TOPS-20
Monitor Calls
Reference Manual

AA-4166E-TM, AD—4166E-T1

December, 1982

This manual describes all the monitor calls that exist in the
TOPS-20 operating system. For easy reference, the monitor
call descriptions are arranged alphabetically and presented
concisely.

information in these pages updates the manual of the same
name and order no. AA—4166E-TM.

OPERATING SYSTEM: TOPS-20 V5 (KS/KL Model A)
TOPS-20 V5.1 (KL Model B)

Software and manuals should be ordered by litle and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, Illinois 60195 Sunnyvale. California 94086
Telephone:(312)640-5612 Telephone:(408)734-4915

digital equipment corporation e marlboro. massachusetts

© Digital Equipment Corporation 1982. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

o ifgliltlalI

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—-10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

UPDATE NOTICE

TOPS-20
Monitor Calis
Reference Manual

AD-4166E-T1

December, 1982
Insert this Update Notice in the TOPS-20 Monitor Calls

Reference Manual to maintain an up-to-date record of changes
to the manual.

Changed Information

The changed pages contained in this update package reflect
changes to the monitor calls for TOPS-20, Version 5.1.

The instructions for inserting this update start on the next page.

© Digital Equipment Corporation 1982. All Rights Reserved.

softvare

INSTRUCTIONS
AD-4166E-T1

The following list of page numbers specifies which pages are to be placed in the TOPS-20 Monitor
Calls Reference Manual as replacements for, or additions to, current pages.

[Title page
Copyright page

Vi

xiii
[xiv

3-285 Index—1
3-294 Index—2
3-415 [Index~1 1
3-416 Index—12
3-469 Index—15
3-470 Index—16

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN UP-TO-DATE
RECORD OF CHANGES.

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES.

Five types of changes are used to update documents contained in the TOPS-20 software manuals.
Change symbols and notations are used to specify where, when, and why alterations were made to
each update page. The five types of update changes and the manner in which each is identified are
described in the following table.

The Following Symbols and/or Notations

1.

Change bar in outside margin; version num-
ber and change date printed at bottom of

page.

Change bar in outside margin; change date
printed at bottom of paqge.

Change date printed at bottom of page.

Bullet (®) in outside margin; version number
and change date printed at bottom of page.

Bullet (®) in outside margin; change date
printed at bottom of page.

Identify the Following Types of Update Changes

1.

Changes were required by a new version of
the software being described.

Changes were required to either clarify or
correct the existing material.

Changes were made for editorial purposes
but use of the software is not affected.

Data was deleted to comply with a new ver-
sion of the software being described.

Data was deleted to either clarify or correct
the existing material.

December, 1982

CONTENTS

Page

PREFACE

CHAPTER 1 INTRODUCTION
1.1 CALLING CONVENTIONS 1-
1.2 MONITOR CALL ARGUMENTS 1-
1.2.1 Addresses 1-
1.2.2 Page Numbers 1-
1.2.3 Section Numbers 1-
1.2.4 Byte Pointers 1-
1.2.5 File Handles and File Designators 1-
1.2.6 Source/Destination Designators 1-
1.2.6.1 File Designator 1-
1.2.6.2 Byte Pointers and ASCII Strings 1-
1.2.6.3 Special Designators 1-
1.2.6.4 Numeric Designators 1-
1.2.7 Device Designator 1-
1.2.8 Process Handles 1-
1.2.8.1 Process/File Handle 1-
1.3 SYSTEM DATE AND TIME 1-
1.4 PROCESSING ERRORS 1-1
1.5 CONVENTIONS USED IN THIS MANUAL 1-1
1.5.1 Number Bases 1-11
1.5.2 Abbreviations 1-12
1.5.3 Symbols 1-12
1.5.4 Unimplemented Features 1-12

CHAPTER 2 FUNCTIONAL ORGANIZATION OF JSYS'S
2.1 ACCOUNTING FUNCTIONS 2~
2.2 REFERENCING FILES 2-
2.2.1 File Specifications 2-
2.2.2 Logical Names 2-
2.2.3 File Handles 2-
2.2.4 File References 2-
2.2.4.1 Files and Devices 2-
2.2.5 Sample Program 2-
2.2.6 File Access 2-
2.2.7 Directory Access 2-
2.2.8 File Descriptor Block 2-1
2.2.9 Primary Input and Output Files 2-2

111

HFOWwWOWOIOIJOUTH_wWwNNH

COWVWOUTULUTWN = =

o

=

w N

..
e s
b

w
.
ot

P S
“ e
N

.
.

. e e e
e e o e o

¢ . .
—

.
.

. .

U W=

.
.
.

.
.
.

WCWOWOWOWWOWOWOWONNNNINJI0U e W -

.

YU WN -

o o 0
« o s

.
.
N s W N

.
—

wwwN -

.
.

.
N~

o
.

o« o .
o .
B w N

WOWOWOWODXOOOINNIIII~Toaoaooaoaoaoa s b EA_RLAELS SR DBELRERERWWWNNONDNNODN

RDRONNDNDNNDNODNPODNONNONNODNNNNDNODNNNODNDNDNDNDNDNDNONDNODNDNDNDNNNODNOONRNNNODNDNONOONNNDNODNDNDONDNDNNDNDNDNDND

.
.

b
.

N

CONTENTS (Cont.)

Methods of Data Transfer
File Byte Count
EOF Limit
Input/Output Errors
Testing for End-of-File
OBTAINING INFORMATION
Error Mnemonics and Message Strings
System Tables
COMMUNICATING WITH DEVICES
Physical Card Reader (PCDR:)
Spooled Card Reader (CDR:)
Physical Card Punch (PCDP:)
Spooled Card Punch (CDP:)
Physical Line Printer (PLPT:)
PLPT: Status Bits
Spooled Line Printer (LPT:)
Physical Magnetic Tape (MTA:)
Buffered 1I/0
Unbuffered I/0
Magnetic Tape Status
Reading a Tape in the Reverse Direction
Hardware Data Modes
Logical Magnetic Tape (MT:)
Terminal (TTY:)
JFN Mode Word
Control Character Output Control
Character Set
Terminal Characteristics Control
Terminal Linking
Terminal Advising
SOFTWARE DATA MODES
SOFTWARE INTERRUPT SYSTEM
Software Interrupt Channels
Software Interrupt Priority Levels
Software Interrupt Tables
Terminating Conditions
Panic Channels
Terminal Interrupts
Terminal Interrupt Modes
Dismissing an Interrupt
PROCESS CAPABILITIES
Assigned Capabilities
Access Control
Processes and Scheduling
Process Freezing

Execute-Only Files and Execute-Only Processes

SAVE FILES
Format for Nonsharable Save Files
Format of Sharable Save Files
Entry Vector
Program Data Vector

INPUT/OUTPUT CONVERSION
Floating Output Format Control
Free Format
General Format Control

iv

Page

2-20
2-20
2-21
2-21
2-22
2-24
2-24
2-24
2-32
2-33
2-34
2-35
2-35
2-36
2-38
2-38
2-39
2-40
2-41
2-41
2-41
2-42
2-45
2-45
2-45
2-48
2-48
2-51
2-53
2-53
2-54
2-57
2-57
2-58
2-59
2-59
2-60
2-60
2-62
2-62
2-63
2-64
2-65
2-67
2-67
2-68
2-70
2-70
2~-71
2-74
2-75
2-75
2-76
2-76
2-76

CHAPTER

ACCES
ADBRK
AIC

ALLOC
ARCF
ASND
ASNSQ
ATACH
ATI

ATNVT

BIN
BKJFN

BOOT

BOUT
CACCT
CFIBF
CFOBF
CFORK
CHFDB
CHKAC
CIS
CLOSF
CLZFF
COMND
CRDIR

CRJOB
CRLNM
CVHST

CVSKT
DEBRK
DELDF
DELF

DELNF

DEQ
DEVST

DFIN

CONTENTS (Cont.)

Date and Time Conversion Monitor Calls
ARCHIVE/VIRTUAL DISK SYSTEM
PRIVILEGED MONITOR CALLS

TOPS~20 MONITOR CALLS

(552)
(570)
(131)

(520)
(247)

(70)
(752)
(116)
(137)

(274)

(50)
(42)

(562)

(51)
(4)
(100)
(101)
(152)
(64)
(521)
(141)
(22)
(34)
(544)
(240)

(2)
(502)
(276)

(275)
(136)
(67)
(26)
(317)

(514)
(121)

(234)

Specifies access to a directory
Controls address breaks
Activates software interrupt
channels

Allocates a device
Archive/virtual disk operations
Assigns a device

Assigns ARPANET special message gueue

Attaches a terminal to a job
Assigns a terminal code to a
software interrupt channel
Creates ARPANET Network Virtual
Terminal Connection

Performs byte input

Backs up the source designator's
pointer by one byte

Performs functions required for
loading front-end software
Performs byte output

Changes account designator

Clears the input buffer

Clears the output buffer

Creates an inferior process
Changes a File Descriptor Block
Checks access to a file

Clears the interrupt system
Closes a file

Closes the process' files

Parses a command

Creates, changes, or deletes a
directory

Creates a job

Defines or deletes a logical name
Converts ARPANET host number to
primary name

Converts ARPANET local socket to
absolute form

Dismisses current software interrupt
Expunges deleted files

Deletes files

Retains specified number of
generations of a file

Removes request from resource gqueue
Translates a device designator to
a string

Inputs double-precision floating
point number

Page
2-79

2-81
2-82

3-40

3-43
3-45

3-48

DFOUT
DIAG
DIBE
DIC

DIR
DIRST

DISMS
DOBE

DSKAS
DSKOP

DTACH
DTI
DUMPI
DUMPO
DVCHR
EIR
ENQ
ENQC
EPCAP
ERSTR
ESOUT
FFFFP
FFORK
FFUFP
FLHST
FLIN
FLOUT
GACCT
GACTF
GCVEC

GDSKC
GDSTS
GDVEC
GET

GETAB
GETER
GETJI
GETNM

GETOK$%
GEVEC
GFRKH
GFRKS
GFUST

GIVOK®%

(235)
(530)
(212)
(133)

(130)
(41)

(167)
(104)

(244)
(242)

(115)
(140)

(65)

(66)
(117)
(126)
(513)
(515)
(151)

(11)
(313)

(31)
(154)
(211)
(277)
(232)
(233)
(546)

(37)
(300)

(214)
(145)
(542)
(200)

(10)

(12)
(507)
(177)

(574)
(205)
(164)
(166)
(550)

(576)

CONTENTS (Cont.)

Outputs double-precision floating
point number

Reserves or releases hardware
channels

Dismisses until input buffer is
empty

Deactivates software interrupt
channels

Disables software interrupt system
Translates a directory number to a
string

Dismisses the process

Dismisses until output buffer is
empty

Assigns or deassigns disk addresses
Specifies disk transfers in hardware
terms

Detaches a terminal from a job
Deassigns a terminal code

Reads data in unbuffered data mode
Writes data in unbuffered data mode
Retrieves device characteristics
Enables software interrupt system
Places request in resource queue
Obtains status of resource queue
Enables process capabilities
Converts error number to string
Outputs an error string

Finds first free page in file
Freezes processes

Finds first used page in file
Flushes an ARPANET host

Inputs floating-point number
Outputs floating-point number

Gets current account designator
Gets account designator of file
Gets entry vector of compatibility
package

Gets disk count

Gets device's status

Gets entry vector of RMS

Gets a save file

Gets a word from a monitor table
Returns the last error 1in a process
Gets specified job information
Returns the program name currently
being used

Requests access to a protected
resource

Gets entry vector

Gets process handle

Gets process structure

Returns author and last writer
name strings

Grants access to a protected
resource

vi

Page

3-101
3-102
3-106

3-107
3-108

3-109
3-110

3-111
3-112

3-113
3-115
3-116
3-117
3-119
3-121
3-123
3-124
3-130
3-134
3-135
3-136
3-137
3-138
3-139
3-140
3-141
3-142
3-143
3-144

3-145
3-146
3-147
3-148
3-149
3-152
3-153
3-154

3-156
3-157
3-162
3-163
3-164
3-166

3-167

GJINF
GNJFN
GPJFN
GTAD

GTDAL
GTDIR
GTFDB
GTHST
GTJFN

GTRPI
GTNCP%
GTRPW
GTSTS
GTTYP
HALTF
HFORK
HPTIM

HSYS
IDCNV
IDTIM
IDTNC
IIC

INLNM
JFNS
KFORK
LGOUT
LNMST
LOGIN
LPINI
MDDT$
METER$%
MRECV
MSEND
MSFRK
MSTR

MTALN

MTOPR
MTU%

MUTIL
NIN
NODE
NOUT
NTMANS
ODCNV
ODTIM
ODTNC
OPENF
PBIN
PBOUT

(13)
(17)
(206)
(227)
(305)
(241)
(63)
(273)
(20)

(172)

(272)

(171)
(24

CONTENTS (Cont.)

Gets current job information
Gets the next JFN
Gets the primary JFNs
Gets current date and time
Gets disk allocation of a directory
Gets information of directory entry
Gets a File Descriptor Block
Obtains ARPANET host information
Gets a JFN

Short Form

Long Form
Gets trap information
Obtains information about the NCP
Gets trap words
Gets a file's status
Gets the terminal type number
Halts the current process
Halts a process
Returns values of high precision
clocks
Halts the system
Inputs date and time conversion
Inputs date and time
Inputs date/time without converting
Initiates software interrupts on
specified channels
Lists job's logical names
Translates a JFN to a string
Kills a process
Kills a job
Converts a logical name to a string
Logs 1n a job
Loads VFU or translation RAM
Enters MDDT
Returns EBOX/MBOX clock values
Receives an IPCF message
Sends an IPCF message
Starts a process in monitor mode
Performs structure-dependent
functions
Associates magnetic tape drive
with logical unit number
Performs device-dependent functions
Performs various functions for
MT: devices
Performs IPCF control functions
Inputs an integer number
Performs network utility functions
Outputs an integer number
Performs network management functions
Outputs date and time conversion
Outputs date and time
Outputs date/time without converting
Opens a file
Inputs the next byte
Outputs the next byte

vii

Page

3-168
3-169
3-170
3-171
3-172
3-173
3-175
3-176

3-179
3-187
3-194
3-195
3-197
3-198
3-199
3-200
3-201

3-202
3-203
3-204
3-205
3-207

3-209
3-210
3-211
3-214
3-215
3-216
3-217
3-218
3-219
3-220
3-222
3-224
3-229

3-230

3-247
3-248

3-277
3-279
3-285
3-286
3-292.1
3-292.2
3-294
3-295
3-297
3-298
3-303
3-304

PDVOP%
PEEK
PLOCK
PMAP
PMCTL
PPNST

PRARG
PSOUT
RCDIR
RCM

RCUSR
RCVIM

RCVOK$%
RDTTY

RELD
RELSQ

RESET

RFACS
RFBSZ
RFCOC
RFMOD
RFORK
RFPOS
RFPTR
RFRKH
RFSTS
RFTAD
RIN

RIR

RIRCM
RLJFN
RMAP

RNAMF
ROUT

RPACS
RPCAP
RSCAN

RSMAP%
RTFRK

RTIW
RUNTM
RWM

RWSET
SACTF

(603)
(311)
(561)

(56)
(560)
(557)

(545)

(76)
(553)
(134)
(554)
(751)

(575)

(523)

(71)
(753)

(147)

(161)

(45)
(112)
(107)
(155)
(111)

(43)
(165)
(156)
(533)

(54)
(144)

(143)
(23)
(61)
(35)
(55)
(57)

(150)

(500)

(610)
(322)

(173)
(15)
(135)

(176)
(62)

CONTENTS (Cont.)

Manipulates program data vectors
Obtains monitor data

Locks physical pages

Maps pages

Controls physical memory

Translates project-programmer
number to string

Reads/sets process argument block
Outputs a string

Translates string to directory number
Reads the channel word mask
Translates string to user number
Retrieves message from ARPANET
special message queue

Retrieves access request from GETOK
queue

Reads data from primary input
designator

Releases a device

Deassigns ARPANET special message
gueue

Resets/initializes the current
process

Reads process' ACs

Reads file's byte size

Reads file's control character output
Reads a file's mode

Resumes a process

Reads terminal's position

Reads file's pointer position
Releases a process handle

Reads a process' status

Reads file's time and dates
Performs random input

Reads software interrupt table
addresses

Reads inferior reserved channel mask
Releases JFNs

Obtains a handle on a page

Renames a file

Performs random output

Reads a page's accessibility

Reads process capabilities

Accepts a new string or uses the
last string as input

Reads a section map

Returns the handle of a process
suspended because of a monitor call
intercept

Reads terminal interrupt word
Returns runtime of process or job
Reads waiting channel interrupt word
mask

Releases the working set

Sets account designator of file

vili

Page

3-305
3-308
3-309
3-310
3-315

3-318
3-319
3-321
3-322
3-326
3-327

3-329
3-330

3-332
3-335

3-336

3-337
3-338
3-339
3-340
3-341
3-342
3-343
3-344
3-345
3-346
3-349
3-351

3-352
3-353
3-354
3-355
3-356
3-358
3-359
3-360

3-361
3-363

3-364
3-365
3-366

3-367
3-368
3-369

SAVE
SCTTY
SCVEC

SDSTS
SDVEC
SETER
SETJB
SETNM
SETSN
SEVEC
SFACS
SFBSZ
SFCOC
SFMOD
SFORK
SFPOS
SFPTR
SFRKV
SFTAD
SFUST

SIBE
SIN
SINR
SIR

SIRCM
SIZEF
SJPRI
SKED%

SKPIR
SMAP%

SMON
SNDIM

SNOOP
SOBE
SOBF
SOouT
SOUTR
SPACS
SPJFN
SPLFK
SPOOL

SPRIW
SSAVE
STAD

STCMP

(202)
(324)
(301)

(146)
(543)
(336)
(541)
(210)
(506)
(204)
(160)

(46)
(113)
(110)
(157)
(526)

(27)
(201)
(534)
(551)

(102)

(52)
(531)
(125)

(142)

(36)
(245)
(577)

(127)
(767)

(6)
(750)

(516)
(103)
{175)

(53)
(532)

(60)
(207)
(314)
(517)

(243)
(203)
1226)
(540)

CONTENTS (Cont.)

Saves a file as nonsharable
Changes controlling terminal
Sets entry vector of compatibility
package

Sets device's status

Sets entry vector of RMS

Sets the last error in a process
Sets job parameters

Sets program name

Sets system name for a process
Sets entry vector

Sets process' ACs

Sets file's byte size

Sets file's control character output
Sets a file's mode

Starts a process

Sets terminal's position

Sets file's pointer position
Starts process using its entry vector
Sets file's time and dates

Sets author and last writer
name strings

Skips if input buffer is empty
Performs string input

Performs record input

Sets software interrupt table
addresses

Sets inferior reserved channel mask
Gets the size of a file

Sets job's priority

Performs services relating to
the class scheduler

Tests the state of the software
interrupt system

Maps one or more contiguous
sections of memory

Sets monitor flags

Sends a message to ARPANET
special message gueue

Performs system analysis

Skips if output buffer is empty
Skips if output buffer is full
Performs string output

Performs record output

Sets a page's accessibility
Sets the primary JFNs

Splices a process structure
Defines and initializes input
spooling

Sets the priority word

Saves a file as sharable

Sets system date and time
Compares two strings

ix

Page

3-370
3-371

3-373
3-375
3-376
3-377
3-378
3-381
3-382
3-383
3-384
3-385
3-386
3-387
3-388
3-389
3-390
3-391
3-392

3-394
3-395
3-396
3-398

3-400
3-401
3-402
3-403

3-404
3-409

3-410
3-415

3-417
3-418
3-422
3-423
3-424
3-426
3-428
3-429
3-430

3-431
3-433
3-434
3-436
3-437

STDEV

STI
STIW
STO
STPAR
STPPN

STSTS
STTYP
SWJIFN
SWTRP%

SYERR
SYSGT
TBADD
TBDEL
TBLUK
TEXTI

TFORK

THIBR
TIME

TIMER
TLINK
TMON

TTMSG
TWAKE
UFPGS
USAGE

USRIO
UTEST
UTFRK

VACCT
WAIT

WFORK
WILDS%
XGSEV%
XGTPWS
XGVEC%
XRIR%

(120)

(114)
(174)
(246)
(217)
(556)

(25)
(302)
(47)
(573)

(527)

(16)
(536)
(535)
(537)
(524)

(321)

(770)
(14)
(522)
(216)
(7)
(775)
(771)
(525)
(564)

(310)
(563)
(323)

(566)
(306)

(163)
(565)
(614)
(612)
(606)
(601)

CONTENTS (Cont.)

Translates string to device
designator

Simulates terminal input

Sets terminal interrupt word
Simulates terminal output

Sets terminal parameters
Translates string to
project-programmer number

Sets a file's status

Sets the terminal type number
Swaps two JFNs

Traps for arithmetic underflow
or overflow conditions

Writes data to the system error file

Returns information for a system table

Adds entry to command table
Deletes entry from command table
Looks up entry in command table
Reads input from a terminal or a
file

Sets and removes monitor call
intercepts

Blocks the current process

Returns time system has been up
Sets time limit for a job

Controls terminal linking

Tests monitor flags

Sends a message to a terminal
Wakes a specified job

Updates file pages

Writes entries into the accounting
data file

Places program in user I/C mode
Tests monitor routines

Resumes a process suspended because
of a monitor call intercept
Validates an account

Dismisses process until interrupt
occurs

Waits for processes to terminate
Compares wild and non-wild strings
Gets an extended entry vector
Returns the page fail words
Returns an entry vector

Reads the addresses of the channel
and priority level tables

Page

3-438
3-439
3-440
3-442
3-443

3-444
3-445
3-446
3-447

3-448
3-450
3-451
3-452
3-453
3-454

3-457

3-461
3-464
3-465
3-466
3-468
3-470
3-472
3-473
3-474

3-475
3-478
3-479

3-481
3-482

3-483
3-484
3-485
3-487
3-488
3-489

3-490

XRMAP%
XSFRK%

XSIR%

XSSEVS

XSVEC%

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE

—
|
—

NN NNONDNDNDNODNDNODNDNDNDN -
| | B B |
HEHFOONOUIE_WNDHDN

CONTENTS (Cont.)

(611) Acguires a handle on a page

(605) Starts a process in a non-zero

section of memory

(602) Sets the addresses of the channel

and priority level tables

(613) Allows setting of extended entry

vector

(607) Sets or clears the entry vector

ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES

AND CONVERSIONS
MONSYM
MACSYM

ACTSYM

TABLES

P-Field Values for One-word Global
Byte Pointers
Source/Destination Designators
File Descriptor Block (FDB)
System Tables

Device Types

PCDR: Status Bits

PCDP: Status Bits

PLPT: Control Characters

PLPT: Status Bits

MTA: Status Bits

JFN Mode Word

Wake-up Classes/CCOC Word Bits
Terminal Characteristics
Software Interrupt Channels
Terminal Interrupt Codes
Process/Job Capabilities
Floating-Point Format Control
Time Zones

ASCII and SIXBIT Collating Seguence
and Conversion to EBCDIC
EBCDIC Collating Sequence and
Conversion to ASCII

x1

Page

3-491
3-493
3-494

3-495
3-496

1-5

1-6
2-11
2-25
2-33
2-34
2-35
2-37
2-38
2-39
2-46
2-49
2-51
2-58
2-60
2-64
2-77
2-80

PREFACE

This manual is written for the assembly language programmer who 1is
already familiar with TOPS-20 monitor <calls. For an introductory
discussion of some basic monitor calls, refer to the TOPS-20 Monitor

Calls User's Guide. For a more complete description of the monitor
calls that can be used to perform ARPANET functions, refer also to the
TOPS-20AN Monitor Calls User's Guide.

Chapter 1 introduces the conventions to follow when using monitor
calls, and describes the types of arguments used with the monitor
calls. Chapter 2 presents the calls related to particular functions
and tasks, such as using the software interrupt system. Chapter 3
contains, in alphabetical order, descriptions of all the monitor
calls.

Appendix A contains the EBCDIC, ASCII, and SIXBIT collating sequences,
and conversions between these three character set representations.
Appendix B is a listing of the system file MONSYM.MAC, which defines
many of the symbols used in this manual. Appendix C is a listing of
the system file MACSYM.MAC, which contains symbols and macros useful
in assembly-language programming. Appendix D 1is a listing of the
system file ACTSYM.MAC, which defines the macros and symbols used with
the USAGE monitor call.

REFERENCES

The following publications are either referenced in this manual or are
recommended as supplements to this manual:

Referenced as Title and Order Number

Monitor Calls User's Guide TOPS-20 Monitor Calls User's Guide
ARPANET Manual TOPS-20AN Monitor Calls User's Guide
ARPANET Handbook ARPANET Protocol Handbook

Available from:
Network Information Center

SRI International
Menlo Park, California 94025

xiii

Referenced as

DECnet Manual

Assembler Manual
Link Manual

Hardware Reference Manual

Commands Reference Manual
SPEAR Manual
TOPS-20 User's Guide

Installation Guide

Network Management Spec

Title and Order Number

TOPS-20 DECnet-20 Programmer's Guide and

Operations Manual

for DECnet-20 Version 2,
DECnet-20 User's Guide
for DECnet-20 Version 3

and

MACRO Assembler Reference Manual

TOPS-20 LINK Reference Manual

DECsystem-10/DECSYSTEM-20 Processor

Reference Manual

TOPS-20 Commands Reference Manual

TOPS-10/TOPS-20 SPEAR Manual

TOPS-20 User's Guide

TOPS-20 Software Installation Guide (for

KS/KL Model A)

or KL Model B Software Installation

Guide

Network Management Architecture

Specification

Xiv

December 1982

CHAPTER 1

INTRODUCTION

The TOPS-20 Monitor Calls Reference Manual describes every monitor
call in the TOPS-20 system. Monitor calls for ARPANET systems and
DECnet systems are also described. The vse of these calls, however,
is more completely described in the ARPANET Manual and the DECnet
Manual.

TOPS-20 monitor calls invoke the TOPS-20 monitor by means of the JSYS
instruction (op code 104). The UUO-type monitor calls (op codes
40-77) invoke the TOPS-10 compatibility package, which simulates the
action of these ©UUO's in the TOPS-10 monitor. Programs written for
TOPS-20 should use TOPS-20 monitor calls, not UUO's.

For easy reference, monitor call descriptions in Chapter 3 are
arranged alphabetically and presented concisely. This concise format
begins with the monitor call name and numeric definition, followed by
a brief description of the monitor call function. The calling
sequence for the monitor call is next, indicated by statements in the
formet

ACCEPTS IN ACn: description

where n is an accumulator number. Following the list of accumulators
and descriptions of their contents are statements of the form

RETURNS +1: condition
+2: condition

These statements define where control returns, and under what
conditions, after execution of the monitor call. The statement
RETURNS+1: means that control returns to the memory location
immediately following the calling location. The statement RETURNS+2:
means that control returns to the second memory location after calling
location.

Next, there is an optional description of the action taken by the
monitor «call. Finally, a list of possible error mnemonics ends the
monitor call definition.

1.1 CALLING CONVENTIONS

Arguments for the monitor call are placed in accumulators (ACs), then
the monitor call 1s executed. The first argument is in ACl, the
second in AC2, and so forth, up to 2 maximum of four accumulators.

Many calls also reguire an argument Dblock. This 1is a group of

contiguous words of memory that contain additional arguments. TIf an
argument block is reguired, an AC must contain a pointer to the

1-1

INTRODUCTION

argument block. See the description of the GTJFN% monitor call for an
example of the use of argument blocks.

In addition, arguments 1in an argument block can point to other
argument blocks. These other argument blocks can, in turn, contain
other groups of arguments. For an example of this way of passing meny
arguments to a monitor call, see the description of the GTJFN call in
Chapter 3. (There are several exceptions to this convention; refer
to the individual descriptions in Chapter 3.)

Data returned by the execution of a monitor call is often returned 1n
the AC's. 1If a call returns more data than can be held in four AC's,
it returns the data to a data block. A pointer to the data block must
be passed as an argument to the monitor cell. Such a pointer can be
passed in either an AC, or an argument block.

When using a monitor cell in a program, end the name of the call with
a percent (%) character. This convention helps avoid conflicts
between monitor call names and symbols defined by your programs. In
addition, this convention 1S required by the newer monitor calls
(those defined in TOPS-20 Release 4 or later). Although older <cealls

(those defined before TOPS-20 Release 4) do not require a percent
character at the end of their names, they will accept one.

1.2 MONITOR CALL ARGUMENTS

A monitor call argument can be one of the following:
® a word of data
® the memory address word that contains deata
® & page number
® 4 sectlon number
e 2 byte pointer
e & file handle

® 2 source (or destination) designator that defines where to
obtain (or send) data

® @& process handle
e a file/process handle

The following sections describe these arguments.

1.2.1 Addresses

Cn a DECsystem-20 addresses can be one of two types: an 18-bit
address, or a 30-bit address. TOPS-20 supports 30-bit addressing, but
provides an address space of 32 (decimal) gsections, each of which
contains 256K words. Thus although 30 bits are used to contain a
global address, the section number in such an address can be no longer
than 6 bits, making the largest possible address & total of 23 bits
long.

TOPS-20 Version 5 1-2 April 1982

INTRODUCTION

An 18-bit address is called a section-relative address. With such an
address you can specify any word in a 256K-word section of memory, bhut
you cannot also specify a section number. With a 30-bit, or global,
address you can reference any word of any section of memory. (Refer
to the Hardware Reference Manual for a description of global
addresses.)

TOPS-20 allows you to use 18-bit or 30-bit addresses. Some monitor
calls reguire one kind, some the other; some calls accept either
kind.

Some monitor calls use only 18 bit to holéd an address. These calls
interpret 18-bit addresses as locations in the current section, the
same section as that of the code being executed (the same section as
the wuser PC.) T¢ form an unambiguous global address, these calls add
the section number of the PC to the section-relative address.

Monitor calls that use an entire word for an address can accept either
18-bit or 30-bit addresses. If the address is 30 bits (the section
number 1s not zero), it is a global address.

If the address is 18 bits (the section number is =zero), the monitor
call acts in one of two ways. TIf the call existed in Release 4 or
earlier, i1t interprets the address as a section-relative address, as
stated above. RBut if the call is one of the extended-addressing calls
(i1f the call starts with an X), the call interprets the zero 1in the
section-number field as indicating section zero.

1.2.2 Page Numbers

A TOPS-20 page number can be 9 bits or 18 bits long. A page number
can refer to either a page of memory, or a pade of a disk file.

The 9-bit number 1s called a section-relative page number. Such a
page number can specify any page within a 256K-word section of memory,
or any page within a 256K section of a file. (A file section 1s a

unit of 512 pages within a file. The first page of each such section
has a page number that is an integer multiple of 512.)

The left half of a section-relative (18-bit) address can be considered
to be a section-relative page number. If a monitor call uses only 9
bits of a word to hold a page number, the monitor considers that page
to be within the current section.

Most monitor calls that require page numbers as arguments use at least
half of a word to contain the page number. Such calls allow you to
specify an 18-bit, or global, wpage number. A global page number
refers to both a section of memory and a page within that section.
Page 23200, for example, is page 200 in section 23.

1.2.3 Section Numbers

A section number is 6 bits long. In a glohal address, =2 section
number occupies bits 6 through 17. Because TOPS-20 supports 40
(octal) sections of memory, wusing section numbers larger than 37
causes an error.

TOPS-20 Version 5 1-3 April 1982

INTRODUCTION

1.2.4 Byte Pointers

Monitor calls accept two kinds of byte pointers as arguments:
one-word local bhyte pointers, and one-word global byte pointers,
One-word local byte pointers work in all sections, but one-word global
byte pointers cannot be used in section O.

The Hardware Reference Manual describes one-word local byte pointers
in detail. The paragraphs below discuss one-word global byte
polnters.

Any monitor calls that accept source/destination designators (See
Section 1.2.6.) also accept byte pointers, and the bytes can be from 1
to 36 bits long. SIN and SOUT are examples of such monitor calls.

If a call cannot accept a source/destination designator, however, that
call only accepts byte pointers that point to 7-bit bytes. Examples
of such calls are CACCT and PSOUT. Note, however, that for historical
reasons some monitor calls accept one-word global byte pointers that
point to bytes of other lengths.

TOPS-20 monitor calls do not accept the two-word local byte ©poilnters
or the two-word global byte pointecs described in the Hardware
Reference Manual.

Local byte pointers can only point to a byte in the current section.
This is because they use 18 bits to hold the address of the byte. You
can use 1indexing with local byte pointers, however, to point to a byte
1n another section of memory.

I1£, for -example, AC5 contains a 30-bit address, the following
instruction denerates an indexed 1local byte pointer in AC2. The
pointer points to a byte 1in another section, the section of the
address 1in ACS.

MOVE 2, [POINT 7,0(5)]
Use of indirect addressing with local byte pointers is discouraged.
Global byte pointers use 30 bits to hold the address of the byte, thus

they can point to a byte in any section of memory. One-word global
byte pointers have the following format:

Table 1-1 shows how the KL-10 processor interprets the P field.

TOPS-20 Version 5 1-4 April 1982

INTRODUCTION

Table 1-1
P-Field Values for One-word Global Byte Pointers

P (octal) Byte Size Position of the Right-Most Bit
(count, in octal, of the number
of bits to the right of the
current pointer position)

Less thean 45 a local byte pointer.

45 6 44
46 6 36
47 6 30
50 6 22
51 6 14
52 6 6
53 6 0
54 8 44
55 8 34
56 8 24
57 8 14
60 8 4
61 7 44
62 7 35
63 7 26
64 7 17
65 7 10
66 7 1
67 9 44
70 9 33
71 9 22
72 9 11
73 9 0
74 18 44
75 18 22
76 18 0
77 unused (causes an 1llegal instruction trap)

You cannot use indexing or indirect addressing with one-word globel
byte pointers. In addition, you cannot use one-word global byte
pointers in section 0.

1.2.5 File Handles and File Designators

A file handle is also known a2s a job file number, or JFN. It 1is an
18-bit number that, within the context of a job, uniquely identifies a
file.

An indexable file handle, or full-word JFN, has a JFN 1in the right
half and flags in the 1left balf. This file handle is useful for
handling several files in seguence. See Section 2.2.3 for a more
complete discussion of file handles.

TOPS-20 Version 5 1-5 April 1982

INTRODUCTION

1.2.6 Source/Destination Designators

Some monitor calls act upon bytes or strings of bytes, or transfer
bytes from one place to another. Such calls often wuse
source/destination designators to identify where the bytes are sent or
cbtained.

A source/destination designator is a 36-bit guantity that can have the
formats given 1in Table 1-2. The paragraphs following the table
describe each designator. Note that byte pointers are also
source/destination designators.

Table 1-2
Source/Destination Designators

Symbol Left Half Right Half Meaning

(none) 0 JFN a job file number. The JFN
is the job's handle on a
file, and 1s assigned with
the GTJFN monitor call.
(Refer to Section 2.2.3.)

.PRIIN 0 100 primary input designator

.PRIOU 0 101 primary output designator

.NULIO 0 377777 null designator

.TTDES 0 4XXXXX universal terminal designator

.CTTRM 0 777777 the process's controlling
terminal

.DVDES 6XXXXX XXXXXX universal device designator

(for use only in section 0)
777777 address implicit byte pointer.
TOPS-20 changes left half to
440700. (Refer to Sections
1.2.4 and 1.2.6.2.)

777777 777777 universal default

5XXXXX XXXXXX numeric value

Note: The designators ,PRIIN and .PRIOU are legal wherever a JFN
1s expected. You cannot assiagn them as JFN's, however. GTJFN and
GNJFN never assign 100 or 101.

The most commonly used source/destination designators are:

1. A JFN, 1dentifying a particular file. Before a JFN can be
used, 1t must be obtained by means of the GTJFN monitor call.
(See Section 2.2.3.)

2. The primary 1input and output deslgnators. (Refer to Section
2.2.9.) These designators are the ones recommended for use in
referring to the job's controlling terminal because they can
be changed to cause terminal input and/or output to be taken

TOPS-20 Version 5 1-6 April 1982

INTRODUCTION

from and/or sent to a file. The controlling terminal
designatcr .CTTRM (0,-1) cannot be redirected in this way,
and its use is not recommended in normal situations.

3. A byte pcinter to the beginning of the string being read or
written.

1.2.6.1 File Designator - A file designator indicates that I/0 to be
done by the monitor call is to be done as though to a terminal. A
file designator can be any of the following: .PRIIN, .PRIOU, .NULIO,
.TTDES, .CTTRM, or .DVDES.

1.2.6.2 Byte Pointers and ASCII Strings - Many monitor calls deal
specifically with ASCII strings. The following conventions apply to
such strings.

1. A file designator can be used if the file is in 7-bit ASCII
format. This is the usual format for text files.

2. One of the following is used to designate a string in the
caller's address space:

a. -1,,ADR to designate a 7-bit ASCII string beginning 1in
the leftmost byte of ADR. This 1is for convenience,
making HRROI 1,ADR functionally equivalent to
MOVE 1, [POINT 7,ADR].

b. A byte pointer with a byte size of 7 bits. TIf the byte
size 1s not 7 bits, the results might be incorrect. This

is because monitor «calls use the ILDB and IDPB
instructions to reference byte strings, and do no
additional checking to see that the data 1is 1in the
correct format. Note, however, that for historical

reasons some monitor calls accept byte pointers with byte
sizes larger or smaller than 7 bits.

NOTE

Unless otherwise noted, the term "byte
pointer" is wused 1n this manual to
indicate an ILDB/IDPB byte pointer that
polints to an ASCIZ string. The
following example generates such a byte
pointer:

PCINT 7, ([ASCIZ/character string/]

The term "pointer" is wusually used to
refer to an address, except in
discussions that must make repeated
references to the term "byte pointer".

Ir the latter case, some of the
occurrences of "byte pointer”™ will be
shortened to "pointer" to avoid

monotonous repetition. In these cases,
however, 1t will be clear from the
context that "pointer" implies "byte
pointer".

INTRODUCTION

Normally, monitor calls assume that ASCII strings are terminated with
a byte containing zeroes (an ASCIZ string). A few calls terminate on
other ASCII characters because of context (the NIN call, for example),
and some optionally accept an explicit byte count or allow you to
determine the terminating byte. These 1latter calls (SIN and SOUT
calls, for example) are generally those that can handle non-ASCII
strings and byte sizes other than 7 bits.

After a monitor call 1s used to read a string, the source byte pointer
argument 1s updated such that an ILDB would read the character
following the terminating character; an LDB would reread the
terminating character.

After a monitor call is used to write a string, the destination byte
pointer argument 1is updated to point to the character following the
last nonnull character written. If there is room, a null byte 1is
appended to the string, but the byte pointer returned is such that an
IDPB will overwrite the null.

1.2.6.3 Special Designators - The universal default designator of -1
1s used to indicate the current designator, such as the current job or
the connected directory. For example, the GETJI monitor call accepts
an argument of -1 as the designator for the current job.

1.2.6.4 Numeric Designators - The designator 5xxxxX XXXXxX (where a
numeric value is in bits 3-35) is used to supply a numeric designator
as an argument to a call. Numeric designators are used to 1identify
account numbers, directory numbers, user numbers, and the like. The
DIRST monitor call, for example, accepts a user number as 5B2+33-bit
number.

1.2.7 Device Designator

Many monitor calls dealing with devices (refer to Section 2.4) take a
device designator as an argument. A device designator can be either

LH: .DVDES(600000) +device type number

RH: unit number for devices that have units, arbitrary code for
structures, or -1 for nonstructure devices that do not have
units

or

LH: O

RH: .TTDES(400000)+ terminal number, or .CTTRM(777777) for
controlling terminal

Thus, terminals can be represented in two ways; the second way 1is

provided for compatibility with the source/destination designator.
Because designators for structures contain an arbitrary code, these
designators must always be obtained from the monitor (by means of the
STDEV call) and cannot be created by the program.

Section 2.4 describes the various devices and their type numbers.

INTRODUCTION

1.2.8 Process Handles

Several monitor calls accept an 18-bit argument called a process
handle. The following fork handles are defined within the context of
a job.

Value Symbol Meaning

400000 .FHSLF current process

400000+n - process n, relative to the current process
-1 .FHSUP superior process
-2 . FHTOP top-level process
-3 .FHSAT current process and all of its inferiors
-4 . FHINF 211 of the current process' inferiors
-5 .FHJOB all processes in the job

Use of the superior process argument (.FHSUP) 1is 1legal only 1f the
process has the superior process access capability (SC%SUP) enabled in
its capability word. Meaningful operations may usually be performed
with the top level process argument (.FHTOP) only 1f the process has
WHEEL or OPERATOR capability enabled (SC$WHL or SC%OPR) in 1its
capability word. Refer to Section 2.7.1 for information on the
capability word.

Process handles in the range 400001 to 400777 are called relative
process handles, and are generated by the monitor to refer to specific
processecs. (See the CFORK monitor call description.) These handles
are valid only within the context of the process to which they are
given. Thus, they may not be passed between processes. GFRKH may be
used to convert process handles for use by another process.

1.2.8.1 Process/File Handle - Some monitur calls accept an 18-bit
argument called a ©process/file handle. This handle 1is either a
process handle (as defined in Section 1.2.8), or a JFN.

Note that string pointers and terminal identifiers cannot be used 1in

this context. This 1is not a 1limitation, however, because the
operations that use the process/file handle are used for changing page
maps. Such operations are not meaningful for string pointers or

terminals.

1.3 SYSTEM DATE AND TIME

The internal system date and time is a 36-bit dquantity. It can be
passed to a monitor call as an argument, or returned as a value. The
internal date-land-|time word has the following format:

day,,fraction
where day is the number of days since November 18, 1858, and fraction
is the fractional part of the day elepsed since midnight, Greenwich
Mean Time. The fraction is the numerator of a fraction that has a
denominator of 2**18. Thus the fraction

fraction/2**18

represents the portion of the d3y elapsed since midnight. This format
conforms to the Smithsonian Astronomical Date Standerd.

INTRODUCTION

Because the time is stored as Greenwich Mean Time, the monitor adds
the wvalue of the TIMEZONE offset to the 1nternal date and time to
obtain your local time. The TIMEZONE offset 1is specified in
<SYSTEM>CONFIG.CMD. (See the Installation Guide for more information
on the TIMEZONE offset.)

Monitor calls convert local dates and times to 1internal dates and
times, and internal dates and times to local dates and times. Refer
to Section 2.9.2 for more information about the date and time
conversion.

1.4 PROCESSING ERRORS

After execution of a monitor call, program control returns to the
calling program at one of two locations. The +2 return indicates
successful completion of the monitor call. The +1 return 1is often
used to indicate failure of the monitor call to perform its intended
function. (Refer to Chapter 3 for specifics on the returns possible
from each monitor call.,)

When a failure occurs during the execution of a mwmwonitor call, the
monitor stores an error code. The error code indicates the cause of
the failure. This error code is usually stored in the right half of
ACl, but can also be stored in the monitor's data base. 1In either
case, you can obtain the message associated with the error by using
the GETER or ERSTR calls.

Some monitor calls, however, have only a single return (+1), to the
instruction following the <call. This instruction is executed upon
successful completion of the call.

When an error occurs during execution of single-return call, the
monitor examines that next instruction. If it is a JUMP instruction,
and the AC field is 16 or 17, the monitor transfers control to the
address specified in the JUMP 1nstruction.

If the instruction following the call is not a JUMP instruction, the
monitor generates a software interrupt. The <calling program can
process the interrupt by means of the software interrupt system. 1f
the program 1s not prepared to process the interrupt, the process is
usually terminated, and a message is output. (Refer to Section 2.6.)

Instead of a JUMP instruction, vyou can use one of the following
symbols as the instruction followina the call:

ERJMP address
ERCAL address

These symbols correspond to JUMP 16, and JUMP 17, respectively, which
are machine no-ops. Because ERJMP and ERCAL are symbols that are
defined in MONSYM, you must place a SEARCH MONSYM statement at the top
of your program. (See the Assembler Manuel for a description of the
SEARCH pseudo-op.)

When an ERJMP 1ic used, the monitor simulates a
JRST address

instruction. This transfers conrtrol permanently to the effective
address. The address should be the starting address of ar
error-processing routine. To return control to the program after
processing the monitor call error, the error routine must include a
JRST instruction.

1-10

INTRODUCTION

When an ERCAL is used, the monitor simulates a
PUSHJ 17, address

ihstruction. This is a subroutine call. To return control to the
code that follows the unsuccessful monitor call, the subroutine must
include a

POPJ 17,

instruction. Note that ERCAL requires accumulator 17 to be set up as
a pushdown pointer.

The ERJMP or ERCAL instruction can be wused with all monitor calls
independent of whether the <call has one or two returns. These
instructions allow you to process an error without using the software
interrupt system. In fact, use of these symbols overrides the
software interrupt system.

An ERJMP or ERCAL may also be used following a machine 1instruction,
and will trap for the following conditions:

1. 1Illegal instruction

2. Illegal memory read

3. Illegal memory write
4. Pushdown list overflow

The ERJMP or ERCAL executes if it 1is either the next instruction
following a monitor call that fails, or the next instruction following
a machine 1instruction that generates the errors shown above;
otherwise, it is a no-op.

NOTE

If an ERJMP or ERCAL executes on an
error from a monitor call, the contents
of any AC's that would normally contain
an error code may be unreliable. Using
the GETER monitor call is the sure way
to obtain the error code in such a case.

1.5 CONVENTIONS USED IN THIS MANUAL
1.5.1 Number Bases

Except where otherwise noted, numbers used in this manual, 1including
those in the definition of & monitor call description, are octal.
When indicated, bits in words are numbered 1n decimal with the
leftmost bit of the word labeled B0 and the rightmost bit of the word
labeled B35.

1-11

INTRODUCTION

1.5.2 Abbreviations
The following abbreviations are used in this manual:
BO, Bl, ... Bit 0, bit 1, ... of the computer word

nBm Field whose rightmost bit is m and whose value is
n (5B2, for example).

LH Left Half (B0O-Bl17 of the word)

RH Right Half (B18-B35 of the word)

JFN Job File Number

PSB Process Storage Block (a table containing all

monitor data for the process)

JSB Job Storage Block (a table containing all monitor
data relevant to the job)

CCOC words Control Character Output Control words

(2 words containing 36 2-bit bytes that determine
the way 1in which control characters are output.
Refer to Section 2.4.9.2.)

FDB File Descriptor Block (a table in a file that
contains 1information about the file). Refer to
Section 2.2.8.

1.5.3 Symbols

The symbols used in this manual, including the names of the monitor
calls, are defined in the system file MONSYM.MAC. A program that uses
a monitor call or other symbol must include the statement

SEARCH MONSYM

before the first occurrence of a symbol. Failure to 1include this
statement causes errors in the compilation of the program. Refer to
Appendix B for a listing of MONSYM.

1.5.4 Unimplemented Features

The MONSYM file contains symbol names for several monitor calls and
bitt positions that are not described in this manual. These features
are not implemented in TOPS-20.

If an unimplemented monitor call is used in a user program, it causes
an 1llegal instruction interrupt unless followed by an ERJMP or ERCAL
symbol. In this case, the ERJMP will be executed. It is recommended
that unimplemented or undefined bit positions be zero to allow for
future expansion.

CHAPTER 2

FUNCTIONAL ORGANIZATION OF JSYS'S

2.1 ACCOUNTING FUNCTIONS

The monitor calls in this group initiate and delete Jjobs from the
system. They also change and read accounting information about these
jobs.

The monitor calls that perform accounting functions are as follows:

LOGIN Logs a job into the system

GACCT Reads a job's account

SACTF Sets a file's account

GACTF Reads a2 file's account

USAGE Writes entries into the system's accounting data file
VACCT Validates an account

2.2 REFERENCING FILES

All files in the gystem, including the system's file directory, are
normally referenced with the <c¢alls in this group. Section 2.11
describes the privileged calls for referencing the disk directly,
without using the TOPS-20 file system.

2.2.1 File Specifications

A file in TOPS-20 is identified by 1ts node name, device name,
directory name, filename, file type, and generation number. These
five items uniquely identify any file on the system that is accessible
to a user. The device name identifies the device on which the file 1is
stored. The directory name identifies the directory containing the
file. The filename, type, and generation number identify a particular
file in the directory.

A file can also have attributes associated with it to further specify
information about the file. See the description of the long-form
GTJFN JSYS for 2 list of the possible file attributes.

The general format of a file specification is:

node::dev:<directory>name.typ.gen;attribute~l;attribute-2...

Refer to the TOPS-20 User's Guide for the complete description of file
specifications.

FUNCTIONAL ORGANIZATION OF JSYS'S

If a field of the file specificaticon (or filespec) 1s omitted, it can
be supplied by the program or from standard system values. (Refer to
Section 2.2.3.)

Whenever an ESC 1s encountered in the file specification string, the
system looks for a file whose specification matches the fields input
thus far. &2 match is indicated 1if the 1input string either exactly
matches an entry in the appropriate table, or is an initial substring
of exactly one entry. In the latter case, the portion of the matching
entry not appearing in the input string is output to a specified
output file. The field terminator is output also.

Recognition is done on successive fields with the fields beling
defaulted 1if need be. 1If the file specification cannot be uniquely
determined, the system recognizes as many entire fields as are unigue,
and outputs a bell to the terminal, signifying that more input is
required from the user. TIf the input string cannot possibly match any
existing file specification, the system returns an error.

CTRL/F behaves like ESC except recognition stops after the current
field. This allows the filename to be recognized, for example, but
not the file type.

If recognition is not used, then each field must be included sas
indicated 1in the general format above. The input must exactly match
some ex1sting file specification unless the program specifies in the
GTJIFN call that new specifications are allowed (output files).

Without ESC or CTRL/F, no recognition is done. The system substitutes
the default values supplied by vyour program for fields completely
omitted from the file specification. The file specification 1is
complete whenever all fields have been recognized or a terminator has
been input. File specification terminators are described in the GTJFN
call description.

The following editing characters are recognized during the input of
file specifications:

DELETE erases one character. If no more characters remain 1in
the input, a bell 1is output.

CTRL/W deletes back to the last punctuation character. If no
more characters remain in the input, a bell is output.

CTRL/U aborts the entire filename-gathering operation.

CTRL/R retypes the entire input as specified so far and awaits
further input.

2.2.2 Logical Names

Logical names are user-specified default values for one or more fields
in a file specification. Through the use of logical names, the user
can override standard file specification fields built into TOPS-20
programs because logical name fields take precedence over default
fields set by a program. However, the wuser «can still specify any
fields explicitly since a logical name defines values to be used only
1f none are given by the user. The user defines 1logical names with
the DEFINE command or the CRLNM monitor call. Refer to the TQOPS-20
User's Guide for the complete description of logical names.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.2.3 File Handles

It is necessary to have file handles that can be contained in a few
bits and do not require extensive lookup procedures for each refer-
ence, The file specification is the fundamental handle on a file, but
this specification fits neither criterion above. Therefore 1in
TOPS-20, files are referenced by handles called JFNs (Job File
Numbers) . The JFN is a small number and is valid within the context
of the job (i.e., within any process of the 3job to which it 1is
assigned). However, the handle is not valid between jobs. That is,
JFN 2 in job 11 will generally be a handle on a completely different
file than JFN 2 in job 18.

A JFN is associated with a file with either the GTJFN or GNJFN monitor
call. The GTJFN call accepts a file specification and returns a JFN
for the indicated file. TIf a field of the specification 1s omitted,
it may be supplied by the program defaults or from standard system
values. TIf the file specification refers to a group of files (because
of wildcard <characters, see below), the GNJFN call can be used to
associate the JFN to the next file in the group.

A logical name can apply to one or more fields of the file
specification passed to the GTJFN call. The logical name must be the
first i1dentifier passed to GTJIJFN and must be terminated with a colon.

The GTJFN call uses a certain search order when obtaining a field 1in a
file specification. This order is as follows:

1. Use the field explicitly typed by the wuser or the one
specified in the primary input string.

2. Use the value for the field that is specified in the 1logical
name specification.

3. Use the value for the field that is specified in the default
block by the program. This is only for the long form of the
GTJFN caill.

4. Use the system default value if all of the above searches
fail.

In the special case of a device field specification, where the device
name has been obtained from either the program default or the system
default, the device field 1s checked to see 1if it 1s actually a
logical name. If it is, then the values specified in its definition
become defaults for all fields, including the device field.

If the specific call to GTJFN permits, wildcard characters (either an
asterisk or a percent sign) <can appear in the device, directory,
filename, type, or generation number fields. (The percent sign cannot
appear in the generation number field.) An asterisk matches any
occurrence of the field, including a null field. An asterisk as part
of a field matches 0 or more characters anywhere in the field. A
percent sign matches any single existing character in the field. Upon
completion of the operation, the JFN returned references the first
file found when scanning in the following order:

In order by structure name
(PS: 1is first, arbitrary order for others)
In alphabetic order by directory name
Ir alphabetic order by filename
In alphabetic order by file type
In ascending numeric order by generation number

FUNCTIONAL ORGANIZATION OF JSYS'S

Note that for structures, only the construct DSK*: can be used. This
means all available structures on the system.

The GNJFN call can then be given to associate the JFN to the next file
that matches the file specification.

The fullword JFN (flags,,JFN) is termed an "indexable file handle"
because it accepts a generic file specification (one including
wildcard characters) and can be successively associated (by GNJFN)
with each file matching the specification. Thus the JFN is "indexed"
rthrough a range of files. The number and type of files in the range
are limited by the file specification, the privileges of the program,
and the protection of individual files and directories within the file
system. A program with WHEEL capabilities enabled can access any file
in the TOPS-20 file system.

The maximum number of JFN's allowed depends upon the space reserved
for JFN-related information in the Job Storage Block (JSB). Currently
the maximum number of JFN's allowed is 140 (octal).

The JFN's 100 (.PRIIN) and 101 (.PRIOU) are reserved for the primary
input and output designators, respectively, and are never returned by
the GTJFN (or GNJFN) call. The JFN 377777 (.NULIO) is reserved for
the null designator.

Ordinarily, the process of getting a file handle with GTJFN consists
of the following:

1. The user specifies the file name string.

2. GTJFN checks the file name string for grammatical
correctness.

3. GTJFN checks the file for velidity (For example, does the
file actually exist?)

4. If the file name passes these two checks, GTJFN returns a JFN
or handle for the file.

Thus a JFN 1s associated with an actual file 1in the TOPS-20 file
system.

It is sometimes desirable to skip the step of checking & JFN for
validity. This is necessary any time that the association between the
JFN and the physical file cennot be made, as happens when a JFN 1is
reaquested for a file on magnetic tape. Also, it may be that the user
himself wishes to prevent the JFN/file association from being made in
crder to check the file specification for grammatical correctness and
then manipulate the file specification by adding or removing selected
fields, or comparing it against another file specification. This type
of JFN is termed a "parse-only" JFN. As 1t is not associated with any
file, no file operations may be performed on it.

Cnly the following JSYS's will accept a parse-only JFN:

1. JFNS - converts a JFN to 1its file specification (1n
characters)

2. WILD% - compares character strings and file specifications

FUNCTIONAL ORGANIZATION OF JSYS'S

2.2.4 File References

All file operations are initiated by acguiring a JFN on a file using
the GTJFN (or GNJFN) call. Some file operations, such as deleting,
renaming, and status queries about the file, may be performed
immediately after the JFN is acquired. Certain operations,
particularly data transfers, require that the file be opened with an
OPENF call on the JFN.

When the user opens a file, he specifies the byte size to be used for
byte I/0 operations and the access requested to the file. Several
implicit initialization operations, which affect subsequent references
to the file, are also invoked when a file is opened. For example, a
file's position pointer is normally reset to the beginning of the file
such that the first sequential input operation reads the beginning
data of the file.

Access to files on regulated structures (those being tracked by the
accounting system) cannot be given until the mount count for that
structure is incremented with the .MSIMC function of the MSTR JSYS (or
with the TOPS-20 MOUNT STRUCTURE command). All JFN's must be released
before the mount count can be decremented with the .MSDMC function of
the MSTR JSYS (or the TOPS-20 DISMOUNT STRUCTURE command) .

All structures are regulated by default except the primary structure
(PS:) .

2.2.4.1 Files and Devices - Under TOPS-20, most devices may be
treated as 1f they were files. For exemple, a GTJFN, OPENF, CLOSF,
etc. may be performed directly on magnetic tape device MTAl: without
specifying a file name. This is because the device name itself 1s the
file name. Disk devices, however, have multiple directories and
multiple files, and the device name 1itself 1is not sufficient to
uniquely identify a file. The general rule is that, for a complete
TOPS-20 file specification, only those fields necessary to make the
file unique for that device are required to get a JFN for the file.
Thus, for most devices, the device name itself is sufficiently unigue
to get a JFN for the file. 1In this manual, when the phrase "opening a
device" is used, it is in reference to the feature described above.

For TOPS-20, disk devices are the only major exception to the rule
that devices can be treated as files. Labeled tapes on MT: devices
may be referenced either by device name alone (which gives access to
all files on the tape) or by device name and file name (which gives
access only to the specified file).

2.2.5 Sample Program

The following sample program acguires JFN's, opens both an input and
an output file, and then copies data from the input file to the output
file in 7-bit bytes until the end of the input file is encountered.

FUNCTIONAL ORGANIZATION OF JSYS'S
s *** PROGRAM TO COPY INPUT FILE TO OUTPUT FILE. ***
; (USING BIN/BOUT AND IGNORING NULL'S)

TITLE FILEIO ;TITLE OF PROGRAM
SEARCH MONSYM ; SEARCH SYSTEM JSYS-SYMBOL LIBRARY

; *** TMPURE DATA STORAGE AND DEFINITIONS ***

INJFN: BLOCK 1 ; STORAGE FOR INPUT JFN

OUTJFN: BLOCK 1 ; STORAGE FOR OUTPUT JFN
PDLEN=3 ; STACK HAS LENGTH 3

PDLST: BLOCK PDLEN ; SET ASIDE STORAGE FOR STACK

T1==1 ;JSYS AC'S

T2==2

T3==3

T4==4

T5==5 ; TEMPORARY AC'S

° o o s

p==17 ; PUSH DOWN POINTER
;*¥** PROGRAM INITIALIZATION ***

START: RESET? ;CLOSE FILES ANL INITIALIZE PROCESS
MOVE P, [IOWD PDLEN,PDLST] ;ESTABLISH STACK

; *** GET INPUT-FILE ***

INFIL: HRROI T1,[ASCIZ /
INPUT FILE: /] ; PROMPT FOR INPUT FILE
PSOUT% ;ON CONTROLLING TERMINAL
MOVE T1, [GJ%OLD+GJ%FNS+GJ%SHT] ; SEARCH MODES FOR GTJFN
; [EXISTING FILE ONLY , FILE-NR'S IN B

; SHORT CALL]
MOVE T2,[.PRIIN,,.PRIOU] ;GTJFN'S I/0 WITH CONTROLLING TERMINAL
GTJFN% ;GET JOB FILE NUMBER (JFN)
ERJMP [PUSHJ P,WARN ; IF ERROR, GIVE WARNING
JRST INFIL] ;AND LET HIM TRY AGAIN
MOVEM T1,INJFN ; SUCCESS, SAVE THE JFN

;*¥*%*% GET OUTPUT~FILE ***

OUTFIL: HRROI T1,[ASCIZ /
OUTPUT FILE: /] ; PROMPT FOR OUTPUT FILE
PSOUT% ; PRINT IT
MOVE T1, [GIJ%FOU+GISMSG+GJI2CFM+GI%FNS+GJ%SHT] ; GTJFN SEARCH MODES
; [DEFAULT TO NEW GENERATION , PRINT
; MESSAGE , REQUIRE CONFIRMATION
; FILE-NR'S IN B , SHORT CALL]

MOVE T2, [.PRIIN,,.PRIOU] ;I/0O WITH CONTROLLING TERMINAL

GTJFN% ;GET JOB-FILE NUMRER
ERJMP [PUSHJ P,WARN ; IF FRROR, GIVE WARNING
JRST OUTFIL] ;AND LET HIM TRY AGAIN
MOVEM T1,0UTJFN ; SAVE THE JFN

FUNCTIONAL ORGANIZATION OF JSYS'S

;NOW, OPEN THE FILES WE JUST GOT

; INPUT
MOVE T1,INJFN ;RETRIEVE THE INPUT JFN
MOVE T2, [7B5+OF%RD] ; DECLARE MODES FOR OPENF [7-BIT BYTES + INPUT]
OPENF$% ;OPEN THE FILE
ERJMP FATAL ;IF ERROR, GIVE MESSAGE AND STOP
: OUTPUT
MOVE T1,0UTJFN ;GET THE OUTPUT JFN
MOVE T2, [7B5+OF3$WR] ; DECLARE MODES FOR OPENF [7-BIT BYTES + OUTPUT
OPENF$% ;OPEN THE FILE
ERJMP FATAL ;IF ERROR, GIVE MESSAGE AND STOP

;*** MAIN LOOP :COPY BYTES FROM INPUT TO OUTPUT ***

LOOP: MOVE T1,INJFN ;GET THE INPUT JFN
BIN$% ; TAKE A BYTE FROM THE SOURCE
ERJMP DONE ; IF ERROR, CHECK FOR END OF FILE.
JUMPE T2,LOOP : SUPRESS NULLS
MOVE T1,0UTJFN ;GET THE OUTPUT JFN
BOUT% :OUTPUT THE BYTE TO DESTINATION

ERJMP FATAL :IF ERROR, GIVE MESSAGE AND STOP
JRST LOOP ;LOOP, STOP ONLY ON A 0 BYTE (FOUND
;AT LOOP+2)

;*** TEST FOR END OF FILE, ON SUCCESS FINISH UP ***

DONE: GTSTS% ;GET THE STATUS OF INPUT FILE.
TLNN T2, (GS$EOF) ;AT END OF FILE?
PUSHJ P,FATAL ;NO, I/0 ERROR
CLOSIF: MOVE T1,INJFN ;YES, RETRIEVE INPUT JFN
CLOSF% ;CLOSE INPUT FILE
ERJMP FATAL ; IF ERROR, GIVE MESSAGE AND STOP
CLOSOF: MOVE T1,0UTJFN s RETRIEVE OUTPUT JFN
CLOSF$% ;CLOSE OUTPUT FILE
ERJMP FATAL ;IF ERROR, GIVE MESSAGE AND STOP
HRROI T1,{ASCIzZ/
[DONE] /] ; SUCCESSFULLY DONE
PSOUT$% s PRINT IT
JRST ZAP ; STOP

2-7

FUNCTIONAL ORGANIZATION OF JSYS'S

; *** ERROR HANDLING ***

FATAL: HRROI T1,[ASCIZ/

2/1 ; FATAL ERRORS PRINT ? FIRST
PUSHJ P, ERROR ; THEN PRINT ERROR MESSAGE,
JRST ZAP ;AND STOP
WARN: HRROI T1, [ASCIZ/
$/1 ;WARNINGS PRINT % FIRST
; AND FALL THRU 'ERROR' BACK TO CALLER
ERROR: PSOUT% ;PRINT THE ? OR %
MOVE T1,[.PRIOU] ;DECLARE PRINCIPAL OUTPUT DEVICE FOR ERROR MESSAGE
MOVE T2, [.FHSLF,,-1] ;CURRENT FORK,, LAST ERROR
SETZB T3,T4 ;:NO LIMIT,, FULL MESSAGE
ERSTR% : PRINT THE MESSAGE
JFCL : IGNORE UNDEFINED ERROR NUMBER
JFCL : IGNORE ERROR DURING EXECUTION OF ERSTR
POPJ P, :RETURN TO CALLER
ZAP: HALTF% ; STOP
JRST START :WE ARE RESTARTABLE
END START ; TELL LINKING LOADER START ADDRESS

2.2.6 File Access

TOPS-20 provides a general mechanism for protecting files against
unauthorized access. This mechanism includes the ability to protect
access to files on a directory-wide basis as well as on an
individual-file basis.

Generally, access to a file depends on the kind of access desired and
the relationship of the wuser making the access to the directory
contalning the file. The possible relationships a user may have to
the file's directory are:

1. The directory containing the file is the user's connected or
one of the wuser's accessed directories. Users satisfying
this relationship have owner access to the files 1in the
directory.

2. The directory containing the file is in the same group as the
user. Users satisfying this relationship have group member
access to the files in the directory.

3. The directory containing the file 1is outside the group
membership. Users satisfying this relationship have world
access to the files in the directory.

Both users and directories may belong to groups. The group-member
relationship is satisfied if both the directory and the user belong to
one or more of the same groups. Groups are assigned by the system
manager or operator. (Refer to the TOPS-20 System Manager's Guide.)

FUNCTIONAL ORGANIZATION OF JSYS'S

The type of access permitted to a file for each relationship 1is
represented by the value of a 6-bit field. The possible values are:

Value Symbol Meaning
40 FP%RD Read access
20 FP3WR Write access
10 FPREX Execute access
4 FP%APP Append access
2 FP2DIR Directory listing access. If a

user does not have at least this
type of access, a GTJFN will find
the file only if wildcards are not
used. A GNJFN will not find the
file.

The following table illustrates some useful combinations of the values
shown above:

Value Symbol Meaning
12 FP$EX+FP3DIR Execute-only access
42 FP3RD+FP%DIR Usual protection allowing users to

access a file without being able
to modify 1it.

60 FP%RD+FP%WR Good for hiding files that
specific programs can write to.
Programs should be execute-only
and the program should set the
"restricted" access bit 1in the
GTJFN so as not to reveal the
filename.

The 6-bit field and the three relationships (owner, group, remaining
users) are represented by an 18-bit code, with bits 0-5 being the
owner, bits 6-11 being the group, and bits 12-17 being the remaining
users. When a particular bit 1is on, the corresponding access is
permitted for the particular relationship.

The access given to a group member includes the access given to all
members outside the group. Alsc, the access given to the owner
includes the access given to group members. Thus, the owner of a file
or a wuser 1in the owner's group cannot have less access than users
outside the group.

2.2.7 Directory Access

Access to a directory 1s protected in a manner similar to, but
distinct from, that of a file. An 18-bit code, containing three 6-bit
fields, is associated with each directory. FEach of the three fields
controls access by users 1in the same way that access to files is
controlled. For directories, however, each 6-bit field can have one
of the following values.

2-9

FUNCTIONAL ORGANIZATION OF JSYS'S

Value Symbol Meaning

40 DP%RD Accessing files in the directory
according to the access code on
the individual files 1is allowed.
A GTJFN call for a file in the
directory will feil if the user
does not have this access.

10 DP%CN Connecting to the directory
without giving a password 1is
allowed. With this access, 3

group member can change the FDB
(as the owner) as well as times,
dates, and accounting information
for files in the directory. Other
operations on the files are
subject to the access codes of the
files. If the user is connected
to the directory, he has ownership
access to the files; 1if he 1is not
connected, he has group membership
access.

4 DP%CF Creating files in the directory 1is
allowed.

When a user requests access to a file, the monitor checks the
directory access code first. If the directory code allows the desired
access, the monitor then checks the access code of the individual
file.

The access actually granted to a file is specified when the user opens
the file with the OPENF call. If the access cspecified in the OPENF
czll is the same as or less than the access permitted by the 18-bit
access code, the user is granted access to the file. Thus, for a user
tco be granted access to a specific file, two conditions must be met:

1. The access code (both directory and file) must permit the
user to access the file in the desired manner (e.g., read,
write).

2. The file must not be open for a conflicting type of access.

2.2.8 File Descriptor Block

Each file has an associated File Descriptor Block (FDB) that contains
various information about the file. The format of the FDB is shown in
Table 2-1.

The description of each word or bit in the FDB indicates whether the

user can change it, and if so, what types of access are required. The
types of access are:

1. WRITE - write access
2. OWNER - owner access

3. W/CPR - WHEEL or OPERATOR capabilities enabled

FUNCTIONAL ORGANIZATION OF JSYS'S

In some cases, separate JSYS's are required to read, set, and/or clear
various words or bits. These functions are indicated by:

1. (R) - read

2. (S) - set

3. (C) - clear

4, (SC) - set/clear

Table 2-1
File Descriptor Rlock (FDB)

Word Symbol Meaning
0 . FBHDR FDR header word. 1Individual fields are as
follows:
B0-B28 Reserved for DEC
UNCHANGEABLE

B29-35(FB%LEN)
Length of this file's FDB

UNCHANGEABLE
1 .FBCTL BO (FBRTMP) File 1s temporary.
JSYS WRITE OWNER W/OPR
CHFDB N Y Y
Bl (FB%PRM) File is permanent. The

contents of the file may be
deleted, but the FDB may not.

JSYS WRITE OWNER W/OPR
CHFDB N Y Y
B2 (FBRSNEX) File does not yet have a file
type; file does not really
exist.
UNCHANGEABLE
B2 (FBSDEL) File is deleted.
JSYS WRITE OWNER W/OPR
CHFDB N Y* Y
*This bit may be changed by the

owner providing that bit FB%ARC
(in .FBCTL) is not set.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning
1 .FBCTL B4 (FB%NXF) File does not exist because it
(Cont.) has not yet been closed.
UNCHANGEABLE

B5 (FB%LNG) File is longer than 512 pages.
UNCHANGEABLE

B6 (FB%SHT) Reserved for DEC.
UNCHANGEABLE

B7 (FB$DIR) File is a directory.
UNCHANGEABLE

B8 (FBENOD) File 1s not to be saved by the
backup system.

JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B9 (FB%BAT) File may have one or more bad
pages. This bit indicates that
I/0 errors have occurred for a
page (or pages) of a file and
the contents of these pages are
suspect.

This bit is set whenever the
system has a disk I/O error on
a page of an open file. The
faulty disk address 1is also
added to the 1list in the
system's BAT blocks for that
disk structure.

If an EXPUNGE is performed for
a file for which bit FB%BAT is
set, the system performs an
additionel function as it
releases the pages of the file
back to the available resource
pool: it checks each disk
address in the file against the
list of bad regions in the
structure's BAT blocks and if
1t finds a match, it leaves
that page marked as "in use" in
the bit map of available disk
pages, so that the faulty page
is not reused.

UNCHANGEABLE

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word | Symbol Meaning
1 .FBCTL B10(FB%SDR) Directory has subdirectories.
(Cont.)
UNCHANGEABLE
B11 (FB%$ARC) File has archive status.

Appropriate words 1n the FDB
(below) specify where the file
is archived.

JSYS WRITE OWNER W/OPR
ARCF N N Y
B12(FB%INV) File is 1invisible. Invisible
files can be seen only by using
the G1%IIN option to GTJFN.
JSYS WRITE OWNER W/OPR
CHFDB N Y Y
B13(FB%OFF) File is offline. This 1is set
by DELF when it removes the

contents from disk and cleared
when ARCF restores the contents

to disk.

JSYS WRITE OWNER W/OPR
DELF (S) N N Y
ARCF(C) N N Y

R14-B17 (FBRFCF)
File class field. 1If value of
field is O0(.FBNRM), file is not
an RMS file. TIf value of field
i1s 1(.FBRMS), file 1s an RMS

file.

JSYS WRITE OWNER W/OPR

CHFDB N Y Y
R18 (FRSNDL)

Do not delete this file. Do

not delete even if overwritten
by & write or a rename.

JSYS WRITE OWNER W/OPR

CHFDB N N Y

TOPS-20 Version 5 2-13 April 1932

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

2 . FBEXL Link to FDB of next file with the same name
but different file type.

UNCHANGEABLE
3 . FBADR Disk address of file index block.
UNCHANGEABLE

4 . FBPRT File access code.
LH: 500000

UNCHANGEABLE
RH: file access bits.
JSYS WRITE OWNER W/OPR
CHFDB N Y N
5 . FBCRE Date and time that the file was closed

after the last write to the file. Modified
when any program writes to the file.

JSYS WRITE OWNER W/OPR
CHFDB N N Y

6 .FBAUT Pointer to string containing the name of
the author. This word is not under direct
user control. Tt 1is only changed
indirectly, when the file author string is
changed.
JSYS WRITE OWNER W/CPR
GFUST (R) Y Y Y
SFUST(SC) N Y N

7 .FBGEN Generation and directory numbers of file.
LH(FBR%GEN): genreration number of the file.

UNCHANGEABLE

RH(FB%DRN): monitor internal directory
number of the file (only if B7
of .FBCTL is on).

UNCHANGEABLE

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning
10 .FBACT Account information. This word contains a
byte pointer to an alphanumeric account
designator; it can be changed with the

SACTF monitor call.

JSYS WRITE OWNER W/OPPR
SACTF Y Y Y
11 .FBBYV File I/0 information.

BO0-B5 (FB%RET)
Number of generations to retain

(retention count) . If two
generations of the same file
have different retention

counts, the count is taken from
the generation currently being

used.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B6-B11(FB%BSZ)
File byte size. This field can
be changed by user with write

access.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B14-B17 (FB%MOD)
Data mode of last open of file.
This field <can be changed by
user with write access.

JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B18-B35(FB%PGC)
Page count of file. Note that
the monitor keeps the page
count updated, so under normal
circumstances a user need not
and should not alter this

count.
JSYS WRITE OWNER W/OPR
CHFDB N N Y

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

12 .FBSIZ Number of bytes in the file. (Refer to
Section 2.2.11.)
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

13 .FBCRV Date and time of creation of file.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

14 . FBWRT Date and time that the file was opened when
the last write to the file was made.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

15 . FBREF Date and time of last nonwrite access to
file.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

16 .FBCNT Count word.

LH: number of writes to file.
JSYS WRITE OWNER W/OPR
CHFDB N N Y

RH: number of references to file.

JSYS WRITE OWNER W/OPR
CHFDR N N Y

17 . FBBKO Used by DUMPER for backup purposes.
JSYS WRITE OWNER W/OPR
CHFDB N N Y

20 .FBBK1 Reserved for DEC.
UNCHANGEABLE

21 .FBBK2 Reserved for DEC
UNCHANGEARLE

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

22 . FBBRT The right half contains the number of pages
in the file when the contents were deleted
from disk.

UNCHANGEABLE

The left half 1is wused for the following
flags:

B1 (AR%RAR) User request for a file to be
archived.

JSYS WRITE OWNER W/OPR
ARCF Y Y Y

B2 (AR%RIV) System request for an involuntary
migration of a file.

JSYS WRITE OWNER W/OPR
ARCF N N Y

B3 (ARSNDL) Do not delete the contents of the
file from disk when the archival
is complete.
JSYS WRITE OWNER W/OPR
ARCF N Y Y

R4 (AR%NAR) Resist involuntary migration.
This bit is @ note from the user
to the system access control
progrem asking that the file not
be moved offline if possible.
JSYS WRITE OWNER W/OPR
ARCF N Y Y

B5 (AR%FXM) File is exempt from 1involuntary
migration.

JSYS WRITE OWNER W/OPR
ARCF N N Y

R6 (AR%1ST) First pass of an
archival-collection run 1is 1in

progress.
JSsys WRITE OWNER W/OPR

CHFDB N N Y

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)

File Descriptor Block (FDB)

Word Symbol Meaning
22 .FBBBT B7 (AR%RFL) Restore failed. Set by ARCF to
(Cont.) to indicate that the restore it
is waiting for has failed.
JSYS WRITE OWNER W/OPR
ARCF N N Y
B10(AR%WRN) Generate a message warning that
the file's off-line expiration
date is approaching.
7B17 (AR%RSN)
Reason file was moved offline:
.AREXP (1) file expired
.ARRAR(2) archiving was
requested
.ARRIR(3) migration was
requested
JSYS WRITE OWNER W/OPR
ARCF (W) N N Y
GTFDB (R) Y Y Y
B18-B35(AR3PSZ)
The right half of .FBBBT is used
to store the number of pages in a
file when the contents were
removed from disk.
JSYS WRITE OWNER W/OPR
ARCF (W) N N Y
GTFDB (R) Y Y Y
23 .FBNET On-line expiration date and time. Specifies
the date and time at which a file is
considered expired, or specifies an interval
(in days) after which the file is considered
expired.
JSYS WRITE OWNER W/OPR
SFTAD N Y Y
24 . FBUSW User-settable word.
JSYS WRITE OWNER W/OPR
CHFDB N Y Y
25 .FBGNL Address of FDB for next generation of file.
UNCHANGEABLE
26 . FBNAM Pointer to filename block.

UNCHANGEABLE

TOPS-20 Version 5

April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)

File Descriptor Block (FDB)

Word Symbol Meaning

27 .FBEXT Pointer to file type block. UNCHANGEABLE

30 . FBLWR Pointer to string containing the name of
the user who last wrote to the file. This
name 1s read with the GFUST monitor call
and can be changed with the SFUST monitor
call, .
Note that word .FBLWR may only be changed
indirectly (by specifying a new name
string). This word cannot be changed
directly.
JSYS WRITE OWNER W/OPR
GFUST (R) Y Y Y
SFUST (CS) N N Y

31 .FBTDT Archive or collection tape-write date and
time. This is the date and time (in
internal format) that file was last written
to tape (for either archiving or
migration).
JSYS WRITE OWNER W/OPR
ARCF N N Y

32 .FBFET Offline expiration date and time.
Specifies the date and time (or interval)
after which a file in the archives or on
virtual disk 1is considered expired. Used
for tape recycling. Modified by SFTAD.
JSsYs WRITE OWNER W/OPR
SFTAD Y Y Y

33 .FBTP1 Contains the tape ID for the first archive
or collection run,
JSYS WRITE OWNER W/OPR
ARCF N N Y

34 .FBSS1 Contains the saveset and tape file numbers
for the first tape. The left half is the
number of the saveset in which the file 1s
recorded, and the right half 1s the tape
file number within that saveset.
JSYS WRITE OWNER W/OPR
ARCF N N Y

TOPS-20 Version 5

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

35 .FBTP2 Tape ID for second archive or collection
run. Otherwise similar to .FBTP1.

JSYS WRITE OWNER W/OPR
ARCF N N Y

36 .FBSS2 Saveset and tape file numbers for the
second archive or collection run.

Otherwise similar to .FBSS1.
JSYS WRITE OWNER W/OPR

ARCF N N Y

The maximum length FDB block that TOPS-20 will create (37 octal) may
be specified with the symbol .FBLEN.

2.2.9 Primary Input and Output Files

Each process in a job has a primary input file and a primary output
file. Both files are normally the controlling terminal, but can be
changed to other files (with the SPJFN call).

The primary input and output files are referenced with designators
LPRIIN (JFN 100) and .PRIOU (JFN 101), respectively. Programs should
be coded to do their "terminal" I/0 to these designators, so that they
can be used with command files without modification. Only in extreme
cases should a program reference 1its controlling terminal (.CTTRM)
directly.

2.2.10 Methods of Data Transfer

The most simple form of I/0 is sequential byte I/0, as shown in the
sample program. (Refer to Section 2.2.5.) This form of data transfer
may be used with any file. A pointer maintained in the monitor 1is
implicitly initialized when a file is opened and advanced as data is
transferred. For files on disk, there are two other methods of Cdata
transfers. First, random access byte T/0 1s possible by using the
SFPTR call or the RIN/ROUT calls. Second, entire pages of data may be
mapped with the PMAP call.

2.2,11 File Byte Count

For disk files, TOPS-20 maintains a file byte count (.FBSIZ) in the
FDB. This count is set by the monitor when seguential output (e.g.,
BOUT, SOUT) occurs to the file and thus, on sequential output,
reflects the number of bytes written in the file,.

FUNCTIONAL ORGANIZATION OF JSYS'S

When output occurs to the file using the PMAP call, the monitor does
not set the file byte count. In this case, the number of bytes in the
file may be different from the file byte count stored in the FDB. To
allow seguential TI/0O to occur later to the file, the program should
update the file byte count (.FBSIZ) and the file byte size (FB%BSZ) in
the FDB before closing the file. This is done with the CHFDB monitor
call.

When output occurs to the file using random output <calls (ROUT, for
example), the file byte count is a number one greater than the highest
byte number in the file.

The file byte count is interpreted according to the byte size stored
in the FDB, not the byte size specified when the file is opened. When
a new file is opened, the byte size stored in the FDB 1is 36 bits,
regardless of the byte size specified 1in the OPENF call. TIf the
program executes a CHFDB call to change the file byte count, 1t must
usually change the byte size (FB%BSZ) so that both values reflect the
same size bytes.

2.2.12 EOF Limit

There is an EOF limit associated with every opening of a file. This
limit 1s the number of bytes that can be read with a seaguential 1input
call (e.g., BIN, SIN). When the program attempts to read beyond this
limit wusing seqguential 1input, the <call returns a 0 byte and ar

end-of-file condition. This condition may generate a software
interrupt (refer to Section 2.6) if the user has not included an ERJMP
or ERCAL as the next 1instruction following the call. (Refer to

Chapter 1.)

The EOF limit is computed when the file is opened with the OPENF call.
The monitor computes this 1limit by determining the total number of
words in the file and dividing this number by the byte size given 1n
the OPENF call. The total number of words in the file is determined
from the file byte count (.FRSIZ) and the file byte size (FB%BSZ)
stored 1n the FDB.

Note that page-mode I/0 JSYS's, such as PMAP, ignore the EOF limit and
can read any existing page of the file. However, page-mode JSYS's can
only read padgdes within an existing file section (the address space of
a file delimited by 1 index block - 512 pages).

2.2.13 Input/Output Errors

While performing I/0 or I/0O-related operations, 1t 1 possible to
encounter one or more error conditions. Some of these are user-causcd
errors (e.g., illegal access attempts), and others are I/0 device or
medium errors. TOPS-20 1indicates such error conditions by setting
error bits in the JFN status word (refer to the GTSTS call) and by
initiating a software interrupt request (refer to Section 2.6) 1f the
user has not included an FRIJMP or ERCAL after the <call. T1f the
process in which an I/0 error occurs 1s not prepared to process the
interrupt, the interrupt 1is ~changed 1into a process terminating
condition with the expectation that the process' immediate superior
will handle the error condition. The TOPS-20 Command Language 1is
prepared to detect and diagnose I/0 errors; thus, a process running
directly beneath the process containing the Ccmmand Language need not
do 1its own JT/0 error bhandling unless it chooses to do something
special.

FUNCTIONAL ORGANIZATION OF JSYS'S

I/0 errors can occur while a process is executing ordinary machine
instructions as well as JSYS's. For example, if a PMAP operation is
performed that maps a page of a file into a page of a process, the
file I/0 transfer does not usually occur until a reference 1is made by
the process to that particular page of the file. TIf there is an I/O
error in the transfer, it is detected at the time of this reference.

An attempt to do I/O to a terminal that is assigned to another job (as
a controlling terminal or with the ASND call) normally results in an
error, but is legal if the process has the WHEEL capability enabled.

2.2.13.1 Testing for End-of-File - The GTSTS JSsys, used in
conjunction with ERCAL (or ERIJMP), is used to test for end-of-file.
The following code fragment illustrates this:

MOVE T1,INJFN ;Get input JFN
BIN% ;Read a byte
ERCAL EOFTST
. ;Process byte
EOFTST: MOVE T1,INJFN ;Get input JFN
GTSTS% ;Get status of that JFN
TLNN T2, (GS$EOF) ;Did end of file occur?
PUSHJ P,FATAL : No, I/O error occurred
MOVE T1,INJFN ; Yes, close file
CLOSF%
ERCAL FATAL ;If can't close, issue message
POPJ P, ;OK to return
FATAL: . ;Here to issue error messages
. ; on fatal file errors
HALTF% ;Halt on fatal error

In the example above, the ERCAL after the BIN 1s executed only 1if a
file ervor condition arises. The code that is entered as a result of
the ERCAL can then do a GTSTS for the appropriate file and test for
end-of-file.

An alternate method to test for end-of-file is tc use the GETER JSYS
and determine 1if the last error for the process is TO0X4 (end of file
reached) .

The monitor calls used 1n referencing files are:

GTJFN Assigns a JFN to a file

GNJFN Ascigns a JFN to the next file

JFNS Translates a JFN to a string

WILD$% Compares a wild file specification against a non-wild
file specification. Also compares strings.

SPJFN Sets primary JFN's

GPJFN Returns primary JFN's

SWJIFN Transposes two JFN's

RLJFN Releases a JFN

OPENF Opens a file

CLOSF Closes & file

CLZFF Closes a process' files

BIN
BOUT
FLIN
FLOUT
NIN
NOUT
PSOUT
PBIN
PBOUT
SIN
SOouT
SINR
SOUTR
RIN
ROUT
DUMPI
DUMPO
PMAP

RSCAN
RDTTY
TEXTI

CRLNM
INLNM
LNMST

CHFDB
GTFDB
SFUST
GFUST
CHKAC
ACCES
DIRST
RCDIR
RCUSR

SIZEF
SFBSZ
RFBSZ
SFPTR
RFPTR
BKJFN
RNAMF
SFTAD
RFTAD
STSTS
GTSTS
UFPGS

DELF
DELDF
DELNF

FFFFP
FFUFD

FUNCTIONAL ORGANIZATION OF JSYS'S

Reads the next byte

Writes the next byte

Reads a floating-point number

Writes a floating-point number

Reads a number

Writes a number

Writes string to primary output designator
Reads byte from primary irput designator
Output byte to primary output designator
Reads a string

Writes a string

Reads a record

Writes a record

Reads a byte nonsequentially

Writes a byte nonsequentially

Reads data 1in unbuffered data mode
Writes data in unbuffered data mode

Maps pages

Reads and outputs rescan buffer
Reads data from primary input designator
Reads data from terminal or file

Creates a logical name
Writes logical names
Translates logical name to string

Changes a File Descriptor Block

Reads a File Descriptor Block

Changes the author or last writer name string
Reads the author or last writer name string
Checks access to a file

Specifies access to a directory

Translates directory or user number to a string
Translates directory name to number

Translates user name to number

Obtains file's length

Sets file's byte size
Reads file's byte size
Sets file's pointer

Reads file's pointer
Backspaces file's pointer
Renames a file

Sets file's time and dates
Reads file's time and dates
Sets file's status

Reads file's status
Updates file's pages

Deletes a file
Expunges deleted files
Retains specified number of generations of file

Finds first free file page
Finds first used file page

FUNCTIONAL ORGANIZATION OF JSYS'S

2.3 OBTAINING INFORMATION

The monitor calls in this group are used to obtain information from
the system, such as the time of day, resources used by the current
job, error conditions, and the contents of system tables.

Several of these calls return time values (intervals and accumulated
times, for example). Unless otherwise specified, these values are
integer numbers in units of milliseconds.

2.3.1 Error Mnemonics and Message Strings

Each failure for a JSYS is associated with an error number identifying
the particular failure. These error numbers are indicated in the
menual by mnemonics (DEVX1l, for example), and are 1listed with the
appropriate calls.

Some calls return the error number 1in the right half of an
accumulator, usually 1in ACl; however, all calls leave the number 1in
thke Process Storage Block for the process in which the error occurred.
Thus, a process can obtain the number for the last error that occurred
(by means of the GETER call).

In addition to the mnemonic of six characters or less, each error
number has a text message associated with it that describes the error
in more detail. The ERSTR call can be wused to return the message
string associated with any given error number. This call should be
used for handling error returns.

Refer to Chapter 3 and Appendix B for the 1listing of the error
numbers, mnemonics, and messages.

2.3.2 System Tables

The contents of several system tables are available to programs for
such purposes as generating status reports and collecting system
performance statistics. Each table is identified by a fixed name of
up to six characters, and consists of a variable number of entries.
The -1 entry in each table is the negative of the number of data
entries in the table; the data entries are identified by an index
that increments from 0.

Two calls exist for accessing tables. The first, SYSGT, accepts a
table neme and returns the table length, its first data entry, and a
number 1i1dentifying the table. The second, GETAB, accepts the table
number returned by SYSGT, or obtained from the MONSYM file, and
returns additional entries from the table.

The system tables are as follows. Numeric table indexes are given 1in
octal. Parallel tables, those for which a agilven index produces
related information, are indicated by "(Pn)" where n 1is a unigue
number for that set of parallel tables.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2
System Tables

Name Index Contents
APRID Processor serial number
BLDTD Date and time system was generated
DBUGSW Debugging information
0 tate of operator coverage

s

0 = unattended

1 = attended

2 = debugging

1 state of BUGCHK handling
O=proceed

l=breakpoint

DEVCHR (P1) Device <characteristics word, as
described wunder the DVCHR JSYS in
Chapter 3, except that B5 (DV%AV) 1is

‘ not meaningful.

DEVNAM (P1) SIXBIT device name including unit
number, e.g., MTA3

DEVUNT (P1) LH: Job number to which device is
assigned (with ASND), or -1 1if
device is not assigned, or -2 1if

reserved for device allocator.
| RH: wunit number, or -1 if device has no
units (e.g., DSK:)

DRMERR Information on drum errors
number of recoverable errors

to n varies depending on type of drum
being used

= O

DSKERR Information on disk errors
0 number of recoverable disk errors
1 ton varies depending on type of disk

being used

DWNTIM Downtime information
0 date and time when system will be
shut down next
1 date and time when system will

subsequently be up

HQLAV ‘ High gueue load averages

2-25

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents
IMPLT1 c(P2) ARPANET - 1 fullword for each link:
LH: internal c¢onnection number, index
for:
NETAWD
NETBAL
NETBTC
NETBUF
NETFSK
NETLSK
NETSTS
or -1 if control link
RH: B18-19 00 receive
10 send
11 free
01 delete
B20-27 host number
B28-35 1link number
c (1index) is derived from
bits 24-35 of NETAWD.
IMPLT2 c(P2) ARPANET - 1 fullword for each link:
LH: BO0-9 flags
B10-17 byte size of buffer
RH: address of input buffer
c (index) 1is derived from bits 24-35
of NETAWD.
IMPLT3 c(P2) ARPANET - 1 fullword for each link:
LH: address of output buffer
RH: message saved for retransmission
¢ (index) 1is derived from bits 24-35
of NETAWD.
IMPLT4 c(P2) ARPANET - 1 full word for each link
LH: address of current buffer
RH: message allocation in bits
¢ (index) is derived from bits 24-35
of NETAWD.
JBONT Job # Owning job for CRJOB-created jobs.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents
JOBNAM Job # LH: reserved for DEC
RH: 1index into the system program tables
for the system program being used by
this job (determined by the last
SETSN call executed by the job)
JOBPNM Job # SIXBIT name of program running 1in
this job
JOBRT Job # CPU time used by the job (negative
if no such job)
JOBTTY Job # LBE: controlling terminal line number, or
-1 if none (i.e., job is detached)
RH: reserved for DEC
LOGDES Logging information
0 designator for logging information
1 designator for Jjob 0 and error
information
LQLAV Low queue load averages
NETHST c(P2) ARPANET - 1 full word for each
internal connection:
-1 if no foreign host, otherwise the
same as IMPLTS.
c (index) 1is derived from bits 24-35
of NETAWD.
NETAWD c(P2) ARPANET - 1 full word for each
internal connection:
B0-8 link number
B9-17 unused
R18-23 timeout countdown
B24-35 index to link tables
c (index) is internal connection
(see IMPLT1).
NETBAL c(P2) ARPANET - number of bits allocated

to each internal connection

c (index) is internal connection
{see IMPLT1).

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents
NETBTC c(P2) ARPANET - byte count statistics:
the number of bits gent or received
over each internal connection since
the socket was created.
c (index) is 1internal connection
(see IMPLT]).
NETBUF c(P2) ARPANET - 1 fullword for each
internal connection:
LH: Dbytes per buffer
RH: buffer location -1
c (index) is internal connection
(see IMPLTI1).
NETFSK c(P2) ARPANET - foreign socket number (32
bits) for each internal connection
¢ (index) is internal connection
(see IMPLTI]).
NETLSK c(P2) ARPANET - local socket number for
each internal connection
c (index) is 1nternal connection
(see IMPLT1).
NETRDY ARPANET operational status table
0 0 IMP down
.GT.0 IMP going down
-1 IMP up
1 0 = network off, non-zero = network
on
2 flags for NETSER (not for user)
3 time of last NCP cycle up
4 last IMP GOING DOWN message
B0-15 reserved
B16-17 0 ©panic
1 scheduled hardware PM
2 software reload
3 emergency restart
R18-21 number of 5-minute
intervals before IMP goes
down
B22-31 number of 5-minute intervals
IMP will be down
5 time of last IMP ready drop
6 time of last IMP ready up
7 time of IMP GOING DOWN message

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name

Index

Contents

NCPGS

NSWPGS

PTYPAR

QTIMES

SNAMES

SNBLKS

SPFLTS

SSIZE
STIMES

SYMTAB

SYSTAT

T QO U W

N -~ O

0 to n

(P3)

(P3)

(P3)

(P3)

(P3)

= o

—
w

[
>

LH:
RH:

One-word table containing number of
pages of real (physicel) user core
available in system. ©Note that this
value 1includes resident variables,
and thus not all of the pages can be
assigned to a user process.

Default swapping pages
Pseudo-TTY parameter information

number of PTYs in system
TTY number of first PTY

Accumulated runtime of jobs on the n
scheduler gueues

SIXBIT name of system program, or O
if this entry is unused in this and
the corresponding four tables.

Number of samples 1in working set
size integral

Total number of page faults of
system program

Time integral of working set size
Total runtime of system program

SIXBIT table names of all GETAB
tables

Monitor statistics. The entries 1in
this table are as follows:

time with no runnable jobs

waiting time with 1 or more runnable
jobs (waiting for page swapping)
time spent in scheduler

time spent processing pager traps
number of drum reads

number of drum writes

number of disk reads

number of disk writes

number of terminal wakeups

number of terminal interrupts

time integral of number of processes
in the balance set

time integral of number of runnable
processes

exponential 1l-minute average of
number of runnable processes

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents

15 exponential 5-minute average of
number of runnable processes

16 exponential 15-minute average of
number of runnable processes

17 time integral of number of processes
waiting for the disk

20 time integral of number of processes
waiting for the drum

21 number of terminal input characters

22 number of terminal output characters

23 number of system core management
cycles

24 time spent doing postpurging

25 number of forced balance set process
removals

26 time integral of number of processes
in swap wait

27 scheduler overhead time (same as
entry 2) in high precision units

30 1dle time (same as entry 0) in high
precision units

31 lost time (same as entry 1) in high
precision units

32 user time

33 time integral of number of processes

on high queue. (High gueue is high
priority, low numerical value.)

34 time 1ntegral of number of processes
on low dgueue. (Low gqgueue is low
priority, high numerical value.)

35 sum of process disk-write waits

36 number of forced adjustments to
balance set

37 integral of number of reserve pages
of all processes in memory

40 integral of number of pages on

replaceable gqueue. The replaceable
gqueue contains pointers to all free
memory pages.

41 high precision pager trap time
42 number of context switches
43 time spent on background tasks.

These tasks include low-level data
transfer between RSX20F and TOPS-20,
and moving data from-swappinag space
to file space.

44 total system page traps
45 total saves from replacement gueue.
A "save" occurs when a desired page

1s found on the replacement queue
and need not be paged in.

46 number of pages removed from memory
during system-wide garbage
collection.

47 integral of number of working sets

in memory

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name

Index

Contents

SYSVER

TICKPS

TTYJOB

50

51
52

53

line # LH:

RH:

integral of number of wait time
without swap waits

count of working set loads

count of runable processes removed
from balance set

number of pages removed from memory
during process-wide garbage
collection.

NOTE

This table 1is subject to
change (usually additions)
as measuring routines are
added to the system.

An ASCIZ string 1identifyilng the
system name, version, and date. The
string has the following format:

string, TOPS-20 Monitor n.m(o)-p

where "string" 18 the text
contained in the file
structure:<SYSTEM>MONNAM.TXT, "n" 1is
the major version number (1 to 3
digits), "m" 1is the minor version
number (0 to 2 digits), "o" 1i1s the
edit number (1 to 6 digits), and "p"
is the number of the group that last
edited the version (0 or 1 digit).

If "m" is zero, it and 1ts preceding
period are omitted. If "p" is zero,
it and 1its preceding hyphen is
omitted. Otherwise, the period and
the hyphen are stored along with the
other information, including the
spaces and parentheses as shown, 1in
the table.

One-word table containing number of
clock ticks per second.

positive job number for which this 1is
the controllinag terminal, or

-1 for vunassigned line, or

-2 for line currently being assigned,
or Jjob number to which this line 1s
assigred.

-1 if no process 1is waiting for 1input
from this terminal; other than -1 if
some process 1s waiting for input.

FUNCTIONAL ORGANIZATION OF JSY¥S'S

The system program being run by a specific job may be determined from
SNAMES, using an index obtained from table JOBNAM.

The following monitor calls are used for obtaining information:

GETER Returns the last error condition

ERSTR Translates an error number to a string

ESOUT Returns an error string

SYSGT Returns values for a system table

GETAB Returns a word from a system table

GETNM Returns the program name being used by the job
GETJI Returns job information for specified job
GJINF Returns job information for current job

GTAD Returns the system's date

TIME Returns the time since the system was restarted
RUNTM Returns the runtime of a job or process

HPTIM Returns the high-precision clock values

GTDAL Returns the disk allocation of a directory
GTRPI Returns the paging trap information

GTRPW Returns the trap words

2.4 COMMUNICATING WITH DEVICES

The monitor calls in this group are wused to communicate with the
devices on the system. Some of these devices are line printers,
magnetic tapes, terminals, and card readers.

Many of the monitor calls in this group take a device designator as an
argument. This designator can be either

LH: .DVDES(600000)+device type number

RH: unit number for devices that have units, arbitrary code
for structures, or -1 for non-structure devices that do not
have units

LH: O
RH: .TTDES(400000)+terminal number, or .CTTRM(0,,-1) for
controlling terminal

The STDEV monitor c¢all 1is wused to convert a string to its
corresponding device designator.

The various devices are as follows:

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-3
Device Types

Name Description Type Symbol Units
DSK: disk structure 0 .DVDSK no
MTA: magnetic tape 2 .DVMTA yes
MT: logical magnetic tape 2 .DVMTA yes
LPT: spooled line printer 7 - yes
PLPT: physical line printer 7 .DVLPT yes
CDR: spooled card reader 10 - yes
PCDR: physical card reader 10 .DVCDR yes
FE: front-end

pseudo-device 11 .DVFE no
TTY: terminal 12 .DVTTY yes
PTY: pseudo-terminal 13 .DVPTY yes
NUL: null device 15 .DVNUL no
NET: ARPA network 16 .DVNET no
CDP: spooled card punch 21 - yes
PCDP: physical card punch 21 .DVCDP yes
DCN: DECnet active

component 22 .DVDCN no
SRV: DECnet passive

component 23 .DVSRV no

Device-designators may be formed for the devices shown above by taking
the given symbolic¢ device-type and adding .DVDES (600000).

The null device is an infinite sink for unwanted output and returns an
EOF on input.

Device-dependent status bits are defined for some devices. These bits
can be set or returned with the SDSTS or GDSTS call, respectively.

When an assignable device is assigned (by the ASND call) or opened (by
the OPENF call) by one job, other jobs cannot do the following:

1. Assign the device with ASND.

2. Execute an OPENF call for the device, even 1if the JFN
properly represents the device.

Structures are not restricted to these 1limitations; more than one
user can simul taneously execute the OPENF call for files on
structures.

The following sections describe each of the devices 1listed 1in the
table above. The sections are in alphabetic order by generic device
type (thus PCDR: and CDR: are listed under "c").

2.4.1 Physical Card Reader (PCDR:)

The following device-dependent status bits are defined for the card
reader. These bits can be obtained with the .MORST function of the
MTOPR call.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-4
PCDR: Status Bits

Bit Symbol Meaning
BO MO%COL Device is on line.
B10 MORFER Fatal hardware error. This error dgenerates

an 1interrupt on software channel .ICDAE.
(Refer to Section 2.6.1.)

B12 MO%EOF Card reader 1is at end of file.
B13 MO%IOP I/0 in progress.
B1l4 MO%SER Software error. (Would generate an

interrupt on an assignable channel.)

B15 MO%HE Hardware error. (Would generate an
interrupt on software channel .ICDAE.)

B16 MO%OL Device 1s off line.
B17 MO%FNX Device 1s nonexistent.
B31 MO%SFL Output stacker full,
B32 MORHEM Input hopper empty.
B33 MO%SCK Stack check.

B34 MO%PCK Pick check.

R35 MO%RCK Read check.

2.4.2 Spooled Card Reader (CDR:)

On most systems, the physical card reader devices (PCDR: devices) are
under the control of the card reader spooler, SPRINT, and thus the
ordinary user cannot open a PCDR: device, and must 1instead open a
spooled card reader device (CDR:).

When a GTJFN 1is performed on device CDR:, the device characteristics
(returned by DVCHR) are the same as those for device PCDR:. Thus,
CDR: devices have units, and a unit number may be cpecified for the
GTJFN.

When the OPENF 1s performed, However, the dJdevice characteristics
become the same as device DSK:. This is because data read from device
CDR: is actually read from a file in the spool directory <SPOOL>. The
file 1s spooled from the PCDR: device to the spool directory by
SPRINT.

Thus device CDR: is effectively a disk device, and no monitor call
that can be used only to set the characteristics of a PCDR: device can
be used for a CDR: device. Also, disk-only operations (such as PMAP)
should not be done for a CDR: device. Both ASCII and image mode are
supported for CDR: devices.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.3 Physical Card Punch (PCDP:)

The following device-dependent bits are defined for the card reader.
These functions can be obtained with the .MORST function of the MTOPR
monitor call.

Table 2-5
PCDP: Status Bits

Bit Symbol Meaning

B10 MOSFER Fatal error condition

B12 MOSEOF All pending output has been processed

B13 MO%IOP Output in progress

B14 MO%SER Software error has occurred (would generate

interrupt on an assignable channel)

B15 MO%HE Hardware error has occurred (would generate
interrupt on channel .ICDAE)

Bl6 MO%OL Card-punch is off-line. This bit 1is set
when operator intervention is redguired (card
jam, hopper empty, stacker full).

B17 MO%FNX Card punch doesn't exist

B32 MOSHEM Stacker 1s full or hopper is empty

B33 MO%SCK Stacker is full or hopper is empty (same as
above)

B34 MO%PCK Pick check

2.4.4 Spooled Card Punch (CDP:)

On most systems, the physical card punch devices (PCDP: devices) are
under the contrcl of the card punch spooler, SPROUT, and thus the
ordinary user canriot open a PCDP: device, and must instead open a
spooled card punch device (CDP:).

When a GTJFN is performed on device CDP:, the device <characteristics

(returned by DVCHR) are the same as those for device PCDP:. Thus,
CDP: devices have units, and a unit number may be specified for the
GTJFN. However, when the OPENF is performed, the device

characteristics become the same as device DSK:. This is because data
written to device CDP: is actually written to a file in the spool
directory <EPCOOL>. The file is then spooled from the spool directory
to the PCDR: device by SPROUT.

Thus device CDP: is effectively a disk device, and no monitor call
that can be used only to set the characteristics of a PCDP: device can
be used for a CDP: device. 2also, disk-only operations (such as PM2P)
should not be done for a CDP: device. Both ASCII and imade mode are
supported for CDP: devices.

2-35

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.5 Physical Line Printer (PLPT:)

The line printer normally accepts the 128 7-bit ASCII character codes
(0-177 octal). However, by specifying a byte size of 8 when opening
the printer, a program can transfer 8-bit bytes. Thus, the program
can take advantage of printers that have more than 128 characters.

Each code sent usually causes a graphic to be printed. (Note that on
a 64-character printer, lower case letters are represented as upper
case.) However, the carriage control characters do not cause a graphic
to be printed; instead they cause specific actions to be taken. The
actions taken are determined by the translation RAM and the Vertical
Formatting Unit. These actions can be redefined by the installation,
and the method by which they are redefined depends on the type of
printer being used.

For the LPl0 printer, which has a carriage control tape, the
installation must change the tape to redefine the resulting actions.

For the LP05 and LP14 printers, which have a direct access Vertical
Formatting Unit and a programmable translation RAM, the installation
can redefine the resulting actions by:

1. Reprogramming the VFU by changing the VFU file with the
MAKVFU program and reloading this file and the RAM.

2. Reprogramming the translation RAM by changing the RAM file
with the MAKRAM program and reloading this file.

Refer to the LPINI and MTOPR monitor calls for the functions used 1in
loading the VFU and RAM files.

The default actions taken on the carriage control characters, along
with the default channels that determine these actions, are as
follows:

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-6
PLPT: Control Characters

I

ASCII Character | Default Name Default
Code Channel Action
11 ‘ Tab No vertical motion.

Skips to the beginning
of every 8th column on
the same line.

12 8 Line feed Skips to column 1 on the
next line. The last six
lines of each page are
skipped.

13 7 Vertical tab Skips to column 1 on the
line at the next third
of a page.

14 1 Form feed Skips to column 1 on the
top of the next page.

15 Carriage
return No vertical motion.
Returns to column 1 of
the <current 1line and
does not advance the

paper.

20 2 Half page Skips to column 1 on the
next half page.

21 3 Alternate
lines Skips to column 1 on the
next even line.

22 4 Three lines Skips to column 1 on the
next of every third
line.

23 5 Next line Skips to column 1 on the
next line without
skipping the last six
lines on a page.

24 6 Sixth page Skips to column 1 on the
next sixth of a page.

The association between the ASCII code and the channel 1is determined
by the RAM. The association between the channel and the default
action is determined by the VFU. Therefore, a change in the VFU
changes the association between the channel and the action, which
causes the ASCII code to be associated with the new action.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.5.1 PLPT: Status Bits - The following device-dependent status
bits are defined for the line printer. These bits can be obtained
with the .MORST function of the MTOPR call.

Table 2-7
PLPT: Status Bits

Bit Symbol Meaning
BO MOSLCP Lower case printer
B10O MORFER Fatal hardware error. This error generates an

interrupt on software channel .ICDAE (refer to
Section 2.6.1).

B12 MO&EOF All data sent to the printer has actually been
printed.

B13 MO%IOP I/0 in progress

B14 MO%SER Software error (e.g., interrupt character, page

counter overflow)

B15 MO%HE Hardware error. Forms must be realigned. This
error generates an 1interrupt on software
channel .ICDAE.

B1l6 MO%OL Device 1is off line

B17 MO%FNX Device 1s nonexistent

B30 MO%RPE RAM parity error

B31 MO3LVU Optical VFU

B33 MORLVF VFU error

B34 MO3LCI Character interrupt. This generates an

interrupt on channel .ICDAE.

B35 MO3LPC Page counter register overflow

2.4.6 Spooled Line Printer (LPT:)

On most systems, the physical line printer devices (PLPT: devices)
are under the control of the line printer spooler, LPTSPL and thus
the ordinary user cannot open a PLPT: device and must, instead, open
a spooled line printer device (LPT:)

When a GTJFN 1s performed on device LPT:, the device characteristics
(returned by DVCHR) are the same as those for device PLPT:. Thus,
LPT: devices have units, and a unit number may be specified for the
GTJFN. However, when the OPENF 1gc performed, the device
characteristics become the same as device DSK:. This 1is because
data written to device LPT: is actually written to a file in the
spool directory PS:<SPOCL>. When device LPT: is closed, the file in
<SPOOL> 1is closed and a message sent to the line printer spooler
LPTSPL causing it to print the file on the line printer.

2-38

FUNCTIONAL ORGANIZATION OF JSYS'S

Thus device LPT: is effectively a disk device, and none of the
monitor calls that can be used only to set the characteristics of a
PLPT: device can be used for a LPT: device. Also, disk-only
operations (such as PMAP) should not be performed for LPT: devices.
Note that LPTSPL writes only 7-bit bytes, so opening a LPT: device
with any other byte size will cause erroneous results. Also, only
ASCII mode is supported for LPT: devices.

2.4.7 Physical Magnetic Tape (MTA:)

The following device-dependent bits are defined for magnetic tape.

Table 2-8
MTA: Status Bits

Bit Symbol Meaning

18 MTRILW Drive 1s write protected

19 MT%DVE Device error (hung or data late)

20 MT%DAE Data error

21 MT%SER Suppress automatic error recovery procedures

22 MTREOF Device EOF (file) mark

23 MT$IRL Incorrect record length (not the same number of

words as specified by the read operation or not
a whole number of words)

24 MT&BOT Beginning of tape

25 MTSEOT End of tape

26 MTSEVP Even parity

29-31 MT&CCT Character counter if MT®IRL is on. In the case

of an error generated by an incorrect record
length, this field contains the number of bytes
actually transferred.

32 MT¥NSH The selected data mode or density 1is not
suppor ted by the hardware (such as using
ANSI-ASCII mode on a TMO3 controller).

Data transfers to and from the magnetic tape can be performed using
either buffered or unbuffered I/0.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.7.1 Buffered I/0 - The monitor wuses buffered 1I/0 when the
sequential I/0 calls (e.g., BIN/BOUT, SIN/SOUT) are used to read from
or write to the magnetic tape. When the tape is opened for sequential
I/0 (data mode .GSNRM on the OPENF call), the monitor reserves buffer
space large enough to hold two records of data. The maximum size of
the records is specified with the SET TAPE RECORD-LENGTH command or
the .MOSRS function of the MTOPR monitor call. The maximum record
lengths for magnetic tapes supported by TOPS-20 are listed in the
description of the .MOSRS function of the MTOPR monitor call. The
buffers reserved by the monitor allow the user's program to overlap
computation with the transfer of data to and from the tape.

The BIN monitor call is used to read one byte from the tape, with the
monitor filling one buffer with data as the user program is reading
bytes from the other buffer. A program reading data from the tape
with successive BIN calls obtains a stream of bytes until a tape mark
is read. The SIN monitor call is used to read a speciried number of
bytes with the monitor again performing the double buffering. Both
the BIN and the SIN calls read across record boundaries on the tape.
The SINR monitor call is used to read variable-length records from the
tape because each call returns one record to the user program. If the
record on the tape contains more data than the SINR call requests, the
remaining bytes in the record are discarded. The SINR call never
reads across record boundaries on the tape. Thus, each SINR call
begins reading at the first byte of the next record on the tape. With
all three <calls, the specified record size must be at least as large
as the largest record being read from the tape.

The BOUT monitor call is used to write one byte on the tape. A
program writing data on the tape with successive BOUT calls writes a
stream of bytes packed into records of the specified size. The SOUT
monitor call 1s wused to write a specified number of bytes into one
record equal to the given record size. The SOUTR <call 1is used to
write variable-length records on the tape because each call writes at
least one record. The size of the record 1is equal to either the
number of bytes specified 1in the SOUTR call or the number of bytes
specified in the maximum record size, whichever is smaller. If the
number of bytes requested in the call is greater than the specified
record size, then records of the maximum size are written, plus
another record containing the remaining bytes. If the end of tape
marker is reached during seguential mode output, the data 1s written
and an error return 1s given. Bit MTREOT (bit 25) in the device
status word will be set to indicate this condition.

When a CLOSF monitor call is executed for a magnetic tape to which
buffered output 1s being done, any data remaining in the monitor's
buffers will be written to the tape. The monitor writes two tape
marks after the 1last record written and backspaces over the second
mark. This allows a subseguent write operation to overwrite the 1last
tape mark, and always leaves two tape marks (a logical end of tape)
after the last record written.

The monitor does not write records of less than four words long. Thus
if the user requests less than four words to be written on a SOUTR or
DUMPO (see below) call, the monitor writes a four-word record,
completing it with zeros. On a SOUT call, if less than four words
remaln in the buffer at the time of the CLOSF call, the monitor again
fi1lls the record with zeros.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.7.2 Unbuffered I/0 - The DUMPI and DUMPO monitor calls are used
to read from or write to the magnetic tape without using buffered I/0.
(Unbuffered I/0 is sometimes called dump mode 1I/0.) Unbuffered 1I/0
uses a program-supplied command list to determine where to transfer
data into or out of the program's address space. The command list can
contain three types of entries:

1. IOWD n, loc transfers n words from loc through loc+n-1. The
next command is obtained from the location following the
IOWD. Each IOWD word reads or writes a separate magnetic
tape record.

2. XWD 0, y takes the next command from location y.
3. 0 terminates the command list.
Refer to the DUMPI call description for more information.

On input, a new record is read for each IOWD entry in the command
list. If the IOWD request does not egqual the actual size of the
record on the tape, an error (IOX5) is returned. The GDSTS monitor
call can then be executed to examine the status bits set and to
determine the number of bytes transferred. 1In addition, 1if a tape
mark is read, an error (IOX4) is returned. On output, a new record is
written for each IOWD entry in the command list.

There are two modes available in unbuffered I/0. 1In the normal mode,
the monitor waits for the data transfer to complete before returning
control to the program. 1In the no-wait mode, the monitor returns
control immediately after gueuing the first transfer so that the
program can set up the second transfer. The monitor then waits for
the first transfer to complete before queuing the second. TIf the
first transfer is successful, the second one is started, and control
is returned to the program. TIf the first transfer is not successful,
an error is returned in ACl, and the second one is not started. The
desired mode 1is specified by bit DM%NWT in ACl on the DUMPI or DUMPO
call.

2.4.7.3 Magnetic Tape Status - The status word of a magnetic tape can
be obtained with the GDSTS <call or individual status bits can be
obtained with the MTOPR call. The GDSTS call waits for all activity
to stop during seguential mode output, dump mode, and spacing
operations before obtaining the status. A GDSTS call executed during
segquential mode input returns the status of the current record.

Reading from or writing to a magnetic tape cannot be done if there are
any errors set 1in the device status word. The program can clear
errors with the SDSTS call or the .MOCLE function of the MTOPR call.

2.4.7.4 Reading a Tape in the Reverse Direction - With the .MOSDR
function of the MTOPR call, the program can cause the tape to move 1in
the reverse direction (toward the beginning of the tape) during read
operations. The data in each record are returned in the forward
order, but the records themselves are returned in the reverse order.
The sensing-foil marking the beginning of tape is treated as an EOF
tape mark.

FUNCTIONAL ORGANIZATION OF JSYS'S

When the SIN call is used to read data in the reverse direction, the
bvte size and record length specified in the call should equal the
byte size and record length of the records on the tape. If the record
characteristics specified in the call do not egual the characteristics
of the records on tape, the bytes are returned out of phase with the
bytes in the tape record.

When the SINR call is used to read data in the reverse direction, the
number of bytes reguested by the call should be at least as large as
the size of the record on the tape. If the requested number 1is
smaller than the number of bytes in the tape record, the remaining
bytes in the record are discarded from the beginning of the record and
not from the end of the record.

2.4.7.5 Hardware Data Modes - By using the .MOSDM function of the
MTOPR call, the program can set the mode for storing data on a
magnetic tape. The following descriptions 1indicate how bits are
stored in the tracks and the number of frames required to store a
36-bit word of data.

The parity bit i1s represented in the diagrams by "P".

NOTE

Data undergoes 2 transformations before
it 1s actually written to magnetic tape.
The first transformation occurs when a
word of data 1s formed into frames by
the tape controller. The formats of
these frames are 1llustrated in the
diagrams below.

A second transformation occurs when the
tape drive receives a frame of data from
the controller, and physically writes
that frame to tape: the bits within the
frame are rearranged and then written.
This final format is standardized
throughout the computer industry and 1is
designed to (among other things) place
the parity bit in the center of the tape
(the "safest" part of the tape).
Because this final format is
standardized, it 1is "invisible" and does
not affect user programs in any way.

Programmers who must deal with the
problem of transferring data between DEC
machines and the machines of other
vendors need only concern themselves
with the formets shown below. Thus,
while 1t 1s technically 1incorrect to
think of the diagrams below as showing
the physical format of a word stored on
magnetic tape, it is convenient to do
so, and this simplification 1s made 1in
this manual.

FUNCTIONAL ORGANIZATION OF JSYS'S

Unbuffered (Dump) Mode

This mode stores a word of data as a 36-bit byte in five frames of a
9-track tape. Note that the fifth frame is partially used. This mode
is normally the default mode.

TRACKS FRAMES
9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 B5 B6 B7 P 1
B8 B9 B10 Bl1 B1l2 B13 B14 B1l5 P 2
Blé6 B17 B18 B19 B20 B21 B22 B23 P 3
B24 B25 B26 B27 B28 B29 B30 B31 P 4
0 0 0 0 B32 B33 B34 B35 P 5

Industry Compatible Mode

This mode stores a word of data as four 8-bit bytes in four frames of
a 9-track tape. On a read overation, four frames of 8-bit bytes are
read, left-justified, into a word. The remaining four bits of the
word are 0, or are copies of the parity bits, depending on the
hardware; these bits are not deata. On a write operation, the
leftmost four 8-bit bytes (i.e., bits 0 through 31) of the word are
written in four frames on the tape. The rightmost four bits (i.e.,
bits 32 through 35) of the word are ignored and are not written on the
tape. This mode is compatible with any machine that reads and writes
8-bit bytes.

TRACKS FRAMES
9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 B5 B6 B7 P 1
B8 B9 B10 Bl1 B12 B13 B14 B15 P 2
Blé6 B17 B18 B19 B20 B21 B22 B23 P 3
B24 B25 B26 B27 B28 B29 B30 B31 P 4

ANSI ASCII Mode

This mode stores a word of data as five 7-bit bytes in five frames of
a 9-track tape. On a read operation, five frames of 7-bit bytes are
read, left-justified, into a word. The remaining bits (bits 35) of
each frame are ORed togethber, and the result is placed in bit 35 of
the word. On a write operation, the leftmost five 7-bit bytes of the
word are written in five frames on the tape. Bit 35 of the word must
be zero to conform to ANSI standards. It 1is written 1into the
high-order bit of the fifth frame, and the remaining high-order bits
of the first four frames are 0. This mode is useful when transferring
ASCII data from TOPS-20 to machines that read 8-bit bytes. This mode
1s available on any 9-track drive connected to a TM02 or DX20 tape
controller.

nNnooCoCo

B3

8

BO
B7
Bl4
B21
B28

SIXBIT Mode

Bl

B15
B22
B29

FUNCTIONAL ORGANIZATION OF JSYS'S

B2

B16
B23
B30

TRACKS
5

B3
B10O
B17
B24
B31

This mode stores a word of data

7-track
7-track

7

BO
B6
B1l2
B18
B24
B30

tape.
tapes.

6

Bl
B7
B13
B19
B25
B31

5

B2
B8
B14
B20
B26
B32

High Density Mode

In this

mode,

two

mode is available

BO
B8
B16
B24
B32

R12
B20
B28

Bl
B9
B17
B25
B33

B13
B21
B29

B2
B10O
B18
B26
B34

B14
B22
B30

This mode is

TRACKS

4 3
B3 B4
B9 B10O
B15 Bl6
B21 B22
B27 B28
B33 B34

36-bit words are stored in 9 frames.

B4
B1l1
B18
B25
B32

B5
B12
B19
B26
B33

B6
B13
B20
B27
B34

—

‘g go

FRAMES

b wn -

as six 6-bit bytes in six frames of a
only supported hardware mode for

the

B5
B11
B17
B23
B29
B35

—

Lo BV L Bl v B vl o)

FRAMES

AU WN -

High density

on any 9-track drive connected to a DX20 controller.

B3
B11
B19
B27
B35

B7
B15
B23
B31

TRACKS
5

B4
B12
B20
B28

BO

B8
Bl6
B24
B32

2-44

B6
B14
B22
B30

B10
B18
B26
B34

B7
B15
B23
B31

B1l1
B19
B27
B35

it

vl B vl e By e B o B v B v B o)

FRAMES

OOV WN -

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.8 Logical Magnetic Tape (MT:)

Logical magnetic tape devices are used so that the system operator can
fulfill a MOUNT request with any available tape drive that meets the
requirements of the MOUNT reguest. The user never knows and need not
know which physical drive (MTA:) is mapped to the logical drive (MT:).

Some JSYS functions available for MTA: devices are not available for

MT: devices. Also, MT: devices are commonly used in a tape-labeled
environment which causes further restrictions in the JSYS functions
available for MT: devices. See the appropriate JSYS's for any

restrictions that may apply.

2.4.9 Terminal (7'TY:)

Most monitor calls in this group return an error 1if the device
referenced 1is assigned to another job. However, a process with WHEEL
capability enabled can reference a terminal assigned to another job
(as controlling terminal or with ASND). The monitor calls pertaining
to terminals have no effect, or return default-value information, when
used with other devices.

The following status bits are defined for TTY's.
Bit Symbol Meaning

B35 GD$PAR The TTY will tolerate a parity bit. Any program
producing binary output for a TTY should check
this bit to determine if it should apply parity.
If parity is to be applied, the TTY must be opened
with an 8-bit bytesize; otherwise, a 7-bit
bytesize must be used.

DECNET NVT's will not accept a parity bit.

2.4.9.1 JFN Mode Word - Each terminal in TOPS-20 is associated with a
mode word. This word can be read with the RFMOD call and changed with
the SFMOD and STPAR calls. The SFMOD call affects only the modes that
are program-|related: wakeup control, echo mode, and terminal data
mode; thus a program can execute a SFMOD call without affecting
previously-|established device modes. The STPAR call, on the other
hand, affects fields that describe device parameters (mechanical
characteristics, page 1length and width, case conversion, and duplex
control). Table 2-9 shows the format of the JFN mode word.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-9
JFN Mode Word
Bit Symbol |Changed by Function
0 TT$OSP SFMOD output suppress control (1=ignore
output; 0=allow output)
1 TTEMFF STPAR has mechanical form feed
2 TT3%TAB STPAR has mechanical tab
3 TTILCA STPAR has lower case
4-10 TT3LEN STPAR page length
11-17 | TT¥WID STPAR page width
18-23 | TT$WAK SFMOD wakeup control on:
B18: not used
TT$IGN B19: ignore the other TT%WAK bits
TTIWKF B20: formatting control character
TTEWKN B21: non-formatting control character
TTEWKP B22: punctuation character
TTEWKA R23: alphanumeric character
24 TT$ECO SFMOD echos on
25 TT%ECM STPAR echo mode
26 TT%ALK TLINK accept links
27 TT%AAD TLINK accept advice
28-29 | TT3DAM SFMOD terminal data mode
.TTBIN 00: no translation
. TTASC 01l: translate both echo and output
. TTATO 10: translate output only
. TTATE 11: translate echo only
30 TT$UOC STPAR upper case output control
0: do not indicate
1: indicate by 'X
31 TTSLIC STPAR lower case 1nput control
0: no conversion
1: convert lower to upper
32-33 | TT$DUM STPAR duplex mode
. TTFDX 00: Full duplex
. TTHDX 10: Character half duplex
. TTLDX 11: TLine half duplex
01l: Reserved for DEC
34 TT%PGM STPAR pause-on-command mode (l=enable
pause-on-command mode, 0=disable
pause-on-command mode.)
This function enables/disables the
TOPS-20 feature that allows a user to
manually stop TTY output with ~S and
resume it with "Q. See MTOPR function
.MOXOF for pause-at-end-of-page mnode.
35 TT$CAR system carrier state; on if line 1is a
dataset and the carrier is on.

Bit 0 (TTR0SP) implements the CTRL/O function. If this bit is set,
all program output directed to the terminal is discarded. When the
bit 1s off, program output is buffered and sent as usual. The current
contents of the output buffer are not cleared when this bit is set;
clearing the buffer must be done explicitly (by means of the CFOBF
call) if output 1is to be stopped immediately. Any input function
clears this bit.

FUNCTIONAL ORGANIZATION OF JSYS'S

Bits 1, 2, and 3 (TT$MFF, TT%TAB, and TT%LCA) define several of the
mechanical capabilities of the terminal and affect character handling
on both input and output. Form feeds and tabs are simulated if the
terminal does rot have the required mechanical capability, or if
simulation has been requested by the SFCOC call.

Bits 4-10 (TTR%LEN) determine the number of 1line feeds necessary to
simulate a formfeed, or the number of lines to fit on the display
screen. A 0 value means the declared 1length of the page 1is
indefinitely large.

Bits 11-17 (TT$WID) determine the point at which the output line must
be continued on the next 1line by inserting a carriage return-line
feed. TIf 0, no line folding occurs.

Bits 18-23 (TT%WAK) define the particular class of characters that,
when 1input from the terminal, will wake up a waiting program. Refer
to Section 2.4.9.3 for the definitions of the wakeup classes. Note
that the class-wakeup scheme is maintained for compatibility with
older programs. Newer programs should use the .MOSBM function of the
MTOPR JSYS as 1t has more resolution and causes less system load.

Bit 24 (TT%$ECO) defines if echos are to be given. If this bit is off,
echoing is turned off. This 1s useful when the program is accepting a
password or is simulating non-standard echoing procedures.

Bit 25 (TT$ECM) defines when the echo will occur. If this bit is off,
the echo will occur when the program reads the character. That 1is,
the echo occurs immediately if the program is waiting for input or 1is
deferred 1f the program 1is not waiting for input. This is the
standard echo mode which produces a correctly ordered typescript
(1.e., program input and output appear in the order in which they

occurred). If this bit 1s on, the echo occurs as soon as the
character 1is typed. Note that this mode may cause editing to appear
out of order on the typescript. This occurs because editing 1is

performed as the program reads the character and not necessarily when
the echo occurs.

Bits 28-29 (TT%DAM) define the terminal data mode. The four possible
data modes are:

00 Binary (.TTBIN), 8-bit input and output. There is no format
control or control group translation and no echoing.
However, "S and "Q are still under control of TT%PGM.

01 ASCII (.TTASC), 7-bit input and output, plus parity on for
control group output. There i1s format control as well as
simulation and translation of control group for input (echo)
and output according to the control words given on the SFCOC
JSYS. This is the usual terminal data mode.

10 Disable the translation of echo (.TTATO) . In all other
respects, same as .TTASC.

11 Disable the translation of output (.TTATE). Obeys the CCOC
word on input only. 1In all other respects, same as ,TTASC.

The last two data modes allow the wuser to selectively disable the
translation of control characters for input or output. When
translation 1s disabled, control characters are always sent.
Simulation of formatting control characters 1is still performed if
requested by the control words of the RFCOC or SFCOC JSYS or if the
device does not have the required mechanical capability. The
translation typically results in some control characters being

2-47

FUNCTIONAL ORGANIZATION OF JSYS'S

indicated by graphics 1instead of being sent as is. For example,
disabling the translation of output characters is appropriate for some
display terminals when the program must send untranslated control
characters to control the display, but reguires that the control
characters typed by the user be indicated in the usual way.

Bit 30 (TTRUOC) specifies that upper case terminal output 1is to be
indicated Dby 'X (single guote preceding character that is upper case)
if TTYLCA is not set. This is primarily intended for terminals that
are not capable of lower case output.

Bit 31 (TT3LIC) specifies that lower case terminal input 1s to be
translated to upper case and that <codes 175 and 176 are to be
converted to code 33, This is useful for older terminals that send
codes 175 or 176 1in response to the ALT or ESC key.

Bits 32-33 (TT%DUM) define the three duplex modes presently available.
Full duplex (.TTFDX) requires the system to generate the appropriate
echo for each character typed 1in. Character half duplex (.TTHDX)
assumes the terminal will internally echo each character typed but
will require an additional echo for formatting characters such as
carriage return. Line half duplex (.TTLDX) is similar to character
half duplex but does not generate a line feed echo after a carriage
return.

Bit 34 (TT%$PGM) specifies the output mode. 1In display mode, the user
can create a pause in the output while he reads material that would
otherwise quickly disappear off the screen. The output 1s stopped
with the CTRL/S character and started with the CTRL/Q character.
Also, output automatically stops whenever & page, as defined by
TT%LEN, has been output; output is resumed with CTRL/Q.

Bit 35 (TT%CAR) indicates the carrier state. If the 1line 1is a
dataset, this bit 1is on if the carrier is on. If the line is not a
dataset, this bit is undefined.

2.4.9.2 Control Character Output Control - Each terminal has two
control character output control (CCOC) words. Each word consists of
2-bit bytes, one byte for each of the control characters (ASCII codes
0-37). The bytes are interpreted as follows:

00: 1ignore (send nothing)

0l: indicate by "X (where X is the character)
10: send character code

11: simulate format action

The RFCOC and SFCOC monitor calls read and manipulate the CCOC words.
Table 2-10 lists the ASCII code for each character.

2.4.9.3 Character Set - The following information describes each
character in the TOPS-20 <character set that 1is pertinent to the
monitor calls in this group. The wakeup class (refer to TT$WAK 1in
Section 2.4.9.1) is abbreviated as follows:

formatting control character
non-formatting control character
punctuation character
alphanumeric character

PrO0m™

FUNCTIONAL ORGANIZATION OF JSYS'S
Refer to Section 2.4.9.2 for the explanation of the control character
output control (CCOC) words.

The follow