it. This 
causes them to be global symbols. You can use the 
/UNDEFINED switch to get a list of any undefined symbols, 
and then define them with /DEFINE. 

Defining an already defined symbol with /DEFINE generates 
an error message. 

* /UNDEFINED ~ 
[LNKUGS 2 UNDEFINED GLOBAL SYMBOLS] 

A 400123 
IGOR 402017 

*/DEFINE: (A:59l,IGOR:l) ~ 

* 
Gives the decimal values 591 and 1 to A and IGOR, 
respectively. 

You can give the value in octal by typing # before the 
value. 
You can omit the parentheses if you define only one 
symbol. Specifying /DEFINE:FOO:BAR will define FOO to 
have the value of BAR if BA~ is already defined. 

/UNDEFINED, /VALUE 

3-16 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/ENTRY 

/ENTRY 

Requests terminal typeout (in octal) of all entry name 
symbols loaded so far. Each entry name symbol will have 
been defined by an ENTRY statement (MACRO, FORTRAN, or 
BLISS), a FUNCTION statement (FORTRAN), a SUBROUTINE 
statement (FORTRAN, or COBOL), or a PROCEDURE declaration 
(ALGOL) . 

If you are using the overlay facility, /ENTRY requests 
only the entry name symbols for the current link. 

*/ENTRY ~ 
[LNKLSS LIBRARY SEARCH SYMBOLS (ENTRY POINTS)] 

SQRT. 3456 

* 
/NOENTRY 

3-17 

I 



I 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/ERRORLEVEL 

/ERRORLEVEL:n 

Suppresses terminal typeout of LINK messages with message 
level n and less, where n is a decimal number between 0 
and 30 inclusive. You cannot suppress level 31 messages. 
LINK's default is /ERRORLEVEL:IO. 

See Appendix B for the level of each LINK message. 

*/ERRORLEVEL: 10 ~ 

* 
Suppresses all messages of level 10 and less. 

*/ERRORLEVEL:O ~ 

* 
Permits typeout of all messages. 

/VERBOSITY, /MESSAGE 

3-18 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/EXCLUDE 

/EXCLUDE: (subroutine, .•. ,subroutine) 

Prevents loading of the specified modules from the current 
file even if they are required to resolve global symbol 
references. You can use the /EXCLUDE switch for any of 
the following purposes: 

• If a library has several modules with the same search 
symbols, you can select the module you want by 
excluding the others. 

• You can prevent modules from giving multiple 
definitions of a symbol by selectively excluding one 
or more of them. 

• In defining 
loading of 
it. 

an overlay structure, you can delay 
a module until a later link by excluding 

*/SEARCH LIBFIL.REL/EXCLUDE: (MODI,MOD2) ~ 
* 
Searches LIBFIL as a library but prevents loading of MODI 
and MOD2 even if they are referenced. 

You can omit the parentheses if you specify only one 
module. 

/INCLUDE 

3-19 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/EXECUTE 

/EXECUTE 

Tells LINK that the loaded program is 
beginning at its normal start addre£s. 
until a /GO switch is found. 

to be executed 
Loading continues 

The /EXECUTE and IDEBUG switches are mutually exclusive. 

*/EXECUTE ~ 
* 
You can abbreviate IEXECUTE to IE. 

IDEBUG, IGO, IRUN, ITEST 

3-20 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

LINK V6.0 

USING LINK DIRECTLY 

/FRECOR' 

/FRECOR:nK 

Where n is a positive decimal integer. 

Requires LINK to maintain a minimum amount of free memory 
after any expansions. LINK's default free memory is 4K. 
If you use the /FRECOR:nK switch, LINK computes n times 
1024 words and maintains the resulting number of words of 
free memory, if possible. 

If the modules to be loaded are quite large, a larger 
amount of free memory avoids some moving of areas. 

The following areas may be expanded during loading: I 
1. ALGOL symbol information (AS). 

2. Bound global symbols (BG). 

3. Dynamic area (DY). 

4. Fixup area (FX). 

5. Global symbol tables (GS). 

6. User's high segment code (HC). 

7. User's low segment code (LC). 

8. Local symbol tables (LS). 

9. Relocation tables (RT). I 10. Argument typechecking (AT) 

Each of these areas has a lower bound, an actual upper 
bound, and a maximum upper bound. LINK normally maintains 
space between the actual and maximum upper bounds for each 
area. The total of these areas is at least the space I 
given by the /FRECOR switch, if possible. 

If the low segment code area exceeds the limit set by the 
user (with /MAXCOR) or by the system (CORMAX), LINK I 
recovers free core by concatenating these free areas. 
When all this recovered space is used, one or more of the 
areas overflows to disk, and free core is no longer 
maintained. 

* /FRECOR: 7K ~ 

* 
Maintains 7K of free core, if possible. 

You can specify the free core in octal. 

/CORE, /MAXCOR, /RUNCOR 

3-21 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/GO 

/GO 

Ends loading after the current module. LINK then performs 
any required library searches, generates any required 
output files, and does one of the following: 

• Begins execution at the normal start address of the 
loaded program (if you used /EXECUTE). 

• Begins execution at the start address of the debugging 
program (if you used /DEBUG, or both /TEST and 
/EXECUTE) . 

• Exits to the monitor (if you used no execution 
swi tch) . 

*MYPROG/EXECUTE/GO ~ 

[LNKXCT MYPROG EXECUTION] 

Begins execution of the loaded program at its normal start 
address. 

*MYPROG/DEBUG/GO ~ 

[LNKDEB DDT EXECUTION] 

Begins execution of the loaded program at the normal start 
address of DDT. 

Abbreviate /GO to /G. 

/DEBUG, /EXECUTE, /RUN, /TEST 

3-22 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/HASHSIZE 

/HASHSIZE:n 

Where n is a positive decimal integer. 

Gives a minimum for the initial size of the global symbol 
table. LINK selects a prime number larger than n for the 
initial size. 

If you know that you will need a large global symbol 
table, you can save time and space by allocating space for 
it with /HASHSIZE. You should give a hash size at least 
10 percent larger than the number of global symbols in the 
table. 

If LINK gives the message [LNKRGS Rehashing Global Symbol 
Table] during a load, you should use the /HASHSIZE switch 
for future loads of the same program. The minimum hash 
size for loading a program appears in the header lines of 
the map file. 

The default hash size is a LINK assembly parameter 
(initially 251 decimal). 

* /HASHSIZE: 1000 ~ 

* 
Sets the hash size to the prime number 1021. 

3-23 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/INCLUDE 

/INCLUDE: (module, ... ,module) 

Specifies modules to be loaded regardless of any global 
requests for them. 

In library search mode, 
loading of the specified 
associated with a file, the 
file is searched. If not, 
modules are found. 

an /INCLUDE switch requests 
modules. If the switch is 

request is cleared after that 
the request persists until the 

When LINK is not in library search mode, the /INCLUDE 
switch associated with a file requests that only the 
specified modules be loaded, and the request is cleared 
after that file is processed. An /INCLUDE switch not 
associated with a file requests loading of the specified 
modules, and the request persists until the modules are 
found. 

You can use /INCLUDE in an overlay load to force a module 
to be loaded in an ancestor link common to successor links 
that reference that module. This makes the module 
available to all links that are successors to its link. 

*/SEARCH LIBI/INCLUDE: (MODI,MOD2) ~ 

* 
Searches LIBI and loads MODI and MOD2 even if they are not 
referenced. 

You can omit the parentheses if you specify only one 
module. 

/EXCLUDE, /NOINCLUDE, /MISSING 

3-24 



FORMAT 

FUNCTION 

EXAMPLE 

USING LINK DIRECTLY 

/LIMIT 

/LIMIT:psect:address 

Allows you to specify an upper bound for a specific PSECT. 
In the format description, psect should be the PSECT name, 
which has been defined with either the /SET switch or in 
one of the modules already loaded. Address should be the 
upper bound address of the specified PSECT, expressed in 
either numeric or symbolic form. This address should be 
one greater than the highest location which may be loaded 
in the PSECT. 

If the PSECT grows beyond the address specified in the 
/LIMIT switch, LINK will send a warning to your terminal, 
but will continue to process input files and to load code. 
The warning message will take the following form: 

%LNKPEL PSECT <psect> exceeded limit of <address> 

No chained references will be resolved, and LINK will 
suppress program execution, producing the following fatal 
error: 

?LNKCFS Chained fixups have been suppressed 

This action prevents unintended PSECT overlays. PSECT 
overlays can cause loops and other unpredictable behavior, 
because LINK uses address relocation chains in the user 
image that is being built. 

*TESTI ~ 
* /COUNTERS G!D 
[LNKRLC RELOC. 

.LOW. 
Q 

CTF. 

R 
*/LIMIT:Q: 4000 ~ 
*TEST2 G!D 

INITIAL VALUE 
a 
1000 
4500 

%LNKPEL PSECT Q EXCEEDED LIMIT OF 4000 

CURRENT VALUE 
140 
4000 
10500 

DETECTED IN MODULE .MAIN FROM FILE DSK:TEST2.REL 
* /COUNTERS G!D 
[LNKRLC RELOC. CTR. 

.LOW. 
Q 
R 

*TEST/SAVE/GO @) 

INITIAL VALUE 
o 
1000 
4500 

CURRENT VALUE 
140 
5000 
10500 

%LNKPOV PSECTS RAND Q OVERLAP FROM ADDRESS 4500 TO 5000 
?LNKCFS CHAINED FIXUPS HAVE BEEN SUPPRESSED 

LIMIT VALUE 
1000000 
1000000 
1000000] 

LIMIT VALUE 
1000000 
4000 
1000000] 

In this example, a program named TESTl, which contains two 
PSECTs, is loaded. The PSECTs are named Q and R. After 
TESTI is loaded, the /COUNTERS switch shows that the upper 
bound of PSECT Q is 4000. 

3-25 



RELATED 
SWITCH 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

The /LIMIT switch is used to limit PSECT Q to 4000. 

A second program, TEST2, also requires storage for PSECT 
Q. Therefore, when TEST2 is loaded, LINK produces a 
warning to the effect that the limit that was set haS been 
exceeded. The /COUNTERS switch shows that PSECT Q now 
requires an upper bound of 5000. 

When the programs are started (with /GO) , LINK produces 
the POV warning message and the CFS fatal error message. 

/COUNTER 

A defined global symbol can be used to specify 
the limit value, e.g., /LIMIT:FOO:BAR. 

3-26 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCH 

USING LINK DIRECTLY 

/LINK 

/LINK:name 

Where name is up to 6 RADIX-50 compatible characters. 

Directs LINK to give the specified name to the current 
core image and outputs the core image to the overlay file. 
/LINK is used to close an overlay link. LINK first 
performs any required library searches and assigns a 
number to the link. 

For a discussion of overlay structures, see Chapter 5. 

The current core image has all modules loaded since the 
beginning of the load or since the last /LINK switch. 

*SPEXP/LINK:ALPHA~ 

* 
Loads module SPEXP and outputs the core image to the 
overlay file as a link called ALPHA. 

If you omit the link name, LINK uses only its assigned 
number. 

/NODE 

3-27 

I 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/LOCALS 

/LOCALS 

Includes local symbols from a module in the symbol table. 
LINK does not need these tables, but you may want them for 
debugging. To have the symbol table included in a program 
use the /SYMSEG switch. 

The /LOCALS and /NOLOCAL switches may be used either 
locally or globally. If the switch is suffixed to a file 
specification, it applies only to that file; if it is not 
suffixed to a file specification, it applies to all 
following files in the same command line. 

*/SYMSEG ~ 
*/LOCALS A,B/NOLOCAL,C,/NOLOCAL D ~ 

* 
Loads A with local symbols, B without local symbols, C 
with local symbols, and D without local symbols. 

You can abbreviate /LOCALS to /L. 

/NOLOCAL, /SYMSEG 

3-28 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/LOG 

logfilespec/LOG 

Specifies a file specification for the log file (see 
Section 4.2.2). Any LINK messages output before the /LOG 
switch is encountered are not entered in the log file. 

*LOGFI L/LOG G!D 
* 
Specifies the file DSK:LOGFIL.LOG in the user's directory. 

*TTY: /LOG G!D 
* 
Directs log messages to the user's terminal. 

You can omit all or part of the logfilespec. 
The defaults are: 

device 
filename 
extension 
directory 

DSK: 
name of main program 
LOG 
your logged-in directory 

You can change the defaults using the /DEFAULT switch. 

/LOGLEVEL 

3-29 



I 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USIN~ LINK DIRECTLY 

/LOGLEVEL 

/LOGLEVEL:n 

Suppresses logging of LINK messages with level n and less, 
where n is a decimal number between 0 and 30 inclusive. 
You cannot suppress level 31 messages. 

See Appendix B for the level of each LINK message. 

The default is /LOGLEVEL:IO. 

* /LOGLEVEL: 0 G!D 
* 
Logs all messages. 

/ERRORLEVEL, /LOG 

3-30 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/MAP 

mapfilespec/MAP:keyword 

Specifies a file specification for the map output file 
(see Section 4.2). The contents of the file are 
determined by the /CONTENTS switch or its defaults. 

Permitted keywords and their meanings are: 

END 

ERROR 

NOW 

Produces a map file at the end of the 
load. This is the default if you omit the 
keyword. 

Produces a map file if a fatal error 
occurs. Any modules loaded after this 
switch will not appear in the log. To 
ensure that a .MAP file is generated, 
specify this switch before the loading of 
.REL files. 

Produces a map file immediately. 
searches will not have been 
unless forced. 

Library 
performed 

*MAPF I L/MAP : END ~ 
* 
Generates a map in the file DSK:MAPFIL.MAP in your disk 
area at the end of loading. 

You can omit all or part of the mapfilespec. 
The defaults are: 

device 
filename 
extension 
directory 

DSK: 
name of main program 
MAP 
user's connected directory 

You can change the defaults using the /DEFAULT switch. 

You can abbreviate /MAP to /M. 

/CONTENTS 

3-31 

I 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/MAXCOR 

/MAXCOR:nP 

Where n is a positive decimal integer. 

Requires LINK to overflow low segment code larger than n 
pages to disk. The disk overflow may contain symbol 
areas, low segment code, and high segment code. 

If you specify MAXCOR smaller than the memory already 
used, disk overflow occurs at the next expansion and 
memory is reduced to your specified MAXCOR. 

If you specify MAXCOR smaller than LINK's minimum 
requirement, you will get an error message. You must then 
use another /MAXCOR switch to enlarge the core. 

* /MAXCOR: 3 OP G!D 
* 
Specifies a maximum core use of 30 pages (lP=5l2 words). 

You can specify the core in octal. 
You can specify the switch argument as K instead of P. 

JCORE, jFRECOR, jRUNCOR 

3-32 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/MAXNODE 

/MAXNODE:n 

Where n is a positive decimal integer. 

Specifies the number of links to be defined 
overlayed program requires more than 256 links. 
allocate extra space in the OVL file for 
fixed-length tables based on the number of links 
with this switch. 

when the 
LINK will 

certain 
specified 

Note that this switch must be placed after the /OVERLAY 
switch and it must precede the first /NODE switch in the 
set of commands to LINK. 

*TEST/OVERLAY/MAXNODE: 500 ~ 
* 
Reserves space for 500 defined links. See Chapter 5 for a 
discussion on overlays. 

/OVERLAY 

3-33 



I 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/MISSING 

/MISSING 

Requests terminal typeout of modules requested with the 
/INCLUDE switch that have not yet been loaded. 

*MYPROG ~ 
* /SEARCH/INCLUDE: (MODI, MOD2) LIBI ~ 
*/MISSING ~ 
[LNKIMM I INCLUDED MODULE MISSING] 
*LIB2/INCLUDE: (MOD2) Cili) 
*/MISSING ~ 
[LNKIMM NO INCLUDED MODULES MISSING] 
* 
This example shows the use of /MISSING to see if all the 
required modules have been loaded. The module MOD2 was 
not yet loaded, and it was in LIB2. 

In response to the first use of the switch, LINK indicated 
that one necessary module was missing. After the missing 
module was included (module named LIB2), the switch is 
used again. LINK responded to the second use of the 
switch by indicating that all necessary modules were 
present. 

/INCLUDE, /UNDEFINED 

3-34 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/MTAPE 

/MTAPE:keyword 

Specifies tape operations to be performed on the current' 
device. (A tape device remains current only until 
end-of-line or until another device is specified, 
whichever is earlier.) The switch is ignored if the 
current device is not a tape. 

The operation is performed immediately if /MTAPE is given 
with an input file or with an already initialized output 
file. Otherwise, the operation is performed when the 
output file is initialized. 

The valid keywords and the operations they specify are: 

MTBLK 
MTBSF 
MTBSR 
MTDEC 

MTEOF 
MTEOT 
MTIND 

MTREW 
MTSKF 
MTSKR 
MTUNL 
MTWAT 

Writes 3 inches of blank tape. 
Backspaces one file. 
Backspaces one record. 
Initializes DIGITAL-compatible 9-channel 
tape. 
writes an end-of-file mark. 
Spaces to logical end-of-tape. 
Initializes industry-compatible 9-channel 
tape. 
Rewinds tape to the load point (BOT). 
Skips one file. 
Skips one record. 
Rewinds and unloads tape. 
Waits for tape I/O to finish. 

*MTAO : /MTAPE : MTEOT ~ 
*MTAO : /MAP: NOW ~ 

* 
Spaces to logical end-of-tape on MTAO: and writes a map 
file. 

/BACKSPACE, /REWIND, /SKIP, /UNLOAD 

3-35 



I 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NEWPAGE 

/NEWPAGE:keyword 

Sets the relocation counter to the first word of the next 
page. If the counter is already at a new page, this 
switch is ignored. 

The permitted keywords and their relocation counters are: 

LOW Resets the low-segment counter to new page. 
If you omit the keyword, this is the default. 

HIGH Resets the high-segment counter to new page. 

*/NEWPAGE:HIGH ~ 
*SUBRI G!D 
* /NEWPAGE: LOW ~ 
*SUBR2C@ 
* 
Sets the high-segment counter to a new page, loads SUBRl, 
sets the low-segment counter to a new page, and loads 
SUBR2. Note that SUBRI and SUBR2 are not necessarily 
loaded into the high and low segments respectively; the 
/NEWPAGE switch sets a counter, but does not force the 
next loaded module into the specified segment. 

/SET, /COUNTER 

3-36 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NODE 

/NODE:argument 

Opens an overlay link. /NODE places LINK's relocation 
counter at the end of a previously defined link in an 
overlay structure, which becomes the immediate ancestor to 
the next link defined. (For a discussion of overlay 
structures, see Chapter 5.) 

The /NODE switch must precede any modules to be placed in 
the new link. 

Three kinds of arguments are permitted: 

• A name given with a previous /LINK switch. LINK 
place the relocation counter at the end of 
specified link. 

will 
the 

• A negative number (-n). LINK backs up n links along 
the current path. 

• A positive number n or O. LINK begins further loading 
at the end of link number n. You can use 0 to begin 
loading at the root link. 

NOTE 

It is recommended that you use a link name (or 0 
for the root link) rather than a nonzero number. 
This is because a change in commands defining an 
overlay may change some of the link numbers. 

For examples defining overlay structures, see Chapter 5. 

/LINK, /OVERLAY, /PLOT 

3-37 



FORMAT 

FUNCTION 

EXAMPLES 

I 
OPTIONAL 
NOTATIONS 

I RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NOENTRY 

/NOENTRY: (symbol,symbol, ... ) 

Deletes entry name symbols from LINK's overhead tables 
when loading overlays, thereby saving space at run time. 
If you know that execution of the current load will not 
reference certain entry points, you can use /NOENTRY to 
delete them. 

/NOENTRY differs from /NOREQUEST in 
deletes requests for symbols, while 
symbols that might be requested. 

*/ENTRY ~ 

that /NOREQUEST 
/NOENTRY deletes 

[LNKLSS LIBRARY SEARCH SYMBOLS (ENTRY POINTS)] 
SQRT. 3456 

* /NOENTRY: (SQRT.) ~ 
*/ENTRY ~ 
* 
Deletes SQRT. so that it cannot be used to fulfill a 
symbol request. 

You can omit the parentheses if only one symbol is given. 

/ENTRY, /EXCLUDE, /NOEXCLUDE, /INCLUDE, /NOINCLUDE, 
/MISSING, /REQUEST, /NOREQUEST 

3-38 



FORMAT 

FUNCTION 

EXAMPLE 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NOINCLUDE 

/NOINCLUDE 

Clears requests for modules that were specified in a 
previous /INCLUDE. 

*LIBI/INCLUDE: (MODI,MOD3) ~ 
* /NOINCLUDE ~ 
* 
Loads MODI and MOD3 from LIBI. However, if the modules 
are not found immediately, stop searching. 

/INCLUDE, /EXCLUDE, /MISSING 

3-39 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/NOINITIAL 

/NOINITIAL 

Prevents loading of LINK's initial global symbol table 
(JOBDAT) . The /NOINITIAL switch cannot operate after the 
first file specification because JOBDAT will be already 
loaded. The initial global symbol table contains the 
JBxxx symbols described in Appendix C. 

The /NOINITIAL switch is commonly used for: 

• Loading LINK itself (to get the latest copy of 
JOBDAT) . 

• Loading a private copy of JOBDAT (to alter if 
necessary) . 

• Building an .EXE file 
executive mode (for 
loader) . 

that will eventually run in 
example, a monitor or bootstrap 

* /NOINITIAL GID 
* 

3-40 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NOLOCAL 

/NOLOCAL 

Suspends the effect of a preceding /LOCALS switch so that 
local symbol tables will not be loaded with their modules. 

The /LOCALS and /NOLOCAL switches may be used either 
locally or globally. If the switch is suffixed to a file 
specification, it applies only to that file; if it is not 
suffixed to a file specification, it applies to all 
following files in the same command string. 

This switch is useful 
space, because local 
segment by default. 

if you need 
symbols are 

* /LOCALS A, B/NOLOCAL ,C ,/NOLOCAL D G!:.D 
* 

to conserve memory 
loaded into the low 

Loads A with local symbols, B without local symbols, C 
with local symbols, and D without local symbols. 

Abbreviate /NOLOCAL to /N. 

/LOCALS 

3-41 



I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCH 

USING LINK DIRECTLY 

/NOREQUEST 

/NOREQUEST: (symbol,symbol, ... ) 

LINK's overhead tables 
If you know that the 

not require certain 
to delete references to 

Deletes references to links from 
when loading overlay programs. 
execution of the current load will 
links, you can use /NOREQUEST 
them. 

/NOREQUEST differs from /NOENTRY in that /NOENTRY deletes 
symbols that might be requested, while /NOREQUEST deletes 
the requests for them. 

*/REQUEST ~ 
[LNKRER REQUEST EXTERNAL REFERENCES] 

ROUTN. 
SQRT. 

*/NOREQUEST: (ROUTN. ,SQRT.)~ 
*/REQUEST ~ 
* 
Deletes references to ROUTN. and SQRT. 

You can omit the parentheses if only one symbol is given. 

/NOENTRY 

3-42 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NOSEARCH 

/NOSEARCH 

Suspends the effect of a previous /SEARCH switch. Files 
named between a /SEARCH and the next /NOSEARCH are 
searched as libraries, so that modules are loaded only to 
resolve global references. 

The /SEARCH and /NOSEARCH switches may be used 
locally or globally. If the switch is suffixed to 
specification, it applies only to that file; if it 
suffixed to a file specification, it applies 
following files in the same command string. 

*FILEI ~ 
* /SEARCH A ,B/NOSEARCH, C ,/NOSEARCH D ~ 
* 
Searches A, loads B, searches C, and loads D. 

/SEARCH 

3-43 

either 
a file 
is not 
to all 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NOSTART 

/NOSTART 

Directs LINK to disregard any start addresses found after 
the /NOSTART switch. Normally LINK keeps the most recent 
start address found, overwriting any previously found. 
The /NOSTART switch prevents this replacement. 

*MAINI , /NOSTART MAIN2, MAIN3 ~ 

* 
Directs LINK to save the start address from MAINI instead 
of replacing it with other start addresses from MAIN2 and 
MAIN3. 

/START 

3-44 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/NOSYMBOL 

/NOSYMBOL 

Prevents construction of user symbol tables. Symbols are 
then not available for the map file, but the header for 
the file can still be generated by the /MAP switch. 

The /NOSYMBOL switch prevents writing an ALGOL SYM file if 
it would otherwise have been written. 

If you do not need the map file or symbols, you can speed 
loading by using the /NOSYMBOL switch. 

* /NOSYMBOL ~ 

* 

3-45 



I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCH 

USING LINK DIRECTLY 

/NOSYSLIB 

/NOSYSLIB: (keyword, ... ,keyword) 

Prevents automatic search of the system libraries named as 
keywords. LINK usually searches system libraries at the 
end of loading to satisfy unresolved global references. 
The /NOSYSLIB switch prevents this search. 

The /NOSYSLIB switch can also be used to terminate 
searching of libraries that were specified in a previous 
/SYSLIB switch. When you specify searching of a library 
with /SYSLIB, that library will continue to be searched 
for every module you load. You can use /NOSYSLIB to 
specify libraries that should not be searched. Refer to 
/SYSLIB for more information. 

The permitted keywords and the libraries they specify are 
listed below. Only those printed in boldface specify 
libraries supported by DIGITAL. 

ANY 
ALGOL 
BCPL 
COBOL 
F40 
FORTRAN 
NELIAC 
PASCAL 
SAIL 
SIMULA 

Prevents all library searches. 
Prevents search of ALGLIB. 
Prevents search of BCPLIB. 
Prevents search of LIBOL or C74LIB. 
Prevents search of LIB40. 
Prevents search of FORLIB. 
Prevents search of LIBNEL. 
Prevents search of PASLIB. 
Prevents search of SAILIB. 
Prevents search of SIMLIB. 

*/NOSYSLIB: (ALGOL,COBOL) ~ 

* 
Prevents search of the system libraries ALGLIB and LIBOL. 

If you omit keyword it defaults to ANY. 
You can omit parentheses if only one keyword is given. 

/SYSLIB 

3-46 



]fORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/NOUSERLIB 

filespec/NOUSERLIB 

Discontinues automatic searching of the specified file at 
each /LINK or /GO switch. If you need a file searched for 
some links but not others, you can use the /USERLIB and 
/NOUSERLIB switches to enable and disable automatic search 
of the file. 

*/OVERLAY~ 
*MYFORL/USERLIB:FORTRAN~ 
*MODI/LINK:MODI~ 
*/NODE:MODI MOD2/LINK:MOD2~ 
*MYFORL/NOUSERLIB ~ 

* 
Loads the overlay handler; requests search of MYFORL as a 
FORTRAN library; loads MODI and MOD2 as links; 
discontinues search of MYFORL. 

If you omit the filespec, LINK discontinues search of 
all user libraries. 

/USERLIB 

3-47 



FORMAT 

FUNCTION 

I 
EXAMPLES 

USING LINK DIRECTLY 

jONLY 

jONLY:keyword 

Directs LINK to load only the specified segment of 
two-segment modules. The permitted keywords are: 

HIGH 
LOW 
BOTH 

Loads only high segments. 
Loads only low segments. 
Loads both segments. 

The jONLY switch is ignored for one-segment modules and 
for PSECTed modules. 

*jONLY:HIGH MODI,MOD2~ 
*MOD3jONLY: BOTH ~ 

* 
Loads high segment for MODI and MOD2; loads both segments 
for MOD3. 

3-48 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/OTSEGMENT 

/OTSEGMENT:keyword 

Specifies the time and manner of loading the object-time 
system. 

The permitted keywords are: 

DEFAULT 

HIGH 

LOW 

NONSHARABLE 

SHARABLE 

Suspends the effect of a previous 
/OTSEGMENT:SHARABLE or 
/OTSEGMENT:NONSHARABLE switch. 

As for /OTSEGMENT:SHARABLE. 

AS FOR /OTSEGMENT:NONSHARABLE. 

Loads the object-time system into user 
core image at load time. The user 
program may have code in both segments. 
The object-time system may have code in 
both segments. 

Binds the object-time system at 
execution time. The user program is in 
the low segment and the object-time 
system is in the high segment. 

LINK's default action is to bind the oqject-time system at 
execution time. This normal action occurs if none of the 
following are true. 

• You specify /OTSEGMENT:NONSHARABLE. 

• You have loaded any code into the high segment. 

• You have specified /SEGMENT:HIGH for some modules. 

• You have specified /SYMSEG:HIGH. 

• Your low segment is too big for sharable object-time 
systems to fit. 

If any of these is true, a non-sharable object-time system 
is loaded as part of your program. 

*MYPROG/SYSLIB/OTSEGMENT:NONSHAR~ 

* 
Loads a non-sharable copy of the object-time system as 
part of your program. 

/SEGMENT 

3-49 



• 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

/OVERLAY 

filespec/OVERLAY~ (keyword, ••• ,keyword) 

Initiates construction of an overlay structure. 
discussion of overlay structures, see Chapter 5. 

For a 

The permitted keywords and their meanings are listed 
below. The default settings are printed in boldface. 

ABSOLUTE 

LOGFILE 

NOLOGFILE 

NOWARNING 

PATH 

RELOCATABLE 

TREE 

WARNING 

WRITABLE 

See Chapter 5. 

Specifies that links are absolute. 
This is the default situation when 
overlays are loaded. The inverse 
situation is to use 
/OVERLAY:RELOCATABLE. Relocatable 
overlays are described in Chapter 
5. 

Outputs runtime overlay messages to 
your terminal. 

Suppresses output 
overlay messages • 

Suppresses 
messages. 

overlay 

of runtime 

warning 

Specifies that each link path will 
be loaded with its link. 

Specifies that links are 
relocatable. 

Specifies that the overlay will 
have a tree structure. 

Outputs overlay warning messages to 
user terminal. 

Specifies that 
writable. Refer 
more information. 

the links are 
to Chapter 5 for 

You can omit the parentheses if only one keyword is given. 

3-50 January 1985 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/PATCHSIZE 

/PATCHSIZE:n 

Where n is a positive decimal integer. 

Allocates n words of storage to precede the symbol table. 
The allocated storage is in the same segment (high or low) 
as the symbol table. The default is /PATCHSIZE:64. 

The storage allocated is available for patching or for 
defining new symbols with DDT, and is identified by the 
global symbol "PAT .. " 

*/SYMSEG:HIGH/PATCHSIZE:200~ 

* 
Loads the symbol table in the high segment after 
allocating 200 words between the last loaded module and 
the symbol table. 

You can specify the patchsize in octal. 

/SYMSEG 

3-51 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/PLOT 

filespec/PLOT 

Directs LINK to output a tree diagram of your overlay 
structure. You can have the diagram formatted for a 
plotter (by default) or for a line printer (by giving the 
device as LPT:). 

Each box in the diagram shows a link number, its name (if 
you gave one with the /LINK switch), and its relationship 
to other links (as defined by your commands). 

The /PLOT switch cannot precede the /OVERLAY switch. 

See Chapter 5. 

LINK has default settings for the size of the overlay 
diagram and the increment for drawing lines. You can 
override these by giving the /PLOT switch in the form: 

filespec/PLOT: (LEAVES:value,INCHES:value,STEPS:value) 

Where the values for each parameter define: 

INCHES 

LEAVES 

STEPS 

Width of diagram in inches. The defaults are 
INCHES:29 for plotter and INCHES:12 for line 
printer. 

Number of links without successors that can 
appear in one row. The defaults are 
LEAVES:16 for plotter and LEAVES:8 for line 
printer. 

Increments per inch for drawing 
defaults are STEPS:lOO for 
STEPS:20 for line printer. 

lines. 
plotter 

The 
and 

For line printer diagrams, you cannot give INCHES or 
LEAVES different from the defaults. The STEPS parameter 
should be between 10 and 25. 

For plotter diagrams, you should give INCHES and LEAVES in 
a ratio of about 2 to 1. For example, INCHES:40 and 
LEAVES:20. 

If LINK cannot design the diagram on one page, it will 
automatically design subtrees for diagrams on more pages. 

/LINK, /NODE, /OVERLAY 

3-52 



FORMAT 

FUNCTION 

KEYWORDS 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/PLTTYP 

/PLTTYP:keyword 

Allows a user to specify the type of plot file to be 
generated by the /PLOT switch. 

DEFAULT Generate output for a printer only if the device 
is a printer or terminal. 

PLOTTER Generate output for a plotter. 

PRINTER Generate output for a printer. 

.R LINK 

*TEST/OVERLAY 
*DSK:TEST/PLOT/PLTTYP:PRINTER 
*OVL0,OVLI/LINK:TEST 
*/NODE:TEST OVL2 /LINK:LEFT 
*/NODE:LEFT OVL5 /LINK:LEFTI 
*/NODE:LEFT OVL6 /LINK:LEFT2 
*/NODE:TEST OVL3,OVL4 /LINK:RIGHT 
*TEST /SAVE /GO 

EXIT 

Causes all output from the /PLOT switch to be in line 
printer format. 

/PLOT 

3-53 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

LINK V6.0 

USING LINK DIRECTLY 

/PSCOMMON 

/PSCOMMON:psect:common 

Specifies where LINK is to load COMMON blocks. This 
switch causes the FORTRAN common specified by the argument 
common to be loaded into the PSECT specified in the 
argument psect. Use the /PSCOMMON switch before loading 
the specified common and before declaring the common's 
size with the /COMMON switch. 

/PSCOMMON only affects common blocks defined with the 
/COMMON switch. If the common block is created by a REL 
block, /PSCOMMON is ignored, and the PSECT specified by 
the REL file is used. 

In the following example, /SET defines the SECTA PSECT's 
orIgIn, /PSCOMMON specifies that COMABC is loaded into 
SECTA, and /COMMON defines the common size. 

*/SET:SECTA:3000000 ~ 
*/PSCOMMON:SECTA:COMABC ~ 
*/COMMON:COMABC: 10000 ~ 
*PROG~ 

* 
/COMMON 

3-54 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

LINK V6.1lJ 

USING LINK DIRECTLY 

/REDIRECT 

/REDIRECT:lowpsect:highpsect 

Loads two-segment formatted REL files as part of a program 
using PSECTs. The argument lowpsect is the name of the 
PSECT to receive the low-segment code and highpsect is the 
name of the PSECT to receive the high-segment code. 

You must redirect both the high and the low segments. 

The following example 
(TWOPRT), and displays 
using /COUNTERS. 

loads a two-segment program 
the low- and high-segment values 

*TWOPRT G!D 
* /COUNTERS G!D 
[LNKRLC Reloc. ctr. 

* 

.LOW. 

.HIGH. 

initial value 
IlJ 
41lJ1lJ1lJ1lJ1lJ 

current value 
1642 
41lJ1lJ753 

limit value 
leJeJeJllJllJeJ 
leJllJeJllJllJllJ] 

Next, PSECT origins are set for PSHI and PSLO, .LOW. is 
redirected into PSLO, .HIGH. is redirected into PSHI, and 
/COUNTERS is used to display PSHI and PSLO values. 

*/SET:PSHI:4eJeJllJleJ ~ 
*/SET: PSLO: 35eJ0 ~ 
*/REDIRECT:PSLO:PSHI~ 
*TWOPRT~ 
*/COUNTERS ~ 
[LNKRLC Reloc. ctr. initial value 

PSHI 4eJ0eJleJ 
PSLO 3500 

* 

3-54.1 

current value 
4eJeJ753 
52eJ2 

limit value 
leJeJeJf.?JeJeJ 
If.?Jf.?Jf.?JeJ0eJ] 

April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/REQUEST 

/REQUEST 

Requests terminal typeout of all external references to 
other links. 

If you use /REQUEST to get the names of external 
references, you can then either delete the references with 
the /NOREQUEST switch, or load the referenced modules. 

*/REQUEST<RET) 
[LNKRER REQUEST EXTERNAL REFERENCES] 

ROUTN. 
SQRT. 

*/NOREQUEST:ROUTN.<RET) 
*/SEARCH LIBI<RET) 

* 
Obtains the external references ROUTN. and SQRT.; deletes 
the request for ROUTN.i searches the file LIBI for a 
module containing the entry point SQRT. 

/NOREQUEST 

3-54.2 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/REQUIRE 

/REQUIRE: (symbol, ... ,symbol) 

Generates global requests for the specified symbols. LINK 
uses these symbols as library search symbols (entry 
points) . 

/REQUIRE differs from /INCLUDE in that /INCLUDE requests a 
module by name, while /REQUIRE requests an entry name 
symbol. Thus you c~n use /REQUIRE to specify a function 
(for example, SQRT.) even if you do not know the module 
name. 

You can use /REQUIRE to load a module into a link common 
to all links that reference the module. 

Note that the global requests generated by the /REQUIRE 
switch do not use the standard calling sequence, and are 
therefore not visible to the /REQUEST switch. 

* /UNDEFINED ~ 
[LNKUGS NO UNDEFINED GLOBAL SYMBOLS] 
*/REQUIRE: (ROUTN. ,SQRT.) ~ 
* /UNDEFINED G!!) 
[LNKUGS 2 UNDEFINED GLOBAL SYMBOLS] 

ROUTN. 
SQRT. 

* 
You can omit the parentheses if only one symbol is given. 

/SEARCH, /NOSEARCH 

3-55 

I 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/REWIND 

/REWIND 

Rewinds the current input or output device if the device 
is a tape. If not, the switch is ignored. 

*MTAO:/REWIND~ 

* 
Rewinds tape on MTAO:. 

3-56 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/RUNAME 

/RUNAME:name 

Assigns a job name for execution of your program. This 
name is stored inside the monitor and is used in the 
SYSTAT display. 

If you give no /RUNAME switch, the default 
name of the module with the start address. 
such module, the name nnnLNK is used, where 
3-digit job number. 

*/RUNAME:LNKDEV~ 

* 
Assigns the name LNKDEV for job execution. 

3-57 

name is the 
If there is no 

nnn is your 

I 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

/RUNCOR 

/RUNCOR:nP 

Where n is a positive decimal integer. 

Allocates n pages of memory for the program's low segment 
at execution time. 

*MYPROG/RUNCOR:22P/EXECUTE/GO~ 

[LNKXCT MYPROG Execution] 

Specifies that MYPROG will execute with a low-segment 
allocation of 22 pages. 

You can specify the argument in octal. 
You can specify the switch argument as K instead of P. 

3-58 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCH 

USING LINK DIRECTLY 

/SAVE 

filespec/SAVE 

Directs LINK to create an .EXE file. The file extension 
defaults to .EXE. For example, if you enter FOO.BAR/SAVE, 
LINK creates a file FOO.EXE. 

Note that if you want to run the saved file with the 
system command, the file extension must be .EXE. 

*MYPROGG!!) 
*DSKZ:GOODIE.EXE/SAVE/GO~ 

* 
Directs LINK to save the linked version of MYPROG as 
GOODIE.EXE on DSKZ:. 

/SSAVE 

3-59 



I 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/SEARCH 

/SEARCH 

Directs LINK to load selectively from all following files 
up to the next /NOSEARCH or /GO. These files are searched 
as libraries, and only modules whose entry point name 
resolves a global request are loaded. 

Using /NOSEARCH discontinues the library search mode, but 
for each link the system libraries are still searched 
(unless you used the /NOSYSLIB switch), and user libraries 
are still searched (if you used the /USERLIB switch). 

The /SEARCH and /NOSEARCH switches may be used either 
locally or globally. 

Note that search requests in .TEXT blocks may be processed 
in the reverse order of the entered /SEARCH switches. 
Keep this in mind when specifying the order in which the 
modules are to be searched. See Block Types Greater Than 
3777 in Appendix A for more information. 

*/SEARCH A,B/NOSEARCH,C,/NOSEARCH D~ 

* 
Searches A, loads B, searches C, and loads D. 

/NOSEARCH 

3-60 January 1985 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/SEGMENT 

/SEGMENT:keyword 

Specifies which segment is to be used for loading 
following modules. FORTRAN object code is an exception; 
both segments are loaded into the low segment unless one 
or more of the following is true: 

• You used the /OTSEGMENT:NONSHARABLE switch. 

• You used the /SEGMENT:HIGH switch to load code 
the high segment. 

• You used the /SEGMENT:DEFAULT switch to load code 
both segments. 

• Some code is already loaded into the high segment. 

The keywords for the /SEGMENT switch are: 

DEFAULT Suspends effect 
/SEGMENT:HIGH. 

of /SEGMENT:LOW 

into 

into 

or 

HIGH Load into high segment, even if impure code. 

LOW Loads into low segment. 

NONE Same as DEFAULT. 

If the switch is suffixed to a file specification, it I 
applies only to that file; if it is not suffixed to a 
file specification, it applies to all following files in 
the same command string. 

*/SEGMENT:LOW MODI,MOD2,/SEGMENT:HIGH MOD3~ 

* 
Loads MODI and MOD2 into the low segment; loads MOD3 into 
the high segment even if its code is impure. 

/OTSEGMENT 

3-61 



I 
FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

LINK V6.0 

USING LINK DIRECTLY 

/SET 

/SET:name:address 

Where name is .HIGH., .LOW., or a PSECT name, and address 
is a 30-bit octal address or a defined symbol. 

Sets the loading position of a PSECT, or sets the .HIGH. 
or .LOW. relocation counter. 

For setting the loading position of a PSECT, name is the 
name of the PSECT, and address is a virtual memory 
address. The /SET switch must precede the modules that 
will make up the specified PSECT. The /SET switch is not 
needed if the REL files already contain origin 
information. 

NOTE 

If you load PSECTs so that the resulting core 
image contains gaps, you must generate an EXE file 
and execute that file (rather than executing the 
loaded core image). It is good practice to 
generate an .EXE file for all PSECTed programs. 

If you do not ask for an .EXE file and you need one, LINK 
will generate one for you. 

*/SET:A: 200000 G!D 
* 
Specifies that the PSECT named A is to be loaded with its 
origin at address 200000. 

* /SET: • HIGH. : 400000 G!D 
* 
Sets the high segment relocation counter .HIGH. to the 
address 400000~ Note that saying /SET:.HIGH. causes a 
high segment to appear and a vestigial JOBDAT area to be 
built. 

/COUNTER, /LIMIT 

3-62 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/SEVERITY 

/SEVERITY:n 

Specifies that messages of severity level greater than n 
will terminate the load, where n is a decimal number 
between 0 and 30 inclusive. Level 31 messages always 
terminate the load. 

The defaults are /SEVERITY:24 for timesharing jobs, and 
/SEVERITY:16 for batch jobs. 

*/SEVERITY:30~ 

* 
Specifies that only level 31 messages are fatal. 

3-63 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/SKIP 

/SKIP:n 

Where n is a positive decimal integer. 

Skips forward over n files on the current tape device. (A 
tape device remains current only until end-of-line or 
until another device is specified, whichever occurs 
first.) If the device is not a tape, the switch is 
ignored. 

*MTAO:/SKIP:4 ~ 
* 
Skips forward over 4 files on MTAO:. 

/BACKSPACE, /MTAPE, /REWIND, /UNLOAD 

3-64 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

/SPACE 

/SPACE:n 

Where n is a positive decimal integer. 

Specifies that n words of memory will follow the current 
link at execution time. This memory allocation will not 
increase the size of the overlay file, but it will 
increase the size of the program at run time. 

The /SPACE switch is used to allocate space for use by the 
object time system. The OTS uses this space for I/O 
buffers, and as scratch space in FORTRAN and heap space in 
ALGOL. 

You should place the /SPACE switch before the first /LINK 
switch, to ensure allocation for the root link. It is 
possible to allocate space after one or more overlays are 
linked. This might be useful if an overlay has unusual 
storage requirements: buffers for a file which is open 
only while that overlay is resident, or a large local 
matrix. To allocate space between overlays, use /SPACE 
when loading the overlay that will be using this file or 
matrix. LINK allows one /SPACE switch for the root node, 
and one for each overlay. 

The default amount of memory allocated, if you do not 
specify /SPACE, is 2000 for the root link and 0 (zero) for 
other links. 

If the space allocated for a relocatable link is too 
small, the overlay handler can relocate it. If the space 
allocated for an absolute link is too small, a fatal error 
occurs. 

* lOVE RLA Y G£) 
*TEST/SPACE:90/LINK:MAIN G£) 
* /NODE:MAIN SUBI/LINK:SUBI~ 
* /NODE:MAIN SUB2/LINK:SUB2G£) 

* 
Allocates 90 words of memory to follow the root link for 
the program. See Chapter 5 for a discussion on overlay. I 
You can specify the number of words in octal. 

3-65 



I 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCH 

USING LINK DIRECTLY 

/SSAVE 

filespec/SSAVE 

Specifies the same actions as the /SAVE switch, except 
that at execution time the program's high segment will be 
sharable. The extension of the file created by LINK is 
always EXE; other file extensions are ignored. If, for 
example you enter FOO.BAR/SSAVE, LINK creates a file 
FOO.EXE. 

*DSK: SHRPRG/SSAVE ~ 
* 
Requests a sharable save file DSK:SHRPRG.EXE. 

/SAVE 

3-66 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

LINK V6.0 

USING LINK DIRECTLY 

/START:symbol 
/START:address 
/START 

/START 

Where symbol is a defined global symbol and address is a I 
30-bit octal address. 

Specifies the start address for the loaded program, and 
prevents replacement by any start addresses found later. 
You can use the /START switch with no argument to disable 
a previously given /NOSTART switch. 

*MAIN l/START: ENTRY 1 ,MAIN2,MAIN3 G£) 
* 
Defines the start address as ENTRY 1 in MAIN1, and prevents 
replacement of this start address by any others found in 
MAIN 2 or MAIN 3. 

/NOSTART 

3-67 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

USING LINK DIRECTLY 

/SUPPRESS 

/SUPPRESS:symbol 

Where symbol is a previously defined global symbol. 

Used to suppress a previously defined global symbol. If 
the symbol is unknown, this switch has no effect. Use 
this switch if a global symbol is defined in two modules 
and you wish to suppress one of the definitions. 

LINK suppresses a defined global symbol by setting its 
definition to undefined in the global symbol table. LINK 
does not remove the symbol definition from the symbol 
table. As a result, the symbol table built for debugging 
contains both the old and new values of the symbol. 

Since LINK sets the symbol to undefined in the symbol 
table, it expects that a subsequent module will be loaded 
that contains a global definition for the symbol. If the 
symbol is not defined later, LINK issues the Undefined 
Global Symbol (LNKUGS) error. 

In the following example, the ENTPTR symbol is used in 
both the TEST and TEST2 programs. First, LINK is run, 
TEST is loaded, and the value of ENTPTR is shown using the 
/VALUE switch • 

• R LINKG!D 
*TESTG!D 
*/VALUE:ENTPTR~ 
[LNKVAL Symbol ENTPTR 140 defined] 

Next, ENTPTR's value is suppressed using /SUPPRESS and its 
current value is shown. Note that the value is now 
undefined. 

*/SUPPRESS:ENTPTR~ 
*/VALUE:ENTPTR~ 
[LNKVAL Symbol ENTPTR o undefined] 

Finally TEST2 is loaded and the value is shown again. 

*TEST2~ 
*/VALUE:ENTPTR~ 
[LNKVAL Symbol ENTPTR 200 defined] 

In the next example, TEST and TEST2 are loaded, but ENTPTR 
is not suppressed after TEST is loaded. In this example, 
LINK issues the Multiply-defined global symbol warning • 

• R LINK(§) 
*TEST~ 
*TEST2 
%LNKMDS Multiply-defined global symbol ENTPTR 

Detected in module .MAIN from file TEST2.REL 
Defined value = 140, this value = 200 

3-68 January 1985 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

USING LINK DIRECTLY 

/SYFILE 

filespec/SYFILE:keyword 

Requests LINK to output a symbol file to the 
filespec, and sets the /SYMSEG:DEFAULT switch. 
previously specified /NOSYM, the /SYFILE switch 
effect. 

given 
If you 

has no 

The symbol file contains global symbols sorted for DDT. 
If you used the /LOCALS switch, it also contains local 
symbols, module names, and module lengths. 

The permitted keywords and their meanings are: 

ALGOL 

RADIX50 

TRIPLET 

Requests symbols in ALGOL's format. The 
first word of the table is "XWD 1044, 
count." The remaining words are copied out 
of Type 1044 REL blocks. If an ALGOL main 
program has been loaded, then /SYFILE:ALGOL 
becomes the default. 

Requests symbols in Radix-50 format. The 
first word of the table is negative. Each 
symbol requires two words in the table: 
the first is the symbol name in Radix-50 
format; the second is the symbol value. 

Requests symbols in triplet format. The 
first word of the table is zero. Each 
symbol requires three words in the table: 
the first word contains flags; the second 
is the symbol name in SIXBIT; the third is 
the symbol value. 

*SYMBOL/SYFILE ~ 

* 
Creates a symbol file called SYMBOL with the symbols in 
Radix-50 format. 

If you omit the keyword, RADIX50 is assumed. 

3-69 April 1986 

I 

I 



, 

FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/SYMSEG 

/SYMSEG:keyword 

Places the symbol table so that it will not be overwritten 
during execution or debugging. 

Keywords and their meanings are: 

DEFAULT 

HIGH 

Places the symbol table in the low segment, 
except for overlaid programs. For 
overlays, symbols are not loaded. 

Places the symbol table in 
segment. 

the high 

LOW Places the symbol table in the low segment. 

NONE Prevents loading of the symbol table. 

PSECT:name Places the symbol table at the end of the 
PSECT (after allocating any space required 
by the /PATCHSIZE switch). 

*/SYMSEG: LOW C§) 

* 
Places the symbol table in the program low segment. 

/LOCALS, /NOLOCALS 

3-70 April 1986 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/SYSLIB 

/SYSLIB:keyword 

Forces searching of one or more system libraries, 
immediately after you end the command line. LINK will 
also automatically search a system library if code from 
the corresponding compiler has been loaded. By default, 
LINK searches the system libraries that are appropriate 
for the language compiler, after all the modules of the 
program are loaded. /SYSLIB forces the search to take 
place immediately. 

After you specify a library with /SYSLIB, the library you 
specified will be searched every time you load a module, 
until you use /NOSYSLIB to end searching of that library. 

The permitted keywords and the libraries they specify are 
listed below. Those printed in boldface specify libraries 
supported by DIGITAL. 

ANY Forces search of all system libraries. 
ALGOL Forces search of ALGLIB. 
BCP Forces search of BCPLIB. 
COBOL Forces search of LIBOL or 
F40 Forces search of LIB40. 
FORTRAN Forces search of FORLIB. 
NELIAC Forces search of LIBNEL. 
PASCAL Forces search of PASLIB. 
SAIL Forces search of SAILIB. 
SIMULA Prevents 

*TESTI/SYSLIB:ALGOL~ 
*TEST2/NOSYSLIB:ALGOL 

* 

search of SIMLIB. 

C74LIB. 

Where TESTI is a FORTRAN module, LINK will search both 
FORLIB and ALGLIB for TESTI. Where TEST2 is a FORTRAN 
module, LINK will search only FORLIB when TEST2 is loaded. 

You can omit the keyword. LINK will search all libraries 
for which corresponding code has been loaded. 

/NOSYSLIB 

3-71 



I 

I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/TEST 

/TEST:keyword 

Loads the debugging program indicated by keyword. Unlike 
the /DEBUG switch, /TEST causes execution to begin in the 
loaded program (not in the debugging module). This switch 
is useful if you expect the program to run successfully, 
but want the debugger available in case the program has 
errors. 

The /TEST switch turns on the /LOCALS switch for the 
remainder of the load. You can override this by using the 
/NOLOCAL switch, but the override lasts only during 
processing of the current command string. 

Local symbols for the debugging module itself are never 
loaded. 

The permitted keywords and the 
listed below. Only those 

programs they load 
printed in boldface 

are 
are 

supported by DIGITAL. 

ALGDDT Loads ALGDDT. 
ALGOL Loads ALGDDT. 
COBDDT Loads COBDDT. 
COBOL Loads COBDDT. 
DDT Loads DDT. 
FAIL Loads SDDT. 
FORDDT Loads FORDDT. 
FORTRAN Loads FORDDT. 
MACRO Loads DDT. 
PASCAL Loads PASDDT. 
PASDDT Loads PASDDT 
SAIL Loads the SAIL 
SDDT Loads the SAIL 
SIMDDT Loads SIMDDT. 
SIMULA Loads SIMDDT. 

*MYPROG/TEST: FORTRAN ~ 
* 
Loads MYPROG and FORDDT. 

debugger. 
debugger. 

If you give no keyword with /TEST, the default 
DDT or the debugging program specified by the 
switch. 

/DDEBUG, /DEBUG 

3-72 

is either 
/DDEBUG 



FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/UNDEFINED 

/UNDEFINED 

Requests terminal typeout (in octal) of undefined global 
symbols. You can use /UNDEFINED to get a list of 
undefined symbols, and then define them with the /DEFINE 
switch. 

* /UNDEFINED ~ 
[LNKUGS 2 UNDEFINED GLOBAL SYMBOLS] 

A 400123 
IGOR 402017 

*/DEFINE: (A:59l,IGOR:l) ~ 

* 
Gives the decimal values 591 and 1 to A and IGOR, 
respectively. 

You can abbreviate /UNDEFINE to /U. 

/DEFINE, /VALUE 

3-73 

I 



FORMAT 

FUNCTION 

EXAMPLES 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/UNLOAD 

device/UNLOAD 

Rewinds and unloads the specified tape device. (This 
switch is ignored if the current device is not a tape 
device.) The /UNLOAD is not performed until the current 
file processing is completed. 

*MTAO: /UNLOAD ~ 

* 
Rewinds and unloads MTAO. 

/BACKSPACE, /MTAPE, /REWIND, /SKIP 

3-74 



FORMAT 

FUNCTION 

EXAMPLE 

RELATED 
SWITCH 

LINK V6.0 

USING LINK DIRECTLY 

/UPTO 

/UPTO:addr 

Where addr is a 30-bit octal address 
upper limit to which the symbol 
address can be replaced by a symbol. 

that specifies the 
table can grow. The 

Sets an upper limit to which the symbol table can expand. 

*/UPTO: 550000 ~ 
* 

I 

Included in a FORTRAN load, this switch would override the 
default upper bound for the symbol table. This might be I 
used if FOROTS begins above 550000. 

/SYMSEG 

3-75 April 1986 



I 

FORMAT 

FUNCTION 

EXAMPLES 

OPTIONAL 
NOTATIONS 

RELATED 
SWITCHES 

USING LINK DIRECTLY 

/USERLIB 

filespec/USERLIB: (keyword, ... ,keyword) 

Directs LINK to search the user library given by filespec 
before searching system libraries. The keyword indicates 
that the given library is to be searched only if code from 
the corresponding compiler was loaded. 

Keywords and their meanings are given below. Only those 
printed in boldface indicate compilers and libraries 
supported by DIGITAL. 

ALGOL 
ANY 
BCPL 
COBOL 
FORTRAN 
NELIAC 
PASCAL 
SAIL 
SIMULA 

Search as an ALGOL library. 
Always search this library. 
Search as a BCPL library. 
Search as a COBOL library. 
Search as a FORTRAN library. 
Search as a NELIAC library. 
Search as a PASCAL library. 
Search as a SAIL library. 
Search as a SIMULA library. 

*MYFORL/USERLIB:FORTRAN ~ 

* 
Directs LINK to search the user library MYFORL (before 
searching FORLIB) if any FORTRAN-compiled code is loaded. 

You can omit the parentheses if only one keyword is given. 

/NOUSERLIB, /SYSLIB 

3-76 



CHAPTER 4 

OUTPUT FROM LINK 

The primary output from LINK is the executable program formed from 
your input modules and switches. During its processing, LINK gives 
errors, warnings, and informational messages. At your option, LINK 
can generate any of several files. 

4.1 THE EXECUTABLE PROGRAM 

The executable program that LINK generates (called the core image) 
consists mostly of data and machine instructions from your object 
modules. In the core image, all relocatable addresses have been 
resolved to absolute addresses, and the values of all global 
references have been resolved. 

You have several options for loading the program, depending on the 
purpose of the load. Those options are: 

• Execute the program. To do this, include the /EXECUTE switch 
any place before the /GO switch. LINK will pass control to 
your program for execution. 

• Execute the program under the control of DDT. To do 
use the /DEBUG switch before the first input 
specification. 

this, 
file 

• Execute the program and debug it after execution. To do 
this, use the /TEST and /EXECUTE switches before the first 
input file specification. After execution, type DDT to the 
system to enter the debugging program. 

• Save the core image as an EXE file. 
/SAVE switch. See Section 4.2. 

4.2 OUTPUT FILES 

To do this, use the 

At your option, LINK can produce any of the following output files: 

• Saved (executable) file. 

• Log file. 

• map file. 

4-1 



I 

I 

OUTPUT FROM LINK 

• Symbol file. 

• Plotter file (see Section 5.1). 

• Overlay file (see Section 5.1). 

4.2.1 Executable Files 

The executable file, sometimes called the saved or .EXE file, is a 
copy of the completed core image generated by LINK. You can create an 
executable file by supplying the /SSAVE switch before the /GO switch 
when you are loading the program with direct commands to LINK. The 
executable file will retain the same file name as the source program, 
with a file extension .EXE. 

Alternatively, you can type the file specification, followed by /SSAVE 
(or /SAVE), and the executable file will be written to the file you 
specified. If you load the program with the system LOAD command, you 
may then save the executable file by typing the system SAVE command. 

You can run the executable file later, without running LINK, by using 
the system command RUN, or the two system commands GET and START. The 
following section describes the internal format of the executable 
file. 

See Chapter 3 for descriptions of /SAVE and /SSAVE switches. 

4.2.1.1 Format of Sharable Save Files - A sharable save file is 
divided into two main areas: the directory area, which contains 
information about the structure of the file, and the data area, which 
contains the data of the file. 

The following diagram illustrates the general format of a sharable 
save file: 

Directory 
Area: 

Data Area: 

==========~========~==== 

Directory Section 
1----------------------1 1 Entry Vector Section 1 
1----------------------1 
1 Terminating Section 
======================== 

Data Section 

The directory area of the sharable save file has three distinct 
sections: the directory section, the entry vector section, and the 
terminating section. The size of the directory area depends on the 
access characteristics of the pages in the data area of the save file. 

LINK V6.0 4-2 April 1986 



OUTPUT FROM LINK 

Each of the sections in the directory area begins with a header word 
containing its identifier code in the left half and its length in the 
right half. Each section is described in the following paragraphs. 

The directory section is the first of the three sections and describes 
groups of contiguous pages that have identical access. The length of 
this section varies according to the number of groups that can be 
generated from the data portion of the save file. The more data pages 
that can be combined into a single group, the fewer groups required, 
and the smaller the directory section. 

The format of the directory section is as follows: 

8 9 17 18 35 
1======================================:================1 
1 Identifier code Number of words 

1776 (including this word) 
1 1 in directory section 
1======================================================= 

Access Page number in file, or 0 if group 
bits 1 of pages is all zero 

1======================================================= 
Repeat Page number in the process 
count 

1======================================================= 

1=======================================================1 
1 Access bits Page number in the file 
J========================~==============================1 
1 Repeat count 1 Page number in the process 1 
!=========:==:=================~========================! 

PSECT attributes are used to set the access bits. 
description of Block Type 24 in Appendix A. 

Refer to the 

The directory section has one header word containing 1776 count, where 
count is the number of words in the directory section, including this 
header word. 

The header word is followed by word pairs. 
formatted as follows: 

Each pair of words is 

Word 0, .SVFPF, specifies the access flags and the page number in the 
file. The flag bits are: 

Bit Symbol Meaning 

0 SV%HIS Page is in high segment. 
1 SV%SHR Page is sharable. 
2 SV%WRT Page is writable. 
3 SV%CON Page is concealed. 
4 SV%SYM Page is part of symbol table. 

Word I, .SVPPC, contains the repeat count in Bits 0-8, and the page 
number in the process in the remaining bits. 

LINK V6.0 4-3 .Apri1 1986 



OUTPUT FROM LINK 

The repeat count is the number (minus 1) of consecutive pages in the 
group described by the word pair. Pages are considered to be in a 
group when the following three conditions are met: 

1. The pages are contiguous. 

2. The pages have the same access. 

3. The pages are allocated but not loaded. 

A group of all zero pages is indicated by a file page number of 0. 

The word pairs are repeated for each group of pages 
space. 

in the address 

The entry vector section follows the directory section. It points to 
the first word of the entry vector, and gives the length of the 
vector. 

17 18 35 
1=============:================================~========1 
1 Identifier code Number of words 

1775 (including this word) 
in entry vector section 

1=~=====================================================1 
1 254000 1 
1===============================~=======================1 

Starting address 
1==~================================~===================1 

This format is the default. However, if you make special provisions 
in your program, the format becomes the following. (Refer to the 
description of Block Type 7 in Appendix A for further information.) 

17 18 35 
1=======================================================1 
1 Identifier code Number of words 1 
1 1775 (including this word) 1 

1 in entry vector section 
1=======================================================1 

Number of words in entry vector 
1=======================================================1 
1 Address of entry vector 1 
1==~====================================================1 

The data for this section is the address of the entry vector. 

The terminating section, called the end section, always immediately 
precedes the data section. The format of the terminating section is 
the following: 

1=======================================================1 
1 Identifier code 1 
1 1777 1 1 
1=======================================================1 

The data area follows the terminating section, beginning at the next 
page boundary. 

LINK V6.0 4-4 April 1986 



OUTPUT FROM LINK 

4.2.2 LOG Files 

A LOG file is generated if you use the /LOG switch. LINK then writes 
most of its messages into the specified file. You can control the 
kinds of messages entered in the LOG file by using the /LOGLEVEL 
switch. For an example of a LOG file, see Section 5.1. 

4.2.3 Map files 

The map file is generated if you use the /MAP switch. LINK constructs 
a symbol map in this file. The kinds of symbols included depends on 
your use of the /CONTENTS, /LOCALS, /NOLOCALS, /NOINITIAL, and 
/NOSYMBOLS switches. For an example of a map file, see Section 5.1. 
For a list of /MAP options, refer to Section 3.2.2. 

4.2.4 Symbol Files 

The symbol file (or SYM file) is generated if you use the /SYFILE 
switch. This file contains all global symbols, module names, and 
module lengths, and, if you used the /LOCALS switch, all local 
symbols. 

4.3 SYMBOL TABLE VECTOR 

A symbol table vector is a pointer to the symbol tables of a program. 
There is one symbol table vector, and an undefined and defined symbol 
table per program. 

When an extended symbol table is used, the contents of .JBUSY in 
JOBDAT are zeroed, and the address of the symbol table vector is 
loaded into .JBSYM. The symbol table vector contains two pointers: 
one to defined RADIX-50 symbols, the other to undefined RADIX-50 
symbols. 

The symbol table vector contains subtables that point to each symbol 
table and give their length and type. Each subtable is three words 
long, although only the first two words are currently used. The 
format of a symbol table vector is illustrated below. 

LINK V6.0 4-5 April 1986 



Symbol 
Table 
Vector 

Word 

1 
Sub- 1 

Tablel 
n 1 

1 

Sub- -
Tablel 

n 1 
1 

1 
1 

Symbol 

.SYSTL 

.SYTYP 

OUTPUT FROM LINK 

516 35 
==:~=============================== 

Vector Length in Words 

Type Symbol table length 1 

-----------------------------------
Symbol table pointer I 

1 Reserved for DIGITAL, must be 0 I 

Type I Symbol table length I 

Symbol table pointer 

I Reserved for DIGITAL, must be 0 I 
========:===:======~:============== 

Symbol Table 

Meaning 

Defines the length in words of the symbol table 
vector including this word. 

First subtable word, containing the following two 
fields: 

SY.TYP is a 6-bit field that contains the symbol 
table type. 

The types are: 

Code Name Type 

1 .SYRD5 Radix-50 defined symbols 
2 .SYR5U Radix-50 undefined symbols 
3-37 Reserved for DIGITAL 
40-77 Reserved for customers 

SY.LEN is a 30-bit field that contains the length in 
words of the particular symbol table. 

1 • SYADR Lowest word in the table • 

If bit 0 is 1, this word contains a section-local 
address. If bit 0 is 0, this word contains a global 
address. A section-local address is an 18-bit 
address. A global address is a 30-bit address. 

The Reserved word must be zero. 

LINK V6.0 4-6 April 1986 



OUTPUT FROM LINK 

4.4 MESSAGES 

During its processing, LINK issues messages about what it is doing, 
and about errors or possible errors it finds. LINK also responds to 
query switches such as /COUNTER, /ENTRY, /MISSING, /REQUEST, and 
/UNDEFINED. 

Each LINK message has an assigned level and an assigned severity. 
(See Appendix B for the level and severity of each message.) 

The level of a message determines whether it will be output to your 
terminal, the log file, or both. You can control this output by uSlng 
the /ERRORLEVEL switch for the terminal and the /LOGLEVEL switch for 
the log file. LINK's defaults are /ERRORLEVEL:10 and /LOGLEVEL:10. 

Responses to query switches and messages 
something immediately are never output to 
if you use the /UNDEFINE switch, LINK 
message; this message is output to the 
file. 

that require you to do 
the LOG file. For example, 
responds with the LNKUGS 
terminal but not to the log 

The severity of a message determines whether LINK considers the 
message fatal (that is, whether the job is terminated). You can set 
the fatal severity with the /SEVERITY switch. The default severities 
are 24 for interactive jobs and 16 for batch jobs. 

For both terminal messages and log file entries, LINK can issue short, 
medium, or long messages, depending on your use of the /VERBOSITY 
switch. For /VERBOSITY:SHORT, LINK gives only a 6-letter code; for 
/VERBOSITY:MEDIUM, LINK gives the code and a medium-length message; 
for /VERBOSITY:LONG, LINK gives the code, a medium-length message, and 
a long message. 

Appendix B gives each 6-letter message code, its medium-length and 
long messages, and its level and severity. 

4-7 April 1986 





CHAPTER 5 

OVERLAYS 

If your loaded program is too large to execute in one piece, you may 
be able to define an overlay structure for it. This permits the 
system to execute the program with only some parts at a time in your 
virtual address space. The overlay handler removes and reads in parts 
of the program, according to the overlay structure. 

NOTE 

You only need an overlay structure if 
your program is too large for your 
virtual address space. If the program 
can fit in your virtual space, you 
should not define an overlay structure 
for it; the monitor's page swapping 
facility is faster than overlay 
execution. 

5.1 OVERLAY STRUCTURES 

An overlay program has a tree structure. (The tree is usually 
pictured upside down.) The tree is made up of links, each containing 
one or more program modules. These links are connected by paths. 
Using LINK switches, you define each link and each path. 

At the top of the (upside down) tree is the root link, which must 
contain the main program. First-level links are below the root link; 
each first-level link is connected to the root link by one path. 

Second-level links are below the first-level links, and each is 
connected by a path to exactly one first-level link. A link at level 
n is connected by a path to exactly one link at level n-l. 

Notice that a link can have more than one downward path (to successor 
links), but only one upward path (to predecessor links). 

Figure 5-1 shows a diagram of an overlay structure with 5 links. The 
root link is TEST; the first-level links are LEFT and RIGHT; the 
second-level links are LEFTl and LEFT2. 

5-1 



I 

OVERLAYS 

Figure 5-1 Example of an Overlay Structure 

Defining an overlay structure allows your program to execute in a 
smaller space. This is because the code in a given link is allowed to 
make reference to memory only in links along a direct upward or 
downward path. 

In the structure in Figure 5-1, the link LEFT can reference memory in 
itself, in the root link (TEST), or in its successor links LEFTI and 
LEFT2. More generally, a link can reference memory in any link that 
is vertically connected to it. 

Referencing memory in any other link is not allowed. For example, a 
path from LEFTI to LEFT2 is not a direct upward or downward path. 

Because of this restriction on memory references, only one complete 
vertical path (at most) is required in the virtual address space at 
anyone time. The remaining links can be stored on disk while they 
are not needed. 

5.1.1 Defining Overlay Structures 

LINK has a family of overlay-related switches. These switches are 
described in detail in Section 3.2.2. The following example shows 
command strings for defining the overlay diagrammed in Figure 5-1. 
(Some of the command lines in this example are indented for clarity.) 

*TEST/LOG/LOGLEVEL:2 
*/ERRORLEVEL:5 
*TEST/OVERLAY 
*TEST/MAP 
*LPT:TEST/PLOT 
*OVLO,OVLl/LINK:TEST 
* /NODE:TEST QVL2/LINK:LEFT 
* /NODE:LEFT OVL5/LINK:LEFTI 
* /NODE:LEFT OVL6/LINK:LEFT2 
* /NODE:TEST OVL3,OVL4/LINK:RIGHT 
*TEXT/SSAVE 
*/EXECUTE/GO 

5-2 

:Define TEST. LOG 
:Important messages 
iDefine TEST.OVL 
:Define TEST.MAP 
:Request diagram 
iRoot link 
:Left branch 
:Left-left branch 
:Left-right branch 
:Right branch 
:Define TEST.EXE 



OVERLAYS 

The first command string above defines the log file for the overlay. 
TEST/LOG specifies that the file is named TEST.LOG. The /LOGLEVEL:2 
switch directs that messages of level 2 and above be entered in the 
log file. 

In the second command string, the /ERRORLEVEL:5 switch directs that 
messages of level 5 and above be typed out on the terminal. The third 
command string, TEST/OVERLAY, tells LINK that an overlay structure is 
to be defined, and that the file fo~ the overlay is to be TESTOVL. 

The fourth command string, TEST/MAP, defines the file TEST.MAP, which 
will contain symbol maps for each link. 

The next command string, LPT:TEST/PLOT, directs that a tree diagram of 
the overlay links be printed on the line printer. 

The next command string, OVLO,OVLl/LINK:TEST, loads the files OVLO.REL 
and OVLl.REL into the root link. The /LINK:TEST switch tells LINK 
that no more modules are to be in the root link, and that the link 
name is TEST. 

Each of the next four lines defines one link with a string of the 
form: 

/NODE:linkname filename/LINK:linkname 

The /NODE:linkname switch specifies the previously defined link to 
which the present link is an immediate successor. The 
filenames/LINK:linkname part of the line names the files containing 
modules to be included in the current link and specifies the name of 
the link. 

The first of these four lines begins with /NODE:TEST, which tells LINK 
that the link being defined is to be an immediate successor to TEST, 
the root link. Then (on the same line), the string OVL2/LINK:LEFT 
loads the file OVL2.REL, ends the link, and names it LEFT. 

The next line, /NODE:LEFT OVL5/LINK:LEFTl, defines a link named LEFTI 
containing the file OVL5.REL, and this link is an immediate successor 
to the link LEFT. 

The next line, /NODE:LEFT OVL6/LINK:LEFT2, defines another immediate 
successor to LEFT, this time containing the file OVL6.REL and called 
LEFT2. 

The last link is 
OVL3,OVL4/LINK:RIGHT. 
immediate successor to 
OVL4.REL. 

defined in the next line, /NODE:TEST 
This string defines the link RIGHT, which is an 

TEST and contains the files OVL3.REL and 

The next-to-last line, TEST/SSAVE, directs LINK to create the saved 
file TEST.EXE. The last line, /EXECUTE/GO, specifies that the loaded 
program is to be executed, and that all commands to LINK are 
completed. 

The process also produced an executable file TEST.EXE, which can be I 
run using the RUN system command. However, to run the program, the 
file TEST.OVL must be present, because it provides the code for the 
links. 

5-3 



I 

OVERLAYS 

5.1.2 An Overlay Example 

The following pages show terminal listings of the files associated 
with the example above. These pages are: 

1. Terminal copy of the FORTRAN source files used in the 
overlay. 

2. Terminal copy of the compilation of the source files. 

3. Terminal copy of the interactive use of LINK to define and 
execute the overlay. 

4. The file TEST. LOG generated by LINK, which shows the log 
messages issued during the load. 

5. The file TEST. MAP generated by LINK, which shows symbol maps 
for the overlay. 

6. The tree diagram requested by the LPT:/PLOT switch. 

5-4 



• tl'pe oldO. fa r 
TYPE 1 

OVERLAYS 

FoRMAT('l','Execution begins in (,lain program ol.llO') 
TYPE 11 

11 FoRMAT(P(,'ol,110 calls ol.ll2A') 
CAll ol,ll2A 
TYPE 2 
FoRMAT(fU{,'Return to ol,llO') 
TYPE 21 

21 FoRMAT(lX,'o~110 calls ol.llll') 
CAll ol,llll 
TYPE 2 
TYPE 3 
FoRMAT(/l){,'Execution ends in (,lain progra(,l ol,llO'//) 
STOP 
END 

.tl'pe ol.rll.for 

2 

SUB ROUT I NE ol,lLl 
TYPE 1 
FoRMAT(/lX,' 
CAll ol,ll3 
TYPE 2 
FoRMAT(/lX,' 
RETURN 
END 

.t}'pe o~)12ffor 
SUBROUTINE oVl2A 
TYPE 1 

3 

. t}' pe 

f t}' pe 

.type 

.type 

FoRMAT(/lX,' 
CAll ol,llS 
TYPE 2 
FORMAT ( / P( , ' 
TYPE 3 
FORMAT ( P(, ' 
CAll ol.llG 
TYPE 2 
RETURN 
END 
SUBROUTINE oVl2B 
TYPE 1 
FORMAT ( /1 X, ' 
RETURN 
END 

ov13.for 
SUBROUTINE m ll3 
TYPE 1 
FoRMAT(flX, ' 
RETURN 
END 

ovlll.for 
SUBROUTINE ol,llll 

TYPE 1 
FoRMAT(/lX,' 
CAll oVll 
TYPE 2 
FOrmAT ( / 1 X, ' 
RETURN 
END 

ovlS.for 
SUBROUTINE o~llS 
TYPE 1 
FoRMAT(/lX,' 
RETURN 
END 

01,11 G. for 
SUBROUTINE ol;lG 
TYPE 1 
FoRMAT(/lX,' 
CAll ol.ll2B 
TYPE 2 
FoRMAT( / 1){,' 
RETURN 
END 

ol,lll call s ol.ll3') 

Return to ol;ll') 

oVl2A c all s ol,llS') 

Return to ol,ll2A') 

ol.ll2A calls mllG') 

ol,ll2B doesn't call anl'thing') 

ol,ll3 doesn't call anything') 

oVlll calls ol;ll') 

Return to ol,llll') 

o~llS doesn't call anything') 

o~llG call s oVl2B') 

Return to oVlG') 

5-5 



• COM PILE ol)lO ,ol.ll I ,ol.ll 2 ,ol/l3 ,ol.IU! ,ol.ll5 ,ol.llG 
FORTRAN: ol)lO 
oi/lt) 
FORTRAN: DilL. I 
ol/li 
FORTRAN: ol/l2 
ol/l2A 
oVl2B 
FORTRAN: oVl3 
ol/l3 
FORTRAN: OVU! 
ol.lla 
FORTRAN: ol/l5 
ol.ll5 
FORTRAN: ol/lG 
oVlG 

• R lINK 
*TEST/loG/loGlEVEl:5 
*/ERRoRlEVEl:5/NoINITIAl 
*TEST lol.IERlAY 
*TEST/MAP 
*oSK:TEST/PLoT/PLTTYP:PRINTER 
*oVLO,oVLI/LINK:TEST 

OVERLAYS 

[LNKLMN Loading IIlodule ol,lLO frOM file oSK:oI)LO.REL[10,3551 ,LINK5A]] 
[LNKLMN Loading Module ol/Ll frolll file oSK:oI.IL1.REL[It),3551 ,LINK5A]] 
[LNKLMN Loading Module ol.IRLAY fro~1 file SYS:oI.IRLAY.REL[1 ,5]] 
[LNKLMN Loading ModlJle JoBoAT from file SYS:JoBoAT.REL[1 ,a]] 
[LNKLMN Loading Module FoRINI from file SYS:FoRLIB.REL[l ,5]] 
[LNKLMN Loading Module FoRDST frolll file SYS:FoRLIB.REL.[1 ,5]] 
[LNKLMN Loading Module FoRPSE from file SYS:FoRLIB.REL[l ,5]] 
[LNKELN End of link n'-tiliber ° naille TEST] 
*/NooE:TEST oI,lL2/LINK:LEFT 
[LNKLMN Loading Module ol/L2A frolll file oSK:oI/L2.REL[10,3551 ,LINK5A]] 
[LNKLMN LoadilH Itlodule ol/L2B froln file DSK:oI/L2.REL[10,3551 ,LINK5A]] 
[LNKELN End of I inK nU~lbe r 1 naMe LEFT] 
*/NoDE:LEFT oI,lL5/LINK:LEFT1 
[LNKLMN Loading ~lodule DI,IL5 from file DSK:OI.ll5.REUIO,3551 ,LINK5A]] 
[LNKELN End of I inK numbe r 2 name LEFT1] 
*/NOoE:LEFT OI,lLG ILINK:LEFT2 
[LNKLMN Loading Module OI.ILG from file DSK:OI.ILG.REL[IO,3551 ,LINK5A]] 
[LNKELN End of linf( nUltlber 3 naille LEFT2] 
*/NODE:TEST OI,lL3,OI,lLa/LINK:RIGHT 
[LNKLMN Loading Module OI)L3 from file DSK:OI.IL3.REL[10,3551 ,LINK5A]] 
[LNKLMN Loading ~Iodule OI,lLa from file DSK:OI)La.REL[10,3551 ,lINK5A]] 
[LNKELN End of linf( nUlllber a naMe RIGHT] 
*TEST ISSAt.JE 
*/EXECUTE/GO 
[LNKXCT OI,lLO execution] 

Execution begins in main prograM OI.ILO 
Qt.ILO CALLS Ol/L2A 
OI.IL2A CALLS Ol,lL5 

ol)L5 DOESN'T CALL AN'lTH I NG 

RETURN TO OI.IL2A 

ol.IL2A CALLS ol.ILG 

ol.JL.G CALLS ot.IL2B 

ol.IL2B DOESN'T CALL AN'lTH I NG 
RETURN TO ol/LG 

RETURN TO ol.IL2A 

RETURN TO ol/LO 
ol.ILO CALLS OI,lLa 

OI/L.a CALLS DVL 1 
ot.IL 1 CALLS ol/L3 

oVL3 ~OESN'T CALL AN'lTH I NG 

RETURN TO oVL 1 

RETURN TO ol.ILI.! 

RETURN TO OVL.O 

Execution ends in Main prograM OI/LO 

CPU tillie 0.32 Elapsed tiMe 0.95 

EXIT 

5-6 



·TYPE TEST.LOG 
12: 55: 15 6 
12: 55: 15 6 
12: 55: 16 6 
12: 55: 16 6 
12: 55: 16 6 
12: 55: 16 6 
12: 55: 16 6 
12: 55: 19 7 

12: 55: 19 6 
12: 55: 19 6 
12:55:20 7 

12:55:20 6 
12:55:20 7 

12:55:20 
12:55:20 

12:55:21 
12:55:21 
12:55:21 

• TYPE TEST. MAP 

LMN 
LMN 
LMN 
LMN 
LMN 
LMN 
LMN 
ELN 

LMN 
LMN 
ELN 

LMN 
ELN 

LMN 
ELN 

LMN 
LMN 
ELN 

OVERLAYS 

Loadin!ll~odule OI.lLO from file DSK:OI,JLO.REL[10,3551 ,LINK5A] 
Loadin91l10dule OVLl frolll file DSK:OI,JL1.REL[10,3551,LINK5A] 
Loading module OI,JRLAY frOll1 file SYS:OI,JRLAY.REL[1 ,5] 
Loadin!lmo,hlle JOBDAT frol,1 file SYS:JOBDAT.REL[1 ,1I] 
Loading 1,lodule FORINI frolll file SYS:FORLIB.REL[I.5] 
Loadin!llllodule FORDST frol,1 file SYS:FORLIB.REL[1 ,5] 
Loadin!llllodule FORPSE frol,1 file SYS:FORLIB.REL[1 ,5] 
End of 1 inf( nUI,lbe r 0 nal,le TEST 

Loading 1,lodule Ol,lL2A frolll file OSK:OI,JL2.REL[10,3551 ,LINK5A] 
Loadin!llllod'Jle Ol,JL2B frolll file DSK:Ql,JL2.REL[!0,3551 ,LINK5A] 
End of linK nUI,lbe r 1 nallle LEFT 

Loadin!ll'lodule OVL5 frolll file DSK:OVL5.REL[10,3551 ,LINK5A] 
End of 1 inf( IHllllbe r 2 nallle LEFTI 

Loadin!llllodule OVL6 from file DSK:OI,IL6.REL[10,3551,LINK5A] 
End of linK IHllllber 3 nal,le LEFT2 

Loadin!llllodule Ol,IL3 from file DSK:OI,lL3.REL[10,3551.LINK5A] 
Loading mod'Jle Ol,lLlI from file DSK:OI,JLlI.REL[10,3551.LINK5A] 
End of linK numbe r 1I nal,le RIGHT 

LINK symbol map of TEST IKLlKS page 

Produced b}' LINK 'Jersion 5A(2030) on 17-Dec-82 at 12:55:23 

Overla}' no. 0 TEST 
Overla}' is absolute 

o ends at 100211 len!lth 10025 = 9P LO'N se!llllent starts at 
Control Blocf( address is 7763. len!lth 32 (octal). 26. (decilllal) 
1I91 '.'0 rds free in La' •• se!ll,lent 
95 Global s}'I,lbols loaded. therefore 1,lin. hash size is 106 
Start address is 235. located in pro!lral,1 OVLO 

************* 

OI.lLO frOll1 DSK:OI,JLO.REL[10.3551.LINK5A created b}' FORTRAN IKL/KS on 1I-Nov-82 at 15 00:00 
Lo',' segment starts at 1110 ends at 2311 len!lth 75 (octal). 61. (dec l'lal) 
High segment starts at 235 ends at 3115 length 111 (octal>. 73. (dec 1,lal> 

MAIN. 235 Global Relocatable OVLO 235 Entry Relocatable 

************* 

OI,ILI frOll1 DSK:OI,JL1.REL[10.3551.LINK5A] created by FORTRAN IKL/KS on 1I-No.,'-82 at 111:1I7:00 
LO'N segment starts at 3116 ends at 377len!lth 32 (octal>. 26. (decimal) 
High seSlllent starts at 1I00 ends at 1I112 len!lth 1I3 (octal). 35. (decimal) 

OVL1 1I01 Entfl' Relocatable FORon, 500010 Global Absolute 

************* 

OVRLAY from SYS: OI.lRLAY. REU 1 .5] 
LO'N segment starts at 
High se'glllent starts at 

5223 
1I113 

created 
ends at 
ends at 

b}' MACRO on 
6226 1 en !It h 
5107 1 en !It h 

2-Au!l-82 9: 18: 00 
1001l (0 c tal) • 516. ( dec i ilia 1 ) 
1I11115 (0 c tal) , 23111. (decimal> 

CLROI) • 
INIOI,J. 
REMOI,J. 
SAVOV. 
.OVRLA 
.OVRLU 

2712 
2570 
26211 
2665 
5224 
35111 

************* 

JOBDAT from SYS:JOBDAT.REUI ,1I] 

Zero length Illodule 

************* 

En trY 
En trY 
Entry 
En trY 
Entry 
En t fl' 

Relocatable GETOI,J. 2610 Ent ry Relocatable 
Relocatable LOGOI) • 2731 Entry Relocatable 
Relocatable RUNOV. 26112 Entry Relocatable 
Relocatable 'X,OVRLA 501000201l Global Absolute 
Relocatable .OI,JRLO 5302 Global Relocatable 
Relocatable .OVRWA 5301 Global Relocatable 

created by MACRO on 26-FEB-81 at 19:25:00 

5-7 

Suppressed 



OVERLAYS 

FORINI from SYS:FORLI6.REUI ,5] created by MACRO on 15-Sep-82 at 19:45:00 
LOIN segment starts at 6437 ends at 7476 I en !It h 1040 ( 0 c t a I) , 544. ( dec i (,I a I) 
High segment starts at 8227 ends at 6436 I en !It h 210 ( 0 c t a I) , 136. ( dec i ma I) 

ABORT. 6432 Entry Re I ocatatol e ALCHN. 6406 Entry Relocatable 
ALCOR. 6402 Entry Relocatable CERPT. 6437 Global Relocatable 
CLOSE:. 6344 Entry Relocatable DBMS. 6416 En t fl' Relocatable 
DEC. 6362 En trY Relocatable DECHN. 6410 En trY Relocatable 

LINK symbol map of TEST IKLlKS page 

FORINI 
DECDR. 6404 En t fl' Relocatable ENC. 6360 En t fl' Relocatable 
E}{IT f 6400 Entry Relocatable E){ITI. 6346 En t fl' Relocatable 
FIN. 6372 En trY Relocatable FIND. 6376 En trY Relocatable 
FORER. 6340 Entry Relocatable FOROP. 8422 Entry Relocatable 
FUNCT. 6414 En trY Relocatable IF 1. 6424 En t fl' Relocatable 
IFO. 6426 En trY Relocatable IN. 6350 Entry Relocatable 
INIT • 6336 En trY Relocatable INQ. 6420 Entfl' Relocatable 
IOLST. 6370 Entry Relocatable MTHER. 6430 Entry Relocatable 
MTOP. 6374 Entry Relocatable NLI • 6364 Entry Relocatable 
NLO. 6366 En trY Relocatable OPEN. 6342 En trY Relocatable 
OUT. 6352 En t fl' Relocatable RESET. 6227 En t fl' Relocatable 
RTB. 6354 En t rl' Relocatable TRACE. 6412 Entry Relocatable 
WT6. 6356 Entry Relocatable 

************* 

FORDST from SYS:FORLI6.REL[1 ,5] created by MACRO on 15-Sep-82 at 19:45:00 
High se!lment s t~a r t s at 7477 ends at 7477 I en !It h 1 ( 0 eta I) , 1. ( dec i (,I a I) 

DBSTP$ 7477 Entry Relocatable 

******** *.~*** 

FORPSE fro~l SYS:FORLIB.REL[1 ,5] created by MACRO on 15-Sep-82 at 19:45:00 

OlJL2A 

OIJL2B 

LOIN segment starts at 7702 ends at 7762len!lth 61 (octal), 49. (decimal) 
High segment starts at 7500 ends at 7701lenHh 202 (octal), 130. (deci(,lal) 

PAUS. 7501 Ent fI' Relocatable STDP. 7504 EntrY Relocatable 

************* 

Index to LINK symbol map ofoff'X,e TEST IKLlKS page 3 

Name 

FORDST 
FORINI 

Pol !Ie Name 

FORPSE 
JOBDAT 

Pa!le Name 

OIJLO 
Ql.ILI 

Pol !Ie Name Pol !Ie 

OIJRLAY 

LINK SY~lbol map of TEST IKLlKS pa!le 4 

Overlay no. 
Overlay is absolute 
Low se!lment starts at 
Control BlocK address is 
Path is 0 

name LEFT 

14025 ends at 
14221, len9'th 

333 INords free in Low se!lment 

14262len!lth 236 = 1 P 
30 (octal), 24. (deci(,lal) 

6 Global symbols loaded, therefore min. hash size is 7 

************* 

from DSK:OIJL2.REU10.3551 ,LINK5A] created by FORTRAN IKL/KS on 4-NoIJ-82 at 14:47:00 
Low segment starts at 14025 ends at 14076len!lth 52 (octal), 42. (deci(tlal) 
High segment starts at 14077 ends at 14173len!lth 75 (octal), 61. (deci~lal) 

OIJL2A 14100 Entry Relocatable 

************* 

from DSK: OIJL2. REU 10,3551 ,LINK5A] created by FORTRAN IKL/KS on 4-NoIJ-82 at 14 47:00 
Low se!lment starts at 14174 ends at 14206lenHh 13 (octal), 11. (dec mal) 

14220 length I 12 (octal) , 10. (dec mal) Hi!lh segment starts at 14207 ends at 

OIJL26 14210 Entry Relocatable 

************* 

5-8 



oVLS 

oVL6 

oVL3 

OVERLAYS 

LINK S}'hlbol map of TEST IKLlKS 

olJerla}' no. 
overla}' is absolute 
Low segment starts at 
Control Block address is 
PathisOol 

name LEFTI 

111263 ends at 
111137, lenHh 

281 war d s f r e e in Low s e gm e n t 

1113116 length 611 = 1 P 
20 (octal), 16. (decimal> 

3 Global s}'mbols loaded, therefore min. hash size is 1I 

************* 

from oSK:oVLS.REU10,3SSI ,LINKSAJ 
Low segment starts at 
High segment starts at 

111263 ends at 
111277 ends at 

created b}' FORTRAN IKL/KS on 1I-NoIJ-82 at 111:1I7:00 
111276 length III (octal). 12. (decimal> 
111316 length 20 (octal). 16. (decimal) 

oVLS 111300 Ent r)' Relocatable 

************* 

LINK symbol map of TEST IKLlKS 113 pa ge 6 

Overlay no. 3 
olJerlal' is absolute 
Low segment starts at 
Control Block address is 
PathisOol 

name LEFT2 

111263 ends at 
1111120. len!lth 

216 '.10 rds free in Low segment 

11111117 length 16S = lP 
20 (octal). 16. (decimal) 

1I Global sl'mbols loaded. therefore min. hash size is S 

************* 

from oSK:oVL6.REU10.3SSI ,LINKSAJ 
Low segment starts at 
High segment starts at 

111263 ends at 
111332 ends at 

created by FORTRAN IKL/KS on 1I-Nov-82 at 111:1I7:00 
111331 length 1I7 (octal). 39. (decimal> 
1111117 length 66 (octal). SlI. (decimal> 

0~JL6 111333 En trY Relocatable 

************* 

LINK symbol map of TEST IKLlKS 

Overlay no. 1I 
o'!erlaY is absolute 
Low segment starts at 
Control Block address is 
Path is 0 

name RIGHT 

111025 ends at 
111156. len!lth 

376 wo rds free in Low se gment 

111207 length 163 = I P 
22 (octal>. 16. (decimal) 

5 Global symbols loaded. therefore hiln. hash size is 6 

************* 

from oSK :0l.lL3. REU 10 .3551 .LINK5AJ created by FORTRAN IKL/KS on 1I-Nov-82 at 11l:L17:00 
Low segment starts at 
High segment starts at 

0l.lL3 lL101l2 

************* 

111025 ends at 
1110111 ends at 

1110110 len!lth III (octal>, 12. (decimal> 
lL1060 length 20 (octal). 16. (decimal) 

Entry Relocatable 

ol.lLLI from oSK:0l.lLLI.REU10.3551 .LINK5AJ created by FORTRAN IKL/KS on L1-Nov-82 at ILl:L17:00 
Low segment starts at ILl061 ends at 111112 len!lth 32 (octal). 26. (decimal) 
High segment starts at lL1113 ends at lL1155 len!lth L13 (octal>. 35. (decimal> 
oVLLI ILlllL1 Entry Relocatable 

************* 

Index to overlay number of TEXT IKL/KS page 8 

Overlay Pa!le Over I a}' Page Overlay Page o'Jerlay Page 

110 3 112 5 113 6 IILI 7 
111 LI 

Index to overlay names of TEST 

Name Pa !Ie Name Page Name Page Name Page 

LEFT LEFT2 6 RIGHT TEST 
LEFTI 

[End of LINK map of TEST] 

5-9 



I 

OVERLAYS 

The listing file TEST.OVL will look similar to the following: 

5.2 WRITABLE OVERLAYS 

o 
TEST 

3 
LEFT2 

4 

RIGHT 

MR-S-2596-83 

Ordinarily each overlay link built by LINK is copied by the overlay 
handler from the OVL file to the address space at runtime. The 
contents of any locations that have been modified will be lost each 
time the overlay link is copied from the OVL file. This can be 
prevented by the use of writable overlays. 

If a link is specified as writable, the overlay handler copies that 
link to a temporary file on disk before overwriting it. Later, when 
the copied link is needed, the overlay handler retrieves the link from 
the temporary file rather than the OVL file. In this way, any 
modified values are preserved. Because writable overlays involve more 
file I/O, they are slower than the default (nonwritable) overlays and 
should only be used when the program structure and storage 
requirements demand dynamic storage in overlay links. 

To specify that an overlay is writable, use the FORTRAN SAVE statement 
in the program, and specify /OVERLAY:WRITABLE when loading the program 
with LINK. 

5.2.1 Writable Overlay Syntax 

To build a writable overlay, specify the keyword WRITABLE with the 
/OVERLAY switch in the LINK command line: 

filespec/OVERLAY:WRITABLE 

5.2.2 Writable Overlay Error Messages 

The overlay handler must write and update a temporary file. In 
addition to the error messages associated with all overlays, there are 
two additional error messages for writable overlays: 

? OVLCWF Cannot write file [filename]: [reason] 

? OVLCUF Cannot update file [filename]: [reason] 

If either of these messages appears, you should check for disk quota 
violations or other conditions that could prevent the overlay handler 
from writing a temporary file. 

5-10 January 1985 



OVERLAYS 

5.3 RELOCATABLE OVERLAYS 

LINK ordinarily allocates 2000 extra words at the end of the root link 
and no extra space at the end of each subsequent link. This is 
adequate for programs with static storage requirements. If a link 
requires extra storage at run-time, you can use the /SPACE switch to 
make the necessary allowances for the program's requirements. The 
/SPACE switch allows you to specify the number of words to be 
allocated after the current link is loaded. 

However, there are programs whose dynamic run-time storage 
requirements are unpredictable. For example, a program's run-time 
storage requirements may vary according to the program's input. For 
this class of programs, relocatable overlays can be useful. 

For relocatable overlays LINK places extra relocation information in 
the OVL file, permitting overlay links to be relocated at runtime. 
The overlay handler, using the FUNCT. subroutine, can determine where 
the link will fit in the address space and resolve relocatable 
addresses within the link. This extra processing causes relocatable 
overlays to run slower than nonrelocatable overlays. Relocatable 
overlays should only be used when you cannot determine the dynamic 
storage requirements of a program. 

5.3.1 Relocatable Overlay Syntax 

To build a relocatable overlay, specify the RELOCATABLE keyword to the 
/OVERLAY switch in the LINK command line: 

filespec/OVERLAY:RELOCATABLE 

5.3.2 Relocatable Overlay Messages 

If /OVERLAY: (LOGFILE,RELOCATABLE) is specified during the loading of a 
program, informa~ional messages of the following form are sent to the 
user's terminal: 

%OVLRLL Relocating link [linkname] at [address] 

5-11 



OVERLAYS 

5.4 RESTRICTIONS ON OVERLAYS 

The following restrictions apply to all overlayed programs: 

• Overlayed programs cannot be run execute-only. 

• PSECTed programs cannot be overlayed. 

• Overlayed programs with large buffer requirements must use 
the /SPACE switch. If an %OVLMAN (Memory not available) 
error is encountered, the program should be reloaded using 
the /SPACE switch with each link. 

• If the program uses more than 256 links, use the /MAXNODE 
switch to specify the number of links necessary for the 
program. LINK will allocate extra space in the the OVL file 
for tables that require it, based on the number of links you 
specify. 

5.4.1 Restrictions on Absolute Overlays 

The following restrictions apply to absolute overlaid programs: 

1. Any intermediate results stored in non-root links are lost as 
soon as the links are overlaid. Do not expect to retain a 
value stored in a non-root link unless /OVERLAY:WRITABLE has 
been specified. 

2. Certain forms of global, inter-overlay references are not 
recommended because you cannot be sure that the necessary 
modules will be in memory at the right time. Some of these 
references are: 

• Additive fixups, in the form FOO##+BAR where FOO is in 
another overlay. 

• Left-hand fixups, in the form XWD FOO##,BAR, where FOO is 
in another overlay. 

• Fullword fixups, in the form EXP FOO##, where FOO is in 
another overlay. 

• Similarly, MOVEI 1,FOO##, where FOO is in a different 
overlay, should not be used, because the necessary module 
may not be in memory. 

In fact, the only predictable inter-overlay global reference 
is one that brings the necessary module into memory, such as 
PUSHJ P,FOO##. 

5-12 



OVERLAYS 

5.4.2 Restrictions on Relocatable Overlays 

The following restriction applies to relocatable overlays: 

• Complex expressions involving relocatable symbols are not 
relocated properly in a relocatable overlay. No standard DEC 
compiler produces such expressions. MACRO programmers should 
avoid using them in subroutines that are to be loaded as part 
of an overlayed program. Any expression that causes MACRO to 
generate a Polish fixup block will not be properly relocated 
at runtime. The following are examples of such complex 
expressions: such a complex expression: 

MOVEI 1,A## + B## + C## 
A, ,0 

5.4.3 Restrictions on FORTRAN Overlays 

The following restriction applies to FORTRAN programs that are written 
with associate variables and using the overlay facility. 

• If the associate variable is declared in a subroutine, that 
subroutine must be loaded in the root link of the overlay 
structure. Accessing a file opened with an associate 
variable changes the value of the specified variablE~. If 
this variable is in a nonresident overlay link when the 
access is made, program execution will produce unpredictable 
results. Moreover, the value of the variable will be reset 
to zero each time its overlay link is removed from memory. 
Only variables declared in routines that are loaded into the 
root link will always be resident. However, variables 
declared in COMMON and in the root link will always be 
resident, and may be safely used as associate variables. 

• If you place COMMON in a writable overlay, be sure that all 
references to the variables in that COMMON are in the same 
overlay or its successors. 

• A FORTRAN ASSIGN statement may be used in a relocatable 
overlay. If the ASSIGN is made in a subroutine, the value of 
the assigned variable may be preserved from one call of that 
subroutine to the next. However, the overlay containing that 
subroutine could then be replaced in memory by a different 
overlay. If the overlay containing the subroutine is 
relocated differently when brought back into memory, any 
subsequent GOTO may fail. 

5-13 



OVERLAYS 

5.5 SIZE OF OVERLAY PROGRAMS 

Although most programs have a consistent size, the size of an overlay 
program depends on which overlays are in memory. This can be 
ascertained by using the /COUNTER switch when linking the program. To 
do this, place /COUNTER after the /LINK switch for the overlay of 
which you want to know the size, but before the next /NODE switch. 
This will give you the size of the program when the overlay is 
actually loaded into memory. The display will include all routines 
loaded from the runtime libraries. This allows you to determine which 
overlay is the largest, and whether the program can be loaded without 
restructuring. 

5.6 DEBUGGING OVERLAYED PROGRAMS 

COBDDT and ALGDDT can be used to debug overlay programs, but FORDDT 
cannot. To use DDT with an overlaid program, the program should be 
loaded using /SYMSEG:LOW, with local symbols for the desired modules. 

To set breakpoints in an overlay, put a subroutine in the root node, 
and call the subroutine from the overlay. Such a subroutine need 
consist only of a SUBROUTINE statement, a RETURN, and an END. The 
breakpoint can be set at this subroutine before the program starts 
running. 

When a FORTRAN program starts running, it calls RESET. in FOROTS, 
which removes the symbol table. The symbol table will return after 
the first overlay is called. If you need the symbols for debugging 
the root link, insert a CALL INIOVL at the beginning of the main 
program (refer to Section 5.7.1 for more information). This call will 
reinstall the symbol table. LINK builds a separate symbol table for 
each overlay, so that all the symbols known to DDT are for modules 
that are currently in memory. Note that it is not possible to 
single-step through RESET. ($X and $$X will not work). Set a 
breakpoint after RESET. if you are debugging a root link, and use $G. 

5.7 THE OVERLAY HANDLER 

LINK's overlay handler is the program that supervises execution of 
overlay structures defined by LINK switches. 

When you load an overlay structure, the overlay handler is loaded into 
the root link of the structure. From there it can supervise 
overlaying operations, because the root link is always in your virtual 
address space during execution. During execution, when a link not in 
memory is called, the overlay handler brings in the link, possibly 
overlaying one or more links already in memory. 

5-14 



OVERLAYS 

The overlay handler consists of self-modifying code and data, and two 
128-word buffers. One of these buffers, IDXBFR, contains a 128-word 
section of the link number index table. This allows 256 links to be 
directly referenGed at anyone time. The second buffer, INBFR, 
contains the preambles and relocation tables, if required, of the 
individual links. 

There are two ways of overlaying links during execution: 

1. A call to a link not in memory implicitly calls the overlay 
handler to overlay one or more links with the required links. 
This action of the overlay handler is transparent to the 
user. 

2. An explicit call to one of several entry points in the 
overlay handler can cause one or more links to be overlaid. 
These entry points and calls to them are discussed in the 
sections below. 

5.7.1 Calls to the Overlay Handler 

Overlays can be used transparently, or they can be explicitly called I 
from the program. Such calls are made to one of the entry points in 
the overlay handler. 

The overlay handler has five entry points that are available for calls 
from user programs. To call the overlay handler from a MACRO program, I 
you must use the standard calling sequence, which is: 

MOVEI 
PUSHJ 

16,arglst 
17,entry-name 

Where arglst is the address of the first argument in the argument 
list, and entry-name is the entry-point name. 

The argument list must be of the form: 

-n, ,0 
arglst: Z code,addrl 

Z code,addrn 

in is number of arguments 
iFor first argument 

iFor nth argument 

Where addr •.. is the address of the argument. 

The legal values of "code" are 2 (for a link number), 17 (for an ASCIZ 
string), and 15 (for a character string descriptor). 

For each word of the argument list, the code indicates the type of 
argument. The code occupies the AC field, bits 9 through 1:2. The 
address gives the location of the argumenti it can be indirect and 
indexed. 

To call the overlay handler from a FORTRAN program, the call must be 
of the form: 

CALL subroutine (arglst) 

Where subroutine is the name of the desired subroutine, and arglst is 
a list of arguments separated by commas. 

5-15 

I 



I 

I 

OVERLAYS 

5.7.2 Overlay Handler Subroutines 

Each of the seven callable subroutines in the overlay handler has an 
entry name symbol for use with MACRO, and a subroutine name for use 
with FORTRAN, as follows: 

MACRO Entry 
Name Symbol 

CLROV. 

GETOV. 

INIOV. 

LOGOV. 

REMOV. 

RUNOV. 

SAVOV. 

FORTRAN 
Subroutine 

CLROVL 

GETOVL 

INIOVL 

LOGOVL 

REMOVL 

RUNOVL 

SAVOVL 

Subroutine 
Function 

Specifies a non-writable overlay. 

Brings specified links into memory. 

Specifies the file from which the overlay 
program will be read, if the load time 
specification is to be overridden. 

Specifies or closes the file in which 
runtime messages from the overlay handler 
will be written. 

Removes specified links from memory. 

Moves into memory a specified link and 
begins execution at its start address. 

Specifies a writable overlay. 

Declaring a Non-Writable Link (CLROV.) 

You can declare an overlay link to be non-writable, using the CLROV. 
entry point. This does not immediately affect the program, but waits 
until the link is about to be overlaid or read in. If the link is 
already non-writable, this entry point has no effect. 

Example 

arglst: 

arglst: 

MOVEI 
PUSHJ 

-n, , a 
Z l7,addrl 

Z l7,addrn 

-n, , a 
Z 2,addrl 

Z 2,addrn 

l6,arglst 
l7,CLROV. 

OR 

;n is number of arguments 
;for first ASCIZ linkname 

;for nth ASCIZ linkname 

;n is number of arguments 
;for first link number 

;for nth link number 

Where addr .•. is the address of the argument. 

5-16 



OVERLAYS 

Getting a Specific Path (GETOV.) 

The subroutine to bring a specific path into core can be used to make 
sure that a particular path is used when otherwise the overlay handler 
might have a choice of paths. It is illegal to specify a path that 
overlays the calling link. 

To call the subroutine from a FORTRAN program, use: 

CALL GETOVL (linkname, •.. ,linkname) 

where each linkname is the ASCIZ name of a link in the desired path. 

To call the subroutine from a MACRO program, use the standard FORTRAN 
calling sequence: 

MOVEI 
PUSHJ 

16,arglst 
17,GETOV. 

The argument list has one word for each link required to be in the 
path. 

Example 

-n, ,0 ;n is number of arguments 
arglst: Z l7,addrl 

Z 17,addrn 

OR 

-n, ,0 ;n is number of arguments 
arglst: Z 2,addrl 

Z 2,addrn 

Where addr ••• is the address of the argument. 

Initializing an Overlay (INIOV.) 

The overlay initializing subroutine specifies a file from which the 
overlay program will be read. This sdbroutine is used to override the 
file specified at load time. The file specified to INIOV. can have 
any valid specification, but it must be in the correct format for an 
overlay (OVL) file. 

To call the subroutine from a FORTRAN program, use: 

CALL INIOVL ('filespec') 

where 'filespec' is a literal constant that can give a device, a 

I 

I 

I 

filen~me, a file type, and a project-programmer number (PPN). I 

To call the subroutine from a MACRO program, use the standard FORTRAN 
calling sequence: 

MOVEI 
PUSHJ 

16,arglst 
17,INIOV. 

5-17 



I 

I 

OVERLAYS 

The argument list is of the form: 

-1, ,0 
arglst: Z 17,address of ASCIZ filespec 

where filespec is an ASCIZ string (ASCII ending with nulls) that can 
give a device, a filename, a file type, and a PPN 

NOTE 

If you call INIOV. with no arguments, it 
initiates the overlay handler and reads 
in the symbols for the root link, using 
the 6verlay file specified at load time. 
This can be useful for debugging the 
root link before any successor links 
have been read in, because symbols are 
not normally available until the first 
link comes into memory. 

Specifying an Overlay Log File (LOGOV.) 

You can specify an output file for runtime messages from 
handler. These messages are listed in Section 5.5. 
entry includes the elapsed run time since the first 
overlay handler. 

To call this subroutine from a FORTRAN program, use: 

CALL LOGOVL ('filespec') 

the overlay 
The log file 

call to the 

where 'filespec' is a literal constant that can give a device, a 
filename, a file type, and a PPN. 

To close the file, use 

CALL LOGOVL (0) 

To call the subroutine from a MACRO program, use the standard FORTRAN 
calling sequence: 

16,arglst 
17,LOGOV. 

The argument list is of the form: 

-1, ,0 
arglst: Z 17,address of ASCIZ filespec 

Where filespec is an ASCIZ string that can give a device, a filename, 
I a file type, and a PPN. 

To close the log file, the argument list is: 

-1 , ,0 
arglst: Z 17,address of word containing zero 

5-18 



OVERLAYS 

Removing Specific Links from Memory (REMOV.) 

The subroutine to remove specific links from memory, once they are no I 
longer required, can be used to reduce core image size for faster 
execution. Specifying removal of the calling link causes an error. 

To call the subroutine from a FORTRAN program, use: 

CALL REMOVL (linkname, ••• ,linkname) 

Where each linkname is the ASCIZ name of a link to be removed from 
memory. 

To call the subroutine from a MACRO program, use the standard FORTRAN 
calling sequence: 

MOVEI 
PUSHJ 

l6,arglst 
l7,REMOV. 

The argument list has one word for each link to be removed. 

Example 

-n, ,0 ;n is number of arguments 
arglst: Z 17,addrl 

Z l7,addrn 

OR 

-n, ,0 ;n is number of arguments 
arglst: Z 2,addl 

Z 2,addrn 

Where addr •.. is the address of the argument. 

Running a Specific Link (RUNOV.) 

The subroutine for running a specific link allows you to transfer 
program execution to the start address of a particular link. (An 
error occurs if the link has no start address.) If the link is not 
already in memory, it and its path are brought in. 

You can use this subroutine to overlay the calling link, because the 
next instruction executed is the start address of the named link; 
therefore, there is no automatic return to the calling link. 

NOTE 

The FORTRAN compiler does not generate 
start addresses for subroutines. 
FORTRAN main programs cannot be loaded 
into non-root links. Therefore, to use 
RUNOVL to transfer control to a FORTRAN 
subroutine in a non-root link, you must 
use the /START switch at load time to 
define a start address for the link. 

5-19 

I 



OVERLAYS 

To call the subroutine RUNOVL from a FORTRAN program, use: 

CALL RUNOVL (linkname) 

Where linkname is the ASCIZ name of the link to be run. 

To call the subroutine from a MACRO program, use the standard FORTRAN 
calling sequence: 

The 

MOVEI 
PUSHJ 

argument 

arglst: 

arglst: 

l6,arglst 
l7,RUNOV. 

list is of 

-1, ,0 

the 

Z l7,address of 

-1, ,0 
Z 2,address of 

form: 

ASCIZ linkname 

OR 

link number 

Declaring A Writable Link (SAVOV.) 

You can dynamically declare an overlay link to be writable by calling 
SAVOV. This does not affect the current state of the code 
immediately, but waits until the link is about to be overlaid. If the 
link already writable, this symbol has no effect. 

Example 

MOVEr 
PUSHJ 

arglst: 

l6,arglst 
l7,SAVOV. 

-n, ,0 

Z l7,addrl 

Z l7,addrn 

-n, ,0 
arglist: Z 2,addrl 

Z 2, addrn 

OR 

in is number of arguments 

ifor first ASCIZ linkname 

ifOr nth ASCIZ linkname 

in is number of arguments 
ifor first link number 

ifOr nth link number 

Where addr ••. is the address of the argument. 

If called with no arguments, SAVOV. only initializes the temporary 
file. 

5-20 



OVERLAYS 

5.7.3 Overlay Handler Messages 

This section lists all of the overlay handler's messages. (The 
messages from LINK, which have the LNK prefix, are given in Appendix 
B. ) 

For each overlay handler message, the last three letters of the 
six-letter code, the severity, and the text of the message are given 
in boldface. Then, in lightface type, comes an explanation of the 
message. 

When a message is issued, 
letters OVL, forming a 
explanation of the message 
/OVERLAY:LOG switch. 

the three letters 
6-letter code of 
will be printed 

are 
the 
only 

suffixed to 
form OVLxxx. 
if you us':, 

the 
The 
the 

The severity of a message determines whether the job will be 
terminated when the message is issued. Level 31 messages terminate 
program execution. Level 8 messages are warnings: they do not 
terminate execution, but the error may affect the execution of the 
program. Levell messages are informational and are printed on the 
terminal only if you specified /OVERLAY:LOGFILE. 

Code Sev 

ARC 31 

ARL 8 

CCF 31 

COL 31 

CFF 31 

Message and Explanation 

Attempt to remove caller from link [name or number] 

The named link attempted to remove the link that called 
it. This error occurs when the call to the REMOV. 
subroutine requests removal of the calling link. 

Ambiguous request in link number [number] for [symbol], 
using link number [number] 

More than one successor link satisfies a call from a 
predecessor link, and none of these successors is in 
memory. Since all their paths are of equal length, the 
overlay handler has selected an arbitrary link. 

Cannot close file [file], status [octal] 

For some reason, the overlay handler cannot close one of 
its working files. This is a file I/O error. 

Cannot delete link [name or number], FUNCT. return status 
[number] 

This is an internal LINK error, and is not expected to 
occur. If it does, please notify your Software 
Specialist, or send a Software Performance Report (SPR) to 
DIGITAL. 

Return status is one of the following: 

1 Core already deallocated 
3 Illegal argument passed to FUNCT. module 

Cannot find file [file] [reason] 

The overlay handler has attempted, unsuccessfully, to open 
an EXE, OVL, or .TMP file. 

5-21 



Code Sev 

CGM 31 

CRF 31 

CSM 31 

CUF 31 

CWF 31 

DLN 1 

IAT 31 

IEF 31 

ILN 31 

IMP 31 

IPE 31 

OVERLAYS 

Message and Explanation 

Cannot get memory from OTS, FUNCT. return status [octal] 

The system does not have enough free memory to load the 
overlay link. The status is returned from the object-time 
system, and depends on the particular FUNCT. function that 
the overlay handler used. See Section 5.7.4 for the 
FUNCT. function codes and status messages. 

Cannot read file [file] [reason] 

An error occurred when reading the overlay file. The file 
was closed after the last successful read operation. 

Cannot shrink memory, FUNCT. return status [octal] 

A request to the object-time system to reduce memory, if 
possible, failed. This error is not expected to occur. 
If it does, please notify your Software Specialist or send 
a Software Performance Report (SPR) to DIGITAL. 

Cannot update file [file] [reason] 

An error occurred when updating the TMP file into which 
non-resident writable overlay links are written. 

Cannot write file [file] [reason] 

An error occurred when creating the TMP file used to store 
non-resident writable overlay links. 

Deleting link [name or number] after [hh:mm:ss] 

The named link has been removed from memory as a result of 
a call to the REMOV. subroutine. The time is elapsed time 
since the first call to the overlay handler. This message 
is output only to the overlay log file, if any. 

Illegal argument type on call to [subroutine] 

A user call to the named overlay handler subroutine gave 
an illegal type of argument. 

Input error for file [file], status [octal] 

An error occurred while reading the OVL or TMP file. 

Illegal link number [number] 

A user call to one of the overlay handler subroutines gave 
an illegal Link number as an argument. 

Impossible error condition at PC=[address] 

This is an internal error caused by monitor call error 
returns that should not occur. This message is issued 
instead of the HALT message. This error is not expected 
to occur. If it does, please notify your Software 
Specialist or send a Software Performance Report (SPR) to 
DIGITAL. 

Input positioning error for file [file], status [octal] 

An error occurred while reading the OVL or TMP file. 

5-22 January 1985 



Code Sev 

IVN 8 

LNM 31 

MAN 31 

MEF 31 

NMS 8 

NRS 31 

NSA 31 

NSD 31 

OEF 31 

OPE 31 

OVERLAYS 

Message and Explanation 

Inconsistent version numbers 

The OVL and EXE files found were not created at the same 
time, and may not be compatible. 

Link number [decimal] not in memory 

A call to the REMOV. subroutine has removed the named 
link from memory. It must be restored by a call to GETOV. 
or RUNOV. 

Memory not available for absolute [link], FUNCT. return 
status [octal] 

There is not enough room for the overlay handler to load 
the specified link into the part of memory th~ link was 
built for. Two options are available: a) Use the /SPACE 
switch at load time to reserve more space for the link, or 
b) Build a relocatable overlay using the RELOCATABLE 
option to the /OVERLAY switch at load time. 

Memory expansion failed, FUNCT. return status [octal] 

The overlay handler was unable to get free space from the 
memory manager. Restructure your overlay so that the 
minimum number of links are in memory at any time. 

Not enough memory to load symbols, FUNCT. 
[octal] 

return status 

There was not enough free space available to load symbols 
into memory. 

No relocation table for symbols 

A relocation table was not included for the symbol table. 
It is possible that LINK failed to load the relocation 
table because there wasn't enough room in memory. 

No start address for link [name or number] 

A user call to the RUNOV. subroutine requests execution to 
continue at the start address of the named link, but that 
link has no start address. 

No such device for [file] 

An invalid device was specified. 

Output error for file [file], status [octal] 

An error occurred when writing the overlay file. The file 
was closed after the last successful write operation. 

Output positioning error for file [file], status [bctal] 

An error occurred while writing the TMP file used to hold 
non-resident writable overlay links. 

5-23 



I 

OVERLAYS 

Code Sev Message and Explanation 

RLL 1 Relocating link [name or number] at [address] 

RLN 1 

STS 8 

ULN 31 

USC 8 

WLN 1 

The named relocatable link has been loaded at the given 
address. This message is output only to the overlay log 
file. 

Reading in link [name or number] after [time] 

The named link has been loaded. The time given is elapsed 
time since the first call to the overlay handler. This 
message is output only to the overlay log file. 

OTS reserved space too small 

The object-time system does not have space for its minimum 
number of buffers. Reload, using the /SPACE switch for 
the root link with an argument greater than 2000 (octal). 

Unknown link name [name] 

A call to one of the overlay handler subroutines gave an 
invalid link name as an argument. Correct the call. 

Undefined subroutine [name] called from [address] 

A required subroutine was not loaded. The instruction at 
the given program counter address calls for an undefined 
subroutine. Correct the call or load the required 
subroutine. 

Writing [link] after [time] 

The overlay handler is writing out a writable overlay 
link. 

5.7.4 The FUNCT. Subroutine 

Each DIGITAL-supplied object-time system has a subroutine that the 
overlay handler uses for memory management, I/O, and message handling. 
This subroutine has a single entry point, FUNCT., and is called by the 
sequence: 

MOVEI 
PUSHJ 

l6,arglst 
l7,FUNCT. 

The format of the argument list is: 

-<n+3>,,0 
arglst: Z 2,address of integer function code 

Z 2,address for error code on return 
Z 2,address for status code on return 
Z code,address of first argument 

Z code,address of nth argument 

5-24 



OVERLAYS 

Where function code is one of the function codes described below; 
error code is a 3-letter ASCII mnemonic output by the object-time 
system (after ?, %, or [); and status (on return) contains one of the 
following values: 

-1 Function not implemented 
o Successful return 
n Number of the error message 

Most object-time systems allocate separate space for their own use and 
for the use of the overlay handler. This minimizes the possibility 
that the overlay handler will request space that the object-time 
system is already using. 

The permitted function code arguments, their names, and their meanings 
are: 

Code Name Function 

o ILL Illegal function; returns -1 status. 

1 GAD Get a specific segment of memory. 

2 COR Get a given amount of memory from anywhere in the 
space allocated to the overlay handler. 

3 

4 

5 

6 

7 

RAD 

GCH 

RCH 

GOT 

ROT 

Return a specific segment of memory. 

Get an I/O channel~ 

Return an I/O channel. 

Get memory from the space allocated 
object-time system. 

Return memory to the object-time system. 

to the 

10 RNT Get the initial runtime, in milliseconds, from the 
object-time system. 

11 IFS Get the initial runtime file specification of the 
program being run. 

12 CBC Cut back core (if possible) to reduce job size. 

13 F.RRS Read retain status (DBMS) 

14 F.WRS Write retain status (DB~S) 

15 F.GPG Get pages 

16 F.RPG Return pages 

17 F.GPSI Get TOPS-20 PSI channel 

20 F.RPSI Return TOPS-20 PSI channel 

All FUNCT. codes are reserved to DEC. 

The following subsections describe each function of the 
FUNCT. subroutine (except the reserved functions). 

5-25 

I 



OVERLAYS 

ILL (0) Function 

This function is illegal. The argument list is ignored, and the 
status returned is -1. 

GAD (1) Function 

The GAD function gets memory from a specific address in the space 
allocated to the overlay handler. The argument list points to: 

arg 1 
arg 2 

Address of requested memory 
Size of requested allocation (in words) 

A call to GAD with arg 2 equal to -1 requests all available memory. 

On return, the status is one of the following: 

o Successful allocation 
1 Not enough memory available 
2 Memory not available at specified address 
3 Illegal arguments (address + size > 256K) 

COR (2) Function 

The COR function gets memory from any available space allocated to the 
overlay handler. The arguments are: 

arg I 
arg 2 

Undefined (address of allocated memory on return) 
Size of requested allocation 

On return, the status is: 

o Core allocated 
1 Not enough memory available 
3 Illegal argument (size > 256K) 

RAD (3) Function 

The RAD function returns the memory starting at the specified address 
to the overlay handler. The arguments are: 

arg 1 
arg 2 

Address of memory to be returned 
Size of memory to be returned (in words) 

On return, the status is one of the following: 

o Successful return of memory 
1 Memory cannot be returned 
3 Illegal argument (address or size > 256K) 

5-26 



GOT (6) Function 

The GOT function 
object-time system. 

OVERLAYS 

gets memory from 
Its arguments are: 

the space allocated 

arg 1 
arg 2 

Undefined (address of allocated memory on return) 
Size of memory requested 

On return, the status is one of the following: 

o Successful allocation 
1 Not enough memory available 
3 Illegal argument (size> 256K) 

ROT (7) Function 

to the 

The ROT function returns memory to the object-time system. Its 
arguments are: 

arg 1 
arg 2 

Address of memory to be returned 
Size of memory to be returned (in words) 

On return, the status is one of the following: 

o Successful return of memory 
1 Memory cannot be returned 
3 Illegal argument (address or size> 256K) 

RNT (10) Function 

The RNT function returns the initial runtime, in milliseconds, from 
the object-time system. (At the beginning of the program, the 
object-time system will have executed a RUNTIM UUO: the result is the 
time returned by RNT.) Its arguments are: 

arg 1 
arg 2 

Undefined (contains initial runtime on return) 
Ignored 

On return, the runtime is in arg 1, and the status is o. 
is O. 

IFS (11) Function 

The status 

The IFS function returns the initial runtime file specification from 
the object-time system. (This initial file specification is the one 
used to begin the program: that is, it was given with a compile-class 
command.) Its arguments are: 

arg 1 
arg 2 
arg 3 

Undefined (SIXBIT device on return) 
Undefined (SIXBIT filename on return) 
Undefined (project-programmer number on return) 

On return, the status is one of the following: 

o Successful return 
1 Error 

5-27 



OVERLAYS 

CBC (12) Function 

The CBC function cuts back memory if possible, which reduces the size 
of the job. It uses no arguments, and the returned status is o. 

RRS (13) Function ( Reserved for DBMS ) 

Returns ARGI = O. On return, the status is always O. 

WRS (14) Function ( Reserved for DBMS ) 

Returns ARGI = O. On return, the status is always O. 

GPG (15) Function 

The GPG function is used to fetch a page. The arguments are: 

arg2: size to be allocated, in words 

On return, 
argl = address of allocated memory, on page boundary 

and the status is one of the following: 

o if allocated OK 
1 if not enough memory 
3 if argument error 

RPG (16) Function 

The RPG function is used to return pages. The arguments are: 

argl: 
arg2: 

address (a word) 
size (in ,,,ords) 

On return, the status is: 

GPSI (17) 

o if deallocated OK 
1 if wasn't allocated 
3 if argument error 

The GPSI function can be used to get a PSI channel for programs 
running in a TOPS-20 environment. This entry point provides only 
controlled access to the PSI tables. It will arrange that the tables 
exist and that SIR and EIR have been done but does not do AIC or any 
other JSYS necessary to set up the channel (ATI or MTOPR, for 
exampl e) . 

The arguments are: 

argl: channel number, 
or -1 to allocate any user-assignable channel 

arg2: level number 
arg3: address of interrupt routine 

5-28 



OVERLAYS 

On return, arg1 contains the channel number allocated 
originally specified). On return, the status is: 

o if OK 
1 if channel was already assigned 
2 if no free channels 
3 if argument error 

NOTE 

This function is used by TOPS-20 
programs. It is a reserved function in 
the TOPS-10 environment. 

RPSI (20) Function 

(if -1 was 

This entry point provides only controlled access to the PSI tables. 
It does not do DIC or any other JSYS necessary to release a channel. 
It just clears the level and interrupt address fields in CHNTAB. 

This function accepts the following argument: 
arg1: channel number 

On return the status is one of the following: 
o if OK 
1 if channel wasn't in use 
3 if argument error 

NOTE 

This function is used by TOPS-20 
programs. It is a reserved function in 
the TOPS-10 environment. 

5-29 



OVERLAYS 

5.8 THE OVERLAY (OVL) FILE 

This section contains diagrams of the contents of the 
output by LINK as a result of the /OVERLAY switch. 
diagram shows the overall scheme of the file: 

overlay file 
The following 

Scheme of the Overlay (OVL) File 

=======================================================1 
1 

Directory Block 1 

1 

=======================================================1 
1 

Link Number Table 1 

1 

=======================================================1 
1 

Link Name Table 1 

1 

=======================================================1 
1 

writable Link Flags Table 1 

1 

=======================================================1 
1 

Link 1 

1 

-------------------------------------------------------I 

I-----------------~-------------------------------------I 
1 1 
1 Link 1 

I 1 
I=========~=============================================1 

5-30 



OVERLAYS 

5.8.1 The Directory Block 

The following diagram shows the contents of the Directory Block: 

Directory Block 

1=======================================================1 
.DIHDR: 1 0 (Reserved) 1 Length of Directory Block 1 

1-------------------------------------------------------I 
.DIRGN: 1 0 (Reserved) 1 

1-------------------------------------------------------I 
.DIVER: 1 Version Number of Corresponding EXE file 1 

1-------------------------------------------------------I 
.DILPT: 1 -(Size of Link No. Table) ILink Number Table Block No.1 

1-------------------------------------------------------I 
.DINPT: I-(Size of Link Name Table) 1 Link Name Table Block No.1 

1-------------------------------------------------------I 
.DIWPT: I-(Size of Writable FIg Tbl) 1 Writable FIg Tbl Block No 1 

1-------------------------------------------------------I 
.DIFLG: 1 Flags 1 

1-------------------------------------------------------I 
1 0 (Reserved) 1 
1=======================================================1 

In the fourth word above, the size of the Link Number Table (in words) 
is half the number of links (rounded upward); the Link Number Table 
Block No. is the number of the 128-word disk block containing the Link 
Number Table. (There are four disk blocks per disk page.) 

In ~he fifth word above, the size of the Link Name Table (in words) is 
twice the number of links; the Link Name Table Block No. is the 
number of the 128-word disk block containing the Link Name Table. 

The table defined by the .DIWPT word above consists of a string of 
two-bit bytes. The first bit, OW.WRT, indicates whether the 
corresponding overlay link is writable. This bit is set under the 
control of a REL block of type 1045 (writable links). The second bit, 
OW.PAG, indicates whether the corresponding overlay link is currently 
paged into the runtime overlay temporary file. This is strictly a 
run-time flag and should be zero in the overlay file. This flag is 
defined in the overlay file to allow the overlay handler to set up its 
flag table with a single read operation. 

The .DIFLG word in the directory block contains a single bit flag (bit 
0) . If this bit is set the overlay file contains at least one 
writable overlay. This information is also contained in the Writable 
Link Table. However, by having the information available in the 
directory block the overlay handler can determine if any links are 
writable without scanning the Writable Link Table. All other bits in 
the .DIFLG word are reserved and must be zero. 

NOTE 

If a user requests both writable and 
relocatable overlays, only halfwords 
known to be relocatable at load time 
will be correctly relocated when the 
link is refetched. 

5-31 



OVERLAYS 

5.8.2 The Link Number Table 

The following diagram shows the contents of the Link Number Table: 

Link Number Table 

1=======================================================1 
1 Pointer to Link 0 1 Pointer to Link 1 1 
1-------------------------------------------------------I 
1 Pointer to Link 2 1 Pointer to Link 3 1 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Pointer to Link n-l 1 Pointer to Link n 1 
1=======================================================1 

Each pointer is a disk block number. Any unused 
disk block of the Link Number Table are zeros. 

words in the 

5.8.3 The Link Name Table 

The following diagram shows the contents of the Link Name Table: 

Link Name Table 

1=======================================================1 
1 Link Number 1 

1-------------------------------------------------------I 
1 SIXBIT Link Name 1 

1=======================================================1 

1=======================================================1 
1 Link Number 1 

1-------------------------------------------------------I 
1 SIXBIT Link Name 1 
1=======================================================1 

Any unused words in the last disk block of the 
zeros. 

5-32 

Link Name Table 

last 

are 



OVERLAYS 

5.8.4 The Overlay Link 

The following diagram shows the overall scheme of each overlay link in 
the overlay file: 

Scheme of an Overlay Link 

=======================================================1 
1 

Preamble 1 

1 

=======================================================1 
1 

Code for Link 1 

1 

=======================================================1 
1 

Link Control Section 1 

1 

=======================================================1 
1 

EXTTAB 1 

1 

=======================================================1 
1 

INTTAB 1 

1 

=======================================================1 
1 

Relocation Table 1 

1 

=======================================================1 
1 

Other Relocation Tables 1 

1 

=======================================================1 

5-33 



OVERLAYS 

The Preamble 

The following diagram shows the contents of the preamble for an 
overlay link: 

Preamble 

1=======================================================1 
1 a (Reserved) 1 Length of Preamble 1 
1-------------------------------------------------------
1 a (Reserved) 1 a (Reserved) 
1-------------------------------------------------------
1 a (Reserved) 1 Link Number 
1-------------------------------------------------------
1 SIXBIT Link Name 
1-------------------------------------------------------
IPointer to List of Bound Links Starting with Root Link 
1-------------------------------------------------------
1 Pointer to List of Bound Links Ending with Root Link 
1-------------------------------------------------------
1 Equivalence Pointer 
1-------------------------------------------------------
1 Address of Control Section 1 

1-------------------------------------------------------I 
1 Flags 1 

1-------------------------------------------------------I 
1 Absolute Address at Which Link Loaded 1 

1-------------------------------------------------------I 
1 Length of Link (Code through INTTAB) 1 

1-------------------------------------------------------I 
1 Disk Block Number of Start of Link Code' 1 

1-------------------------------------------------------I 
1 a (Reserved) 1 

1-------------------------------------------------------I 
1 Disk Block Number of Relocation Table 
1-------------------------------------------------------
1 Disk Block Number of Other Relocation Tables 
1-------------------------------------------------------
1 a (Reserved) 
1-------------------------------------------------------
1 Disk Block Number of Radix-50 Symbols 
1-------------------------------------------------------
IBlock Number of Relocation Tables for Radix-50 Symbols 
1-------------------------------------------------------
1 Next Free Memory Location for Next Link 
1======================================================= 

5-34 



OVERLAYS 

Code for the Link 

The code for each link consists of a core image that was constructed 
from the REL files placed in the link. This core image contains the 
code and data for the link. 

The Control Section 

The following diagram shows the contents of the Control Section: 

Control Section 

1=======================================================1 
1 0 (Reserved) 1 Length of Header 1 
1-------------------------------------------------------I 
1 0 (Reserved) 1 0 (Reserved) 1 
1-------------------------------------------------------I 
1 0 (Reserved) 1 Link Number 1 
1-------------------------------------------------------I 
1 SIXBIT Link Name 1 

1-------------------------------------------------------I 
1 Ptr to Ancestor in Core 1 Ptr to Successor in Core 1 
1-------------------------------------------------------I 
1 - (Length of Symbol Table) 1 Address of Symbol Table 1 
1-------------------------------------------------------I 

o (Reserved) 1 Start Address for Link 1 

-------------------------------------------------------I 
Memory Needed to Load Link 1 First Address in Link 1 

-------------------------------------------------------I 
- (Length of EXTTAB) 1 Pointer to EXTTAB 1 

-------------------------------------------------------I 
- (Length of INTTAB) 1 Po inter to INTTAB 1 

-------------------------------------------------------I 
Address of Symbols on Disk 1 

-------------------------------------------------------I 
Relocation Address 1 

-------------------------------------------------------I 
Copy of Block Number for Code 1 

-------------------------------------------------------I 
-(Length of Radix-50 SymTab) IBlk No. of Radix-50 SymTabl 
=======================================================1 

5-35 



OVERLAYS 

The EXTTAB Table 

The following diagram shows the contents of the EXTTAB table: 

EXTTAB 

1=======================================================1 
1 JSP 1,.OVRLA 1 

1-------------------------------------------------------I 
1 Flags IAddress of Callee's INTTAB 1 

1-------------------------------------------------------I 
1 Callee's Link Number IPtr to Callee's Control Secl 
1-------------------------------------------------------I 
1 Backward Pointer 1 Forward Pointer 1 
1=======================================================1 

1=======================================================1 
1 JSP l,.OVRLA 1 

1-------------------------------------------------------I 
1 Flags IAddress of Callee's INTTAB 1 

1-------------------------------------------------------I 
1 Callee's Link Number IPtr to Callee's Control Secl 
1-------------------------------------------------------I 
1 Backward Pointer 1 Forward Pointer 1 
1=======================================================1 

The flags in the left half of the second word have the following 
meanings: 

Bit Meaning (if bit is on) 

o Module is in core. 
I Module is in more than one link. 
2 Relocatable link is already relocated. 

5-36 



OVERLAYS 

The INTTAB Table 

The following diagram shows the contents of the INTTAB table: 

INTTAB 

1=======================================================1 
1 0 (Reserved) 1 Address of Entry Point 1 
1-------------------------------------------------------I 
1 0 (Reserved) 1 Forward Pointer 1 
1=======================================================1 

1=======================================================1 
1 0 (Reserved) 1 Address of Entry Point 1 
1-------------------------------------------------------I 
1 0 (Reserved) 1 Forward Pointer 1 
1=======================================================1 

5-37 



OVERLAYS 

The Relocation Table 

The following diagram shows the contents of the Relocation Table: 

Relocation Table 

1=======================================================1 
1 Relocation Word 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Relocation Word 1 

1=======================================================1 

The Relocation Table contains one bit for each halfword of the link. 
If the bit is on, the halfword is relocatable; if it is off, the 
halfword is not relocatable. 

The first word contains the relocation bits for the first 22 (octal) 
words of the 'link; the second word contains the relocation bits for 
the next 22 (octal) words; and so forth for all words in the link. 

This table exists only when relocatable overlays are requested with 
the jOVERLAY:RELOCATABLE switch. 

5-38 



OVERLAYS 

The Other Relocation Tables 

The following diagram shows the contents of the Other Relocation 
Tables: 

Other Relocation Tables 

I===========================================~===========1 
1 Number of Words Following for This Link 1 

1-------------------------------------------------------I 
1 Link Number 1 Planned Load Address 1 
1-------------------------------------------------------I 
1 Relocation Halfword 1 Ptr to Words of Code 1 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Relocation Halfword 1 Ptr to Words of Code 1 
1=======================================================1 

1=======================================================1 
1 Number of Words Following for This Link 1 

1-------------------------------------------------------I 
1 Link Number 1 Planned Load Address 1 
1-------------------------------------------------------I 
1 Relocation Halfword 1 Ptr to Words of Code 1 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Relocation Halfword 1 Ptr to Words of Code 1 
1=======================================================1 

This table exists only when relocatable overlays have been requested 
with the OVERLAY/RELOCATABLE switch. The Other Relocation Tables are 
used to hold internal LINK references. 

5-39 





CHAPTER 6 

PSECTs 

PSECTs (Program SECTions) are programmer- or system-defined regions of 
code and data that LINK relocates in memory. PSECTs are used to 
structure a program's memory space, or to load a program that uses 
extended addressing. 

6.1 LOADING PROGRAMS WITH PSECTs 

When loading programs with PSECTs, you must specify the or1g1n of the 
PSECT. LINK then uses this PSECT origin to store the data in the 
PSECTs. 

To specify a PSECT origin, include the origin in the source program or 
use the LINK /SET switch. See the appropriate language manual for 
including the origin in the source program and Chapter 3 for the /SET 
switch. 

Defining an upper bound is also important when loading PSECTs. The 
LINK /LIMIT switch defines an upper bound for a PSECT. If the PSECT 
loads to this bound, LINK returns a warning and an error message. 
Despite these messages, LINK continues to process input files and to 
load code. The warning is: 

%LNKPEL PSECT [psect] exceeded limit of [address] 

Although LINK does continue to process input files and load code, the 
program is incomplete and should not be used. LINK does issue the 
following fatal error: ---

?LNKCFS Chained fixups have been suppressed 

Chained fixups are a method that LINK uses to resolve symbol 
references. 

Using /LIMIT to define an 
overlaps. PSECT overlaps 
unpredictable behavior. 

upper bound prevents dgintended PSECT 
can cause LINK to loop and produce other 

For example, the LRGPRO and BIGPRO modules each contain two PSECTs, 
BIG and GRAND. LRGPRO is loaded and /COUNTERS is used to check PSECT 
origins and current values. PSECT origins are found by looking under 
the initial value column and PSECT current values are found by looking 
under the current value column of the /COUNTERS output. The upper 
bound is found by looking under the limit value column • 

• R LINK ~ 
*/SET:BIG:1000 ~ 
*/SET:GRAND: 5400 ~ 
*LRGPRO ~ 

6-1 April 1986 

I 



* /COUNTERS ~ 
[LNKRLC Reloc. ctr. 

.LOW. 
BIG 
GRAND 

* 

PSECTs 

initial value 
o 
1000 
5400 

current value 
140 
5100 
10500 

limit value 
1000000 
1000000 
1000000] 

/COUNTERS shows that the current value for PSECT BIG and the initial 
value for PSECT GRAND are close together in memory. The current value 
for BIG is 5100 and the PSECT origin for GRAND is 5400. The /LIMIT 
switch can now be used to restrict PSECT BIG's current value to PSECT 
GRAND's initial value using the following: 

*/LIMIT:BIG:GRAND~ 

/LIMIT prevents an unintended overlap because it causes LINK to issue 
a warning if the current value for BIG exceeds GRAND's origin. The 
warning is: 

%LNKPEL PSECT [psect] exceeded limit of [address] 

The warning message indicates' that the PSECTs overlaped, and that 
PSECTs BIG and GRAND need to be farther apart in memory. The 
/COUNTERS switch shows a new current value greater than 5400. Notice 
that the limit set with the /LIMIT switch is shown in the limit value 
column. 

*BIGPROG£) 
%LNKPEL PSECT BIG exceeded limit of 5400 

detected in module .MAIN from file DSK:BIGPRO.REL[12,3456] 
*/COUNTERS~ 
[LNKRLC Reloc. ctr. 

.LOW. 
BIG 
GRAND 

initial value 
o 
1000 
5400 

current value 
140 
6300 
10500 

limit value 
1000000 
5400 
1000000] 

/GO continues loading the program, and LINK issues a warning and fatal 
error message. The warning is: 

%LNKPOV Psects [psect] and [psect] overlap from address [address] to 
[address] 

The fatal error message is: 

?LNKCFS chained fixups have been suppressed 

For example, 

*/GO~ 
%LNKPOV Psects BIG and GRAND overlap from address 5400 to 6300 
?LNKCFS chained fixups have been suppressed 

EXIT 

Now, LINK is re-run and the PSECTs are moved farther apart in memory. 
In this example, GRAND's origin is reset from 5400 to 7000 • 

• R LINK0!D 
*/SET:BIG:I000~ 
*/SET:GRAND: 7000 ~ 
*LRGPRO~ 

6-2 January 1985 



PSECTs 

*/COUNTERS ~ 
[LNKRLC Reloc. ctr. initial value current value limit value 

.LOW. 0 140 1000000 
BIG 1000 5100 1000000 
GRAND 7000 10500 1000000] 

* 

*/LIMIT:BIG:GRAND ~ 
*BIGPRO ~ 
*/COUNTERS ~ 
[LNKRLC Reloc. ctr. initial value current value limit value 

.LOW. 0 140 1000000 
BIG 1000 6300 5400 
GRAND 7000 10500 1000000] 

*/GO~ 

EXIT 

6.2 PSECT ATTRIBUTES 

PSECT attributes specify how LINK stores a PSECT in memory, and the 
page access of the PSECT. 

The CONCATENATED or OVERLAID attribute specifies how LINK stores I 
PSECTs. 

6.2.1 CONCATENATED and OVERLAID 

LINK uses the CONCATENATED or OVERLAID attributes when loading PSECTs 
into memory. These attributes are specified when the PSECT is defined 
in the source program, and are contained in REL Blocks 24 and 1050. 
See Appendix A for information on these blocks. If the attribute is 
not specified, LINK uses CONCATENATED. 

The following example illustrates how PSECTs are stored in memory. In 
this example, modules MAINKO and MAINKC contain three PSECTs, ALPHA, 
BETA, and GAMMA. There is an additional module named SUBMD1. The 
ALPHA and BETA PSECTs have the CONCATENATE attribute. The GAMMA 
PSECT, which is a data PSECT declared in each module, has the OVERLAID 
attribute defined in MAINKO and the CONCATENATE attribute defined in 
MAINKC. 

First, LINK is run and the origin is set for PSECTs ALPHA, BETA, and 
GAMMA • 

• R LINK ~ 
*/SET:ALPHA:3000/SET:BETA:5000/SET:GAMMA:7000 ~ 

Next, MAINKO is loaded with GAMMA defined as OVERLAID, and /COUNTERS 
is used to display the initial, current, and limit values. 

*MAINKO ; OVERLAID GAMMA ~ 
* /COUNTERS ~ 
[LNKRLC Reloc. ctr. initial value 

.LOW. 0 
ALPHA 3000 
BETA 5000 
GAMMA 7000 

6-3 

current value 
140 
3017 
5011 
7025 

limit value 
1000000 
1000000 
1000000 
1000000] 

April 1986 



• 

PSECTs 

Now, SUBMDl is loaded, /COUNTERS is used, and /GO is used to load the 
modules and exit LINK. 

Notice that the current values for ALPHA and BETA have increased, and 
that the current value for GAMMA remains the same. 

*SUBMD1~ 
* /COUNTERS G!D 
[LNKRLC Reloc. ctr. 

*/GOG!!) 

EXIT 

.LOW. 
ALPHA 
BETA 
GAMMA 

initial value 
o 
3000 
5000 
7000 

current value 
140 
3033 
5041 
7025 

limit value 
1000000 
1000000 
1000000 
1000000] 

In the following example, LINK is run and the origin is set for PSECTs 
ALPHA, BETA, and GAMMA • 

• R LINK G!D 
*/SET:ALPHA:3000/SET:BETA:5000/SET:GAMMA:7000~ 

Now, MAINKC is loaded with GAMMA defined as CONCATENATE, and /COUNTERS 
is used. 

*MAINKC 
* /COUNTERS G!D 
[LNKRLC Reloc. 

* 

.LOW. 
ALPHA 
BETA 
GAMMA 

;CONCATENATED GAMMA@) 

ctr. initial value 
o 
3000 
5000 
7000 

current value 
140 
3017 
5011 
7025 

limit value 
1000000 
1000000 
1000000 
1000000] 

Next, SUBMDl is loaded, /COUNTERS is used, and /GO is used to load the 
modules and exit LINK. 

Notice that all current values have increased. 

*SUBMDl G!D 
* /COUNTERS ~ 
[LNKRLC Reloc. ctr. 

.LOW. 
ALPHA 
BETA 
GAMMA 

*/GO~ 

EXIT 

initial value 
o 
3000 
5000 
7000 

6-4 

current value 
140 
3033 
5041 
7035 

limit value 
1000000 
1000000 
1000000 
1000000] 

April 1986 



PSECTs 

6.2.2 RWRITE 

The RWRITE attribute sets the page access for PSECTs to read/write. 
This attribute can be set in the source program or omitted, as RWRITE 
is the default. 

For example, the following MACRO statement defines read/write access 
for the ALL PSECT • 

• PSECT ALL/RWRITE,IOOO 

1000 is the PSECT's origin. 

NOTE 

The RONLY attribute does exist for compatibility with 
MACRO-20 and LINK-20, but is not recommended for use 
on TOPS-IO. You should not use RONLY on TOPS-IO 
because TOPS-IO does not support read-only pages in 
the low-segment and LINK considers PSECTs to be part 
of the low segment. LINK does build an .EXE file from 
.REL files that have the RONLY attribute set, but 
these files cannot be run on TOPS-IO. 

6-5 January 1985 





APPENDIX A 

REL BLOCKS 

The object modules that LINK loads are output from the language I 
translators. These object modules are formatted into REL 
(RELocatable) Blocks, each of which contains information for LINK. 

This appendix describes each type of REL Block and gives its format. 
Terms used throughout this discussion are defined as follows: 

Header Word: a fullword giving the REL Block Type in its left half 
and a short count or long count in its right half. 

Short Count: a halfword giving the length of the REL Block, excluding 
relocation words (which appear before each group of 18 
decimal, or 22 octal words), and excluding the header word. 

Long Count: a halfword giving the length of the REL Block, including 
all words in the block except the header word itself. 

Relocation Word: a fullword containing the relocation bits for up to 
18 decimal or 22 octal words following words. Each relocation 
bit is either 1, indicating a relocatable halfword, or 0, 
indicating a nonrelocatable halfword. 

The first two relocation bits give the relocatability of the 
left and right halves, respectively, of the next following 
word; the next two bits give the relocatability of the two 
halves of the second following word; and so forth for all bits 
in the word, except any unused bits, which will be zero. 

If a REL Block has relocation words, the first one follows the 
header word. If more than 18 (decimal) data words follow this 
relocation word, the next word (after the 18 words) is another 
relocation word. Thus, a REL Block that has relocation words 
will have one for each 18 words of data that it contains. If 
the REL Block does not contain an integral multiple of 18 
words, the last relocation word will have unused bits. 

NOTE 

A block with a zero short count does not 
include a relocation word. 

Data Word: Any word other than a header word or a relocation word. 

MBZ: Must Be Zero. 

NOTE 

All numbers in this appendix are 
specifically noted as decimal. 

A-I 

octal unless 

January 1985 

I 



REL BLOCKS 

The diagram below shows a REL Block having a short count of 7, 
relocation word. 

Block Type 7 

Relocation Word 

Data Word 1 

Data Word 2 

Data Word 3 

Data Word 4 

Data Word 5 

Data Word 6 

Data Word 7 
======================================================= 

and a 

The diagram below shows a REL Block having a short count of 31 and two 
relocation words. 

1=======================================================1 
1 Block Type 1 31 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Data Word 1 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Data Word 22 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Data Word 23 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Data Word 31 1 
1=======================================================1 

A-2 January 1985 



REL BLOCKS 

REL Block Types must be numbered in the range 0 to 777777. The 
following list shows which numbers are reserved for DIGITAL, and which 
for customers: 

Type Numbers Use 

o - 37 Reserved for DIGITAL 
40 - 77 Reserved for customers 

100 - 401 Reserved for DIGITAL 
402 - 577 Reserved for customers 
600 - 677 Reserved for customer files 
700 - 777 Reserved for DIGITAL files 

1000 - 1777 Reserved for DIGITAL 
2000 - 3777 Reserved for customers 
4000 - 777777 Reserved for ASCII text 

A-3 January 1985 



REL BLOCKS 

Block Type 0 (Ignored) 

1=======================================================1 
1 a 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

I--------------------------~----------------------------I 
1 Data Word 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
I Data Word 1 

1=======================================================1 

Block Type a is ignored by LINK. 

If the short count is 0, then no 
block consists of only one word. 
in a REL file. 

relocation word follows, and the 
This is how LINK bypasses zero words 

A-4 January 1985 



REL BLOCKS 

Block Type 1 (Code) 

1=======================================================1 
1 1 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Data Word 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Data Word I 

1=======================================================1 

Block Type 1 contains data and code. The first data word gives the 
address at which the data is to be loaded. This address can be 
relocatable or absolute, depending on the value of bit 1 of the 
relocation word. The remaining data words are loaded beginning at 
that address. 

If the start address is given in symbolic, the following format of 
Block Type 1 is used: 

1=======================================================1 
1 1 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Symbol 1 

1-------------------------------------------------------I 
1 Offset 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Data Word 1 

1-------------------------------------------------------I 

In this alternate format, the first four bits of the first data word 
(Symbol) are 1100 (binary), and the word is assumed to be a Radix-50 
symbol of type 60. The load address is calculated by adding the value 
of the global symbol to the offset given in the following word. The 
third and following data words are loaded beginning at the resulting 
address. The global symbol must be defined when the Type 1 Block is 
found. 

A-5 January 1985 



REL BLOCKS 

Block Type 2 (Symbols) 

1=======================================================1 
1 2 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
ICode 1 Radix-50 Symbol 1 

1-------------------------------------------------------I 
1 Second Word of Pair 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
ICode 1 Radix-50 Symbol 1 

1-------------------------------------------------------I 
1 Second Word of Pair 1 
1=======================================================1 

The first word of each pair has a code in bits a to 3 and a Radix-50 
symbol in bits 4 to 35 (decimal). The contents of the second word of 
a pair depends on the given code. The octal codes and their meanings 
are: 

Code Meaning 

00 This code is illegal in a symbol block. 

04 The given symbol is a global definition. Its value, contained 
in the second word of the pair, is available to other programs. 

10 The given symbol is a local definition, and its value is 
contained in the second word of the pair. If the symbol is 
followed by one of the special pairs or by a Polish REL Block 
(as explained below, under code 24), the symbol is considered a 
partially defined local symbol. Otherwise, it is considered 
fully defined. 

14 The given symbol is a block name (from a translator that uses 
block structure). The second word of the pair contains the 
block level. The symbol is considered local; if local symbols 
are loaded, the value of the block name is entered in the 
symbol table as its block level. 

24 The given symbol is a global definition. However, it is only 
partially defined at this time, and LINK cannot yet use its 
value. If the symbol is defined in terms of another symbol, 
then the next entry in the REL file must be a word pair in a 
Block Type 2 as follows: 

1=======================================================1 
1 60 1 Other Symbol 1 
1·-------------------------------------------------------I 1 50 1 Th i s Symbol 1 
1=======================================================1 

In this format, code 50 indicates that the right half of the 
word depends on the other symbol. 

A-6 January 1985 



Code 

REL BLOCKS 

Meaning 

If the partially defined symbol is defined in terms of a Polish 
expression, then the next entry in the REL file must be Block 
Type 11 (Polish), whose store operator gives this symbol as the 
symbol to be fixed up. A fixup resolves the symbol. The store 
operator must be -4 or -6. 

30 The given symbol is a global definition. However, it is only 
partially defined at this time, and LINK cannot yet use its 
value. If the symbol is defined in terms of another symbol, 
then the next entry in the REL file must be a word pair in a 
Block Type 2 as follows: 

34 

44 

50 

1=======================================================1 
1 60 1 'Other Symbol 1 
1-------------------------------------------------------I 1 70 1 This Symbol 1 
1=======================================================1 

In this format, code 70 indicates that the left half of the 
word depends on the other symbol. 

If the partially defined symbol is defined in terms of a Polish 
expression, then the next entry in the REL file must be Block 
Type 11 (POLISH), whose store operator gives this symbol as the 
symbol to be fixed up. The store operator must be -5. 

The given 
partially 
value. If 
then the 
Block Type 

symbol is a global definition. However, it is only 
defined at this time, and LINK cannot yet use its 
the symbol is defined in terms of another symbol, 
next entry in the REL file must be a word pair in a 
2 as follows: 

1=======================================================1 
1 60 1 Other Symbol 1 
1-------------------------------------------------------I 1 50 1 This Symbol 1 
1-------------------------------------------------------I 
1 60 1 Other Symbol 1 

1-------------------------------------------------------I 
1 70 1 This Symbol 1 
1=======================================================1 

This format indicates that both halves of the word depend on 
the other symbol. 

The given symbol is a global definition exactly as in code 04, 
except that it is not output by DDT. 

The given symbol is a local symbol exactly as in code 10, 
except that it is not output by DDT. 

60 The given symbol is a global request. LINK's handling of the 
symbol depends on the value of the code in the first four bits 
of the second word of the pair. These codes and their meanings 
are: 

00 The right half of the word gives the address of the 
first word in a chain of requests for the global memory 
address. In each request, the right half of the word 
gives the address of the next request. The chain ends 
when the address is o. 

A-7 January 1985 



Code 

40 

50 

60 

70 

REL BLOCKS 

Meaning 

The right half of the word contains an address. The 
right half of the value of the requested symbol is added 
to the right half of this word. 

The rest of the word contains a Radix-50 symbol whose 
value depends on the requested global symbol. (If the 
given Radix-50 symbol is not the one defined in the 
previous word pair, then this word is ignored.) When 
the value of the requested symbol is resolved, it is 
added to the right half of the value of the Radix-50 
symbol. 

The right half of the word contains an address. The 
right half of the value of the requested symbol is added 
to the left half of this word. 

The rest of the word contains a Radix-50 symbol whose 
value depends on the requested global symbol. (If the 
given Radix-50 symbol is not the one defined in the 
previous word pair, then this word is ignored.) When 
the value of the requested global symbol is resolved, it 
is added to the left half of the value of the Radix-50 
symbol. 

64 The given symbol is a global definition exactly as in code 24, 
except that it is not output by DDT. 

70 The given symbol is partially defined, where the left half is 
deferred, as in code 30, except that it is not output by DDT. 

74 The given symbol is partially defined, where the right half is 
deferred, as in code 34, except that it is not output by DDT. 

Symbols are placed in the symbol table in the order that LINK finds 
them. However, DDT expects to find the symbols in a specific order. 

For a non-block-structured program, that order is: 

Program Name 

Symbols for Program 

For a block-structured program whose structure is: 

Begin Block 1 (same as program name) 
Begin Block 2 
End Block 2 
Begin Block 3 

Begin Block 4 
End Block 4 

End Block 3 
End Block 1 

A-8 January 1985 



REL BLOCKS 

the order is: 

Program Name (Block 1) 
Block Name 2 
Symbols for Block 2 
Block Name 4 
Symbols for Block 4 
Block Name 3 
Symbols for Block 3 
Block Name 1 
Symbols for Block 1 

This ordering follows the rule that the name and symbols for each 
block must occur in the symbol table in the order of the block endings 
in the program. 

NOTES 

1. Only one fixup by a Type 2, la, 11, or 12 Block is 
allowed for a given field. (There can be separate 
fixups for the left and right halves of the same 
word. ) 

2. Fixups are not necessarily performed in the order 
LINK finds them. 

A-9 January 1985 

I 



I 

REL BLOCKS 

Block Type 3 (HISEG) 

1=======================================================1 
1 3 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
IHigh-Segment Program Break 1 High-Segment Origin 1 

1-------------------------------------------------------I 
1 (Low-Segment Program Break) 1 (Low-Segment Origin) 1 
1=======================================================1 

Block Type 3 tells LINK that code is to be loaded into the high 
segment. 

I Short Count is either I or 2. 

If the left half of the first data word is 0, subsequent Type I blocks 
found are assumed to have been produced by the MACRO pseudo-op HISEG. 
This usage is not recommended. It means that the addresses in the 
blocks are relative to 0, but are to be placed in the program high 
segment. The right half of the first data word is the beginning of 
the high segment (usually 400000). 

If the left half of the first data word is 
usage), subsequent Type I blocks found 
produced by the MACRO pseudo-op TWOSEG. 

nonzero (the preferred 
are assumed to have been 

The right half is interpreted as the beginning of the high segment, 
and the left half is the high-segment break; the high-segment length 
is the difference of the left and right halves. 

(One-pass translators that cannot calculate the high-segment break 
should set the left half equal to the right half.) 

If the second word appears in the HISEG block, its left half shows the 
low-segment program break, and its right half shows the low-segment 
origin (usually 0). 

A-IO January 1985 



REL BLOCKS 

Block Type 4 (Entry) 

1=======================================================1 
1 4 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word (Zero) 1 

1-------------------------------------------------------I 
1 Radix-50 Symbol 1 

I----------------------------~--------------------------I 

1-------------------------------------------------------I 
1 Radix-50 Symbol 1 
1=======================================================1 

Block Type 4 lists the entry name symbols for a program module. If a 
Type 4 block appears in a module, it must be the first block in the 
module. A library file contains a Type 4 block for each of its 
modules. 

When LINK is in library search mode, the symbols in the block are 
compared to the current list of global requests for the load. If one 
or more matches occur, the module is loaded and the name of the module 
is marked as an entry point in map files, etc. If no match occurs, 
the module is not loaded. 

If LINK is not in library search mode, no comparison of requests and 
entry names is made, and the module is always loaded. Refer to Block 
Type 17 for more information about libraries. Refer to block type 14. 

A-II January 1985 



I 

REL BLOCKS 

Block Type 5 (End) 

1=======================================================1 
1 5 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 First Data Word 1 

1-------------------------------------------------------I 
1 (Second Data Word) 1 
1=======================================================1 

Block Type 5 ends a program module. A Block Type 6 must be 
encountered earlier in the module than the Type 5 block. 

I Short Count is 1 or 2. 

If the module contains a two-segment program, the first data word is 
the high-segment break and the second data word is the low-segment 
break. If the module contains a one-segment program, the first data 
word is the program break and the second data word is the absolute 
break. If count is 1, then second word is assumed to be o. 

Each PRGEND pseudo-op in a MACRO program generates a Type 5 REL block. 
Therefore a REL file may contain more than one Type 5 block. 

A library REL file has a Type 5 block at the end of each of its 
modules. 

A-12 January 1985 



REL BLOCKS 

Block Type 6 (Name) 

1=======================================================1 
1 6 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Radix-50 Symbol 1 

1-------------------------------------------------------I 1 (CPU) 1 (Compiler) 1 (Length of Blank Common) 1 
1-------------------------------------------------------I 

Block Type 6 contains the program name, and must precede any Type 2 
blocks. (A module should begin with a Type 6 block and end with a 
Type 5 block.) 

Short Count is 1 or 2. 

The first data word is the program name in Radix-50 format; this name 
cannot be blanks. The second data word is optional; if it appears, it 
contains CPU codes in bits 0 to 5, a compiler code in bits 6 to 17 
(decimal), and the length of the program's blank COMMON in the right 
halfword. 

The CPU codes specify processors for program execution as: 

Bit 2 
Bit 3 
Bit 4 
Bit 5 

KSIO 
KLIO 
KIlO 
KAIO 

If all these bits are off, then any of the processors can be used for 
execution. 

The compiler code specifies the compiler that produced the REL file. 
The defined codes are: 

0 Unknown 7 SAIL 16 COBOL-74 
1 Not used 10 FORTRAN 17 COBOL 
2 COBOL-68 11 MACRO 20 BLISS-36 
3 ALGOL 12 FAIL 21 BASIC 
4 NELIAC 13 BCPL 22 SITGO 
5 PL/I 14 MIDAS 23 (Reserved) 
6 BLISS 15 SIMULA 24 PASCAL 

25 JOVIAL 

A-13 January 1985 

I 

I 



I 

REL BLOCKS 

Block Type 7 (Start) 

I==================~==================~=================1 
1 7 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Start Address 1 

1-------------------------------------------------------I 
1 (60) 1 (Optional Radix-50 Symbol) 1 

I============================~=======================~~=I 

Block Type 7 contains the start address for program execution. LINK 
uses the start address in the last such block processed by the load, 
unless /START or /NOSTART switches specify otherwise. 

Short Count is 1 or 2. 

If the second (optional) word is present, it must be a Radix-50 symbol 
with the code 60; LINK forms the start address by adding the value of 
the symbol to the value in the right half of the preceding word (Start 
Address) II 

I LINK builds an entry vector if it is specified or non-zero. 

LINK V6.0 A-l4 April 1986 



REL BLOCKS 

Block Type 10 (Internal Request) 

1=======================================================1 
1 10 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 1 Pointer to Last Request 1 Value 1 
1-------------------------------------------------------I 

1-------------------------------------------------------I 1 Pointer to Last Request 1 Value 1 
1-------------------------------------------------------I 

Block Type 10 is generated by one-pass compilers to resolve requests 
caused by forward references to internal symbols. The MACRO assembler 
also generates Type 10 blocks to resolve requests for labels defined 
in literals; a separate chain is required for each PSECT in a PSECTed 
program. 

Each data word contains one request for an internal symbol. The left 
half is the address of the last request for a given symbol. The right 
half is the value of the symbol. The right half of the last request 
contains the address of the next-to-last request, and so on, until a 
zero right half is found. (This is exactly analogous to Radix-50 code 
60 with second-word code 00 in a Block Type 2.) 

If a data word contains -1, then the following word contains a request 
for the left (rather than right) half of the specified word. In this 
case, the left half of r.he word being fixed up contains the address of 
the next-to-last left half request, and so on, until a zero left half 
is found. (This is a left half chain analogous to the right half 
chain described above.) 

NOTES 

1. Only one fixup by a Type 2, 10, 11, or 12 is 
allowed for a given field. (There can be separate 
fixups for the left and right halves of the same 
word.) 

2. Fixups are not necessarily performed in the order 
LINK finds them. 

A-IS January 1985 

I 



I 

REL BLOCKS 

Block Type 11 (Polish) 

1=======================================================1 
1 11 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Data Halfword 1 Data Halfword 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
I Data Halfword 1 Data Halfword 1 
1=======================================================1 

Block Type 11 defines Polish fixups for operations on relocatable 
values or external symbols. Only one store operator code can appear 
in a Block Type 11; this store operator code can be either a symbol 
fixup code or a chained fixup code. The store operator code appears 
at the end of the block. 

NOTES 

1. Only one fixup by a Type 2, 10, 11, or 12 Block is 
allowed for a given field. (There can be separate 
fixups for the left and right halves of the same 
word. ) 

2. Fixups are not necessarily performed in the order 
LINK finds them. 

The data words of a Type 11 block form one Polish string of halfwords. 
Each halfword contains one of the following: 

1. A symbol fixup store operator code. 

A symbol fixup defines the value to be stored in the value 
field of the symbol table for the given symbol. A symbol 
fixup store operator code is followed by two or four data 
halfwords. 

2. A chained fixup store operator code. 

3. 

A chained fixup takes a relocatable address whose corrected 
virtual address is the location for storing or chaining. A 
chained fixup store operator code is followed by one data 
halfword. 

A data type code. 
halfword; a data 
halfwords. 

Data type code 0 is followed by a data 
type code 1 or 2 is followed by two data 

4. An arithmetic or logical operator code. 

A-16 ua nuary 1985 



REL BLOCKS 

5. A PSECT index code. This code defines a PSECT index to be 
used for calculating the relocated addresses that appear in 
this block. PSECT indexes are needed only for PSECTed 
programs. 

6. 

A global PSECT index"is associated with a Block Type 11. 
This index appears as the first halfword after the relocation 
word, and it defines the PSECT for the store address or store 
symbol. Any addresses for a different PSECT must be preceded 
by a different PSECT index. 

Thus, a relocatable data halfword in a different PSECT must 
appear in one of the following formats: 

1-------------------------------------------------------I 
1 400nnn 1 (operator code) I 

1-------------------------------------------------------I 
1 (operands) 1 

1-------------------------------------------------------I 
OR 

1-------------------------------------------------------I 
I 1 400nnn 1 

1-------------------------------------------------------I 
1 (operator code) 1 (operands) 1 

1-------------------------------------------------------I 
where the different PSECT index is nnn+l. 

Any relocatable address that does not have an explicit 
preceding PSECT index code preceding its data type code is 
assumed to be in the same PSECT as the store address for the 
block. The current PSECT may be set by a previous REL Block 
type. 

A halfword of data {preceded by a data type 
two halfwords of data (preceded by a 
halfword) • 

o halfword) or 
data type 1 or 2 

A sequence of halfwords containing a data type code 0 and a 
data halfword can begin in either half of a word. 

The codes and their meanings are: 

Symbol Fixup Store Operator Codes: 

-7 Fullword replacement. No chaining is done. 

-6 Fullword symbol fixup. The following one or two words 
contain the Radix-SO symbol{s) (with their 4-bit codes). 
The first is the symbol to be fixed up, and the second is 
the block name for a block-structured program (O or 
nonexistent for other programs). 

A-17 January 1985 



REL BLOCKS 

-5 Left half symbol fixup. The 
contain the Radix-50 symbols. 
fixed up, and the second 
block-structured program 
programs) • 

following one or two words 
The first is the symbol to be 

is the block name for a 
(0 or nonexistent for other 

-4 Right half symbol fixup. The following one or two words 
contain the Radix-50 symbols. The first is the symbol to be 
fixed up, and the second is the block name for a 
block-structured program (0 or nonexistent for other 
programs) • 

Chained Fixup Store Operator Codes: 

-3 Fullword chained fixup. The halfword following points to 
the first element in the chain. The entire word pointed to 
is replaced, and the old right half points to the next 
fullword. 

-2 Left half chained fixup. The halfword following points to 
the first element in the chain. 

-1 Right half chained fixup. The halfword following points to 
the first element in the chain. 

Data Type Codes: 

o The next halfword is an operand. 

1 The next two halfwords form a fullword operand. 

2 The next two halfwords form a Radix-50 symbol that is a 
global request. The operand is the value of the symbol. 

Arithmetic and Logical Operator Codes: 

NOTE 

Operands are read in the order that they are 
encountered. 

3 Add. 

4 Subtract. 

5 Multiply. 

6 Divide. 

7 Logical AND. 

10 Logical OR. 

11 Logical shift. (A positive second operand causes a shift to 
the left. A negative operand causes a shift to the right.) 

12 Logical XOR. 

13 Logical NOT (one's complement). 

A-18 January 1985 



REL BLOCKS 

14 Arithmetic negation (two's complement). 

15 Count leading zeros (like JFFO instruction). Refer to the 
MACRO Assembler Reference Manual for information about the 
~L operand, which this code implements. 

16 Remainder. 

17 Magnitude. 

20 Maximum. 

21 Minimum. 

22 Comparison. Returns 0 if the two operands are different; -1 
if they are equal. 

23 Used to resolve the links in a chain. Refer to Block Type 
12. 

24 Symbol definition test. Returns 0 if the operand (a 
Radix-50 symbol) is unknown; 1 if it is known but undefined; 
-1 if it is known and defined. 

25 Skip N words of Polish. 

26 Skip N words of Polish on some condition. 

27 Return contents of location N. 

PSECT Index Codes: 

400nnn PSECT index nnn, where nnn is a 3-digit octal integer. 

For an example of a Type 11 block, the MACRO statements 

EXTERN B 
A: EXP <A*B+A) 

Generate (assuming that A has a relocatable value of zero): 

======================================================= 
11 6 

001011001001101101 o 

3 (Add) 5 (Multiply) 

o (Halfword Operand Next) o (Relocatable) 

2 (Fullword Radix-50 Next) 1st Half of Radix-50 B 

2nd Half of Radix-50 B 1 0 (Halfword Operand Next) 

o (Relocatable) 1-3 (Rh Chained Fixup Next) 

1 0 (Chain Starts at 0') 1 
1======================================================= 

The first word contains the block type (11) and the short count (6). 
The second word is the relocation word; it shows that the following 
halfwords are to be relocated: right half of second following word, 
left half of fifth following word, left half of sixth following word. 

A-19 January 1985 



REL BLOCKS 

The next word shows that the two operations to be performed are 
addition and multiplication; because this is in Polish prefix format, 
the multiplication is to be performed on the first two operands first, 
then addition is performed on the product and the third operand. 

The next two halfwords define the first operand. The first halfword 
is a data type code 0, showing that the operand is a single halfword; 
the next halfword is the operand (relocatable 0). 

The next three halfwords define the second operand. The first of 
these halfwords contains a data type code 2, showing that the operand 
is two halfwords containing a Radix-50 symbol with code 60. The next 
two halfwords give the symbol (B). 

The next two halfwords define the third operand. The first of these 
halfwords contains a data type code 0, showing that the operand is a 
single halfword; the next halfword gives the value of the operand 
(relocatable 0). 

The next two halfwords give the store operator for the block. The 
first of these halfwords contains the chained fixup store operator 
code -3, showing that a fullword chained fixup is required; the next 
halfword contains the operand (relocatable 0), showing that the chain 
starts at relocatable zero. 

The last halfword is irrelevant, and should be zero. If it is not, 
LINK issues the LNKJPB error message. 

A-20 January 1985 



REL BLOCKS 

Block Type 12 (Chain) 

1=======================================================1 
1 12 I" Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Chain Number 1 

1-------------------------------------------------------I 
1 Chain Address 1 Store Address 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Chain Number 1 

1-------------------------------------------------------I 
1 Chain Address 1 Store Address 1 

1=======================================================1 

Block Type 12 chains together data structures 
modules. (The MACRO pseudo-ops .LINK and 
blocks.) Block Type 12 allows linked lists 
separately compiled modules to be constructed 
be added to one module without editing or 
module. 

from separately compiled 
.LNKEND generate Type 12 
that have entries in 
so that new entries can 
recompiling any other 

The data words in a Type 12 block are paired. The first word of each 
pair contains a chain number between 1 and 100 (octal). (The chain 
number is negative if the pair was generated by a .LNKEND pseudo-op.) 
The second word contains a store address in the right half, and a 
chain address in the left half. The store address points to the 
location where LINK will place the chain address of the last entry 
encountered for the current chain. The first entry in a chain has a 
zero in the word pointed to by the store address. 

A MACRO statement of the form: 

.LINK chain-number,store-address,chain-address 

generates a word pair in a Type 12 block as shown above. 
statement of the form: 

.LINK chain-number,store-address 

A MACRO 

generates a word pair in a Type 12 block with a a for the chain 
address field in the REL block. A MACRO statement of the form: 

.LNKEND chain-number,store-address 

generates a word pair in a Type 12 Block with a a for the chain 
address and a negative chain number. 

As LINK processes a load, it performs a separate chaining for each 
different chain number found; thus a word pair in a Type 12 block is 
related to all other word pairs having the same chain number (even in 
other loaded modules). Type 12 pairs having different chain numbers 
(even in the same module), are not related. 

A-21 January 1985 



REL BLOCKS 

NOTE 

Chain numbers above 100 (octal) are reserved by 
Digital. 

To show how the chains are formed, we will take some pairs from 
different programs having the same chain number (1 in the example). 
The following four programs contain .LINK or .LNKEND pseudo-ops for 
the chain numbered 1. After each program, the word pair generated in 
the Type 12 block appears. 

1. 

NOTES 

When LINK stores an address that 
Type 12 REL Block, only the 
receiving location is written. 
store another value in the left 
be overwritten. 

results from a 
right half of the 

You can safely 
half; it will not 

2. Only one fixup by a Type 2, 10, 11, or 12 Block is 
allowed for a given field. (There can be separate 
fixups for the left and right halves of the same 
word. ) 

3. Fixups are not necessarily performed in the order 
LINK finds them. 

A-22 January 1985 



REL BLOCKS 

Example 

TITLE MODO 

TAGO: BLOCK 1 

.LNKEND 1,TAGO 

END 

1=======================================================1 
1 -1 1 

1-------------------------------------------------------I 1 0 1 Value of TAGO 1 
1=======================================================1 

TITLE MODI 

TAGI: BLOCK 1 

.LINK I,TAGI 

END 

1=======================================================1 
1 1 1 

1-------------------------------------------------------I 
1 a 1 Value of TAGl 1 

1=======================================================1 

TITLE MOD2 

TAG2: BLOCK 1 

.LINK I,TAG2 

END 

1=======================================================1 
1 I 1 

\-------------------------------------------------------I 
1 a 1 Value of TAG2 1 

/=======================================================1 

A-23 January 1985 



REL BLOCKS 

TITLE MOD3 

TAG3: BLOCK 1 

TAG33: BLOCK 1 

.LINK I,TAG33,TAG3 

END 

1=======================================================1 
1 1 1 
1-------------------------------------------------------I 
1 Value of TAG3 1 Value of TAG33 1 
1=======================================================1 

Suppose we 
a negative 
recognizes 
1. LINK 
the chain. 

load MODO first. The .LNKEND statement for MODO generates 
chain number. LINK sees, the negative chain number (-1) and 
this as the result of a .LNKEND statement for chain number 
remembers the store address (value of TAGO) as the base of 

Next we load MODI. The .LINK statement for MODI does not use the 
third argument, so the chain address is O. LINK sees that this is the 
first entry for chain number 1. Because it is the first entry, LINK 
places a 0 in the store address (value of TAGl). LINK then remembers 
the value of TAGI for use in the next chain entry. (If the chain 
address is 0, as it is in MODI, LINK remembers the store address; if 
the chain address is nonzero, LINK remembers the chain address.) 

Next we load MOD3. The .LINK statement in MOD3 uses a third argument 
(TAG3), therefore, the value of TAG3 is used as the chain address. 
LINK places its remembered address (value o£ TAGI) in the store 
address (value of TAG33). Because the chain address (value of TAG3) 
is nonzero, LINK remembers it for the next entry. 

Finally we load MOD2. Like MODI, the .LINK statement for MOD2 does 
not take a third argument, and thus the chain address is O. LINK 
places the remembered address (value of TAG3) in the store address 
(value of TAG2). Because the chain address is 0, LINK remembers the 
store address (value of TAG2). 

At the end of loading, LINK places the last remembered address (value 
of TAG2) at the address (value of TAGO) given by the .LNKEND statement 
in MODO. 

A-24 January 1985 



REL BLOCKS 

The results of the chaining can b~ seen in the following diagram of 
the loaded core image: 

TAGO: 

I 
I 

MODO 

IValue of TAG2 
I 
I 
I 

I 
I 

MOD3 

TAG3: I 
I 

TAG33: IValue of TAGI 
I 

I 
I 

MOD2 

TAG2:IValue of TAG3 
I 
I 
I 

I 
I 

TAGI: I 
I 
I 
I 

MODI 

o 

Note that the order of loading for modules with .LINK statements is 
critical. (A module containing a .LNKEND statement can be loaded any 
time; its treatment is not affected by the order of loading.) 

For example, if we load the four programs in the order MOD2, MOD3, 
MODO, MODI, we get a different resulting core image: 

I 
I 

MODO 

TAGO: IValue of TAGI 
I 
I 
I 

I 
I 

TAG3: I 
I 

MOD3 

TAG33: I Val ue of TAG2 
I 

I 
I 

MODI 

TAGI: IValue of TAG3 
I 
I 
I 

I 
I 

TAG2: I 
I 
I 
I 

MOD2 

o 

A-25 January 1985 



I 

I 

REL BLOCKS 

Block Type 14 (Index) 

/=======================================================/ 
/ 14 / 177 / 

/-------------------------------------------------------I 
/ Sub~Block / 
/ . . / 

/--------------------------~----------------------------I 

/-------------------------------------------------------I 
/ I 
/ Sub-Block I 
/ 1 

/-------------------------------------------------------I 
/ -1 1 Ptr To Nxt ReI Blk Typ 14 1 
/=======================================================/ 

Each sub-block is of the form: 

1===============================;=======================1 
/ Index-Version Number I Count of Symbols 1 

/-------------------------------------------------------I 
1 Radix-50 Symbol / 

/-------------------------------------------------------I 

/-------------------------------------------------------I 
/ Radix-50 Symbol 1 

/-------------------------------------------------------I 
1 Pointer to Module Containing Entry Symbols 1 

1=======================================================/ 

Block Type 14 contains a list of all entry points in a library 
produced by MARLIB. The block contains 177 (octal) data words (with 
no relocation words); if the index requires more entries, additional 
Type 14 blocks are used. If 177 data words are not needed, zero words 
pad the block to a length of 177. -1 indicates the end of the 
sub-block information. 

The Type 14 block consists of a header word, a number of sub-blocks, 
and a trailer word containing the disk block address of the next Type 
14 block, if any. Each disk block is 128 words. 

Each sub-block is like a Type 4 block, with three differences: 

1. The sub-block has no relocation words. 

2. The last word of the sub-block points to the module that 
contains the entry points listed in the sub-block. The right 
half of the pointer has the disk block number of the module 
within the file; the left half has the number of words (in 
that block) that precede the module. If there is no next 
block, then the word after the last sub-block is -1. 

3. The index-version number is used so that old blocks can still 
be loaded, even if the format changes in the future. 

A-26 January 1985 



REL BLOCKS 

Block Type 15 (ALGOL) 

1=======================================================1 
1 15 1 Short Count 1 

I------------------~------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 1 Load Address 1 Length 1 
1-------------------------------------------------------I 1 Chain Address . 1 Offset 1 
1-------------------------------------------------------I 

. 
1-------------------------------------------------------I 1 Chain Address 1 Offset 1 
1=======================================================1 

Block Type 15 is used to build the special ALGOL OWN block. 

The first data word contains the length of the module's OWN block in 
the right half, and the desired load address for the current OWN block 
in the left half. Each following word contains an offset for the 
start of the OWN block in the right half, and the address of a 
standard righthalf chain of requests for that word of the OWN block in 
the left half. 

When LINK sees a REL Block Type 15, it allocates a block of the 
requested size at the requested address. The length of the block is 
then placed in the left half of the first word, and the address of the 
last OWN block seen is placed in the right half. If this is the first 
OWN block seen, 0 is stored in the right half of the first word. 

The remaining data words are then processed by adding the address of 
the first word of the OWN block to each offset, and then storing the 
resulting value in all the locations chained together, starting with 
the chain address. 

At the end of loading, LINK checks to see if the symbol %OWN is 
undefined. If it is undefined, then it is defined to be the address 
of the last OWN block seen. In addition, if LINK is creating an ALGOL 
symbol file, the file specification of the symbol file is stored in 
the first OWN block loaded. This file specification must be standard 
TOPS-I0 format and can include (in order): device, file name, file 
extension, and project-programmer number. 

A-27 January 1985 



REL BLOCKS 

Block Type 16 (Request Load) 

1=======================================================1 
1 16 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word (Zero) 1 

I----------------------------~--------------------------I 
1 SIXBIT Filename 1 

1-------------------------------------------------------I 
1 Project-Programmer Number 1 

1-------------------------------------------------------I 
1 SIXBIT Device 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 SIXBIT Filename 1 

1-------------------------------------------------------I 
1 Project-Programmer Number 1 

1-------------------------------------------------------I 
1 SIXBIT Device 1 

1=======================================================1 

Block Type 16 contains a list of files to be loaded. The data words 
are arranged in triplets; each triplet contains information for one 
file: file name, project-programmer number, and device. The file 
extension is .REL. 

LINK saves the specifications for the files to be loaded, discarding 
duplicates. At the end of loading, LINK loads all specified files 
immediately before beginning library searches. 

The MACRO pseudo-op .REQUIRE generates a Type 16 REL Block. 

A-28 January 1985 



REL BLOCKS 

Block Type 17 (Request ~ibrary) 

1=======================================================1 
1 17 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word (Zero) 1 

1-------------------------------------------------------I 
1 SIXBIT Filename 1 

I-------------------------------~-----------------------I 
1 Project-Programmer Number 1 

1-------------------------------------------------------I 
1 SIXBIT Device 1 

1-------------------------------------------------------I 

I----------------------~--------------------------------I 
1 SIXBIT Filename 1 

1-------------------------------------------------------I 
1 Project-Programmer Number 1 

1-------------------------------------------------------I 
1 SIXBIT Device 1 
1=======================================================1 

Block Type 17 is identical to Block Type 16 except that the specified 
files are loaded in library search mode. The specified files are 
searched after loading files given in Type 16 blocks, but before 
searching system or user libraries. 

The MACRO pseudo-op .REQUEST generates a Type 17 REL Block. 

A-29 January 1985 



REL BLOCKS 

Block Type 20 (Common) 

1===========================7===========================1 
1 20 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word (Zero) 1 

1-------------------------------------------------------I 
1 Radix-50 Symbol 1 

1-------------------------------------------------------I 
1 Length of Labeled Common Block 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Radix-50 Symbol 1 

1-------------------------------------------------------I 
1 Length of Labeled Common Block 1 

1=======================================================1 

Block Type 20 allocates labeled COMMON areas. The label for unlabeled 
COMMON is ".COMM.". If a Block Type 20 appears in a REL file, it must 
appear before any other block that causes code to be loaded or storage 
to be allocated in the core image. 

The data words are arranged in pairs. The first word of each pair 
contains a COMMON name in Radix-50 format (the four-bit code field 
must contain 60). The second contains the length of the area to be 
allocated. 

For each COMMON entry found, LINK first determines whether the COMMON 
area is already allocated. If not, LINK allocates it. If the area 
has been allocated, the allocated area must be at least as large as 
the current requested allocation. 

COMMON blocks can be referenced from other block types as standard 
globally defined symbols. However, a COMMON block must be initially 
allocated by a REL Block Type 20, by a REL Block Type 6 (for blank 
COMMON), or by the /COMMON switch to LINK. Any attempt to initially 
define a COMMON block with a standard global symbol definition causes 
the LNKSNC error when the redefining Block Type 20 is later seen. 

A-30 January 1985 



REL BLOCKS 

Block Type 21 "(Sparse Data) 

I======================z====.===========================1 
1 21 1 . Short Count 1 
I----------------------~--------------------------------I 
1 Relocation Word (Zero) 1 

I--------------------~----------------------------------I 
1 1 
1 Sub-Block 1 

1 1 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 1 
1 Sub-Block 1 

1 1 
1=======================================================1 

Each sub-block is of the form: 

1=======================================================1 
1 Long Count 1 Address 1 

1-------------------------------------------------------I 
1 Data Word 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Data Word 1 

1=======================================================1 

Block Type 21 contains data to be loaded sparsely in a large area. 
The first word of each sub-block contains the long count for the 
sub-block in the left half, and the address for loading the data words 
in the right half. 

If the first four bits of the first data word of each sub-block are 
1100 (binary) then the word is assumed to be a Radix-50 symbol of type 
60; in this case the left half of the second word is the sub-block 
count, and the right half plus the value of the symbol is the load 
address. 

A-31 January 1985 



REL BLOCKS 

Block Type 22 (PSECT Origin) 

1=======================================================1 
1 22 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 (SIXBIT PSECT Name) or (PSECT Index) 1 

1-------------------------------------------------------I 
1 PSECT Origin 1 

1=======================================================1 

Block Type 22 contains the PSECT origin (base address). 

Block Type 22 tells LINK to set the value of the relocation counter to 
the value of the counter associated with the given PSECT name. All 
following REL blocks are relocated with respect to this PSECT until 
the next Block Type 22 or 23 is found. 

When data or code is being loaded into this PSECT, all relocatable 
addresses are relocated for the PSECT counter. 

MACRO generates a Block Type 22 for each .PSECT and .ENDPS pseudo-op 
it processes. These Type 22 blocks are interleaved with the other 
blocks to indicate PSECT changes. A Type 22 block is also generated 
at the beginning of each symbol table to show to which PSECT the table 
refers. 

A-32 January 1985 



REL BLOCKS 

Block Type 23 (PSECT End Block) 

1=======================================================1 
1 23 1 Short Count 1 
I-----------------------------~-------------------------I 
1 PSECT Index 1 

1-------------------------------------------------------I 
1 PSECT Break 1 

1=======================================================1 

Block Type 23 contains information about a PSECT. 

The PSECT index uniquely identifies the PSECT within the module being 
loaded. The Type 24 block assigns the index. 

The PSECT break gives the length of the PSECT. This break is relative 
to the zero address of the current module, not to the PSECT origin. 

A-33 January 1985 



I 

REL BLOCKS 

Block Type 24 (PSECT Header Block) 

1=======================================================1 
1 24 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 PSECT Name (SIXBIT) 1 

1-------------------------------------------------------I 
1 Attributes 1 PSECT Index 1 

1-------------------------------------------------------I 
1 PSECT Origin 1 

1=======================================================1 

Block Type 24 contains information concerning a specified PSECT. The 
first word contains the block type number and the number of words 
associated with the block. The second word contains the relocation 
information. The third word contains the PSECT name in SIXBIT. The 
fourth word is the PSECT origin specified for this module. 

Bit Interpretation MACRO .PSECT Keyword 

13 PSECT is page-aligned. PALIGNED 

14 Concatenate parts of CONCATENATE 
PSECTs seen in distinct modules. 

15 Overlay parts of PSECTs OVERLAY 
seen in distinct modules. 

16 Read-only RONLY 

17 Read and write RWRITE 

LINK must find a Type 24 block for a PSECT before it finds the index 
for that PSECT. {MACRO generates a complete set of Type 24 blocks for 
all PSECTS in a module before generating Type 2 (Symbol Table) Blocks 
and Type 11 (POLISH) Blocks.) 

A-34 January 1985 



REL BLOCKS 

Block Type 37 (COBOL Symbols) 

1=======================================================1 
1 37 1 Short Count 1 
1-------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Data Word 1 

1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Data Word 1 

1=======================================================1 

Block Type 37 contains a debugging symbol table for COBDDT, the COBOL 
debugging program. If local symbols are being loaded, the table is 
loaded. 

If a REL file contains a Block Type 37, it must appear after all other 
blocks that cause code to be loaded or storage to be allocated in the 
core image. 

This block is in the same format as the Type 1 REL Block. 

A-35 January 1985 



REL BLOCKS 

Block Type 100 (.ASSIGN) 

1=======================================================1 
1 100 1 Short Count 1 

1-------------------------------------------------------I 
1 Relocation Word 1 
I-------------------------~-----------------------------I 
ICode 1 Radix-50 Symbol I 1 

I---------------------------------------------------~---I 
ICode 1 Radix-50 Symbol 2 1 

1-------------------------------------------------------I 
1 Offset 1 

1=======================================================1 

Block Type 100 defines Symbol 1 (in the diagram above) as a new global 
symbol with the current value of Symbol 2, and then increases the 
value of Symbol 2 by the value of the given offset. 

NOTE 

Symbol 2 must be completely defined when the Block 
Type 100 is found. 

A-36 January 1985 



REL BLOCKS 

Block Type 776 (Symbol File) 

1=======================================================1 
1 776 1 Long Count 1 

1-------------------------------------------------------I 
1 .JBSYM-Style Symbol Table Pointer 1 

1-------------------------------------------------------I 
1 .JBUSY-Style Symbol Table Pointer 1 

1-------------------------------------------------------I 
1 Data Word 1 

I-----------------------~-------------------------------I 

1-------------------------------------------------------I 
1 Data Word 1 
1=======================================================1 

Block Type 776 must begin in the first word of the file, if it occurs 
at all. This block type shows that the file is a Radix-50 symbol 
file. 

The data words form a Radix-50 symbol table for DDT in the same format 
as the table loaded for the switches /LOCALS/SYMSEG or the switch 
/DEBUG. 

A-37 January 1985 



REL BLOCKS 

Block Type 777 (Universal File) 

1=======================================================1 
1 777 . 1 Long Count 1 

1-------------------------------------------------------I 
1 Data Word 1 

I-----------------------~-------------------------------I 

1-------------------------------------------------------I 
1 Data Word 1 

1=======================================================1 

Block Type 777 is included in a universal (UNV) file that is produced 
by MACRO so that LINK will recognize when a UNV file is being loaded 
inadvertently. When a Block Type 777 is encountered, LINK produces a 
?LNKUNS error. 

A-38 January 1985 



REL BLOCKS 

Block Type 1000 (Ignored) 

1=======================================================1 
1 1000 I· Long Count 1 
1-------------------------------------------------------I 
1 Data Word 1 

I-------------------~-----------------------------------I 

1-------------------------------------------------------I 
1 Data Word 1 
1=======================================================1 

Block Type 1000 is ignored by LINK. 

A-39 January 1985 



I 

REt. BLOCKS 

Block Type 1001 (Entry) 

1=======================================================1 
1 1001 1 Long Count 1 
1-------------------------------------------------------I 
1 Symbol 1 

I--------------------------~----------------------------I 

1-------------------------------------------------------I 
1 Symbol 1 

1=======================================================1 

Block type 1001 is used to declare symbolic entry points. Each word 
contains one SIXBIT symbol. This block is similar in function to 
block type 4. 

A-40 January 1985 



REL BLOCKS 

Block Type 1002 (Long Entry) 

1===============3:==:==============~====================1 
1 1002 1 Long Count 1 
1---------------------··---------------------------------I 
I Symbol Name 1 

I-------------------------------~-----------------------I 

. 
1-------------------------------------------------------I 
1 Symbol Name I 

I=======:===============================~===============1 

Block Type 1002 is used to declare a s'ymbolic entry point with a long 
name in SIXBIT. The count reflects the symbol length in words. 

LINK V6.0 A-40.l April 1986 



REL BLOCKS 

Block Type 1~~3 (Long Title) 

======:==:===========~===============~================= 1 1~~3 1 .'. Long Count 1 
1-----------------------------------------------------1 1 1 1 Count of Title words 1 
1--------------_·_-------------------------------------I 1 Program Title 1 
1-----------------------------------------------------1 1 Additional Program Title 1 
1-----------------------------------------------------1 1 Additional Program Title 1 
1-----------------------------------------------------1 

. 
1-----------------------------------------------------1 1 1 Count of 1 1 2 1 ASCII Comment Words 1 
1-----------------------------------------------------1 1 More Comment Words 1 
1-----------------------------7-----------------------1 1 More Comment Words 1 
I-----------------------------~-~---------------------1 

1-----------------------------------------------------1 1 3 1 Count of Compiler Words 1 
1-----------------------------------------------------1 1 Compiler Code 1 CPU Bits 1 
1-----------------------------------------------------1 
1 Compiler Name (in ASCII) 1 
1----------------_·_-----------------------------------I 
1 Additional Compiler Name 1 

1-----------------------------------------------------1 
1 Additional Compiler Name 1 

1-----------------------------------------------------1 

1----------------------------------------------------1 
1 4 1 0 1 

1----------------------------------------------------1 
1 Compile Date and Time 1 

1----------------------------------------------------1 
1 Compiler Version Number 1 

1----------------------------------------------------1 

LINK V6.0 A-40.2 April 1986 



REL BLOCKS 

Block Type 1~~3 (Cont.) 

================~=======:====================~====== 

5 

Device Name 

SIXBIT UFD 

6 

TOPS-l~ File Name 

File Extension 

7 Number of SFDs 

SIXBIT SFD 1 

SIXBIT SFD 2 

. 
1----------------------------------------------------1 1 1~ 1 Count of TOPS-1~ File 1 1 1 Spec Words (in ASCII) 1 
1----------------------------------------------------1 
1 TOPS-l~ File Spec I 

1----------------------------------------------------1 
1 TOPS-l~ File Spec 1 
1----------------------------------------------------1 

. 
1-----------------------------------------------------1 
1 11 1 ~ 1 
1----------------------------------------------------1 
1 Source Version Number 1 

1----------------------------------------------------1 
1 Date and Time 1 
I=================~~====================~============I 

Block Type 1~03 is used to declare long title symbols in SIXBIT and to 
furnish other information about the source module. This block type 
contains the information that LINK prints in the map file. 

Block Type l~03 consists of sub-blocks 1 through 11 (octal). The 
Title sub-block must be the first sub-block specified and cannot be 
omitted. You can omit other sub-blocks, but the sub-blocks must 
remain in numerical order. 

The Program Title is a one word title from 1 to 72 SIXBIT characters 
long. You can specify a title of 0, and LINK defaults to .MAIN, but 
you may want to enter a more specific title. 

For the compiler code and the CPU code, refer to the explanation of 
Block Type 6, where these codes are listed. 

LINK V6.0 A-4~.3 April 1986 



REL BLOCKS 

Sub-blocks 5 through 7 contain the device name, UFD, and SFD where the 
file resides. 

In sub-block 10, the TOPS-10 file specification must be specified in 
the following format: 

[dir]file.ext 

This specification identifies the source file. LINK outputs this file 
specification to the map file in ~he order you enter it. 

The Time and Date are in TOPS-10 format. The date is derived from a 
code that is given by the following formula: 

code = 31[12(year-1964)+(month-l)]+(day-l) 

You can obtain the current day, month, and year using the formulas: 

day = mod(code,31)+1 
month = mod(code/31,12)+1 
year = (code/372)+1964 

The Time is the time in milliseconds that has elapsed since midnight. 

See the TOPS-10 Monitor Calls Manual for additional information on 
specifying date and time. 

LINK V6.0 A-40.4 April 1986 



REL BLOCKS 

Block Type lBB4 (Byte Initialization) 

I=======~==============================================1 1 10B4 1 Long Count 1 
1------------------------------------------------------I 
1 Relocation Word 1 

1-------------------------------------------------------I 
1 Byte Count 1 

1------------------------------------------------------I 
1 Byte Pointer 1 

1------------------------------------------------------I 
1 Byte String 1 

1------------------------------------------------------I 

. 
The above Block Type lBB4 format is used to move a character string 
into static storage. This format uses old style relocation. 

The byte count is the number of bytes in the string. The byte pointer 
is relocated and used to initialize a string in the user's program. 

A second format for Block Type l0B4 follows: 

===========:==============================:============ 
10B4 Long Count 

Relocation Word 

Global Symbol 

Byte Count 

Byte Pointer 

Byte String 

In this format, the global symbol (in SIXBIT) is used to relocate the 
byte pointer. The symbol must be defined when this REL block is 
encountered. 

LINK V6.B A-4B.5 April 1986 



REL BLOCKS 

Block Types 1m1m - 1m37 (Code Blocks) 

Block Types 1010 through 1037 are similar in function to Block Type 1. 
They contain code and data to be loaded. These blocks also contain 
relocation bytes that permit inclusion of PSECT indexes local to the 
module. For programs that use PSECTs with many inter-PSECT 
references, this permits a substantial decrease in the size of the REL 
files. The number of PSECTs that can be encoded in this manner is 
limited by the size of the relocation byte. A set of parallel code 
blocks differing only in the size of the relocation byte permits the 
compiler or assembler to select the most space efficient 
representation according to the number of PSECTs referenced in a given 
load module. 

This set of blocks is divided by the type of relocation: 

Right Relocation 

Left/Right Relocation 

Thirty-bit Relocation 

LINK V6.0 

Block Types 1010 - 1017 

Block Types 1020 - 1027 

Block Types 1030 - 1037 

A-40.6 April ~986 



REL BLOCKS 

Block Type 1042 (Request Load for SFDs) 

/=======================================================1 
1042 1 Long Count 1 

-------------------------------------------------------I 
Device / 

-------------------------------------------------------/ 
SIXBIT Filename 1 

-------------------------------------------------------I 
File Extension 1 Directory Count 1 

-------------------------------------------------------/ 
Project-Programmer Number / 

-------------------------------------------------------I 
SFDl 1 

-------------------------------------------------------I 
SFD2 1 

-------------------------------------------------------I 

Block Type 1042 contains a list of files to be loaded. It is similar 
to blocks of Type 16, but it supplies TOPS-10 sub-file directories for 
the files being requested. The first three data words (device, file 
name, and extension) are required. The right half of the third word 
(directory count) specifies the number of directory levels that are 
included. For example, the directory [27,5434,SFD1,SFD2] would have a 
directory count of 3. 

LINK saves the specifications for the files to be loaded, discarding 
duplicates. LINK loads all specified files at the end of loading, and 
immediately before beginning library searches. 

A-41 January 1985 

I 



I 

REL BLOCKS 

Block Type 1043 (Request Library for SFDs) 

=======================================================1 
1043 1 Long Count 1 

Device 

SIXBIT Filename 

File Extension Directory Count 

Project-Programmer Number 

SFDI 

SFD2 

Block Type 1043 specifies the files to be searched as libraries. It 
is similar to Type 17 Blocks, except that it provides TOPS-I0 sub-file 
directories. The first three data words (device, file name, and 
extension) are required. The right half of the third word (directory 
count) specifies the number of directory levels that are included. 
For example, the directory [27,5434,SFDl,SFD2] would have a directory 
count of 3. 

The specified files are searched after requested files are loaded, but 
before user and system libraries are searched. 

A-42 January 1985 



REL BLOCKS 

Block Type 104·~ (ALGOL Symbols) 

1=======================================================1 
1 1044 1 Long Count 1 
1-------------------------------------------------------I 
1 Data Word 1 

I-----------------------------~-------------------------I 

. 
1-------------------------------------------------------I 
1 Data Word 1 

1=======================================================1 

Block Type 1044 contains a debugging symbol table for ALGDDT, the 
ALGOL debugging program. 

If an ALGOL main program has been loaded, or if you have used the 
/SYFILE:ALGOL switch, LINK writes the data words into a SYM file. In 
addition, if any Type 15 (ALGOL OWN) REL blocks have been seen, LINK 
stores the file specification of the file into the first OWN block 
loaded. 

NOTE 

If you have specified the /NOSYMBOLS switch, or if you 
have specified the /SYFILE switch with an argument 
other than ALGOL, then LINK ignores any Type 1044 
blocks found. 

A-43 January 1985 

I 



I 

REL BLOCKS 

Block Type 1045 (Writable Links) 

1=======================================================/ 
1 1045 1 Long Count / 
1-------------------------------------------------------I 
1 Flags / 
1-------------------------------------------------------I 
1 Symbol / 
1-------------------------------------------------------I 
1 Symbol / 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Symbol / 
/=======================================================/ 

Block type 1045 declares as writable either the 
current module or the links containing the 
specified symbols or both. This block type must 
block declarations (Types 20 or 6) in a module. 

link containing the 
definitions of the 

follow any common 

The flag word indicates which links are writable. If bit one is set 
then the link containing the current module and the links containing 
the definitions of the specified symbols are writable. If bit one of 
the flag word is not set then the link containing the current module 
is not writable, but the links containing the specified symbols are 
writable. All unused flag bits are reserved and should be zero. 

Any symbols specified in a block of Type 1045 must be defined in the 
path of links leading from the root link to the current link. A 
module cannot declare a parallel or inferior link to be writable. 

If the symbol name contains six or fewer characters it is represented 
in a single word, left justified, with the following format: 

/=======================================================/ 
1 SIXBIT Symbol Name / 
1=======================================================/ 

A-44 January 1985 



REL BLOCKS 

If the symbol name contains more than six characters it is represented 
in the following format: 

Bits 
o 5 6 29 30 35 
/=======================================================/ 
/ 0 / Reserved (0) / Long Count I 
/-------------------------------------------------------I 
/ Word 1 of SIXBIT Symbol Name / 
/-------------------------------------------------------I 
/ Word 2 of SIXBIT Symbol Name 1 

/-------------------------------------------------------I 

1-------------------------------------------------------I 
/ Word (N-l) of SIXBIT Symbol Name 1 

/=======================================================/ 

The first six bits of a long symbol are always O. This distinguishes 
a long symbol name from a single word symbol name. N is the length of 
the symbol name including the header word. The remaining words 
contain the symbol name in SIXBIT, six characters to a word, left 
justified. 

A-45 January 1985 

I 



REL BLOCKS 

Block Type 1059 (Long PSECT Name Block) 

o 17 18 35 
I====================:=====~:===========================1 
1 1050 1 Long Count 1 
1-------------------------------------------------------I 
1 Reserved for DIGITAL, MBZ 1 Index 1 
1-------------------------------------------------------I 
I SIXBIT Symbol Name 1 

1-------------------------------------------------------I 
1 Attributes 1 
1--------------------------------------------------------I 
1 Origin (Optional) 1 
1==============================================:=========1 

where SIXBIT Symbol Name may be either a word of up to six SIXBIT 
characters, or the following block. 

o 5 6 29 30 35 
I===============================================~=======1 
1 0 1 Reserved for DIGITAL, MBZ 1 Long Count 1 
1-------------------------------------------------------I 
1 First word of SIXBIT Symbol Name 1 
1-------------------------------------------------------I 
1 Second word of SIXBIT Symbol Name 1 
1-------------------------------------------------------I 

. 
1-------------------------------------------------------I 
1 Nth word of SIXBIT Symbol Name 1 
1=======================================================1 

Block Type 1059 creates a PSECT with the given name, if none currently 
exists. It also assigns a unique index number to the PSECT. This 
index is binding only in the current module. LINK clears PSECT 
indexes at the end of each module. PSECT indexes in any given module 
must be declared in consecutive order starting at index 1. 

Block Type 1050 also assigns attributes to a PSECT and specifies the 
PSECT's origin address. The attributes that can be assigned are: 

Bit 

11 

12 

13 

LINK V6.0 

Description 

PSECT is confined to one section. If this bit is set, 
LINK gives an error if the PSECT overflows. You can 
set Bit 11 or Bit 12, but not both. Bit 11 is the 
default. There is no equivalent MACRO .PSECT keyword. 

PSECT is in a nonzero section. If this bit is set, 
LINK gives a warning if the PSECT is placed in Section 
0. There is no equivalent MACRO .PSECT keyword. 

PSECT is PAGE-ALIGNED. 
MACRO .PSECT keyword. 

A-46 

PALIGNED is the equivalent 

April 1986 



REL BLOCKS 

Bit Description 

14 CONCATENATED parts of PSECTs seen in distinct modules. 

15 

16 

17 

You can set Bit 14 (CONCATENATED) or Bit 15 (OVERLAID), 
but not both. The CONCATENATE and OVERLAID attributes 
are mutually exclusive. These attributes span modules; 
so if one module sets an attribute and a later module 
sets a mutually exclusive attribute, LINK issues the 
warning: 

%LNKCOE Both CONCATENATE and 
specified for psect [name]. 

OVERLAY attributes 

If neither is set, CONCATENATED is the default, and a 
warning message is not returned if subsequent pieces of 
the PSECT are marked OVERLAID. 

CONCATENATED is the equivalent MACRO .PSECT keyword. 

OVERLAID parts of PSECTs seen in distinct modules. 
OVERLAID is the equivalent MACRO .PSECT keyword. 

This PSECT must be READ-ONLY. 

You can set Bit 16 (READ-ONLY) or Bit 17 (WRITABLE), 
but not both. The READ-ONLY and WRITABLE attributes 
are mutually exclusive. These attributes span modules; 
so if one module sets an attribute and a later module 
sets a mutually exclusive attribute, LINK issues the 
warning: 

%LNKRWA Both READ-ONLY and 
specified for psect [name]. 

WRITABLE attributes 

If neither is set, WRITABLE is the default, and a 
warning message is not returned if subsequent pieces of 
the PSECT are marked READ-ONLY. 

RONLY is the equivalent MACRO .PSECT keyword. 

This PSECT must be WRITABLE. RWRITE is the equivalent 
MACRO .PSECT keyword. 

All other bits in the Attributes word must be 0. 

The origin specified in this block is absolute. 

At least one Block Type 1050 (or the related Block Type 24) is 
required for each PSECT being loaded, and this block must be loaded 
prior to any other blocks that reference its PSECT (that is, use the 
unique index number). 

LINK V6.0 A-47 April 1986 



REL BLOCKS 

Block Type 1051 (Set Current PSECT) 

I=======================:=:=====:~:=====================1 
1 1051 1 Long Count 1 
1-------------------------------------------------------I 
1 Reserved for DIGITAL, MBZ 1 Index 1 
1===========================:===========================1 

Block Type 1051 resets the "current PSECT", against which LINK 
relocates subsequent REL blocks if no PSECT is explicitly specified. 

LINK V6.0 A-48 April 1986 



REL BLOCKS 

Block Type 1052 (PSECT End) 

I=========~=====================::==:===================1 
1 1052 1 Long Count 1 
1-------------------------------------------------------I 
1 MBZ 1 PSECT Index Number 1 
1-------------------------------------------------------I 
1 PSECT Break 1 
1-------------------------------------------------------I 

. 
1-------------------------------------------------------I 
1 MBZ 1 PSECT Index Number 1 
1-------------------------------------------------------I 
1 PSECT Break 1 
1=======================================================1 

Block Type 1052 allocates additional space for a given PSECT. This 
space is located between the last address in the PSECT containing data 
and the address given by the PSECT break. A block of Type 1052 can 
contain more than one pair of PSECT indexes and breaks. 

A module must contain a block of Type 24 (PSECT Name) or Type 1050 
(Long PSECT Name) with the given PSECT index before a block of Type 
1052 is generated. If a given PSECT has more than one Block Type 1052 
in a single module, the block with the largest break address is used. 

The break is interpreted as being relative to the PSECT's origin in 
the current module. 

LINK V6.0 A-49 April 1986 



REL BLOCKS 

Block Type 1~6~ (Trace Block Data) 

=======================================================1 
106~ 1 Long Count 1 

-------------------------------------------------------I 
SIXBIT Edit Name 1 

Active Code Last Changer 

Creator Code 15-Bit Date Created 

Installer Code 15-Bit Date Installed 

Reserved 

Edit Count PCO Group Count 

\ / 
Associated Edit Names and Codes 

/ \ 
1 1 
1-------------------------------------------------------I 
1 1 
\ / 

Program Change Order Groups 
/ \ 
1 1 
I===============================~=======================1 

Block Type 1~6~ contains data used by the MAKLIB program. 
ignores this block type. 

LINK 

A-5~ April 1986 



REL BLOCKS 

Block Type 1979 (Long Symbol Names) 

I=====:=~:===================~======:================================1 
1 1070 1 Long Count 1 
I-----------------------------------~--------------------------------1 
1 Code 1 0 1 N Ipi R 1 V 1 0 1 
1--------------------------------------------------------------------1 
1 Left PSECT index 1 Right PSECT index 1 
1--------------------------------------------------------------------1 
1 Value 1 

1--------------------------------------------------------------------1 
1 Name 1 

1--------------------------------------------------------------------1 
\ / 

n Additional Name Words 
/ \ 
I------------------------------~-------------------------------------1 
\ / 

v Additional Value Words 
/ \ 
I=====~=~============================================================1 

This block defines a long symbol. A symbol defined with this block 
can: 

o be written to the DDT symbol table. Symbols longer than 6 
characters are truncated when output to the DDT symbol table. 

o be written to the map file if requested. 

o have its value relocated as specified. 

o resolve global requests. 

The Long Symbol Name Block is divided into two sections, the basic and 
the extension sections. 

The basic section consists of four words: the flag word, an optional 
PSECT index word, the value word, and name word. 

The Flag word contains information about the type of symbol, the 
length of the symbol name, and relocation. The optional word defines 
the PSECT index. The Value word contains the symbol's value. The 
Name word contains the symbol's name. 

If the name or the value cannot fit in a single word, the block 
contains an extension section that consists of as many words as are 
necessary to accommodate the symbol name and the value. The length of 
the symbol name and value is stored in the Flag word and determines 
how many words are allocated for the long symbol name in the extension 
section. The maximum size of the symbol is 72 characters. In the 
case of a short symbol name, only the basic section is used. 

The following pages provide detailed information on the block. For 
each word, the field, bits, and description is given. 

LINK V6.0 A-51 April 1986 



Field Bits 

Block Type 0-17 

Block Length 18-35 

Field Bits 

Code 0-8 

REL BLOCKS 

Header Word 

Description 

1070 

Number of words used in this block 

Flag Word 

Description 

A nine-bit code field: 

Bit 0 Must Be Zero 

000 Program name 

100 Local symbol definitions 
110 Suppressed to DDT 
120 MAP only 

200 Global symbols complately 
defined by one word 
202 Undefined 
203 Right fixup 
204 Left fixup 
205 Right and left fixups 
206 30-bit fixup 
207 Fullword fixup 
210-217 Suppress to DDT 
220-227 MAP only 

240- Global symbol request for 
247 chain fixup 

240 Ignored (no fixup) 
241 Undefined 
242 Undefined 
243 RH fixup 
244 LH fixup 
245 Undefined 
246 30-bit fixup 
247 Fullword fixup 

250- Global request for additive 
257 fixups (the value of x has the 

same meaning as in 0-7 above) 

260- Global request for additive 
267 symbol fixups (the value of x 

has the same meaning as in 0-7 
above) 

300 Block names 

NOTE 

All symbols that require a fixup for their definition 
must have the fixup block immediately following the 
entry. 

LINK V6.0 A-52 April 1986 



Field Bits 

9-10 

N--Name length 11-17 

P--PSECT Flag 18 

R--Relocation Type 19-21 

V--Value field 22-28 

29-35 

PSECT Indexes 

Value Word 

Name Word 

REL BLOCKS 

Description 

Must Be Zero 

If not zero, extended name field of 
length n words is used, so that the 
name occupies n+l words. 

If Bit 18=0, relocate with respect to 
the current PSECT. No PSECT numbers 
are needed. 

If Bit 18=1, relocate with respect to 
the PSECT specified in the next word. 

3-bit relocation type field. 

o Absolute 
1 Right half 
2 Left half 
3 Both halves 
4 30-bit 
5 Fullword 

Number of additional value words if 
value is a long symbol. 

Not used 

PSECT Indexes 

Exists only if Bit 18 equals 1 in the 
Flag word. Contains Left and Right 
PSECT numbers. Bit 0 and Bit 18 of 
this word are zeros. 

Value 

Contains the symbol value. This may 
be relocated as specified by the 
relocation type and the PSECT numbers 
provided. Contains a symbol for 26x 
codes. 

Name 

Contains the symbol name in SIXBIT. 

N Additional Name Words 

Additional name field 

Additional value field 

LINK V6.0 

Optional. It exists only if N > 0. 
It contains the additional characters 
when a long symbol name is used. 

V Additional Value Words 

Optional. It exist only if the V 
field is greater than 0. This field 
contains the additional characters 
when a long symbol name is being 
resolved. The first word contains 
the length of the extended field. 

A-53 April 1986 



REL BLOCKS 

The following fixup rules apply to this block: 

• Only one fixup by a Type 2, 10, 11, 12, 15, 1070, 1072, or 
1120 Block is allowed for a given field. There can be 
separate fixups for the left and right halves of the same 
word. 

• Fixups are not necessarily performed in the order LINK finds 
them. 

• Chained halfword fixups cannot cross section boundaries; they 
wrap around to the beginning of the section. Also, they 
cannot fixup a location that resolves to word zero of a 
section unless it is the only address in the chain. 

• Chairted fixups must be in strict descending address order. 

• A location must contain data before the location can be fixed 
up. 

LINK V6.0 A-54 April 1986 



REL BUOCKS 

Block Type Ig72 (Long Polish Block) 

1===~========~===================~=========3============1 
I 1072 I Long Count 1 

1------------------------,-------------------------------I 
1 Half-Word Polish String 1 

1-------------------------------·-----------------------I 

. 
1=======================================================1 

Long Polish Blocks of Type 1072 define Polish fixups for operations on 
relocatable long external symbols. This Block Type is interpreted as 
a string of l8-bit operators and operands. The block is in Polish 
prefix format, with the store operator at the end of the block. Each 
halfword can contain one of the following: 

• A halfword code in which the first 9 bits contain the data 
length (when applicable) and the second 9 bits contain the 
code telling LINK how to interpret the data that follows. 

• A halfword data or a part of a larger data packet to be 
interpreted by LINK as indicated by the code that immediately 
precedes it. 

• A PSECT index of the format 400000+n. The PSECT index field 
of a long Polish block causes LINK to relocate addresses 
against the PSECT number specified in the Un" of the PSECT 
index 400000+n. 

• A Polish operator. 

Category 

Operand 

NOTE 

Operations are performed in the order in which they 
are encountered. 

Code 

xxxyyy 

000000 
001000 

000001 
001001 

CODE DEFINITIONS 

Data Packet Codes 

Description 

next "xxx+l" halfwords contain data of 
type "yyy" 

halfword - absolute 
fullword - absolute 

halfword - relocatable 
fullword - relocatable 

fullword symbol name in Radix-50 
xxx+l halfwords of symbol name in 
SIXBIT 

NOTE 

You cannot store a symbol in a single halfword. You 
must place the symbol in the first halfword and fill 
the second halfword with zeroes. 

LINK V6.0 A-55 April 1986 



Category 

Operator 

REL BLOCKS 

Code 

Polish Operator Codes 

Description 

000100 
000101 
000102 
000103 
000104 
000105 
000106 
000107 
000110 
000111 
000112 
000113 
000114 
000115 
000116 
000117 
000120 
000121 
000122-00177 

Add 
Subtract 
Multiply 
Divide 
Logical AND 
Logical OR 
Logical shift 
Logical XOR 
One's complement (not) 
Two's complement (negative) 
Count leading zeros 
Remainder 
Magnitude 
Maximum 
Minimum 
Equal relation 
Link 
Defined 
Reserved 

Store Operator Codes 

Store Operator xxx=0 or 1 

For xxx=0 

xxx777-xxx770 

000777 

000776 

000775 

000774 

001777 

001776 

LINK V6.0 

Next two halfwords contain a Radix-50 
symbol to be resolved. 

Chained fixup 
addresses. Next 
contain the start 
chain. 

with relocatable 
xxx+1 halfwords 
address of the 

Right half chained fixup with 
relocatable address. Next halfword 
contains a relocatable address. 

Left half chained fixup with 
relocatable address. Next halfword 
contains a relocatable address. 

30-bit chained fixup with relocatable 
address. Next halfword contains a 
relocatable address. 

Fullword chained fixup with 
relocatable address. Next halfword 
contains a relocatable address. 

Right half chained fixup with 
relocatable address. Next fullword 
contains a relocatable address. 

Left half chained fixup with 
relocatable address. Next fullword 
contains a relocatable address. 

A-56 April 1986 



PSECT index 

1211211775 

1211211774 

xxx767-xxx764 

121121121767-121121121764 

1211211767-1211211764 

xxx757-xxx754 

xxx757 
xxx756 
xxx755 
xxx754 

xxx747-xxx7121121 

4 121121 121121 121 l2I+n 

REL BLOCKS 

3121-bit chained fixup with relocatable 
address. Next fullword contains a 
relocatable address. 

Fullword chained fixup with 
relocatable address. Next halfword 
contains a relocatable address. 

Chained fixups with absolute 
addresses. 

Chained fixup with absolute address. 
Next halfword contains an absolute 
address. 

Chained fixup with absolute fullword 
address. Next two halfwords contain 
absolute address. 

Symbol fixup. For 1<=xxx<=377 the 
next xxx+l halfwords contain a SIXBIT 
symbol name to be resolved. 

Right half symbol fixup. 
Left half symbol fixup. 
3121-bit symbol fixup. 
Ful1word symbol fixup. 

Not defined 

PSECT index for PSECT N. 

The following fixup rules apply to this block: 

• Only one fixup by a Type 2, 1121, 11, 12, 15, 11217121, 112172, or 
112121 Block is allowed for a given field. There can be 
separate fixups for the left and right halves of the same 
word. 

• Fixups are not necessarily performed in the order LINK finds 
them. 

• Chained halfword fixups cannot cross section boundaries; they 
wrap within a section. Also, they cannot fixup a location 
that resolves to word zero of a section unless it is the only 
address in the chain. 

• Chained fixups must be in strict descending address order. 

• A location must contain data before the location can be fixed 
up. 

LINK V6.121 A-57 April 1986 



REL BLOCKS 

Block Type l~74 (Long Common Name) 

1=======================================================1 
1 1~74 1 Long Count 1 
1-------------------------------------------------------I 1 PSECT Index 1 Symbol Length 1 
1-------------------------------------------------------I 
1 Common Block Length 1 

1-------------------------------------------------------I 
1 Symbol 1 
1 (More Symbol) 1 
===================================================~====== 

Block Type 1~74 defines a long COMMON name. 

LINK V6.m A-58 April 1986 



REL BLOCKS 

Block types 1129-1127 (Argument Descriptor Blocks) 

I=====:====================~=~===:====================== 
1 1120 - 1127 1 Long Count 
1-------------------------------------------------------

N-Bit Byte Relocation Information 

Argument Block Address or 0 

Associated Call Address or 0 

Loading Address or 0 

Length of Function Name (in bytes) 

Function Name (ASCIZ) 

. 
1-------------------------------------------------------I 1 Flag Bi ts 1 Argument Count 1 
1-------------------------------------------------------I 
1 First Argument's Primary Descriptor 1 

1-------------------------------------------------------I 
1 First Argument's Secondary Descriptor 1 

1-------------------------------------------------------I 
1 Second Argument's Primary Descriptor 1 

1-------------------------------------------------------I 
1 Second Argument's Secondary Descriptor 1 

1-------------------------------------------------------I 

. 
1-------------------------------------------------------I 
1 nth Argument's Primary Descriptor 1 

1-------------------------------------------------------I 
1 nth Argument's Secondary Descriptor 1 

1=======================================================1 

A block of this type is generated for the argument list to each 
subroutine call. The subroutine entry point also specifies one block 
with this format, though for the cal lee the argument block address is 
zero. If a descriptor block is associated with an argument list it 
must always follow the loading of the argument list. 

The associated call address is used by LINK in diagnostic error 
messages and its value is determined by the compiler. The argument 
block address is nonzero if the descriptor block is associated with a 
call. In this case the argument block address points to the base of 
the argument block. 

The argument block address, associated call address and the loading 
address are all relocatable. 

The argument descriptors in these type blocks describe the properties 
of each formal (in the case of an entry point) or actual (in the case 
of a call). In either case the name of the associated routine is 
specified as a byte count, that can only be 6 characters long, 
followed by an ASCIZ string. Each primary description is optionally 
followed by a secondary descriptor. 

A-59 April 1986 



REL BLOCKS 

There are five flag bits in the Descriptor Block: 

Bit 

1 

2 

3 

4 

Usage 

If bit 0 is 1 then a difference between the actual 
number of arguments and the expected number of 
arguments is flagged as a warning at load time. If 
bit 0 is 0 no action is taken. 

If bit 1 is 1 then the block is associated with a 
function call. If bit 1 is 0 then the block is 
associated with the function definition. 

If bit 2 is 1 then the descriptor block is loaded 
into user memory at the loading address. This bit 
is ignored. 

If bit 3 is 1 then the cal lee returns a 
the value's descriptor is the last 
specified. 

value and 
descriptor 

If bit 4 is 1, and the caller expects a return 
value, which is not provided by the called function, 
or if the called function unexpectedly returns a 
value, then LINK will issue an error. The severity 
of the error is controlled by the coercion block. 

The format for the argument descriptors is as follows: 

o 

1 

Bit 

2-4 

5 

6-11 

12-17 

18 

19-26 

27-35 

Usage 

(Reserved) 

No update. In a caller block the argument is a 
literal, constant, or expression. In a cal lee block 
the argument won't be modified. 

Passing mechanism 
000 - pass by address 
001 - pass by descriptor 
010 - pass immediate value 
Others - reserved 

Compile-time constant 

Argument type code (see below) 

(Reserved) 

Implicit argument descriptor 

(Reserved) 

Number of secondary descriptors 

A-60 April 1986 



REL BLOCKS 

The argument type codes are as follows: 

Type-Code 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

Usage 

FORTRAN logical 

Integer 

(Reserved) 

Real 

(Reserved) 

36-bit string 

Alternate return (label) 

Double real 

Double integer 

Double octal 

G-floating real 

Complex 

COBOL format byte str ing descr iptor, (for constant 
strings), or FORTRAN character 

BASIC shared string descriptor 

ASCIZ string 

Seven-bit ASCII string 

Secondary descriptors are used to convey information about the length 
of a data object passed as an argument and (in the case of the 
callee's argument descriptor block) whether or not a mismatched length 
is permissible. Secondary descriptors have the following format: 

Bit POSe 

0-2 

3-5 

Usage 

(For callee only) Defines the permissible relationships 
between formal and actual lengths. The values are: 

000 - Any relationships are allowed 
001 - Lengths must be equal 
010 - Actual < formal 
011 - Actual <= formal 
100 - Actual > formal 
101 - Actual >= formal 
110 - Reserved 
III - Reserved 

Length of argument (in words) 

A-61 April 1986 



REL BLOCKS 

Block Type ll3~ (Coercion Block) 

I==========================================~============1 
I 1130 1 Long Count 1 

1-------------------------------------------------------I 
~ Field Code I Action 1 

1-------------------------------------------------------I 
i Formal Attribute 1 Actual Attribute 1 

1-------------------------------------------------------I 
! Field Code 1 Action 1 

\-------------------------------------------------------I 
I Formal Attribute 1 Actual Attribute 1 

1-------------------------------------------------------I 

. 
1-------------------------------------------------------I 1 Field Code 1 Action 1 
1-------------------------------------------------------I 
I Formal Attribute 1 Actual Attribute 1 
1=======================================================1 

Block Type 113~ specifies which data type associations are permissible 
and what action LINK should take if an illegal type association is 
attempted. It may also specify actions to be taken by LINK to modify 
an actual parameter. 

The Coercion Block must be placed before any instance of the 
caller/callee descriptor block in the REL file. If more than one 
coercion block is seen during a load, the last block seen is used for 
type checking. 

If the descriptor block and command strings are not in the same 
section, no error message is given. 

When a caller's argument descriptor block is compared to the 
descriptor block provided by the callee, LINK first checks bit ~ and 
the argument counts of the descriptor block. If bit 0 is set and the 
argument counts differ, a warnlng is given. However, if a byte 
descriptor is not word-aligned, no warning is given. 

Next LINK compares the argument descriptors. 
formal/actual palr is looked up in the internal 
using the information in the coercion block. The 
designates which field of the argument descriptor 
The field codes are defined as follows: 

Field Code· 

o 
1 
2 
3 
4 
5 
6 

Condition 

Check update 
Check passing mechanism 
Check argument type code 
Check if compile-time constant 
Check number of arguments 
Check for return value 
Check length of argument 

A-62 

The particular 
table LINK builds 
item field code 
is being checked. 

April 1986 



REL BLOCKS 

If the fields of the formal/actual pair do not match, LINK searches 
the internal table set up by the coercion block. If the table does 
not specify an action to take in the event of such a mismatch, LINK 
issues an informational message. If the formal/actual pair differs in 
more than one field then LINK takes the most severe action specified 
for the mismatches. 

If an actual/formal pair differ and no coercion block has been seen, 
LINK ignores the difference. If the caller has specified a descriptor 
block but the subroutine has not, or if the subroutine has specified a 
descriptor and the caller has not, LINK does not flag the condition as 
an error and does not take any special action. 

If LINK finds an entry in its internal table for a particular 
actual/formal mismatch, it uses the action code found in the entry to 
select one of the following five possible responses: 

Code (18 Bits) 

1 

2 

3 

4 

5-777776 

777777 

Action 

Informational message 

Warning 

Error 

Reserved for the specific conversion of 
static descriptor pointers (in the argument 
list) into addresses. The descriptor 
pointers are supplied by FORTRAN blocks of 
types 112x. 

NOTE 

The actual conversion process 
involves the following actions: 

• If byte descriptor's P field is 
not word-aligned, issue a warning 
and continue. 

• pick up word address of start of 
string. 

• Put the address of the string 
into the associated argument 
block in place of the address of 
the string descriptor. 

Suppress the message. 

Reserved 

Fatal error 

These messages can be displayed or suppressed. Refer to the 
descriptions of the /ERRORLEVEL and /LOGLEVEL switches. 

A-63 April 1986 



REL BLOCKS 

Block Type 1131 (TWOSEG Redirection Block) 

I======~==============================================1 
1 1131 1 Long Count 1 
1-----------------------------------------------------1 
1 Name of PSECT for low segment, or ~ / 
/-----------------------------------------------------1 
1 Name of PSECT for high segment, or ~ 1 

1=====================================================1 
where each PSECT name has the form: 

I====================================~================1 
1 SIXBIT Symbol Name 1 
1=====================================================/ 

or 

~ 5 6 17 18 29 3~ 35 
/=======================================================1 
1 ~ 1 Reserved for DIGITAL, MBZ 1 Long Count 1 
1--------------------------------------------------------I 
1 First word of SIXBIT Symbol Name 1 
1--------------------------------------------------------I 
1 Second word of SIXBIT Symbol Name 1 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 Nth word of SIXBIT Symbol Name 1 
1=======================================================1 

Block Type 1131 permits TWOSEG REL modules to be loaded into PSECTs by 
a compiler. You must redirect both the high and the low segment, you 
cannot redirect one or the other. Also, you cannot redirect both the 
high and low segment into the same PSECT. 

This block does not affect the current module, but all subsequent 
modules to be loaded. 

LINK V6.~ A-64 April 1986 



REL BLOCKS 

Block Type 1149 (PL/l debugger information) 

I=============~=======================================1 
1 1140 1 Long count 1 
1-----------------------------------------------------1 1 Data Word 1 
1-----------------------------------------------------1 

. 
1-----------------------------------------------------1 
1 Data Word I 
1=====================================================1 

Block type 1140 is ignored by LINK. 

A-65 April 1986 



REL BLOCKS 

Block Type 116~ (Extended Sparse Data Initialization Block) 

======================~============:=================~= 

1160 Long Count 

R I FIB I P I 0 I SYMLEN I PSECT 

Symbol (SYMLEN words) 

S Origin Address 

Repetition Count if R=l 

Fill Count if F=1 

Fill Byte if F=l 

I Byte Count if B=l 
I--------------------------~--------------------------I 
I Data Bytes I 
==============================:=============:~=:======= 

Block Type 1160 supports the loading of data into different PSECTs and 
sections. This REL block allows separate program units to load data 
into different bytes in the same word of memory at different times 
during the loading process. 

Block Type 1160 fields are described below. 

Field Name 

R 

F 

B 

P 

Unused 

LINK V6.0 

Position 

Bit ~ 

Bit 1 

Bit 2 

Bits 3-8 

Bit 9 

A-66 

Description 

is a I-bit field. 
one, the Repetition 
exists. If R is 
Repetition Count is 
be 1. 

If R is 
Count word 
zero, the 
assumed to 

is a I-bit field. If F is 
one, the Fill Count and Fill 
Byte words exist. If F is 
zero, no fill is used. 

is a I-bit field. If B is 
one, the Byte Count word 
exits. If B is zero, one Data 
Byte is assumed. 

is a 6-bit field. This is the 
position within the word where 
the first byte is to be 
stored. 

is an unused bit that must be 
zero. 

April 1986 



Field Name position 

SYMLEN Bits 10-17 

PSECT Bits 18-35 

Symbol Bits 0-35 

S Bits 0-5 

Origin Address Bits 6-35 

Repetition Count Bits 0-35 

Fill Count Bits 0-35 

LINK V6.0 

REL BLOCKS 

A-67 

Description 

is an 8-bit field. SYMLEN is 
the length in words of the 
global symbol to be used to 
calculate the address to store 
the byte string. If SYMLEN is 
zero, there is no global 
symbol. The value of the 
symbol is added to the origin 
address. The symbol must be 
completely defined before this 
addition occurs. 

is an l8-bit field. PSECT is 
the PSECT to relocate the 
Origin Address against. The 
relocation is 30-bit. If 
PSECT is zero, the Origin 
Address is absolute. 

is a SIXBIT symbol name of the 
length specified in SYMLEN. 
The value of this symbol is 
added to the Origin Address. 

~ The symbol must be defined 
when the block is seen, or a 
fatal error occurs. 

is a 6-bit field. S is the 
size of the data bytes. 

is a 30-bit field. Origin 
Address is the address where 
LINK begins to store Data 
Bytes. 

is a 36-bit field. If flag 
bit R is one, Repetition Count 
exists and contains the number 
of times to repeat the data 
store. The Data Bytes are 
stored and the fill operation 
is performed as many times as 
specified in the Repetition 
Count. 

is a 36-bit field. If flag 
bit F is one, Fill Count 
exists and specifies how many 
times to store the Fill Byte 
after storing Data Bytes. 

April 1986 



Field Name Position 

Fill Byte Bits "-35 

Byte Count 

Data Bytes 

LINK V6." 

REL BLOCKS 

A-68 

Description 

is a 36-bit field. If flag 
bit F is one, Fill Byte exists 
and contains the right 
justified value to be used in 
the fill operation. 

is a 36-bit field. If flag 
bit B is one, Byte Count exits 
and specifies the number of 
Data Bytes to be stored. 

are the data to be stored, of 
the length specified by the 
Byte Count, or 1 if flag bit B 
is not set. This data is 
stored left-justified, packed 
as many to a word as fit 
without overlapping a word 
boundary. 

April 1986 



REL BLOCKS 

Block Type Greater Than 3777 (ASCIZ) 

1=======================================================1 
1 ASC I I 1 ASC I I 1 ASC I I 1 ASC I I 1 ASC I I 1 ~ 1 
1-------------------------------------------------------I 
1 ASC I I 1 ASC I I 1 ASC I I 1 ASC I I 1 ASC I I 1 ~ I 
1-------------------------------------------------------I 

1-------------------------------------------------------I 
1 ASCII 1 ASCII 1 ASCII 1 ASCII 1 ~ 1 ~ 1 
I======~==~~===========================~================1 

When LINK reads a number larger than 3777 in the left half of 
Block header word, the block is assumed to contain ASCIZ text. 
module containing the text is being loaded, LINK reads the 
characters as if they were a command string, input from the 
terminal. 

a REL 
If the 
ASCII 

user's 

LINK reads the string as five 7-bit ASCII characters per word; bit 35 
of each word is ignored. The string and the block end when the first 
null ASCII character (~00) is found in the fifth 7-bit byte of a word 
(bits 28-34). 

After loading the current REL file, LINK processes text statements in 
the reverse order in which they are encountered -- from the end to the 
beginning of a module. For example, the first, second, and third 
statements from the beginning of a module are processed third, second, 
and first. As a result, search requests may be processed in the 
reverse order of entered /SEARCH switches. Keep this in mind when 
specifying the order the modules are to be searched. 

A-69 April 1986 





APPENDIX B 

LINK MESSAGES 

This appendix lists all of LINK's messages. (The messages from the 
overlay handler, which have the OVL prefix, are given in Chapter 5.) 

B.l DESCRIPTION OF MESSAGES 

Section B.2 lists LINK's messages. For each message, the last three 
letters of the 6-letter code, the level, the severity, and its 
medium-length message are given in boldface. Then, in lightface type, 
comes the long message. 

When a message is issued,the three letters are suffixed to the 
letters LNK, forming a 6-letter code of the form LNKxxx. 

The level 
terminal, 
/LOGLEVEL 
asterisk 
value is 
message. 

of a message determines whether it will 
the log file, or both. You can use 

switches to control message output. For 
(*) is given for the level or severity. 

variable, and depends on the conditions 

be issued to the 
the /ERRORLEVEL and 

some messages an 
This means that the 

that generated the 

The severity of a message determines whether the load will be 
terminated when the message is issued. Table B-1 lists the severity 
codes used in LINK, along with their meanings. The /SEVERITY switch 
provides a means for lowering the severity that is considered fatal. 

The severity also determines the first character on the message line 
printed to the terminal. This character can then be detected by the 
batch system. For all informational messages, the character is [. 
Warnings use %, and fatal errors use ? 

B-1 



Code 

1-7 

8-15 

LINK MESSAGES 

Table B-1 
Severity Codes 

Meaning 

Informational; messages of this severity 
indicate LINK's progress through the load. 

generally 

warning; LINK is able to recover by itself and continue 
the load. 

16 Warning if timesharing, but fatal and stops the load if 
running under batch. 

20 Fatal; LINK can only partially recover and continue the 
load. The loaded program may be incorrect. Undefined 
symbols cause this action. 

24 This is for file access errors. Under batch, this is 
fatal and stops the load. Under timesharing, this is a 
warning, and LINK prompts for the correct file 
specification if possible. 

31 Always fatal; LINK stops the load. 

The /VERBOSITY switch determines whether the medium-length and long 
messages are issued. If you use /VERBOSITY:SHORT, only the 6-1etter 
code, the level, and the severity are issued. If you use 
/VERBOSITY:MEDIUM, the medium-length message is also issued. If you 
use /VERBOSITY: LONG , the code, level, severity, medium-length message, 
and long message are issued. 

Those portions of the medium-length messages enclosed in braces ({ and 
}) are optional, and are only printed in appropriate circumstances. 

Those portions of the medium-length messages enclosed in square 
brackets are filled in at runtime with values pertinent to the 
particular error. Table B-2 describes each of these bracketed 
quantities. 

B-2 



[area] 

[date] 

[decimal] 

[device] 

[file] 

[label] 

[memory] 

[name] 

[octal] 

[reason] 

[switch] 

[symbol] 

[type] 

LINK MESSAGES 

Table B-2 
Special Message Segments 

The name of one of LINK's internal memory 
management areas. 

The date when LINK is running. 

A decimal number, such as a node number. 

A device name. 

A file specification. 

An internal label in LINK. 

A memory size, such as 17P. 

The name of the loaded program or a node in an 
overlaid program. 

An octal number, such as a symbol value. 

The reason for a file access failure, one of the 
messages shown in Section B.3. 

The name of a switch associated with the error. 

The name of a symbol, such as a subroutine or 
common block name. 

The type or attributes associated with a symbol. 

The octal status codes that appear in TOPS-IO messages are described 
more thoroughly in the TOPS-IO Monitor Calls Manual. 

Whenever possible, LINK attempts to indicate the module and file 
associated with an error. This information represents the module 
currently being processed by LINK, and may not always be the actual 
module containing the error. For instance, if LINK detects a 
multiply-defined symbol, either value may be the incorrect one. In 
this case, LINK reports only the second (and subsequent) redefinition 
and the module containing it. 

B-3 



I 

B.2 LIST OF MESSAGES 

Code Lev Sev 

ABT 31 31 

AIC 31 31 

AMM 

AMP 8 8 

ANM 31 31 

ARL 8 8 

LINK MESSAGES 

Message 

Load aborted due to %LNKTMA 
/ARSIZE: needed was [decimal] 

errors, max. 

You loaded programs containing more ambiguous 
subroutine requests than can fit in the tables 
of one or more overlay links. You received a 
LNKARL message for each ambiguous request, and a 
LNKTMA message for each link with too many 
requests. You can solve this problem by using 
the /ARSIZE switch just before each /LINK switch 
to expand the tables separately. 

Attempt to increase size of {blank common} 
{common [symbol]} from [decimal] to [decimal] 
{Detected in module [symbol] from file [file]} 

FORTRAN common areas cannot be expanded once 
defined. Either load the module with the 
largest definition first, or use the /COMMON: 
switch to reserve the needed space. 

Argument mismatch in argument [decimal] in call 
to routine [symbol] called from module [symbol] 
at location [octal] 

The caller supplied argument does not match the 
argument expected by the callee. 

ALGOL main program not loaded 

You loaded 
program. 
undefined 
execution. 

ALGOL procedures, but no 
The missing start address 

symbols will cause termination 

Address not in memory 

main 
and 
of 

LINK expected a particular user address to be in 
memory, but it is not there. This is an 
internal LINK error. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Ambiguous request in link [decimal] {name 
[name]} for [symbol] defined in links [decimal], 
[decimal], ••• 

More than one successor link can satisfy a call 
from a predecessor link. The predecessor link 
requested an entry point that is contained in 
two or more of its successors. You should 
revise your overlay structure to remove the 
ambiguity. 

* The level and severity of this message is determined by 
compiler-generated coercion block. See Block Type 1130 in Appendix A. 

B-4 



Code Lev Sev 

AZW 31 31 

cao 31 31 

CCD 31 31 

CCE 8 8 

LINK V6.0 

LINK MESSAGES 

Message 

If you execute the current load, one of the 
following will occur when the ambiguous call is 
executed: 

• If only one module satisfying the request is 
in memory, that module will be called. 

• If two or more modules satisfying the 
request are in memory, the one with the most 
links in memory will be called. 

• If no modules satisfying the request are in 
memory, the one with the most links in 
memory will be called. 

If a module cannot be selected by the methods 2 
or 3 above, an arbitrarily selected module will 
be called. 

Allocating zero words 

LINK's memory manager was called with a request 
for 0 words. This is an internal LINK error. 
This message is not expected to occur. If it 
does, please notify your Software Specialist or 
send a Software Performance Report (SPR) to 
DIGITAL. 

Cannot build overlays outside section 0. 

You tried to build an overlay structure for a 
program that is either too large to fit in 
Section 0 or is loaded outside Section 0 by 
default. Check the commands input to LINK and 
the language compiler. 

CPU conflict 
{Detected in module [symbol] from file [file]} 

You have loaded modules compiled with 
conflicting CPU specifications, such as loading 
a MACRO program compiled with the statement 
.DIRECTIVE KL10 and another compiled with 
.DIRECTIVE KI10. Recompile the affected modules 
with compatible CPU specifications. 

Character constant not word aligned in call to 
routine [routine] called from module [module] at 
location [address] 

LINK detected a character constant that did not 
begin on a word boundary. This error probably 
results from a language translator error. This 
error is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

8-5 April 1986 

• 



Code 

CCS 

CFS 

CLF 

CM6 

CM7 

CMC 

CMF 

I 
CMP 

LINK V6.0 

LINK MESSAGES 

Lev Sev Message 

31 31 Cannot create section [octal] 

31 31 

1 1 

31 31 

31 31 

31 31 

31 31 

31 28 

LINK is unable to create the specified section. 
This could be because your system does not have 
extended addressing hardware, or because there 
are insufficient resources to create a section. 

Chained fix ups have been suppressed 

The specified PSECT grew beyond the address 
specified In the /LIMIT switch. The program is 
probably incorrect. Use the /MAP or /COUNTER 
switch to check for accidental PSECT overlaps. 
Refer to Section 3.2.2 for more information 
about the /LIMIT switch. 

Closing log file, continuing on file [file] 

You have changed the log file specification. 
The old log file is closed; further log entries 
are written in the new log file. 

Cannot mix COBOL-68 and COBOL compiled code 
{Detected in module [symbol] from file [file]} 

You cannot use COBOL-68 and COBOL files in the 
same load. Compile all COBOL programs with the 
same compiler and reload. 

Cannot mix COBOL-74 and COBOL compiled code 
{Detected in module [symbol] from file [file]} 

You cannot use COBOL-74 and COBOL files in the 
same load. Compile all COBOL programs with the 
same compiler and reload. 

Cannot mix COBOL-68 and COBOL-74 compiled code 
{Detected in module [symbol] from file [file]} 

You cannot use COBOL-68 and COBOL-74 files in 
the same load. Compile all COBOL programs with 
the same compiler and reload. 

COBOL module must be loaded first 
{Detected in module [symbol] from file [file]} 

You are loading a mixture of COBOL-compiled 
files and other files. Load one of the 
COBOL-compiled files first. 

Common [symbol] declared in multiple PSECTS 
{Detected in module [symbol] from file [file]} 

You cannot load modules produced by FORTRAN with 
modules produced by G-floating FORTRAN. Compile 
all FORTRAN modules the same way, then reload. 

B-6 April 1986 



Code 

CMX 

CNW 

COE 

COF 

CPU 

CRS 

CSF 

DEB 

LINK V6.0 

LINK MESSAGES 

Lev Sev Message 

8 8 Cannot mix G-floating FORTRAN compiled code with 
FORTRAN compiled code 

31 31 

8 8 

* * 

31 31 

1 1 

1 1 

31 1 

{Detected in module [symbol] from [file]} 

You loaded a module which specified that the 
named common block must be loaded in a PSECT 
which is not compatible with the PSECT in which 
it was originally loaded. Compile the module 
with the common in the same PSECT as the 
original. 

Code not yet written at [label] 

You attempted to use an unimplemented feature. 
This is an internal LINK error. This message is 
not expected to occur. If it does, please 
notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Both CONCATENATE and OVERLAY attributes 
specified for PSECT [name] 
{Detected in module [symbol] from file [file]} 

One of the modules you loaded explicitly sets an 
attribute for the named PSECT which conflicts 
with the declaration of PSECT attributes in the 
current module. Check the compiler switches or 
assembly language directives that were used in 
the generation of this module. 

Cannot open file [file] 

LINK cannot open the specified file for input. 

Module incompatible with specified CPU 
{Detected in module [symbol] from file [file]} 

The module you are attempting to load does not 
contain a .DIRECTIVE for any of the CPUs you 
specified with the /CPU switch. Recompile the 
module with the proper .DIRECTIVE, or use a 
different /CPU switch. 

Creating section [octal] 

LINK prints this informational message when a 
module is loaded into a new section. The 
message is printed only if you have specified 
/ERROR:0. 

Creating saved file 

LINK is generating your executable (.EXE) file. 

[name] execution 

LINK is beginning program execution at the named 
debugger. 

B-7 April 1986 



Code 

DLT 

DNS 

DRC 

DSC 

DSL 

• 
DUZ 

LINK MESSAGES 

Lev Sev Message 

31 1 Execution deleted 

8 8 

8 8 

31 31 

31 * 

31 31 

Though you have asked for program execution, 
LINK cannot proceed due to earlier fatal 
compiler or LINK errors. Your program is left 
in memory or in an executable file. 

Device not specified for switch [switch] 

You used a device switch (for example, /REWIND, 
/BACKSPACE), but LINK cannot associate a device 
with the switch. Neither LINK's default device 
nor any device you gave with the /DEFAULT switch 
can apply. Give the device with or before the 
switch (in the same command line). 

Decreasing relocation counter [symbol] from 
[octal] to [octal] 
{Detected in module [symbol] from file [file]} 

You are using the /SET switch to reduce the 
value of an already defined relocation counter. 
Unless you know exactly where each module is 
loaded, code may be overwritten. 

Data store to common [symbol] not in link number 
[decimal] 
{Detected in module [symbol] from file [file]} 

You loaded a FORTRAN-compiled module with DATA 
statement assignments to a common area. The 
common area is already defined in an ancestor 
link. Restructure the load so that the DATA 
statements are loaded in the same link as the 
common area to which they refer. 

Data store to location [octal] not in link 
number [decimal] 
{Detected in module [symbol] from file [file]} 

You have a data store for an absolute location 
outside the specified link. Load the module 
into the root link. 

NOTE 

If the location is less than 140, this 
message has level 8 and severity 8. 

Decreasing undefined symbol count below zero 

LINK's undefined symbol count has become 
negative. This message is not expected to 
occur. If it does, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

8-8 April 1986 



Code Lev Sev 

EAS 31 31 

ECE 31 31 

EGO 1 1 

EHC 31 31 

ElF 31 31 

ELC 31 31 

ELF 1 1 

ELN 1 1 

ELS 31 31 

LINK MESSAGES 

Message 

Error creating area AS overflow file [reason] 
[file] 

LINK could not make the ALGOL symbol table on 
disk. You could be over your disk quota, or the 
disk could be full or have errors. 

Error creating EXE file [reason] [file] 

LINK could not write the saved file on disk. 
You could be over your disk quota, or the disk 
could be full or have errors. 

Emergency GETSEG done 

LINK has expanded its low segment so large that 
one of its larger high segments will not now fit 
1n memory. LINK will attempt to shrink its 
internal tables so that the GETSEG will succeed 
and loading continue. 

Error creating area HC overflow file [reason] 
[file] 

LINK could not write your high-segment code on 
disk. You could be over your disk quota, or the 
disk could be full or have errors. 

Error for input file Status [octal] for file 
[file] 

A read error has occurred on the input file. 
Use of the file is terminated and the file is 
released. 

Error creating area LC overflow file [reason] 
[file] 

LINK could not write your low-segment code on 
the disk. You could be over your disk quota, or 
the disk could be full or have errors. 

End of log file 

LINK has finished writing your log file. The 
file is closed. 

End of link number [decimal] {name [name]} 

The link is loaded. 

Error creating area LS overflow file [reason] 
[file] 

LINK could not write your local symbol table on 
the disk. You could be over your disk quota, or 
the disk could be full or have errors. 

8-9 April 1986 



Code 

EMS 

EOE 

EOI 

EOO 

EOV 

ESN 

I 
ETP 

EXP 

EXS 

• 
FCF 

LINK V6.0 

LINK MESSAGES 

Lev Sev Message 

1 1 End of MAP segment 

31 31 

31 31 

31 31 

31 31 

31 31 

31 31 

1 1 

1 1 

1 1 

The map file is completed and closed • 

• EXE file output error Status [octal] for file 
[f ile] 

LINK could not write the saved file on the disk. 

Error on input Status [octal] for file [file] 

An error has been detected while reading the 
named file. 

Error on output [file] 

An error has been detected while writing the 
named file. 

Error creating overlay file [reason] [file] 

LINK could not write the overlay file on the 
disk. 

Extended symbol not expected 

Long symbol names (more than six characters) are 
not implemented. This message is not expected 
to occur. If it does, please notify your 
Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Error creating area TP overflow file [reason] 
[file] 

LINK could not make the type checking area on 
disk. You are over your disk quota, the disk is 
full, or the disk has errors. 

Expanding low segment to [addr] 

This informational message is printed when LINK 
expands the low segm~nt memory allocation. 

EXIT segment 

LINK is in the last stages of loading your 
program (for example, creating .EXE and symbol 
files, preparing for execution if requested) • 

Final code fixups 

LINK is reading one 
files backwards to 
fixups. This may 
overhead, but occurs 
big for memory. 

8-10 

or both segment overflow 
perform any needed code 

cause considerable disk 
only if your program is too 

April 1986 



Code 

FEE 

FIN 

FLE 

FRE 

FSN 

FTB 

GSE 

BCL 

LINK MESSAGES 

Lev Sev Message 

1 

* 

* 

31 

15 

* 

31 

* * ENTER error [reason] [file] 

1 

* 

* 

31 

15 

* 

31 

See Section B.3 for the list of possible long 
messages. 

LINK finished 

LINK is finished. Control is passed to the 
monitor, or to the loaded program for execution. 

LOOKUP error [reason] [file] 

See Section B.3 for the list of possible long 
messages. 

RENAME erro r [reason] [f i 1 e] 

See Section B.3 for the list of possible long 
messages. 

FUNCT. subroutine not loaded 

During final processing of your root link, LINK 
found that the FUNCT. subroutine was not 
loaded. This would cause an infinite recursion 
if your program were executed. The FUNCT. 
subroutine is requested by the overlay handler, 
and is usually loaded from a default system 
library. Either you prevented searching of 
system libraries, or you did not load a main 
program from an overlay-supporting compiler into 
the root link. 

Fullword value [symbol] truncated to halfword 

This message is printed when a symbol that has a 
value greater than 777777 is used to resolve a 
halfword reference. This warning message helps 
you to be sure that global addresses are used 
properly throughout the modules in a load. 

GETSEG error [reason] [file] 

See Section B.3 for the list of possible long 
messages. 

8igh segment code not allowed in an overlay link 
{Detected in module [symbol] from file [file]} 

You have attempted to load high segment code 
into an overlay link other than the root. Any 
high segment code in an overlaid program must be 
in the root. 

B-ll April 1986 

• 

• 



Code 

HSL 

HTL 

lAS 

ICB 

IDM 

IHC 

ILC 

ILS 

IMA 

LINK MESSAGES 

Lev Sev Message 

31 31 Attempt to set high segment origin too low 
{Detected in module [symbol] from file [file]} 

31 31 

31 31 

8 8 

31 31 

31 31 

31 31 

31 31 

8 8 

You have'set the high-segment counter to a page 
containing low-segment code. Reload, using the 
/SET:.HIGH.:n switch, or (for MACRO programs) 
reassemble after changing your TWOSEG pseudo-oPe 

Symbol hash table too large 

Your symbol hash table is larger than the 
maximum LINK can generate (about 50P). This 
table size is an assembly parameter. This 
message is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Error inputting area as Status [octal] for file 
[file] 

An error occurred while reading in the ALGOL 
symbol table. 

Invalid chain REL block (type 12) link number 
[octal] 
{Detected in module [symbol] from file [file]} 

REL block type 12 (Chain), generated by the 
MACRO pseudo-op .LINK and .LNKEND, must contain 
a number from 1 to 100 (octal) in its first 
word. The link word is ignored. 

Illegal data mode for device [device] 

You specified an illegal combination of device 
and data mode (for example, terminal and dump 
mode). Specify a legal device. 

Error inputting area HC Status [octal] for file 
[file] 

An error occurred while 
high-segment code. 

reading in your 

Error inputting area LC Status [octal] for file 
[file] 

An error occurred while 
low-segment code. 

reading in your 

Error inputting area LS Status [octal] for file 
[file] 

An error occurred while reading in your local 
symbol table. 

Incremental maps not yet available 

The INCREMENTAL keyword for the /MAP switch is 
not implemented. The switch is ignored. 

8-12 April 1986 



Code 

IMI 

IMM 

INS 

IOV 

IPO 

IPX 

IRB 

IRC 

LINK MESSAGES 

Lev Sev Message 

31 31 Insufficient memory to initialize LINK 

* 1 

31 31 

31 31 

31 31 

31 31 

31 31 

31 31 

LINK needs more memory than is available. 

[Decimal] included modules missing {from file 
[file] } 

You have requested with the /INCLUDE switch that 
the named modules (if any) be loaded. Specify 
files containing these modules. 

I/O data block not set up 

LINK attempted a monitor call (for example, 
LOOKUP, ENTER) for a channel that is not set up. 
This is an internal LINK error. This message is 
not expected to occur. If it does, please 
notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Input error for overlay file Status [octal] for 
file [file] 

An error occurred when reading the overlay file. 

Invalid Polish operator [octal] 
{Detected in module [symbol] from file [file]} 

You are attempting to load a file containing an 
invalid REL Block Type 11 (Polish). This 
message is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Invalid PSECT index {for PSECT [symbol]} 
{Detected in module [symbol] from file [file]} 

A REL block contains a reference to a 
nonexistent PSECT. This error is probably 
caused by a fault in the language translator 
used for the program. This error is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Illegal REL block type [octal] 
{Detected in module [symbol] from file [file]} 

The file is not in the proper binary format. It 
may have been generated by a translator that 
LINK does not recognize, or it may be an ASCII 
or. EXE . f i 1 e • 

Illegal relocation counter 
{Detected in module [symbol] from file [file]} 

One of the new style 1000+ block types has an 
illegal relocation counter. This message is not 
expected to occur~ If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

B-13 April 1986 



Code 

IRR 

ISM 

ISN 

ISP 

ISS 

IST 

LINK MESSAGES 

Lev Sev Message 

8 8 Illegal request/require block 

31 31 

31 31 

31 31 

8 8 

31 31 

{Detected in module [symbol] from file [file]} 

One of the REL block types 1042 or 1043 is in 
the wrong format. This message is not expected 
to occur. If it does, please notify your 
Software- Speqialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Incomplete symbol in store operator in Polish 
block (type 11) 
{Detected in module [symbol] from file [file]} 

The specified module contains an incorrectly 
formatted Polish Fixup Block (Type 11). The 
store operator specifies a symbol fixup, but the 
block ends before the symbol is fully specified. 
This error is probably caused by a fault in the 
language translator used for the program. This 
error is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Illegal symbol name [symbol] 
{Detected in module [symbol] from file [file]} 

The LINK symbol table routine was called with 
the blank symbol. This error can be caused by a 
fault in the language translator used for the 
program. This message is not expected to occur. 
If it does, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

Incorrect symbol pointer 

There is an error in the global symbol table. 
This is an internal LINK error. This message is 
not expected to occur. If it does, please 
notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Insufficient space for symbol table after PSECT 
[symbol] -- table truncated 

There is insufficient address space for the 
symbol table between the named PSECT and the 
next higher one or the end of the address space. 
Restructure your PSECT layout to allow 
sufficient room for the symbol table, or use 
/UPTO to allow more room. 

Inconsistency in switch table 

LINK has found errors in the switch table passed 
from the SCAN module. This is an internal 
errore This message is not expected to occur. 
If it does, please notify your Software 
Specialist or send a Software Performance Raport 
(SPR) to DIGITAL. 

B-14 April 1986 



Code 

ITB 

ITP 

IUU 

IVC 

JPB 

LOS 

LFB 

LFC 

LINK V6.0 

LINK MESSAGES 

Lev Sev Message 

31 31 Invalid text in ASCII block from file [file] 

31 31 

* 31 

31 31 

8 8 

1 I 

1 1 

1 1 

LINK has failed to complete the processing of an 
ASCII text REL block from the named file. This 
is an internal· error. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Error inputting area TP 
{Status [octal]} for file [file] 

An error occurred while reading in the type 
checking area. The status is represented by the 
right half of the I/O status word. Refer to the 
TOPS-10 Monitor Calls Manual for more 
information. 

Illegal user UUO at PC [octal] 

LINK's user UUo (LUUO) handler has detected an 
illegal UUO. This is an internal error. This 
message is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Index validation check failed at address [octal] 

The range checking of LINK's internal tables and 
arrays failed. The address given is the point 
in a LINK segment at which failure occurred. 
This is an internal error. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Junk at end of Polish block 
{Detected in module [symbol] from file [file]} 

The specified module contains an incorrectly 
formatted Polish Fixup Block (Type 11). Either 
the last unused halfword (if it exists) is 
nonzero, or there are extra halfwords following 
all valid data. 

LOAD segment 

The LINK module LNKLOD 
processing. 

is 

LINK log file begun on [date] 

beginning its 

LINK is creating your log file as a result of 
defining the logical name LOG:. 

Log file continuation 

LINK is continuing your log file as a result of 
the /LOG switch. 

B-15 April 1986 



Code 

LFI 

LII 

LIN 

LMM 

LMN 

LNA 

LNL 

LNM 

LINK MESSAGES 

Lev Sev Message 

1 1 Log file initialization 

8 1 

1 1 

6 1 

8 8 

8 8 

31 31 

LINK is beginning your log file as a result of 
the /LOG switch. 

Library index inconsistent, continuing 

A REL Block Type 14 (Index) for a MAKLIB 
generated library file is inconsistent. The 
library is searched, but the index is ignored. 

LINK initialization 

LINK is beginning its processing by initializing 
its internal tables and variables. 

Length mismatch for argument [decimal] in call 
to routine [symbol] called from module [symbol] 
at location [octal] 

The length of the argument passed by the caller 
does not match what the called routine expects 
it to be. 

Loading module [symbol] from file [file] LINK is 
loading the named module. 

Link name [name] already assigned to link number 
[decimal] 

You used this name for another link. Specify a 
different name for this link. 

Link number [decimal] not loaded 

The link with 
loaded. Tbe 
have used link 
with the /NODE 
link numbers. 

this number has not yet been 
/NODE switch is ignored. If you 
numbers instead of link names 
switch, you may have confused the 
To avoid this, use link names. 

Link number [decimal] not in memory 

LINK cannot find the named link in memory. This 
is an internal error. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

The level and severity of this message 
compiler-generated coercion block. See 
Appendix A. 

is determined by a 
Block Type 1130 in 

B-16 April 1986 



Code 

LNN 

LNS 

LSM 

LSS 

MDS 

MEF 

MMF 

LINK V6.0 

LINK MESSAGES 

Lev Sev Message 

8 8 Link name [name] not assigned 

31 8 

8 8 

31 1 

8 8 

31 31 

31 31 

The name you gave with the /NODE switch is not 
the name of any loaded link. The switch is 
ignored. 

Low segment data base not same size 

The length of LINK's low segment differs from 
the length stored in the current LINK high 
segment. This occurs if some but not all of 
LINK's .EXE files have been updated after 
rebuilding LINK from sources. Update all of 
LINK's .EXE files. 

/LINK switch missing while loading link number 
[decimal] -- assumed 

Your use of the /NODE switch shows that you want 
to begin a new overlay link, but the current 
link is not yet completely loaded. LINK assumes 
a /LINK switch immediately preceding the /NODE 
switch, and loads the link (without a link 
name) • 

{No} Library search symbols (entry 
{[symbol] [octal] 

po ints) 

The listed symbols and their values (if any) are 
those that are library search entry points. 

Multiply-defined global symbol [symbol] 
{Detected in module [symbol] from file [file]} 
Defined value = [octal], this value = [octal] 

The named module contains a new definition of an 
already defined global symbol. The old 
definition is used. Make the definitions 
consistent and reload. 

Memory expansion failed 

LINK cannot expand memory further. All 
permitted overflows to disk have been tried, but 
your program is still too large for available 
memory. A probable cause is a large global 
symbol table, which cannot be overflowed to 
disk. It may be necessary to restructure your 
program, or use overlays, to alleviate this 
problem. 

Memory manager failure 

The internal memory manager in LINK has failed a 
consistency check. This error should not occur. 
If it does, contact your software specialist or 
send a Software Performance Report (SPR) to 
DIGITAL. 

8-17 April 1986 



Code 

MOV 

MPS 

MPT 

MRN 

MSN 

• 
MSS 

MTB 

LINK MESSAGES 

Lev Sev Message 

1 1 Moving low segment to expand area [area] 

1 I 

31 31 

1 I 

8 8 

8 8 

8 8 

LINK is rearranging its low segment to make more 
room for the specified area. Area is one of the 
following: 

AS ALGOL symbol table 
BG bound global symbols 
DY dynamic free memory 
FX fixup area 
GS global symbol table 
HC your high-segment code 
LC your low-segment code 
LS local symbol tables 
RT relocation tables 

MAP segment 

The LINK module LNKMAP is writing a map file. 

Mixed PSECT and TWOSEG code in same module 
{Detected in module [symbol] from file [file]} 

This module contains both PSECT code and TWOSEG 
code. LINK cannot load such a module. Change 
the source code to use PSECTs .HIGH. and .LOW. 
as the high and low segments, and remove the 
TWOSEG or HISEG pseudo-ops. 

Multiple regions not yet implemented 

The REGION keyword for the /OVERLAY switch is 
not implemented. The argument is ignored. 

Map sorting not yet implemented 

Alphabetical or numerical sorting of the map 
file is not implemented. The symbols in the map 
file appear in the order they are found in the 
REL files • 

/MAXCOR: set too small, expanding to [memory] 

The current value of MAXCOR is too small for 
LINK to operate. You can speed up future loads 
of this program by setting the /MAXCOR switch to 
this expanded size at the beginning of the load. 

/MAXCOR: too big, [memory] used 

You are attempting to specify the /MAXCOR switch 
so large that the low segment cannot fit before 
the high segment. LINK will use only the core 
indicated. 

B-18 April 1986 



Code Lev Sev 

MTS 8 8 

NAP 31 31 

NBR 31 31 

NEB 8 8 

NED 31 24 

NHN 31 31 

NPS 8 8 

LINK V6.0 

LINK MESSAGES 

Message 

/MAXCOR: 
required 

too small, at least [memory] is 

LINK needs more space than you gave with the 
/MAXCOR switch. Give a new /MAXCOR switch with 
at least the required size. 

No store address in polish block (Type 11 or 
1072) 
{Detected on module [symbol] from R6 [file]} 

The specified module contains an incorrectly 
formatted polish fixup block (Type 11 or 1072). 
The store operator specifies a memory fixup, but 
the block ends before the address is specified. 
This error is probably caused by a fault in the 
language translator used for the program. This 
error is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

Attempt to position to node before the root 

The argument you gave for the /NODE switch would 
indicate a link before the root link. (For 
example, from a position after the third link in 
a path, you cannot give /NODE:-4.) 

No end block seen 
{Detected in module [symbol] from file [file]} 

No REL Block Type 5 (End) was found in the named 
module. This will happen if LINK finds two Type 
6 blocks (Name) without an intervening end, or 
if an end-of-file is found before the end block 
is seen. LINK simulates the missing end block. 
However, fatal messages usually follow this, 
because this condition usually indicates a bad 
REL file. 

Non-existent device [device] 

You gave a device that does not exist on this 
system. Correct your input files and reload. 

No high segment in non-zero section 

You have attempted to load high segment 
into a program with a non-zero section. 
segments must reside in Section 0. 

code 
High 

Non-existent PSECT [symbol] specified for symbol 
table 

You have specified the name of a PSECT after 
which LINK should append the symbol table, but 
no PSECT with that name was loaded. Load the 
named PSECT or specify an existing PSECT for the 
symbols. 

8-19 April 1986 

I 



:j: 

Code 

NSA 

NSM 

NSO 

NVR 

OAS 

OEL 

OEM 

LINK MESSAGES 

Lev Sev Message 

31 1 No start address 

31 31 

31 31 

31 31 

8 8 

8 8 

Your program does not have a starting address. 
This can happen if you neglect to load a main 
program. Program execution, if requested, will 
be suppressed unless you specified debugger 
execution. 

/NODE switch missing after /LINK switch 

You used the ILINK switch, which indicates that 
you want to begin a new overlay link, but you 
have not specified a INODE switch to tell LINK 
where to put the new overlay link. 

No store operator in Polish block (type 11) 
{Detected in module [symbol] from file [file]} 

The specified module contains an incorrectly 
formatted Polish Fixup Block (Type 11). Either 
the block does not have a store operator, or 
LINK was not able to detect it due to the 
block's invalid format. This error is probably 
caused by a fault in the language translator 
used for the program. This error is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

No value returned by routine [symbol] called 
from module [symbol] at location [octal] 

The called routine does not return a value, 
however the caller expected a returned value. 

Error outputting area as Status [octal] for file 
[file] 

An error occurred while writing out the ALGOL 
symbol table. 

Output error on log file, file closed, load 
continuing {Status [octal] for file [file]} 

An error has occurred on the output file. The 
output file is closed at the end of the last 
data successfully output. 

Output error on map file, file closed, load 
continuing Status [octal] for file [file] 

An error has occurred on the output file. The 
output file is closed at the end of the last 
data successfully output. 

The level and severity of this -message 
compiler-generated coercion block. See 
Appendix A. 

is determined by a 
Block Type 1130 in 

B-20 April 1986 



Code Lev Sev 

OES 8 8 

OEX 8 8 

OPD 31 31 

OFN 31 31 

OFS 31 31 

ORe 31 31 

ORN 31 31 

OLC 31 31 

OLS 31 31 

LINK MESSAGES 

Message 

Output error on symbol file, file closed, load 
continuing Status [octal] for file [file] 

An error has occurred on the output file. The 
output file is closed at the end of the last 
data successfully output. 

Output error on XPN file, file closed, load 
continuing Status [octal] for file [file] 

An error has occurred on the output file. The 
output file is closed at the end of the last 
data successfully output. 

OPEN failure for device [device] 

An OPEN or INIT monitor call for the specified 
device failed. The device may be under another 
user's control. 

Old FORTRAN (F40) module not available 
{Detected in module [symbol] from file [file]} 

The standard released version of LINK does not 
support F40 code. 

Overlay file must be created on a file structure 

Specify a disk device for the overlay file. 

Error outputting area HC Status [octal] for file 
[file) 

An error occurred while writing 
high-segment code. 

Overlay handler not loaded 

out your 

Internal symbols in the overlay handler could 
not be referenced. If you are using your own 
overlay handler, this is a user error; if not, 
it is an internal error and is not expected to 
occur. If it does, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

Error outputting area LC Status [octal] for file 
[file] 

An error occurred while writing 
low-segment code. 

out your 

Error outputting area LS Status [octal] for file 
[file) 

An error occurred while writing out your local 
symbol table. 

B-2l April 1986 



Code 

OMB 

ONS 

OOV 

OS2 

OSL 

OTP 

PAS 

PBI 

LINK V6e0 

LINK MESSAGES 

Lev Sev Message 

31 31 /OVERLAY switch must be first 

8 1 

31 31 

1 1 

8 8 

31 31 

1 1 

8 8 

The /OVERLAY switch must appear before you can 
use any of the following switches: /ARSIZE, 
/LINK, /NODE, /PLOT, /SPACE. (It is sufficient 
that the /OVERLAY switch appear on the same line 
as the first of these switches you use.) 

Overlays not supported in this version of LINK 

LINK handles overlays with its LNKOVI and LNKOV2 
modules. Your installation has substituted 
dummy versions of these. You should request 
that your installation rebuild LINK with the 
real LNKOVI and LNKOV2 modules. 

Output error for overlay file Status [octal] for 
file [file] 

An error has occurred while writing the overlay 
file. 

Overlay segment phase 2 

LINK's module LNKOV2 is writing your overlay 
file. 

Overlaid program symbols must be in low segment 

You have specified /SYMSEG:HIGH or /SYMSEG:PSECT 
when loading an overlay structure. Specify 
/SYMSEG:LOW or /SYMSEG:DEFAULT. 

Error outputting area TP 
{Status [octal] for file [file]} 

An error occurred while writing out the 
typechecking area. The status is represented by 
the right half of the I/O status word (refer to 
the TOPS-10 Monitor Calls Manual) • 

Area AS overflowing to disk 

The load is too large to fit into the allowed 
memory and the ALGOL symbol table is being moved 
to disk. 

Program break [octal] invalid {Detected 
module [symbol] from file [file]} 

in 

The highest address allocated in the named 
module is greater than 5l2P. This is usually 
caused by dimensioning large arrays. Modify 
your programs or load list to reduce the size of 
the load. 

B-22 April 1986 



Code Lev Sev 

~L 8 8 

PCX 8 1 

PEF 31 8 

LINK MESSAGES 

Message 

Program too complex to load, saving as file 
[file] 

Your program is too complex to load into memory 
for one of the following reasons: 

• There are page gaps between PSECTs (except 
below the high segment). 

• There are PSECTs above the origin of the 
high segment. 

• Your program will not fit in memory along 
with LINK's final placement code. 

• One or more PSECTs has 
attribute. 

the read-only 

LINK has saved your program as an .EXE file on 
disk and cleared your user memory. You can use 
a GET or RUN command to load the .EXE file. 

Program too complex to load and execute, will 
run from file [file] 

Your program is too complex to load into memory 
for one of the following reasons: 

• There are page gaps between PSECTs (except 
below the high segment). 

• There are PSECTs above the origin of the 
high segment. 

• Your program will not fit in memory along 
with LINK's final placement code. 

• One or more PSECTs has 
attribute. 

the read-only 

LINK will save your program as an .EXE file on 
disk and automatically run it, but the .EXE file 
will not be deleted. 

Premature end of file from file [file] 

LINK found an end-of-file inside a REL block 
(that is, the word count for the block extended 
beyond the end-of-fi1e). This error may be 
caused by a fault in the language translator 
used for the program. 

B-23 April 1986 



I 

Code 

PEL 

PRC 

PLC 

PLS 

PMA 

POT 

POV 

PTP 

LINK MESSAGES 

Lev Sev Message 

1 

15 15 PSECT [symbol] exceeded limit of [octal] 

1 1 

1 1 

I 1 

1 1 

8 8 

1 

The specified PSECT grew beyond the address 
specified in the /LIMIT switch. The program is 
probably incorrect. Use the /MAP or /COUNTER 
switch to check for accidental PSECT overlaps. 
Refer to Section 3.2.2 for more information 
about the /LIMIT switch. 

Area HC overflowing to disk 

The load is too large to fit into the allowed 
memory and your high-segment code is being moved 
to disk. 

Area LC overflowing to disk 

The load is too large to fit into the allowed 
memory and your low-segment code is being moved 
to disk. 

Area LS overflowing to disk 

The load is too large to fit into the allowed 
memory and your local 

Possible modification of argument [decimal] in 
call to routine [symbol] called from module 
[symbol] at location [octal] 

The caller has specified that the argument 
should not be modified. The called routine 
contains code which may modify this argument. 
In some cases this message will occur although 
the argument is not actually modified by the 
routine. 

Plotting overlay tree 

LINK is creating your overlay tree file. 

PSECTs [symbol] and [symbol] 
address [octal] to [octal] 

overlap from 

The named PSECTs overlap each other in the 
indicated range of addresses. If you do not 
expect this message, restructure your PSECT 
origins with the /SET switch. 

Area TP overflowing to disk 

The load is too large to fit into the allowed 
memory and your argument typechecking tables are 
being moved to disk. 

The level and severity of this message 
compiler-generated coercion block. See 
Appendix A. 

is determined by a 
Block Type 1130 in 

LINK V6.0 B-24 April 1986 



Code 

PTL 

PUF 

RBS 

RED 

RER 

RGS 

RLC 

LINK MESSAGES 

Lev Sev Message 

31 31 Program too long 

31 31 

31 31 

1 1 

* I 

1 1 

31 I 

{Detected in module [symbol] from file [file]} 

Your program extends beyond location 777777, 
which is the highest location that LINK is 
capable of loading. You may be able to make 
your program fit by moving PSECT or1g1ns, 
lowering the high-segment origin, loading into a 
single segment, reducing the size of arrays in 
your program, or using the overlay facility. 

PAGE. UUO failed, error code was [code] 

Refer to the description of the PAGE. 
the TOPS-10 Monitor Calls Manual. 

REL block type [octal] too short 

UUO in 

{Detected in module [symbol] from file [file]} 

The REL block is inconsistent. This may be 
caused by incorrect output from a translator 
(for example, missing argument for an end 
block). Recompile the module and reload. 

Reducing low segment to [memory] 

LINK is reclaiming memory by deleting its 
internal tables. 

{Ro} Request external references (inter-link 
entry points) 
{ [symbol] [octal]} 

The listed symbols and their values (if any) 
represent subroutine entry points in the current 
link. 

Rehashing global symbol table from [decimal] to 
[dec imal] 

LINK is expanding the global symbol table either 
to a prime number larger than your /HASHSIZE 
switch requested, or by about 50 percent. You 
can speed up future loads of this program by 
setting /HASHSIZE this large at the beginning of 
the load. 

Reloc ctr. initial value current value 
{[symbol] [octal] [octal]} 

The listed symbols 
current placement 
space. 

B-25 

and values represent the 
of PSECTs in your address 

April 1986 



Code Lev Sev 

RME 31 * 

RUM 31 31 

RWA 8 8 

SFU 8 8 

SIF 31 31 

SMP 8 8 

LINK V6.0 

LINK MESSAGES 

Message 

REMAP error{, high segment origin 
incorrect} 

may be 

The REMAP UUO to place your program's high 
segment has failed. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Returning unavailable memory 

LINK attempted to return memory to the memory 
manager, but the specified memory was not 
previously allocated. This is an internal 
error. This message is not expected to occur. 
If it does, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

80th READ-ONLY and WRITABLE attributes specified 
for PSECT [name] 

One of the modules you loaded explicitly sets an 
attribute for the named PSECT which conflicts 
with the declaration of PSECT attributes in the 
current module. Check the compiler switches or 
assembly language directives that were used in 
the generation of this module. 

Symbol table fouled up 

There are errors in the local symbol table. 
Loading continues, but any maps you request will 
not contain control section lengths. This is an 
internal error. This message is not expected to 
occur. If it does, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

Symbol insert failure, non-zero hole found 

LINK's hashing algorithms failed; they are 
trying to write a new symbol over an old one. 
You may be able to load your files in a 
different order. This is an internal error. 
This message is not expected to occur. If it 
does, please notify your Software Specialist or 
send a Software Performance Report (SPR) to 
DIGITAL. 

SIMULA main program not loaded 

You loaded some SIMULA procedures or classes, 
but no main program. Missing start address and 
undefined symbols will terminate execution. 

B-26 April 1986 



Code Lev Sev 

SNC 31 31 

SNL 1 1 

SNP 8 8 

SNS 31 31 

SOE 31 31 

SRB 8 8 

SRP 31 31 

SSN 8 8 

LINK MESSAGES 

Message 

Symbol [symbol] already defined, but not as 
common 
{Detected in module [symbol] from file [file]} 

You defined a FORTRAN common area with the same 
name as a non-common symbol. You must indicate 
which definition you want. If you want the 
common definition, load the common area first. 

Scanning new command line 

LINK is ready to process the next command line. 

Subroutine [symbol] in link number [decimal] not 
on path for call from link number [decimal] 
{name [name]} 

The named subroutine is in a different path than 
the calling link. Redefine your overlay 
structure so that the subroutine is in the 
correct path. 

SITGO not supported 
{Detected in module [symbol] from file [file]} 

LINK does not support 
produced by the SITGO 
program by using SITGO. 

the REL 
compiler. 

file format 
Load your 

Saved file output error Status [octal] for file 
[file] 

An error occurred in outputting the .EXE file. 

Attempt to set relocation counter [symbol] below 
initial value of [octal] 
{Detected in module [symbol] from file [file]} 

You cannot use the /SET switch to set the named 
relocation counter below its initial value. The 
attempt is ignored. 

/SET: switch required for PSECT [symbol] 
{Detected in module [symbol] from file [file]} 

Relocatable PSECTS are not implemented; you must 
specify an explicit absolute origin with the 
/SET switch for the named PSECT. 

Symbol table sorting not yet implemented 

Alphabetical or numerical sorting of the symbol 
table is not implemented. The symbols appear in 
the order they are found. 

B-27 April 1986 



Code 

SST 

STC 

I 
STL 

T13 

TDS 

TMA 

TML 

LINK V6.0 

LINK MESSAGES 

Lev Sev Message 

1 1 Sorting symbol table 

1 1 

31 31 

31 31 

8 8 

31 8 

31 31 

LINK is ,rearranging the symbol table, and if 
required, is converting the symbols from the new 
to old format as indicated on the /SYMSEG, 
/SYFILE, or /DEBUG switch. 

Symbol table completed 

The symbol 
according 
switch. 

table has been 
to the /SYMSEG, 

Symbol too long 

sorted and moved 
/SYFILE, or /DEBUG 

A symbol specified in a REL block is larger than 
the maximum allowed by LINK. 

LVAR REL block (type 13) not implemented 
{Detected in module [symbol] from file [file]} 

REL Block Type 13 (LVAR) is obsolete. 
MACRO pseudo-op TWOSEG. 

Too late to delete initial symbols 

Use the 

LINK has already loaded 
table. To prevent this 
/NOINITIAL switch before 
specification. 

the initial symbol 
loading, place the 

the first file 

Too many ambiguous requests in link [decimal] 
{name [name]}, use /ARSIZE: [decimal] 
{Detected in module [symbol] from file [file]} 

You have more ambiguous subroutine requests 
(indicated by LNKARL messages) than will fit in 
the table for this link. Continue loading. 
Your load will abort at the end with a LNKABT 
message; if you have loaded all modules, the 
message will give the size of the needed /ARSIZE 
switch for a reload. 

Too many links use /MAXNODE 

You specified more overlay links than were 
allowed by the current value for the /MAXNODE 
switch. Reload the program with a larger 
/MAXNODE value. 

B-28 April 1986 



Code 

TMM 

TTF 

UAR 

UCB 

UGS 

UNS 

LINK MESSAGES 

Lev Sev Message 

* * Type mismatch seen for argument [decimal] in 
call to routine [symbol] called from module 
[symbol] at location [octal] 

8 8 

8 8 

8 8 

* 1 

31 31 

The data type of the argument passed by the 
caller does not match what the called routine 
expects. 

Too many titles found 

In producing the index for a map file, LINK 
found more program names than there are 
programs. The symbol table is in error. This 
is an internal error. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

Undefined assign for [symbol] 
{Detected in module [symbol] from file [file]} 

The named symbol was referenced in a REL Block 
Type 100 (ASSIGN), but the symbol is undefined. 
This is generated with the MACRO pseudo-op 
.ASSIGN. The assignment is ignored. You should 
load a module that defines the symbol. 

Unknown common [symbol] referenced 

A reference was made to a common block that does 
not exist. 

{NO} Undefined global symbols {[symbol] [octal] 

The listed symbols and their values (if any) 
represent symbols not yet defined by any module. 
Each value is the first address in a chain of 
references for the associated symbol. 

If this message resulted automatically at the 
end of loading, this is a user error. In this 
case, the load will continue, leaving references 
to these symbols unresolved. 

Universal file REL block 
supported from file [file] 

(type 777) not 

Extraction of symbols from a MACRO universal 
file is not implemented. 

The level and severity of this message 
compiler-generated coercion block. See 
Appendix A. 

is determined 
Block Type 

by a 
1130 in 

LINK V6.0 B-29 April 1986 

I 



Code 

URC 

URV 

USA 

USB 

USC 

USD 

LINK MESSAGES 

Lev Sev Message 

31 1 Unknown Radix-58 symbol code [octal] [symbol] 

8 8 

8 8 

31 8 

8 8 

{Detected in module [symbol] from file [file]} 

In a REL Block Type 2 (Symbols), the first 4 
bits of each word pair contain the Radix-50 
symbol code. LINK found one or more invalid 
codes in the block. This error can be caused by 
a fault in the language translator used for the 
program. 

Unexpected return value in call to routine 
[symbol] called from module [symbol] at location 
[octal] 

The called routine returns a value which was not 
expected by the caller. 

Undefined start address [symbol] 

You gave an undefined global symbol as the start 
address. Load a module that defines the symbol. 

Undefined symbol in byte array (type 1004) block 

LINK has detected an undefined global symbol in 
a Type 1004 REL block. This global symbol is 
used to relocate a byte pointer and must be 
defined before the 1004 block that uses it is 
seen. This error is probably the result of an 
error in the language translator used to 
generate the REL file. 

Undefined subroutine [symbol] called from link 
number [decimal] {name [name]} 

The named link contains a call for a subroutine 
you have not loaded. If the subroutine is 
required for execution, you must reload, 
including the required module in the link. 

Undefined symbol [symbol] in spare data (type 
1160) 

LINK has detected an undefined global symbol in 
a Type 1160 REL block. This global symbol is 
used to relocate a byte pointer and must be 
defined before the 1160 block that uses it is 
seen. This error is probably the result of an 
error in the language translator used to 
generate the REL file. 

The level and severity of this message 
compiler-generated coercion block. See 
Appendix A. 

is determined by a 
Block Type 1130 in 

LINK V6.0 B-30 April 1986 



Code Lev Sev 

USI 8 16 

UUA 8 8 

VAL 31 1 

tINA * * 

XCT 31 1 

ZSV 8 8 

LINK MESSAGES 

Message 

Undefined symbol [symbol] illegal in swi tch 
[swi tch] 

You have specified an undefined symbol to a 
switch that can only take a defined symbol or a 
number. Specify the correct switch value. 

Undefined /UPTO: address [symbol] 

You gave the named symbol as an argument to the 
/UPTO switch, but the symbol was never defined. 
Load a module that defines the symbol, or change 
your argument to the /UPTO switch. 

Symbol [symbol] [octal] [type] 

LINK has printed the specified symbol, its value 
and its attributes as requested. 

Wrong number of arguments in call to routine 
[symbol] called from module [symbol] at location 
[octal] 

The number of arguments in the routine call is 
not the number of arguments expected by the 
called routine. 

[llame] execution 

LINK is beginning execution of your program. 

Zero switch value illegal 

You omitted required arguments for a switch (for 
example, /REQUIRE with no symbols). Respecify 
the switch. 

B-31 April 1986 



LINK MESSAGES 

B.3 INDEXED MESSAGES 

The following pages list the indexed messages issued with the LINK 
messages LNKFEE, LNKFLE, LNKFRE, and LNKGSE. The medium-length 
messages in the table are substituted for the [reason] field in the 
main messages. 

The level and severity of these messages depend on the particular file 
access error. Thus, each indexed message includes the level and 
severity actually assigned to the main message. 

Idx Lev Sev Message 

o 31 31 (0) Illegal file name 

31 24 

1 31 24 

2 31 24 

2 31 31 

3 31 24 

4 31 24 

One of the following conditions occurred: 

o The specified file name was illegal. 

o When updating a file, the specified file 
name did not match the file being updated. 

o The RENAME monitor call following a LOOKUP 
monitor call failed. 

(0) file was not found 

The named file was not found. 
existing file. 

Specify an 

(1) nc. directory for project-programmer number 

The named directory does not e~ist on the named 
file structure, or the project-programmer number 
given was incorrect. 

(2) protection failure 

You do not have sufficient access privileges to 
use the named file. 

(2) directory full 

The directory on the DECtape has no room for the 
file. Delete some files from the DECtape or 
specify another device. 

(3) file was being modified 

Another job is currently modifying the named 
file. Try accessing the file later. 

(4) rename file name already exists 

The named file already exists, or a different 
file was specified on the ENTER monitor call 
following a LOOKUP monitor call. 

8-32 April 1986 



Idx Lev Sev 

5 31 31 

6 31 31 

7 31 31 

31 31 

11 31 31 

12 31 31 

LINK MESSAGES 

Message 

(5) illegal sequence of UUOs 

LINK has specified an illegal sequence of 
monitor calls. (For example, a RENAME without a 
preceding LOOKUP or ENTER monitor call, or a 
LOOKUP after an ENTER.) This is an internal 
error. This message is not expected to occur. 
If it does, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

(6) bad UFD or bad RIB 

One of the following conditions occurred: 

o A transmission, device or data error 
occurred while attempting to read the 
directory or the RIB of the named file. 

o A hardware-detected device or data error was 
detected while reading the named directory's 
RIB or data block. 

o A software-detected data inconsistency error 
was detected while reading the named 
directory's or file's RIB. 

(7) not a saved file 

The named file is not a saved file. This 
message is not expected to occur. If it does, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

(1~) not enough memory 

The system cannot supply enough memory to use as 
buffers or to read in a program. This message 
is not expected to occur. If it does, please 
notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

(11) device not available 

The named device is currently not available. 
This message is not expected to occur. If it 
does, please notify your Software Specialist or 
send a Software Performance Report (SPR) to 
DIGITAL. 

(12) no such device 

The named device does not exist. This message 
is not expected to occur. If it does, please 
notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

B-33 April 1986 



Idx Lev Sev 

13 31 31 

14 31 24 

15 31 24 

16 31 31 

17 1 1 

31 31 

21 31 31 

22 31 31 

LINK MESSAGES 

Message 

(13) not two re10c reg. capability 

The machine does not have a two-register 
relocation capability. This message can never 
occur and is included only for completeness of 
the LOOKUP, ENTER and RENAME error codes. If it 
does occur, please notify your Software 
Specialist or send a Software Performance Report 
(SPR) to DIGITAL. 

(14) no room or quota exceeded 

You have exceeded the quota of the named 
directory, or the entire capacity of the file 
structure. Delete some files, or specify a 
directory or structure with sufficient space. 

(15) write lock error 

The named device is write-locked. 
write-enabled device or ask the 
write-enable the named device. 

(16) not enough monitor table space 

Specify a 
operator to 

There is not enough internal monitor table space 
for the named file. Try the load at a later 
time. 

(17) partial allocation only 

Because of the named directory's quota or the 
available space on the file structure, the total 
number of blocks requested could not be 
allocated. A partial allocation was given. 

(2g) block not free on allocation 

The block required by LINK is not available for 
allocation. This message can never occur and is 
included only for completeness of the LOOKUP, 
ENTER and RENAME error codes. This message is 
not expected to occur. If it does, please 
notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

(21) can't supersede 
directory 

(enter) an 

You have attempted to supersede the 
directory. 

existing 

named 

(22) can't delete (rename) a non-empty directory 

You have attempted to delete a directory that is 
not empty. This message can never occur and is 
included only for completeness of the LOOKUP, 
ENTER and RENAME error codes. If it does occur, 
please notify your Software Specialist or send a 
Software Performance Report (SPR) to DIGITAL. 

B-34 April 1986 



LINK MESSAGES 

Idx Lev Sev Message 

23 31 24 (23) SFD not found 

24 31 24 

25 31 24 

26 31 24 

27 31 24 

3~ 31 24 

31 31 24 

32 31 31 

One of the sub-file directories in the named 
path was not found. 

(24) search list empty 

A LOOKUP or ENTER monitor call was performed on 
generic device DSK: and the search list is 
empty. 

(25) SFD nested too deeply 

You have 
directory 
allowed. 

attempted to access a sub-file 
nested deeper than the maximum level 

(26) no-create on for specified SFD path 

No file structure in your job's search list has 
both the no-create bit and the write-lock bit 
equal to zero, and has the named directory. 

(27) segment not on swap space 

A GETSEG monitor call was issued from a locked 
low segment to a high segment which is not a 
dormant, active or idle segment. This message 
can never occur and is included only for 
completeness of the LOOKUP, ENTER and RENAME 
error codes. If it does occur, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

(3~) can't update file 

A LOOKUP and ENTER monitor call was given to 
update a file, but the file cannot be updated 
for some reason. (For example, another user is 
superseding it or the file was deleted between 
the time of the LOOKUP and the ENTER). 

(31) low segment overlaps high segment 

The end of the low segment is above the 
beginning of the high segment. 

(32) RUN not allowed when not logged in 

An attempt has been made to run a program from a 
not-logged-in job. This message is not expected 
to occur. If it does, please notify your 
Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

8-35 April 1986 



LINK MESSAGES 

Idx Lev Sev Message 

33 31 31 (33) file still has outstanding ENQ/DEQ locks 

34 31 31 

35 31 31 

36 31 31 

37 31 31 

40 31 31 

41 31 31 

42 31 31 

The ENQ/D&Q facility has been used for 
simultaneous updating. of the named file, but 
some ENQ/DEQ requests are still outstanding and 
the file cannot be closed. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

(34) bad .EXE file directory format 

The named file has a bad .EXE format directory. 
This message is not expected to occur. If it 
does, please notify your Software Specialist or 
send a Software Performance Report (SPR) to 
DIGITAL. 

(35).EXE format files must have .EXE extension 

An attempt has been made to run an .EXE-format 
file with a non-.EXE extension. .EXE format 
files (those with an internal directory) must 
have the extension .EXE. This message is not 
expected to occur. If it does, please notify 
your Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

(36) .EXE file directory is too big 

An attempt has been made to run an .EXE-format 
file with a directory that is too large for the 
monitor to handle. This message is not expected 
to occur. If it does, please notify your 
Software Specialist or send a Software 
Performance Report (SPR) to DIGITAL. 

(37) network capability exceeded for TSK: 

The monitor's ability to accept another network 
connection has been exceeded. 

(40) task is not available 

The named task is not available. 
existing task name. 

(41) undefined network node for TSK: 

Specify an 

You have specified a network node that does not 
exist. Wait for the node to come up or specify 
an existing network node. 

([octal]) Unknown cause 

This message indicates that a LOOKUP, ENTER or 
RENAME monitor call error occurred with an error 
code larger in number than the errors LINK knows 
about. This message is not expected to occur. 
If it does, please notify your Software 
Specialist or send a Software Performance Report 
(S PR) to DIGITAL. 

8-36 April 1986 



APPENDIX C 

JOB DATA AREA LOCATIONS SET BY LINK 

LINK sets a number of locations between 40 and 140 (octal) in the 
user's program. These locations are known as the Job Data Area 
(commonly abbreviated to JOBDAT). They are used by the TOPS-10 
monitor. In addition, two segment programs will have a vestigial Job 
Data Area of eight words following the high segment origin. 

Address 

41 

42 

74 

115 

116 

117 

120 

121 

124 

LINK V6.0 

Job Data Area 

Mnemonic Use 

.JB41 HALT if not specified otherwise. 

.JBERR 

• JBDDT 

• JBHRL 

.JBSYM 

.JBUSY 

.JBSA 

.JBFF 

.JBREN 

Executes by LUUOs. 

Right: Number of errors during loading. 

Left: Highest location occupied by DDT • 
Right: Start address of DDT if loaded. 

Left: High segment length • 
Right: Highest address in high segment. 

Left: Negative length of symbol table. 
Right: Address of table. 

For extended symbol tables, this word contains a I 
positive value which is the pointer to the symbol 
table vector (see Section 4.3). 

Left: 

Right: 

Negative length of undefined symbol 
table. 
Address of undefined symbol table. 

If 0, there is no undefined symbol table, or the I 
pointer to an extended symbol table is stored in 
.JBSYM. 

Left: 
Right: 

Right: 

Right: 

First free location in low segment. 
Start address of program. 

First free location in low segment. 

Reenter address of program. 

C-1 April 1986 



Address 

131 

133 

137 

JOB DATA AREA LOCATIONS SET BY LINK 

Mnemonic 

.JBOVL 

.JBCOR 

.JBVER 

Left: 

Use 

Address of header block for the root 
link in an overlaid program. 

Highest location of low segment loaded 
with data. 

Version number: see description of 
switch in Section 3.2.2. 

/VERSION 

Vestigial Job Data Area 

Offset Mnemonic Use 

o .JBHSA Copy of .JBSA. 

1 .JBH41 Copy of .JB4l. 

2 .JBHCR Copy of .JBCOR. 

3 

4 

5 

6 

7 

• JBHRH 

• JBHVR 

• JBHNM 

.JBHSM 

.JBHGA 

LH: left half of .JBHRL • 
RH: right half of .JBREN. 

Copy of .JBVER • 

Prog ram Name • 

High segment symbol table, if any_ 

High segment origin page in bits 9-17. 

C-2 April 1986 



Abbreviating 
switches, 3-4 

Allocating 
memory, 3-58, 3-65 
space, 3-23 

/ARSIZE 
LINK switch, 3-6 

/BACKSPACE 
LINK switch, 3-7 

Blocks 
REL, A-I 

Calls to overlay handler, 5-15 
.CCL files, 3-2 
Clearing 

DECtape, 3-80 
module requests, 3-39 

Closing overlay links, 3-27 
CLROV., 5-16 
CLROVL, 5-16 
Code 

relocatable, 1-2 
Command 

comments, 3-1 
indirect files, 3-2 
str ing, 3-2 

/COMMON 
LINK switch, 3-8 

CONCATENATE 
PSECTs attribute, 6-3 

Conserving memory space, 3-41 
Constructing overlays, 3-50 
/CONTENTS 

LINK switch, 3-9 
Continuing commands, 3-1 
/CORE 

LINK switch, 3-10 
CORE (see memory), 3-21 
Core image, 1-2 
/COUNTERS switch, 3-11 
/CPU 

LINK switch, 3-12.1 
CPU type 

specifying, 3-12.1 
Creating 

EXE files, 3-59 
sharable save files, 3-66 

Data word, A-I 
/DDEBUG 

LINK switch, 3-13 
DDT, 2-1 
/DEBUG 

LINK switch, 3-14 
DEBUG system command, 2-1 
Debuggers 

loading, 3-14, 3-72 
specifying, 3-13 

INDEX 

Debtigging overlayed programs, 
5-14 

/DEFAULT 
LINK switch, 3-15 

Default file specifications, 3-15 
/DEFINE 

LINK switch, 3-16 
Diagram 

tree, 3-52 
Displaying 

relocation counters, 3-11 

Ending loading, 3-22 
/ENTRY 

LINK switch, 3-17 
Entry name symbols 

·deleting, 3-38 
Entry points 

overlay handler, 5-15 
Entry vector section 

sharable save file, 4-4 
/ERRORLEVEL 

LINK switch, 3-18 
/ESTIMATE 

SCAN switch, 3-3 
/EXCLUDE 

LINK switch, 3-19 
/EXECUTE 

LINK switch, 3-20 
EXECUTE system command, 2-1 
Execution 

starting, 3-20 
/EXIT 

SCAN switch, 3-3 
Extended addressing, 1-3 
EXTTAB table, 5-36 

File 
core image, 4-1 
executable, 1-2 
library, 1-2 
log, 1-3, 4-5 
map, 1-3, 4-5 
overlay format, 5-30 
REL, 1-1 
sharable save, 1-2, 3-59 
symbol, 1-3, 3-69, 4-5 

FORTRAN 
COMMON storage, 3-8 

/FRECOR 
LINK switch, 3-21 

FUNCT. subroutine, 5-11, 5-24 

GETOV., 5-17 
GETOVL, 5-17 
Global switches, 3-5 
Global symbols, 1-2 

suppressing, 3-68 

Index-l April 1986 



/GO 
LINK switch, 3-22 

/HASHSIZE 
LINK switch, 3-23 

Header word, A-I 
/HELP 

SCAN switch, 3-3 

IDXBFR, 5-14 
INBFR, 5-15 
/INCLUDE 

LINK switch, 3-24 
Including local symbols, 3-28 
INIOV., 5-17 
INIOVL, 5-17 
INTTAB table, 5-37 

Job data area 
see JOBDAT 

JOBDAT, C-l 

Libraries 
searching, 3-60, 3-71, 3-76, 

3-81 
Library file, 1-2, 3-81 
/LIMIT 

LINK switch, 3-25, 6-1 
Limits 

symbol table, 3-75 
/LINK 

LINK switch, 3-27 
LINK 

command, 3-1 
messages, 4-7, B-1 
number table format, 5-32 
overlay switches, 5-2 
starting, 3-1 
switch, 3-4 

LOAD system command, 2-1 
Loading 

FORTRAN COMMONs into PSECTs, 
3-54 

PSECTs, 6-1 
two-segment code using PSECTs, 

3-54.1 
Local switches, 3-5 
/LOCALS 

LINK switch, 3-28 
/LOG 

LINK switch, 3-29 
Log file, 1-3, 4-5 

overlay, 5-18 
specifying, 3-29 

/LOGLEVEL 
LINK switch, 3-30 

LOGOV., 5-18 
LOGOVL, 5-18 
Long count, A-I 

Magtape operations, 3-35 
Maintaining 

free memory, 3-21 

/MAP 
LINK switch, 3-31 

Map file, 1-3, 4-5 
/MAXCORE 

LINK switch, 3-32 
/MAXNODE 

LINK switch, 3-33 
MBZ, A-I 
Memory size 

specifying, 3-5 
/MESSAGE 

SCAN switch, 3-3 
Messages 

controlling, 3-78 
levels, 4-7 
LINK, 4-7, B-1 
overlay handler, 5-21 
severity, 4-7, B-2 
suppressing, 3-18, 3-30 

/MISSING 
LINK switch, 3-34 

Modules 
loading, 3-19, 3-55 
specifying, 3-24 

/MTAPE 
LINK swi tch, 3-35' 

Naming overlay links, 3-27 
/NEWPAGE 

LINK switch, 3-36 
/NODE 

LINK switch, 3-37 
/NOENTRY 

LINK switch, 3-38 
/NOINCLUDE 

LINK switch, 3-39 
/NOINITIAL 

LINK switch, 3-40 
/NOLOCAL 

LINK switch, 3-41 
Non-writable links 

declaring, 5-16 
/NOREQUEST 

LINK switch, 3-42 
/NOSEARCH 

LINK switch, 3-43 
/NOSTART 

LINK switch, 3-44 
/NOSYMBOL 

LINK switch, 3-45 
/NOSYSLIB 

LINK switch, 3-46 
/NOUSERLIB 

LINK switch, 3-47 
Number of overlay links 

specifying, 3-33 

Object modules, 1-1 
Object-time systems 

loading, 3-49 
Obtaining information, 3-34, 

3-54.2, 3-73, 3-77 

Index-2 April 1986 



/ONLY 
LINK switch, 3-48 

/OPTION 
SCAN switch, 3-4 

Origin 
PSECTs, 6-1 

/OTSEGMENT 
LINK switch, 3-49 

Overflow to disk, 3-32 
OVERLAID 

PSECTs attribute, 6-3 
/OVERLAY 

LINK switch, 3-50 
Overlay handler, 5-14 
Overlay link, 3-37 

closing, 3-27 
deleting, 3-42 
format, 5-33 
name table format, 5-32 
naming, 3-27 
overlay code, 5-35 
paths, 5-1 
preamble, 5-34 

Overlaying links, 5-15 
Overlays, 1-3 

constructing, 3-50 
program size, 5-14 
relocatable, 5-11 
restrictions, 5-12 
writable, 5-10 

/PATCHSIZE 
LINK switch, 3-51 

Permanent switches, 3-5 
/PLOT 

LINK switch, 3-52 
Plot file 

specifying, 3-53 
/PLTTYP 

LINK switch, 3-53 
Predecessor overlay links, 5-1 
Preventing JOBDAT loading, 3-40 
Printing entry name symbols, 3-17 
Program 

controlling termination, 3-63 
executable, 4-1 

/PROTECTION 
SCAN switch, 3-4 

/PSCOMMON LINK switch, 3-54 
PSECTs, 6-1 

attributes, 6-3 
CONCATENATE, 6-3 
OVERLAID, 6-3 

loading, 6-1 
loading two-segment code into, 

3-54.1 
origin, 6-1 
preventing unintented overlaps, 

6-1 
specifying upper bounds, 3-25, 

6-1 
PSECTs origin, 3-62 

/REDIRECT switch, 3-54.1 
REL blocks, A-l 
REL file, 1-1 
Relocatable 

code, 1-2 
overlays, 5-11 

Relocation counters 
displaying, 3-11 
setting, 3-36, 3-62 

REMOV., 5-19 
Removing links, 5-19 
REMOVL, 5-19 
/REQUEST 

LINK switch, 3-54.2 
/REQUIRE 

LINK switch, 3-55 
Resetting symbol types, 3-9 
Restrictions 

Overlays, 5-12 
/REWIND 

LINK switch, 3-56 
Rewinding magtape, 3-56 
Root link, 5-1 
/RUN 

SCAN switch, 3-4 
/RUNAME 

LINK switch, 3-57 
/RUNCOR 

LINK switch, 3-58 
Running links, 5-19 
RUNOV., 5-19 
RUNOVL, 5-19 

/SAVE 
LINK switch, 3-59 

Save file 
format, 4-2 

SAVOV., 5-20 
SAVOVL, 5-20 
SCAN switches, 3-3 
/SEARCH 

LINK switch, 3-60 
Searching libraries, 3-60, 3-71, 

3-76, 3-81 
/SEGMENT 

LINK switch, 3-61 
Segments 

loading, 3-48 
specifying, 3-61 

/SET 
LINK switch, 3-62, 6-1 

/SEVERITY 
LINK switch, 3-63 

Severity codes of messages, B-2 
Sharable save file, 1-2, 3-59 

entry vector section, 4-4 
Short count, A-l 
/SKIP 

LINK switch, 3-64 
Skipping magtape, 3-64 
/SPACE 

LINK switch, 3-65 

Index-3 April 1986 



Specifying 
job names, 3-57 
memory size, 3-1~ 
start addresses, 3-67 

/SSAVE 
LINK switch, 3-66 

/START 
LINK switch, 3-67 

Structure 
overlay, 5-1 
tree, 5-1 

Successor overlay links, 
/SUPPRESS 

LINK switch, 3-68 
Switch 

global, 3-5 
local, 3-5 
permanent, 3-5 
temporary, 3-5 
values, 3-5 

/SYFILE 
LINK switch, 3-69 

Symbol 
defining, 3-16 

Symbol file, 1-3, 4-5 
Symbol table vector, 4-5 
/SYMSEG 

LINK switch, 3-7~ 
/SYSLIB 

LINK switch, 3-71 
System command switches, 

Table 
relocation, 5-38 

5-1 

2-2 

Table (Cont. ) 
symbol, 3-7~ 

Temporary switches, 3-5 
/TEST 

LINK switch, 3-72 
/TMPFIL 

SCAN switch, 3-4 

/UNDEFINED 
LINK switch, 3-73 

/UNLOAD 
LINK switch, 3-74 

Unloading magtape, 3-74 
Uppar bounds for PSECTs, 6-1 

specifying, 3-25 
/UPTO 

LINK switch, 3-75 
/USERLIB 

LINK switch, 3-76 

/VALUE 
LINK switch, 3-77 

/VERBOSITY 
LINK .swi tch, 3-78 

/VERSIO~ 
LINK switch, 3-79 

Virtual memory, 1-1 

Word relocation, A-I 
Writable links 

declaring, 5-2~ 
Writable overlays, 5-l~ 

/ZERO 
LINK switch, 3-8~ 

Index-4 April 1986 



READER'S COMMENTS 

TOPS-10 
LINK Reference Manual 

AA-0988D-TB 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible to 
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make sugges
tions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify)~~~~~~~~~~~~~~~~~~~~~ 

Name Date _~ ________ _ 

Organization _~ __ ~~_~~ __ ~ ___ Telephone ________ ~ 

Street __________________________________________ __ 

City ____________________ State _____ Zip Code ___ _ 

or Country 



, 
, 
I 
I , 
, 
, 

- - - - - - - - - Do Not Tear - Fold Here and Tape --------------------------------------------, 

IIIIII No Postage A 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 

200 FOREST STREET 

MARLBOROUGH, MA 

MR01-2/L 12 

01752 

Necessary 
if Mailed in the 
United States 

I 
, 
, 
, 
, 
, 
~ 

I 
, 
, 
, 
, 
, 
I 
, 
, 
, 
, 
I 

" 
I 
, 
, 

- - - - - - - - Do Not Tear - Fold Here and Tape --------------------------------------------, , 
, 
, 
, 
, 
, 
, 
, 

A 

, 
, 
, 
, 
, 
,(I) 
, .5 
,.....:I 
,~ 
I:::: ,0 
,0 
,~ 
,.2 
,< 

'= 'u , 
, 
, 
~ 



UPDATE NOTICE 

TOPS-10 
LINK Reference Manual 

AD-0988D-T1 

January 1985 

Insert this Update Notice in the TOPS-10 LINK Reference 
Manual to maintain an up-to-date record of changes to the 
manual. 

The instructions for inserting this update start on the next page. 

© Digital Equipment Corporation 1985. All Rights Reserved. 

~DmDD~D 

wore 



INSTRUCTIONS 
AD-0988D-T1 

The following list of page numbers specifies which pages are to be placed in the TOPS-10 LINK 
Reference Manual as replacements for, or additions to, current pages. 

[Title page 
Copyright page 

[3-59 
3-60 

[5-21 
5-22 

[Entire 
Contents 

[3-67 
3-68 

[Entire 
Chapter 6 

[3-49 
3-50 

[5-9 
5-10 

[Entire 
Appendix A 

[Entire 
Index 

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN UP-TO-DATE 
RECORD OF CHANGES. 

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES. 
Five types of changes are used to update documents contained in the TOPS-10 software manuals. 
Change symbols and notations are used to specify where, when, and why alterations were made to 
each update page. The five types of update changes and the manner in which each is identified are 
described in the following table. 

The Following Symbols and/or Notations Identify the Following Types of Update Changes 

1. Change bar in outside margin; version num- 1 . Changes were required by a new version of 
ber and change date printed at bottom of the software being described. 
page. 

2. Change bar in outside margin; change date 2. Changes were required to either clarify or 
printed at bottom of page. correct the existing material. 

3. Change date printed at bottom of page. 3. Changes were made for editorial purposes 
but use of the software is not affected. 

4. Bullet (e) in outside margin; version number 4. Data was deleted to comply with a new ver-
and change date printed at bottom of page. sion of the software being described. 

5. Bullet (e) in outside margin; change date 5. Data was deleted to either clarify or correct 
printed at bottom of page. the eXisting material. 



UPDATE NOTICE 

TOPS-10 
LINK Reference Manual 
AO-09880-T2 

April 1986 

Insert this Update Notice in the TOPS-10 LINK Reference 
Manual to maintain an up-to-date record of changes 
to the manual. 

Changed Information 

The changed pages contained in this update package reflect 
the changes to LlNK-10 from Version 5.1 to Version 6.0. 

The instructions for inserting this update start on the next page. 

© Digital Equipment Corporation 1986. All Rights Reserved. 

~D~D[J~D 

wore 



INSTRUCTIONS 
AO-09880-T2 

The following list of page numbers specifies which pages are to be placed in the TOPS-10 
LINK Reference Manual as replacements for, or additions to, current pages. 

Title Page 3-61 A-40.1 
Copyright Page 3-62 A-40.6 

Entire 3-67 A-45 
Contents 3-70 A-69 

1-3 3-75 Entire 
1-4 3-76 Appendix B 

3-7 Entire Entire 
3-12.2 Chapter 4 Appendix C 

3-21 Entire Entire 
3-22 Chapter 6 Index 

3-53 A-13 
3-54.2 A-14 

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN 
UP-TO-DATE RECORD OF CHANGES. 

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES. 
Five types of changes are used to update documents contained in the TOPS-1 0 software 
manuals. Change symbols and notations are used to specify where, when, and why 
alterations were made to each update page. The five types of update changes and the manner 
in which each is identified are described in the following table. 

The Following Symbols and/or Notations 

1. Change bar in outside margin; version 
number and change date printed 
at bottom of page. 

2. Change bar in outside margin; change date 
printed at bottom of page. 

3. Change date printed at bottom of page. 

4. Bullet (e) in outside margin; version number 
and change date printed at bottom of page. 

5. Bullet (e) in outside margin; change date 
printed at bottom of page. 

Identify the Following Types of Update Changes 

1. Changes were required by a new version 
of the software being described. 

2. Changes were required to either clarify or 
correct the existing material. 

3. Changes were made for editorial purposes 
but use of the software is not affected. 

4. Data was deleted to comply with a new ver
sion of the software being described. 

5. Data was deleted to either clarify or correct 
the existing material. 

April 1986 


	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12.0
	3-12.1
	3-12.2
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54.0
	3-54.1
	3-54.2
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40.0
	A-40.1
	A-40.2
	A-40.3
	A-40.4
	A-40.5
	A-40.6
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	C-01
	C-02
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB
	update01
	update02
	update03
	update04

